DA 4000

CYBER HARDWARE FOR ANALYSTS

Section 2 of 2

CONTROL DATA
EDUCATION COMPANY

@S a service of
CONTROL DATA CORPORATION

DETAILED PAK DIAGRAM (CPU 3,22 ’

SHIFT SEQUENCE

The shift sequence controls the operations necessary to perform the following
instructions:

20ijk Left Shift (Xi) by jk

21ijk Right Shift (Xi) by jk

22ijk Left Shift (Xk) Nominally (Bj) Places to Xi
23ijk Right Shift (Xk) Nominally (Bj) Places to Xi
24ijk Normalize (Xk) to Xi and Bj

25ijk Round Normalize (Xk) to Xi and Bj

26i jk Unpack (Xk) to Xi and Bj

27ijk Pack (Xk) and (Bj) to Xi

43ijk Form Mask of jk Bits to Xi

SHIFT 20, 21

The 20 instruction reads the selected Xi operand and shifts the 60-bit word left
circularly by jk bit positions. The bits which are shifted off the upper end are inserted
in the lowest order bit positions.

The 21 instruction reads the selected Xi operand and shifts the 60-bit word right with
sign extension by jk bit positions.

NOMINAL SHIFT 22, 23

The 22 instruction reads the selected Xk operand and shifts the 60-bit word either left
or right as specified by (Bj), If (Bj) is positive, the data is shifted left circularly by the
number of bit positions designated by (Bj). If (Bj) is negative, the data is shifted right
with sign extension by the ones complement of the number of bit positions designated by
(B)).

The 23 instruction operates in a manner similar to a 22 instruction except that if (Bj) Is
positive right shifts are performed, and if (Bj) is negative left shilts are performed.

\then shifting right, if the shift count in F s> 1"8' gating of the shift network to 15
during SH264 is blocked. A result of zeros is sent to the Xi register.

19981800 A

NORMALIZE 24, 25

The normalize instruction reads the selected Xk operand and performs a normalize
operation on this word, delivering the normalized result back to the Xi register aad the
normalize count to the Bj register.

Normalization involves left shifting the coefficient until bit 47 is different from the
coelficient sign bit. The exponent is decreased by the number of bit positions shifted.
The normalize count used to shift the coefficient is developed by the normalize network.
The normalize count is sent to the SK register during SH164 to enable the desired shift;
it is also sent to the F register for subsequent writing into Bj during common time.

At the beginning of the normalize instruction, the Xj exponent is checked for indefinite
or infinite operands. An indefinite or infinite operand causes the Xk operand to be re-
turned to Xj unchanged, and gates zeros to Bj.

The normalize instruction also checks for exponent underflow alter the normalize count
is subtracted. If underflow is detected, the C register is cleared to zeros before
initiating common time. The resulting operand sent to the Xi register will contain a
zero exponent and coellicient,

The 25 instruction operates in a manner similar to the 24 instruction, except that bit 107
is set in the C register before sending C to the shift network, This round bit has the
effect of increasing the magnitude of the coelficient by one hall the value of the least
significant bit, after the shift is performed.

In addition to checking for underflow, the 24 instruction checks for a coefficient equal to
zero. The cnd case result, when coelficient equal to zero Is detected, is the same as
underflow, (Sec table 5-2-16.)

5-2-46.1

8 |) | 5 R 2 4 | 3 | 2 | 1
T 0 T100 50 T200 T250
- T — T T I e T ___
] 1] 1] . 1 1]
1)] ' ' 1 []
]] 1]] ' (]
1)]]] (]]
] 1] 1 1] i '
) L} 1]) 1]
[] [} [N ' s
[T e ' N ' [(] 1
1 1) !]]]
' juso-n ' ' ' .
' § 3K e § @ } 9 B 8K) 0 1
1 ' 1 L) 1]
] t 1] 1] 1 1]
1 t '] 1 []
1] 1) 1] 1 ']
] 1)] 1]] 1]
] 1] 1 1 1
N ¢ X1 3 c | ud SH T 13 » C P8 YN, o X | [
' 1 1 (] 1]]
' ' cour———/ ' l ' ' '
] t
: , SETLEFT SHFT|FF N , '
]] 20 oMy} [} ' [
] 1 1]]]
1) 1]]]])
] 1 1] 1) [
' 1] 1}] 1]]
]]] 1)]]
]] 1 [1) 1
] 1]) 1 1
1)] 1]]
] t 1 []]
1 1] 1 1 1
'))]]]
L})] 1) [} . 1]
]] ' 1 1 '
1 1)
TERT WA | COPPAND OR FUNCTICH § DPD WO TERM KA | COMUARD OR FumCTiOn | prp o " TERN KN | Covan or fuRcTion | 0D o
SHISO n 268 " [15
SHSUI SELECT X1 RGIR n S15085 n %&l sg'ut{ :::::’:rm ;
fugx G119 10 2:;23 StugTTor 15ag- 107 ;; B :}.
sues i 2 $15057 2 Hewoo 15
SLIS0"SLIN § $19———19 9 15267 tissv TR Issh n WSL SELECT MIGHER 10
HSHIGA n "
. SKsh'sksz | 195K 9 SHENEC CUALLE € PGIR n
. s s
B SIS185 a ST CHARLE COTOR TIME Rl 22
sI5285 Yoxg— Vuaa0r | 22
s | ° e |3
$ISIS7 (155u-1552° 1831 n .
sI5267 2
SHIGY o)
BLise o |5 2 i
SHitY
SHENBC ENABLE € RGIR 2 "
SHiGe Fﬂ
[scidrrsmeree | 22
o g av
neTLCTION FLOW P L i
SEQUENCEY “!‘0.3 2 323 I:;-? -’" s
ST g | P | B 4 4 ' 3 2 1

TABLE 5-2-16. OVERFLOW AND UNDERFLOW CONDITIONS

OVERFLOW
INSTRUCTIONS OVERFLOW CONDITION RESULT
Normalize (24, 25) None ——-

UNDERFLOW
INSTRUCTIONS UNDERFLOW CONDITION | RESULT

Normalize (24 only) Initial coefficient = L0 X; = 0000 0....04. (Bj) = 60,

Normalize (24, 25) Final Exponent < -20004)l{i = 0000 O.... 0g. (Bj) are correct

{See Note below.)

Note: Underflow of Exponent During Normalization: The final (Bj) are the same as if
underflow had not occurred. In particular, if the initial coefficient is zero, (Bj)
are equal to 608'

Error Exit Conditions

If Xk contains an infinite quantity (3777 x... -Xg or 4000 x... .xa) or an indefinite quantity
(777 x. .. - Xg or 6000 x... .xa). an optional exit mode selection is provided. The CPU
response is dependent on whether the approptiate exit mode selection was made and the
monitor flag /MEJ/CEJ condition.

An exit condition sensed (ECONDS) sets the ERROR EXIT FF (3.17) at the same time as
the next RNI sequence is initiated. Error exit clears the U3 instruction register, thus
forcing a return jump error exit sequence.

19981800 A

UNPACK, PACK 26, 27

The 26 instruction reads the selected Xk operand, unpacks this word from the floating
point format, and delivers the coefficient to the Xi regls!er and the exponent to the Bj
register.

SIGN BIASED EXPONENT COEFFICIENT
PACKED QUANTITY I'l 1 l “ i | &S
% % « & °
UNBIASED
EXPONENT
v W00 7777 1=
" 10 8] “w °

The 60-bit word delivered to the Xi register during -¢ommon time (COMTO00) consists
of the lowest 48 bits unaltered from Xk, plus 12 bits equal to the sign bit.

The 18-bit quantity delivered to the Bj register during ¢ommon time (COMTO00) consists
of the Xk exponent unbiased and sign extended. Unbiasing the exponent and sign
extension is performed through I3 during SH114.

The 27 instruction performs the reciprocal process of the 26 instruction. The unpacked
quantities in Xk and Bj are packed in floating point format and delivered to the Xi register.

MASK 43

The 43 instruction generates a masking word using the 6-bit jk quantity to designate the
width of the masking field. The quantity is sent to the SK register. The C register is
cleared to zero and sent to the shift network. During the shift period, C is right shifted
by the jk quantity in SK. One-bits are forced to the shift network sign extension scheme,
thus replacing each shifted zero bit with a one-bit. The completed masking word sent to
the Xi register consists of one-bits in the highest order jk bit positions, and zero bits in
the remainder of the word.

5-2-46.2

7 [5 | 3 2
10 150 7100 0 7200 72%0
[ToNT64 | SHIGA I I $H264 I COMTO0 }
t i)] 1)]
) ¥] 1]] 4
1] |] . ' 1]
1] t 1 ')
t 1 t i H L)
1]) 1 1) L)
L] ' 1]] '
1] g2} ! []] N
' ! {" g 8) ' ' ! '
! (2') ' ' ‘ ' N
' BSRI L SEY LEFY SHFT FF 1 ' v
1]] 1 1]] 1
[[} 1))]
] 1] L] t
'es 1?2 F 19—t b O i ' '
' ' \ ' [[} '
1 ' m 1 1] '] L
! ' [RS . E-zfnf! } . o's ' :
' ' i ' i ' '
b i 1]]] 1
XK 5 cpm T ¥ (1] X3 e x1 8
1 1) '] 1] 1]
' [[' t 1] t
' comp. ' ' 1 - ! '
t ' []] 1 1]
']] 1 1] 1)
' ' 1 []]
')]] ¢ 1]
1 1 i] ' 1)
) 1 1] 1] . 1
' 1) (] [} ' +
'] 1] 1 1
1]) t] L]
' '] 1] ' '
1 1]]] 1]
) 1 1]) 1]]
1) L 1]]]
]
TERM NN | ConeaRD OR FuNCTION | DPD m“ TERM NAE | CORMAND OR FUNCTION § DD Mo Rt et | comand oR ruacrion | orp v-] TERM paer | COTWYD OR FuCTION | orp mo
(A150 frium) 2 Jsmen sizun freaton] (200 1)
Stixx SLLECY XK RGIR 2 SHO-1si9p Fgrg—=I1t n 515085 n st SELECY X1 RGIR 1
[CE] usHIc 15285 Mg 100” g1 | 2 CoFI u::g: VRITE STROPL 2
Y] SELECT BJ RGIR 2 . 15004 n x
Py :‘s' sks2 ¥ ?10"17]‘;‘ 2; sy sz | 2l 5
® - 15267
ki p— 105 UVt Juirr o s mer| 2 siztn i SEULCT HicaR 1
neeey 64
1517 3 _;" B 10 s';zxmc LIABLE € RCIR 2
ENABF EMABLE F 2T B)
T ARLE COTO T,
= (€503 [F B17-1) SHEERE :mm oo e, | 2
N BSRI ST BSRI)
NCOG64
15185 ;
15285 65— 15pg.
15164 R Vg 7 .
15260 I
1536 (15500 1552+ 1551 7
15436 H
CHiGh
15085 conp 15]
et 8-107 H
Heeso
EHABLC ENABLE € RGTR [} .
-
INSTRUCTION FLOW
SEQUENCE 1 SHIFT
INSTRUCTION 22, 23
TS 7 ‘ r ' " l 3 2

s 5 A4 4 | 3 2 . | 1
Yo 750 1100 50 1200 125 1300
— COM164 I SHIG I SHI64 T AT I SH2Ge I | coMTI4 —
1] ' L)] . 1]
' ' '
' |20 i ' ' ' '
[' ' &] ™ .] '
[GMI‘&IQI.) 1 COMP (96 - D7), [¢ [] XKAECN SHEC]]
— o owxsa) N ' ' ' e N '
..m\'m” °18 ~c-\ 18 —— cpe v oSW v 111 ¥ J A 1 .
' y SRl b o i T 1 COEF_ SiCH [] '
; | otow oo . r ot gt —— s il /o '
') 1] 1} 1 L
t [248 295 [' ' ' '
COMP
! ' woor ! L " 13 12 Fim o
1 t)]] t 1
' ' ' / ' 1 ' '
' ' [' ' []
' ' NN ONCy *19 S$K ——r] [} '
1] 1] 1] ' [
|] 1]) 1)
] 1 ooMp—]]]] []
. o UF xSRI A >t b ' FO- 9, COMP BIAS FIO ' ' '
] 1)]] T 1) L}
' ' ' \ t ' ' x 3%
' ') [}——au s F ! + [T0_CASE” DECAT YiMING L CouTId]
' ' ' 1\ \UNoERFLOW ' ' ' [
' $-eixen-se) ~»13—s12—sF! 1 : Fio ¢ Fi7 ' ' ' '
[l . ' [} [1 ']
' UNBIAS - SIGN EXT N ¢ H ' H ') N
] L]] ‘ 1 1 L 1]
1 1 L)] 1 1] . .
! ' ' ' [1 UNDERFLOW & 24 - COEFQO ' '
! COBaIE: 6 DORALED MCINOKK ' ' T T ' o
' ' € > OWALLLL COUn ' ' ' ' ' '
) ' 1 come. ' 1 1)]
'] [} T\ [} 0 " ']
' ' ! XK 5 cim ! ' o's cm >Hn ox1 Y
' ' (SHIFT_END CASE - SMEC) ' A ' ' ! N
'] T 1 1 1] 1]
] .] i] 1, > 1 8.
I U X311 77 G-, ,} ' ' |0s————s 13— 12 rm n I -
' . 6000) ' EE RGTR ' 1 ' ! ' '
' LIEXE 2 17773 60000, o ' ' [}] ' 1 '
1 ' ‘ ' 1 1 ' .
1]) L] t t L
1 '] ' ' ' ' '
e v Jeomeand ok ruciion | oeo mo] tewe g | comanp or Fumction foep wo] 1ER e | comeanp oR FuncTion | oep o TeR NAE | COMMAND OF FUNCTION | oD wO 06 T | romanp on Fuscrion | opp mof| TERe NAYE | CORMAND OR FURCTION | prd o
T2 15 s Josnonoorr o s || smen 68 [-macan) (oo 15 Heoxoe 15
<LK SELLCT XK FUIR 2 1551 (15 0-47, %-107) sLig-0- 515035 n ;lm gﬁ:; ; ;} :ﬂ: g j m gtm :} g;: ;
. - 19-1 ——->i9 n si5285 ~05~ 1543, 2 f .
e , O | EETY {esn1] A | Stugzes {505 @t |evwe v || e oo 2
5185 €0 P15 u3-%5 s IS0 o 15 9307 2 e 7] Isse- 158715510 G ANB SIRGEE XL RGIR e SIRDPE ¥, B PO
e e 15 %- 107 LI | P o 2 Srolesks2 | PROSET sk CniR k] g6 Fo %59 n0 ¢ s licorm N "
et 15 sisos? fsur 15 2307 2 || sue o F10, KSR “ 0 5
1535 ; sis1s? (4558° 1552° 15S1) n l SITNEF ENASLE F RGIR 2 w,uns l(:rmt'm ,: cc‘z':; AULCT o 1o s strer vl 10
125 Yorrg—" 15ug. ! Y] .
1ol o e TS g :; s gl'lgl SHIFT n sty Wug:ey * Beseor | 8 SLURC|LmE ¢ Rone u
150 0554 1552 155D 7 "i:—;w’ ‘g_gb% niu SIZBA [ssicer) T2ean LrRLL COBioR Ting, | 22
1823¢ 7 (1534- 1552° 8 U ant
e 4 et SIS185 2 SIREXE ALLE COTOn TE, | 2
1y 74425 n Sisss . | 7]
i — 5 A |t LOPALIZE ir Stiags 055 1Sus-107 2 sin ooz
X5kl ar x5t ol | IR LA, . ssi |asswessemh | 2 suis12 13- 12)
it 15 e ’ 15267 2 (U] TOAGLE £ RGIR 13
st ¥43-58 (LXPY 15 < i sutn gl
“xI3 A5 SILY X 1 s & 13 2 S"mu w[;r?;’ﬁ:l 21 %‘sm nvltm ctlr.u n
Y : & P
I S 2 e 2025+ SHEC st | wite]
Haoh is SHLUBC ELHABLE C RGIR 7 CA264R LKAPLE €D Cust DAY 22
1312 13— In ste HINFL » NN} % RN T °
THALY LiBLL £ PGIR I WO
cots - {uz'z.um_'v-\
i o1 wrey x 2@ |
UF £XP=377744300) LTI
(318} KIS n *esitte
iPe . Couk wat o~ "o .
oo U [4Pe 177746000) [ty GiEm) TSTRUCTION FLOW 3‘;” I I 19981800 l N
ele frone ¢ mm 7 SEQUENCE » SHuF ¥ =S
INSTRUCTION 1 24,28 FIGURE 8-2°17 [5'2ae s
T g ‘ 7 | P ') ry 4] 3 2 1

0 . 150 Ti00 o 7200 1250
[TOMTE4 T L] | SHFT_DELAY_Si2id I §HZ6e I COMTO0, }
f ' 1 [[] '
') 1) 1] .) L)
' 1 '] ' '
' ' ' ' [[
1) 1] t]
' ' ' ' ! :
' o ' ' ! ! .
' R ' ' s ' !
] i t]])
1])] t 1}
Ll 1 1)) [} [}
[2! [] . [} ' ' [}
' 1239 xRt | 0'S NON COEF ' ' N '
i] 1 1))
1 1] i))]
[}]]] 1]
: & 13 [‘- 15 c ‘h : : W xt :.3
[- '] [] 1]
, COMP. ' oM 96 - 107 ' ' 1 '
' ' {F xSRl) ' 1 ' '
1])]] 1]
1 1] 1] 1] ‘ [}
' 1) 1]]
' ' [' ' '
]] ' (] ' 1
' XK ——8(48-50) -5 13 —» 12 oF Im L 1 8
' ' UNBIAS - SIGN EXT ' ') h
' (]]] ¥ '
]]]] 1 [}
' ' '] ' '
1] ' 1 1] 1)]
1 1 ']]]
1]] 1 ' .
1 L]] 1) 1)
) t)) 1)]
)
TERM NN | cownp on Funcrion | prp w0 | TERN NavE | COMYAND OR FUNCTION | 0PD MO TeRn e | coman on runcrion § oep o] TERA nae | CONWD OR TuncTion | oep o
€0 FFER2 2 1557 fors rom corf [} SH264 (017 5
o SCLECH XX T H ‘51 U5 0.47, 6107 SHHEXT taeee comon tire, | » SELXE SELLCT X1 RGIR H
oo e rsot} (L} SLLES SLLECT B4 FOIR ?
mas , e ol 2 O £ B e ?
oens SIRCEE X, B RGIR°S ?
15285 Yooy 5 | 7
15160 7 SH10C wl:g SELECT RIGIER :3
15264 7
15236 (1558°1552° 155D 7 SHSLK SCLECT x Rorh n
i g 7 |{sme
SHEXTS 748-58 (EXP) a
L Coney SEXPI3 UNCIAS - S1GH EXT 1]
15085 O 15y8.307 [} —— 13017
15067 s -
oo 1£X59+1 “suisi2 13 ——ei2 n
XSkt SEY XSRY u ENALF ENACLE F RGTR 13
neeso SH1Le xe
tHAaLe ERABLE € RGIR] SHISC .;ulp ',‘§ n
: Sit 14
515185 Cy36 15u3-95 2
(554 1552- 151
=
-
COLE wam R vy
. INSTRUCTION FLOW 3570 0 19981800 A
SEQUENCE * SHIFY C
INSTRUCTION 26 FonE 5-2-18 |77l ¢
EET— l 7 i P ' 6 ‘ . 4 ' 3 2 1

8 | 7 | s | 5 A 4 4 | 3 | 2 | 1
0 150 00 %o 1200 1250
[TV &4 I S L SHFT_DELAY_SH214 1 91264 1 COMTOQ]
]]]] . 1]
H])) 1] 1]
] 1 1 1) ' 1
'] ¥ q] [
1 1) ' ¢ t 1
A ' 1]] »F ' 1
1))] + 1
' ' 1 1]) '
i t 1]]]
] " 1 ' ' ' '
' e ewem ! ' ' ' '
' ' ' ' ' '
[] 1 ' ¢ 1] t.
']] g [} '
' » 15 >c 4 4 .15 chm A x1 .
1]]]]] L]
' come !] ' J | '
] 1] come] 1) 1
' B9 13 —— 12 ¥ pu — 100 us rio v /;--- ' '
t 1 - 1 1 ' 1
1 cowe ' { COEF sioN t]
' 1 UF xsrY) .] [' '
' ' i 1 1]
1 1 ' ' 1] 1)
t ' ' ' t 1]
' 1 ' ' [t W
1 1 |l] 1]
' 1 ' ' ['
1) ' 1 1]
[} 1 '] 1]
] ' 1 1 1]
1] ' ' 1 1 '
1 1 X [[']
1 ' 1] 1 ' 1
Ll 1] ' 1 1]
] 1] 1)])
1 1
TeRs WA | comann or Foncrion | opp x| TERW wame | CONPARD OR FUNCTION | 0PD MO Tewn e | corwnp OR Funcrion | oro ko] | TeRy wasr | coMND OR FunCTION | Deo w0
s frreor) 2 J sutino n stoeh conxoo 15
StUK SLLECT XE RGIR 2 ST STLECT BY RGIR ? Ssis | Gggs s | 2 suxt SULICE XI ROTR 2
oot S, (IS5 1552-T58D) o ;tﬁ?‘ VRUE SIPOTE ?
15185 4 g—e18 n S Ty "ng-59 s
15285 Y55 15ua- 7 000 1
Ha 059 1Sus-107 A (LN FEXIS QURL e STFCT PiGTR 10
i ! s:zm 13-——12 n 26k
1523 (155N 1552+ 1551 7 ol fraLe £ RGTR n sis2er | 1Sqrsg=iSeeger | 2
15436 v mks:;l » (1sea- 1557 (55D
coe SIg6h
15085 ConP 15 48-107 [SHENTC EUARLE € RGTR n
15¢67 1] SI26L
() {ar xs9-1} SLXT tBLE Coron T, | 22
¥ SEV XSRI n I
850
EWABLE TRABLE € RGIR]
T = =
INSTRUCTION FLOW 38570 l 0 l 19981800 l A
SCOENCE + ST —
INSTRUCTION s 27 nouRE 5-2-19 |57 as 7
S e ‘ 7 ' 3 ‘ 5 Fy 4 | 3 2 1

19931800 A

DETAILED PAK DIAGRAM (CPU 3.23)
BOOLEAN SEQUENCE

The Boolean sequence controls the operations necessary to perform the following

instructions:
Transmit
10i§x Transmit (Xj) to Xi
14ixk Transmit the Complement of Xk to Xi
Logical
11ijk Logical Product of (Xj) and (Xk) to Xi
12ijk Logical Sum of (Xj) and (Xk) to Xi
13ijk Logical Difference of (Xj) and (Xk) to Xi
15ijk Logical Product of (Xj) and Complement (Xk) to Xi
16ijk Logical Sum of (Xj) and Complement (Xk) to Xi
-17ijk Logical Dilference of (Xj) and Complement (Xk) to Xi

The 10 instruction transfers a 60-bit word from register Xj to register Xi.

The 14 instruction extracts the 60-bit word from operand register Xk, complements it,
and transmits the complemented quantity to operand register Xi.

The 11-13 instructions perform the logical product (AND function), logical sum
{inclusive OR function), and logical difference (exclusive OR function) of 60-bit words
from operand registers Xj and Xk, and place the result in oferand register Xi.

The 15-17 instructions perform the logical product (AND function), logical sum (inclusive
OR function), and logical difference (exclusive OR function) of the 60-bit quantity from
operand register Xj and the complement of the 60-bit word from operand register Xk,
and place the result in operand register Xi.

The arithmetic operations for instructions 11-17 are performed by the D adder. The
Boolean sequence controls the logical operation codes sent to the D adder which, in
turn, directs the D adder ALU to perform the required logical operation.

