
CONTROL DATA
1604/1604-A COMPUTER

FORTRAN 63/REFERENCE MANUAL

CONTROL DATA 1604/1604-A COMPUTER

CONTROL DATA CORPORATION

8100 34th Avenue South

Minneapolis 20, Minnesota

FORTRAN 63/REFERENCE MANUAL

June, 1964

Pub. Ho. 60052900

Revision A

Any comments concerning this manual should be
addressed to:

CONTROL DATA CORPORATION
Documentation and Evaluation Department
3145 Porter Drive
Palo Alto, California

© 1964, Control Data Corporation
Printed in United States of America

PREFACE

The FORTRAN*-63 language contains all of the features of its predecessor,
FORTRAN-62, and forms anoverset of the FORTRAN II language. The FORTRAN-63
compiler adapts current compiler techniques to the particular capabilities of the
CONTROL DAT A® 1604 and 3600 computer systems. Emphasis has been placed on
producing highly efficient object programs while maintaining the efficiency of compi
lation of FORTRAN-62.

This reference manual was written as a text for advance FORTRAN-63 classes and
as a reference manual for programmers using the FORTRAN-63 system. The manual
assumes a basic knowledge of the FORTRAN language.

*FORTRAN is an abbreviation for FORmula TRANslation and was originally developed
for International Business Machine equipment.

Ill

CHAPTER l

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CONTENTS

PROPERTIES AND ELEMENTS OF FORTRAN-63

1.1 Coding Fortran -63

1.2 Constants

1.3 Variables

1.4 Statements

1.5 Expressions

ARITHMETIC EXPRESSIONS AND REPLACEMENT STATEMENTS

2.1

2.2

2.3

2.4

Arithmetic Replacement Statements

Arithmetic E:1q.iressions

Mixed Mode Arithmetic Expressions

Mixed Mode Replacement Statement

LOGICAL/RELATIONAL AND MASKING EXPRESSIONS
AND REPLACEMENT STATEMENTS

3.1

3.2

3.3

3.4

3.5

Logical Expression

Relational Expression

Masking Replacement Statement

Masking Expressions

Multiple Replacement Statements

TYPE DECLARATIONS AND STORAGE ALLOCATIONS

4.1 Type Declarations

4.2 Dimension

4.3 Common

4.4 Common Blocks

4.5 Equivalence

4.G Data

TYPE-OTHER DECLARATION

5.1 Typo -Other Declarations

5.2 Evaluation of Non -Standard Arithmetic Expressions

5.3 Sample Program

v

1-1

1-1

1-2

1-5

1-10

1-10

2-1

2-1

2-1

2-4

2-7

3-1

3-1

3-5

3-G

3-G

3-8

4-1

4-1

4-2

4-3

4-4

4-7

4-9

5-1

5-2

5-4

5-5

CHAPTER 6 CONTROL STATEMENTS 6-1

6.1 Statement Identifiers 6-1

6.2 GO TO Statements 6-2

6.3 IF Statements 6-3

6.4 Fault Condition Statements 6-4

6.5 DO Statement 6-5

6.6 Continue 6-9

6.7 Pause 6-9

6.8 Stop 6-9

6.9 End 6-10

CHAPTER 7 FUNCTIONS AND SUBPROGRAMS 7-1

7.1 Main Programs and Subprograms 7-1

7.2 Function Subprogram 7-1

7.3 Library Functions 7-4

7.4 External Statement 7-5

7.5 Statement Functions 7-G

7.6 Subroutine Subprogram 7-7

7.7 Call 7-8

7.8 Program Arrangement 7-12

7.9 Return and End 7-12

7 .10 Entry 7-13

7.11 Variable Dimensions In Subprograms 7-14

CHAPTER 8 FORMAT SPECIFICATIONS 8-1

8.1 The 1/0 List 8-1

8.2 Format Statement 8-3

8.3 Format Specifications 8-4

8.4 Conversion Specifications 8-4

8.5 Editing Specifications 8-18

8.6 nP Scale Factor 8-20

8.7 Repeated Format Specifications 8-22

8.8 Variable Format 8-22

VI

CHAPTER 9 INPUT /OUTPUT STATEMENTS 9-1

9.1 Read/Write Statements 9-1

9.2 Buffer Statements 9-7

9.3 Partial Record 9-9

9.4 Tape Handling Statements 9-10

9.5 Status Checking Statements 9-11

9.6 Encode/Decode Statements 9-12

CHAPTER 10 COMPILATION AND EXECUTION 10-1

10.1 Control Cards 10-2

10.2 Deck Structure 10-7

10.3 Input/Output Equipment Usage 10-18

CHAPTER 11 OVERLAYS AND SEGMENTS 11-1

11.1 Calling Sequence 11-2

11. 2 Deck Structures 11-3

APPENDIX A CHARACTER CODES A-1

APPENDIX B STATEMENTS OF FORTRAN-63 B-1

APPENDIX C LIBRARY FUNCTIONS AND DIAGNOSTICS C-1

APPENDIX D INPUT /OUTPUT DIAGNOSTICS D-1

APPENDIX E OPERATIONS AND CALLING SEQUENCES E-1

APPENDIX F COMPILATIONS DIAGNOSTICS F-1

INDEX Index-1

vii

f t'f'C: Cu1·k'Lt:,:·:: 2., d, i , C f jC
I I I I I I

I 1111 I
1aaooa11aaoaaaaaa111111a1a1ooaoooooooooqnoooo0Gooaoooaooa1aooooooooooooaaaaaao90
121•11111MttUQM"MOMM•~DnMaanaaa~nn~~•n•••~au"a•u•••~~~M••~•••~aaM••n••nnnnMnannn•

I 111111111111111111111111111111111111I11I1111111111111I11111!1111111111111111111

22'2~'222222222222222222222222

33333313333133313333131311131333

4444444444444144~4444444444444444444444444

55555555515555551555

111661161111!66661&6&l&&&&&l6&&666&1&&&66&&&666&6&6&6666&66666&66&&&6666&6666611

111111111111 7111111111 Ji 11111 77 11 111111111 T 1111 i 11 1111 7 77 7 7 7 7 i 7 1 11 7 7 11 7 111111117

1111111111111aaaaaaa1a1a111aa11111111111111aaa11a111aaaaaaaa1aaaa11a1111aaa1a11a

1999999999999999999.999.9999999999999999999999999999999g999999999999999999999999
111•11111Mttuu~"nnMM ~DD aanaaa~uu•a•n•••~au"a•a•••~~~M••~••m~aaM••n••nnnn~n•nnn•

";:'.!2.5> 5081

Hollerith Card

1604 FORTRAN CODING FORM

~-
NAME

PROGRAM PAGE
ROUTINE DATE

FORTRAN STATEMENT
T c
v STATE- a
p

MENT N
I = ONE

SERIAL
E T. O•ZERO 2 = TWO

NO. ¢ • ALPHA 0
NUMBER

I = ALPHA I t" ALPHA z

'2 3 4 6 8 1 I 9 10 !I 12 13 !4 Hi 16 17 Ill 19 20 21 ZZ 23 Z!l.25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 •'6 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 13 64 6~ff 87 G8 69 7~1 72 13 74 75 16 1118 H 110

FUNCTI!1N CT¢C(Zu_W) _[_

TYPE c 0 MP L ~ _g,_ ckLt.. Iu. c·r~ _]_ _[_ _[_ _]_

TYPE J!i.EAL ~GR _[_ ..1

DAT_A cliPI =l,i_u.5 7 Qi_7 96 U..i_68.i)1,1(1I1=1(1Q1,1,1l1.1)1)1 I I I I I I I I I I I I I I I I _]__[_ _]__[_ _]__]_ _[__]_ _]__[_ _]_ ..1

AL.5_Z ili B = - .1!.* Z $ I 1C1;:::~1 I l~I I ilJ 1=1 -1I1*1Z1 I I I I I I I I I I I I I I I I I __l_l__L_l_1 _[__[__[__]_ _]__[_ ..1

_[__[_ IFi.(Ail_20 10 ...L ...L_L_l_...L_L...L..l-1...1_.l_...L_L...L...L_L...L...L_L...L ...L_L_L _]_ ...L_.l_...L_.l_...L

JJo ...L p =B ili T H E_i!_ A ...5.hL_ _,$._ .r.m, ...iT..i.0J .J3..i..O.. _.l__l_...L_L...L..l_l_ _1_...l._1_...L...L_.l_ ..1..L...L..L...L_.l__l_ _L_l_...L_l_...L

20 THE T_A =_AT A Ni.iiBJ.iA1

R = S&i._R T~* Ar!:_B * B _1_ _i_L.l

30 L 0 G R = L ~G F ii.!hl_

Qit¢ c = E X P..LF...i.{_ C_L3k&_G R - D *T ~*ili~*IL,a\GJ.ll!. + .. .1C .. L~l.T!lliE._1T >\.J)_ ...rl:...

*S INFl.._D*L¢Gi..Bc + C *THE Ti.!hl_ * ILiJ

RET Uc.lliN_

[E~...Li...L

[..1 _[_ ...L

[_[_ ...L ...L...L_L...l._l__L_l_...L...L_L...L...L..l.. '..l.. _[_

L...L..1.._.Li__L___l_L L..L..LJ__L..L...LJ_

....L..l.....l.J __ l.....l......L j

...l._.l__l_

' 2 J .. 5 6 1 I 9 10 II ll 1314 15 16 17 II 19 20 21 22 23 24252627 2129 JO JI 323334 3'365738 39404< 424344454647 41495051 5253 545556 57515910 61 62 63U 65661761H 70 71 72 137•757677717110

FORTRAN Coding Form

viii

1.1

PROPERTIES AND ELEMENTS
OF FORTRAN ... 63 1

CODING
FORTRAN-63

CODING FORM FORTRAN-63 forms contain 80 columns in which the characters of the language
are written, one character per column. Each line of the coding form corresponds
to one 80-column punched card.

COMMENT CARD Comment information is designated by a C in column 1 of each line. Comment
information will appear in the source program, but it is not translated into object
code. Columns 2 through 80 may be used.

STATEMENT
IDENTIFIERS Statements are identified by a string of up to five digits occupying any column

positions, 1 through 5. Any statement may have an identifier, but only refer
enced statements require identification. Each statement identifier within a
given program or subprogram must be unique.

Statement identifiers may range from 1 through 99999. Leading zeros are
ignored; 1, 01, 001 are equivalent forms. Declarative statement identifiers
(except FORMAT) are ignored by the compiler, except for diagnostic purposes.

STATEMENTS The statements of FORTRAN-63 are written in columns 7 through 72. State
ments requiring more than one line may be carried to the next line by using a
continuation designator. More than one statement may be written on a line.
Blanks may be used freely in FORTRAN statements to provide readability.
Blanks are significant, however, in Hollerith fields.

STATEMENT
SEPARATOR $ The special character $ is used to write more than one statement on a line.

Statements so written may also use the continuation feature. A $ symbol may
not be used as a FORMAT statement separator.

1-1

1.2

•

These statements are equivalent:

Also:

1

I= 10
JLIM = 1
K = K+l
GO TO 10

DO 1 I=l, 10
A (I)=B (l)+C (I)
CONTINUE
1=3

1

I= 10 $ JLIM = 1 $ K = K+l $ GO TO 10

DO 1 I=l, 10 $ A(I)=B(I)+C(I)
CONTINUE $ 1=3

CONTINUATION The first line of every statement must have a blank in column 6. If state
ments occupy more than one line of the coding sheet, all subsequent lines
must have a non-blank, non-zero character in column 6. Any FORTRAN-63
statement may contain as many as 598 operators, delimiters (comma and
parenthesis) and identifiers; blanks are not included in this count. Any
number of continuations may extend a statement.

IDENTIFICATION
FIELD Columns 73 through 80 are ignored in the translation process. These

columns, therefore, may be used by the programmer for job identification
and sequencing.

CONSTANTS Four basic types of constants are used in FORTRAN-63: integer, octal,
floating point and Hollerith. Complex and double precision constants can
be formed from floating point constants. The type of a constant is deter
mined by its form.

INTEGER Integer constants may consist of up to 15 decimal digits, in the range
0 =sn::: 247 -1. If the range is exceeded, the constant is treated as zero and
a compiler diagnostic is provided.

Examples:

63

247

314159265

3647631

2

464646464

1-2

OCTAL Octal constants may consist of up to 16 octal digits. The form is:

n1 --- niB

If the constant exceeds 16 digits, or if a non-octal digit appears, the constant is
treated as zero and a compiler diagnostic is provided.

Examples:

7777777700000000B

7777700077777B

2323232323232323B

77B

7777777777777700B

FLOATING POINT Floating point quantities all have an exponent and a fractional part.

REAL Word Structure

s
I EXPONENT
G PORTION FRACTIONAL PORTION
N
s

47 46 45 36 35 0

Real constants are represented by a string of up to ten digits. A real constant
may be expressed using a decimal point or with a fraction and an exponent rep
resenting a power of ten. The forms of real constants are:

nE n.n n. .n nE±s n.nE±s n. E±s .nE±s

n is the base value; s is the exponent to the base 10. The plus sign may be
omitted for positive s. The range of s is 0 through 308.

If a plus or minus operator follows nE in an expression, the form (nE) or nEo
must be used. If the range of a real constant is exceeded, the constant is treated
as zero and a compiler diagnostic is provided.

Examples:

3.1415768

314.

.0749162

314159E-05

1-3

31.41592E-01

.31415E01

.31415E+Ol

DOUBLE Word Structure

s T

~EXPONENT FRACTIONAL I PORTION
N PORTION MOST SIGNIFICANT I LEAST SIGNIFICANT
s l

47 46 45 36 35 0 47 0

Double precision constants are represented by a string of up to 25 digits. The
forms are:

nD n.nD n.D .nD nD±s n.nD±s n.D±s .nD±s

n is the base value; s is the exponent to the base 10.

The D must always appear. The plus sign may be omitted for positive s; the
range of s is 0 through 308. If the range is exceeded, the constant is treated
as zero and a compiler diagnostic is provided.

Examples:

3.1415926535897932384626D 31415.D-04

3.1415D 379867524430111D+Ol

3.1415DO

3141.598D-03

If a plus or minus operator follows nD, n.nD, n.D or .nD in an expression, the
constant representation must be placed within parentheses or must be followed
by a zero.

COMPLEX Generalized Word Structure

47 46 45 36 35

s
I EXPONENT
G FRACTIONAL PORTION
N PORTION

s
REAL VALUE

47 46 45 36 35

s
I EXPONENT

G FRACTIONAL PORTION
N PORTION
s

IMAGINARY VALUE

Complex constants are represented by pairs of real constants separated by a
comma and enclosed in parentheses (R1 , R 2). R1 represents the real part of
the complex number and R 2, the imaginary part. Either constant may be
preceded by a minus sign.

1-4

0

0

If the range of the reals comprising the constant is exceeded, a compiler
diagnostic is provided. Diagnostics also occur when the number pair consists
of integer constants, including (0,0).

Examples:

FORTRAN-63 Representation

(1.' 6.55)

(15.' 16. 7)

(-14.09, l.654E-04)

(0.' -1.)

Complex Number

1. + 6.55i

15. + 16. 7i

-14.09 + .0001654i

-i

HOLLERITH A Hollerith constant is a string of alphanumeric characters of the form hHf,

1.3

VARIABLES

h is an unsigned decimal integer between 1 and 120 characters representing the
length of the field f. Spaces are significant in the field f. When h is not a
multiple of 8, the last computer word is left-justified with BCD spaces filling
the remainder of the word.

An alternate form of a Hollerith constant is hRf. When h is not a multiple of 8,
the last computer word is right-justified with zero fill.

When h is greater than 120 only the first 120 characters are retained and the
excess characters are discarded, but no diagnostic is provided.

Examples:

6HCOGITO

4HERGO

3HSUM

8RCDC 3600

SR

lH)

**

FORTRAN-63 recognizes simple and subscripted variables. A simple variable
represents a single quantity; a subscripted variable represents a single quantity
within an array of quantities. The variable type is either defined in a TYPE
declaration (section 4.1) or determined by the first letter of the variable name.
A first letter of I, J, K, L, M, or N indicates a fixed point (integer) variable;
any other first letter indicates a floating point (real) variable.

1-5

1.3.1

SIMPLE A simple variable is the name of a storage area in which values can be
stored. The variable is referenced by the location name; the value specified
by the name is always the current value stored in that location.

SIMPLE INTEGER
variables are identified by 1 to 8 alphabetic or numeric characters; the
first must be I, J, K, L, M, or N. Any integer value in the range from
-(247 -1) to 247 -1 may be assigned to a simple integer variable.

Examples:

N

K2S04

LOX

NOODGE

M58

M 58

Since spaces are ignored in variable names, M58 and M 58 are identical.

SIMPLE FLOATING POINT

1.3.2

SUBSCRIPTED
VARIABLE
ARRAYS

variables are identified by 1 to 8 alphabetic or numeric characters; the first
must be alphabetic and not I, J, K, L, M, or N. Any value from 10-308 to 10308
and zero can be assigned to a simple floating point variable.

Examples:

VECTOR

BAGELS

A65302

BATMAN

An array is a block of successive memory locations which is divided into
areas for storage of variables. Each element of the array is referenced by
the array name plus a subscript. The type of an array is determined by the
array name or TYPE declaration. Arrays may have one, two, or three
dimensions and the maximum number of elements is the product of the
dimensions. A subscript can be an integer constant, an integer variable,
or any integer expression. Any other constant, variable, or expression
will be reduced to an integer value. The array name and its dimensions
must be declared at the beginning of the program in a DIMENSION statement
(section 4.2).

1-6

ARRAY STRUCTURE Elements of arrays are stored by columns in ascending order of storage
location. In the array declared as A(3,3,3):

1.3.3

SUBSCRIPT
FORMS

Alll A121 A131

A211 A221 A231

A311 A321 A331

All2 A122 Al32

A212 A222 A232

A312 A322 A332

A113 Al23

A213 A223

A313 A323

The planes are stored in order, starting with the first, as follows:

A -L
111

A -L+l
211

A311-L+2

A -L+3
121

A -L+4
221

A -L+5
321

A133-L+24

A -L+25
233

A -L+26
333

A133

A
233

A333

If more than three subscripts appear, a compiler diagnostic is given. Program
errors may result if subscripts are larger than the dimensions initially declared
for the array. A single subscript notation may be used for a two or three
dimensional array if it does not exceed the product of the declared dimensions.

A standard subscript has one of the following forms; c and d are unsigned
integer constants and I is a simple integer variable:

(c * I± d)

(I± d)

(c * I)

(I)

(c)

1-7

A non-standard subscript is any arithmetic expression, other than the standard
forms, used as a subscript.

Simple Subscripted Variable Subscripted Variable
Variable (Standard) (Non Standard)

FRAN A(I,J) A(MAXF(I,J,M))

p B(I+2,J+3,2*K+l) B(J, SINF(J))

Z14 Q(14) C(l+K)

ESTRUS P(KLIM,JLIM+5) MOTZ0(3*K*ILIM+3.5)

MAX3 SAM(J-6) WOW(I(J(K)))

B(l,2,3) Q(l,-4,-2)

The location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of the array. Given DIMENSION
A(L, M, N) the location of A (i, j, k), with respect to the first element A of the
array, is given by

A + { i - 1 + L (j -1 + M (k-1)) } * E

The quantity in braces is the subscript expression. If it is not an integer value,
it is truncated after evaluation.

E is the element length, that is, the number of storage words required for
each element of the array; for real and integer arrays, E = 1.

1. Referring to the matrix in 1.2.2 the location of A (2,2,3) with respect to
A (1,1,1) is

Locn (A(2,2,3)} = Locn (A(l,1,1)) + (2-1+3(1+3(2))}

= L + 22

2. Given DIMENSION Z (5,5,5) and I= 1, K = 2, X = 45°, A= 7.29, B = 1.62.
The location, z, of Z (I* K, TANF (x), A-B) with respect to Z (1,1,1)
is:

z = Locn { Z(l,1,1)} + I 2-1+5(1-1+5(4.67))) Integer part

= Locn {Z(l,1,1)} + (117.75) Integer part

= Locn { Z(l,1,1)} + 117

1-8

FORTRAN-63 permits the following relaxation on the representation of sub
scripted variables:

Given A(D1 ,D2 ,D3)
where the Di are integer constants.

then A(I,J,K) implies A(I,J,K)

A(I,J) implies A(I,J,1)

A(I) implies A(l,1,1)

A implies A(l,1,1)

A(l,J) implies A(I,J)

A(I) implies A(J,1)

A implies A(l,1)

A implies A(l)

However, the elements of a single-dimension array A(D1) may not be referred
to as A(l,J,K) or A(I.J). Diagnostics will occur if this is attempted.

Array allocation is discussed under Storage Allocation in Chapter 4.

SUBSCRIPTED INTEGER VARIABLES,

the elements of an integer array, can be assigned the same values as simple
integer variables. An integer array is named by an integer variable name
(1 to 8 alphabetic or numeric characters the first of which is I, J, K, L, M,
or N).

NEUHON (6, 8, 6)

MORPH (20,20)

SU8SCRIPTED FLOATING POINT VARIABLES,

L6034(J, 3)

N3 (1)

the elements of a floating point array, can be assigned the same values as
simple floating point variables. A floating point array is named with a floating
point variable name (1 to 8 alphabetic or numeric characters, the first of which
is alphabetic and not I, J, K, L, M, or N).

1-9

1.4

STATEMENTS

1.5

EXPRESSIONS

Examples:

TMESIS (6, 4, 7)

PST (20, 3, 3)

YCLEPT (46)

SVELTE (6, 8)

The FORTRAN-63 elements are combined to form statements. An executable
statement performs a calculation or directs control of the program; a non
executable statement provides the compiler with information regarding variable
structure, array allocation, storage sharing requirements, and so forth.

An expression is a constant, variable (simple or subscripted), function (section
7 .2) or any combination of these separated by operators and parentheses,
written to comply with the rules given for constructing a particular type of
expression.

There are four kinds of expressions in FORTRAN-63: arithmetic and masking
(Boolean) expressions which have numerical values, and logical and relational
expressions which have truth values. For each type of expression there is an
associated group of operators and operands.

1-10

2.1

ARITHMETIC
REPLACEMENT
STATEMENTS

2.2

ARITHMETIC
EXPRESSIONS

ARITHMETIC EXPRESSIONS AND
REPLACEMENT STATEMENTS 2

The general form of the arithmetic replacement statement (arithmetic state
ment) is A= E, where E is an arithmetic expression and A is any variable
name, simple or subscripted. The operator= means that A is replaced by the
value of the evaluated expression, E, with conversion for mode if necessary.

An arithmetic expression can contain the following operators:

Symbol

+

*
I

**

Operands are:

Expressions:

A

3.141592

Function

addition

subtraction

multiplication

division

exponentiation

Constants

Variables (simple or subscripted)

Functions (Chapter 7)

B + 16.8946

(A -B(l,J +K))

G *C(J) + 4.1/ (Z(I+J,3*K))*SINF(V)

(Q + V(M,MAXF(A,B))*Y**2)/(G*H-F(K + 3))

-C +D(I,J)*l3.627

Any variable (with or without subscripts), or constant, or function is an arith
metic expression. These entities may be combined by using the arithmetic
operators to form algebraic arithmetic expressions.

2-1

2.2.1

ORDER OF
EVALUATION

Rules:

1 An arithmetic expression may not contain adjacent arithmetic
operators: x op op Y

2 If X is an expression then (X), ((X)) , et cetera, are expressions.

3 If X, Y are expressions, then the following are expressions:

X+Y X-Y X/Y X*Y

4 Expressions of the form X**Y and X**(-Y) are legitimate, subject
to the restrictions in section 2.3.

5 The following forms of implied multiplication are permitted:

constant (...)
(...) (...)
(. .) constant
(...) variable

implies constant * (...)
implies (. .) * (...)
implies (...) * constant
implies (...) * variable

Complex constants are not included in implied multiplication:
constant (...) does not imply constant * (...)

Hierarchy of arithmetic operation: **

I
*
+

exponentiation

division
multi plication

addition
subtraction

class 1

class 2

class 3

In an expression with no parentheses or within a pair of parentheses, in which
unlike classes of operators appear, evaluation proceeds in the above order. In
those expressions where operators of like classes appear, evaluation proceeds
from left to right. For example, A**B**C is evaluated as (A**B)**C.

In parenthetical expressions within parenthetical expressions, evaluation begins
with the innermost expression. Parenthetical expressions are evaluated as they
are encountered in the left to right scanning process.

When writing an integer expression it is important to remember not
only the left to right scanning process, but also that dividing an integer
quantity by an integer quantity always yields a truncated result; thus
11/3 = 3. The expression I*J/K will yield a different result than the
expression J/K*I. For example, 4*3/2=6 but 3/2*4 =4.

When an integer expression contains parenthetical expressions with * or I
operators, it is important to remember that the compiler will evaluate as many
operations after a parenthetical expression as possible until it must do an
intermediate or final store.

2-2

Example:

1. Z=X-Y+A/B* (C+D)*E is evaluated as

Z=(C+D)*A/B*E+X-Y without an intermediate store.

2. Z=X-Y+A*B/(C+D)*E is evaluated as

Z=A*B/(C+D)*E+X-Y with an intermediate store for (C+D).

Examples:

In the following examples. R indicates an intermediate result in evaluation:

A**B/C+D*E*F-G is evaluated:

A**B-R1

R1 /C -R2

D*E -R3

R3 *F - R4

R4+Rz-Rs

R 5 -G - R 6 evaluation completed

A**B/(C+D)*(E*F-G) is evaluated:

A**B -R1

C+D -R2

E*F-G-Rs

Ri/R2-~

R.i*R3-Rs evaluation completed

If the expression contains a function, the function is evaluated first.

H(13)+C(I,J+2)*(COSF(Z))**2 is evaluated:

Z -R1

R3 *C(I,J+2)-+-~

R4 +H(13)-- R5

2-3

evaluation completed

2.3

MIXED MODE
ARITHMETIC
EXPRESSIONS

The following is an example of an expression with embedded parentheses.

A*(B+((C/D)-E)) is evaluated:

C/D - R1

RI -E R2

R2 +B - R3

R3 *A - R.i evaluation completed

A*(SINF(X)+l.)-Z/(C*(D-(E+F))) is ernluated:

SINF(X)- R1

R1+1.- Ri

R 2 *A - R3

E+F - }\

-R4 - R4

R4 +D - R5

R 5 *C - R6

-Z -R7

R7 /R6 - R8

R8 +R3 - R9 evaluation completed

FORTRAN-63 permits full mixed mode arithmetic. Mixed mode arithmetic is
accomplished through the special library subroutines. In the 1604 computer
system, these routines include double precision and complex arithmetic. The
five standard operand types are complex, double, real, integer, and logical.

The programmer may also define three non-standard types. TYPE Declarations
are covered in section 4.1 for standard types and Chapter 5 for non-standard
types.

Mixed mode arithmetic is completely general; however, most applications will
probably mix operand types, real and integer, real and double, or real and com
plex. The following rules establish the relationship between the mode of an
evaluated eXpression and the types of the operands it contains.

Rules:

1 The order of dominance of the standard operand types within an
expression from highest to lowest is:

COMPLEX
DOUBLE
REAL
INTEGER
LOGICAL

2-4

2.3.1

EVALUATION

2 The mode of an evaluated arithmetic expression is referred to by the
name of the dominant operand type.

3 In mixed arithmetic expressions containing non-standard types the
following restrictions hold:

1. The non-standard types (types 5, 6, 7) may never be mixed with
each other.

2. Any one of the types 5, 6, 7 may be mixed with any or all of the
standard types. When this is done, the non-standard type dominates
the hierarchy established in rule 1.

4 In expressions of the form A**B, the following rules apply:

1. Neither A nor B may be type logical or byte (non-standard) type,
unless B is an integer constant less than 9.

2. B may be negative in which case the form is: A**(-B).

3. For the standard types (except logical) the mode/type relation
ships are:

T
y
p

e

A

I

R

D

c

Type B

I R

I R

R R

D D

c c

D c
D c
D c

mode of A**B
D c
c c

For example, if A is real and B is complex, the mode of
A**B is complex.

4. If A or B or both are of non-standard multi-word type, the
programmer must provide subroutines for the evaluation of
A**B.

Examples:

1) Given A, B type real; I, J type integer. The mode of expression A*B-I+J
will be real because the dominant operand is type real. It is evaluated:

A*B-R1 real

Convert I to real

R1 -I-R2 real

Convert J to real

R2+J-.R3 real Evaluation completed

2-5

2) The use of parentheses may change the evaluation. A,B,I,J are defined
as above. A*B-(I-J) is evaluated:

integer

Convert R1 to real - ~

A*B-R3 real

real Evaluation completed

3) Given Cl,C2 type complex; Al,A2 type real. The mode of expression Al*
(Cl/C2)+A2 will be complex because its dominant operand is type complex.
It is evaluated:

c1/c2-R1 complex

Convert Al to complex

Al*R1 -R2 complex

Convert A2 to complex

R2+A2-R3 complex Evaluation completed

4) Consider the expression Cl/C2+(Al-A2) where the operands are defined as in
3 above. It is evaluated:

Al-A2-R1 real

Convert R 1 to complex - R2

complex

complex Evaluation completed

5) Mixed mode arithmetic with all standard types is illustrated by this example.

Given: c complex
D double
R real
I integer
L logical

and the expression C*D+R/I-L

2-6

2.4

MIXED MODE
REPLACEMENT
STATEMENT

The dominant operand type in this expression is type complex; therefore, the
evaluated expression \\ill be of mode complex. Evaluation:

Round D to a real and affix zero imaginary part

C*D - R 1 complex

Convert R to complex; convert I to complex

R/I - R2 complex

R2+R 1 - R3 complex

Convert L to complex

complex Evaluation completed

If the same expression is rewritten with parentheses as C*D+(R/I- L) the
evaluation proceeds:

Convert I to real

R/I -R 1 real

Convert L to real

R 1 -L - R2 real

Convert R2 to complex - R3

Round D to real and affix zero imaginary part

complex

complex Evaluation completed

The mode of an evaluated expression is determined by the type of the dominant
operand. This, however, does not restrict the types that identifier A may
assume. An expression of complex mode may replace A even if A is type
real. The following chart shows the A, E relationship for all the standard
modes.

2-7

ARITHMETIC REPLACEMENT STATEMENT A = E

A is an Identifier E is an Arithmetic Expression

¢ (f) is the Evaluated Arithmetic Expression

Complex Double Real Integer

Store real & Round 6 (f) to real. Store 6 (f) in real Convert 6 (f) to real
imaginary parts Store in real part part of A. Store & store in real part

Complex of ¢ (f) in real of A. Store zero zero in imaginary of A. Store zero in
& imaginary in imaginary part part of A. imaginary part of A.
parts of A. of A.

Discard imaginary Store </J(f) If ¢(f) is ± affix Convert 6 (f) to real.
part of <t>(f) (most & least ±0 as least Fill out least signif-

Double & replace it significant parts) significant part. icant half with binary
with ±0 according in A (most & least Store in A. most zeros or ones accord-
to real part of significant parts). & least significant ingly as sign of o (f) is
¢(f). parts. plus or minus. Store

in A, most and least
significant parts.

Store real part Round ¢ (f) to real Store ¢ (f) in A. Convert ¢(f) to real.

Real
of ¢(f) in A. & store in A. Least Store in A.
Imaginary part significant part of
is lost. ct> (f) is lost.

Truncate real part Truncate <t>(f) to Truncate ¢(f) to Store ¢ (f) in A.
of ¢(f) to INTEGER. INTEGEH & store INTEGER. Store

Integer Store in A. in A. in A.
Imaginary part is
lost.

If real part of If 6 (f)rfO, Same as for Same as for double

Logical ¢(f)/0, 1-A. store 1 in A. double at left. at left.
If real part of If ¢(f)=O, store
¢(f)=O, o- A. 0 in A.

2-8

When all of the operands in the expression E are of type logical, the
expression is evaluated as if all the logical operands were integers.

For example, if L1 , L2 , L3, L4 are logical variables, R is a real variable,
and I is an integer variable, then

will be evaluated as if the Li were all integers (0 or 1) and the resulting value
will be stored, as an integer, in I.

is evaluated as stated above, but the result is converted to a real (a floating
point quantity) before it is stored in R.

