CONTROL DATA

CORPORATION

CONTROL DATA’

CYBER 70 COMPUTER SYSTEMS
MODELS 72, 73, 74

6000 COMPUTER SYSTEMS

SCOPE REFERENCE MANUAL
MODELS 72, 73, 74 VERSION 34
6000 VERSION 3.4

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION
A Original printing.
(10-8-71)
B Adds Diagnostics (Appendix D) and Glossary. Pages affected are: D-I thru D-56; Giossary-1 thru

(11-11-71) Glossary-8. Comment Sheet.

C Changes and corrections resulting from product development and documentation evaluation.

(7-31-72) Pages affected are: Front matter; 1-1 thru 1-6; 2-2 thru 2-7, 2-12; 3-3 thru 3-20; 4-1 thru

434, 437, 4-38; 5-1 thru 5-22; 6-3, 6-7, 6-9; 7-1, 7-2, 7-5 thru 7-10; 81 thru 84, 8-8 thru 8-12; 9-5;

10-1, 10-2, 10-6; 11-1, 112, 11-6 thru 11-18, 11-27 thru 11-31; 12-1 thru 12-10, 12-15 thru 12-18,

12-22, 1225, 1226, 12-31, 12-35 thru 12-53, 12-59, 12-62, 12-63, 12-65; Glossary-1 thru Glossary-8;

A-1 thru A-6; B-1; C-2 thru C-10, C-14; D-1 thru D-72; E-5, E-8 thru E-11; Index 1 thru Index 32;

Comment Sheet,

D Changes reflecting the redefinition of the term aphanumeric plus minor corrections. Pages affected are:

(10-20-72) 2.8: 3-1, 3-2; 49, 4-11, 4-15, 4-25, 4-27, 4-36; 5-12, 5-14, 5-15; 7-6, 7-10; 85, 8-9, 8-13; 9-3; 106;

~ 1

11-2, 11-5, 11-22, 11-27; 12-3, i2-i6, i2-21, 12-22, 12-25; Glossary 3 thru 8; C-i, C-3 iuu 5,

D48, D-54; E-10, E-11; Index-9, 22, 28; Comment Sheet.

Publication No.

60307200
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.
CONTROL DATA CORPORATION
Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086
© 1971, 1972
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

PREFACE

This manual describes the SCOPE 3.4 Operating System for the CONTROL DATA ® CYBER 70/Models 72, 73, and
74 and 6000 Series Computers. It was written for programmers who use all the source languages which operate
under SCOPE 3.4, and it includes information of specific interest to those who write in COMPASS assembly language.

Other documents of interest to programmers using SCOPE 3.4:

SCOPE 3.4 Systems Programmer’s Reference Manual
SCOPE 3.4 Operator’s Guide

Record Manager Reference Manual

LOADER Reference Manual

UPDATE Reference Manual

SCOPE 3.4 Installation Handbook

SCOPE 3.3 to 3.4 Conversion Aids (SPB)

SCOPE 3.4 is an extension of SCOPE 3.3. It includes the following new features and changes:
Addition of an integrated scheduler to optimize central memory usage
User libraries creation and maintenance similar to EDITLIB creation of system libraries

Support of SCOPE format records on 9-track tape

Publication
Number

60306500
60327300
60307300
60344200
60342500
60307400
60358200

New loader with associated restructuring of SCOPE system libraries and overlay/segment structures

Revised REQUEST control statement parameters

Addition of VSN card to support automatic tape assignment to requesting jobs
Extended error processing

Addition of sequential disk pack capabilities for high speed access to a sequential file
Renaming of private disk packs to family disk packs

Additional permanent file functions: ALTER, SETP

Additional parameters for permanent file functions

File action/COMPASS macro change to all skip commands, OPEN, CLOSE, CLOSER
Replacement of SNAP and TRACE debugging aids with TRAP

New extended core storage system

60307200 C

iii

iv

Addition of Record Manager

Addition of File Organizer and Record Manager utilities
Common files are no longer supported

New permanent file utility TRANSPF

Use of non-stop 170 by permanent file utilities

Use of S tapes by permanent file utilities

This product is intended for use only as described in this document. CONTROL
DATA cannot be responsible for the proper functioning of undescribed features
or undefined parameters.

60307200 C

CONTENTS

PREFACE iii Requesting Equipment for a Job 49
Family Pack Processing 4-14
1 INTRODUCTION 1-1 Sequential Pack Processing 4-17
Hardware Overview 1-1 Magnetic Tape Processing 4-18
Main Concepts of SCOPE 12 Disposing of Files and Equipment 4-30
Basic SCOPE Functions 1-2 Returning Files and Equipment 4-30
Job/SCOPE Communication 1-7 Directing Output by DISPOSE 4-31
Operator/SCOPE Communication 1-7 File Manipulation 4-33
Interdependent Job Processing 4-35
2 JOB PROCESSING AND DECK Controlling Termination Procedures 4-37
STRUCTURE 2-1
Job Flow Through the System 22 > PERMANENT FILES 5-1
Execution Procedures 22 Introduction >l
Job Termination 2-5 Terms a“c? Concepts >
Job Dayfile 27 Permanent File Control Cards 5-6
Program Execution Cards 28 Parameters fc?r Contro'l Cards and Macros ~ 5-6
Compiler or Assembler Calls 29 Permanent Ffle Functions >-8
The LGO file ‘ 2.10 Permanen.t File Macr'os 5-16
Examples of Job Deck Arrangements 2-12 Permanent Fll‘? Us.age via INVERCOM 5-20
User Communication 5-21
3 FILE STRUCTURE AND PROCESSING 3-1 6 LOADER AND LIBRARIES 6-1
Logical File Structure 3-1 Loading Process 6-1
Magnetic Tape Files 32 Single-Module Loading 6-1
Data Format 33 : Multiple- Module Loading 62
;‘:}; 1:‘;2};’; S9-Track Tapes g:; Relocatable anding 6-2
Tape Identification for Automatic Absolute Loading 64
Assignment 3-12 Loader Input o4
. . Loader Requests 6-4
Random Access Device Files 3-13 Load Operation 6-5
Sequential and Random Files 3-14 Library Set Search 65
Disk Pack Files 3-16 Libraries 66
Family l?lsk ?acks 3-17 Library Search 6-6
Sequential Disk Packs 318 SCOPE 3.4 Product Set Libraries 68
Extended Core Storage Usage 3-19
1/0O Buffering Through ECS 3-19 7 USER LIBRARIES 7.1
ECS Resident Files 320 Construction of User Libraries with EDITLIB 7-1
EDITLIB Control Card Format 7-2
4 CONTROL CARDS 4-1 EDITLIB Directive Format 73
Control Card Format 4-1 Creating a Library 7-6
Processing with Control Cards 42 Modifying Existing Libraries 79
Job Identification and Control 4.2 Manipulating Source or Library Files 7-10
Changing Central Memory Field Length ~ 4-6 Listing Statistics 7-11
Comments in Control Card Records 4-8 User EDITLIB Examples 7-12

60307200 C v

8 UTILITY PROGRAMS
File Copying
Copy to End-of-Information
Copy Binary and Coded Records
and Files
Copy BCD File
Copy Shifted Binary File
Copy Validation
Copy X Tape to SCOPE Tape
File Consolidation (COPYN)
Record Consolidation (COMBINE)
Program Replacement (COPYL)
Multi-file Tape Listing (LISTMF)
Octal Correction Routine

9 DEBUGGING AIDS
Dump
Types of Dumps and DMP Control
Cards
" Dump Formats
MODE Errors
LOAD Map

10 CHECKPOINT/RESTART
Checkpoint Dump Tape
Checkpoint Requests
Checkpoint Examples
Restart Request

11 COMMUNICATION AREAS
File Environment Table
FET Creation Macros
FET Field Description

Standard SCOPE Character Sets
Card Format
Control Card Summary

Ow

1-1 Central Memory Allocation
2-1 Sample COMPASS job
2-2 Job Flow at Central Site

vi

8-1 Circular Buffer Use 11-22
8-1- Establishing OWNCODE Routines 1125
8-1 Tape Label Processing 1125
Standard Label Processing 11-26
8-2 LABEL Macro for FET Fields 1127
8-3 Extended Label Processing 11-29
84 | Locations RA Through RA+100 11-30
8-5
8-6 12 COMPASS INTERFACE WITH SCOPE 12-1
8-7 User/System Communication 12-1
8-11 Basic Communication: RA+1 Requests ~ 12-1
8-12 Using CPC 12-3
8-13 Record Manager Requests 12-7
8-13 System Communication Macros 12-10
System Action Macros 12-12
9-1 Ending Programs 12-12
9-1 Field Length Request 12-13
Dayfile Messages 12-13
9-1 Recall 12-14
94 Status Information 12-15
9-5 Dependent Job Count 12-19
9-6 Reading Control Cards 12-19
Program Recovery 12-20
10-1 File Action Macros 12-23
10-1 File Request 12-23
102 OPEN and CLOSE Requests 12-28
104 Read Requests 12-35
10-6 Write and Rewrite Requesis 12-43
Positioning Requests 12-55
11-1 File Disposition 12-59
11-1 System Texts 12-63
11-3 Common Decks 12-63
11-5 Text Overlays 12-65
Glossary Glossary-1
APPENDIXES
A-1 D Diagnostic Messages D-1
B-1 E Tape and Disk Labels E-1
C-1 F Print File Conventions F-1
FIGURES

14 2-3 Sample Dayfile 27
2-2 11-1 File Environment Table 11-2

2-3 11-2 Communication Area RA through
RA+100 11-30

60307200 C

INTRODUCTION 1

SCOPE consists of a group of programs and subprograms that comprise the operating system for the
CONTROL DATA® CYBER 70/Models 72, 73 and 74 and 6000 Series computers. Input, compilation,
assembly, loading, execution, and output of all programs submitted to the computer, as well as the alloca-
tion of resources for these programs, are monitored and controlled by SCOPE. This file oriented operating
system resides primarily on rotating mass storage devices. It uses the versatility and efficiency of the
computer hardware to direct multiprogramming. Jobs written in the COMPASS assembly language and a
variety of compiler languages, or jobs calling for many different utility systems, can be processed under
SCOPE. The product set includes: COMPASS 3.0, FORTRAN 2.3, FORTRAN Extended 4.0, COBOL 4.0,
Record Manager 1.0, FORM 1.0, SYMPL 1.0, QUERY/UPDATE 1.0, QUIDDL, SORT/MERGE 4.0,
PERT/TIME 2.1, 1700 MSOS Import HS 1.0, 1700 Import HS 1.0, 8231 Import HS 1.0, SIMSCRIPT 3.0,
ALGOL 3.0, APT 2.2, SIMULA 1.0, INTERCOM 4.1, BASIC 2.0, MARS VI 2.1, and SAAM 1.0. For
compatability with previously compiled binary decks, the relocatable object-time libraries for FORTRAN
Extended 3.0, COBOL and SORT/MERGE are also included.

HARDWARE OVERVIEW

The minimum hardware requirements consist of: the computer (including 50,176 words of central memory
storage); any combination of disks, disk packs, or drums to provide 24 million characters of mass storage; a
card reader, card punch, and printer (with controllers); and two magnetic tape units. Larger systems can be
obtained by including optional equipment such as: additional central memory, extended core storage (ECS),
additional card readers, punches, printers, and tape units at the central site, as well as remote terminals.

The computer is composed of central memory, one or two highspeed central processors, seven to 20
peripheral processors, and a display console. Up to 15 system or user jobs can be in central memory
simultaneously, sharing the central processor registers at scheduled intervals. Each job in central memory
gains access to the central processor alternately with the other jobs until execution is complete.

The peripheral processors are used to input jobs to the computer, move jobs between central memory and
mass storage, transfer input or output data between mass storage or peripheral devices and jobs in central
memory, and dispose of output from completed jobs. They relieve the central processor of all input/output
tasks, enabling it to devote more time to program execution. Each peripheral processor contains its own
memory and is actually an individual computer that operates independently of the other processors.

The display console includes two CRT screens which display information about the system and the jobs in
process. The console also includes a keyboard through which the operator can enter requests to modify
stored programs and display information about jobs in or awaiting execution.

Further information about the computer hardware can be found in the CDC CYBER 70/6000 Series
Computer Systems Reference Manual. Details about the movement of information between the central
processor registers and central memory are presented in that manual and also in the reference manual for
COMPASS.

60307200 C 1-1

MAIN CONCEPTS OF SCOPE

All SCOPE routines are recorded in a file on a mass storage disk or drum. Copies of routines used most
frequently also reside permanently in central memory or in ECS so they can be executed with minimal
delay. Others are called into memory from ECS or mass storage only when needed to ensure that a
maximum amount of memory remains free for user jobs.

The portion of SCOPE residing in central memory consists of system tables and pointer words used for
communication between SCOPE routines. Also, some frequently used routines that can be called into
peripheral processor memory on a transient basis are stored in central memory or ECS because they can be
loaded from that area much faster than from mass storage. Central memory and ECS areas reserved for
SCOPE cannot be overwritten by user jobs.

One peripheral processor (PP0) holds only the Monitor routine, MTR, that oversees and controls all
SCOPE functions. Part of Monitor also resides in central memory. Monitor functions include allocating
hardware to user jobs, as well as coordinating the activities of all other PP’s.

Another peripheral processor (PP1) is devoted exclusively to routine DSD that drives the system display
console and input keyboard. This routine interprets and processes all requests typed by the operator and
displays all messages from SCOPE to the operator.

Each remaining pool PP contains a resident routine that services requests from Monitor, loads and executes
programs as assigned by Monitor, and provides a communications interface between Monitor and the
program loaded. The programs which peripheral processors load and execute include routines for handling
input/output activities associated with all phases of job execution, such as: reading a job from a card reader
onto mass storage or moving a job between central memory and mass storage, sending output to mass
storage or printer, or reading and writing information on magnetic tapes.

Each resident routine in a pool PP contains pointer words that refer to a communication area in central
memory. The PP resident routine contains a subroutine that uses these pointers to continually examine the
communication area for requests from Monitor.

BASIC SCOPE FUNCTIONS

When a job enters the computer, SCOPE processes the job, assigns the hardware resources required, and
ensures that input, output, and system files needed by the job are made available to it. These three functions
are interrelated and mutually dependent; resource and file management take place through the entire course
of job processing.

Job processing consists of the following tasks: loading the job into the computer, assigning it system
resources (central memory storage, magnetic tapes, etc.), executing the job, terminating the job, and process-
ing its output.

1-2 60307200 C

When the user’s program and associated data is in card form, the job consists of these cards preceded by a
group of control cards. Control cards request such functions as assembly or compilation, loading, and
execution. They also request equipment or files required by the job, and the amount of time and central
memory storage or ECS it will need. In addition, processing priority with respect to other jobs and special
comments to the computer operator can be specified on these cards.

When the user’s programs reside on mass storage or on tape, the job may consist only of control cards that
direct the loading and execution of these programs and ensure that the hardware and files needed for their
execution are available.

At the central site, job processing is initiated by loading the job into the card reader. SCOPE takes control
and assigns a PP that transfers the job from the card reader to mass storage. The job is then in the input
queue, awating availability of system resources. When they are available and the priority of the job permits,
SCOPE designates another PP to read the job into central memory. The job begins execution, sharing access
to the central processor with other jobs in execution. During execution, peripheral processors are assigned
to handle any additional input or output files and associated hardware. If requested by control cards,
SCOPE assigns additional files or hardware to the job, including tape or disk files or ECS.

Jobs in central memory share the central processor. The job using the central processor may relinquish
control when it must await completion of input/output, or Monitor may interrupt the job and give control
to another job.

When a job is completed or when it is terminated because of an error, SCOPE frees the central memory
areas and releases the files assigned to the job. The output from the job is then in the output queue. When
the peripheral devices requested for the output are available, SCOPE writes from the output queue onto
these devices. Typical output devices are the printer and card punch. Following the output from the job
itself, the dayfile containing chronological information, diagnostic messages, and accounting data about the
job is output.

MULTIPROGRAMMING

Multiprogramming means that more than one job can be in process in central memory at one time. At any
given instant, only one job can be using the central processor (or each central processor in a dual CP
configuration). However, several can be performing input/output. In fact, a job can have more than one
input or output operation in progress simultaneously.

CENTRAL MEMORY USAGE

Each job in process occupies a contiguous block of words in central memory. References to all addresses
within each block are made in relation to the reference address (RA) which is the first address in the block.
The length of the block is the field length (FL) of the job. If a user’s job references a location outside its
field length, the hardware senses this error; the reference is not carried out, thereby protecting all other jobs
and system programs in central memory from being accidentally overwritten. For this reason, the user can
consider his job as a program running alone in a computer with a central memory the size of his field
length.

60307200 C 1-3

Two distinct areas of central memory are reserved for portions of SCOPE; they cannot be addressed by
user jobs during execution. The low core area (the beginning addresses of central memory) contains the
central memory resident routines of SCOPE, the systems tables, pointer words, communication areas used
to link the peripheral processor and central memories, and subroutines used often by both central memory
and the peripheral processors. The high core area comprises the last (highest numbered) addresses in
central memory. It holds information about files on mass storage and is referenced during data transfer
between such files. The relationship of low and high core to the remainder of central memory is shown in
figure 1-1. As shown, the first address is at the extreme low end of central memory and the last address is at
the extreme upper end.

Last
Address (}Jsed for mas.s storage
. file reference infor-
High Core .
mation)
Unused Storage
Job at Control Point 15
Job at Control Point 14
Job at Control Point 13
=z . Unused Storage =
Job at Control Point 4
Unused Storage
Job at Contiol Foint 3
Job at Control Point 2
Unused Storage
Job at Control Point 1
(Used for Central Mem-
Low C ory Resident portion of
ow Lore SCOPE, including con-
trol point areas)
First
Address

Figure 1-1. Central Memory Allocation

14 60307200 A

EXTENDED CORE STORAGE USAGE

Extended Core Storage (ECS) is a mass storage device similar to central memory. The large amount of
storage and the very fast transfer rates of ECS make it ideal for use as a buffer between central memory
and slower peripheral devices, a highspeed swapping device, and storage of large data arrays, as well as a
residence for system programs.

CONTROL POINTS

Every job in central memory is related to a SCOPE control point. Each control point interrelates the
following elements common to a particular job: The central memory field length allotted; other hardware
and files used by the job; and a block in low core, called the control point area, that contains reference
information about the job. The control point area contains such information as the job name, processing
time accumulated, related control statements, and the job’s exchange jump package.

Up to 15 control points (numbered 1 to 17 octal) are available; therefore, up to 15 system or user jobs may
be active at control points simultaneously. Control point 0 is used to identify all hardware and software
resources not presently allocated to user jobs or those used only by SCOPE.

When jobs are input from a card reader or when job output is transferred to the printer. or card punch, the
SCOPE input/output routine (JANUS) that handles these functions must reside at one of the control
points.

CENTRAL MEMORY ALLOCATION

The position of central memory storage allocated to each job is related to the control point number to
which the job is assigned. This assignment is made and maintained in numerical order. Thus, the job at
control point 2 will always follow that at control point 1 in memory, and the job at control point 3 will
follow the job at control point 2, as shown in figure 1-1.

Through a dynamic relocation process, jobs are moved up and down in storage to make room for new jobs
assigned to control points. This process takes place continuously as central memory is required or released.
For example, jobs may be running at all control points except control point 2 and a new job is assigned to
control point 2. If sufficient contiguous storage is not available for the new job, SCOPE will relocate other
jobs as necessary to provide sufficient contiguous storage. Each job will be moved as a block, and only its
reference address (RA) will be changed accordingly within the appropriate SCOPE reference tables. It
might be necessary to relocate the jobs at both control points 1 and 3, or only one of them. If the job at
control point 3 is relocated, it also may be necessary to move one or more of the jobs following it; but the
order of the jobs within central memory remains the same. When a job is moved in storage, Monitor
suspends all user program activity at the control point, waits for all PPs assigned to the control point to
clear their field access flags, and then starts the SCOPE routine that moves the job. When the move is
complete, the RA of the job is modified and job activity is resumed.

60307200 C 1-5

JOB PRIORITIES

The user can request one of several priority urgencies for his job or leave the assignment to SCOPE.
Periodically, SCOPE adds a time increment to compute the job priority used in allocating and deallocating
system resources. This time increment reflects the time consumed in waiting for resource availability,
ensuring that no job will wait indefinitely for a resource.

JOB SWAPPING

If a job with high priority enters the system, existing jobs of lower priority may be swapped out or rolled
out.

When a job is swapped out, all information reflecting the current status of the job is written to a mass
storage file. The field length and control point associated with the job are made available to the Scheduler.
As control points and central memory become available, swapped out jobs are swapped back in to continue
processing. A job can be swapped into any free control point; thus, a job may run at several different

control points before it reaches termination.

If a job is currently assigned ECS or non-allocatable equipment (magnetic tape, family packs or sequential
packs), job swapping is not possible; however, such a job can be rolled out to obtain additional central
memory. The job’s field length is written to a rollout file before the field length is freed for another job. The
control point is not released when rollout occurs.

If a job is waiting for a permanent file to become available or for a magnetic tape or other equipment to be
assigned, the job can be swapped or rolled out automatically. When the file or device becomes available, the
job becomes eligible to be swapped or rolled back in.

Swapping or rolling may increase the total time that a job spends in the computer. but it will not affect the
amount of central processor time used by a given job; and it should help overall processing. Job swapping
and job rollout are controlled by the Scheduler. The most important system effect is to maintain high
central processor utilization. Frequent short central processor access is balanced with longer, less urgent,
access.

EXCHANGE JUMPS

A program gains or relinquishes the central processor through an exchange jump instruction. When this
instruction is executed, the program using the central processor is interrupted. Procedures that Monitor uses
to make the exchange depend on the hardware available on each system.

The control point area, which resides in low core, contains a 16-word exchange package which contains the
information used directly in exchange jumps: the most recent contents of all central processor registers, the
RA and FL in central memory and ECS, and the address of the next instruction to be executed (the
program address). This package appears as part of the output from jobs that terminate abnormally, and it
can be requested by a dump control card.

1-6 60307200 C

JOB/SCOPE COMMUNICATION

Since no instructions within a job can directly access memory locations outside its field length, an area must
be reserved within the job’s FL that SCOPE checks periodically to maintain communication with the job.
This area is composed of the first 100(octal) locations in the job’s FL, location RA+0 through RA+77.
The user program actually begins at location RA+100. RA +0 is reserved for hardware use (and for the
pause flag and sense switches); if an arithmetic error occurs, the type of error and the location of the error
are stored in RA+0. Requests from the job to SCOPE are stored in RA+ 1. They can be requests for
input/output, a signal to SCOPE that processing is complete, or a request to terminate the job because of an
error. RA+2 through RA+77 hold SCOPE control card information directing current processing and
information for the loader.

ACCOUNTING (JOB AND SYSTEM DAYFILES)

SCOPE maintains on mass storage the job dayfile, a chronological accounting of each job run, which is
automatically printed at job termination. It contains a copy of all control cards processed, equipment
assignments, diagnostic messages, central and peripheral processor time used, and the date and time of day
associated with each processing event relative to the job. The job dayfile is maintained entirely by the
system and is not accessible to user jobs, but jobs can send messages to the dayfile.

SCOPE also maintains a system dayfile, a record of every processing event in the system; it relates to all
jobs in the system. It contains all information in the job dayfiles plus other relevant system messages. The
system dayfile can be printed, punched on cards, or copied to tape at the operator’s request. This system file
is named DAYFILE and exists as a permanent file.

OPERATOR/SCOPE COMMUNICATION

The computer operator communicates with SCOPE through the keyboard of the display console, and
SCOPE transmits messages to the console’s twin screens. Several displays can be requested, and certain
kinds of messages are associated with each. The displays most often requested are job status, input, output
and execution queues, and dayfile displays. The job status display shows the progress of jobs currently at
control points, the most current program message, and other information. The input queue display presents
the status of jobs not yet assigned to the central processor for execution. The execution queue display
presents the status of jobs which are in some stage of execution. The output queue display shows informa-
tion about files from jobs which have completed executing and are waiting for output processing. Other
displays include all equipment in the configuration, central memory content, and system tables content. The
operator makes use of these displays to speed job processing. The analyst also uses them while debugging
programs. In the dayfile display, the latest messages to the system dayfile are presented. Displays, operator
requests, and other operator messages are described in the SCOPE 3.4 Operator’s Guide.

The programmer communicates with the operator through parameters on control card and program state-
ments such as the COMPASS macro MESSAGE and the FORTRAN PAUSE or COBOL STOP statements.

60307200 A 1-7

JOB PROCESSING AND DECK STRUCTURE 2

When the user prepares a job deck, he is structuring the job input file. The beginning of the file is the job
card; the end is the end-of-file (EOF) card with multiple 6/7/8/9 punches in column 1. Between these
cards, the end of each logical record is defined by an end-of-record (EOR) card with 7/8/9 multiple
punches in column one, and optionally, a level number (section 3) in columns 2 and 3.

The control cards, each user program, and each set of data comprise individual logical records. Each record,
except the last in a job, is terminated by an end-of-record (EOR) card. The last logical record is terminated
by an EOF card, which acts as both an EOR and EOF indicator. Although only the EOF card is required at
the end of a job deck, some programmers terminate their jobs with both an EOR and an EOF card as a
matter of preference.

As a job is read into the system, it becomes known as a file with a logical file name equivalent to the
identifier the user supplied on the job card as modified by SCOPE to ensure all job names are unique.

The first logical record in the job must contain all, and only, control cards. These cards direct components
of SCOPE in performing user defined tasks. Basic functions of control cards are:

Identify the job and some of its characteristics

Request devices needed for execution

Call for compilation or assembly of a program

Direct the loading of jobs into central memory

Call for execution of a program

Specify exit paths, termination conditions, and procedures
Some cards, such as the FORTRAN compiler call, must specify the file to be compiled if the user does not
wish the default file. Others, such as UPDATE and COPYN utilities, must specify both the file to be
manipulated and the source of more details concerning the process or use existing default values. In the
absence of specified files, the source of this information is assumed to be the job file itself. For example,
when a COMPASS call is encountered in the control card record, the assembler assumes the next unpro-

cessed logical record in the job deck is the file to be assembled, unless the COMPASS call contains an input
file parameter.

Each control card is read and executed as it is encountered in the control card record. Consequently, logical
records in a user job must be in the order they will be used when control cards are executed.

60307200 A 2-1

JOB FLOW THROUGH THE SYSTEM

The manner in which control cards establish user program handling is illustrated by following a sample job
as it is processed. For example, consider a job to assemble and execute a program written in COMPASS,
with the output to a line printer. The user gives the operator a tape to be used for output. In the sample job
shown below, the tape has a label containing 1972 as the volume serial number.

The job would be structured as follows:

EOF Card

cooN®
N

N

Data

EOR Card £ 91
V4
/ COMPASS
Program
/ LGO.

/ REQUEST, TAPE1,MT,E,VSN=1972.

/, CUMFADS.
JOBNAME,MT1.

© 00~

I\

oo~

EOR Card

—

Control
Card
Record

Figure 2-1. Sample COMPASS job

EXECUTION PROCEDURES

When the sample job is input through the card reader. SCOPE calls a PP routine to translate the job card,
check the validity of its entries, and assign a priority to the job. Next the PP copies the job through a
central memory input/output buffer onto mass storage. At this point. SCOPE identifies the job by its file

name JOBNAO1 (from the job card).

60307200 C

CONTROL
POINT
CONTROL CARD BUFFER AREA
5
6
FL
7 .
4
3
\ - o
2 W,
CENTRAL MEMORY
1 Job read into card reader 5 Some output to a tape
2 Job read through buffer onto disk 6 Job assigned to output queue
3 Job in mass storage input queue 7 Output to printer
4 Job assigned control point; goes into execution

Figure 2-2. Job Flow at Central Site

60307200 A 2-3

When the job is in the input queue of jobs awaiting execution, it comes under control of a SCOPE
scheduling routine. The following factors are considered in assigning jobs to available control points: the
priority entered with the job, available system resources such as central memory, direct access ECS, and
tape units. A job descriptor table ordinal is assigned to the job; this ordinal is used to identify the job
regardless of whether it is in central memory or not. Then the job file name is changed to INPUT.

SCOPE saves the original name of the job for later use. The file INPUT is positioned at the beginning of
the second record (the user’s program). The first control cards are read into a buffer within the related
control point area in low core, and are ready for execution. The job is assigned a file named OUTPUT to
collect job output.

Since the job card was processed when the job was read into the input queue, job control is advanced to the
second card REQUEST. The VSN parameter provides the volume serial number for the tape label. SCOPE
automatically assigns the tape if it is mounted. (If the installation does not choose the automatic assignment
feature of SCOPE, the REQUEST card appears on the operator console; and the operator must assign the
tape to the job manually.)

Next is the COMPASS control card, which directs assembly of the user’s program. SCOPE requests the
loader to load the COMPASS assembler into the field length. Control passes to COMPASS, to assemble the
next logical record, the user’s program, on the file INPUT onto a mass storage file called LGO. (For
assembly or compilation, the user can designate files other than INPUT as an input file and other than
LGO as binary output by entries on the COMPASS control card; but unless such alternative files are named
on the assembly or compilation card—the COMPASS card in this case—-INPUT and LGO are used by
default.) COMPASS also writes a source language listing of the program onto a file named OUTPUT.
Control proceeds to the next control card, LGO. At job termination OUTPUT is printed unless the user
specifies otherwise.

The LGO card directs program execution. 'The loader ioads the LGO file containing the user’s program in
object code into central memory and writes a map of this program onto the file OUTPUT; library subpro-
grams required are loaded also. Control passes to the user’s program for execution, input data is read from
the third record on the INPUT file (user’s data), and output is written on TAPE1 and OUTPUT.

As each control card is executed, it is copied onto the job and system dayfiles. The last card to be processed
in the control card record on the INPUT file is the card with 7/8/9 multiple punches signaling the end of
the job control cards. SCOPE writes the central and peripheral processor running times on the dayfile and
copies this file to OUTPUT, which then is detached from the control point. The name OUTPUT is changed
to JOBNAO! (the original job name) and TAPEI is released so that the tape unit may be available for
another job. INPUT, LGO and the dayfiles are cleared and released from SCOPE control. All equipment
associated with the job is released from control point n and assigned to control point 0, where it can be
requested by other jobs. The control point area and field length in central memory are made available for
other jobs. When a printer is available, JOBNAOI. containing the assembly language program listing, load
map, output, and dayfile, is printed.

24 60307200 C

From the time a job is assigned to a control point and execution is completed, many other jobs are being
executed. Each job is assigned a job descriptor table (JDT) ordinal when it is first assigned to a control
point. If the scheduler routine swaps out the job (returns it to mass storage in its present state of execution),
the JDT ordinal maintains the identity of the job when the control point association is lost. A job may be
swapped out by the scheduler when a job with higher priority enters the system or when the job is delayed
waiting for a resource such as a family pack. A job may be rolled out also, freeing central memory but
retaining a control point, while awaiting operator action. The scheduler directs swapping and rolling,
taking into consideration the relative needs of batch jobs and interactive jobs. When jobs are swapped or
rolled into central memory, they resume execution at the point of interruption.

JOB TERMINATION
NORMAL TERMINATION

When a job is processed without error, normal termination activity begins upon reaching end-of-record (7/
8/9) or an EXIT card in the control card record. First, execution time of the job is written onto the job
dayfile, DFILEn, and on the system dayfile, DAYFILE. Then, DFILEn is rewound and copied onto the file
OUTPUT. Next, OUTPUT and any other files on mass storage designated for output, such as PUNCH or
PUNCHB, are rewound and placed in the output queue. OUTPUT is designated for the printer, and
PUNCH (Hollerith) and PUNCHB (binary) for the card punch by disposition codes. These file names are
then changed to the job name, and the assignment to control point 0.

Files on magnetic tape are rewound, (unloaded if the programmer requested save status), and released from
the system. Permanent files are released from the job, returning to permanent file manager jurisdiction. For
family pack files, all pertinent system information in central memory is copied to the pack label. All
remaining files in central memory and mass storage associated with the job including INPUT, LGO, and
DFILEn, are cleared and released. The job is released from the control point area.

All hardware devices assigned to a job are assigned to control point 0, so they can be reassigned to other
jobs. At this point, only files in the output queue relating to the job remain. When an output device of the
type requested by the file’s disposition code is free, the file will be output through that device. When applic-
able, the job output is arranged in the following order:

Source language listing

Object listing

Load map

Executed program output (results)
Job dayfile

60307200 C 25

ABNORMAL TERMINATION

When an error occurs, SCOPE sets a flag indicating the error. If the error has been previously identified in
the current job step by a call to RECOVR, control is returned to the user program for processing. Otherwise
SCOPE continues with error processing.

A diagnostic message, reflecting the reason for abnormal job termination, is written to the OUTPUT file to
accompany a standard dump of the exchange package, along with the contents of 100 (octal) words that
both precede and follow the program stop location. SCOPE then clears the error flag, searches the control
card record for an EXIT card, and executes the control cards that follow it. If no EXIT card is found, the
job terminates as described under normal termination.

TERMINATION BY OPERATOR COMMAND

When the operator types in a DROP command, the job terminates prematurely. End-of-job procedures are
initiated as described under abnormal termination.

When the operator types in a KILL command, the job terminates prematurely. All files associated with the
job, including the OUTPUT file, are dropped regardless of name or disposition. Permanent files and family
pack files are treated the same as for normal termination. The programmer will not receive a dayfile listing.

When the operator enters a RERUN command, the job is terminated and its INPUT file is returned to the
input queue, so that it can be run later. The OUTPUT file is dropped. and a new output file is created. The
job dayfile is copied to the new output file called a pre-output file, and becomes the OUTPUT file when the
job is run again. The OUTPUT file for the rerun job will contain the dayfile from the previous partial run
of the job and the output and dayfile from the complete run of the job.

Permanent files and family pack files for a rerun job are treated as for normal termination. All other fies,
regardless of name or disposition, are dropped.

In some cases, a job might perform a function which would make it impossible to restore conditions to their
initial state before the job was run. For example, if a job writes on an existing permanent file, that
information cannot be erased. When such a job is rerun. results are unpredictable. To avoid this condition,
the system will set a no-rerun flag in the control point area to reject a RERUN type-in by the operator. The
no-rerun flag will be set when the job has performed a catalog, purge, alter, rename, or extend of a
permanent file; modified a permanent file or rewritten a family or sequential pack file.

Should a job be caught at a control point during a deadstart recovery, it is either dropped or rerun
depending upon the no-rerun flag. If possible, the job is rerun; however, if the flag indicates no rerun, the
job will be dropped and an appropriate message added to its dayfile. Any job swapped out during a
deadstart recovery will be given a message indicating that recovery was performed.

26 60307200 C

JOB DAYFILE
The job dayfile output with each job records the history of execution.

The first line shows the date the job was run along with the operating system and machine used for
execution. Each control card is listed with the time it was encountered. Error messages produced by
execution of a control card appear here. Operator or system actions affecting the job, such as a verification
of equipment assigned or a job rollout, are recorded.

The end of the dayfile shows the number of seconds (decimal) of central processor and peripheral processor time
used. The installation may also choose to show input/output time.

The programmer can cause information to be sent to the job dayfile by using the COMMENT card in the
control card record or the MESSAGE macro in a COMPASS program. Several other language processors
also allow messages to be sent to the operator or to the dayfile.

Figure 2-3 shows a dayfile from a job similar to that of figure 2-1.

09/724/71 SCOPE 3.4

15.33.45.J0BNAO1

15633445 JOBNAME,s P Ly T 7779 CM 60000y MT 1,
15¢33.45.REQUESTsTAPE]l ¢MT9E9VSN=1972 .
156334464 (MT21 ASSIGNED)

15433.47.MT21 VOLUME SERIAL NUMBER IS 001972
15433.52.COMPASS,

15¢34.26+. ASSEMBLY COMPLETE. 513008 SCM USED.
15434.26. 4.984 CPU SECONDS ASSEMBLY TIME.
15634435.LG0.

15¢35.35.CPA 39.264 SEC.

15.35435.PP 26.589 SEC.

Figure 2-3. Sample Dayfile

60307200 C 2-7

PROGRAM EXECUTION CARDS

A user can call a program for execution by using a control card that names the file containing the program.
When such a card is processed, SCOPE searches a table containing the names of all user created files
assigned to the job. When the specified file name is found, the file is rewound (rewinding is controlled by
installation default and user override) and all programs on the file are loaded into central memory and
executed.

If the file is not located, SCOPE searches the system libraries for an entry point of that name. If found, the
program containing that entry point is loaded and executed. If no such entry point is found, the job is

terminated.

Programs created by users and programs that are part of SCOPE are both referenced by the program
execution card, in the following format:

1fn,list.

Only Ifn is required; it is the logical file name of the file to be loaded, or of an entry point in a library program; it
must be 1 to 7 letters and numbers, beginning with a letter and followed by a terminator if no parameter list follows.

The optional entry, list, is composed of parameters that depend on the program to be executed and are
referenced by that program. A separator follows Ifn and each succeeding item in the list. The last parame-
ter must be followed by a terminator.

SEPARATE LOAD AND EXECUTE

The lpader of SCOPE 2.4 differs from that of earlier SCOPE csvustems, as exnlained in the reference manual

GaT SRS 2 LaxalaS SaUNN LRa0L SN SSITAIS, &S LAPLQLIICN LD SN SLLtatis

for the loader. These differences affect the sequence of control cards involving the loader, and consequently,
the structure of records in the job decks. If operations are other than a call for load and execution of a
program on the NUCLEUS system library (section 6), or load and execution of an object program created
or attached by the current job, the LOADER Reference Manual should be consulted.

The LOAD control card specifies a file to be loaded but not executed; the EXECUTE card completes the
load if necessary and initiates execution.

LOAD(1£n)
EXECUTE(1fn)
These two cards are the equivalent of:

1fn.

2-8 60307200 D

COMPILER OR ASSEMBLER CALLS

Names that should be used for Ifn on the program execution card to assemble or compile a user program

are listed below:
Source Language
FORTRAN Extended
FORTRAN (RUN)
COBOL
ALGOL
COMPASS
SIMSCRIPT
SIMULA
BASIC
SYMPL
SORT/MERGE
PERT/TIME
APT
QUERY/UPDATE
FORM

QUIDDL

On cards requesting assembly or compilation, the list parameters are used for such functions as:
Naming the file to which the program is to be translated in object code (default name LGO)
Naming the file containing the program to be assembled or compiled (default name INPUT)

Producing source language or object code listings of the program (listing options such as S in

FORTRAN)

Punching the file on binary cards (change default LGO to PUNCHB)

60307200 A

Ifn

FIN.

RUN.

COBOL.

ALGOL.

COMPASS.

SIMS.

SIMULA.

BASIC.

SYMPL.

SORTMRG.

PERT66.

APT.

Qu.

FORM.

QUIDDL.

The following card requests compilation of a FORTRAN Extended program from a file called STANLEY
onto a file named OLIVER.

FTIN(I=STANLEY,B=0LIVER)
Load and execution of that program would result from:
OLIVER.

The list parameters associated with FORTRAN Extended as well as other source languages are described in
detail in the respective reference manuals. :

After compilation, loading and execution are normally requested.

