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PREFACE

The original motivation for the introduction of courses in elecironics
into many electrical-engineering curriculums was to provide the student
with a background for the understanding of radio communication. How-
ever, particularly within the past 10 years, many other equally important
fields have been developed which require a knowledge of electronic cir-
cuits which are often quite different from those found in radio systems.
These newer fields include radar, ielevision, analogue and digital com-~
puters, conirol systems, data-processing systems, nucleonics, pulse com-
munications, telemetering, and instrumentation (physical, biological,
medical, mechanical, psychological, etc.).

In radio engineering the waveforms encountered are essentially sinu-
soidal in nature. In the newer fields there occur a wider variety of
waveforms which include narrow (microsecond or millimicrosecond)
pulses, wide (millisecond or second) pulses, square waves, and time-base
current and voltage waveforms. In radio engineering the prime signal
source is a sinusoidal signal generator. In the newer electrical systems
the signal sources also include such circuits as multivibrators, time-base
generators, and blocking oscillators. In radio engineering, circuits are
required to perform the operations of amplification, modulation, and
detection. In the newer fields, circuits are required to perform many
additional operations. Among these are circuits which change the shape
of a wave (clipping), change the d-c level of a waveform (clamping),
determine the occurrence of equality in voltage between two waveforms
(amplitude comparison), mark the time of occurrence of some distinctive
point on a waveform (time comparison), etc. All these latter circuits
depend for their operation on the use of nonlinear circuit elements.
Hence, the nonlinear characteristics of diodes, vacuum tubes, and transis-
tors are a matter of more serious concern in the newer fields than in radio
engineering. The bandwidths required of the linear passive and active
(amplifier) transmission networks in a radio system rarely exceed several
hundred kilocycles. In the newer fields, linear pulse (or video) ampli-
fiers and wideband transmission networks of both the lumped- and dis-
tributed-parameter type are required with bandwidths extending from
zero to tens of megacycles. Finally, we may note that in the newer fields

vii



viii PREFACE

an important technique has been developed which has no counterpart in
radio engineering. This so-called digital technique is based on the use of
tubes, transistors, and magnetic cores as switches which in operation are
either turned on or off and never left in an intermediate state.

It is the purpose of this text to provide a description and an analysis of
the circuits and techniques which are common to many of the newer fields
of electrical engineering. It is to be emphasized that this text is not
intended as a book on a specific terminal subject such as digital computers,
television, radar, etc. Rather the circuits and techniques described here
are basic to an understanding of many diversified specialized fields. (It
is hoped that the title selected for this text gives some suggestion of its
scope. Other authors have used such titles as “unconventional circuits,”
“waveforms,” ‘“advanced electronic circuits,” ‘‘recurrent electrical
transients,” ‘“‘pulse techniques,” “timing circuits,” etc.)

It is the feeling of the authors that a modern curriculum in electrical
engineering should include at least three (and preferably four) courses in
electronics. This sequence should begin with physical electronics, con-
_ tinue with what might now be called classical (radio) circuits, and should
conclude with pulse and digital circuitry. This book is intended to serve
as a text in pulse and digital circuitry for such an undergraduate sequence.

The subject of pulse and digital techniques has already assumed such
importance that a two-term graduate sequence in this subject is certainly
justified. This text contains adequate material for such a graduate course.

The authors have used almost all the material in this book (in note
form and with constant revision) in their classes over the past eight years.
The organization of the material has received careful attention and is as
follows. First, an analysis is made of the response of linear networks,
both active and passive, to the types of waveforms commonly encoun-
tered in pulse circuits. Then the basic nonlinearities of tubes and
semiconductor devices are described and the effects of these nonlinearities
on waveform transmission are studied. Waveform generating circuits
and other fundamental building blocks are next analyzed in detail.
Finally, the basic circuits, with which the reader is now familiar, are
assembled into pulse and digital systems. The motivation behind the
organization of each chapter has been to assemble, correlate, and analyze
circuits and techniques required to perform a basic operation.

The philosophy of presentation which the authors have adopted has
been to analyze a circuit on a physical basis so as to provide a clear
understanding and intuitive feeling for its behavior. Mathematics
(through differential equations) is used wherever required but only after
the physical motivation behind the mathematics has been discussed.
Since this text is intended for a course in electronics and not one in dif-
ferential equations, the authors feel justified in omitting some of the
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mathematical details of solution. In most cases the roots of the charac-
teristic equation (the poles of the transfer function) are examined care-
fully, since these provide a great deal of insight into the nature of the
response. Then the analytical solution is written down, the response is
plotted, and its physical significance is studied. It is assumed that the
reader is familiar with the solution (either by the classical or the
Laplace transform method) of linear differential equations with constant
coefficients. '

The principal emphasis in this text is upon a deep theoretical under-
standing of pulse and digital circuits and techniques. At the same time
the authors have included enough practical details so as to make its
usefulness felt immediately in the laboratory.

A number of illustrative examples are worked out in detail in the body
of the text. A large number of homework problems (over four hundred)
are included at the end of the text. Some of these are theoretical in
nature, a few give the student practice in the solution of the differential
equations set up in the text, and many others illustrate practical circuits
and systems. In every case the order of magnitudes of the parameters
have been chosen realistically so that the reader will learn what to expect
as a practicing engineer. The tube characteristics needed in the solu-
tion of some of the problems are included in the Appendix.

It is expected that transistors will play an increasingly important role
in pulse and digital circuits as the years go by. The purpose of Chap. 18
is to give a pedagogically sound presentation of the transistor as a basic
circuit element. Enough semiconductor physics has been included so as
to give the reader an appreciation of the properties of transistors and also
of their limitations. It is therefore not necessary for the student to con-
sult other references before reading Chap. 18. The emphasis in the
chapter is on the use of the transistor as a switch in pulse and digital
applications.

It is a pleasure to acknowledge the assistance received from many
sources in the preparation of this book. The following companies sup-
plied information in the form of component characteristics, instrument
instruction manuals, etc.: Bell Telephone Laboratories, Berkeley Division
of Beckman Instruments, Inc., A. B. Du Mont Laboratories, Inc., Gen-
eral Electric Company, Hewlett-Packard Company, Potter Instrument
Company, Sylvania Electric Corporation, Tektronix, and Tel-Instrument
Company. We are grateful for the many technical discussions with our
friends and colleagues at Columbia University, The City College of New
York, the Electronics Research Laboratories of Columbia University, and
the Tel-Instrument Company. The Massachusetts Institute of Tech-
nology Radiation Laboratory Series of volumes on radar were also a
source of a great deal of useful information.
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We are pleased to acknowledge our indebtedness to the following per-
sons for their assistance: Professors E. Brenner and G. J. Clemens and
L. B. Lambert, R. Laupheimer, and D. L. Schacher read a great deal of
the manuscript and made many valuable suggestions. Dr. S. Amarel
supplied much valuable information in connection with comparators,
Dr. J. W. Easley and Dr. J. L. Moll in connection with transistors, G. F.
Bland in connection with the NORC computer, L. Packer in connection
with some digital circuits, and R. P. Vogel in connection with transmission
gates. H. J. Bickel, A. V. Mitchell, and R. P. Vogel suggested some
of the problems. G. E. Kaufer assisted with some of the drafting.
Miss J. Psygoda made many of the numerical calculations. We wish
particularly to express our gratitude to Miss S. Silverstein, secretary of
the Electrical Engineering Department at The City College, for her
invaluable assistance in the preparation of the manuscript.

We are grateful to the following for assistance in proofreading: Profes-
sor E. Brenner and J. H. Bose, E. Cohen, and F. C. Schwarz.

J. MiLLMAN
H. Taus
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CHAPTER 1

REVIEW OF AMPLIFIER CIRCUITS

Voltage- and current-feedback circuits, which find extensive application
in many branches of electronics, are also used frequently in pulse systems.
Among such circuits, which will appear throughout this text, are the
cathode-follower, phase-inverter circuits, difference amplifiers, and opera-
tional amplifiers. Therefore we shall review briefly the principles of
negative feedback and derive equivalent circuits which will give an
intimate physical understanding of such circuits. Finally, these power-
ful methods of analysis will be applied to the circuits most commonly
used in pulse applications.

~_.._°P

N

[ 1

°K

(a) (b)

Fig. 1-1. The equivalent circuit of a triode operating linearly.

1-1. Equivalent Circuit of a Vacuum Tube.! Over the range of linear
operation, the vacuum tube of Fig. 1-1a may be replaced by the equiv-
alent circuit of Fig. 1-1b. The symbol e, stands for the voltage drop from
grid to cathode, and r, is the plate resistance of the vacuum tube. A
circuit which involves vacuum tubes may be analyzed by replacing each
tube by its equivalent circuit and by disregarding all those circuit fea-
tures, such as supply and bias voltages, which have an influence only on
the quiescent state.* This replacement of the vacuum tube by its equiva-~
lent leaves a network which may be dealt with by linear circuit analysis.

ExamprLeE. The triode of Fig. 1-2a has a plate resistance 7, and an amplification
factor u. The externally applied voltage is e., as shown, and the output voltage is e,.
Find an equivalent circuit with respect to the output terminals selected.

* The symbols for voltage and current used throughout this chapter (with the
exception of Sec, 1-7) represent variations from the quiescent value.
1
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Solution. The vacuum tube has been replaced by its equivalent circuit in Fig. 1-2b.
The current 7 must satisfy the equation

uegr = i(rp + Rz + Re)
The voltage drop from G to K is
e = e, — iRy
Eliminating eg, and solving for e, = iR, we have

E_, Ry
e+1 R+ Ry

€ =

where Ry = (Rz + ) /(e + 1).

(b)

F1a. 1-2. An example illustrating the use of the equivealent circuit of Fig. 1-1b.

It appears from inspection of this last equation that the output voltage may then
be computed from the equivalent circuit of Fig. 1-3a.

Thévenin’s theorem states that any fwo-terminal linear network may
be replaced by a generator equal to the open-circuit voltage between the
terminals in series with the equivalent output tmpedance. The output imped-
ance is that impedance which appears between the output terminals when
all energy sources are replaced by their internal impedances. For exam-
ple, in Fig. 1-3a the output impedance R is given by the parallel combina-
tion of R; and R; and the Thévenin generator voltage is given by

er = HEe Ry
" e F1R+ R:

This Thévenin equivalent circuit of Fig. 1-3a is shown in Fig. 1-3b. We
have also indicated in Fig. 1-3b that an external load may be added
across the output terminals and that it will then draw a load current 7.,
[which will equal er/(R + R’)]. Thus, the output impedance specifies
the manner in which the output voltage e, = 7R’ is affected by an
external load. The output voltage is also givén by e, = er — iLR.

The Thévenin equivalent of an amplifier circuit is indicated in Fig.
1-4a. The input terminals are marked 1 and 2 and the input voltage is e.
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The output terminals are marked 3 and 4. The external load is R’ and
the output impedance is B. Since the open-circuit voltage (no external
load placed across the amplifier) is the amplifier gain A times the external
voltage, the Thévenin generator is Ae, as indicated.

In Fig. 1-4¢ we have assumed that the circuit contains only resistive
elements. If reactive elements are present, the circuit may be generalized
as indicated in Fig. 1-4b. Capital letters are now used to define sinor

_ RL+l‘p
Bi="sr
+
+
,u+1e° Rk ]o
(a)
’V\é\/\: -
+ ;
GD eo ‘L) SR’ (external
load)
—J
(b)

F1a. 1-3. Networks equivalent to the circuit of Fig. 1-2. The Thévenin generator
ep and the output impedance R are defined in the text.

o——t—0 + o o o o—t—o
+ 1 v6'“3 + %, F 1 + 3 |+
¢ 2 _ 4 ﬁ’é‘) R E_ 2 f" @ Z

(@) (d)

F1c. 1-4. Thévenin equivalent circuits for an amplifier (a) with resistive elements and
(b) with reactive elements.

(phasor) quantities and resistances R are replaced by complex impedances
Z. 'The output voltage is given by

E, = AE — I,Z (1-1)

where Z is the output impedance, A4 is the (unloaded) amplifier gain, and
Zy, is the load impedance. This equation may be used to define A and Z
for a particular circuit. For example, if we find that the output voltage
of an amplifier varies linearly with load current as indicated in Eq. (1-1),
then the factor multiplying the applied voltage E is the gain and the
factor multiplying the load current I, is the output impedance.
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1-2. Voltage Feedback in Amplifiers. A feedback amplifier may be
defined tentatively as one in which the amplifier input signal is in part
derived from an external source and in part from the amplifier output.
Any amplifier, whether it involves feedback or not, may be analyzed by
the method outlined in Sec. 1-1. Where feedback is involved, however,
it is more fruitful to try to deal separately with the amplifier proper and
with the feedback network in order to be able to appreciate the influence
of the feedback on the amplifier characteristics. Since, with respect to
its output terminals, the amplifier is specified by the gain and output
impedance we shall inquire into the manner in which these two features

o1 3
+ + +
E, E; Amplifier EOIQ Zy (external
_ _ _ load)
— 2 4
4+ —
E; ° Feedback
network *
(a)
Amplifier
+ + AR +
E, E; @ E, 9 Zy
=ﬁEo
(%)

Fia. 1-5. (a) A block diagram of a voltage-feedback amplifier. The feedback factor g
is defined by 8 = E;/E,, where E; = E; — E.. (b) The equivalent circuit.

of the amplifier are modified by certain particular feedback arrangements.

Consider the feedback arrangement of Fig. 1-5a. The signal at the
input terminals to the amplifier is the sum of the externally impressed
voltage E. and a feedback voltage E; = 8E,. The feedback voltage is
related to the output voltage by a factor 8, which is determined by the
feedback network. The feedback network may be active or passive and
in general 8 may be a complex quantity. The convention with respect
to the polarity of all signals is indicated, and this convention will be
adhered to consistently in what follows.

Let A be the forward gain without feedback (the open-loop gain) between
the input and output terminals of the amplifier with the load Z, removed.
We may define A by the following operational procedure. Remove E.,
and apply a voltage E; directly to the terminals 1 and 2. The gain A is
given by A = E,/E,.
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The output impedance without feedback Z of the amplifier is defined as
follows. Remove L., and short-circuit terminals 1 and 2. Under these
conditions Z is the impedance seen looking back into the output terminals
3 and 4. Note that the definitions of A and Z take into account the
loading effect of the impedance of the feedback network.

The Thévenin equivalent circuit corresponding to Fig. 1-5a is indicated
in Fig. 1-5b. The distinguishing feature of voltage feedback is that the feed-
back voltage E; is related to the outpui voltage E, by E; = BE,, in which 8 is
Jized independently of the external load Zr. We may write

E, = AE; — I.7 and E;=FE, + BE,
Eliminating E; from these equations, we find
A Z
T 1= a8

This equation is in the form of Eq. (1-1) and hence we conclude that the
gain and output impedance with feedback are given by A; (theclosed-loop
gain) and Z;, respectively, where

E, = It (1-2)

A
1 —p4
Z
1—-BA

Ay = (1-3)

and Z !

i

(1-4)

The Thévenin equivalent circuit is indicated in Fig. 1-6. The effect
of the feedback is, therefore, to

modify both gain and impedance by ¥ | =} Z, T+ z%
the same factor. If |A;| < |4|, the E. @ E, 9 Z
feedback is termed negative or de- = _ —
generative. If |A;] > |A|, the feed- Fie. 1-6. The Thévenin equivalent of an
back is termed positive or regenerative. ~amplifier taking voltage feedback into
In the case of negative feedback, account.

which is of principal interest to us, the magnitude of both gain and
impedance is divided by the factor |1 — BA|.

1-3. Current Feedback in Amplifiers. A curreni-feedback amplifier is
shown in Fig. 1-7. The amplifier without feedback has a gain 4 and
output impedance Z. The distinguishing feature of the present circuit
is that the feedback voltage is proportional to the current which flows through
the external load Z1, and the factor of proportionality between E; and Iy is
independent of the output voltage E,. The feedback voltage is developed
across the impedance Z,, which is in series with the load.

We have

E,= AE;— (Z + Z)I, and  E; = E, + ZI,
from which B, = AE, — [Z + Z.(1 — AL,
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Amplifier

L S — .Y

+
E;
1o

r &+

[——————C
+ Z +
AE; @ E, Zy,

L
LEf=ZsIL

Fia. 1-7. A block diagram of a current-feedback amplifier.

Comparing with Eq. (1-1), we see that the gain and impedance in the
presence of current feedback are therefore

A, = A

Z; =7 + Z,(1 — A)

(1-5)

The gain has not been altered. If the amplifier were unaltered except

L
“(a)

Amplifier

@ v
F1c. 1-8. (a) Amplifier with plate and

cathode resistors. (b) Circuit redrawn
as a voltage-feedback amplifier. (c)
Equivalent circuit with respeet to output
terminals between cathode and ground.

which corresponds to Fig. 1-5b.

that the feedback voltage were not
returned to the input, the output
impedance would be Z + Z,. The
effect of the current feedback is
therefore to add to the output im-
pedance the additional impedance
—AZ, If, for example, A is a real
negative number and Z, is resistive,
the output impedance with feed-
back will be greater than the im-
pedance without feedback.

1-4. Illustrations of Current and
Voltage Feedback. We shall now
consider some examples of special
one-tube amplifiers. The examples
are selected because they illustrate
the matters described above in con-
nection with feedback and also
because the circuits themselves are
of much practical importance.

Suppose that in the circuit of Fig.
1-8a we define the output terminals
to be K and N so that e, = ey, and
the input terminals to be G and K
so that e; = e;.  The external sig-
nal generator is connected to G and
N sothate, = ¢;,. The circuit may
now be redrawn as in Fig. 1-8b,

Independently of whether the resistor Ry

is considered a part of the amplifier or an external load we have a case of
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voltage feedback in which 8 = —1 since ¢ = —e,. Let us consider that
Ry is an external load and not a part of the amplifier. Then

= b _ G

e ep

and 1 — B4 =1+ p. The impedance without feedback seen looking
to the left between terminals K and N isr, + R;. The gain and imped-
ance with feedback are found from Eqs. (1-3) and (1-4) to be
_ M T + Ry -

Af = #—‘l" 1 and R/ = —'# 1 (1 G)
The equivalent circuit is as indicated in Fig. 1-8¢c. This is the same
circuit as in Fig. 1-3a, which was derived without the aid of feedback
formulas.

Amplifier

P
'l

I e, R,
—a
Wv N

(b) :
Fic. 1-9. (a) Amplifier with plate and cathode resistors drawn as a current-feedback
amplifier. (b) Equivalent circuit with respect to output terminals between plate and
ground.

Next, referring again to Fig. 1-8a, let us consider that again e; = ¢,
and e, = ¢;, but that now e, = e,,. The circuit is redrawn in Fig. 1-9a
which corresponds exactly to the circumstances of current feedback in
Fig. 1-7. Observe that here we have no choice but to require that B be
considered an external load. The gain, with or without feedback, is
A = Ay = epn/eqy = —u. The output impedance neglecting feedback
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is r, + R, so that altogether we have
A = —u and Ry =r, 4+ (1 4+ p)R: a-7

The equivalent circuit is shown in Fig. 1-9b.

The above results are extremely important and should be emphasized.
If we look into the cathode of an amplifier, we see an equivalent circuit
(Fig. 1-8c) consisting of a generator of value u/(u + 1) times the external-
source voltage and an impedance (r, + Rz)/(u -+ 1). The latter may be
small if x islarge. On the other hand, if we look into the plate of an ampli-
fier, we see an equivalent circuit (Fig. 1-9b) consisting of a generator of value
—u times the external-source voltage and an impedance r, + (u + 1)R;.
The latter may be large if u is large.

It should be clear at this point that any discussion of feedback must
necessarily take as its starting point a careful definition of what are to be
considered as the input and output terminals of the amplifier, where the
external signal is to be applied, what is to be considered a part of the
amplifier, and what is external to the amplifier. For example, if in
connection with Fig. 1-9, the resistor Bz, were to be considered part of the
amplifier, then the resultant circuit would correspond neither to voltage
nor to current feedback as we have defined them. It might still be
profitable in this latter case to consider the amplifier as some new type of
feedback amplifier. But the point to note is that a circuit must conform
in every detail to the circumstances specified in Figs. 1-5a¢ and 1-7 before
we can confidently apply to them the feedback formulas stated above.

1-5. Some Characteristics of Feedback Amplifiers. The three proper-
ties of feedback amplifiers which are most important for pulse circuit
applications are the influence of negative feedback on the stability of
amplifier gain, on the frequency distortion, and on nonlinear distortion.
We shall consider first a voltage-feedback amplifier.

Stability. The variation due to aging, temperature, and replacement,
etc., of the circuit components and tube characteristics of an amplifier
is reflected in a corresponding lack of stability of the amplifier gain.
The fractional change in gain with feedback is related to the fractional
change without feedback by

dd; 1 |d4
A, | T[T=p4 |4

This equation is obtained by differentiating Eq. (1-3). If the feedback is
negative, so that |1 — BA| > 1, the feedback will have served to improve
the gain stability of the amplifier. '

In particular, if |84] > 1, then
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and the gain may be made to depend entirely on the feedback network.
The worst offenders with respect to stability are usually the vacuum
tubes involved. If the feedback network should then contain only pas-
sive elements, the improvement in stability may indeed be pronounced.

Feedback is used to improve stability in the following way. Suppose
an amplifier of gain A, is required. We start by building an amplifier
of gain, A, = kA4, in which & is a large number. Feedback is now intro-
duced to divide the gain by the factor k. The stability will be improved
by the same factor, k, since both gain and stability are divided by the
factor k = |1 — BA,|. If now the instability of the amplifier of gain, A,
is not appreciably poorer than the instability of the amplifier of gain
without feedback equal to A, this procedure will have been useful. It
often happens as a matter of practice that an amplifier gain may be
increased appreciably without a corresponding loss of stability. Con-
sider, for example, the case of a one-tube pentode amplifier. The gain is
gnR1, g» being the tube transconductance and R; the plate-circuit
resistor. The principal source of instability is in ¢g.. Hence the frac-
tional change in gain is the same for a given fractional change in ¢,
independently of the size of Rj.

Frequency Distortion. It follows from the equation A, =~ —1/8 that
if the feedback network does not contain reactive elements then the over-
all gain is not a function of frequency. Under these circumstances a
substantial reduction in frequency and phase distortion is obtained. It
is to be noted, however, that negative feedback improves frequency
response only at the expense of gain.

Nonlinear Distortion. Suppose that a large amplitude signal is applied
to a stage of an amplifier so that the operation of the tube extends
slightly beyond its range of linear operation and as a consequence the
output signal is slightly distorted. Negative feedback is now introduced
and the input signal is increased by the same amount by which the gain
is reduced so that the output signal amplitude remains the same. For
simplicity, let us consider that the input signal is sinusoidal and that the
distortion consists of simply a second-harmonic signal generated within
the tube. We shall also assume that the second-harmonic amplitude, in
the absence of feedback, is equal to B.. Because of the effects of feed-
back, a component B,; actually appears in the output. To find the
relationship that exists between By and B, it is noted that the output will
contain the term ABB,;, which arises from the component 8B,; that is
fed back to theinput. Thus the output contains two terms: B,, generated
in the tube, and ABBj;, which represents the effect of the feedback.
Hence,

AﬁB2f + Bz = Bz/
B,

T— 4p (1-8)

or Bz; =
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Since A and B are generally functions of the frequency, they must be
evaluated at the second-harmonic frequency.

The input voltage E. to the feedback amplifier may be the actual signal
externally available, or it may be the output of an amplifier preceding
the feedback stage or stages under consideration. In order to multiply
the input to the feedback amplifier by the factor |1 — Ag|, it is neces-
sary either to increase the nominal gain of the preamplifying stages or
to add a new stage. If the full benefit of the feedback amplifier in
reducing nonlinear distortion is to be obtained, these preamplifying
stages must not introduce additional distortion because of the increased
output demanded of them. Since, however, appreciable harmonics are
introduced only when the output swing is large, most of the distortion
arises in the last stage. The preamplifying stages are of smaller impor-
tance in considerations of harmonic generation.

It has been assumed in the derivation of Eq. (1-8) that the harmonic
distortion generated within the tube depends only upon the grid swing
of the fundamental signal voltage. The small amount of additional
distortion that might arise from the second-harmonic component fed
back from the output to the input has been neglected. Ordinarily, this
will lead to little error. Further, it must be noted, the result given by
Eq. (1-8) applies only in the case of small distortion. The principle of
superposition has been used in the derivation and for this reason it is
required that the tube must be considered to operate with at least approxi-
mate linearity. )

Consider now a current-feedback amplifier. The three properties given
above for the output voltage of a voltage-feedback amplifier are equally
valid for the output current of a current-feedback amplifier. This state-
ment may be confirmed as follows: From Fig. 1-7 and Eq. (1-5) the load
current in a current-feedback amplifier is given by

_ AE, _ —E,
T Z4+Z(-A+Z.T Z,

provided that [Z,A|>|Z 4+ Z. + Z.|. Under these circumstances wenote
that the current depends only upon Z, and not upon the other amplifier
features. Hence, if the feedback impedance Z; is a stable element, the
load current is stable with respect to aging, temperature, and replacement
of circuit components and tube characteristics. If Z, is a resistor, then
I, is independent of frequency and the distortion in frequency and phase
is greatly reduced. Note that this conclusion is valid even if the load
impedance is a function of frequency. If Z; is a linear element, then
virtually no nonlinear distortion of load current results.

We may summarize the above discussion by stating that the load
current in a current-feedback amplifier is approximately independent of load

I (1-9)
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impedance. In other words, the circuit behaves as a current device, the
magnitude of the load current being obtained by dividing the externally
applied voltage by the feedback impedance Z..

1-6. The Cathode Follower. An
example of a circuit which may profit-
ably be viewed as a feedback amplifier
is the cathode follower of Fig. 1-10a.
This circuit is also referred to as a
grounded-plate amplifier. The equiv-
alent circuit of Fig. 1-10b may be
drawn directly by setting Rz = 0 in
Fig. 1-8¢c. The gain is always less
than unity and is given by

wlty
Tp + (I" -+ I)Rk

If (w4 1)Rx > r, then the gain is

A= (1-10)

u/(u + 1) or approximately unity. A W_L" ' +

gain of 0.95 or larger is not difficult + £+l T

to achieve. The polarity of the volt- _4_, C) R, A

age at the cathode, the output signal, AN

is the same as at the grid. The cath- _

ode voltage therefore follows very

closely the grid voltage and this fea- (0)

ture accounts for the name given to L6 1-10. The cathode follower and
PR its equivalent circuit. The equiva-

the circuit. lent circuit is as shown in Fig. 1-8¢

If numerator and denominator of except that Rz = 0.
Eq. (1-10) are divided by r, and if we
recognize that usually p + 1 =2 u, we may rewrite Eq. (1-10) in the form

mRk
A= Intk 1-11
in which ¢,, = p/r, is the transconductance of the tube.

The output impedance of the cathode follower is determined by the
parallel combination of R, and r,/(u + 1). Since r,/(u + 1) = 1/gm,
the output impedance may be written, with small error, as

Ry

(1-12)
For g.R: > 1, R = 1/g. Since g, for a large variety of receiving-type
tubes lies in the range 1 to 10 millimhos, R includes the range 100 to
1,000 ohms. A low output impedance is often an asset in an amplifier
since it reduces the influence of the load on the amplifier output voltage.
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The output impedance of a cathode follower is frequently appreciably
smaller than the output impedance encountered in a conventional ampli-
fier where the output signal is developed across an impedance in the
plate circuit.