5-2-48.1

T0 150 100 0 1200 250
{ coMTE4 I SHIGA I SHIFT _DELAY SH214 1 SH264 I COMTO0 1
FORCE I'S TO
smctm\
o's 1L +C SN 13 4 S e KU

, S—"} 9 X
w3 0-8)

- = > e e e . = . - - -
- e e e " o m e] - e = -
----_-----------------‘-—--‘.-¢..---

-..---------------------'-__-.--.._---—

TERM NAME | COMMAND OR TUMCTION | OPD MO J TERW NAME | COMPAND OR FUNCTION | ppp no TERM NAYE | COAND OR FuMCTion | oD wo] TERM WAYE | CORMAND OR TUNCTION | v wo

__..-———-—-—---‘—--*———0-]—~—-—‘----‘

K Upg =119 9 Hlwrus FORCE 1°S 10 Sicn 10 |} snese e 5
- s » A S15085 a2 || s om0
sti e SI5285 | Sy 0™ 1Sug.] e Jeeanr v s
susbstidt| H9-—- 19 L] S1500h 1" gerer | 22 X 1ok
e 7 $15057 (i5su- 557+ 1551 corxoe 5
SKS1-S152 19——esK 9 sis267 WL STLECT MIGHER 10
1558 i5%2 [J—r"] SHaGe :
1581 SHCNBC | CHABLE € RTR 2
. SHIGH SI68
SHCNBC | CHABLE € RGIR 7 oNEXE aBLE comon TiE, | 22
S L1

INSTRUCTION FLOW
SEQUENCE + SHIFT
INSTAUCTION ¢+ 43

L O e e B S B

LR

otm v
rvean

8 | . 7 (] | 5 ¥ 4 | 3 2 1
T0 50 T00 50
{ TTuNTER I BOO 1 TONTIS]
] |] 1
' 1] 1) 1]
' | ' ']
' ' ' '
[}] 1] L}
'] ']
]] 1 1]
L] o 1]
[}] [} '
153 s oCc e 2 2HA x1
¥ P h] '
' cowe” 148 - 107]] '
1) 1 1 1)
1]] 1)]
L] 1)])
' 1 1]
] i] 1
. A T 7] L]
[} ' L 1
]]) 1)
1] 1 1]]
1) ' ! 1)
] 1 1)]
]]]]
: :ﬁ »>18 »C |- ———— s W8 X1 ‘l-
[} ' ' '
[1] 1
] 1 t ’
1 ' 1]
1) 1])
1 1 1 1
1 1) 1 '
1] 1] |]
' 1 [] .
t 1 1] '
[] 1)
TeRe WAME | comanp oR runciicw | opp wo || YERM wae | COMMAND OR TUNCTION §opp w0 || TERM wAME | CONCAND OR FURCTION | pFD MO
[£37) 15 ||uctoc 23 || corrco 1€
SELRS SELECY XJ PGTR B K 23 St SLLECT X1 AGIP 2
e 15 SELXX SELECT XK RGTR s O EHABLE VRITE STROCE ?
15085 o 15 885 [1 3 3 * KTk
15067 o 15 96-107 8 15185 P 8 SELLCT NIGHER 10
15285 Xgoty = 15g.. 7
sx:r;” l; :sm 05y 8-107 ;
_ 5260
A e o | 15236 (rssue1552- 1551y ?
. 15264 7 15656 U
15236 (15541552 155D 7 |oeat-1ng i)]
15436 7 BLISC BLOCK CONP 1S
50 15 ||orec-T11e 23
EABLE EURBLE C RGTR [] LROENC gﬂ 2
£hARC [UABLE € RGTR] .
pooL-11M4 {10+ 18] 2
eorxit FUAPLE Rl Comeest 3
e
-
il oA D Owe
INSTRUCTION FLOW 19961800
SEOUENCE + BOGLEAN s -
INSTRUCTION + 10, 14 FWC 5-2-2 |37 as
T g] 7 8 | 5 £ 4 | 3 2 1

) 1350 . ™00 50 T200 250
C _OMTeA I ORI I _BoaIee | BOALZI4 I CONTIA }
') ' 1) .] []
1] 1] 1]] 1
' (] . 1 ']]
) 1] 1 1] 1
) |}] 1) '
1 t 1) -t 1 1]
t 1]) 1] 1)
1]]] []]
' ' ' ' ' '
[]] 1)) 1]]
]] 1] ' 1
] [} 1 1] 1 1
f os—o14 | ' ' ! !
v ° ° N\ ' ' \ '
' ! b———nu———-m —sphu ' ' !
1] 1] / 1 \ 1]]
:S(J 15 c'- ' /D——»m—-—un———-nr— > 185 Aern———-—om_—-———-—on}- —
' 5% - oc 1 1 '
1 coMP (es-107M) e » < ' ' '
' ' ' ' ' '
1 1 COMP (48 - 10T) ']]]
| LOCAL FUNCTION CODE '
! s 11 04y s CoD ! !
! ! R ! ! :
. .) 13 ngecoD . . .
1] 1] 1 [}
[]] [] t 1
' ' 1 ' ' '
' ' ' ' ' '
1) '] 1] 1
1)]]] 1)]
1)]]) 1 t
[1] 1] t 1]]
] 1) 1]) ']
] 1) 1) 1 ' '
1 ' 1 ' ' l
)] 4
TERY W | comap R Funciion | Dro xo || TERM mwE | COMAND OR FURCTION | 0PD Mo | Tem W | cormenp on Funcrion | oo wo | TERw mwe | counn or Funcrion forp mo || TERM A | corno oR FurcTiON | DFD MO
(23] 15 J{reo-nane 2 || sea-nien 3 fjm2 2 |} cemoo 15
St SELECT XJ RGTR il) 3 BOOEND 2 15085 0107 150107 H SEL SELLLT X1 R6TR H
oo 1 [ENBLE D RGTR 5 EHRBLD CHABLE D MGTR s 15060 7 DOKENX OVBLE WRITE STROBE | 2
~ 15085 COFP 15 48-95 s mico » 15136 f534- 552+ 1581 L | X RGIR
15c67 CoP 15 %-107] SIK H eeaL-T210 3 ||FE SELECT WICHER 10
XCB6A 15 SEUK SELECT XK RGIR 2 BOGLIC i}
15185 . 7 AIN 23 ENASC ENABLE € RGTR]
N 15285 Yogr—15- 7 15185 7 roeL-1210]
. 15101 M il BTN | IR P W ? . et e e, coen |28
15264 (1558 1552* FSSD) 7 15168 1| e
15236 7 15268 7
15436 7 15736 (1554 1552 {551) ?
S0 15 1546 ?
ERABLE TNABLE € GTR 8 {jereL-nne 11201
weosn L% 2
1450 181 0§t 5 1585 CorP 15 88-95 ?
15067 o 15 %-107 7
— s | oeoL- 118 B
EMABLD EABLE D RGTR 5 AL 4
THABC ENACLE € RGTR]
5
INSTRUCTION FLOW
SEQUENCE * BOOLEAN
INSTRUCTION®» 11, 12, 13
ST] 7 I ®] 5 'Y 4 | 3 2 1

DETAILED PAK DIAGRAM (CPU 3, 24, 3.25, 3,26)

FLOATING POINT ADD SEQUENCE (FAD)

The FAD sequence controls the operatiins necessary to perform the sum or ;iifference
of two floating point quantities in Xj and Xk. The packed result is returned to the Xi
register.

The floating point instructions controlled by the FAD sequence are as follows:

30ijk Floatiry Sum of (Xj) and (Xk) to Xi

31ijk Floating Difference of (Xj) and (Xk) to Xi

32ijk Floating Double Precision Sum of (Xj) and (Xk) to Xi

33ijk Floating Double Precision Difference of (Xj) and {Xk) to Xi
34ijk Round Floating Sum of (Xj) and (Xk) to Xi

35ijk Round Floating Difference of (Xj) and (Xk) to Xi

The FAD sequence is initiated by GOFAD from the common time sequence. The operands
are obtained from the selected Xj and Xk registers. The exponents are extracted and
tested for infinite (37778 + 40008) or indefinite (l"l'l'l8 + 60008) operands. An infinite or
indefinite operand causes the FAD sequence to abort and enables the end case exit
sequence.

The floating sum or difference operation involves the addition of two floating point
coefficients that have equal exponents. Exponent equalization is accomplished by right
shifting the coelficient of the smaller cxponent a number of places equal to the absolute
difference of the two exponents. A right shilt decreases the size of the coefficient (moves
the binary point left) and the exponent is therefore made larger. Once the exponents are
equalized, the sum or difference of the coefficients is computed in the D adder. At the
conclusion of the add operation, the binary point is considered to be located between bit
positions 47 and 48 of the 108-bit D register.

Single precision instructions (30, 31, 34, 35) use the coelficient result contained in bit
positions 48-95 of the D register, and pack the computed exponent, Double precision
instructions {32,33) use the lower 48 bits of the D register and subtract 608 from the
computed exponent before packing. This shifts the binary point to the right of bit 0 which
is necessary to express the result as an integer.

Coefficient overflow is checked during FAD364 by examining D register bits 96 and 97.
If D register bits 96 # 97, coefficient overflow has occurred. The coelficient Is right
shifted by one, and the exponent is increased by one.

190981800 A

Exponent underflow is checked during FAD414. Underflow is detected when the exponent
is less than -1777a after correction during FAD364. Exponent underflow causes the
FAD sequence to abort normal exit and enables the e nd case exit sequence,

The final coelficient and exponent plus bias are packed in 15 during FAD414. D register
bit 107 controls complementing the exponent if the resulting coefficient sign is negative.
FAD414 enables the common time sequence (COMTO00) and the RNI sequence. Common
time allows the contents of C to be stored in Xi.

ROUND OPERATION (34, 35 INSTRUCTIONS)

The 34 and 35 instructions operate in the same manner as described, except that the
coefficients are rounded before the addition process to produce a rounded sum or
difference.

The round bit is attached at the right end of both coefficients (bit 47) during FAD114 and
FAD164. During FAD214, the round bit is removed from the coefficient with the smaller
exponent when the following conditions are present:

1. 34, BON, XSR1 = XSR2; or
2. 35. BON. XSR1 # XSR2

The round bit increases the absolute value of the coefficient by one half the value of the
least significant bit.

FLOATING POINT MULTIPLY/DIVIDE SEQUENCE (FMD)

The FMD sequence controls the operations necessary to perform multiplication or
division of floating point quantities in Xj and Xk. Multiply instructions 40, 41, 42, form
the product of multiplier Xj times multiplicand Xk and send the result to Xi. Divide
instructions 44 and 45, form the quotient of the dividend Xj divided by the divisor Xk and
send the result to Xi.

The FMD sequence also controls the operations necessary to count the number of one-
bits in Xk (population count instruction 47) and store the result in Xi.

§-2-50.0

DIVIDE STEPS

Division is accomplished by repetitive subtractions in the D adder. The D register
contains the coefficient of the dividend Xj and the C register contains the complemented
coefficient of the divisor Xk. The C and D registers initially appear at the input to the
D adder as follows:

C REGISTER D REGISTER
| |]
.| 1] l
107 05 47 [} 107 95 47 0
= -1 R IS K

\.__v__l ;v._l

DIVIDE < DIVISOR DIVIDEND

NOTFE: The complement of Xk
will appear if the original

NOTE: The complement of Nj
will appear if the vriginat

operand was positive. operand was negative.

Before the first divide iteration, the Xj coefficient {dividend) in the C register is
transferred via [14 to 14 where a right shift of one occurs. This reduces the dividend by
one half. The dividend now in D is subtracted from the divisor (Xk coeflicient) in C. If
an end-around-carry occurs as a result of the subtraction, a divide fault is detected,
since the coelficient of the dividend must be less than twice that of the divisor. A
divide fault aborts the FMD sequence and enables end case exit.

The divide iterations are performed during FMD264 through FMD2664. The SK counter
contains the 608 iteration count. Each 50 ns clock pulse decrements the counter by one
until all iterations have been performed.

Each iteration checks for an end around carry condition from the D adder alter the
divisor in C has been subtracted from the dividend in D. If end around carry does not
occur, the dividend in D is left shifted one place through 14 and returned to D before the
next iteration. If end around carry does occur, a quantity one Is gated to 114 bit
position 0 and the D adder output is left shifted one place through 14 and sent to D. In
this way the D register receives an additional quotient bit for each iterative step as the
dividend is left shifted through the register. This process continues until the quantity
in SK is reduced to zero. After the last iteration, the D register will contain the
complete quotient in the lower 48 bits and the remainder in bit positions 48 through 95.

19981800A

At this time the binary point is consgidered to be between bit positions 46 and 47 and
must be shifted to the right of bit 0 to represent the quotient as an integer. This is
accomplished by subt:;n,ctlng 578 from the Xj exponent during FMD114.

ROUND OPERATION

Rounding i3 accomplished by adding a quantity of 1/3 during the division process. Round
bits are added during the divide steps of a 45 instruction each time the SK register
contains an even count, except during the first iteration divide. This forces a 1-bit

into the D regisler bit 48 so that successive iterations bring in the 1/3 round quantity of
25 semmmneeceoenn 25,.

EXPONENT AND RESULT FORMATION, DIVIDE

The [linal exponent for the quotient Is formed by subtracting the exponent. of the divisor
Xk from the exponent of the dividend Xj in the F adder during FMD2764. The exponent
of the dividend Xj will already have had a constant of 578 subtracted from the exponent
value. The result exponent formed in the F adder will thus represent the coelficient as
an integer.

During FM21764, the quotient is checked for normalization (D register bit 47 #0). If it
is necessary to normalize the quotient, the quantity 1 is subtracted from the result
exponent in I while the D register is shifted left by one through 14. If the remainder in
D between bit positions 48-95 is 2 the divisor in C, an end around carry (rom the

D adder scts bit 0 of the quotient through 14. A normalized result is thus formed and
returned to D.

Exponent overflow or underflow is checked during FM2814 by determining that the
absolute value of the expornent is greater than ”778' Exponent overflow or underflow
causes the FMD sequence to abort normal exit, and enable the end case exit sequence.

The final quotient and exponent plus bias are packed in I5 during FM2814. I5 is com~
plemented if XSR1 #XSR2. FM2814 enables the common time sequence (COMTO00) and
the RNI sequence. Common time allows the quotient from C, plus exponent and signs,
to be stored in Xi.

END CASE SEQUENCE

The end case sequence checks the formation of infinite, indefinite gnd zero resuilts when
executing floating point instructions controlled by the FAD and FMD sequences.

5-2-50.2

The floating multiply and divide instructions controlled by the FMD sequence are as

follows:
40ijk Floating Product of {Xj) and (Xk) to Xi
41ijk Round Floating Product of (Xj) and (Xk) to Xi
42ijk Floating Double Precision Product of (Xj) and {Xk) to Xi
44ijk Floating Divide (Xj) by (Xk) to Xi
45ijk Round Floating Divide (Xj) by (Xk) to X1

PREPARATION OF OPERANDS

The operands are obtained from the selected Xj and Xk registers. The exponents are
extracted and tested for infinite (37778 + 40008)' indefinite (1'1‘1'78 + 60008)' or zero
(00008 + 77778)‘ An infinite, indefinite or zero operand causes the FMD sequence to abort
and enables the end case exit sequence. Zero exponents in both Xj and Xk enable integer
multiply. Integer multiply blocks end case exit.,

The bias for each exponent is removed in I3 and sign extended. The Xj exponent is
transferred from I3 through 12 to F. The Xk exponent is transferred from I3 to E. With
both exponents at the input to the small adder, a subsequent add during FMD2714 produces
the final result exponent before any correction is made.

MULTIPLY STEPS

During common time, the shift and iteration counter is preset with 604 to allow the Xj
coefficient to be shifted right 48 bits to align with bit 0 of the C register. Since all
numbers are considered integers rather than fractions, the binary point is considered as
being to the right of bit 0. Right shifting the Xj coefficient (multiplier) 48 bits places it
in the proper position for the multiplication process.

The C aad D registers initlally appear at the input of the D adder as follows:

C REGISTER O REGISTER

107 a5 47 /] 107 46 o -l

|°—-Q' Io--ﬂ o--,--ol x’;‘—EDFh;
MULTIPLY ' ey : ' \—-—-,,_—Il'

: MULTIPLICAND H H MULTIPLIER |

} NOTE: The complement of Xk or X§ will appear if the original operand]

[was negative. | i

! ! 1 1

19981800 A

Just before the multiply iterations, the Xj coefficient is transferred via 114 to I[4 where

a right shift of one occurs. The shifted bit is sent to the D flag register. The multiply
iterations are performed during FMD264 through FMD2664. The SK counter contains the
608 iteration count. Each 50 ns clock pulse decrements the counter by one until all
iterations have been performed.

The D flag monitors the condition of the lowest order bit of D. Before the first iteration,
the multiplier was right shifted one into the D flag The D flag now determines the

first operation. If the D flag is set, the output of the D adder is right shifted one and ’
sent back to the D register. If the D flag is clear, the output of the D register is right
shifted one and sent back to the D register. After the first iteration, the D register holds
the partial product and the remaining bits of the muitiplier. This process continues until
the quantity in SK is reduced to zero. After the last {teration, the D register contains the!
final product with the multiplier shifted end off out of the register.

On the last iteration, bit 46 of C is set while the rest of C is cleared to zeros. Cis added
to the product in D during FM2714 to form a rounded result. The rounded product is sent
to the D register on a 41 instruction only.

EXPONENT AND RESULT FORMATION, MULTIPLY

The final exponent for the 96-bit product is formed in the F adder during FM2714. For
single precision instructions 40, 41, the exponent would already have been adjusted by
608. Adjustment of the exponent for single precision instructions is performed during
FMD164, where 608 is added to the Xj exponent in F. The exponent is therefore made

relative to the upper 48 bits of the product, or zero is added to maintain an exponent

' relative to the 96-bit product.

If it is necessary to normalize the product during FM2764, the quantity 1 is subtracted
from the result exponent in F, while the product in D is left shifted by one through I4
and returned to D,

Exponent overflow or under{low is checked during FM2814 by deterniinlng that the
absolute value of the exponent is greater than ”778' Exponent overllow or underflow
causes the FMD sequence to abort normal exit, and enable the end case exit sequence.

The final product and exponent plus bias are packed in I5 during FM2814. I5 is
complemented if XSR1 #XSR2. FM2814 enables the common time sequence (COMTO00)
and the RNI sequence. Common time allows the upper or lower product from C, plus
exponent and signs, to be stored in Xi.

5-2-50.1

8 |

7 8 5 A 4 4 1
{
{ T - COMIEH 1 FADTIA 1 FADIBS I FAD214 g
) + '
COMP {48 107) ' B4 SET 24y ' ! =
i b e 14—s0 B8 ne 14 °
i 13 cp 1 cm— — ! | '
. COMP NON COEF . . /
xs9:1 XS ! (F xSR)) ' D
' 0 NON COEF. ¢ pam T 2ar : / <X \,
) | TR 15 ¢ b J T ¢
. + 'S won cocr : OO 247
]
. 1 Lo COEF [} F 30l (XSRI-XSR2)
' CORP CoE! <m. c| re|
' T IF 3063203 ' 3553 (XSRLS XSR2)
+CoP HOi COLF ' - -
t L e s
' v % (IF ASR2°31+33+35) ' §
' 1 : J=R .
| SES—TY) 13 3] e L 12
WNBIAS SIGN EXT ' ! ' I Jax
L}
1 . 3
(x58+ X890 asr ! ! ! xK——s txa8-50} 1
(X359 7 x47) . BON : (CLR BON_IF BON - X590 * X4T) Bow, : cowe 13
! [(-} xSRI« XSR2) F xsn2) p
] [[+ [R — Fmm 19 3K
' (x89¢1) xsn2 ' ABSOLUTE) ! e ;)
' N FEAC UF Fizen
] (%48-88) 12 F]
' UNBIAS - SIGN EXT : TEST J°K O0OFUN : FORCE 18
; ' BSRY |y ek, F Fe2q)
1 X89) 8sR2 ! 83SR2 1
! ' XSA 2 !
] ' :
]]
{EXP » 3777 4 4000} ' '
1 F
. (EXP+ 1777 4 6000) n } 1 ! ENADLE Eil) CASE $EQ
] o NINDY ' ; ’
| (ExP = 3777 4 4000) . NN - ' : CIF HIEL o IBH2 o HIGDY » HEW2)
1
1
{EXP » 1777 4 6000) NINDH) : N\ : €€ noTR :
! EE RGTR : :
X ' :
['
CoraND oR FUNCTION | pep wo
TOR WE | CoPrnD OR FUNCIIOH | DFD 8O TERM WA | COMMAND OR FUNCTION | pro w0 TeRt waE | comwno or Foncrion | oeo wo | emn weve
[O13 SELECE XJ RGIR 15 1551 152 0'S———=NOW COEF 3 FADISO ol mlein |y n
s s 2 155 (15 0-47, %-107) FASKK SELECT XK RGTR Y [[%*
(237 15 oL |, % i D-ADD ———={14 % il C—D-AD0—<lI8} 26
15035 o 15 48-95 1 F15C06 P 15 0-46 % oty e L RO -
1507 P 15 96-107 ' rscy fowe s @ 5 FiScog 1682 303243] 15004 2
@no 15 Fiseer av 15 %-107 » nsar (| Berzsienes] | 25 A b2 A L
£HABLC EHARLE C RGTR L] rn;::w luo!is v - FISCE? P 15 0-47,9%-107 | 25 Hised T 158 1531y H
e 15 2 povd 0 ToI6e X —
o p— » fi51s7 1554° 1552-1551) FIStes { 30052430 5 wﬁ;l&m T 5 Qmvan o o »
ar 5D FAD100 2 P 15 08-95 5 ? 11312 B——efg—f | 2
FI5I57 ¢ 159, 5
oG 4353 ((1P) 15 FANC - fSULECT xe KGR » ISEEEE fo's won oo e | Bow % o Joeuren "
1T LLEIAS SIGK EXT 15 o114 Xa8-58 (EYP) n 5% 15 0-47, %-107 Fis167 (TS 1552+ TS O B)
) 13 0-17 12 (] UIRIAS SIGH £XT b YOI (o2le FUNEF 12 ——eF *
e s SEXPI3 —13 0-17 1 F15057 35 5 e - % Lo
e EWALLE E RGIR B FoL a FIsis? Bseisszeissy |25 FENBC CHABLE € PGTR s | e ERATLE PRESENT SK
Exsez F016A . 5D —— S
(7] 15 UERINTER) | € ——e F] 12} ! o8 N
B2 &1 B3AL n BSK2 “: . FERBE EMBLE € RGTR % (1) UNBIRSED 1790 su?s{uso
(IF X58= X59 FDIER £A 9
oo o R A T JEWABLE D ROIR w 1" [o n n;;::‘f x': . :: ;
iy SET NN n i SET HIND? n FDISH AN 148-58 (CXP) n ’ -
(IF Db 3777440000 e w5 e | UIF DXP= 1777+0000) FALLY Pl L | EHABLE F RGIR % an XS SiGH % |ron -
15285 7 ser - CIF BON'KS9=XAT) FUPLY TIAS SIGH £XY
it SET tikby L T 7 xsh2 R GEsen | a g FDlGh ey | ——13 017 2 | e |esmemmosese |
A7 D= 177746000) o S »n FI5185 . 1Sea.
e 152 s 1552 81 T, s " i ru:::m ENABLE €E RGIR » Hihd ‘ﬁm’g.'mgn’g (Part 1 of 2)
£ SEV Bud fF n 15436 7 ENARE ENABLE | RGTR !
- FO164 INSTRUCTION FLOW
GF ¥55- X7 - L '5“35 i TENBEE | ENABLE K€ RGTR SEQUENCE + FAD
FEREC EMBLE € RGTR 2 €155u-1552* 1581) TNSTRUCTION » 30,32,31, 33,3435
2 1
T g [7 6 ' 3 4 4 '

The FAD sequence enables the end case sequence at FAD214 time when an infinite or
indefinite operand is detected, or at FAD414 time when underflow is detected.

