G 2 COrroRaTION

UPDATE
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
SCOPE 3.4
KRONOS 2.1

60342500

60342500

CONTROL DATA
CORPORAIION

C

UPDATE
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
SCOPE 3.4
KRONOS 2.1

REVISION RECORD
- DESCRIPTION

REISIO

[T I e e ———— T R)

~Original printing.

it

(5-71)
Correct technical errors on pages 2-6, 3-5, 4-2, 4-7, 4-12, 4-13, 4-14, 4-15, 4-18, 4-17, 4-19
(1-72) | 4-20, B-2, and Index-1. B o
_ Reflect current implementation; support KRONOS 2, 1 operating system, This printing obsoletes
{(3-73) all previous editions. .
D | Reflect implementation through Common Product Summary 373, |
(5-74) L ' B
E | Supp-:}rt NS 1. 0 for CDC CYBER 170 Series Computer Systems.
B Corrections and additions to reflect UPDATE implementation through Common Produet Summar
(6-75) | 399. _
Add diselaimer for NOS . D and:SCOPE 2.1 operating systems.
(12=75) | | |
H Add disclaimer for NOS 1, NOS 1.0, SCOP OF 0, SCQFE OF and SCOPE. 2,1, A

 —

~T8) and commen

“technical corrections |
It 1 i]. bE A FeEtlls

_':_t_.-.‘

revision to this manual

release.

Publication No.

60342500
REVISION LETTERS |, O, O AND X
ARE NOT USED .- Address comments concerning this
manual to:

Control Data Corporation

Publications And Graphics Division
215 Moffett Park Drive

© 1971, 1972, 1973, 1974, 1975, 1978 Sunnyvale, California 9294086
by Control Data Corporation or use Comment Sheet in the back of

Printed in the United States of America | this manual.

&
&
@

-

L
".

TITLE: UPDATE REFERENCE MANUAL CONTROL DATA CORPORATION

Publications and Graphics Division

215 MOFFETT PARK DRIVE
PUBLICATION NO. 60342500 SUNNYVALE, CALIFORNIA 94086
REVISION H

DATE: January 1978

REASON FOR CHANGE:

Adds disclaimer for NOS 1, NOS 1.0, SCOPE 1, SCOPE 1.0, SCOPE 1.1, SCOPE 2, and SCOPE 2.1. All technical corrections
and comment sheet responses have been incorporated. This is the last scheduled revision to this manual. It will be a regularly
stocked item at LDS for a minimum of 12 months after this release,

INSTRUCTIONS:

To update this manual, for which the last revision was G, make the following changes:

Remove

Insert

Cover. Inside. Cover
Title Page, fi

Cover, Inside, Cover
Title Page, ii

iy TITELY

.l iv. |

=3, 1-4 [-3, 1-4

2-1 thru 2-4 2-1 thru 2-4
2=11. 2=12 2-11, 2-12
2-15 thru 2-20 2-15 thru 2-2
2=23 thruo 2-26 2=23 thru 2=26
2-29. 2-30 2-29, 2-30
313, 34 3.3, 3-4

3-9 3-10 3-9. 3-10

4-]1 thru 4-4

4-7 thru 4-10
4=17 thru 4=-26
A-]

B-1 thru B-§
Comment Sheet
Inside Back Cover
Back Cover

-1 thru 4-4

4-7 thru 4-10
4=17 thru 4=26
A-1

B-1 thru B-8
LComment Sheet
Inside Back Cover
Back Cover

Remove

Insert

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the

margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

| P [reen

60342500 K

Index-1

C |

Cover — 3-1, 3=2 C
Inside Cover — 3-3, 3-4 H Index.-2 D
Title Page — 3-5 F Index-3, -4 C
ii H 3-6 C Cmt Sheet H
iii/iv H 3-7 F Return Env. —
iv.1 H 3-8 C Inside Cover —
v C 3-9 H Back Cover —
vi C 3-10 F
vii F 3-i1 thru 3-14 C
1-1 E 3-15 E
1-2 C 4-1 E
1-3, 14 H 4-2 H
1-3 C 4-3 D
2-1 thru 24 H 4-4 H
-3 D 4-5 E
2-6 C 4-6 F
2-7 D 4-7 E
2-8 C 4-8 thru 4-10 H
2-9 E 4-11 F
2-10 F 4-12 thru 4-14 C
2-11 H - 415 E
2~-12 C 4-16, 4-17 C
2-13, 2-14 D 4-18, 4-19 H
2-15 thru 2-17 H 4-20 D
2-18 C 4-21 H
2-19 D 4-22 F
2-20 H 4-23 thru 4-26 H
2-21, 2-22 F 4-27 F
2-23 H A-1 H
2-24 C B-1 H
2=25 F B-2 D
2-26 H B-3 thru B-7 H
2-277 F B-8 D
2-28 C C-1 C
2-29 H C-2 D
2=-30 E D-1, D=2 E
iiifiv e

PREFACE

This manual describes the UPDATE program for maintaining and updating source decks on libraries
in compressed symbolic format under the following operating and computer systems:

SCOPE 3.4 and KRONOS 2.1 for the CONTROL I}ATA'@CYBER 70 Models 72,
73, 74, and the 6000 Series Computer Systems.

The user's familiarity with the operating system in use is assﬁmed.

In this manual, references made to the following systems are no longer valid:
NOS 1 SCOPE 1.1
NOS 1.0 SCOPE 2

SCOPE 1 SCOPE 2.1

SCOPE 1.0

Other publications of interest: Publication Number:

SCOPE 3.4 Reference Manual 60307200

KRONOS 2.1 Reference Manual 60407000

CDC manuals can be ordered from Control Data Corporation

Literature and Distribution Services, 8001 East Bloomington
Freeway, Minneapolis, Minnesota 55420.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper

functioning of undescribed features or parameters.

