-1604 COMPUTER Volume 3: MAINTENANCE

Ľ

L

L

1

INSTRUCTION BOOK

1604 COMPUTER

Volume 3: MAINTENANCE

INSTRUCTION BOOK

PUBLICATION 033a

GENERAL TABLE OF CONTENTS

- Volume 1 Description and Operation
- Chapter 1 General Description
 - 2 Operation
- Volume 2 Principles of Operation
- Chapter 1 Introduction
 - 2 Control Section
 - 3 Arithmetic Section
 - 4 Storage Section
 - 5 Input-Output Section
 - 6 Console Input-Output Equipment
 - 7 Power and Cooling

Volume 3 Maintenance

Chapter 1 Introduction

- 2 Diagnostic Maintenance
- 3 Console Equipment
- 4 Power System

Volume 4 File of Equations

Volume 5 Diagrams

Ĵ.

TABLE OF CONTENTS

Chap	oter 1 Introduction	1-1
	Computer Identification Numbering System	1-2
	Test Equipment	1-2
Chapt	er 2 Diagnositc Maintenance	2-1
	Test Programs	2-1
	Diagnosis from Console	2-3
	Logical Circuit Maintenance	2-3
	Storage Maintenance	2-5
	Storage Waveforms	2-7
	Command Timing Charts	2-10
Chapt	er 3 Console Input-Output Equipment	3-1
	Additional Typewriter Procedures	3-1
	Modifications	3-2
Chapt	er 4 Power System	4-1
Figur	e	
1-1	Cable Connector Identification	1-4
1-2	Card Side of a Typical Chassis	1-6
3-1	PT Reader Modifications	3-2
4-1	Regulator Panel	4-2
4-2	Circuit for Flashing MG Exciter	4-2
Table		
4-1	Circuit Breaker and Fuse Location	4-3
Appen	dices	
Α	Installation	A-1
в	Card Schematics	B-1
С	Preventive Maintenance Schedule	C-1
D	Cabling Information	D-1

1604 Computer Cabinet

CHAPTER 1

INTRODUCTION

This volume of the instruction book presents general information for maintaining the basic 1604 system. Its scope does not include all the intricacies of maintaining the computer, as it is assumed this knowledge has been acquired at Control Data training courses. Maintenance of external equipments such as the 1607 magnetic tape system and the 1605 adaptor is contained in the instruction manuals for these equipments.

Computer maintenance falls into the categories of preventive and corrective maintenance. Preventive maintenance is aimed at preventing failures during operation and consists of such procedures as lubricating, cleaning, running test programs, and checking for worn or marginal mechanical parts. Corrective maintenance consists of diagnosing, locating, and remedying the cause of a failure after it has occurred. This manual is mainly concerned with diagnosis and location of the cause of failure.

Of first importance in maintenance is a complete and thorough knowledge of the equipment. The primary sources of information about the logic of the computer are: Principles of Operation (volume 2), File of Equations (volume 4) and Logic Diagrams (volume 5). The File of Equations is the ultimate source of such information. In addition, the following aids to maintenance are provided:

Command Timing Charts (chapter 2 of this volume). The commands that execute each instruction are listed in sequential order (according to the relative computer time at which they occur).

Diagrams (volume 5 and appendix B of this volume). The logic and circuit diagrams in volume 5 show the logic of the computer according to functional areas. Schematic diagrams for the printed circuit cards are in appendix B.

Preventive Maintenance Schedule (appendix C of this volume). This schedule tabulates periodic preventive maintenance procedures.

Parts List. The Parts List provides information necessary for replacing defective parts and components. The units parts list section includes all components for a particular unit (cards, chassis, cabinet); the component parts list section

is a composite list of all components in the equipment.

Card Tester Manual. The card tester built by Control Data is a special purpose unit of test equipment for checking the performance of printed circuit cards. Test procedures and typical waveforms for each card type are provided in the manual.

TEST EQUIPMENT

Other test equipment necessary for servicing the computer consists of an ordinary voltohmeter, vacuum tube voltmeter (Hewlett-Packard HP-400D or equivalent) and a good oscilloscope (Tektronix 543 or equivalent). In addition to the ordinary hand tools commonly employed in electrical and mechanical maintenance a taper pin insertion tool and a crimping tool are needed.

COMPUTER IDENTIFICATION NUMBERING SYSTEM

A coordinate numbering system is used throughout the computer installation to locate exactly all items. Familiarization with this system is essential to maintenance. The principles of the system are tabulated in the following pages.

CABINET NUMBERING

Cabinet 0	$\begin{array}{c} \mathbf{Chassis} \\ 0 & 0 \end{array}$	C	omponent 0 0
1604 Main Com	puter	1 0	000
1604 Console		20	000
1607 Magnetic	Tape System	30	000
1605 Adaptor		4 0	000
1606 Printer C	ontrol	50	000
1608 Adaptor		60	000
1609 Control U	nit	70	000

When chassis or component numbers are not applicable, zeros are used instead.

CONTROL DATA CORPORATION -

Computer Division

CHASSIS NUMBERING

Cabinet C

 $\begin{array}{c} \text{Chassis} \\ 0 & 0 \end{array}$

 $\begin{array}{c} Component \\ 0 & 0 \end{array}$

10000 Cabinet (main computer)

The 8 chassis of the main computer, as viewed from the top, are numbered as illustrated at the right. Fuses for each chassis are considered as mounted on the cabinet rather than the chassis.

10500	10400
10600	10300
10700	10200
10800	10100

Front of Main Cabinet

20000 Cabinet (console)

Relay chassis	20100
Relay chassis	20200
Connector panel	20300
Control panel (switches and indicators)	20400

Paper tape switch panel	20500
Electric typewriter	20600
Paper tape reader	20700
Paper tape punch	20800

Transformers, E-strips and the loudspeaker are considered as mounted on a cabinet rather than a chassis.

COMPONENT NUMBERING

Basic component numbering format:

Component Type	Cabinet	Chassis	Component
X X	0	0 0	0 0

Components on a Standard Chassis

Components on a standard chassis are numbered consecutively on the
unit schematic diagram. The alphabetic designation of the component
type is prefixed to the component identification number. Alphabetic
designations are:T - transformerQ - transistorCR - rectifierR - resistor

Connectors on a Standard Chassis

The method for numbering each group of two cable connectors on the periphery of a standard chassis is shown in figure l-1.

Figure 1-1. Cable Connector Identification.

COMPONENT NUMBERING

Printed Circuit Cards on a Standard Chassis

The coordinate system used to designate printed circuit card locations on a standard chassis is illustrated in figure 1-2. The letters and numbers which appear on the chassis are combined in the following format:

Cha	ssis	Ordinate (row)	Absciss	sa (column)	Test Point
0	0	х	0	0	х

Cabinet numbers are omitted from the printed circuit card locations because equations and card placement are individual to each cabinet. Test point locations are identified by letter (A - top, B - middle, C - bottom) as they are viewed from the wiring side of the card.

Components in a Cabinet but not on a Chassis

All components located within a cabinet but not on a chassis (e.g. fuses) are numbered consecutively according to the basic component numbering format. A special case exists in the 10000 (main computer) cabinet where fuses are numbered with respect to the chassis they protect even though they are not physically located on the chassis.

Figure 1-2. Card Side of a Typical Chassis.

CHAPTER 2

DIAGNOSTIC MAINTENANCE

Diagnosis of failure symptoms and location of their causes is one of the chief maintenance activities. Actual correction of a failure usually consists of the simple replacement of a card. The procedures of diagnostic maintenance are dictated by the prominence of logical structure in the computer and the variety of possible causes of initial symptoms. Analysis of symptoms, based on a thorough understanding of computer logic, is required.

TEST PROGRAMS

The functioning of a given part of the computer is checked by a test program; execution of the program causes operations to be performed in the part under test. The results of the operations are checked to determine if they are proper; an improper result produces one of several indications of a malfunction.

The test programs are available in a separate packet. Some of the programs are briefly described in the following paragraphs.

COMMAND TEST

The command test is the most comprehensive of the test programs. It checks all but three of the individual instructions. Included in the check are most subinstructions which provide options to main instructions. It does not check the transfer instructions (62 and 63) or some subinstructions of the external function instruction (74).

The entire test or an individual instruction may be selected for execution. The test, or selected part of it, may be repeated an optional number of minutes. Occurrence of an error stops the test and causes type out of information pertinent to the point of failure.

ARITHMETIC TEST

The arithmetic test checks the various parts of the computer which perform arithmetic operations, the A accumulator, the U^2 accumulator, and iterative sequence. It does not necessarily provide the comprehensive check of arithmetic instructions included in the command test. The test stops at the point of failure as indicated at the console by the content of registers displayed after stopping. The test is made up of the following parts:

- 1) Index Registers checks index and R registers
- 2) Add-Subtract checks the accumulator pyramid primarily
- 3) Integer Multiply-Divide checks accumulator pyramid and parts of the iterative sequence
- 4) Fractional Multiply-Divide checks accumulator pyramid and parts of the iterative sequence
- 5) U^2 Register checks U^2 accumulator pyramid and associated circuits
- 6) X Register checks the numerous uses of this register
- 7) Floating-Fix checks floating-point and fixed-point instructions by comparing the results obtained from executing a floating-point instruction with those obtained from executing the corresponding fixed-point instruction. The same quantities are used as operands.

STORAGE TEST

This test checks the circuits employed in referencing each address in storage. Although it is intended to check marginal circuits, it will also reveal malfunctions that occur in normal conditions. It consists of the following parts:

- Changing noise pattern while operating with low margins, changing patterns of bits are written and read. The reading and writing operations are checked for interference resulting from noise generated by the changing patterns.
- 2) Fixed noise pattern similar to part 1 except that fixed patterns are used.
- 3) Diverter check while operating with high margins, the writing and reading of bits are checked for errors caused by slow diverter circuits.

PAPER TAPE TEST

This test checks the performance of both the reader and punch during long continuous runs of tape and during short runs involving many starts and stops. A test tape is read and stored and the information is punched out. The new tape is read and compared with the original tape.

TYPEWRITER TEST

The operation of the typewriter is checked by typing in data which is subsequently typed out. The operator must make a visual comparison of output data with input data.

MAGNETIC TAPE TEST

The performance of the 1607 or the IBM tape units used with the 1605 adaptor are checked by this test. For either case the test causes the unit to perform all operations that can be required of it. The results of the operations are then examined for errors.

DIAGNOSIS FROM CONSOLE

The console with its display of register contents, background lights and operating controls provides for the first level of diagnosis. A test program reveals the presence of a malfunction and the general area of computer logic causing it. The first steps in localizing the failure to a more specific area, for example, a given register or instruction are accomplished by use of the console. For a description of the operating controls and background indicators see chapter 1 Operation, in volume 1.

Suppose, for example, the original symptom of the malfunction was improper results for instruction 14 Add. Since there are several possible causes of such a malfunction, the first step is to eliminate some of these possibilities. The basic procedure at the console is to execute in the step mode several of the other instructions (11 Increase A, 45 Add Logical etc.) which involve the adding operation.

After stepping through each of these instructions the actual result displayed in A is compared with the correct result. If instruction 11 also fails the malfunction must be in an area common to 11 and 14. Thus certain of the potential causes have been eliminated as possibilities. If, on the other hand, instruction 11 does not fail, the malfunction must be in an area not common to 11 and 14. This also eliminates certain other potential causes as possibilities. This procedure is continued, using more instructions, until the number of possibilities is greatly reduced. At this point the methods of the next section can be employed for complete identification of the cause of the malfunction.

LOGICAL CIRCUIT MAINTENANCE

After console diagnosis has indicated the circuits which may be causing the malfunction the operation of these circuits is examined by means of an oscilloscope.

In some caces observation of circuits in a static condition is sufficient; however examination of dynamic circuit conditions is often required. This is done by repeated execution of an instruction that uses the circuit. The UP position of the Storage Mode switch provides a convenient way of making such repetitions.

Information relevant to localizing the cause to a group of circuits and then to an individual circuit is contained in:

- 1) the file of equations (volume 4)
- 2) the command timing charts (at end of this chapter)
- 3) logic diagrams (volume 5)

The jack location and test point information required in taking waveforms for each circuit are provided by equations and diagrams.

The operation of a circuit card is examined by means of waveforms taken at its test points. The test points are on card output. Since the cards are basically inverters, waveforms are the inversion of the card inputs. The common ground connection for the oscilloscope is made at the outer chassis edge. A synchronizing signal for the oscilloscope can be obtained from the test point of another circuit. Typically the synchronizing source is chosen to produce a signal just in advance of the time when a circuit is to be examined.

Occasionally it is necessary to look at signals on the individual pins of a card. This is done by removing the adjacent bars which hold the cards in position, removing the card, inserting the card extender, and plugging the card into the extender. On the extender the pins of the card under test are easily accessible.

TEST MODE

There are some situations for which the simple repetition of an instruction does not yield satisfactory dynamic waveforms. Examples of such situations are:

- 1) deep end a sequence fails to exit
- 2) clean start is required, that is, observations are to be made after master clear.

The test mode is established by simultaneously depressing the Clear switch and raising the Start-Step switch. Raising the Clear switch (external master clear) terminates the test mode.

In the test mode the 60-cycle line frequency is employed as a low-speed oscillator to produce alternate master clears and start pulses (see below). During one cycle (16.6 milliseconds) the internal master clear is held on. The following cycle produces a

start pulse at the beginning. The computer is allowed to run until the next master clear (16.6 milliseconds later).

The start pulse initiates execution of instructions beginning with address 00000. Operation continues until the master clear occurs, or until a malfunction or stop occurs. Typically, an instruction is entered in the upper position of address 00000 such that it acts on the circuit to be checked.

STORAGE MAINTENANCE

Normally maintenance for the storage section involves running a test either to find marginal failures, as in preventive maintenance, or to locate the cause of an actual failure. The tests reveal the addresses or bits where the failure occurs. When the location has been determined the circuits are examined with the oscilloscope.

Much of storage maintenance is accomplished at the console by the use of the two storage test switches. The Mode switch in the UP positiion provides for repeatedly reading and executing the same pair of instructions which causes repeated references to the storage locations involved. The Mode switch in DOWN position provides for sweeping through (successively) all the addresses in storage.

The Margin switch in UP position raises the reference voltage on sense amplifiers, making them less sensitive to weak signals. In DOWN position this switch lowers the reference voltage to make the sense amplifiers more sensitive.

Storage maintenance requires a thorough knowledge of the storage section (chapter 4, volume 2). Pertinent diagrams are located in volume 5.

STORAGE TESTS

Storage testing for preventive maintenance is usually done by means of the test programs, however, a second method may be used to quickly enter the test from the console.

First, a test word (all "1's" or ε " "0's") is loaded into the A register and from there into every location. Second, the content of each location is read into the A register and a zero test is then made on A. Since the zero test checks both positive zero (all "0's") and negative zero (all "1's") it should always detect a zero. If a non-zero value is detected, a fault has occurred and operation stops. After stopping, the address of the fault is given by the content of the specified index register while the faulty bit (or bits) are indicated by the content of the A register.

A test word of all "1's" is used with high margins which reduces sensitivity and tends to cause weak signals to be dropped. The all "0's" test word is used with low margins which increases sensitivity and tends to cause spurious signals to be picked up.

Loading Storage With Test Word

- Load address 00000 with the instructions 55 1 00000 (Index Jump) 20 1 00000 (Store A). Execution of this loop will load the test word to all addresses.
- 2) Master Clear
- 3) Enter test word in A
- 4) Enter 77777 in B¹
- 5) Raise Start-Step switch. Computer will stop when all addresses have been loaded with test word.

Testing Storage with All "1's" or "0's" One storage is loaded with all "1's" or "0's" a zero test is made on each location. A 4-instruction loop loads A with the content of each location and then makes a zero test on A.

Address	Upper Instruction	Lower Instruction
00000	51 1 00001	12 1 00000
00001	22 0 00000	76 0 00000

(A is tested for both negative and positive zero by the 22.0 instruction.) Repetition of the loop stops when a non-zero value is detected. If no fault occurs it stops when the content of address 00000 is read into A. The test is initiated by the following procedure:

- 1) Load addresses 00000 and 00001 with the above instructions.
- 2) Master clear.
- 3) Raise Start-Step switch. Computer will stop immediately. This is not due to a failure; it results from reading the content of 00001 into A.

4) Raise Start-Step switch again. The test will run now until a failure occurs or the test ends at address 00000.

STORAGE WAVEFORMS

The preceding section describes techniques for determining whether there is a malfunction in the operation of storage. These techniques also reveal the address and bit of the malfunction. Further isolation to a specific card is accomplished by means of waveform analysis. Observed waveforms from pertinent cards are compared with normal waveforms from cards of the same type.

The normal waveforms from the various types of storage cards are included here. Card type 53 is omitted due to the similarity to the standard inverter circuit. In general, these waveforms were taken from circuits in even storage with the computer operating in the sweep mode.

Most of the waveforms are composite because of the sweep mode. For example the waveform for the 52 card shows both the working time of the diverter (rectangular portion) and also the period when it is not in use (base line).

For all waveforms the oscilloscope is connected so that negative voltages produce upward deflection.

Read Side, Test Point A

Write Side, Test Point C

R/W DRIVER, 51 CARD

1) Rounded pulse is a reflected read pulse from another driver that is turned on when this one is off.

2) Squared off pulse shows when this driver is turned on.

Vertical Sensitivity: 10 volts/cm

Sweep: $2 \mu sec/cm$

DIVERTER, 52 CARD

Bad diverter

- 1) End of read pulse
- 2) End of write pulse
- 3) Straight base line (a sign of a good diverter) shows time when diverter is on.
- 4) Step in base line indicates bad diverter due to faulty output transistor.
- 5) Slow drop off indicates marginal card.

Vertical Sensitivity: 5 volts/cm Sweep: 2 µsec/cm

CURRENT SOURCE, 54 CARD

WRITE

Vertical R/W source

Vertical and horizontal sources should be very similar

Horizontal R/W source Vertical Sensitivity: 1 volt/cm Sweep: 2 µsec/cm

INHIBIT GENERATOR, 55 CARD

all "0's"

all "1's"

Vertical Sensitivity: 10 volts/cm

Sweep: $2 \mu \text{sec/cm}$

CONTROL DATA CORPORATION -

Computer Division

SENSE AMPLIFIER, 56 CARD

Z REGISTER OUTPUTS

				ŧ						1
F			F							ſ
<u>i</u> m	ін	iiii	411	###	+++	##	нн	***	##	L
				H					-	
Ľ				<u></u>						

			ŧ		
1 11	ÅП	t.n	 <u>. </u>	 	
		-	 <u>["</u> ≢"	 [""	
			ΙĪ		

Upper trace: Set side of Z with all "1's" Lower trace: Quadrant selection

Upper trace: Set side of Z with all "0's" Lower trace: Quadrant selection

Vertical Sensitivity: 2 volts/cm Sweep: 10 µsec/cm

COMMAND TIMING CHARTS

INTRODUCTION

The computer successively executes instructions from internally-stored programs by a sequence of commands. A command accomplishes one act, for example transmitting data from one register to another or clearing a register. The operation code of the instruction to be executed selects one of the control sequences. This sequence is then initiated to generate the appropriate commands as determined by the operation code.

All commands involved in the execution of an instruction are listed in the order of occurrence in the command timing charts.^{*} The instruction sequence used to generate the commands is specified under the heading Sequence.

Entries in the Time column indicate the phase time $(0.2 \ \mu \text{sec}$ in duration) at which the associated command signal occurs. These phase times are related to the phase times at which the sequence is initiated. Initiate time is always considered as time 00. For command signals rising from control flip-flops (FFs) rather than control delays, the entry in the Time column indicates the last time the signal is clocked. Usually this is the time when the control FF is set. The resulting command does not actually take effect until approximately two phase times later.

The three entries given under Execution Times take account of the time for three cases of instruction use. Variations in execution time are caused by such factors as:

- 1) Upper or lower position in instruction word
- 2) Consecutive references to the same storage unit
- 3) Storage reference at end of preceding instruction

All three time entries are determined by averaging the times for a long list of the same instruction. Minimum time is an average of a list arranged so that the factors above have minimum values; maximum time is an average of a list in which these factors have maximum values; and average time applies to a list arranged for typical values of the factors.

Comments in the Remarks column describe the function of the command in the execution of the instruction.

^{*}It should be noted that those commands which are generated but are not pertinent to the execution of the instruction have been omitted from the charts.

GLOSSARY OF ABBREVIATIONS

А	arithmetic register
Adv Clk	advance clock
AQ	the double-length register comprised of A and Q
Bp	the designated index register
Buf	buffer
Comp	complement
Exp	exponent
FF	flip-flop
Init	initiate
Inst	instruction
Int	interrupt
$1^{2}1^{3}$	the inverter rank preceding R
1 ⁵ 1 ⁶	the inverter rank between the storage circuits and the arithmetic and control circuits
LQX	the logical (bit-by-bit) product of Q and X
m	the base execution address
М	the modified execution address
Neg	negative
Р	program address register
Part	partial
Pos	positive
ବ	auxiliary arithmetic register
R	address buffer register
Red	reduce
SR	sign record
U	program control register
υ ²	auxiliary program control register
X	exchange register
Z	storage restoration register
→	(arrow) transmit the contents
()	(parentheses) contents of a register
subscript f	final contents of a register
subscript i	initial contents of a register
subscript L	lower half of a register
subscript LA	the address portion (lowest 15 bits) of the lower instruction
subscript U	upper half of a register
subscript UA	the address portion (lowest 15 bits) of the upper instruction

CODE	INSTRUCTION	FUNCTION
RNI	Read Next Instruction	Prepare computer for receipt of instruction word from storage and for execution of next instruction.

