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PREFACE 

The CONTROL DATA CORPORATION extends its sincerest 

appreciation to Dr. Hans J. Maehly for the task he 

has performed in preparing this report. The con-

tents represent, we believe, a significant step 

forward in the development of numerical techniques. 

Presented here is a (slightly) edited reproduction 

of Dr. Maehly's original text. An attempt was made 

to retain as much of the flavor of the initial re-

port as possible. 

K. H. Olson 
Supervisor of Applications and Analysis 
March, 1960 
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INTRODUCTION AND MACHINE CHARACTERISTICS 

The purpose of this report is to describe and justify several approxi-

mations for the elementary non-rational functions which are, in our 

opinion, particularly suited for the Control Data 1604 computer. The 

manual for the computer has been carefully consulted since some of the 

machine characteristics have a decisive influence on the selection of 

best approximations. The most important of these characteristics are: 

(i) Control Data 1604 is a BINARY COMPUTER 

(ii) 1 word= 48 bits: sign+ 47 bits for fixed point 

= exponent (11) + (sign + 36) bits for floating point 

Thus basic round-off ~ £ = 2-48 = 3.55 x l0-15 (fixed) 
0 

~ €1 = 2- 37 = 7.28 x l0-12 (floating) 

(iii) Average execution times are about: (in microseconds) 

Fixed point Add 7 multiply 45 divide 65 

Floating Point Add 19 multiply 45 divide 56 

(iv) Size of memory: 32768 words of core, all equally accessible. 

(Most customers will also use tape units) 



Conclusions: 

These machine characteristics will have the following effects on 

subroutines for special functions: 

(i) The basic ranges for such functions as exp (X), log X, 

~and x113 are quite small; further reduction will not 

be necessary. 

(ii) For fixed point subroutines, the truncation error A 
0 

should be smaller or about equal to € 
0

: 

' < 3.55·10-15 
Ao'"\,; 

though 
't -14 
;\~10 may be acceptable. 

0 

For floating point subroutines, the relative error ,;\. 
1 

should be at most 

-12 
7.28•10 

Internal round-off can be reduced by coding the sub-

routine internally in fixed point, using ·(some of) 

the 11 exponent bits. 

(iii) Division time ';::;;: 3/2 multiplication time; therefore, 

fractional approximations can be used to great 

advantage. 

(iv) Though it is always desirable to make subroutines short, 

this restriction is not quite so serious with a 32,768 

word memory as with 2000 or 4000 words. Even a short 

table of key values may be considered if this helps to 

save time. Extensive tables, however, should in general 

be avoided. 
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1. APPROXIMATIONS FOR THE SQUARE ROOT 

(1.1 ) Range: 

For a floating point subroutine, the exponent of X will 

be separated from the mantissa and the two cases, 

"exponent even" and "exponent odd", will be treated 

separately. The latter case is equivalent to 

'.'£ ~ mantissa ' !". 

For a fixed point subroutine, the number will be "half-

normalized" by an even number 2n of left-shifts and the 

< 2n .,- .J' 2n 1 two cases are then ! , X • 2 < 1 and 4 ~ X • 2 < 2. 

These two ranges can be treated jointly or separately. 

Separation means better initial approximation and may 

save one iteration, depending on the type of initial 

approximation used and on the accuracy required. 

(1.2) The Newton Iteration Formula 

The theory of rational approximations to the square 

root can be understood best on the basis of the Newton 

Iteration Formula: 

If Yi is an approximation to Y = ,~ 

then 

:= ! (Yi + ]E ) *) 
Yi 

will be a better approximation. Let di be the ''relative" 

*) Throughout this report, the notation (:=) stands for 
"is defined by" (cf. ALGOL). 
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(1.2.1) 



or logarithmic error of Yi' viz. 

Oi := ln (Yi/Y) 

The logaritlunic error of Yi+l will then be 

cf i+l := ln (Yi+l) = ln (cosh di) 

whence 

if ~. << 1 • 
]_ 

This is the Newton Iteration in its standard form. 

It can be improved as follows: If the maximum of 

It ii is known (for a given interval r x1 , x2 J ) , 

A.= l. 

Then the maximum of lcfi+ll can be halved by 

redefining Yi+l := 

so that 

.A i+1 

Y5 + {X/Yi) 

2 V cosh X. 
l. 

:= max l J . I = 1 

[x x] i+l 2 
l' 2 

ln (cosh A.) 
]_ 

It will be noted, however, that this improvement by 

merely a factor 2 requires a true multiplication, while 

the original iteration formula does not, since division 

by 2 can be done by a right shift. Therefore, we shall 

use the original Newton formula for iteration. The 

improved formula, however, iIIllnediately leads to the best 

linear approximation. 
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(1.2.2) 

(l.2.3) 

(1.2.4) 

(1.2.5) 

(1.2.6) 

(1.2.7) 



(1.3) Best Linear Approximation 

In order to find the best linear approximation, we start 

out with the best constant Y0 and apply one improved 

Newton Iteration. Obviously, 

is the "best" constant approximation to fifor the 

interval [x1 , x2], yielding the maximum error 

One "improved Newton step" yields 

Y;_ = Yo + X/Yo = a + bX 

~ V cosh ~o 

with 

a := 

b := 

The relative error of this approximation is: 

-A 1 = max I in (Y1/Y)I 
"{xl t X2] 

or approximately 

- lln (X82/Xl )] 2 

A1~L 

5 

(1.3.2) 

(l.3.3) 

(1.3.4) 

(1.3.5) 
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It may be desirable (e.g. for scaling reasons) to have 

no error at the ends of the interval, i.e., for X = x
1 

and 

The solution is: 

A VX1 -X2 
a := 

Vx1 + rx; 
(1. 36) 

A 1 
b := ~~~~~-

(1.3.7) 

A few numerical values are given below, including the 

errors after 1, 2 and 3 iterations (Standard Newton 

Iterations): 

X2/x1 = 4 X2/X1 = 2 

'l. - 1 -
:\i i 

). 
i l. 

Initial error A.1 5.89 10-2 2.95 io-2 1.49 10-2 
7.47 10 

-3 

1 Iteration A2 1. 74 10-3 4.34 10-4 
1.11 10-4 

2.79 10-5 

Iterations )3 10-6 10-8 -9 10-iO 2 1.51 9.40 6.16 10 3.89 

Iterations :A 4 
-12 10-15 -17 10-20 3 1.14 10 4.42 1.89 10 7.57 

Conclusions: Three iterations are needed after a linear initial approxi

mation but the range Ii, ii need not be separated into two smaller 

ones. "). 4 is good enough for floating point, '). 4 is just fine for 

fixed point. 

