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Foreword to February 14, 1990 Version 
This version represents the completion of the present phase of the planned 
document. Changes from the previous (April 14, 1989) version are scattered 
throughout, but the major ones are: 

• The memory chapter (4) has been updated to reflect the new CPU inter­
face on the function board. 

• The core components (chapter 9 - midplane, switch cards, clock card) 
descriptions have been improved in many places. 

• The TC/FPV chapter (11) has been very substantially revised, particular­
ly to reflect the changes from the earlier B2VME function board. 

• The T-bus Specification is now included, as Appendix B. 

• The machine name Butterfly II is now properly TC2000, and the circuit 
card mimes have similarly changed from B2- to TC/-. The text of this 
document is updated only in the chapter on the 'TC/FPV function board. 

The reader may find the outline below helpful in casting this version in the con­
text of the planned document. The chapters that are not yet available are 
marked 0. 

1. Introduction D 

-- intent of machine 

- bullets on important features: 
high performance (speed, size, contention, latency (of switch, intrrupts)) 
high availability (redundancy, TCS) 
uniform I/O system 

-- major components: switch, function cards 
- bullets on switch features: 

bidirectional, locking, bounded latency (priority) 
-- bullets on function cards: processor+ memory, b2vme, future I/O 
- memory design: global address space, mapping, demand paging, 

interleaving 
-- support components: clock, TCS, power, packaging 
-- topics of other chapters, other (planned) books on the product 

2. Design concepts D 

This chapter describes the details of the major components to a level sufficient 
to support the complete discussion of components in following chapters. This 
material is more detailed than in the introduction, and the reader can stop 
reading after this chapter with a coherent picutre of the machine, if detailed 
knowledge is not needed. The support components will also be discussed here, 
in less depth than the major components. Discussion of design tradeoffs, and 
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motivation for the chosen design, belongs in this chapter. Hardware redun­
dancy is discussed here fully (switch, clock, TCS, power). 

3. The BF II switch 

4. BF II memory system 

5. BF II function card D 

-concept: 
different function cards provide different mixes of processing and I/O 
e.g., A.P. card, VME +processor (B2VME), Tl I/O card, 
multi-88000 card, ... 

- 88000 and CMMU 
_:_ transaction bus 
- interrupt system and latency 
- clocking 
-power 

6. Test and Control System 

7. Power distribution D 

- 48-volt bulk power 
- local regulation 

8. Signalling D 

- single-ended signals 
- signal quality issues and analysis 
- controlled impedance 
-- connectors 
- cabling 
- timing constraints 

9. Butterfly II switch components 

10. Packaging D 

- description of modules (physical size and layout, power, etc.) 
- eight-slot module 
- cabinet - dimensions, clearances, position of compoments 
-- I/O - cabling, connectors, etc. 

11. B2VME function card 

Appendix A: SIGA Specification 

Appendix B: T-bus Specification 
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Appendix C: SGA Specification D (available separately) 

Appendix D: LCON Specification D (available separately) 

Appendix E: TCS Voltage Monitoring Analysis D (available separately) 

Appendix F: Data Sheets and References D (available separately) 

Glossary D 

Index D 
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The Butterfly 11 Switch 

The Butterfly II switch provides communication among function boards. It 
is central to the machine architecture and embodies many important and 
unique features. This chapter begins with a tutorial discussion of the switch, 
then examines the major operational aspects, and concludes with details of the 
switch protocol and the hardware that implements the switch. 

Knowing the names of some switch components will help the reader in the sec­
tions below. The fundamental hardware of the switch is three types of custom 
gate array VLSI chips, the SGA, SIGA and LCON. The SGA (Switch Gate 
Array) performs the actual routing of messages through the switching network 
of many interconnected SGA chips. The SIGA (Switch Interface Gate Array) 
iat~rfaces the switching n~tviu:rlc t~ ie'.'!:::.es ~~.:. f~!.:.::·ti0:n bcz.:-d..:. The SIG::.:'\ .. 
chip contains a "requester" section that initiates connections through the 
switch and a "server" section that responds to connections. The LCON (Level 
CONverter) converts signals between the different electrical conventions used 
in the SGA and in the SIGA. 

Overall Design Concept 

The Butterfly switch distinguishes the Butterfly family of computers from 
many other parallel processor designs. Its importance is reflected in the fact 
that the custom VLSI chips in the Butterfly II implement and support the 
switch; other portions of the machine are assembled using commonly available 
parts. Because of significance of the switch, this section begins at a more ele­
mentary level than other parts of this book. 

Butterfly Switch Basics 

Computers of the Butterfly family share a general switch design that is special­
ized from one generation of Butterfly computer to another to match that com­
puter's overall architecture. The Butterfly switch is a network of crossbar 
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switches. This design has several advantages compared to other common par­
allel processor interconnection schemes. For example, a bus design has a max­
imum bandwidth that limits performance when the machine is expanded 
beyond the point of bus saturation. A full crossbar interconnect expands as 
the square of the number of interconnected components, rapidly becoming 
prohibitive in size and cost. Cube connected machines scale up more graceful­
ly than do bus or full crossbar designs, but each processor node must be de­
signed with several interconnection ports, and the number of those ports 
places a design limit on the maximum machine size. 'free architectures often 
require very large cabling among switching nodes near the top of the tree to 
avoid a bandwidth bottleneck there. The cabling in a large Butterfly machine 
is distributed throughout the machine, not concentrated in one area. 

The network of crossbar switches used in Butterfly computers supports scaling 
of the machine from small to very large configurations. As processor nodes 
are added, only a moderate growth in the size of the switch is needed; N nodes 
require a switch of size proportional to N log N. The bandwidth of the switch 
grows as the ma,chine is scaled up, so the switch does not become a bottleneck 
at any size of machine. The switch is made of identical switch components, 
so expansion is easy and does not require redesign or mixtures of different 
hardware. The Butterfly switch has relatively small cables between switch 
components and between the switch and function boards (such as processor 
nodes). The design of the switch interface on function boards is not affected 
by the machine size, so the same interface applies to any size of Butterfly ma­
chine. 

0 

0 
Figure'3;:.1'' '.' TWO'-by-two crossbars; 

6 

Figure 3-1 shows a two-by-two crossbar switch in two notations. The left dia­
gram shows two horizontal wires and two vertical wires. Each of the four inter­
sections of wires is a crosspoint. The wires at the crosspoint are normally 
insulated from each other, and closing the crosspoint connects them. This dia-
gram resembles the physical construction of electromechanical crossbar 0 
switches once used in telephone exchanges. The diagram on the right shows " 
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Figure 3-2 

two wires on the left side, each of which may be passed straight through to the 
wire on the right, or may be switched over to the other wire on the right. This 
diagram resembles railroad tracks, and the data flow in some Fast Fourier 
Transform algorithms. ·its resemblance to a butterfly is the origin of the name 
"butterfly transform" in signal processing, and of the Butterfly family of com­
puters. 

Small switch showing Butterfly concept. 

c:i:> -~-----.~-----.... ..... - c:i:> 
S> S> 
c:i:> c:i:> 
c:i:> c:i:> 
c:i:> c:i:> 
c:i:> c:i:> 
c:i:> c:i:> 

3.1.2 

February 14, 1990 

Figure 3-2 is a very small switch illustrating the Butterfly concept. Twelve two­
by-two switches, as described above, are wired together to create a network 
that can connect any of the eight input port wires on the left side to any of the 
eight output port wires on the right side. The advantage of the Butterfly switch 
design over a Juli crossbar is evident even in this small switch; a full crossbar 
needs 8 squared, or 64, crosspoints to interconnect the same number of ports. 
The Butterfly switch shown here uses twelve identical units, each with four 
crosspoints, for a total of only 48 crosspoints. As the number of ports in­
creases, the advantage of the Butterfly switch increases. 

Routing in the Butterfly Switch 

When a message enters the Butterfly switch, the part of the message that enters 
first specifies the routing through the switch. This routing header contains one 
piece of information for each element of the switch through which the message 
will pass. In Figure 3-2, a message encounters three switch elements before 
it emerges on one of the wires at the right side. In each element, the message 
must be routed on either the upper wire or the lower wire. This routing choice 
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8 

is specified by one bit in the header. That bit is stripped off ("consumed") 
by the switch element, not passed on as the rest of the header and the rest of o 
the message are. Therefore, following switch elements do not see routing infor-
mation that was used earlier in the switch. The first information each element 
sees is the data it needs to route the message within itself. When the message 
emerges from the last switch element, the entire routing header has been re-
moved. 

A Butterfly switch element that switches between more than two wires will use, 
and consume, more bits of routing information. As we will see, each Butterfly 
II switch element makes an eight-way routing decision, so it consumes three 
bits of routing information. · 

An important consequence of this design is that the format of the routing head­
er depends on the number of switch elements through which any message will 
pass. This is the number of columns in the switch. Therefore, the part of the 
machine that prepares the message for transmission into the switch must be 
configured for the number of columns in its switch. In the Butterfly II machine, 
the requester side of the S1GA does the message preparation, and is confi­
gured appropriately. 

Organization of the Butterfly II Switch 

Figure 3-2 above showed three columns of two-by-two crossbars assembled Q 
to create a network with eight inputs and eight outputs. Similarly, the Butterfly 

.. II .. ~~tcQ is puilt of eight-t~-:-e}R~t.rrnssbar unjts, F.,ae-h ll.!1!t is ca.11e.d .a switch 
node. Each switch node makes an eight-way routing decision for incoming 
messages, so it consumes three bits of routing information. In fact, it con­
sumes some additional information as well, for a total of one byte. 

Since each switch node makes an eight-way choice in routing each message, 
a switch made of these nodes is sometimes called a modulo-eight or base eight 
Butterfly switch. Choice of the switch base is a design decision influenced by 
VLSI chip size, power and pinout restrictions, cabling constraints, failure 
mode considerations. switch performance, and cost. The initial Butterfly II 
is implemented with a modulo-eight switch, and has provision for using a mo­
dulo-sixteen switch in the future. 

Columns of switch nodes are connected to create the switching network of the 
. Butterfly II computer. Each port of the resulting network services one slot, 
or function board. Two columns of eight,.-by-eight switch nodes are used for 
a Butterfly II machine with up to 64 slots, and three columns are required for 
machines with 65 to 512 slots. For example, Figure 3-3 shows a 64-slot config­
uration. Two columns of eight eight-by-eight nodes comprise this switch, for 
a total of 16 nodes. A switch card holds one node, so such a machine has six­
teen switch cards. 
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64-slot Butterfly II switch. 

At the level described here, switch cards are all the same. In fact, there is a 
different kind of switch card for each column of a switch. The cards supply 
different auxiliary signals to function boards, and support different Test and 
Control System fuµctions. The switch card is the smallest active component 
of the Butterfly II switch that is normally replaced in the field. · 

The switch node is implemented with four Switch Gate Array (SGA) chips. 
In the SGA, four groups of eight data wires and two control signals each are 
switched among four other groups of ten wires. Each group of ten wires is 
called a port or channel. The chip has four input channels and four output 
channels, and implements a full four-by-four crossbar switching function 
among these channels. In crossbar terminology, the chip functions as a four 
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(inputs) by four (outputs) by ten (depth, data and control bits in parallel) cross­
bar. 

SGA chips implement a priority mechanism that is described later, and oper­
ate in pairs to negotiate the priority of data handled by each pair. There is 
close electrical and protocol coupling between the SGA chips in each pair to 
negotiate the priority of arriving data competing for the same output port. 
Consequently, the function of a pair of chips might have been implemented 
on one single chip.if constraints such as circuit size and pin count permitted 
it. Conceptually, the pair of SGA chips form an eight input, four output cross­
bar. 

Pairs of SGA chips are themselves paired, creating an array of four SGA chips 
that function as an eight by eight (by eight data bits deep) crossbar. It is helpful 
to think of this, the switch node, as a building block, shown in Figure 3-4. The 
internal design and behavior of this eight-by-eight block will be discussed in 
the remainder of this chapter, but the rest of the machine can easily be under­
stood by considering the switch as an assembly of these eight-by-eight cross­
bar blocks. Within a switch node, each input channel can be connected to at 
most one output channel, and each output channel to at most one input chan­
nel. Consequently, at most eight conne~tions can be in operation at any instant 
through any one switch node. 
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Butterfly II eight-by-eight switch unit. 
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In the Butterfly II switch, data wires are not switched individually. Rather, 
groups of ten wires (eight data and two control) are switched together. The 
data paths through the switch are therefore eight bits wide. Use of wider data 
paths achieves higher throughput at the expense of a somewhat more complex 
hardware design. 

Each group of eight data wires carries a byte of data in parallel. Several bytes 
of information are sent, one after another, in rapid succession. With each cycle 
of the switch clock, another bit of data appears on each wire, another byte on 
the group of eight wires. 
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These bytes sent close together are related and are called a message. A mes-
. sage has a particular structure. The first few bytes of a message specify the Q 
switch output port address and thus control the routing of the message through 
the switch to its destination. Other information needed by the SGA to properly 
handle the message, such as priority level described below, also appears in 
these bytes. Next is bytes of data conveyed transparently through the switch 
from a device on a function board to a (typically different) device on a(typically 
different) function board. Finally, there is a "checksum" byte to detect errors. 
The structure of a message is discussed more fully under switch protocol. 

Along with the group of eight data bits are the control signals "frame" and 
"reverse". These ten signals, propagated through the switch and interpreted 
by the switch hardware as necessary, form a switch path. So long as that path 
is in use, we say a connection exists or "is open". The term, "switch path" em­
phasizes the physicai circuitry that handles the signals, while "connection" em­
phasizes the ability to communicate data. As long as the connection is 
established, messages may flow on it; a connection may transport from one to 
several messages before it is closed. The switch hardware imposes no direct 
limit on the number of messages per connection, and only a loose limit on how 
long the connection may be kept open if messages are successfully flowing on 
it. Constraining the length of the connection is left to higher-level protocols, 
implemented in software and supported by timers in hardware. 

The frame and reverse signals control the connection. They define when there 
is valid data on the data lines, and therefore determine the beginning and the 

0 end of the connection and of messages on the connection. 

Resources Employed 

What hardware is involved in supporting a connection through the switch and 
in transporting a message on it, and how many other connections arid messages 
can be handled at the same time? This information appears in other sections 
in a distributed context, and is brought together here and shown in Figure 3-5 
for clarity. 
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Figure 3-5 
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An SGA chip, being a four-by-four crossbar, can support as many as four si­
multaneous connections. The eight-by-eight switch node, made of four SGA 
chips, can support as many as eight simultaneous connections. 

The requester part of a SIGA can support only one connection at a time, and 
only one message at a time on that connection. The requester SIGA buffers 
one message. This is possible because there is a maximum message size (de­
scribed in a later section), and that limit is small enough that the SIGA can 
buffer the entire message. The requester SIGA detects contention in the 
switch and retransmits the current message as described later. Any buffering 
or queueing of multiple messages or connections, however, is performed by the 
device(s) on the SIGA'.s T-bus. The server part of a SIGA similarly handles 
at most one connection and one message on that connection at a time. 

Each LCON chip is associated with one SIGA, so the LCON supports at most 
one requester connection and one server connection at a time. 

There can be more than one SIGA on a T-bus, which is typical in Butterfly 
II function boards. Therefore, if the LCON chips of those SIGAs are con­
nected to switch ports, devices on the T-bus can have as many forward and 
as many reverse connections simultaneously open as there are SIGAs. Soft­
ware may further constrain the number of connections. The section on redun­
dancy further discusses multiple SIGAs per T-bus. 
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3.2 Bidirectionality 

The communication paths provided by the Butterfly II switch can transmit 0 
data in either direction, although not at the same instant. At any instant, a 

14 

given connection is sending data either in one direction or in the other. Thus, 
although the path is bidirectional, it is half duplex. 

An important advantage of bidirectionality is support for atomic operations 
by locking the connection and holding the switch path. This is discussed fur: 
ther in the section below on locking. Another advantage is that any response( s) 
to a switch message can be returned along the same path, eliminating delay 
while a new switch path is set up. It also simplifies the buffering and coordina­
tion because the response may be sent immediately. Two disadvantages of bi­
. directionality are added complexity of the switch hardware and protocol, and. 
possibly increased latency. Greater latency might arise because switch paths 
might be held longer per connection. The longer connection time is mitigated, 
however, by reduced contention for connection setup, an advantage in its own 
right as noted above. 

The two ends of a connection through the switch are not identical. One is 
called the requester, the other the server. Only the requester end can initiate 
connections. Therefore, the flow of data from a requester through the switch 
to a server is called the forward direction. When the channel is turned around 
to send data from server to requester, we say data flows in the reverse direction . 
. The conventional way to diagram the Butterfly II switch is with all the request­
ers on the left and all the servers on the right, so the forward direction of data 
fh:;w·· i~ l~fl. h:J~1lgl,.L at1 ~ii f;igµ1c 3-6. ·l.'he-cha,11n~is <:i.1ri.l-piil3 vli··a:t1 SGr\ cll'~!J 
are named for the forward direction of data flow; an "input" pin is closer to 
the requester, and an "output" pin is closer to the server, on the data path. 
When the path is reversed, the chip will receive data on its "output" pins and 
transmit data on its "input" pins. 
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Figure 3-6 
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When a connection is first set up, data flows in the forward direction, from 
the requester to the server. The direction of data flow is reversed by a momen­
tary drop in the "frame" control signal that accompanies data through the 
switch, for only one clock cycle. The frame signal is generated by the requester 
and always flows in the forward direction, so the reauester controls the direc­
tion of data flow. When the requester has turned around the connection to 
enable upstream flow, the server controls whether data is actually flowing. 
More detail appears in the section on switch protocol. 

Locking 

Occasions arise when a sequence of operations should be performed without 
interference from other activity. One example of this is atomic addition. If 
multiple processors are attempting to read a location, increment the value and 
write back the results, an incorrect sum can arise if one processor reads the 
location between another processor's read and write. More complicated situa­
tions arise when complex da!a structures are involved, or when the updating 
is more complicated than simple addition. The general solution to this need 
is locking. 

Locking a switch connection is a means of protecting a sequence of operations 
mediated by switch messages from interference arising from other switch mes­
sages. There are two aspects to locking, the device level and the switch level. 
Locking is primarily a device-to-device mechanism supported by features of 
the switch operation. The goal of locking is control of access to devices. The 
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Butterfly II switch supports that control by holding the 'connection open and 
by enforcing some rules about T-bus requests. 

Two control signals, frame and reverse, accompany each eight-bit data path 
through the switch. Frame identifies the beginning and end of a connection, 
and controls the direction of data flow. The start of a message is defined as 
frame going high after being low for at least two consecutive clock cycles. Once 
the connection is established, the path through the switch is kept until the re­
quester terminates it by dropping the frame signal for at least two clock cycles 
(and reverse is low). Thus, by holding the connection, the data path can be 
locked so that no other requester can connect to that server. While the path 
is locked, the requester similarly cannot connect to another server. 

A device uses a T-bus transaction to ask its requester SIGA to send a message .. 
This transaction contains two bits that specify one of four locking options, 
called normal, open, maintain and bypass. These bits are passed through the 
switch to the server device, where the majority of locking activity is implem­
ented. The LCON and SGA chips pass the two Jocking .bits through, taking 
no action on them or because of them. The server SIGA passes the bits 
through to its T-bus, and also detects an open so it knows the current connec­
tion is locked. 

A normal request produces a normal switch message without any locking as­
pects. An open request causes the requester SIGA to hold the frame signal 
asserted after sending the message and receiving its acknowledgment, in prep­
aration for further switch traffic. A maintain request sends an additional mes­
t:age on th~ l0cked c~nr.ecticn th3t iR already nren._ Bypass is Uf!e.d to acce~s 
a: device that ordinarily would not respond because of being locked. A bypass 
neither establishes a lock nor frees a lock if one exists. 

The server SIGA detects the value of the lock bits in the open message, and 
remembers that a locked sequence is in progress. At the conclusion of the pro­
tected sequence of operations, the requester device releases the lock by issuing 
a special T-bus transaction (FREE-LOCKS). This causes the requester SIGA 
to drop frame, causing the switch path to drop Ol\t. The server SIGA detects 
the loss of frame during a sequence it knows is locked, and announces FREE­
LOCKS on its T-bus. Server T-bus device(s) holding locks sense this and 
modify their state to reflect the release of the lock. Errors and timeouts also 
result in the frame signal dropping, and the locks being freed. 

The requester SIGA imposes some constraints on T-bus protocol to do lock­
ing. In particular, if no lock is currently held, a normal, open or bypass request 
is accepted, and a maintain request is detected as an error. If a lock is held, 
a normal request is detected as an error, and open, maintain and bypass re­
quests are accepted. The server SIGA imposes no further constraints. By de­
sign of the requester SIG:A, the server SIGA will never see the illegal cases of 
a maintain when there is no lock, or a normal when there is a lock. 
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So long as the lock is in effect, the frame signal is asserted, so the connection 
is held open, so no other connections from the requester SIGA or to the server 
SIGA can be made. This supports the desired isolation of the sequence of op­
erations from interference. The connection is between switch ports, however, 
and there may be more than one device on the T-bus of a SIGA. Therefore, 
the requester device may open multiple locks on server devices, if the server 
devices are all on the same 1;'-bus. The server devices may be physically dis­
tinct, or they may be logically distinct components of the same physical device. 
This multiple lock capability is implemented by allowing open requests even 
when a locked connection is already established. 

Conversely, during a locked connection another device might attempt to gener­
ate messages through the requester SIGA. This is not permitted; the requester 
SIGA detects this and refuses the attempt, regardless of the destination ad­
dress or the message type. 

It is primarily up to the server device to remember that locks are held and to 
enforce any restrictions on, their use, as appropriate to the type of device and 
its current state. Those colisiderations are beyond the scope of the discussion 
here. · 

Priority 

The Butterfly II switch implements a priority scheme to allow some switch traf­
fic to take precedence over other switch traffic. There are two levels of priority, 
1 • • . • ..,.. . . , . t.. ., F • · ., , 1 • . ., . ov.,r anc. n1gn. LOW prrorrcy is t11e c.c:..~U!L rr:oae, .sc HJV.' rnay a_so oe 'l~~·,,1.;e+.:1 as 
"normal" priority. Priority is a state associated with an output port (channel) 
of a pair of SGA chips, and also is a property of each message. Each of the 
four output ports of every SGA chip has a priority independent of all other 
ports, except that the two SGA chips serving the same output port agree on 
the priority of that port. 

The p.riority of a switch message is defined by a bit replicated in each byte of 
the routing header. The value of the bit is set by the requester SIGA as de­
scribed below when the message is generated, and is not changed as the mes­
sage travels through the switch. Each SGA through which the message passes 
strips off (consumes, deletes) one byte of routing header, so the priority bit 
appears in each such byte. 

A signal called "hold" is distributed to every SGA in the machine and controls 
the operation of the priority mechanism. When hold is not asserted, all mes­
sages are treated the same regardless of their priority. 

While hold is asserted, each output port remembers whether a message of high 
priority has attempted, since hold was asserted, to connect through that port. 
And if so, no low priority message will be allowed to connect through the port. 
We say that the port has become high priority. An incoming, high priority mes­
sage makes the port high priority regardless of whether the port is free or the 
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port is busy and therefore the high priority message is rejected. The port's 
transition to high priority is caused by any high priority message qttempting Q 
to connect to the port. If the port is busy at the time of the attempt, the existing 
connection is not aborted, even if it is of low priority. After the port has be-
come high priority, subsequent attempts to connect to it by low priority mes-
sages will be rejected, even if the port is idle. 

As a high priority message travels through the switch while hold is asserted, 
it sets every low priority output port it encounters to high priority. Therefore, 
it leaves a track of high priority ports behind it. Further high priority traffic 
on the same path will get better service from the switch, because it will contend 
only with other high priority messages. In particular, if the message itself is 
rejected, then retransmissions of the message are much more likely to succeed 
because of the track-of high priority ports. It is intended that contention 
among high priority messages be very rare or non-existent, through careful 
choice of system configuration parameters by the designers. 

Once a port is high priority, it remains so until the machine-wide hold signal 
is de-asserted twice. The first time hold is de-asserted while a port is high 
priority, the port circuitry remembers that a drop to low priority is pending. 
Hold becomes asserted again, and then when hold is de-asserted again, any 
port with a priority drop pending falls back to normal, low priority. The design 
requires two de-assertions of hold, instead of just one, to ensure that a 
blocked, high priority message has at least one hold period to retry and 
succeed in making its connection. 

. ...... '\. ·., ·-,, ··· ... '•;,_·,. ' -,_.,,,_ ... ,_ ..... ,,, .. •, . 

TECHNICAL DETAIL 
The de-assertion of hold does not set a pending drop to low priority if a mes­
sage, of either high or low priority, is using the port. The port must be idle for 
the de-assertion of hold to set the pending drop. If a drop is pending, a de-as­
sertion of hold drops the port to low priority whether or not a message is using 
the port. 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

The intent is that the hold signal normally will be asserted, and will be de-as­
serted for just one cycle of the switch clock on a periodic basis. This clears 
out high priority paths that are no longer needed. The next time a high priority 
path is needed, the next message sent will re-establish a high priority track. 
In fact, the high priority track is intended to be a very brief phenomenon. 
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TECHNICAL DETAIL 
A port's drop to low priority is precipitated by hold being de-asserted for two 
cycles of the switch clock, not by the de-assertion itself. A single d.e-assertion 
lasting for two cycles would serve the same purpose as two separate one-cycle 
de-assertions, but would not achieve the desired interaction with the priority 
time slot mechanism described later. 
... ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. 

'\. -.,,,, .... ,,, ••• ,, ·••••• ••• ,,, ''''•· '''• ...... , ..... ,,,,_ ·••••• .,,,_ ' 1•1,, •• ,,,, '\ •.•• ,,,, -,,,,, ··;,, ••• , ••••• ,,, ...... ·••••• •• ,,,,_ •• ,,. ' 1•1,, ...... '\. •••••• ....... ••••••• .......... ,, ••• ..,,, ···;. "'·~ •••• ,,,, '''•1. "'11,, ...... ''\, ....... '\, "'•., ... , ....... ,, •.•• ,,,, "'•,, 

TECHNICAL DETAIL 
In the initial SGA implementation, if a high priority message arrives at an SGA 
·at exactly tlie same clock cycle as hold is de-asserted, the port will not be set to 
high priority. This has subtle implications for switch behavior and is discussed 
further in the section on analysis of the switch. 

There are two ways a message may become high priority. One is by request 
of the T-bus device that originates the message. This is intended only for test­
ing and diagnostics. The other way is by promotion from low to high priority 
by the requester SIGA, and is discussed in the following section. 

HISTORICAL AND TECHNICAL DETAIL 
'?..1c .Jiigina.l desig11·p1\;v~·d.\:;J i0:I ~l:;,·;~~ privrl<; l.:;,:.;,:,l;;, nor just t\.VG·. The·hlghes·'t · 
priority, "express", is like the high level implemented, and its purpose is to set 
an upper bound on how long a switch message may be delayed before succes­
sful transmission. The middle priority, "foreground", was designed to support 
circuit switching applications such as packetized voice communications. The 
lowest priority, "background'', was all other traffic. A remnant of this early 
design is that the requester SIGA copies two bits (T_PRIORITY < 1..0>) 
from the T-bus into each bid (routing) byte of each message, as bits 5 (Pl) and 
4 (PO) respectively. The SGA uses only PO, and ignores Pl. PO is zero for high 
priority and one for low priority. The SIGAforces both PO and Pl to zero when 
it promotes the priority of a message to high. 

Message Priority Promotion 

When a new connection through the switch is attempted, the initial message 
will encounter contention at one of the switch nodes if the desired output port 
on the node is already in use. The partial switch path is released and the re­
quester SIGA is informed of the contention. The message is retried later. This 
retransmission is repeated if contention persists. The rejection and retry strat­
egy, described in detail in a later section, could lead to long delays before the 
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message is successfully transmitted through the switch. Once the initial mes-
sage gets through, the connection is established and, if the connection is held o 
open, further messages can flow without any switch contention delay. The pos- .. 
sible delay in getting the first message through, called switch latency, could be 
very long, even theoretically unbounded, unless some mechanism is included 
to limit it. This is the purpose of high priority; it guarantees a maximum switch 
latency. Remote memory is accessed through the switch, so the guarantee of 
maximum switch latency in turn permits an upper bound on remote memory 
access time. 

A message becomes high priority either by the requester device declaring it 
so in the T-bus transaction initiating the message, or by promotion from low 
priority. Declaration by the requester device is intended only for maintenance 

·and diagnostic testing. During normal operation, all messages are intended 
to be low priority when submitted to the T-bus. This is by convention only, 
and is not enforced by the hardware. 

Promotion to high priority is performed by the requester SIGA, and occurs 
whenever the retransmission of a message is pending during a particular inter­
val called the priority time slot. Only the retries are promoted, not the initial 
transmission. After the header of an initial message is sent, that message is 
·said to be awaiting retransmission. If there is a message awaiting retransmis­
sion at any time during the priority time slot, subsequent retries of that mes­
sage will be at high priority. This is true whether the message was already 
awaiting retransmission when the priority time slot began, or was first trans-

0 mitted during the slot and therefore started awaiting after the slot began. Also, . 
prom.ot.ion occur~ wht;>:ther t.he ~c:tual r~trv occurs within the slot or after th_e 
~lot has ended. · . " . 

Once the message is promoted to high priority, it remains at high priority 
through any retransmissions; priority is a "sticky" quality. The requester 
SIGA associates the high priority with that particular message. After the mes­
sage is successfully transmitted or is discarded due to repeated failure, the pro­
motion is forgotten and subsequent messages start off at low priority as usual. 
The SIGA ensures that all header bytes of a message contain the same priority 
value, even if the priority time slot begins or ends while the header is being sent. 

Each requester SIGA gets a priority time slot on a periodic basis. Conceptual­
ly, the priority time slot is 'a virtual token passed among all the active SIGA 
chips in the machine. When a SIGA has the token, messages pending retrans­
mission by that SIGA are promoted and therefore are very likely to get through 
the switch. The virtual token is not actually passed from SIGA to SIGA, but 
rather the SIGA chips are initialized so that each knows when its turn comes 
up. They take turns, round-robin fashion. In fact, the SIGAs can be set up 
so there are more than one virtual token. Also, each SIGA may be configured 
to disable its priority promotion. 
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The priority promotion mechanism does not itself ensure that the switch con­
tains at most one high priority message at a time. Rather, there are ways of 
using the mechanism that ensure this, and other ways that do not. 

The priority time slot in each SIGA is controlled by three values in registers 
on the chip. These are the slot and the mask fields of the priority time configu­
ration register, and the real time clock. The slot and mask are 16 bits each, 
and their values are set via'tlie T-bus. The real time clock is 32 bits, ticks each 
microsecond, and is synchronized among all SIGAs in the machine. Only the 
low 16 bits (RTC.Lo) of the real time clock are used in determining the priority 
time slot. The real time clock is discussed in detail in the sections on clocks. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

TECHNICAL DETAIL 
The priority slot and mask, and all other SIGA Configuration Status Unit 
(CSU) registers, may be set by any master on the SIGA:s T-bus. One such 
master is the Test and Control System (TCS). The TCS is responsible for ini­
tializing the machine, incliiding SIGA registers such as the slot and mask. 

A SIGA:s priority time slot occurs while the RTC.Lo equals the slot value in 
all bit positions that are zero in the mask. For example, a mask value of zero 
in all sixteen bits means the priority time slot will be one microsecond Jong and 
will occur once every 65,536 microseconds, when the RTC.Lo exactly equals 
the slot value. Normally, the slot values of different SIGAs are configured to 
different values, so the priority time slots occur at different times. As another 
example, a mask value of flJOf hexadecimal causes the high four bits and the 
low four bits to be ignored in comparing RTC.Lo to the slot value, so the slot 
would last 16 microseconds and would occur once every 4,096 microseconds. 
There are only 256 16-microsecond intervals in a period of 4,096 microseconds, 
so if a Butterfly II computer with 5U SIGAs were configured with these pa­
rameters, two SIGAs would share each priority time slot. 

The duration of the priority time slot is set to any of a wide rahge of values, 
as seen in the paragraph above. The intent is that the slot duration be set the 
same for all SIGAs in the machine, although there is no hardware requirement 
that they be the same. 

Not all instants of time need belong to the priority time slot of some SIGA. 
The parameters can be set up so there is an idle time after each SIGA:s priority 
time slot. This could be a good way to configure the switch, because it allows 
a grace period for a promoted message to succeed through the switch before 
another SIGA might inject its own promoted message. Without a grace period, 
contention among high priority messages, though rare, could compromise the 
bound on switch latency. 

Because the slot duration is how long a SIGA will hold the "virtual token" that 
lets it promote the priority of messages, its effect interacts with the period of 
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the machine-wide hold signal. As a very rough approximation, the two inter­
vals should be about the same, because [THE FOLLOWING OVER­
S1RUCK STUFF IS NOT RIGHT - WHAT IS CORRECT??? PERHAPS 
THE LARGER GOAL OF BOUNDING SWITCH LATENCY.] the in-tent 
of the priority promotion and hold meehaaism is to make very likely the sue· 
eess of a message seat iato the switeh duriag the priority time slot. If the hold 
sigaal had a sigaifieantly loager period, subsequeat messages oa the same path 
would reeeive an uniateaded advantage, ridiag the traek of high priority SGA 
ports set up duriag the past priority time slot. If the hold signal had a much 
shorter period, a message of promoted priority would have undue difficulty 
getting through a crowd of contending, low priority messages. Each time the 
promoted message sallied forth into the switch, it would get part way, set those 
ports it touched to high priority, hit a port already in use, back off and try 
again. But its retry would usually fare no better, because the work it had done 
in setting ports to high priority would be undone by the rapid period of the 
hold signal. 

So the hold signal and the priority time slot will have roughly equal times, and 
further consideration gives rnore guidance on their relative values. If the SGA 
port priority were reset tolqw whenever the hold signal dropped for one clock 
cycle, then the behavior af promoted messages would vary a lot. Messages that 
got promoted just before the hold signal dipped would not get much benefit 
from being promoted, and messages promoted just after a hold signal dip 
would have an entire hold period to enjoy the benefits of high priority. This 
behavior is smoothed out by having SGA ports drop their priority to low after 
two dips in the hold signal. ·Now a message of promoted priority has at least 
('»~ hQ!µ. p9riOd; 0.Dd i1f Tflf(~f t"-;'0 h~lcl p{;'rio0~.' fr; ('.Yt;Trj.~e if:;. htgh.- .prr0ri_ty, 
Therefore, the interval frdni the start of one priority time slot to the next is in­
tended to be about the same as two periods of the hold signal. 

TECHNICAL DETAIL 
The "benefits of high priority" gained by using two dips in hold arise when a 
high priority message is rejected because a required output port is already · 
busy with another message. The port gets set to high priority, and the high 
priority message will be retransmitted soon. But, if a single dip in hold could 
drop the port to low priority, that dip might occur before the retransmission, 
wiping out the progress the message had made. Requiring two dips in hold 
protects that progress long enough for the retransmission to make use of the 
high priority port. If a single dip in hold does occur, so the port has a drop 
pending, the arrival of the retransmission will erase the pending drop, setting 
the port back to solid high priority. 
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Traffic Injection Pacing 

The LCON and SGA chips can accept the start of a switch message at any cycle 
of the switch clock. Extremely heavy input of messages from the function 
boards, however, could cause congestion in the switch, degrading perform­
ance. It is useful to have a switch architecture that can be configured to pace, 
or throttle, the entry of traffi'c into the switch. The Butterfly II switch provides 
this capability through slotting. 

The requester SIGA has three strategies for pacing the initial transmission of 
messages into the switch: immediate, random and slotted. If a message is re­
jected, the SIGA retries the message using either the slotted or the random 
strategy. Immediate pacing means no delay; transmission occurs as soon as 
the SIGA has sufficient data to begin transmission of the message into the 
switch. Random pacing invokes a delay of a random number of switch clock 
cycles before transmission or retry. Slotted pacing restricts transmission of 
messages into the switch to certain instants of time, called slots. The slots oc­
cur every )12, 1, 2 or 4 midoseconds. 

The Test and Control System initializes registers in each SIGA to define the 
parameters for random and slotted strategies. Each T-bus request for mes­
sage transmission selects a strategy for that specific message from among 
those set up earlier (normally, by the TCS). 

The operation of the random and slotted strategies is the same for retransmis­
sions of a message as it is for the initial transmission, so the details of these 
strategics are described in the followir.g section. 'P.'.:o immediate strat.~gy b 
available only for the initial transmission of a message. 

Contention and Retry Strategies 

This section examines the switch strategy for dealing with contention among 
messages in the switch. The basic strategy is to back up and try again. Conten­
tion arises when a needed port is already in use, or when two messages meet 
head-on at the same port. 

Port Is Already In Use 

When a message is working its way through the switch, it may encounter an 
output port that is already in use. When this happens, the SGA containing 
that port asserts the "reverse" signal going back upstream toward the request­
er, for just one cycle of the switch clock. This pulse of the reverse signal for 
one clock cycle is called a reject, and causes the switch path to be torn down. 
Each upstream SGA in turn detects a reject, drops the frame signal it had been 
asserting downstream on that port, sends a reject upstream, and frees up the 
input and output ports for other work. This reject mechanism is also invoked 
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by other conflicts detected by the switch hardware, such as the port being at 
high priority and therefore unable to service an arriving low priority message. 

0 The server SIGA also generates rejects, as described in the protocol section 
below. 

The message rejection travels upstream to the requester SIGA. There, the 
message is retransmitted into the switch at a later time. Often, the contention 
the message suffered the first time has cleared, and the message succeeds on 
the second try. If contention arises again, the message is retransmitted again, 
and so forth. Normally, if contention persists, the requester SIG.A's priority 
time slot will eventually arrive. Then the message will be promoted to high 
priority, and will get through. If priority promotion is disabled, or if the switch 
is broken, retransmission will continue until a timeout occurs, signaling a 
transmission failure, and the requester SIGAwill notify the requesting device 
on its T-bus. 

Head-on Collision at the Port 

Two messages can arrive at (bid for) one output port on the same clock tick. . 
When this happens, arbitration circuitry in the SGA selects one message to 
acquire the port and one message to be rejected. The message that succeeds 
proceeds as if there had been no contention at the port, and the rejected mes­
sage is treated as if the port had already been in use as described above. In 
fact, up to eight messages may simultaneously contend for a single output port, 
since the Butterfly II switch unit is an eight-by-eight crossbar. Note that each 
01.itp!!t port haR it~ a'lfr! arbitration !ogic; the ?.r'bitration on_ on_e port is not af-
fected by bids, priority, or hse of an~ther output port. . 

The SGA arbiter's algorithm is as follows. If the output port is at high priority, 
then any low-priority bids are rejected. If the output port is at low priority, 
then all bits compete, even if some are high and some low priority. Of the re­
maining bids, one is chosen at random to get the output port, and any others 
are rejected. 

0 

· TECHNICAL DETAIL 

24 

The random choice is driven by three bits supplied to the SGAs by a pseudo­
random number generator on the switch card. A 7-bit maximum sequence 
generator (x7 + x3 + 1), updated on every switch clock cycle, is used. The Test 
and Control System can set the generator to all ones (the dead state) or all zeros 
for testing, and is responsible for ensuring that the generator is not in the dead 
state after system startup. 

The original implementation produces a slight unfairness among competing 
bids. This is discussed further in the section on analysis, but is not expected 
to affect performance in normal use, and may not be detectable even by special 
purpose software. 
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Retransmission Pacing 

Just as pacing the initial transmission of messages into the switch is important 
for reducing contention, sq is pacing of retransmissions. In fact, it can be even 
more important, because whenever contention happens to occur, a bad re­
transmission strategy would exacerbate the contention by swamping the switch 
with traffic. 

The SIGA has two retransmission strategies, random and slotted. The param­
eters for each of these reside in registers in the SIGA, and are set via the T-bus 
(normally, by the Test and Control System during system startup). There are 
two sets of registers for each strategy, so actually four different strategies are 
available: two random strategies and two slotted strategies. A fifth strategy, 
immediate transmission, is available only to the initial transmission of mes­
sages, not to retransmissfons. The random and slotted strategies are available 
to both the initial transmission (start) and retransmissions (retries), so they 
are discussed below without saying which transmission is happening. 

Strategy Selection 

When a T-bus device requests transmission of a message, the request contains 
information about the nature of the message. Three of the distinctions are 
write or rie~d i.mlocked or !ockecl, ~.ncl norm~l or m1xiliary. (''.Auxiliary" is not 
used in the first released version of the hardware, but is available for possible 
future expansion.) Three bits in the T-bus request specify these distinctions, 
and together they define eight possible kinds of message. The SIGA uses these 
three bits to extract one of eight two-bit fields from a 16-bit message classifica­
tion register that is initialized by the Test and Control System. Thus, the SIGA 
maps eight kinds of T-bus message request into a 2-bit value, coding for four 
message classes. Based on the message class, the SIGA selects one of four start/ 
retry strategies to govern the initial transmission and any retransmissions of 
the message. The first two strategies are random, and differ only in their pa­
rameters of randomness; the other two strategies are slotted, and differ only 
in their slotting parameters. Each strategy has an 8-bit register, initialized by 
the Test and Control System, holding its parameters. The SIGA locates the 
appropriate register _and applies the chosen strategy with the parameters giv­
en. 

In each of the four registers, the leftmost bit, if a one, forces the initial trans­
mission to be immediate rather than random or slotted. This is how the imme­
diate transmission strategy is invoked. If transmission is immediate, the 
remaining parameter bits are ignored for the initial transmission. On retrans­
missions, the immediate bit is ignored, the retransmission strategy is either 
random or slotted, and the seven remaining parameter bits are used. The 
meaning of the remaining parameter bits is different for a random strategy 
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than for a slotted strategy. Each of these is described below. Figure 3-7 illus-
trates the overall selection of a strategy and parameters. The selection of strat- Q 
egy can be overridden by assertion of the signal T _SYNC, which forces use ·· 
of the "SlotO" strategy .. This signal is asserted only by the CPU interface, and 
therefore only when the access arises from the CPU, under control of the Pro-
cess Configuration register. 

Strategy selection for message transmission. 

function request by a T-bus master 

\ It ' I 
T LOCKOP<1 > 

T RR<1 .. 0> 
-0 =write 

0 =unlocked 1 = read 
1 = locked 2, 3 unused 

\ v ' I 
3 bits allows 8 message classifications 

'V 
I - ,,...,...... -I ,...,f. 0 . - ;+ .-;...._ -·~ 

l Message_ Classification< 15 .. 0;. ·register 

'V 
2 bits allows 4 message classes 

'V 
select 1 of 4 eight-bit 

Transmit_ Time_ Config registers 

\It \ I 

I 

J 

I ButT-
(and SI 

bus signal 
GA pin) 
C forces 
Slota. 

I T_SYN 
use of 

if high bit = 1 . _other seven bits specify 
first transmission strategy-dependent 

is immediate parameters 

Random Strategy 

0 

To understand the details of the random strategy, it helps to keep in mind the 
general intent. The random strategy implements a version of "binary exponen- Q 
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tial backoff" message transmission algorithm. This algorithm says that before 
each (re)transmission of a message, a delay will be imposed. The amount of 
this delay is doubled after each (re)transmission. For example, suppose you 
are calling a friend on the telephone. You get a busy signal, so you wait one 
minute and try again. You get a busy signal again, so you wait twice as long 
- two minutes - and call again. Still busy! Wait four minutes and try again. 
Your retries are getting less 11nd less frequent (backing off), at an exponential 
rate by doubling (base two; binary) each try. Backoff is a common mechanism 
in communication networks, where it alleviates congestion. Binary exponential 
backoff is a frequently used backoff algorithm, because it behaves well and is 
easy to implement. The Butterfly II switch implements a modified form of this 
algorithm. In the telephone analogy, the modification is to wait a random 
amount of time: up to one minute before the first retry, up to two minutes after 
the first and before the second retry, up to four minutes between the second 
and third, and so on. 

The binary exponential backoff example above has no random component. 
The random strategy in th~Butterfly II switch employs randomness by select-

··· ' ing a uniformly distributed, 'random delay between zero and the strict binary 
exponential value. The random component helps to stagger retransmissions 
that otherwise might continue to collide with retransmissions of other traffic. 
Traffic that is coincidentally clumped gets de-synchronized, so the average lev­
el of usage describes the switch statistics well. 

Before (re)transmitting a message, the random strategy performs a delay by 
decrementing a 12-bit counter at the switch clock frequency. When this back­
off counter underflows to -'l. the message is sent into the switch. When a ran­
dom strategy delay is begun, the counter is loaded with the bitwise AND of 
a 12-bit pseudo-random number and a 12-bit backoff mask. 

''''''''''~·''''''''''''''''''''''''''~~''''''''' 

TECHNICAL DETAIL 
The 12-bit pseudo-random number is twelve bits of an on-chip, 15-bit maxi­
mum sequence generator (x15+x4+ 1), continuously updated at the switch 
clock frequency, and reset via the T-bus. The Test and Control System is re­
sponsible for resetting the generator during system startup, which ensures the 
generator is not in its dead state (all ones). The two random strategies share a 
single generator. 

·''''''''''"~''''''''''''''''''''''''~''''''''''" 

The backoff mask is computed by a process controlled by the remaining seven 
bits of the random strategy control register. The mask is derived from the val­
ue in a 6-bit Johnson counter (see note below). Before the first transmission 
of the message, the Johnson counter is initialized from five bits of the strategy 
control register with a zero prefixed. The Johnson counter is advanced each 
time a 3-bit accumulator overflows. This accumulator is cleared to zero when 
the requester SIGA is idle, that is, before the requester SIGA services a T-bus 
request to open a connection. The accumulator is incremented by the value 
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of the remaining two bits of the strategy control register, after each switch re­
ject. 

' 
In operation, each time the current message is rejected, the accumulator is iii-
cremented. If the accumulator does not overflow, then the backoff mask will 
be unchanged for the next retransmission. If the accumulator overflows, the 
Johnson counter is advanced,- and a new backoff mask is derived by decoding 
the Johnson counter. The values this decoding can produce, and therefore the 
possible values of the backoff mask, are zero or more "O" bits followed by one 
or more "1" bits. The successive Johnson counter values produce successive 
backoff masks that are in effect shifted left, allowing more and more bits of 
the 12-bit random number to be transferred into the backoff counter. 

''· .• ,, ..... ,, .......... ,. '\, .• , ....... ,. -.,,, ............. ·••••• ''\ .......... ,, .•• ,,, ··;,, .••• ,,_ ......... ,;,, -.,,,, .•• ,,,_ .• ,,,, .,.,,, .• ,,,, ....... ·••••• ·•••••• ·••••• '\, ·•••• ''';,, ·•••••• ···~. ·•••••• -•• ,,, '•; ......... ··~ ........................ ,,, ···i,,. ............. ·•••• 

TECHNICAL DETAIL 
A Johnson counter can take on only values that are zero bits followed by one 
bits, or vice versa. It is easily implemented in hardware, because stepping the 
counter is a one-bit shift, using the complement of the bit shifted out as the bit 
to shift into the other end. An N-bit Johnson counter has 2N states, so the 
6-bit Johnson counter used in the random strategy has 12 states. These are 
decoded to give 12 different backoff mask values, ranging from a single one bit 
to twelve one bits. Note that the backoff mask can never be all zeros, so the 
random number generator always has some effect. 

0 

If the Johnson counter is advanced several times, it will "wrap around" from Q 
100000 to 000000, and continue from there. The effect on the behavior of the -
strategy is that it there nave been many rejects, the average backofi gets longer 
and longer, and finally jumps back to the minimum, from which it again grows. 

WARNING TO SYSTEM PROGRAMMERS 
The Johnson counter must be initialized to a legal value. For example, legal 
values of the 5-bit field are 00011or01111. Values 00100 or 11110, for example, 
are illegal. The latter becomes 011110 in the counter. 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Figure 3-8 illustrates the random strategy implementation, and Figure 3-9 
shows the encoding of the Johnson counter and backoff mask. 
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Figure 3-9 Random start and retry mask encoding. 
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increasing 
count 

Johnson 
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000000 
000001 
000011 
000111 
001111 
011111 
111111 
111110 
111100 
111000 
110000 
100000 

Slotted Strategy 

backoff mask 

000000000001 
000000000011 
000000000111 
000000001111 
000000011111 
000000111111 
000001111111 
000011111111 
000111111111 
001111111111 
011111111111 
111111111111 

The idea behind the slotted strategy is a sequence of periodic time slots. The 
next time a slot arrives, the message is transmitted or retransmitted. In this 

0 

strategy, there is no dependence on which transmission is being made - ini- o. 
tial, first retry, second retry, or whatever - except for the immediate mode 
o.:::. -t!-::e. ir1Itial ~!a!~::.:.:.:.:.~s.s2·:.;:~._ 

The slotted strategy has two parameters, the slot period and the phase. The 
phase parameter permits staggering of message injection among different SI­
GAs in the machine. The period and phase are specified by a 2-bit field and 
a 5-bit field, respectively, in the slotted strategy control register. As described 
above, the eighth bit of this register specifies immediate transmission the first 
time the message is sent, and overrides waiting for the slot. 

The arrival of the slot is detected by comparing time to a given value. The slot 
period parameter controls how many bits are compared, and the slot phase 
parameter specifies what value time must have in those bits. The time used 
in this comparison is an 8-bit value described below. The 2-bit slot period 
parameter specifies that all eight, or the lower seven, six or five bits will be com­
pared, corresponding to periods of four, two, one, and one half microsecond. 
The 5-bit slot phase parameter is the value that the low five bits of time are 
compared against. If the slot period parameter specifies more than five bits 
of comparison, the high bits of time are compared against zero. 

The eight bits of time used in the comparison come from two registers in the 
SIGA. The high two bits of the eight are the lowest two bits of the real time 
clock, which ticks every microsecond. The low six bits used in the comparison 
come from the six bits of the real time prescaler, a counter used to maintain Q 
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the real time clocl_(. Both the clock and the prescaler are described in the sec-
tion on clock distribution. · 

''•- •• ,,,_ ........... _ •• ,,,_ "•; ........ _ '\, •• ,,,_ '\, •• ,,,, ''••,, ••••· •• ,,_ .• ,,,,, •• ,,,_ .• ,,," •• ,,,_ •••••·· ... ,,,_ •• ,,,_ ••• ,,,_ •.• ,,,_ '\,_ '\, ·1,,,_ '\,_ '\,, ''••,_ •• ,,,,, '\,, .••• , •. '''•·· •••• , •.••• ,,,_ .,,,,_ ...... ••••• '\,, ··~ •. '';,. "•··· ••• ,,,, ''••,,, ...... ••••••· •••••• 

WARNING TO SYSTEM PROGRAMMERS 
The real time prescaler does not necessarily take on all possible values. The 
range of values it takes on ard configuration dependent, and are controlled by a 
register in the SIGA (normally initialized by the Test and Control System at 
system startup). The comparison value specified by the phase parameter for the 
slotted strategy must be a value that the prescaler will take on. If the comparison 
value specified is one the prescaler does JWt encounter, a message using the 
slotted strategy might never be transmitted. The prescaler is described in the 
Real Time Clock section below. 

TECHNICAL DETAIL 
The real time clock is synchronized across all SIGAs (on the same switch). 
If a slot period greater than 0.5 microsecond is used, periods during which slots 
arrive for all SIGAs will alternate with periods during which no slots arrive, 
because the high bits of time must be zero. For example, a two microsecond 
period results in a 25% duty cycle. 

·''''''''''''''''''''''''''''''''''''''''''''''" 
Figure 3-10 illustrates the slotted strategy implementation. 
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Slotted strategy for message transmission. 
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..... Merge in this text from the TCIFPV chapter: 
The synchronized access mechanism can be used when accessing 
shared data for which the programmer expects there may be conten­
tion, such as a mutual .exclusion lock. Attempts to obtain the lock can 
be made with the synchronized access bit of the PCR asserted, signal­
ing the SIGA that the access should be made at a reduced rate. This 
prevents the switch and destination memory module from being 
flooded with access attempts when the lock is not free and multiple 
processors are waiting for it to be freed. [Say something about why 
it's called "synchronized access", and about SlotO (and slotted in gen­
eral) being sort of a low-priority class. As Guy says, the synchronized 
access thing is a way for the processor to communicate its desire for 
slotted access tuned for spin-locking. Called "synchronized" because 
alZ. contenders jump in at once, at slot time.} 
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Redundancy 

The Butterfly II switch design provides redundancy through duplication. Any 
T-bus may have multiple SIGAs wired to it. The Butterfly II design takes ad­
vantage of this capability by placing two SIGAs on the T-bus of typical func­
tion boards. Each SIGA is attached to a separate LCON, and each of the two 
LCON chips attaches to a different switching network. Thus, two entire 
switches are available, each with its own switch cards, and with its own LCON 
and SIGA on every T-bus. The request on a T-bus selects which SIGA is used, 
and thus which switch is used for a message. The intent is that if one switch 
fails, the second remains available. 

Normally, the TCS will enable all the switch-related hardware, in one or both 
switches. The hardware places no constraint mi whether orie or both switch 
systems are enabled. If both are enabled, the operating system and user soft­
ware select which switch to use, by addressing the corresponding SIGA. If 
some components fail, the TCS will disable them and any other components 
whose proper operation depends on the disabled ones. Also, in a Butterfly II 
without the second switch implemented, the SIGAs and LCONs associated 
with the absent switch would be disabled or omitted entirely. 

Separate clock hardware supplies separate clock signals to the switch cards 
in the two separate switches. If the clock distribution system in one fails, the 
other continues to work. The two systems of switch and clock are named 'W' 
and "B". Each of the two systems connect to both TCS masters, so any combi­
nation of switch systems and TCS masters suffices to support operation of the 
macnine. 

TECHNICAL DETAIL 
There is no hardware constraint preventing the connection of SIGA-LCONs 
on the same T-bus to the same switch network. It is merely convention and 
design intent that they be connected to separate switches. 
'•· .. ,,,,, .,,,,, .... ,,, ''\, .. ,, .. -,,,, .. ,,,,, .. ,,,,, .... , .... ,,,,_ .... ,,, ''\ ... ,.,,, ......... .,,,_ . ...,_-.,,,._ .. ,,,,_ ······ -.,,,, .... ,,. ······· .. ,,,,_ .. .,,,_ ''\. '\ ... ,,,, .,,,,,_ .. .,,,_ .......... , .. -.. ,,, .. .,,,, .... , .... ,,,,_ ... ,,,_ ... ,,,_ ... ,,,_ .. ..,,, .... ,,, .. ,,,, --...... ,,,, ······· .. ,,,,_ ... ,,, ., 

Clock Distribution 

This section describes the distribution of the switch clock signal. The Butterfly 
II has other clock signals, and the following section on independent clocks de­
scribes those. 

As described in the previous section on redundancy, a Butterfly II may have 
two completely independent switches. Each switch has its own clock signal, 
and the two signals are NOT synchronized. The comments in the rest of this 
section apply to a single switch. The reader should keep in mind that, if the 
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machine is configured with a redundant switch, there is an entirely separate 
clock distribution system operating in parallel with the one described. 

The entire switch operates synchronously from a single clock source, within 
the limits of distribution skew. Skew is kept low by design, but the propagation 
delays over wires between sections of the machine can be substantial. There­
fore, data and connection control signals are reclocked (resynchronized to the 
switch clock) where necessary, and different phases of clock can be used in 
different columns of the switch. 

Clock Master Card 

The clock signal is generated by a clock master card. The dist~ibution of the 
clock signals is from the clock master card, through clock slave cards if neces­
sary, to switch cards where it is used and also passed on to function boards. 

The clock master card generates different clock signals for the different col­
umns in the switch. The phasing of these separate clocks can be selected to 
match the clock phasing to the cable lengths in the particular machine. For 
example, signal delay in 12 feet of cable between two switch colunms is about 
half a bit period at a clock frequency of 40 megahertz, so a 180 degree phase 
difference in clock signals will compensate for that propagation delay. 

,,··r,,,."•;.''•r,,,''•i,.·•1,1,.·•,,,,·•1,,,_·,,,,, ''"•·''1,,''•;.''•1,,.··,,,,··1,,,,··,,,,,··1,,,,·,, ... ··•1,,.··1,,,, '"•• '••,,.''\.-''.,,.-'\. "•,,. '•,,, ''"·''\.''\.-'\.-''•,,,·•,,., '\.-''•,,. '\, '\.-'\,'\, '1;,_-.,,,,.-••,,,..,,,_ .. ,,,,··1,,,··o,"···i,,,·, 

TECHNICAL DETAIL 
In the initial Butterfly 11 production run, there are only two switch columns, not 
three. These are called the requester column and the server column. The clock 
master card for this configuration generates two clock signals, R _ CLK and 
S _ CLK, for the two columns respectively. R _ CLK and S _ CLK may be in phase 
or may be 180 degrees out of phase, as selected by a jumper on the clock master 
card. 
~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~~'''''''''' 

The clock master card has a fanout of eight cards per level. The master card 
alone suffices for a machine with 64 or fewer function boards. For larger con­
figurations, the clock signal is fanned out by a set of clock slave cards. 

Switch Card 

In the switch card, the clock signal is buffered by three drivers. One driver 
supplies clock to two SGAs and to four additional drivers, each of which send 
clock to four function boards, if the card is in the first or last column of the 
switch. The second of the three drivers supplies clock to the other two SGAs 
and to four more drivers for the other four function boards. The third driver 
supplies support circuits on the switch card. If the switch card is.in an internal 
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column of the switch, it connects only to other switch cards, not to any function 
boards. 

Each of the eight function boards served by the switch card is served by a sepa­
rate clock driver on the switch card. This isolates the function board clock 
signals from each other and from the switch card's internal circuits, so failure 
of a function board will not corrupt the clock signal elsewhere. Similar isola­
tion of switch cards from each other is provided by separate drivers on the 
clock master (and slave) card. 

Function Boards 

In the function board, the .clock signal is received in duplicati: by the LCON. 
One section of the LCON connects to the requester side of the switch, and 
another section connects to the server side. The LCON receives a clock signal 
from each side of the switch, and the phase relationship of these two is unspeci­
fied. The two sections of the LCON operate largely independently. 

Each section of the LCON redrives its clock signal out to the SIGA, and also 
uses it internally to reclock frame, reverse and eight data lines. Reclocking re­
moves skew that may have accumulated as these signals traveled to the LCON. 
The frame and reverse are unidirectional signals, but the data lines are bidirec­
tional, requiring a more complicated reclocking circuit that uses different 

. edges of the clock depending on the direction of the data. The LCON also 
reclocks the 65-millisecond pulse received from the requester side of the 
switch. 

The LCON also supplies the clock from the requester side of the switch on a 
tri-statable output pin. This pin can be wire-OR' ed with the corresponding 
pin on other LCONs, and frequency divided to provide a main clock for the 
function board. The Test and Control System would enable this pin on one 
of the LCONs, leaving the others tri-stated. The enabling of this pin is inde- . 
pendent of enabling the LCON's data passing functions, so the two switches 
of a machine can be tested without disrupting the function board's clock. Al­
ternatively, the function board may supply its own clock, as discussed later. 

From the generation of the clock signal on the clock master card, through the 
input to the LCON, the clock signal is transmitted as a differential signal on 
two wires. This increases noise immunity and isolates the clock signal from 
ground noise. The actual signal names reflect this, such as "clock plus" and 
"clock minus". When the clock signal is used in logic, and on the SIGA side 
of the LCON, a single wire is used. 

The SIGA receives both the requester clock and the server clock; as in the 
LCON, the SIGA has relatively separate sections to deal with the requester 
and the server ends of connections. Each section of the SIGA uses its clock 
signal to process the transmission and receipt of messages. Also, the. SIGA 
uses the requester clock signal to maintain an on-chip real time clock (RTC). 
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The RTC is available to devices on the T-bus to indicate time, and also is used 
internally by the SIGA in the slotted message transmission strategy, in an in-

0 terrupt timer, and to drive switch protocol timers. . 

3.9.4 Real Time Clock 

RTC Implementation 

Figure 3-11 shows the implementation of the Butterfly II real time clock. 

Figure 3-11 Real time clock implementation. 
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The real time clock (RTC) is implemented in the SIGA chip and has a number 
of components. To the T-bus, the RTC is a 32-bit register with a one-microse­
cond tick rate. To increment this register, the SIGA derives a one megahertz 
signal by dividing down the requester switch clock signal. The switch clock 
is nominally 40 megahertz, but the entire switch design accommodates a clock 
rate somewhat faster or slower than this. The switch clock frequency may vary 
from one application to another, so the RTC prescaler that divides the switch 
clock down to one megahertz is programmable. The Test and Control System 
initializes the RTC prescaler control register in each SIGA when the system 
is brought up. 

The RTC prescaler consists a 5-bit programmable counter that feeds a 1-bit 
divide-by-two circuit, for a total of six bits. These six bits, and two bits of the 
RTC, are used within the SIGA in the slotted strategy for message transmis­
sion, as well as to produce the one-megahertz clock signal. 
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TECHNICAL DETAIL . 
The programmable counter that is the low five bits of the RTC prescaler starts 
at zero and counts up at the switch clock frequency to a value given by a control 
register set via the T-bus (normally by the Test and Control System). When the 
counter reaches this value, the counter is reset to zero and the divide-by-two is 
incremented. The output of the divide-by-two is the one-microsecond signal. 
The switch clock frequency must be a rate that the prescaler can divide down to 
get exactly one megahertz - namely, the switch clock frequency must be an even 
number of megahertz from 2 to 64. 

A small Butterfly II machine may have very short switch cables and thus little 
signal delay and skew, permitting a faster switch clock rate and higher per­
formance. The initial SIGA implementation can run up to about 45 megahertz, 
and the initial SGA up to about 60 megahertz . 
• .,,, ..••••• ···1,,,····, •. ··1,,,·•1,,,_ .• ,,,,·•1,,,_ .•• ,,,.·····"""··········,,.·•1,,,·•1,,,,'•1,,,·\.'''•1,."'•1,,.·•1,,,-·•,,'•1,,,············''•1,'''1,,,····1."'•1,,,·•1,,,·•1,,,'•1,,,··11.'"•,,,·•1,,,_··;,,_'•,,,_·•1,,,_ .... ,,,·•1,,,_·•1,,,-·..,,.-•• , ... ..,, ..• ,,,,,'\."'l1,,.··1,, 

Sixty-five Millisecond Pulse 

The sixty-five millisecond pulse is a signal generated by the clock master card 
and distributed to each SIGA in the switch. It is asserted for one switch clock 
period once every 65,536 microseconds, and is used to keep the RTCs synchro­
nized. When the pulse occurs, it clears to zero all six bits of the RTC prescaler, 
clears to zero the low sixteen bits of the RTC, and increments by one the value 
in the high sixteen bits of the RTC. Thus, the low and high halves of the RTC 
are not directly connected by propagation of a cany signal, but depend on th<0 
sixty-five millisecond pulse to couple their values. Each SIGA contains a 
small, programmable delay between the actual receipt of the pulse and the ac­
tions it causes on the RTC. Any T-bus master (typically the Test and Control 
System) can set this delay to zero (no delay), one, two, or three switch clock 
periods. 
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''''''''''''''''~'''''''''''''''''''''''''''''' 
1ECHNICAL DETAIL 
The programmable delay in use of the sixty-five millisecond pulse is intended 
for compatibility with future versions of the SIGA and LCON. In particular, 
when the slotted strategy is used for message transmission, the arrival of a slot 
begins the process of transmitting a message into the switch. The number of 
switch clock cycles required before the message is actually presented to the 
first column of the switch depends on the details of the processing in the SIGA 
and LCON, and is not specified as a design parameter of the overall switch. 
Future SIGA or LCON implementations might take a different number of 
switch clock cycles to process the message through this "pipeline". If so, a But­
terfly II machine with some early style SIGAs and LCONs and some of later 
design would give unfair advantage to messages from whichever function 
board had the shorter pipeline. The programmable delay permits equalization · 
of pipelines in that situation. 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~ 

Reading the RTC 

Devices on the T-bus may read the RTC as a 32-,bit register by using a word 
read. The low or high half of the RTC may be read using a half-word read. 
If the entire 32 bits are needed, a word read must be used, because two half­
word reads will yield incorrect results if the RTC happens to tick between the 
two reads. The hardware ensures that a single read, either word or half-word, 
will not sample the RTC while it is changing. This is important, because the 
T-bus clock is nm m:cessarily synchronized wilh the swilch dock that drives 
the RTC, so a race hazard would exist otherwise. The configuration status unit, 
a part of the SIGA, provides this guarantee. Due to the way this guarantee 
is achieved, explained below, there is a one microsecond uncertainty in the 
RTC value read by a T-bus device. 

WARNING TOT-BUS MASIBR DEVICE HARDWARE DESIGNERS 
The configuration status unit (CSU) achieves correct RTC reading by hand­
shaking with the RTC controller. This handshake waits for the next one-mi­
crosecond increment pulse from the prescaler. When the pulse occurs, the 
RTC must then be read before the next increment pulse, in one microsecond. 
This time includes synchronizer delay, CSU response time, and time for any 
pauses that the T-bus master may cause by asserting T_MASIBR_PAUSE. 
Therefore, the T-bus master should use extreme caution when causing asser­
tion of T _ MASIBR _PAUSE. Otherwise, the RTC value read cannot be guar­
anteed accurate! 

''''''''''''''''''''''''''''''''''''''''''~'·''' 
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Writing the RTC 

Only the high sixteen bits of the RTC may be written, and a half-word write 
must be used. To avoid a race condition between the write and the update per­
formed by the sixty-five millisecond pulse, the low half of the RTC should be 
examined first to determine that it will not overflow until the write has finished. 

Time Of Next Interrupt 

The SIGA supports a real-time interrupt feature for use by processors on the 
function board. The interrupt timer register is the Time Of Next Interrupt, 
or TONI. The SIGA contains two functionally identical TONI registers (A 
and B), and their.associated circuitry. Each TONI register is 32 bits. The dif­
ference between each TONI and the RTC is continually computed, and used 
to generate an interrupt signal. 

The value of the RTC, treated as a 32-bit unsigned number, is subtracted from 
the value of the TONI, also treated as a 32-bit unsigned number. Whenever 
the result, treated as a twos complement number, is negative, two effects hap­
pen. One effect is that the TONI_INT_PENDING bit in the status register 
(TONI[A,BJ_ Config, readable via the T-bus) is set to cine. This bit is cleared 
only by writing into the TONI register a value larger than the current RTC val­
ue. The second effect is to assert the external pin TONI_ INT, if enabled by 
the Enable_ Toni_ Interrupt bit in the Requestor _ Config register. This pin fol­
lows the state of TONI minus RTC, rather than staying asserted as the status 
register bit does. 

T-bus devices may read or write each TONI register at any time. Word opera­
tions must be used to write it. The CSU in the SIGA synchronizes writes with 
the next switch clock period to avoid spurious interrupts. If a value less than 
the current RTC is written, an interrupt will be pending immediately. In read­
ing each TONI register, as with any SIGA internal register, all reads function 
as word operations. 

Two RTCs in Redundant Machines 

Remember that in a machine with two switches, each switch has its own clock. 
These two clocks are not synchronized, so the RTCs in SIGAs on the two 
switches will have different values. 

Other Functions of the Clock Distribution System 

The hold signal, used to control the priority of SGA ports as described above, 
is generated by the clock master card and distributed in parallel with the 
switch clock signal to each SGA The hold signal is synchronized with the 
switch clock. Potentially_ different phases of the switch clock are sent to the 
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different switch columns, so different phases of hold are generated and distrib­
uted accordingly. 

The clock distribution system supports a clock signal called net time. This sig­
nal is discussed in a separate section below. 

The sixty-five millisecond pulse, used to keep the real time clocks synchronized 
as described above, is generated on the clock master card and distributed 
along with the switch clock to each SIGA. It is fanned out by separate drivers 
on the clock master card (and slave cards, if any), and by separate drivers on 
the switch card to drive each function board. This isolates failures, preventing 
corruption of the pulse elsewhere in the system. The pulse is distributed only 
via the column of switch cards on the requester side of the switch. This places 
a minor design constraint on function boards. Namely, if a function board 
were designed as a server only, with no connection to the requester side of the 
switch, its RTC_would not work. No such boards are currently planned. 

Independent Clocks 

Besides the switch clock, or switch clocks in a machine configured for redun­
dancy, a Butterfly II has other clock systems. These. systems are independent, 
and are not synchronized. In a machine with two switches, the two switch 
clocks are independent of each other as well. The sections below discuss the 
additional clock systems. 

Test and Control System Clocks 

The Test and Control System (TCS) operates on its own clocks. The TCS mas­
ter and each TCS slave have their own, independent processor clocks. Com­
munication between the TCS master and TCS slaves is asynchronous, but the 
master and slaves must use the same baud rate, nominally 125 kilohertz. The 
communication between a TCS slave and the devices it controls is synchronous 
with a control clock signal generated by the slave. The TCS slave program sets 
the frequency of the control clock signal, nominally one megahertz. Each con­
trolled device is responsible for appropriate handling of the difference be­
tween the control clock signal and data and functions in the device. 

T-bus (Function Board) Clocks 

The clock used to transfer data within a function board may be synchronized 
to the switch clock or may be asynchronous. Because the T-bus is considered 
a part of the function board, the SIGA does not depend on the T-bus being 
synchronous with the SIGA'.s requester or server switch clock, and performs 
synchronizing as necessary to communicate correctly with both its T-bus and 
the switch. There can be more than one T-bus on a function board, or addi-
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tional asynchronous clocks on a function board. Net time and the VMEbus 
system clock, described below, are examples of the latter. 

The tri-statable clock output of the LCON chip is intended for use when a syn­
chronous T-bus clock is desired. 

An example of a non~synchronized design is the B2VME function board, 
which has a nominally 20 megahertz clock. The B2VME processor and T-bus 
operate synchronously with respect to this clock, asynchronously with respect 
to the switch clock. 

Net Time Support 

The Butterfly II switch hardware includes support for collection and distribu­
tion of a clock signal used in certain packet switching applications. Specifical­
ly, the communication standard known as "Tl" requires a knowledge of system 
time. If multiple Butterfly II function boards perform 1/0 to a Tl system, they 
need to have a consistent notion of the Tl system time, called net time. 

Each Butterfly II Tl I/O function board may detect the net time signal. Each 
server-column switch card receives the net time signal from its attached func­
tion boards, selects one of them as source, and sends this signal on to the clock 
(slave or) master card, where again one of the incoming net time signals is se­
lected. The net time signal selected by the clock master card becomes the one 
redistributed throughout the switch. It is sent to clock slave cards (if any) and 
thence to requester-column switch cards, from which it is sent to function 
boards. 

Net time is collected and distributed with differential signals, except single en­
ded in the first step from function boards to switch cards. Distribution fanout 
is performed by bussing rather than by multiple drivers. 

1,,''o,,_-•• ,,,,-•• ,,.·· ... ,.·,,,,,··\.''•,,.··1,,,,·•1,,,_·,,,,_··1,,,.··.,,,.··1,,,,·•,,,_ .. ,,,,_ ..•• ,,.··1,,,_·,,,,_ .•• ,,,_-•• ,,,_-•• ,,, '\ .•• ,, •• ...,_ .• .,,,_-.,,,,_ .......... ,,, ""·~.··.,,,·•1,,, ........... ··1,,,,··········· ••. ··1,,, • ..,,_-.• ,, .. ''•,,,'•• ....... ,,·,,,,_··1,,,_ ..• ,,,_··1,,,_·· 

TECHNICAL DETAIL 
Tl is a synchronous, framed, 1.544 megabits per second communication stan­
dard originated by the AT&T corporation. The initial implementation of But­
terfly II technology does not include any function boards for Tl I/O. 
111, ''••,, ••• ,,,,_ ''••,,_ •• ,,,,_ ''•,,,_ '•,,,_ '\, ''•,,,_ '\, '•,., '\,. '\,_ '\, '•o,_ '\,. '\ "\, "'••,,. ''•,.,, ""•,,, "\, """·· ''••,. "'•1 ... "••,,. "\. "\,. "\ •• ..,,,_ • .,,,,_ "\, '•,,, "\,. "\. "'"'·· • .,,,,, """·· •• ,,._ "••,,, "'•,,, "'•1, •• '"'·· "';,,_ '\,. "\, ""•· 

VMEbus System Clock Support 

The B2VME function board contains a general purpose interface that couples 
the T-bus and an external VMEbus. This interface includes the capability of 
being VMEbus system controller. As such, the B2VME must, among other 
things, drive a 16 megahertz clock signal on the VMEbus. This signal is not 
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synchronous with the switch clock, nor with the B2VME processor ('.f-bus) 
clock. 

Switch Protocol and Message Formats 

This section discusses the format and meaning of messages sent on switch con­
nections. Locking connections and the priority of messages are described in 
sections above. Frame and reverse signals are summarized below, and then 
message content is discussed at length. 

Frame and Reverse 

The signals frame and reverse control the connection through the switch. 
Frame always travels from requester to server, the forward (downstream) di­
rection through the switch. Reverse always travels the reverse (upstream) di­
rection, toward the requester. They are important to the protocol because they 
define not only the connection but also the beginning and end of messages on 
the connection. 

Frame is generated by the requester SIGA and travels through the requester 
LCON, SGAs and server LCON to the server SIGA. The requester and server 
LCONs do not use frame to determine direction of data flow, but rather are 
controlled by direction signals from their respective SIGAs. The SGAs use 
frame only to control enabling their forward drivers. The server SIGA uses 
.;:-.,....,.......,..,~ r·c ck .. fo{"'f ;-•~,., ~ ....... ,,r.;..,n; ...... (l' o:;-n/i ...... ,,.:;of u'on1nstre··m r~·""''<'.'l(f.~~ ~nd +l-1µ pc.(1 .1....Lu,1..1.u,, "'°""""'"'...,~ ...... ~ ._....,.0 ,.._ .. ~~ .... 0 ............. ..., .... ...,. ... f;.. .. ........... ...... ...,...,"':'"°'O""'"' ....... ~1 • .., ._-_._ __ 

of the connection. Data flow is reversed by a drop in frame for just one switch 
clock cycle. A drop in frame for two or more cycles indicates the end of the 
connection. Because the requester SIGA generates frame, it alone controls 
the direction and termination of the connection. 

Reverse is generated either by SGAs or by the server SIGA and travels back 
to the requester SIGA. Reverse asserted for only one switch clock cycle is a 
"reject". A reject is understood by the upstream SGAs and the requester 
SIGA as a command to tear down the switch path and abort the attempt. An 
SGA generates a reject when it is does not accept a bid for an output port. 
Once an incoming message is granted a port, the SGA will not generate a reject 
for the lifetime of the connection, although a reject received from downstream 
is relayed upstream and tears down the connection, SGA by SGA, as it travels 
upstream. 

0 

0 

A server SIGA generates a reject for any of three reasons. First, if the initial 
message attempts to access a T-bus device that is already locked, the server 
SIGA returns a reject. (This can arise because some other device on the T-bus 
may have it locked.) Only the initial message can cause a reject. In a locked 
sequence, messages after the initial message may attempt access to additional 
devices, but if these are already locked the response is an error message, not 
a~~ Q 
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Second, a server SIGA that is not in the idle state will reject connection at­
tempts. An example of this is when a previous, locked connection has ended, 
so the server SIGA is issuing a. FREE-LOCK on its T-bus. Until it finishes 
this T-bus transaction, the server SIGA rejects connection attempts. 

Third, a server SIGA will reject connection attempts under control of a bit in 
its configuration register, iic9essible via the T-bus. The server SIGA will still 
complete any transactions in progress. This provides a way to gracefully re­
move the server SIGA from service, such as when testing or when changing 
to the other switch of a redundant machine. The SIGA synchronizes this bit 
with its internal operation, so a T-bus device may assert or negate the bit at 
anytime . 

. Other than the single;-cycle reject pulse, reverse is generated only by the server 
SIGA while it supplies upstream bytes of message and checksum. This asser­
tion ofreverse for at least two switch clock cycles serves as a message acknowl­
edgment to the requester SIGA. The SGAs use reverse to enable their 
upstream drivers. While r!!v:rse is thus asserted, the SGAs along the path will 
not tear down the connection even if frame drops. Therefore, the requester 
SIGA may drop frame as soon as the first byte of the upstream response to 
the final downstream request has made it through the switch. This tears down 
the connection faster, making resources available for other use sooner. This 
early dropping of frame is performed only on unlocked sequences, because on 
a locked sequence the requester SIGA does not know that there will be no fur­
ther requests. Also, a SIGA configuration register bit must be set to enable 
the quick drop. 

Message and Connection Boundaries 

Frame and reverse define message boundaries. Frame indicates the bound­
aries of downstream messages, reverse those of upstream messages. 

When there is no connection, frame is low; frame being low for at least two 
switch clock cycles is the definition of there being no connection. The request­
er SIGA asserts frame with the first (header) byte of the initial message, and 
holds it asserted until the last (checksum) byte. During transmission of the 
checksum byte frame is de-asserted, and immediately thereafter frame is as­
serted again. Frame is held asserted until the requester SIGA is either done 
with the connection or is ready to send another downstream message on it. 
If another downstream message is sent on the connection (after receiving a re­
sponse to the previous downstream message), the requester SIGA de-asserts 
frame for one cycle immediately before that message begins, asserts frame dur­
ing the message except for a one-cycle de-assertion during the last byte, and 
re-asserts frame after the message is sent. Thus, low-to-high transitions of 
frame mark the start and end of downstream messages, but whether a down­
stream message is in progress can be determined only by tracking the history 
of frame during the connection. 
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• 

frame _j 

The server SIGA asserts reverse during every byte of every message it sends. 
Thus an upstream message is bounded by the assertion and negation of re­
verse. 

Intervals of an unspecified length occur after a message in either direction. 
During these intervals, the data lines are driven in the upstream direction. The 
server SIGA presents constant padding data (all zeros) during this time. 

The connection itself is also bounded by frame and reverse. The connection 
(or attempt at connection) begins when frame is asserted after being low for 
at least two switch clock cycles. The connection ends when frame stays low 
for two switch clock cycles. For an unlocked sequence, frame may be. dropped 
during the response message, as described above. 

Figure 3-12 shows an example of a connection, illustrating the use of frame 
and reverse to bound messages. 

Frame and reverse during example connection . 

Ll Ll L_ 

reverse --~---~--' 

data --~l<~··...,,~>"·~"""~>·~ .. >·~ .. >~.,>~I -~t"'~">~";,~< .. ~<·~"""·~<;~.<~I ---~'·;~""·.'~""·:~""· .. ~> .. ~>.,~>"~·>·~,j -~""~·">~"""'~" .. ·~<"~<~"l __ 
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downstream upstream downstream upstream 
request response request response 

Basics of Message Functions 

Simply put, the Butterfly II switch message supports two functions: read and 
write. Requests originate exclusively at the requester end of a connection, and 
responses exclusively at the server end. Each message constitutes one com­
plete request or response. The request contains a single address at which con­
secutive bytes of data are to be read or written. Data to be written is contained 
in the message requesting a write. Data read is returned in a message respond­
ing to a read request, on the same connection as the request. The amount of 
data read or written can be any of seven sizes from one to sixteen bytes. 

A switch transaction may be modified by either of two properties: locked and 
stolen. Locking is a property of a connection; it maintains a switch path open 
so multiple messages may be exchanged on the connection, and excludes in­
terfering actions at the server device. Stolen is a property of a location ac­
cessed in a server device; it provides a kind of mutual exclusion lock useful in 
parallel processing. Both locking and stealing are supported by bits in the mes­
sage format. 
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Every request presented to the switch is actively acknowledged in some way. 
This is an important feature of the Butterfly II switch protocol. For example, 
it is never assumed that a write request was correctly received and executed. 
After every request, the requester SIGA is in a waiting state, from which one 
of two resolutions will follow. Either an acknowledgment will be received (with 
data, if the request was a read), or an error will be detected and reported. 

Message Components 

Messages are made of four major components. Not all components are pres­
ent in every message, but when present they appear in the order described here. 

• 

• 

• 

HEADER - contains routing and priority; aJso called BID BYTES . 
Present only in initial message on a connection, thus only in downstream 
messages. Consumed by SGAs as the message traverses the switch. The 
rest of the message is called the BODY. 

COMMAND - contains fields specifying locking, function (read or 
write), size,. and address. Present in every downstream message, never 
in an upstream message. 

DATA - contains information needed to perform the function of the 
message. Content varies depending on the purpose of the message. 

o in a downstream write request, the DATA component contains the 
data to be written. 

o in an upstream response to a successful '.vr!te request, the D~A ... TAA~ 
component contains one byte of unspecified value. 

o in an upstream response to an unsuccessful write request, the 
DATA component contains one error code byte. 

o in a downstream read, the DATA component is absent. 

o in an upstream response to a successful read request, the DATA 
component contains the data read. 

o in an upstream response to an unsuccessful read requ·est, the DATA 
component contains all data that was read before the error oc­
curred, or through the word with a stolen bit set, whichever occurs 
first, except that the least significant byte of the last word is re­
placed by an error code. Only this last word is presented to the re­
quester device. 

• CHECKSUM BYTE - contains bits for error indication and stolen in­
dication, and a "checksum" field. Present in every message. 

o ERROR BIT - indicates an error, in upstream messages only. Un­
used (zero) in downstream messages. Determines whether data by­
tes contain valid data or an error code. 
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o STOLEN BIT - supports memory access protocol. Present in all 
messages. Modifies interpretation of data bytes in an upstream 
message. 

o CHECKSUM - detects transmission errors. Present in all mes­
sages. 

The following sections describe these message components in detail. 

Message Header 

The purpose of the message header is to set up the path through the switch. 
Consequently, it contains the priority and routing information used to bid for 
an output port at each switch column, and is consumed bYte-by-byte as the 
message establishes the connection. When the message arrives at the server 
LCON, no header remains. Only an initial message contains a header, thus 
only downstream messages can have headers, and therefore only a requester 
SIGA is able to generate a header. The bytes of header are sometimes called 
bid bytes. 

Message header for a three-column, base-8 switch. 

bit 

' 0 
0 
0 

7 bit 0 

' 0 Pl PO 0 R8 R7 R6 ~ first byte sent 
0 Pl PO 0 R5 R4 R3 
0 Pl PO 0 R2 Rl RO ~ last byte sent 

Pl .. PO =priority from T-bus 
00 = high 
01 = low 
10 = unused, functions as high 
11 = unused, functions as low 

R8 .. RO =physical route address 

Figure 3-13 shows the header format for a three-column, base-8 switch. The 
priority bits appear in each byte so they are readily available to each SGA as 
it processes the first byte it receives. The physical route address derivation 
is explained below. For a two-column switch, the first byte is not sent, only 
the middle and last bytes. For a one-column switch, only the first or only the 
middle byte is sent (see note below). 
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TECHNICAL DETAIL 
A set of four chips of the original SGA design implements an eight-by-eight 
crossbar. The SIGA supports both this design and a sixteen-by-sixteen switch 
node. The message header for the latter, a base-16, three-column switch, is 
shown in Figure 3-14. In a two-column switch, only the middle and last bytes 
are sent. In a one-column switch, only the first or only the middle byte is sent 
The three bits of random number are obtained from the random route genera­
tor described below: 

Figure 3-14 Base-16 switch message header format. 

Figure 3-15 

bit 7 

' 0 0 
0 0 
0 0 

bit 0 

' Pl PO N2 Nl NO R8._ first byte sent 
Pl PO R7 R6 R5 R4 
Pl PO R3 R2 Rl RO .. last 

Pl .. PO =priority from T-bus 
RS .. RO =physical route address 
NZ .. NO = random number 

byte sent 

A configuration register in the SIGA selects whether base-8 or base-16 mes­
sage headers are generated. Two additional bits control whether one, two or 
three bytes of header are sent. Two bits provide four values, but only three 
are apparently necessary; the fourth value selects an alternate form for one­
byte headers, as shown in Figure 3-15. For a base-16, one-column switch, the 
alternate form is not useful because of its randomized bits. 

Switch size specification for message.header. 

for switch coll bit col2 bit bytes sent in header 

3 column 
2 column 

1 column (std) 
1 column (alt) 

0 
0 
1 
1 

0 
1 
0 
1 

first, middle, last 
middle, last 
middle 
first 

Whatever the switch base and the number of columns, the header contains a 
number of bytes equal to the number of switch columns, and two raised to the 

February 14, 1990 BBN ACI Proprietary 47 



3: The Butterfly II Switch TC2000 Hardware Archirecture 

Figure 3-16 

48 

power of the number of routing bits per byte is the switch base (modulus). 
For example, a base-eight (23) switch requires three routing bits per byte. 

Physical Route Address 

The switch route address· on the T-bus undergoes two transformations to gen­
erate the physical route address used in the message header. The firsttransfor­
mation supports optional interleaving. The switch route address on the T-bus 
(T AD< 33 .. 25 >) can be used directly (non-interleaved) or as transformed 
bythe interleaver (bits MOD< 8 .. 0 > ). The interleaver output is used if both 
the SIGA:s INTERLEAVED pin is asserted during the T-bus request cycle, 
and the Enable_ Interleave bit in the requester SIGA:s configuration register 
is asserted. Otherwise, the address straight.from the T-bus is chosen. The 
result of this choice is the logical route address, and is used both in the second 
transformation and as input to the checksum calculation. 

The second transformation takes the logical route address into the physical 
route address by randomizing some of its nine bit~. If a Butterfly II machine 
has enough function boards that all available switch paths are essential, then 
all switch addresses are distinct and none of the bits should be randomized. 
Some smaller configurations, however, have alternate paths terminating at the 
same server. For example, a twO-column machine with only eight function 
boards may be configuredto have eight paths to each server. Using alternate 
paths reduces contention within the switch and can provide robustness against 
failures of switch hardware in internal columns. The SIGA contains a nine-bit 
route addre.ss m"sk ref!,ister an\] a r"_ndnm route penerator, a wnclom number 
generator described in the note below. In each bit position where the mask 
contains a "1", that bit is taken from the random route generator. Where the 
mask contains a "O'', the corresponding bit conies from the logical route ad­
dress. The result is the physical route address used in the message header. 

Example of a switch with alternate paths. 

to 
requester 
ports on 
function 
boards 

switch 
card 
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switch 
card 

to 
server 
ports on 
function 
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TECHNICAL DETAIL 
The random route generator is nine bits of an on-chip, 11-bit maximum se­
quence generator (x11+x2+1), updated at the T-bus clock rate, and reset via 
the T-bus. Resetting the generator ensures it is not in its dead state (all ones). 
Typically, the TCS or a bootstrap program will reset the generator during sys­
tem startup. Each SIGA has two random number generators: the random 
route generator described here, updated at the T-bus frequency; and the gen­
erator used in the random strategy for message transmission, updated at the 
switch clock frequency. 

~'''''''''''''''''''''''''''''''''''''''''''''' 

. . 
Message Command 

The command component, present only in every downstream message, is 
shown 'in Figure 3-17. Locking is described in a section above. 

Message command format. 

bit 7 

' Ll LO 
A23 A22 
Al 5 Al 4 
A7 A6 

Ll .. LO 

Wl. .WO 

S2. :SO 

. A24 .. AO 

bit 0 

' Wl WO S2 Sl so A24._ first byte sent 
A21 A20 A19 A18 A17 A16 
Al~ Al2 .. A 11: AlO A9 AR . 
A5 A4 AS A2 Al AO._ last byte sent 

lock operation from T-bus: T LOCKOP<l .. 0> 
00 normal 
01 bypass 
10 open 
11 maintain 

low two bits of field from T-bus: T RR<l .. 0> 
00 write 
01 · read 
10 auxiliary write 
11 auxiliary read 

size information from T-bus: T SIZE<2 .. 0> 
000 4 bytes 
001 1 byte 
010 2 bytes 
011 3 bytes 
100 4 words 
101 (illegal) 
110 2 words 
111 s words 

address information from T-bus: T AD<24 .. 0> 
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The format of the data component of a message depends on several factors. 
The simple case is described below, followed by the changes brought about 
by special conditions. 

In a write request or a response to a successful read operation, the message 
contains the data to be written or the data that was read, in "big-endian" for­
mat. That is, the most significant byte of each word is sent first. Figure 3-18 
shows the format of data in a one-word write request message, or a one-word 
successful read response message. 

Big-endian data format. 

bit 7 bit 0 

' ' D31 D30 D29 D28 D27 D26 D25 D24...._ first byte sent 
D23 D22 D21 D20 Dl9 Dl8 Dl7 Dl6 
Dl5 Dl4 Dl:j Dl2 Dll DlO D9 DB 
D7 D6 DS D4 D3 D2 Dl DO...._ last byte sent 

Two-, Three- and Four-word Transfers 

If two, three or four words are written or read, the words at successively higher 
addresses follow the first word in the data of the message. 

One-, Two- and Three-byte Transfers 

If only one, two or three bytes are requested, a full word nevertheless appears 
in the message. The bytes to be written or read appear in the message data 
in the same position they would in memory. For instance, a two-byte transfer 
of the most significant half of a word occupies D31 through D16 of the mes­
sage. In a write operation, the unused bytes of a one-, two-or three-byte trans­
fer are ignored, and in a read operation those bytes are· whatever data 
accompanied the requested byte(s) on the T-bus. Thus it is the responsibility 
of the T-bus device originating a request to place write data in the correct posi­
tion within a word, and to extract read data from the appropriate place in the 
response word. 

Write Response 

0 

0 

The data component in the response message to a write is always one byte, 
regardless of the size of the request or the success of the operation. If the write o 
is successful, the numerical vafoe of the response data byte is unspecified. If . · 
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the write is unsuccessful, the byte contains an error code. The error codes are 
described in a section below. The error bit in the checksum byte indicates 
whether an error occurred, and thus whether the data byte contents are un­
specified or are an error code. In a multi-word write, it is impossible to tell, 
from the message alone, which word( s) caused the error. 

Read Response 

The response to a read request always contains a data component of one, two, 
three or four words. If the read operation is successful, the response contains 
the requested data. 

If the read operation encounters a word with the. stolen bit asserted, special 
action is taken. The server SIGA proceeds to read all requested words from 
the T-bus, but any data past the first word with the stolen bit asserted are not 
included in the response message. The SIGA asserts the stolen bit in the 
checksum byte of the response. Therefore, if the checksum's stolen bit is a 
"one", the requesting device must be aware that the message may not contain 
all the words it requested. The last word returned is the first word whose stolen 
bit was asserted on the server's T-bus. 

The response to an unsuccessful read request may be different in the switch 
than as delivered to the requester device. The server SIGA reads from its T­
bus all the data that is requested, until the error occurs. Some of this data may 
be correct, depending on the serv.er device; the T-bus specification requires 
only that an error be generated if the operation as a whole is flawed. If a stolen 
bit is encountered during this reading, any data after the word with the stolen 
bit is discarded. The least significant byte of what is now the last word is re­
placed by an error code. The server SIGA sends these word(s) as the message 
data, and asserts the error bit in the checksum byte. The requester SIGA, how­
ever, places on its T-bus only one word, with the error code in the low byte. 

Thus, the response seen by the requester device to an unsuccessful read request 
is always one word. The numerical value of the high three data bytes is unspec­
ified; the low byte (D7 .. DO) contains an error code described later. In a multi­
word read, it is impossible to tell, from this response alone, which word(s) 
caused the error. 

Message Checksum Byte 

The last byte of every message is a checksum byte, shown in Figure 3-19. 
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Figure 3-19 Checksum byte format. 

NOTE 

NOTE 

bit 7 bit 0 

' ' 0 0 E s CS3 CS2 CSl CSO 

E 
s 

= error bit 
= stolen bit 

CS3 .. CSO = message checksum 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

HISTORICAL NOTE 
Bit 7 of the checksum byte was once defined as "forward driver enable". De­
fined for downstream messages only, a "l" would enable the forward driver 
circuits on the next clock cycle. In the initial implementation of the SIGA, how­
ever, this bit is always a "O'', and in the initial implementation of the SGA this 
bit is ignored. · 

~''''''''''''''''''''''''''~''''''''''''''''''' 

Error Bit 

The. error bir is denned only for upsrream messages, where a T' indicaies ti:tal 
the immediately preceding byte - that is, the last byte of the data component 
- contains an error code. A "O" indicates no error. This bit is always a "O" 
in downstream messages. 

Stolen Bit 

'•· .•• ,,. -,.,,_ ..• , ••.•• ,,,, .. ,,,, '\, ........ ,,,,, .• .,,, '\ ''•· •• •••• ,, ........ ,,,,, '•1,,, ··.; ... ,,,._ ··••••· ..• ,,, ''\ ...• ,,,, ··,, .,, '• '• • " ,, ' ' •• ,,,_ .• ,,,, '\. '\ ........... ,,,, '\. '\. ''\. -.• ,,_ .• ,,,, '\ ................. ,,_ -.,,,, 

STEAL MECHANISM NOT IMPLEMENTED 
The switch hardware implements the stolen bit as described in this chapter, 
but the rest of the machine as produced does not use this bit. Therefore, the 
steal mechanism is not available to software. 

The stolen bit is defined for both downstream and upstream messages. In a 
write request it asks to write the stolen bit of the given address. Normally, only 
a full word is stolen. Asserting the stolen bit on a one-, two- or three.'..byte 
write, however, is not prohibited by the switch and is presented as such to the 
server T-bus. Asserting the stolen bit on a multi-word write is defined as ille-

0 

0 

gal by convention. This convention may be enforced by enabling "stolen 0 
verify" errors, but for this to be effective the message transmission anticipation , 
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must be set for maximum delay, so the error is detected before the invalid re­
quest is transmitted. If the server SIGA receives a multi-word write request 
with the stolen bit on (in violation of the convention), the SIGA acts as if the 
bit were zero. 

The stolen bit is always "O" in a write response (that is, upstream). 

The stolen bit is always "O" in a read request (that is, downstream). 

In a read response, the stolen bit indicates that the last word returned is stolen, 
and that subsequent words requested, if any, are omitted from the message. 

IBCHNICAL DETAIL 
In servicing a read request, the server SIGA reads all requested data from the 
T-bus, aborting the process only upon error. Encountering a stolen bit does 
not abort the reading; any further data requested is read from the T-bus, but is 
not sent over the switch ih the read response. 

Checksum Field 

The checksum is generated and checked for every message, both downstream 
and upstream. For either an upstream or a downstream message, all bytes of 
the data component, and th.e high four bits of the checksum byte, contribute 
to a message's checksum. In downstream messages, all bytes af the command 
component (including the address) also contribute to the checksum. 

If the message is an initial message, it contains a header, but the header is not 
included in the checksum. Instead, the requester SIGA uses the logical route 
address, an intermediate value obtained during computation of the physical 
route address as described above. The bits of the logical route address are 
combined to form a header parlial sum, to which the checksum unit is initial­
ized. For all other messages - both non-initial messages of a locked transac­
tion, and all upstream messages - the checksum unit is initialized to zero. 

To check the validity of initial messages, the server SIGA initializes its check­
sum unit to the header partial sum that would deliver a message to this SIGA 
if the switch is working correctly. The SIGA obtains this 4-bit value from its 
Server_ ConfigA register, which in turn is initialized via the T-bus, typically 
by the Test and Control System during system startup. 

Each bit of the checksum is the exclusive-OR of the contributing bits. Each 
contributing bit affects only one of the four checksum bits. This is shown in 
Figure 3-20. 
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Figure 3'-20 Checksum calculation. 
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54 

The maximum message size is important because it places an upper bound on 
the amount of buffering required for a message. The largest message is 24 by­
tes, including all components. It is a four-word write request in a three-co­
lumn switch. The header is three bytes, the command is four bytes, the data 
is sixteen bytes, and the checksum is one byte. The largest upstream message 
is a four-word read response, which has 17 bytes. 

The minimum message size is important because it must not be mistaken for 
connection control functions. In particular, both a drop in frame and an asser­
tion of reverse for one switch clock cycle have special meanings. The smallest 
message is two bytes, a write response, which always has one byte of data and 
one byte of checksum. The smallest downstream message is read request in 
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a two-column switch, which has two header bytes, four command bytes, no 
data component, and one checksum byte, for a total of seven bytes. 

Switch Protocol Timers 

The SIGA implements two timers to detect major problems in switch transac­
tions. One timer is a reject timer, the other a connection timer. The reject 
timer limits waiting for a connection to be established, and the connection tim­
er limits how long a connection, once established, may last. 

Reject Timer 

The reject timer limits how long a requester SIGA will repeatedly try to estab­
lish a connection in the face of repeated rejects. The reject timer is a four-bit 
counter that is initialized when the first transmission of an initial message be­
gins, and is counted down. If it underflows, that is remembered. Each time 
the requester SIGA receives a reject, it checks whether the reject timer has un­
derflowed. If not, the message is retried after a delay. If underflow has oc­
curred, the requester SIGA makes no further retries and reports an error (code 
Rej_ TO) to the T-bus device. A configuration register, available on the T-bus, 
contains two parameters of the reject timer. One parameter is the four-bit 
value loaded into the counter. The other selects the rate at which the counter 
is decremented: The decrement signal is taken from the low-to-high transition 
of one bit in the low half of the real time clock. The configuration parameter 
selects whkh bit is used. The clock counts at a one megahertz rate, and func­
tions here as a variable prescaler. If the value of the four-bit prescale selection 
parameter is N, the output of clock bit N is used to decrement the reject timer. 
Thus the timeout value is 

initializer x z(prescale + l) microseconds, 
with an uncertainty of z(prescale + 1) microseconds. 

Connection Timer 

The connection timer limits how long a connection may be held. The connec­
tion timer is an eight-bit counter that is loaded each time an initial message 
transmission is begun, whether it is the first try or a retry. (Here, "initial mes­
sage" means the first message on a connection, establishing the connection.) 
If the counter underflows, the requester SIGA tears down the connection, even 
if it is locked. The requester SIGA also reports an error to the T-bus device, 
but the code and timing depend on whether the requester SIGA is waiting for 
a message acknowledgment (assertion of reverse for at least two switch clock 
cycles). If awaiting an acknowledgment, the error code Wait_ TO is reported 
immediately. If not awaiting an acknowledgment, the requester SIGA waits 
until the T-bus master makes another request of the SIGA, and then returns 
the error code Idle_TO. Meanwhile, the requester SIGA remains "locked". 
If some other T-bus device makes a request of the requester SIGA while it is 
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locked, the SIGA returns a REFUSED-LOCKED error to it, so the Idle-TO 
is not delivered to the incorrect device. If the correct device issues a FREE- 0 
LOCKS while the requester SIGA is locked, the Idle-TO error is forgotten. . 

The connection timer is initialized from eight bits of a configuration register 
available on the T-bus. It is decremented at one megahertz, so the timeout 
value is up to 255 microseconds, with a resolution and uncertainty of one mi­
crosecond. 

The Switch as a T -bus Device 

THIS SECTION SHOULD INCLUDE DISCUSSION OF ERROR DETEC­
TION AND REPORTING IN GENERAL, AS SEEN BY THE REQUEST­
ING T-BUS DEVICE. ALSO, SOME THINGS CAN GO IN SIGA CHIP 
DISCUSSION INSTEAD OF HERE. 

SEE THE B2VME CHAPTER FOR LIST OF ERROR CODES, AND SIGA 
SPECIFICATION FOR DISCUSSION OF SIGA ERROR DETECTION 
LOGIC. 

Switch Chip Set: SGA, LCON, SIGA 

LCON 

The primary purpose of the LCON (Level CONverter) is to translate signal 
levels between the switch and the function board. This conversion, and other 
aspects of the LCON, are discussed below. Last, there is a description of each 
signal pin. 

Level Conversion and Signal Integrity 

The SGA and discrete circuitry on the switch card are lOOK ECL devices run­
ning between -4.5 volts and ground, with nominal signal levels of-0.9 and-1.7 

· volts. The SIGA and other circuits on the function board run at the conven­
tional TIL voltage, + 5 volts. The LCON converts between these levels. To 
accomplish this, the LCON is implemented using a gate array with "mixed 
mode I/O". That is, all internal gates are ECL, while macros (components of 
the chip) are available that accept TIL levels on input and drive TIL levels 
on output. To do this, the LCON requires power at both + 5.0 and -4.5 volts. 
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TECHNICAL DETAIL 
The gate array device used for the LCON is intended to be run at-4.5 volts, like 
any other lOOK ECL device. It runs satisfactorily at -5.0 volts, the only draw­
back being increased power dissipation. The Butterfly II runs it at-5.0 volts to 
simplify power supply requirements . 

•• ,,, '''•,,. '\ •. ''11,,, ''•··· '''·"· •• ,,,,, .• ,,,, •••• ,,. ''•;,, "'•1,, '•1,,, ·•••· .•• ,,,, ''•1 •.••• ,,,,....,,,, :'i•,., ''••,, .••• , .. '\, '\,_ .,,,,_ ..... _ .•• ,,,, ·••••·· '\,, .•• ,_ .• ,,,,, ·••••·· '•;,_ ·••••· "1,, ''••,,_ •• ,,,, "';,_ '\,_ '\, •••••· ••••••· ...... ·•••••· .... ,,, .. ~ ••••• ,,,_ •• ,, .. _ ..... _ 

The Butterfly II signalling environment is 50 ohms. Bidirectional data lines 
are terminated in 50 ohms (to·-2 volts) at both ends. Therefore, the LCON 
and SGA must drive a 25-ohm DC load. Further, the far end termination re­
sistor should not be shunted with any low impedance from the inactive driver, 
so "cut-off" drivers are used. These drivers go to a low state that is lower than 
the standard lOOK ECL level. This ensures that the base-emitter junction of 
the output emitter follower is reverse biased and therefore presents a high im­
pedance. 

Reclocking ' 

The LCON reclocks the signals data, frame, reverse and the 65-millisecond 
pulse, to reduce timing uncertainty in these signals. As a signal passes through 
a series of gates and cables, the minimum and maximum propagation delays 
accumulate, resulting in a large period of uncertainty following a change in the 
input signal. By clocking the signal through a register (flip-flop) stage, howev­
er, the uncertainty is reduced to the clock-to-Q propagation delay of that reg­
ister, at a pt:naity of 0111:: ciock cycle delay. 

Figure 3-21 shows the reclocking of a data signal in the requester section. Be­
cause data signals are bidirectional, reclocking is more complex for them than 
for other signals. A unidirectional signal requires only the upper or lower half 
of the circuitry shown. Signals from the switch to the SIGA are clocked on 
the falling edge, while signals from the SIGA to the switch are clocked on the 
rising edge. 
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Figure 3-21 LCON reclocking example. 
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Enabling Data and Control Signals 

0 

Because data pins are bidirectional, they must be "turned around" when the Q 
direction. of d;ita flow cho.nges. The SIGA controls the turn around via the 

58 

signals nrqbck and nsvbck. Frame and reverse pins are always enabled during 
normal operation, and are disabled only when it is necessary to isolate the 
LCON from the SIGA or from the switch for diagnostic purposes, or when the 
system is changing over from one switch to the other. When disabled, the 
frame and reverse outputs on the switch side are gated to produce a logical 
0 level, and those on the SIGA side are tri-stated. While enabling or disabling 
these control signals, the switch (or both switches) should be quiescent to en-
sure no broken messages are produced. 

The tri-statable clock output can be enabled and disabled independently of 
the LCON requester and server functions. In a function board that derives 
its processor clock from this pin, the separate enable allows testing and use 
of the switch path, and changing from one switch to the other, without disturb­
ing the processor clock. The 65-millisecond pulse is always enabled. 

LCON Signal Pins 

Figure 3-22 shows all electrical connections to the LCON, other than power 
and ground pins, and the three sections of the LCON. Signal names in the 
requester and server sections are identical except that a leading r ors specifies 
requester or server. The "data" pins are bidirectional; all other pins are unidi-
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rectional, except for testability (described below). Signals shown on the left 
side of the LCON are TIL levels, and signals on the right are ECL levels. The 
left side connects to the SIGA, and the right side to the switch. The miscella­
neous section is mainly the TCS interface. 

Signals are asserted With a high level, except for the negative sides of the four 
differential pair clock inputs, and for the four signals nrqbck, nsvbck, nreset and 
ncnle. The nrqbck and nsvbck signals come from the SIGA and tell theLCON 
whether the direction of data flow is forward (high, de-asserted) or backward 
(low, asserted). These names are mnemonic for "not requester backward" and 
"not server backward". The nreset signal is discussed in the section on reset­
ting the LCON, and the ncnle signal is part of the TCS interface. 
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Figure 3-22 LCON input and output signals. 
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0 
The LCON signals are described in Figure 3-23. For signals that are passed 
through the LCON, the "direction" column uses the symbol=> to inilicate from 
SIGA (TTL) to switch (ECL), the symbol= to indicate the opposite, and= 
for a bidirectional signal. Note that=> is the forward direction for the request-
er, but is the reverse direction for the server section. 

Figure 3-23 LCON signals: requester, server and miscellaneous. 

TTL signal Direction ECLsignal Type Comments 

reqt<7 .. 0> = reqe< 7 .. 0> reclocked bidirectional data 

reqfri => reqfro reclocked unidirectional frame 

reqrvo = reqrvi reclocked unidirectional reverse 

nrqbck input direction control 

rclttl = rclpls redriven unidirectional clock 
rclmns 

' 
srvt<7 .. 0> = srve<7 .. 0> reclocked bidirectional data 

srvfro = srvfri reclocked unidirectional frame 

srvrvi => srvrvo reclocked unidirectional reverse 

nsvbck input direction control 

c sclttl = sclpls redriven unidirectional clock 
sclmns 

ts elk output function board clock 

nreset input reset 

cntrlc input TCS clock 

cntrli input TCS data in 

ncnle input TCS execute 

cntldo output TCS data out 

sfmttl = sfmpls redriven unidirectional 65 millisecond pulse 
sfmmns 

nettime = etimpls redriven unidirectional syste111 net time 
etimrnns to function board 

ttltime => enettime redriven unidirectional function board net time 
to clock master card 

acts to output AC parametric test 

orout output OR tree 

negorout output OR of negative inputs 

forcen input force enable 

tempin analog input temperature 

0 
tempout analog output sensing diode 
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LCON TCS Interface 

The LCON has a Test and Control System (TCS) interface that allows a simple Q 
microcomputer to enable, disable, monitor, test and reset the LCON. Other 
circuitry allows convenient testing of all LCON pins not testable by the TCS 
interface. 

Some details of the LCON TCS interface are covered in the TCS chapter. 

Resetting the LCON 

There are two ways to reset the LCON: assert the "nreset" pin, and issue the 
reset command via the TCS interface. The latter clears.only the latches con­
taining the three enable bits (for requester section, server section and tri-state 
clock output) and the divider chains for monitoring clocks. It does not clear 
any of the flops used to pass data and control signals. 

The nreset pin, however, drives the reset input of all internal flip-flops. Also, 
as an aid to in-circuit testing, as long as the nreset pin is held asserted all TTL 
outputs (except as noted here) are tri-stated and all ECL outputs are held in 
the low state. The TTL clocks (rclttl and sclttl) are not tri-stated because they 
are in the critical timing path and tri-state buffers are slow. Nor are "orout" 
and "negorout" tri-stated, as noted in the section on testability. 

Because the requester and server clocks wn continuously and the nreset signal 
is not synchronized inside the LCON, it is possible that the data, frame and 
reverse flops couici go metastabie ii' nreset were de-asserted just as a fiup is · 
clocked. The enable latches and the TCS command shift register are clocked 
only on command from the TCS, and so do not have this problem. Since the 
enable latches are guaranteed to be clear after reset there is no chance of an 
LCON sending garbage on system turn--on. 

Dedicated Test Pins on the LCON 

Besides the TCS interface, the LCON provides three facilities for testing be­
fore and during operation. These are the OR-tree, the AC test output, and 
the temperature sensing diode. 

Asserting the nreset pin allows an external agent, such as an in-circuit tester, 
to drive the pins that normally are LCON outputs. These, and many input 
pins, are OR'ed together to drive the "orout" pin. To do this, the LCON pins 
that are functionally just outputs are implemented as bidirectional; the only 
connection made to the input side is to the OR-tree. The in-circuit tester uses 
orout by bringing all inputs low, then toggling them one at a time and watching 
to see that orout toggles also. This verifies a limited amount of device function­
ality and, more important, contact between LCON pins and the board. A re-

0 

quirement of the simulation and test tools is that differential pairs must always o· .•. 
be driven with complementary values. Consequently, the negative sides of the 
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four differential pair clock inputs are OR'ed into a separate tree that drives 
the "negorout" pin. 

'••.''••1,,''•1,,,·•;,,"'•·······,,.·•1,,,,''••1,.'111,,,·,,,_ ............. ·\, ''•1,_"11.,_'\,_'11,,,'°'\ .. ...,,_ .••••• '\, '\,,''••, '\,.''•,,,_ .• ,,,_ .•••••. ···.,,_-·11,,,·\,_'1,,_''11,,_'11,, '1•1,, ''11,,_ . .,,,,_ .... ,,_ .•• ,,,_.,.,,,_ ...... _.,,,,_''•• .. ''•1.,_'\,_'\,_''1,_''11,, 

TECHNICAL DETAIL 
The OR-tree has 57 inputs .. The requester and server secctions contribute 22 
inputs each. (Their TIL clocks are excluded as noted above, and their negative 
ECL clock is in the negout OR-tree.) The remaining 13 inputs are sfmttl, tsclk, 
forcen, cntrlc, cntrli, ncnle, cntldo, nettime, ttltime, sfmpls, aststo, etimpls and 
enettime. 