60342500 H iv.1. @

CHAPTER 1

CHAPTER 2

60342500 C

v Do I

INTRODUCTION
1.1 Features
1.2 Execution
1.2.1 Creation Run
1.2.2 Correction Run
1.2.3 Copy Run
1.3 Installation Options
DIRECTIVES
1 Directive Format
2 Card lIdentification
3 Deck Identifying Directives
2.3.1 DECK - Source Deck
2.3.2 COMDECK - Common Deck
2.4 Correction Directives
2.4.1 IDENT - Identify New Correction Set
2.4, 2 INSERT = Insert Cards After
2.4, 3 BEFORE - Insert Cards Before
2.4.4 DELETE - Delete and Insert Cards
2.4.5 RESTORE - Reactivate Cards
2.4.6 COPY -~ Copy Text
2.4.7 CHANGE - Change Correction Set
Identifier
2.4.8 YANK - Remove Effects of Correction
) Set |
2.4.9 YANKDECK =~ Deactivate Cards
2.4.10 SELYANK - Selectively Remove
Effects of Correction det
2.4.11 PURGE - Purge Correction Sets
2.4.12 PURDECK - Purge Decks
2.4.13 SELPURGE - Selectively Purge
Correction Sets
2 4.14 ADDFILE ~ Add File of New Decks
2.4.15 SEQUENCE - Resequence Decks
2.4.16 MOVE - Move Deck
2.0 File Manipulation Directives
2.5.1 READ - Read Alternate Directives File
2.5.2 SKIP - Skip Forward On File
2.0.3 REWIND - Rewind File

CONTENTS

1-2
1-3
1-3
1-4
1-5
1-5

{ 1 1 1 ¢ °
CO =IO ON W e GO DN =

MMM NN DN NN D

2.6 Selective Compile Directive (COMPILE) 2-19
2.6.1 Normal Selective Mode 2-20
2.6.2 Full Update Mode 2-20
2.6.3 Quick Mode 2-20
2.7 Compile File Directives 2-20
2.7.1 WEOR - Write End-of-Record or
| End-of-File 2=21
2.7.2 CWEOR - Conditionally Write
End-of-Record or End-of-File 2=22
2.7.3 CALL - Call Common Deck 2=22
2.7.4 IF - Conditionally Write Text 2-22
2.7.9 ENDIF - End-of-Conditional Text 2-24
2.7.6 TEXT and ENDTEXT - Identify Text 2=-23
2.7.7 DO and DONT - Temporarily Rescind
YANK and SELYANK 2-26
2.8 special Directives 2=26
2.8.1 /! - List Comments 2-27
2.8,2 ABBREV and NOABBREYV - Do or
Do Not Check for Abbreviated Directives 2-27
2.8.3 LIMIT - Limit List Output 2-27
2.8.4 LIST and NOLIST - Select or
Deselect List Option 4 2-28
2.8.5 DEFINE - Define Names for Use by IF 2-28
2.8.6 PULLMOD - Recreate Correction Sets 2=-29
2.8,7 DECLARE - Declare Restricted
- Corrections 2=2
2.8.8 END - End Deck 2=-30
CHAPTER 3 FILES
3.1 Source Decks and Files 3-1
3.1,1 Source Decks Prepared by User

as Input

3-1

3.1.2 Source File Generated by UPDATE 3=~2

3.2 Program Library Files 3-3

3.2.1 Random Format 3-3

3.2.2 New Sequential Format 3-9
3.2.3 0Old Sequential Format 3-11
3.3 Input Files | 3-12
3.4 Compile File 3-13
3.5 Pullmod File 3-15
3.6 Scratch Files ' 3-15

60342500 C

V1

CHAPTER 4

APPENDIX A
APPENDIX B

APPENDIX C

APPENDIX D

Figure 3-1
Figure 3-2
Figure 3~3
Figure 3-4

Figure 4-1

60342500 F

UPDATE EXECUTION

4.1 Control Cards
4,1.1 Job Card
. 2 UPDATE Call Card
.3 7/8/9 Card
.4 6/7/8/9 Card
kK Examples
Library File Creation

Input File Not INPUT

Insertions /Deletions /Copying
Yanking and Purging

Addition of Decks

@ Option

PULLMOD Option

Program Library as SCOPE 3.4

Permanent File
4, 3 Sample FORTRAN Extended Program

N

4
4
4

4, 2 De

.0

o =13 O o I

»
L
L
n
&
L

4
4
4
4
4
4
4
4

o DODN Do b BN DO

OVERLAPPING CORRECTIONS
LISTABLE OUTPUT

FILLE SUMMARY

FILE FORMATS VS OPERATING SYSTEM USED
FIGURES

- Example of Source Decks on a Source File

‘Random Program Library

New Format Sequential Prlogram Library Flile

Old Sequential Program Library Format

Flow Diagram of Sample FORTRAN Extended
Program

vi1i

INTRODUCTION .]

UPDATE provides a means of maintaining source decks in conveniently updatable compressed
format,

By using UPDATE, a user initially transfers a collection of source decks to a file known as

a program library. KFach card of each deck is assigned a unique identifier when it is placed
on the library. This allows each card to be directly referenced during an UPDATE correction
run. During correction runs, cards are inserted into or deleted from the program library
according to sequence identification. However, the image of a card, even though deleted,

is maintained permanently on the program library with its current status (active or inactive)
and a chronological history of modifications to the status. If the history lists the card as
being currently inactive, the card has been deleted and is, in effect, removed from the deck.
If the status of the card is active, the card is in the deck; either it has never been deleted or
has been deleted and resiored. During a single UPDATE correction run, a card may undergo
one or more modilfications or no modifications,

If the user wishes to permanently and irrevocably remove cards from the program library,
he can do so through UPDATE purge features. Once a purge has been performed on a
program library, it cannot be restored to an earlier level. A set of corrections also has

an identifier associated with it. Any cards affected by the correction set can be referred to,
relative to the correction set. In later correction runs, all or part of a correction set can be
removed {(vanked), Yanking differs from purging in that it is a logical operation. The effects
of a yank can be reversed.