(1.3.8) 



(1.4) A Simple Fractional Approximation 

The linear approximation Yi = a + bX requires 

1 addition + 1 multiplication, a fractional approximation 

of the form 

b 

c + x 

requires little more, viz., 2 additions and 1 division. 

This investment will pay off if we can tte.reby save one 

iteration. This is indeed the case. 

It can easily be shown from the general theory of 

approximation that we can expect our new Y1 do to equal fi 
at~ points rather than two (for the linear case). For 

reasons of scaling, viz., to avoid spill when computing 

-47 
the square root of 1 - 2 , we shall choose 1 as one of 

these points. It can also be shown that the third value 

of X, say x3 , where Y1 (X) · = Vx, must be the square of the 

second, if the relative error is to be minimized. 

Therefore, we choose: 

a + 
b = fi for 

c + x 

The solution is relatively simple: 

a=l+OC+ o(
2 

x
1 

= 1 

x2 = o< 2 

x = 0( 4 
3 

b = - [o< + 2 0( 2 + 2 0( 3 + 2 0( 4 + ()(' 5 ] 

= _ 0 +0< )2 0 +oc2)•0< 

c = O(+ ()(2 + Ot'3 = O<. a 

7 

(1.4.1) 

(1.4.2) 

(1.4.3) 
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For a fixed point square root routine, I recommend the following 

initial approximations: 

( i) UPPER RANGE: 

Fitting points: x1 = 1 

= 0(2 x2 

= 0(4 x3 

error: ,Arel = 4.0 x 10-
4 

42217 = +--- al 
al 16384 4 

bl 
11_:S0502 29565 ~ = -

3 43597 38368 16 
= 

46 01653 _:i = cl = + 20 97152 4 

(ii)~~: !~X<i 

Fitting Points: xl = 1 
4 

x2 = 
c(2 

4 4 

X3 = °' 4 

error: \ 4 3 10-4 
A 1 = • x re • 

0( = 109 
128 

In order to avoid 
binary round ... off 
of the constants 

= +. 511644 (octal) 

-.2411246171475 (octal) 

+.43067152 (octal) 

0( = 12.! . 
128 

After an easy transformation we obtain: 

58513 
a2 = + 32768 

a2 
2 = + .711104 (octal) 

46 05801 37335 b2 
b2 = 4 = - .32636267 122734 

27 48779 06944 (octal) 

59 16935 
c2 

c2 = + = + .26444407 (octal) 
83 88608 2 

(1.4.4) 

(1. 4. 5) 
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The octal forms have already been scaled for the following 

recommended algorithms: 

UPPER RANGE 11 LOWER RANGE 
II 

·=[al + (b1 /16) J 2 II 
. 4 (cl) + X/4 ;; 

.!L : = ( ~ + __ <_b_2.._l_4_) --

~4 y2 := X/4 I~ 
Y1/2 

2 2 (c2/2) + X/2 

Y1/2 / (1.4.5) 

All division by 2 and 4 should be executed as unrounded 

right-shifts. No spill should occur, I think, even if 

-47 -46 X is very close to 1, such as X = 1 - 2 or X = 1 - 2 

Accuracy: The relative errors for Y1 , Y
2

, Y
3 

are: 

UPPER RANGE LOWER RANGE 

.A1 4.0·10- 4 
).1 

-4 = = 4.3 •10 

). 2 = 8.0·lo-8 ~2 = 9.4·10-8 (1.4.6) 

~3 = 3.2·10-15 
)..3 = 4.4·10-15 

maximum absolute error A a.12§. = 3.2·10-15 

Compare: i-48 = 3.5 -10-15 

Note: I assume that these data are correct and reasonably 

accurate, but I did not have a chance to check 

them as carefully as I should like to. 
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(1.5) Fractional Approximation for Floating Point 

Since somewhat less accuracy is required for floating 

point, a simple fractional initial approximation of the 

form (1.4.1) may be used for the "full range", as e.g. 

It is more convenient for deriving the formulae 

below, to treat the range 

(1.5.1) 

Since there are no scaling difficulties in floating point, 

and since the point X = 1, being in the logarithmic center 

of the interval will be one in which our initial approxi-

mation will be exact, we can use an exact best-fit 

approximation for this interval, minimizing the relative 

error, i.e. minimizing 

(1.5.2) 

where 
b 

c + x (l.5.3) 

It can be shown that the constants a, b, c can be 

computed as follows: *) 

v := <~ax + l)/(~ax -1) = 3 

w := [ 4v2 (v2-l) J 113 =: 6. 60385 4497 (1.5.4) 

z := Vw2 - w + l= I§~ 6.16498 4974 
1 

1 3/4 
m := 2 + -----------------= .51104 01655 

(Vw71 + V2z - w + 2 ] [z + w 

1 + m ----
1 = 3.09031 5520 

- m 
a = c = 

b = 1 - a2 =: -8.55005 0013 

*) Derivation published in Math. Comp. 19'0 



Note: While the exact numerical value of m is not 

critical (it should rather be chosen a trifle 

too big, but not smaller than the exact value), 

the relation b = 1 - a 2 should be exactly 

fulfilled. I recommend, therefore, to truncate 

m to, say, 17 binaries (rounding ~) and then 

to compute b = 1 - a 2 (by machine). 

11 

Error bounds: The maximum relative error of the approximation 

(1.5.3) - (1.5.4) is 

whence 

-3 
2. 52614· 10 

3.19·10-6 

5.09·10-12 

Compare: 
37 -12 

2- = 1.2a·10 

To shift the range from[~, 2] to [~/2, 2~J , 
where \,q is an arbitrary number, take 

a = 

c = 

l+m.aq~ 
r--::-; 

1 + m 

1 - m 
·M> 

In particular, if 

then 

for 

1 + m 2 
a 1 := and b1 :=-a

1 
+ 1 

1 - m 

(with m = .51104 01655) 

(1.5.5) 

(1.5.6) 

(1.5.7) 

a= a 1 ·2n (1.5.7) 

c = al . 2 2n for /n-1 ~ X ~ /n + 1 

b = bl ·23n 



2. APPROXIMATIONS FOR EXP (X) 

All approximations in this section are based on the well-

known continued fraction 

x ~x ~2 ~2 ~2 rfsJ2 ~2 e = 1 + + + + + + +. 
2-X 6 10 14 18 22 

which can also be written in the form 

X 2X 
e = l+-----= 

S(X
2 

)- X 

where 

S(X2
) = X cth ! = 2 + 

2 

x21 + x2J + x2f + 

f6' rIO ri4 
2 The first four approximants to S(X ) are: 

So := 2 

81 := 2 + 

82 := 2 + 

6 

2 + 

x2 

6 

x2 -x2 = +_ 
10 

x2 
x2 

6 + 

10 + 
x2 
14 

600 12 -
60 + x2 

2 + x2 (.os + 
4.9 ) 

42 + x2 

The last expressions in (2.4.2) and(2.4.3) are the forms which 

can be evaluated most quickly. 

