CONTROL DATA

CORPORATION

CONTROL DATA’
6000 COMPUTER SYSTEMS

SCOPE REFERENCE MANUAL
6000 VERSION 3.3

REVISION RECORD

REVISION DESCRIPTION
A This document is printed in conjunction with the release of version 3.3 of the
(9-4-70) SCOPE Operating System. Features added to the Reference Manual since the
previous version are indicated by a bar in the outside margin or by a dot next
to the page number if an entire page is affected.
B Changes and additions are indicated by a bar in the outside margin or by a dot
(6-30-T71) next to the page number if the entire page is affected. Additions include
Recover, Permanent File macros and the LABEL macro; and print files
conventions. Pages affected include front matter; 2-1 thru 2-40; 3-1 thru 3-33;
4-1 thru 4-32; 5-1 thru 5-23; 6-1 thru 6-16; 7-7, 7-8; 8-1 thru 8-16; 10-1 thru
10-28; A-1 thru A-3; B-1 thru B-21; C-5, C-6; D-3, D-4, D-15 thru D--22,
D-27 thru D-36, D-39 thru D-47; F-1 thru F-2; Index~1 thru Index-13.
Comment Sheet.
C Changes and additions are indicated by a bar in the outside margin or by a dot
(7-9-71) next to the page number if the entire page is affected. Additions include diag-

nostic messages for Tape Reliability, a new feature. Minor corrections have

been made to the text. Pages affected include front matter, 6-15; 7-1, 7-7;

8-9; 10-4, 10-9, 10-25; A-1 thru A-4; D-1, D-12, D-19, D-20, D-26 thfu D-29,

D-43; Comment Sheet.

Publication No.

60305200
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

orporation sales office.

©1970, 1971

CONTROL DATA CORPORATION
Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

ontrol Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

ii

60305200 C

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD (Cont'd)

REVISION DESCRIPTION

D Changes include REQ parameters, CPC operation, OPEN/WRITE,

(9-10-71) OPEN/WRITE/NR; clarifications of RECOVR, FET macros, DISPOSE,

RETURN, MEMORY, CLOCK and COPY items. Page affected include front

matter; 2-21, 2-22, 2-39; 3-9, 3-19, 3-20; 4-3, 4-6, 4-7 thru 4-9, 4-14

4-30, 4-31; 8-2; D-25, D-28, D-39, D-40; comment sheet

Publication No.
60305200

PREFACE

This manual describes the SCOPE 3.3 Operating System for the CONTROL DATA® 6000 Series computers. It has
been written with the Applications Programmer in mind, yet it contains information of value to the Systems

Programmer as well.

Other documents of interest to programmers using SCOPE 3.3 are:

SCOPE 3.3 OPERATOR’S GUIDE

SCOPE 3.3 PRODUCT SET INSTALLATION HANDBOOK
SCOPE 3.3 SCOPE INDEXED SEQUENTIAL

SCOPE 3.3 USER’S GUIDE

Pub. No.
Pub. No.
Pub. No.
Pub. No.

60306400
60305100
60305400
60252700

Suggestions and criticisms of this manual, its form and content, may be submitted on the Comment Sheet in the back
of the manual or sent directly to Software Documentation, Control Data Corporation, 215 Moffett Park Drive,

Sunnyvale, California, 94086.

60305200 B

ii

CONTENTS

PREFACE ii Interrelating Dependent Jobs 2-32
Inserting Comments in the Job 2-34
1 INTRODUCTION 1-1 Examples of Job Deck Arrangements 2-35
6000 Series Hardware Overview 1-1 Job Termination 2-36
Main Concepts of SCOPE 1-2 - Normal Termination 2-36
System Overview 1-2 Abnormal Termination 2-38
Basic Functions 1-2 Regaining Control Before
Multiprogramming 1-3 Termination 2-38
Central Memory Usage 1-3
Control Points 1-4 3 FILES 3-1
Exchange Jumps 1-6 Formats 3-1
Accounting (Job and System Dayfiles) 1-6 Logical Records 3-1
Operator/SCOPE Communication 1-6 Level Numbers 3-1
Card Files 3-3
2 JOB PROCESSING 2-1 Mass Storage Files and Binary Mode 3-3
Job Flow 2-1 Coded Mode 3-3
Processing with Control Cards 2-3 Active Files 3-4
Job Identification and Control 2-4 File Name Table 3-5
Identifying Jobs) 24 File Name 3-5
Limiting Mass Storage 2-7 File Type 3-6
Equipment and File Assignment 2-8 Control Point Number 3-6
Requesting Equipment for a Job 2-8 Equipment Type 3-6
Required Parameters 2-8 Last Code and Status 3-6
Optional Parameters 2-9 E/N, Index Bit 3-6
Rewinding Files 2-16 Write Bit 3-6
Requesting Private Disk Packs 2-16 Permissions 3-7
Disposing of Files Before End of Disposition Code 3-7
Job 2-19 File Environment Table 3-7
Releasing Files from Jobs 2-21 Basic File Environment Table 3-8
Unloading Files 2-22 FET Creation Macros 3-20
Removing Files from Private Packs ~ 2-22 LABEL Macro 3-22
Creating Common Files 2-22 File Processing 3-23
Releasing a Common File 2-23 Input Queue Files 3-23
Tape Job Processing 2-24 Output Queue Files 3-23
Job Initiation 2-24 Input File 3-24
Tape Assignment 2-24 Output File 3-24
Save Output Tape Files 2-25 Special Name Files 3-24
Job Termination 2-26 Non-Zero Disposition Files 3-24
Program Execution 2-26 Non-Allocatable Files 3-25
Program Options 2-28 Common Files 3-25
Setting Program Switches 2-28 Permanent Files 3-25
Establishing Halt Conditions 2-30 Private Disk Pack Files 3-25
Establishing Exit Paths 2-31 File Disposition 3-26

60305200 B v

Normal Termination
Kill
Rerun
No Rerun
Disposal Prior to Termination
CLOSE, UNLOAD
RETURN
DISPOSE
COMMON
Buffer Emptying
EXPORT/IMPORT
Tape File Structure
SCOPE Standard Binary Format
SCOPE Standard Coded Tapes
Magnetic Tape Label Processing
Random Access Files
Random Access File Structures
Random File Types
SCOPE Indexed Sequential
User Defined
SCOPE Name/Number Index

4 INPUT/OUTPUT
User/System Communication
Basic Communication
Requests Processed by MTR
Input/Output Requests
Miscellaneous Requests
Central Program Control
Record Blocking/Deblocking
READIN/WRITOUT Requests
Random Access READIN/
WRITOUT Requests
Using CPC
Calling Sequence
File Action Requests
Data Functions
Position Functions
Reverse Functions
System Action Requests

5 PERMANENT FILES
Terms and Concepts

ATTACH
CATALOG
CYCLE
EXTEND
ID Automatic Mode
ID Normal Mode
Multiple Access

vi

U
NN —

38

U

U

[SO 2 o

3]

W L o i v

w W

Permanent File
Permanent File Privacy, Security,
Protection
Public Files
Purging/Retention
Rename
Rewrite or Modify
Sub-Directory
Write
Access Permissions and Passwords
Function Macros
Macro Requests
Macro Request Calls
Permanent File Control Cards
Parameters
Permanent File Functions
File Definition Block
CATALOG Function
CATAILOG Examples
ATTACH Function
RENAME Function
EXTEND Function
PURGE Function
PERM Function
Universal Permission
Examples of Permanent File Control
Card Usage
Initial Cataloging
Newcycle Cataloging
ATTACH Examples
RENAME Examples
EXTEND Example
PURGE Examples
PURGE by Logical File Name
PURGE by Permanent File Name

6 RELOCATABLE PROGRAM LOADER

Loader Inputs
Loader Selection
Loader Control Cards
Program Execution (Load-and-Go)
Card
LOAD Card
EXECUTE Card
No Execution Card
Mapping Control
Field Length Reduction
Overlays and Segmented Programs
Segmentation
Segment Levels

5-3
5-3
5-4
5-4
5-4
54
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-8
5-11
5-13
5-14
5-15
5-16
5-17
5-18
5-18

5-19
5-19
5-20
5-20
5-21
5-22
5-22
5-22
5-23

6-1
6-2
6-2
6-3

6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-7

60305200 B

Segment Linking
Segmentation Levels
Segment Loading
Overlay Generation
Overlay Levels
Overlay Linkages
Overlay Directives
Overlay Decks
Overlay Loading
Overlay Job Examples
Legend for Core Map

7 DEBUGGING AIDS
DEBUG
DEBUG File
DEBUG Control Card
DEBUG Use
DUMP
Types of Dumps and DMP
Control Cards
Relative Dump
Control Point Area Dump
Exchange Package Dump
Absolute Dump
ECS Dump
Dump Formats
Unlabeled Dump
Labeled Dump
Change Dump
Normal and Abnormal Program
Termination
DMP Examples
Sample Deck Structure
SNAP
SNAP Control Card
Parameter Specifications
Restrictions and Cautions on
SNAP Use
SNAP in Overlay or Segment
Mode
SNAP Control Card Examples

Examples of Deck Setup Structures

SNAP Output Examples
TRACE
TRACE Control Card
Parameter Specifications
Restrictions and Cautions on
TRACE Use

TRACE in Overlay or Segment

Mode

60305200 B

TRACE Examples
TRACE Sample Deck Structure
TRACE Run
TRACE Output Examples
Sample Decks for Combined
Debugging Aids
Combined TRACE/SNAP Run
Overlay Preparation
Segment Run
SNAP Run

UTILITY PROGRAMS
File Copying
Copy to End-of-Information
Special-Purpose Copy
Copy Binary File
Copy Coded File
Copy Binary Record
Copy Coded Record
Copy BCD File
Copy Shifted Binary File
Miscellaneous File Utilities
COPYXS
COPYN
File Positioning for COPYN
Error Messages
COPYCL
File Manipulation
REWIND
UNLOAD
SKIP Operations
BACKSPACE Logical Record
COMBINE
COMPARE
LISTMF
LABEL Utility
Single-File Tapes
Multi-File Tapes
Job Utilities
Request Field Length
Octal Correction Routine
Load Octal Corrections (LOC)

CHECKPOINT/RESTART
Checkpoint Dump Tape
Checkpoint Requests
Examples
For COMPASS Users
For FORTRAN (RUN) Users
For FORTRAN Extended Users

7-22
7-23
7-23
7-23

7-23
7-23
7-26
7-26
7-27

LOLEEE

[
W N N

[\

Overlay Programs 9-4 Full Mode 10-10

Example for FORTRAN (RUN) 9-4 Quick Mode) 10-10
RESTART Request 9-5 Compile File 10-11
Unrestartable Checkpoint Dumps 9-5 Source File 10-11

Card Identification 10-12

10 LIBRARY PREPARATION AND Compile File Sequence Fields 10-12
MAINTENANCE 10-1 UPDATE Directives 10-13
UPDATE 10-1 File Manipulation 10-13
UPDATE Terminology 10-1 Library File Creation 10-14
Program Library 10-2 Library File Creation Examples 10-15
Program Library File Formats 10-2 Library Correction Directives 10-16

Random Format 10-2 Library File Purging Examples 10-17

Sequential Format 10-3 Selective Compile Output 10-21
Operating Requirements 10-4 Special Directives 10-23
Files Processed by UPDATE 10-6 Edit/Merge Options 10-26
UPDATE Control Card 10-7 Listable Output from UPDATE 10-26
UPDATE Correction Modes 10-10 Overlapping Corrections 10-27

Normal (Selective) Mode 10-10 UPDATE Deck Examples 10-28

APPENDIXES

A Character Set A-1 E EDITSYM E-1
B Control Card Summary ' B-1 B F Print File Conventions F-1
C Tape and Disk Labels C-1
D Diagnostic Messages D-1 INDEX Index-1

FIGURES
Figure 1-1 Central Memory Allocation 1-4 Figure 2-3 Interdependent Jobs 2-33
Figure 2-1 Sample COMPASS Job 2-1 Figure 2-4 Job Dayfile 2-37
Figure 2-2 Job Flow 2-2

TABLES
Table 10-1 UPDATE Parameters 104 Table 10-4 Parameter Values 10-7
Table 10-2 UPDATE Directives 10-5 Table 10-5 UPDATE Action Parameters 10-9
Table 10-3 UPDATE Files 10-6

viii 60305200 B

INTRODUCTION 1

SCOPE (Supervisory Control Of Program Execution) is a group of programs and subprograms that comprise the
operating system for the CONTROL DATA 6000 series computers. Input, compilation, assembly, loading, execution,
and output of all programs submitted to the computer, as well as the allocation of resources for these programs are
monitored and controlled by SCOPE. This file-oriented operating system resides primarily on random access mass
storage devices. It uses the versatility and efficiency of the computer hardware to direct the multiprogramming of up to
seven user programs (jobs). Jobs written in the COMPASS assembly language and a variety of compiler languages, or
calling for many different utility systems, can be processed under SCOPE. The product set contains: COMPASS,
FORTRAN, FORTRAN Extended, COBOL, SORT/MERGE, PERT/TIME, EXPORT/IMPORT, 1700 MSOS Import
H/S, SIMSCRIPT, APT, ALGOL, SIMULA, INTERCOM, and BASIC.

6000 SERIES HARDWARE OVERVIEW

The minimum hardware requirements of a 6000 series computer system consist of: the computer (including 32,768
words of central memory storage); any combination of disks, disk packs, or drums to provide 24 million characters of
mass storage; a card reader, card punch, and printer (with controllers); and two 7-track magnetic tape units. Larger
systems can be obtained by including optional equipment such as: additional central memory; extended core storage
(ECS), additional card readers, punches, printers, and tape units. Graphic plotters and microfilm recorders are also
available.

The 6000 series computer is composed of central memory, one or two highspeed central processors, seven to ten
peripheral processors, and a display console. Central memory holds all active jobs. Up to seven jobs can be active
simultaneously, sharing the central processor registers at scheduled intervals. The central processor thus serves as the
computer’s calculator. Each job in central memory gains access to the central processor alternately with the other jobs
until execution is complete.

The peripheral processors are used to input jobs to the computer, load jobs from mass storage into central memory,
transfer input or output between mass storage or peripheral devices and active jobs, and dispose of output from
completed jobs. They relieve the central processor of all input/output tasks, enabling it to devote full time to program
execution. Each peripheral processor contains its own memory and is actually an individual computer that operates
independently of the other processors.

The display console includes two CRT screens which display information about the system and the jobs in process. The
console also includes a keyboard through which the operator can enter requests to modify stored programs and display
information about jobs in or awaiting execution.

Further information about the computer hardware can be found in the 6000 Series Computer Systems Reference

Manual. Details about the movement of information between the central processor registers and central memory are
presented in this manual and also in the 6000 Serics COMPASS Reference Manual.

60305200 A 1-1

MAIN CONCEPTS OF SCOPE
SYSTEM OVERVIEW

All SCOPE routines and subroutines are recorded in a file on a mass storage disk or drum. Copies of routines used most
frequently also reside permanently in memory where they can be executed without delay. Others are called into
memory from mass storage only when needed, to ensure that a maximum amount of memory remains free for user
jobs.

The portion of SCOPE residing in central memory consists of system tables and pointer words used for communication
between user jobs and SCOPE routines, and for linking the peripheral processor memories with each other and with
central memory. Also, some frequently used routines that can be called into peripheral processor memory on a transient
basis are stored in central memory, because they can be loaded from that area much faster than from mass storage.
Central memory areas reserved for SCOPE cannot be overwritten by user jobs.

One peripheral processor (PP0) holds only one routine, called Monitor, that oversees and controls all SCOPE functions.
These functions include allocation of hardware and files to a user job, as well as coordination of the activities of all
other PP’s.

Another peripheral processor (PP1) is devoted exclusively to a routine that drives the system display console and input
keyboard. This routine interprets and processes all requests typed by the operator and displays all messages from
SCOPE to the operator.

Each remaining pool PP contains a resident routine that services requests from Monitor, loads and executes programs as
assigned by Monitor, and provides a communications interface between Monitor and the program loaded. The
programs which PPs load and execute include routines for handling input/output activities associated with all phases of
job execution, such as: reading a job from a card reader onto mass storage or from mass storage into central memory,
sending output to mass storage or printer, or reading and writing information on magnetic tapes.

Each resident routine in a pool PP contains pointer words that refer to a communication area in central memory. The
PP resident routine contains a subroutine that uses these pointers to continually examine the communication area for
requests from Monitor, which is linked to all PP’s and jobs through these and other central memory communication
areas.

BASIC FUNCTIONS

When a job enters the computer, SCOPE processes the job, assigns the hardware resources required, and ensures that
input, output, and system files needed by the job are made available to it. These three functions are interrelated and
mutually dependent; resource and file management take place through the entire course of job processing.

Job processing consists of the following tasks: loading the job into the computer, assigning it system resources (central
memory storage, magnetic tapes, etc.), executing the job, terminating the job, and processing its output.

When the user’s program and associated data is in card form, the job consists of these cards preceded by a group of
control cards. Control cards request such functions as assembly or compilation, loading, and execution. They also
request equipment or files required by the job, and the amount of time and central memory storage or ECS it will need.
In addition, processing priority with respect to other jobs and special instructions to the computer operator can be
specified on these cards.

When the user’s programs reside on mass storage or on tape, the job may consist only of control cards that direct the

loading and execution of these programs and ensure that the hardware and files needed for their execution are
available.

1-2 60305200 A

Job processing is initiated by loading the job into the card reader. From this point on, control of the job is assumed by
SCOPE, which assigns a PP that transfers the job from the card reader onto mass storage. The job is then in the input
queue, awaiting availability of system resources. When the required resources are available and the priority of the job
permits, SCOPE designates another PP to read the job into central memory. In accordance with the control card
requests, SCOPE assigns any additional files or hardware required to the job, also using PP’s for these purposes. These
items can include tape or disk files or ECS. The job begins execution, sharing access to the central processor with other
jobs in execution. As execution progresses, peripheral processors are assigned to handle any additional input or output
files and their associated hardware.