With UPDATE directives and control card options, the user directs the process of creating
a program library, correcting it, and copying the updated programs to a compile file for
subsequent use by assemblers and compilers.

The compile file is a primary output of an UPDATE run and contains only the active cards of
non-common decks requested by the user. A typical application is for a user to call UPDATE
to update a FORTRAN source language deck maintained on an UPDATE program library,
request that the modified decks be written in source language format onto the compile file, and

then, in the same job call the FORTRAN compiler to read source input from the compile file,

A second type of output is a new program library. This contains updated decks requested
by the user in program library format for use as an old program library in subsequent
UPDATE runs. This is a required form of output during an UPDATE creation run. It may
become an old program library on subsequent correction runs.

A third type of UPDATE output is in the form of an UPDATE source file. 'This file re-
sembles the decks originally used to create the program library. It contains active source
cards of the decks and common decks taken from the updated program library. The source
file provides a means of obtaining a back-up copy of the library, of purging all inactive
cards, and of resequencing the library.

60342500 E _ 1-1

A source deck can be assigned common status at the time it is first incorporated into a
program library file. Common decks can be called from within other decks as they are

being written on the compile file. On the compile file, UPDATE replaces the card calling a
common deck with a copy of the deck provided that the call occurs within a deck or within
a common deck called within a deck.

Source decks can be added to a program library during a creation UPDATE run or during a
correctiion run provided that all common source decks precede any source decks in which
they are called.

UPDATE permits two program libraries to be merged. In this mode, UPDATE alters any

deck on the merge file having a name that duplicates a name already on the primary program
library by assigning it a deck name that is unique.

1.1 FEATURES

Features of UPDATE include:

Creation of a program library from source decks.

Copying of old program libraries from sequential to random format and vice versa.

Merging of two program library files.

Updating of source decks by inserting, deleting, and restoring cards according to
sequence 1in the deck or according to correction set.

Ability to completely and permanently remove correction sets from the program
library.

® Generation of a compile file containing corrected output acceptable as input to other
processing programs, such as compilers and assemblers. Contents of the compile file
and subdivision of the compile file into logical records and files is c¢ontrolled through
UPDATE directives. This file can be formatted as 80~ or 90-column card images

or can be in compressed form.

® Processing of directives, new text, and new source decks from a file other than the
job INPUT file.

® Production of fresh source decks from the program library.

® Generation of a new, updated program library.

¢ Comprehensive list output noting any changes occurring during the run and status of
the program library.

® Ability to change the directive card master control character.

¢ Recognition of abbreviated forms of directives and capability of turning off the search
for the abbreviated forms to speed up processing.

. 'Ability to use full 64-character set, including the colon.

® Checksumming of program library.

1-2 | 60342500 C

1.2 EXECUTION

UPDATE executes as a CPU program on the CONTROL DATA® 6000 Series, or CYBER 70 series I
Computer System under control of the operating system. Certain features (section 1. 3} are only

available through installation assembly options.

Execution begins when the operating system interprets an UPDATE call card on the job INPUT f{ile
control record, loads the UPDATE program from the system library, and transfers control to it.

An UPDATE run is one of three primary types: creation, correction, or copy.

1.2.1 CREATION RUN

Before a user can manipulate and correct a pregram library, he must create one from a
source file {section 3.1). The creation run provides a means of creating a program library.

The following directives can be used prior to the first DECK or COMDECK directive in
either a creation run or a correction run:

ABBREYV NOLIST
DECLARE READ
LIMIT REWIND
LIST SKIP
NOABBREV TREXT

Any other directive changes the run from a creation run to a correction run. When UPDATE
does not encounter any other directives prior to encountering a DECK or COMDECK directive,
the run is a creation run and UPDATE ignores the old program library if one is present, The
only directives legally encou.atered during a creation run are DECK, COMDECK, ABBREV,
NOABBREYV, file manipulation directives and compile file directives (except for DO and

DONT).

A creation run consists of one or two phases. If a sequential program library is being
created, two phases are required: the read source decks phase and the write program

library phase., If a random program library is being created, the program library is
written during the first phase.

During the read source phase, UPDATE reads the input stream and creates a scratch file

(or a program library in the case of a random program library) and extracts the deck names
that are to be used for the generation of the ident directory and the deck list. HKach deck is
preceded by a DECK directive and each common deck is preceded by a COMDECK directive.
If a compile file is desired, it is created as the source decks are read from the input stream.
When UPDATE encounters an end-of-record mark in the input stream, it writes the ident
directory. and the deck list onto the new program library. When UPDATE is creating a
sequential program library (section 3.2), the scratch file is copied to the program library
(phase two)., On subsequent UPDATE runs, each card of each deck on this library can be
referred to by deck name and sequence number. The deck directive (DECK or COMDECK)

for each deck is always identified as the first card image (sequence number one),

60342500 H 1-3

When the library is created, UPDATE generates a deck named YANKS$$$ as the first deck
on the library. This deck is described further in section 3. 2.

A compile file generated during a creation run contains all decks that are on the new program
library. This file contains decks to be assembled or compiled.

1.2.2 CORRECTION RUN

UPDATE considers a run as a correction run when it encounters a directive other than one of
the following prior to encountering a DECK or COMDECK directive:

ABBREV NOABBREYV
DECLARE NOLIST
END READ
ENDTEXT REWIND
LINMAT SKIP

LIST TEXT

A correction run consists of a read input stream phase and a correction phase. During the
| first phase, UPDATE reads directives and text, adds new decks, and constructs a directory

of requested correction operations.

During the second phase, UPDATE performs the requested modifications on a deck-by-deck
basis.