Range: It is well known that for a binary machine in floating 

point operation, the range of X can easily be reduced to 

f xJ ~ ~ In 2 

(cf. e.g. (2.10) below) 

12 

(2.1) 

(2.2) 

(2.3) 

(2.4.0) 

(2.4.1) 

(2.4.2) 

(2.4.3) 

(2.5) 
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If we approximate x 
e by 

R3(X) := S3(X2) + x 
S3(X2) - x 

(2.6) 

then the maximum relative error will be 

A 3 :=I ln (e 
-X 

R3(X)] 1= 2.8 x 10-12 (2.7) 

for Ix I = ! ln 2 

While this is just good enough for a floating point exponential 

subroutine it may be worth while to note that for the same 

* range the best-fit approximation R3 ' 
viz., 

R;(X) 
s;<x2

) + x 
1 + 

2X 
:= = 

s;cx2 > * 2 - x S 3(x ) - x 

with 

s;cx2
) 

2 
( b + 

c x2) := a + x 
d + (2.8) 

and 

a = 2.00000 00000 00575 924 

b = .04996 24891 36450 764 

c = 4.90315 47989 68682 648 

d = 42.01353 28950 41661 680 

reduces the error by a factor close to 256, thus: 

~ * ·= (in ( e-x R; (X) J I : 1.11 
-14 

3 . max x 10 (2.9) 

for 1 X , , ! ln 2 



Note: The above-mentioned reduction of the range to 

IX I ~ ! ln 2 is achieved as follows: To compute 

eu, find the integer n so that 

u = n ln 2 + X, IX I ~ ! ln 2 

thus 

This n is simply added to the exponent of the result. 

The only practical way to find n (for a general purpose 

subroutine) is to multiply u by (l/ln 2) and then to 

determine the nearest int~ger. If ( ] denotes "integer 

part of" this can be written as follows: 

z := u • ( --k--2) 
n := [ z + ! ] 

w := z - n 

x := w • ln 2 

Comments: The multiplication (2.11) is due to the fact that 

we want ex, while the machine has base 2. For many applications 

base 2 is just as good; for example, if the logarithmic and 

exponential subroutines are used to compute odd (or high) 

7/3 15 
powers such as X or X , i.e. in all those cases where 

logarithm and "antilogarithm" are used as auxiliary functions, 

x just like 10g10 and 10 are often used for numerical computations 

without an automatic computer. 

14 

(2.10) 

(2 .11) 

(2.12) 

(2.13) 

(2.14) 



x I therefore, recommend that the basic subroutine computes 2 and 

that the division by ln 2 (multiplication by l/ln 2) is executed 

outside, if necessary, or is done automatically as an option 

(Separate entry to basically the same subroutine). 

The multiplication (2.14) can also be avoided since 

if 

with 

2w x wln2 
= e = e 

R(w) s<w
2 > + w 

:= = 
s<w2 > - w 

s<w
2 > a+ 

2 (b + := w 

a := a/ln 2 

b := b· ln 2 

c 

-d 

:= 

:= 

c/ln 2 

2 
d/(ln 2) 

~'R<w> 

2w -t-1. 
s<w2> - w 

c 
= 2) d + w 

The numerical values of a, b, c, d are the same as in (2.8), but 

those of~' b, c, d have not yet been computed (on a normal desk 

computer, double precision is mandatory; on the CDC 1604 full 

fixed point precision will just be sufficient, at least for 

b, c, d.) This reduces the number of multiplications (M) and 

divisions (D) to 2M + 2D for 22 and 3M+ 2D for eu. The entire 

subroutine will take around 400 JAsec. 
> 

15 

(2.15) 

(2.16) 
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3. APPROXIMATIONS FOR THE LOGARITHMIC FUNCTION 

Note: Just as a subroutine for 2X is somewhat shorter and 

x simpler than one for e , the same will be true for 

log2 X as compared to the natural logarithm ln X. 

Therefore, we shall assume here that the subroutine 

proper will compute log 2 X. The final multiplication 

ln X = (ln 2) log
2 

X (3) 

can be done outside the subroutine or it will be 

"an optional extra at additional cost". 

(3.1) Reduction of the Range 

If X is represented in the machine as a normalized 

floating-point number, then the integer part of the logar-

ithm will be the exponent of X minus one; or if 

x = f 
then 

Y := log2 X = n + m, m := log
2 
J 

This reduces the range for which log2 J must be computed 

to the interval (~, l] . 

It is well-known that, for any given range of the argu-

ment of the logarithmic function, the series 

t2 
ln 'f 1 + t = ln -i-:-t = 2t (1 + + 

3 

converges much better than 
u2 u3 

1 n f = 1 n ( 1 + u) = u - -- + 
2 3 

t4 

5 

t6 
+ .;. • • • ) 

4 
u 

4 

7 

+ .•.. 

(3.1.l) 

(3.1.2) 

(3.1.3) 

(3.1.4) 



The same is true for the corresponding continued fractiom 

and for best-fit approximations of polynomial or 

fractional form. The maximum absolute value of t can 

further be reduced for the interval 

~min.~ S ~ S max. 

if we put 

! 5o 
t := 

s + !o s = 
v'tin.i max • 

so that log ! = log So + log .!...:....!. 
1 - t 

The range of t is then given by 

I t I ~ tmax : = S max - So 
!max+ So 

If we apply this method to the range ! ~ ~ ~ 1 

(cf. (3.1.1) above), we obtain 

~ = \[! = . 70710. 67811 86547 5244 
0 

e 1 + t 
log2 ') = 0.5 + log --

1 - t 

V2 - 1 ~ 
t = = .17157 28752 5381 
max {2 + 1 

2 -2 
ThUs t max is just a little less than 3·10 and each 

term of the power series. (3.1.3) will add almost 2 more 

decimals; or ~ little more than 2 if the corresponding 

best-fit polynomial is used. 