Examples:

complex

D A double
i ' 2

Ri , A3 real

Ii , A 4 integer

Li , A5 logical

(.905, 15.393) = (4.4, 2.1) * (3.0, 2.0) -
(3.3, 6.8)/(1.1, 3.4)

The mode of the expression is complex. Therefore, the result of the
expression is a two-word, floating point quantity. A1 is type complex
and the result replaces A1.

4.4000E 00 = (4.4, 2.1)

The mode of the expression is complex. The type of A3 is real;
therefore, the real part of c1 replaces A3.

2.lOOOE 00 = (4.4, 2.1)*(0.,-l.)

The mode of the expression is complex. The type of A3 is real; the
imaginary part of c1 replaces A3.

3 = 8.4/4.2 * (3.1-2.1) + 14 - (1*2.3)

The mode of the expression is real. The type of A4 is integer; the
result of the expression evaluation, a real, will be converted to an
integer replacing A4.

2-9

5) A2 = D1**2*(D2+(D3*D4))

+(D2*D1*D2)

4.96800000000000000000000E 01=
2.0D**2*(3.2D+(4.1D*l.OD))
+(3.2D*2.0D* 3.2D)

The mode of the expression is double. The type of A2 is double; the
result of the expression evaluation, a double precision floating quantity,
replaces A2.

1 = (4.4, 2.1) * 8.4-4.2 T 14

The mode of the expression is complex. Since A5 is type logical, an
integer 1 will replace A5 if the real part of the evaluated expression
is not zero. If the real part is zero, zero replaces A5.

2-10

LOGICAL/ RELATIONAL
AND MASKING EXPRESSIONS 3

AND REPLACEMENT STATEMENTS

3.1

LOGICAL
EXPRESSION

The general form of the logical/relational replacement statement is L=E,
where L is a variable of type logical and E may be a logical, relational,
or arithmetic expression.

A logical expression has the general form

0 1 op 0 2 op 0 3 . . .

The terms Oi are logical variables, arithmetic expressions or relational
expressions, and op is the logical operator .AND. indicating conjunction or
.OR. indicating disjunction.

The logical operator .NOT. indicating negation appears in the form:

.NOT. o1

The value of a logical expression is either true or false.

When an arithmetic expression appears as a term of a logical replacement
statement, the value of the expression is examined. If the value is non
zero, the term has the value TRUE. If the value is equal to zero, the term
has the value FALSE.

Logical expressions are generally used in logical IF-statements. (See
section 6.3)

Rules:

1. The hierarchy of logical operations is:

First
then
then

.NOT.

.AND.

.OR.

2. A logical variable or a relational expression is, in itself, a
logical expression. lf,,(1,.,(2 are logical expressions, then

3-1

3

4

.NOT . ..(1
,[' l .AND.~-2

LI .OR.,.z'2

are logical expressions. If,,{' is a logical expression, (,,C), ((£))
are logical expressions.

If _.<"1 , .=-(2 are logical expressions and op is .A1'.1D. or .OR. then,

-< 1 op op,-<: 2 is never legitimate.

.NOT. may appear in combination with .AND. or .OR. only as follows:

.AND •• NOT .

. OR .. NOT .

. AND. (.NOT. · · ·)

.OR. (.NOT. · · ·)

.NOT. may appear with itself only in the form .NOT. (.NOT. (.NOT.
Other combinations will cause compilation diagnostics.

5 If ,,(" 1, ~ 2 are logical expressions. the logical operators are defined
as follows:

.NOT. ~l
,,(_ l .AND. cL2
.L 1 .OR . ..("2

is false if and only if ol'." 1 is true
is true if and only if ~ 1 ,.,t"2 are both true

is false if and only ifo('.'.'1 ,.,<(" 2 are both false

Incorrect usages such as the following will cause compiler diagnostics.

A.GT.(B.AND.C)

10.LE.N. LE.100

Q.NOT .. OR.R

C .AND .. NOT .. NOT .B

The last expression is permissible in the form C.AND .. NOT.(.NOT.B)

Examples:

Logical Expressions

{The product A*B greater than lG.) .Al'm. (C equals 3.141519}
A*B .GT. 16 .. AND. C . EO. 3.141519

3-2

C-3.141519-Lz

{A(I) greater than O} .OR. {B(J) less than 0}
A(I) .GT. 0 .OR. B(J) .LT. 0

Is A(i)>O?

3-3

In the two examples below, all L 1 are of TYPE LOGICAL

(L2 .OR. .NOT. L3)

YES YES

L2 .OR. .NOT. L3 .AND. (.NOT. L6 .OR. L5)

Is Lz;lO?

Is Ls#O?

3-4

3.2

RELATIONAL
EXPRESSION A relational expression has the form:

Theq's are arithmetic expressions; op is an operator belonging to the set:

0Eerator Meaning

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE. Less than or equal to

A relation is true if q1 and q2 satisfy the relation specified by op. A

relation is false if q1 and q2 do not satisfy the relation specified by op.

Relations are evaluated as illustrated in the relation, p .EQ. q. This is
equivalent to the question, does p-q = O?

The difference is computed and tested for zero. If the difference is zero,
the relation is true. If the difference is not zero, the relation is false.
Relational expressions are converted internally to arithmetic expressions
according to the rules of mixed mode arithmetic. These expressions are
evaluated and compared with zero to determine the truth value of the
corresponding relational expression. When expressions of mode complex
are tested for zero, only the real part is used in the comparison.

Rules:

1 The permissible forms of a relation are:

2 ql op q2 op q3. · ·

q1 op q2 .AND. q2 op q3 .

by itself, in which case a non-zero value
is true and a zero value is false.

is not permissible

is the correct form

3 The evaluation of a relation of the form q1 op q2 is from left to
right. :11e relations q1 op q2, q1 op (q2), {q1) op q2, (q1) op (q2)
are equivalent.

3-5

3.3

MASKING
REPLACEMENT
STATEMENT

3.4

MASKING
EXPRESSIONS

Examples:

A .GT. 16.
R-Q(I) *Z .LE. 3.141592
B-C .NE. D+E

R(I) .GE. R(I-1)
K .LT. 16
I .EQ. J(K)

The general form of the masking replacement statement is M=E. The
masking statement is distinguished from the logical statement in the
following ways.

1. The type of M must be real or integer.

2. All operands in the expression E must be type real or integer. E
may contain functions as well as variable or constant operands.

Examples:

Given: All variables of type real or integer.

A(I) = B .OR .. NOT. C(l+2,J*K)
B =D .AND. Q
C(I,J) =.NOT. Z(K) .AND. (Ql .OR .. NOT. Q2)
TEST = CELESTE .AND. 7HECLIPSE
AB = D .OR. FUNC (X, T)

In a FORTRAN-63 masking expression 48-bit arithmetic is performed bit
by-bit on the operands within the expression. The operands must be type
real or integer only. Type integer includes octal and Hollerith constants.
If operands of other types are used, a diagnostic will occur.

Although the masking operators are identical in appearance to the logical
operators, their meanings are different. They are listed according to
hierarchy, and the following definitions apply:

.NOT.

.AND.

.OR.

complement the operand
form the bit-by-bit logical product of two operands
form the bit-by-bit logical sum of two operands

3-6

The operations are described below.

p v p .AND. v p . OR. v .NOT . p

1 1 1 1 0
1 0 0 1 0
0 1 0 1 1

0 0 0 0 1

Rules:

1 Let Bi be variables or constants whose types are real or integer or
masking expressions. Then the following are masking expressions .

. NOT. B 1

B1 .AND. B2

B 1 .OR, B 2

2 If B is a masking expression, then (B), ((B)) are masking expressions.

3 .NOT. may appear with .AND. or .OR. only as follows:

.AND .. NOT .

. OR. .NOT .

. AND. (.NOT. · · ·)

.OR. (.NOT. · · ')

4 Masking expressions of the following forms are evaluated from left
to right.

A .AND. B .AND. C
A .OR. B .OR. C ..

5 Masking expressions must not contain parenthetical arithmetic
expressions or statement functions.

6 A masking expression in a logical IF statement is interpreted as a
logical expression. The appearance of a masking expression in an
arithmetic IF will cause a diagnostic.

3-7

3.5

MULTIPLE
REPLACEMENT
STATEMENTS

Examples:

A1 7777000000000000 octa 1 constant

A2 0000000077777777 octal constant

B 0000000000001763 octal form of integer constant

c 2004500000000000 octal form of real constant

.NOT. A1

A1 .AND. C

A1 .AND. • NOT. C

B .OR •• NOT. Az

is 0000777777777777

is 2004000000000000

is 5773000000000000

is 7777777700001763

The multiple replacement statement is a generalization of the replacement
statements discussed earlier in this and the previous chapter, and its form is:

l]! = l]! = ... = l]! = l]! = expression
n n-1 2 1

The expression may be arithmetic, logical or masking. The l/!i are
variables subject to the following restrictions:

Arithmetic or Logical Statement: l]! 1 = EXP

If EXP is logical or arithmetic and:

If the variable l]! 1 is type complex, double, real, or integer,

then l]! 1 = EXP is an arithmetic statement.

If the variable l]! 1 is type logical, then If! 1 = EXP is a logical
statement.

Masking Statement: l]! = EXP
1

If EXP is a masking expression, l]! 1 must be a type real or integer
variable only.

The remaining n-1 l]! i may be variables of any type, and the multiple replace
ment statement replaces each of the variables If! 2, ... , l]! n with the value of
~' 1 in a manner analogous to that employed in mixed mode arithmetic statements.

3-8

Examples:

A
E,F
G
I
K

real
complex
double
integer
logical

The numbers in the examples
represent the evaluations of
expressions.

A= G = 3.1415926535897932384626D
3 .1415926535897932384626D-G

3.141592654

I =A= 4.6

A= I = 4.6

I =A= E = (10.2,3.0)

F =A= I= E =(13.4,16.2)

K =I = -14.6

I = K = -14.6

3-9

-A

4.6-A
4 -1

4 -1
4.0-A

10.2-E real
3.0-E imaginary

10.2-A
10 -1

13.4- E real
16.2- E imaginary
13 -1
13.0-A
13.0- F real
0.0- F imaginary

-14 - I
1-K

1-K
1-1

4.1

TYPE
DECLARATIONS

TYPE DECLARATIONS AND
STORAGE ALLOCATIONS

4

This chapter discusses how FORTRAN-63 allocates storage. The relation
between word structure (TYPE) and array length (DIMENSION, COMMON),
the methods for sharing storage (EQUIVALENCE) and the DATA statement
are explained.

The TYPE declaration provides the compiler with information on the structure
of variable and function identifiers. There are five standard variable types
(non-standard types are explained in Chapter 5). Type is declared by one of
the following statements:

Statement

TYPE COMPLEX List

TYPE DOUBLE List

TYPE REAL List

TYPE INTEGER List

TYPE LOGICAL List

Characteristics

2 words/ element

2 words/element

1 word/element

1 word/element

1 word/element

Floating point

Floating point

Floating point

Integer

Logical (non-dimensioned)

32 elements/word Logical (dimensioned)

A list is a string of identifiers separated by commas; subscripts are not
permitted. An example of a list is:

A,Bl,CAT,D36F,EUPHORIA

Rules:

1 The TYPE declaration is non-executable and must precede the first
executable statement in a given program.

2 If an identifier is declared in two or more TYPE declarations, a
compilation diagnostic will occur.

3 An identifier not declared in a TYPE statement will be an integer
if the first letter of the identifier is I, J, K, L, M, N; for any other
letter, it will be real.

4-1

4.2

DIMENSION

Examples:

TYPE COMPLEX

TYPE DOUBLE

TYPE REAL

TYPE INTEGER

TYPE LOGICAL

A147, RIGGISH, AT1LL2

TEEPEE,B2BAZ

EL, CAMINO, REAL, IDE63

QUID, PRO, QUO

GEORGE6

A subscripted variable represents an element of an array of variables.
Storage may be reserved for arrays by the non-executable statements
DIMENSION or COMMON.

The standard form of the DIMENSION statement is

DIMENSION V l' V 2 , ... ,V n

The variable names, V., may have 1, 2, or 3 integer constant subscripts
separated by commas, 1as in SPACE (5, 5, 5). Under certain conditions within
subprograms only, the subscripts may be integer variables. This is explained
in section 7.11.1.

The number of computer words reserved for a given array is determined by the
produd of the susbcripts in the subscript string, and the type of the variable. A
maximum of 215 -1 elements may be reserved in any given array. In the
statements

TYPE COMPLEX HERCULES

DIMENSION HERCULES (10, 20)

the number of elements in the array HERCULES is 200. Two words are used
to store a complex element; therefore, the number of computer words reserved
is 400. The argument is the same for TYPE DOUBLE. For REAL and INTEGER
the number of words in an array equals the number of elements in the array.

For subscripted logical variables, up to 32 bits of a computer word are used;
each bit represents an element of the logical variable array. The elements are
stored left to right in a computer word starting with the most significant bit
position. In the statements

TYPE LOGICAL XERXES

DIMENSION XERXES (5, 5, 5)

4-2

4.2.1

VARIABLE
DIMENSIONS

4.3
COMMON

the 125 elements in the array XERXES will occupy four sequential words
as shown below.

r32BITS--i

WORD~

WORD+l~

WORD+2~

WORD+3~

~29BITS~

When an array identifier and its dimensions appear as formal parameters
in a function or subroutine, the dimensions may be assigned through the
actual parameter list accompanying the function reference or subroutine call.
The dimensions must not exceed the maximum array size specified by the
DIMENSION statement in the calling program. See section 7 .11 for details
and examples.

A program may contain or call subprograms. Areas of common information
may be specified by the statement:

COMMON /I/ List / I/ List .

I is a common block identifier up to 8 characters in length which designates
either labeled or numbered common block. If the first letter is alphabetic,
the identifier denotes a labeled common block; the remaining characters
may be alphabetic or numeric. If the first letter is numeric, the remaining
characters must be numeric and the identifier denotes a numbered common
block. Leading zeros in numeric identifiers are ignored. Zero by itself is
an acceptable numbered common block identifier. The following are common
identifiers:

4-3

4.4

COMMON
BLOCKS

Labeled

AZ13

MAXIM US

z
XRAY

Numbered

1

146

3600

0

List is composed of simple variable identifiers and array identifiers
(subscripted or non-subscripted). If a non-subscripted array name appears
in the list, the dimensions are defined by the DIMENSION statement in that
program.

Arrays may also be dimensioned in the COMMON statement when a subscript
string appears with the identifier. If dimensioned in both, those in the
DIMENSION statement will be used and an informative diagnostic will be given.
Execution will not be deleted.

The common block identifier with or without the separating slashes may be
omitted for blank common. Blank common is treated as numbered common
by the compiler.

Examples:

COMMON A, B, C

COMMON// A, B, C, D

COMMON/BLOCKl/ A, B/1234/C(lO),D(l0,10),E(l0,10,10)

COMMON/BLOCKA/D(15), F(3,3), GOSH(2, 3, 4), Ql

The COMMON statement provides the programmer with a means of reserving
blocks of storage area that can be referenced by more than one subprogram.
The statement reserves both numbered and labeled blocks. Only labeled
common blocks may be preset; that is, data may be stored in labeled common
blocks by the DATA statement and is made available to any subprogram using
the appropriate labeled block.

If a subprogram does not use all of the locations reserved in a common block,
unused variables may be necessary in the COMMON statement to insure proper
correspondence of common areas.

MAIN PROG

SUB PROG

COMMON/SUM/ A, B, C

COMMON/SUM/E, F, G

In the above example, only the variables E and Gare used in the subprogram.
The unused variable F is necessary to space over the area reserved by B.

4-4

4.4.1

BLOCK LENGTH

Rules:

1 COMMON is non-executable and must precede the first
executable statement in the program. Any number of COMMON
statements may appear in a program section.

2 If TYPE, DIMENSION or COMMON appear together, the order is
immaterial.

3 Labeled common block identifiers are used only for block
identification within the compiler; they may be used elsewhere in
the program as other kinds of identifiers.

4 An identifier in one common block may not appear in another
common block. If it does the identifier is doubly defined.

5 The order of the arrays in a common block are determined by the
COMMON statement.

6 At the beginning of program execution, the contents of the common
area are undefined unless specified by a DATA statement.

Violations of rules 1and4 result in compiler diagnostics.

The length of a common block in computer words is determined from the
number and type of the list identifiers. In the following statements, the length
of the common block A is 12 computer words. The origin of the common
block is Q(l). (Q and Rare real variables and Sis complex).

COMMON/ A/Q(4), R(4), 8(2)

origin

4-5

Q(l)
Q(2)
Q(3)
Q(4)
R(l)
R(2)
R(3)
R(4)
S(l)
S(l)
8(2)
8(2)

block A

real part
imaginary part
real part
imaginary part

Examples:
MAIN PROG

[

TYPE COMPLEX C cc: MMON /rEST I c (2 0)/3 6/ A ,B ,Z

The length of TEST is 40 computer words.

The subprogram may re-arrange the allocation of words as in:

[

COMMON /TEST/ A(lO),G(lO),K(lO)
TYPE COMPLEX A

SUBPROGl

The length of TEST is 40 words. The first 10 elements (20 words) of the block,
represented by A, are complex elements. Array G is the next 10 words, and array
K is the last 10 words. Within the subprogram, elements of G will be treated as
floating point quantities; elements of K will be treated as integer quantities.

The length of the COMMON block must not be changed by the subprograms using the
block. The identifiers used within the block may differ as shown above.

The following arrangements are equivalent:

I TYPE DOUBLE A
) DIMENSION A(lO)
l COMMON A

I DIMENSION A(lO)
·i. TYPE DOUBLE A

COMMON A

I COMMON A

) DIMENSION A(lO)
TYPE DOUBLE A

I TYPE DOUBLE A
· COMMON A
l DIMENSION A(lO)

{ TYPE DOUBLE A
COMMON A(lO)

The label of a COMMON block is used only for block identification. The following
is permissible:

COMMON /A/A(10)/B/B(5,5) /C/C (5,5,5)

4-6

4.5

EQUIVALENCE The EQUIV ALEN CE statement permits variables to share locations in
storage. The general form is:

EQUIVALENCE (A,B, ...), (Al,Bl, ...), ...

(A,B, ...) is an equivalence group of two or more simple or singly subscripted
variable identifiers. A multiply subscripted variable can be represented by a
singly subscripted variable. The correspondence is:

A (i,j,k) is the same as A(the value of (i+I((j-l)+J(k-1)))

where i ,j ,k are integer constants; I and J are the integer constants appearing
in DIMENSION A (I,J,K). For example, in DIMENSION A(2,3,4), the element
A(l,1,2) is represented by A(7).

Example:

EQUIVALENCE is most commonly used when two or more arrays can share
the same storage locations. The lengths may be different or equal.

DIMENSION A(l0,10), 1(100)

EQUIVALENCE (A,I)

5 READ 10, A

6 READ 20, I

The EQUIVALENCE statement assigns the first element of array A and
array I to the same storage location. The READ statement 5 stores the A
array in consecutive locations. Before statement 6 is executed all operations
using A should be completed as the values of array I will be read into the
storage locations previously occupied by A.

Rules:

1 EQUIVALENCE is non-executable and must precede the first
executable statement in the program or subprogram.

2 If TYPE, DIMENSION, COMMON, or EQUIVALENCE appear together,
the order is immaterial.

4-7

3 Any full or multi-word variable, standard or non-standard type,
may be made equivalent to any other full or multi-word variable.
The variables may be with or without subscript.

Any partial word variable, standard logical or non-standard byte,
may be made equivalent to any type of partial, full, or multi-word
variable. The partial word variable must be unsubscripted.

4 The EQUIV ALEN CE statement does not rearrange common, but
arrays may be defined as equivalent so that the length of the
common block is changed. The origin of the common block must
not be changed by the EQUIVALENCE statement.

The following simple cases illustrate changes in block lengths
caused by the EQUIVALENCE statement.

Given: Arrays A and B
Sa = subscript of A
Sb = subscript of B

CASE I A, B both in COMMON

a) If A appears before B in the COMMON statement:

Sa 2: Sb is a permissible subscript arrangement
Sa< Sb is not

b) If B appears before A in the COMMON statement

Sa :S Sb is a permissible subscript arrangement
Sa > Sb is not

Block 1

origin- A (1)
A (2)
A (3)
A (4)
A (5)

B (1)
B (2)
B (3)
B (4)
B (5)
B (6)
B (7)

COMMON/1/ A(5), B (7)
EQUIVALENCE (A(4), B(3))

Statement EQUIVALENCE (A(3), B(4)) changes the origin of block 1. This is
permitted.

origin-A(l)
A(2)
A(3)
A(4)

4-8

B(l)-origin changed
B(2)
B(3)
B(4)
B(5)

4.6

DATA

CASE 11 A in COMMON, B not in COMMON (corresponds to CASE Ia)

Sb s Sa is a permissible subscript arrangement
Sb > Sa is not

Block 1

origin- A(l)
A(2)
A(3)
A(4)

B(l)
B(2)
B(3)
B(4)
B(5)

COMMON /1/A(4)
DIMENSION B(5)
EQUIVALENCE (A(3), B(2))

CASE III Bin COMMON, A not in COMMON (corresponds to CASE lb)

Sa s Sb is a permissible subscript
Sa > Sb is not

Block 1

origin -- B(l)
B(2)
B(3)
B(4)

A(l)
A(2)
A(3)
A(4)
A(5)

CASE IV A, B not in COMMON

COMMON/1/ B (4)
DIMENSION A (5)
EQUIVALENCE (B(2), A(l))

No subscript arrangement restrictions.

The programmer may assign constant values to variables in the source program
by using the DATA statement either by itself or with a DIMENSION statement. It
may be used to store constant values in variables contained in a labeled common
block.

DATA(I1=List), (I2=List), ...

I is an identifier representing a simple variable, array name, or a variable with
integer constant subscripts or integer variable subscripts.

List contains constants only and has the form

a1,a2, ... , k(b1,b2, ...), c1 ,c2 , ...

k is an integer constant repetition factor that causes the parenthetical list
following it to be repeated k times. If k is non-integer, a compiler diagnostic
occurs.

4-9

Rules:

1 DATA is non-executable and must precede the first executable
statement in any program or subprogram in which it appears.

2 When DATA appears with TYPE, DIMENSION, COMMON or
EQUIV ALEN CE statements, the order is immaterial.

3 DO loop-implying notation is permissible with the restriction that
the third indexing parameter, m 3 cannot appear. This notation may
be used for storing constant values in arrays.

DIMENSION GIB (10)

DATA ((GIB(I),I=l,10)=1. ,2. ,3. ,7(4.32))

ARRAY GIB 1.
2.
3.
4.32
4.32
4.32
4.32
4.32
4.32
4.32

4 Variables in blank or numbered common or variable dimensioned
arrays may not be preset in a DAT A statement. Violation of this
rule causes an assembly listing C error.

5 Either unsigned constants or constants preceded by a minus sign
may be used. Octal constants prefixed with minus signs will be stored
in complement form; use of .NOT. will cause a compiler diagnostic.

6 In the DATA statement, the type of the constant stored is determined
by the structure of the constant rather than by the identifier in the
statement. In DATA (A=2), an integer 2 replaces A, not a real 2 as
might be expected from the form of the identifier.

7 There should be a one-one correspondence between the identifiers
and the list. This is particularly important in arrays. For instance

COMMON/BLK/ A(3), B

DATA (A= 1. , 2. , 3. , 4.)

The constants 1. , 2. , 3. are stored in array locations A, A+l,
A+2; the constant 4. is stored in location B. If this occurs uninten
tionally, errors may occur when B is referred to elsewhere in the
program.

4-10

COMMON / TUP / C(3)

DATA (C = 1. , 2.)

The constants 1. , 2. are stored in array locations C and C+ 1; the
contents of C(3), that is, location C+2 are not defined.

When the number of list elements exceeds the range of the implied
DO, the excess list elements are stored in consecutive locations
starting with the first location specified in the DO-loop.

DATA ((A(I), I=l,5) =1. , ... , 10.)

The excess values 6 through 10. are stored in locations A through A + 4.

8 Non-standard type variables are permitted. However, for a byte
size variable, the constant value in the list must fill the entire computer
word.

TYPE OTHER5 (/6)A

DIMENSION A(S)

DAT A (A=4142434445464761B)

9 Use of DATA with a logical variable constitutes a special
case, as shown in the following example.

Given: TYPE LOGICAL L
COMMON / NETWORK / L (4,8)

Store the following matrix of logical elements:

1 1 1 0 1 0 1 1
1 0 1 1 0 1 0 0

L=
1 1 1 1 0 0 1 1
1 0 1 0 0 0 1 0

Arrays are stored by columns.

Elements of logical arrays are stored 32 bits to the word, left to right,
left justified with zero fill.

4-11

The matrix fits into one computer word as follows:

111 110 101 111 011 010 000 100 101 110 100 0. . . 0

and its octal equivalent is

76573 20456400000

Therefore, the appropriate DATA statement is:

DATA (L = 7657320456400000B)

Examples:

DATA (LEDA=15), (CASTOR=16.0), (POLLUX=84.0)

LEDA 15

CASTOR 16.0

POLLUX 84.0

DATA (A(l,3) = 16.239)

ARRAY A

A(l,3) 16.239

DIMENSION B(lO)
DATA (B = 77B, -77B, 4(776B, -774B))

ARRAY B 77B
-77B
776B

-774B
776B

-774B
776B

-774B
776B

-774B

4-12

COMMON /HERA/ C(4)
DATA (C = 3.6, 3(10.5))

ARRAY C

TYPE COMPLEX PROTEUS
DIMENSION PROTEUS (4)

3.6
10.5
10.5
10.5

DATA (PROTEUS= 4((1.0, 2.0)))

ARRAY PROTEUS 1.0

DIMENSION MESSAGE (3)

2.0
1.0
2.0
1.0
2.0
1.0
2.0

DATA (MESSAGE= 3HWHO, 2HIS, 6HSYLVIA)

ARRAY MESSAGE WHO

4-13

IS
SYLVIA

TYPE-OTHER DECLARATION 5

FORTRAN-63 allows eight distinct modes of arithmetic. The mode and the
size of the operand is fixed for the five standard types - real, integer,
double, complex and logical (TYPE Declarations, 4.1). The routines or
instructions required to handle these arithmetic modes are provided with
the system.t For further detail see Appendix E, part A.

The programmer can define up to three modes of non-standard arithmetic
arbitrarily identified as types 5, 6, 7. A non-standard type is arbitrary
both in mode and execution and may specify multi-word elements (operands)
or partial word elements, called bytes.

The mode and structure of the operand is defined in the TYPE-other declara
tion. Execution of all expressions containing non-standard variables must
be defined in routines supplied by the user (Appendix E, part B). tt Examples
of non-standard operations with user routines are given at the end of Appendix
E.

Non-standard types may be used to introduce a new type of arithmetic by
giving new meaning to the basic arithmetic operators. In a standard arithmetic
expression, a+ symbol has the fixed interpretation "to add". In a non
standard expression, the programmer may, for example, define+ to mean
"shift" or "cube".

Non-standard types also may be used to extend precision up to seven com
puter words or may specify only part of a word in arithmetic operations.

t Tin• following exponentiation routines are provided:

real**real integer** integer double** double
real** integer integer** double double** complex
rt· al** double integer** complex double** real
real** complex integer**rcal double** integer

complex** complex
complex **real
complex** double

}
complex** integer

These exponentiation routines

wi II give an error message when
called.

tt l;or exponentiatiun, if the exponent is an integer constant 1-8, the value is

calculated bv successive multiplications which may or may not be calculated
in a separate subroutine.

5-1

5.1

TYPE-OTHER
DECLARATIONS

Standard Non-Standard

Number of Types

Arithmetic Mode and
Element Structure

5

Fixed

3

Arbitrary (defined in
TYPE-other declarations)

5

6

7

Arithmetic operations fixed (defined in
system routines)

arbitrary (defined in
user-provided routines)

The steps in solving a non-standard operation are:

1. Define a problem

2. Write and compile a program to solve the problem

a. Define non-standard variables in TYPE-other declarations
(Chapter 5)

3. Analyze the calls to subroutines generated by the compiler
(Appendix E, Part A)

4. Provide a subroutine with the calls as entry points; the subroutine will
perform the operations desired by the programmer (Appendix E,
Part B

5. Compile and execute the program and subroutine (Chapter 10,
Deck Structure

The TYPE-other declaration provides the compiler with information regarding
the structure of the non-standard identifier that names variables and functions.

The general form of a non-standard declaration is:

TYPE name# (/b) List
or

TYPE name# (w) List

name# is an arbitrary alphanumeric identifier, 2-8 characters. The last
character, #, must be one of the type indicators 5. 6, or 7.

5-2

(/b) specifies the number of bits in a partial word element. b must be
a divisor of 48; if it is not, a compilation diagnostic will be given.

TYPE BYTE5 (/6) A

TYPE PARTS6 (/3) MAX

A is a 6-bit element

MAX is a 3-bit element

(w) specifies the number of words in a multi-word element. w must be
in the range 1-7; otherwise, a compilation diagnostic will be given.

TYPE DOUBLE7 (4) OX OX is a 4-word element

List is a string of simple variable identifiers, or array names, separated
by commas. Identifiers have w words per element orb bits per
element. Both multi-word element and partial word element identifiers
may be dimensioned in DIMENSION or COMMON statements.

An identifier is doubly defined if it occurs in more than one TYPE
other declaration:

TYPE BYTE5 (3) A,B)
~ (this causes a compilation diagnostic.)

TYPE BYTE6 (/2) A, B J
When simple partial word elements are specified, L'le leftmost b characters of
a word are used. When partial word element arrays are specified, the elements
are in consecutive locations, left to right, in the word. The number of elements
in a word is 48/b.

Example:

DIMENSION A (13)'

TYPE BYTE5 (/8) A, B

8 bits

A(l) IA(2) I A(3) I A(4) I A(5) I A(6) I

I A(7) IA(8) IA(9) IA(lO) IA(ll) IA(l2) I

I A(13)1

5-3

word 1

word 2

word 3

word 4

5.2

EVALUATION OF
NON-STANDARD
ARITHMETIC
EXPRESSIONS

A program may contain a maximum of three non-standard types (type 5,
6, 7). Two or more TYPE-other declarations of the same name and type
with multi-word elements of different lengths may appear in the same
program.

Examples:

TYPE SAM5 (6) A,B
TYPE SAM5 (3) C ,D

TYPE LIEBE6 (6) E ,F
TYPE LIEBE6 (/5) G,H

TYPE PATTl7 (1) M

TYPE BARBl7 (3) B

will compile correctly; the programmer
must provide a way to determine the
element length of variables which are
the same type.

will cause a compilation diagnostic;
only full word elements may be used.

will cause a compilation diagnostic;
the name must be the same.

1. The translation of a non-standard arithmetic expression by FORTRAN-63
follows the same rules of precedence as for standard arithmetic ex
pressions: exponentiation, multiplication-division, addition-subtraction.

2. The scanning order of the expression is left to right.

3. The non-standard types (5, 6, 7) may not be mixed within an expression.
Non-standard variables of the same type but with different element lengths
may be mixed with each other.

4. Any one of the types 5, 6, 7 may be mixed with any of the standard types
in arithmetic expressions.

5. The non-standard type dominates the mode of the evaluated expression.

6. A non-standard type specifying byte arithmetic may not participate in ex
ponentiation unless the exponent is an integer constant 1-8.

7. If A or B or both are of non-standard multi-word type (and Bis not an integer
constant 1-8), the programmer must provide subroutines for the evaluation
of A**B.

For further information on non-standard types in mixed mode arithmetic, see
Mixed Mode Arithmetic Expression, in Chapter 2.

5-4

5.3

SAMPLE
PROGRAM

PROGRAM

RANGE

ENTRY POINTS

EXTERNAL SYMBOLS

00000+

00002+
00002+ 75 0

75 4

The following is a simple example of what the programmer would encounter
using non-standard variables in a non-standard arithmetic operation.

OTHER

FWA
00000

00002

00001
00002
00003
00004
00005
00006
00007
00010
00011

Step 1 Define problem
Add B to A by using a multiply operator, * . Store the value in
C and print value in the form: C=

Step 2 Define variables
A and B are non-standard and are defined in the TYPE-other
declaration:

TYPE OTHER5 (1) A,B

C is TYPE REAL

Step 3 Write a FORTRAN program and compile it

PROGRAM OTHER
2 TYPE REAL C
3 TYPE OTHERS (1) A,B
4 A=4. 1 $ B=S.4 $ C=A*B
5 PRINT l ,C
1 FORMAT (2HC=El4.8)

END

Step 4 Analyze the calls to subroutines generated by the CODAPl
assembler.