·''''''''''''''''''''''''''''''''''''''''''''''~ 

The "actsto" signal is the output of a 6-stage ripple counter driven from the 
requester clock. Its propagation delay is a rough indicator of device speed, 
and is large enough to be measurable on production test equipment. 

The "tempin" and "tempout" pins connect to a diode on the chip. By injecting 
a known current (e.g., 100 IIlicroamperes) and measuring the voltage drop, the 
die temperature can be monitored during operation. The proportionality be­
tween temperature and voltage may differ from one fabrication lot to another. 

SGA 

Figure 3-24 shows the basic data paths and functional blocks of the SGA 
. (Switch Gate Array). 
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SGA block diagram. 
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OUTPUT CHANNELS 

BIDIRECTIONAL 
CROSSBAR 
DATA PATHS 

INTERFACE 

TESTABILl1Y 
LOGIC 

The SGAis essentially a 4 x 4, bidirectional crossbar switch. Each input chan­
nel and each output channel has eight bidirectional data lines, plus various 
control signals (frame, reverse, and signals for arbitration between SGAs). 
Clocked at 40 megahertz, the SGA provides a bidirectional throughput be­
tween input and output of 320 megabits per second per channel. 

BBN AC! Proprietary February 14, 1990 

0 

0 

0 



a 

a 

0 

TC2000 Hardware Archirecture 3: The Butterfly II Switch 

February 14, 1990 

TCS Interface 

The SGA has a Test and Control System (TCS) interface that allows a simple 
microcomputer to read and write bits within the SGA independently of the 
crossbar data paths. Using this interface, the TCS can monitor the status of 
message traffic traveling through the SGA, and tum input and output ports 
on and off in the event of a hardware failure. The TCS interface can also sense 
individual forward data path input signals and control individual forward path 
output pins to allow switch path connectivity testing in operational systems. 
Other circuitry allows convenient testing of all SGA pins not testable by the 
TCS interfaee. 

Data Paths. 

The data path for all channels is similar. Downstream data arriving at an input 
channel is buffered immediately upon entering the SGA. The buffered data 
values are routed to the connection control logic and to the corresponding in­
puts of four multiplexors, 'ohe for each output channel. Each multiplexor is 
an 8-bit wide, 4-to-1 selector that determines which input channel, if any, is 
connected to a given output channel. The outputs of each multiplexor are con­
nected to an 8-bit register (not shown), where the data is reclocked. The regis­
ter outputs connect through high power bus drivers to the output channel data 
pins. Similar circuitry going from output channels to input channels makes 
each path bidirectional. 

Control Logic 

The functional blocks SOM detect (Start Of Message detector, also called 
SOMDET), ARB (arbiter) and CNCT (connection) process arriving control 
and routing signals and establish connections. 

Each input channel has its own SOM detector block. This block monitors the 
channel's input control and data lines for the start of message condition (frame 
going high after being low for two switch clock cycles). When this is detected, 
the SOM detector requests a connection to the appropriate output channel, 
by asserting a bid signal for that output channel. 

The on-chip bids for a given output channel are processed by the arbiter logic. 
It chooses which input, if any, will be connected to the associated output chan­
nel. The choice is made at random from the bids that have sufficient priority. 
The arbiter tells the connection block which input channel has been chosen. 

The connection logic uses the input channel selection ("who") information 
from the arbiter and bids from another SGA to inform the SOM detector that 
a connection has been made, and maintains the connection until it is no longer 
used. The connection logic directly controls the select lines of the downstream 
multiplexors, while the upstream multiplexors' select lines are controlled by 
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the SOM detectors. The connection logic enables the output data drivers in 
time for transmission of the second byte of the incoming message; the first Q 
byte, carrying routing information, is consumed by the SGA. . 

For a connection to be made, the following conditions must be met: 

• The output channel must be not busy (outgoing frame signal low for two 
consecutive switch clock cycles). 

• Some input channel must be bidding for the output channel; and if the 
output port is at high priority, then the bid must be high priority also. 

• The paired SGA, that can also drive this output channel, must not have 
a competing bid for the same output channel that takes precedence over 
this SGA'.s bid. Bids of equal priority are resolved by random choice in 
the CNCT logic. . . . 

• The output channel must be enabled. 

• The SGA must not be in the process of being reset. 

After making a bid, the SOM detector remembers that a connection attempt 
is in progress. If the connection block does not inform the SOM detector that 
a connection is made, the SOM detector generates a reject - it asserts its re­
verse upstream output for one clock cycle. 

Correspondingly, a reverse coming into the SGA from downstream is detected 
by the connection logic. The connection logic then forces the outgoing frame 
low for two switch clock cycles and frees up the output channel for other work. 
Tne SOM cieiecwr notices the uuwustream reject a11u passes it along uv­
stream. 

Pin Signals 

The SGA pins fall into six categories, listed below. When a signal is associated 
with a particular input or output channel, its name begins with "I" or "O" fol­
lowed by the channel number, 0, l, 2 or 3. 

• Device control signals 

• TCS interface signals 

• Switch operation control signals 

• Input channel data and control signals 

• Output channel data and control signals 

• SGA pair output channel arbitration signals 

The signals in each category are described below. Except where noted, the high 
logic level is the asserted state and causes the action described. 
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Figure 3-25 
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SGA signals. 

• Device control signals 

o ALLDIS - Input. Disables all but two output pins; enables those 
two (OROUT and DLYOUT), which are otherwise disabled. 

o MRESET - Input. Resets all SGA flops at the next clock high. 
Every flop is reset except the port disable latches of the TCS logic. 

o CLKMNS and CLKPLS - Inputs, differential pair, always the 
complement of each other. Synchronous clock used by all SGA 

. flops. 

o TEMPIN and TEMPO UT - SGA junction temperature. sensing 
diode. TEMPIN = diode anode, TEMPOUT = diode cathode. 

o OROUT - Output. The output of an OR gate whose inputs are 
all pins not otherwise testable for connectivity. Also see ALLDIS. 

o DLYOUT - Output. Delayed version of CLKMNS. Also see 
ALLDIS. 

• TCS interface signals 

o CNTRLR - Input. Reset of port disable latches to the "all en­
abled" state. 

o CNTLDI - Input. Command data. Serial input to 13-bit com­
mand register. 

o CNTRLC - Input. Data input clock. CNTLDI is clocked into the 
command register on the rising edge of CNTRLC if CNTRLE is 
not asserted. 

o CNTRLE - Input. Command execute. A read is always per-
formed, and a write is performed conditionally. 

o CNTRFRC - Input. Force the write command, even if disabled. 

o CNTRWD - Input. Disable the write command. 

o CNTLDO and NCNTLDO - Pseudo-differential output pair. 
Data from TCS interface. Use of the pair partially cancels SSO (si­

. multaneously switching outputs) noise on V cc within the SGA. 

• Switch operation control signals 

o SLAVE - Input. Identifies to internal circuitry which set of output 
paths (0-3 or 4-1) can be driven by this SGA. This bit is compared 
to the most significant bit of the routing address of each message, 
to determine whether the message is requesting one of this SGA'.s 
output ports. See following illustration. 
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o RAND IO, RANDil and RAND IN - Inputs. Bits from a pseudo­

random number generator, used by the output channel arbitration 
porcess to resolve simultaneous requests of the same priority level. 
RANDIO and RANDil are used within an SGA. RANDIN arbi­
trates between the two SGAs that drive the same four output chan­
nels, so RANDIN must be opposite in value for the two SGAs of 
a pair. (Some sv.tch card documentation uses the name RANDOM 
for the SGA signal RANDIN.) 

o HOLD - Causes each output channel to retain the high priority 
level message restriction after a high priority message arrives, until 
HOLD is de-asserted for two clock periods. 

• Input channel data and control signals 

o IOFRM, IlFRM, I2FRM and I3FRM - Inputs. Frame signal for 
input channels 0 through 3. 
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o IORVRS, I1RVRS, I2RVRS and BRVRS - Outputs. Reverse signal 
for input channels 0 through 3. Implemented as bidirectional, but 
input capability is used only for testing. 

o IODO, IODl, IOD2, IOD3, IOD4, IODS, IOD6, IOD7, 
IlDO, IlDl, IlDZ, IlD3, I1D4, IIDS, IlD6, IlD7, 
IZDO, I2Dl, I2D2, I2D3, I2D4, I2D5, I2D6, I2D7, 
BDO, I3Dl, I3D2, I3D3, I3D4, I3D5, I3D6, I3D7 
- Bidirectional. Data lines for input channels 0 through 3. 

• Output channel data and control signals 

o OORVRS, OlRVRS, 02RVRS and 03RVRS - Inputs. Reverse sig­
nal for output channels 0 through 3. 

o OOFRM, OlFRM, 02FRM and 03FRM - Bidirectional. Frame 
signal for output channels 0 through 3. Wire OR'ed with corre­
sponding pin of paired SGA. The input capability is used by inter­
nal logic to determine whether the channel is free . 

• 
o OODO, OODl, OODZ, OOD3, OOD4, OODS, OOD6, OOD7, 

OlDO, OlDl, 01D2, 01D3, 01D4, OlDS, 01D6, 01D7, 
OZDO, 02Dl, 02D2, 02D3, 02D4, 02D5, 02D6, 02D7, 
03DO, 03Dl, 03D2, 03D3, 03D4, 03DS, 03D6, 03D7 
- Bidirectional. Data lines for output channels 0 through 3. 

• SGA pair output channel arbitration signals 

o OOLVL, OlLVL, 02LVLand 03LVL- Bidirectional. Priority lev­
el for output channels 0 through 3. Wire OR'ed with corresponding 
pin of paired SGA. See discussion below. 

o OOMBID, OlMBID, 02MBID and 03MBID - Implemented as 
bidirectional, but input capability is used only for testing. "My bid" 
outputs for output channels 0 through 3. Drives corresponding 
OOOBID, OlOBID, 020BID and 030BID inputs of paired SGA. 
The "my bid" pin for an output channel is asserted if this SGA has, 
for that channel, a bid whose priority is equal to the priority level 
of the channel. 

o OOOBID, OlOBID, 020BID and 030BID - Inputs. "Other 
bid" inputs for output channels 0 through 3. 

SGA Pair Output Channel Arbitration 

Each 8x8 crosspoint switch output channel is shared between two SGAs, ei­
ther of which may connect one of its four input channels to the output channel. 
The SGAs must negotiate the connection setup. The signals "level", "my bid", 
"other bid" and RAND IN are used to arbitrate cases where both SGAs may 
have bids for the same output channel. We explain this arbitration from the 
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point of view of one SGA, "me"; the other SGA is "you". My problem is to 
decide whether I win the output channel. 

IfI presently have no bid, I of course do not win the channel. So assume I have 
a bid for it. I need to know how the priority of that bid compares to the priority 
of output channel. 

The concept of output channel priority is presented earlier in this chapter, and 
the discussion there explains how an SGA determines channel priority. The 
SGAs of a pair must agree about the channel's priority. This is accomplished 
via the "level" signal. Normally, the channel is at low priority, indicated by 
a de-asserted level signal. When either of the SGAs receives a high priority 
bid for the channel, it asserts the level signal. Because the level pin is wire 
OR'ed between the two SGAs, both paired SGAs understand that the channel 
has gone to high priority. The level signal stays asserted until the first de-as­
sertion of the hold signal. Both SGAs see the same hold signal, so they agree 
on when the level signal is de-asserted. The output channel's priority remains 
high until the second de-assertion of the hold signal. Both SGAs understand 
this, and know that the channel's priority remains high until that second de-as­
sertion, even though the level signal is no longer asserted. Thus, the two SGAs 
are at all times in agreement on the priority of the output channel. 

If the priority of the output channel is high, but the bid(s) I have for it are low, 
then I do not win the channel. So assume my best bid is of the same priority 

0 

as that of the output channel. Either they are both low or they are both high. 
~~dn~ei~i~:.)special case noted below can the channel priority be low and my o 
The RAND IN pin tells me whether the random number generator chooses me 
in case of equal, conflicting bids between paired SGAs. If RAND IN says me, 
then I win the channel, regardless of whether the other SGA has a contending 
bid or not. So assume that RAND IN says you, the other SGA. 

At this point, I will win the channel unless you also have a bid whose priority 
equals that of the channel. In that case, you will win. So I need to know whether 
you have such a bid. You tell me this by the signal that you call "my bid" and 
that comes into my input pin that I call "other bid". With this information, 
I now know who wins the channel, and therefore whether to accept or reject 
the bid I received. Because you need the analogous information about me, I 
supply it on my "my bid" pin. 

Figure 3-26 shows the wiring. 
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Connection of arbitration signal pins. 

from random number generator . 

RAND IN LVL LVL RANDIN 

MBID MBID 
OBID OBID 

one SIGA of pair other SIGA of pair 

SIMULTANEOUS HIGH AND LOW BIDS 
A high priority bid makes the channel priority high on the next bidding cycle, 
not immediately. The liigh priority bid does make the level output go high, but 
the signal used in arbitration is one clock period behind the level output and 
input. If high and low priority messages bid simultaneously for a channel that 
is initially at low priority, they compete on an equal footing and the random 
signals (RANDIO, etc.) determine which bid wins the channel. 

Resetting the SGA 

The MRESET pin clears all SGA edge-triggered flops. The majority of edge­
triggered flops use a gate array macro (circuit component) that requires the 
clock to be asserted before the flop's reset will clear the flop. The suggested 
sequence is to assert MRESETwhile the clock is not asserted, assert the clock, 
release the clock, and release MRESET. Because of long delays associated 
with long reset nets in the SGA, MRESET should be de-asserted at least 20 
nanoseconds before the clock pulse ends. MRESET clears all data flops, caus­
ing all data pins of all channels, both input and output, to be at the low voltage 
level. This insures there can be no bias driver overloading. (The way this works 
involves principles of ECL circuitry and gate array design, which Is beyond 
the scope of this document.) 

The MRESET pin does not affect latches used in the TCS interface to enable 
and disable individual channels. When the CNTRLR pin is brought high, 
these latches are reset to zero, enabling all channels. The action of CNTRLR 
is asynchronous; there is no need to cycle the clock with this operation. 
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Testability 

[TIITS SECTION MAY BE GENERIC TO ALL THREE CHIPS. IF SO, IT 0 
SHOULD BE MOVED TO A HIGHER LEVEL.] 

The SGA, LCON and SIGA are designed for testing at the device, board and 
system level. At both the device level and the board level, three kinds of tests 
are made. DC parametrics tests check connectivity (shorted signals, open sig­
nals, and weak signals) and the ability to drive outputs both high. and low. 
Functional tests check the pattern of output signals while input signals are 
stepped through an exhaustive sequence of test vectors. This set of vectors is 
designed to be a toggle test, which tests that each internal net (points wired to­
gether) can achieve both a high and a low state. Toggle test coverage is rarely 
100%, but is made as high as practical. AC parametric tests check timing. At 
the board and system levels, operational tests check the device in actual opera­
tion. 

During testing, the ambient temperature, the signal input levels and the power 
supply voltage levels may be varied. Burn-in is also a component of the test 
procedure. · 

Pins dedicated to testing, together with some of the testing capabilities of the 
TCS interface, support DC parametric testing. Those special pins are de­
scribed here; the TCS chapter describes its use for this and other tests. The 
strategy for DC connectivity testing is to set all signal pin output drivers to a 
low logic level, then sense an externally applied stimulus on each input pin and 0. 
force an externally observable high output level on each output pin. (Not all 

. output drivers ca~ be forced high; such pins are tested by sensing. The only 
output-only pins on the SGA are ORO UT and DLYOUT.) Bidirectional pins 
are tested with either sensing, forcing or both. 

Dedicated Test Pins on the SGA 

When the ALLDIS pin is asserted, the connectivity of every pin not testable 
via the TCS can be observed via the OR OUT and D.LYOUT pins. On a bed­
of-nails tester, this also tests the connectivity between each pin and the board 
etch. Further, all other output pins are disabled, allowing the board tester to 
back drive all the pins to detect shorts and opens in the board etch. 

The approximate operating frequency can be determined by comparing the 
delay in the outputs OROUT, one of whose input gate inputs is the clock pin 
CLKPLS, and DLYOUT, a delayed version of the clock pin CLKMNS. 
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OBSCURE BUG IN FIRST VERSION OF SGA 
The first version of the SGA chip had an obscure bug. Various conditions trig­
gered the bug, and the result was one port becoming unable to make connec­
tions until the chip was reset. One trigger is the simultaneous arrival at the 
SGA of the tail of a message going downstream, and a returning reject from 
upstream. It happens that none of the trigger conditions arise in a machine 
with four or fewer midplanes. In a machine with more than four midp!anes, a 
work-around is to use the slotted strategy for all switch transmissions. 

' '''''''''''''''''''''''''''''''''''''''''''''' 

SIGA 

Please refer to the SIGA specification, appendix A of this document, for de­
tails of the SIGA. 

Analysis of Selected Cases 

This section discusses specific situations that may arise in the switch. It in­
cludes both theoretical analysis and simulation results. Additional cases will 
probably be added in the future. · 

. High Priority Bid and Hold De-asserted 

There are subtleties associated with a message that arrives at an SGA during 
a clock cycle that hold is de-asserted. The output port of that SGA will not 
be set to high priority. This has two effects. First, suppose that the port is 
not in use. The high priority message will get the port, and proceed through 
the switch. Suppose it succeeds all the way through the switch. The path it 
takes will have high priority ports except at the one SGA in question. A subse­
quent high priority message on that path would bump the remaining low prior­
ity port up to high, but until it did, slightly different behavior could occur. In 
particular, low priority messages would be allowed on that port. It is unlikely 
that this would have any significant effect on switch performance in practice. 
This is especially true because the de-assertion of hold is intended to be fairly 
frequent, so the high priority track will be wiped out soon. The effect is innocu­
ous because the high priority message did get through. 

To consider the second effect, suppose the port is busy with a low priority mes­
sage when the high priority message arrives at exactly the same clock cycle as 
hold is de-asserted. Then the high priority message will be rejected as usual, 
but the port will not be set to high priority. Therefore, further low priority traf­
fic will be allowed on the port, so retransmissions of the high priority message 
may again have to contend with low priority traffic at this same SGA port. 
This undermines the intent of the priority mechanism, namely, that each at-
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tempt into the switch will set at least one more switch port along the path to 
high priority. If the high priority message arrives one clock cycle earlier or 0 
later, this problem case does not occur. Although this case is statistically rare, 
it complicates the calculation of the bound on switch latency. A similar case 
arises when the high priority message gets through this SGA but is rejected 
further along. 

Bid Arbitration Unfairness 

The original implementation of the arbitration among messages bidding si­
multaneously for one output port is not totally random, but is slightly biased. 
This unfairness arises in two ways, one due to the maximum sequence genera­
tor and one due to hierarchical selection of the winning bid. 

The maximum sequence generator is seven bits and has one dead state, so in 
use it takes on 127 values. Three of its bits are used for bid selection in the 
arbiter. During a period of the generator, these three bits will take on seven 
of the possible eight values sixteen times, and will take on the eighth value only 
fifteen times. Thus, one of the eight input ports is slightly discriminated 
against, by a ratio of 16 to 15. That port is the one selected by the generator's 
dead state. The dead state is all ones, so the port selected by all ones is discrim­
inated against. 

The second unfairness is as follows. Selecting the winning bid with a one-out-
of-eight selector circuit would be fair. The original SGA design, however, se- Q 
!ects the winning bid in ~- pierarcby of successive one-out-of-two S\"'Jector 
circuits. Within an SGA chip, input ports 0 and 1 contend with each other, 
and ports 2 and 3 separately contend with each other. The winner of each pair 
then contends with the winner of the other pair. Finally, the winner for this 
SGA chip contends with the winner from the paired SGA chip. Figure 3-27 
shows this play-off hierarchy. Input ports 0-3 are served by one SGA of the 
pair, and 4-7 by the other SGA. The maximum unfairness arises when there 
is only one bid on one SG.A:s input ports and a bid on each of the four input 
ports of the other SGA. The lone bid on one SGA is guaranteed to get through 
that SGA, and ultimately succeeds with a probability of 50%. The other four 
bids split the remaining 50% equally, each succeeding 12.5% of the time on 
the average. 

0 
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Figure 3-27 
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These unfairness effects arise very seldom. They occur only when message 
bids collide, contending for one output port at the same time. Further, if the 
output port is at high priority, any low pnority bids are rejected and do not 
contend for the port. Experience with effects such as these in earlier models 
of the Butterfly family of computers strongly suggests that these effects will 
not hamper performance and will be detectable, if at all, only by software writ­
ten specifically to stress the switch. 
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4 

The Butterfly 11 
Memory System 

General Characteristics 

The Butterfly II computer has a 34-bit global address space, providing ad­
dressing capability for up to 16 gigabytes. All addresses are byte addresses. 
Butterfly II main memory responds to byte, halfword and word reads and 
writes. Main memory resides on function boards. One such function board 
is the B2VME, which combines memory, a processor, and a VMEbus interface 
that provides windows between VMEbus memory and the Butterfly II global 
address space. 

The address space seen by processes is mapped into the global address space 
of the machine, first by the MC88200 cache and memory management unit 
(CMMU) and then by specialized Butterfly II hardware. The Butterfly II sup­
ports demand paging via the CMMU. 

Figure 4--1 illustrates components in the Butterfly II system that generate, 
transform or respond to addresses. The figure uses the B2VME as a basis. 
The principal originator of addresses is the CPU. VMEbus master devices 
may also generate addresses sent into the Butterfly II machine, and the Test 
and Control System generates addresses as part of its control and monitoring 
activity. The component that responds to the most addresses is memory. Reg­
isters are accessed by their address. VMEbus slave devices may also occupy 
addresses, when they respond to Butterfly II requests. 

BBN AC! Proprietary 77 



4: Butterfly II Memory System TC2000 Hardware Archirecture 

Figure 4-1 Address flow. 
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Addresses are transformed in five places. Addresses generated by a CPU are 
first mapped by either its instruction CMMU or its data CMMU, depending 
on the type of reference the CPU is making. Then the address is transformed 
by the CPU interface, and placed on the T-bus or sent via the fast path to local 
memory. An address to which the requester SIGA responds may be taken di­
rectly from the T-bus, or part of it may be transformed by the Interleaver. The 

0 

0 

other two address transformations occur in the VMEbus interface, where ad-

0 dresses on the T-bus are mapped to addresses on the VMEbus, and vice versa. 
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The remainder of this chapter discusses how the CPU accesses memory, and 
how the memory system responds to accesses from any source. The VMEbus 
interface and its mapping is described in the B2VME chapter and is not dis­
cussed further here. The TCS also is covered in a separate chapter. The ad­
dress map - describing where memory, registers, interfaces, etc. appear in 
the address space of a function board - is covered in the chapter dealing with 
the specific function board (e.g., B2VME). 

Local versus Remote Access 

Butterfly II resources are called local or remote depending on whether they are 
on the same T-bus as the device that originated the access. Being on the same 
T-bus implies being on the same function board. A local access references 
a resource on the same function board, and therefore does not involve switch 
traffic. A remote access must be sent over the switch, and consequently experi­
ences a delay while the request is sent and the response is received. Any access 
using the switch is called remote - even if it happens that the resource resides 
on the same function board as the originator, but is addressed via the switch 
rather than locally. 

When a transaction is presented to the T-bus, the resource addressed is speci­
fied both by the global address (T _AD < 33 .. 0 > ) and by two path bits 
(T _PATH< 1..0 > ). The T-bus path bits specify one of three paths the access 
will take: local, over one switch, or over the other switch. Local permits re­
sponse only from devices on the local function board. Selection of one switch 
or the other indicates which SIGA should respond LO the transaction. {A ii1a­

chine may be configured without a redundant switch.) The T-bus master that 
initiates the transaction drives both the T-bus address bits and the T-bus path 
bits. 

The memory subsystem on a function board responds if the T-bus path bits 
specify a local access and the T-bus address is within the range it implem,ents. 
Other local T-bus devices, such as control and configuration registers or the 
VMEbus interface on a B2VME, respond if the access is local and within the 
address range they implement. 

If the T-bus path bits specify switch access, the T-bus address bits are sent 
into the switch. Nine of these bits are consumed in routing the transaction 
message to a remote switch port, where the remaining 25 address bits are deliv­
ered to the T-bus there (and zeros replace the nine bits). In the transaction 
at that remote function board, its T-bus path bits always specify a local access. 
Some device local to that remote T-bus will respond (or a timeout error will 
occur). 

The SIGA server always sets T_AD < 33 .. 25 > to zero and T _PATH to "local". 

In the CPU interface, the T-bus path bits are derived from a computation 
based on three sources: the path bits of the Process Configuration register 
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(PCR), the local bit of the CPU Mapping RAM (CMR), and the interleave en­
able bit of the CMR. The T-bus address bits depend on the Physical Address 
produced by the CMMU, and the mapping performed by the CMR. How the 
CPU interface computes the T-bus address and path bits are described in the 
B2VME chapter. 

Limit on Local Address Space Size 

The Butterfly II address space of 16 gigabytes is spread out across the function 
boards connected via the switch. Each switch address is limited to 32 mega­
bytes of the total address space. Sometimes the need for a large physical 
memory, but only a moderate number of processors, arises. A natural idea 
is to place a large amount of memory on one or a few function boards. The 
32-inegabyte limit prevents this. A brief explanation and justification of the 
limit is as follows. 

The address produced by the CMMU is 32 bits, and is interpreted as two com­
ponents, one specifying switch routing and one giving the address local to that 
switch port. In theory, the hardware could be configurable to set that bound­
ary between the two components at any place in the address, maximizing the 
local address space size. In practice, this would lead to more complex hard­
ware and to program optimizing more dependent on machine size. 

Private versus Globally Accessible 

The operating system can impose access restrictions on a page-by-page basis 
through use of the CMMUs. The Butterfly II architecture does not impose 
any absolute constraints on accessibility; the entire global address space is ac­
cessible to any CPU if mapping and permissions are set up appropriately. 
Other T-bus masters have similar unrestricted access, although they may be 
implemented with constraints particular to the device, such as windowing in 
the VMEbus interface. 

Address Formats 

The path from CPU to memory uses three addresses formats. Figure 4-2 sum­
marizes the path of address transformation for every address generated by the 
CPU. Each format is described below. 
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Figure 4-2 Addressing from CPU to T-bus and switch. 

4.4.1 

CPU 
Motorola 88100 

,, 
P-bus 

(processor bus) 
Process Logical Address 

( 32 bits) 

\ , 
CMMU. 

Motorola 88200 

,i, 

M-bus Physical Address 
. ("memory" bus) ( 32 bits) ' 

' , 
TC2000 CPU interface 
address transformation 

' ~ 
System Physical Address 

.... ,.. T -bus ccontrol 
signals (such as 
local, bypass) 

T-bus 
(transactio n bus) on the T -bus ( 34 bits 

9 bits 
\ " 

address interleaving 25 
(optional)_ 

9 bits 

' It ' " 
System Physical Address 

for switch access ( 34 bits ) 

Process Logical Address 

bits 

The Motorola MC88100 CPU operates in the virtual address space of 32-bit 
Process Logical Addresses. Examples of a Process Logical Address are an ad­
dress stored in a CPU register, or a pointer in the C language. The user's pro­
gram sees only Process Logical Addresses, and hence a 32-bit virtual address 
space. Therefore, many of the details in the following discussion are not im­
portant to the application-level programmer. Careful use of the page transla-
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Figure 4-3 

31 

4.4.2 
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tion mechanisms in the CMMU and CPU Mapping RAM hides as much of 
these details as desired. 

The Process Logical Address is a 32-bit field with no defined internal struc­
ture. See the Motorola MC88100 User's Manual for further discussion of the 
CPU operation and its u.se of addresses. 

Process Logical Address format. 

address 
I I I r 

0 

Physical Address • 

0 

The 32-bit Process Logical Address generated by the CPU is transformed by 
a Motorola MC88200 CMMU into a 32-bit Physical Address. One CMMU 
transforms data addresses, and instruction addresses are transformed by a 
second (or an optional third) CMMU. The Physical Address is largely unstruc-
tured, but two points deserve mention. Q 
First, the CMMU implements a 4-kilobyte page size. The Butterfly II hard-
ware is built around around an 8--kilobyte page size. The 8-kilobyte size is 
wired into the design of the VMEbus master and slave mapping hardware (de-
scribed in the B2VME chapter) and into the Interleaver (described later in this 
chapter). The differing page sizes are handled in system software, by allocating 
two adjacent 4--kilobyte pages each time a new page is needed. 

Second, the CMMU has a fixed, one-to--one mapping for the top one megabyte 
of supervisor address space, called the control memory address space. This area 
is intended for memory-mapped peripherals and I/O devices. Within this top 
one megabyte, four kilobytes are diverted to address the CMMU's internal reg­
isters. Accesses to the remaining 1020 kilobytes are passed through the 
CMMU as a Physical Address. Thus, the top one megabyte has a 4--kilobyte 
"hole" that cannot be used to access locations elsewhere iri the Butterfly II ma­
chine. When the machine is powered up, a hardwired circuit determines where 
this hole lies by initializing a register within the CMMU. Because there are 
two (or three) CMMUs per CPU, there are actually two (or three) 4--kilobyte 
holes in the top megabyte of supervisor mode Process Logical Address space. 

For more information on the Physical Address and operation of the CMMU, 
see the Motorola MC88200 User's Manual. 
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Figure 4-4 

The CMMU places little constraint on how the Physical Address it produces 
is interpreted. The CMMU is designed so the Physical Address could be pres­
ented directly to a memory system. Only the two points mentioned above re­
late to the CMMU's concept of Physical Address format. In the Butterfly II, 
however, the Physical Address is understood to have fields with particular 
meaning. These fields are used by the CPU interface to transform the Physical 
Address into a System Physical Address. Figure 4-4 shows the format of the 
Physical Address as interpreted by the Butterfly II hardware. 

Physical Address format. 

index into CMR address offset 

31 

4.4.3 

February 14, 1990 

2322 0 
• 

As Figure 4-4 shows, the Physical Address high nine bits (31 .. 23) are an index 
used to select an entry in the CPU Mapping RAM (CMR). The address offset 
field, composed of the remaining 23 bits (22 .. 0), specifies a location in a space 

·of eight megabytes. Thus, this format can directly address 512 x 8 = 4096 me­
gabytes. 

As described later, t.he transformation of Physical Address into System Physi­
cal Address permits indirect access, by changing the mapping, to additional 
address space. This results in a total address spaceof512 x 32 = 16,384mega­
bytes. 

System Physical Address 

The System Physical Address is unique to the Butterfly II architecture. It is 34 
bits. The CPU interface transforms the 32-bit Physical Address into the 
34-bit System Physical Address, and in the process also produces other ad­
dress-related signals. The System Physical Address from the CPU interface 
is placed on the T-bus. It is important not to confuse the Physical Address 
with the System Physical Address. 

• The Physical Address exists only going from a CMMU to the attached 
CPU interface. Physical Address is a term employed by Motorola in their 
CMMU literature. It is 32 bits. 

• The System Physical Address exists on the T-bus and in the switch. It 
is the common language by which all. T-bus master devices address all 
T-bus slave devices. System Physical Address is a term defined by But­
terfly II designers. It is 34 bits. 
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Figure 4-5 

switch routing 

9 bits 
512 slots 

4.4.4 

84 

System Physical Address format. 

address offset 

2524 0 
25 bits 

32 megabytes 

• 
Figure 4-5 shows the System Physical Address format and its two fields. The 
switch routing field specifies the path through the switch, and therefore one 
of 512 slots. The address offset field of the System Physical Address addresses 
a total of 32 megabytes per switch port. The address space of the System Physi- · 
cal Address is 512 x 32 megabytes, or 16 gigabytes. 

The System Physical Address does not contain any explicit intlication of 
whether the address is on the local function board. This distinction is carried 
by two otherT-bus bits, T_PATH < 1..0 >. These bits specify local access (that 
is, not over the switch), remote access via a SIGA (SIGA A), remote access 
via the other SIGA (SIGA B and the redundant switch), and one illegal value. 
The SIGA (A or B) determines whether to service a T-bus request by the 
T_PATH bits, not by any of the System Physical Address bits 
(T_AD<33 .. 0> ). 

·Most address transformatiqns in the Butterfly II convert one format of address 
into another. There are two exceptions to this. In each case, the address before 
and after the transformation is a System Physical Address. One transforma­
tion is interleaving, which is described in a later section of this chapter. The 
other is the processing of an address as a message traverses the switch. When 
it enters the switch, part of the address specifies the routing through the switch, 
and thereby specifies the destination port that will receive the message. As 
the message passes through each column of the switch, parts of this routing 
information are stripped off. At the destination, the server SIGA replaces the 
discarded bits with zeros. 

Address Transformation in the CPU Interface 

The CPU interface receives a Physical Address from one of the two or three 
CMMUs, and produces a System Physical Address that is placed on the T­
bus. Figure 4-6 shows this transformation,. 
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Figure 4-6 
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Physical Address to System Physical Address. 

Physical Address 

(9) (23) 

CPU Mapping RAM 

(23) 

System Physical Address 

The high nine bits of the Physical Address select an entry in the CPU Mapping 
RAM. This entry supplies'ihe high eleven bits of the System Physical Address. 
These eleven bits comprise nine bits that specify switch routing, and two bits 
that are the top bits of the address offset at the switch port addressed; these 
two bits are sometimes called the bank bits, since they select one of four 8-me­
gabyte banks of address space. The low 23 bits of the Physical Address are 
copied unchanged into the low 23 bits of the System Physical Address, where 
they specify a byte offset within the addressed bank. The details of the CPU 
Mapping RAM are discussed in .the B2VME chapter. 

Access Control Bits from CPU Interface 

Besides the transformation of Physical Add.ress to System Physical Address, 
the CPU interface provides several signals that describe or control the access 
being made. These bits are: 

• local - Used in determining whether the access is to local resources (on 
this function board) or remote resources (over the switch). 

• bypass - Indicates whether the access should bypass the machine's 
memory module locking protocol. 

• interleave enable - Used in determining whether the access is to inter­
leaved memory; applies only to remote references. 

• intercept access* - Controls a mechanism to fake a response to the ac­
cess, used in speeding up certain block transfer operations. The "*" is 
part of the bit name, indicating that "O'' asserts the action. 

• fast path disable - Prevents the accelerated response by local memory, 
normally available by a mechanism called the "fast path". 

These access control bits are not strictly a part of the address, and are de­
scribed in detail in the B2VME chapter. 
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Interleaving 

The discussion of interleaving begins with introductory discussion that the ad­
vanced reader may wish to skip. 

Overview of Interleaving 

Interleaving is a form of address mapping. A range of addresses that the CPU, 
and therefore the program, sees as contiguous is mapped into several sub-

. ranges that lie in separate memory subsystems. The first several addresses go 
to one memory subsystem, the next several addresses to a different memory 
subsystem, the next several to yet another, and so on. Often there are more 
sub-ranges· than there are interleaved memory subsystems, so the mapping 
eventually cycles back through the memory subsystems and maps many sub­
ranges to each memory subsystem. 

Motivation for Interleaving 

Why Interleave At All? 

0 

The programmer does not see any direct effect of interleaving. The purpose 
of interleaving is to improve efficiency, thus speeding computation. This im- Q 
provement depends on the pattern of memory references being somewhat se-
quential, a hypothesis which is very weii met by the insuuction fetches of 
almost all programs, and is usually moderatdy well met by their data fetches 
as well. This is called locality of memory access. Programs often refer to ele-
ments of a data structure that resides in contiguous locations of virtual address 
space. For instance, indexing through array elements is a common operation. 

As a counterexample, a program segment that fits entirely in the cache, making 
memory references at random (such as to a hash table), derives no direct bene­
fit from interleaving. In a multiprocessor environment such as the Butterfly 
II, however, even this program segment will probably execute faster due to the 
indirect benefit of reduced switch and memory contention and congestion. 

Historically, an early use of interleaving was to improve the effective speed of 
memory. Large memories, such as banks of magnetic core memory, were rela­
tively slow compared to the CPU speed achievable. Interleaving allowed the 
next memory reference to begin while the previous reference, to a different 
memory subsystem, was completing. This application used fine grain inter­
leaving; typically, each successive word address was mapped to a different 
memory subsystem. This was often implemented by taking some of the low 
bits of the virtual address and moving them to a high position in the physical 
address. 
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Why Interleave This Way? 

The Butterfly II interleaving is motivated by other concerns and is implem­
ented in a different way. Several processes may be accessing data structures 
that are stored near each other in a shared, virtual address space. Without 
interleaving, these data structures would usually reside in nearby physical lo­
cations, usually in the same memory subsystem. When the memory subsystem 
is servicing an access request from one process, other access requests to it will 
be delayed. The memory subsystem becomes a bottleneck. Also, switch paths 
converging on the memory subsystem's server port will become heavily loaded 
as access requests are rejected and retried. 

The crux of this bottleneck is that several popular data structures all lie in one 
memory subsystem. The solution is to spread .out the data among several 
memory subsystems. The access pattern is then spread out, and the perform­
ance approximates average behavior instead of "hot spot" behavior. 

The amount of data map11ed to each memory subsystem in turn - the inter­
leaving granularity - need bear no relation to the actual size of the data struc­
tures the processes are referencing. The Butterfly II interleaver maps each 
clump of 16 bytes to a different switch port, and therefore a different memory 
subsystem. This scatters the data across many memory subsystems. 

The 16-byte clump size is well matched to the maximum switch message data 
size, also 16 bytes. If a single switch message could access more than the inter­
leaving clump size, then such an access to interleaved memory would necessar­
ily refer to more than one switch port. 

In the historical interleaving, it was common for the entire virtual address 
space to be interleaved. On the Butterfly II, interleaying is performed on the 
basis of quad-pages. Each quad-page ( 4 x 8 kilobytes) may be entirely inter­
leaved or entirely non-interleaved. The quad-page-based interleaving per­
mits flexibility in the use of interleaving. Butterfly II interleaving is more like 
memory mapping than the historical interleaving, both in implementation and 
use. 

In the Butterfly II, some memory subsystems may be busy with other tasks. 
Some may be physically not installed, or be configured out of service. The 
number of memory subsystems may be different than when the system was last 
brought up; and may often not be a power of two. All of these variations are 
accommodated wen· by the page-based, mapping style of interleaving, and 
would be very difficult to accommodate with interleaving that relied simply on 
a shuffling of bits within the address. 

Uniform Use of Butterfly II Interleaving 

The Butterfly II interleaving design permits considerable flexibility in use. 
Each switch interface has associated with it its own copy of the interleaving 
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hardware, and each T-bus master has its own capacity for deciding whether 
a given access is to an interleaved page. 

The hardware was designed with machine-wide uniformity of interleaving in 
mind. The idea is that all interleavers will be set up identically. Also, that all 
hardware that decides whether a given page number is interleaved or non-in­
terleaved will be set up identically. We suggest that the reader approach But­
terfly II interleaving with this model in mind, and that the programmer 
consider using interleaving this way to avoid complexities in coding and debug­
ging. 

Various deviations from this uniform model are possible. Some would pro­
duce very peculiar effects and should rarely if ever be used, while others may 
be valuable-in certain applications. An example of very strange use of inter­
leaving is to access a given physical page sometimes as interleaved and some­
times as non-interleaved. This has the effect of scrambling and/or hiding 
portions of the data. While one might imagine a sorting or hash-coding algo­
rithm based on this "use" of interleaving, it's more of a misuse. 

A second example of peculiar use of the interleaver is to permit access to slot 
zero from the CPU. As described earlier, the CPU interface interprets a Physi­
cal Address that has bits 28 .. 23 all zero to be a local memory reference. Ordi­
narily, these bits must be part of the switch routing, so slot zero is inaccessible 
from the CPU. For remote access to. an interleaved page, the interleaver re-

0 

places these bits with a new value, so the interleaver could be programmed to a·~ 
supply a switch routing field of zero for certain "interleaved" pages. This 
would be ',"eird and is not advised. 

As a third example, in an application where the Butterfly II is serving several 
users, each user is probably allocated a number of processors for _the user's 
exclusive use. The operating system might restrict the user's access to memory 
by preventing access to physical pages outside the user's cluster of processors. 
If the machine is thus partitioned, the operating system could set up a given 
page number as interleaved within that cluster, but non-interleaved in the rest 
of the machine. This example is more of theoretical interest than practical use, 
because of difficulties in implementation. 

Again, we suggest that the standard use of Butterfly II interleaving is uniform. 
If a given page number is interleaved for any access, We suggest it be inter­
leaved for all accesses in the machine. 

Implementation of Butterfly II Interleaving 

Overview as a "Black Box" 

The interleaver input is most of the address bits on the T-bus, therefore a 
34-bit System Physical Address. The interleaver output is nine bits, all of o 

BBN ACI Proprietary February 14, 1990 



0 

0 

0 

TC2000 Hardware Archirecture 4: Butterfly II Memory System 

February 14, 1990 

which are inputs to the SIGA. For the switch route portion of the address, the 
SIGA uses either T-bus bits T_AD <33 . .25 > or the nine bits from the inter­
leaver. A 1-bit control signal associated with the T-bus, T _INTERLEAVED, 
tells the SIGA which source to use. 

Figure 4-7 shows how the interleaver fits into the Butterfly II design. Its only 
action is to change the switch routing used by the SIGA, based only on the 
T-bus address. Therefore, the following points are true. 

• Interleaving applies to remote (over the switch) references only. Local 
references are not interleaved. References to memory on the same func­
tion board may be interleaved only if they access that memory over the 
switch. 

• The effect of interleaving is to change the switch port to which an access 
is directed. The 25 bits of local address are unchanged; the access will 
have the same local address at the new switch port as it would have had 
at the other switch port without interleaving. 

• T-bus masters that originate accesses over the switch, such as the CPU 
interface and the VMEbus interface in the BZVME, should drive the 
T _INTERLEAVED signal consistently. Unusual - and probably unde­
sired - results would ensue if one T-bus master accessed a page as inter­
leaved, and another T-bus master accessed the same page as 
non-interleaved. 
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Figure 4-7 Overview of the interleaver. 
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On the BZVME, the interleaver drives its 9-bit output to both SIGAs in paral­
lel, so the interleaving they see is the same. Even if both SIGAs are active, only 
one SIGA requester will use those signals because the T-bus T_PATII bits 
specify only one or the other SIGA. 

Internal Workings of the Interleaver 

The interleaver contains two RAMs and an adder. Its organization is shown 
in Figure 4-8. T _AD< 33 .. 25 > and T _AD< 12 .. 4 > provide the two 9-bit in­
puts to an adder. T _AD< 33 . .28 > supply the high six address bits, and 
T_AD<22 .. 15> the low eight address bits, to the pool RAM. The address 
supplied to the pool RAM selects one of 16,384 3-bit locations. The three bits 
from the selected location drive the high three address bits of the modulus 
RAM, and the low ten bits of its address come from the adder. This selects 
one of 8,192 9-bit locations in the modulus RAM. The nine bits from that loca­
tion are the output of the interleaver. They go to the SIGA. 
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Figure 4-8 Interleaver internal processing. 

T-bus ADDRESS BITS T AD< 33 .. 0 > 

333231302928 272625 2423 2221201918171615 1413 121110 9 8 7 6 5 4 3 2 1 0 

Y6 ~s 
HIGH' i LOW '~ 

POOL RAM 
(16Kx3) ADDER 

L 

February 14, 1990 

.~ 3 .---r 10 
HIGH ,~ LOW '~ 

MODULUS RAM 
(8Kx9) 

~9 
'~ 

MOD BITS TO SIGA 

Figure 4-9 illustrates how the SIGA uses the T-bus address bits, the MOD 
bits from the interleaver, and the T_INfERLEAVED bit. However, for the 
SIGA to use interleaving at all, interleaving must be enabled by setting a bit 
in the SIGA's Requester Configuration B register. This bit is described in the 
SIGA Specification. 

BBN ACI Proprietary 91 



4: Butterfly II Memory System TC2000 Hardware Archirecture 

Figure 4-9 Interleaving processing in the SIGA. 
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placed in command field of message, 
delivered to remote .switch port's T -bus 

placed in header field of message, 
used to route message through switch 

The CPU interface derives T_INIERLEAVED from its Interleave Decision 
RAM, gated with the interleave enable bit in the CPU Mapping RAM entry 
used by the access. 

The VMEbus interface derives the bank bits and also the T _ INIERLEA VED 
bit from its selected VMEbus Slave Map RAM register, independently. The 
intended use is that software will set up this RAM such that T_INTER­
LEA VED is never asserted on banks other than "00", although VMEbus inter­
face hardware does not restrict interleaving to only bank "00". 

4.5.5 Conceptual Operation. of the Interleaver 

92 

The interleaver hardware was designed with a particular model of interleaving 
in mind, although the design is relatively general and could be used in various 
ways. This section describes the intended use of the interleaver and motivates 
the hardware design. We examine each task the interleaver performs, identify­
ing the hardware that implements that task. 
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Mapping Clumps to Switch Ports 

The primary task of the interleaver is to distribute different clumps of bytes 
within a page to different memory subsystems. The switch port identifies the 
memory subsystem, so the interleaver maps each successive clump to a differ­
ent switch port. 

The interleaver operates on the System Physical Address. For all addresses 
within a page (eight kilobytes), the high 21 bits of the System Physical Address 
are the same. Therefore, at this most basic level, the high 21 bits are not rele­
vant to the interleaving operation. Only the bottom 13 bits change, so only they 
can contribute to the interleaver's mapping of address to new switch port. (In 
actual use, groups of four pages, "quad-pages", are the unit that software nor­
mally allocates for interleaving, This is because of how the pool RAM oper­
ates, which is discussed later.) 

Further, all 16 bytes of each clump should be mapped to the same l)lemory 
subsystem, so the low 4 bits of the System Physical Address do not contribute 
to the interleaving. Only System Physical Address bits 12 .. 4 drive the basic inter­
leaver mapping. These bits identify the clump within the given page, and there­
fore are called the clump number. 

The basic task of mapping the clump number to a new switch port is performed 
by the modulus RAM. The clump number supplies the address to this RAM, 
and the contents in the selected location are the new switch port where that 
clump of addresses in the interleaved page resides. Figure 4-10 shows this ba­
sic task. 
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Figure 4-10 Mapping clumps to switch ports. 
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The modulus RAM could be programmed to map each of the 512 clumps in 0 
the page to any "random" switch port. Indeed, this flexibility is important, 

Figure 4-11 

clump 0 = 
clump 1 = 
clump 2 = 
clump 3 = 

94 

because only certain of the possible 512 switch ports may be available when 
interleaving is set up, typically during system initialization. The modulus 
RAM is intended for use in a more structured way, however. When interleav-
ing is set up, the software should decide which switch ports are available to 
supply clumps of memory in the interleaved page. These switch ports consti-
tute a pool of switch ports. The modulus RAM assigns clumps to each of the 
switch ports in turn, round robin fashion, recycling through the pool as many 
times as necessary. 

Usually there will be fewer than 512 switch ports in the pool; suppose there 
are six. The first six clumps are mapped to different switch ports. The seventh 
clump is mapped to the same switch port as the first clump. The eighth clump 
is mapped to the same as the second clump. And so on. Figure 4-11 shows 
this use of the modulus RAM. In this example, the modulus RAM computes 
the function, port = clump modulo 6. Hence the name, modulus RAM. 

Modulus RAM use - example 1. 

port 0 clump 6 = port 0 clump 12 =i- port 0 
port 1 clump 7 = port 1 clump 13 ::::} port 1 
port 2 clump 8 = port 2 clump 14 ~port 2 
port 3 clump 9 = port 3 clump 15 =port 3 
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0 
clump 4 => port 4 clump 10 ""' port 4 clump 16 = port 4 
clump 5 => port 5 clump 11 => port 5 clump 17 = port 5 etc. 

In fact, the switch port numbers produced by the modulus RAM need not be 
the numbers 0 through 24. Suppose that the switch ports with available 
memory were every third port starting with port 10: 10, 13, 16, 19 and so on. 
Figure 4--12 shows how the modulus RAM would be set up. 

Figure 4-12 Modulus RAM use - example 2. 

clump 0 => port 10 clump 6 => port 10 clump 12 => port 10 
clump 1 => port 13 clump 7 => port 13 clump 13 => port 13 
clump 2 => port 16 clump 8 => port 16 clump 14 => port 16 
clump 3 => port 19 clump 9 => port 19 clump 15 => port 19 
clump 4 => port 22 clump 10 => port 22 clump 16 => port 22 
clump 5 => port 25 clump 11 => port 25 clump 17 => port 25 etc. 

The available switch ports need not be in any particular order. Figure 4--13 
shows the same switch ports as in Figure 4-12, but in a scrambled order. This 
will work fine. In other words, any permutation of the switch ports in the pool 
may be used in the round-robin assignment of clumps to ports. 

Figure 4-13 Modulus RAM use - example 2. 

c clump 0 => port 19 clump 6 => port 19 clump 12 => port 19 
clump 1 = port 25 clump 7 => port 25 clump 13 = port 25 
clump 2 = port 16 clump 8 => port 16 clump 14 = port 16 
clump 3 = port 13 clump 9 => port 13 clump 15 = port 13 
clump 4 = port 22 clump 10 = port 22 clump 16 => port 22 
clump 5 = port 10 clump 11 = port 10 clump 17 = port 10 etc. 

In the above examples we have seen considerable flexibility in use of the modu-
!us RAM. What is important is that all interleavers that will access the inter-
leaved page must use the same mapping. The software may restrict this access 
to certain processors, such as one cluster of processors allocated to a particu-
lar user. This would mean the interleavers for other processors would not have 
to contain the same mapping for this page. On the other hand, the software 
implementation may take the far less complex route of mandating, by conven-
tion, that all interleavers in the entire machine hold the same mapping. 

Efficient Use of Interleaving 

Figure 4--14 shows the same mapping as Figure 4--12, but in graphic form. 
Each "/>>.' indicates that the clump number shown to the left is in the memory 
subsystem at the switch port shown below. The bottom "P;.' says clump 0 is 

0 
mapped to port 10, the next "/>>.' maps clump 1 to port 13, etc. 
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Figure 4-14 
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This diagram pertains to one interleaved page at each of the six ports. Inter-
leaving this page has no other effect on any other page in the machine. The Q 
software, however, may implement a convention that the same-numbered page . 
at every port also be interleaved. 

Modulus RAM use - one stripe. 

etc. ' 
etc. 

+ / 
12 A 
11 A 
10 A 

9 A 
8 A 

clump 7 A ONE INTERLEAVED 
PAGE, PAGE "A" number 6 A 

• 

5 A 
4 A 

3 A 
2 A 
1 A 
0 A 

10 13 16 1 G ~~ ~Fi -', -', 

new switch port 

Figure 4-14 shows that successive clumps are mapped to higher and higher 
areas in the interleaved page on each node. We call this pattern of interleaved 
addresses a stripe, like stripes on a barber pole. This stripe is a result of cycling 
through the switch ports in a repetitive fashion. Although we allocated a page 
of physical memory at each of the six ports in the pool, we have achieved only 
one interleaved page of System Address Space. This would be a waste of sys­
tem resources except for an additional feature of the interleaver. 

The unused clumps - blank in Figure 4-14 - can be used by other stripes, 
each offset from the others. Figure 4-15 shows how six interleaved pages "fl.' 
through "F" fill up the six physical pages of the pool. Page "B" starts at the 
next switch port in the pool than where page ''N.' starts, and thereafter .has the 
same cyclic striping obtained by the modulo function as "Pt has. Page "C" 
starts at the next available page in the pool, and so on. The number of stripes 
that this algorithm makes is the same as the number of switch ports in the pool, 
in this example six. This uses all the physical memory allocated to interleaved 
pages very efficiently. 
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Figure 4-15 Modulus RAM use - six stripes. 

etc. etc. 

.+ :/T////// 
12 A B c D E F 
11 B c D E F A 
10 c D E F A B 

9 D E F A B c 
8 E F A B c D 

clump 7 F A B c D E SIX INTERLEAVED 
number 6 A B c D E F PAGES, PAGES 

5 B c D E F A "A" THROUGH 11F11 

4 c D E F A B 
3 D E F A B c 
2 E F A B c D 
1 F A B c D E 
0 A B c D E F 

10 13 16 19 22 25 
new switch port 

To map different interleaved pages to different stripes, the address supplied 
to the interleaver's modulus .RAM is given an offset. In the example of 
Figure 4-15, page 'W.' would have no offset, page "B" an offset of one, "C" an 
offset of two, and so on. The interleaver provides this capability by adding 
T-bus address bits 33 .. 25 to the clump number. In an address in a non-inter­
leaved page, bits 33 . .25 specify the switch port; but in an interleaved page these 
bits are replaced by the MOD bits from the interleaver. Therefore, these bits 
are available and provide a convenient place to specify this offset. Figure 4-16 
shows the interleaver hardware to implement this. 
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Figure 4-16 Using an offset to pack stripes. 

T-bus ADDRESS BITS T AD< 33 .. 0 > 

33 32 313029 28 27 26 25 24 23 22 21 20 19 1817 16 15 1413 1211 10 9 8 7 6 5 4 3 2 1 0 

original switch port, 
now used to offset stripes 

page number 

ADDER 

..Y10 

' " 
MODULUS RAM 

Yil 
v 

MOD BITS TO SIGA 
( new switch port ) 

clump 
number 

byte in 
clump 

NOTE 
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STRIPE OFFSET OF ZERO 
To specify a stripe. offset of zero, as with interleaved page "Pt in Figure 4-14, 
the T-bus bits T _AD < 33 .. 25 > must be all zero. That is, the switch routing 
field of the System Physical Address must be zero. This implies that the switch 
routing field of the Physical Address must be zero, and in particular bits 28 .. 23 
of the Physical Address must be zero. But this is precisely the condition that 
indicates a local reference, so the SIGA will not respond, the access will not go 
over the switch, and the interleaver will not be used. This is an accepted limita­
tion of the design: the stripe offset cannot be zero. If the pool of switch ports is of 
good size, there will be many stripes available, so the sacrifice of one stripe is 
not serious. 
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Figure 4-17 
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Several Interleave Pools 

The suggested uniform use of interleaving requires that a page that is inter­
leaved on one node be interleaved on all nodes. Nevertheless, that page on 
various nodes could be in different interleave pools, as illustrated in 
Figure 4-17. There, page 17 on some nodes is in pool 1, on other nodes it is 
in pool 2, and on yet other nodes it is unused. 

Multiple interleave pools. 

pages 

pool 1 unused pool2 unused page 17 

r1111111r111;1"111111111r1r11rlr1t 
switch ports 

There are several reasons why it might be convenient to have several interleave 
pools. 

• Efficient use of resources. 

The suggested model for But1irfly II interleaving is uniformity of map­
ping. This implies that if a given page number (an 8-kilobyte range of 
System Physical Address space) is referenced as interleaved at one 
switch port, it will be so at all switch ports. Therefore it is necessary to 

· allocate that physical page, at every port in the machine, to interleaving 
- even if only a few switch ports are actually used in the interleave pool. 
Having several interleave pools might allow partially relaxing this model, 
while still using uniform interleaving within clusters of switch ports. Th.is 
could allow tailoring the allocation of interleaved pages to the applica­
tion. 

• · Independent, redundant.copies for reliability. 

One way to achieve robustness against errors or component failures is to 
store critical data structures in duplicate, in separate places. One way to 
do this is to use separate stripe offsets for the two copies. This h:is the 
disadvantage that failure of a switch port loses part of the data in each 
copy, so neither copy is usable; the data must be reconstructed by culling 
parts from each stripe. A simpler solution uses two interleave pools that 
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have no switch ports in common. One copy is stored in each pool. Now 
one or the other copy is still intact after an error or failure. 

• Performance control by reducing interactions. 

The execution speed of any program is affected by contention for access 
to memory. Usually this interaction is negligible. Benchmark programs 
and some intensive applications, however, can be sensitive to the conten­
tion. For these, it may be useful to give the program its own interleaved 
pool. This may help to isolate its memory accesses from those of the oth­
er processors. The benchmark's results are then more repeatable and 
meaningful, and the intensive application performs reliably. It could be 
that a exerciser test or diagnostic program would make such heavy use of 
its memory that isolating it from the rest of the machine would avoid de­
grading the service other users receive. ·(How 

• Matching pool size to contention reduction needs. 

With separate interleave pools, each pool can contain a different number 
of switch ports. Data structures that would suffer only a moderate 
amount of access contention at a single switch port can be placed in a 
small interleave pool. Data structures that would engender significant 
contention even in a small pool can be placed in a larger pool, which may 
help their performance. 

0 

(Note, however, that implementing multiple interleave pools in an operating 
system can be difficult. The above benefits are therefore of a theoretical na- o 
ture, and may or may not be realizable in a practical operating system.) · 

The Butterfly II interleaver provides for eight interleave pools. (The hardware 
supports eight pools per interleaver, but the uniform use of interleaving, as sec­
tion 4.5.3 recommends, limits this to eight pools per Butterfly II machine.) 

. Each pool operates as described above, with clum~ mapped to stripes distrib­
uted among the memory subsystems of the pool. The multiple pool capability 
is implemented by having eight times as much modulus RAM as would other­
wise be needed. BY selecting a given pool, one of the eighths of the modulus 
RAM is selected. 

The three additional address bits driving the modulus RAM come from the 
interleaver's pool RAM. The selection of a pool, that is, the address driving 
the pool RAM, is based on two fields of T-bus address bits. 

• The first component of pool selection is T_AD < 22 .. 15 >. These bits 
specify a 32-kilobyte quad-page within the 8-megabyte bank zero. 

o Because T_AD<14 .. 13> are not included in pool selection, indi­
vidual pages cannot be independently assigned to interleave pools. 
Rather, all interleaved pages in a quad-page belong to the same 
pool. This is consistent with the CPU interface design, that decides 
whether a page is interleaved or non-interleaved based not on the 
entire page number, but on the quad-page in which the page lies. 
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o Interleaving is restricted to bank zero, that is, to T _AD < 24 .. 23 > 
= 00. The CPU interface enforces this restriction for references 
from the CPU, and conventional use of the VMEbus interface by 
software implements this restriction for references from the VME­
bus. If this restriction were violated, the given quad-page in each 
of the four 8-megabyte banks would belong to the same interleave 
pool, because T:_ AD< 24 .. 23 > are not included in the pool selec­
tion. 

• The other component of pool selection is T _AD< 33 . .28 > . In an non-in­
terleaved remote access these bits are part of the switch routing; in an 
interleaved access they are part of the stripe offset. 

o Because T _AD< 27 .. 25 > are not included in pool selection, indi­
vidual stripes cannot be independently assigned to pools. Rather, 
groups of eight stripes all belong to the same pool. 

This concludes the conceptual operation of the interleaver. Figure 4-8 (above) 
shows the complete hardware implementation. 

[NOTE: We need a discussion of suggested approaches to programming the 
interleaver - at least one possible approach, especially showing the use of 
pools. And maybe ways of thinking about the double use ofT _AD< 33 . .28 > .] 

The Interleaver Loader 

The modulus RAM and pool RAM are not read or written from the T"bus, 
but through the Switch Interface Gate Array (SIGA). The SIGA mechanism 
that performs this is called the interleaver loader, and is described in the 
B2VME chapter and in the SIGA Specification. 

Error Detection and Error Rate 

In the B2VME, error detection is performed by byte-wide parity generation 
and checking, making a total of four parity bits per word. Each memory sub­
system reports parity errors on the T_PARITY signal of its local T-bus; for 
a remote switch access, the server SIGA propagates this error back to the re­
quester device with a bus error code. 

Only main memory has parity hardware. Registers, mapping RAMs, etc. do 
not have parity hardware. Every switch message is protected by a parity bit. 

The error rate is estimated by using the data from the memory chip manufac­
turer, and scaling for the number of chips in the machine. We assume indepen­
dent error statistics for the chips, after the initial burn-in during system 
integration and test. 
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The implementation of the Butterfly II machine has the following characteris­
tics: 

• All main memory is distributed on B2VME function boards. Each 
B2VME holds four megabytes of dynamic RAM arranged as lM x 
36-bit words. 

• Each word has four 8-bit bytes with one parity bit per byte. 

• The B2VME therefore has 1 megaword x 36 chips per megaword = 36 
memory chips. 

• The Butterfly II architecture permits up to 512 function boards. 

Detected Soft Error Rate 

The error rate for a memory chip is often specified as the number of errors 
per one billion hours of operation, also called FIT (failures in time). 

The MTBF (mean time between failures), in hours, is given by: 
MTBF = 109 +(FIT of chip)+ (number of chips) 

In the following, a FIT of 1000 is used. This is appropriate for the high confi­
dence level (90 percent) we use in design. 

For the B2VME, MTBF = 109 + 1000 + 36 = 27,778 hours = 3.17 years. 

Figure ~'<"' 18 lists the r.oft error rate fo! ~everal sizes of Butterfly II system. For 
a Butterfly II with 512 B2VMEs (2048 megabytes total main memory), MTBF 
= 54.3 hours. This suggests that for very large machines and machines with 
more memory per node, the MTBF with current hardware may not be within 
desired design limits. Therefore, error correction may be employed on later 
versions. 
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Figure 4-18 System memory soft error rates. 
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(4 MB per board) (hours) (days) (years) 

4 27778 1157 3.17 

32 3472 145 0.396 

64 1736 72 0.198 

128 868 36.2 0.099 

256 434 18.1 0.050 

320 347 14.5 0.040 

384 289 12.1 0.033 

512 217.0 9.04 0.025 

768 144.7 6.03 0.017 

1024 108.5 4.52 0.012 

1536 72.3 3.01 0.008 

2048 54.3 2.26 0.006 

Undetected Soft Error Rate 

The undetected soft error rate is extremely small. Because an undetected error 
is so serious, however, it is important to examine the rate to ensure that it is 
negligible. The undetected soft error rate is slightly more complex to calculate 
because it depends on the length of time in a "window" between references. 

To calculate the chance of two bits being in error simultaneously, we must de­
fine "simultaneously". Here, we take simultaneously to be a period between 
reads of the byte, because errors go unnoticed until the data is read. Rather 
than the average time between reads, we use an estimate of the longest time 
that a data byte remains unread in main memory and is then read. We call 
this window of time "w", in units of hours. 

In estimating the undetected soft error rate we make the following assump­
tions. 

• We assume the errors measured in the FIT number are single-bit errors. 
If the errors involve several bits - or worst, all bits in the chip - the 
undetected error rate would be higher. Because the B2VME design em­
ploys a separate chip for each bit in the word, a failure of several bits on 
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a chip is manifested as several words going bad. Consequently, this as­
sumption is appropriate for our memory architecture. 

• The error rate is dominated by errors in the memory chips. We disregard 
the chance of an error in the parity checking logic. This is reasonable 
because the Butterfly II design includes a feature that permits diagnostic 
software to exercise and check the parity hardware - a mode in which 
the wrong parity is intentionally written. Note also that the parity is gen-
erated and checked on every switch message by the SIGAs. 

• Out of nine bits, the chance of more than two bits being in error is negligi­
ble compared to the chance of less than three bits being in error. 

• We assume there are no idle, de-allocated areas of memory, in which an 
error.would go undetected. This is a conservative assumption. In fact, . 
picked bits. - bits that should be "O" but erroneously become "1" -
might be detected in free memory that is later allocated with the assump­
tion that it is still zero. 

• We assume all of main memory is equally at risk. That is, all bytes are 
used and referenced infrequently, at the window rate described below. 
This is a conservative assumption, for three reasons. 

o Not all memory is likely to be in use. 

o The error rate computation assumes that all allocated memory is 
susceptible to the two-error window. In practice, some memory will 

0 

hold code and frequently-referenced data, so errors will be detected Q 
as single errors and cannot accumulate to an undetected double er-
ror. 

o Some memory is written. When a location is written, the possible 
existence of any errors in the previously stored data is lost. 

By definition, the sum of all possibilities that may occur during the window 
is one. Considering nine bits, we have: 

1 = p(no bits fail) + p(one bit fails) + p(two bits fail) + ... + p(all nine fail) 

Or, using our assumption that terms beyond the first three are negligible: 

p(two bits fail) = 1- p(no bits fail) - p(one bit fails) 

Using "f" to indicate the probability that any given bit fails during the time 
window, the last two terms can be expressed and approximated as: 

p(no bits fail) = (1 - f)9 = 1 - 9 f + 36 f2 - ... ""' 1 - 9 f + 36 f2 

p(one bit fails) = 9 f (1- f)• = 9 f (1- 8 f + ... )""' 9 f - 72 f2 

Combining these approximations into the equation for two bits failing: 

p(two bits fail) = 1 - (1 - 9 f + 36 f2) - (9 f - 72 f2) = 36 f2 

BBN AC! Proprietary February 14, 1990 

0 



c 

c 

0 

TC2000 Hardware Archirecture 4: Butterfly II Memory System 

4.6.3 

February 14, 1990 

Using the definitions of FIT (error rate per 109 hours per chip) and the window 
· w, we see that f can be expressed as: 

f = w x FIT+ 109 +(number of independent bits p~r chip) 

Here, the "number of independent bits per chip" depends on the way the FIT 
number is measured. We have assumed that single bits fail, one at a time, so 
the "number of independent bits per chip" is the same as the number of bits 
per chip. Further, this is reasonable because of the B2VME memory architec­
ture of one chip per bit. 

Using this, we can write the probability of an undetected error in nine bits dur­
ing the window of w hours: 

p( undetected error in byte during window) 
,,; 36 FI'f2 w2 + 1010 + (number of independent bits per chip )2 

The probability of an undetected error per byte per hour is the above divided 
by the window size, w. And the MTBF is the reciprocal of that per-hour proba­
bility: 

MTBF(undetected, per byte) = 
101• x (number of independent bits per chip )2 + (36 FI'f2 w) hours 

Now let's plug in some representative numbers. Take FIT = 1()3 errors per 
109 hours per chip, 106 independent bits per chip, and w = 1 week (168 hours). 
And consider the error rate for a B2VME board with four megabytes of 
memory. 

MTBF(undetected, per B2VME, w= 168) 
= 101• x (106)2 + (36 x 100()2 x 168) + ( 4 x 106) hours 
"" 4. 7 x 109 years 

Scaling this up to a Butterfly II with 512 B2VME's: 

MTBF(undetected, per 2048-megabyte machine, w= 168) 
"" 9 .2 x 106 years 

This is a long time. There is ample room for degradation if other chips have 
a worse error rate than that used here, and for larger memories. Using 4-mega­
bit DRAMs, the B2VME design permits drop-in upgrade to 16 megabytes per 
B2VME. Expansion to the Butterfly II addressing design limit of32megabytes 
per switch port also leaves the undetected error rate negligible. 

Hard Error Rate 

After a soft error, the machine will reboot and. all hardware can still be used. 
After a hard error, the memory subsystem with the error must be replaced or 
configured out of the system. The hard error rate is of importance in large 
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machines such as the Butterfly II computer, but of less importance here than 
in many other machines because of the ability to configure around failed furic- Q. 
tion boards. 

Write Wrong Parity 

The BZVME contains a feature to test and exercise its memory parity hard­
ware. Under software control, data can be written with the wrong parity. This 
is controlled by the write wrong parity bit of the Machine Configuration register, 
described in the BZVME chapter. 

Historical Note: Steal Bit 

The original Butterfly II design included a mechanism called "steal". The steal 
mechanism is not available to software in the machine actually produced. 
Although this mechanism has not been fully implemented, parts of the ma­
chine (namely the SIGA) do support it. The mechanism affects design of the 
CPU interface, switch and memory. It is described here because it is funda-
mentally an aspect of memory. · 

Associated with each 4-byte word of Butterfly II memory is an additional, 33rd 
bit called the steal bit. The intent of this tag bit is that when it is set to "1'', 
the associated word is being used in a computation that must be allowed to 
write its result into the word before another process reads the word. The steal 
·b1°' 1· - a type o~ 1--'·· 'oc'-;n- ~n- ,. .••. ; L >:) .L .lV ..... A.'1,, 1.. 1.~.0. ~ V t.,.; UV.I.Moo 

Comparison of Steal and Lock 

The steal bit is a different and separate mechanism from the machine's locking 
protocol. 

• The steal bit applies to one word of memory, is not keyed to who stole 
the word (except if a software convention is employed), and persists for 
an indefinite time (until the word is un-stolen). The sneak mechanism 
gets around stolen words. 

• The locking protocol applies· to a T-bus resource (typically an entire 
memory on a remote function board), is explicitly tied to the CPU that 
initiated the locked sequeace, and lasts for a short time (limited by the 
CPU Lock Timer). The bypass locks facility gets around locks for local 
memory references, and instruction fetches automatically bypass locks. 

Summary of Steal Mechanism 

The important points of the steal mechanism are summarized below. 
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c • Each word of Butterfly II main memory (RAM) has a 33rd bit, the steal 
bit. The bit applies to the entire word; the word cannot be partly stolen 
and partly not stolen. There is no indication of who stole the word, unless 
established by software convention. Each steal bit was protected by its 
own parity bit. 

• Parts of the Butterfly II address space other than main memory (RAM), 
such as control registers and VMEbus address space, do not implement 
the steal bit. Attempting to steal any locations in these devices results 
in a bus error. 

• A word is stolen in either of two ways . 

0 The word is written while a bit in a CPU interface control and con-
figuration register is set to "1". (In an early function board, this bit 
was the steal bit in the Augmentation register.) 

0 An XMEM instruction is executed while the Lightweight Steal reg-
ister's lightweight steal bit is set to "l". This also clears the register 
bit to "O". (Thel,ightweight Steal register existed only on an early 
function board.) 

• An access of any size (byte, halfword or word) steals the entire word. A 
switch message attempting to steal more than one word is illegal. 

• Stealing a word that is already stolen is permitted; no error is generated . 

c • Reading (without the sneak mechanism) a stolen word results in a bus 
error, with a code indicating that the word is stolen. 

• Reading any portion of a stolen word (byte, halfword or word) results in 
the same bus error. If a switch message requests reading more than one 
word, the response is truncated after the first word that is stolen. If any 
words read during a T-b\IS burst read is stolen, a bus error occurs. (In 
the initial design, only the CMMU generated burst reads, to fill a cache 
line. Cacheable data should never be stolen, as noted below.) 

• If the Augmentation register's sneak bit is set to "l", reading is immune 
to whether the location accessed is stolen; the "stolen" bus error does not 
occur, the data is returned normally, and further, the Process Configura-
tion register's sneak data bit is set to the value of the word's steal bit. (The 
AR sneak bit and PCR sneak data bit existed only on an early function 
board.) 

• A word is un..:stolen by writing to it while the Augmentation register's 
steal bit is cleared to "O''. This clears the word's steal bit to "O". 

• A write access of any size (byte, halfword or word) un-steals the entire 
word. A switch message writing more than one word un-steals any stolen 
words that it writes. 

• The steal, "stolen" bus error on a read, and un-steal operations all de-

0 pend on the memory holding the word actually being accessed. If some 
error, such as an access protection violation, occurs before the memory 
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is accessed, then the operation does not occur - the word is not stolen, 
the error code does not specify "location read is stolen'', or the word is 
not un-stolen, respectively. 

• Having the Augmentation register's steal bit set to "l" has no effect on 
a read operation, and having the register's sneak bit set to "1" during a 
write has no effect - with the execption of cacheable locations, noted 
below. 

• Cacheable locations cannot be stolen or sneaked. Attempting to do so 
results in a bus error. Examples of cacheable locations are: 

o All instructions - "text" or "code" pages 

o Memory management page tables 

o Exception vectors 

o Supervisor stack 

Problems with the Steal Mechanism 

The steal mechanism was abandoned mainly for three reasons: 

• The effect of normally reading a stolen location - namely, a bus error 
- was deemed fairly drastic. Servicing a bus error invokes significant 
software machinery and takes a significant amount of time. Also, a refer­
ence from a VMEbus that encounters a stolen location could be hard to 
handle productively. 

• How to efficiently save and restore the 33rd (steal) bit on each word in 
a demand-paged, disk swapping operating system environment was not 
clear. 

• The additional circuitry required to support the steal mechanism exacer­
bated the electrical demands on function board T-bus implementation 
- run length and loading, and therefore signal quality and propagation 
time. 
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The Butterfly 11 
Test and Control System (TCS) 

Introduction 

The Test and Control System (TCS) is a network of microcomputers within the 
Butterfly II machine. The TCS controls, monitors, and tests the Butterfly II 
hardware components. These functions are implemented by the TCS rather 
than the main processing components of the machine to avoid the problems 
associated with a computer testing and controlling itself. 

At the center of the TCS is the TCS master, a small computer with disk and 
console. A backup, or redundant, TCS is implemented in some configurations. 
For simplicity, this chapter omits discussion of redundant TCS components 
until section 6.6. The TC*master communicates with and controls a set of 
TCS slave processors. Each TCS slave processor is a single-chip microcom­
puter that monitors and controls an element of the Butterfly II machine. The 
TCS performs the following tasks: 

• Testing - The TCS controls the loading and operation of machine diag­
nostics. After loading a diagnostic program into a function board, the 
TCS can start its execution and read the results of the test. This capabil­
ity eliminates diagnostic PROMs from the system's circuit board de- . 
signs. 

• Bootstrapping - The TCS controls the initialization of system comp9-
nents. It also provides the system's cold start mechanism by loading 
bootstrap code into system memory and starting its execution. This ca­
pability eliminates bootstrap PROMs from the system's circuit board de­
signs. 

• Monitoring - The TCS ensures that the system's hardware is function­
ing by continually checking critical components and signals. The TCS 
also monitors temperature and power supply voltages. 
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• Control. - The TCS controls circuit board power and switch access. It 
can set power on, off, or to margining values for board testing. The TCS Q 
can cut off switch access to individual function boards, and it can cut any . 
individual data path out of the switch. 

• Configuration management - The TCS can detect the number and type 
of circuit boards in the system. The TCS checks this against its system 
configuration file to detect component outages. 

• Operator interface - The TCS console provides operator access to TCS 
functions and information. It also serves as the operating system console 
for the Butterfly II machine. A modem port allows access for remote field 
service. 

• System software interface - Software running on Butterfly II function 
· boards can transfer information to and from the TCS, and invoke TCS 
functions. 

Following sections of this document provide an overview of how the TCS is 
used; describe the individual components of the TCS (master, bus, slaves, 
front and back panels, and power); discuss the system-level functions that the 
TCS can perform; present the B2TCS card functional specifications; discuss 
the support for redundancy; and describe the TCS bus protocol. 

Overview of TCS Use 

The Test and Control System is intended for use in manufa9turing, field ser­
vice, and operational environments. Because the TCS can control the major 
components of the machine at a very low level, initialization, testing and boot­
strapping of the entire system or any of its modules is greatly simplified. Since 
the TCS monitors the machine at a level tl'lat is not usually accessible without 
specialized test equipment, we expect that it will be a powerful tool for per­
formance measurement, fault detection, fault isolation, and fault prediction. 

The TCS master processor is a small computer that is the heart of the Test and 
Control System. When a Butterfly II system is first powered up, only the TCS 
master gets power. After it passes its own self tests, the TCS master is respon­
sible for turning on the bulk power supplies, turning on all of the circuit cards 
in the system, conducting power-on self tests, deconfiguring modules that fail, 
loading the first level system bootstrap software, and enabling the processors 
on the function boards. 

While the machine is up and running, the TCS master continuously monitors 
the circuit cards in the system, watching for changes in the machine configura­
tion. When a card is added or removed (by operator intervention or hardware 
failure), the TCS master detects the change and updates a machine configura­
tion file. 
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A serial terminal connected to the TCS master serves as both the TCS console 
and the Mach system console. A command interpreter running on the TCS 
master responds to TCS commands. Mach console traffic is passed unmodi­
fied through the TCS master to the Mach master node. A modem port on the 
TCS master can be used to give off-site field service personnel access to the 
Mach and TCS consoles. 

The TCS master communicates with the Mach operating system through a 
data structure on the Mach master node. In addition to passing console traffic 
back and forth, the Mach kernel may issue direct requests to the TCS master 
using a simple message protocol. The kernel may request measurement data, 
such as the ambient temperature at one or more function boards, or it may 
request a service such as rebooting the machine. 

Data collected by the Test and Control System can be used in many different 
ways. Performance measurement software can use switch traffic measure­
ments to detect memory hot spots. A demon process can periodically survey 
temperatures and power supply voltages throughout the machine and log the 
results in a history file that can be checked by field service personnel. The Test 
and Control System has been built out of simple computing elements in order 
to keep it as inexpensive and reliable as possible. As a result, the TCS master 
processor is not well equipped to perform extensive data analysis, nor is it ca: 
pable of storing large amounts of data. The TCS therefore serves as a powerful 
data collection tool, but data logging and analysis are left to other, more capa­
ble, processors. 

The TCS master has a library of diagnostic software on a hard (or floppy) disk. 
It can retrieve routines from this disk and load them into the system's function 
boards when appropriate. During power-up, these tests are systematically 
loaded and run by the TCS master. During field service, an operator can type 
commands at the TCS terminal to invoke these tests, plus more sophisticated 
tests as needed to isolate faults. Other commands tum circuit cards (or the 
whole system) on and off, read the serial numbers and revision levels of system 
components, or blink LEDs to help service personnel locate cards. 

The TCS is designed to manipulate circuit cards via a simple interface. In the 
manufacturing environment this means that a stand-alone circuit card can be 
plugged into a TCS master with a cable, loaded with code from the master's 
disk, and exercised. Field service operators can manipulate and probe individ­
ual circuit cards without removing them from the system. Various diagnostic 
programs are available from within the Test and Control System master and· 
can be invoked with TCS terminal commands. A goal of the TCS is to diagnose 
Butterfly II component failures as completely as possible using just the TCS. 

Hardware Components 

The basic structure of the TCS is shown in Figure 6-1. The TCS is made up 
of the following components: 
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• TCS master - The TCS master controls and coordinates all TCS activ­
ity, and thereby oversees the operation of the entire machine. 

• TCS slaves - Each TCS slave controls and monitors the individual cir­
cuit card of which it is a part. 

• TCS bus - The communication system ("bus") links the TCS master to 
all TCS slaves in the machine. 

• TCS front panel - Top-level controls and indicators are mounted here. 

• TCS back panel - The TCS terminal and phone line connect here. 

• TCS power supplies - One supply powers the TCS master, and another 
powers all TCS slaves in a 64-slot machine. An additional TCS slave 

_ power supply is required for each additional 64 slots. 

• Machine bulk power control - The TCS controls the power for the rest 
of the machine, with provision for independently powering on or off sepa­
rate sections of it. 
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TCS block diagram - overview. 
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The logical operation of the TCS communication system resembles that of a 
bus. However, the hardware implementation is tree-structured, containing ac­
tive elements that fan data out from the master to the slaves and fan data in 
from the slaves to the master. 

The standard TCS terminal is a DEC VT320. If hard copy is needed, a VT320 
with a printer connected can be used. 

TCS Master 

The TCS master, shown in Figure 6-2, is the brains of the Test and Control 
System. It is made up of an IBM PC compatible central processing unit and 
peripheral cards in a PC-bus card cage with a passive backplane connecting 
them together. 
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Figure 6-2 TCS master and associated equipment block diagram. 
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Master CPU Card 

The TCS master CPU card is an IBM PC/ AT compatible computer that is 
built on a single IBM PC form factor printed circuit card. The CPU card in­
cludes: 

• SCSI port (1.5 megabytes per second) 

• Floppy disk port 

• Two RS-232 serial ports 

• Real time clock I calendar with battery backup 

• 512 kilobytes of memory 

0 

0 

The CPU controls the following system support devices: a hard disk drive, a 
floppy disk drive, a serial port, the real time clock and calendar, the special 0 
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B2TCS interface card described below, and, optionally, a modem. The system 
boots DOS from either the hard disk or the floppy disk, both of which are con­
nected to the CPU card via the SCSI bus. 

Cabling between the CPU card and the back panel supports an RS-232 port 
for the TCS terminal. 

TCS Interface Card - B2TCS 

Except for the B2TCS card, the TCS master is an ordinary personal computer. 
The B2TCS is a PC/ AT-bus format circuit card that implements all the circuit-
ry particular to the TCS. The B2TCS card includes: · 

• TCS bus interface · 

• Front panel keyswitch and reset button interface 

• Front panel LED drivers (8 provided, 3 currently used) 

• Control for machine bulk power 

• PC/ AT bus interface 

• TCS master watchdog timer 

• PROM for Butterfly II-specific bootstrap code 

The TCS bus interface is a 2681 DUART (Dual Universal Asynchronous Re­
ceiver/Transmitter). The TCS uses this chip set up for 9-bit .data exchanges, 
as does the serial communication interface (SCI) of the Motoroia 68HC11 
employed as the TCS slave processor. This DUART has address mark multi­
drop receiver addressing capability, as does the Motorola 68HC11 microcom­
puter's SCI. CMOS drivers and receivers connect this DUARTwith the TCS 
bus connectors. 

The front panel interface on the B2TCS connects to three indicator LEDs and 
two switches - a reset button, and an off/on/secure keyswitch. The "off" posi­
tion directly turns off the power distribution unit serving the TCS master, and 
thereby the power for the entire machine. When the keyswitch is in the "on" 
position, power is supplied to the TCS master, which in tum controls all of the 
other power supplies in the machine. When the keyswitch is in this position, 
pressing the reset button forces a reset of the TCS master CPU. When the 
keyswitch is in the "secure" position, power is supplied to the TCS master but 
the reset button is disabled. The CPU can sense whether the keyswitch is in 
the "on" or "secure" position by reading a register on the B2TCS. 

The front panel LED drivers control three LEDs on the front panel. These 
indicate TCS power on, bulk power on, and TCS enabled. The "TCS enabled" 
LED indicates whether the comminication line from the master to the TCS 
slaves is ready for use. 
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Modem Card 

A modem in the Butterfly II TCS master allows field service personnel to es­
tablish a remote TCS terminal connection. 

The modem in the Butterfly II TCS is a modem card installed in the TCS mas­
ter card cage on the PC bus. It is connected to an RJ-11 phone jack on the 
TCS the back panel with a cable. Using a changeable modem card allows us 
to supply equipment that is already qualified by the FCC and European local 
PTTs. 

The modem card, and its connection to a phone line, are optional. While the 
design intention is that every Butterfly II machine have this capability, the 
phone line need not be connected, nor the modem card present, at sites. where 
telephone access is undesirable. 

Hard Disk 

The TCS master contains a Winchester (hard) disk of at least 20-megabyte 
capacity that is controlled over a SCSI interface. The list of files below is repre­
sentative of the files on the hard disk. For a detailed discussion of hard disk 
files, please refer to TCS software and operations documentation. 

• TCS master operating system (DOS) 

• TCS master application code, 

• Machine configuration file 

• Machine log 

• Function board Power-On Self Test (POST) code 

• Function board diagnostic code 

• Switch card and clock card diagnostics (run in function boards and/or 
TCS master) 

• Bootstrap loader code (runs in a fundion board with access to a disk) 

• Bootstrap server code (runs in other function boards) 

Floppy Disk 

The TCS master contains an IBM PC/ AT compatible, 1.2-megabyte, 5.25-inch 
floppy disk drive controlled over a SCSI interface. The intended principal uses 
of the floppy drive are to load new versions ofTCS software, and to load special 
diagnostics during field service. However, the drive is available for any I/O 
needs of the TCS software. 
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TCS Bus 

The TCS communication bus, or "TCS bus" for short, is a cable that originates 
at the TCS interface card (B2TCS) discussed above. The following four wires 
comprise the cable: 

TCS transmit-direction data (master to slave) 
TCS receive-direction data (slave to master) 
TCS master identity (signal named AIB*) 
ground 

Use of the transmit and receive wires is described below. The identity wire 
is described in section 6.6 on redundancy support. The asterisk in NB• means 
negation, not a footnote reference; the identity can be thought of either as "N.' 
or as "not B". · 

Electrically, the TCS bus is a multi-drop (plus fan-in and fan-out), asynchro­
nous, serial bus system tha,t carries data between the TCS master and the TCS 
slave processors. The TCS bus carries TTL level (5 volt) signals that are dis­
tributed through the Butterfly II machine from the TCS master via CMOS fan­
out and fan-in logic distributed among clock and switch cards. 

At each slave, resistors to ground prevent noise on the receive data wire when 
the TCS master (or the fan-out circuit driving the slave) is removed or powered 
off. Without this, noise could be erroneously parsed by the slave as commands. 

Transmission Speed and Timing 

The master communicates with slave processors over the asynchronous serial 
TCS bus. The TCS bus runs at 125 kilobits per second. Using asynchronous 
communication with ninth-bit message framing, each byte takes eleven bit 
~-~~~~~~=~~~=~~llis­
sults in a peak byte transfer rate of 11,363 bytes per second. The same rate 
is used for both the master to slave direction and the slave to master direction. 

Receive (Slave to Master) Direction 

In the slave to master direction, the TCS bus connects all the slaves to the mas­
ter. On ea9h midplane, the slaves on the eight function boards are connected 
to the B2SS switch card. The wire from each function board is bused over the 
midplane to the switch card, where it connects to a schmitt trigger input AND 
gate. The other input to that AND gate comes from a register that is used to 
amputate function board slaves from the slave to master bus. This means that 
there are eight AND gates on each B2SS switch card that receive data from 
eight function boards. (A ninth gate is present to support redundancy, dis­
cussed in section 6.6.) These gates, and the B2SS card's own data to the TCS 
master, are OR'ed together and drive a serial line connected to the B2CLK 
clock card. The register that controls the enabling of the function board slaves 
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is controlled by the slave on the B2SS switch card. A B2SS slave can amputate 
any of the eight function boards from .the slave-to-master bus. 

When the data from a B2SS switch card arrives at a B2CLK clock card, it is 
AND'ed with a control bit and OR'ed with data from other B2SS cards before 
being sent on to the TCS master. The enable signals on these AND gates are 
controlled by the TCS slave on the B2CLK. 

Figure 6-3 illustrates the AND and OR fan-in of the TCS bus in the receive 
(slave to master) direction, using a B2SS card as an example. At each stage 
of TCS bus fan-in, such a circuit is used. In Figure 6-1, discussed elsewhere, 
this fan-in goes from the function boards at the bottom to the TCS master at 
the top. 

Figure 6-3 Slave to master TCS bus fan-in. 

118 

data 
from 

function 
boards 
to TCS 
master 

data from TCS slave 
on this B2SS switch card 

to TCS master 

FB 0 

FB 1 

FB2 

FB3 

FB 4 

FB 5 

FB 6 

FB 7 

8 

register 

data for TCS master 
sent via 
B2CLK clock card 

In normal operation, each TCS slave sends data to the master only in response 
to a command from the master, and the master is careful to let only one such 
command be outstanding at a time. Therefore, data collected by the fan-in 
circuitry is normally never garbled by other, interfering data. However, if a 
part of the hardware malfunctions, the TCS master amputates it by disabling 
data from the failed hardware. In this way the TCS amputates the failed com­
ponent and continues to use the remaining, enabled portions of the fan-in cir­
cuitry. 
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Transmit (Master to Slave) Direction 

In the master to slave direction, the TCS bus is a buffered TTL level signal 
driven by a 74HC240 and received at the slaves with 74HC14 low input current 
schmitt trigger inverters. 

Eight copies of the TCS bus are driven by each BZCLK clock card and sent 
out over the clock cables to the Butterfly II midplanes, where the signal is dis­
tributed to eight function boards and a switch card pair. In each B2SS/B2SR 
pair, the BZSS card holds the TCS slave that services the pair. 

Figure 6-4 shows the fan-out of the TCS bus data from the master to slaves. 
In a machine with more than eight midplanes, an additional layer of clock 
cards is used to fan out TCS bus data. 

Master to slave TCS bus fan-out. 