SEQUENCE: Read Next Instruction

EXECUTION TIME:

TIME	COMMAND	CONDITION	REMARKS
00	Adv P ² to P ¹	Full Exit	Add 1 to (P _i)
00	Initiate Storage	Full Exit	Reference address P _i + 1
00	Wait Storage	Full Exit	
08	Set Exit FF	Full Exit	Establish mode for concluding the instruction
08	Clear Exit FF	Half Exit	
09	Clear U	Full Exit	
09	Clear U ¹ U	Half Exit	Set up current instruction in U^1_U
10	Bp→I ₅ I3		
11	Set Stop II FF		Step or stop or breakpoint
11	Í ⁵ I ⁶ →U ¹	Full Exit	
11	$U^{1}_{L} \rightarrow U^{1}_{U}$	Half Exit	
11	Clear R ¹		Prepare R^1 for receipt of (B^b)
11	Clear Interrupt Lockout FF	Interrupt Complete	P=00007 terminates the interrupt instruction routine
12	Wait Step		RNI stops to await subsequent start or step pulse
14	I ² I ³ → R ¹	ъ≠0	Transfer (B^{b}) to R^{1}
14	$U^1 \longrightarrow U^2$		
1 5	Clear X [⊥]		

Rev. 12/60

CODE Ol ARS	INSTRUCT A Right Shin	INSTRUCTION A Right Shift		FUNCTION Shift (A) right M places	
SEG	UENCE: Zero Addı	ress (H ² -	- V ²)		
EXE	CUTION TIME:	4.0 us. 5.6 us.	min. (Lo min. (Up	wer Inst.) 2.8 us. + .4 us./shift avg., 54.4 us. max. oper Inst.)	
TIME	COMMAND	COND	ITION	REMARKS	
00	$U^1 \longrightarrow U^2$			Transfer M to U ²	
04	Add R ¹ to U ²	Ъ≠0		Modify m to M	
06	$U^2 \longrightarrow \mathbb{R}^2$		٦		
07	$\mathbb{R}^2 \longrightarrow \mathbb{R}^1$		}	Place shift count in R ¹	
09	Set Shift Fault FF	Shift Count	>127 ₁₀		
10	Set A Right FF	R≠0			
10	Init. Shift			•	
11	Set Exit Control FF				
12	Red. R ¹ to R ²	R≠0	}	Reduce shift count; shift	
12	Shift 1 Place	R≠0	J		
13	Half Exit	R = 0			
13	Full Exit	R = 0			
	•				

52

CODE 02 QR	INSTRUCT Q Right Shi S	ION .ft	Shift	FUNCTION t (Q) right M places
SEQ	UENCE: Zero A	ddress (H ² V ²))
EXE	CUTION TIME:	.0 us. m	in. (Lower in. (Upper	r Inst.) 2.8 us. + .4 us./shift avg., 54.4 us. max. r Inst.)
TIME	COMMAND	COND	ITION	REMARKS
00	U ¹ →U ²			Transfer m to U ²
04	Add R ¹ to U ²	ъ≠с	1	Modify m to M
06	U ² >R. ²		٦	
07	$R^2 \longrightarrow R^1$		} }	Place shift count in R ¹
09	Set Shift Fault FF	Shift Count	>127 ₁₀	
10	Set Q Right FF	R≠C	•	
10	Init. Shift			
11	Set Exit Control FF			
12	Red. R ¹ to R ²	R ≠ C	, }	Reduce shift count; shift
12	Shift 1 Place	R≠C		
13	Half Exit	R = 0)	
13	Full Exit	R = 0)	

CODE 03 LRS	INSTRUCT AQ Right S	ION hift Shift (A	FUNCTION AQ) right M places
SEG	UENCE: Zero Add	ress	
EXE	CUTION TIME: 4. 5.	0 us. min. (Lower 6 us. min. (Upper	Inst.) 2.8 us. + .4 us./shift avg., 54.4 us. mex. Inst.)
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ >U ²		Transfer m to U ²
04	Add R ¹ to U ²	ъ≠о	Modify m to M
06	U ² >R ²	ך ا	
07	$R^2 \longrightarrow R^1$	}	Place shift count in R ¹
09	Set Shift Fault FF	Shift >12710	
10	Set A and Q Right FFS	r≠o	
11	Set Exit Control FF		
12	Shift 1 Place	R≠O	
12	Red. R ¹ to R ²	R≠0 ∫	Reduce shift count; shift
13	Half Exit	R = 0	
13	Full Exit	R = 0	

CODE 04	INSTRUCTION Enter Q	FUNCTION Transfer M to Q^1 , extend the sign
ENQ		

SEQUENCE: Zero Address (H²-- V²--)

EXECUTION TIME: 2.8 us. min., 3.0 us. avg., 3.2 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ >U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as exchange register
03	A ² → Q ¹		Store (A_i) temporarily in Q^1
03	Clear A ¹		Prepare A to receive M
04	Add R ¹ to U ²	ъ≠0	Modify m to M
07	Set $f = 04$ FF	٦	
07	Set f = 04,10,11 1	F S	Conditions later commands
07	$U^2 \longrightarrow X^1$ (with extension)		Place M in lower 15 stages of X^1 , extend the 15th bit through X
08	$X^1 \longrightarrow X^2$		Place M in X^2 for transfer to A
09	Half Exit		
09	Full Exit		
13	Part. Add X ² to A ¹		Transfer M to A ¹
14	Q ¹ >Q ²		Store (A_i) in Q^2
14	A ¹ >A ²	unconditional	Transfer M to A ²
15	A ² >Q ¹		Transfer M to Q
15	$Q^2 \longrightarrow A^1$		Restore (A _i) to A
	ł.		

CODE 05 ALS	INSTRUCT A Left Shif	ION t	Sh	FUNCTION ift (A) left M places
SEQ	UENCE: Zero Ad	ldress (H	[² V ²)	
EXE	CUTION TIME: 4.	0 us. mi 6 us. mi	n. (Lower n. (Upper	Inst.) 2.8 us. + .4 us./shift avg., 54.4 us. max. Inst.)
TIME	COMMAND	COND	ITION	REMARKS
00	$U^1 \longrightarrow U^2$			Transfer m to U ²
04	Add R ¹ to U ²	Ъ≠O		Modify m to M
06	U ² >R ²		J	
07	$R^2 \rightarrow R^1$		ſ	Place shift count in R-
09	Set Shift Fault FF	Shift Count	>12710	
10	Set A Left FF	R≠0		
10	Init. Shift			
11	Set Exit Control FF			
12	Red. R ¹ to R ²	R≠0	}	Reduce shift count; shift
12	Shift 1 Place	R ≠ 0	J	
13	Half Exit	R = 0		
13	Full Exit	R = 0		
			l	
		1		

CODE 06 QLS	INSTRUCT Q Left Shift	ION	Shift (FUNCTION Q) left M places
SEQ	UENCE: Zero Addre	ess (H ²	v ²)	
EXE	CUTION TIME: 4.0 5.6	us. min. us. min.	(Lower I (Upper I	nst.) 2.8 us. + .4 us./shift avg., 54.4 us. max. nst.)
TIME	COMMAND	COND	ITION	REMARKS
01	117 ^{>11} 5			monstan m to 112
<u>о</u> ц	$Add P1 + 0 H^2$	b + 0		
04	12D2			
07	D ² D ¹	l		Place shift count in R ¹
09	Set Shift Fault	Shift Count	127 ₁₀	
10	Set Q Left FF	R≠0		
10	Init. Shift			
11	Set Exit Control FF			
12	Red. R ¹ to R ²	R≠O	J	
12	Shift 1 Place	R ≠ O	}	Reduce shift count; shift
13	Half Exit	R = 0	2	
13	Full Exit	R = 0		
		•	2.	-18

CODE 07 LLS	INSTRUCT AQ Left Shift	ION Shift	FUNCTION AQ left M places
SEC	UENCE: Zero Addre	ss (H ² V ²)	
EXE	CUTION TIME: 4.0 5.6	us. min. (Lower us. min. (Upper	Inst.) 2.8 us. + .4 us./shift avg., 54.4 us. max. Inst.)
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ -→U ²		Transfer m to U ²
04	Add R ¹ to U ²	ъ≠о	Modify m to M
06	U ² -→R ²	٦ ا	
07	R ² →R ¹	{ ا	Place shift count in R ⁻
09	Set Shift Fault FF	Shift >12710 Count	
10	Set A and Q Left FF's	R≠0	
10	Init. Shift		
11	Set Exit Control FF		
12	Shift 1 Place	R≠0	
12	Red. R ¹ to R ²	R≠0 ∫	Reduce shirt count; shirt
13	Half Exit	R=0	
13	Full Exit	R=0	

CODE 10 ENA	INSTRUCTION Enter A	FUNCTION Transfer M to A ¹ , extend the sign
10 ENA	Enter A	Transfer M to A ¹ , extend the sign

SEQUENCE: Zero Address (H²-- V²--)

EXECUTION TIME: 2.8 us. min., 3.0 us. avg., 3.2 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as exchange register
03	Clear A ¹		Prepare A to receive M
04	Add R ¹ to U ²	ъ≠0	Modify m to M
07	Set F = 04,10,11 F	F	Conditions later commands
07	∪ ² -→X ¹ _{LA}		Place M in lower 15 stages of X, extend the 15th bit through X.
	(with extension)		
08	X1→X5		Place M in X ² for transfer to A
09	Half Exit		
09	Full Exit		
13	Part. Add X ² to A ¹		Transfer M to A.

CODEINSTRUCTIONFUNCTION11Increase AAdd M to (A), store the result inINAIncrease AIncrease A	n A
---	-----

SEQUENCE: Zero Address (H²-- V²--)

EXECUTION TIME: 2.8 us. min., 3.0 us. avg., 3.2 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as exchange register
04	Add R ¹ to U ²	Ъ≠О	Modify m to M
07	Set f = 04,10,11 F	F	Conditions later commands
07	$U^2 \rightarrow X^1$ IA (with extension)		Place M in lower 15 stages of X, extend the 15th bit through X.
08	X₁→X ₅		Position M in X ² for addition to A
09	Full Exit		
09	Half Exit		
13	Add X ² to A ¹		Add M to A

CODE 12 LDA	INSTRUCTION Load A		FUNCTION Transfer (M) to A		
SEQUENCE: Read Operand (H ³ V ³)					
EXECUTION TIME:		4.8 us	4.8 us. min., 7.2 us. avg., 9.6 us. max.		
TIME	COMMAND	COND	ITION	REMARKS	
00	Ս¹->Ս²			Transfer m to U ²	
OL	Clear X ¹			Prepare X for use as exchange register	
04	Add R ¹ to U ²	ъ≠о		Modify m to M	
04	Init. Storage				
06	Clear A ¹			Prepare A ¹ to receive M	
10	Wait Storage				
15	I ⁵ I ⁶ →X ¹			Transfer (M) to X ¹	
16	X1→X5			Place (M) in X ² for transfer to A	
17	Half Exit				
17	Full Exit				
21	Part Add X ² to A ¹			Transfer (M) to A	

CODE 13 LAC	INSTRUCT Load A, Com (Negative	ION plement Tran A)	FUNCTION Transfer the complement (M) to A	
SEQUENCE: Read Operand (H ³ V ³)				
EXECUTION TIME: 4.8 us. min., 7.2 us. avg., 9.6 us. max.				
TIME	COMMAND	CONDITION	REMARKS	
00	Ս ¹ →Ս ²		Transfer m to U ²	
01	Clear X ¹		Prepare X for use as an exchange register	
04	Add R ¹ to U ²	Ъ≠О	Modify m to M	
04	Initiate Storage			
06	Clear A ¹		Prepare A for receipt of (M)	
10	Wait Storage			
15	I ⁵ I ⁶ -→X ¹		Transfer (M) to X ¹	
16	Comp. $X^1 \rightarrow X^2$		Complement (M)	
17	Half Exit			
17	Full Exit			
21	Part Add X ² to A ¹		Transfer complement (M) to A	

CODE	INSTRUCTION	FUNCTION
14	Add	Add (A) and (M), store the sum in A
ADD		

SEQUENCE: Read Operand (H³-- V³--)

4.8 us. min., 7.2 us. avg., 9.6 us. max. EXECUTION TIME:

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	Ъ≠О	Modify m to M
04	Init. Storage		
10	Wait Storage		
15	I ⁵ I ⁶ -→X ¹		Transfer (M) to X ¹
16	$X^1 \rightarrow X^2$		Place (M) in X ² for addition to A
17	Half Exit		
17	Full Exit		
21	Add X ² to A ¹		Add (M) to A ¹
		i	
	1		

CODE 15 SUB	INSTRUCT Subtract	ION Subtra	FUNCTION act (M) from (A), store the difference in A
SEC	UENCE: Read Oper	and (H ³ V ³)	
EXECUTION TIME: 4.8 us. min., 7.2 us. avg., 9.6 us. max.			
TIME	COMMAND	CONDITION	REMARKS
00	Ū ¹ →Ū ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	b≠0	Modify m to M
04	Init. Storage		
10	Wait Storage		
15	I ⁵ I ⁶ -→X ¹		Transfer (M) to X ¹
16	Comp. $X^1 \rightarrow X^2$		Complement (M)
17	Full Exit		
17	Half Exit		
21	Add X ² to A ¹		Add complement (M) to A

1			
CODE 16 LD9	INSTRUCTION Load Q	FUNCTION Transfer (M) to Q	

Read Operand (H^{3_-} V^{3_-}) SEQUENCE

4.8 us. min., 7.2 us. avg., 9.6 us. max. EXECUTION TIME:

TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \rightarrow U^2$		Transfer m to U ²
Ol	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	ъ≠ 0	Modify m to M
04	Init. Storage		
06	Clear A ¹		Prepares A ¹ for receipt of (M)
07	A ² →Q ¹		Store (A _i) temporarily in Q
lo	Wait Storage		
1 5	I ⁵ I ⁶ →X ¹		Transfer (M) to X
1 5	Set f=16, 17 FF		Conditions later commands
1 6	X ¹→ X ²		Place (M) in X ² for transfer to A
17	Half Exit		
17	Full Exit		
21	Part. Add X^2 to A^1		Add (M) to A ¹
22	$Q^1 \longrightarrow Q^2$		Place (A_i) in Q^2 for transfer back to A
22	$A^1 \rightarrow A^2$		Unconditional transfer of (M) to A^2
23	A ² →Q ¹		Transfer (M) to $Q^{\mathbf{l}}$
23	Q ² →A ¹		Restore (A _i) to A
			$R_{ev} = 12/60$
:	ł	2	-26

CODE 17 LQC	INSTRUCT Load Q, Com (Negative	ION plement Q)	FUNCTION Transfer the complement (M) to Q
SEC	UENCE: Read Oper	and (H ³ V ³)	
EXE	ECUTION TIME: 4.	8 us. min., 7.2 u	s. avg., 9.6 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \longrightarrow U^2$		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	ъ≠о	Modify m to M
04	Init. Storage		
06	Clear A ¹		Prepare A ¹ for receipt of complement (M)
07	A ² ->Q ¹		Store (A) temporarily in Q
10	Wait Storage		
15	I ⁵ I ⁶ →X ¹		Transfer (M) to X
15	Set F=16,17 FF		Conditions later commands
16	Comp. $X^1 \rightarrow X^2$		Complement (M)
17	Half Exit		
17	Full Exit		
21	Part. Add X ² to A ¹		Add complement (M) to A ²
22	Q ¹ ->Q ²		Place (A_i) in Q^2 for transfer back to A
22	A ¹ →A ²		Unconditional transfer of (M) to A^2
23	A ² →Q ¹		Transfer complement (M) to Q
23	Q ² ->A ¹		Restore (A _i) to A
	1		

CODE 20 STA	INSTRUCT Store A	ION Tran	FUNCTION sfer (A) to M
SEC	QUENCE: Write Ope	erand (H ⁴ V ⁴)	
EXE	ECUTION TIME: 4	.8 us. min., 7.2 u	18. avg., 9.6 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	ъ≠О	Modify m to M
04	Init. Storage		
07	A ¹ →X ¹	ך ן	
07	Wait Storage	}	Transfer (A) to storage via X
08	Enable Full Write		
15	$X^1 \rightarrow Z^1 Z^2$		
15	Half Exit		
15	Full Exit		
		2-	28

. /

CODE 21 STQ SEQ	INSTRUCT Store Q DUENCE: Write Oper	ION and (H ⁴ -	Trans: - V ⁴)	FUNCTION fer (Q) to M
EXECUTION TIME: 4.4 us. min., 7.2 us. avg., 9.6 us. max.				
TIME	COMMAND	COND	ITION	REMARKS
00	U ¹ →U ²			Transfer m to U ²
01	Clear X ¹			Prepare X for use as an exchange register
02	Q ¹ -→Q ²			Place Q_1 in Q^2 for transfer to A
03	A ² ->Q ¹			Store A _i in Q temporarily
03	Q ² -→A ¹			Store Q _i in A temporarily
04	A ¹ →A ²			Unconditional transmission
04	Add R ¹ to U ²	Ъ≠О		Modify m to M
04	Init. Storage			
06	Q1→Q2			Place A_1 in Q^2 for return to A
07	A ¹ >X ¹			Transfer Q _i to X
07	Wait Storage			
08	Enable Full Write			Prepare to transfer Q ₁ to storage
ш	Q ² →A ¹			Restore A ₁ to A
ш	A ² >Q ¹			Restore Q ₁ to Q
15	$X^1 \rightarrow Z^1 Z^2$			Transfer Q to storage
15	Half Exit			
15	Full Exit			
			1	

CODE 22 AJP	INSTRUCT A Jump	b = 0,1,2 b = 4,5,6	FUNCTION or 3:Normal jump on specified condition of (A) or 7:Return jump on specified condition of (A)
SEQUENCE: Normal Jump Write Opera EXECUTION TIME: 4.		b (b = 0, 1, 2 or) and $(b = 4, 5, 6 \text{ or})$ 0 us. min., 7.2 u	3) pr 7) ms, avg., 11.6 us. mex.
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ >U ²		Place m in U ² for transfer to P
01	Clear X ¹		Prepare X for use as exchange register for return jump.
Normal	Jump Sequence	b-0 (4)-0	
03	Jump Exit	b=0,(A)=0 b=1,(A)≠0 b=2, A pos b=3, A neg	Jump
03	Half Exit	h	
03	Full Exit	No Jump	Conclude instruction
03	U ² >₽ ¹	Jump	Place next instruction address in P
Write (perand Sequence	b=4, A=0 b=5, A≠0 b=6, A pos b=7, A neg	Jump
04	Initiate Storage	Jump	
06	Adv. P ¹ to P ²	Jump	Next address of current routine
07	Half Exit	h	
07	Full Exit		
07	Wait Storage	Jump	
08	₽ ¹ >X ² _{IA}	Jump	Transfer next address of main routine to X^2_{LA}
08	U ² >P ¹	Jump	Transfer m to P to select 1st instruction word of subroutine
08	Enable Partial Write Upper	Jump	Prepare to write next address of main routine into storage

22 AJP

TIME	COMMAND	CONDITION	REMARKS
08	Set Return Jump F	F Jump	Conditions later commands
08	Enable Partial Write Upper	Jump	Prepare to store next address of main program (P_i)
09	X ² >X ¹	Jump	Position P _i in X^{1}_{LA} for transfer to X^{1}_{UA}
11	Clear U ¹	Jump	Prepare U ¹ for next instruction
13	$X^{1} X^{1} U$	Jump	Place P_i in X^1_U for transfer to storage
15	$X^1 \xrightarrow{U} Z^1 Z^2$	Jump	Transfer next address of main program to storage
15	Half Exit	Jump	
15	I ⁵ I ⁶ →U ¹	Jump	Transfer first instruction of subroutine to U ¹
1			

CODEINSTRUCTIONFUNCTION23Q Jumpb = 0,1,2 or 3:Normal jump on specified condition of (Q)QJPb = 4,5,6 or 7:Return jump on specified condition of (Q)

SEQUENCE: Normal Jump (b = 0, 1, 2 or 3) Write Operand (b = 4, 5, 6 or 7) EXECUTION TIME: 4.0 us. min., 7.2 us, avg., 11.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	Ŭ 1 →Ŭ5		Place m in U ² for transfer to P
01	Clear X ¹		Prepare X for use as exchange register for
NORMAL	JUMP SEQUENCE		return jump
03	Jump Exit	b=0, (Q)=0 b=1, (Q)≠0 b=2, Q pos b=3, Q neg	Jump
03	Half Exit		
03	Full Exit	NO Jump	Conclude Instruction
03	U ² >P ¹	Jump	Place next instruction address in P
WRITE O	PERAND SEQUENCE		
		b=4, Q=0 b=5, Q≠0 b=6, Q pos b=7, Q neg	Jump
04	Initiate Storage	Jump	
06	Adv. P ¹ to P ²	Jump	Next address of current routine
07	Half Exit		
07	Full Exit	SNO Jump	
07	Wait Storage	Jump	
08	₽ ¹ → X ²	Jump	Transfer next address of current routine to X^2_{L}
08	U ² ⇒P ₁	Jump	Transfer m to P to select 1st instruction word of subroutine

-

Enable Part. Write Upper (X ¹ _{LA})	Jump	Prepare to write next address of main routine
		into storage
Set Return Jump FF	Jump	Conditions later commands
X ² >X ¹	Jump	Position P_i in X^1_{LA} for transfer to X^1_{IIA}
Clear U ¹	Jump	Prepare U ¹ for next instruction
$X^{1}_{L} \rightarrow X^{1}_{U}$	Jump	Place P in X^1_{UA} for transfer to storage
Half Exit	Jump	
I ⁵ I ⁶ >U ¹	Jump	Transfer first instruction of subroutine to U ¹
$X^1 \longrightarrow Z^1 Z^2$	Jump	Transfer next address of main program to storage
	х.	
	$X^{2} \longrightarrow X^{1}$ Clear U ¹ $X^{1} \longrightarrow X^{1}$ Half Exit $I^{5}I^{6} \longrightarrow U^{1}$ $X^{1} \longrightarrow Z^{1}Z^{2}$	$\begin{array}{c} X^2 \longrightarrow X^1 & Jump \\ Clear U^1 & Jump \\ X^1 \longrightarrow X^1 U & Jump \\ Half Exit & Jump \\ I^5 I^6 \longrightarrow U^1 & Jump \\ X^1 \longrightarrow Z^1 Z^2 & Jump \end{array}$

24 Multiply Integer Multiply (M) by A; store the 96-bit pro MUI in CA	CODE 24 MUI	INSTRUCTION Multiply Integer	FUNCTION Multiply (M) by A; store the 96-bit produc in GA
--	-------------------	---------------------------------	---

SEQUENCE: Iterative (H⁶-- V⁶--)

•

EXECUTION TIME:25.2 us.min., 25.2 us. + .8 us./'l' in Q avg., 66.4 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ >U ²		Transfer m to U ²
01	Clear X ¹		Set X ¹ to zeros
04	Add R ¹ to U ²	ъ≠0	Modify m to M
04	Comp. $X^1 \rightarrow X^2$		Set X ² to 'all ones'
04	Init. Storage		Select M
04	Wait Storage		
05	Set Sign Record FF	A neg.	Register the sign of the multiplier
07	Clear R ¹		Prepare R to hold the step control count
08	Set I ² to 48		Generate step control count
12	I² I³→R¹		Load count in R
13	Clear X ¹		Prepare X ¹ to receive multiplicand (M)
13	Part. Add X ² to A ¹	A neg.	Complement A if negative
14	ନ ୁ> ପ ₅		
14	A ¹ →A ²	unconditional	
14	Clear A ¹		Transfer multiplier (A _i) to Q
15	Q ² >A ¹		
15	A ² -→Q ¹		
15	Exit to Mult. Ste	p	
15	I ⁵ I ⁶ →X ¹		Position (M) in X^2 for generation of
16	X ¹ →X ²		> partial products

2	MUI		
TIME	COMMAND	CONDITION	REMARKS
16	$R^1 \rightarrow R^2$		Set R ² to 48
17	Comp. Sign Record	X Neg.	Establish the sign of the product
18	$Comp. X^1 \longrightarrow X^2$	X neg.	Complement (M) if negative
EXECU	TE MULTIPLY STEP		
00	Reduce R ¹ to R ²	ĴĴ	Perform the actual multiplication
00	Shift AQ Right	Showt	Shift to position multiplier bit in sensing
Ol	$R^2 \rightarrow R^1$	Loop	then shift (AQ) right: if the multiplier
01	$A^2 \rightarrow A^1$		step control count once each shift. Exit
OL	$Q^2 \rightarrow A^1$		when the step control could is 0.
Ol	Exit to O	R ≠ 0	Tong
	End Correction	R = 0	Loop
05	Add X ² to A ¹	Q _{OO} =1	
05	Exit to O	r≠ 0	
05	Exit to End Correction	R = 0	
EXECU	TE END CORRECTION	-	
01	Set Part. Add in A FF		positive. If the Sign Record flip-flop indicates a negative product in A, Q is
03	Clear X ¹		complemented before concluding the routine.
04	Comp. $X^1 \rightarrow X^2$		
05	Exit		
05	Half Exit		
05	Part. Add X ² to A ¹		
06	$Q^1 \longrightarrow Q^2$		
07	$A^2 \rightarrow Q^1$		
07	$Q^2 \rightarrow A^1$		
09	Part. Add X ² to A ¹	Sign Record = 1	Dove 19/60
	•	21	-30 Nev. 12/00

.