17 

(3.1.5) 

(3.1.6) 

(3.1.7) 

(3.1.8) 



While the reduction (3.1.8) will be sufficient to allow 

for fairly short rational approximat:km , it is worth-

while to note that a further reduction is possible without 

introducing any new explicit operations (i.e. other than 

those for determining the proper range). For if we divide 

the interval (~min , ~max] into n subintervals: 

kth interval = [ ~k-l ,k J ! k, k+l] 

~min = so 1 < ~ < .. . < s <s , 1,2 n-1,n 

and define 

then for each 

we take 

and hence have 

or 

~ ==v's . 
k k-1,k 

~ 
k,k+l 

~ € 

t := 

I tf ~ tk == 

r + 1 
k 

[ ~k-1,k' 
! - !k 
! + !Jc 

sk,k+l] 

! k - ~ k.k-1 

~ k + f k,.k-1 

n,n+l 

If the number of subintervals, n, is given then maximum 

(t1 , t 2 , ..•. tn) is minimized by logarithmic~-

division, viz. 

but linear subdivision, viz. 

sk = ~min + ~ (~ - L) 
' 

k + 1 n max min 

may save enough time and/or storage to offset its 

lesser theoretical efficiency. 

= 

18 

~ (3.1.9) 
max 

(3.1.10) 

(3.1.11) 

(3.1.12) 
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EXAMPLES: 

*) 

(i) Logarithmic Subdivision, min = ~' max = 1, n = 3 

ves 

No Yes 

0( := 5/6 C( :~ 1. 2 o<:= 1/6 

fi:= C!>5/6 fl 
.! 

:= C!)2 

tmax = .05769 81098 

log2 ~ := R(t) - 0( *) 

(ii) Linear Subdivision, 

k := [ 9 l] - 4 

t := 

min = !, max=l,n=4 

[ ] = "integer part of" 

~ 0 =v 5/16 = {3125 

~ 1 = i1116; 'f2 = 13/16; E
3 

= 15/16 

~k = log2 Jk 

.05572 80900 

In these two examples, t is not much different, though max 

(ii) has n = 4, (i) only n = 3. 

'""" 1 + t R(t) ,.._, log
2
-- is a suitable rational approximation. 
1 - t 



*) 

(3.2) 
1 + t 

Rational Approximations for ln ~ 

(i) Approximations of the form 

l+tl"V 
ln r:-t° ,...,, R(t) := t(a* + h* ) 

c + t2 *) 

This simple approximation is not accurate enough unless 

is further divided. Approximate maximum errors 

(absolute errors) are given below: 

i k,k+l 
A TYPE OF SUBDIV. n max f k-1,k 

none 1 2 3.29 x 10-9 

-11 
logarithmic 2 2 2.61 x 10 

logarithmic 3 2 1/3 1.53 x 10-12 

-12 
linear 4 1.25 1.20 x 10 

logarithmic 4 2 1/4 2.04 x 10 
-13 

-14 
linear 8 1.125 1.13 x 10 

logarithmic 8 2 1/8 1. 60 x 10-15 

20 

(3.2.1) 

TABLE 

(3.2.2) 

For a standard floating point subroutine the maximum error 

should be below 7·10-12 , thus "logarithmic, n = 3" and 

"linear, n = 4" are suitable. For many special purposes, 

a routine which gives the logarithm in fixed point will 

also be very useful. The argument may be in fixed or 

floating representation, and a somewhat greater accuracy 

may then be required. We presently have computed the 

following coefficients of approximation. 

1 + t 
For log2 r:-t°' divide the constants marked with an asterisk by 

ln 2 = .69314 71805 59945 30941 72321 ...• (cf. Tables Nat. Log. Vol. II, 
N.B.S. Appl. Math. Series #53) 



max 
( f k,k+l) 

t a*,b*,c A ( f k-1,k) max 

a* = .89554 02099 560 
2 .17157 2875 b* = -1.82984 55434 565 3.29 10-9 

c = -1.65677 85798 852 

1/2 a* = .89055 57990 96268 
2.61 10-ll 2 .08642 7234 b* = 1. 84630 58864 29456 

c = 1. 66417 19172 70150 

21/3 
a* = .88963 00669 363587 

.05769 8110 *) b* = -1.84938 33168 136899 1.53 10-12 

c = -1.66555 60110 514012 

a* = .88899 31487 3553390 
21/8 .02165 7463 b* = -1. 85150 43597 8820645 1. 6 lo-15 

c = -1.66651 02989 0598803 

For very small ranges, up to about smax I !min = 1.2, 

i.e. , tmax ~. 05, the "telescoping procedure for continued 

fractions"#) can be used to compute a*, b* c with 

sufficient accuracy. For this particular case we obtain, 

with E = tmax= 

* 3 6 * 18 2 
p* p* 2 p = 30 + 4tJ t pl = -8 t 

1 1 + t ~t + ] t 0 max' 5 max n--- ..... 0 

1 - t qo + ql t2 
9 t2 + 3 t4 qo = 15; ql = -9 - - TO 5 max max 

from which the corresponding expression of the form (3.2.1) 

can easily be derived. 

#) cf. copy of my paper on this subject: ''Methods for Fitting Rational 
Approximations", J.A.C.M., 1960. 

*) May also be used for n = 4, linear, as long as the exact values 

(yielding A= l.45·10- 12 ) are not known. 
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TABLE 
(3.2.3) 

(3.2.4) 



(ii) Approximations of the Form 

1 + t [ 2 ln --- -;::: R(t) := t a* + t (b* + 
1 - t 

c* ) ] *) 
d + t 2 
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(3.2.5) 

This approximation yields nearly three decimals more than 

(3.2.1) - for the ranges given below, but it also requires 

one additional constant, one more addition and one more 

multiplication. This may not be too high a price if the 

subdivision of the interval [ ! , 1 ] can thereby be avoided; 

-11 
however, the error for the full range is approximately 10 , 

which is slightly above the basic round-off of 7·lo- 12 . 

Further error estimates are given below: 

i k, k+l A. TYPE OF SUBDIV. n max 5 k-1, k (appr.) 

-11 
none 1 2 10 

1 -14 
logarithmic 2 22 2 • 10 

21/3 -16 
logarithmic 3 5 • 10 

linear 4 1.25 4 • 10 
-16 

1 -17 
logarithmic 4 24 4 • 10 

The constants a*, b*, c* and d for the full range 

have been computed for.this report: 

a* = 1.99999 99994 91255 

imax/fmin = 
b* = .10907 88905 02997 2 
c* = .77731 40010 05492 
d = - 1.39406 51451 76107 

t max = .17157288 

maximum abs. error A = l · 10-ll 

*) For log2 
1 + t divide the constants marked with an asterisk 
1 - t 

by ln 2 = .69314 71805 59945 30941 72321 

TABLE 
(3.2.6) 

TABLE 
(3.2. 7) 



(iii) Approximations of the Form 

1 + t t 
ln--- ~ R(t) = ' *) 

1 - t a'+ t 2(b' + c ) 
d + t2 

This approximation is only slightly more accurate, 

the error being about 643 of that of the previous 

approximation, (3.2.5). The number of constants is 

the same, but one multiplication has been replaced by 

a division. Furthermore, this form (3.2.8) is some-

what more susceptible to round-off errors (due to the 

finite word-length) during evaluation than the form 

(3.2.5). However, this need not bother us if the 

evaluation is done in fixed point (carefully scaled) 

with correct round-off to a floating point mantissa 

at the end. 