The FMD sequence enables the end case sequence at FMD214 time when an infinite,
indefinite or zero operand is detected (except during multiply when both operands are
zero); when a divide fault is detected; or, at FMD2814 time, when overflow or underflow

is detected.

Overflow and Under(flow

Exponents lying outside the range -1'1"7‘1B to +17778 cannot be generated during execution
of floating point arithmetic instructions. An attempt to generate an exponent greater than
+17778 yields an infinite result (overflow). An attempt to generate an exponent less than
-17778 yields a zero result (underflow).

Indefinite

A positive indefinite (17778) or negative indefinite (80008) operand generates an in-
definite indicator plus zero coefficient to the C register. A positive indefinite result
indicator is generated whenever a calculation cannot be resolved. The indelinite indicator

corresponds to a -0 exponent and a zero coelflicient.

The common time and RNI sequences are enabled by the end case sequence after the
proper 60-bit result is sent to the C register. Common time allows the end case result
in C to be stored in the Xi register.

ERROR _EXIT CONDITIONS

If an attempt is made to use an indefinite or infinite operand in floating arithmetic
sequences, an optional exit mode selection is provided. The CPU response is dependent
on whether the appropriate exit mode selection was made and the monitor flag /MEJ/CEJ
condition. '

An exit condition sensed (ECONDS) sets the error exit FF (CPU 3,17) at the same time
as the next RNI sequence is initiated. Error exit clears the U3 instruction register, thus
forcing a return jump error exit sequence,

POPULATION COUNT 47

The population count instruction is controlled by the FMD sequence. The instruction
counts the number of 1-bits from a selected Xk register and delivers the count value to
a selected Xi register.

19981800 A

TABLE 5-2-17. OVERFLOW AND UNDERFLOW CONDITIONS

OVERFLOW
INSTRUCTIONS OVERFLOW CONDITION RESULT
Upper Sum (30, 31, 34, 35) None (see Note below.) ---
Lower Sum (32, 33) None ---
Upper Product (40, 41) *nl g+ 608 2 2000B X = 3777 0... .08 or
40000.... 08
Lower Product (42) ng +ny2 2(.!()08 (True Sign)
Quotient n, -n,- 578 2 20008
UNDERFLOW
INSTRUCTIONS UNDERFLOW CONDITION RESULT

Upper Sum (30, 31, 34, 35) None -

Lower Sum (32, 33) Final Exponent s -20'.’)08 X‘ = 00000... '08

Upper Product (40, 41) n, +ng+ 5‘7B < -20008

Lower Product (42) n, +ny - 1 £-2000 X. = 00000....0

8
=Ny - 608 < -2000

i 8

Quotient (44, 45) n

1 8

*n, and n, are the initial exponents.

Note: Overllow of Upper Sum: Overflow cannot occur unless one operand is infinite,
In this case the result is as indicated. If a one-place Right Shift occurs when
the larger operand exponent is equal to ”7768' a correct result with exponent
~HTI"Ia is generated.

The counting process is accomplished by left shifting the Xk operand in the D register one
bit at a time into the D flag register. For every 1-bit shifted into the D flag, +1 is
gated to the F register. The SK counter contains a count of 748, providing the required
iterations to shilt each bit into the D (lag..

The resulting count value (maximum 743) is gated Irom F to the T register, and during
common time to the selected Xi register,)

§-2-50.3

8 | . 2 | . 1
[
ll SHWFT_DELAY I TAD264 I FAD3I4 | FAD364, 1 TADAIA I COMTIA 1
] [[] ' [] '
] ' [} 1]])
—~om i o) ' [{31+ 5T) ' [
' i ‘ ' ' " P Is N 1]
' 1 1]] 1 .
' ‘ ' & 14 " o < Y YA U ch s b
' 1 ' ' X]
¢ l- N " R 'rf ' e 14 / ' ©o.-o8) : arueer :
- N ' | p—als ' LR (32 ERY) '
) ' Y WIF USGAU7) Rst— ' . '
1] 1] 1)]) L] [
' ' ' ' [l 1 '
] '] [] 1] [
'] 1} 1] 1]
¥ 1 t ' 1] 1)]
]] L 1 L () L
1 1 L] 1] 1]
-oF! 1 iy N ' ' '
' } ' [] ' '
' 1)] ' 1 (]]
1 1) 1) 1)]] L]
t 1)] (] 1]])
' ' ' [} 12 > F 1 | ros ' '
'] [G233 00Y) 0 1 | toPBIASF G ['
1] 1) 1 1 (] '
’) . ' ' . ' . ']]
: :"‘ 19— 13 E I- : l>———olz-———————-—o F .i ' :
1
[[coMP 13 []]] "] '
‘ ' ! ! UF D9GeDO7) ' l (UDERFLON | ewrme @6 CPSE ' .
' ' ' 1 ' FIOMIZAT = xiy etn] '
' ' A 13- 13 Em ' ' '
1]]]) 1 1)
1] 1])]] 1)
'] ' ! ' 1 1}
' 1 [}]] L]]
' ! 1] L]] 1 1)
' 1 1] (]]]
'] '] ' 1))
1 1) 1] 1 1 1]
] 1 1 ' 1 t []
1) 1 [}]] 1
[' ')] ['
1 1 T)
TERN NAE | COMND OR FUNCTION | DPD m" TERY W | COMMVAND OR FURCTION § DPp w0 §| TERM NAME | CoPPAND OR FusCTION | DPD m" TERS g | COMMAND OR FUNCTION | DPD Mo " TERM NAE | COmManD OR FUNCTION | OFD O J| TEAM mame | CORMARD OR FUNCIION | Drp N0
wig: COAIDS ARE SIOWA FAD2A i D-ADD———ee 114 % |lransce FADUIN coraco 1
FOR FAD214 FiS00N 5 |} rosn 0907 (1 p—T} F15008 em—15%.05] Sk SELECT Y1 RGIR 2
f0218 [n-Wxsnl-xm I Fis20 | snpre i5pm] FENBD TIUBLE D RGTR % |{|ma R nst % Fis0s?)] @ JCIATLE VRITC fTROM | 2
FIscar +35- - XSR1=XSHA ::zg; ;z FsIe FADIGA 15085 58T 15821551 % X ?‘“ I
0P 15 &7] oIsTo 139 1 FDII8 1—=i FI5267 25 Lo 32433 15
. . FI5035 15581552 1551 %
e 5T 15C2) FI5285 » D318 s R FADYA FEXIS :.i%.’___,ns“_n 3 nsL SELFCY LOVER 10
FI39 —_—] FENED ENABLE © MGTR
eI lastg] s | e L | [T | My . FISZOY RISy~ g g07 | 25
SCONI3 P13 12 F0267 oI 0687 04390107
FEnme EIMBLE € RGIR 5 FLIBE LMADLE € RGTR » FONBF TMBLE F AGTR » FISCT COW iSgg.p0p]
D204 70310 52¢3)) Foate .
ST S0g—=139 1 FLHBF tnu[m ;)mn FENBC ENABLE € RGIR]
cousis Foula
. FRDXT ENABLE R comon | 20
f13813 153——=13 % e
s13913 It
10260
FENRE EHADLE € RGTR
D268
FAI3C o 13 %
Scont3 n i
-
. (Part 2 of 2)
INSTRUCTION FLOW
SEQUENCE: FAD
INSTRUCTION » 30,32,3,3234,33
Py o 1 ‘ ' ‘ ‘ . ' z '

8 | . 5 ¥ 4 | | 2 | 1 '
0 1100 0 1200
{ TONTEd I 1 4 1 FMDI64 i
] . . v 7
] ' (]
COMP {48-107) J ' o's 48-107 []
— ' ' N 1
ol % is cm 1 N is ch [> 14 14 som| D
. Y A ; -
! xSRI ' ' e '
' ' '
«] 1] 1]
604 19 K~y T .ﬁ‘ 13 cm
1 ' '
1 ' N 0's NON COEF
\ ' ' cowP |
i : : e xsna) 20.95 —
1 1]
) ' ! 13 €
')] -
' ' ' ow 13—/
[} +) OF XSR2)
f——s(xa8-58) —e13 12 rm Y T 12 ,
(UNDIAS SIGN EXT)] ' 1 J o
! ' e 1 1 3]
: : wwosdn . c
H H cow 13 '
' ' {IF XSAI- 40 § 41 + 42} :
1 1]
' ! x (x39+0 - !
| -
' ' (LF = 0000 ¢ 7777) zERO2 '
! . (EXP = 3777 + %000) 1 N (
NINF2
(EXP = 0000 7777 ' ' (EXP = 1777 + 6000) o2) ']
zEnor ' ' '
(EXP = 3777 + 5000) ! ! ! EE ROTR *
NINFI ' ' £€ ROTA .
(©XP = 1777 + £000) \ ! S '
NIND2 ' : '
' 1
TERM NA'E | COMPanD OR FUNCTION | DPD MO TERM HAMg | COMMAND OR FUNCTION | DPD o TER" KAVE | COMND OR FURCTICR | OFD Ne
50 15 ST 35T | 0's ———= ot (OFF 3 iy b ADD ——=118 %
Sy SELECT XJ RGTR 13 153 (15 48-107) ey 8
@ 15 FRI1* KSR wwnal o —sn :
1585 o 15 8895 1 FISCOE o 15 0-16 25 #s)
15067 o 15 %-107 s T15¢97 o 15 &7 2 — »
e 15 [FIISKK STLELT WK RGIR 2
SUISH-§T190 19 9 [EHBLE € RGIR b e o o COrF
e . 15 D100 I . 1551 €13 0-47, 9%-101)
srs | PRESET sk cum 9 FrSXK SCLECT XK WGIR n e {is®2 »
50 15 s n . FISCES O 15 48-95 5
EnanLC NADLE € RGIR s TSR SE1 XsR2 b o G358 (XM
(€4 15 XSk W x59°1) n FOPLS UNRIAS-SIGH EXT % N —
xsh1 UF X591y n NiNE2 SCT NIN2 - n SO e 13 017 { 1
gy $18-58 (EXP) 15 LIF UXPe 377744000) ey [xsreuo » 1 » 03]
CEPI3 UNBIAS SIGN EXT 15 HinD2 St1 tiumz n FANSC .3
i3 13 0-17 I} (F Expe 1777+6000) Sconl3 o 13 1
nzeRo2 SE1 WLre n
e UIF £XP 000047777) FRIGA
1312 13— 13 2411 CLR B6% FF (L) [xsn-no o ny e wl| = ;m%: porr] :?.“ 4
’ g - o LHAB i ®
‘qf::‘” CHABLE F RGN B o (IF BON-XS0 X47) n AN | Py et
el SE1 Nt » nee [““TW' x | s jue D L | T FNABLE D RGTR % [0 ¢80 A
CFOF=3777+4000) 00 000 Ea ERIT M Loz % | o LNABLE € RGIR % N rswr Jowr s waw
wtuol <ET minDt n fwoes o8 THIECER LT IPLY N WBLE L) THI6H Fr1be
UF XP= 1777+€000) 15185 X555 5s-107 7) [0 e n 402 FISISS YoRT ™ ug-95 FENBEE EWBLE €8 AGIR % .
meor |ser wzeeol » 15285 7 R | A Shgwr— Vo BN e fass s 1850 1
(If 1P~ 0000:7000) 151658 H oSty fuouu FISZM 5 (Part | of 2)
g 15264 1558+ 1582 F55T 7 cousts | 6oy 1% 1oy RIS | sseTsRessh]
(") SCT Bon FF n 1523 7 ™y m'x';i”’ 5 gﬁ:ﬁmﬁm 'r‘:»
1391 S .
(IF X59 ¢ A7) 15436 7 slnl; 139— —o13 g N CARLE 15 TR » SEQUENCE - FUD et
i e P P .Y e 8 l ' 5 ‘ ‘ l 2 ‘

) | <7 |] | 5 2 4 | 3 | 2 | 1
1300 TOLVIPLY SIEPS T
, ™0 TR ~ ‘xig 2000 7285 T2%
1' 1 FMOZI4 T VD264 1 FuzTia 1 Fu2764 1 Fu2ni4 1 COMTI4. J
[] 1]]] '
' ' & KHAT I SKP0 . ' ' H
[1 5K = SK) [[} []
v [w] [} 1UF xSRI # Blgo'\..w 1 [
D -—OD.- : 14 -lQ n'h ﬁ’. o'. 18 eF e A..:‘-
' ' ' ' '] v s —t '
' I [)] 4 LR () L]
' H ' U]4 P s 1s ' HOIE: JUTEGER LALVIRLY ' i
! ! N 41 onn | - ' b e 15— IS] '
H ' o's 0-44,48- -o [] [}]]
—ecCchs »c h ' i] '
' ' s:n“————au-—-—--.c y b———eny, <0808 ' ' N
] . 1] 1) [} L)
! v [s5*%s .4,] H ' WOIE: LIVEGER ILLTIPLY ' ' '
_ ' Voo 15y ' ' FOKCES Byg o g ' ' s
' ' t ') f0-¢ : '
] []]] 1 . []
e ! ! } : ' COP BIAS - FU . ,
b ¥ T r] [} ‘
1) [] E ® P] / (]]
' ' ' ' L»——-.n-—-—————.;. LiuERFLOL o ' '
—) 1 LI I ke et €0 oost ! !
: : : 0133 ——s 13 £t . FIG + F1L # FI7 SEOubct H '
c '] [cowe 13 ' [} ' [
' 1) 1) 1))]
' 12 ' ' ‘ h WOTC: IMTCGER HALTIPLY ' '
' ' ' ' ' BLOCKS LD CASE StU ' '
' . ' | ' ' ' '
, FUC UL O - COPF - GIF XS . h . ‘ '
i] (]] 1}])
] [} 1 [' 1) '
EUACLL €10 CASE 1T ' ' ' ' ']
i Stuutact t 1) [[]]
']))]]]
> ' '] ' ' ']
t . i]] [1])
L] [[]] [] [
t]]] 1]]
'] ' [] 1]]
1)
TERS WA%E | COTAND GR FUSCTION | DPp N0 |1 TERM mAr€ | comamnD OR FUNCTION] oPD MO || TERM WAME | CORYAND OR FUNCTION | DPp Mo " TLPA NAYE | corpaud OR FUNCHION | DPG MO || TERM NANE | COMPAND OR FURCTION | pep ;o_“ Tehn WE | cowwng o8 Funciion | oep o
11y hs"l (14 il D ADDER —— 118 % Fanu [Z10) Cuxo0 15
FLBF £EABLF F RGIR % SKS1+SKS2 | DECREHERT SK S Hew W D114 0 RGIR ——)4 % 15004 Dgzgg—=150.05 5 St SILECT X1 RGIR 2
B ! . fcouner EEUBD GIALLE B RGIR F2768 FiS0S? N % [¥ FRASLE WRVIE STRoe | 2
ﬂfmn A 4oruieud] ans 16207070 | e —— 14 % FIS085 § ISSUTES2 155D % 1
FOlly D RGIR——=114 | 26 cousio o3 1 m — F15202 Fog USig.59 25 |} com00-a2 15
Foiia 0 AD ——=114 % o 2764 540 a1 2] FEXIS 10 [wst SLLECT LovIR 10
() 14 1 ¢ — TL4BD m.\au “KGIR % |oser WSgg.57 15ag. %
W20 w21 | st — P 1 " 0 row CKABLE £ RGTA % lren i Vi
HRGY SKLQ0 2714 HOTE: BITESER HOLTIPLY FENBC ERABLE € RGIR »
1| renac CUABLE € RGTR 25 FAAI3C P13 L % FORCES 095+ O F2814
15541582 08 ———= 15044 s SCei3 1H FEDEXY CNABLE AP COTiou 4
- sl 61 27 1L
FiReh FENBF EWERLE F AGTR % F2814
FI5057 s 2% FILBE €RARLE € PGIR % FBIFIR FI0WF1LeF17
15187 b us-ar % FLERDC TEASLE EMD CASE €411 | 20
11525 e 15, 2
£15C47 2 noTES: INTEGER HULYIPLY
() BLOKS F 115 1S
S CNABLE D RG1R % e AN KD CASE EXIT
FISC0E ool 4] N
A FISCuy XSR) # XSR2 i3
FI5C8s 25
Fiscer o s 0-107 %
(Part 2 of 2)
oo]
INSTRUCTION FLOW
SEQUENCE + FMD 3asn ln maeiso0 I 4
INSTRUCTION ¢ 40, 41,42 FIGURE 3-2-25 |'5°3-50.7
rrrr—rayr— 8 ' 7 I Py l 5 ‘ 4 l 3 2 1

s | 7 | - 6 | 5 \ 4 | 3 | 2 | 1
28 owioe_ STEPS C)
w0 100 50 Y200 1250 P
[COMT64 I SAFT_DELAY L DOI4 1 EMDIGS I £MD214 1 EMO2Cq Jl
‘e o o N ! ! ke [_REPEAT_¥ 70 .
el A 1 ") '] “h
D ' cowe g7, ' ' 05 NON mcr.\ ' ' ' .
' xa Y chs L ¢ — 14—t 14 g O I [114 b [4 s O b HA———s]4 ——e D BB
' ' s \cuw 1) s~ ! Lo : /
b\ txseen) . ! o e 48 W NON-COBF | ' ' eac 1’208
' XSRY ' ' ' ' n 48 |
' ' ' ' . . SK EVEN |
— FOR 4%
' ' ' '] Pyioe. F f s
1))] ') CASE Exy) L]
' [' 1 XK, £ Cm c! '
] 0 ‘ i \ t ']
N ' i 1 0'S NON COEF] 4 '
— ' ']]) (] 1
' ' ’ w xRy e ' ' !
]] ' (48-53) txP [[] ‘
| ' . VNP MO pissicipd ')
' ' [} l Epm T T
1} A] i) (]]
')] [l L] s]
[s0-50) — 13 —s1i2—F 4 1 ’ ! '
' «wsus &n ' ' L ' ' '
) l 1]] [) [)
' ' 1 t 12 Fm f [] T
c '] [' f [i ® '
)
: : : 8Tg——— 19—t [3e € .- : :)
) ' N cowe u OF NS} s ' f s -0 F UF XSRS ' '
1) 1 1)]) 1)
1 N]) 1]
1 EXPe0000ITITN , orngy ' ' s EE ROTR ' ' !
' (EXP= 3777 4 4000) ' ' Lo ENABLE END CASE EXIT N !
o Q0o nwrt N | SEQUENCE ' '
H (EYPI777 4 60000 1oy '\ ' [' !
9] 1] 1]] [
Tere WE | coorand o Fusction | oep no TeRk waE | COweand of Funcrion forp o || Tews nae | comwm on runciion | orp e i vere e | COmMD OR Function | oeD wo “ TeRe W | om0 oR Foxiiton | Deg e
= =
@50 15 13541552 0°S non CO(F 3 i 0 ALD ———= 114 % |{frawm funoss Tivior) fH0 9
sty SEULCT XJ 1STR I 1581 U5 0-47, 9%-167) G i 0 RGIR —— 114 % SKS1-SKS? | DECROTERT Sk
®o 15 FHLIAXSRL 1976+ 1u-21 | 118 ——11s % ffunea Counick
15085 P 15 48-95 1 F15085 e 15 uB-05 i ws1—" SCI FEC owvioe LT Euand 2o || FRee
1467 QP 15 %-107 3 £l HOI50 ,,, END CASE PLOCK Foily W 2 45 L
(ORI 15 FENGC EIABLE € RGIR 5 FISH. SELECT XK RGTR » Frdaa 18 s s
B SUT31STT0 | cog—=19 s . FED100 a Jlsern Jos —euos corF fran i W e 45) 5
ot 15 [T SELLCT XK RGIR] “f53 as o7, %-10n | @ W20 TE2) i ——= 1y % [chvar
SKI'SK2 JORESET Sk CHTR 9 FHILY | e ¥48-58 (EXP)) Ll b AD —— 114
wiso 15 £rrsk2 SET XSR2 I FEXPI3 UHELAS-SIGH EXT % Ha) [xsw1) F1268
€BLC | ERABLE € RGIR 1 XsR2 CIF 159 1) n SEPLS —3 N » FILCE CUABLE F AGIR % 120 T2 [14— 14 %
i s U2 SEI L2 a Mo 121 st —"
P SO XSRL (IF X59-1) | 24 o2 g? ‘l'f,";z”"'m’ » FAINSC {x5R2-4uens) 2 ftatd THIPLE B RGIR 264
oA 14858 (EXP) 15 i m:- 171000 scan3 w@p i3 » FEALD EWABLE b RGIR %
op13 ioIAS SIGH EXY 15 e ST 2R PO | 8T 68
—_ SOPI3 —ey | R F DXP= 00007711 FUbE EIBLE F RGTR % 1o [sF3e] 1~pus | s
[re —_— FONLE CUABLE £ RGIR % .
B2 3—n 13 fitlg
£ QR B8 FF
EYHF EUBLE F RGIR B CIF Bot xs8- n FLED CHABLC D RGIR %
o e o FERBC CIABLE € RGIR %
ninFl sel umfg % “oisto [517)
(IF EXP=3777+4000) FISI8S Y 15 5
! £xp st & ug-s5
sy SC tlidl u oty St 130 1 FIS285 (155 1552+ 1551 I
(IF £XP1777+6000) oot
WZEROL <C1 2ROl] ot ENLGY Jaw » w5}
A LIF EAP-0000-7000) o e orss ow ® *
e SLI Lo 2 F13513 139——= 13 % FIS wew| 2
UF X3 47 i g 5
i ¢ Flieh
1185 7 Tl FLUBLE €BLL EE RGIR %
FENBE EIABLE € RGIR % |lrae) % (Part | of 2)
15235 X755 ygg 7 s
Vots ? FHLL 15065 Wwe 15 s b rwe — =
15264 11554+ 1552+ 155 ? FLRREE ENABLE EE ROTR % INSTRUCTION FLOW 34570 Iﬂ 19981800 A
15226 7 SEQUENCE* FMD)
1t 4 ne < 48,48 FIGRE 3-2-26 |52°%0 8
[YseTgye———aryy=yrey 8 ' 7 | s * ‘ l 3 2 ‘

8 7 5 ¥ 4 | 3 | 2 1
350
Paidiid 2500 ? T
I I ™ 204 I FM 2764 | Fu 2014 I COMTI4
S0 ') ' [}
sk)]]]
- ' ' UF XSR12 XSR2) ' '
] L} 1] L
O ST
—0 1 o m CIASTY chm " x k8
i ' / h h
' [114t 14—ty [-1 [t
) 1) ' '
]] Lst ' ' '
. 1 HIF 1) 1))
1) + ‘)
] [} D4q7e0 4] ¢ '
' . a7+0 . . .
[] '] [}
I} ¥ 1]) i)
[]]] '
] 1] . 1] 1)
] L} t])
[[!]
)]) L]]
1 [}) ')
‘ & 12 Fm ' fo-9 ' H
' ' -L \ + COMP BIAS FIO ' '
]] ey ']
B gk ~ -
' [' ENABLE END ¢ '
1] 339- 3 E FIO L FUsRI7
: omr 13 . : CASE EXIT : :
] 1 L]) [}
])] 1) 1}
] L)]])
]] [} ' '
))] 1) [}
' 1] 1) 1)
]) [[]
] 1]) 1]
] ')] L}
]))
TERE NN | CONAND OR FUNCHION { LoD M0 " TERM W | coneand ok Funcrion | oep uo" TERY A | COMAND OR FuNCTION | 0Pp MO “ TeRs W€ | covno on FuscTion | oeo w0
s (227 2018 Conoo 15
Consto o —— 133 1 e D RGIR —— 110 E3 FI5004 DG 15p-95 2 SELKE SELECT X0 AGIR 2
ne 2004 15057 2 COMENX CUABLE WRITE Stnose | 2
£13013 19— 13 % 20 T2 | 14— 10 2 FISos (155K (592-1551) Ll X iR
i 2 1s1 FI5267 [| LY A SELECT HIGHER 10
fany' F2IGk (L Fous o [}
primi B R] fosp | | Enaeie o porm » ||risw NS~ ISy | B
) FENBF ENABLE F KGIR % |fesis
F15006 400 45, s
IR (NABLE F AGTR % F XSRI# 5
FENSC ENABLE E RGIR % ‘:ﬁg 14 KSR gs
FIste? o g |
F2814
FENEC NABLE € RGRI 3
2814
FROCXE ENABLE RNI, COMYOH n
HE
2814
ONTD FI0 + 11 = £17
[EHABLE END CASF 1Xb | 24
L]
(Part 2 of 2)
A 1] nerrucrion riow oo | O oo
%b{‘ SEQUENCE+ FMD usn n —
] INSTRUGTION» 44,43 FIGURE 3-2-26 |33
emm——=—Te 7 | 6 | 5 £ 4 | 3 | 2 1