CODE	INSTRUCTION	FUNCTION
25	Divide Integer	Divide (QA) by (M). Store the quotient in A,
DVI		and the remainder in Q.

SEQUENCE: Iterative (H⁶-- V⁶--)

EXECUTION TIME: 63.6 us. min., 65.2 us. avg., 66.4 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \longrightarrow U^2$		Transfer m to U ²
01	Clear X ¹		Set X ¹ to zeros
04	Add R ¹ to U ²	ъ≠0	Modify m to M
04	Init. Storage		Select M
04	Wait Storage		
04	Comp. X ¹ →X ²		Set X ² to 'all ones'
05	Set Dividend Sign Record FF	Q neg.	
05	Set Sign Record FF	Q Neg.	Record the sign of the dividend
06	Part. Add X ² to A ¹	Q Neg.	Complement A if AQ is neg.
07	Clear R ¹		Prepare R for divide step count
08	Set I ² to 48		Select divide step control count
10	Q ¹ ->Q ²	٦	
1 0.	A ¹ -→A ²	unconditional	Interchange (A) and (Q)
11	Q ² →A ¹		
11	A ² -→Q ¹		
12	$I^2 I^3 \rightarrow R^1$		Place step count (48) in R ¹
13	Clear X ¹		Prepare X^1 for receipt of M (divisor)
13	Part. Add X ² to A ¹	A neg.	Complement Q _i if AQ is neg.

25	DVI		
TIME	COMMAND	CONDITION	REMARKS
14	Q ¹ >Q ²		
15	I ⁵ I ⁶ →X ¹		Transfer Divisor (M) to X
16	X¹-→X²		Position (M) in X ² for generating partial dividends
16	R ¹ →R ²		Set $R^2 = 48$
17	Comp. Sign Record FF	X neg.	Establish sign of quotient
17	Exit to Divide Step		
18	$\operatorname{Comp}_{\bullet} X^1 \longrightarrow X^2$	X pos.	Complement M if neg.
]	1	

25 DVI

TIME	COMMAND	CONDITION	REMARKS
EXECUTE	DIVIDE STEP		
00	Red. R ¹ to R ²		Perform the division. Set least significant bit in 0 to 11 if $X \leq 4$; to 10 if $X > 4$.
00	Shift AQ Left		Shift AQ left once after comparing X to A.
01	R ² →R ¹		the division when $R = 0$.
01	A ² —>A ¹		
01	Q ² -⇒Q ¹		
01	Exit to 00	r ≠ 0, a< x	
01	Exit to End Correction	R = 0	
05	Add X ² to A ¹	$\mathbf{x} \leq \mathbf{A}$	
05	Set Q ₀₀ to 1	x≤a	
05	Exit to 00	R≠0	
05	Exit to End Correction	R = 0	
EXECUTE	END CORRECTION		
00	Set Divide Fault	Q neg.	The quotient is initially determined as a pos. quantity; if a 'l' is present in Q_{47} , a fault exists.
03	Clear X ¹		1
04	$\operatorname{Comp}_{\bullet} X^1 \longrightarrow X^2$		
Ò5	Part. Add X ² to A ¹	Div. Sign = 1	Complement remainder if dividend negative
06	Q1->Q2		
07	A ² ->Q ¹	×	Place quotient in A, remainder in Q
07	Q ² -⇒A ¹		
09	Part. Add X ² to A ¹	Sign record=1	Complement quotient
ļ		1	

CODE 26 MUF	CODEINSTRUCTION26Multiply FractionalMultiplyAUFquantity		Multiply quantity	FUNCTION the fractional quantity in M by the fractional in A, store the 96-bit product in AQ	
SEC	SEQUENCE: Iterative (H ⁶⁰⁰ V ⁶⁰⁰)				
EXE	CUTION TIME: 2	5.2 us. 1	min., 25.2	2 us. + .8 us./ 'l' in Q avg., 66.4 us. max.	
TIME	COMMAND	COND	ITION	REMARKS	
00	$U^1 \longrightarrow U^2$			Transfer m to U ²	
Ol	Clear X ¹			Set X to zero	
04	Add R^1 to U^2	ъ≠о		Modify m to M	
04	Init Storage			Select M	
04	Wait Storage				
04	Comp. $X^1 \longrightarrow X^2$			Set X to 'all ones'	
05	Set Sign Record FF	A neg		Register the sign of the multiplier	
07	Clear R ¹			Prepare R to hold the multiplication step count	
07	Partial Add X ² to A ¹	A neg		Complement the multiplier if it is negative	
08	Set I ² to 47			Select the multiply step control count	
10	$Q^1 \longrightarrow Q^2$		٦		
11	$A^2 \longrightarrow Q^1$		}	Transfer the multiplier to Q	
11	Q ² → A ¹				
12	I²I³→R ¹		J	Place the division step control count in R^1	
13	Clear X ¹		:	Prepare X ¹ to receive multiplicand	
14	Clear A ¹			Clear A to receive the partial product	
14	$Q^1 \longrightarrow Q^2$				
15	I ⁵ I ⁶ →X ¹			Transfer the multiplicand to X	
1 5	Exit to Multiply Step				

2-39

TIME	COMMAND	CONDITION	REMARKS
1 6	$R^{1} \rightarrow R^{2}$		Set $R^2 = R^1$
1 6	X ¹ →X ²		
1 6	Clear Part. Add in A FF		
17	Comp. Sign Record	X neg	Establish the sign of the product
18	$\operatorname{Comp} \cdot X^1 \longrightarrow X^2$	X neg	Position (M) in X^2 for generating the partial
EXECU	TE MULTIPLY STEP		products; complement 11 negative.
00	Reduce R ¹ to R ²		Perform the actual multiplication. Shift to position mult. bit in sensing position.
00	Shift AQ Right	Showt	Add (X) to S if multiplier bit is 1, then shift (AO) might: if the multiplier bit is 0, shift
01	$R^2 \rightarrow R^1$	Loop	AQ right. Reduce the step control count once
01	$A^2 \rightarrow A^1$		is 0.
01	$Q^2 \rightarrow Q^1$		
01	Exit to O	R≠0	•
Ol	Exit to End Correction	R=0	Long Loop
05	Add X ² to A ¹	Q ₀₀ =1	
05	Exit to O	R≠O	
05	Exit to End Correction	R = 0	
	· · ·	2-	-40 Rev. 12/60

MUF'	T	
COMMAND	CONDITION	REMARKS
TE END CORRECTION		
Set Part. Add in A FF	· .	
$Q^1 \rightarrow Q^2$		Exit immediately if the product is
A ² →Q ¹		positive. If the Sign Record flip-flop indicates a negative product in A, Q is
$Q^2 \rightarrow A^1$		complemented before concluding the routine.
Clear X ¹		
Comp. $X^1 \rightarrow X^2$		
Exit		
Half Exit		
Part. Add X ² to A ¹	Sign Record=1	
Q ¹ →Q ²		
$A^2 \rightarrow Q^1$		
Q ² →A ¹		
Part. Add X ² to A ¹	Sign Record=1	
		- 10/00
	MUF COMMAND IE END CORRECTION Set Part. Add in A FF $Q^1 \rightarrow Q^2$ $A^2 \rightarrow Q^1$ $Q^2 \rightarrow A^1$ Clear X ¹ Comp. X ¹ \rightarrow X ² Exit Half Exit Part. Add X ² to A ¹ $Q^1 \rightarrow Q^2$ $A^2 \rightarrow Q^1$ $Q^2 \rightarrow A^1$ Part. Add X ² to A ¹	COMMANDCONDITIONIFE END CORRECTIONSet Part. Add in A FF $Q^1 \rightarrow Q^2$ $A^2 \rightarrow Q^1$ $Q^2 \rightarrow A^1$ $Q^2 \rightarrow A^1$ Clear X ¹ Comp. X ¹ \rightarrow X ² ExitHalf ExitHalf ExitSign Record=1 $Q^1 \rightarrow Q^2$ $A^2 \rightarrow Q^1$ $Q^2 \rightarrow A^1$ Sign Record=1 $Q^2 \rightarrow A^1$ Sign Record=1Part. AddSign Record=1 X^2 to A^1 Sign Record=1

 2^{41}

CODE 27 DVF	INSTRUCTION Divide Fractional	FUNCTION Divide a fractional quantity in A& by a fractional q at M; store the quotient in A and the remainder in A	quantity Q.
-------------------	----------------------------------	--	----------------

SEQUENCE: Iterative (H⁶-- V⁶--)

EXECUTION TIME: 63.6 us. min., 65.2 us. avg., 66.4 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \longrightarrow U^2$		Transfer m to U ²
01	Clear X ¹		Set X ¹ to zeros
04	Add R ¹ to U ²	Ъ≠0	Modify m to M
04	Init. Storage		Select M
04	Wait Storage		
04	$\operatorname{Comp} X^1 \longrightarrow X^2$		Set X ² to 'all ones'
05	Set Sign Record FF	A neg	Record the sign of the dividend
05	Set Div. Sign Record FF	A neg.	
07	Clear R ¹		Prepare R for receipt of divide step count
07	Partial Add X ² to A ¹	A neg	Complement A if AQ is negative
08	Set I ² to 48		Select the divide step control count
10	$\delta_{\mathbf{j}} \longrightarrow \delta_{\mathbf{s}}$	J	
11	$A^2 \rightarrow Q^1$	}	Switch A and Q
11	Q ² →A ¹		
12	I ² I ³ →R ¹	_	Place 48 in R
13	Clear X ¹		
13	Partial Add X ² to A ¹	Sign Record=1	
14	ଦ¹->Q²		
15	A ² →Q ¹		Complement Q if AQ is negative
15	Q ² -→A ¹		

_27	DVF		
TIME	COMMAND	CONDITION	REMARKS
15	I5Ie→X1		Transfer the divisor (M) to X
16	$R^1 \rightarrow R^2$		Set $\mathbb{R}^2 = \mathbb{R}^1(48)$
16	X ¹ -→X ²		Position (M) in X^2 for generating partial
16	Exit to Multiply Step		dividends, complement 11 negative.
17	Comp. Sign Record FF	X neg	Establish the sign of the quotient
17	Exit to Divide Step		
18	Comp. $X^1 \rightarrow X^2$	X pos.	
EXECUTE	DIVIDE STEP		·
00	Red. R^1 to R^2		Perform the division. Set least significant bit in 0 to 111 if $X \le 0$ if $X \ge 0$
00	Shift AQ Left		Shift AQ left once after comparing X to A. Beduce B one count for each shift Complude
01	R ² ->R ¹		the division when R=0.
01	A ² →A ¹		
01	Q ² →Q ¹		
01	Exit to 00	r ≠ 0, a <x< td=""><td></td></x<>	
01	Exit to End Correction	R = O	
05	Add X ² to A ¹	A≥X	
05	Set Q ₀₀ to 1	x≤A	
05	Exit to OO	r≠o	
05	Exit to End Correction	R = 0	
×			

27 DVF

TIME	COMMAND	CONDITION	REMARKS
EXECU	TE END CORRECTION		
00	Set Divide Fault FF	Q neg.	The quotient is initially determined as a pos. quantity; if a 'l' is present in Q_{47} , a fault
OL	Set Part. Add in A FF		exists.
03	Clear X ¹		
04	Comp. X ¹ to X ²		
05	Part. Add X ² to A ¹	Div. Sign=1	Complement remainder if dividend negative
05	Exit		
05	Half Exit		
06	$Q^1 \rightarrow Q^2$	>	Place quotient in A
07	A [≥] → Q [⊥]		
07	Q [∠] →A ¹	٦	
09	Part. Add X ² to A ¹	Sign Record = 1	Complement quotient
			Rev. 12/60
		. 2	-44

CODE 30 FAD	INSTRUCT Floating Add	ION Add two c A, one in	FUNCTION quantities packed in floating point format, one in A M. Store the result in A, the residue in Q.
SEG	OUENCE: Iterative	(H ⁶ V ⁶)	
EXE	CUTION TIME:	11.2 us min., 18.8	3 us avg., 26-8 us max.
TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \longrightarrow U^2$		Transfer m to U ²
Ol	Clear X ¹		Set X to all zeros
04	Add R^1 to U^2	Ъ≠О	Modify m to M
04	Init. Storage		Select M
04	Wait Storage		
04	Comp. $X^1 \longrightarrow X^2$		
05	Part. Add X^2 to A^1	A neg	Complement A if negative, record the sign
05	Set SR FF	A neg	
07	$A^1 \longrightarrow X^1$		
08	$X^1 \xrightarrow{u} X^2$		
09	Clear A ¹		
10	A ¹ →A ²		
10	X ¹ →U ² (ExP• (Extend Exp Sign)	Unconditional	Transfer the augend (A) to X, extract the
11	$U^2 \rightarrow U^1$	$\left(\right)$	exponent($X^{36}-X^{46}$) and place in U ² . Clear A.
11	Clear X ¹ Exp		·
12	Comp. $X^1 \longrightarrow X^2$	Sign Record=1	Restore A (less exponent) to original, non-
12	X ¹ >X ²	Sign Record=0	complement condition.
12	Clear SR FF		
13	Clear X ¹		
13	Part. Add X ² to A ¹		
	1	·	

| ر 2-45

30 FAD

TIME	COMMAND	CONDITION	REMARKS
13	$A^2 \rightarrow Q^1$		
1 4	$Q^1 \longrightarrow Q^2$	<u>ک</u>	clear Q and Q
1 4	$U^2 \longrightarrow R^2$	\rangle	Transfer augend exponent to R^2 and comp. to R^1
1 5	Comp. $R^2 \longrightarrow R^1$	J	
1 5	$I_2 I_0 \longrightarrow X_1$		
1 6	$X^1 \longrightarrow X^2$	<u> </u>	Transfer the addend from M to X, register
1 6	$R^1 \rightarrow R^2$		the sign and complement if negative
17	Set SR FF	X Neg	
18	Comp. $X^1 \longrightarrow X^2$	X Neg	
EXECU	E FLOATING POINT		
00	Set Inhibit A ¹ A	2	
OL	X ² →X ¹		
02	$X^1 \longrightarrow U^2$		Therefore the evenewate of the oddend to 11^2
	(Extend Exp)	>	Clear out the exponent portion of the addend.
03	$U^2 \longrightarrow U^A$		
05	Clear X ⁺ Exp	J	
06	Comp. $X^1 \longrightarrow X^2$	Sign Record=1	Complement the addend if negative.
06	$\chi^1 \longrightarrow \chi^2$	Sign Record=0	Store addend In A
07	Clear SR FF		Clear sign record
08	Add R ¹ to U ²		Compare augend exponent to addend exponent
09	Clear X ¹		Clear X to receive the augend
09	Set U ² SR	U ² Neg	
09	Set Part. Add in A FF		
10	$U^2 \longrightarrow R^2$		Store exponent difference in R ²
11	Clear A ¹	U ² neg at 09	Prepare A for reversal of operands
11	A ¹ → X ¹	-	Transfer augend to X ¹
11	Clear U ¹ IIA	U ² negative 08	Set U ¹ to all zeros
12	$U^1 \longrightarrow U^2$		Transfer addend exp. to U^2 Clear U^2 if U^2 Neg at 09
		2-	46 Rev. 12/60

30 FAD

TIME	COMMAND	CONDITION	REMARKS
13	$X^2 \rightarrow X^1$	U ² pos at 09	Place addend in X ¹ if augend exponent< addend
1 4	Part. Add R ¹ to U ²	U ² neg at 09	Store exponent of augend in U ² if augend exponent > addend exponent
1 5	Add X ² to A ¹	U ² neg at 09	Place addend in A if augend exponent >addend exponent
1 5	$R^2 \rightarrow R^1$	U ² pos at 09	Set $R^2 = R^1$ to control the shift
1 5	$Comp \ R^2 \rightarrow R^1$	U ² neg at 09	
16	$R^1 \rightarrow R^2$		
16	$\chi^1 \rightarrow \chi^2$		Position operand in X^2 for generation of
19	$A^2 \rightarrow Q^1$		coefficient of fesure
20	Init. Shift		
	$R^2 \rightarrow R^1$ Reduce R^1 to R^2 Shift one Exit to 21	$R^2 \neq 0$ R = 0	Shift the coefficient in AQ right, reducing R until R = 0. This establishes two quantities with equal exponents
23	$U^2 \longrightarrow U^1$		
23	Clear R ¹		Set R ¹ to all ones
23	U ² →U ¹		
24	R ¹ →R ²		
25	Clear X ¹		
25	Comp. $R^2 \rightarrow R^1$		
2 5	Add X ² to A ¹		Generate the coefficient of the result
26	Part. Add R ¹ to U ²	U ² neg at 09	Complement (U ²) if augend exponent > addend exponent
	l l		$R_{\rm ev} = \frac{12}{60}$

70	-
- 20	FAD

TIME	COMMAND	CONDITION	REMARKS
EXECU	TE ROUND		
23	Set Execute Round FF	A ⁴⁷ ≠ Q ⁴⁷	
25	Clear X ¹	Ĵ	
25	Set X ² to 1		
26	X ¹ →X ²	A pos.	
26	Comp. $X^1 \rightarrow X^2$	A neg.	Set X ⁻ to one or complement one.
28	$R^1 \rightarrow R^2$		Set $\mathbb{R}^2 = \mathbb{R}^1$ for shift control
31	Add X ² to A ¹	$A^{47} \neq Q^{47}$	Perform round off if Q ⁴⁷ contains a one
30	Exit to Time 38	A = 0	
EXECU	TE NORMALIZE		
33	Shift A Left	A ³⁷ =A ³⁶ =A ³⁵	Position the most sig. 1 bit of the
34	Inhihit $\Delta^1 \rightarrow \Delta^2$	A≠O	is left reduce R by one each shift and
		A ³⁷ źA ³⁶	shift is right increase R by one each shift and comp. R.
35	Right Shift	A ≠ O	
37	Comp. R ² →R ¹	A ³⁷ ≠A ³⁶ A≠0	
37	Clear X	A ≠ O	Prepare X for use as assembly register

TIME	COMMAND	CONDITION		REMARKS	
EXECU	TE FINAL ASSEMBLY				
4 1	$A^1 \rightarrow X^1$			Transfer the coefficient to X	
41	Set X ¹ S.R. FF	FF A neg.		Record the sign of X.	
4 1	Set Part. Add in A FF				
42	$X^1 \rightarrow X^2$	A pos.	ך		
42	Comp. $X^1 \rightarrow X^2$	A neg.	}	Place the coefficient in non-complement notation.	
43	X ² →X ¹				
43	Full Exit				
43	Half Exit				
43	Clear A ¹			Prepare A to receive the result	
44	Add $R^1 \rightarrow U^2$	AQ≠O	}	Insert the exponent into the proper range of X.	
45	$U^2 \rightarrow X^1$ exp	AQ≠O	5		
46	$\chi^1 \rightarrow \chi^2$	X pos. AQ≠0	}	Position result in X^2 , complement if sign of X was neg. at time 41.	
46	$Comp. X^1 \rightarrow X^2$	X Neg. AQ≠0			
47	Part. Add X ² to A ¹	AQ≠O		Place Result in A	

CODE 31 FSB	INSTRUCTION Floating Subtract	FUNCTION Subtract two quantities packed in floating point format, one in A, one in M. Store the results in A, the residue

SEQUENCE: Iterative (H⁶-- V⁶--)