For the full range .f!, 1] the maximum absolute 

error will be approximately 6.s~10- 12 (Note: The 

constants a~ b~ c' and d are not included in this 

report.) 

For the half ranges, [ ! , v'I)and ( {f, 1] , the 

maximum absolute error will be approx. l.3·lo-14 , 

but this approximation cannot be recommended for a 

full precision fixed-point routine since the round-

off error will be bigger than Ln (3.2.5), and (3.2.9) 

will be faster. 

*) F 1 l + t 1 . 1 h t t I b1 1 b or og2 --- , mu tip y t e cons an s a, , c y 
1 - t 

ln 2 = .69314 71805 59945 30941 72321:···. 
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(3.2.8) 



*) 
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(iv) Approximation of the Form 

ln ~ZR(t) t [ a* + 
b* ] *) (3.2.9) = 

1 - t c + t2 + d 

e + t 2 

This approximation is much more accurate than (3.2.8); 

it requires one more constant but only one more addition; 

the number of multiplications (1) and divisions (2) is 

the same. This approximation can be used for a full-

precision fixed-point subroutine without subdividing the 

interval [ ~' i]. The constants are: 

for 

!maJfmin 2, tmax = .17157288, A = 1.18 10-14 

a* = .57314 62238 34578 TABLE 
b* = -3.83907 86035 23797 (3.2.10) 
c = -3.08667 66195 74836 
d = - .61016 03452 67418 
e = -1. 54047 22733 27729 

Which of the approximations given above are most suitable 

for Control Data subroutines will depend not only on 

certain details of coding and machine characteristics, but 

For log2 

also on the relative merit$ of saving time or storage space 

' 
and on the range for which a fixed point logarithm may be 

used, i.e., on the number of bits available for the 

fractional part of a fixed point logarithm after suitable 

scaling. 

1 + t 

1 - t 
divide the constants marked with an asterisk 

by ln 2 = .69314 71805 59945 30941 72321 



4. APPROXIMATIONS FOR THE ARCTAN Z 

(4.1} Reduction of the Range 

The addition theorem for tan ( d> +'/I), viz. 

tan <'/.> + tan ti! 
tan (ti>+ VI ) = ------

1 - tan (/:> tan t/J 

can be used to reduce the range for which arctan X or 

arctan (X/Y) must be computed, if we store, in the 

memory of the machine, a table of "key values" zk, VJk, 

zk := tan 'Pk 

'Ilk = arctan Zk 

The subroutine will first find, for each argument Z , 

the table entry zk which is "nearest" to z in the 

sense that Jarctan Z-¥kJis minimized. After that the 

algorithm. runs as follows: 

t := z - zk 
1 + zzk 

*} ( = tan p ) 

tb :~ arctan t (approximation) 

arctan Z := '/Jk + ¢ 

While this algorithm permits a very drastic reduction of 

the range its cost in time and storage is considerable. 

~is lost for finding the best (\fk,zk), and for 

computing t (requiring one each of the four basic 

operations). 

*) To compute arctan X/Y, use 

x - yzk 
t := ----

Y + xzk 
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(4.1.1) 

(4.1.2) 

(4.1. 3) 

(4.1.4} 



Storage space is needed at least for the. Zk, while the 

'#'k may be equidistant. 

Conclusion: With a ~ ~t too much time is los.t 

and not enough is gained by the moderate reduction of 

the range; a large table will save some time but cost 

more memory space than desirable for a general purpose 

subroutine. 

Special Values: The formula for t is, of course, very 

26 

simple for zk = 0 (t = Z) and for zk+eo (t = 1 ->, but 
z 

also + for zk = - lJ (t = (Z + 1)/(1 ~ Z)). With these 

four values, we obtain the following short table: 

RANGE OF Z zk . l/)k t 

z < - (1 + Vi> -00 - 1l' /2 1 -_z 
-0 + ViJ<z< - cfi - n -1 - 1t/4 1 + z 

1 - z *) (4.1.5) 

Jzf<"2- 1 0 0 z 

"2-1 <z< 1 + Vi. +l + 1r/4 z - 1 ---
z + 1 

z > 1 + V2 +00 + 1t;2 1 - -
z 

The first and last ranges can be joined if it 

is not required that 

fr/2 ( arctan Z < + 1f ;2 

This method reduces the range to I ti~ t/2 - 1 

*) It is true that t can also be computed very easily for arctan X/Y, sific·e·, 

1 Y l+Z:Y+X Z-1 X-Y 
if Z = X/Y, -=-, --- --- and --- = 

Z X' 1 - Z Y - X Z + 1 X + Y 

but how can we determine th~ range directly from X & Y, without 
computing Z? 



( 4. 2) APPROXIMATIONS FOR ARCTAN t, It I §. V2 - 1 

We have derived the following approximation from the 

continued fraction for arctangent of t 

R6 (t) ~ arc tan t if 

R6 (t) t [ dl + 
e 

:= 
t2 + d2 + e2 

t2 + d + e3 
3 t2 + d4 

with 

dl = 0.20131 20564 40625 303 

e1 = 3.11385 00604 57103 14 

d2 = 5.40622 85377 62366 96 

e2 = -3.92831 57487 32049 88 

d3 = 2. 71829 04240 10983 87 

e3 = -0.15058 39379 13062 15 

d4 = 1. 33875 95795 46815 11 

The maximum relative error A, 

A6 := max 
ltl~ "2-1 

I log R6 (t) 1= 2.84·10-14 
arctan t 

is much smaller than necessary for a good floating point 

routine; it is actually good enough for a fixed point 

routine, since the absolute error, ~ 3.i-48 
abs 

~ 6 abs I I 
-14 = max R6 (t) - arctan t = 1.11·10 

ltl~\12-1 
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] (4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.4) 



For a floating point routine the, somewhat simpler approxi-

mation R5 (t) may be used: 

<A.= 

where 

d = 
0 

d1 = 

el = 

d2 = 

e2 = 

d3 = 

:= t (ao + t2 (dl + ___ e __ 1 _______ ) J 
2 e2 

t + d2 + ----

-12 
3.9·10 ) 

0.99999 99999 

-0.01558 53710 

-0.58531 51350 

2.10055 40871 

-0.41900 30022 

1. 62102 38336 

t2 + d3 

96107 

18178 

71831 

65198 

82544 

34443 
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(4.2.5) 



5. APPROXIMATIONS FOR TAN X 

(5.1) REDUCTION OF THE RANGE 

The basic range for the tangent is given by the periodicity 

of tan X. 

tan (X ~ fr ) ii tan X 

Therefore, the basic range is 

()( - 1f /2 ~ x ~ C( + 1t /2 

where OC may be chosen to be zero. 