!DENT OTHER
LWA+l
00026

OTHER

Q1Q00510
Q1Ql0550
Q1Q00550
Q1Q04550
Q1Q10510
Q8QINGOT
Q8QENGOT
Q8QGOTTY
Q8QENTRY
FORMAT. BSS 2

00002+ ENTRY OTHER
ENDING. BSS 0

00002+ OTHER SLJ OTHER
00023+ RT J INITIAL.

5-5

PROGRAM OTHER

00003+ 75 4 XOOOOl .4 CALL QlQ00510 Load accumulator with 4.1
00 0 00024+ 0 =02003406314631463

00004+ 75 4 X00002 + CALL Q1Ql0550 Store accumulator in A
00 0 00021+ 0 A

00005+ 75 4 XOOOOl + CALL QlQ00510 Load accumulator with 5.4
00 0 00025+ 0 =02003531463146315

00006+ 75 4 X00002 + CALL Q1Ql0550 Store accumulator in B
00 0 00020+ 0 B

00007+ 75 4 X00003 + CALL QlQ00550 Load accumulator with A
00 0 00021+ 0 A

00010+ 75 4 X00004 + CALL QlQ04550 Multiply A by B
00 0 00020+ 0 B

00011+ 75 4 X00005 + CALL Q1Ql0510 Store product in C
00 0 00022+ 0 c

00012+ 04 0 00000+ .5 ENQ .. l
10 0 00063 ENA +51

00013+ 75 4 X00006 + RTJ Q8QINGOT
00 0 00000 0 0

00014+ 75 4 XOOOlO + RTJ Q8QGOTTY
00 0 00016+ 0 GGOOOOO.

00015+ 00 0 00000 0 0
01 0 00022+ l c

00016+ 75 4 XOODD7 GGOOOOO. RTJ Q8QENGOT
50 0 00000

00000+ ORGR FORMAT.
00000+ 34 0 27063 .. l BCD 2(2HC=El4.8)

13 6 50104
00001+ 73 l 07420

20 2 02020
00017+ ORGR *

00017+ 75 0 00002+ SLJ ENDING.
50 0 00000

00020+ 00 0 00000 B OCT 0
00 0 00000

00021+ 00 0 00000 A OCT 0
00 0 00000

00022+ 00 0 00000 c OCT 0
00 0 00000

00006 EXT Q8QINGOT
00007 EXT Q8QENGOT
00010 EXT Q8QGOTTY
00011 EXT Q8QENTRY
00023+ BEGIN. BSS 0
00023+ 75 0 xooo 11 INITIAL. SLJ Q8QENTRY

75 0 00023+ SLJ BEGIN.
00024+ 20 0 34063

14 6 31463
00025+ 20 0 35314

63 1 46315
00000 END OTHER

5-6

PROGRAM OTHER

NO DOUBLY DEFINED
NO UNDEFINED SYMBOLS
NO ASSEMBLY ERRORS

00021
00020
00023
00022
00002
00000
00016
00023
00002
00001
00003
00004
00005
00002
00007
00011
00010
00006
00003
00012
00000

NULLS
SYMBOLIC REFERENCE TABLE

A 00004 00007
B 00006 00010
BEGIN. 00023
c 000 l l 00015
ENDING. 00017
FORMAT. 00017
GGOOOOO. 00014
I NI TI AL. 00002

OTHER 00002
QlQ00510 00003 00005
QlQ00550 00007
QlQ04550 00010
Q1Ql0510 00011
Q1Ql0550 00004 00006
Q8QENGOT 00016
Q8QENTRY 00023
Q8QGOTTY 00014
Q8QINGOT 00013
.4
.5
.. 1 00012

.4 .5
21 SYMBOLS

Step 5 Provide subroutines with the calls as entry points to perform
the desired operation.

!DENT JOE

ENTRY QlQ00510
Q1Q00510 SLJ **

LDA *
+ ARS 24

INA -1
+ SAU *+1

+ LOA 7 **
SLJ QlQ00510
ENTRY QlQ10550

Q1Ql0550 SLJ **
STA TEMP

+ LOA *-1
ARS 24

+ INA -1
SAL *+l

5-7

+ LOA TEMP
STA 7 **
SLJ Q1Q10550
ENTRY Q1Q00550

QlQ00550 SLJ *''(
LDA *

+ ARS 24
INA - 1

+ SAU ,'(+ 1

+ LDA 7 **
SLJ Q1Q00550
ENTRY QlQ04550

Q1Q04550 SLJ **
STA TEMP

+ LDA *-1
ARS 24

+ INA -1
SAL *+1

+ LDA TEMP
FAD 7 **
SLJ Q1Q04550
ENTRY Q1Ql0510

Q1Q10510 SLJ **
STA TEMP

+ LDA *-1
ARS 24

+ INA -1
SAL *+l

+ LDA TEMP
STA 7 *''(
SLJ Q1Q10510

TEMP DEC

END

5-8

6.1

STATEMENT
IDENTIFIERS

CONTROL STATEMENTS 6

Program execution normally proceeds from one statement to the statement
immediately following it in the program. Control statements can be used to
alter this sequence or cause a number of iterations of a program section.

Control may be transferred to an exel':.ih:,ie statement only; a transfer to a
non-executable statement will result in a program error. During assembly
the error will be indicated.

Iteration control provided by the DO statement causes a predetermined sequence
of instructions to be repeated any number of times with the stepping of a simple
integer variable after each iteration.

Statements are identified by numbers which can be referred to from other
sections of the program. A statement number used as a label or tag appears
in columns 1 through 5 on the same line as the statement on the coding form.
The statement number N may lie in the range 1-s N:-S 99999. An identifier up
to 5 digits long may occupy any of the first five columns; blanks are squeezed
out and leading zeros are ignored, 1, 01, 001, 0001, are identical.

Any statement label referenced in a control statement (with the exception of
the Assigned GO TO) which does not appear as the label of an executable state
ment will appear in the category UNDEFINED SYMBOLS following the assembly
listing. The number will be preceded by a period. If a reference is made to
an unlabeled FORMAT statement, the label will appear as a number preceded
by two periods.

If two or more executable statements have the same statement identifier, the
label will appear in the category DOUBLY DEFINED following the assembly
listing. The label will be preceded by a period. Doubly defined labels on
FOB.MAT statements will appear as a number preceded by two periods.

Examples:

UNDEFINED SYMBOLS
DOUBLY DEFINED

6-1

.20

.399
.15
.3

6.2

GO TO
STATEMENTS l'nconditional transfer of control is provided by GO TO statements.

UNCONDITIONAL
GO TO GO TO n

ASSIGNED
GO TO

ASSIGN

This statement causes an unconditional transfer to the statement labeled n;
n is a statement idcntifie r.

GO TO m, (n1,n2, nm)
This statement acts as a many-branch GO TO. m is an integer variable
assigned an integer value ~ in a preceding ASSIGN statement. The ni are
statement numbers. Although a parenthetical list need not be present, it
should appear when the statement is used in a DO-loop.

The comma after m is optional when the list is omitted. m cannot be the
result of a computation. No compiler diagnostic is given if m is computed,
but the object code will be incorrect.

STATEMENT ASSIGN...4 TO m

COMPUTED

This statement is used with the Assigned GO TO statement.
,4 is a statement number, m is a simple integer variable.

ASSIGN 10 TO LS\\'TCH

GO TO LS\\'TCH,(5,10,15,20)

Control will transfer to statement 10.

GO TO GO TO (n1 ,n2 ,.

.~),i

6-2

6.3

IF STATEMENTS

THREE BRANCH IF
(ARITHMETIC)

TWO BRANCH IF
(LOGICAL)

This statement acts as a many-branch GO TO where i is preset or computed
prior to its use in the GO TO.
The ni are statement numbers and i is a simple integer variable. If i-S 1, a
transfer to n1 occurs; if i2:m, a transfer to nm occurs. Otherwise, transfer
is to n ..

1

For proper operations, i must not be specified by an ASSIGN statement. No
compilation diagnostic is given for this error, but the object code will be
incorrect.

!SWITCH= 1
GO TO (10,20,30),ISWITCH

10 JSWITCH = !SWITCH + 1
GO TO (11,21,31),JSWITCH

Control will transfer to statement 21.

Conditional transfer of control is provided by the two- and three-branch IF
statements, the status of sense lights or switches.

IF (A) n1 ,n2 ,n3
A is an arithmetic expression and the ni are statement numbers.
This statement tests the evaluated quantity A and jumps accordingly.

A<O
A=O
A> 0

jump to statement n1
jump to statement n2
jump to statement n3

In the test for zero, +O= -0. When the mode of the evaluated expression is
complex, only the real part is tested for zero.

IF(A*B-C*SINF(X))10,10,20
IF(I)5,6, 7
IF(A/B**2)3,6,6

IF (L) n1,n2
L is a logical, relational, or arithmetic expression or any legal combination of
the three. A masking expression will be interpreted as logical. The ni are
statement numbers.

6-3

SENSE LIGHT

The evaluated expression is tested for true (non-zero) or false (zero). If L is
true jump to statement n1. If L is false jump to statement n2 .

IF(A .GT. 16 .. OR. I .EQ.0)5,10
IF(L)l,2
lF(AxB-C)l,2
IF(A"B/C .LE. 14.32)4,6

SENSE LIGHT i

(L is TYPE LOGIC.-\L)
(A"'B-C is arithmetic)

The statement turns on the sense light i. SENSE LIGHT 0 turns off all sense
lights. i may be a simple integer variable or constant (1 to 4).

IF (SENSE LIGHT i)n1 ,n2
The statement tests sense light i. If it is on, it is turned off and a jump occurs
to statement n1. If it is off, a jump occurs to statement n2 . i is a sense light
and the ni are statement numbers. i may be a simple integer variable or
constant.

IF(SENSE LIGHT 4)10,20

SENSE SWITCH IF(SENSE SWITCH i)n1 ,n2

6.4

FAULT CONDITION
STATEMENTS

If sense switch i is set (on). a jump occurs to statement n1. If it is not set
(off), a jump occurs to statement n2 ; i may be a simple integer variable or
constant.

In the 1604 1:s i :S 48 (CO OP Monitor function)

N=5
IF(SENSE SWITCH N)5, 10

At execute time, the computer is set to interrupt on divide, overflow or
exponent fault.

IF DIVIDE CHECK n1 ,n2

IF DIVIDE FAULT n1 ,n2

The above statements are equivalent. A divide fault occurs following division
by zero. The statement checks for this fault; if it has occurred, the indicator
is turned off and a jump to statement n1 takes place. If no fault exists, a
jump to statement n2 takes place.

6-4

6.5

DO STATEMENT

6.5.1

DO LOOP
EXECUTION

IF EXPONENT FAULT n1 ,n2
An exponent fault occurs when the result of a real or complex arithmetic
operation exceeds the upper limits specified for these types. Results that are
less than the lower limits are set to zero without indication. This statement is
therefore a test for floating-point overflow only. If the fault has occurred, the
indicator is turned off, and a jump to statement n1 takes place. If no fault
exists a jump to statement n2 takes place.

IF OVERFLOW FAULT n1,n2
An overflow fault occurs when the magnitude of the result of an integer sum or
difference exceeds 247 -1. This fault does not occur in division and it is not
indicated in multiplication. If the fault occurs, the indicator is turned off and a
jump to statement n1 takes place. If no fault exists, a jump to statement n2
takes place.

DO n i = m 1,m2 ,m3
This statement makes it possible to repeat groups of statements and to change
the value of a fixed point variable during the repetition. n is the number of the
statement ending the DO loop. i is the index variable (simple integer). The
mi are the indexing parameters; they may be unsigned integer constants or
simple integer variables. The initial value assigned to i is m 1, m 2 is the
largest value assigned to i, and m 3 is the amount added to i after each DO
loop is executed. If m 3 does not appear, it is assigned the value 1.

The DO statement, the statement labeled n, and any intermediate statements
constitute a DO loop. Statement n may not be an IF or GO TO statement or
another DO statement. See Transmission of Arrays section and DA TA
Statement section for usage of implied DO loops.

The initial value of i, m 1, is compared with m 2 before executing the DO loop
and, if it does not exceed m 2, the loop is executed. After this step, i is in
creased by m 3. i is again compared with m 2 ; this process continues until i
exceeds m 2 as shown below. Control then passes to the statement immediately
following n, and the DO loop is satisfied. Should m 1 exceed m2 on the initial
entry to the loop, the loop is not executed and control passes to the next
statement.

6-5

6.5.2

DO NESTS

EXECUTE STATE
MENTS IN LOOP
INCLUDING
STATEMENT N.

When the DO loop is satisfied, the index variable i is no longer well defined. If
a transfer out of the DO loop occurs before the DO is satisfied, the value of is
preserved and may be used in subsequent statements.

When a DO loop contains another DO loop, the grouping is called a DO nest. The
last statement of a nested DO loop must either be the same as the last statement
of the outer DO loop or occur before it. If D1 ,D2, ... Dm represent DO state
ments, where the subscripts indicate that D1 appears before D2 appears before
D3 , et cetera, and n1,n2 , ... ,nm represent the corresponding limits of the Di,
then ~ must appear before ~-l ... n2 must appear before n1.

6-6

Examples:

DO loops may be nested in common with other DO loops:

D1 Di

E [D, c [D2 2

D3
n2

n1=n2 n3
n2

[D3

[D' ns
nl

n4
nl

DO 1 I= 1,10,2 DO 100 L=2,LIMIT DO 5 I=l,5
DO 5 J=I,10
DO 5 K=J,15

DO 2 J=l,5 DO 10 1=1,10
DO 10 J=l,10

5 CONTINUE

DO 3 K=2,8
10 CONTINUE

3 CONTINUE
DO 20 K=Kl,K2

2 CONTINUE
20 CONTINUE

DO 4 L=l,3
100 CONTINUE

4 CONTINUE

1 CONTINUE

6-7

6.5.3

DO LOOP
TRANSFER

6.5.4

In a DO nest, a transfer may be made from one DO loop into a DO loop that
contains it; and a transfer out of a DO nest is permissible. The special case
is transferring out of a nested DO loop and then transferring back to the nest.

In a DO nest:

If the range of i includes the range of j and a transfer out of the range of
occurs, then a transfer into the range of i or j is permissible.

In the following diagram, EXTR represents a portion of the program outside
of the DO nest.

[
out

in

in

DO PROPERTIES 1) The indexing parameters m 1,m2,m3 are either unsigned integer constants
or simple integer variables. Subscripted variables and negative or zero
integer constants will cause a diagnostic.

2) The values of m 2 and m3 may be changed during the execution of the DO
loop.

3) The indexing parameters m 1 and m 2, if variable, may assume positive,
negative or zero values.

4) i is initially m 1. As soon as i exceeds m 2, the loop is terminated.

5) DO loops may be nested 50 deep.

6-8

6.6

CONTINUE

6.7

PAUSE

6.8

STOP

6) The value of a replacement statement outside or within a DO-loop should
not exceed 215 -1 if the replacement variable is the index variable for the
DO-loop and a second or third variable subscript in a double or triple
dimension array.

J = 2525252525252526B

DO 2 J = 1, 3
DO 2 I = 1, 3

:3 !ARRAY (I,J) = 1

The indexing of !ARRAY is miscalculated since J was previously assigned
a value exceeding 215-1.

CONTINUE

The CONTINUE statement is most frequently used as the last statement of a
DO loop to provide a transfer address for IF and GO TO instructions that are
intended to begin another repetition of the loop. If CONTINUE is used else
where in the source program, it acts as a do-nothing instruction; and control
passes to the next sequential program statement.

PAUSE

PAUSE n

n is an octal number without a B suffix. PAUSE n halts the computer with n
displayed in the accumulator register on the console. When the START key on
the console is pressed, program execution proceeds with the statement imme
diatelyfollowingPAUSE. Although n is octal, a B suffix will cause a diagnostic.

STOP

STOP n

n is an octal number without a B suffix. STOP n halts the computer with n in
the accumulator register displayed on the console. When the START key on the
console is pressed, an exit will be made to the COOP MONITOR. STOP
(n omitted) causes immediate exit to monitor. AB suffix will cause a diagnostic
if used with n.

6-9

6.9

END END

END marks the physical end of a program or subprogram. It is executable in
the sense that it will effect return from a subprogram in the absence of a
RETURN. When used in a subprogram where it is immediately preceded by a
transfer statement such as RETURN, GO TO, it marks the physical end of the
subprogram.

The END statement may include the name of the program or subprogram which
it terminates. This name, however, is ignored.

6-10

FUNCTIONS AND SUBPROGRAMS 7

7.1

MAIN PROGRAMS
AND
SUBPROGRAMS

7.2

FUNCTION
SUBPROGRAM

Sets of instructions may be written as independent subroutines or function
subprograms which can be referred to by the main program. The mode of
a function subprogram is determined by the name of the subroutine in the
same manner as variable modes are determined. A function subprogram
must have at least one parameter and may have as many as 63; it returns
a single value.

Subroutine subprogram names are not classified by mode. They may have,
none or from one to 63 parameters and may return one value, several
values, or no value. The name of a function or subroutine must be unique
within that subroutine or function.

A main program may be written with or without references to subprograms.
In all cases, the first statement must be of the following form where name
is an alphanumeric identifier, 1-8 characters. The first character must be
alphabetic; the remaining characters may be alphabetic or numeric.

PROGRAM name

A main program may refer to both subroutines and functions which are
compiled independently of the main program. A calling program is a main
program or subprogram that refers to subroutines and functions.

In a PROGRAM statement, if the name is followed by parameters, the
program is treated as a subroutine except the name will become the transfer
name on the transfer (TRA) card.

This statement is used to pass parameters to overlays and segments.
(COOP Monitor/Programmer's Guide, publication No. 530a.)

A function name is constructed and its type determined in the same way as
a variable identifier. A function together with its arguments may be used
any place in an expression that a variable identifier may be used.

7-1

A function reference is a call upon a computational procedure for the
return of a single value associated with the function identifier. This pro
cedure may be defined by a single statement in the program (arithmetic
statement function); it may be defined in the compiler (library function); or
it may be defined in a multi-statement subprogram compiled independently
of a main program (function subprogram).

The name of a function subprogram may occur as an operand in an arithmetic
statement. The function reference must supply the function with at least one
argument and it may contain up to 63. The form of the function reference is:

F(p,p2, ... p) 1Sn:S6:3
1 n

F is the function name and Pi are function arguments or actual parameters.
The corresponding arguments appearing with the function name in a function
definition are called formal parameters. Because formal parameters are
local to the subprogram in which they appear, they may be the same as
variable names appearing in another subprogram.

The first statement of function subprograms must have the form:

FUNCTION F(p ,p2 , ... p) l:<c~nS63
1 n

F is the function name, and the Pi are formal parameters.

These parameters may be array names, non-subscripted variables, or names
of other function or subroutine subprograms.

Rules:

1 The type of the function is determined from the naming conventions

specified for variables in Chapter 4. (TYPE Declarations.)

2 The name of a function must not appear in a DIMENSION statement.
The name must appear, however, at least once as any of the following:

The left-hand identifier of a replacement statement

An element of an input list

An actual parameter of a subprogram call

3 No element of a formal parameter list may appear in a COMMON,
EQUIVALENCE, DATA, OR EXTERNAL statement within the
function subprogram. If it does, a compiler diagnostic results.

4 When a formal parameter represents an array, it should be declared
in a DIMENSION statement within the function subprogram. If it is
not declared, only the first element of the array will be available to
the function subprogram.

7-2

5 In referring to a function subprogram the following forms of the
actual parameters are permissible:

arithmetic expression

constant or variable, simple or subscripted

array name

function reference

subroutine

When the name of a function subprogram appears as an actual
parameter, that name must- also appear in an EXTERNAL statement
in the calling program. Since a function must always return a single
value, it may appear as one parameter or two parameters:

1) two parameters

FUNCTION PULL (X,Y)

B=X(Y)

Function Subprogram Reference

A= PULL (SINF ,X)

2) one parameter

FUNCTION PULL (X)

B=X

Function Subprogram Reference

A=PULL (SINF(X))

7-3

7.3

LIBRARY
FUNCTIONS

When a subroutine appears as an actual parameter, the subroutine
name may appear alone or with a parameter list. When a subroutine
appears with a parameter list, the subroutine name and its param
eters must appear as separate actual parameters:

FUNCTION PULL (X,Y,Z)

CALL X(Y,Z)

Subroutine Subprogram Reference

A=PULL(DIS,A,B)

6 Logical expressions may not be actual parameters.

7 Actual and formal parameters must agree in order, number and
type.

8 Functions must have at least one parameter.

Function subprograms that are used frequently have been written and stored
in a reference library and are available to the programmer through the
compiler.

FORTRAN-63 contains the standard library functions available in earlier
vcrs ions of FORTRAN. A list of these functions is in Appendix C. When one
appears in the source program, the compiler identifies it as a library
function and generates a special calling sequence within the object program.

In the absence of a TYPE declaration, the type of the function identifier is
determined by its first letter. However, for standard library functions the
modes of the results have been established through usage. The compiler
recognizes the standard library functions and associates the established
types with the results.

For example, in the function identifier LOGF, the firstletter, L, would normally
cause that function to return an integer result. This is contrary to established
FORTRAN usage. The compiler recognizes LOGF as a standard library
function and permits the return of a real result.

7-4

7.4

EXTERNAL
STATEMENT When the actual parameter list of a given function or subroutine reference

contains a function or subroutine name, that name must be declared in an
EXTERNAL statement. Its form is:

EXTERN AL identifier 1, identifier 2 , ..

Identifier i is the name of a function or subroutine. The EXTERNAL statement
must precede the first executable statement of any program in which it
appears. When it is used, EXTERNAL always appears in the calling program;
it should not be used with arithmetic statement functions. If it is, a compiler
diagnostic is given.

Examples:

1) Function Subprogram

FUNCTION GREATER (A,B)

IF (A.GT.B) 1,2

1 GREATER=A-B

RETURN

2 GREATER=A+B

END

Calling Program Reference

Z(I,J)=F l+ F2-GREATER(C-D,3. *I/J)

2) Function Subprogram

FUNCTION PHI(ALF A, PHI2)

PHI=PHI2(ALF A)

END

Calling Program Reference

EXTERNAL SINF

C=D-PHI(Q(K) ,SINF)

From its call in the main program, the formal parameter
ALF A is replaced by Q(K), and the formal parameter PHI2
is replaced by SINF. PHI will be replaced by the sine of Q(K).

7-5

7.5

STATEMENT
FUNCTIONS

3) Function Subprogram

FUNCTION PSYCHE (A,B,X)

CALLX

PSYCHE= A/B*2.*(A-B)

END

Function Subprogram Reference

EXTERNAL EROS

R=S-PSYCHE (TLIM, ULIM, EROS)

In the function subprogram, TLIM, ULIM replaces A,B. The
CALL X is a call to a subroutine named EROS. EROS appears
in an EXTERNAL statement so that the compiler recognizes
it as a subroutine name rather than a variable identifier.

4) Function Subprogram

FUNCTION AL(W,X,Y,Z)

CALL W(X,Y,Z)

AL=Z**4

RETURN

END

Function Subprogram Reference

EXTERNAL SUM

G=AL(SUM,E,V,H)

In the function subprogram the name of the subroutine (SUM)
and its parameters (E,V,H) replace Wand X,Y,Z. SUM appears
in the EXTERNAL statement so that the compiler will treat
it as a subroutine name rather than a variable identifier.

Statement functions are defined when used as an operand in a single arithmetic
or logical statement in the source program and apply only to the particular
program or subprogram in which the definition appears. They have the form

F(p,p, ... p)=E l<enS63
1 2 n

F is the function name, p. are the actual parameters, and E is an expression.
1

7-6

7.6

SUBROUTINE
SUBPROGRAM

Rules:

1 The type of the function is determined from the naming conventions
specified for variables in Chapter 4, TYPE Declarations.

2 The function name must not appear in a DIMENSION, EQUIV AL ENCE,
COMMON or EXTERNAL statement.

3 The formal parameters will usually appear in the expression E.
When the statement function is executed, formal parameters are
replaced by the corresponding actual parameters of the function
reference. Each of the formal parameters may be TYPE REAL or
INTEGER only, but they may not be declared in a TYPE statement.
Each of the actual parameters may be any arithmetic expression,
but there must be agreement in order, number and type between the
actual and formal parameters. Formal parameters must be simple
variables.

4 E may be arithmetic or logical.

5 E may contain subscripted variables, but the subscripts are re
stricted to integer constants.

6 The expression E may refer to library functions, previously defined
statement functions and function subprograms.

7 All statement functions must precede the first executable statement
of the program or subprogram, but they must follow all declarative
statements (DIMENSION, TYPE, et cetera).

Examples:

TYPE COMPLEX Z

Z(X,Y)=(l. ,O.)*EXPF(X)*COSF(Y)+(O. ,1.)*EXPF(X)*SINF(Y)

This arithmetic statement function computes the complex exponential
Z(x,y)=ex+iy.

A reference to a subroutine is a call upon a computational procedure. This
procedure may return none, one or more values. No value is associated with
the name of the subroutine, and the subroutine must be called by a CALL
statement.

7-7

7.7

CALL

The first statement of subroutine subprograms must have the form:

SUBROUTINE S

or

SUBROUTINES (p ,p , ... p) 1::sns 6:3
1 2 n

S is the subroutine name which follows the rules for variable identifiers, and
pi are the formal parameters which may be array names, non-subscripted
variables, or names of other function or subroutine subprograms.

Rules:

1 The name of the subroutine may not appear in any declarative
statement (TYPE, DIMENSION) in the subroutine.

2 The name of the subroutine must never appear within the subroutine
as an identifier in a replacement statement, in an input/output list,
or as an argument of another CALL.

3 No element of a formal parameter list may appear in a COMMON,
EQUIVALENCE, DATA, or EXTERNAL statement within the sub
routine subprogram.

4 When a formal parameter represents an array, it should be declared
in a DIMENSION statement within the subroutine. If it is not de
clared, only the first element of the array will be available to the
subroutine.

The executable statement in the calling program for referring to a sub
routine subprogram is of the form:

CALL S

or

CALL S (p ,p , ... p) l::S n::s 6:3
1 2 n

Sis the subroutine name, and Pi are the actual parameters. The CALL
statement transfers control to the subroutine. When a RETURN or END
statement is encountered in the subroutine, control is returned to the next
executable statement following the CALL in the calling program. If the
CALL statement is the last statement in a DO, looping continues until satisfied.
Subprograms may be called from a main program or from other subprograms.
Any subprogram called, however, may not call the calling program. That
is, if program A calls subprogram B, subprogram B may not call program A.
Furthermore, a program or subprogram may not call itself.

7-8

Rules:

1 The subroutine returns values through formal parameters which
are substituted for actual parameters or through common variables.
No value is associated with its name.

2 The subroutine name may not appear in any declarative statement
(TYPE, DIMENSION, et cetera).

3 In the subroutine call, the following forms of actual parameters are
permissible:

arithmetic expression

constant or variable, simple or subscripted

array name

function reference

subroutine or function name

When the name of a function subprogram appears as an actual
parameter, that name must also appear in an EXTERNAL statement
in the calling program. Since a function must always return a
single value, it may appear as one or two parameters.

1) two parameters

FUNCTION PULL (X,Y)

B = X (Y)

Function Subprogram Reference

A = PULL (SINF ,X)

2) one parameter

FUNCTION PULL (X)

B=X

7-9

Function Subprogram Reference

A= PULL (SINF (X))

When a subroutine appears as an actual parameter, the subroutine
name may appear alone or with a parameter list.

When a subroutine appears with a parameter list, the subroutine
name and its parameters must appear as separate actual parameters.

FUNCTION PULL (X,Y,Z\

CALL X(Y,Zl

Subroutine Subprogram Reference

A= PULL (DIS,A,B)

4 Because formal parameters are local to the subroutine in which
they appear, they may be the same as names appearing outside the
subroutine.

5 Actual and formal parameters must agree in order number and type.

6 Logical expressions may not be actual parameters.

Examples:

1) Subroutine Subprogram

SUBROUTINE BLVDLDR (A,B,W)

W= 2. *B/A

END

7-10

Calling Program References

CALL BLVDLDR (X(I),Y(ll,W)

CALL BLVDLDR (X(l)+H/2. ,Y(ll+C(l)/2. ,W)

CALL BLVDLDR (X(l)+H,Y(Il+C(3),Z)

2) Subroutine Subprogram (Matrix Multiply)

SUBROUTINE MATMULT

COMMON/BLK1/X(20,20),Y(20,20),Z(20,20)

DO

DO

10

10

Z(I,J) = O.

I=l,20

J=l,20

DO 10 K=l,20

10 Z(I,J)=Z(I,J)+X(I,K) *Y (K,J)

RETURN

3)

5

END

Calling Program Reference

COMMON/BLKl/ A(20,20) ,B(20,20) ,C(20,20)

CALL MATMULT

Subroutine Subprogram

SUBROUTINE ISHTAR (Y,Z)

COMMON/1/X(lOO)

Z=O.

DO 5 I=l,100
Z=Z+X(I)

CALLY

RETURN

END

7-11

7.8

PROGRAM
ARRANGEMENT

7.9

Calling Program Reference

COMMON/1/ A(lOO)

EXTERN AL PRNTIT

CALL ISHTAR (PRNTIT ,SUM)

FORTRAN-63 assumes that all statements appearing between a PROGRAM,
SUBROUTINE or FUNCTION statement and an END statement belong to one
program. A typical arrangement of a set of main program ahd subprograms
follows.

{
PRO~RAM SOMTHING

END

{
SUB~OUTINE Sl

END

{
SUB~OUTINE 82

END

{
FUN~TION Fl (...)

END

{
FUN~TION F2 (...)

END

RETURN AND END A subprogram normally contains one or several RETURN statements that
indicate the end of logic flow within the subprogram and return control to the
calling program. The form is:

RETURN

7-12

7.10

ENTRY

In function references, control returns to the statement containing the
function. In subroutine subprograms, control, in most cases, returns to
the calling program.

The END statement marks the physical end of a program, subroutine sub
program or function subprogram. If the RETURN statement is omitted,
END acts as a return to the calling program.

A RETURN statement in the main program causes an exit to the monitor.

This statement provides alternate entry points to a function or subroutine
subprogram. Its form is

ENTRY name

Name is an alphanumeric identifier, and may appear within the subprogram
only in the ENTRY statement. Each entry identifier must appear in a
separate ENTRY statement. The maximum number of entry points, including
the subprogram name, is 20. The formal parameters, if any, appearing with
the FUNCTION or SUBROUTINE statement do not appear with the ENTRY
statement. ENTRY may appear anywhere within the subprogram except it
should not appear within a DO; it cannot be labeled.

In the calling program, the reference to the entry name is made just as if
reference were being made to the FUNCTION or SUBROUTINE in which the
ENTRY is imbedded. Rules 5 and 6 of 7 .2 apply.

ENTRY names must agree in type with the function or subroutine name.

Examples:

FUNCTION JOE(X,Y)

10 JOE=X+Y

RETURN

ENTRY JAM

IF(X.GT .Y)l0,20

20 JOE=X-Y

END

7-13

7.11

VARIABLE
DIMENSIONS IN
SUBPROGRAMS

This could be called from the main program as follows:

Z=A+B-JOE(3. *P ,Q-1)

R=S+JAM(Q,2.*P)

In many subprograms, especially those performing matrix manipulation,
the programmer may wish to vary the dimension of the arrays each time the
subprogram is called.

This is accomplished by specifying the array identifier and its dimensions
as formal parameters in the FUNCTION or SUBROUTINE statement heading
a subprogram. In the subroutine call from the calling program, the
corresponding actual parameters specified are used by the called subprogram.
The maximum dimension that any given array may assume is determined
by a DIMENSION statement in the main program at compile time.

Rules:

1 The rules of 7.2, 7.5, and 7.7 apply

2 The formal parameters representing the array dimensions must be
simple integer variables. The array identifier must also be a
formal parameter.

3 The actual parameters representing the array dimensions may be
integer constants or integer variables.

4 If the total number of elements of a given array in the calling
program is N, then the total number of elements of the corresponding
array in the subprogram may not exceed N.