EXECUTION TIME: 11.2 us min., 18.8 us avg., 26.8 us max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ >U ²		Transfer m to U ²
01	Clear X ¹		Set X to all zeros
04	Add R to U ²	ъ≠0	Modify m to M
04	Init. Storage		Select M
04	Wait Storage	ך	
04	$\operatorname{Comp} X^1 \longrightarrow X^2$		
05	Part.Add X^2 to A^1	A neg	Complement (A) if negative, record the sign.
05	Set SR FF	A neg	
07	A ¹ →X ¹		
08	$X^1_{u} \rightarrow X^2_{u}$		
09	Clear A ¹		
10	$A^1 \longrightarrow A^2$	Unconditional	
10	X ¹ →U ² (Extend Exp)		Transfer the minuend (A) to X, extract the exponent $(X^{36}-X^{46})$ and place in U ² . Clear A
11	U ² >U ¹		
11	Clear X ¹ Exp	٦	
12	$\operatorname{Comp} X^{1} \longrightarrow X^{2}$	Sign Record=1	
12	x ¹ >x ²	Sign Record=0	Restore A (less exponent) to orignal, non-comple-
12	Clear SR FF		ment condition
13	Clear X ¹		
13	Part. Add X^2 to A^1		
	1	J J	1

ا ر 2-50

31 F	SB		
TIME	COMMAND	CONDITION	REMARKS
13	$A^2 \rightarrow Q^1$		h
14	$Q^1 \longrightarrow Q^2$		$\left \right\rangle$ Clear Q ¹ and Q ²
14	$U^2 \longrightarrow R^2$		Transfer minuend exponent to R^2 and comp. to R^1
1 5	$\operatorname{Comp} R^2 \rightarrow R^1$		
1 5	$I^5 I^6 \longrightarrow X^1$		Transfer the subtrahend from M to X, register
1 6	$x^1 \rightarrow x^2$		the sign and complement if negative
17	Set SR FF	X Neg	
18	Comp. $X^1 \longrightarrow X^2$	X Neg	
EXECU	TE FLOATING POINT		
01	$X^2 \longrightarrow X^1$		
02	$X^1 \longrightarrow U^2$ (Extend Exp)	·	Transfer the exponent of the subtrahend to U^2 . Clear out the exponent portion of the augend.
03	υ² → υ [⊥]		
05	Clear X ¹ Exp		Ť.
06	Comp. $X^1 \longrightarrow X^2$	Sign Record=1	Complement the subtrahend if positive
06	$X^1 \longrightarrow X^2$	Sign Record=0	Store augend in X-
07	$X^2 \rightarrow X^1$		Set $X^1 = X^2$
07	Clear SR FF		Clear sign record
08	Comp. $X^1 \longrightarrow X^2$		Set up subtraction
08	Add R ¹ to U ²		Compare addend exponent to subtrahend exponent
09	Set U ² SR	U ² Neg.	
09	Clear X ¹		Clear X to receive the minuend
09	Set Part. Add in A FF		
10	$U^2 \rightarrow R^2$		Store exponent difference in R ² minuend
11	Clear A ¹	U ² neg at 09	Prepare A for reversal of operands
11	$A^1 \longrightarrow X^1$		Transfer minuend to X ¹
11	Clear U ¹ UA	U ² neg at 09	Set U ¹ to all zeros

31 FSB

TIME	COMMAND	CONDITION	REMARKS
12	$U^{1} \longrightarrow U^{2}$		Transfer subtrahend exp. to U ² Clear U ² if U ² neg. at 09
13	$X^2 \longrightarrow X^1$	U ² pos at 09	Place subtrahend in X ¹ if minuend exponent < subtrahend exponent
1 4	Part. Add R ¹ to U ²	U ² neg at 09	Store exponent of addend in U ² if minuend exponent > subtrahend exponent
1 5	Part. Add X ² to A ¹	U ² neg at 09	Place subtrahend in A if minuend exponent > subtrahend exponent
15	$R^2 \longrightarrow R^1$	U ² pos at 09	Set $R^2 = R^1$ to control the shift
1 5	Comp. $R^2 \longrightarrow R^1$	U ² neg at 09	
16	$R^1 \longrightarrow R^2$		
1 6	$\chi^1 \longrightarrow \chi^2$		Position operand in X^2 for generation of
19	$A^2 \longrightarrow Q^1$		coeffectent of result
20	Init. Shift		
	$R^{2} \longrightarrow R^{1}$ Reduce R ¹ to R ² Shift one Exit to 21	$ \begin{array}{c} R^2 \neq 0\\ R = 0 \end{array} $	Shift the coefficient in A left, reducing R until $R = 0$. This establishes two quantities with equal exponents
23	Clear R ¹		Set R ¹ to all ones
23	$U^2 \longrightarrow U^1$		
24	$R^1 \longrightarrow R^2$		
25	$Comp \ R^2 \longrightarrow R^1$		
2 5	Clear X ¹		,
25	Add X ² to A ¹		Generate the coefficient of the result
2 5	Clear X ¹		
26	Part. Add R ¹ to U ²	U ² neg at 09	Complement (U ²) if addend exponent > augend exponent
	I	2-5	R ev. 12/60

	FSB		
TIME	COMMAND	CONDITION	REMARKS
EXECI	TE ROUND		
23	Set Execute Round FF	$A^{47} \neq Q^{47}$	
25	Clear X ¹		
25	Set X ² to 1		
26	X ¹ >X ²	A pos.	Set X ² to one or complement one
26	Comp. $X^1 \rightarrow X^2$	A neg.	
28	$R^1 \rightarrow R^2$		Set $R^2 = R^1$ for shift control
31	Add X ² to A ¹	A ⁴⁷ ≠ Q ⁴⁷	Perform round off if Q47 contains a one
30	Exit to Time 38	A=O	
EXECU	TE NORMALIZE		
33	Shift A Left	A ³⁷ =A ³⁸ =A ³⁵	Position the most sig. 1 bit of the
34	Inhibit A ¹ ->A ²	A≠0 A ³⁷ ≠ A ³⁶	to shift until A ³⁵ =1. If the shift is right
35	Right Shift		increase r by one each shirt and comp. r.
37	Comp. R ² →R ¹	A ⁵⁷ _{≠A} 36 A≠0	
37	Clear X	A ≠ O	Prepare X for use as assembly register
			× · · · · · · · · · · · · · · · · · · ·

31	FSB		
TIME	COMMAND	CONDITION	REMARKS
FYFOI			
EVECO	IE FINAL ASSEMBLI		
41	A ⁻ →X ⁻		Transfer the coefficient to X
41	Set X ¹ S.R. FF	FF A neg.	Record the sign of X
41	Set Part. Add in A FF		
42	$X^1 \rightarrow X^2$	A pos.	
42	Comp. $X^1 \rightarrow X^2$	A neg.	Place the coefficient in non-complement notation
43	X²→X ¹	J	
43	Full Exit		
43	Half Exit		
43	Clear A ¹		Prepare A to receive the result
4 4	Add R ¹ to U ²	AQ≠O	Insert the exponent into the proper range of X.
45	$U^2 \rightarrow X^1$ exp	AQ≠0	
46	X ¹ →X ²	X pos. AQ $\neq 0$	Position result in X^2 , complement if sign of X was neg. at time 41.
46	Comp. $X^1 \rightarrow X^2$	X neg. AQ≠O	
47	Part. Add X ² to A ¹	AQ≠O	Place result in A
		2-	l 54 Rev. 12/60

CODE INSTRUCT 32 Floating Multing FMU SEQUENCE: Iteration		FUNCTION FUNCTION Multiply a number packed in floating point in A with a number, also in floating point, in M. Store the product in A, the residue in Q. $F(H^6V^6)$		
		- <u> </u>		
TIME	COMMAND	COND	ITION	REMARKS
00	U ¹ >U ²			Transfer m to U ²
01	Clear X ¹			Set X to all zeros
07	Half Exit	A = 0		Leave the sequence if the multiplicand = 0
07	Exit	A = 0		
04	Add R ¹ to U ²	Ъ≠0		Modify m to M
04	Init. Storage	A ≠ 0		Select M
04	Wait Storage	A ≠ 0		
04	Comp. $X^1 \longrightarrow X^2$			Set X to all ones
05	Part. Add X ² to A ¹	A neg		Complement the multiplicand if negative
05	Set SR FF	A neg		Register the sign of A
07	A ¹ >X ¹			Transfer multiplicand to X
08	$x^1 \longrightarrow x^2$			
08	Set I ² to 36			Set multiply step control to 36
09	Clear A ¹			Set A to all zeros
10	X ¹ —>U ² (Extend Exp)		٦	Extract the exponent from the multiplicand, store
11	U ² >U ¹		2	the exponent in U^2 and return the multiplicand minus the exponent to A.
11	Clear X ¹ Exp			
12	X¹>X²			
13	Part. Add X ² to A ¹			
			ر	

32 FMU

TIME	COMMAND	CONDITION	REMARKS
13	Clear X ¹		Clear X to receive the multiplier
13	$A^2 \rightarrow Q^1$		
1 4	$U^2 \longrightarrow R^2$		Place multiplicand exponent in R ²
14	Q ¹ >Q ²	Ž	Transfer the multiplicand to $Q^{\mathbf{l}}$
14	Clear A ¹		
1 5	A ² → Q ¹		
1 5	$R^2 \longrightarrow R^1$	-	Set $R^1 = R^2$
1 5	$I^5 I^6 \longrightarrow X^1$	Z	Transfer the multiplier from storage to X^2
1 6	$X^1 \longrightarrow X^2$	∫ ∫	
17	Comp. SR FF	X neg	Record the sign of the multiplier
EXECU	TE FLOATING POINT		
04	$\begin{array}{c} \text{Comp.} \\ X^{1} \rightarrow X^{2} \end{array}$	X Neg	Complement the multiplier if it is negative
05	X²→X¹		
06	$X^1 \rightarrow U^2$ (Extend Exp.)	Ĵ	Extract the exponent of the multiplier, Store the exponent in U^2 . Retain the
07	U ² → U ¹	<pre>></pre>	multiplier, less the exponent, in X ⁻
07	Clear X ¹ Exp.		
08	$X^1 \rightarrow X^2$		
12	Add R ¹ to U ²		Determine the exponent of the product
13	Clear R ¹	}	Place mult. step control quantity in R.
14	I ² I ³ →R ¹		
1 5	Execute Mult. Step	,	
1 6	$R^1 \rightarrow R^2$		Set $R^2 = R^1$
		2-	56 Rev. 12/60

32	FMU		
TIME	COMMAND	CONDITION	REMARKS
EXECU	TE MULTIPLY STEP		
00	Reduce R^1 to R^2	ן ר	Perform the actual multiplication
00	Shift AQ right	Charat	Shift once to position bit in sensing position.
Ol	$\mathbb{R}^2 \longrightarrow \mathbb{R}^1$	Loop	(AQ) right; if the multiplier bit is 0, shift AQ right. Reduce the step control count once
01	$A^2 \rightarrow A^1$		each shift. Exit when the step control count is 0
01	$Q^2 \rightarrow A^1$		
01	Exit to O	R ≠ 0	Long
	End Correction	$ \begin{array}{c} Q = 0 \\ 00 \\ R = 0 \end{array} $	Loop
05	Add X ² to A ¹	Q = 1 00	
05	Exit to O	R≠O	
05	Exit to End Correction	R = 0	
EXECU	JTE END CORRECTION		
Ol	Set Part. Add in A FF		If the sign record flip-flop indicates a negative product in A, Q is complemented
02	$Q^1 \longrightarrow Q^2$		before concluding the routine.
03	$A^2 \longrightarrow Q^1$		
03	$Q^2 \longrightarrow A^1$		
03	Clear X ¹		
04	Comp. $X^1 \rightarrow X^2$		
05	Part. Add X ² to A ¹		
06	$Q^1 \rightarrow Q^2$		
07	$A^2 \rightarrow Q^1$		
07	$Q^2 \rightarrow A^1$		
09	Part. Add X ² to A ¹	Sign Record = 1	
			Rev. 12/60

'ompuler D	V	H	s il	M
------------	---	---	-------------	---

32 FMU				
TIME	COMMAND	CONDITION	REMARKS	
EXECUTE	ROUND			
22	Clear R ¹			
23	Set Execute Round FF	A ⁴⁷ ≠ Q ⁴⁷		
23	U ² >U ¹			
24	$R^1 \rightarrow R^2$			
25	Clear X ¹			
25	Comp. $R^2 \rightarrow R^1$			
25	Set X ² to 1	ار		
26	X¹→X²	A pos.	Set X ² to one or complement one	
26	$\operatorname{Comp}_{\bullet} X^{1} \rightarrow X^{2}$	A neg.		
27	U²→U¹			
28	$R^1 \rightarrow R^2$		Set $R^2 = R^1$ for shift control	
31	Add X ² to A ¹	A ⁴⁷ ≠ Q ⁴⁷	Perform round off if Q47 contains a one	
30	Exit to Time 38	A = 0		
EXECUTE	NORMALIZE			
33	Shift A Left	A ³⁷ =A ³⁶ =A ³⁵	Position the most sig. 1 bit of the 3^{35} . If the shift	
34	Inhibit A ¹ ->A ²	A≠0 ₄37∡₄36	is left reduce R by one each shift and continue to shift until $A^{35}=1$. If the shift is right increase R by one each shift and comp. R.	
35	Right Shift			
37	$\operatorname{Comp.} R^2 \longrightarrow R^1$	A ³⁷ ≠A ³⁶		
		A≠O		
37	Clear X	A≢O	Prepare X for use as assembly register	
			· · · · · · · · · · · · · · · · · · ·	

TIME	COMMAND	CONDITION	REMARKS
היעה/יו ו		· · · ·	
LABCO.	Al vi		managen the second start to V
-+), -			Transfer the coefficient to X
4 <u>1</u>	Set X S.R. FF	FF A Neg.	Record the sign of X
4 1	Set Part. Add in A FF		
42	$X^1 \rightarrow X^2$	A pos.	
42	Comp. $X^1 \rightarrow X^2$	A Neg.	Place the coefficient in non-complement notation.
43	$X^2 \rightarrow X^1$		
43	Full Exit	-	
43	Half Exit		
43	Clear A ¹		Prepare A to receive the result
44	Add R^1 to U^2	AQ≠O	Insert the exponent into the proper
45	$U^2 \rightarrow X^1$	AQ≠O	range of X
	exp	J	
46	$X^1 \rightarrow X^2$	X pos.	Position result in X^2 , complement if sign of X was neg. at time 41.
46	Comp. $X^1 \rightarrow X^2$	X Neg.	
		AQ≠0 J	
47	Part. Add X ² to A ¹	aq≠o	Place result in A
			<i>,</i>
	1	9	Rev. 12/60

CODE 33 FDV	INSTRUCTION Floating Divide	FUNCTION Divide a number packed, in floating point in A, by a number also in floating point from memory. Store the
		quotient in A, the residue in Q.

SEQUENCE: Iterative (H⁶--V⁶--)

EXECUTION TIME: 3.2 us min., 56.0 us avg., 57.2 us max.

TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \longrightarrow U^2$	· · · · · · · · · · · · · · · · · · ·	Transfer m to U ²
01	Clear X ¹		Set X to all zeros
07	Half Exit	A = 0	to see the second of dividend - 0
07	Exit	A = 0	Leave the sequence II dividend = 0
04	Add R ¹ to U ²	Ъ≠0	Modify m to M
04	Init.Storage	A ≠ 0	Select M
04	Wait Storage	A ≠ O	
04	Comp. $X^1 \longrightarrow X^2$		Set X to all ones
05	Part. Add X ² to A ¹	A neg	Complement the dividend if negative
05	Set SR FF	A neg	Register the sign of A
07	A ¹ >X ¹	٦	Transfer dividend to X
08	$X^1 \xrightarrow{U} X^2_U$	Ś	
08	Set I ² to 36	-	Set divide step control to 36
09	Clear A ¹		Set A to all zeros
10	X ¹ →U ² (Extend Exp)		i
11	U ² >U ¹		Extract the exponent from the dividend, store
ш	Clear X Exp		exponent to A.
12	x¹>x²		
13	Part. Add X ² to A ¹		
13	A ² ->Q ¹	J	

33	FDV	1	
TIME	COMMAND	CONDITION	REMARKS
13	Clear X ¹		Clear X to receive the divisor
14	$U^2 \rightarrow R^2$		Place dividend exponent in R ²
1 4	$Q^1 \longrightarrow Q^2$		
15	Comp. $R^2 \rightarrow R^1$		Prepare R for subtraction
1 5	$I^5 I^6 \longrightarrow X^1$	٦ _	
16	$X^1 \longrightarrow X^2$		Transfer the divisor from storage to X^{-}
16	Inhibit $A^1 \longrightarrow A^2$		Prevent the normal unconditional transfer of $A^1 \longrightarrow A^2$
17	Comp. SR FF	X neg	Record the sign of the divisor
	EXECUTE FLOATING PO	DINT	
02	Shift Right		
04	Comp. $X^1 \longrightarrow X^2$	X neg	Complement the divisor if it is negative
05	$X^2 \longrightarrow X^1$		
06	$X^1 \longrightarrow U^2$	_	Extract the exponent of the divisor, store the $divisor$ has the
07	$U^2 \longrightarrow U^1$	}	exponent in X^1 .
07	Clear X ¹ Exp		
08	Comp. $X^1 \rightarrow X^2$		
12	Add R ¹ to U ²		Determine the exponent of the quotient
13	Clear R ¹		Place the divide step control quantity in R
14	$U^2 \rightarrow R^2$		
14	$I^2 I^3 \longrightarrow R^1$	J	
1 5	Execute Divide		
16	$R^1 \longrightarrow R^2$		Set $R^2 = R^1$
18	Set U ² SR FF		
	I	 2-	Rev. 12/60

-CONTROL DATA CORPORATION Computer Division

33 FDV

TIME	COMMAND	CONDITION	REMARKS
 ₽ У₽	מיז איז איז איז איז איז איז איז איז איז א		
	DOTE DIVIDE SIEP		
00	Red. R LOR		Perform the division. Set least significant bit in Q to 'l' if $X \ge A$, to '0' if $X > A$.
00	D2 D1		Shift AQ left once after comparing X to A. Reduce R one count for each shift. Conclude
	$R^- \rightarrow R^-$		the division when $R = 0$.
01			
0L	$Q^{-} \rightarrow Q^{-}$,	
01	Exit to 00	R ≠ 0, A< X	
Ol	Exit to End Correction	R = 0	
05	Add X ² to A ¹	$_{A} \geq_{X}$	
05	Set Q ₀₀ to 1	$A \geq X$	
05	Exit to 00	r≠ 0	
05	Exit to End Correction	R = 0	
EXE	CUTE END CORRECTION	J	
00	Set Divide Fault	Q neg.	The quotient is initially determined as a pos- quantity; if a 'l' is present in Q_{47} , a fault
Ol	Set Part. Add in A FF		exists.
03	Clear X ¹		
04	Comp. X^1 to X^2		
05	Part. Add X ² to A ¹	Div. Sign = 1	Complement remainder if dividend negative
06	Q ¹ →Q ²	J	
07	A ² →Q ¹	S	Place quotient in A remainder in Q
07	Q ² →A ¹	J	
09	Part. Add X ² to A ¹	Sign record = 1	Complement quotient
		2-	-62 REv. 12/60

33 F	DV		
TIME	COMMAND	CONDITION	REMARKS
EXECU	ITE ROUND		
22	Clear R ¹		
23	Set Execute Round FF	A ⁴⁷ ≠ Q ⁴⁷	
23	$U^2 \rightarrow U^1$		
24	$R^1 \longrightarrow R^2$		
25	Clear X ¹		
2 5	Comp. $R^2 \rightarrow R^1$		
2 5	Set X ² to 1		
26	Add R^1 to U^2		Makes exponent positive
26	$X^1 \rightarrow X^2$	A pos.	Set X ² to one or complement one
26	Comp. $X^1 \rightarrow X^2$	A neg.	
27	U ² →U ¹		
28	$R^1 \rightarrow R^2$		Set $\mathbb{R}^2 = \mathbb{R}^1$ for shift control
31	Add X ² to A ¹	$A^{47} \neq Q^{47}$	Perform round off if Q^{47} contains a one
30	Exit to Time 38	A=0	
EXECU	TE NORMALIZE		
33	Shift A Left	A ³⁷ =A ³⁶ =A ³⁵	Position the most sig. 1 bit of the coefficient in position A^{35} . If the shift
34	Inhibit $A^1 \rightarrow A^2$	a≠0 A ³⁷ ≠A ³⁶	is left, reduce R by one each shift and continue to shift until A ³⁵ =1. If the shift is right, increase R by one each shift and
3 5	Right Shift	A ≠0	complement R.
37	Comp. $R^2 \rightarrow R^1$	A ³⁷ ≠A ³⁶	
37	Clear X	A≢0 A≠0	Prepare X for use as assembly register
		·	
			 2-63 Rev. 12/60

- CONTROL DATA CORPORATION Computer Division

33 FDV

TIME	COMMAND	CONDITION	REMARKS
EXECU	TE FINAL ASSEMBLY		
4 1	$A^1 \longrightarrow X^1$		Transfer the coefficient to X
41	Set X ¹ S.R. FF	FF A neg.	Record the sign of X
41	Set Part. Add in A FF		
42	X ¹ →X ²	A pos.	
42	Comp. $X^1 \rightarrow X^2$	A neg.	Place the coefficient in non-complement notation
43	X ² →X ¹		
43	Full Exit		
43	Half Exit		
43	Clear A ¹		Prepare A to receive the result
44	Add R ¹ to U ²	AQ≠0	Insert the exponent into the proper range of X
45	$U^2 \rightarrow X^1$ exp	AQ≠O	
46	X ¹ →X ²	X pos. AQ#0	Position result in X^2 , complement if sign of X was neg. at time 41
46	Comp. X ¹ →X ²	X neg. AQ≠0	
47	Part. Add X ² to A ¹	AQ≠O	Place result in A
			•
		2-6	Bev 12/60