Correction directives cause card images to be inserted or deleted from program library decks
according to card sequence number. A card can be identified by deck name and sequence
number or correction set identifier and sequence number, Each new card 1S assigned a
correction set identifier specified by the user. UPDATE sequences the new cards. All

cards having the same correction identifier comprise a correction set. UPDATE permits

a user to remove (yank) the effects of a correction set {or deck) and later restore the set

(or deck). This feature is convenient for testing new code. Requesis for yvanking are
maintained in the YANK$$$ deck. Before obeying a correction, UPDATE checks the
correction identifier against the YANK$$$ deck to see if the correction has been yanked.

This effect on the YANK$$$ deck can be selectively controlled through DO and DON'T

directives in program library decks.

UPDATE also allows a complete and irreversible purging of correction sets and allows the
name of a correction set to be changed.

If a compile file is desired, it is written during the correciion phase., Common decks can
be called conditionally or unconditionally according to compile file directives embedded in the
program library decks. Additional control of compile file format is afforded the user through

l directives that cause end-of-file or end-of-record marks to be written at the end of decks.
The compile file directives can be in original source decks or can be inserted into program
library decks during correction runs. These directives are not written on the compile file.

The compile file directives are interpreted when the compile file is written.

1-4 60342500 H

1.2.3 COPY RUN

When either the A or B modes are selected on the UPDATE control card (section 4. 1.2), the

only function of the UPDATE run is to perform the sequential-to-random or random-to-
sequential copy of the program library file.

1.3 INSTALLATION OPTIONS

The following UPDATE features are available or unavailable through assembly options (see
KRONOS or SCOPE Installation Handbook).

DECLKEY Enables DECLARE directive (section 2. 8, 7)

CHARG64 Supports full 64-character set (see compressed text description)

PMODKEY Enables PULLMOD card and G option (sections 2. 8.6 and 4. 1, 2}

AUDITKEY Allows audit functions (section 4.1, 2)

EDITKEY Allows merge and edit (section 4. 1. 2)

OLDPLKEY Enables UPDATE to read both old-style and new-style old program
libraries (section 3. 2)

SCOPES33 ~ Declares that interface is with SCOPE 3. 3 or later systems, if

SCOPE33 is defined. Otherwise, interface is with earlier versions.

EXTOVLP Enables detection of four types of overlap involving two or more
~cards in a correction set. (Appendix A)

DYNAMEFL Declares dynamic table expansion. When this option is assembled,
UPDATE automatically expands tables as required and dynamically
requests SCOPE to change the user field length to accommodate
the additional table area. At the end of the run, the field length
is reduced to that requested by the user.

An attempt to use features when the option has not been assembled causes UPDATE to issue
error messages. For example, when PMODKEY is not set, the PULLMOD card is not

recognized as a legal directive.

60342500 C 1-3

DIRECTIVES

Directives allow the user to create libraries and extensively control and direct the correction
and modification process. Creation directives identify text to be placed on program libraries
as named decks or common decks. Correction directives identify the source of text to be
inserted, set parameters of the updating process, and inform UPDATE of insertions,
deletions, and other corrections. File manipulation directives allow user control of the

input files. Compile file directives can be in source decks originally or can be inserted
during an UPDATE run. These directives are manipulated much like source cards during
the creation, updating, and correction phases but are recognized when the compile file is
written,

2.1 DIRECTIVE FORMAT

A directive has the following format:

DIRECTIVE COMMENTS

o Z]

N

Z

3 3

% T

S S

5 S

g =

&
master control The master control character is in column one. It is defined by
character UPDATE fto be an asterisk but may be changed through use of the

* parameter on the UPDATE control card (section 4.1, 2). Compile
file directives are inserted with the character used on the directive,
UPDATE recognizes them in a run only if the same master control
character as that used on the directive has been specified on the
program library header.

In this manual, all directives show asterisk as the conventional
rather than the required master control character.

directive name The directive name field starts in column two. It is terminated
by a comma or one or more blanks., A blank is conventional.
Most directives have a full name and an abbreviated name, e. g.,
the abbreviated name for ADDFILE is AF, When the NOABBREV
directive is in effect, UPDATI does not recognize the abbreviated
forms of the directive names.

separator The separator fo be used depends upon the directive, as some directives
require specific separators. See directive formats described in this
chapter. No embedded blanks are permitted within a parameter., UPDATE

searches all 80 columns when interpreting its directives. Therefore, any
number of blanks can be between the directive name and the first parameter.

60342500 H 2-1

p. Parameter. A directive may have a number of parameters or none.
Numeric parameter fields are decimal. At least one blank must foilow

the last parameter of the directive, before comment information begins.

If columns 73 through 80 contain information (such as
sequencing information from a previous UPDATE or
comments), this information is appended to seemingly
blank *WEQOR, *CWEOR, *DECLARE or ADDFILE
directives. Therefore, on these directives a null field
should be specified in the following manner: *WEOR, ,or
*CWEQOR, , or *DECLARE,, or *ADDFILE, .

2.2 CARD IDENTIFICATION

The corrections to the library, that is, the newly inserted cards, replaced cards, and de-
leted cards make up a correction set. The IDENT directive provides a unique name to be

assigned to each card inserted by this correction set and each card for which the status is
changed. Each change is also assigned a sequence number beginning with one for each

IDENT name.

Future corrections affecting these cards can reference these cards by their correction set
identifiers.

Card identifiers assigned by UPDATE are usually permanent and can be changed only through
use of the SEQUENCE directive (section 2. 4. 15) and the CHANGE directive (section 2.4. 7).

UPDATE recognizes a full form and two short forms of identifiers.
The full form of a card identifier 1is:

ident, segnum

ident 1-9 characlter name of a correction set or deck.

A period terminates the ident.

S eqgnuin Decimal ordinal (1 to 131071) of the card within the correction
set or deck. Any character other than 0-9 terminates the sequence
number.

The shortened forms of card identifiers can be used on BEFORE, INSERT, DELETE,
RESTORE, and COPY directives. Shortened forms are expanded as follows:

S eqnum Expands to idname. segqnum where idname is a correction set
identifier whether or not it is alsoa deck name.