Jobs in central memory awaiting use of the central processor for the first time, or after interruption of execution, are
scheduled by priority. When the job using the central processor is interrupted, perhaps to await completion of input/
output, the job with the next highest priority is given the central processor. When the interrupted job is again ready for
the central processor, it will be scheduled according to its priority.

When a job is completed or when it is terminated because of a fatal error, SCOPE frees the central memory areas,
releases the files assigned to the job, and assigns a PP to send any output to mass storage. The job is then in the output
queue. When the peripheral devices requested for the output are available, SCOPE writes the output from the output
queue onto these devices. Typical output devices are the printer, card punch, tape unit or graphic plotter. If no device is
specified, output is assigned automatically to the printer. Following the output from the job itself, the dayfile containing
chronological information, diagnostic messages, and accounting data about the job is output.

MULTIPROGRAMMING

Multiprogramming means that more than one job can be in process in central memory at one time. At any given
instant, only one job can be using the central processor. However, several can be performing input/output. In fact, a
job can have more than one input or output operation in progress simultaneously.

CENTRAL MEMORY USAGE

Each job in progress occupies a contiguous, uninterrupted block of words in central memory. References to all
addresses within each block are made in relation to the reference address (RA) which is the first address in the block.
The length of the block is the field length (FL) of the job. If a user’s job references a location outside its field length,
the hardware senses this error; SCOPE terminates the job, thereby protecting all other jobs and system programs in
central memory from being accidentally overwritten. For this reason, the user can consider his job as a program
running alone in a computer with a central memory the size of his field length.

Two distinct areas of central memory are reserved for portions of SCOPE. These areas cannot be addressed by user
jobs during normal execution. The low core area (the beginning addresses of central memory) contains the central
memory resident routines of SCOPE, the systems tables, pointer words, communication areas used to link the peripheral
processor and central memories, and subroutines used often by both central memory and the peripheral processors. The
high core area comprises the last (highest numbered) addresses in central memory. It holds information about files on
mass storage and is referenced during data transfer to and from such files. The relationship of low and high core to the
remainder of central memory is shown in figure 1-1. As shown, the first address is at the extreme low end of central
memory and the last address is at the extreme upper end.

60305200 A 1-3

Last

Address (Used for mass storage file

High Core reference information)

Unused Storage

Job at Control Point 7

Job at Control Point 6

Job at Control Point 5

Unused Storage

Job at Control Point 4

Unused Storage

Job at Control Point 3

Job at Control Point 2
Unused Storage

Job at Control Point 1

(Used for Central Memory
Low Core Resident Portion of SCOPE,

including control point areas)
First

Address

Figure 1-1. Central Memory Allocation

CONTROL POINTS

Every job in central memory is related to a SCOPE control point. The control point is an area of central memory
partitioned off by SCOPE for a job. Each control point interrelates the following elements common to a particular job:
the central memory field length allotted; other hardware and files used by the job; a block in low core, called the
control point area, that contains reference information about the job; and the number associated with the job on the
console displays. The control point area contains such information as the job name, processing time accumulated,
input/output equipment assigned to it, related control statements, and the job’s exchange jump package.

Control points are numbered from 1 to n; seven is the maximum number of jobs that can be run simultaneously. At
most installations, n equals 7; however, since this value is an installation option, it may differ at some sites. In addition
to the control points available to user jobs, two others numbered 0 and n+1 are reserved for SCOPE functions. Control
point 0 is used to identify all hardware and software resources which are not presently allocated to user jobs or which
are used only by SCOPE. Control point n+ 1 is used by SCOPE for system utility programs.

When jobs are input from a card reader or tape, or when job output is transferred to the printer or card punch, the
SCOPE loader package that handles these functions must reside at one of the control points 1 through n. In addition, a
control point is often reserved for jobs being input from remote processing facilities. If one or both of these cases
prevail, and x is the number of control points reserved for these functions, then n-x is the number of user jobs that can
be running simultaneously.

1-4 60305200 A

CENTRAL MEMORY ALLOCATION

The position of central memory storage allocated to each job is related to the control point number to which the job is
assigned. At most installations, this assignment is made and maintained in numerical order. Thus, the job at control
point 2 will always follow that at control point 1 in memory, and the job at control point 2 will remain behind that at
control point 3, as shown in figure 1-1.

Although they remain in the same order, jobs are moved up and down in storage to make room for incoming jobs
through a process called dynamic relocation. This process takes place continuously as central memory is required or
released. For example, jobs may be running at all control points except control point 2 and a new job is assigned to
control point 2. If sufficient contiguous storage is not available for the new job, SCOPE will relocate any other jobs
necessary to make sufficient contiguous storage. Each job will be moved as a continuous block, and only its reference
address (RA) will be changed accordingly within the appropriate SCOPE reference tables. It may be necessary to
relocate the jobs at control points 1 and 3, or only one of them. If the job at control point 3 is relocated, it also may be
necessary to move one or more of the jobs following it; but the order of the jobs within central memory remains the
same. When a job is moved in storage, Monitor suspends all user program activity at the control point, waits for all PPs
assigned to the control point to pause, initiates the exchange jump package to save dynamic information about the job
during the move, and starts the SCOPE routine that moves the job. When the move is complete, the RA of the job is
modified and job activity is resumed.

JOB ROLLOUT

In certain cases, active jobs can be moved (rolled out) from central memory to mass storage or ECS while maintaining
their control points and all information necessary to resume processing. Job roll-out is initiated by the operator under
time-shared conditions when a job with a very high priority needs more storage than is available. A job may be rolled
out also when it must await the availability of unusual hardware resources, such as many peripheral devices, or a large
amount of mass storage. If the job cannot proceed until such equipment becomes available, the operator can withdraw
it and process other jobs until the equipment is ready. Although overall turnaround time is prolonged when a job is
rolled out, the total processing time of the job is not affected. Further, the turnaround time for other jobs is greatly
enhanced.

JOB PRIORITIES

The user can request one of several priority levels for his job or leave the level assignment to SCOPE. Once the job is
read into the system, SCOPE cannot change the priority level but can alter the priority of a job with respect to other
jobs of the same level. Generally, within a level, the highest priorities are assigned to jobs that have been in the input
queue the longest. Among jobs with equal priority, the job with the greatest field length is generally processed first if
the resources required for that job are available.

JOB/SCOPE COMMUNICATION

Since no instructions within a job can directly access memory locations outside its field length, an area must be reserved
within the job’s FL that SCOPE checks periodically to maintain communication with the job. This area is comprised of
the first 100(octal) locations in the job’s FL, location RA+0 through RA +77(octal). The user program actually begins
at location RA + 100(octal). RA+0 is reserved for use by the hardware; if an arithmetic error occurs, the type of error
and the location of the error are stored in RA+0. Requests from the job to SCOPE are stored in RA+ 1. These can be
requests for a PP to perform input/output, a signal to SCOPE that processing is complete, or a request to terminate the
job because of an error. RA+2 through RA+77 holds information about the SCOPE control card that is directing the
current processing, and information for the pertinent loader.

60305200 A 1-5

EXCHANGE JUMPS

A job gains or relinquishes access to the central processor each time an exchange jump instruction is issued by the
SCOPE Monitor routine. This is done when a job has used the central processor for the maximum interval allowed by
SCOPE. It also is done in response to any event that affects the relationship of the job to others in the overall SCOPE
priority system. Each time an exchange jump is executed, any job using the central processor is interrupted, and the job
with the next highest priority achieves use of the central processor.

The exchange jump is made possible through a block of information within the control point area assigned to each job.
The control point area, which resides in low core, contains a 16-word exchange package, which comprises the
information used directly in exchange jumps: the most recent contents of all central processor registers, the RA and FL,
in central memory and in ECS, of the job, and the address of the next instruction to be executed (the program address).

Suppose that job A has the next highest priority for access to the central processor and job B, which is currently active,
is to be interrupted. The Monitor program performs the following steps to deactivate job B and activate job A. First,
Monitor executes a central exchange jump which replaces job B’s active exchange package with the SCOPE idle
package and saves job B’s exchange package in the 16-word control point area for job B. Then Monitor performs
another central exchange jump which replaces the active SCOPE idle package with the exchange package of job A and
saves the idle exchange package in the 16-word control point area for job A. When an exchange jump is executed, the
issuing of instructions within the active job halts and the instructions already issued are executed. The program address
of this job is set to the address of the next instruction to be issued when it later resumes access to the central processor.

ACCOUNTING (JOB AND SYSTEM DAYFILES)

On mass storage, SCOPE maintains a chronological accounting of each job run, called the job dayfile, which is
automatically printed at job termination. It contains a copy of all control cards processed, equipment assignments,
diagnostic messages, central and peripheral processor time used, and the date and time of day associated with each
processing event relative to the job. The job dayfile is maintained entirely by the system and is not accessible by user
jobs.

SCOPE also maintains a system dayfile; it is a record of every processing event that takes place in the system, and
relates to all jobs in the system. It contains all information in the job dayfiles plus other relevant system messages. The
system dayfile can be printed, punched on cards, or copied onto tape at the operator’s request.

OPERATOR/SCOPE COMMUNICATION

The computer operator communicates with SCOPE through the keyboard of the display console. SCOPE, in turn,
transmits messages to the console’s twin screens. Several displays can be requested, and certain kinds of messages are
associated with each. The displays most often requested are job status, input/output queues, and dayfile displays. The
job status display shows the progress of all jobs in process, their priority level, the most current program message, and
other information. The input/output queues display presents the status of jobs not yet entered for execution and of
executed jobs with output pending access to a peripheral device. In the dayfile display, the latest messages to the system
dayfile are presented. Displays, operator requests and other operator messages may be found in the SCOPE 3.3
Operator’s Guide.

1-6 60305200 A

JOB PROCESSING 2

Job processing is controlled through the use of SCOPE control cards. These cards identify programs and data files, and
direct the sequence of program execution. SCOPE control cards are always found within the first logical record of a
job, the control card record; they determine all operations on subsequent logical records.

JOB FLOW

The manner in which control cards handle a user program is illustrated by following a sample job as it is processed. For
example, consider a job to assemble and execute a program written in COMPASS, with the output to be for use by the
job printed on a line printer. A tape is also provided.

This job would be structured as follows:

6
7
EOF Card 8 Vi
9 JI)
éi Data Record

EOR Card ——=f 8
9), V4
L
ya
/ COMPASS
Program
Record
7
8
9 / LGO.
EOR Card / COMPASS.
/REQUEST,TAPEl,MT.
JOBNAME,MTI. Control
Card
— Record

Figure 2-1. Sample COMPASS Job

60305200 A 2-1

Although this structure is typical of many small jobs, it is only one of many possible deck arrangements. Other sample
structures are presented elsewhere in this manual. All jobs, however, share certain common features: each begins with a
card that identifies the job and terminates with an end-of-file (EOF) card, formed by a 6/7/8/9 punch in column 1.
Thus, the job itself actually forms a file.

In any job, the control cards, every user program, and every set of data cards each comprise one logical record. Each
logical record, except the last in a job, is terminated by an end-of-record (EOR) card, formed by a 7/8/9 punch in
column 1. The last logical record is terminated by an EOF card, which acts as both an EOR and an EOF indicator.
Although only this card is required, some programmers terminate their jobs with both an EOR and an EOF card as a
matter of preference.

When the sample job is input through the card reader, SCOPE calls a PP routine to translate the job card, check the
validity of the entries on this card, and assign a priority to the job. Next the PP copies the job through a central
memory input/output buffer onto mass storage. At this point, SCOPE identifies the job by its file name JOBNAME
(from the job card), by the file type (input—meaning that the job is now part of the input queue), and by its assignment
to control point 0. These three elements—file name, file type, and control point—are used to keep track of all jobs and
other files in the system.

CONTROL CARD BUFFER POINT
AREA

< l CONTROL
|

< —

4
—_<
3
1
2
CENTRAL MEMORY

1 Job read into card reader 5 Some output to a scratch tape
2 Job read through buffer onto disk 6 Job assigned to output queue
3 Job in mass storage input queue 7 Output to printer
4 Job assigned control point; goes into execution

Figure 2-2. Job Flow

2-2 60305200 A

When control point x is free, if sufficient central memory is available and the priority of the job permits, the job is
assigned to that control point and assigned a field length in central memory. Then the file name is changed to INPUT,
the file type to local (meaning the job is local to a user control point), and the control point number to x (the number of
the control point).

SCOPE saves the original name of the job for later use. The file INPUT is positioned at the beginning of the second
record (the user’s program). The control cards are read into a buffer within the related control point area in low core,
and are ready for execution. Each control point will be assigned a file named OUTPUT to collect job output and a file
"named DFILEX to contain the job dayfile. In the name DFILEX, x is the job’s control point number.

Since the job card was processed when the job was read into the input queue, job control is advanced to the second
card in the control card record—the REQUEST card. This card directs the computer operator to make a reel of tape
available to the job for the file named TAPEL (type local, control point x). When the operator mounts the tape and
logically attaches it to the job by a keyboard entry, the job advances to the next control card.

The next card is the COMPASS control card, which directs assembly of the user’s program. To accomplish this, SCOPE
requests the loader to load the COMPASS assembler into the field length. Control passes to COMPASS, which
assembles the next logical record (the user’s program) on the file INPUT onto a mass storage file called LGO (type
local, control point x). (For assembly or compilation, the user can designate files other than INPUT as an input file and
files other than LGO as output by entries on the COMPASS control card; but unless such alternative files are named on
the assembly or compilation card—the COMPASS card in this case—INPUT and LGO are used by default.) COMPASS
also writes a source-language listing of the program onto the file named OUTPUT. Control then proceeds to the next
control card, LGO.

The LGO card directs the program execution. The loader loads the LGO file containing the user’s program in object
code into central memory and writes a map of this program onto the file OUTPUT; library subprograms required are
also loaded. Control then passes to the user’s program for execution, input data is read from the third record on the
INPUT file (the user’s data) and output is written on TAPE1 and OUTPUT.

As each control card is executed, it is copied onto DFILEx. The last card to be processed in the INPUT file is the EOR
card, signalling the end of the job. SCOPE writes the central and peripheral processor running times on DFILEx and
copies this file onto OUTPUT, which is then detached from the control point. The name OUTPUT is changed to
JOBNAME (the original job name), the file type to output, and the control point to 0. TAPEL1 is also released so that
the tape unit may be available for another job. INPUT, LGO, and DFILEx are cleared and released from SCOPE
control. All equipment associated with the job is released from control point x and assigned to control point 0, where it
-can be requested by other jobs. The control point area and field length in central memory are also made available for
other jobs. When a printer is available, JOBNAME, containing the assembly-language program listing, load map,
output, and dayfile, is printed.

PROCESSING WITH CONTROL CARDS

Control cards contain one or two fields; the first, which is required, contains a flag word that requests action. Certain
flag words are reserved for SCOPE and cannot be declared as the names of user programs. The second field is
optional; it contains one or more parameters to be used with the flag word.

If only the flag word appears, it must be terminated with a period or a right parenthesis. If a parameter is used, it must
be separated from the flag word by a blank or by any character other than an alphanumeric character (A-Z and 0-9) or
an asterisk. Multiple parameters must be separated from each other by any characters other than alphanumeric, blank,
or asterisk. After the last parameter, a period or a right parenthesis must terminate the field. All blanks in the
parameter field are ignored when the card is processed. Comments consisting of any characters can be written to the
right of the terminator.

60305200 A 23

As an example, consider a control card to request that a file named TAPE2, on tape reel number 4326, be assigned to a
job. The flag word is REQUEST, and TAPE2 and MT (for standard-density magnetic tape) are parameters. MOUNT

TAPE 4326 is a comment to the computer operator to mount this tape. This card could be written in any of the
following formats:

REQUEST, TAPE2,MT.MOUNT TAPE 4326
REQUEST(TAPE2,MT) MOUNT TAPE 4326
REQUEST TAPE2,MT. MOUNT TAPE 4326

The flag word on each control card processed names a program or subprogram that is called into memory and
executed. When the flag word is read, the PP advancing the job searches a table of all active files in central memory for
a file name that matches the flag word and is attached to the control point of the job. If no such name is found in the
file name table, the PP searches its own memory for a program name identical to the flag word. If this name is not
found, the SCOPE library is searched. If it does not contain the file name, the job is terminated; if the file is located,
it’s contents will be loaded into memory and executed. Control will then advance to the next control card.

Since the user file tables are searched before the SCOPE library, a user could substitute his own program or
subprogram for execution in place of a library program by storing it as a file. For example, if a user wanted his job
assembled under his own version of COMPASS, he could request assignment of the file containing this version to the
control point of his job. When the COMPASS control card was processed, the name of this file would appear in the

central memory table forestalling a search of the SCOPE library for standard COMPASS. The user’s version of
COMPASS would be loaded and executed.

JOB IDENTIFICATION AND CONTROL

IDENTIFYING JOBS
(Job Card)

Job identification, allocation of certain resources, and establishment of processing priority level is accomplished with the
job card. This card is always the first in the job deck. Its format is:

n, Tt, CMfl,ECfl,Pp,Dym, M Tk, TPk,NTk,CPp.

In this and other formats described, capital letters indicate constants and small letters stand for variables.

REQUIRED PARAMETERS

The flag word, n, is the name the user assigns to the job to uniquely identify it to SCOPE. Only this entry is required on
the job card. It can range from one to seven characters. Any combination of numbers or letters can be used; the first

character must be a letter. The job name must begin in column 1 and if no parameters appear, it must terminate with a
period or a right parenthesis.

SCOPE automatically modifies the name of every job by replacing the sixth and seventh characters with a number that
differs for each job. This ensures unique identification if a job is entered with a name identical to that of another job
already in process. For example, if two jobs are named JOBNAME, one may be processed as JOBNA23 and the other
as JOBNA34. If a job name contains less than five characters, SCOPE fills with zeros all unused characters through
the fifth and adds unique sixth and seventh characters.

2-4 60305200 B

OPTIONAL PARAMETERS

Parameters may be included on the job card to specify certain resources, priority levels, or processing time limitations.
If these parameters are omitted, SCOPE automatically assigns system default values established when SCOPE is
installed. These parameters can be listed in any order following the job name.