Further reductions can easily be achieved by the 

relation (4.1.1) of which 

tan ( t/> :!: 1T /2) = - l/tan"' 

is a special case. Another important special case is 

t/I :!1T/4, tan '/I = + 1, thus 

tan ( t/:> :!: fl' /4) = 
tan t> ± 1 

1 + tan ti> 

(5.1.3) cuts the basic range to I X ,, ft/4; with 

(5.1.4), we get down to IX I" 1t;a *) 

A code for the reduction of the range can be made 

efficient only if we introduce an auxiliary variable W 

We have arbitrarily chosen k = 2, thus 

w := ~ x . 'It 

Let us write t cw> 
then 

t(W :!: 4) = 

+ 
t(W - 2) = 

t(w!. 1) = 

11'W := tan ~~ = tan X 

t(W) 

-1/t(W) 

t(W) :!: 1 

1 =F t(W) 

4 

x = - • 
1t 

*) By help of a table of key values and using (4.1.1), the range can be 
further reduced, saving a little time at great cost in storage. 
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(5.1.1) 

(5.1.2) 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 

(5.1.7) 

(5.1.8) 

(5.1.9) 
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(5.2) BASIC FORM OF RATIONAL APPROXIMATION FOR TAN X 

Since tan X and t(W) are odd functions, we may write 

t(W) = W·T (W2) = (5.2.1) 

The question is whether T(W2 ) or S(W2 ) should be used as 

an auxiliary function. Assuming that T and S could be 

computed equally fast (with comparable accuracy), the first 

form will be faster for the basic range since a multiplica-

tion takes less time than a division. However, if one of 

the relations (5.1.8) or (5.1.9) must be used, then the 

second form is much faster since 

t(W ! 2) = 1 - -- = 1 =~ (5.2.2) 
t(W) W·T w 

and 

t(W) ~ 1 WT + 1 w :t. s 
t(W :!: -

1) = = = 
1 + t(W) 1 + WT s + w 

(5.2.3) 

Which method will be faster on the average? This depends 

on the frequency of arguments being in the basic range 

( IX I~ 11';4 or 1'r;a) as opposed to those in the ranges 

requiring reduction by (5.2.2) or (5.2.3). If the distri-

bution is uniform, then the second form is faster. *) The use 

2 
of sew ) also reduces the maximum time for the subroutine. 

2 Therefore, S(W ) will be recommended for a general purpose 

subroutine. 

*) While this is true for both ranges ( Ix I~ 11"/4 , f X f ~ 1r /8), 
the difference is bigger if the smaller range, and thus (5.2.3), 
is used. 
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(5.3) RATIONAL APPROXIMATIONS FOR S(W2 ) 

Since 

tan x = r1 -I ~2 I - I ~2 I - I ~2 I - I :2 I - . . . (5.3.l) 

2 
S(W ) can be expressed by the continued fraction 

2 w T~ 11"W S(W ) = - = W/tan-
t(W) 4 

= (5.3.2) 

In the formulae given below, this expression has been 

modified in two ways: 

(i) The coefficients have been modified for best fit for the 

respective interval, i.e. so that 

i\ 1 = re . max 
ln __..n ___ _ I S* (W2) I 

S(W2 ) 
(5.3.3) 

( = the relative error) is minimized. 

(ii) Simple algebraic transformations have been used to minimize 

the time required for evaluating the respective expression 

on the Control Data 1604. 

If n is the "degree" of the approximation, viz. 

We obtain the following short table of maximum relative 

errors ( ).rel.>: 

n I xi' 1r;4 lxl~ ft/8 

-8 
4. 69·10-11 3 1. 42·10 

4 2.21·10-11 l.83"10-14 

-14 
4.92·10-18 

5 2.38"10 

(5.3.4) 

TABLE 
(5.3.5) 



< i) APPROXIMATIONS FOR Ix I ' 11i 4 

or 

REDUCTION OF THE RANGE: 

x ( 2 ) =: 2 i + k + v 

wh:e i and k are integers and [ lkl:lv I~~~ J 
for k = ~ 1; 

for k = 0 

where either 

* (v2) s := 85 

A. = 2.38 x 

tan X := - S/W 

tan X := W/S 

a + 
b 

c + v2 + _d __ 

e + v 2 

a = 9.45815 57617 25496 

b = 290.32031 00841 78635 

c = -37.33612 85498 26952 

d = -20.54475 60663 69045 

e = -4.64212 22417 14098 

*) 

= a+ v2 [ b + c ] 
d + 2 + e 

v f + v2 

10-14 

a = .63661 97723 67596 

b = -.07531 94869 91705 

c = 3.88560 57227 68290 

d = -14.87026 86251 97861 

e = -57.81869 13873 68667 

f = -9.32191 89536 46030 

*) About 4 to 5 bits (l! decimals) may be lost by amplified round-off 
with this slightly unstable approximation. It is recommended to 
evaluate sa in fixed point (48 bits) with proper scaling. 
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ALGOR 
(5.3.6) 

(5.3.7) 

(5.3.8) 



(ii) APPROXIMATIONS FOR lxl ~ 1t/8 

REDUCTION OF THE RANGE: 

X(~)=! 4i + k + w 
1t 

Where i and k are integers [ lk + w I~ 2] 
and I wl ~ ! 

for k = + 
2 tan X S/W := 

for k = + 1 tan X 
w + s 

:= 
s - w 

w - s 
for k = - 1 tan X := s + w 

for k = 0 tan X := W/S 

* (W2) 2 c 
Where either: s := 83 = a+ w (b + +. w2> d 

With a = 1.27323 95447 94842 

(). = 
b = - .07881 15321 78328 

4.69·10-ll) 
c = 3.11023 62587 99796 

d = -16.99695 38195 49826 

* (W2) b 
Or s := 84 = a + d *) 

c + w2 + 
e + w2 

With 
a = 19.05374 90250 96548 

c) -14 b = 2368.80216 75614 4904 
= 1.83·10 ) 

c = -151.08047 87151 32145 

d = -331.56482 92387 31320 

e = - 18.56899 78562 14913 

*) About 4 to 5 bits Cl! decimals) may be lost by amplified round-off 
with this slightly unstable approximation. It is recommended to 
evaluate s: in fixed point (48 bits) with proper scaling. 
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ALGOR. 
(5.3.9) 