Examples:

1) Consider a simple matrix add routine written as a subroutine:

SUBROUTINE MATADD(X,Y,Z,M,N)
DIMENSION X (M,N),Y(M,N),Z(M,N)
DO 10 I=l,M
DO 10 J=l,N

7-14

10 Z(I,J)=X(l,J)+ Y(l,J)
RETURN
END

The arrays X,Y,Z and the variable dimensions M,N must all appear
as formal parameters in the SUBROUTINE statement and also
appear in the DIMENSION statement as shown. If the calling pro
gram contains the array allocation declaration:

DIMENSION A(l0,10), B(l0,5), C(l0,4), D(l0,2)

the program may call the subroutine MATADD from several places
within the main program, varying the array dimension within MATADD
each time as follows:

CALL MATADD (A,B,C,10,4)

CALL MATADD (A,B,D,10,2)

CALL MATADD (B,C,D,10,2)

As the dimensions of a given array are changed, the reference point
of any specific element may also be changed. For example:

PROGRAM MAD
DIMENSION A(6,7) C(5,5)
DO 1 J=l,5
DO 1 1=1,5

1 A(I,J) = I+J
CALL MADX(C,A,5,5)

i
END

SUBROUTINE MADX (X,Y,M,N)
DIMENSION X(M,N), Y(M,N)
DO 10 I= 1,N
DO 10 J ~ l,M

10 X(I,J) = Y(I,J)
END

7-15

A(I,J) references elements in
an array defined as 6 x 7.
Whereas Y (I, J) is referencing
elements according to an array
defined to be 5 x 5 in this
particular calling statement.

2) Yn · · ·Yin

Y21 · · · Yzn
Y=

Y31 ... Y3n

Y41 · · · Y4n

Its transpose Y
1

is:

yll y21 y31 y41

Yl~.

yln y2n y3n Y4n

The following FORTRAN-63 program permits variation of n from call to
call:

SUBROUTINE MATRAN (Y, YPRIME, N)
DIMENSION Y(4,N), YPRIME (N ,4)
DO 7 I=l,N
DO 7 J=l,4

7 YPRIME (I,J)=Y(J ,I)

END

7-16

8.1

THE 1/0 LIST

8.1.1

TRANSMISSION
OF ARRAYS

FORMAT SPECIFICATIONS 8

Data transmission between storage and an external unit requires the FORMAT
statement and the I/O control statement (Chapter 9). The I/O statement specifies
the input/output device and process--READ, WRITE, and so forth, and a list of
data to be moved. The FORMAT statement specifies the manner in which the
data is to be moved. In binary tape statements no FORMAT statement is used.

The list portion of an I/O control statement indicates the data elements and the
order, from left to right, of transmission. Elements may be simple variables,
array names (subscripted or non-subscripted), or constants on output only. List
elements are separated by commas, and the order must correspond to the order
of the FORMAT specifications.

Subscripts in an 1/0 list may be one of the following forms:

(c*Ird)

(Lid)

(c*I)

(I)

(c)

c and d are unsigned integer constants: and I is a simple integer variable,
previously defined, or defined within an implied DO loop.

Examples:

A,B,H(l),Q(3,4)

SPECS

A,DELTAX(J+l)

Part or all of an array can be represented as a list item. Multi-dimensioned
arrays may appear in the list, with values specified for the range of the sub
scripts in an implied DO loop.

8-1

The general form is:

m.,n.,p.
1 1 1

I,J,K

are unsigned constants or predefined positive integer
variables.

If m ,n or p is omitted it is construed as 1.
:3 :3 :3

are subscripts of A and must be of the standard form.

The I/O list may contain nested implied DO loops to a maximum depth of 50.

Example:

DO loops nested 5 deep:

(((((A(I.J.K),B(M), C(N), N=n1 ,n2 ,n3), M=m 1 .m2 ,m3), K=k1 ,k2 ,k3),

J=jl ,j2,j3), I=i1,i2,i3)

During execution, each subscript (index variable) is set to the initial index value:
I=i J=J· K=k M=m N=n

1' 1' 1' 1' 1·

The first index variable defined in the list is incremented first. Data named
in the implied DO loops is transmitted in increments according to the third DO
loop parameter until the second DO loop parameter is exceeded. If the third
parameter is omitted, the increment value is 1. \\'hen the first index variable
reaches the maximum value, it is reset; the next index variable to the right is
incremented and the process is repeated until the last index variable has been
incremented.

An implied DO loop may also be used to transmit a simple variable more than
one time. In (A,K=l,10), A will be transmitted 10 times.

Example:

As an element in an input/output list, the expression

(((A(I,J,K),I=m1 ,m2 ,m:3), J=n1,n2 ,n3), K=p 1 ,p2 ,p3)

implies a nest of DO loops of the form

DO

DO

10

10 J=n ,n ,n
1 2 3

DO 10 I=m1,m2 ,m3

Transmit A(I.J,K)

10 CONTINUE

8-2

8.2

FORMAT
STATEMENT

To transmit the elements of a 3 by 3 matrix by columns:

((A(I,J), I=l,3),J=l,3)

To transmit the elements of a 3 by 3 matrix by rows:

((A(I,J), J=l,3), I=l,3)

If a multi-dimensioned array name appears in a list without subscripts,
the entire array is transmitted.

For example, a multi-dimension non-subscripted list element, SPECS,
with an associated DIMENSION SPECS (7 ,5,3) statement is transmitted
as if under control of the nested DO loops.

DO

DO

DO

10

10

10

K=l,3

J '1,5

I =1,7

Transmit SPECS(I,J,K)

10 CONTINUE

or as if under control of an implied DO loop,

... ,((SPECS(I.J,K), I=l,7), J=l,5), K=l,3),

I/O Lists:

((BUZ(K,2*L),K=l,5), L=l, 13,2)

Q(3), Z(2,2), (TUP(3*I-4), 1=2,10)

(HAZ(K), K=l, LIMl, LIM2)

The BCD I/O control statements require a FORMAT statement which contains
the specifications relating to the internal-external structure of the corresponding
I/O list elements.

FORMAT (spec1 , ... ,k(spec , ...),spec , ...)
m n

Speci is a format specification and k is an optional repetition factor which must
be an unsigned integer constant. The FORMAT statement is non-executable, and
may appear anywhere in the program.

8-3

8.3

FORMAT
SPECIFICATIONS

8.4

CONVERSION
SPECIFICATIONS

8.4.1

Ew.d OUTPUT

The data elements in I/O lists are converted from external to internal or
from internal to external representation according to FORMAT conversion
specifications. FORMAT specifications also may contain editing codes.

FORTRAN-63 conversion specifications

Ew.d
Fw.d
Dw.d
C(Zw.d,Zw.d)
Iw
Ow
Aw
Rw
Lw
nP

Single precision floating point with exponent
Single precision floating point without exponent
Double precision floating point with exponent
Complex conversion; Z may be E or F conversion
Decimal integer conversion
Octal integer conversion
Alphanumeric conversion
Alphanumeric conversion
Logical conversion
Scaling factor

FORTRAN-63 editing specifications

wX
wH

I

Intra-line spacing
Heading and labeling
Begin new record

Both w and d are unsigned integers. w specifies the field width, the number
of character positions in the record; and d specifies the number of digits to
the right of the decimal within the field.

E conversion is used to convert floating point numbers in storage to the BCD
character form for output. The field occupies w positions in the output record;
the corresponding floating point number will appear right justified in the field
as

±0'.ll'. .Cl' E-ee 1"' ec:S99

±0'.ll'. .Cl! E ee 0:See:.:099

±0'.ll'. .Cl! Eeee
lOO:S ee :s 307

±Cl.Cl!. .Cl! -eee

Cl! .Cl! ••••• • a are the most significant digits of the integer and fractional part
and ee and eee are the digits in the exponent. If d is zero or blank, the
decimal point and digits to the right of the decimal do not appear as shown
above. Positive signs are suppressed and the exponent signs appear as shown
above. The fractional part contains a maximum of 11 digits. Field w must be
wide enough to contain the significant digits, signs, decimal point, E, and the
exponent.

8-4

8.4.2

Ew.d INPUT

If the field is not wide enough to contain the output value, digits are dropped
from the right of the fraction and the fraction sign may be suppressed. An
asterisk is inserted immediately before the designator E if a negative sign
or digits or both are lost. A field width, w, less than five will give a format
error. If the field is longer than the output value, the quantity is right justi
fied with blanks in the excess positions to the left.

For P-scaling on output, see section 8.6.2.

Examples:

Ew.d Output

PRINT 10, A
10 FORMAT(El0.3)

A contains -67 .32
or +67 .32

Result: -6.732E110l or 116.732E110l

PRINT 10, A
10 FORMAT(E13.3)

Result: 111111-6. 732E 1101 or 11A11116. 732E 1101

PRINT 10, A
10 FORMAT(E9.3)

Result: 6.73*E 1101

PRINT 10, A
10 FORMAT(El0.4)

Result: 6.732*E 1101

A contains -67 .32

provision not made for sign

The E specification converts the number in the input field (specified by w) to
a real and stores it in the appropriate location in memory.

Subfield structure of the input field:

--------~

integer

8-5

input field
~ -

I.
l fraction

decimal point

I~
exponent

The total number of characters in the input field is specified by w; this field
is scanned from left to right.

An integer subfield begins with a sign (+ or -) or a digit and may contain a
string of digits (a sequence of consecutive numbers); blanks are interpreted
as zeros. The integer field is terminated by a decimal point, an E, a + or -,
or the end of the input field.

A fraction subfield which begins with a decimal point may contain a string of
digits. The field is terminated by an E, a+ or -, or the end of the input field.

An exponent subfield may begin with an E, a+ or -. When it begins with
the + or - may appear between E and the string of digits of the subfield.
value of a string of digits in this subfield must be less than 310.

Permissible subfield combinations:

Rules:

+1.6327E-04

-32. 7216

+328+5

.629E-1

+136

.07628431

E-06 (interpreted as zero)

integer fraction exponent

integer fraction

integer exponent

fraction exponent

integer only

fraction only

exponent only

E ,
The

1. In the Ew.d specification, d acts as a negative power of ten scaling
factor when the fraction subfield is not present. The internal rep
resentation of the input quantity will be:

(. bf" ld) 10-d 10 (exponent subfield) mteger su ie x x

For example, if the specification is E7. 8, the input quantity 3267+05
will be converted and stored as: 3267 x10-8x105 =3.267.

2. If E conversion is specified, but a decimal point occurs in the input
constants, the decimal point will override d. The input quantity
3.67294+5 may be read by any specification but will always be stored
as 3.67294x105.

3. When d does not appear it is assumed to be zero.

4. The maximum number of significant digits that may appear in the
combined integer-fraction field is 11. Excess digits to the right are
lost during the conversion process.

8-6

5. The field length specified by w in Ew .d should always be the same as
the length of the input field containing the input number. When it is not,
incorrect numbers may be read, converted and stored as shown below.
The field w includes the significant digits, signs, decimal point, E,
and exponent.

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

The input quantities appear on a card in three contiguous field columns
1 through 24:

f-9-l-5+f-10-I
+6.4 7E-01-2. 36+5.321E+02

The second specification (E7 .2) exceeds the physical field width of the
second value by two characters.

Reading proceeds as follows:

_,-L,_LlO~
Rf:47-E-o]-2 .36+5.32rn+o2

+6 .47E-01J-2 .36+5J.321E+02

+6 .47E-01-2 .36+5l.321E+021111J

First +6.47-01 is read, converted and placed in location A.

Next, -2.36+5 is read, converted and placed in location B. The number
actually desired was -2.36, but the specification error (E7.2 instead of
E5.2) caused the two extra characters to be read. The number read
(-2.36+5) is a legitimate input representation under the definitions and
restrictions.

Finally .321E+02 Aids read, converted and placed in location C. Here
again, the input number is legitimate; and it is converted and stored,
even though it is not the number desired.

The above example illustrates a situation where numbers are incorrectly
read, converted, and stored, and yet there is no immediate indication
that an error has occurred.

8-7

8.4.3

Fw.d OUTPUT

Examples:

Ew.d Input

Input Field

+143 .26E-03

-12.437629E+1

8936E+004

327 .625

4.376

-.0003627+5

- . 000362 7E 5

blanks

Specifi
cation

Ell.2

El3.6

E9.10

E7.3

E5

Ell.7

Ell.7

Ew.d

Converted
Value

.14326

-124.37629

.008936

327.625

4.376

-36.27

-36.27

-0.

Remarks

All subfields present

All subfields present

No fraction subfield. Input

number converted as 8936. x 10
-10+4

No exponent subfield

Nod in specification

Integer subfield contains - only

Integer subfield contains - only

All subfields empty

lEl E3.0 10. No fraction subfield. Input number

converted as 1. xlO
1

E+06 El0.6 0. No integer or fraction subfield. Zero

stored regardless of exponent field

contents.

The field occupies w positions in the output record; the corresponding list
element must be a floating point quantity, and it will appear as a decimal number,
right justified in the field w, as:

± 6 ... 6.6 ... 6

6 represents the most significant digits of the number (maximum 11). The
number of decimal places to the right of the decimal is specified by d. If d
is zero or omitted, the decimal point and digits to the right do not appear.
If the number is positive, the + sign is suppressed.

If the field is too short to accommodate the number, characters are discarded
from the right, the fraction sign is suppressed and an asterisk appears in the
last character position to indicate the error.

If the field w is longer than required to accommodate the number, it is right
justified with blanks occupying the excess field positions to the left.

8-8

8.4.4

Fw.d INPUT

If the magnitude of the internal number representation after P-scaling exceeds
247 -1, F conversion outputs a blank field.

Examples:

A contains +32.694

PRINT 10,A
10 FORMAT(F7.3)

Result: fl 32.694

PRINT 11,A
11 FORMAT(Fl0.3)

Result:,..,..,..,.. 32.694

A contains -32. 694

PRINT 12,A
12 FORMAT(F6.3) I . . f .

\ no prov1s10n or - sign
Result: 32.69*

This specification is a modification of Ew.d. The input field consists of an
integer and a fraction subfield. An omitted subfield is assumed to be zero.

Subfield structure of the input field:

input field
-------~--......... ~ _ _.........__ ____ --~------
I +

- digit

integer

decimal
point

fraction

An integer subfield begins with a digit, + or -; it may contain a string of digits,
(a sequence of consecutive numbers). Blanks in the string are interpreted as
zeros. The integer field is terminated by a period, or by the end of the input
field.

A fraction subfield begins with a decimal point and may contain a string of digits;
it is terminated by the end of the input field.

8-9

The following subfield combinations are permissible:

Rules:

Integer fraction

Integer by itself

Fraction by itself

-32.7216

+1326

. 719325684

1 In the Fw .d specification, d acts as a negative power of ten scaling
factor when the fraction subfield is not present. The internal repre
sentation is: (integer subfield) x 10-d. For example, the specifica
tion F4.4 causes the input quantity 3267 to be converted and stored as
3267 x 10-4 = .3267.

2 A decimal point in the input quantity causes d to be ignored. For
example, 3.6789 may be read under any specifications but will always
be stored as 3.6789.

3 When d does not appear it is assumed to be zero. For example, the
input quantity + 14.62 is read into memory by the specification F6 as
14.62.

4 The maximum number of significant digits that may appear in the com
bined integer-fraction field is 11. Excess digits are discarded during
the conversion process from the right.

5 The field length specified by w in Fw .d should always be the same as
the actual length of the input field containing the input number. When
it is not, incorrect numbers may be read, converted and stored. See
example under rule 5, section 8.4.2.

Examples:

Fw.d Input

Specifi- Converted
Input Field cation Value Remarks

367 .2 593 F8.4 367 .2593 Integer and fraction field

37925 F5.7 .0037925 No fraction subfield. Input number
converted as 37925 x 10-7

-4.7366 F7 -4.7366 Nod in specification

.62543 F6.5 .62543 No integer subfield

.62543 F6.d .62543 Decimal point overrides d of
specification.

+144.15E-03 Fll.2 .14415 Exponents are legitimate in F input
and may have P-scaling.

8-10

8.4.5

Dw.d OUTPUT

8.4.6

Dw.d INPUT

8.4.7

The field occupies w positions of the output record, the corresponding list
element which must be a double precision quantity will appear as a decimal
number, right justified in the field w as:

±QI .QI . .O! E-ee

±0! .O! • .O! E ee

±(]! .O! • .O! Eeee lOO:Seee:S 307

±0! .O! • .O! -eee

D conversion corresponds to Ew.d Output except that 25 is the maximum number
of digits in the fraction. P-scaling is not applicable.

D conversion corresponds to Ew.d Input except that 25 is the maximum number
of significant digits permitted in the combined integer-fraction field. P-scaling
is not applicable. D is acceptable in place of E as the beginning of an exponent
field.

Example:

TYPE DOUBLE Z,Y,X
READl, Z,Y,X

1 FORMAT (D24.17 ,D15,D17.4)

Input card:
col. 1
'-v-'

1-6. 3 1675298443 7692 l 7E-031+2. 718926453 14 71~2934 775288690-091
• 24 • • 15 17 •

C(Z1 w 1 .d1 ,z2 w2.d2)

OUTPUT Z is either E or F. The field occupies w 1 +w 2 positions in the output record,
and the corresponding list element must be complex. w1 +w2 are two real
values; w1 represents the real part of the complex number and w represents
the imaginary part. The value may be one of the following forms: 2

±o.o 0 Exp. ±o.o . . . 0 Exp . (Ew.d,Ew.d)

± 0 . 0 0 Exp. ±o ... o.o ... 0 (Ew.d,Fw.d)

± 0 0 . 0 0 ± 0 . 0 ... 0 Exp. (Fw.d,Ew.d)

± 0 6.6 6 ± 6 .. 6.6 ... 6 (Fw.d,Fw.d)

8-11

Exp is:

Eoce1 e2 if exponent s 99

E e 1 e2 e3 if exponent > 99

-e1 e e if exponent <-99
2 3

The restrictions for Ew .d and Fw .d apply.

If spaces arc desired bet\vecn the two output numbers, the second specification
should indicate a field (w2) larger than required.

Example:

8.4.8

C(Z1w 1.d1,z2 w 2 .d 2)

INPUT

TYPE COMPLEX A
PRINT 10,A

10 FOHMAT (C(F7.2,F9.2))

Result: 11362.92111111-46.73

real part of A is 362. 92

imaginary part of A is -46. 73

Z is either E or F and the input quantity occupies w1 +w2 character positions.
The first w 1 characters are the representation of the real part of the complex
number, and the remaining w2 characters are the representation of tho imagi
nary part of the complex number.

The restrictions for Ew .d and Fw .d apply.

Example:

TYPE COMPLEX A,B
READ 10,A,B

10 FORMAT (C(F6.2,F6.2), C(El0.3,El0.3))

Input card:

col. 1 ._,_,

-42.13+ 13.91+1.456E+03-1.216E-Ol

8-12

8.4.9

lw OUTPUT

8.4.10

lw INPUT

I specification is used to output decimal integer values. The output quantity
occupies w output record positions; it will appear right justified in the field w,
as:

± 6 ... 6

6 is the most significant decimal digits (maximum 15) of the integer. If the
integer is positive the + sign is suppressed.

If the field w is larger than required, the output quantity is right justified with
blanks occupying excess positions to the left. If the field is too short, characters
are discarded from the left and an asterisk appears in the last field position.

Example:

PRINT 10,1,J,K
10 FORMAT (18,110,15)

Result: AAA-3762AAA4762937AAA13

I contains -3762
J contains +4762937
K contains + 13

The field is w characters in length and the corresponding list element must be
a decimal integer quantity.

The input field w which consists of an integer subfield may contain only the
characters+, -, the digits 0 through 9, or blank. When a sign appears, it must
precede the first digit in the field. Blanks are interpreted as zeros. The value
is stored right-justified in the specified variable.

Example:

READ 10,1,J,K,L,M,N
10 FORMAT (I3,17J2,I3,I2,14)

Input card:

col.1
~~~~~~~~~~~~~ 

139AA-15M 18M7A3AlA4 

~3+-7+2+3+~4~ 

8-13 



8.4.11 

Ow OUTPUT 

8.4.12 

Ow INPUT 

In memory: 

I contains 139 
J -1500 
K 18 
L 7 
M 
N 

3 
104 

0 specification is used to output octal integer values. The output quantity 
occupies w output record positions, and it will appear right justified in the 
field as: 6 6 ... 6 

6 are octal digits, and leading zeros are suppressed. If w is 16 or less, the 
rightmost w digits appear. If w is greater than 16, the number is right 
justified in the field with blanks to the left of the output quantity. A negative 
number is output in its complement form. 

Octal integer values are converted under 0 specification. The field is w octal 
integer characters in length and the corresponding list element must be an 
integer quantity. 

The input field w consists of an integer subfield only (maximum of 16 octal 
digits). The only characters that may appear in the field are +, or -, blank 
and 0 through 7. Only one sign is permitted; it must precede the first digit 
in the field. Blanks are interpreted as zeros. 

Example: 

TYPE INTEGER P,Q,R 
READ 10,P,Q,R 

10 FORMAT (010,012,02) 

Input Card: 

373737373 7666" 6644 11444-0 

1-10 ·i· 12----j24 

8-14 



8.4.13 

Aw OUTPUT 

8.4.14 

Aw INPUT 

In memory: p: 0000003 73 73 73 73 7 

Q: 0000666066440444 

R: 7777777777777777 A negative number is 
represented in complement 
form. 

A negative octal number is represented internally in 16-digit seven's comple
ment form obtained by subtracting each digit of an octal number from seven. 
For example, if -703 is an input quantity, its internal representation is 
7777777777777074. That is, 

7777777777777777 
- 0000000000000703 

7777777777777074 

A conversion is used to output alphanumeric characters. If w is 8 or more, 
the output quantity appears right justified in the output field, blank fill to left. 
If w is less than 8, the output quantity represents the leftmost w characters, 
left justified in the field. 

This specification will accept as list elements any set of six bit characters 
including blanks. The internal representation is BCD; the field width is w 

characters. 

If w exceeds 8, the input quantity will be the rightmost 8 characters. If w 
is 8 or less, the input quantity goes to the designated storage location as a 
left justified BCD word, the remaining spaces are blank-filled. 

w ~output w < 8 output 
w > input w :::o 8 input 

~ w .. , , .. 8 .. , 
field I· 8 .. , ~w~ 

t f 
w BCD 

suppressed 
memory 8 BCD characters char. or 

char. blanks 

8-15 



8.4.15 

Rw OUTPUT 

8.4.16 

RwlNPUT 

Example: (Compare with next example) 

READ 10,Q,P,O 
10 FORMAT (A8,A8,A4) 

Input card: 

col.1 
'-v-' 

LUX MENTIS LUX ORBIS 

I~ s -l-s--+4~ 
In memory: Q: LUXbMENT 

P: ISbLUXbO 

0: RBISbbbb 

This specification is the same as the Aw specification with the following 
exception. 

If w is less than 8, the output quantity represents the rightmost characters. 

If w is less than 8, the input quantity goes to the designated storage location 
as a right justified binary zero filled word. 

w 2: 8 output w < 8 output 
w > 8 input w ::o 8 input 

w .. , 8 .. , 
field ,. 8 .. , I.. w •I 

i f 
memory 8 BCD char. I I zeros I w BCD char., 

8-16 



8.4.17 

Lw OUTPUT 

8.4.18 

LwlNPUT 

Example: (Compare with previous example) 

READ 10,Q,P,O 
10 FORMAT (R8,R8,R4) 

Input card: 

col.1 
'-v-' 

In memory: Q: LUXbMENT 

P: ISbLUXbO 

0: OOOORBIS 

L specification is used to output logical values. The input/output field is w 
characters long and the corresponding list element must be a logical element 

If w is greater than 1, 1 or 0 is printed right justified in the field w with 
blank fill to the left. 

Example: 

TYPE LOGICAL I,J,K,L 
PRINT 5,1,J,K,L 

5 FORMAT (4L3) 

Result: l\11l11110M1Ml 

I contains 1 
J contains O 
K contains 1 
L contains 1 

This specification will accept logical quantities as list elements. A zero or a 
blank in the field w is stored as zero. A one in the field w is stored as one. 
Only one such character (0 or 1) may appear in any input field. Any character 
other than 0, 1, or blank is incorrect. 

8-17 



8.5 

EDITING SPECIFICATIONS 

8.5.1 

wX 

8.5.2 

wH OUTPUT 

This specification may be used to include w blanks in an output record or to 
skip w characters on input to permit spacing of input/output quantities. 

Examples: 

PRINT 10,A,B,C A contains 7 
10 FORMAT(I2 ,6X,F6.2,6X, E12.5) B contains 13 .6 

C contains 1462 .37 

Result: 117+--6--..1113.60-6--111.46237E+03 

READ 11,R,S,T 
11 FORMAT(F5.2,3X, F5.2,6X,F5.2) or FORMAT (F5.2,3XF5.2,6XF5.2) 

Input card: 

col.1 
'-v-' 

In memory: R=14. 62 

~~4-.6-2_11_11-$1_3_._7_8_11_C_O_S_T_11_1_5_.9_7--.~ 

s =13. 78 
T=l5.97 

In the specification list, the comma following X is optional. 

This specification provides for the output of any set of six-bit characters, in
cluding blanks, in the form of comments, titles, and headings. w is an unsigned 
integer specifying the number of characters to the right of the H that will be 
transmitted to the output record. H denotes a Hollerith field. The comma 
following the H specification is optional. 

Examples: 

Source program: PRINT 20 
20 FORMAT(28H BLANKS COUNT IN ANH FIELD.) 

produces output record: fl BLANKS COUNT IN AN H FIELD. 

Source program: PRINT 30,A A contains 1.5 
30 FORMAT(6H LMAX=,F5.2) comma is optional 

produces output record: fl LMAX=fl 1.50 

8-18 



8.5.3 
wHINPUT 

8.5.4 

NEW RECORD 

The H field may be used to read a new heading into an existing H field. 

Example: 

Source program: READ 10 
10 FORMAT (27H 

Input card: 

col. i 
'-v-'~~~~~~~~~~~~~~ 

11THIS IS A VARIABLE HEADING 

After READ the FORMAT statement labeled 10 will contain the alphanumeric 
information read from the input card; a subsequent reference to statement 10 
in an output control statement would act as follows: 

PRINT 10 produces the printer line: 11 THIS IS A VARIABLE HEADING 

The slash, I, which signals the end of a BCD record may occur anywhere in the 
specifications list. It need not be separated from the other list elements by 
commas; consecutive slashes may appear in a list. During output, it is used to 
skip lines, cards, or tape records. During input, it specifies that control passes 
to the next record or card. k lines will be skipped for (k(/) ). 

Examples: 

PRINT 10 
10 FORMAT (20X,7HHEADING///6X,5HINPUT,19X,6HOUTPUT) 

Print-out: HEADING 

INPUT OUTPUT 

line 1 
line 2 
line 3 
line 4 

Each line corresponds to a BCD record. The second and third records are null 
and produce the line spacing illustrated. 

8-19 



8.6 

nP SCALE 
FACTOR 

8.6.1 

Fw.d SCALING 

PRINT 11,A,B,C,D 
11 FORMAT (2E10.2/2F7.3) 

Result: -1.16E 01 3.25E-01 
46 .327 -14 .261 

PRINT 11,A,B,C,D 
11 FORMAT (2E10.2/ /2F7 .3) 

Result: -1.16E 01 3.25E-01 

46.327-14.261 
PRINT 15, (A(I),1=1,9) 

15 FORMAT (8H RESULTS2(/) (3F8.2)) 

RESULTS 

3.62 
-6.33 

6.21 

-4.03 
7.12 

-6.74 

-9.78 
3.49 

-1.18 

Internally: 
A= -11.6 
B = .325 
c = 46.327 
D = -14.261 

A scale factor may precede the F conversion and E conversion. The scale 
factor is: External number= Internal number xlOscale factor. The scale 
factor applies to Fw.d on both input and output and to Ew.d on output only. 
A scaled specification is written in FORTRAN-63 as: 

nP ~ ~ f w.d 

n is a signed integer constant which cannot exceed 13 for output. The nP 
specification may appear with complex conversion, C(Zw.d,Zw.d); each word 
is scaled separately according to Fw .d or Ew .d scaling. 

Input 

The number in the input field is divided by 1on and stored. For example, if 
the input quantity 314.1592 is read under the specification 2PF8.4, the internal 
number is 314.1592Xl0-2 = 3.141592. 

8-20 



8.6.2 

Ew.d SCALING 

8.6.3 

SCALING 
RESTRICTIONS 

Output 

The number in the output field is the internal number multiplied by 1 on. In the 
output representation, the decimal point is fixed; the number moves to the left 
or right depending on whether the scale factor is plus or minus. For example, 
the internal number 3.1415926536 may be represented on output under scaled F 
specifications as follows: 

Output 

Specification 

F13.6 
1PF13.6 
3PF13.6 

-1PF13.6 

Output Representation 

3.141593 
31.415927 

3141.592654 
.314159 

The scale factor has the effect of shifting the output number left n places while 
reducing the exponent by n. Only positive n is permitted. Using 3.1415926538 
some output representations corresponding to scaled E-specifications are: 

Specification 

E20.2 
1PE20.2 
2PE20.2 
3PE20.2 
4PE20.2 
5PE20.2 

Output Representation 

3.14E 00 
31.42E-01 

314.16E-02 
3141.59E-03 

31415.93E-04 
314159.27E-05 

The scale factor is assumed to be zero if no other value has been given; how
ever, once a value has been given, it will hold for all E and F specifications 
following the scale factor within the same FORMAT statement. To nullify this 
effect in subsequent E and F specifications, a zero scale factor, OP, must 
precede an E or F specification. Scale factors for E and F output specifi
cations must be in the range -13SnS13. 

Scale factors on E input specifications are ignored. 

The scaling specification nP may appear independently of an E or F specifi
cation, but it will hold for all E and F specifications that follow within the 
same FORMAT statement unless changed by another nP. 

(3P, 319, Fl0.2) same as 
(319, 3PF10.2) 

8-21 



8.7 

REPEATED 
FORMAT 
SPECIFICATIONS 

8.7.1 

UNLIMITED 
GROUPS 

8.8 

VARIABLE 
FORMAT 

Any FORMAT specification may be repeated by using an unsigned integer 
constant repetition factor, k, as follows: k(spec), spec is any conversion 
specification except nP. 

For example, if two quantities K,L are to be printed, the program would be 
written: 

PRINT 10 K,L 
10 FORMAT (I2,I2) 

Since the specifications for K,L are identical, the FORMAT statement may 
be written: 10 FORMAT (212) 

When a group of FORMAT specifications repeats itself, as in FORMAT 
(E15.3,F6.1,I4,I4,El5.3,F6.1,I4,I4) the use of k produces: FORMAT 
(2(E15.3,F6.1,2I4)) 

In the above example, the parenthetical grouping of the FORMAT specifications 
is called a repeated group. A repeated group may not contain a repeated group: 
FORMAT (I6,2(F10.2,2I6,2E7.l)) is permitted, but FORMAT (I6,2(Fl0.2,2(I6, 
E7 .1) ) ) is not permitted. 

FORMAT specifications may be repeated without the use of a repetition factor. 
A parenthetical group that has no repetition factor is unlimited and will be used 
repeatedly until the I/O list is exhausted. Parentheses are the controlling 
factors in repetition. The right parenthesis of an unlimited group is equivalent 
to a slash. Specifications to the right of an unlimited group can never be 
reached. 

The following are format specifications for output data: 

(El6.3,F20, 7, (214,2 (I3,F7 .1) ),FS.2) 

Print fields according to E16.3 and F20.7. Since 2(I3,F7.1) is a repeated 
parenthetical group, print fields according to (2I4,2(I3,F7.1) ), which does not 
have repetition operator, until the list elements are exhausted. FS.2 will never 
be reached. 

FORMAT lists may be specified at the time of execution. The specification 
list including left and right parentheses, but not the statement number or the 
word FORMAT, is read under A conversion or in a DATA statement and 
stored in an integer array. The name of the array containing the specifications 
may be used in place of the FORMAT statement number in the associated input/ 
output operation. The array name that appears with or without subscript 
specifies the location of the first word of the FORMAT information. 

8-22 



Examples: 

1) Assume the following FORMAT specifications: 

(E12.2, FS.2 ,I7 ,2E20.3,F9 .3 ,I4) 

This information could be punched in an input card and read by a 
program such as: 

DIMENSION IV AR(4) 
HEAD 1, (IVAR(I),I=l,4) 

1 FORMAT(3A8,A6) 

The elements of the input card will be placed in storage as follows: 

IVAR 
IVAR+l 
IVAR+2 
IVAR+3 

(E12.2,F 
8.2,I7 ,2 
E20.3,F9 
.3,I4)bb 

A subsequent output statement in the same program could refer to 
these FORMAT specifications as: 

PRINT IVAR(l),A,B,I,C,D,E,J 
or 

PRINT IVAR,A,B,I,C,D,E,J 

This would produce exactly the same result as the program: 

PRINT 10,A,B,I,C,D,E,J 
10 FORMAT (E12.2,F8.2,I7 ,2E20.3,F9.3,I4) 

2) DIMENSION LAIS(4) 
DATA (LAIS=8H(E12.2,F8H8.2,2I7),8H(F8.2,El ,8H2.2,2I7) ) 

Output statements: 

which is the same as: 

which is the same as: 

8-23 

I= 1 
PRINT LAIS(I),A,B,I,J 

or 
PRINT LAIS,A,B.I,J 

PRINT l,A,B,I,J 
1 FORMAT (E12.2,F8.2,2I7) 

I - ., 
- " 

PRINT LAIS(I),C,D,I,J 

PRINT 2,C,D,I.J 
2 FORMAT (F8.2,El2.2,2I7) 





9.1 

READ/WRITE 
STATEMENTS 

9.1.1 
WRITE 
STATEMENTS 

INPUT /OUTPUT STATEMENTS 9 

Input/output control statements transfer information between the storage unit 
and one of the following external devices: 

An 80 column card reader 

An 80 column card punch 

A 120 column printer 

A magnetic tape unit 

A typewriter 

The following definitions for i, n, L apply for all I/O control statements. 

The logical unit number, i, must be an integer variable or a constant. Logical 
numbers are assigned to physical units by the monitor. The standard input unit 
is 50; standard output unit is 51; standard punch unit is 52. 

The FORMAT statement describing the format of the data is represented by n 
which may be the statement number, a variable identifier or a formal parameter. 
Binary data transmission does not require a related FOHMAT statement. 

The input/output list is specified by L. Binary information is transmitted with 
odd parity checking bits. BCD information is transmitted with even parity 
checking bits. 

PRINT n,L transfers information from the storage locations given by the list (L) to the 
standard output unit. This information is transferred as line printer images, 
120 characters or less per line in accordance with the FOHMAT statement, n. 
The maximum record length is 120 characters, but the first character of every 
record is used for carriage control ton the printer and is not printed. 

t * CHARAC'I'F:R 

blank 

0 

+ 

ACTIO'i 

single space after printing. 

double space before printing. 

eject page before printing. 

suppress spacing after printing. Causes two successivP 
records to be printed on the same line. 

9-1 



PUNCH n,L transfers information from the memory locations given by the list (L) 
identifiers to the standard punch unit. This information is transferred as 
card images, 80 characters or less per card in accordance with the FORMAT 
statement, n. 

WRITE (i,n} Land WRITE OUTPUT TAPE i,n,L 
are equivalent forms which transfer information from storage locations given 
by identifiers in the list (L) to a specified tape unit (i) according to the 
FORMAT statement (n). i may be 1 to 49 or 51, 52. 

A logical record containing up to 120 characters is recorded on magnetic tape 
in even parity (BCD mode). Each logical record is one physical record. The 
number of words in the list (L) and the FORMAT statement (n) determine the 
number of records that will be written on a unit. If the logical record is less 
than 120 characters, the remainder of the record will be filled with blanks to 
the nearest multiple of 8 characters. All characters in excess of 120 will be 
lost and an error indication will be given. 

The printer treats the first character of a record as a printer control character 
and does not print it. If the programmer fails to allow for a printer control 
character, the first character of the output data will be lost on the printed listing. 

Examples: 

WRITE OUTPUT TAPE 10, 20, A, B, C 

20 FORMAT (3F10.6) 

TYPE DOUBLE D 

DIMENSION D (4) 

WRITE (10, 30) D 

30 FORMAT (4D25.16) 

WRITE OUTPUT TAPE 4, 21 

21 FORMAT (33H THIS STATEMENT HAS NO DATA LIST,) 

WRITE (i} L and WRITE TAPE i,L 
are equivalent forms which transfer information from storage locations given 
by the list (L) identifiers to a specified tape unit (i), i may be 1 to 49. If the 
list (Ll is omitted, the WRITE (i) statement acts as a do-nothing statement. 

9-2 



The number of words in the list (L) determines the number of physical 
records that will be written on that unit. A physical record contains a 
maximum of 256 words - the first word is a control word, the remaining 
255 contain the transmitted data. The last physical record may contain 
from 2 to 256 words. The physical records written by one WRITE (i) L 
statement constitutes one logical record. The information is recorded in 
odd parity (binary motle); the method is illustrated in figures la and lb. 

If there are n physical records in the logical record, the first word of the 
first n-1 physical records contain zero; the first word of the nth physical 
record contains the integer n. This first word indicates how many physical 
records exist in a logical record. If there is only one physical record in the 
logical record, the ·first word contains the integer 1. 

When end of tape is encountered during the writing of a logical record, the 
tape is repositioned to the beginning of the record and a flag is set which may be 
sensed by IF(EOF, i). 

Examples: 

DIMENSION A(260), B(4) 

WRITE(lO)A,B 
writes 1 logical record of 2 physical records 

DO 5 I= 1, 10 

5 WRITE TAPE 6, AMAX(!), (M(I,J), J = 1, 5) 

9-3 



1-+COUNT 

YES 

Cl' /3+1 

a+254 /3+255 

0-+/3 

a+255 -+a 

k-255 .... k 

COUNT+ 1 
-+COUNT 

RECORD 256 
WORD BUFFER 
ON TAPE. 

WRITE: BINARY(ODD PARITY) 

k WORDS 

Cl' /3 +1 

. =>-. 

a+k-1 /3+k 

O' represents a word in storage 

COUNT-+/3 

RECORD k+l 
WORD 

BUFFER 
ON TAPE 

{3 represents the first word of a physical 
record on tape 

Figure la. 

9-4 



MEMORY 

a""'"""'"'"'"""'"'"'" 

a+k-1 """""""""""""""'" 

WRITE: BINARY(ODD PARITY) 

k WORDS 

MEMORY TAPE SCHEMATIC 

256 
WORD 

BUFFER 
.B 1-----1 

(3+1 ----1 

/3+255 ___ _ 

MAGNETIC TAPE 

o }TYPICAL 
PHYSICAL 
RECORD 

~.L.<L"""-"'1 

LOGICAL RECORD 

Last physical record s 256 words 

EXAMPLE: Write 520 binary words on tape. 

A. Set count to 1. First 255 words placed in buffer. 
More words remain so first buffer word is 0. 
Write 256 word physical record on tape. 
Bump count 1. 

B. Next 255 words to buffer. Same procedure as A. 
Bump count 1. 

C. 10 words remain. Transfer to Buffer; 

Enter count (3) in first buffer word. 
Write 11 word physical record on tape. 
Exit. 

Figure lb. 

9-5 



9.1.2 

READ 
STATEMENTS 

READ n,L reads one or more card images, converting the information from left to 
right, in accordance with the FORMAT specification (n\ and stores the con
verted data in the storage locations named by the list (L\ identifiers. The 
images read may come from SO-column Hollerith cards, or from magnetic 
tapes, prepared off-line containing SO-character records in BCD mode. Note 
caution under BUFFER IN for intermixing READ n, L and BUFFER IN state
ments. 

Example: 

READ 10, A, B, C 

10 FORMAT (3F10.4) 

READ (i,n)L and READ INPUT TAPE i,n, L 
are equivalent forms which transfer one logical record of information from 
a specified logical unit (i), 1 through 50, to storage locations named by the 
list (L) identifiers according to FORMAT statement (n\. 

The number of words in the list and the FORMAT specifications must conform 
to the record structure on the logical unit (up to 120 characters in the BCD 
mode). A record read by READ (i,n)L should be the result of a BCD mode 
WRITE statement. A binary record read in BCD mode will produce a parity 

error. Note caution under BUFFER IN for intermixing READ (i,n)L and 
BUFFER IN statements. 

Examples: 

READ INPUT TAPE 10, 11, X, Y, Z 

11 FORMAT (3Fl0.6) 

TYPE DOUBLE D2 

DIMENSION D2(4\ 

READ (10, 12) D2 

12 FORMAT (4D25.16) 

READ INPUT TAPE 4,22 

22 FORMAT (33H .......................... ) 

READ (2, 13) (Z (K), K = 1, S) 

13 FORMAT (Fl0,4) 

9-6 



, 

READ (i) L and READ TAPE i,L 

9.2 

BUFFER 
STATEMENTS 

are equivalent forms which transfer one logical record of information from 
a specified logical unit (i), 1 through 49, to storage locations named by the 
list (L) identifiers. 

A record read by READ (i) should have been written in binary mode. The 
count word is not transmitted to the input area, L. The number of words 
in the list of READ (i) L must be equal to or less than the number of words 
in the corresponding WRITE statement. 

If the list (L) is omitted, READ (i) spaces over one logical record. 

Caution 

If the record read by READ (i) L was written with a BUFFER OUT statement, 
the first word of each physical record is not transmitted. 

Examples: 

DIMENSION C(264) 
READ (lO)C 

DIMENSION BMAX (10), M2 (10, 5) 
D07I=l,10 

7 READ TAPE 6, BMAX (I), (M2(I,J), J=l,5) 

READ (5) (skip one logical record on unit 5) 

READ (6) ( (A(I,J),I=l,100),J=l,50) 

READ TAPE 6, ( (A(I,J), I=l,100),J=l,50) 

There are three primary differences between the buffer I/O statements and 
the read/write I/O statements. 

1. The mode of transmission (BCD or binary) is tacitly implied by the form 
of the read/write control statement. In a buffer control statement, parity 
must be specified by a parity indicator. 

2. The read/write control statements are associated with a list, and, in BCD 
transmission, with a FORMAT statement. The buffer control statements 
are not associated with a list; data transmission is to or from one area in 
storage. 

9-7 



3. A buffer control statement initiates data transmission, and then returns 
control to the program, permitting the program to perform other tasks 
while data transmission is in progress. Before using any of the buffered 
data, the status of the buffer operation should be checked. See section 
9.5. A read/write control statement completes the operation indicated 
before returning control to the program. 

In the descriptions that follow, these definitions apply. 

i logical unit number: from 1 to 52 (integer constant or variable). 

p recording mode (integer constant or variable): 0 for BCD; 1 for 
row binary; 2 for column binary. The recording mode interpreta
tions for magnetic tapes are: 0 selects even parity; 1 and 2 select 
odd parity. The interpretations for other I/O equipment are given 
in the CO-OP MONITOR/Programmer's Guide, where the Monitor 
mode is given by p + i.t 

A variable identifier: first word of data block to be transmitted. 

B variable identifier: last word of data block to be transmitted. 

A magnetic tape written in odd parity must be buffered in odd parity; a tape 
written in BCD mode must be buffered in even parity. 

BUFFER IN (i,p) (A,B) 

transmits information from unit i in mode p to storage locations A through B. 
The record structure is shown in figure 2. If a magnetic tape containing BCD 
records written by WRITE (i, n) is used by BUFFER IN, only one physical 
record (15 words or less), will be read. When a magnetic tape written by 
WRITE (i) is read by BUFFER IN, provision must be made for the count word 
which is buffered in with the transmitted data. Only one physical record is read 
for each BUFFER IN statement (figures la and lb). 

Caution 

BCD read statement (READ n,L and READ (i,n)L) and BUFFER IN statements 
may both be used for input from the card reader. BCD reads will input one 
more record than specified by the statement. If a BUFFER IN statement 
follows a BCD read, to prevent the loss of a record, a dummy record should 
separate those specified in the BCD read from those to be buffered in. 

BUFFER OUT (i,p) (A,B) 
transmits information from storage locations A through B, and writes one 
physical record on logical unit i in mode p. The physical record contains 
all the words from A to B inclusive (figure 2). 

tThe function code (F.C.) is I \\'ith an interrupt (I) of l when huffering. 

9-8 



9.3 

PARTIAL RECORD 

k words 

BUFFERED WRITE: BINARY OR BCD 
BUFFER OUT (i,p) (A,B) 

LENGTH [A,B] 
-K 

Is k < 1 
? 

WRITE k WORDS 
[binary or BCD] 
ON UNIT i 

YES 

MAGNETIC TAPE 

i is logical unit # 

p is recording mode 

O even-BCD 

1 odd-row binary 

2 odd-column binary 

A: first word 

B: last word 

PHYSICAL RECORD =LOGICAL RECORD 

The tape unit always moves to the next logical record after a READ(i, n) L, 
READ (i)L, or to the next physical record after a BUFFER IN statement, even 
if the entire record is not transmitted. Consequently, the remainder of the 
record will not be read with the next READ or BUFFER IN statement. 

9-9 



Example: 

DIMENSION C(lO), D(120) 

READ ~3, 10) C~ 
10 FORMAT (lOAl) 

READ (3, 12) D 

12 FORMAT (12Fl0.2) 

logical 
record 

9.4 

rec. gap 

f 

I 
\ 

I 

' rec. gap 

10 characters 
transmitted 

110 characters not 
transmitted 

120 characters 
transmitted 

TAPE HANDLING 
STATEMENTS The logical unit number, i, may be an integer variable or constant. 

REWIND i 
rewinds the magnetic tape mounted on unit i to load point. If the tape is already 
rewound, the statement acts as a do-nothing statement. i may be 1 through 49. 

BACKSPACE i 
backspaces the magnetic tape mounted on unit i one logical record. (A logical 
record is a physical record; except for tapes written by a WRITE (i)L statement). 
If tape is at load point (rewound) this statement acts as a do-nothing statement. 
When backspacing on standard units 51 or 52, no more records may be back
spaced than have been written. When backspacing on standard unit 50, no more 
records may be backspaced than have been read. i may be 1 through 52. 

END FILE i 
writes an end-of-file on the magnetic tape mounted on unit i, 1 through 49, 51 
or 52. 

9-10 



9.5 

STATUS CHECKING 
STATEMENTS IF(EOF) and IF (IOCHECK) are the status checking statements to be used 

with the read/write 1/0 control statements. 

checks the previous read (write) operation to determine if an end-of-file 
(end-of-tape) has been encountered on unit i. If it has, control is transferred 
to statement n1; if not, control is transferred to statement n2. 

IF(IOCHECK,i)n1,n 2 

checks the previous read (write) operation to determine if a parity error has 
occurred on unit i. If it has, control is transferred to statement n ; if not, 
control is transferred to statement n2. 1 

is used with buffer control. To avoid loss of information, this statement should 
always appear before the first statement that uses any variables transferred in 
the buffer mode. The ni are statement numbers. If any branch points arc 
omitted, their error checks will not be made. 

This statement checks the status of the last buffering operation on unit and 
will transfer control to statement: 

n1 . if buffer operation is not complete 

n2 if buffer operation is complete with no errors 

n3 if buffer operation is complete and an EOF or EOT occurred 

n4 if buffer operation is complete and a parity error occurred 

When a parity error occurs, FORTH.AN-63 will attempt to execute a BUFFER 
IN statement six times and a BUFFER OUT statement three times. Unit i will 
not be sensed ready until there is no parity error or until the number of re
petitions has been exhausted. If an EOT and parity error occur simultaneously, 
only the EOT jump is made. 

LENGTH (i) FUNCTION 

is used with an integer variable, for example I=LENGTHF (i), to find the 
number of 48-bit words read during the last input operation on unit i. It may 
be used only with the BUFFER IN statement and must be preceded by an 
IF(UNIT, i) statement to insure that the input is completed; there may not be 
an intervening buffer statement regardless of the logical unit number. 

9-11 



9.6 

ENCODE/ DECODE 

Example: 

4 
5 

50 

PROGRAM 

J=l 

BUFFER IN (10, 0) (A, Z) 

IF (UNIT, 10)5, 6, 7, 8 
GO TO (50, 4), J 

{. Some computation not involving 'l_ 
information in locations A - Z j 

J=J+l 
GOT04 

7 PRINT 70 
70 FORMAT (12H EOF UNIT 10) 

GO TO 200 

8 PRINT 80 

REMARKS 

Set flag =1 

Initiate buffered read in even (BCD) 
parity. 

Check status of buffered transfer. 
Not finished. Do calculations at 50. 

Calculations complete; increase 
flag by 1. Go to 4. 

End of file error 

80 FORMAT (35H PARITY OR BUF LENGTH ERROR UNIT 10) 

200 REWIND 10 

STOP 

6 CONTINUE 

Rewind tape and stop 

Stop 

Buffer transmission complete 
Continue program 

STATEMENTS The ENCODE/DECODE statements are comparable to the WRITE/READ 
statements with the essential difference being that no peripheral equipment 