[—_€ci I EC i1 | COMYO00]
'] ' '
' [' '
]]])
4 conP L} CONP] 1)
! N\, 96-17 ! N , ’ N
i - ' 96-107 ' '
D i Os *15 cm + 13 > C AL Xt [+
N 108 - 107 ' 103-107 ' ' BESULTS
lag 'ag H . 0000 0 O« ZERO
. 6 ' 37T 0 0 400
169) H : o 0. -00
X . s N ' 7T7T 0 0 10
' - = ' : ! '
- 15105 - 107 . gype iy —— 1535 - 107 g gp 1 !
. s - 107 1 e 15165 - 207 i g s ' !
P g 15 = DIVIDE FLT W ' ' —
- v 1% - 107wy e v [LOTE OFS LF+ (SCE-LIKE SIGHS) + CADD-UNLIKE 4 '
' (LIKE SIS LXP*) s SlGiS ¢ - 10 ' [
. Y TS o (Gg——elS) ¢ (X1 = 000 ¢ § '
' VCALD XK = £ 00) ¢ (SUEXK = ~00) : :
' [
[' - . [}]
' ' 65 - 107 . - ' 4
' et RN TV N TR Y TR ,
' JOIVIDE- (XS + XK = O ' '
! 1= 15105 - 107 <y op o Lt s 00xi0d ! c
c ' 1o xu0exro0) o [DIVIDC G XK = 0) + (KKK = 003 .
' rcap 15 % - 307w (g g5y o [LIKE SIGUS 1 '
' 1KY ¢ XK« 06) ¢ \ '
1] [} ']
} ' ' '
[] ' '
]]) 1]
' 1 1)
] 1] i
] 1]] 1
L4 ! ' ' ! €
' '))
] []]
U U
TERs A | comonm on Fuxcrion | oep wo] Tes we | Cowno or Funcrion [oeo wo || tewt wwe | cowwno on Fuscrion | oep wo
FAERDC o + I w et Corxoa 15
UNDERF LOK 0510 Jug——eiSys 0 | 2 St SELECH X1 RGTR 2
FHEHDC 1D« I + w || et o150 | = o | DGBLL WRITE sthost | 2
[UUDCRFLOW ¢ A B
. | oeaser feow 15g6.40 P
26RO OPERAND
. BIVIDE FAULT [13]] 14D« IKF + 2RO
€MD ENABLE €4D CASE 2 ECENEC ENABLE € RGIR 3
AT (ECI) @i
15541582 |0'S 1S [[(3h ENABLE RN, CONAON %
1581 (113
9]
E1510 Yy 15105107 | 25
_ €525 o= 1505100 | 2 —
ECiser €O 1595107 13
)
£CEHEC CHABLE € RGIR 2
A “ - A

1

ke | 7 1 e] 3 + 4] 3

8 7 I s I 5 A4 4 | 3 | 2 | 1
. JTso 200
%0 100 ™o Ton0 00 POPLATION COUNT STEPS A 13300 -
e e - - e — . L "}
' - Coméa ' e oA : I FUGIA L ewoies I <EMD264 1 FM2014 I _COMTI4
]]] 1] |
' 1 4 1]] 1 1
: : : : ! ! : |
i
o] :] ')] []) 1
. : : : : : : |
B 1) |
f ' ') ' REPEAT ¥ SKv O x!
[19 sx—ob s ' |
: : : i e ' '] «
. . . : t]] I
' H XK 5] [-——.D—‘m——.u.—-—.oh 14 b 14 ohs ! :
1]] /]] v L} |
! ' Ry ' L8 ' st ' ' |
— +] 1 1 (] t 1] 1
1)] 1 4]) 1
:]] ' 1] 1] 1
' 1] 1]) ' 1 |
[t 1) 1 1] 1]] |
: : ! : e r__ | ! |
' '
: : , , 13 3 € .- by , ! j
1]]]] 1)
' : ' \ ' /.I >—-° 17— ' ' |
] 1] 1)] 1)
c ' ! 108—s 13— 12 Fm Fi F a8 I8 cm L x1
1] $] ' 49-83) 1
' [1 L] 1] ¢ ‘
t])] 1 1) 1
] [1] 1] 1] (] |
1 i] L)]] [
1 1] 1))] . |
1 [] [] 1 [} |
'] '] ' 1] A !
+]]]] 1) |
’ M 1} 0 U) ‘
VERR NAME | comnp OR runcTion | opp wo || TERR waxe | COPRAND OR FunCTION DPD W TER v | comeard oR FuncTion | DD mJ TER NAME | COMMAND OR HUNCTION | pPo nﬂ TERY WAYg | COMWAND OR TuncTion | ivo w0
flam {romr) TS | 19 e ||now i g s aad} t || @i 15
Fislts = Ko d SKs1o9T | vecrargn s s e e ey PIT) STLECT X1 R 1
::gg EEE—15ug 107 g Tl 2 0D ———o 118 * COWIER f1sams 15— 1505 » o CUABLE SRITL STPOBE | 2
FI5267 1554+ 4552+ i581) PO | LR Wik o " % Jlrmn Y
Fran fromn} 02071 | 11— 10 % || nae 7 FEnLC THARLE € RCIR
fants [1s ww | e R R % e
B . FISCSS 2% LD] FDuT CHRAELL Pit, COmon n
i FENED CWRLE D RGTR ® |rios I
™ feue TIABLE € RGTR 7 Jjric frew) 1t tu?uc ’ m; *
| coisTo S p— 1 1 || e 479 FLAG
OEFALY 0§ ——=13 n . o) FLO0F CAARLL F RGIR %
e Fuiny Fraes [urem? .
H fu 2 % Fi3913 139 ——— 13 %
FURLF EIACLE F RGIR 13 e
renee CINELE € PSTR 2
A
INSTRUCTION FLOW anon -
SEQUENCE! FMD s 1998800
INSTRUCTIONS 47 FIGuRE 8-2-28 ['377s0
(o U il) W e a 7 ! s ' 5 ‘ ‘ l 3 2 '

19981800 A

DETALILED PAK DIAGRAM (CPPU 3,27)
ECS SUBSYSTEM SEQUENCE

Detection of an ECS instruction (011jK or 012jK) in parcels 0 and 1 causes an ECS request
to be sent to the F.CS coupler. The continuation of the ECS sequence is suspended until the
accept (ECSACP) is returned. The ECS sequence is responsible for making address range
tests for both the ECS address and the CM address. This is done in each case by comparing
the last word address against the field length (FLE or FL). A test for negative word count
is also performed, Violation of any of these conditions causes an address range error
(AOR) and aborts the ECS sequence. An attempt to execute an ECS instruction from the
wrong parcel, or when no ECS coupler is present, forces an illegal instruction fault,

The ECS sequence sends the word count (Bj + K) and the ECS starting address (X0 0-23 + RAE)
to the ECS coupler, and the starting address (A0 + RA) to CMC, If none of the abort
conditions are present, a start transfer is sent to the coupler to initiate movement of data,
The CPU remains idle during the transfer.

An error exit (ERRABT) or normal exit (ENDTRC) will be sent to the CPU at the completion
of the data transfer. The error exit causes the processor to execute the instruction (usually
a branch) that is in parcels 2 and 3 of the ECS instruction word. A normal exit bypasses
this instruction and does an initial start RNI to the next word.

FLAG REGISTER

The ECS subsystem also contains a flag register primarily used for communication between

‘processors attached to ECS. Access to this register is through an ECS instruction identified

by both bit 23 of X0 and bit 23 of FLE being set. The ECS sequence must be modified when
a flag operation is detected, The contents of X0 0-23 are sent {o the coupler without the -
addition of RAE. No data transfer is made; however, the coupler will respond with either
error or normal exit depending on the fag function bits in X0 and the condition of the flag
register.

EXCHANGE BREAKIN

If an exchange request arrives during the execution of an ECS transfer, the ECS instruction
is terminated. No provision is made for maintaining addresses or number of words trans-
ferred. Consequently, the P register value stored in the exchange package will point to
the ECS instruction. It will be reinitiated at the next execution interval of the program as
if no ECS data had been processed.

§-2-56.0

8 7] 5 ¥ 4 | 3 | 2 1
T0 0 00 %0 . 1200 1250 P
[TomMTeq I ECSTI4 I €CSi64 I Ecsoid I ECS264 1]
' 1] [' ' J
1] ' ' 1 4 1
L] 1 A]] [
' VRAE s 1! ———+ 15—+ 18— C b ' ' '
' ' oi7 8- Oy ' ? '
'
1O —————e 14 om v [>—""""'_‘"'_—° ° .-\ ' ,
') ' . ' D——om—-——o 1 20 hm 15 > c
]] ' [/ h \ h
: ' : Xo 1) > C |- ; ,l:>—om—--o 14——s O '-
1
' ' 1] s [MXT ECS iy
' ' ' ' f 48-93 l- T @ MIT ¢
! ' ¢ ! ' WORD COUNT PARITY ' |
1)] i .)
, R N ' / ' NESREQ) |
e 13 !'- . B 12— - o F pm SET AGR ' ' |
. ' v/ ' \ * ATen , : |
x 13—t [2 s F P SET AR 1F X |
: : ' ! h 12 o hand (TN N .
' , , , ' T OF RANGE '
' ' ADVANCE 1 Ao +13 € ' '
1 N PC ONTR 1] [] [
' ' 1 ' ' '
' '] 1 :n—-——uo——ns——-u——or‘ll
L})) L} .
]] 1] 1]
] [1 1 1 | -
1)] 1 '] J
1] 1] 1)
' ' | SET ILLEGAL INSTRUCTION FF ! : .
' ! S O 1 ' ' .
' ' [] ['
] [] []]
1 1 U
TER™ WA | COMAND OR FunCTION | DD ';lem narg | oo or runcrion forp wo [vemt vane | comano o runcrion | peo no]l tems wave | COPPAND OR FUNCTION {orp w0 |} TERZ NN | COMND OR FUNCTION | OPD KO
850 15 ({3} 1] v ECS164 san s k2
SELes SELECT B RGIR 2 SEALCS RL—eil 7 tsum {mlé ’ :o': g {Essg? Em 2 :ﬂ: g l :ms D 1543.107 1
i 5 ||mresns | ugp—ens. [} Lese o ! e !
@83 |B—1i3 12 Heesun e g |Jrac \ L WO |rey—ns.p ' 15136 (IS5 15821551 7
. 15135 Xgog—>15g-107] e a
teso 15 tesis | Sy 15495 27 s 1 o e 2
5675 \ U 1) TESREQ COUPLER PLO—— | 27
'n:::a CHRBLE € RTR B 15285 asea 5571551 ? 15285 (1ssa- 1552+ 155D 7 f;;;s ::E‘S‘;‘%ﬁﬁ‘-;.” ’ €S Xt
lae- 0§ ——e I8 P v ECSI68 s |
SEL3 K 13 n TSI ERACLE € RGIR s £CStD CEILE D RGIR 2
Jes0 ADVRC2 AVATCE PC CIR 12 _— 2 s CHACLE € RGTR a7 . ”
EMBLD |ENADLE D RGTR s wm " g EAYTD R FY—) 2 N i v WALBR | EIADLE TEST ABR i}
LHABE ENALLE € ROIR § . .
s CHALLE F RGTR t} RS 10 *
) n
stio13 10 ———=13 Iy
st n
£81312 B~—12 b
[LHABLE F AGIR B
-
(Part L of &)
-
INSTRUCTION FLOW.
SEQUENCE + ECS N -
INSTRUCTION ¢ O, 012 FIGURE $-2-29 27560
S 7 ' 6 ' B A 4 ' 3 2 1

| 8 |] ¥ 4 3 | 2 1
1250 1300 %0 400 1430
}‘ T ECS3ia T €CS364 | ECS414 v I —_ECsa64]
1]]] .
1] 1) ;
1] 1] ' []
’ ' ' ' '
' [] [4 1]
1)]] 1) 1]
! ™ gcy ! ' ' i
Crs HXT “'—‘-—'—-’ xmiT R [']
» i t 4 t 1
- T D—oﬂl———o 14——s0 bg) '
] n ' \ [} [
)f&lst- \J t]
1 RAE——p 1} 8-'-7—0105—-23’! —sC -] / [} '
N 'ru:—-—-.n TP et it SET AGR ' '
' come. 047 623 ' MG B4K > FLE) ' '
] 0] 1] [}
1 ' Comp ' ' '
])) []
1 ' L]] 4
' ' ' (LTI T ' '
' ' ' \zcs [!
' ' ' STARTY iy R '
]) 1] L
1]]] 1]
i] '] [
F ' t] '
' \ [} 1 (0 [
‘ N + 12 Fpm< T iy P2 '
' ' C e e aRS PAMTY e '
] ' U] 1
1] 1] 1 +
' ' . 1 1]
' 1 1) ']
' ' ' ' '
1 1 1) 1] L}
- ! '
TERS nag | CORMAND OR FUNCTION | pPo %0 TERR RAME | COMWND CR FLNCTIoN | oD e f| TERM Navg | COFMAUD OR FUNCTION | ppp No " TERM NAME § ComAND O ot | oo
s 27 Les3m 7 Juesen fruag) o [T [tiowwr)
SRAECS RAE——=) 2 SHLECS FlL——=11 7 sEiAeR 1 hor v WESTIR [uﬁﬁt!.:' R]
e o RRIEH
FUECESIS Ny N%.g3 8 JpRecesns NGty | 8 CSERRX | LHASLE SEQ EXIT 7
[{433T) bl m’ﬂ',r . 2
Sis 15555 15g.) [M1TH 156255 15ug. ki
15225 895 7 15258 ks a5 7
163311 7 ECS364 v
tsisc. jeowe 1s 7 ECsIne w15 7
(6331 [{5317]
(014 CALLE F RGIR 7 ECSEND CHACLE D RGIR b |
st CHSLE ¢ RGIR Y £CsIne LABLE € RGTR |
Hi
. (Part 2 of 2)
INSTRUCTION FLOW NanTn D T -
5
SEOUENCE 1 ECS 33570 1998.800 a
INSTRUCTION* OUl, O12 FIGURE 8-2-29 ['323l4g2
T l s ‘ s ry P 3 3 n

DETAILED PAK DIAGRAM (CPU3.28)
COMPARE/MOVE DATA SECTION (Part One)

The compare move data section consists of four data registers. Three are shown on
diagram 3. 28; they are the 54-bit R register, the 60-bit Q register, and the 60-bit

S register. The remaining register is shown on diagram 3.29; it is the 48-bit T register,

Q REGISTER

The 60-bit Q register is located on the JC module. It is the primary word formation
register. Input to the Q register is through selector 130 which allows selection of either
the C register bits 48-107 or R register bits 0-47, 108-113.

R REGISTER

The 54-bit R register is also located on the JC module. It is used as a residue register
for data right shifted in the C register prior to storing in the Q register. The input to R
comes directly from the C register bits 0-47, 108-113.

S REGISTER

The 60-bit S register is located on the JB module. It acts as a bulfer register for data
stored in the Q register.

During move instructions (464, 465), data words that have been properly formatted in the
Q register are transferred to the S register. The output of S gates directly to the HR
register and the output transmitters.

During a compare instruction (466, 467), the S register serves a more useful purpose.
Data words that have been properly formatted in the Q register are transferred to the S
register awaiting subsequent comparison with corresponding words stored in the Q
register.

COMPARISON CIRCUITS

Data comparison is performed on a word basia by the S = Q compare circuit located on
the JB module. Each JB module is capable of one character comparison.

19981800 A

The output of the S = Q compare circuit generates a compare character equal signal for
each character (COME 0-9). Compare character equal will be at one level when the
respective characters in S and Q are equal. The compare character equal signals can
also be forced to indicate equality by the iorce equivalence circuits. These circuits are
used by the compare collate instruction exclusively.

If all ten characters in the S register and Q register compare equal, the compare word
equal signal (CWEQ) will be generated from the JF module. Compare word equal allows
comparison of the next pair of words.

If an inequality exists between the characters in S and Q, the respective compare
character equal signals for the unequal characters will be at a zero level. These zero
level compare character equal signals are monitored by an unequal character position
priority encode circuit, located on the JF module. The output of the encoder provides a
4-bit binary code pointing to the first unequal character. This binary code is stored in
the character position (CP) register.

FORCE EQUIVALENCE CIRCUITS

The output of the character position register (CP) feeds a +1 incrementer circuit also
located on the JF module. The incrementer is used to force equivalence for a collate
instruction.

For example, assume that during the execution of a compare collate instruction a pair
of characters are found unequal. The character position code for the unequal
characters is stored in the character position register. The collating characters
corresponding to the unequal characters are read from the collate table and compared.
Should they be equal, the instruction continues. The code in the CP ::egister is
incremented by one, pointing to the next character to be compared. The incremented
value Is fed to the force equivalence decoder which generates 10 force equivalence bits
(DEC 0-8). The force equivalence bits cause an equal comparison to occur on all
characters preceding the unequal character and including the unequal character.
Comparison of the remaining characters occurs as described previously.

5-2-58.1

DLTAILED PAK DIAGRAM (CPU 3.29)

COMPARE/MOVE DATA SECTION (Part Two)

The circuitry shown on diagram 3, 29 is used by the compare collate (466) and compare

uncollated (467) instructions.

COMPARE UNCOLLATED (467)

For a compare uncollated instruction, the circuitry on this diagram determines whether
the unequal character in Q was greater than, or less than, the unequal character in S.
Selectors 132 and I33 on the JD module gate the unequal character from S via I37 to the
TS register, and the unequal character from Q via 137 to the TQ register. The unequal
character is selccted using the code stored in the character position register (CP).

Each JD module is capable of performing a single bit comparison between TS and TQ.
The output of the TS = TQ compare circuit generates a compare bit equal signal for each
bit (CMTC 0-5). The compare bit equal signals will be at a one level when the respective
bits in TS and TQ are equal.

The compare bit equal signals (CMTC 0-5) are fed to a priority encode circuit on the JE
module. The priority encode circuit, scanning from left to right, produces a code
pointing to the first unequal bit in the TS and TQ registers. The priority code is then fed
to a multiplexer circuit. The multiplexer circuit monitors the TQ register bits 0-5. By
using the binary code from the priority encoder, the multiplexer circuit will select the
appropriate TQ register bit that compared unequal. If this bit equalled one, TQ would
be greater than TS and the QGS signal will be generated.

QGS is used during the exit sequence to condition the X0 register.

COMPARE COLLATE (466)

For a compare collate instruction the circuitry on this diagram performs the collate
operation.

132 and 133 will select the unequal character from S and Q using the code stored in the
CP register. These characters are then stored in the TS and TQ registers via the 137

selector.

19981800 A

Assuming that this is the first time a collate operation i8 being performed during the
instruction execution, the T register will not contain a valid collate table word. Con-
sequently, the word position register lacated on the JE module will not contain a va;id
word position code. ’

The word position register (WP) feeds two test circuits located on the JE module. These
circuits determine whether the word poesition code is equal to the upper 3 bits of the
unequal character in the TS and TQ registers. Iowever, the output of these two test
circuits are blocked by the first collate signal N1COL in its active state.

The collate sequence uses the output from the WP = TQ and the WP = TS test circuits to
condition two equality detection FFs. The third equality detection FF is located on the
JE module. A TQ = TS test circuit feeds the TQ = TS equality detection FF,

The contents of these three detection FFs determine the sequence of events that occur
during a collate operation.

With the WP = TQ and WP = TS test circuits blocked by first collate active, only two
equality detection possibilities can occur:

TQ = TS TQ = WP TS = Wp
1. 1 [0
2, 0 0]

The TQ = TS detection FF indicates that both collate characters are contained in the same
collate table word. If TQ = TS the collate characters are located in different words of the
collate table.

COLLATFE, TABLE LOOK-UP - TQ = TS

Assuming TQ = TS, two central memory references are required for collate table look-up.
An address pointing to the [irst word of the collate table is stored in the A0 register. The
contents of A0 are added toTS register bits 3-5 to provide the address for the first table
look-up. TS register bits 3-5 are also gated to the WP register via 135.

5-2-60.0

After the word read from the collate table is received at the CR9 register, it is gated to
the table register (T) located on the JG module. The table‘register feeds a priority
multiplex circuit capable of selecting one of the eight collate characters from table
register. Selection s determined by the binary code selected via 138 located on the JD
module. At this time I38 would select the lower 3 bits of the TS register (0-2) to 138, so
that the appropriate character is selected in 134, The selected collate character is gated
to I37 located on the JD module. 137 will now select the collate character from 134 to be
stored in the TS register.

Another memory reference will obtain the second word from the collate table. The
procedure is similar to that already described except that the TQ register is used.

After the second word read from the collate table is received at the CR9 register, it is
gated to the table register, destroying the previous contents. The lower 3 bits

(0-2) of the TQ register are gated to 138,allowing selection of the second collate character
from 134 to 137. 137 will select the collate character to be stored in the TQ register.

With both collate characters stored in the TS and TQ registers, the contents of TS and
TQ are compared for equality using the comparison circuit located on the JD module.

If both collate characters are equal, the collate character equal signal (CCEQ) from the
JE module will allow normal continuvance of instruction execution.

COLLATE CHARACTER COMPARISON - EQUAL

The remaining circuits on the JE module, serve a useful purpose if the result of a collate
character comparison is equal. The word position register (WP) will contain a code
pointing to the collate table word referenced on the last memory request. This is the

.

word contained in the table register.

19981800 A

If during the same collate instruction execution another collate operation is required, the
collate sequence control logic will check the condition of the three equality detection FFa
to determine the sequénce of events.

Five ppsslble combinations can occur:

TQ = TS TQ = WP TS = WP MEMORY REQUESTS
1. - 1 1 NONE

2. 0 0 0 2

3. 1 0 0 1

4. - 0 1 1

5. 1 0 1

If both TQ = WP and TS = WP, both collate characters are stored in the table register;
a memory reference is not required.

Ir T =TS and TQ = WP and TS = WP, neither collate character is stored in the table
register. Two memory requests are required to obtain the collate characters from the
collate table.

Finally, if either TQ = WP or TS = WP, both collate characters are located in the same
table word. Only one memory request is required to obtain both characters from the
table.

§-2-60.1

DETAILED PAK DIAGRAM (CPU3,30)
COMPARE/MOVE CONTROL SECTION (Part One)

C1, C2 OFFSET REGISTERS

The C1 and C2 offset registers are located » the JX module. C1 provides a 4-bit offset
value for the first word of the K1 field. C2 provides a 4-bit offset value for the first word
of the K2 field.