SCOPE ignores any unknown parameters that appear on the job card. However, when improper characters are used as
variables with valid parameters, the job will be terminated. For example, on the following job card, CMABC and
MTZOT would cause the job to abort.

JOB,T100,P17 ,CMABC, MTZOT.

SCOPE interprets all numbers on job cards as octal values, unless otherwise noted in this manual, or unless this
procedure is redefined by the systems analyst when he installs SCOPE.

The optional parameters follow:

Tt

cMf

60305200 A

.t is an octal value for the time in seconds which the user estimates his job will require the central

processor. This value must include the time required for assembly or compilation; it does not
include time during which the job is in the input queue or in central memory but not using the
central processor. If the job access to the central processor exceeds the value specified by t, the
job will be terminated prematurely. t may be any octal number not to exceed five digits. An
infinite time can be specified by 77777; the job will proceed until completed even if it exceeds
the installation default value for t. Users should be cautious in assigning 77777 as a time limit;
however, certain kinds of program errors, such as an infinite loop can result in great waste in
such cases.

To determine the value of t, estimate the minutes of central processor time a job will need and
multiply this value by 100. The result will approximate the central processor octal time value in
seconds. For example, when a time limit of -4 minutes is estimated, t can be derived as follows:

t = 4 min. x 100 = 400 seconds (octal).

The job card could be written in any of these formats:
jobname, T400.
jobname(T400})

jobname T400.

fl is the field length in number of central memory words that the user estimates his job will
require. The user must include space for the SCOPE loader routines needed to load his job into
central memory, as well as for the assembler or compiler requirements. If this parameter is
included, the job will not be assigned central memory until the specified storage is available.
Most COMPASS or compiler language jobs require at least 43000 words; when in doubt, the
user should specify this value or omit the parameter to elect the default value. The highest
permissible value is defined by an installation parameter. SCOPE will round any value upward
by a multiple of 100. Thus, a job requesting 40110 words of storage would be assigned 40200
words. Typical control card entry is:

jobname, T300,CM43000.

ECfi

MTk
NTk

fl is the amount (octal) of ECS the user anticipates his job will need, in multiples of 1000-word
blocks. Generally, this value is specified only for jobs that require large amounts of data. The
highest value permitted is defined by an installation parameter. No ECS will be assigned if the
parameter is omitted. This job card would ensure 4000 words of ECS:

jobname,CM43000,EC4.

p is the processing priority level requested for a job. The lowest executable priority level is 1.
The highest value permitted depends on an installation parameter, but it can never exceed octal
7777. This value places the job ahead of all other jobs of different levels in the system. For a job
of very low priority, the job card might be punched as follows:

JOB,CM43000,P1.

This parameter is used only in conjunction with job dependency in a string of interdependent
jobs.

y is the dependency identifier (two alphabetic characters) assigned by user to the entire string.

m is the dependency count (number) of jobs (0-77 octal) upon which this particular job depends.

Examples showing how the D parameter is used are presented in the discussion of the TRANSF
card. ’

When tape is required by a job, one of these parameters must be selected.

MT specifies seven-track tape and NT nine-track. k is the maximum number of seven or nine-
track tape units that a job will require at any one time. The value of k can range from 0 to
77(octal), but cannot exceed the total number of tape units at the computer site. If more tape
units are required at any time during job execution than are specified by k, the job will be
terminated. A job can use more than a total of k tape units only if their use is not simultancous.
For example, if k is 3 and tape units A, B, and C (with seven- track tapes) are assigned to the
job, and tape unit C is later unloaded and released from the job, tape unit D can be requested
for the job. This makes a total of 4 tape units used during the entire job. For this job the card

might appear as: .
TAPEJOB, MT3.

If both seven and nine-track tapes are used, MTk and NTk should both be noted.

TP has the same meaning as MT. But if both TP and MT appear on the job card, only the MT
parameter will be used to determine the maximum seven-track tape units needed.

60305200 B

CPp This parameter should appear only when the job is to be processed on a 6700 computer. p
indicates which central processor a user requests for the job. When p is B, the 6400 processor
will be assigned. When p is A, the faster 6600 processor is used. If p is not specified, SCOPE will
assign either processor. This example specifies use of the 6600 central processor:

M2,CM43000,CPA.
The CP parameter is used on the 6500 configuration for diagnostic routines only.

After the terminator following the last parameter, general comments or messages to the operator can appear on the job
card (as on any control card).

Examples of job cards:
J2,T4,CMU3000,EC2,P1,DAB3,MT5,CPA. THIS IS A VERSION 3.3 JOB.
T023 EC1,MT1(CM43000)

STAR(T3)
OSCAR.COBOL V3 USED
S3R2,MT1. FIRST RUN.

DOGCAT,CM50000.

LIMITING MASS STORAGE
(LIMIT CARD)

Normally, a job being processed will be assigned as much mass storage space as required, if available. Sometimes, a

user may want to limit the maximum mass storage that can be assigned. This may be done, for example, when a heavy
job load is imposed on the computer and a user wants to be certain that his job does not degrade overall throughput by

using too much mass storage.
Mass storage is limited by using the LIMIT card:

LIMIT,n.

n is a decimal number, indicating the number of blocks of 4096 60-bit words to which mass storage should be limited
for this job. A user wanting to limit his job to 40960 words of mass storage would set n to 10, since 10 x 4096 =

40960. His LIMIT card would appear:

LIMIT,10.

If the job requires mass storage in excess of the specified limit at any time, the job is terminated:

60305200 B 2-7

EQUIPMENT AND FILE ASSIGNMENT

REQUESTING EQUIPMENT FOR A JOB
(REQUEST CARD)

Before a file can be referenced by a job, the device on which a file resides or on which it is to be written must be
assigned to the job. SCOPE makes this automatic assignment for files input from punched cards or output to a printer
or card punch. All card input is written on the mass storage file INPUT, printer output on the mass storage file
OUTPUT, and card output on the mass storage filess PUNCH (for Hollerith cards) or PUNCHB (for binary cards).
When card input is referenced by a job, INPUT is read automatically. When the job is terminated, OUTPUT is
printed, PUNCH is punched on Hollerith cards, and PUNCHB is punched on binary cards.

In addition, all local files created while a job is in progress are written automatically to mass storage unless another
device is specified by the user. Thus, if a job created a file named SAMMY and did not specify a storage device,
SAMMY would be written on mass storage.

Equipment must be requested by the user for input files from devices other than mass storage, card punch or printer.
For instance, tapes containing referenced files must be requested in the control card record with REQUEST cards. Disk
pack mounts must be requested by RPACK cards. Since control cards are processed in order of appearance, the
REQUEST card for a particular file must precede the control card that executes the program referencing that file;
otherwise, the file will be assumed to be on mass storage when it is referenced. When the REQUEST card is
encountered, the job will be terminated with the message DUPLICATE FILE NAME.

When the REQUEST card is processed, job processing halts. The file equipment requested by the job is assigned
automatically or by operator action. In the latter case, the equipment request is shown on the display screen to the
computer operator. The operator makes the device physically available by mounting a tape or disk pack, or turning on
a device. He then makes the device logically available by entering a command on the console keyboard; this assigns the
device to the control point of the requesting job. Processing is then resumed, and the device is recognized as the source
or destination of the associated file.

Format of the REQUEST card is:

REQUEST,lfn,dteq.

REQUIRED PARAMETERS

The flag word, REQUEST, and the Ifn parameter are required on the REQUEST card. As with the job card and all
other control cards, any of the standard separators and terminators can be used. If a parameter is listed more than once
or is in error, a diagnostic message will be printed and the job will be terminated.

Ifn The logical file name is the name by which the user refers to this file in his program. Logical file
names can be from 1 to 7 characters, beginning with a letter. When Ifn is the only parameter
listed, the operator can choose the device to be assigned to the job for the file. For example,

when any of the following cards is processed, the operator can assign disk, drum, tape, or any
other available device for the file:

REQUEST,FILE1.

REQUEST(FILE1)

2-8 60305200 B

OPTIONAL PARAMETERS
Files are assigned to the devices named by optional parameters. They can be assigned to a device type (for example, to
any tape unit or disk available) with the dt parameter or to a specific device such as a particular tape unit or line

printer) with the eq parameter (see page 2-15).

dt The dt parameter designates the type of device on which a file is recorded or on which it is to be
written.

ALLOCATABLE DEVICES (MASS STORAGE)

For allocatable devices (disks, disk packs, drums, and ECS), the following codes can be used for dt:

Device dt
6603-1 disk AA
6638 disk AB
6603-1I1 disk AC
3637/865 drum AD
814 disk AF
3553-1/821 disk file AL
3553-1/841 multiple disk drive AM
3234/854 disk pack controller AP
ECS AX

The following example would request the operator to relate FILEI to any 6638 disk available:
REQUEST,FILE1,AB.

When the dt parameter for a device is preceded by an asterisk, operator action is not required and SCOPE assigns ‘the
equipment automatically. The following card would request SCOPE to automatically assign a 6638 disk for FILE1.

REQUEST(FILE1, *AB)

60305200 B 2-9

The allocation style may be indicated by a suffix to the dt parameter of two octal digité. This allocation style can be
used to assign the file to a subset of the device specified. If more than one RBR exists for a device and each has a
unique allocation style, this parameter can be used to assign a file to the RBR with the desired record block size.

Example:

If the 6603 has two 1024-bit RBR’s, the first with allocation style 02 and the second with allocation style 01, then a file
can be written on inner zone only (50 PRU/RB) by requesting AAO1 and on the outer zone only (64 PRU/RB) by
requesting AA02.

Less specific requests can be issued for mass storage devices by using the following codes in the dt parameter. The
previous rules for automatic SCOPE assignment (request with asterisk) and recording technique (request with numerical
suffix) apply:

Device dt
Any mass storage device for a local (temporary) file A*
Any mass storage device for a file subsequently to be cataloged as a permanent file. *PF

® 2-10 60305200 B

For example, the following card would request the operator to relate FILE] to any mass storage device available for a
local file:

REQUEST,FILE1,A%*.

The OV parameter may be specified on the REQUEST card for mass storage files. This parameter indicates that special
processing is to occur when mass storage is not available to meet all the requirements specified when the file was
created. When the OV parameter is present and no mass storage space is available on the specified device or the
specified equipment type or allocation style is not available, the system will assign the overflow of the file to any mass
storage device available. Also, a device-capacity- exceeded status is returned to the user when the following conditions
hold: when OV is present and mass storage of any type is not available and the FST for the file contains the address of
an FET in which the EP bit is set. Files assigned to a permanent file device cannot overflow to a non-permanent file
device regardless of the specification of the OV parameter.

NON-ALLOCATABLE DEVICES (TAPES)

For magnetic tapes, dt can be MT for standard 7-track SCOPE, S, or L tapes, and NT for 9-track tapes. As with
allocatable device codes, automatic assignment not requiring operator intervention can be requested by prefixing the
code with an asterisk. The following card requests automatic assignment of standard magnetic tape for FILE1, for
scratch purposes.

REQUEST,FILE1, *MT.

When a file requires more than one tape for processing, dt may be prefixed with 2. The operator will assign two tape
units for the file, and tapes will be used in the order assigned. When the end of the reel is reached on the first tape unit,
processing continues with the tape on the second unit, while the first tape is rewound and unloaded. The operator
mounts another tape on the first unit, so that it can be processed when the tape on the second unit reaches the end of
the reel. Alternation of units continues until the file is no longer referenced. Since this process requires operator action,
the asterisk for automatic assignment cannot be used when more than one tape unit is required. This example requests
the operator to assign all tapes necessary for FILE1.

REQUEST,FILE1, 2MT.
Within the dt field, other characteristics of the tape can be requested by including additional parameters with MT or

NT. Parameters can appear in any order; standard separators and terminators are required. Examples appear at the
close of this discussion.

7-Track Tape (MT)
Density
The density (bits per inch) for recording information on 7-track tape can be specified by a parameter used in place of

MT. Automatic assignment (asterisk) or multitape files (2 prefix), can be requested by prefixes to MT or to the codes
below.

Density (bpi) dt
200 LO
556 HI
800 HY

60305200 A ' 2-11

If MT is declared, unlabeled tapes are read or written according to an installation parameter. ANSI-labeled input tape
is read at the density specified in its volume header label. ANSI-labeled output tape is written at an installation
declared density.

SPECIAL USAGE (CK OR MF)

A tape containing more than one file is a multifile tape and must be so defined by including MF within the dt field.
Such a tape cannot be assigned automatically; if the field is prefixed with an asterisk, the prefix will be ignored.

If a tape is to be used for a checkpoint dump (described in Section 9), CK must be included within the dt field to
designate the tape for this purpose.

Data Formats (S or L)

A tape in the standard SCOPE tape format need not be designated by a REQUEST card parameter. However, if the
tape is written in either S or L format, S or L must be specified within the dt field.

Label Formats (U or Y)

If the tape is unlabeled, no parameter is needed. For tapes with labels in the standard ANSI format, the dt field must
contain U. If labels are written in other formats, Y is required in the dt field.

Initial Use (E or N)

For labeled tapes, the initial use of the tape can be specified by entering E (existing) for input and N (new) for output.
With labeled tapes, automatic assignment (asterisk) cannot be requested; such a request will result in the assignment of

an unlabeled scratch tape. The following chart indicates label processing which takes place when E or N parameters are
used in combination with U or Y parameters.

Label Format
Type
Initial U Y
Use
Specification

Omitted

E ANSI format Custom format ANSI format
label checked label checked label checked
N ANSI format Custom format ANSI format
label written label written label written
Omitted ANSI format Custom format Unlabeled input

label written

label written

or output tape

2-12

60305200 B

Two additional parameters, IU and SV, can be used to control the disposition of the tapes at the end of the job when
IU is specified, the unload request or function will be ignored for the tape referenced on this REQUEST card. When
SV is specified, the tape referenced will be unloaded and saved at job termination. The tape unit will be turned off
logically; before it is reassigned, this unit must be turned on again.

Examples of REQUEST Cards for 7-Track Tape

The following card requests an operator to assign an output tape for a multifile group with the logical file set name
MANYF. All files in the set will be written at 800 bpi in S tape format:

REQUEST(MANYF,HF,S,N,HYY

This card requests an input tape file B2 written in standard installation density. The tape has labels, written in ANSI
format. :

REQUEST,B2,MT,U,E.

9-TRACK TAPE (NT)
Density
The density in which information is to be recorded on a 9-track tape can be specified with parameters used with, or in

place of, NT. Automatic assignment (asterisk prefix) or multitape files (2 prefix) can be requested by prefixing these
parameters, but in such cases, NT must be omitted:

Density (bpi) dt
1600 PE
800 HD

If NT is declared, but PE and HD are absent, unlabeled and labeled tapes are written according to an installation
parameter. For this type of tape, density setting is effective only when tapes are written; the density at which 9-track
tapes are read is a function of the hardware.

Special Usage

The parameters for declaring a multifile tape for 7-track tapes also apply to 9-track tapes; however 9-track tapes cannot
be used as checkpoint tapes.

60305200 A 2-13

Label Formats

The parameters for denoting label formats for 7-track tapes also apply to 9-track tapes.

Initial Use

The parameters for declaring the initial use of labeled 7-track tapes also apply to labeled 9-track tapes.

Coded Data

On 9-track tapes, data can be read or written in the display code used by Control Data or in binary code. To convert
between Control Data code and ANSI, the parameter US should be included on the REQUEST card. To convert
between Control Data code and EBCDIC, EB should be included on the REQUEST card. If neither US or EB is
included, code will be converted in accordance with an installation parameter.

As with 7-track tapes, special termination procedures can be requested by adding the IU or SV parameters to the
REQUEST card. :
Examples of REQUEST Cards for 9-Track Tapes
This card requests that an ANSI-labeled 9-track input tape containing FILE1 be assigned to the job; the label will be
checked when FILE] is first referenced by the user program. The EBCDIC character code in which the tape is written
will be converted to Control Data character code when it is read.

REQUEST(FILE1,NT,U,E,EB)

The following card requests that an unlabeled 9-track output tape of 1600 bpi density be assigned for FILE2.

REQUEST,FILE2,PE.

UNIT-RECORD DEVICES

If a file is input from a card reader or output to a printer or card punch, devices are assigried automatically by SCOPE;
the REQUEST card is not necessary. However, if a special type or model of card reader, printer, card punch, paper-
tape reader or punch, terminal keyboard, hard copy or microfilm recorder is to be used, this device must be requested.
Such equipment can be requested with the following codes. Devices for which codes are defined but software is not
supported are denoted with an asterisk. '

2-14 ‘ 60305200 A

Device

*Paper tape reader

*Paper tape punch

501, 512, or 505 line printer
501 or 505 line printer only
512 line printer only

405 Card Reader

Remote Terminal Keyboard

200-User Terminal Card Reader or
Teletype Paper Tape Reader

200-User Terminal Line Printer or
Teletype Paper Tape Punch

415 Card Punch

6612 Keyboard/Display Console
*252-2 Graphic Console

*253-2 Hard Copy Recorder
*254-2 Microfilm Recorder

*Plotter

*Codes are defined but supporting software is not provided under SCOPE.

60305200 B

LP

L1l

L2

CR

KB

CR

LP

CP

GC

HC

FM

PL

2-15

B REWINDING FILES
(REWIND CARD)

In most cases, when a file is requested for a job, that file is positioned automatically at its beginning of information.
However, because of variations in installation parameters and procedures, automatic positioning may not always occur
with every file requested. Therefore, it is best to follow the REQUEST card with a REWIND card to ensure that the
file will be positioned at its beginning when first referenced.
The REWIND card has the following format:

| REWIND,Ifn. or REWIND,Ifnl,lfn2,Ifn3,...Ifnn.

Ifn is the name of the file to be repositioned. More than one Ifn, separated by commas, may appear on one REWIND
card.

The tape containing file MAX is requested for the following job; the file is repositioned, loaded into central memory
and executed.

Cards Function

jobname ,MT1. Names job.

REQUEST, MAX, MT. Requests tape containing object program file MAX.
MAX. Loads and executes MAX.

REWIND, MAX. Rewinds MAX.

MAX. Loads and executes MAX a second time.
7/8/9

data deck

7/8/9

second data deck

6/7/8/9 Signals EOF and end of job.