., Segnum Expands to dname. seqnum where dname is a deck name.

In the short form, idname is assumed to be the last explicitly named ident given on a
BEFORE, INSERT, DELETE, RESTORE, or COPY directive whether or not it is a deck
name. The dname is assumed to be the last explicitly named ident given on a BEFORE,
INSERT, DELETE, RESTORE, or COPY directive that is known to be a deck name. Both
of these default idents are originally set to YANK$$$ so the first directive using a card

identifier must use the full form to reset the default.

All deck names are also idents. Thus, if EXAMPLE is the deck name last used, and
there is no subsequent explicit reference to a correction set identifier, then both . 281
and 281 expand to EXAMPLE .281, If there is an explicit reference to a correction

set identifier after the explicit reference to the deck name, then 281 would expand to
the correction set ident while .281 would expand to EXAMPLE .281

2= 2 60342500 H

Example:
A 18 a deck name and B is a correction set on an UPDATE OLDPL.

*ID C
*INSERT A, 2

< data card>
*INSERT B.1
< data card>

*D 2,3 expands to *DELETE B. 2, B. 3

kD 4,,5 expands to *DELETE B.4,A.5 l

*D .7, 5 expands to *DELETE A.7,B.5

>*D . 9,,10 expands to *DELETE A.,9,A.10
whereas:

*1D D

*INSERT B.1

< data card>

*INSERT A. 2

< data card>

D 2,3 expands to *DELETE A,2,A.3

*1) 4,.5 expands to *DELETE A.4,A.5

Do, T, expands to *DELETE A.7,A.5

*D . 9,.10 expands to ¥DELETE A.9, A.10

To specify an operation which affects all decks in a program library between and including two
specified decks, the following format can be used:

*directive deck,. deckn

1

This type of operation is allowed with PURDECK, SEQUENCE, and COMPILE. It should be noted
that order is obtained from the deck list order, and not from the physical order of the decks on the
library. ©Special care should be taken when a sequential new program library is written. Directives
which affect deck order (for example, ADDFILE or MOVE) do not necessarily affect deck list order.

2.3 DECK IDENTIFYING DIRECTIVES

Hach deck to be placed on a program library must be introduced into the system by a DECK
or COMDECK directive during a creation or correction run. When UPDATE encounters one
of these directives on the input file prior to any correction directive, the run is a creation
run. When UPDATE encounters one of these directives while ingerting corrections, it

terminates the insert and adds the decks tothe old program library following the card specified
by the INSER'T, DELETE, etc.

When a deck is added through the use of a DECK or COMDECK directive during a creation run, or an
ADDFILE directive during a correction run, termination of that deck occurs when UPDATE encounters
another DECK or COMDECK directive, or an end-of -record. Cards within that deck are identified
by the name of the deck or common deck to which they belong, and are numerically sequenced beginning
with 1 for the DECK or COMDECK card. When a deck is inserted as text in a correction run (that is,

through the use of an INSERT or DELETE directive), it is terminated by any condition which
normally terminates insertion. The contents of the deck, including the DECK or COMDECK card,

are identified by the correction set name, and are numerically sequenced as if they were normal insertion
text.

Usually, a DECK or COMDECK directive precedes each program or subprogram in a given
system. However, more than one subprogram may be included in a deck, as ig indicated in

the following example:

60342500 H _ 2-3

*DECHK FIRST

IDENT FIRST
END
IDENT SECOND
END

2*COMDECK FDATA
BL.OCK DATA
COMMON/J3/A{(10)
DATA A/3*0,, 7%1.0/
END

Normally, a user groups two programs together if modification of one requires reassembly of
both programs.,

UPDATE uses the DECK and COMDECK directives while writing the compile file to delimit
decks for UPDATE output. This division is meaningful during a correction run when the
selective UPDATE mode is employed. Under the selective update mode only decks in which
one or more cards have been changed, decks specified on COMPILE directives, and called
common decks are included on the compile file. In selecting the cards to be written, UPDATE
compares card activities in the current run with those on the old program library. If the
status for a card has changed, the deck is congidered to have been modified, Any deck that
calls a common deck that has changed is also considered to be changed unless the common

deck is of the nonpropagating type.

2.3.1 DECK-SOURCE DECK

FPormats:
[*DECK dname
*DK
dname 1-9 character name of deck being introduced; this name must
differ from any names already in the deck list. Legal characters
are:

A-Z 0-9 + - % [() & =

The DECK directive identifies the beginning of a new source deck. Cards up to the next
DECK or COMDECK directive comprise the deck.

2.3.2 COMDECK-COMMON DECK

Formats:

*COMDECK dname, NOPROP

*CD
dname 1-9 character name of deck being introduced; this name must
differ from any names already in the deck list, Legal characiers
are:
A-Z 0-9 + = % [/ ()} § =
NOPROP Inclusion of this parameter specifies that if this deck is meodified,

decks calling this common deck are not to be considered as
modified: that is, the effects of the changes are not propagated
during UPDATE mode (F option not specified, section 4. 1,2).

| 2 -4 60342500 H

T'he COMDECK directive introduces a common deck. These decks are written on a compile
file as a result of CALL statements encountered in regular decks while writing the compile

file,

For sequential libraries, a common deck should be placed prior to any of the decks calling

it. For a random library, it is possible to call a common deck from a deck that precedes the
common deck in the deck list, However, to facilitate copying of libraries from random to
sequential, the user is advised to place common decks prior to any decks calling them,

In 2a normal UPDATE run with a random or sequential old program library, a deck calling
a common deck being modified that precedes the common deck is not automatically written
on the compile {ile, |

2.4 CORRECTION DIRECTIVES

Correction directives control updating of the old program library. New text is assigned a
unique identifier. The corrected program library is written on the new program library;
the old program library is not actually changed. Correction directives are illegal on a
creation run.