The conventional amplifier, however, provides gain. To make a fair
comparison between the two amplifier types, let us compare, for the two
cases, a figure of merit F, which is defined as the ratio of gain to ouiput
impedance. If, in the conventional amplifier, the resistor Rz is small in
comparison with the tube plate resistance (as it would be even if the tube
were a triode, but the interest was in securing a low output impedance),
then A = ¢,.R; and B = R, approximately. Therefore

F (conventional amplifier) = g’;zRL = Gnm
L
For a cathode follower,
. gnBy 1+ gnly
F (cathode follower) = T gulie R = Om

It appears that if the gain of a conventional amplifier is made equal
to that of a cathode follower, then the output impedance of the two
circuits is the same.

Nevertheless where an amplifier of low output impedance is required,
the cathode follower might still be the circuit of choice since it offers
an advantage with respect to stability of gain not shared by the conven-
tional amplifier. In the light of the discussion in Sec. 1-5 this feature
might well have been anticipated. Consider, for example, that the ¢
of the tube changes by, say, 10 per cent. The gain of the conventional
amplifier also changes by 10 per cent. On the other hand, if a cathode
follower were adjusted for approximately unity gain (g.Rx > 1), the
change in gain would be appreciably reduced. We have ‘

dd _ 1 _ dgn
A 1+ngkgm

so that, if, say, gnR; = 10 and dg./g» = 0.1, thendA/A = 0.1/11 == 0.01.
Thus, a 10 per cent change in g, has now resulted in only a 1 per cent
change in gain. This is an improvement by a factor of 10 over the
conventional amplifier.

A second advantage of the cathode follower lies in the linearity with
which the output signal follows the input signal. The advantage is
most pronounced when a cathode follower of maximum possible gain,
nominally unity, is compared with a conventional amplifier of compar-
able gain and consequently comparable output impedance. Consider
first a cathode follower in which R is made very large.
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If an output signal swing Ae, is required, the tube current must change
by Ae,/Rr, which is small since R; is large. Since the nonlinearity
introduced by a vacuum tube is largely determined by the range over
which its current must vary, we may anticipate that the operation will
be quite linear. The comparable conventional amplifier will require a
plate-circuit resistor Rz nominally equal to 1/g,, which is only of the
order of several hundred ohms. The tube current must then change
by Ae,/Rr, which is very much larger than Ae,/R:, and the linearity
will suffer. With a cathode follower for which ¢,,R; >> 1 it is not difficult
to achieve a linear output voltage whose peak-to-peak value is comparable
to the total supply voltage. With a unity-gain amplifier the maximum
output swing is the grid base (defined as the voltage swing from zero
bias to cutoff). This swing is approximately 1/u times the supply volt-
age. Hence the swing obtainable from a unity-gain conventional ampli-
fier is much smaller than that from a cathode follower.

1-7. Graphical Analysis of the Cathode Follower. We consider now
how to use the characteristic curves of a vacuum tube to determine such
matters as range of output voltage swing, proper bias voltage, and
operating point for any arbitrary input voltage to a cathode follower.
In Fig. 1-10aq, e., e, and 1, are, respectively, the fotal instantaneous grid- -
to-cathode voltage, plate-to-cathode voltage, and plate current. We
have

Ebb = €p + ZbRk (1"13)
and €e = €, + ’ibRk (1—14)

Equation (1-13) is the equation of the load line corresponding to the plate
voltage Ej and the load resistor R;. The procedure for constructing
the dynamic characteristic (plate current vs. external input voltage) of a
cathode follower is then the following:

1. On the plate characteristics draw the load line corresponding to the given value
of E),b and Rk.

2. Note the current value corresponding to each point of intersection of the load
line with the characteristic curves. In each case relabel the individual plate charac-
teristics with an input voltage e. equal to e, + 4,1, in accordance with Eq. (1-14).
The procedure is illustrated in Fig. 1-11.

3. The required curve is now a plot of the current values vs. the input voltage.
For example, 7,; and e.: are corresponding values on the graph.

4, The output voltage corresponding to the current 4y, is ex» = iRy, as is indicated
in Fig. 1-11.

When cutoff occurs, there is, of course, no drop across the cathode
resistor. Consequently, the externally applied voltage required to attain
cutoff is independent of the size of the cathode resistor. When the
input voltage swings positively, the cathode follows it and maintains itself
positive with respect to the grid. The maximum input voltage is usually
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limited by grid eurrent which takes place approximately at the place
where the grid-cathode voltage is zero.

ExamprLE. Consider a 6SN7 vacuum tube with Eyp = 300 volts and B; = 20 K.
Find the maximum positive and negative input voltages. (Refer to Fig. A-2.*)

Solution. From the plate characteristics and the load line it is found that the
current, corresponding to e, = 0is 7, = 10 ma. Hence, the maximum output voltage
is .Rx = 200 volts, and since e, = 0, the maximum input voltage is also 200 volts.
The cutoff voltage for the 6SN7 corresponding to 300 volts is found to be —18 volts.
Hence, the cathode follower may swing from +200 volts to —18 volts without drawing
grid current or driving the tube beyond cutoff. The corresponding input range for
an amplifier using the same tube and the same supply voltage is only 0 to —18 volts.

1

Ey |
Ry

€c1 —> eel(E €.1 +ible)

ec2 e (S e +inaRy)
€c3 —> €¢3

€c4 —> €4

pp P ————————f———
ec5 —> €55
€c6—> €6
0 ; ey
] €2 ) Rk—)‘ Eyy

F1c. 1-11. Construction for obtaining the dynamic characteristics. The symbolism
€1 — e.1 means that e.; is replaced by €. = ec1 + 21 Rx.

From Eq. (1-14) it is clear that the instantaneous output voltage ¢ R
is larger than the instantaneous input voltage e, since e, is a negative
number. This result does not contradict the fact that the gain of a
cathode follower must be less than unity. It must be remembered that
it is only necessary that the change in output be less than the correspond-
ing change in input voltage. For example, in the above illustration, the
maximum input peak-to-peak swing is 218 volts but the maximum output
swing is 200 volts.

It is often desirable to find the current corresponding to a specified
input voltage without drawing the entire dynamic characteristic as out-
lined above. A very simple procedure is as follows:

~ * Figures A-1 to A-12 are to be found in the Appendix.
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1. On the plate characteristics draw the load line corresponding to the given value
of Ey, and R:.

2. Corresponding to each value of ¢ for which there is a plotted plate characteristic
calculate the current for the specified value of input voltage E. In accordance with
Eq. (1-14) this current is given by
E —e

Ry

B =

The corresponding values of 7, and ¢ are plotted on the plate characteristics as indi-
cated by the dots in Fig. 1-12. These points are connected by a curve.

3. The intersection of this curve and the load line gives the plate current I, corre-
sponding to the given input voltage E.

iy

0

E, By

F1a. 1-12. Construction for obtaining the quiescent point of a cathode follower.

The procedure outlined above is very easy to carry out. It is not
really necessary to use all values of e, but only two adjacent values
which give currents above and below the load line, as indicated by points
A and B in Fig. 1-12. The intersection of the straight line connecting
A and B with the load line gives the desired current. In particular, it
should be noted that if E is large compared with the range of values of
e, then 7, will be almost constant and hence the curve connecting the
dots in Fig. 1-12 will be approximately a horizontal straight line.

The analysis of the operation of an amplifier which has both a cathode
resistor and a plate resistor, as in T'ig. 1-8a, follows a procedure identical
to the one described for the cathode follower with the single exception
that the load line is drawn corresponding to a resistor equal to Ry + Ry
rather than to R;.

1-8. Practical Cathode-follower Circuits. In the illustration givenin
Sec. 1-7 the input could swing 200 volts in the positive direction before
drawing grid current but could only go 18 volts in the negative direction
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before driving the tube to cutoff. If a more symmetrical operation is
desired, the tube must be properly biased. Figure 1-13 shows four
biasing arrangements. In (@) the grid is maintained positive with respect
to ground by the use of a voltage divider across the plate supply.
In (b) the bottom of R, is made negative with respect to ground, the
voltage being obtained from a separate negative supply. In (c) self-bias
is used, the self-biasing voltage appearing across R;. That is, with no

Epp

(¢)

Fr1a. 1-13. Four biasing arrangements for a cathode follower.

input signal the grid-cathode voltage is the drop across R;. This resistor
is chosen so that the quiescent voltage across Rj is approximately half
the peak-to-peak output swing. In the example of Sec. 1-7, where the
total output swing was 200 volts, the quiescent value is chosen as 100 volts
across the 20-K resistor. This corresponds to a quiescent plate current
of 5 ma. From the plate characteristics of the 6J5 and the 20-K load
line, the grid-cathode voltage corresponding to 5 ma is —7 volts. Hence,
R, must be chosen equal to 74 K = 1.4 K. TFinally, in (d) the bypass
capacitor across R; is removed, the output appears across the combination
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R, and R, and the bias voltage is again equal to the d-¢ voltage drop
across R;. In the above example, R; = 1.4 K and

Ry=Rr— Ry =20 —-14 =186 K

1-9. Characteristics and Applications of the Cathode Follower. The
principal characteristics of the cathode follower may be summarized as:
High input impedance (low input capacitance).

Low output impedance.

Stability of amplification with tube changing, voltage variation, ete.
Output is linearly related to the input.

No inversion of the signal.

Gain is less than one but can be made almost equal to unity.

. The input swing may be very large, approaching the supply voltage
in magnitude.

8. The quiescent output voltage may be adjusted easily.

9. Any ripple in the supply voltages appears at the output greatly
attenuated (see Prob. 1-6d).

The first characteristic is discussed in Chap. 3, where the high-fre-
quency behavior of the cathode follower is considered. The other
characteristics mentioned above have been studied in the preceding sec-
tions. The nonlinear properties of the cathode follower are discussed in
Chap. 4.

Only a few applications will be listed, although many are suggested
by the above properties. A cathode follower is usually employed when a
high input impedance or a low output impedance or both are required.
The input stage to almost all good-quality cathode-ray oscilloscopes is a
cathode follower. Whenever it is required to transmit a signal over a
relatively long distance, the capacitive loading of the long wires (or
shielded cable) is minimized by taking advantage of the low output
impedance of the cathode follower. One such application is the use of
the cathode follower to couple the early stages of the amplifier of an
oscilloscope, located near the front-panel input terminals, to the output
stages, which are located near the back of the chassis at the base of the
cathode-ray tube. Another such application is the use of the cathode
follower to feed video signals, by means of a coaxial cable, from a receiver
to a number of indicators many feet away.

If the output from one circuit acts as the input to another circuit, and
the second circuit reacts back onto the first, then a cathode follower may
be used as a buffer stage to eliminate this reaction.

Many electronic instruments take advantage of the great stability and
linearity of cathode followers.

1-10. Cathode-follower-type Circuits.? There are a number of cir-
cuits which partake of some of the properties of cathode followers prin-

e



18 PULSE AND DIGITAL CIRCUITS

cipally because they involve the use of a resistor in the cathode circuit.
Some of these which are commonly em-
ployed in pulse applications are described
in this section.

The Phase Inverter. The phase tnverter
appears in Fig. 1-14, A single input
signal provides two output signals: ey,
which is of the same polarity as the input,
and e,,, which is of opposite polarity.
Further, if the plate and cathode resistors
are identical, the magnitudes of the two
signals must be the same, since the cur-
rents in the plate and cathode resistors are

Fic. 1-14. The phasc inverter. ~ €qual. The gain [A] = |ern/e | =|e,n/e]
may be written directly by comparison with
either of the equivalent circuits of Fig. 1-8¢ or 1-9b with the result that

= 2 ~ _gnl
'+ (w+2)R T 1+ guR

The exact result differs from that given for the cathode follower, Eq.
(1-10), only in the appearance of a factor p + 2 in place of the factor
u + 1. The gain may be made to approach 1 if ¢.R > 1. The ratio
of the plate-to-cathode signal to the input signal may then approach 2.
The output impedances at the plate and at the cathode are different, the
plate impedance being higher than the cathode impedance.

One of the important uses for the phase inverter (and also the para-
phase amplifier described below) is to convert a single-ended sweep volt-
age into a symmetrical deflection signal for an oscilloscope.

The Paraphase Amplifier. The paraphase amplifier of Fig. 1-15a serves
the same purpose as the phase inverter but additionally provides some
gain and equal output impedances. The two signals e, and e,, are of
opposite polarity and are nominally of equal amplitude. The equivalent
circuit of Fig. 1-8¢ may again be used to advantage to analyze the opera-
tion of the paraphase amplifier. We replace each tube by its equivalent
circuit as seen from the cathode. The resulting circuit is shown in
Fig. 1-15b. The signal currents flowing, respectively, out of the cathode
of T and into the cathode of T, are 7; and 7. The output signals are
e = —11 Rz and es = 7,R1. By applying Kirchhoff’s voltage law to the
outside loop of Fig. 1-15b we find for the plate-to-plate gain

|4} (1-15)

A= €02 — €o1 - (il + 7:2) Ry
€ e
_ _wRy
rp, + B

(1-16)
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which is the same gain that would be provided by a single-tube conven-
tional amplifier with plate resistor Ej.

The output signals will be of equal magnitude if 4, = 7,. This require-
ment will be satisfied nominally if R, > (r, + Rr)/(x + 1). Typically

TEbb

—E,
(a)
n+Ry rp,+ Ry,
A+l g+l
MY, MW
—_— Kl KZ —_—

(0)

F1c. 1-15. Paraphase amplifier and its equivalent circuit.

if, say, r, = Ry, = 10 Kand p 4+ 1 = 20 as for a 12AU7 tube,

rp+RL
2~ =1K
g1

and R; should be selected to be about 10 K if an unbalance of no more
than about 10 per cent is desired (see Prob. 1-14). If each tube carries
a quiescent current of, say, 5 ma, the quiescent drop across Ry is 100 volts.
We may require for convenience that the quiescent grid voltages be
ground potential. In the linear range of operation the grid-to-cathode
voltage of a tube is usually only of the order of several volts. The
voltage at the cathodes is therefore also required to be in the neighbor-
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hood of ground potential. These requirements with respect to quiescent
operating voltages may be satisfied by returning the cathode resistor, as
in Fig. 1-15a, to an appropriately large negative voltage (in this example,
E,.. = 100 volts).

The Difference Amplifier. Suppose that we have two signals e; and e,
each measured with respect to ground. It is desired to generate a third
signal, also to be referred to ground, which signal is to be proportional
to the voltage difference e; — e;. One such application would ocecur if
it were required to convert the symmetrical signal, which appears at the
plates of a paraphase amplifier, back to an unsymmetrical signal. A
possible arrangement for this purpose would involve connecting a trans-
former primary from plate to plate in Fig. 1-15a. The required signal

—E.

(a) (b)

Fig. 1-16. A difference amplifier and its equivalent circuit.

is taken from the transformer secondary, one side of which is grounded.
The impedance of the transformer must be high enough not to load down
the circuit appreciably and its frequency response must be adequate for
the application at hand. A much more generally applicable method is
indicated in the difference amplifier of Fig. 1-16a. In this circuit one
of the signals, e,, is applied directly to the grid of the tube T, and the
second signal, e, is applied to the cathode through the cathode follower
Ty. The output of T'; is proportional to its cathode-to-grid voltage and
hence approximately proportional to the difference e; — e..

The equivalent circuit is given in Fig. 1-16b, where again each tube has
been replaced by its equivalent seen looking back into the cathode. The
output voltage is 72Rz. If we assume that (p 4 1)R; > r, and conse-
quently neglect entirely the presence of Rj, then 7; = 7, and the output
is exactly proportional to the difference e; — ez, being given by

_ bRi(es — e5) )
%= "o, ¥ Rz (1-17)
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Ideally, in a difference amplifier, if the input signals were identical,
e1 = e; = e, the output signal would be zero. An identical signal on
both grids is known as a common-mode signal. The gain for the common-
mode signal would indeed be zero if R, were infinite. However, if
(u + DR > rp, and x> 1, we find that

_ —RL’I‘,, e
Ry(2r, + Rp) °
The matter may be summarized in the following manner. Any two

arbitrary signals e; and e, may be expressed in terms of a difference
signal e; = ¢; — e, and a common-mode signal e, = (e; -+ €2)/2, as

€ (1-18)

el=%—|-ec e = —%-I—ec (1-19)

If the input signals are of equal amplitude and opposite polarity, e, = 0.
The voltage e, is the mean value of the input signal. If the signals are
of equal amplitude and the same polarity, e; = 0. The output may then
be written as

€y = Aded + Acec (1—20)

in which A, is the gain for the difference signal and A, is the gain for
the common-mode signal. These gains are given approximately, for
(w + VDR > r,and p > 1, by

_ MR L _ RL’I‘p

Ag = m and A4, = — m (1—21)
A quantity called the common-mode rejection ratio which serves as a
figure of merit for a difference amplifier is Ag/ 4, = —pRy/rp = —guRs.
If, for example, the common-mode rejection ratio is 1,000, this means
that a 1 mv difference of voltage at the two grids gives the same output
as 1 volt applied with the same polarity to both grids. Since g and r,
vary with signal voltage, this ratio is not a constant independent of
common-mode signal amplitude.

The discussion above neglects the possibility that the amplification
factors of the two tubes may be slightly different. Neglecting the
influence of a finite Ry, the ratio A4/ A. is given by

Aag _ pape + (p1+ p2)/2 ¥
A, M1 — M2 — Ap (1-22)

in which Ap = u; — p» and p is the nominal amplification factor of either
tube. High u tubes are therefore of advantage in difference amplifiers.
Current-feedback Amplifier as a Constant-current Source. The cathode
follower, paraphase amplifier, and difference amplifier all operate with
improved performance as the cathode resistor becomes larger. A large
cathode resistor, however, results in a large d-c¢ voltage drop due to the
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quiescent tube current. In Sec. 1-3 we showed that current feedback
serves to increase the output impedance of an amplifier. If the output
impedance is much greater than the load impedance, a current-feedback
amplifier may be considered as a constant-current device and used to
advantage in the cathode circuit to
replace a large ordinary resistor.
An arrangement of this type is
shown in Fig. 1-17. Referring to
Fig. 1-9b, it appears that the imped-
ance seen looking into the plate of
the tube 7';in the cathode circuit is
rp + (1 4 ) By = pRy, if Ry islarge.
Under typical circumstances —E,,
might be —300 volts, B, = 500 K,
and the cathode tube a 12AX7 with
u =100 and r, =100 K. The
effective cathode impedance of the
difference amplifier would then be
Fia. 1-17. Tube T acts as a very high al-)out 50 Meg. In the cireuit of
dynamic resistor of value r, + (x - 1) I%k, Fig. 1-17, high p, low-current tubes
and hence the current in this tube re- would be appropriate. Suppose,
" mains essentially constant as e; and es then, that the individual tubes
are varied. .
carried only 0.1 ma of current.
The total cathode current is 0.2 ma and if an ordinary 50-Meg resistor
were used, a negative supply voltage of 10,000 volts would be required.
This voltage is, of course, impractically high, which demonstrates the
advantage of tube T'; over an ordinary 50-Meg resistor in this application.
This circuit is used as a voltage comparator in Sec. 15-13.

1-11. The Operational Amplifier.* The feedback amplifier of Fig. 1-18
in which the gain 4 is real and negative is known as an operational ampli-
Jfier. 1t is a type of voltage-feedback amplifier which does not, however,
fall into a one-to-one correspondence with the voltage-feedback arrange-
ment of Fig. 1-5. It is to be observed, for example, that in Fig. 1-18, if
the gain of the amplifier proper were reduced to zero, an output signal
would still appear, following the path from input to output through
the path of the impedances Z; and Z’. In Fig. 1-5 such an alternative
path is not present. This coupling between input and output around
the amplifier would vanish if the output impedance of the amplifier were
zero. For simplicity, let us neglect the output impedance in order that
we may apply to the operational amplifier the feedback formulas derived
above. The operational amplifier has the advantage over the feedback
circuit of Fig. 1-5 in that the former ensures that one terminal of the
external signal source is common with an amplifier output terminal.
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We shall assume that negligible current flows into the input terminals
of the amplifier proper. Such would be the case if the ungrounded input
terminal of the amplifier were the grid of a vacuum tube whose grid-leak
resistance was very large. Under these circumstances the current
through Z; and Z’ would be the same current I indicated in Fig. 1-18a.

VWA

-1 b
+

Amplifier ,
gain=A I,

(a) (b)

Frc. 1-18. Two representations of an operational amplifier.
From the principle of superposition we have
Z’ Z
rg Bt
A 7"+ 7, Z
Thus, the input consists of a linear combination of E, and E, in a manner
which is independent of any external load, as is required for voltage feed-

back. On the basis of Eq. (1-23) the circuit of Fig. 1-18 may be replaced
by an equivalent circuit as shown in Fig. 1-19. TFigure 1-19 is now

E; = (1-23)

o o—]
+ +

Amplifier

gain=A o 9 Zy
oy 0—4—0

Fra. 1-19. Equivalent circuit of an operational amplifier. o = Z'/(Z' + Z));
8 = Z,/(Z' + Z)).

identical to Fig. 1-5a except that we have taken into account that the
external signal E. is attenuated by the ratio @ = Z’/(Z’ 4+ Z;) before
application to the amplifier. The feedback factor 8 = Z,/(Z’ + Z,) so
that the gain with feedback is

«d 7 4
T—64 " Zi+7 | _

Ar = A7,
7+ 7

=—z1_1Q Z) (1-24)
a\' Tz,
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Most importantly, we may now apply to the operational amplifier all our
previous considerations with respect to stability of gain and linearity of
operation. As A becomes very large,

Ay = — = (1-25)

which is independent of the amplifier gain.

The effect, on amplifier response, of the finite output impedance of the
base amplifier is given in Prob. 1-25.

1-12. The Principle of the Virtual Ground in Operational Amplifiers.
There is an alternative approach to the operational amplifier which
gives a useful insight to the circuit which may not be immediately appar-
ent from the feedback formulas employed above.

Let us calculate the impedance which is presented by the amplifier
at its input terminals, E; in Fig. 1-18. The voltage across Z’ is

E;,— E,=E;,— AE;, = E;(1 — A)
and the impedance seen looking into the input terminals is
E; _ E; 7
I EQ-A4)/7 1-A4
An equivalent circuit which gives the same input current I from the
source E, the same amplifier input voltage E; and consequently the

(1-26)

Z,
—/ N\ —o
+ 1 z' +¢ +T
E, 1-A E; A E,

- - -

Frc. 1-20. Another equivalent circuit of the operational amplifier.

same output voltage is shown in Fig. 1-20. Consider now that A4 is
infinite; then the impedance across the terminals E; is zero and the gen-
erator E, supplies a current I = E./Z;. Referring now to Fig. 1-18, since
E; is zero,the output is

Zl
"7
and the over-all gain is Ay = —Z’/Z,, which agrees with Eq. (1-25).

The operation of the circuit may now be described in the following
terms. At the input to the amplifier proper there exists a virfual short
ctrcuit or virtual ground. The term virtual is used to imply that while
the feedback serves to keep the voltage E; at zero, no current actually
flows through this short, The situation is depicted in Fig. 1-21, where

E,= —I7 = E. (1-27)
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the virtual ground is represented by the arrow. The current furnished
by the generator E, continues past this virtual short through the imped-
ance Z’.

1-13. Basic Uses of Operational Amplifiers.* The operational ampli-
fier derives its name from the fact that it may be used to accomplish a
number of mathematical operations.

Sign and Scale Changes. If Z; = Z’, then A; = —1, and the sign
of the input signal has been changed. If the ratio Z’/Z;, = k, a real

N

Fi1g. 1-21. Virtual ground in the operational amplifier.

constant, then A; = —% and the scale has been changed by a factor
—k. Usually, in such a case of multiplication by a constant, —1 or —k,
Z; and Z' are selected as resistors.

An interesting analogy may be drawn here between the amplifier and
a lever. The virtual ground is represented by the fulcrum of the lever.
If the ratio of the lengths of the lever arms is k, then a displacement of the
end of one arm causes a displacement of the end of the other arm in the

R R
c c
AW " WW\W—
p2 i i + i i
€o - N
(@) (b)

Fra. 1-22. Operational integrator and differentiator.

opposite direction which is k times as large. In Fig. 1-21, the voltages
E. and E, represent the lever displacements.

Phase Shifter. Assume Z, and Z’ are equal in magnitude but differ
in angle. Then the operational amplifier shifts the phase of a sinusoidal
input voltage, while at the same time preserving its amplitude. Any
phase shift from 0 to 360° (or +180°) may be obtained.

Integrator. If Z, = R and a capacitor C is used for Z’, then, as in
Fig. 1-22q, 7 = ¢/R and

1{. 1
eo——@,—/zdt——m/edt (1-28)
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The amplifier, therefore, provides an output signal which is proportional
to the integral of the input voltage.

Differentiator. If Z; is a cajacitor and Z’ = R, as in Fig. 1-22b,
1 = (C(de/dt) and

. de
e = —Ri = _RC% (1-29)

so that the output is proportional to the time derivative of the input.

I T
R, Ry R, E "'I
() () == @ 1

F1a. 1-23. Operational adder.

Adder. 'The arrangement of Fig. 1-23 may be used to obtain an out-
put which is a linear combination of a number of input signals. Here

_aL e e
z—Rl-i—Rz—I— +Rn
e mie (BB, LR ) ;
and € = Rz = <R1 e + Rz €9 + + Rn en (1 30)

IfRi=Ry=+-+ = R, then
R
€o=—'1—8—1(€1+€2+"'+6n) (1-31)

and the output is proportional to the sum of the inputs. In the more
general case of Eq. (1-30) the scale of each input signal may be adjusted
before adding.

There are, of course, many other methods which may be used to com-
bine signals. The present method has the advantage that it may be
extended to a very large number of inputs requiring only one additional
resistor for each additional input. The result depends, in the limiting
case of large amplifier gain, only on the resistors involved, and because
of the virtual ground there is a minimum of interaction between input
sources.
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CHAPTER 2

LINEAR WAVE SHAPING: RC, RL, AND RLC CIRCUITS

If a sinusoidal signal is applied to a transmission network composed
of linear elements, then, in the steady state, the output signal will have
a waveshape which is a precise reproduction of the input waveshape.
The influence of the circuit on the signal may then be completely specified
by the ratio of output to input amplitude and by the phase angle between
output and input. With respect to this feature of preserving waveshape
in all linear networks, the sinusoidal signal is unique. No other periodic
waveshape preserves its form precisely, and, in the general case, the input
and output signal may bear very little resemblance to one another. The
process whereby the form of a nonsinusoidal signal is altered by trans-
mission through a linear network is called ‘‘linear wave shaping.”

In pulse circuitry there are a number of nonsinusoidal waveforms
which appear very regularly. The most important of these are the step,

pulse, square wave, ramp, and ex-

4o +|$ - + ponential waveforms. The response
e to these signals of certain simple RC,

RL, and RLC circuits will be de-

€ D §R € scribed in this chapter.
l l 2-1. The High-pass RC Circuit.