B2TCS card 
in TCS master 

clock card (B2CLK) 
in switch 

card's 
1---TCS 

~~~~~~~_j...i, slave 
~'7 ~'7 ~'7 p p ~'7 p p 

'.;.;, .; 
to midplanes 

typical midplane 

' ' ... 
to TCS slaves to TCS slave 

on function boards in B2SS switch card 

TCS Bus Transactions and Protocol 

TCS communications refers to how the master and slave talk to each other, 
and what commands are implemented. This protocol is described in section 
6. 7. The protocol supports monitoring and control functions of the general 
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nature desc.ribed here, but whose details are presented in TCS software and 
operations documentation. 

All transactions on the TCS are initiated by the TCS master. A TCS slave 
never sends an unsolicited message. Each TCS message has an address and 
a colilliland in the message header. All the slaves receive all the messages that 
pass over the TCS bus. Each slave examines each message to extract the ad­
dress information. If the address of a message matches the slave's address, 
then the slave carries out whatever command the message indicates. If the 
message's address does not match the slave's, the slave processor colillilands 
its TCS bus receiver chip to ignore further characters until a new start of mes­
sage arrives. This way all slaves constantly resynchronize their reception on 
the start of each message. 

There are two types of address, one that addresses a particular slave, and an­
other that addresses multiple slaves. A message that addresses more than one 
slave is called a broadcast message. Broadcast messages can be addressed to 
all circuit cards, or to all of the cards of a given type (such as all BZVME 
boards). Broadcast messages are used during the power-up sequence for 
loading power-up and diagnostic code into cards of the same type simultane­
ously. 

During normal operation, the TCS master periodically polls the slaves for 
status information. That status (one byte) indicates whether there are error. 
conditions. 

TCS Slave Processors 

TCS slave processors perform the TCS commands issued by the TCS master 
processor. There is a TCS slave processor on every Butterfly II component 
to be controlled: function board, switch card pair, and clock card. (The TCS 
master also controls machine bulk power, but not via a slave.) 

,, .• ,,,, ·1,,,_ .•• ,,. '•···· ·1,,, .•• ,,,, '···· .•• ,,,, ·•••· '•,,,, ,,,._ ·••••·· .•• ,,,_ '\, .• ,,,, ....... ''"·- '\,, .• ,,,_ ·1,,,_ ....... ·····- ·••••• '\, ....... ''•1, . .,,,,, .... , .......... ,,,, '\, ....... ,,,, .•• ,,,_ .•• ,,, .,,,,_ . .,,,,, .• ,,,_ '\,, '•;.~ '1• ... "•, .. ·••••· .• ,,,_ "····· '\,_ ., 

A TCS slave never takes any action controlling its associated hardware unless 
explicitly told to do so by the TCS master - with one exception. That excep­
tion is that if the card temperature exceeds an "alarm" threshold, the slave 
turns off card power. 

The TCS slave processor is a Motorola 68HC11 CMOS microcomputer. This 
single-chip computer is equipped with ROM, RAM, EEPROM, a counter/ 
timer, a serial communications interface, a serial peripheral interface, and an 
8-channel analog to digital converter. Temperature transducers and card pow­
er supply voltages are connected to the analog to digital converter inputs for 
sensing this information. 
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Slave processors use a power supply and clock that are independent of the 
cards they monitor and control. TCS power comes from the TCS power sup­
ply, and is brought to the slave via the midplane. The clock is supplied by an 
8.0 MHz crystal attached to the 68HC11 microcomputi;r. 

The 68HC11 is actually a family of similar microcomputers. The specific part 
used in the original Butterfly IT design is Motorola XC68HC811E2FN. The . 
"811E2" signifies two kilobytes of on-chip memory, and that this memory is 
EEPROM rather than ROM. 

The discussion here covers aspects common to all TCS slaves, and presents 
some characteristics of slaves on particular card types. The slave on each card 
type is fully described elsewhere, in conjunction with the description of each 
type of card. Details of the slave processor are covered in two Motorola publi­
cations: 

MC68HC11E9 HCMOS Single-Chip Microcontroller provides technical 
data on the processor as a hardware component. 

M68HC11 HCMOS Single-Chip Microcontroller Programmer's Reference 
Manual describes the processor from a programming viewpoint. 

The subsections below describe in detail the interactions TCS slaves have with . 
their surrounding hardware. These fall into two broad categories: 

• Aspects of the slave's environment that it monitors or controls 

o SIGA, LCON and SGA chip interfaces 

o Card reset 

o Card temperature monitoring 

o Card voltage monitoring 

o Card voltage control 

o Card LED control 

• The nature of the slave itself and its use of the TCS bus 

o Addressing (identity) 

o Configuration parameters 

o Bus selection 

o Amputation from the bus 

SIGA Interface 

The slave processor on a function board communicates with the board's T­
bus, and thus with every other section of the board - including its processor, 
memory, and I/O subsystem - via the Switch Interface Gate Array (SIGA). 
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The SIGA interface is based on fourteen 8-bit registers that are accessible to 
the slave. These registers are: 

T-bus access data 
T-bus access address 
T-bus command 
T-bus command modifier 
T-bus response 
CSU page address 

( 4 bytes/registers) 
( 4 bytes/registers) 
(1 byte/register) 
(2 bytes/registers) 
(1 byte/register) 
(2 bytes/registers) 

These registers, except for the CSU page address register, permit the TCS slave 
to read and write the T-bus. The SIGA contains additional registers in its 
Control and Status Unit (CSU). The CSU page address register specifies the 
8-kilobyte page at which the additional SIGA registers appear. The TCS slave 
can access the additional SIGA registers by first setting the CSU page address 
register appropriately, and then using the other registers listed above to make 
a T-bus access through the SIGA'.s TCS interface out onto the T-bus, with the 
address of the desired register in the CSU. Refer to the SIGA Specification 
(an Appendix) for further details of SIGA registers. 

The SIGA to TCS interface is .designed to write these registers using the four 
wires: 

Clock 
Data In 
Data Out 
Execute 

The "Clock" signal shifts a command into a SIGA shift register via the "Data 
In" pin. The "Execute" pin signals that the complete command is in the shift 
register and the SIGA should write its TCS interface register. 

Reading the T-bus Response register triggers the T-bus access that is set up 
in the registers named above. 

The TCS is responsible for initializing the SIG As on function boards at system 
power-up time. 

LCON Interface 

The slave processors use the Level CONverter gate array (LCON) interface 
for three principal functions. 

1. The slave can enable or disable a function board's switch port and clock; 
disabling these amputates the board from the Butterfly II switch. 

2. A slave can individually assert any of the LCON pins that connect a func­
tion board to the Butterfly II switch. 
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3. A slave can also individually read the state of any o.fthese pins. This abil­
ity is used in conjunction with a similar function in the Switch Gate Array 
on the switch card to test the continuity of the connections between the 
function board and the switch card. 

The LCON TCS slave interface is similar to the SIGA interface in that it is 
based on the same four wires connected to the slave processor's serial periph­
eral port, and is based on a shift register in the gate array. An interface com­
mand is shifted into the array and an "execute" signal causes a register access. 
The format of the actual command in the LCON, however, is different from 
that in the SIGA. 

There are two register.s within the LCON, one that enables and disables the 
switch ports and clock, and another that monitors the I/O pins of the array. 
At system power-up time the TCS is responsible for selecting which clock is 
used to run a particular function board. This is done in the LCON, and thus 
with the LCON/TCS interface. 

The B2VME has two LCONs and two SIGAs. The slave on this board has 
logic that selects which of the four gate arrays the slave serial peripheral inter­
face talks to. 

On a B2VME, the TCS can calculate the approximate fraction of time that a 
particular switch port is busy by using the LCON interface to sample the 
"frame" and "reverse" control signals. 

SGA Interface 

The TCS interface in the Switch Gate Array (SGA) implements the following 
capabilities: 

• Set any bit on any output port (other bits are cleared) - data or control 

• Read the state of any bit on any input port - data or control 

• Enable or disable any of the four input ports 

• Enable or disable any of the four output ports 

• Read whether an input port is busy 

• Read whether an output port is busy 

• Read the priority bit of any output port, i.e., whether a low priority mes­
sage will go through 

• Read the ver~ion number of the SGA 

The low-level interface is based on the four wires: Clock, Data In, Data Out, 
and Execute. These operate in the same manner as their counterparts on the 
SIGA and LCON. 
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The slave in a switch.card pair (on the B2SS card) also has two output .bits that 
clear the SGA'.s random number generator, or force it into the dead state for 
testing. 

Processor Reset Control 

The TCS can reset a function board's processor by writing a register desig­
nated as the processor reset register. (For example, in the B2VME, the TCS 
slave can assert the 88100 CPU's reset line. It can also independently reset 
each SIGA and the board as a whole, though these latter three are usually as­
serted simultaneously.) In addition to the reset function, this capability is also 
used to stop the processor while code is loaded into its memory space. 

Temperature Monitoring 

The function board's temperature is monitored using a temperature 
transducer and support circuitry connected to one of the slave's analog to digi­
tal converters. 

Voltage Monitoring 

The slave monitors card voltages by connecting them, scaled and offset, to the 
slave's analog to digital converters. Each slave monitors + 5, -4.5 and -2 
VDC, and other voltages appropriate to the particular card type. Bulk power 
is not monitoreo mrectiy, but is inierred from the other voltages. 

Voltage Control 

The slave controls the card power supply by asserting a 3-bit value interfaced 
with the voltage converter block that converts bulk power to card power. The 
slave can control the power block output voltage of the + 5 VDC and the -4.5 
VDC supplies. Each of these two supply voltages can be set to one of six levels: 

Off 
On (nominal voltage) 
+ 5% nominal voltage 
-5% nominal voltage 
+ 10% nominal voltage 
-10% nominal voltage 

Circuit Card LED Control ' 

An assortment of LEDs are visible on each circuit card while it is installed in 
the card cage, typically indicating: 
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• TCS VCC present (green) 
• Bulk 48 VDC (±24 VDC) present (green) 
• Card VCC present (green) 
• Card VEE present (green) 
• TCS flag (amber) 
• Card-specific data (on a B2VME, four green LEDs indicate "frame" 
and "reverse" for each switch port) 

Of these, two are directly controlled by the TCS. One indicates "card TCS 
power on" and is connected with a resistor to the card's TCS VCC power. The 
other is controlled by the TCS slave and can be set on, off, or blinking. Blinking 
the LED on and off is one of the TCS slave's tasks, and does not require further 
intervention from the TCS master. Two blink rates are defined in the original 
design, fast (about 3 Hz) and slow (about 1 Hz) .. 

The TCS flag amber LED is intended to point out cards that fail diagnostics, 
and as an aid to a service person in locating a particular card in a large system. 
The suggested convention for use of this LED is as follows: 

on 
slow blink 
off 
fast blink 

= dead card 
= diagnostic in progress, or failure 
= passed diagnostic 
= card locater signal 

A hardware reset causes the LED to turn on. The slave should be pro­
grammed to leave the LED on at startup, so that an uninitialized or total­
ly broken card will have its light on continuously. 

The TCS master should start the LED blinking at the slow rate when it 
begins testing or configuration discovery. This indicates that the TCS 
has discovered the card, but has not yet approved it for use. 

Once the TCS has completed diagnostics, the LEDs on cards that pass 
should be turned off. Cards that fail or become non-communicative will 
continue to blink at the slow rate. 

The TCS master should provide a command that causes the LEDs on one 
or more slaves to blink at the fast rate to help a service person locate a 
particular card. The command should be arranged so that leaving the 
LED blinking indefinitely is difficult, probably by starting it blinking and 
then waiting for a carriage return to stop it again. 

If the TCS discovers a failed card in the course of normal operation, it 
should try to set the LED blinking at the slow rate. 

Finally, note that the LEDs on each B2SS/B2SR pair of switch cards are 
both controlled by the same slave, on the B2SS. This hardware connec­
tion should be masked by the TCS master. The two switch cards should 
be treated as separate entities, and their LEDs controlled independently 
as described above. 
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Slave Address Sensing 

When a Butterfly II card is installed, eleven wires in the TCS slave interface Q 
stay high or are pulled low by the wiring on the card slot connector. This en-
codes that slot's TCS slave address. The slave processor compares this ad-
dress to the address in TCS messages, in determining whether the message 
addresses this slave. The slave can read its 11-bit TCS address via a decoder 
circuit that selects the address register. 

The TCS slave address is similar to the 9-bit processor node number that each 
function board obtains from the midplane: three bits each of bay, midplane 
and slot identity. For function boards, the bay, midplane and slot fields of its 
TCS slave address have the same values as those fields of its processor node 
number. The 9-bit scheme permits up to 512 function boards, the Butterfly 
II design limit; but it leaves no addresses for switch or clock cards. Slot field 
values above the 0-7 range are used to address these cards in the TCS slave 
address format. 

The TCS slave address format is described further in section 6.7 on TCS bus 
protocol. 

Slave Configuration Information 

Several slave configuration values are written into the slave's EEPROM at the 
factory during final assembly and test. These values are listed below, including o 
the number of bytes (ASCII characters) allotted. The list below reflects the 'M 

initial implementat10n. Because the definition of EEPROM contents is tied 
to TCS firmware and software, not to hardware, this list should be taken as 
highly suggestive but not definitive. Please refer to TCS software and opera-
tion documentation for precise details. 

• Card type (1 byte) _..: Describes what kind of card this slave is on. This 
value is used to implement broadcast messages and to select card-specif­
ic slave routines. 
0 = B2SS switch server card 
1 = B2SR switch requester card (has no slave in current implementation) 
2 = B2CLK clock card 
3 = reserved for clock buffer card for large machines 
4 = B2VME function board with 4 megabytes of RAM 
5 = reserved for B2VME function board with 16 megabytes of RAM 
6 = B2NFC null function card used in development and testing 
9 = reserved for B2SM switch middle column card 
Other values are not currently assigned. 

• Circuit card serial number (16 bytes) 

• Artwork revision level (2 bytes) 

• Electrical revision level (2 bytes) 
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• TCS slave code (EEPROM) revision level (2 bytes) 

• Analog to digital converter calibration - There is ND converter cali­
bration information for the 68HC1l's analog to digital converters. This 
data calibrates the transducer systems that read the card voltages and 
temperatures. Having a calibration value(s) eliminates the need for pre­
cision voltage references and components. The details of this data vary 
from one card type tcfahother; see the individual software specifications 
for each slave. 

• Temperature alarm setpoint - Temperatures above this value will signal 
an error condition in the slave status byte during polling. See the individ­
ual software specifications for each slave for details. 

• Voltage within specifications setpoint (1 byte) - Voltages deviating from 
nominal by more than this value, either above or below, will signal an er­
ror condition in the slave status byte during polling. 

• Timers - Timeout values used by the slave program, including a T-bus 
access timeout (2 bytes). 

Amputating a Slave from the TCS Bus 

The slave on each B2SS switch card can individually tum off the TCS slave-to­
master serial signals from the eight function board slaves that are associated 
with that switch card. An 8-bit register accessible by the B2SS slave has a bit 
corresponding to each of the function board slaves. A bit in another register 
similarly controls slave-to-master data from the B2SS in the other switch. 

TCS Front Panel 

The TCS front panel contains three LEDs that indicate "TCS power on'', 
"main system (bulk) power on", and "TCS enabled"; a "reset" button; and a 
3-position keyswitch that selects "on", "off" and "secure". 
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TCS front panel (conceptual). 

ON 

SECURE@ OFF : ~~:!:l!I ~ RESET 
:.:;.-.~ .• ~:.-~ 

The keyswitch performs three functions. 

TC2000 Hardware Archirecture 

@) BULK POWER ON 

@) TCS ENABLED 

@) TCS POWER ON 

1. Controlling power - Turning the keyswitch to the "on" position turns the 
TCS master power on; the "off" position turns it off. After the TCS mas­
ter is on, the master is used to power on, start and reset the main system. 
The TCS master power is on in both the "on" and "secure" positions. 

2. Disabling reset - The "secure" position disables the "reset" button, by 
electrically preventing the reset signal from reaching the TCS master 
CPU. 

3. On/secure indication to TCS master - The TCS master can sense 
whether the keyswiich is in the "on" or the (·'secure·· position, and take 
appropriate action. See TCS software and operations documentation for 
discussion of how TCS behavior is affected. 

Turning the keyswitch to "off" while the machine is powered up will immedi­
ately and completely power down the entire machine. 

The reset button forces a reset of the TCS master CPU, if the keyswitch is in 
the "on" position. The TCS master CPU will then, upon successfully rebooting 
itself, examine the machine state and TCS configuration information to deter­
mine what action to take. For example, the master might run diagnostics, or 
wait for operator commands, or reset and reboot the Butterfly II machine, or 
continue the normal TCS monitoring and control of an already running Butter­
fly II machine. 

The LED indicators provide the following information: 

0 

0 

• TCS power on - This LED is illuminated by TCS power. It should be 
on when the keyswitch is in the "on" or "secure" positions, and dark when 
the keyswitch is "off". 0 
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• Main system power (bulk power) ou -This LED is under control of the 
TCS master, and indicates that the master is commanding the machine's 
power distribution units to supply bulk power to the machine. 

• TCS enabled - This LED is under TCS master control, and indicates 
that messages sent by the TCS master are driven onto the TCS bus to 
the TCS slaves in the rest of the machine. 

TCS Back Panel 

A panel at the back of the machine brings an RS-232 port and an RJ-11 phone 
line connector from the TCS master to the outside world. The RS-232 port 
is used to connect a machine control room terminal to the TCS master for use 
as a TCS console. The phone line connector is used for connecting a remote 
(over the phone line) terminal to the TCS for use by field service personnel for 
remote diagnostics. 

TCS back panel (conceptual). 

RS-232C 

serial port 

for TCS terminal • RJ-11 

(modular) Telco jack 

for optional phone connection 

TCS Power Supplies 

Two power supply systems are associated exclusively with the TCS, and the 
TCS obtains its power only from these supplies. One powers the TCS master, 
and is a simple, line-powered supply. The other powers the TCS slaves distrib­
uted throughout the machine, and is bused over the midplane system to the 
TCS slaves. One TCS slave power supply suffices for a machine of 64 function 
boards, and an additional supply is required for each additional 64 slots. 

Powering the TCS slaves with a supply separate from the Butterfly II main 
power system is necessary for several of their monitoring and control features, 
such as turning individual cards on and off, and checking for proper card pow­
er voltages before allowing the card to run. A slave could not perform these 
operations if it drew power from the same source as the card it controlled. 
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The TCS master supply is a simple, line-powered supply that powers the TCS 
master. 

Bulk Power Control 

The Butterfly II bulk power supply system can be turned on and off by the TCS. 
There is direct control from the TCS interface card (B2TCS) in the form of 
multiple, independent, SPST relay contact closures. The 2-wire power control 
from each relay connects to each Power Distribution Unit (PDU) in the rest 
of the machine. Each PDU then applies the external AC power to the bulk 
DC power supplies within the PDU's cabinet. (The utility cabinet PDU, how­
ever, is controlled by the front panel keyswitch.) 

The purpose of multiple power control relays is to allow staged power-on se­
quencing, to reduce power line transient surge. It also permits powering some 
sections of the machine while others remain off, such as during servicing. The 
original B2TCS has two relays; more are planned for later versions. 

TCS Operational Capabilities 

Sections above describe.features of the TCS hardware. This section describes 
how those features can be used in operation of the Butterfly II machine. In 
keeping with the hardware context of this document, the capabilities described 
in this section reflect the intent of the design and are strongly suggestive of the 
O~erati"nnal cap"j...,.;;1"•1"es ;,..,p'1ema ..... to..-l ;..., TC<:: firmllt"lr.:> an'l Qrtfhu~-re Fnr a p ,._, .- ...... v .. d.... ~~.1.~ .L.1. ......... ~~ ,..1.;, _.. -.... .... ~.:.. ... _. -- ..,_....,_t,.\, __ • - v ... 

current, accurate and coill.piete description of the capabilities, however, please 
refer to the TCS software and operations documentation. 

The TCS plays a significant role in the Butterfly II machine in three principal 
areas: power-up; normal operational monitoring; and testing during manufac­
ture, final assembly, and field service. 

In this section, the acronym POST stands for Power-On Self Test, a test that 
a given hardware component performs upon itself, typically during power-up 
but optionally at other times as needed, to assure its proper functioning. 

Power-On and Bootstrapping 

The TCS manages the power-up sequence of the Butterfly II machine. This 
sequence includes the following steps: 

• Bring up TCS - master runs power-on self test 

• Examine, power up and initialize the Butterfly II machine 

o Read machine configuration and compare to the configuration file 

o Turn on circuit card power, card by card 
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o Initialize SIGAs 

o Use LCON to select clock that runs function board processors (In 
the B2VME, the TCS slave additionally selects between an on­
board clock and the switch clock.) 

• Check operation of function boards 

o · Hold function Bdard processors reset 

o Disable switch accesses to and from function boards 

o Broadcast POST code into memory of function boards 

o Release reset on function board processors to let POST run 

. o Repeat the broadcast and run steps for each function board. type 
(if the machine contains others; the first version has only B2VMEs) 

o Poll for POST completion and status, from each function board 
type 

• Check switch operation 

o Hold the processors reset 

o Broadcast a switch POST into memory of each function board 

o Release processors from reset to execute switch POST 

o Poll for POST completion and status 

• Signal and log any errors discovered by POSTs 

• Start machine 

o Hold function boards reset 

o Select a switch system 

o Select a value of hold time for the. SGAs 

o Load a bootstrap program into a master function board (likely one 
with access to a disk) 

o Load a bootstrap server program into all other function boards 

o Load the "working" machine configuration table into low memory 
of function boards 

o Enable switch accesses to function boards 

o Release processors from reset to start the bootstrap code/sequence 
running 

• Start TCS monitoring application running in the TCS master 

The following sections discuss parts of the sequence described above. 
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Power-On Self Tests 

There are several different types of power-on self tests in the Butterfly II ma- Q 
chine. The TCS master has one in PROM (available only if a keyboard and 
display are attached to the TCS master), self tests for each type of function 
board are stored on the TCS's hard disk, and a Butterfly II switch POST is 
stored on the TCS hard disk. Each is written for the type of processor to ex-
ecute it; for example, the function board and switch POSTs are 88000 code. 

The TCS master POST has several stages. First, the TCS CPU card has a 
POST in on-board ROM. Besides testing the CPU board, the CPU ROM 
POST also checks for the existence of ROM in TCS master device controllers 
such as the hard disk. If this test fails, code in EPROM on the B2TCS card 
interprets the resulting error code and generates an appropriate message on 
the serial port. 

Upon passing its ROM POS'I; the CPU boots DOS and examines the autoex­
ec.bat file for commands. Normally, this file directs the CPU to boot the TCS 
application software. This boot sequence serves as an indirect self test of the 
TCS master. The TCS software then checks whether it can operate B2TCS 
functions correctly, another stage of POST Finally, the software enables the 
TCS bus and checks whether it can communicate with any TCS slaves. This 
serves as the final stage of POST; if any slaves respond appropriately, the TCS 
master has passed its POST 

TCS slaves have no explicit POST. Rather, each slave attempts to respond to o 
cornrnam;ls from the TCS master. If its response is incorrect, the master takes • 
appropriate action which may include amputating the slave from the TCS bus. 

Function board self tests are loaded into function board memory via the TCS/ 
SIGA interface while the processor is held reset. After the POST is loaded, 
the processor is released into execution. While the self tests in one type offunc­
tion board are executing, POST code for the next function board type can be 
loaded and started. The TCS then polls, waiting for the test to finish, and then 
reads the results of the test from the POST status register on each function 
board. 

Any errors or outages are reflected in the configuration table that is broadcast 
into the low memory of the function boards, is signaled at the TCS terminal, 
and is recorded in the machine Jog on the hard disk. 

The Butterfly II switch POST consists of function board code that is loaded 
into all of the function boards and started simultaneously. The program has 
each of the processors write test data into a block of memory in each of the 
other processors' memory. Switch performance is monitored during the test 
to verify that it is within acceptable levels. After the test has executed, the 
memory is checked to see that the transfer was successful, and test status is 
written into a register that is polled by the TCS master. 
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Another kind of switch test, used only as a diagnostic tool, consists of TCS 
slaves manipulating function board LCONs and switch card SGAs to test the 
connectivity between these cards. (LCONs and SGAs can individually assert 
and monitor their 1/0 pins.) This test runs on the TCS master. 

Configuration 

The TCS determines what number and type of circuit cards are in the system, 
and which of them is operating properly. 

At system power-up time, the TCS determines what circuit cards are present 
and working in the system, and provides this information to the Butterfly II 
application. To accomplish this, the master polls every card slot for card iden­
tification information and builds a table in its memory of what it finds. Power­
On Self Tests are run on the cards that are present, and the configuration table 
is updated to reflect which of them are operating properly. The resulting table 
is compared with the configuration file stored on the TCS hard disk and, if 
there are any discrepancies, an error message is displayed on the TCS terminal 
and the machine error log is updated. (The configuration file stored on the 
hard disk was created during initial system installation and it presumably cor­
responds with what should be installed in the system.) 

The final table - that lists what cards are working in the system - is written 
into low memory of the master node Butterfly II function board for quick ac­
cess by operating systems and application processes. This table is used to in­
form such· software what hardware resources are available and how to 
configure memory interleaving. 

Monitoring 

The TCS spends most of its time polling the Butterfly II machine, gathering 
switch activity statistics, gathering a system temperature history, gathering a 
system voltage history, watching for error conditions, and watching for system 
console I/O activity. 

Temperature and Voltage Monitoring 

The TCS monitors the temperature and voltage on each of the Butterfly II 
function boards. Temperatures or voltages over a defined error threshold are 
reported to the TCS terminal and are logged in the machine error log. If a large 
number of over-temperature reports occur, the master shuts down the entire 
system. ' 

Bulk power supply failures are reported in a similar manner. If the TCS mas­
ter, through polling slaves for voltage measurements, detects that the power 
supply voltage is out of specified limits, it reports the error and shuts down 
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the system if necessary. If the slave detects an overtemperature condition, it 
turns off card power. 

Temperature and voltage for each of the function boards is periodically read 
and recorded in the machine log in addition to watching for error conditions. 
This information can be presented on the TCS terminal to diagnose system 
problems and monitor degradation characteristics. 

Switch Activity Monitoring 

The TCS can monitor switch activity while the machine is in use. The TCS 
can also load and run switch POS'I; exerciser and diagnostic programs in func­
tion boards and in the TCS master itself; however, those programs are not run 
while the machine is available to users. 

The switch activity monitoring facility uses the ability of the LCON in each 
function board to monitor any one of several switch signals. The TCS master 
can command a function board TCS slave to repeatedly sample a given signal, 
using the LCON. In the original implementation, 1024 samples are tallied dur­
ing 11 milliseconds. This count is then scaled down to an 8-bit value, and can 
subsequently be retrieved from the slave by the TCS master. This count repre­
sents the fraction of the time that the selected signal was asserted. 

o· 

This monitoring function is particularly powerful when invoked with the 
broadcast capability of the TCS bus protocol. All function boards can be told Q 
to begin their tally at once. When the sampling interval is over, the TCS master 
reads the count from each slave. Thus, a machine-wide measuremen( of 
switch activity during that'interval is obtained. 

System Console 1/0 

The TCS master periodically polls one of the function boards, looking for 
application 1/0. When the master sees a service request, it reads a memory 
location that describes what kind of service is being requested. One type of 
service that can be requested is system console 1/0. This path is used when 
the system console device driver writes to the console. 

A particular function board is defined (by a configuration parameter) to be 
the system console 1/0 handler. When console information is typed on the 
TCS terminal, it is shipped out to a predefined buffer in that function board's 
memory, and the processor is interrupted by writing an appropriate T-bus reg­
ister. An operating system demon handles the information in the buffer. 

Mach Service Requests 

Note: the capability described in this section is possible but is not currently o· 
implemented. It could prove useful in diagnostic situations, for system exercis-

BBN ACI Proprietary February 14, 1990 



0 

' 

c 

0 

TC2000 Hardware Archirecture 6:TCS 

6.4.3 

February 14, 1990 

er programs to communicate with the operator at the TCS terminal. During 
multi-user time sharing operation, however, its utility is questionable and 
could pose a threat to system stability. 

The Mach (operating system) service request interface provides TCS control 
and information to application processes. Application processes can issue any 
TCS command much like t]Je TCS terminal issues them. The I/O between the 
TCS and the application is handled like the system console I/O. 

A particular function board is defined (by a configuration parameter) to be 
the application interface I/O handler. When the TCS needs to inform the ap­
plication of some kind of system error, or of an impending processor shut­
down, an appropriate code is written into a predefined buffer in that function 
board's IIJemory, and the processor is interrupted by writing a T-bus register. 
Another operating system demon handles the information in this buffer .. 

Field Service and System Management Commands 

The TCS controls power cycling, runs diagnostics, installs or removes circuit 
cards from software resources, resets the system, reconfigures the system, and 
so forth. The typical operator of the TCS is a system manager or a field service 
technician. Understanding the hardware design is easier with an understand­
ing of its intended use. To provide that context, some likely commands are de­
scribed below. For the commands currently implemented, please see TCS 
software and operations documentation. 

[NOIB: FOLLOWING COMMANDS NEED A PASS TO BRING 1HEM 
UP TO CURRENT STAIB OF /usr/bfly2/src/tcs-m/george/dev/george.doc] 

Card Power On/Off 

Turn a particular circuit card on or off. The operator gives the single card 
power on/off command and is prompted for slot address information. 

Turning off the card power is the one action a TCS slave may take without an 
explicit command from the TCS master. Namely, if the card temperature ex­
ceeds an "alarm" threshold, the TCS slave can turn off card power. 

Card Install or Remove 

Informs the Butterfly II application and the configuration table that a circuit 
card should be either added or removed from the system's resources. This 
command would be issued when a card is installed or removed from a Butterfly 
II machine. The operating system(s) probably will not support addition or 
deletion of function boards to/from their set of boards in use. The card power 
on/off command may do all that the install/remove command needs. 

BBN ACI Proprietary 135 



6:TCS 

' 

136 

TC2000 Hardware Archirecture 

System Power On/Off 

Turn the entire machine on or off. 

When the machine is powered up and down, the TCS power control is used 
to reduce strain on the system's power supply by gradually turning cards on 
or off. Cards will likely be turned on or off one at a time with a short pause 
after each power command. 

Single Card Reset 
. 

Reset a particular card. The operator is prompted for slot information, and 
the card in that slot is reset. 

System Reset 

Reset the entire system. Causes the master to broadcast a reset command to 
all of the slaves. 

System Restart 

Initiates the complete power-up sequence and boots up the machine. 

Run System POST ' . 

Runs the system's Power-On Self Test. This command initiates the same test­
ing sequence that is used during system power-up. Each component is tested 
with the appropriate POST code, and the results of each are displayed on the 
TCS terminal. This command would likely be used to debug a system that is 
failing its power-on self test. 

Run Card or Switch POST 

Runs the Power-On Self Test appropriate to a particular card, or to the Butter­
fly II switch, and reports the results on the TCS terminal. The test is the same 
one that is used during system power-up. 

Run System Diagnostic 

Runs an extensive set of diagnostics on the entire machine. Diagnostic code 
differs from POST code in that it is meant to determine what is wrong with 
the card rather than simply whether the card is working or not working. Diag­
nostic code is not required to complete as quickly as POST code. 

BBN ACI Proprietary February 14, 1990 

0 

0 

.o 



c 

c 

0 

TC2000 Hardware Archirecture 6:TCS 

February 14, 1990 

Each type of function board has diagnostic code stored on the TCS hard disk. 
There is an analogous piece of code for the Butterfly II switch that includes 
an extensive test of continuity between the function boards and the switch 
cards using LCON and SGA 1/0 pin testing commands. Test results are re­
ported to the TCS terminal. 

Run Card or Switch Diagnostic 

Runs diagnostic code on a particular function board or the switch. The opera­
tor is prompted for information about what they would like to test. Results 
are reported to the TCS terminal. 

Run TCS System Diagnostic 

Runs a diagnostic program to diagnose problems with the TCS system. The 
goal is to identify the field replaceable unit that has failed. 

Capture Switch Traffic Data 

Records average switch traffic rate for a specified switch port over a specified 
time interval. 

Show Card/System Temperature/Voltage 

Displays the temperature or power supply voltages on the specified card or 
group of cards, listed for each slot in the system, or averaged over all cards 
in the system. 

Show Card Identity 

Displays the following information about the card found in a slot the operator 
specifies. 

• Card type 

• Card revision level 

• Slave code revision level 

• Card serial number 

• Gate array revision levels 
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B2TCS Functional Specification 

Introduction 

The B2TCS is a PC/ AT format circuit card that comprises the Butterfly II ma­
chine's Test and Control ~ystem (TCS) interface circuitry. It is meant for use 
in the TCS master processor, a PC/ AT compatible central processing unit and 
system bus. 

Major Card Functions 

The B2TCS has the following major components: 

• PC/ AT bus interface 

• TCS bus interface 

• Front panel interface 

• Power Distribution Unit (PDU) interface · 

• TCS master watchdog timer 

• · TCS master power-up EPROM 

0 

The functions performed by these components are described below. Q 
Figure 6-7 shows the funct.ional organization of the B2TCS. · • 

0 
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Figure 6-7 B2TCS functional block diagram. 
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• 

Read Control register 

PC/AT Bus Interface 

The PC/ AT bus interface decodes the B2TCS's devices and registers in the PC/ 
AT's I/O space, and the B2TCS's EPROM in the memory space. The address­
ing parameters for the two spaces are independent. 

TCS Bus Interface 

The TCS bus is a TIL level asynchronous serial communication bus that con­
nects a variable number of TCS slave processors to a TCS master processor. 
A TCS slave processor is a single-chip microcomputer equipped with a serial 
communication interface. There is one slave processor on each Butterfly II 
circuit card (except for the B2SR). The slave controls card functions such as 
power, meinory access, and hardware· test. 

The TCS bus originates from a 2681 DUART on the B2TCS. The DUART 
receives all its clocks from an 82C54 programmable timer. Both the transmit 
and receive sides of the TCS bus operate at communication speeds of up to 
125 kilobits per second. The TCS bus is brought to a DE-9 connector at the 
edge of the B2TCS, where a cable connects it to the B2CLK card for further 
buffering and distribution to the rest of the Butterfly II machine. 
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The transmit side of the TCS bus is driven by a CMOS buffer enabled under 
software control. After a TCS master reset, the TCS bus is disabled and must o-. 
be re-enabled by the master processor before TCS messages can pass to the 
rest of the system. 

Front Panel Interface 

The TCS controls the Butterfly II front panel (B2FP). The front panel com­
prises the following: 

• TCS master reset button 

• Keyswitch with positions "power off", "power on", and "power on, se­
·cure" 

• Main power on indicator LED 

• TCS enabled indicator LED 

• TCS power on indicator LED • 
• TCS general purpose indicator LED 

These functions are accessible with the B2TCS's Control Read register and 
Control Write register. The B2TCS and the front panel are connected with 
a cable from the B2TCS's DB-25 connector. 

The front panel's reset button is OR'ed with the reset signal generated by the 
B2TCS's \Vatchdog timer, pepressine this momentary-contact reset button 
asserts reset on both the B2TCS and the master's CPU card. The TCS master 
processor re-boots in response to such a reset. 

At boot time, the master may read the B2TCS Control Read register to deter­
mine whether it is powering up from a reset; or from a power cycle. The "main 
power LED on" and "relay X on" bits are cleared only by a power cycle, not 
by a TCS master reset. · 

The front panel keyswitch controls line power to the TCS by providing a con­
tact closure to a Power Distribution Unit in the Butterfly II utility cabinet. 
Setting the keyswitch to "power on" turns on the TCS master processor. The 
TCS can distinguish between the "power on" and the "power on, secure" posi­
tions by reading the Control Read register on the B2TCS. 

The front panel has three LEDs. One indicates that the TCS thinks the main 
system power is on; another indicates that the B2TCS's TCS bus drivers are 
enabled; and the last is a general purpose indicator LED. These are all con­
trolled with the Control Write register. 
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POU Interface 

The TCS controls the Butterfly II Power Distribution Units (PDUs) with two 
relays on the B2TCS. The relays' contacts are brought out to a DB-25 connec­
tor on the card edge. The relays are controlled via the B2TCS's Control Write 
register described below. Their function atthe connector can be modified with 
the jumpers JMPl, JMP2 and JMP3. Their state is read back in the Control 
Read register. 

Watchdog Timer 

The watchdog timer is a counter that is started and stopped with the "watch­
dog enable bit" in the Watchdog Control register. A write to the Watchdog 
Poke register resets the timer's count and lets it continue counting. If the 
counter reaches its end value,. a reset signal connected to the TCS master's 
CPU card is pulled low, ri;!setting the CPU. When the CPU is reset, the TCS 
master re-boots. The watchdog timer will fire if it is not poked at least once 
every 20 seconds. · 

B2TCS Reset 

A B2TCS reset occurs when the watchdog timer expires, or when the front pan­
el "reset" switch is pressed while the keyswitchis in the "on" position. It causes 
a standard PC/AT reset of the TCS master processor, and resets logic on the 

· B2TCS card, with the exception that certain bits in B2TCS registers are unaf­
fected. In particular, bits ·controlling main power to the rest of the machine 
are unaffected, so main power is not removed by resetting the TCS master. 
The effect on each bit of B2TCS control registers is described in the register 
summary. 

B2TCS EPROM 

The B2TCS includes socket(s) for EPROM memory. DIP switches described 
in section 6.5.3 configure the EPROM base address and size. The EPROM 
is the only addressable component of the B2TCS that resides in the PC/ AT 
memory space; all others reside in 1/0 space. 

Code in the B2TCS EPROM sends power-up error messages to the TCS ter­
minal. 

The present version of the B2TCS contains 64 kilobytes of EPROM. Future 
versions of the card might contain additional memory, holding an image of the 
DOS operating system and a subset of the TCS application program. This 
would improve the mean time between failure by allowing the TCS master to 
operate without its hard disk. 
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B2TCS Address Space 

The PC/AT bus is addressed with a 24-bit address bus. (The four topmost 0 
bits are used for addressing extended memory; these must be latched at the 
beginning of the bus cycle. The 20 principal address bits are valid throughout 
the cycle.) There are two address spaces, a 24-bit memory space and a 10-bit 
I/O space. The two spaces share the same address lines, but are distinguished 
by different read and write strobes. 

The BZTCS TCS bus, the watchdog timer, and the front panel control registers 
are decoded in the PC/ AT's I/O space. The EPROM is decoded in the memory 
space. 

B2TCS Memory Space 

The BZTCS includes a 64-kilobyte EPROM. Its base address, and the size 
of the address range in which it responds, are configured by DIP switches. 
It may be configured as a block of 2, 4, 8, 16 or 32 kilobytes. 

B2TCS EPROM Configµration Switches 

There are two sets of related switches, one that sets the memory block size and 
another that sets the block's base address. The switches are divided up be-
tween the card's two DIP switch banks SWl and SW2. Figure 6-8 defines the o 
meaning of each switch. · 

There is a code version switch that forces the EPROM to respond with either 
the upper half or the lower half of its 64-kilobyte space. Thus the EPROM 
can hold two different code versions, and this switch selects between them. 
The setup of the base address and size remains unchanged by this switch. 

_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. 

The EPROM base address must be set to a value between OxOC8000 and 
OxOEOOOO on a 2-kilobyte boundary, because these are the locations which the 
PC's power-on self test (POST) looks for additional EPROM. See the IBM 
PC I AT Technical Reference for more information about EPROM code require­
ments. 

·''''''''''''''''''''''''''''''''''''''''''''''~ 
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Figure 6-8 EPROM configuration switch definitions. 

EPROM size selection 

DIP switch SW2 
s8 s7 s6 

off off off 
off off on 
off on off 
off on on 
on off off 

EPROM memory block size 

2 kilobytes 
4 kilobytes 
8 kilobytes 

16 kilobytes 
32 kilobytes 

switch position key 

off= open = ONE 
on = closed = ZERO 

EPROM base address selection 

DIP switch SW2 DIP switch SW1 
s5 s4 s3 s2 s1 s3 s2 

addr addr addr addr addr addr addr 
EPROM base address <19> <18> <17> <16> <15> <14> <13> 

on on on on on on on OxOOOOOO 
off off off off off off off OxOFEOOO 
off off on on off on on OxOCBOOO (recommended) 

EPROM code version selection 

DIP switch SW1 

February 14, 1990 

s1 EPROM code version 

on code version zero (bottom portion of EPROM) 
off code version one (top portion of EPROM) 

B2TCS 1/0 Base Address 

The I/O base address of the B2TCS is selectable to avoid conflicts with future 
cards installed in the TCS master processor. The card's I/O base address is 
set with DIP switch SWl. SWl sets the 5 most significant bits of the 1/0 base 
address (ADD< 9 .. 5 > ). Setting a switch to the "ON" position makes the cor­
responding address bit a zero. The recommended I/O base address is one set 
aside by IBM for prototype cards. All TCS software expects to find the B2TCS 
at I/O base address: 

Ox02CO 
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Recommended 1/0 base address switch setting. 

SW1 

0

f iiii!lil 
1 2 3 4 5 6 7 8 

resulting value: 0 0 0 0 1 1 0 1 

address bit: lvl M Mis 6 7 8 91 

I I 
~ 1/0 address switches 

memory address switches 

code version switch 

Switch 1 on the I/O base address DIP switch bank selects between two versions 
ofEPROM code. Switches 2 and 3 set EPROM base address bits 13 and 14, 
respectively. See Figure 6-8. 

B2TCS Device Offsets 

The offsets to devices and registers on the B2TCS card are listed below. The 
DUART at1d il1e Cqu1~te1/1-l1i1~1 cul:..ics in the list are the offsets to the base 
address of the component; the address of each internal register of these com­
ponents is the sum of the register number, the component's device offset, and 
the B2TCS's base address. 

OxOOO Control Read register and Control Write register 
OxOOl Watchdog Poke register (write only) 
Ox002 Watchdog Control register (write only) 
0x004 Programmable Counter/Timer 

(four read/write registers) 
0x010 DUART (16 read/write registers) 

B2TCS Register Summary 

Each of the B2TCS registers and addressable components listed in section 
6.5.3 is described below, in alphabetical order. Access is by byte only. 

Control Read Register 

0 

0 

The B2TCS's Control Read and Control Write registers manage the Butterfly /"\ 
II front panel and PD Us. Note that the main power control bits and main pow- U 
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Figure 6-10 

bil7 

secure* 

power-on 
state: EXT 

reset 
state: EXT 

secure* 

er indicator bit are reset·only at power-up, not by a reset of the TCS master. 
The Control Read register has the following bit definitions. 

Control Read register. 

bit6 bit5 bit4 bit 3 bit2 

B2TCS watchdog on UPS 
main 

TCSbus revision power 
level 

timer on power LEQ.on enabled* 

REV 0 EXT 0 

REV 0 EXT SAME 1 

KEY: EXT = bit is driven by off-card source 

REV = static card revision level indicator 

bit 1 

relay 2 
on 

0 

SAME 

SAME = bit retains value it had before TCS master reset 

bitO 

relay 1 
on 

0 

SAME 

This bit is driven by a keyswitch on the front panel. If no front panel is con­
nected, the bit reads high (1). 

0 - Indicates that the keyswitch is in the "power on, secure" position. 
1 - Indicates that the keyswitch is in the "power on" position. 

B2TCS revision level This bit differentiates between a B2TCS with EPROM and a B2TCS without 
EPROM. (Early versions had no EPROM.) 

0 - Indicates that this is a B2TCS without EPROM. 
1 - Indicates that this is a B2TCS with EPROM. 

watchdog timer on This bit is controlled by the Control Write register described later. When this 
bit is asserted, the B2TCS watchdog timer must be poked at least every 20 sec­
onds to avoid a reset to both the B2TCS and the CPU card. This bit is cleared 
at power-up, and at TCS master reset. 

on UPS power 

February 14, 1990 

0 - Indicates that the watchdog timer is off. 
1 - Indicates that the watchdog timer is enabled. 

This bit is driven by the DB-25 connector at the B2TCS's card edge. The con­
nector's pin is connected to a signal on an Uninterruptible Power Supply (UPS) 
that indicates it is running on battery power rather than line power. 

0 - Indicates that the UPS is running on liiie power. 
1 - Indicates that the UPS is running on battery power. 

The present Butterfly II implementation does not support support UPS power. 
This bit anticipates possible future implementations that do. 
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main power LED on This indicator bit is controlled by the Control Write register described later. 

TCS bus enabled* 

relay 2 on 
relay 1 on 

Figure 6-11 

power-on 
state: 

reset 
state: 

bit 7 

spare 

indicator LED on 

146 

When this bit is asserted, an LED illuminates on the front panel. This bit is 
cleared at TCS power-up, but not by TCS master reset. 

0 - The TCS master processor believes that main power is off. 
1 - The TCS master processor believes that main power is on. 

This bit indicates the state of the TCS bus enable bit in the Control Write regis­
ter. This bit is an inverted version of that bit. This bit is set at power-up and at 
TCS master reset. 

0 - Indicates that the TCS is able to send messages on the TCS bus; 
the front panel "TCS enabled" LED is on. 

1 - Indicates that the TCS bus is disabled; the front panel LED is off. 

These bits indiciate the state of the corresponding bits in the Control Write reg­
ister. These bits arecleared atTCS power-up, but NOT by a TCS master reset. 

0 - Indicates that the relay and the associated PDU are off. 
1 - Indicates that the relay and the associated PDU are on . 

Control Write Register 

The Control Write register has the following bit definitions. 

Control Write register. 

bit 6 bit5 bit4 bit3 bit 2 bit 1 bitO 

indicator TCSbus 
main 

TCSbus relay 2 relay 1 spare power 
LED on A*/B on LED enable control control 

0 0 0 0 0 0 

0 0 SAME 0 SAME SAME 

KEY: SAME = bit retains value it had before TCS master reset 

This bit controls a general purpose indicator LED on the J3utterfly II front 
panel. This bit is cleared ar power-up and by a TCS master reset. 

0 - General purpose indicator LED is not illuminated. 
1 - Illuminates the LED. 
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TCS busA*/B This bit controls the TCS bus selector signal on pin 6 of the TCS bus. This bit is · 
inverted before driving the bus wire, as implied by the names: the bit is A* !B, 
the signal is A!B*. This signal tells the B2CLK card which bus, A or B, it is on. 
The B2CLK sets its TCS address with respect to this signal. This bit is cleared 
at power-up and by a TCS master reset. 

0 - Indicates that this master is using TCS bus A. 
1 - Indicates that this master is using TCS bus B. 

main power on LED This bit controls the "main power on" LED on the Butterfly II front panel. 
This bit is cleared at power-up, but not by TCS master reset. 

O - "Main power on" LED is not illuminated. 
1 - Illuminates the LED. 

TCS bus enable This bit controls whether TCS bus messages sent to the B2TCS DUART are 
driven out onto theTCS bus or not. It also controls the "TCS enabled" LED on 
the front panel. This bit is cleared at power-up and by TCS master reset. 

relay 2 control 
relay 1 control 

February 14, 1990 

0 - TCS messages are not driven onto the TCS bus; LED is off. 
1 - TCS messages are driven onto the TCS bus; LED is on. 

These bits open and close two relays on the B2TCS. These relays are intended 
to control Power Dustribution Units, and thence main power for the rest of the 
machine, as described in section 6.5.2. At power-up, these bits are cleared, 
opening the relays, but a TCS master reset does not affect them. 

0 - The relay is open. 
· 1 - The relay is closed. 

Dual Asynchronous Receiver/Transmitter (DUART) 

The TCS bus is driven by a 2681 DUART. One channel is used for the TCS 
bus. The other channel is unused in the original version of the B2TCS, but 
reserved for use as a second TCS bus in a later version of the B2TCS. Sixteen 
internal registers control the DUART. See chip manufacturer documentation 
for details on addressing and programming the device. The 2681 is manufac­
tured by Signetics, Motorola, and United Microelectronics. 

Programmable Counter /Timer 

The clocks that drive the 2681 DUART are generated by an 82C54 program­
mable counter/timer chip used as an interval timer. Four internal registers 
control the device. See chip manufacturer documentation for details on ad­
dressing and programming the device. The 82C54 is manufactured by Oki, 
Intel, Harris, Toshiba, and others. 
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Watchdog Control Register 

Bit 0 is the only defined bit in this register; no other bits are implemented. 
This is a write-only register. 

Watchdog Control register. 

bit6 bit5 bit4 bit3 bit2 bit, bit 0 

enable 
spare spare spare spare spare spare watchdog 

timer 

0 

0 

0 

enable watchdog timer 

6.5;5 

148 

This bit controls whether the watchdog timer is counting or not. Setting this bit 
does not clear the watchdog timer. Therefore, the software should poke the 
watchdog before ~etting this bit, or ensure by earlier use that the timer is not 

~W~m 0 
0 - Disables the watchdog timer. . 
1 - Bn,r;.h1j!-S tl-!c yJa.tyh,pog ti~ei . . 

Watchdog Poke Register 

There are no data associated with this register. A write of any data to the ad­
dress of this register resets the count in the watchdog timer, thus poking the 
watchdog. This is a write-only register. 

B2TCS Controls and Indicators 

The only manually alterable controls on the B2TCS are two DIP switches for 
address control, and jumpers that select the type of PDU control used. The 
the function of the switches and jumpers is described below. The B2TCS phys­
ical layout is shown in Figure 6-13. 

Connectors 

J1 - reset signal to CPU card, B2TCS drives J1 pin 1 with TTL logic signal 
RESET* 
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J2 - two jumper pins, clock oscillator enable Qumper normally installed). 

J3 - DE-'9, 9-pin male, TCS bus 
pin 2 = TCS_IN* (slave to master) 
pin 3 = TCS_OUT* (master to slave) 
pin 6 = TCS_A!B* 
pins 7, 8 = ground . 
pins l, 4, 5, 9 = no ·connection 

J4 - DB-25, 25-pin male, front panel interface and power control 

JS - 12 jumper pins, DUART interrupt level to PC/ AT bus Qumpers normally 
absent) - 1 um per pins J7 allow the B2TCS DUART to assert an inter­
rupt on the PC/ AT bus. Normally this capability is not used, so no 
jumpers are installed ·on J7. Figure 6-14 shows ho\Y jumpers in J7 
specify the interrupt level asserted by the DUART. · 

Jumpers 

JMPl - three jumper pins, power control relay number 2 -
jumper on pins 1 & 2 = relay provides contact closure between 

14 pins 10 and 23 
jumper on pins 2 & 3 = relay applies 24 VAC* to 14 pin 10, 

no connection to 14 pin 23 

.JMP2 - three jumper pins, power control relay number 1 -
jumper on pins 1 & 2 = relay provides contact closure between 

14 pins 9 and 22 
jumper on pins 2 & 3 = relay applies 24 VAC* to 14 pin 9, 

no connection to 14 pin 22 

JMP3 - three jumper pins, front panel keyswitch contacts "number 2" -
jumper on pins 1 & 2 = switch closure connects 14 pin 12 to pin 25 
jumper on pins 2 & 3 = switch closure applies 24 VAC* to 14 pin 12, . 

no connection to 14 pin 25 

* The application of "24 VAC" on the specified pins of 14 assumes that 24 
VAC comes into 14 pin 13. Alternatively, 14 pin 13 could be connected 
to ground, in which case the specified pins would be grounded by the 
action of the keyswitch or relay. 

DIP Switches 

SWl - DIP switch bank, B2TCS I/O base address, see section 6.5.3 

SW2 - DIP switch bank, B2TCS memory base address, see section 6.5.3 
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B2TCS physical layout. 
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SW1 SW2 
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J4 
25-pin D 
ct:mnector 

-J2 J3 

JMP21M 
~n~ 

JMP31 

B2TCS viewed from component side 
PC/AT bus connectors 

Figure .6..,.14 
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B2TCS DUA~T interrµpt level select jumpers. 
--· ; . . . . 

interruptpin 
on DUART 

9 

11 

2 
@l IRQ9 

4 
~IRQ10 

6 
~IRQ11 

8 ... 
~IRQ12 

10 
~IRQ14 

12 
@--'=-- IRQ15 
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Redundancy ·support 

Redundant Modules 

At the beginning of the design cycle for the Butterfly II hardware, support for 
non-stop operation at unattended sites was a requirement. To meet this re­
quirement, the Butterfly II architecture supports hot sparing of hardware 
modules, amputation of failed modules, power-on servicing of failed modules, 
and other related features. The requirement for non-stop operation was 
dropped, but many of the hardware features were kept. In the fast release of 
the machine, there is no software support for these features. In later releases, 
we expect to use these features ~o improve system availability. 

The Test and Control System plays a central role in the management of backup 
modules, performing operations such as amputation and power-down of 
failed modules, switchover to, backup modules, off-line testing of backup mod­
ules, and other functions. In addition, the design of the TCS itself includes 
a backup TCS bus, and has taken into consideration provisions such as back­
up TCS power and a backup TCS master. This section describes TCS hard­
ware and software features designed to support backup modules. None of 
these features are supported in the first release of the machine, and only some 
of them are implemented. We also describe some problems that have not been 
addressed. This section should be viewed as a work in progress, to be. com­
pleted as we develop marketing and service strategies to complement it. 

The terms "redundant" and "backup" are used here interchangeably. 

List of Backup Features 

The followin~ features are included in the Butterfly II design, to varying de­
grees: 

• Backup switch system - includes backup switch cards, a backup clock 
card, a backup switch interface (LCON and SIGA) on each function 
board, and means to select between the two switches 

• Backup TCS master - includes a backup TCS master itself, a backup 
TCS bus distributed throughout the machine, and means to select be­
tween the two TCS buses at each TCS slave 

• Backup TCS power - the TCS master could be powered by a battery 
backup system 

These backup features are independent; any one or two, or all three, could be 
implemented. The support for redundancy is therefore somewhat complex, 
especially in the backup switch and/or backup TCS master area, so keep in 
mind their independence while reading the discussion below. 
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Redundant Switch and/or TCS Master 

In a Butterfly II system configured for redundancy, there may be two indepen­
dent TCS masters and/or two independent Butterfly switches. That is, system 
availability and reliability can be enhanced by duplicating the TCS master, or 
the switch, or both. Figure 6-15 shows these optional, redundant components 
with dashed lines. 

TCS block diagram - communication and redundancy. 

TCS master 
A 

switch A ,................., 
clock 
card 

••• 
other 

mid planes 

,------
' switch BI 
I switch 1 
I cards I 
t" TCSS I 

':-=::-::::' __ , 

function function function mid planes function function function 
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board board board board board board 

In a Butterfly II machine with a redundant TCS system, there are two TCS 
back panel connectors for the TCS terminal - one for each TCS master. If 
the primary master dies and the system operator needs to issue a TCS com-
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mand, the terminal is disconnected from the primary terminal connector and 
connected to the backup one. 

Redundant TCS Bus 

A Butterfly II machine may be configured with a redundant TCS master, a re­
dundant switch (and clock card), both, or neither. The arrangement of TCS 
bus( es) in these four configurations is as follows. 

• In a simple machine without redundancy, one TCS bus cable is driven 
by the TCS master, to serve one B2CLK clock card. From there, the 
"bus" is fanned out for data from the master, and fanned in for data to 
the master. 

• In a Butterfly II machine configured with a redundant TCS master but 
only one switch and clock, both TCS masters supply their own TCS bus 
to the clock card. 

• In a machine configured with a redundant switch but only one TCS mas-
. ter, each switch has its own clock card, and the TCS master connects a 

separate TCS bus to each clock card. (In an early version, the TCS mas­
ter connects to only one clock card, and that card in turn connects to the 
other clock card.) 

• In a machine with not only a redundant TCS master but also a redundant 
switch, each TCS master supplies a TCS bus to each clock card, as shown 
in Figure 6-15. (Again, an earlyversion has each clock card passing the 
TCS bus from its master on to the other clock card.) 

In a machine configured with two TCS masters, there are two TCS buses, bus 
A and bus B. TCS bus A comes from the primary TCS master, and TCS bus 
B comes from the backup TCS master. Each bus consists of a transmit data 
wire (master to slave direction), a receive data wire (slave to master direction), 
a ground wire and a TCS identity (A/B*) wire. The A/B* wire tells the B2CLK 
clock card which TCS master is on the other end of the bus. The TCS bus A/B* 
wire goes only as far as the B2CLK card; it is not continued on to switch cards 
and function boards. (Switch cards have a separate AIB" wire that tells them 
whether they are a part of the A or the B switch system.) 

TCS Bus Fan-in Details 

On each midplane, the TCS slaves on the eight function boards are connected 
to two B2SS switch card slots: the primary switch card and an optionally in­
stalled, backup switch card. On each B2SS card, there are nine AND gates 
controlling slave-to-master data - the eight from function boards, and a 
ninth from the TCS slave on the corresponding B2SS card in a machine confi­
gured with a redundant switch. Thus, a B2SS slave can amputate the-other 
B2SS from the slave-to-master bus, just is it can any of the eight function 
boards. Figure 6-16 shows this circuit. 
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Figure 6-16 TCS bus fan-in with redundancy. 
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8 

registers 

TCS Bus Fan-out Details 

data for TCS master 
sent via 
B2CLK clock card 

.. In.the original B2TCS desi~n. on!v one TCS b_us is provided. The plan for fu­
ture versions of the B2TCS is to include a second TCS bus, electrically inde­
pendent of the first. The TCS master CPU controls which bus is used. The 
dual-bus design, shown in Figure 6-17, is more robust in systems with redun­
dant swi~hes. In the original design, the single bus from a TCS master is 
cabled, in a redundant-switch machine, to both B2CLK cards. This is less ro­
bust, since a failure in either B2CLK could corrupt the single TCS bus. 
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Figure 6-17 

• • 

TCS bus fan-out with redundancy. 
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On each midplane, the TCS bus from each clock card is distributed not only 
to the eight function boards, but to two switch card pairs, primary and backup. 
In each pair, the B2SS card of the pair holds the TCS slave that services that 
pair. 

Figure 6-18 shows the receiver circuitry at each TCS slave: Each resistor pro­
vides isolation from the bus, so that a failure in this slave does not corrupt the 
bus (such as by grounding it). (While the goal is immunity to single-point fail­
ures, calculations indicate the bus will withstand up to eight shorts to ground 
on the down-stream side of the protection resistors.) Alternatively or addi­
tionally, separate chips are used to receive the primary and backup buses to 
prevent a single point failure from locking up both transmit buses. The TCS 
slave processor controls a selector that chooses which TCS bus to receive. The 
chosen bus provides input to the slave processor, and also (in the case of the 
B2CLK) is redistributed further out the fan-out tree. 
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Master-to-slave circuit at each slave. 

further distribution (if any) 

!--'~ TCS slave 
processor 

Among the TCS slave configuration information stored in EEPROM is a TCS 
bus monitor timeout value. The slave uses this value in determining whether 
to keep listening to the current bus, or try listening to the other bus. 

Redundant Power for the TCS Master 

0 

The TCS master supply powers the TCS master(s). In the first implementa­
tion, this is a simple, line-powered supply. Two possibilities have been consid­
ered for increasing the machine's robustness: a UPS, and a redundant supply. 
The TCS master(s) would use an Uninterruptible Power Supply (UPS) only if 
the possibility of the TCS hard disk getting corrupted by a power failure is 
deemed too great. The TCS design includes the ability to read the "now on 
battery power" bit from a UPS. On the other hand, the Butterfly II TCS power Q 
supply may be backed up by a duplicate, redundant s~pply. The initial version 
has the capability for redundant TCS power, but the machine is not normally 
shipped with one. 

Redundant Control of Bulk Power 

The exact circuit for bulk power control with two TCS masters has not been 
decided; it is desirable that a failed TCS master neither prevent turning on 
bulk power, nor prevent turning it off. 

Backup TCS Testing 

The backup TCS (master and bus) is periodically tested to assure that it is 
available if the primary has a problem. This testing is similar to the mastership 
negotiation process described in section 6.6.10. The slaves are periodically 
told to listen to the backup master, and it polls the bus to verify that it can 
communicate with all of the TCS slaves. 
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Mastership Negotiation · 

This section applies only to a Butterfly II machine configured with redundant 
TCS masters. 

At TCS power-up, the two TCS master processors negotiate with each other 
to determine which has control of the TCS system. The master processor that 
can communicate with the largest number of slaves wins mastership. In the 
case of a tie, one of the master processors is configured as the ''N.' or primary 
master and wins in a tie, while the other is the "B" or backup master. The 
primary and backup designations are also used to determine the· order in 
which masters attempt to talk to slaves during negotiation; the primary master 
goes first. 

After the master processors execute power-on self tests, they go on to poll the 
TCS bus for card ID responses from the slave processors. · The two master 
processors take turns polling their respective buses, counting the number of 
slaves they find. 

The configuration of data paths is as follows. Each master transmits on one 
of two TCS transmit buses (the transmit direction is defined as master to 
slave), and can select to listen to either of two receive buses for input. The slave 
processors control which bus they communicate with, by setting a control sig­
nal output. Each slave talks to one bus at a time, and both transmits and re­
ceives on that bus. 

· When the system first comes up, neither of the TCS masters have taken 
mastership, and the slaves have no idea which bus or master is working. The 
slaves alternate between the two buses, listening to one for a while, then listen­
ing to the other. When valid TCS messages are detected, the slave continues 
using that bus. A valid message is detected if the m~sage parity checks with 
the rest of the message. This indicates that messages are being parsed cor­
rectly and that data is not corrupted. A message is detected by a slave even 
if it is not addressed to that particular slave. Thus, any activity on a bus that 
checksums properly will keep slaves listening to it. 

The slave continues to listen to a bus until messages stop passing over that bus 
for some timeout period, or until that bus issues a "listen to the other bus" 
command to the slave. 

When the system first powers up, the two master processors negotiate for 
mastership over the TCS system. After power on, the slaves are assumed to 
be in an unknown state, so we do not know which of the two buses the slaves 
are listening to. To synchronize the slaves into all listening to one bus, the pri­
mary master processor issues card ID requests while the backup master 
broadcasts several "listen to the other bus" commands. At this point the sys­
tem expects all the slaves to be listening to the primary master, and both mas­
ters begin polling their respective buses for card IDs. The primary should get 
responses, and the backup should get none. If the backup master gets re-
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sponses, there is a problem with the slave's connection to the primary or with 
the slave bus selection circuitry. 

After the primary master polls all the card slots on its bus, it writes the number 
of slaves it could talk to into a register in each of the slaves. (Slave firmware 
should clear this register on power-up.) It then broadcasts a "listen to the 
other bus" command that switches the slaves over to the secondary bus. When 
the backup master 'processor sees that many slaves are responding to polling, 
it reads the primary's "number register". If there is a non-zero value in that 
register, the backup believes that the primary is alive and possibly well. 

The backup master processor then polls its TCS bus for card ID information, 
and the number of slaves that respond overwrites the same register in the 
slaves. The backup master compares the number of slaves it can talk to with 
the number it finds in the slave for the primary master. If the primary's num­
ber is greater than or equal to the backup's, then the primary master wins 
mastership. Otherwise, the backup master wins. 

Power-On with a Redundant Switch 

In a machine configured with a backup switch, the TCS master has the addi­
tional power-on duty of checking the operation of the backup switch. 

• Check switch operation 

o Hold the processors reset, then select switch ''Pl.' 

o Broadcast a sw~h.~l-1 POST i11Lo 111etJ:10.ry of eaci1 function board 

o Release processors from reset to execute switch POST 

o Poll for POST completion and status 

o Repeat above steps for backup switch "B" 

Configuration with a Redundant Switch 

The TCS handles the switch configuration of the Butterfly II machine; that is, 
which of the two switch systems the machine uses. 

A Butterfly II machine configured for switch redundancy contains two com­
plete switch systems. Each has its own circuit cards and clock generator. A 
configuration parameter designates one of the switches as the primary switch, 
and the other is a hot standby. The TCS selects which switch system is used 
via the SIGA and LCON TCS interfaces. Switch selection occurs at system 
startup or restart, not while the machine is running the operating system(s) or 
executing user programs. 
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Backup Switch Testing 

In systems configured with redundant switch networks, the backup switch is 
repeatedly tested to assure that it will be fully available if required. 

At this writing, it has not been determined how this testing is performed. It 
may be done simply by manipulating the backup SIGAs, LCONs, and SGAs. 
That may be able to test the continuity of the electrical connections, but it does 
not say a lot about· how the switch will perform under stress. Refer to TCS 
software and operational documentation for details on this issue. 

B2TCS Bus Protocol 

THIS SECTION IS STILL IN PROGRESS. 

Discuss TCS bus protocol here, at bit and message format level. Note this is 
message format, not electrical levels. Refer to "TCS software and operational 
document". Include, or otherwise refer to, the TCS Bus Protocol Specification. 

This section must also cover the following topics: 
- broadcast mode 
- TCS slave address format 

switch cards = "function boards" 8, 9 of the midplane? 
clock cards = "function boards" A, B of ANY midplane? 
cloc~ buffq cards = C, D of a bay? 
bay #31 = broadcast? 
there are subtypes of broadcast? 

Justin has TCS protocol document. Guy has additional text on TCS operation. 
Section 6.4 (TCS Operational Capabilities) "should reflect the real operational 
capabilities, bundled with the TCS slave protocol and the TCS master software 
document". 
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Butterfly 11 
Switch Components 

The Core of the Butterfly II Computer 

This chapter discusses three components that together implement the Butter­
fly II switch. These components are: 

• The Butterfly II Midplane (B2MP) 

• The Butterfly II switch cards: 

o The Butterfly II Switch Requester card (B2SR) 

o The Butterfly II S\rvitch Server card (B2SS) 

• The Butterfly II clock card (B2CLK) 

In addition to these four core components, the Butterfly II machine contains 
function boards, power supplies, cables, cabinetry, and peripheral devices 
such as VMEbus subsystems. These other components are discussed in other 
chapters. 

The Butterfly II Midplane (B2MP) 

Function and Motivation 

The Butterfly II Midplane provides the signal connections among the switch 
cards, function boards, and clock cables. It also supplies power to the switch 
cards and function boards. The number of interconnections required among 
these components is massive, and their short length with a controlled imped­
ance is important in achieving the high performance of the Butterfly II design. 
The midplane corresponds to the backplane of more conventional machines. 
However, because function boards connect on one side and switch cards on 
the other, it is termed a midplane. 
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The Irtidplane provides electrical connections and mechanical attachments for 
eight function boards plus enough switch hardware to support these function Q 
boards in configurations up to 63 processors and two switches. Thus, the 
mid plane lies at the heart of an eight-slot module. The mid plane interconnects 
the following components: 

• Eight function boards, such as the TC/FPV function board 

• Four switch cards: one requester-server pair, plus a second pair for the 
redundant switch 

• Two switch clock cables: the first cable for the primary switch clock, and 
a second cable for a redundant switch 

• Sixteen switch-to-switch data cables for connection to the rest of the ma­
chine: eight cables to switch cards throughout the machine, and a second 
set of eight for a redundant switch. In specific instances, some cables 
might be absent or replaced with TC/LOOP loop-back connectors, as 
described below. 

• Power: + 24 and-24 volts main power, + 5 volts TCS power, and ground 

• Three ground straps to ensure a low-impedance, system-wide ground: 
one to the midplane to the left, another to the midplane to the right, and 
a third to an I/O midplane above the midplane (if any, such as the TC/ 
VMP). All three ground straps are on the function board side of the 
midplane. 

• Midplane ID DIP switch, uniquely identifying a particular midplane in 
a machine. 

Figure 9-1 shows the interconnections among these components. There are 
no active components on the midplane. Electrically, the midplane is an assem­
bly of connectors and conductors plus a DIP switch. 
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Figure 9-1 Midplane interconnections. 
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' ~ 
from power supplies __J 

Physical Characteristics 

The TC2000 midplane is a 9-inch by 19%-inch printed circuit board with 
twelve conductive layers. Signals are carried principally on five layers with 
50-ohm controlled impedance stripline. One layer carries the + 5 TCS power. 
Four layers are mostly ground, and the outermost layer on each side is ground 
and connection pads. Many reference layers are split to distribute the + 24 
and -24 volt power. Figure 9-2 shows these layers. 
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Midplane layers. 

FUNCTION BOARD SIDE 

SWITCH CARD SIDE 

TC2000 Hardware Archirecture 

SILK SCREEN 
SOLDER MASK 
PADS & GROUND, +24 V, -24 V 

50-0HM STRIPLINE, +24 V, -24 V 

GROUND, +24 V 

50-0HM STRIPLINE 

GROUND, +24 V 

+SVOLTSTCS 
POWER 

50-0HM STRIPLINE 

GROUND 

50-0HM STRIPLINE 

GROUND 

50-0HM STRIPLINE, +24 V, -24 V 

PADS & GROUND, +24 V, -'24 V 
SOLDER MASK 
SILK SCREEN 

[:::::::::::il B-STAGE TETRAFUNCTIONAL FR4 

~ C-STAGE TETRAFUNCTIONAL FR4 

,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

COPPER THICKNESS 
Conductive layers (copper) are measured in the weight of copper per square 
foot of the layer. The midplane copper layers are 1-ounce copper (about 
0.0014 inch). 
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FR4 
The FR4 dielectric material is made with a tetrafunctional modified epoxy. 
This decreases Z-axis thermal expansion, an important manufacturability fea­
ture for so thick a board. With tetrafunctional epoxy, there is a reduced risk of 
plated-through hole barrel cracking during wave soldering and repair. 

Figure 9-3 shows the midplane connector layout, viewed from the function 
board side. The switch card connectors, shown shaded, are on the opposite 
side of the board, and are shown here to indicate their relative position through 
the midplane. The eight function board connectors are FO through F7. The 
data cable connectors are CAO-CA? for switch A, and CBO-CB7 for switch 
B. ACLK and BCLK are the clock cable connectors. SB, RB, SA and RA are 
the server and requester switch cards for switch B, and for switch A, respec­
tively. "ID" is the midplane identity DIP switch. Boards attached to the 
midplane use the identity DIP switch setting to determine their location within 
the machine. The figure iiftlot to scale. 
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Figure 9-3 Midplane connector layout. 

166 

FBO 

CBO 
CB1 
CB2 
CB3 
CB4 
CBS 
CB6 
CB7 

BCLK 

SB RB SA RA 

view from FUNCTION BOARD side 

FB7 

CAO 
CA1 
CA2 
CA3 
CA4 
CA5 
CAB 
CA7 

100 
ACLK 

The midplane layout is remarkable in meeting additional design goals. For 
example, there are no vias (layer changes on signal runs) on the board. This 
enhances manufacturability and reliability, and maintains the controlled im­
pedance needed for clean signal propagation. Also, the total length of data 
paths is kept short to reduce propagation delay and "Skew, thus permitting fast­
er operation. 

There are no active components on the midplal1e. Electrically, the midplane 
is an assembly of conductors and a DIP switch. This switch sets the bay and 
midplane fields of the identification numbers supplied to the function boards 
and the switch server cards, as described later. 
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. NOTE 

In early domestic (United States) systems, the main: power is 48 volts in magni­
tude, but signal ground may lie anywhere between the + 48 and its return. Lat­
er machines will use + 24 and -24 respectively. 

0 

0 

9.2.3 

Figure 9-4 

SWITCH 

RA 

Block Diagram 

B2MP block diagram. 

'-'-' 

0-0-0- 0- -0-
+24 -24 TCSS GND ID switch 

February 14, 1990 

Figure 9-4 is a logical block diagram of the mid plane. Each midplane contains 
full wiring for eight function boards and both an "i'C and a "B" switch. Func­
tionally similar parts of the wiring are discussed in the following sections. 

All signals on the midplane use lOOK ECL levels, with two exceptions: 

• All communication between Thst and Control System (TCS) masters and 
slaves uses CMOS levels 
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• Of the TCS-related signals between requester and server switch cards, 
some use ECL levels, some use CMOS levels, and some arce analog sig· o· 
nals, as noted for each such signal in section 9.2.8. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~,,,,,,,. 

DIFFERENTIAL PAIR SIGNAL NAMES 
The companion signal name in a differential pair is generally formed by plac­
ing an asterisk after the signal name: CLK and CLK*. Some design software 
will not accept this, however, so the reader may occasionally see an L (for 
"low") before the signal name: CLK and LCLK The two naming conventions 
are equivalent and interchangeable . 
...... ·•,,,_ . ..,, .. ,· ..... _ .•• ,,.''\,_ .• ,,,,'•• .. _'\,"•.,,_·• •• _ ....................... ,,.,_ ................. ,._ ........................ ,,,_ ............ "'•.''1 .. '•i,,,••,,,_ ........ ,,,_ ... ,,_ . ..,,,_ .••• _ .•• ,,,'···-·"'··"'\,_ .• ,,,,·,,,,,_ .•• ,,, .•••. ··\,,_ ......... , .. ·••• 

Wiring between switch cards and function boards 

Each of the eight function board slots on a midplane is wired to each of the 
four switch card slots on the midplane. This wiring, except for certain TCS-re­
lated signals discussed later, is shown with heavy lines in Figure 9-5. 
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Figure 9-5 

SWITCH 

RA 

Function board - switch card wiring. 

D-D-0- D- -0-

February 14, 1990 

Each of these 32 paths, shown as a single line in Figure 9-5, is composed of 
sixteen signals, listed below. Except where noted, these signals are· discussed 
in the chapter that describes the Butterfly II switch. 

• D < 7 .. 0 >, data, bidirectional 

• FRM, frame, downstream (from requester to server) 

• RVRS, reverse, upstream (from server to requester) 

• CLK and CLK*, clock, a differential pair, from switch card to function 
board 

• Two wires carry signals dependent on whether the connection involves 
a switch requester card or a switch server card: 

If the path is between a function board and a switch requester card: 

o MSEC65 and MSEC65*, 65-millisecond pulse, a differential pair, 
from switch requester card to function board 
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If the path is between a function board and a switch server card: 

o TCSS _TO_ MASTER, function board TCS slave data destined ulti- Q 
mately for the system TCS master via the switch server card, from 
function board to switch server card - discussed .in the Test and 
Control System chapter 

o NET_ TIME, an external time pulse sensed by some function 
boards (on wires not on the midplane and not described here) and 
driven by those function boards for possible selection as the 
machine-wide net time signal, function board to switch server card 

• SPAREl and SPAREO, two spare wires 

· Wiring between switch cards and data cables 

For communication with the rest of the machine, each switch card is wired 
through the midplane to connectors that accept cables. These cables connect 
to similar connectors on various midplanes. (For example, in a machine with 
a 2-column switch and exactly eight midplanes, one cable connects back to the 
same midplane, and the other seven cables connect to other midplanes.) 
Figure 9-6 shows this midplane wiring to these connectors with heavy lines . 

••. ·•.,,.'•,,,_ .•• ,, •. ,,,, '•,,..··;,,· ........... ' 1•,,'11.,_"';,,··11,,'11,,.·•,;.''1,.··;,,········,,'••,,.·.,,,,,··1.,,_'••,_"'•1,''•1,,
0

'•; •• ······-''"····
11,,,''•1 •. ···················''•1 •. ······''••.''•,,,_ .••• , •. ·•••••··•1., •. ········,,,_···· .............. ·············' 

LOOP-BACK CONNECTOR 
In any machine, at least one data cable from each mid plane would loop back to 
that same midpiane. A smaj! pnnied circuit board, ilie TC/LOOP, impiements 
the loop-back connection and is used in place of the bulkier cable. For exam­
ple, an 8-midplane (64-slot) machine has eight TC/LOOPs, one on each 
midplane. For simplicity, every machine is shipped with eight TC/LOOPs, dis­
tributed appropriately on its midplanes. A 1-midplane machine has all eight 
TC/LOOPs on its midplane, and no data cables. Additional TC/LOOPs, be­
yond the first one installed on any given midplane, create alternate paths be­
tween the function boards on that mid plane. If the machine is configured with 
a redundant switch, the TC/LOOP population in the primary switch is re­
peated in the redundant switch. The position of TC/LOOPs depends on the 
number of midplanes in the machine, and is described in the document 
TC2000 Configuration Cabling. 
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Figure 9-6 Switch card - data cable wiring. 
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A closer look at the data cable connectors for switch A is shown in Figure 9-7. 
No wires in this category connect a switch requester card and a switch server 
card just through the mid plane; rather, each wire runs between one switch card 
and the connector. Logically, the connector can be thought of as two connec­
tors, one for the local requester and one for the local server. Physically, it is 
implemented as a single connector. All of its wires go to the same place on 
another midplane, and are carried in one physical cable assembly. 

The entire circuitry shown in Figure 9-7 is duplicated for switch B. 
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Figure 9-7 
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Data cable connector. 
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The twelve signals in each group from a switch card to a data cable connector 
are listed below. 

• D < 7 .. 0 >, data, bidirectional 

• FRM, frame, from requester to server 

• RVRS, reverse, from server to requester 

• SPAREl and SPAREO, two spare wires 

Figure 9-8 summarizes the number of data cables in a Butterfly II system with 
one to eight midplanes. Each such machine also contains a set of eight 
BZLOOP loop-back cards. If the machine is configured with a second switch 
for redundancy, the number of data cables is twice that of a one-switch ma­
chine, and a second set of BZLOOPs is supplied. The data cables in a given 
machine are of various lengths, chosen to meet propagation time and packag-. . ' mg reqmrements. 
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Figure 9-8 

9.2.6 
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Data cable count. 

cables (of various lengths) number of 
midplanes one-switch system two-switch system 

1 

2 

3 

4 

5 

6 

7 

8 

NONE 

4 

6 

12 

10 

15 

21 

28 

NONE 

8 

12 

24 

20 

30 

42 

56 

Wiring between switch cards and clock cables 

The primary purpose of midplane wires (actually circuit board traces) between 
clock cables and switch cards is to distribute the machine-wide clock signals. 
Several other signals are also carried in this group of wires, shown in heavy 
lines in Figure 9-9. Signals on these wires shown heavy are discussed immedi, 
ately below. Other wires between clock cables and switch cards, not high­
lighted in Figure 9-9, relate to the Test and Control System and are discussed 
in a later section on TCS wiring. 
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Figure 9-9 Clock cable - switch card wiring. 

0-0-0- 0- -0-

As Figure 9-9 indicates, the midplane provides four signals to each requester 
card, and two signals to - . and one from - each server card. Each of these 
signals is carried on a differential pair of wires. These signals are listed below. 

• Between a clock cable and a switch requester card: 

o R_CLK and R_CLK*, requester clock, a differential pair, from 
clock cable to requester card 

o R_HOLD and R_HOLD*, requester hold, a differential pair, from 
clock cable to requester card 

o MSEC65 and MSEC65*, 65-millisecond pulse, a differential pair, 
from clock cable to requester card 

o NET_TIME_SYS and NET_TIME_SYS*, the system-wide time 
pulse selected from those sensed by some function boards, a differ­
ential pair, from clock cable to requester card 

• Between a clock cable and a switch server card: 
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o S_CLK and S_CLK*, server clock, a differential pair, from dock 
cable to server card 

o S_HOLD and S_HOLD*, server hold, a differential pair, from 
clock cable to server card 

o NET_TIME_SW and NET_TIME_SW*, a time pulse selected by 
the switch server card from among the eight external time pulse sig­
nals sensed by the function boards served by the server card, a dif­
ferential pair, from server card to clock cable 

Power and ID wiring 

Figure 9-10 shows the midplane wiring for power and identity (ID) signals 
with heavy lines. The three boxes in the lower left symbolize main power sup­
ply, main power return and TCS power. These three are distributed to the 
eight function board connectors, the four switch card connectors, the two clock 
card power connectors, andrtowhere else. The box to the right of these symbol­
izes ground. Ground is distributed to all connectors, including cable connec­
tors and the ID circuitry. The switch requester card carries an on-board VEE 
supply, but no VTT supply. Requester card VTT is obtained from the paired 
server card's VTI, via a small bus bar on the midplane, shown in heavy dashed 
lines in Figure 9-10. 
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Figure 9-10 Midplane power and ID wiring. 

176 

0-0-0-
+24 -24 TCS5 

0-
GND 

-0-
ID switch 

The ID circuitry informs each function board, switch server card and clock 
card of its logical position' in the Butterfly II machine, by grounding appropri­
ate wires on each of these components. The ID is used by the TCS slave in 
each function board and in switch cards, to determine whether a message from 
the TCS master are addressing that slave. The ID is also used on B2VME 
function boards as a processor node number, which the software can read and 
use to uniquely identify the function board within the machine. 
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ID AND SWITCH AI)DRESS 
The ID of a particular function board is determined partly by the DIP switch 
setting on the midplane holding the board, and partly by which slot of that 
midplane holds the board. The switch address of a function board, however, is 
the address that must appear in a switch message in order for the switch sys­
tem to route the message to that function board. The switch address is deter­
mined partly by the data cable installation, and partly by which slot of its 
midplane holds the function board. Consequently, the ID of a function board 
mizy be different from its switch address. The low three bits of the two will always 
be the same, but only a consistent scheme of switch cabling and ID DIP switch 
setting will produce an ID and switch address identical in all nine bits. 

The ID is a 9-bit number composed of three fields, shown in Figure 9-11. The 
bay field indicates a particular bay (cabinet), the midplane field indicates a 
midplane within that bay, and the slot field indicates one of the eight function 
board slots on that midplahe. Each function board receives the full 9-bit ID, 
but the switch server cards receive only the bay and midplane fields (and the 
NB* bit described below). The bay and midplane fields are set by a DIP 
switch on the midplane, shown in Figure 9-12. 

Fields of the ID. 

·function board identity (ID) 

I I I I 
bay I midplane I slot 
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Figure 9-12 ID DIP switch. 

MIDPLANE ID<O> 

MIDPLANE ID< 1 > 

MIDPLANE ID< 2 > 

BAY ID<O> 

BAY ID<1 > 

BAY ID<2> 

TOP 

0 GND 

1 

2 

3 

4 

5 

6 

7 
BOTTOM 

switch open = off = ID bit is "1" 

switch closed = on = ID bit is "O" 

See switch housing for open/closed ( off/on ) labeling. 

For all ID bits, the function boards and switch cards using the ID bit have pul­
lups on these signals to create a "1" bit if the ID switch is open. If the midplane 

0 

grounds the corresponding wire, the bit is a "O''. The hard wired slot ID is Q 
shown in Figure 9-13. 

Figure 9-13 Midplane wiring for function board slot ID. 

FBO FB1 FB2 FB3 FB4 FB5 FB6 FB7 

178 

2 GND 2 

GND , 
a GND a 

KEY: 

GND 2 GND 2 GND 2 

GND , 
2 2 2 

GND , 
a GND a 

GND , 
a GND a a GND a 

FBn 
BAY ID< 2 .. 0 > and MIDPLANE ID< 2 .. 0 > - -

2 SLOT_ID<2> 
, SLOT ID<1 > 
a SLOT ID<O> 

GND = bit is a "O" 
no GND = bit is a "i" 
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Figure 9-14 

Each switch server card and each clock card receives a signal that indicates 
whether the card is part of switch A or switch B. This signal is called A/B* 
and is shown in Figure 9-14. The switch server card TCS uses this bit, together 
with the bay and midplane fields of the ID, to determine whether data from 
a TCS master is addressing this slave. The clock card TCS slave processor, 
in contrast, is told by the TCS master which messages to accept. The clock 
card's A/B* bit is used merely as a consistency check, performed by the TCS 
master. 

Midplane wiring for switch server and clock card identity. 

A/B* bit is a "1" 
CLK 

A 
A/B* bit is a "O" 

CLK 

B 

DIP switch 
DIP switch 

[open] 

[open] 

BAY ID<2 .. 0> 
MIDPLANE ID<2 .. 0> 
A/B* 

GND 

A/B* bit is a "1" SWITCH 

SA 

DIP switch 
DIP switch 

GND 

BAY ID<2 .. 0> 
MIDPLANE ID< 2 .. 0 > 
A/B* 
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A(B* bit is a "O" 

Two.- or Three-Column Switch 

SWITCH 

SB 

In the original midplane, a signal connecting to each switch server card tells 
these cards whether the system is configured for a two-column or a three-co­
lumn switch. This signal, COLUMN_ 2 _OR _3, is grounded to indicate a 2-col­
umn switch, and open for a 3-column switch. In the second version of the 
midplane (in which the clock card power connectors and more ground strap­
ping points were also added), a similar signal, TYPE< 0 >, to both the switch 
requester cards and the switch server cards, is grounded for a two-column con­
figuration and open for a three-column configuration. 

TCS wiring 

The midplane provides access to ten TCS slaves - one in each of the eight 
function boards, and one in each of the .two switch server cards. 
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The midplane, its switch cards, and its function boards are connected to the 
rest of the Test and Control System (TCS) via the clock cables, as shown in Q 
Figure 9-15. Each clock cable contains two TCS-related wires. One distrib- . 
utes data from the TCS master, and the other sends collected data to the TCS 
master. Each of these travels through the clock card, where it is buffered, gated 
and/or processed. If the machine is configured with a second switch, the sec-
ond clock cable provides two TCS-related wires, independent of those in the 
primary clock cable. The switch A clock cable nominally serves the TCS A 
master, and the switch B clock cable the TCS B master. However, as 
Figure 9-15 shows, the TCS systems are cross-coupled so either TCS master 
can use either clock cable. The intent is that only one master is active at any 
given time. 
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Figure 9-15 Midplane as a TCS subsystem. 

other ' 

TCS A 
J ... 

TCS B .... , 
MASTER MASTER 

, ' x j!' 

' if x v 
SWITCH SWITCH 

A B 

CLOCK J "' CLOCK ,. ,. 
CARD CARD 

from TCS master .... J 
from TCS mast J, .... "' er 

to TCS master to TCS master 
non-TCS signals 

;, ... ~ other, non-TC S signals ........ clock clock ,,. 
cable cable 

midplane, its 
switch cards and CLK CLK 

its function boards A B 

The TCS slave on a clock card is connected directly to the TCS master by a 
cable, involving no midplanes. The fan-in of TCS communications from the 
clock card's TCS slave and up to eight mid planes, and the fan-out of communi­
cations to the clock card's TCS slave and the midplanes, are performed on the 
clock card and thus do not involve any midplane wiring. 

The midplane wiring supports connection of each TCS master (in .a system 
with two masters) to each clock card (in a system with two switches). The 
midplane wiring also provides connection between the TCS slaves in the TC/ 
SS switch cards (in a system with two switches). At each switch card TCS slave, 
data destined for the TCS master from the other switch card is combined with 
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SWITCH 

RA 
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data from the card's own TCS slave and data from the TCS slaves on the eight 
function boards. This is done to enhance reliability in systems with two 
switches. 

•· 
Figure 9-16 shows in heavy lines the midplane wiring supporting the Test and 
Control System (TCS). Dashed lines indicate that only one of the 16 wires in 
each dashed line is TCS-related. The heavy lines between each requester and 
server card pair of a switch actually contain 22 wires. All other heavy lines 
in Figure 9-16 indicate only a single wire. 

Midplane TCS wiring. 

D-D-D- D- -0-

182 

TCS-related signals on the midplane fall into the three categories listed below 
and described in the following paragraphs. 

• Distribution of test and control information from TCS masters to TCS 
slaves 

• Collection, for the TCS master, of the TCS slaves' responses to the mas-
ter's commands . 
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• TCS-related infoimation exchanged between a switch requester card 
and its paired (same switch and same midplane) switch server card 

Distribution from TCS master to TCS slave (TCSS) 

Data from a TCS master is .distributed by a wire that connects a clock cable 
connector to each function board and each switch server card. The signal 
name is as follows: 

• On the clock connector, MASTER_TO_TCSS 

• On the midplane, AMASTER_TO_TCSS (from CLKA clock cable), or 
BMASTER_TO_TCSS (from CLKB clock cable) 

• On a function board connector, AMASTER_TO_TCSS or BMAS­
TER_TO_TCSS 

• On a switch server card connector, MASTER_TO_TCSS or OMAS­
TER_TO_TCSS ("Q"~tands for "other", data from the other TCS mas­
ter - TCS A is "other;, to the SB card, and TCS B is "other" to the SA 
card) 

'• •• , '"• ,, \ ••• , '•., ••• , '"• •• , ',, ..... ,,, '•,, •,, ,,, .... '•, .• ,,, ••• , .... •,, •• ,, 1,, '•, •• , .... "·· ' ' .•• ,,, ''•,,, .•• ,,, '"'· '\ ....... '\. ''•,,, '\, '\, '\, "\ ..• , ...... ,,. .. ,,,, ""·· '\, ... ,,. 

SIGNAL LEVEL 
The MASTER_TO_TCSS signal idles low on the midplane. On each B2SS 
clock card and each function board, the signal is inverted to idle high just be­
fore going into the TCSS slave processor chip (68HC11). 

Collection from TCS slaves to TCS master 

Data to a TCS master is collected by fan-in on switch server cards and asso­
ciated wiring on the midplane. Of the 16 wires from each function board to 
each switch server card, one is a signal from the function board toward a TCS 
master. The signal name is as follows: 

• On the function board connector, the midplane, and the switch server 
card connector (eight signals, one from each function board slot), 
TCSS_TO _MASTER 

Each switch server card OR's together the TCSS _TO_ MASTER data from the 
eight function boards along with its own data to its TCS master and data from 
the other switch server card's TCS slave. The data from each function board 
and from the other switch server card can be individually disabled. This pro­
vides for operation despite cross-mode failure. The midplane supports this 
with wiring between the two switch server cards, as follows: 

• On the switch server card connector, the signal TCSS_TO_OMASTER 
sends data from this card's TCS slave to the other TCS master 
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• On the midplane, the signals ATCSS_TO_BMASTER and 
BTCSS_TO_AMASTER carry data as indicated by their name 

• On the switch server card connector, the signal OTCSS_TO_MASTER 
receives data from the other card's TCS slave 

After OR'ing together data from the various TCS slaves, each switch server 
card sends the resulting data to its TCS master on the following wire: 

• On the switch server card connector, the midplane, and the clock cable 
connector, TCSS_TO_MASTER 

TCS-related signals between requester and server cards 

The switch requester card has no TCS slave. The test and control functions 
required are performed by the TCS slave in the paired server card - that is, 
by the server card in the same switch and on the same midplane. The midplane 
supports this with 22 wires connecting the requester and server card connec­
tors, as listed below. The levels used op each signal are also noted: CMOS, 
ECL or analog. 

• Serial Peripheral Interface (SPI) signals, used by the TCS slave on the 
server card to communicate with SGA chips on the requester card 

o SPI _ CLK, clocks data, CMOS from server card to requester card 

0 

o SPI _ MOSI, Master Out Slave In, SPI data, CMOS from server card Q 
to requester card ("Master" and "Slave" of SPI, not TCS) 

o R SPI MISO, Master In Slave Out, SPI data, ECL from requester 
card to server card ("Master" and "Slave" of SPI, not TCS) 

• Random number generator signals, used to control the pseudo-random 
number generator used to resolve head-on collision of messages con­
tending for a given switch output port 

o RAND_ RESET, shift zeros into the maximum sequence generator 
register at the switch clock rate while this signal is asserted, ECL 
from server card to requester card 

o RAND_ PRESET, shift ones (creating the dead state, for testing) 
into the register while this signal is asserted, ECL from server card 
to requester card 

• SGA_RESET, asserts both mreset and cntlr pins on SGA chips to com­
pletely reset the SGAs and enable their output ports, ECL from server 
card to requester card 

• · EXEC_ROO, EXEC_ROl, EXEC_RlO and EXEC_Rll, execute signals 
wired to the cntrle pin of SGA chips and used by the TCS slave to make 
each requester card SGA chip individually perform a previously-loaded 
command, ECL from server card to requester card 
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• PWR_:ENABLE, turns on requester card ECL power, TIL from server 
card to requester card 

• MARGIN _DISABLE, inhibits voltage margin testing of requester card 
ECL supplies, TIL from server card to requester card 

• Requester card voltage and temperature monitoring (corresponding 
server card voltage and temperature monitoring occurs on that card) 

o R _VEE, requester card VEE voltage monitor, analog from request­
er card to server card 

o R_ VTT, requester card VITvoltage monitor, analog from request­
er card to server card 

o R_SGA_ VTT, monitors VIT voltage on each of the requester 
card's four SGA chips as selected by the command register, analog 
from requester card to server card 

o R_TEMP, monitors requester card air temperature near the SGAs 
or overall board air temperature near the board exit airflow as se­
lected by the command register, analog from requester card to serv­
er card 

• ID _SELECT, chip select for requester card EEPROM to allow TCS slave 
to read and write it, CMOS from server card to requester card 

• Command shift register control signals, used by TCS slave in conjunction 
with the SPI signals, for functions such as voltage margining the request­
er card, selecting what requester card voltage and temperature to moni­
tor, and turning the requester card amber LED "flag" on and off 

o NTIL_RESET, while asserted (low) clears the command shift reg­
ister and the command latch register, CMOS from server card to 
requester card 

o R _ CMD _EN, gates the contents of the command shift register into 
the command latch register, CMOS from server card to requester 
card 

• SPARED, SPAREl, SPARE2 - spare wires routed on the midplane 
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

HISTORICAL NOTE 
In an early Butterfly II design, the switch requester card and switch server card 
were on a single board. The resulting large board and connector size led to 
implementing the two on separate boards. In the process of separating the 
curcuitry, it was decided that it was unnecessary to duplicate the TCS slave on 
both of the boards. Therefore, several wires are supplied to permit the one 
TCS slave (on the server board) to properly monitor and control the other 
board. These are the only midplane signal wires between the two cards. The 
only other midplane wire between them is a VIT power bus. 
''•• '\,_ ''•r,,, '''•;. '';,,, ''''• ··~, •• ,,,_ "••,, '••,,, .• ,,._ ···~ •. ·•,,, ..,,._ ....... ''\. ..,,,,_ . ..,,, '••,, '•;, ·•,,, '•1, ''>i,, '•1,, '•r,,_ '"•,,, ''••,,, ''•,, '••,,, ''''••· ''••,,, ''•i,,, ·•1,,, ""•~ ••• ..,,_ '•11, '•11,_ "''•· '•~ •• ,,._ ' 111, ""'•• ''••,,, ''111,, ·•;,, ..,,,,_ '''<,, 

Net time wiring 

Heavy lines in Figure 9-17 show the midplane wiring supporting the net time 
facility. A solid line indicates a path totally devoted to net time, and a dashed 
line indicates a group of wires of which only one is for net time. 
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Net time wiring. 

D-D-0- D- -0-
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Each function board may sense an external (to the Butterfly II computer) clock 
called net time, and r~port it to the switch server cards over midplane wiring 
with the signal name: 

• On the function board connector, the midplane, and the switch server 
card connector, NET_ TIME 

Each switch server card selects one of the net time signals from its function 
boards and forwards that signal into the clock subsystem over the midplane 
wiring with the signal names: 

• On the switch server card connector, the midplane, and the clock cable 
connector, NET_TIME_SW and NET_TIME_SW*, a differential pair 

' 

The clock sub_system selects one of the net time signals from its midplanes and 
redistributes it, over the clock cables, to switch requester cards with the signal 
names: 
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• On the clock cable connector, the midplane, and the requester card con­
nector, NET_TIME_SYS and NET_TIME_SYS', a differential pair 

Each requester card distributes net time to its eight function boards over a 
differential pair bus with the signal names: 

• On the requester card connector and the midplane, 
NET_TIME_SYS_FB and NET_TIME_SYS_FB*, a differential pair 

• On the function board connector, both of the following: 

o A_NET_TIME_SYS_FB and A_NET_TIME_SYS_FB*, a differ­
ential pair from switch A 

o B_NET_TIME_SYS_FB and B_NET_TIME_SYS_FB*, a differ­
. ential pair from switch B · 

The collection and distribution of net time is also discussed in the switch card 
section below, and illustrated there in Figure 9-30. 

Midplane connector pinouts 

This section illustrates the pin assignments in each type of connector on the 
midplan". (See Figure 9-12 for the ID DIP switch socket.) Figure 9-18 sum­
marizes the connector types. Notes explaining and extending the information 
in the diagrams appear in a list after the diagrams. 
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0 
Figure 9-18 Midplane connector summary. 

connector modules per symbolic quantity on 
type connector name* midplane 

clock cable 1 CLKag 2 

switch A data cable 1 CAgn 8 

switch B data cable 1 CBgn 8 

function board 4 Fng1 - Fng4 8 

switch requester card ( R-card ) 10 Rag1 - Rag10 2 

switch server card ( S-card ) 10 Sag1 - Sag10 2 

clock card power cable 1? (to be specified) 2 

* KEY: a = A or B switch 
(see notes) g = J or P connector gender 

0 n = o - 7 switch port or function board number 

0 
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C!ock cable connector 

CLKag: 

l<-----to S------>I 
pin 39 

TC2000 Hardware Archirecture 

l<-----to R------>I 
pin 1 

x x x C D x x G x o x I J x x M N a x x 
A B x x x E F x H x o x x K L x x x P Q 

pin 40 

A S "CLK* 
B S_CLK 

c S_HOLD* 
D S_HOLD 

E NET TIME_SW* 
F NET_TIME_SW 

G TCSS TO MASTER 
H MASTER TO TCSS 

o CLK SPAREl 
o CLK SPAREO 

I NET TIME SYS* - -
J NET_TIME_SYS 

K MSEC65* 
L MSEC65 

M R_HOLD* 
N R_HOLD 

a A/B* 

P R_CLK* 
Q R_CLK 
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Switch A data cable connector 

CAgn: 
l<---to local s--->l<---to local R--->I 

pin 39 pin 1 

0 x x x x x x x x 0 0 x x x x x x x x 0 

A I GE ·o F c H J B b j h c f d e g i a 
pin 40 pin 2 

S_TO_R<ll .. 0> R_TO_S<ll .. 0> 

A D<7> a D<7> 
B ·D<6> b D<6> 
C D<5> c D<5> 
D D<4> d D<4> 
E D<3> e D<3> 
F D<2> f D<2> 
G D<l> g D<l> 
H D<O> h D<O> 
I FRM i FRM 
J RVRS j RVRS 
o SPAREl o SPAREl 
o SPAREO o SPAREO 

0 Switch B data cable connector 

CBgn: 
l<---to local S--->l<---to local R--->I 

pin 39 pin 1 

0 x x x x x x x x 0 0 x x x x x x x x 0 

A I G C F E D H J B b j h d e f c g i a 
pin 40 pin 2 

S_TO_R<ll .. 0> R_TO_S<ll .. 0> 

A D<7> a D<7> 
B D<6> b D<6> 
C D<5> c D<5> 
D D<4> d D<4> 
E D<3> e D<3> 
F D<2> f D<2> 
G D<l> g D<l> 
H D<O> h D<O> 
I FRM i FRM 
J RVRS j RVRS 
o SPAREl o SPAREl 
o SPAREO o SPAREO 

0 
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Function board connector 0 
Fngl: l main power (+24 volts) 

2 main power return (-24 volts) 

Fng2: l # a x c x a A_NET_TIME_SYS_FB, b A_NET_TIME_SYS_FB* 
2 x b x d x c B_NET_TIME_SYS_FB, d B_NET_TIME_SYS_FB* 

3 x x 0 x 0 SB_TO_FB<l5 .. 0> 
4 x A x B x R-card S-card 
5 # x c x D 
6 # E x F x o SPAREl o SPAREl 
7 x x x x G o SPARED o SPARED 
8 x H x J x A D<7> A D<7> 
9 x I x x K B D<6> B D<6> 

10 # x x L x c D<5> c D<5> 
11 # x M x N D D<4> D D<4> 

E D<3> E D<3> 
12 x 0 x 0 x RB_TO_FB<l5 .. 0> F MSEC65 F TCSS TO MASTER 
13 x x A x B G LMSEC65 G NET TIME 
14 x c x D x H CLK H CLK 
15 # x E x F I LCLK I LCLK 

Fng3: l # x x G x J D<2> J D<2> 
2 x H x x J K D<l> K D<l> 
3 x I x K x L D<O> L D<O> 

0 4 x x x x L M FRM M FRM 
5 # M x N x N RVRS N RVRS 

6 # x 0 x 0 SA TO FB<l5 .. 0> 
7 x A x B x 
8 x x c x D 
9 x E x F x 

10 # x x x G 
11 # H x J x 
12 x I x x K 
13 x x x L x 
14 x x M x N 

15 # 0 x 0 x RA_TO_FB<l5 .. 0> 
Fng4: l # x A x B 

2 x c x D x a RACK ID<3> 
3 xx E x F b RACK ID<2> 
4 x x x G x c RACK_ID<l> 
5 # H x x J d RACK_ID<O> 
6 # I x K x e PANEL_ID<l> 
7 x x x j L f PANEL ID<O> 
8 x M g N h g SLOT_ID<2> 
9 x e f c d A AMASTER TO TCSS h SLOT ID<l> 

10 # a A b B B BMASTER TO TCSS j SLOT ID<O> 

0 
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r 

11 # O.X 0 X 

0 12 x x 0 x 0 o = unrouted spares (10) 
13 x 0 t 0 t 
14 x t 0 t 0 t = TCSS power (+5 volts) (6) 
15 # 0 t 0 .t 

======================.END OF FUNCTION BOARD CONNECTOR ================== 

0 

0 
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Switch requester card (R-card) connector 0 
Ragl: 1 main power (+24 volts) 

2 main power return (-24 volts) 

Rag2: 1 # 0 x ab a NET_TIME_SYS_FB, b NET TIME SYS FB* 
2 x x 0 x x 0 unrouted spares (2) 

3 x 0 x 0 x R_ TO _FB4<15 .. 0> o SPAREl 
4 x x A x B o SPAREO 
5 # c x D x A D<7> 
6 # x E x F B D<6> 
7 x x x G x c D<5> 
8 x H x x J D D<4> 
9 x I x K x E D<3> 

10 # x x x L F MSEC65 
11 # M x N x G LMSEC65 

H CLK 
12 x x 0 x 0 R_TO_FB2<15 .. 0> I LCLK 
13 x A x B x J D<2> 
14 x x c x D K D<l> 
15 # E x F x L D<O> 
16 # x x x G M FRM 
17 x H x J x N RVRS 
18 x I x x K 

0 19 x x x L x 
20 # x M x N 

Rag3: 1 # 0 x 0 x R TO FB3<15 .. 0> 
2 x x A x B 
3 x c x D x 
4 x x E x F 
5 # x x G x 
6 # H x x J 
7 x I x K x 
8 x x x x L 
9 x M x N x 

10 # x 0 x 0 R TO FB5<15 .. 0> 
11 # A x B x 
12 x x c x D 
13 x E x F x 
14 x x x x G 
15 # H x J x 
16 # I x x K 
17 x x x L x 
18 x x M x N 

0 
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19 x 0 x 0 x R_TO_FB6<15 .. 0> 

0 20 # x A x B 
Rag4: 1 # c x D x 

2 x x E x F 
3 x x x G x 
4 x H x x J 
5 # I x K x 
6 # x x x L 
7 x M x N x 

8 x x 0 x 0 R_TO_FB0<15 .. 0> 
9 x A x B x 

10 # x c x D 
11 # E x F x 
12 x x x x G 
13 x H· x J x· 
14 x I x x K 
15 # x x L x 

Rag5: 1 # x M x N 

2 x 0 x 0 x R_TO_FB7<15 .. 0> 
3 x x A x B 
4 x c x D x 
5 # x E x F 
6 # x x G x 
7 x H x x J 
8 x I x K x 

0 
9 x x x x L 

10 # M x N x 

11 # x 0 x 0 R TO FB1<15 .. 0> 
12 x A x B x 
13 x x c x D 
14 x E x F x 
15 # x x x G • Rag6:· 1 # H x J x 

2 x I x x K 
3 x x x L x 
4 x x M x N 

5 # A x B x S_TO_R_TCS<21 .. 0> A RAND_PRESET L EXEC ROl 
6 # x c x D B RAND_RESET M EXEC_RlO 
7 x E x F x c SPI CLK N EXEC Rll 
8 x x G x H D SPI_MOSI 0 R_TEMP 
9 x I x J x E R_SPI_MISO P R_SGA_VTT 

10 # x K x L F SGA_RESET Q R_VTT 
11 # M x N x G NTTL_RESET R R_VEE 
12 x x 0 x p H R_CMD_EN s ID_SELECT 
13 x Q t R x I MARGIN DISABLE T SPARE2 
14 x t s t T t TCS5 (5) J POWER ENABLE u SPAREl 
15 # u t v t K EXEC_ROO v SPAREO 

[ blank space here on R-card, 5 more rows of pins on S-card J 

Rag7: 1 VEE 

0 2 VTT 
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Rag8: 1 # A x B x R TO SO<ll .. 0> A D<7> 
2 x x c x D B D<6> 

0 3 x E x F x c D<5> 
4 x x G x H D D<4> 
5 # I x J x E D<3> 
6 # x 0 x 0 F D<2> 

G D<l> 
7 x A x B x R_TO_Sl<ll .. 0> H D<O> 
8 x x c x D I FRM 
9 x E x F x J RVRS 

10 # x G x H o SPAREl 
11 # I x J x o SPAREO 
12 x x 0 x 0 

13 x A x B x R_TO_S2<11. . 0> 
14 xx c xD 
15 # E x F x 

Rag9: 1 # x G x H 
2 x I x J x 
3 x x 0 x 0 

4 x A x B x R_TO_S3<11 .. 0> 
5 # x c x D 
6 # E x F x 
7 x x G x H 
8 x I x J x 
9 x x 0 x 0 

10 # A x B x R_TO_S4<11. .0> 

0 11 # x c x D 
12 x E x F x 
13 x x G x H 
14 x I x J x 
15 # x 0 x 0 

16 # A x B x R_TO_S5<11 .. 0> 
17 x x c x D 
18 x E x F x 
19 x x G x H 
20 # I x J x 

RaglO: 1 # x 0 x 0 

2 x A x B x R_TO_S6<11 .. 0> 
3 x x c x D 
4 x E x F x 
5 # x G x H 
6 # I x J x 
7 x x 0 x 0 

8 x A x B x R_TO_S7<11 .. 0> 
9 x x c x D 

10 # E x F x 
11 # x G x H 
12 x I x J x 
13 x x 0 x 0 

0 
196 BBN AC! Proprietary February 14, 1990 



0 

a 

0 

TC2000 Hardware Archirecture 

14 x o x o x o = unrouted spares (5) 
15 # x 0 x 0 

16 # G x o x 
17 x H x x x 
18 x x x F E 
19 x A x x x 
20 # B x D C 

A = R_CLK, B = R_CLK* 
C R_HOLD, D = R~HOLD* 
E = MSEC65, F = MSEC65* 
G = NET_TIME_SYS, H = NET_TIME_SYS* 

9: Switch Components 

============ END OF SWITCH REQUESTER CARD (R-card) CONNECTOR ============ 
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Switch server card (S-card) connector 0 
Sagl: 1 main power (+24 volts) 

2 ma'in power return (-24 volts) 

Sag2: 1 # 0 x Q x o = unrouted spares (4) 
2 x x 0 x 0 

3 x 0 x 0 x S_TO_FB1<15 .. 0> o SPAREl 
4 x x A x B o SPAREO 
5 # c x D x A D<7> 
6 # x E x F B D<6> 
7 x x x G x c D<5> 
8 x H x x J D D<4> 
9 x I x K x E D<3> 

10 # xx x L F TCSS_TO_MASTER 
11 # M x N x G NET TIME 

H CLK 
12 x x 0 x 0 S TO FB2<15 .. 0> I LCLK 
13 x A x B x J D<2> 
14 x x c x D K D<l> 
15 # E x F x L D<O> 
16 # xx x G M FRM 
17 x H x J x N RVRS 
18 x I x x K 

0 19 x x x L x 
20 # x M x N 

Sag3: 1 # 0 x 0 x S~TO_FB4<15 .. 0> 
2 x x A x B 
3 x c x D x 
4 x x E x F 
5 # x x G x 
6 # H x x J 
7 x I x K x 
8 x x x x L 
9 x M x N x 

10 # x 0 x 0 S TO FB5<15 .. 0> . 
11 # A x B x 
12 x x c xD 
13 x E x F x 
14 x x x x G 
15 # H x J x 
16 # I x x K 
17 x x x L x 
18 x x M x N 

0 
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19 x 0 x 0 x S_TO_FB7<15 .. 0> 

0 20 # x A x B 
Sag4: 1 # c x D x 

2 x x E x F 
3 x x x G x 
4 x H x x J 
5 # I x K x 
6 # x x x L 
7 x M x N x 

8 x x 0 x 0 S_TO_FB0<15 .. 0> 
9 xA x B x 

10 # x c x D 
11 # E x F x 
12 x x x x G 
13 x H x J x 
14 x I x x K 
15 # x x L x 

Sag5: 1 # x M x N 

2 x 0 x 0 x S_TO_FB6<15 .. 0> 
3 x x A x B 
4 x c x D x 
5 # x E x F 
6 # x x G x 
7 x H x x J 
8 x I x K x 

0 
9 xx x x L 

10 # M x N x 

11 # x 0 x 0 S_TO_FB3<15 .. 0> 
12 x A x B x 
13 x x c x D 
14 x E x F x 
15 # xx x G 

Sag6: 1 # H x J. x 
2 x I x x K 
3 x x x L x 
4 x x M x N 

5 # A x B x S_TO_R_TCS<21 .. 0> A RAND_PRESET L EXEC_ROl 
6 # x c x D B RAND RESET M EXEC RlO 
7 x E x F x c SPI_CLK N EXEC_Rll 
8 x x G x H D SPI_MOSI 0 R_TEMP 
9 x I x J x E R_SPI_MISO p R_SGA_VTT 

10 # x K x L F SGA_RESET Q R_VTT 
11 # M x N x G NTTL_RESET R R_VEE 
12 x x 0 x p H R_CMD_EN s ID_SELECT 
13 x Q x R x I MARGIN DISABLE T SPARE2 
14 x x s x T J POWER ENABLE u SPAREl 
15 # u xv x K EXEC_ROO v SPAREO 

0 
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16 # x 0 t 0 a BAY_ID<2> 0 = unrouted spares ( 3) 
17 x w t @ x b BAY ID<l> t = TCS5 (5) 

0 18 x t y t z c BAY_ID<O> @ COLUMN 2 OR 3 - - -
19 x e g d t d MIDPLANE_ID<2> w TCSS_TO_OMASTER 
20 # f a b c e MIDPLANE_ID<l> y OTCSS TO MASTER 

f MIDPLANE ID<O> z OMASTER TO TCSS 
g A/B* (a-f from DIP switch, g from connector) 

Sag7: 1 VEE 
2 VTT 

Sag8: 1 # B x A x S_TO_RO<ll .. 0> A D<7> 
2 x x D x c B D<6> 
3 x F x E x c D<5> 
4 x x H x G D D<4> 
5 # J x I x E D<3> 
6 # x 0 x 0 F D<2> 

G D<l> 
7 x B x Ax S_TO_Rl<ll. . 0> H D<O> 
8 x x D x c I FRM 
9 x F x E x J RVRS 

10 # x H x G o SPAREl 
11 # J x I x o SPAREO 
12 x x 0 x 0 

13 x B x A x S_TO_R2<11 .. 0> 
14 x x D x c 
15 # F x E x 

Sag9: 1 # x H x G 0 2 x J x I x 
3 x x 0 x 0 

4 x B x Ax S_TO_R3<11 .. 0> 
5 # x D x c 
6 # F x E x 
7 x x H x G 
8 x J x I x 
9 x x 0 x 0 

10 # B x A x S_TO_R4<11 .. 0> 
11 # x D x c 
12 x F x E x 
13 x x H x G 
14 x J x I x 
15 # x 0 x 0 

16 # B x A x S_TO_R5<11 .. 0> 
17 x x D x c 
18 x F x E x 
19 x x H x G 
20 # J x I x 

SaglO: 1 # x 0 x 0 

0 
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2 x Bx Ax S TO R6<11 .. 0> 
3 xx D x c 
4 x F x E x 
5 # x H x G 
6 # J x I x 
7 x x 0 x 0 

8 x B x A x S_TO_R7<11 .. 0> 
9 xx D x c 

10 # F x E x 
11 # x H x G 
12 x J x I x 
13 x x 0 x 0 

14 x 0 x 0 x 0 unrouted spares (5) 
15 # x 0 x 0 

16 # H x 0 x A S_CLK, B = S CLK* 
17 x x G x x c S_HOLD, D = S_HOLD* 
18 x x x F E E NET_TIME_SW, F NET_TIME_SW* 
19 x A x x x G = MASTER_TO_TCSS 
20 # B x D C H = TCSS_TO_MASTER 

============== END OF SWITCH SERVER CARD (S-card) CONNECTOR ============= 

Midplane connector notes 

1. All connectors in this section are shown looking toward the midplane, 
viewed from whichever side the connector being described is mounted 
on. 

2. The following letters are used as variables in connector names: 

a A or B - specifies which switch connects here, switch A or switch 
B 

g J or P - specifies connector gender, jack (J) or plug (P) 
All connectors on the midplane are J. All connectors that mate 
with the midplane are P (this includes daughter boards (function 
boards and switch cards), clock cables, and data cables). See also 
male/female in note 5. 

n . 0 through 7 - specifies which function board or which switch port 
connects here 

FOR EXAMPLE: 
CLKag is the generic name for a clock cable connector. 
CLKAJ is the midplane connector for the switch A clock cable. 
CLKAP is the connector on the cable that plugs into CLKAJ. 

3. The following letters are used for pin names: 

A to Z the signal name is given in a table nearby, or if the pin is in a 
repeated group the names are given where that kind of_ group first o appears in this connector 
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a spare pm 
If midplane wiring connects the pin to another spare pin, the pin is 
given a name such as SPAREl. 
If no midplane wiring connects to the pin, it is noted as an unrouted 
spare in the connector diagram. 

t TCS power, + 5 volts from the TCSS plane of the midplane 

x ground - For switch cards and function boards, see also the 
ground pin note below. · 

# ground on daughter boards (switch cards and function boards), 
but pin position is vacant on midplane connectors (see note below) 

blade contact used for main power, VEE and VIT 

4. KEYING 

DAUGHTER BOARD KEYING - The pin format and keying of con­
nectors for function boards, switch R-cards and switch S-cards is de­
signed so that none of these components can be plugged in upside down 
or into a connector not intended for that type of component. However, 
components of a given type are interchangeable. For example, a switch 
requester card (R-card) can plug into either R-card connector, but not 
into an S-card connector or a function board connector. 

DATA CABLE and CLOCK CABLE KEYING - Data cables use the 

0 

same kind of connector as clock cables. It is possible to plug a data cable Q 
into a clock connector, or a clock cable into a data cable connector. Fur-
ther, one side of the midplane connector is removed, permitting use of the 
BZLOOP loop-back card in data cable connectors. However, this per-
mits plugging a data cable or a clock cable in upside down. To avoid the 
miscabling of data or clock cables, the following procedures should be 
followed. 

o CLOCK CABLES carry a RED stripe or marking. 
DATA CABLES carry a BLUE stripe or marking. 
Observe this color coding when cabling the machine. (Note: cables 
in s0me early, in-house machines do not follow this standard.) 

o Data cables and clock cables have a key on the plug at each end of 
the cable. When the cable is properly installed, this key fits into a 
slot in the jack on the midplane. Be sure this key is on the slotted 
side of the jack when cabling the machine. 

o The BZLOOP loop-back card cannot be plugged in upside down, 
because its printed circuit board acts as a key. 
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Figure 9-19 

February 14, 1990 

5. The projecting metal signal pins are positioned on the midplane connec­
tors, not on the daughter boards or cables. This reduces the risk of bent 
pins, because the boards and cables are moved and handled, but the 
midplane is relatively protected by the surrounding cabinetry. Also, if 
the flexible contact springs in receptacles wear out, this placement makes 
repair easier because the receptacles are on the easily removable boards 
and cables rather than on the midplane. 

6. · DAUGHTER BOARD CONNECTORS 

The daughter boards (switch R-cards, switch S-cards. and function 
boards) have a more complex connector design than the cable connec­
tors. They are made of several adjacent connector modules. Each mod­
ule is given a name. Both signal and blade connector module types are 
used. Blade contact modules are used for power, For example, FOJ3 is 
function board (F) number zero (0) midplane connector (J) module three 
(3). FOJ2 is next to it on one side, and FOJ4 on the other side. 

Each daughter board signal connector module has either 15.or 20 rows of 
pin positions, with six pin positions per row. On the midplane connec-

• tors, only positions 1 through 5 have pins installed; on the daughter 
boards, all six positions have contacts installed. The pin positions are 

· numbered consecutively, left to right, not the actual pins. The midplane 
pin and daughter board pin that connect have the same number. Howev­
er, every sixth pin number is absent from these midplane connectors. 
This is shown in Figure 9-19. On daughter boards, all pins in that sixth 
column are connected to ground. (Ground is also carried on all column 
one pins in both the midplane and the daughter boards, and on many 
pins scattered throughout the connectors.) 

Midplane and daughter board pin numbering. 

1 2 3 4 5 1 2 3 4 5 6 
7 8 9 10 11 7 8 9 10 11 12 

13 14 15 16 17 13 14 15 16 17 18 
19 20 21 22 23 19 20 21 22 23 24 
25 26 27 28 29 25 26 27 28 29 30 
31 32 33 34 35 31 32 33 34 35 36 
37 38 39 40 41 37 38 39 40 41 42 
43 44 45 46 47 43 44 45 46 47 48 
49 50 51 52 53 49 50 51 52 53 54 
55 56 57 58 59 55 56 57 58 59 60 
61 62 63 ... 61 62 63 ... 

midplane (J) daughter board (P) 
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Figure 9-20 

module 
number e 

TC2000 Hardware Archirecture 

Figure 9-20 shows how the midplane's daughter board connector's are 
diagrammed. At the left is the name of each module within the connec- Q 
tor, here Sag2. The second column is the row number within the module. 
For example, module Sag2 has 20 rows of pins. The next five colums are 
·pins. Here, pin 1 is ground(#), pin 2 is an unrouted spare, an so on. The 
sixth pin in each row is not shown because it is absent on the midplane 
connectors. 

Daughter board connector legend. 

row number signal group name i pin 1 pin 5 

Jf.:1°_ ---
pin 7 3 x o x o x S_TO_FB1<15 .. 0> 

4 x x A x B 
o SPAREl 
o SPARED ' 

204 

5 # C x D x 
6 # x E x F 
7 x x x G x 
8 x H x x J 
9 x I x K x 

10 # x. x x L 
11 # M x N x 

12 xx ox o o; TO i'B2<15 .. 0> 
13 x A x B x 
14 x x C x D 
15 # E x F x 
16 # x x x G 
17 x H x J x 
18 x I x x K 
19 x x x L x 
20 # x M x N 

A D<7> 
B D<6> 
C D<S> 
D D<4> 
E D<3> 

signal names 
in group 

F TCSS_TO_MASTER 
G NET_TIME 
H CLK 
I LCLK 
J D<2> 
K D<l> 
L D<O> 
M FRM 
N RVRS 

Signals in rows 3 through 11 here are a group named 
S_TO_FBl < 15 .. 0>. The 16 signals in each such S_TO_FB (switch S­
eard to function board) group are lettered A through N, plus two spares 
( o, o ). The signal name for each of these letters is given to the right. Thus, 
pin "N.' (in row 4) carries signal D < 7 > to function board 1. Rows 12 
through 20 are another group of the same kind, so pin "Pt in row 13 car­
ries another signal, also named D < 7 > but to function board 2. A blank 
line separates rows in different signal groups, such as between rows 11 
and 12. This is only to aid the reader; there is no extra space on the real 
connector. 

7. DAUGHTER BOARD COLUMN 1 GROUND PINS 
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Figure 9-21 

February 14, 1990 

Any pin in column 1 is always ground. All daughter boards have pins 
present in column 1 of every row. The situation on the midplane is more 
complicated, however, and is discussed here. 

The midplane modules have column 1 pins in the middle three of every 
five pin positions. For example, the midplane (J) connector shown in 
Figure 9-20 has no column 1 pins in rows 1, 5, 6, 10, 11, 15, 16 and 20. The 
three pins in the middle of each five positions are bussed together within 
the connector. This structure is shown in Figure 9-21. 

Column 1 midplane pins in daughter board connectors. 

module body · 

midplane 
side of 

connector 
module 

row 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

daughter board 
side of 
connector 
module 

some modules 
have only 15 rows 

A further complication arises from the back-to-back placement of 
switch cards and function boards on opposite sides of the mid plane. In a 
few places, column 1 pin positions of a switch card fall in exactly the same 
spot as column 1 pin positions of a function board. Where this happens, 
the pin on the switch card is trimmed off so that it does not protrude be­
yond the module body into the midplane. This occurs in 9 rows on each of 
the four switch card connectors, and is shown in Figure 9-22 and 
Figure 9-23. When one of the projections is cut off, the group of three 
pins bussed within the module are still well grounded by the remaining 
two projections. 

BBN ACI Proprietary 205 



9: Switch Components TC2000 Hardware Archirecture 

Figure 9-22 Column 1 pin trimming - detail. 

mid plane 

top .module of 
function board 

connector 

• 

top module of 
switch card 
connector 

these pins 
are cut off 
on midplane side 
of module 

Figure 9-23 Column 1 pin trimming - nine pins. 

switch card connector 

(more) 

power 
function board connector 

END OF MIDPLANE CONNECTOR NOTES 
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9.3 

9.3.1 

February 14, 1990 

Butterfly II Switch Cards (B2SR, B2SS) 

Introduction 

The Butterfly II switch provides the means of communication for up to 512 
function boards. This is done via a 512 by 512 virtual crossbar which is im­
plemented using a modulo eight, 2- or 3-column Butterfly switch. "Modulo 
eight" refers to the size of the basic switching element: an 8 by 8 crossbar. A 
2-column switch connects a system with up to 64 (8 x 8) slots; a 3-column 
switch connects a 512 (8 x 8 x 8) slot system. The first round of Butterfly II 
switch development implements a 2-column switch with a maximum size of 
64 slots. Future development will expand the maximum sjze to three columns 
(512 slots). 

The 2-column switch is implemented with an equal number of two printed cir­
cuit cards, the Butterfly II Switch Requester (B2SR) card and the Butterfly II 
Switch Server (B2SS) card. 

The B2SR and B2SS cards are similar in function and in physical layout. 
Figure 9-24 shows the layout of the B2SS card. Both cards have separate VIT 
supplies for the logic circuits internal to each Switch Gate Array (SGA) chip, 
and associated trim pots. The clock fan-out is a lOOElll chip, as discussed 
later. Figure 9-25 shows what each LED indicates, and the correct B2SS 
juni.per positions for normal operation. The parts shown shaded in 
Figure 9-24 are different on the B2SR. The B2SR derives its VIT power from 
the B2SS, so it has no VIT supply. Nor does it have a TCS slave of its own, 
because it is controlled by the TCS slave on the B2SS2 card. The SGAs are 
arranged differently on the B2SR - the positions of SGA 10 and SGA 01 are 
swapped. 
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Figure 9-24 B2SS and 82SR physical layout. 
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Figure 9-25 

9.3.2 

Switch card indicators and jumpers. 

green, bulk power 

green, VEE -~ 

amber, TCS slave flag 

solder side 

green, TCS VCC 

green, VTT 

component side 

viewed as installed in machine - B2SR or B2SS 

jumper pins E1 
on left two pins = TCS slave 
single chip mode (normal) 

on right two pins = special 
programming mode 

-~ 

Q 
~ 

I jumper pins EO 
installed = TCS slave clock 
oscillator enabled (normal) 

removed = TCS slave clock 
disabled 

viewed from component side - B2SS only 

Glossary 

The terms below are used in discussing switch cards. 

FUNCTION BOARD: Any board that plugs into a Butterfly II switch for com­
munication with any other board attached to that switch (e.g., B2VME). 

MID PLANE: The interconnect printed circuit board for eight function cards 
and one (two if redundancy is configured) pair of switch cards. This board 
serves the function of a backplane but has cards on both sides, thus the name 
"midplane". 

REPLY: When a request has been issued, a server may be required to respond 
(as in the case of a remote "read"). This response message is a "reply". 

REQUEST: When a function board needs to communicate over the switch, 
the requester's SIGA attempts to initiate a message. This is a "request" .. 

REQUESTER: This refers to the part of the SIGA that initiates switch com­
munications. 
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SERVER: This refers to the part of the SIGA that responds to requests. It 
"services" the request. 

SIGA: Switch Interface Gate Array. 

TCS: Test and Control System. 

Function 

The switch cards perform three basic functions: 

• They provide either an input or an output cros"sbar for eight function 
boards. 

• They provide fan-in and fan-out for several signals that must be distrib­
uted in parallel to/from all function boards. 

• The switch card TCS slave can control and monitor the individual switch 
connections. They can enable and disable any crossbar port and can 
measure certain performance parameters of crossbar ports. 

Crossbar 

Each Butterfly II switch crossbar is implemented using four bipolar gate ar­
rays (SGAs ). Each SGA implements a 4 by 4 slice of the 8 by 8 crossbar. Each 
of the eight ports contains eight bidirectional data wires, a frame signal, and 
a reverse signai. Figure 9-26 sliuws how the SGAs are wired together. Each 
input wire is an input to two SGAs; each output wire is connected (wire­
OR'ed) to two SGA outputs. 
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Figure 9-26 

Figure 9-27 

FB 7 
FB 6 
FB5 
FB4 
FB3 
FB2 
FB 1 
FBO 

~ 
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Butterfly II eight-by-eight switch unit. 

input channels (ports) 
~~~~~~A_~~~~~-

( 17 16 IS 14 I3 I2 I1 IO\ 

if 

.; . 

4X4 4X4 
SGA SGA ~ 

11 10 

4X4 4X4 
SGA SGA 

01 00 

07 
06 
05 
04 

03 
02 
01 
00 

output 
channels 
(ports) 

The 8-bit data paths through the Butterfly II switch are bidirectional; that is, 
a request goes out and the reply comes back over the same wires. While the 
paths are bidirectional, switch messages are always initiated from function 
board to switch requester column to switch server. column to function board, 
as indicated by the arrows in Figure 9-26 and Figure 9-27. 

Switch connection initiation. 

input 
crossbar 
(Requester) 

8X8 
crossbar 

• 

~ 

cable 07 cable I7 
cable 06 cable I6 
cable 05 cable IS 
cable 04 cable 14 
cable 03 cable I3 
cable 02 cable I2 
cable 01 cable I1 
cable 00 cable IO 
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~ 

output 
crossbar 
(Server) 

8X8 
crossbar 

~ 

~ 

~ 

~ 

FB 7 
FB 6 
FB 5 
FB 4 
FB3 
FB2 
FB 1 
FB 0 
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9.3.5 Card Pairs 

A 64-slot Butterfly II switch is implemented with two types of switch card -
the B2SR and the B2SS. The B2SR contains a requester (input) crossbar, 
switch support circuitry, and several fan-out signals; the B2SS contains a serv­
er (output) crossbar, switch support circuitry, several fan-out signals, and a 
TCS slave. A switch pair (or R-S pair) refers to the B2SR and B2SS that are 
connected to the same eight function boards. The TCS slave on the B2SS con­
trols both cards of the R-S pair. There are eight R-S pairs in a 64-slot ma­
chine, arranged as shown in Figure 9-28. 

Figure 9-28 64-slot Butterfly II switch. 

input column output column 
-----------------------------------------, 
' 

FB 0-7 : switch pair ' FB 0-7 
' 

~ 0 ~ 
' FB 8-15 : switch pair 

' 
FB 8-15 

~ 1 ~ 
FB 16-23 : switch pair ' FB 16-23 

' 
~ 2 ~ 

FB 24-31 : switch pair 
' 

FB 24-31 

~ 3 ~ 
FB 32-39 : switch pair 

' 
FB 32-39 

~ 4 ~ 
' FB 40-47 : switch pair ' FB 40-47 

' 
~ 5 ~ 

' FB 48-55 : switch pair ' FB 48-55 
' 

~ 6 ~ 
' 

FB 56-63 : switch pair ' FB 56-63 
' 

~ 7 ~ 
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Switch Support Circuits 

The crossbars require a small amount of support logic. This logic includes a 
random number generator, a "hold priority" resynchronizer, and a "reset" syn­
chronizer. A 3-bit random number (RANDO, RANDl, RANDOM) is used 
for arbitration in the SGAs. RANDO and RANDl are for internal arbitration; 
RANDOM is for arbitration between.the two crossbars that share output 
wires. Thus, it is mandatory that RANDOM for SGAs 11 and 01 (see 
Figure 9-26) be opposite in value to RANDOM for SGAs 10 and 00, so that 
they don't both drive the same output port at the same time. Because a pseu­
do-random number is sufficient, a 7-bit maximum sequence generator (x7 + 
x3 + 1) is used to implement the random number. The generator can· be set 

·to all l's or all O's for testing purposes. 

The dead state for the random number generator is all l's. Once in the dead 
state, the random number generator remains there until the TCS slave injects 
a zero. For every S(R)_CLK tick that S_TO_R_TCS<RAND_RESET> is 
held high, a zero is shifteld into the low bit of the random number generator, 
and is then shifted up on the subsequent clock tick. The random number 
changes every S_CLK (or R_CLK on the B2SR) tick. Only the three top bits 
are sent to the SGAs. 

The SGA hold signal indicates to the SGAs that the current priority level of 
output ports should be held. The hold signal going false instructs the SGAs 
to forget that they have seen a high priority message. This signal is generated 
on the clock master card (B2CLK), and is distributed differentially to each of 
the switch cards. The period of the hold signal is in the range of 1to32 microse­
conds, and is TCS programmable. There are actually two hold signals distrib­
uted throughout the system: S _HOLD clocked by S _ CLK (for the B2SS cards), 
and R_HOLD clocked by R_CLK (for the B2SR cards). The SGAs clock the 
hold signal on the rising edge of S(R)_ CLK. The hold signal is clocked onto 
the switch cards on the falling edge of S(R )_ CLK, and stays low for one period. 

System Clock Distribution 

The 40 MHz system clock is fanned-out via the switch cards. There are actual­
ly two clock signals, one for the requester switch column al\d one for the server 
switch column. R _ CLK and S _ CLK are guaranteed to run at exactly the same 
frequency but may be 180° out of phase. This phase difference can be selected 
to optimize the switch cable length. If the two clocks are 180° out of phase, 
the cable delay must be large enough to have at least one ")11 bit" in the cable. 
In a system running at 40 MHz, )11 bit in the cable corresponds to an extra delay 
of half the clock period ()11of25 = 12.5 nanoseconds), or about 12 feet of cable. 
The clock phase (0° or 180° out of phase) is selected by a jumper on the clock 
master card. Each of the two clocks has its own fanout tree. Figure 9-29 shows 
the circuit, which employs an ECLiPS family chip that has low output-to-out­
put skew and is expressly intended for fan-out buffering. · 
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Figure 9-29 · Switch card clock fanout. 