THE LGO FILE

The object code output by compilers and assemblers is written, by default, to a file named LGO. The
control card LGO used in many job decks is no different from any other call for program loading and
execution discussed above. When SCOPE cannot match a control card with its list of control cards, it
assumes the card is calling for program execution. It searches the user’s files, then the system entry point
lists, for a corresponding name.

Rewind before loading is controlled by installation default. At most installations, rewind occurs automati-
cally before loading. In a straightforward compile and execute job, the user need not rewind LGO or its
equivalent. If more than one program is written on LGO during a single job, however, user. manipulation
of LGO may be required.

For example, a combined program has the control cards:

FTN.
COMPASS.

Both compilers write to LGO. An execution call rewinds the file:
LGO.

The assembled output of both programs are loaded together.

2-10 60307200 A

To execute assembled output of independent programs. the following control cards can be used:

EG1.

FIN.

LGO.
REWIND(LGO)
COMPASS.
LGO.

Alternately, independent programs can be executed with control cards similar to:

EG2.

FTN(B=AAA) Assembled program on file AAA, not LGO
COMPASS(B=BBB) Assembled program on file BBB, not LGO
AAA. Rewinds, loads, executes file AAA

BBB. Rewinds, loads, executes file BBB

Deck structure after control cards must correspond to the SCOPE logical record requirements defined by

the control card order. In EG1, the deck must be:

Control cards

7/8/9

FORTRAN program to be compiled
7/8/9

FORTRAN data used during execution
7/8/79

COMPASS program to be assembled
7/8/9

COMPASS data

6/7/8/9

In example EG2, required deck structure is:

Control cards

7/8/9

FORTRAN program to be compiled
7/8/9

COMPASS program to be assembled
7/8/9

FORTRAN data

7/8/9

COMPASS data

6/7/8/9

60307200 A

2-11

EXAMPLES OF JOB DECK ARRANGEMENTS

The order in which SCOPE control cards are arranged within the control card record depends upon the
purpose of the job and the programs it contains. The following examples illustrate typical arrangements.
Automatic rewind before a load is assumed.

JOBA requests a tape file named SALLY, and loads and executes an object program from that file:

JOBA,MT1.
REQUEST,SALLY,MT,VSN=123456.
SALLY.

6/7/8/9

JOBB, containing a FORTRAN Extended program on Hollerith cards, compiles, loads and executes that
program.

JOBB.

FTN.

LGO.

7/8/9

FORTRAN Extended Program
6/7/8/9

JOBC, containing a program on binary cards, loads and executes that program:

JOBC,CM43000,T500.
INPUT.
7/8/%S

Program on Binary Cards
6/7/8/9

JOBD compiles and executes a FORTRAN Extended program and executes this program with one set of
data, and then with another:

JOBD.

FTN.

LGO.

LGO.

7/8/9

FORTRAN Extended Program
7/8/9

First Data record
7/8/9

Second Data record
6/7/8/9

2-12 60307200 C

FILE STRUCTURE AND PROCESSING 3

In the SCOPE system, all information defined to the system is considered to be either a file or a part of a
file. This section describes the concepts and terminology underlying the file organization and the structuring
of data. SCOPE activities related to the creation, processing, and disposition of files also are included.

The SCOPE logical records discussed below are equivalent to Record Manager S type records.

LOGICAL FILE STRUCTURE

Each file is known by its logical file name (Ifn). The name consists of one to seven letters and numbers, the first of I
which must be a letter. The internal central memory representation of a logical file name consists of its literal value
in display code, left justified, and zero-filled in bits 59 to 18 of the central memory data word.

A file is defined to be information through an end-of-file (EOF) indicator. This indicator takes several
forms, depending on the storage medium. The COMPASS macro WRITEF writes an EOF indicator appro-
priate to the file storage.

On cards, an EOF is indicated by the presence of a 6/7/8/9 multiple punch in column one.
Alternately, it may be a card with a 7/8/9 multiple punch in column one and a SCOPE logical
record level number 17 in columns two and three.

On magnetic tapes, files in standard SCOPE format have a 48-bit EOF marker containing a level
17 value. On magnetic tapes in other formats, EOF indicators are defined by tape marks.

On mass storage, an EOF is represented by a sector with no data but a level 17 byte.

End-of-information (EOI) is the end of data. Some files may have more than one EOF but no file may have
more than one EOL

Files on cards, mass storage devices, and magnetic tapes in SCOPE standard format can be divided into
SCOPE logical records. Level numbers 1-17 (octal) associated with each SCOPE logical record marker
define the hierarchy structure of a file.

An end-of-record (EOR) marker on mass storage or SCOPE tapes has the same format as an EOF marker,
but it contains a different record level number. On cards, an EOR is indicated by a 7/8/9 multiple punch in
columns one, with level number, if any, in columns two and three. If a level number has only one digit, it
may be punched in column 2. The highest record level number is 16.

The lowest level within a file is 0. It is associated with a single SCOPE logical record. A higher level defines
a set of records consisting of the SCOPE logical record at that level plus all preceding records at a lower
level. By this logic, the level 17 EOR defines an entire file containing other records. SCOPE logical records
within a file are assumed to be level 0 unless specifically identified otherwise. The COMPASS macro
WRITER allows an EOR of any level except 17 to be written. -

60307200 D 3-1

Level numbers can be used to organize data in a file. Using the COMPASS macros SKIPF, READSKP and
SKIPB, SCOPE logical records with particular level numbers can be accessed.

A level of 16 should not be used in a program that includes a request for a checkpoint dump. (See section 10). This
level number is used uniquely by the Checkpoint/Restart program.

Level 15 is used by COBOL 3 to denote end-of-file; this usage has been discontinued in COBOL 4.0.

Files may be transferred from one device to another without destroying the logical file structure. (The
SCOPE logical record concept is defined for all devices except magnetic tapes in S or L tape format).

On mass storage or SCOPE format tapes, the concept of a physical record unit (PRU) maintains the logical
integrity of a file.

The physical record unit size is the largest amount of information that may be accessed during a single
physical read or write operation for a given device. SCOPE logical records are written as one or more
PRU’s, the last of which is a short PRU or a zero-length PRU. If user data does not fill the last PRU in a
SCOPE logical record, the EOR marker is appended to the data and the remaining PRU space is ignored.
The foregoing defines a short PRU. On the other hand, a zero-length PRU must be created if the EOR
marker cannot be accommodated in a PRU with user data. A zero-length PRU contains only system
information such as the level number.

‘Level 17 EOF markers always are written as zero-length PRU’s on magnetic tapes and mass storage. In
COMPASS they can be produced by programmer calls to the macro WRITEF. '

MAGNETIC TAPE FILES

A single reel of magnetic tape is known as a volume. A volume set can consist of:
—a single file reel of one file on one reel
—a multi-file of more than one file on a single reel
—a multi-reel file of one file extending over more than one reel
—a multi-reel multi-file of more than one file extending over more than one reel

All information on a magnetic tape begins after a physical reflective spot known as the load point. When
this is sensed by a photoelectric cell, the tape is at its load point.

Subsequent information may be a label or the file data. Data may be in SCOPE, §, or L tape format on a

7-track tape divided into records and files. On 9-track tape, data may be in SCOPE or S format. Labels may
exist on both 7 and 9 track tapes.

3-2 60307200 D

Beginning-of-information and end-of-information are dependent on the tape structure and format. Both
are logical delimiters of data. The load point is the start of data for both unlabeled and labeled tapes. On a
single reel labeled file, a REWIND reverses the tape to the load point, then skips forward to the file data
following the label when a forward motion function is issued. End-of-information, which signifies no
further file data exists, can be indicated only by the appearance of a trailer label field.

A tape mark is a short record used on SCOPE tapes to separate label groups and files from label informa-
tion. On S and L tapes, it may also separate files in addition to separating label groups. Interpretation of
multiple tape marks depends on the tape format. Contents of the tape mark record differ with tape density,
as detailed in the label appendix. These tape mark records are written by SCOPE routines. On S and L
tapes these records may be written by the COMPASS macro WRITEF.

Another physical reflective spot, known as the end-of-reel marker, appears near the end of all tapes. It
warns the software to initiate end-of-tape procedures.

An unlabeled 7-track tape recorded at an installation-defined default density in SCOPE format is the
default tape characteristic assumed by the system. Any other tape density, format, or label must be explic-
itly declared by a REQUEST or LABEL card. Unlabeled tapes always must be requested by a REQUEST
card. A labeled tape can be requested by either a REQUEST card or a LABEL card. If both cards are used,
parameter conflicts are resolved by the acceptance of values first encountered. A REQUEST card followed
by a LABEL card is acceptable; LABEL followed by REQUEST for the same file will cause abnormal job
termination.

DATA FORMAT

SCOPE 3.4 is capable of processing:

SCOPE tape—standard SCOPE format

S tape—stranger tape

L tape—long record stranger tape (7-track tape only)
Each can accommodate binary or coded data.
The reference manual for Record Manager contains detail regarding file structure and blocking. Generally, Record
Manager equates the term block with a physical record on S and L tapes and with a SCOPE logical record (discussed
below) on SCOPE tapes or on mass storage devices.
On 7-track tapes, SCOPE format is assumed unless S or L is explicitly declared on a REQUEST card or by
the F parameter on a LABEL card. On 9-track tapes, SCOPE format is assumed unless S is explicitly
declared on a REQUEST card or by the F parameter on a LABEL card.

Tape blocks are composed of information separated by inter-record gaps.

60307200 C 3-3

SCOPE TAPES

SCOPE tapes are the system standard. Data is written in tape blocks holding a physical record unit defined
to be the contents of 512 central memory words of binary information or 128 central memory words of
coded information. Coded information is written on tape in external BCD format for 7-track tape only. On
9-track tape, data is written in packed (binary) mode for both coded and binary operation.

SCOPE logical records on SCOPE tapes are terminated by markers generated in the PP when a tape is
written and removed when the tape is read. Only the data passes from the tape to the user buffer in central
memory.

For coded data being output on 7-track tape, the PP converts display code to internal BCD codes if a 6684
converter is not available. The tape controller converts internal BCD to the external BCD codes recorded on
the tape. In the 63-character set, display code characters 33 and 63 both convert to an external BCD 12. In
the 64-character set, display code characters 33 and 00 both convert to an external BCD 12. However, if the
last two characters of a central memory word have a display code representation of 0000 (the end-of-line
delimiter byte), they become an external BCD 1632.

For 7-track coded tapes being read in, the tape controller converts external BCD to internal BCD codes.
The PP converts the internal BCD to display codes (if a 6684 converter is not available) before transferring
data to the file buffer. On input, the external BCD 12 is converted to a display code 33 (zero). The end-of-
line delimiter byte, which must occur at some multiple of 5 bytes, is converted to a 0000 display coded end-
of-line byte. '

Peculiarities for coded tape for the 63-character set:

oUTPUT INPUT
J— N — N —
Display Internal External Internal Display
Code BCD BCD BCD Code
00 16 16 16 00
33 00 12 00 33
63 12 12 00 33
Line Terminator 0000 1672 1632 1672 0000

Display code 00 is not a valid character; display code 63 (colon) is lost. Line terminators (byte of all zeros in
lowest byte of a central memory word) will not result in the loss of zeros.

34 60307200 C

Peculiarities for coded tape for the 64-character set:

OUTPUT INPUT
— — — — N ——
Display Internal External Internal Display
Code BCD BCD BCD Code
00 12 12 12 33
33 00 12 12 33
63 16 16 16 63
Line Terminator 0000 1672 1632 1672 0000

Display code 00 (colon) is lost; display code 63 (period) is now a valid character. An exception exists when
up to 9 zero characters precede a line terminator. They are changed in the PP buffer to 63B. On tape, they
result in external BCD 16. When tape is read, a 63 preceding a line terminator is converted to display code
zero. This substitution ensures preservation of all zeros preceding a line terminator, regardless of the
graphic character set used.

Appendix A contains the conversion tables for these codes. Conversion is performed by a 6684 if it is part
of the hardware configuration.

In binary mode, the SCOPE logical record terminator marker contains the following information on 7- and -
9-track tape; a 4-bit level number is right justified in the L field.

47 35 23 1" 5 0

5523 3552 2754 00 L

The marker immediately follows record data if it can be contained within the tape block. Otherwise, it is
written as the only information in the following tape block.

In coded mode, 7-track tape, each SCOPE logical record is terminated by eight characters in external BCD.

47 4 0

Blank (Reserved for Future System Use)

/S

Since coded operations for 9-track tapes are performed in packed (binary) mode, the logical record termi-
nator is the same as the above diagram.

Level Number, in Binary

60307200 C 35

The level number is the low-order 5 bits of the last character. The upper 2 bits of this character are always
zero except for level zero which is represented by 010000 (binary). For example, in external BCD, level five
would be represented by 2020202020202005 and level zero would be represented by 2020202020202020.

As with the binary marker, a record terminator marker is appended to the record data, if possible, or
written as the only information in the following tape block.

In both binary and coded mode, a level number of 17 indicates an end-of-file. EOF marks are always in a
separate tape block. An EOF is written in response to a user request to close a file or write an EOF mark.

When a file is closed, rewound, or unloaded, SCOPE appends four items: a tape mark, trailer information
identifying the file, and a double tape mark.

On a labeled or unlabeled SCOPE tape, a physical EOF mark followed by an EOF trailer label and a
double tape mark signals that no further information exists. End of information is not defined for unla-
beled S and L tapes.

Unlabeled SCOPE tape containing one file:

End-of-Tape Reflector
File
e N — —
E Trailer ZZ)
O] * Info ® | x
2 F "
/ EOF Marker ‘—/f Double
L Load Point / Tape Mark
Tape Mark (Physical EOF Mark)
Unlabeled SCOPE tape containing four files:
E E E E Trailer ZZ
FILEA |0| FILEB Jo| FILEC |o| FILED }O]|+* Inf x| *
2 F F F I

S AND L TAPES

S tapes contain physical records ranging in size from 8 to 5120 decimal characters. SCOPE considers a
6-character record on a 604 or 607 tape unit and a 7-character record on a 657 or 659 unit to be noise and
does not process it. Specific record size must be stated by the user. In COMPASS, the MLRS (maximum
logical record size) and UBC (unused bit count) fields in word 7 of the FET must be declared. MLRS
declares the maximum number of 60-bit central memory words in the record. The last word may not be full
of data since S tape records are measured in 6-bit characters, instead of words. UBC must declare the
number of bits in the last transmitted word that are not used. This number must be a multiple of 12.

3-6 60307200 C

L tapes contain physical records ranging in size from & characters to an upper limit specified by the size of
the buffer for the tape. Again, the user defines the record size in his program, with the MLRS and UBC
fields.

Neither S nor L tapes contain SCOPE logical records of various levels as do SCOPE format tapes. The only
records are the physical ones, and the file is that physically delimited by tape marks. The last file on an
unlabeled S or L tape is terminated by four tape marks, but these are not recognized as EOI in the same
sense as a label. The programmer must depend on the file marks or marks within his data. On a labeled S
or L tape, an EOF1 replaces the second terminating tape mark.

Unlabeled multi-file S and L tape:

File 1 File 2 File3
— N — ——
* * * | k| k] %k
2 ,
‘_ \— \— /,-/ N
Load Point Tape Tape 4 Tape Marks
Mark Mark Terminating

Information

7-TRACK VS 9-TRACK TAPES

Both 7-track and 9-track 's-inch magnetic tape can be processed by SCOPE. Parameters on REQUEST and
LABEL cards differ for recording densities, data format, and character conversion. Otherwise, label charac-
teristics and tape usage are the same for both. A modular magnetic tape controller (MMTC) can be used to
control 657 and 659 tape units.

In 9-track conversion (coded) mode, for S tapes, the MMTC matches a 6-bit character with a corresponding
8-bit equivalent. This conversion is performed when tapes are read or written. In packed (binary) mode, for
S tapes, the MMTC writes each pair of 12-bit bytes (24 bits) as three 8-bit characters; conversely, for a

packed mode read, the MMTC packs three 8-bit characters which are transmitted from the MMTC as two
12-bit bytes.

Seven track tapes are processed by 604, 607 and 657 tape drives. Data can be recorded in three densities:
LO 200 bpi (low)
HI 556 bpi (high)
HY 800 bpi (hyper)
Installation-defined default densities will be used for reading unlabeled tapes and writing both labeled and
unlabeled tapes in the absence of explicit declaration. The density of the label determines data density for
reading labeled input tapes. However, it is always advisable to specify density because of the reading

peculiarities of the tape drives. A tape label can be read at an incorrect density without causing a parity
error; longer data blocks read at an incorrect density will cause parity errors.

On a REQUEST card, MT explicitly defines this tape as 7 track; LO, HI, or HY provides an implicit
definition. On a LABEL card, 7-track is assumed unless 9-track is specifically declared.

60307200 C 37

Nine-track tape is processed on a 659 tape unit. Recording densities are:
HD 800 bpi (high density)
PE 1600 bpi (phase encoded)

On a REQUEST card, the NT parameter specifies a 9-track tape. On both REQUEST and LABEL cards, a
density specification of HD or PE implicitly specifies a 9-track tape. Under hardware control, these tapes
are always read at the density at which they are written regardless of declared density. Writing is done at
an installation default density unless HD or PE is declared.

Conversion of 9-track tapes between 6-bit display code values used by CONTROL DATA central memory
and a 64-character subset of 8-bit ASCII or EBCDIC tape code proceeds according to an installation
defined parameter unless the user specifies otherwise (see conversion tables in appendix A).

UsS ASCII conversion
EB - EBCDIC conversion

When SCOPE format 9-track tapes are written or read, data is not converted or manipulated in any way by
the system. When SCOPE format tapes are read or written each central memory word to be processed is
assumed to contain 60 bits of valid data. On SCOPE format tapes, partial central memory words cannot be

read or written.

For 9-track S tapes, packed mode input/output is performed without any type of data conversion or
manipulation on the part of the system. In conversion mode, however, data in the users buffer is assumed to
consist of a string of 6-bit display code characters which will be mapped into 8-bit characters when written
to tape. The 8-bit characters may be a subset of either ASCII or EBCDIC, as specified by the user on either
the REQUEST or LABEL card or macro. Conversion from 8-bit to 6-bit display code is also performed
when reading a 9-track S tape in conversion mode.

Multi-file tapes can be either 7- or 9-track tapes. Checkpoints can be taken on either. L tapes are not
supported on 9-track devices.

TAPE LABELS

Labels on a tape consist of 80-character records that identify the reel of tape and the files it contains. They
are the first records after the beginning-of-reel mark. Labels can appear before data on both 7-track or

9-track tapes.

SCOPE considers a tape to be labeled if the first record is in one of the following formats: any other tape is
considered to be unlabeled.

Standard 6000 series label format with a VOL1 identifier as the first four characters. ANSI compatible labels
are identified on REQUEST cards as U labels, and on LABEL cards by the absence of Z or Y type labels. Z
labels are processed in the same way as ANSI labels with the following exceptions: Z labels are not written by

SCOPE 3.4; the Z parameter is treated as U for output tapes.

When labels are read, the data density of the file is set according to the value of character 12 of the VOL1
label.

CDC 3000 Series computer label format. They are identified as Y labels on REQUEST and LABEL cards.

3-8 60307200 C

Labeled tapes provide the following advantages for the user:

When a write ring is left inadvertently in an input tape reel, software checking will ensure that an unexpired
label is not over-written without the express permission of the operator.

The number of blocks written on a file will be recorded in the file trailer label, as well as in the job dayfile. On
subsequent file reading, the count serves as additional verification that data was read properly.

The reel number field of the label ensures processing of all reels in the proper sequence.

Multi-file reels with ANSI labels can be positioned by label name, rather than by file count only.
The volume serial number of any ANSI label read or written will be recorded in the dayfile.
Overall job processing time is reduced when the system can use the VSN field to locate and assign a

tape to the requesting job without operator action at the keyboard.

The maximum benefit from the SCOPE tape scheduling and automatic tape assignment features can be
derived only if all magnetic tapes used at an installation are labeled.

The standard 6000 series label format conforms to ANSI standard X3.27-1969. ANSI defines 10 types of
labels by the first four characters in the label (VOL, UVL, HDR, etc). Appendix E details these labels.
SCOPE requires the use of only four label types: VOL1, HDR1, EOF1, and if a file continues to another
volume, EOV1. Other ANSI label types will be accepted by SCOPE for reading or writing when extended
label processing capabilities are requested through the XL bit of the file environment table, as explained in
section 11. However, all manipulating of such labels must be done by user code.

Under the current ANSI standard, density of label data is the same as that of subsequent data. Earlier standards, and
therefore labels written by operating systems prior to SCOPE 3.4, allowed data recording density to be specified by
character 12 of the VOLLI label. Tapes with earlier standard labels must be identified as Z labels on REQUEST or
LABEL card if the label and data densities on the tape are not the same.

3000 series labels are the same as standard labels generated by the 3000 series computers. A file header,
and end-of-file and end-of-tape trailer labels are defined.

Both ANSI and 3000 labels are written at the same density as subsequent file data. Default density is
installation defined.

Information in label fields originates in several ways:

Defaults written by the SCOPE system when Y or U appears on REQUEST card
LABEL card parameters
COMPASS language manipulation of label buffers with extended label processing feature

Comopiler language statements, such as COBOL LABEL statements

SCOPE generates labels with default values if the user does not provide otherwise.

60307200 C 39

ANSI STANDARD LABEL FIELDS

The four ANSI labels required are used as follows. Tape marks separating items are completely system

controlled.

VOLI1

HDRI1

EOF]

EOV1

Must be the first label on a labeled tape. Each volume in a volume set must be identi-
fied as VOLI1; a field in the following HDRI1 label gives an actual reel number.

Required label before each file or continuation of a file on another volume. It is
preceded by a VOLI label or tape mark. Each file must have a HDR1 label which
specifies an actual position number for multi-file sets.

Terminating label for file defined by HDR1 label; the EOF1 label is the SCOPE end-
of-information for the file. A single tape mark precedes EOF1. A double tape mark
written after the EOF1 label marks the end of a multi-file set.

Required only if physical end-of-tape reflector is encountered before an EOF1 is
written or if a multi-file set is continued on another volume. It is preceded by a single
tape mark and followed by a double tape mark.

The structure of SCOPE tapes that results from these required labels is shown below. The label identifier
and number is used to denote the entire 80-character label in these figures.

Single reel file:

Y Load Point End-of-Tape Reflector
————— Tape Mark ———_ _\
\) 4 1 N\
|7
VOL1 HDR1 * FILE A * EOF1 N
N -
Double Tape Mark
Multi-reel file:
vOL1 HDR1 * FILEA * EOV1 *1*
o2
A
VOL1 HDR1 * FILE A (Continued) * EOF1 ol
A
3-10 60307200 C

Multi-file reel:

VOL1| HDR1 | *[FILEA| * | EOF1

)

HDR1 [* | FILEB| *| EOF1 |* | *

Multi-file multi-reels in a volume set are also possible.

Tape label configuration that occurs when an end-of-file coincides with end-of-reel is given in Appendix E
along with placement of optional labels in relation to required labels.

All required labels are checked by SCOPE on input and generated on output, unless the user issues contrary
instructions. The NS parameter of the REQUEST card inhibits label processing. A REQUEST with a U
parameter for a standard label tape results in the following default information in the required labels.

Volume header label:
Field
label identifier and number
volume serial number
accessibility classification
owner ID
label standard level

File header label:
Field
label identifier and number
file label name
multi-file volume set identifier
reel number for multi-volume file
position number for multi-file volume set

edition number

60307200 A

Default

always VOLI

as typed at console or read from existing label
blank giving unlimited access

blank

blank or | indicating ANSI standard

Default

HDRI1

blank

VSN identifier

0001 specifying the first volume in a set
0001 specifying this is the first file in the set

0

Field Default

creation date current date
expiration date current date
accessibility classification blank

block count 000000
system code identifying operating system blank

File trailer label:
Items and defaults same as HDR1 label except:

label identifier and number EOF1
block count number of blocks since last HDR label

Volume trailer label:
Items and defaults same as HDR1 label except:

label identifier and number EOV1

With the exception of the label type identifier and number, any field can be changed through the LABEL
card. A VSN card can supply the volume serial number if it is not given in the LABEL and REQUEST
card, but such identification is not written on the tape.

TAPE IDENTIFICATION FOR AUTOMATIC ASSIGNMENT

This feature of SCOPE enables the operating system to assign a tape to the requesting job as soon as the
operator mounts it on a tape drive. Automatic tape assignment is implemented by volume serial number
(VSN) identification. Consequently, all magnetic tapes used at an installation selecting the automatic assign-
ment option must have a VSN. This VSN may be supplied by the programmer or operator, and it may
consist of a permanent field in a tape label or a temporary field in a tape processing table internal to
SCOPE.

The VSN defines the volume of tape on which a particular file resides. The programmer associates this with
a logical file name through:

REQUEST control card or function parameter
LABEL control card parameter
VSN control card

3-12 60307200 A

Only the VSN card allows multi-reel file identifiers or alternate tape reels to be specified. Use of the VSN
card is recommended when a job’s tape file requirements change frequently.

If more than one VSN parameter is given for a single file, SCOPE accepts the first encountered. Therefore,
deliberate duplication provides the programmer with the ability to override, for example, a REQUEST
function specification within a program without changing the program.

RANDOM ACCESS DEVICE FILES

Random access devices are drums, disks, and disk packs; generally, these random access devices are shared
by many files and are known as public devices. A disk pack however, may be assigned to a single file
attached to a single job, in which case it is processed sequentially similarly to a magnetic tape and not
considered a random access device. A family disk pack, although a private device when attached to a single
Jjob, is a random access device and files are written the same as on public random access devices.

A file on a random access device may be of arbitrary length, and it may be segmented over more than one
device. The data will be recorded in a logical sequence of record blocks which may be arbitrarily scattered
about the disk or drum surface. SCOPE maintains a central memory table for each file, called the record
block table (RBT), in which the sequence of allocated record blocks is defined. The end-of-information
position is also defined in the RBT.

No physical distinction exists between binary and coded files recorded on these devices. Data from an
integral number of central memory words in a user buffer is written to the device, and on reading, is
returned to the buffer without transformation. A file may be written in binary and read as coded, or
- conversely. This practice is not recommended, as it will not work on other devices.

60307200 C 3-13

SEQUENTIAL AND RANDOM FILES

Files on random access devices may be written in random or sequential format. Sequential files are written
or read from beginning to end. A program could skip records forward or back while reading; but the
physical relation of the data, as recorded in the RBT, determines skip parameters. Although a sequential file
may be written in arbitrary locations on a random access device, its integrity as a sequential file is not
affected.

Most random files have associated indexes; direct access files are an exception. The index contains a relative
PRU position for each SCOPE logical record in the file. The file beginning is equivalent to the start of the
SCOPE logical record associated with the first index entry; the file end is equivalent to the end of the
SCOPE logical record associated with the last index entry. Any record can be read by identifying it in the
index without the need to skip records from some beginning file position.

If a random file is to be saved, the file index must be written as the last logical record on the file. A user
may write the index or he may call the COMPASS macro CLOSE or CLOSE/UNLOAD to write the index.
CLOSE automatically writes out an index for a random file if the file contents were changed by a write
with the FET random bit set. A permanent file must also have EXTEND permission before the index can
be made a part of the file.

USER DEFINED RANDOM FILES

SCOPE offers flexible handling of random access files. Single-level SCOPE name/number indexed files may
be created and maintained using system macros READIN, WRITOUT, OPEN, and CLOSE; data record
management at any level lower than a SCOPE logical record falls to the user.

T A TNTAT /YUIDITAT T L.

memnta sam A e

READIN/WRITOUT may be used o create and maintain
out using OPEN/CLOSE to manage the index records. The user must manage his index records. They could
be kept on a separate file, for example.

o nraoram avarntion with.

wdav aantante dvirin
ULVA VULIV W \lull‘l& t].l.\J&AIAAAl AW AL LANI AL VY Atad

Multi-level SCOPE name/number indexed files may be created and maintained using READIN/
WRITOUT and system macros OPEN and CLOSE plus a user generated sub-index management routine. A
master index record would contain addresses of sub-index records interspersed throughout the file. The
master index record would be processed by OPEN/CLOSE as is a single-level index record. The user
routine would need to ensure that READIN/WRITOUT would reference the correct index or sub-index
block.

Other index formats may be defined by supplying a user routine to format and retrieve record names and
mass storage addresses. Mass storage addresses may be computed on files containing fixed length records,
provided the file is not ECS resident, since the addresses are in the form of a relative PRU count and the PRU size is
fixed.

3-14 60307200 C

SCOPE NAME/NUMBER INDEX FILES

SCOPE indexed files may be created and accessed through macros READIN and WRITOUT which call the
central processor routine IORANDM. They may be processed through COBOL, FORTRAN, and COM-
PASS language programs, and they may be declared as permanent files to be maintained on a public device.

SCOPE indexed files may be created, read, written, and rewritten using the COMPASS macros OPEN,
CLOSE, READIN, WRITOUT, WRITIN, and WRITER. Management of a single index level is provided
through macros OPEN and CLOSE.

The first word in the SCOPE index determines how the records are referenced. The index is generated
through the WRITOUT macro (section 12). A positive non-zero value indicates reference must be by
number; a negative value indicates reference can be by name or number. Number index entries are one
word; name index entries are two words. The number of a record is equal to the relative position of the
index entry for that record; the first entry in the index points to record 1, the second to record 2, etc. If a
name index is used, the record name maybe 1 to 7 letters and numbers. The value of index word 1 is
determined when the first record is written. The formats of index entries are shown below.

59 23 0
0 Relative PRU Position Number
Index
59 23 17 0]
Name, Left Justified with Zero Fill 0 Name
Index
0 Relative PRU Position

The smallest unit of information that can be indexed is a SCOPE logical record, and each SCOPE logical
record must begin in a new PRU. For the most economical SCOPE index, SCOPE logical record length
should be equal to an integral number of PRU’s minus one word.

60307200 C

DISK PACK FILES

Disk pack drives can be used as follows:
System public devices to which files from all jobs can be assigned
Family packs assigned to a single job
Sequential packs containing a single file assigned to a single job

If a device is public, SCOPE will use it for many files assigned to many different jobs as the need arises.
Permanent files can reside on these devices if the installation so designates.

If a device is private, it can hold a non-allocatable family or sequential pack. These packs can be used only
by a single job. The main distinctions between these two types of packs are shown below:

Family Packs Sequential Packs

File format Random or sequential Sequential only

File capacity 63 files 1 file

Family size 1-5 packs (limited to No limit on packs in file
number of drives
available)

Removability Ali family packs must First pack can be removed as processing continues on
be mounted until job second pack drive if two drives have been requested, or
complete on first drive with another pack mounted.

Method of request RPACK card for REQUEST card, DP parameter
manual assignment; (This type of file may not be ECS buffered.)
REQUEST card with
PK parameter

Identification Volume serial Visual identifier (VID)
number (VSN)

3-16 60307200 C

SEQUENTIAL PACK PROCESSING

A sequential pack contains a single sequential format file for use by a single job. No file size limit is
imposed; the file can extend over many packs in the same way that a magnetic tape file can extend over
many volumes. Sequential pack files, unlike family packs, are not limited to the number of units available,
since only the portion of the file currently in process need be mounted. These packs can be dismounted
during job execution when they are not in use.

Sequential packs are requested for use by the REQUEST card. The DP parameter indicates a sequential
pack. A new pack is requested by:

REQUEST(1fn,DP,VID=-nnnnnn,dt, N) or REQUEST(1fn,2DP,VID=-nnnnnn,dt, N)
Ifn Logical file name

DP Sequential pack identifier. If 2 precedes DP, the operator will assume a multi-pack file
is involved and assign 2 units. The two assigned units must be the same device type.

nnnnnn Visual identifier of 1-6 characters. The VID must refer to the first pack of the sequential
set. Adherence to COBOL/ANSI standards for access of subsequential packs is han-
dled by the compiler.

dt Device type mnemonic:

AP 854 disk pack

AM 841 multiple disk drive
N New pack indicator. Default is N.

Parameters after Ifn are order independent; only Ifn and DP are required. If VID is not supplied, the
operator will supply it when the pack is mounted. The VID will be incorporated in the label of the pack to
verify that packs assigned are those requested. Each pack will have a unique VID; the VID of the first pack
of a multi-pack file will be used to identify all packs in that multi-pack file as well.

An existing pack is requested with:

REQUEST(1fn,DP,E,VID=nnnnnn,dt)
All parameters except dt are required for existing packs; they may be in any order.
When a file spans more than one pack, two pack drives can be requested with 2DP. Processing can continue
on the second pack while the next pack is mounted on the first unit. The first unit is turned off when its
pack is processed and must be turned on when the next pack is mounted. If multiple packs are involved, the
operator is responsible for the order in which they are accessed. They must be accessed sequentially starting

with the first in the series. If they are mounted out of order, the system will display a message and give the
operator the option to continue processing or to mount another disk pack and recheck the label.

60307200 C 4-17

Operator action always is required to assign sequential pack units to the job. An * should not be used with
the DP parameter.

Multipack files can be processed on one or two units by programmer request. During file processing, the
operator is instructed to mount subsequent packs as necessary.

Examples:

The following cards request new packs:

REQUEST(SEQFILE,DP) Default N; operator will supply VID

REQUEST(SFILE,VID=12345,N,DP) Operator must mount pack having VID.
12345

REQUEST (SEQUENT,2DP,N,AP) Operator must assign two 854 packs

Packs with existing files are requested in the following examples:

REQUEST(SEQ,E,VID=222222,DP) System will verify operator assignment of
pack with VID 222222

REQUEST(SEQTL,2DP,E,VID=122221) First pack that operator assigns must have
VID of 122221; system will request addi-

tional packs in file by VID.

MAGNETIC TAPE PROCESSING

Magnetic tape files to be used or created by a job must be explicity requested. Three control cards may be
involved: REQUEST, LABEL, and VSN.

The REQUEST card can be used for all tape files — labeled, unlabeled, single file, or multi-file set. Parame-
ters, in addition to specifying format and density, can specify processing for the file. Identifying the tape as
input or output and the type of label is sufficient to initiate label processing and checking when the file is
opened. The installation default options for unloading, label processing, and parity error processing may be
overridden. A volume serial number parameter for the reel (or first reel in multi-reel file) will allow the
system to assign the file automatically.

The LABEL card can be used in place of a REQUEST card for a labeled, single file reel and to write or check file
header labels on single or multi-file reels. Parameters on the card establish label type and whether labels are to be
read or written. Fields in file header (HDR1) labels will be written or checked according to the values on the card. If
a multi-file reel is to be labeled, a REQUEST card must first establish the multi-file name, then a LABEL card may
exist with the name and label field values for each file in the set. With the LABEL card, either a volume serial num-
ber or a label name may be given for identification for automatic tape assignment purposes. Automatic
assignment by label name applies only when the read (R) parameter is specified on the LABEL card. The
LABEL card also can be used to position to a particular member of a multi-file set.

4.18 60307200 C

EXTENDED CORE STORAGE USAGE
1/0 BUFFERING THROUGH ECS

All sequentially accessed mass storage files may be buffered through ECS to avoid the costly access time of
rotating mass storage devices each time a small amount of information is transferred.

In order to optimize the access to such devices, a larger amount of information is transferred between the
device and ECS at the time of each access. Then regular (smaller) user transfers take place for each CIO
call between ECS and the user’s buffer in CM at a high rate of transfer and without involving any device
positioning.

The information read ahead (input file) or waiting to be written (output file) is stored temporarily in an
ECS buffer. The underflow and overflow functions for these ECS buffers are performed automatically by
the system.

The 170 buffering scheme is suitable only for files that can be accessed sequentially, including permanent
files.

The ECS buffers are requested on a file-by-file basis through the REQUEST card, or macro, or by an
ATTACH card or macro and a different buffer size can be specified for each file if the standard buffer size
is not desired.

Moreover an installation option allows the automatic allocation of an ECS buffer (standard size) to all files
allocated by default and processed sequentially.

In any case, the data contained in an ECS buffer is written to a mass storage device only if the file is closed
or exceeds the limit of the ECS buffer.

For optimum performance, the ECS buffer should be many times the size of the user’s CM circular buffer.
This will ensure that the system overhead associated with ECS buffer management is small compared to the
time saved as a result of performing fewer device accesses. Suggested relative buffer sizes are:

CM Circular Buffer ECS Buffer

201 - 401 octal words 4000 - 10000 octal words
501 - 1001 octal words 10000 - 20000 octal words
1001 octal words or greater 20000 octal words or more

For 170 bound programs using large CM circular buffers there is little advantage in using 170 buffering. In
general, an 1/0 buffer can be used to reduce the CM buffer size while maintaining the high transfer rates
associated with having large CM circular buffers. Throughput on 170 buffered files is primarily a function
of the ECS buffer size, rather than the CM circular buffer size. Thus, rarely is it necessary to have a circular
buffer greater than 1001 words when ECS buffering is employed.

If an unrecovered ECS parity error is encountered with the EP bit set, control is returned to the user

program with the error noted in the code and status field of the FET. If the error occurs with the EP bit off,
a GO or DROP decision is required of the operator.

60307200 C 3-19

ECS RESIDENT FILES

This facility is provided as an installation option selected when the system tape is built. Except for some
specific applications where a faster, limited rotating mass storage device is needed, it is generally preferable
to use the 1/0 buffering scheme instead of ECS resident files. I/0 buffering aliows an overall optimization
of the system.

Nevertheless, under this option any non-permanent sequential or random file can be ECS resident with
either the limit of the available ECS or the limit specified on the REQUEST card (whichever is reached
first). If no EC parameter is present on the REQUEST card, the file will not exceed the default 170 buffer
size specified at deadstart time. ECS resident files are requested on a file-by-file basis, the REQUEST card
having the same format as the one used for buffer allocation with the addition of the device type mnemonic
of AX.

ECS resident files and ECS buffered files may coexist.

When an overflow occurs, i.e. all ECS pages are allocated or the maximum file size is exceeded, an error
code 10 (device capacity exceeded) is stored in bits 9-13 of the code/status field and control is transferred
to the user if the EP bit is on, else the job is aborted.

Note: If ECS is turned OFF, all requests for ECS buffers will be ignored and the files re-
quested on ECS will be allocated on other mass storage devices.

3-20 60307200 C

CONTROL CARDS 4

CONTROL CARD FORMAT

Except for the job card, all cards in the control card record of a job deck have the same general format.
They begin with a keyword of 1-7 letters and numbers. Leading blanks may appear before the key-
word. If only the keyword appears, it must be terminated with a period or a right parenthesis.

Parameters may follow the keyword. Order-dependent parameters must be in the order specified; other
parameters may appear in any order. Parameter formats depend on the control card specified, as detailed in
other parts of this manual. A terminator must follow the last parameter.

A parameter may be formed from a literal. A literal is a character string delimited by dollar signs. Any
parameter field that includes characters other than letters, numbers or asterisk must be written as a literal.
Blanks within the delimiters are retained. If the literal is to contain $, two consecutive dollar signs must be
written. The literal $A B$$418 is interpreted as A B$41.