The circuit of Fig. 2-1 is a rudiment-
ary high-pass filter. For a sinu-
Fre. 2-1. The high-pass BC cireuit. (1f S0idal input By, the output signal E,
the input is sinusoidal, the lowercage 11Creases In amplitude with increas-
letters should be replaced by capitalsto  ing frequency.
represent sinor quantities. For ex- Even in a case of a transmission
ample, e; is replaced by E;.) . X .
network where no amplification is
involved and in which the output is always smaller than the input, it is
not uncommon to refer to the ratio E,/E;, for a sinusoidal signal, as the
“gain” A of the circuit. For the circuit of Fig. 2-1, the magnitude of the
gain | 4| and the angle 8 by which the output leads the input are given by

14| = F—éﬁﬁé and 0 = arctan‘g;1 (2-1)
7

28
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where f; = 1/2rRC. At this frequency, fi, the magnitude of the capaci-
tive reactance is equal to the resistance and the gain is 0.707. This
drop in signal level corresponds to a signal reduction of 3 decibels (db)
and accordingly f; is referred to as the lower 3-db frequency. The maxi-
mum possible value of the gain (unity) is approached asymptotically at
high frequencies. Equations (2-1) describe the response of the network
to a sinusoidal signal. 'We shall now consider the response to the special
waveforms listed above.

Step-voltage Input. A step voltage is one which maintains the value
zero for all times ¢{ < 0 and maintains the value E for all times ¢ > 0.
The transition between the two voltage levels takes place at ¢ = 0 and
is accomplished in an arbitrarily short time interval. Thus in Fig. 2-2,

e,=E
Signal
voltage
¢, =E e
e;=0
t=0 t

Fic. 2-2. Step voltage response of the high-pass RC circuit.

e; = 0 immediately before ¢ = 0 (to be referred to as time ¢t = 0—),
and ¢; = E immediately after { = 0 (to be referred to as time { = 0+4).

From elementary considerations, the response of the network is expo-
nential with a time constant RC and is of the form B; 4+ Bz B¢, The
constants B; and B, are determined from the initial and final values of
the output. Assume that the capacitor is initially uncharged. Since the
voltage across a capacitor cannot change instantaneously, then, if the
input changes abruptly by E, the output must change discontinuously
by the same amount. At ¢t = «, the output must be zero because a
capacitor cannot pass direct current. These facts lead to the results
B, = 0 and B; = E, and the output is given by

e, = EeV/EC (2-2)

Input and output are shown in Fig. 2-2.

Pulse Input. An ideal pulse has the waveform shown in Fig. 2-3a.
The pulse amplitude is E and the pulse duration is t,. It appears from
Fig. 2-3a, b, and ¢ that the pulse may be considered to be the sum of a
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step voltage 4 E whose discontinuity occurs at { = 0 and a step voltage
— E whose discontinuity occurs at ¢ = ¢,.

If the pulse of Fig. 2-3a is applied to the circuit of Fig. 2-1, the response
for times less than ¢, is the same as that for the step-voltage input.

e;

E
0 t= t"";tp t
(a)
E
0
t
(b)
0
t
~E
(¢)
€

I
i

0

(d)
F1a. 2-3. (a) A pulse; (b and ¢) the step voltages which make up the pulse; (d) the
pulse after transmission through the high-pass RC circuit.

Hence, the output at ¢ = ¢,— is given by e, = E exp (—{,/RC) = er.
At the end of the pulse, the input falls abruptly by the amount E, and,
since the capacitor voltage cannot change instantaneously, the output
must also drop by E. Hence, at { = {,4, e, = er — E. Since erisless
than E, the voltage becomes negative and then decays exponentially to
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zero, as indicated in Tig. 2-3d. Tor ¢ > ¢, ¢, is given by
e, = E(et/BC — 1)¢ Utn)/RC (2-3)

Note the distortion which has resulted from passing a pulse through
an RC coupling network., There is a tilt to the top of the pulse and an
undershoot at the end of the pulse. If these distortions are to be min-
imized, then the time constant RC must be very large compared with
the width #,. However, for all values of the ratio RC/¢, there must
always be an undershoot and the
area below the axis will always equal
the area above. The equality of areas
results from the fact that the input
and output are separated by a capa-
citor. As a consequence, independ-
ently of the d-c level of the input
signal, the d-c or average level of the
output signal must be zero.

If the time constant is very large
(RC/t, > 1), there is only a slight
tilt to the output pulse and the un-
dershoot is very small. However,
the negative portion decreases very
slowly (as indicated in Fig. 2-4a),
since its area must equal that of the
positive portion. If the time con-
stant is very small (RC/t, < 1), the —E
output consists of a positive spike or (b)
pip of amplitude E at the beginning FIe. 2-4. (a) Pulse response if RC/t, >>
of the pulse and a negative spike of 1; (&) pulse response if £C/t, < 1.
the same size at the end of the pulse, as indicated in Fig. 2-4b. This
process of converting pulses into pips by means of a circuit of short time
constant is called peaking.

Square-wave Input. A waveform which maintains itself at one con-
stant level for a time 7'; and at another constant level for a time T, and
which is repetitive with a period 7'; 4+ T, as indicated in Fig. 2-5a, is
called a square wave.* We are interested in the steady-siate output wave-
form which results if this square wave is impressed on the circuit of
Fig. 2-1.

With respect to the circuit of Fig. 2-1 we have already established the
following three points. First, the average level of the output signal
is always zero independently of the average level of the input. The
output must consequently extend in both the positive and negative direc-

€

E

*If Ty 5 T, the waveform is sometimes referred to as a rectangular wave.
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tion with respect to the zero-voltage axis. And the area of the part
of the waveform above the zero axis must equal the area which is below
the zero axis. Second, when the input changes discontinuously by
amount E, the output changes discontinuously by an equal amount and
in the same direction. Third, during any finite time interval when the

T Average
E _Kvoltage
T

(a) Y1l T - Zero voltage

$
by —>

¢Zero voltage

(b) 1, L >

F1a. 2-5. (a) Square-wave input; (b) output voltage if the time constant is very large.
The d-¢c component of the output is always zero.

input maintains a constant level, the output decays exponentially toward
zero voltage. In the limiting case where RC/T, and RC/T, are both
arbitrarily large in comparison with unity, the output waveform will be
identical to the input except that the d-c component will be lacking.
Hence, the square wave of Fig. 2-5a, whose d-c level is different from zero,
will appear after transmission with an average value zero as in Fig. 2-5b.

€

F1a. 2-6. Peaking of a square wave due to a small time constant.

At the other extreme, if T;/RC and Ts/RC are both very large in com-
parison with unity, the output will consist of alternate positive and nega-
tive peaks as in Fig.-2-6. Observe in this case that the peak-to-peak
amplitude of the output is twice the peak-to-peak amplitude of the input.

More generally, the response to a square wave must have the appear-
ance shown in Fig. 2-7. The equations from which to determine the
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four quantities E,, B!, E,, and Ej, indicated in Fig. 2-7, are

E! = B¢ TvEC El—E.=E

E, = E,eTwRC E,—E,=E (2-4)

A symmetrical square wave is one for which Ty = T» = T. Because

of the symmetry, E; = —E,, and the two equations in the first line of

E; €~Re

E‘?_LQ
=

o E

P

g
Tl

F1a. 2-7. The square wave response of a high-pass RC circuit.

Eq. (2-4) suffice to determine the output. When T/RC < 1, we have
exp (—T/RC) =1 — T/RC and in this case

~F T pe B2 T ;
E1=§<1+§R—é> m=5 (1 37) 35

The exponential portions of the output are now approximately linear as
shown in Fig. 2-8. The effect of the coupling network has been to intro-
duce a tilt on the waveform. The

percentage tilt P is defined by E :%W
P = El;i X 100 =~ 1007 (2-6) B

- E/2 — RC > £
Since the low-frequency 3-db point is 0
given by fi = 1/2xRC, we have the T T ¢
relationship

~ 1002 y . 2
P = 100r (2-7) E,//

in which f =1 /2T is the frequency 5{1(;21'386', /I;,n:;“i.mt of a square wave
of the applied square wave.

Exponential Input. From the preceding discussion on peaking (see
Fig. 2-6) we are led to conclude that, if the time constant of the circuit
is decreased, the peaks obtained will be narrower, but the amplitude
of the peak will remain equal to the discontinuity E of the input square
wave. This is true provided that the input has vertical sides, an impos-
sibility in a practical waveform. If RC is made extremely small, the
finite rise time of the input waveform must be taken into consideration.
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Consider a case in which the capacitor is initially uncharged and
the input waveform rises rapidly but not discontinuously from zero to a

€

E

10
f\~ Klnput

08 o~

_RC
n=-rz

0.6 n=10 ~=—
oal| 1\

o
03— N
02~ n=1 \\
0.1 ln=0.1 AN
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Fic. 2-9. Response of a high-pass RC circuit to an exponential input.

0

level E, as shown in Fig. 2-9. The circuit of Fig. 2-1 is governed by the
equation

=24 p=-4 -
= + iR 0 + e (2-8)
in which ¢ is the capacitor charge. Differentiating Eq. (2-8) gives
de; e de,
@~ ROT @ @9

Since ¢, = 0 at ¢ = 0, we have the result that

de  _ (de i
(Et—)iumal N (dt )iniml (2 10)

And since the initial rate of change of input and output are identical and
both start from zero, we may anticipate that in the neighborhood of ¢ = 0
the output will follow the input quite closely. Furthermore, unless the
time constant RC is very large in comparison to the time required for
e; to attain its final value, the capacitor will have acquired appreciable
charge in this time. Also it is apparent from Eq. (2-8) that e, will fall
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short of attaining the voltage E. Eventually, of course, the output must
decay exponentially to zero.

An input waveform of the type described above which will be of special
interest is the waveform given by

e; = E(1 — et (2-11)

Equation (2-9) then becomes

1,

s 77 g et =

¢ + (2-12)
Defining x and n by

p=l and  a= (2-13)

the solution of Eq. (2-12), subject to the condition that initially the
capacitor voltage is zero, is given by

En
n—1

(e — ¢2) (2-14)

€ =

if n # 1and
e, = Exe= (2-15)

if n = 1. These equations are plotted in Fig. 2-9 and it is seen that they
have the shape predicted above. Note that if RC is much greater than
7 (n > 1), the second term of Eq. (2-14) is negligible compared with the
first except for very small values of time. Then

En
n—1

=/ 2 Fet/RC (2-16)

0 ——=

This equation agrees with the way the circuit should behave for an ideal
step voltage. Near the origin of time the output follows the input. Also,
the smaller the circuit {ime constant, the smaller will be the output peak.
For example, if RC just equals the time constant of the input wave
(n = 1), the peak output will only be 37 per cent of the peak input, but a
very narrow pulse will result as shown in Fig. 2-9. The larger RC is
relative to 7, the larger will be the peak output but also the wider will
be the pulse. A value of RC is chosen to give the best compromise
between these two conflicting characteristics for the particular application
at hand. The choice is seldom critical.

Ramp Input. A waveform which is zero for ¢ < 0 and which increases
linearly with time for ¢ > 0, ¢ = «of, is called a ‘“‘ramp” or ‘‘sweep”
voltage. Such a waveform is indicated as the “input’ in Fig. 2-10a.
If this waveform is applied to the circuit of Fig. 2-1, the output is gov-
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erned by Eq. (2-9) which becomes

€o de,
*=rct @
This equation has the solution
€ = aRC(1 — ¢*/EC) (2-17)

For times ¢ which are very small in comparison with EC, we may replace
the exponential in Eq. (2-17) by a series with the result

—_— t . e .
eo—at(l—m-i' >

The output signal falls away slightly from the input, as shown in Fig.
2-10a. As a measure of the departure from linearity, let us define the
P transmission error e as the differ-

Signal Input=oct ence between input and output
'““';"}'"‘f’ divided by the input. The error at
eviation from : — :
Output liizel(a)rity a time ¢ = 7' is then
e—e ., T
0 T ; € = e —anrc " ofiT (2-18)
(a) L
where f; = 1/2xRC is again the low-
Signal Input=cct frequency 3-db point. For exam-
ple, if we desire to pass a 2-msec
yOutput sweep with less than 0.1 per cent
a RC deviation from linearity, the above
0 . .
7 equation yields
(b)

F1a. 2-10. () Response of a high-pass RC  f; < 0.16 cps or RC > 1sec
circuit to a ramp voltage for RC/T > 1;
(b) response to a ramp voltage for For large values of ¢ in comparison
RC/T < 1. .

with RC, the output approaches
the constant value aRC, as indicated in Fig. 2-10b and Eq. (2-17).

2-2. The High-pass RC Circuit as a Differentiator. If, in Fig. 2-1,
the time constant is very small in comparison with the time required
for the input signal to make an appreciable change, the circuit is called
a ‘‘differentiator.” This name arises from the fact that under these
circumstances the voltage drop across B will be very small in comparison
with the drop across C and we may consider that the current is deter-
mined entirely by the capacitance. Then the current is C de;/dt, and
the output signal across R is
de;
dt

Hence the output is proportional to the derivative of the input.

e, = RC
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The derivative of a square wave is a waveform which is uniformly
zero except at the points of discontinuity. At these points, precise
differentiation would yield impulses of infinite amplitude, zero width,
and alternating polarity. Referring to Fig. 2-6, we see that the RC
differentiator provides, in the limit of a very small time constant, a wave-
form which is correct except for the fact that the amplitude of the peaks
never exceeds . We may expect such an error since at the time of the
discontinuity the voltage across I is not negligible compared with that
across C.

For the ramp e; = of, the value of RC de;/dt is «RC. This result
is verified in Fig. 2-10b except near the origin. The output approaches
the proper derivative value only after a time has passed corresponding
to several time constants. The error near { = 0 is again due to the fact
that in this region the voltage across R is not negligible compared with
that across C.

If we assume that the leading edge of a pulse can be approximated by
a ramp, then we can measure the rate of rise of the pulse by using a differ-
entiator. The peak output is measured on an oscilloscope, and from Fig.
2-10b we see that this voltage divided by the product RC gives the slope
a. If R and C are not given to the desired accuracy, then the system
must be calibrated by using a pulse of known rate of rise.

It is interesting to obtain a criterion for good differentiation in terms
of steady-state sinusoidal analysis. If a sine wave is applied to the
circuit of Fig. 2-1, the output will be a sine wave shifted by a leading
angle 8 such that
X. 1
tan 8 = —E = m (2-19)
and the output will be proportional to sin (wf + 6). In order to have
true differentiation we must obtain cos wi. In other words, 6 must
equal 90°. This result can be obtained only if R = 0 or C = 0. How-
ever, if wRC = 0.01, then 1/wCR = 100 and 8 = 89.4°, which is suffi-
ciently close to 90° for most purposes. If wRC = 0.1, then § = 84.3°,
and for some applications this may be close enough to 90°.

If we use the criterion wRC = 2rRC/T < 0.01, where T is the period
of the sine wave, then for

re < 200 _ 000167
2T

the differentiation will be satisfactory.
If the peak value of the input is E.,., the output is

E.R

/R* + 1/w?C?

sin (wt + 6)
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and if wRC < 1, then the output is approximately E,oRC cos wi. This
result agrees with the expected value, RC de/dt. If wRC = 0.01, then
the output is attenuated by 0.01.

These considerations with respect to the conditions required for differ-
entiation of sinusoidal waveforms suggest an alternative point of view
in connection with the differentiation of an arbitrary waveform. Sup-
pose we resolve an arbitrary signal into its Fourier components. If
each of the components is shifted in phase by 90° and if the amplitude
of each component is multiplied by a factor proportional to the frequency,
then the Fourier series will have been effectively differentiated term by
term. From this point of view the requirement for good differentiation
is that the time constant RC shall be small in comparison with the period
of the highest frequency term of appreciable amplitude of the input
signal.

Since it has been demonstrated that the output will be a small fraction
of the input if the differentiation is satisfactory, then the output will
frequently have to be followed by a high-gain amplifier. Any drift in
amplifier gain will affect the level of the signal, and amplifier nonlinearity
may affect the accuracy of differentiation. These difficulties are avoided
by using the operational differentiator discussed in Sec. 1-13. This feed-
back amplifier does not suffer from the drifts just mentioned, the stability
depending principally upon the constancy of R and C.

The operational amplifier equivalent circuit for a differentiator is a
capacitor C in series with a resistor R/(1 — A), where A is the gain.
The phase shift angle 8 between output and input for a frequency w is
given by

tan § = 1w;4 (2-20)

Comparing Eq. (2-20) with Eq. (2-19), we see that for the same values
of R and C the frequency range of proper differentiation for the opera-
tional amplifier is (1 — A) times that of the simple RC circuit and the
output voltage has essentially the same magnitude for both circuits.

If the RC product for the operational amplifier is (1 — A) times that
of the simple circuit, then the output from the former will be A times
that of the latter, whereas the quality of the differentiation is the same
for both. The same result can be obtained by following the simple RC
circuit by an amplifier of gain 4, but as already emphasized, this arrange-
ment will not have the stability and linearity of the operational system.

These results are based on the assumption that the amplifier will be
able to handle the input signal without waveform distortion. Any
practical amplifier, particularly a high-gain amplifier of many stages,
will usually produce some distortion due to the inability of the amplifier
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to pass all frequency components of the input signal. In any particular
case 1t is necessary to look into the matter of the extent to which wave-
form distortion may undo some of the anticipated advantages of the
operational differentiator.

Again, in a practical operational amplifier it is possible, because of
the feedback, that the amplifier will oscillate. Then it is necessary to
find, if possible, some means of suppressing the oscillations without
interfering too seriously with the normal operation of the amplifier. Also,
a differentiator will accentuate any high-frequency noise present in the
cireuit.

2-3. Double Differentiation. Figure 2-11 shows two RC coupling net-
works in cascade separated by an amplifier. It is assumed that the

AEy,

HIAY
I\

+

R,
i %n ik

Tra. 2-11. A rate-of-rise amplifier.

amplifier operates linearly and that its output impedance is small rela-
tive to the impedance of R, and C, so that this combination does not
load the amplifier. If the time constants R;C; and R,C; are small rela-
tive to the period of the input wave, then this circuit performs approxi-
mately a second-order differentiation.

If the input is a ramp (e; = af) of long duration, the output of the
amplifier (the plate voltage) is as pictured in Fig. 2-10b0 and is given
by [see Eq. (2-17)],

ey = —Aary (1 — e¥/m) (2-21)

where A is the magnitude of the amplifier gain and r, = R,C;. This
exponential input to the R:C; network leads in turn to an output which
is, as given in Eq. (2-14),

v = —(ar) (20) (e ) (222)
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ifn 5« 1, where n = 72/71, 72 = R2Cs, and = {/7,. Values of —e,/Aar,
are plotted in Fig. 2-9 for values of n equal to 0.1, 1.0, 10, and 100. For
n = 1, the output is given by

e = —Aarze=® (2-23)

This special case is plotted in Fig. 2-12. It should be noted that a ramp
voltage has been converted into a pulse. The initial slope of the output
wave 18 the initial slope of the input multiplied by the gain of the amplifier.
For this reason the stage in Fig. 2-11 is called a ‘‘ rate-of-rise amplifier.”
For a single RC circuit, we demonstrated in Sec. 2-1 that the initial
rate of change of output equals the initial rate of change of input inde-
pendently of the time constant. Obviously, the same conclusion can be

06 Input
0.4 Po i ]
0.2 ]
0 // 4 5
-02 3 S |° ’\/\/1\{/\,
.. *J "
| Output e, +
-04 &\/ (for 7,=75) H‘{ I
-06 — ;
N N : i) =L .
- 0 8 11 0
. ~ _LPlate voltage e, /
=10 l
-12 . -
~-14 ATAe:" i ‘J—_T
Fia. 2-12. Response of a rate-of-rise ampli- Fia. 2-13. The low-pass RC circuit.

fier to a ramp input. A4 = 10, ar = 0.1.

drawn for multiple differentiation. A direct check can be made from
Eq. (2-22), where we find that at ¢ = 0, de,/dt = — Ac.

2-4. The Low-pass RC Circuit. The circuit of Fig. 2-13 passes low
frequencies readily, but attenuates high frequencies because the reactance
of the capacitor C decreases with increasing frequency. If the input
voltage e; is sinusoidal, the magnitude of the steady-state gain A and
the angle 8 by which the output leads the input are given by

! and 6 = — arctan L

W fa (2-24)

where f, = 1/2xrRC. The gain falls to 0.707 of its low-frequency value
at the frequency f;. Hence, f5 is called the upper 3-db frequency.
Step-voltage Input. The response of the circuit of Fig. 2-13 to a step
input is exponential with a time constant RC. Since the capacitor voltage
cannot change instantaneously, the output starts from zero and rises

4] =
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toward the steady-state value E, as shown in Fig. 2-14. The output is
given by
¢ = E(1 — ¢ VEC) (2-25)

The time required for ¢, to reach one-tenth its final value is readily
found to be 0.1RC and the time to recach nine-tenths its final value is

E
1.0 4
09
Lo
E
0.1
[ >

Fi1a. 2-14. Step voltage response of the low-pass RC circuit.

2.3RC. The difference between these two values, called ““the rise time”’
t, of the circuit, is an indication of how fast the circuit can respond to a
discontinuity in voltage. We have

22 035
2Iﬁ fz
Thus, the rise time is proportional to the time constant and inversely
proportional to the upper 3-db frequency.

e
o) — A

t, = 2.2RC = (2-26)

X t-:p)

e;=ep e‘(ﬁ

. W

0

I‘—‘p—>l t

Fra. 2-15. Pulse response of the low-pass RBC circuit.

Pulse Input. The response to a pulse, for times less than the pulse
width ¢, is the same as that for a step input and is given by Eq. (2-25).
At the end of the pulse the voltage is er and the output must decrease
to zero from this value with a time constant RC, as indicated in Fig. 2-15.
Note the distortion which has resulted from passing a pulse through a
low-pass RC circuit. In particular, it should be observed that the out-
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put will always extend beyond the pulse width {,, because whatever
charge has accumulated on the capacitor C' during the pulse cannot leak
off instantaneously.

If it is desired to minimize the distortion, then the rise time must
be small compared with the pulse width. If f, is chosen equal to 1/%,,
then ¢ = 0.35{,. The output is as pictured in Fig. 2-16, which for
many applications is a reasonable reproduction of the input. We often
use the rule of thumb that a pulse shape will be preserved if the 3-db
frequency is approximately equal to the reciprocal of the pulse width. Thus,

E___ﬁei

€o

fe—t— ¢

Fi1a. 2-16. Pulse response for the case fo = 1/,.

to pass a 0.5-usec pulse reasonably well requires a circuit with an upper
3-db frequency of the order of 2 Me.

Square-wave Inpui. Consider a square wave with an average value
which is zero, as indicated in Fig. 2-17a. As we have already observed
above, a reasonable reproduction of the input is obtained if the time
constant is small compared with the pulse width. The steady-state
response, in this case, is indicated in Fig. 2-17b.

If the rise time of the RC circuit is comparable with the period of the
testing square wave, the output will have the appearance in Fig. 2-17c.
The equation of the rising portion is determined by the fact that it must
be an exponential of time constant RC and that the voltage would rise
to the steady-state value E’ if the input remained at E’. If E, is the
initial value of the output voltage, then

e = E' — (E' — Ey)e/RC (2-27)

Note that this equation agrees with the conditions that at { = 0, e.; = Ey,
and at{ = «,¢,; = E. By a similar argument we can derive the equa-
tion for the falling portion. Thus

e = B — (B — By)e(=To/me (2-28)

If weseten = Eqati = Tiand er = Erat{ = T1 + T, the two result-
ing equations can be solved for the two unknowns E; and E,. If a sym-
metrical square wave is used so that Ty = Ty and E' = —E" = E/2,
these equations indicate that E; = —E;. We can easily understand
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this result if we remember that the area per cycle in Fig. 2-17¢ must be
zero, since we assumed an input with zero average value.

If the time constant is very large compared with the period of the
input square wave, the output consists of exponential sections which are
essentially linear, as indicated in Fig. 2-17d. If the input square wave

This level is E' with
respect to ground

/Zero voltage
t

ole—1 T,

L\This level is E"” with respect to ground
(2)
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T16. 2-17. (a) Square-wave input; (b, ¢, and d) output of the low-pass RC circuit.
The time constant is smallest for (b) and largest for (d).

has an average value different from zero, then this d-c voltage must be added
to all the curves of Fig. 2-17.

A square-wave signal is frequently used in conjunction with a cathode-
ray oscilloscope to determine the rise-time response of an arbitrary circuit.
In an experimental arrangement to measure rise time we must take
into account the finite rise time of the input square wave and of the
amplifiers of the oscilloscope. The order of magnitude of the errors
which may otherwise be involved are indicated by the following. Con-
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sider, say, that the square-wave rise time is negligible and that the
rise time ¢, of the circuit under test is at least three times the rise time ¢] of
the amplifier. In this case the error will be less than 10 per cent. On the
other hand if ¢, = t,, then the error is 53 per cent. These results will
now be justified.

_e_Eo_
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F1a. 2-18. Response of two cascaded low-pass RC networks.
Exponential Input. For an input of the form given in Eq. (2-11),
e; = EQ1 — )

the voltage across the resistor is given by Eq. (2-14) for n £ 1. Hence,
the voltage output across the capacitor is the difference between Eq.
(2-11) and Eq. (2-14). Performing this subtraction, we obtain, if n £ 1,

o — 1 ~L __ —z/n L
=l n”le (2-29)
andifn =1
_Go = — — _
b 1— (14 2)e (2-30)

The parameters x and n are defined by Eq. (2-13), namely, z = t/r and
n = RC/r. The outputs for n = 0, 14, 14, 14, and 1 are plotted in
Fig. 2-18. The larger the relative time constant n, the greater is the
“delay” in output. The delay is defined as the time required for the
waveform to reach 50 per cent of its final value.
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Suppose that 7 is the time constant of a circuit under test and that RC
is the time constant of the oscilloscope amplifier. Then Fig. 2-18 shows
the response of the two circuits in

cascade. (It is assumed here that ‘,? 16

the oscilloscope can be represented 3 \

by an equivalent single RC net- § 14

work.) The ratio of the rise time &

for the cascaded arrangement tothe = 1.2 N

rise time of a single stage (n = 0or & T e

1/n = ) is plotted in Fig. 2-19. & 10, 2 3 5

The graph shows that if the oscillo- = o %

scope time constant is less than one- f‘e Ig 2-19. Rise time of cascaded low-pass
networks.

third that of the circuit, the rise
time is increased by less than 10 per cent.

Ramp Inpui. TFor an input of the form e; = «f, the voltage er across
the resistor is given by Eq. (2-17). The voltage across the capacitor is
€; — €ep Or

e = a(t — RC) 4+ aRCe¥/EC (2-31)
If it is desired to transmit the ramp with little distortion, then a small
time constant must be used relative to the total ramp time 7. The out-
put is given in Fig. 2-20a where it is seen that the output follows the

;

\K
o}

(b)
F1ac. 2-20. Response of a low-pass RC circuit to a ramp voltage. (a) RC/T K 1;
) RC/T > 1.

input but is delayed by one time constant RC from the input (except
near the origin where there is distortion). The transmission error ¢ is
defined as the difference between input and output divided by the input.
For RC/T <K 1, we find

~RC 1

€ — —T‘ = m

where f, is the upper 3-db frequency. For example, if we desire to pass
a 2-msec sweep with less than 0.1 per cent error, the aboveequationyields

(2-32)

f2> 80 ke and RC < 2 psec
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If the time constant is large compared with the sweep duration,
RC/T > 1, the output is very distorted, as it appears in Fig. 2-20b. By
expanding the exponential in Eq. (2-31) in a power series in t/RC, we
find

e, = _a_tz_.