The following directives are used for inserting and deleting text:

INSERT (I) Insert text after specified card

BEFORE (B) Insert text before specified card

DELETE (D) Deactivate card and optionally insert text in its place
RESTORE (R) Reactivate card and optionally insert text after it

COPY (C) Copy and insert text from specified library deck

These directives indicate to UPDATHE that:

1. New text is to be inserted into the library and sequenced according to the current
correction set identifier.

2. _That old text is to be deleted.

While inserting, UPDATE interprets file manipulation directives (e.g., READ c:h:?mges the
source of insertion cards but does not terminate insertion). COPY does na‘E terminate |
insertion and can be used to obtain insertion text from another deck on the library. Compile

file directives (section 2.7) are inserted as if they are text; the master control character
written on the program library is that specified on the directive.

Unless a TEXT directive has been encountered, UPDATE termiftlates: an insertion when it
encounters the next insertion directive or one of the following directives:

PURGE
SELPURGE
PURDECK
ADDFILE
IDENT

60342500 D

File manipulation directives are interpreted (and may change the source for insertion cards)
but they do not terminate insertion. They are not inserted into the deck. Insertion cards can
include compile file directives and directives destined for the YANKS$$3$ deck.

Correction directives that modify on a correction set or deck basis rather than on a card

basis are the following:

YANK
SELYANK
YANKDECK

PURGE
SELPURGE

PURDECK
CHANGE

SEQUENCE

(Y) Deactivate correction sets
(SY) Selectively deactivate correction sets

(YD) Deactivate all cards in decks

(P) FPermanently remove correction sets

(SP) Permanently remove cards belonging to correction sets
from specific decks

(PD) Permanently remove all cards in decks
(CH) Change correction set name

(S) Resequence decks and purge all inactive cards

2.4.1 IDENT-IDENTIFY NEW CORRECTION SET

A correction set usually begins with an IDENT but need not if no new program library is

being generated.

In this case, UPDA.TE uses the default .NO.ID. for new text cards.

A PURGE, SELPURGE, PURDECK, ADDFILE, IDENT, SEQUENCE, or end-of-recordT
terminates a correction set.

Formats:
(*IDENT idname, P1.P2, -+, P,
<1
idname 1-9 character identifier to be assigned to this correction set.

Legal characters are:
A-Z 0-9 + - % [() § =

This name causes a new entry in the directory. Each card inserted
by this correction set and each card for which the status is changed

receives a correction historybyte that indexes this idname.
Sequencing of new cards begins with one for this idname.,

Omitling idname causes a format error. If idname duplicates a
name previously used, UPDATE issues an error message.

Both errors are nonfatal as long as no new program library is
created in the same run. |

This idname remains in effect until UPDATE encounters another

IDENT directive or encounters PURGE, SELPURGE, PURDECK,
ADDFILE, or SEQUENCE directive.

1 End-of-section for SCOPE 2.

60342500 C

P; Any number or none of the following parameters.

B =num Bias of num is to be added to seguence numbers.
If more than one B parameter is specified, UPDATE
uses the last one encountered.

K=ident The specified ident must be already in the directory
| for this correction set to be incorporated. If ident
is unknown, UPDATE skips the correction set and

resumes processing with the next IDENT, PURGE,
SELPURGE, PURDECK, or ADDFILE directive.

If more than one K parameter is specified, all the
1dents must be known or the correction set is skipped.

U=ident The specified ident must not be known for this
correction set to be processed. 1If ident is known,
UPDATE skips the correction set and resumes
processing with the next IDENT, PURGE, SELPURGE,
PURDECK, or ADDFILE directive., 1If more than one
U parameter is specified, all the idents must be
unknown or the correction set is skipped.

NOTE

An ident that has been yanked is still
known: that is, an ident is known whether
it 1s active or inactive. An ident must
be purged to become unknown.

Example:

*[DENT ZAP,B=100, K=ACE, U=sNON, U=ARF

The bias of 100 {(decimal) is added to all ZAP correction set card sequence numbers. That
is, the first card in correction set ZAP has sequence number 101 not 1. UPDATE skips
the correction set if ACE is unknown or either NON or ARF is known. |

2.4.2 INSERT-INSERT CARDS AFTER

Formats:

*INSERT c
:::I

C Identifies card (section 2.2) after which new cards will be inserted.

Cards to be inserted immediately follow the INSERT or I card on the input file.

50342500 D - _ 9-7

2.4.3 BEFORE-INSERT CARDS BEFORE

Pormats:

*BEFORE c¢
*B

C Identifies card (section 2. 2) before which new cards will be inserted.

Cards to be inserted immediately follow the BEFORE or B card on the input file.

2.4.4 DELETE-DELETE AND INSERT CARDS

Formats:

[*DELETE c
S

*DELETE Ca: Cp

*
C Card identifier (section 2. 2) for single card to be deleted.
Ca, Ch Card identifiers (section 2. 2) of first and last cards in sequence

of cards to be deleted. c, must occur beiore cp on the library.
The range can include cards already deleted which are not aifected

by the DELETE,

With the DELETE or D directive, the user deactivates a card or block of cards and optionally
replaces it with insertion cards following the DELETE directive.

A deactivated card remains on the library and retains its sequencing. It can be referred
to in the same way as an active card. |

A deactivated card is not included in the compile decks or source decks.

2-8 _ 60342500 C

2.4.5 RESTORE-REACTIVATE CARDS

Formats:

*RESTORE ¢
‘R

-

*RESTORE c,, cp

o
v

C Card identifier of single card (section 2.2) to be restored.

Cq,. Ch Card identifiers of first and last cards in sequence of cards to be
restored., Any cards in the sequence that are already active
are not affected by the RESTORE., ¢, must occur beiore ¢, on the
library.
With the RESTORE directive a user reactivates a card or block of cards previously de-
activated through a delete and optionally inserts additional cards after the restored card
or block of cards. The cards to be inserted immediately follow the RESTORE card.