214 

S CLK 
(R_CLK) 

S CLK* 
(R_CLK*) 

SGA 

P----<V 00 
(see text) 

to S_CLK (R_CLK) 
support circuits 
(single ended) 

to FB 0 

to FB 1 

to FB 2 

to FB 3 

to FB 4 

to FB 5 

to FB 6 

to FB 7 

Note that each function board is isolated from the switch clock by a buffer. 
This guarantees that a failure on a function board will not bring down the 
switch clock on other function boards. The same holds true upstream for the 
switch cards at the clock master. 

The function board clock buffer is driven by two clock signals in a scheme to 
adjust the duty cycle of the function board clock signal for highest speed opera­
tion. The circuit does this by stretching the duration of time that the clock is 
high. This is accomplished by using the De Morgan equivalent of the normal 
buffer application. Normally, the low-true "enable" input to the buffer creates 
a logical AND function at the outputs. By inverting the input and outputs, the 
"enable" input now functions as a high-true logical OR input. Because the 
input and outputs are differential, they can be inverted simply by exchanging 
the positive and negative polarity signals of each pair. 

The differential inputs of the function board clock buffer are driven over the 
shortest practical circuit board trace, while the "enable" input is driven 
through a long trace. Thus, the differential input signal controls the timing 
of the rising edges at the buffer outputs, and the "enable" input controls the 
falling edges. The length of the long trace is selected to generate the proper 

0 

0 

duty cycle of the clock signals sent to the function boards. o 
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9.3.8 NET TIME 

In some applications, such as certain kinds of circuit switching, there is a re­
quirement that all the I/O boards know the network time. The source of the 
system NET_ TIME signal may be any I/O board in the Butterfly II machine. 
The B2SS selects one of the function cards' NET_ TIME to supply this signal. 
This signal is sent back to the central clock board over the clock cable as 
NET_TIME_SW. The clock master card selects the signal from one of the 
B2SS cards and distributes it (as NET_ TIME _SYS) back out to all of the B2SR 
cards. Each B2SR card then busses the NET_TIME_SYS_FB signal to the 
eight function boards attached to it. 

The individual NET_TIME signals are transmitted single-ended with ECL 
levels from the function cards to the B2SS card; NET_TIME~SW is trans­
mitted differentially with ECL levels from the switch cards to the clock master 
card. NET_ TIME_ SYS is transmitted differentially with ECL levels from the 
clock master card to the B2SR cards; NET_ TIME_ SYS_ FB is transmitted dif­
ferentially from the B2SR cards to the function cards. In Figure 9-30, heavy 
lines indicate differential signals. 

Figure 9-30 Collection and distribution of NET_TIME. 

NET TIME SYS - -

~ 
NET TIME SW - -

-----------, 
I 
I 

------------, 
I FB O ~~~TIME I 

NET TIME SYS FB I 
-----~--=--=--J ------------, 

'-+_,le--< FB 1 ~~ TIME f 

":~h-1-+.i+l-l-.f-H NET TIME SYS FB I 
I I 

-----~-~-~-Al ------------, i switch card 0 I I FB 2 ~~{TIME I 
-----------l NET_TIME_SYS_FB f 

....-+-t---switclJ-c-;~-:;-] :::===========~ 
-----------l I · FB 3 ~~TIME I clock 

master 
-----------, NET_TIME_SYS_FB f 

switch card 2 1 --------~---l ___________ ] ------------, 
-----------1 I FB 4 ~~TIME I 

switch card 3 I NET TIME SYS FB I ___________ ] -----~-~-~--l -----------, ------------, 
switch card 4 I I FB 5 ~~$ TIME I 

-----------l NET TIME SYS FB I -----------, -----~-~-~--] 
~~-1-U.:=l_J switch card 5 1 ------------, 

-----------l I FB 6 ~~TIME I 
--t'-1-----------, NET_TIME_SYS_FB I switch card 6 1 ____________ J 

I 

-------' 
---------~-l ------------, 

--.... -----------, I FB 7 ~~TIME I 
switch card 7 I NET_TIME_SYS_FB I ___________ ] ____________ ] 
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9.3.9 TCS Slave - Communication 

Figure 9-31 

216 

---------~-------

The TCS slaves communicate with the TCS master via a 2-wire serial bus. One 
wire carries data from the TCS master to TCS slaves; the other carries data 
from TCS slaves to the TCS master. The format is similar to normal asynchro­
nous transmissions. 

Master to Slave 

The TCS master to slave communication signals are bussed on the midplane 
to the switch cards and the function boards. Resistors· in series with the mas­
ter-to-slave receivers on both the function cards and the switch cards guaran­
tee that a failure in an individual function board or switch card slave will not . 
disable the TCS bus. Both the A and the B TCS buses are received by all func­
tion boards and B2SS cards. 

Slave to Master 

The TCS slave on the B2SS card controls acces~ of the slaves to the master. 
This is to prevent a failure on one slave from jamming the slave-to-master bus. 
Figure 9-31 shows how this is implemented. If a slave erroneously drives the 
bus out of turn, the TCS master can use this circuit to determine which slave 

0 

is causing the problem, and then disable that slave's slave-to-master commu- Q 
nication. 

TCS slave to master circuitry. 

FB 0 TCSS_TO_MASTER 

FB1 TCSS_TO_MASTER 

FB 2 TCSS TO MASTER 

FB 3 TCSS _TO_ MASTER 
TCSS TO MASTER 

FB 4 TCSS_TO_MASTER 

FB 5 TCSS _TO_ MASTER 

FB 6 TCSS _TO_ MASTER 

FB 7 TCSS _TO_ MASTER 

OTCSS TO MASTER 

9 

slave to master control 
TCS slave to master 
slave 

0 
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Figure 9-32 

February 14, 1990 

Redundant Switch and TCS Support 

A Butterfly II machine may be configured with a redundant switch and/or a 
redundant TCS master. In a machine configured with two switches, each B2SS 
card in one switch corresponds to a particular B2SS card in the other switch 
- they serve the same eight function boards. The slave-to-master data signal 
from the TCS slave in each of these two corresponding B2SS cards can be sent 
(via its respective clock card) not only to the TCS master, but also can travel 
across to the corresponding B2SS TCS slave in the other switch. This allows 
a Butterfly II system to have a redundant switch without requiring a redundant 
TCS master. In Figure 9-31, the signal OTCSS_TO_MASTER is the slave­
to-master data from that corresponding B2SS TCS slave. As the figure shows, 
it is individually controlled by the local B2SS TCS slave. 

In the master-to-slave direction, no special hardware is needed on the B2SS 
to support redundant switches. 

A machine configured with both a redundant switch and a redundant TCS 
master contains two complete TCS buses, one from each master. Each B2SS 
receives data from each TCS master, and chooses which one it will listen to. 
In the slave-to-master direction, each B2SS sends data to one master directly 
through its clock card, and to the other master indirectly through the TCS slave 
on the corresponding B2SS in the other switch. See Figure 9-32. 

A machine with one switch but two TCS masters can also be supported. Each 
B2SS TCS slave receives both masters' data, as above. In the slave-to-master 
direction, each B2SS TCS slave transmits normally to its own master. A jump­
er, installed where the redundant corresponding B2SS would be, takes 
OTCSS _TO _MASTER to the other master. 

Support for redundancy. 

., 

.... 
TCSS 

' slave 
,. 

on ,,,,,._ 
.... 

typical 

B2SS ' ,. 
card 

.; .... 

from my TCS master 

to my TCS master 

from other TCS master 

to TCS slave on corresponding 
B2SS card in other switch, 

and thereby to other TCS master 

from 'res slave on corresponding 
B2SS card in other switch 
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9.3.10 TCS Slave - Control 

Power Supply Control 

The TCS slave on the B2SS can turn on and off the power supplies as well as 
margin them ±5% and ±10%. This is possible because the TCS is powered 
separately from the rest of the system. 

Board Flag LED 

There is one amber LED on each B2SR card and each B2SS card. This LED 
is used to flag the board for field service. The TCS slave can turn either (or 
both) LEDs on and off when instructed to do so by the TCS master. 

SGAControl 

Each of the eight SGAs in an R-S pair has a 6-signalinterface to the TCS slave. 
On the SGAs the signals are: 

mreset 

en tr Ir 

cntldi 

cntldo 

cntrlc 

cntrle 

This is the master reset for the SGA. It resets everything on the 
array. (asserted high) 

When this pin is pulled high, all of the input and output ports 
are (asynchronously) enabled. (asserted high) 

This is the (serial) input to the (13,·bit) SGAcontral wo!·d regis­
ter. The SGA documentation describes the command words. 
(asserted high) 

This is the (serial) output of the SGA control word register. A 
negative polarity version of this signal, cntldo*, is also gener­
ated by the SGA, but it is simply terminated on the switch card 
to minimize simultaneous switching noise within the SGA. (as­
serted high) 

The SGA control word register is clocked by the rising edge of 
ctrlc. (asserted high) 

This is the execute pin, that signals to the SGA to execute the 
current command in its control v:ord register. (asserted high) 

In a switch card pair, all eight SGA mreset pins are connected to the signal 
called S _to_ R _ TCS <RESET>, and all eight SGA cntrlr pins are also con­
nected to S _TO_ R _ TCS <RESET> . 

0 

0 

The TCS slave processor (Motorola 68HC11) uses its serial peripheral port 
(SPI) to communicate with the eight SGAs in the R-S pair. The SPI_MOSI 
(Master Out Slave In) signal is connected to the cntldi pins of each of the eight 
SGAs. The SPI _ CLK signal clocks (on the rising edge) the control word regis- Q 
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ter of all eight SGAs. The logical OR of the four B2SR card SGAs' cntldo is 
R _ SGA _DATA_ OUI; and the logical OR of the four B2SS card SGAs' cntldo 
is S_SGA_DATA_OUT. Both of these signals are among those that can be 
selected by the TCS slave to be read as SPI _ MISO (Master In Slave Out). Each 
of the eight SGAs' cntrle pins has a dedicated control wire from the TCS slave 
(SGA_EXEC_Sl1, SGA_EXEC_SlO, etc.). 

SGA Crossbar Port Control 

Each input port or output port of the cross bars may be independently enabled 
and disabled by the switch card TCS slave. Enabling or disabling a port inter­
rupts any activity on that port; the switch is not "well behaved" during an en­
able or disable. The TCS arranges the cooperation of the function boards in 
quieting switch activity before disabling any ports. 

SGA Individual Data Line Control 

The TCS slave can also individually read input port signals or assert output 
port signals - the data, frame, or reverse signal in any one of the eight SGAs 
on the switch card pair. This feature can be used in diagnostics to isolate inter­
connect or gate array failures. 

Switch NET_TIME Control 

The TCS slave on the Biss controls which of the eight NET_ TIME signals 
from function boards gets sent to the clock master card by setting the 
NET_TIME_SELECT<2 .. 0> bits to the appropriate value. 

TCS Slave - Monitor Functions 

Environment Monitoring 

The TCS slave on the B2SS monitors the voltage levels of VEE and VIT on 
both cards and the board temperatures of both cards in the R-S pair via analog 
sensors read by the analog input port of the TCS slave processor (68HCll). 

Cable Signal Monitoring 

All signals that cross the midplane connector from the clock.cable, and those 
to or from the function boards, can be selected t-0 be monitored by the TCS 
slave, via the 68HC11's SPI_MISO signal. (Some signals are monitored indi­
rectly, and spare wires are not monitored.) As mentioned above, each of the 
SGA port wires can be individually controlled (and monitored) via the SGA/ 
TCS interface. Additionally; the following signals can be monitored: 
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• On the B2SR card: MSEC65, NET_TIME_SYS_FB, and R_HOLD. 

• On the B2SS card: NET_ TIME_ SW and S_HOLD. 

Note that monitoring S(R)_HOLD also indirectly monitors S(R)_CLK, be­
cause S(R)_HOLD won't change if S(R)_ CLK is not changing. S(R)_ CLK is 
monitored only indirectly to avoid adding the circuitry that would be required 
to divide S(R)_CLK down to a TCS-readable frequency. 

TCS Slave - Card Identity 

The TCS slave on the B2SS card reads the card identity (ID) from the midplane 
connector. The fields of the switch card ID are BAY_ID<2 .. 0>, 
MIDPLANE_ID<2 .. 0>, and A_OR_B_SWITCH. A_OR_B_SWITCHis 
read in the SLOT< 0 > bit of the TCS location word. SLOT< 2 .. 1 > are hard­
wired to "O" on the B2SS card. In addition, bits TYPE< 3 .. 1 > of the TCS 
location word are hardwired to binary "000" to indicate a B2SS-type switch 
card. The TYPE< 0 > bit is wired to the midplane connector pin COL­
UMN_ 2 _OR _3, for use in 3-column machines. On the midplane, TYPE< 0 > 
is wired to "O" (ground) for a 2-column machine, and to "1" (open) for a 3-col­
umn machine. The TCS slave processor on the B2SS card stores the card's 
serial number and revision number in (on-chip) EEPROM. The B2SR card's 
serial number and revision number are stored in a TCS-programmable, 
256-bit serial EEPROM that is read by the TCS slave. 

65-millisecond Pu!se 

A B2SR card contains fan-out circuitry for the 65-millisecond pulse. This sig­
nal, MSEC65, is used by the SIGA to maintain the synchronization of the real­
time clock. The ECL signal MSEC65 is received _by the B2SR differentially 
from the clock master card. It is clocked on the B2SR by the rising edge of 
R _ CLK and is fanned-out differentially to each of the eight function boards. 
The individual fan-out on the B2SR card insures that a failure on any one func­
tion board will not interfere with the 65-millisecond signal on any of the other 
function boards. 

Printed Circuit Board 

The B2SS and B2SR boards are each 11-inch by 16.9-inch, 10-layer - 4 signal, 
6 power/ground - controlled impedance (500 stripline and microstrip) PC 
boards. Figure 9-33 shows the use of the ten conductive layers. 
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Figure 9-33 
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B2SS and B2SR board layers. 

COMPONENT SIDE 

SILKSCREEN 
SOLDER MASK 

1 SIGNAL 

2 GROUND 

3 SIGNAL 

4 VEE 

5 SPLIT-USE PLANE 

6 SPLIT-USE PLANE 

7 GROUND 

8 SIGNAL 

9 GROUND 

10 SIGNAL 
SOLDER MASK 
SILKSCREEN 

SOLDER SIDE 

Characteristic Impedance 

The high speed ECL circuitry on the J:>oard requires a controlled impedance 
environment to operate properly. Simulations show that 500 ±10% is an ac­
ceptable range. All switch port signals (FRAME, REVERSE, D < 7 .. 0 >)are 
parallel terminated in 500 to VTI at both ends. This is required for each of 
the bidirectional lines, so that no matter in which direction the line is being 
driven, it will be terminated at the receive end. Note that this makes the load 
on the SGA drivers 250 (500 in parallel with 500 = 250). Thus, the SGA'.s 
drivers are all 250 drivers. Drivers that are "off" present a high impedance 
to the wire. 10-pin, 6-resistor SIPs that include bypass capacitors and extra 
V1T leads were chosen for termination to reduce switching noise at the resis­
tors. 
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Signal 
Function 

frame 
reverse 
data7 .. dataO 
spares 
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Routing 

The pin assignments of the 301-pin SGAs were made with the routing of the 0 
switch cards in mind. The most dense routing on the switch card is iq the 
neighborhood of the four SGAs and their terminators. Given the regularity 
of the routing, and the pinout of the SGA, the B2SR and B2SS were routed 
with four signal layers. 

Displays and Switches 

There are no mechanical switches on the B2SS or the B2SR. There are five 
LEDs on each card. 

green - VEE power-on indicator 
green - VTI power-on indicator 
green - TCS VCC power-present indicator 
green - main power (±24 volts) power-present indicator 
amber - TCS flag, to aid field service in locating the board 

Signal Lists 

These signals go to the midplane connector, from where they are routed as de­
scribed below. See the midplane description for pinouts. 

Switch Card to Switch Card 

On the midplane, these signals are routed to a switch cable. The R TO Sn 
and S _TO_ Rn signals for a given pair are routed to the same switch cable. 
There is one set of these signals per port, n = 0 to 7. 

B2SS B2SR 
Name Name 

S_TO_Rn<FRM> R TO Sn<FRM> 
S_TO_Rn<RVRS> R_TO_Sn<RVRS> 
S TO Rn<D7 .. DO> R_TO_Sn<D7 .. DO> 
S_TO_Rn<SPAREl .. 0> R_TO_Sn<SPAREl .. 0> 

0 

summary: 12 signals times 8 switch ports = 96 

Signal 
Function 

frame 

222 

Switch Card to Function Board 

There is one set of these signals for every function board, n = 0 to 7. 

B2SS 
Name 

S_TO_FBn<FRM> 

B2SR 
Name 

R TO FBn<FRM> 
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reverse 
data7 .. dataO 
65 msec. 

requester clock 

server clock 

net time 
TCSS to master 
spares 

S_TO_FBn<RVRS> 
S_TO_FBn<D7 .. DO> 

R_TO_FBn<RVRS> 
R TO FBn<D7 .. DO> 
R_TO_FBn_MSEC65 
R_TO_FBn_MSEC65* 
R_TO_FBn_CLK 
R_TO_FBn_CLK* 

S_TO_FBn_CLK 
S_TO_FBn_CLK* 
S_TO_FBn<NET_TIME> 
S_TO_FBn<TCSS_TD_MASTER> 
S_TO_FBn<SPAREl .. 0> R_TO_FBn<SPAREl .. 0> 

summary: 16 signals times 8 function boards = 128 

February 14, 1990 

The signal below is bussed from each B2SR card .to the function boards. 

NET_TIME_SYS_FB 
NET_TIME_SYS_FB* 

Clock Cable to Switch Card 

Signal 
Function 

R clock 

R hold 

65 msec. 

system net time 

s clock 

s hold 

switch net time 

TCS master to slave 
TCS slave to master 

B2SS to B2SR TCS 

Signal 
Function 

ID select 
random control 

B2SS B2SR 
Name Name 

R CLK 
R_CLK* 
R HOLD 
R HOLD* 
MSEC65 
MSEC65* 
NET_TIME_SYS 
NET_TIME_SYS* 

S_CLK 
S CLK* 
S_HOLD 
S_HOLD* 
NET_TIME_SW 
NET_TIME_SW* 
MASTER_TO_TCSS 
TCSS_TO_MASTER 

Name 

Serial Peripheral Interface 

S_TO_R_TCS<ID_SELECT> 
S_TO_R_TCS<RAND_PRESET> 
S_TO_R_TCS<RAND_RESET> 
S_TO_R_TCS<SPI~MOSI> 

S_TO_R_TCS<R_SPI_MISO> 
S_TO_R_TCS<SPI_CLK> 

SCA TCS command execute S_TO_R_TCS<EXEC_ROO> 
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SGA reset 
command register clear 
command register latch 
EGL power control 
voltage margining 
VEE voltage monitor 
VTT voltage monitor 
SGA VTT voltage monitor 
temperature sense 

·spares 

Power 

TC2000 Hardware Archirecture 

S TO R TCS<EXEC ROl> - - - -
S TO R TCS<EXEC RlO> - - - -
S_TO_R_TCS<EXEC_Rll> 
S_TO_R_TCS<SGA_RESET> 
S_TO_R_TCS<NTTL_RESET> 
S_TO_R_TCS<R_CMD_EN> 
S_TO_R_TCS<POWER_ENABLE> 
S_TO_R_TCS<MARGIN_DISABLE> 
S_TO_R_TCS<R_VEE> 
S_TO_R_TCS<R_VTT> 
S_TO_R_TCS<R_SGA_VTT> 
S_TO_R_TCS<R_TEMP> 
S_TO_R_TCS<SPARE2 .. SPAREO> 

There are two power levels required for the ECL circuitry on the B2SR and 
B2SS: VEE ""' -4.5 volts and VIT ""' -2 volts. ('The precise voltage range to 
which each of these is set during manufacture and repair is given in the test 
specification document.) Both the B2SR card and the B2SS card have connec­
tions to the midplane main power and main power return ( + 24 volt and -24 
volt) planes. The B2SS card generates VEE and VIT from ±24 volts, and 
busses VIT to the B2SR card via a bus bar on the midplane. The B2SR card 
generates its own VEE from main power. 

0 

The TCS slave circuits are powered by the centrally regulated TCS + 5 volt Q 
supply. The B2SS card and the B2SR card midplane connectors have five TCS 
+ 5 pins each. The TCS slave can turn on/off VEE and VTI; and can margin 
them ±10% and ±5% while monitoring the voltage levels through its ADC. 

There is one green indicator LED per power supply (main power, VEE, VTI; 
TCS + 5) to indicate that power is present. 

Additional topics - Future expansion of this section (B2SR and B2SS) should 
cover the following topics. 

• functional block diagram - adapt from page 2 of schematics 

• further details of TCS operation 

o description of TCS slave from programmer's viewpoint 

o accuracy of analog margining and sensing - from Cinsy 

• glossary part should be merged into an overall glossary 
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The Butterfly II Clock Card (B2CLK) 

Introduction 

The B2CLK provides the switch clocks and other timing signals for a Butterfly 
II system of up to, and including, sixty-four function board slots. 

All of the parts of a Butterfly II switch network are synchronous between the 
function board Switch Interface Gate Arrays (SIGAs). High-speed data 
transfer across a physically large synchronous machine demands great preci­
sion in the clock distribution system, so that the clocks received by each switch­
ing element are closely matched under all circumstances. Sign.al quality must 
also be held as high as possible, all without making the machine infeasible to 
build or market. The circuitry of the B2CLK is optimized to provide the tight­
est tolerances and best signal quality possible to the clock cables which distrib­
ute these clocks and other.signals throughout the machine. 

The clocks may be generated by either a fixed-frequency crystal oscillator, in 
the fashion of more traditional computers, or from a programmable frequency 
synthesizer. The synthesizer will allow the system to be operated through a 
range of frequencies. 

A Butterfly II with more than sixty-four slots will require a two-level hierarchi­
cal clocking system with a master clock card and up to eight slave clock cards. 
Each slave clock card will take the place of the B2CLK for one sixty-four slot 
subsystem. · 

For a low-level description of the board-level implementation, see the B2CLK 
Logic Description and Logic Diagram. 

Overview 

The B2CLK generates the Requester and Server clocks (Reik and Selk) for a 
Butterfly II machine. The requester clock is distributed through the B2SR re­
quester switch card to the function boards and the requester portion of the 
SIGA. It is used to synchronize the transmission of downstream or "request" 
messages and the reception of upstream replies or "responses". The server 
clock is likewise distributed through the B2SS server switch card and the server 
portion of the SIGA. Selk synchronizes the reception of requests and the 
transmission of responses. Both signals are carried as differential ECL pairs 
with a 50% duty cycle. Reik and Selk are treated independently, though they 
share common ancestry and pains are taken to minimize their divergence. Al­
though their frequencies will be matched, there is a configurable phase differ­
ence between the two. In addition to Reik and Selk, several other, non-clock 
signals are conducted between the B2CLK and the switch cards. The major 
signals in this category are listed below. 
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• Sixty-five milliseconds is a differential ECL periodic timing signal used 
by the SIGAs. This signal serves to maintain global synchronization of 
Real-Time Clocks (RTCs) across all the SIGAs in the machine. Sixty- Q 
five milliseconds is synchronized with Reik. While the period of this sig-
nal is fixed . at 65 ms, its relationship to Reik is programmable to 
compensate for different Reik frequencies. 

• Rhold and Shold are also differential ECL periodic timing signals, and 
are used by the SGAs. The hold signal is required for the priority control 
scheme of the SGA internal output-port arbitration circuitry. These sig­
nals are identical except that Rhold is synchronized with Reik, and Shold 
is likewise associated with Selk. A programmable divider converts the 
switch clock into the hold signal which is the precursor to both Rhold and 
Shold. 

• Net time is optionally generated by one or many function boards, and 
a selected version of it is then fanned out to all the function boards. The 
architecture of the Butterfly II performs both fan-in and fan-out in lay­
ers. Each switch card pair selects' one signal from the eight function 
boards to which it connects, and passes that one on to the. clock card. 
The B2CLK selects one output from the switch cards and fans it back 
to all switch card pairs. Each pair then fans the signal to its eight function 
boards. All of the selection is performed by the TCS, which can sample 
the selection to decide whether it seems reasonable (active). The up­
stream signal is called net-time-switch, while the signal sent back out 
is called net-time-system. Net time is not synchronized at any level in Q 
this selection/distribution subsystem. It is carried by differential ECL . 
throughout. 

• Test and Control System serial interface signals from the TCS master 
processor are fanned out to each midplane through the B2CLK. The seri­
al interface responses from the TCS slave processors (also referred to as 
TCSSP or MC68HC11) are likewise fanned in and returned to the master 
processor. The signals are CMOS in both directions. 

The B2CLK also communicates with the TCS master processor(s) through bi­
directional TCS serial ports. One of the ports may be used to interconnect 
two B2CLKs so a TCS master may communicate with two B2CLKs through 
one cable. The interconnection schemes are discussed more fully in section 
9.4.10. 

Fallback Techniques 

Butterfly II switch timing is quite aggressive. Two interdependent techniques 
have been devised to cope with timing problems in a reasonable manner, 
should they arise. Refer to section 9.4.7 for a discussion of different switch 
data (configuration) cable lengths. 
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The first technique, modifying clock phases and switch data cable lengths, will 
compensate for fairly minor performance problems such as large clock skew 
or poor cable quality. In this case the maximum length of a one-bit cable has 
been reduced by an unforeseen source of timing variability or delay, so that 
it cannot interconnect a thirty-two slot machine. The clock phases are 
changed to a one-and-a-half-bit scheme that requires long cables. A machine 
of this type can run at full speed with almost no degradation in the communica­
tion rate or latency. The main disadvantage for such a machine is that the ex­
cessively long cables boost system cost and make packaging difficult. 

Another possibility is that a component such as a gate array fails to operate 
at a switch speed of 40 MHz. In this case the frequency synthesizer is set for 
a frequency lower than 40 MHz, to a point where all components will function 
reliably. For a machine connected with one-bit cables, the high-speed lengths 
are fully compatible with the lower speed so no hardware modification is nec­
essary. Any one-and-a-half-bit cables in the machine will need to be length­
ened for the lower speed, or they may be replaced with one-bit cables because 
the maximum allowed length of the one-bit cables is extended when the ma­
chine speed is reduced. The penalty for this repair is clear: switch bandwidth 
is diminished by an amount proportional to the reduction in switch speed. 

Fixed Crystal Clock Generation 

A commercial, moderate-precision TIL 80 MHz hybrid crystal oscillator will 
supply the fixed-frequency clock. Since it will be divided down to a 40 MHz 
signal by a flip-flop, its output duty cycle is unimportant. The precision of 
this oscillator will probably prove inadequate for long-term time-of-day time­
keeping. It is assumed that a more precise time base will be available from 
a third-party peripheral (VME) board in machines which require good long­
term timekeeping. 

Frequency-synthesized Clock Generation 

A programmable frequency synthesizer is included in the B2CLK to facilitate 
the operation of the machine at frequencies other than 40 MHz. This feature 
will enable the manufacturing group to margin system timing as a part of quali­
ty assurance inspection. Control and monitor functions related to the synthe­
sizer are fully under the control of the TCS, in keeping with the philosophy of 
that system. The TCS interface will also enable the TCS to test the synthesizer 
- this is particularly valuable for the analog circuitry incorporated in the pha­
se-locked loop. The synthesizer is locked to the 80 MHz crystal oscillator, so 
its long-term precision and stability will be equal to that of the crystal. 

The Real Time Clock (RTC) circuitry in the SIGA imposes a restriction on the 
frequencies at which a Butterfly II may operate and maintain correct real time. 
The RTC is run by the output of a programmable one-microsecond prescaler. 
'Uiis prescaler divides the switch frequency by a programmed value to produce 
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a 1 MHz signal. The prescaler will only operate correctly if the switch frequen­
cy is an integer multiple of 2 MHz. In addition, the design of the frequency 
synthesizer allows an output range of only about 2:1, which has been placed 
between 30 and 44 MHz (switch clock frequencies). 

A frequency-synthesizing phase-locked loop (PLL) is comprised of many un­
usual components. Also, the B2CLK integrates several features into the tradi­
tional PLL design, further obfuscating the PLL function. A simplified block 
diagram of the B2CLK synthesizer, presented in Figure 9-34, is described here 
to introduce the components and issues related to frequency synthesizer de­
sign. 

Block diagram of the B2CLK frequency synthesizer and clock 
selection circuitry. 

crystal oscillator 

voltage-controlled 
oscillator 

,......-------------
! SAA1057 
J integrated PLL JC 

phase 
+k 

error 

J detector 
+n 

[ control 
·; f--

J 

division 
and 

delay 

The heart of any phase-locked loop is a phase detector, which appears near the 
middle of Figure 9-34. This detector compares two signals and produces an 
(analog) signal describing the sign and magnitude of the difference between 
their phases. The phase difference or error signal is presented to an integrator, 
which changes its output level according to the "correction" specified by the 
phase difference signal. If the phase detector produces a positive error pulse, 
for example, the integrator will .increase the value of its output. The output 

0 

0 

level of the integrator is called the PLL control voltage, because it specifies the Q 
output of the voltage-controlled oscillator or VCO. This oscillator produces 
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a frequency proportional to the control voltage. In the B2CLK, a multiplexer 
(mux) determines whether the master clock source is derived from the synthe­
sizer or from the crystal oscillator. In order for the PLL to function, this multi­
plexer must select the VCO signal. This VCO output is· further processed by 
B2CLK-specific division and delay circuitry, but a version of the VCO signal 
is finally presented back to one of the phase detector inputs, through a pro­
grammable divider, labelled "+n" here. The other phase detector input is 
supplied by a form of the board's crystal oscillator, after division by two stages 
offixed prescalers, labelled "+20" and "+k". The +n counter is programmed 
by the TCS slave processor to divide the VCO-derived signal such that its fre­
quency will match the output of the +k section if the VCO produces exactly 
the desired frequency. The phase detector impels the VCO toward the desired 
frequency through a form of negative feedback. 

Imagine, for example, that the B2CLK has just been turned on. It is reasonable 
to suppose that the control voltage is zero at this point, since there has been 
no signal to integrate. Some value is loaded into the +n counter, and immedi­
ately the phase detector becomes active. It observes that the VCO-derived, 

• or variable frequency is lagging the crystal or reference frequency, so it sends a 
positive correction signal with large magnitude to the integrator. This signal 
results in an increase in th" control voltage level, which boosts the VCO fre­
quency (closer to the desired frequency), and the process continues until the 
desired frequency is reached. When the frequency (and phase) of the variable 
and reference signals become matched, the error signal from the phase detec­
tor becomes very quiet, reporting only very small errors resulting from capaci­
tor leakage, temperature changes and the like. In this quiet state, the PLL is 
said to be locked, because the variable frequency and phase is actively matched 
(locked) to that of the reference frequency. The B2CLK synthesizer reports 
this locked state to the TCS slave processor. 

Note that the discussion above treats the terms "PLI.:' and "frequency synthe­
sizer" as roughly equivalent. The frequency synthesizer is properly a subset 
of PLL, because the synthesizer uses a programmable divider in the path of 
the variable frequency, while the PLL may use a fixed divider instead. Since 
the divider value in the Butterfly II synthesizer is programmable, it can gener­
ate a variety of frequencies, while a fixed-divider PLL can produce only one 
frequency. 

SAA1057 Frequency Synthesizer 

The Signetics SAA1057 is a highly integrated phase-locked loop radio tuning 
IC that supplies most of the circuitry required for the frequency synthesizer. 
It includes a prescaler, fifteen-bit programmable frequency-division counter, 
two phase detectors, a reference oscillator, programmable current amplifier 
and op-amp, plus logic to control the phase detectors and a serial command 
interface, all integrated into a single eighteen-pin DIP package. 
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The serial interface is synthesized from three direct (non-multiplexed) I/O 
lines from the TCS slave processor. 

The programmable counter that determines the set frequency has tremendous 
resolution. It yields adjustability in 2 KHz steps. While this is probably more 
resolution than is required, no premium is paid for it. 

One of the phase detectors uses an analog sample-and-hold technique to pro­
vide clean and precise feedback while in the lock state. The analog phase de­
tector does not .have sufficient corrective power to acquire a lock to a new 
frequency, as is required when the machine is turned on. To acquire lock, a 
digital phase detector is also included which is activated in addition to the ana­
log detector when a new frequency is set. The digital unit 32 times faster than 
its analog counterpart, and generates a correction signal 100 times more pow­
erful, so initial lock is quickly achieved. Once lock is acquired, the digital de­
tector is disabled, and the TCSSP is notified. The detection of lock is often 
difficult with less-integrated PLLs. 

The reference oscillator is designed for use with a 4 MHz crystal, but may be 
supplied by a 5V p-p square wave with the addition of two passive compo­
nents. A CMOS buffer will produce this square wave from a 4 MHz TTL signal 
derived from the 80 MHz crystal oscillator. 

0 

The comparatively narrow range of frequencies (30-44 MHz) demanded of the 
synthesizer enables the design to incorporate wide frequency margins in the Q' 
typical case. These margins, along with the negative feedback PLL architec-
ture, will compensate for variations in component values and other factors, 
eliminating the need for hand-tuning of the loop filter and VCO components. 

The optimization of the SAA1057 for consumer radio circuits presents surpris­
ingly few "quirk" side effects. The main oddity is thatthe feedback frequency 
from the VCO must be divided by four to produce a nominal 20 MHz signal. 
This is because the FM input, which could take the 80 MHz directly, is not 
guaranteed to work below 70 MHz, preventing the computer from being run 
below 36 MHz. The AM input is rated for 512 KHz to 32 MHz, so the VCO, 
divided by four, will not be constrained by the input range of the circuit. Com­
pensation for this division, along with other details, will be part of the TCS 
master routine for frequency selection and control. 

The other small disadvantage of the chip is that the actual phase of the refer­
ence frequency is inaccessible from the pins. This effectively prevents the 
alignment of phase between the 80 MHz crystal oscillator and the VCO operat­
ing at 80 MHz. Such an alignment would be difficult to achieve even if the 
phase detectors were built from scratch, but it might have made it possible to 
switch between the fixed and variable clocks without interrupting a working 
computer. 

Unfortunately, however, the IC is single-sourced from Signetics, Inc. If the 
part becomes unavailable, however, the B2CLK may be stuffed without it (and 

BBN ACI Proprietary February 14, 1990 

0 



0 

0 

0 

TC2000 Hardware Archirecture 9: Switch Components 

February 14, 1990 

possibly without the other synthesizer components), and used in the fixed 40 
MHz mode. 

Loop Filter 

The loop filter components of a PLL are charged with converting the AC error­
correction signal into a noise-free DC control level for the VCO. This is im­
plemented with an analog integrator followed by a passive low-pass filter. The 
SAA1057 incorporates an op-amp so that the integrator is implemented with 
a total of two external components. The simplicity of this loop filter is feasible 
because the timing requirements for the output frequency in the B2CLK are 
quite forgiving compared with the analog environment for which the IC was 
designed. For example, high-order loop filters are common ·in high-perfor­
mance communications gear, but there they act to minimize FM sidebands in 
equipment which must achieve lock rapidly. In contrast, the B2CLKfrequency 
synthesizer, by virtue of its digital output, is highly tolerant of sidebands, as 
it is of static phase shift, and it is unusually stable because its lock time is on 
the order of 100 milliseconds. 

MC1648 Voltage-Controlled Oscillator 

The MC1648 is a lOKECL VCO suitable for generation of frequencies between 
8 MHz and 220 MHz. Internal buffering and an automatic gain compensation 
stage provide a clean square wave at ECL levels across a wide frequency range. 
The resonant tank circuit is external to the VCO, so properties such as fre­
quency range and control voltage range may be matched to its application. 

Unfortunately, these external components include a varactor diode and a to­
roidal inductor, both of which are somewhat troublesome for manufacturing. 
The varactor has highly variable parameters (typically ±10% ), and is difficult 
to analyze. This variability seems to be the factor responsible for the inclusion 
of a tunable capacitor in many tank circuits. The B2CLK tank circuit has a 
control voltage range from 2V to lOV. The toroid is physically cumbersome, 
though small, and probably must be custom-wound. Also, the lOKECL 
MC1648 will force the addition of a small lOKECL power supply (a more nega­
tive VEE supply than that for lOOKECL) to the B2CLK. 

TCS Monitor and Control Functions 

The MC68HC11 TCSSP includes powerful circuitry which can be exploited for 
observation and manipulation of the PLL. The built:..in analog-to-digital con­
verters (ADCs) and event-triggered timers are particularly useful for measur­
ing the unusual mix of analog circuitry in the PLL. 
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TCS - Initialization and Debug Functions 

A measure of the VCO control voltage is useful for several different tasks. Q 
Note, however, that the range of the control voltage will exceed the native range 
of the MC68HC11 ADCs, so an attenuator is placed between the loop filter 
and the TCSSP. 

During the initial test of a stuffed B2CLK, a TCS master routine may run a 
test to measure the actual VCO control voltage versus frequency curve of the 
PLL as a whole. This would take into account the real values of each compo­
nent, and yield the critical parameters for each B2CLK individually. In addi­
tion to providing information for the pass/fail evaluation on the manufacturing 
floor, this information would prove useful to anyone charged with reworking 
a failed board. A brief summary of the critical· parameters may be.stored in 
the EEPROM of the TCSSP itself, so that the information is sure to "stick" 
to the corresponding circuitry. This test may be run as many times as desired, 
and would take approximately one minute to complete. 

A second parameter of interest is the time required to lock the set frequency. 
The MC68HC11 features a built-in, event-triggered timer that is well matched 
to this measurement, requiring no additional components. The TCSSP code 
starts the counter immediately after triggering the SAA1057 to seek a new fre­
quency. A TCS master program could run a small routine to produce a table 
of time-to-lock versus set frequency. This table may be quickly digested to 
find minimum and maximum set frequencies which will lock within a specified 
tfuime. Thefse two ?umbeLrs ~ohnsu1 ·1tu;~ a very hi~h-l~vel statem~nt1· about the Q 

nction o. the ent1re PL , w:t a o. its analog c1rcmtry and vanab e parame­
ters. By further comparing this minimum-maximum range to a specification 
for the board, the TCS master would have enough information to issue a pass/ 
fail declaration on the entire PLL without external circuitry or testing. These 
limits will be stored in MC68HC11 EEPROM as capacity allows. 

TCS - Routine Functions 

The second category ofTCSSP-PLLinteraction is functions that will common­
ly be encountered by users of an established, production Butterfly II machine. 
Here, the TCSSP simply sets the desired frequency and checks for proper op­
eration. 

Early in the boot sequence of the machine, the TCS master will assemble a 
command string to set the frequency and other parameters of the SAA1057. 
Presumably, the frequency information will come from a file of default system 
settings or from a manual entry. The command string will be passed to the 
B2CLK TCSSP and inserted into the SAA1057 serial port, and the frequency­
seek procedure will begin. 

After a short time, the TCSSP will observe the transition to locked state. It 
will report this information to the TCS master, which may then proceed with 
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the boot sequence. The TCSSP may also return time-to-lock and the magni­
tude of the locked control voltage which the TCS master could compare to a 
historical table of PLL performance. 

Clock Selection and Buffering 

The master timing source for both Reik and Selk is derived either from a fixed 
crystal oscillator that supplies 80 MHz, or from a programmable frequency 
synthesizer that can produce a range of frequencies including 80 MHz. The 
selection is controlled by the TCS slave processor. The selected source is then 
divided by two to produce a nominal 40 MHz signal (with 50% duty cycle). 
Although the B2CLK hardware supports changing the clock source while a 
machine is powered up, the TCS master processor should warn the user that 
the resulting effective phase shift will probably violate timing assumptions 
made by the hardware. 

Active components in the
1
.clock Jines are notorious for degrading the delicate 

timing of a machine such as the Butterfly II computer, but the clock selection 
and buffering section is an exception. The TTL crystal oscillator is actively 
translated to lOOKECL, and then a multiplexer selects the crystal or phase­
locked oscillator to produce the master 80 MHz source. All of this occurs be­
fore the divide-by-two stage, however, so degradation of the duty cycle is 
unimportant (as long as a minimum pulse width to the divide-by-two is en­
sured). Further, all of the circuitry in this section is an example of common 
ambiguity, so it does not contribute to the degradation of the clock signal in any 
wcy. This "free" logic allows the TCS to control the selection of clock, as the 
philosophy of the TCS dictates it should. (Here, the TCS philosophy refers 
to the desire to control virtually all of the machine's configuration with the 
TCS.) Note that the other side of the clock configuration coin, the selection 
of clock phase, cannot reasonably be made into common ambiguity and there­
fore must violate the TCS philosophy. 

Timing Interface Circuitry 

The timing of the B2CLK is designed in two parts. The timing interface circuit­
ry buffers or latches each signal directly into the clock cable connectors. The 
routing for the timing interface circuitry has been balanced by hand to mini­
mize skew between output channels. The rest of the circuitry is considered 
to have more "local" timing requirements: it need only satisfy the input re­
quirements of the timing interface section. 

' 
Termination Jumper Blocks 

If an ECLiPS part is used for the clock buffer, each of its outputs must be ter­
minated to achieve low skew between output channels. Between one and eight 
clock cables will be connected to the B2CLK, each with its own output driver 
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from the part. To ensure that all eutputs are terminated, then, each of the out-
put channels must be ''artificially" terminated when no clock cable is con- Q 

. nected. Eight jumper blocks on the B2CLK optionally terminate the clocks 
on the channel to which each is attached. In order to keep the transmission 
line stubs very short when the termination is disconnected, an inexpensive 
relay must not be used, and a simple electronic switch would add considerable 
noise or timing variability. It is infeasible, then, for the TCS to control this 
local termination. The position of each jumper block may be read by the TCS 
slave processor, so the TCS master can check the settings against a file of stan­
dard configurations. 

234. 

Phase Jumper Blocks 

1\vo kinds of switch data cables may be used in two-column Butterfly II ma­
chines: one-bit and one-and-a-half bit electrical lengths. When two SGAs are 
run with their clocks in phase (matched), then data is sent on a rising edge and 
received on the next, so the path between them is said to have "one bit in the 
cable". If the SGAs are too far apart for that to be feasible, they are run with 
their clocks 180° out of phase, and the sampling edge is placed an extra half­
cycle away from the originating edge, placing a total of "one-and-a-half-bits" 
in the cable. This timing is shown in Figure 9-35. 
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Figure 9-35 
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Definition of number of bits in the cable. 

one-bit cable 

requester clock 

server clock 

one-and-a-'-half-bit cable 

· requester clock 

server clock 

data driven "r-
corresponds to 
request direction 

corresponds to 
response direction 

The range of physical cable lengths for both types of cable is highly dependent 
on system timing variables, including the AC parameters of the SGAs and oth­
er logic, board wire routing, and switch frequency. At 40 MHz and using the 
first version of SGA with ECLiPS buffers, the maximum length for a one-bit 
cable is currently about 2)1; feet, and the minimum for a one-and-a-half bit 
cable is over 9 feet. In practice, the cables will probably be as short as possible, 
within the range indicated by the timing model and still compatible with ·pack­
aging. Cable length is also limited by attenuation, but an experiment per­
formed on ten-foot samples of both brands of cable currently being explored 
indicates that attenuation will not be an obstacle for cable lengths likely to be 
used. No phase shift resolution smaller than 180 ° is useful because it becomes 
asymmetric with respect to data direction. The 180° shift is also easy to imple­
ment-the differential pair carrying the clock signal is simply crossed. 

The phase of R and S clocks to each clock cable will depend on the configura­
tion (size) of the machine and on the timing performance of its components. 
Four-channel wide shunt blocks on the BZCLK card control the phase of the 
clocks for each channel, with the exception of phases which are invariant 
across all configurations. 
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Figure 9-37 
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The functional layout of the jumper blocks is shown in Figure 9-36, and exam-
. pie phase jumper positions appear in Figure 9-37. Note that a total of four 
clock wires arrive at each clock cable connector: two wires comprise a differen- Q 
tial pair for Reik; another pair handles Selk. The discussion is geared for sixty-
four slot machines, but is applicable to smaller machines as well. 

Phase and termination jumper blocks. 

R s 
4 

0 

1 

2 

3 to 
clock cable 

4 connectors 
5 

6 

7 

oo 180° 0° 180° t~rm no term 

Phase jumper blocks - examples. 

Example A Example B ExampleC 

Ro/so R0 /S 0 Ro/So 

0/0 0/180 0/0 

0/0 0/180 0/0 
0/0 0/180 0/0 

0/0 0/180 0/0 
180/180 0/180 0/0 

180/180 0/180 0/0 

180/180 0/180 0/0 

180/180 0/180 0/0 

Example 'W.' above is the one most likely to appear in a production sixty-four 
slot machine. The "top" half of the machine is interconnected with one-bit 
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cables, as is the "bottom" half. Cables between the halves are too long to be 
one-bit, s.o they are run as one-and-a-half bits. 

Example "B" is a contingency plan which may be used in early machines. 
Here, the timing of one-bit cables is such that they must be shorter than the 
longest length required to build a thirty-two slot machine. The scheme used 
in Example A becomes impossible in that case, so instead the longer one-and­
a-half-bit cables are used throughout the machine. 

Example "C" is a more radical contingency plan. If some part of the system 
fails to function near 40 MHz, and thereby forces the switch frequency down, 
it may become possible to cable an entire sixty-four slot machine with one-bit 
cables. While it may sound odd to optimize cable length for such an unlikely 
case, it proves sensible given that one-and-a-half-bit cables designed for high 
speed will not work at much slower speeds. Also, slow-speed one-and-a-half­
bit cables would be extremely long and quite difficult to package. 

Note that three large phase jumper blocks are required to support all three 
of these scenarios. As hardware becomes proven, some of the contingency 
plans may be discarded, allowing more of the phase options to be hard-wired. 
The selected jumper block features very short internal electrical lengths which 
is important for preserving noise immunity. 

The TCS is capable of reading the position of every jumper block on the 
B2CLK. The TCS Master will therefore be able to read the whole configura· 
ti on of the B2CLK and verify the settings compared to a "standard configura· 
tions" file. 

PHASING AND FAIRNESS 
If part of the machine is operated on a different clock phase than the rest of the 
machine, the two parts will have different access times to reach a given re· 
source (such as a memory module). If function boards in both parts simulta· 
neously begin accesses to one resource, a function board in the part of the 
machine with faster access will arrive first, and establish a switch connection if 
the resource is free. The access attempt from function board(s) in the part with 
slower access will then lose. If the random strategy is used for switch transmis· 
sions, this unfairness effect will be slight, perhaps unnoticeable. If the slotted 
strategy is used, however, the unfairness can be pronounced. Therefore, if the 
slotted strategy is to be used at all, it may be desirable to cable the·machine 
entirely with one size of switch data cables and run it entirely on one clock 
phase. 

~'''''''''''''''''''''''''''''~'''''''''''''''' 
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Generation of 65 Milliseconds and Hold 

Sixty-five milliseconds is a periodic signal, synchronized to Reik, that has a 
period of exactly 216 (65,536) microseconds, and a pulse width of one.switch 
clock period. The production of this signal is complicated somewhat by the 
frequency synthesizer; a programmable divider is required to compensate for 
the programmability of the synthesizer, since its output is divided to produce 
the sixty-five millisecond period. This programmable divider is functionally 
identical to the prescaler for the same purpose in the SIGA-in both cases it 
is loaded with a value related to the actual switch frequency. The five-bit set­
ting is controlled by the TCSSP, and will accept the same value as the SIGA 
prescaler. 

The hold signal is also periodic and has a pulse width of one switch tick, but 
it is synchronized to both the R and S clocks, producing Rhold and Shold. 
Its period is roughly equal to the maximum delay between the request of the 
SIGA requester and its retry. The SIGA retry delay is the sum of request-to­
reject time plus the maximum timeout period of the SIGA retry timer. The 
SIGA retry timing parameters are programmable over a wide range, so the 
hold generator also must be configurable. The maximum request-to-reject 
time is on the order of twenty switch ticks. The SIGA random-retry timer is 
a twelve-bit programmable counter that decrements at the full switch frequen­
cy. In light of this, the hold timer is implemented in two stages: the switch clock 
signal is prescaled by a fixed +16 counter that in turn feeds an eight-bit pro­
grammable +n counter. This provides a linear range equal to that of the SIGA 
retry counter, with the resolution of a fast retry. The +n counter, like the 1-mi­
crosecond prescaler, is cql}trolled by externally latched MC68HCll parallel 
vo port bits. · 

Note that the hold period does not use the programmable prescaler, so its peri­
od will vary with switch frequency. In the random retry mode, the SIGA retry 
period is related only to the number of switch ticks, so the B2CLK counter is 
correctly matched. If the SIGA uses slotted retry, however, its period is com­
pensated for frequency by the SIGA programmable prescaler, so the hold peri­
od setting must take the switch frequency into account. 

Both sixty-five milliseconds and hold have extremely long periods in terms of 
the capabilities of lOOKECL technology, though they only remain asserted for 
one switch clock period each cycle. The circuitry that produces the periods 
for these signals takes advantage of the slow signals to substitute FAST logic 
for expensive lOOKECL parts. Area, power, cost and parts count is reduced, 
particularly for the programmable prescaler and programmable hold period 
generator, which must be controlled by the CMOS/TTL levels of the 
MC68HC11. 
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Net Time Selection and Buffering 

One of the eight incoming net time signals from the clock cables is selected, 
buffered and fanned back to all of the cables. The selection is performed by 
the TCSSP on the B2CLK, which is also able to monitor the selected output. 
The monitor function enables the master to determine, through trial and error, 
which inputs are active without relying on a priori information. No synchroni­
zation is performed on any part of the net time distribution system. 

The function and circuitry on the B2CLK which executes selection and buffer­
ing of net time is identical to the corresponding section of the switch server 
card (B2SS). All net time circuitry is implemented in 100KECL. The period 
of the selected net-time-switch may be monitored to high resolution by the 
TCS slave processor, t<i verify a net time solirce. None of the timing parame­
ters are critical. 

TCS Serial Lines , ·. 

The input and output multidrop serial lines that implement the TCS master­
slave interface are buffered by the B2CLK, and are carried by the clock cables. 
In addition to the buffering function, the on-board MC68HC11 TCSSP can 
disable any combination of the serial inputs, so that a defective switch card 
or cable may be disabled and thereby prevented from interfering with recep­
tion from functional switch cards. No synchronization of the TCS serial lines 
is performed on the B2CLK card. 

Note that CMOS signals are sent through long lines without proper termina­
tion, but this situation has already been deemed acceptable by the TCS inter­

. face designers. Termination is not required because the TCS serial interface 
has too large a period (10 microseconds) and too slow an edge (200 nanosec­
onds) for transmission line effects to significantly affect signal quality. 

The B2CLK is the point of connection between redundancy in the switch/clock 
distribution system and redundancy in the Test and Control System (TCS) 
master processors. There are four possible combinations of redundancy: 
single or redundant switch/clock distribution, times single or redundant TCS 
masters. The B2CLK will accommodate all four configurations in a straight­
forward manner that is also simple for the B2CLK local TCS slave processor 
(TCSSP) to discover. The circuitry for this function is given in abstract form 
below, in Figure 9-38 and Figure 9-39. 

One further complication is the possibility of two different cabling schemes 
to cope with redundancy. The first scheme is already incorporated in the TCS 
master interface board (B2TCS), while the second promises improved behav­
ior in the event of a failure in a partially-redundant Butterfly II machine. The 
first scheme places a cable between the clock cards to transfer data between 
the B2CLK and the "more distant" TCS master, as indicated in Figure 9-38. 
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Figure 9-38 First B2CLK TCS cabling scheme. 

Physical { 
Layout 

Electrical 
Paths 

.. .. 

Each B2CLK has a clear, bidirectional pathway to the "nearest" TCS master, 
and can receive data directly from the "more distant" one. The transmission 
path to the more distant TCS master is indirect, however - it is gated by logic 
on the intermediate clock card. With the above cable system, this gating is 
necessary to allow the one return path to the master to be driven by the "Pt 
TCS serial interface or the "B" interface, but not both. The TCS serial inter­
face must be driven by only one slave at a time in order to function - there 
is no way to ensure that one interface is silent while the other is in use, so the 
master must lock out one of the two interfaces. 

0 

The shortcomings of this scheme become apparent when one considers a ma-
chine with one TCS master and two switch/clock distribution systems. (Omit Q 
TCS master 2 in Figure 9-38.) 

240 

• If the "central" B2CLK (B2CLK_A) is to be replaced while the machine 
is running, the TCS serial interface must be compromised for a short time 
until the cable from the master can be connected to the functioning clock 
card (B2CLK_B). 

• If the "central" clock card (B2CLK _A) should fail, its gating of the sig­
nals from the "more distant" clock card (B2CLK _ B) may also fail, pre­
venting the master from communicating with the machine at all. In this 
way, the usefulness of a redundant switch/clock system without a redun­
dant master is greatly diminished. 

The second cabling scheme, illustrated in Figure 9-39, eliminates both of the 
limitations of its predecessor while adding very little complexity. Here, ·both 
TCS master processors have a cable to each clock card, eliminating intermedi­
ate logic along any path. Some complexity is added to the TCS master circuitry 
in this case, in the form of an extra connector and gating logic to select which 
cable is attended, but the clock card is free to omit the circuitry that performs 
the same function under the first scheme. The B2CLK design has been made 
compatible with both cabling schemes, so the complexity is retained, but it is 
very small. 
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Figure 9-39 

Physical 
Layout 

Improved B2CLK TCS cabling scheme. 

TCSMP 1 B2CLK A 

Electrical { 
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.. .. .. 
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All abstract schematic of the clock card is given in Figure 9-40, highlighting 
the logic for TCS serial interface support. Note that all logic is asserted-true. 
in the diagram. Real assertion levels, along with other details, are left to the 
schematics. All AND gates are controlled by the local TCSS to select which 
lines are enabled. · 
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Abstract of B2CLK TCS serial line circuitry. 

connector to connector to 
TCS other TCS master 

master or other B2CLK 

6789 6789 

1 2 3 4 5 1 2 3 4 5 

TCS. 
slave 

processor 

TCS serial intl'lrface 
to/from each switch card 

(8 total; only 2 shown) 

cable to TCS master 

1 

TCS serial { 2 6 

interface 3 7 

4 8 

5 9 

cable to other B2CLK 

raw out 1 
OR out 2 6 

3 7 

in from OR 4 8 

raw in 5 9 

Figure 9-41 describet the interconnection of a fully redundant machine using 
early-revision TCS master interface cards (B2TCSs ). Note that the cable be­
tween clock cards is a simple one-to-five cable that may be implemented as 
a mass-terminated ribbon cable assembly. 
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Interconnection of redundant B2CLKs with early revision 
B2TCS cards. 

TCS 
slave 

processor 

TCS 
slave 

processor 

cable between B2CLKs 

1 5 

2 6 9 4 

3 7 8 3 

4 8 7 2 

5 9 6 1 

Figure 9-42 shows the same fully redundant system built with later revision 
B2TCS boards. 
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Interconnection of redundant B2CLKs with later revision 
B2TCS cards. 

TCS 
slave 

processor 

Power 

1111116\1111 

2 3 4 5· 

ti t 
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TCS 
slave 

processor 

1 2 3 4 5 

The power requirements of the B2CLK are unusual because itcombines ana­
log and four kinds of digital circuitry. A list of voltages would include + 8V 
for the SAA1057 supply, + 5V for the FAST logic and ECL/TTL translators, 
TCS + 5V for the TCS circuitry, -2.0V ECL termination voltage, -4.SV for the 
lOOKECL logic, and -5.2V supplying the lOKECL. Each of these supplies is 
less than two or three amps. 

A pair of four-conductor cables supply + 24V, -24V, TCS + 5V and ground 
to the B2CLK. Both cables are functionally identical, but receive their power 
from two different midplanes, so that if either midplane is powered down, the 
B2CLK may draw power from another, and the machine may continue to func­
tion. Clearly, in an eight-slot machine, there is no need for the second cable 
except as a "hook" for futt1re expansion. The DC-DC converters which consti­
tute the first level of the B2CLK power supply section use the ±24V to produce 

0 

0 

all of the on-board supply voltages. The TCS + 5V powers the TCSSP circuit- Q. 
ry, independent of the DC-DC converters. 
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A triple-output DC-DC converter supplies + 5V, + 12Y and-12V, while a sec­
ond, single-output converter provides -4.5V. A pair of 1.5A adjustable linear 
regulators produce -5.2Y (from the -12Y supply) and -2.0Y (from the -4.5Y 
supply), A low-power adjustable positive linear regulator produces + SY from 
the + 12Y output. All supplies except the + SY regulator are trimmed with 
potentiometers and may be margined using TCS commands. The +SY regu­
lator should be viewed as a power filter with a voltage drop, since its function 
is to provide a clean supply to the SAA1057, rather than to produce an exact 
voltage. 

Routing and Printed Circuit Board Considerations 

Critical Areas Routed by Hand 

Much of the routing of the B2CLK is critical, especially that in the timing inter­
face circuitry section. All of the ECL has been placed and "IOuted by hand, 
and the clock fanout traces, 32 Jines of equal length, have been matched 
through manual successive approximation. It is unfortunate that the precision 
required from the clock card forces the layout to be so labor-intensive, and 
further, it forbids certain types of rework which would change the wire delay 
of critiqtl nets. 

Overlay 100113 and 100114 with ECLiPS 1 OOE111 

The first revision of the B2CLK features an overlay for the main clock buffer, 
a set of holes for both of two possible parts that might be used for the buffer 
function, The center of both possible packages are roughly coincident, hence 
the label "overlay"; the pads for one are laid over those of the other. This pat­
tern supports either driver so that the decision is made at stuffing time - no 
revision of the printed circuit board is required. These patterns were placed 
on the B2CLK and B2SR/S (switch cards) where the ECLiPS 100E111 was de­
sired. The overlay allowed machines to be built if the sole-sourced ECLiPS 
part were to become unavailable. Later revisions of the Butterfly II boards 
will omit the overlay since system timing has become dependent enough upon 
the unequalled performance of ECLiPS that standard 100KECL buffers 
(100113 on the B2CLK; 100114 on the B2SR/S) cannot be considered as alter­
nate parts. 

The overlay does not contribute to skew under either stuffing condition, and 
conforms to design rules published by Fairchild for routing ECL test fixtures. 
The combined pattern consumes little more area than the 100113 or 100114, 
and is no more aggressive than the Butterfly II midplane with respect to pad 
size, routing or drilling. 
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Controlled Impedance Printed Circuit Board 

The lOOKECL family has one of the fastest edge rates and shortest typical 
clock periods of any commercial logic family. Every ECL trace on the B2CLK, 
as well as the ECL signals passed through cables, are treated as full-blown 
transmission lines, complete with characteristic impedance-matched parallel 
termination. This level of care is required to ensure reliable operation with 
this fast and noise-sensitive family. Noise due to transmission line faults 
would quickly overcome all care if the printed circuit board trace characteris­
tic impedance were not carefully controlled. Signals going onto or coming from 
cables would be parpcularly affected. For these reasons, the B2CLK has two 
controlled impedance signal layers, specified to be son ±10%. 

Summary of TCS Sensors and Effectors 

All of the high-level TCS monitor and control functions are discussed else­
where in this chapter, and are summarized in Figure 9-43 for convenience. 
Note that ''ADC port" refers to an analog-to-digital converter port, eight of 
which are supplied in the 68HC11 package. 
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B2CLK TCS sensors and effectors. 

Sensor Functions 
VCO control voltage 
48V and regulated voltages 
B2CLK board temperature 
Each clock cable's connection to A or B 

connector on the midplane 
PLL lock condition (and trigger internal time-to-lock) 
Phase jumper block positions 
TerminatiOIJ jumper block positions 
Net time monitor 
Monitor 65 milliseconds and hold 
Corresponding TCS master is A or B master· 

Effector Functions 
Net time select 
Select fixed/variable clock source· 
Set SAA 1057 frequency and configuration 
TCS slave-to-master serial interface disable 
Sixty-five milliseconds prescaler value 
Hold period divider value 
Power supply enable 
Voltage margin control (adjusts all levels together) 
ADC port external analog multiplexer 
Attend (listen to) corresponding or other TCS Master 
TCS signal light 

1 ADC port 
8 ADC ports 
1 ADC port 

8 parallel bits 
1 parallel bit 
3 parallel bits 
8 parallel bits 
1 parallel bit 
2 parallel bits 
1 parallel bit 

3 parallel bits 
1 parallel bit 
3 direct bits 
9 parallel bits 
5 parallel bits 
8 parallel bits 
1 parallel bit 
3 parallel bits 
2 parallel bits 
1 parallel bit 
1 parallel bit 

The eight ADC ports provided on the MC68HC11 are expanded to the re­
quired ten with a single external 4:1 analog multiplexer. Input and output par­
allel UO also requires external circuitry as it has on other Butterfly II cards. 
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11 
TC/FPV 

Function Board with Processor 
and .VMEbus Interface 

Introduction 
• 

This is a functional specification of the TC2000 processor and VMEbus inter-
face function board (TC/FPV). This specification assumes familiarity with the 
VMEbus specification, the T-bus specification, the TC2000 architecture, and 
tbe Motorola 88000 documentation. 

The TC/FPV is the firstin a family of function boards for the TC2000 machine. 
It provides a combination of processing, memory and I/O resources. The CPU 
is based on the Motorola 88100/88200 chip set. The memory array is optionally 
4 or 16 megabytes. The I/O channel provides a path between the TC2000 ma­
chine and industry standard VMEbus devices. 

This description of the TC/FPV function board covers the following four con­
figurations: 

TC/FPV4 4 megabytes, 2 cache chips 
TC/FPV4-1 4 megabytes, 3 cache chips 
TC/FPV16 16 megabytes, 2 cache chips 
TC/FPV16-1 16 megabytes, 3 cache chips 

For a configuration with only 4 megabytes of memory or only two cache chips, 
reference to the additional 12 megabytes or to the third cache chip (code 
CMMU #2) should be ignored. 

Major Functional Blocks 

Figure 11-1 is a block diagram of the TC/FPV, and Figure 11-2 shows its phys­
ical layout. Board areas implementing the major functional blocks of 
Figure 11-1 are shown shaded in Figure 11-2. 
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Figure 11-1 TC/FPV block diagram. 
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Figure 11-2 
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The TC/FPV consists of six modules: the CPU, the memory, the switch inter­
face, the Test and Control System (TCS) interlace, the VMEbus interface, and 
TC/FPV configuration and control registers. These modules communicate 
with each other across the T-bus. The T-bus is a synchronous, multiplexed 
address/data bus that supports a variety of transactions. The T-bus transac­
tion protocols are designed to avoid deadlock situations while obtaining good 
performance in communication among devices on the bus and throughout the 
system. The operation of the T-bus is documented in the T-bus Specification. 
Dedicated paths between the CPU and the memory, and between the TCS and 
the Switch Interface Gate Array (SIGA), have been added to enhance perform­
ance and simplify the design. 

This TC/FPV specification describes each module. However, the description 
of the switch interface, in section 11.6, emphasizes aspects important to 
TC/FPV functions and omits aspects common to the design of any TC2000 
function board. 

The TC/FPV circuit board is 15 x 20 inches and has 10 conductive layers. 
There are nine LED indicators mounted along the outer edge of the board. 
Four green indicators at the upper end of the board show power supply status. 
A fifth (amber) indicator is used by the Test and Control System to show the 
status of the board (inactive, loading software, running, etc.). Four green indi­
cators at the lower end of the board show switch interface activity. The only 
manual controls on the TC/FPV are voltage trim pots and jumpers, described 
in section 11.18. 

Figure 11-3 TC/FPV indicators. 
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CPU 

The CPU includes a Motorola 88100 microprocessor, three Motorola 88200 
Cache/MMU chips (one data CMMU and two instruction (code) CMMUs), 

· and an interface to the T-bus. 

The CPU interface includes a T-bus master finite state machine that generates 
single cycle read and write requests and cache burst read and write requests 
on the T-bus. The CPU interface also contains a mapping RAM and other 
circuitry. 

CPU.Fast Path to Memory 

Because the operation most frequently performed by the CPU is fetching in­
structions and data from local memory, the CPU also has a specialized fast 
path that bypasses the T-bus and allows the CPU to communicate directly 
with the memory to optirrtize performance. This path has circuitry to detect 
when the CPU will be given ownership of the T-bus in advance of the T-bus 
arbitration circuitry, and a dedicated address path. The response to a memory 
fetch is returned over the T-bus, whether the access used the fast path or not. 
Both instruction and data fetches usethe fast path. The fast path is never used 
if the page is interleaved. (Only local accesses may use the fast path, and only 
remote accesses may use the interleaver.) 

A reference from the CPU will use the fast path only if all of the following con­
ditions are met: 

- The operation is a read (either code or data), not a write. 

- The Machine Configuration register "fast path enable" bit is 1. 

- The "fast path disable" bit of the CPU Mapping RAM entry selected 
by the current reference is 0. 

- The "local" bit of the CPU Mapping RAM entry selected by the cur­
rent reference is 1. 

For further details of the fast path and its interaction with other CPU interface 
mechanisms, please refer to the CPU Mapping RAM description in section 
11.17. 

Local and Remote Accesses 

The TC/FPV uses three criteria to decide whether references rssued by the 
CPU should be steered to local or remote resources. 
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1. CPU references to interleaved memory are always controlled by the path 
bits in the TC/FPV's Process Configuration register (PCR). The intent is o-
that if interleaving is in use, software will set these PCR bits to specify use 
of the Butterfly switch, so interleaved references will always go out over 
the switch, even if the target of the reference is on the local board. Section 
11.3.6 discusses detecting that a reference is to interleaved memory, and 
consequent generation and use of the signal T_INTERLEAVED. 

2. If not interleaved, CPU references are directed to local memory if the lo­
cal bit of the CPU Mapping RAM (CMR) entry used is "1". When the 
CMR local bit is "l", the TC/FPV forces the T-bus T _PATH control bits 
to "11", directing the reference to a local T-bus slave (memory, configu­
ration and control registers, or VMEbus interface). 

3. Otherwise, the default . choice is specified by the path bits in the 
TC/FPV's Process Configuration register. 

Code and Page Tables on Remote Nodes 

The CPU can execute code stored on a remote node. Fetching each instruction 
over the switch, however, slows execution appreciably, so code is almost always 
stored locally. With the instruction cache turned on, the remote access cost 

. may be amortized over many executions of the code, such as iterations of a 
loop. In this case, or for very short sections of code, execution across the switch 
may be appropriate. The same considerations apply to page tables. Access 0 
will be slower forremote page tables, but the penalty is small if the descriptors . 
stay in the address translf!tion cache. 

. ! ' 

Three complications arise when code or page tables are kept in remot« 
memory, all concerning the TC2000 locking protocol. One concerns the effect 
of encountering memory locked by someone else, and the others concern a con­
straint on actions while you hold a lock yourself. 

1. If the remote memory is locked (by its local CPU or VMEbus interface), 
then instruction or page descriptor fetches could be delayed, slowing ex­
ecution. This problem is eliminated by the hardware. All.instruction 
fetches automatically bypass the TC2000 locking protocol. Similarly, all 
page descriptor fetches made by the CMMU automatically bypass locks. 

(An analogous case arises when the instruction or page descriptor is in 
local memory, but the local memory is temporarily locked by another 
CPU (or by a VMEbus interface). Again, such fetches are automatically 
made bypassed, so execution is not delayed.) 
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IN-USE SWITCH PORT IS NOT BYPASSED 
If the remote memory is locked by a CPU or VMEbus interface on a different 
board, then not only is the memory locked but also the switch path to the 
memory is locked. The bypass mechanism does not help in this case, because it 
cannot get around the switch port in use by the locked switch path. 

- '1;· 
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2. If the local CPU is making a locked reference to a remote memory mod­
ule, then instruction or page descriptor fetches to either that remote 
memory or to the local memory are OK The locked remote memory can 
be referenced because the switch path to it is established, and the local 
memory can be referenced (for instructions or page descriptors) because 
of the hardware automatic bypassing described above. (Without the au­
tomatic bypassing, the local reference would claim to be "maintaining" a 
lock, and the local memorywould not accept the access because this CPU 
doesn't have a lock "open" to it.) 

l <I: 

Note that during a locked transaction to a remote memory, data accesses to 
local memory must be mapped bypassed in the CMR, or they will be refused as 
described above. 

3. If the local CPU holds a lock on a remote memory module, the switch 
path can't be temporarily disrupted to fetch an instruction or page des­
criptor from a different remote memory module. This is enforced by the 
local SIGA, and is a constraint on the design and implementation of soft­
ware. 

The XMEM Instruction 

The 88100 instruction set includes the "exchange register with memory" 
(XMEM) instruction to support atomic operations. For a description of this 
instruction, refer to the 88100 User's Manual. When the CPU executes the 
atomic instruction XMEM, the DLOCK output pin is asserted. The TC/FPV 
hardware maintains the atomicity presumed by the CPU by opening and main­
taining a T-bus lock when DLOCK is asserted. The T-bus locking protocol 
ensures atomicity for both local and remote references. Consistent with the 
T-bus protocol, the XMEM operation is 1Wt atomic if the reference is to a by­
passed page. (The atomicity is lost if the target location of the XMEM is refer­
enced bypassed either by the CPU that executes the XMEMor by another CPU 
that writes to the location.) The T-bus FREE_LOCKS operation is executed 
when the DLOCK pin goes from asserted to de-asserted. 
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'''''''''''''''''''''''~''''''''''''''''''''''' 
RESTRICTION OF USE 
XMEM instructions cannot be included in sequences that use the TC2000 
locking protocol, unless they access the memory module that is locked, or ac­
cess bypassed memory (in which case the reference is not atomic). If this re­
striction is violated, the instruction will terminate in a bus error. The locking 
protoc:ol is controlled by the Augmentation register, described in detail later. 
~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. 

Interrupts to the CPU 

The TC/FPV CPU receives interrupts from three kinds of sources: other pro­
cessors, VMEbus devices, and on-board timers. The TC/FPV registers used 
by the CPU to control and service interrupts are described in detail in the reg­
ister summary section. There are three types of interrupts: 

• Interrupts from processors (typically other processors, but the CPU may 
generate an interrupt to itself if desired) 

o Maskable interprocessor interrupt 

o Non-maskable interprocessor interrupt 

• Interrupts from VMEbus devices - seven levels are distinguished 

• Interrupts from on-board timers 

o Interrupt> Dis<i;b]ed Timer 

o Time Of Next Interrupt (TONI) registers, two programmable tim­
ers associated with the Real Time Clock 

The 88100 microprocessor has only one interrupt level, so all interrupts are 
OR'ed together to generate the interrupt signal to the processor chip. When 
an interrupt is detected, the interrupt handler reads the Interrupt Source regis­
ter to find out which type of interrupt has occurred. The Interrupt Source reg­
ister has a field for each interrupt type. 

A TC2000 processor can generate a remote interrupt request by setting a bit 
in the Interprocessor Interrupt register at the destination node. The Interpro­
cessor Interrupt register for each processor node is accessible to every proces­
sor in the machine. -The operating system controls access to the interprocessor 
interrupt by giving the page on which it resides appropriate protection attrib­
utes. 

The destination processor further controls remote interrupts with a bit in the 
Interrupt Enable Mask register. If the Interrupt Enable Mask register bit for 
the interprocessor interrupt is zero, then the interrupt request will not be gen­
erated. Attempts to set the Interprocessor Interrupt register when it is masked 

0 

0 

do change the register's contents, but no interrupt occurs. The interrupt sys- o. 
tern is described in detail in section 11.13. 
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A register for generating a non-maskable interrupt resides in a supervisor 
page of configuration and control registers. The non-maskable interrupt will 
interrupt the CPU unless the CPU has disabled its entire interrupt system by 
manipulating its internal processor status register. 

In addition to interprocessor interrupt requests, VMEbus interrupt requests 
can interrupt the TC/FPV processor. Like interprocessor interrupts, VME­
bus interrupts to the processor are subject to the Interrupt Enable Mask. If 
the mask bit for a VMEbus level is zero, then the interrupt to the processor 
will not be generated, even if the VMEbus interrupt request signal at that level 
is asserted. When a VMEbus interrupt occurs, the level of the highest priority 
pending interrupt is indicated by a field in the Interrupt Source register. The 
TC/FPV can also generate interrupts onto the VMEbus, as described later. 

Finally, interrupts are generated to the TC/FPV processor, and to each 
TC2000 processor, by the expiration of the Interrupts Di.sabled Timer and by 
the Time Of Next Interrupt register. These, and other timers, are discussed 
in section 11.12. 

Interleave Decision RAM 

Like all T-bus masters, the CPU must drive the T _INTERLEAVED bit when­
ever it initiates a T-bus access. The value of the T INTERLEAVED bit indi­
cates whether the CPU wishes to access interleaved or non-interleaved 
memory. The TC2000 memory interleaving scheme is associated with the 
memory architecture in general, rather than with the TC/FPV (or any specific 
function board), and therefore is described in detail in conjunction with the 
memory rather than here. 

The T _INTERLEAVED bit is sourced by the Interleave Decision RAM that 
takes in 14 bits (31..26 and 22 .. 15) of the Physical Address generated by the 
88200 CMMU. For diagnostics and initialization, the contents of the Inter­
leave Decision RAM are read and written using the interleaver loader de­
scribed in section 11.17. The output of the Interleave Decision RAM is gated 
by the interleave enable bit of the CPU Mapping RAM. 

As noted earlier, all interleaved references are routed through the switch, re­
gardless of the target address. 

What Path an Access Takes 

This section describes the path taken by a memory access from the TC/FPV 
CPU. VMEbus accesses are covered in the VMEbus interface section. This 
description is both to clarify operation of the hardware, and to set context for 
memory access timing in section 11.11. More detailed information about the 
88000 chip set can be found in the MC88100 User's Manual and theMC88200 
User's Manual. 
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- a fast path access to local memory 
- a T-,-bus access to local memory 
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- a switch access to remote meniory (including back to this function board) 
- a bus error 
- a transaction fault detected during address translation in the CMMU. 

The CPU's normal processing can be disrupted by any of the following excep­
tions: 

• Internally, the CPU can detect and assert various exception conditions 
(see the 88100 User's Manual). 

• Externally: 

o Assertion of the reset pin resets the CPU. 

o The CPU may be interrupted by assertion of its interrupt (INT) pin. 

o A data transaction (read or write) may encounter an error, signalled 
to the CPU by a code on its Data Reply pins (11 = transaction 
fault). 

o A code transaction (instruction fetch) may encounter an error, sig­
nalled to the CPU by a code on its Code Reply pins (11 = transac­
tion fault). 

The four external causes have different exception vectors assigned to them. 
Reset is not of concern her~, where we assume processing is in progtess. Inter­
rupts are signalled only by the interrupt logic on the TC/FPV described in sec­
tion 11.3.5. The data and code transaction faults are signalled only by the 
CMMUs. 

START: 

• The 88100 generates a reference. It supplies Process Logical Address 
bits, supervisor/user mode bit, read/write bit, and instruction/data bit. 

• One of the three CMMUs will respond, based on the instruction/data bit 
and, if the reference is an instruction fetch, the code cache selection logic, 
as follows: 

o If the Machine Configuration register cache selection scheme bit is 
zero, then Process Logical Address bit 12 selects the code cache. 

o If the Machine Configuration register cache selection scheme bit is 
one, then the CPU's supervisor/user mode bit selects the code 
cache. 

From here on, the CMMU that responds is called "the" CMMU. 

• The CMMU attempts to locate a mapping for the Process Logical Ad­
dress. The possible outcomes of this process are: 
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o The CMMU may find a valid entry in its ATC with protection at­
tributes that match those of the process making the reference. 

o The CMMU may have to search its translation tables to find the 
mapping. This involves memory references initiated by the 
CMMU. If a memory error occurs on one of these references, the 
CMMU returns a transaction fault to the CPU. Otherwise, it loads 
the appropriate translation information into its Address 'fransla­
tion Cache (AJ:C) and translates the address. 

o The CMMU may find that the transaction violates the protection 
specified in the selected translation register, either write protection 
or supervisor mode protection. A transaction fault is returned to 
the CPU. 

o The CMMU may find that a segment descriptor or page descriptor 
that it needs is invalid. A transaction fault is returned to the CPU. 

• The CMMU attempts to make the requested access, using the Physical 
Address generated in the translation step. The possible outcomes are: 

o The page may be marked "cache inhibit", that is, non-cacheable. 
The access is passed on through the CMMU to the memory bus. 
If a bus error occurs on the memory bus, the CMMU passes the 
error back to the CPU as a transaction fault. 

o The CMMU may have the data cached (a cache hit). For a read, 
the data is returned quickly to the CPU. For a write, the cached 
data is overwritten with the new data. If the page being referenced 
is in copyback mode and the cache line (four 32-bit words) had pre­
viously been modified, the transaction is done. If the page is in wri­
tethrough mode, or if it is in copyback mode and this is the first 
write since the line was loaded into the cache, the CMMU writes 
the cache line back to memory. If a bus error occurs on this write, 
the CMMU returns a transaction fault to the CPU. 

o The CMMU may not have the data cached (a cache miss). The 
CMMU will select a cache line to replace with the desired line. If 
the selected line is modified and is in copyback mode, the CMMU 
must write it back to memory before replacing it. If a bus error oc­
curs· on this write, the CMMU returns a transaction fault to the 
CPU. If the selected line is not modified, or is in writethrough 
mode, it is simply discarded. The CMMU then reads the new cache 
line from memory. If a bus error occurs on this read, the CMMU 
returns a transaction fault to the CPU. Having filled the cache line, 
the CMMU performs the requested access, as described above for 
a cache hit. 

Whenever the CMMU initiates a memory reference, the CPU interface on the 
TC/FPV translates the CMMU address, data and control signals, which obey 
the M-bus protocol defined by Motorola, into signals that obey the TC2000 
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T-bus protocol. In addition to accounting for various timing differences, the 
CPU interface logic performs several operations: 

• Decide whether the reference can be handled by the fast path, and issue 
the necessary control signals if it can, 

• Decide whether the reference should be intercepted. If the intercept ac­
cess* bit (the* is part of the name of the bit, indicating it is low true) in 
the CMR entry selected by this reference is zero, the access is intercepted. 
That is, the CPU is acknowledged as if the reference has completed, but 
no T-bus cycle occurs. If the reference is a read, the data returned is 
undefined. 

The intercept access mechanism is used for speeding up certain block 
transfer operations involving the cache. It is described further in sec­
tions 11.10.3 and 11.11.1. 

• Generate the T-bus control signals needed to specify the path to be taken 
by the address and data for this reference (if not the fast path). These 
are: 

o T_INIERLEAVED - Generated by the Interleave Decision 
. RAM, subject to the CMR interleave enable bit. If this is a remote 
reference, this signal indicates that the transformed address gener­
ated by the interleaver should be used by the SIGA. The CMR local 
bit is ignored ifthe T_INIERLEAVED bit is asserted. 

o T _PAIB < 1..0 > -'- Generated by the Process Configuration regis­
ter, subject to the CPU Mapping RAM local bit and interleaving. 
Indicates whether this reference should be handled by switch inter­
face A, switch interface B, or local memory. See section 11.9.2. 

• Generate T-bus control signals that specify other attributes of the refer­
ence: 

o T_PRIORITY < 1..0 > - Generated by the priority scheme mech­
anism. Indicates the priority of this reference in the switch. 

o BYPASS - Derived from the CPU Mapping RAM bypass bit. 
When this signal is asserted, the TC2000 locking protocol is inhib­
ited and T _ LOCKOP is set to "bypass". 

o. T_LOCKOP< 1..0> - Derived from the state of the Augmenta­
tion register lock bit, the DLOCK signal ;isserted by the 88200 
CMMU during XMEM operations, and the BYPASS signal. 
Opens, maintains and frees locked transactions, or bypasses locks, 
according to the TC2000 locking protocol. 

o T_SYNC - Generated by the synchronized access bit in the Process 
Configuration register. If this is a remote reference, this signal in­
fluences the time at which the request message is allowed to enter 
the switch, as described in the SIGA specification. 
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o T _AD < 33 . .23 > - Generated by the CPU Mapping RAM. These 
bits select an 8~megabyte "bank" of memory within the System 
Physical Address space global to the machine. As part of that selec­
tion, they specify the switch port that is addressed. The switch port, 
however, is subject to possible further modification by the inter­
leaver. If the reference falls in a window to VMEbus memory, the 
address is subject to further modification by the VMEbus master 
mapper at the addressed switch port. 

• If the request is not serviced by the fast path or by the intercept access 
mechanism, the CPU interface issues a T-bus request, where it may be 
serviced by any of several T-bus slaves, depending on the value of 
T_PA1H<l..0>. 

o T _ PA1H = 11: The local memory, the VMEbus master, or the con­
figuration and control registers will respond. 

o T_PA1H = 10: The switch interface serving the ''A'.' switch will is­
sue a request n;ie_§sage, retransmitting until the request reaches its 
destination or is timed out. 

o T_PA1H = 01: The switch interface serving the "B" switch will is­
sue a request message, retransmitting until the request reaches its 
destination or is timed out. 

o T_PA1H = 00: Illegal value. 

• If the reference is non-local, the SIGA at the remote end makes a request 
on its local T-bus. The parameters of this request are as follows: 

o The T _PA1H < 1..0 > bits are always 11. 

o The T _AD< 33 .. 25 > bits are driven to zero. For a local access 
(T_PA1H = 11), the T~us Specification requires that 
T _AD < 33 . .25 > be driven to valid binary levels, but their value is 
undefined. 

o . The remaining address and control bits are specified by the switch 
request message. 

The result of the T _ PA1H bits being 11 is that the the request cannot go 
back out either SIGA on the remote function board, but must be served 
(if at all) by a device local to that board. In the TC/FPV, this can be 
memory, local configuration and control registers, or the VMEbus mas­
ter interface. In fact, the VMEbus interface can be set up so the request 
goes out onto the VMEbus and comes back in the VMEbus slave inter­
face, so the request could proceed further. However, use of this facility 
(for other than testing) is highly contrived and risks having timers (that 
help control latency) go off, aborting the connection and returning a bus 
error. 

• When the switch reply message comes back, the SIGA acquires the T­
bus and places the requested data on it. The CPU interface takes the 
data from the T-bus and hands it to the CMMU, which retains a copy 
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in its cache if it is a cacheable reference. The CMMU hands the data 
on to the CPU, and execution resumes. 

Memory Subsystem 

The TC/FPV memory subsystem features either four or sixteen megabytes of 
dynamic RAM arranged as 36-bit words. Each word has 32 data bits and four 
parity bits, one for each byte. The memory array is implemented using 
SO-nanosecond, 1M or 4M x 9-bit single in-line memory modules (SIMMs). 
The memory array can be populated with 1-megabit SIMMs, yielding a 4-me­
gabyte TC/FPV, or with 4-megabit SIMMs, yielding the 16-megabyte version 
of the board. Writes are acknowledged immediately without waiting for the 
write to complete: The memory cannot process new requests while the write 
is completing, so it will refuse all new accesses during the clock tick immediate­
ly following a write. Memory accesses are never split on the T-bus. (AT-bus 
"split cycle" allows other use of the T-bus while a request is being processed.) 
Accesses are refused when the memory is refreshing. The memory subsystem 
supports the T-bus locking protocol. 

The memory subsystem supports byte, halfword, and word reads and writes. 
Multiple-word burst reads and writes are also supported. New data is 
supplied every 100 nanoseconds during burst reads. The T-bus "PAUSE, 
MORE" protocol is used to throttle data requests during bursts. 

0 

Byte-wide parity generation and checking is performed on every memory ac- 0 
cess. Parity error> are reportl'<l on the M_PARITY signal. , - { 

The memory subsystem performs a "hidden" refresh cycle once every 12.8 mi­
croseconds. Hidden refresh utilizes internal counters to generate the refresh 
address, and thus requires minimal external support !lrcuitry. The refresh 
cycle is included in the memory control finite state machine. A refresh cycle 
requires five T-bus clock cycles (250 nanoseconds). During a refresh cycle, 
all T-bus requests to memory are responded to with "REFUSED". Refresh 
requests have the highest priority of any request to the memory. 

If a parity error occurs on a memory access, the error is given to the CPU on 
that access. Note, however, that if an access from the CPU results in a burst 
read by one of the CMMUs (that is, the access is to a cacheable location which 
is not currently in the cache), a parity error on any of the four words in the 
burst will result in a parity error given to the CPU (as a transaction fault). 
Therefore, the CPU may receive a parity error due to a word that it didn't ex­
plicitly reference. 
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TCS Slave Interface 

Llke other TC2000 boards, the TC/FPV includes a Test and Control System 
slave processor to support bootstrapping, servicing, and monitoring of various 
environmental conditions. 

The TC/FPV TCS slave has access to every addressable location in the 
TC/FPV via the T-bus. Thus, it can access memory, VMEbus devices, and 
configuration registers. It can also make references across the switch. To re­
duce hardware cost, the TCS slave shares the T-bus interface used by the 
SIGA. When the TCS master requests a data transfer into or out of the 
TC/FPV, the TCS slave uses a dedicated four-wire communication channel 
to the SIGA to fulfill the request, The four wires are data in, data out, clock 
and frame. The protocol for this communication channel is defined in the 
SIGA specification. 

, The TC/FPV TCS slave processor has several functions. It monitors the ambi­
ent temperature in one location and three power supply voltage levels (±24 volt 
input, + 5 volt output and -5 volt output) on the board. The slave supplies 
this information to the TCS master when requested. It controls the on-board 
power supply. The slave can reset the TC/FPV. Finally, the TC/FPV TCS slave 
can inform the TCS master of the TC/FPV's board type. The capabilities of 
the TCS slave and the mechanisms for invoking them are described in detail 
in the TC/FPV TCS slave ·software specification. 

The TC/FPV TCS slave is implemented using a Motorola 68HC11. This device 
has on-chip EEPROM, general purpose parallel I/O and serial I/O, AID chan­
nels, a priority interrupt structure, a number of timers, and a 6800-type in­
struction set .. 

The TCS slave interface is powered by a supply located centrally in the TC2000 
chassis. The power is distributed to the slave through the TC/FPV midplane 
connector. 

Power-up and Resetting 

The TC/FPV is reset by application of power and by TCS action, as described 
below. There is no reset button on the board. There is no way to explicitly 
force a reset across the switch. No VMEbus device can explicitly reset the 
TC/FPV, and when the TC/FPV resets the VMEbus that does not reset the 
TC/FPV board. 

A power-on reset circuit in the TCS slave leaves the TC/FPV in a reset state 
after power-on. Before the TC/FPV can run, the TCS master must load the 
appropriate bootstrap code, set several configuration registers, then clear the 
power-on reset. 
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The TCS clears the power-on reset in two steps. First, the TCS clears the reset 
for all TC/FPV components except the CPU. With the CPU still held reset, 
the TCS can perform appropriate start-up tests, configure the hardware by 
loading control and configuration registers, and load bootstrap code into 
memory. The second step is to clear the reset for the CPU, so it starts execut­
ing. CPU actions after reset are described in detail in the Motorola 88100 
User's Manual. 

Switch Interface 

The interface between the TC/FPV and the Butterfly switch is implemented 
by the Switch Interface Gate Array (SIGA), described in detail in the SJGA 

· Specification, and the Level CONverter (LCON)~ described inthe LCON Spec­
ification. Besides the SIGA's direct connection to the T-bus, the switch inter­
face includes an interleaver. The interleaver optionally maps references (if 
they go ovei:, the switch) from the switch port given in the address on the T-bus 
to a new switch port. 

The TC/FPV contains board space and wiring to support a second switch in­
terface. Normally only one interface is populated, since only one switch is nor­
mally supplied ·per machine. In a two-switch machine, the two interfaces are 
functionally equivalent. Only one switch would be enabled for carrying traffic 
at any given time; the other would be available as a standby. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

DETAIL OF TWO SWITCHES - SIMULTANEOUS USE IS NOT OK 
The simultaneous use of both switches to pass traffic not only would be tricky 
to orchestrate in software, but also is prohibited because a temporary dead­
lock can occur. The deadlock involves the priorities for use of the T-bus on the 
TC/FPV. In the TC/FPV, these priorities are: 

highest: SIGA B requester 
SIGA A requester 
VMEbuS master interface 
SIGA B server 
SIGA A server 
VMEbus slave interface 

lowest: CPU 

(a T-bus slave) 
(a T-bus slave) 
(a T-bus slave) 
(a T-bus master) 
(a T-bus master) 
(a T-bus master) 
(a T-bus master) 

When a T-bus slave device operates in split-cycle mode, it releases the T-bus 
after receiving a request, allowing other use of the T-bus while the request is 
processed. When the response is ready, the device, still called a T-bus "slave", 
acquires the T-bus and supplies the response. Thus such slaves are assigned 
a priority. The T-bus Specification requires that such slaves must have higher 
priority than any requesting T-bus master. Otherwise, a master repeatedly 

0 

0 

re-trying an access to the lower-priority slave could prevent the split-cycle Q 
slave from ever supplying its response. 
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However, there is still a temporary deadlock possible. Both sides of the VME­
bus interface must be busy; the VMEbus master interface must be busy so that 
it will refuse requests, and the VMEbus slave interface must be busy so that 
the VMEbus itself is busy, preventing the VMEbus master interface from 
completing its access. To' make both sides busy, either of two scenarios can 
take place. A VMEbus device can begin an access to TC2000 address space 
at the same time as the CPU begins an access to VMEbus address space. Al­
ternatively, the VMEbus interface can be set up to loop accesses from the CPU 
out onto the VMEbus and back into the TC2000; then a CPU reference busies 
both sides at once. 

Once both sides of the VMEbus are busy, suppose both SIGA servers try to 
access the VMEbus. Their priority is higher than that of the VMEbus slave 
interface. The two SIGAs take turns on the T-bus, getting refused by the 
VMEbus master interface, often enough to saturate the T-bus and exclude the 
VMEbus slave interface. Eventually, a timeout (switch connection or VME­
bus TC/FPV master) will occur and break the deadlock. The resulting bus 
error, however, can be very hard for software to interpret properly. To avoid 
this, the two switches should not be used to pass traffic simultaneously. 

This deadlock is an example of a general concern whenever enough T-bus mas­
ters try to access a split-cycle slave. It is the only example that arises in the 
TC/FPV. The memory module does not split cycles. 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

DETAIL OF TWO SWITCHES - TWO RTCs AND THEIR TONis 
The Real Time Clock in the two SIGAs, and their TONI timers, could all be 
operated simultaneously. However, because SIGA Rs RTC is driven by the 
switch A master clock, and SIGA B's RTC by the switch B master clock, the 
two RTCs may count at very slightly different rates. The oscillator used in Jan­
uary 1990 is rated at ±0.005% long-term accuracy, yielding up to one minute 
per week relative drift between the two clocks. 

VMEbus Interface 

This section briefly describes the VMEbus, and then discusses the operation 
of each VMEbus feature implemented by the TC/FPV. A detailed description 
of the VMEbus can be found in The VMEbus Specification, a Motorola publi­
cation available from BBN ACI. The TC/FPV is designed to revision C.1 of 
the specification. 

The VMEbus interface on the TC/FPV is a general-purpose bus coupling 
mechanism that provides a path between the T-bus and a VMEbus. Through 
the T-bus connection, VMEbus devices can access local or remote memory, 
perform locked operations, and interrupt any processor on the machine. Simi-
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larly, any TC2000 processor can access VMEbus memory, perform indivisible 
operations on VMEbus memory, and interrupt VMEbus devices. 

Brief Description of the VMEbus 

The VMEbus Specification defines an interface, called the VMEbus, used to 
connect data processing, data storage and peripheral control devices. The 
VMEbus is an asynchronous bus defined in broad terms that allow a wide 
range in performance while still conforming to the specification. This results 
in some difficulty in characterizing maximum cycle tim,es on the VMEbus, be­
cause cycles can be extremely long without violating the specification. 

The VMEbus Specification defines a functional module as "a collection of elec­
tronic circuitry that works together to accomplish a task". The types of func­
tional modules defined in The VMEbus Specification are listed below. The 
TC/FPV implements all but those marked with 4. 

• VMEbus master 

• VMEbus requester (associated with master or interrupt handler) 

• VMEbus slave 

• Interrupt handler 

• Interrupter (interrupt generator) 

• System controller 

• VMEbus arbiter 

• IACK daisy chain driver 

• System clock driver 

• Bus timer 

• Backplane interface logic 

• Power monitor 4 

• Location monitor 4 

• Serial clock driver (for VMS bus only) • 

A VMEbus device implements a subset of this list to achieve the functionality 
required of the device. For example, a CPU board might consist of a VMEbus 
master, an interrupter, an interrupt handler, and a requester. A disk controller 
might include a VMEbus master, slave, interrupter, interrupt handler, etc. A 
memory board might consist of only a VMEbus slave. 

A device called a system controller is required in each VMEbus system. It phys-

0 

0 

ically resides in slot one of a VMEbus, and performs the functions of arbiter, Q 
system clock generator,. bus timer, and IACK daisy chain driver. 
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11.7 .2 TC/FPV Functionality 

Figure 11-4 is a block dia~ram of the TC/FPV VMEbus interface. 

Figure 11-4 VMEbus interface block diagram. 
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VMEbus ) 

The TC/FPV can be used in several different configurations. In some environ­
ments, the TC/FPV may be the only VMEbus master in the system. When 
this is the case, the TC/FPV may also be required to perform the VMEbus 
system controller task. In other environments, the TC/FPV will provide a path 
that a VMEbus master will use as a DMA (direct memory access) target, from 
the VMEbus into TC2000 memory. In this case, the TC/FPV will function pri­
marily as a VMEbus slave. Because the TC/FPV must perform a variety of 
tasks on the VMEbus, it implements all but three (marked with 6 in the list 
above) of the functional modules defined in The VMEbus Specification. The 
system controller functions (arbiter, system clock driver, bus timer, and IACK 
daisy chain driver) can be enabled or disabled by setting a jumper on the 
TC/FPV. Note that when the TC/FPV is functioning as a VMEbus master, 
it is also functioning as a T-bus slave. Similarly, if the TC/FPV is functioning 
as a VMEbus slave, it is also a T-bus master. 
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VMEbus Master 

The TC/FPV VMEbus master interface accepts 1-, 2-or 4-byte read and write Q 
requests from the T-bus, and converts them into requests on the VMEbus. 
Halfword (2-byte) and word (4-byte) requests must be halfword and word 
aligned, respectively. The VMEbus master interface splits cycles on the T-
bus, letting other T-bus masters use the T-bus while the VMEbus transaction 
is completing. This is necessary because the access time on the VMEbus can 
be relatively long, and therefore an access to the VMEbus is not guaranteed 
to complete in a reasonable amount of time from the perspective of the TC2000 
design. 

The T-bus locking protocol is observed by the VMEbus master interface. A 
lock request on the T-bus results in holding the VMEbus until the lock is re­
leased. This prevents any other VMEbus master from accessing any VMEbus 
resource, thus preserving the atomicity of the T-bus lock. Note that if the 
VMEbus resource is dual-ported, then atomicity is no longer guaranteed. An 
example of a dual-ported VMEbus resource is the Motorola memory board 
that connects to both a VMEbus and a faster auxiliary bus such as VMX or 
VSB. 

The VMEbus is accessed through a 15-megabyte window in the System Physi­
cal Address space of the TC/FPV. This window is part of the global System 
Physical Address space of the machine. Thus, the VMEbus is accessible to 
every function card in a TC2000 machine. The addresses in this window are 
translated to VMEbus addresses by the the VMEbus master mapper, which 
maps 8-kilobyty ~egmcnts ofTC/FPV System Physical Address space to 8-ki­
lobyte segments of VMEbus address space. The VMEbus master mapper is 
implemented by a mapping RAM that is loaded by the interleaver loader de­
scribed in section 11.17. 

Figure 11-5 illustrates the operation of the VMEbus master mapper. If bit 
24 of the TC/FPV System Physical Address (thus, the high order bit of the ad­
dress offset field) is "1", then it lies within the VMEbus window and the 
TC/FPV's VMEbus master passes the transaction on to the VMEbus. Bits 
23 .. 13 of the TC/FPV System Physical Address are used to generate bits 31..13 
of the VMEbus address plus the six address modifier bits that must be driven 
on every VMEbus transaction. The 13 low order bits of the TC/FPV System 
Physical Address pass directly through to theVMEbus. The address modifier 
bits are described in detail in The VMEbus Specification. 
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Figure 11-5 VMEbus master mapper. 
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USE OF TC2000 -+ VMEbus WINDOW BY SOFTWARE 
The window from TC2000 System Physical Address space into VMEbus ad­
dress space is at a fixed location, 15 megabytes in every TC/FPV, OxlOOOOOO to 
OxlEFFFFF. If a T-bus access falls within this window, an access to some 
VMEbus location will be made; there is no way to disable the mapping alto­
gether, nor to map any of the 8-kilobyte segments to not make a VMEbus ac­
cess. Therefore, the smallest amount of .YMEbus address space that the 
TC2000 machine can see is 8 kilobytes, obtained by mapping all segments to 
one value. · 
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

TOP MEGABYTE IS NOT IN VMEbus WINDOW 
The top one megabyte of TC/FPV address space, OxlFOOOOO to OxlFFFFFF. is 
occupied by configuration and control registers. 
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VMEbus Requester 

Associated with the VMEbus master on the TC/FPV is a VMEbus requester. 
Before the master initiates a transfer, the requester must communicate with 
the VMEbus arbiter to acquire ownership of the bus. The VMEbus Specifica­
tion defines two types of requester: release-on-request and release-when­
done. The requester on the TC/FPV can be configured to be either type by 
using the VMEbus Configuration register. 

Release-on-request requesters do not let go of the bus after the transaction 
is completed. Instead, they wait until another master requests the bus before 
releasing it. If another transaction is requested by the the release-on-request 
requester's master, then arbitration does not take place again, because owner­
ship has not been relinquished. Release-on-request requesters are usef1il 
when the associated master is the primary, or most frequent, owner of the bus. 

Release-when-done requesters release the bus during the transaction or after 
it has completed. Releasing the bus during the last transaction allows arbitra­
tion to take place while the transaction completes, and reduces the overhead 
of changing masters on the bus. Release-when-done requesters are useful 
when the associated master is not the primary master on the VMEbus. 

VMEbus Slave 

The VMEbus slave illterface responds to 1-, 2- or 4-byte read and write re­
quests on the VMEbus. HaifWord (2-byte) and word ( 4-byte) requests must 
be halfWord and word aligned, respectively. It translates each such request 
into a T-bus transaction that can access local memory, remote memory, or the 
configuration and control registers on the TC/FPV (not the CPU's internal 
registers). Note that the timeouts on VMEbus devices that access TC2000 re­
mote memory must be longer than the worst case switch latency for the system 
in which they are intended to operate. The VMEbus slave interface on the 
TC/FPV does not respond to sequential transfer requests (also called "block 
transfers" in The VMEbus Specification) from VMEbus masters. 

A VMEbus master accesses TC2000 memory through a 4- or 16-megabyte 
window in VMEbus address space, depending on how the VMEbus slave in­
terface is configured. The addresses in this window are translated to TC2000 
System Physical Addresses by the VMEbus slave mapper, which maps 8-kilo­
byte segments of VMEbus address space to 8-kilobyte segments of TC2000 
System Physical Address space. Unlike the master mapper, the VMEbus slave 
mapper is implemented by a mapping RAM that can be read and written by 
any T-bus master. Thus, the slave mapper RAM can be manipulated by the 
CPU, by the the TCS slave on the TC/FPV, or by a remote processor. 

The VMEbus slave responds to the VMEbus master on the TC/FPV in the 
same way that it responds to any other VMEbus master. This is useful for 
diagnostic purposes. 
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Figure 11-6 VMEbus slave mapper. 
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Figure 11-6 illustrates the operation of the VMEbus slave mapper. Whenever 
a VMEbus master initiates a VMEbus operation, tbe VMEbus slave must first 
determine whether the target address lies inside the window tbat maps to 
TC2000 System Physical Space. The way that this is done depends on whether 
the VMEbus slave ·on the TC/FPV has been configured to respond to "stan­
dard" (24-bit) or "extended" (32-bit) VMEbus addresses. This is determined 
by tbe value of the standard I extended addressing bit in the VMEbus Configura­
tion register. If the sfave is configured for extended addressing, then the win­
dow size is 16 megabytes, and the slave mapper uses bits 31..24 of the VMEbus 
address to determine whether the transaction should be passed through to the 
TC/FPV. If the the slave is configured for standard addressing, then tbe win­
dow size is 4 megabytes, and the slave mapper uses bits 23 .. 22 of the VMEbus 
address for the determination. The window is smaller for standard addressing 
so that it occupies a reasonable fraction of the 16-megabyte space accessible 
to devices tbat use standard addressing. The VMEbus address modifier bits 
indicate the addressing mode for each transaction. The VMEbus slave re­
sponds only when the type of the address on the VMEbus (standard or ex­
tended) matches the type that the slave is configured to handle. The 
appropriate VMEbus address bits are compared to VMEbus slave window bits 
in the VMEbus Configuration register. If the comparison results in a match, 
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the access falls within the TC/FPV's window and the TC/FPV's VMEbus slave 
will pass it on to the TC/FPV. 

The window from VMEbus address space into TC2000 System Physical Ad­
dress space starts at a location determined by the VMEbus Configuration reg­
ister. If a VMEbus access falls within this window and has the appropriate 
addressing mode, an access to some T-bus location will be made; there is no 
way to disable the mapping altogether, nor to map any of the 8-kilobyte seg­
ments to not make a T-bus access. Therefore, the smallest amount of TC2000 
address space that the VMEbus can see is 8 kilobytes, obtained by mapping 
all segments to one value'. 

When set to respond to VMEbus standard addressing, the VMEbus slave 
mapper uses only 512 of its 2048 mapping registers. This is discussed further 
in the description of the VMEbus Slave Map RAM registers in the register 
definitions section. 

If the transaction is to be passed on to the TC/FPV, the slave mapper uses bits 
23 .. 13 of the VMEbus address to generate bits 33 .. 13 of the TC2000 System 
Physical Address plus several T-bus control bits. The 13 low order bits of the 
VMEbus address are passed directly through to the T-bus. 

In addition to generating the necessary T-bus address bits, the VMEbus slave 
interface uses bits 23 .. 13 of the VMEbus address to select values for several 
T-bus control signals. Thus, the attributes of an access can vary depending 

0 

on which 8-kilobyte block the address resides in. The control bits whose values o .. 
are selected are: 

• T_PRIORITY - determines the priority of a transaction 

• T _ PATII - specifies a local (on-board) access or a remote (over the But­
terfly switch) access, and selects one of two possible switches if remote 

• INTERLEAVED - indicates that the target of the transaction is in in­
terleaved memory 

• bypass - when asserted, the transaction proceeds regardless of whether 
or not the target memory module is locked by the TC2000 locking proto­
col 

• lock T-bus - intended to support VMEbus read-modify-write cycles; 
when this bit is asserted, the accessed memory is locked for the duration 
of the transaction 

The effect of these control bits is discussed in detail in the T-bus Specification. 
In the following section, we present a few examples that show how they can 
be used. In adl:lition to specifying values for T-bus control signals, the V:ME­
b.us slave can be configured to allow conversion of VMEbus read-modify­
write cycles into locked operations within the TC2000 machine. This is shown 
in one of the examples in section 11.7.15. 
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The bypass control bit is intended for transactions to local memory that can 
safely ignore the TC2000 locking protocol. For example, locked transactions 
are never used to modify locations in code space, so instruction fetches by the 
CPU always bypass locks. This improves the execution speed of the machine, 
by letting the CPU fetch co('le even when local memory has been locked by 
another CPU performing an indivisible operation. The performance of a sim­
ple DMA device, such as a disk interface, can be improved in the same way. 
As long as the device driver does not use locked operations to synchronize with 
the DMA device, the TC2000 memory accessed by the controller can be 
mapped bypassed by the VMEbus slave mapper, and DMA transfers will not 
be held up when TC/FPV memory is locked . 

. ···,,,.··· .. '''"• .... ,,.··11,.·.,,,, .•• ,,,,····· .• ,,,, •• ,,,···,,.······ .•••. ··"··· .... ,,, ''11,.·..,,,·.,,,,····· .•• ,,. '··~.······ .••• ,,,········111,. .• ,,,,, .••••. ·•••• ...... -••• ,,,-·\ •• -••• ,,.··•,,, .,,,,_ .. ,,,, ' 11,,,-•1,,''\.''~ •••• ,,,····· ..... ,_.,,,, ''"······· ''•i..''\ 

USE OF ADDRESS MODIFIER BITS 
The TC/FPV VMEbus slave mapper receives the six bits of VMEbus address 
modifier. In the initial implementation, these bits are used only to determine 
whether the reference is using standard or extended addressing. This process­
ing is performed in a programmable logic array (PLA) chip. If a high volume 
application required a more sophisticated interpretation, it might be possible 
to accommodate this need by creating a new version of the board with a modi­
fied PLA. 

VMEbus Interrupt Handling and Generation 

The TC/FPV generates interrupts to the VMEbus, and handles interrupts 
from the VMEbus. A Signetics SCB68154 chip implements the interrupt gen­
erator. This device has two internal read/write registers, the VMEbus Inter­
rupt Request register and the VMEbus Interrupt Vector I Control register. 
The protocol for generating an interrupt on the VMEbus is discussed in detail 
in the SCB68154 data sheet. 

Interrupts received from the VMEbus result in interrupts to t.he 88100 on the 
TC/FPV as described in the section on interrupts to the CPU. 

Briefly, the following steps are involved in receiving and servicing an interrupt 
from the VMEbus. 

1. The TC/FPV interrupt system must be set up. This includes: 

Set the CPU's exception vector to point to the handler code. 

The CPU's Processor Status Register interrupt disable (IND) bit must be 
zero. 

The Augmentation register disable interrupts bit lnust be zero. 
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Other sources of interrupts on the TC/FPV must be initialized appropri-
ately: the Interrupts Disabled Timer register, the Interprocessor Inter- Q 
rupt register, and the TONI Configuration registers are relevant here. 

Set one of the VMEbus Master Map RAM registers ready to generate 
VMEbus IACK cycles. 

Set the Interrupt Enable Mask register to accept VMEbus interrupts on 
the desired level( s ). 

2. A VMEbus device asserts an interrupt request on an enabled level. 

3. The CPU traps to the exception handler, where code examines the Inter­
rupt Source register, and finds that the interrupt was generated by a 
VMEbus device, and at which level. 

4. The interrupt handler software generates an IACK cycle on the VMEbus, 
by performing a half-word read to an address mapped by a VMEbus 
Master Map RAM register that has been set up to trigger an IACK cycle 
when read. Details can be found in the description of the VMEbus Mas­
ter Map RAM in the register definitions section. 

5. The software continues with normal 88100 interrupt processing, includ­
ing saving registers, servicing the VMEbus device, and at some point re­
enabling interrupts. 

Generating interrupts onto the VMEbus is considerably simpler, since it in-
volves only the manipulation of two registers - the VMEbus Interrupt Re- o·· 
quest register and the VMEbus Interrupt Vector I Control register. The 
contents of these registers afe set up to request the desired interrupt, and the 
TC/FJ;'V hardware does the rest. When a VMEbus device acknowledges a re-
quested interrupt, the corresponding bit in the VMEbus Interrupt Request 
register is cleared. By testing the bit, the TC2000 code can determine that the 
request has been acknowledged. 

VMEbus System Controller 

The TC/FPV can function as the VMEbus system controller when necessary. 
This option is jumper selectable. As the system controller, the TC/FPV will 
perform the following VMEbus functions: arbiter, bus timer, IACK daisy 
chain driver and system clock driver. To perform these functions correctly, 
a VMEbus system controller must reside in slot 1 of the VMEbus system that 
it controls. 

VMEbus Arbitration 

Three types of arbitration can be implemented on the VMEbus: prforitized, 
round-robin-select and single level. The simplest form of arbitration, single 
level, only monitors requests and issues grants on bus level 3. Because bus -
grants are daisy chained within a single level on the VMEbus, priority is as- Q 
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signed only by slot order in the VMEbus card cage. The TC/FPV VMEbus 
interface implements only single level arbitration. Refer to The VMEbus Speci­
fication for descriptions of the other arbitration schemes. 

The VMEbus arbiter is implemented as a finite state machine clocked at 32 
megahertz. The TC/FPV pulls the bus grant 2, bus grant 1 and bus grant 0 
signals to a high state. 

IACK Daisy Chain Driver 

The VMEbus interrupt acknowledge (JACK) signal is carried on two bits. One 
bit is common to all devices and announces that an interrupt acknowledgment 
is present. The other bit is daisy-chained from device to device, and each de­
vice passes that signal onto the next link of the chain, unless that device is pro­
cessing the acknowledgment. The VMEbus system controller always resides 
at the head of the daisy chain. When a VMEbus device wishes to acknowledge 
an interrupt, it asserts the,single-wire signal. The VMEbus system controller 
takes the single-wire signal and drives it onto the daisy chain. In the TC/FPV, 
the IACK daisy chain is driven by the SCB68154 (interrupt generator). For 
further details, see a Signetics SCB68154 data sheet. 

VMEbus System Clock Driver 

The VMEbus system controller must drive a 16 megahertz clock signal on the 
· VMEbus. When the TC/FPV is operating as system controller, this signal is 
generated by dividing the arbiter's 32 megahertz finite state machine clock by 
two and driving the result onto the bus. 