Rev. 12/60

CODE 34 SCA	INSTRUCT Scale A	ION Shift (A) sign bit	FUNCTION left until the bit position to the right of contains a 'l'. Store M_p in B ^b .
SEC	QUENCE: Zero Addres	s (H ² V ²)	
EXE	ECUTION TIME: 2	2.8 us. min., 2.8 u	as. + .4 us./shift avg., 22 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U^2 (m = shift count)
05	Clear B ^b		Clear B^b to receive R_f
06	U ² →R ²		Load shift count (m) in \mathbb{R}^2 and \mathbb{R}^1
07	R ² →R ¹	R≠O	
10	Init. Shift	$\begin{array}{c} A_{47} = A_{48} \\ A \neq 0 \end{array}$	
10	² -→ ^B ^b	$\begin{array}{c} A_{47} \neq A_{46} \\ \text{or} \\ A = 0 \end{array}$	Store M in B ^b
11	Half Exit	$A_{47} \neq A_{48}$	Exit if quantity is expressed in scaled format or quantity is equal to 0
11	Full Exit	$\mathbf{A} = \mathbf{O}$	
11	Shift	A ₄₇ = A ₄₆	
		A ≠ 0	Shift (A) left until $A_{47} \neq A_{46}$, ie., until
12	Red. R ¹ to R ²	ר	A46 hold most significant bit.
13	R ² →B ^b	}	Store m minus number of shifts performed in B^b
13	Half Exit	$\begin{array}{c} A_{47} \neq A_{46} \\ A \neq 0 \end{array}$	Exit when $A_{47} \neq A_{48}$, $A \neq 0$ or when $R = 0$.
13	Full Exit	$rac{or}{R = 0}$	

- CONTROL DATA CORPORATION Computer Division

୦୦୦E 35 ର ୯ ହ	INSTRUCT Scale AQ	ION Shift (AQ) right of t	FUNCTION left until the bit position to the he sign bit contains a '1'. Store M in B^{b} .
SEC	QUENCE: Zero Addres	s (H ² V ²)	
EXE	CUTION TIME: 2	.8 us. min., 2.8 u	s. + .4 us./ shift avg., 41.2 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U^2 (m = shift count)
05	Clear B ^b		Clear B^{b} to receive R_{f}
06	U ² →R ²		Load shift count (m) in R^2
07	$R^2 \rightarrow R^1$	R≠0	
10	Init. Shift	$AQ \neq 0$ $A_{47} = A_{46}$	
10	R ² →B ^b	$A_{47} \neq A_{46}$ or AQ = 0	Store M in B ^b
11	Half Exit	A47 # A46	Exit if quantity is already in scaled format or if quantity is equal to O
11	Full Exit	or Aର୍= ୦	
ш	Shift	A ₄₇ = A ₄₈ AQ ≠ 0	Shift (AQ) left until $A_{46} \neq A_{47}$, ie., until A_{46} holds most significant bit.
12	Red. R^1 to R^2	ך	
13	$R^2 \rightarrow B^b$		Store m minus number of shifts performed in B^b
13	Half Exit	$\begin{array}{c} A_{47} \neq A_{46} \\ AQ \neq 0 \end{array}$	Exit when $A_{47} \neq A_{46}$, $A \neq 0$ or when $R = 0$
13	Full Exit	R = 0	
	· ·		

SSK	QUENCE: Read Oper	and (H ³ V ³)	
E	ECUTION TIME:	6.8 us. min., (Up	per Inst.), 8.8 us. avg., 16 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U ²
01	Clear X ¹		Prepare X ¹ for receipt of (M)
04	Add R ¹ to U ²	b ≠ 0	Modify m to M
04	Init. Storage		
10	Wait Storage		
15	I ⁵ I ⁶ ->X ¹		Load (M) to X ¹
19	Half Exit	(X) pos	Perform the next instruction
19	Full Exit	(X) neg	Skip the next instruction

CODE	INSTRUCTION	FUNCTION
57 	Storage Shift	Skip next instruction if (M) is negative; in either case, shift (M) left one.

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 10.8 us. min., 12.8 us. avg., 19.2 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as exchange register
04	Add R ¹ to U ²	b≠0	Modify m to M
04	Init. Storage		
06	Q ¹ ->Q ²	٦	Store A_i in Q^1 ; clear A for use as operation
06	Clear A ¹	}	register.
07	A ² ->Q ¹	J	
10	Wait Storage		
15	I ⁵ I ⁶ →X ¹		Place (M) in X for transfer to A
16	X ¹ -→X ²		
19	Wait Storage		
20	Inhibit $A^1 \rightarrow A^2$		
21	Clear X ¹		
21	Part. Add X ² to A ¹		Transfer (M) to A
22	Shift A ¹ to A ²		Shift (M) left
23	A ² →A ¹	ך ן	
25	A ¹ >X ¹	}	Load (M) in X ¹
27	Q ² -→A ¹	_	Place Q _i in A ¹
28	Q ¹ →Q ²		Place A _i in Q ²

TIME	COMMAND	CONDITION	REMARKS
28	Init. Storage		
29	$Q^2 \rightarrow A^1$	}	Restore (A_i) and (Q_i)
29	A ² →Q ¹	J	
+7	$X^1 \rightarrow Z^1 Z^2$		Return (M) shifted one left to storage
+7	Half Exit	No Skip	Perform next instruction (M pos)
+7	x Full Exit	Skip	Skip next instruction (M neg)
	x Ordinarily this	instruction is l	mited to the upper instruction position
			a.
		2_	.69

- CONTROL DATA CORPORATION Computer Division

1		
CODE	INSTRUCTION	FUNCTION
40	Selective Set	Set bits of (A) to 'l's according to 'l's of (M)

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 4.8

4.8 us. min., 7.2 us. avg., 9.6 us. max.

r
r
or both
ne
2

CODE 41 SCL	INSTRUCTI Selective Cl	ION Lear	Clear 1	FUNCTION bits of (A) according to 'l's of (M)
SEQ	UENCE: Read Opera	and (H ³	V ³)	
EXE	CUTION TIME: 4.8	us. min., 7.2 us. avg., 9.6 us. max.		avg., 9.6 us. max.
TIME	COMMAND	CONDIT	TION	REMARKS
00	U ¹ >U ²			Transfer m to U ²
01	Clear X ¹			
04	Add R ¹ to U ²	ъ≠о		Modify m to M
04	Init. Storage			
06	$Comp. X^1 \rightarrow X^2$		ر	Complement (A)
07	Part. Add X^2 to A^2		\int	comprement (A)
10	Wait Storage		_	
15	I₂I ₈ →X ₇			Superimpose (M) and (A); 'l's in either or both words will cause corresponding bits in the
15	A ¹>X¹			combined word to be '1'.
15	Clear A ¹			Prepare A to receive result
16	Comp. X ¹ →X ²			Set result to proper order in X^2 ; bits corresponding to 'l's in (M) are now 'O'.
17	Half Exit			
17	Exit			
21	Part. Add X ² to A			Transfer (X^2) to A

---- CONTROL DATA CORPORATION Computer Division

00DF		
42	Selective Complement	FUNCTION Complement bits of (A) according to 'l's of (M)
SCM		

SEQUENCE: Read Operand $(H^3 - V^3 -)$

EXECUTION TIME: 4.8 us. min., 7.2 us. avg., 9.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \rightarrow U^2$		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	ъ≠0	Modify m to M
04	Init. Storage		
10	Wait Storage		
15	I ⁵ I ⁶ →X ¹	٦	π_{2}
16	X1-→X2	Ś	Transfer (M) to X
17	Half Exit		
17	Exit		
21	Part. Add X ² to A ¹		Transfer (M) to A; 'l's in M cause corresponding bits in A to be complemented.
			、 、

2 - 72

CODE	INSTRUCTION	FUNCTION
43	Selective Substitute	Transfer bits of (M) to corresponding bits in A
SSU		according to 'l's of (Q)

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 5.2 us. min., 7.4 us. avg., 9.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	$U_1 \rightarrow U_5$		Transfer m to U ²
01	Clear X ¹		
04	Add R ¹ to U ²	Ъ≠0	Modify m to M
04	Init. Storage		
06	Q ¹ ->Q ²		Place Q^1 in Q^2 for transfer to X
06	Comp. X ¹ →X ²	ך ا	
07	Part. Add X ² to A ¹	}	Complement A and X
07	χ²-⇒X¹		
07	LQX		Transfer Q to X ¹
10	Wait Storage		
11	A ¹ →X ¹		Superimposes A on X^1 ; selectively clears comp. of A_i by forcing bits to 'l' if $Q = 1$.
11	Clear A ¹		Prepare A to receive (X)
12	Comp. X ¹ →X ²		Put selectively cleared A _i in normal form
13	Clear X ¹		Prepare X for use as an exchange register
15	I ⁵ I ⁶ -→X ¹		Marke Midan 101a da 0
15	LQX		Masks M for 'U's in Q
17	Part. Add X ² to A ¹		Enter selectively cleared A _i in A ¹
20	X ¹ →X ²		Masked M to X ²
21	Exit		
21	Half Exit		
25	Part. Add X^2 to A^1		Substitutes masked M for cleared bits of A_i
		1	·

- CONTROL DATA CORPORATION Computer Division

CODE	INSTRUCTION	FUNCTION
կկ	Load Logical	Load the logical product of (Q) and (M) in A.
LDL	TOAU TORICAT	Toat the logical product of (w) and (M) in A.

SEQUENCE: Read Operand $(H^3 - V^3 -)$

EXECUTION TIME: 5.2 us. min., 7.4 us. avg., 9.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for receipt of (M)
04	Add R ¹ to U ²	Ъ ≠ 0	Modify m to M
04	Init. Storage		
06	ହ¹-⇒ହ²		Position (Q) for logical multiply
06	Clear A ¹		Prepare A for receipt of the logical product
10	Wait Storage		
15	I ⁵ I ⁶ →X ¹	٦	Form the logical product of (M) and (0)
15	LQX	5	Form the logical product of (h) and (4)
20	X ¹ →X ²	٦	load the logical modult in A
21	Full or half Exit	<pre></pre>	Toat the logical product in A
25	Part. Add X ² to A ¹	J	
• .			

CODE	INSTRUCTION	FUNCTION
45	Add Logical	Add the logical product of (Q) and (M) to A; store
ADL		the sum in A.

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 5.4 us. min., 7.4 us. avg., 9.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	Ū₁→Ω₅		Transfer m to U ²
ol	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	Ъ≠0	Modify m to M
04	Init. Storage		
06	Q ¹ ->Q ²		
10	Wait Storage	ļ	Form the logical product of (Q) and (M)
15	I₂I _e →X ₇		
15	LQX	J	
20	X1→X5		Add LQM to A
21	Exit	>	
21	Half Exit		
25	Add X ² to A ¹		
		ر	
		2-	-75

--- CONTROL DATA CORPORATION Computer Division

46 Subtract Logical Subtract the logical product of (Q) and (M)	CODE		FUNCTION	
SBI. Store the difference in A	46 SBI.	Subtract Logical	Subtract the logical product of (Q) and (M) from A_1 store the difference in A	

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 5.4 us. min., 7.4 us. avg., 9.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ -→U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Add R ¹ to U ²	ъ≠О	Modify m to M
04	Init. Storage		
06	Q ¹ -→Q ²		
10	Wait Storage		Form the logical product of (Q) and (M)
15	I ⁵ I ⁶ →X ¹		
15	LQX	J	
20	Comp. $X^1 \rightarrow X^2$	l l	Subtract LQM from A
21	Exit		
21	Half Exit		
25	Add X ² to A ¹	J	
1		ļ	

CODE 47 STL	INSTRUCTI Store Logica		Store	FUNCTION the logical product of (Q) and (A) at M
SEQ	UENCE: Write Ope	erand (H	[⁴ V ⁴)	
EXE	CUTION TIME: 4.8	3 us. mir	1., 7.2 us	a. avg., 9.6 us. max.
TIME	COMMAND	CONDI	TION	REMARKS
00	∪ ¹ ->∪ ²			Transfer m to U ²
01	Clear X ¹	•		Prepare X for use as an exchange register
04	Add R ¹ to U ²	Ъ≠0		Modify m to M
04	Init. Storage		-	
06	Q ¹ -⇒Q ²		ļ	Form the logical product of (Q) and (A)
07	A ¹ →X ¹			
07	LQX			
07	Wait Storage			
08	Enable Full Write			
15	X ¹ →Z ¹ Z ²			Store LQA at M
15	Exit			
15	Half Exit			
	1			

----- CONTROL DATA CORPORATION Computer Division

	1	1
CODE 50 ENI	INSTRUCTION Enter Index *	FUNCTION Enter the base execution address into B^{b}

SEQUENCE: Zero address (H²-- V²--)

EXECUTION TIME: 3.2 us. min., 3.0 us. ag., 3.2 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U ²
05	Clear B ^b	٦	Enter m in the designated B register
06	U ² → R ²	}	
08	R ² →B ^b		
09	Half Exit	J	
09	Exit		
* Wit	h a b designation o	f 0, this instruc	tion becomes the Pass Instruction
	•		

CODE 51 INI	INSTRUCT Increase Inc	TON lex	Add th the su	FUNCTION the base execution address to (B^b) , store tum in B^b .					
SEC	SEQUENCE: Zero Address (H ² V ²)								
EXECUTION TIME: 3.2 us. min., 3.0 us. avg., 3.2 us. max.									
TIME	COMMAND	CONDITI	ON	REMARKS					
00	U ¹ ->U ²			Transfer m to U ²					
04	Add R ¹ to U ²	ъ≠о		Modify m to M					
05	Clear B ^b		٦	Store M in B ^b					
06	U ² -→R ²		$\left \right\rangle$						
08	R ² →B ^b								
09	Half Exit								
09	Exit								

- CONTROL DATA CORPORATION Computer Division

LIU specified by the base execution address.	CODE 52 LIU	INSTRUCTION Load Index (Upper)	FUNCTION Replace (B ^b) with the upper address of the word specified by the base execution address.
--	-------------------	-----------------------------------	--

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 4.8 us min., 7.2 us avg., 9.6 us max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ² .
01	Clear X ¹		Prepare X for use as exchange register
04	Init. Storage		
10	Wait Storage		
14	Clear B ^b		Clear B^b to receive $(m)_{UA}$
15	I ⁵ I ⁶ >X ¹		
18	$X^1_{\overline{UA}} > I^2$		
20	I ² I ³ →R ¹	}	Transfer $(m)_{UA}$ to B^b
22	R ¹ -→R ²		
22	R ² →B ^b		
23	Half Exit	ر ر	
23	Exit		
i		ا 2	80

CODEINSTRUCTIONFUNCTION53Load Index (Lower)Replace (B^b) with the lower address of the wordLILspecified by the base execution address

SEQUENCE: Read Operand $(H^3 - V^3 -)$

EXECUTION TIME: 4.8 us; min., 7.2 us. avg., 9.6 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as an exchange register
04	Init. Storage		
10	Wait Storage		
14	Clear B ^b		Prepare B^b to receive (m) _{LA}
15	I₂Ie⇒X1		
16	X ¹ _{LA} → X ² _{UA}	. (Transfer (m_{LA}) to B ^b
17	X ² UA>X ¹ UA		
18	X ¹ _→I ²		
20	I²I³⇒R¹		
22	R¹→R²		
22	R ² -≫B ^b		
23	Half Exit	ر	
23	Exit		

2-81

CODE 54 ISK	INSTRUCTI Index Skip	ON	FUNCTION If (B^b) = the base execution address, skip the next instruction; if $(B^b) \neq$ the base execution address, add		
SEQ	UENCE: Zero Addr	ess (H ²	one to B V ²)	°.	
EXE	CUTION TIME: 5.	6 us. mi	n., 5.6 u	s. avg., 5.6 us. max.	
TIME	COMMAND COND		ITION	REMARKS	
00	υ¹→υ²			Transfer m to U ²	
02	$R^1 \rightarrow R^2$				
04	Part. Add R ¹ to U ²	ъ≠о		· · · · · · · · · · · · · · · · · · ·	
05	Comp. $R^2 \rightarrow R^1$			Subtract (B^{D}) from m, load the difference in R^{2} .	
05	Clear B ^b			Clear B ^b to receive modified (R)	
06	U ² >R ²				
09	Exit *	R = 0		Proceed to next instruction step if $m - (B^b) = 0$	
10	$R^1 \rightarrow R^2$	R≠O	:		
12	Reduce R ¹ to R ²	R≠O		Reduce (R) by one (this increases R ₁ by one)	
13	Comp. $R^2 \rightarrow R^1$	R≠0		Express (R) in non-complement form	
14	$R^1 \rightarrow R^2$	R≠O	٦		
14	R ² →B ^b	R≠0	}	Load (R) in B	
15	Half Exit	R≠0		Logue the sequence	
				Leave wie sequence	
¥ Or	dinarily this instr	uction i	s limited	to the upper instruction position.	

CONTROL DATA CORPORATION -Computer Division

CODE	INSTRUCTION	FUNCTION
55	Index Jump	If $(B^b) \neq 0$, reduce B^b by one, jump to m
IJP		If $(B^b) = 0$, continue program

SEQUENCE: Zero Address (H²-- V²--)

EXECUTION TIME: 2.8 us. min., 4.4 us. avg., 4.4 us. max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Transfer m to U ²
02	R ¹ ->R ²		$R^1 = R^2$
05	U ² -→P ¹	R≠O	Load m in P
05	Clear B ^b		Prepare B ^b to receive modified (R)
07	Jump Exit	R≠0	Leave routine, next program step located at m.
07	Exit	R = O	Leave the sequence
07	Half Exit	R = O	Tease me sednence
08	Reduce R ¹ to R ²	R≠O	Reduce (R) by one
0 8	R ² →Bp		Store modified (R)
	1 - -		

Exit

 $X^{1} \xrightarrow{u} Z^{1} Z^{2}$

11

11

-CONTROL DATA CORPORATION Computer Division

CODE 56 SIU	INSTRUCT Store Index (U	ON pper) Store (B by the b	FUNCTION ^b) in upper address of the location specified wase execution address.
SEC	QUENCE: Write	• Operand (H ⁴ V ⁴ 4.8 us. min., 7.) 2 us. avg., 9.6 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	Init. Storage		Select m
00	Wait Storage		
00	$U^1 \rightarrow U^2$		
ol	Clear X ¹		Prepare X for use an an exchange register
03	Clear U ¹	ך	
04	$U^{1} \rightarrow U^{2}$	}	Clear U ²
06	Part. Add R^1 to U^2		
06	Enable Part. Write Upper		
07	$U^2 \rightarrow X^1$		Prepare (B ^b) for transfer to upper address
08	$X^{1} X^{2}$		portion of word specified by m
09	$X^2 \rightarrow X^1$		
11	Half Exit	ر ا	

Store (B^b) at m

2-84

COD 57 SIL	E INSTRUCT Store Index	(Lower) Store (specifi	FUNCTION B ^b) in the lower address of the location ed by the base execution address
SE	QUENCE: Write O	perand ($H^{4} V^{4}$)	
EX	ECUTION TIME:	4.8 us. min., 7.	2 us. avg., 9.6 us. max.
TIME	COMMAND	CONDITION	REMARKS
00	Init. Storage		Select m
00	Wait Storage		
00	$U^1 \longrightarrow U^2$		
ol	Clear X ¹		Prepare X for use as an exchange register
03	Clear U ¹ UA	ך ן	
04	$U^1 \rightarrow U^2$	}	Clear U ²
06	Part. Add R ¹ to U	2	
06	Enable Part. Write Lower		
07	$U^2 \rightarrow X^1_{LA}$,		Transfer B ^b to lower address portion of word specified by m
11	Half Exit		
11	Exit		
11	$X^{1}_{LA} \rightarrow Z^{1}Z^{2}$		Store B ^D at m
			$P_{\rm OV} = 12/60$

CODE 60 SAU		INSTRUCT Substitute Ad (Upper)	ON dress	Replace order 15	FUNCTION the upper address of (M) with the lowest -bits of (A)
SEQ	UENCE	E: Write Ope	rand (H 4 V 4)	
EXE	ситіо	N TIME:	4.8 us.	min., 7.2	us. avg., 9.6 us. max.
TIME	0	COMMAND	COND	ITION	REMARKS
00	U1-⇒	>U ²			Transfer m to U ²
01	Clea	r X ¹			Prepare X for use as an exchange register
04	Add	R ¹ to U ²	Ъ≠0		Modify m to M
04	Init	. Storage			
07	A ¹ ->	→ X ¹			Transfer (A) to X
07	Wait	Storage			
08	Enab Writ	le Part. e Upper			
12	X ¹ IA	⇒x² _{UA}		٦	
13	x² _{ua}	⇒X¹ UA		L L	Place lowest order 15-bits of A in X ¹ and UA
15	Half	Exit			
15	Exit				
15	x ¹ U	⇒ Z ¹ Z ²			
i					

Ð

CODE 61 SAL		INSTRUCT Substitute Ac (Lower)	ION Idress	FUNCTION Replace the lower address of (M) with the lowest order 15-bits of (A)				
SEC	UENC	E: Write Open	rand (H ⁴	V ⁴)				
EXE	CUTI	ON TIME:	4.8 us.	min., 7.2	us. avg., 9.6 us. max.			
TIME		COMMAND	COND	ITION	REMARKS			
00	U ¹ -	>U ²			Transfer m to U ²			
01	Cle	ar X ¹			Prepare X for use as an exchange register			
04	Add	R ¹ to U ²	Ъ≠0		Modify m to M			
04	Ini	t. Storage						
07	A1-	→X ¹			Transfer (A) to X			
07	Wai	t Storage						
08	Enal Wri	ble Part. te Lower			Store only the lower 15-bits of (A) in storage			
15	Hal	f Exit		>				
15	Exi	t						
15	x ¹ _L	>Z¹Z²						
				J				
				2-8	87			

--- CONTROL DATA CORPORATION Computer Division

CODE 62	INSTRUCTION Input Transfer	FUNCTION Transfer (B^b) words to storage beginning at $M + (B^b - 1)$
INT	-	

SEQUENCE: Search and Transfer $(H^5 - V^5 -)$

4.8 us. min., 4.0 + 4.8r avg., 6.8 + 4.8r max. EXECUTION TIME:

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Place terminal address in U ²
ol	Clear X ¹		Prepare X for first word transfer
02	Set R ≠ 0 FF		
02	R ¹ →R ²		
04	Reduce R ¹ to R ²	ъ≠О	Determine if $R = 0$ before reduction and exit
05	R ² →R ¹		if condition exists. Prepare first storage address.
05	Set ST Not Complet FF	e R ≠ 0 + b=0	
08	Set Input Trans. Act	ST not complete	Enable input transfer of first word
09	Half Exit	ST Complete	Exit if no input transfer is to be performed
	Full Exit		
09	Clear B ^b	(Input Trans. Ready)	Prepare B^b for reduced value
09	Set Wait Storage	(Input Trans. Ready)	
09	Clear Input Transfer Act		Inhibit further input transfer
09	Input Resume		
10	Add R ¹ to U ²		Form first storage address
10	Init. Storage	(Input Trans. Ready)	

62 I	NT		
TIME	COMMAND	CONDITION	REMARKS
11	Clear X		Clear X for second and succeeding words
14	R ² -→B ^b		Store reduced value of B
14	Set R≠0 FF		Prepare to determine R=0 condition
16	U₁→U₅		Place terminal address in U ²
16	Comp. $X^1 \rightarrow X^2$		Set X to all 'l's and accept input transfer word
17	X ² -→X ¹		
17	I°>X ¹		
17	Set ST Not Complete	R≠0	Determine if $R = 0$ before reduction and exit if condition exists. Prepare second and
18	Reduce $R^1 \rightarrow R^2$		succeeding storage addresses.
19	R ² →R ¹		
20	Set Input Trans. Act	(ST Not Complete	Enable input transfer of second and) succeeding words
21	I ⁵ I ⁶ →Z ¹ Z ²		Write input word in storage
22	Clear Wait Storage		
24	Add R ¹ to U ²		Form second and succeeding storage addresses
33	Init Aux Sequence	Auxiliary Request	Enter AUX if auxiliary request exists. Halt input transfer.
29	Half Exit Full	$(b=0)+({b\neq 0\atop R=0})$ -Exi	t=l Exit if block transfer is complete t=0
	Return to time 08	on input transfer	ready.