2.4.6 COPY.COPY TEXT

The COPY directive has two forms. The first form is used only during insertion and directs
UPDATE to copy one or more active cards from a deck on the old program library ?.nd .inser't
them as if they were text on the input stream. The second form cannot be used during inser-
tion., It provides a means of obtaining a copy of one or more active cards from a deck on the
old program library and writing them on a file specified by the user, {m. attempt to copy
decks being introduced during the same UPDATE produces an mfc:rmaﬁtwe message.

Copying into a new deck from an existing deck is legal. UPDATE copies the cards before
applying any corrections to them. Thus, the first form aﬁllmws a user to move a sequence

of cards by copying them and deleting the original cards in the same UPDATE run.

Format one:

*COPY dname, cC
“CY

ﬁCOPY dname, C,, Ch
*CY
dname Deck on cld program library that contains cards to be copied.

C Card identifier (section 2.2) of single card to be copied.

Card identifiers of first and last cards in sequence of cards to be

Cnq, Ch
2 copied.

60342500 E | 2=9

For this form of COPY, an INSERT, DELETE, BEFORE, or RESTORE must be in eiffect.

In the following example, this first form of COPY is valid because the INSERT has initiated
insertion. Cards BDECK. 4 through BDECK. 8 are copied and inserted atter the text cards.

The copied cards are sequenced as part of correction set X.

=IDENT X
*INSERT BLAP. 11

(text cards)
«COPY BDECK, BDECK. 4, BDECK., 8

The following text stream is not valid because insertion is not in effect and UPDATE does
not know where to write the card copies: |

*IDENT X
«*COPY BDECK, BDECK. 4, BDECK. 8

Format two:

*COPY dname, c,, ¢, file
*CY

dname Name of deck containing text to be copied. This deck must be on
the old program library.

C,, Ch Card identifiers (section 2. 2) of first and last cards in sequence
of cards to be copied.

file Name of file onto which cards are to be copied. The user 1is
responsible for the disposition of this file. The file is a coded
file that contains 80-column card images. It has one record for
each COPY directive. No sequencing information is appended.

Placement in the input stream of this form of COPY is not restricted to insertion. This
form of COPY is not a correction directive. This form is illegal on an alternate file being

read as a result of a READ directive.

2-10 60342500 F

2.4.7 CHANGE-CHANGE CORRECTION SET IDENTIFIER

Format:

il - —y— —. S ey — ey e ey S S — il - il el —————————-

:gEANGE idnamel, idnameas, idnameg, idname4, . « ., tdname =1 idnamen
idnam e; Name of correction set to be changed.
idnamei+1 New correction set name, 1-9 alphaumeric characters.
L.egal characters are:
A-Z 0-9 + - * [/ () & =

The CHANGE directive changes idname. in the directory to idname. . As a secondary

effect, changing the name of the correction set invalidates any YA I\]lﬁlr:rr SELYANK directives
in the YANK3 deck that refer to the set by its previous name. A CHANGE directive goes into
effect immediately. Thus, any subsequent references to the correction set must use the new
name,

The CHANGE directive does not terminate insertion and need not be part of a correction set.

CHANGE cannot be used to change deck names.

2.4.8 YANK-REMOVE EFFECTS OF CORRECTION SET

Format one:

YANK idnzme]:, i&nm;mez, . .+, 1dname
Y

P
nla

idnarnei Name of correction set previously applied to the program library.
| If UPDATE fails tofind idname,, it issues an error message.

Format two:

*YANK idnam e, .ldnam €L
::::Y

The correction set idname_ and all sets up to and including idname,, are yanked. If idnamegy
and idnamey, cannot be locdted or are in reverse order, UPDATE issues an error message.

UPDATE places the *YANK directive in the YANKS$$3 deck. During the modification phase, I
UPDATE checks each correction to see if it has been yvanked. All yanked corrections are
ignored. If the card was deactivated by the yvanked correction set, UPDATE reactivates it.

If the card was activated by the yanked correction set, UPDATE deactivates it. Thus,
UPDATE changes the correction history byte for every card that changed status.

60342500 H 2=-11

The YANK can be selectively nullified during the correction rhagse through the introduction
of DO and DONT directives in the decks,

For an example of YANK use, refer to section 4.2. 4.

A YANK must be part of a correction set.

A YANK directive does not terminate insertion.

2.4.9 YANKDECK-DEACTIVATE DECKS
The YANKDECK directive deactivates all t:ards within the decks specified.

Format:

*Y ANKDECK dnamei, dnames, .
Y D

. « , dNAa
, d me

dname; Name of deck to be deactivated. All cards in the deck are de-
activated regardless of the correction set to which they belong.
If UPDATE is unable to find dname;, 1t issues an error message.

The YANK$$$ deck cannot be yanked.

The YANKDECK directive must be part of a correction set.

YANKDECK does not terminate insertion.

For an example of YANKDECK, see section 4.2. 4,

2.4.10 SELYANK-SELECTIVELY REMOVE EFFECTS OF CORRECTION SET

The SELYANK directive resembles the YANK directive but the effect is limited to the deck
specified on the SELYANK directive.

Formats:
*SELYANK dnamey. idnam ey, dnamesy. idnamesg, . .. dnamey,. idname,
*SY
dnamei Name of deck from which correction set idname; 1s 1o be rempved.
idnamei Correction set to which cards to be removed belong.

60342500 C

If UPDATE is unable to find either dname; or idname,, it issues an error message.

Cards in the YANKS$$$ deck can be yanked with SELYANK.

The SELYANK directive must be part of a correction set. It does not terminate insertion.

For examples of use, see section 4. 2. 4.

2.4.11 PURGE-PURGE CORRECTION SETS

The PURGE directive causes the permanent (irreversible) removal of a correction set or
group of correction sets.

A PURGE directive can be any place in the directives input. The YANK$3$$ deck cannot be
purged.