In the above example and the examples that follow, some control cards are referenced before they are fully explained
in the text. In such cases, a brief notation of the card’s purpose is presented beside the card.

' REQUESTING PRIVATE DISK PACKS
(RPACK CARD)

With private disk packs users can record files on high speed non-allocatable mass storage devices. T hese files_can be

accessed only by the job to which they are assigned. The restriction to files local to a job results from dedication of the

private pack to the control point of that job. The private pack cannot be used for common or scratch files. When a

private pack is assigned to a job, the names of the logical files it contains are written into central memory along with

information needed to access them. When the job terminates, this information is rewritten onto the pack before it is
l logically unloaded. Then, the pack can be removed from the drive with the files intact, for later use.

CREATING FILES ON NEW PACKS

Files are created on new, unused private packs in a three-phase operation. First, the private pack is requested for the
user’s job. Next, the names of the files are associated with the private pack. Finally, the files are written on the private

B pack

To request that a private pack be assigned to a job, the RPACK card is used, in the following format:

RPACK pname,N.

2-16 60305200 B

On this card, pname is the pack name to be assigned to the entire pack; it is not to be confused with the logical file
name associated with each file to be written on the pack. However, the pack name and the name of one of its files can
be identical. The sole function of the pack name is to identify and reserve this pack for the job. Another parameter, N,
indicates that this is a new pack, as yet containing no files.

As an example, this card assigns the name MYPACK to a new private pack:

RPACK,MYPACK,N.
When the RPACK card is processed, SCOPE writes a label on the pack; the label contains pname and other
information used by the system. This label is used to identify the pack and list the files it contains. At this time, also, a
message displayed to the computer operator directs him to assign a visual pack number or identifier to the pack. He
does this by typing a six-character identifier at the console keyboard. To direct the operator in assigning a special

number, COMMENT cards (detailed later in this section) can be placed before the RPACK card in the control card
record.

Next, the names of files to be written on the pack must be assigned to the pack. This, in essence, reserves areas on the
pack for these files. The REQUEST card is used in the following format:

REQUEST.lfn,PK,pname.
On this card, Ifn is the logical file name and pname is the pack name defined on the RPACK card. Assignment is
automatic and requires no operator action. Prefixes and suffixes previously defined for the REQUEST card, however,
cannot be used with PK. The following card associates the file named MYFILE with the private pack MYPACK.

REQUEST,MYFILE,PK,MYPACK.

The above entries are the only ones required in the control card record. The new files will be created and updated on
the private pack by commands within the user program record.

60305200 B 2-17

As a complete example, the following FORTRAN job creates two files, TAPEI and TAPE2, residing on a private disk
pack named MYPACK having an identification number of N1122.

Card i Function
JOB1,T1000. Names jjob.
RUN(S) Compiles program.

COMMENT . OPERATOR SHOULD ASSIGN BLANK
COMMENT. LABELED PRIVATE PACK AND HE SHOULD
COMMENT. TYPE INA VSN OF N1122 IN ANSWER
COMMENT. TO THE FOLLOWING RPACK REQUEST.
I RPACK,MYPACK,N. VSNN1122 Tells operator to as-
sign new pack named
MYPACK to job.

REQUEST, TAPE1, PK,MYPACK. Assigns file TAPE1 to
MYPACK.

REQUEST, TAPE2, PK,MYPACK. Assigns file TAPE2 to
MYPACK.

LGO. Loads and executes
program.

7/8/9 Signals EOR.

(FORTRAN program to create files TAPE1 and TAPE2)

6/7/8/9 Signals EOF.

USING EXISTING PACKS

A parallel method is used in requesting and referencing files on existing packs. First, the private pack containing the
files must be requested with an RPACK card of this format:

RPACK pname,E.
On this card, pname is the name assigned to the pack and E indicates an existing pack. When this card is processed, the
operator assigns a pack already labeled with pname to the job. If pname in the label does not correspond to pname on
the RPACK card, the operator is informed; job processing is delayed until he assigns the proper pack.
At the user’s option, another parameter, vsno, can be included as follows:

RPACK, pname, E,vsno.

This is the volume serial number assigned to the pack. If this parameter in the label does not match its counterpart on
the RPACK. card, processing is delayed until the proper pack is assigned.

When the proper pack is assigned, its files are made available to the job and other files can be added to it by
REQUEST cards.

The following example shows a FORTRAN job that accesses two existing files, TAPEL and TAPE2, previously created
by the job just illustrated, and writes a new file, TAPE3, on the same pack.

No REQUEST cards are needed to associate TAPE! and TAPE2 with the pack, because these files already reside on
I the pack.

2-18 60305200 B

Card Function

JOB2,T1000. Names job.

RUN(S) Compiles program.
COMMENT. THE OPERATOR MUST ASSIGN

COMMENT. PRIVATE PACK WITH VSNO

COMMENT. OF N1122 TO FOLLOWING RPACK

COMMENT. REQUESTED.

RPACK,MYPACK,E,N1122. Tells operator to assign pack
named MYPACK to job.

REQUEST, TAPE3, PK,MYPACK. Assigns new file, TAPE3, to MYP-
ACK.

LGO. Executes program.

7/8/9 Signals EOR.

(FORTRAN program to read files named TAPE1
and TAPE2 and create a third file TAPE3.)
6/7/8/9 Signals EOF.

DISPOSING OF FILES BEFORE END OF JOB (DISPOSE CARD)

Under normal operating conditions, files are released from a job only after all control cards have been processed and
the job is released from central memory and terminated. However, a user can request that local files on allocatable
devices (public packs, disks, drums, or ECS) be released for termination processing before the job is completed. This
could be done, for instance, when output is ready for the printer but additional programs in a job remain to be run.

To release files for termination processing, the DISPOSE card is used in either format:

DISPOSE(Ilfn.x=ky) DISPOSE(Ifn,*x=ky)
On this card, Ifn is the name of the logical file to be released. This must be a temporary local file residing on an
allocatable device. If Ifn is a permanent file, the DISPOSE card is ignored. When only the Ifn parameter is used, the
file referenced is released from the job and the system; it can then be overwritten by other jobs. The following card will

release the file named EXFILE from the system:

DISPOSE(EXFILE)

60305200 B 2-19

The x parameter represents the disposition requested. It is used when a disposed file is to be printed, punched on cards,
or output on some other device as indicated by the following codes.

File Disposition x Code
Printed on any available printer PR
Printed on 501 or 505 printer P1
Printed on 512 printer P2
Punched on formatted binary cards PB
Punched on Hollerith cards PU
Punched on field-free binary cards P8

(using all 80-columns for data),

Printed oﬁ microfilm recorder. FR
Plotted on microfilm recorder FL
Plotted on any available plotter PT
Printed on hardcopying device HR
Plotted on hardcopying device HL

Codes FR, FL, PT, HR and HL are defined
but not supported in SCOPE 3.3

The presence of * in the x parameter indicates the file is to be disposed at end-of-job. In that case, DISPOSE will
ignore the =ky part of the parameter and the disposition code specified by x will be put into the FNT. If no FNT entry
exists when the DISPOSE card is encountered, one will be created.

This example shows the x parameter on a card that requests early disposition of the file named ZOOK for printing on
any available printer:

DISPOSE(ZOOK, PR)

Further characteristics of the output device can be specified by expanding the x parameter to x =ky. For example,
when k is C, the identifier y must be formed by two alphanumeric characters, defined by installation, to request certain
hardware characteristics. The following job containing two FORTRAN programs illustrates how these identifiers are
used.

The first program produces a group of checks on a file called PAYROLL. The second program produces other

unrelated data. To permit the payroll checks to be printed on a 512 printer while the second program is in process, the
dispose card could be used as indicated.

2-20 60305200 B

Card Function

JOBPAY. Names job.

RUN(S) Compiles first program.

LGO. Loads and executes first program.
DISPOSE(PAYROLL,P2=CPR) Prints PAYROLL on 512 printer.
REWIND(LGO) Rewinds compiler output file.
RUN(S) Compiles second program.

LGO. Executes second program.
7/8/9 Signals EOR.

(First FORTRAN Program)

7/8/9 Signals EOR.

(Second FORTRAN Program)

6/7/8/9 Signals EOF.

On the DISPOSE card, P2 specifies the 512 printer, C determines that special characteristics are required of this printer,
and PR is a parameter that the installation interprets to mean that printing is to be done on special payroll forms. A
message to the operator will inform him that printing will be delayed until the forms requested by the PR identifier are
placed in the printer. After the operator loads the forms in the printer, he enters a command at the console to begin
printing.

The ky parameters can also be used to indicate other procedures. For example, when k is I (for an INTERCOM
terminal) or E (for an EXPORT/IMPORT terminal), y designates a specific remote site to which output is to be
directed.

RELEASING FILES FROM JOBS
(RETURN CARD)

Normally, all files assigned to a job are retained by that job until it terminates. However. any file. permanent or
temporary, common or otherwise, allocatable or non-allocatable, can be released from the job prior to termination with
the RETURN card. When a RETURN card appears, a CLOSE.RETURN is performed on each file named. unless it
has a special disposition code set. In that case, the special disposition is honored. RETURN also causes a decrease in
the number of logical tape units reserved by the job. A magnetic tape assigned to a member file of a multifile set is not
released.

When the RETURN card is processed, sequential files are rewound. files on magnetic tape are unloaded. files on
private packs are locked and made unavailable to the job. Common files are released from the users job but remain in
the system for access by other jobs. The card format is:

RETURN,Ifnl,lfn2,.. Ifnn.
On this card, Ifn is the name of the file released; one or more files can be referenced on one card.

The following card would release the files MUTT and JEFF from the job.

RETURN, MUTT, JEFF.

60305200 D 2-21

UNLOADING FILES (UNLOAD CARD)
Like the RETURN card. the UNLOAD card also can be used to release files from the job before termination. When
an UNLOAD card is encountered. a CLOSE.UNLOAD is performed on each file named. Tape units are returned to
the control point pool and may be used for another job. In contrast to the RETURN card. the number of units logically
reserved by this job is not decreased. Otherwise. an UNLOAD is equivalent to a RETURN.
The format of the UNLOAD card is:

UNLOAD,ifnl,lfn2,..Ifnn.

REMOVING FILES FROM PRIVATE PACKS
(REMOVE CARD)

A file can be removed from a private disk pack by first issuing the RPACK request to assign the pack to the job and
then issuing the REMOVE request. When the REMOVE request is processed, all space on the disk occupied by that
named file is released and the file is dropped automatically from the system by SCOPE. No operator action is required.
The REMOVE card is punched in the following format:

REMOVE,Ifn,pname.
REMOVE and Ifn are required entries; 1fn is the file to be removed from the pack.
The pname parameter, for pack name, is optional; when it is used, SCOPE compares pname on the REMOVE card
with pname on the header label on the private pack. If pname is the same on both items, the file will be removed; if it

is not, a message is issued to the operator.

The following sample job will remove the file named TAPE2 from the private disk pack named MYPACK, which is
assigned a visual identifier of N1122.

JOB3,T1000. Names job

RPACK,MYPACK,E ,N1122. Requests pack named MYPACK for job.
REMOVE, TAPE2 ,MYPACK. Removes file TAPE 2 from MYPACK.
6/7/8/9 Signals EOF.

CREATING COMMON FILES
{(COMMON CARD)

Normally, when a user’s job terminates, all files not designated for output or recorded on a private disk pack are
released from the system. However, with the COMMON card, a user can request that any files associated with his job
remain in the computer for later access by other jobs. The format of the COMMON card is:

COMMON, Ifn.

Here, Ifn is the name of the logical file declared common.

2-22 60305200 D

Common files are created by inserting the COMMON card in the control record at any point after the file is first
referenced. For example, the following COBOL job creates a file called TASK during execution. The user wants to
ensure that TASK is left in the system for reference by a later job. He inserts the COMMON card after the card that
executes the COBOL program:

Card Function

JOBY . Names job.

COBOL. Compiles COBOL program.

LGO. Loads and executes COBOL program.

COMMON, TASK. Leaves TASK in mass storage as a common file.
7/8/9

(COBOL program)

6/7/8/9

A file made common by a job is assigned to the job until the job terminates. It is then assigned to SCOPE until it is
referenced by another job.

When a job references a file declared common by a previous job, the COMMON card must be used before that
reference in order to assign the file to the present job. If the common file is not in use by another job, it will be assigned
to the requesting job immediately. Otherwise, processing of the requesting job will be suspended until the common file
is free. When the common file is assigned, it stays with the requesting job until the job terminates.

In the following job, an existing common file named MONEY is requested by the job, loaded into central memory, and
executed.

Card Function

JOBS5. Names job.

COMMON, MONEY . Requests file MONEY for job.
LOAD(MONEY) Loads MONEY.

EXECUTE. Executes MONEY.

6/7/8/9 Signals EOF.

When a non-existent common file is requested, job processing is suspended until such a file is created by a job and
becomes available. Processing then continues.

A file on magnetic tape or private disk pack cannot be declared common. Such a declaration has no effect, and a
diagnostic message is issued.

Common files are destroyed during deadstarting of the computer following a shutdown. However, information can be
saved even through a deadstart if it is written on a permanent file (Section 5).

RELEASING A COMMON FILE
(RELEASE CARD)
Any common file can be released from common status with the RELEASE request. When this request is processed, the

file referenced is dropped from common status and is assigned to the requesting job as a local file. When the job is
terminated, this file is destroyed along with all other temporary local files.

60305200 A 2-23

The RELEASE request is written in the following format:
RELEASE,ifn.
Ifn is the name of the file to be released.

In the following example, an existing common file called CASH is requested for the job, loaded, executed, and released
from the systems:

Card Function

JOB6 . Names job.

COMMON,CASH. Requests file CASH for job.
LOAD(CASH) Loads CASH.

EXECUTE. Executes CASH.

RELEASE ,CASH. Releases CASH from common status.
6/7/8/9 Signals EOF.

TAPE JOB PROCESSING
JOB INITIATION

A job’s tape requirements are among the criteria used by SCOPE to schedule a job to a control point. The maximum
number of tape units needed at any one time by a job is given on the job card. SCOPE will not schedule a job until the
system tape pool contains enough available tape units to satisfy tape requirements; other scheduling criteria must also
be satisfied.

When a tape job is brought to a control point, the required number of tape units are reserved logically to the job by
decreasing the system tape pool count and increasing the control point tape pool count. Specific tape units are not
assigned. The time and type of assignment is a user option.

Tape requirements can be minimized by careful planning of job phases. The job card parameter specifies the maximum
number of tape units that may be assigned at any one time, not the maximum number of tape requests. Additional tape
units may be requested after the job has used its maximum allotment, provided the job releases to the control point
tape pool, via UNLOAD, one unit for each additional unit requested. If total tape requirements decrease after the first
phases of the job, units should be returned to the system tape pool via RETURN.

TAPE ASSIGNMENT

Use of the LABEL card is recommended for all tape requests except unlabeled input tapes. The LABEL options

selected by the user depend on the intended usage of the tape file. Use of the LABEL card permits SCOPE to assign
the unit automatically regardless of selected options. Refer to section 8 for a description of the LABEL card.

SCRATCH TAPE FILES
Scratch tape files should be requested as follows:

LABEL, logical file name, W,X=1U,...

2-24 60305200 B

An available scratch tape will be assigned automatically and blank-labeled. Use of inhibit unload (X=1IU) is optional
but recommended, since it will ensure that the tape is not unloaded when the unit is released but is available
immediately for automatic assignment to the next job requesting a scratch tape, without requiring an operator type-in

Other LABEL card parameters may appear if other than the default values for data format, density, etc. are desired.

SAVE OUTPUT TAPE FILES
Save output tape files should be requested as follows:
LABEL,logical file name,W, L =file label name, T= retention, X=SV,...
An available scratch tape will be assigned automatically and labeled according to parameters on the LABEL card. The
save parameter is optional but recommended, since it will ensure, when the unit is released, that the tape is unloaded

and the operator notified that the tape should be saved.

Other LABEL card parameters may appear if other than the default values for data format, edition number etc. are
desired.

A specific output tape may be assigned by including the VSN parameter on the LABEL card.
LABEL, logical ﬁie name,L = file label name,X = SV,VSN=visual reel number,...
INPUT TAPE FILES
Input tape files should be requested as follows:
LABEL,logical file name,R, L= file label name,...
The VSN parameter may be included to restrict automatic assignment to a specific volume.

If the tape can be located by VSN on any unit, that unit will be assigned automatically; otherwise an available unit is
assigned automatically and the operator is directed to mount the tape file on that unit.

Other LABEL card parameters may appear if the tape was created with other than default values for data format,
density, etc. Enough label field parameters should appear to ensure that the correct tape is located. Any tape label field
value will be considered correct if the value for that field is not explicitly declared on the LABEL card.

OTHER TAPE FILES

A REQUEST card/function may be used to request manual or automatic assignment ofa tape unit. Manual assignment
of an unlabeled input tape is necessary.

A user may request automatic assignment of a labeled input tape by using a REQUEST card/function, but this practice

is not recommended. However in this case, the first reference to the file must be an OPEN with automatic recall and
FET label fields must be specified.

60305200 B 2-25

JOB TERMINATION

When a job has finished processing a tape file, the tape unit should be released. If the number of units reserved to the
job can be decreased, the unit should be returned to the system tape pool (RETURN card). Otherwise, the unit may be
returned to the control point tape pool, thereby maintaining the number of units logically reserved to the job
(UNLOAD card). In either case, the physical unit will become available for assignment to any control point.

When a tape unit is released to either pool or when the job terminates, a trailer label will be written, if appropriate, and
the tape will be positioned according to the following criteria:

If inhibit-unload was declared, the tape will be rewound.
If save was declared, the tape will be rewound/unloaded and the operator requested to save the tape.

If no declaration was made and the tape is released prior to job termination, the tape will be rewound/
unloaded.

If no declaration was made and the tape is released as a result of job termination, the tape will not be
positioned.