141, 142 - C-ADDER

Selector circuits 141 and 142 are located on the JX module, The outputs of 141 and 142
provide the A and B inputs to the C adder on the JY module. Depending upon the gating
term selection of 141 and 142 (both operate in parallel), the C adder may perform three

functions:

1. Subtract C2 from C1 (by complement addition)
2. Subtract C1 from C2 (by complement addition)
3. Add SCR+ (+1 28)

The C adder output is gated to the shift count register (SCR). The shift count value is
used to shift characters in the C register to the appropriate position (depending on the
C1, C2 offset value) before loading in the Q register. The shift count value stored in
SCR represents the number of characters that must be right shifted. This value is gated
to a times-six translator circuit that converts the character shift count to a bit shilt
count. The translator output (SCRX 1-5) is gated to the shift count register via 119 and
19 (CPU 2.8).

140, 140 DECODE, 144

Selector 140 located on the JX mo;iule provides a 4-bit input path to selector 144 and the
140 decode circuit located on the JJ module. Depending on gating term selection of 140,
the contents of any one of four registers may be gated to the character select register
(CSR) located on the JZ module.

C1 - 140 +» 140 DECODE - CSR
C2 - 140 » 140 DECODE - CSR
LA - 140 » 140 DECODE -~ CSR
LC -+ 140 » 140 DECODE - CSR

19981800 A

In the same manner, the gating term selection of 140 allows the contents of any one of
three registers to be gated to the partial write register (PW) also located on the JZ
module.

SCR - 140 -+ 140 DECODE -» PW
LA - 1[40 » 140 DECODE -+ PW
LC - 140 -» 140 DECODE =» PW

The purpose of the 140 decoder is to transform the 4-bit code from one of the registers
listed above to a 10-bit code representing the ten character positions in a word.

Selector 144 located on the JX module provides a 16-bit input path to the LLE register
located on the JM module (CPU 3, 31). The gating term selection of 144 allows the
contents of any one of three registers, or a generated constant value to be gated to the
LE register.

Ci - 140 - 144 » LE
C2 -» 140 —» (44 ~» LE
CP -+ 144 » LE
-128'* 144 » LE

CHARACTER SELECT/PARTIAL WRITE REGISTERS (CSR, PW)

The character select and partial write registers contain a 10-bit code, each bit re-
presenting one of ten character positions in the Q register. CSR, CSR complement, PW
complement-and CSR # PW are gated to the 147 selector. Depending on gating term
selection of 147, the appropriate CSR/P W bits provide an enable or disable on the Q
register input load circuit (CPU 3, 28). ')

5-2-82

DETAILED PAK DIAGRAM (CPU 3.31) -
COMPARE/MOVE CONTROL SECTION (Part Two)

N LA, LC REGISTERS

The LA and LC registers are located on the JN module. At the beginning of a compare/
move instruction, the LA and LC registers will contain an octal representation of the
character field length. The length value is gated from CR9 bits 26-29, 48-50 (465, 4686,
467) or CRY bits 26-29, 48-56 (464), via the 146 seléctor located on the JM module.

LAC1, LAC2 REGISTERS

The LAC1 and LAC2 registers receive the current LA or LC length value via selector 145.
The length value in LAC2 is used during compare unequal to determine the character
count value to be stored in the X0 register upon instruction conclusion,

LE, LF REGISTERS

The LE and LF registers provide the A and B input path to the L, adder located on the JM
module. The LE register receives its input from selector 144 located on the JX module
(CPU 3.30). Depending on the selections made at 140 and 144 (described previously), the
LE register will receive either the contents of C1 or C2, the complemented contents of the
character position (CP) register, or a generated constant value of -128.

The LF register receives its input from selector 145. 145 allows the contents of LA, LC,
LAC2 or the L adder output via 146 to be gated to the LF register,

L ADDER

The L adder performs four functions required for character length calculations. Initially,
the contents of LA and LC are added to the contents of Cl and C2, respectively. The re-
sults are returned to the LA and LC registers. During K1 and K2 address sequences, LA
and LC are decremented by -128. The address sequence monitors the decremented values
of LA and LC to determine a K1 or K2 exhaust condition. In addition, during K2 address
sequences for a move, the decremented LC value from the L adder is gated via [45 to the
LF register to perform a double subtraction. The double subtraction provides a look~ahead ;
function that detects an exhaust condition on the next K2 address sequence. Finally, the

L adder allows the contents of the character position register (CP) to be subtracted from
the decremented LA or LC value in the LAC2 register on compare unequal, The resultant
value will be stored in the X0 register upon instruction termination.

19981800 A 5-2-64

DETAILED PAK DIAGRAM (CPU 1.32)

lNSTI'RUCTION DECODE SEQUENCE, START SEQUENCE

»

The instruction decode sequence is initiated from the common time sequence by the

GOCMU signal. The sequence decodes a 460 (pass), 464 (move indirect), 465 (move
direct), 466 (compare collate), 467 {compare uncollate),

A decode of 460-463 for a pass instruction will generate the NOP signal. NOP enables
the RNI sequence.

A decode of 464 for move indirect generates the enable increment sequence signal
(EINCS). The increment sequence will use bit positions 30-50 of the instruction word to
address (Bj) + K, which will be the address of a 60-bit descriptor word. On receipt of
the descriptor word from memory, the accept sequence will generate a GO464 signal to
initiate the instruction decode sequence once again,

GOCMU for a 465, 466 or 467, or GOA64, and the character length value not equal zero
will generate the enable start sequence signal (ESTAHL),

MOVE INSTRUCTION (464, 465 - Refer to timing diagram, figure 5-2-31)

During the instruction decode and start sequence for a move,the following will occur:

1. C2 offset plus character length value in LLC are added in L adder. Result
returned to LC.

2. Cl1 is subtracted from C2 {by complement addition); the result is stored in the
shilt count register (SCR). The output of the C adder is monitored by the
C2 2C1 FF located on the JL module. If C2 2C1,a carry signal (CADDC) will
enable setting the C2 2 C1 FF.

3. C1 and C2 are tested for out of range condition by the 140 decode circuit. The
C12AOR signal will be generated If C1 2 1010 orC22 ww. C12A0R will set the
C1/C2 AOR FF located on the JL. module.

19981800 A

4. IrC1>C2 (that is C2 2 C1 FF reset), + 128 is added to the shift count value in
the SCR register,

5. The shift count value in SCR is gated to a times-six decoder circuit, then to 119,
19 and the SK register,

6. C1 offset plus character length in LA are added in L adder. Result returned
to LA.

7. SCR register shift count value is gated to the 140 decoder and stored in the
partial write register for use by the data sequences.

8. -124 generated at 144 is stored in the LE register for subtraction during the
address sequences.

COMPARE INSTRUCTION (466, 467 - Refer to timing diagram, figure 5-2-31)

The instruction decode and start sequence is similar to that of a move instruction except
for the following:

1. The addition of C1 + LA occurs before the addition of C2 + LC. This is because
the address sequence addresses the K2 word first for a move and K1 word first
for a compare.

2. If C1>C2, as determined by step 2 above, the sequence will not add + 128 to
the SCR register (as in step 4); it will, however, subtract C2 from C1 to obtain
a new shiflt count value in SCR.

The start sequence Initiates the address sequence by generating the clear biock K
address FF signal (CBKOCF). The address sequence operales in parallel with the start
sequence starting at S164 time.

5-2-66.1

8 7 | s | 5 ¥ 4 | 3 | 2 | 1
o RI SEO (PARCEL) o
. MCLPY SEO . COMH TIVE SE0 L, IRSTRGCTIoN DECOOE Sto "
" "e L4 >
[RNI O |‘ CONT O I CoMT 50]
o / [ANT 14 T CoMT 14 I oMt 64]
: 850 ;” / L Tiid —
- wed 7 A— = Z—
] L]]] 1]
o — TV ' ' ' ' '
1] 1] [}]]
1]] 1 [] 1]
[L 1]]]
| TNITAL _START_FF |0\' v ANTEXT] ' ' '
— 1 1 1 ' ']
1 WAIY I FF AY Z }) ' [0
'] ']])
3 g FORCEX 1 '])]
1 ' '] * [
' SEQEXT) N ' ' '
%S 1OVE DIRECT ' 1 ' ' ' '
866 CONPARE COLLATED 1 ENUI ECcMU2]] 1 '
AC7 COFAFE UICOLLATED ' ' e qm ' TRARSLATE AGK STRICTION ' ' '
]]] RANSLAL L} '} 1
ML T wi Tuefer Jeef cRo g . vl v2 v | GO] \ FOR 4GS G W7 (ST s
WE WILL CONTIRE WITN
C lysusomar omwmB3 BT 0 : c2 ’- ' , 63,066,467 [15405 1 SR sto
' N — : : Move :u:-——--—-—ous S LF BN (FIELD LENGTN 1M CEARACYERS)
L
r:nmec LN , b T ——eY . . . 13§ ¢2 8140 — @ 144———oLE @B (CKARACTER POSITION OFFSCT FOR K2
LT NN\\N§ , 149 ————sx1 kn J ' "’l: L —s148 SLF RS (FIELD LENGTH 111 CHARACTERS)
89 w0 0 ° ' 45 ——————oLA N ') 12847 Lyt - ——# 130164 ———oLE BN (GUWACTER FOSITION OFFEET FOR #1)
: L& 148 LC e : : : l———» 140 DECOOE :mm (IF €1 OR €2 2100
P> ' ' 0 8 3 > € -l - T ‘l FOR bCH LISTRLETICH
' ' 1 ' MVE INORIECT Il cs SEQUUICE WILL CGHTINE
1] ' ! Ten () Wid64 ¥ vITH faCRERENT SEO
1
VERS NAME | coranp OR FUNCTION | DPD No || TERM NAE | COMMAND OR FUNCTION | pPD Mo TERM WVE | COMMAND OR FURCTION | DFD No | TERM Nadg | COMMAND OR FUNCTION | ppp Mo
REA CINTSRT:RIVTID) 16 o ro n conso 15 {{nn n
FORCEX FORCE EXIT 1 wu3 [J—— 1 ALY ADRS B4 RGTR 17 LAGSHY (1=6+7-CONPARE)
oo SLQUENCE EXTT [URT (RUM FF SET BY 1" coien 46K 15 6150 y
8 DRGA (NRVTIDY 16 PREVIOUS KNI SEQ) &u‘gg " s ll; Gu50:6a51 JUA——= 185)
[0 €9 ——u} 1 e Evees comon| 1 CTH-oa81 | 125 n
EOLR 1 e sko nos0 15 2
e [e] 3 ENBE 13—t 13 “ TR
P00 n i 15— F 31
ez (RS2~ 146 3 Cluom, {1697-COPARE) 2
48-50 G40l
213 (L ad U 3 Coom (L=s-Hove) 2
o1 6400
TR " 00 601|150 '] .
wor | v |8 ﬁf’m‘ 1 : W | e]
U FE— W [}
e L n hd EHABLE AOR [PHIBIT
LOUR sl b STARY SEQ 7168
EKIOCF 16 C-cul {10 ——e1w % Roines (G800 1-0)
EK20F 16 1 n [SET NINGA FF n
® [CF g] 3 ELEINF
. wegp—= K 3 e 14— (£ 3
ESTAIL EN START SE0 (Perooe | 32
A L/0" 4654564467
. CONTINUED N

(Part 1 of 3)

L

38570 l u I—. 19381800 l A
|52 es2

INSTRUCTION FLOW
INSTRUCTION DECOOE
SEQ FIGURE S~ 2~ 30

e —
Pp=—eprr—ny 8

2 1

7 s 5 ¥ 4 | 3 | 2 | 1
INCREMENT SEQ (
- sle
i - ! J
{ [[T)] { INC_200)
- AT | THC 164 I NG 314 T e 704]
e [
8RS joar e sio ' ' ' '
' D])
1 R T : RANGE TEST——b AGR (IF F > FL) :
]] 1 1)]
] 4 1)]
1
T FRon PREVIQUS H H) !
SN T sto f H ' '
] B 1 1 1) 1]
[\ ' ']
] ']]]
i ' 12— F 1 ' H
' \ / ' ' DESCRIPTOR VORD ADRS '
L K——e13— 12— o F g ' /&—ou ™ . ADRS XMIT
1 1 1 ¥ 1]
' Eron PREVIOUS) FA~———8 10 ——» 13 em ' \——ogsmn ADRS '
'] 1)] 1)
. RNI SEQ
1] ' 1] 1] NEMRCQ 1)
' ' ' ' . '
' 1] 1 1
(]] 1]]]
' i 1]]
1 HOIE: INCREMENT SEQ IS [' 1 1)
1 INITIATED BY 464 JUSTRUCTION ' 1]]
1 DECODE DURIAG IHSTRUCTIGH ' ' ' [
1 DECOUE SEQ '] 1 '
' ' '] '
' 1] (] b
1] ' 1 1]
] 1 1 i]
TERn e | corenp of FuncTion | oep no | TERN NAE | COMPARD OR FUNCTION § OPD o || TERM NAME | COMWAND OR FUNCTION | DD WOJ| TERW KASE | CONAKD OR FUNCTION | pfD o
INC31% 2 ST 8101 M0 3 IRC218 2 N2 a
INE14B (HFHEX) -§TR R1218C TEST ABR RINEN
SELKIY K——=13 n Wi 2 ENVEER Fef v CERRLQ v
(a0 2 N1164 10 ——13 n 312 FAID ——=12 13 §oerreo v
bl 13—t 13 218 2 ExBADY ENABLE ADRS 14
4 . 5 || FA0D-——=12 B e e | ot o v
ENAZF 2 ——eF 3 —) 0
¥ I INCIE 2 ERABF [H] ¥ 13 fiiead
. nityes R——eF B
£MABF
" .
(Part 2 of 3)
S~ =3 g
34570 n 19981800 A
FIGURE 3-2-30 | 4°4°se-3
Pioapmpppueegmpyrory 7 ' ‘ ’ 5 ‘ ‘ I 3 '

8 | e | 5 ¥ 4 J 3 | 2 1
INSTRUCTION DECODC SEQ "
[CMC RESPONSE (650 NS MINIMUN) i accept seq ;l'
; e
J (T % e g -
C DRE4 I DR1I4)]
1 1 1
 m— A L ' !
SET DURING PREVIOUS ' '
WSTRGCTION pecooe sco L9146 FET) ' 1
FOR &N INSTRUCTION g N '
-1 = 00464 '
i I} t
v C ECMUR D '
]] A
' .Z[ESTANL] ENABLL START STOVEHCE
1] 1)
1) 1
' . 140 DECOD, e C12MR (IF €1 OR €2 210)
' ' '
' cepm + 140————# [a4—————SLEME (CHARACTER POSITION OFFSET FOR< 2)
1] 4
——
' €1 b (b 145 —————SLF B (FIELD LEUGTH 1N CHARACTERS)
. ———EEEEPT ™ '
' e———t] '
) 1]
' oA NS '
' tekn H
1 i]
1]] 1
DESCRIPTOR MORD ' ' '
1 1]
LS L CRo I8 [} [
5557564647 3029262522281 0 : : :
TEPA WAME | COMAND OR FUNCTION | DPD WO || TEPM mAME | COWAND OR FUNCTION | DPD N0
bRes 16 |]oouen LKARLE (HSIRUCT 100)
GOuEA (WI464 [F) DECODC $FO
RESEY WIUGA TF L | TN »
60460
ECHOR it cus1
taa g2 |0 Hlamas fe—ens .| n
ks Mg e 3t g »
fe 4856 PN
. w tragn s o 05— If i
cmom
[1¢] R 3 %0
6h00-Gill | €2 ——etu0 n .
(AR
e n
[
. G4} 30
G- Gau) 180 ——» I88 30 N -
i n
ILEINF
fe [T 31
TSI ¥ START SEO (/BR) 2
0w TEST 180 200 30
Qeam Jenane aoe imitsit n
START SEQ 1164
(Part 3 of 3)
INSTRUCTION FLOW
INSTRUCTION DECODE
i - w— w2 8 7 | s ' s ‘ ‘ l 3 z

DETAILED PAK DIAGRAM (CPU 3.33, 3.34, 3.35, 3.36, 3.37)

. ADDRESS SEQUENCE

Initially, the address sequence is enabled by the start sequence clearing the block K
address FF located on the JS module (CPU 2,34). The K1 address FF located on the
JR medule (CPU 3. 34) is set during the start sequence by SK!ALR for a compare in-
struction, or reset during the start sequence by CK1ALR for a move instruction. Also,
the 1st address FF located on the JS module will be set by CMU master clear (CMUCC)
which is activated at the beginning and end of every CMU instruction.

MOVE INSTRUCTION (464, 465 - Refer to timing diagram, figure 5-2-32)

1st ADDRESS

1. The contents of the K2 register areloaded in the F register of the small adder.
RA is loaded into E. The resultant relative address from the small adder is
stored in the F register and transmitted to central memory control.

The transmission of a K address and memory request to central memory control is
enabled by address sequence K264. The K264 timing chain is enabled only by specific
conditions to ensure a valid address is being transmitted. 1st address FF cnables K264
and, assuming the address transmitter register is not full (indicated by ADRS XMIT FF
resct), the cnable address transmit signal (EATOR) will be generated.

2. During 1st address, the length in LC will be decremented by -12g in the L adder.
This is performed to test for a K2 exhaust on the first word. If K2 has exhausted
(that is, LC =12), the K2 exhaust FF located on the JQ module (CPU 3. 36) will
be set, and the 1st & last FF will be set. The 1st & last FF will enable the short
data sequence. On the 1st address, the decremented length count will not be
transferred to the LC register. LC will remain at its original value.

3. The data counter located on the HT module (CPU 3. 39) is incremented by one. The
increment is enabled by the update data counter signal (UPDKPJ) from the JP
module (CPU 3.33). The counter contains a count representing the number of

words requested from memory. As each word is received, the count is decre-
mented by one.

19981800 A

4. -Clear 1st address FF, set 2nd address FF, clear K1 address FF (CPU 3. 35).

2nd ADDRESS

1. With the K1 address FF set, K1 will be addressed in a manner similar to step
1 above.

The K264 address sequence will not be enabled until central memory control has gener-
ated an accept for the previous memory request. The accept will resct the ADRS XMIT
FULL FF (ATFNSR) located on the JS module (CPU 3. 35).

2. The length in LA will be decremented by -12g in the L adder. The group carry
bit (LADDG) from the L adder carry look-ahead network is monitored on the JQ
module (CPU 3.36). Absence of a carry indicates an exhaust condition and will
set the K1 exhaust FF. If LA>128. the enable LA signal ELAOQF will allow the
decremented count to be stored back in the LA register.

3. Increment data counter - described in step 3 above.

4. The buffer counter located on the JV module (CPU 3.37) is incremented by one,
The increment is enabled by the update buffer counter signal (UPBKPV) from
the JP module (CPU 3.36). The counter contains a count representing the

number of K1 words requested from memory. For every word written into K2,
the buffer counter will be decremented by one,

5. Clear 2nd address FF, set 1st write FF located on JS module (CPU 3. 35).
The K1 address FF will determine whether the address sequence is to perform addi-

tional K1 read requests, or formulate the first K2 write address. The K1 address FF,
located on the JR module (CPU 3.34), will remain set until buffer counter reaches a count

of 5, or the K1 addrecss has been exhausted. At that point, the K1 address FF {s reset
and, with the 1st write FF set, the address sequence will prepare the K2 address.

5-2-68.0

1st WRITE. K1 ADRS. TSUADRS, 2nd ADRS

1. With the K1 address FF set, the contents of the K1 register are gated to the E
register, +1 is forced to the F register by the 1'TOFN signal generated from
the JP module (CPU 3.33). The result K1 + 1 {s returned to the K1 register by
the enable K1 signal EKINRC. RA is added to the contents of F and the resultant
K1 address is transmitted to central memory control.

The remainder of the sequence will be the same as steps 2, 3 and 4 of 2nd address
described above.

1st WRITE. KT ADRS. Tst ADRS. 2nd ADRS

1. With the K1 address FF reset, K2 is gated to F, RA is gated to E. The result
fromi the small adder produces a relative memory address for the first K2 word,

The tramsmission of the K2 address and a memory write request will not occur until the
HR register is loaded with a data word to be written into memory. Loading of the HR
register is controlled by the data sequence. With the HR register loaded, the HR full

FF is sct to enable K264 »f the address sequence. K264, in turn, ‘ables address transmit

(EATOR) and data transmit by generating EDTOS from the JS module (CPU 3. 35).

2. The length in LC will be decremented by ~128 in the L adder. This is performed
to test for K2 exhaust. If LC 2 124, the enable LC signal ELCOQTF generated

from the JQ module will allow the decremented count to be stored back in the
LC register.

3. The sequence then performs a double subtraction that monitors whether the
next K2 sequence will exhaust the length in LC. The look-ahead function allows
the address sequence to read the last K2 word before performing the last K2
write. The decremented contents of LC from the L. adder are enabled to the LF
register via 145, and thus the second subtraction is performed. The absence of
a group carry or pass {CLADDG, TADDP) from the L adder indicates L <12; if
K1 has already been exhausted, the LLAC < 12 FF will be set.

Setting of the LAC < 12 FF enables setting the K1 address FF. The address sequence
will thus perform a K1 read sequence on the next cycle to obtain the last word of K2.
Since K1 must have exhausted in order to set LAC < 12, the current K2 address used to

produce the memory address in step 1 is stored in K1 by the EKINRC signal on the JR
module. Thus both K1 and K2 will contain the same K2 address.

19981800 A

4. Resct 1st write FF

If the K1 exhaust FF is not set, the address sequence will toggle between K1 read and
K2 write until K1 has exhausted. The address sequences for K1 and K2 are identical to
those already described but with two exceptions, (a) and (b), listed below.

TstADKS. Znd ADIS. Ki ADRS

(a) K1 is gated to E, +1 is forced to F, result K1 + { returned to Ki.
(b) Data counter and buffer counter are incremented by one.

Once K1 has exhaused, the address sequence will perform K2 write until the LAC <12
FF is set, at which time the last K2 read is performed.

LAC <12 I'F. K1 ADRS (Last K2 READ)

1. With the K1 address FF set, the contents of the K1 register (K1 will contain the
previous K2 address) are gated to the E register, +1 is forced to the F register.
The result from the small adder is added to RA to produce a relative memory

address for the last K2 word. This address is transmitted to central memory
control. -

2. The data counter i3 incremented by one. The increment is enabled by the update
data counter signal (UPDKQJ) from the JQ module (CPU 3. 36).

3. Reset K1 address FF.

With the last K2 read performed, the address sequence will generate the K2 address for
the last K2 write.

LAC <12, RTADRS (Last K2 WRITE)
1. With the K1 address FF reset, the contents of the K2 register are gated to the E
register, +1 is forced to the F register. The result from the small adder is

added to RA to produce a relative memory address for the last K2 write.

The transmission of the last K2 address and a memory write request will not occur until
the R [ull FF is set by the data sequence. °

5-2-68.1

COMPARFE INSTRUCTION (495, 467 - Refe to timing diagram, figure 5-2-32)

The address sequencing for a compare ins ruction is similar to that of a move with the
following exceptions:

1st ADDRISS

1. Kl is addrcssed rather than K2, as in a move.

2. LA is decremented by '128' K1 exhaust test is performed. The 1st & last FF

cannot be set during Ist address if K1 has exhausted. If C1> C2, the LA value
before it is decremented is stored in LAC1 and the previous contents of LAC1
are stored in LAC2.

The data counter and *!fer counter are incremented by one.

2nd ADDRESS

1. K2 is addressed rather than K1, as in a move.

LC is decremented by -124. K2 exhaust test is performed. If K2 has exhausted
and K1 exhausted on the previous sequence, the i1st & last FF is set to enable
the short data sequence. If C2 2C1, the LC value before it is decremented is
stored in LLAC1, and the previous contents of LAC1 are stored in LAC2,

The data counter and buffer counter are incremented by one.

19981800 A

With the buffer counter equal to 4, the block K ADRS FF (CPU 3. 35) is set. The black
K ADRS FF will prevént further addreass sequences [rom occurring until the compare
scequence has compared the first pair of words. The compare sequence decrements the
buffer counter by two and resets the block K ADRS FF.