Separators between parameters may be any of the following characters:
(/=
Any character with a display code value greater than 44 except *) $. and blank

A blank is not considered a separator except after the keyword. Blanks in the control statement are ignored
except in a literal or after a keyword. (Slash (/) and equals (=) also may be used to separate fields within a
parameter, depending on the control statement.)

A terminator must complete each control statement. The period and right parenthesis are the only legal
terminators. Any characters appearing after the terminator are considered to be a comment. Comments are
not interpreted, but they are copied to the job dayfile.

As an example, consider a control card requesting the operator to assign reel number 4326 to a file named
TAPE2. The keyword is REQUEST; parameters are TAPE2, MT (for 7-track magnetic tape), and
VSN =4326. PUT WRITE RING IN is a comment to the computer operator. This card could be written in
any of the following formats:

REQUEST,TAPE2 ,MT,VSN=4326. PUT WRITE RING IN
REQUEST(TAPE2,MT,VSN=4326) PUT WRITE RING IN
REQUEST TAPE2,MT,VSN=4326. PUT WRITE RING IN

Control cards that may be continued on another card are: LABEL and the permanent file functions. If a
terminator does not appear on a card, column 1 of the following card is assumed to continue the previous
card.

In the statement formats that follow, upper case letters indicate constants; lower case letters indicate values

to be supplied by the user. In examples that follow, if a control card is referenced before it is fully
explained in the text, a brief notation of its purpose appears beside the card.

60307200 C 4-1

PROCESSING WITH CONTROL CARDS

The control cards discussed in this section pertain to general job processing and control, including file
manipulation. Control cards pertinent only to checkpoint/restart, permanent files, user libraries, and utility
routines are discussed in the respective sections of this manual. UPDATE is detailed in the UPDATE
Reference Manual, and loader control cards are discussed in the LOADER Reference Manual.

JOB IDENTIFICATION AND CONTROL
IDENTIFYING JOBS (Job Card)

A job is identified, certain resources are requested, and processing priority levels are established with the
job card. This card must be the first in the job deck: any other card appearing in this position is presumed
to be the job card and will be interpreted accordingly.

Job card format:
xxxxx,Tt,CMf1,ECf1,Pp,Dym,MTk,NTk, TPk, CPp.

One parameter, the job name, is required on all job cards. Other parameters may be included to specify
resources, priority levels, or processing time limitations. If these parameters are omitted. SCOPE automati-
cally assigns the system default values established when SCOPE is installed. Parameters may be listed in
any order following the job name.

SCOPE ignores all blanks and any unknown parameters that appear on the job card. However. when
improper characters are used as variables with valid parameters. the job will be terminated. For example.
parameters such as CMABC and DATA would cause job termination since CM must be followed by digits
and D followed by two letters and digits.

SCOPE interprets all numbers on job cards as octal values unless this procedure is redefined by the system
analyst when SCOPE is installed at the user’s installation.

The required job name parameter is:

XXXXX Name the user assigns to the job to identify it to SCOPE. Any combination of charac-
ters, numbers, or letters can be used; the first character must be a letter. A name longer
than five characters is truncated to five.

SCOPE automatically modifies the name of every job by assigning letters and numbers
that differ for each job as the sixth and seventh characters. This ensures unique identi-
fication if a job is entered with a name duplicating that of another job already in
process. For example, if two jobs are named JOBNAME, one may be processed as
JOBNA23 and the other as JOBNA34. If a job name contains fewer than five charac-
ters, SCOPE fills with zeros all unused characters through the fifth, and adds unique
sixth and seventh characters.

4-2 60307200 C

The optional parameters follow:

Tt

CMfl

60307200 C

t is an octal value for the time, in seconds, which the user estimates his job will require
the central processor. It must include the time required for assembly or compilation; it
does not include time during which the job is in the input queue or in central memory
but not using the central processor. If the job access to the central processor exceeds the
value specified by t, the job will be terminated prematurely. (Use of the RECOVR
feature allows results of execution to that point to be recovered before termination).

t may not exceed five digits. An infinite time can be specified by 77777; the job will
proceed until completed even if it exceeds the installation maximum value for 1. A time
limit of 77777 should not be used indiscriminately as certain kinds of program errors,
such as an infinite loop, can result in great waste in such cases.

The job card could be written in any of these formats:

jobname,T400.
jobname (T400)

jobname (T400.

fl is the maximum field length (octal number of central memory words) that the job will
require.

When the CM parameter is specified, that amount of storage is allocated to the job
throughout execution, unless the job itself requests a smaller amount by a REDUCE or
RFL card. If the CM parameter is not used, the system will establish field length
requirements for each step of the job, expanding or contracting it as necessary. Since
smaller field lengths are used whenever possible, more jobs may pass through the
system in a given time period.

The SCOPE library programs, including the loader, compilers, and utilities, have an
associated field length in the library tables. The field lengths will be set by the installa-
tion to a judicious length for typical jobs, which should eliminate the need for the CM
parameter on many job cards.

Any CM parameter on the job card will be rounded upward to a multiple of 100 by
SCOPE. The highest permissible value is defined by the installation. An RFL control
card requesting a field length greater than the CM value on the job card will cause job
termination. The RFL limit is the installation field length maximum if CM is not on
the job card.

A typical job card for a COMPASS assembly job may be:

ASSEM,T60,CM55000.

4.3

4-4

ECfl

Pp

Dym

MTk
NTk

TPk

fl is the maximum amount (octal) of direct access ECS the job will need, in multiples of
1000-word blocks. Generally, this parameter is specified only for jobs that require
large amounts of data. The highest value permitted is defined by the installation. An
installation default amount (typically zero) will be assigned if the parameter is omitted
and subsequent MEMORY requests will not be allowed to exceed that amount.

The EC parameter is not required when mass storage files are buffered through ECS (as
explained with the REQUEST card).

This job would be given 4000 (octal) words of ECS:
TODAY,CM43000,EC4.

p is the priority level (octal) requested for a job. The lowest executable priority level is
1. If zero is given for p, the system will treat it as level 1. The installation determines
the highest value permitted, but it never can exceed octal 7777. A value greater than
the highest permitted value will default to the installation default. A job of very low
priority, might have a job card as follows:

JOB,CM500000,P1.

This parameter is used only in conjunction with a string of interdependent jobs. y is the
dependency identifier (two alphabetic characters) assigned by the user to the entire
string. m is the dependency count (number) of jobs (0-77 octal) upon which this
particular job depends. Examples using the D parameter are presented in the discus-
sion of the TRANSF card.

s jobs for execntion may have a iob card:

JBTHR,CM60000,DXX2.

One of these parameters must be selected if SCOPE, rather. than the operator, schedules
tape unit use. The installation determines whether this parameter is necessary. This
parameter is used by the system for tape unit scheduling purpose only. It does not
change requirements for a REQUEST for a physical unit.

MT specifies 7-track tape and NT 9-track. If both 7- and 9-track tapes are used, MTk
and NTk should both be noted. TP has the same meaning as MT. But if both TP and
MT appear on the job card, only the MT parameter will be used to determine the
maximum 7-track tape units needed.

60307200 C

k is the maximum number tape units a job will require at any one time. k can range
from 0 to 77 (octal), but cannot exceed the total number of tape units at the computer
site. If more tape units are required at any time during job execution than are specified
by k, the job will be terminated.

A job can use more than a total k tape units as long as their use is not simultaneous. For
example, if k is 3 and 7-track tape units A, B, and C are assigned to the job, and an
UNLOAD, but not a RETURN function is issued for the tape unit C, tape unit D can
be requested for the job. This makes a total of 4 tape units used during the entire job.
For this job the card might appear as:

TAPEJOB,MT3.

CPp This optional parameter is applicable primarily to dual processor installations. Each
dual-processor system has a primary and a secondary processor. Also, the 6000 can
operate as a station in a 7600 system; in this case it assigns jobs for execution on either
the 7600 or the 6000 as specified by this parameter. The value of p can be determined
from the following chart:

Processor to Be Used
System Pri- Secondary- | 7600 7600
Configuration mary ary only 6000 Comments
6400 (CDC CYBER 70/Mod 73-1X) ¥ * 70 76 See 7000 SCOPE 2 RM
Single 6400 Processor
6500 (CDC CYBER 70/Mod 73-2X) A B 70 76 A/B used for CE
Dual 6400 Processors diagnostics
6600 (CDC CYBER 70/Mod 74-1X) ¥ * 70 76 See 7000 SCOPE 2 RM

Single 6600 Processor

6700 (CDC CYBER 70/Mod 74-2X) 66 64 70 76 A/B may be used
Dual 6600/6400 Processor

*When SCOPE 3.4 is running on a single processor 6400 or 6600 system, these param-
eters have no meaning and should not be used.

60307200 C

When this parameter is omitted on jobs executing on a dual-processor system, the
job uses whichever central processor is available.

This example specifies use of the 6600 central processor.

M2,CM43000,CP66.

4-5

After the terminator following the last parameter, general comments or installation defined material can
appear on the job card.

Examples of job cards:

J2,T4,CM45000,EC2,P1,DAB3,MT5,CPA. THIS IS A VERSION 3.4 JOB.
TO23 (EC1 (MT1(CM43000)

START(T3)

THIS JOB CARD GIVES ALL DEFAULT VALUES AND JOB NAME THISJ.
OSCAR.COBOL V3 USED

S3R2,MT1. FIRST RUN.

DOGCAT,CM50000.

LIMITING MASS STORAGE (LIMIT Card)

Normally, a job is assigned as much mass storage as it needs; however, a user may want to limit the maximum mass
storage that should be assigned, for example, during a debug phase when large amounts of output would indicate
program errors. With the LIMIT card, the user restricts mass storage allocation. Any time mass storage in excess of
this limit is required, the job terminates.

LIMIT(n)
n Octal number indicating the multiple of 10000 octal 60-bit words that should be allocated to the job
The value of the LIMIT parameter should anticipate both the number and size of files that will exist at one time.
Generally, very small limits should be avoided, since the system allocation of one record block, at minimum, for each
file may exceed the limit established even though each file is small.
Record blocks are defined at each installation, usually with different sizes of blocks for different mass storage devices.
A 6638 disk, for example, may have record blocks of 6200 octal words. A control card specifying LIMIT(2) would,
in this instance, cause job termination when a third file is opened, since 3 times the record block size is more than

the stated limit of 20,000 words.

Mass storage occupied by the INPUT file or attached permanent files is not involved in the total mass storage
allocation for LIMIT card calculations. Any file evicted from mass storage decreases the count of words allocated.

CHANGING CENTRAL MEMORY FIELD LENGTH

The REDUCE and RFL cards affect the central memory field length assigned to a job. REDUCE causes a
smaller field length to be assigned; RFL may be used to increase or decrease field length.

46 60307200 C

Since, for many programs, memory requirements differ significantly from those required for compilation or
load, large field lengths are not necessary for the entire job. System utilization can be improved when excess
field length is freed for other jobs. Under SCOPE 3.4, the system dynamically adjusts field length require-
ments only when a CM requirement is omitted from the job card. If a Job will need field length larger than
would be assigned for any product set member used in the job, the CM parameter for the maximum field
length required should be specified on the job card. The user then can specify REDUCE/RFL requests as
needed in the job.

The memory available when the system increases user field length in response to a compiler or assembler
call will be determined by the job card specification.
REDUCING FIELD LENGTH AFTER LOAD (REDUCE Card)

The REDUCE card is used preceding cards that execute a program. Central memory field length will be
decreased to the amount of memory specified to execute the loaded program.

LOAD (ABLE)
REDUCE.
EXECUTE.

NEW FIELD LENGTH REQUEST (RFL Card)

With the RFL card, the user can request a different central memory field length during job execution. Field
length can be made larger or smaller.

RFL (f1)
fl New field length in octal (decimal by installation option)
The maximum field length that can be requested is the value for the CM parameter on the job card. If CM

1s not used on the job card, the maximum available, based on an installation parameter setting, establishes
the maximum limit for an RFL.

60307200 C 4-7

SETTING PROGRAM SWITCHES (SWITCH Card)

In program branching, where two alternate processing routes are provided, the software sense switch is
frequently used to determine the path taken. This switch is a bit in central memory that a user’s program
can reference. A program might contain a request to take one path if the bit is set to one (on) and another
if it is zero (off).

Up to six switches can be set or reset by SWITCH cards in the control card record of a source program. At
the start of every job, all switches are zero.

SWITCH(n)

The parameter n must indicate the number (1-6) of the switch to be manipulated. The following control
card would turn on switch 4.

SWITCH, 4.

A switch can be reset to zero prior to job termination by including a second SWITCH card referencing the
same switch, as shown in this example.

SWITCH, 4. Set switch to 1.
SWITCH, 4. Resets switch to 0.
SWITCH, 4. Resets switch to 1.

Switch reference instructions vary, depending on the program source language. They are described in the

wnfamanman maniiale anvraringa anch lananaaa
TCrCITHCT iidiiuars COVLIiilg Calil aliguagt.

COMMENTS ON CONTROL CARDS

Informal comments or remarks can be inserted after the terminator on any control card. Comments appear
in the printed job dayfile, and also in the dayfile display for the operator on the console screens. Examples
follow:

JOBSAM,T500,CM50000,MT1. WORK ORDER NO. 2126A.

REQUEST,TAPE1,MT.
FTN. THIS IS NEW COMPILER

LGO.
7/8/9

4-8 60307200 C

INSERTING FORMAL COMMENTS (COMMENT Card)

Comments can be inserted independently of other control card requests (except between two or more loader
control cards) by punching them on COMMENT cards, in this format:

COMMENT.n . « . . n

Comments or remarks (n n) are inserted after the period following the word COMMENT. They
may be up to 72 characters and occupy any column, 9 through 80. Any character can be used, including
blanks, colons, commas, periods, and special characters. COMMENT cards are printed in the job dayfile
and displayed to the operator on the console screen. Only the characters in columns 9 through 80 appear,
however, and not all special characters display. All characters will be printed on the output.

Since the COMMENT card requires no action by the computer operator, and job processing does not halt
for pending action, the computer operator may not notice all messages because of the speed at which this
card is processed. It is better to place operator instruction after the parameter list of cards such as RE-
QUEST, LABEL, or RPACK which require operator action.

If a comment is too long for one card, it can be continued on as many COMMENT cards as necessary, as
shown in this example:

job card.

FTN.

COMMENT. THIS JOB CALCULATES THE SPECIFIC IMPULSE DERIVED FROM THE
COMMENT. E-G INJECTOR, UNBAFFLED VERSION, USED WITH GAS

COMMENT. GENERATOR 11117A, ON THRUST CHAMBER YLR2776A

LOAD(LGO).

REDUCE.

EXECUTE.

7/8/9

REQUESTING EQUIPMENT FOR A JOB

Before a file can be referenced by a job, the device on which it resides or is to be written must be identified.
For files not on public devices, the device must be assigned to the job.

A public device is a mass storage device used by the system to hold system files, permanent files, and
default named files such as INPUT and OUTPUT. All public devices are allocatable — they can be shared by
more than one job at the same time. If a programmer does not specify otherwise, his files will be assigned to
a public device.

A private device is a mass storage device that holds files by specific request. The two private devices, family
packs and sequential packs, are non-allocatable devices that can be assigned to only one job at a given time.

For files input from punched cards or output to a printer or card punch, SCOPE automatically makes the
assignment. All card input is written on file INPUT, printer output on file OUTPUT, and card output on
PUNCH (for Hollerith cards) or PUNCHB (for binary cards); all are files on public devices. When card
input is referenced by a job, INPUT is read automatically. When the job is terminated, OUTPUT is
printed, PUNCH is punched in Hollerith format, and PUNCHB is punched in binary format.

60307200 D 49

Automatic public device assignment results for all files created while a job is in progress unless the user
specifies another device. Thus, if a job created a file named SAMMY and did not specify a storage device.
SAMMY would be written on a public device.

For input files from devices other than the card reader, or for output devices other than public devices, card
punch or printer, the user must request equipment with a REQUEST card (LABEL card for some tape files:
RPACK for family pack files). Since control cards are processed in order of appearance, the REQUEST
card for a particular file must precede the control card that executes the program referencing that file.
Otherwise, the file will be sought or written on a public device when it is referenced.

REQUEST cards are most commonly used with magnetic tapes and sequential packs, but they can be used
to cause file assignment to any public device or unit record equipment. Files are assigned to public disk
packs with a REQUEST card or by system default. For family disk packs, however, these private devices
must be assigned to the job with an RPACK control card before a REQUEST card assigns a file to the
pack.

When a REQUEST card is encountered, job processing may halt for operator action or continue with
SCOPE action, depending on the form of the parameter specifying device type and. for magnetic tape. the
installation tape assigning options.

An asterisk preceding the device type mnemonic causes SCOPE to assign the device without operator
action. The tape assigning options available with SCOPE 3.4 make the * redundant for magnetic tape
requests, but it may be used; however, * cannot be used if two units are requested with the same card. or a
multi-file set is involved. If * is not used for devices other than tape. the REQUEST card will appear on the
operator display for a manual assignment. The operator must then make the unit physically ready and
logically assign it to the job by entering a command on the console keyboard. Processing resumes and the

................ A oo tln cnvivnn ~ne Ancdimndlam

A 1 H H + - +3 +3 ~F 4l 031
UoYILe 1D IEUUSILILCU ad L0 dUULILL UL uldLlllativll Ul e 1uce,

4-10 60307200 C

General form of a REQUEST card:
REQUEST(1fn,dt,eq) or REQUEST(1fn,*dt,eq)

Ifn Logical file name by which file will be known throughout the job. This parameter is
required and must be the first parameter; other parameters are optional and may
appear in any order.

Ifn must be 1-7 letters or numbers, the first of which must be a letter.

dt Device type mnemonic plus other dt parameters to further describe equipment re-
quested. An asterisk allows assignment of devices without operator action if possible.

eq Equipment status table ordinal of device; to be used only under controlled
circumstances.

The optional device type descriptors depend on the category of equipment involved. Details of parameters
for the REQUEST card are discussed separately in relation to files on the following devices:

Unit record devices such as card reader and line printer
Public devices including those used for permanent files
Magnetic tapes (7- and 9-track) including multi-file sets

Private devices called family packs and sequential packs

The eq parameter is most useful when REQUEST is entered at the console by the operator or the program-
mer. It is not recommended for use otherwise.

When sufficient information is given in the REQUEST card, SCOPE will assign the device to the job
without operator action. Device eq will be assigned if it is available. If eq is not on the control card, dt will
be examined. An asterisk prefixing the dt parameter causes SCOPE to assign the device automatically. For
tape requests, a VSN parameter is used to locate and assign the tape if it is mounted. For other device
requests, operator action is required if an asterisk does not precede the dt parameter. If neither dt nor eq
is declared, the operator may assign any device.

SCOPE compares the device assigned by the operator with the request; any discrepancy is reported to the
operator. An additional operator command must be given if the dt parameter on the control card is to be
overridden by manual assignment. Conflicts between dt and eq parameters also must be resolved by the
operator.

60307200 D 411

REQUESTING UNIT RECORD DEVICES

When a file is input from a card reader or output to a printer or card punch, devices are assigned automati-
cally by SCOPE; the REQUEST card is not necessary. However, if a special type or model of card reader,
card punch, or line printer is to be used, this device must be requested.
The REQUEST card to associate files with unit record devices is written:

REQUEST(1fn,dt) or REQUEST(1fn,*dt)

The Ifn and * have the same meaning as explained with the general REQUEST card format.

Device type mnemonics, dt, for unit record equipment:

LP 501 or 512 line printer
L1 501 line printer
LQ 512 line printer
CR 405 card reader
CP 415 card punch

The following device types are recognized, but not supported by the standard SCOPE system. If an installa-
tion provides software drivers for these devices, they may be specified on the REQUEST card:

GC 252-2 graphic console
HC 253-2 hard copy recorder
FM 254-2 microfilm recorder
TR Paper tape reader

TP Paper tape punch

REQUESTING PUBLIC DEVICES

Any file created without a request for a specific device is assigned to a public device by default. A RE-
QUEST for a public device should not be used unless the programmer needs a particular device. However,
if the file is to become a permanent file, a REQUEST card for a permanent file device is required.
REQUEST card to associate files with public devices is written:

REQUEST(1fn,dtaa,0V,ECn) or REQUEST(1fn,*dtaa,0V,ECn)

The Ifn and * have the same meaning as in the general format explanation.

4-12 60307200 A

Device type, dt, mnemonics for public devices:

AA 6603 disk

AB 6638 disk

AC 6603-II disk

AL 821 data file

AM 841 multiple disk drive
AP 854 disk pack device
AF 814 disk file

AD 865 drum

AX ECS

A* Any mass storage device
PF Any permanent file device

When ECS residence is specified by dt AX, the system will assign the file automatically; *AX is not
necessary.

Allocation style aa is an optional appendage to the device type mnemonic. The two-digit octal codes
representing allocation style must be defined at each installation; they can be used to identify sub-areas of a
device. Files then can be assigned to specific sub-areas of a device by including the appropriate allocation
style in the request.

The OV parameter allows a file to be written or to overflow to another device if the mass storage indicated
by the dtaa parameter is not available. The system then will assign any mass storage; however, files
assigned to permanent file devices will not be written to non-permanent file devices. (If all mass storage of
any type becomes unavailable during writing, a device capacity exceeded status will be returned to a
COMPASS program if the EP bit is set in the file environment table.)

The EC parameter can be used with any public device or with family pack files, to have the file buffered
through ECS between the device and central memory. An installation can make provision to have all
sequentially accessed files buffered through ECS without the need for this parameter.

EC Default buffer size used

ECnnnn Buffer nnnn words multiplied by 1000 octal
ECnnnnK Same as ECnnnn

ECnnnnP Buffer nnnn ECS pages

Default buffer size and page size are defined by the installation. The system uses pages as units of allocation
for ECS.

Input/output buffering through ECS is valuable mainly for sequential files that are not repositioned fre-
quently. The ECS buffer should be at least the same size as the largest record block defined on any mass
storage device in the system. There is no reason to have a large circular buffer in central memory; 201 to
401 (octal) words are adequate, since the transfer rate is primarily a function of the size of the ECS buffer.
The job card need not specify ECS requirements if ECS is used only for file buffering.

60307200 C 4-13

The programmer uses the ECS buffering feature with mass storage read or write operations. On a write
function, system programs will transfer data from the file circular buffer in central memory to the ECS
buffer. The ECS buffer grows, as it is filled, to the maximum size defined on the REQUEST card. The full
buffer then is written to mass storage. On a read, the ECS buffer is filled immediately from disk, with data
transferred to the circular buffer in central memory as the circular buffer is emptied.

If device type AX for ECS residence is used with the EC parameter, that parameter will define the maxi-
mum size of the file. Any file overflow will be handled according to the setting of the EP bit in the FET.
with the job terminating or returning control to the user.

In this example, the file will be buffered between central memory and a default public device:
REQUEST (BIGFILE,EC)
The following examples relate FILE1 to any 6638 disk available:

REQUEST,FILE1l,AB. operator must assign file to disk

REQUEST(FILEl, *AB) operator action is not required

FAMILY PACK PROCESSING

A family pack (formerly identified as a private pack) is mounted on a unit for exclusive use by a single job
and removed after the job terminates. In use, the device is non-allocatable. Files on the pack can be written
in sequential or random format.

As many as 63 (decimal) files can exist within a tamily of packs. If one pack cannot hoid ali fiies, the
system will instruct the operator to mount other packs as needed. up to a maximum of five packs.

Two control cards are required before a file on a family pack can be written:

RPACK control card to assign the pack to the job
REQUEST card to associate the file with the pack

To read existing files, only an RPACK card is needed to assign the pack to the job. To remove files from
family packs, a REMOVE card is needed.

The RPACK card gives the pack a name that must be used subsequently on the REQUEST cards for pack
files. This name is associated with the entire pack, and with the family of packs that may be created if files
overflow to additional packs. The pack name and the volume serial number together produce unique
identification of any pack.

The REQUEST card defining a logical file name must specify the pack on which it is to be written. Once a
file exists on a pack, further REQUEST cards are not needed to access the file in future jobs. All informa-
tion defining the file and its location on the pack will be preserved on the label during termination of the
job that creates the file. The RPACK card with an E parameter will make files on that device available to
the system the next time the pack is mounted. They can be read, modified, or deleted by any job that
contains the RPACK pack identification.

4-14 60307200 C

ASSIGNING FAMILY PACK TO JOB (RPACK Card)

The RPACK control card that requests assignment of a family pack must specify whether the pack can be
considered empty with no files or an existing pack with files to be preserved.
To request assignment of a new family pack to a job:

RPACK(pname,N) or RPACK(pname)

To request assignment of a pack with existing files:

RPACK(pname,E) or RPACK(pname,E,vsn)

The pname parameter is the pack name to be assigned to the entire pack or resulting family of packs; it is
not to be confused with the logical file name associated with each file to be written on the pack. However,
the pack name can be the same as the name of one of its files. If neither N nor E is specified, N is assumed.

The vid parameter is a visual identifier number corresponding to the identification on the outside of the pack and, in
packs with existing files, to a field in the pack label. The vid parameter must be 1-6 characters with no restrictions I
for an initial letter; vid is optional; if it is not used, a comment with this number should appear on the card to guide
the operator in assigning the pack. The system will ensure that the operator assigns a pack with a corresponding vid

in the label.

The vsn of the pack assigned for a new family is reported in the job dayfile. For packs with existing files,
the system will ensure that the operator assigns the correct pack only if the vsn parameter is specified on
RPACK. The system will not complete assignment until the correct pack has been mounted and then the
system verifies that the pack family name is correct.

Only one RPACK control card per family should be used regardless of the number of physical packs in the
family. When this card is processed, SCOPE will instruct the operator to mount all packs in the family.

REQUESTING FAMILY PACK FILES

Each file to be written on a family pack must be identified by a REQUEST card in the format:
REQUEST(1fn,PK, pname)

The Ifn parameter is the logical file name. PK and pname parameters are required. They result in file Ifn

being assigned to family pack pname without further operator action. An * prefix is not needed for this
automatic assignment, and it must not be used.

60307200 D 4-15

DELETING FILES FROM FAMILY PACKS (REMOVE Card)

A file can be removed from a family pack by first issuing the RPACK card to assign the pack to the job and
then issuing REMOVE. When the REMOVE card is processed, all space on the pack occupied by the
named file is released, and all system references to the file are destroyed. No operator action is required.

REMOVE card format:
REMOVE(1fn,pname)
The name of the file to be removed, Ifn, is required.

The pname parameter, for pack name, is optional; when it is used, SCOPE compares pname on the
REMOVE card with pname on the label on the pack. If pname is the same on both, the file will be
removed; if it is not, a message is issued to the operator.

The following two jobs create, access, and delete files on a family pack. In JOB2, no REQUEST card is
needed for FILE1 because it already resides on the pack and is known to the system.

JOB1.

RPACK(MYPACK,N) Requests blank labeled family pack
REQUEST(FILEl,PK,MYPACK)

REQUEST(FILEZ2,PK,MYPACK)

RUN(S) Compiles FORTRAN program
LGO. Executes program

7/8/9

FORTRAN program to write files FILEL and FILEZ2

6/7/8/9

JOB2.

RPACK(MYPACK,E, 1PACK)

COMMENT. RPACK CARD RESULTS IN OPERATOR ASSIGNMENT

COMMENT. OF PACK WITH VSN 1PACK MAKING FILES FILEl AND
COMMENT. FILE2 AVAILABLE TO THE JOB.

REQUEST(FILE3,MYPACK,PK) Assigns new file to pack
RUN(S)

LGO.

REMOVE(FILE2) Deletes FILE2 from pack
7/8/9

FORTRAN program that uses FILEl to create FILE3

6/7/8/9

4-16 60307200 C

SEQUENTIAL PACK PROCESSING

A sequential pack contains a single sequential format file for use by a single job. No file size limit is
imposed; the file can extend over many packs in the same way that a magnetic tape file can extend over
many volumes. Sequential pack files, unlike family packs, are not limited to the number of units available,
since only the portion of the file currently in process need be mounted. These packs can be dismounted
during job execution when they are not in use.

Sequential packs are requested for use by the REQUEST card. The DP parameter indicates a sequential
pack. A new pack is requested by:

REQUEST(1fn,DP,VID=nnnnnn,dt,N) or REQUEST(1fn,2DP,VID=nnnnnn,dt,N)
Ifn Logical file name

DP Sequential pack identifier. If 2 precedes DP, the operator will assume a multi-pack file
is involved and assign 2 units. The two assigned units must be the same device type.

nnnnnn Visual identifier of 1-6 characters. The VID must refer to the first pack of the sequential
set. Adherence to COBOL/ANSI standards for access of subsequential packs is han-
dled by the compiler.

dt. Device type mnemonic:

AP 854 disk pack

AM 841 multiple disk drive
N New pack indicator. Default is N.

Parameters after 1fn are order independent; only Ifn and DP are required. If VID is not supplied, the
operator will supply it when the pack is mounted. The VID will be incorporated in the label of the pack to
verify that packs assigned are those requested. Each pack will have a unique VID; the VID of the first pack
of a multi-pack file will be used to identify all packs in that multi-pack file as well.

An existing pack is requested with:

REQUEST(1fn,DP,E,VID=nnnnnn,dt)
All parameters except dt are required for existing packs; they may be in any order.
When a file spans more than one pack, two pack drives can be requested with 2DP. Processing can continue
on the second pack while the next pack is mounted on the first unit. The first unit is turned off when its
pack is processed and must be turned on when the next pack is mounted. If multiple packs are involved, the
operator is responsible for the order in which they are accessed. They must be accessed sequentially starting

with the first in the series. If they are mounted out of order, the system will display a message and give the
operator the option to continue processing or to mount another disk pack and recheck the label.

60307200 C 4-17

Operator action always is required to assign sequential pack units to the job. An * should not be used with
the DP parameter.

Multipack files can be processed on one or two units by programmer request. During file processing, the
operator is instructed to mount subsequent packs as necessary.

Examples:

The following cards request new packs:

REQUEST(SEQFILE,DP) Default N; operator will supply VID

REQUEST(SFILE,VID=12345,N,DP) Operator must mount pack having VID.
12345

REQUEST (SEQUENT, 2DP,N,AP) Operator must assign two 854 packs

Packs with existing files are requested in the following examples:

REQUEST(SEQ,E,VID=222222,DP) System will verify operator assignment of
pack with VID 222222

REQUEST(SEQTL,2DP,E,VID=122221) First pack that operator assigns must have
VID of 122221; system will request addi-
tional packs in file by VID.

MAGNETIC TAPE PROCESSING

Magnetic tape files to be used or created by a job must be explicity requested. Three control cards may be
involved: REQUEST, LABEL, and VSN.

The REQUEST card can be used for all tape files — labeled, unlabeled, single file, or multi-file set. Parame-
ters, in addition to specifying format and density, can specify processing for the file. Identifying the tape as
input or output and the type of label is sufficient to initiate label processing and checking when the file is
opened. The installation default options for unloading, label processing, and parity error processing may be
overridden. A volume serial number parameter for the reel (or first reel in multi-reel file) will allow the
system to assign the file automatically.

The LABEL card can be used in place of a REQUEST card for a labeled, single file reel and to write or check file
header labels on single or multi-file reels. Parameters on the card establish label type and whether labels are to be
read or written. Fields in file header (HDR1) labels will be written or checked according to the values on the card. If
a multi-file reel is to be labeled, a REQUEST card must first establish the multi-file name, then a LABEL card may
exist with the name and label field values for each file in the set. With the LABEL card, either a volume serial num-
ber or a label name may be given for identification for automatic tape assignment purposes. Automatic
assignment by label name applies only when the read (R) parameter is specified on the LABEL card. The
LABEL card also can be used to position to a particular member of a multi-file set.

418 60307200 C

The VSN card may be used to equate a file name with a volume serial number so that the system can assign
a mounted tape automatically when it is requested by a REQUEST or LABEL card or function. The VSN
for a multi-file set or for alternate reels can be stated. Since the system accepts the first VSN equated to a
file name, a VSN card preceding a REQUEST or LABEL card overrides any VSN value on those cards or
supplies the omitted parameter. This VSN information is independent of label information. It is not written
or checked against label fields.

The automatic tape assigning features of SCOPE 3.4 (selectable by installation options) speed job through-
put when the programmer supplies information to allow assignment of mounted tapes without operator
action. The system will search first for an eq parameter, then a VSN parameter, then a label name from
among the control cards. If both the VSN and label name parameters are specified, only the VSN is used
for automatic assignment. However, label verification proceeds separately and inconsistencies will be
brought to the attention of the operator for action. The operator has the option of assigning a VSN to a
tape when it enters the system if such identification was not made by the programmer.

REQUESTING MAGNETIC TAPE FILES (REQUEST Card)

The REQUEST card can describe both physical and logical characteristics for magnetic tape files. When
only the logical file name and magnetic tape device type MT are specified, the file, by default, becomes a
7-track, unlabeled tape with SCOPE standard records written at installation density, or read at written
density; and installation declarations for automatic unloading are honored. Any other use, such as for
checkpoints or multi-file sets, or characteristics of the file must be specifically declared on the REQUEST
card.

Format of REQUEST card:
REQUEST(1fn,dt, . . .)

The logical file name and a 7- or 9-track device type mnemonic is recommended. Further definition of the
file is made by adding dt parameters. If the request involves a multi-file set, the MF parameter must appear,
the first parameter will then be the multi-file set name (mfn). Also, mfn may not be used in any I/O request
except as the M parameter in LABEL or POSMF request.

The MT or NT device type parameter may be prefixed by an asterisk or a 2. The asterisk is applicable only
when compatibility with previous operating system is considered. The asterisk prefix results in assignment
of a scratch tape to the file. However, if a non-scratch VSN has been specified also, it will override the
scratch designation. If the REQUEST card includes parameter E, a scratch tape will not be assigned.
Depending upon the selection of installation options, SCOPE will attempt to assign the tape to a job
automatically using an eq, VSN, or labelname parameter. Operator assignment is necessary only when
automatic assignment attempts are unsuccessful.

If either a 7- or 9-track tape is acceptable, an MN parameter can be used in place of MT or NT or a
density parameter which implies MT or NT. The resulting tape will have default density.

A 2 prefix to MT or NT will cause two tape units to be requested from the operator; they will be used in
the order assigned. Tape requests using the 2 prefix cannot be auto-assigned. When the tape on the first unit
reaches end-of-reel, the system begins processing the tape on the second unit while the tape on the first unit
is rewound and unloaded. When the tape on the second unit reaches end-of-reel, the system returns to the
first unit, which should have been mounted in the interim with a new tape. The tape on the second unit is
rewound and unloaded. This alternating process is repeated as long as the file is referenced. The operator
must ensure the proper tape mounting sequence.

60307200 C 4-19

Characteristics of the

tape may be declared by additional parameters as shown below. No more than one

mnemonic for each parameter in braces may be used. Parameters are not order dependent.

7-TRACK TAPE PARAMETERS:

LO -
MT, HI ¢, MEF
HY

s U E
’ L ’ Y ’ N > v P NR > VSN=uuuuuu
z NS SV

7-track identification:

A declaration of LO, HI, or HY is sufficient to define the device type as MT. If MT is absent, LO, HI or HY
may be prefixed by a 2 if two units are required.

Density:
LO
HI
HY

absent

File disposition:

U

Sv

absent

4-20

200 bpi density
556 bpi density
800 bpi density

Density will be set to an installation defined value if initial use is output. If initial use of
a labeled tape is input, the density of the label will be determined automatically;
however it is recommended that density be specified whenever known, and that density
will be used to read both the label and the data, except as indicated under Z below. If
initial use of an unlabeled tape is input, the density will be set to an installation
declared value. '

Any physical unload of the tape file in a context other than reel swapping will be
inhibited. The U parameter does not inhibit logical actions associated with UNLOAD
or RETURN. IU is recommended when a scratch tape or input tape is requested that
is to remain mounted and ready.

The tape file will be unloaded at job termination, and the operator will be notified that
the tape is to be saved.

Action performed at end of job is option of the installation.

60307200 C

Volume serial number identification:

VSN =uuuuuu The VSN parameter designates the 1-6 character volume serial number of the tape reel.

absent

The VSN will appear on the previewing display for the operator’s information before
the job is assigned to a control point. SCOPE will use the VSN to locate the tape reel.
Once the tape is assigned, the VSN will be verified against the standard or Z format
label, if present. VSN also will be verified against operator-supplied VSN for an unla-
beled tape.

If a scraich tape is desired, a VSN of SCRATCH or 0 can be used. The * prefix may be
used for a scratch tape also.

If a VSN is declared for a file on a REQUEST and a VSN card or on a VSN and a
LABEL card, the first declaration will be effective.

The VSN card declaration will be used if present; otherwise, file header label fields will
be used for assignment and verification. If neither VSN nor file header label field

declaration is made, any tape reel will be accepted; but the assignment must be made
manually unless * prefix is used.

Parity error recovery procedure:

NR

Special tape use:
CK

MF

absent
Data format:
S

L

absent

The NR parameter may be used to inhibit normal parity error recovery procedures.
Data containing the parity error will be returned to the user.

Checkpoint dumps will be written on the tape.

The tape is a valid U or Z labeled multi-file set.
Neither of the above is assumed.
Data format is S.

Data format is L.

Data format is SCOPE standard.

Input or output use (apply only to labeled tapes):

E

N

absent

60307200 C

Existing label. Initial use of the tape is input; tape label will be read and checked.
New label. Initial use of the tape is output; tape label will be written.

If file is to be labeled (U, Z or Y is declared), a tape label will be written.

4.21

Label characteristics:

U Tape label format is ANSI. (SCOPE standard label).

Y Tape label format is Y. (3000 series label)

y4 Tape label format is ANSI, except character 12 of the VOLI label is used to indicate
data density. These labels were standard for SCOPE 3.3.

absent Tape is unlabeled unless either E or N is declared; in which case, ANSI (U) label format is
assumed.

Label processing:

NS The NS parameter may be used to indicate a tape has non-standard labels and is to be
processed as unlabeled even though the tape is labeled; existing labels will appear to
the system as data. Either the labels are to be ignored or the user will process them.

9-TRACK TAPE PARAMETERS:

A declaration of NT or a 9-track density for a tape to be written is required to identify a 9-track tape.
Definitions and conditions for all except the density and data format parameters are the same as those for
7-track tape.

U, E
NT, é:ﬁ}'s’gs};s’ ZY}’fN}, 222}, é;gg, NR , VSN=uuuuuu

v) t J (z) (Ns) C))
Density:

A density specification is effective only when the tape is to be written; density setting is a hardware
function when the tape is read.

PE 1600 cpi
HD 800 bpi
absent Tape will be written at installation declared density.

Data format:
S Data format is S

absent Data format is SCOPE standard

422 60307200 C

Coded data conversion codes for 9-track S tapes: (Refer to conversion tables in Appendix A)
uUs Coded data on tape is to be converted from ASCII on input or to ASCII on output.
EB Coded data on tape is to be converted from EBCDIC on input or to EBCDIC on output.
absent Coded data conversion is defined by the installation.