is used in the data transfer. Information is transferred under FORMAT 
specifications from one area of storage to another. 

In the following descriptions: 

n is a statement number, a variable identifier or a formal parameter 
representing the associated FORMAT statement. 

L is the input/ output list. 

9-12 



V is a variable identifier or an array identifier which supplies the 
starting location of the record. The identifier may have standard 
or non-standard subscripts. 

c is an unsigned integer constant or an integer variable (simple or 
subscripted) specifying the length of the record. c may be an 
arbitrary number of BCD characters. The record starts with the 
leftmost character of the location specified by V and continues 
c BCD characters, 8 BCD characters per computer word. Each 
record begins with a new computer word. 

For ENCODE, if c is not a multiple of 8, the record ends in the 
middle of a computer word and the remainder of the word is blank
filled. For DECODE, if the record ends in the middle of a com
puter word, the remaining characters in that word are ignored. 

Ex amp/es: 

A(l) = ABCDEFGH 

A(2) = IJKLM 

B(l) = NOPQRSTU 

B(2) = VWXYZ 

1) c=multiple of 8 

ENCODE (16, 10, ALPHA) A,B 

10 FORMAT (2(A8, A5) ) 

record a record b 

ALPHA IABCDEFGII I IJKLM I blanks I NOPQRSTU I VWXYZ I blanks I 
word 1 word 2 word 3 

2) dmultiple of 8 

ENCODE (13, 10, ALPHA)A, B 

10 FORMAT (2(AB, A5) ) 

word 4 

record a record b 
~blanks__....____ blanks 

ALPHA ABCDEFGH IJKLM NOPQRSTU VWXYZ 

word 1 word 2 word 3 word 4 

start new record 

9-13 



3) dmultiple of 8 

DECODE (13, 10, ALPHA)A, B 

10 FORMAT (2(A8, A5) ) 

record a . 
~ 

record b ____...._____ 
ALPHA ABCDEFGH IJKLM VWXYZ 123 

word 1 word 2 word 4 

start new record 

ENCODE (c,n,V)L 

transmits machine-language elements in a manner similar to PRINT n, L 
and PUNCH n, L. The information of the list variables, L, is transmitted 
according to the FORMAT (n) and stored in locations starting at V, c BCD 
characters per record. If the I/O list (L) and specification list (n) translate 
more than c characters, an execution time diagnostic, ERROR IN BCD OUT 
WIDTH, occurs. If the number of characters converted is less than c, the 
remainder of the record is filled with blanks. 

DECODE (c,n,V) L 

transmits and edits BCD characters in a manner similar to READ n, L. 
The information in c consecutive BCD characters (starting at address V) is 
transmitted according to the FORMAT (n) and stored in the list variables (L). 
If the number of characters specified by the I/O list and the specification list 
(n) is greater than c (record length), an execution time diagnostic occurs. If 
DECODE attempts to process an illegal BCD code or a character illegal under 
a given conversion specification, an execution time diagnostic, ERROR IN BCD 
IN DATA, occurs. 

In ENCODE and DECODE, the record is an integral number of computer words, 
i.e. (C + 7)/8 words long. 

9-14 



Examples: 

1) The following is one method of packing the partial contents of two words into 
one word. Information is stored in core as follows: 

LOC (1) SSSSxxxx 

LOC (6) XXXXCI Cl Cl Cl 

8 bed ch/wd 

To form SSSSa:a:a:a: in storage location NAME: 

DECODE(8,1,LOC(6) )TEMP 
1 FORMAT(4X,A4) 

ENCODE(S,2,NAME) LOC(l),TEMP 
2 FORMAT(2A4) 

The DECODE statement places the last 4 BCD characters of LOC (6) into the 
first 4 characters of TEMP. The ENCODE statement packs the first 4 
characters of LOC(l) and TEMP into NAME. 

A more straightforward way of accomplishing this is with the R specification; 
the program may be shortened to: 

ENCODE (8,1,NAME) LOC(l),LOC(6) 
1 FORMAT (A4,R4) 

2) DECODE may be used to calculate a field definition in a FORMAT specification 
at object time. Assume that in the statement FORMAT (2A8,lm) the programmer 
wishes to specify m at some point in the program, subject to the restriction 
2 :S m :S 9. The following program permits m to vary. 

IF(M .LT. 10 .AND. M .GT. 1)1,2 
1 ENCODE (8,100,SPECMAT) M 

100 FORMAT (6H(2A8,l,ll,1H) ) 

PRINT SPECMAT,A,B,J 

M is tested to insure it is within limits. If not, control goes to statement 2 
which could be an error routine. If M is within limits, ENCODE packs the 
integer value of M with the characters: (2A8,I ). This packed FORMAT is 
stored in SPECMAT. SPECMAT contains (2A8,Im). 

The print statement will print A and B under specification AS, and the quantity 
J under specification 12, or 13 or ... or 19 according to the value of m. 

9-15 



3) ENCODE can be used to re-arrange and change the information in 
a record. The following example also shows that it is possible 
to encode an area into itself and that encoding will destroy infor
mation previously contained in an area. 

PROGRAM ENC02 

1=7RBCDEFGH 

IA=lHl 

ENCODE (7, 10, 1)1, IA, I 

10 FORMAT (A2, Al, R4) 

PRINT 11, I 

11 FORMAT (020) 

END 

PRINT OUT 

62016566677020 

The BCD equivalent is 

BlEFGHblank 

4) In this example, accounting information is to be read from a magnetic 
tape prepared off-line from SO-column Hollerith card input. Each 
record on this tape will be 10 words (80 characters) long. The program 
is to initiate a read, decode the information of this read and initiate 
a second read while decoding the information obtained from the first 
read. Two 10-word buffers are used (AIN and CIN). The FORMAT 
specification in DECODE is 

(6Al ,Al ,8Al ,A3 ,12 ,A6,412 ,2Al ,A8,A3 ,2Al) 

this specification breaks the first 49 characters of each BCD record 
read from magnetic tape. Let the list be the string of identifiers: 

LIST: DT,CC,CN,PR,X,XM,Nl,Ml,N2,M2,CR,ADJ,PER,RUN,ATT 

DT is an array of length 6; CN is an array of length 8; the remaining 
identifiers name simple variables. 

9-16 



Flow chart of the basic procedure: 

No 

0 -+ NRD 
1 -+ I 

Buffer In: 
CTN to CTN+ 9 

0-+ I 

miscellaneous 

calculations 

Yes 

9-17 

1-+ NRD 

DECODE 
(49,3,AIN) 

List 

Buffer In: 
AIN to AIN+9 

0-+ NRD 

DECODE 
(49,3,CIN) 

List 

Yes 





COMPILATION AND EXECUTION 10 

1604 FORTRAN-63 source programs are compiled and executed under the 
CO-OP Monitor System. t The monitor controls job processing, equipment 
assignments, and input/output operations; it also provides debugging aids, 
error dumps, and diagnostics (Appendix H). 

The monitor system loads the FORTRAN compiler into memory and trans
fers control to it. The compiler translates FORTRAN statements into 
CODAP-1 assembly language instructions, supplies diagnostics for source 
language errors, and directs the assembler to produce relocatable binary 
object programs which consist of binary card images on magnetic tape. 
The object program may be executed immediately or it may be saved on 
magnetic tape or punched onto cards to be executed at a later time. 

Blank cards within the input card deck are treated as follows: 

a) If a blank card appears between a statement and its continuation, 
the continuation and subsequent continuations are lost. Compilation 
continues. 

b) If a blank card appears between two statements, it is ignored. 

tFor the CO-OP control cards, see CO-OP MONITOR/PROGRAMMER'S GUIDE, publication 
number 60050800a. 

10-1 



10.1 

CONTROL CARDS 

10.1.1 

MCS CARD 

A programmer sets up a deck for compilation or execution with a Master 
Control card, a FORTRAN control card, and various combinations of END, 
FINIS, EXECUTE and BINARY control cards properly placed. The figure 
below illustrates the control card arrangement for compilation and execution 
(load-and-go) of a FORTRAN-63 program. The Master Control (MCS) card 
is first followed by the FORTRAN control card, which in this case specifies 
FORTRAN-63. Next is the source program deck with two FORTRAN END 
cards. Each END card will be compiled as a transfer card; two successive 
transfer cards are required to terminate the loading procedure. The FINIS 
and EXECUTE cards follow. A data deck may follow the EXECUTE card . 

.0 EXECUTE,3,56. 

{ FINIS 
t-' 

_( END 
I-

{ END 

,(_ I-

L 
L r Z_ 

i PROGRAM F63X 

i!FTN,L,A,E. 

1 COOP,376-00,HAB,S/IS/2S,3, 1000,5,TESTI. t-' 

t-

LOAD-AND-GO 

7 
9 COOP, A, I, IO, TL, LL, R, C. 

Provides accounting information for the operations center, establishes time 
and line output limits for the job, provides tape assignment information and 
specifies recovery procedures in case of abnormal termination. 

10-2 



10.1.2 

Field 1 

Field 2 (A) 

Field 3 (I) 

Field 4 (IO) 

Field 5 (TL) 

Field 6 (LL) 

Field 7 (R) 

Field 8 (C) 

7-9 punch in column 1 followed immediately by COOP 
specifies the Monitor system. 

Accounting information 

Programmer's initials 

I/O assignment field (Section 3.2, Appendix F). 2 S should 
be specified if there is a possibility that any subprogram 
may exceed the compiler's available core capacity. This 
tape is used as scratch by the compiler to hold excess 
assembly code prior to assembly. 

Time limit estimate in minutes. If not sufficient, job is 
terminated before completion. For compilation, assume 
a rate of 125 source language cards per minute. If the 
time limit is exceeded the recovery procedure is followed. 

Line limit estimate. This number should be greater than 
the maximum number of output lines anticipated, including 
compilation listings. If it is less, the job is terminated 
before completion. 

(optional) Recovery key indicates recovery (dump) procedure. 

(optional) Comments or identification 

A comma follows each field except the last which is followed by a period. 
The card is free field after column 2. Up to 8 cards may be used if 
necessary; each card must have a 7-9 punch in column 1, and a Hollerith 
character in column 2. 

Example: 

;cooP, 347-00, JSM, S/18/28, 10, 1500, 5, COMTEST. 

If an omitted field is followed by another field, the comma rule must be 
observed. For example, if scratch unit assignments are not made the MCS 
card may read: ~COOP, 347-00, JSM,, 10, 1500, 5, COMTEST. 

FORTRAN CARD ;FTN, options. 

Loads the FORTRAN system. 

Field 1 7-9 punch in column 1 followed immediately by FTN specifies 
FOR TRAN-63. 

The card is free field after column 2. The options may appear in any order 
separated by commas. Unrecognized options and extraneous characters are 

10-3 



10.1.3 
FINIS CARD 

ignored. The option field is terminated by a period at the end of the control 
card. If no options are present, only error messages and the basic assem
bler headings are printed. Any option can be abbreviated to its first character 
only, ~FTN, L, E, B. Any option may be followed by= n, ~FTN, LIST=l, E=lO. 

Options: 

LIST 

PUNCH 

EXECUTE 

ASSEMBLY 

INPUT 

TAPE 

BCD 

SYMBOLS 

List source language program 
on 51 

Punch relocatable binary deck 
on logical unit 52 

Write load-and-go tape 56 

List assembled programs in 
CODAPl language 
on 51 

Input source from 50. Same 
even if option is not present 

No assembler scratch tape; 
same if option is omitted 

Punch generated CODAPl 
cards on 52 

Allot 2048 words to Assembler 
Symbol Table; if option is 
omitted, allot 1024 words 

REFERENCES* Suppress Assembler Symbol 

NULLS 

Table; if option is omitted, 
print table 

Suppress Null listing; if option 
is omitted, print Null listing. 

List source 
language program 

Punch binary on 
unit n. 

Write load-and-go 
tape n 

List assembled 
programs in 
CODAPl 

Input source from n 

Assembler scratch 
tape n 

Punch generated 
cards on n 

Allot (max. n, min. 
1024) words to Assem
bler Symbol Table 

Suppress Table 

Suppress Null 
listing 

If n is 0, the option is interpreted as if it were not present 

FINIS 

Indicates compilation is to end; it is used only in conjunction with compilation. 
The word begins in column 10. 

*Applies only if ASSE\IBL Y option is present. 

10-4 



10.1.4 

EXECUTE CARD 

10.1.5 

BINARY CARD 

~EXECUTE, TL, LGU,SL. 

When EXECUTE precedes a relocatable binary deck (RED), the program 
from the standard input unit (3.1) is loaded into core. When FXECl1TE 
accompanies a load-and-go tape, the program from the specified unit is 
loaded into core and executed. (See repeated job execution with N data 
decks and batch execution and partial compilation and execution - 2.2, 2.3, 
2.5.) 

Field 1 

Field 2 (TL) 

7-9 punch in column 1 followed immediately by the \\'Orel 

EXECUTE. 

Time limit of execution in minutes. If not sufficient, job is 
terminated before completion. If greater than the time limit 
on MCS card, it is ignored. 

Field 3 (LGU) Load-and-go unit. If omitted or blank with load-and-go, 
unit 5G is assigned. It must agree with the corresponding 
assignment on the MCS and FORTRAN cards. 

Field 4 (SL) Suppress map listing key; 1 if a listing is not desired, 
otherwise omitted. 

A comma follows each field except the last which is followed by a period. 
The card is free field after coltunn 2, embedded blanks may be use cl and field 
lengths arc variable. 

Example: 

7 
9EXECUTE, 3, 10, 1. 

Execute program from load-and-go unit 10 with a time limit of :~ minutes; 
suppress map listing. 

7 
9 BINARY, N. 

Transfers binary card images from the standard input unit to unit N until a 
control card is encountered. 

Field 1 

Field 2 (N) 

7 -9 punch in column 1 followed immediately by the word 
BINARY. 

Logical unit designator. N is an integer, 1 to 49 or 5G. 

If N is blank or omitted, it is assumed to be unit :)(i. It 
must agree with the corresponding assignment on the l\ICS, 
FORTRAN and EXECUTE cards. 

The card is free field after column 2. 

10-5 



10.1.6 

FORTRAN-63 
SOURCE DECK 

Example: 

~BIXAHY, :Jli. 01· 7 mx:\RY. 
9 

The binary card imag-cs which follow will be transrerrecl l'rom the standard 
input unit ( 50) to the standard scratch unit (:)Ii). 

7mNARY, ::i. 
9 
The binary card images which follow will be transferred from the standard 
input unit to logical unit 5. 

This deck contains the program and all its subroutines except those from 
the Library. The program may contain assembly (CODAPl) language 
subprog;nrn1s and FOHTHAN-63 subprograms in any order after the FOHTRAN 
card. (The preS('nee of CODAPl subprograms in the source cll•ck clo('S not 
require a CODAP card.) 

10-6 



10.2 

DECK STRUCTURE 

10.2.1 

COMPILATION 
ONLY Compile one or more FORTRAN-G3 programs or subprogTams. 

Deck Structure: 

1. lVICS card scratch unit 2S must be assigned as an overl'low 
scratch unit 

2. FORTRAN card omit load-and-go assignment 

:l. Source decks (Source Programs - FORTRAN-G3 and/or CODAPl) 

4. FINIS card 

In the l'ig"l.ircs in this section, the END cards in the source decks represent the 
terminal END cards existing with the source programs. 

_( FIN IS 

L_( END 
t-

_/ t-
PROGRAM THREE 

END 

j t-

f I--

_( IDENT TWO 

_( END 

f- I-

t:._ 
t---' {_ 

_( PROGRAM ONE 

_r FTN,L,A,P. 

/? I t-' 9 COOP,24003-00,NAF,S 25,5,500. 

t-

BATCH COMPILATION 

10-7 



10.2.2 

a) ~COOP, 24003-00, NAF, S/2S, 5, 500. 

Scratch units assigned; alternate form for assignment is S/57. 
Time limit is 5 minutes. Line limit is 500 lines. 

b) ~FT"N, L, A, P. 

List source and assembly language versions and punch the binary 
deck. 

c) FORTRAN-63 and CODAPl source language subprograms. Required 
END cards must be in place after each subprogram. 

d) FINIS card to signal end of compilation begins in column 10. 

For batch compilation, stack the source decks sequentially each with its 
END card. One FINIS card appears after the last deck to be compiled. 

EXECUTION ONLY Single Job and Multiple Job. 

To execute a compiled program with or without data. 

Deck Structure: 

1. l\ICS card 

2. EXECUTE card 

3. Relocatable Binary Deck 

4. Transfer cards (card containing only 7-9 punch, col 1) 

5. Data deck if applicable 

10-8 



DATA DECK 

2ND JOB 
~TRANSFER 

RBD 

~EXECUTE. 

BLANK CARD 

DATA DECK 

~EXECUTE. 

~ COOP,24003-00,NAF, ,5,1000,5,TESTI. 

BATCH EXECUTION 

a) ~COOP, 24003-00, NAF, , 5, 1000, 5, TESTl. 

b) 

Scratch units and other I/0 units are not required. If used they appear 
in field four. Time limit is 5 minutes;line limit is 1000. For abnormal 
job termination, perform recovery procedure 5 (3.1.1). 

7EXECUTE 9 . 

Execute the program with the time limit specified. 

c) Relocatable Binary Deck (Object Program) 

If the deck has two transfer cards, go to step d. The RBD will have two 
transfer cards only if the source deck was terminated with an extra 
FORTRAN END card. If a second END was not included in the source 
deck, there will be only one transfer card generated in the RBD, and a 
second transfer card must be provided by the programmer. 

d) Data cards complete the deck set-up. 

10-9 



10.2.3 

EXECUTION 
ONLY 

Batch executions are set up as above for the first job; subsequent jobs are 
preceded by a blank card followed by an EXECUTE card. 

Repeated execution of one RBD with N data sets. 

To execute a program with more than one set of data. 

Deck structure: 

1. MCS card 

2. BINARY card 

3. Relocatable Binary Deck 

4. EXECUTE card 

5. Data deck 

6. Blank card 

7. REWIND card 

8. EXECUTE card 

9. Data deck 

(repeat steps 6, 7, Sas required.) 

10-10 



-

, 

,, 

,,, 

ff 3RD DATA SET 

DATA DECK 3 

J! EXECUTE,2,56. 
f-J r REWIND, 56 

f-J 

_( BLANK CARD 
t-

(( t-2ND DATA SE 

DATA DECK 2 

_r EXECUTE, 1,56. r REWIND, 56. 
t-

'" om 71 _( 
I-

BLANK CARD 

I-

t-
DATA DECK I 

£ EXECUTE,2,56 

f- t-

L 
{ t-

_( RBD r BINARY, 56. 

1 COOP, 245, NAF, S/5G, 10, 2000,5,REPEAT. I-

t-

ONE JOB, THREE DATA DECKS 

7 
a) 9COOP, 245, NAF, S/56, 10, 2000, 5, REPEAT. 

b) 

c) 

d) 

Time limit is 10 minutes. Line limit is 2 000. Recovery procedure 5. 

7 7 
BINARY, 56. or BINARY. 

9 9 
Scratch unit 56 designated for RBD. 

Relocatable binary deck. RBD must have two terminal transfer cards 
(7-9 punch, col. l) 

7 7 
EXECUTE, 2, 5G. or EXECUTE, 2. 

9 9 
Ready for execution with first set of data. Time limit is 2 minutes. 
Scratch 5G need not be specified; it is assumed if omitted. 

10-11 



10.2.4 

c\ 

f\ 

g) 

h) 

Data deck for first execute. 

Blank card 

7 
9REWIN"D, 5G. 

~EXECUTE, 1, SG. 

Ready to execute next set of data. Time limit 1 minute. Load-and-g-o 
unit must be specified. 

i\ Data deck for second execute. 

j) Blank card 

Total of individual execution times must not exceed total time specified on 
the MCS card. 

COMPILATION AND 
EXECUTION Load-and-go 

To compile a FORTRAN program and execute it immediately with or without 
data. 

Deck structure: 

1. MCS card 

2. FORTRAN card 

3. Source deck, 2 END cards 

4. FINIS card 

5. EXECUTE card 

6. Data deck 

10-12 



L. 

£ 
_( DATA DECK 2 

_r EXECUTE,1,56. 

t--' _r REWIND,56. 

I' _( 

!---' 
BLANK CARD 

!---' 
L_ 

f- !---' 

_( DATA DECK I 

1~ EXECUTE,2. 

I-

_[ _[ 
FINIS 

END 
I-

L_( END 
!---' 

I-
{_ 

L 

f 
f--J 

PROGRAM NEW r FTN,L,E. 

("~ COOP,245, NAF,S/IS/2S,3,100,5,ZEKE. t-

I-' 

COMPILE AND EXECUTE (LOAD-AND-GO) WITH TWO DATA DECKS 

a) ~COOP, 245, NAF, S/1S/2S, 3, 100, 5, ZEKE. 

b) 

Scratch units required for compilation. Total time for compilation and 
execution is 3 minutes. Line limit is 100. Recovery procedure ;) . 
Load-and-go unit is lS (unit 56). 

7 
9FTN, L, E. 

Provide listings. No RBD. Load-and-go unit 56. 

c) Source deck 

Two terminal FORTRAN END cards will generate two terminal transfer 
cards (7-9 punch, col. 1). If only one terminal FORTRAN END card is 
used, a transfer card must be inserted immediately after the EXECUTE 
card. The deck may also be CODAPl with two terminal END cards. 

10-13 



10.2.5 

PARTIAL 
COMPILATION 
AND EXECUTION 

cl) FINIS card 

Signals end of compilation 

e) 7EXECUTE, 2, 56. or 7 EXECUTE. 2. 
9 9 
Execute the program with a time limit of 2 minutes. The time limit 
here must be less than the time limit on the MCS card. If compilation 
took 1.5 minutes, the job will be terminated after the remaining 1.5 
minutes elapses. 

f) Data deck 

For repeated executions with data deck, repeat steps f through i 
section 2 .3, Execution Only. 

To recompile a subroutine, or acid a subroutine to an existing RBD and 
execute immediately, with or without data. 

Procedure I loads the subprogram to be compiled before the existing RBD: 
execution then takes place. Procedure II loads the ex is ting RBD, then the 
newly compiled subprogram. 

PROCEDURE I Procedure I must be followed when a special subroutine is to be used instead 
of an existing FORTRAN-63 library function with the same name. For example, 
in a program. LOGF might be the programmer's own function subroutine. To 
make certain his routine. and not the library LOGF is used. Procedure I is 
followed. 

Deck Structure: 

1. MCS card 

2. FORTRAN card (FTN card) 

3. Source deck (to be compiled) 

4. FINIS 

5. EXECUTE card 

6. Relocatable Binary Deck (existing RBD) 

7. Data deck 

10-14 



EXISTING RB 
CARD 

TO BE COMP 

E-

[ DATA DECK 

D WITH 2 TRANS FE~ 
S AT THE END 

i BINARY DECK r t:XECUTE,2. 

_( FINIS 

""~) 
END 

l PROGRAM NEW 

Q FTN,L,A,P,E. 

1 COOP, 123,RBD,S/IS/2S,3,400,4,PARTIAL I. I-

!---' 

J 
li 

t-

t-

t-

I-' 

PARTIAL COMPILATION AND EXECUTION: PROCEDURE l 

a) ~COOP, 123, RBD, S/1S/2S, 3, 400, 4, PARTIAL!. 

b) 

Scratch units assigned for compilation. Time limit is 3 minutes. Linc 
limit is 400. Recovery procedure 4. Load-and-go tape is lS (unit :iG). 

7FTN, L, A, P, E. 
9 
Provide listing and RBD from compilation. Scratch unit GG is loacl-and
go tr.pe. 

c) Source Deck (FORTRAN-G3 or CODAPl) 

Contains 1 terminal END card. Compilation will use unit GG. 

d) FINIS 

Signals end of compilation. 

e) EXECUTE, 2. 

Time limit is 2 minutes. Unit 5G is assumed load-and-go unit. The 
newly compiled program and the RBD will be loaded into core in that 
order and executed. 

10-15 



f) Relocatable Binary Deck with 2 terminal transfer cards. (7-9 punch, 
col. 1) 

g) Data deck 

PROCEDURE II Deck Structure: 

1. MCS card 

2. BINARY card 

., 
"· Relocatable Binary Deck 

4. FORTRAN card 

5. Source deck 

G. FINIS card 

7. EXECUTE card 

8. Data deck 

TO BE COMPILED ( 

(existing RBD) 

(FTN card) 

(to be compiled) 

/ 
/ 

/ 
L 

[ DATA 

Q EXECUTE,!. 

{ FINIS 

_( END 

END 

~ 

EXISTING RBD 
ONE TRANSF 

CARD AT THE 
w"/t~ ER L 
END 

,L 

·( PROGRAM NEW r FTN,L,A,P,E. 

BINARY DECK _L 
Q BINARY,56. 

i COOP ,125,FOO,S/IS/ZS, ,4,300,3,PARTIALZ. µ 

I-

DECK 

t--

t--

r-' 

~ 

I-

1-J 

I-

PARTIAL COMPILATION AND EXECUTION: PROCEDURE 2 

10-16 



a) 7COOP, 125, FOO, S/1S/2S, 4, 300, 3, PARTIAL2. 
9 

b) 

c) 

d) 

Scratch units assigned for compilation. Time limit is 4 minutes; line 
limit is 300. Recovery procedure 3. Load-and-go tape is lS (unit 56). 

7 
9BINARY, 56. or 7 

9 BINARY. 

RBD to be transferred to unit 56. 

Relocatable Binary Deck (existing RBD) 

7 
9FTN, L, A, P, E. 

Listing and RBD compilation are required. Scratch unit 56 is load-and
go tape. 

e) Source deck (FORTRAN-63 or CODAPl) 

Assume two END cards appear. If there is only one, a transfer card 
(7-9 punch, col. 1) must be inserted immediately following the EXECUTE 
card. 

f) FINIS card 

g) 

Signals end of compilation. 

7 EXECUTE, 1. 
9 
Time limit is 1 minute. Unit 56 is assumed load-and-go unit. 

h) Data deck 

10-17 



10.3 

INPUT /OUTPUT 
EQUIPMENT 
USAGE 

10.3.1 
STANDARD 
1/0 UNITS 

\\'hen a FOH"LlAN-G:3 job is loaded for execution, the monitor assigns physical 
units corresponding to the logical units used by the program. Of all the units 
connected to the computer, a subset, callee! standard units, arc assigned by the 
monitor for its own use. The standard units arc assigned automatically and the 
user need be concerned only with the standard scratch units (56 or lS. 57 or 2Sl. 
These arc assignee! by the user on the MCS control card when compilations are 
made. Logical unit 57 is used as an intermediate scratch unit by the source 
language processor. Logical unit 56 is assumed to be the load-and-go unit by 
the control system unless otherwise specified on the EXECUTE care!. 

Standard Input Unit 

This unit handles the system input requirements. Control cards, source pro
grams, object decks for loading and input required by a FORTilAN READ n, L 
statement arc read from this unit. 

Standard Output Unit 

This unit handles the system listable output requirements. Control information, 
listings, clumps, and output for a FORTllAN Pl1INT statement are written on 
this unit. 

Standard Punch Unit 

This unit handles the system punched card output requirements. Source language 
processor output (llBD), and output for a FOHTHAN PUNCH statement are 
\\Tittcn on this unit. 

The standard units and recovery key options are listed below. 

Standard Input Unit 

Standard Output Unit 

Standard Punch Unit 

Comment from Operator 

Comment to Operator 

Accounting Unit 

Standard Scratch Unit 1 

Standard Scratch Unit 2 

10-18 

50 

51 

52 

5,, ,, 

54 

55 

56 

57 

Remarks 

typewriter 

typewriter 

paper tape 

also lS 

also 2S 



10.3.2 

INPUT/OUTPUT 
FIELD OF THE 
MCS CARD* 

Recovery Key 

Option Recovery Action Taken 

0 or blank Octal dump of console conditions on standard output unit 

1 numbered common region 

2 labeled common and the program 

3 Same as 0 plus octal dump of labeled and numbered common and 
the program 

all of memory 5 

4 Same as 5 except monitor regions of memory are not dumped 

Field 4 of the MCS card is the I/O unit assignment field. The following typical 
entry for this field assigns logical units 3 and 4 as input units and logical unit 
5 as an output unit. 

I/3/4/0/5, 

The general form of field 4 is: 

i. ,o.,s.,£. are logical unit numbers - The ranges are: 1 to 49 
1 1 1 1 

s. may also be 56 (lS) or 57 (2S) 
1 

pi is a logical unit number previously defined in the I/O list, or a standard I/O 
unit number. 

I Logical units in the I list are assigned as input units; an input unit may also 
be assigned as an output unit. 

0 Logical units in the 0 list are assigned as output units; an output unit may 
also be assigned as an input unit. 

S Logical units in the S list are assigned as scratch units and may function as 
both input and output units. 

E Logical units in the E (Equivalence) list on the left hand side (the £i) of the = 
sign will be assigned to the same physical unit as the logical units on the 
right hand side (the pi) of the = sign. 

*Described in COOP \10\ITOH Prowammer's (;uid<'. 

10-19 



The order of assignments of l/O units is: input, output, scratch, equivalence. 
If only output and scratch units are assigned, they appear as 

Assignments should not be made in any other order. If a unit is defined for one 
operation and an attempt is made to use it for another operation, the program 
will terminate abnormally. 

Examples of MCS Field 4 Assignments 

Output only 

Input only 

Input and Output 

Scratch only 

Input, Output 

and Equivalence 

10-20 

0/10/12 

1/4/6/17 

I/5/10/0/3/ 4 

S/1/10 

S/1S/2S 

1/3/0/5/E/3 = 50/5 = 51 

input unit 3; 

output unit 5; 

equa tee! to standard input 

equated to standard output 



OVERLA VS AND SEGMENTS 11 

Programs that exceed available memory may be divided into independent parts. 
Such programs consist of a main subprogram (which remains in core storage 
during execution), overlays of the main subprogram and segments of overlays. 
The main subprogram will call each overlay into memory and transfer control 
to it. An overlay may call an associated segment into memory or return control 
to the main subprogram. The main subprogram, one overlay and one segment 
may be in core storage at any time. An overlay may not call another overlay 
nor may a segment call another segmcnt.t 

An overlay may reference entry points and common blocks within the main sub
program. A segment may reference entry points and common blocks within the 
main subprogram or its controlling overlay. The main subprogram may 
reference neither entry points nor common blocks within overlays or segments, 
nor can an overlay reference these items in a segment. 

A FOUTRAN source program, consisting of a main subprogram and one or 
more overlays and segments, may be compiled and executed on a load-and-go 
basis or it may be compiled for later execution. The procedure for load-and-go 
involves compiling and/ or loading the job on the load-and-go tape in relocatable 
binary form and then writing the job on the overlay(s) in absolute. 