Address sequencing will continue until K1 and K2 exhaust, or a compare unequal occurs.

COMPARE COLLATE - COLLATE TABLE LOOK-UP - A0 ADRS

The collate sequence will set the A0 ADRS FF and clear the block K ADRS FF, allowing
the address sequence to generate the correct table word address.

1. The collate sequence will load the upper bits (3-5) of the TQ or TS register in
the E register. ‘The address sequence will load the contents of the A0 address
register in the F register. The result from the small adder is added to RA to
produce the relative memory address for the desired table word.

2. The address sequence will clear the A0 ADRS FF and set the block K ADRS FF.

Further address sequencing will be blocked, unless the collate sequence sets the A0 ADRS
FF and clears block K ADRS once again,

5-2-68.2

DETAILFED PAK DIAGRAM (CPU 3, 38, 3,39, 3.40)
DATA SEQUENCE

Central memory control generates the data ready signal (DARDY), 50 ns before the
transmission of requested data. The accept sequence located on the GM module

(CPU 3.16) is conditioned by data ready. Data ready starts the accept sequence timing
chain: DR50, DRG4. The leading edge of DR50 generates central memory data ready
(CMDRM) to the data sequence HT module (CPU 3, 39), At the next clock, CMDRJX starts
the data sequence timing chain: D164, D214, D264, D314, and D364,

The basic data path flow through the dala sequence is shown on the illustration below.

-y u u U u u U U u
u u u u U u u u

S1Q 11~ [T ow oy | T I T T |
'

Wi —

Crtrr e L

|
Qe !
SEere 1
mervter vy !
|

"

PERIEPUIUR S [T —

e —

Ry —.l

=
-
b

- o o o o o] o - -

ﬂ
1

The time interval between the leading edge of CMDRJX and the beginning of D164 is
considered as D114,

During time intervals D114 through D364, data in CR9 can be propagated in succession
through five registers (H, C, Q, S, and HR) with the loading of each controlled in-
dependently by the data sequence. The [full conditions of these registers are

190981800 A

monitorcd' by five control FFs: Il full, C full, Q full, S full, and [IR full, located on the HT

and JW modules (CPU 3.39; 3.38). Each control FF is enabled by a special 25 ns clock that

occurs hall way between the regular clock. A full condition alerts the next sequence interval
to enable continuance of data propagation,

Normally, D214 allows for the realignment of character positions in C. Realigment is
performed by right“shifting the desired number of characters through the shift network and
returning the shifted results to the C register, The C full FF remains sct while the shift
is taking place. When a realignment of data in C is not required, D214 stores the unshifted
data from C direclly into Q. Depending on sequence conditions, Q full may be set at this
point,

Normally, D264 allows [or the storage of shifted data from C (bits 48-107) into Q. Any
shift residue characters, (those shifted past the tenth character position, bit 48), are
transferred into R for temporary storage.

Similarly, D314 allows for the storage of data from Q into S; D364 allows for the storage
of data from S into HHR. HR full alerts address sequence K264 to initiate a memory write

request. Prior to the generation of 1R full, the address sequence will already have placed
a K2 address into F,

To prevent writing, a compare instruction blocks D 364 altogether.

Consecutive data transmission to central memory control is dependent on the receipt of a
signal that acknowledges memory acceptance of the previous write data. Acceptance of a
write request which is unduly delayed causes stacking of data in the S, Q, C and Il registers.
It is specifically because of this stacking capabilily that the address sequence monitors the
buffer counter to ensure that only five K1 address requests (C2 2 C1), or six K1 address
requests (C1 > C2) can be issued prior to a write,

5-2-78.0

An example of data stacking {s illustrated below.

1 i

¥ y 1
;AT
LTRCY u U
eV v U e e A v vy v Y U]

: |U-U';u!onJ:u|U.UuU|U|U|u|u:U|U
3 1 4 'l A, e M

Tet DATA REAM :[mu | IR [THY) T vea J poe | vied] wasd } : : : : : i :

HEULFF ' =l-l_-= ! ' N]]] ! ' ' ' [}]]

cruner ! el | H ' i i H tum vt 1 :

- ' ' ULl i
graLer ' ' ' 1 T == | ! | \ i HISET BY \ '
A S T LS T S S S S S B
" o ' ' 1 \ i [T 1 T — 1
Ind DATA READY : ! : : Uiis e [T Daet |03 : :.mx.—uu

[}
] [] [}]] 1] ' [} ']] 1 [}
A RS e s N
FULF i ' ' [}
2rcu_rr | '] ' !]]]] ‘:‘__.I_-:_—-l_’=-l_'=] [}
L ! ! H ! ! ! ! ! ! ' bty
Ly ' ‘ 1 ' | ! i i 1 H—" 1
3rd DATA READY] ']]]] 1 ||—u'lu T bise | v214 [oms Lons)
. ' ']]]]]] }] ' [}]]
Crovee H ! : H ! ! ! ! i by | !
- [} ' ']
I ! ' ' ') ' 1 1 1 i \ | i =¢=¢::#::
o]]]]]]]]]]] Ll]]
' | '] 1]]]] L]) [] ' 1]
- e 1 1 1] A 1 A A 1 1 4 1 A 1

Three data ready responses are received at their maximum rate of 200 ns, Each data
ready initiates a data sequence,

The first data sequence proceeds through D364, where HR full is set. HR full enables
address sequence K264, and it is during this time that first write request occurs. The o«
second data sequence starts 200 ns after the first; it proceeds through D314 only. Since
HR is full, D364 cannot be enabled. The second data word remains stacked in S with the

S full FF set. The third data sequence starts 200 ns after the second; it proceeds through
D214. By D214 time, HR full is reset by an accept for the first write request, At the next
clock, D364 is enabled for the second word while D264 is enabled for the third, The second
and third words are simultaneously transferred from S and C into HR and Q, respectively.
HR full and Q full enable K264 and D314 at the next clock. K264 initiates a memory write
request for the second word while D314 allows for the transfer of data from Q into S. The
third data word will remain stacked in S until the second write accept is received,

MOVE INSTRUCTION (464, 465 - refer to Figure 5-2-33)

Three data detection FFs are utilized by the data sequence to determine path selection. The
three FFs, 1st data, 2nd data and 3rd data are located on the HW module (CPU 3, 40).

19981800 A

1st data sets at the beginning of a CMU instruction; it enables sequence path selection for
receipt of the ﬁrstylox"d. 2nd data is set at the end of 1st data; it enables sequence path
selection for receipt of the second word. Two paths are provided for 2nd data; the path
chosen is dependent on the C2 2 C1 FF. 3rd data sets at the end of 2nd data when ClI> C2;
it enables sequence path gelection for receipt of the third word.

1st DATA

Receipt of the first data ready response initiates the first data sequence. The first word
received will be the first word of the K2 destination field,

1. Data ready allows the data counter (CPU 3. 39) to be decremented by one.

2. The first K2 word is transferred into Q, where it will remain until second data.
The entire Q register is enabled because CSR contained zero from the start
sequence.

3. Clear 1st data, set 2nd data,

The data sequence {3 now conditioned for receipt of the second data word. The next data
ready will initiate the second data sequence.

2nd DATA

The second word received will be the first word of the K1 source field, The path chosen for
2nd data is dependent on the C2 ¥ C1 FF. Each path is described separately.

Cc2:=2C1

With the C2 offset greater than, or equal to the C1 offset, the first K1 word is shifted to
align the [irst actual character position of K1 with K2, The shifted K1 data from C is
transferred into Q, where it combines with the K2 offset stored in Q from 1st data, The
ghift residue from C is transferred into R for temporary storage until the next sequence,
The complete word in Q becomes the first K2 write data; it is transferred into S and HR,
at which time the first write request is performed, ’

1. Data ready allows the data counter to be decremented by one (CPU 3. 39).

2. The C2 offset in CSR controls loading Q, so that the K2 offsct is protected while
the shifted K1 occupies the remaining character positions of Q.

3. Clear 2nd data. :

All subsequent data responses use the normal path (TSt DATA . Znd DATA . 3rd DATAY
until last word ias detected.

5-2-78,1

Cl1>C2

With the C1 offset greater than the C2 offset, the first K1 word is shifted to align the [first
actual character position of K1 with K2. Since a left shift cannot be performed, the shift
will cause all characters to reside in the residue portion of C. The residue fro;n Cis
transferred into R, where it will remain until the next sequence.

1. Data ready allows the data counter to be decremented by one (CPU 3, 39).

2. Clear 2nd data, set 3rd data.

The data sequence is now conditioned for receipt of the third data word. The [irst K1 word
that was aligned with K2 remains in the R register until the next K1 word is received.

3rd DATA

While the second K1 word is being shifted to align K1 with K2, the first residue is
transferred from R into Q, where it combines with the K2 offset stored in Q from 1st data,
The shifted second K1 word in C is then transferred into Q to occupy its remaining
character positions, The shift residue from C is transferred into R for storage until the
next sequence. The complete word in Q becomes the first K2 write data, and is trans-
ferred into S and IIR, at which time the first write request is performed.

1. Data ready allows the data counter to be decremented by one (CPU 3, 39).

2. The C2 offset in CSR controls the loading of Q, so that the K2 offset ig protected
while the first K1 residue from R is transferred into Q.

3. The shift count in PW controls the loading of Q, so that the K2 offset and K1
residue previously stored in Q are protected while the second K1 word occupies
the remainder of Q.

4. Clear 3rd data,

All subsequent data ready responses use the normal path (ISt DATA . 2nd DATA . 3rd DATA,

until last word is detected.

ist DATA . 2nd DATA . 3rd DATA (Normal Path)

The normal path operation is similar to 3rd data with the exception that the CSR
register will contain zero instead of an offset value.

The data counter is decremented by one for each data ready. When the count equals zero
and the LAC <12 FF is set, the data word in CR9 is the last K2 word. The data path
chosen is dependent on the remaining buffer count value.

19981800 A

DT=0. BF=1. LAC< 12FF

A data count of zero and a buffer count of one indicate that the block HR FF must have
been set on the previous sequence to prevent writing the last K2 word until the partial
write characters from Ké are read. (Examples of this condition are illustrated in
figures 5-2-34 and 5-2-38.)

The remaining length value in LC determines how many partial write characters from K2
must be returned to K2.

1. The remaining length value from LC is transferred into PW where it controls
loading the partial write characters into Q.

DT=0 . BF0. LAC<12 FF

A data count of zero and a buffer count of one indicate that the block HR FF was not
previously set. Residue characters [rom the previous sequence stored in R are trans-
ferred into Q. The partial write characters from K2 are transferred into Q. (An example
of this condition is illustrated in [igure 5-2-35,)

1. The remaining length value from LC is transferred into PW and {s used to control
the loading of the partial write characters into Q.

COMPARE INSTRUCTION (466, 467 - Refer to [igure 5-2-33)

A compare instruction sets the block HR FF (CPU 3, 38); it remains set throughout the
instruction to block D364.

The toggle FF located on the HW module (CPU 3, 40) is used by compare to sclect the
appropriate data path for K1 and K2. In its reset state, the toggle FF selects the K1 data
path., K1 is always stored in S. When set, the toggle FF selects the K2 data path. K2 is
always stored in Q.

The 1st data flip-[lop is the only data detection FF utilized by compare. Path selections
are determined by the conditlon of 1st data, C2 2 C1, toggle and last compare.

The first word received (of a pair) will always be a K1 word. The 1st data FF is set

at the beginning of a CMU instruction; it enables sequence path selection for the first word
received. Four paths are provided for 1st data; (C22C1 ., TOGGLE),

(C2 2C1 . TOGGLE), (C1>C2 . TOGGLE), and (C1>C2. TOGGLE).

5-2-78.2

1st DATA . C2 > C1 . TOGCLE : 1st DATA . C1>C2

The first KI word received is shifted to align K1 with K2, The shift residue is transferred With C1>C2, the paths ‘for 1st data are similar to those previously described for C2 2 Cl,
into the R régister for storage until the next sequence. The shifted K1 data from C is with the following exceptions:

transferred into Q and S.

1. Rather than K1 being shifted to align with K2, the opposite is performed; K2 is
1. Data ready allows the data counter to be decremented by one (CPU 3. 39). shifted to align with K1.

2. The C2 offset in the CSR register prevents loading the C2 offset positions of Q. 2. Because of this change, the loading of Q is controlled by C1 instead of C2.
3. The toggle FF is sct; the 1st data FF remains set until receipt of the first K2 word.

All subsequent data ready responses will use the normal data path

(Tst DATA . TAST COMPARE), until last compare is detected.

1st DATA . C22Cl1 . TOGGLE

Tst DATA . TAST COMPARE (Normal Path)

The lirst K2 word received is transferred directly into Q without shifting, since K1 was

. K . The normal paths for compare are similar to the 1st data paths previously described.
already shifted to align with K2.
However, the difference between 1st data and the normal path is that the residue in R
from the previous sequence is transferred into Q while the shift is being performed for
K1 (C2 2C1) or K2 (C1>C2). The shifted characters of K1 or K2 are then transferred

into Q to combine with the residue, forming a complete word. The current shift residue

. Data ready allows the data counter to be decremented by one (CPU 3. 39).
The C2 offset in the CSR register prevents loading the C2 offset positions of Q.
Reset 1st data FF and toggle FF.

is transferred into R for storage until the next sequence,
. Enable compare sequence.

oo

R 1. The CSR register will always contain zero so that the residue from R can be
A representative timing diagram for 1st data is shown below. loaded into the entire Q register.

2. The PW register, which contains the shift count, ensures that only the shifted
contents of K1 (C2 2 C1) or K2 (Cl > C2) are transferred into Q while the

DATA R UN "U U

T30 V) U U U U U U u u u u U U previous residue, (step 1), is protected.

R WOID-DATA SR Coue] oones | SEN IRLECN T The normal path is used for receipt of data until the last compare FF is set, Last

:' ::::,’,‘ [1 compare is sct during the compare sequence when K1 and K2 have been exhausted and

‘3:‘0:::: [— the compare sequence determines that the second last pair of words are equal. Data
path selection for last compare is determined by the condition of the C2 2 C1 FF, toggle

2 WOID-DATA 31:Q [ond Tooes § o2 | NI M FF and the remaining buffer count, :

WEULE FE =3

cruerr c———////

RARLAR = — LAST COMPARE . BF=2

st DATA LK X J

TOGGH 13 +1° £ o The buffer count of two with the last compare FF set, indicates that one remaining

COMPARI SIQ Cvins Toaes Jcuzs]

pair of words must be received and compared before the instruction is completed. (An
example of this condition is illustrated in figure 5-2-37.)

All subsequent data ready responses will use the normal compare data path,

(TSTDATA . TAST COMPARE), until last compare is detected.

19981800 A 5-2-78.3

The data sequence is similar to a normal path except that:

1. CSR contains the remaining length from LA (Ct > C2) or LC (C2 *C,”; CSR
prevents loading Q with characters that are not part of the K1 or K2 last word
field.

2. CSR # PW ensures that only the shifted K1 (C2 2 C1) or K2 (C1>C2) characters
are transferred into Q while the previous residue is protected, and characters
not part of the K1 or K2 field are blocked. A

ILAST COMPARE , BI°'=1

A buffer count of one with the last compare FF set, indicates that only one remaining
word must be reccived, (An example of this condition is {llustrated in figure 5-2-38.)

With C2 2C1, the remaining word will be from K2; whereas with C1 >C2, the remaining
word will be from K1. CSR will contain the remaining length from LA (C1>C2), or
L.C (C2 > C1); CSR prevents loading Q with characters that are not part of the K1 or K2

last word field.

COLLATE TABLE LOOK-UP

The data sequence is also uged during the compare collate operation to store the collate
table word into the T register. The appropriate collate character is selected via 134 and
transferred to cither the TS or TQ register.

19981800 A

CENTRAL MEMORY CONTROL - ACCEPT RESPONSE

Central memory control_responds to a read or write request by generating an accept

signal (CMACM) when the request is honored. CMACM sets the CMC accept'FF {CPU 3.35)
and clears the ADRS XMIT full FF (at full). The reset condition of at full allows initiation
of another address sequence, unless the block K ADRS FF is set,

The CMC accept FF for a write operation (KT ADRS FI') decrements the bulfer counter
by one. K1 ADRS XMIT FF, located on the JR module (CP’U 3, 34), prevents decrementing
the buffer counter on a read accept. The buffer counter and decrement controls are lo-
cated on the JV module (CPU 3, 37).

Block IR Controls

When the address scquence detects that the next K2 field length will exhaust (indicated by
LAC< 12 FF) with a count of two in the bulfer counter, the block IR FF will be set,
LAC <12 and a buffer count of two indicate that the last K1 word and last K2 word must
be received before the last K2 write is performed.

The block IR FF is always sct at the beginning of a compare instruction, and remains
set throughout its execution.

When set, the block HR FF blocks data sequence D364,

5-2-78.4.

INSTRUCTION DECODE SEQ

e —> \F
€2 —> LE

START_ SEQ

LE+LF —> LC » 224 (L¢ C2)
€1-C2 —> SCR*1 SCR—>SK
0 —> CSR

SCR —3> PW e}

c Ipﬂﬂﬂﬂﬂﬂﬂﬂﬂ—
7771/
"y —— AT °

8 I 7 | s | 4 4 I 3 I 2 I 1
SOURCE DESTINATION
Anoanonan MOVE EXAMPLE NO.1 LONG MOVE c2> ¢
“ 2 L Loty =150
i x4 . 1, cive
C2+3

o, [FJZRERIIEE)

&

™—>c E%UILMP‘}——————!

1//7/// S .

' f

LA - €l —>LA= 21g(LsCl)
-12g —> LE

ADORESS SEQ

2ND ADRS

IST_AORS
IND AORS

IST WRITE

X2 + RA —> F —> ADRS YMIT
LC ~LE {22 = 124 % 10} OT #1014
TEST K2 EXHAUST (LC <0)

Kit+RA—3>F —3> ADRS XMIT pryje2
LA-LE —> LAl21g =124 *Tg) BF*i7}

TEST Ki txuwst (Ltago)
{X1*1) + RA —> F —> ADRS XMIT
LA-LE (7g=12g4* EXHAUST) grn-i

MNeEr ki ExHAUST

K2 +RA —3>F
LC-LE LCl22g-12g¢ 10g)

LF ~LE_{ 104 =124 EXHAUST

HR FULL BEFORE

{s Q WILL WAIT UNTIL =
LaoRs xmiT__

----0

€5R [EX:]
c2 [

SN —3 el | IO]II:!?!QISIG‘ ! I I l

us L14]
I - 210
9 .,)

Fu
sCh

OQ

P lmnannaunp of]
K241 /]

LE] A7
K l

IR s

EEAEERE

SET LAC<I2 F/F [
TEST K2 EXHAUST
- { (X2 +1)$RA—3>F —3> ADRS XMIT DTels2 . DATA SEQ
{7 5EQ WiLL WAl unTe. })
(K24 1)4RA —>F 1 HR FULL BEFORE ! 1ST DATA K2 =3 CRY —3 H —3C —5—0
) w LC-LE_ [10g - 124 ¥ EXHAUST) SApRS xmiT__] oT-1e2
n SET K2 EXHAUST &R F —3» ADRS XMIT
2ND DATA K= CRI—3H —>C—>SN—3C —>0)—3> $ —>- HR —3> DATA XUIT
\'3‘ BF-tet
a, .)
NOTES: OT « DATA COUNTER Kiel —3-CAY —>H—3 C—> IN—>C o303 —>8 —> BLOCK HY
BF + BUFFER COUNTER oT-1et R \
- R[5> Rz -
T F —> ADRS XMIT
DT0-BF<0 K241—>CRY—>H—3C — > y——3 $ — HR—>DATA XMIT
‘Lac<iz DT-1:0 ¢
T =T =
INSTRUCTION FLOW EX | Jlsm“” 19911800 l a
LONG MOVE c2>ct FIGURE 3-2-34 |"53lme
T | ? | 6 | [r'N | 3 2 1

8 ' 7 ' € l s L 2 A | s ' . ' ,
aounge mms
Je[3[«]sTe[7]e]s <[5l |5 OVE_EXAMPLE WO Z LoNG MOVE c2>cCi
- , L] b ///////////////////////// ! Loy g
e 2ot o
IS ST 1/ i

X

INSTRUCTION DECODE SEQ

e —> F
€2 —> LE

STARY sEQ

LESLF —> LC » 30g (L+C2)
€1-C2 —>SCR=7 SCR—>3K
0 —> CSR

SCR —> PWe7

LA s Cl—> LA 21 (LeCh)
-12g—> LE

ADDRESS_SEQ

{ 1ST ADRS

(2ND AORS
LA-LE —> LA(2!

LF-LE (16g-12g4%4)
4 TESTS 12 (LF < 12)
TEST K2 EXMAUST

K2 ¢+ RA —3> F —> ADRS XMIT

- LEQO. ~12g%16g) DT+ 1=}
TEST X2 EXHAUST (LC <O}

Ki+ RA —> F —> ADRS XMIT 2

~12gTg) BFtici

] TS TEST KI EXWAUST {LAS O)

OT 4=

SEa WLl warr Guin |}
Luu FULL BrFORE !

-

ST ADAS (K1 +1}% RA —> F —> ADRS XMIT
(ZND AORS LA-LE (7= 12g* EXHAUST) DT+1e3
\ e
SET Ki EXHAUST
_IST WRITE K24RA —>F
Lc-LE LC130y - 12g 16 4]

[Joli]2]3]alsTel7]elo} ~ |
¢ ' 7///////?’///9//////9/ k2|
i o

o[:I‘{

6jr18}9

sN—>¢ [;m° pag3ls
At]

=
-

o
=

l

o
n

o e

T > n PEBEFEBE[T]
L

92

a[sfe]7]s]o]]
N—>¢ l'/////////////// R w7

7ML 20

[
SCR

L s

e [eizI3]4]5]el7]e] o
x2+2 V7,
[IEXN T [}

e —

(3}
Q’ml
Ed

EHBBEE]EII'IE —_— 38——>uR

T 000

X2+ 1 vRA—> F fs:o vm.t wm Nt)
N Le-LE Lelieg-1zg* 4)] 'A'R EFORE 1 -
.._..._..___)
LF-LE (4-124« EXHAUST) L) w) s —>ur
- TRSET LAC<I2 F/F [
TEST K2 EXHAUST \"—I—"
w (K242} ¢ RA—> F —3> ADRS XMIT DTé1e2 _ _ i o8
5 (XK202) sRA—>F I §0 wiLl wai uNTiL) DATA SEQ
LC-LE_ (4-12g = EXHAUST) | R FULL BEFORE 4 == &R
SET K2 EXHAUST (ADRS XMIT _ o ! IST DATA K2 —> CRY —> H —3> ¢ —0 5.0,
pT-1e2
F; ¥ —2 ADRS xMIT
2ND DATA K1 —3 CRY —3 H —3> € —> S =€ ——>0p—3> 3 —3> HR —> DATA XMIT
L
'l
F 3 ADRS XMIT
KIS1 > CAY > H —> € — SN —>€ ——>o,——>: — > uR—> DATA XMIT
3 cn 8F-120
oT =101 n o "
"% 2
F —3 ADRS XMIT
OT0-BFsD KZOB—>CAS—>H—C 3T~ 04 —> 8 —>-HR —> DATA XMIT
LAC <12
DY-1+0
ne csu o
-
roxo e =
INSTRUCTION FLOW EX 2 34570 I] I 19981800 l A
LONG NOVE €2>C) - T
FIGURE 8-2-33 I's-2-mv
Y | 7 1 ¢] [4 4 | 3 2 1

SOURCE QESTINATION

ofrz]3]a]s[s]7]e]> ol T2 s]a]s]ef7]e]s

 GHIITITTITTTITIIA)~

Kite I'\: X244 7 W////
S I 77/,

INSTRUCTION DECODE_SEQ
W
c2 > LE

START_SEQ
LE+LF>LCr2ly, (L4cC
(C2-C 412> SCR = 3, SCR —> SK

0 —> CSR
SCR—)PW-SS

LA +C) —)LA-SOa
'IZQ—)LE

ADDRESS SEQ
15t ADRS K2 + RA —> F —> ADRS XMIT
LC - LE (21g ~12g*Tg) or #1441
TEST K2 EXHAUST (LC = O)

204 ADRS K1 + RA => F ~> ADRS XMIT
LA - LE > LA (3g-12g=l6g) OT 412
\-> TEST K1 ExvausT :
AN

I3t _ADRS (K1 41)4 RA —> F —> ADRS XMIT
URS LA - LE > LA (30g-129°4) DT +1+3
TEST KI EXHAUST BF +1=1

(K1 +2) 4+ RA > F —> ADRS XMIT
ta - U (4 -12g *EXHAUST) DT 4124
SET K1 EXHAUST BF +1-2

nd

W,
Ist WRITE K2 4+ RA > F THR FULL BE

LC - LE D LE (2g-12gr7) L2720 o v o
LE - L 7 - 12p + EXHAUST)
SEV LAC = 12 F/F

TEST X2 EXHAUST

(X2 + 1)+ RA —> F -> ADRS XMIT OT +1+2

®2 410+ RA > F S0 WICL WATT i
LC - LE (7- 129+ EXHAUST)
sev K2 Eynaust LADRS l'k-!'— -

L.