-CONTROL DATA CORPORATION Computer Division

CODE	INSTRUCTION	FUNCTION
OUT	Output Transfer	Transfer (B^0) words from storage beginning at $m + (B^0 - 1)$

SEQUENCE: Search and Transfer (H⁵-- V⁵--)

EXECUTION TIME: 4.8 us min., 4.0 = 4.8 avg., 6.8 + 4.8 max.

TIME	COMMAND	CONDITION	REMARKS
00	Ω 1 →Ω ₅		Place terminal address in U ²
01	Clear X ¹		Prepare X for first word transfer
02	Set $R \neq 0$ FF		
02	$R^1 \rightarrow R^2$		
04	Reduce R ¹ to R ²	Ъ≠О	Determine if R=0 before reduction
05	$R^2 \rightarrow R^1$		and exit if condition exists. Prepare
05	Set ST Not Complete	(R≠0) + (b=0)	first storage address.
09	Full Exit Half	ST Complete	Exit if no output transfer is to be performed
09	Set Wait Storage		
09	Clear B ^b		Prepare B ^b for reduced value
10	Add R ¹ to U ²		Form first storage address
10	Init. Storage		Read output word from storage
11	Clear X ¹		Prepare X for second and succeeding word transfers
14	$R^2 \rightarrow B^b$		Store reduced value of B
14	Set R / O FF		Determine if R=0
16	U ¹ →U ²		Place terminal address in U ²

63	OUT		
TIME	COMMAND	CONDITION	REMARKS
17	Set ST Not Complete	R≠O	
18	Reduce R ¹ to R ²		Prepare second and succeeding storage addresses
19	$R^2 \rightarrow R^1$		
21	Set Output Trans-Active		Enable output transfer of word
21	I ⁵ I ⁶ →X ¹		Place output word in X
22	$X^1 \rightarrow X^2$		Position output word in X
23	X ² →0 ⁴		Place output word in 0 ⁴
23	Clear Output Trans-Active		Stop transfer operation
24	Add R ¹ to U ²		
24	Return to time 08	(R≠O) (Ъ≠O)	Re-enter loop to transfer second and succeeding words
25	Output Ready		
29	Half Exit Full	$(b \neq 0) + (b \neq 0)^{-E_2}_{R=0}$	it=1 Exit to next instruction when block $tit=0$ transfer is complete
31	Complement R ¹ →R ²		Prepare quantity in R (to be substituted for B^{b}) to allow for re-entrance to search and
32	Clear B ^b		transfer after auxiliary operation is complete
32	$R^1 \rightarrow R^2$		
33	Init. AUX	Buffer Request	Enter AUX for auxiliary operation
34	Reduce R ¹ to R ²		Increase value of R by 1
35	$R^2 \rightarrow R^1$		Prepare R for second reduce operation
36	Reduce R ¹ to R ²		Increase value of R by 1
37	Complement R ² ->R ¹		Normalize R
3 8	$R^1 \rightarrow R^2$		Prepare R for transmission to B ^b
38	R ² →Bp	J	Substitute (R) for B ^b

-control data corporation Computer Division

SEQUENCE: Search and Transfer $(H^{5}V^{5})$ EXECUTION TIME:3.6 us min., 4.0 + 3.6r avg., 6.8 + 3.6r max.TIMECOMMANDCONDITIONREMARKS00 $U^{1} \rightarrow U^{2}$ Place terminal address in U^{2} Prepare X for first search word01Clear X ¹ Prepare X for first search word02Set R#0 FFPrepare If R=0, exit if condition exists. Prepare first storage address.04Reduce R ¹ to R ² $b \neq 0$ Determine if R=0, exit if condition exists. Prepare first storage address.05Set ST Not Complete $(R\neq 0) + (b=0)$ Exit if no search is to be made09Half Full ExitST Complete $(R=0)$ Exit if no search is to be made10Add R ¹ to U ² Form first storage address10Init. StorageRead word to be searched11Clear X ¹ Prepare X for second and succeeding words14R ² \rightarrow B ⁰ Store reduced value of B ⁰ 14Set R#0 FFDetermine if R=0 before it is reduced16 $U^{1} \rightarrow U^{2}$ Intermine if R=0 before it is reduced	CODE 64 EQS	INSTRUCT Equality Sear	ION ch	Search (M) = A	FUNCTION (B^b) words beginning with $m + (B^b - 1)$ for A. Exit.
EXECUTION TIME:3.6 us min., 4.0 + 3.6r avg., $6.8 + 3.6r$ max.TIMECOMMANDCONDITIONREMARKS00 $U^{1} \rightarrow U^{2}$ Flace terminal address in U^{2} Flace terminal address in U^{2} 01Clear X^{1} Frepare X for first search word02Set R#0 FFFF02 $R^{1} \rightarrow R^{2}$ Determine if R=0, exit if condition exists.04Reduce R^{1} to R^{2}b $\neq 0$ Determine if R=0, exit if condition exists.05 $R^{2} \rightarrow R^{1}$ Determine if R=0, exit if condition exists.05Set ST Not Complete $(R \neq 0) + (b=0)$ CompleteExit if no search is to be made09Half Full ExitST Complete $(R=0)$ Exit if no search is to be made09Set Wait StoragePrepare B ^b for reduced value10Add R ¹ to U ² Form first storage address10Init. StorageRead word to be searched11Clear X ¹ Prepare X for second and succeeding words14 $R^{2} \rightarrow B^{b}$ Store reduced value of B ^b 14Set R $\neq 0$ FFDetermine if R=0 before it is reduced16 $U^{1} \rightarrow U^{2}$ Flace terminal address in U ²	SEC	UENCE: Search and	Transfer	(H ⁵	V ⁵)
TIMECOMMANDCONDITIONREMARKS00 $U^1 \rightarrow U^2$ Flace terminal address in U^2 01Clear X^1 Prepare X for first search word02Set $R \neq 0$ FFPrepare X for first search word02R^1 \rightarrow R^2Determine if $R=0$, exit if condition exists. Prepare first storage address.05R^2 \rightarrow R^1Determine if $R=0$, exit if condition exists. Prepare first storage address.05R^2 \rightarrow R^1Set ST Not Complete $(R \neq 0) + (b=0)$ 09Half Full ExitST Complete $(R=0)$ Exit if no search is to be made09Set Wait StoragePrepare B ^D for reduced value10Add R ¹ to U2Form first storage address10Init. StorageRead word to be searched11Clear X ¹ Prepare X for second and succeeding words14 $R^2 \rightarrow B^D$ Store reduced value of B^D 14Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced16 $U^1 \rightarrow U^2$ Flace terminal address in U^2	EXE	CUTION TIME:	3.6 us min.	, 4.0 4	+ 3.6r avg., 6.8 + 3.6r max.
00 $U^1 \rightarrow U^2$ Flace terminal address in U^2 01 Clear X^1 Frepare X for first search word 02 Set $R \neq 0$ FFFrepare X for first search word 02 $R^1 \rightarrow R^2$ Determine if $R=0$, exit if condition exists. Prepare first storage address. 04 Reduce R^1 to R^2 $b \neq 0$ Determine if $R=0$, exit if condition exists. Prepare first storage address. 05 $R^2 \rightarrow R^1$ Determine if $R=0$, exit if condition exists. Prepare first storage address. 06 $R^2 \rightarrow R^1$ Exit if no search is to be made 07 Half Full ExitST Complete ($R=0$)Exit if no search is to be made 09 Set Wait Storage Of Clear B^b Prepare B^b for reduced value 06 Lear X^1 Form first storage address 10 Init. StorageRead word to be searched 11 Clear X^1 Prepare X for second and succeeding words 14 $R^2 \rightarrow B^b$ Store reduced value of B^b 14 Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced 16 $U^1 \rightarrow U^2$ Frepare I free terminal address in U^2	TIME	COMMAND	CONDITIC	DN	REMARKS
01Clear X^1 Prepare X for first search word02Set $R \neq 0$ FFPrepare X for first search word02 $R^1 \rightarrow R^2$ Prepare X for first search word04Reduce R^1 to R^2 $b \neq 0$ Determine if $R=0$, exit if condition exists. Prepare first storage address.05 $R^2 \rightarrow R^1$ Prepare first storage address.05Set ST Not Complete $(R \neq 0) + (b=0)$ 09Half ExitST Complete $(R=0)$ Exit if no search is to be made09Set Wait StoragePrepare B^b for reduced value10Add R^1 to U^2 Form first storage address10Init. StorageRead word to be searched11Clear X^1 Prepare X for second and succeeding words14 $R^2 \rightarrow B^b$ Store reduced value of B^b 14Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced16 $U^1 \rightarrow U^2$ Init address in U^2	00	U ¹ →U ²			Place terminal address in U ²
02 Set R $\neq 0$ FFImage: Set R = 1 and	01	Clear X ¹			Prepare X for first search word
02 $\mathbb{R}^1 \rightarrow \mathbb{R}^2$ $\mathbb{P} \neq 0$ Determine if $\mathbb{R}=0$, exit if condition exists. Prepare first storage address. 05 $\mathbb{R}^2 \rightarrow \mathbb{R}^1$ $\mathbb{P} \neq 0$ Determine if $\mathbb{R}=0$, exit if condition exists. Prepare first storage address. 05 $\mathbb{R}^2 \rightarrow \mathbb{R}^1$ $\mathbb{R}^2 \rightarrow \mathbb{R}^1$ $\mathbb{R}^2 \rightarrow \mathbb{R}^1$ 05 Set ST Not Complete $(\mathbb{R} \neq 0) + (b=0)$ $\mathbb{R}^2 \rightarrow \mathbb{R}^1$ 09 Half ExitST Complete $(\mathbb{R}=0)$ Exit if no search is to be made 09 Set Wait Storage \mathbb{Q}^1 \mathbb{P} repare \mathbb{B}^b for reduced value 10 Add \mathbb{R}^1 to \mathbb{U}^2 \mathbb{R}^2 Form first storage address 10 Init. Storage \mathbb{R}^2 \mathbb{R}^2 11 Clear X^1 \mathbb{R}^2 \mathbb{R}^2 14 Set $\mathbb{R} \neq 0$ FF \mathbb{P} Determine if $\mathbb{R}=0$ before it is reduced 14 $\mathbb{V}^1 \rightarrow \mathbb{V}^2$ \mathbb{P}	02	Set R≠0 FF			
04 Reduce R^1 to R^2 $b \neq 0$ Determine if $R=0$, exit if condition exists. Frepare first storage address. 05 $R^2 \rightarrow R^1$ $R^2 \rightarrow R^1$ 05 Set ST Not Complete $(R \neq 0) + (b=0)$ 09 Half ExitST Complete $(R=0)$ Exit if no search is to be made 09 Set Wait StoragePrepare B^b for reduced value 09 Set Wait StorageForm first storage address 09 Clear B^b Prepare B^b for reduced value 10 Add R^1 to U^2 Form first storage address 10 Init. StorageRead word to be searched 11 Clear X^1 Prepare X for second and succeeding words 14 Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced 14 Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced 16 $U^1 \rightarrow U^2$ Form first storage in U^2	02	$R^1 \rightarrow R^2$			
05 $\mathbb{R}^2 \rightarrow \mathbb{R}^1$ ($\mathbb{R} \neq 0$) + (b=0)05Set ST Not Complete($\mathbb{R} \neq 0$) + (b=0)09Half Full ExitST Complete ($\mathbb{R}=0$)Exit if no search is to be made09Set Wait StoragePrepare \mathbb{B}^b for reduced value09Clear \mathbb{B}^b Prepare \mathbb{B}^b for reduced value10Add \mathbb{R}^1 to \mathbb{U}^2 Form first storage address10Init. StorageRead word to be searched11Clear X^1 Prepare X for second and succeeding words14 $\mathbb{R}^2 \rightarrow \mathbb{B}^b$ Store reduced value of \mathbb{B}^b 14Set $\mathbb{R} \neq 0$ FFDetermine if $\mathbb{R}=0$ before it is reduced16 $\mathbb{U}^1 \rightarrow \mathbb{U}^2$ Init address in \mathbb{U}^2	04	Reduce R ¹ to R ²	ъ≠о		Determine if R=O, exit if condition exists. Prepare first storage address.
05Set ST Not Complete $(R\neq 0) + (b=0)$ 09Half ExitST Complete $(R=0)$ Exit if no search is to be made09Set Wait StoragePrepare B ^b for reduced value09Clear B ^b Prepare B ^b for reduced value10Add R ¹ to U ² Form first storage address10Init. StorageRead word to be searched11Clear X ¹ Prepare X for second and succeeding words14Set R $\neq 0$ FFDetermine if R=0 before it is reduced16U ¹ ->U ² Face terminal address in U ²	05	$R^2 \rightarrow R^1$			
09 Half ExitST Complete (R=0)Exit if no search is to be made 09 Set Wait Storage $ 09$ Clear B ^b Prepare B ^b for reduced value 10 Add R ¹ to U ² Form first storage address 10 Init. StorageRead word to be searched 11 Clear X ¹ Prepare X for second and succeeding words 14 R ² \rightarrow B ^b Store reduced value of B ^b 14 Set R≠0 FFDetermine if R=0 before it is reduced 16 U ¹ \rightarrow U ² Formal address in U ²	05	Set ST Not Complete	(R / 0) + (b=0)	
09Set Wait StoragePrepare B^b for reduced value09Clear B^b Prepare B^b for reduced value10Add R^1 to U^2 Form first storage address10Init. StorageRead word to be searched11Clear X^1 Prepare X for second and succeeding words14 $R^2 \rightarrow B^b$ Store reduced value of B^b 14Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced16 $U^1 \rightarrow U^2$ Prace terminal address in U^2	09	Half Full Exit	ST Comple (R=0)	te	Exit if no search is to be made
09 Clear B^b Prepare B^b for reduced value 10 Add R^1 to U^2 Form first storage address 10 Init. StorageRead word to be searched 11 Clear X^1 Prepare X for second and succeeding words 14 $R^2 \rightarrow B^b$ Store reduced value of B^b 14 Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced 16 $U^1 \rightarrow U^2$ Place terminal address in U^2	09	Set Wait Storage			
10Add \mathbb{R}^1 to \mathbb{U}^2 Form first storage address10Init. StorageRead word to be searched11Clear X^1 Prepare X for second and succeeding words14 $\mathbb{R}^2 \rightarrow \mathbb{B}^b$ Store reduced value of \mathbb{B}^b 14Set $\mathbb{R} \neq 0$ FFDetermine if $\mathbb{R}=0$ before it is reduced16 $\mathbb{U}^1 \rightarrow \mathbb{U}^2$ Place terminal address in \mathbb{U}^2	09	Clear B ^b			Prepare B ^b for reduced value
10Init. StorageRead word to be searched11Clear X^1 Prepare X for second and succeeding words14 $R^2 \rightarrow B^b$ Store reduced value of B^b 14Set R \neq 0 FFDetermine if R=0 before it is reduced16 $U^1 \rightarrow U^2$ Place terminal address in U^2	10	Add R ¹ to U ²			Form first storage address
11Clear X^1 Prepare X for second and succeeding words14 $R^2 \rightarrow B^b$ Store reduced value of B^b 14Set $R \neq 0$ FFDetermine if $R=0$ before it is reduced16 $U^1 \rightarrow U^2$ Place terminal address in U^2	10	Init. Storage			Read word to be searched
14 $\mathbb{R}^2 \rightarrow \mathbb{B}^b$ Store reduced value of \mathbb{B}^b 14Set $\mathbb{R} \neq 0$ FFDetermine if $\mathbb{R}=0$ before it is reduced16 $U^1 \rightarrow U^2$ Place terminal address in U^2	11	Clear X ¹			Prepare X for second and succeeding words
14Set $R \neq 0$ FFDetermine if R=0 before it is reduced16 $U^1 \rightarrow U^2$ Place terminal address in U^2	14	$R^2 \rightarrow B^b$			Store reduced value of B ^b
16 $U^1 \rightarrow U^2$ Place terminal address in U^2	14	Set R≠0 FF			Determine if R=0 before it is reduced
	16	U ¹ ->U ²			Place terminal address in U ²

64	EQS		r
TIME	COMMAND	CONDITION	REMARKS
17	Set ST Not Complete	R≠O	
18	Reduce R ¹ R ²		Prepare second and succeeding storage address
19	$R^2 \rightarrow R^1$		
21	I⁵I ⁶ →X ¹		Place word to be searched in X
22	Comp. $X^1 \longrightarrow X^2$		Prepare word from storage for comparison with A
24	Add R^1 to U^2		Form second and succeeding storage addresses
29	Full Exit *	X = A	Search condition satisfied. Skip next instruction.
29	Half Exit	(b=0) (R=0 at T=17) + (b=0)	Search block exhausted
30	Return to time 08	(R≠O) (Ъ≠O)	Return to loop to compare second and succeeding words
33	Init. AUX.	Auxiliary Request	Terminate search, initiate auxiliary operation.
	* Ordinarily this	instruction is us	ed in upper position.
		2-	93 Rev. 12/60

-CONTROL DATA CORPORATION Computer Division

CODE 65 THS	INSTRUCT Threshold Searc	ION ch Search ((M) (A):	FUNCTION B ^b) words, beginning with $m + (B^{b} -1)$. Exit
SEG	UENCE: Search and	d Transfer (H ⁵	V ⁵)
EXE	CUTION TIME:	3.6 us min., 4.0 +	- 3.6r avg., 6.8 + 3.6r max.
TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Place terminal address in U ²
01	Clear X ¹		Prepare X for first search word
02	Set R / 0 FF		
02	$R^1 \rightarrow R^2$		
04	Reduce R ¹ to R ²	Ъ≠О	Determine if R=0, exit if condition exists. Prepare first storage address.
05	$R^2 \rightarrow R^1$		
05	Set ST Not Complete	(R≠0)+(b=0)	
09	Half Exit Full	ST Complete (R≠0)	Exit if no search is to be made
09	Set Wait Storage		
09	Clear B ^b		Prepare B ^b for reduced value
10	Add R ¹ to U ²		Form first storage address
10	Init. Storage		Read word to be searched
11	Clear X ¹		Prepare X for second and succeeding words
14	R ² >B ^b		Store reduced value of B ^b
14	Set R≠0 FF		Determine if R=O before it is reduced
16	U ¹ →U ²		Place terminal address in U ²
	1	l l	l

65	THS		
TIME	COMMAND	CONDITION	REMARKS
17	Set ST Not Complete	R ≠ O	
18	Reduce R ¹ to R ²		Prepare second and succeeding storage address
19	$R^2 \rightarrow R^1$		
21	I ⁵ I ⁶ →X ¹		Place word to be searched in X
22	$\begin{array}{c} \text{Complement} \\ X^1 \rightarrow X^2 \end{array}$		Prepare word from storage for comparison with A
24	Add R ¹ to U ²		Form second and succeeding storage addresses
29	Full Exit *	A < X	Search condition satisfied. Skip next instruction.
29	Half Exit	(b≠0)(R=0)+(b=0)	Search block exhausted
30	Return to time 08	(R≠0) (b≠0)	Return to loop to compare second and succeeding words
33	Init. AUX.	Auxiliary Request	Terminate search, initiate auxiliary operation.
	* Ordinarily this	instruction is us	ed in upper position.
i			
			х.