= 2RC

A quadratic response is obtained for a linear input and hence the circuit
acts as an integrator.

2-b. The Low-pass RC Circuit as an Integrator. If, in Fig. 2-13, the
time constant is very large in comparison with the time required for the
input signal to make an appreciable change, the circuit is called an
“integrator.” 'This name arises from the fact that under these circum-
stances the voltage drop across C will be very small in comparison to the
drop across R and we may consider that the current is determined
entirely by the resistor. Then the current is e;/R and the output signal

across C is
1
€y = -R—C / €; dt

Hence the output is proportional to the integral of the input.

If e; = at, the result is at?/2RC, as given by Eq. (2-33). As time
increases, the drop across C will not remain negligible compared with
that across R and the output will not remain the integral of the input.
As a matter of fact, Fig. 2-20a shows that the output will change from a
quadratic to a linear function of time.

The integral of a constant is a linear function, and this agrees with
the curves of Fig. 2-17d which correspond to RC/T >'1. As the value
of RC/T decreases, the departure from true integration increases as
indicated in Fig. 2-17¢ and b.

These examples show that the integrator must be used cautiously.
We can obtain a criterion for good integration in terms of steady-state
analysis by proceeding as in Sec. 2-2. If we define satisfactory integra-
tion as meaning that an input sinusoid has been shifted at least 89.4°
(instead of the true value of 90°), then

RC > 15T

where T is the period of the sine wave.

Since the output is a small fraction of the input (because of the factor
1/RC), amplification may be necessary. For the reasons given in Sec.
2-2, an operational amplifier may possibly be used to advantage. If the
input to the operational amplifier is a square wave, the output is very
linear, as shown in Fig. 2-17d. This output is called a ‘““gated sweep”
and is discussed in detail in Sec. 7-3.

(2-33)
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Integrators are almost invariably preferred over differentiators in ana-
logue-computer applications for the following reasons. Since the gain
of an integrator decreases with frequency whereas the gain of a differ-
entiator increases nominally linearly with frequency, it is casier to stabi-
lize the former than the latter with respect to spurious oscillations. Asa
result of its limited bandwidth an integrator is less sensitive to noise
voltages than a differentiator. TFurther, if the input waveform changes
very rapidly, the amplifier of a differentiator may overload. Tinally,
as a matter of practice, it is more convenient to introduce initial condi-
tions in an integrator.

2-6. RL Circuits. Suppose the capacitor C and resistor R of the pre-
ceding sections in this chapter are replaced by a resistor R’ and an

E
L
»
AN —t
@
+
T (a) (b)

Fic. 2-21. (a) Peaking circuit using an inductor; (b) linear equivalent circuit.

inductor L, respectively. Then if the time constant L/R’ equals the
time constant RC, all the preceding results remain unchanged.

The inductor is seldom used if a large time constant is called for because
a large value of inductance can be obtained only with an iron core
inductor which is physically large, heavy, and expensive relative to the
cost of a capacitor for a similar application. Such an inductor will be
shunted with a large amount of stray distributed capacitance. TFurther-
more, the nonlinear properties of the iron causes distortion which may be
undesirable. If it is desirable to pass a very low frequency through =
circuit in which L is a shunt element, then the inductor may become
prohibitively large. For example, with a lower 3-db frequency of 10 cpe
and for B’ = 100 K the inductance required is 1,600 henrys! Of course,
in circuits where a small value of R’ is tolerable, then a more reasonable
value of inductance may be used.

The small, inexpensive air-core inductor is used in low time-constant
applications. Figure 2-21a shows how a square wave may be converted
into pulses by means of the peaking coil L. It is assumed that the bias
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voltage and the size of the input are such that the tube operates linearly.
The equivalent circuit is as indicated in Fig. 2-21b. The peak of the
" output pulse (measured with respect to the quiescent plate voltage Ej,)
is the amplification factor of the tube times the jump in voltage of the
input square wave, as indicated in Fig. 2-22. The physical reason for
this fact is that since the current through an inductor cannot change
instantaneously it acts as an open circuit at the time of the discontinuity.

¢;
E;
. }
t
(a)
€, T
ME; /JE,«e'W""
wEuw
t
ME;
(v)

F1e. 2-22. Input e; and output e, for the circuit of Fig. 2-21, with R = r,.

Under this condition the plate-voliage change is p times the grid-voltage
change.

The rate-of-rise amplifier of Fig. 2-11 often uses a peaking inductor
in the plate circuit instead of the R,C, differentiating combination shown.

The situation where the square wave is large enough to cut the tube off,
so that the circuit acts in a nonlinear manner, is considered in Sec. 4-7,
where it will be found that the negative peaks are of smaller magnitude
than the positive ones.

2-7. RLC Circuits. In Fig. 2-21 there should be indicated a capacitor
C across the output to include the effect of coil-winding capacitance,
plate-cathode capacitance, and wiring capacitance from plate to ground.
This capacitance will modify the results of Sec. 2-6, as we shall now show.
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Figure 2-23 shows a signal e; applied through a resistor B to a parallel
LC circuit. From the differential equations for this network, and assum-
ing a solution in the form ¢, we find for the roots p of the characteristic
equation! (or for the poles of the transfer function)

R S [(L) _1y (2:34)
P="3%rc * |\2RC Js,

Let us introduce the damping constant k and the resonant or undamped
period T, defined by

_ 1 L _ -
k=5p \/C* and T, = 2r V/LC (2-35)
in which case Eq. (2-34) can be put in the form
o 2k 2m o i
p=— T (- k) (2-36)

If & =0, we see that the roots are purely imaginary, +j2r/T, and
hence that the response is an un-

damped sinusoid of period T, If AN

k = 1, the two roots are equal, corre- l *
sponding to the critically damped case. ° F

If k> 1, there are no oscillations in & L% = €
the output, and the response is said g — ¢

to be overdamped. If k < 1, the out- Y -

put will be a sinusoid whose ampli- =

tude decays with time, and the re- Fic. 2-23. A signal e is applied

sponse is said to be underdamped. zlilrrc‘ﬁfh a resistor £ to a parallel LC
The damping factor is inversely ’

proportional to the @ of the circuit consisting of a parallel combination

of B, L, and C. Thus

If the input to Fig. 2-23 is a step voltage E and if the initial current
through the inductor vs zero and the initial voltage across the capacilor is
zero, the response is given by the following equations in which z = ¢/7%:

Critical Damping, k = 1. Tor the case of critical damping, we have

ﬁ’ — —27z .

7 4rxe (2-37)
If use is made of Eqs. (2-35), with & = 1, Eq. (2-37) can be put in the
equivalent form

= % ¢2RU/L (2-38)

= e
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Overdamped, k > 1. In the overdamped case, it is convenient to

rewrite Eq. (2-36) as
2k | 2wk 1
p=-—rp, * T,,\/l_l?2

If we apply the binomial expansion to the radical and assume that & 7s
large enough so that 4k? >> 1, we find for p the approximate values —=/ Tk
and —4nk/T,. Subject to this restriction on the size of k, the response is

%’ o eralk . g—dmkz (2-39)

The first term is less than 1 everywhere except at £ = 0. The second
term is equal to the first term raised to the power 4k2 Hence, the
second term is negligible compared with the first except near the origin.
Thus, Eq. (2-39) can be approximated by

€ oy Tk = mU/kTo — —RUL (2-40)

E

in which we have made use of Eqgs. (2-35). This result shows that the
response approaches that for the zero capacitance case (Fig. 2-21) as
k becomes much greater than unity. Physically, this is just what we
should expect, because Eq. (2-35) shows that a large value of &k means
a small value of C for a given value of R and L.

Since the voltage on the capacitor cannot change instantaneously,
then Eq. (2-40) is in error at ¢ = 0 and the more correct equation (2-39)
must be used near the origin. The outputs for k = 3 and & = 1 are com-
pared with that for k = « (C = 0) in Fig. 2-24.

If L and C are held fixed and % is varied by adjusting R, the response
is as given in Fig. 2-25. Fork = «, R = 0, and the output equals the
input as indicated. We note from Fig. 2-23 that the smaller the value of
R, the larger must be the source current.

Underdamped, k < 1. In the underdamped case, we have

% = %ﬁlﬁ €2 gin 2r /1 — k2 (2-41)
where, as above, x = {/T,. The damped period is seen tobe T,/(1 — k?)*
and hence is larger than the free period T,. The response for several
values of  is given in Fig. 2-26.

An amplifier with a coil in the plate circuit, and in which the param-
eters L, C, and r, are adjusted to make the damping factor k slightly less
than unity, makes an excellent peaking circuit. This conclusion is con-
firmed in Fig. 2-26.
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Fra. 2-24. Response of Fig. 2-23 for the critically damped and overdamped cases for a
fixed value of I and L.
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Fra. 2-25. Response of Fig. 2-23 for the critically damped and overdamped cases
for a fixed value of L and C.
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If L and C are fixed and it is desired to increase the damping, the
resistance R must be decreased. If this resistor represents the plate
resistance of a tube, then to change its value we must either change the
operating point or change the tube. A more satisfactory method for
increasing the damping is to shunt the LC combination with an additional
resistor, as indicated in Fig. 2-27a. If the circuit to the left of points
P and N in this figure is replaced by its Thévenin equivalent, the

& 08
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1l
-

07 / \(—— (critical

damping)
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0.5 l
04 HH—
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03 1 \‘.
/ o.A\\
0.2 ’ \ \
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0.5\\ l;xo’/ L5N">"20 25 30
—0.1 \\ L/ =t

\V "
-02

Fia. 2-26. Response of Fig. 2-23 for the critically damped and underdamped cases.

——

result is as in Fig. 2-27b. The resistor R represents R; and R, in parallel,
and a is the attenuation factor.” Specifically,

R\R, R,
R1 + Rz Rl + R2

Comparing Fig. 2-27b with Fig. 2-23, we see that the results obtained
for the latter circuit are also valid for the former, provided that we
multiply the output by the factor a.

2-8. Ringing Circuit. In Sec. 2-7 the emphasis was on obtaining a
pulse from a step voltage (peaking). We showed that the circuit should
operate in the neighborhood of the critically damped condition. In this
section we are interested in having as nearly undamped oscillations as
possible. Such a circuit is called a ringing circust. If k is small, the

R =

and a (2-42)
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circuit will ring for many cycles. It is often of interest to know the
required value of the @ of a circuit which will ring for a given number N
of cycles before the amplitude decreases to 1/e of its initial value.
From Eq. (2-41) we see that this
decrement results when 2xkx = 1.
Sincez = ¢/T, = NT,/T, = N and
k = 1/2Q, we have /

Q =N (2-43) @

\||
o/l

To keep the damping small, the
resistors R; and R, of Fig. 2-27a
must be made large. If the par-
allel LC combination is in either the =
plate or cathode circuit of a tube
and #f the tube vs cut off by a step
voltage, then R, is effectively infi-
nite. The equivalent -circuit is
given in Fig. 2-28. TFor maximum
ringing, no shunting resistor is ae;
added and R represents an effective
resistor to account for the losses in
the coil. The current I is the
quiescent tube current before the
step is applied. The direction of

‘g

(b)

=

v/

-

I in Fig. 2-28 is for the case where
the resonant elements are in the
plate circuit so that P; represents

Fic. 2-27. (a) The circuit of Fig. 2-23
modified by the inclusion of a damping
resistor R,; (b) the equivalent circuit.

the plate terminal and P, the I, supply terminal. If the LC com-
bination is in the cathode circuit, then P, represents the cathode terminal,
P, is ground, and the direction of I must be reversed.

Outwardly, the circuits of Fig.

d 2-23 and Fig. 2-28 appcar quite

*1 different. When, however, the in-

IT L 1 R g put to Fig. 2-23 is taken to be a
Te ’ step of amplitude E, the output of

the two circuits can be shown to be

- — Y identical, provided only that the

2 initial inductor current I of Fig. 2-28
Fx_G: 2-28. Ringing circuit with capacitor  jg taken to be E/R. The two cir-
initially uncharged. cuits have the same characteristic
roots given in Eq. (2-34). And, under the circumstance that E = IR,
the conditions that apply in both cases to the output voltage are that
at t =0, e, = 0 and de,/dt = I/C and that at { = «, ¢, = 0. Hence,
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provided we make the replacement of E by IR, all the equations from
(2-37) to (2-41) apply equally well to the circuit of Fig. 2-28.

If we neglect the damping and assume &k = 0 because K approaches
infinity, Eq. (2-41) becomes

L . 2nt
H=1 \/ ¢ Sin - (2-44)

To obtain this result, we must remember that kE is independent of R

because
1 L I |L
Ek:mﬁ\/@:é\/(_]

We can easily verify that the amplitude of oscillation given in Eq. (2-44)
is correct by remembering that the initial magnetic energy stored in
the inductor is converted into electric energy in the capacitor at the end
of one-quarter cycle. Thus

1 _ Lom _ \/E ]
§LI —iCme or Erx =1 0 (2-45)

A ringing circuit may be used to generate a sequence of pulses regularly
spaced in time. These pulses are obtained from the train of sine waves.
The sequence starts when the tube
+ delivering the current I is cut off.
l + These pulses find application in
1 L E, =< %R e, many timing operations, as will be

% -|¢ l described later.

- Consider now the ringing circuit of
Frc. 2-29. Ringing circuit with initial Fi8. 2-29 in which there is an initial
current I in inductor and initial voltage voltage F, across the capacitor C as
E, across capacitor. well as an initial inductor eurrent 7.
It is now convenient to introduce a parameter A, defined as the ratio
of cotl current to resistor current at t = 0:

I IR
E., /R E,
The output e,/E, can be expressed as a function of time (z = ¢/T,) with

A and k as parameters. The definitions of k and T, Egs. (2-35), are
repeated here for convenience:

1 |L
k= ﬁ\/@ and T, = 2= \/LC

Critical Damping, k = 1

A= (2-46)

% o1 — (1 + 24)(2rz)]e 2 (2-47)
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Overdamped, with 4k* > 1

=" Gﬁ + A> A (1 At (2-48)

Underdamped, k < 1

Co k . 7.3 .
-E—o = [—(1 —|— ZA) (m) sin 27!' '\/1 —_ ICZ:L

+ cos 2r V1 — k2 x] e2mhe (2-49)

These responses are plotted in Figs. 2-30 to 2-32. We note that even
for the critically damped case there may be an undershoot; i.e., the out-
put which starts at a positive value drops to a negative value before

‘0

L 42 ‘
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+0.5 \ ‘
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0 ' —— — |
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N D/((L.
-15 4

-2
Fra. 2-30. Plot of Eq. (2-47).

returning asymptotically to zero. If E,and I have the relative polarities
indicated in Fig. 2-29, then A is positive. If the relative polarity differs
from that indicated, then A is negative. For a negative A, the output
may rise first (see the curve for A = —2.0) before falling to zero. The
physical reason for this initial increase in output is that the inductor
current (with the polarity opposite to that in Fig. 2-29) may charge the
capacitor to a more positive voltage before C' discharges through the
resistor. We see that the waveform depends upon the inductor and
resistor currents (the sign and magnitude of A} and upon the amount of
damping (the value of k).

The arecas under each curve of Figs. 2-30 to 2-32 is —kA/x. This
can be verified by direct integration or much more easily by proceeding
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as follows. Since
& e L i
“=Lg E, ~ E,T,ds
_ (e, L (*.. LI LA
then Area_/; Eodx—m/; di = — BT, T "
LA LIy (2-50)

T 7 (1/21) vL/C 2x /IC
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When a pulse is passed through a transformer, the response at the end
of the pulse is given by one of the equations (2-47), (2-48), or (2-49), but
A is always positive. The pulse transformer is discussed in Chap. 9.

Other combinations of the basic three linear elements R, L, and C
are important in pulse circuits and are discussed in the sections where the
appropriate physical background which leads to the circuit configuration
is introduced.

REFERENCE
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CHAPTER 3

LINEAR PULSE AMPLIFIERS

Frequently the need arises in pulse systems for amplifying a signal
with a minimum of distortion. Under these circumstances the vacuum
tubes involved must operate linearly. In the analysis of such ecircuits
the first step is the replacement of the actual circuit by its linear equiv-
alent. Thereafter it becomes a matter of circuit analysis to determine
the distortion produced by the transmission characteristics of the linear
network. In this sense the present discussion is an extension of the
material of Chap. 2 with the following important differences. Previously
we were satisfied with simply observing the distortion introduced, by

Screen
supply

Fig. 3-1. A stage of amplification.

various simple transmission networks, for several representative wave-
forms. Now we shall be concerned with the problem of how the distor-
tion may be minimized and how the signal may be amplified.

The frequency range of the amplifiers discussed in this chapter extends
from a few cycles (or possibly from direct current) up to about 10 Me.
The original impetus for the study of such wideband amplifiers was
supplied because they were needed to amplify the pulses occurring in a
television signal. Therefore, such amplifiers are often referred to as
video amplifiers.

3-1. The RC Coupled Amplifier Stage.! The circuit of Fig. 3-1 is
representative of a complete stage of amplification in that it includes the

elements of a single amplifier (7';) and the elements required to couple
58
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this stage to the next (7';). The plate-circuit resistor is Ry, C. is a
blocking capacitor used to keep the d-c component of voltage which
appears at the plate of T'; from reaching the grid of T, and R, is a grid-
leak resistor. The capacitances C, and C; represent, respectively, capaci-
tances which are referred to as the oulput and input capacitances of the
tube. These capacitors have been indicated by dotted lines because
they have not been included deliberately but are rather unavoidable
attributes of the vacuum tubes employed. In any practical mechanical
arrangement of the amplifier components there are also capacitances
associated with the tube sockets and the proximity to the chassis of
components and signal leads. It is necessary to include these additional
stray capacitances in any computation of practical interest. In referring
to the gain of the amplifier, we shall mean the gain from the grid of one
tube to the grid of the succeeding tube. We shall assume throughout
this chapter that the signal amplitude is small enough so that the tube
operates linearly, unless specifically stated otherwise.

3-2. Steady-state Analysis of an Amplifier. A criterion which may be
used to compare one amplifier with another with respect to fidelity of
reproduction of the input signal is suggested by the following considera-
tions. Any arbitrary waveform of engineering importance may be
resolved into a Fourier spectrum. If the waveform is periodie, the
Fourier spectrum will consist of a series of sines and cosines whose
frequencies are all integral multiples of a fundamental frequency. The
fundamental frequency is the reciprocal of the time which must elapse
before the waveform repeats itself. If the waveform is not periodic, the
fundamental period extends in a sense from a time — « to a time + .
The fundamental frequency is then infinitesimally small, the frequencies
of successive terms in the Fourier series differ by an infinitesimal amount
rather than by a finite amount, and the Fourier series becomes instead
a Fourier integral. In either case the spectrum includes terms whose
frequencies extend, in the general case, from zero frequency to infinity.

If the gain and time delay of an amplifier are independent of the fre-
quency, then the amplifier must necessarily reproduce precisely the form
of the input waveshape. For, under these circumstances, the relative
amplitudes of the Fourier components are identical for input and output
as are also the relative position on a time scale of input and output
components.

We shall now show that the #ime delay D of a sinusoidal signal is equal
to the phase shift produced by a transmission network divided by the
angular frequency w. Consider that a sinusoidal signal is represented by
Ae@tt) in which A is the amplitude and ¢ is an arbitrary phase angle.
Suppose that this signal suffers a phase lag of amount 6 so that the signal
becomes Aette—0 = Agultt@/w)—-0/)]  The new signal isidentical to the
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original signal with the exception that it has been translated along the
time axis in the positive direction by an amount D = 6/w, which is the
magnitude of the delay in seconds. If the time delay is to be independent
of frequency, it is required that the transmission network introduce a
phase shift 8 which is proportional to frequency.

This discussion suggests that the extent to which an amplifier’s ampli-
tude response is not uniform and the extent to which its time delay
is not constant with frequency may serve as a measure of the lack of
fidelity to be anticipated in an amplifier. In principle, it is really not
necessary to specify both amplitude and delay response since, for most
practical circuits, the two are related and, one having been specified,
the other is uniquely determined. However, in particular cases, it may
well be that either the time-delay response or amplitude response is the
more sensitive indicator of distortion.

1

it °*
< < < L
r R, =< =

F16. 3-2. Equivalent circuit of a stage of amplification.

3-3. Amplitude and Time-delay Response of an RC Coupled Amplifier
Stage. If an amplifier stage of the type shown in Fig. 3-1 were intended
for use with pulse-type waveforms, typical values for the components
would be R, =~ 1K, C, =2 C; =210 ppuf, C. =2 0.2 pf, and R, =2 1 Meg.
It is reasonably apparent, then, that the frequency characteristics
of the amplifier may be divided into three ranges. First, there is the
range where the frequency is so low that the shunt capacitances have no
appreciable effect but the influence of C, is marked. Second, there is a
range where the frequency is high enough to permit us to neglect C.,,
but in which the influence of the shunt capacitances must be taken into
account. Finally, there is a range, which falls between the low- and
high-frequenecy regions, in which, to a good approximation, we may neglect
all the capacitances.

In the circuit of Fig. 3-2 the pentode of Fig. 3-1 has been replaced by a
current source gne; in parallel with r,. The circuits of Fig. 3-3a, b, and ¢
are, respectively, the equivalent circuits which apply in the midband
and in the high- and low-frequency bands. In drawing these equivalent
circuits, we have replaced the current generator and shunt resistors Rp
and 7, by a Thévenin equivalent and have further taken into account
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that R, > R and r, >> R;. The capacitance C of Fig. 3-3b is the sum
of C, and C; and all the stray shunt capacitances of the circuit.

From Fig. 3-3a we see that the R
midband gain A, is given by A +r

Ao = — ngL
EnRye; €o

The low-frequency equivalent cir-
cuit is identical to the high-pass -
RC circuit of Fig. 2-1, while the
high-frequency equivalent circuit is
identical to the low-pass RC circuit AN
of Fig. 2-13. We have, then, that y +
the ratio of the gain at low frequency 1
A, to the midband gain A, is [see g,R,e; & E
Eq. (2-1)]

_ 1
IRV Ok

where f; = 1/2zR,C. is the lower — N y
3-db frequency. The ratio of the
gain at high frequency A, to the gnRy eC) Ry
midband gain is [see Eq. (2-24)] ' l
+
A2 1 o

Ay

, (3-1) (b)

o (3-2)

()

V1 + (7/f)?
Frg. 3-3. Equivalent circuits of an

where f» = 1/2rR1C is the upper amplifier. (a) Midband equivalent;
3-db frequency. The normalized (b) high-frequency equivalent; (c) low-
time delays, D and D,, for the low- frequency equivalent.

and high-frequency ranges, respectively, are given by

fiDy = j:% = — 2%_)}1 arctanf?1 (3-3)
and foDy = f%)? = %I_ ];? arctan %2 (3-4)

In the above expressions 6, and 6, represent the angle by which the
output lags the input, neglecting the initial 180° phase shift through
the amplifier. The frequency dependence of the gains in the high- and
low-frequency range is to be seen in Fig. 3-4.

The frequency range from f; to f2 is called the bandwidth of the amplifier
stage. We may anticipate in a general way that a signal, all of whose
Fourier components of appreciable amplitude lie well within the range
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fi1 to fa, will pass through the stage without excessive distortion. This
criterion must be applied, however, with extreme caution, as will be
indicated in the following discussion.

Suppose we apply to an amplifier a symmetrical square wave whose
repetition frequency is f = 30f;. Let us assume that the upper-fre-
quency-3-db point is arbitrarily high. Under these circumstances we
might be inclined to feel that the frequency components, all of which
are of frequency f or higher, lie sufficiently well within the passband
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F1c. 3-4. Gain characteristics of an RC coupled amplifier.

so that the signal distortion will be small. However, from Eq. (2-7),
we see that the square wave would have a percentage tilt

P=——="—=10.59%

and so large a tilt is hardly to be considered as a small distortion. We
shall now demonstrate that the reason for this apparently anomalous
situation is to be found in the extreme sensitivity of the shape of the out-
put to a shift in phase of the fundamental frequency component.

A symmetrical square wave of unity amplitude and of fundamental
frequency f has a Fourier series,

e =§<sina+%sin3a+ésin5a+ t > (3-5)

in which @ = 2xft. Consider first only the influence on the square wave
of the phase shift of the fundamental. The phase shift is
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hoh

F=7

for small angles. The output is obtained by replacing a in Eq. (3-5) by
a - 0;. The waveform is then modified by

Ae =§_[sin (a +ff_1> — sin a]

Since, for small angles, cos (fi/f) = 1 and sin (f1/f) = f1/f, this equation
reduces to

6; = arctan—

Ae =2 AN cos a@ = § CoS « (3-6)
7 f

where § = 4f;/nf. The waveform, e
modified by the addition of Ae, is
shown in Fig. 3-5. The percentage

o I 2
tilt is S, 8

T

8 f1
P=26><100——-f><100 i
0

For fi/f = 149, P = 8.5 per cent. t
To take into account the effect of
the phase shift of the remaining _ il

harmonies (which will, incidentally,
change the cosine tilt into a linear
tilt), we need but to note that the
nth harmonic is of relative amplitude 1/n and is shifted in phase 1/nth as
much as the fundamental. Hence the above result may be corrected
by writing

F1a. 3-5. Modification of a square wave
due to the phase shift of the fundamental.

P=8.5(1—I— + 5 + + >=8.5><1.20=10.2%

This result agrees very well with the value P = 10.5 per cent given above.

From Eq. (3-1) we find that the relative gain at the fundamental
frequency, f/f1 = 30, is approximately 0.9995. This is close enough to
1 to justify our having neglected the amplitude characteristics in the
above calculation of the distortion of the square wave.

3-4. Unit Step Response of an Amplifier. An alternative criterion of
amplifier fidelity is the response of the amplifier to a particular input
waveform. Of all possible available waveforms, the most generally use-
ful is the step voltage. In terms of a circuit’s response to a unit step,
the response to an arbitrary waveform may be written very easily in the
form of the familiar superposition integral. Another feature which
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recommends the unit step is the fact that the waveform is one which per-
mits small distortions to stand out clearly. Additionally, from an experi-
mental point of view, the unit step (or, better, the repeated unit step
which forms a square wave) is not a particularly difficult waveform to
generate.

We have already noted the correlation between amplifier frequency
response and the response to a unit step. The finite rise time ¢, and per-
centage tilt P introduced by the amplifier are related to the high and low
3-db frequencies, respectively, by Eqgs. (2-26) and (2-7).

fot, = 0.35 (3-7)

and P= 1007#% (3-8)
where f is the frequency of the testing square waves.

Quite generally, even for more complicated amplifier circuits than the
one indicated in Fig. 3-1, there continues to be an intimate relationship
between the distortion of the leading edge of a unit step and the high-
frequency response. Similarly, there is a close relationship between the
low-frequency response and the distortion of the flat portion of the unit
step. We should, of course, expect such a relationship since the high-
frequency response measures essentially the ability of the amplifier to
respond faithfully to rapid variations in signal, while the low-frequency
response measures the fidelity of the amplifier for slowly varying signals.
An important feature of a unit step is that it is a combination of the most
abrupt voltage change possible and of the slowest possible voltage
variation.

In spite of the fact that the frequency response and unit step response
both provide the same information, we shall generally find that the unit
step response is much more useful. The principal reason for this circum-
stance is that we shall often find that the waveforms which are of interest
to us consist essentially of a superposition of unit steps. For voltages
of this type (pulses or square waves), the unit step response will yield
immediately useful information which may be secured from the frequency
response only through laborious calculation.