PROGRAM EXECUTION

A user can call a program for execution by using a control card on which is punched the name of the file containing the
program. When such a card is processed, SCOPE searches a table containing the names of all user-created files assigned
to the job. When the specified file name is found, the file is rewound and the program on the file is loaded into central
memory and executed. If the file is not located, however, SCOPE searches the system library for a SCOPE file with that
file name. Again, if the file is found, the program on that file is loaded and executed. If the file cannot be located, or if
the file is found but does not contain an executable program, the job is terminated.

Programs created by users and programs that are part of SCOPE are both referenced by the program execution card,
punched in the following format:

Ifn,list.

On this card, Ifn is the name of the file containing the program to be executed. Only this entry is required on the card.
As with any logical file name, Ifn must be 1 to 7 alphanumeric characters, beginning with a letter and followed by any
proper terminator if no parameter list follows.

The optional entry, list, is composed of parameters that depend on the program to be executed and are referenced by
that program. A separator follows Ifn and each succeeding item in the list. The last parameter must be followed by a
proper terminator. ‘

Programs created by the user are loaded and executed with loader control cards in the above format, discussed in
Section 6. SCOPE programs are loaded and executed with SCOPE control cards, punched in the same format. Among
the most frequently used SCOPE control cards are those used to execute the COMPASS assembler or the source-
language compilers contained on the SCOPE library.

The following table shows the names that should be used for Ifn on the program execution card to assemble or compile
a user program:

226 60305200 B

Source Language Ifn

FORTRAN Extended FTN.
FORTRAN (RUN) RUN.
COBOL COBOL.
ALGOL ALGOL.
COMPASS COMPASS.
SIMSCRIPT SIMS.
SIMULA SIMULA.
SORT/MERGE SORTMRG.
PERT/TIME PERT66.
APT APT.
BASIC BASIC.

The following program call card would be used to assemble a program in COMPASS:

COMPASS.

On cards requesting assembly or compilation, the list parameters are used for such functions as:
Naming the file onto which the program is to be translated in object code
Naming the file on which the program to be assembled or compiled is originally stored
Producing source-language or object code listings of the program
Punching the file on binary cards

The following card requests compilation of a FORTRAN Extended program from a file called STANLEY onto a file
named OLIVER.

FTN (I=STANLEY,B=0LIVER)

The list parameters associated with FORTRAN Extended, and with all other source languages are described in detail in
the reference manuals covering these languages.

After compilation, loading and execution are normally requested. These functions can be performed individually or
jointly with the loader control cards described in Section 6.

In the following job, a COBOL program is compiled, loaded, and executed:

60305200 B 2-27

Card Function

JOB7 ,MT1. Names job.

REQUEST(FILE,MT) Requests input file FILE on tape for job.
COBOL. Compiles program (onto file LGO).

LGO. Loads and executes program.

7/8/9 signals EOR.

(COBOL program)

6/7/8/9 Signals EOF.

PROGRAM OPTIONS

SETTING PROGRAM SWITCHES
(SWITCH CARD)

In program branching, where two alternate processing routes are provided, the software sense switch is frequently used
to determine which path is taken. This switch is a bit in central memory that a user’s program can reference.

The program might contain a request to take one path if the bit is on, (set to 1) and another if it is off (reset to zero).

Up to six switches can be set or reset in a source program. At the start of every job, all switches are reset to zero; each
can be set or teset by the presence of SWITCH cards in the control card record:

SWITCH,n.

The parameter n must be given. It specifies the number (1-6) of the switch to be manipulated. The following control
card could be used initially to turn on switch 4.)

SWITCH, 4.
A switch is turned off when the job terminates; it can be reset to zero prior to job termination by including a second

switch card referencing the same switch. Thus, a second SWITCH,4. card would reset switch 4 to zero. A third
SWITCH, 4. card would again set it to one.

2-28 60305200 B

As an example of how a switch is used, consider the following job that contains a program written in FORTRAN
Extended. This program is executed once a week with different data each time. Within the program, a routine called
TALLY is executed only every fourth week. The program includes an instruction to branch to TALLY only if switch 1
is on. When it is the week for TALLY, a SWITCH, 1. card is included in the control card record as shown. When the
program reaches the instruction GO TO (100,200)J, the activated switch will cause a branch to call for the routine
TALLY. When executed, the final instruction within TALLY will be a return jump to statement 100 in the main
program.

Card Function

JOB8,MT1. Names job.

REQUEST, TAPE, MT. Requests an input tape

file named TAPE for job.

Control Card Record REWIND, TAPE. Rewinds file TAPE.

SWITCH, 1. Sets switch 1 on.

FTN. Compiles program.

LGO. Loads and executes job.

7/8/9 Signals EOR.

PROGRAM ALPHA (INPUT,OUTPUT, TAPE)

CALL SSWTCH(1,J) Relates switch 1 to J. If
switch 1 is on, J is set
to 1; if off, J is set to

2.
GO TO (200,100)J Transfer to 100 if
FORTRAN Extended switch 1 is off;
Program transfer to 200 if
switch 1 is on.
200 CALL TALLY Calls and executes
routine TALLY.
100 Continue execution of
program.
7/8/9
Data ; (Data)
6/7/8/9 Signals EOF.

If TALLY is not to be executed, the SWITCH, 1. card is omitted from the control card record. When the FORTRAN
program reaches the branching statement, it will determine that switch 1 is off and transfer to statement 100.

Switch reference instructions within a user program vary, depending on the program source language. They are
described in the reference manuals covering each language.

60305200 B 229

ESTABLISHING HALT CONDITIONS
(MODE CARD)

Among the various types of errors that can cause a job to terminate prematurely, or to branch to an exit path specified
by the user, three can be negated so that program processing will continue in spite of the error. These errors are:

A reference to an operand (any number used in a calculation) that has an infinite value

A reference to an address outside the field length of the job in central memory or ECS

A reference to an operand to be used in floating-point arithmetic for which the decimal point was not defined
Normally, these errors will terminate processing; any or all can be suspended as halt conditions, so that processing
continues until another type of error is encountered that terminates the job, or until all control cards are executed. The
MODE card, punched in the following format, is used for this purpose.

MODE,n.

The n parameter is a number specifying the halt conditions to remain in effect for a job:

To Halt: Enter for n:
In none of the three negatable cases 0
Only if address is out of range 1
Only if operand is infinite 2
If address is out of range or operand is infinite 3
Only if operand is floating point number with undefined point 4
If address is out of range or operand is floating-point number with undefined point 5
If operand is infinite or operand is floating-point number with undefined point 6

If operand is infinite or operand is floating-point number with undefined point or address
is out of range 7

The following card will permit processing to continue if a referenced address is out of range of the field allotted to the
job in central memory; processing will halt, however, if an infinite operand or a floating-point operand with an
undefined point is referenced:

MODE,¢.
Any MODE request that permits processing to continue regardless of a reference to an out-of-range address should be
used only with great caution. Resulting output probably will have no value. Under such conditions, an attempt to write
outside FL appears to complete normally; however, no writing is done. When an attempt is made to read outside FL,

zero is returned to the X register; no information is returned.

At most installations if no MODE card appears in a program, mode 7, which allows a job to halt if any error occurs, is
always in effect; this is the normal operating mode.

2-30 60305200 B

A mode request remains in effect until a new mode request is encountered or until the current job is processed. When
processing is complete, SCOPE returns to the normal operating mode for the installation.

ESTABLISHING EXIT PATHS
(EXIT CARD)

Normally, when a fatal error occurs in a job and it is not a negatable error suspended by a MODE request, processing
is terminated, a diagnostic message is issued, and output created prior to the error is output. However, special exit
routines can be established within the control card record to which the job can branch in the event of certain kinds of
errors. The exit routines will be executed before the job is terminated. Such an exit routine might direct the computer to
dump the central memory contents of the job, or it might direct execution of an entirely different program.
Certain conditions cause abrupt termination of a job regardless of an exit routine:

A request from SCOPE or the computer operator to terminate the job and inhibit all output

A request from the operator to transfer the job from central memory back into the input queue

An error on the job card

A checksum error encountered during the job input

When other types of errors occur, SCOPE searches the control card record for an exit routine which is executed if
found. The following or terminating conditions will result in this search:

The job uses all execution time allotted.

An arithmetic error occurs (the type negatable by a MODE card).

A peripheral processor encounters an improper input/output request.
A central processor program requests job termination.

The operator requests that the job be dropped.

A control card error (other than on the job card) occurs.

An ECS parity error occurs.

If a control card record includes an exit routine but no error occurs, the job will terminate as it would if an EOR card
had been encountered in the control card record.

Exit routines are established with the EXIT control card:

EXIT.

60305200 B 2-31

An error causes the job to be advanced until either an EOR (7/8/9 card) or an EXIT card is encountered in the control
card record. When an EXIT card is encountered, the cards that immediately follow it are executed, as illustrated below:

N

Card Function

MYJOB,P1,T400,CM50000,MT1. Names job.

REQUEST ,MYFILE K6 MT. Requests input tape file MY-
FILE.

RUN. Compiles and executes FORTRAN
program.

EXIT. Signals beginning of exit rou-
tine.

DMP, 1000. Dumps first 1000(octal) words
of storage.

7/8/9

(FORTRAN (RUN) program)

7/8/9

(Data)

6/7/8/9

In this job, the two dumps requested will be produced only if an error occurs, causing the job to branch to the exit
routine.

Errors in control card format, or an attempt to load an object program resulting from erroneous assembly or
compilation, result in instant termination of the job even if an EXIT card and routine are present. This action prevents
indiscriminate dumping of large loading and compilation routines in cases where an EXIT card is followed by a dump
request. To override the instant termination procedure and enter an exit routine regardless of these types of errors, the
suffix(S) should be added to the EXIT card:

EXIT(S)

INTERRELATING DEPENDENT JOBS
(TRANSF CARD)

The user can submit a string of interdependent jobs to the computer, specifying the order in which they are to be
executed. In such a string, jobs can be input in any order and through one or more card readers. A job will nof be
executed until all prerequisite jobs in the string have been executed. Whenever possible, SCOPE schedules
interdependent jobs for execution in paralle! (multiprogramming).

When each job is input, the dependency identifier and dependency count on the job card are read into the SCOPE file
name table along with other information about the job. Each time a prerequisite job executes a transfer to a dependent

job, the dependency count is decremented by one. When the count becomes zero, the dependent job can be executed.

On the job card, the Dym parameter establishes job interdependency. y is the dependency identifier that names the
string to which the job belongs. m is the dependency count (number) of prerequisite jobs on which the job depends.

Transfer from a prerequisite job to a dependent job is accomplished by the TRANSF card, placed in the control card
record after the card that executes the prerequisite job. The TRANSF card is punched in this format:

TRANSF(pl,p2....pn)

2-32 60305200 B

The p parameter names the jobs to which transfer is directed; only the first five characters of each job name are
examined by SCOPE. As many job names as will fit on a card can be noted. Several TRANSF cards can be included in
each job, but none should appear in the last job in a string.

An example of an interdependent job string follows. Jobs B and C cannot run until Job A has been executed. Job D
must wait until Jobs B and C have been run. Job E must wait only on Job C. Before Job F can be run, Jobs B, D, and E
all must have been executed.

(TRANSF (JOBB, JOBC)

T
<
/ .

(_ TRANSF (JOBD, JOBF) (_ TRANSF (JOBD, JOBE)
yd < J/
Z yd
JOBB, DXY01. (JOBC,DXYOL
[TRANSF (JOBF) (' TRANSF (JOBF)
Z
ya Z
JOBD,DXY02. JOBE,DXYO01.

e

—

L
L
L

/" JOBF, DXY03.

Figure 2-3. Interdependent Jobs

60305200 A 2-33

If a job containing a TRANSF card is terminated before that card is processed, control will not pass to the next job in
the string. Instead, all succeeding jobs that depend on this job will remain in the input queue. They can be executed
only if the prerequisite job is re-run successfully. Otherwise, the entire string should be terminated by the operator.
Since no error message appears in this event, the user should inform the operator what jobs belong to an
interdependent string.

INSERTING COMMENTS IN THE JOB
(COMMENT CARD)

Informal comments, remarks or messages to the computer operator can be inserted after the terminator on any control
card. These comments appear in the printed job dayfile, and also in the dayfile display for the operator on the console
screens. In the following control card record, examples of such comments are presented.

Control Statement Comment

JOBSAM,T500,CM50000,MT1. WORK ORDER NO. 2126A.
REQUEST, TAPE1,MT. THIS IS TAPE NO. 112.
REWIND, TAPE1.

FTN. THIS IS NEW COMPILER
LGO.

7/8/9

(FORTRAN program)

6/7/8/9

Comments can also be inserted independently of SCOPE requests by punching them on COMMENT cards, in this
format:

COMMENT.n....nn

Comments or remarks (n...n) are inserted after the period following the word COMMENT. There may be up to 72
characters which can occupy any column, 9 through 80. Any character can be used, including blanks, commas, periods,
and other punctuation. Like the comments on other SCOPE control cards, those on the COMMENT card are printed in
the job dayfile and displayed to the operator on the console screen. Only the characters in columns 9 through 80
appear, however.

Since the comment card requires no action by the computer operator, and job processing is not suspended for pending
action, the computer operator may not notice all messages because of the speed at which this card is processed. It is
better to place such messages on any relevant control card, if possible.

If a comment is too long for one COMMENT card, it can be continued on as many COMMENT cards as necessary, as
shown in this example: '

job card.

COMMENT. THIS JOB CALCULATES THE SPECIFIC IMPULSE DERIVED FROM THE
COMMENT. E-G INJECTOR, UNBAFFLED VERSION, USED WITH GAS 7
COMMENT. GENERATOR 1117A, ON THRUST CHAMBER YLR2776A
COMMENT. FOR ROCKET ENGINE J-6.

FTN.

LGO.

7/8/9

(FORTRAN Program)

7/8/9

(Data)

6/7/8/9

2-34 60305200 A

EXAMPLES OF JOB DECK ARRANGEMENTS

The order in which SCOPE control cards are arranged within the input stream (control card record) depends upon the
purpose of the job and the programs it contains. The following examples illustrate typical arrangements:

JOBA requests a tape file named SALLY, and loads and executes an object program from that file:

JOBA,MT1.
REQUEST, SALLY,MT.
SALLY.

6/7/8/9

JOBB, containing a FORTRAN Extended program on Hollerith cards, compiles, loads and executes that program.

JOBB.

FTN.

LGO.

7/8/9

(FORTRAN Extended Program)
6/7/8/9

JOBC, containing a program on binary cards, loads and executes that program:

JOBC,CM43000,T500.
INPUT.
7/8/9

(Program on Binary Cards)
6/7/8/9

JOBD compiles, loads and executes an ALGOL program named SMITH, punched on Hollerith cards; loads and

executes a program named JONES, punched on binary cards; and loads and executes a program named BROWN on a
common file stored on disk.

JOBD.

ALGOL.

LGO.

INPUT.
COMMON , BROWN.
BROWN.

7/8/9

(Program SMITH)
7/8/9

(Program JONES)
6/7/8/9

60305200 A 2-35

JOBE compiles and executes a FORTRAN Extended program and executes this program with one set of data, and then
with another:

JOBE.

FTN.

LGO.

REWIND, LGO.

LGO.

7/8/9

(FORTRAN Extended Program)
7/8/9

(First Data Deck)
7/8/9

(second Data Deck)
6/7/8/9

JOB TERMINATION
NORMAL TERMINATION

When a job is processed without error, normal termination activity begins when an end-of-record (7/8/9) card or an
EXIT card is encountered in the control card record. First, the execution time of the job is written onto the job dayfile,
DFILEx and on the system dayfile, DAYFILE. Then, DFILEx is rewound and copied onto the file OUTPUT. Next,
OUTPUT and any other files on mass storage designated for output, such as PUNCH or PUNCHB, are rewound and
placed in the output queue on disk. OUTPUT is designated for the printer, and PUNCH (Hollerith) and PUNCHB
(binary) for the card punch by disposition codes. These file names are then changed to the job name, the type to output,
and the assignment to control point 0.

Files on magnetic tape are assigned to control point 0, rewound, unloaded (if SAVE status has been requested), and
released from the system. Common files are assigned to control point 0, where they can be assigned to other jobs.
Permanent files are released from the job. All remaining local files in central memory and mass storage, including
INPUT, LGO, and DFILEx, are cleared and released. The job is then released from the control point area.
All hardware devices assigned to the job are assigned to control point 0, so that they can be reassigned to other jobs.
At this point, files in the output queue relating to the job are all that remains of the job. When an output device of the
type requested by the file’s disposition code is free, the file will be output through that device. If no device has been
requested, the file is assigned to the printer. Where applicable, the job output is arranged in the following order:

Source language listing

Object listing

Load map

Executed program output (results)

Job dayfile

2-36 60305200 B

The dayfile shows all control cards executed, equipment assigned to the job, the total central processor and peripheral
processor time, system action reports, and the date and time of day each processing event took place. An example of a
dayfile is shown in figure 2-4.

06/24/70 SCOPE 3.3 SN/58 06/723/70 S
01915.40.CHKCA06
01¢18,41,CHKCATT1009CM550000 176849625349

01418,41,15059L BRADLEY, _—
Olglegﬁl.COPY(INPUToB)

ol’la.“li
01418,42,CATALOG(BySORTMERGESEQCHKYRP=301+10=BRADL
Ll Ettmmet g FXgttomat CNSOwowit)
01.18,643,N0 PFD DEVICE
01418,43,PF ABORT
01.18,43,CP 000007 SECs

01elB 43 PP 0004877 SECe
01.,18,43,10 000.071 SECe

06/24/70 SCOPE 3,3 SN/58 06/23/70
01e18.17.ADDZMO4 .
01418,17,ADDZMEMsCM550005 7300, 438B+6253,91505
Vle18.18.9L BRADLEY,
01.18,18,COMPASS,

01.18,18,

01418,28,REWIND (LGO)

01.18,28,

01+18,29,EDITLIB,

.939‘8-29-

01.19,10,A (NOT IN PP |18

01019.10.EXITs e e
01.19,10,

01019,11,.CP 003+64)1 _SECe
01,19,11,PP 0404880 SEC.
119,111,710 000803 SEC,

06/24/70 SCOPE 3,3 SN/58 06/23/70
01018,12,XXX000]
U1eT8,12.XXX9CM400009T400, JOB96253177
701;18.12.F13!L BRADLEY.
0118,12,RFL(55000)
791.18.12.
U1418,13,RUN(S) o
01s18,13,
0T T8, T35, REWIND (LGOY
01418,15,
U1018,15,EDITLIB, o
01.18,15,
01.18,23, READY (SYSTEM) - o
01018,24, DELETE (QCL.OCK)
T, 18,24, DELETE(UNIT]
01.18,24, DELETE (EQF)
0118,24, ADD T#yLGO)
0‘:18.26- COMPLETE.
“01,18,36,G0, T

01,18,39,CP 0050362 SEC.
0T.18,39,PP 007.099 SEC.
01.18,39,10 0014095 SECe

Figure 2-4. Job Dayfile

60305200 A 2-37

ABNORMAL TERMINATION

When an error occurs, SCOPE sets a flag indicating the error. If the error causes abrupt termination with no exit path,
SCOPE begins termination processing. If the error permits branching to an exit path, SCOPE searches the control card
record for an EXIT card. If such a card is found, SCOPE clears the error flag and executes the control cards following
the EXIT card. If no EXIT card is found, SCOPE ignores the remainder of the control cards and begins termination
processing.