REQUEST Card Examples:
REQUEST(FILE1l,NT,U,E) or REQUEST(FILE1l,NT,E)
The operator must assign an ANSI labeled, 9-track tape. The label will be checked when the first
function is issued on the tape. Since density is not specified, it is assumed that both label and data
are written at the same density.

REQUEST(FILE, *MT)

Depending on installation option, the system automatically will assign FILEI to a scratch tape on a
7-track tape unit. The file will be unlabeled and written in SCOPE standard data format at an
installation declared density.

REQUEST(STANF27,10,VSN=0HIO17,U,S,SV)

Depending on installation option, file STANF27 will be assigned automatically to a unit containing
reel OHIO17. An ANSI label will be written; both label and data will be written at 200 bpi. Data
format is S. The reel will be saved at job completion.

LABELING TAPES (LABEL Card)

The LABEL control card can be used for the following functions:
Write file header labels in ANSI, 3000 series, or SCOPE 3.3 format
Read and check such labels
Position within a multi-file set
Subsititute for a REQUEST card for a single file reel

Conversion to the use of labeled tape can proceed by using a LABEL(lfn,W,L=z..) card instead of a
REQUEST(Ifn) card. A labeled input tape can be requested with either the same LABEL card replacing the
write (W) parameter with a read (R) parameter or by a REQUEST card with an existing label (E) parame-
ter. Label checking will be performed by a LABEL(Ifn,R,....) card. When a REQUEST(Ifn,E) card is used,
checking ensures only that the tape is labeled. If any of the above checks fail, a message is written to the
dayfile; and the operator can mount the correct tape or tell the system to ignore the mismatch and continue.

60307200 C 4-23

In most instances, a LABEL card will be the first reference to a file in a job, unless it is preceded by a VSN card
indicating the volume serial number of the resident reel. For a single file reel, a REQUEST card is not needed,
although a REQUEST card followed by a LABEL card is valid and does not create an error condition. If a REQUEST
card follows the LABEL card, duplicate file names are generated; and the job will terminate, since the LABEL pro-
gram issues a REQUEST function to obtain the equipment. For labeled multi-file reels, a REQUEST card establishing
the multi-file set must precede the LABEL cards that write the header labels for various files in the set.

The label program issues an OPEN function to read or write the file label. Contents of the label are copied
to both the system and job dayfiles.

A program can inspect file header labels written on a file by issuing an OPEN function. Label information
is returned to words 10-13 of the FET for the file or, if the extended label processing features are used, to
the file label buffer defined in word 10 of the FET.

Format of LABEL control card:

W Z
LABEL(1fn, {R } . {Y }, D=4,F=f,N=n,X-x,L=2,V=v,E=e, T=t,C=¢,M=m,P=p, VSN=vsn)

The first parameter must be the logical file name; others can appear in any order. The LABEL card can be
continued to a second card; if a terminator does not appear on the first card, the next card is assumed to be
a continuation of the first.

Default parameters cause a single file header in ANSI format for a file in SCOPE standard format to be
processed. Any other label or data format to be written, or a tape to be read, must be declared explicitly.

Read of write paramcicr: (Onc must be specified or the job will terminate.)
R Label is to be read and compared with parameters on the LABEL card. When R is used,
the tape may be a candidate for auto-assignment by label name.
W Label is to be written.
Label standard:
Y 3000 series label.
4 Label conforms to standard label of previous operating system. Character 12 of the

VOLI label specifies data density; otherwise Z labels are identical to U labels.

absent ANSI label.

424 60307200 C

Tape characteristics:

d Density. If omitted, density declared or implied by REQUEST card will prevail.
For 7-track tapes:
Lo 200 bpi
HI 556 bpi
HY 800 bpi

For 9-track tapes, the d parameter determines density for writing only; data is always
read at the recording density.

HD 800 bpi
PE ' 1600 bpi
f Format of file data. Default is standard SCOPE format.
S S tape format
L L tape format
n Code for conversion of 9-track tapes only. Default is installation defined.
us ASCII code
EB EBCDIC code
X Disposition of tape.
IU Inhibit physical unload
Sv Unload tape at end of job; notify operator to save
CK Checkpoint dump will be written on tape
CI Checkpoint dump and inhibit physical unload
CS Checkpoint dump and save

The 9-track selection can be specified only on the LABEL card by giving either a 9-track density parameter
(HD or PE) or a code conversion parameter (US or EB).

607200 D 425

File header label fields:

z Label name: 1-17 characters for ANSI or Z labels; 1-14 characters for Y labels. Default
value is spaces.

v Reel number specifying reel sequence in set. 1-4 digits for ANSI or Z labels; 1-2 digits
for Y labels. Default is 0001.

e Edition number specifying version of file. 1-2 digits. Defaultis O1.

t Number of days file is to be retained, 1-3 digits. Default determined by installation.
999 is permanent retention.

c Creation date, in format of 2 digits for year, 3 digits for date. Default is current date.

m SCOPE uses this parameter to establish that the current LABEL function applies to a
member of a multi-file set; m is the logical multi-file set name as it appears on the
REQUEST card for this set, and it must be present for all LABEL cards referencing
members of this multi-file set. When the label is written on tape, the multi-file field
does not contain the the logical set name; it contains the VSN for the first volume of
the multi-file set.

P Position number indicating file within multi-file set, 1-4 digits. Default is 0001. Not
defined for 3000 series labels.

Volume serial number:
vsn Volume serial number of 1-6 characters used to identify the tape for automatic assign-

ment. Parameter may appear on VSN card rather than LABEL card. A VSN of
SCRATCH or zero may be used to specify a scratch tape.

426 60307200 C

AUTOMATIC TAPE IDENTIFICATION (VSN Card)

The VSN card relates the external sticker (tape volume serial number) to the logical file name and also
provides information required for the tape job prescheduling display. When this card is used with the
REQUEST and/or LABEL control cards or the REQUEST function, it relates a VSN to a logical file name
for automatic equipment assignment; otherwise it serves no purpose. A single card, up to the 80-column
limit, can contain declarations for more than one file name and VSN. Continuation cards are not allowed,
but as many VSN cards as necessary can appear in a control card record.

Format of VSN card:
VSN(1lfn=vsn, . . .)
Ifn For a single file, the 1-7 character logical file name
For a multi-file reel, the 1-6 alphabetic character multi-file name

vsn 1-6 character volume serial number.

If any of several aiternate reels will suffice, equals signs should separate identifiers, as
in: FILE=1234=1235.

VSN cards may be placed anywhere in the control card record as long as they precede the REQUEST or
LABEL card for the file named. If a logical file name is to be re-used during a job, such as OLDPL for two
UPDATE operations, the first file should be released by an UNLOAD or RETURN control card before a
VSN is given for the second file.

Examples:

VSN(OLDPL=1234=4567=7890)
LABEL(OLDPL,R,L=SCOPE3P4)
UPDATE.

RETURN(OLDPL)

VSN (OLDPL=0987=7654=4321)
LABEL (OLDPL,R,L=SCOPE3P4REL)

The use of the VSN card is recommended in any of the following circumstances:

One or more tape files are requested by the REQUEST function; use of the VSN card allows
different tape reels to be used without altering the program.

Multi-reel tape files or alternate reels are used; only the VSN card allows specification of alternate
volume serial numbers.

Tape files used by a job deck can change frequently; use of the VSN card allows tape specifications
to be changed by replacing a single card.

60307200 D 4-27

In the following job, the VSN card has no effect because no REQUEST or LABEL card is specified for file
TAPEL. File TAPE] will be opened as a disk file in this example:

JOB5, MT1.
VSN(TAPE1-1234)
REWIND,TAPEL.

To have a specific magnetic tape assigned to the job, either of the following requests would suffice:

JOB6,MT1.
VSN(TAPE1-1234)
REQUEST (TAPE1,MT,E)

JOB7,MT1.
REQUEST(TAPE1l,VSN=1234,MT,E)

The maximum number of tape drives a job will use at any time is specified by the MT (7-track) and NT (9-
track) tape parameters on the job card. Specifying more tapes than will be needed can delay execution of a
job. The greatest delay results from specifying a number of tapes when the job does not use any tapes.
Specifying fewer tapes than needed will cause the job to abort.

A poorly set-up job can needlessly tie up system resources and delay its own throughput. For example,
consider both jobs JOB3 and JOB4:

JOB3,MT3. JOB4,MT1. :
VSN(TAPE1=111,TAPE2-222,TAPE3=333) VSN(TAPE1=111,.......)
REQUEST (TAPE1) REQUEST (DISK, *PF)
REQUEST (TAPE2) REQUEST (TAPE1)
REQUEST (TAPE3) COPY(TAPE1,DISK)
REQUEST(DISK, *PF) UNLOAD (TAPEL)
COPY(TAPE1,DISK) REQUEST (TAPEZ)
COPY(TAPE2,DISK) COPY(TAPE2,DISK)
COPY(TAPE3,DISK) UNLOAD (TAPE2)
CATALOG(DISK,.ev.r.. REQUEST (TAPE3)
COPY (TAPE3,DISK)
RETURN (TAPE3)

CATALOG(DISK, . evea..)

JOBA is set up better than JOB3. Although both jobs do the same thing in the same amount of time, JOB3
holds on to tapes that it does not use. JOB3 must wait in the input queue until three tapes become available;
JOB4 waits for only one. A good rule is to request tapes only when they are to be used and to release them
from the job when no longer needed. Notice that JOB4 uses RETURN instead of UNLOAD; the job will
not request another tape for the remainder of its execution.

4-28 60307200 C

If conflicting volume serial numbers are given for a single tape file, the first encountered will be used.

Example:

VSN(TAPE1-4468)
LABEL(TAPE1,R,VSN=-5678)

Tape 4468 will be assigned.

If the VSN is absent, 0, or SCRATCH, any available scratch tape may be assigned to the logical file named.

Examples:
VSN(SHASTA,WHITNEY=0) Both files will be scratch tapes
VSN(SANTA-ROSA/CRUZ) 2-reel file SANTA begins on ROSA, ends on
CRUZ
VSN (DESERT=MOJAVE=SONORA) Either MOJAVE or SONORA can be as-

signed to file DESERT

LABELED MULTI-FILE SET PROCESSING

A multi-file set consists of one or more files on one or more volumes of tape. Individual files can be accessed
by name, even though their order is not known. Multi-file sets are not supported by 3000 series labels.

Labeled multi-file sets require the use of both REQUEST and LABEL cards. (LABEL cards are not re-
quired if the program can generate these fields internally.) The REQUEST card specifies the tape charac-
teristics; LABEL produces the file header for individual files. The LABEL card must specify the set name as
the M parameter. This set name is limited to six characters and must be different from any local file name.
The utility routine, LISTMF, is available to list the labels of all files in an existing set.

The LABEL card itself can be used to position within a set, when a position number is used in the
parameter list.

To create a labeled multi-file set, the following parameters should be used (parameters after the first can
appear in any order). The label type must be U.
REQUEST (mfn,MF,U, . . .)
LABEL(1fnl,M=mfn, W, . . .)
program call to create Ifnl
LABEL(1fn2,M=mfn, W, . . .)
program call to create 1fn2
The mfn parameter is the name of the multi-file set, 1-6 letters and numbers beginning with a letter.

This parameter associates the file with a particular set: all files in the set must reference it. Also, mfn may
not be used in any 170 request except as the M parameter in LABEL or POSMF requests.

60307200 C 4-28.1

On the REQUEST card, the MF parameter designates the first parameter to be a multi-file name rather
than a logical file name. The U parameter causes standard labels to be produced. Other parameters on the
card should establish tape density and format for the entire multi-file set. On the LABEL card, density and
format parameters are ignored. REQUEST can include a VSN parameter.

A LABEL card 1s recommended for each file. In addition to required Ifn and M parameters, optional
parameters describing file header fields can appear. If a position number is not given with the P parameter,
it is assumed to be one larger than that of the previous file; and the new file will be written at the end of
the current set. When an L parameter is used in creating a file header, future jobs can access the file by
label name.

To access a labeled multi-file set, a REQUEST card is needed to attach the set to the job. A LABEL card
(either U or Z) need appear only for the file to be accessed. For example, to access the third file on a reel:

REQUEST(MANY,MF,U, . . .)

LABEL(FILE3,R,M=MANY,P=3, . . .)

When an R is specified on a LABEL card, the set is positioned according to the P parameter, an OPEN
function is issued to read the label, and the contents are checked against any corresponding parameters on
the LABEL card. Use of L instead of P causes the tape to be searched for a matching label name. If a
match cannot be found, a message, FILE NAME NOT IN MULTI-FILE SET, is issued and processing stops.
The same message appears also when neither P nor L is given and the end of the set is encountered. When
R is not specified, the next file in the set is opened when P and L are both omitted.

Writing on a multi-file can be done at the end of the existing set; or at some point prior to the end, existing
files can be overwritten. For example, to create a new file LASTONE:

LABEL(LASTONE,W,M=MYSET,L=LAST)

Since P is omitted, the label will be written at the end of existing files and given a position one greater than
the last file.

If a position number is given when a label is to be written, the file is positioned as requested. If a label
exists at that point, its expiration date is checked. A new label is not written over the existing one unless it
is expired or the operator authorizes writing over an unexpired label. Since rewrite-in-place is not defined
for tapes, rewriting a file label destroys access to the associated file and all files following it on the tape.

LISTING LABELED MULTI-FILE TAPES (LISTMF Utility)

A list of files in a labeled multi-file set will be printed on file QUTPUT when LISTMF is called. The header label for
all files will be listed, even if the set encompasses more than one reel. A REQUEST card defining the set must appear
before the LISTMF card.

LISTMF(M=mfn,P=p)

mfn Multi-file name same as on REQUEST card

p 1-3 digit position number. Default is 1
The multi-file set mfn is first rewound, then positioned to p. As the content of each file header label is read,

it is copied to OUTPUT. Listing continues until the end of set (EOF followed by multiple tape marks) is
reached. The reel is not rewound.

60307200 C 4-29

AUTOMATIC ASSIGNMENT OF MULTI-FILE TAPES

The assignment of a multi-file tape may proceed automatically with the use of a VSN card under the
following conditions:

A VSN card or parameter equates the multi-file name to the physical reel of tape.
VSN(mfname=1234) or REQUEST(mfn,..... ,VSN=1234)

A REQUEST card is used to assign the multi-file name to the job.
REQUEST (mfname , MF)

A LABEL card is used to identify the specific file by label name, equate the file to the logical file
name, and identify the file as being a multi-file set member.

LABEL(1fn,M=mfname,L=1fn,ccc0eees)

Once the multi-file name has been assigned to the job via the REQUEST card, any file can be accessed
individually via the LABEL card. The execution of a new LABEL card automatically prevents the preced-
ing labeled file from being accessed.

DISPOSING OF FILES AND EQUIPMENT

Normally, all files assigned to a job are retained by that job until termination. When the files reside on non-
allocatable devices such as magnetic tapes, both the file and the hardware device are unavailable to other

P A ourmtosas tlhn A tlan 3 mmmnncs Fam ~eles

£ ool Cme slan dioislmn O Al Agrmm thm bl sl 814 1o e o gl
PU.[(.].UIID U1l uic bybl.clll 11Ul U1 uulauull U uic Cliulc JUU CyCll Luuusu LIIC 150 1D 1L l_)LUbbDD Ul Ulll] a Snuti

part of the job.

When the DISPOSE, UNLOAD, or RETURN control cards are used, files are released before job termina-
tion, making both the logical file name and the resident device available for other uses, within the circum-
stances noted below. Files named in an UNLOAD or RETURN are unavailable for the remainder of the
job. An OPEN function issued later in the job will create another file. The exception involves RETURN of
files on family packs, as noted in the family pack discussion.

Permanent files named in either an UNLOAD or RETURN card are no longer available to the job until
referenced in a subsequent ATTACH.

RETURNING FILES AND EQUIPMENT
RETURNING EQUIPMENT (RETURN Card)

Any file, including permanent files, can be referenced on a RETURN card to cause SCOPE to perform a
CLOSE/RETURN function on the file. All sequential files are rewound; indexes are written for random
files. If a file on a public device has a disposition code, it is placed in the output queue; otherwise. its
storage space is evicted. The file name is deleted from the system and, except in case of a family pack file.
another file with the same name can be created.

4-30 60307200 C

RETURN card format:
RETURN(1fnl,1fn2, . . .)
On this card, Ifn is the name of the file released; one or more files can be referenced on a single card.

Magnetic tape output files have trailer labels written before they are rewound. Then they are physically
unloaded. With the exception of members of a multi-file set, the tape units on which they reside will be
disassociated from the job and made available to the system for new assignment. The count of the number
of tape units logically required by the job, as set by a tape parameter on the job card, will be decreased.

Family pack files are locked when the RETURN is executed and become unavailable for the remainder of
the job. The file name cannot be reused for another file on the pack.

When RETURN names a file on a sequential pack, the file name is deleted from the system, and the unit is
returned to the system for reassignment.

UNLOADING FILES (UNLOAD Card)

SCOPE issues a CLOSE/UNLOAD function for files named in an UNLOAD control card. As with the
RETURN card, sequential files are rewound after any necessary labels are written, and indexes are written
for random files. File dispositions are honored for files on public devices; otherwise all references to the
files are deleted.

Format of UNLOAD card:
UNLOAD(1fnl,1fn2, . . .)
More than one file can be named on a single card; the file name INPUT may not be named on UNLOAD.

UNLOAD differs from RETURN only in that an UNLOAD referencing a tape file does not affect the
count of maximum number of tape units the job requires.

The UNLOAD card cannot override an IU (inhibit unload) parameter on the REQUEST card for the file;
if the IU parameter exists, a subsequent UNLOAD will rewind, but not physically unload the tape.

The UNLOAD and RETURN functions differ only in that RETURN reduces the maximum number of
tapes that may be held by the job and UNLOAD does not; otherwise they produce the same results.

This job will abort: This job will not abort:
JOB1, MT1. JOB2,MT1.
REQUEST(TAPE1,MT) REQUEST(TAPE1,MT)
RETURN(TAPEL) UNLOAD(TAPE1)
REQUEST(TAPE2,MT) REQUEST(TAPE2,MT)

DIRECTING OUTPUT BY DISPOSE

Under normal operating conditions, files are released from a job only after all control cards are processed,
and the job is released from central memory and terminated. However, a user can request that files on
public devices or ECS be released for output processing before job completion. It could be done, for
instance, when output is ready for the printer but additional programs in a job remain to be run.

60307200 C 4-31

DISPOSE can be used to:

Output files at the central site to specific devices and/or specific forms or cards
Route files to remote sites

Evict files from mass storage

Disposition can take place at the time the DISPOSE card is executed, or it can be delayed until the job
terminates. In the control card record, DISPOSE may reference a file before or after it is created. If no
previous references to the file exist, DISPOSE will generate one.

To evict a file, removing all system references to file Ifn and allowing mass storage space to be overwritten,
the format is:

DISPOSE(1fn)

To output a file to a device at the central site, the format is:
DISPOSE(1fn,x) or DISPOSE(1lfn,*x)

The presence of * in the x parameter indicates the file is to be disposed at end-of-job. The * is required if
DISPOSE references a file before it is created.

The x parameter represents the disposition requested as indicated by the following codes.

x Code Disposition

PR Printed on any available printer

Pl Printed on 501 printer

P2 Printed on 512 printer

PE Printed on 512 printer with 95-character set
PB Punched on formatted binary cards

PU Punched on Hollerith cards

P8 Punched on free-form binary cards (using all 80 columns for data)
FR Printed on microfilm recorder

FL Plotted on microfilm recorder

PT Plotted on any available plotter

HR Printed on hardcopying device

HL Plotted on hardcopying device

Codes FR, FL, PT, HR and HL are defined but not supported by standard software in SCOPE 3.4.
To output a file to a device containing particular cards or paper forms, the x parameter can be expanded:

DISPOSE(1fn,x=Cy)

4-32 60307200 C

The x parameter is the same as the codes listed above. The y parameter must be two installation-defined.
alphanumeric characters identifying a particular card or form. When SCOPE detects the x =Cy parameter,
it will tell the operator to insert the necessary forms to carry out the DISPOSE request.

To route a file to a remote site:
DISPOSE(1fn,x=Iy)

The x parameter is valid disposition code listed above. The y indicates the particular INTERCOM user
identification or IMPORT site identification where the file will be output.

The y indicates the particular INTERCOM user identification or IMPORT site identification where the file
will be output.

The following job uses DISPOSE. The first program produces a file PAYROLL containing payroll data to
be printed on check forms. The second program creates files PUNCHCS and PRINTRM to be punched and
printed at different sites.

DSPEG.

COBOL. Compiles first program

LGO. Loads and executes program
DISPOSE(PAYROLL,P2=CCK) Prints payroll on form CK at central site
REWIND(LGO) Rewinds compiler output file

COBOL. Compiles second program
DISPOSE(PUNCHCS, *PB) Punches file at end of job at central site
LGO. Loads and executes second program
DISPOSE(PRINTRM,PR=IME) Prints file at INTERCOM site ME
7/8/9

First COBOL Program

7/8/9

Second COBOL Program

6/7/8/9

FILE MANIPULATION

SKIP OPERATIONS

SKIPF(1lfn,n,lev,m)
One or more SCOPE logical records will be bypassed in a forward direction. The request may be initiated
at any point in a logical record.

SKIPB(1fn,n,lev,m)

One or more SCOPE logical records will be bypassed in a reverse direction. The request may be initiated at
any point in a logical record.

60307200 C 4-33

Ifn Logical file name.

n Decimal number of SCOPE logical records, or record groups, to be skippped; default is
1; maximum value is 262,142.

A value equivalent to 262,143 will be treated as a rewind for SKIPB. For SKIPF, a tape file
will not be positioned, and a disk file is positioned at end-of-information. Default is 1.

lev Octal number. SCOPE logical records are skipped until the number of end-of-records
with level numbers greater than or equal to the requested level is reached; the file is
positioned immediately following (for SKIPF) or preceding (for SKIPB) the last rec-
ord. Default is level 0.

m Mode of file. B for binary files; C for coded files. Default is B.

BACKSPACE SCOPE LOGICAL RECORD
BKSP(1fn,n)

Multiple SCOPE logical records in the file named 1fn are backspaced as specified by the the decimal n.
Backspacing terminates if it causes a file to be rewound. Default value for n is 1.

REWIND

REWIND(1fnl,1fn2 . . .)
Ifn is the name of the file to be repositioned. More than one Ifn may appear on one REWIND card.
All files specified are rewound.

REWIND positions a file at the beginning of information. For a labeled magnetic tape, this position is the
start of the user’s data after label information.

In most cases, when a file is requested for a job, that file is positioned automatically at beginning of
information. However, because of variations in installation parameters and procedures, automatic position-
ing may not always occur with every file requested. Therefore, it is best to follow the REQUEST card with
a REWIND card to ensure that the. file will be positioned at its beginning when first referenced.

Rewind of a multi-reel file repositions the file at the file beginning; the operator is instructed to mount a
prior reel if necessary. Rewind of a member of a multi-file labeled tape positions the tape at the beginning
of the specified file, not to the beginning of the reel.

Rewind specifying a multi-file set name is illegal and will cause job termination.

4-34 60307200 C

In the following example, the tape containing file MAX is requested for the job; the file is repositioned,
loaded into central memory and executed.

SEN,MT1. Names job.

VSN(MAX=~1234) Equates MAX with tape 1234
REQUEST,MAX,MT. Requests file containing object program MAX.
MAX. Loads and executes MAX.
REWIND,MAX. Rewinds MAX.

MAX. Loads and executes MAX a second time.
7/8/9

data deck

7/8/9

second data deck

6/7/8/9 Signals EOF and end of job.

INTERDEPENDENT JOB PROCESSING
INTERRELATING DEPENDENT JOBS (TRANSF Card)

The user can submit a string of interdependent jobs to the computer, specifying the order in which they are
to be executed. In such a string, jobs can be input in any order and from central site or remote card readers,
A job will not be executed until all prerequisite jobs in the string have been executed. Whenever possible,
SCOPE schedules interdependent jobs for execution in parallel (multiprogramming).

As each job is input, the dependency identifier and dependency count on the job card are noted. The
dependency count is decremented by TRANSF cards in prerequisite jobs. When the count of a dependent
job becomes zero, it executes.

On the job card, the Dym parameter establishes job interdependency. y is the dependency identifier that
names the string to which the job belongs. m is the dependency count (number) of prerequisite jobs on
which the job depends.

TRANSF must appear after the control cards that execute the prerequisite programs. The TRANSF card is
punched in this format:

TRANSF(pl,p2, . . . pn)
The p parameter names the jobs for which dependency count is to be decremented. Only the first five
characters of each job name are examined by SCOPE, with the dependency string identifier maintaining

proper identification. As many job names as will fit on a card can be noted; or multiple TRANSF cards can
appear. TRANSF should not appear in the last job in the string since no jobs may depend on it.

60307200 A 435

An example of an interdependent job string JS follows. Consider jobs with names JOBA through JOBF:

JOBB is dependent on successful execution of JOBA

JOBC on JOBA

JOBD on JOBB and JOBC

JOBE on JOBC

JOBF on JOBB, JOBD, and JOBE

The control card records should appear with:

JOBA,DJS00.
execution call
TRANSF(JOBB,JOBC)

7/8/9

JOBC,DJSO1.
execution call
TRANSF(JOBD,JOBE)
7/8/9

JOBE,DJSO1l.
execution call
TRANSF(JOBF)

e~ a0

110/

JOBB,D JSO1.
execution call
TRANSF(JOBD,JOBF)

7/8/9

JOBD,DJSOZ2.
execution call
TRANSF(JOBF)
7/8/9

JOBF,DJSO03.
execution call
7/8/9

JOBF, which can execute only if all other jobs in the string are successful. has a dependency count of 3, the
number of jobs containing TRANSF references to JOBF.

If a job containing a TRANSF card is terminated before that card is processed, the dependency count of
other jobs will not be decreased. Instead, all succeeding jobs that depend on this job will remain in the input
queue. No error message indicates that a job in a dependent string has terminated abnormally; operator
alertness is needed to know the remaining jobs should be evicted or forced into execution. A message
instructing the operator may be placed in a routine after an EXIT card or RECOVR f unction, but it does
not guarantee the operator will see the message.

4-36

60307200 D

CONTROLLING TERMINATION PROCEDURES

ESTABLISHING HALT CONDITIONS (MODE Card)

Among the various types of errors that can cause a job to terminate prematurely or branch to an exit path
specified by the user, three can be negated so that program processing will continue:

Reference to an operand (any number used in a calculation) that has an infinite value

Reference to an address outside the field length of the job in central memory or ECS; such an address may be
generated during assembly if a non-existent location is referenced.

Reference to an operand for floating point arithmetic which has an indefinite value

Normally, these errors will terminate processing; any or all can be suspended as halt conditions, so that
processing continues until another type of error is encountered that terminates the job, or until all control
cards are executed. The MODE card is used for this purpose.

MODE (n)

The n parameter is a number specifying the halt conditions to remain in effect for a job:

0

1

6

7

In none of the three negatable cases

Only if address is out of range

Only if operand is infinite

If address is out of range or operand is infinite

Only if operand is floating point number of indefinite value

If address is out of range or operand is floating point number of indefinite value
If operand is infinite or a floating point number of indefinitie value

If operand is infinite or a floating point number of indefinite value or address is out of range

The following card will permit processing to continue if a referenced address is out of range of the job field in central
memory; processing will halt, however, if an infinite operand or a floating point operand of indefinite value is
referenced.

MODE, 6.

60307200 C 4-37

Any MODE value that permits processing to continue regardless of a reference to an out-of-range address
should be used with great caution. Resulting output probably will have no value. Under such conditions, an
attempt to write outside FL appears to complete normally; however, no writing is done. When an attempt is
made to read outside FL, zero is returned to the X register specified.

A MODE request remains in effect for a job until a new request is encountered or until the job is completed. At
most installations if no MODE card appears in a program, the default is mode 7, which allows a job to halt if any
eI1or OCCurs.

The values on the MODE card are related to the MODE error numbers that appear in the exchange
package of the standard error dumps. An additional error number 10, which cannot be negated through a
MODE card, indicates a program attempted to use an exchange jump instruction not available in that
particular system.

ESTABLISHING EXIT PATHS (EXIT Card)

Normally, when a fatal error occurs which is not a negatable error suspended by a MODE request, process-
ing is terminated, a diagnostic message is issued, and output created prior to the error is output. However,
an alternative processing routine can be established within the control card record so that the job can
branch in the event of certain kinds of errors. The exit routines will be executed before the job is termi-
nated. Such an exit routine might call for a dump of central memory contents of the job, or it might direct
execution of an entirely different program.

Certain conditions cause abrupt termination of a job regardless of an exit sequence:

Request from SCOPE or computer operator to terminate job and inhibit all output (KILL
command)

Request from operator to transfer job from central memory back into input queue (RERUN
command)

Error on job card

Checksum error during job input

4-38 60307200 C

When other types of otherwise fatal errors occur, SCOPE searches the control card record for an EXIT
card. The following terminating conditions will result in this search:

Job uses all execution time allotted

Arithmetic error negatable by a MODE card

Peripheral processor encounters improper input/output request
Central processor program requests job termination

Operator request to drop job

ECS parity error occurs

Control card error (other than on job card)

These fatal conditions except the last, can be reprieved within COMPASS, FORTRAN, and FORTRAN
Extended programs, as indicated by the RECOVR function discussed in section 12.

If a control card record includes an exit routine but no error occurs, when the EXIT card is encountered the
job will terminate as it would if an EOR card had been encountered in the control card record.

The EXIT control card is:
EXIT.

Errors in control card format, or an attempt to load an object program resulting from erroneous assembly
or compilation, result in instant termination of the job even if an EXIT card is present. This action prevents
indiscriminate dumping of large loading and compilation routines in cases where an EXIT card is followed
by a dump request. To override the instant termination procedure and enter an exit routine regardless of
errors, the suffix S should be added to the EXIT card:

EXIT(S)

The following job illustrates the use of EXIT. Storage will be dumped only if a fatal error occurs to cause
the control card processor to search for an EXIT card.

MYJOB,P1,T400,CM50000,MT1. Names job.

REQUEST ,MYFILE,MT. Requests input tape file MYFILE.

RUN(G) Compiles and executes FORTRAN program.
EXIT. Signals beginning of exit routine.

DMP, 1000. Dumps first 1000 (octal) words of storage.
7/8/9

FORTRAN RUN program

7/8/9

Data

6/7/8/9

60307200 A 4-39

PERMANENT FILES S

INTRODUCTION

A permanent file is a mass storage file cataloged by the system, so that its location and identification are
always known to the system. Frequently used programs, subprograms, and data bases are immediately
available to requesting jobs without operator intervention. Permanent files cannot be destroyed accidentally
during normal system operation, including normal deadstart; they are protected by the system from unau-
thorized access according to the privacy controls specified when they are created.

Any file attached to a job, regardless of mode or content, which is not already permanent, can be made
permanent on a valid rotating mass storage device specified by the installation. Unless the user explicitly
requests the system to catalog a file, it will not be made permanent. ’
Permanent files should be created on devices the installation designates for permanent files by specifying
PF device type parameter on a REQUEST card.

TERMS AND CONCEPTS

Terms and concepts used throughout this chapter are defined as follows:

Access Permissions

All user files have a 4-bit permission code. Each bit represents an access permission as defined below:

READ permission: Required to read a file, load a file or copy a file.

MODIFY permission: Required to rewrite or evict part of a file. If the file is organized to contain direct
access or indexed sequential files, modify permission is synonymous with use of the replace macro, provided
the file was so declared by the FO parameter at catalog time.

EXTEND permission: Required to decrease or increase the amount of mass storage allocated to a
particular file and to store position information for a file.

CONTROL permission: Required to purge a file. or catalog a new cycle.
Files in use by a job, other than permanent files, will have all access permissions. Permanent files will have only those

permissions granted by ATTACH card parameters. A purged permanent file, when still attached to the job that
purged it, has only those permissions it had as an attached permanent file.

Alter

The user can decrease or increase the amount of mass storage allocated to a particular file.

60307200 C 5-1

Attach

A permanent file is assigned to a job. No user may access a permanent file until his right to access the file is
established and the file is attached to his job.

Archived Permanent File

A file that has been dumped to tape by a permanent file utility routine and is no longer on mass storage,
but table information has been retained on mass storage. The system will retrieve the file and re-copy it to
mass storage when a user issues an attach request.

Catalog

A file’s location and other pertinent information is entered in the permanent file directory maintained by
the system, thereby making the file permanent. The first cycle of a file cataloged is called an initial catalog.
Any subsequent catalogs under the same permanent file name and owner ID are new-cycle catalogs.

Cycle

Up to five files may be cataloged under one permanent file name. Each is called a cycle. In normal usage, a
cycle is one version of a permanent file. Each file shares the same user ID and set of passwords. No
restrictions are imposed on the content or size of any cycle, as each is a unique file.

Each cycle is identified by the combination of permanent file name, cycle number, and owner ID. Cycle
numbers from 1 to 999 (decimal) can be assigned by the user or the system.

A cycle number assigned by the system will be one larger than the current largest cycle number, but it may
not exceed 999. The system automatically assigns a cycle number in the following cases:

Invalid cycle number (0 or greater than 999)

Cycle number not specified (no CY parameter)

Duplicate of existing cycle number

If a user permits the system to assign a new cycle number in new-cycle catalogs, he must recycle the number with the
RENAME function after it reaches the value of 999.

Detach

A permanent file is detached at job termination, unless it is detached earlier through the RETURN or
UNLOAD control cards or the CLOSE system macro. The CLOSE system macro must specify UNLOAD
or RETURN.

Exclusive Access

When only one job may manipulate or read a permanent file, it has exclusive access. Control permission

assures exclusive access. Modify or extend permission may grant exclusive access depending on the setting
of the RW parameter.

52 60307200 C

Extend

This operation allows a job to increase the amount of mass storage occupied by an attached permanent file
during job execution after writing at end of information.

Highest Cycle
The permanent file cycle with the highest numeric value. The lowest cycle has the lowest cycle number.

Incomplete Cycle

A cycle for which permanent file table information is incomplete. This condition can result from a CATA-
LOG job that does not terminate normally.

Logical File Name (Ifn)

The name used by a job to reference an attached permanent file. It is 1-7 alphabetic and/or numeric
characters, beginning with a letter; it may be the same as the permanent file name.

Modify (Rewrite)

This operation changes the data content of the file but not the location and length of the file.

Multi-Access
Three types of multi-access are available:

Multi-read access: any number of jobs may attach a permanent file simultaneously for read only
access.

Multi-modify access: any number of jobs may attach a permanent file simultaneously for read
access or modify access. Availability of this feature is determined by the installation. If it is
allowed, the users must be aware of where the files are rewritten and read. CAUTION IS

ADVISED.

Multi-read access with a single extend or single modify access: any number of jobs may attach a
permanent file simultaneously for read access while one job attaches for extend or modify access.

Owner

The user responsible for establishing a new permanent file name in the system is identified by the owner ID
which he supplies.

Passwords

The owner of a permanent file can define permissions to be granted at attach time.

Passwords can be any string of 1-9 numbers or letters. Each password implies one type of access permis-
sion. If a password is not defined for read, modify, extend or control, access for that permission is given

automatically to the requestor.

60307200 C 53

In addition, a fifth password, turnkey, may be defined. This password provides an extra measure of control
over file access. When the turnkey password is defined, no permission is granted unless the turnkey pass-
word is submitted.

Passwords are not submitted for verification in the same manner as they are defined. The password defini-
tion parameters are XR, TK, RD, MD, EX, and CN. The keyword parameter for submitting passwords for
verification is PW. These two sets of keywords are exclusive.

Permanent File

A file on a rotating mass storage device defined in the system as a permanent file device. It is standard in mode,

content, and length, and locatable by a system search of the permanent file tables. Each permanent file is identified
by a permanent file name, owner ID, and cycle number.

Permanent File Directory (PFD)
Table containing a record of all permanent files, their cycles and passwords.

Permanent File Catalog
Record Block Table Catalog (RBTC)

Table containing a record of the physical location of a file and of all statistics associated with that file.
Permanent File Manager (PFM)

System routines that handle user oriented permanent file functions. These functions are available to the user
through control cards, system macros and RA+ 1 calls.

Permanent File Name

The name by which a file is known to the permanent file manager, 1-40 alphabetic and/or numeric
characters.

Permanent File Privacy, Security, and Protection

Privacy in permanent files is intended to minimize software interference by thwarting threats to the data
base (permanent files) from non-authorized central processor programs. The permanent file system offers a
standard set of privacy controls. If an installation requires a different kind of protection, a privacy proce-
dure may be defined to replace the standard.

The system automatically ensures that no normal operation will cause permanent mass storage files to be
overwritten or otherwise destroyed, and that the directory of permanent files will not be destroyed.

In addition to normal system protection, the individual file owner can prevent unauthorized access to his
permanent file. He can stipulate, in cataloging a file, the degree to which the file is to be protected from
read, write, and rewrite access. Once a file is cataloged, it cannot be used by any job unless the necessary
passwords are given when a request is made to attach the file.

54 60307200 C

Permanent File Queueing

If a job cannot attach a file immediately, it will attempt to enter that file in a queue. Four conditions can
cause a job making a permanent file request to be placed into the permanent file queue:

A permanent file utility is running
A permanent file table necessary for CATALOG or ATTACH is full
File to be attached is not available for type of access requested

File to be attached is archived
Public File Password

SCOPE provides a password which, if submitted at catalog time. allows a user to catalog a file with the ID
of PUBLIC and then omit the ID parameter on new-cycle catalogs. attaches. and purges.

Purge

Removes a permanent file’s control information from the directory. A purged file is no longer a permanent
file, but it remains available for use by the current job.

Retention Period
When a permanent file is cataloged, a retention period may be specified. The file is not purged automati-
cally upon expiration; however, an installation can obtain a listing of all expired files not purged from the

system.

Universal Permission
Universal Password

Installations may define a universal password that gives universal permission to access all permanent files
when the password is submitted. The specific permissions granted depends on installation selections.

Write
When a permanent file is attached to a job and positioned at end of information, any write function, except
a rewrite, will add data to the file and extend end of information. Such an extension is considered tempo-

rary; unless the EXTEND or ALTER function is performed successfully. the extension is erased when the
job is terminated.

60307200 C 5-5

PERMANENT FILE CONTROL CARDS

All permanent file control cards are written in one of the following forms:
function name(lfn,pfn,parameter list)
function name(Ifn,parameter list)

function name(pfn,parameter list)
The seven function names are:
CATALOG, ATTACH, EXTEND, RENAME, PURGE, SETP, ALTER
Ifn is the logical file name; 1-7 characters; first character must be alphabetic; position dependent.
pfn is the permanent file name; 1-40 letters or numbers; position dependent.
All parameters in the list are written in the form:

keyword =value

Keyword is always 2 characters; value may be a decimal number or a string of 1-9 alphabetic and/or
numeric characters.

Permanent file control statements may be continued on as many cards as needed to contain the function

parameters. If a parameter list has no terminator (right parenthesis or period), column 1 of the next card is
considered as the immediate continuation of column 80.