An important experimental procedure (called square-wave testing) for
the adjustment of an amplifier for optimum performance involves the
examination of an oscillograph of the response of an amplifier to an
applied square wave. It is possible to improve the fidelity of an amplifier
stage by using a coupling network between tubes which is more compli-
cated than the network indicated in, Fig. 3-1. It is a great convenience
to be able to adjust circuit parameters and to be able to observe simul-
taneously, by the method of square-wave testing, the effect of the adjust-
ment on the amplifier response. The alternative is to take data, after
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each successive adjustment, from which to plot the amplitude and phase
responses. Aside from the extra time consumed in this latter procedure
we have the problem that it is usually not obvious which of the attainable
amplitude and phase responses corresponds to optimum fidelity.

It is possible, by judicious selection of the square-wave testing fre-
quency, to examine individually the high-frequency and low-frequency
distortion. For example, consider an amplifier which has a high-fre-
quency time constant of 1 usec and a low-frequency time constant of
0.1 see. A square wave of half period equal to several microseconds,
on an appropriately fast oscilloscope sweep, will display the rounding
of the leading edge of the waveform and will not display the tilt. At the
other extreme, a square wave of half period approximately 0.01 sec on an
appropriately slow sweep will display the tilt and not the distortion of the
leading edge.

It should not be inferred from the above comparison between steady-
state and transient response that the phase and amplitude responses are
of no importance at all in the study of amplifiers. The frequency char-
acteristics are useful for the following reasons. In the first place, much
more is known generally about the analysis and synthesis of circuits
in the frequency domain than in the time domain, and for this reason
the design of coupling networks is often done on a frequency-response
basis. Second, it is often possible to arrive at least at a qualita-
tive understanding of the properties of a circuit from a study of the
steady-state response in circumstances where transient calculations are
extremely cumbersome. Finally, it happens occasionally that an ampli-
fier is required whose characteristics are specified on a frequency basis, the
principal emphasis being to amplify a sine wave.

3-b6. Transient Response of an RC Coupled Amplifier Stage. As we
have already noted, the high- and low-frequency equivalent circuits of
the RC amplifier are identical, respectively, with the RC integrating and
differentiating circuits of Figs. 2-13 and 2-1. The unit step response of
these circuits is described in Chap. 2. It remains only to make some
general observations about the amplifier.

The rise time of the amplifier may be improved by reducing the product
R1C. Every attempt should be made to reduce C by careful mechanical
arrangement to reduce the shunt capacitance. The rise time may also
be decreased by reducing Ry, but this reduces simultaneously the nominal
amplifier gain. A figure of merit which is very useful in comparing tube
types is obtained by computing the ratio of the nominal gain to the rise
time in the limiting case where stray capacitance is considered to have
~ been reduced to zero. We have
IAOI 1 Jm

N F ) (AN AL (oA
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in which C, + C; is the sum of the input and output capacitances of the
tube. The ratio g../(Co 4+ C;) is listed in Table 3-1 for several receiving-
type tubes of high figure of merit.

TaABLE 3-1. CAPACITANCES AND FIGURE OF MERIT OF SEVERAL
RECEIVING-TYPE TUBES

Tube |Input cap., | Output cap.,| Total cap., _
type | Comuf | Coppul | Ci o+ Cop i | I X 10° |10/ (Ci - Gl X 1078
6AC7 11.0 5.0 16.0 9,000 560
6AG7 13.0 7.5 20.5 11,000 540
6AH6 10.0 2.0 12.0 9,000 750
6AK5 4.0 2.8 6.8 5,100 750
6CL6 11.0 5.5 16.5 11,000 670
6AGH 6.5 1.8 8.3 5,000 600
6AU6 5.5 5.0 10.5 5,200 500

We can obtain a rough estimate of the upper-frequency limit of a con-
ventional amplifier by considering that, to increase the bandwidth, we
have reduced the gain of a stage to, say, 2. If the gain were much
smaller, the amplifier would hardly be worthwhile. TUsing a 6AK5
vacuum tube, the rise time is

_ 22(Co + C)|A)] _ 22X 6.8 X107 X 2

. = 5,100 X 109 =6 X 107° sec

i

and the upper 3-db frequency is

_035 _ 035

299 9~
e I 5 X 10° =2 60 Mc

In a practical circuit, the inevitable extra stray capacitance might easily
reduce the bandwidth by a factor of 2. Hence we may probably take a
bandwidth of 30 Mc as a reasonable estimate of a practical upper limit
for an uncompensated amplifier using lumped parameters. If the desired
gain is 10 instead of 2, the maximum 3-db frequency is about 6 Mec. If
more bandwidth is needed, then distributed amplifiers are used (see Sec.
10-7).

The extension of the bandwidth in the downward direction depends
on the time constant C.R,. Except in very special cases, the upper limit
for R, is about 1 Meg. Larger grid-leak resistors usually result in
instability because of positive ion current due to residual tube gas. A
limit to the value of C. is set by the increased shunt capacitance associated
with the physical bulk of the coupling capacitor. Coupling capacitors
rarely exceed 1 pf in value. The response may be extended to zero
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frequency by dispensing entirely with the coupling capacitor in favor of a
coupling arrangement which provides a d-c¢ path.

3-6. Shunt Compensation to Improve Rise-time Response.?™* One
of the simplest methods which is
available for improving the rise-
time response (or high-frequency
response) of an amplifier without
loss of gain is shown in Fig. 3-6a.
The method involves simply includ-
ing an inductor L in series with
the plate-circuit resistor. This ar-
rangement puts the inductor in
parallel with the capacitor C and
hence the circuit is called a ““shunt-
compensated” or ‘“‘shunt-peaked”
amplifier. The high-frequency
equivalent circuit is given in Fig.
3-6b. _

Let us consider the response of c
the network to an applied unit step g l_
of negative polarity as a conse- _
quence; of which the current gener- (b)
ator provides a current step of FIa. 3-6.(a) A shunt-compensated stage;
magnitude 7, Writing down the (b) equivalent circuit if r, > Ry.
differential equation for the network, and assuming a solution of the
form e??, we find for the roots of the characteristic equation

i=gmei a

_ _ Rk RL\* 1
P = oL * <ﬂ;> j 7ol (3-9)
It is convenient here to introduce the parameters K and f, defined by
_ C 1
K=R\f = (3-10)

in which case

p = —nfuK? + jafK? | /% —1 (3-11)

The parameter f, is, of course, the upper 3-db frequency of the uncompen-
sated amplifier (L = 0), while K = 1/Q,. Here Q,isthe @ at the resonant
frequency (w, = 1/4/LC) of the series combination of Ry, L, and C so
that @, = w.L/R;.

The required solutions for the output e, must satisfy the conditions
that e, = 0 and de,/dt = 1,/C att = Oand e, = Rzi,at{ = . Depend-
ing on whether K is equal to or smaller than or larger than 2, the response
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will be critically damped, underdamped (oscillatory), or overdamped.
Letting # = t/(2rR1C) = fat, the results for the various cases are:
Critical Damping, K = 2

©o = — —4rzr __ —4rz _
R, 1—c¢ 2wxe (3-12)
Underdamped, K < 2
€ K2 2 — K? . 7
RL’L}—1+6 K (msmrK\/4 K%

— cos 7K V4 — K%) (3-13)

Overdamped, K >> 2. In this case of large K, the roots p are given
approximately by p = —2rfoK? and p = —2xf;. The term in the solu-

180

k=10{_]
K=141{__] |~
160 K=151~] 1~ N
o K=171—] N
3 0 s 00 \\)\;_ l&
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S =¥ ™~
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Q
N ///i/
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Fi1a. 3-7. Response of a shunt-compensated stage to a unit step. (Adapted from
A. V. Bedford and G. L. Fredendall, Transient Response of Multistage Video-frequency
Amplifiers, Proc. IRE, vol. 27, pp. 277-284, 1939.)

tion associated with the first of these roots will decay very rapidly and
we may therefore neglect it and write

Re£i0 o] — 2t = ] — H/RC (3-14)

as is to have been expected.
From Eq. (3-10) the inductance L is given by

L = mR.C (3-15)
where m = 1/K2.
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The unit step response for several values of K is shown in Fig. 3-7.
As the peaking inductor is increased in value, there is a progressive

improvement in rise time without b ‘
accompanying overshoot up to the 22 12
point of critical damping. Beyond 20 10
this point the amplifier response / /
exhibits a progressively larger over- 18 g 8
shoot. The factor by which the 16 / ..
rise time is improved (divided) by / / E
compensation is p = ¢,/t!, in which 14 7 4
t. and t. are, respectively, the rise Vi !

time of the amplifier before and 12 L/ / 2
after compensation. The param- 0 0
eter p and the percentage over-

shoot, v, are plotted in Fig. 3-8. m—0 o1 02 tos 0,4' 05 06
For the case of critical damping, &x-——>co 212 20 171 154141
the rise time is improved by the Fic. 3-8. Overshoot and rise-time im-
factor 1.43. provement of a shunt-compensated stage.

It is of interest to consider the steady-state response of the compen-
sated amplifier. It is easy to compute that the normalized gain as a
function of the frequency is given by

As| _ (f) 316
N ey

and the normalized time delay is given by

Y

The steady-state amplitude and time-delay characteristics of the amplifier
are given, respectively, in Figs. 3-9 and 3-10.

The curve having the most uniform amplitude response (maximum
flatness) corresponds to K =2 1.54. The curve having the most constant

TaBLE 3-2. OVERSHOOT AND RISE-TIME IMPROVEMENT

K m=1/K2| v, % p Characteristic
2 0.25 0 1.43 | Critical damping
1.71 0.34 1.0 1.70 | Most constant delay
1.54 0.41 3.8 1.90 | Maximum flatness
1.41 0.50 6.5 | 2.00 ||Ay/A, =1atf/fa=1
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F1c. 3-9. Steady-state amplitude response of a shunt-compensated stage. (Adapted
from A. V. Bedford and G. L. Fredendall, Transient Response of Multistage Video-
frequency Amplifiers, Proc. IRE, vol. 27, pp. 277-284, 1939.)
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F1a. 3-10. Time-delay response of a shunt-compensated stage. (Adapted from A. V.
Bedford and G. L. Fredendall, Transient Response of Multistage Video-frequency Ampli-
fiers, Proc. IRE, vol. 27, pp. 277-284, 1939.)

time delay is given by K =2 1.71. The curve for which |4:/4, = 1 at
f/f: = 1is given by K = 1.41. The overshoot v and rise-time improve-
ment p for these special cases are summarized in Table 3-2.

The amount of overshoot which is tolerable is very largely a function
of the application of the amplifier. For example, for an amplifier to be
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used in oscillography, any visible overshoot would be objectionable.
On the other hand, in television amplifiers, overshoots as large as 5 per cent
not only may be acceptable but may actually improve the quality of the
resultant picture. If the number of stages used is large, then the over-
shoot should be kept below about 2 per cent (see Sec. 3-9).

In the case of no compensation it will be recalled [see Eq. (2-26)] that
the produet ¢.f: = 0.35. It is of interest to note that the same rule
also applies quite well in the present case of shunt compensation. For
example, we may calculate that for critical damping the amplitude
response falls by 3 db at f/f» = 4/2. Since we estimated above that in
this case the rise time was divided by the factor 1.43, we have that
t'fh = (0.35 X 4/2)/1.43 =2 0.35, where ¢ and f} are the rise time and
bandwidth for critical damping.

An initial estimate of the peaking inductance required may be made
by estimating the total shunt capacitance. The required inductance
is usually in the range 1 to 100 pzh. Adjustable coils are available for
this application and the final adjustment is made experimentally by the
method of square-wave testing. The inductance is changed by varying
the depth of insertion into the coil form of a powdered iron slug. The
square-wave frequency is set so that the half period of the square wave is
several times the rise time and the inductance is adjusted to give the
type of response most suitable for the application for which the amplifier
stage is intended.

Even when a square-wave generator and oscillograph are already
immediately available, having been used to adjust the peaking coil, it is
not uncommon to follow this adjustment by a measurement of f., using a
sinusoidal oscillator. This 3-db frequency is then either used directly
as a measure of the fidelity of the amplifier or else the rise time is esti-
mated from the 3-db frequency. Of course, in either case the percentage
overshoot must also be stated. The reason for following this procedure
rather than stating the rise time directly is that to make a precise rise-
time measurement it is necessary to have a precisely calibrated timing
signal. Additionally the finite rise time of the square wave and oscillo-
scope must often be taken into account. Moreover, it is not always
convenient to operate with so fast a sweep voltage that the 10 per cent
and 90 per cent points may be determined accurately.

Before leaving the subject of shunt peaking we may note that some
small improvement in performance is possible by shunting the peaking
coil with a capacitor Cy, as in Fig. 3-11. 'The most generally useful case
results when L = 0.35R2C and C; = 0.22C. Under these circumstances
the rise-time improvement over the completely uncompensated case is
1.77 and the overshoot is only 1 per cent. This result is to be- compared
with the straight shunt compensation case mentioned above where
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F1a. 3-11. Modified shunt-compensated stage.
m = 0.34 gives an overshoot of 1 per cent and rise-time improvement of
1.70. The difference is slight, but sometimes it is possible to arrange the
mechanical layout of components so that C; consists of stray capacitance
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Fi1a. 3-12. Four-terminal compensating
networks. The capacitance C = C, + C;
and the circuit parameters are given for
the case C,/C; = ¥4. (a) Series peak-
ing; (b) shunt-series peaking; (c) Dietzold
network.

across the coil and no additional
capacitance need be added. The
circuit of Fig. 3-11 gives a particu-
larly uniform delay response.

3-7. Additional Methods of Rise-
time Compensation.®® Some im-
provement over the shunt-compen-
sated amplifier may be achieved by
the use of a four-terminal coupling
network which separates the output
capacitance of a tube from the in-
put capacitance of the succeeding
tube. The detailed analysis of
these circuits is quite complicated
because of the large number of reac-
tive elements involved. Since the
improvement which results through
their use is not very great, we shall
content ourselves with simply indi-
cating representative component
values for some of these circuits to
get an idea of the order of magni-
tude of the improvement possible.

Three of these circuits are shown
in Fig. 3-12. These are the circuits
referred to as series peaking, shunt-
sertes peaking, and shunt m-derived
peaking. This latter arrangement
is also known as the Dietzold net-

work. These circuits and the shunt peaking circuit and the tuned shunt
peaking circuits are compared in Table 3-3. Optimum performance of
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" TaBLE 3-3. CoMPARISON OF HIGH-FREQUENCY COMPENSATING CIRCUITS

Risc-ti Ratio of | Bandwidth |Rise time—
Isc-time . .
Cireu . Overshoot | overshoot | improve- | bandwidth
1reult improve- .
ment p v % duratllon rr}ent pI’Ofil,lCt
to tr f2/f2 fztr
Shunt peaking
(Fig. 3-6) with
L = 0.42R2C 1.85 3.0 2.7 1.72 0.33
Tuned shunt peaking
(Fig. 3-11) with
L = 043R2C
C, = 0.21C 1.89 3.0 1.8 1.83 0.34
Series peaking
(Fig. 3-12a)......... 1.90 3.0* 0.59 2.07 0.38
Shunt-series peaking
(Fig. 3-12b)......... 2.21 3.0 2.2 2.28 0.36
Dietzold (Fig. 3-12¢). .. 2.47 0.3t 1.3 2.48 0.35
* Ringing.
t Smear.

the four-terminal networks results when the output capacitance of the
amplifier tube C, is related to the input capacitance C; of the succeeding
tube by a factor of 2. Kach of the circuits, therefore, is adjusted so that
C,/C; = 14. In the cases of series and shunt-series peaking a worth-
while improvement in rise time results if a small amount of overshoot is
permitted. TFor ease of comparison all the circuits except the Dietzold
network are given for the case of 3.0 per cent overshoot. In the case
of the series-peaking circuit the resistor across the series coil is not essen-
tial to the circuit but is useful for the purpose of damping the oscillations
in the response.

The rise-time improvement in Table 3-3 is given as the ratio p = ¢./f.
The response of the series peaking circuit has not only an overshoot but
also a ringing. It is possible to eliminate the ringing in favor of a single
overshoot but only at the expense of increasing the rise time. The
Dietzold network response displays a feature which is referred to as smear.
This term refers to the fact that, after the response has approached very
close to the steady-state value, an abnormally long time is required for
the response to cover the small remaining separation from the steady
state voltage. The overshoot duration stated is normalized with respect
to the rise time for the compensaied circuit and serves as a measure of the
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duration of the overshoot, or, where ringing takes place, measures the
duration of the first overshoot.

In each of the cases listed the steady-state amplitude response shows
an increase in the upper 3-db frequency with an essentially monotonic
reduction in gain at high frequencies. That is, there is no increase in
gain before the gain finally starts to fall, as is the case in Fig. 3-9 for, say,
K = 1.41. The improvement in bandwidth, as well as the product fit/,
is given in Table 3-3. Again we see that the approximate rule

fat: = fot, = 0.35

holds quite well.

The method of square-wave testing must be used for a final adjustment
of the parameters in the four-terminal networks. The process of adjust-
ing for optimum response is usually quite complicated because the
various parameters interact with one another. Because of the difficulties
of adjustment, the larger number of adjustable circuit components
required and the fact that it is not easy to achieve a response entirely free
of overshoot, ringing, or smear and still be left with a rise-time improve-
ment, four-terminal networks are not as popular as simple shunt peaking,.
On the other hand, the use of a four-terminal network may sometimes
make possible the elimination of a stage of amplification in a multistage
amplifier and thus effect a worthwhile economy of parts.

3-8. Rise-time Response of Cascaded RC Coupled Amplifiers.” The
unit step response of n identical cascaded (uncompensated) RC coupled
amplifiers is given by

€o x2 x3 xn-—l _

onBD 1‘[””%*9# o +<n——*17!]” (3-18)
in which z = {/RC. The response for the cases n = 1 to n = 10 is
shown in Fig. 3-13. We observe that as n increases not only does the
rise time increase but there is also introduced in the response a progres-
sively longer delay.

Suppose that we have an amplifier which consists of » stages in cascade,
each amplifier being free of overshoot. Let the rise times of the indi-
vidual amplifiers be t,1, &2, . . . , &, and let us apply to this amplifier
a step signal which'is similarly free of overshoot and has a rise time ¢,,.
In such a case in the limit of a very large number of stages it is possible
to prove that the output signal will have no overshoot and will have a rise
time

tr = \/tro2 + trl2 + tr22 + ot + trnz (3-19)

Unfortunately this rule does not work very well when only a few stages
are involved. It is still useful as a rough estimate. On this basis, if
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we have an amplifier of n identical stages of rise time ¢, we may expect
the over-all rise time ¢,™ to be

™ = /nt, (3-20)
Values of £, /¢, computed dircctly from Eq. (3-18) have been tabulated
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Fia. 3-13. Response of cascaded identical uncompensated stages. (Adapted from
G. E. Valley, Jr., and H. Wallman, *“Vacuum Tube Amplifiers,” Massachusetts Insti-
tute of Technology Radiation Laboratory Series, vol. 18, chap. 1, fig. 1-25, McGraw-Hill
Book Company, Inc., New York, 1948.)

in Table 3-4 and for comparison the corresponding values of \/n are
listed also. We observe that while the agreement is far from perfect the
correspondence is close enough so that Eq. (3-20) will serve as a useful
approximate rule.

TasLE 3-4. CoMPARISON OF RIsE-TIME Ratios witH RaTtios GIVEN BY
SQUARE-ROOT RULE AND BanpwipTH RULE

n 1] 2|34 ‘ 5 \ 6 | 7 8] 9 |10
(n)
t’t—[Eq. B8], 1.0]1.5 [1.9]2.2]|2.5(2.8 |3.0 |3.3|3.45(3.6
ValEq. G200 ... 1.0[1.4 |1.7]2.0|2.2]2.45|2.65|2.8[3.0 |3.2
@vn — 1)-% [Eq. (3-23)]..../1.0|1.55|2.0|2.3|2.6|2.85|3.1 {3.3]3.5 |3.7

From Table 3-4 we see that if we wish to have an over-all bandpass
of 1 Mc with a two-stage amplifier then the upper 3-db frequency of each
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must be 1.5 Me. If 1 Mc is desired with a three-stage amplifier, then
each (identical) stage must be 1.9 Mc wide, etc.

We noted earlier that even for a circuit which is more complicated
than a single RC combination the rise-time bandwidth product remained
approximately constant at 0.35. This result suggests that we try to
calculate the rise time from the bandwidth. The upper 3-db frequency
for n cascaded amplifiers is fo™ and may be computed from

1 n

1
—_—_— | = —— (3-21)
1+ (f 2("))2 V2
Ja
so that
e 1
A e 3"22
AT a1 (3-22)
Therefore, if we assume that £,»f,( = t,f, we have
AN 1
RV (3-23)

Values of (21 — 1)~* are also listed in Table 3-4. It is to be noted that
the agreement with the correct values of rise-time ratios is very much
better in the present instance than for those given by Eq. (3-20). In the
limit of large » both methods will give the same result.

The delay associated with the curves of Fig. 3-13 may be specified by
the time required for the response to go from zero to 0.5. We see that
each stage beyond the first introduces the same amount of delay. For
n amplifiers, the delay is given approximately by (n — 0.3)RC. This
delay is not ordinarily considered as a distortion.

3-9. Rise-time Response of Cascaded Amplifiers with Overshoot.?
When identical stages, which individually have overshoot, are cascaded,
it is still possible to make some general rules concerning the over-all
response. These rules apply only very roughly but are nevertheless of
some value.

When the individual stages have very small overshoot, of the order
of 1 or 2 per cent, the overshoot increases very slowly with the number
of stages or may even fail entirely to increase. In this case the response
approaches a fixed waveform except for a progressive stretching in the
direction of the time axis. These features are displayed by the response
of a multistage shunt-compensated amplifier for K = 1.61 in Fig. 3-14.
The overshoot for a single stage is about 1 per cent, at 16 stages has
grown to only about 4 per cent and is still about the same at 64 stages.
The rules t,™ = v/nt, and fy™¢,™ = fu, also hold reasonably well in
this case.
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Circumstances are different when the overshoot is in the range 5 to 10
per cent. In this case the rise time increases appreciably more slowly
than as 4/n, while the overshoot instead grows approximately as v/n.
These features may again be verified from Fig. 3-14. If, then, an amplifier
is to have a fairly large number of stages, it is clear that the individual
stages must be adjusted for very slight or no overshoot.

3-10. Attenuators. Intimately associated with the problem of ampli-
fier design is the problem of providing for signal attenuation. In an
oscilloscope, for example, we would like to be able to adjust the amplifier
gain so that the display on the screen is of convenient size.
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F1g. 3-14. Response of cascaded overcompensated amplifiers. (Adapted from A. V.
Bedford and G. L. Fredendall, Transient Response of Mutistage Video-frequency Am-~
plifiers, Proc. IRE, vol. 27, pp. 277-284, 1939.)

The simple resistor combination of Fig. 3-15 would attenuate the input
signal by the ratio a = R./(R; + R.) independently of the frequency,
were it not for the inevitable stray capacitance C; which shunts B;. The
capacitance C:; may be, for example, the input capacitance of a stage
of amplification. Using Thévenin’s theorem, the circuit in Fig. 3-15a
may be replaced by its equivalent in Fig. 3-15b, in which R is equal to the
parallel combination of B; and R;. We ordinarily want both R; and R,
to be large so that the nominal input impedance of the attenuator may be
large enough to prevent loading down the input signal. If, say,

Ri=R=1 Meg and C, =15 ;.t,uf

then the rise time in Fig. 3-15b is 2.20(0.5)15 usec = 16.5 usec. So large
8 rise time is ordinarily entirely unacceptable.

The attenuator may be compensaled, so that its attenuation is once
again independent of the frequency, by shunting B, by a capacitance Cj,
as indicated in Fig. 3-15¢. The circuit has been redrawn in Fig. 3-15d to
suggest that the two resistors and capacitors may be viewed as the four
arms of a bridge. If R;C; = R.C., the bridge will be balanced, and no
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current will flow in the branch connecting the point X to the point Y.
For the purpose of computing the output, the branch X-Y may be omitted
and the output is again equal to ae; independently of the frequency.
In practice, C; will ordinarily have to be made adjustable, and the final
adjustment for compensation is made experimentally by the method of
square-wave testing. This procedure is necessary because the compen-
sation is critically dependent on the condition R,C; = R.Cbeing satisfied
precisely.

(d)

Frc. 3-15. An attenuator. (a) Actual circuit; (b) equivalent circuit; (¢) compensated
attenuator; (d) compensated attenuator redrawn as a bridge.

It is of interest to consider what the appearance of the output signal
will be for a step-voltage input if the compensation is slightly incorrect,
Assume, say, that the capacitance across R; is slightly larger than is
required and is equal to C; -+ AC. Let the input step have an amplitude
E. Initially the voltage division will be determined by the capacitors
so that the output is [(Cy 4 AC)/(C1 4+ AC + C2)]E. Eventually the
output must become o¢E = [C1/(C: + C)IE. If C =C,+ C; and if
AC/C < 1, then the difference between these two levels is

_ CaAC

CZE

Ae,
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The resultant waveform is shown in Fig. 3-16a. It is also not difficult
to see that the decay from the initial to the final level takes place with a
time constant 7 = RC, where R is the equivalent of the parallel combina-
tion of R;and R,. If C,is smaller by AC than the value of capacitance
required for exact compensation, the output appears as in Fig. 3-16b.
The compensated attenuator will reproduce faithfully the signal which
appears at its input terminals. However, if the output impedance of the

€
Input E
€o l_- ——————————————
| .
J—I——.—
l A
CzczzlcE aE

(b) ’

Fic. 3-16. Response of misadjusted attenuator. (a) Overcompensated; (b) under-
compensated.

generator driving the attenuator is not zero, the signal may be distorted
right at the input to the attenuator. This situation is illustrated in Fig.
3-17a in which a generator of a step voltage F and of output impedance R,
is connected to the attenuator. Since, as was noted earlier, the lead
which joins point X to point ¥ may be open-circuited, the circuit in Fig.
3-17a may be redrawn as in Fig. 3-17b. If R, K R, + R., as is usually
the case, the input to the attenuator will be an exponential of time con-
stant R,C’ in which C’ is the capacitance of the series combination of C;
and C.. It is this exponential waveform rather than the d-c step which
the attenuator will transmit faithfully.
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If the generator terminals were connected to the terminals to which
the attenuator output is connected, the generator would see a capacitance
C:. Inthis case the waveform at these terminals would be an exponential
with time constant R,Cs. When the attenuator is used, the time con-
stant is R,C’. Since C' < C,, an improvement in waveform results.
For example, if the attenuation a is equal to ¥{g, then C; = C:/9 and
C' = 0.1C; so that the rise time of the waveform will have been improved

Ro
VVWAM—
+ C_l_q %Rl
X Y T'l-
ol $F 1
(@)
Ry R,
R,
+
1%}
E(R,+R,) .~
Ri+R,+R, ) +
== e,
C, i
()

Fi1a. 3-17. (a) Compensated attenuator including impedance of source; (b) equivalent
circuit.

by a factor of 10. If we are able to afford a loss of signal level, this
reduction of input capacitance may be used to advantage.