VMEbus Timers 

The VMEbus interface contains three timers. The VMEbus Arbiter Timer 
is used only when the TC/FPY is system controller on the VMEbus. The oper­
ation and expiration of all three timers is confined to the VMEbus, and does 
not affect the TC/FPV unless it is involved in the VMEbus transaction that 
is timed out. 

VMEbus Arbiter Timer 

When a VMEbus device requests the bus, the arbiter grants the bus to the de­
vice by asserting the bus grant signal, and starts the VMEbus Arbiter Timer. 
If the device is behaving as required by The VMEbus Specification, it will re­
spond by asserting the bus busy signal, becoming bus master. If the device has 
failed to assert bus busy when the VMEbus Arbiter Timer expires, the arbiter 
and removes bus grant. This prevents a malfunctioning device from hanging 
the VMEbus. 
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VMEbus System Bus Timer 

Once a device has become VMEbus master, it accesses a VMEbus slave device 0 
by asserting the address strobe signal. If a slave device responds, it does so by 
asserting the DTACK signal. It may be that no slave will respond, in which 
case the VMEbus System Bus Timer expires, and the VMEbus interface de-
clares an error by asserting the BERR signal. 

VMEbus TC/FPV Master Bus Timer 

Unlike the other two VMEbus-related timers, the VMEbus TC/FPV Master 
Bus Timer specifically, although indirectly, affects operation of the TC2000. 
When the TC/FPV itself is master of the VMEbus, this timer limits how long 
the TC/FPV will await a response from a VMEbus slave, to control the latency 
of TC2000 references. Upon expiration of the timer, the bus error signa!BERR 
is asserted on the VMEbus. This in turn causes removal of address strobe from 
the VMEbus, and return of a bus error to the T-bus master making the access. 

The behavior of this timer is identical to that of the VMEbus System Bus Tim­
er except that this timer runs only when the TC/FPV itself asserts address 
strobe, and the value of this timer's timeout is normally shorter. 

Resets to and from the VMEbus 

The TC2000 generates a reset on the VMEbus by clearing a bit in the VMEbus 
Configuration register. Resetting the TC/FPV board resets the VMEbus. 
However, resetting the VMEbus does not reset the TC/FPV. VMEbus resets 
can be monitored by reading the VMEbus Configuration register. If the VME­
bus is turned off, all signals are terminated correctly such that no spurious sig­
nals occur and the VMEbus is held reset. 

Communication Between Separate VMEbuses 

· This section and the following section describe TC2000 communication with 
VMEbus devices, and in particular two types of temporary deadlock that may 
arise if the machine is not used as intended. These deadlocks limit use of the 
TC2000 as a completely general interconnect among multiple VMEbus sys­
tems. 

The TC2000 hardware supports direct communication between devices on 
separate VMEbuses. However, some care must be exercised in order to avoid 
deadlocks, because the VMEbus protocol was not designed with this kind of 
communication in mind. A deadlock situation arises when a device on VME­
bus A initiates a read or write to a location on VMEbus B, while at the same 
time a device on VMEbus B initiates a read or write to a location on VMEbus 
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A. The request from VMEbus A cannot complete until VMEbus B becomes 
free, but VMEbus B is occupied by the request to VMEbus A. 

Since one or both of the transactions will eventually time out, the deadlock will 
not hang any part of the system forever, but this arrangement will not lead to 
satisfactory performance. The timeout leads to a bus error being returned to 
one or both VMEbus devices, and a VMEbus device is unable to distinguish 
a bus error meaning "something is broken" from one meaning "couldn't ser­
vice your request now, try again". This ambiguity would make it hard to pro­
gram the VMEbus device correctly. 

This deadlock can also arise in groups of more than two VMEbus systems. 
For example, VMEbus A may be waiting for completion of its access to VME­
bus B, Bis waiting for completion of its access to VMEbus C, and C in tum 
is waiting for completion of its access to A. 

VMEbus ±+ VMEbus SIMULTANEOUS ACCESS 
Mutual communication between separate VMEbuses through the TC2000 
should be avoided in the design ofTC2000 system software and applications. 
Communication in one direction only between such VMEbuses is not subject to 
the difficulty described above, and will work from a hardware point of view. 
Because of the various timers involved in such communication, however, the 
operation of one-way communication should be analyzed and tested before 
assuming that it will perform acceptably in a given application. 

Communication Between CPU and Remote VMEbus 

This section describes two forms of communication between a CPU and a re-
. mote VMEbus. Each form of communication works properly in isolation, but 
in combination they lead to temporary deadlock, timeouts, and bus errors. 
The deadlock is similar to that described in section 11.7.10, but more subtle. 
As in that case, one of the resources under contention is mastership of a VME­
bus. In this case, however, the other resource is a switch cable. 

Suppose a CPU makes a reference to a device on a remote VMEbus. The re­
quest goes out the switch port of the local function board, into the server SIGA 
on the remote board, onto the remote T-bus to the remote VMEbus master 
interface. That VMEbus interface responds to the server SIGA with "prom­
ise", meaning a reply will be supplied later, allowing other use of the T-bus 
while the VMEbus is accessed. For speed, the VMEbus master interface re­
sponds "promise" before it knows it can get mastership of the VMEbus. 

Also suppose that, at about the same time, a device on that VMEbus makes 
a reference to memory on a function board remote from itself, so the reference 
must go out over the switch. The VMEbus device gains mastership of its 
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VMEbus and the request goes into the TC/FPV VMEbus slave interface, onto 
that function board's T-bus, and into the requester SIGA of that board's o 
switch interface. The requester SIGA tries to set up a connection to the target 
function board. 

Finally, suppose that the two switch paths involved have a Butterfly switch 
cable in common. The CPU's connection, including that cable, is held open 
waiting for the CPU's reference to complete. Therefore, the remote requester 
SIGA trying to set up a connection will repeatedly be rejected and retry. This 
is the temporary deadlock situation. 

The deadlock situation is always broken by some timeout. Usually the switch 
connection timer breaks the CPU's connection. The switch path then becomes 
available, and the next retry of the VMEbus device's reference. will typically 
succeed. Thus a typical outcome is that the VMEbus device's reference is 
merely delayed, but the CPU receives a bus error. The CPU is unable to deter­
mine whether its reference was completed or not. Depending on timing, the 
remote VMEbus master interface may give up before the VMEbus becomes 
free, or may eventually obtain bus mastership and complete the reference re­
quested by the CPU. This ambiguity makes it hard to program the CPU to 
correctly handle the bus error, especially if the reference was a write (or a read 
with side effects). 

One situation in which this temporary deadlock arises is shown in Figure 11-7. 
This is a 2-column, 64-function board machine; in such a configuration there Q 
is just one switch cable from any midplane to itself. That cable becomes a re- . 
source for which the !'.vo references contend. If the VMEbus device references 
any of the seven non-local function boards on that midplane, simultaneously 
with any of those seven CPUs referencing the VMEbus, the deadlock may oc-
cur. The heavy line shows the part of the CPU's switch path to the VMEbus 
that the VMEbus reference also needs. · 

0 
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Figure 11-7 CPU -. VMEbus deadlock example. 
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As can be seen from Figure 11-7, this deadlock arises in a 2-column machine 
only when the CPU, the VMEbus, and the function board target of the VME­
bus device's reference are all on the same midplane. If any of the three are 
on a different midplane, the two switch paths have no cable in common, and 
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this deadlock does not arise. In a 3-column switch, the deadlock can arise if 
all three components are in the same bay (of eight midplanes). o 
The temporary deadlock can occur even if the machine has multiple cables be-
tween rnidplanes. Such cables provide alternate paths through the switch. · 
However, there is a chance that the requester SIGA servicing the VMEbus de-
vice's reference will choose the same alternate path that is serving the CPU's 
request. For example, in a machine with two alternate paths, the temporary 
deadlock will arise half as often as on the 64-board machine described earliBr. 
Note that when a requester SIGA first attempts to make a connection, it 
chooses at random one of the alternate paths, and continues to use that path 
for all retries of that request. It does not cycle through the alternate paths on 
successive retries. 'Iiying the same path is necessary for the express message 
(priority promotion) mechanism to work. 

Also, the temporary deadlock can occur in more complex situations involving 
multiple VMEbus systems. For example, Figure 11-8 shows a deadlock in 
which CPU 1 is waiting for completion of its access to VMEbus B, VMEbus 
Bis waiting for a switch path to memory on CPU 2's board, that switch path 
is in use by CPU 9 which is waiting for completion of its access to VMEbus 
A, and VMEbus A is waiting for a switch path to memory on CPU ,M.s board, 
but that path is in use by CPU 1. Note that multiple midplanes are involved 
here, not just one as in the example of Figure 11-7. 
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Figure 11-8 Multiple CPU and VMEbus deadlock example. 
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WARNING 

February 14, 1990 

CPU -+ VMEbus, VMEbus -+ MEMORY SIMULTANEOUS ACCESS 
A CPU may reference devices on a remote VMEbus, or devices on a VMEbus 
may reference remote function 1'oards, but no VMEbus should be used both as 
a target for references from a remote CPU and as a source of references to a 
remote function board, in anyway that the two references might be made near­
ly simultaneously. This warning may be disregarded if the software is con­
structed to ensure either of two conditions: 

1 Access to the VMEbus may be time multiplexed, operated in half-duplex 
fashion. A small guard interval must occur whenever the access is turned 
around, to prevent the race condition hazard of instantaneous reversal. 
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2. The location of the CPUs, VMEbuses and memories involved may bear-
ranged so that the relevant switch paths never have any.piece in common. Q 

Locked Operations from VMEbus Devices 

For applications that use intelligent VMEbus devices such as CPUs or array 
processors, the TC2000 locking protocol provides a useful mechanism for syn­
chronization with TC2000 processors and with devices on other VMEbuses. 
Ideally, the VMEbus slave mapper would translate every VMEbus read-modi­
fy-write cycle to a locked operation within the TC2000 machine. Unfortunate­
ly, the VMEbus protocol is structured so that this cannot be done without 
slowing down ordinary VMEbus transactions. Instead of paying this penalty . 
on every transaction, support for read-modify-write operations can be en­
abled or disabled for each 8-kilobyte segment of VMEbus address space that 
maps to TC2000 memory. All references in an enabled 8-kilobyte segment will 
invoke the TC2000 locking protocol. 

Performance 

The VMEbus slave interface sustains a measured data rate of 8 megabytes per 
second, either reading or writing. This is also the peak (burst) rate, since the 
TC/FPV does not perform block transfers. () 

bytes per second, either reading or writing. 

Note that The VMEbus Specification permits a wide range of performance. 
Therefore, the performance obtained with the TC/FPV depends significantly 
on the performance of the other device(s) on the VMEbus. For example, the 
VMEbus master interface performance was measured using a ZOO-nanosec­
ond memory card on the VMEbus. 

VMEbus Termination 

The VMEbus Specification requires that the VMEbus be terminated at both 
ends by 194 ohms to + 2.94 volts, or equivale)lt. To ensure signal integrity, a 
set of VMEbus terminating resistors resides on the TC/FPV. This leads to two 
constraints. 

• First, the TC/FPV must reside in the first slot or the last slot of a VME­
bus system. 

• Second, there can be at most two TC/FPV boards in any one VMEbus 
system. 
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VMEbus Transaction Examples 

This section explains the operation of the TC/FPV in more detail by describing 
four different types of transaction, step by step. The first is a read operation 
initiated by the 88100 CPU on the TC/FPV. The next two are write operations 
initiated by a VMEbus master, and the last is a read-modify-write operation 
initiated by a VMEbus master. 
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EXAMPLE 1: A read operation initiated by the CPU on the TC/FPV. 

VMEbus example 1. 

TC/FPV 

VMEbus 
device memory CPU 

I T 
memory I< T-bus ) 

I I 
VMEbus switch 
interface intertace 

I 
VMEbus ") 

o( read request from CPU to memory 

data returned to CPU > 
From the point of view of the CPU on the TC/FPV, reading from the VMEbus 
is no different from reading an ordinary memory location. The hardware inter­
actions proceed as follows. 

1. The virtual address emitted by the CPU is checked for validity and trans­
lated to a TC2000 Physical Address by the CMMU. The CMMU passes 
the translated address on to the CPU interface to the T-bus, where the 
32-bit Physical Address is translated to the 34-bit System Physical Ad­
dress used on the T-bus. 

2. The CPU interface gains T-bus mastership and drives the T-bus address 
and control lines to indicate a read operation. 

3. The VMEbus master interface notices that the address is within the 
VMEbus window, and responds with a "promise" signal, freeing the T­
bus for other transactions while the VMEbus read operation is in prog­
ress. ("promise" signals cannot be queued. The T-bus Specification says 
that if a "promise" is already pending, the master must respond to fur­
ther requests with "refused".) 

4. The VMEbus requester module obtains mastership of the VMEbus. 

5. The VMEbus master interface drives the VMEbus address and control 
lines to indicate a read operation. 

At this point, two timers begin running - the VMEbus TC/FPV Master 
Bus Timer and the VMEbus System Bus Timer. When the VMEbus 
slave later acknowledges the read operation (by asserting the VMEbus 
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6. 

signal DTACK), both timers halt. It is intended that the VMEbus TC/ 
FPV Master Bus Timer's setting be shorter than the VMEbus System 
Bus Timer's setting. 

The target of the read operation acknowledges the read and returns a val: 
ue. 

If either of the two time\-s expires before the VMEbus slave responds, the 
VMEbus interface declares a bus error on the VMEbus by asserting the 
VMEbus signal BERR. The error condition is sensed and conveyed by 
the VMEbus master interface from the VMEbus over the T-bus to the 
CPU. 

7. The VMEbus master gains T-bus mastership and drives the T-bus ad­
dress and control lines to indicate a "function response" operation. 

8. The CPU interface accepts the data and passes it on to the CMMU. 
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EXAMPLE 2: A write operation initiated by a VMEbus master, addressing Q 
memory on this TC!FPV. 

VMEbus example 2. 

TC/FPV 

VMEbus 
device memory CPU 

I T 

CPU I< T-bus ) 
.J._ I 

VMEbus switch 
interface interface 

I 
VMEbus ") 

write request and data ) 
from CPU to memory 

From the point of view of a VMEbus master, writing to TC/FPV memory is 
no different from writing to an ordinary VMEbus location. 

1. The VMEbus requester module on the VMEbus device obtains master­
ship of the VMEbus. 

2. The VMEbus slave on the TC/FPV recognizes that the VMEbus address 
falls within the slave's window, transforms the address, gains T-bus mas­
tership, and drives the T-bus address and control lines to indicate a write 
operation. If the VMEbus slave on the TC/FPV does not respond soon 
enough, the VMEbus System Bus Timer will expire, generating a VME­
bus error, that will cause the master to abort the transaction. 

3. The TC/FPV memory accepts the data and acknowledges the write oper­
ation. 

4. The VMEbus slave on the TC/FPV completes the transaction by ac­
knowledging the write operation to the VMEbus master. 
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Figure 11-11 

VMEbus 
device 

CPU 

EXAMPLE 3: A write operation initiated by a VMEbus master, addressing 
VMEbus memory connected to a renwte TC/FPV. 

VMEbus example 3. 

TC/FPV TC/FPV 

VMEbus 
memory CPU memory CPU device 

_l I I T 

I< T-bus ) I< T-bus )I memory 

I I I T 
VMEbus switch switch VMEbus 
interface interface interface interface 

I I _J_ T 

< VMEbus L Butterfly switch J ( VMEbus 

February 14, 1990 

write request and data 
from CPU to memory 

Among these examples, the interaction that involves the largest number of 
components is triggered by writing from a VMEbus master to a memory loca­
tion on a VMEbus connected to a remote TC/FPV. 

1. The VMEbus requester module on the VMEbus device obtains master­
ship of the VMEbus. 

2. The VMEbus slave on the TC/FPV sees its window accessed, transforms 
the address, gains T-bus mastership, and drives the.T-bus address and 
control lines to indicate a write operation. 

3. The target is a remote processor node, so the Switch Interface Gate Array 
(SIGA) accepts the request and responds with a "promise" signal, freeing 
the T-bus for other transactions while the VMEbus write operation is in 
progress. See the T -bus Specification for the response of the VMEbus 
slave to other possible replies, such as "refused _locked". In general, the 
VMEbus slave either waits or aborts the transaction by signalling a bus 
error to the VMEbus master. 

4. The SIGA sends a message containing the write address and data across 
the switch to the target TC/FPV. 

5. The SIGA on the remote TC/FPV receives the message, gains T-bus 
mastership and drives the T-bus address and control lines to indicate a 

. write operation. 
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6. The VMEbus master interface notices that the address is within its win­
dow. It accepts the write data and responds with a "promise" signal, free­
ing the T-bus for other transactions while the VMEbus write operation is 
m progress. 

7. The VMEbus requester module obtains mastership of the VMEbus. 

8. The VMEbus master interface drives the VMEbus address and control 
lines to indicate a write operation. 

9. The target of the write operation accepts the data and acknowledges the 
write. 

If the VMEbus slave does not respond before the VMEbus TC/FPV 
Master Bus Timer expires, the resulting bus error on the VMEbus causes 
the VMEbus interface to abort the transaction and signal a bus error. 
The error is passed back through the local T-bus, the switch, and the re­
mote T-bus to the remote VMEbus slave, which signals a bus error to the 
requesting VMEbus device. 

In this example, several timers are running: a VMEbus System Bus Timer 
on each end, a VMEbus TC/FPV Master Bus Timer in the second 
TC/FPV, and a connection timer in the first TC/FPV's requester SIGA. 
Expiration of any of these timers will be seen by the requesting VMEbus 
device as a bus error. 

10. The VMEbus master gains T-bus mastership and drives the T-bus ad­
dress and control lines to indicate a "function response" operation. 

11. ThE STGA. pn,,'-e~ the. qc~novvlcdgcment hack tot.he SIGi\on therequest-­
ing TC/FPV and 'closes the switch connection. 

12. The SIGA on the requesting TC/FPV gains T-bus mastership and drives 
the T-bus address and control lines to indicate a "function response" op­
eration. 

13. The VMEbus slave completes the transaction by acknowledging the write 
operation. 
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EXAMPLE 4: A read-modify-write operation initiated by a VMEbus master. 

VMEbus example 4. 

TC/FPV 

VMEbus 
device memory CPU 

I T 

CPU I< T-bus ) 
T I 

VMEbus switch 
interface interface 

T 

< VMEbus; 

read request from CPU ') read and open lock 
from VMEbus interface 

< returned data from memory to CPU 

') 

write request from CPU > write and maintain lock ') 
from VMEbus interface 

< acknowledgment from memory to CPU 

CPU releases VMEbus ') VMEbus interface frees loci\"> 

Support for read-modify-write transactions is enabled by setting the VMEbus 
slave mapper so that every transaction locks the target by using the TC2000 
locking protocol. Thus, a read-modify-write transaction proceeds as follows. 

1. The VMEbus device initiates the read operation. 

2. The VMEbus slave on the TC/FPV transforms the address, gains T-bus 
mastership, and drives the T-bus address and control lines to indicate a 
"read and open lock" operation. 

3. The target of the transaction returns a value and puts itself into the 
locked state. 

4. When the read completes, the VMEbus slave on the TC/FPV returns the 
value to the VMEbus master. 

If the read does not complete, a bus error will be signalled on the VME­
bus. This will tell the VMEbus master to terminate the request by releas­
ing address strobe. 
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5. When the VMEbus master acknowledges receipt of the value, it also indi-
cates that this is a read-modify-write operation by holding the VMEbus Q 
and asserting the value to be written along with the necessary control bits. 
Up to this point, the TC/FPVhas noway of telling whether this is an ordi-
nary read or the beginning of a read-modify-write. The TC/FPV must 
lock the target memory and keep it locked until this point in the transac-
tion. 

6. The VMEbus device initiates the write operation. 

7. The VMEbus slave on the TC/FPV gains T-bus mastership and drives 
the T-bus address and control lines to indicate a "write and maintain 

· lock" operation. 

8. When the write completes, the VMEbus slave on the TC/FPV acknowl-
edges the VMEbus master. · 

If the write does not complete, a bus error will be signalled on the VME­
bus. This will tell the VMEbus master to terminate the request by releas­
ing address strobe. 

9. The VMEbus master terminates the transaction by releasing the VME­
bus address strobe signal. When the VMEbus slave interface detects the 
release of address strobe, it generates a T-bus FREE_ LOCKS cycle, thus 
unlocking the target memory module. If either the read or the write 
failed, the FREE_ LOCKS cycle is still produced by the release of address 
strobe as noted above. 

If the transaction is an ordinary read or write, and not a read-modify-write, 
steps 1-3 are the same. In step 4, the VMEbus slave completes the transaction 
by asserting the T-bus FREE_ LOCKS signal as soon as it discovers, by seeing 
the VMEbus address strobe signal fall, thatthe transaction is not a read-modi­
fy-write. 

VMEbus DEVICE CANNOT HOLD LOCK LONGER 
This example showed a simple read-modify-write operation. A VMEbus de­
vice cannot keep the memory locked for additional cycles by holding the VME­
bus (asserting address strobe), for two reasons. First and most basically, the 
address strobe signal must be de-asserted between cycles, and tltis automatical­
ly frees the lock. The TC/FPV VMEbus slave interface does not respond to 
sequential ("block") transfer requests. Second, VMEbus timers and switch 
connection timers (if any are involved) limit how long the transaction may last. 
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Augmentation 

Augmentation is a feature of the TC2000 architecture that allows each CPU 
in the system to perform some operations auxiliary to normal functionality. 
The primary goal of augmentation is to provide a mechanism for performing 
atomic operations in the multiprocessor environment of the TC2000, where 
many processors can access the same memory. In addition, augmentation per­
mits the implementation of some features, unique to the TC2000 machine, that 
are not supported by the 88100. 

An augmented memory reference results in the occurrence of some operation 
in addition to the reference. In particular, augmenting a read or write opera­
tion with the TC2000 locking protocol gives the CPU exclusive access to the 
target memory module until it releases the memory by clearing.the lock aug­
mentation. A mechanism of this type would not be required in a uniprocessor 
environment, where only one CPU initiates transfers to the memory. 

The Augmentation Register (AR) controls augmentations. The AR entry in 
the register summary section shows the layout of the Augmentation Register 
and discusses different methods for accessing it. 

Disabling Interrupts 

Interrupts to the processor are disabled by setting the disable interrupts bit 
in the AR. Setting this bit prevents the interrupt request input to the processor 

. from being asserted. Disabling interrupts is a key step toward maintaining 
atomicity. This is discussed further below. 

Interrupts are serviced by the processor when it is between instructions. Un­
fortunately, disabling the interrupt request input to the CPU does not guaran­
tee that previously pending interrupts will not be serviced, because there is an 
internal interrupt request pipeline. For example, if a device is requesting an 
interrupt, and interrupts become disabled, the interrupt request will no longer 
be asserted at the processor interrupt request pin. However, the processor 
may still see and service the interrupt because the request was latched internal­
ly before the pin was de-asserted. If interrupts are disabled with a read in­
struction, and an interrupt has been latched internally, it will be serviced 
immediately following the read and before any subsequent instructions can be 
executed. 

Thus, disabling interrupts via augmentation works in concert with an atomic 
sequence as follows. 

1. The program sets the AR disable interrupts bit to "l". 

2. Now, before the next instruction, any interrupt" request latched in the 
CPU's internal pipeline will be serviced. 
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3. The program now performs whatever atomic sequence is needed. (The 
AR lock bit must be set here and not in step l, to avoid interactions be- Q 
tween locking and the possible handling of interrupts in step 2.) · 

4. When the atomic sequence is completed, the program loads the AR with 
a new value that terminates the TC2000 locking protocol and re-enables 
interrupts. 

There are two important differences between the disable interrupts augmenta­
tion and the disable interrupts bit in the 88100 processor status word. First, 
the disable interrupts augmentation does not affect the function of the Non­
maskable Interprocessor Interrupt register. This provides a mechanism for 
a debugger or error handler to gain the attention of a CPU without resetting 
it, even when it is stuck with interrupts disabled by augmentation. Second, the 
disable interrupts augmentation is subject to the interrupts Disabled Timer.· 
This timer helps guarantee an upper bound on interrupt latency, and is there­
fore a useful tool in time-critical applications. 

Lock Augmentation 

Setting the lock bit in the AR causes the memory module that is next accessed 
to be held dedicated to this CPU after the access has completed. And if the 
switch is used to make the access, the switch path to that memory module is 
also held open. 

The first augmentable reference with the lock augmentation enabled turns into 
a11 OPEN operatiu11 011 tlic T-bus. Subseyuent refe1e11ces turr1 i11to lvlAit~~ 
TAINT-bus accesses. 

A transition from one to zero of the AR lock bit automatically generates a T­
hus FREE_ LOCKS cycle. This allows clearing the AR lock bit and generating 
the FREE_ LOCKS to be performed in a single CPU instruction. 

Refer to the T-bus Specification for a complete description of the TC2000 lock­
ing protocol. 
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Figure 11-13 
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''''''''''''''''''~'''''''''''''''''''''''''''' 

HOW LOCKS ARE FREED 
If the lock bit in the AR is "1", and the CPU locks a resource, the CPU interface 
remembers this. Then, when the lock bit is cleared to "O'', the CPU interface 
automatically generates a FREE_ LOCKS cycle on the local T-bus. If a remote 
resource was locked through a switch connection, the local SIGA knows this 
and, seeing the FREE_ LOCKS on the local T-bus, propagates the drop-lock 
condition over the switch to the remote node, where the remote SIGA gener· 
ates a FREE _LOCKS cycle on the remote T-bus, freeing the locked resource. 
The CPU cannot explicitly generate a FREE _LOCKS cycle, only implicitly as 
a side effect of clearing the lock bit in the AR after having locked a resource, or 
as a side effect of the XMEM instruction (described above). If no resource is 
locked by the CPU, setting and clearing the lock bit in the AR does not gener­
ate a FREE_ LOCKS cycle. . 
"•· "\, ·~,,. •• ,,,,, '''•,. '''11, ' 1•1, ''"•• "•,,, ''•;, ·•,,, "''•· ''1•1, .• ,,,,, "'\11, '''i1, •• ,,, "''•· •• ,,,. '''o,, -.,,\, .• ,,, ''••,, ··1,,, ··1,,. '••1,, •• ,,,,, ''11,,, ·•;,, ''•1,, -.,,,,, ''\, '''••,. '••,,,, ''\, ''1\,, ''\, ''•\. ''11,,, '"•1,, '\, -.,,, '''<,, .• ,,,,, ''1•1,, '''•1, '''•r, · 

Bypassing Locks 

The TC2000 locking protocol affects only a subset of the references generated 
by the CPU. Since it is never useful to lock out instruction fetches, these ac­
cesses ignore the locking protocol. In addition, augmenting certain data refer­
ences, such as references associated. with exception processing in the CPU, 
would result in incorrect system behavior and must be prevented. The archi­
tecture therefore supports a mechanism that suppresses the locking protocol 
when data resides in bypassed address space. A data reference is to bypassed 
memory if the bypass bit In its CPO Mapping RAM entry is set. Locations in 
the 8-megabyte block specified by such CPU Mapping RAM entries are said 
to be in bypassed address space. 

Figure 11-13 lists the types of data that should reside in bypassed address 
space. The hardware automatically bypasses the lock augmentation on in­
struction fetches, and on page descriptor fetches made by a CMMU. The seg­
ment descriptor fetch, however, is not automatically bypassed; system 
software must map the memory containing segment descriptors, as fetched by 
the CMMUs, bypassed. 

Types of data references that should be mapped bypassed. 

Instruction fetches (automatically bypassed) 
MMU page table walks (partly automatically bypassed) 
Exception vector fetches 
Supervisor stack references 
Configuration and control registers 
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The primary purpose of the bypass mechanism is to Jet the CPU access in­
structions and page tables in its local memory, even if someone has the local Q 
memory Jocked. Normally, references to remote memory do not bypass locks. 

If the bypass bit in the selected CMR entry is "1" (indicating a bypassed refer­
ence), then the T-bus signal T_LOCKOP = bypassed is asserted (regardless 
of the setting of the AR). Otherwise, the AR is used. In particular, the AR 
lock bit is OR'ed with the CPU's DLOCK bit (meaning an XMEM instruction 
is occurring), and if the OR is true, T_LOCKOP = open or maintain is as­
serted, making it a locked reference. If the OR is false, the reference is a nor­
mal one and T_LOCKOP = normal is asserted. 

While our discussion of bypassing locks focuses on the CPU interface, the 
-VMEbus can also bypass locks, when the bypass bit in the VMEbus Slave Map 
RAM is asserted. 

The Process Configuration Register 

The Process Configuration Register (PCR) contains information associated 
with the software process currently running on the processor. The fields of 
the PCR control priority, path and "synchronized access" mechanisms de­
scribed in the sections below. 

Switch Priority and Priority Schemes 

The iritent of the priority mechanism is to bound switch latency by ensuring 
that each message eventually gets through the switch, despite contention from 
other switch traffic. The paragraph below describes this mechanism in general 
terms. The SIGA and SGA specifications describe the operation of this mech­
anism in detail. Although two priority bits are supplied on the T-bus, manipu­
lated by the SIGA, and contained in switch message headers, the SGA 
implementation uses only one of the two. Consequently, there are functionally 
just two priorities: low (normal), and high. Messages with high priority are 
called express messages and receive preferential treatment in the switch. 

The SIGA copies the T_PRJORITY bits from the T-bus, and places them in 
the switch message header. The SIGA, during a regularly occurring interval 
called its priority time slot, promotes (modifies) the priority bits in retrans­
mitted messages, forcing them to high priority. A message encountering con­
tention is eventually promoted to high priority, contends more successfully for 
SGA output ports on its path, and reaches its destination. This mechanism 
places an upper bound on the time that a message takes to establish a connec­
tion and traverse the switch. 

The definition of T-bus T _PRIORITY bits is: 
OO=high 
0 1 = low (normal) 

BBN ACI Proprietary February 14, 1990 

----- -·---·----

0 

0 



0 

0 

0 

TC2000 Hardware Archirecture 11 :FPV 

11.9.2 

February 14, 1990 

10 = illegal 
11 = illegal 

The priority of messages can be modified and used automatically by the switch 
hardware. The recommended, simplestuse of the priority mechanism by soft­
ware is to send all messages at low priority. To do otherwise can interfere with 
the hardware's use of priority to bound latency. However, the TC/FPV is de­
signed to permit software specification of message priority. This flexibility 
permits other, application-driven uses of the priority mechanism. 

Each master on the T-'bus must drive the priority bits. The initial priority of 
the messages sent can be set independently in each master interface, as de­
scribed below. 

In the VMEbus slave/T-bus master interface, bits in each VMEbus Slave Map 
RAM register specify the priority bits placed on the T-bus when that register 
is used to map an access from the VMEbus into the TC2000 address space. 

The switch server interface generates only local T-bus transactions, never ones 
that go back out to the switch, so its setting of T-bus priority bits is of no con­
cern. 

In the CPU interface, the priority bits are computed from fields of the Process 
Configuration register and from properties of the access being made. The 
PCR priority scheme field selects one of four possible algorithms for this com­
putation. Each algorithm may make use of the PCR default prioriiy field and 
properties of the access (such as read/write and single-word/burst). In accor­
dance with the recommendation above, the PCR priority scheme field should 
be set to "00", which selects low'priority for all types of message. With this 
setting, the PCR default priority field is irrelevant, but using "00" is suggested. 

The Path Bits 

The two T _PATH bits on the T-bus differentiate local accesses from switch 
accesses; this permits local T-bus slaves to detect accesses to themselves with­
out decoding the upper bits of the address. The T _PATH bits also select be­
tween the primary and backup switches for remote references. "11" indicates 
local access, "10" means SIGA A, and "01" means SIGA B. ("00'' is illegal.) 

The CPU interface computes the value of the T _PATH bits from four sources: 

• The Process Configuration register (PCR) two path bits 

• The selected CPU Mapping RAM (CMR) entry's local bit 

• The selected CPU Mapping RAM (CMR) entry's interleave enable bit 

• The selected Interleave Decision RAM entry's single bit 

The computation is as follows: 
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If ( ( CMR local bit is "1" ) 
AND NOT ( ( CMR interleave enable bit is "1" ) 

AND ( Interleave Decision RAM bit is "1" ) ) ) 
then T_PATH = "11"; 
otherwise T_PATH = PCRpath bits. 

In words, T_PATH is specified by the PCRpath bits unless the reference is 
local and not interleaved, in which case T_PATH is forced to "11" (local). 

The PCRpath bits are used by the CPU interface only. The switch server inter­
face generates only local T-bus transactions (T _PATH = 11). In the VMEbus 
slave/T-bus master.interface, bits in each VMEbus Slave Map RAM register 
specify the T _PATH bits placed on the T-buswhen that register is used to map 
an access from the VMEbus into the TCZOOO address space. 

Synchronized Access 

Remote accesses can be attempted less frequently ("backed off") after the 
switch interface has received a reject. This throttles the retry rate and achieves 
a better pattern of switch traffic than would be attained if retries were allowed 

. at any time. The SIGA has a very general mechanism for specifying the initial 
transmission and retry criterion for each message class. This mechanism is 
described in detail in the SIGA specification. 

Setting the synchronized access bit of the PCR causes subsequent references 
to assert the T-bus signal T_SYNC. This indicates to the SIGA that the cur­
rent access should use the "SlotO" transmission strategy. When the SIGA is 
appropriately set up by system software, selecting "SlotO" can produce the ef­
fect of attempting the current access using the backoff criterion on the initial 
transmission, rather than waiting until a reject has occurred to back off. 

The CPU Mapping RAM 

The CPU interface contains the CPU Mapping RAM (CMR), a set of registers 
whose main purpose is to translate addresses as described in section 11.10.1. 
The CMR also generates access control signals listed in section 11.10.2. 

CMR Address Translation 

The series of translations that convert an 88100 virtual address (Process Log­
ical Address) to a System Physical Address is shown in Figure 11-14. The pur­
pose of the CPU interface address translation is to convert the 32-bit Physical 
Address generated by the 88200 CMMU to a 34-bit System Physical Address. 
The TC/FPV uses the CPU Mapping RAM to implement this translation, 
shown in Figure 11-15. 
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Figure 11-14 Address translation. 

CPU 
Motorola 88100 

I, 

" 
Process Logical Address ( 32 bits ) 

P-bus 
(processor bus) 

' ' 
CMMU 

Motorola 88200 

' I 
88000 PhysicaLAddress ( 32 bits ) 

M-bus 
("memory" bus) 

'' 
CPU interface 

address translation 

0 ,i, 

TC2000 System Physical Address ( 34 bits ) 
T-bus 

(transaction bus) 

Figure 11-15 Physical Address to System Physical Address. 
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The CMR takes in the high nine bits of the Physical Address generated by the 
CMMU (and one other bit) and uses them to generate the high eleven bits of Q 
the System Physical Address. These 11 bits select one of the 2048 8-megabyte . 
"banks" of address space within the machine. 

The additional bit used to select a CMR entry is whether the CPU is perform­
ing a read or write operation. This allows separate mapping for read access 
versus write access to the same Physical Address. (Certain CMR bits do not 
distinguish between reads and writes, as noted in the CMR description in sec­
tion 11.17.) 

Note that it is possibleto build systems with more memory than the 88000 chip 
set can directly address. The following observations regard the memory that 
lies outside the 4-gigabyte range that is directly accessible to any given 
TC/FPVCPU. 

1. There is no hardware restriction against setting the CPU Mapping RAM 
differently on different function boards. Thus it can include mapping of 
private copies of code and data. nX kernel code that must be replicated 
on every processor function board is one example. Programs with super­
visor privileges (or access to appropriate system calls) can manipulate 
the mapping RAM to access private memory on remote function boards 
for diagnostics, initialization, debugging, and other purposes. This flexi­
bility could also be used to allocate different subsets of physical memory 
to different clusters. 

2. Other function boards than the TC/FPV need not have the 32-bit limita­
tion of the 88000. For example, an array processor or high-throughput 

· I/O function board could be built to access a 16-gigabyte memory space. 

Control Bits in the CMR 

In addition to translating addresses, the CMR also produces certain control 
signals that describe the kind of access being made. The bits that control these 
signals are: 

• local - Indicates that the reference is to local rather than remote 
memory (or other resource). Discussed in section 11.3.2. 

• bypass - Indicates that the reference bypasses the TC2000 locking proto­
col. Discussed in section 11.8.3. 

• interleave enable - Indicates that the reference is to interleaved memory. 
Discussed in section 11.3.6. 

• fast path disable - Indicates that the reference will not use the CPU's fast 
path to memory. Discussed in section 11.3.1. 

• intercept access* - Indicates that the reference will be terminated and 
acknowledged as if it had succeeded. (The * is part of the name of the 

0 

bit, indicating it is low true.) Discussed in section 11.10.3. Q 
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Besides the sections referenced above, the description of the CMR in section 
11.17 discusses all aspects of the CMR in detail. 

CMR Intercept Access Mechanism 

A mechanism called intercept access is controlled by the CPU Mapping RAM. 
The intended use of this mechanism is to reduce the number of switch accesses 
required when transferring blocks of data from one function board to another. 
Such use may enhance performance and reduce the asymmetrical nature of 
pushing versus pulling blocks of data around the TC2000 machine. 

The 88200 CMMU behavior around cache write misses when the page is 
marked.copyback cacheable ~s as follows. When the processor misses the 
cache on a cacheable write (in copyback mode), the 88200 selects a cache line. 
(If none are available, it selects one for replacement and if necessary, copies 
it back into memory.) It then reads in the new line with the intent-to-modify 
bit set. (This read is to force any snooping master with dirty data to flush it, 
a non-issue in the case of the TC/FPV.) Next, it writes the datum to memory, 
and finally it writes the datum to the newly-read cache line. See the MC88200 
User's Manual for more detail. 

The effect of the 88200's behavior in the TC2000 computer is as follows. For 
simplicity, the description assumes that the data is quad-word aligned. In one 
common model for copying blocks of data around the TC2000 machine, a 
block of data is read into the cache, and then written to'another cacheable loca­
tion. The process .of cache line replacement, or explicit flushing, causes the 
data to be written to memory. In the case of copying data from local memory 
to remote memory (pushing), the behavior described above results in three 
switch transactions for each line of data to be copied: 

1. The initial read with intent-to-modify of the cache line 

2. The write-once 

3. The ultimate burst write when the line is flushed from the cache 

On the other hand, when copying data from a remote function board to local 
memory (pulling), the data is read into the cache across the switch, and the 
burst read, write-once, and burst write are performed to local memory. Hence, 
only one switch reference is required. In either case, the burst read and the 
write-once are extraneous. New data is immediately copied over the data that 
has been read in, and the line is written to memory when it is selected for re­
placement, or when it is explicitly flushed, so the write-once is redundant. 

When data is being pulled into local memory from remote memory, the per­
formance penalty is small. However, when data is being pushed, the perform­
ance penalty is large enough to warrant a hardware assist. Using the intercept 
access mechanism, it is possible to suppress the two extraneous references 
when pushing data across the switch. 
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"When the intercept access• bit is asserted (cleared to "O"; the * indicates low 
true) in a CMR entry, support circuitry in the CPU interface causes any cycle 
mapped through the entry to get intercepted. The processor is acknowledged 
as if the cycle had completed, but no T-bus cycle is actually generated. The 
CMR has separate entries for read and write cycles, so reads and writes can 
be intercepted independently of each other. 

When pushing data to remote memory, the intercept access* bit should be as­
serted in the read entry for the destination function board. This reduces the 
number of switch references from three to two for each line in the pushing case, 
by intercepting the read-with-intent-to-modify cycle when the cached write 
occurs. In addition, if the destination line is read in (and intercepted locally) 
before the data is copied to it, then a cache miss will not occur when the data 
is written to the destination. This will preve1i1t. the write-once from occurring, 
reducing the number of switch references to one per cache line, regardless of 
whether the data is pushed or pulled through the switch. 

CPU Memory Access Timing 

Figure 11-16 shows the memory access time from a TC/FPV CPU under a va­
riety of conditions. The accompanying notes are essential. Each value shown 
applies throughout its connected white space. These are generally best case 
(minimum) times, as detailed further in the notes. 
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Figure 11-16 Memory access time (microseconds). 

Cache Access Made by CPU 

Mode 

inhibited 

writethrough 

copyback 

writethrough 

copyback 

February 14, 1990 

Read Write Read Write 
Activity from to from to 

Local Local Remote Remote 

none 0.550 0.600 1.913 1.889 

hit 
0.150 

hit 

miss 
0.850 1.200 2.529 4.168 

miss with 
no writeback 

miss with 
writeback to local 1.500 1.850 3.179 4.818 

miss with 
writeback to remote 2.905 3.255 4.534 6.173 

Notes for Figure 11-16. 

1. The operating frequency of the TC/FPV characterized here is 20.0 MHz. 

2. The timing shown is the full latency including the CPU's "execute" phase 
(a Motorola term for instruction decoding) and "address" phase through 
completion of the access. For example, a read with a cache hit takes three 
cycles (execute, address, and successful reply), a total of 0.150 microsec­
onds. The bandwidth may be greater than the reciprocal of the timing 
shown, since the execute and/or address phases may be pipelined with 
the processing of other instructions, depending on the mix of instruc­
tions. The maximum bandwidth is one access per cycle. Pipeline stalls 
caused by recent instructions that have not yet finished are possible dur­
ing the execute and/or address phases; the timing shown assumes such 
stalls are absent. For further details, see the Motorola MC88100 User's 
Manual. 

3. The fast path is assumed used where possible, namely in reads (either a 
burst or a single word) from non-interleaved local memory. Using the 
fast path reduces the access time by J cycles (0.150 microseconds). 
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4. The timing shown assumes that no page table walking is performed. If 
the CMMU must load memory mapping information to service the ac­
cess, the time seen by the CPU is increased. 

5. The intercept access mechanism is assumed not used. Its effect on timing 
is discussed later. 

6. If the access is augmented with the TC2000 locking protocol, the access 
time in some cases may be reduced because, if a remote function board is 
referenced, Jocking holds the switch path to it open. Therefore, if switch 
transmissions were not immediate or if there was contention in the switch 
or at the destination port, only the initial Jocked reference would be 
delayed and not the subsequent references during the sequence. Howev­
er, the timing shown assumes immediate transmission and no contention, 
so there is no effect due to locking on the timing shown. (The timing of 
VMEbus accesses, not discussed here, is affected by locking.) 

7. The chart is intended to show data access timing, although the entries 
relevant to an instruction fetch are also valid for that. (In an instruction 
fetch, the times shown include the 1-cycle "prefetch" phase rather than 
the 1-cycle "execute" phase.) The M-bus ("memory" bus, the common 
output of the CMMUs) is assumed not occupied by another CMMU. 
(That is, occupied by one of the two instruction CMMUs when a data 
access is made, or by the data CMMU when an instruction fetch is made.) 
If the M-bus is occupied, the access time shown is increased by the time 

0 

needed for that access to release the M-bus. (Note that there are sepa- {-.. ) 
rate insfruction and data P-buses, so instruction and data accesses do V 
not contend for the P-bus.) 

8. The T-bus is assumed not occupied. If the T-bus is occupied, the access 
time shown is increased by the time needed for that access (and any other 
accesses with higher T-bus priority than the CPU) to complete. In the 
TC/FPV, the CPU has the lowest T-bus priority. Note that accesses to 
the VMEbus master interface and to the switch interface split cycles on 
the T-bus, releasing the T-bus for other use while the requested opera­
tion is performed. 

9. Any memory module used in servicing the access is assumed not locked 
and idle. If it is Jocked (via the TC2000 locking protocol), the access time 
shown is increased by the time needed for the locked transaction to com­
plete and the access to be retried. The hardware performs the retry auto­
matically. (If it is a bypassed access, the timing is unaffected by the 
locked status of the memory module.) If the memory module is busy -
with a refresh cycle or completing a write cycle - the access time shown 
is increased by the time needed for a T-bus REFUSED reply and a new 
T-bus arbitration. This is typically 2 cycles (0.100 microseconds). 

10. When the access includes one or more references to a remote function 
board, the timing shown assumes there is no contention for the T-bus 
and memory on the remote function board. 
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11. The timing shown assumes the access' is to non-interleaved memory. If 
any reference involved in serving the access is to interleaved memory, 
that reference is forced to go over the switch. If the reference would have 
gone over the switch anyway, the access time is not changed. If the refer­
ence would have been serviced entirely on-board, the access time is in­
creased. 

12. The Butterfly switch included in this characterization is a 2-column 
switch and operates at a clock frequency of 38.0 MHz. 

13. The TC/FPV contribution to access timing was calculated by accounting 
for individual cycles of the board clock. The Butterfly switch contribu­
tion was calculated by a program that models the switch parameters set 
to their fastest settings. In particular, immediate transmission strategy is 
assumed. The timing shown would be increased, for example, by a strate­
gy that delays before the first transmission. Such a strategy may be used 
to pace accesses made to a software spin lock. 

14. The Butterfly switch timing assumes no switch contention. That is, there 
is no contention for the local SIGA, for switch ports within the switch, or 
for the switch port at the destination t'unction board. If contention is 
present, the access time shown is increased. 

15. The times for specific switch transactions included in the access timing 
chart are as follows: 
transaction 
1-word read 
1-word write 
4-word read 
4-word write 
synchronizer uncertainty 

16. Synchronizer uncertainty: 

microseconds 
1.337 
1.363 
1.953 
1.729 
0.152 (see note) 

The TC/FPV is clocked at a different frequency than the Butterfly switch. 
Therefore, each time data enters or leaves the switch, it passes through a 
synchronizer, a circuit that re-clocks it to the new environment. The 
delay at a synchronizer varies from no delay up to one cycle at the new 
clock frequency. Each normal switch access passes through four syn­
chronizers - the request goes into and out of the switch, and the reply 
does likewise. The "synchronizer uncertainty" shown above is the maxi­
mum total delay for all four synchronizations. The computation of access 
timing includes one half the maximum delay, assuming that the delay is 
uniformly distributed and therefore is, on the average, half the maximum. 
Each switch reference incurs this synchronizer delay. For example, if the 
CPU's access requires three switch references, the access time shown in­
cludes three times half the synchronizer uncertainty. 
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Intercept Access and Timing 

The intended use of the intercept access mechanism is to speed up the copying 0 
of blocks of data. In this application, one typical case of its use is as follows: 

• CPU access is a write to remote memory 

• Cache mode is copyback 

• Cache activity is a miss with writeback to remote memory 

• CMR is set up to intercept the read (The data read in will l;>e immediately 
overwritten, so it can safely be intercepted.) 

In this case, the intercept access mechanism reduces the access time seen by 
·the CPU from 6.173 microseconds to 4.344 microseconds, a savings of about 
30 percent. 

The intended use of the intercept access mechanism is to intercept only reads. 
Nevertheless, writes also may be intercepted. In each CMR entry, the bit that 
controls the intercept access mechanism does distinguish between read and 
write references. Further, the writeback of a cache line may use a separate 
CMR entry than that used by the location the CPU accesses. Each of up to 
three memory references (v.riteback, read, write) resulting from one CPU ac­
cess may be independently intercepted or not. Therefore, a complete analysis 
of the mechanism's effect on all cases of timing is somewhat tedious, is not 
particularly enlightening, and is omitted here in favor of the example above. 

Timers 

A variety of timers are available in the TC/FPV. The timers are provided to 
guarantee maximum interrupt latency, to prevent inappropriate use of the lock 
and the disable interrupts augmentations, to be used as a software tool, and 
to detect faulty hardware. Figure 11-17 is a table of the timers available on 
the TC/FPV, the range of each timer, a brief description of its function, and 
the action taken if the timer expires. Each timer is described below. 
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Figure 11-17 Timers in the TC/FPV. 

Name and Range 

CPU Lock Timer 
1 - 255 microseconds 

Interrupts Disabled Timer 
1 - 255 microseconds 

Interrupts Pending I 
Abort Retries Timer 
1 - 255 microseconds • 

Reject Timer 
1 microsecond -
0.49 seconds * 

Connection Timer 
1 - 255 microseconds * 

Time Of Next Interrupt - A 
(TONI-A) 
1 microsecond - 1 hour * 

Time Of Next Interrupt - B 
(fONI-B) 
1 n1icrosecond - 1 hour * 

VMEbus Arbiter Timer 
4 - 1020 microseconds 

VMEbus TC/FPV Master 
Bus Timer 
1 - 255 microseconds 

VMEbus System Bus Timer 
4 - 1020 microseconds 

Purpose 

WCK AND INTERRUPT TIMERS 

Limit how long the CPU 
may hold a lock. 

Help guarantee maximum 
interrupt service latency. 

Help guarantee maximum 
interrupt service latency. 

SWITCH PROTOCOL TIMERS 

Prevent SIGA from trying 
too long to establish a 
connection. 

Prevent switch connection 
from being held open too 
long. 

REAL TIME CLOCK TIMERS 

Allow software to ask for 
an interrupt at a specified 
time. 

Allow software to ask for 
an interrupt at a specified 
time. 

VMEbus INTERFACE TIMERS 

Limit how long VMEbus bus 
grant may be asserted without 
bus busy. 

Llmit how long the TC/FPV 
as VMEbus master may await 
a response from a slave. 

Limit how long any VMEbus 
master may await a response 
from a slave. 

* Also, these timers can be disabled by software. 
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Action on Expiration 

Generate a FREE WCKS cycle. CPU 
will later get a "m:llntain present" error. 

Interrupt. 

Signal SIGA to abort retries in case 
connection establishment is in progress. 
CPU gets bus error if retries are 
aborted. 

Bus error. 

Tear down connection. CPU 
gets bus error - code and timing 
depend On when timer expires. 

Interrupt. 

Interrupt. 

Arbiter removes bus grant. 

Assert VMEbus signal BERR. 

Assert VMEbus signal BERR. 
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11.12.1 Switch Reject Timer 

The Switch Interface Gate Array (SIGA) implements a timer, called the switch 0 
reject timer, that limits the maximum time spent trying to establish a path 
through the Butterfly switch. The switch reject timer is enabled whenever a 
remote memory access is attempted. The SIGA samples the state of this timer 
whenever it receives a reject. If the timer has expired, the SIGA stops trying 
to establish the connection, and a bus error is returned to the CPU. In normal 
operation, the switch reject timer should not time out. Its expiration may indi-
cate broken hardware, or attempting to access a non-existent or disconnected 
switch port. 

11.12.2 Switch Connection Timer 

The SIGA contains a switch connection timer that limits how Jong a connec-
tion may be held. Each time the SIGA sends the initial message to establish 
a connection, the switch connection timer is enabled. If that initial message 
is rejected, the SIGA retries the message later and restarts the timer upon each 
retry. Expiration of the switch connection timer results in a bus error. Two 
different error codes are returned, indicating whether the SIGA was waiting 
for a response from the server end of the connection when the timer expired 
(wait timeout) or not (idle timeout). 

The switch connection timer helps enforce an upper bound on maximum 0 switch latency by limiting the amount of time that a switch path can be held. 

11.12.3 Lock Timer 

This timer oversees the TC2000 Jocking protocol. Every T-bus master that 
generates a lock requires a timer to prevent it from keeping a slave locked too 
long. The TC/FPV has three masters that can generate locks: the CPU inter-
face,- the SIGA server, and the VMEbus slave/T-bus master interface. The 
CPU interface has a timer that is enabled when the slave is Jocked and disabled 
when the lock is freed; If the timer expires, a FREE_ LOCKS cycle is gener-
ated, telling the slave it is freed. 

However, expiration of the lock timer does not clear the lock bit in the T-bus 
master of the CPU interface. Thus, the CPU still considers itself to hold the 
slave locked. If the CPU does not clear the lock bit before making another 
reference to that slave, the CPU interface will make a MAINTAIN access, be-
cause it appears to be locked. The slave will return an error because it is no 
longer locked. To avoid this. the programmer must clear the lock bit in the 
Augmentation register in conjunction with servicing the lock timer timeout. 

The SIGA server does not have a Jock timer because the switch connection tim-
er serves the same purpose. 

0 
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The VMEbus slave does not have a lock timer because VMEbus locked ac­
cesses should always complete in two cycles, as follows. The VMEbus slave . 
interface produces a locked access if the lock T-bus bit is "1" in the VMEbus 
Slave Map RAM entry used by the access. The locked sequence lasts as long 
as the VMEbus address strobe signal is asserted. That signal may be asserted 
for more than a single access in two cases. First, address strobe is asserted dur­
ing a read-modify-write operation to achieve atomicity, and that atomicity is · 
preserved by using the TC2000 locking protocol. Second, address strobe is as­
serted during a VMEbus sequential transfer (block transfer), but the TC/FPV 
VMEbus slave does not respond to these. 

Interrupts Pending I Abort Retries Timer 

The time to establish a path through the Butterfly switch to a remote memory 
can occasionally be large. When a CPU executes an instruction that makes 
a reference to remote memory, the instruction does not complete until the path 
has been established through the switch, and the data has been read or written. 
Since interrupts are serviced only between CPU instructions, they could be ig­
nored for longer than the maximum permitted delay to service interrupts, if 
the time to establish the switch path was too long. The switch reject timer 
could address this problem, but it would impose conflicting constraints on the 
duration of this timer. For detecting broken or missing hardware, the switch 
reject timer should be set to a long timeout period. To guarantee maximum 
interrupt latency, however, the switch reject timer would have to be set to a 
relatively short (microseconds range) time.· The "siga_abort_retries" input to 
the SIGA is used to address this problem. 

When an interrupt is being requested of the CPU, the interrupts pending I 
abort retries timer starts running. This timer waits for a programmable period 
of time, and then asserts the "siga _ abort_retries" signal if any interrupt is still 
pending. The siga_abort_retries signal is asserted whenever the timer expires 
(even if the CPU is not currently waiting for an access to complete). The time 
period can be specified from 1 to 255 microseconds, or infinite. Setting the 
time to infinite disables the siga_abort_retries mechanism. 

If the siga _abort_ retries signal is asserted when the SIGA has received a reject, 
the attempt to open the switch path (retry) is aborted and a bus error is re­
turned to the CPU. The interrupt can then be serviced, as the CPU is no longer 
in the middle of an instruction. Thus, this mechanism decouples the maximum 
switch latency from the maximum latency to service an interrupt. 

Interrupts Disabled Timer 

The interrupts disabled timer is enabled when interrupts to the processor are 
disabled by the disable interrupts augmentation. This timer can be set by soft­
ware from 1 to 255 microseconds. This timer is used to ensure that interrupts 
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are re-enabled soon enough that the maximum interrupt latency can be guar­
anteed. 

When the interrupts disabled timer expires, an interrupt is generated to the 
CPU. When this happens, the interrupt handler should clear the AR. Any 
locks associated with the augmentation are freed by the T-bus FREE_ LOCKS 
cycle that automatically occurs when the lock bit changes from one to zero. 
This timer has no effect when the IND (interrupt disable) bit in the 88100 Pro­
cessor Status Register is set, and setting the IND bit does not enable this timer. 

Real Time Clock Interrupt 

Interrupts based on_ the Real Time Clock are generated by a mechanism de­
scribed in section 11.13. 

VMEbus Interface Timers 

The three timers that are part of the VMEbus interface are described in sec­
tion 11. 7.8. 

Interrupts 

The 88100 CPU has only one interrupt line, so the TC/FPV circuitry combines 
the various so.urces of int~r~µpt l~1tc1 i:ine signal. applied to tl1e 88100. Furt_her'l 
the TC/FPV interrupt system provides information to the CPU allowing it to 
determine what interrupt source(s) are currently asserted, and mechanisms for 

. dismissing and/or disabling certain interrupts. 

The sources of interrupt to the TC/FPV CPU are listed below. Those marked 
with + cannot be disabled except by the CPU disabling its internal interrupt 
system. 

• · Interrupts disabled too long (asserted by Interrupts Disabled Timer reg­
ister)+ 

• Non-maskable interprocessor interrupt (asserted by Non-maskable In­
terprocessor Interrupt register) + 

• VMEbus interrupts (any one of seven levels; asserted by VMEbus de­
vices) 

• Maskable interprocessor interrupt (asserted by Interprocessor Interrupt 
register) 

• 'IWo real-time timers (asserted by Time Of Next Interrupt registers in 
SIGAs) 

BBN AC! Proprietary February 14, 1990 

0 

0 

0 



0 

0 

TC2000 Hardware Archirecture 11 :FPV 

The generation and servicing of VMEbus interrupts is covered in section 
11.7.6. 

Figure 11-18 shows the collection and processing of interrupts, and their visi­
bility in the Interrupt Source register. The gating illustrated is conceptual, and 
does not necessarily reflect the gate level implementation in the hardware. 
Most of this processing is dispussed fully in connection with the associated reg­
isters (see section 11.17). The real-time timers, however, deserve further dis­
cussion here. 

Figure 11-18 TC/FPV interrupt derivation. 
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Figure 11-18 shows the derivation of the real-time timer interrupt signal for 
one of the four TONI registers in the TC/FPV. Figure 11-19 shows this pro- Q 
grammable timer mechanism in greater detail. The TC/FPV has board space 
for two SIGAs, one for each of two possible switch"interfaces. (Normally, only 
one interface is populated with chips, and if both were populated, only one 
would be in use at a time.) Within the SIGA are two independent Time Of 
Next Interrupt (TONI) systems. Each system consists of a TONI register, a 
comparator, a configuration register and an output signal. The SIGA com-
pares the TONI register to its Real Time Clock (RTC) every microsecond. The 
result of the comparison sets the status bit in the associated TONI configura-
tion register, and also is presented on a SIGA output pin if that configuration 
register's enable bit is set. The two signals, one from each TONI (ane! also the 
signals from the two TONis on the normally unpopulated second SIGA), are 
·OR'ed together to produce a signal.that is true when at least one TONI timer 
has "gone off". 

TC/FPV TONI mechanism. 

r CPU 

write 
read write read read write (tricky) -!> 

r
TONIA l [--'n-'~~L...._ rTONIBl 

::ter i ~- 1 MIHz ::er 

' ~ -i J, 

1. interrupt 
r 

r is RTC > TONIA? is RTC > TONIB? J 
read write yes yes 

L-' set status bit 
read write 

set status bit .1.-' 

~ 

enable bit 

'--­
TONIA_Config 
register 

SIGA 

from TONls on socket for second SIGA -----< 

~ 

enable bit 

TONIB_Config 
register 

interrupt circuits 

"' other interrupt sources 

The RTC always counts at 1 megahertz, so some care is required in writing the 
RTC to avoid a race condition between the CPU write operation and the count. 
This and other details of the RTC and TONI system are discussed in the SICA 
Specification. 
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The TONI mechanism.is based on the real time clock, and works like an alarm 
clock, not like an interval timer. No periodic interrupts are generated, only an 
interrupt when the requested time is reached. For example, if an interrupt is 
desired in one second from the present time, the software can read the RTC, 
add one million (1-microsecond ticks), and write the sum into a TONI register. 
This operation, based on real time, may seem unusual to programmers famil­
iar with interval-based timers. However, the TONI mechanism is much more 
convenient in the TC2000 multiprocessor environment, because all RTCs 
throughout the machine are synchronized. Therefore, a command to perform 
some action at time T can be passed from processor to processor, and acted 
upon by any and all processors easily, without concern for the passage of time 
while the command is distributed. In a purely interval-based environment dif­
ficult adjustments are required to even approximate this capability of coordi­
nated action. 

The TONI system asserts an interrupt request when the RTC is "greater than" 
the value in a TONI. In making this comparison, the RTC and TONI values 
are treated as 32-bit unsigned integers, and the subtraction is performed mo­
dulo 232. Therefore, once the TONI "alarm clock rings" - or more technically, 
"becomes active" - it stays active for half the wrap-around period of the RTC, 
regardless of the absolute values of the TONI and RTC. The RTC. being 32 
bits and counting at 1 megahertz, wraps around in about 71 minutes. There­
fore, the TONI stays active for about 35 minutes. This long active period insur­
es that the active condi~ion will be seen by a service routine, even if the RTC 
wraps around before the condition is seen. Another benefit of this design is 
that software computation of a desired TONI setting is simple: use 32-bit un­
signed arithmetic and ignore overflow. For example, if the RTC is half a second 
short of wrapping around, and an interrupt is desired in one second, the TONI 
should be set for 500,000. Although the RTC will wrap around before the next 
desired TONI interrupt, there is no need to take an additional interrupt or to 
perform any other special operation. 

Figure 11-20 shows the operation of the TONI graphically. The RTC moves 
constantly around the dial. Underneath it is a half-circular disk representing 
the TONI setting. The software can adjust the disk's position by writing into 
the TONI register. Whenever the RTC "clock hand" is over the TONI disk, 
the TONI is active and will be seen as such by reading its configuration regis­
ter. While it is active, it will assert an interrupt request if so enabled by the 
interrupt enable bit in its configuration register. 
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230 

If TONI is not changed, 
it is alternately active for 
231 microseconds 
(about 35.79 minutes) 
and inactive for 
231 microseconds. 

''''''''''''''''''''''''''''''''''''''''''''''' 
. l?RQGI{A.1.\1W...L.~G I-IIN·.r 
When an interrupt occurs, to be sure that a TONI caused the interrupt, the 
software must check both that the TONI is active and that it is enabled. Nei­
ther condition alone is sufficient. 

'''''''''''''''''''"~''''''''''''''''''''''''''' 

Bus Errors 

There are a variety of conditions in the TC2000 machine that terminate CPU . 
cycles with a bus error. Because the number of bus error conditions is rather 
large, all bus error causes are prioritized and encoded. The CPU can read the 
encoded information and can use it as an offset into a dispatch table in the 
bus error handler. This mechanism is included to improve the bus error ser­
vice latency. 

The encoding of the bus error information is given in the description of the 
Bus Error Vector register, in section 11.17. 
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TC/FPV Registers 

The operation of the TC/FPV is controlled by a collection of configuration and 
control registers. These registers can be divided into nine functional groups: 

user registers 
configuration registers 
interrupt system registers 
bus error registers 
latency control registers 
Switch Interface Gate Array registers 
VMEbus interface registers 
interleaver control registers 
CPU and CMMU internal registers 

This section outlines some of the top level characteristics of the TC/FPV regis­
ter set, and summarizes the characteristics of each functional group. The next 
section describes the layout and characteristics of each register in detail. 

' 

Register Access 

Many of the registers reside in the System Physical Address space of the 
TC2000 machine, and are therefore accessible to any T-bus master - the 
88100 CPU, a remote processor node, a VMEbus device, or the Test and Con­
trol System slave processor. This keeps the programming model simple, and 
provides flexible support for bootstrapping, diagnostics and low level system 
software. The registers are placed in the address space of the TC/FPV so that 
access can be controlled by the 88200 CMMU and the VMEbus mapping 
RAMs. The only registers not in System Physical Address space are as follows: 

• CPU and CMMU internal registers 

• The five RAMs that are read and written via the interleaver loader mech­
anism, described in section 11.15.3: 

o CPU Mapping RAM in the CPU interface 

o Interleave Decision RAM in the CPU interface 

o Modulus and pool RAMs in the interleaver 

o VMEbus Master Map RAM in the VMEbus interface 

All TC/FPV configuration and control registers should be accessed as word 
(32-bit) quantities, aligned on word boundaries, even if the only meaningful 
bits lie in an upper byte of the word. The values of unused bits are irrelevant 
(don't care) on a write, and are unspecified (unless otherwise noted) on a read. 

The TC/FPV registers described here are intended for write access by privi­
leged processes only, typically supervisor mode only, with three exceptions. 
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The three user-writable registers are the Augmentation register (accessed as 
the AR block), the Interprocessor Interrupt register, and the Process Configu­
ration register. Writing to the PCR is controlled by mask bits in a separate 
control register. The hardware does not enforce any register access restric­
tions explicitly based on the CPU mode (supervisor, user). Instead, it is up 
to the software to map the registers to pages with appropriate access protec­
tion. Thus, to access a register, the register must be mapped to permit access 
in the current mode; if the register is protected by a mask and the operation 
is a write, that mask must be set to permit access also. Registers that may need 
different access attributes are placed on separate pages. 

The register access mechanisms are summarized below. 

Access protection mechanism 

Augmentation Register block (AR block) 

Process Configuration register (PCR) 

Interprocessor Interrupt register 

resides on its own two 8-kilobyte pages 

PCR Disable Mask register 

resides on its own page 

all other registers, including AR read-and-clear and AR read/write 
intended to be mapped to permit supervisor 
mode access only 

Protection by a mask register is summarized in these points: 

0 

• Only the PCR is protected by a mask register. "l" bits in the PCR Dis- o 
able Mask register prohibit access to fields in the PCR. · 

11.15.2 

314 

• · Ma~king applies to both user mode and supervisor mode. 

• Masking never applies to reads, and always applies to all writes, regard­
less of source: CPU, VMEbus slave, switch interface, or TCS. 

• Writing a "l" bit into any masked-off field results in a bus error, and the 
target register is not changed. 

• Writing a "O'' bit into a masked-off field does not result in a bus error. 
The bit is left unchanged. 

Process Context 

The process context must be saved and restored upon servicing interrupts and 
process switching. In addition to the normally required 88100 context, the 
TC/FPV contains registers that are part of the process context and must be 
saved, cleared and restored appropriately. These are listed below. 

• Augmentation register (AR) 

• Process Configuration register (PCR) 

• PCR Disable Mask register, if its contents vary from process to process 
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The Interleaver Loader 

The interleaver and the VMEbus master mapper perform similar functions 
for the Butterfly switch and the VMEbus, respectively. Both of these modules 
look at the System Physical A,ddress on the T-bus, and alter some subset of 
the address bits before the address is shipped out over its respective I/O port 
(the switch or the VMEbus). The address translation must happen in an expe­
dient fashion in both cases, because any time used to calculate the altered ad­
dress can directly impact the transfer speed. Static memories efficiently solve 
this problem, and are employed in the TC/FPV. Part of the T-bus address is 
presented on the address lines of the RAM, and one access time later the al­
tered address bits appear on the data lines. The altered address bits are simply 
the contents of the memory at the location indicated by the T-bus address. 
Because these memories are used to map one address to another, they are re­
ferred to here as mapping RAMs. 

To keep the mapping operations as fast as possible, entries in these mapping 
. RAMs are read and written using a somewhat circuitous mechanism called 
the interleaver loader. Conceptually, the interleaver loader could be a separate 
piece of hardware. To reduce hardware cost, the control logic for the interleav­
er loader has been incorporated into the SIGA. 

The interleaver loader is also used to read and write the Interleave Decision 
RAM and the CPU Mapping RAM (CMR), both in the CPU interface. The 
Interleave Decision RAM, together with the interleave enable bit in the selected 
CMR entry, determines whether an access generated by the CPU is to an inter­
leaved page, and thus will assert the signal T_INTERLEAVED, used by the 
SIGA. The CPU Mapping RAM is used to translate Physical Addresses into 
System Physical Addresses, and also to supply various control signals describ­
ing references made by the CPU. 

Thus, the interleaver loader is used to access five RAMs: 

• the modulus RAM in the interleaver 

• the pool RAM in the interleaver 

• the VMEbus master mapper RAM in the VMEbus interface 

• the Interleave Decision RAM in the CPU interface 

• the CPU Mapping RAM in the CPU interface 

Use of the interleaver loader is described in the Interleaver Loader registers 
entry in section 11.17. 
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Registers by Functional Group 

User Registers 

Three registers in the TC/FPV are intended to be user-accessible: the Intepro­
cessor Interrupt register, the Process Configuration register, and theAugmenta­
tion register block. Each of these registers resides on its own page to provide 
maximum flexibility for the operating system in permitting each individual 
process to access these registers. Further, certain fields of the PCR are pro­
tected by milsk bits; attempting to set a bit that is masked returns a bus error. 
The PCR and Interprocessor Interrupt registers are read/write. The AR Block 
is read only, although reads of the AR Block result in the setting and clearing 
of Augmentation Register bits. 

Configuration Registers 

In addition t<i the user-accessible registers, two configuration registers directly 
control the execution environment. These two are intended for access by privi­
leged processes only, so the page where these registers reside should be 
mapped in supervisor address space. The PCR Disable Mask register controls 
modification ()f individual fields in the PCR. This allows precise control over 
permissions granted to each user process. The Machine Configuration register 

0 

is tied to low level TCIFPV board configuration parameters used during test- o·. 
ing and initialization. 

Interrupt System Registers 

The interrupt system registers provide control over the TC/FPV's CPU inter­
rupt facility that extends the single-level interrupt capability of the 88100. The 
Inteprocessor Interrupt register and theNon-maskable Inteprocessor Interrupt 
register permit any T-bus master to interrupt the CPU. In particular, the CPU 
on another TC/FPV can interrupt the CPU by using these registers. Therefore, 
the Interprocessor Interrupt register may be considered a user register also, 
because typically it is mapped to be accessible in user mode. The Interrupt 
Source register informs the CPU which of several possible events is requesting 
interrupt service. The Imerrupt Enable Mask register allows the CPU to selec­
tively disable interrupts from certain sources. Interrupts to the VMEbus are 
generated by VMEbus interface registers described below. 

Bus Error Register 

The bus error signal presented to the CPU can be asserted for a variety of rea­
sons. The Bus Error Vector register, the only register in this functional group, 
indicates the reason that a bus error was generated. This allows the software 
to take appropriate action based on the location and nature of the error. For Q 
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example, a bus error may be intentionally provoked in testing whether a given 
memory module is installed in the system. 

Latency Control Registers 

The latency of interrupt servicing and access to a memory module may be con­
trolled by use of these three registers. Each holds a value used by an associated 
timer; expiration of the timer invokes· procedures to relinquish held resources. 
The Interrupts Disabled Timer register limits how long the CPU may disable 
certain interrupts. The Interrupts Pending I Abort Retries Timer register limits 
how long the CPU will wait for establishment of a switch connection. The CPU 
Lock Timer register controls how long the CPU may hold a memory module 
locked. Latency is also controlleQ. by timer registers in the VMEbus interface 
for VMEbus transactions, and in the SIGA for switch transactions. 

VMEbus Interface Registers 

The TC/FPV VMEbus interface contains three general types of registers. The 
first type controls the role played by the TC/FPV as a device on the VMEbus. 
Aspects of this role are the location and size of the window from TC2000 ad­
dress space into VMEbus address space, the location and size of the reverse 
window, whether the TC/FPV is system controller, and related parameters. 
This includes the VMEbus Configuration register, the VMEbus Master Map 
RAM registers and the VMEbus Slave Map RAM registers. Second, the genera­
tion of interrupts on the VMEbus is controlled by two registers, the VMEbus 
Interrupt Request register and the VMEbus Interrupt Vector I Control register. 
The third type of register is timers that detect and abort conditions that persist 
too long. The VMEbus Arbiter Timer register allows the TC/FPV to perform 
services as VMEbus system controller. The VMEbus System Bus Timer regis­
ter provides a recovery mechanism if no VMEbus slave responds to an access 
from any VMEbus master. The VMEbus TC!FPV Master Bus Timer register 
prevents an unduly slow VMEbus transaction from hanging the TC/FPV's 
VMEbus master interface, thus helping to bound access latency. 

SIGA Registers 

The Switch Interface Gate Array contains several registers accessible from the 
T-bus. One group of SIGA registers controls the transmission of switch mes­
sages by the requester portion of the SIGA. This includes the Message Classifi­
cation, Protocol Timer Configuration, Transmit Time Configuration, and Priority 
Time Configuration registers, two Requester Configuration registers, and a Re­
quester Test register. 

A second group of SIGA registers controls the reception of switch messages 
by the server portion of the SIGA This includes two Server Configuration reg­
isters and a Server Test register. 
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A third group of SIGA registers concerns timekeeping. This includes the Real 
Time Clock (RTC) register, two Time Of Next Interrupt registers (TONIA, TO­
NIB), and two TONI Configuration registers . 

. The fourth group of SIGA registers implements an interface between the T­
bus and various high speed RAMs. The SIGA registers comprising this inter­
face, called the interleaver loader, are the Interleave Address register and the 
Interleave Data register. The RAMs that are read and written via the interleav­
er loader are the interleaver Modulus and Pool RAMs, the Interleave Decision 
RAM and the CPU Mapping RAM (both in the CPU interface), and the VME­
bus Master Map RAM (in the VMEbus interface). 

Interleaver Control Registers 

The TC/FPV has two kinds of registers controlling interleaving - registers 
that determine whether a given access is to interleaved memory, and the regis­
ters that produce the modified bits of the interleaved address. Each T-bus 
master contains its own mechanism to produce the T _ INTERIBA VED signal 
that indicates to the SIGA that the access is interleaved. Accesses from the 
VMEbus slave drive T _INTERLEAVED from a bit in the VMEbus Slave Map 
RAM register being used. Accesses from the CPU drive T _INTERLEAVED 
from the Interleave Decision RAM register being used, enabled by a bit in the 
CPU Mapping RAM register being used. The SIGA server makes only local 
accesses, so it never drives T_INTERLEAVED. 

The interleaver Modulus RAM and Pool RAM registers produce the modified 
address bits used in an interleaved access. The translation takes bits from the 
T-bus and supplies modified bits to the SIGA, for inclusion in the outgoing 
switch message. 

CPU and CMMU Internal Registers 

The Motorola 88100 CPU and 88200 CMMU contain several internal registers, 
for control of data processing and of caching and memory management, re­
spectively. Occasionally, we refer to those internal registers in this document. 
For example, the CPU Processor Status register permits disabling interrupts, 
and doing so makes the CPU immune to all the TC/FPV bus error interrupts. 
A more complete discussion of CPU and CMMU internal registers is beyond 
the scope of this document. For a full description of CPU and CMMU regis­
ters, please consult the Motorola User's Manual for each of these devices. 

Register Name Summary List 

Figure 11-21 lists all registers on the TC/FPV except the CPU and CMMU 
registers. (Also excluded are the TCS registers, which are accessible only to 

0 

0 

the Test and Control System.) Q 
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List of registers by functional group. 

• user registers 

o Process Configuration register (PCR) 

o Augmentation register (AR) 

o (also, the Interprocessor Interrupt register is user-accessible) 

• configuration registers 

o CPU Mapping RAM registers (no T-bus access) 
• 

o Machine Configuration register 

o PCR Disable Mask register 

• interrupt system registers 

o Interprocessor Interrupt register 

o Non-maskable Interprocessor Interrupt register 

o Interrupt Enable Mask register 

o Interrupt Source register 

• bus error registers 

o Bus Error Vector register 

• latency control registers 

o CPU Lock Timer register 

o Interrupts Disabled Timer register 

o Interrupts Pending I Abort Retries Timer register 

o (also, the VMEbus TC/FPV Master Bus Timer register, and switch 
protocol registers in the SIGA, help control latency) 

• VMEbus interface registers 

o VMEbus Arbiter Timer register 

o VMEbus Configuration register 

o VMEbus Interrupt Request register 

o VMEbus Interrupt Vector I Control register 

o VMEbus Master.Map RAM registers (no T-bus access) 

o VMEbus Slave Map RAM registers 

o VMEbus System Bus Timer register 

o VMEbus TC/FPV Master Bus Timer register 
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o (also, the Interrupt Enable Mask register and the Interrupt Source 
register contain VMEbus-related fields) 

• Switch Interface Gate Array registers 

o Real_ Time_ Clock (hi and lo) register( s) 
Time_ Of _Next_ InterruptA register 
Time_Of_Next_InterruptB register 
TONIA_ Config register 
TONIE_ Config register 

o Priority_ Time_ Config register 
Protocol_ Timer_ Config·and Message_ Class register 
Requestor _ ConfigA register 
Requestor _ ConfigB register 
Requestor _ TestA register 
rransmit_ Time_ Config register 

o Server_ ConfigA register 
Server_ ConfigB register 
Server_ TestA register 

o Interleave_ Address_ Reg register 
Interleave_ Data_ Reg register 

• interleaver control registers 

o CPU Mapping RAM registers (no T-bus access) 

o Interleave Decision RAM registers (no T-bus access) 

o Interleaver Modulus and Pool RAM registers (no T-bus access) 

o VMEbus Slave Map RAM registers 

• CPU and CMMU internal registers 

o Refer to 88100 User's Guide (CPU) and 88200 User's Guide 
(CMMU) 

Register Addresses - CPU and T-bus 

The formal specification pf TC/FPV local configuration and control register 
addresses is their System PhysicalAddress, that by which they are referenced 
on the T-bus. The Process Logical Address used by a program may be trans­
formed by the CMMU memory management mapping and/or by the CPU 
Mapping RAM mapping before it is presented to the T-bus. By setting up 
the CMMU and CMR appropriately, software can adjust the apparent loca­
tion of a register to any desired page in Process Logical Address space. Only 
the register's address on the T-bus remains fixed. 

0 

0 

However, when the CMMU and CMR are disabled, the hardware performs o· 
a default mapping from Process Logical Addresses to System Physical Ad-
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dresses. Operating systems usually set up translation so that the CMMU and 
CMR do not change local register addresses from their default mapping. 
Therefore, an understanding of this default mapping is often applicable to op­
eration with mapping enabled, and is always applicable when mapping is off. 

Figure 11-22 shows the default mapping when both the CMMU and CMR map­
pings are disabled, with ann,0tations for local register accesses. When the 
CMMU is disabled, it copies the Process Logical Address directly to the Physi­
cal Address without modification. The complexities shown are due to the CPU 
interface that maps the Physical Address to the System Physical Address. 

The figure should be examined from bottom to top. At the bottom, the System 
Physical Address is interpreted as four fields. The switch port is ignored dur­
ing a local access, so the value of its bits is irrelevant. T-,bus address bits 24 .. 23 
determine which of the board's four 8-megabyte banks of address space is be­
ing referenced. Within that bank, bits 22 .. 20 select which megabyte of the eight 
is being referenced. Since local registers reside in the top megabyte of local 
address space on every TC/FPV, bits 24 .. 20 must be "11111". T-bus address 
bits 19 .. 0 specify an offset Within the selected megabyte; in this example, they 
select the register to be referenced. Thus we see that local registers have Sys­
tem Physical Addresses of the form Ox001Fnnnnn. 
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\ ) Address 
y from CPU 

ignored when 
bypass CMR is disabled 

local= 1 System 

1 1 

33 32 

0 

x x 

Physical 
1 1 1 1 1 1 1 Address 

to T-bus 
31 30 29 28 27 26 25 24 23 22 21 20 19 .. 0 

0 .1 F nnnnn hexadecimal 

x x x x x x x 1 1 1 1 1 20 bits binary 

switch port whicl1 
BMB 

' . ' ·.'l..'r'it;;r: offset 
(ignored during 1 MB within· 
local access) bank within 1 MB 

bank 

As noted above, T-bus address bits 33 .. 25 are ignored for a local access. For 
the sake of simplicity in writing System Physical Addresses, we think of those 
bits as zeros. The hardware is required to drive all T-bus bits to valid logic 
levels, however, and the design happens to drive each of these bits to "l". 

When the CMR is disabled, all CPU accesses are forced to be local. The cir­
cuitry normally driven by the CMR local bit is instead driven by a "l". 

The remaining System Physical Address fields are derived from the Process 
Logical Address as Figure 11-22 shows. The bank is selected by Process Log­
ical Address bits 30 . .29. The megabyte within the bank is selected by Process 
Logical Address bits 22 .. 20. Therefore, these five bits must be ones to address 
a local register. The offset within the megabyte comes from Process Logical 
Address bits 19 .. 0. The two other fields of the Process Logical address are bits 
28 . .23 and bit 31. Bits 28 .. 23 are ignored when the CMR is disabled, and for 
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simplicity we consider them to be "000000". Bit 31 drives the bypass circuitry, 
driven by the CMR bypass bit when the CMR is enabled. 

Local registers should be referenced bypassed. The reason for making any ref­
erence bypassed is so that the TC2000 locking protocol will not interfere with 
the reference. But the concern is different for local registers than for memory. 
When memory references a_:re bypassed, it is so they will succeed even if the 
target memory module is locked. The TC/FPV local registers, on the other 
hand, cannot be locked; the interface to them does not support locking. In fact, 
a locked access to local registers results in a bus error. It would work perfectly 
well to always access local registers NORMAL (as opposed to OPEN lock, 
MAINTAIN a lock, or BYPASS a lock). However, this may be hard to arrange. 

• One example is accessing a local register with the XMEM instruction; 
it automatically invokes the TC2000 locking protocol. 

• Another example is handling a bus error that occurs during a locked se­
quence. The bus error handler typically needs to save and clear the Aug­
mentation register right away, so that locking will not be in effect while 
the bus error is handled. This is done by reading the AR read-and-clear 
address. And since the AR has not yet been cleared, locking is still in 
effect, so the read of the AR will be an OPEN or MAINTAIN access, and 
will get a bus error. 

These problems are avoided. by reading the AR (or other local register) with 
a BYPASSED access. The bypass overrides the fact of being in a locked se­
quence, so the local register interface gets a bypassed reference and services 
it_ '.fo be sure tha!the local registers are referenced bypassed when needed, 
it is best to simply always reference all local registers bypassed. 

REFERENCE LOCAL REGISTERS BYPASSED 
As explained above, it is advisable that all accesses to local registers be by­
passed references. 
~,,,,,,,,,,,,,,,~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Thus, the CMR bypass bit should be "1" on any entry used to access the local 
registers. If the CMR and the CMMU are disabled, then bit 31 of the Process 
Logical Address should be "1". If the CMR is disabled but the CMMU is en­
abled, the CMMU's mapping of local registers should produce a "l" in bit 31 _ 
of the Physical Address. 

This explains all the fields of the Process Logical Address to reference local 
registers. As shown in Figure 11-22, the form of these addresses is 
OxE07nnnnn. The "nnnnn" offset is the same as the offset in the System Physi­
cal Address. This leads to the following simple rule. 
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'''''''''''~''''''''''''''''''''''''''''''''''' 
LOCAL REGISTER ADDRESSES 
When the CMMU and CMR are disabled, the following addresses are used to 
access local configuration and control registers on the TC/FPV: 

Process Logical Address (from CPU ): OxE07nnnnn 
System Physical Address (on T-bus): 0x01Fnnnnn 

Thus one can be converted into the other simply by exchanging the leading 
"E07" or "OlF". Depending on software use, the Process Logical Address used 
by programs when the CMMU and/or CMR are enabled is often the same as 
that when they are disabled. The System Physical Address, in contrast, never 
changes. 

EXCEPTION 
The local Interprocessor Interrupt register's normal address has a different 
form. Its Process Logical Address is Ox80002000 and its System Physical Ad­
dress is 0x2000. 

Register Address Summary List 

Figure 11-23 shows the location of each register in the address space of the 
TC/FPV. 

0 

The addresses in the list below are Process Logical Addresses, or "CPU ad- Q 
dresses", by which a program references the registers when the CMMU and 
C~\lR are disa.hied. \\'hen fr~11s~aticn by the (data)_ C}Jfl'4U and the Clv!R is 
enabled, the addresses shown may be mapped to any page. Operating systems 
usually set up translation so that these addresses are unchanged by the CMMU 
and CMR, and therefore the addresses given below are typically the addresses 
a program will use to access the registers. 

Occasionally, the System Physical Address (T-bus address) of registers is use­
ful to know, such as in TCS programming. System Physical Address bits 33 .. 25 
specify switch routing, and bits 24 .. 0 are the address offset at that switch port. 
The correspondence between.Process Logical Addresses and System Physical 
Addresses is discussed further in section 11.15.6. 

The SIGA registers have several aliases within the address space listed for the 
SIGA; see the SIGA Specification for these details. The SIGA Specification 
should also be consulted for details of the SIGA registers' structure and opera­
tion. Some SIGA registers are also mentioned elsewhere: the TONI registers 
and the RTC in section 11.13, and the IAR and IDR in section 11.17 under 
"Interleaver Loader registers". 

The TC/FPV configuration and control registers other than the SIGA are not 
aliased; all bits (24 .. 0) of their address are decoded. A read or write to a loca­
tion in the top megabyte of System Physical Address space (where these regis-
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Figure 11-23 
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ters reside) but not to a specific register's address (or one of the SIGA alias 
addresses, as noted above) will have no effect and will not cause a bus error. 

Addresses of TC/FPV T-bus. registers. 

- Process Logical Address(!s with CMMU and CMR disabled -

Ox80002000 Interprocessor Interrupt register (normal address) 

OxE0720000 to OxE0721FFC 
VMEbus Slave Map RAM registers 

OxE0740000 Process Configuration register (PCR) 

OxE0740004 Interprocessor Interrupt register (alternate address) 

OxE0758000 to OxE075BFFC 
Augmentation register, as AR block 

OxE0760000 Machine Configuration register 

OxE0760004 Non-maskable Interprocessor Interrupt register 

OxE0760008 Interrupts Pending I Abort Retries Timer register 

OxE076000C Interrupts Disabled Timer register 

OxE0760200 VMEbus TC/FPV Master Bus Timer register 

OxE0760204 VMEbus Configuration register 

OxE0760208 VMEbus System Bus Timer register 

OxE076020C VMEbus Arbiter Timer register 

OxE0760800 VMEbus Interrupt Vector I Control register 

OxE0760804 VMEbus Interrupt Request register 

OxE0780000 CPU Lock Timer register 

OxE0780004 Augmentation register, as AR read/write 

OxE078000C Bus Error Vector register 

OxE0780010 PCR Disable Mask register 

OxE0780014 Interrupt Enable Mask register 

OxE0780018 Interrupt Source register 

OxE078001C Augmentation register, as AR read-and-clear 

SIGA B registers begin here ---------

OxE07DOOOO to OxE07DBFFC 
SIGA B registers - same as SIGA A registers below, but with 
base address OxE07DOOOO instead of OxE07EOOOO 
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---------- SIGA A registers begin here -------­

OxE07EOOOO to OxE07EBFFC 

OxE07EOOOO 

OxE07E0004 

OxE07E2000 

OxE07E2004 

OxE07E8000 

OxE07E8004 

OxE07E8008 

OxE07E800C 

OxE07E8010 

OxE07E8014 

OxE07E8018 

OxE07E9000 

SIGA A registers as follows (and aliases; see the Sf GA Specifi­
cation for details of aliased addresses) 

TONI A (Time Of Next Interrupt, A) Configuration register 

TONI A register 

TONI B Configuration register 

TONI B register 

Protocol Timer Configuration and Message Class register 

'fransmit Timer Configuration register 

Priority Timer Configuration register 

Requester Configuration A register 

Requester Configuration B register 

Requester Test A register 

Real Time Clock (RTC) register 

Server Configuration A register 

OxE07E9004 Server Configuration B I Server Test A register 

OxE07EAOOO and following 
cause;; Int~r!~av~r Data register trannfers 

OxE07EAOOC Interleaver Address register 

OxE07EBOOO Interleaver Data register 

·-------- end of SIGA registers 

OxFFF7DOOO code CMMU #2 base address (ID register) after reset 

OxFFF7EOOO data CMMU base address (ID register) after reset 

OxFFF7FOOO code CMMU #1 base address (ID register) after reset 

CACHE CHIP ADDRESSING DETAILS 
In a TC/FPV configured with only two cache chips, code CMMU #2 is omitted. 
Internal registers in the cache chips are accessible only from the CPU, not from 
the T-bus. Motorola's design does permit access from both the P-bus (proces­
sor bus) and M-bus (memory bus), but the TC/FPV configuration and control 
register interface does not support T-bus access to the CMMU registers. 

~~·'''''''''''''''~''''''''''''''''''''''''''''' 
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11.16 TC/FPV Address Map 

The TC/FPV address map below gives the layout of System Physical Address 
space on each TC/FPV. The low 25 bits of the System Physical Address de­
scribe resources on the function board; the high 9 bits, shown as zeros below, 
specify the switch port at which the given function board resides. 

OxOOOO 0000 to 0x003F FFFF 4 megabytes oflocal memory (always installed) 

0x0040 0000 to Ox007F FFFF 

0x0100 0000 to OxOlEF FFFF 

12 more megabytes of local memory (optional) 

15-megabyte window from TC2000 address 
space into VMEbus address space 

OxOlFO 0000 to OxOlFF FFFF 1-megabyte configuration and control register 
space 

11.17 

February 14, 1990 

TC/FPV Register Definitions 

Certain registers are present in TC/FPV function board hardware, but are de­
scribed elsewhere. These are: 

• CPU and CMMU internal registers. These are described in Motorola 
literature. 

• SIGA control and configuration registers. These are described in the 
SICA Specification. 

Each of the registers, in alphabetical order, is summarized below. 

The description of each register includes its contents after power-on. The TCS 
power-up operation modifies the contents of several registers, some of which 
depend on the configuration of the system. See TCS software and operations 
documentation for those details. · 
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Augmentation register (AR). 

unused 

8 7 

~ uousod 
disable interrupts 

'---'--- exception action< 1 .. 0 > 
lock 

Enable augmentations to 88100 CPU instructions. 

OxE0758000 to OxE075BFFC (inclusive) - AR block 
OxE078001C - AR read-and-clear 
OxE0780004 - AR read/write 

AR block - read only, with side effects 
AR read-and-clear - read only, with side effects 
AR read/write - read/write 

There is just one Augmentation register, but it may be referenced in three ways. 
Il is inleuded th;,.l ii1c opernting syolc::1n permit useI-mode access to \11<:: AR 
only via the AR block. 

• Reading a (word-aligned) location in the AR block causes bits 13 . .2 of 
the address to be loaded into bits 13 .. 2 of the AR. The data returned in 
bits 31..16 is unspecified, and in bits 15 .. 0 is all ones. Writing to the AR 
block has the same effect as reading it; the write data is ignored. 

• Reading the AR read-and-clear location returns the contents of the AR 
and clears the AR to zero. 

• Accessed at the AR read/write location, the AR may be read without 
clearing it, and may be written. 

The disable interrupts bit, when set to one, prevents assertion of the CPU's in­
terrupt request pin by certain sources (see section 11.13). Requests already in 
the CPU's internal pipeline are not disabled. Interrupts from the VMEbus, 
from the real time clock timer(s), and from the maskable interprocessor inter­
rupt are disabled by this bit. Two interrupts are not disabled by this bit: the 
interrupts disabled timer interrupt, and the non-maskable interprocessor in­
terrupt. 

BBN ACI Proprietary February 14, 1990 

0 

0 

0 



0 

0 

0 

TC2000 Hardware Archirecture 11:FPV 

February 14, 1990 

The exception action bits describe what action to take at the end of exception 
processing. The hardware does not use these bits; they are provided for use by 
software, to tell the exception handler software what to do when an exception 
occurs during an instruction sequence that uses the lock bit. Their meaning is 
only a programming convention, although "00" should mean "continue" be­
cause the AR is cleared to zero upon power-up. 
00 continue (proceed normally) 
01 restart (resume instruction at restart address) 
10 abort (getting any exception is fatal to the process) 
11 undefined 

The lock bit, when set to one, causes the switch path (if any) to the resource that 
will be accessed, and the resource itself, to be held open after the access has 
completed. Changing the lock bit from "l" to "O" generates a T-bus 
FREE_LOCKS cycle, but only if a·res<iurce has been locked (by making a 
Jocked reference). 

On any access, the effect of the lock bit is overridden if the bypass bit in the 
CPU Mapping RAM entry selected for the access is "l", forcing a bypassed 
reference. If the CPU interface is not currently holding a Jock, such an access 
does not make it think it is. Thus a subsequent access with lock "l" but bypass 
"O" is OPEN (not MAINTAIN). Or a subsequent clearing of the AR lock bit 
will not generate a FREE_LOCKS cycle. 

Power-on clears all defined bits of the Augmentation register to zero. 
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unused write error 
code 

unused 

Indicate the cause of a bus error. 

OxE078000C 

read only 

error code unused 
from T-bus 

An operation initiated by the CPU may result in an error detected by a T-bus 
slave. In the TC/FPV, these slaves are the memory, the SIGAs, the VMEbus 
master interface, and the status and configuration registers. The slave indi­
cates the error by responding with an error reply (T-bus control bits 
T _RR< 2 .. 0 > are 000) and, when appropriate, placing a code describing the 
error on the T-bus data wires. (The code is placed on the T-bus data wires if 
the T-bus is not being driven by the master - namely, in a read or a response 
from a split cycle. Otherwise, placing the code on the T-bus is impossible be­
cause it is already being driven.) The CPU interface conveys this to tli.e 
CMMU as an M-bus (memory bus) error, and the CMMU in turn conveys the 
error to the CPU, which receives it as an M-bus error exception. The error 
description code placed on the T-bus is captured in the Bus Error Vector reg­
ister, for use by software handling the exception. Thus, the Bus Error Vector 
register contains the error code for the most recent bus error to the CPU. If 
there has been no such error, the contents of the register are undefined. 

If the error regards a write operation for which the CPU is currently driving 
data onto the T-bus (that is, a non-split cycle write), then the error description 
code is captured in the write error code field, and the error code from T-bus field 
indicates, with the value CPU_write_error, that the real error code is in the 
write error code field. Otherwise, the contents qf the write error code field are 
undefined. 

The error codes in the error code from T-bus field are given in Figure 11-26, 
and the error codes in the write error code field are given in Figure 11-27. 

Unused bits in the low two bytes of the Bus Error Vector always read as "l". 

After power -on, the contents of the Bus Error Vector register are unspecified. 
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Figure 11-26 Bus error encoding. 
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SWITCH REQUESTER I CSU ERRORS 
These errors come from the requester or the Configuration/Status Unit (CSU) 
in the local SIGA. The errors from the requester are prioritized, so that if two 
or more errors occur simultaneously, only the highest priority error is returned. 
Priority 1 is highest, 8 is lowest Within a given priority, errors are mutually 
exclusive. For example, Wait Timeout ( 4a) and Idle Timeout ( 4b) cannot both 
occur at once. These errors are not detected unless enabled by appropriate 
setting· of the SIGA'.s Requester Configuration B register. 

Maintain Absent (priority la) 
A locked switch connection has been established and has not been released, 
and the requester was asked to make an access that was not MAINTAIN or · 
BYPASS. In other words, a NORMAL or OPEN access was attempted (by the 
master that holds the lock) while the requester was locked. (Technically, the 
SIGA permits OPENs during a locked connection, unlike the memory and the 
VMEbus master interface. However, no master on the TC/FPV can generate 
such a second OPEN, and its use would be discouraged anyway.) 

Maintain Present (priority lb) 
The requester was asked to make a MAINTAIN access when no locked switch 
connection was opened. 

(switch requester error priority 2 is unused and reserved) 

Lock Address (priority 3) 
Within a locked sequence, the requester was asked to access a switch port 
(function board) other than the one to which the connection was open. 

Wait Timeout (priority 4a) • 
The switch connection timer expired while the requester was waiting for a re­
sponse from the SIGA server on the remote function board. 

Idle Timeout (priority 4b) 
The switch connection timer expired while the requester was in its idle locked 
state, not waiting for a response. This condition arises during a locked se­
quence, when the SIGA requester has done all that was asked of it so far, and is 
waiting for further access requests from the T-bus. If the timer expires now, 
the error is not returned immediately, but is remembered by the SI GA request­
er. If another T-bus master tries to access the requester, it will get a REFU­
SED-LOCKED response as usual. If the T-bus master that created the 
locked sequence tries another switch access, it will get the Idle Timeout error. 
If that master does a FREE LOCKS cycle before making another switch ac­
cess, the timer expiration condition is forgotten and no error is returned. The 
SIGA requester cannot be hung indefinitely, because the master will do a 
FREE LOCKS cycle eventually (the VMEbus slave interface almost immedi­
ately, and the CPU as enforced by the CPU Lock Timer). 
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Reject Abort (priority 5) 
The timer loaded from the Interrupts Pending I Abort Retries register expired, 
asserting the siga_abort_retries signal on the REJ_ABORT input pin of the 
SIGA, forcing the switch reject timer to expire. Interrupts were disabled for 
too long. 

Reject Timeout (priority 6) 
The switch reject timer expired while the requester was trying to open a con­
nection. This error is usually caused by addressing a failed board or an empty 
board slot If the switch priority promotion mechanism is not enabled or is 
using inappropriate parameters, excessive contention for the destination 
switch port may also. cause this error. 

Reverse (priority 7) 
The requester detected an incorrect polarity of the reverse signal while receiv­
ing a response from the remote function board. This error indicates a hard­
ware problem. 

Check (priority 8) 
The requester detected an incorrect checksum in a response from the remote 
function board. This error indicates a hardware problem, 

Miscellaneous Configuration/Status Unit Error 
An error was made by the T-bus master (here, the CPU) in accessing the 
SIGA'.s CSU. All access to internal SIGA registers and SIGA parameter set­
ting is done through the CSU. (The only exception is setting the base address at 
which the CSU responds. That is set via the Test and Control System inter­
face.) The error could be either or both of the following: 

1. An OPEN lock was requested. The CSU is not a lockable resource. 

2. A multiple-word transfer was requested, caused by trying to cache the 
location. The CSU supports only byte and word accesses . • 

SWITCH SERVER ERRORS 
These errors are sensed by the SIGA server on the remote ("downstream") 
function board, reported back over the switch connection, and handed through 
the local SIGA requester to the T-bus master (here, the CPU) that opened the 
connection. They correspond to the analogous errors that could arise on the 
local function board. The server is always enabled to detect these errors during 
operation. 

Downstream Refused 
A downstream T-bus slave responded with REFUSED-LOCKED when the 
server thought itself locked. A hardware fault can cause this error, but more 
likely the software design has allowed another master on that T -bus to lock the 
given slave. 
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01101 

01110 

0 1111 

10000 

10001 

10010 

10011 

10100 
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Downstream Write 
A downstream write error was detected while the SIGA server was sourcing 
data on the T-bus of the remote function board. Because the SIGA was driv­
ing the T-bus data wires, the actual error code cannot be returned. If such a. 
write error is detected locally, the error code is returned in the write error code 
field of the Bus Error Vector register, but that is impossible here. 

Downstream Memory Parify Error 
An access to memory on the remote function board resulted in a parity error. 

Downstream Out To Lunch 
A downstream T-bus slave did not respond to the SIGA server's request. The 
slave must respond on the T-bus cycle following the request. 

VMEbus MASTER IT-bus SLAVE ERRORS 
These errors are detected by the VMEbus master interface. 

VMEbus Maintain Absent 
A locked sequence has been established to the VMEbus and has not been re­
leased, and the VMEbus master interface was asked to make an access that 
was not MAINTAIN or BYPASS. In other words, a NORMAL or OPEN ac­
cess was attempted (by the master that holds the lock) while the interface was 
locked. 

VMEbus Maintain Present 
The VMEbus master interface was asked to make a MAINTAIN access :when 
no locked sequence was in progress - the lock was never opened. 

VMEbus Burst Attempt 
A multiple-word access was requested, caused by trying to cache the location. 
The VMEbus master interface supports only byte and word accesses. (The 
VMEbus slave interface supports only byte and word accesses, and does not 
respond to sequential transfer requests, also called "block transfers", from the 
VMEbus. Such non-response is not itself a bus error on the VMEbus, al­
though the VMEbus System Bus Timer eventually declares a bus error and 
asserts the VMEbus BERR signal.) 

VMEbus Bus Error 
An access to the VMEbus resulted in a VMEbus bus error. This may be as­
serted by the addressed VMEbus slave device or by expiration of either of two 
timers - the VMEbus TC/FPV Master Bus Timer or the VMEbus System 
Bus Timer. No further information about the nature of the error is supplied by 
theVMEbus. 

TC/FPV CONFIGURATION AND CONTROL REGISTER ERRORS 
These errors arise in accessing the configuration and control registers on the 
local TC/FPV. 

Local Register Lock Attempt 
An access attempted to open a lock to a configuration and control register. 
The interface to these registers does not support the TC2000 locking protocol. 
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Local Register Burst Attempt 
A multiple-word access was requested, caused by trying to cache a register. 
The configuration and control register interface supports only word accesses. 
If addressed as a byte or halfword, no error is generated but the data returned 
is undefinea. 

Local Register Masked Error 
A write to the Process Configuration register attempted to set to "1" one or 
more bit.s that were masked by the PCR Disable Mask register. 

LOCAL MEMORY ERRORS 
These errors arise in accessing the memory module on the local function 
board. For errors in accessing remote memory, see "switch server errors". 

Memory Parity Error 
An access to local memory resulted in a parity error. 

Memory Maintain Absent 
A locked sequence has been established to the local memory and has not been 
released, and the memory interface was asked to make an access that was not 
MAINTAIN or BYPASS. In other words, a NORMAL or OPEN access was 
attempted (by the master that holds the lock) while the memory was locked. 

Memory Maintain Present 
The local memory interface was asked to make a MAINTAIN access when no 
locked sequence was in progress - the lock was never opened. 

CPU INTERFACE ERRORS 
These errors are reported by the CPU interface. 

CPU Write Error 
A write operation from the CPU encountered an error while the CPU interface 
was driving data onto the T-bus. Further description of the error is in the write 
error code field of the Bus Error Vector register. (The numerical value of the 
CPU Write Error is 11011, out of sequence with the other codes listed here.) 

CPU No Response 
A local T-bus slave did not respond to the CPU interface's request. The slave 
must respond on the T-bus cycle following the request. · 

RESERVED ERROR CODES 
These error codes are reserved and should not arise in normal operation. 

reserved 

reserved 

reserved 

reserved 

reserved 

reserved 
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Figure 11-27 Write error encoding. 

13 12 11 10 - bit positions in Bus Error Vector register 
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1 1 0 0 
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reserved 

Memory Maintain Absent 
A locked sequence has been' established to the local memory and has not been 
released, and the memory interface was asked to make an access that was not 
MAINTAIN or BYPASS. In other words, a NORMAL or OPEN access was 
attempted (by the master that holds the Jock) while the memory was locked. 

reserved 

Memory Maintain Present 
The local memory interface was asked to make a MAINTAIN access when no 
locked sequence was in progress - the lock was never opened. 

VMEbus Maintain Absent 
A locked sequence has been established to the VMEbus and has not been re­
leased, and the VMEbus master interface was asked to make an access that 
was not MAINTAIN or BYPASS. In other words, a NORMAL or OPEN ac­
cess was attempted (by the master that holds the Jock) while the interface was 
locked. 

VMEbus Maintain Present 
The VMEbus master interface was asked to make a MAINTAIN access when 
no locked sequence was in progress - the lock was never opened. 

VMEbus Burst Attempt 
A multiple-word access was requested, caused by trying to cache the location. 
The VMEbus master interface supports only byte and word accesses. (For the 
VMEbus slave interface action, see the comment under VMEbus Burst At­
tempt in Figure 11-26 above.) 

reserved 

Local Register Lock Attempt 
An access attempted to open a lock to a configuration and control register. 
The interface to these registers does not support the TC2000 locking protocol. 

Local Register Masked Error 
A write to the Process Configuration register attempted to set to "l" one or 
more bits that were masked by the PCR Disable Mask register. 

Local Register Burst Attempt 
A multiple-word access was requested, caused by trying to cache a register. 
The configuration and control register interface supports only word accesses. 
If addressed as a byte or halfword, no error is generated but the data returned 
is undefined. 

reserved 

reserved 
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1 1 1 1 reserved 

The following page contains a summary of the error codes, for easy reference. 
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6 5 4 3 2 bit positions in Bus Error Vector register 
(error code from T-bus) 

SWITCH REQUESTER I CSU ERRORS 
00000 Maintain Absent (priority la) 
00001 Maintain Present (priority lb) 

(switch requester error priority 2 is unused and reserved) 
00011 Lock Address (priority 3) 
00100 Wait Timeout (priority 4a) 
00101 Idle Timeont (priority 4b) 
00110 Reject Abort (priority 5) 
00111 Reject Timeout (priority 6) 
01000 Reverse (priority 7) 
01001 Check (priority 8) 

11 :FPV 

13121110 
(write error code) 

01010 Miscellaneous Configuration/Status Unit Error (OPEN or multiple-word) 

SWITCH SERVER ERRORS 
01100 Downstream Refused 
01101 Downstream Write 
0 111 0 Downstream Memory Parity Error 
0 1111 Downstream Out To Lunch 

VMEbus MASTER I T~bus SLAVE ERRORS 
10000 VMEbus Maintain Absent 0 1 0 0 
10001 VMEbus Maintain Present 0 1 0 1 
10010 VMEbus Burst Attempt 0 1 1 0 
10011 VMEbus Bus Error 

TC/FPV CONFIGURATION AND CONTROL REGISTER ERRORS 
10100 Local Register Lock Attempt 1 0 0 0 
l 0 101 Local Register Burst Attempt l 0 i 0 
10110 Local Register Masked Error 1 0 0 1 

LOCAL MEMORY ERRORS 
11000 Memory Parity Error 
11100 Memory Maintain Absent 0 0 0 1 
11101 Memory Maintain Present 0 0 1 1 

CPU INTERFACE ERRORS 
11011 CPU Write Error 
1111 0 CPU No Response 

RESERVED ERROR CODES 
00010 reserved· reserved 0 0 0 0 
0 1011 reserved reserved 0 0 1 0 
10111 reserved reserved 0 1 1 1 
11001 reserved reserved 1 0 1 1 
11010 reserved reserved 1 1 0 0 
11111 reserved reserved 1 1 0 1 

reserved 1 1 1 0 
reserved 1 1 1 1 
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CPU Lock Timer register. 

6 2 1 

unused t 

limit how long the CPU may hold a lock. 

OxE0780000 

read (timer counter) I write (preset register) 

TC2000 Hardware Archirecture 

When the CPU interface to the T-bus initiates a locked operation by using the 
lock bit in the Augmentation register, the CPU Lock Timer is loaded from this 
register and begins counting. It stops when the CPU interface frees the lock. If 
the timer expires, the CPU is not explicitly notified, but a FREE_ LOCKS cycle 
is automatically generated. The CPU's T-bus master interface, however, still 
believes the lock is held. If the CPU references the locked resource without 
first terminating the locked transaction (by clearing the AR lock bit to "O''), the 
reference will be a MAINTAIN access, to which the slave will return a "main­
tain present" bus error. 

A CPU lock is timed out after OxFF-t microseconds, where tis the contents of 
the CPU Lock Timer register. 

Writing to this address modifies the "preset" value loaded into the timer count­
er whenever the timer begins running; reading this address returns the current 
(instantaneous) contents of the timer counter. Software cannot directly read 
the preset register, nor directly write the timer counter. 

After power--on, the contents of the CPU Lock Timer register are unspecified. 
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Figure 11-29 CPU Mapping RAM registers (CMR). 
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I L T-bus address < 33 .. 23 > unused 

Llocal _ 
bypass 

interleave enable 
intercept access* (low true) 

fast path disable 

Map Physical Addresses to System Physical Addresses, and supply additional 
signals controlling references made by the CPU. 

(accessed via the interleaver loader) 

read/write 

Whenever the 88000 chip set performs an operation that results in a T-bus re­
quest, the CPU Mapping RAM translates the (M-bus) Physical Address from 
the CMMU into a (T-bus) System Physical Address for the access, and pro­
duces other signals controlling the access. The CMR enable bit in the Machine 
Configuration register controls whether the CMR performs these functions. If 
the CMR enable bit is "l", the functions described below are performed on all 
CPU accesses that proceed beyond the CMMU. If the CMR enable bit is "O", 
the CMR is disabled as described at the end below. 

Whenever the CPU Mapping RAM is involved, one of 1024 registers is selected 
by ten bits. Nine of these bits are Physical Address bits 31 . .23, and the tenth bit 
is the write signal. Therefore, each CMR register controls the mapping and 
access characteristics of an 8-megabyte bank (in both the Physical Address 
space and the System Physical Address space). Further, one CMR entry gov­
erns read operations in that bank, and another CMR entry governs write ac­
cess in the bank. (However, a few of the bits are common to read and write, as 
discussed later and marked with :j: below.) 

Section 11.10 gives a higher level description of the CPU Mapping RAM. 
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The T-,bus address <33 .. 23 > bits of the selected CMR register supply bits 
33 .. 23 of the System Physical Address; bits 22.,0 are copied directly from the Q 
Physical Address to the System Physical Address. The resulting System Physi-
cal Address is place!! on the T-bus or, if the fast path is used, sent directly to 
th.e local memory module. 

:j: T-bus address <23 > has no read/write distinction, as described below. 

The local bit, when set to "1", says that the reference should not go out over the 
switch, but instead should be serviced by the local memory module, the control 
and configuration registers, or the VMEbus interface. 

The intentof the local bit is to identify accesses that address resources on the 
local function board - men:iory, control and configuration registers, or the 
VMEbus interface - rather than remote resources. The local resources can 
be accessed more quickly without going over the switch. When the local bit in 
the selected CMR register is set to "1", the hardware "shortcuts" the switch by 
requesting a response locally. When the bit is "O", the access will go out over 
the switch even if it addresses a resource on the local board. The local bit inter­
acts with other signals as follows. 

• When the CMRlocalbitis set to "1", the path bits in thePCR are ignored 
and the T_PATII bits on the T-bus are driven with "11", inhibiting the 
use of either switch interface. (Therefore, the value ofT-bus address bits 
T_AD<33 .. 25> is irrelevant, although they are driven from the CMR 
onto the T-bus to provide valid logic levels as required by the T-bus spec­
ification.) 

• Setting bqth the local bit and the interleave enable bit in the same CMR 
register is legal and plausible, since interleaving is further controlled on 
a page-by-page basis by the Interleave Decision RAM. If an access has 
interleaving enabled in both the CMR and the Interleave Decision RAM, 
then the T-bus signal T_INTERLEAVED is asserted - this identifies 
an interleaved access. The intent is that any interleaved access go over 
the switch (as it must, to use the modified address bits from the interleav­
er). If the CMR local bit is also asserted, its effect is suppressed by interleav­
ing and the PCR path bits are used despite the CMR local bit. 