Purging cannot be rescinded. See section 4.2. 4 for an example of use.
The PURGE directive has three basic formats:

Format one:

('ﬂfPURGE idnamel, idnamez, _H ., idnamen
=P

idname; Identifiers for correction sets to be purged.

Format two:

PURGE idnamea.
o

-
<™
nf

~

idnam e

Correction set idname, and all sets up to and including idnamey, on the d_irect?ry are purged.
If idname and idnamey, cannot be located or are 1n reverse order, UPDATE issues an error
message. | | |

Format three:

*PURGE idname, %
:{::P .

- - - 2-13
60342500 D - | - .

Correction set idname and -all correction sets that have been introduced after idname are
purged. This returns the library to an earlier level only if no PURGE, SELPURGE, PURDECK,

or SEQUENCE directive has been issued previously.

I[f UPDATE cannot locate a specified correction set, it issues an error message. Purged
idnames can be reused on subsequent correction sets provided they do not appear in the

YANK3 deck.

2.4.12 PURDECK-PURGE DECKS

A PURDECK directive causes the permanent {irreversible) removal of a deck or group of decks
from the program library. Every card in a deck is purged, regardless oi the ident it

belongs to. PURDECK does not purge idnames. Thus, a deck name purged as a result of
PURDECK can be reused as a dname. Iif can be used as a new idname only if it 1s not

already in the directory list. See section 4. 2.4 for example of use.

The deck name remains in the directory until removed through use of the E option on
the UPDATE control statement (section 4.12) on a subsequent UPDATE run.

The deckname can also be removed by resequencing the library, that is, by creating a
source file in one UPDATE run and using the source file as input on a second run,

A PURDECK directive can be any place in the directives input. The YANKS$$S deck
cannot be purged. Purging cannot be rescinded.

The PURDECK directive has two basic formats:

Format one:

*PURDECK dnam €1, dnamez, .« . , dname

. n
2PT)

dnamei Deck names for decks to be purged.

F'ormat two:

*PURDECK dname,. dname,
*PD

The deck named dname, and all decks up to and including dname, listed in the deck list are
purged. If dnamea and dnameb cannot be located or are in I"E'ﬁ-"’EI‘SE,GI‘dEI‘, UPDATE issues
an errcr message.

2-14 | 60342500 D

2.4.13 SELPURGE.SELECTIVELY PURGE CORRECTION SETS

The SELPURGE directive causes all cards in a specified deck that belong to the specified
correction set to be purged. It permanently removes the effects of correction set idname
in deck dname. The idname is not purged and therefore remains known to UPDATE., No
deck other than dname is altered in any way.

A SELPURGE directive can be any place in the directives input.

Formats:

ﬂﬂgELPURGE dname;.idnamey, dnames.idnames, ..., dnamey,. idnamey,
wSP

dname Name of deck from which correction set is to be removed.
idname Correction set to which cards to be removed belong,
If UPDATE is unable to find either dname or idname, 1t issues an error rmessage.

Cards in the YANK$$$ deck can be purged.

2.4.14 ADDFILE-ADD FILE OF NEW DECKS

ADDFILE directs UPDATE to read creation directives (DECK and COMDECK) and text data from
the named file and insert this information after the specified deck or card on the new program library.
The first card on the file must be a DECK or COMDECK directive. UPDATE reads from the file
antil it encounters a 7/8/9 card and then returns to the primary input file. If the file referred to by
the ADDFILE is the primary input file, UPDATE adds cards until it encounters a 7/8/9 or the next
directive that is not a compile file directive or file manipulation directive. UPDATE does not re-
position the file specified on the ADDFILE directive. Any repositioning must be requested through

SKIP or REWIND directives. ADDFILE is illegal on an alternate input file. A READ directive is
illegal during processing of the added file with one exception: a READ directive may be placed within

an ADDFILE from the primary input file.

Formats:

*ADDFILE {ile, c
“AR

*ADDFILE file, dname
“AF

60342500 H 2-15

file Name of file from which information is to be read. This text cannot
contain correction directives. If file is omitted, it is assumed to be the
UPDATE input file (INPUT or its equivalent as specified by the 1
parameter). The separator is still required (for example *ADDFILE, ,
deckname).

C Identifier for card (section 2.2) after which decks are to be placed on
program library.

dname Name of deck after which new decks are to be placed on program library.

If the dname parameter is *, it refers to the ident that is known to be a
deck name most recently mentioned on a *BEFORE, *COPY, *DELETE,
*INSERT, or *RESTORE directive (refer to section 2.2). If no such
directive precedes the ADDFILE, YANKS$3$$ is used.

If only one parameter is present, it is assumed to be the file name. Omission of the second
parameter causes UPDATE to add the decks at the end of the library. |

For example of use, see section 4.2, 0.

2.4.15 SEQUENCE- RESEQUENCE DECKS

The SEQUENCE directive directs UPDATE to resequence and purge inactive cards from the
specified decks on the new program library.

Formats:

*SEQUENCE dnamey, dnameg, ..., dnamey

RS

*SEQUENCE dname,. dnamey,

wS

dname; A1l active cards in dname. are resequenced under identifier

dname;. All previous correction history bytes and all inactive
cards are purged. In the first form, each of the decks is re-
sequenced. In the second form, each of the decks in the deck list
starting with dname,_ and ending with dname;, 1s resequenced.

UPDATE normally allows deck and correction sets having the same name to co-exist on
the old program library. If a deck having the same name as a correction set is re-

sequenced and cards for the correction set are in other decks, UPDATE purges any

modifications made by that correction set outside the resequenced deck to prevent dupli-
cate identifiers.

Only those decks explicitly mentioned on the SEQUENCE directive are resequenced. Thus,
if a correction set (e.g., SET1) has been applied that affects more than one deck on a
program library (e.g., DECKI1 and DECK?2), and only DECKI1 has been subsequently re-

sequenced through SEQUENCE, the SEQUENCE directive does not affect SET1 cards within
DECRK?Z.

2-16 603<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>