As the first step in termination processing, diagnostic messages are written in DFILEx and DAYFILE. Also, the current
contents of the SCOPE exchange package, the first 100(octal) words in the job field length, and 100(octal) words
preceding and following the program address are copied onto DFILEx; this is the standard error dump. Next, the
procedures described under Normal Termination are begun. In addition to the items output under normal termination,
the error dump will also be printed.

REGAINING CONTROL BEFORE JOB TERMINATION

The RECOVR utility function, initialized by a system macro, allows a user to regain control of the central processor
before a program terminates. Control can be regained if the program executes successfully or if a variety of error
conditions caused an error flag to be set. RECOVR makes the exchange jump package and RA -+ 1 contents available to
the program, if user recovery code is executed, and gives the user the option of normal or abnormal job termination
output. At least five seconds of central processor time always will be available for user code execution.

Unlike the OWNCODE capability where the user gains control only after file action request errors, RECOVR covers a
wide range of error conditions, as shown below, with the octal value that will select them, in the call to RECOVR:

Arithmetic mode error 001
PP call or auto- recall error 002
Time or field length exceeded 004
Operator drop or rerun 010
System abort 020
CP abort 040
Normal termination 100

Conditions can be combined as desired; octal values up to 177 are allowed in the flag field of the call to RECOVR.

Initializing RECOVR at the beginning of a program results in an entry in a stack of requests for PP program RPV.
Although RPV can be called directly by a monitor request in RA + 1,the RECOVR utility is preferable for all except
stand alone system utilities because SCOPE routines also use this capability. Only one set of recovery condition flags
can exist within RPV, but RECOVR allows up to five user and system sets. of flags and code for each program. The last
RECOVR code initialization will receive control first if conditions flagged for recovery occur.

If a program calling RECOVR contains overlays or segments, both the call to RECOVR and the user recovery code
should be a part of the level 0.0 code.

2-38 60305200 B

The exchange jump package will be returned in its normal form, with the system error code that caused recovery code
exccution in bits 0-17 of the first word. If the P register field in the exchange package shows zero because of a mode
error, bits 31-47 of RA+0 will contain the P register value.

System error codes are:

Normal termination

Requested time limit exceeded
Arithmetic. mode error

Iilegal parameter passed to PP
CP program requested abort
PP program not in library
Operator dropped control point
Operator initiated rerun of job :
ECS parity error 10
Required auto-recall status missing 13
Job hung in auto-recall 14
Requested mass storage limit exceeded 15

O EAWN-—O

A checksum of the user recovery code can be requested during initialization. If flagged conditions subsequently occur,
RECOVR will again checksum the code before retummg control to it, giving some assurance of user code mtegmy
before execution.

COMPASS Call to RECOVR
RECOVR is called from a COMPASS program with:

RECOVR name.flags,checksum

name . Address of code to be executed if ﬂagged conditions occur. A return]ump will
be made to this location.

flags - Octal value for conditions under which recover code is to be executed, as
outlined above; default is 77.

checksum Last word address of recover code to be checksummed;0 if no checksum.
If flagged condition occurs, the address of the exchange package will be in register Bl and the RA address.in B3.
Register Al will contain the address of the list of parameters passed in B1-B3. Register B2 will contain a 0; if the

recovery code sets it to non-zero, or if the code contains an ENDRUN macro or an RA + 1 request for END, normal
job execution resumes.

60305200 D 2-39

FORTRAN and FORTRAN Extended calls to RECOVR

During program initialization, the RECOVR routine must be called with three arguments to establish recovery
conditions: :

CALL RECOVR (subroutine, flags, checksum)

subroutine Name for the system to call after a flagged condition occurs. This subroutine
must have three arguments: :

Name of 17 word array to receive contents of the exchange jump package plus
word RA+1. i

Endrun indicator. If user code sets this flag to non-zero, abnormal job
termination does not occur.

Name of variable to receive contents of word RA +0.

flags Value indicating conditions for executing recovery subroutine.

checksum 0 for no checksum, or last word address plus 1 of subroutine to be checksum-
med. Address can be provided by a dummy subroutine containing no code and
the LOCF library function which returns the address of the named variable. FO[‘
example, this argument can be LOCF(DUMMY) where a subroutine containing
only the statements SUBROUTINE DUMMY and END immediately follows
the subroutine named in the first argument of RECOVR.

Calling RPV

The PP program can be called by establishing RA+1 as follows:

59 ' C 4139 35 23 0

~RPV 1 flags user recovery code address

The code at the recovery address should allow for a 21-word array (octal) to be returned. Control will be returned to
word 22 if recovery code is executed.

An optional checksum of the recovery area can be requested in the user call. If the word at the recovery address
contains all zeros, no checksum will be taken. If the upper 30 bits contain the last word address of the recovery area, a
checksum of the recovery area + 18 through last word address will be made and stored at the recovery address+ 1.

2-40 60305200 B

FILES 3

In the SCOPE system, except for some central memory tables, all information defined to the system is considered to be
either a file or a part of a file. This section describes the concepts and terminology underlying the file organization and
the structuring of data which SCOPE can process. SCOPE activities related to the creation, processing and disposition
of files are also included.

FORMATS

Local to a given job, a file is identified by a logical file name. This name consists of one to seven alphanumeric
characters, the first of which must be a letter. All control card references to a file identify it by the logical file name.
The internal central memory representation of a logical file name consists of its literal value in display code, left
justified, and zero-filled in bits 59 to 18 of the central memory data word. Reference to a file, using one of the SCOPE
macros defined to COMPASS, always symbolically addresses a parameter table, the first word of which contains an
internal representation of the logical file name.

All information in the SCOPE system is stored on files which may be allocatable or non-allocatable. Files stored on
_ disks or drums, devices which can hold many files and be allocated to many control points at the same time, are
allocatable files. All other files are non-allocatable including magnetic tape files, card files, and private disk packs.

LOGICAL RECORDS

All files within the SCOPE system, regardless of type, are organized into logical records: for input files, through the use
of (7/8/9) cards; for output files, through the language translator or other program producing the output.

Since the logical record concept is defined for all devices, files may be transferred between devices without losing their
structure. The physical format of a logical record is determined by the device on which the file resides. The physical
record unit size (PRU) is the smallest amount of information that may be transferred during a single physical read or
write operation for each device. Logical records are written as one or more PRU’s, the last of which is short or zero-
length. A zero-length PRU is written if the logical record is an even multiple of the PRU size or if a write operation
was requested with no data in the buffer. A zero-length PRU contains no data, but it has control information (see Level
Numbers).

Coded files on 1/2-inch magnetic tape receive special treatment. Within the SCOPE system, all coded information is
carried in display code; therefore, a conversion to external BCD for 7-track tapes (ANSI or EBCDIC for 9-track tape)
must be made before writing on the tape. Translation is character-for-character.

For SCOPE tapes, the display code end-of-line mark (12-bit zero byte) is converted to the external BCD code
1632(octal). The display code end-of-line mark is recognized only when it appears in the lower 12 bits of a central
memory word.

LEVEL NUMBERS

Related logical records within a file may be grouped by the user into an organized hierarchy. The level number (0-
17(octal)) of a logical record is contained in the short or zero-length PRU which terminates the record. This PRU is the
level mark. The level number is declared in the write request. If no number is specified, a level of 0 is assigned. If,
when no data is in the buffer, a level number is specified in a write request, a zero-length PRU containing the level
number is written.

60305200 B 3-1

number is written. A write end-of-file request causes a zero-length PRU of level 17 (logical end-of-file mark) to be
written. The level mark appended to each logical record is not placed in the circular buffer when the file is read; but it
is returned as part of the status information. Level number 16 should not be used for a job which includes a request for
a checkpoint dump as this level number is used in a unique way by the checkpoint dump program.

The lowest level within a file is associated with a single logical record. A higher level defines a set of records consisting
of the logical record at that level plus all preceding records at a lower level.

For instance, a file might be regarded as a multi-volume book; level 0 would be equivalent to a page, level 1 to a
chapter, and level 2 to a volume. In the following example, the lowest level 0 is associated with a single logical record
called a page; level 1 marks delimit a group of pages called chapters; chapters are grouped by level 2 marks into
volumes. A reference to a logical record of level 1 includes all information between the referenced level 1 mark and the
succeeding one. Included, therefore, will be several logical records as shown in the diagram.

L Logical Record | Level Mark | Page | Chapter | Volume
1 0 1
2 1 2 1
3 0 3 I
4 0 4 2
5 2 5
6 0 6
7 0 7 3
8 1 8
9 0 9
10 0 10
11 0 11 4 I
12 1 12
13 0 13
14 2 14 5
15 0 15
16 1 16 6
17 0 17 111
18 0 18 7
19 2 19
End of Information

The format of the level mark varies depending on the device type on which the file resides.

32 60305200 A

CARD FILES

Each logical record is terminated by a card with 7,8,9 punches in column 1. Columns 2 and 3 may have an octal
integer, 00-17, to denote level number. Level zero is assumed in the absence of punches in columns 2 and 3.

The end of information is signaled by a card with 6,7,8,9 punches in column 1. A card with 7,8,9 punches in column 1
and 1,7 punches in columns 2 and 3, is treated as an end-of-information card. For card files, EOI and EOF are
Synonymous.

BINARY MODE 1/2-INCH MAGNETIC TAPE FILES (SCOPE STANDARD)

Each logical record is terminated by 8 characters (48 bits) as follows:

47 35 23 11 5 0

5523 35652 2754 00 L

where the 4-bit level number is right justified in the L field.

If the last information in the logical record does not fit exactly into a physical record unit, the 8-character marker is
appended to the last written PRU; otherwise, the marker is written as a single PRU of zero length.

CODED MODE 1/2-INCH MAGNETIC TAPE FILES (SCOPE STANDARD)

Each logical record is terminated by 8 characters as follows:

blank; reserved for future system use J

47 3 0

level number, in binary

The level number is the low-order 4 bits of the last character. The upper 2 bits of this character are always zero, except
for level zero which is represented by 010000 (binary). For example, level five would be represented by
2020202020202005 in external BCD. Level zero would be represented by 2020202020202020 in external BCD. If the
last information in the logical record does not fit exactly into a physical record unit, the 8-character marker is appended
to the last written PRU; otherwise, the marker is written as a single zero-length PRU.

Level numbers are not supported for 9-track tapes.

60305200 B : 3-3

ACTIVE FILES

SCOPE is a file-oriented system: all information contained within the system is considered to be either a file or part of a
file. Active files—those immediately available to the system at any moment—are defined to be any of the following:

Each job file waiting to be run. This set of files is called the job stack or input queue.

Output files from jobs which have been run and are waiting to be disposed of by printing, punching, etc.
Job files presently in some state of execution.

Files currently being used by the jobs in execution.

Common files which maintain active status by specific request.

Permanent files attached to a job.

SCOPE maintains a file name table (FNT) in central memory resident. This table contains one 3-word entry for each
active file in the system. The first word identifies the file and contains other information about it. The second and third
words, which describe its status, are sometimes called a file status table or FST. When the user references a file with a
REQUEST control card or macro call, or when he issues an 1/0 request referencing a file that does not exist, the
SCOPE system creates an FNT entry for the file and assigns the file to a device. Thereafter, each time a user makes an
170 request, file status information is transmitted between the user’s FET (file environment table) and the file name/
status table.

The four types of active files are: input, local, output, and common. When a permanent file is attached to a job, it
becomes a special kind of local file. Private disk pack files and random files are described in this section under File
Processing.

As a job progresses, the job file goes through several type changes. When a job file is read from the card reader, it is
copied onto mass storage and becomes an input file; it is not assigned to any control point. The file name is that given
on the job control card. The file name/status table contains a priority (from the control card) for the file which becomes
the priority for the job.

When the job is assigned to a control point, the input file becomes a local file; and its name is changed to INPUT. The
original name of the input file is saved in a word of the control point as the name of the job. New local files named
OUTPUT, PUNCH, and PUNCHB will be established, if referenced, and given disposition codes of print, punch coded
and punch binary, respectively.

INPUT, OUTPUT, PUNCH and PUNCHB are all local files on mass storage. They are the immediate source of card
input and the immediate destination of printer output and coded and binary card output. Because several jobs may run
concurrently at different control points, several local files called INPUT, OUTPUT, PUNCH, and PUNCHB may be in
the file name/status table simultaneously. When a local file is sought in the table, both the name and the control point
number are used to identify it.

When a job terminates, the local file called INPUT for the assigned control point is released. Entries in the file name/
status table for the local files called OUTPUT, PUNCH, and PUNCHB for that control point are altered so that their
names are changed to the name of the job itself, which is found in the control point area. The control point is then
released.

Other local files can be created by the job. For instance, the first time a job references a file called RASP, the system
consults the file name/status table entries for a local file of that name assigned to the job’s control point. If one does
not exist, a file is immediately created, initially consisting only of an end-of-information mark. This file is named RASP
and entered into the file name/status table as a local file assigned to that control point. When the job terminates, all
local files created in this manner are eliminated completely from the system.

3-4 60305200 A

The common file is a local file for which active status is maintained by a control card request, so that the file does not
disappear when the job or'ginating it is terminated. Each common file must have a name unique among all common
files regardless of control point.

Example:
A job contains the control statement:

COMMON, RASP.

If the job generates a local file called RASP, that file does not disappear when the job terminates. The entry in
the file name/status table for the local file RASP is altered so that it no longer belongs to any control point,
and its type will be common. If RASP is assigned to a private disk pack, however, it will be preserved on the
disk pack when the job terminates and the COMMON card will have no effect.

An attempt to declare a permanent file COMMON is illegal but not fatal to job execution.

It is assumed that the file name/status table did not already contain an entry for a common file called RASP.
However, if it did contain such an entry, when a job is processed that contains the control statement
COMMON RASP,, file RASP would be assigned to the control point of that job. RASP would then be
available to that job just as if it were a local file.

If a third job contained the control statement COMMON RASP. and if, when this card was processed, it was
found that the common file RASP had been assigned to the control point of a running job, the earlier job

would have to terminate and file RASP be detached from its control point before RASP would be available to
the latest job.

To eliminate a common file like RASP from the system, a job must contain the control statement COMMON RASP.
and a later control statement:

RELEASE RASP.

When the latter control statement is processed, RASP is converted from a common file to a local file, but not otherwise
altered. When the job is terminated, the local file RASP is destroyed.

FILE NAME TABLE

The File Name Table (FNT) is a system table containing a three- word entry for every active file. It provides a link
between the user’s FET and the system input/output routines. The FNT is protected from user access; it resides in low
core and is outside the field length of user jobs.

Status information is stored in the last two words of each FNT entry; these words are often referred to as the file status
table (FST) entries. The first word of the FST is the second word of the FNT; there is no separate FST. The file name

table is sometimes referred to as the FNT/FST.

The following information is contained in each FNT entry.

FILE NAME

If the file is created by REQUEST or by Circular Buffer 170 (CIO) calls, the file name must be 1-7 alphanumeric
characters beginning with a letter; it cannot include embedded blanks. Otherwise, the name may be any 42-bit quantity
in which the high-order 12 bits are not all zeros.

60305200 B 3-5

FILE TYPE
A number which identifies the file type: input, output, local, or common.
CONTROL POINT NUMBER

The control point to which the file is assigned. If a file is associated with a job running at a control point, it is assigned
to that control point. Otherwise it is assigned to control point zero.

Input files are always assigned to control point zero; and each input file must have a unique name. Each file assigned to
any control point other than zero must have a name which is unique among files at that control point.

Local files at control point zero need not have unique names. Each common file must have a name unique among all
common files regardless of control point.

EQUIPMENT TYPE

A number which specifies the type of device or equipment on which the file resides. This could be a mass storage device
such as ECS, drum, disk, or disk pack; or it could be a sequentially accessible equipment such as magnetic tape, line
printer, card reader, or card punch. Most mass storage devices are called allocatable, since portions of the device can be
allocated to different jobs. Sequential access devices are non-allocatable. A private disk pack is a non-allocatable mass
storage device.

The system enters the equipment type in the FNT when the file is created. If the user creates the file with a REQUEST
control card or macro, he can specify the type of device. If the file is created when the user issues an input/output
function for a non-existent file, the device with the least activity is selected. Each time a user requests an input/output
function, the device type and allocation style is set in the FET device type field.

LAST CODE AND STATUS

To perform an 1/0 operation, the user must set a code in the code and status field of his File Environment Table
(FET). If he uses a system macro, this will be done automatically. When the system starts to process the 1/0 request, it
stores the code and status from FET in the File Name Table (FNT). When the I/0 operation is complete, the system
stores status information in the FNT code and status field, and also sets the completion bit (bit 0 of field). The FNT
code and status is then copied to the FET. If an end-of-record or end-of-file status was returned on the last READ, the
user must clear these bits before the next READ is issued; otherwise central program control will not honor the next
READ action requested.