- CONTROL DATA CORPORATION Computer Division

CODE 66 MEQ	INSTRUCTION Masked Equality	FUNCTION Search (B^b) words, beginning with M + (B^b - 1)
MEQ		L(Q)(M) = (A): Exit

SEQUENCE: Search and Transfer (H⁵-- V⁵--)

EXECUTION TIME: 3.6 us min., 4.0 + 3.6r avg., 6.8 + 3.6r max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ →U ²		Place terminal address in U ²
01	Clear X ¹		Prepare X for first search word
02	Set R≠0 FF		
02	R ¹ -→R ²		
04	Reduce R ¹ to R ²	Ъ≠О	Determine if R=O, exit if condition exists
05	R ² →R ¹		Prepare first storage address.
05	Set ST Not Complete	(R ≠ 0)+(b=0)	
08	Q ¹ →Q ²	66	Position mask in Q
09	Half Exit Full	ST Complete (R=0)	Exit if no search is to be made
09	Set Wait Storage		
09	Clear B ^b		Prepare B ^b for reduced value
10	Add R ¹ to U ²		Form first storage address
10	Init. Storage		Read word to be searched
11	Clear X ¹		Prepare X for second and succeeding words
14	R ² →B ^b		Store reduced value of B ^b
14	Set R≠0 FF		Determine if R=0 before it is reduced
16	U ¹ →U ²		Place terminal address in U ²

66 MEQ				
TIME	COMMAND	CONDITION	REMARKS	
17	Set ST Not Complete	R ≠ O		
18	Reduce $R^1 \longrightarrow R^2$		Prepare second and succeeding storage address	
19	$R^2 \rightarrow R^1$			
21	I₂Ie→X _J		Place word to be searched in X	
21	LQX		Logical add Q + X	
24	Add R ¹ to U ²		Form second and succeeding storage addresses	
24	Comp. X ¹ →X ²		Prepare masked word for comparison with A	
29	Full Exit #	X > A	Search condition satisfied, skip next instruction.	
29	Half Exit	(b≠0)(R=0)+(b=0)	Search block exhausted	
30	Return to time O	β (R ≠ 0)(Ъ≠́0)	Return to loop to compare second and succeeding words	
33	Initiate AUX	Auxiliary Request	Terminate search, initiate auxiliary operation.	
	# Ordinarily th	is instruction is	limited to the upper position.	
CODE 67 MTH	INSTRUCT Masked Thresh	ON DID	Search L(Q)(M)	FUNCTION (B ^b) words, beginning with M + (B ^b - 1) (A): Exit
-------------------	---	--------------------------	-----------------------	---
SEC	UENCE: Search a	nd Transf	'er (H ⁵⁰⁰	v ⁵⁰⁰)
EXE	CUTION TIME:	3.6 us m	in., 4.0	+ 3.6r avg., 6.8 + 3.6r max.
TIME	COMMAND	CONDITION		REMARKS
00	U ¹ ->U ²			Place terminal address in U ²
01	Clear X ¹			Prepare X for first search word
02	Set R≠0 FF			
02	$R^1 \rightarrow R^2$			
04	Reduce R ¹ to R ²	ъ≠о		Determine if R=0, exit if condition exists. Prepare first storage address.
05	R ² ->R ¹			
05	Set ST Not Complete	(R ≠ 0) +	(b=0)	
08	Q ¹ ->Q ²		,	Position mask in Q
09	Half Exit Full	ST Com (R=O)	plete	Exit if no search is to be made
09	Set Wait Storage			
09	Clear B ^b			Prepare B ^b for reduced value
10	Add R ¹ to U ²			Form first storage address
10	Init.Storage			Read word to be searched
11	Clear X ¹			Prepare X for second and succeeding words
14	R ² →B ^b			Store reduced value of B ^b
14	Set R≠0 FF			Determine if R=0 before it is reduced
16	U ¹ →U ²			Place terminal address in U ²

-CONTROL DATA CORPORATION Computer Division

67	MTH		
TIME	COMMAND	CONDITION	REMARKS
17	Set ST Not Complete	R ≠ O	
18	Reduce R ¹ to R ²		Prepare second and succeeding storage addresses
19	$R^2 \rightarrow R^1$		
21	I ⁵ I ⁶ →X ¹		Place word to be searched in X
21	LQX		Logical add Q + X
24	Add R ¹ to U ²		Form second and succeeding storage addresses
24	Comp. $X^1 \rightarrow X^2$		Prepare masked word for comparison with A
29	Half Exit	$(b \neq 0)(R=0)+(b=0)$	Search block exhausted
29	Full Exit *	X > A	Search condition satisfied; skip next instruction.
30	Return to time 08	(R ≠ 0)(b≠ 0)	Return to loop to compare second and succeeding words
33	Initiate AUX	Auxiliary Request	Terminate search, initiate auxiliary operation.
Э	Ordinarily this	instruction is li	mited to the upper position.

	1	
CODE 70 RAD	INSTRUCTION Replace Add	FUNCTION Store the sum of (M) and (A) at M and in A.

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 10.2 us min., 13.2 us avg., 16.0 us max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ -→U ²		Transfer m to U ²
01	Clear X ¹		Replace X for use as exchange register
04	Add R ¹ to U ²	ъ≠О	Modify m to M
04	Init. Storage		
10	Wait Storage		
15	I ⁵ I ⁶ →X ¹		
16	X¹>X²		
21	Clear X ¹		Add (M) and (A), store the sum in memory. The sum which is generated in A is not destroyed in
21	Add X ² to A ¹		A.
25	A ¹ >X ¹		
28	Init. Storage		
19	Wait Storage		
47	X¹->Z¹Z²		
47	Half Exit		
47	Exit		

.

- CONTROL DATA CORPORATION Computer Division

CODE	INSTRUCTION	FUNCTION
71	Replace Subtract	Store the difference of (M); and A at M
RSB	<u> </u>	and in A

SEQUENCE: Read Operand (H³-- V³--)

EXECUTION TIME: 10.2 us min., 13.2 us avg., 16.0 us max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ —>U ²		Transfer m to U ²
01	Clear X ¹		Prepare X for use as exchange register.
04	Add R ¹ to U ²	Ъ≠0	Modify m to M
04	Init. Storage		
06	Comp. $X^1 \rightarrow X^2$		
07	Part.Add X ² to A ¹		
10	Wait Storage		Subtract (A) from (M), by complementing (A) and
15	1 ⁵ 1 ⁶ ->X ¹		adding. Store the difference at M. The diff- erence in A is not destroyed.
16	X¹→X²		
21	Clear X ¹		
21	Add X ² to A ¹		
25	A ¹ —>X ¹		
28	Init. Storage (Write)		
19	Wait Storage		
47	$X^1 \rightarrow Z^1 Z^2$		
47	Half Exit	ر	
47	Exit		
	1	2-	l 100

CODE 72 RAO]	INSTRUCTI Replace Add On	ON e	Store th	FUNCTION ne sum of $(M)_1$ and one at M and in A.
SEQUENCE: Read Operand (H ³ V ³)					
EXE	CUTIO	N TIME: 10.2	us min.	, 13.2 us	avg., 16.0 us max.
TIME	c	COMMAND	COND	ITION	REMARKS
00	U¹->	•U ²			Transfer m to U ²
01	Clear	r X ¹	×		Clear X to all zeros
03	Set >	K ² to one			
04	Add F	R ¹ to U ²	ъ≠0		Modify m to M
04	Init.	. Storage			
06	x¹->	»X ²			
06	Clear	r A ¹		>	Place a 'l' in A
10	Wait	Storage			
11	Part.	. Add X ² to A ¹		J	
13	Clear	r X ¹		٦	
15	I ⁵ I ⁶⁻	->X1			
16	X1->	x²			
19	Wait	Storage			
21	Clear	x X1		>	Add (M) to the 'l' in A; store the sum at M.
21	Add X	(² to A ¹			The sum in A is not destroyed.
25	A¹ →	Xl			
28	Init. (Writ	Storage :e)			
47	x₁→	Z ¹ Z ²			
47	Half	Exit		ر	
47	Exit				

-CONTROL DATA CORPORATION Computer Division

	[
CODE 73 RSO	INSTRUCTION Replace Subtract One	FUNCTION Store (M) _i less one at M and in A.

SEQUENCE: Read Operand $(H^3 - V^3 -)$

EXECUTION TIME: 10.2 us min., 13.2 us avg., 16.0 us max.

TIME	COMMAND	CONDITION	REMARKS
00	U ¹ ->U ²		Transfer m to U ²
01	Clear X ¹		Clear X to all zeros
03	Set X ² to one		
04	Add R ¹ to U ²	ъ≠0	Modify m to M
04	Init. Storage		
06	$\operatorname{Comp}_{\bullet} X^1 \longrightarrow X^2$		
06	Clear A ¹	>	Place a 'complement 1' in A
10	Wait Storage		
11	Part. Add X^2 to A^1		
13	Clear X ¹		
15	I ⁵ I ⁶ →X ¹		
16	X¹>X²		
19	Wait Storage		
21	Clear X ¹	>	Subtract a 'l' from (M) _i by adding complement
21	Add X ² to A ¹	J	1. The difference in A is not destroyed.
25	A ¹ →X ¹		
28	Init. Storage (Write)	<pre></pre>	Store (M) _i less one at M
47	X ¹ →Z ¹ Z ²		
47	Half Exit	· J	
47	Exit		

CODE	INSTRUCTION	FUNCTION
EXF 0 or 7	74.0 or 74.7	Create or Sense Specific Conditions
		within External Equipments

SEQUENCE: External Function

EXECUTION TIME:

TIME	COMMAND	CONDITION	REMARKS
00	$U^1 \rightarrow U^2$		Transfer m to U ²
Ol	Clear X ¹		Prepare X for external function code
Ol	b to Aux Ref Desig		Prepare gating conditions for commands
03	Extend U ² in X		Place external function code in X
04	X 1 →X2	74.0 or 74.7	Place external function code in 0°
05	Set Select FF	74.0	Set external function counter to time
05	Set Sense FF	74.7	
24	Function or sense Ready		
63	Half Full		Exit to next instruction
		2-	103 Rev. 12/60

------ CONTROL DATA CORPORATION Computer Division

CODE	INSTRUCTION	FUNCTION
EXF	74.1 - 74.6	Activate Buffer Channel
-74		

SEQUENCE: External Function

EXECUTION TIME:

COMMAND	CONDITION	REMARKS
U ¹ ->U ²		Transfer m to U ²
Clear X ¹		Prepare X for initial address
Set f=74		Prepare gating conditions for
b to Aux Ref Designator		external function commends
P ² -→P ¹	74.1 - 74.6	Advance P to next instruction address
Initiate Storage	74.1 - 74.6	
U²-→X¹		Place initial address in X
Set Wait Storage	74.1 - 74.6	
Comp. Exit FF	74.1 - 74.6	Prepare proper exit condition to next instruction
x¹ _⊥ →x² _U	Not Adv Clk	Position initial address in V ¹
X ² >X ¹	Not Adv Clk	Position initial address in x U
X¹>I²		Send initial address to I ²
I ⁵ I ⁶ -→X ¹		
$X^{1}_{L} \rightarrow X^{2}_{U}$	74.1 - 74.6	Position terminal address in X^1_U
X²-→X¹	74.1 - 74.6	
Clear R ¹		Prepare R register
	COMMAND $U^{1} \rightarrow U^{2}$ Clear X ¹ Set f=74 b to Aux Ref Designator $P^{2} \rightarrow P^{1}$ Initiate Storage $U^{2} \rightarrow X^{1}$ Set Wait Storage Comp. Exit FF $X^{1} \rightarrow X^{2}U$ $X^{2} \rightarrow X^{1}$ $X^{1} \rightarrow I^{2}$ $I^{5}I^{6} \rightarrow X^{1}$ $X^{1}L \rightarrow X^{2}U$ $X^{2} \rightarrow X^{1}$ Clear R ¹	COMMANDCONDITION $U^1 \rightarrow U^2$

74.1 -	74.6		P
TIME	COMMAND	CONDITION	REMARKS
18	I²I ³ →R ¹		Place initial address in R
20	Part. Add R ¹ to U	2	Toggles initial and terminal addresses
22	U ² →R ²		Place comparison of initial and terminal address in R
23	Half Jump Exit	74.1 - 74.6	Exit to next instruction
23	Set Clear R≠0 FF	R≢0 R = 0	
25	Set Buffer Clear Act FF	R ≠ 0 R = 0	Prepare buffer request

- CONTROL DATA CORPORATION Computer Division

CODE 75	INSTRUCTI Selective Jum	ON ₽ [∽]	FUNCTION Cause a jump to occur in the program, the jump is condi- tioned by the state of b and the setting of the STOP keys	
SEQ EXE	UENCE: b = 0-31 b = 4-71 CUTION TIME: 3.	Normal J Write Op O us min	erand	avg., 11.6 us max.
TIME	COMMAND	COND	ITION	REMARKS
Normal	Jump			
00	U ¹ →U ²			
03	Jump Exit	Jump S	atisfied	
03	Full Exit	Jump N	ot Satisf	led
03	Half Exit	Jump N	ot Satisf:	led
03	U ² -⇒P ¹	Jump S	atisfied	Insert next instruction address into P
Write	Operand			
00	U ¹ ->U ²			
04	Init. Storage			
06	Adv. P^1 to P^2	Jump S	Satisfied	Determine next address of current routine (P_i)
07	Wait Storage			
07	Full Exit	Jump N	lot Satisf	led
07	Half Exit			
08	₽¹-→X²LA			Position P_i in X^2_{LA} for transfer to X^1_{UA}
08	U ² -→P ¹	Jump S	Satisfied	Transfer m to U^2 to select next instruction word
08	Set Return Jump FF			Conditions later commands
08	Enable Part. Write Upper	-		

TIME	COMMAND	CONDITION	REMARKS
09	$X^2 \rightarrow X^1$	٦	
11	Clear U ¹		
12	$X^1 \rightarrow X^2$	}	Place P_{i} in X^{1}_{IIA}
13	$X^{2} \xrightarrow{II} X^{1} \xrightarrow{II}$		1 0
15	I ⁵ I ⁶ >U ¹	ر	Transfer next instruction to U ¹
15	Half Exit		
15	$X^{1} \xrightarrow{u} Z^{1} Z^{2}$		Write return address (P _i) into storage

CODE 76	INSTRUCT Selective Stop	ION p Cause a s computer	FUNCTION stop to occur in the program, the action of the when the program is resumed is controlled by
$\begin{array}{rcl} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$		the condi the conso = 0-3 Normal Jump = 4-7 Write Operan 3.0 us min., 7.2 u	tion of b and the setting of the STOP keys on ble. nd ns avg., 11.6 us max.
TIME	COMMAND	CONDITION	REMARKS
01	Set Stop II FF	b = 0,4 b = 1-3 b = 5-7	With Stop Key 1-3 Set With Stop Key 1-3 Set
00	U ¹ >U ²		
01	Stop operation to await manual intervention	Stop II-FF=1	
	Operator reinitiates instruction wit and Stop II FF is cleared at Time 09		h a start or step pulse (RNI Sequence)
	Normal Jump Sequend	e	Normal Jump
03	Jump Exit		
03	∩ ₅ →b ₇		Place next instruction address in P
	Write Operand Seque	nce	Return Jump
04	Init. Storage		
06	Adv. P ¹ to P ²		Determine next address of current routine (P _i)
07	Wait Storage		
08	U ² -⇒P ¹		Transfer m to P to select next instruction word
08	P ¹ →X ² L		
08	Enable Part. Write Upper		
ι.			
		·	·

76			
TIME	COMMAND	CONDITION	REMARKS
08	Set Return Jump FF		Conditions later commands
09	x ₅ →x ₁		Set $X^1 = X^2$
11	Clear U ¹	_	Prepare U ¹ for next instruction
12	$X^{1} X^{2} UA$	}	Store P.
13	x ² U >x ¹ U		
15	$X^1 \longrightarrow Z^1 Z^2$	J	
15	I ⁵ I ⁶ →U ¹		Transfer next instruction to U ¹
15	Half Exit		

.

----- CONTROL DATA CORPORATION Computer Division

CODE	INSTRUCTION Interrupt	FUNCTION Halt main computer program for recognition of action demand by an external equipment
		demand by an external equipment.

SEQUENCE:AUX (INTERRUPT)

EXECUTION TIME: 3.2 usec.

TIME	COMMAND	CONDITION	REMARKS
00	Initiate Storage	· · · · · · · · · · · · · · · · · · ·	Enable storage reference
01	Clear Trans. Act. FF		Computer will not recognize transfers
03	Wait Storage		Enable storage reference
04	Enable Partial Write Upper		Delay writing content of P in upper portion of 00007 until interrupt control word is in $I^{5}I^{6}$.
04	P ¹ →X ² ,		
04	Interrupt Exit		Prepare proper exit from sequence
05	Set Interrupt Lockout		Exclude recognition of further interrupt signals
05	Clear U ¹		Prepare U for interrupt control word
06	Set P to 00007		Set P to interrupt control word address
07	X ² →X ¹		Move contents of P to X
08	$X^{1} \longrightarrow X^{2}$		
09	$X^2 \rightarrow X^1$		Position P in X preparatory to storage in upper portion of 00007 .
11	I ⁵ I ⁶ →U ¹		Take interrupt control word from storage
11	$X^1 \rightarrow Z^1 Z^2$		Store P in upper address portion of 00007
1 5	Half Exit		Exit to first instruction of interrupt routine
			Poy 12/60

CODE

INSTRUCTION Advance Clock

FUNCTION Advance real time count which is retained in special storage address 00000.

AUX (ADVANCE CLOCK) SEQUENCE:

8.8 usec. EXECUTION TIME:

TIME	COMMAND	CONDITION	REMARKS
00	Init. Storage		Prepare to read control word 00000 from storage
01	Clear Trans. Act. FF		Computer will not recognize transfer
01	Rank 1 Scanner to Aux. Ref. Desig.		
02	Set S ¹ to 0		Prepare storage to read special address
03	Wait Storage		
05	Set X ² to 1		Prepare the increment to clock value
05	Clear X ¹		Prepare X for unincremented clock value
05	Clear R ¹		
06	X ¹ —>X ²		Position clock increment preparatory to storage
06	$Q^1 \rightarrow Q^2$		Store contents of Q from previous instruction
07	$A^2 \rightarrow Q^1$		Store contents of A from previous instruction
07	Clear A ¹		Prepare A for advance clock operation
11	Part. Add X ² to A ¹		Set lowest bit of A to 'l'
11	I ⁵ I ⁶ →X ¹		Position unincremented clock value in X
12	X₁→X5		Place unincremented clock value in both ranks
13	Start Scanner		or x
17	Clear X ¹		Clear one rank of X
17	Add X^2 to A^1		Add unincremented clock value to increment
19	A₁→X₁		Prepare incremented clock value for storage
20	Init. Storage		Prepare to write incremented clock value in
20	Wait Storage		S NOT ORC

-

- CONTROL DATA CORPORATION Computer Division

Adv. (lk		
	COMMAND	CONDITION	REMARKS
20	Clear AUX REQ. FF		Computer can recognize next auxiliary request
21	Q ² -→A ¹	٦	
22	Q ¹ -⇒Q ²		Restore original contents of A and Q registers
23	A ² →Q ¹		
23	Q ² →A ¹		
43	Half Jump EXIT	-	Exit to next instruction in main program
			110

CODE	INSTRUCTION	FUNCTION		
	Buffer	Exchange of one input or output word via buffer channels		

SEQUENCE: AUXILIARY

EXECUTION TIME: 10.8 usec. - 17.2 usec.

TIME	COMMAND	CONDITION	REMARKS
00	Init. Storage		Prepare storage to read control word
01	Set Aux. Desig.		Set storage to control word
01	Clear Tran. Act.		Disable transfer operations
03	Wait Storage-1		
05	Clear X ¹		
05	Clear R ¹		Prepare R for determination of amended control word
07	Clear U ¹ U		Prepare U for initial address
09	Storage Resume		
11	I ⁵ I ⁶ →U ¹ U		Place initial address in U ¹
11	I ⁵ I ⁶ →X ¹		Place terminal word in X ¹
12	U ¹ —>U ²		Place initial address in U ²
´ 12	Init. Storage		Prepare storage to: read output word
17	Clear X ¹		write input word Set X to all '0's
18	Comp. X ¹ →X ²	INPUT BUF	Set X to all 'l's
19	X²-→X¹	INPUT BUF	Place 'l's-in both ranks of X
1			

- CONTROL DATA CORPORATION Computer Division

BUFFEF	2		
TIME	COMMAND	CONDITION	REMARKS
20	U ² —>R ²		Place initial address in R
20	I°→X1	INPUT BUF	Place input word in X
20	Wait Storage -2		
21	Storage Resume		
23	I ⁵ I ⁶ →X ¹	OUTPUT BUF	Place output word in X
23	Clear I ^O ->X ¹		Disable sample of input buffer lines
23	Set ADV CLK REQ		Prepare to recognize next advance clock request
24	x¹->x²	OUTPUT BUF	Place output word in both ranks of X
25	X ² ->0-		
25	Set I ¹ →0-		
25	Comp. $R^2 \rightarrow R^1$		Complement initial address
25	Clear U ¹ u	-	Prepare U ¹ for new initial address
26	$R^1 \rightarrow R^2$		Place complement of initial address in both ranks
24	Wait Storage -3		of R
28	Reduce R ¹ to R ²		
28	Init. Storage	INPUT BUF OUTPUT BUF	Prepare storage to replace control word
29	$\operatorname{Comp.} R^2 \longrightarrow R^1$		Normalize initial address
31	Set Part. Add in U ²		Prepare to write terminal address in U^2
32	U ¹ →U ²		Place initial address in U ²
33	Clear X ¹		Prepare X for control word

TIME	COMMAND	CONDITION	REMARKS
34	Add R ¹ to U ²		Place initial address in U ²
35	$U^2 \rightarrow X^1$ (With extension)		Place initial address in X
39	$X^1 \xrightarrow{L} X^2 U$		
40	$X^2 \xrightarrow{U} X^1_U$		
41	Storage Resume		
42	Clear Ready Resume FF	f ≠ 74	Prepare for recognition of next buffer request
43	$U^2 \rightarrow U^1$		Position initial address in U ¹
43	I ⁵ I ⁶ →X ¹		
43	Clear Request FF		Prepare to recognize next interrupt request
43	$X^1 \xrightarrow{U} I^2$		
44	Clear Buffer Request FF		Prepare for recognition of next buffer request
44	$X^1 X^2_U$	ζ	Position initial address in X upper
45	$X^2 \xrightarrow{U} X^1 U$	ا ک	
47	Clear R ¹		•
48	I ² →R ¹		Place initial address in R
50	Part. Add $R^1 \rightarrow U^2$		Place initial address in U
52	U ² >R ²		Compare initial and terminal addresses
53	Set R ≠ 0		Determine equality of initial and terminal addresses
53	Half Jump		Return to main program
			·

CHAPTER 3

CONSOLE INPUT-OUTPUT EQUIPMENT

Maintenance is performed on the console input-output equipments (punch, reader and typewriter) and on the control and data circuits associated with each unit. The manufacturers' manuals provide the required maintenance procedures for each unit. These manuals, which are contained in a packet furnished with the computer, are:

punch	Description,Adjustments and Lubrication Teletype Bulletin 215B Parts Catalog,Teletype Bulletin 1154B
reader	Ferranti High-Speed Tape Reader Type TR5 Technical Manual List No. E.P. 9
typewriter	Adjustment and Lubrication Procedures for Decoder and Power Unit

The section on modifications (immediately following) should also be consulted before performing maintenance.

of the Computeriter

Maintenance of the control and data circuits for these units is similar to that for circuits of the main computer.