PARAMETERS FOR CONTROL CARDS AND MACROS
The character strings (keyword =value) described below may be written in any order on control cards.
File identification parameters:
ID =name Name, 1-9 numbers or letters which identify the file creator (or owner). Permanent file
names file names are unique to owner IDs. Default is an ID of PUBLIC. An ID of
SYSTEM is reserved for system use.
CY=n Cycle number, 1-999, assigned by file creator. Default value on a new-cycle CATALOG
is one higher than the current highest cycle number, not exceeding 999. On an attach,

it is the highest cycle number cataloged. n=0 may be specified, but it is ignored.

LC=n If n is non-zero, the lowest cycle is referenced. Default is the highest cycle number.

5.6 60307200 C

Installation parameters:

RP=n
AC=name
PP =name

Retention period in days, 0-999, as specified by file creator; infinite retention is indicated by
999. Installation may define default value to be less than infinite.

1-9 alphabetic and/or numeric characters to specify an account parameter.

Information to be passed to an installation defined privacy procedure, 1-9 characters.

Password definition parameters:

Passwords are formed from 1-9 alphabetic and/or numeric characters. A zero length character string is
accepted on the RENAME control card to remove a password definition.

TK=pw
RD=pw
EX=pw
MD =pw
CN=pw

XR =pw

Turnkey password
Read password
Extend password
Modify password
Control password

Password definition for all passwords except read, turnkey, and any specifically defined.

Permission generation parameters:

PW =ligt
MR =n
RW=n

60307200 C

Maximum of five passwords on ATTACH control card establish user’s access permis-
sion for a file.

PW=pwl,pw2,.pw5

PW is required also on the CATALOG card when a new cycle is added, on the PURGE
card under permanent file name mode, and when a file is cataloged with an ID of
PUBLIC. PW is the only parameter that may be used to submit passwords at attach
time.

If n is non-zero, the file will be granted read permission only (if read permission password has
been given), thereby encouraging multi-read access.

If n is non-zero, multi-read with single rewrite or single extend will be allowed. If the
installation allows multi-modify access, multi-read with multi-rewrite will be allowed.
Control permission will not be granted to a job specifying RW not equal to zero. If n
is zero, a job will be given exclusive access if it has control, modify, or extend
permission.

57

File structure parameters (applicable to Record Manager files only):

FO=DA If DA or IS is specified, a data validity check is made for indexed sequential or direct access
FO=IS files. Extend and modify permissions are given logical meaning for such files by use of this
function.

Positioning parameter:

PS=n If non-zero, a file is attached at a position previously set by the SETP function. If
absent, equal to 0, or invalid because of an ALTER function, the default is used and
the file is attached rewound. If used in a purge by permanent file name request, the file
will remain positioned after a successful purge.

ECS buffering parameters:

EC=K Installation standard number of blocks of ECS for buffer.

EC=nnn
EC=nnnnK Number of thousand-word ECS blocks (octal) to be allocated.

EC=nnnnP Number of ECS pages (octal) to be allocated.
The following have been included for compatibility with previous systems:
SD=n ignored

RN=n ignored

PERMANENT FILE FUNCTIONS

The permanent file functions are written as SCOPE control cards. They also are available for use as
COMPASS program macro calls. All parameters may be given on control cards; however, only relevant
parameters will be recognized. Others not pertinent to the function will be ignored. Functions and parame-
ters are summarized in the following table.

Ifn/pfn AC|CN |CY|EC |[EX|FO|ID |LC [MD|MR|PP|PS |PW|RD|RP|RW|TK | XR
CATALOG | oneorboth| * | * | * Sl I L I P T T O B
ATTACH one or both * * + * * * * * *
PURGE one or both R T 0* * | x| o=
RENAME Ifn * * * * b * * * * * *
EXTEND Ifn
SETP ifn
ALTER Ifn

+ required * optional T special case

5-8 60307200 C

CATALOG FUNCTION

The CATALOG function makes permanent a file which has all permissions granted to it. A new cycle
catalog requires only control permission to be established.

CATALOG(1lfn,pfn,parameter list)

The following optional parameters are relevant on a CATALOG function:
Initial catalog: CY,XR,CN.MD.EX.RD,TK.RP.FO,RW MR ,PW AC,PP
New-cycle catalog: CY,PW,RP,FO,RW MR,PP,AC

For this function,

User must: Identify a local file to be made permanent
Specify his owner ID
Define a permanent file name unique to his ID

Be granted control permission to add a new cycle

User may: Define a cycle number
Define passwords to control access permission generation
Define the retention period
Define the permanent file as an indexed sequential or direct access file.

Remove some permissions
CATALOG Examples:
The first set of examples demonstrate initial catalogs: the permanent file name is unique to the ID specified.

l. CATALOG(LFN,LFN, ID=RENOIR)
CATALOG(LFN, ID=RENOIR)

These statements achieve the same effect. Any time the permanent file name is omitted. it will be
assumed to be the same as the logical file name. The cycle number will be one.

2. CATALOG(LFN1,PERMANENTFILE, ID=RENOIR,CY=10)

The first cycle cataloged may have a cycle number greater than one.

3. CATALOG (LFN2,PFILE, ID=RENOIR,CY=0)

The cycle number of the permanent file, PFILE, will be one since an illegal cycle number is specified.
The cycle number must be 1 through 999. Otherwise. the parameter is ignored.

60307200 C 59

4. CATALOG (WATER,LILIES,ID=CMONET,XR=X)
CATALOG(WATER,LILI%S,ID=CMONET,MD=X,CN=X,EX=X)

These two control cards above demonstrate the XR parameter and have the same effect. X will be the
password for control, modify and extend access.

5. CATALOG (AA,B,ID=SEURAT,XR=Y,CN=Z)
CATALOG(AA,B,ID=SEURAT,MD=Y,EX=Y,CN=2Z)

These two control cards have the same effect, further demonstrating use of the XR parameter.

6. CATALOG(C,F,ID=SIGNAC,F0=-IS,MD=X,EX=Y)

If a data validity check reveals the file is an indexed sequential or direct access file, extend permission will
become insert permission, and modify permission will become replace permission. If the file is not an IS or DA
file, the FO parameter is ignored.

7. CATALOG(LFF,PF,ID=MATISSE,RP=5,CY=-4,RD=-X,CN=Y,MD=A, TK=C,AC=777 ,PP=XYZ,MR=1)

Since the MR parameter is non-zero, LFF will have only read permission upon catalog completion. The
following items are defined at catalog time:

Read password X
Control password Y
Modify password A
Turnkey password C
Account parameter 771
Cycle number 4
Retention period 5 days
Privacy procedure XYz

Assuming the previous examples to be successful initial catalogs, the following examples demonstrate new-
cycle catalogs. A file already has been cataloged with the permanent file name and ID specified.

8. CATALOG(Z,LFN,ID=RENOIR)
CATALOG(Z,LFN,ID=RENOIR,CY=2)

These control cards catalog a cycle with a cycle number one higher than the largest (in this case 1). This
new-cycle catalog does not require passwords because a control password was not defined.

9. CATALOG(LFN22,PERMANENTFILE, ID=RENOIR,CY=10)

Assuming, a cycle 10 already exists, this control card will cause a cycle 11 to be cataloged. An invalid
cycle number is treated as no cycle number. This new-cycle catalog does not require passwords because
a control password was not defined at initial catalog time.

10. CATALOG (LFF,PF,ID=MATISSE,CY=5,PW=Y)

If a control pasword is defined at initial catalog, it is necessary to submit the control password using the
PW parameter. Control permission is required to add a new cycle.

5-10 60307200 C

11. CATALOG(LFF,PF1,ID=PUBLIC,PW=XYZ)

A file may be cataloged with an ID of PUBLIC if the public password is submitted—defined by the
installation as XYZ in this example. This enables an installation to define permanent files that may be
attached by all users without specifying an ID.

12. CATALOG (PERMANENTFILENAME, ID=MOREAU)

A catalog function will be attempted using the first seven characters of the permanent file name as the
logical file name. If the logical file name is omitted, the first character of the permanent file name must
be alphabetic, or the job will be terminated.

ATTACH FUNCTION

The ATTACH function requests attachment of a permanent file to a job and establishes the requestor’s
legal access to the file. Evaluation of the cataloged passwords and the password list submitted with the
request establishes the type of access granted to the user. When access is ascertained, the permanent file is
attached to the job and it may be used only as specified by the ATTACH function. For example, a file
attached with only read permission may not be modified or extended.

ATTACH(1lfn,pfn,parameter list)

In catalog example 7, a permanent file, PF, was cataloged with turnkey, modify, control and read pass-
words. The following examples demonstrate permission generation using the PW parameter:

No PW parameter No permissions

PW=Y,A,X or PW=Y No permissions

PW=X or PW=A,X or PW=A No pé\fmissions

PW=C Extend permission

PW=C,A Modify and extend permission
PW=X,Y,C,A,MR=1 Read permission
RD=X,PW=Y,C Extend and control permissions
PW=X,Y,C,A,RW=1,MR=1 Modify, read, extend

Unless a file has an ID of PUBLIC, the ID parameter always must be specified to uniquely identify a file.
Only the installation can catalog files with the ID of PUBLIC. Only the system can catalog files with the ID

of SYSTEM.

60307200 C 5-11

The following optional parameters are relevant on an ATTACH function:
LC or CY, PW, PS, MR, RW, PP, EC
For the ATTACH function,

User must: Specify the owner ID of the file unless the file has ID of PUBLIC.
Identify the permanent file and specify the LC parameter if the lowest cycle is required
and more than one cycle exists.

User may: Specify a cycle number, or specify the lowest cycle required.

Submit passwords using the PW keyword; attach the file positioned.
LC and CY are conflicting keywords; if both are specified, LC is ignored.

When an incomplete cycle is to be attached, the CY parameter must be specified and control permission
must be established. After the ATTACH is complete, the file may be purged.

ATTACH Examples:

l.ATTACH(LFN, ID=RENOIR)
ATTACH(LFN,LFN,ID=RENOIR)

Assuming, catalog example 8 was successful, these two control cards perform the same function. If the
permanent file name is omitted, it is assumed to be the same as the logical file name. Cycle 2 will be
attached since that is the highest cycle number.

2.ATTACH(LFA,PF,ID=MATISSE,PW=X,C,EC=K)

Assuming catalog example 7 was successful, cycle 4 of the permanent file, PF, will be attached with
read and extend permission. During execution the permanent file is referred to by the logical file name,
LFA. A standard size ECS buffer will be establshed for the file.

3.ATTACH(LFILE,PF,ID=RENOIR,PS=1)

All permanent files are attached rewound if the PS parameter is not specified. If the PS parameter is specified, the
permanent file tables are checked to determine if an attach position was set for this file by a SETP command. If not
set, or the position has been invalidated by the ALTER function, the file is attached rewound.

4.ATTACH(PERMANENTFILENAME,ID=RENOIR)

An attempt will be made to attach the permanent file, PERMANENTFILENAME, under the logical file name,
PERMANE. The first seven characters must be letters or numbers and begin with a letter if the local file name is
omitted in the attach call.

5-12 60307200D

RENAME FUNCTION

Changes can be made to the permanent file name, cycle number, passwords, retention period, account
parameter, and owner ID. However, the permanent file name, ID, and CY cannot be changed if any of the
file cycles have been dumped or placed on an archive tape. The RENAME function cannot be performed
unless the file has been attached and all four permissions (READ, EXTEND, MODIFY, and CONTROL)
have been granted. The control card is written.

RENAME(1fn,pfn,parameter list)

Ifn must specify an attached permanent file with all permissions. Remaining parameters are optional. If
none are specified, the control card is processed as a no-operation. If the permanent file name is not to be
changed, one or two commas should follow the Ifn (2 commas are allowed for compatibility with previous
systems).

RENAME Examples:

1. Assume PFILE was cataloged by owner ABC with read password X, extend password Y. and modify
password Z. Control is granted automatically.
ATTACH(LFILE,PFILE,ID=ABC,PW=Y,Z,X)
RENAME(LFILE,PFILE2,RD=,CN=W)

The permanent file name PFILE will be replaced by PFILE2. The read password will be removed
(succeeding users will be given read permission automatically) and a password for control permission
will be cataloged. The existing passwords for extend and modify will remain unchanged. Since the
changes involve the permanent file name and passwords. the changes apply to all cataloged cycles of
the file. This would also have been true if the owner ID had been changed.

2. ATTACH(LFN,ID-UTRILLO)
RENAME(LFN, ,ID=UTRILLO,RD=A,RP=9)
RENAME (LFN,LFN, ID=UTRILLO,RD=4,RP=9)

This RENAME control card defines a READ password for the permanent file LFN, and redefines the
retention period. Omission of the permanent file name in the RENAME control card indicates no name
change is to occur. The two RENAME control cards are identical in function. This example also
demonstrates that more than one RENAME function can be issued consecutively.

3. ATTACH(LFN, ,ID=SISLEY,PW=A)
RENAME(LFN, ,ID=SISLEY,RD=)

The definition of A as the READ password is removed from the permanent file, LFN.

60307200 C 5-13

EXTEND FUNCTION

Permanent extensions can be made to a permanent file by writing at end of information and cataloging
extensions to the file. SCOPE requires extend permission for this operation.

To catalog extensions, the EXTEND function must be used on that permanent file. Also, a file cataloged by
a given job may be extended by that job. The control card is written:

EXTEND(1fn)

The Ifn parameter is required; it is the logical file name of the attached file to be extended. The newly
added section will acquire the privacy controls of the permanent file.

If Ifn refers to an indexed file, the current index must be rewritten, at the end of the file, by the user to
invalidate any prior index. This must be done prior to the EXTEND function. When an EXTEND function
is requested for a random file, nothing must have been written on the file since the index was last written.

No keywords are relevant to EXTEND.

PURGE FUNCTION
A cycle of a file can be removed from the catalog of permanent files. The control card is written:

PURGE(1lfn,pfn,parameter 1list)

or

PURGE(1fn)

If the logical file name on the PURGE card references an attached permanent file, only the 1fn parameter is used.

Otherwise, control permission must be established before a request for a PURGE function is granted. All param-
eters applicable to attach are then applicable to PURGE.

PURGE Examples:

1. ATTACH(LFN,ID=-RODIN)
PURGE(LFN) or PURGE(LFN,ID=RODIN)
Both sequences perform the same function.

When a PURGE is performed, permanent file table information for the file will be removed, but the file
will remain available to the job with permissions existing when it was purged. At least control permis-

sion is implied.
2. PURGE(PERMANENTFILENAME, ID=PISSARO)

The permanent file, PERMANENTFILENAME, will remain attached to the job as a non-permanent file if the
PURGE is successful. The logical file name, PERMANE, will reference that file. The PURGE will not be successful
if the logical file name is omitted in the call and the first character of the permanent file name is not alphabetic.

5.14 60307200 D

3. PURGE(PERMANENTFILE,ID=RENOIR,LC=1)

Assuming catalog examples 2 and 9 were successful, cycle 10 will be purged and thereafter will be known to the
job as the non-permanent file, PERMANE.

ALTER FUNCTION

The ALTER function causes end of information to be set to current PRU.

ALTER(1fn)
Ifn specifies the logical file name of an attached permanent file.

The ALTER function always requires extend permission; modify permission and exclusive access to the file are
required if the current PRU precedes end of information of the file as it was attached. The user can ensure exclusive
access by specifying RW = 0 on the ATTACH request.

The ALTER function is identical to the EXTEND function if an extension has been made to the attached file and the
current PRU is at the new end of information.

SETP FUNCTION

SETP is a positioning function that stores a current PRU for an attached permanent file in the PF tables. Subsequent
attaches can specify a nonzero PS parameter value so the file will be positioned to the PRU specified by the previous
SETP. If a SETP function was never done, the position has been invalidated by an ALTER function, or the PS
parameter value is zero, the file is attached rewound.

SETP(1fn)
The SETP function always requires extend permission.
SETP Example

ATTACH(A,B,ID=SEURAT,PW-Y)
SKIPF(A,1)

SETP(A)

RETURN (A)
ATTACH(A,B,ID-SEURAT,PS-1)

Assuming initial catalog example 5 took place, the first statement will attach the permanent file B with all permis-
sions. The file will be attached rewound. The attached file is positioned by using SKIPF. A SETP function then is
issued, causing the PRU position to be recorded. The next ATTACH after the RETURN will cause the file to be
attached after the first PRU because the PS parameter is specified. If PS had not been specified, B would have been
attached rewound, regardless of whether a SETP function had been issued on the permanent file B. The SETP
function recorded a PRU position only for the attached cycle. Other cycles of permanent file B remain unaffected.

60307200 D 5-15

PERMANENT FILE MACROS

Each permanent file macro expansion contains a call to a permanent file PP program. Parameters necessary
for execution of a function are contained in the central memory table called the file definition block (FDB).

The macro for generating an FDB has the format:
fdbaddr FDB 1fn,pfn,parameter list

fdbaddr is the symbol to be associated with word 5 of the FDB, and it must be present in the location field.
Parameters are separated by commas and terminated by a blank. They may include any of those indicated
by the two-letter codes described for control cards.

The field to the right of the macro name, FDB, is identical to that which could be on a control card.
Parameters are entered into the FDB as they are encountered in the list. The FDB is generated in-line
during assembly whenever the macro is called.

The macro function call is of the following form:
function fdbaddr,RC,RT,NR
fdbaddr is the symbol on the FDB macro; function is any permanent file function, such as CATALOG.

If the RC or RT parameter is specified in the function call referencing an FDB, a return code will be
available to the user in word 5 of the FDB, - at fdbaddr (bits 9-17). In addition, if specified, the RT
parameter will inhibit any permanent file queueing. All permanent file macro calls will be issued in recall
unless NR is present. In this case, it will be possible for the central processor program to test the completion

Lie ol TITAD oo Ao 3 1
bit iin the FDB to determinc whether the function has completed.

The RT parameter can be used only at the macro level, unless the user constructs the FDB himself. Jobs
attempting permanent file attaches will queue for the requested file if the RT parameter is not specified
when:

File is unavailable (job requesting file wants exclusive access, or job using the file has exclusive
access).

Attached permanent file table is full.
Archived file (a permanent file stored on tape rather than mass storage) is temporarily unavailable.

ATTACH will set up a LOADPF job to be scheduled through tape scheduling. The job requesting
the attach will be swapped out until the file is available.

5-16 60307200 C

The FDB generated by the macro has the form:

Word
59 17 11 8 b 0
1
2
Permanent File Name
3 (Display Code Left Justified Zero Filled)
4
fdbaddr 5 Ifn (Left Justified Zero Filled) Retun | Status
6 Parameter Value (Right Justified Zero Filled) k1
7 Parameter Value (Right Justified Zero Filled) k1
= 5?
n Blank 0000
k1 2-digit octal number identifying parameter in list shown below
Status Bit0 Complete bit
1 Not used
2-5 Function code listed below
6 Set if RC or RT not specified — issue dayfile messages — all errors fatal
7 RT specified
8 Issue dayfile messages
Return g it code listed below
Code

4-bit function codes (bits 2-5) of status field:

ATTACH 0010
CATALOG 0100
EXTEND 0110
PURGE 1000

60307200 C

RENAME 1010
PERM 1100
SETP 0001
ALTER Ol

5-17

Values for k1 correspond to the parameters in the FDB macro. Representation appears in binary unless otherwise
noted.

k1

Value
Octal

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20}
24
25
26
27

an
oV

31
32
33

34.37
40-47
50-77

5-18

Parameter

PP

RP
(03 ¢
TK
CN
MD
EX
RD
MR
SD
XR
ID

RN
AC
EC

PW

FO
PS

LC

RW

Description of Macro Field

Privacy procedure name (display code)
Retention period days

Cycle number

Turnkey password (display code)
Control password (display code)
Modify password (display code)
Extend password (display code)

Read password (display code)
Multi-read parameter

Ignored

Control, Modify, Extend password (display code)
Owner identification (display code)
Ignored

Account

ECS Buffering

Password submitted (display code)

File organization (display code)
Position

Ignored

Ignored

Lowest cycle

Ignored

Multi-access rewrite

Ignored (reserved for SCOPE)

Ignored (reserved for user/installation)
Ignored (reserved for SCOPE)

60307200 C

The 9-bit return code at fdbaddr (bits 9-17) can take the following values:

User
Return

Code Description

00 Function successful

01 ID error

02 Ifn already in use

03 Unknown Ifn

04 No room for extra cycle

05 RBTC full

06 No Ifn.or pfn
10 Latest index not written
11 File not on PF device
12 File not in system
15 Cycle number limit reached
16 PFD full
17 Function attempted on non-permanent file
20 Function attempted on file not part of job
22 File never assigned to a device
23 Cycle incomplete or dumped
24 PF already attached
25 File unavailable
27 Illegal 1fn

33 ALTER needs exclusive access
35 File already in system
70 PEM stopped by system
71 Incorrect permission

On control card requests, all errors are fatal; and on macro requests unless the RC or RT parameter is
specified, the job is terminated. An installation parameter determines whether errors which return codes
greater than octal 67 will cause termination on a macro request. All internal permanent file malfunctions
are system errors which will cause job termination.

PERM FUNCTION

PERM, available only as a system macro, allows a running program to determine what permissions have
been granted to a file and whether or not the file is permanent. The macro format is:

PERM fdbaddr,RC

w
—
0

60307200 C

The only required parameter is the Ifn which should be supplied in the FDB. This Ifn should reference a
file available to the job calling PERM.

The 5-bit code is returned to the user as the return code in the FDB (bits 9-13 in fdbaddr). The rightmost 4
bits are the permission bits. The octal codes are:

10 CONTROL
04 MODIFY
02 EXTEND
01 READ

The leftmost bit of the 5-bit code is a flag. If it is 0, the Ifn references an attached permanent file unless the
entire 5-bit code is equal to 0. If the code is O, the Ifn is unknown to the job calling PERM since a
permanent file cannot be attached without permissions.

PERMANENT FILE USAGE VIA INTERCOM

From his terminal, the INTERCOM user may create, attach, and purge permanent files in any of three
ways:

Through the standard macros within his own interactively run program.

By entering the commands ATTACH, CATALOG, etc. as if they were control cards in a batch
input file.

By using the special INTERCOM commands FETCH, STORE and DISCARD. These commands

allawr tha ncar tn a nnd uve -
allow the user to create and use permanent files with certain restrictions,

Files created by the STORE command may not have any passwords. The only parameters for STORE are:
filename, user id, privacy procedure. The permanent file name and the local file name are the same, user id
and/or privacy procedure are required according to installation options. If a required parameter is missing,
it will be requested from the user.

When a permanent file has been created through the STORE command, the user may access it through the
ATTACH or FETCH commands. FETCH parameter requirements are the same as for STORE.

Similarly, the DISCARD command as well as the PURGE command may be used to purge a permanent
file created by the STORE command. DISCARD has the same parameter requirements as STORE, with the
exception that the user ID and privacy procedure parameters may be omitted if the file is already attached
to the user.

5.20 60307200 A

Examples:
In these examples the information output by the INTERCOM system on the teletypewriter terminal is
underlined to distinguish it from that entered by the user; this does not actually occur on the teletypewriter

output. The symbol A denotes carriage return.

The installation requires both user id and a privacy procedure parameter; the user file called MYFILE is to be made
permanent.

COMMAND-STORE ,MYFILE. A
ID=RKCA
PP-167SN58A
During a later session the user attaches the file and then purges it.
COMMAND-FETCH,MYFILE,RKC,167SN58. A

COMMAND-DISCARD ,MYFILE. A

If an INTERCOM job enters into the permanent file queue because a permanent file request cannot be
honored immediately, the user will be informed by one of the following messages:

WAITING FOR PF UTILITY

WAITING FOR APF SPACE

WAITING FOR ACCESS TO FILE

WAITING FOR ARCHIVED FILE
If an attach is requested for an archived file, the operator will be asked for a GO or DROP response to
determine if file retrieval should be initiated. The INTERCOM user will be informed of the delay by the
message:

REQUEST FOR ARCHIVED FILE - WAITING FOR CENTRAL OPERATOR DROP OR GO
In response to GO, the job will be put into the permanent file queue, the message WAITING FOR AR-
CHIVED FILE will be sent to the terminal user, and a job will be set up at another control point to retrieve

the file from tape. The INTERCOM user must wait for retrieval to be completed before the file is attached.
In response to DROP, the file will not be brought into the system and the attach request will be terminated.

If the user does not want his job to remain in the permanent file queue until the requested file can be
accessed, he may terminate the attach request by typing %A at a CRT terminal, or at a Teletype, CTRL Z
followed by A.

60307200 C 521

USER COMMUNICATION

A user specifies the intent of a particular directive by specifying parameters. If they do not clearly define

the function request, the permanent file manager attempts to inform the user of the unknown information
by the following means:

Modification of the File Definition Block will be done when an illegal parameter is correctable. For
example, if an incorrect cycle number is encountered on a CATALOG card, the actual cycle
number will be returned in the FDB. If code is not successful, error codes may be returned in the
FDB.

A job dayfile message will be issued to the job dayfile unless the RT or RC parameter is specified.
(Appendix D.)

If a permanent file control card is processed without an error diagnostic, the function was successful and all
parameters were used as specified on the control card. If a macro call did not specify RC or RT and it
finished without an error diagnostic, it was successful. A macro call issued with RC or RT, was successful if
a zero code is returned.

. A message will be issued to the INTERCOM terminal if queueing has been initiated because a file is
unavailable or the APF table is full. The user may then respond whether or not he will wait.

5-22 60307200 C

LOADER AND LIBRARIES 6

SCOPE 3.4 provides extended features in library organization including:

Multiple system libraries
Multiple user libraries

Selection of library search sequence

In addition, the SCOPE 3.4 system offers a NUCLEUS library which may be modified according to
installation needs.

Segments have been completely redefined. Multiple level overlays are now possible.

The loader is now one entity. PPLOADR and CPLOADR no longer exist. A full description of the loader
with all control cards and macros appears in the LOADER Reference Manual .

An overview of the new loader and its relationship to the new library structure follows. This overview,

although not complete, is included to acquaint the user with the principles and terminology used in the new
loader.

LOADING PROCESS

Loading places object code into core making it ready for execution. The object code is fetched from local
files and libraries. Normally, object code is output from a compiler or assembler; but it may come from
another processor, such as an overlay generator. When loading is completed, program execution may be
initiated.

Loading also involves related services, such as presetting unused core and writing a map to show what has
been loaded.

SINGLE-MODULE LOADING
When all object code is loaded into core at the same time, resulting in a single core image module, loading
is single-module (also referred to as normal mode, or non-segmented, loading.) Most programs are loaded

in this manner, as they are relatively small compared to the amount of available core.

The basic loader performs single-module loading.

60207200 A 6-1

MULTIPLE-MODULE LOADING

Some programs are too large to fit in the largest available field length. Also, single-module loading of large
programs may waste core because space is taken by program portions not always in use. Multiple-module
loading is provided, so that only certain portions of the executing program need be in core at any one time;
the total program consists of more than one core image module. At different times, the same area of core
may be occupied by different modules.

The two types of multiple-module loading are overlays and segments.

OVERLAYS

The overlay structure is compatible with loaders of earlier SCOPE versions. Three levels are possible; 63
overlays are allowed at the second level, and 63 are allowed at the third level for each one at the second
level. Loading of overlays is not automatic; explicit calls must be made to load an appropriate overlay.

SEGMENTS

The definitions of segment and segment loading have been changed for SCOPE 3.4. Segments now are
rather like overlays as described above; but a very large number of levels is allowed; external symbols and
common block names can refer to higher as well as to lower levels; and segments are loaded automatically
when an entry point of a segment not in core is referenced by an instruction in another segment.

RELOCATABLE LOADING

Relocatable loading connects contiguous storage areas (blocks). Blocks are defined by reiocaiabie object
modules which contain relocation information so that their origins need not be at a particular location in
core. During relocatable loading, the origins of all blocks are established and all addresses are adjusted
accordingly. It is possible to load relocatable object modules produced by one or more independent compila-
tions or assemblies. The following terms relate to relocatable loading:

RELOCATABLE SUBPROGRAM

The basic program unit produced by an assembler or compiler. In COMPASS, it is produced as a result of
the source statements delineated by IDENT and END. In FORTRAN, the source statements are specified
between PROGRAM, SUBROUTINE, BLOCK DATA, or FUNCTION and END. A relocatable subpro-
gram consists of several tables which define blocks and information needed to relocate addresses.

COMMON BLOCK

Common blocks differ from program blocks in that the same block may be declared by more than one
relocatable subprogram. More than one relocatable subprogram may specify data for the same common
block; but in case of an address conflict, information will be loaded over previously loaded information. A
program may declare as many as 509 common blocks. Common blocks may be labeled or blank.

62 60307200 A

Labeled common is a common block into which data may be stored at load time. Depending on the type of source
statement, a labeled common block may specify either CM or ECS for storage. The first program declaring a parti-
cular labeled common block determines the amount of central memory or ECS allocated. Should a subsequent
declaration of the same block indicate a larger size, a non-fatal diagnostic will be issued; and the original declaration
will hold. No additional checks are made to determine whether larger subsequent declarations result in text loading
that overflows into higher blocks. A CM or ECS block can have the same name.

Blank common is common block storage into which data cannot be stored at load time. The first declaration
of a blank common block need not be the largest. In single-module loading and segment loading, one central
memory blank common and one ECS blank common block are allowed. After all object modules have been
processed, the central memory block is allocated storage at a higher address than all other blocks. In overlay
loading, any one overlay can have one central memory blank common block, and one ECS blank common
block; and more than one overlay can have such a block; but an overlay cannot have a central memory blank
common block if its parent overlay, or the (0,0) overlay, has one, and similarly for an ECS blank common
block.

ABSOLUTE INFORMATION

For basic single-module loading, a relocatable subprogram may contain information to be stored at a
specific location in central memory. Generally such information should only be stored in the communica-
tion area below octal location RA + 100. Results cannot be predicted if the origin of absolute information is
higher than this value.

ENTRY POINT

A location within a block which may be referenced from other blocks. Each entry point is associated with a
name. The loader keeps track of entry points through the entry point tables in relocatable subprograms. A
block may contain any number of entry points.

The loader can accept entry point names of 1-7 characters; none of which may be a colon.

EXTERNAL REFERENCE

An address expression which consists of a reference to an entry point in another block. Throughout the
loading process, externals are linked to entry points. In some cases, this process is inhibited.

UNSATISFIED EXTERNAL

An external reference that appears before the program containing the matching entry point has been
loaded.

60307200 C 6-3.

TRANSFER SYMBOL

The name of the entry point which specifies where execution is to begin.

PROGRAM NAME
The name contained in the PREFIX table at the beginning of each relocatable subprogram or absolute

overlay; the terms ident name or deck name have the same meaning. The loader accepts program names in
the same format as entry point names.

ABSOLUTE LOADING

The loading of only one block that is an absolute program or a core image module. The origin of this block
must be a particular location in central memory or ECS. Absolute loading involves no block placement,
address relocation, or external linking.

An absolute program may be entirely self sufficient, or it may be only one of several core image modules,
but it must consist entirely of absolute program. They may be produced directly by a compiler, an assem-

bler, or the loader. The loader produces absolute programs by performing relocatable loads and then
writing the core image of the load onto a file.

LOADER INPUT
Two types of information are processed by the loader:

able or an absolute load.

Binary iabies. nforination necessary o periorm a 1e

Loader object directives: described below.

LOADER REQUESTS

Requests are made to the loader for specific action, such as loading from particular files or selecting
options. Most loader requests originate on control cards in the job control stream (first SCOPE logical
record of the file INPUT). These requests are processed as they are encountered.

Loader object directives refer to those loader requests encountered as part of the loader input. They are
processed as they are encountered during physical loading.

User calls consist of one or more loader requests issued from an executing program.

64 60307200 A

LOAD OPERATION
The terms load sequence and load operation are synonomous. The following basic steps are involved:
Initialize load
Perform loader requests
Complete load
Load operations initiated by control cards take place as described above. User call load operations initialize
only a particular area in core, so that the executing program is not destroyed; user calls can control whether

or not the satisfying of externals is to be performed during completion.

The following definitions related to load operation are essential for understanding the loader requests.

INCOMPLETE LOAD

State of load operation from the time loading is initiated until the time execution can begin. Throughout
incomplete load, loader information in central memory must not be destroyed if the load is to continue.
LOAD COMPLETION

Steps taken by the loader after all requests have been performed. Normally, the last step is to start program
execution. Certain loader requests are defined as the last to be processed before the load is completed. All
others are processed in order of occurrence.

LOADED PROGRAM

The core image module; the final image produced by the load operation. For a control card initiated load
operation, this module is the entire job field length from RA + 100B through RA+FL—1. For a user call
Initiated load operation, it is only that portion of the field length specified as available in the user call.

LIBRARY SET SEARCH

The order in which libraries are selected for searching is determined by the current contents of a list of
libraries known as the library set. Each library so defined is searched in turn until all needs are met or all
libraries have been searched. The total library set consists of the global library set and the local library set
followed by the library NUCLEUS. The NUCLEUS library cannot be removed from the library set.

Initially, the global library set is empty; it can be altered by the LIBRARY control card. Its definition
remains in effect throughout the job or until another LIBRARY control card is encountered.

The local library set is defined only for the duration of the current load operation. At the start of each load
operation, it is defined as empty. It can be altered by the LDSET(LIB=...) request.

60307200 A 6-5

LIBRARIES

Library structure is comparable to file structure. The loader can access the library randomly by consulting a
directory. The user can access system libraries as well as his own libraries and local files.

Libraries are used by the loader to:

Select programs for execution: absolute programs (overlays) and relocatable programs (object
modules)

Select programs to satisfy external symbols during core image generation; they must be in relocat-
able format.

Library types are system and user:

A system library is available automatically to all jobs. It is named in the Library Name Table in
central memory resident (CMR), it is contained on a permanent file that can be read by more than
one job at a time, and parts of it may be contained in CMR.

A user library is a file formatted as a library, but it is not available to a job until it has been
explicitly brought to the job. The job might create the file before using it as a library, or it might be
a permanent file that a job would attach explicitly. A permanent file might be such that more than
one job could read it at once; but the explicit ATTACH would be needed in every job.

LIBRARY SEARCH

Normally, externals are not satisfied until load completion. With the SATISFY statement, the user can
direct the loader to satisfy externals at an intermediate point in a load sequence. If libraries are named in
the SATISFY statement, those, and only those libraries are used, in the order given. If no libraries are
named, the current library set is used.

Unlike LIBRARY or LDSET(LIB=...), SATISFY does not alter the library set.

LIBRARY STATEMENT

A LIBRARY statement declares libraries to be members of the global library set, until the next LIBRARY
statement or the end of the job. Libraries to constitute the set are listed in order as parameters after
LIBRARY. Each LIBRARY statement annuls the effect of a previous LIBRARY statement in the same job.
At the beginning of a job, the global library set is empty.

6-6 60307200 A

LIB DIRECTIVE

If the LIB directive does not name libraries, the local library set becomes empty. If it names libraries, they
are added to the local library set, after existing library names. At the beginning of a load sequence, the
local library set automatically is empty.

LIBRARY SEARCH ORDER

The current library set is searched: first the current global library set in the order specified on the last
LIBRARY statement; then the current local library set, in the order named in LIB directives since the
beginning of the current load; then NUCLEUS.

Example:

LGO1.

LIBRARY(RUN)
LDSET(LIB-USER)

LGO2.

LGO3.

LIBRARY.
LGO4.
LIBRARY(AX,SCOPE,USER2)
LDSET(LIB-ALGOL)

LGOS5.

Because the default global library set as defined at the beginning of
the job is still in effect and no LIB requests have been made, the
library set consists of NUCLEUS only.
The global library set now contains RUN.

Introduces a local library set consisting of the library USER.

Libraries are searched in the order: RUN, USER, NUCLEUS. The
global library set is searched first, then the local set and NUCLEUS.

Because this is a separate load operation, the local library set as de-
fined no longer exists; however, the global library set as previously
defined remains in effect. Thus, RUN and NUCLEUS are searched.
Creates an empty global library set.

Only NUCLEUS is searched.

Defines a global library set consisting of three system libraries.

Defines a local library set consisting of one library.

Libraries are searched in the order: AX, SCOPE, USER2, ALGOL,
NUCLEUS.

Any compiler call forces an internal LDSET directive, bringing the library containing that compiler’s object

routines into the local library set.

60307200 C

6-7

SCOPE 3.4 PRODUCT SET LIBRARIES

The following table gives the default structure of the product set libraries. Each system library structure
may be altered to individual installation needs, subject to the following restrictions:

NUCLEUS contains all programs that can be called by control card.
Entry point names must be unique within a single library.

Program names also must be unique within a single library, but a program can have the same
name as an entry point in the same library.

If the name of a compiler object routine library is changed, either the compiler itself must be

altered to generate the correct LIB directive or users must be instructed to insert LIBRARY and/or
SATISFY statements.

PRODUCT SET ENTITIES

PP programs
Main programs Level (0,0) overlays and other programs callable by control card
| System texts : System text overlays used by COMPASS
Modules Relocatable subprograms callable by external symbol references from
System Or User programs
Object library Modules used during execution of a program compiled by a higher

level language

6-8 60307200 A

LIBRARY STRUCTURE

Name

none

NUCLEUS

SYSOVL

SYSIO

FORTRAN

RUN2P3

COBOL

SYSMISC

60307200 C

Contents
PP programs

Main programs
Primary overlays
System texts

Higher level overlays

6RM modules

CPC modules

FORM modules
SYMPL object library

FTN 4.0 object library
RUN 2.3 object library

COBOL 4.0 object library
SORT 4.0 modules

COBOL 3.0 object library
SORT 3.0 modules

FTN 3.0 object library
ALGOL object library
SIMULA object library
SIMSCRIPT object library
BASIC object library

USER LIBRARIES 7

CONSTRUCTION OF USER LIBRARIES WITH EDITLIB

Through the EDITLIB utility program, a userf can define a group of central processor routines or overlays
to be a library. That library is available then to the system loader by specific direction in the loader control
statements for a job. For example, LDSET(LIB =libname) can be used immediately before the statement
calling for load from that library. For any job, routines on user libraries can replace or supplement those on
the SCOPE system libraries without changing the system libraries. With EDITLIB, a user library can be
modified by the addition, deletion, or replacement of routines; and statistics about library contents can be
listed.

The user library must contain assembled central processor routines, programs, or text records output by the
COMPASS assembler, one of the SCOPE compilers or loader generated overlays. Library records can be
independent programs, subroutines, or overlays. Binary output from SEGLOAD cannot be made part of a
library. In this discussion, these items will be referred to collectively as programs. Unassembled text records
in BCD format, peripheral processor programs, and source language programs can not be made a part of
user libraries.

EDITLIB considers each program on the user library to be a single unit occupying a SCOPE logical record.
It extracts the name, entry points, and external references from tables output with the program assembly
and uses them to construct tables describing the library file. Library tables are used by the loader to locate
programs on the file. EDITLIB changes the tables when the user library is modified. Format of user library
tables is the same as that for system libraries. A user library file created by EDITLIB will contain:

Assembled programs

Tables referring to Entry points

External references

Program numbers

Program names

The program number table is used to link external references, entry points, and program names.