An overlay tape is composed of two or more absolute binary records, the last 
of which is terminated by two end-of-files. Each record, constituting a main, 
overlay, or segment subprogram, may contain many subprograms. 

' T For more detailed information concerning nYcrlays and segments, refer to publications 

J\ST \\T CO-OP \10:\ I TO fl, 1"600!16 I 00, and CO-OP \10\JTOH. PHOGH A\1\1EH'S Crim:, 
numb<'r 600:,oaoo, Rev. A. 

11-1 



11.1 

Rules: 

1 Overlays and segments must be written as closed subprograms 
entered by return jump instructions. 

2 Parameters may be transmitted from a main program to an overlay 
and from an overlay to any of its segments. 

3 Overlays are numbered sequentially, starting at 1, on each overlay 
tape. Segments are numbered sequentially, starting at 1, for each 
overlay. 

4 A maximum of four overlay tapes may be generated for one program. 

5 A TRA card will be generated when compiling a SUBHOUTINE as 
an OVERLAY or SEGMENT if the PROGRAM name ( ) statement 
is used instead of SUBHOUTINE name ( ) . 

6 If a fault checking statement is used in an overlay or segment, 
SELECT* is used to select the condition. REMOVE* may not be 
used to remove the condition before sequencing to another overlay 
or segment, thus leaving an interrupt selection to some meaningless 
location in later overlays or segments. 

7 When an overlay or segment uses BCD input, a record may be lost 
when sequencing between overlays or segments because of the one
record-ahead buffering scheme in BCD input. 

CALLING SEQUENCE The FORTRAN calling sequences for overlays and segments are: 

CALL OVERLAY (n,p,o) 

CALL SEGMENT (n,p,o,s) 

n is the logical unit from which the overlay or segment is to be 
loaded. 

p is the parameter to be passed to the routine. 

o is the number of the overlay. 

s is the number of the segment. 

11-2 



11.2 

DECK STRUCTURES A typical load-and-go job consisting of a main subprogram, an overlay and 
a segment might be set up according to the accompanying diagram. 

DATA 

~EXECUTE 

FINIS 

SECOND END 

FORTRAN OBJ DECK 

~BINARY, NN 

CODAPI SOURCE 
PROGRAM 

CODAPI OBJ DECK 

II 

~ OVERLAY, 10, I 
9 

FTN SOURCE 
PROGRAM 

~COOP, 1964, CW, S/NN,10,5000 

11-3 

R =OVERLAY TAPE 

NN =LOAD-AND-GO TAPE 



If it is desirable to generate an overlay tape for execution at a later time. 
the control cards would be placed as follows: 

ll MAIN IR 

Q LOAD, SI 

II 

II 

SECOND TRA 

NAMED TRA 

SUBPROGRAMS 
FOR SEGMENT 

~SEGMENT I 10' I 
9 

SUBPROGRAMS 
FOR OVERLAY 

~OVERLAY, RI I 
9 • 

SUBPROGRAMS 
FOR MAIN 

R=OVERLAY TAPE 

SI= STANDARD INPUT 

/~COOP, 1964, cw' S/R I 10,5000 t-

I-

I 

At the time the prepared overlay tape is to be executed. the deck would 
look like this: 

£-
L 

L. 
L. 

{DATA CARDS 

_G MAIN, R 

~ LOADMAIN, 1964,CW,S/R, 1--" 

R = OVERYLAY TAPE 

10,5000 

~ 

11-4 



APPENDIX SECTION 





CHARACTER CODES A 

1604 COMPUTER 
Source Language BCD (Magnetic Punch Positions in a 

Character Tape & Internal) Hollerith Card Column 

A 61 12-1 
B 62 12-2 
c 63 12-3 
D 64 12-4 
E 65 12-5 
F 66 12-6 
G 67 12-7 
H 70 12-8 
I 71 12-9 
J 41 11-1 
K 42 11-2 
L 43 11-3 
M 44 11-4 
N 45 11-5 
0 46 11-6 
p 47 11-7 
Q 50 11-8 
R 51 11-9 
s 22 0-2 
T 23 0-3 
u 24 0-4 
v 25 0-5 
w 26 0-6 
x 27 0-7 
y 30 0-8 
z 31 0-9 
0 12 0 
1 01 1 
2 02 2 
3 03 3 
4 04 4 
5 05 5 
6 06 6 
7 07 7 
8 10 8 
9 11 9 
I 21 0-1 
+ 60 12 

40 11 
blank 20 space 

73 12-8-3 
) 74 12-8-4 
$ 53 11-8-3 

* 54 11-8-4 
33 0-8-3 
34 0-8-4 
13 8-3 

A-1 





SUBPROGRAM STATEMENTS 
ENTRY POINTS 

INTEH-SUBROUTINE 
Tl{ANSFER STATEMENTS 

STATEMENTS 
OF FORTRAN-63 

PROGRAM name 
PROGH.AM name (pl, ... , Pn) 
SUBROUTINE name 
SUBHOUTINEnarne (p1,p2 , ... ) 
FUNCTION name (p 1, p2 , ... ) 
ENTH.Y name 

EXTERNAL narne 1 , narne2 , . 
CALL name 
CALL name (pl, ... , pn) 
RETURN 

DATA DECLARATION AND STORAGE ALLOCATION 
TYPE DECLARATIONS 

STORAGE ALLOCATIONS 

ARITHMETIC STATEMENT FUNCTION 

TYPE COMPLEX List 
TYPE DOUBLE List 
TYPE REAL List 
TYPE INTEGER List 
TYPE LOGICAL List 
TYPE name # (w,/b) List 

#is5,6,7 

DIMENSION V l' V 2 , ... , V n 
COMMON/IJ List .. . 
EQUIVALENCE (A,B, ... ), 

(Al,Bl, ... ) .. . 
DATA (I1 =List), (I 2 = List), .. . 

Function (pl, ... , pn) = Expression 

SYMBOL MANIPULATION, CONTROL AND I/O 
REPLACEMENT A = E Arithmetic 

INTRA-PROGRAM 
TRANSFERS 

*\ ~on-executable E Executable 

L = E Logical/Relational 
M = E Masking 

Arn= ... = A1 = E Multiple 

GO TO n 

GO TO rn, (n1 , ... ~) 
GO TO (n1, ... , nrn)i 
GO TO (n1 , ... , nrn),i 
IF (A) n1 ,n2 ,n3 
IF (L) n1 ,n2 
IF (SENSE LIGHT i)n1 ,n2 
IF (SENSE SWITCH i)n1 ,n2 

B-1 

B 

Page 

N"' 7-1 
!\ 7-1 
!\ 7-8 
N 7-8 
N 7-2 
N 7-1:3 

N 7-5 
E 7-8 
E 7-8 
E 7-12 

N 4-1 
N 4-1 
N 4-1 
N 4-1 
N 4-1 
N 5-2 

N 4-2 
N 4-3 

N 4-7 
N 4-9 

E 7-6 

E 2-1 
E 3-1 
E 3-6 
E 3-8 

E 6-2 
E 6-2 
E 6-2 
E 6-2 
E 6-3 
E 6-3 
E 6-4 
E 6-4 



Statements of FOHTilAN-6:1 (Continued) 

\FAULT/ 
Page 

IF DIVIDE 
°/cHECK i n1,n2 E 6-4 

IF EXPONENT FAULT n 1 ,n2 E 6-5 
IF OVEHFLOW FA ULT n1 ,n2 E 6-5 
IF (EOF, i) n1 ,n2 E 9-11 
IF (IOCHECK, i) nl ,n2 E 9-11 

LOOP CONTROL DO n i = m 1 ,m2 ,m3 E 6-5 

MISCELLANEOUS 
PHOGRAM CONTROLS ASSIGN s TO m E 6-2 

SENSE LIGHT i E 6-4 
CONTINUE E 6-8 
PAUSE; PAUSE n E 6-9 
STOP; STOP n E 6-9 

I/O FORMAT FORMAT (spec 1 , spec2 , ... ) N 8-3 

I/O CONTROL 
STATEMENTS READ n, L E 9-6 

PRINT n, L E 9-1 
PUNCH n, L E 9-2 

READ (i,n) L I E 9-6 
HEAD INPUT TAPE i,n,L\ 
WRITE (i,n) L 

E 9-2 
WHITE OUTPUT TAPE i,n,L\ 
READ (i) L /_ 

E 9-7 
READ TAPE i,L\ 
WHITE (i) L 'I. 

E 9-2 
WHITE TAPE i,L~ 
BUFFER IN (i,p) (A,B) I E 9-8 
BUFFER OUT (i,p) (A,Bl\ 

I/O TAPE 
HANDLING END FILE i E 9-10 

REWIND i E 9-10 

BACKSPACE i E 9-10 

INTERNAL DATA 
MANIPULATION ENCODE (c, n, V)L E 9-14 

DECODE (c,n,V) L E 9-14 

PROGHAM AND SUBHOUTINE TERMINATION 
END N/E 6-9, 7-13 

8-2 



LIBRARY FUNCTIONS 
AND DIAGNOSTICS 

Diagnostic print-outs will be of the form: 

c 

ERROH. IN XXXXXXXXXXXXX A 0000000000000000 CALL FH.OM Z Z Z Z Z where 

xxxxxxxxxxxxx name of routine in which error occurred. 

A contents of the A-register 

zzzzz the location from which the routine was called 

:'\.-\:\IF. 0 F HCll"TI'.'\ E DE Fl XI TIO:\ 
PARAl\lETEH HESlTI' 

:\!ODE ~!ODE 
TYPE OF EHHOH CONTENTS OF A 

.-\BSF(X) .-\bsolute \'alue of X Heal HPal 

XABSF(i)II\T F(X) Absolute Value of i Truncated Integer lnlt•gL'r 

ll\T F(X) Truncation of IntcgC'r X Real Hml 

~IODF(X1 ,X2) x1 modulo x2 Heal Ile-al Second Argumpnt (Div.)~U First ArgumPnt 

X:\!ODF(i 1 ,i 2) il modulo i 2 Integer lntt•gl·r Second Aq;ument (Div.)= 0 First Arguml'nt 

~L\XOF (i 1 ,i 2 , . . ) Determine 1\Ia .. x ArgumL•nt Integer Hml 

:\L-\Xl F(X 1 ,X2, . ) Determine 1\I~L'\ .\rgumL1 nl Heal HPal 

X:\l.\XUF (i1 ,i 2 , .. . ) Determine !\l~L'\ Argument Integer Integer 

X~L\Xl F(X 1,x2 , . . ) Determine :\lax Arguml'nt Heal Integ·vr 

:\11:'\UF (i 1 ,i 2 , . .. ) Determine l\lin Argument Integer Hml 

l\IINl F(X1 ,X2, . ) Determine l\lin Argunll'nt Real Hl':l! 

X:\I!XOF (i 1 ,i 2, . ) Determine Min Arguml'nt Integer lntef:l'r 

X:\Ill\I F(X 1 ,X2, . .. ) Determine l\lin Argumpnt Real lnll'ger 

Sl'.'\F(X) Sinl' X Ibdians Real Heal 'X! > 2:JCi Arb>ument 

COSF(X) Cosine X Radians Real Heal 'x' > 236 .\rgument 

T.\'.'\F(X) Tangent X Radians Real !{pa) .X > ?36 Argument 

AS!l\F(X) Arcsine X Haclians Real Heal ,XI> 1 Argument 

ACOSF(X) Arccosine X Hadians Real Hml IX.> 1 Argument 

ATAl\F(X) Arctangent X Hadians Heal HP:tl 

TA!\11 F(X) llypcrbolic: Tangl'nl X llaclians Heal H<•al 

~l/HTF(X) Squan• Hoot of X Heal Heal X<O Argument 

J.()(;F(X) Natural Log of X Heal Heal x '~ 0 Argumf'nt 

EXPF(X) l' to Xth pow Pr Heal Hml x > 709.0895 ArgurnPnt 

~iJt;l\F(X 1 ,X~) Sign of x 2 times ,xi, Heal Hml 

XSIG'.'\ F(i 1 ,i 2) Sign of i 2 timC's ii11 lntC'gC'r lnl<·g·t·r 

C-1 



Cl IH:I: I' I (:.;I 

I 'f.U.\T !-' (i) 

I:.\\ I·(:'\) 

Ill-: H:\!TlON 

l"r :.; I . :.; " : :.; 1 - :.;~ 

f()J' >:. 1 :\., LI 

l()l' i1 > i~ 

tor i 1 i., 

Culiv rout rd :\ 

;\[;\ 1·1 i:-- (•11ui\ ~dt'lll lti :\ IT\F 

ITO.J (l .. I) 

:.;rrn r.-;. J) 
ITOX(I.X) 

I.I:\(; rII 1 (i) 

• DCl'Bln(i'.) 

'lJATA;o.: (i'.) 

'lJS!N(i'.) 

'DCUS(i'.) 

"rn::.;P(i'.) 

'DS(/lff(i'.) 

• f)[.()(;(i'.) 

1" 

i\umlJt'l' cd \\ords l'('ad 

on logical unit i 

!.., 

i'.1 
I>ou!Jh• Jll'l'<'ision ('UIJl' 

root of'/, 

Doub!<· }Jl'(•('ision art'langl'lll 
of I. radian.-.; 

l>ot1IJlc prl'c:ision :-;iJlL' 

of I. radians 

J>oUIJlt' pn•dsiun l'O!::iill<._• 

of / radians 

Doubll' prl'cision 
l 1 :".polll'lllbl of I. 

lJoubll' prl'l'i:·iion squarL' 

ruut oi I. 

Double prl'cisiun natural 
logarithm of I. 

*The·se functions are not prcsentlv on the define tape. 

l'AHA~!ETEH HESL"!.T 
~!ODE ~!ODE 

l\l'al l{l'al 

Intl'gL•r lntl'gt·r 

Hl'al Hl':tl 

Intl'gt·r HP:tl 

:\pgatiY(' Hml 
Positi\·t· Integer 

l!t-:il lnll'gl'r 

lntl'gl'r. Intl'gt.·r Int< .. •gc_•r 

Hl'al, Integer HP al 

lntPger, Heal 11t•a l 

Integt•r lnll'gcr 

IJoublL', Doubk Double· 

Double Doubll' 

Double Double 

Double Double 

Double Duuble• 

Double Double 

Double Doubk 

Double Doubt" 

C-2 

TYPE OF EHHOH 

\Base• < U 
(<'XJl) On bas<') > /l1!J.l1.,!1:-, 

I fl:(S(' 0 ll, l'X[J . ll 

\Exp> .11 

-, (<..•xp) (In b:t:--,L') > /U!J.ll~!ii""1 

B:tSL' = U, l'XJl . u 

l'Ol\TENTS OF A 

Fir.st .-\rgumt·nt 

:\rgumt•nt 

Fil'~t argumPnt 
(<'XJl)On h:isl') 

1-'irst argunwnt 

!"\vconcl .\l'gllmL"nl 

First argumPnt 



INPUT/OUTPUT DIAGNOSTICS D 

ERROR MESSAGE FORMAT 

EHHOR IN XX,'CXXXXXXXXXX A YYYYYYYYYYYYYYYY CALL FROM ZZZZZ 

xxxxxxxxxxxxx identifies the I/O routine in use at the time of the error 
and also indicates the type of error. 

yyyyyyyyyyyyyyyy the A register will contain: 

zzzzz 

a) Value of p when the terminating error code is 
MODE 

b) Number of errors when the terminating error 
code is DATA 

c) Logical tape number in all other cases 

designates the address from which the I/O function was 
called. 

Input/output routines which may give rise to error conditions are: 

BCD 

BCD 

Terminating 
Error Codes 

TAPE 

FOHM 

DATA 

WIDTH 

NOD 

HOOM 

IN 

OUT 

BIN 

BIN 

IN 

OUT 

BU FINO UT 

Description 

Tape number was not defined or was out of range. 

FORTRAN FORMAT specification or parameter list was incorrect. 

Input character indicated by the FORMAT statement is not legal for 
this type conversion. 

BCD record length described by the FORMAT statement is too long 
for the specified unit. 

Double precision conversion has been requested, but no variables 
have been declared double precision type. The double precision 
routines, therefore, are not available in core. 

More than 16 buffered tapes have been requested at one time. 

D-1 



Terminating 
Error Codes Description 

SYNC 

MODE 

RECL 

LIST 

EOF 

A discrepancy between the lengths of the physical and logical records 
on the binary input has been detected. 

p 1' 0, 1, or 2 in a BUFINOUT statement. 

A record has been encountered containing 1, or less, word; it has 
been interpreted as noise. 

The INPUT /OUTPUT list has requested more data than is available 
in the logical record. 

An end-of-file was encountered before the end of a logical record on 
an input statement. 

When an unrecoverable error occurs while writing tape or punching cards, a non-terminating 
BCD OUT message will result. 

XX T NN 

XX equals PE for a parity error 
BE for a buffer length error 
PB for buffer length and parity error 
CE if the on-line card punch fails 

T is the octal number of the tape. 

NN is the octal number of the logical unit. 

D-2 



A 

STANDARD 

OPERATIONS AND CALLING 
SEQUENCES 

E 

To understand the following discussions, the programmer must be familiar 
with CODAPl instructions and coding procedures. The detailed discussion 
of calling sequences for standard arithmetic expressions should aid the user 
in writing additional functions and non-standard type arithmetic subroutines. 

ARITHMETIC EXPRESSIONS 

A.1 

INSTRUCTION 
TYPES 

A.2 

CALL 
IDENTIFIER 

During compilation of an expression, the translator generates the following 
instruction types to execute the operations indicated by the operators. 

Instruction Types 

Add operand 

Subtract operand 

Multiply operand 

Divide operand 

Complement accumulator 

Power 

Load operand } 
Load negative operand 
Store operand 

Operators 

+ 

* 
I 
-(unary) 

** 

operand manipulations 

Instructions are generated independently of the arithmetic mode and type of 
operand. The mode of the accumulator and operands as well as the element 
size are determined from the TYPE declarations or the variable name con
vention. For standard types (real, integer, double, complex, logical), these 
are fixed. The appropriate machine order, or a jump to a routine which 
executes the intended operation then replaces the generated instruction type. 

Load and load complement instructions for all modes and arithmetic involving 
reals or integers exclusively generate CODAPl machine instructions. In other 
words, these operations are performed in-line. 

E-1 



To perform double and complex operations (other than load and load 
complement) and conversions for mixed mode arithmetic, the compiler 
generates library routine calls which have the form: 

QnQOOmst 

n indicates the number of operands to be treated. 

n = 0 for operations on the accumulator only. 

n = 1 if the operand is a full or multiple word element. 

n = 2 for exponentiation; exponentiation is not defined for partial 
word operands. 

n = 3 if the operand is a partial word or byte-sized element. 

00 indicates the operation code. The operation is determined by the 
operator in the expression. 

00 Load accumulator with operand 

01 Load accumulator with complement of operand 

02 Add operand to accumulator 

03 Subtract operand from accumulator 

04 lVIultiply accumulator by operand 

05 Divide accumulator by operand 

06 Complement accumulator 

07 Raise operand1 to the power operand2 

10 Store accumulator in operand 

m indicates the mode of the accumulator before store operations and after 
all other operations. 

0 mode is integer 

1 mode is real 

2 mode is double 

3 mode is complex 

4 mode is logical 

5 mode is non-standard 

6 mode is non-standard 

7 mode is non-standard 

E-2 



s indicates the mode of the operand. The values of s are the same as 
those defined for m. 

t indicates the mode of the exponent. It appears only with identifiers of 
the form Q2Q07mst; for other QnQ identifiers, it is always 0. Exponen
tiation involving a partial word operand is not permitted, except where 
the exponent is an integer constant 1- 8. 

Example: 

TYPE REAL A 

TYPE INTEGER B 

TYPE COMPLEX C 

C =(A+ B) 

Translator Instructions 

Load A 

Add B 

Store C 

Conversions 

none 

integer to real 

real to complex 

Call Identifier 

none 

QlQ02100 

Q1Ql0130 

The resulting CODAPl object code: 

+ 

+ 

LDA A 

CALL Q1Q02100 

00 B 

CALL 

00 

Q1Ql0130 

c 

Interpretation 

transmit contents of location A 
to accumulator 

go to subroutine, convert B to 
real and add to accumulator 

go to subroutine, convert accumulator 
to complex and store accumulator in C. 

Breakdown of the QnQ identifiers used in the example: 

mode of acc. is real 
addition indicated 

027 7 
1 

type of B is integer 

\ 
/0 QlQ 

/ t is zero except for exponentiation 

store indicated 
7 

3, 0 

type of C is complex 

QlQ 10 1 
. I 

mode of ace. is real 

E-3 



A.3 

CALLING 
SEQUENCES 

A.3.1 

Standard groups of CODAPl instructions are generated when jumps are 
made to QnQ subroutines, library functions, and subprograms. 

MIXED-MODE ARITHMETIC, 
DOUBLE AND COMPLEX 
OPERATIONS If the operand is a parameter in a subroutine or function, it appears in the 

object code as **. 

QOQ SUBROUTINES 

For operation 06, complement accumulator, the following code is generated: 

L CALL QOQ06mst 

L+l Return 

QlQ SUBROUTINES 

For full word operand (1 to 7 words per operand) and all operations except 
06 and 07, the code generated is: 

L CALL QlQOOmst 

0 b operand + constant addend 

L+l Return 

b is an index designator; the content of bis an indexing quantity 
(index function) reflecting variable subscripts on the operand. 

constant addend is a bias on the base address to balance a portion of the 
index function contained in b, or simply a position relative to the 
base array address of a variable with constant subscripts. To 
calculate the constant addend and (b) for element A (£ i *i ± ci' 
.ttj±cj' .lk *k±ck) in array A(I,J,K) the following formula is used. 

Base Address Constant Addend Index Function 

Locn A+ (-.l ± c. +I* (-1 ± c. +J* H ±ck) ) )*f+ (1. * i +I* (.f. * j + J * (.lk * k) ) ) *f 
1 J 1 J 

ii ,.lj ,.lk,ci ,cj ,ck are unsigned integer constants 
f is the element length (l-7 words) 

The effective operand address is (b) + operand + constant addend. 
b, (b) and/or the constant addend may be 0. 

E-4 



Q2Q SUBROUTINES 

For operation 07, exponentiation, the following code is generated: 

+ SLJ *+l 

0 b operand +constant addend 
1 1 1 

L CALL Q2Q07mst 

0 b2 operand2 + constant addend2 

L+l Return 

b , b , etc. are defined in QlQ calling sequence. 
1 2 

Q3Q SUBROUTINE 

For partial word operand, logical, the calling sequence is: 

+ SLJ *+l 

n b constant addend 

L CALL Q3Q00mst 

POF 0 operand 

L+l Return 

n is the element length in bits 

POF is the parameter offset which appears in the object code as 00. An 

offset is the number of bits between the left end of the word and the 
logical bit. The parameter offset is passed along with the operand 
address when the operand is a parameter in a subroutine call. 
During execution, it is transmitted with the parameter to all Q3Q 
calls within the subroutine. If there is no offset or if the operand 
is not a parameter in a subroutine call, the POF will be zero. 

For logical arithmetic, the effective operand address is computed as follows 
by an object time routine: 

a.d = ( (n *( (b)+ca) )+ POF)/p 

a = first word address (FW A) addend (quotient) 

d = actual offset (remainder) 

n = element length in bits 

(b) = content of index register 

E-5 



A.3.2 

SUBPROGRAMS 

ca = constant addend 

POF = parameter offset 

p = packing number (32 bits per word for logical; 
48 bits per word for byte) 

The effective operand is the n bits of word FWA + a, d bits from left. 

For more information and an example of the CODAPl Q3Q Calling Sequence 
for non-standard byte operations, see page G-11. 

The subprograms (function or subroutine) are called by the following sequence. The 
parameters will appear as ** in the object code if they are parameters in 
other subroutines or fur.ctions. 

RTJ 

+ 0 

0 

+ 0 

0 

+ Return 

or more explicitly 

.Z#. + 

RTJ 

(offset) 
0 

0 

SUBNME 

Parameter 1 

Parameter 2 
address of actual parameters 

Parameter 3 

Parameter 4 

SUBNME 

base address + FW A 
addend 

effective address 

if actual parameter 
specifies a partial word 
element 

if actual parameter 
specifies a multi-word 
element 

When the call for a subprogram with partial-word actual parameters is 
generated, the offset is calculated by a special library routine Q9QEVALB. 
The offset is made available to the subprogram at execution time by storing 
it with the parameter relative to the word tagged .Z#. See example III for 
the use of Q9QEVALB and the call to subprogram with parameter offsets, 
page G-19. 

E-6 



Ex amp/es: 

1) Function Subprogram Reference 

Z=QUAINT (P,Q,R,S,T) 

results in call 

RTJ QUAINT 

+ 

+ 

+ 

+ 

in memory 

0 

0 

0 

0 

0 

Return 

2) Subroutine Subprogram 

p 

Q 

R 

s 

T 

p 

Q 

R 

s 

T 

non-subscripted multi-word elements 

CALL SAM (M,l\1(3), l\'1(4) ) 

M is one word per element 

results in call 

+ 

+ 

RTJ SAM 

0 

0 

0 

M 

M+2 

M+3 

+ Return 

E-7 

M is address of operand 

effective address is the third word 

effective address is the fourth word 



A.3.3 

in memory 

M 
M(l) 

M+l j 
1VI(2) 

M+2 j M(3) 

M+3j M(4) 

CALL SAM (B, B(2), B(33) ) 

B is an array of logical elements 

results in call 

RTJ 

.Z#. + 0 

0 
(1) 

+ 0 

in memory 

1 bit 

SAM 

B 

** 
(B) 

** 
(B+l) 

B(l) element is leftmost character in 
first word 

B(2) element has offset of 1 and is in 
first word 

B(33) element is leftmost bit in second 
word 

The values in the parentheses indicate 
the contents of the word at object time. 

B B(l) B(2) i-1 __ ., B(32) I 

B+l B(33) ---------1 

LIBRARY FUNCTIONS Library functions have two entry points as they may be called by value or by 
name. Some are also called for expression evaluation and these are named 
with the conventions for mixed mode arithmetic. The instruction word in the 
parentheses will be present in function calls with two parameters. 

E-8 



The call by value generates the following sequence; the actual parameter is 
passed to the A or Q register or both. 

LDA Parameter 
LDQ Parameter 
RT J Function 

+ Return 

The call by name generates the following sequence; the address of the parameter 
is stored in the computer word following the RT J instruction. 

RTJ Q8Qfunction 

+ 
(-

0 
0 

+ Return 

Parameter 
Parameter) 

The typical library function entry points are then 

Q8Q function 

Function 

NOP 
RTJ 
SLJ 

** 
Q8QLOADA 

** 

call by name 

call by value 

The call by name transfers to the special routine Q8QLOADA which 
analyzes the call by name and makes it a call by value; the routine is then 
executed as if it had been called by value. 

The following are examples of FORTRAN coding that give rise to the 
different means of calling the library routines 

FORTRAN generates CODAP 1 

Call by Value: X=SINF(X) 

Call by Name: 

LDA X 

RTJ SINF 

RTJ PHI EXTERN AL SINF ! 
Z = PHI (X, SINF) calling + 

program 
0 
0 

x 
Q8QSINF 

FUNCTION PHI (P,Q) l FPOOOOl. RTJ 

PHI= Q (P) function 

END PHI FP00002. 0 

** 
(Q8QSINF) 

** 
(X) 

E-9 



B 

NON-STANDARD 
ARITHMETIC 
EXPRESSIONS 

8.1 

To implement a non-standard type arithmetic, it is necessary to write a 
set of routines which have the entry points generated by the compiler as 
externals (EXT) when an expression is evaluated. These routines must 
define the expressions which contain operands of different type (conversion 
routines for mixed mode\ and define the operations. The mode of the 
accumulator and operands and the element size are defined by the TYPE
other declaration. Th•e form of the call identifiers and calling sequences 
are the same for non-standard arithmetic as for standard. 

These routines can be written in any compiler or assembly language. 
Routines handling byte arithmetic are usually written in an assembly language 
to facilitate offset and constant addend manipulations. All non-standard 
operations must be performed in user-provided routines. If the required 
routine for an operation is not available, a load time diagnostic occurs. 

CALLING SEQUENCES 

B.l.1 

ALL ARITHMETIC OPERATIONS 
AND MIXED-MODE CONVERSIONS 

QnQ SUBROUTINES 

For multi-word elements, same as standard. 

The programmer must supply the routines for the QOQ, QlQ, Q2Q call 
identifiers. 

E-10 



Example: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

PROGRAM OTHERS 
TYPE BYTE5(/8) A,B,C,D 
TYPE QUAD6(4) AX,BX,CX,DX 
DIMENSION D(20),DX(l0) 
A=B+C .4 CALL Q1Q00660 
AX=BX+CX 0 BX 
A=B*C + CALL QlQ04660 
AX=BX*CX 0 ex 
A=D(5)+D(8) + CALL Q1Q10660 
AX=DX(3)+DX(4) 0 AX 
l=A+B .5 SLJ *+l 
C=l*A 10 +4 
J=l/C CALL Q3Q00550 
A= 1-J 0 D 
R=A+B + SLJ *+l 
S=R+A 10 +7 
A=R+S CALL Q3Q02550 C=R+A 0 D 
IX=AX+BX + SLJ *+l 
RX=AX-BX 10 0 
CX=AX+IX CALL Q3Ql0550 DX(3)=1X+RX 0 A 
A=l+R 
D(5)=1+R 
END 

Q3Q SUBROUTINES 
For byte arithmetic, same as for logical arithmetic. 

The offset for a byte is the number of bits between the left end of the word and 
the leftmost bit of the byte element. 

The programmer must include instructions in his Q3Q routine to compute the 
effective operand address -

a.d = ( (n*( (b)+ca) )+POF)/p 

and to locate the effective operand. 

The packing number, p, for bytes is 48 bits per word. 

E-11 



Example: 

FORTRAN 

PROGRAM OFFSET 

DIMENSION A(20) 

TYPE OTHER5 (/B)A 

CALL SAM (A(3) ) 

END 

SUBROUTINE SAl\'I(B) 

DIMENSION B(15) 

TYPE OTHER5 (/8) B 

I= 23 

C = B(I-15) 

END 

CODAP Calling 
Sequences 

RTJ SAM 

.Z#. 0 ** 
(1) (1) 

(20) (A) 

+ SLJ *+1 

10 (23) -16 

L CALL Q3Q00550 

0 ** 
(20) (B+l) 

Calling sequence for Q9QEVALB: 

ENQ 

ENA b 

+ CALL 

POF 0 

ST(A) upper half word 
Q lower half word 

b is the index function 

CA is the constant addend 

POF is the parameter offset 

E-12 

The offset is calculated 
by the Q9QEV ALB routine 
and stored with the 
parameter address at 
location .Z#. 

This Q3Q00550 routine 
must compute the 
effective operand 
address; it may call 
Q9QEVALB to do this. 

byte size 

CA 

Q9QEVALB 

operand 

.Z#. 



B.1.2 

SUBPROGRAM 

Calculations performed in example: 

1) for constant addend and index function 

Locn B - (1+15) + (8+15) 
Locn B - ( 16) + (23) 

ca= -16 
(b) = 23 

2) effective operand address 

a.d = ( (8*(23+(-16) )+16)/48 

a= 1 - FWA addend 
d = 24 - actual offset 

In memory 

B I A(l) IA(2) I A(3) IA(4) IA(5) IA(6) 

B( 1) B(2) B(3) B(4) 

B+l I A(7) IA(8) IA(9) IA(lo)IA(n)IA(12) I 
B(5) B(6) B(7) B(8) B(9) B(lO) 

B+2 I A(13)1A(14)1 A(15)1 A(16~ A(ld A(lS)I 

B(ll) B(l2) B(l3) B(l4) B(15) 

B+3 I A(l9)1A(20)1 

The calling sequence is the same for non-standard parameters as for 
standard parameters. 

Example: 

DIMENSION B(l2) 

TYPE OTHER6 (/8) B 

CALL SAM (B, B(2), B (11) ) 

E-13 



8.2 

EXAMPLES 

results in call 

RTJ SAM 

.Z#. + 0 B The first element of B array is the left-
most character of the first word. 

0 ** The second element of B array is offset 
(10) (B) from the left 8 bits (octal 10) but is still 

in the first-word. 

+ 0 ** The eleventh element of B array is in the 
(40) (B+l) second word and is offset 32 bits from 

the left. 

The values in the parentheses indicate 
the contents of the word at object time. 

in memory 

8 bits 

-·------
B I B(l) B(2) B(3) B(4) B(5) B(6) 

B+l I B(7) B(8) B(9) B(lO) B(ll) I B(l2) I 

I. Polish String - Byte Arithmetic 

This subroutine translates a fully parenthesized arithmetic expression into a 
Lukasiewicz parenthesis-free notation. This example shows a CODAPl routine 
with entry points for each call identifier. 

E-14 



PROGRAM STRING 
TYPE INTEGER S,P,T 
DIMENSION S(lO),P(lO),T(lO) 
COMMON I 
PRINT 500 

500 FORMAT(ll5Hl DEMONSTRATION OF A ROUTINE TO CONVERT FULLY PARENTHES 
* IZED ARITHMETIC STRINGS INTO PARENTHESIS IS FREE POLISH STRINGS ) 

l=l 
l READ 100,S 
100 FORMAT(lOA8) 

IF(S(l).EQ.8HFINISH )4,2 
2 DO 3 J= l , l 0 
3 T(J)=P(J)=8H 

CALL POLISH(S,P,T,80) 
CALL PRESS(P,80) 
PRINT 300,S,P 

300 FORMAT(l7HO INPUT STRING lOA8/17HOPOLISH STRING lOA8) 
GO TO l 

4 PRINT 400 
400 FORMAT(7HOFINISH) 

END 

SUBROUTINE POLISH(S,P,T,N) 
TYPE BYTES (/6) S,T,P 
DIMENSION S(N),P(N),T(N) 
COMMON I 
K= l $ I =N $ J=N 

l IF(S(J).EQ. lR) )8,2 
2 IF(S(J) .EQ. lR+.OR.S(J).EQ. lR-.OR.S(J) .EQ. lR*.OR.S(J) .EQ. lR/)3 ,4 
3 T(K)=S(J) $ K=K+l $ GO TO 10 
4 I F ( S ( J) . EQ . l R () 5 , 6 
5 P( l)=T(K-1) $ K=K-1 $GO TO 7 
6 P(l)=S(J) 
7 I= 1-1 
8 I F ( J . EQ • l ) 9 , 1 0 
9 RETURN 
10 J=J-1 $ GO TO l 

END 

SUBROUTINE PRESS(P,N) 
TYPE BYTE 5 (/6) P 
DIMENSION P(N) 
COMMON I 
K=l$1=1+1 
DO l J= I, N 
P(K}=P(J) 
K=K+l 
DO 2 J=K,N 

2 P(J}=(lR ) 
END 

E-15 



Q3Q00550 

Q3 

Q3Ql0550 

p 

c 

IDENT 
ENTRY 
SLJ 
SIU 
LIU 
RT J 
SAU 
LOA 
LLS 
ENA 
LLS 
SLJ 
SIU 
LIU 
ENQ 
LRS 
STQ 
RTJ 
SAL 
LOA 
LDQ 
LRS 

BYTES6 
Q3Q00550 
** 
c 
Q3Q00550 
p 
*+l 

7 M 
** 
0 
6 
Q3Q00550 
c 
Q3Ql0550 
-0 
6 
T 
p 
*+l 
T 
=077777777777777 
** 

SSU 7 M 
REMARK 
STA 
ENTRY 
SLJ 
SLJ 
SLJ 
REMARK 
LDQ 
LOA 
REMARK 
ssu 
STA 
LOA 
REMARK 
SAL 
LRS 
ENA 
LLS 
ENQ 
DV I 
ENI 
INA 
LRS 
RAD 
ENA 
LLS 
SAU 
LLS 

7 M 
Q3Ql0550 
** 
Q3 
** 

=0-777777 
-2 

c 
c 
-1 

M 
24 
0 
6 
0 
=6 
** 

3 
M 
0 
4 
*+l 
l 

E-16 

ENTRY TO LOAD SIX BIT BYTES 

COMPUTE ADDRESS OF OPERAND 
A=OFFSET 
(M)=ADDRESS 

SHIFT IN BYTE 
RETURN 

SAVE BYTE WITH MASK 
COMPUTE ADDRESS OF RESULTANT 
A=OFFSET 
(M)=ADDRESS 
ALL BUT HIGH ORDER CHARACTER 
POSITION MASK AND BYTE 
MASK ALL BUT NEW 6 BITS FROM 
STORAGE 
RESTORE RESULTANT 
ENTRY TO STORE SIX BIT BYTES 