E/N, INDEX BIT

If the file resides on magnetic tape, the E/N bit is used to determine the tape label action to be performed. If the bit is
1, a label will be written when the file is first referenced; and the tape has new status. Otherwise, the tape is said to
have existing status and a label will be read and checked when the file is first referenced. The REQUEST card/function
is used to declare existing or new status. The E/N bit is not used if the tape file is unlabeled.

If the file resides on a mass storage device, the E/N bit is called the index bit. It is used to determine whether or not the
contents of a random file were altered and therefore whether it is necessary to rewrite the index when the file is closed.
WRITE BIT

The FNT write bit is used to indicate that the file is currently positioned after a newly written record. Operations such
as READ are not allowed if the bit is set. Trailer label procedures on tape files must be performed before any
backward motion is initiated if the bit is set.

3-6 60305200 B

PERMISSIONS

Data transfer operations on a file require that the appropriate permission be granted. All permissions are granted on
any non-permanent file. For permanent files, passwords are required to obtain permission.

DISPOSITION CODE

This code indicates the action to be taken when it is time to dispose of a file. Mass storage files with non-zero
disposition codes are placed in the output queue. Qutput files created by batch jobs are processed by JANUS. Files
submitted by remote terminals are processed by the remote job entry programs. A mass storage file with a special name
(OUTPUT, PUNCHB) automatically is assigned a disposition code when it is created. The DISPOSE card/function
provides the only other means’of assigning a disposition code to a mass storage file.

Magnetic tape files are positioned according to the value of the disposition code field. Positioning declaration is made
on the REQUEST card/function.

FILE ENVIRONMENT TABLE

The file environment table (FET) is a communication area initiated by the user; it is interrogated and updated by the
system and the user during file processing. An FET must be declared for each file. The system section of the FET is
used by the peripheral processor input/output routines and central program control (CPC) as well as by the user
program. A user section may be appended to the system FET to centralize other information pertinent to the file. All
FET’s reside within the field length of the program. The format of the system FET is shown below.

Bit R
1ts 59 47 44 356 32 29 23 17 0 Words
logical file name (Ifn) code and status (CS) | 1
device type ulel ela disposition o
(DT) " [plp| b i code (dc) fth FIRST 2
0 IN 3
0 our 4
. d . physical record .
FNT pointer [record block size unit size (PRU) LIMIT 5
. working storage

working storage (fwa) (lwat 1) 6
(Magnetic Tape) UBC | MLRS 7

(Mass Storage) record request/return information
iﬁgﬁf(dl index length index address 8
EOI address error address 9
Label file name (first 10 chars) 10
Label file name (last 7 characters) position number |11
edition retention cycle creation date 12

number

Multi-file name (6 chars) reel number 13

To facilitate rapid changes of IN and OUT values, bits 18-59 of words 3 and 4 are never used; all other fields not
specified are reserved for future system use.

60305200 B 3-7

Words 1 through 5 form the minimum length FET; the basic FET for S and L tapes is words 1 through 7. Word 6 is
used for blocking/deblocking; words 7 and 8 are required for indexed files. Word 9 is used for user's OWNCODE

routines. Words 10 through 13 are present when the LABEL control card or macro is used.

BASIC FILE ENVIRONMENT TABLE
LOGICAL FILE NAME (Ifn) (42 bits)

The Ifn field contains one to seven alphanumeric display-coded characters starting with a letter, left justified; if less
than seven are declared, unused characters are zero-filled. This field is used as a common reference point by the central
processor program and the peripheral processor input/output routines.

The Ifn parameter declared in an FET creation macro is also used as the location symbol associated with the first word
of the FET. A reference to lfn in the file action requests is a reference to the base address of the FET.

CODE AND STATUS (CS) (18 bits)

The CS field is used for communication of requested functions and resulting status between the central processor
program and the peripheral processor input/output routines. This field is set to the request code by CPC when a request
is encountered for this file. The request codes are defined in the file action request descriptions. The code and status bits
have the following significance:

Bits 14-17 Record level number. On skip and write record requests, this subfield is set by CPC as part of
the function code. On read requests, it is set by CIO as part of the status when an end-of-record
is read. Initially the level subfield is set to zero when the FET is generated.

Bits 9-13 Status information upon request completion. Zero indicates normal completion. Non-zero
indicates an abnormal condition, not necessarily an error; an OWNCODE routine, if present,
will be executed. Status codes are described under OWNCODE routines. Initially, this subfield is
set to zero when the FET is generated.

Bits 0-8 Used primarily to pass function codes to a peripheral processor. Function codes are even
numbers (bit 0 has a zero value). When the request has been processed bit 0 is set to one. When
the FET is generated, bit O must be set to one to indicate that the file is not busy. Bit 1 specifies
the mode of the file (0 = coded, 1 = binary). Bit 1 is not altered by CPC when a request is
issued.

Bits 2-8 are used to pass function codes to a peripheral processor (file action requests).

Bits 3 and 4 may be altered by the peripheral processor routine when the request is completed if
an end-of-record (ten binary) or end-of-file was read (eleven binary).

The initial value of bits 2-17 should be zero.

3.8 60305200 B

SCOPE CIO CODES IN OCTAL (CIRCULAR BUFFER 1/0)

All codes indicated by - are illegal; all reserved codes are illegal. All codes are shown for coded mode operations; add
2 for binary mode. Example: 010 is coded READ, 012 is binary READ. Upon completion of operation, code/status in
FET is changed to an odd number, usually by adding 1 to the code. In some cases, code is further modified to indicate
manner in which operation concluded. Example: a READ function (010), at completion, becomes 011 (buffer full), 021
(end of logical record), or 031 (end of file).

000
004
010
014
020
024
030
034
040
044
050

*)

200

200
204
210
214
220
224

300

300
304
310
314
320

400
500
600

600
604
610
614
620
624

700

RPHR 054 - 130
WPHR 060 UNLOAD 134
READ 064 - 140
WRITE 070 - 144
READSKP 074 - 150
WRITER (*) 100 OPEN,NR 154
- 104 OPEN,WRITE,NR 160
WRITEF 110 POSMF 164
BKSP 114 EVICT 170
BKSPRU 120 OPEN,NR 174
REWIND 124 -

When a WRITER function is issued with level 17 specified, SCOPE
changes the function to a WRITEF. Thus,

24 will return as a 34.

Series for special reads or writes (reverse, skip, non-stop, rewrite,

- 230 - 254
- 234 REWRITEF 260
- 240 SKIPF 264
REWRITE 244 - 270

250 READNS 274

REWRITER

Series used for tape OPEN and (I0SE

OPEN,NR 324 - 360
- 330 CLOSER 364
- 334 - 370
- 340 OPEN 374
- 350 CLOSER

354 -

Series reserved for CDC

Series to be reserved for installations

Series
- 630 - 654
- 634 - 660
- 640 SKIPB 664
- 644 - 670
- 650 =~ 674

Series reserved for CDC

60305200 D

CLOSE,NR

OPEN
OPEN,WRITE
CLOSE

OPEN

CLOSE,UNLOAD
CLOSE,RETURN

READN
WRITEN

CLOSER,UNLCAD

a function issued as a

etc)

3-9

DEVICE TYPE (DT) (12 bits)

The device type value will be returned to the FET device type field when a file action request is issued, if FET length is
greater than the minimum.

GROUP I
Device
Mnemonic Type Device
AA 01 6603-1 disk**
AB 02 6638 disk
e 03 data cell
AC 04 6603-II disk**
AL 05 821 data file
AM 06 . 841 multiple disk drive
AP 07 3234/854 disk pack drive
AF 10 814 disk file
*AE 11 3637/863 drum
AD 12 3637/865 drum
- 13-17 CDC reserved
AX 20 ECS
-- 21-27 CDC reserved
-- 30-37 .Reserved for installations, mass storage only

*Codes are defined but supporting software is not provided by SCOPE,
**6603-1 disk is a basic 6603 with or without field option 10098 (disk

speedup) installed; 6603-II is a 6603 with both field options 10098 and 10124
(speedup augment) installed.

3-10 60305200 A

GROUP 1II

Mne- Device .
monic Type Device
MT 40 7-track mag-
netic tape
NT 41 9-track mag-
netic tape
- 42 member file*
7-track tape
- 43 member file*
9-track tape
ko 62 7-track multi=-
file set tape
*k o 63 9-track multi-

file set tape

*File in a multi-file set,
**CODE is generated when a tape is

multi-file set code is used only
the users FET.

60305200 B

Recording Technique

(Right 6 bits in binary)
xxxx00 HI density 556 bpi
xxxx01 LO density 200 bpi
xxxx10 HY density 800 bpi
xxxx11 CDC reserved
xx00xx Unlabeled

xx01xx SCOPE standard label (USASI)

xx10xx Alternate label

xx11xx CDC reserved

00xxxx SCOPE standard data format
01xxxx CDC reserved

10xxxx S data format

1l1xxxx L data format

10xx10 HD density 800 cpi
10xx11 PE density 1600 cpi
10xx00 CDC reserved

10xx01 CDC reserved

1000xx Unlabeled

1001xx SCOPE standard label (USASI)

1010xx Alternate label
1011xx CDC reserved
10xxxx S data format
00xxxx CDC reserved
0lxxxx CDC reserved
l1xxxx CDC reserved

Same as in MT

Same as in NT

Same as in MT

Same as in NT

declared to have MF characteristics;
in system tables and is not returned

the
to

GROUP III

Mne-
monic

*TR
*TP

LP
L1
L2

- -

CR
KB
CR

LP

CP
DS
*GC
*HC
*FM
*PL

*Codes are defined but supporting software is not provided by SCOPE,

Device

Txge

44
45
46
47
50
51
52
53-55
56-57
60
61
64

65

66-67
70
71
72
73
74
75
76-77

Device

paper tape reader

paper tape punch

reserved for installations
reserved for installations
501, 512, 505 line printer
501, 505 line printer

512 line printer

CDC reserved

reserved for installations
405 card readex

remote terminal keyboard

200 user terminal card reader or
Teletype paper tape reader
200 user terminal line printer or
Teletype paper tape punch
reserved for installations
415 card punch

6612 keyboard/display console
252-2 graphic console

253-2 hard copy recorder
254-2 microfilm recorder
plottex

reserved for installations

RANDOM ACCESS (1) (1 bit)

A one in the r field indicates that the file is a random access file r may be set to 1 by using the RFILEB or RFILEC

macro.

When a file is opened or closed, the r bit setting determines action performed with regard to the file SCOPE index as

shown below.

OPEN

File has no SCOPE index

File has a SCOPE index

FETr=0 FETr=1

No index action FET r bit is set to zero and a nonfatal diagnostic is written to
the dayfile.

No index action Index is read into buffer; if index buffer is not specified, FET r

bit is set to zero and a nonfatal diagnostic is sent to dayfile.

If a non-existent file is opened, the value of the r bit is not altered. Only files on allocatable devices may have an index.
The FET r bit is set to zero if the file is on a non-allocatable device.

j 32

60305200 B

CLOSE FETr=0 FET r=1

File had SCOPE index File is flagged as If index buffer exists, the index is written and file is flagged as having

when last opened not having index SCOPE index. If buffer is not specified, nonfatal diagnostic occurs.

File had no SCOPE index No index action If index buffer is specified, index is written and file is flagged as having

when last opened a SCOPE index. If index buffer is not specified, a nonfatal diagnostic
occurs.

The above actions will be performed only if the file contents have been altered since the file was last opened.

When any other file action request is issued, the r bit setting determines the access method to be used. If r = 0, the file will be read
or written beginning at the current location. If r = 1, the file will be read or rewritten according to the logical disk address in FET
word 7, or written at the end-of-information, and the logical disk address returned to FET word 7.

RELEASE (n) (1 bit)

The release bit is set to one when record blocks are to be released after a forward skip or read operation. This bit setting has no
meaning for any other operation.

UP BIT (1 bit)

The UP bit may be used to control end-of-reel processing. If UP is zero, reels are swapped automatically without notification to
the user. If UP is one, control returns to the user with (02) in bits 9—13 of the FET code and status field.

If EOR is detected during a write operation, the request is examined. For WPHR, WRITE, WRITER or WRITEF (with data
remaining in the circular buffer) an exit is made according to the UP conventions above. For WRITER or WRITEF with no data
in the buffer, the function continues to its logical completion (including any recovery necessary) on this reel before exiting.

When EOR is detected during a read operation, this status is saved in the FNT. Reading continues, and the user is not notified
until a tape mark is read, initiating normal EOR procedures.

If CPC is in use, control will be returned to the EOI OWNCODE routine. For a read, a CLOSER should be issued to cause a switch

to the next reel to continue processing. For a write, end of volume information should be written by issuing a CLOSER or by
writing tape marks and label information (for S and L tape).

ERROR PROCESSING (EP) (1 bit)

The EP bit is set when the calling program is to be notified of error conditions. If EP = 0, the operator may terminate the job
(DROP) or continue it (GO).

60305200 B 3-13

ERROR BYPASS (EB) (1 bit)

Reserved for future use

DISPOSITION CODE (dc) (12 bits)
The value shown below will be returned to the FET disposition code field when a file action request is issued if FET
length is greater than the minimum. A file with the specified default name will automatically be assigned the

corresponding disposition code value at job completion.

l For FR, FL, HR, HL, and PT, SCOPE recognizes the code and its value, but does not provide drivers.

Code Value (octal) Disposition Default File Name
CK xx01 Checkpoint -

1U xx02 Inhibit unload -

SV xx04 Save -

PU xx10 Punch Hollerith PUNCH
PB xx12 Punch Binary PUNCHB
P8 xx14 Punch 80 Columns pP80C
FR xx20 Film Print FILMPR
FL xx22 Film Plot FILMPL
HR xx24 Hard Copy Print HARDPR
HL xx26 Hard Copy Plot HARDPL
PT xx 30 Plot PLOT
PR xx40 Print (501,505,512) QUTPUT
P1l xx41 Print (501,505 only) -

P2 xx42 Print (512 only) -

- xXx7x Reserved to Installation =~

- x1lxx Change common file -

- 1xxx INTERCOM file -

- 2XXX INTERCOM batch job file -

- 4xxXx EXPORT/IMPORT file -

All other codes are reserved to the system.

3-14 60305200 B

LENGTH OF FET (lth) (6 bits)

The system FET length is determined as follows: FET first word address + 5 + Ith = last word address-+ 1. The
minimum FET length is five words (Ith = 0). If the minimum FET is used, only the logical file name, code and status
field, FIRST, IN, OUT, and LIMIT are relevant. No other field will be set or checked by SCOPE. A length of six words
(Ith = 1) is used if a working storage area is needed for blocking/deblocking. A length of eight words (Ith = 3) is used
if the r bit is set, indicating an indexed file. Length is nine words (Ith = 4), if OWNCODE routines are declared. The
maximum system FET length is 13 words (Ith = 8). The maximum size is used if a labeled tape file is declared.

FNT POINTER (12 bits)

The FNT pointer is set by SCOPE, upon return from a file action request, to the location of the file in the FNT/FST.
The pointer is placed in the FET to minimize table search time and does not affect the program. The pointer will not be
set if a minimum FET is used. :

PHYSICAL RECORD UNIT SIZE (PRU) (15 bits)

The physical record unit size of the device to which the file is assigned is returned in. this field when a file is opened. It
is given as the number of central memory words. The PRU size is used by CPC to determine when to issue a physical
read or write. PRU size will not be returned if a minimum FET is used.

RECORD BLOCK SIZE (15 bits)

If the file resides on an allocatable device, the size of the device record block is returned in this field when the file is
opened. It is given as the number of physical record units in a record block. If the number of PRU’s is not defined or is
variable, the field is set to zero. Record block size is not returned if a minimum FET is used.

FIRST, IN, OUT, LIMIT

Data is transmitted in physical record units, the size of which is determined by the hardware device. For example, the
6603 disk has an inherent PRU size of 64 CM words; binary mode magnetic tape files are assigned a PRU size of 512
words.

For each file, the user must provide one buffer, which can be any length greater than a PRU size. This is called a
circular buffer because it is filled and emptied as if it were a cylindrical surface in which the highest addressed location
is immediately followed by the lowest. The FET fields FIRST, IN, OUT and LIMIT control movement of data to and
from the circular buffer.

FIRST and LIMIT never vary; they permanently indicate buffer limits to the user and to SCOPE. During reading,
" SCOPE varies IN as it fills the buffer, and the user varies OUT as he removes data from the buffer. During writing, the
user varies IN as he fills the buffer with data, and the system varies OUT as it removes data from the buffer and writes
it out—the program that puts data into the buffer varies IN, and the program that takes it out varies OUT. The user
cannot vary IN or OUT automatically except when using READIN and WRITOUT functions; he must do this within
the program by inserting a new value into ifn + 2 (IN) or Ifn + 3 (OUT). For convenience, the words containing IN
and OUT contain no other items, eliminating the need for a masking operation.

The system dynamically checks the values of IN and OUT during data transfers, making continuous read or write
possible.

60305200 A 3-15

If IN = OUT, the buffer is empty; this is the initial condition. If IN > OUT, the area from OUT to IN - 1 contains
available data. If OUT >IN, the area from OUT to LIMIT - 1 contains the first part of the available data, and the

area from FIRST to IN - 1 contains the balance.

To begin buffering, a READ function may be issued. SCOPE will put one or more PRU’s of data into the buffer
beginning at IN, resetting IN to one more than the address of the last word filled after each PRU is read. Data may be
processed from the buffer beginning with the word at OUT, and going as far as necessary, but not beyond IN - 1. The
user must then set OUT to one more than the address of the last word taken from the buffer. He sets OUT = IN to

indicate that the buffer is empty.

When a READ request is issued, if the buffer is inactive (no physical read occuring), CPC determines how much free
space the buffer contains. If OUT >IN, OUT - IN words are free. If IN > OUT, (LIMIT - IN) + (OUT - FIRST)
words are free. The system subtracts 1 from the number of free words, because it must never fill the last word; this
would result in IN = OUT, and falsely indicate an empty buffer. If the number of free words, minus 1, is less than the
PRU size, CPC does not issue a physical read request; control is returned normally.

The example below illustrates the use of IN and OUT pointers. Speed of operation is not considered; simultaneous
processing and physical 1/0 are not attempted.