7The ensuing discussion is limited to user, as opposed to system, libraries. EDITLIB also can create_and
maintain SCOPE system libraries and create deadstart tapes. Its capabilities for user libraries are a subset
of those for system library functions. System programmers should consult the SCOPE 3.4 System Program-
mer’s Reference Manual for information about manipulating the running system or constructing deadstart
tapes.

60307200 C 7-1

The library tables will accommodate a maximum of 2047 programs, with the restriction that the total
programs do not have more than 2047 entry points.

The user library file generated by EDITLIB can be on mass storage or magnetic tape. If the library file
name is assigned to a tape file before EDITLIB is called, the library will be in sequential format on that
tape, with the library tables preceding the programs. Otherwise, the library will be in random format on
mass storage. When the random library file is to be retained as a permanent file, the library file name
should be associated with a permanent file device before EDITLIB is called.

A user library should not be copied to tape; although the copy operation will complete, the resulting
sequential file cannot be used subsequently by the loader or modified by EDITLIB. Further, caution must be
used if the copied tape is used as the source of programs in the creation of a new library. Since replacement
or deletion of programs in a library is accomplished by deleting only addresses, the invalid programs will
still be available and will be copied to the tape. Unless the user knows the tape structure and positions the
file accordingly, EDITLIB search procedures may find and add the obsolete programs.

The user is responsible for cataloging and attaching any permanent files that will be used by EDITLIB
while performing the task specified on each directive.

EDITLIB CONTROL CARD FORMAT

The EDITLIB utility routine is called by an EDITLIB card in the control card record. A parameter on this
card specifies the file that contains EDITLIB directives. These directives provide details for creating or
manipulating the user library.

The control card is:

EDITLIB(USER,I =Ifndir,L =Ifnlist)

All parameters are optional.

USER Distinguishes user library definition from system library; default is USER.
Ifndir Logical file name containing directive record; default is INPUT. I is identical to I=INPUT.
Ifnlist Logical file name to receive listable output; default is OUTPUT. L is identical to L=OUTPUT.

When the EDITLIB control card is encountered during job processing, EDITLIB will access the next
unprocessed record on the INPUT file, unless the I parameter names another source of directives.

72 . 60307200 C

The following deck structure assembles two program and adds them to an existing library:

jobeard.
COMPASS.
FTIN.
EDITLIB(USER)
7/8/9 end-of-record
COMPASS program to be assembled
7/8/9
FORTRAN Extended program to be compiled
7/8/9
Directives instructing EDITLIB to add programs from LGO file
6/7/8/9 end-of-file card

EDITLIB DIRECTIVE FORMAT

The directive record for EDITLIB must contain only valid directives. EDITLIB considers the first 72
columns of each 80 column card or 90 column card image to contain a separate directive. Blanks may be
used freely; EDITLIB removes them except in a literal or comment field. Required format for directives is
similar to SCOPE control card format.

EDITLIB requires parentheses around parameter lists; the format is:
keyword. or keyword(parameter list)

Required parameters must appear in the order given; optional parameters can appear in any order after the
required parameters. Optional parameters have the format parameter =value; all others are required.

EDITLIB directives perform several functions:

Establish library limits

Create or modify library
Manipulate files or records

List statistical data

Set parameters for INTERCOM use

Add comments to output file

60307200 A 7.3

Directive format and use is summarized below:

oL
IBRARY(1i ,
LIBR (libname {NEW
FINISH.
ENDRUN.

ADD(prog,from,AL=1level,FL=£f1,FLO0=0)

REPLACE(prog,from,AL=1level ,FL=f1,FL0=0)

DELETE(prog)
SETAL(prog,level)

SETFL(prog,fl)

SETFLO(prog., {2})

CONTENT(prog,l£fn)
LISTLIB(prog,1lfn)

REWIND(1£n)

n
SKIPF({prog},lfn)

SKIPF(n,1fn,F)

n
SKIPB({ },lfn)
prog

SKIPB(n,1fn,F)

*/

Defines library to be created or modified

Terminates library manipulation
Stops execution of directives
Adds new program to library
Replaces program on library
Deletes program in library
Changes access level

Changes field length requirements
Sets FL override bit for INTERCOM

Lists program data from file
Lists program data from library file

Rewinds file

Skips ahead n records or to prog
Skips n files forward

Skips back n records or to prog start

Skips n files backward

Inserts comments in output

© 60307200 A

The prog parameter in these directives can take several forms:

A single program name can be stated. EDITLIB will search the entire file specified to find the
named program.

An asterisk can replace the program name. EDITLIB will process all programs from the current file
position to end-of-file.

A range of programs to be included in directive execution can be specified with a + between the
first and last programs to be processed. In a file with records A,B,C,D,E, the range B+D repre-
sents B,C,D.

A range of programs to be excluded from directive execution can be specified with a — between the
first and last programs to be considered. In a file with record A,B,C,D,E, the range B—D represents
A and E.

An asterisk can replace either the first or last program named in a range. For the first named
program, it is equated with the current file position; for the last, it is equivalent to end-of-file.

For the ADD, REPLACE, and REWIND directives only, several individual programs can be stated. In a
file with records A, B, C, D, E, the parameter D/B/E represents D and B and E. EDITLIB will search the
entire file specified to find the named programs.

A single program to be excluded from directive execution can be specified with a dash (—) preceding the
program name or with the program name appearing at both ends of the range of programs to be excluded.

Program names must not exceed 7 characters. Any character supported by SCOPE is legal. If characters
EDITLIB uses for delimiters are in a name, the entire name must be written as a literal between dollar
signs. These characters are:

$ () — + = ., / blank

Any dollar sign to be included in the program name must be prefixed by a second dollar sign.

The EDITLIB search procedure for programs named in directives depends on whether the file named is in
library format. To find programs on files not in library format, EDITLIB reads the prefix table accompany-
ing each assembled program from the current file position to the end-of-file, then rewinds and searches the
file from its beginning if necessary. However, the file INPUT will not be searched. To find programs on a
library file, the file is searched by reading the program name table and searching the table for the first and
last program name. In both cases, the last named program in a range must be locatable after the first one
named.

The interpretation of the * also depends on file format. The current position of a library file is always
defined to be the beginning of the program name table. Current position of other files is simply the
beginning of the next record on the file, which can be controlled by the user with file manipulation
directives. An * replacing the last program is equivalent to stating end-of-file.

60307200 C 7-5

Examples of names acceptable to EDITLIB:

Parameter Format Resulting Program Name
PROGI12 PROGI12

$PROG125%% PROGI12$

$1-0% 1-0

AA BB AABB

SAA BBS AA BB

3AB 3AB

Library file names should not begin with ZZZZ7Z since these are reserved for system names.

COMMENTS IN DIRECTIVE RECORD

Comments on separate cards may be interspersed freely in the directive record. A comment is not executed
but is listed in the material output by EDITLIB. To be considered a comment, columns 1 and 2 must
contain the characters

*/

Any SCOPE characters may follow the slash.

CREATING A LIBRARY
DELIMITING LIBRARIES

The library to be manipulated is identified in a LIBRARY directive. Every directive record calling for
library creation or modification must have at least one such directive. A FINISH directive is required to
mark the end of library construction. File manipulation cards may appear between LIBRARY and FINISH.

LIBRARY must precede all other directives except comments or file manipulation directives.

OLD
LIBRARY(1lib e,
(libnam {NEW })

This directive specifies the library to be created (NEW) or modified (OLD). The libname parameter is both the

library name and the name of the file containing the library during this job. OLD must be given when an existing
library is referenced by libname. NEW must be given when libname refers to a new library or directory.

7.6 60307200 D

To indicate that library manipulation is complete, the directive is:

FINISH.

An ENDRUN should follow FINISH; if ENDRUN is not supplied by the user, EDITLIB will insert it.

STOPPING EXECUTION

During directive processing EDITLIB first interprets each directive in the record excluding comment cards.
Execution begins after all directives are interpreted.

When an ENDRUN is encountered during the execution phase, execution stops. In most instances EN-
DRUN will be the last directive in the record. By placing it earlier in the record, syntax of following
directives can be checked but an error will not produce premature termination.

Format is:

ENDRUN.

ADDING PROGRAMS DURING LIBRARY CREATION

ADD directives between LIBRARY (Ifn,NEW) and FINISH directives create a user library. Programs can
be added from any file attached to the job, as long as the program contains the necessary prefix table
material at the beginning of the assembled information.

Programs may be added to a user file from an existing library by using the optional parameter, LIB, with
the ADD or REPLACE directives. It directs EDITLIB to search the program name table of a file that is in
library format. The search of the PNT is important in that, when a DELETE or REPLACE is performed
on a random library file, the original program on the file is not destroyed; only the pointer to it is removed.

Optional AL, FL, and FLO parameters on the ADD directive provide information primarily for use by
INTERCOM. AL specifies access level, which determines whether or not a given INTERCOM user can
attach and use the program named. AL also is used to mark programs for any access by control cards.
Unless the rightmost bit of the binary representation of this octal parameter is set to 1, the program is
available only to internal calls.

The FL parameter, meaningful only for central processor programs, indicates the central memory field
length necessary to load and execute this program and any overlays or other programs it may call. INTER-
COM requests the field length indicated by this parameter whenever a user calls for the program. The
system routine that reads control cards also uses FL when in the reduce mode.

The FLO parameter is strictly for INTERCOM use. If the field length required for program execution
exceeds the default field length normally assigned to an INTERCOM user, the FLO parameter should be set
to 1. Then INTERCOM will allow the user to expand his field length to execute properly.

The SETAL, SETFL, and SETFLO directives can be used to change the values of these parameters in an
existing library.

60307200 C 7-7

ADD directive format:

ADD(prog,from,AL=1level ,FL=£1,FLO=0,LIB)

prog Name of program or range of programs to be added.
from Logical file name where assembled program currently resides.
level Optional access level parameter of 1-4 octal digits. If the program is to be accessed by a

control card, level must be an odd number. Default is 0.

fl Optional parameter of 1-5 octal digits specifying field length required for program
execution. Default is 0. The field length used will be that specified on the job card or

the last RFL card encountered.

o Optional field length override bit. Default is 0. O no override allowed; 1 specified on job card

may override field length specified in PNT.

LIB Optional parameter indicating thatfrom is a library name.

If AL, FL, or FLO values are wanted in the new library tables, they must be explicitly stated in the
directive, even if the addition is to be made from an existing library.

Examples of valid formats and their results:

7-8

ADD(*,TREES)

ADD(RAINIER,MTS,FL=14400)

ADD(REDWOOD-SEQUOIA,TIMBER)

ADD(*+ASPEN,YELLOW)

ADD(BIG/SHARP,LEAF)

ADD(ALP,LIBR,LIB)

All programs between current position and
the end of file TREES will be added.

All of file MTS is searched for program
RAINIER; field length of 14400 is required
to execute RAINIER.

All programs on file TIMBER, except RED-
WOOD, SEQUOIA, and all those between,
are added.

All programs from the current position of
YELLOW through program ASPEN are
added.

File LEAF is search as needed and programs BIG
and SHARP are added.

The program name table of library LIBR is
searched for program ALP which, when lo-
cated, is added to the current library.

60307200 C

MODIFYING EXISTING LIBRARIES

Existing user libraries in random file format are modified by the ADD, REPLACE, and DELETE directives
that change programs in the library. The SETAL, SETFL, and SETFLO directives change parameters in
the program name table of entries for existing libraries. These directives must be issued between the
LIBRARY(Ifn,OLD) and FINISH directives.

The ADD directive is the same as that used to create the library; all directive parameters are the same. If
the program to be added duplicates the name of a program already in the library, an informative message
will be issued; and the new record will not be added to the library.

ADD(prog,from,AL=1level ,FL=f1,FLO=0,LIB)
The REPLACE directive differs from the ADD directive in that it causes a program with an identical name
to be deleted from the library before the new program is added. If a program with that name does not
exist, an informative message will be issued; and the new program will be added to the library.
REPLACE(prog,from,AL=1evel ,FL=f1,FLO=0,LIB)
Parameters have the same meaning as those of the ADD directive. AL, FL, and FLO values must be stated
explicitly if values other than the defaults are wanted. Current values in source library or existing library
tables will not be preserved when ADD or REPLACE are used.
Examples of valid formats and their results:
REPLACE(MAPLE, TREES,FLO=1) Existing program MAPLE is deleted; pro-

gram MAPLE is added from file TREES;
FLO is set to 1; FL and AL are set to default

values.

REPLACE (OAK, TREES) Existing program OAK is deleted and re-
placed; FL, FLO, and AL receive default
values.

REPLACE(ACORN, TREE,LIB) Program name table for library TREE is

searched for program ACORN. The named
program is deleted from the current library
and the new program ACORN is added from
library TREE.
The DELETE directive logically deletes all references to the named program from library tables.
DELETE(prog)
prog Name of program to be deleted

Examples and their results:

DELETE(BIRCH+ASH) Programs BIRCH through ASH on library
being modified will be deleted.

60307200 C 79

DELETE (LAUREL-MADRONE) All programs on existing library except LAU-
REL, MADRONE, and those between will be
deleted.

Programs named in a DELETE or REPLACE directive will be logically deleted from the library file.
Records in the file will not be overwritten; but in the case of a REPLACE, the file will be extended with the
addition of a new program. To completely eliminate programs from the library, it is necessary to construct
a new library using the old one as the source.
Fields in tables of existing libraries are changed by the following directives:

SETAL(prog,level)

level New access level of 1-4 octal digits.

SETFL({prog,fl)

fi New field length of 0 to 377777 octal .

SETFLO(prog,o)

o New field length override parameter. O is the default value and does not allow override;

1 allows override.

MANIPULATING SOURCE PROGRAMS OR LIBRARY FILES

File manipulation cards may appear anywhere in the directive record. Alternately, these functions may be
performed by control cards. EDITLIB issues requests to the SCOPE routine CIO to execute these directives.

REWIND(1fn) Rewinds file Ifn.
or

REWIND(1fn/1fn/...1fn) Rewinds all files named.

SKIPF({ErOg} ,1fn) Skips forward n decimal records or to beginning of named program
on file Ifn.

SKIPF(n,1fn,F) Skips forward n decimal files on multi-file Ifn.

SKIPB({ Erog } ,1fn) Skips backward n decimal records or to beginning of named program
on file Ifn.

SKIPB(n,1fn,F) Skips backward n decimal files on multi-file Ifn.

Both the SKIPF and SKIPB directives result in positioning at the beginning of a file or record. Count begins with 1.
When beginning-of-information or end-of-information is encountered, a skip by count is terminated. For a skip by
name, the entire file is searched, if necessary, in the'direction stated. Skip by program name is applicable to sequen-
tial files only.

7-10 60307200 D

LISTING STATISTICS

A list of information about any or all programs on a library file or a file of assembled information is
obtained by the LISTLIB and CONTENT directives. Information listed comes from the program tables
output with every assembled record. It includes:

Program name

Date, time, and compilation or assembly machine

Entry points

External references

AL and FL values

Length of object deck in CM words

Type of program; relocatable or absolute
A library file is listed by:
LISTLIB(prog,lfn)

Part or all of the library can be listed depending on the number of programs indicated by the prog
parameter.

Any file of assembled programs, whether in library format or not, is listed by:

CONTENT(prog,1fn)
prog Program or range of programs to be listed
Ifn Logical file name

Information appearing on the EDITLIB output file as a result of the ADD and REPLACE directives is the
same as that produced by the CONTENT directive.

60307200 A 7-11

USER EDITLIB EXAMPLES

Job MTCREAT creates a sequential user library on a tape.

MTCREAT.
REQUEST(MTLIB,LO,VSN=14444)
REQUEST(SORCEFL,MT,VSN=14445)

FIN.
EDITLIB(USER)
7/8/9
FORTRAN Extended program to be compiled
7/8/9
LIBRARY(MTLIB,NEW)
REWIND(SORCEFL)
REWIND(LGO)

ADD(*+SHASTA,SORCEFL)

SKIPF(3,SORCEFL)
ADD (HOOD,LGO)
ADD(*,SORCEFL)
FINISH.

ENDRUN.

€/7/8/9

MTCHNGE.
REQUEST(MTLIB,LO,VSN=14444)
REQUEST(DIRECTS,NT,VSN=12000)
EDITLIB(I=DIRECTS)

6/7/8/9

7-12

Requests 7-track tape to hold new library
Requests tape with assembled source
programs

Initiates construction of new library MTLIB
Rewinds source file

Rewind binary output from FORTRAN Ex-
tended program

Adds programs from beginning of file
through SHASTA

Skips 3 programs on file

Adds program from LGO file

Adds all remaining programs on SORCEFL
Terminates library construction

Stops execution

Job MTCHNGE modifies the library created above. Directives for EDITLIB are on tape 12000.

60307200 A

Job BIRDS creates a random format library file and makes it permanent. Source files exist on permanent

files GULLSPF and WRENSPF.

BIRDS.

REQUEST (BIRDLIB, *PF)
ATTACH(GULLS , GULLSPF,, ID=PETERSON)
ATTACH(WRENS , WRENSPF, ID-PETERSON)
EDITLIB(USER)
CATALOG(BIRDLIB,BIRDLIBRARY, ID=PETERSON)
7/8/9

LIBRARY(BIRDLIB,NEW)

ADD(*,GULLS)

ADD(CACTUS-HOUSE , WRENS)

FINISH.
ENDRUN.
6/7/8/9

Job card

Requests permanent file device for library
Attaches permanent file as 1fn GULLS
Attaches permanent file as Ifn WRENS
Calls EDITLIB

Catalogs library as permanent file

Establishes library name

Adds all files from GULLS

Adds all files from WRENS except CACTUS
through HOUSE

Terminates library

Stops execution

Job CHECK uses EDITLIB to check syntax of all directives, but does not execute.

CHECK.

EDITLIB(USER)

7/8/9

ENDRUN.

LIBRARY (OLDLIB,OLD)
DELETE (SPARROW)
REPLACE (HAWK , INPUT , FLO=0)
SETAL(SHRIKE,777)
SETFLO(ROBIN,1)

SETFL (CREEPER, 55000)

FINISH.
6/7/8/9

60307200 A

Stops execution here

7-13

UTILITY PROGRAMS 8

A set of peripheral processor and central processor utility programs exists which can be called by control
cards or by keyboard entries at the operator console.

Utility jobs conform to the normal deck structure. The job deck contains the following cards:

Job card

Request cards Equipment assignment
Program cards Data operations
6/7/8/9 End of job

If only utility programs are to be executed, a short field may be specified on the job card. A field length of 12000
octal is adequate for all copy utilities. The programmer need not specify field length as the default values are suf-
ficient for most jobs.

Equipment should be requested for all files which do not reside on public devices. Tapes can be rewound
and positioned upon request. Each utility program is called by specifying its name. Parameters for execu-
tion of the program appear in a list after the name.

Error recovery is handled by SCOPE. If a parity error persists after a number of recovery retries, a parity
message appears on the display console; and the copy operation may be abandoned by the operator because
of the indeterminate state of the data.

FILE COPYING

The copy utilities discussed below expect input files to be delineated by either a logical end-of-record marker that is
a SCOPE logical record terminator of level 17 or a double tape mark. Complete files can always be copied. SCOPE
logical records within those files can be extracted selectively when a SCOPE logical record level is specified in the
utility call. However, records within files created by Record Manager cannot be copied unless the file has record and
blocking types equivalent to those of SCOPE logical records.

COPY TO END OF INFORMATION

COPY(filel,file2)
Filel is copied onto file2 until a double end-of-file or an end-of-information is detected on filel. Then both
files are backspaced over the last file mark if a backspace is legal on the device. If parameters are omitted,

files INPUT and OUTPUT are assumed. COPY will not operate on S, L or BCD tapes. It is useful for
binary files, disk files, and SCOPE standard binary tapes.

60307200 C 8-1

COPY BINARY AND CODED RECORDS AND FILES

Files or SCOPE logical records in either binary or coded mode can be copied by one of the four following routines.
The minimum field length for these routines is 5000 octal. When L tapes are being copied, the minimum is 2000
octal, plus the length of the largest physical record to be copied.

COPY BINARY FILE
COPYBF(filel,file2,n)
COPY CODED FILE
COPYCF(filel,file2,n)
COPY BINARY RECORD
COPYBR(filel,file2,n)
COPY CODED RECORD
COPYCR(filel,file2,n)

filel,file2 Name of the input and output files. Information is copied from filel onto file2. If
names are not specified, INPUT and OUTPUT are assumed.

n Decimal number indicating how many files or records are to be copied. If n is omitted,
only one file or record is copied.

COPYBF and COPYCF terminate when the specified number of files are read, or when an end-of-informa-
tion is encountered. Files are delimited by a level 17 on SCOPE tapes or tape marks on S and L tapes.
These routines will not copy past EOF tape labels.

COPYBR and COPYCR terminate when the specified number of records are read or when a file mark is
encountered. For example, if the card specifies 100 records but the file contains only 50 records, the copy
operation terminates after 50 records. When an end of reel is detected, the next reel is obtained, label
checking/writing is performed if the tape is labeled, and the function continues normally on the next reel.
If an EOF is encountered on the input file before the record count is exhausted, the copy operation will
cease (but not abort) at that point. A message is entered in the dayfile. An EOF is written on file2 and
backspaced over.

A formatted FORTRAN write to disk may produce more than one line per logical record. When COPYCF or
COPYCR is used to copy the file to an S tape, it will not detect the line images as separate records.

If an end-of-information is encountered on the input file before the record/file count is exhausted, the copy

operation will cease (but not abort) at that point. A message is entered in the dayfile; an EOF is written on
file2.

82 60307200 C

Although not primarily implemented for that purpose, the copy routine is capable of limited format

conversion. The following matrix shows format conversion copies that can be handled successfully:

OUTPUT
SCOPE S L
SCOPE Yes Yes T Yes
Binary
INPUT Yes
S BCD Yes YeS
Yes T
Binary
L Yes BCD Yes T Yes
Yes T

7 This kind of conversion cannot be guaranteed. Maximum record size for S tape output files is 512 words (5120
coded characters). Maximum physical record size for coded SCOPE tapes is 1280 characters. If these sizes are ex-

ceeded, the job is terminated.

COPY BCD FILE

COPYBCD(filel,file2,n)

This routine copies files to a magnetic tape where each line image is a discrete physical record, so the tape
may be listed off line. The decimal number of files to be copied, n, are copied from filel to file2. Only one

file is copied if n is omitted.

Each line of the input file is assumed to be terminated by 12 bits of zero. The output file is written in BCD.

Each line is a physical record of 148 characters, with the line terminator zeros converted to blanks.

When an EOF is encountered on the input file, a printer carriage control character for a skip to top of next
page is written on the output file before an EOF is written. Thus, the final printed output begins each file at
the top of a new page. Stray characters appear at the top of this page as a result of the skip and EOF marks

on the tape.

60307200 C

8-3

Control card formats and the interpretation follow:

COPYBCD. (INPUT,OUTPUT,1)
COPYBCD(n) (INPUT,QUTPUT,n)
COPYBCD(filel) (filel, OUTPUT,1)
COPYBCD(filel,n) (filel,OUTPUT,n)
COPYBCD(filel,file2) (filel,file2,1)
COPYBCD(filel,file2,n) (filel,file2,n)

COPY SHIFTED BINARY FILE

COPYSBF(filel,file2)

A single file is copied from filel to file2, each line is shifted right one character, and a leading blank
character is added at the beginning of the line. If parameters are omitted, INPUT, OUTPUT are assumed.
Neither filel nor file2 can be a coded mode tape, since files are assumed to be binary.

This routine is used to format a print file where the first character of each line is to be printed rather than treated
as a control character. A blank character is added to the beginning of each line, which will result in single line
spacing when the file is printed. A minimum field length of 10000 octal is required for COPYSBEF.

F.xample:

The following cards produce a listing of the decks on the COMPILE file produced by UPDATE.

LSTDECK.

UPDATE(Q)

COPYSBF (COMPILE, OUTPUT) Compile file rewound automatically (by UPDATE)
7/8/9

*COMPILE decknames

6/7/8/9

8-4 60307200 C

COPY VALIDATION

One or more consecutive SCOPE logical records on one file may be compared with the same number of
consecutive SCOPE logical records on another file to determine if they are identical. COMPARE is often
used to verify a tape copy operation.

COMPARE(filel,file2,n,lev,e,r)

filel,file2 Files to be compared.

n Number (decimal) of SCOPE logical records in filel to be compared to file2. Default
value is 1.

lev End-of-record level number (octal). Default value is 0.

e Number (decimal) of non-matching word pairs to be written to the OUTPUT file for

each non-matching record. Default value is 0.

T Number (decimal) of non-matching records to be processed during the comparison.
Included in non-matching record OUTPUT file if e parameter is given. Default is
30000. :

Comparison begins at the current position of each file and continues until the number of end-of-records of
specified or higher level has been passed over. If all pairs of records are identical, the dayfile message is
GOOD COMPARE; otherwise, it is BAD COMPARE. Additional information which can identify the non-
matching records requires use of the ¢ and r parameters.
Examples:
COMPARE (RED, BLUE)
Compares next SCOPE logical record on file RED with next record on file BLUE.
COMPARE (RED, BLUE, 6)
Compares next six SCOPE logical records regardless of level or end-of-record marks; but each end-
of-record on file RED must have the same level as the corresponding end-of-record on file BLUE
for a good compare.
COMPARE(RED, BLUE, 3,2)
Compares two files from their current positions to and including the third following end-of-record mark
having a level number of 2 or greater. Both the SCOPE logical records and end-of-record levels must
match for a good compare.
A bad comparison produces the message BAD REC.n. on the output file, where n is the record number,

counting the first one read on each file as number 1. To obtain more information, errors and records
must be specified as parameters.

60307200 D 8-5

COMPARE(GREEN,BLACK,3,2,5,1000)

This will do the same comparison as the previous example; but will list, on OUTPUT, the first five
discrepancies between corresponding words in the files, together with their positions in the record.
Positions are indicated in octal, counting the first word as 0. The limit of pairs of records to be
read in which discrepancies are found is 1000; it is chosen as an infinitely large number greater
than the number of records to be compared, because details are wanted about all discrepant rec-
ords. If two long files were to be compared, for instance, 20 might be used as the records parame-
ter, so that a reasonably large number of discrepancies would be described in detail; but if, through
an error, the two files were completely different, an enormous and useless listing would not be
produced. Furthermore, the comparison will be abandoned if this limit is exceeded, and the files
will be left positioned where they stand.

A discrepancy between the levels of corresponding ends-of-records will be listed on OUTPUT, and
the comparison will be abandoned, leaving the files positioned immediately after the unlike end-of-
records.

Mode need not be specified in the COMPARE card. It is handled in the following manner, using the last
example for file names. The first record of the first-named file (GREEN) is first read in the binary mode. A
redundancy check is produced; the file is backspaced and re-read in coded mode. If another redundancy
check occurs, the fact is noted in file OUTPUT, the corresponding record of the second-named file
(BLACK) is skipped over, and the process begins again. If the coded read is successful, the corresponding
record of the BLACK is read in coded mode. If this record of BLACK produces a redundancy check, the
fact is noted in file OUTPUT, and nothing further is done with that record. Each record of file BLACK will
be read in the same mode as that in which the corresponding record of GREEN was successfully read; but
if the record of GREEN was unsuccessfully read in both modes, the record of BLACK will be read in the
same mode as the preceding record of BLACK. Once a record of GREEN has been read without redun-
dance in one mode of the other, following records of GREEN are read in the same modc until a changg is

forced by a redundancy deck.
Mass storage records can be read indifferently in either mode, so that the above strategy imposes no

difficulty if a tape file is being compared with a mass storage file; as long as the tape file is named first on
the COMPARE card.

COPY X TAPE TO SCOPE TAPE

The COPYXS routine converts binary X tapes, supported by previous versions of SCOPE, to SCOPE
standard format tape. The binary X tape logical structure contains 512-word PRU’s with short PRU’s of
sizes that are variable multiples of central memory words or 136 character PRU’s.

COPYXS(xlfn,scplfn,n)

xlfn Logical file name of the input X tape
scplfn Logical file name of the output SCOPE tape
n Number of files (decimal) to be copied. Default value is 1.

8-6 60307200 A

The COPYXS card is to be used in the following manner:

REQUEST(x1fn,S) Both tapes must be requested as
REQUEST(scplfn,S) S format.
COPYXS(x1fn,scplfn,n)

The output tape will be produced in SCOPE standard format, but it will be flagged in the SCOPE tables as
S format. To read the output tape in the same job, the following control cards would be needed:

UNLOAD(scplfn)
REQUEST(seplfn,MT)

The COPYXS routine cannot determine when end-of-information occurs on an X tape; therefore, at least n
files to be copied must exist on the X tape. Neither the input nor the output tape is rewound after conver-
sion. After the requested number of files has been copied, the output tape is backspaced and positioned
directly in front of the first tape mark preceding the SCOPE EOF trailer label. Subsequent files may be
copied to the output tape; however, the block count in the trailer label will be incorrect.

FILE CONSOLIDATION (COPYN)

Files may be consolidated or merged with COPYN. SCOPE logical records from up to ten binary input files
may be extracted and written on one output file. Input may be from tape, card, or mass storage files. Output
may be to a tape, card, or mass storage file.

Directive cards associated with the COPYN routine determine the order of the final file. Several tapes may
be merged to create a composite tape. A routine may be selected from a composite tape, temporarily written
on a scratch tape, and transmitted as input to a translator, assembler, or programmer routine, eliminating
the need for tape manipulation by the second program. In its most basic form, COPYN can perform a tape

copy.

COPYN(f,outlfn,inlfnl...)

f Format of output record:
zero Copy records verbatim
non-zero Omit ID from record
outlfn Output file logical file name
inlfn Input file logical file name

60307200 A 8-7

SCOPE logical records to be copied may or may not have an ID prefix table containing the name of the

program or the name associated with the record. A record ID format consists of the first seven characters of

the second word of each record. If records do not contain an ID, record identification cards must specify

the record number—the position of the record from the current position of the file. Records without an ID
re copied verbatim to the output file.

The format of the binary input files depends on the storage media. A binary tape file consists of the
information between the load point and a double EOF; this file may contain any number of single EOF
marks. A mass storage file ends at end-of-information; a card file must be terminated with EOR card.

On the output file, a file mark for an output tape is written by using a WEOF card in the desired sequence;
or it may be copied in a range of records and counted as a record.

Deck structure for a COPYN job in which all input files are other than INPUT:

Jobcard

Request cards as necessary
COPYN call

7/8/9

COPYN directives

6/7/8/9

DIRECTIVE CARDS

Directive cards for COPYN use are REWIND, SKIPF, SKIPR, WEOF and record identification cards. These cards
are read from INPUT when COPYN executes. The directive cards are free-field; they may contain blanks, but must
include the separators indicated in each card description. The ordering of the directive cards establishes the material
written on the output file. Directive cards are written on the system OUTPUT as they are read and processed. When
an error occurs, the abort flag is set; and a message is printed on OUTPUT followed by the card in error. This card
is not processed, but an attempt is made to process the next directive card. When the last directive card is processed,
the abort flag is checked; if it is set, the job is terminated. Otherwise, control is given to the next control card.

The directives are described below:
REWIND(1fn)
The REWIND directive generates a rewind of the named file, file p which must be one of the input
or output file names given on the COPYN control card. The file may not be the system INPUT file.
SKIPF(1fn,n)
With this directive, n (decimal) file marks on a tape file Ifn may be skipped forward (+n) or

backward (—n). Requests for other types of files will be ignored. No indication is given when
SKIPF causes a tape to go beyond the double EOF or when the tape is at the load point.

8-8 60307200 C

SKIPR(1fn,n)

With this directive, n (decimal) records may be skipped forward (+n) or backward (—n) on tape
file Ifn. Zero length records and file marks must be included in n. Requests for other types of files

will be ignored.

WEOF (1£n)

This directive writes a file mark on file Ifn, which must be an output file named on the COPYN

control card.

The record identification card contains the parameters which identify a SCOPE logical record or set of
records to be copied from a given file.

pl,p2,p3

pl

p2

p3

First record to be copied or the beginning record of a set. The name associated with the
record or a number giving the position in the file may be specified.

Last record to be copied in a set of records:

name SCOPE logical records pl through p2 are copied. p2 must be located
between pl and the file end.

decimal integer Number of records to be copied, beginning with p1. Zero length records
and file marks are counted. Copying stops when the file end is en-
countered, even if the count has not been reached.

* p!l through an EOF mark are copied.

** pl through a double EOF mark are copied.
/ pl through a zero length record are copied.
0 or blank Only pl is copied.

Input file to be searched. If pl is a name, and p3 is omitted, all input files declared on
the COPYN card are searched until the pl record is found. If it is not located, a
diagnostic is issued. If pl is a number and p3 is omitted, the last input file referenced
1s assumed. If this is the first directive card, the first input file on the COPYN card is
used.

Examples of record identification cards:

SIN,TAN,INPUTA Copies all SCOPE logical records from SIN through TAN from file
INPUTA.
SIN,10,INPUTA Copies 10 SCOPE logical records from file INPUTA, from SIN

60307200 D

through SIN +9.

89

SIN,TAN Searches all input files beginning with current file or first input file. When
SIN is encountered, all logical records from SIN through TAN are copied.

SIN,,INPUTA Copies SCOPE logical record SIN from file INPUTA.

1,TAN, INPUTA Copies the current SCOPE logical record through TAN from file
INPUTA.

1,10,INPUTA Copies 10 logical records, beginning with the current logical record

on file INPUTA.

1,*,INPUTA Copies the current logical record through the first file mark encoun-
tered on file INPUTA.

FILE POSITIONING FOR COPYN

Files manipulated during a COPYN operation are left in the position indicated by the previously executed directive.
The file containing p1 will be positioned at the record following p2. Other files will remain effectively in the same

position.

When COPYN is searching for a named record and p3 has been omitted, each input file is searched in turn until
either the named record is found or the original position of the file is reached. The job INPUT file, however, is not

searched end around.
In contrast to the end around search, a copy operation does not rewind files. An end-of-file términates a copy even

if the record named in p2 has not been encountered. Since the output file is not repositioned after a search, COPYN
may be re-entered. Therefore, the programmer is responsible for any REWIND, SKIP, or WEOF requests referencing

the output file.

COPYN does not check for records duplicating names on other files. If such records exist, the programmer is respon-
sible for them. COPYN will use the first record encountered that matches the name on a directive card.

Examples of file positioning:

1. Record identification card: REC, , INPUT1

Input file INPUTI ABLE BAKER - REC SIN TAN ZEE 00

If INPUTI were positioned at TAN, TAN and ZEE would be examined for REC. The double EOF
would cause ABLE to be the next SCOPE logical record examined, continuing until REC is read and
copied to the output file. INPUTI1 would then be positioned at SIN.

60307200 C

2. Record identification card: RECA

Input file INPUTI, EE
positioned at B1 Al B1 ... 21 | oo

FF
Input file INPUT?2, EE
positioned at load point A2 RECA D2 (I)= 2
Input file INPUT3, A3 B.:Z c3 - EE
positioned at load point o ?: CF)

All records from Bl through Al are searched to find RECA; this repositions INPUTI to Bl. A2 is
searched, and when RECA is found, it is copied to the output file; INPUT2 remains positioned at D2.
INPUT3 is not searched.

3. Record identification cards and binary records on INPUT file. Directive cards are:

REC, , INPUT
JOB1,J0B3,INPUT
ABLE, ,IN2
7/8/9

REC (binary)
7/8/9

JOB1 (binary)
7/8/9

JOB2 (binary)
7/8/9

JOB3 (binary)
7/8/9

Because the INPUT file is not searched end-around, REC and JOB! through JOB3 must directly follow

the requesting record identification cards in the order specified by them. An incorrect request for an
INPUT record terminates the job.

RECORD CONSOLIDATION (COMBINE)

COMBINE(filel,file2,n)
For this operation, n(decimal) SCOPE logical records are read from file filel and written as one SCOPE logical
record (level 0) onto file file2. The file is not positioned prior to initiating this operation. If the files filel and file2

have not been previously defined by REQUEST cards, they will be assumed to be on a public device. Files cannot
be on S or L tapes. Binary input can produce binary output only.

60307200 C 8-11

PROGRAM REPLACEMENT (COPYL)

The COPYL utility routine allows named programs in an existing file to be replaced. The files must reside on mass
storage or on SCOPE format tape. Two input files are used: the first can contain programs with a prefix table as
output by the SCOPE compilers or assembler, overlays and segments, and deadstart PP programs that do not have
prefix tables. The second input file must contain programs with prefix table information which are to replace
programs with the same name on the first input file. The output file will duplicate the first input file using programs
from the second input file as appropriate. Since the replacement programs must be identifiable by name, COPYL
cannot be used to replace overlays or deadstart records.

COPYL(extlfn,replfn,outlfn,prog)

extlfn Logical file name of existing file; default name is OLDLIB

replfn Logical file name of file with new programs: default name is BINARY
outlfn Logical file name of output file: default name is NEWLIB

prog Optional name of last program on extlfn to be copied to outlfn

The logical file names and program names can contain only letters and numbers. A literal delimited by $
will not be accepted.

On file replfn, programs may be in any order. When COPYL processing begins. replfn is rewound and
examined to identify the programs on it. Then the file is rewound in anticipation of copy operations. Files
extlfn and outlfn should be positioned by the user if necessary: they are not rewound by COPYL. Programs
on extlfn are copied to the output file in the order they are encountered. substituting programs from replfn
as appronriate,

The output file will have the same number of programs as the file of existing programs. unless the prog
parameter is used in the COPYL call. The prog parameter will terminate processing. Otherwise, an end-of-
file on extlfn terminates COPYL, with an end-of-file being written to the output file.

As programs are copied to the output file, a message identifying the program is sent to the dayfile. Any
programs on file replfn which do not exist on extlfn are similary identified. Consequently. it is possible to
use COPYL to obtain a listing of programs on a file by declaring that file the replacement file for a dummy
input file; as in:

COPYL(DUMMY,GOODLFN,DUM)

Since no programs with matching names exist on file DUMMY. all programs on GOODLFN will be listed
in the dayfile.

8-12 60307200 C

MULTI-FILE TAPE LISTING (LISTMF)

LISTMF requests a list of the contents of labeled multi-file set tape, mfn. The multi-file set must have existing status.
LISTMF (M=mfn,P-p)

LISTMF rewinds the multi-file set, mfn, and then positions to file p. If p is absent, a value of one is assumed. The
contents of the label are extracted from the buffer and written to the OUTPUT file. Each succeeding file is posi-
tioned, specifying the previous number plus one. Files are positioned and labels are listed until end-of-multi-file-set
status is returned (code 21). The set remains positioned at end-of-set. An example of multi-file tape processing
appears on page 4-28.

OCTAL CORRECTION ROUTINE

The LOC utility program may be called with a control card or from the keyboard. Octal corrections must
appear in a separate record on the INPUT file. They are entered in central memory of the job field length.
The addresses to be modified can be cleared before corrections are made.

Control card format may be:

LOC.

LOC(to)

LOC(from,to)

to Last relative address to be cleared; clearing will start at RA.
from First relative address to be cleared.