As an example of such an application, consider the problem associated
with connecting the input terminals of an oscilloscope to a signal point
in a eircuit. If the point at which the signal is available is some distance
from the oscilloscope terminals, and particularly if the signal appears at
a high impedance level, we shall want to use shielded cable to connect
the signal to the oscilloscope. The shielding is necessary in this case to
shield the input lead from stray fields such as the ever-present 60-cycle
field. The capacitance seen looking into several feet of cable may be as
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high as 100 to 150 puf. This combination of high input capacitance
together with the high output impedance (say resistive) of the signal
source will make it impossible to obscrve faithfully fast waveforms. A
“probe” assembly which permits the use of shielded cable and still keeps
the capacitance low is indicated in Fig. 3-18. Typically, the attenuation
introduced through use of the probe assembly is 10 or 20 and the input
capacitance to the probe assembly is about 15 or 8 uuf, respectively.
There are also units commercially available at present which consist of a
probe assembly with an attenuation of 100 followed by an amplifier of
gain 100. The over-all gain is 1, but the probe input capacitance may
be as little as 2 or 3 uuf.

The problem of providing continuously adjustable attenuation is not
so easily solved. In this case the resistors R, and R, must be replaced

Access hole to Oscilloscope
_ tlnsulator [ adjustable capacitor / panel
\ ¢
= 3-[ R,
=3z R,
Cy
—.]—_ =
B Shielded cable
Metal shield

(coaxial)
Fia. 3-18. A cathode-ray oscilloscope probe.

by a potentiometer, and since the required compensating capacitor
depends on the setting of the attenuator, the only practicable thing to
do is to leave the attenuator uncompensated. The bandpass is then a
minimum when the potentiometer is set at its mid-point and is given by

2

(f2)min = RO (3-24)
in which R is the total potentiometer resistance and C the total shunt
capacitance between the potentiometer arm and ground. If, say, C = 20
ppf and (f2)min is to be 10 Me, B = 3 K. The conflict of the necessary
high potentiometer resistance to avoid loading down the signal source
and at the same time the necessity for low potentiometer resistance to
maintain the bandpass suggests using a cathode follower with the potenti-
ometer in the cathode circuit.

3-11. Rise-time Compensation in the Cathode Circuit.” In Fig. 3-19
is shown a pentode stage of amplification in which a resistor R; and
capacitor C; have been included in the cathode circuit. The capacitance
C represents as usual the total capacitance shunting the output signal
lead to ground. The rise time of the amplifier would be ¢, = 2.2R,C if
R: and C) were not present. It will be shown below that if we adjust
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R:C: = R.C, the bandwidth will be multiplied by the factor 1 + g¢,.[2;.
However, at the same time the nominal gain will be divided by the
same factor so that unlike the compensation methods described above
(shunt peaking, etc.) the gain-bandwidth product will remain unaltered.
If the circuit served no other purpose than to extend the bandwidth at the
expense of gain, it would be of little interest, since the same end may be
achieved by the much simpler expedient of reducing the plate-circuit
resistor Rz. However, comparing the present circuit with that of Fig.
1-9 we see that we have here a case of current feedback. We may then
expect to find that this circuit has better stability of gain and more
linearity of operation.

+ T—
Escreen
€; < e
R, Ey,
- ’[B"' b

L

_\
o/
$

Fi1a. 3-19. Schematic circuit of a cathode-compensated stage.

To calculate the effect of the cathode impedance on gain and band-
width, we replace the circuit by its equivalent, as shown in Fig. 3-20a.
Here we have used the result stated in Sec. 1-4 that the impedance
seen looking toward the tube between plate and ground is equal to
rp + (1 4 u)Zy, in which r, is the plate resistance and Z, the impedance
in the cathode circuit. If we adjust RxCr = R.pC, the four elements
between points A and B constitute a compensated attenuator. The
circuit is the same as that shown in Fig. 3-17a¢ and may therefore be
redrawn as in Fig. 3-20b, in which

r _ vel(p + D Re + Ryl y
%=+ T DI T ki (3-25)

; _ 1w + DRy + Ry ;
B = G T DR T s (8-26)

and the total capacitance is
oG o

r . M + 1 _ RL x

Oy G TG IRT R (8-27)
pt+1

if RiCx = RiC.
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The time constant of the circuit is
R.C
1+ gnBy + ——

~ RiC
Rt Br 1+ gl

Tp

7. = R'C' =

(3-28)

if By + RL < rp. Thus the time constant has been divided by and the
bandwidth has been multiplied by the factor 1 + g, R:.

Ry (u+1)
—AMA—

(a)

\

N

&
+

(b)
F1a. 3-20. (a) Equivalent circuit of a cathode-compensated stage. (b) Equivalent
circuit simplified if RxCr = RrC.
The nominal gain of the amplifier (i.e., at a frequency where the
capacitors may be neglected) is easily computed to be

ngL

A=_1+ngk

If the input e; consists of a negative step of amplitude E, the correspond-
ing output is

ngLE
1+ gnR:

If the cathode were connected directly to ground, the output would be

€ = (1 —l/‘n)

e = ngLE(l — e—t/fo)

in which 7, = R1C. In either case the ratio of gain to rise time is the
same and equals ¢../2.2C.
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In order to see some of the useful features of cathode compensation,
let us compare two amplifiers, one with and one without cathode com-
pensation. The first amplifier, without compensation, has a plate resis-
tor Rz. The second amplifier has a plate resistor a7 and a cathode
resistor selected to make

1+ngk=a

The quiescent tube current and voltage are to remain as before, which
means that the plate resistor aR; must be returned to a higher supply
voltage. It may happen that the cathode resistor selected will furnish
the bias required for optimum linearity of tube operation. More gen-
erally, however, some additional external bias will be required. The
capacitance C shunting the plate to ground is to be the same in both cases.
These two amplifiers now have the same gain and the same bandwidth.

One advantage of the compensated amplifier that is readily appar-
ent is its greater stability of nominal gain with respect to variation
of tube parameters. In the case where the nominal gain is given by
—gmaRr/(1 + gnR) the gain will be a less sensitive function of g,
than in the case where the gain is given by —¢g.Rr. In the limiting case
in which g, R; >> 1 the gain for the compensated case is simply —aR./ Ry,
independently of g..

A second advantage of the compensated amplifier is an improvement in
linearity of operation. The nonlinearity of a pentode amplifier results
from the variation of transconductance g,, with tube current. The effec-
tive transconductance of the compensated stage is g./(1 + ¢g.Rr). For
large values of g, R; the effective transconductance becomes quite insensi-
tive to variations in the g.. of the tube. Additionally, since the load
resistor is « times as large in the compensated as in the uncompensated
stage, the current swing in the compensated amplifier will be 1/« times
the current swing in the uncompensated amplifier for the same output
signal. Hence for the same input signal to the two amplifiers the output
of the compensated amplifier will be more linear. For comparable
linearity in the two cases the compensated stage can handle a somewhat
larger input signal and provide a larger output signal.

If the capacitor C) were not present, then because of cathode-follower
action the amplifier would handle a peak-to-peak input signal larger
than the grid base of the tube. However, it must be emphasized that
because of the presence of C, the input signal must be restricted in ampli-
tude to the grid base. Otherwise the operation of the circuit will be
highly nonlinear, as explained in Sec. 4-9.

We have conmdered only the special case R.Cx = RLC An improve-
ment in rise time is possible if some overshoot is tolerable. The general
solution for arbitrary values of p = RiCi/R:C and a =1+ guR; is
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given in Prob. 3-19. We find that if « = 2, then for p = 1.15 the over-
shoot is 2 per cent but the rise time improves by only 10 per cent and is
hardly worthwhile. Thus, there is usually little advantage in using a
value of p other than unity. The optimum value is determined, as with
compensation in the plate circuit, by the method of square-wave testing.
3-12. The Cathode Follower at High Frequencies. Our previous dis-
cussion of cathode followers (Sec. 1-6) neglected the influence of the tube
capacitances. These capacitances will now be taken into account.

+ v ] Cok
_J By
L, =L K
+ i h Ce +T
= E
— 1’11 Cxp ’
NorP -—
o

(b) -

F1a. 3-21. (a) Cathode follower including all capacitances; (b) equivalent circuit for
computing input impedance. Note that P is at ground potential for a-c signals.

An important advantage of the cathode follower over a conventional
triode amplifier is that the capacitive impedance seen looking into the
grid of the cathode follower is appreciably larger than the capacitive
impedance looking into the amplifier. In Fig. 3-21a is shown a cathode
follower in which all capacitances are included. A circuit which is
equivalent for the purpose of computing the current I which must be
delivered by the generator E; is given in Fig. 3-21b. The current
I, = E(juC,p) and I, = E;(1 — A)(juCy), where A = E,/E; is the
amplifier gain. IHence, the input admittance

is given by
Y: = juCop + juCo(l — A4) (3-29)
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In general, Y; contains a resistive as well as a capacitive component.
If the frequency is low enough so that A may be considered a real num-
ber, then the input impedance consists of a capacitance C;, and hence
Y; = jwCi. From Eq. (3-29) the input capacitance is given by

C; (cathode follower) = C,, + Cy(1 — A) (3-30)

In a similar manner the input capacitance of a conventional amplifier
is found to be

C; (amplifier) = Cp + Cop(l — A) (3-31)

A numerical comparison is interesting. Consider a half section of a
12AU7, first as a cathode follower of nominal gain, say, equal to 0.8,
and then as an amplifier of nominal gain, say, equal to —10. The
capacitances are Cyp, = 1.5 puf, Cyr = 1.6 uuf. At a frequency at which
the capacitances do not yet have a marked effect on the gain, we have

C: (cathode follower) = 1.5 + 0.2 X 1.6 = 1.8 uuf
and C; (amplifier) = 1.6 4+ 11 X 1.5 = 18 uuf

This exaggeration of the effect of the grid-plate capacitance in an ampli-
fier is called the Miller effect. The large input capacitance to a triode
amplifier shunts the load resistor of the preceding stage and is the most
important reason for not using triodes ordinarily as pulse amplifiers.

A fairer comparison may be made by comparing the cathode follower
to a conventional amplifier of equivalent gain. In this case

C; (amplifier) = 1.6 + 1.8 X 1.5 = 4.3 uuf

which is still more than twice that for the cathode follower.

The output impedance or, more conveniently, the output admittance
Y, of a cathode follower, taking interelectrode capacitances into account,
is easily computed by a direct method. A signal E, is applied to the
output terminals and the current I, which flows through E, with the grid
grounded is computed. The output admittance is Y, = I,/E,. The
cathode follower showing capacitances is indicated in Fig. 3-2la. For
E; = 0, the equivalent circuit (neglecting Rj) is shown in Fig. 3-22q,
where we note that G and P are at ground potential (for a-c signals).
The capacitance from cathode to ground is C;, and includes the capaci-
tance from cathode to heater if, as usual, the heater is grounded. In
Fig. 3-22b we have set E; = —E, and defined Cr = Cpr + Cot + Cin.
We have
Ea + ﬂEa

P

+Yp+ gn (3-32)

I, =

i

EaYT +
I,
or Yg E—a = YT
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where Yy = jwCrand Yp = 1/r,. Since g. = pY, and assuming u > 1,
we may neglect Y, compared with g,, and consider that the output admit-
tance is unaffected by the capacitance until Y; becomes large enough
to be comparable to g,.

K
+
-~ =
Cgk Clm
PGORN -
= (a)
B
K A +
T~
CT
N —

Fia. 3-22. Equivalent circuits of cathode follower for computing output admittance.
The gain of the cathode follower may be calculated, with the result
A=_ Ut 1J°°Cvk) Ry (3-33)
1+ <“ -+ +ijT) Ry

Tp

Assuming p 4+ 1 =2 4 and ¢.R: > 1,

~ gm + ijUk !
Azt L (3-34)

The term jwCy in the numerator represents the effect of the coupling
from input to output through C,. If the cathode follower is driving a
capacitive load Cy, the expression for A need but be modified by adding
Cr to Cr. The 3-db frequency is approximately the frequency at which
w(Cp + C1) = g Typically, if the total capacitance is say 50 puf
and ¢,, = 3 millimhos as for a half section of a 12AU7, then f, =2 9.5 Mec.

The high input impedance of a cathode follower makes it ideal for
applications where the loading on a signal source must be kept at a mini-
mum. The low output impedance permits it to support a heavy capaci-
tive load. These features, together with its stability and linearity,
account for the many applications which are found for cathode followers.
For example, the cathode follower is almost universally used as the input
tube in oscilloscope amplifiers. It is also used where a signal must be
transmitted through a short section of coaxial cable or shielded wire
with its attendant high shunt capacity.
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A special problem arises when a signal must be transmitted over a very
long coaxial eable. Such a circumstance may arise in a television studio
or a radar station where signals may have to be transmitted over dis-
tances which range from several feet to several thousand feet. The
capacitance per foot of cable such as RG-59/U is 21.0 uuf and the net
capacitance is too large to be handled by either a cathode follower or a
conventional amplifier. The procedure here is to terminate the cable
in its characteristic impedance so that the impedance seen looking into
the sending end of the cable is equal to the nominally resistive character-
istic impedance of the cable. The characteristic impedance of RG-59/U
cable is about 75 ohms. In terminating the cable, we have eliminated
the problem of capacitive loading, but since the characteristic impedance
is low, a high-current tube will be required to develop a substantial
voltage.

The situation here is one which requires a driver for a low impedance
load. We might have imagined that a cathode follower would be most
suitable, but actually the advantage may lie in placing the load in the
plate circuit. Consider that a 6AV5 tube (g, = 5 millimhos) is to be
used to drive the load. If the load is in the plate circuit, the gain is

gnR1z = 5 X 10~ X 75 = 0.375
In the cathode circuit the gain is

ngk _ 0.375
1+ g.Re 1375

= 0.273

Placing the load in the plate circuit, therefore, gives a worthwhile increase
in gain. The usual advantage of the cathode follower with regard to
linearity and gain stability do not apply very well in the present case
since it is no longer true that ¢, R; > 1.

Often it is desirable to terminate the cable at the sending end as well
to absorb reflections which would result if there should happen to be a
slight mismatch at the receiving end or if there should happen to be any
small discontinuities in the cable itself. One such arrangement in which
the cable appears in the plate circuit is shown in Fig. 3-23. The blocking
capacitor is used to isolate the cable and the 75-ohm resistors from the
high plate voltage. The 2-K plate resistor serves to increasc the time
constant of the coupling circuit. If a 125-uf coupling capacitance is used,
then this time constant is 2037.5 X 125 X 1076 =2 0.25 sec. Note that
the impedance at the sending end remains essentially constant even
if the tube is driven from cutoff to clamp. Such operation would be
perfectly acceptable if the signal to be transmitted consisted of a flat-
topped pulse and would actually be required to make the tube yield
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maximum output. Since the effective plate load is only 37.5 ohms, a
current of 119 ma is required for a 4-volt signal, which is the standard
signal level at which many of the television signals are transmitted in a
television studio.

If the cable load is to be placed in the cathode, we may take advantage
of the fact that the output impedance of the tube itself is only 200 ohms.
Hence the termination on the input end of the cable may be increased
to 120 ohms, since the parallel combination of 200 ohms and 120 ohms
gives the required 75 ohms. The load on the cathode follower is now
(120 X 75)/195 = 46 ohms. The gains in the two cases now turn out
to be nearly the same at about 0.19. The fact that the output impedance
of the cathode follower is low enough to be comparable to the character-
istic impedance helps the gain somewhat but is actually an inconvenience-

+ 250 volts

£Cab|e shield

750 750 ‘%

F1a. 3-23. Output amplifier to feed a terminated cable.

The output impedance of the cathode follower is 1/g,, and ¢., is unfortun-
ately not constant. If, for example, the tube should be driven to cutoff,
the termination on the input end becomes 120 ohms instead of the
required 75 ohms. On the other hand, the d-c level at the cathode may
easily be adjusted to be zero, in which case the coupling capacitor may be
removed.

3-13. Low-frequency Compensation.®! Low-frequency compensation
may be attained by using a high resistance in series with the plate load Ry
and bypassing this resistor to ground with a large capacitance, as shown
in Fig. 3-24a. The proper values of R; and C; are obtained from the
following analysis. We shall make the simplifying assumptions that:

1. The pentode is a perfect current source.

2. The resistor R; is infinite. In this case the circuit of Fig. 3-24a
may be replaced by the circuit of Fig. 3-24b. We consider that a nega-
tive step voltage is applied to the grid of the pentode and I, is the con-
stant current delivered by the tube.

The reason for starting the analysis with the above simplifying assump-
tions is that Fig. 3-24b represents a bridge circuit and that we can con-
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clude that if the bridge is balanced the output will exactly reproduce the
input. This fact is made clear by redrawing Fig. 3-24b as indicated in

(a) (b)
Fi1a. 3-24. (a) Circuit of low-frequency compensation; (b) equivalent circuit neglecting
Ra.

= 1
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Fra. 3-25. Circuits which are equivalent to that of Fig. 3-24b if RpCyq = R,C..
Fig. 3-25a. If the bridge is balanced, that is, if
RLCd = Rgoc

then points A and B of Fig. 3-25a are at the same potential and may be
connected together as shown in Fig. 3-25b. Then

R,Ry
B. + R,

since R, >> R;. This equation shows that the output exactly reproduces
the input and hence that perfect compensation has been attained.

eo=IO .,—\_—JIORL
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If the bridge is not exactly balanced, what is the form of the output
for a step input? This query is answered by solving the network of
Fig. 3-24b. 'Thus,

Iy =iL + 1, (3-35)

Ruir + ¢ = Reis + ¢ (3-36)

in which ¢; and g, are, respectively, the charges on Cy and C,. Differ-
entiating Eq. (3-36), we have

diL

dir, | i _ o di
ato -k

22 Ca qt

i
+ 3 (3-37)

Solving Eq. (8-37) for 7,, using Eq. (3-35), and using the initial condition
iy = Rilo/(RL + R,) at { = 0, we have

y =116 - Der+ 1] (3-38)

[ =OdRL 4
LE °=cr ™ =0

I

where Y =

(3-39)

In deriving Eq. (3-38), it is assumed that R, >> pR;. Usually Rr and
the maximum size of C, are deter-

mined from high-frequency consid- Y

erations and R, is determined by 290 y R —

the grid-current characteristics of 15 /p= e

the tube in the succeeding stage. =] p=1

Let us, then, inquire about the out- 10 ]| p=2

put waveform as a function of Cy. 05 ] p=o0

The results are shown in Fig. 3-26. 0 \]\“
For p > 1, 0 02 04 06 08 10 12 14 16

y e (3-40) *

Fia. 3-26. Response of a compensated
This case corresponds tono compen_ stage for various degrees of compen-

sation at all (Cyis very large). TFor Sttion- » = Caltrn/Colis.
times small compared with the time constant R,C. so that « < 1, we have
approximately

y=1-—z (3-41)
Forp =1,
Cs = 9;% and  y=1 (3-42)
L

This case corresponds to perfect compensation.
For p = 2,
Yy =2to(l+ e (3-43)



92 PULSE AND DIGITAL CIRCUITS

This case corresponds to using a value of Cy which is twice that required

for perfect compensation.
Forp=2and ¢ K 1,

z

5 (3-44)

y=1-—
In this case the percentage tilt is one-half the tilt of the uncompensated
case as may be seen by comparing Eq. (3-44) and Eq. (3-41).
For p = 13,
y=2—¢€* (3-45)
For p = 14 and z K 1,
y=1+z« (3-46)

In this case the positive tilt is equal to the negative tilt of the uncompen-
sated amplifier. Note that if “overcompensation’ (an upward tilt) is
. observed in square-wave testing of an amplifier, it is to be corrected by
increasing the size of Cj.

The curves of Fig. 3-26 are unrealistic because of the assumption that
Iy is constant and R4 is assumed infinite. Tor large values of ¢, the
capacitors C. and C; act as open circuits and hence eventually all the
. current must flow through R4 and not R,. Thus, all curves of Fig. 3-26
"must eventually drop to zero. For example, the curve marked p = 14
" would then have a rounded top. It is to be noted that, if a square wave
were to be applied to the amplifier for testing purposes, we would normally
select the half period of the square wave to be 7'= 0.1R,C.,. In this
case the initially flat tops of the input square wave would, after trans-
mission through the amplifier, have the appearance of one of the curves
of Fig. 3-26 for the range + = 0 to x = 0.1.

The effect of the finite value of R;is now to be investigated. If it is
desired that the slope di,/di be zero at ¢ = 0, then it is found from an
exact analysis that C.R, = CqRr. This is the condition for perfect
compensation with Ry — o and it is now seen that this is still a good
criterion if R, is finite. The output voltage is found to be

— —x/n . % ] -
y—-n_l(ne €?) ifns1l (3-47)

where n = R;/R: and where it has been assumed that. R, > Rr + Ra.
If Ry = Ry orn = 1, the result is

y =1+ x)e* (3-48)
For x < 1, Eq. (3-48) reduces to

y=A )l -s+ D=1 -2 (3-49)



LINEAR PULSE AMPLIFIERS 93

It is now seen that the tilt is parabolic and not linear. The amount
of tilt to be expected is given by the following example. If the uncom-
pensated tilt is, say, 10 per cent so that x = 0.1, then Eq. (3-49) gives a
compensated tilt of only (0.1)2/2 X 100 per cent = 0.5 per cent; and
this is for R4 only equal to Ry,

If n # 1 for small z, Eq. (3-47) reduces to

From this result it is seen that the per cent tilt is multiplied by

1 Rg

n - Ry

Thus, if Ry = 10R;z, the tilt is 1{g of the above value, or 0.05 per cent.
Note that if xz2/2n is not much less than 1, the tilt must be calculated
from Eq. (3-47) instead of Eq. (3-50).

The above theory indicates that the proper procedure for low-frequency
compensation is to choose Ry as large as possible and then to choose
R:.Cs = R,C.. The upper limit on R;is determined by the fact that the
quiescent tube current passes through R, and that the power supply
must be able to furnish this voltage drop.

It may not be convenient to satisfy Br.Cs = R,C, because the required
value of Cy may be too large. For example, if C, = 0.1 uf and B, = 1
Meg and Rz = 1 K, then Cy = 100 uf. Even if the size of Cy turns
out not to be a problem, the variation of capacitance with age may
cause difficulty. Oceasionally one will find a compensated stage in which
R, 1s made adjustable to allow for a drift in Cq. More usually no such
correction is made since the low-frequency compensation reduces tilt
considerably even if the condition R1Cy = R,CL is not exactly satisfied.
Also, as noted earlier, where good low-frequency response is of prime
importance, it is usually most practicable to use direct coupling instead
of capacitive coupling.

We have not considered the effect of the finite plate resistance of the
tube, since ordinarily the finite size of R4 has a larger effect on the tilt
than does r,.

3-14. Effect of a Cathode Bypass Capacitor on Low-frequency Re-
sponse. If a cathode resistor Rj is used for self-bias in an amplifier and
if it is desired to avoid the degeneration and hence the loss of gain due to
Ry, then we might attempt to bypass this resistor with a very large capaci-
tor C. The circuit is indicated in Fig. 3-27. It will be shown that if the
input is a square wave, the output is a square wave with a tilt simiiar
to that due to the coupling capacitor between stages.
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Consider that the applied voltage is a d-c¢ step of amplitude E. At
¢t = 0, the capacitor acts as a short circuit and there is no degeneration.
Hence, the plate current is ¢ = gn.E
and this current also passes through
the capacitor Ci. If we assume that
to a first approximation the current
remains constant, then the voltage
across C, (which is the cathode voltage
er) increases linearly with time. Thus
€ = ’Lt/Ck = ngt/Ck. The gI‘id-tO—
, cathode voltage is ¢, = E — ¢.Et/C),

. and the next approximation to the
E ) plate current is ¢ = gneq, or the out-

- f"' put e, = —iRyis

R, e o g
i o= —gmRLE &) 33
1 - s k

Fie. 3-27. Amplifier with bypassed This is an interesting result, show-
cathode resistor. ing that the tilt depends only upon
gm and Cy and is independent of R, and Rz, provided that the tilt is small
so that the above approximations are valid.

If we wish to reproduce a 50-cps square wave with a tilt of less than
10 per cent, then

\l

ng

< 0.1 or Cr > 10g..T
Cr

and if g = 5 millimhos and T' = 0.01 sec is the time for a half cycle, then
Cr > 10(5 X 107%)10-2 farad = 500 pf

For a 1 per cent droop, C would have to be at least 5,000 uf. Such large
values of capacitance are impractical and it must be concluded that if
accurate reproduction of the flat top of a square wave of low frequency is
desired the cathode bias resistor must be unbypassed. The flatness will
then be obtained at the sacrifice of gain because the output magnitude
will be constant at the value g,Rp/(1 4 g.R:). If the loss in gain
cannot be tolerated, external bias must be used. On the other hand, if
a cathode bias resistor is used, the stage may be cathode-compensated with
a small capacitor (see Sec. 3-11) so that we make up in rise time what is
lost in gain.

The above discussion gives only the low-frequency response. The
output of course has a finite rise time which depends upon the total
capacitance C shunting the load Rj.
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3-156. Effect of Screen Bypass on Low-frequency Response. The
screen grid circuit consists of a voltage-dropping resistor R, and a capaci-
tor C, from screen to ground, as in Fig. 3-28a. If a positive step voltage
is applied to the grid, the plate current increases and hence so does the
screen current. Att¢ = 0, the screen voltage E, is at its quiescent voltage.
As time passes, the capacitor must discharge to a steady-state voltage
equal to the plate-supply voltage minus the new value of screen current

(a)

(d)
F1a. 3-28. (a) Use of screen-dropping resistor and bypass capacitor to supply screen
voltage. (b) Use of cathode follower to supply screen voltage.

times R,. Hence, there is a droop in sereen voltage with time and a
corresponding tilt in output plate voltage. The wave shape is similar
to that encountered with an inadequately bypassed cathode resistor.

The method of calculating the size of the screen capacitor to keep the
tilt below a certain value is best illustrated by a numerical case. Con-
sider a 6AG7 with a quiescent current of 20 ma and E. = 150 volts.
Because of a step input to the grid, the plate current increases to 30 ma.
What is the minimum value of C, if the tilt is to be less than 10 percent
for a 50-cps square wave?



96 PULSE AND DIGITAL CIRCUITS

The screen current for a 6AG7 is approximately one-fourth the plate
current. Hence, the screen quiescent current is 5 ma and the screen
current under signal conditions is 7.5 ma. The difference, or 2.5 ma,
must come from the screen capacitor, and this current will discharge
the capacitor. If we assume that the plate current is approximately
proportional to the screen voltage, then we can allow only 10 per cent
drop in E,, or 15 volts. Thus
AT
- C

where 7T is the time for half a cycle = 0.01 sec. Thus

(AI)T 2.5 X 103
AE, 15

This is a reasonable value and hence screen grids are usually bypassed.

When it is desired to decrease even the small tilt which might be
introduced by the screen circuit and when an appropriate low impedance
screen power supply is not available, the arrangement of Fig. 3-28b is
often used. Here the cathode follower T, acts as a simple voltage regu-
lator and supplies screen voltage at an impedance level of the order of
a few hundred ohms. If the screen current changes by 2.5 ma as in the
above illustration and if the cathode follower impedance is, say, 400 chms,
then the change in screen voltage is 2.5 X 10—% X 400 = 1 volt only.
The screen voltage is approximately equal to the voltage of the junction
point of the resistor R; and R..

3-16. Flat-top Response of Cascaded Stages.® If, upon application
of a d-c step, a single resistance-capacitance coupling circuit produces a
tilt of P; per cent and if a second circuit produces a tilt of P, per cent, the
effect of cascading these circuits is to produce a tilt of Py + P per cent.
This result applies only if the individual tilts and combined tilt are small
enough so that in each case the voltage falls approximately linearly with
time.