Lrig ity
Cl 9
(LR

:

13t DATA

2nd DATA

3rd DATA

0T sv-tf ol
cLAC = 12

) 2 u o OO S—

EXAMPLE * 3 LONG MOVE Ci » €2
¢ [TOEE 9
R/ (7]
"3 a7 0
A O EEREEHTEE]
ARNANDEAORRENE ’
H—>¢ ' ,// T IS

]

> 9
. . N‘ V777K

[] o
wN—>sc¢)] IlF]ﬂ—

TR
ce
"3 ’_9
‘-———Y—--—’LWW . l_ EIEGEEE) 5 - un

SCR

;I 2 /77//,7/7// —
HORENENOAN
= o HH P75 > s >

¢ [Holzl>alslel7Tefo] — 1 %
K2+ 1 V Pw
n3 \——__Y'—’" 0 a2

u:»cav—)n-)c-—‘?;)a,

07 ~1s3

KIi DCRIDPHDCIEND>CT DR

0T 1
= F —> ADRS XMIT
K1+t >3RI -3 H => € -> N > Cogi? Q"> > HR —> DATA XMI}
oY -iet a-—c-:—‘—-»o\——->u aF <1t
mn-;cm-»n—rc-»sn-)c—:c";;o,omoc«m-
oT-te1 esh
A —2"30

W £ -~ MRS xMIY
K241 > CRY -3 h =>% —7> Q> 9 > HR > DATA XMIT
bT-1e0 Lo e

INSYR FLOW EX *
LUNG MOVE C! » C2?

T owenes |

FIGURE 3-2-36 |3-2-788

v

of

« 7

2[s]a]s]e]7]e]s

o]z
« VI

s[efsTef7]e]e]
7

Kith 10

K2+t 10

k12| Twi 7

V777 xae2 ini]

W

* NQTE * THIS EXAMPLE ASSUMES INDICATED CHARACTER OF Ki+2 AND K2 42
TO BE UNEQUAL

INSTRUCTION DECODE SEQ

LA > LF
€I > LE

START S€EQ
LE +LF > LA

=33 (L+CH

C2-ClI->SCR e} SCR -> SK

0 -> CSh
SCR > PW « |

LC +C2 > teC
‘l2 > LE

ADDRESS _SEQ
Ist ADRS
Kt

{
-
|
~—~{
{
|

Xt

'34 @ +c2)

K1 + RA => F ~> ADRS XMIT

LA -LE > LA (53 -2 '2!.) OT +1ist
OF +1+1

TEST K EXHAUST

K2 + RA —> F -> ADRS XMIT

LC-LE>LC (34 -12 -22,) or 0!'2

BF 41+
TEST K2 EXMAUST

LACH

(K14 1)+ RA > F —> ADRS XMIT
LA-LE > LA (al.'lz.-gb OT +1+3

OF 413
TEST K1 EXHAUST

X2+ 1)+ RA —> F -> ADRS XM1T
Lte - LE > 1LC ‘?2'!2"'0) Oy 414

BF +1+4
TEST K2 EXHAUST PR T
SET BLOCK X ADRS ADRS SEQ WIL k
+ CONTINUE AFT 1
LAC! 4 BLOCK K ADRS F/F
!S CLEARI "

(Kt + 2) ¥ RA => F —> ADRS XMIV

LA -LE (7, ~12, *EXHAUST) OY 41+ 3
BF +1¢3
SET Kt EXHAUSY

X2+ 2) + RA —> F —> ADRS XMIY

LC -LE (lO 12 e EXHAUST OT 414

SeT k2 Exnaysy O +104
SET BLOCK K ADRS

LACI => LAC2 » 22y
LC-> LACt = lﬁ.

COMPARE EXANPLE % 1 c2mcl

Le g 128y
cIs2
c2.38 .

w—s ¢ [BERERERE]
3. 7 [
Y s or [JEGEBEES Tl EEREERE)
&R ° et

= LI /////, W —
——n]
ENABLE COMPARE SEQ
¢ IF}]}[I}}BDBBHDB—
| A v ° [o] 1J2]3]e]s]c]7]8]
3> 9.
%“— = S //7//, S —
o

R & 8200 HOB0 LD —
"3 7 [
[— oy PPIECEEENE]__, ,, EEIEGFERLE

¢ [JoNEBREREGER]

K241 1
13 7]

o
w—>e CPRPEI
n3. 7 []
Y [sTo[1]23]a]sTe]7] [olo1 J2[3]a]s]e]7]e)
e or PR s 74— * PRBE e
‘ ENABLE COMPARE SEQ

¢ ngg[ﬂﬂsjl 85 COMPANE UNEQUAL
x|~ w242 w I OETECTED
3. 7 °

ENABLE COMPARE SEQ

0y [FIEGERELe
lm A N

Lc

mngan9509
CSR Qs
T [_x2v2 Y77/
DATA SEQ = &SR
189 DATA. K-2Ch9—>H->C >SN->c—>0a->3, 131 DATA. “"“"’""""c‘"’"z
€2 = ¢1. TOGBLE OT-1e3 €2 = Ct- TOOOLE oF-1e3
\-)u, ENABLE COMPARE
COMPARE 3EQ
BF=4-2+2, CLR BLOCK K ADRS
31
T AT - un-»cm—)n-»e-»sn»c——;go.as! To OATA » . K2 41-3CA9 -2 H > € ——> 0q,
. - = .
€2 2 c1- TOUOLE oT-1s3 PR . °s\ n, €2 = ¢+ TOGOLE ov-1s3 ENABLE COMPARE

COMPARF,_SEQ
BF 4 -272, SET LAST COMPARE F/F , K| + K2 EXHAUST PREVENTS CLEARING BLOCK K ADRS F/F AND SINCE COMPARE IS EQUAL~ALLOWS LAT!I -> LAC2 » 104

! CSR
LAST COMPARE « KI*!QW-’K-’C—DSH—’GE—Q%GO'QS LAST COMPARE Kzii-)CIQ-b"-)C—T—)O.
8Fs2+C2 2 Cle R csn 5 0 ::,;:L}” =Ct - oT-1s0 ENABLE COMPARE .

COMPARE SEQ
BF »2-2+0, UNEQUAL CHARACTER POSITION~> CP ROTR « 2 , SELECT UNEQUAL CHARACTER FROM S -3 TS ROTR .
SELECY UNEQUAL CHARACTER FROM G —> TQ ROTR , CLR LAST COMPARE F/F ENABLE EXIT SEQ

extr seq
0 -> ¢ ROTR . .
(LAC2 = €P) > LC 318 > € > X, w0, -2, w8
comr .
[I 3]
INSTA FLOW EX I l 13981000 ‘ A
0 ce=ct FIGURE 8-2- 37 | 5-2-789

v

ofitfafs]e]s]s]7]s]s ofi]2]s]a[s]s]7]e]°]
) s R /) o
{22} 10 K2+t T

Wis IS 7/////////

THIS EXAMPLE ASSUMES ALL CHARACTERS EQUAL
INSTRUCTION DECODE_SEQ

ENAREBEBERD
LI11117117017107//3
" T [J :
byl [S— oy BT
¢ > Le L LRI
S, . [EEEEEET]
(I SR B
STARY SEQ
LE +LF D>LA L +cn ¢ [JelBlaGER s
€1 - C2 ->SCR =% SCR -> $K 5 LIEA] s 3
o csn P — o, PIEEEEEERE] L, , [EOEREEECIL
SCR—)PVI"'. ‘—"o 3 Ki 4} ?
LC #CiI > LC * 21 L +Cca
's
2. = LE of12]3]aIs]e[7]a]o]] ENABLE COMPRE SEQ
o e d B 18'///7///7/////, S0 WXXIR /////, R N, I
ns 47) N0
ADDRESS SEQ W Y > a BHBBBEEE
Tst ADRS X1 4 RA —> F —> ADRS XMIT scR "—“C____,. CIERBEIERIT]
X1 { I.; - u;—)u 130, 12 *16,) S SR 2 (ke + V77774]
LACIN TEST K) EXHAUST *
¢ [JolRIs[s]3fcTrfelo] —— — 1
2nd ADRS K2 + RA —> F > ADRS XMIT Re Y, - S
xt { Lo TLESLE Rl o2ysTy) pr Az 2 - — o. POERITIIT] |\ FEOERTTIIL]
TEST K2 EXHAUST v CIR XK '/7/77//7/4/: LR YK R/////1///1/;
{ (XK1 + 1)+ RA -> F <> ADRS XMIT .
X1 LA-LE->LA (16, -12.24)) DT+ |+3 G o ENABLE COMPARE SEQ
¥ LactVrest K1 exnausT BF+i-3 °7\IT
(X2 + 1)+ RA —> F -> ADRS XMIT El%g’,”’l’l,,’
LC - LE (7-12,-ExwAUST) OT 41 +4 4
- SET K2 EXMAUST portlee
SET BLOCK K ADRS F/F | c‘m?lﬁ :ﬂ‘é‘n ' QATA s€Q &R o
iy ' 191 DATA. . Ki <> CRD > H > C ——> 0, 8, 121 DATA K2 > CA9 -> W =3 C ~> SN > € ——> 0, ENABLE CONPARE
L3S CLEARED ©1 = c2. TOGOLE OT-1+3 o €1 2 €2- TOGOLE OT -1.2 o n
.]
{K1+2)+ RA —> F —> ADRS XMIT A -
LA - LE (4 -12, « EXHAUST) DT 41 ey ®F a4 -2.2 , CLR BLOCK K ADRS F/F
v e BF 413
e SEV K| EXHAUSY E?ﬁ W
SET BLOCK K ADRS F/F T+ DATA + KI 41 3 CR3 > H->C —=>0,>3, T3 OATA + K2 <> CR9 > M —> € ~> SN —> C ———3 Q, ENABLE COMPARE
LACI -> LAC2 « 18y ¢t = 2. TORT OT -1+ 2 o €t = C2- TOOOLE oT -1 ey n LT o R
LACI « 44] Q 4 2

compane

ameLr % 2 cizc2

L'IY‘-I!.

Cl=9
c2e2

LAST COMPARE «
BFe1-Ci=C2 OT -1+ 2

[g am—

IEIIBB/D?}-‘JHBE“
R7/11/1111114/7} mm
[T LT T JoliI2]3[4Ts[e]7]6]5]]
WY//707/771/71//7/, 0 ML W R

c
3
[
SN ———> C
3

BRRRa!
T
o, i

IPA|

BFe 3 - 292§, SET LAST COMPARE F/F ,Ki+* K2 EXHAUST PREVENTS CLEARING BLOCK K ADRS F/F AND SINCE COMPARE IS EQUAL - ALLOWS LAZ{ > LACR » l.

X1 -ot-)cn’-)u-)c-%s;-bo.-———",

COMPARE _ S€Q

LASY COMPARE + COMPARE EQUAL ENABLE EXTT SEQ

EX1T s€Q

0 -» C RGTR

c->x°

[4]
R!—Tr-) Q, ENABLE COMPARE

ENABLE COMPARE SEQ

INSTR FLOW EX 2

o 1n

ci»c2

FIGURE 5-2°38 | 8-2-7810

»

DETAILED PAK DIAGRAM (CPU 3, 41)
SHORT DATA SEQUENCE

The short data sequence is similar in operation to the normal data sequence; however,
it is only enabled when the Ist & last FF is set., ’

Ist & last FF is set for a move when K2 exhausts during 1st address, and for a. compare
when K1 and K2 exhaust during 2nd address,

MOVE INSTRUCTION (464, 465 - Refer to figure 5-2-39,)

1st DATA

1. Decrement data counter by one.
2. The first K2 word is transferred to Q.

3. Clear 1st data, set 2nd data,

2nd DATA

Path selection for 2nd data is determined by C2 2 C1 and the buffer count.
C22C1}

With C2 2 C1, the last move equals-zero signal (LMSOTV) selects the appropriate data
path.

1. Deccrement data counter by one.

2. The shifted K1 word is transferred to Q. The C2 offset in CSR and the shift
count in PW control the loading of Q. CSR # PW ensures that only the shifted
characters from K1 are stored in Q, while the K2 offset, and characters not part
of the K2 field,. are protected. (An example of this condition is illustrated in
figure 65-2-41.)

3. The complete word in Q is transferred to S and HR in preparation for the
1st write request.

19981800 A

C1>C2

With C1>C2, the buffer count is checked. If the count equals zero, the last move
equals-zero signal (LMSOTV) is generated. The sequence follows the same path des-
cribed for C2 2C1,

If the buffer count equals one, the last move equals-one signal (LMS1TU) is generated.
Last move cquals-one indicates that two K1 words must be received. (An example of this
condition is illustrated in figure 5-2-40.)

1. Decrement data counter by one.

2. After K1 has been shifted, all K1 characters will reside in the residue portion
of C. Therefore, the residue must first be transferred to R and then to Q. The °
C2 offset in CSR and the shift count in PW control the loading of Q.

3. Clear 2nd data, set 3rd data.

3rd DATA

1. Decrement data counter by one.

2. The shifted K1 data is transferred to Q. The loading of Q is controlled by the
remaining length value in L.C and the shift count in PW.

3. The complete word in Q is transferred to S and IIR in preparation for the
18t write.

COMPARE INSTRUCTION (466, 467 - Refer to figure 3.2-39)

Short data for a compare monitors C2 2 C1 and toggle to determine path selection.

The data path is the same as the one used for a normal data sequence with 1st data,

except that [or a short compare both CSR and PW are used. CSR will contain the C2
offget value (C2 2 C1) or the C1 offset value, while PW will contain the remaining LC
value (C2 2C1) or LA value (C1>C2).

— 5-2-84.0

LA - LE (64 124" EXnAUST) BF 41}
SET K2 EXHAUST

VUNTIL HR FuLL !
lB(?]“'!E ADRS ¢

=

{ Ts WRITE X2 +RA D F SFQ VIILL W X';'
- J

SOURCE STINATION XAMP SHORT NOVE ct »c?
of rT2]s]a]s]e]7]e]o ofrf2]afalsle]7]e]o :.'S:
.
K1 7 2 x? c2e2
cxn[s T - Y 8 ONED 50U 00 E—
!__1"::0 L Q,M_JL_&LQ LIE] 47 [
>t -
3 F o, PR
s1ART_sEg o d .
LESLF > 1C o7y (L +C2)
(C2-C11+ 125 —> SCR » 44 SCR > $K o SN—>¢ Illllpﬂﬂﬂpﬂﬂ_
0 -> Csr . Kl
SCR 3 Pw s 4y . 15 1 0
LA+ C > Laats, Qt*_,n G O £ I—
“12g ~> LE LI 7/7; W%
ADDRESS 5£Q I __c_sn_(}){_____vw
st ADRS X2 + RA —» F ~» ADRS XMIT o! Crdsch
— LC - LE (7,-124 »EXHAUST) DT + 11 BNORRNARROEG
K1 e ‘s ->
SEV K2 EXHAUST F/F v/ % gl/; S >ur
SET 1w 8 LAST F/F L EGELERGRER
w—s e L A y
204 ADRS Ki + RA —> F -> ADRS XMIT KL+ Qy
LA - LE > LA U35-12g+ 3 DT 4 1s2 ”3;__r_._1‘7 o T CSRO PW
TEST K| EXHAUST LC @ SCR
K1 {X)41)4 RA -> F —> ADRS XMIT g ; ?
LA - LE (3,-12,% EXHAUST) OATA_SEQ - ONE_WORO csh
SET K1 Exaust 131 DATA g‘-»l?;s-on—)c—--—»o
V8t WRITE K2 4 RA > F sm Wi VALT, R Pu
o TL R rULL! 20dDATA Kl 3 CR9 > H -3 € > SN -> n, o,
:_g%"o'ne 3 Ct > C2-0F 54 or -1t c2dscr
MU L CSR® Pw F—> ALRS XMIT
3¢ DATA m4|—>cn9->u—>c—>su-)c-———-—»s—»m-»ohuxuu
T ~1e0 Lc ® Sch
souRce DESTINATION MUVE EXAMPLE ¥ 5 SHORT MOVE €2 >y
o[1[2]s]«[s]s]7[e]s o[i [2]s]«[s]e]7]s]o L%
x1 s x2 o
[€23
NSTRUCT ION_DECODE_SEQ [T EEIEETEIEE] i}
INSTRUCTION DECODE S n X2 1]
¢ o " ° I REEEE)
A & ° o 777 ke
LE +LF 1€ +10, (L # €2)) v UZ /2
cz-ct—)scn-z‘ SCR —> $n ' Y
0 —» Csh N —> ¢ L Je R e elsl — 1 Q
SCh > tW e 2 Y xt V7Y SR @ PW
{1}) 7 [
-Léffl—)u.-ee b———t—-—/’ c @Le
ACORLSS_SEQ
131 ADRS K2 + RA -> F > ADRS XMIT DATA_SEQ - ONC_WORQ - .
“ LE T LE (109~ 129+ EXHAUST) OT 4 1%} 191 DATA X2 >CA3 > M ->C —=—3 0,
SET K2 EXMAUST E/F oT - 4ot
SET tw @ LasT F/r K =>CR9 >k ->C >SN > S 0> -> > DS ANIT
204 ADRS KI +RA ~> F -> ADRS XMIT DY $ie :’:2‘;’: OT -1e0 v i

INSTR FLOW EX {, EX 2
SHORT MOVE CI=cCca,C2>Clt

l 19981800] L

FIGURES 5-2-40,41 | 5-2-84 2

19981800 A

DETAILED PAK DIAGRAM (CPU 3.42)
COMPARE SEQUENCE

The compare sequence is enabled from either the data sequence or the collate sequence.

FROM DATA SEQUENCE

The compare sequence monitors the compare word equal signal (CWEQ) to determine the
action to be performed.

Comparison Equal (CWEQ)

1. The bulfer counter is decremented by two, which will allow the address
sequence to Initiate read requests for another pair of words.

2. The block K address FF is reset, enabling the address sequence timing chain

at the next clock.

3. S full and Q full are cleared, enabling the data sequence to resume, and

another compare to be initiated. .

Last compare is detected by the condition (K1 exhaust and K2 exhaust) or (1st & last FF).
When both K1 and K2 are exhausted for a normal compare, or 1st & last is set for a short
compare, the next compare will be the last. If the result of the last comparison is an equal
condition, the exit sequence will be enabled.

Comparison Unequal (CWEQ)

1. The character position register (CP) is enabled, so that a code pointing to the
first unequal character (from left to right) can be stored,

2. Using the CP code, the unequal character from both S and Q is stored in TS and
TQ, respectively.

3. The compare sequence will enable the exit or collate sequence. The sequence
enabled will depend on the instruction type being executed.

5-2-86.0

DETAILED PAK DIAGRAM (CPU 3, 43)

COLLATE SEQUENCE

The collate sequence is enabled from the compare sequence if a compare word unequal

is detected during a 466 instruction.

The collate sequence can be divided into two sections, where timing chain sequénces CS114,
CS164 and CS214 form collate I, and CS264 forms collate II. (Refer to figure 56-2-42,)

COLLATE 1

Timing chain sequences CS114 and CS164 are enabled by compare word unequal (CWEQ)
from the compare sequence, CM214, The remaining timing chain FF, CS214 is set by
require address FF.

Three control FFs are conditioned by CS114 and CS164. They are: address 2, data 2 and
require address.

The require address FF allows the address sequence to be enabled by enabling CS214.
During CS214, the block K address FF is reset.

The address 2 FF indicates that two passes through the address sequence must be performed,
since both collate characters are located in different words.

The data 2 FF indicates that two passes are required through data sequence D164. With
address 2 set, each pass occurs after data ready; with address 2 reset, both passes occur
consecutively after the first data ready.

The table at right shows the possible equality detection combinations: the resultant settings
of the three control FFs, the number of address requests, the passes through D164, and
the final code stored in WP.

19981800 A

CS214

CS214 is enabled by the require address FF sct during CS184. At CS214, the block K
address FF is cleared, and the A0 address FF is set. A0 address conditions the address
sequence to transmit a collate table address. The upper three bits (3-5) of TS or TQ.
which selects one of the eight possible collate table words, are stored in E and WP.
During the address sequence, the collate table address from the A0 register is added to
the select code in E to formulate the table word address.

COLLATE Il _CS264

Collate II is enabled from the data sequence when both collate characters have been
loaded into TS and TQ.

If both collate characters are equal. the collate character equal signal (CCEQ) is
generated to enable the compare sequence; otherwise the exit sequence is enabled.

Equality Detection FFs Collate 1 Control FFs Final Pass in D164 No. Adrs
wP Requests
TQ=TS | TQ:WP | TS=WP | ADRS2 | DATA2|REQ ADRS
- 1 1 [o o No None None
change
0 (1] [1] 1 1 1 i~} 2 passes per Data 2
Ready
1 [}] 0 1 1 TQ 2 passes for Data 1
Ready
- [\] 1 o 0 1 ™ 1 pass for Data 1
Ready
- 1 0 0 0 1 TS 1 pass for Data 1
Ready

5-2-88.0

v I

7]s]s

[e] T2]s]«s]sT7]o[= o[]2]3]s
Vi | V7 - Uil

x|

U

®* NOTE. TMIS EXAMPLE ASSUMES INDICATED CHARACTER OF KI AND K2

TO 8E UNEOUAL

UNEQUAL CHARACTER OF Ki » 63y
UNEQUAL CHARACTER OF K2 * 31g

COLLATE TARLE
lrj2idjalsis|r

AQ|
A3 37
A8 37

INSTRUCTION DECODE_SEQ

LA—>LF
Ci—LE

SIART SEQ
LE+LF—>LAI0g (L4 CU

Cl ~C2—>SCRs1 SCR—> K1
0 csm
SCR —>PWs 1
LC+C2—>1C 7g
ADORESS SEQ
18t ADRS K1 + RA~—>F —> ADRS XMIT gri
LA- LE (10g ~ 129 «ExMAUST) BF +1¢
SEY KI EXHAUST -
LACI® 10y
204 ADRS X2 + RA —> F—> ADAS XMIT T 440
LC - LE (7g-12g *EXHAUST) e

NSET K2 EXHAUST, SET BLOCK K ADRS
SET Ist 8 LAST F/F
LAC! —> LAC2 +10g

Ap ADRS (Ag—3F + E)—> F + RA—>ADRS XMIT
CLR Ag ADRS F/F

SET BLOCKX K ADRS

CLR A ADRS F/F

COMPARE_~ COLLATE EXAMPLE # ¢ <1 2c2
L -9 SMORT COMPARE
Cie3
c2v2
¢ s[el7[8)s.