LOC can be used to clear memory by providing an empty record in the INPUT file, as in:

Jobcard.
LocC.
7/8/9
6/7/8/9

The octal correction cards must have an address beginning in column 1: leading zeros may be dropped in
the address. The data word begins in column 7; spacing in the data word is not important but the word
must contain 20 digits.

PRESETTING UNUSED MEMORY

The Loader Reference Manual should be consulted for a description of how unused core memory may be preset
prior to execution of a loaded program.

60307200 D 8-13

DEBUGGING AIDS 9

Debugging aids include DUMP and TRAP; requests for their use are submitted with normal jobs. TRAP is
described in full in the LOADER Reference Manual.

DUMP

The function of the dump program is to enable a programmer to obtain a printed output when the job
terminates which represents the contents of selected memory areas containing job-related information. The
dump can be obtained in a variety of formats, and can be produced upon either normal or abnormal
termination of the job.

TYPES OF DUMPS AND DMP CONTROL CARDS

Five types of dumps are possible: relative, control point area, exchange package, absolute, and ECS. All
except the ECS dump are identified at the beginning of the printout along with the call that produced the
dump. '

The dump control card is written in any of three forms:
DMP(from,to)

DMP(to)
DMP.

Portions to be dumped are selected by specifying a first word address (from parameter) and a last word
address (to parameter) on a DMP control card, in a console entry, or from a CP program. If the from
parameter exceeds the field length, no dump results unless an absolute dump has been requested.

RELATIVE DUMP

This dump may include all or any part of the job field length (FL) from RA through the last word address
(RA+FL). If the last word address exceeds FL, FL will be substituted instead.

DMP(x,y)
DMP(y)

If the from/to addresses specified by x and y are numeric, they must be expressed as octal numbers. If only

y is specified, x is to be zero and the dumped area extends from RA through the address specified by y
relative to RA.

60307200 A 9-1

Examples:

DMP(500,6500) Produces a dump of locations 500 octal through 6500 octal relative to RA.

DMP (6000) Produces a dump of the locations from 0 through 6000 octal relative to RA.

CONTROL POINT AREA DUMP

This dumps 200(octal) words of the control point area. The value specified for the x and y parameters must
be equal and must not be zero.

Format: DMP(x,YV)
Example: DMP(1,1)
EXCHANGE PACKAGE DUMP

The resulting dump consists of the following three parts:
The exchange jump package.
The first 100(octal) locations (RA to RA+77) of the FL.

100(octal) locations before and after the address to which the P register points, provided they are
within the FL.

The following information is stored in the 16-word exchange package.

P Program register contents

RA Central memory address of beginning of user field length

FL Central memory address of field length limit

EM Error mode

RE ECS reference address

FE ECS field length

MA Monitor address applicable only to machines with monitor exchange jump instructions

9-2 60307200 A

AO0-A7 Contents of A registers 0-7
B1-B7 Contents of B registers 1-7
X0-X7 Contents of X registers 0-7

When the exchange jump package is dumped, the following information is given also if addresses are
within the field length. A message **OUT OF RANGE** appears if they are outside the field length.

C(A1)-C(AT) Contents of addresses listed in registers A1-A7
C(B1)-C(B7) Contents of addresses listed in registers B1-B7

If the P register equals zero, the P address in bits 30-47 of RA+0 will determine the locations to be
dumped.

If the P register or the P address in RA+0 is less than 200(octal), the first address dumped will be
100(octal).

If the P register and P address in RA +0 are both zero, part 3 will not be dumped.
Format: DMP.
DMP(0)

DMP(0,0)

This dump appears without a user call when a job terminates abnormally.

ABSOLUTE DUMP

All locations in central memory may be dumped whether they are within the FL or not. The x parameter
must be six octal numbers and the first must be 4, 5, 6, or 7. DMP substracts 4 from this digit to determine
the absolute address to be dumped.

If the y parameter is less than 400000(octal), it is treated as y+400000. If only the y parameter is specified, it
must be greater than 400000; x is assumed to be 400000. For example, DMP(400000,405000) dumps the first 5000
words in central memory. If the x parameter is greater than the central memory FL, no dump will result. If the y
parameter is greater than central memory FL, it will be adjusted to avoid wrapping around central memory.

60307200 D 9.3

x Parameter Maximum CM Address Dumped

4XXXXX 77 777 (32K)
SXXXXX 177 7717 (65K)
6XXXXX 277 777 (98K)
TXXXXX 377 777 (131K)
Format: DMP(x,¥)

The installation may install SCOPE such that absolute dumps cannot be made.

ECS DUMP
A dump is produced of the specified area of ECS.
Format: DMPECS(x,y,f,1fn)

ECS from location x to y is dumped. The dump begins at the closest multiple of 10(octal) less than or equal
to x, and ends at the closest multiple of 10(octal) greater than y-1.

f Selects the print format per line according to the value:
O0orl 4 words in octal and in display code.
2 2 words in 5 octal digit groups and in display code.
3 2 words in 4 octal digit groups and in display code.
4 2 words in octal and in display code.

Ifn Specifies the dump file; if absent or zero, file OUTPUT is assumed.

DUMP FORMATS

To obtain a dump at program termination, DMP cards may be placed anywhere after the control card that
executes the programs. To obtain a dump at abnormal termination, DMP control cards must follow the
EXIT control card.

The standard dump option produces an octal core dump when the DMP control card is encountered. Each
line of storage printed contains up to four central memory words, with the address of the first word at the
beginning of the line. Printing of a central memory word is suppressed when that word is identical to the
last word printed. When the next non-identical word is encountered, its address is printed and marked by a
right-pointing arrow.

9.4 60307200 A

MODE ERRORS

The mode error shown in the exchange jump package and listed on a job dayfile classifies the error which
caused job termination. As explained with the MODE control card in section 4, mode conditions can be

overridden to allow the job to continue in spite of the error.
Mode errors reported from job termination are:
0 Program attempted to jump to location 0
1 Address referenced outside field length
2 Infinite operand used
3 Address out of field length, or infinite operand
4 Indefinite operand used
5 Address is out of field length or indefinite operand used
6 Infinite or indefinite operand used
7 Infinite or indefinite operand used, or program attempted to jump to location 0

10 Program attempted to use an exchange jump instruction that does not exist on the hardware

60307200 C

9-5

LOAD MAP

A map of central memory after programs are loaded can be obtained by the MAP control card.

MAP (option)

Option Extent of map to be produced
ON Full map

OFF No map

PART Map but omit entry point address

The map will appear on the printed output file to show items such as type of load, location of programs,

common blocks and tables, and entry points. Load maps of system library program such as the compilers
are never produced.

The selected option will remain in effect until another MAP card is used or the job ends. When MAP does

not appear in the control cards or as a parameter on a loader control card, an installation default option is
used.

For further information refer to the LOADER Reference Manual.

9.6 60307200 A

CHECKPOINT/RESTART 10

A job may be ended as the result of machine malfunction, operator error, or program error. Such an
abnormal end may occur at any time during program execution. Valuable machine time would be lost if an
abnormal end during one of the last steps of a long program required restarting the program from the first
job step.

The Checkpoint/restart system facility captures the total environment of a job on magnetic tape; so the job may be
restarted from a checkpoint, rather than from the beginning of the job. Total environment includes all files associ-
ated with the job. Only SCOPE standard format 7-track tape may be used. For mass storage files (drum or disk), the
complete file is captured as well as the relative position within that file. For magnetic tape files, only the relative
position on the tape is captured, so the tape may be properly re-positioned during restart.

Checkpoint/restart cannot handle:

Rolled-out jobs

Random files (except random permanent files)
Multi-file reels

ECS Resident files

ECS Buffered files

Checkpoint/restart will re-attach and reposition all permanent files, including random files and SIS files.
Extend permission to make permanent the information written thus far should be obtained by the user
before he takes a checkpoint. Jobs that request a rewrite in place may not be restartable if the last check-
point taken does not reflect such updated files. The checkpointed program cannot recognize that file updates
have already been made.

.

Each time a checkpoint dump is taken during job execution, a file is written containing all information
needed to restart the job at that point. Each checkpoint dump is numbered automatically in ascending order
by the system. A number of checkpoint dumps should be taken during a long job, so the user can return to
any one of the previous checkpoints to restart his job.

CHECKPOINT DUMP TAPE

With a REQUEST or LABEL control card, the user may specify an unlabeled or labeled tape at installation
default density with checkpoint disposition on which the checkpoint dumps are to be written. REQUEST or
LABEL should precede the checkpoint request. If no such tape is supplied, checkpoint will define an
unlabeled tape with the name CCCCCCC the first time checkpoint is requested, including operator initiated
checkpoints. In any event, only one checkpoint dump tape should be defined for a job.

The following are examples of checkpoint tape definition:

REQUEST(CKPOINT,MT,CK)

60307200 C 10-1

REQUEST(CHECK,MT,CK,HI,IU)
LABEL(CKTAPE,W,L=CHECKPTO01,X=CS)

Checkpoint/restart defines the following files for its use:

CCCcCcCCC
CCCCCCI

CCCCCCM
CCCccco

The user should refrain from using these file names. User SCOPE logical records should not have a level

16, since checkpoint uses level 16 for internal processing.

CHECKPOINT REQUESTS

Checkpoint dumps may be requested by control cards placed in the job stream where the dumps are

desired.

Control card format is:

CKP.

Checkpoint dumps, however, are more often requested by an executing program or command entered by
the operator. An executing program would request checkpoint at various logical points, such as end-of-file,
x logical records processed, x seconds of elapsed time, etc. Checkpoint requests may be issued more than

once. The request takes the following form:

CHECKPT param, sp

sp Mass storage files to be processed. 0 all files; non-zero numeric for files in param list.

Assumed 0 if sp is not given.

param Address of a parameter list; format follows:
59 17 11 0
n 0000
Ifn1 f1
I1fn2 2
Ifnn fn
10-2 60307200 C

Ifn

Defines number of 1fn entries in following list, to a maximum of 42 (decimal).

Name of user mass storage files to be processed: left justified display code.

Octal number indicating specific manner in which Ifn is to be processed.

0

Mass storage file is copied from beginning-of-information to its
position at checkpoint time, and only that portion will be availa-
ble at restart. The file is positioned at the latter point.

Mass storage file is copied from its position at checkpoint time to
end-of-information, and only that portion will be available at
restart. The file is positioned at the former point.

Mass storage file is copied from beginning-of-information to end-
of-information; the entire file will be available at restart time. The
file will be positioned at the point at which the checkpoint was
taken.

The last operation on the file determines how the mass storage file
is copied.

For a general call to checkpoint using the CHECKPT macro, the sp field is zero. Also:

If n = 0, all mass storage files assigned to the job, including INPUT, OUTPUT, PI_fNCH,
PUNCHB, and LGO, will be copied to the checkpoint dump tape in the manner determined by the

last code/status (f flags).

If n > 0, all mass storage files named in the Ifn list will be copied to the checkpoint dump tape in
the manner determined by the f flags; however system mass storage files will be copied as deter-
mined by the last operation performed on each file.

If the value of the sp field is non-zero in the macro call, only the Ifn’s supplied by the user in the param list,
plus system files will be processed. Processing is determined by the f flag settings.

When the manner of copying a mass storage file is to be determined from the last operation on the file,
checkpoint derives f values from the last code status as follows:

f = 0 if code/status ends in 4, 5, 6, or 7.

f = 1 if code/status ends in 0, 1, 2, or 3 and end-of-information bit is set.

f = 2 if code/status ends in 0, 1, 2, or 3 and end-of-information bit is not set.

Generally, these values cause the entire mass storage file to be copied for: write operations, read operations
resulting in end-of-information status, and rewind operations (excluding some OPEN functions).

60307200 A

10-3

The checkpoint macro generates the following code:

Form in X0

59 39 35 23 17 0

CKP 1|1 sp param

RJ SYS=

CHECKPOINT EXAMPLES

All operator or CKP control card requests are processed in the same manner as the COMPASS example.

FOR COMPASS USERS:

CHECKPT PARAM

PARAM DATA 0

All mass storage files would be processed (sp=0, n=0) at checkpoint.
FOR FORTRAN (RUN) USERS:

DATA variable/0/

CALL CHEKPTR (variable)
or

variable=0
CALL CHEKPTR (variable)

FOR FORTRAN EXTENDED USERS:

DATA variable/0O/

CALL CHEKPTX (variable)
or

variable=0
CALL CKEKPTX (variable)

10-4 60307200 A

For the preceding examples, checkpoint processing is performed for all mass storage files as described in
the first example where sp=0, n=0.

Selected files may be processed in the manner shown in the following example:

DIMENSION KPARAM (4)

KPARAM (1)=30000B
KPARAM(2)=5LTAPEL.OR.10000B
KPARAM(3)=6LTAPE23.0R.10000B
KPARAM(4)-5LTAPE3

CALL CHEKPTR(KPARAM, 1) or CALL CHEKPTX(KPARAM, 1)
The user should rewind overlay files prior to requesting checkpoint if they are on mass storage.

FORTRAN overlay programs should declare the mass storage overlay files to be TAPEn files and use
REWINDn before CALL CHEKPTR (variable) or CALL CHEKPTX (variable).

EXAMPLE FOR FORTRAN (RUN):

OVERLAY(TAPE9,0,0)
PROGRAM MAIN(...,TAPE9)
DATA FILE/S5LTAPES/

CALL OVERLAY(FILE,1,0)

END

OVERLAY(TAPE9,1,0)
PROGRAM OVER1
DATA PARAM/OB/

REWINDS
CALL CHEKPTR(PARAM)

END

60307200 A 10-5

RESTART REQUEST

The RESTART control card directs a job to be restarted from its checkpoint tape. All parameters are
optional and order independent.

RESTART (name,n, S=Xxx)
name Name of checkpoint file as defined at checkpoint time. Default name is CCCCCCC.

n Number (decimal) of checkpoint to be restarted. If this parameter is omitted, a default
value of 1 is assigned by restart. If it is greater than the number of the last checkpoint
taken, the restart attempt will be terminated.

XXX xxx is the number (decimal) of words in the smallest physical record on any S tape
“attached to the job. If this parameter is omitted, standard SCOPE PRU size (512) is
assumed.

If any S tapes with small physical records are attached to the job and the S parameter is
not set to reflect this, the tapes may not be positioned correctly.

After locating the proper dump on the checkpoint tape, the restart program requests all tape files defined at
checkpoint time, and repositions these files. Then, all mass storage files are requested, specifying the type of
device on which the file resided at checkpoint time. The operator may assign the file to a more convenient
device. Files are copied from the checkpoint tape and repositioned. Restart also restores the central memory
field length of the job and restarts the user’s program.

The restart job should not contain a REQUEST control card or a LABEL card requesting the file name given on the
RESTART card unless the checkpoint dump tape is a iabeied tape or needs any parameters oiher ian MT or CK. if
no checkpoint tape is requested, restart will issue a request for the checkpoint file named on the RESTART control

card, and it will use the installation default density.

If any permanent files are attached to the control point when a checkpoint is called, they are attached and
positioned as they were at the time of the checkpoint.

Any direct ECS direct access user area attached to the job will be copied in its entirety to the checkpoint
tape. At restart time, it will be recopied to ECS from the checkpoint file. On the job card for the restart job,
the user must request at least as much ECS as was attached to the original. If reconfiguration results in
insufficient ECS available to the user, restart is not possible.

A checkpoint dump may not be restarted in the following cases:

A tape file necessary for restarting the program was overwritten after the checkpoint dump was
taken.

A machine error propagated bad results but did not cause abnormal termination until after another
checkpoint dump.

10-6 60307200 D

COMMUNICATION AREAS Ll

FILE ENVIRONMENT TABLE

The file environment table (FET) is a communication area supplied by the user within his field length. Any
file to be written, read, or otherwise manipulated or positioned, must have its own FET. The FET is
interrogated and updated by the system and user during file processing.

COMPASS programmers can create an FET in two ways:
Use the FET creating macros FILEB, FILEC, RFILEB, or RFILEC.
Use other COMPASS instructions to build a table in the format expected by the system.

Compiler language programmmers need not be concerned with FET construction or manipulation, since the
compilers will perform these tasks in response to compiler language instructions. When Record Manager is
used for input/output, the user need supply only the file information table data. Record Manager will
construct and manipulate the FET from information in its File Information Table (FIT). The FIT is fully
described in the Record Manager Reference Manual and the System Programmers Reference Manual.

A minimum size FET is five words, which allows for processing of sequential unlabeled files. Random or
labeled files, or files in which the user will process file conditions or errors with OWNCODE routines,
require a longer table. Extensions to the FET—areas identified by pointers within the FET—are required for

extended error and label processing. Some compilers append an area past word 13 of the FET, as explained
in the respective manuals.

When S and L tapes are processed, the FET must be at least seven words in length. Word 6 is required for
blocking/deblocking of files. Words 7 and 8 are required for indexed files. Word 9 is used for user
OWNCODE routines. Words 10-13 are present when the LABEL macro is used.

The format of the FET is shown in figure 11-1. Some fields are pertinent only to Record Manager manipu-
lation; a discussion exists in the reference manual for Record Manager. Other fields contain different data
depending on the file mode or residence.

60307200 C 11-1

FILE ENVIRONMENT TABLE

59 53 47 41 35 32 29 23 17 13 8 4]
LEVEL] ERROR 0
LOGICAL FILE NAME NO. CODE CODE/STATUS
U EIE MixIxlelnt Is DISPOSITION FET
DEVICE TYPE N|plels 5 Lielcls CODE LEN_%TH FIRST POINTER 1
0 IN POINTER 2
) OUT POINTER 3
FNT POINTER RECORD BLOCK SIZE PRU SIZE LIMIT POINTER 4
B6RM —3mm PSEUDO IN POINTER
5
) FWA LWA+1
cre WORKING STORAGE AREA WORKING STORAGE AREA
DETAIL POINTER TO UBC MLRS (S/L TAPES ONLY)
ERROR CODE NSION 6
(XP=1] FET ?,’(‘IEHS 0 RECORD REQUEST/RETURN INFORMATION
(RANDOM RMS ONLY)

6RM FET EXTENSION (XP=1)

7
RECORD NUMBER (CPC) | I SCOPE INDEX LENGTH FWA OF SCOPE INDEX
8
l CPC EOI ADDRESS I CPC ERROR EXIT ADDRESS
XL=1 | ARFL ERROR CODE ! LENGTH OF LABEL BUFFER FWA OF LABEL BUFFER
9
XL=0 FIRST 10 CHARACTERS OF FILE LABEL NAME
XL=1 (RESERVED)
10
XL=0 LAST 7 CHARACTERS OF FiLE LABEL NAME POSITION NUMBER
XL=1 (RESERVED)
1
XL=0 EDITION NUMBER l RETENTION CYCLE l CREATION DATE
XL=1 (RESERVED)
12
XL=0 MULTI-FILE SET NAME I REEL NUMBER

W
.\/\’_/\’_\/\,\/\M/\'\/\\A

RESIDUAL SKIP COUNT PERM LENGTH OF EXTENSION
BITS w

Figure 11-1. File Environment Table

112 60307200 D

FET CREATION MACROS

System macros in the COMPASS language facilitate generation of the FET.
All parameters except Ifn, fwa, and f are optional. The fwa and f parameters must be in the order shown;
others may be in any order. The macro parameters WSA, OWN, XPA and IND are not order dependent,

but order is fixed within these parameters.

The user must specifically allocate the circular buffer location in the field length. The macro identifies but
does not create the buffers.

If an FET creating macro is followed immediately by a USE statement naming another labeled common
block, the FET becomes the last item in a labeled common block. The FET creation macro may not truncate

properly to the minimum size required; a truncated common block may result.

Four macros are available, depending on whether the file is coded or binary, random or sequential.

CODED SEQUENTIAL FILE

1fn FILEC fwa,f,(WSA=addrw,1lw), (OWN=eoi,err),LBL,UPR,EPR,XPR,
(XPA=xpadr,1lx),UBC=ubc,MLR=mlrs

BINARY SEQUENTIAL FILE

1fn FILEB fwa,f,(WSA-addrw,1lw), (OWN=eoi,err),LBL,UPR,EPR,XPR,
(XPA=xpadr,1x),UBC=ube¢,MLR=mlrs

CODED RANDOM FILE

1fn RFILEC fwa,f,(WSA=addrw,1lw), (IND=addri,1li), (OWN=eoi,err),LBL,
UPR,EPR,XPR, (XPA=xpadr, 1x)

BINARY RANDOM FILE

1fn RFILEB fwa,f,(WSA=addrw,1lw), (IND=addre,1i), (OWN=eoi,err),LBL,
UPR,EPR, XPR, (XPA=xpadr, 1x)

Further explanation of parameter usage appears with descriptions of the FET fields below.

Ifn Logical file name
fwa Circular buffer address; substituted in FIRST, IN, and OUT
f Length of circular buffer; fwa+f is substituted in LIMIT to make buffer address

lwa+1; f should be at least one word larger than PRU size of the device on which the
file resides

60307200 A 11-3

WSA

addrw

Iw

IND
addri
1i

OWN
eol

€rror

UPR

LBL

EPR

UBC

ubc

MLR

mlrs
XPR

XPA
xpadr

Ix

114

Working storage area keyword; parameters required for READIN and WRITOUT;
relieves user of responsibility for buffer manipulation

First word address of working storage area

Length of working storage; when coded files are being processed, the length must be at
least as long as the longest record, or data will be lost

Index buffer parameter keyword; required for random files only

First word address of index buffer

Length of index buffer; for numbered SCOPE indexed files, length should allow one
word for each record plus a one word header: for named SCOPE indexed files, two
words are required for each record in addition to the index header

OWNCODE routine parameters keyword

Address of routine to be executed if end-of-reel, end-of-pack, or end-of-information
occurs; UPR must be used

Address of routine to be executed if file action errors occur; EPR must be used

User specifies processing at end-of-reel, end-of-pack, or end-of-information; sets bit 45
of word 2

Label information will follow for magnetic tape file; LABEL macro providing label
information must immediately follow the FET creating macro to which it pertains

User specifies handling of file action error conditions; sets bit 44 of word 2; does not
set extended error processing flag

Unused bit count keyword; required only for S and L tapes

Specifies number of bits in last word of record that do not contain valid data

Maximum record size keyword; required only for S and L tapes

Maximum number of 60-bit words in record
Extended error information to be returned by system

Extended label processing keyword
First word address of FET extension for extended error processing

Length of FET extension for extended error processing; must be 1

60307200 A

Examples:
To create a minimum FET for the standard INPUT file:

LBUFFER EQU 65
INPUT FILEC BUFFER,LBUFFER

To create an FET for a binary random file:
LBUFFER EQU 65
LINDEX EQU 25

FILEABC RFILEB BUFFER,LBUFFER, (IND=INDEX,LINDEX)

To create an FET for a labeled tape file with user processing at end-of-reel condition. OWNCODE routine
is supplied:

LBUFA EQU 65
TAPE1l FILEB BUFA,LBUFA,LBL,UPR, (OWN=PROCEOR)
TAPEl LABEL SORTINPUTTAPE, 32,90

To create an FET for a list file. OWNCODE routines are supplied and the working storage area is used:

LBUFB EQU 65
PRINT FILEC BUFB,LBUFB,(WSA=LINE,14),(OWN=ENDING,ERRORS),UPR,EPR

FET FIELD DESCRIPTION

Words of the FET are numbered 1-13 in decimal, corresponding to the addresses 1fn through Ifn+12
decimal. All parameter values are octal unless otherwise noted. Bits are numbered 0-59 right to left in
decimal.

LOGICAL FILE NAME (Ifn) (bits 18-59 at Ifn)

The 1Ifn field contains one to seven display-coded letters or numbers starting with a letter, left justified; if less than I
seven are declared, unused characters are zero-filled. This field is used as common reference point by the central
processor program and the peripheral processor input/output routines.

The Ifn parameter declared in an FET creation macro is also used as the location symbol associated with

the first word of the FET. A reference to 1fn in the file action requests is a reference to the base address of
the FET.

60307200 D 115

CODE AND STATUS (CS)(bits 0-17 at Ifn)

The CS field is used for communication of requested functions and resulting status between the central
processor program and the peripheral processor input/output routines. This field is set to the request code
by CPC when a file action macro request is encountered. When the FET is generated, bits 2-17 should be

Z€TO0.

The code and status bits have the following significance:

Bits 14-17

Bits 9-13

Bits 0-8

CIO CODES

Record level number. On skip and write record requests, this subfield is set by CPC as
part of the function code. On read requests, it is set by CIO as part of the status when
an end-of-record is read. Initially the level subfield is set to zero when the FET is
generated.

Status information upon request completion. Zero indicates normal completion. Non-
zero indicates an abnormal condition, not necessarily an error; an OWNCODE rou-
tine, if present, will be executed. Status codes are described with the EOI OWNCODE
and Error Exit Address discussions. Initially, this subfield is set to zero when the FET
is generated.

Used primarily to pass function codes to a peripheral processor. Function codes are
even numbers (bit 0 has a zero value). They are listed as CIO codes below.

When the request has been processed, bit 0 is set to one. When the FET is generated, bit
0 must be set to one to indicate the file is not busy.

Bit 0 Current status of request (0 = file being processed, 1 = request
complete).

Bit 1 Specifies the mode of the file (0 = coded, I = binary). Bit 1 is
not altered by CPC when a request is issued.

Bits 2-8 Pass function codes to a peripheral processor (file action requests).

Bits 3 and 4 These bits will be set to binary 10 if end-of-record is read, or to binary

11 if end-of-file is read.

Function codes listed below can be set in the CS field by the user before calling CIO to carry out the
function. They are set by CPC when file action macros are used. All values are octal.

11-6

60307200 C

All codes indicated by — are illegal; all reserved codes are illegal. All codes are shown for coded mode
operations; add 2 for binary mode. Example: 010 is coded READ, 012 is binary READ. Upon completion
of operation, code/status in FET is changed to an odd number, usually by adding 1 to the code. In some
cases, code is further modified to indicate manner in which operation concluded. Example: a READ
function 010, at completion, becomes 011 (buffer full), 021 (end of SCOPE logical record), or 031 (end-of-
file).

000 RPHRTY 054 — 130 CLOSE/NR

004 WPHRY 060 UNLOAD 134 —

010 READ 064 — 140 OPEN

014 WRITE 070 — 144 OPEN/WRITE
020 READSKP 074 — 150 CLOSE

024 WRITERY}} 100 OPEN/NR 154 —

030 — 104 OPEN/WRITE/NR 160 OPEN

034 WRITEF 110 POSMF 164 —

040 BKSP 114 EVICT , 170 CLOSE/UNLOAD
044 BKSPRU 120 OPEN/NR 174 CLOSE/RETURN
050 REWIND 124 —

T Applies to SCOPE format tapes only.

Tt When a WRITER function is issued with level 17 specified, SCOPE changes the function to a WRITEF.
Thus, a function issued as a 24 will return as a 34.

200 Series for special reads or writes (reverse, skip, non-stop, rewrite, etc.)

214 REWRITE 230 — 254 —
220 — 234 REWRITEF 260 READNTTYT
224 REWRITER 240 SKIPF 264 WRITEN}1T
244 — 270 —
250 READNS 274 —

TTT Applies to S and L tapes only.

300 Series used for OPEN and CLOSE

300 OPEN/NR 324 — 360 —
304 — 330 CLOSER 364 —
310 — 334 — 370 CLOSER/UNLOAD
314 — 340 OPEN 374 —
320 — 350 CLOSER
354 —

400 Series reserved for CDC

500 Series reserved for installations

60307200 C 11-7

600 Series:

600
604
610
614
620
624

630
634
640
644
650

700 Series reserved for CDC

SKIPB

DEVICE TYPE (dt)(bits 48-59 atIfn + 1)

654 —
660 —
664 —
670 —
674 —

The device type value will be returned to the FET device type field when a file action request is issued. if
FET length exceeds the minimum. The 6-bit device type will occupy bits 54-59: bits 48-53 will hold
recording technique identification for magnetic tapes, if applicable. The mnemonic is used in the RE-

QUEST card only.

Group I

Mnemonic

AA
AB
AC
AL
AM
AP
AF
AD
AX

Device
Type

01
02
04
05
06
07
10
12
13-17
20
21-27
30-37

Device

6603-I disk**
6638 disk
6603-11 disk
821 data file

-841 multiple disk drive

3234/854 disk pack drive
814 disk file

3637/865 drum

CDC reserved

ECS resident files

CDC reserved

Reserved for installations. mass storage only

** Basic 6603 with or without field option 10098 (disk speedup) installed; 6603-1I is a 6603 with both field
options 10098 and 10124 (speedup augment) installed.

11-8

60307200 A

Group II

Device
Mne- Type
monic (Octal)
MT 40 7-track

magnetic tape

NT 41 9-track
magnetic tape

60307200 C

Recording Technique
(Right 6 bits of FET dt
field in binary)

xxxx00 HI density 556 bpi
xxxx01 LO density 200 bpi

xxxx10 HY density 800 bpi

xxxx11l CDC reserved
xx00xx Unlabeled
xx01xx SCOPE standard U
and Z labels
xx10xx 3000 series label
(Y)
xx11xx CDC reserved
00xxxx SCOPE standard
data format
0lxxxx CDC reserved
loxxxx S data format
llxxxx L data format

xxxx10 HD density 800 cpi

xxxx11l PE density 1600
cpi

xxxx00 CDC reserved

xxxx01 CDC reserved

xx00xx Unlabeled

xx01xx SCOPE standard U
label (ANSI)

xx10xx 3000 series label
(Y)

xx11xx CDC reserved

10xxxx S data format

00xxxx SCOPE standard data format

0lxxxx CDC reserved

lixxxx CDC reserved

119

Device
Mne- Type Recording Technique
monic (Octal) (Right 6 bits of FET dt
field in binary)

— 42 member
multi-file set
7-track tape Same as in MT

e 43 member
multi-file set
9-track tape Same as in NT

*E 62 7-track
multi-file set
tape Same as in MT

x 63 9-track

multi-file set
tape Same as in NT

** Code is generated when a tape is declared to have MF characteristies; the multi-file set code 62 or 63 is
used only in system tables; it is not returned to the user’s FET.

11-10 60307200 A

Group III

Mne-
monic

*TR

*TP
LP
L1
L2

CR
KB

CP

DS
*GC
*HC
*FM
*PL

Device

Type
(Octal)

44
45
46-47
50
51
52
53-55
56-57
60
61
64-65
66-67
70
71
72
73
74
75
76-71

Device

Paper tape reader

Paper tape punch
Reserved for installations
501,512 line printer

501 line printer

512 line printer

CDC reserved

Reserved for installations
405 card reader

Remote terminal keyboard
Reserved for CDC
Reserved for installations
415 card punch

6612 keyboard/display console

252-2 graphic console
253-2 hard copy recorder
254-2 microfilm recorder
Plotter

Reserved for installations

* Codes are defined but supporting software is not provided by SCOPE.

RANDOM ACCESS(R) (bit 47 atIfn + 1)

A one in the R field indicates a random access file. R may be set to 1 by using the RFILEB or RFILEC
macro. When a file is opened or closed, the R setting determines action performed with regard to the
SCOPE index as shown below:

60307200 C

11-11

OPEN

No SCOPE index

SCOPE index

FET R=0

No index action

No index action

FETR=1

FET Rbit is set to zero and a non-fatal diagnostic
is written to the dayfile.

Index is read into index buffer; if index buffer is
not specified, FET R bit is set to zero and a non-
fatal diagnostic is sent to dayfile.

If a non-existent file is opened, the value of the R bit is not altered. Only files on allocatable devices may
have an index. The FET R bit is set to zero if the file is on a non-allocatable device.

CLOSE
File had SCOPE
index on last OPEN

File had no SCOPE
index on last OPEN

FETR=0

File is flagged as
not having index

No index action

FETR=1

If index buffer exists, the index is written; and file
is flagged as having SCOPE index. If buffer is not
specified, non-fatal diagnostic occurs.

If index buffer is specified, index is written; and
file is written; and file is flagged as having a SCOPE
index. If index buffer is not specified, a non-fatal
diagnostic occurs.

The above actions will be performed only if the contents have been altered since the file was last opened.

11-12

60307200 C

When any other file action request is issued, the r setting determines the access method to be used. If r=0,
the file will be read or written beginning at the current location. If r=1, the file will be read or rewritten
according to the logical disk address in FET word 7, or written at the end-of-information; and the logical
disk address returned to FET word 7.

RELEASE (N) (bit 46 at Ifn + 1)

When this bit is set and a mass storage file is read sequentially, mass storage allocated to the file will be
released as the file is read. Backward positioning combined with sequential file reading may yield unpre-
dictable results.

USER PROCESSING (UP) (bit 45 atlfn + 1)

The UP bit may be used to control tape end-of-reel processing and sequential disk pack end-of-pack
processing. If the UP bit is zero, unit swapping is automatic without notification to the user; the function in
process when end-of-reel or end-of-pack is detected will be completed on the next unit. If the UP bit is set
to one, the user will be notified when an end-of-reel or end-of-pack condition arises. End-of-reel for tape
files is defined as a tape mark followed by an EOV1 label for labeled tapes and SCOPE format unlabeled
tapes, or as the first tape mark after the EOT reflective spot for unlabeled S and L tapes.

If the UP bit is set, end-of-reel status and end-of-pack status (02) are returned in bits 9-13 of the FET code
and status field. Functions that do not transfer data from the circular buffer will have been completed; data
transfer functions may be re-issued as indicated by an examination of the buffer pointers. If CPC is in use,
control will return to the EOl OWNCODE routine, if declared in bits 30-47 of Ifn + 8. Then the user
must terminate processing. If a continuation reel or pack is desired, a CLOSER function should be issued.

ERROR PROCESSING (EP) (bit 44 at Ifn + 1)

The EP bit is set when the calling program is to be notified of error conditions arising from file actions. Error codes

returned to the code and status field are listed under the error exit address field (page 11-21). Control is given to the

user OWNCODE routine at error address when EP is set. If EP has not been set, the operator is informed of the error

and must authorize job termination or continuance regardless of the error.

NO RECOVERY (NR) (bit43 atlfn + 1)

This bit may be set to control error recovery. If it is set, no attempt will be made to recover errors
- encountered while reading data on magnetic tape.

MULTI-USER JOB (MUJ) (bit 42 atIfn + 1)

Set only when the file is being processed by a multi-user job. Currently, the EDITOR routine in INTER-

COM is the only multi-user job. When bit 42 is set, user id, user table addresses, and a special code (for
routine 3TT) appear in Ifn + 5.

60307200 C 11-13

EXTENDED LABEL PROCESSING (XL) (bit 41 atlIfn + 1)
This bit affects processing of labels on magnetic tape. Format to be used in the label fields in Ifn + 10

through 1fn + 12 depends on this setting. Standard label processing of required labels occurs when
XL=0.If XL =1, the user can process optional labels, as described under Tape Label Processing.

EXTENDED ERROR PROCESSING (XP) (bit 40 atlfn + 1)

Extended error processing has been added to the SCOPE 3.4 system. The error processing available under
the last version of SCOPE remains unchanged; codes are still returned through bits 9-13 of FET word 1. In
addition, the upper 12 bits of FET word 7 are now used to more closely detail errors if the XP bit equals 1,
as explained under FET Extension Pointer field. An error message is displayed on the B display and is
written to the dayfile. If this bit is not set, the operator is informed of unrecovered errors and has the
option of dropping or continuing the job.

The EP bit must be set before control can return to the user OWNCODE to process these errors. Also, the
UP bit must be set to gain control at end-of-volume.

When XP is set, the FET extension pointer in word 7 must be set.

EC (bit 39 at Ifn + 1) Reserved for SCOPE.

NON-STANDARD LABEL (NS) (bit 38 atlfn + 1)

Setting this bit to 1 indicates non-standard labels exist. All processing must be done by user program.

(bit 37 at Ifn + 1) Reserved for SCOPE.

STATION (ST) (bit 36 at Ifn + 1) Setting of this bit indicates the FET is for a 6000 station control point.

DISPOSITION CODE (bits 24-35 atlIfn + 1)

The value shown below will be returned to the FET disposition code field when a file action request is
issued, if FET length is greater than the minimum. A file with the specified default name automatically will
be assigned the corresponding disposition code value at job completion.

The user cannot alter file disposition by changing this field. Rather, the DISPOSE card or macro must be
used.

For FR, FL, HR, HL, and PT, SCOPE recognizes the code and its value, but does not provide routines to
process them in the release system. All other codes are reserved to the system.

11-14 60307200 C

Value Default

Code (octal) Disposition File Name
CK xx01 Checkpoint —
IU xx02 Inhibit automatic

unload of tape —~
CI xx03 Checkpoint and

inhibit unload

tape —
Sv xx04 Inform operator

to save tape —
CS xx05 Checkpoint and

save tape —
PU xx10 Punch Hollerith PUNCH
PB xx12 Punch Binary PUNCHB
P8 xx14 Punch 80 Column P80C
FR xx20 Film Print FILMPR
FL xx22 Film Plot FILMPL
HR xx24 Hard Copy Print HARDPR
HL xx26 Hard Copy Plot HARDPL
PT xx30 Plot PLOT
PR xx40 Print (501,512) OUTPUT
Pl xx4l Print (501 only) —
P2 xx42 Print (512 only) -
PE xx44 Print (512 with

95 character train)
— Xx7x Reserved to

' Installation —

— 1xxx INTERCOM file —
— 2XXX INTERCOM batch
— 4xxX EXPORT file —

Codes CK, IU, CI, SV, and CS are applicable to tape files only; they may appear on LABEL or REQUEST
cards. The remainder are applicable to mass storage residence only.

60307200 C 11-15

LENGTH OF FET (lgth) (bits 18-24 atlfn + 1)

The system FET length is determined as follows: FET first word address + 5 + lgth = last word
address + 1. The minimum FET length is five words (Igth=0). If the minimum FET is used, only the
logical file name, code and status field, FIRST, IN, OUT, and LIMIT are relevant. No other field will be set
or checked by SCOPE. An FET of six words (Igth+1) is used if a working storage area is needed for
blocking/deblocking. An FET of eight words (Igth+3) is used if the r bit is set, indicating an indexed file.
Length is nine words (Igth=4), if OWNCODE routines are declared.

FNT POINTER (bits 48-59 atIfn + 4)

The FNT pointer is set by SCOPE, upon return from a file action request, to the location of the file entry in
the file name table. The pointer is placed in the FET to minimize table search time and does not affect the
program. The pointer will not be set if a minimum FET is used.

PHYSICAL RECORD UNIT SIZE (PRU) (bits 18-33 atlIfn + 4)

The physical record unit size of the device to which the file is assigned is returned in this field when a file is
opened. It is given as the number of central memory words. The PRU size is used by CPC to determine
when to issue a physical read or write. PRU size will not be returned if a minimum FET is used.

RECORD BLOCK SIZE (bits 34-47 at Ifn + 4)

If the file resides on an allocatable device, the size of the device record block is returned in this field when
the file is opened. It is given as the number of physical record units 1n a record biock. If the number of
PRU’s is not defined or is variable, the field is set to zero. Record block size is not returned if a minimum
FET is used.