For a d-c step input of amplitude E, the output of the first circuit
is Ee¥n =~ E(1 — t{/r1), in which 7, is the time constant. If this signal
is applied to the second circuit of time constant 7, = R:C, then, neglect-
ing the possible gain of the tube, the result may be computed from the
equation

AE,

(8-52)

O:

X 1072 = 1.7 uf

) _q_ = /i — i
R27» + 02 B (1 T1)
Differentiating this equation with respect to ¢, remembering that e, = R,
yields

dt ;;_ T1
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The solution for the output voltage e, subject to e, = E at £ = 0 is
to=—E+E <1 + 9) i
T1 T
~F (1 L i) (3-53)

Since ¢/71 is the tilt due to the first network and ¢/7, is the tilt due to the
second network, Eq. (3-53) verifies the rule stated above: the resultant
tilt caused by two RC circuits in cascade is the sum of the tilts due to each
network. Since the output again has a linear tilt, we may extend the
result to an arbitrary number of stages, provided only that the net tilt
remains small enough to be represented by a linear fall.

It was noted earlier that, within a single amplifier stage, tilt may be
introduced by the coupling circuit, the screen circuit, and the cathode
circuit. Since each of these produces its tilt by a mechanism which is
independent of the others, the net tilt produced by an individual stage
may be computed again by simply adding the individual tilts. And the
over-all tilt of an amplifier consisting of a number of stages is the sum
of the tilts of each stage.

For an amplifier consisting of n identical stages in which the low-
frequency response is limited only by the finite time constant of the d-¢

blocking capacitor C, and grid-leak resistor R,, the normalized response
is given by

€ _ 1 art n—1_—z
EA~ (n—1lda! (@) (3-54)
in which E is the input step amplitude, A is the nominal over-all amplifier
gain, and ¢ = {/R,C,.
For small values of z, we may write e* = 1 — « in Eq. (3-54), which
then reduces to

1;—2=1—nx=1—7{:—t00 (3-55)
This equation again verifies the fact that the tilt of n identical stages is
n times the tilt of a single stage.

A pulse of width ¢, may be considered to be the result of the super-
position of a positive step which occurs at ¢ = 0 and a negative step at
t = t,., Suppose that a pulse of width ¢, is applied to a cascade of a
number of amplifiers with identical coupling-circuit time constants. The
response at the end of the pulse (for ¢ S ¢,) may be obtained from Eq.
(3-54) by forming the difference ey = e.(f) — e.(t — t,). For very small
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values of ¢, (more specifically if {, < R,C.), we may write approximately

={ d_e.ﬂ’ = _t” (102 (_iﬁ’
=bg TRCdx Tz
where z, = {,/R,C..

Using Eq. (3-54), we have
= = e o (a7 e) ’ (3-56)

The response at the end of the pulse is shown in Fig. 3-29 where the
quantity y/z, has been plotted as a function of z for the casesn = 1, 3,

1
=g
0 / “ﬁ’f 2 3" 4 5

/41/ x

s

1"/
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FI>G 3-29. Response of identical cascaded RC coupled stages to an input pulse for
1>t
and 5. Theoretically there should be n — 1 crossings of the zero axis,
but because the attenuation is so great not all of these are clearly visible
in Fig. 3-29. The pulse itself is not indicated in Fig. 3-29, since it would
be very tall and narrow if drawn to scale. For example, if the tilt of a
single stage is 10 per cent, then z, = t,/R,C, = 0.1. The quantity y,
during the time of the pulse, is nominally 1; hence y/z, = 10. Thus
on the scale of Fig. 3-29 the pulse has an amplitude of 10 units and a
width from z = —0.1 to z = 0, independently of the value of n. The
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practical importance of these results is that the response to the pulse
persists for a very long time relative to the pulse duration itself.

3-17. The Totem-pole Amplifier.!® A description of amplifier stages
suitable for driving terminated lengths of coaxial cables is given in Sec.
3-12. We noted there that the effective load into which the vacuum
tube must work is quite low. As a consequence, it will normally be
necessary to operate the tube over a large current swing in order to
develop a reasonable voltage across the cable. Under these circum-
stances the linearity of operation of the amplifier stage must necessarily
suffer. One method of reducing distortion is to replace the single tube
in the amplifier by two tubes operating in push-pull. It will be recalled

Coaxial cable
"C R,=750.
+ N = -
.
Load, R,=37.50 %75:1 J- 7511%

—_ 1 I
L

-E,,=
F1a. 3-30. A totem-pole driver for a terminated coaxial cable.

that in push-pull operation the even-harmonic distortion currents pro-
duced by the two tubes are in opposite directions. An exact cancellation
of these even-harmonic components requires that the two tubes have
identical characteristics and be driven with signals which are identical
except for opposite polarity.

In push-pull operation, the output signal will be available as a sym-
metrical signal which appears between two terminals, neither one of which
is grounded. These terminals might be the two plates of the amplifier
tubes. The coaxial cable clearly requires a single-ended signal, that is, a
signal which appears between terminals, one of which is ground. It is
possible to change a symmetrical signal to a single-ended signal through
the use of a transformer but the ability of a transformer to transmit a
signal without frequency distortion is quite limited.

An amplifier that approximates push-pull operation and provides a
single-ended signal without a transformer is shown in Fig. 3-30. The
amplifier is indicated driving a 75-ohm coaxial cable terminated at both
ends. The circuit enjoys a wide popularity in color television systems
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where linearity of operation is extremely important. It has acquired the
name fotem-pole amplifier. Qualitatively, the operation of the circuit is as
follows. In the absence of an input signal e;, the current I through both
tubes is the same and the load current is zero. Suppose now that the
input signal makes a positive excursion. Then the current in the tube T',
will increase by an amount AI. A voltage drop —r AI will develop
between the grid and cathode of tube T, and hence the current in the
upper tube will decrease by an amount (AI)’. The difference current
Al + (AI)' will flow through the load. If ris selected correctly, we may
make (AI)’ = AI, and under these circumstances the maximum advan-
tage, with respect to freedom from distortion, will be obtained. It
should be noted, however, that the signals applied to the tubes are not
truly push-pull, because the voltage across r contains the harmonics
generated in tube T',.

A straightforward analysis of the totem-pole amplifier may be made by
replacing the tubes in Fig. 3-30 by their linear equivalent representations
of Sec. 1-1. The result is a two-mesh circuit which may be solved for the
signal currents in the two tubes by applying Kirchhoff’s laws to each
mesh. The cathode resistor r across which the bias for tube T, is devel-
oped appears as a parameter in this solution. It is then found that the
signal currents through the two tubes can be made equal to one another if
the resistor r is selected according to the relationship

r=— 4+ = (3-57)

In a typical amplifier the tube selected might be the 6BX7 double triode.
This tube may be operated at a quiescent current of the order of 50 ma
and has g, = 7.6 millimhos, p = 10, and r, = 1,300 ohms. For
R. = 37.5 ohms, we compute r = 132 4 7.5 =2 140 ohms.

If we proceed as indicated above, we find that, if r is selected as in Eq.
(3-57), the gain of the stage with the load connected is then given by

2 RL
A=-_F :
v F1Rs 1,2 (3.58)
If R, < rp and p > 1, then
A= —2.Ry (3-59)

For the 6BX7 tube we have |4| = 0.54.
It is, of course, possible that the value of r required by Eq. (3-57) is
not appropriate to provide the correct bias for the tube section 7. In
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this case provision must be made for a separate adjustment of bias as, for
example, in the circuit of IMig. 3-31. Another form of the totem-pole
amplifier is given in Prob. 3-32.

3-18. Cathode Interface Resistance.!! In
many vacuum tubes there develops with use a
cathode interface layer between the base metal of
the cathode and the active emitting surface of
the cathode, as shown in Fig. 3-32. The inter-
face compound is a semiconductor compound
formed as a result of the chemical interaction
between the oxide-emitting material and the
base metal or with some reducing constituent of
the base metal. The resistance of the interface
layer may lie in the range from several ohms to
several hundred ohms and may therefore have
an appreciable influence on tube operation.
Additionally the emitting surface and the -E,,
cathode base metal serve as the electrodes of & g . 331 A form of the
capacitor, the cathode interface layer acting as  totem-pole amplifier which
a leaky dielectric between these electrodes. permits adjustment of the
The over-all effect of the interface layer is to géafhg fvﬂﬁelﬁ??ende"ﬂy
introduce into the cathode a parallel resistance-
capacitance combination whose time constant, it is found experimentally,
normally lies in the approximate range 0.2 to 2.0 usec.

In video amplifiers the effect of cathode interface resistance may well
be serious. For a signal whose period is very large in comparison

emitting
coating

-<—|nterface
layer

AN o

Fi1a. 3-32. Cross section of cathode, showing interface layer.

to the interface time constant, the principal effect is a loss in gain since
the effective transconductance of the tube will be reduced from g, to
gn/(1 + gnR:), R: being the interface resistance. An abrupt discon-
tinuity applied to the tube grid will appear at the output similarly reduced



102 PULSE AND DIGITAL CIRCUITS

in amplitude but accompanied by an overshoot at the leading edge of the
pulse.

Interface resistance is present to some extent in all tubes with oxide-
coated cathodes but is usually particularly pronounced in tubes whose
cathode base material contains a large amount of silicon. Interface
resistance is inversely proportional to cathode area and is therefore more
serious in tubes with small cathode areas. Since, also, the effect of
interface resistance is to reduce the effective transconductance by the
factor 1 + g.R: high g. tubes are particularly sensitive to interface
effects. Interface resistance increases with the total number of hours
that the cathode has been heated and the end of the useful life of a tube
may be the result of interface resistance rather than loss in cathode
emission.

‘We shall have occasion to return to this matter of interface resistance
in connection with the binary circuit (Sec. 5-12). At that point we shall
see the motivation which has suggested the term sleeping sickness to
characterize the effects of interface resistance.

A second disease which is often characteristic of video amplifier tubes
has the popular designation slump. The term is applied to a tube which
behaves as though there were present in the cathode a parallel resistance-
capacitance combination with a time constant in the range of several
seconds. The response of such a tube to an input negative step is an
output positive step which gradually slumps to a lower voltage level.
The origin of slump is not well understood. The effect is often
a source of difficulty in the design of d-c amplifiers for cathode-ray
oscilloscopes.
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CHAPTER 4

NONLINEAR WAVE SHAPING

In Chaps. 2 and 3 we considered the response, to nonsinusoidal input
waveforms, of circuits containing linear elements. Many interesting

i

(a)

(b)

4
/

[

‘ (c)

F1a. 4-1. Diode volt-ampere
characteristics. (a) Ideal,
(b) thermionic, and (c) crys-
tal.

range 100 to 1,000 ohms.

500 ohms.

and useful wave-shaping operations can be
performed if nonlinear elements are added to
the circuits. In the present chapter we shall
first discuss briefly the nonlinear character-
istics of thermionic diodes, crystal diodes, and
triodes (with some emphasis on the positive
grid region). Some of the most important
wave-shaping cireuits using these elements
will then be considered.

4-1, Diode Characteristics.! Anidealdiode
is defined as a two-terminal circuit element
having the volt-ampere characteristic shown
in Fig. 4-1a. When the diode conducts, the
ratio of the applied voltage to the current e/7,
called the forward resistance Ry, is zero. For
negative voltages, the ratio /7, called the back
resistance Rp, is infinite. The ideal diode has
characteristics which are independent of the
temperature. Additionally, in an ideal diode,
the capacitance shunting the diode is assumed
negligible. Thermionic-diode and crystal-
diode volt-ampere characteristics are sketched,
respectively, in Fig. 4-1b and ¢. These real
diodes differ from the ideal diode in the follow-
ing respects:

1. The forward resistance is not zero. For
thermionic diodes, R, lies in the approximate

For crystal diodes, R, lies in the range 1 to

For a thermionic diode, e is the plate voltage e, and ¢ is the plate
current 4. The forward resistance R; = /7 is called the static plate

104
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resistance. Sometimes it is more convenient to use the dynamic plate
resistance r,, which is defined by de,/di.

2. The forward resistance is not constant but depends upon the voltage
across the diode.

3. The back resistance is not infinite. For tubes, R, may attain hun-
dreds or even thousands of megohms. Tor germanium crystals, values
of R of the order 100 K to 1 Meg are more usual, provided the operating
temperature remains below about 75°C. Tor higher temperatures, the
value of I drops rapidly and crystals can not be used (see Sec. 18-4). It
should also be noted that for some types of erystal diodes the peak inverse
voltage is much smaller than that of most vacuum tubes.

4. The break in the characteristic (the division between the low and
high resistance regions) is not sharp and may not occur at zero voltage.
For a thermionic diode, the current is not zero at zero applied voltage
because of the finite velocity of emission of electrons from the cathode.
When the distribution of velocities is taken into account, the result, for
small currents, is that the plate current is related to the plate voltage
b 2

Y iy = Ie/Er 4-1)
in which I is the current at ¢, = 0 and Er = T/11,600, T being the
absolute temperature of the cathode. The dynamic plate resistance is
given by )

1 = de i e/Er

Tp N d_el'z N ET
or rp = EI—T e o/Er (4-2)

Since there is no longer an abrupt change in diode resistance, let us
arbitrarily define the uncertainty in the break as that region of voltage
Ae, over which r, changes by some large factor, say 1,000. Thus,
e*e’Er = 10% A reasonable value of T for an oxide-coated cathode is
T = 1,000°K and corresponding to this value we have, since In 10 = 2.30,

1,000 _
Ae, = m X 2.30 X 3 = 0.6 volt

Thus, the uncertainty in voltage over which the break in a thermionic
diode occurs is of the order of +0.3 volt. The location of the break is
uncertain but lies between —0.25 and —0.75 volt for most diodes.

The uncertainty of the break of a crystal diode is also found to be
of the order of magnitude of 4+0.1 to 4-0.3 volt.

5. The volt-ampere characteristic is a function of temperature. For
a thermionic diode there is a perceptible shift in the characteristic with
filament temperature. Experiment reveals the shift to be about 0.1 volt
for a 10 per cent change in heater voltage. The higher the filament voltage,
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the more the curve shifts to the left, because the increase in the initial
velocities of the electrons with increase in temperature results in higher
currents at a given voltage. The shift with tube replacement or tube
aging is found in practice to be of the order of +0.25 volt.

The volt-ampere characteristic of a crystal diode is a function of the
operating temperature.

6. The shunt capacitance across a thermionic diode is of the order
of magnitude of 5 uuf, while the capacitance of a point-contact crystal
rectifier is about 1 puuf. To these values must be added the wiring
capacitances introduced when the diodes are inserted in a circuit.

7. If a square wave is impressed upon either a point contact or a
p-n junction germanium diode, it is found that the resistance does not
change instantaneously from its forward value to its back value, or
vice versa.® A delay, called the recovery time, is required for this change
to take place. This recovery time varies with the diode and with the
circuit in which it is used. The delay ranges from millimicroseconds
to tens of microseconds. The forward recovery time is usually not of
great importance, because the forward resistance reaches a low value
almost instantly even though the time to reach the final forward resistance
might be relatively long. The back recovery time is usually more
important because the back resistance builds up gradually, approaching
its final value exponentially with time.

4-2. Triode Characteristics. Typical triodes used in pulse applica-
tions, as well as in other types of circuits, are the 12AU7 or its equivalent
the 5963 or the 5814, the 12AT7, the 12AX7, and the 5965. These are
miniature tubes and each contains two triode sections in one envelope.
The 6SN7 is a nonminiaturized type similar to the 12AU7 and was the
most commonly used tube in the pulse type equipment used in World
War II. The 5963 and 5965 were designed for use in high-speed digital
computers. The volt-ampere characteristics of the above tubes are given
in the Appendix or in this section. The curves for the 5965 are given in
Figs. 4-2 and 4-3. In these latter characteristics, curves for positive
grid voltages have been included because, as we shall see, the grid of a
tube is often driven positive in pulse circuits. If the region near small
plate voltages is ignored, then the positive grid curves are very similar
in shape and spacing to those for negative grid values. Hence if the
grid signal is supplied from a source of low impedance, so that the loading
effect on the source due to the flow of grid current may be ignored, the
tube will continue to operate linearly even if the grid signal makes an
excursion into the positive grid region. This linearity will continue so
long as the grid current is a small fraction of the total cathode current.

In pulse applications, large voltage swings are often encountered and
the small signal equivalent circuit of Sec. 1-1 is meaningless because the
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tube parameters g, 7,, and ¢,, are not constant.

109

The variation of these

parameters with plate current is given in Fig. 4-4.
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F1a. 4-4. Average tube parameters of 5965 tube.

The grid volt-ampere characteristics of the 5965 tube are given in

Fig. 4-5. At a given plate voltage the grid circuit behaves as a diode.

In

analogy with the definition of the dynamic plate resistance, the dynamic

grid resistance r, is given by de./di.,
where e, and 7, are the instanta-
neous values of grid voltage and cur-
rent, respectively. The static grid
resistance r, is defined as the ratio
e./i.. From Fig. 4-5 it appears
that the difference in values be-
tween the static and dynamic resist-
ances is not great, except possibly
for small grid voltages. Further-
more, the value of the grid resist-
ance 7, is not a sensitive function of
plate voltage. From Fig. 4-5 we
find that for the 5965 tube, 250
ohms is a reasonable value for r..
For other tubes, the grid resistance

may be much more variable than indicated above.
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Fia. 4-5. Average volt-ampere grid char-
acteristics of 5965 tube.

For example, for a

12AU7 the static r. has values ranging from about 500 to 1,500 ohms,
depending upon the values of grid and plate voltages (see the grid current

curves of Fig. A-8).
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The grid current at zero grid-to-cathode voltage, and even for slightly
negative grid voltages, is often large enough to have an appreciable
effect on the operation of a circuit.  We estimate from Fig. 4-3 that the
grid current is 400 pa at e; = 0, 10 pa for e. = —0.5 volt, and 0.25 pa at
e, = —1 volt. Consider then that a grid-leak resistor is connected
from grid to cathode of the 5965. If this grid-leak resistor is, say,
R, = 1/0.25 Meg = 4 Meg, then a negative bias of 1 volt will be developed.
At a plate voltage of 100 volts, the plate current corresponding to the
1-volt bias is seen from Fig. 4-2 to be 7 ma. If we were to neglect the
effect of the grid current and assume that e, = 0, we would expect a
current of 15 ma, or more than twice the value actually obtained. Even
if the grid leak were reduced to 50 K, the bias due to grid current would
be —0.5 volt, since (5 X 104)(10 X 10—%) = 0.5, and the plate current

Ey would be about 11 ma, which is still appreciably

less than the zero grid-bias value of 15 ma.

I If, as indicated in Fig. 4-6, the grid leak is tied
to the Ey, supply voltage instead of to the cathode,
then the grid-to-cathode voltage will approach
% nominal zero for values of R, which are large

R

compared with r,. For example, if B, = 1 Meg
and Ey = 300 volts, then the grid current will be
approximately 300 pa. From Fig. 4-3, we find
that the grid voltage corresponding to this grid

C, /—7— current is about —0.1 volt. (If we assume that
oo the value of r, = 250 ohms is valid at low grid
-

™~

Re

€ voltages, then the calculated value of e, is

0.3 X 0.25 = 40.075 volt.) In many pulse cir-

' cuits it is common to use this connection of the

. . grid leak to a high positive voltage. Under such

fhlg ' ;}?{ ﬁ;;ﬁm}%j ‘Z;;}i circumstances where the grid is held at the cathode

nected to the Eu sup- voltage because of the flow of grid current, we

ply. shall refer to the grid as being clamped to the
cathode. Alternatively, the tube is said to be in clamp.

If the grid voltage is made a few volts negative, it is found that the
direction of the grid current reverses.® This negative current is due
to the positive ions which are attracted to the grid. Since the positive-
ion current comes from the residual gas in the “vacuum” tube, it is very
variable from tube to tube, and is usually a small fraction of a micro-
ampere. Negative grid current can also result from thermionic or photo-
electric emission from the grid.

The characteristics given in Figs. 4-2 to 4-5 are average values as
supplied by the manufacturer, and the curves for a specific tube may
differ appreciably from these published values. The Joint Army-Navy

°
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Specification, JAN-1A, for Electron Tubes gives the limits of variability
which may be expected in a given tube type.

The volt-ampere characteristics vary with filament temperature and
with aging of the tube. As for a diode, so for a multielement tube, the
temperature effect is found experimentally to be equivalent to a 0.1-volt
shift in cathode voltage (relative to the other electrodes) for each 10 per
cent change in filament voltage.

4-3. Clipping or Limiting Circuits. Clipping circuits are used when it
is desired to select for transmission that part of an arbitrary waveform
which lies above or below some particular reference voltage level. Clip-
ping circuits are also referred to as voltage selectors or amplitude selectors.
Some of the more commonly employed clipping circuits are now to be
described.

F1g. 4-7. Diode clippers (Er may be either positive or negative).

Diode Clippers. Circuits employing diodes are shown in Fig. 4-7a to d.
Assume initially that the diodes are perfect, with zero forward resistance.
In Fig. 4-7a and d the output follows the input when ¢; < Ez,and e, = Ep
when e; > Ep. These circuits are called peak clippers. In Fig. 4-7b
and ¢, e, = ¢; when e; > Ep, and ¢, = Ep whene¢; < Ep. These circuits
are called base clippers. The circuits in Fig. 4-7 are, of course, essentially
the same and differ only in the polarity with which the diode is inserted
and in whether the voltage is taken across the diode or the resistor.

Because of the characteristics of real diodes described in Sec. 4-1, the
discontinuities in slope in the waveforms of Fig. 4-7 are found, on close
examination, not to be sharp, and this lack of sharpness is particularly
apparent if the amplitude of the input waveform is comparable with the
range over which the plate characteristic has a marked curvature (about
0.6 volt). For any particular tube, the output voltage can be found
from the intersection with the plate characteristic® of the load line corre-
sponding to the input e; and the resistor E.
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If the input voltage is large enough so that the lack of sharpness
of the break in the characteristic can be ignored, but if the forward resist-
ance R;is not negligible compared with the resistance R, then there will
again be a departure from the ideal waveforms of Fig. 4-7. Assuming
that R; is a constant, the output can be calculated from Kirchhoff’s
voltage law.

We have assumed that the diodes do not conduct in the reverse direc-
tion. This is true for thermionic diodes; but if crystals are used, the
finite value of back resistance must be taken into consideration. For
good limiting, the resistance R must be chosen very large compared with
R, and very small compared with R;. These two requirements may
sometimes be incompatible. Hence, a figure of merit F of a crystal for
such applications is F = Ry/R;. The larger the value of F, the better
will be the crystal in a clipper circuit.

In the clipper circuits in which the diode appears as a shunt element,
the input and output are separated by a large impedance during the time
when the signal is transmitted. In the series circuits the connection is
direct. For this reason the series circuits are sometimes preferred to
the shunt circuits. The series circuits, on the other hand, have the dis-
advantage that at high frequencies or for abrupt waveforms the capaci-
tance across the diode may provide a coupling path when the diode is
cut off. Another inconvenience of the series circuit arises when the
heater power for the diode is furnished by a grounded filament trans-
former. In this case the heater-cathode insulation must withstand the
full signal voltage, which may attain values of several hundred volts.
On the other hand, in the series circuits the impedance of the reference
voltage Er need not be kept low, since R is usually large, and Er may
in this case be derived from a tap on a bleeder.

When a diode clipper is used with fast waveforms, the capacitances
associated with the circuit may not be neglected.

ExampLE. The clipper of Fig. 4-8a is to be used with the input waveform indicated.
This input may represent a pulse or half a cycle of a square wave. The capacitance C,
is the total effective capacitance shunting the diode (for which 5 puf is a reasonable
value), while C: is the total capacitance shunting the output load resistor R (3> Ry).
The value C; = 20 puf is nominally the input capacitance of an oscilloscope probe
which we might be using. Find the output waveform.

Solution. If the diode were perfect and the capacitances were neglected, the output
waveform would be as shown in Fig. 4-8b.

Assume that a steady-state condition has been reached in which the input is
—5 volts and the output is zero volts. Now let the input rise abruptly by 10 volts.
If the source impedance is negligible, an impulsive current results and the initial
output voltage rise is determined entirely by the capacitors. Since C, = 4C}, only
one-fifth of the input rise will appear across Cs; hence the output will jump abruptly
by 2 volts. The voltage across the diode is now 3 volts and in the direction to make
the diode conduct. The output e, will rise to its final value of 5 volts with a time



NONLINEAR WAVE SHAPING 113

constant 71 = (C: + C2)Ry, where Ry is the forward resistance of the diode. Simi-
larly, when the input voltage drops by 10 volts, the output voltage will drop abruptly
by 2 volts. The cathode of the diode is now at +3 volts and the plate is at —5 volts.
The diode will not conduct, and the decay of the output signal to zero will take place
with a time constant 72 = (Ci + C2)R. The resultant waveform is shown in Fig.
4-8c. Typically B, 22200 ohms, so that r; = 0.005 uscc, which may well be small
enough to be negligible. On the other hand, r, = 25 usec, and if, say, {, = 50 usec,
the slow decay on the trailing edge of the signal will be very apparent.

1 C1= Suput
It

ol

(a) -
+5v
e—t,—
Ov-~--
(b)
£7i=(Cl+Cz)R,
5v--
2y —— ————3v
OV —m—-m T2=(CI+CZ)R

(c)
Fic. 4-8. Example.

Triode Clippers. A triode will limit a signal when the grid is driven
beyond cutoff. The nominally infinite input impedance of a triode cir-
cuit as in Fig. 4-9a and the fact that the tube will also provide gain are
often advantages of this circuit over that of the diode limiter. A typical
dynamic transfer characteristic for a triode, the input voltage, and the
load resistor current are shown in Fig. 4-9b. The sharpness of the break
of the transfer characteristic in a triode is a function of the plate voltage.
(High u triodes give a sharper break than low u triodes.) The break is
less sharp as the plate voltage increases, and, except for very low plate
voltages, is less sharp than in a diode. The break in a diode is appreci-
ably more stable with respect to tube replacements than is the case with
triodes.

If a resistor R is placed in series with the grid in Fig. 4-9¢ and if R
is large compared with the grid resistance 7., then limiting will occur
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whenever the applied voltage is such as to cause the flow of grid current.
As discussed in Sec. 4-2, the break occurs within a few tenths of a volt
of zero. Under these conditions we have said that the grid is clamped
to the cathode and the corresponding plate current (I in Fig. 4-9) is the
clamped current. Again it must be emphasized that the break is not
due to any discontinuity in the transfer characteristic of the tube. Itis

+
€;
— :l*
Ec.
Response in
absence of :
A 4 Response in presence
grid resistor [} of grid resistor
AT T e R e N
e, ¢
)
I
|
<——Eu—-——>
, (b)

Fia. 4-9. A triode limiter.

due rather to the fact that, when the grid starts to draw current, the volt-
age at the grid is no longer the signal e;, The sharpness of the break is
comparable to that in a diode.