H—>c =}$,22%5’52?}}‘3__

11/i 117/

CSR ® Pw
cI®ua
QATA SEQ - ONE WORD

cSR®PW

c12c2. KI~>»CRI—PH—»C~———3Q)—> S,
0660 0T-te1 @A

f
COMPARE_SEQ

AYS we ! Aors sea wiLL sTanT)
3-5 | o WITH TS CONTENT I |
€ RGTR LE RGTA 3
(69) tadaiadele
DATA s€Q
COLLATE IN CR9—3> T —> 1345 [37—> TS
PROGRESS «
oT-0 Ts (379)
0-2 CLR DATA, F/F)
CLRY FULL F/F (TG TS)
COLLATE SEQ C5214 (REQUIRE ADRS F/F - BLOCK K ADRS)

SET COLLATE IN PROGRESS
UNEQUAL CHARACTER POSITION~3CP RGTR +6g

vs BN
SELECT UNEQUAL CHARACTER FROM S —>TS RGTR « 63— (e | 3]
SELECT UNEQUAL CHARACTER FROM 0—>T0 RGTR* Sta~—_ [ST3[3[2[i[g]
T
COLLATE SEQ C€S114,CS164,CS214

IS-WP,iQ'WP,"O"g

SET DATA, F/F (TG=WP - TS Wh)

SET ADRS F/F (TG-WP - TS+ WP - T+ T5)
SET REQUINE ADRS F/F (TO WP« TSTWP)

CLR I3t COMPARE F/F

CLR BLOCK K AORS F/F

SET Ag ADRS F/F

CLR BLOCK X ADRS F/F
SET Ag ADRS F/F

CLR REGUIRE ADRS F/F (AORS F/F)
ADRS SE£Q Wil lYlRV.‘

i) we '
3 ‘ | WITH TO CONTENT i
€ RGTR L E ROTR

]
1
(3g) e

T EEBE] T T GERE]
111/ IR % lgggl'lm

ENABLE COMPARE
SEQ- COMPARE
UNEQUAL DETECTED

> 9 W&‘&S%ﬁ

CSRDPW
cr2c2. K2—-5CR9—>H—>C—> SN—> € ———> 0,
TOGOLE oT-1:0 cIOLA
COLLATE TABLE POSITION
I [CHARACTER PoSITION
DATA sEQ
COLLATE IN CRY—>T~> [34—> 1373 T0Q
PROGRESS »
oT.0 To . (379)
o-2 CLR T FULL F/F
ENABLE COLLATE CS264
COLLATE SEQ CS264
TS+ TQ ENABLE COMPARE SEQ (iF TS5 TG, ENABLE EXIT SEQ)
COMPARE_SEQ
CP RGTR 41> CPROTRs7g (ALLOW COMPARE S AND Q CHARACTERS 7.8,9)
ASSUMING REMAINING CHARACTERS
COMPARE EQUAL—> ENABLE EXIT SEQ
SET LAST COMPARE F/F
€X1T sEqQ
0—>C RGTR
C—>Xg RGTR

INSTR FLOW EXAMPLE
COMP/COLLATE CI>C2

l I 19981000 ln
FIGURE 3-2-43 | s-2-802

DETAILED PAK DIAGRAM (CPU 3.44)
EXIT SHQUENCE

The exit sequence is enabled at the conclusion of a2 move or compare instruction. EXIT - COMPARE EQUAL

MOVE INSTRUCTION

The normal exit for a compare equal is identical to the exit performed for a move.

The enable exit signal (EEXNVF) is generated when: K1 and K2 are exhausted, the EXIT - COMPARE UNEQUAL

enable exit FF is set, and a write accept is received for the last K2 word, EEXNVF

enables exit sequence E114. For a move, E114 will clear the C register only. Timing The exit sequence for compare unequal is used to calculate the number of characters
chain sequences E164 and E214 are skipped; E264 is enabled next. (Refer to figure 5-2-44.) that were not compared as the result of the unequal condition, and whether K1 is greater

or less than K2, The remaining count is contained in the LAC2 register. The
During 12264, the contents of C, containing zero, are transferred into X0. The CMU exit

signal (EMCEXII) is generated to enable the RNI sequence.

character position code in the CP register is subtracted from the remaining count to
produce a count equal to the number of characters that have not been compared +1. The

count is transferred from LC via [5 into the C register.
COMPARE INSTRUCTION

IrQ<S, the C register is complemented via the I5 complement control logic. The
E i E CES ©) i ¢ a t .

The enable exit signal (EEXNYF) is generated by the compare or collate sequences. A complement of C indicates that K1 >K2.
compare instruction (467) will generate enable exit if an unequal compare occurs before

the last compare. It will also generate enable exit if the last compare is equal. However, IfQ> S, the C rcgister is not complemented. This indicates K2 > Ki.
tie last compare I'F will be sct, indicating equally on the last compare.

At 12264, the count value stored in the C register is transferred into X0. The CMU exit
A compare collate instruction (466) will generate enable exit if an unequal compare occurs signal (EMCEXII) is generated to enable the INI sequence.

after the appropriate collate characters are read and compared.

19981800 A 5-2-90.0

DETAILED PAK DIAGRAM (CPU 3.45)
INVERTER 17

PARITY GENERATOR

OUTPUT XMITTERS

There are five sets of transmitters that allow the CPU to communicate with other units in the
system,

P TRANSMITTERS - 2 SETS

The current contents of the CPU P register are continually transmitted to the two PPS chassis.

This output also includes a parity bit and the condition of the run FF. The PPS can use these
signals to determine abnormal CPU operation.

ECS TRANSMITTERS

The ECS coupler receives the starting address and word count from the CPU during execution
of an ECS instruction. An odd parity bit (COXPAR) accompanies the transmissions. The re-
quest (COREQ) is sent to establish the start of an ECS sequence. The write signal (COWRT)
will be sent with the address il a data transfer from CM to ECS is to occur, Start transfer
(COSTXT) will be sent if no AOR conditions inhibit the data transfer,

CM ADDRESS TRANSMITTLERS

The sequences accessing memory develop the gating for loading F into the address trans-
mitters. The request (MEMRFEQ) will accompany the address if no range error exists,

19981800 A

.

Parity for the address is developed as ADDPAR; however, this signal can be forced to zero
by an input from the status and control register. An RNI tag accompanies requests for in-
structions. This is used in the CMC breakpoint test. Two control signals related to exchange
jump are transmitted independently. The request exchange (CPOXRQ) signals CMC when the
CPU executes a 013 instruction or an error exit exchange jump is to be made, OK exchange
(CPOKX) is a response to an exchange request sent to the CPU by CMC.

CM DATA TRANSMITTERS

The contents of the hold register (HR) are clocked to the data transmitters contimally. A
single parity bit (ODTPAR) is developed to accompany data transmission. This parity can be
forced to zero by the status and control register. A write signal (DWRITE) will be developed
by the sequences when the data transmitters contain useful data. This signal will be trans-
mitted to CMC as an indicator of a CM write operation.

17 AND HOLD REGISTER

All data to be transmitted to memory is formatted in I7 and placed in the hold register,
Clocking of the IR is conditioned by the sequences which store data, These sequences
develop the enable 1IR (ENBHR) signal and the various I7 input paths. The following table
illustrates the contents of HR for each sequence.

5-2-92.1

W

4 |

*
N

—
b

PERIPHERAL
EQUIPMENT

DISPLAY
CONSOLE

3000-TYPE
PERIPHERAL
EQUIPMENT

——— —— — — G— — W Gn—— G T — —

CENTRAL PROCESSOR (CP)

FLOATING
ADD
{CHAS 8)

NORMALIZE
{CHAS 7)

BOOLEAN
(CHAS 6)

SHIFY
{CHAS 6)

|
|
|
|
l
!
[
I
|
|
!
|
l
|
|
I
|
|
|
!
|
|
I
|
|
|
|
|
|
J

{CHAS @)

Lo POP
“;‘: MULTIPLY OIVIDE coﬂ,“ INCREMENT
{CHAS 7) {CHAS 7) (CHAS 6} {CcHAS 6)

CENTRAL PROCESSING UNIT (CPU)

(CHAS 5, 6)

AWALEVOVI N S it YA

L . T

r-E)(TENDEI) CORE STORAGE -1

L o
1

| (ecs) sussysTEM @ | CENTRAL
| | MEMORY
| 1 CONTROL
(cmcy
| | {CHAS 5, 6)
| e e
I | — ey
| 1 1 lcenTraL @) NOTES: c
] 8| :MEMORY (cM) \ (@ OPTIONAL EOQUIPMENT.
' (@ BASIC CENTRAL MEMORY CONTAINS
! ;| | S ORAGE ' 65,536 60-BIT WORDS. CM
| | I T | 1S EXPANDABLE TO 98,304,
|] (csu) } 131,072, 196,608, AND 262,144
' l {CHAS 3) ' 60~ BIT WORDS.
| . | | | (® LOCATED EXTERNAL TO CENTRAL
{ COMPUTER MAINFRAME .
| ostrisurive § | | |
DATA PATH @& CENTRAL 4—'
| ® : : STORAGE | .
| p 1 uNIT
(csu) |
L e e e e e = | Lems o |
(CHAS 2)
PERIPHERAL {CHAS 10)
| PROCESSOR : ! ' B
{ o1SPLAY SUBSYSTEN i ,
(PPS-0) ERIPHERAL
| | contRoLLER] 1| aocesson | EQUIPMENT
| 1 | sussysTem
a i I el N Y
| DATA | | o CONVERTER |
Q—l—-b CHANNEL l @ ‘
CONVERTER | ' 222&;‘{“{
.
| } | EQUIPMENT —
! | | baTA |
1 DATA | CHANNEL | a
T o W | CONVERTER
| CONVERTER | | ® |
|
e T L]
A

SYSTEM BLOCK DIAGRAM
CENTRAL COMPUTER

CODL e ay ows a9 i

34010 | 60420310 | A

[} rast
se | e -

000271

8¢-OH

CYBER 175 BASIC
CPU BLOCK DIAGRAM

; ' 8 X REGISTE @—
FUNCTIONAL X REGISTERS ECS
UNITS | ==~ —77777] COUPLER
LONG ADD SHIFT
POP COUNT NORMALIZE 8 B REGISTERS
BOOLEAN FLOATING ADD] @ e e e e e e e e - - L}
INCREMENT MULITIPLY ‘_‘._,. N\
DIVIDE @ 8 A REGISTERS &9
1 @
(»)
CIw TAS >
lssusAggNTRon. I IWS 4> AND
' _ FETCH () .
CONTROL _/ oMe
T ®
>
READ/WRITE [* : ¥
®

PYRAMID

[

/5

CENTRAL PROCESSING UNIT

The CPU, together with the functional units, executes programs stored in
central memory (CM). The CPU consists primarily of 24 operating registers
and a 12-word instruction stack. Data moves to and from the CPU through the
operating registers. ’

INSTRUCTION CONTROL

The principal components of instruction control are the Instruction word stack
(IWS) and the instruction address stack (IAS). A coincidence test is made be-
tween the content of P and the content of each 1AS rank during each clock
period. \Whenever a coincidence occurs, the corresponding 60-bit instruction
word in the IWS is sent to the current instruction word (CIW) register for

execution.

INSTRUCTION WORD STACK (IWS)

The IWS is a group of 12 registers, individually identified by rank, that holds
program instruction words for execution. Data moves through the IWS from
rank 12 to rank 1, Rank 12 is filled with CM data, and all other ranks are
filled with data from the next-highest-order rank. The data shifted from
rank 1 is discarded. Data movement through the IWS takes place only during
a shift stack condition.)

A shift stack condition occurs when the read address for an instruction word
central memory control (CMC) and no CM bank conflicts occur, The
condition is delayed to arrive coincident with the read data arriving at IWS,

enters

INSTRUCTION ADDRESS STACK (IAS)

The IAS is a group of 12 registers that holds CM program addresses on a
one-to-one basis with the program words in the IWS., Rank 1 in the IAS con-
tains the oldest address in the stack, and this address corresponds to the
relative CM location from which the word in rank 1 of the IWS was read.

60420310 A

All ranks of the IAS receive information from the next-highest-order rank during
a shift stack conditlon in a manner analogous to that for the IWS, An address
is read into rank 12 of the IAS from the next stack address (NSA) register.
This address corresponds to the relative CM address for the word arriving at
rank 12 of the IWS. When the stack-is shifted, the address in rank 1 of the
IAS is discarded.

The outputs of all IAS ranks are compared with the content of P each clock
period. Rank X coincidence gates the IWS rank X content to the CIW rcgister.

NEXT STACK ADDRESS (NSA)

The NSA register, adder, and advance stack flag (ASF) generate the NSA, which
{s an 18-bit CM relative address for the next sequential word required by the
IWS. The inputs to the NSA register consist of a branch address from the

P register or the content of the NSA register plus one or zero from the NSA
adder. One is added to the NSA when ASF {s set.

P REGISTER

The P register contains the current program ecxccution address, which.is an
18-bit relative CM address.

The P register has four possible sources of data. Read data bits 36 through
53 enter the P register from CMC as part of the exchange package.
the P register during conditional branch and return jump sequences,
enters during the unconditional jump instruction (02).
straight-line coding.

K enters
K+ Bi
P+1 enters during

Under branch conditions, the P bits enter the instruction fetch address (IFA)
register in CMC where they are added to the referencc address for CM (RAC)
to form the fetch address of an Instruction word. The P bits enter the register
selection network to become bits 36 through 53 in the first word of the exchange
package. The content of the P register enters the return jump exit (RJX) ad-

dress register during the return jump and error exit sequences.

5-2-0.0

CURRENT INSTRUCTION WORD (CIW) REGISTER

The CIW register is divided into four 15-bit parcels. All four parcels are
loaded in one clock period when an instruction word is read from the Wws.
The highest-order parcel in the instruction word is issued first, An instruc-
tion issues from the CIW register when the conditions in the functional units
and operating registers are such that the funcfions required in the instruction
exccution may be completed without conflicting with a previously issued in-
struction. The other parcels are then left-shifted in the CIW register by
either 15 or 30 bits, depending upon the instruction format for the instruction
issued.

The exchange sequence register and counter provides three bits during the
exchange sequence which become the i, j, and k designators that gate Xi,

Aj, and Bk into the exchange package in CM. The counter outputs also gate the
P and support registers into CM during the exchange sequence.

X REGISTERS

The eight X registers are the principal operating registers for the CPU.
These registers each contain 60 bits and serve as the source and destination
for operands in execution of the arithmetic instructions. The X registers
receive data from all nine of the functional units and from CMC.

INPUTS

Translator

The translator merges the special case and sign data from the functional units
into complement control signals. The signals are used by complement control
to generate special case floating-point numbers or to change the sign of a
result from a functional unit.

60420310 A

Input to X Network

Every functional unit has at least one result data path, and several of the
floating-point units have multiple 60-bit result data paths to the X registers.
Instruction control ensures that only one of the nine functional units sends a
result to the X registers during any given clock period., The data flow from
the functional units is treated in two groups. One group, consisting of the
multiply, divide, shift, and normalize units, is treated in a static merge net-
work, Data from these units flows through the complement control network
before entering the X registers, The second group, consisting of the remaining
functional units and CMC, merges with the data from the complement contro}l
network in a second static merge network., The 60 bits from this last network
are delivered to all eight X registers, The data is entered into a specific
register selected by the X register selection network,

X Register Access Control and Selection

The X register access control and selection functions determine the timing and
the specific register selection for each word entered into an X register., The
X register selection network selects the destination X register for all instruc-
tions. The i designator from the CIW register enters the X register selection
network in one of three ways: directly, through a l-clock-period delay, or
through the X register access control. The direct path is used during an ex-
change sequence. The delayed path is used for all two-cycle (2-clock-period)
instructions, The X register access control path is used for all instructions
requiring more than 2 clock periods to execute. A four-register delay chain in
the X register access control provides the delay required.

For example, register 1 supplies an extra clock period of delay for the 3-clock
period normalize instruction's i designator value,

§-2-0.1

OUTPUTS

The contents of all eight X registers cnter a static distribution network along
with the i, j, and k designators from the CIW register. The distribution
network decodes the i, j, and k d- (nators and gates the contents of the
selected Xi, X), and Xk register< . the nine functional units and CMC.

The Xi outputs to CMC stores X0 through X7 in the exchange package. The
Xj output to jump test is used during the 03 branch instructions. The X0
register is connected directly to ECS instruction control.

A REGISTERS

The ecight A registers are used to address CM for operands and store results.
Registers Al through A5 are used to address CM when reading data from CM

to an X register. A read CM reference is initiated whenever one of these A
registers is the destination during execution of an increment instruction. The

data from the relative CM address is delivered to the corresponding X register.

For example, an increment instruction with an A2 register destination causes
a CM reference with the CM data sent to the X2 register.

Registers A6 and A7 are used to address CM when writing data into CM from
an X register. A write CM reference is initiated whenever one of these A
registers is the destination during execution of an increment instruction. The
data from the corresponding X register is written into the relative CM address
specified in the A register.

INPUTS

Only one data source may transmit data to an A register during a given clock
period. The input from the increment unit is gated into the selected A
register by the go 2 cycle to A signal during 50 through 57 instruction exe-
cution. The CMC input fills A0 through A7 during an exchange sequence.

.

60420310 A

OUTPUTS

The data in the A register specified by the j designator is delivered-to the
increment unit and CMC each clock period. The data in the A0 register, the
starting relative CM address for ECS instructions, is delivcred to CMC and
ECS instruction control each clock period, "The CMC data path, from the
distribution network, is used for storing the A register data in the cxchange
package in CM during an exchange sequence; The incremcnt unit data path
provides data from Aj for 50, 54, 55, 60, 64, 65, 70, 74, and 75 instruction
execution,

B REGISTERS

The B registers are intended primarily for indexing functions in program exe-
cution. The BO register does not physically exist in the hardware. In the
instruction execution, this register appears to contain all zero bits.

INPUTS

Only one data source may transmit data to a B register during a given clock
period. It is gated to the B register by access control. The increment unit
input is present during 60 through 67 instruction execution and is gated by the
go 2 cycle to Bi signal. The normalize inputs are gated by go normalize
during 24 and 25 instruction execution. The CMC inputs are present during
an exchange sequence and are gated by signals from exchange destination con-
trol. The boolean unit data is gated by the go 2 cycle to Bj signal during 26
instruction execution.

OUTPUTS

Bl and Bj are used by the jump test circuit for 04 through 07 instructions.
Bi is sent to the K+Bi adder to form the word count during’ jump instruction
(02) execution. Bj is used by the K+Bj adder for ECS instructions (011 and
012) and the central exchange instruction (013).

§-2-0.2

SUPPORT REGISTERS

The support registers assist the operating registers during the execution of
programs. The registers are entered with CM read data during an exchange
scquence. The data in these registers Is returned to CM by a second exchange
sequence which terminates the execution interval, The P register s also
entered with CM read during an exchange sequence,

REFERENCE ADDRESS FOR CM (RAC)

The 18-bit RAC register is added to relative CM addresses to form absolute
CM addresses. The P register content is added to RAC to form the absolute
program address in CM.

FIELD LENGTH FOR CM (FLC)

The 18-bit FLC register defines the size of the CM field available for program
execution.)

EXIT MODE (EM)

The 6-bit EM register holds the exit mode selections for a program, The
exit mode bits control CPU error processing, Any or all of the six bits can
be selected at one time. The exit mode selections are listed below in octal
format as they appear in bit positions 48 through 50 and 57 through 59 of the
exchange package.

Mode Selection Condition Sensed

0XX1 Address out of range
0XX2 Infinite operand
0XX4 Indefinite operand
1XX0 ECS flag register parity error
2XX0 CMC input error
4XX0 CM data error
60420310 A

REFERENCE ADDRESS FOR ECS (RAE)

The 21-bit RAE register content is added to the relative ECS address specified by
the instruction to form the absolute starting ECS address for block transfers.
The lower two octal digits of RAC (bits 36 through 41 of the exchange word)
are always zero. ’

.

FIELD LENGTH FOR ECS (FLE)
The 24-bit FLE regiater defines the size of the ECS field available for block

transfers. The lower two octal digits of FLE (bits 36 through 41 of the ex-
change word) are always zero.

MONITOR ADDRESS (MA)

The 18-bit MA register holds an absolute address that specifies the starting
address of an exchange package.

EXCHANGE JUMP ADDRESS

A CPU (013) or PP (2600, 2610, or 2620) exchange jump instruction starts or
interrupts the CPU and provides CMC with the first address of a 16-word
exchange package in CM. This initial address is K+Bj, MA, or A (PPS XJA)
in PPS-0 or PPS-1. The CPU holds this address in the XJA' register. The
exchange package shown in Figure 5-3 provides the following information on a
program to be executed.

Program address (P) - 18 bits

Reference address for CM (RAC) - 18 bits

Field length of program for CM (FLC) - 18 bits N
Exit mode (EM) - 6 bits

Reference address for ECS (RAE) - 21 bits

Field length of block transfer for ECS (FLE) - 24 bits
Monitor address (MA) - 18 bits

§5-2-0.3

Initial contents of eight A regis:ers ~ 18 bits)
Initial contents of eight X regis srs - 60 bits cumTs fas

b [0 v o 38 i 9
Initial contents of Bl through B7 (B0 constant zero) registers - 18 bits - ": ! ‘:c o :‘: °7/.W
wez 23 //" " 13 FLe a3 .“
The period of time that a particular exchange package resides in the CPU - ueaf e w A »
registers is called the execution interval. The execution interval begins with an ::: 282 ::: : /}7// :: ::
, %
exchange jump that reads the exchange package from CM and enters these 7 uA I o
parameters into the CPU registers. It ends with another exchange jump that ““ ner A ar ; or
stores the exchange package back into CM. An exchange jump timing diagram ‘ofaTo] ::: b :
is provided behind the CPU logic diagrams. A timing chart Is provided in wero Y
part 15 of this section. nent X
LR41] x4
Neiy x$
LE2L) xe
ECS INSTRUCTION CONTROL [vere X1
The ECS instruction control interfaces the CPU and the ECS coupler. Block V77 o nanowane acanstens ex

transfer starting address information (RAC, RAE, A0, and X0), field length
(FLC and FLE), and word count [K+(Bj)] are sent from the CPU to the ECS

coupler,

Figure 5-3. Exchange Package

ERROR EXIT CONTROL

The error exit control monitors CP error conditions, Depending upon the
type of error and the exit mode bits, the program in execution may be inter-
rupted, If the error is an illegal instruction, breakpoint, or address range
error on RNI or branch, the program interruption is unconditional. For other
types of errors, the corresponding exit mode bits must be set before the
program can be interrupted. The exit mode bits are:

v

Bit Exit Mode

48 Address range error

49 Infinite mode

50 Indefinite mode

57 Parity error on ECS flag register operation

58 CMC input error

59 CM data error)

60420310 A 5-2-0.4

L
DIV, MULY, FAD,
ap L4 3ET31 5 pos C1,08 40D,
001, SHIFY, NOAM
48 AL O e
0P, C¥] —
- K| e
meRGE RGTAS F0)—ef 2N | wirr cuc
. nev. 10-3%
consTANT
R0
Moo OW. WWLE 7D, INCA.
ADD, 000
exen
0E8T CONT L
INER ey fero} JUMP TEST
xnor 0, vt e agtn ™
noru '.';!' cour (cPu
nstas
wenee oist | ™ oy snancu
cue i — @ —@D—{ SonY cxty cw acTa
. - et tere) fora
PROs—— .m
2L HCR, SHIFT, 80O0L
(Y
ciwagTR
cw ncra_Li oy Giw moxa R RGTR ACCESS CONT
erud crul
#ctne | acrns | acraz | mom .
i0-2, rLaoifi0-2, racifto-2, FLac|10-2, PLac
exen oesT olv cuc MUY o NOAM.
ConT 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>