:j: The bypass bit, when set to "1" in the selected CMR register, causes refer­
ences to bypass the TC2000 locking protocol. The CPU interface accom­
plishes this by asserting the T-bus signal T _ LOCKOP < 1..0 > = "01", 
meaning "bypassed" rather than "normal", "open" or "maintain". The VME­
bus interface has a similar capability, controlled by the VMEbus Slave Map 
RAM. When the bypass bit is asserted, it overrides the AR lock bit. Thus, a 
bypassed reference not only circumvents a lock held by another device, but 
also suppresses the CPU's own in-progress locked sequence (if any). 

:j: The interleave enable bit, when set to "1" in the selected CMR register, per­
mits interleaving in the associated 8-megabyte bank. Interleaving is further 
controlled by the Interleave Decision RAM registers; see their description for 
further details. 
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CAUTION 

February 14, 1990 

The intercept access* bit, when cleared to "O" in the selected CMR register, 
causes the access to be acknowledged as if it has completed successfully, but in 
fact no T-bus access will be made. On a write, the data is discarded; on a read, 
the returned data is undefined. This mechanism is useful in speeding up cer­
tain block transfer operations using the CMMU's cache, as described in sec­
tion 11.10.3. When the intercept access* bit is set to "l", the access proceeds 
normally. Note that this bit is low true. The intercept access mechanism is 
intended for use only on reads. 

:j: The fast path disable bit, when cleared to "O" in the selected CMR register, 
causes the CPU's read references to local memory to use the fast path. The fast 
path applies the request directly to the memory module, without using the T­
bus, and is therefore three clock ticks faster than using the T-bus. The data is 
returned over the T-bµs as usual The fast path benefits only local memory read 
operations. The fast path is not.employed if the operation is a memory write. 
Control and configuration register accesses, VMEbus accesses, and switch 
references do not use the fast path either. When the fast path disable bit is set 
to "1", no references use the fast path. The fast path mechanism interacts with 
other signals and with VMEbus access, as noted in the caution below. The fast 
path will be used only if all the following conditions are met 

• Reference must be aread (not a write) to local memory (not to configura- · 
ti on and control registers, to VMEbus address space, or to resources over 
the switch) 

• Machine Configuration register fast path enable bit is "l" 

• fast path disable bit in the selected CPU Mapping RAM entry is "O" 

• The reference cannot be to interleaved memory; that is, either the CMR 
interleave enable bit in the selected entry must be "O", or the single bit 
in the selected entry of the Interleave Decision RAM must be "O" (if both 
of these bits are "l"~e reference will go out over the switch as an inter­
leaved access and not use the fast path) 

INTERACTIONS 
Since the CMR mapping RAM controls features that interact, a few combina­
tions of settings are either illegal (cause indeterminate behavior) .or undesir­
able (yield correct results, but lower performance). These are as follows: 

ILLEGAL: fast path and VMEbus access 
It is illegal to access VMEbus address space using a CMR register whose fast 
path disable bit is "O". If this rule is violated, the results are indeterminate and 
depend on the T-bus traffic at the time. If the fast path is not available, a cor­
rect VMEbus reference is made. However, if the fast path is available, the con­
tents of local memory at the offset addressed will be returned. 

ILLEGAL: fast path and read local Interprocessor Interrupt register 
If the fast path disable bit in the selected CMR register is "O" during a read 
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of the local Interprocessor Interrupt register at its normal address, unspecified 
data will be returned. To read the local Interprocessor Interrupt register, the o 
alternate address., should be used as described under the Interprocessor Inter- · 
rupt register. · 

UNDESIRABLE I ILLEGAL: fast path and not local 
This combination of CMR bits - allowing fast path but saying not local -
is inconsistent because the fast path mechanism applies only to local memory 
accesses. If the fast path disable bit in the selected CMR register is "O", and 
the access qualifies to use the fast path (it is a read to local memory), but the 
local bit in the CMR is "O", three different outcomes are possible. Depending 
on the traffic conditions on the local T-bus, the access may use the fast path 
or may instead go out over the switch. If the fast path is used, the correct data 
is returned with no delay. If the access goes out over the switch and the CMR 
entry used maps the access bai:k to this junction board, the correct data is re­
turned butthe access is slower than usual. If the access goes out over the switch 
and the CMR entry used maps it to ·another function board, that function board 
is accessed and different data is returned. Thus, depending on the CMR map­
ping, the combination of fast path and not local may be viewed either as unde­
sirable or as illegal. 

UNDESIRABLE: fast path and intercept access 
If the selected CMR register attempts to do both intercept access and fast path 
(that is, the intercept access• bit = "O" and the fast path disable bit = "O", the 
correct data will be returned but the time to complete the access will vary by o· . ' 

four clock ticks or more, depending on the availability of the fast path. This 
combination of bits is legaj, but would be unusual because the intercept access 
mechanism is intended to terminate remote references in certain special cases, 
whereas the fast path applies only to local memory references. 

(END OF "INTERACTIONS" CAUTilf)N) 

Most bits in the CMR are duplicated, one bit controlling read accesses and the 
other bit.controlling write accesses for the same 8-megabyte bank. However, 
four of the bits do not have this read/write distinction; the same one bit con­
trols accesses to the given 8-megabyte bank, regardless of whether it is a read 
or a write. Similarly, when loading the CMR or copying out its contents via the 
interleaver loader, each of these four bits has no read/write distinction. For 
example, setting "bank 5 for reading" to be bypass, and then setting "bank 5 for 
writing" to be not bypass, results in any access to bank 5 being not bypass. 

Normally, CMR registers are set up in pairs, with identical values in the regis­
ters selected by read and write operations to the same bank. The intended 
purpose of the read/write distinction on some of the CMR fields is to support 
the block copy operation described in section 11.10.3. To meet the perform­
ance goals for the fast path, the read/write distinction was eliminated for four 
bits that affect the critical timing paths on the board. The four bits with no 
read/write distinction are flagged with :j: in the descriptions above, and are: o 

BBN AC! Proprietary February 14, 1990 



0 

0 

0 

TC2000 Hardware Archirecture 11 :FPV 

February 14, 1990 

fast path disable bit 

interleave enable bit 

bypass bit 

T-bus address < 23 > bit (but T-bus address bits 33 .. 24 do have separate 
CMR bits to distinguish read and write) . 

The effect of having no read/write distinction on the fast path enable, interleave 
enable and bypass bits is straightforward - within an 8-megabyte bank, both 
reads and writes have the same behavior. (The fast path disable bit doesn't mat­
ter on a write, since writes never use the fast path anyway.) The effect of the 
T-bus address < 23 > bit having no read/write distinction, however, is slightly 
more subtle. If all T-bus address bits produced by the CMR did have read/ 
write distinction, then any given 8-megabyte Physical Address bank could be 
mapped to any System Physical Address bank on read, and independently to 
any System Physical Address bank on write. However, since the T-bus address 
< 23 > bit does not have read/write distinction, those two System Physical Ad­
dress banks must agree in bit 23 - they must either both be even-numbered 
8-megabyte banks, or both be odd-numbered 8-megabyte banks. This con­
straint should be minor in practice, because the mapping of addresses is usual­
ly identical for read and write. 

The CPU Mapping RAM is read and written by the same technique used to 
read and write the interleaver, described and illustrated in the Interleaver 
Loader registers entry. 

After power-on, the contents of the CPU Mapping RAM registers are unspeci-
- fied. However, since the CMR enable bit in the Machine Configuration register 

is "O'' after power-on, the CMR is disabled after power-on. Whenever the CMR 
is disabled (by the CMR enable bit in the MCR being cleared to "O"), default 
values supercede the functions normally controlled by the CMR. These dis­
abled-CMR defaults are shown in Figure 11-30. They give the processor sim­
ple access to local memory so it can execute bootstrap code that initializes the 
CMR and then enables it (by setting the CMR enable bit in the MCR to "l"). 
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Power-up and disabled CMR operation. 

Physical Address from CMMU 

1 1 

~· 
1 

32 

ignored when 
CMR is disabled 

1 1 1 1 1 

31 30 29 28 27 

1 

26 

T AD<33 .. 23> 

local 

1 

25 24 

drive T AD< 22 .. 0 > 
as usual 

[?LJ 
23 I T AD<22 .. 0> 

bypass 
interleave enable 

intercept access* 
fast path disable 

System Physical Address 
to T-bus 

In summary, when the CMR is disabled: 

• The System Physical Address (T_AD) is derived as follows: 

o T _AD< 22 .. 0 > come from Physical Address < 22 .. 0 >, as usual 

o T _AD< 24 .. 23 > come from Physical Address < 30 .. 29 > 

o T __AD< 33 .. 25 > are set to all 'T's 

• Physical Address < 28 .. 23 > are ignored (the T_ AD mapping above per­
mits access to the entire 32-megabyte function board address space) 

• local is "l", so all references are local 

• bypass comes from Physical Address < 31 >, so the CPU can bypass 
locks by using a Physical Address with its high bit set to "1" 

• interleave enable is "O", so interleaving is not performed 

• intercept access* is "l", so accesses are normal (they are not intercepted) 

• fast path disable is "1'', so the fast path is not used 
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Figure 11-31 
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Interleave Decision RAM registers. 

LT_INTERLEAVED signal to SIGA 

unused 

Tell SIGA whether the CPU's reference is to interleaved memory. 

(accessed via .the interleaver loader) 

read/write 

The CPU interface in the TC/FPV contains the Interleave Decision RAM. 
This, in conjunction with the CPU Mapping RAM interleave enable bit, tells the 
SIGA whether a switch access made by the CPU is to interleaved or non-inter­
leaved memory. Section 11.3.6 discusses the Interleave Decision RAM. 

When the CPU makes a reference on the T-bus, Physical Address bits 31..26 
and 22 .. 15 select one of the 16,384 one-bit Interleave Decision RAM registers. 
If the selected Interleave Decision RAM register contains a "l", the reference 
is to interleaved memory; a "O" indicates the reference is to non-interleaved 
memory. However, if the interleave enable bit of the CPU Mapping RAM is 
"O'', the contents of the Interleave Decision RAM are ignored and interleaving 
is not allowed. (For the SIGA to use the interleaver, the Ena_Interleaver bit in 
the SIGA'.s Requester_ ConfigB register must also be set to "l".) 

The Interleave Decision RAM is read and written by the same special tech­
nique used to read and write the interleaver, described and illustrated in the 
Interleaver Loader registers entry. 

(Note that both the Interleaver Data register and the Interleave Decision RAM 
have initials "IDR". In this document, IDR always means the Interleaver Data 
register; the name Interleave Decision RAM is always written out in full.) 

After power-on, the contents of the Interleave Decision RAM registers are un­
specified. 
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Figure 11-32 Interleaver Loader registers. 

31 0 

~I -~J>~ _ __.I 
Interleaver Address register 

( IAR) 

31 

Interleaver Data register 
( IDR) 

0 

FUNCTION Give the CPU read/write access tot.he interleaver mapping RAMs (the modu­
liis RAM and the pool RAM). Also used for access to the Interleave Decision 
RAM and the CPU Mapping RAM in the CPU interface, and to the VMEbus 
Master Map RAM in the VMEbus interface. 

ADDRESS 

ACCESS 

. DESCRIPTION 

346 

OxE07EAOOO and following - see Figure 11-33 

IAR and IDR are read/write; other addresses are read only with side effects 

When the TC/FPV generates a remote reference (and therefore a switch re­
quest),. the System Physical Address from the T-bus is optionally modified by 
replacing the bits T _AD< 33 . .25 > with nine modified bits generated by the 
interleaver. The T _INTERLEAVED signal to the SIGA controls whether the 
SIGA uses the unmodified address straight from the T-bus or the address as 
modified by bits from the interleaver. The interleaver contains two RAMs -
the modulus RAM and the pool RAM. The interleaver loader is used to read 
and write these RAMs. It is also used to read and write three other RAMs: the 
Interleave Decision RAM, the CPU Mapping RAM and the VMEbus master 
mapper RAM. 

Figure 11-33 Jists the SIGA addresses used to operate the interleaver loader. 
Most of these addresses hold no data, but trigger an operation when accessed. 
The two registers that do hold data are: 

• Interleaver Address register (IAR) 
The IAR contains the mapping RAM address to be read or written. For 
example, if the IAR contains "10", then location 10 in one of the RAMs 
will be read or written. 

• Interleaver Data register (IDR) 
The IDR contains the data to be written, or receives the data that is read. 

(Note that both the Interleaver Data register and the Interleave Decision 
RAM have initials "IDR". In this document, IDR always means the In­
terleaver Data register; the name Interleave Decision RAM is always 
written out in full.) 
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Figure 11-33 

NOTE 

Interleaver loader registers and commands. 

Physical 
Address 

E07EBOOO 
E07EAOOC 
E07EAOOO 
E07EA004 
E07EA008 
E07EA010 
E07EA014 
E07EA020 
E07EA024 
E07EA028 
E07EA030 
E07EA034 

Access 

R/W 
R/W 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 
Read only 

Function 

IDR (Interleaver Data register) 
IAR (Interleaver Address register) 
IDR = pool RAM 
IDR = modulus RAM 
IDR = VMEbus master map RAM 
IDR => CPU Mapping RAM 
IDR = Interleave Decision RAM 
IDR = pool RAM 
IDR = modulus RAM 
IDR = VMEbus master map RAM 
·IDR = ·cPu Mapping·RAM 
IDR = Interleave Decision RAM 

To access a mapping RAM, the following steps are used. 

1. Write the address of the RAM location to be accessed into the IAR. The 
IAR bits are the same as the T-bus address/data (T_AD) bits that drive 
the RAM's address lines in normal operation, with three exceptions: 

o Bits IAR < 1 .. 0> take the place of T_AD<33 . .32>. 

o When accessing the interleaver modulus RAM, bits IAR < 15 .. 13 > 
are substituted for the pool number that normally comes from the 
pool RAM. Thus, the contents of the interleaver's pool RAM don't 
matter. while accessing the modulus RAM. 

o When accessing the Interleave Decision RAM, bits from the IAR 
substitute for Physical Address bits from the CMMU, not for Sys­
tem Physical Address bits from the T-bus. 

2. If the RAM location is to be written, write the data to be written into the 
IDR. 

3. Issue the interleaver loader command, by reading from the appropriate 
address in Figure 11-33. 

4. If the RAM location was read, obtain the data by reading the IDR. 

NO READ-BACK ON INTERLEAVER DATA REGISTER 
The IDR acts as two registers, one that is written by the CPU and whose con­
tents go into RAM, and one that is loaded from RAM and whose contents are 
read by the CPU. Data written into the IDR cannot be read directly from the 
IDR. Therefore, to test operation of the IDR, data written to it must be trans­
ferred into a RAM and back from RAM into the IDR, from where the CPU can 
then read it. CPU= IDR =RAM= IDR = CPU. 
'\."'•,,,_.,,,__ .. ,,,,,'••,,.·•o,,,,'••,, .. ''•1,."'\.''••,,.'\,.'••,,. '••,,.·•11,,.·•,,,_·•11,,'\."'r,,,'1,,.-·•,,,_·.,,,_·.,,,.·••,,,_-·•,,,_ .• ,,,_ '••,,.·.,,,, '1•,,.··.,,,_.,,,,,_-•1,,, .,,,,,_·\,.'••,,,_·•,,,,_·•,,,,·•,,,, .,,,,_·.,,,,_·•,,,,_··,,, '•o,_-.,,,,··•,,,_···~ .. ·•,,,,_.,,,, 
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The format of the data that the CPU must deposit in the IAR and the IDR 
when accessing a given RAM via the interleaver loader is illustrated below. 

After power-on, the contents of the interleaver modulus and pool RAM regis­
ters are unspecified. For the power-on contents of other RAMs loaded by the 
interleaver loader, see the description of those RAMs. 

Figure 11-34 Interleaver loader access to modulus RAM. 

31 

348 

. I I I I I I I I 

25 15 13 12 4 1 0 

( normally from 
T_AD<31 .. 25>) 

2 7 

( normally from 
pool RAM) 

HIGH LOW 

concatenate 

ADDER 

( normally from 
T_AD<12 . .4>) 

( normally from 
T_AD<33 .. 32>) 

MODULUS RAM 
(8Kx9) 

WRITE 

9 

( normally drives 
MOD bits to SIGA ) 

READ 

8 

I ! 

NOTE: the Modulus RAM is normally driven from the 
System Physical (T-bus) Address, the result 
after translation by the CPU Mapping RAM. 

0 

I I 
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Figure 11-35 

31 28 

Interleaver loader access to pool RAM. 

Interleaver Address Register (IAR) 

22 15 

( normally from 
T_AD<33 .. 32>) 2 HIGH 

( normally from 
T_AD<31 .. 28>) 4 MID POOL RAM 

( normally from (16Kx3) 
T_AD<22 .. 15>) 8 LOW 

( normally drives high 3 bits 
of modulus RAM address ) 

WRITE 

3 

READ 

Interleaver Data Register (IDR) 14 12 

February 14, 1990 

NOTE: the Pool RAM is normally driven from the 
System Physical (T-bus) Address, the result 
after translation by the CPU Mapping RAM. 
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31 28 
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Interleaver loader access to Interleave Decision RAM. 

Interleaver Address Register (IAR) 

22 15 

( normally from Physical 
Address <31 .. 30>) 2 HIGH 

( normally from Physical 
Address <29 .. 26>) 4 MID 

( normally from Physical 
Address <22 .. 15>) 8 

Interleave Decision RAM 
(16Kx1) 

[ in CPU interface ] 

WRITE 

1 
( normally drives 
T ~INTERLEAVED ) READ 

1 0 

Interleaver Data Register (IDR) 15 

350 

NOTE: the Interleave Decision RAM is normally 
driven from the Physical Address, the output of the 
CMMU before translation by the CPU Mapping RAM. 
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0 
Figure 11-37 Interleaver loader access to CPU Mapping RAM. 

31 25 14 1 0 

( normally from ( normally from ( normally from 
Physical Address CPU read*) Physical Address 
<29 .. 23>) <31..30>) 

1_2 .... 
. 7 ,. 

1_1 .... CPU MAPPING RAM 

j_7 ~ (1Kx16) 
[ in CPU interface ] 

I ,.. 
J I' WRITE 

l--'15 ..-1 

' ii' READ 

0 
(normally drives "fast path disable" ) .L1 

(normally drives "intercept access*" ) ~1 
(normally drives "interleave enable''. ) 71_ 1 

- ,_,_.,.,_ 

( normally drives "bypass" ) IL 1 

(normally drives "local" ) j_1 

( normally drives T AD< 33 .. 23 > ) 
7
.L 11 

l 7 
rvvvvy ' 31 30 29 28 27 26 Interleaver Data Register (IDR) 16 

0 
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Figure 11-38 Interleaver loader access to VMEbus Master Map RAM. 

r 
31 

I I 

31 
\ 

\ 

352 

23 

'-

Interleaver Address Register (IAR) 

13 

( normally from 
....--------' T_AD<23 .. 13>) 

11 
_f_, 

7 ,. 
VMEbus MASTER MAP RAM 

(2Kx32) 
[ in VMEbus interface ] 

J~ WRITE 

,.-(' 32 
(normally drives ,

1
• 

various VMEbus bits: ~ READ 
IACK, vme am<5 .. 0>, 
andvme_a<31 .. 13>) 

Interleaver Data Register (IDR) 

I I I I I I I I I I I I I I 

26 25 24 19 18 
A_A A ---- T-~y--___. ~-------~y y 

unused IACK vme_am<5 .. 0> vme a<31 .. 13> 

function of fields in VMEbus Master Map RAM 
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Interprocessor Interrupt register. 

unused 

Interrupt the CPU. 

Ox80002000 - normal address 

L interprocessor interrupt 

OxE0740004 - alternate address, for local reading 

normal address - read (except locally with fast path) I write 
alternate address - read/write 

Setting the interprocessor interrupt bit in this register requests an interrupt to 
the CPU. Any T-bus master, including the VMEbus slave interface and the 
switch interface, may write this register and thereby interrupt this CPU, sub­
ject to the Interrupt Enable Mask register. It is expected that the operating 
system will limit access to this register by setting the protection attributes of 
the page that contains it. This bit is cleared either by writing a "O" into it, or by 
reading the Interrupt Source register while the Interrupt E;na!Jle Mask regis~er 
interprocessor interrupt bit is "l". 

If interprocessor interrupts are disabled by the Interrupt Enable Mask regis­
ter, the requested interrupt will not be seen by the CPU until interprocessor 
interrupts are re-enabled. 

The Interprocessor Interrupt register may be read and written at any time. 
Reading the Interprocessor Interrupt register always returns its contents, re­
gardless of whether interprocessor interrupts are disabled by the Interrupt En­
able Mask register. 

Reading the Interprocessor Interrupt register at its normal address with the 
fast path enabled returns an unspecified value. To read the register locally when 
the fast path is enabled, the alternate address must be used. Since writes do not 
use the fast path, the local Interprocessor Interrupt register can be. written at 
either address, regardless of the state of the fast path disable bit in the CMR. 
Note that read access to the Interprocessor Interrupt register is provided 
largely for diagnostic capabilicy; operating system functions would usually 
read the state of this register by reading the Interrupt Source register. 

Power-on clears the one defined bit of the Interprocessor Interrupt register to 
zero. 
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Interrupt Enable Mask register. 

~~: ___ 71-,;.6L-..J5L-..J4:L-..J3~2_,_~1-0~I ~ 71 61 51 4 31 21 11 

LJ 11 I L ;meq>Coo=oc ;menupt 
unused VMEbus level 1 

VMEbus level 2 
VMEbus level 3 

'------ VMEbus level 4 
'------- VMEbus level 5 

'-------- VMEbus level 6 
'---------- VMEbus level 7 

Enable interprocessor and VMEbus interrupts to the CPU. 

OxE0780014 

read/write 

If a VMEbus mask bit in this register is "l'', then the corresponding interrupt is 
recognized by the CPU. If a VMEbus mask bit is "O'', then the CPU is insensi­
tive to assertion of the VMEbus interrupt request on that level. The VMEbus 
interrupt request state is not Jatc!Jed in the TC/FPV; if the enable bit for a !eve! 
is "1", the state seen by the. CPU is the state of the corresponding interrupt line 
on the VMEbus. 

If the interprocessor interrupt mask bit is "l", a "l" in the Interprocessor Inter­
rupt register asserts an interrupt to the CPU. If the bit is "O'', the CPU is insen­
sitive to the contents of the Interprocessor Interrupt register. Clearing the 
mask bit in the Interrupt Enable Mask register to "O" prevents (maskable) in­
terprocessor interrupts to the CPU, but it does not clear or disable access to 
the Interprocessor Interrupt register. 

The interprocessor interrupt bit also controls whether reading the Interrupt 
Source register clears the Interprocessor Interrupt register. If the bit is ''1'', 
reading the Interrupt Source register clears the Interprocessor Interrupt regis­
ter; if the bit is "O", reading the Interrupt Source register does not clear the 
Interprocessor Interrupt register. 

The Interrupt Enable Mask register bits also control whether the correspond­
ing interrupt requests are visible in the Interrupt Source register. If the mask 
bit is "O", the corresponding bit in the Interrupt Source register reads as "O" 
regardless of whether that interrupt request is present. 

Power-on clears all defined bits of the Interrupt Enable Mask register to zero, 
disabling the interrupts masked by this register. 
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Interrupt Source register. 

~;j....__7.__6'--'5'--'4:~3~1'--'21'--'1-0~1 
LJ I I L VMEbus interrupt 

unused VMEbus interrupt level 
( 001 = level 1, 

01 o = level 2, etc. ) 
non-maskable interprocessor interrupt 

maskable interprocessor interrupt 
real-time clock interrupt (the OR of all four ) 

interrupts disabled too long timeout 

Indicate the cause of a CPU interrupt. 

OxE0780018 

read only 

There are fourteen sources of interrupts on the TC/FPV The 88100 has only 
one interrupt level, so all interrupt sources are OR' ed together to generate a 
CPU interrupt.. More than one type of interrupt may be asserted. Only the 
VMEbus interrupts are prioritized.· 

The VMEbus interrupt bit, if "l", indicates that at least one VMEbus interrupt 
request is pending (and that its bit in the Interrupt Enable Mask register is 
"l"). These levels are prioritized, and the VMEbus interrupt level bits indicate 
the level of the highest priority request currently pending. (The highest level is 
7, the lowest is 1. A value ofO should never be seen when the VMEbus interrupt 
bit is "l".) If the VMEbus interrupt bit is "O'', the contents of the VMEbus 
interrupt level field is unspecified. 

The non-maskable interprocessor interrupt bit, if "l", indicates that the inter­
rupt bit of the Non-maskable Interprocessor Interrupt register has been set to 
"l" (and that its bit in the Interrupt Enable Mask register is "1"). 

The maskable interprocessor interrupt bit, if "l", indicates that the interrupt bit 
of the Interprocessor Interrupt register is "l" and the interprocessor interrupt 
bit of the Interrupt Enable Mask register is "1". If either bit is "O", this bit of 
the Interrupt Source register is "O''. 

The real-time clock interrupt bit, if "1", indicates that one or both of the Time 
Of Next Interrupt (TONI) registers, in one or both of the SIGAs, has expired. 
Each SIGA has two real-time timers, but in normal operation, only one SIGA 
will be producing such interrupts. 
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The interrupts disab/ed too long timeout bit, if "1", indicates that the Interrupts 
Disabled Timer has expired. · 

PROGRAMMING ADVICE: Reading the Interrupt Source register clears 
the non-maskable interprocessor interrupts, and clears the maskable inter­
processor interrupts if the Interrupt Enable Mask register's interprocessor in­
terrupt bit is "1". If the Augmentation Register is being used in such a way that 
interrupts can be taken during locked sequences, the AR must be saved and 
cleared whenever an interrupt service routine is entered. This can be done by 
reading the AR read-and-clear address. The interrupts disabled too long 
timeout will be cleared within 300 nanoseconds of clearing the AR. The VME­
bus interrupt gets cleared by doing an IACK cycle on the VMEbus. Each re­
quest must be given a separate IA CK response. The real time clock interrupt is 
cleared by writing a value greater than the current time to the SIGA'.s TONI 
register that interrupted, or by changing that SIGA'.s configuration register to 
disable TONI interrupts. 

After power-on, the contents of the Interrupt Source register are unspecified. 
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Figure 11-42 
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Interrupts Disabled Timer register. 

r.17 
LJ 
unused 

6 5 2 1 

t 

01 

Help guarantee maximum latency of interrupt. servicing, by detecting pro­
tracted use of the disable interrupts augmentation. 

OxE076000C 

read (timer counter) I write (preset register) 

When the disable interrupts bit in the Augmentation register is set to one, the 
Interrupts Disabled Timer is loaded from this register and begins counting. It 
stops when the disable interrupts bit is cleared to zero. If the timer expires, an 
"interrupts disabled too long" interrupt is generated. That interrupt is cleared 
by clearing the disable interrupts bit in the AR. 

The interrupts disabled augmentation is timed out after OxFF-t microseconds, 
where t is the contents of the Interrupts Disabled Timer register. 

Writing to this address modifies the "preset" value loaded into the timer count­
er whenever the timer begins running; reading this address returns the current 
(instantaneous) contents of the timer counter. Software cannot directly read 
the preset register, nor directly write the timer counter. 

After power-on, the contents of the Interrupts Disabled Timer register are un­
specified. The CPU must initialize this register before setting the disable inter­
rupts bit of the AR. Further, it may be desirable to initialize this register before 
setting any bits in the Interrupt Enable Mask register. 
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Interrupts Pending I Abort Retries register. 

8 7 6 5 4 3 2 1 0 

Ldisable 

unused t 

Help gu_arantee maximum latency of interrupt servicing, by a,borting switch 
transactions that take too long to establish a connection. 

OxE0760008 

read (timer counter and disable bit) I write (preset register and disable bit) 

When a CPU interrupt request is asserted, a timer is loaded from the Inter­
rupts Pending I Abort Retries register and begins counting. It stops when all 
interrupt requests are gone. · If the timer expires, the signal 
SIGA_ABORT_RETRIES is asserted until all interrupt requests are gone. 
This signal has no effect unless the SIGA is trying to establish a switch connec­
tion and has been rejected at least once. If the SIGA has been rejected and is 
about to retry, it will abort the attempt and return a bus error. 

\Vh.en tbJs ti~91 expires '1,prf the STOA consequently retur~s a bus errcr~ tha.t 
error is returned to whatever T-bus master made the switch request. Typically 
this is the CPU, but it could be the VMEbus interface. This reflects the design 
choice that having the CPU service interrupts is more important than any 
switch traffic, including VMEbus-related switch traffic. There is a danger, 
however, of handing this bus error to a VMEbus device that is not prepared to 
handle it. Therefore, if the Interrupts Pending I Abort Retries register is used 
to control switch latency, the user may wish to choose to never generate refer­
ences across the switch from VMEbus devices. Alternatively, the user may 
ensure that any VMEbus devices making such references are prepared to han­
dle a bus error. 

A pending interrupt is timed out, if a remote reference is being attempted, af­
ter OxFF-t microseconds, where t is the contents of the Interrupts Pending I 
Abort Retries register. If bit 0 of the register is set to "1", the timer is disabled 
and the value oft is irrelevant; bit 0 must be "O" for the timer to operate. 

Writing to this address modifies the "preset" value loaded into the timer count­
er whenever the timer begins running; reading this address returns the current 
(instantaneous) contents of the timer counter. Software cannot directly read 
the preset register, nor directly write the timer counter. The disable bit is also 
read or written on any access. 

BBN ACI Proprietary February 14, 1990 

0 

0 

0 



0 

0 

TC2000 Hardware Archirecture 11 :FPV 

February 14, 1990 

After power-on, the contents of the Interrupts Pending I Abort Retries register 
are unspecified. The CPU must initialize this register before setting any bits in 
the Interrupt Enable Mask register. 
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Machine Configuration register. 

31 • I 
unused 

3 2 1 0 

I u1 LL_ CMR enable L write wrong parity 
fast path enable 

cache selection scheme 

Control certain basic operating characteristics. 

OxE0760000 

read/write 

When the CMR enable bit in this register is set to "1", the CPU Mapping RAM 
operates on refer~nces made by the CPU. When the CMR enable bit is cleared 
to "O'', the CPU Mapping RAM has no effect, and default values are supplied 
for the signals driven by the CPU Mapping RAM when it is enabled. 

The write wrong parity bit, when set to "1", causes incorrect parity to be written, 
into local memory only, on any size of write, by any T-bus master (CPU, switch 
or VMEbus). This bit is intended for use in testing the memory. When this bit 
i:; cleared to "D~~, correct p,u..rity ~s )Vritten. 

The fast path enable bit, when set to" 1'', enables the fast path. When the enable 
fast path bit is cleared to "O", the fast path to memory is never used. For the 
fast path to be used, several conditions must all be met, as discussed in the 
description of the CPU Mapping RAM. 

The cache selection scheme bit determines which of two schemes is used to 
share the two code CMMUs. The scheme, in turn, determines which code 
CMMU is· addressed on an instruction fetch, as follows: 

• If cache selection scheme bit = "O", use Process Logical Address bit 12 

o If Process Logical Address bit 12 = "O'', use code CMMU #1. 

o If Process Logical Address bit 12 = "l", use code CMMU #2 

• If cache selection scheme bit = "l", use CPU supervisor/user mode bit 

o If supervisor/user bit = "O" (user), use code CMMU #1 

o If supervisor/user bit = "1" (supervisor), use code CMMU #2 

After power-on, the contents of the Machine Configuration register are un­
specified. It is recommended that the CPU (or TCS) initialize this register ear-
ly in the initialization code. . · 
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Figure 11-45 
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Non-maskable Interprocessor Interrupt register. 

L non-maskable interprocessor interrupt 

unused 

Interrupt the CPU, unless the CPU itself has interrupts disabled. 

OxE0760004 

read/write 

Setting the non-maska.ble interprocessor interrupt bit of this register generates a 
non-maskable interrupt to the CPU. This interrupts the CPU unless the CPU 
has all interrupts disabled via its internal Processor Status register. This bit is 
cleared either by writing a "O" into it, or by reading the Interrupt Source regis­
ter. 

Power-on clears the one defined bit of the Non-maskable Interprocessor In­
terrupt register to zero. 
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PCR Disable Mask register. 

unused 

Prohibit setting bits in the Process Configuration register. 

Ox:E0780010 

read/write 

Setting a bit in this register disables write access to the corresponding.field (not 
necessarily a single bit) in the Process Configuration register. 

• Masking applies both in user mode and in supervisor mode. 

• Masking applies only to writes, never to reads. Masking applies to all 

u 

sources of a write: the CPU, the VMEbus slave, the switch interface, and ·o· 
the TCS. · 

. • .. If the.write attempts to set w a "1" any bit of any PCR field, whiie the 
mask bit corresponding to that field is "1", then the entire PCR is left 
unchanged and a bus error is generated. Otherwise, the resulting PCR 
bit is: 

field's mask bit 
0 
0 
1 
1 

data to be written 
0 
1 
0 
1 

resulting bit in PCR 
0 
1 

unchanged (no bus error) 
bus error - see above 

Writing a "O" to a masked bit leaves the bit unchanged and incurs no bus 
error so the user may change other PCR bits that are not masked. 

• Changing the PCR Disable Mask register does not affect the contents of 
the PCR. 

Access to the PCR synchronized access bit is not protected by a mask bit. The 
reasoning behind this is that if a user program wishes to apply synchronized 
access to all its remote references, it will not hurt the performance of other user 
or system programs. 

Power-on clears all defined bits of the PCR Disable Mask register to zero, so 
all bits of the PCR are initially writable. 
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Process Configuration register (PCR). 

31 i..J 7 6 5 4: 3 2 1 I 0 I 
p41l"""1 lr-1~-~-~-'--L~.-~-,~~=-:. 
I I 
unused LJ

J I ~ 1 priority scheme< 1 .. 0 > 
~ default priority< 1 .. o > 

path< 1 .. 0> 
synchronized access 

Hold certain information associated with the software process currently run­
ning on the processor. 

OxE0740000 

read/write, subject to PCR Disable Mask register 

The PCR holds information about the way remote accesses are presented to 
the switch while the current process is executing. 

The CPU interface uses the priority scheme. bits to select one of four priority 
schemes. Each priority scheme uses an independent set of criteria for deter-

. mining the value ofthe T_PRIORITY bits for" every T-bus request. The 
T _PRIORITY bits are used byth"e SIGA to determine the priority when it con­
verts a T-bus request into a switch request message. This mechanism affects 
references to remote memory only. The default priority bits may be used in any 
of the schemes. The priority mechanism and computation are described in 
section 11.9 .1. 

The path bits are used in computation of the T _PATH bits placed on the T-bus, 
that in turn determine the access path used. The computation of T _PATH is 
described in section 11.9.2. The meaning of T _PATH values, and therefore the 
path that the PCR path bits will specify if not overridden by the computation, is 
as follows: 

00 illegal (both SIGAs, if installed and enabled, will respond, 
causing indeterminate results) 

01 use SIGA B 
10 use SIGAA 
11 local access (prohibits use of either switch; access can be served 

only by resources on the local function board - memory, 
configuration and control registers, or VMEbus interface) 

The computation of T_PATH consists of a choice either to use the path bits 
from the PCR, or to use "11". If the access is local and not interleaved, then 
"11" is used. 
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The synchronized access bit, when set to one, asserts the T-bus bit T _SYNC on 
switch transactions, which tells the SIGA to use the "SlotO" transmission strat­
egy. The intent is that the SIGA will be set up so this causes initial switch trans­
missions to use a delay similar to the backoff applied to retransmissions. 
Then, if several CPUs are all accessing the same server (such as memory at the 
same switch port), congestion is less than if initial transmissions were not 
delayed. 

After power-on, the contents of the Process Configuration register are unspec­
ified. 
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VMEbus Arbiter Timer register. 

31ai~5 14 1312:11 1Q 9 

r<.._ I I 1 · _ I I 

LJ 
unused t unused 

Detect when no VMEbus device responds to bus grant. 

OxE076020C 

read (timer counter) I write (preset register) 

If the TC/FPV is VMEbus system controller, one of its duties as bus arbiter is 
to time out the bus grant signal. When the arbiter asserts bus grant, the VME­
bus Arbiter Timer begins counting, and stops when a bus master acknowl­
edges the grant by asserting the bus busy signal. If no device responds, 
expiration of this timer causes the arbiter to remove bus grant. This occurs 
entirely within the VMEbus, and is not explicitly visible to the TC/FPV CPU or 
to any other T-bus device. This timeout never occurs if all devices obey The 
VMEbus Specification; but timing out bus grant allows forward progress if a 
violation does occur. 

The arbitration cycle is timed out after 4 x (OxFF-t) microseconds, where t is 
the contents of the VMEbus Arbiter Timer register. If the TC/FPV is system 
controller, the timer is initialized from the register each time the TC/FPV as­
serts bus grant. 

Writing to this address modifies the "preset" value loaded into the timer count­
er whenever the timer begins running; reading this address returns the current 
(instantaneous) contents of the timer counter. Software cannot directly read 
the preset register, nor directly write the timer counter. 

After power-on, the contents of the VMEbus Arbiter Timer register are un­
specified. 
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Figure 11-49 VMEbus Configuration register. 

311115 1413 12:11 10 9 8: 7 6 5 4: 3 2 1 01 I IPL J I I I 31 I 30 I 29 28 I 27 I 261 25 24 I 23 J 22 I • 

LJ , ,_ extended I std I L reserved 

unused L VMEbus slave window 
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standard I extended addressing 
release-when-done I release-on-request 

·reset VMEbus (low true) 
VMEbus system reset (read only) 

VMEbus system fail (read only) 

Control the configuration of the TC/FPV as a device on the VMEbus. 

OxE0760204 

read (all bits) I partial write (all but the VMEbus system reset and fail bits) 

The VMEbus slave mapper compares the VMEbus slave window to the high 
bits of the address from the VMEbus, to determine whether the VMEbus is 
referencing TC2000 address space and therefore the TC/FPV should respond. 
Sec b~low for the': numbe~ qf bit~ c;.0mp~red. 

The standard I extended addressing bit determines the type of VMEbus ad­
dressing to which the TC/FPV responds as a VMEbus slave. The type of ad­
dressing being used is encoded in the VMEbus address modifier bits for every 
VMEbus transaction. The TC/FPV VMEbus slave does not respond unless 
the addressing mode of the transaction matches the mode specified by this bit 
of the VMEbus Configuration register. This bit also determines how many 
bits of the VMEbus address are compared to the VMEbus slave window, and 
therefore the size of the window from VMEbus address space into TC2000 ad­
dress space. Note that the addressing used when the TC/FPV is VMEbus 
master is not determined by this bit, but rather by the vme _am< 5 .. 0 > bits of 
the VMEbus Master Map RAM register. 

value 
0 

1 

addressing 
extended (32-bit); 

compare vme _a< 31 . .24 > against 
VMEbus Configuration register < 10 . .3 > (eight bits); 

' window is 16 megabytes 
standard (24-bit); 

compare vme _a< 23 . .22 > against 
VMEbus Configuration register <2 .. 1> (two bits); 
window is 4 megabytes 
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slave window bits 10 9 8 7 6 5 4 3 2 1 

extended addressing (32 bits) ,,, ... 
16-megabyte window - ,.. 

Configuration register bit 11 = o 
compare 

standard addressing (24 bits) ""' ... 4-megabyte window compare - ,. 
Configuration register bit 11 = i 

February 14, 1990 

VMEbus address bits 31 30 29 28 27 26 25 24 23 22 

The release-when-done I release-on-request bit controls when the TC/FPV re­
linquishes VMEbus mastership. A "l" indicates release-when-done, a "O" 
release-on-request. The difference between the two settings is discussed in 
section 11. 7.4 and more technically in The VMEbus Specification. 

The reset VMEbus bit, when cleared to "O", generates a reset on the VMEbus as 
long as it remains "O". The bit must be set to "l" to de-assertthereset signalm. 
the VMEbus. The low-true sense of this bit ensures that upon power-on, 
which clears the bit to zero, the VMEbus is held reset. Resetting the TC/FPV 
does not generate a VMEbus reset, nor does resetting the VMEbus reset the 
TC/FPV. 

The VMEbus system.reset and VMEbus system fail bits read as "1" if the VME­
bus has been reset or suffered a system failure (not necessarily a power failure) 
since this register was last read; otherwise, these bits are "O". Reading this 
register clears these bits to "O". The setting and clearing of these bits is con­
trolled by devices on the VMEbus; see The VMEbus Specification for details. 

After power-on, the contents of the VMEbus Configuration register are as fol­
lows. Bits 9 .. 0 (most of the VMEbus slave window) are unspecified. Bits 13 .. 10 
are zero. Bit 14 will be "1" because the TC/FPV itself is holding the VMEbus 
reset. Bit 15 depends on the state of other VMEbus devices. 
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Figure 11-50 VMEbus Interrupt Request register. 

• 

FUNCTION 

ADDRESS 

311>.J15 14 13 12:11 10 

!Pa I 11 
7 1 6 , s . 4 1 3 1 2 1 

I I 
unused ~ """~' 

request level 1 
.___ __ request level 2 

....__ ___ request level 3 
....__ _____ request level 4 

....__ ______ request level 5 

'--------'-- request level 6 
'----------- request level 7 

( Signetics 
SCB68154 
Register R1 ) 

Select the level(s) on which the TC/FPV generates a VMEbus interrupt re­
quest. 

OxE0760804 

ACCESS. 

DESCRIPTION 

read/wrile 

Writing to this register generates an interrupt request(s) to the VMEbus, on 
each level whose corresponding bit in the data written is a "1". However, plac­
ing the request onto the VMEbus is under control of the enable interrupts bit in 
the VMEbus Interrupt Vector I Control register. If the TC/FPV is already re­
questing VMEbus interrupts on some levels, the levels requested by writing to 
this register are added to those already present, like an inclusive-OR function. 
The bits of this register are cleared individually by IACK cycles on the VME­
bus, or all together by the clear interrupts bit of the VMEbus Interrupt Vector I 
Control register. 

368 

Refer to a Signetics SCB68154 data sheet for further details on this register, 
and on the associated VMEbus Interrupt Vector I Control register. 

Power-on clears all defined bits of the VMEbus Interrupt Request register to 
zero. 

BBN ACI Proprietary February 14, 1990 

0 

rQ 

0 



0 

0 

TC2000 Hardware Archirecture 11:FPV 

Figure 11-51 

unused 

FUNCTION 

ADDRESS 

ACCESS 

DESCRIPTION 

February 14, 1990 

VMEbus Interrupt Vector I Control register. 

3 2 1 

~ ~"_se_d __ 

enable interrupts 
clear interrupt requests 

high order bits of interrupt vector 

( Signetics 
SCB68154 
Register RO ) 

Control interrupts the TCIFPV generates onto the VMEbus. 

OxE0760800 

read/write 

The enable interrupts bit, when set to "l", allows the TC/FPV to generate inter­
rupt requests onto the VMEbus. 

The clear interrupt requests bit, when set to "l",forces off all VMEbus interrupt 
requests that the TC/FPV is asserting. This clears the VMEbus Interrupt Re­
quest register. 

The high order bits of interrupt vector field specifies the highest five bits of the 
interrupt vector that the TC/FPV will place on the VMEbus. The interrupt 
vector is placed on the bus when the TC/FPV has requested an interrupt and 
some VMEbus device has responded with IACK to our requested level. A 
VMEbus interrupt vector is eight bits. The VMEbus Specification defines that 
bit 0 is a "1". Bits 1and2come from the SCB68154 chip, and its specification is 
that these bits are copied from VMEbus system bus address bits A2 and A3, 
respectively. (The VMEbus device acknowledging the TC/FPV's interrupt re­
quest is driving Al, A2 and A3 with the 3-bit code of the level being acknowl­
edged.) 

Refer to a Signetics SCB68154 data sheet for further details on this register, 
and on the associated VMEbus Interrupt Request register. 

Power-on clears all defined bits of the VMEbus Interrupt Vector I Control reg­
ister to zero. 
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Figure 11-52 

FUNCTION 

ADDRESS 

ACCESS 

DESCRIPTION 

370 
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VMEbus Master Map RAM registers. 

unused 

Map TC2000 addresses into VMEbus addresses. 

(accessed via the interleaver loader) 

read/write 

When the TC/FPV is VMEbus master, system physical addresses from the T­
bus are translated into VMEbus addresses by the master mapper, using these 
registers. The eleven bits T _AD< 23 .. 13 > select one of 2048 VMEbus Master 
Map RAM registers, whose bits then supply parts of the VMEbus address. 

When the IACK bit is not asserted (that is, when it is "1"), the VMEbus ad­
dress bits vme _a< 31..13 >, and the VMEbus address modificer bits 
vme_am <5 .. 0>, are supplied from the selected register, and a VMEbus read 
or write takes place. When the IACK bit is asserted (cleared to "O''), the other 
two fields of the register are ignored and a VMEbus interrupt acknowledge 
(IACK) cycle is generated, as follows. (The boldface terms interrupter and 
interrupt handler are VMEbus functions defined in The VMEbus Specifica­
tion.) 

The L4CKbit is used when the TC/FPV is responding as a VMEbus interrupt 
handler to an interrupt request generated by a VMEbus interrupter device. 
When an interrupt handler receives an interrupt, it must generate an interrupt 
acknowledge (IACK) cycle to get the interrupt vector from the interrupter. To 
generate the IACK cycle, a T.:.bus master on the TC/FPV (normally the CPU) 
must perform a halfword (16-bit) read from a specially-mapped address. The 
address is mapped by the VMEbus Master Map RAM registers, and the par­
ticular map register used has its IACK bit asserted (cleared to "O"). Bits 3 .. 1 of 
the System Physical Address on the T-bus are the interrupt level (1-7) the soft­
ware obtains from bits 3 .. 1 of the Interrupt Source register. The VMEbus mas­
ter interface on the TC/FPV translates the read operation into a VMEbus 
IACK cycle, encoding the interrupt level in VMEbus address bits A03, A02 
and AOl (driven from T-bus address bits 3 .. 1). The IACK cycle causes the 
interrupter to respond with an interrupt vector, which is returned to the inter­
rupt handler as the result of its halfword read. 
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Typical software may allocate one 8-kilobyte segment (thus one VMEbus Mas­
ter Map RAM register) just for generating interrupt acknowledgements on the 
VMEbus. 

The interleaver loader mechanism is used to read and write these registers. See 
the Interleaver Loader registers entry for discussion and illustration of reading 
and writing the VMEbus Master Map RAM registers. 

After power-on, the contents of the VMEbus Master Map RAM registers are 
unspecified. 
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Figure 11-53 VMEbus Slave Map RAM registers. 

2 1 . 01 

T AD<31 .. 13> unused 

FUNCTION 

ADDRESS 

ACCESS 

DESCRIPTION 

372 

Map VMEbus addresses into TC2000 addresses. 

OxE0720000 to OxE0721FFC (inclusive) 
(Unlike the VMEbus Master Map RAM, which is accessed via the interleaver 
loader, the VMEbus Slave Map RAM is on the T-bus and is accessed just as 
main memory is.) 

read/write 

When the TC/FPV is a VMEbus slave, responding to some other VMEbus 
device, addresses from the VMEbus are translated into TC2000 System Physi­
cal Addresses by the slave mapper, using these registers. When a VMEbus 
master reft:ri::m.:es au address thai fails within the window set by the Vlvffibus 
Configuration register, the VMEbus slave interface responds by passing the 
request through to the T-bus. The eleven bits vme _a< 23 . .13 > select one of 
2048 VMEbus Slave Map RAM registers, whose bits then supply parts of the 
address and other control information placed on the T-bus as indicated. 

See section 11.9.1 for a discussion of T_PRIORITY, and section 11.9.2 for a 
discussion of T PATH. 

The three bits named bypass, lock T-bus and interleaved describe the type of 
reference to make. Bypass tells the VMEbus slave (T-bus master) to make an 
operation that will bypass the TC2000 locking protocol; lock T-bus tells it to 
make a locked operation using that protocol. The interleaved bit tells the 
SIGA whether to take the high nine _address bits from the T-bus 
(T _AD< 33 .. 25 >) or from the interleaver (MOD < 8..0 > ). 
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When the VMEbus slave is configured to respond to VMEbus standard ad­
dressing, only 512 of the 2048 VMEbus Slave Map RAM registers are used. 
Which quarter of the 2048 is used depends on the window specified in the 
VMEbus Configuration register, as follows. The size of block mapped is al­
ways 8 kilobytes. With extended addressing, the window is 16 megabytes, di­
vided into 2048 blocks, each controlled by one map register. With standard 
addressing, the window is 4 megabytes, divided into 512 blocks, each con­
trolled by one map register. The VMEbus Configuration register specifies the 
4-megabyte window by specifying VMEbus address bits 23 .. 22. These two 
bits, however, are also among the bits (23 .. 13) used to select a VMEbus Slave 
Map RAM register. Therefore, the location of the 4-megabyte window in 
VMEbus address space, and the determination of which 512 map registers are 
used, are linked. 

In summary, when using VMEbus standard addressing-. 

IF THEN 
using VMEbus standard addressing 
and VMEbus Configuration register 

bits 2 .. 1 are ... 

the System Physical Address 
presented to the T-bus 
is generated by 

WARNING 

February 14, 1990 

00 
0 1 
1 0 
1 1 

VMEbus Slave Map RAM registers ... 

0 - 511 
512 -1023 
1024- 1535 
1536- 2047 

After power-on, the contents of the VMEbus Slave Map RAM registers are 
unspecified. 

T_PATH = 00 IS ILLEGAL 
VMEbus Slave Map RAM registers must not be used with their bits 
T _PATH< 1..0 > cleared to "00". This value is illegal. It can provoke both 
SIGAs to initiate switch cycles. 
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Figure 11-54 

FUNCTION 

ADDRESS 

ACCESS 

DESCRIPTION 

374 

VMEbus System Bus Timer register. 

31~ 15 14 1312:11 10 9 

r<.___ I I I . I I 

LJ 
unused t 

TC2000 Hardware Archirecture 

6 5 2 1 

Detect lack of response from a slave to any VMEbus master. 

OxE0760208 

read (timer counter) I write (preset register) 

When any VMEbus master asserts the address strobe signal, the VMEbus Sys­
tem Bus Timer begins counting, and stops when a slave device responds with 
the signal DTACK ("data acknowledge"). If no slave responds, expiration of 
this timer causes the TC/FPV hardware to assert the VMEbus signal J3ERR 
("bus error"). This occurs entirely within the TC/FPV VMEbus interface, and 
is not explicitly visible to the TC/FPV CPU or to any other T-bus device. This 
situation may occur in a properly operating system. For example, on power­
up, a program may poll the VMEbus to find available memory. 

· I-Jotc thut the \~ .. .i~bu:; Sys~pm Bu:; Timer operates regardless-of \Vb.ether the 
TC/FPV is acting as VMEbus system" controller. If the application has anoth­
er VMEbus device to time out address strobe, the VMEbus System Bus Timer 
register may be set for a long timeout, effectively disabling the timer. Then the 
other VMEbus device will always time out first, and the TC/FPV's timer will 
never expire. 

A VMEbus access is timed out after 4 x (OxFFFF-t) microseconds, where t is 
the contents of the VMEbus System Bus Timer register. The timer is initial­
ized from the register each time address strobe is asserted by any VMEbus 
master. 

Writing to this address modifies the "preset" value loaded into the timer count­
er whenever the timer begins running; reading this address returns the current 
(instantaneous) contents of the timer counter. Software cannot directly read 
the preset register, nor directly write the timer counter. 

After power-on, the contents of the VMEbus System Bus Timer register are 
unspecified. 
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Figure 11-55 

FUNCTION 

ADDRESS 

ACCESS 

DESCRIPTION 
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VMEbus TC/FPV Master Bus Timer register. 

31~15 1413 12:1110. 9 

IP(_ I I I . I I 

LJ 
unused t unused 

01 

Detect lack of response from a slave to the TC/FPV as bus master. 

OxE0760200 

read (timer counter) I write (preset register) 

When the TC/FPV is vMEbus master, it asserts the VMEbus signal address 
strobe and waits for a slave to respond with DTACK ("data acknowledge"). • 
The VMEbus TC/FPV Master Bus Timer starts counting when the TC/FPV 
asserts address strobe, and stops when DTACK is received. If no response is 
received, expiration of this timer causes the TC/FPV to assert the VMEbus 
signal BERR ("bus error"). This occurs entirely within the TC/FPV VMEbus 
interface. Thus, operation when this timer expires is like that of the VMEbus 
System Bus Timer but for a shorter time interval. 

· However, in this case the TC/FPV itself is the VMEbus master, so it reacts to 
the BERR signal by removing address strobe and returning a bus error to the 
T-bus master that made the reference. Without this timeout, access to a non­
responding VMEbus device would be timed out only by the VMEbus system 
controller. The system controller's bus timer is typically set much longer than 
the VMEbus TC/FPV Master Bus Timer, so relying on the system timer would 
compromise responsiveness. The longer timeout would be especially serious 
for VMEbus access across the Butterfly switch, where maximum switch laten­
cy would be affected. 

Any VMEbus reference initiated by the TC/FPV is timed out after OxFF-t mi­
croseconds, where tis the contents of the VMEbus TC/FPV Master Bus Timer 
register. The timer is initialized from the register each time the TC/FPV as­
serts address strobe. 

Writing to this address modifies the "preset" value loaded into the timer count­
er whenever the timer begins running; reading this address returns the current 
(instantaneous) contents of the timer counter. Software cannot directly read 
the preset register, nor directly write the timer counter. 

After power-on, the contents of the VMEbus TC/FPV Master Bus Timer reg­
ister are unspecified. 
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11.18.2 

11.18.3 
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TC/FPV Controls and Jumpers 

The only manually alterable controls on the TC/FPV are two voltage trim pots, 
and jumpers El through E29. The function of the trim pots and jumpers is 
described below. LED indicators on the TC/FPV are described in section 11.2. 

Connectors 

The· TC/FPV contains three connectors, whose positions are shown in 
Figure 11-2. Two connectors are the standard Pl and P2 connectors.defined 
in The VMEbus Specification (Motorola). The third connector is the TC/FPV­
to-midplane connector described in conjunction with the midplane (TC/MP) 
specification. 

Voltage Trim Pots 

+ 5 trim - located between the MC88100 CPU chip and the primary + 5 pow­
er supply, this pot adjusts the + 5 volt supply for the board. The pot 
adjusts the primary + 5 supply directly, and the booster + 5 supply 
tracks the primary + 5. 

-5 trim - located near the-5 power supply, this pot adjusts the-5 volt supply 
Th.is (.~ctu~Hv -5-2 volt~) is ~Jscd in the ECl, circt1its. 

,· ' - ' " - J 

Jumpers 

The TC/FPV contains 2-pin jumper positions and 3-pin jumper positions, as 
shown in Figure 11-56. On 3-pin positions, pin 1 is marked with a square in 
Figure 11-56 and in the individual jumper diagrams below. (It is also so 
marked in the silk screen, but the pin base covers this up on an assembled 
board.) The jumper positions are shown in the same orientation in 
Figure 11-56 as in the individual diagrams. With the board oriented as in 
Figure 11-56, the numbering of jumper pin positions is the same as how you 
read a page - left to right, top to bottom. 
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0 
Figure 11-56 TC/FPV jumper locations. 
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+5 E15 E17 E19 111111111m111111111113 
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E29 

viewed from component side 

0 
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. 

I 
E1 E2 E3 E4 

El Disables the 8 MHz crystal used to generate the clock signal for the 
68HC11 TCS slave. Always installed except for testing. 

E2 Disables the 32 MHz oscillator used to generate the VMEbus system 
clock and to time parts of the VMEbl1s interface. Always installed ex­
cept for testing. 

E3 Comi.ects the VMEbus interface arbiter enable signal to an unused pin 
on the VMEbus connector. Used for testing during manufacture. 
Normally removed. 

E4 

E5,E6 

Connects the 16 MHz VMEbus system clock to the VMEbus connec­
tor. Jumper is installed if the TC/FPV is VMEbus system controller, 
removed if not system controller. 

VMEbus !ACK daisy chain jumpers 

These jumpers are designed to accommodate several VMEbus config­
urations. The signals connected to the ES and E6 jumper pins are 
shown in each configuration diagram below. vme _ iack is the VMEbus 
interrupt acknowledge signal, used in conjunction with the interrupt 
acknowledge daisy chain (vme_iackin and vme_iackout) to acknowl­
edge interrupts. For details, refer to The VMEbus Specification. 

The setting of these jumpers depends on whether the TC/FPV is serv­
ing as VMEbus system controller, whether the TC/FPV is in the last 
slot of the VMEbus, and whether a VMEbus board is plugged into the 
other side of the VMEbus mid plane (in the VMEbus slot opposite the 
TC/FPV). The five legal combinations are described below; other 
combinations are illegal. 

If the TC/FPV is setving as the VMEbus system controller (that is, in­
stalled in slot 1), and there is a VMEbus board plugged into the VME­
bus slot opposite the TC/FPV, then the jumpers should be connected 
as follows. This is the default jumper setting. 