The initial buffer pointer position is:
FIRST = BCBUF
IN = BCBUF
OUT = BCBUF
LIMIT = BCBUF + 500
The user issues a READ with recall request.

Ignoring the possibilities of an end-of-record or end-of-file, the system reads as many PRU’s as possible (if
PRU size is 64 words, 7 x 64 = 448 words) and leaves the pointers:

FIRST = BCBUF
IN = BCBUF +448
OUT = BCBUF
LIMIT = BCBUF + 500
The user is processing items of 110 words. He takes four items from the buffer, leaving the pointers:
FIRST = BCBUF
IN = BCBUF +448
OUT = BCBUF +440

LIMIT = BCBUF + 500

316 60305200 A

The user issues another READ request, since he knows the buffer does not contain a complete item. The
system is aware that IN > OUT, so that the vacant space amounts to LIMIT - IN + OUT - FIRST = 492
words; since it must not fill the last word, it must read fewer than 492 words.

The nearest lower multiple of 64 is 7 x 64 = 448, so it reads 52 words into IN through LIMIT - 1, and then
396 more words into FIRST through FIRST + 395. It then resets IN so that the pointers look like:

FIRST = BCBUF
IN = BCBUF+396
OUT == BCBUF + 440

LIMIT = BCBUF + 500

The system has just used the circular feature of the buffer; now the user must do so. The next time he wants
an item, he takes the first 60 words from OUT through LIMIT - 1, and the remaining 50 from FIRST through
FIRST + 49. Then he resets OUT, making the pointers:

FIRST = BCBUF
IN = BCBUF + 396
OUT = BCBUF+50

LIMIT = BCBUF + 500

On input, this can continue indefinitely, with OUT following IN, around the buffer. The system stops on encountering
an end-of-record or end-of-file, and sets the code and status bits accordingly. The system may, or may not, have read
data before the end-of-record; so it is up to the user to examine the pointers and/or process the data before taking end-
of-record or end-of-file action.

In writing, the process is similar, but the roles are reversed. The user puts information into the buffer and resets IN; and
when he calls the system, it removes information from the buffer and resets OUT. For writing, the system removes data
in physical record units and empties the buffer if possible. The user must be careful not to overfill the buffer; IN must
not become equal to OUT. During the process of emptying the buffer, SCOPE resets OUT after each PRU has been
written and checked for errors.

WORKING STORAGE AREA

The two fields in word 6 of the FET specify the first word address (fwa) and last word address + 1 (lwa +.1) of a

working storage area within the program field length. Logical records may be deblocked into or blocked from this area
into the circular buffer. (See READIN and WRITOUT.)

FILE INDEXING FIELDS

Words 7 and 8 are used for communication between the peripheral processor input/output routines and the running
program depending on the device and file type.

60305200 A 3-17

For magnetic tapes with S or L data format, the structure of word 7 of the FET is:

59 29 23 17 0

word 7 UBC MLRS

UBC (Unused Bit Count) Bits 24-29

The UBC field is used for a file declared to have either S or L format. For a READ or READSKP function,
SCOPE will store into this field the number of low-order unused bits in the last data word of the record. The
UBC field is not used during a READN request. For a WRITE, WRITER or WRITEF function, SCOPE will
read the contents of UBC and adjust the length of the record accordingly.

For example, to write a single record of 164 decimal characters, the data length is 17, to the nearest CM word.
The number of low-order unused bits in the last word would be 36. The user would set UBC == 36, set IN and
OUT pointers to reflect 17 words of data, and then issue a WRITE or a WRITER.

SCOPE does not use the UBC field during a WRITEN request. UBC may range from 0 to 59, but will always
be a multiple of 12 when set as a result of a read operation. If it is not a multiple of 12 for a write request,
SCOPE will truncate the value to the nearest multiple of 12; if UBC is 18, SCOPE will execute as though it
were 12, and if UBC is 6, SCOPE will execute as though it were 0. The field in the FET remains unchanged.

MLRS (Maximum Logical Record Size) Bits 0-17

The MLRS field contains the size of the largest logical record to be encountered (considered as valid when
either reading or writing) when the S or L tape format is used. The size is given in number of CM words.

The MLRS field is required for all S and L tape operations; therefore, a 7-word FET is mandatory.
For S tape format, if MLRS = 0, the value of the maximum PRU is assumed to be 512 words. For L tape

format, if MLRS = 0, the assumed maximum PRU is LIMIT - FIRST - 1 for standard reads and LIMIT -
FIRST - 2 for READN.

For mass storage random files, the format of word 7 of the FET is:

59 29 0
record request/
return information

The file indexing fields (record request/return information, record number index length and index address) are used for
communication between the peripheral processor input/output routines and the CP programs. Index address and index
length fields are declared when the FET is generated; the index buffer must be within the program field length. The
record request/return information field is set to zero when the FET is generated. Both the indexing functions and the
peripheral processor input/output routines set the field during random file processing.

For other than the SCOPE indexing method, the following information is pertinent. At the start of writing a new logical
record, if the random access bit and the record request/return information field are non-zero, the latter field is assumed
to contain the address of a location within an index. The PP routine inserts into that location (in bits 0-23) the PRU
ordinal (starting from 1) of the logical record. To read the record again, the random access bit should be set to non-
zero and the PRU ordinal should be entered in the FET in the record request/return information field.

3-18 60305200 A

OWNCODE ROUTINES

Addresses of user supplied routines may be given in word 9 of the FET. These routines are executed by CPC as
indicated below. A zero value indicates that no routine is supplied.

An OWNCODE routine should be set up like a closed subroutine with execution beginning in the second word of the
routine. CPC calls an OWNCODE routine by copying the exit word of CPC into the first word of the OWNCODE
routine, putting the contents of the first- word of the FET into X1, and branching to the second word of the
OWNCODE routine.

Termination of an OWNCODE routine by a branch to its first word causes a branch to the point in the program to

which CPC would have returned if the OWNCODE routine had not been called. CPC saves and restores all registers
except X1, Al, X6 and A6.

EOI Address Field
CPC enters the end-of-information (EOI) routine under the following circumstances:
Bits 9-13 of Code and Status:
01 End-of-information encountered after forward operation JX.
02 End-of-reel reflective spot has been reached on magnetic tape. When a read is performed. an
and-of-volume consists of both this spot and end-of-file: bits 3 and 4 of Code and Status are

ones; for labeled files the end-of-reel code will not appear in the FET until an EOV label is
encountered.

Just before entering an end-of-information OWNCODE routine, CPC zeros bits 9 and 10 of the first word of the FET.
However, as the routine is entered, X1 still contains the first FET word as it appeared before those bits were zeroed.

ERROR Address Field

This field specifies an address to receive control if an error condition occurs after a file action request. The FET code
and status field will reflect the error condition. If processing can continue. the error routine should exit through its entry
point; otherwise, an ABORT request may be issued.

If the error address field is zero, the run continues normally. The FET code and status bits reflect the error condition
upon normal return to the program.

Bits 9-13 of Code and Status (values are octal):

End-of- information or end-of-reel may occur mmultaneously with code 4 and code 10: code and status will
contain their logical sum.

04 Irrecoverable parity error on last operation. or lost data on write.

10 During a magnetic tape reading, the physical record size exceeded circular buffer or maximum allowable
PRU size (MLRS for S and L tapes). During a mass storage write. all mass storage space meeting the file
requirements was in use or otherwise unavailable.

20 Reserved for system.

21 End of multifile set. An attempt was made to position to a file whose position number is greater than that

of the last member in the set. Any subsequent attempt to reference the logical file name assigned to the
nonexistent member will result in a fatal error.

60305200 D 3-19

22 Fatal error.

23 Index full.

24 Reserved for future use.

25 An attempt was made to read or write record number n of a random file. but the index of the file is full.

26 An attempt was made to read a named record from a random file. but the name does not appear in the
© index.

27 An attempt was made to write a named record on a random file. but the name does not appear in the
index. and there is no room to add a new name.

30 Function legal but not defined on device.
31 Permanent file permission not granted.
32 Function legal except for permanent files.

33 Reserved for future use.
37

If both EOI and error routine execution are needed. the error routine is executed. Just before entering an error
OWNCODE routine. CPC zeros bits 11-13 of the first word of the FET. However. as the routine is entered, X1 contains
the first word of the FET as it appeared before those bits were zeroed.
FET CREATION MACROS
System macros in the COMPASS language facilitate generation of the system FET, as follows. The subfields (WSA,
UPR, IND, OWN. LBL, EPR, UBC. MLR) are order-independent; within the subfield, order is fixed. Upper case
characters designate subfield content. lower case characters indicate parameters to be supplied by the user. All
parameters except Ifn. fwa, and f are optional.)
These macros generate a 13 word FET which is truncated, if necessary, to the minimum length required. All 13 words
remain in the block when a USE statement immediately follows the macro; truncated label common block may occur if
this is the last code in the block.
CODED FILE — SEQUENTIAL

Ifn FILEC fwa, f, (WSA = addrw,Iw), (OWN = eoi, err), LBL, UPR, EPR UBC = ubc, MLR = mirs

FILEC also is applicable to conversion-mode files on 9-track tapes.

BINARY FILE — SEQUENTIAL
Ifn FILEB fwa, f, (WSA = addrw,Iw), (OWN = eoi, err), LBL, UPR, EPR, UBC = ubc, MLR = mirs

FILEB also is applicablé to packed-mode files on 9-track tapes.

CODED FILE — RANDOM

Ifn RFILEC fwa, f, (WSA = addrw,Iw), (IND = addri,1i), (OWN = eoi,err), LBL, UPR, EPR

3-20 : 60305200 D

BINARY FILE — RANDOM

ifn RFILEB fwa, f, (WSA = addrw,1w), (IND = addri,1i) (OWN = eoi, err), LBL, UPR, EPR |

Ifn File name

fwa Substituted in FIRST, IN, and OUT

f Length of circular buffer (fwa + f is substituted in LIMIT so that it reflects the lwa + 1 address I
of the buffer area)

WSA Working storage area parameters

addrw First word address of working storage area

lw Length of working storage

IND Index buffer parameters

addri First word address of index buffer

li Length of index buffer

OWN OWNCODE routines

eoi End-of-information address

error Error address

UPR User specifies processing at end-of-reel

LBL Label information will follow. The LABEL macro providing label information, must immedi-

ately follow the FILE macro to which it pertains.
EPR User specifies handling of error conditions.
UBC Unused bit count: 6-bit code in FET field descriptions (S and L tapes only). Generates a 7-word

FET mandatory for S and L tapes.

-

MLR Maximum logical record size: 18-bit code in FET field descriptions (S and L tapes only).
Generates a 7-word FET mandatory for S and L tapes

Examples:
To create a minimum FET for the standard INPUT file:

LBUFFER EQU 65
INPUT FILEC BUFFER, LBUFFER

To create an FET for a binary random file:
LBUFFER EQU 65

LINDEX EQU 25
FILEABC RFILEB BUFFER,LBUFFER, (IND=INDEX, LINDEX)

60305200 B 3-21

To create an FET for a labeled tape file with user processing at end-of-reel condition. OWNCODE routine is supplied:
TAPE1 FILEB BUFA,LBUFA,LBL,UPR, (ONN=PROCEOR)
TAPE1 LABEL SORTINPUTTAPE, 32,90

To create an FET for a list file. OWNCODE routines are supplied and the working storage area is used:

PRINT FILEC BUFB,LBUFB, (WSA=LINE, 14), (OWN=ENDING, ERRORS)

LABEL MACRO
Ifn LABEL fin,ed,ret,create,reel,mfn,pos

The LABEL macro may be used to generate FET label field information. It must immediately follow the FILEx macro
to which it pertains. The LABEL macro is a data generation statement, which does not directly cause any action on the
file. If any parameter is absent, the field is set to binary zero. Alphanumeric values are left justified , numeric values
right justified in the field. If the parameter is smaller than the field size, the fill character is binary zero. Parameter
values are shown below.

If FET label field information is generated by other means, display codeizero may be used as the fill character in
numeric fields; and display code blank in alphanumeric fields.)

File Label Name (fin) File identification, 1-17 alphanumeric characters. Default is 17 blank characters.

Edition Number (ed) File version, 1-2 digits. Default is O1.

Retention Cycle (ret) Number of days a tape is to be protected, 1-3 digits. Default is installation
parameter.

Creation Date (create) Creation date in Julian format (YYDDD), 5 digits. Default is today’s date.

Reel Number (reel) Reel of file, 1-4 digits. Default is 0001.

Multifile Name (mfn) Logical set name of which current file is member, 1-6 alphanumeric characters.

Default is 6 binary zeros in FET.

Position Number (pos) Relative position of current file in multifile set, 1-3 digits. Default is 000.

When a label is created, default values are assigned for any field containing binary zero. Alphanumeric fields are blank
filled; numeric fields are display code zero filled. The resulting field values are returned to the FET label fields and used
to format the 80-character file header label (Appendix C).

When a label is checked, non-default alphanumeric fields will be blank-filled and non-default numeric fields will be
display code zero-filled. Resulting fields will be compared with header label fields. Default FET fields (containing
binary zero) are not compared. If all declared FET label fields match their counterparts in the header label, all header
label fields will be returned to the FET label fields. If the operator chooses to accept a non-matching label, the FET
label fields will be set to the values contained in the header label.

3-22 60305200 B

FILE PROCESSING

The FNT entry for a file in the input or output queue differs slightly from other FNT entries. The FNT will contain a
priority field for a file in either queue. The priority for input queue files depends on the priority specified on the job
card, the length of time the file has been in the queue, and possibly the other job card parameters. Input queue
priorities determine the order in which jobs are brought to control points.

For a file in the ouput queue, priority is determined according to the time the file entered in the queue; it is incremented
with time. JANUS and other output routines normally process files in order of priority; but the priority of files in either
queue can be changed by an operator type-in.

The input queue FNT entry contains job card parameters such as central memory and ECS field length requirements
and the time limit. Output queue FNT entries contain an additional field which specifies how much data is on the file,
given as a multiple of blocks of 100(octal) central merory words.

INPUT QUEUE FILES

Files are placed into the input queue by JANUS, as it reads in jobs from the card reader, by other system jobs such as
LOAD and RESQ, or by EXPORT/IMPORT. An input queue file contains the entire job which consists of a record of
control cards followed by any number of data records. Files must be type input, assigned to control point zero, with
non-zero priority. The file name will be the job name. Input queue files are always put on allocatable devices.

OUTPUT QUEUE FILES

Files can be put in the output queue by the user when CLOSE,UNLOAD, CLOSE,RETURN, or DISPOSE is
performed on a file, or by the system at job termination. Files in the output queue must be type local or output,
assigned to control point zero, with non-zero disposition and non-zero priority. The file name is the name of the job
which created the file. Files are always rewound before they are put into the output queue.

A file will not be put in the output queue unless it is on an allocatable device, as JANUS and other output routines
cannot handle non-allocatable files. A random file can be put in the output queue; however, JANUS handles random
files sequentially. The categories of local files which may be attached to the control point of a running job are described
below.

60305200 B 323]

INPUT FILE

When a job is brought to a control point, the input queue FNT entry is changed so that the file is assigned to the
control point, has the name INPUT, and is type local. It is still the same file as the input queue file; it contains the
control card and data records; and it resides on an allocatable device. Since the input file contains the control cards for
the job, it is illegal to CLOSE, UNLOAD the input file; any attempt to do so will be ignored. SCOPE maintains special
pointers to the control card record on the input file. Normal operations such as READ or REWIND on the input file do
not affect these pointers. The user can, however, call the system macro, CONTRLC, which can change the pointers to
the control card record and affect the order in which control cards will be processed.

The user should never write on the file INPUT or detach it from his control point, although both are possible. In the
first case, the user could destroy the control card record; in the second, the entire file could be destroyed or lost.

OUTPUT FILE

The output file is a local file at the user’s control point with the name OUTPUT. When an error condition occurs, the
system will dump to the output file the exchange package plus 100(octal) central memory locations preceding through
100 following the address to which the P register pointed at the time of error. At job termination, the job dayfile is
copied to the end of the output file. If the operator types in KILL to terminate the job, no output is produced.

If no output file exists, the system will create one. The output file is always on an allocatable device, as OUTPUT
cannot be requested with either the control card or macro. An attempt to do so will terminate the job.

When it is time to dispose of the OUTPUT file, it is treated as a special name file. If the user does not specify a
disposition code, the file will be given print disposition and placed in the output queue. If an output file is disposed of
by a CLOSE,UNLOAD it is put into the output queue with type local. At job termination, the output file is put into the
output queue with type output; therefore only one file for each job can have type output. However, a file may be output
to the printer through the DISPOSE command.

SPECIAL NAME FILES

Several other file names are treated as special cases. The user can specify disposition for these files; however, if a local
file with one of the special names has a zero disposition code, the system will automatically set the disposition code to
an appropriate value before disposing of the file.

Names treated as special cases are the following:

OUTPUT FILMPL
PUNCH HARDPR
PUNCHB HARDPL
FILMPR PLOT

NON-ZERO DISPOSITION FILES

All local files which have disposition set by the user and all special name files which have disposition set by the system
will be rewound and placed in the output queue at disposal time if they reside on allocatable devices.

3-24 : 60305200 B

NON-ALLOCATABLE FILES

If a local file resides on a non-allocatable device, it will be dropped (its FNT zeroed) at disposal time, regardless of its
name or disposition code. It will not be put into the output queue, because JANUS and other output routines cannot
process non-allocatable files.

COMMON FILES

A user can change the type of any allocatable local file to common if it is attached to his control point and it is not a
tape, a permanent file or a private disk pack file.

He can also attach an existing common file to his control point. If a common file is not being used, it will be attached to
control point zero. A common file may have a special name and it may have non-zero disposition.

When it is time to dispose of a common file, the file is assigned to control point zero and made type common regardless
of its name or disposition code. The disposition code is saved; however, and when the file is released and made local, it
is treated as a special name file or a non-zero disposition code file, if appropriate.

PERMANENT FILES

A permanent file can survive across deadstarts. The file and sufficient information to access the file is maintained on a
mass storage device. An FNT entry is made for a permanent file only when the file is attached <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>