COMPUTE EFFECTIVE ADDRESS OF 
OPERAND AT ((Bl)-2 AND (Bl)-1) 

WORD CONTAINS B CONSTANT ADDEND 
IN LOWER ADDRESS 

WORD CONTAINS OFFSET 0 BASE ADDRESS 
IN LOWER ADDRESS 

COMPUTE 
(OFFSET/6+B+CONSTANT ADDEND)/8 

=ADDITIVE TO BASE ADDRESS 

REMAINDER*6=BYTE OFFSET 



LLS 
I NA 
SLJ 
ENTRY 
REMARK 

QlQ03500 SLJ 
SAL 
LDA 
ALS 
INA 
SAU 
REMARK 

Ql LAC 7 
INA 
SLJ 

M OCT 
T BSS 

END 

PRINTED OUTPUT 

** 
p 

QlQ03500 

** 
Ql 
*-1 
24 
-1 
Ql 

** 
*'" 
QlQ03500 
0 
l 

ENTRY TO SUBTRACT INTEGER FROM 
SIX BIT BYTE IN A 

ADDRESS OF B BASE ADDRESS+CONSTANT 
ADDEND 
COMPLEMENTED OPERAND 
ADD A 
RETURN 

DEMONSTRATION OF A ROUTINE TO CONVERT FULLY PARENTHESIZED ARITHMETIC STRINGS 
INTO PARENTHESIS FREE POLISH STRINGS 

INPUT STRING (((A+B)-C)*D) 
POLISH STRING *-+ABCD 

INPUT STRING (A+(B-(C*D))) 
POLISH STRING +A-B*CD 

INPUT STRING (((A+B)-(C*D))/E) 
POLISH STRING /-+AB*CDE 

INPUT STRING (((A+(B-C))*((D/E)+F))-G) 
POLISH STRING -*+A-BC+/DEFG 

INPUT STRING ((A+B)*(C-D)) 
POLISH STRING *+AB-CD 
FINISH 

II. Double Precision Complex - Multi-word Elements 

These routines were written to handle double precision complex arithmetic 
which would extend computational precision to four computer words. 

This example shows two variations of FORTRAN routines. The first has entry 
points for each operation; the second has a separate subroutine for each 
operation. 

E-17 



SUBROUTINE QlQ00550(AD) 
C FTN63BA08 02APD L/03/20 
C TYPE 5 - DOUBLE PRECISION COMPLEX ARITHMETIC PACKAGE 
C NOTE THAT ACCUM(l) SHOULD ALWAYS BE INVOLVED IN THE OPERATION JUST 
C PREVIOUS TO RETURN TO INSURE THAT IFS ARE CONSISTENTLY TESTING THE 
C MOST SIGNIFICANT PORTION OF THE REAL PART OF THE VARIABLE. 

c 

DIMENSION ACCUMD(2),AD(2) 
TYPE DOUBLE ACCUMD,AD,B,C 
COMMON/DPCMPLXC/ACCUMD 

C LOAD ACCUMULATOR 
ACCUMD(2) = AD(2) 
ACCUMD(l) = AD(l) 
RETURN 

c 
C LOAD ACCUMULATOR COMPLEMENT 

ENTRY QlQ01550 

c 

ACCUMD(2) -AD(2) 
ACCUMD(l) = -AD(l) 
RETURN 

C ADD OPERAND TO ACCUMULATOR 
ENTRY QlQ02550 

c 

ACCUMD(2) = ACCUMD(2) + AD(2) 
ACCUMD(l) = ACCUMD(l) + AD(l) 
RETURN 

C MULTIPLY ACCUMULATOR BY OPERAND 
ENTRY QlQ04550 
B = ACCUMD(l)*AD(l) - ACCUMD(2)*AD(2) 
ACCUMD(2) = ACCUMD(2)*AD(l) + ACCUMD(l)*AD(2) 
ACCUMD(l) = B 
RETURN 

SUBROUTINE QlQ00550 (A) 
C LOA-COMPLEX DOUBLE PRECISION-TYPE 5 

DIMENSION A(4) 
COMMON /DPCMPLXC/ACCUM 
ACCUM(l) = A(l) 
ACCUM(2) = A(2) 
ACCUM(3) = A(3) 
ACCUM(4) = A(4) $ RETURN $ END 
SUBROUTINE QlQOl550 (A) 

C LAC-DOUBLE PRECISION COMPLEX 
COMMON/DPCMPLXC/ACCUM 
DO 5 I= l ,4 

5 ACCUM(l)=-A(I) 
RETURN 
END 

E-18 



SUBROUTINE QlQ02550 (A) 
C ADD-DOUBLE PRECISION COMPLEX-TYPE 5 

COMMON/DPCMPLXC/ACCUM 
TYPE DOUBLE ACCUM,A 
DIMENSION ACCUM(2),A(2) 
ACCUM(l) = ACCUM(l) + A(l) 
ACCUM(2) = ACCUM(2) + A(2) 
RETURN 
END 
SUBROUTINE QlQ04550 (A) 

C MULTIPLY-DOUBLE PRECISION COMPLEX-TYPE 5 
COMMON/DPCMPLXC/ACCUM 
TYPE DOUBLE ACCUM,A,B 
DIMENSION ACCUM(2),A(2) 
B = ACCUM(l)*A(l) - ACCUM(2)* A(2) 
ACCUM(2) = ACCUM(2)*A(l) + ACCUM(l)*A(2) 
ACCUM(l) = B 
RETURN 
END 

III. Q9QEVALB Routine 

This example shows the COD AP calling sequence for the Q9QEV ALB routine 
to compute parameter offsets. 

PROGRAM OTHERSB 
COMMENT THIS PROGRAM USES TYPE OTHER VARIABLES IN SUBROUTINE AND 
C FUNCTION CALLS 
l TYPE OTHER5(/3) A,B,SUM 
2 TYPE OTHER6{/8) C,D,SUZY 
3 TYPE OTHER7(3) E,F 
4 DI MENS ION A(20) ,B(40) ,C ( 10) ,D( 12), E( 10) ,F( 12) 
6 EXTERNAL SUZY 
5 SUM(X,Y)=X+Y 
7 CALL SUZY(D,D(2),D(ll)) 
8 CALL SUZY(A(5),C(2),E(3)) 
9 CALL NICK(E(6),F(lO),SUlY(D,D)) 
10 CALL NICK(SUM(A,B) ,A,B) 
ll A=MAX(A(2),B(l9)) 
12 B=MAX ( B ( 24) , D ( 5) ) 
13 C=MAX(SUZY(A,B),SUM(A,B)) 

END 

E-19 



.8 ENQ 
ENA 

+ CALL 
0 

STA 
+ ENQ 

ENA 
+ CALL 

0 
STQ 
RT J 

.Z00002. 0 
0 

+ 0 

. 12 ENQ 
ENA 

+ CALL 
0 

STA 
+ ENQ 

ENA 
+ CALL 

0 
STQ 
RT J 

. Z00004. 0 
0 

+ SLJ 
3 

CALL 
0 

+3 
+4 
Q9QEVALB 
A 
.Z00002. 
+8 
+l 
Q9QEVALB 
c 
.Z00002. 
SUZY 
;'(;'c 

** 
E+6 

+3 
+23 
Q9QEVALB 
B 
.Z00004. 
+8 
+4 
Q9QEVALB 
D 
.Z00004. 
MAX 
"'k* 

*-le 

*+l 
0 
Q3Ql0050 
B 

Number of bits in the element A. 
Constant addend to base. 
Routine calculates the parameter 
offset and stores it with A in the 
upper portion of .Z00002. 

Offset and parameter C is stored in 
the lower portion of .Z00002. 

Parameter is a multi-word element. 

Offset calculations and calling 
sequence are the same for function 
subprograms as for subroutines. 

IV. Logical and Relational Expressions With Non-Standard Variables 

Logical operations are compiled as arithmetic load, test, and store routines; 
relational operations, as load-load complement, subtract-add, and store 
routines. 

E-20 



PROGRAM OTHER9A 
COMMENT THIS PROGRAM USES TYPE OTHER VARIABLES IN LOGICAL 
C STATEMENTS 

TYPE OTHER5(/3) A.B.C 
2 TYPE OTHER6(4) D.E.F 
3 TYPE LOGICAL L.M.N 
4 L=A.AND.B 
5 L=M.OR.A 
6 L=. NOT. B 
7 L=((A.AND.C).OR.B).AND.D 

N=X.OR.C 
9 M=D.AND.E 
10 M=N.OR.F 
11 M=. NOT. D 
12 M=((D.AND.F).OR.E).AND.D 
13 N=Z.AND.F 
14 L=A.GT.B 
15 L=C.LE.A 
16 L=B. EQ. C 
17 M=A.GE.C.AND.B.EQ.C 
18 M=D.LT.E 
19 M=E.EQ.F 
10 M=F. GT. D 
21 N=.NOT.B.GE.C 
22 N=.NOT.E.EQ.D 

END 

CALL QlQ00660 
0 D 

AJP IF00023. 
SLJ IF00022. Test D for true or false 

I F00023. Load E CALL QlQ00660 

IF00021. 

IF00022. 
+ 

0 
AJP 
SLJ 
ENA 
SLJ 
ENA 
SLJ 

1 
CALL 

0 

E 
IF00021. 
IF00022. Test E for true or false 
+l 
I F0002 l .+2 
0 
'°'"+ 1 
0 
Q3Q10640 Store l or 0 in M 
M 

E-21 



. 14 SLJ ;'<"+ 1 
3 0 

CALL Q3Q01550 Load complement to A 
0 A 

+ SLJ i<+ 1 
3 0 

CALL Q3Q025,0 Add B 
0 B 

AJP 3 I F0004 l. 
SLJ IF00042. Test result 

I F0004 l. ENA +l 
SLJ I F0004 l .+2 

IF00042. ENA 0 
+ SLJ i<+ 1 

1 0 
CALL Q3Ql0540 Store 1 or 0 in L 

0 L 

E-22 



COMPILATION DIAGNOSTICS F 

Diagnostics prepared by the compiler during compilation are output with the program listing and 
immediately follow the source program. 

FORTRAN-63 diagnostics give the error message, the statement number in which the error occurred 
or the number of statements beyond the last numbered statement, and the error code. 

Examples: 

FORTRAN-63 DIAGNOSTIC RESULTS 

ERROR TYPE GOOl DETECTED AT 3 STATEMENTS BEYOND STATEMENT NO. 3 

PARENTHESIS USAGE OR DO LOGIC OR TYPE IDENTIFIER IS ILLEGAL IN 1/0 DATA LIST 

ERROR TYPE S021 DETECTED AT STATEMENT NO. 10 

A DO LOOP WHICH TERMINATES AT THIS STATEMENT INCLUDES A DO 

LOOP WHICH HAS NOT YET BEEN TERMINATED. 

DIAGNOSTICS 

POSSIBLE MACHINE OR COMPILER ERRORS 

K467 AN UNIDENTIFIED ERROR HAS OCCURRED. IT MAY BE DUE TO A MACHINE ERROR. 
RESUBMIT THIS PROBLEM. IF ERROR PERSISTS, SEND SOURCE LISTING TO 

CONTROL DATA CORP. 
3330 HILLVIEW 
PALO ALTO, CALIFORNIA 

Bl45 COMPILER OR MACHINE ERROR, COMMON !DENT NOT IN DIMENLIS 
Bl50 MACHINE OR TABLE ERROR,VARIABLE NOT IN DIMENLIS. 
B205 PROCESS Pl ERROR IN HANDLING COMMON EXPRESSIONS. 
H003 POSSIBLE MACHINE ERROR. CONFLICT IN DATA IN FUNLIST AND DIMENLIS 
H021 POSSIBLE MACHINE ERROR. ARITHMETIC FAULT TYPE NOT RECOGNIZED. 
H022 POSSIBLE MACHINE ERROR. MACHINE CONDITION TEST NOT RECOGNIZED. 
Hl07 POSSIBLE MACHINE ERROR. LOGICAL OPERATOR NOT RECOGNIZED 
HllO POSSIBLE MACHINE ERROR IN EVALUATING LOGICAL EXPRESSION. 
WOOl TYPE OTHER OPERAND DOES NOT APPEAR IN DEVARLIS. POSSIBLE MACHINE ERROR. 

F-1 



FATAL ERRORS - ERRORS WHICH TERMINATE COMPILATION 

SOSO NO END CARD APPEARS IN THIS PROGRAM 
B004 NAME NOT STARTING WITH ALPHABETIC CHARACTER. 
BOOS DUPLICATE VARIABLE NAME IN DIMENSION STATEMENT. 
B006 NO LEFT PARENS AFTER VARIABLE NAME 
BOO? VARIABLE DIMENSION IDENTIFIER NOT IN PARAMETER LIST 
BOlO MORE THAN 3 DIMENSIONS IN DECLARATION OF ARRAY. 
BOll NO RIGHT PARENTHESIS DELIMETER IN SUBSCRIPT DECLARATION. 
Bl44 COMPILER ERROR, TABLE FULL 
Bl46 COMPILER COMMON OR BLOCK TABLE EXCEEDED. 
Bl47 COMPILER ERROR-EQUIVALENCE TABLE EXCEEDED. 
KOOl SOURCE PROGRAM EXCEEDS CAPACITY OF FORTRAN WITHOUT AN INTERMEDIATE TAPE 

RE-COMPILE, AND ASSIGN A SCRATCH TAPE. 
COSO NUMBER OF FUNCTIONS EXCEED COMPILER LIMIT 
COS2 NUMBER OF IDENTIFIERS EXCEEDS COMPILER LIMIT 
W002 ERASABLE STORAGE REQUIRED IS TOO LARGE. 

DESTRUCTIVE ERRORS - ERRORS WHICH PREVENT EXECUTION 

S002 A PREVIOUS DO TERMINATES ON THIS DO STATEMENT 
S003 A RUNNING INDEX USED IN THIS STATEMENT HAS BEEN USED PREVIOUSLY IN THIS 

NEST 
S004 THE NESTING CAPACITY OF THE COMPILER HAS BEEN EXCEEDED 
SOOS THE CONSTANT PARAMETERS OF A DO OR DO-IMPLYING LOOP CANNOT EXCEED 32767 
S006 THE PARAMETERS OF A DO OR DO-IMPLYING LOOP MUST BE UNSIGNED INTEGER 

CONSTANTS OR SIMPLE INTEGER VARIABLES. 
S007 THE INITIAL VALUE OF A DO OR DO-IMPLYING LOOP MUST NOT EXCEED THE UPPER 

BOUND IF BOTH ARE CONSTANT 
SOlO THE RUNNING SUBSCRIPT IN A DO OR DO-IMPLYING LOOP MUST BE A SIMPLE INTEGER 

VARIABLE 
S014 ALL DECLARATIVE STATEMENTS MUST PRECEED THE FIRST EXECUTABLE STATEMENT 
SOlS THE NUMBER OF INDEX VARIABLES EXCEEDS THE CAPACITY OF THE COMPILER 
S017 A DO LOOP TERMINATES AT THIS STATEMENT 
S020 A DO LOOP MAY NOT TERMINATE AT AN END STATEMENT 
S02l A DO LOOP WHICH TERMINATES AT THIS STATEMENT INCLUDES AN UNTERMINATED DO 
S022 THIS STATEMENT DOES NOT FOLLOW A DO WHICH IT TERMINATES 
S023 STATEMENTS LABELS MUST BE BETWEEN l AND 99999 
S024 NON-STANDARD INDEXING IS NOT PERMITTED IN DO STATEMENTS 
S02S THE TERMINAL LABEL OF A DO MUST BE AN INTEGER CONSTANT 
S026 THIS ENTRY NAME HAS BEEN USED PREVIOUSLY 
S027 THE MAXIMUM PERMISSABLE NUMBER OF ENTRY STATEMENTS IS 20 
S03l IF THIS IS AN ARITHMETIC STATEMENT, IT HAS NO LEFT HAND SIDE 
S032 THE OBJECT OF AN ASSIGN OR ASSIGNED GO TO MUST BE A SIMPLE INTEGER 

VARIABLE 
S036 THE SUBROUTINE NAME IS NOT LEGITIMATE 
S037 TH.f PARAMETER STRING IS NOT WELL-FORMED 
S040 THE ASSIGNED STATEMENT LABEL IS NOT AN INTEGER 
S042 SUBPROGRAM OR VARIABLE NAME USED AS ENTRY. 

F-2 



S05l THE ENTRY STATEMENT MAY NOT OCCUR INSIDE A DO LOOP 
S053 THE INCREMENT IN A DO OR DO-IMPLYING LOOP MUST NOT BE ZERO. 
S50l A REAL CONSTANT IN THIS STATEMENT EXCEEDS 2**1023-2**987 
S502 ONLY THE DIGITS 01234567 MAY APPEAR IN AN OCTAL NUMBER 
S503 AN OCTAL NUMBER MAY HAVE AT MOST 16 DIGITS 
S504 ONLY ONE DECIMAL POINT MAY APPEAR IN A CONSTANT 
S505 AN ILLEGAL CHARACTER APPEARS IN A NUMERIC FIELD IN THIS STATEMENT 
S506 AN ILLEGAL CHARACTER APPEARS IN AN EXPONENT FIELD IN THIS STATEMENT 
S507 EXPONENTS ARE LIMITED IN MAGNITUDE TO 309 
S510 INTEGERS MAY NOT EXCEED 2**47-1 IN THIS MACHINE 
S777 MORE THAN 100 ERRORS WERE DETECTED BY THE COMPILER 

THE FIRST 100 ARE RECORDED ABOVE. 
B002 IMPROPER FORMAT OF PROGRAM STATEMENT. 
B003 IMPROPER SUBROUTINE OR FUNCTION STATEMENT TERMINATION OR PARAMETER ERROR 
B012 VARIABLE DIMENSIONED ARRAY USED IN COMMON. 
B015 NO SLASH {/} SEPARATOR IN BLOCK DESIGNATION. 
B016 UNDEFINED SEPARATOR IN COMMON STATEMENT. 
B017 NON-CONSTANT SUBSCRIPT IN COMMON DIMENSIONING. 
B020 SUFFIX 5,6 OR 7 NOT ON-TYPE OTHER-NAME. 
B021 TYPE OTHER 5,6 OR 7 DOUBLY DEFINED. 
B022 ELEMENT LENGTH DESIGNATOR NOT (S) OR (/F). 
B023 LEFT,RIGHT PARENTHESIS OR COMMA MISSING IN EQUIVALENCE. 
B024 TYPE OTHER 5,6 OR 7 APPEARING WITH SUBSCRIPTS. 
B025 THIS EQUIVALENCE CAUSES A REORIGIN OF THE COMMON BLOCK 
B026 FORMAL PARAMETER OR ADJUSTABLE DIMENSION IN EQUIVALENCE. 
B027 NON-CONSTANT SUBSCRIPT IN EQUIVALENCE. 
B030 DECLARED VARIABLE APPEARING IN EXTERNAL STATEMENT. 
B031 COMMON/EQUIVALENCE ERROR. 
B032 LEFT/RIGHT PARENS NOT MATCHING. 
B033 IMPLIED-DO ERROR IN DATA STATEMENT 

NO = AFTER DO VARIABLE OR, NON-CONSTANT DO LIMITS. 
OR DO VARIABLE DOES NOT AGREE WITH SUBSCRIPT 

B034 NO= AFTER IDENTIFIER. 
B035 A VARIABLE APPEARS WITH SUBSCRIPTS BUT HAS NOT BEEN DIMENSIONED 
B036 DATA TO ADJUSTABLE DIMENSIONED OR PARTIAL WORD ARRAY. 
B037 MULTIPLE DATA TO NON-DIMENSIONED VARIABLE. 
B040 DUPLICATE BLOCK NAME. 
B041 EQUIVALENCE OVERLAPS COMMON BLOCKS. 
B042 FORMAL PARAMETER APPEARS IN COMMON DECLARATION. 
B043 VARIABLE NAME GREATER THAN 8 CHARACTERS OR NO COMMA SEPARATOR. 
B044 NON-CONSTANT DATA IN LIST. 
B046 REPEAT COUNT MUST BE AN INTEGER CONSTANT 1-32767 
B050 (S) IS NOT AN INTEGER 1 THRU 7 

OR {/F) IS NOT A DIVISOR OF 48 
B051 ONE OF THE VARIABLES HAS BEEN DEFINED IN A PREVIOUS TYPE STATEMENT 
B052 DOUBLY DEFINED FORMAL PARAMETER 
B053 MORE THAN 63 FORMAL PARAMETERS 
B201 COMMA MISSING IN PARAMETER LIST OR VARIABLE MORE THAN 8 CHARACTERS. 

F-3 



B202 IMPROPER USE OF FUNCTION NAME. 
B203 ILLEGAL SEQUENCE OR USE OF OPERATORS 
B204 MIXED MODE-TYPE 5 AND/OR 6 AND/OR 7. 
B206 ILLEGAL OPERATOR OR MISSING OPERATOR. 
B207 ILLEGAL REPLACEMENT IN ARITHMETIC STATEMENT 
H002 AN ARITHMETIC STATEMENT FUNCTION MAY NOT CALL ITSELF 
H004 ARITHMETIC STATEMENT FUNCTION DOUBLY DEFINED. 
HOOS EXTERNAL SYMBOL USED AS ARITHMETIC STATEMENT FUNCTION. 
H007 TOO MANY REPLACEMENT OPERATORS IN AN ARITHMETIC STATEMENT FUNCTION. 
HOlO ILLEGAL PARAMETER LIST FOR ARITHMETIC STATEMENT FUNCTION 
HOll ARITHMETIC STATEMENT FUNCTIONS MUST HAVE PARAMETERS. 
H013 ILLEGAL PARAMETERS IN ARITHMETIC STATEMENT FUNCTION. 
H015 VARIABLE INDEXING IS NOT PERMITTED IN ARITHMETIC STATEMENT FUNCTIONS. 
H016 NON-STANDARD INDEXING IS NOT ALLOWED IN ARITHMETIC STATEMENT FUNCTIONS 
H017 VARIABLE IDENTIFIER USED AS ARITHMETIC STATEMENT FUNCTION. 
H023 THE PARAMETER OF THIS STATEMENT MUST BE TYPE INTEGER. 
H024 I IS OUTSIDE THE PERMITED RANGE. 
H025 STATEMENT NUMBER IS OUT OF RANGE. 
H026 UNIT NUMBER MUST BE A SIMPLE INTEGER VARIABLE OR AN INTEGER CONSTANT. 
H030 UNIT NUMBER MUST BE FOLLOWED BY ). 
H031 AN IF UNIT STATEMENT MUST HAVE 2-4 BRANCH POINTS. 
HlOO STATEMENT NUMBER IS OUT OF RANGE. 
HlOl BRANCH POINT ERROR IN IF STATEMENT. 
Hl02 LOGICAL IF IS FORMED INCORRECTLY. 
Hl03 TWO OR MORE RELATIONAL OPERATORS IN THE SAME RELATIONAL SUB-EXPRESSION. 
Hl04 LOGICAL EXPRESSION INCORRECTLY FORMED 
Hl05 RELATIONAL SUB-EXPRESSION FORMED INCORRECTLY. 
Hl06 THE .NOT. OPERATION MUST BE FOLLOWED BY EITHER ( OR AN OPERAND. 
Hll2 LOGICAL CONNECTIVE MUST BE FOLLOWED BY (OR AN OPERAND. 
Hll3 A LOGICAL SUBEXPRESSION MAY NOT BEGIN WITH AN OPERATOR 
Hll4 EXCESS LEFT PARENTHESIS IN LOGICAL EXPRESSION. 
H200 MASKING ARITHMETIC EXPRESSION TOO LONG. 
H201 ARITHMETIC SUB-EXPRESSION IN MASKING STATEMENT NOT FULLY PARENTHESIZED. 
H202 FUNCTION CALLED INCORRECTLY. 
H210 OPERAND MAY BE FOLLOWED BY OPERATOR OR ) ONLY. 
H211 .NOT. MUST BE FOLLOWED BY (OR AN OPERAND 
H220 THE REPLACEMENT VARIABLE FOR AN EXPRESSION USING LOGICAL OPERATORS 

MUST BE 
LOGICAL IF THE STATEMENT IS LOGICAL, OR REAL OR INTEGER IF IT IS MASKING 

H212 THE FIRST ELEMENT OF A BOOLEAN EXPRESSION MUST BE AN OPERAND, ( OR .NOT. 
H213 ) MAY BE FOLLOWED ONLY BY .AND., .OR.,). 
H214 THE OPERATORS .AND., .OR. MUST BE FOLLOWED BY EITHER (, .NOT., OR AN 

OPERAND 
H215 MASKING OPERANDS MUST BE REAL OR INTEGER 
COOl ILLEGAL MARK IN COLUMN SIX. 
C002 UN-RECOGNIZED STATEMENT 
COll TOO MANY CHARACTERS IN IDENTIFIER 
C016 STATEMENT TOO LONG 
C017 UN-MATCHED PARENTHESES 
C020 ILLEGAL USE OF BOOLEAN OR RELATIONAL OPERATOR 

F-4 



C02S IMPROPER LENGTH FOR HOLLERITH CONSTANT 
C026 ILLEGAL USE OF PERIOD 
C027 ILLEGAL CONSTANT TYPE 
C030 STATEMENT ENDS WITH ASTERISK 
C040 TOO MANY SUBSCRIPT INDICES 
C041 ADJACENT COMMAS 
C042 RIGHT PAREN PRECEDED BY COMMA 
C043 LEFT PAREN FOLLOWED BY COMMA 
C044 EMPTY PARENTHETICAL EXPRESSION 
C04S LIMIT FOR NON-STANDARD SUBSCRIPT EXPRESSIONS EXCEEDED 
C046 NUMBER OF CONSTANTS EXCEEDS COMPILER LIMIT 
C047 SUBSCRIPT ON NON-DIMENSIONED VARIABLE 
COS3 LIMIT FOR STANDARD INDEX FUNCTIONS EXCEEDED 
COS4 =WITHIN PARENTHESES MAY ONLY APPEAR IN DATA OR 1/0 LISTS 
GOOl PARENTHESIS USAGE OR DO LOGIC OR TYPE IDENTIFIER IS ILLEGAL IN 1/0 DATA 

LIST. 
G002 WRONG FORMAT OF 1/0 STATEMENT. DATA LIST WAS NOT YET PROCESSED 
G003 TAPE NUMBER IN 1/0 STATEMENT IS GREATER THAN 64 
G004 PARITY IN 1/0 STATEMENT IS NOT BETWEEN 0 AND 2 
GOOS ILLEGAL SUBSCRIPT IN 1/0 DATA LIST. 
G006 INPUT OF DATA INTO A CONSTANT IS ILLEGAL. 
GOO? TRANSMISSION OF BYTE SIZED DATA IN BINARY MODE IS ILLEGAL 
W003 TYPE OTHER INTERMIXED IN ARITHMETIC. 
W004 LOGICAL OR BYTE SIZED OPERAND(S) USED IN EXPONENTIATION. 
WOOS IMPROPER OPERAND. 

INFORMATIVE DIAGNOSTICS -

SOll THE CORRECT FORM FOR THE ENTRY STATEMENT IS 
ENTRY NAME 

S012 ENTRY STATEMENTS SHOULD NOT BE LABELLED 
S013 MAIN PROGRAMS SHOULD NOT CONTAIN ENTRY STATEMENTS 
S016 THERE IS NO PATH TO THIS STATEMENT 
S030 THIS FORMAT STATEMENT IS UNLABELLED 
BOOl PROGRAM, SUBROUTINE OR FUNCTION CARD NOT FIRST CARD OF DECK. 
B04S DOUBLY DEFINED VARIABLE IN COMMON 
B210 AN* HAS BEEN INSERTED FOR THE APPEARANCE OF 

N( , )( , )V OR)N 
C003 ASSUMED DIMENSION STATEMENT 
C004 ASSUMED BACKSPACE STATEMENT 
COOS ASSUMED WRITE-TAPE STATEMENT 
COlO ASSUMED WRITE-OUTPUT-TAPE STATEMENT 
COO? ASSUMED READ-INPUT-TAPE STATEMENT 
COOS ASSUMED WRITE-TAPE STATEMENT 
C006 ASSUMED SUBROUTINE STATEMENT 
COO? ASSUMED READ-INPUT-TAPE STATEMENT 
COlO ASSUMED WRITE-OUTPUT-TAPE STATEMENT 

F-5 



C012 ASSUMED SENSE-LIGHT STATEMENT 
C014 ASSUMED IF-OVERFLOW-FAULT STATEMENT 
C015 ASSUMED IF-EXPONENT-FAULT STATEMENT 
C021 ASSUMED IF-SENSE-LIGHT STATEMENT 
C022 ASSUMED IF-SENSE-SWITCH STATEMENT 
C023 ASSUMED BUFFER OUT STATEMENT 
C024 ASSUMED EQUIVALENCE STATEMENT 
C031 ILLEGAL CHARACTER IN LABEL FIELD OR ZERO USED AS STATEMENT LABEL (MAY 

NOT INHIBIT EXECUTION) 
C032 CARD HAS LABEL AND MARK IN COLUMN 6- CONTINUATION ASSUMED 
C051 LABELLED BLANK STATEMENT-CONTINUE ASSUMED 

F-6 



INDEX 

-A-

Address, Variable FOHMAT 8-22 
Alphanumeric conversion see Aw and Rw 
Arguments see Parameters 
Arithmetic Expressions 2-1 

mixed mode 2-4 
non-standard 5-4, E-10 
operands 2-1 
operators 2-1, E-1 
order of evaluation 2-2 
standard E-1 

Arithmetic Replacement Statement 2-1 
Arithmetic Statement Function Arrays 

dimensions 1-4, 4-2 
elements 1-6, 1-7, 1-8, 1-9 
names without subscripts 1-9, 4-4, 8-3 
structure 1-7 
subscripts 1-6, 1-7, 1-8, 1-9 
transmission 8-1 

P. S"IGN statement 6-2 

Assigned GO TO 6-2 

Aw conversion 8-4 

input 8-15 

output 8-15 

B suffix 1-1, 6-9 
BACKSPACE 9-10 

-B-

Base address E-4, E-6 
BCD conversion 8-15, 8-16 
BINARY Card 10-5 
Boolean statements see Masking 
BUFFER statements 9-8 
Buffering 9-7 
Buffer record size 9-8 
Byte arithmetic 5-1, E-11, E-14 

-C-

CALL 7-8 
Call identifier E-1 

Index-1 

-C - (continued) 

Calling program 7-1 
Calling Sequences 

standard E-4 
non-standard E-10 

Card format viii 
Codes, 1604 Character A-1 
Coding Procedures 1-1 
Coding Form viii, 1-1 
Comments 1-1 
COMMON statement 4-3 
Common 

blank 4-4 
block identifier 4-3 
block length 4-5 
labeled 4-3, 4-4 
length change 4-6 
list 4-4 
numbered 4-3, 4-4 

Compilation diagnostics F-1 
Compilation procedure 10-1, 10-7 
Compilation and Execution 10-12 

partial 10-14 
Complex Arithmetic Conversion Call E-4 
Complex constant 1-4 

range 1-5 
size 1-5 
structure 1-4 

Complex Conversion see C(Z1w1 .cl1,z2w2.cl2) 
Complex variable 

type declaration 4-1 
Computed GO TO 6-2 
Conditional transfer of control 6-3 
Constant addend E-4, E-12, E-13 
Constants 1-2 

Complex 1-4 
Double 1-4 
Hollerith 1-5 
Integer 1-2 
Octal 1-3 
Real 1-3 

CONTINUE statement 6-9 



Continuations 1-2 
Control Cards 10-1 

BINARY 10-5 
EXECUTE 10-5 
FINIS 10-4 
FOR TRAN 10-3 
MAIN 11-3 
MCS 10-2 
OVERLAY 11-3 
SEGMENT 11-3 

-C- (continued) 

Control character for printer 9-1, 9-2 
Control Statements 9-1 
Conversion Specifications 8-4 

see Ew.d, Fw.d, Dw.d, C(Z 1w1.d1,z2w2.d2), 
Iw, Dw, Aw, Rw, Lw, nP 

COOP Monitor 6-9, 9-8, 10-1 
C(Z 1w1.d1,z2w2.d2) conversion 8-4 

input 8-12 
output 8-11 
scaling 8-20 

D suffix 1-4 
DATA statement 4-9 
Data 

-D-

assignment 4-9 
implied DO-loop 4-10 
list 4-9 
repetition factor 4-9 

Decimal integer conversion see Iw 
Deck Structure 10-7 

OVERLAY 11-1 
DECODE statement 9-14 
Diagnostics 

assembly 6-1 
compilation F-1 
input/output D-1 
library C-1 

DIMENSION statement 4-2 
Dimensions 1-6, 4- 2 
Dimension, Variable 4-3, 7-14 
Divide fault 6-4 
DO-loop 6-5 

executiou 6-5 
implied 4-10, 8-1 
increment 6-5, 6-8 
index 6-5, 6-8 

Index-2 

nests 6-6 
statement 6-5 
transfer 6-8 

-D- (continued) 

Double Arithmetic Conversion Call E-4 
Double constant 1-4 

D suffix 1-4 
range 1-4 
size 1-4 
structure 1-4 

Double Precision Complex Example E-17 
Double precision conversion see Dw .d 
Double variable 

type declaration 4-1 
Dw.d conversion 8-4 

input 8-11 
output 8-11 

-E-

Editing Specifications 8-4, 8-18 
see wX, wH, new record 

Element of an array 1-6, 1-7, 1-8, 1-9 
ENCODE statement 9-14 
END statement 6-9, 7-13 
END FILE statement 9-10 
Entry points 7-13 

ENTRY 7-13 
FUNCTION 7 -2 
SUBROUTINE 7-8 

EOF Sensing 9-11 
EQUIVALENCE statement 4-7 
Equivalencing 

common block 4-8 
group 4-7 

Evaluation of 
arithmetic expression 2-2 
logical expression 3-1 
masking expression 3-6 
mixed mode expression 2-5 
non-standard arithmetic expression 5-4 
parenthetical groups 2-2 
relational expression 3-5 

Ew.d conversion 8-4 
input 8-5 
output 8-4 
scaling 8-5, 8-21 

EXECUTE Card 10-5 
Execution of object program 10-8 
Exponentiation routines 5-1 



Exponents 
D 1-2, 8-11 
E 1-2, 8-4 
fault 6-5 

Expressions 1-10 

- E- (continued) 

arithmetic 1-10, ~-1, 3 -1, 3-5 
logical 1-10, 3-1 
masking 1-10, 3-6 
non-standard arithmetic 5-4, E-10 
relational 1-10, 3-5 
standard arithmetic E-1 

EXTERNAL statement 7-5 

Faults 
divide 6-4 
exponent 6-5 
overflow 6-5 

FINIS Card 10-4 

-F-

First word address (FWA) addend E-5 
Fixed point constant see Integer Constant 
Floating point constant 1-3 
Floating point conversion 

see Ew .d and Fw .d 
Floating point variable 1-6 

type declaration 1-6 
FORMAT Statement 8-3 
Format 

address, variable 8-22 
repeated specifications 8-22 
specifications 8-4 
statement 8-3 

FORTRAN Card 10-3 
FUNCTION Statement 7-2 
Functions 

arithmetic statement 7-6 
library 7-4, C-1 
parameters 7-2, 7-3, 7-4 
subprogram 7-1, 7-2 
type of identifiers 4-1, 7-2 
variable dimensions 4-3, 7-14 

Fw .d conversion 8-4 
input 8-9 
output 8-8 
scaling 8-9, 8-20 

Indcx-3 

-G-

GO TO Statements 
Assigned 6-2 
Computed 6-2 
Unconditional 6-2 

wH specification 8-4 
input 8-19 
output 8-18 

-H-

Heading and labeling see wH 
Hierarchy of operations 

arithmetic 2-2 
logical 3-1 

Hollerith constant 1-5 
range 1-5 
size 1-5 

Hollerith field 8-18 

-!

Identification field 1-2 
Identifiers 

common block 4-3 
statement 1-1 

IF statements 6-3 
IF EOF 9-11 
IF IOCHECK 9-11 
IF UNIT 9-11 
Index designator (function) E-4, E-5, E-12, E-13 
Index of DO parameter 6-5, 6-8 
Inner DO 6-6 
Integer constant 1-2 

range 1-2 
size 1-2 

Integer variable 1-6 
type declaration 4-1 

Intra-line spacing see wX 
1/0 

8-1, 9-1 
10-18 

control statement 
equipment usage 
format 8-3 
implied DO 8-1 
list 8-1 
specifications 8-4 

Iw conversion 8-4 
input 8-13 
output 8-13 



-L-

Library functions 7-4, C-1 
calling sequence E-8 

Limits of subscripts 1-7, 4-2 
Line spacing see wX 
List 

1/0 8-1 
termination 8-22 

Logical conversion see Lw 
Logical expressions 3-1 

operators 3-1 
restrictions :3-1 

Logical record 9-2, 9-3, 9-6, 9-7 
Logical replacement statement 3-1 

BCD 9-2, 9-6 
binary 9-3, 9-7 

Logical units 9-1, 10-19 
Logical variable 

logical expression 3-1 
type declaration 4-1 

Lw conversion 8-4 
input 8-17 
output 8-17 

-M-

Main program 7 -1 
Main subprogram (overlay) 11-1 
Masking Expression 3-6 

operands 3-6 
operators 3-6 
restrictions 3-7 

Masking Replacement Statement 3-6 
MCS Card 10-2 
Mixed Mode Arithmetic Conversion Call E-4, E-10 
Mixed Mode Arithmetic Expression 2-4 

evaluation 2-5 
non-standard 2-5, 5-4 
order of dominance 2-4 
replacement statement 2-7 

Mode of 
accumulator E-2 
exponent E-3 
operand E-2 

Multiple Records 8-19 
Multiple Replacement Statement 3-8 

-N-

Names of variables 1-5, 4-1 
Nesting of DO' s 6-6 

Index-4 

- N- (continued) 

New Record 8-19 
Non-executable statements B-1 
Non-standard expressions E-10 

byte elements 5-3 
evaluation 5-4 
indicators 5-2 
multi-word elements 5-3 
type declaration 5-2 

Octal constant 1-3 
range 1-3 
size 1-3 
suffix 1-3 

-0-

Octal integer conversion see Ow 
Offset E-5, E-11 

actual E-5 
parameter E-5, E-12 

Operands 
arithmetic 2-1 
masking 3-6 

Operations code E-2 
Operators 

arithmetic 2-1 

logical 8-1 

masking 3-6 

relational 3-5 

replacement 2-1 

Outer DO 6-6 

Overl1ow fault 6-5 

Overlay 11-1 

Ow conversion 8-4 

input 8-14 

output 8-14 

nP Scaling 8-20 

-P-

Packing number E-6, E-11 
Parameter 7 -1 

actual 7-2 
formal 7-2 
function E-6 
subroutine E-6 

Parameter Offset (POF) E-5, E-12 
Parentheses 2-2, 8-22 



-P- (continued) 

Parity 
even 9-2, 9-8 
odd 9-2, 9-8 

PAUSE statement 6-9 
Physical record 

BCD 9-2, 9-6 
binary 9-3, 9-7 

Polish String E-14 
PRINT statement 9-1 
Printer control character 9-2, 9-1 
PROGRAM statement 7-1 
Program 

arrangement 7 -12 
calling 7-1 
main 7-1 
subprogram 7-1 

PUNCH statement 9-2 

-Q-

QOQ subroutine E-4, E-10 
QlQ subroutine E-4, E-10 
Q2Q subroutine E-5, E-10 
Q3Q subroutine E-5, E-11 
Q9QEVALB E-6, E-19 

calling sequence E-12 
Quantities Structure E-2 

Range of DO 6-5 
HEAD statement 9-6 

-H-

HEAD INPUT TAPE statement 9-6 
HEAD TAPE statement 9-7 
Heal constant 1-3 

range 1-3 
size 1-3 
structure 1-3 

Heal variable 
type declaration 4-1 

Record 
buffer 9-8 
length 9-11 
logical 9-2, 9-3, 9-6, 9-7 
partial 9-9 
physical 9-2, 9-3, 9-6, 9-7 

Heeording mode 9-8 
Hecovery dump key 10-19 

Indcx-5 

-R- (continued) 

Relational expression 3-5 

operators 3-5 

restrictions 3-5 

Repeated FOHMA T specifications 8-22 

Hepetition factor 4-9, 8-22 

Heplacement statement 

arithmetic 2-1 
logical/relational 3-1 
masking 3-6 
mixed mode 2-7 
multiple 3-8 
operator 2-1 

HETURN statement 
HEWIND statement 
Rw conversion 8-4 

7-12 
9-10 

input 8-16 
output 8-16 

Scaling 
factor 8-20 
restriction 8-21 

-S-

see C(Z1w1.d1,z2w2.d2) 
see Ew.d 
see Fw.d 

Scanning 2-2 
Scratch units 10-19 
Segment 11-1 
Sense 

lights 6-4 
switches 6-4 

Single precision floating point conversion 
with exponent see Ew .d 
without exponent see F'w .d 

Skipping records see new records 
Source Deck 10-6 
Spacing, Intra-line 8-18 
Specifications 

editing 8-4, 8-18 
conversion 8-4 
repeated 8-22 

Standard Arithmetic Expression Calls E-1 
Standard units 9-1, 10-18 
Statements 1-1 

FOHTHAN-63 B-1 
Statement continuation 1-2 



-S- (continued) 

Statement function 7 -6 
Statement identification field 1-1 
Statement identifiers (number) 6-1, 1-1 

Assembly errors 6-1 
Statement separator 1-1 
Status Checking Commands 9-11 
STOP statement 6-9 
Storage Allocation 4-1 

Statements 4-2, 4-3, 4-7 
Subprograms 

calling sequence E-6, E-13 
function 7 -1 
parameters 7-1, 7-2, 7-3, 7-8, 7-9 
subroutine 7-7 
variable dimensions 7-14 

SUBHOUTINE statement 7-8 
Subroutines 7-7 

parameters 7 -8, 7 -9 
Subscripts 1-7 

conversion to single 1-8, 4-7, E-5 
I/O list 8-1 
non-standard forms 1-7 
standard forms 1-7 

Subscripted variables 1-9 

-T-

Tape 
handling 9-10 
unit 9-2, 9-6, 9-7 

Termination, List 8-22 
Transmission of Arrays 8-1 
Truncation 2-8 
Type declarations 

List 4-1 
non-standard 5-2 
standard 1-2, 4-1 

Units 
equipment 10-19 
logical 9-1 

-U-

physical 9-1 
standard 9-1, 10-18 
status checking 9-11 

Unlimited groups 8-22 

lndex-6 

-V-

Variables 1-5 
non-standard 5-3 
simple 1-6 
subscripted 1-6 
types 1-5, 4-1 

Variable dimensions 4-3, 7-14 
Variable FOHMAT Address 8-22 

-W-

Word Structure 
WRITE OUTPUT TAPE statement 9-2 
WRITE TAPE statement 9-2 

-X-

wX specification 8-18 



CONTROL DATA SALES OFFICES ALAMOGORDO• ALBUQUERQUE• ATLANTA• BOSTON •CAPE CANAVERAL 

CHICAGO• CINCINNATI• CLEVELAND• COLORADO SPRINGS• DALLAS• DAYTON 

DENVER• DETROIT• DOWNEY, CALIFORNIA• HONOLULU • HOUSTON • HUNTSVILLE 

ITHACA• KANSAS CITY, KANSAS •LOS ANGELES• MADISON, WISCONSIN 

MINNEAPOLIS •NEWARK• NEW ORLEANS •NEW YORK CITY •OAKLAND •OMAHA 

PALO ALTO• PHILADELPHIA• PHOENIX• PITTSBURGH• SACRAMENTO 

SALT LAKE CITY• SAN BERNARDINO• SAN DIEGO• SEATTLE• WASHINGTON, D.C. 

INTERNATIONAL OFFICES FRANKFURT, GERMANY• HAMBURG, GERMANY• STUTTGART, GERMANY 

GENEVA, SWITZERLAND• ZURICH, SWITZERLAND •CANBERRA, AUSTRALIA 

MELBOURNE, AUSTRALIA• SYDNEY, AUSTRALIA• ATHENS, GREECE 

LONDON, E.NGLAND •OSLO, NORWAY• PARIS, FRANCE• STOCKHOLM, SWEDEN 

MEXICO CITY, MEXICO, (REGAL ELECTRONICA DE MEXICO, S.A.) 

OTTAWA, CANADA, (COMPUTING DEVICES OF CANADA, LIMITED)• TOKYO, JAPAN, 

(C. ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.) 

CONTROL DATA 
CORPORATION 

8100 34th AVENUE SOUTH, MINNEAPOLIS, MINNESOTA 55440 

' .. ) 

Pub. No. 60052900 

Revision A Litho in U.S.A. 