(5.3.10) 

(5.3.11) 
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6. APPROXIMATIONS FOR SIN X AND COS X 

(6.1) REDUCTION OF THE RANGE 

The first and basic reduction of the range of the independent 

variable is brought about by the periodicity: 

sin x = sin (X + 2k "1t ) 

cos x = cos (X + 2k 1t ) 
k = ± 1, ~ 2, ± 3, .•. (6.1.1) 

and the basic relations 

sin (X :t 11"' ) - - sin x 

(X + 1r ) x cos - - - cos ] (6.1.2) 

These reduce the range for which rational approximations for 

sin X and cos X must be found to 

- '11";4 ' x ' + "1T/2 (6.1.3) 

Further reductions are possible, but most of them do not pay: 

(i) Since sin (-X) sin X, cos (-X) = cos X, we could reduce 

(ii) 

the range to 0 ~ X ~ 1T'/2. But since this range is not 

symmetric, additional terms would appear in a best-fit 

approximation (viz. even powers for sin X, odd powers fer 

cos X). Nothing would be gained, neither in speed nor in 

storage space. 

2 Formulae such as cos X = 2 cos (X/2) -·· 1 or 

sin X = sin ! 
3 

(3 - 4 sin2 !), etc. could also be used, 
3 

but the evaluation of these formulae takes more time than 

can be saved by the respective reduction of the range, except 

for extremely high precision (double or triple precision). 
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(iii) Since the continued fraction and rational approximations 

for tan X are so good, we may be tempted to compute sin xand 

cos X from 

x 
t := tan 2 

sin X = 

cos x = 

2t 

1 + t 2 

1 - t2 

1 + t2 

Here again, the evaluation of 2t/(l + t 2 ) or 
2 

(1 - t 2) / (1 + t ) takes more time than can be saved. 

(iv) If we store a table of key values Sk = sin Xk and 

Ck = cos Xk, then sin X and cos X may be computed from 

sin X 

cos x = ck cos 1 ] 
This requires two additional multiplications and a double 

table look up; in addition, both cos f ~ sin f must 

~ approximated. This method does not pay off unless the 

range of f is made extremely small -- but this means a 

long table of many key values (perhaps 1000 or so). 

(v) So far, we have not yet made use of the relation 

sin X = cos ( '1t /2 - X) 

This can be used to obviate the need for one of the 

subroutines, *) but 

*) Since sin X should come out as zero for X = O, and good relative 
accuracy is desirable even if fXJ <-< 1, for sin X, the cos X 
subroutine may be dropped, but the sin X - subroutine should be 
retained. 

(6.1.4) 

(6.1.5) 

(6.1.6) 



I 
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it may also be used to reduce the range by taking "the 

other function" if I X J > X
0 

where 0 < x < -rt /2 
0 

may be determined in such a way that the maximum error of two 

given forms of best-fit approximations for sin X & cos X 

are just equally big. 

~RANGE FOR A "SIN 
I 

X" APPR._.: 
I 
I I 

' I 
I 
I 
I 
f 

SINE x I 
:._RANGE 

I 
I 

' FOR A "COS X" APPROXIMAT ION-+I 

' I 
' 

GRAPH 
(6.1.7) 

+------ ,------ .l.---
f --t-------r 

' I 
I 

0 X
0 

! 12 ! .L,2·10- -- - __ ,_ 
I 
I 
I 
I 
Tl •lo-12--;' 
I , 

"' ' , I , 

ERROR 
CURVE 

I 
I ,, , -- -

11"/2 'fl" -X 

l !° -- -- ... -:..-- ... .._--~ ... 
..... , I 

··----- ---·. 

GRAPH 
(6.1.8) 

The sketch above illustrates this situation, assuming that the 

relative error has been minimized. 

This is the only reduction as far as I can see, which is worth 

while. 
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(6.2) MATCHED RATIONAL APPROXIMATIONS FOR 

*) 

SIN X, IX I < X0 , & COS X, I XI< 1112 - X0 

(i) A pair of approximations of the fonn 

sin X := X (S 1 + S2 ) 
2 84 X + s3 + 

x2 + c 
5 

cos X := c1 + C2 

x2 + C3 + C4 

x2 + C5 

will yield an error of approximately 2 x lo-11 *) 

The matching point is approximately X0~ .90. ~ 

2 x lo-11 is too big even for (full precision) floating 

point, the coefficients s1 through c5 have not been 

computed yet. They can be furnished on request. 

(ii) A slightly better pair of approximations is 

sin x := x (s 1 + x2 (Sz + x2 (s 3 + S4 ))) 
x2 + S5 

cos x := C1 + x2 (C2 + x
2 

(C3 + 

The relative error is about A= 8 x 10-12 ~ 1.1 x 2-37 

which may be just acceptable for a 1604 floating point 

(6.2.1) 

(6.2.2) 

subroutine. The matching point is between .88 and .89. The 

coefficients can be computed fairly easily by a relatively 

simple iteration and will be furnished if requested. 

NOTE: The numerical stability of (6.22) is much better 

than that of (6.2.1). (6.2.2) can be evaluated in floating 

oint. 

All errors quoted are relative, i e 

A= max .,l~ APPROX. 
FUNCTION 
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(iii) The following pair of approximations will yield 12 

significant digits: 

sin x := x ( 8
1 

+ __ 8 .... 2..__ ____ _ 

2 84 
x + 83 + ----

x2 + S5 

) 
(6.2.3) 

cos x 

relative error: 

matching point: -XO = .6271 

s1 = 7.23084 68962 44279 c1 = .99999 99999 99545 

S2 = 814.80758 58531 22316 C2 = 1. 67714 58152 33633 

COEFFI- 83 = 55.40962 23983 32114 C3 
.... 271.20667 68780 46237 

CIENTS: 
*) S4 = 1262.62414 34758 4584 C4 = 80.85518 72908 64723 

S5 = 16.75449 20850 08428 C5 = 2442.54254 69501 6347 

c6 = 16.33389 75777 12791 

(iv) 8incelsin xi' l,lcos xi~ 1, a fixed point sin X 

cos X subroutine is also feasible, approximately 14 digits 

will be needed for full fixed point accuracy. The following 

pair of approximations may be used: 

sin x : = ~ [s 1 + x2 
(8 2 + 

8 
3 ) J 

x2 + 84 + S5 

x2 + 86 (6.2.4) 

cos x := C1 + x2 (c2 + c ) 
x2 + C4 + C2 

x2 + c6 

A. = 9.5·10-15 , XO = .8798 

*) cf. "NOTE" on p. 42 
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The coefficients for (6.2.4) are: 

81 = .99999 99999 99990 520 cl = .99999 99999 99990 455 

82 = .32590 23686 32526 89 C2 = 1.70422 86567 42058 33 

83 = 71. 63509 21318 01290 7 c3 = 276.53438 35490 61398 

84 = 113.84748 44349 29748 C4 = 81.38352 57153 .53261 8 

S5 = 4600.47709 02433 9799 C5 = 2456.97667 28922 5259 

86 = 13.69104 85436 09095 3 c6 = 16.57290 96384 87355 5 

The numerical stability of the formulae (6.2.4) is fair. Even 

with careful scaling the round-off error may be bigger than the 

truncation error. The ~ approximation will reduce both at a 

moderate increase in computing time. 