Test routines are available for checking the operation of the console equipments.

ADDITIONAL TYPEWRITER PROCEDURES

Maintenance procedures in the manual for the decoder and power unit are to be supplemented with those listed below. It is recommended that adjustments be made on-line unless an off-line checker is available to simulate actual operating conditions.

LUBRICATION

Normally lubrication should take place after 100 hours of operation. Apply a heavy gear grease to all points where metal rubs on metal, for example, at the permutation bars where they are pulled by the arms of the rotary solenoids. Apply a light oil to all springs and pivot points.

-CONTROL DATA CORPORATION Computer Division

POWER CAM UNIT

If acceleration of power cam (Soroban diagram D-5022) is sluggish, replace accelerator spring. If cam is hanging up on anti-repeat lug or trip lug, remove the power unit from the typewriter and manually energize the magnet (TCM), watch complete cycle of operation.

TRANSLATOR BAIL ASSEMBLY

If translator bail is not setting properly, check drive crank spring; if it is worn replace it. Shock is present each time the carriage is returned. After continued use the bail assembly and translator may need readjusting. Check adjustment every 100 hours or when a malfunction occurs.

MODIFICATIONS

READER

Modifications of the reader consist chiefly of removing plugs A and B as well as the four printed circuit boards. In their stead connector J20701 and the heavy-lined circuits of figure 3-1 are installed. For detailed diagrams of the reader circuits after modification see pages 73 and 74, volume 5.

Figure 3-1. PT Reader Modifications.

PUNCH

Physical modifications of the punch consist of:

- 1) Removal of the On-Off switch The Punch Motor switch on the reader-punch control panel replaces the On-Off switch on the punch itself.
- 2) Addition of the Out-of-Tape microswitch The Out-of-Tape switch provides a means of monitoring the tape supply reel.
- 3) Removal of the chad drawer The built-in chad bin in the console replaces the chad drawer originally supplied with the punch.

Electrical modifications to the punch consist of:

- 1) The punch magnet coils are rewound to allow energizing with -15 volts instead of the -90 volts normally required.
- 2) The -15 volt and the ground connections at the connector are interchanged so that pin R carries -15 volts and pin S carries ground.

The electrical modifications are indicated on page 71, volume 5.

TYPEWRITER

A decoder and a coder enable the IBM electric typewriter to communicate with the computer. The necessary modifications are described in the Soroban manual included in the packet of manufacturers' manuals.

CHAPTER 4

POWER SYSTEM

Maintenance of the power system involves checking for proper output levels and occasional replacement of fuses. The system and associated protective circuits are described in chapter 7 of volume 2. Fuse locations in the various cabinets are listed in table 4-1.

MOTOR GENERATOR SET

The 400-cycle power for the computer system is furnished by a brushless motor generator (MG) set. A manual provided by the manufacturer (Electric Machinery Mfg. Co.) is included in a separate packet.

The manual motor switch on the MG control cabinet remains on as normally the MG set is turned on and off remotely by the Power switch at the console.

Preventive maintenance steps:

- Check the voltage output at the control cabinet for a value of approximately 208 volts. The voltage adjust control should be used to obtain proper output level only when it is certain that improper output is not due to a malfunction.
- 2) Check the current output for a value of 13.5 15.0 amperes.
- 3) Check frequency of output for indication of 410 420 cps.
- 4) Replace the 2 pre-lubricated bearings on the MG set once a year.

A sharp jolt can occasionally cause the exciter field of the MG set to lose its residual magnetism. As a result the MG set fails to develop output voltage. The required residual magnetism can be restored by flashing the exciter field. This is done by connecting a 3-volt battery (two 1 1/2-volt dry cells) to the exciter field.

The exciter field is most conveniently accessible at terminals 4 and 5 of the terminal board on the regulator panel in the rear of the control cabinet (figure 4-1). The battery is connected as shown in figure 4-2. Remove the lead from terminal 5 and connect it to the positive battery terminal. Connect the negative battery terminal to terminal 5. Now run the MG set to develop voltage. If voltage fails to develop, stop the MG and reverse leads to the battery.

-CONTROL DATA CORPORATION Computer Division

Figure 4-1. Regulator Panel

Figure 4-2. Circuit for Flashing MG Exciter

MAIN CABINET								
Number	Number Protects Number Protects							
F11 F12 F13	chassis	1	F51 F52 F53	chassis 5				
F21 F22 F23	chassis	2	F61 F62 F63	chassis 6				
F31 F32 F33	chassis	3	F71 F72 F73	chassis 7				
F41 F42 F43	chassis	4	F81 F82 F83	chassis 8				
	Rating 1.5A 208-vac, 3-phase input							
		CONSO	LE					
	Number	Rating		Protects				
	F01 F02 F03	2.0A 2.0A 2.0A		208-vac, 400-cps, 3-phase input (light modules, relays)				
	F04	8.0A		120-vac, 60-cps (punch, reader, typewriter, outlets)				
	400 CYCI	LE SWITC	H PANE	SL				
	Number	Rating		Protects				
	CB10120A208-vac, 400-cps, 3-phaseCB1025Ainput to all computer chassis							
	60 CYCLE SWITCH PANEL							
	Number	Rating		Protects				
CB202 20A CB203 15A				computer (outlets, fans, etc.) console (outlets, punch, reader typewriter)				

TABLE 4-1. CIRCUIT BREAKER AND FUSE LOCATION

APPENDIX A

INSTALLATION

The standard 1604 Installation manual is included in the following pages to provide supplementary maintenance information.

Typical 1604 Computer Installation

CONTENTS

General Requirements	1
Floor	1
Temperature	2
Area Cleanliness	2
Fire Precautions	2
Space and Layout Requirements	2
Power Requirements	3
Cables	4

FIGURES

Frontis	Frontispiece		
Figure	1	False Floors	7
	2	Sample Layouts of Computer Installation	8
	3	1604 Computer System Layout Templets	9
	4	Information Cable Lengths	10
	5	Power Cable Lengths	11
	6	1604 Computer Console	12
	7	1604 Computer Cabinet	13
	8	1604 Computer Cabinet (Underfloor Plenum Blower System)	14
	9	1605 Adaptor Cabinet	15
	10	1607 Tape System	16
	11	1607 Tape System (Underfloor Plenum Blower System)	17
•	12	1608 Tape Control Unit Cabinet	18
	13	1609 Adaptor Cabinet	19
	14	1610 Adaptor Cabinet	20
	15	IBM 521 and 523 Cabinets	21
	16	IBM 088 and 407 Cabinets	22
	17	Motor-Generator Set	23
	18	Motor-Generator Control Cabinet	24
	19	Typical Power Installation	25
	20	Installation Power Requirements	27

TABLES

.

Table	1	Specifications of Control Data 1604 System	3
	2	Cable Connections, 1604 Console	5
	3	Cable Connections, Input-Output Equipment	6

Ÿ,

INSTALLATION OF THE 1604 COMPUTER SYSTEM

The Control Data 1604 and 160 systems are designed to be used with a minimum of environmental restrictions. This manual, which will be furnished to the customer well in advance of shipment of the computer system, provides electrical and physical information to aid in the preparation of a suitable site for the system. Detailed data on equipment sizes, power requirements and cables are included.

Two months before the system is shipped, a detailed floor layout should be submitted to Control Data Corporation so that cable requirements may be determined. One month before shipment, the Control Data Corporation engineer responsible for delivery and installation of equipment will visit the site to discuss unloading of the equipment from the carrier and placing it in the computer area. The general area requirements will be reviewed at this time and any final modifications agreed upon.

GENERAL REQUIREMENTS

FLOOR

The weight of the cabinet is distributed over its entire base, causing a load no greater than 150 pounds per square foot. The leveling pads in each cabinet are not normally used to support the cabinet, but are provided to level the cabinet on an uneven floor. If leveling pads are used, the floor must be able to withstand the concentrated load thus created.

Cables connecting the cabinets in the computer system are run beneath the floor and enter the cabinets through openings in the bottom of each cabinet. To permit passage of the cables, raceways may be built into the floor, or a false floor may be laid above the room floor (figure 1). The false floor permits considerable freedom in equipment layout, as cables may be routed without restriction. A false floor is sometimes used to provide an underfloor plenum blower system instead of individual cabinet blowers.

1

TEMPERATURE

Blowers at the bottom of the cabinets or an underfloor plenum blower system cool the equipment by circulating room air through reusable air filters up through the cabinet and out at the top. Room air should not exceed a temperature of 70° F. Heat generated by the equipment should be quickly removed from the vicinity of the cabinets by circulation of the room air. The amount of heat generated by each equipment is listed in table 1; the additional heat load caused by the equipment can be dissipated through increased air conditioning capacity.

Recommended humidity limits are 40% low and 60% high. The low limit protects against static build-up on magnetic tape. The high limit protects punch card operation.

AREA CLEANLINESS

Clean the computer site regularly to avoid dust accumulation. Dust and cigarette ashes may collect on the magnetic tape, and cause errors in operation. Avoid smoking when handling magnetic tapes.

FIRE PRECAUTIONS

Locate fire extinguishing equipment throughout the room, and observe normal fire precautions in the area.

SPACE AND LAYOUT REQUIREMENTS

Positioning of the equipment cabinets will be partially determined by the size and shape of the area available for the computer installation. The operator seated at the console should be able to view the tape handlers and any other equipment with moving parts. It is not necessary for the computer cabinet to be in direct view of the console, although this is desirable for maintenance purposes. Cabinets should be arranged to permit ease of access both for the operator and for maintenance personnel and their equipment. Sample layouts of computer installations, which allow sufficient area between cabinets while remaining within the cable limitations are shown in figure 2. Installation information including dimensions, door swings, floor cutouts, connector data, and weights are given for each item of equipment on following figures. Physical dimensions and weights are summarized in table 1.

As an aid to planning, plastic templets of the equipments (figure 3) may be obtained from Control Data Corporation, 1604 Product Department. The templets are scaled 1/4 inch equals one foot.

Equipment	Length (ins.)	Width (ins.)	Height (ins.)	Weight (lbs.)	BTU/ Hr	400 (Breeke	60 r Spec.)
1604	891/8	271/2	673/4	2650	24,000	20A	20A
1605	473/4	20 1/2	43	575	4,000	5A	15A
1607	88 1/2	271/2	67 3/4	2580	30,000	5 A	40A
1608	47 3/4	20 1/2	43	575	4,000	5A	15A
1609	47 3/4	20 1/2	43	575	4,000	5 A	15A
1610	47 3/4	20 1/2	43	575	4,000	5A	15A
1612	72	31	56	890	ം, 400		16A
1604 Console	158	27 1/2	43 5/8	800	6,800	5A	15A
M/G Control	30	22	76	575			
M/G Set	39 1/2	191/8	18 1/2	610			

TABLE 1. SPECIFICATIONS OF CONTROL DATA 1604 SYSTEM

POWER REQUIREMENTS

The Control Data 1604 and 160 systems operate from 208-volt, 400-cycle, 4-wire service and from 208-volt, 60-cycle, 4-wire service (figure 20). The 400-cycle service is obtained from the motor-generator furnished with the computer system. The motor-generator, utility outlets and equipment blowers are operated from the 208-volt, 60-cycle service. The motor -generator and control cabinet should be located at a ventilated site remote from the computer area (figure 19). The motor-generator and control cabinet may also be located in separate areas.

The motor-generator and control unit (figures 17, 18 and 19) will be installed and wired by Control Data Corporation at the time of computer delivery. The spare motorgenerator will also be installed to provide for a minimum of interruption due to generator failure (control and switch-over gear for spare unit included in single control unit).

Two control wires and four power wires from the motor-generator set to the computer area breaker panel are to be installed by the customer prior to shipment of the computer system. These wires may be routed in the same raceway. The motor-alternator output is 7.5-KW, 208-volt, 400-cycle. The four wires carrying the 400-cycle power should be sized to allow no more than a two per cent voltage drop over the length of the run. The two control wires should be sized, in accordance with the code for control circuits, to handle a pushbutton station operating a magnetic contactor.

Two circuit breaker panels provided by the customer (figure 19 shows a sample arrangement) are to be mounted side by side on a wall in the computer room and are to have a common wire raceway across the bottom. One panel handles the 208-volt, 400-cycle, 4-wire power from the motor-generator. This panel needs no main breaker, but one 3-phase breaker for each piece of equipment in the system must be provided.

The other panel handles the 208-volt, 60-cycle, 4-wire power for the various equipments in the computer system. It requires a magnetic contactor for the main disconnect; the size of this contactor will depend upon the amount of power used in the system. This panel should contain one 3-phase breaker for each equipment in the system. Breaker specifications are listed in table 1.

The output side of the breakers will be wired at the time of installation by Control Data Corporation. Space should be left in both panels for the addition of other breakers.

To ease routing and connection of power cables, locate the breaker panels in line with available floor raceways and in an area central to all equipment in the system.

CABLES

The information cables which connect the various elements in the computer system will be delivered at the time of installation. Prior to delivery, the customer can determine the length of the cables to be used by referring to figure 4. Equipment layout can then be revised if any of the cables exceed the maximum of 50 feet.

Cables supplying power to the cabinets (figure 5) originate at the breaker panel where they are permanently installed. Sufficient spare cable should be allowed to accommodate minor changes in location of the equipment. The power cable should not exceed 100 feet in length.

At the time the customer submits the final equipment configuration, Control Data Corporation should be advised of any unusual cabling requirements or obstructions beneath the floor that will interfere with the cables. This should be done no later than two months prior to shipment.

4

1604 Console	1604 Computer		1604 Console	1604 Computer	
J20301	7H2 \	Chassis 7	J20318	5L1 J	
J20302	7I1 <i>\</i>	Chassis	J20319	5L2	
J20303	1M2		J20320	5M1	
J20304	1N1		J20321	5M2	
J20305	1N2	Chassis 1	J20322	5N1 >	Chassis 5
J20306	101		J20323	5N2	
J20307	102		J20324	501	
J20308	1P1 J		J20325	502	
J2 0309	2M2		J20326	5P1 J	
J20310	2N1		J20327	6N2)	
J20311	2N2	Chassis 2	J20328	601	Chassis 6
J20312	201 (J 20329	602	
J20313	2O2		J20330	7I2	Chassis 7
J20314	2P1				
J20315		400 Power			
J20316		60 Power			
J20317		Power Control			

TABLE 2. CABLE CONNECTIONS, 1604 CONSOLE

Type Designation	Cable Group 1	Cable Group 2	Cable Group 3	Cable Group 4
Input Channel Cable A	7J2	7L1	7M2	701
Input Channel Cable B	7K1	7L2	7M1	702
Input Channel Cable C	7K2	7M1	7N2	7 P 1
Output Channel Cable D	8J2	8L1	8M2	801
Output Channel Cable E	8K1	8L2	8N1	802
Output Channel Cable F	8K2	8M1	8N2	8 P 1

TABLE 3. CABLE CONNECTIONS, INPUT-OUTPUT EQUIPMENT

Except for variation in length all information cables used in the systems, including 1605, 1607 and other equipment, are identical. Detailed cable makeup and inter-connection data are found in the maintenance volume.

All cables used in the 1604 system are supplied by Control Data Corporation at the time of delivery.

A. False Floor - Raceway Type

B. False Floor - Pedestal Type

Figure 1. False Floors

Figure 2. Sample Layouts of Computer Installation

8

•

Figure 3. 1604 Computer System Layout Templets

.

Cable length is determined by the distance between the cable cutouts of two equipments plus 10 feet which allows sufficient cable for internal conditions.

Figure 4. Information Cable Lengths

TO SEPARATE 110V, 60 \sim , 1-PHASE SOURCE WITH FUSE OR BREAKER RATINGS AS FOLLOWS;

IO AMP 20 AMP 30 AMP

CONSULT AREA IBM REPRESENTATIVE FOR INFO ON EQUIPMENT REQUIRING OTHER THAN ABOVE POWER SOURCE

Figure 5. Power Cable Lengths

Figure 6. 1604 Computer Console

12

`: :

· · · ·

Figure 7. 1604 Computer Cabinet

13

4

 $V_{
m Figure 8. 1604 Computer Cabinet (Underfloor Plenum Blower System)}$

Figure 9. 1605 Adaptor Cabinet

Figure 10. 1607 Tape System

z

VFigure 11. 1607 Tape System (Underfloor Plenum Blower System)

Figure 12. 1608 Tape Control Unit Cabinet

Figure 13. 1609 Adaptor Cabinet

Figure 14. 1610 Adaptor Cabinet

IBM 521

NOTE: DIMENSIONS GIVEN FOR REFERENCE ONLY. CONSULT AREA IBM REPRESENTATIVE FOR MORE DETAILED INFO.

15 -

IBM 523

HEIGHT 51" WIDTH 26" LENGTH 40" WEIGHT 650LBS

Figure 15. IBM 521 and 523 Cabinets

Figure 16. IBM 088 and 407 Cabinets

Figure 17. Motor-Generator Set

.

Figure 18. Motor-Generator Control Cabinet

1

.

Figure 20. Installation Power Requirements

Computer Division

APPENDIX B

Card Schematics

This appendix contains schematic diagrams for all printed circuit cards used in the 1604 computer. Schematics for special cards used only in a given external equipment appear in the instruction book for that equipment.

The lower right-hand corner of the schematic shows the physical layout of components on the printed circuit board.

The schematics are arranged in ascending order of card type numbers.

Clock Disconnect Card 00 B-2

Single Inverter

Single Inverter Card 13

В-6

Single Inverter Card 15

Single Inverter Card 16

-

Double Inverter Card

Double Inverter Card 23

.

Double Inverter Ω ard

Flip-flop Card

Flip-flop Card

Control Delay Card

Control Delay Card

Control Delay Card

Control Delay Card

Control Delay Card

Diverter Card 52

Selector Card ы

Current Source Card

Inhibit Generator Card 55

Sense Amplifier Card 56

Input Card 61

Output Card 62

Speaker Driver Card 65

Punch Puller Card 66

Output Card 67

Reader-Level Amplifier Card 75

Reader Brake Clutch Driver Card 76

Computer Division

Ĵ.

APPENDIX C

PREVENTIVE MAINTENANCE SCHEDULE

DAILY

Janitorial services: clean computer room, especially console top, tape baskets, and floors

Clean

PT Reader: remove tape setting clip to clean photo cell block

PT Punch: chad and paper lint

1607: -capstans, pinch rollers, and permanent leader

-heads (Ampex manual paragraph 2a)

-tape sensing slots and chambers (paragraph 2c)

-all surfaces over which tape moves

Lubricate

PT Punch: tape reel bearings if required (Teletype manual p.3-1)

Operating Checks

Run Test programs

PT Punch: registration of punches

1607: -Worn connectors on magnetic tape leaders

-Worn or noisy pinch roller or bearings

WEEKLY

Clean

Air filters in cabinets

Lubricate

PT Punch: -Toggle arm shaft, saturate felt washers -Punch bail shaft, saturate felt washers -grease tape reel bearings

-CONTROL DATA CORPORATION Computer Division

WEEKLY (cont'd.)

Typewriter: -heavy gear grease on points where metal is moved on metal -light oil on springs and pivot points

Operating checks

1607: -gaps for brakes (Ampex manual paragraph 3e)

-adjust vacuum for 20 1/2 inches (paragraph 3f)

-gaps on pinch rollers (paragraph 3i)

-adjust servo gain using MT test (paragraph 3m)

Voltage margins using test programs and varying MG output voltages

MONTHLY

Clean

Typewriter: keys, platen and actuator solenoids PT Reader: clean all surfaces above console top

Lubricate

PT Reader

PT Punch: each end of motor, feed wheel ratchet and punch block 1607: check positive pressure blower (paragraph 2i)

Operating Checks

Typewriter: worn ribbon

PT Punch: punch for wearing

PT Reader: check festoon lamp

All Cabinets: check blowers

SEMIANNUALLY AND ANNUALLY

MG Control Cabinet and Relays: clean and check semiannually Typewriter: clean and lubricate semiannually MG Bearings: replace annually

CONTROL DATA CORPORATION -

Computer Division

APPENDIX D

CABLING INFORMATION

The identification of input-output cables and the information carried on their lines are treated in the following tables. Table D-1 lists the labels on the individual cables of the four groups. Each label indicates the function of the cable in the group by a prefix letter. The expression following the slash gives the computer connector for the cable. Table D-2 lists the information on each line of the six cables in a group.

Other cables in the computer system such as those connecting chassis within the main cabinet or those connecting the main cabinet and console are labelled as required. •J

-CONTROL DATA CORPORATION Computer Division

TABLE D-1. CABLE IDENTIFICATION

Computer Division

Din	Input Buffer or Transfer Channel			Output Buffer or Transfer Channel		
No.	Cable A	Cable I	B Cable C	Cable D	Cable E	Cable F
A	bit 47	bit 24	bit 01	bit 00	bit 23	bit 46
в	46	23	00	01	24	47
C	45	22	Input Ready	02	25	Output Ready
D	44	21	Input Resume	03	26	Output Resume
E	43	20	Input Buffer Active*	04	27	Interrupt Function
F	42	19	External Master Clear	05	28	Input Function Ready*
н	41	18	Not Used	06	29	Input Sense Ready*
J	40	17		07	30	Output Function Ready
к	39	16		08	31	Output Sense Ready
L	38	15		09	32	Sense Response
м	37	14		10	33	Output Buffer Active*
Ν	36	13		11	34	Function Bit 00
Р	35	12		12	35	01
R	34	11		13	36	02
S	33	10		14	37	03
T	32	09		15	38	04
U	31	08		16	39	05
v	30	07		17	40	06
w	29	06		18	41	07
x	28	05		19	42	08
Y	27	04		20	43	09
Z	26	03		21	44	10
a	25	02	4	22	45	V 11
b	gnd	gnd	gnd	gnd	gnd	gnd

TABLE D-2. CONNECTOR PIN NUMBER ASSIGNMENTS

* Buffer cable only, unused in transfer

CONTROL DATA CORPORATION

501 Park Avenue, Minneapolis 15, Minnesota