,m,_~okm 

v~:=i::~ii~ Ii :!! !!~!ll 
tc iackout 

vme iackout 

tc iackout 
E5 E6 
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0 
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If the TC/FPV is serving as the VMEbus system controller and there is 
no VMEbus board plugged into the VMEbus slot opposite the 
TC/FPV, then the jumpers should be connected as follows. 

~~~=~~I 
E5 E6 

tc iackout 

vme iackout 

tc iackout 

If the TC/FPV is not.serving as the VMEbus system controller, and it is 
the last slot in the VMEbus, and there is a board plugged into the 
VMEbus slot opposite the TC/FPV, then the jumpers should be con­
nected as follows. . 

tc iackout 

vme iackout 

tc iackout 

If the TC/FPV is not serving as the VMEbus system controller, and it is 
the last slot in the VMEbus, and there is no VMEbus board plugged 
into the VMEbus slot opposite the TC/FPV, then the jumpers should 
be connected as follows. 

tc iackout 

vme iackout 

tc iackout 

If the TC/FPV is not serving as the VMEbus system controller, and it is 
neither the beginning nor the end of the VMEbus, then there must not 
be a board plugged into the VMEbus slot opposite the TC/FPV, and 
the jumpers should be connected as follows. 

~·-'"''m tc -'.acki_n llU~lli 
vme _1ack1n tvM 'h/t 

E5 E6 
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vme iackout 

tc_iackout 
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E7 1: 1: 
disabled enabled (default) 

E7 VMEbus arbiter enable. Jumpering pins 1 and 2 disables the board 
VMEbus arbiter. Jumpering pins 2 and 3 enables the board VMEbus 
arbiter, required when the board acts as VMEbus system controller. 
The default is enabled. 

ES 

ES 1: 1
1 

: 
single chip (normal) bootstrap mode 

TCS slave mode select. Jumpering pins 1and2 puts the 68HC11 in 
normal single chip mode. J umpering pins 2 and 3 puts the 68HC11 in 
special bootstrap mode. For details, refer to Motorola documentation 
(such as MC68HCJIE9 HCMOS Single-Chip Microcontroller Advance 
Information). Normally in single chip mode. 
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1 2 3 

E10 

E11 

E12 

E13 

E14 

~---

vme_bgOout 
vme_bgOin 
vme brO 

tc_bgout 
tc_bgin 
tc br 

vme_bg1out 
vme_bg1in 
vme br1 

vme_bg2out 
vme_bg2in 
vme br2 

tc_bgout 
tc_bgin 
tc br 

vme_bg3out 
vme_bg3in 
vme br3 

11:FPV 

E9 - E14 VMEbus bus grant jumpers 

February 14, 1990 

These jumpers are designed to support a variety of configurations. 
The signals connected to E9 through E14 are shown above. In addition 
to the various midplane positions it can occupy, the TC/FPV can par­
ticipate in VMEbus bus arbitration on any one of the four priority lev­
els. (The VMEbus Specification defines four levels. The TC/FPV 
performs single level arbitration only.) The following examples give the 
jumper settings for participating in priority level 3 arbitration, which is 
the default. Those pins not associated with the level being used are left 
with no jumpers. Therefore, only pin positions E13 and E14 are in­
volved in these examples. The jumper settings for use of other levels is 
analogous to that shown. 

The setting of these jumpers depends on whether the TC/FPV is serv­
ing as VMEbus system controller, whether the TC/FPV is in the last 
slot of the VMEbus, and whether a VMEbus board is plugged into the 
other side of the VMEbus mid plane (in the VMEbus slot opposite the 
TC/FPV). The five legal combinations are described below; other 
combinations are illegal. 

If the TC/FPVis serving as the VMEbus system controller (that is, in­
stalled in slot 1), and there is a VMEbµs board plugged into the VME­
bus slot opposite the TC/FPV, then the jumpers should be connected 
as follows. This is the default jumper setting. 
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tc br 
tc_bgin 

E13 tc_bgout 

E14 vme_bg3out 
vme bg3in 
vme br3 

If the TC/FPV is serving as the VMEbus system controller and there is 
no VMEbus board plugged into the VMEbus slot opposite the 
TC/FPV, then the jumpers should be connected as follows. 

tc. br 
tc_bgin 

E13 tc_bgout 

vme_bg3out 
vme_bg3in 
vme br3 

If the TC/FPV is not serving as VMEbus system controller, and it is the 
last slot in the VMEbus, and there is a VMEbus board plugged into the 
VMEbus slot opposite the TC/FPV, then the jumpers should be con­
nected as follows. 

E13 

E14 

tc br 
tc_bgin 
tc_bgout 
vme_bg3out 
vme_bg3in 
vme br3 

If the TC/FPV is not serving as the VMEbus system controller, and it is 
the last slot in the VMEbus, and there is no VMEbus. board plugged 
into the VMEbus slot opposite the TC/FPV, then the jumpers should 
be connected as follows. 

tc br 
tc_bgin 
tc_bgout 
vme_bg3out 
vme_bg3in 
vme br3 

0 

.o 

If the TC/FPV is not serving as the VMEbus system controller, and it is· Q. 
neither the beginning nor the end of the VMEbus, then there must not 
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be a VMEbus board plugged into the VMEbus slot opposite the 
TC/FPV, and the jumpers should be connected as follows. 

tc br 
tc_:.bgin 

E13 ~bgo~ 

E14 

1 2 3 

E15 Bllflll 
E16- f~t9.!~~~-[j 

vme_bg3out 
vme_bg3in 
vme_br3 

1 2 3 

E19 

E20 

fast RAM circuitry (intended) 

E17 liR~'!JIB]j 
E18 i!e_1\jll!;) 

slow RAM circuitry (backup) 

1 2 3 

E15 - E20 fast/slow RAM circuitry select 

A very new static RAM is used in the TC/FPV to implement the CPU 
fast path circuitry. Tu alleviate the chance of performance or availabil­
ity problems with these parts, an alternate circuit is implemented using 
slower RAMs. The alternate circuit does not permit use of the fast 
path, but does allow the board to function. Jumpers E15 through E20 
select between the slow and fast RAM circuits. Jumpering pins 1and2 
selects the fast RAM circuitry. Jumpering pins 2 and 3 selects the slow 
RAM circuitry. 

E21 

4 megabytes 16 megabytes 
(default) 
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E21 Memory size select. Jumpering pins 1and2 configures the TC/FPV for 
4 megabytes of memory. Jumpering pins 2 and 3 configures the board Q 
for 16 megabytes. The default is 16 megabytes. · 

E23 E25 E27 E23 E25 E27 
E22 E24 E26 E22 E24 E26 

1 

2 

3 

1 

2 

3 

RIFA or ERIPOWER circuitry Power General circuitry 

E22 - E27 Two types of module that convert 48 volts to -5 volts are quali-

E28 

E29 

fied for the TC/FPV, but they require slightly different trim circuits. 
Both trim circuits are included on the board, and jumpers E22 through 
E27 select between them. Jumpering pins 1and2 on all six sets of pins 
configures the board for RIPA or ERIPOWER modules. Jumpering 
pins 2 and 3 on all six sets of pins configures the board for Power Gen­
eral modules. 

No jumper pins are implemented with this designation. 

3 2 1 3 2 1 

l!E!l1~41 
16 megahertz 20 megahertz (intended) 

E29 Clock speed indicator. Indicates the speed at which the board is run­
ning to the 1 MHz clock generator. Jumpering pins 1and2 configures 
the board for 20 megahertz operation. Jumpering pins 2 and 3 confi­
gures the board for 16 megahertz operation. The intended operation is 
20 megahertz. 
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Butterfly II Level Converter Array, October 5, 1988, BBN ACI, 39 pages, docu­
ment number FS14161-00. 

BF2 Switch GateArray: Functional Description, March 22, 1989, BBN ACI, doc­
ument number FS14159-00. 
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A 
Switch Interface Gate Array 

(SIGA) 
Specification 

Introduction 

The SIGA is a gate array device which serves as the bidirectional interface be­
tween a Computational Node and the Switch network of the Butterfly II Paral­
lel Processor. As such, the SIGA provides devices on each Computational 
Node with virtually transparent read and write data access to similar devices 
on physically remote nodes. The SIGA accomplishes this by accepting/pre­
senting data via the standard interface that these devices support - namely 
the T-Bus - and then presenting/accepting this same data to the Butterfly 
Switch interface for transport. 

This document will present both a detailed functional and operational descrip­
tion of the SIGA. It is intended to be used as a design guide for both hardware 
and software system engineers. This specification is necessarily limited in its 
scope and thus will touch upon other Butterfly II-related subjects only when 
it is necessary for completeness. Therefore, it is assumed that the reader of 
this document has a general knowledge of the concepts of the Butterfly II archi­
tecture and operation. The reference documents are as follows: 

Reference documents. 

. 
• T-Bus Specification (Ward Harriman) 

• Switch Gate Array Design Specification (Ward Harriman) 

• Butterfly II Level Converter Array Specification (Mike Sollins) 

• Switch Protocol Specification (Ward Harriman) 
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Terminology 

The following terms will be used throughout this document: 

Refers to an 8-bit quantity. 

A feature of the SIGA design that allows the SIGA to take advantage of 
certain parallel optimizations. 

The node which services a switch transaction. 

When the Requestor negates Frame during a locked sequence, causing 
the Server to issue a FREE-LOCK 

A generic term for the various incarnations of a response to a function 
request from some downstream T~Bus slave to an upstream T-Bus 
slave. This includes the transformations that the response undergoes 
as it travels from the downstream T-Bus, downstream SIGA, Switch, 
upstream SIGA, and finally the upstream T-Bus (see Function Re­
quest). 

A generic term for the various incarnations of a request from some up­
stream T-Bus master to a downstream T-Bus slave. This includes the 
transformations that the request undergoes as it travels through the 
upstream T-Bus, upstream SIGA, Switch, downstream SIGA, and fi­
nally the downstream T-Bus (see Function Response). 

The same as a Locked message except that the Switch path is released 
by letting Frame= 0 for at least two Switch Intervals after the operation 
has been acknowledged. 

Refers to a 16-bit quantity (see Word). 

Initial Locked message Occurs under the same circumstances as the Unlocked message except 
that the Switch path is held open once the operation has been acknowl­
edged without errors. 

Local Errors 

Logical Route Address 

Locked message 

Message 

388 

Errors which originate in the Requestor. 

A 9-bit Switch node address generated from either the Interleaver or 
the T-Bus. This address is then transformed, possibly by randomizing 
some of the bits, into the Physical Route Address. 

A message which occurs when the Switch path was already locked and 
causes it continue to be locked after the operation has been acknowl­
edged. 

With the exception of Reject, a Message is the assertion of Frame 
(downstream message) or Reverse (upstream message) possibly with 
associated data on the data lines. 
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Message Acknowledgment Also known a:s M_ACK. This refers to the assertion ofReverse for at 
least two Switch Intervals during a function response. It indicates that 
the downstream Server has Acknowledged the receipt of a Function 
Request. 

Message Header 

Message Body 

Multi-Word Transfer 

Operational State 

Physical Route Address 

Quick-Drop 

Quiescent State 

Remote Errors 

Reject 

Sequence 

Split-Cycle 

Switch Interval 

Switch Modulus 

Transaction 

Unlocked Message 

Upstream Node 

February 14, 1990 

The part of a downstream Switch message that carries routing infor­
mation. That part is stripped off by the Switch and thus never reaches 
the downstream Server. The message header for an upstream Switch 
message is null. 

The part of the downstream Switch message that carries the command, 
address, data, and checksum bytes. 

Refers to a read or write function request that involves more than one 
word (32 bit) of data. · · 

A SIGA initialization state which a:llows full operation of the SIGA. 

The transformation of the Logical Route Address after some of its bits 
have been randomized. The Physical Route Address is placed into the 
downstream Message Header. · 

This is an optimization in the Requestor where the R _FRAME signal 
is negated as soon as possible after an R _REVERSE is received. 

A SIGA initialization state which allows partial operation of the SIGA. 

Errors which originate-in the Server. 

An assertion of Reverse for one Switch Interval. Indicates that a mes­
sage was rejected at either a Server or an SGA. 

• 
A function request followed by a function response. 

AT-Bus Read transaction where the Master releases the bus while the 
Slave is completing the transaction. 

The 25 ns period in which Switch data is propagated. 

The number of ports that a basic switching element can handle. That 
number is currently eight. 

Another word for a Sequence. 

Occurs when the Switch path had previously been "torn-down". This 
occurs whenever Frame was "O" for at least two Switch Intervals. Once 
the operation has been acknowledged, the path is torn-down again. 

The node which initiates a switch transaction. 

BBN ACI Proprietary 389 



A: SIGA Specification 

Valid Message 

Word 

A.3 

A.3.1 

Figure A-2 

A.3.2 

390 

Butterfly JI Hardware Architecture 

A downstream message which carries a read or write request and does 
not violate switch protocol. 

Refers to a 32-bit quantity (see Halfword). 

Document Standards 

The following describes some of the standard syntax and expressions used in 
this document. 

Register Definition Syntax 

A typical register definition is shown in Figure A-2. Referring to Figure A-2, 
the"-" in any bit indicates that this bit is a "don't care" on a write and indeter­
minate on a read. If"-" totally fills a field of eight bits, that field should NEV­
ER be written to but of course, can be read from. The entire register may be 
referred to in any one of the following ways: 

(1) Protocol_Timer_Config< 15 .. 0> 
(2) Protocol_Timer_Config 
(3) PTC<15 .. 0> 
(4) PTC 

0 

The subfields, shown in Figure A-2 within "O", can be referred to in various - Q 
ways. For instance, tbe "Cnt" subfield could be referred to as: 

(1) Protocol_Timer_Config< 15 .. 12> 
(2) Protocol_ Timer_ Config.Cnt < 3 .. 0 > 
(3) Protocol_ Timer_ Config.Cnt 
(4) PTC.Cnt 

Register syntax definition. 

Register: Protocol_Timer_Config<l5 .. 0> 

15 0 

I I 
3 .. 0 3 .. 0 7 ...... 0 
cccc pp pp --NNNNNN 
[Cnt] [Pre] [Con] 

Logical Operators 

Figure A-3 shows the standard operators used in this document. 0 
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Example - logical operators. 

OPERATOR FUNCTION 
======== =========== 
& logical 11 and 11 

# logical 11 or 11 

$ logical "exor" 
logical "not 11 

!$ logical 11 exnor 11 

I concatenate 

·Timing Diagram Symbols 

Timing diagrams use ASCII characters to represent signal states. Figure A-4 
illustrates SOJIIe of those symbols and their associated meanings. In addition, 
if no clock signal is present in a timing diagram, it is assumed that each charac­
ter column represents an active transition of the. appropriate clock. 

Example - signal symbols. 

SYMBOL MEANING 

====== 
H logical "l" 

logical "0" 
continue previous state 

????? state unknown and unimportant 

Functional Overview 

The following describes the basic functionality of the SIGA at a conceptual 
level. 

Functional Unit Description 

The SIGA is composed of four basic elements, the Requestor, Server, Control 
Net Interface and the Config/Status Unit. Although these are physically colo­
cated and share some common logic and control, they are functionally inde­
pendent units and will be described separately. 

BBN ACI Proprietary 391 



A: SIGA Specification Butterfly II Hardware Architecture 

A.4.1.1 Requester 

A.4.1.2 

A.4.1.3 

A.4.1.4 

392 

The Requestor is a T-Bus slave device which transparently couples physically 0 
remote T-Bus slave devices to the local T-Bus by interacting with both the 
Switch and the downstream Server. The Requestor appears to the current T-
Bus ·master as a segment of memory which is out of the range of physical 
memory at the local node. Signals on the T-Bus alert the Requestor that the 
current access is for a remote location and the Requestor then initiates the 
switch transaction to comply with the master's read or write request. 

Since the transaction is not completed immediately (indicated by the Reques­
tor with a PROMISE response), the requesting T-Bus master follows the T­
Bus protocol and releases the bus so that other devices may use it. The 
Requestor eventually regains control of the T-Bus, alerts the requesting 1I1aster 
that the read or write operation has been completed, and returns data or an 
error indication. If the current sequence is locked, as requested by the T-Bus 
master, and no errors are encountered, the Requestor holds open the Switch 
path for the next transactioo rather than rearbitrating for a new Switch path. 
Any errors that may have occurred during this operation are signaled to the 
T-Bus Master through the ERROR response. 

Server 

The Server acts as a master on the local T-Bus of the downstream node and 
services requests from the upstream node's Requestor. When a new valid mes­
sage enters the Server frogi the Switch, the Server obtains the local T-Bus; 
locks the T-Bus slave, if desired; performs the read or write operation; and 
then returns the data and/or error byte to the Upstream Node's Requestor. 
The Server can also initiate other special operations independently of receiving 
a new Switch message. This operation, known as drop-locks, is described else­
where in this document. 

TCS Control Unit 

The basic purpose of the TCS Control Unit (TCU) is to give the serial interface 
of the TCS Control Slave Processor access to the T-Bus interface - in essence, 
to act as a protocol converter. A secondary function is to allow the TCS Slave 
Processor DIRECT access to some of the internal functions of the SIGA, rath' 
er than forcing itto access via the T-Bus interface. This is useful for fault toler­
ance and "out-of-band" functions such as bootstrapping. 

Configuration/Status Unit 

The Config/Status Unit (CSU), acting as a T-Bus slave, allows read/write ac­
cess to all programmable parameters of the Requestor, Server and TCS Con-
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trol Unit. The CSU also provides convenient access to the internal state of 
certain nodes for testability. 

System Operation 

From a high-level view, the SIGA is one link in the chain of devices that allows 
a T-Bus device to fulfill a function request with a function response. The role 
of the SIGA in fulfilling both function requests and responses is now de­
scribed. 

Function Requests 

A local T-Bus master in the upstream node, usually the CPU, initiates the se­
quence by placing an address on the T-Bus, which is detected by the SIGA 
Requestor as a remote access request. During the T-Bus request phase, the 
SIGA stores the address, produces and stores the bid, and command bytes. 
It then initiates the downstream message at the Switch interface by asserting 
Frame and placing the bid symbols on the Switch data lines. Normally, this 
message transmission is initiated by the SIGA immediately upon receiving the 
address from the T-Bus, but it can be programmed to start later. On a write, 
the SIGA loads its data registers during the response phase of the T-Bus cycle. 
All operations are split-cycle and thus the Server will release the bus while it 
processes the transaction request. 

If there is no Switch contention, the assembled message continues to be trans­
mitted and is ultimately appended with a checksum derived from the message 
data bytes. If there is Switch contention, a Reject is generated by the Switch 
and eventually makes its way upstream to the Requester via the Reverse line. 
When this happens, the Requestor negates Frame, waits for a predetermined 
amount of time and then -retries the message by asserting Frame and sending · 
the message components stored from the first attempt. 

Sometime after the beginning of the message reaches the Server at the down­
stream node (i.e., it is not Rejected by the Switch), that Server begins arbitra­
tion for its local bus to complete the transaction. If the device on the 
downstream node is locked to a remote bus master other than the Server, the 
Server issues a Reject which propagates upstream and is eventually detected 
at the upstream Requester. This Reject is treated exactly the same by the Re­
quester as a Reject from the Switch. Note that this is the ONLY instance in 
which the Server will issue a Switch Reject - an Initial Message. 

Assuming that the Requester receives neither a Switch Reject nor a Server Re­
ject, it deasserts Frame for one switch interval while it sends the checksum 
byte. Within the checksum byte, the "forward" bit is reset. This event would 
normally cause the forward drivers of the SGA'.s to tum off after they send the 
checksum byte. However, the current implementation of the SGA ignores this 
bit and turns on its forward drivers in response to the Frame profile. The Re-
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questor then awaits a response from the Server. Note that the forward bit is Q 
not used by the current SGA's. 

In the meanwhile, the downstream Server begins processing the request by ar­
bitrating for the local T-Bus. Assuming that the target downstream bus slave 
was not locked to a downstream master other than the Server, the Server ob­
tains the local bus and possibly opens the local memory lock. The Server will 
open the lock only if this action was requested in the downstream message. 
This would occur if the master on the upstream node's local bus requested an 
OPEN lock when it initiated a transaction through it's associated Requestor. 

Once the downstream Server obtains the local bus, it makes a function request 
to perform the appropriate read or write operation. The only exception to this 
is when the Server detects a checksum error in the downstream. message. If 
this occurs, instead of making a request, the Server releases control of the T­
Bus, creating a "dead" bus cycle and thereby aborting the transaction. This 
action on an aborted transaction should eliminate any unwanted side effects 
if the switch message is corrupted. 

Function Responses 

Assuming that a read transaction was requested, the downstream Server com­
pletes the read as a normal local T-Bus master. As soon as the read data is 
obtained by the Server, a message is returned to the upstream Requester. This 

·happens (over the same data wires which the downstream message was sent) 
by asserting Reverse and applying data to the Switch data lines. The upstream 
message contains the read data, and possible error data; a checksum; and a 
message acknowledgment, or M _ACK which is implicit in the assertion of Re­
verse for at least two Switch intervals. If a write transaction was re.quested, 
the Server writes the data to the address specified in the downstream message 
and.sends back an M_ACK with an error byte data and checksum after the 
data has been accepted by the slave on the local T-Bus. In short, a read returns 
data/errors and an acknowledgment whereas a write only returns possible er­
rors and an acknowledgment. 

In the case of a read transaction, the upstream Requestor detects the M _ACK 
and alerts the local split-cycle master which initiated the request that the re­
quested data ha.s been returned. That master then completes the operation 
by retrieving the data. In the case of a write transaction, the Requester also 
alerts the initiating local bus master that the write was completed but returns 
only error information. 

In the absence of errors, the Requestor will continue to hold the Switch path 
open by asserting Frame only if the sequence was initiated with an OPEN. 
If that master decides to release the lock, the Requestor will tear-down the 
switch connection by negating Frame and will enter its unlocked idle state. 

0 

This is the state that it was in at the beginning of this discussion of function Q 
requests. If the upstream bus master does not release the lock, it may initiate 
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another read or write transaction. This and subsequent transactions are re­
ferred to as locked transactions. Outside of errors, locked transactions end 
only when the upstream T-Bus master which OPENed, MAINTAINed or BY­
PASSed the SIGA Requestor lock decides to release that lock with a FREE­
LOCKS command. 

Subsequent message transactions in a locked sequence differ from the initial 
transactions described above in three major ways. First, locked messages do 
not contain any bids because the path has already been established. Second, 
the Switch will never issue a Reject because the path has already been estab­
lished and is being reserved for the Requestor. And third, the downstream 
Server will never issue a Reject because it will already have exclusive use of the 
local memory lock. Aside from these exceptions, subsequent locked transac­
tions -occur in exactly the same manner as unlocked transactions. As men­
tioned previously, the upstreamT-Bus master owning the SIGA Requestor 
MUST release that lock explicitly with a FREE-LOCKS. 

Basic Message Formats 

Message formats differ mainly with the type of function request; read or write. 
Within a read or write message, the downstream and upstream messages cor­
responding to a function request and response also differ. 

Read Messages 

Read message formats differ mainly depending on whether or not they are 
downstream or upstream messages. 

Downstream 

Downstream Read messages are differentiated partly because of their data 
format and partly because of the state of Frame at the beginning and end of 
the message. The formats for three possible SIGA Requestor read operations 
are considered: 

1. An Unlocked Read occurs when the Switch path had previously been 
"tom-down"_ This occurs whenever Frame was "O" for at least two 
Switch Intervals. Once the operation has been acknowledged, the path is 
tom-down again. 

2. An Initial Locked Read occurs under the same circumstances as the Un­
locked Read except that the Switch path is held open once the operation 
has been acknowledged. 

3. A Locked Read is a read which occurs when the Switch path was already 
locked and it continues to be locked after the operation has been ac­
knowledged. 
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In all cases, the Requestor waits for a Message Acknowledgment (M_ACK) 
from the downstream Server before completing the message. Figure A-5 illus­
trates the three read message types for a two column switch. In this figure, 
the "d" field indicates the direction of the LCON drivers·which interface data 
with the LCON. When d = "P" (Output), the Requestor is sourcing data to 
the Requestor/LCON interface. When d = "I" (Input), the LCON drivers are 
sourcing data to the Requestor/LCON interface. The "f" field is the state of 
the Frame bit. Data is MSB at the left of the field. 

Read switch message format - downstream. 

Unlocked Initial Locked 
Read· Locked Read .Read 
============ ============ ============ 
d f data d f data d f data 
- - -------- -------- - - --------
p El xxxxxxxx p 0 xxxxxxxx p 1 xxxxxxxx 
p 0 xxxxxxxx p 0 xxxxxxxx p 0 xxxxxxxx 
p 1 -bidl--- p 1 -bidl--- p 1 -cmd----
p 1 -bid2--- p 1 -bid2--- p 1 -addrl--
p 1 -cmd---- p 1 -cmd---- p 1 -addr2--
p 1 -addrl-- p 1 -addrl-- p 1 -addr3--
p 1 -addr2-- p 1 -addr2-- p 0 -check--
p 1 -addr3-- p 1 -addr3-- I 1 00000000 
p 0 -check-- p 0 -check-- I 1 00000000 
I 1 xxxxxxxx I 1 xxxxxxxx " 
I 1 xxxxxxxx I 1 xxxxxxxx M_ACK 

" " and read data 
M_ACK MACK " 

and read data and read data I 1 xxxxxxxx 

" " p 1 xxxxxxxx 
I 0 xxxxxxxx I 1 xxxxxxxx 
p 0 xxxxxxxx p 1 xxxxxxxx 

Upstream 

When a downstream read message has been received and processed by a Serv­
er, an upstream message is returned to the initiating Requestor based on the 
operation requested. Under normal conditions, the Upstream Message is 
composed of two parts: the returned data (with checksum) and the M_ACK 
(Message Acknowledge). The returned data is the contents of the remote 
memory location read, which can be 1, 2 or 4 words in length. With the excep­
tion of rare error conditions, the actual message data field is almost always 
a multiple of four. 

Figure A-6 illustrates the upstream message. The "r" field is the Reverse sig­
nal. Data is MSB at left of the field. 
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Read switch message format - upstream. 

1-word, 4-byte Read 
========== 
r data 
- --------
0 xxxxxxxx 
1 -data a-
1 -data b-
1 -data c-
1 -data d-
1 -check--
0 xxxxxxxx 

Write Messages 

Write message formats differ mainly depending on whether or not they are 
downstream or upstream messages. 

Downstream 

Downstream Write messages are differentiated partly because of their data 
format and partly because of the state of Frame at the beginning and end of 
the message. The formats for three possible SIGA Requestor write operations 
are considered: In all cases, the Requestor waits for a Message Acknowledg­
ment (M_ACK) from the downstream Server before completing the message. 
Figure A-7 illustrates the three write message types for a two column switch. 
In the figure, The "d" field is the direction of the LCON drivers which interface 
data with the SGA. When d = I, the Requestor is sourcing data to the Reques­
tor/LCON interface. When d = P, the LCON drivers are sourcing data to the 
Requestor/LCON interface. The "f" field is the state of the Frame bit. Data 
is MSB at left of the field. 

1. An Unlocked Write occurs when the Switch path had previously been 
"tom-down" by the fact that Frame was "O" for at least two Switch Inter­
vals. Once the operation has been acknowledged, the path is tom-down 
again. 

2. An Initial Locked Write occurs under the same circumstances as the Un­
locked Write except that the Switch path is held open once the operation 
has been acknowledged. 

3. A Locked Write is a write which occurs when the Switch path was already 
locked and it continues to be locked after the operation has been ac-
knowledged. · 
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Figure A-7 Write switch message format - downstream. 

Unlocked Initial Locked 
Write Locked.Write Write 
============ ============ ============ 
d f data d f data d f data 
- - -------- - - -------- - - --------
I 0 xxxxxxxx I 0 xxxxxxxx p 1 xxxxxxxx 
I 0 xxxxxxxx I 0 xxxxxxxx p 0 xxxxxxxx 
p 1 -bidl--- p 1 -bidl--- p 1 -cmd----
p 1 -bid2--- p 1 -bid2--- p 1 -addrl--
p 1 -cmd---- p 1 -cmd---- p 1 -addr2--
p 1 -addrl-- p 1 -addrl-- p 1 -addr3--
p 1 -addr2-- p 1 -addr2-- p 1 -data a-
p 1 -addr3-- p 1 -addr3-- p 1 -data b-
p 1 -data a-- p 1 -data a- p 1 -data c-
p 1 -data b- p 1 -data b- p 1 -data d-
p 1 -data c- p 1 -data c- p 0 -check--
p 1 -data d- p 1 -data d- I 1 xxxxxxxx 
p 0 -check-- p 0 -check-- I 1 xxxxxxxx 
I 1 xxxxxxxx I 1 xxxxxxxx " 
I 1 xxxxxxxx I 1 xxxxxxxx M ACK 

" " " 
M_ACK M_ACK I 1 xxxxxxxx 

" " p 1 xxxxxxxx 
I 0 xxxxxxxx I 1 xxxxxxxx 
p 0 xxxxxxxx p 1 xxxxxxxx 

A.4.3.2.2 Upstream 

398 

When a downstream write message has been received and processed by a Serv­
er, an upstream message is returned to the initiating Requestor based on the 
operation requested. Under some conditions, the Server will not act on the 
downstream message and will instead send a Reject back to the Requestor. 
Under normal conditions however, upstream messages contain an M_ACK, 
an error byte (normally all O's) and a checksum. 

The following illustrates the only possible return message for a write. The "r" 
field is the Reverse signal. Data is MSB at left of field. 
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Write switch message format - upstream .. 

Any Write 
========== 
r data 

0 xxxxxxxx 
1 -error--
1 -check--
0 xxxxxxxx 
0 xxxxxxxx 

Detailed Functional Description 

The Requestor, Server, TCU and Configuration/Status Unit are now de­
scribed in detail. 

Requestor 

The Requestor is described from the point of view of its overall operation and 
its two major interfaces: the T-Bus interface and the Switch Interface. 

Operation 

The operation of the Requestor is described by discussing its major functions. 

Overview 

The Requestor is a local T-Bus slave which creates a logical coupling to a phys­
ically remote T-Bus slave via the Switch. The Requestor acts as the "initiator" 
of this coupling on the Switch and thus can be thought of as a "slave" on the 
T-Bus but a "master" to the Switch. Referring to Figure A-9, the Requestor 
contains three major functional units: Bus Interface Unit (BIU), Switch Tx 
Unit (STU), and the Switch Rx Unit (SRU). The BIU is clocked by the T-Bus 
clock and both the STU and SRU are clocked by the Requestor Switch clock 
(R _ CLK). Interfacing of control signals between these units is accomplished 
with handshake synchronizers, as shown. The BIU handles all of the T-Bus 
transactions of the Requestor. The STU translates function requests that it 
receives from the BIU into Switch transactions. The SRU receives reply mes­
sages from the Switch and passes their status, in the form of a status code, back 
to the STU and their data back to the BIU. The STU serves as the single inter­
face for control information between the T-Bus side and Switch side of the 
.Requestor and therefore control information in either direction must pass 
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through the STU. This is done to reduce the number of control interfaces that 
the BIU must deal with. · 

Figure A-9 Requestor block diagram. 

400 
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The BIU/STU interface is a streamlined request/response type interface where 
for each BIU request there is an STU response. The BIU presents an encoded 
function request to the STU and sets an "execute" flag. When the STU is done 
operating on that request, it sets a "done" flag and returns a status code and 
data to the BIU. Both the BIU and STU are responsible for handling their 
own functions independently and they have very little real-time knowledge of 
each other's state. This approach simplifies the Requestor design and carries 
the request/response philosophy throughout the system. 

The BIU has four major responsibilities: (1) screen T-Bus requests for correct­
ness; (2) transfer screened T-Bus requests to the STU if a Switch transaction 
is indicated by that T-Bus request; (3) receive replies from the STU; and (4) 
pass replies, including any errors, as responses to the T-Bus. The BIU acts 
as a T-Bus slave which is always in split-cycle mode. In other words, it NEV­
ER responds immediately to a function request from a T-Bus master except 
when a request error is detected. Outside of those exceptions, the BIU always 
responds with a PROMISE to T-Bus requests. 

The BIU screens T-Bus requests for both T-Bus protocol violations and illegal 
function requests. Without exception, these conditions will prevent the BIU 
from ever activating the STU to complete an initial function request. The BIU 
can also initia~e certain function requests to the STU independently of T-Bus 
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requests. An example of this is the drop-lock function which may under cer­
tain conditions be initiated by the BIU rather than the T-Bus. 

The STU acts on a function request from the BIU and initiates the Switch 
transaction to carry out that request. The STU also is responsible for assem­
bling and transmitting the data in an outgoing message. It also handles things 
such as the message start/retry and priority promotion algorithms and deals 
with various protocol timeout violations. 

The SRU is fairly simple in function. It detects the return message of a func­
tion request initiated by the STU, verifies the checksum and alerts the STU 
of the incoming message and the checksum status. The SRU also detects 
Switch Rejects. 

RTC and related functions 

The Real Time Clock, besides being useful as a system timekeeper, is central 
to the operation of much of the Requestor. It is used to directly control the 
functions of the Time_ Of_ Next_ Interrupt and the Priority_ Time_ Slot mecha­
nisms. These mechanisms are described in this section. The RTC is also used, 
in a less direct manner, to control the Protocol Timers. Protocol timers are 
discussed elsewhere in this document. 

Real Time Clock and Prescaler 

The RTC is basically a large (32 bits) counter which is updated every one mi­
crosecond from a divided-down version of the Switch clock. Since the frequen­
cy of the Switch may vary in different applications, the Real Time Clock uses 
a programmable prescaler to divide the Switch frequency down to a one micro­
second time base. A functional diagram of the Real Time Clock is shown in 
Figure A-10. 
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Figure A-10 Functional diagram - Real Time Clock. 

402 

1----------Real Time Clock------------1 l-Prescaler-1 

1-----RTC.Hi-----I l-----RTC.Lo-----1 l-'---RTP----1 

+----------------+ +----------------+ +-+ +-----+ 
I 16 16 l<-D-olll<-hl 5 
+-------------i--+ +-------------c--+ +c+ +---c-+ 

+--------------------+-----D---+--------+ 
I 
I 
I 

+-----+ 
ldelayl<--M_SIXTY_FIVE 
+-----+ 

.. . where, 

h increment pulse (period = 0. 5 us) 
0 increment pulse (period = 1.0 us)' 
s increment pulse (period = 65536 us) 
c clear input 
i increment input 
D = one D Flip-Flop for pipelining 

Figure A-10 shows that prescaler is actually composed of two parts. The first 
part is a count-up prescale counter that has a programmable terminal count 
value. This 5-bit terminal value is supplied by the Real_ Time_ Prescale sub­
field of the ConfigA register (REQ_ ConfigA.Real_ Time_ Prescale ). The 5-bit 
counter drives the second part of the prescaler: a divide-by-two. The divide­
by-two then generates the 1-microsecond time base used by the Real Time 
Clock. Figure A-10 also shows the presence of the M _SIXTY_ FIVE signal. 
This signal is a system-wide pulse which occurs every 65 milliseconds and lasts 
for one Switch Interval. It is \lSed to keep all the Real Time Clocks on all nodes 
in synchronization. 

The M _SIXTY_ FIVE resets the entire prescaler and the lower half of the Real 
Time Clock. In addition, it increments the upper half of the Real Time Clock. 
Figure A-10 also shows a "pipeline" delay for the M _SIXTY_ FIVE signal. 
The Configuration bits, REQ_ ConfigA.Sixty _Five_ Delay< 1..0 >, allow the 
adjustment of this delay. The adjustment values and their effects are shown 
in Figure A-11. 
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Sixty_Five_Delay settings. 

DD Delay 

00 none 
01 1 Switch interval 
10 2 Switch intervals 
11 3 Switch intervals 

.. . where, 

D .. D = ConfigB.Sixty_Five_Delay<l .. 0> 

The setting DD = 00 is for test purposes only and must NOT be used in nor­
mal operation. 

In actual operation, the prescaler RTP < 4 .. 0 > counts up at the Switch fre­
quency until it reaches the count stored in REQ_ ConfigA.Rea:l_ Time_ Pres­
cale, where it generates an increment pulse lasting one Switch Interval. In the 
next Switch clock interval, the prescaler rolls over to zero. Thus, the Con­
figB.Real_ Time _Prescale must always be programmed to make RTP <5 > 
have a period of 0.5 microseconds. 

Because of hardware speed considerations, the OMSP generated by the RTP is 
actually pipelined by one Switch Interval. Therefore, the RTP appears to be 
running "ahead" of the RTC by one Switch interval. This fact only becomes 
significant for the Slotted Start/Retry criterion. See that section for further 
details. 

The Real Time Clock is basically, as mentioned previously, a large counter. 
The register definition of the Real Time Clock is shown in Figure A-12. 
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Register definition - Real Time Clock. - -
Register: Real_Time_Clock<31 .. 0> 

31 
I 

0 

I 
15 ............. 0 15 ............. 0 
HHHHHHHHHHHHHHHH LLLLLLLLLLLLLLLL (read) 
HHHHHHHHHHHHHHHH ---------------- (write) 
[Hi] [Lo] 

.. . where, 

H .. H = high-order value (in 65, 536 us) 
L .. L = low-order value (in 1 us) 

Referring to Figure A-12, both the upper and lower halves of the Real Time 
Clock (RTC.Hi) can be read from during actual operation. However, the lower 
half should not normally be written to because of unwanted side effects. 

0 

Writing to RTC.Lo will cause the write data to override the count function but 
NOT override the clear function of that register. This means that the signal 
M_SIXTY_FIVE will clear the counter on its next occurrence. Therefore, of.· 
there is not much meaning to initializing RTC.Lo. 

Any reads of the RTC must be taken as needed. This means that if the entire 32 
bits must be read, it should be done in a single word mode operation. Perform­
ing this same function with two serial halfword operations will yield incorrect 
results. In addition, any reads of the Real Time Clock have an uncertainty of 
approximately one microsecond. For writes, ONLY the halfword mode is ac­
ceptable for loading a value into the RTC.Hi register. This operation should 
only be attempted after reading the RTC.Lo register and determining that it 
will not overflow when the write is being performed. 

When performing reads of the Real Time Clock, the Configuration/Status Unit 
must take some special action to ensure that the read data is valid (stable). 
This is required because the Switch and T-Bus clocks are not always ensured 
to be synchronous and thus the Real Time Clock may be advancing as it is be­
ing read. The CSU accomplishes this goal in the following manner: 

When a read request for the Real Time Clock is detected by the CSU, the 
CSU immediately asserts the external SIGA pin: T_NSPAUSE_SIGA, 0 
and sends a request across a handshake synchronizer to the RTC control-
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!er logic. The RTC controller logic then waits for the next occurrence of 
the one microsecond increment pulse from: Real_ Time_ Prescaler < 5 >. 
When this occurs, the CSU is ensured of having a stable reading from the 
Real Time Clock for at least one microsecond. The RTC controller logic 
then sends an acknowledgment back across the handshake synchronizer 
where the CSU, upon detecting this event, negates T_NSPAUSE_SIGA 
and allows the data to be read. This is what contributes to the one micro­
second uncertainty mentioned above. 

The CSU relies on the fact that the requesting T-Bus master will ensure that 
the total time - from the next occurrence of the 1-microsecond increment 
pulse to the reading of data - will take no more than 1 us. This time includes 
the synchronizer delay from the RTC controller, the response time of the CSU, 
and time for any pauses that the T-Bus master may assert. Excluding the as­
sertion of those pauses (T _NMPAUSE _xxxx) from the T-Bus master, the delay 
in the SIGA will be: 2*p(R.:.CLK) + 6*p(T_ CLK) nanoseconds. The "p" rep­
resents the period of the indicated clock in nanoseconds. Therefore, the T-Bus 
master should use EXTREME caution when causing the assertion of 
T _ NMPAUSE _ xxxx. Beyond that, the CSU cannot_ guarantee the accuracy of 
the read data! 

Time Of Next Interrupt 

The Time Of Next Interrupt or TONI registers, are two 32-bit registers (A and 
B) which in combination with the Real Time Clock, are used to schedule an 
interrupt to occur at some moment in the future. Both registers, and their asso­
ciated control logic, are completely independent from each other although they 
both interact with the Real Time Clock. 

The TONI control logic performs a 32-bit subtraction between the current 
TONI_ A (TONI _B) register values and the value of the entire Real Time Clock 
each time the OMSP is valid. Whenever this subtraction yields a negative 
(two's-complement form) number, the SIGA sets ( = 1) the bit: TONIA_ Con­
fig.Status (TO NIB_ Config.Status ). 

Normally, whenever time the Status bit is asserted, an external pin, M _TO­
NIA _INT (M_TONIB_INT), is also asserted ( = 1). This can be enabled/di­
sabled asynchronously to the OMSP by setting the 
TONIA_Config.Enable (TONIB_Config.Enable) bit to a 110. Disabling will 
force ONLY the pin to a "O''. The associated status bit will still reflect the result 
of the current subtraction. Figure A-13 illustrates the TONI register defini­
tion. Figure A-14 illustrates the TONIA(B) configuration register definition. 
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Register definition - Time_Of_Next_lnterrupt. 

Register: Time_Of_Next_.Interrupt 

31. ............................ 0 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 

.. . where, 

T .. T =interrupt value 

Register definition - TONIA(B)_Config. 

Register: TONIA(B)_Config 

31 ............................. 0 
-------------------------------E (write) 
------------------------------SE (read) 

.. . where, 

E = asynchronously enable external pin 
0 disable M_TONIA(B)_INT external pin 
1 enable M_TONIA(B)_INT external pin 

S status (raw output of the subtraction) 
O TONIA(B) "interrupt" is not active 
1 TONIA(B) "interrupt" is active 

The actual subtraction that is performed to initiate the interrupt is shown in 
Figure A-15. When performing writes to the TONI register, the Configura­
tion/Status Unit must take some special action to ensure that the TONI regis­
ter is not updated in the middle of the difference operation. The CSU 
accomplishes this goal in the following manner: 

When a write request for the TONI register is detected by the CSU, the 
CSU immediately asserts the external SIGA pin: T_NSPAUSE_SIGA 
and sends a request across a fixed-delay handshake synchronizer to the 
TONIA(B) controller logic. The TONIA(B) controller logic then waits 
for the next occurrence of the OMSP before it actually loads the TO­
NIA(B) register. Because of pipelining, the TONIA(B) Subtraction Unit 
is ensured of having exactly one microsecond in which to complete the 
subtraction. The TONIA(B) controller then sends an acknowledgment 
back across the handshake synchronizer where the CSU, upon detecting 
this, negates T_NSPAUSE_SIGA, thus freeing up the T-Bus master. 

0 

0 

This means, of course, thatthe SIGA will assert T_NSPAUSE_SIGAfor Q 
approximately one microsecond. .· 
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Rule - time of next interrupt calculation. 

TONIA(B)_Config<l> = 1 IFF, 

(TONIA(B)<31 .. 0> - RTC<31 .. 0>) < 0 

... where TONIA(B) and RTC are treated as unsigned 
32-bit numbers and the difference is treated 
as a two's-complement number. 

Priority Time Slot 

The Switch protocol provides a mechanism by which initial messages may be 
transmitted at various levels of priority in order to place an upper bound on 
remote access time. Normally, this priority is set by the T-Bus bits, T _PRIOR­
ITY < 1..0 > , during the request phase of the T-Bus transaction. In this case, 
the initial message is transmitted/retransmitted with the priority set during the 
T-Bus transaction which initiated the message. However, the Requestor can 
also force these bits to their EXPRESS value independently of the T-Bus 
transaction via the Priority Time Slot mechanism. 

This mechanism works by assigning each Requestor a particular active time 
slot which is based on the value of the Real Time Clock. When that time slot 
"arrives", any pending Initial Switch message in the Requestor will have its 
priority raised to the EXPRESS level ( = 00). The priority is "sticky" in that 
once raised to EXPRESS, it remains there until the T-Bus initiates a new Ini-. 
tial Switch message. This new Initial message updates the priority with the 
value of T _PRIORITY< LO>, as normal. 

The equation for determining the active Priority Time Slot is shown in 
Figure A-16. 

Rule - priority time slot promotion. 

Priority Time Slot is active IFF the equation, 

(RTC.Lo<15 .. 0> !$ PTC.Slot<15 .. 0>) # PTC.Mask<15 .. 0> 

... is all l's 

This equation takes a slot value (PTC.Slot), compares it on a bit-by-bit basis 
with a portion of the Real Time Clock (RTC.Lo) and then logically "or's" the 
result with the priority slot mask (PTC.Mask). It then detects the result for 
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the presence of all "l's". Essentially, the RTC.Lo and the PTC.Slot are com-
pared for equality on a word basis with some of the bits excluded, or "don't o 
cared", in the comparison. A given bit position is excluded by setting the cor­
responding bit position in the Mask subfield to a "1". The Mask and Slot sub-
fields, which are defined in Figure A-17, are programmable via the 
Configuration/Status Unit. The Priority Time Slot function can be disabled 
so that it NEVER promotes the priority of any message by negating ( = 0) the 
ConfigB.Ena _Priority_ Promotion bit. The fully programmable capability of 
the Priority Time Slot allows the slot to be valid at different nodes in almost 
any order. It also allows the period of occurrence of the slot at a given node 
to be adjusted from constant up to 65 ms. Of course, the minimum time that 
a "slot" can be active at a given Requestor is one microsecond. Note that it 
is possible for the "slot" to arrive while the Requestor is sending out bids. This 
could result in one Bid being sent at lower priority and the remaining bid(s) 
sent at EXPRESS priority. However, logic in the Requestor ensures that no 
updating of priority occurs DURING Bid transmission. In addition, no up-
dating will occur while the Requestor is either "idle" or "waiting". The "wait-
ing" state is where the Requestor STU is waiting for a slotted/random start 
criterion to become valid. 

Register definition - Priority_ Time_ Config. 

Register: Priority_Time_Config<31 .. 0> 

31 0 
I 
' 15 ............. 0 15 ............. 0 

SSSSSSSSSSSSSSSS MMMMMMMMMMMMMMM 
[Slot] [Mask] 

where, 

S .. S slot value 
M .. M = mask value 

Note that the purpose of the Priority Slot Value is NOT to ensure that a single 
high priority message be present in the Switch ·at any given time. Rather, the 
goal is to define the maximum bandwidth of priority messages to make the 
servicing of these messages as predictable as possible. In addition, the Priority 
Time Slot mechanism only applies to Initial Switch Messages (locked or not), 
which are always attempting to make a connection with some downstream 
node. Subsequent messages do not send Bids and thus are not affected by the 
Priority Time Slot mechanism. 
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Function Request Types 

The Requestor handles various types of function requests from a T-Bus mas­
ter. Those functions include read and writes of either bytes, words, or multiple 
words. Byte reads/writes may be of one to four bytes but must NOT wrap 
across word boundaries. 

It is important not to violate word wrapping because the Requestor does NOT 
check for this condition. Word reads/writes MUST be word aligned and multi­
ple read/writes are limited to a maximum of four words. 

T-Bus Request Screening 

T-Bus requests to the BIU of the Requestor are screened for both context er­
rors and T-Bus protocol errors before any action is taken on them. Protocol 
errors include such things as a T-Bus master requesting an illegal ( = 00) 
T _PRIORITY field or illegally wrapping across word boundaries. Currently, 
protocol errors are NOT detected. Context errors, mostly relating to errors 
·in handling locking, are listed in Figure A-18. 

Requestor T-Bus screening errors. 

1. Requestor was asked to access a node within a locked sequence which is 
different than the node which opened that sequence. (Lock Address Er­

. ror) 

2. Requestor was asked to MAINTAIN a remote lock when it was never 
opened. (Maintain Present Error) 

3. Requestor was not asked to MAINTAIN, BYPASS or OPEN a lock that 
was not yet explicitly released with FREE-LOCK. In other words, a 
NORMAL was issued while the Requestor was locked. (Maintain Ab­
sent Error) 

Any of these errors will cause the Requestor to return an ERROR response 
with the appropriate error code on the T-Bus (See: "Error Detection and Re­
porting''). In addition, no Switch message will leave the STU. If the Switch 
path happens to be locked, any of these errors will also cause the BIU to initiate 
a sequence which will tear-down the Switch path (drop-lock) providing certain 
conditions are met. See "Locked Sequences" for more details. 
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The Requester, if unlocked, will treat a BYPASS in the same manner as a Q 
NORMAL Function Request; that is, it will NOT open a lock. ·. 

Initial Message Start/Retry Criterion 

The Requestor can use one of several different methods to decide when to first 
begin transmission of an Initial Message and when to retry that transmission 
if the Switch rejects it. These methods are referred to as: slotted, random and, 
immediate. The start transmission time can be programmed to correspond 
to either one of two fixed time slots, one of two random numbers, or immediate 
transmission. The retry can correspond to either one of two fixed time slots 
or one of two random numbers. Only some combinations of these start and 
retry criterion are available for a given initial message. 

The operation of random and slotted start and retry are described first. The 
process of selecting the various random/slotted start and retry criterion for a 
given message is then explained. 

Random Start/Retry 

There is a random number generator associated with the start/retry criterion. 
The generator is 12 bits long and is continuously updated at the Switch fre­
quency. Ea\:h time :rn initial message start/retry occurs and the random back­
off is selected, a new random number is transferred from the generator to a 
12-bit count-down counter. This counter, known as the backoff counter, also 
runs at the Switch frequency. When the backoff counter reaches -1, the Re­
questor is released to start/retry the initial message transmission. 

Before the backoff counter is actually loaded with the random number, that 
number is logically "anded" with a 12-bit backoff mask. When the Requestor 
first attempts the start/retry of an initial message, the backoff mask is initial­
ized, forcing some number of most significant contiguous bits of the random 
number to zero as they are loaded into the backoff counter. After a certain 
number of Switch rejects for the same initial message, the mask is "shifted left" 
to allow an increase in the maximum allowable value of the next 12-bit random 
number loaded into the backoff counter. Thus, the random backoff limit, in 
terms of Switch intervals, is a binary number of length 12, or 4096. Each time 
a Switch reject is encountered, the Requestor makes a decision about whether 
or not to shift the backoff mask. That decision is made by adding a constant 
number to an accumulator after each Switch reject. Each time the accumula­
tor overflows, the mask is shifted. Therefore, the mask may not change for 
several rejects. 

0 

In implementation, a register specifies randomization characteristics for the 

0 random start/retry criterion. This register is duplicated to allow for two sets 
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of characteristics to be stored simultaneously. The mechanism for choosing 
one set or the other is described in a subsequent section. Each register is 8 
bits long and specifies the initial mask setting, the constant value for accumula­
tor addition and whether or not immediate start transmission is requested. 
These registers, and the random specifications which they describe, are sub­
fields of the 'Iransrnit_ Time_ Config Register known as "RandomO" and "Ran­
doml". Figure A-19 illustrates the structure of the random registers. 
Referring to Figure A-19, the immediate field, "I", when "1", forces an initial 
random start to be immediate, ignoring any randomization parameters. For 
initial retries, the "I" field is ignored and the randomization parameters are 
always used. The constant value for accumulator addition is specified by the 
"EE" field. ·This number is a~ded to a 3-bit accumulator, which is then tested 
for overflow. The initial backoff mask is specified by the 5-bit identifier, 
"MMMMM", which is loaded directly into a Johnson Counter. The output 
of the Johnson Counter is decoded to derive a 12-bit backoff mask as shown 
in Figure A-20. Figure A-20 also shows how the counter advances once 
loaded with an initial value. This advancement, of course, is governed by the 
overflow of the 3-bit accumulator. Also note tltat the LSB of the backoff mask 
can never be cleared. 

Register definition - Transmit_ Time_ Config.RandomO, 1. 

Register: Transmit_Time_Config.Random0<7 .. 0>, 
Transmit_Time_Config.Randoml<7 .. 0> 

7 ...... 0 
IMMMMMEE 

where, 

I immediate 
EE accumulator addition constant 
:MMMMM = initial comparison mask 
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Figure A-20 Random start/retry bit mask encoding. 
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increasing 
count 

v 

mask 
identifier<5 .. 0> 

000000 
000001 
000011 
000111 
001111 
011111 
111111 
111110 
111100 
111000 
110000 
100000 

backoff mask<ll .. 0> 

000000000001 
000000000011 
000000000111 
000000001111 
000000011111 
000000111111 
000001111111 
000011111111 
000111111111 
001111111111 
011111111111 
111111111111 

During the INITIAL start/retry, five of the mask identifier bits related to the 
initial message are specified by the "MMMMM" field in the random register. 
The sixth, most significant bit is ALWAYS initialized to "O". So, ifMMMMM 
= "11111", the initial backoff identifier would be: "011111". In this case, the 
maximum possible random backoff is "1111110", or 128 Switch intervals (re­
calling that the backoff counter overflows at -1). Once the maximum identifier 
of "100000" has been reached, the counter "wraps around" and thus the next 
backoff mask will be."000000". The "multiply by two" effect of the left-shifting 
backoff mask is intended to implement an exponentially increasing random 
backoff. An equation summarizing the preceding discussion is shown in 
Figure A-21. 

The initial mask identifier MUST be a value which would result in a lega!J ohn­
son Counter value as shown in Figure A-20. Legal Values would be: "00011" or 
"01111" for example. Illegal values would be: "00100" or "10110", for example. 

Equation - maximum exponential random backoff. 

Maximum backoff (Switch intervals) 

.. . where, 

[M + int (R*E/8)] 
2 

M = initialized value of MMM bits 
R = number of rejects 
E = value of the EE bits 
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Slotted Start/Retry 

Slotted start and retry involves holding off transmission based on the "arrival" 
of a pre-specified time slot. Once a slot has "arrived", a message assigned 
to that slot for starting can start transmission, and a message assigned to that 
slot for retry can retry transmission. The time slots are derived from the com­
parison of the Real Time Clock and a register used to specify the slot character· 
istics. This register is duplicated to allow for two sets of characteristics to be 
stored simultaneously. The mechanism for choosing one set over the other is 
described in a subsequent section. Each register is 8 bits long and specifies 
the comparison mask, the comparison value, and whether or not immediate 
start transmission is requested. These registers, and the slot specifications 
which they describe, are subfields of the Transmit_ Time_ Config Register 
known as "SlotO" and "Slotl". Figure A-22 shows the structure of the slot reg­
isters. 

Register definition - Transmit_ Time_ Config.SlotO, 1. 

Register: Transmit_Time_Config.Slot0<7 .. 0>, 
Transmit_Time_Config.Slot1<7 .. 0> 

7 ....... 0 
IMMDDDDD 

.. . where, 

I = immediate 
MM = mask specification 

00 4.0 us slot period 
01 2.0 us slot period 
10 1.0 us slot period 
11 0. 5 us slot period 

DDDDD = phase specification (restricted, see text) 

Referring to Figure A-22, the slot register contains three subfields: the com­
pare mask field, specified by the two bit number, "MM"; the compare dat11 
field, specified by the five bit number, "DDDDD"; and immediate field, "I". 
The immediate field, when "1'', forces an initial slotted start to be immediate, 
ignoring any slot parameters. For initial retries, the "I" field is ignored and 
the slot parameters are always used. The comparison for an active slot is made 
partially by comparing bits of the "D" subfield with bits of the of the Real Time 
Clock and Real Time Prescaler. The "M" subfield is used to either compare 
some of those bits with zeros or to ignore them in the comparison. This opera­
tion is shown in Figure A-23. 
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Figure A-23 Rule - start/retry valid slot comparison. 
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given, nnnnnnnn = RTC.Lo<l .. 0> I RTP<5 .. 0> 

mm compare with cycle period 
======== ======== ============ 

00 OOODDDDD nnnnnnnn 4 us 
01 XOODDDDD nnnnnnnn 2 us 
10 XXODDDDD nnnnnnnn 1 us 
11 XXXDDDDD nnnnnnnn .5 us 

Referring to Figure A-23, the D field can only take on values that are less than 
or equal to the setting of the Real_ Time_ Prescaler < 4 .. 0 > . 

Values outside this range may cause the message to never be transmitted, and 
are therefore illegal. 

Figure A-23 also demonstrates the two properties of the slots: frequency and 
phase. The D field allows setting a number of phases equal to the setting of 
REQ_ ConfigA.Real_ Time_ Prescale < 4 .. 0 > plus one. The M field allows the 
comparison to occur at varying time intervals. 

Because of hardware!imitations, the concatenated quantity, (RTC.Lo < 1..0 > 
I RTP < 5 .. 0 >),does not act exactly like an eight bit counter. The RTP portion 
is actually running one switch interval "ahead" of the RTC.Lo < 1..0 > portion. 
This means that the RTC actually increments on the OOOOOO-to-000001 transi­
tion of the RTP portion, rather than on the 111111-to-OOOOOO portion. Asam­
ple transition would look like that in Figure A-24. · 

Start/retry slot comparison count sequence. 

RTC. Lo<l .. 0> RTP<5 .. 0> 
============ ======== 

10 11111100 
10 11111101 
10 11111110 
10 11111111 
10 00000000 
11 00000001 
11 00000010 
11 00000011 
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Start/Retry Criterion Selection 

A function request from a master on the T-Bus is transformed into a Switch 
message by the Requestor. Depending on certain parameters of that function 
request, the Requestor categorizes the message into one of four Message 
Classes. Each of these classes will have a different start and retry criterion. 
The correspondence of start/retry criterion based on message classes is shown 
in Figure A-25. 

Start/retry _criterion based on message classes. 

Class Start Retry 
===== ================= ======= 
00 SlotO/Immediate Slota 
01 Slotl/Immediate Slotl 
10 RandomO/Immediate RandomO 
11 Randoml / Immed.i ate Randoml 

' 
A class is selected for each Switch message based on the state of three bits of 
T-Bus function request that initiated the message. Those bits are the T-Bus 
signals T _ LOCKOP < 1 > and T _RR< 1..0 > . The Requestor uses the en­
coded state of those three bits to "look up" the class of the message. The look­
up table itself is a 16-bit register known as the Message_ Classification 
Register. This register is defined in Figure A-26 . 
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Figure A-26 Register definition - Message_ Classification. 
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Register: Message_Classification<l5 .. 0> 

15 0 
I I 
10 10 10 10 10 10 10 10 
cc cc cc cc cc cc cc cc 
[AJ [BJ [CJ [DJ [EJ [FJ [GJ [HJ 

... where given that nnn = T_~OCKOP<l> I T_RR<l .. 0>, 
the subfields selected and the type of function 
request that selects them are, 

nnn 

000 
001 
010 
Oll 
100 
101 
llO 
lll 

Subfield 

MC.H 
MC.G 
MC.F 
MC.E 
MC.D 
MC.C 
MC.B 
MC.A 

Function Request 

Unlocked Writes 
Unlocked Reads 
Auxiliary·Unlocked Writes 
Auxili~ry Unlocked Reads 
Locked Writes 
Locked Reads 
Auxiliary Locked Writes 
Auxiliary Locked Reads 

To illustrate the Message Start/Retry Criterion selection with an example, sup­
pose that a function request to the Requestor may have set, (T_LOCK­
OP< 1> I T_RR<l..0>) = 100. FromFigureA-26,thiswouldcausethe 
Requestor to look in the Message Classification register "D" subfield (for 
Locked Writes). In this subfield, the Requestor would find the "class of mes­
sage" corresponding to the particular function request. If the "D" subfield 
were a "10", that particular message would have use the parameters in Ran­
domO register for both message start and retry. 

Both the Start/Retry Random and Start/Retry Slot registers are actually sub­
fields of the rransmit_ Time_ Config Register. The bit definition for this regis­
ter is illustrated in Figure A-27. 
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Register definition - Transmit_ Time_ Config. 

Register: Transmit_Time_Config<31 .. O> 

31 0 

I I 
7 ...... o 7 ...... 0 7 ...... 0 7 ...... 0 
IMMMMMEE IMMMMMEE IMMDDDDD IMMDDDDD 
[Randoml] [RandomOJ [Slotl] [SlotOJ 

... where, RandomO, Randoml, Sloto and Slotl 
are previously defined 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~ 

Function requests can be forced to completely ignore the Message Classifica­
tion register on a request-by-request basis. This occurs whenever a request is 
made and the T-Bus signal: T_SYNC is asserted ( = 1). In this case, the mes­
sage is automatically classed as "00" and both initial transmission and retry 
criterion is taken from the Transmit_Time_Config.SlotO register. 

Switch Tx Protocol Timers 

The Requestor contains timers which monitor the progress of the transmitted 
message and alert the Requestor if they detect an error condition. Specifically, 
there are two timers, the Reject Timer and Connection Timer. The Reject Tim­
er determines how long the Requestor will attempt to open a Switch path in 
the face of Switch rejects. The Connection Timer monitors how long the Re­
questor will keep a Switch path open once the rejection period is finished. Pa-· 
rameters for both the Reject Timer and the Connection Timer are contained 
in the Protocol_ Timer_ Config Register. 

Reject Timer 

The Reject Timer is enabled at the beginning of the first attempt to transmit 
an initial message. Each time the Requestor receives a reject, it first examines 
the Reject Timer. If the timer has underflowed (the underflow is latched), the 
Requestor halts the transmission attempt and returns the Rej_ TO Error code 
to the T-Bus master. The Requestor also tears-down the Switch path whether 
or not it was locked. Parameters for the Reject Timer are located in the Proto­
col_ Timer_ Config Register. 

The Reject Timer is structured as a 4-bit down-counter clocked by a selectable . 
prescaled time base. The reload value for the counter is contained in Proto­
col_ Timer_ Config.Cnt < 3 .. 0 >. A 4-bit prescale parameter, located in )'roto­
col_ Timer_ Config.Pre < 3 .. 0 >,is used to select the desired prescale time base 
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from one of sixteen possible frequencies. Those frequencies are derived from 
the low-to-high transition of bits of the Real Time Clock, o· 
Real_ Time_ Clock.Lo< 15 .. 0 >, as illustrated in Figure A-28. The Reject Tim-
er is continually loaded with PTC.Cnt < 3 .. 0 > until it begins transmitting Bid 
#1. An equation for the maximum Reject timeout is shown in Figure A-29. 

Reject timer prescale selection. 

PRE Q PRE Q 

0000. 0 1000 8 
0001 1 1001 9 
0010 2 1010 10 
0011 3 1011 11 
0100 4 1100 12 
0101 5 1101 13 
0110 6 1110 14 
0111 7 1111 15 

.. . where, 

PRE Protocol_Timer_Config.Cnt<3 .. 0> 
Q selection from Real_Time_Clock.Lo, bit Q 

Equation - reject timeout. 
1 

given, 

CNT = Protocol_Timer_Config.Cnt<3 .. 0> 
PRE = Protocol_Timer_Config.Pre<3 .. 0> 

... then, 
(PRE + 1) 

Timeout = CNT * 2 microseconds 

(PRE + 1) 
... with an uncertainty of 2 microseconds 

Connection Timer 

The Connection Timer is loaded each time the Requestor sends Bid 1. This 
means that it is reloaded both just before transmitting an initial message and 
after the Requestor receives each Switch reject. Like the Reject timer, its un­
derflow condition is latched. 
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The Connection Timer's timeout has two different effects depending on when 
it occurs. If the timeout occurs while the Requester is waiting for a message 
acknowledgment (M _ACK), the Switch path is torn-down (whether locked or 
not) and a Wait_TO Error is returned to the T-Bus master. If the timeout oc­
curs while a Switch path is locked, but after the M _ACK was received, the Re­
quester will tear-down the Switch path but cannot return an error to the T-Bus 
master immediately. Rather, it waits until the next T-Bus master makes a re­
quest, and then returns an Idle_ TO Error. In the "race condition" case where 
the M_ACK and connection timer underflow occur on the same clock edge, 
a Wait_TO Error is detected. 

The Connection Timer is structured as an 8-bit down-counter clocked at 1 
MHz by a bit from the Real Time Prescaler, Real_ Time_ Prescale < 5 > . The 
counter underflows at -1. The reload value for the counter is contained in, Pro­
tocol_ Timer_ Config.Con < 7 .. 0 >. The equation for the maximum connection 
timeout is shown in Figure A-30. 

Equation - connection timeout. 

given, 

CON= Protocol_Timer_Config.Con<7 .. 0> 

then, 

Timeout = CON + 1 microseconds 

.. . with an uncertainty of 1 microsecond 

Protocol Timer Programming 

As previously mentioned, the parameters for the Protocol Timers are con­
tained in subfields of the Protocol_Timer_Config Register as shown in 
Figure A-31. 
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Register definition - Protocol_Timer_Config. 

Register: Protocol_Timer_Config<15 .. 0> 

15 0 

I I 
3 .. 0 3 .. 0 7 ...... o 
cc cc pp pp NNNNNNNN 
[Cnt] [Pre] [Con] 

... where, Cnt, Pre and Con have 
been previously defined. 

Anticipation Support 

The operation of the Requestor has two main goals: (1) to pass a T-Bus func­
tion request to the Switch as quickly and efficiently as possible, and (2) to re­
turn the corresponding function response from the upstream Switch message 
to the T-Bus master as quickly and efficiently as possible. Certain techniques 
can be used to take advantage of the expected operation of the logic in the func­
tion request and response path. These techniques are known collectively as 
"anticipation". The use of anticipation in achieving the two main goals of the 
Requestor are now discussed. 

Function Requests 

Maximizing downstream function request efficiency in the Requestor involves 
balancing the desire for speed with the desire to maintain a streamlined Switch 
protocol. These tradeoffs become apparent when considering a multi-word 
write sequence. Here, the Requestor could signal its Switch Transmit Unit to 
begin transmitting as soon as possible after receiving the T-Bus request. This 
would always work if the T-Bus were guaranteed to supply all words of a multi­
word transfer at a bandwidth equivalent to the bandwidth of the Switch. How­
ever, this will not always be the case as the variations between the clock 
frequency of the T-Bus and the Switch, combined with the ability of the cur­
rent T-Bus master to assert PAUSE, create the possibility of the STU "running 
out of data" in some circumstances. 

To circumvent this problem, two immediate options are available. First, 
change the Switch protocol to allow the insertion of "null data word" fields 
when data is not available. Second, the Requestor could be programmed to 
signal the STU to start only after a specified number of words have been writ­
ten during the data portion of the T-Bus transfer. The first alternative is unat­
tractive because it increases Switch bandwidth and unnecessarily introduces 
complexity into the Switch message protocol. The second option is therefore 
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implemented in the Requestor. The programmed parameter is known as, 
FQ_ Anticipation, and can be setto any of the thresholds listed in Figure A-32. 

Register definition -
Requestor _ ConfigA.FQ_Anticipation < 2 .. 0 >. 

Register: Requestor_ConfigA.FQ_Anticipation<2 .. 0> 

210 Anticipation 
=== ============ 
000 after first data word transferred 
001 after second data word transferred 
010 after third data.word transferred 
011 after fourth data word transferred 
lXX immediately after T-Bus request 

Since it is possible for the FQ_ Anticipation to be set greater than the last word 
of a particular write, the Requestor will commit to transmission when either 
the last word has been written OR the Requestor FQ_Anticipation threshold 
has been reached - whichever occurs first. For example, if FQ_Anticipation 
were a "011" and a three word write occurred, anticipation would take place 
after the third word were written. In addition, an Interleaved request (I_ IN­
TERLEA VED = 1) will cause a "lXX" setting to signal the STU in the cycle 
AFTER the T-Bus request. The threshold should be set based on the T-Bus 
and Switch clock frequencies, the maximum number of PAUSE assertions ex­
pected during a write, and the handshake synchronizer delay setting. 

Because of current hardware restrictions, FQ_Anticipation MUST be set to 
lXX. Therefore, any T-Bus master MUST be able to supply write data fast 
enough to prevent the Switch message from running out of data. 

Function Responses 

Anticipation during function responses would allow the Requestor to take' ad­
vantage of the synchronizer settling time by beginning the T-Bus request BE­
FORE the message checksum has been verified. Unfortunately, the Requestor 
is limited in the amount of anticipation that it can provide. Whatever anticipa­
tion the Requestor can extract from an upstream message, that anticipation 
has to be constant over all messages. This is because the Requestor STU-to­
BIU handshake synchronizer has to compensate for message anticipation and 
cannot have its setting varied according to the expected upstream message 
type. And of course, even if the anticipator could vary its setting, the return 
message profile is not always known. 
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In fact, the Requestor SRU must assume a minimum expected upstream mes­
sage length before starting anticipation. That minimum message length is two 
bytes. And since the SRU cannot tell if the assertion of Reverse is a Reject 
until the second byte, the minimum anticipation of the Checksum byte is one 
Switch Interval (for a function response to a write request). This then limits 
anticipation of all messages to one byte. By comparison, the Server has a mini­
mum message length of 5 bytes and can thus take greater advantage of antici­
pation techniques. 

As previously mentioned, Switch to T-Bus anticipation usually requires some 
minimum setting on the receiving T.,-Bus synchronizer. However, it turns out 
that no MINIMUM setting of Req_ ConfigA.BIU _Synch< 3 .. 0 > is required 
to compensate for the small amount of Requestor SRU anticipation. This is 
because pipeline overhead already accounts for this anticipation. However, 
a minimum setting IS required to meet the minimum settling time for the syn­
chronizer. For more details on this subject, see: "Special Topics/Synchroniza­
tion". 

Locked Sequences 

Sometimes an upstream T-Bus master wishes to perform several consecutive 
function requests to a locked remote T-Bus slave without the overhead of 
opening the Switch connection before each request. A mechanism known as 

0 

Switch locking allows such multiple accesses by keeping the Switch path open ·'.o·.· \ 
between function requests. All transactions that take place during locking are . 
known as locked sequences. A locked sequence has three distinct events: 
opening, maintaining and closing. Each of these events has different charac­
teristics and restrictions for the Requestor. 

Opening and Maintaining Locks 

Opening a Switch lock begins with an otherwise normal function request from 
a T-Bus master that carries with it a request for "opening a lock" to a remote 
T-Bus slave. The upstream Requestor transfers the OPEN lock request to the 
downstream Server via a bit in the message protocol. Since the Switch path 
has not yet been established, either the Switch or the downstream Server may 
reject the message. A Switch reject will occur because of normal Switch con­
tention and the Server reject will occur if the downstream target was locked. 
The Requestor, not knowing the source of the Switch reject, will simply retry 
the message transmission within the constraints of the Protocol Timers. 

Assuming that the message finally does "get through" to the downstream Serv­
er, that Server "opens a lock" to the target T-Bus slave in accordance to the 
T-Bus protocol. Meanwhile the upstream Requestor, recognizing that it has 
established the beginning of a locked sequence, does not normally tear-down 
the Switch connection upon receiving an M _ACK unless an error was detected. 
This is discussed in detail in the ''Auto Drop" section. Q 
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Once a locked Switch path is established with OPEN lock, it must be explicitly 
instructed to remain open by the upstream T-Bus master. This is accom­
plished by following the OPEN function request with either: another OPEN, 
a MAINTAIN, or BYPASS function request. Essentially, the Requestor takes 
no special action on either of these requests but does demand their presence. 
If the OPEN/MAINTAIN/BYPASS protocol is violated by subsequently initi­
ating a NORMAL function request, the Requestor will respond to the offend­
ing T_Bus master with an ERROR and tear-down the Switch path. This 
mechanism is described in the "T-Bus Request Screening" section. 

Dropping Locks 

The Requestor has a flag, known as the "drop-lock request" flag, which causes 
the Requestor to negate Frame and return to its unlocked Idle state. Although 
the flag does not cause this action until the Requestor BIU is in its Locked Idle 
state, it can be set at any time. Once set, a drop-lock condition is said to be 
active. There are three distinct scenarios under which a drop-lock condition 
may occur: (1) AT-Bus master which is locked to the Requestor may issue 
a FREE-LOCK, (2) The Requestor issues an ERROR response (under certain 
conditions), and (3) a Connection Timer timeout. 

Whatever the cause of the drop-lock condition, the Requestor BIU waits until 
it returns naturally to its Locked Idle state before taking action. Once there, 
the Requestor BIU will then enter the "unlock" state in which it will fulfill the 
drop-lock request flag by commanding the Requestor SW to negate Frame. 
During this state, the Requestor BIU will issue a REFUSED response to ANY 
T-Bus Master that accesses it. Once the Requestor BIU has been signaled 
by the SW that Frame was negated, the BIU returns to its Unlocked Idle state. 
Of course, the drop-lock request flag is then also negated. The downstream 
Server, knowing that it was previously locked, interprets the subsequent loss 
of its incoming Frame to be a FREE-LOCKS. The Server, sensing an unex­
pected loss of Frame, then issues a FREE-LOCKS to the local T-Bus. 

The first drop-lock scenario - a FREE-LOCKS issued by a T-Bus master 
- is the most convi;ntional. The FREE-LOCKS request is the only function 
request that is NOT explicitly transmitted to the downstream Server in the 
form of a message. Instead, the Requestor responds to a FREE-LOCKS by 
negating Frame to the Switch interface. Because the drop-lock condition can 
be entered at any time, a T-Bus master can issue a FREE-LOCKS at any time 
- whether the Requestor is idle or acting on a current split-cycle. However, 
the Requestor must be already locked to the T-Bus master which made the 
request. If not, the BIU will ignore the FREE-LOCK request. 

In the ERROR response scenario, the Requestorwill NEVER enter the drop­
lock condition when the ERROR response is due to a Remote Class Error. 
However, it MAY enter the drop-lock condition when the ERROR response 
is due to an FQ or Switch Class Error. This conditional action is described 
in the ''Auto Drop" section. Error classes are discussed in the "Error Detec-
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tion and Reporting" section. However, if those conditions ARE valid for a 
drop-lock, the Requestor processes the drop-lock in the same manner as the o 
FREE-LOCKS scenario. Unlike the FREE-LOCKS however, drop-lock pro- , 
cessing takes place almost immediately after the event which caused the drop-
lock condition (responding with an ERROR). This is because the Requestor 
BIU always enters its Locked Idle state immediately after issuing an ERROR 
response. 

The Connection Timer timeout scenario is slightly different from the previous 
two. When the Connection Timer times out, it indirectly causes the drop-Jock 
condition by eventually causing an ERROR response (Wait_TO or Idle_TO) 
by the Requester BIU. This normally would be sufficient because the BIU 
would then enter the drop-lock condition, which would then signal the Reques­
tor STU to negate Frame. · However, one of the reasons that the Connection 
Timer may have timed out was because the Requester BIU had lost its T-Bus 
clock (T _ CLK). In this case, Frame would never get negated. Therefore, the 
Requester STU takes the initiative to negate Frame immediately after a Con­
nection Timer timeout. For consistency, the drop-lock mechanism continues 
as normal. When the Requestor STU finally gets the request from the BIU 
to negate Frame, the STU simply ignores that request. 

Auto Drop 

Auto drop is a parameter set by the Req__ ConfigAEna _Auto_ Drop bit. When 
asserted ( = 1) the Requestor will be permitted to enter the drop-lock condition 
whenever an ERROR response is generated because of an FQ or Switch Class 
error. Otherwise, the Requestor will NEVER enter the drop-lock condition 
due to an ERROR response. This is because the only other class of Requestor 
error - Remote Error - will NEVER cause the drop-lock condition. 

Stolen Bit Support 

Because of the structure of the Switch message format, only one bit of Stolen 
information can be transferred between upstream and downstream nodes dur­
ing a given message. The Requester records the state of the Stolen bit during 
the word transferred in a byte write operation. It is this state that is reflected 
in the Switch message. Normally, the Requester expects the Stolen bit to be 
asserted only during a BYTE write operation. In fact, it is illegal to assert the 
Stolen bit to the Requester during a multi-word operation. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~ 

If the Stolen bit IS asserted during a multi-word write, the state of the first 
word written is recorded. 
•1,,.·•,,,, ........ · •• ,,,'•,,.·\ •. "'•1,."\,,''•r.."\,.'1,,.'•1,,_ . ..,,,_ .• ,,,,_ .•• ,,,_-.,,,,_ .• ,,,_··1,,,-''•,,."'••,, .. ,,,,_., .... _-..,,,_ .•••• ,_-..... _.,,,,_ .•• ,,,_······''••, •. ··,,,,_.,1 •. ··.,,,_ .•• ,,,_··1,,_-,,,,_,,,,,_-•• ,,,_-••• , •. ·•0,,,_.,,,_··1,,,_-,, .. _- •• ,,,_.,,,_ .• ,,,,_ .•• , •. _ .• ,,__ 
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Figure A-33 

The Requester provides a mechanism to verify that the Stolen bits of all words 
in a multi-word write are zero, and prevent the message from being trans­
mitted if this is not the case. The Ena_ Stolen_ Verify bit in the Req_ ConfigB 
register, when asserted, will enable this verification of Stolen bits in a multi­
word write. There is however, a small price to pay for this feature: the FQ_ An­
ticipation register must be set to its MAXIMUM value ( = 011). This is 

· because the Requester must load all words of a multi-word write and verify 
the Stolen bits before committing to transmission. The Requester cannot "call 
back" the outgoing message. Figure A-33 summarizes the rules for verifying 
the Stolen bit. If the rules of Figure A-33 are adhered to and a particular mul­
ti-word write has some of the Stolen bits asserted, the Requester will respond 
with an ERROR ("Stolen_ Verify" error code) to the T-Bus master. The Re­
quester, of course, will NOT transmit the message in this case. 

Rules - Stolen bit verification - multi-word write. 

To enable the verification of Stolen bits on a multi-word writes, 

1) Set FQ_Anticipation = 011, AND ... 

2) Assert (=l) the Req_ConfigB.Ena_Stolen_Verify bit 

WARNING 

. A.5.1.1.10 

February 14, 1990 

For single-word reads, the Requester presents to the T-Bus a Stolen bit 
(T _AD < 32 >)which is the same state as the Stolen bit in the upstream Check­
sum byte. For multi-word reads, the Requester always assumes that the words 
of the transfer are NOT Stolen until it encounters an asserted Stolen bit in the 
Checksum byte. When this occurs, only the last word received by the Reques­
ter is assumed to be Stolen. This fact is transmitted to the T-Bus by asserting 
T _AD< 32 > during the transfer of the last word on the T-Bus. 

Due to current hardware restrictions, Ena_Stolen_ Verify must ALWAYS be 
negated ( = 0). Therefore, multi-word writes CANNOT be screened for stolen 
bits by the Requester. This must be handled by the T-Bus Master. 

Quick Drop 

The Requester STU has an option which enables it to negate Frame during 
an Initial Message as soon as the STU detects an asserted Reverse. This can 
be done without the STU actually waiting to see if Reverse is going to be a Re­
ject or an actual message. This action is allowed only when the STU is trans­
mitting an Initial Message (NOT an Initial Locked Message) because in this 
situation, the only possible responses are: Reject or an upstream Switch mes­
sage. In either case, the Requester will negate Frame immediately if the bit: 
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Reqt1estor_ConfigB.Ena_Quick_Drop is asserted ( = 1). Essentially, Quick 
Drop is an optimization which will free up the Switch earlier - although only o 
by one Switch Interval - than if Quick Drop were not enabled. 

Reverse Profile Monitoring 

The Requestor is enabled to monitor the profile of Reverse for errors asserting 
( = 1) the Req_ConfigB.Ena_Rev_Err bit. Once enabled, the Requestor will 
report a Switch Class Error (Reverse_ Error) whenever it observes an incorrect 
state for Reverse during an upstream message. Since there is more than one 
possible Reverse profile for a given Functioq. Request, not every Switch Inter­
val of Reverse can be checked for a given state (0/1) because either state may 
be valid. However, when the Reverse profile is incorrect in ANY place that 
is checked, a Reverse_ Error is reported. 

Figure A-34 illustrates how the Requestor checks the Reverse profile. The 
"x's" represent where either state is valid and is therefore not checked by the 
Requestor. 
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Figure A-34 

NOTE 

A.5.1.1.12 

February 14, 1990 

Requestor Reverse profile monitoring. 

TYPE #WORDS 
===== ========= 

write any 

read non-multiple 

two words 

" 

three words 

" 
" 

four words 
" 
,; 

" 

.. . where, 

x = don't care 
H check for Reverse 
L check for Reverse 

• 

1 
0 

RETURN MSG FORMAT 
================= 

+--- first received 
I 
v 
XXL 

xxHH,HL 

xxHH,HL 
xxHH,HxHH,HL 

xxHH,HL 
xxHH,HxHH,HL 
xxHH,HxHH,HxHH,HL 

xxHH,HL 
xxHH,HxHH,HL 
xxHH,HxHH,HxHH,HL 
xxHH,HxHH,HxHH,HxHH,HL 

• .• ,,,,, .••• ,, ..• ,,,, ''\. ''\ ..• ,,,,, '\ ••• ,, .. -·~ ....... ,,, .• ,,,, ·•••••• ··c,,,_ .•••• , __ .•• ,,,_ '\. ·•••• '\ ..• ,,,,_ .,,,,_ .•• ,,,_ ......... ,,,, '';,, ··•••· .... ,, .... ,,, •••••• ,,,_ .•••• ,, .•• ,,, .••• ,,, ......... ..,,, .••• ,,, ....... ·••••• ·•••••• -... ,,, ................ ,,, ''\. ''\, -.,,,,, '\ ..• ,, 

The Requester will NOT specifically check that Reverse was negated ( = 0) 
when the Function Request was initiated. However, it DOES begin looking for 
a O-to-1 transition of Reverse in order to recognize the beginning of the up­
stream message. Therefore, if Reverse were to be "hung high" when the Re­
quester began its Function Request, the Requester would eventually timeout 
the Connection Timer. 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Error Detection and Reporting 

Errors delivered by the Requester to an initiating T-Bus master can be divided 
into three classes depending on which part of the SIGA detects them. The 
classes are: 1) FQ Errors - which are detected by the BIU from the original 
Function Request: 2) Switch Errors - which are detected by the STU and SRU 
because of Switch interactions and 3) Remote Errors - which are detected 
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by the downstream Server and are "reflected" up to the initiating T-Bus Mas­
ter. 

For a given Function Request/Response sequence, errors from different 
classes·can occur simultaneously. Since only one error can be reported at a 
time, a sense of "priority" exists between error classes. If there is a FQ Error, 
it always be reported, regardless of the presence of Switch or Remote Errors. 
If there is no Local Error, than any Switch Errors will be reported, regardless 
of the presence of Remote Errors. If there is neither a Local nor a Switch Er­
ror, then and only then will any Remote Errors are reported. 

Figure A-35 shows the Error Codes for the Requestor which include the FQ 
and Switch type errors. Note that WI1HIN a given Error Class, the errors are 
again not all mutually exclusive, and are therefore given "within class" priori­
ties. A more detailed description of the three Error Classes follows. 

Requestor error codes. 

Requestor Error Codes: 

7 0 

I I 
PPPPdcba 

d c b a Requestor Error Class 
==================== ========= 

0 0 0 u Maintain Absent (la) FQ 
0 0 0 1 Maintain Present (lb) FQ 
0 0 1 0 Stolen_Verify (2) FQ 
0 0 1 1 Lock_Address ( 3) FQ 
0 1 0 0 Wait _TO ( 4a) • Switch 
0 1 0 1 Idle_TO (4b) Switch 
0 1 1 0 Rej Abort (5) Switch 
0 1 1 1 Rej TO (6) Switch 
1 0 0 0 Reverse (7) Switch 
1 0 0 1 Check ( 8) Switch 

.. . where, 

P .. P = Requestor_ConfigA.Error_Prefix<3 .. 0>. 
Priority is from highest (1) to lowest (8). 
Within a given priority, errors are mutually 
exclusive (i.e., 4a,b ... ). 

FQ Errors 

0 

FQ Errors are detected by the BIU during the original Function Request. 
Their detection, when enabled, will ALWAYS prevent the Function Request 0 
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Figure A-36 

from initiating a Switch access. If the Requestor is unlocked, it will NOT assert 
Frame· after detecting an FQ Error. If the Requestor is locked, it MAY imme­
diately tear-down the lock if certain conditions are met. See ''.Auto Drop" for 
more details. 

FQ Error types and their definitions are illustrated in Figure A-36. 

FQ error definitions. 

Lock Address Violation Requestor was asked to access a node within a locked sequence which 
is different than the node which opened that sequence. (Only detected 
if configured to clo ~o.) 

Maintain Present 

Maintain Absent 

A.5.1.1.12.2 

Figure A-37 

Wait_TO 

Idle_TO 

Rej_Abort 

February 14, 1990 

Requestor was asked to MAINTAIN a remote lock when it was never 
OPENed. (Only detected if configured to do so.) 

Requestor was not asked to MAINTAIN, BYPASS or OPEN a lock 
that was not yet explicitly released with FREE-LOCK. (Only detected 
if configured to do so.) 

Switch Errors 

Switch Errors are caused by a variety of conditions that are detected by the 
logic which monitors the progress of the Switch message as it enters and re­
turns from the Switch interface. Unlike FQ Errors, Switch Errors are detected 
once the Switch transaction is already underway. They are reported to the T­
Bus Master only when the transaction is "finished", either normally or due to 
some timeout. Therefore, Switch Errors can only have a special effect on 
Frame during a locked sequence. In this case, the Requestor MAY immediate­
ly tear-down the lock if certain conditions are met. See ''Auto Drop" for more 
details. 

Switch Error types and their definitions are illustrated in Figure A-37. 

Switch error definitions. 

The Switch Transmit Connection Timer overflowed while the Reques­
tor was waiting for a Function Response. (See: "Connection Timer") 

The Switch Transmit Connection Timer overflowed while the Reques­
tor was in its idle state. (See: "Connection Timer") 

The Switch Transmit Reject Timer was forced into overflow by the 
REJ_ABORT input pin. (See: "Reject Timer") 
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Reverse 

Check 

A.5.1.1.12.3 

A.5.1.1.13 

WARNING 
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The Switch 'ITansmit Reject Timer overflowed while the Requestor was 
attempting to open a connection. (See: "Reject Abort") 

The Requestor detected an incorrect polarity of the Reverse signal dur­
ing a Function Response. (See: "Reverse Profile Monitoring") 

The Requestor detected an incorrect Checksum during a Function Re­
sponse. (See: "Checksum Support") 

Remote Errors 

Remote Errors include: 1) errors which are detected within the Server logic 
itself, and 2) errors generated as T-Bus errors responses by a downstream T­
Bus slave device. Both types of errors are simply passed through "as is" fo 
the upstream Requestor. This Requestor simply "hands" them - without dif­
ferentiation - to the initiating T-Bus Master. Remote Errors, unlike FQ and 
Switch Errors, can NEVER cause the Requestor to "drop" a lock. 

For a summary of the "Server sourced" Remote errors, see: "Server/Opera­
tion/Error Reporting". 

Disabled Operation 

The Requestor can be disabled via a number of bits in the Requestor _ ConfigB 
register. These include: Ena_REQ_BIU, Ena_REQ_STU, Ena_REQ_SRU, 
and Ena_REQ_ CNT These bits reset the four major blocks of the Requestor. 

In normal operation, these bits SHOULD ALWAYS BE ASSERTED/NE­
GATED AT THE SAME TIME. Otherwise, erratic Requestor operation may 
result. 

When these bits are disabled ( = 0), the Requestor T-Bus interface will respond 
"REFUSED" to any T-Bus master that tries to access it. The Requestor will 
also ignore any assertions of REVERSE from the Switch interface. 

Configuration Registers 

The Requestor has two general Configuration Registers. They are: Reques­
tor _ ConfigA and Requestor _ ConfigB. In general, both Configuration Regis­
ters are used to set miscellaneous parameters and enable/disable certain 
functions. Figure A-38 shows the structure of Requestor _ ConfigA. 
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Figure A-38 

FigureA-39 

REQ_Slave_Num[3] 

Modulo_S 

Columns_2 

Ena_Auto_Drop 

FQ_ Anticipation[3) 

February 14, 1990 

Register definition - Requestor _ ConfigA. 

Register: Requestor_ConfigA<31 .. 0> 

BIT/FIELD FUNCTION (read/write) 
========= ===================== 
<31 .. 29> REQ_Slave_NUm[3] 

<28> Modulo_8 
<27> Columns 2 
<26> Ena_Auto_Drop 

<25 .. 23> FQ_Anticipation[3] 
<22 .. 19> STU_Syncht4J 
<18 .. 15> BIU_Synch[4] 
<14 .. 11> Error_Prefix[4J 

<10 .. 9> Sixty_Five_Delay[2J 
<8 .. 6> CSU_Slave_Number[3J 
<5 .. 1> Real_Time_Prescale[5] 

<0> Columns_l 

The bit definition of Requester_ ConfigA is shown in Figure A-39. This regis­
ter contains mostly configuration bits that affect the run-time parameters of 
the Requestor. All bits are "high true" and are reset (low) upon system reset. 
The structure ofRequestor_ConfigB is shown in Figure A-40. The bit defini­
tion of Requestor _ ConfigB is shown in Figure A-41. This register contains 
mostly configuration bits that enable/disable different functions and error re­
ports of the Requestor. All bits are "high true" and are reset (low) upon system 
reset. 

Bit definition - Requestor _ ConfigA. 

Configures the T-Bus slave number that the Requestor will respond 
with (on the T_SOURCE < 2 .. 0 > pins) when making a Function Re­
sponse. 

Configures the Requestor to expect either a modulo-8 element ( = 1) or 
a modulo-16 ( = 0) Switch element. 

Configures the Requestor to expect either a 2-column ( = 0) or a 3-col­
umn Switch. 

Enables the Requestor to tear-down a connection when a Func­
tion_Request or Switch class of error is detected ( = 1). Otherwise, 
these types of error will only be reported by the Requestor and no spe­
cial action will be taken ( = 0). 

Configures the Requestor for the desired Function Request Anticipa­
tion. (See: ''Anticipation Support") 
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STU Sync[4] 

BIU Sync[4] 

Error_Prefix[4] 

Sixty_Five_Delay[2] 

CSU _Slave_ Number[3] 

Real_Time_Prescale[S] 

Columns_l 
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Configures the settling time of the Switch Transmit Unit's (STU) hand­
shake synchronizer which receives an "execute" signal from the Bus 
Interface Unit (BIU). This signal is used to initiate a Function Request 
on the Switch. (See: "Synchronization") 

Configures the settling time of the Bus Interface Unit's (BIU) hand­
shake synchronizer which receives a "completed" signal from the 
switch transmit unit (STU). This signal is used to indicate that a func­
tion response has been received by the SR U. (See: "Synchronization") 

Configures the Prefix (T-Bus bits: D7-D4) of the Error code response 
for Requestor errors. (See: "Er'ror Handling") 

Configures the pipeline delay of M _SIXTY_ FIVE pulse. Millisecond 
pulse as seen by the Requestor. WARNING: DO NOT USE THE "00" 
SETTING. (See: "Real Time Clock" for further details) 

Configures the Slave number that the CSU will respond with (on the 
T_SOURCE<2 .. 0> pins) when making a Function Response. 

Configures the terminal count of the Real Time Prescaler. (See: "Real 
Time Clock" for further details) 

Configures the SIGA for a 1-column switch. (See: "Real Time Clock" 
for further details) 
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Figure A-40 

Figure A-41 

Register definition - Requestor_ConfigB. 

Register: Requestor_ConfigB<31 .. 0> 

BIT/FIELD FUNCTION (read/write) 
========= ===================== 

<31 .. 23> Route_Address_Mask[9J 
<22> Ena_Stolen_Verify_Err 
<21> . Ena_Maintain_Absent_Err 
<20> Ena_Maintain_Present_Err 
<19> Ena_Lock_Addr_Err 
<18> Ena_Wait_TO_Err 
<17> Ena_Idle_TO_Err 
<16> Ena_Rej_Abort_Err 
<15> Ena_Rej_TO_Err 
<14> Ena_Check_Err 
<13> Ena_Reverse_Err 
<12> Ena_Remote_Err 
<11> Ena_Quick_Drop 
<10> Ena_Priority_Promotion 

<9> Ena_ Interleaver 
<8> Ena_Reject_Abort 
<7> Ena_Reject_Timer 
<6> Ena_Conn_Timer 
<5> Ena_Switch_Frame 
<4> Ena_REQ_BIU 
<3> ·Ena_REQ_STU 
<2> Ena_REQ_SRU 
<1> Ena_REQ_CNT 
<0> SPARE 

Bit definition - Requestor_ConfigB. 

Route_ Address_Mask[9] Configures the randomization mask for the Bus Interface Unit's trans­
lation of the Logical Route Address to the Physical Route Address. 
(See: "Route Address Generation") 

February 14, 1990 

The Enable Error bits allow the indicated errors to be reported(= 1), or to be 
unreported ( = 0). With some noted exceptions they DO NOT prevent the er­
rors from occurring. The error functions that these bits enable/disable are de­
scribed in the "Error Handling" section. The bits are as follows: 

Error Bit 
========= 
Ena_Stolen_ Verify_Err - must ALWAYS be negated ( =0) 
Ena_Maintain_Absent_Err - enable/disable detection 
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Ena_Maintain_Present_Err '-- enable/disable detection 
Ena_Lock_Addr_Err - enable/disable detection 
Ena_ Wait_TO_Err - enable/disable detection 
Ena:__Idle_TO_Err - enable/qisable detection 

· Ena_Rej_Abort_Err - enable/disable detection and mechanism 
Ena_Rej_TO_Err 
Ena Check Err - -
Ena Reverse Err - -
Ena_ Remote_ Err 

Ena_Stolen _Verify _Err Must ALWAYS be negated ( = 0). (See: Anticipation Support) 

Ena_Maintain_Absent_Err Enables ( = 1) or disables ( =0) the detection of a Maintain_Ab­
sent_Error. Disabling this bit allows the Requestor to initiate a Switch 
transaction and pass through the incorrect T _ LOCKOP < 1..0 > field. 
(See: "Error Detection and Reporting/FQ Errors") 

Ena_Maintain_Present_Err Enables ( = 1) or disables ( = 0) the detection of a Maintain_Pres­
ent_Error. Disabling this bit allows the Requestor to initiate a Switch 
transaction and pass through the incorrect T _ LOCKOP < 1..0 > field. 
(See: "Error Detection and Reporting/FQ Errors") 

Ena_ Lock _Address_Err 

Ena_Wait_TO_Err 

Ena_ldle_TO_Err 

Ena_ Rej_Abort_Err 

Ena_ Rej_ TO _Err 

434 

Enables(= 1) or disables ( = 0) the detection of a Lock_Address;...Er­
ror. Disabling this bit allows the Requestor to initiate a Switch trans­
action with a potentially incorrect Physical Route Address. (See: 
"Error Detection and Reporting/FQ Errors") 

Enables ( = 1) or disables ( =0) the detection of a Wait_TO_Error. 
Disabling this bit will NOT prevent the Requestor from responding to 
a Connection Timer overflow in it normal manner. (See: "Error Detec­
tion and Reporting/Switch Errors") 

Enables (=1) or disables (=0) the detection of an Idle_TO_Error. 
Disabling this bit will NOT prevent the Requestor from responding to 
a Connection Timer overflow in it normal manner. (See: "Error Detec­
tion and Reporting/Switch Errors") 

Enables ( = 1) or disables ( = 0) the generation AND detection of an 
Idle_ TO _Error. Disabling this bit Win prevent the Requestor from rec­
ognizing the state of the pin: M _ REJ _ABORT. (See: "Error Detection 
and Reporting/Switch Errors") 

Enables ( = 1) or disables ( = 0) the detection of a Rej_ TO_ Error. Dis­
abling this bit will NOT prevent the Requestor from responding to a 
Reject Timer overflow in it normal manner. (See: "Error Detection 
and Reporting/Switch Errors") 
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Ena_ Check_ Err 

Ena_Reverse_Err 

Ena_Remote_Err 

Ena_ Quick _Drop 

Ena_Priority _Promotion 

Ena_Interleaver 

Ena _Reject_ Abort 

Ena _Reject_ Timer 

Ena_ Conn_ Timer 

Ena _Switch _Frame 

Ena REQ BIU - -

Ena_REQ_STU 

Ena_REQ_SRU 

Ena_REQ_CNT 
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Enables ( = 1) or disables ( = 0) the detection of a Checksum Error. 
(See: ''Error Detection and Reporting/Remote Errors") 

Enables ( = 1) or disables ( = 0) the detection of a Checksum Error. 
(See: "Error Detection and Reporting/Remote Errors") 

Enables ( = 1) or disables ( = 0) the detection of a Checksum Error. 
(See: "Error Detection and Reporting/Remote Errors") 

Enables ( = 1) or disables ( = 0) the Requestor Switch '.fransmitter to 
negate Frame as early as possible on an Unlocked operation. (See: 

. "Quick Drop") 

Enables ( = 1) or disables ( = 0) the Priority Promotion mechal)ism. 
(See: "Priority Promotion") 

Enables ( = 1) or disables ( = 0) the Requestor's detection of the IN­
TERLEAVED pin. (See: "Physical Route Address Generation"). 

Enables ( = 1) or disables ( = 0) the Reque'stor's responding to the 
REJ_ABORT pin. (See: "Reject Timer") 

Enables ( = 1) or disables ( =0) the operation of the Reject Timer. This 
bit will override the Ena_Reject_Abort bit. 

Enables ( = l)or disables ( = O)the operation of the Connection Timer. 

Enables ( = 1) or disables ( = 0) the assertion of the 
REQ_ SW_ FRAME pin. This function overrides any other function 
which effects the assertion of the REQ_ SW_ FRAME pin. 

Enables ( = 1) or resets ( = 0) the Requestor Bus Interface Unit. 
WARNING: MUST ALWAYS HAVE THE SAME STATE AS: 
Ena_REQ_STU, Ena_REQ_SRU, Ena_REQ_CNT. (See: "Disabled 
Operation") 

Enables ( = l) or resets ( = 0) Requestor Switch Transmit Unit. 
WARNING: MUST ALWAYS HAVE THE SAME STATE AS: 
Ena_REQ_BlU, Ena_REQ_SRU, Ena_REQ_CNT. (See: "Disabled 
Operation") 

Enables ( = 1) or resets ( = 0) Requestor Switch Receive Unit. WARN­
ING: MUST ALWAYS HAVE THE SAME STATE AS: 
Ena_REQ_BIU, Ena_REQ_STU, Ena_REQ_CNT. (See: "Disabled 
Operation'') 

Enables ( = 1) or resets ( = 0) Requestor Counter (Timer) Module. 
WARNING: MUST ALWAYS HAVE THE SAME STATE AS: 
Ena_REQ_BIU, Ena_REQ_STU, Ena_REQ_SRU. (See: "Disabled 
Operation") 
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Configures the Requester to expect a 1-column Switch ( = 1). In this 
case, the Requester still uses Columns_ 2 to determine the Bid con­
struction. When negated ( = 0), the Requestor uses Columns_ 2 for 
both number of bids to be sent AND bid construction. (See: "Down­
stream Message Components") 

Test Registers 

The Requester also contains a test register, Requestor_TestA. This register 
contains bits that are related to production testing of the SIGA, and unlike 
all other configuration registers, a read of Requestor _ TestA does not yield the 
data last written. The write bits are initialized in their negated state and are 
related to production testing of the SIGA. The read bits are. used to observe 
the internal state of the Requester. They will yield no useful information dur­
ing normal operation. 

• Write bits of Req_TestA SHOULD NEVER BE ASSERTED DURING 
NORMAL OPERATION. 

The write structure of Requestor _ TestA is shown in Figure A-42. 

Register definition - Requestor _ TestA (write). 

Register: Requestor_TestA<31 .. 0> 

BIT/FIELD FUNCTION (write) 

<31> SPARE 
<30> TST CNT RTP FORCE OMSP - - - -
<29> SPARE 
<28> TST CNT RJT LOAD COUNTER - - - -

<27> TST_CNT_RJT_DECREMENT_COUNTER 
<26> TST_CNT_COT_LOAD_ENABLE 
<25> TST_CNT_RSR_BOC_COUNT_DISABLE 
<24> TST_CNT_RSR_MSK_REG_COUNT_ENABLE 

<23> TST_CNT_RSR_ADDER_LOAD_ENABLE/RANDOM_CLEAR 
<22> TST_CNT_RSR_IDLE_DISABLE 
<21> TST_TIO_RND 

<20 .. 0> SPARE [21] 

The function of the bits in Figure A-42 are listed below: 
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TST _ CNT _FORCE_ OMSP This bit affects only the real time prescaler. When asserted, this bi twill 
cause the One MicroSecond Pulse signal to be forced high continuous­
ly. This will cause other portions of the TM to count unusually quickly. 
When not asserted, the Real Time Prescaler will generate OMSP nor­
mally every n clock cycles. 

TST_CNT_RJT_LOAD_COUNTER 
When asserted, this bit will force the continuous loading of the four bit 
counter within the reject_ timeout counter. The counter will be loaded 
with the initial value specified in the configuration register. When not 
asserted, the counter is loaded normally, at the beginning of every Re­
questor operation. 

TST_ CNT_RJT_DECREMENT_ COUNTER 
The reject_ timeout counter will be decremented on every cycle when 
this bit is asserted. When both the decrement and load test bits are 
asserted, the load_counter takes precedence. A reject_ timeout is is­
sued from the reject_timer the cycle after the count reaches zero. Un­
der normal operation, with this bit negated, the counter is 
decremented every n microseconds. 

TST_CNT_COT_LOAD_ENABLE 
This test bit is used to force the eight bit counter within the connec­
tion_ timeout unit to load continuously from the configuration regis­
ters. With this bit negated, the counter is loaded at the beginning of 
every Requestor bid transmission. 

TST _ CNT_RSR_BOC_ COUNT_DISABLE 
When this bit is asserted, the back_off counter within the random re­
start/retry logic is disabled, preventing random timeouts from occur­
ring when the counter reaches its terminal count. 

TST_CNT_RSR_MSK_REG_COUNT_ENABLE 
This bit is used to force the six bit mask_register_out Johnson counter. 
to increment on every cycle. This permits the counter to be increm­
ented without starting a Requestor operation. Under normal opera­
tion, this counter is incremented only after n switch rejects have 
occurred during an attempted Requestor transmission. 

TST CNT RSR ADDER LOAD ENABLE/RANDOM CLEAR 
- - - - Thls bit controls two teSting functions. When asserted, this bit will 

force the backoff added to load a new value. This permits the adder to 
be tested without the normal requirement that the Requestor be issued 
a switch reject for each adder load operation. The other function of 
this bit is to clear the 12 bit random number generator. This will pre­
vent random numbers from being OR'ed into the backoff counter, sim­
plifying the testing of the module. 
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TST_CNT_RSR_IDLE_DISABLE 

TST_TIO_RND 

Figure A-43 

When asserted, this bit will disable the idle state of the Requestor from 
clearing the backoff adder and Johnson counter. With this bit as­
serted, the functions of these counters can be tested without starting a 
Requestor operation. When de-asserted, with the Requestor in the 
idle state, the backoff adder is cleared, and the Johnson counter will 
load the initial state specified in the Requestor configuration registers. 

The nine bit random number generator, used in the RQ_ BI_ TI module 
to fill the logical route address bits in the Requestor bids, is cleared 
whenever this bit is asserted. This simplifies the predictions of Re­
questor bids in testing since random numbers are no longer inserted. 

The read structure of Requestor_TestA is shown in Figure A-43. 

Register definition - Requestor_TestA (read). 

Register: Requestor_TestA<31 .. 0> 

BIT/FIELD FUNCTION (read) 

<31> TST TM SSR SLOT_VALID 
<30> TST_TM_RSR~PTS_ACTIVE 

<29> TST_TM_RSR_RANDOM_TO 
<28> TST_TM_RSR_RANDOM_GENERATOR 

<27> TST_TM_RSR_CARRY_OUT 
<26> TST_TM_COT_CONNECTION_TIMEOUT 
<25> TST_TM_RJT_REJECT_TIMEOUT 
<24> TST TM RJT DECREMENT - - -
<23> TST_TM_RTP_Q5 
<22> TST_SR_REJ DET 

<21 .. 15> TST_SR_FSM 
<14> TST ST LOCKED 

<13 .. l> TST ST FSM 
<0> TST ST RAND ROUTE 

The function of the bits in Figure A-43 are listed below: 

TST_TM_SSR_SLOT_ VALID This bit indicates the state of the slotted start/retry module output 
SLOT_ VALID. This signal may be used by the Requestor to retrans­
mit a bid after a switch reject has put it into the backoff state. 

TST _ TM_RSR _ PTS _ACTIVE The state of the Priority Time Slot signal is readable from this bit. 
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The PTS signal will boost the priority of a bid after a switch reject has 
been issued. 
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TST _TM_ RSR _RANDOM_ TO The Random Timeout from the random start/retry module may be 
read, which has the same function as the slot_ valid signal, depending 
on the message class of the Requester operation. 

TST_TM_RSR_RANDOM_GENERATOR 
This bit reads the MSB of the 12-bit pseudo random number generator 
inside the backoff counter of the random start/retry module. 

TST_TM_RSR_ CARRY_ OUT This bit is asserted when the backoff adder of the random start/ 
retry module has an overflow, indicating that the Johnson counter will 
be incremented on the next backoff occurrence of the current Reques­
ter operation. 

TST_TM_COT_CONNECTION_TIMEOUT 
The connection timeout indicates that the allotted Requester connec­
tion time has expired. If the Requester is in the WAIT state, the opera­
tion will be aborted. 

TST_TM_RJT_REJECT_TIMEOUT 
The reject timeout indicates that the time permitted for the Requestor 
to make a connection has expired. When the Requester is in the back­
off state, waiting to retransmit, the operation will be aborted. 

TST_TM_RJT_DECREMENT This bit indicates when the reject_timeout module 4-bit counter 

TST_TM_RTP _ Q5 

TST_SR_REJ_DET 

TST_SR_FSM 

TST_ST_LOCKED 

TST_ST_FSM 

TST_ST_RAND_ROUTE 

February 14, 1990 

receives a decrement pulse from the OMSP prescaler. 

The RTP QS register may be read with this bit. This is the MSB of the 
Real Time Prescaler counter, which generates the OMSP signal. 
OMSP occurs on the falling edge of this signal. 

This is the internal signal generated by the Requester receiver indicat­
ing that a switch reject has been received during a Requester opera­
tion. 

These seven bits show the current state of the Requester receiver. The 
states, from MSB to LSB are: END, CHECK, BYTE2, BYTEl, 
Wl_Bl, ARMED, and IDLE. 

This bit is asserted whenever the Requester transmitter is in a locked 
operation. 

These thirteen bits indicate the current state of the Requester trans­
mitter state machine. The state, from MSB to LSB are:. DONE, 
TO_IDLE, LOCKED_IDLE, LOCKED_DONE, BACKOFF2, 
BACKOFFl, WAIT, CHECK, DATA. CMD, BIDl, HOLD, and 
IDLE. 

This bit reads the MSB of the 9-bit psuedo random number generator 
used in the logical route address of the Requester bids. · 
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Switch Message Protocol 

The Requestor fully generates and supports the Butterfly Switch protocol. 
That support is described below. 

Physical Route Address Generation 

The Switch route address from the T-Bus field, T_AD<33 .. 25>, is actually 
a logical address. This Logical Route Address, which has two possible sources, 
undergoes a transformation to derive the Physical Route Address. It is the 
Physical Route Address which is assembled into the bid symbols of the down­
stream Switch message. The Logical Route address is used in the calculation 
of the Header Partial Sum (see the Requestor/Checksum Calculation section). 
During a given function request, the two possible sources of Logical Route Ad­
dress for the Requestor are the T-Bus (T _AD< 33 .. 25 >) and the interleaver 
port (I_MOD <8..0> ). The interleaver port is chosen if: (1) the !_INTER­
LEAVED pin is asserted on the SIGA during the T-Bus request cycle AND 
(2) the Enable _Interleave bit in the Requestor _ ConfigB register is asserted. 

~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~_,,,,,,,,,,,. 

It is assumed that both the T-Bus Master making the request and the Inter­
leaver will force any unused bits in Logical Route Address to "O" as it is pres-
ented to the pins of the SIGA. -

' '''''''''''''''''''''''''''''''''''''''''''''' 
· Whichever routing address is actually chosen, that 9-bit quantity undergoes 

a transformation. It is modified to allow the randomization of a selectable 
number of the routing bits. The random bits that potentially replace routing 
bits are obtained from a 9-bit random number generator, the Random Route 
Generator, which runs at the T-Bus clock rate. A bit in the route address can 
be specified as random by setting a corresponding bit in the Route Address 
Mask register to a "l". The transformation for the Physical Route Address 
generation can be expressed by an equation as shown in FigureA-44. 
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Figure A-44 

A.5.1.2.2 

A.5.1.2.2.1 
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Equation - Physical Route Address generation; 

temp<8 .. 0> =MOD & INT & INT_EN 
# [T_SNN & (!INT # ! INT_EN)] 

PRA<8 .. 0> = (RAND & RAM) # (temp & !RAM) 

.. . where, 

T_SNN 
MOD 
INT 
INT_EN 
RAND 
RAM 
PRA 

= T_AD<33 .. 25> 
= I MOD<8 .. 0> 
= T INTERLEAVED 
= Req_ConfigB.Ena_Interleaver 
= RAND<8 .. 0>, random# generator 
= Route_Address_Mask<8 .. 0> 
~ Physical Route Address 

The first equation in Figure A-44 represents the selection of either the Inter­
leaver port or the T-Bus port for the Logical Route Address. The second equa­
tion randomizes selected bits in the Logical Route Address. The Route 
Address Mask is located in the Req_ ConfigB configuration register. 

Downstream Message Components 

Some of the relevant aspects of the downstream Switch message components 
are now discussed. For a more detailed explanation of Switch message defini­
tion and protocol, see the reference documents. 

Header 

The construction of the message header, which contains the bid symbols, va­
ries depending on the modulus of the Switch, which can be either 8 or 16. The 
SIGA design will support both options, although the modulo-8 Switch is the 
most likely to be encountered. In addition, the Requestor can support a one, 
two or three column Switch. Figure A-45 shows the format of the bid symbols 
in both modulus configurations. As seen from Figure A-45, certain bid sym­
bols may never be sent if the Switch is small enough. Note that a modulo-8 
switch is always expected to have at least two switch columns and a modulo-16 
can have as few as one. The random bits mentioned in Figure A-45 are ob­
tained from a separate random number generator known as the Random 
Route Generator. 
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Bit definition - downstream message header. 

COLl 

7 0 

I I 
0 0 Pl PO Rd Re Rb Ra (BID 1) (first sent) 
0 0 Pl PO Rd Re Rb Ra (BID 2) v 
0 0 Pl PO Rd Re Rb Ra (BID 3) (last sent) 

.. . where, 

Pl .. PO = priority from T-Bus: PRIORITY<l .. 0> 
Ra .. Rd Physical Route Address (•ee below ... ) 

BIDl BID2 BID3 
COL2 MODS Rd Re Rb Ra Rd Re Rb Ra Rd Re Rb Ra 

==== ==== ==== =========== =========== ========== 

0 
0 
0 
0 
1 
1 
1 
1 

0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 

.. . where, 

COL2 
COLl 
MODS 
nl,n2,n3 

Body 

n2 nl no RS R7 R6 RS R4 
0 R8 R7 R6 0 RS R4 R3 
R7 R6 RS R4 R3 R2 Rl RO 
0 RS R4 R3 0 R2 Rl RO 
n2 nl no RS -----------
0 RS R7 R6 -----------
R7 R6 RS R4 -----------
0 RS R4 R3 -----------

= Requ'.3:::tor_Sonfig.A. Colunu1s_2 
= Requestor_ConfigA.Columns_l 
= Requestor_ConfigA.Modulo_S 
=random bits 
=Bid is NOT transmitted 

R3 R2 Rl RO 
0 R2 Rl RO 
-----------
-----------
-----------
-----------
-----------
-----------

The message body, which contains the command, address, data and checksum 
bytes, varies based on the type of message being sent downstream. The general 
format is shown in Figure A-46. Figure A-46, of course, shows a single word 
write message. For multi-word write transfers there would be correspondingly 
more data bytes. For a read message, the difference would be that all data 
fields would be missing and bit S would be forced to a zero. 
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Figure A-46 

NOTE 

A.5.1.2.3 
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Bit definition - downstream message body (write). 

7 0 

I I 
Ll LO Rl RO S2 Sl so A24 (first sent) 
A23 A22 A21 A20 Al9 Al8 Al7 Al6 I 
Al5 Al4 Al3 Al2 All AlO A9 A8 I 
A7 A6 AS A4 A3 A2 Al AO I 
D31 D30 D29 D28 D27 D26 D25 D24 I 
D23 D22 D21 D20 D19 D18 D17 Dl6 I 
D15 Dl4 D13 D12 Dll DlO D9 D8 I 
D7 D6 D5 D4 D3 D2 Dl DO I 

I 
<possible additional write words> I 

I 
v 

F 0 0 s CS3 CS2 CSl cso (last sent) 

.. . where, 

Ll .. LO lock operation from T-Bus: T LOCKOP<l .. 0> 
Rl .. RO portion of field from T-Bus: T_RR<l. .0> 

Rl Rb 

0 0 write 
0 l read 
l 0 <unused> 
l 1 <unused> 

S2 .. SO size information from T-Bus: T_SIZE<2 .. 0> 
A24 .. AO address information from T:._Bus: T AD<24 .. 0> 
D31 .. DO data information from T-Bus: T_AD<31 .. 0> 
F enable forward drivers 

F = 0 disable forward drivers next clock 
F = 1 enable forward drivers next clock 

S Stolen Bit 
CS3 .. CSO message checksum 

The current SIGA design ALWAYS forces the "F" bit to be a "O". 
~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Checksum Support 

The Requestor and Server each have two separate units of checksum logic. 
The first, known as the 1l:ansmit Checksum Unit, calculates the message 
checksum during its transmission. The second, known as the Receive Check­
sum Unit, calculates and verifies the checksum for the incoming message. 
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A.5.1.2.4 

A.5.1.2.4.1 

Figure A-47 
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The elements included in the calculation of the checksum of a downstream 
message vary depending on the type of message being transmitted. For any o 
initial message (locked or unlocked), the Requestor always initializes its 'Il:ans- ·· 
mit Checksum Unit with the "flash" sum of the Logical Route Address. The 
Logical Route Address can, of course, come from either the MOD pins (inter-
leaved access) or from the T-Bus (non-interleaved). For any locked messages, 
the Requestor always initializes its 'Il:ansmit Checksum Unit to zero. 

In the same way, the downstream Server must initialize its Receive Checksum 
Unit to ITS node checksum whenever it expects an initial message. This initial­
ization value will, of course, match that calculated by a Requestor about to 
transmit to that Server's node. For locked messages, the Server will initialize 
its Receive Checksum Unit to zero, just as the Requestor does with its 'Il:ansmit 
Checksum Unit. 

In an upstream message, there are NEVER any routing bits to contend with. 
Therefore, the downstream Server always initializes its Transmit Checksum 
Unit to zero, as does the Requestor's Receive Checksum Unit. 

Checksum Calculation 

The checksum for a downstream message is actually calculated in two parts. 
If the message is an initial (locked or unlocked) one, a partial sum of the mes-
sage header is calculated (by separate logic) and stored in the 'Il:ansmit Check- 'O .. 
sum Unit. Then, the 'Il:ansmit Checksum Unit adds (exor's) the initial value, 
if any, to the bytes of the body of the message as it is transmitted. 

Header Partial Sum 

The header partial sum is derived by considering only the Logical Route Ad­
dress bits. This means that the priority and random bits are not included in 
the calculation. This approach eases the design of the checksum logic and 
makes it independent of the Switch modulus. The equation for this calculation 
is shown in Figure A-47. 

Equation - Requestor header partial sum calculation. 

HPS<3> = RB $ R7 $ R3 
HPS<2> = R6 $ R2 
HPS<l> = RS $ Rl 
HPS<O> = R4 $ RO 

.. . where, 

HPS<3 .. 0> =Header Partial Sum 
RB .. RO =Logical Route Address 
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· A.5.1.2.4.2 

Figure A-48 

NOTE 

A.5.1.2.5 
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Message Checksum 

As previously mentioned, the header partial sum is added (ex or' ed) to the body 
. of a downstream message if and only if that message is an initial message. The 
message checksum calculation is shown in Figure A-48. Figure A-48 shows 
the calculation for a single word write message. For write messages with more 
words, those bytes would be inducted in the same manner as the data bytes 
in the figure. For read messages, the data field would be missing entirely from 
the calculation. 

Equation - message checksum {see text). 

CS<3> = HP8<3> $ exor(Ll,S2,A23,Al9,Al5,All,A7,A3, 
D31,D27,D23,Dl9,Dl5,Dll,D7,D3,F) 

CS<2> = HPS<2> $ exor(LO,Sl,A22,Al8,Al4,Al0,A6,A2, 
D30,D26,D22,Dl8,Dl4,Dl0,D6,D2,0) 

CS<l> = HPS<l> $ exor(Rl,SO,A21,Al7,Al3,A9,A5,Al, 
D29,D25,D21,Dl7,Dl3,D9,D5,Dl,0) 

CS<O> = HPS<O> $ exor(RO,A24,A20,Al6,Al2,A8,A4,AO 
D28,D24,D20,Dl6,Dl2,D8,D4,DO,S) 

.. . where, 

exor"ed components from: "Bit Definition - Message Body 11 

CS<3 .. 0> =message checksum 
HPS<3 .. 0> =Header Partial Sum 

.,\_ '\. ···•,, .. ,,,,, '"'"· .• ,,,,_ .• ,,,,, .• ,,,. '''•o ..• ,,, •.• ,,,_ "•,,,_ .• ,,.. '•,,,_ .• ,,,_ ''••,,.·'\ ..• ,,,,_ .• ,,,_ .• ,,,,_ ··i,,,_ "''•; .• .,,,,_ ''••,,. "\,, .• ,,,_ "'«,,, .,,,, '•1,,,_ .• ,,,,_ ''•;,, .• ,,,,_ .• ,,,,_ .• ,,,,_ .,,,,,_ '•,,,_ .,,,,_ .• ,,,,_ .,,.,,_ "'••, •..• ,,,,_ .,,,,,_ ''\ ..• ,,,,, '''•,,, .• ,,.,_ .• ,,, 

The "F" field is always "O". 
'\,.''••,,.-••,,,'1,1,,·•,,1,_·•1,,,_·•1,,,,·•,,.·••,,,_.,,,r._ .• .,,,,·''••.'';,,"'",,.'\."'to,,"'\."'1,"·''r,,,·•1,,,"'\,,·•,1,,.·••,,,.·•11,,,·•,,1,_·•o,,, ''••,,.''••,,.·•r,,,·•,1,,,·•1,,,,·",,,_·.,.,,,·''••."'•r,,,·•,,,,,·"'••."'>,,,"••,.,.·•1,,,·,,,1,.·•1,,,_·•,,,,_ ,,,_··•,., .. '•,,,.'••, 

T-Bus Interface 

The Requester supports the standard T-Bus protocol with some small limita­
tions. For one, the Requester does NOT support unaligned transfers which 
fall across word (32-bit) boundaries. In addition, when it is locked to a T-Bus 
Master and in its "WAIT'' state, the Requester will always issue a REFUSED 
LOCKED to ANY T-Bus query while it is busy processing a split-cycle re­
quest. This means that it will even REFUSED LOCKED to its own T-Bus 
master! This is a hardware optimization which should cause no problems. 
The locking T-Bus master normally has no reason to query the Requester until 
the Requestor finishes its current operation. 
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Figure A-49 shows the Requestor's state-dependent T-Bus responses while 
it is in some of its more interesting states. Q 

Figure A-49 Requestor T"'-Bus responses (partial list). 

A.5.1.2.6 

NEXT RESPONSE CONDITION 
============== =================================================== 
State= IDLE (satisfied a function request, waiting for new one): 

PROMISE !LOCKED & !DROP_LOCK & read 
PROMISE !LOCKED & !DROP_LOCK & write & !multi 
MORE !LOCKED & !DROP_LOCK & write & multi 
REFUSED !LOCKED & DROP_LOCK 
REFUSED LOCKED LOCKED & !DROP_LOCK & !my_master 

. PROMISE LOCKED & !DROP_ LOCK & my_master & read 
PROMISE LOCKED & !DROP_LOCK & my_master & write & !multi 
MORE LOCKED & !DROP_LOCK & my_master & write & multi 
REFUSED LOCKED & DROP_LOCK 

State = WAIT (waiting for function request to traverse Switch) 
-or-

State= BREQ (making T-Bus request for T-Bus with split response): 
REFUSED !LOCKED 
REFUSED LOCKED LOCKED 

LCON Interface 

The LCON is a the physical and logical link between the SIGA Requestor and 
the "input" port of the Switch Gate Array (SGA). In other words, for the 
SIGA, the LCON interface is the logical Switch interface. The LCON provides 
the Requestor with: 1) level conversion to and from the ECL levels of the SGA 
and 2) reclocking of data, Frame, Reverse and the 65 ms pulse to and from the 
SGA. 

Figure A-50 shows the Requestor's LCON (Switch) Interface Pins. 

Figure A-50 Requestor LCON (Switch} interface pins. 
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PIN NAME 

R DATA<7 .. 0> 
R FRAME 
R,_REVERSE 
R NENA BACK - -
M SIXTY FIVE - -

TYPE 

bidirectional 
output 
input 
output 
input 

BBN ACI Proprietary 

FUNCTION 

Requestor-LCON data bus 
Frame output to Switch 
Reverse input from Switch 
LCON TTL driver enable 
65 ms timer input 
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Data Bus Enable Control 

The Requestor controls the enables of both its own output drivers and the 
LCON's output drivers to the · SIGA-LCON data interface 
R _DATA< 7 .. 0>. To control its own output drivers, the Requestor generates 
an internal signal called, nena _out. When asserted ( = 0), nena _out enables 
the Requestor's R _DATA< 7 .. 0 > drivers. To control the LCON, the Reques­
tor provides the R_NENA_BACK signal to directly enable(= O)/disable( = 1) 
the LCON's output drivers to R_DATA<7 .. 0>. In addition, 
R_NENA_BACK, after a flip-flop delay, is used to enable/disable the 
LCON's Switch data ECL interface bus. When the Requestor is driving 
R _DATA< 7 .. 0 >, it is in "Talk" Mode. When the LCON is driving that bus, 
the Requestor is in "Listen" Mode. 

There are two major reasons why the Requestor separately provides the 
R _NENA_BACK signal. First, the Requestor already "knows" which direc­
tion the bus should be driving, and therefore this logic need not be repeated 
in the LCON. Second, this configuration gives theRequestor the ability to pre­
vent bus contention. 

Bus contention can occur when the direction ofdata changes on the LCON 
interface. If R _NENA _BACK changed on the same clock edge as nena _out, 
there would be contention on R _DATA< 7 .. 0 > each time both of those signals 
changed. However, because of timing skew and minimum delays, contention 
is actually only a problem when the Requestor tries to enable its own drivers 
as it disables the LCON's backward drivers. This occurs during the transition 
from Listen to Talk Mode. But since the Requestor has separate control of 
its own output drivers and the LCON's, it can prevent this case of contention. 
It does this by inserting a "dead" state for one Switch Interval where neither 
the Requestor nor the LCON is driving R_DATA < 7 .. 0 > . 

• 
The Requestor is considered "quiescent" when it is not transmitting messages 
and not waiting for any replies. When quiescent, the Requestor is in Talk 
Mode. The Requestor tries to stay in Talk Mode whenever possible, making 
the transition to Listen only for the absolute minimum time necessary. This 
situation is the mirror image to the Server. It is always in Listen Mode when 
quiescent and tries to stay in Talk Mode for as little time as possible. 

When the Requestor finishes transmitting the checksum of an Initial or 
Locked message, it transitions directly into Listen Mode. Once there, it waits 
for either a Reject (which could have been detected and latched during the 
message transmission) or a return message. When either of those two events 
are complete, the Requestor transitions back to the Talk Mode, via the dead 
state. Figure A-51 shows this sequence for both a replied and a rejected 
Switch message. Note from Figure A-51 that there is a dead state only when 
making a transition from Listen to Talk Mode. Although not shown in the fig­
ure, subsequent Locked messages act in the exact same manner. 
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Figure A-51 

A.5.2 

A.5.2.1 

A.5.2.1.1 

448 

Butterfly II Hardware Architecture 

Timing - Requestor switch data bus enable. 

Transmit Mode ttttttttttttlllll llllllllllldttttttttt 
Frame HHHHHH xxxxx -- -
Reverse _HHHHH 
R_DATA<7 .. 0> xxxxxmmmmmmcxxxxx xxxmmmmcxxxxxxxxxxxxx 
nena_out HHHHH HHHHHHHHHHHH 
R NENA BACK HHHHHHHHHHHH - -

(a) Message Returned, No Reject 

Transmit Mode ttttttttttttlldtttttttt 
Frame __ HHHHHH _xxxxxxxxxxx 
Reverse H _____ _ 
R_DATA<7 ... 0> XXXXXDllDDlDllDDlCX-,XXXXXXXXX 

nena out .HHH ----
R_ENA_BACK HHHHHHHHHHHH HHHHHHHHH 

(b) Reject Latched during Tx 

.. . Vfhere, 

m .. m is a message 

Server 

c is the checksum 
t is Talk Mode 
1 is Listen Mode 
d is the dead state 

floating bus 

HHHHHHHHHH 

The Server is described from the point of view of its overall operation ancfTts 
two major interfaces: the T-Bus interface and the Switch Interface. 

Operation 

The operation of the Server is described by discussing its major functions. 

Overview 

The Server is a local T-Bus master which creates a logical coupling to a physi­
cally remote T-Bus slave via the Switch. The Server acts as the "responder" 
of this coupling on the Switch and thus can be thought of as a "master" on the 
T-Bus but a "slave" to the Switch. Referring to Figure A-52, the Server con­
tains three major functional units: Bus Interface Unit (BIU), Switch Tx Unit 
(STU), and the Switch Rx Unit (SRU). The BIU is clocked by the T-Bus clock 

0 

and both the STU and SRU are clocked by the Switch clock. Interfacing of 0 
control signals between these units is accomplished with handshake synchro-
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FigureA-52 

nizers, as shown. The SRU receives function requests from the Switch and 
translates those requests into commands for the BID. The BIU handles all 
of the T-Bus transactions of the Server to comply with a given function request. 
When a T-Bu.s slave device responds to a function request, the BIU picks up 
that response and passes it as a command to the STU. The STU then initiates 
an upstream Switch message to return the function response. 

Server block diagram. 

+------+ +----------+ I I 
I I +----+ I I I I 

I I Switch I <-----1sync1------> I I I I 
1-------->JRx I +----+ I I JTJ 
l========>JUnit !==========~======>! Bus I JBJ. 

sJ I I I Interface! Jul 
wJ I I<--+ I Unit l<=======>ISI 
Ii +------+ I I I I I 
Tl I I I I I 
Cl +------+ I I I I I 
HI I <--+ I I I I 
I I I . I I I I 
l<--------ISwitchl<================~I I I I 
I<======== I TX I +----+ I I I I . 
I I Unit I <-----1 sync 1------> I I I I 
I I I +----+ I I I I 
I +------+ +----------+ I I 
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The SRU detects the downstream message of a function request, verifies the 
checksum and alerts the BIU of the incoming message and the checksum sta­
tus. The SRU also causes Switch rejects when either the BID has explicitly 
commanded this action or when the SRU decides to on its own. The BID will 
command a Switch reject when a function request is trying to access a T-Bus 
device which is locked to a T-Bus device other than the Server. The SRU will 
NOT initiate a reject without a command from the BID and thus CANNOT 
correctly handle a non sequitur downstream message. A non sequitur would 
occur, for instance, when the SRU receives a function request (in the form of 
a downstream message) and knows that the STU has not even begun to send 
an upstream Switch message in response to the last function request. 

The SRU has the additional responsibility of initiating a FREE-LOCKS com­
mand to the BIU when the Switch path is locked and the incoming Frame sig­
nal negates unexpectedly. This situation is known as "dropping a lock" and 
is the ONLY time when the Server does not create a Function Response as a 
result of an explicit function request. 

The SRU/BID interface is a streamlined request/response type interface 
where for each SRU request there is an BIU response. The SRU presents an 
encoded function request to the BIU and sets an "execute" flag. When the BIU 
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is done operating on that request, it sets a "done" flag and returns a status code 
and data to the SRU. The SRU also has the ability to "interrupt" the pending Q 
BIU operation. This is accomplished with a "terminate" handshake signal · 
from the SRU. The "terminate" handshake receives a "terminate done" from 
the BIU when the BIU finishes. This "interrupt" path is used for situations 
where the BIU may be indefinitely "hung" because a failed T-Bus slave is con­
tinuously asserting Slave pause. 

Both the SR U and BIU are responsible for handling their own functions inde­
pendently and they have very little real-time knowledge of each other's state. 
This approach simplifies the Server design and carries the request/response 
philosophy throughout the system. 

TheBIU has three major responsibilities: (1) initiate T-Bus requests to comply 
with a command from the SRU; (2) receive responses from the T-Bus; (3) 
transfer those responses, along with any error indications, to the STU. To ac­
complish the T-Bus request/response transfer, the BIU supports most of the 
T-Bus protocol. 

The STU is a fairly simple device. It acts on a function response from the BIU 
and initiates the upstream Switch message to Cl!rry out that response. The 
STU also is responsible for assembling and transmitting the data in an outgo­
ing message. 

Anticipation Support 

The operation of the Server has two main goals: (1) to pass a downstream 
Switch function request to a T-Bus slave as quickly and efficiently as possible, 
and (2) to return the corresponding function response from that T-Bus slave 