(v) The following pair looks fine for a high-precision fixed-point 

subroutine: 

sin X X Cs1 + x
2 

(82 + x2 (83 + 
2 (S + 85 := x )))) 

4 x2 + 86 
(6.2.5) 

cos x C1 + x2 (C2 + X2 2 C5 ))) := (C 3 + X (C4 + 
x2 + c6 

' - -15 A 8.1 x 10 

Since sin X and cos X must obvi-0usly be scaled by a factor 

~ ~15 
of 1/2 in order to avoid overflow, Arel= 8.1 x 10 means 

that the truncation error is only slightly in excess of 1 

unit of the last binary. Since (6.2.5) is very stable, the 

sum of round-off plus truncation error should be less than 

2 or 3 units of the last binary for most values of X. 
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(6.3) RATIONAL APPROXIMATIONS FOR SIN x, Ix'' 1?;2 

Approximations to sin X for the full range, - 1t /2 ~ X ~ + 1T' /2 

require one division or multiplication more than those in (6.2). 

The coefficients have not yet been computed, except for the first 

approximation, the accuracy of which is not sufficient for a full-

precision floating point subroutine. The error estimates for the 

other approximations are believed to be correct within about 

~ 103 of the values given below. (Please ask for coefficients 

if interested.) 

(i) APPROXIMATION OF THE FORM SIN X ~ X·P5 (X2 ) 

sin x := x cs1 + x2 (s2 + x2 cs 3 + x2 cs4 + x2 cs
5 

+ x2 8 6 ))))) 

(ii) 

;\ = 2.1 x 10-11 
rel 

S1 = +.99999 99999 79082 *) 

82 = -.16666 66660 92171 (6.3.l) 

s3 = +.00833 33307 30723 

84 = -.00019 84083 38222 

85 = +.00000 27524 01177 

86 = -.00000 00238 68930 

APPROXIMATION OF THE FORM SIN X = X P4CX2 )/Q1CX2
) l 

sin x := xcs1 + x2 cs 2 + x2 cs3 + x2 (8 4 + 
2
s5 )))) (6.3.2) 

x + s 6 

"'\. 1.0 x io-11 
A rel = 

This approximation is at least twice as accurate as 

(6.3.l) and can be computed faster, since 2 multipli-

cations have been replaced by 1 division. Numerical 

stability is very good. 

*) cf. "NOTE" p. 42 
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(iii) APPROXIMl TION OF THE FORM 

2 
sin X := X (S1 + X (S2 + S3 )) 

x2 + 84 + S5 (6.3.3) 

A ; 
rel 

-11 
1.1 x 10 

x2 + s6 

Two more multiplications have been replaced by one division, 

saving time but losing about 103 in accuracy. Numerical 

stability is not as good as in (6.3.2); therefore, a well-

scaled fixed-point evaluation is mandatory! 

We now proceed to the next degree of approximation which 

will yield about 8 additional bits: 

(iv) APPROXIMATION OF THE FORM SIN X = X P6(X2 ) 

"\ - -14 /l = 6 • 2 • 10 *) 

(v) APPROXIMATION OF THE FORM SIN X = X·P5(X
2)/Q1(X2) 

x cs1 + x 2 + x2 <s3 + x2 2 s6 
sin X := (S2 (S4 + x (S5 + ))))) 

x2 + S7 

/\. ~ 2.3·10- 14 
*) 

(vi) APPROXIMATION OF THE FORM SIN X = X · P4(X2)/Q2(X2 ) 

(6.3.4) 

(6.3.5) 

sin X := x <s1 + x2 <s2 + x2 CS3 + ___ 8...;.4----))) 
x2 + 85 + 86 

(6.3.6) 

-14 
2.3·10 *) 

x2 + 81 

*) Numerical stability: Good for (6.3.4) through (6.3.6) 



( 6. 4) SUMMARY AND NOTE 

In my opinion, the following approximations deserve prime con-

sideration: 

FLOATING POINT: 

FIXED POINT: 

Almost full accuracy 
Full accuracy 

Full accuracy 

(6.2.2) 
(6.2.3) 

(6.2.5) 
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The approximations in (6.3) take more time and are a little less 

accurate. 

NOTE: It may be convenient to introduce, in the beginning 
of a sin & cos subroutine, an auxiliary variable 

2 
v ·= X· "(i'-

. ' 
(cf. ALGOR. 5.3.6), so that rational approximations 
not for sin X, but for sin ~ are needed. The 
coefficients of euch approxi~tions can easily be 
found from those for sin X or cos X. An example 
is given below: 

Substitute v 11' for X in, say, (6.2.3) 
·2 

v~ v-rP 
(81 + 

S2 
sin -- = 

2 2 (v 1"/2)2 
+ 83 + s,, 

(v 11"/2)2 + 

v ( c:;l + 
a; 

) = 2 <1i v + Q"j + 
v2 + as 

S5 

) 

2 2 
= (-) 

11' 
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FINALE PR.ESTO 

I should have liked to discuss more functions in this report but 

serious time limitations have prevented me from doing so. 

We have some theoretical and numerical results for 

f.. ~t2 e dt and 

0 

in particular for x.+ 00 (whence 

0 

f--t 
and --;- dt ). 

X 

A few simple functions, such as tanh X., ln cosh X, 

and other functions for which either a well convergent power series or a 

well convergent continued fraction is known, can readily be treated, i.e., 

coefficients of suitable best-fit approximations can be obtained with our 

codes as soon as we find time for punching and running. 

Some other functions, such as r (X) for real values of X, have 

been studied and more work will be needed to make them ready for machine 

computation of the coefficients for best-fit approximations. 

This semi-formal report has not been checked (for style, spelling 

and mathematical and numerical accuracy) as carefully as we would have 

checked a formal publication. Every comment and correction, a~d in 

particular reports on numerical checking of approximations given herein 

will be greatly appreciated. 
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