FIRST, IN, OUT, LIMIT (bits 0-17 at Ifn + 1 through Ifn + 4)

The fields contain the beginning address (FIRST) and last word address + 1 (LIMIT) which define the file
circular buffer. The IN and OUT pointers indicate the address of data placed into or removed from the
buffer. System and programmer use of these fields is discussed under the heading Circular Buffer Use.
WORKING STORAGE AREA (WSA) (Ifn + 5)

The two fields in this word of the FET specify the first word address (bits 30-47) and last word address +
1 (bits 0-17) of a secondary buffer within the program field length. The area is needed to use the system

macros READIN and WRITOUT, which blocks or deblocks records from the area into the circular buffer.
READIN and WRITOUT relieve the user of responsibility for circular buffer pointer manipulation.

11-16 60307200 C

DETAIL ERROR CODES (bits 48-59 atIfn + 6)

When the XP bit is set to 1, this field contains extended tape error processing codes which give additional
detail of abnormal conditions resulting from the last input/output operation.

Codes 0-3777 are device dependent error conditions. Tape error codes are defined below. All other codes in
this range, as well as those 4000-5777 are reserved for SCOPE. Codes 6000-7777 are reserved for
installations.

The references to system noise record and last good record refer to procedures the system follows in
recovery attempts. These are explained in the Systems Programmer’s Reference Manual.

Bits 11 10 9 8 7 6 5 4 3 2 1 0

N N
T 4— Reserved

Software Warnings
Bad Hardware
Position Error

0020 25 consecutive feet of tape have been erased.

0021 Installation defined erase limit reached.

0022 Blank tape read.

0023 Incomplete erasure of bad spot on tape. Prior data may still exist.
0024 Read opposite mode successful.

0025 Noise in interrecord gap.

0026 Function not complete.

0027 Possible record fragment.

60307200 A 11-17

0030 Record length exceeds PRU size or MLRS size

0040 Lost data

0041 Tape parity error

0050 MMTC memory parity error

0051 Transmission parity error

0100 Position uncertain; valid data probably destroyed; a CLOSE may work
0101 Position uncertain; valid data probably intact; CLOSE will probably work

FET EXTENSION POINTER (bits 30-47 at Ifn + 6)

When the XP bit is set, pointer is the required address of an FET extension. Currently, the extension is
limited to a single word, but the length (L) parameter anticipates future expansion.

UNUSED BIT COUNT (UBC) (bits 24-29 of Ifn + 6)

The unused bit count field is used only for files in S or L tape format. (If the device type is not magnetic
tape, this word will contain indexing information). It is used for communication between the peripheral
processor input/output routines and the user program.

nagnetic tapes with S or I data format, the structure of the word at ifn + 6 is:

59 29 23 17 0

UBC MLRS

For a READ or READSKP function, SCOPE will store into this field the number of low-order unused bits
in the last data word of the record. The UBC field is not used during a READN request. For a WRITE,
WRITER or WRITEF function, SCOPE will read the contents of UBC and adjust the length of the record

accordingly.

11-18 60307200 C

For example, to write a single record of 164 decimal characters, the data length is 17, to the next highest
CM word. The number of low-order unused bits in the last word would be 36. The user would set
UBC = 36, set IN and OUT pointers to reflect 17 words of data, and then issue a WRITE or a WRITER.

SCOPE does not use the UBC field during a WRITEN request. UBC may range from 0 to 59, but will
always be a multiple of 12 when set as a result of a read operation. If it is not a multiple of 12 for a write
request, SCOPE will truncate the value to the nearest multiple of 12; if UBC is 18, SCOPE will execute as
though it were 12, and if UBC is 6, SCOPE will execute as though it were 0. The field in the FET remains
unchanged.

MAXIMUM LOGICAL RECORD SIZE (MLRS) (bits 0-23 of Ifn + 6)

The MLRS field is applicable only when magnetic tape files in S or L format are considered. It defines the
size of the largest physical record to be encountered when the S or L tape format is used. The size is given
in number of central memory words.

For S tape format, if MLRS = 0, the value of the maximum PRU is assumed to be 512 words. For L tape
format, if MLRS = 0, the assumed maximum PRU is LIMIT — FIRST — 1 for standard reads, and
LIMIT - FIRST - 2 for READN.

Since S and L tapes record size is defined in characters, instead of central memory words, the last word may
contain invalid data. Consequently, UBC is required to attest to the validity of all characters in this word.
RECORD REQUEST/RETURN INFORMATION (bits 0-29 of Ifn + 6)

If the file resides on a mass storage device and has the r bit set in word 2, indexing information appears in
words 7 and 8 for communication between the peripheral processor input/output routines and the user
program.

For mass storage random files, the format of word Ifn + 6 is:

59 29 0

Record Request/
Return Information

The record request/return information field is set to zero when the FET is generated. Both the indexing
functions and the peripheral processor input/output routines set the field during random file processing.

For other than the SCOPE indexing method, the following information is pertinent. At the start of writing
a new SCOPE logical record, if the random access bit and the record request/return information field are
non-zero, the latter field is assumed to contain the address of a location within an index. The PP routine
inserts into that location (in bits 0-23) the PRU ordinal (starting from 1) of the SCOPE logical record. To
read the record again, the random access bit should be set to non-zero and the PRU ordinal should be
entered in the FET in the record request/return information field.

60307200 A 11-19

RECORD NUMBER (bits 36-59 atlfn + 7)

When a SCOPE indexed file is processed, this field contains the ordinal of a record identified in the index.
Records are numbered beginning with 1.

SCOPE INDEX LENGTH (bits 18-35 atlfn + 7)

When a SCOPE indexed file is processed, this field contains the number of words in the index. One word
for each numbered record, or two words for each named record, plus a one-word header is required.

SCOPE INDEX ADDRESS (bits 0-17 atlfn + 7)

This field contains the address of the index for a SCOPE name or number index file.

EOI OWNCODE ADDRESS (bits 30-47 of Ifn + 8)
This field contains the address of a user supplied OWNCODE routine to be entered when end-of-informa-
tion, end-of-reel, or end-of-pack status is encountered during magnetic tape or sequential pack processing.

The UP bit must be set.

CPC enters this routine when bits 9-13 of the codes and status field is:

01 End-of-information encountered after forward operation
02 End-of-reel reached during magnetic tape forward operation
02 End-of-pack reached during sequential pack operation

Just before entering an end-of-information OWNCODE routine, CPC zeros bits 9 and 10 of the first word
of the FET. However, as the routine is entered, register X1 still contains the first word of the FET as it
appeared before those two bits were zeroed.

11-20 60307200 A

ERROR EXIT ADDRESS (bits 30-40 of Ifn + §)

This field specifies an address to receive control if an error condition occurs after a file action request. The
EP bit must be set to cause control to pass to this OWNCODE address. The FET code and status field will
reflect the error condition. If processing can continue, the error routine should exit through its entry point;
otherwise, an abort request may be issued. If the error address field is zero, the run continues normally. The
FET code and status bits reflect the error condition upon normal return to the program. Bits 9-13 of this
field may be:

04 Irrecoverable parity error on last operation; or lost data on write.

10 During a magnetic tape read, the physical record size exceeded circular buffer or maxi-
mum allowable PRU size (MLRS for S and L tapes). During a mass storage write, all
mass storage space meeting the file requirements was in use or otherwise unavailable.

20 Blank tape read.

21 End of multi-file set. File position number is greater than that of the last member in the

set. Any subsequent attempt to reference the logical file name assigned to the nonexis-
tent member will result in a fatal error.

22 Fatal error.

23 Index full.

24 Reserved for future use.

25 Attempt made to read or write record number n of a random file, but n exceeds index
size.

26 Attempt made to read named record from random file, but name does not appear in
index.

27 Attempt made to write named record on random file, but name does not appear in

index, and index is full.

30 Function legal but not defined on device.
31 Permanent file permission not granted.
32 Function legal except for permanent files.
33-37 Reserved for future use.

If both EOI and error routine execution are needed, the error routine is executed. Just before entering an
error OWNCODE routine, CPC zeros bits 11-13 of the first word of the FET. However, as the routine is
entered, register X1 contains the first word of the FET as it appeared before those bits were zeroed.

60307200 A 11-21

LABEL PARAMETERS (Ifn + 9 throughlfn + 12)

Words 10-13 of the FET may contain information pertaining to magnetic tape labels. The format and use
of these fields depends on the setting of the extended label processing bit in word 2. The LABEL macro
generates fields for normal label processing. Further details appear under the Tape Label Processing
heading.

Parameters in these fields must be display code. If other than the LABEL macro is used to create them, display code
zero may be used to add leading zeros to numeric fields. Character fields, which are left justified, may be display
code blank filled.

RESIDUAL SKIP COUNT (RSC) (bits 24-41 at P + 0)

When XP is set and P is the address of the FET extension word, RSC is the residual skip count. If SKIPF,
SKIPB, or READSKP functions do not complete the specified number of skips, the count of records yet to
be skipped is returned here. RSC will have a value when SKIPB encounters beginning-of-information even
when the UP bit is not set. If SKIPF terminates at end-of-volume because UP is set, RSC will be set.

PERM BITS (bits 20-23 of P + 0)

The setting of these bits will duplicate that of the permanent file permission bits in the file name table.
Permission is granted when the bit indicated is set. '

0 Read permission
951
22 Modify permission
23 Control permission

These bits are set when the user issues an OPEN function.

EXTENSION LENGTH (bits 0-17 at P + 0)

The length of the extension, including word P, is required. For SCOPE 3.4, this value must be 1.

CIRCULAR BUFFER USE

For each file, the user must provide one buffer, of any length greater than a PRU size. The buffer is called
circular because it is filled and emptied as if it were a cylindrical surface in which the highest addressed
location is immediately followed by the lowest. The FET fields FIRST, IN, OUT and LIMIT control
movement of data to and from the circular buffer.

11-22 60307200 D

Data is transmitted in physical record units; their size is determined by the hardware device. For example,
the 6603 disk has an inherent PRU size of 64 CM words; SCOPE binary mode magnetic tape files are
assigned a PRU size of 512 words.

FIRST and LIMIT never vary during an I/0 operation; they permanently indicate buffer limits to the user
and SCOPE.

The program that puts data into the buffer varies IN, and the program that takes it out varies OUT. During
reading, SCOPE varies IN as it fills the buffer; and the user varies OUT as he removes data from the buffer.
During writing, the user varies IN as he fills the buffer with data; and the system varies OUT as it removes
data from the buffer and writes it out.

The user cannot vary IN or OUT automatically except when using READIN and WRITOUT functions. To
change these pointers within the program a new value is inserted into Ifn + 2 (IN) or Ifn + 3 (OUT).
For convenience, the words containing IN and OUT contain no other items, eliminating the need for a
masking operation. The system dynamically checks the values of IN and OUT during data transfers,
making continuous read or write possible.

If IN = OUT, the buffer is empty; this is the initial condition. If IN>OUT, the area from OUT to IN —
1 contains available data. If OUT>IN, the area from OUT to LIMIT — 1 contains the first part of the
available data, and the area from FIRST to IN — 1 contains the balance.

To begin buffering, a READ function may be issued. SCOPE will put one or more PRU’s of data into the
buffer beginning at IN, resetting IN to one more than the address of the last word filled after each PRU is
read. Data may be processed from the buffer beginning with the word at OUT, and going as far as
necessary, but not beyond IN — 1. The user must then set OUT to one more than the address of the last
word taken from the buffer. He sets OUT = IN to indicate that the buffer is empty.

When a READ macro request is issued, if the buffer is inactive and a read is not in process, CPC deter-
mines how much free space is in the buffer. If OUT>IN, OUT — IN words are free. If IN>OUT,
(LIMIT — IN) + (OUT — FIRST) words are free. The system subtracts 1 from the number of free
words, because it never must fill the last word since it would result in IN=OUT and give a false empty
buffer condition. If the number of free words minus 1 is less than the PRU size, CPC does not issue a
physical read request; control is returned normally.

The example below illustrates the use of IN and OUT pointers. Speed of operation is not considered;
simultaneous processing and physical I70 are not attempted.

60307200 A 11-23

11-24

The initial buffer pointer position is:

FIRST = BCBUF

IN = BCBUF

OUT = BCBUF

LIMIT = BCBUF + 500

The user issues a READ with recall request. Ignoring the possibilities of an end-of-record or end-
of-file, the system reads as many PRU’s as possible (if PRU size is 64 words, 7 x 64 = 448
words) and leaves the pointers:

FIRST = BCBUF

IN = BCBUF + 448
OUT = BCBUF

LIMIT = BCBUF + 500

The user is processing items of 110 words. He takes four items from the buffer, leaving the
pointers:

FIRST = BCBUF

IN = BCBUF + 448
OUT = BCBUF + 440
LIMIT = BCBUF + 500

The user issues another READ request since the buffer does not contain a complete item. The
system is aware that IN>OUT, so that vacant space is LIMIT — IN + OUT — FIRST = 492
words; since it must not fill the last word, it must read fewer than 492 words.

The nearest lower multiple of 64 is 7 x 64 = 448, so the system reads 52 words into IN through
LIMIT — 1, and then 396 more words into FIRST through FIRST + 395. It then resets IN so
that the pointers look like:

FIRST = BCBUF

IN = BCBUF + 396
OUT = BCBUF + 440
LIMIT = BCBUF + 500

The system has just used the circular feature of the buffer; now the user must do so. The next time
he wants an item, he takes the first 60 words from OUT through LIMIT — 1, and the remaining
50 from FIRST through FIRST + 49. Then he resets OUT, making the pointers:

FIRST = BCBUF

IN = BCBUF + 396
OUT = BCBUF + 50
LIMIT = BCBUF + 500

60307200 A

On input, this can continue indefinitely, with OUT following IN, around the buffer. The system stops on
encountering an end-of-record or end-of-file, and sets the code and status bits accordingly. The system may,
or may not, have read data before the end-of-record; so it is up to the user to examine the pointers and/or
process the data before taking end-of-record or end-of-file action.

In writing, the process is similar, but the roles are reversed. The user puts information into the buffer and
resets IN; and when he calls the system, it removes information from the buffer and resets OUT. For
writing, the system removes data in physical record units and empties the buffer if possible. The user must
be careful not to overfill the buffer; IN must not become equal to OUT. During the process of emptying the
buffer, SCOPE resets OUT after each PRU has been written and checked for errors.

ESTABLISHING OWNCODE ROUTINES

The EOI address and error address fields in word 9 of the FET define user supplied routines. CPC calls
these routines when the UP or EP bits are set.

An OWNCODE routine should be set up like a closed subroutine with execution beginning in the second
word of the routine. CPC calls an OWNCODE routine by copying the exit word of CPC into the first word
of the OWNCODE routine, putting the contents of the first word of the FET into register X1, and
branching to the second word of the OWNCODE routine.

Termination of an OWNCODE routine by a branch to its first word causes a branch to the point in the
program to which CPC would have returned if the OWNCODE routine had not been called.

Although CPC clears status bits in the first word of the FET before the OWNCODE routine is called, the
contents of this word can be examined in register X1. All registers used in the main program except Al,
X1, A6, and X6 are saved and restored by CPC.

TAPE LABEL PROCESSING

The label processing that occurs for magnetic tapes is indicated by the XL bit setting, bit 41 of the second
word of the FET. Extended label processing is possible only when this bit is set. An explicit open is
required.

When the bit is off, the system generates output data and checks input data only for required ANSI, Z
format, and Y (3000 series) format labels. Labels that are processed by standard processing (excluding Y
labels) are label types VOL1, HDR1, EOF1, and EOV1. Default values are written if the user does not
specify otherwise.

Checking of the VOL1 label of ANSI or Z formats ensures that the VSN requested for the job is the one
assigned.

60307200 A 11-25

STANDARD LABEL PROCESSING

Only standard labels are processed when the XL bit is off. Any existing optional labels will be ignored.

If the FET for the file is at least 13 words long, words 10-13 hold file header label data in the following

format:

59

47 29 23

17

First 10 Characters of Label Name

10

Last 7 Characters of Label Name

Position Number

1

Edition Number

Retention Cycle

Creation Date

12

Multi-File Set Name

Reel Number

13

When input tapes are read, any user information in these fields is compared with that written in the HDR1
label on the tape before the file is opened. A discrepancy in a label field stops job processing until the
operator takes action to continue it. This checking cannot be done with FET’s with less than 13 words, but
any labeled tape will be accepted for processing. After the file is opened, the HDR1 label on the tape is
delivered to the circular buffer for the file, as long as space exists in the buffer.

When output tapes are opened, any information in words 10-13 is used to create the HDR1 label for the
file. Otherwise, default values are written. If two OPEN functions with rewind are performed, the system
retains the information written the first time. Thus, a label area supplies the label information regardless of
which programs run afterwards.

11-26

60307200 A

LABEL MACRO FOR FET FIELDS
Fields in words 10-13 of the FET can be set for standard label processing by means of the LABEL macro.
This macro must follow immediately the macro creating the FET to which it pertains. The LABEL macro

generates data for a file header label but does not directly cause any action of the file.

1fn LABEL labname,ed, ret,create,reel,mfn, pos

Ifn Logical file name used in FET creating macro.

labname Label name or file identitication of 1-17 characters; default is 17 blank characters. I
ed Edition number specifying file version of 1-2 decimal digits; default is 01.

ret Retention indicator indicating the 1-3 digit decimal number of days the file is to be

protected against accidental destruction; default is installation parameter.

create Creation date in format of 2 digits for year and 3 digits for day(yyddd); default is
current date.

reel 1-4 decimal digits indicating sequential reel number of a multi-reel set; default is 0001.
mfn Multi-file name of 1-6 characters indicating the set to which 1fn belongs; default is binary zero. I
pos Position number of 1-3 decimal digits indicating position of file Ifn in multi-file set

mfn; default is 000.

The macro expansion results in display code values with binary zero fill for all parameters given. If a parameter is
absent from the macro, it is binary zero filled. Character fields are left justified; numeric fields are right justified.

When a file header label is written subsequently using the FET fields, default values are assigned for any field
containing binary zero. On the tape, character fields are display code blank filled and numeric fields are display code
zero filled. The fields, as written on the tape, are returned to the FET.

When the information in the FET is used to check existing labels, binary zero fill characters will be converted to the
display code blank appropriate for character fields or display code zero for numeric fields before comparison is
made. Fields in the FET containing all binary zeros are not compared. Checking procedures compare fields in the
FET with those on the tape; not all fields in the FET need be specified, neither must the FET contain a value for all
fields written on the tape.

If the header label on the tape mounted does not match the FET fields, job control is at the operator option.
He can attempt to locate the correct tape and assign it to the job, or accept the mounted tape with non-
matching label fields. If he accepts the first tape, the values returned to the FET will reflect the header label
on that tape.

60307200 D 11-27

EXTENDED LABEL PROCESSING

When the XL bit is set, a user label buffer, rather than the FET, is used to hold labels for processing. The
system processes the required labels, and the user may process optional labels in the buffer.

Buffer location must be defined in word 10 of the file FET as follows:

35 17 0

Length of FWA of 10

Error Return Code Label Buffer Label Buffer

Within the buffer, each label must be preceded by a status word.

59 47 35 23 1 0

Characters
in Label

Only bits 0-11 should be set by the user to show the number of characters in the label. Remaining fields are
set and used by the label processor. The last label should be followed by the status word containing zeros in
bits 0-11.

Each label in the buffer appears, in display code, with the same format it has on the tape. Appendix E lists
specific label field characteristics.

11-28 60307200 €

When input tapes are read, the label processor searches the buffer for a HDR1 label. Any information in
the label in the buffer is compared with that on the tape, with differences requiring operator action. The
system validates only the HDRI1 label; other labels are the user’s responsibility. After an OPEN function is
1ssued, all labels read by the system are delivered to the buffer, beginning with VOL1.

When output tapes are generated, any user labels to be written must be present in the label buffer when an
OPEN or CLOSE function is issued. The buffer may, but need not, include the system required labels. The
operating system will generate the required labels if they are not present in the label buffer. VOLI labels in
the label buffer will be ignored; HDRI1 labels in the label buffer will be used if they are appropriate at that
point in file processing. EOF1 or EOV1 labels in the label buffer will be used if they are present when the
CLOSE function is issued.

For multi-file set processing with the XL bit set and calls to the COMPASS macro POSMF, word 10 of the
FET must point to a label buffer. One of the first entries in the buffer must be a formatted HDR1 label with
the multi-file name in the set identifier field. The position number field in the label has 4 digits; a position
number of 9999 is required to write a label. Labels are always written at the end of all existing files in the
multi-file set.

60307200 A 11-29

RA+0

RA+1

RA+2

RA+53

RA+54

RA+63

RA+64

RA+65

RA+66

RA+67

RA+70

RA+77

11-30

RA COMMUNICATION AREA

59 35 29 23 17 " 5 0

User/System Interface

Parameters (Reserved)]Code
(one per word)

\
N

1AJ Bootstrap for Absolute Programs

Number of

File/Library Name Parameter Words,

starting in RA+ 2

LWA+1 of Loadable L LWA+1 of Loadable
Area in ECS Area in CM

X FWA of Loadable D FWA of Loadable
Area in ECS Area in CM

o

Control Card Image
(Replaced by Operator Message if O Bit Set and CFO Type-in)

FORTRAN 2.3 ANSI Flag: +0 = Not ANSI; -0 = ANSI

Figure 11-2. Communication Area RA through RA+100

60307200 C

LOCATIONS RA THROUGH RA + 100

The first 100 octal locations within a user field length are used for communication between SCOPE and a
user job. Many of the words are applicable only to internal SCOPE working, and can be ignored by the

programmer. Several of the fields in this area are useful in COMPASS programming when macros dis-
cussed in section 12 are called.

Figure 11-2 shows the contents of this area. The System Programmer’s Reference Manual provides an
explanation and use of all fields.

R Dependent job string recheck bit

0 CFO flag (1 = accept comment from operator)

T Storage move flag (1 = move being attempted)

P Pause flag; when set, program will halt until the operator takes action and clears the

flag with GO command; if MESSAGE is called when P is set, the message will flash
on the B display

SS Sense switches 1-6 set by SWITCH cards or by operator command ONSWn
SL Sense lights 1-6 used by FORTRAN programs

L Library/file flag (1 = name is library name)

X If set, system has an XJ instruction available for use in COMPASS

C LOAD complete flag set when load requested by LOADREQ is finished

D DIS RSS flag

When a control card is read in response to CONTRLC macro, parameters will be placed in RA + 2 through
RA + 53. The total number of words containing parameters will exist in bits 0-17 of RA + 64.

Codes accompanying the parameters are:

00 Continuation 04 (10

01 , 05 + 16 other

02 = 06 - 17 . or)
03 7 07 blank

The control card currently being processed exists in RA + 70 through RA + 76.

Location RA+1 is set by the user, or macros called by the user, when a function is requested of Monitor
(discussed in section 12).

60307200 C 11-31

COMPASS INTERFACE WITH SCOPE 12

USER/SYSTEM COMMUNICATION

A user program can request action by another part of the SCOPE operating system in several ways:

A request for PP program execution or system action can be placed in location RA+ 1 of the user
field length to communicate directly with Monitor.

Central processor subroutine CPC (central program control) can be called through a return jump
instruction. CPC will then communicate with Monitor.

A file action macro can be called. This results in a call to CPC which posts a request in RA+1 to
communicate with Monitor.

The system communication routine SYS= can be called through various macros.

A Record Manager macro can be called. These macros can be used in place of direct or indirect
calls to CPC.

These requests are necessary to perform all file action such as opening, closing, reading, or writing a file, in
addition to receiving information such as current time or date from the system.

BASIC COMMUNICATION: RA + 1 REQUESTS

All requests from the user program to the system are made through RA+1 of the user program, which is
initialized to zero. The system Monitor frequently examines RA + | during program execution. If RA+1 is
not zero, Monitor assumes that the contents are a request for a PP program or a system action, and initiates
request processing. When Monitor processing is complete, RA + 1 is reset to zero.

The requests to Monitor must be in the general format:
Bit 42-59 3 display code characters of a PP program.
Bit 40 1 if automatic recall is requested. With automatic recall, control is not
returned to the calling program until the request is executed. If auto-

matic recall is not requested, the user program must determine whether
or not the request is complete by checking a status word.

Bit 36-39 Zero.
Bit 0-35 Parameters that are required by the particular function being
requested.

60307200 C 12-1

The user has the option of setting RA + 1 directly, or calling a system or file action macro that will set it for
him. If he sets it directly, the format must conform to that shown above.

When Monitor accepts the request, it fills location RA + 1 with zeros. For all requests except RCL, TIM, ABT, or
END, the zero means only that Monitor has accepted the request and has no relation to whether the requested
task is complete. Normally, a user program posts an RA + 1 request, then loops until that location is zero, before
proceeding with other code. The user should make sure that RA + 1 is clear before issuing a request.

Task completion is noted by the change of bit 0 in a status word from 0 to 1. For requests made with
automatic recall, the complete status bit is always set to 1 before control returns to the program, as
explained below. Bits 0-17 of the RA+1 request points to the status word. For file action requests, this
status word is the first word of the FET for that file.

RECALL CONCEPT

A recall request issued in a program causes the central processor assigned to that job to be relinquished
temporarily. The length of time that the job leaves the processor depends on whether periodic or automatic
recall was requested. The amount of elapsed time before the job is reassigned the central processor is also
dependent on the relative priority of the job in the system, but jobs in recall are among the first considered
by the scheduling routines in SCOPE.

Periodic recall puts the job in recall status for the time Monitor requires to accept the recall request and
return the job status to that of waiting for the central processor.

Automatic recall (auto recall) causes the job to relinquish control of the central processor for the time
required to execute a requested peripheral processor or Monitor function. The job remains in recall until

after Monitor detects a status bit change to 2 word in the user field length which is set when the peripheral

processor completes its task. For file action requests, the complete bit is bit 0 of the first word of the FET
for the file.

With programs using recall whenever appropriate, overall central processor use is improved. If a program
cannot proceed until a requested task is complete, it can allow Monitor to assign the central processor to
another job until such time as the task is complete. Recall is particularly useful when input/output tasks are
considered.
A programmer can request recall in four ways:

RCL request to Monitor through program location RA + 1

PP program call in RA+ 1 with recall bit set

RECALL macro request

File action macro with recall parameter

122 60307200 C

Central processor programs can post an RA + 1 request with the display code characters RCL in bits 42-59
and obtain periodic or auto recall depending on the remainder of the request. Periodic recall results from RCL
in bits 42-59 with bits 0-41 containing all zeros. Automatic recall is obtained with bit 40 set to 1 and bits 0-17
containing an address of a word in the user field length which has 0 in bit 0. A PP program is expected to set
bit O of the parameter word to 1 when its task is complete. If bit O is set to 1 when the RA + 1 request is posted,
Monitor will cause the job to terminate with a message AUTO RECALL ERROR.

Central processor programs can request automatic recall when a PP program request is posted in RA+1 by
setting bit 40 to 1.

The RECALL macro results in periodic recall when no parameter list is given with the macro. If a file
name is specified, automatic recall is produced. No separate status word is involved with periodic recall.
The user program must check the code and status field of the FET for complete status to determine whether
program execution can continue.

When file action macros are used, automatic recall is requested by a recall parameter. Any non-blank character or
string of characters may appear as this parameter. The characters RECALL are often used, but a single arbitrary
character is sufficient.

The recall parameter can be specified for all the read and write macros except READIN and WRITOUT.
However, the internal execution of these two macros ensures that automatic recall is always in effect.

USING CPC

Before CPC can honor a file action request, the file environment table (FET) must have been established for
the file to be processed. Calling sequences to CPC may be generated either directly or through the use of
system macro statements.

The user communicates with CPC through macro requests and the FET. Communication with SCOPE is
handled by CPC through setting and checking RA+ 1. CPC may also cause the execution of one or more
user OWNCODE subroutines for which addresses are specified in word 9 of the FET.

A normal exit is made from CPC if the request is honored and no error condition occurs. Register X1
contains zero upon exit. If the status is other than request completed, register X1 will contain the code and
status bits set in the FET before the OWNCODE routine was entered.

Automatic recall should be used when the program makes an 1/0 or system action request but cannot
proceed until that request is satisfied. SCOPE will not return control to the program until that request is
satisfied. Periodic recall can be used when the program is waiting for any one of several requests to be
satisfied. In this case, SCOPE will activate the program periodically so that the user can determine whether
or not the program can proceed.

60307200 D 12-3

CALLING SEQUENCE TO CPC

Format of the calling sequence to the central program control subroutine:

59 41 39 35 29 17 Y
X RJ CPC
yyy n(r w z
RJ Return jump instruction
CPC Entry point to the CPC subroutine
r Set if auto recall requested

If n=0 indicating a file action request

yyy

000001

000002

000003

000004
or
000007

w

Display code characters CIO, or

Only file recall is desired. Display code characters RCL are generated in RA+1.

For most read or write functions. A function in progress will not be reissued by CPC.
When the file becomes inactive, CPC issues the next request. Display code characters

CIO are generated.

For all other functions. When the file becomes inactive, CPC issues the request. Display
code characters CIO are generated.

Equivalent to 000003; included only for compatibility with previous systems.
SA1 base address of FET
Request code (one of the CIO codes listed in section 11).

Skip count for SKIPF, SKIPB, and BKSPRU; otherwise ignored.

If n = 1 indicating other than a file action request:

yyy

124

Display-coded name of the called PP program
Not relevant

Parameters as required

60307200 C

For file action requests, CPC places the CIO function request code in the code and status field of the FET before
writing the request in RA + 1.

A file action request to Monitor is formatted by CPC in RA+ 1 as follows:

59 41 39 35 17 0

12%% Ofr : w address of FET

A system action request to Monitor is formatted in RA+ 1 as follows:

59 41 39 35 17 0

yyy 1r w z

Bits not specified in the calling sequence are reserved for future system use.

CPC EXECUTION

Bit 41 of word 2 is set to 1 in the calling sequence of all requests except file action requests. This bit is actually a
flag for CPC and has no relevance to either Monitor or the processing PP program. The setting of bit 41 causes CPC
to recognize that the address given in Al is not relevant, and that the word following the return jump to CPC
contains a properly formatted request. No additional processing is done on these requests, except for MESSAGE.
The request is simply placed in RA + 1.

A request which utilizes an FET is signalled by a value of zero in bit 41 of word 2 of the calling sequence. CPC will,
in this case, do considerable processing for the user. The processing basically consists of three steps: wait until the
FET is inactive; process any abnormal conditions; and initiate the new request. The high order 18 bits of word 2
in the calling sequence may contain a numerical value rather than a PP program name. These values are of the form
2X +Y, where X represents the ordinal in a table of PP program names, and Y is 1 or O to indicate whether or not
the FET must be inactive before processing can continue. If a PP program name appears in these 18 bits, CPC waits
for inactive FET status before initiating the new request.

1. Upon receipt of a file action request, CPC will wait for previous activity on the specified FET to be completed
unless the Y bit is zero; CPC requests automatic recall until FET word 1 contains an odd value. The Y bit is
zero for READ, WRITE, and OPEN requests. If the request is OPEN, the assumption is made that no previous
activity has occurred. READ and WRITE are handled specially.

60307200 C 12-5

2. If the Y bit is one, the results of the previous operation will be tested. A zero in bits 9-13 of the FET code and
status field indicates there are no abnormal conditions and processing goes to step 3. However, if there are
abnormal conditions but no OWNCODE addresses are given, the contents of FET word 1 are saved for sub-
sequent use as an exit parameter before processing goes to step 3. The error OWNCODE routine will be entered
if bits 9-13 have a value of 4 or higher (end-of-information or end-of-reel may also be present); the EOI
OWNCODE will be entered if the value is less than four. An OWNCODE routine is entered as though a return
jump instruction was issued. Execution begins at the start address plus 1. An exit from the routine will,
however, return control to the main program, not to CPC, which indicates that the request which triggered this
activity has not been issued; and the program must decide whether to re-issue it. An OWNCODE routine is
entered with X1 containing word 1 of the FET complete with bits indicating abnormal conditions; FET word 1
itself has been cleared of the abnormal bits.

3. If the new request is for READ, WRITE or REWRITE, and the FET is already active with the same request,
CPC exits; it would be pointless to stop the I/O merely to reactivate it. If, however, the FET is inactive or
active with a different request, steps 1 and 2 above will be executed as a subroutine. If the new request is a
READ, an additional check will be made for end-of-record or end-of-file status on the previous request; the
new READ will be ignored and an exit taken from CPC if either status is present. If a program is reading
without recall, the user is forced to clear the EOR bit at the end of each record to ensure that he is aware of
the end-of-record.

CPC now will make preparations to communicate the new request to the system. The new request code
from word 2 of the calling sequence is inserted into bits 0-17 of FET word 1; the old mode bit (bit 1) is not
disturbed. The RA + | request is formatted from the following items:

PP program name obtained from the CPC calling sequence.

Setting of the auto-recall bit in the calling sequence.

First word address of the FET.
RA+1 is set and CPC waits for a zero quantity to re-appear. If the auto-recall bit was set, CPC executes
step 2 above as a subroutine. CPC then exits with X1 containing zero if no abnormal conditions were

encountered; otherwise X1 will contain the value from FET word 1.

CPC saves and restores all registers except Al, A6, X1 and X6.

12-6 60307200 C

RECORD MANAGER REQUESTS

Record Manager (RM) is a group of routines that provides input/output facilities common to all CYBER
70 systems. The COBOL, FORTRAN, and SORT compilers use Record Manager for internal input/output
operations. User programs written in COBOL or FORTRAN can communicate with the Record Manager

through compiler language calls; COMPASS programmers communicate through the macros listed for
Record Manager under SCOPE 3.4.

Four types of file organizations are supported by RM under SCOPE 3.4:
Sequential files in physical order
Word addressable files on mass storage with continuous non-blocked data
Indexed sequential files similar to SIS version 1.0 files released under SCOPE 3.3

Direct access files containing records in fixed length blocks; record locations are determined by
hashing a key to identify blocks

All four of the above are considered by SCOPE to be sequential files. None of them have SCOPE indexes
similar to those discussed elsewhere in this manual.

12-7

60307200 A

The record and block formats supported by the Record Manager for 6000 files only are listed below.

Record
Type

F

D

Description
Fixed length records

Record length is given as a character count, in decimal, by a length field contained
within the record

Record terminated by a record mark character specified by the user

Record consists of a fixed length header followed by a variable number of fixed length
trailers—header contains a trailer count field in decimal

Record length is defined by the user

Record length is contained in a control word prefixed to the record by the SCOPE
operating system

Record is terminated by a 12-bit zero byte in the low order byte position of a 60-bit
word

Record consists of zero or more blocks of a fixed size followed by a terminating block

of less than the fixed size. These S records are equivalent to the SCOPE logical records
discussed elsewhere in this manual. .

All blocks contain a fixed number of records; the last block can be shorter
All blocks contain a fixed number of characters; last block can be shorter

All blocks contain an integral number of records; block sizes may vary up to a fixed
maximum number of characters

A control word is prefixed to each block by the operating system.

RECORD MANAGER MACROS

COMPASS 3.0 macros used for Record Manager reside in the system text overlay IOTEXT; if system

defaults are installed, macros also reside in overlay SYSTEXT.

General macro names and functions are

given below; specific variants of these macros are detailed in the Record Manager Reference Manual. Run-
time memory management (GETSP/RELSP), Record Manager label processing, and SCOPE label process-
ing all are discussed further in the Record Manager Reference Manual.

12-8

60307200 C

Macro Function

File Creation and Maintenance Macros

FILE Creates file information table (FIT)
FETCH Retrieves value of any field in FIT
STORE Sets values in fields of FIT

File Initialization and Termination Macros
OPENM Prepares a file for processing
CLOSEM Terminates file processing, initiates label processing

Data Transfer Macros

GET Transfers data from file to working storage area
GETP Retrieves a portion of a record from a file

PUT Transfers data from working storage area to a file
PUTP Transfers a portion of a record to a file

CHECK Determines completion status of 170 operations

File Positioning Macros

SKIP Repositions file backward or forward

REWINDM Rewinds volume to beginning-of-information

SEEK Provides overlap between 1/0 and processing by positioning while processing
File Updating Macros

DELETE Deletes record from file

REPLACE Replaces record or entry in file

60307200 C 129

Boundary Condition Macros

WTMK Records a tape mark on a tape file
WEOR Records end of a section
ENDFILE Records end of a partition

A FILE control card equivalent to the FILE macro also is available.

Files created by CPC can be read or written by Record Manager once they are properly described to Record
Manager. Similarly, a file created by Record Manager can be read by CPC if the file structure conforms to
that required by SCOPE sequential files. A file should not be manipulated by both RM and CPC within a
given run.

The reference manual for Record Manager contains details of its use. Record Manager is not further
discussed in this manual.

SYSTEM COMMUNICATION MACROS

Communication between SCOPE and a program written in COMPASS is provided by the following ma-
cros. These macros exist within all of the COMPASS system text overlays CPCTEXT, IOTEXT, SYSTEXT,
SCPTEXT, and TXT6RM.

SYSCOM MACRO
This macro defines standard symbois and macios.
SYSCOM Bl

If Bl is present, the COMPASS pseudo instruction Bl1=1 is generated. This informs COMPASS that
register B1 contains 1 throughout the program, and can affect the code produced by the R= pseudo
instruction. The micro MODEL is defined as the two characters 72, 73, or 74; i.e., the CYBER 70 series
model number for the installation. The symbols defined are listed below.

RASSW = 0 Sense switches in bits 11-6.

RAMTR = 1 System monitor request register.

RA.ARG = 2 Start of control statement argument list.

RA.PGN = 64B Bits 59-18 = program name.

RAACT = 64B Bits 17-00 = argument count.

RA.LWP = 65B Last word pointers for overlay load.

RA.FWP = 66B First word pointers for overlay load.

RA.CEJ = 66B Bit 59 = central exchange jump enable flag.

RA.LDR = 67B Loader communication word.

RA.CCD = 70B First word of control card image.

RA.ORG = 100B Origin of overlay header word for absolute
programs.

12-10 60307200 C

SYSTEM MACRO

This macro is used for issuing system requests for which no specific system macro is provided. It is also
used by many of the system action macros.

SYSTEM name,recall, pl,p2

Form in X6:

59 5 4139 35 17 0
Name Ofr|] O p2 p1

RJ SYS=

name Three-letter name of PP program.

recall Optional recall parameter.

pl First parameter to PP program.

p2 Second parameter to PP program.

INTEGER MULTIPLY Opdef
This opdef provides for multiplication of 48-bit integers.
IXi Xj*Xk

The result in registers Xi has sign extension in bits 59-48. This opdef should be deleted from the system
texts when the integer multiply hardware feature is installed; COMPASS then reverts to the machine
instruction of the same form, producing the octal instruction 42 ijk.

INTEGER DIVIDE Opdefs

These opdefs provide for division of 48-bit integers.

IXi Xj/Xk
IXi Xj/Xk.Bn

The integer quotient (fraction truncated) result in register Xi has sign extension in bits 59-48. The first
form destroys register B7, and the second form destroys register Bn.

60307200 A 12-11

SYSTEM ACTION MACROS

The macros discussed in this section allow the user to receive status information from the SCOPE system
and to change some job parameters. Calling these macros from a COMPASS central processor program
results in RA + 1 requests for Monitor functio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>