as quickly and efficiently as possible. Certain techniques can be used to take 
advantage of the expected operation of the logic in the function request and 
response path. These techniques are known collectively as "anticipation". The 
use of anticipation in achieving the two main goals of the Server are now dis­
cussed. 

Function Requests 

Maximizing downstream function request efficiency in the Server involves bal­
ancing the desire for speed with the desire for eliminating unwanted side ef­
fects. The speed issue relates to the desire to transfer data from an incoming 
Switch message to the T-Bus as soon as it is available. Unwanted side effects 
involve taking any action on the T-Bus that would cause a change in stored 
data in a T-Bus slave device given that the downstream message was cor­
rupted. Two extreme approaches could be taken in the design of the Server. 
First, the Server could wait until the entire downstream message had been re­
ceived, including the checksum; verify the checksum; and then begin access 
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Figure A-53 
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to the T-Bus. Second, the Server could begin access to the T-Bus immediately 
upon receiving a downstream message. 

The first approach would cause the Server to waste valuable time in accessing 
the T-Bus, and the second could possibly cause unwanted side effects. Since 
one of the design goals of the Butterfly II is that data integrity should take pre­
cedence over speed, a compromise between the first and second approaches 
is implemented in the Server. 

The Server "anticipates" the verification of the downstream checksum and be­
gins it's request for T-Bus drivership. The timing is set up such that the Server 
BIU is commanded by the SRU to make a bus request at a specific moment 
in time. In fact, the SRU commands the BIU (input to the BIU synchronizer) 
to begin the T-Bus request EXACTIY five Switch intervals before the "Check-· 
sum _is_ OK" signal is valid. This is true for both reads and writes. Therefore, 
the synchronizer setting, Server_ConfigA.BIU_Xfer_Sync<3 .. 0> should be 
set accordingly. See "Synchronizer Settings" for more details. 

Function Responses 

The Server uses a similar technique as the Requestor for anticipating T-Bus 
transactions. Of course, in the case of the Server, the anticipation is for Func­
tion Responses rather than Function Requests. The Server_ConfigA.Mul­
ti_Head_Start<l..0> register is used to set the anticipation for multi-word 
writes. Figure A-53 illustrates its settings. 

Register definition -
Server_ ConfigA.Multi _Head_ Start< 1 .. 0 > . 

Register: Server_ConfigA.Multi_Head_Start<l .. 0> 

10 Wait until ... 
== ============= 
00 all words are transferred 
01 three words have been transferred 
10 two words have been transferred 
11 one word has been transferred 

In addition, the Server_ ConfigA.Ena _Byte_ Head_ Start bit, when asserted 
( = 1), begins anticipation whenever the T-Bus Slave responds with EARLY­
ACK 

Normally, the Server will anticipate for reads only. However, in some hard­
ware configurations it is possible to anticipate on writes. When Server_ Con­
figB.Ena_ Wr _Head_ Start is asserted ( = 1), the Server treats writes exactly the 
same way as reads for all pmposes. 
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Using anticipation in multi-word writes can cause unusual side effects if the Q 
multi-word write does not complete in time. This is because the Server SRU 
may mistakenly believe that the write data buffers are actually stable until the 
upstream Requestor has seen the Function Response and taken some action. 
As seen by the Server, this response takes quite long, at least 4-6 Switch Inter-
vals. Thus, if the multi-word write takes only this long to complete, there is no 
problem. 

Using read anticipation requires that the T-Bus Slave issue an ERROR before 
transferring any data. · · 

.•• ,,,, ''"•·· .••• ,, '\,, "•,,,, .•• ,,,, .• ,,, '···· "····· ............. _ '···· ·•••••· ...... "···· ....... 'I,, ...... '•;,,_ ''•• ..•• ,,,, '•• ••. ·•••·· ''•1 •..•• ,,,, '''···· .••• , •..•• ,,,_ •• ,,,, '\,_ '\, "••,,_ •• ,,,, ••• ,,,_ •• ,,,,_ ''"· • ...,,_ '\,_ '•,,,_ '\, '•.,,_ '\,_ '•,,,_ '1• ........ _ '';,, '•1, 

The EARLY-ACK response has no meaning for multi-word reads or writes, 
and this response is ignored by the Server. Also, the Server must examine the 
T_RR field even though T_SPAUSE may be asserted.· 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Locked Sequences 

The Server's handling of locked sequences parallels that of the Requestor and 
is described in the "Requestor/Operation/Locked Sequences" section. Like 
the Requestor, the Server's locked sequence has three distinct events: opening, 
maintaining and dropping. 

The Server becomes locked if and only if it receives an Initial Locked message 
(OPEN, by definition is the command). It remains locked as long as it returns 
any function response except Reject. When a lock is dropped at the upstream 
Requestor, Frame is negated. As mentioned in the "Requestor/Operation/ 
Locked Sequences" section, a Requestor drop-lock function request can occur 
as the result of a T-Bus master issuing a FREE-LOCK or possibly a Reques­
tor Switch Class error. The Server NEVER knows the reason for the drop-lock 
request, it simply issues the perfunctory FREE-LOCK to a T-Bus slave. 

Stolen Bit Support 

Because of the structure of the Switch message format, only one bit of Stolen 
information can be transferred between upstream and downstream nodes dur­
ing a given message. Therefore, during byte reads, the Stolen bit from the Serv­
er's T-Bus is transported to the upstream Requestor exactly as it is read from 

;o 

T _AD < 32 > during the data transfer cycle of the T-Bus. For multi-word Q 
reads, the Server continues the T-Bus transaction, reading and storing all of .. 
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the intended words even when it encounters a Stolen bit BEFORE the last 
word of the transfer. 

However, when the Server finally transmits that data to the upstream Reques­
tor, it acts differently depending on whether or not the data contains a Stolen 
bit. If it does not, all of the multi-word data is included in the upstream mes­
sage and the Stolen bit in the Checksum byte is sent negated. If it does, the 
Server ends transmission of the data AFIER it sends the Stolen word, and 
it asserts the Stolen bit in the Checksum byte. The upstream Requestor always 
assumes that the words of a multi~word transfer are NOT Stolen until it en­
counters an asserted Stolen bit in the Checksum byte. When this occurs, the 
LAST word and only the last word received by the Requester is assumed to 
be Stolen. 

For byte write transfers, the Server presents the state of the Stolen bit in the 
downstream Checksum byte to the downstream T-Bus bit, T _AD< 32 >. For 
multi-word writes however, the state of ALL Stolen bits transported down­
stream is assumed by the Server to be "O". In this case, the Server will ignore 
the state of the Stolen bit in the downstr.eam Checksum byte. 

Error Reporting 

Errors delivered by the Server (Requester "Remote Error" Class) are trans­
ported by the Server to the upstream Requester via the function response 
Switch message. Those errors may have one of two sources: they could origi­
nate from the Server itself, or they could be errors passed to the Server from 
a downstream Slave. The error codes due to the Server are shown in 
Figure A-54. Their definitions are shown in Figure A-55. Other remote slave 
errors are described in other system documents. 
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Figure A-54 · Server remote error codes and definitions. 

Server Error Codes: 

7 0 

I I 
PPPPPPba 

b a Server Error 
================== 

0 0 Downstream_Refused 
0 1 Downstream_Write 
1 0 Downstream_Late 
1 1 Downstream_OTL 

.. . where, 

P .. P = Server_ConfigA.Error_Prefix<5 .. 0> 

Figure A-55 Server remote error definitions. 

Downstream_ Write A downstream write error was detected from a T-Bus Slave while the 
downstream Server was sourcing data. Because of the direction of the 
data bus, the Server cannot return the actual error code. 

Downstream_OTL A downstream T-Bus Slave did not respond to the Server's request. 
Specifically, the Slave did not assert T_DRIVEN in the T-Bus cycle 
following the Server's T-Bus request. 

Downstream_Late A downstream T-Bus slave responded with a LATE ERROR 

Downstream_Refused A downstream T-Bus slave responded with REFUSED-LOCKED 
when the Server thought itself to be locked. 

A.5.2.1.6 Disabled Operation 

WARNING 

454 

The Server can be disabled via a number of bits in the Server_ ConfigB register. 
These include: Ena_ BIU and Ena_SRU. These bits reset the two major blocks 
of the Server. 

In normal operation, these bits SHOULD ALWAYS BE ASSERTED/NE­
GATED AT THE SAME TIME. Otherwise, erratic Server operation may re­
sult. 
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Figure A-56 

Configuration Registers 

The Server has two general Configuration Registers, known as Server_ ConfigA 
and Server_ ConfigB, which are used to set miscellaneous parameters and en­
able/disable certain functions. The structure of Server_ConfigA is shown in 
Figure A-56. The bit definition of Server_ConfigA is shown in Figure A-57. 
This register contains mostly configuration bits that affect the run-time pa­
rameters of the Server. All bits are "high true" and are reset (low) upon system 
reset. The structure of Server_ ConfigB is shown in Figure A-58. The bit defi­
nition of Server_ConfigB is shown in Figure A-59. This register contains 
mostly configuration bits that affect the run-time parameters of the Server. 
All bits are "high true" and are reset (low) upon system reset. Only the low 
eight bits of Server_ ConfigB are devoted to read/write configuration. The up­
per 24 bits are the read-only Server_TestA register. 

Register definition - Server_ ConfigA. 

Register: Server_ConfigA<31 .. 0> 

BIT/FIELD FUNCTION (read/write) 
========= ===================== 

<31> Ena_Wr_Head_Start. 
<30> 

<29 .. 28> 
<27 .. 24> 
<23 .. 18> 

<17> 
<16> 

<15 .. 12> 
<11 .. 8> 

<7 .. 4> 
<3 .. 0> 

Ena_Byte_Head_Start 
Multi_Head_Start[2] 
RX_Ini t_cs [ 41 
Error_Prefix[6] 
Ena BIU 
Ena SRU 
STU_Freed_Sync[4J 
STU_Done_Sync[4) 
BIU_Free_Sync[4] 
BIU_Xfer_Sync[4] 

Figure A-57 Bit definition - Server_ConfigA. 

Ena_Wr_Head_Start Enables the Server to anticipate during write-type Function Re­
sponses ( = 1). Otherwise, anticipation will only occur for read-type 
Function Responses. (See: ''.Anticipation Support") 

Ena_Byte_Head_Start Enables the Server to anticipate during byte-type Function Responses 
( = 1). Otherwise, anticipation will not occur for byte-type Function 
Responses ( = 0). (See: ''.Anticipation Support") 

Multi_Head_Start[2] 

February 14, 1990 

Configures the Server for the desired Function Response Anticipation 
for all multi-word operations. (See: ''.Anticipation Support") . 
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RX Init CS[4] 

Error_ Prefix[ 6] 

Ena_BIU 

Ena_SRU 

STU_Freed_Sync[4] 

STU Done Sync[4] - -

BIU _Free_Sync[4] 

BIU_Xfer_Sync[4] 

Figure A-58 
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Configures the initial checksum for Initial Messages. NOIB: This reg­
ister must contain the logical INVERSE of the initial checksum. (See: 
"Checksum Calculation") 

Configures the Prefix (T-Bus bits: D7-D2) of the Error code response 
for Server error. (See: "Error Handling") 

Enables the by releasing its reset signal ( = 1). Otherwise, the BIU will 
be held in reset ( =0). (See: "Disabled Operation") 

Enables the SRU by releasing its reset signal ( = 1). Otherwise, the 
SRU will be held in reset ( = 0). (See: "Disabled Operation''.) 

Configures the settling time of the Switch 'fransrnit Unit's (STU) hand­
shake synchronizer which receives a "freed" signal from the Bus Inter­
face Unit (BIU). This signal indicates that the BIU has acted on a 
previous "free" command from the SRU. (See: "Synchronization") 

Configures the settling time of the Switch Transmit Unit's (STU) hand­
shake synchronizer which receives a "done" signal from the Bus Inter­
face Unit (BIU). This is used to indicate completion of a Function 
Request. (See: "Synchronization") 

Configures the settling time of the Bus Interface Unit's (BIU) hand­
shake synchronizer which receives a "free" signal from the Switch Re­
ceive Unit (SRU). This is used to issue a FREE-LOCK (See: 
"Synchronization") 

Configures the settling time of the Bus Interface Unit's (BIU) hand­
shake synchronizer which receives a "xfer" from the Switch Receive 
Unit (SR U). This is used to initiate a Function Request. (See: "Syn­
chronization") 

Register definition - Server_ ConfigB/Server _ TestA. 

Register: Server_ConfigB<31 .. 0> 

BIT/FIELD FUNCTION (read/write) 
========= =================================== 

<31 .. 8> Server TestA (read only, see below) 
<7 .. 6> spare 

<5> Dis Frame 
<4> Ena_soc 
<3> Dis Check Err - -

<2 .. 0> SER_Slave_Num[3] 
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Figure A-59 

Dis_Frame 

Ena_SOC 

Dis_ Check_Err 

SER_Slave_Num[3] 

A.5.2.1.8 

February 14, 1990 

Bit definition - Server_ConfigB. 

Disables the SRU by forcing it to see the incoming Frame negated, re­
gardless of its actual state ( = 1). Otherwise, the SRU will see the actual 
incoming Frame ( = 0). (See: "Disabled Operation") 

Enables the SRU to recognize the start of a new connection ( = 1). 
Otherwise, the SRU will ignore this event ( = 0). (See: "Disabled Oper­
ation") 

Disables the detection of checksum errors ( = 1). Otherwise, the detec­
tion is enabled ( = 0). (See: "Checksum Calculation) 

Configures the Slave riumber that the Server will place on the 
T..:_SOURCE<2 .. 0> pins when it is making a T-Bus Function Re­
quest. 

Test Registers 

The Server contains a read-only test register whose read value should NEVER 
be interpreted during normal operation. A write to this register is acceptable 
but has no meaning. Figure A-60 shows the structure of that register which 
is used mostly for observing internal states. Figure A-61 shows the bit defini­
tion of SOME of the bits in the Server_TestA register. 
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Figure A-60 Register definition - Server_ TestA. 

Figure A-61 

Regist.er: Server_TestA<31. .0> 

BIT/FIELD 

<31> 
<30> 
<29> 
<28> 
<27> 
<26> 
<25> 
<24> 

<23 .. 20> 
<19 .. 16> 

<15 .. 8> 
<15> 

<14> 

<13> 
<12> 
<11> 
<10> 

<9> 
<8> 

<7 .. 0> 

FUNCTION (read-only) 
===================== 
<unused> 
SRU believes it is locked 
SRU refusing new connections 
Synchronized "Enable New SOC's" 
SRU "Should be Checksum 11 

SRU Chec~sum OK signal 
SRU Anticipation Signal 
Checksum errors occurred 
<unused> 
Running Version of Rx Checksum 

Internal State of SRU FSM 
SRU has seen Reverse come and go 

and has seen Frame go away. 
Transition to 9, 10, or 13 will occur 

SRU has seen first Reverse and is waiting 
for the end of the Reverse transmission 

SRU is waiting for lock to be FREE-LOCKed 
SRU is waiting for first Reverse 
SRU receiving Checksum byte 
SRU receiving a command 
SRU is idle 
Bad SOC seen (low true) 
Server_ConfigB (see previous figure) 

Bit definition - Server_ TestA. 

SRU believes it is Jocked The BIU will issue a FREE-LOCKS request if Frame is negated for 
more than one Switch Interval. 

SRU refusing new connections Indicates that there is no active connection and that new connec­
tions will be refused (with Reject). The SRU IS currently and WILL be 
idle until re-enabled. (See: "Disabled Operation") 

Synchronized Enable New SOC's 

SRU "Should be Checksum" 

The synchronized version of Server_ConfigB.4. The programmer 
should check this bit before assuming that the SRU will Reject or ac­
cept new connections. (See: "Disabled Operation") 

0 

Q 

Indicates that the Checksum should have arrived. This is used in 
conjunction with the "SRU Anticipation Signal" to determine if the 
SRU is properly anticipating the reception of the Checksum byte. Q 
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SRU "Checksum OK" Indicates to the BIU that the T-Bus operation should, in fact, take 
place. 

SRU Anticipation Signal Indicates to the BIU that it should begin the T-Bus request. See SR U 
"Should be Checksum" above. 

Checksum errors occurred Indicates that a checksum error did occur sometime in the past. This 
bit is negated whenever Server_ ConfigB.4 is negated. 

A.5.2.2 

A.5.2.2.1 

February 14, 1990 

Switch Message Protocol 

The Server fully generates and supports the Butterfly Switch protocol. That 
support is _described below. · 

Upstream Message Components 

Unlike the Requestor, the Server never has to create a message header with 
routing information because the return path to the upstream Requestor has 
already been established. The Server need only return a checksum with data 
and/or error code information. Figure A-62 shows a typical upstream Server 
message as a response to a word-read function request. The significance of 
the "E" and "S" bits are described in: "Stolen and Error Messages". The up­
stream message body for a write is always of the same format whether the func­
tion request was multi-word or non-multiple word. Figure A-63 shows a 
typical upstream Server message as a response to a word write Function Re­
quest. The significance of the "E" and "S" bits are described in: "Stolen and 
Error Messages". 
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Figure A-62 Bit definition - upstream message body (read). 

Figure A-63 

A.5.2.2.2 
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7 0 

I I 
D31 D30 D29 D28 D27 D26 D25 D24 (first sent) 
D23 D22 D21 D20 Dl9 Dl8 D17 Dl6 I 
Dl5 Dl4 Dl3 Dl2 Dll DlO D9 DS I 
D7 D6 D5 D4 D3 D2 Dl DO I 

I 
<possible additional read words> I 

v 
0 0 E s CS3 CS2 CSl cso (last sent) 

.- . . where, 

D31 .. D8 data information from T-Bus: T_AD<31 .. 8> 
D7 .. DO error code (E=l), T_AD<7 .. 0> (E=O) 
E =Error bit 
S = Stolen bit 
CS3 .. CSO =message checksum 

Bit definition - upstream message body (write). 

7 0 

I I 
nry 

~· DG r.~ 
~~ D4 · D3 D2 Dl --Do {first .sent) 

0 0 E s CS3 CS2 CSl cso (last sent) 

.. . where, 

D7 .. DO error code (E=l), unknown (E=O) 
E =Error bit 
CS3 .. CSO =message checksum 

Stolen and Error Messages 

When the Upstream Read message has Stolen and/or Error bits asserted in 
the checksum, their presence modify the meaning of the message byte (or by­
tes) PRECEDING the checksum byte. In the case of an asserted ( = 1) Stolen 
bit, the Server is indicating that ONLY the previous four bytes are stolen. This 
is consistent with what can happen on the T-Bus side of the Server. There, 
a T-Bus Slave may happen to return a Stolen data wbrd which is not necessari­
ly the l<ist word of the read operation. The Server's BIU will continue to read 
any data "past" the Stolen word, but its STU will always END transmission 
of the Upstream Switch Message on the Stolen word - ignoring the rest. The 
consequence for the Upstream Requestor is that the "S" bit always modifies 
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FigureA-64 

' 

A.5.2.2.3 

February 14, 1990 

the LAST word received. The "S" bit has no meaning for Upstream write mes­
sages and is ignored. 

When the Error bit is asserted ( = 1) during an Upstream Read message, the 
Server is indicating that the byte immediately PRECEDING the Checksum 
contains the Error Code and that any other bytes in the message are "garbage" 
data. The T-Bus protocol demands that all Slaves respond with "ERROR" 
during the FIRST word transfer and that an "ERROR" response ends the T­
Bus transfer. Therefore, an Upstream Read Message with E = 1 will only con­
tain one word of data. Assertion of the "E" bit has higher priority than 
assertion of the "S" bit, so they will never be asserted simultaneously in a given 
Upstream message. 

Figure A-64 shows a summary of th!? effect of the "E" and "S" bits on an Up­
stream Message. 

Interpretation of checksum E and S bits. 

E s previous byte is ... 
=================== 

O o Data byte,. previous word is NOT stolen (reads only) 
O 1 Data byte, previous word is stolen (reads only) 
1 o Error Code (reads or writes) 

Note: the value ES = 11 will never occur 

Upstream Message Types 

The previous discussions about message formats can be brought together to 
produce an enumeration of the possible Upstream Message types. This sum­
mary is shown in Figure A-65. 
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FigureA-65 Upstream message types. 

TYPE #WORDS STOLEN or ERRORS RETURN MSG FORMAT 
=========== ================ ================= 

write any none XC 
" any error zc 

read non-multiple none · DDDDC 

" either on wordl DDDEC 

two words none DDDDDDDDC 
" either on wordl DDDEC 
" stolen on word2 DDDDDDDDC 

thr.ee words none llDDDDDDDDDDDC 
" either on wordl DDDEC 

" stolen on word2 DDDDDDDDC 

" stolen on word3 DDDDDDDDDDDDC 

,,four words none DDDDDDDDDDDDDDDDC 

" either on wordl DDDEC 
" stolen on word2 DDDDDDDDC 

" stolen on word3 DDDDDDDDDDDDC 

" stolen on word4 DDDDDDDDDDDDDDDDC 

NOTE: Frame is high for entire return message. 

x don't care 
z always an Error Code 
E Error Code (Checksum bit 5 = 1) 

= Data Byte (Checksum bit 5 = 0) 
c = Checksum Byte 

A.5.2.2.4 Checksum Calculation 

462 

Checksum support for the Server is described in the "Requestor/Operation/ 
Checksum Calculation" section. The actual calculation performed by the 
Server is shown in Figure A-66. Figure A-66 shown the calculation for a single 
word read message. For read messages with more words, those bytes would 
be included in the same manner as the data bytes in the figure. For write mes­
sages, the data field would be missing entirely from the calculation and only 
the error byte would be included. 
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Figure A-66 
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Equation - message checksum (single-word read, see text). 

CS<3> = exor(D31,D27,D23,Dl9,Dl5,Dll,D7,D3,0) 

CS<2> exor(D30,D26,D22,Dl8,Dl4,Dl0,D6,D2,0) 

CS<l> exor(D29,D25,D21,Dl7,D13,D9,D5,Dl,E) 

CS<O> = exor(D28,D24,D20,Dl6,Dl2,D8,D4,DO,S) 

.. . where, 

CS<3 .. 0> =message checksum 

Rejects 

A Reject is the assertion of Reverse for exactly one Switch Interval. Rejects 
are not, strictly speaking, messages; because the Switch data pins do not carry 
any known data. The Server produces a Reject (assertion of Reverse for on 'y 
one Switch Interval) in either of three conditions: 1) An addressed downstream 
T-Bus slave is found to be locked during an Initial Switch Message, 2) The 
Server has been configured to reject all Downstream messages, or 3) The Serv­
er's SRU state machine is busy while trying to return to its "idle" state. 

During the Initial Switch message, the targeted Downstream device may, in 
fact, be Jocked to a device other than the Server. The Server issues a Reject 
to indicate this fact to the Upstream Requestor. Once the Server has success­
fully locked some device, it is still possible for a Locked Message to attempt 
an access to device other than one to which the Server is currently locked. In 
this situation however, the Server does NOT issue a Reject. Instead, it sends 
an error response to the upstream Requester, (See: "Error Reporting") 

The Server can also be configured - via the Requestor_ConfigA.Ena_SOC 
bit - to issue a reject on any new incoming message. This is a synchronized 
enable such that it can be asserted/negated at any time. The Server will contin­
ue to process any pending transactions but will prevent any new ones. Thus, 
the Server can be "gracefully" removed from the Switch interface. 

Whenever the Server is in any state other than its "idle" state (Jocked or un­
locked), it will refuse new attempts at a connection (Frame high preceded by 
Frame low for for at least two Switch Intervals) by issuing a Reject. There are 
many instances when a new connection attempt would indicate an Switch pro­
tocol violation, and thus a Reject issued by the Server would make little differ­
ence. However, there are some situations where ,the Server would correctly 
issue a Reject while it is off processing some event. For instance, a drop-lock 
would cause the Server to begin issuing a FREE-LOCK on the T-Bus. If new 
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downstream Switch message attempted to access the Server before it finished 
the transaction, the Server would issue a Reject. 

T-Bus Interface 

The Server supports the standard T-Bus protocol with some smalllimitations. 
For one, the Server does NOT support unaligned transfers which fall across 
word (32-bit) boundaries. The Server also expects to see an ERROR response 
as the FIRST response from a T-Bus Slave if that slave is going to issue any 
ERROR's. If the Slave cannot issue an ERROR in the cycle immediately fol­
lowing the T-Bus request (i.e., the first response cycle), it must assert 
T_NSPAUSE_xxx until it decides if the request is an error or not. 

LCON Interface 

The LCON is a the physical and logical link between the SIGA Server and the 
"input" port of the Switch Gate Array (SGA). In other words, for the SIGA, 
the LCON interface is the logical Switch interface. The LCON provides the 
Server with: 1) level conversion to and from the ECL levels of the SGA and 
2) reclocking of data, Frame, Reverse to and from the SGA. 

Figure A-67 shows the Server's LCON (Switch) Interface Pins. 

Server LCON (Switch) interface pins. 

PIN NAME 

S_DATA<7 .. 0> 
S_FRAME 
S_REVERSE 
S_NENA_BACK 

TYPE 

bidirectional 
input 
output 
input 

Data Bus Enable Control 

FUNCTION 

Server-LCON data bus 
Frame input from Switch 
Reverse output to Switch 
LCON TTL driver enable 

The Server controls the enables of both its own output drivers and the LCON's 
output drivers to the SIGA-LCON data interface - S _DATA< 7 .. 0 > . It does 
so in a manner complementary to the Requester's method (see "Requester/ 
Operation/LCON Interface/Data Bus Enable Control"). The Server uses the 
same concept of "Talk" and "Listen" mode as the Requester. 

The Server is considered "quiescent" when it is not transmitting messages and 
not waiting for any replies. When quiescent, the Server is in Listen Mode. The 
Server tries to stay in Listen Mode whenever possible, making the transition 
to Talk only for the absolute minimum time necessary. This situation is· the 
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mirror image to the Requestor. It is always in Talk Mode when quiescent and 
tries to stay in Listen mode for as little time as possible. 

When the Server receives the checksum of a downstream message, it transi­
tions to Tulk mode - via the "dead" state. It remains in Talk mode until the 
T-Bus transaction is complete and the upstream return message has been sent. 
Once the upstream checksum has been sent, the Server transitions immediate­
ly into Listen mode (no contention is possible - as with the Requestor). 

TCS Control Unit (TCU) 

The basic purpose of the TCS Unit (TCU) is to allow the Test and Control Sys­
tem (TCS) Slave Processor access to the T-Bus interface - in essence, .to act 
as a protocol converter. Normally, this involves the TCU acting like a T-Bus 
Master - performing reads and writes. However, the TCU is flexible enough 
so that it can also generate or "spoof" responses for any T-Bus Master or 
Slave. A "spoofed" response essentially involves issuing a response on theT­
Bus in the absence of a request. This can used, for mstance, to free up an ob­
serving T-Bus Master who's locked Slave has failed. In this case, the TCU can 
"make believe" that IT is the "failed" slave. 

A secondary function of the TCU is to allow the TCS Slave Processor DIRECT 
access to the CSU Map, rather than forcing it to make an access via the T-Bus 
interface. This is useful for fault tolerance and bootstrapping. 

1/0 Description 

The TCU interface is composed of four pins on the SIGA. The pins and their 
basic functions are shown in Figure A-68. 

TCU 1/0 signal description. 

The data shift clock. Data is shifted into the SIGA on each rising edge 
of C_CLK Data is shifted out of the SIGA on each falling edge of 
C_CLK 

TCS data into the SIGA. 

TCS data out of the SIGA. This is a tri-state signal which is driven 
when C _ NEXECUTE is asserted ( = 0). 
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Asynchronously initiates execution of a command ( = 0) and enables 
C _OUT. In addition, negating C;_ NEXECUIB ( = 1) resets the TCU 
interface. 

Read/Write Operation 

The TCU contains 16 addressable registers - each 8 bits wide. The TCS Slave 
can read· any register by clocking-in the required address ( 4 bi ts), a Read/Write 
bit ( = 1), and assert C _ NEXECUIB ( = 0). A read operation is illustrated in 
Figure A-69. Some additional details for Read operations - not apparent 
from Figure A-69 - are now discussed. 

1. C _IN data is clocked-in on the positive edge of C _ CLKand C _OUT data 
is clocked-out cin the negative edge of C _ CLK. 

2. Data can be clocked in or out at any desired rate, provided that the AC 
specifications of the C _ CLK pin are not violated. The duty cycle of 
C_CLK is variable within the AC specifications. There is no MAXI-
MUM high ( = 1) or low ( =0) time for C_CLK. , 

3. Reads are non-destructive and can be aborted at any time. 

4. C _ NEXECUIB is not synchronized with C _ CLK and can be asserted at 
any time after the address and Read/Write bit has been clocked-in. 

0 

5. The C _OUT pin may be used to monitor, in real time, the value of a par-

0
.,­

ticular bit. This is done by reading the appropriate register, shifting out 
the desired bit using C _ CLK, and then holding C _ CLK steady. C _ CLK 
can be held in either state (1 or 0) as long as it does not make another 
positive transition. 

6. Extra data bits preceding the negative transition of C _ NEXECUIB, are 
ignored. 

Timing - TCU read operation. 

C_CLK 
C_IN 
C_NEXECUTE 
C_OUT 

inactive I addr in data out 

_____ .H_H_H_H_H_H_H_H_H_H_H_H_H __ 
........... a3a2ala0pp .................... . 
HHHHHHHHHHHHHHHHHHHHHH_. _______ _ 

-----------------------d7d6d5d4d3d2dld0 ... 

.. . where, 

a3 .. a0 =address of register to be read 
d7 .. d0 =data from read register 
pp = Read/Write bit (=1) 
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A write operation is performed by clocking-in four bits of data, 4 bits of ad­
dress, a Read/Write bit ( = 0), and then asserting C _ NEXECUTE ( = 0). This 
is illustrated in Figure A-70. Some additional details for Write operations -
not apparent from Figure A-70 - are now discussed. 

1. C _IN data is clocked-in on the positive edge of C _ CLK and C _OUT data 
is clocked-out on the negative edge of C_CLK.. 

2. Data can be clocked in or out at any desired rate, provided that the AC 
specifications of the C _ CLK pin are not violated. The duty cycle of 
C_CLK is variable within the AC specifications. There is no MAXI­
MUM high ( = 1) or low ( = 0) time for C _ CLK.. 

3. Reads are non-destructive and can be aborted at any time. Reads of the 
TB US_ Response register can be aborted as well. However, if this is done 
AFTER C _NExECUTE has been asserted, the T-Bus operation may be 
aborted. 

4. C _ NEXECUTE is not synchronized with C _ CLK and can be asserted at 
any time after the address and Read/Write bit has been clocked-in. 

5. C_NEXECUTE need only be asserted for a short moment to begin ex­
. ecution of the command. The minimum low time is described in ''AC 

Specifications". 

· 6. Extra data bits preceding the negative transition of C _ NEXECUTE, are 
ignored. 

Timing ..:.. TCU write operation. 

C CLK 
C IN 
C NEXECUTE 
C_OUT 

inactive command in exec 

------'H_H_H_H_H_H_H_H_H_H_H_H_H ___ _ 
.......... d7d6d5d4d3d2dld0 .. a3a2ala0pp ........ . 
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH_HHHHH 
---------------------------------------do .. ----

.. . where, 

a3 .. aO =address of register to be written to 
d7 .. do= data to be written 

pp = Read/Write bit (=0) 

Register Map 

The register map for the 16 TCU registers is shown in Figure A-71. 
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TCU register map. 

a3 .. ao DESCRIPTION 0 
====== ==================== 

0 T_AD<7 .. 0> (data) 
1 T AD<15 .. 8> (data) 
2 T AD<23 .. 16> (data) 
3 T_AD<31 .. 24> (data) 

4 T_AD<7 .. 0> (addr) 
5 T AD<15 .. 8> (addr) 
6 T AD<23 .. 16> (addr) 
7 T AD<31.. 24> (addr) 

8 TBUS_Response 
9 TBUS _Command 
A TBUS _Command_Modifier_O 
B TBUS _Command_Modifier 1 

c CSU Map<7 .. 0> 
D CSU Map<8> 
E unused 
F unused 

Referring to Figure A-71, registers 0 through 3 are special registers. For write 
operations, their contents are loaded, via the TCU interface, with the data to. {. ,.·· ~ 
be written TO some T-Bus slave. For read operations, their contents are re- V 
placed with lhe uala read FROM some T-Bus slave. Registers 4 thrm.Jgh 7 
are loaded ONLY by the TCU interface. The contents of these registers are 
placed on the T-Bus during the address phase of a T-Bus request. 

The registers at address "C" and "D" are used to initialize CSU_ Map< 8 .. 0 > . 
Register "D" - bit "O", corresponds to CSU _Map< 8>. Bits 7 through 1 of 
register "D" are unused. Figure A-72 shows the definition of the TBUS Re­
sponse antl Command Registers. Referring to Figure A-72, the TBUS_Re­
sponse register is a read-only register which.is valid after a T-Bus operation 
has been executed. The "Done" bit is monitored after a T-Bus command is 
initiated by the TCU. When asserted ( = 1), it indicates that the operation is 
complete. See the "T-Bus Operations" section for more detail. The 
"Drive_AD" bit indicates that the T_AD Bus was driven during a T-Bus ac­
cess ( = 1). The rema.ining bits in the TBUS_Response register are the "re­
sponses" received from the T-Bus operation. 
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Register definitions - TBUS Response and Command 
registers. 

Register: TBUS_Response<7 .. 0> (read only) 

BIT/FIELD FUNCTION (read only) 
========= ====================== 

<7> Done 
<6> Drive_AD 
<5> T_DRIVEN 
<4> M_PARITY 
<3> T_AD<32> 

<2 .. 0> T_RR<2 .. 0> 

Register: ·TBUS_Command<7 .. 0> 

BIT/FIELD FUNCTION 
========= ====================== 

<7 .. 6> output T_AD~33 .. 32> (addr) 
<5 .. 3> output T_SIZE<2 .. 0> 
<2 .. 0> output T RR<2 .. 0> 

Register: TBUS_Command~Modifier_0<7 .. 0> 

BIT/FIELD FUNCTION 
========= ====================== 

<7 .. 4> unused 
<3> Response 
<?:> nut.put T~AD<32> (data) 

<l .. 0> output T_PATH<l .. 0> 

Register: TBUS_Command_Modifier_l<7 .. 0> 

BIT/FIELD FUNCTION 
========= ====================== 

<7> output T SYNC 
<6 .. 5> output T_PRIORITY<l .. 0> 
<4 .. 3> output T LOCKOP<l .. 0> 
<2 .. 0> output T_SOURCE<2 .. 0> 

The TBUS_Command and BUS_Command_Modifier_l registers contains 
the indicated fields to be placed on the T-Bus during the address phase of any 
operation. The TBUS _Command_ Modifier_ O register outputs the "T _PATH" 
field during the address phase of any operation and the T_AD <32> bit dur­
ing the data phase of a write operation. 

The "Response" field of the TBUS _Command_ Modifier_ O register, has a spe­
cial function. When asserted ( = 1), the TCU will place a "O" on the T_RE­
QUEST and drive the T-Bus FOR A SINGLE CYCLE with the register 
settings intended for the address phase of a T-Bus cycle. This is used for 
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"spoofing" a T-Bus response. When the "Response" field is a "O'', the TCU 
makes a normal T-Bus Request with T_REQUEST asserted ( = 1). Q 
Normal T -Bus Operations 

The TCU can be used to read and write, one to four bytes. Multi-word trans­
fers are not allowed. The TCU can also OPEN and FREE locks although this 
is not recommended because the TCS Slave interface is relatively slow. 

A read or write operation is set up by loading the desired data into the regis­
ters. The operation is actually initiated by a read of the TB US_ Response regis­
ter. Since the MSB of this register is the "Done" bit, C_CLK should be 
disabled just after C _ NEXECUTE is asserted ( = 0). This a:llows asynchro- _ 
nous monitoring of the "Done" bit. Terminating the read by negating ( = 1) 
C_NEXECUTE will abort the T-Bus request. 

The TCU will retry after becoming REFUSED but will ignore a REFUSED 
LOCKED. In other words, the TCU will not become an "observing master". 

Special T-Bus Operations 

The TCU can FREE-LOCKS for any T-Bus master by specifying the correct 
T _SOURCE field value and performing a write operation. The TCU can also C._,) 
spoof any one-cycle response of a Slave by asserting the "Response" bit in the 
TBUS_Command_Modifier_O register. For instance, it can issue a COM-
PLETED or'EfqtOTI. for-some 513.ve that fr; kno\yn to be .faulty. 

CSU Map Initialization 

The CSU_ Map is a 9-bit quantity which maps the SIGA CSU into a desired 
8K page. This quantity is initialized by the TCU and is one of the first things 
that must be done to the SIGA upon power-up. If the CSU_ Map is not initial­
ized; it defaults to the setting of all l's. 

Configuration/Status Unit 

The Configuration Status Unit (CSU) is the T-Bus Slave interface which al­
lows any T-Bus master read and write access to the SIGA'.s configuration and 
status registers. 

Normal Register Accesses 

The CSU is limited in its support of the T-Bus protocol and is NOT optimized 
for minimum wait states (Slave pause cycles). The CSU will respond to a T- Q. 
Bus query ONLY when T-Bus bits T_AD<24 .. 16> match 
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CSU_ Map< 8 .. 0 >. The CSU_ Map is initialized by the TCU (See: TCS Con­
trol Unit/CSU Map Initialization). 

In the cycle following a request to the CSU, the CSU will either respond with 
an ERROR or go on to complete the requested function. Figure A-73 shows 
the TCU responding with an ERROR. 

Timing - CSU ERROR access. 

T-Bus cycle # 
T-Bus cycle 

0 
req 

1 
resp 

2 
end 

T_NSPAUSE_SIGA HHHHHHHHHH~~~HHHHH 
T_RR<3 .• 0> xxxxxxxxeeeee 

.. . where, 

x .. x = invalid response 
e .. e ~ ERROR response 

Note from Figure A-73, that T_NSPAUSE_SIGA is asserted for only one 
cycle. The ERROR response is triggered by exactly two conditions: 1) 
T_SIZE<2> = 1, or 2) T_LOCKOP<l> = 1. This means that the CSU 
will not support multi-word writes or locking. A normal read and write opera­
tion are shown in Figure A-74. Note from Figure A-74 that T_AD <32> is 
always a "O" on a read artd a "don't care" on a write. Iri addition, during write 
operations, data is set up to the configuration latches during cycle #1, written 
to them during cycle #2, and held at the configuration latches during cycle #3. 
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Timing - normal CSU read/write. 

T-Bus cycle # 
T-Bus cycle 

0 
req 

1 
resp 

2 
resp 

3 
end 

T NSPAUSE SIGA HHHHHHHHHH HHHH - - -------
T RR<3 .. 0> ???????????xxxxxxxxxxxxxxcccc 

T_AD<32> (read) ????????????XXXXXXXXXXXXX~­

T AD<31 .. 0> (read) ????????????XXXXXXXXXXXXXRRRR 

T_AD<32> (write) xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
T_AD<31. . 0> (write) ?????????WWWWWWWWWWWWWWW 

.. .. -where, 

x .. x = invalid response 
c .. c =COMPLETED response 
x .. x =invalid data 
W .. W = valid write data 

Synchronized Accesses 

0 

Certain accesses to the CSU must be synchronized to the One Microsecond __ 

0
.__ _ 

Pulse (OMSP). These include: 1) read/writes of the Real Time Clock, and 2) _ _. 
writes to the TONI_ A or TONI_ B registers. This mechanism is described in: 
''Reqt1estor/OperatiuniRTC au<l Reialed Functious": Essentially, all this·-
means to the CSU timing diagram in Figure A-74, is that cycle #2 is repeated 
until the synchronization pulse is received from the RTC or TONI_ NB con-
troller. 

Interleaver Loader 

The CSU provides support for loading and reading the Interleaver Modulus 
Ram through the use of two special registers: Interleave_ Address and Inter­
leave_ Data; and an external pin to the SIGA: I_NACCESS. Reads and writes 
to both the Interleave_ Address and Interleave_ Data registers are different 
than accesses to other configuration/status registers in the SIGA. The struc­
ture of the Interleaver_ Address register is shown in Figure A-75. The struc­
ture of the Interleaver _Data register is shown in Figure A-76. As seen in 
Figure A-76, read/write access to the I_ D register does not involve any data 
transfer within the SIGA. 
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Register definition - lnterleave_Address. 

Register: Interleave_Address 

31. ...... '' '''' ... '.'.''''.'' '.0 

.. . where, 

A .. A ~ interleaver address 

Register definition - lnterleave_Data~ 

Register: Interleave Data 
' -
31. '''' '''' '''' ....... ' ' ''''' '.0 
-------------------------------- (read) 
-------------------------------- (write) 

Address Register Access 

When a T-Bus master reads the Address _Register, the CSU immediately re­
sponds with a Slave Pause cycle by asserting ( = 0) the T _NSPAUSE _ SIGA pin, 
as it does with all other accesses. However, in the following cycle, the CSU 
also asserts the I _NACCESS pin and places the contents of the Interleave_ Ad­
dress register on the T-Bus. The CSU then waits for exactly seven (7) T-Bus 
cycles in this state. The mapping of the I_ A register to the T-Bus during this 
"wait" state is shown in Figure A-77, part (a). In the cycle following the wait 
period, the CSU then negates ( = 1) both T_NSPAUSE_SIGA and I_NAC­
CESS, and maps the I_A to the T-Bus as shown in Figure A-77, part (b). 
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T_AD<33> Interleave Address<l> 
T_AD<32> Interleave_Address<O> 
T_AD<31 .. 0> Interleaver_Address<31 .. 0> 

(a) wait (cycle 3 - 9) 

T_AD<33> 0 
T AD<32> 0 
T_AD<31 .. 0> = Interleaver_Address<31 .. 0> 

(b) end (cycle 10) 

The timing for writes to the I_ A register is exactly the same as for reads. The 
actual timing for Interleave_ Address register read/write access is shown in 
Figure A-78. 

• 

Timing - CSU lnterleave_Address register read/write access. 

T-Bus cycle # o 
T-Bus cycle req 

1 2 1 ••• I lo 
resp wait I ... I end 

11 
? 

T_NSPAUSE_SIGA HHHHHHHHH~~~~~­
T_RR<3 .. 0> 

HHHHHHHHHHH 
_cccccc 

I Nfa_CCESS (read) HBtiEHHEHH!iEH__ HHHHH!-iHHHHH 
T AD<33 .. 0> (read) ----~-???aaaaa ... aaabbbb 

I_NACCESS (write) HHHHHHHHHHHH HHHHHHHHHHH 
T_AD<33 .. 0> (write) dddddddddddd ... dddd??? 

.. . where, 

c .. c COMPLETED response 
a .. a "wait" type read of I_A (bit swapping) 
b .. b "end" type read of I_A (bit masking) 
d .. d data written TO the I A register 

Data Register Access 

The Interleave_ Data access is EXACTLY the same as the Interleave_ Address 
access EXCEPT for two key features: (1) during writes, no data is actually 
stored in the SIGA, and (2) during reads, the SIGA does NOT drive the 
T _AD< 33 .. 0 > field. During this time, logic external to the SIGA will manipu-
late the Modulus Ram, and the SIGA is basically being used as an address 

0 

0 

decoder and T-Bus control signal driver. The actual timing for Inter­
leave_Data register read/write access is shown in Figure A-79. Note from Q 
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Figure A-79 that the CSU temporarily drives the T-Bus during cycle #1. The 
data is unknown. 

Timing - CSU lnterleave_Data read/write access. 

T-Bus cycle # 
T-Bus cycle 

o I 1 
req I resp 

2 1 ... 1 10 
wait 1- .. I end 

11 
? 

T_NSPAUSE_SIGA HHHHHHHHH~~~~~­
T_RR<3 .. 0> 

__ HHHHHHHHHHH 
ccccc 

I_NACCESS (read) HHHHHHHHHHHHHH __ HHHHHHHHHHH 
T_AD<33 .. O> (read) xxxxxaaaaaaa---bb ... pbbbbbb 

I NACCESS (write) HHHHHHHHHHHH HHHHHHHHHHH 
T_AD<33 .. 0> (write) ???????????xxx ... xxxxxxxxx 

.. . where, 

c .. c =COMPLETED response 
.a .. a= unknown data driven by CSU (only for one cycle) 
b .. b =data from/to Interleaver (not driven by SIGA) 

Debug Support 

The CSU supports "freezing" a CSU read or write for debugging purposes. 
This is accomplished by initiating a normal T-Bus access (see Figure A-74, 
"Timing - normal CSU read/write") and asserting ( = 0) and holding the pin, 
M _NDEBUG, during cycle #1 and #2. This will cause the CSU to repeat cycle 
#2 indefinitely until M _ NDEBUG is negated ( = 1). When this occurs, the CSU 
will continue with cycle #3 as normal. 

For read cycles this means that T _AD< 31 .. 0 > will have the real-time state 
of any register being read. By reading a test register, for example, the state 
machine of the STU can be observed while it sends a message. 

For write cycles, the use is somewhat limited. It simply means that 
T _AD< 31..0 > can be manipulated in real time from the master (or logic ana­
lyzer). Since during cycle #2 the configuration latches are transparent, so that 
any external manipulation will be seen internally in real time. 

Restriction Summary 

The following restrictions apply to CSU operation: 

BBN ACI Proprietary 475 



A: SIGA Specification 

A.6 

A.6.1 

476 

Butterfly II Hardware Architecture 

1. The CSU will flag as an ERROR any multi-word access or an OPEN or 
MAINTAIN. Therefore,. the CSU does not support these operations. 
However, byte masking on writes IS supported. 

2. The CSU will NOT check for unaligned transfers. It is illegal to request 
an operation with an unaligned address. 

3. Synchronized Accesses rely on the presence of R _ CLK to complete. If 
R _ CLK is non-existent, the CSU will pause the T-Bus Master indefinite­
ly. The only way to release the pause would be to assert the M _ NRESET 
pin. 

4. The Stolen bit (T _AD< 32 >) is not supported on either reads or writes. 

Programming Model 

This section provides a memory map of the previously defined SIGA registers, 
as well as a compilation of all SIGA Error Codes. 

Memory Map 

Figure A-80 shows the memory map of the various registers. Note from 
Figure A-80 that the "M" field is programmable via the CNU Con­
fig.CSU _Map bits. 
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Figure A-80 

A.6.2 

February 14, 1990 

SIGA memory map. 

T AD<24 .. 0> 
==================== 

15 12 2 10 
I I I 11 

M 000 XXXXXXXXOOO bb 
001 bb 

M 001 XXXXXXXXOOO bb 
001 bb 

M 100 oxxxxxxxooo bb 
001 bb 
010 bb 
011 bb 
100 bb 
101 bb 
110 bb 
111 bb 

REGISTER 

TONIA_Config 
Time_Of _Next_InterruptA 

TONIB_Config 
Time_Of _Next_InterruptB 

Protocol_Timer_Config Message_Class 
Transmi t_Time_C.onfig 
Priority_Time_Config 
Requestor_ConfigA 
Requestor_ConfigB 
Requestor_TestA 
Real_Time_Clock (hi/lo) • 
<reserved> 

lXXXXXXXOOO bb 
001 bb 

Server_ConfigA 
Server_ConfigB/Server_TestA 

M 101 OXXXXXXXXXX xx Interleave_Address_Reg 
lXXXXXXXXXX xx Interleave_Data_Reg 

.. . where, 

M (T_AD<24 .. 16> ~ CNU_Config.CSU_Map<8 .. 0>) 
bb 00 byte 0 <31. . 24> 

01 byte 1 <23 .. 16> 
10 byte 2 <15 .. 8> 
11 ··byte 3 <7 .. 0> 

xx no byte addressing capability 

Error Code Summary 

Figure A-81 presents an Error Code summary for the SIGA. Figure A-82 
summarizes the Error Code definitions. 
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Figure A-81 Error code summary. 

478 

Requester/CSU Error Codes: 

7 0 

I I 
PPPPdcba 

d c b a Requestor/ CSU Error 
==================== 

0 0 0 0 Maintain_Absent (2a) 
0 0 6 1 'Maintain_Present (2b) 
0 0 1 0 Stolen_Verify (1) 

0 0 1 1 Lock_Address (2) 
0 1 ·o 0 Wait_TO (3a) 
0 1 0 1 Idle_TO (3b) 
0 1 1 0 Rej_Abort (4) 
0 1 1 1 Rej_TO (5) 
1 0 0 0 Reverse (6) 
1 0 0 1 Check ( 7) 

1 0 1 0 Misc. CSU Error 

.. . where, 

P .. P = Requestor_ConfigA.Error_Prefix<3 .. 0> 
Priority is from highest (1) to lowest (8). 
Within a given priority, errors are mutually 
exclusive (i.e., 4a,b ... ) . 

., 
Server Error Codes: 

7 0 

I i 
PPPPPPba 

b a Server Error 

O O Downstream_Refused 
o 1 Downstream_Write 
1 o Downstream_Late 
1 1 Downstream_OTL 

.. . where, 

P .. P = Server_ConfigA.Error_Prefix<5 .. 0> 
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0 
Figure A-82 Error code definition summary. 

Maintain_ Absent An NORMAL was issued to the Requestor 
during its idle state and it was locked. 

Maintain_Present A MAINTAIN was issued to the 
Requestor during its idle state and it was NOT 
locked. 

Lock_ Address A Function Request was made to a locked 
Requestor during its idle state with a node address 
was different than that which opened the locked 
sequence. 

Wait_TO The Switch 'fransmit Connection Timer 
overflowed while the Requestor was waiting for a 
Function Response. 

ldle_TO The Switch Transmit Connection Timer 
overflowed while the Requestor was in its idle 
state. 

Rrj_Abort The Switch Transmit Reject Timer was forced 

0' 
into overflow by the REJ _ABORT input pin. 

Rej_TO The Switch Transmit Reject Timer overflowed 
while the Reqnestor was attempting to 02en a 
connection. 

Reverse The Requestor detected an incorrect polarity 
of the Reverse signal during a Function Response. 

Check The Requestor detected an incorrect Checksum 
during a Function Response. 

CSU Error An error was made accessing the CSU. It 
could be one or both of the of the following: 1) An 
OPEN lock was requested or 2) A Multi-word transfer 
was requested. 

Downstream_ Write A downstream write error was detected 
while the downstream Server was sourcing data. 

Downstream_ OTL A downstream T-Bus slave did not 
respond to the Server's request. 

Downstream_ Late A downstream T-Bus slave responded 
with a LATE ERROR. 

0 
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Downstream_Refused 

A.7 

A.7.1 

A.7.2 

480 

Butterfly II Hardware Architecture 

A downstream T-Bus slave responded 
with REFUSED-LOCKED when the Server thought itself 
locked. 

Special Topics 

This section describes some of the special topics relating to SIGA operation. 

Initialization States 

The external Reset signal is resynchronized by the SIGA for use by all synchro­
nous logic clocked by all three major clocks (R_CLK, S_Cl.K and T_CLK). 
When Reset is applied and then released, all internal storage logic that needs 
to be initialized, will be so initialized. The SIGA will now be in its first initial­
ization state, known as the Quiescent State. 

In this state, the SIGA Switch and T-Bus interfaces are partially disabled. The 
Server's Switch interface responds to any assertions of downstream Frame 
with Rejects. The Requestor's Switch interface ignores any assertions of the 
upstream Reverse. The Server's T-Bus interface makes no T-Bus requests 
and the Requestor's T-Bus interface responds to any remote function requests 
with a REFUSED. The Configuration/Status Unit and the TCU, however, are 
operational. Normally, in the Quiescent state, the TCU will initialize the 
CSU's mapping logic via the CNU _ Config.CSU _Map < 8 .. 0 > register. Once 
the-C-ontrul Net initialize-.:; th.c CSµ ~tvfap, any-T ~Bus master can then initialize 
the SIGA registers via the CSU. · 

Once this is accomplished, the SIGA is in the Operational State. The Opera­
tional State is the normal operational mode of the SIGA. 

Synchronization 

Because of the use of multiple clocks, the SIGA design inherently requires the 
use of synchronizers to implement handshaking across clock boundaries. 
Some of these synchronizers are in non-critical paths and are thus implem­
ented in the most cost effective manner. In particular, these synchronizers are 
of the "large uncertainty, fJXed delay" variety. This means that there delay is 
not programmable and that "input-to-output" delay is not constant over 
changes in input. These are used in areas such as: 1) Between the external reset 
pin, M _ NRESEl; and the internal reset destinations, 2) Between the TCU ne­
gation of C _ NEXECUTE and the T _Bus access. These synchronizers are de­
signed to provide a MINIMUM of 100 ns settling time (T _ CLK < = 22 MHz,· 
R_CLK,S_CLK < = 45 MHz). 

The other variety of synchronizers - used in critical path applications - are 
the "variable delay, zero uncertainty" synchronizers. These are used between 
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Figure A-83 

NOTE 

NOTE 

February 14, 1990 

the T-Bus and Switch interfaces along the Function request/response paths. 
These are the synchronizers which have four bits of configuration to control 
the settling time. Figure A-83 shows the various settings for ALL variable-de­
lay synchronizers. Figure A-83 should be used in combination with the clock 
period of the logic RECEIVING the synchronizer data to determine the actual 
settling time. For instance, if a 100 ns settling time on the positive edge is de­
sired for the STU Synchronizer, the register: Requestor _ Confi­
gA.STU _Sync< 3 .. 0 >,should be set to a "0110". This is because assuming 
R _ CLK = 40 MHz (25 ns period), the synchronizer will require four clock peri­
ods - at 25 ns apiece - to obtain the total of 100 ns. 

On the other hand, the BID Synchronizer control, set by R~questor_Confi­
gA.BIU_Sync < 3 .. 0 > , would need a setting of "0010" to obtain the same 
settling time. Here, ofcourse, the clock period is twice as Jong as the STU Syn­
chronizer so the number of synchronizer clock delays is half. 

Variable-delay synchronizer settings. 

3210 # CLOCK DELAYS TRANSFER EDGE 
==== ============== ============= 
0000 1 Positive 
0001 1 Negative 
0010 2 Positive 
0011 2 Negative 
0100 3 Positive 
0101 3 Negative 
0110 4 Pcis.it.iv8 
0111 4 Negative 
1000 5 Positive 
1001 5 Negative 
1010 ILLEGAL 
1011 ILLEGAL 
1100 ILLEGAL 
1101 ILLEGAL 
1110 ILLEGAL 
1111 ILLEGAL 

~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Currently, it is recommended that only the POSITIVE transfer edge be used 
for any setting. 

"''''''''''''''''''''''''''''''''''''''''''''''" 

It has been determined that a settling time of 100 ns is a reasonable goal for the 
variable-delay synchronizers. 
.............. ,,,·'••, •. '•1,,,,·'•1,.''11,"''•1,.''••,,.····,,.·•1,,,,··· .... ··.,,,_ .•• ,,,_·•1,,,.··· •••. ···,, ...... , •. ··.,,,,·•,,,,,·'·•,.''11, •. ·••••• -... ,,_· .. ,,_ .• ...,_ .•• ,,.'•,,,_ .••• ,,,'•,,,_··,.,,_ .••• , •. ·•,,,, ...... _ .•• ,,,_ .•• ,,,_., •• ,,.·•,,,,_····,,.··-••. ·•0,,,_-••• ,,_· ...... ···,,,_ .•••• ,.····,,.-.... ,. 
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A.8 Pin Description and Pinout 

The next page begins a pin description of the SIGA. 0 

0 
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PIN NAME TYPE DESCRIPTION 

C CLK 
C IN 

· C _ NEXECUTE 
C OUT 
F AD<24 .. 16> 
F PATH<l .. 0> 
F_REQUEST 
F RR<2 .. 0> 
F_SIZE_2 
F _ SOURCE<2 .. 0> 
I_INTERLEAVED 

I MOD<8 .. 0> 
I_NACCESS 

M NDEBUG 

M NFLOAT 

M_NRESET 

M NSELECT 

M PARA 
M PARITY 

~vi REJ ABORT 

M_SIXTY_FIVE 

M_TONIA_INT 

M_TONIB_INT 

R CLK 
R DATA<7 .. 0> 
R_FRAME 
R_NENA_BACK 

R_REVERSE 
S_CLK 
S_DATA<7 .. 0> 
S_FRAME 
S_NENA_BACK 

S_REVERSE 
T AD<33 .. 25> 
T AD<24 .. 16> 
T AD<l5 .. 0> 
T CLK 
T DRIVEN 

February 14, 1990 

IN 
IN 
IN 
OUT 
IN 
IN 
IN 
IN 
IN 
IN 
IN 

IN 
OUT 

IN 

IN 

IN 

IN 

OUT 
IN 

IN 

IN 

OUT 

OUT 

IN 
BID 
OUT 
OUT 

IN 
IN 
BID 
IN 
OUT 

OUT 
BID 
OUT 
BID 
IN 
OUT 

=========== 
TCU input clock 
TCU data input 
TCU execute handshake input 
TCU data output 
T-Bus input for T_AD<24 .. 16> 
T-Bus input for T_PATH<l .. 0> 
T-Bus input for T_REQUEST 
T-Bus input for T_RR<2 .. 0> 
T-Bus input for T_SIZE_2 
T-Bus input for. T_SOURCE<2 .. ·0> 
=0: do NOT use I_MOD<S .. 0> for route address 
=l: use I MOD<B .. O> for route address 
Interleaver.data input 
=0: CSU Interleaver loader is active 
=l: CSU Interleaver loader is NOT active 
=0: Debug mode during CSU access (TEST ONLY) 
=l: Do NOT enter debug mode (NORMAL MODE) 
=0: Tri-state all outputs (TEST ONLY) 
=l: Normal output operation (NORMAL MODE) 
=0: Hardware reset to SIGA 
=l: Normal operational mode 
=0: Select CSU, attach to T_PATH<l/0> 
=l: Do NOT select CSU 
Parametric nand tree output (TEST ONLY) 
=0: No parity error during T-Bus response 
=1: Parity error during T-Bus response 
=0: Do NOT abort S\i.ri tch retries 
=l: Abort Switch retries 
=0: 65 ms pulse NOT active 
=l: 65 ms pulse active (one R_CLK period) 
=0: TONIA interrupt is active 
=l: TONIA interrupt is NOT active 
=0: TONIB interrupt is active 
=l: TONIB interrupt is NOT active 
Requestor clock input 
Requestor Switch data interface 
Requestor Switch Frame output 
=0: Enable LCON to drive R_DATA<7 .. 0> 
=l: Disable LCON from driving R_DATA<7 .. 0> 
Requestor Switch Reverse Input 
Server clock input 
Server Switch data interface 
Server Switch Frame input 
=0: Disable LCON from driving S DATA<7 .. 0> 
=l: Enable LCON to drive S_DATA<7 .. 0> 
Server Switch Reverse Input 
T-Bus input/output for T AD<33 .. 25> 
T-Bus output for T AD<24 .. 16> 
T-Bus input/output for T AD<l5 .. 0> 
T-Bus input clock 
T-Bus output for T_DRIVEN 
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T ENA HOLD IN 

T_ENA_TDAT.2 OUT 

T_ENA_TDAT<l .. 0> OUT 

T_ENA_TRANS.l OUT 

TENA TRANS.O OUT 

T_LOCKOP<l .. 0> BID 
T_MPAUSE OUT 
T_NBGRANT_SIGM IN 

T_NBGR.e,.NT_SIGS IN 

T_NBREQ_SIGM OUT 

T_NBREQ_SIGS OUT 
' 

T NDRIVEN SIGA OUT - -

T NSPAUSE SIGA OUT 

T PATH<l .. 0> OUT 
T PRIORITY<l .. 0> BID 
T_REQUEST OUT 
T RR<2 .. 0> OUT 
T SIZE.2 OUT 
T_SIZE<J. .. 0> 
T_SOURCE<2 .. 0> 
T_SPAUSE 
T SYNC 

BJ,D 

OUT 
OUT 
BID 

Butterfly II Hardware Architecture 

=0: Disable T-Bus input latches 
=l: Enable T-Bus input latches 
=0: Enable T_AD<33 .. 0> drivers 
=l: Disable T AD<33 .. 0> drivers 
=0: Disable T AD<33 .. 0> drivers 
=l: Enable T_AD<33 .. 0> drivers 
=0: Enable transaction T-Bus field 
=l: Disable transaction T-Bus field 
=0: Disable transaction T-Bus field 
=l: Enable transaction T-Bus field 
T-Bus input/output for T_LOCKOP<l .. 0> 
T-Bus output for T_MPAUSE 
=0: SIGA Master granted next T-Bus 
=l: SIGA Master NOT granted next T-Bus 
=0: SIGA Slave granted.next T-Bus 
=l: SIGA Slave NOT granted next T~Bus 
=0: SIGA Master is requesting T-Bus 
=l: SIGA Master is NOT requesting T-Bus 
=0: SIGA Slave is requesting T-Bus 
=l: SIGA Slave is NOT requesting T-Bus 
=0: SIGA is driving T-Bus next cycle 
=l: SIGA is NOT driving T-Bus next cycle 
=0: SIGA is pausing T-Bus next cycle 
=l: SIGA is NOT pausing T-Bus next cycle 
T-Bus output for T_PATH<l .. 0> 
T-Bus input/output for T PRIORITY<l .. 0> 
T-Bus output for T_REQUEST 
T-Bus output for T RR<2 .. 0> 
T-Bus output for T-SIZE.2 
T-Bus i.npy.t/output for T SIZE<l .. 0> 
T-Bus output for T SOURCE<2 .. 0> 
T-Bus output for T SPAUSE 
T-Bus input/output for T SYNC 

The following page shows the SIGA pinout sorted by pin function. 
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0 SIGA PINOUT SORTED BY PIN FUNCTION 
================================== 

RlS C_CLK I 'R06 R_DATA.6 I Bl2 T_DRIVEN 
Tl4 C_IN I P06 R_DATA.7 I Cl2 T_ENA_HOLD 
Rl4 C_NEXECUTE I ROS R_FRAME I C03 T ENA TDAT.0 
Pl3 C OUT I TOS R_NENA_BACK I B03 T ENA TDAT.l 
B09 F AD.16 I T04 R_REVERSE I A03 T_ENA_TDAT.2 
C09 F_AD.17 1· Tl3 S_CLK I Cl4 T ENA TRANS.0 
AlO F_AD.lB I Tl2 S_DATA.O I Cl5. T ENA TRANS.l 
BlO F_AD.19 I Pll S_DATA.l I DOl T LOCKOP.0 
ClO F AD. 20 I Rll S_DATA.2 I D02 T_LOCKOP.l 
All F AD.21 I Tll S_DATA.3 I EOl T_MPAUSE 
Bll F AD.22 I PlO S_DATA.4 I A06 T_NBGRANT_SIGM 
Cll F_AD.23 I RlO S_DATA.5 I C07 T_NBGRANT_SIGS 
Al2 F_AD.24 I TlO S_DATA.6 I cos T_NBREQ_SIGM 
AOS F_CLK I P09 S_DATA. 7 I BOS T_NBREQ_SIGS 
A07 F PATH.0 I Rl3 S_FRAME I C06 T_NDRIVEN_SIGA 
COB F PATH.l I Rl2 S_NENA_BACK I B06 T_NSPAUSE_SIGA 
Bl4 F_REQUEST I Pl2 $_REVERSE I Cl3 T PATH.0 
C04 F RR.O I P02 T_AD.0 I Al4 T PATH.l 
B04 F RR.l I N03' T_AD.l I E02 T_PRIORITY.O 
A04 F RR.2 I Fl4 T_AD.10 I E03 T PRIORITY.l 
F03 F SIZE_2 I FlS T_AD.11 I Al3 T_REQUEST 
G03 F_SOURCE.O I Fl6 T_AD.12 I Dl4 T RR.O 

0 
FOl F_SOURCE.l I Gl4 T_AD.13 I DlS T RR.l 
F02 F_SOURCE.2 I GlS T_AD.14 I Dl6 T_l\R.2 
B02 I - INTERLEAVED I Gl6 T_AD.15 I El4 T_SIZE.0 
M02 I MOD:O H14 T_:_AD .16 I El5 T.:_SIZE.1 ~". 

MOl I MOD.l HlS T_AD.17 I El6 T SIZE.2 
L03 I MOD.2 JlS T_AD.lB I D03 T SOURCE.0 
L02 I MOD. 3 Jl4 T_AD.19 I COl T SOURCE.l 
LOl I MOD.4 POl T AD.2 I C02 T SOURCE.2 
K03 I MOD.S Kl6 T_AD.20 I BlS T_SPAUSE 
K02 I MOD.6 Kl5 T_AD.21 I Bl3 T_SYNC 
KOl I MOD.7 Kl4 T_AD.22 I A09 VDD 
J03 I_MOD.B. Ll6 T_AD.23 I AlS VDD 
P03 I NACCESS LlS T_AD.24 I BOl VDD 
R02 M NDEBUG L14 T_AD.25 I Bl6 VDD 
Pl4 M NFLOAT M16 T_AD.26 I JOl VDD 
TlS M NRESET Ml5 T_AD.27 I Jl6 VDD 
B07 M_NSELECT Ml4 T_AD.2B I TOl VDD 
R03 M_PARA Nl6 T_AD.29 I TOB VDD 
Cl6 M PARITY N02 T_AD.3 I Tl6 VDD 
R04 M_REJ_ABORT NlS T_AD.30 I A02 vss 
J02 M_SIXTY_FIVE Nl4 T_AD. 31 I AOB vss 
P04 M_TONIA_INT Pl6 T_AD.32 I Al6 vss 
T03 M_TONIB - INT PlS T_AD.33 I HOl vss 
POS R CLK NOl T_AD.4 I Hl6 vss 
R09 R DATA.0 M03 T_AD. 5 I ROl VSS 
ROB R DATA.l H02 T_AD.6 I R16 vss 

0 POB R DATA.2 H03 T_AD.·7 I T02 vss 
R07 R DATA.3 GOl T_AD. B I T07 VSS 
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P07 R DATA. 4 
T06 R_DATA.5 

G02 T AD.·9 
BOB T_CLK 

Butterfly II Hardware Architecture 

T09 VSS 

The following page shows the SIGA pinout sorted by pin number. 
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0 SIOA PINOUT SORTED BY PIN NUMBER 
================================ 

A02 vss Dl6 T RR.2 I NI4 T AD. 3I 
A03 T_ENA_TDAT.2 EOI T MPAUSE I NIS T AD.30 
A04 F_RR.2 E02 T_PRIORITY.0 I NI6 T AD.29 
AOS F_CLK E03 T_PRIORITY.I I POI T AD.2 
A06 T_NBORANT_SIGM EI4 T_SIZE.0 I P02 T AD.0 
A07 F PATH.O EIS T_SIZE. I I P03 I_NACCESS 
AOB vss EI6 T_SIZE.2 I P04 M_TONIA_INT 
A09 VDD FOI F _SOURCE. I I POS R_CLK 

• I AIO F AD.IB F02 F SOURCE.2 P06 R_DATA.7 
All F AD.2I F03 F_SIZE_2 I P07 R_DATA.4 
AI2 F_AD.24 FI4 T_AD.IO I. POB R_DATA.2 
AIS T_REQUEST FIS T AD.11 I P09 S DATA.7 
AI4 T PATH.I FI6 T AD. I2 I PIO S DATA.4 
AIS VDD OOI TAD. 8 I Pll S DATA.I 
AI6 VSS 002 T_AD.9 I PI2 S_REVERSE 
BOI VDD 003 F_SOURCE.O I PI3 c_d'UT 
B02 I - INTERLEAVED 014 T_AD.I3 I PI4 M_NFLOAT 
B03 T_ENA_TDAT.I 015 T AD. I4 I PIS T AD.33 
B04 F RR.I OI6 T AD. IS I PI6 T AD. 32 
BOS T_NBREQ_SIGS HOI VSS I ROI VSS 
B06 T_NSPAUSE_SIGA H02 T AD.6 I R02 M NDEBUO 
B07 M NSELECT H03 T AD.7 I R03 M PARA 

0 
BOB T_CLK HI4 T AD.I6 I R04 M REJ ABORT 
B09 F AD.I6 HIS T AD.I7 I ROS R_FRAME 
BIO F AD.I9 HI6 VSS I R06 R_DATA.6 
Bll· F AD.22 JOI VDD I R07 R DATA.3 
BI2 T DRIVEN J02 M_SIXTY_FIVE I ROB R DATA.I 
BI3 T SYNC J03 I_MOD.B I R09 R DATA.0 
BI4 !'_REQUEST JI4 T AD. I9 I RIO S_DATA.S 
BIS T SPAUSE JIS T_AD. IB I Rll S_DATA.2 
BI6 VDD H6 VDD I RI2 S_NENA_BACK 
COI T_SOURCE.I KOI I MOD.7 I RI3 S_FRAME 
C02 T_SOURCE.2 K02 I_MOD.6 I RI4 C NEXECUTE 
C03 T_ENA_TDAT.0 K03 I_MOD.S I RIS C_CLK 
C04 F RR.O KI4 T AD. 22 I RI6 vss 
cos T_NBREQ_SIGM KIS T AD. 2I I TOI VDD 
C06 T_NDRIVEN_SIGA KI6 T AD.20 I T02 VSS 
C07 T_NBORANT_SIGS LOI I MOD.4 I T03 M_TONIB_INT 
cos F PATH.I L02 I_MOD.3 I T04 R_REVERSE 
cog F AD.I7 L03 I_MOD.2 I TOS R NENA BACK - -
CIO F AD.20 LI4 T_AD. 25 I T06 R_DATA.5 
Cll F AD.23 LI5 T_AD.24 I T07 vss 
CI2 T ENA HOLD LI6 T_AD.23 I TOB VDD 
CI3 T_PATH.0 MOI I_ MOD.I I T09 vss 
CI4 T_ENA_TRANS.O M02 I_MOD.0 I TIO S DATA. 6 
CI5 T_ENA_TRANS.I M03 T AD.5 I Tll S DATA. 3 
CI6 M PARITY MI4 T AD. 2B I TI2 S DATA.O 
DOI T_LOCKOP.O MI5 T AD. 27 I TI3 S CLK 

0 D02 T_LOCKOP.I MI6 T AD. 26 I T14 C IN 
D03 T_SOURCE.O NOI T AD.4 I TIS M NRESET 
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A.9 

Dl4 T_RR.0 
Dl5 T_RR. l 

NOTE 

488 

N02 T AD.3 
N03 T AD.l 

A.C./D.C. Parameters 

Butterfly II Hardware Architecture 

Tl6 VDD 

All SIGA input and bidirectional pins have a light pullup resistor, a diode pro­
tection network (max = 2000V) and latch-up (max = 200 ma). All inputs and 
output have standard TIL VIL/VIH and VOLNOH characteristics. All out­
puts and bidirectional pins have 4 ma drive capability - except 
T _ENA ... TDAT < 2 .. 0 > and T _ENA_ 1RANS < LO>, which have 8 ma drive 
capability. The SIGA will dissipate less than 3 watts. 

The following page shows the A.C. timing parameters. 

For the B2VME, the following A.C. parameters override the normal ones: 

PIN/CLASS Tsu Thld Tpd (min/max) LOAD 

================ ============= 
T ND RIVEN SIGA 2.0/11.0 20.0 - -
F SOURCE<2 .. 0> 21.0 0.0 -
,, '·1,,. "\,, . .,,,,, ·••••· "'•1,, '••,,, ·~, •• , ·~ ••• "••, •.•••• ,,. '•1,,, •• , •• ''••- .......... ,,,_ •••••· '•,,,_ '\,_ '•,,,_ '"·· ·~ •• _ ···~ •..• ,,,_ .•• ,,,, •• ,,,. ''"·· .• ,,,,, "••,,, .• ,,,,_ ·~ ••. ·;,.._ ' 11,,, •• ,,,_ •• ,,,_ ••• ,,,, •• ,,,,_ ....... ••••••· .,,,,_ ... ,,,_''I,, •• ,, ... '••, ..... ,_ '•1,,_ •• ,,,, ' 
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0 SIGA A.C. CHARACTERISTICS 
========================= 

PIN/CLASS Tsu Thld Tpd (min/max) LOAD 

================ ============= 

TBUS: 

T DRIVEN 25.0 0.0 
T MPAUSE 25.0 0.0 
T_ SP AU SE 25.0 0.0 
T NBGRANT_ SIGM 25.0 0.0 
T_NBGRANT_ SIGS 25.0 0.0 

T_REQUEST (a) (a) 2.0/18.0 30.0 
T RR<2 .. 0> (a) (a) 2.0/18.0 30.0 
T _PATH<l .. 0> (a) (a) 2.0/18.0 30.0 
T SOURCE<2 .. 0> (a) (a) 2.0/18.0 30.0 
T SIZE.2 (a) (a) 2.0/18.0 30.0 
T SIZE<l .. 0> 20.0 0.0 2.0/18.0 30.0 
T SYNC 20.0 0.0 2.0/18.0 30.0 
T LOCKOP<l .. 0> 20.0 0.0 2.0/18.0 30.0 
T PRIORITY<l .. 0> 20.0 0.0 2.0/18.0 30.0 

T AD<33 .. 0> 20.0 0.0 2.0/18.0 30.0 

T_NBREQ_ SIGM 2.0/13.0 .20.0 

0 
T_NBREQ_ SIGS 2.0/13.0 20.0 
T NDRIVEN - SIGA 2.0/13.0 20.0 
T NSPAUSE SIGA 2.0/13.0 20.0 -
TENA TDAT<2 .. 0> 2.0/15.0 30.0 
T_ENA_TRANS<l .. 0> 2.0/15.0 30.0 

T ENA HOLD ( d) 

• FAST: 

F_REQUEST 25.0 0.0 
F RR<2 .. 0> 24.0 0.0 
F SOURCE<2 .. 0> 25.0 0.0 -
F PATH<l .. 0> 25.0 0.0 
F - SIZE_2 25.0 0.0 
F AD<24 .. 16> 25.0 0.0 

SWITCH - REQ: 
-------------
R DATA<7 .. 0> 2.0 6.0 2. 0/13. 0 20.0 
R_REVERSE 2.0 6.0 
R FRAME 2.0/13.0 20.0 
R_NENA_BACK 2.0/13.0 20.0 
R_CLK (C) 

SWITCH - SER: 

-------------

0 s DATA<7 .. 0> 2.0 2.0 2.0/13.0 20.0 

s FRAME 2.0 6.0 
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S_REVERSE 
S_NENA_BACK 
R_CLK 

TCS: 

C_IN 
C_OUT 
C_NEXECUTE 

INTERLEAVER: 

I MOD<8 .. 0> 
I_INTERLEAVED 
I_NACCESS 

MISCELLANEOUS: · 

M TONIA INT - -
M_TONIB_INT 
M PARITY 
M NSELECT 
M.NDEBUG 
M_SIXTY_FIVE 
M_NRESET 
M_REJ_ABORT 

NOTES: 

specific: 

50.0 

50.0 

17.0 
24.0 

21.0 
25.0 
25.0 

7.9 
(b) 

(b) 

(c) 

50.0 

50.0 

0.0 
0.0 

0.0 
0.0 

24.0 
14.9 

(b) 

(b) 

2.0/13.0 
2.0/13.0 

2.0/50.0 

2.0/30.0 

. 2.0/30.0 
2.0/30.0 

20.0 
20.0 

20.0 

20.0 

20.0 
20.0 

(A,) No- in-t9rnal--G-onn_ection- .to -SIG,.; - t:l0:1pg is unimportant 
(b) Synchronized within SIGA - timing is unimportant 
(c) MINIMUM HIGH time for [RSJ_CLK = 5.3 ns 
(d) [TFJ_CLK rising to T_ENA_HOLD rising = 15 ns minimum 

T_E~_HOLD minimum HIGH time = 6 ns 
T_ENA_HOLD falling to [TFJ_CLK rising = 4.5 ns minimum 

general: 
1. All times in nanoseconds 
2. All loads in picofarads 
3. TBUS, FAST and INTERLEAVER timing are relative to rising T CLK 
4. SWITCH - REQ timing is relative to rising R_CLK 
5. SWITCH - SER timing is relative to rising S_CLK 
6. TCS timing is relative to falling C_CLK 
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T -bus Specification 

This appendix is derived from the T-Bus Specification dated September 30, 
1988. 

Introduction 

The T .,-Bus, or Transaction Bus, describes the transaction protocol and physi­
cal layer of the microprocessor bus architecture of the B2VME board. The 
T-Bus was designed to address the three main necessities of a Switch-based, 
multi-processor architecture: split cycles, Locking, and arbitration. In achiev­
ing these goals, the T-Bus has aquired some features which make it significant­
ly different from most conventional microprocessor bus architectures. 

This document describes both the physical and protocol layers of the T-Bus. 
Details about the operation of any specific devices residing ON the T-Bus are 
outside the scope of this documet. In addition, this document assumes that 
the reader have a basic understanding of bus architectures. 

Logical Operators 

Figure B-1 shows the standard operators used in this document. 
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Figure B-1 Example - logical operators. 
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OPERATOR 

& 
# 
$ 

!$ 

I 

:= 

FUNCTION 

logical 11 and 11 

logical 11 or 11 

logical 11 exor 11 

logical 11 not 11 

logical 11 exnor 11 

concatenate 
is defined as 
is defined after next 
positive edge of T_CLK as 
continue equation from 
the previous line 

Major T -Bus Concepts 

The following desribes the Major T-Bus concepts with an emphasis on differ­
ences between the T-Bus and conventional bus architectures. 

Master, Slaves and Drivership 

The conventional notion of bus Masters and bus Slaves is not applicable to 
the T-Bus. Normally, a bus Master is the ONLY device that may request and 
get "o\vncrship" vf the bus. /\ c9nve:qtional bus Sia:vrc resp.ands immediately 
to the Master's requests and never initiates ownership of the bus for itself. 
In contrast, the T-Bus design liberates the Slave's typical role to allow the Slave 
limited ownership of the bus. This is done to support split-cycles (see: "Def­
erred 'fransactions"). In this document, the terms Master and Slave are used 
only for historical consistenecy anci the reader is cautioned NOT to apply the 
conventional meaning to these terms. 

Along with their new roles in the T-Bus domain, Masters and Slaves force the 
application of a new term to replace the conventional term of bus ownership. 
Since there is now some parity between Masters and Slaves, the term "owner­
ship" is no longer applicable. AT-Bus Master or Sl;i.ve is considered to have 
bus "drivership" (not ownership) when that device is "requesting" (Master) 
or "responding" (Slave) on the T.-Bus. By definition, the device that is causing 
the assertion of the T_DRIVEN (see: "Signal Field Description Summary" for 
details) signal is the current T-Bus driver. 

Arbitration is interesting on the T-Bus because Slaves as well as Masters must 
now be allowed to arbitrate for T-Bus drivership. This necessitates an arbitra­
tion scheme that is impervious to Master/Slave lockout situations. 
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Split Cycles 

A Slave responding to a Master's.Function Request (request to do some task) 
may not be able to immediately carry-out thatrequest. In fact, the Slave may 
have to perform internal operations which span many dozens of T-Bus cycles 
before it can respond. If the Slave where to tie-up the T-Bus by not responding 
immediately, no other devices could make forward progress and significant 
system degradation would result. The concept of split-cycles solves this prob­
lem. When a Master makes a Function Request, the Slave can say, "I have 
received your request and I will respond to it later." This is known as a "defer 
response". 

Following the defer response, the Master and Slave then release the T-Bus 
while the Slave obtains its Function Response (answer to the Function Re­
quest). In the meanwhile, transactions from other T-Bus devices can occur 
as normal. When the Slave has finished "building" its Function Response, it 
then accesses the T-Bus and hands its "split response" to the Master; which 
has been anticipating the Slaves response. 

While the Master is waiting for the Slave, it is called a "split Master". The Slave 
that is off processing the Master's Function request is called a "split Slave". 
Split sequences can be used between any Master/Slave pair that support this 
function. Split sequences can be freely intermingled with non-split sequences 
and locked sequences (see: Locked Operations). 

Locks, Stolen 

The T-Bus supports the concepts of Stolen and Locks. Stealing is supported 
by the addition of an extra bit field in the address/data portion of the T-Bus. 
When a "stolen" data word is transfered 39Cross the T-Bus interface to a Slave, 
that bit is asserted and recorded in the Slave as a "tag" on that word. This 
technique helps to identify a word (or words) as having a special status. For 
instance, the stolen bit may be used by one device to prevent other devices from 
evaluating a word of memory. 

Locking is the technique where a T-Bus Master obtains exclusive use of a T­
Bus Slave for one or many sequences. That Slave is responsible for preventing 
other Masters from gaining access to it (with one exception). A locked transac­
tion has three distinct parts: opening, maintaining, and closing. 

Opening involves a Master getting some Slave to "lock" itself to that Master. 
This commits that Slave to servicing only the locking Master, and is accom­
plished with a special Function Request. The Slave records th~ Master's 
unique "Master Number" for future reference. A Master may lock multiple 
Slaves to it but a Slave can only have one Master. 

Once the Master has opened the lock sucessfully, it can continue to perform 
most sequences. The Slave will continue to comply with Function Requests 
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· from its locked Master but will "rebuff" those from other Masters (again, with 
one exception- see: "Denied Responses"): The slave recognizes a request from o·· 
its locked Master by comparing its stored Master Number with that of the re-
questing device. When the Master is done with the lock, it "closes" it by issuing 
a specific Function Request (see: "Closing a Lock"). After this event, all Slaves 
that recognize the requesting Master as their locked Master become unlocked 
and can once again respond to ANY Master. 

Observing Master State 

When a locked Slave rebuffs a Master to which it is not locked, that Master 
enters the "observing Master" state. This is a state of "suspended animation" 
for the Masterwhi)e "observes" the T-Bus for a "free request" .from the Master 
"owning" the lock. When the Master recognizes the this event, it arbitrates 
for T-Bus drivership and re-requests the original Function Request. 

High-Level Protocol Definitions . 

The T-Bus operates at the lowest level of protocol with the concept of requests 
and responses. A request cycle is defined as the T-Bus cycle where a Master 
- following a bus request/grant sequence - drives the T-Bus for exactly one 
cycle and "asks" some Slave to perform a task. A response immediately fol­
lows the request and is defined as a "requested" Slave "answering" the "re­
questing" Master and possibly transfers data. A response may occupy a varied 
number ofT--Bus cycles, due totwo factors:.1) the.number of words to be trans­
fered, and 2) the possibility of a Slave Pause or Master Pause condition (de­
scribed later). A transaction is defined as the combination of request and 
related response which occur between explicit arbitration cycles. Explicit arbi­
tration is defined in more detail in: ''.Arbitration". The~ngth of a transaction 
will vary as the length of a response. 

When a Master requests some action of a Slave, that Slave may respond by 
starting a split-cycle. These events, of course, comprise a transaction. As pre­
viously described, the Master then releases the bus and other T-Bus activity 
takes over. Later on, the Slave returns the answer to the Master. This entire 
process, which may take place over many T-Bus cycles, is called a sequence. 
The original "asking" by the Master is defined as the Function Request and 
the eventual (after the split-cycle) "answer" by the Slave is defined as the Func­
tion Response. Another way of looking at this is that the Function Request 
is the "original request" and the Function Response is the "ULTIMATE an­
swer". The combination of a Function Request and Function Response are 
defined as a sequence. 

Note that a sequence and a transaction will coincide for "immediate" Slave 
responses. Here, the response is the same as the Function Response. It is only 
because of split-cycles that the concept of Function Request, Function Re-
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sponse and sequence are necessary. Note also that the request and Function 
Request ALWAYS coincide (split-cycle or not). 

At the highest level of abstraction is the operation. An operation is defined 
as 'a series of sequences required to accomplish some goal. For instance, to 
perform some locked read/writes on some remote node, the Master must open 
a lock (with an open-lock transaction), perform some read/writes (using nor­
mal transactions) and then close the lock (using a free-lock transaction). 

Signal Field Description 

The entire T-Bus consists of 61 signals which can be broken down into two 
major fields: the "Transaction" (TRANS) and the "T-Bus Address/Data" 
(TDAT). The TRANS field is the control field and contains the 27 (minimum) 
signals necessary to implement the T-Bus Transaction protocol. The TDAT 
field contains the 34 signals necessary to transfer the data and address infor­
mation. The width of the TRANS field will increase as more Masters and/or 
Slaves are included in a particular instantiation of the T-Bus. The width of 
27 represents the minimum configuration (one Master, one Slave). The TDAT 
and TRANS fields are further broken-down into subfields seen in Figure B-2. 
Each subfield is then broken-down into signal fields. Often, a signal field will 
consist of only one signal. 

T-Bus TDAT and TRANS subfields. 

TRANS Subfields 
=========================== 
STATUS 
ARBITRATION 
TRANSACTION (normal) 
TRANSACTION (extended) 
CLOCKS 

TDAT Subfields 
====================== 
LRA (T_REQUEST = 1) 
OFFSET (T_REQUEST 1) 
STOLEN (T_REQUEST 0) 
DATA (T_REQUEST 0) 

These function of these signal fields are described in greater detail in the fol­
lowing sections. The description is on a symbolic level- actual signal polarities 
and encodings are described in: "Logical Signal Assignments". In the descrip­
tion, the terms "sink" and "source" are used to describe signal direction. Sink 
indicates that some T-Bus device must RECEIVE that signal from the T-Bus. 
Source indicates that some T-Bus device must TRANSMIT that signal to the 
T-Bus. As indicated in some cases, a signal can be sink/sourced from/to the 
T-Bus. In addition the terms "valid request" and "valid response" are intro­
duced in the description of the T_REQUEST signal. 

Refer to "Logical Signal Assignments" for the following discussion. 
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The following describes the subfields and signal fields of the 1RANS field. 0 
Figure B-3 
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T-Bus STATUS subfield. 

Signal Name 

T NDRIVEN * - -
T_NMPAUSE_* 
T_NSPAUSE_* 
T DRIVEN 
T MPAUSE 
T_SPAUSE 

Signal Direction 

(source) 
(source) 
(source) 
(sink) 
(sink) 
(sink) 

The STATUS field is used to indicate condititions which may modify the inter­
pretation of most of the other T-Bus fields. The STATUS field is also used 
for arbitration. T_MPAUSE and T_SPAUSE are the "highest order" T-Bus 
signals because their state indicates IF any other T-Bus fields should be con­
sidered valid. 

T_MPAUSE is the "Master Pause" indicator for T-Bus Masters. It indicates 
that one or more T-Bus Masters is requesting a "pause". T_MPAUSE is 
derived from all of the T _ NMPAUSE _ • signals, where"*" is a wildcard repre- ,

0 senting all of the Master devices which want to have pause capability. Note 
that a Master is not REQUIRED to have pause capability. When it wants to 
pause, one (AND ONLY ONE) Master asserts its own T _ NMPAUSE ~* signal. 
When ANY of the T _ NMPAUSE _ * signals from any of the Masters is asserted, 
T _ MPAUSE is asserted. This defines a "Master Pause" condition. Master 
Pause is activated by a Master's desire to "throttle" a read/write data transfer 
from/to responding Slave during a transaction. The Slave detects this request 
by observing T _MPAUSE. 

T_SPAUSE is the "Slave Pause" indicator for T-Bus Slaves. In an analogous 
way to T _ MPAUSE, T _ SPAUSE is derived from all of the T _NSPAUSE _ * sig­
nals wishing to have pause capability. Note that like a Master, a Slave is not 
REQUIRED to have pause capability. When it wants to pause, one (AND 
ONLY ONE) Slave asserts its own T _ NSPAUSE _ * signal. When ANY of the 
T_NSPAUSE_* signals is asserted, T_SPAUSE is asserted. This defines a 
"Slave Pause" condition. Slave Pause is activated by a Slave's desire to 
"throttle" a read/write data transfer to/from a requesting Master during a 
transaction. The Master recognizes this desire by observing T_SPAUSE. 

Asserting T_[MSJPAUSE "overrides" ALL other T-Bus signals EXCEPT 
those in the TDAT field. See the "Pausing" section for more details. This 
means that the indicated fields should be ignored during Master and Slave 
Pause. Conceptually, T _ MPAUSE and T_SPAUSE are used to "stretch" a par-
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ticular transaction by telling all Masters and Slaves to: "ignore the T-Bus for 
now, see you in the next cycle!" 

T_DRIVEN, when asserted, indicates that either a single Master ·or single 
Slave device is driving the 1RANS field. The T_REQUESTsignal (described 
later) is then used to differentiate between a Master and a Slave. T_DRIVEN 
is also used to define the T-Bus arbitration period (see: Arbitration). Anala­
gous to T_MPAUSE and T~SPAUSE, T_DRIVEN is derived from from all 
Masters and Slaves which drive their own signal, T _ NDRIVEN _ *. When any 
T _ NDRIVEN _•is asserted, T _DRIVEN is assserted. Every Master and Slave 
MUST source its own T _ NDRIVEN _ * signal, but ONLY ONE can assert it 
during a given T-Bus period. 

When T_DRIVEN is negated, the T-Bus is in its "dead" state (see '.'Arbitra­
. tfon") .. While in the dead state, no other signals in the TRANSACTION or 
TDAT fields (except T_MPAUSE and T_SPAUSE) should be interpreted. 

ARBITRATION Subfield 

T-Bus ARBITRATION subfield. 

Signal Name Signal Direction 
============== ================ 
T_NBREQ_* (Source) 
T_NBGRANT_* . (sink) 

The ARBITRATION field is used exclusively byany T-Bus Master or Slave 
to request and be granted T-Bus drivership. Normally, all Masters and some 
or all Slaves will want the ability to arbitrate for drivership. Slaves need this 
ability ONLY if they support split-cycle sequences. 

T _ NBREQ_ * represents the separate T-Bus request signals from all the Mas­
ters and Slaves desiring T~Bus arbitration. They are inputs to the T-Bus arbi­
tration logic. The outputs of this logic are the T_NBGRANT _ * signals which, 
when asserted, indicate to a particular Master or Slave that they will have T­
Bus drivership in the next T-Bus cycle. Arbitration is discussed in detail in 
the ''Arbitration" section. 
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B.4.3 TRANSACTION (STANDARD) Subfield 

Figure B-5 T-Bus TRANSACTION (STANDARD) subfield. 

Signal/Field Name Signal Direction 

T_REQUEST (source/sink) 
T_SOURCE<2 .. 0> (source/sink) 
T_RR<2 .. 0> (source/sink) 
T SIZE<2 .. 0> (source/sink) 
T_LOCKOP<l .. 0> (source/sink) 
T_PATH<l .. O> (source/sink) 

The TRANSACTION (STANDARD) field implements the "heart" of a T-Bus 
operation. It defines the characteristics of a particular transaction. The group 
of signals considered here are for "standard" sequences, meaning sequences 
which do not require a Switch access. The signals related to Switch accesses 
are in the "extended" portion of the TRANSACTION field and are described 
later. 

0 

T_REQUEST is the "request/response" modifier for the T-Bus. As with all 
TRANSACTION signals, T_REQUEST is only valid (can be interpreted) 
when T_DRIVEN is asserted and T_MPAUSE and T_SPAUSE are negated. 
A valid T_REQUEST signal indicates whether a Master or a Slave currently 
has T-Bus drivership. In doing so, the valid T_REQUEST also modifies the· 0 

- .. meaning.of the otl;te-r f:lJbfield~ of the 1Rt\....NSACTION field·. All descriptions -
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of the remaining TRANSACTION fields include a reference to the T_RE­
QUEST modifier. Essentially, when a valid T_REQUEST is asserted, the cur-
rent cycle is a "request cycle" and the Master has drivership. When a valid 
T _REQUEST is negated, the current cycle is a "response cycle" and the Slave 
has drivership. A Master or Slave pause condition during what would NOR­
MALLY be a response cycle, causes that cycle to become a "paused response 
cycle". Note that a paused response cycle is a subset of a response cycle. 

T_SOURCE, is used to indicate the "source number" of the device with cur­
rent drivership. During a request cycle, T_SOURCE indicates the requesting 
Master's source number. During a response cycle, it indicates the respondings 
Slave's source number. The Slave source number is used by Masters in split­
cycle sequences. The Master source number is used by Slaves in locked se­
quences. 

The set of all Masters in a particular implementation of the T-Bus MUST have 
unique source numbers. With one exception, the set of all Slaves must have 
unique source numbers as well. Any non-split-cycle Slave may use the re­
served "anonymous" Slave number of "000". This optimization frees-up more 
of the possible Slave source numbers for use by other devices. 
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Duri11g a request cycle, the T_RR field. indicates whether the request is a 
"READ", "WRITE", or "FREE-LOCKS". In addition, T_RR can indicate 
an ''AUX_READ" or ''AUX_ WRITE". In the current instantiation of the 
B2VME, ''AUX_ READ" and ''AUX_ WRITE" are treated by Slaves in exactly 
the same manner as "READ" and "WRITE". ' 

During a response cycle, the T _RR field indicates the Slave's response. An 
"ERROR" response indicates that the Slave detected an error and wishes to 
end the sequence. A "PROMISE" response indicates that the Slave will enter 
its split-cycle state and return the Function Response at a later time. A "RE­
FUSED" response indicates to the requesting Master that the Slave is tempo­
rarily "busy". In this case, the Master would typically try again as soon as it 
regains drivership of the bus. A "COMPLETED" indicates the end of a se- · 
quence. A "MORE" indicates to the requesting Master that the Slave will 
source additional data in the next cycle (reads) or will sink additional data on 
the next cycle (writes). An "EARLY-ACK" response is issued by a Slave as 
an indicator that the transaction will end within two bus cycles. This response 
is an optimization for certain Masters and is NOT required for Slaves. A "RE­
FUSED-LOCKED" response indicates to the requesting Master that the 
Slave is currently locked to another Master and is denying the requesting Mas­
ter's function request. 

During a request cycle, the T _SIZE field indicates that the number of words 
in the transfer and thus defines the minimum length of the transaction. Note 
that the T_SIZE field reserves the code for "1-word"; a Master must request 
a "4--byte" size instead. This is done to allow Slaves which do not support mul­
ti-word transfers, to easily detect those transfers. During a response cycle, 
T_SIZE has no meaning and need not be driven by the responding Slave. 

During a request cycle, the T _ LOCKOP field indicates what type of locking 
requests, if any, are being made of the addressed Slave. The "NORMA{;' re­
quest indicates that the Master is requesting a non-locked sequence. The 
"BYPASS" request indicates that the requested Slave should ignore any other 
lock it may "own" (from other another Master) and respond to the requesting 
Master's Function Request. An "OPEN" request indicates to the requested 
Slave that the requesting Master wishes to begin a locked operation. A 
"MAINTAIN" request indicates to the requested Slave that the Master wish~s 
to continue a locked sequence. Both the "BYPASS" and "NORMAr' requests 
will act like a "MAINTAIN" in that they preserve the current - if any - locked 
sequence. During a response cycle, T _ LOCKOP has no meaning and need not 
be driven by the respo!lding Slave. 

During a request cycle, the T _ PA1H field indicates whether the Function Re­
quest is local or remote (over the Switch). If remote, the TRANSACTION 
(EXTENDED) field must be interpreted by the Slave. 
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8.4.4 TRANSACTION (EXTENDED) Subfield 

Figure 8-6 T-Bus TRANSACTION (EXTENDED) subfield. 

Signal/Field Name Signal Direction 

T_SYNC (source/sink) 
T_PRIORITY<l .. 0> (source/sink) 

· The TRANSACTION (EXTENDED) field adds Switch access capabilities to 
a Master's Function Request. This field is only valid during a request cycle 
and need not be driven by a Slave during the response cycle. In addition, only 
Masters which need to access the Switch need drive this field during a Function 
Request. Therfore, the TRANSACTION (EXTENDED) field is interpreted 
only when the T_PATII field is "SIGA_A'.' or "SIGA_B". 

During a request cycle, the T_SYNC field is used to command the Switch In­
terface Gate Array's (SIGA) Requestor interface to force a "message class" 
of"O()" for that particular Function Request. See the SIGA Functional Specifi­
cation for more details. T _SYNC need not be driven by a Master which does 
not require Switch accesses. 

0 

During a request cycle, the T_PRIORITY field indicates the DESIRED (.:J 
Switch message priority. The ACTUAL Switch message priority is determined 
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by 111any'--facto!"~ \.~-'~thl!l the SICre., S;::f'. the SJC,A. Fup,ctjou.aJ Specifi.cotioo. for 
more details. 

TDAT Field 

The 34-bit TDAT field supports the multiplexed address/data architecture of 
the T-Bus. The subfields have different definitions depending on whether the 
T-Bus is currently in a request or response cycle .. The following describes the 
subfields of the TDAT field. 

During a request cycle, the Master sources the address onto the TDAT field. 
It can be accessing either a local or remote device. In either case, the OFFSET 
describes the address offset. The minimum width of this field is defined by 
the maximum memory configuration..expected on a given instantiation of the 
T-Bus. For the B2VME, the maximum memory is 32 Mb and thus the OFF­
SET field is: T _AD< 24 .. 0 >. Only the minimum width of the field need be 
driven by the requesting Master which performs only local accesses. During 
remote accesses (T_PATII = "SIGA_A'.' or "SIGA_B"), the LRA field indi­
cates the Logical Route Address to the Slave (always the SIGA-Requestor). 
The Logical Route Address is transformed by the SIGA into the Physical 
Route Address. See the SIGA Specification for details. 
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During a response cycle, the DATA subfield holds the read/write data for the 
appropriate Function Request. If the response is an "ERROR'', 
T _AD< 7 .. 0 > will hold the error code. The STOLEN subfield, when asserted, 
indicates whether or not a particular word of data is "stolen". The UNDE­
FINED field of the TDAT field need not be driven during responses. 
Figure B-7 shows the various definitions of the TDAT field. 

T-Bus TDAT field definition. 

33 25 24 0 

+--------+-----------------------+ 
I LRA I OFFSET request 
+--------+---------------~-------+ 

33 32 31 0 

+---+---+------------------------+ 
I X I S I DATA I response (no error) 
+---+---+------------------------+ 

33 32 31 8 7 0 
+---+---+---------------+-~------+ 

I X I 0 I X IERR GODEi response (error) 
+---+---+---------------+--------+ 

... where 
s stolen bit 
X ~ undefined. 

Operation 

The following describes the operation of the T-Bus in detail. 

Arbitration 

Arbitration is the process by which a T-Bus Master or Slave which did not 
previously have drivership, requests (possibly) and eventually gets drivership. 
This can happen in two ways: explicitly and implicitly. An explicit grant is 
when a Master or Slave (returning a split-response) first requests, then is 
granted drivership of the T-Bus. Implicit drivership occurs only in a Slave; 
when it recognizes that a Master is making a request to it, and then drives the 
bus in the next cyCie with its response. Both concepts are discussed below. 
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B.5.1.1 Explicit 

Explicit arbitration is "look-ahead" in the sense that when a device is Q 
"granted" the T-Bus in say, cycle #1; that device is expected to drive the bus 

Figure B-8 

in cycle #2. In addition, an explicit T-Bus grant CAN (and does in the 
· B2VME) be given to a device in the same cycle as the original request. The 
AC. timing specification of the T-Bus allows for this possibility. Explicit arbi­
tration begins when a Master or Slave asserts its T _ NBREQ_ * signal. The ar­
bitration logic asserts exactly one of the T _ NBGRANT _ * signals based on all 
of its T _ NBREQ_ • inputs. The "granted" Master or Slave must then wait for 
either an explicit arbitration cycle or a "dead" cycle on the T-Bus (if it does 
not already exist) before it can reconize the assertion of its T_NBGRANT_ • 
as valid. 

An explicit arbitration cycle is defined as follows: Some device is responding 
with anything except a "MORE" or "EARLY-ACK", and there are no Master 
or Slave pauses. This implies a cycle where a Slave is at the "end" of its re­
sponse cycle(s). A dead cycle is defined when no T-Bus device is driving, and 
both Slave and Master Pause are inactive. In both cases, the Requesting device 
MUST also check to see whether or not it actually requested the bus! This 
scheme places much of the burden of arbitration with the various T-Bus Mas­
ters and Slaves. A device which receives a grant during as explicit arbitration 
cycle is said to have received an "explicit grant''. A formal definition of an 
explicit grant is defined in Figure B-8. 

Definition - T-Bus explicit grant. 

<explicit grant> <bus request> & <explicit arbitration cycle> 
. . . & <bus grant> 

<explicit arbitration cycle> = <arbitration cycle> # <dead cycle> 

<arbitration cycle>= !(T_MPAUSE + T_SPAUSE) 
& T_DRIVEN & T_RESPONSE 

... & !<more or early-ack> 

<dead cycle>= !(T_MPAUSE # T_SPAUSE) & !T_DRIVEN 

<more or early-ack> = T_RR; is 11MORE" _or 11 EARLY-ACK" 

<bus request> = T_NBREQ_• is asserted 

<bus grant> = T_NBGRANT_*is asserted 

A typical explicit arbitration sequence is shown in Figure B-9. Note that Mas-
ter device "Foo" negates T_NBREQ_Foo when another arbitration cycle ar-

0 

rives. In fact, a granted device MUST negate its T _ NBREQ_ • during the next 
arbitration cycle if it no longer wants to drive the T-Bus. In addition, although Q 
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Figure B-9 

Figure B-9 does not show it, Slaves can arbitrate for the bus in the exact same 
manner to return a split-cycle Function Response. Slaves must also negate 
their T _ BREQ_ • during the last cycle of their response. 

State simulation - explicit arbitration example for Master . 

. . . given CYC <thus cycle number> 
NBRQ = T_NBREQ_Foo 
NBGR = T_NBGRANT_Foo 

CYC NBRQ NBGR 
==== 

1 1 x 
2 0 1 
3 0 0 
4 0 0 
5 0 0 
6 0 0 
7 x x 
8 x x 
9 1 x 

10 1 x 

B.5.1.2 

February 14, 1990 

Cycle Type Comments 
========== ===================== 
<dont care> no request yet 
<dont care> no grant yet 
<request> a different Master on now 
<response> its a 3-cycle transaction 
<response> almost done 
<arbitration> Done! Foo will get next drivership 
<request> Foo now drives 
<response> its another 3-cycle transaction 
<arbitration> Done! Foo loses next drivership 
<dont care> another device (if any) drives 

The T-Bus protocol enforces only ONE restriction on the arbitration logic: All 
Slaves must have higher priority than all Masters. This is explained fully in 
the "Denied Responses" section. . - · · ·· 

Implicit 

• 
Implicit arbitration is only used by Slaves. It occurs when a Master makes a 
request on the T-Bus and the requested Slave, recognizing the request to it, 
acts by driving the T-Bus in the following cycle in response. The Slave than 
receives what is called an "implicit grant". The actual "arbitration" occurs 
when the Slave recognizes that a request for its address is on the T-Bus. The 
Slave detects its address based on some combination of address bits and the 
T _PATH< 1..0 > field. The specific combination depends on the system 
memory map. In general, however, a "local" slave will respond to some combi­
nation of T _AD< 24 .. 0 > with the T _PATH = "LOCAC'. The SIGA is a spe­
cial case of implicitly responding Slaves because it will respond when the 
T_PATH field is "SIGA_.A'.' or "SIGA_B" - regardless of the TDAT field. 
Figure B-10 defines the implicit arbitration cycle. 
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Figure B-10 Definition - T-Bus implicit arbitration cycle. 

<implicit grant> <implicit arbitration cycle> 
. . . & <my address> 

<implicit arbitration cycle> !(T_MPAUSE + T_SPAUSE) 
& T_DRIVEN & !T_RESPONSE 

. • .. & ! <free lock> 

<my address> = <my local address> # <my remote address> 

<my local address> T PATH is nLOCAL" 
... & T AD<24 .. 0> 11 is in my address space" 

<my remote address> T PATH is "SIGA_A" and I am Siga A 
... or T PATH is "SIGA B" and I am Siga B 

<free lock> T_RR is "FREE-LOCK" 

B.5.2 

504 

Note that it is impossible for implicit and explicit arbitration to occur simulta­
neously because explicit arbitration cannot, by definition, occur during a re­
quest cycle. Implicit arbitration, on the other hand, can ONLY occur during 
a request cycle. 

Driving Rules 

As stated previously, T-Bus drivership is defined by the device which is, or 
will be, driving the TRANS field. The IDAT field however, will not always be 
driven by the same which has T -Bus drivership. In fact, the rules for driving 
(not necessarily drivership) can be stated i\11' a precise format as seen in 
Figure B-11. Here, it is seen that TRANS and IDAT fields are driven by dif­
ferent devices during write sequences. 
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Figure B-11 

B.5.3 

Figure B-12 

February 14, 1990 

Driving rules for T-Bus Masters and Slaves. 

... given <explicit>= <explicit arbitration cycle> & !<free> 
<implicit> =<implicit arbitration> 
<noarb> = !<explicit arbitration> 

... & !<implicit arbitration> 
free = <free-locks request> 

Request Next drive of 
Cycle Type Type TDAT to device ... 
=========== ======= ================== 

<explicit> that was granted 

<implicit> read BEING requested 

<implicit> write MAKING the request 

<implicit> free none 

<noarb> currently driving 

Next drive of 
TRANS to device ... 
================== 

that was granted 

BEING requested 

BEING requested 

none 

currently driving 

Note in Figure B-11, that a free-lock request has no device driving during the 
response phase. This is done for a number of reasons which are described in 
a later section. 

Cycle Definitions 

A formal definition of a request and response cycle is necessary for the rest 
of the discussion. Figure B-12 gives those definitions. 

Definition - request and response cycles. 

<request cycle> = ! (T~MPAUSE + T_SPAUSE) 
... & T_DRIVEN & !T_RESPONSE 

<response cycle> ! (T_MPAUSE + T_SPAUSE) 
... & T_DRIVEN & T_RESPONSE 

Note that a response cycle can simultaneously be an explicit arbitration cycle. 
In addition, a request cycle is ALWAYS an explicit arbitration cycle. A re­
sponse cycle that is interrupted by an asserted T _ MPAUSE or T _ SPAUSE sig­
nal is called a "paused response cycle". 
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B.5.4 Immediate Transactions 

Figure B-13 

506 

------------·-- -----

The simplest transaction is the "immediate Function Response", or "immedi- Q 
ate" transaction. This is where a Master, after arbitrating for the T-Bus, 
makes a request that the requested Slave can service "immediately" - before 
the next arbitration cycle. By definition, this is a case where the transaction's 
response cycle and the Function Response coincide. Figure B-13 shows a sim-
ple example of a 1,-word read and write. 

State simulation - immediate, byte read/write. 

READ: 

CYC Driver 
=== ======== 

1 Slave n 
2 Master A 
3 Slave B 
4 ? 

WRITE: 

T_RR 

COMPLETED 
READ 
COMPLETED 

? 

Comments 
=================================== 
end previous transaction; arbitrate 
request: read 1 word from Slave B 
resporise: here is data; arbitrate 
some other transaction 

CYC Driver T_RR Comments 
=== ======== ========= =================================== 

1 Slave n COMPLETED 
2 Master A WRITE 
3 Slave B COMPLETED 
4 ? ? 

end previous transaction; arbitrate 
request: write 1 word to Slave B 
response: got data; arbitrate 
some other transaction 

Figure B-13 shows that the read and write look quite similar; the only differ­
ence being the direction of the TDAT field during cycle# 3, which is not shown. 
In general, the direction of the TDAT field in a State Simulation Diagram is 
obvious and thus will not be shown. The reader should refer to the "Driving 
Rules" section of this document for more details on TDAT driving rules. In 
addition, the explicit arbitration portion of the transaction is shown in 
Figure B-13 but will not be shown in subsequent figures. 

When performing a transfer of more than one word, the Slave must respond 
with "placeholder" response rather than just respond with "COMPLEIBD" 
for each word transferred. This is because "COMPLEIBD" is used by all oth­
er Masters and Slaves to determine when arbitration occurs and must be re­
served for the end of the response. That placeholder is the "MORE" response. 
Figure B-14 shows an immediate multi-word read and write. 
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Figure B-14 

B.5.5 

Figure B-15 

February 14, 1990 

State simulation - immediate, 3-word read/write. 

READ: 

CYC Driver 
======== 

1 Master A 

2 Slave B 

3 Slave B 
4 Slave B 

WRITE: 

CYC Driver 
======== 

1 Master A 

2 Slave B 

3 Slave B 

4 Slave B 

T RR 
========= 
READ 
MORE 
MORE 
COMPLETED 

T RR 
========= 
WRITE 
MORE 
MORE 
COMPLETED 

Comments 
================================== 
request: read 3-words .from Slave B 
response: sourcing the 1st.word 
response: sourcing the 2nd word 
response: sourcing the last word 

. Comments 
================================= 
request: write 3-words to Slave B 
response: sinking the 1st word 
response: sinking the 2nd word 
response: sinking the last word 

Of course, there will normally be "n-1" valid "MORE" responses, where "n" 
is the number of words to be transfered. This number will change if there are 
any errors (described later). The two and four-word reads and writes are ob-

. vious extensions of the simulation in Figure B-14. 

Pausing 

Pausing is the method by which Masters or Slaves can "extend" a single trans­
action in order to have more time to process or perform their task for that 
transaction. As mentioned in the "Signal Field Description", a Master or Slave 
can request a pause by asserting its T _ NMPAUSE _*or T _ NSPAUSE _ * signal, 
respectively. This will cause either T_MPAUSE or T_SPAUSE to be asserted. 
Five important rules apply to pauses and are shown in Figure B-15. 

Rules for pausing. 

1. Slaves can assert T _NSPAUSE _*when and only when they are making a 
response. Masters can assert T_NMPAUSE_* only when they were 
granted drivership during the most recent arbitration cycle. Once this 
condition is met, there are no restrictions on WHEN the device can 
pause. 

2. As a corallary to rule #1: Of the set of all Masters and Slaves, exactly 0 NE 
can be asserting its individual pause signal in a given T-Bus cycle. 

3. Pausing overrides ALL other TRANS signals on the T-Bus. It basically 
indicates: "Ignore this cycle in all respects and continue as normal in the 
next cycle." 
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Figure B-16 

READ: 

4. There is no protocol restriction on how many cycles a device may pause 
for. However, practical restrictions - like T-Bus throughput and 
bandwidth - do apply. 

5. Any device sourdng data while being paused by the sinking device 
MUST HOLD that data stable and valid until the pause is released. 

When particular Master is making a request, the responding Slave may pause. 
by asserting T_NSPAUSE_* for a variety of reasons. The most likley reasons 
are: 1) The Slave is not ready to source the requested data on a read, 2) The 
Slave is not ready to sink the requested data on a write, or 3) The Slave needs 
more than one T-Bus cycle to calculate its response. Figure B-16 shows how 
a Slave Pause would work in a multi-word read/write situation (Reasons #1, 
#2) .. 

State simulation - immediate, 2-word read/write with Slave. 

CYC Driver T SPAUSE T RR Comments 
=== ======== ======== ========= ============================== 

1 Master A 
2 Slave B 
3 Slave B 
4 Slave B 
5 Slave B 

WRITE: 

CYC Driver 
--- ======== 

1 Master A 
2 Slave c 
3 Slave c 
4 Slave c 
5 Slave c 
6 Slave c 

negated 
asserted 
negated 
asserted 
negated 

T SPA USE -
======== 
negated 
asserted 
asserted 
asserted 
negated 
negated 

REAI;> 
x 

MORE 
x 

COMPLETED 

T RR 
========= 
WRITE 

x 
x 
x 

MORE 
COMPLETED 

req: read 2-words from Slave B 
resp: pause, I;m not ready 
resp: sourcing the 1st word 
resp: pause, I;m not ready 
resp: sourcing last word, arb 

Comments 
============================== 
req: write 2-words to Slave C 
resp: pause, I'm not ready 
resp: pause, I'm not ready 
resp: pause, I'm not ready 
resp: sinking the 1st word 
resp: sinking last word, arb 

0 

0 

Note from Figure B-16 that the T_RR field is a "don't-care" during the 
paused cycles. Again, PAUSES ALWAYS OVERRIDE REQUEST OR RE­
SPONSE CYCLES. Cycle #1 in both transactions is, of course, an implicit 
arbitration cycle. Cycles #2 and #4 in the read tranasaction and #2, #3, #4 in 
the write transaction are known as paused response cycles. Note also that 
Slave C appears to be slow in responding to the request. Although the T-Bus 
protocol supports a theoretically infinite pause period, there is obvously a 
practical threshold which impacts system performance. This threshold must 
be decided upon when the particular implementation of a T-Bus is designed. 
If a Slave could not meet that threshold for response time, it should then issue 
a PROMISE (see: "Refusing") and return the response later. 0 
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Figure B-17 

CYC-Driver 
=== ======== 

1 Master A 
2 Slave B 
3 Slave B 
4 Slave B 

8.5.6 

February 14, 1990 

M 

A requesting Master may pause by asserting T _ NMPAUSE _ * for a variety of 
reasons. The most likley reasons are: 1) The Master is not ready to sink the 
requested data on a read, 2) The Master is not ready to source the requested 
data on a write, or 3) The Master has just gained drivership of the T-Bus and 
needs more than one T-Bus cycle to calculate its request. Reason #3 is an un­
usual case and is not implemented on the B2VME. Figure B-17 shows how 
a Master Pause would work in a single-word write situation (Reason #1). 

State simulation - immediate, 1-word read with Master. 

SPAUSE T RR Comments 
======== ========= ============================= 
negated READ req: r_ead 1-wordfrom Slave B 
asserted x resp: I am waiting for you 
asserted x resp: I am waiting for you 
negated COMPLETED resp: sourcing word, arbitrate 

Note that the Master can assert Master Pause even when it is receiving data 
from a split-response. In addition, it is possible for both Master and Slave 
pause to occur while a Slave is responding. 

Early Acknowledge 

AT-Bus Slave will issue a pause when it cannot complete a task and respond 
quickly enough. Often however, a slave MAY be able to predict :WHEN it will 
finish. Transfering this knowledge to the requesting Master enables that Mas­
ter to anticipate the eventual Function Response. For the SIGA-Server, for 
instance, the "early warning" from a requested Slave will allow the SIGA to 
begin transmitting its upstream Switch message header in anticipation of the 
data. 

By their nature, some Slaves (like memory) that pause DO know when their 
response cycle will end. For this reason, Slaves may implement what is known 
as an early acknowledge. This is accomplished by responding with an "EAR­
LY -ACK" before the end of a Function Response. In fact, the "EARLY­
ACK" must occur no more than TWO T-Bus cycles before the end of the a 
Function Response. The "EARLY-ACK" token in a response is a "placehold­
er" in the same sense as a "MORE" token. This can be seen in the previous 
definition of an arbitration cycle. An "EARLY -ACK" of course, should NOT 
be accompanied by Slave pause within the same cycle. However, an "EARLY­
ACK" does imply that the TDAT field should NOT be considered valid. A 
typcial early acknowledge is shown in Figure B-18. 
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Figure B-18 

CYC Driver 
--- ======== 

1 Master A 
2 Slave B 
3 Slave B 

4 Slave B 
5 Slave B 

B.5.7 

B.5.7.1 

State simulation - early acknowledge. 

T SP AU SE T RR Comments -
======== ========= ============================== 
negated 
asserted 
negated 
asserted 
negated 

READ 
x 

EARLY-ACK 
x 

COMPLETED 

req: read 2-words from Slave B 
resp: pause, I'm not ready 
resp: resp: early-ack 
resp: pause, I'm not ready 
resp: sourcing last word, arb 

Deferred Transactions 

A more complex transaction type, known as a "deferred transaction" contains 
two new concepts: "deferred responses" and "denied responses". These are 
described in the following discussion. 

Deferred Responses 

A deferred transaction is when a requested Slave kriows that it cannot comply 
with a Function Request immediately, and must "defer" its response until lat­
er. The slave indicates this fact to the requesting Master by responding with 

0 

a "PROMISE" (also known as deferred) response. In the cycle following the u~ 
deferred response, both the transacting Master and Slave release drivership 
of. the T-Bus in the same exact wav as the end of an immediate response. 
Figure B-19 shows a deferred write: 

Figure B-19 State simulation - deferred write. 

DEFERRED 3-WORD WRITE, NO PAUSING 

CYC Driver T RR Comments 
======== ========= ====================================== 

1 Master A WRITE 
2 Slave c MORE 
3 Slave c MORE 
4 Slave c PROMISE 

n Master X READ 
n+l Slave Y COMPLETED 

req·: write 3-words to Slave c 
resp: sinking the 1st word 
resp: sinking the 2nd word 
resp: sinking last word, deferred, 

req: read 1 word from Slave Y 
resp: sinking last word, done 

m Slave C 
m+l Slave C 

<no drive> Slave C requests and is granted 
COMPLETED resp: I'm done, no errors 
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A number of T-Bus concepts are introduced/refined in Figure B-19. Slave 
C decides that it must defer its response and issues a "PROMISE" to its re­
questing Master A. Note that it is up to the Slave and NOT the Master to de­
cide . whether or not the Slave should defer its response. In a typical 
implementation, a Slave will either be designed to ALWAYS split or NEVER 
split, although that NOT need be the case. The T-Bus WOULD support a 
Slave that SOMETIMES split, or split only for certain types of sequences. Of 
course, a Master must be able to handle a split-response if it wishes to access 
a split-cycle Slave. 

Figure B-19 illustrates some of the previously defined terms. Cycle #1 is both 
a Function Request and request. Cycles #2-#4 are the response and Cycle #4 
is the deferred response. Cycles #5 through n-1 (not shown) include any other 
type of valid T-Bus activity, including: 1) requests_ and responses from T-Bus 
Masters and Slaves and 2) dead T-Bus cycles. Cycles n and n + 1 show a specif­
ic example of these other transactions. Cycle m is where Slave B was finally 
ready to return its split response, and so requests the T-Bus. Figure B-19 
shows that Slave B happens to receive its grant within the same cycle (Cycle 
m) as the request - although this will not necessarily occur. Note that Cycle 
m + 1 is really just an acknowledgement for the Function Request in Cycle #1. 
No data is transfered du_ring Cyclem + 1 unless the split response was an "ER­
ROR" response. In this case Slave C would present an error code to Master 
A. 

At the end of Cycle #4, Master A, noticing that Slave C is about to defer its 
response, records the slave number of Slave C from the T_SOURCE field. 
Master A becomes a "split-master" in Cycle #5 (not shown) and Slave C be­
comes a split-slave. Master A must now observe ALL cycles of T-Bus activity 
and watch for a response from its split slave, Slave C. That response finally 
arrives during cycle m + 1. Master A interprets that response as if it actually 
occured during Cycle #4. Cycle m + 1 ends the sequence. After Cycle #4, Mas­
ter A MUST desist from making T-Bus requests. Figure B-20 shows the defi­
nition of a split Master's split response. 
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Figure B-20 

B.5.7.2 

Butterfly II Hardware Architecture 

Definition - Master interprets a split response. 

<split response> <I am split> & <response> 

<I am split> 

& <my split Slave number> 
... & <split RR field> 

"I got a deferred response 
to my Function Request" 

<my split Slave number> ~ "T SOURCE is the same as 
the Slave that issued the 
original deferred response" 

<split RR field> ~ T_RR is not "REFUSED" or "REFUSED-LOCKED" 

<response> = "defined previously" 

Denied Responses 

0 

While Slave C is split, the Function Request is "unresolved". In terms of the 
T-Bus protocol, both Master A and Slave C are still in the middle of a se­
quence. During this time, Masters OTIIER than the split Master (Master A) 
may legitimately make a request to split Slave C. When this occurs, Slave C 
must indicate to the requesting Master that its request is being "denied". It 
does so by issuing a "REFUSED" response which is also known as a denied o· 
response. Figure B-21 demonstrates this response in action during a 3-word 

-·read: 

Figure B-21 

512 

State simulation - deferred read. 

DEFERRED 3-WORD READ, NO PAUSING 

CYC Driver 
======== 

1 Master A 
3 Slave c 

T_RR 
========= 
READ 
PROMISE 

Comments 

req: read 3-words from Slave C 
resp: got request, deferred 

n Master X READ 
n+l Slave c REFUSED 

req: read 1 word from Slave C 
resp: denied! 

m Slave B 
m+l Slave B 
m+2 Slave B 

<no drive> Slave B requests and is granted 
MORE resp: sourcing 1st word 
MORE resp: sourcing 2nd word 

m+3 Slave B COMPLETED resp: sourcing last word, done 
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Note from Figure B-21 that in Cycle n + 1, Slave C denied a Function Request 
from Master X. If Slave C responded with any other response token ("COM­
PLETED", "ERROR", etc.), Master A would interpret that as a response to 
its Function Request. However, the T-Bus protocol would allow Slave C to 
make a Function Response to Master A by "faking" its slave number with the 
reserved "anonymous Slave number": T _SOURCE< 2 .. 0 > = "000". Al­
though this is technically legal, it both violates the spirit of the split-cycles and 
complicates the design of the split Slave, and thus should be avoided. In addi­
tion, denied accesses have one major restriction: a responding split Slave 
CANNOT first respond with data and then issue the "REFUSED" response. 

When a Master is issued a denied response, it may try the request again as soon 
as it can re-arbitrate for the T-Bus. The specific retry schedule for a denied 
Master is implementation dependent. However, if the Master is designed to 
retry immediately, Slaves MUST be given higher priority that Masters. This 
is so because otherwise, the Master will consume the entire T-Bus bandwidth 
with retries and thus never let the Slave issue its split response. 

Locked Operations 

Locked Operations describe a scenario where certain Slaves can become 
"locked" to certain Masters. While the Slave is locked to a Master, it becomes 
unable to service MOST requests from any other Master. Locking is used 
when a Master wishes to have eclusive use of some Slave for more than one 
sequence. Locking is somewhat an analogous to split cycles in that the Slave 
is acting on a Function-Request while freeing the T-Bus for other activity. 

The contrast beween locking and split cycles concerns the Slave's relationship 
to the Master after the initial Function Request. Split Slaves are acting on a 
particular Function Request and don't know (or care) anything about which 
Master requested it. In addition, split cycles only span one sequence. Locked 
Slaves, on the other hand, DO care about which Master is involved. And 
locked operations span at least two sequences. 

Locking is divided into three distinct phases: 1) Opening, 2) maintaining, and 
3) closing. These phases are now described in detail. 

Opening a Lock 

A Master can open a lock by making a Function Request and setting the 
T _LOCKOP field to an "OPEN" token. This informs the requested Slave that 
it is to become "locked" to that Master. The Slave records the Master's source 
number during the request cycle for possible later use. A typical open lock 
is shown in Figure B-22. 

BBN ACI Proprietary 513 



B: T-Bus Specification Butterfly II Hardware Architecture 

Figure B-22 State simulation ~ opening/bypassing and refused-locked. 

CYC Driver 
=== ======== 

1 Master A 
2 Slave B 

m Master D 
m+l Slave B 

n Master E 
n+l Slave B 

0 ·Master E 
o+l Slave B 
o+2 Slave B 
o+3 Slave B 
o+4 Slave B 

514 

T_LOCKOP T_RR Comments 
======== ========= ============================= 

OPEN READ req: read 1-word/lock Slave B 
COMPLETED resp: source data, lock to A 

OPEN WRITE req: write 4-words to Slave B 
RFSD-LCKD resp: refused-locked 

OPEN WRITE req: write 4-words to Slave B 
RFSD-LCKD resp: refused-locked 

BYPASS WRITE req: write 4-words to Slave B 
MORE resp: sinking 1st word 
MORE resp: sinking 2nd word 
MORE resp: sinking 3rd word 
COMPLETED resp: sinking last word 

From Figure B-22 it can be seen that the read request was sucessful (no "ER­
ROR" response) and that Slave Bis now locked to Master A. In T-Bus termi­
nology, Slave B is "locked" to Master A. Note also that two other Masters (D 
and E) attempted to request Slave B in cycles m and n. Slave B, knowing that 
it was locked to Master A, issued a "REFUSED-LOCKED" token to Masters 

0 

D and E. This response is known as the "denied-locked" response and is anal- 0 
ogous to the denied response for split-cycle Slaves. 

Note that it is legitimate for a Jocked and split Slave to issue a denied-locked 
response to its own locked Master. This is just an optimization to ease design 
of a lockable Slave's response logic. By T-Bus protocol, the split (and locked) 
Master should ALWAYS wait for its Function Response before attempting 
another request. 

Masters D and E subsequently become "observing" Masters. An observing 
Master releases the T-Bus immediately- in this case by not driving data dur­
ing m + 2 and n + 2. This is a T-Bus requirement. The observing Masters 
MUST then wait until Master A has "finished" with its lock on Slave B before 
they make another T-Bus request. This "finishing" event is described later. 

Note from Figure B-22 that in cycle o, Master E makes a "BYPASS" request. 
The bypass request is the "override" mechanism for Masters attempting to re­
quest Slaves locked to another Master. Slave B, recognizing the bypass at­
tempt, allows the sequence to continue, effectively ignoring the T _SOURCE 
field. The bypass operation does NOT affect, in any way, the lock between 
Slave B and Master A. 
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B.5.8.2 

Figure B-23 

Maintaining a Lock 

Note that is is perfectly legal for Master A to now open a lock to a NEW Slave 
once its Function Response has arrived (in this case immediately). In fact, a 
given Master can lock as many Slaves as is practical. The open request will 
normally be given to Slaves that the requesting Master has not yet Jocked. 
However, it is NOT illegal for the Master to issue two consecutive open re­
quests to a single Slave. The Slave will interpret that request as a "MAIN­
TAIN", which is described next. 

Master A can now make exclusive use of Slave B simply by making more Func­
tion Requests while T_LOCKOP field set to the "MAINTAIN" token. This 
indicates to Slave B that the current lock should continue. A maintain is shown 
in Figure B-23. 

State simulation - maintaining a lock. 

CYC Driver T_LOCKOP T RR Comments 
=== ======== ======== ========= ============================= 

1 Master A OPEN 
2 Slave B 

READ req: read 1-word/lock Slave B 
COMPLETED resp: source data, lock to A 

m Master A MAINTAIN WRITE req: write 4-words to Slave B 
m+l Slave B 
m+2 Slave B 
m+3 Slave B 
m+4 Slave B 

Figure B-24 

B.5.8.3 
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MORE resp: sinking 1st word 
MORE resp: sinking 2nd word 
MORE resp: sinking 3rd word 
COMPLETED resp: sinking--"last word 

Figure B-24 summarizes the legal T_LOCKOP tokens that can be presented 
to a Slave under various conditions. 

Valid T_LOCKOPs between locking/locked Master and Slave. 

CURRENT SLAVE CONDITION 
======================= 

UNLOCKED 

LOCKED 

Closing a Lock 

VALID T_LOCKOP DURING REQUEST 
FROM LOCKING/LOCKED MASTER 
============================= 
OPEN, BYPASS, NORMAL 

OPEN, BYPASS 

A lock to a Slave is closed when a Master makes the "free lock" request with 
the "FREE-LOCK" token in the T_RR field. All lockable Slaves which are 
currently locked to that Master become "unlocked" in the cycle following the 
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Figure B-25 

Butterfly II Hardware Architecture 

request. The Slaves use the T_SOURCE field to recognize their locked Mas­
ters during the request; they do NOT need to see an implicit. grant. 
Figure B-25 shows the definition of Locking/Unlocking for a Slave. 

Definition - Slave locking and unlocking. 

<locked> := <newly locking> # (<locked> & !<my free lock>) 

<newly locking> = <implicit grant> & <open lock> & !<locked> 

<my free lock> = <request> & (T_SOURCE = <my locked master>) 
... & <free lock> 

<my locked master> := <newly locking> & T_SOURCE<2 .. 0> 
# (!<newly locking> & <my locked master>) 

<open lock> = T LOCKOP is "OPEN" 

<free lock> = T_LOCKOP is "FREE-LOCK" 

516 

----·--------

A free lock Function Request is an anomaly in terms of T-Bus protocol be­
cause it is the ONLY transaction which does NOT have a corresponding re­
sponse cycle. In fact, the cycle following a free lock request, by definition 
MUST be a dead T-Bus cycle (previously defined). Of course, arbitration can 
take place during that dead cycle. 

ALL obserVing Masters "wake-up" when they observe ANY free lock request 
go by on the T-Bus, even though the free lock may NOT be for TIIEIR locked 
Slave. The newly "arisen" Masters then arbitrate for the T-Bus and once again 
attempt their Function Request. Figure B-26 shows a typical free locks. 
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Figure B-26 State simulation - freeing a lock. 

CYC Driver T_LOCKOP T RR Comments 
=== ======== ======== ========= ============================= 

1 Master A OPEN READ req: read 1-word/lock Slave B 
2 Slave B COMPLETED resp: source data, lock to A 

m Master A MAINTAIN WRITE req: write 1-word to Slave B 
m+l Slave B COMPLETED resp: sinking last word 

n Master D X WRITE req: write 2-words to Slave B 
n+l Slave B RFSD-LCKD resp: refused-locked 
n+2 Master D becomes. observing 

0 Master A FREE-LOCK READ 
o+l 

req: read 1-word/lock Slave B 
dead cycle, Master D arbitrates 

o+2 Master D NORMAL WRITE req: write 2-words to Slave B 
o+3 Slave B X MORE resp: sinking 1st word 
o+4 Slave B X COMPLETED resp: sinking last word, arb 

Figure B-26 shows Master Dre-arbitrating for the T-Bus when it observes 
a free lock request. Again, Master D does not care whether or not the free lock 
request will free-up the Slave that denied it. Master D only cares that it saw 
ANY free lock request. In Cycle o + l, Master D is granted the T-Bus - but 
of course, some other Master or slave could have gotten it in that cycle. 

8.5.9 
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Locked Sequences MUST ALWAYS end with a free lock request, otherwise 
observing Masters would be left "hanging". A "lock timer" should be implem­
ented by the Master so that the lock will not be held for too long. This has 
major implications for Switch transactions when the SIGA is locked. The lock 
timer should start after the response to t.he "OPEN" request by the Master. 

Locked/Split Sequences 

It is certainly legal (and the norm for the SIGA) for a Master and Slave to be 
both locked AND in split cycles. This situation is shown in Figure B-27. 
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Figure B-27 State simulation - opening/bypassing and refused-locked. 

CYC Driver T _LOCKOP T RR Comments 
======== ======== ========= ============================= 

1 Master A OPEN READ req: read 2-words/lock Slave B 
2 Slave B PROMISE resp: lock to A 

m Master D NORMAL WRITE req: write 4-words to Slave B 
m+1 Slave B RFSD-LCKD resp: refused-locked 

n Slave B MORE resp: sourcing 1st word 
n+1 Slave B COMPLETED resp: sourcing last word, arb 

0 Master A MAINTAIN WRITE req: write 2-words to Slave B 
o+1 Slave B 
o+2 Slave B 

p Slave B 

q Master A 
q+1 

q+2 Master D 
q+3 Slave B 
q+4 Slave B 

.. B.5.10 

B.5.11 
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MORE resp: sink 1st word 
PROMISE resp: sink last word, promise 

COMPLETED resp: O.K., no errors 

x FREE-LOCK req: free any locks to me 
dead cycle, Master D arbitrates 

NORMAL WRITE req: write 2-words to Slave B 
x MORE resp: sinking 1st word 
x COMPLETED resp: sinking last word, arb 

Stolen 

The stolen bit, T_AD<32>, implies certain restrictions on T-Bus transac­
tions. The stolen bit can never be asserted during a multi-word write - Slaves 
can make this assumption. For multi-word reads, an asserted stolen bit does 
not necessarily end the cycle. However, the Master can legitimately ignore any 
read words occuring after a stolen word. The Slave, on the other hand, can 
end the cycle on any stolen word. 

Error Response 

Sometimes during a response, a Slave recognizes that there was an error in the 
request or as a result of the request. If the Slave is not going to make a defer 
response, it MUST detect the error before it makes its first response to the 
Master. The Slave CANNOT transfer data (sink or source) for one or more 
cycles and THEN respond with "ERROR". Of course, the Slave can always 
pause if it can't decide immediately, if there is an error or not. 

The Slave can return an "ERROR" response in one of two places: 1) during 
a split response, in the first response cycle following the Slave grant or 2) in 
the first response cycle immediately following an implicit grant (the defer or 
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Figure B-28 

immediate response). The "ERROR" response ends the transaction, the se­
quence - and depending on the implementation - the operation. 

For read sequences (split or non-split) the TDAT field holds the 8-bit error 
code that is implementation dependent. For non- split write sequences, the 
TDAT field is in the "wrong" direction and thus the error code cannot be pres­
ented to the requesting Master. Normally for split writes, the split response 
is just an acknowledgement - no data is transfered. Split write sequences, ther­
fore give the written Slave a chance to return the error code with the split re­
sponse. In fact, if returning an error code for both read and write sequences 
is important enough, a Slave can be design as split cycle solely for that purpose. 

Figure B-28 shows the error response in three different situations. 

State simulation - error response. 

ERROR WITHOUT PAUSE: 

CYC Driver 

1 Master A 
2 Slave B 

M_SPAUSE 

negated 
negated 

ERROR ON A WRITE: 

CYC Driver M SP AU SE 
--- ======== ....,,.,....,=,...,.,=:-,...,,-

1 Master A negated 
2 Slave B negated 

PAUSED, THEN ERROR: 

CYC Driver M SPAUSE 
=== ======== ======== 

1 Master A negated 
2 Slave B asserted 
3 Slave. B asserted 
4 Slave B negated 

T RR 

READ 
ERROR 

T RR 
....,---""':":::-:=== 

WRITE 
ERROR 

T RR 
========= 
READ 

x 
x 

ERROR 

Comments 
============================== 
req: read 3-words from Slave B 
resp: sourcing error code 

Comments 
======....,.,===,..,...,,,.~="".-:'===---,==---==== 

req: write 2-words to Slave B 
resp: sinking data, can't 

.. . source error code 

Comments 
============================== 
req: read 3-words from Slave B 

resp: I am waiting for you 
resp: I am waiting for you 
resp: sourcing error code 

SPLIT RESPONSE WITH ERROR AND PAUSE: 

CYC Driver M_SPAUSE T RR Comments 
======== ======== ========= ============================== 

1 Slave B asserted X 
2 Slave B negated ERROR 

resp: I'm not ready yet 
resp: sourcing error code 

An error resonse need not end an operation. This is up to the Master involved. 
Also, an error response does NOT imply a free lock request to a locked Slave 
that responded with the error. 
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8.6 Logical Signal Assignments 
0 

Figure B-29 Logical encoding - ARBITRATION subfield. 

T_NBREQ_* 0, device requesting bu.s drivership 
1, device NOT requesting bus drivership 

T NBGRANT * 0, device granted bus drivership - -
1, device NOT granted bus drivership 

Figure B-30 Logical encoding - STATUS subfield. 

T_NDRIVEN - * 0, device is driving bus 
1, device is NOT driving bus 

T NMPAUSE - * 0, master is requesting pause 
1, r.iaster is NOT requesting pause 

T NSPAUSE * 0, slav_e is requesting pause - -
l, slave is NOT requesting pause 

T DRIVEN 0, the T-Bus is NOT currently driven 
1, the T-Bus is currently driven 0 

master is NOT currently pausing T_MPAUSE 0, a T-Bus 
1, a T-Bus master is currently pausing 

T_SPAUSE 0, a T-Bus slave is NOT currently pausing 
1, a T-Bus slave is currently pausing 

0 
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0 
Figure B-31 Logical encoding - TRANSACTION (STANDARD) subfield. 

T_REQUEST 0, current cycle is a Response 
1, current cycle is a Request 

T_SOURCE<2 .. 0> 
T_REQUEST=l T_REQUEST=O 
=========== =========== 

000 SIGA_AB/CNU SIGA_AB/CSU 
001 SIGA_A/SERV SIGA_A/REQ 
010 SIGA_B/SERV SIGA_B/REQ 
011 VMES VMEM 
100 CPUA MEMORY 
101 CPUB <reserved> 
110 <reserved> <reserved> 
111 <reserved> <reserved> 

T_RR<2 .. 0> 
T_REQUEST=l T_REQUEST=O 
=========== =========== 

000 WRITE ERROR 
001 READ PROMISE 
010 <reserved> REFUSED 
011 <reserved> COMPLETED 
100 FREE LOCKS MORE 

0 
101 <reserved> EARLY-ACK 
110 <reserved> REFUSED-LOCKED 
111 <illegal> <illegal> 

(continued) 

0 
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Figure B-32 

Figure B-33 
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Logical encoding - TRANSACTION (STANDARD) subfield 
(continued). 

T SIZE<2 .. 0> · 

000 
001 
010 
011 
100 
101 
110 
111 

T_LOCKOP<l. . 0> 

00 
01 
10 
11 

T_PATH<l .. 0> 

00 
01 
J.0_ 
11 

T_REQUEST=l 

4 BYTES 
1 BYTE 
2 BYTES 
3 BYTES 
4 WORDS 
<illegal> 
2 WORDS 
3 WORDS 

T_REQUEST=l 

NORMAL 
BYPASS 
OPEN 
MAINTAIN 

T_REQUEST=l 

ILLEGAL 
SIGA_3 
STGA .A. 

LOCAL 

T_REQUEST=O 
=========== 

T_REQUEST=O 
=========== 

T_REQUEST=O 

Logical encoding - TRANSACTION (EXTENDED) subfield. 

T_SYNC O, normal message start 
l, force Slot O message start 

T_PRIORITY<l .. 0> 
T_REQUEST=l 

00 
01 
10 
11 

EXPRESS 
FOREGROUND 
BACKGROUND 
<illegal> 

BBN ACI Proprietary 
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Figure B-34 _ 

Figure B-35 

8.7 

Figure B-36 

Logical encoding - TDAT subfield. 

T AD<33 .. 0> 
T_REQUEST=l 
=========== 
T_AD<33 .. 25> 
is SNN 

T_AD<24 .. 0> 
is OFFSET 

T_REQUEST=O 
=========== 
T AD<33> 
is undefined 

T_AD<32> 
is STOLEN bit 

T AD<31. .0> 
is DATA 

Logical encoding - CLOCK subfield. 

T CLK rising edge is active 

Transaction Syntax 

The following shows the extended-BNP syntax of some legal T-Bus sequences. 
These definitions are meant to enumerate some of the lower-level T-Bus 
events on a cycle-by-cycle basis. They do not describe the entire set of T-Bus 
events. Identifiers -which appear in all capitals represent subfields of T-Bus 
TRANS field and are terminal identifiers. 

The extended BNF format include the following definitions: 

Definition - extended BNF operators. 

Symbol Definition 

can be replaced by 
{ } zero or 11n 11 occurences of enclosed 

continue line from above 
or 

The Extended BNF constructions follow: 

<sequence> : := <free transaction> <sequence> 
I- <immediate sequence> <sequence> 
I <deferred sequence> <sequence> 
I <denied sequence> <sequence> 

<free transaction> : :=<free-request> <no response> 
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<immediate sequence>::~ <function request> <function response> 

<deferred sequence>::= <function request> <deferred response> 
... <function response> 

<denied sequence> ::=<function request> <denied response> 
... {<function request> <denied response>} 
... <function request> <function response> 

<function request> : :=<request> 

<function response>::= <error> 
<1-word fr> 
<2-word fr> 
<3-word fr> 
<4-word fr> 

<1-word fr> 

<2-word fr> 

<3-word fr> 

<4-word fr> 

<1 pause> 

<completed> 
I <EARLY-ACK> <COMPLETED> 
I <EARLY-ACK> <1 pause> <COMPLETED> 

: := <more> <completed> 
I <early ack> <completed> 
I <early ack> <1 pause> <completed> 

<more> <more> <completed> 
I <more> <early ack> <completed> 
I <more> <early ack> <1 P.ause> <completed> 

<more> <more> <more> <completed> 
<more> <more> <early ack> <completed> 
<more> <more> <early ack> <1 pause> <completed> 

<> 
<master_pause> 
<slave_pause> 
<master_and_slave_pause> 

<pause> : ": = <> 
<master_pause> 
<slave_pause> 
<master_and_slave_pause> 
<pause> <pause> 

<more> ::=<pause> <MORE> 

<early-ack> 

<completed> : := 

<pause> <EARLY-ACK> 

<pause> <COMPLETED> 

<error> : := <pause> <ERROR> 

<deferred response> : := <pause> <PROMISE> 

<denied response>::= <pause> <REFUSED> 

<request> : := 11 as defined in this document 11 

<master pause> : := T_MPAUSE 

<slave pause> : := T SPAUSE 
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<master_and_slave_pause> - T_MPAUSE and T SPAUSE 

8.8 A.C. Timing Specifications 

The following are the A.C. requirements for the T-Bus. It refers to a "double­
standard" in that non-SIGA devices have tighter timing. 

Figure B-37 
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A.C. timing. 

TRANSACTION and TDAT signals: 

Type Parameter 
------ ---------
Source TPD-max 
Source TPD-min 

Sink Setup-max 
Sink Hold-min 

ARBITRATION signals: 

Type Parameter 
------ ---------
Source TPD-max 
Source TPD-min 

Sink Setup-max 
Sink Hold-min 

STATUS signals: 

Type Parameter 
------ ---------
Source TPD-max 
Source TPD-min 

Sink Setup-max 
Sink Hold-min 

NON-SIGA 

19 
4 

20 
2 

NON-SIGA 

8 
2 

20 
2 

NON-SIGA 

8 
2 

20 
2 
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SIGA 

23 
4 

24 
2 

SIGA 

13 
2 

20 
2 

SIGA 

13 
2 

24 
2 
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