The circuit may be considered as being a combination of diode clipper
together with a triode amplifier. If the series grid resistor is large
enough (=2 1 Meg), the sharpness of clipping at the occurrence of grid
current may well be better than the sharpness obtained at cutoff. Fur-
ther advantages of grid-current limiting over cutoff limiting are the
following. Assume that the cathode temperature of the triode has
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increased. If the grid-to-cathode voltage remained the same, the plate
current would increase. However, if the grid is drawing current, this
current will simultaneously increase and, because of the resistance R,
the grid-to-cathode voltage decreases. As a consequence the plate cur-
rent remains more nearly constant. The resultant stability of the break
associated with grid current permits this break to be used in precision
circuits. IFurthermore, when the tube is conducting, the output imped-
ance is the parallel combination of r, and R., while in the case of cutoff
clipping the output impedance is Rz. The effect of capacitive loading
on fast waveforms is therefore less for grid-current limiting than for
cutoff limiting. On the other hand, the input capacitance is greater
when the tube conducts and amplifies than when it is cut off and the gain
is zero. Hence, the capacitive input impedance of a grid-current limiter
will produce more distortion in a fast signal than will a cutoff limiter.

There is a third type of limiting possible with a triode. Consider the
circuit of Fig. 4-9a, but without the series grid resistor which is necessary
for grid-current limiting. The largest possible plate current is Ey/R;.
If we apply to the grid, from a low impedance source, a signal large
enough to make the plate current nearly equal to Ey/Rz, limiting will
take place. For example, if the tube is a type 5965 with Ej = 300 and
R; = 30 K, the current will be about 10 ma and the break will be at +2
volts at the grid instead of zero (see Fig. 4-3). Such clipping is some-
times referred to as plale-current saturaiion, but it is not to be confused
with any effect associated with maximum cathode emission. This type
of limiting is also referred to as botfoming, since it results when the plate
voltage has gone as low as it can and yet leave some tube voltage to
supply the tube current. This type of limiting is not particularly stable,
but it is still useful where precision is not required.

A cathode follower may also be used as limiter. The circuit has a low
output impedance for the selected waveform. The input impedance is
very high and essentially capacitive as long as grid current is not drawn.
If the input swing is large enough to drive the grid-to-cathode voltage
to zero or to a positive value, then the input impedance is essentially
resistive and equal to r.,/(1 — A), where A is the gain of the cathode
follower. For example, for 7, = 1 K and A = 0.95, the input resistance
is 20 K.

Pentode Clippers. Pentodes may be used as grid-current, cutoff, or
saturation limiters. If a high value of plate load resistance is used so
that the load line intersects the plate characteristics at the knee of the
curves, then the bottoming takes place while the grid voltage is still
negative. For example, for a 6AU6 tube with E,; = 300, By = 100 K,
and a screen voltage of 150 volts, the plate characteristics in Fig. A-1
show that the limiting takes place at —2 volts on the grid.
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As a cutoff limiter, a pentode with a fixed screen voltage may provide
a sharper break than a triode. In a triode when the grid voltage changes
from a value just below cutoff to a value just above cutoff, the plate
voltage drops because of the plate resistor. The change in plate current
is therefore smaller than in the case of a pentode with fixed screen voltage.

Clipping at Two Levels. The range of grid voltage for a triode or
pentode between cutoff and zero grid voltage is referred to as the grid
base. If the grid base is adjusted (by suitable choice of Ej or screen

+iV RW" ! ! +

T El —— E2>E1
-— Y—

F1a. 4-10. A circuit for clipping at two levels.
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Fia. 4-11. Transfer characteristic of a double-ended limiter.

voltage) to be smaller than the peak-to-peak value of the input signal,
then it is possible to clip both the positive and the negative extremes
of the waveform. At the positive extremity, the clipping may be due
either to grid clamping or plate bottoming. An amplifier operating under
these conditions is said to be overdriven.

The diode clippers of Fig. 4-7 may be combined in pairs to perform the
operation of double-ended limiting. A parallel, a series, or a series-
parallel arrangement may be used. The parallel circuit is indicated in
Fig. 4-10. Itstransfer characteristic is given in Fig. 4-11, and is described
by the following equations:

If e; < El, € = E1
If e; > E,, e = Ky (4-3)
IfE1<6i<E2, € = €;
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This circuit has been referred to as a slicer, because the output contains
a slice of the input between the two reference levels, as is indicated in
Fig. 4-11.

This circuit has been used as a means of converting a sine wave into
a square wave. In this application E, is negative and is made numer-
ically equal to E,. The transfer characteristic passes through the origin
under this condition and the wave is clipped symmetrically top and
bottom. If the peak of the sine waveis large compared with the reference
levels then the output will be squared. More precise squaring circuits
are described in Sec. 15-12.

A cathode-coupled clipper is indicated in Fig. 4-12. A sufficiently
large positive excursion of e; will cut off T, while a sufficiently large

Fia. 4-12. A cathode-coupled double-ended clipper.

negative excursion of e; will cut off T';. Between the two clipping levels
the circuit is a linear amplifier without inversion. The circuit has the
advantage of high input impedance. E..; and E..» may be either positive
or negative. If R, islarge, the input swing can be large without drawing
grid current. By properly choosing E.; and E.. the input may be
clipped symmetrically with respect to ground. Because of these features
the circuit of Fig. 4-12 is an excellent double-ended clipper.

4-4. Compensation for Cathode-temperature Changes in Selectors.’
It is possible to compensate for the shift of the volt-ampere character-
istics of a diode caused by changes in heater voltage. As mentioned in
Sec. 4-1, this effect is equivalent to a 0.1-volt lateral displacement in the
characteristic for a 10 per cent change in heater voltage. Thus, the result
can be simulated by adding a battery Epn in series with the cathode,
the magnitude of Ey increasing with temperature, as in Fig. 4-13. It is
seen that the selected voltage (the level at which limiting occurs) depends
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upon heater potential. Thus, assuming that R; < R, where R; is the
diode forward resistance, we have

€y = ER if e < ER — E}[ and €, = €; —I— EH if e; > ER —_ EH (4—4:)

Compensation may be obtained by adding a second diode as indicated
in Fig. 4-14. In order that the two fictitious batteries have the same
magnitude Ey, it is important that

4,___@ 1B both diodes be in the same enve-

| + lope or that they have a common
. ‘%R . heater supply. The circuit of E’
' ° and R’ is chosen so that T is
- lER ~ always conducting. Ife; < Eg, T

does not conduct and e, = Kz If

g}G(i 4-13. The ‘fﬁelélpbemtuiriet%}"ift ilf)lta ¢; > Ep, T conducts and e, = e,

e, rpresnied by, Btfions b N, that these rosulis are inde-

pendent of the heater temperature,

In practice, it is found that the compensation is not perfect but can
reduce the temperature dependence by a factor of 5 or 10.

The necessity for a separate ungrounded power supply E’ can be

avoided by using the circuit of Fig. 4-15a. If T, is in the conducting

) 7,
E E, |
+,_@ ()
= *
i E'l (23
i

+
— Ep
Y

=L

ad

[

Fic. 4-14. T'; compensates for the temperature drift in 7.

state, then ¢o = Er + En. The diode T; will be in the nonconducting
state if e; + Ex < e,. Hence,

€o = ER + EH if e < ER (4'5)

Similarly, when T'; conducts, ¢, = ¢; + Ey and T will become noncon-
ducting if ¢, > Er + Ey. Hence,

e =¢ + By if e; > Eg (4—6)

The two tubes switch simultaneously from conducting to nonconducting
states when the input voltage reaches the reference voltage independently
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of the heater temperature. An alternative arrangement in which the
diode T, conducts continuously is shown in Fig. 4-15.

It should be noted that the output voltage does depend upon the
temperature (because e, contains Ey). Often, however, the principal
emphasis is on the constancy of the level at which sclection takes place

Ep
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T, —T—Ey
@—6 [) [En
|
ll ﬁ

€

i %R R
© ' -

T+

o

T
-

..

(b)

Fr1a. 4-15. T, compensates for the temperature drift in T4,

(see Chap. 15 on Voltage Comparators) and this level was demonstrated
above to be independent of Ej.

4-5. Clamping Circuits. Whenever a circuit point becomes connected
through a low (=2 zero) impedance to a reference voltage Ez, we say that
the point has been clamped to Er, since the voltage at the point will not
be able to depart appreciably from Er. The diode limiting circuit of
Fig. 4-7a is an example of such a clamping circuit since the output voltage
is clamped to Er whenever the input voltage exceeds Ex. Since, in this



120 PULSE AND DIGITAL CIRCUITS

case, the clamping prevents only an increase of the output voltage and
not a decrease, the circuit is referred to as a one-way clamp.

Clamping is also used where it is required that a recurrent positive or
negative extremity of a waveform be established at some fixed d-c level.
A circuit which achieves this desired function without materially altering
the waveform is sometimes referred to more specifically as a d-c restorer.
Such d-c restoration or clamping is often required after a signal has
passed through a capacitive coupling and has consequently lost its d-c
component.

el
o
+X N | +
!
¢ 4T1<><—T2-—> e, %R e,
o Zero level __l l -
0 t —d
(a) (b)
Ey,
R
+i(—=
AP St +
e‘ €o
(c)

F1a. 4-16. The square wave in (a) is impressed on the restorer circuit in (b) or (c).

Consider that the waveform in Fig. 4-16a is applied to the input of
the circuit of Fig. 4-16b. If the diode were not present, the d-c level
of the output would be zero independently of the d-c level of the input.
The output e, would make excursions to voltages both positive and nega-
tive with respect to ground. In the presence of the diode, however,
every time the voltage e, would otherwise become positive, the output
terminal is clamped to ground.

Current will flow in the diode, leaving the capacitor C with a charge
as indicated by the polarity marking. If the resistor B were absent, the
capacitor would charge, after a few cycles, to whatever voltage is required
so that the maximum positive excursion of the signal leaves the diode
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just short of conducting. The output waveform would then appear
as in Tig. 4-17, i.e., the maximum positive excursion has been fixed at
zero volts. If now, however, the amplitude of the input signal should
decrease in amplitude, and the maximum positive excursion is still to
remain nominally zero, then the

resistor R must be included to per- |

mit the capacitor to discharge. (For | yLero level
a crystal diode, the finite back resist- T t
ance R of the erystal may serve as E [T\ »<T,

the resistor R.) In this case, how- l

ever, the positive excursion must ex- Fia. 4-17. For an ideal diode in Fig.
tend slightly into the positive region 4-16; thel output has its positive ex-
so that the diode may conduct and tremity clamped to ground.
supply the charge which will leak off the capacitor during the interval T',.
The precision of operation of a d-c restorer depends, among other
things, on the abruptness of the discontinuity of the volt-ampere char-
acteristic of the diode. If the resistor R is very large, the quiescent
current may be very small and the rate of change of slope of the volt-
ampere characteristic of the diode (see Fig. 4-10) may be smaller than
would result if the quiescent current were larger. The quiescent current
may be increased by returning the resistor R to some positive voltage

(a) (b)
Fia. 4-18. The equivalent circuits of Fig. 4-16b. The diode is nonconducting in (a)
and conducting in (b).

Ey as in Fig. 4-16c. The level to which the peaks of the signal are
restored will then be closer to zero voltage.

The equivalent circuit when the diode is nonconducting is given in
Fig. 4-18a; that when the diode conducts, in Fig. 4-18b. We have assumed
Ry > R and R > R;. If these inequalities are not valid, then we must
replace the resistor in Fig. 4-18a by R and R, in parallel and the resistor
in Fig. 4-18b by R and Ry in parallel.

For the square-wave input of Fig. 4-16a, the resultant output waveform
will appear as in Fig. 4-19. The equations from which to determine
the four quantities E,, Ej, E,, and Ej indicated in this figure are
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E; = EJ_E—T‘/R‘C E,l — E, = E
By = Bee™r¢  E, — F} =

Note that these are identical with Eqs. (2-4) except that the first equation
above contains R;, whereas the first equation in Eq. (2-4) has R. Thisis
an important physical difference because the charging time constant
R;C is very much shorter than the
discharge time constant RC.
We shall now demonstrate that
Zero
Jef' the area A; under the output volt-
; age curve in the forward direction
(when the diode conducts) is re-
lated to the area A in the back
direction (when the diode does not
conduct) by the relationship

- A _ B
4, "R

(4-7)

€

(4-8)
Fig. 4-19. The output from the circuit
of Fig. 4-16 for a diode of finite forward

resistance. If ¢;(¢) is the output waveform in

the forward direction, then the
capacitor charging current i; = e¢;/R; (see Fig. 4-18D). Therefore the
voltage acquired by the capacitor in the forward direction is

1 T b Af
6_[] iy dt = CR;[ e;dt = CRf

Similarly if e,(t) is the output voltage in the back direction, then the
current which discharges the capacitor is 7, = e,/R and the voltage lost
by the capacitor when the diode is nonconducting is

1 T2 T: Ab
—(—j/o 'tb di = CR €y dt = C——Ié

Under steady-state conditions the net voltage change per cycle across
the capacitor is zero. Hence,

Ay Ay
CR;, CR
and Eq. (4-8) is justified. This proof did not assume that the input was
a square wave. We can summarize the above most important conclusion
as follows: For any input waveform the ratio of the area under the oulput-
voltage curve in the forward direction to that in the reverse direction must
equal the ratio R;/R.
Let us return to the square-wave input of Fig. 4-16a. If B,C > T, and
RC > T,, then the tilts indicated in Fig. 4-19 are negligible and the
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output will be a square wave. The zero level of the output square wave
is determined by the above theorem.

ExampLe. a. The paramecters in Fig. 4-16 are as follows: E = 10 volts, T =1
msee, Ts = 1 psee, By = 500 ohms, and B = 500 K. Assume that C is large enough
so that the output is a square wave.

Find the zero level of the output. E, A, Zero

b. If the waveform is inverted so that } / level

f #9/

T, =1 psec and 7, = 1 msec, find the 7] -
zero level of the output. 1 1000 1
c. If the diode is inverted, but the in- 5] AS = M8
put is as in part b, find the zero level of | | 103:3 2'\‘46
the output.
Solution.a. InFig.4-20a, A; = 1,000E, (a)
and 4, = 10 — E; volts X usec. From
Eq. (4-8), we have Zero
A _ LOOOB, _Ry _ 500 .o, 1:/E' 7/" 'evell
4, 10— E, = R "~ 500 X 108 [] . ]
and we find that B, = 105 volt. This _I 103, 4 I_
example illustrates that clamping to the
baseline of a narrow negative pulse is ex- 1u s—»‘ l-—lOOO,a s—»I
cellent since only one-millionth of the (b)
amplitude of the input pulse is above the
zero level.
b. In Flg. 4-20b, A/ = E| and —f ZrAb Zero
10-E, level
Ab = (1,000)(10 — Ey) volt X psec |, )
= [ ==
From Eq. (4-8), we have Mg, KA{
1us—» <1000 us->
___ B _ 10-3
1,000(10 — &) (¢)

or E; = 5 volts. The zero level is half- Fra. 4-20. Example.

way up on the pulse amplitude, and the
circuit has acted as a very poor clamp. This example illustrates that it is extremely
difficult to clamp to the top of a narrow positive pulse.

¢. Positive voltages are now in the back direction and negative voltages are now in
the forward direction, because the diode has been inserted in the circuit with the
polarity oppositive to that indicated in Fig. 4-16b. Comparing Figs. 4-20c and a, we
see that one is the negative of the other and hence E, = 107° volt as in part a.

We note that the d-¢ level of the input did not enter into these calculations and
hence has no effect on the output level.

We can summarize the results of this example by saying that it is
very difficult to achieve d-c restoration to the peak (either positive or
negative) of a narrow pulse, but we can very effectively clamp to the
broad baseline. Application of such d-c restorers to radar and television
pulses are common.

In the above example, a prohibitively large capacitor is needed to make
the forward time constant R,C large compared with 1,000 usec. Because
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R; is very small and R is very large, it most frequently turns out that
e RjC LT and RC > T.,. Thus,
typically a pulse-type waveform

4 A zerolevel  after restoration appears as in Fig.
I T T TN XITUT T 4-21. During the interval T, there
! is a small tilt, while at the beginning

h /AT:% 2 JE of the interval T’y a sharp spike ap-

pears. The capacitor recharges
|y Yl e - through the diode in a very short
I time, and during the remainder of
Fia. 4-21. The output from the circuit the time 7T; no appreciable diode
of Fig. 4-16b if R;C <K T, and RC > T,. current flows.

The discussion above has neglected the output impedance R, of the
driving source. The restorer equivalent circuits including R, are shown

R, c R

AT NI
DL SIDL 1

(a) (d)
Fia. 4-22. The equivalent circuits of Fig. 4-16b taking the output impe_danpe R, of
the source into account. The diode is nonconducting in (a) and conducting in (b).

in Fig. 4-22a¢ and b. Typically the output impedance of vacuum-tube
circuits varies from several hundred ohms to several thousand ohms.
The shunt resistor R is usually of the

order of megohms. Thus when the diode ©
does not conduct, R, is negligible in its
influence on the output. However, when the

diode conducts, as in Fig. 4-22b, there is an om0 love
attenuation by a factor R;/(Ry; 4 R.), e, (a)
which may be appreciable. The finite M | zerotevet

A

causing distortion, because the forward por- E I__

tion of the waveform is attenuated while Ty 1,—]

the back portion isnot. Thisisillustrated (b}

in Fig. 4-23 for a ramp voltage. Theslope Fig. 4-23. (a) A sweep input to a
of the output above the zero output level restorer and (b) the output tak-
is R;/(R; + R,) times the slope below the ;ﬁﬁrcénf,ﬁtpicf?ﬁgi d;}:se finite
axis. It is assumed that R,C > T and '

RC > T, so that the only distortion is that due to the attenuation
described above. The relationship A;/ A, = R;/R is valid independenily

A

output impedance thus has the effect of T
/!
-
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of the value of R, as can be verified by retracing the steps in the deriva-
tion of Eq. (4-8).

If the diode in Tig. 4-16b is reversed, it is shown in the above example
that the negative rather than the positive extremity of the signal will
be established at zero. If the circuit is modified to include a fixed
voltage Egr, as in Fig. 4-24, the c
positive extremity (or negative ex- g ' 4

LA ]

tremity, if the diode is reversed)
will be established at Ez. This
should be clear from Fig. 4-24c & €
which'gives the equivalent circuit in
the forward direction. If R, =0, _
then the output is clearly Er. In
the reverse direction (Fig. 4-24b), ()
the output is negative with respect 1C
to Er. If the time constant RC'is T4 N é -
. R
1)

H—

large enough, no appreciable distor-
tion is introduced but the d-c level
has been shifted so that the top of l '|' Ep l

o

the waveisat Er. If R, £ 0, then
the clamping is not perfect. For (%)
example, if a square-wave input is

applied to the circuit of Fig. 4-24, +r_4{C

the output will be given by Fig. 4-19 ' +
with the difference that the line . Ry
marked ‘“zero level” is now at Er & K ¢
volts with respect to ground. l

Clamping may be accomplished ~
in the grid circuit of a multielement
tube (triode or pentode) as in Fig te)

. C . ©'  TFi1c. 4-24. (a) A circuit which clamps to a
4-25a. The operation is identical voltage Er. (b) The equivalent circuit
to that described above, the grid lIfe >t>ht;B di(o«)ieT}ils(s3 s;lﬁiz?g&cté?iuizng
and cathode of the tube serving as 3t~ ¢
the elements of the diode. 'gl‘he the diode conducts and £t 2> fy.
circuit has an interesting application. Suppose that it is intended to
use the circuit as a conventional amplifier but that circumstances exist
which make it inconvenient to use bias of any sort. The clamping action
in the circuit will adjust the d-c¢ level of the signal between grid and
cathode to be negative except for a very small part of the cycle when the
grid draws current. That is, the circuit has provided its own bias.
During the small part of the cycle when grid current flows the signal may
be somewhat distorted if the signal source impedance is high, but this
distortion may be kept very small by making R, very large.

.|l.._|
at"
|
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The circuit of Fig. 4-25b results if the resistor R, at the grid is returned
to the other side of the capacitor instead of to ground. This circuit
. is the self-biasing arrangement commonly used in oscillator circuits. If
the resistor R, is returned to the Ey supply voltage as indicated in Fig.
4-25¢, we have the clamping arrangement mentioned in Sec. 4-2 in

connection with the discussion of grid-
Ey, current characteristics. This circuit is
R, very commonly used in pulse applications.
The three circuits of Fig. 4-25 are essen-
tially alike in behavior. In the forward
direction the grid is clamped to ground
(a) @if Z?f'= 0). Hence,. under s’.oeady-state
conditions, the capacitor acquires a volt-
age equal to the positive maximum value
of the input signal with respect to ground.
This capacitor voltage acts as a self-bias.
In the reverse direction the capacitor dis-
charges only very slightly through R,
provided that the time constant R,C is
large compared with the period of the in-

(b) put signal.

4-6. Synchronized Clamping. The d-c
restorers discussed above are examples of
clamping circuits in which the time during
which the clamping is effectiveis controlled
by the signal itself. Useful features result
when the time of clamping is not deter-
mined directly by the signal but is deter-
mined rather by an auxiliary voltage called
a control signal which occurs synchronously
with the signal. For example, suppose
= the waveform of Fig. 4-26a is to be used
F1a. 4-25. Three methods of ob- - {0 displace the beam of a cathode-ray tube
taining self-bias by clamping the = 1;,, 051y with time, first in one direction
grid to ground. . . .

and then in the other direction from
some fixed initial point. If the signal is transmitted through an
a-¢ coupling network whose low-frequency time constant is not very
long in comparison with the interval 7', the signal will distort into the
form shown in Fig. 4-26b. The principal defect in the waveform is that
the two displacements will start from different places (4 and B). In
addition the d-c level Ez has been lost. If, however, the signal is passed
through the circuit of Fig. 4-27 and if switch S is closed during time T'»
and is open during time 7';, the waveform will appear as in Fig. 4-26¢.
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The pips which appear when the voltage returns to the level Ex will be
reduced to infinitesimally narrow spikes as the resistance of the switch
(Ry) approaches zero.
It is, of course, required that the switch S be open for all the time
interval 7'y, but it is not necessary that the switch be closed for the entire
interval T, It is only required
e that the switch be closed for a
period long enough to allow the
capacitor C to acquire or lose
enough charge to bring the output
terminal to the reference level Ex.
It is not possible to use synchro-
nized clamping with a signal of
arbitrary waveform. Forexample,
if the waveform were sinusoidal, it
would necessarily be distorted every
time the switch S closed. Syn-

0 chronous clamping may be used
whenever the signal has intervals,
which occur periodically, during
which the input waveform is quies-

(b) cent. Where synchronized clamp-
‘ +e—]€ o+
A’ R B
E, ) | [ e
=
CLNTT o
0 t '|' Er
() i X

F1a. 4-26. Illustrating the necessity for
synchronized clamping for a signal which
may vary in both directions from some
reference level.

F1c. 4-27. Switch S closes in synchronism
with the signal during those intervals
when it is desired that the output be

clamped to Er.

ing is feasible, it may be used to provide d-c restoration even when the
positive and negative excursions of the signal fluctuate from cycle to
cycle.

The switch S in Fig. 4-27 can be simulated with the double triode
arrangement® given in Fig. 4-28. The grids are tied through a large
resistance R’ to the Ey supply voltage. Assume that no control signal
is applied to these grids. Tube T. prevents the output from going
positive with respect to Eg, while tube 7'; prevents the output from going
negative with respect to Ep. The output is restrained from departing
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in either direction from the reference voltage Er. Hence this circuit is
referred to as a fwo-way clamp.

If now a negative gate is applied to the grids so as to release the clamp-
ing action, e, = e; and the input is transmitted to the output. The con-
trol signal in Fig. 4-28 must be exactly synchronous with the signal in

TEbb
C
I
K +

R'

& ¢’,, Control

—{fo signal

€; R w €
T T,
E

- E=2 -

F1c. 4-28. A synchronized clamp using triodes.

Fig. 4-26. In practice, this synchronization offers no difficulty because
the sweep voltage of Fig. 4-26 is generated from the control square wave
itself (see Chaps. 7 and 8).

There are two chief difficulties encountered with the circuit of Fig.
4-28. The first is that during the interval T, the control signal will
cause grid current to flow through tube T, and into the output. The

+

o
¥ !

T

8

F1a. 4-29. A dlode bridge used as a synchronous clamp.

second difficulty is that the control voltage is coupled to the output
through the interelectrode capacitances of the tubes. Hence, the output
will contain pips or spikes at the beginning and end of the control interval.

The above difficulties are avoided in the circuit of Fig. 4-29 which
uses diodes in a balanced bridge arrangement. Two control signals e;
and e; which have the symmetrical form indicated in Fig. 4-30 are required
for proper operation of the circuit. These waveforms can be obtained
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from any of the phase-inverter circuits in Chap. 1. The d-c level of the
signals e; and e; may be arbitrary. During the interval T, the diodes
are nonconducting and the output is free to follow the input so that
e, = e¢;. During the interval 7', the diodes conduct, and because of the
symmetry of the circuit, point A is at the same potential as point B.
The output is clamped to Er through an effective resistance equal to the

sum of a diode resistance and the control-
1

source signal impedance R, (assuming that T —
R’ > R,). E

More details on the above circuit are i
given in Sec. 14-13. Other gating circuits T T l

which can be used as synchronous clamps ———=-

are given in Chap. 14. t
4-7. Tubes Used as Switches. Ampli- ¢| !
fier tubes (triodes and pentodes) are often [ | B ]
used in applications where they act essen-
tially as switches. In these applications
the tube is periodically driven either to
cutoff (switch open) or to clamp (switch L ——
closed). Such tube circuits are often Fra. 4-30. The control signal
called “overdriven amplifiers.” Diodes Woveforms required for the
. clamp in Fig. 4-29.
are also often used as switches to change
the impedance between two points from a low to high value, and vice
versa. These switching circuits not only are of interest in themselves
but also serve as further examples of wave shaping with nonlinear
elements. The principles established above in connection with clipping
and clamping circuits are useful in analyzing these circuits.

Tube Switch with Resistive Load. In Fig. 4-31a is shown a triode with
a resistive plate load. To the grid of this tube is applied the square
wave of arbitrary d-c level, as shown in Fig. 4-31b. The square wave is
to be used to turn the tube on and off periodically. With respect to the
waveform at the grid the situation here is identical to that discussed in
connection with Fig. 4-21. The grid waveform is shown in Fig. 4-31c.
Note that the overshoot in the grid waveform is reflected in the under-
shoot of the plate waveform shown in Fig. 4-31d.

In any particular case the numerical values of the levels attained by the
waveforms are easily calculated. Suppose that the square-wave ampli-
tude is E. At the beginning of the interval T, the voltage e, will be
at — E but will start to rise exponentially toward Ey, with a time constant
T = (R, + R,)C. Since the output impedance R, of the source is usually
small compared with the grid leak R,, then 7 = R,C. At the end of the
interval T, the voltage attains the level —E’. If it were not for grid
clamping, the overshoot would be E — E’. However, because of the




130 PULSE AND DIGITAL CIRCUITS

R,
+T_/\/VV\,
ii
e;
o | [T
0 T T, — -
€gk __is._.
0/<| ¥ t
e D S B Cutoff
(c) . i D
 |Ey,
(d)
0

. t
F1a. 4-31. (a) Overdriven amplifier circuit; (b) input waveform; (c) grid waveform; (d)
plate or output waveform.
drop through R, due to the grid current, the overshoot § will be smaller
and is equal to

= _ Te R
8 = (B E)rc-l-Ra (4-9)
in which r, is the grid-to-cathode resistance. The undershoot in the plate
waveform is determined by the intersection of the load line for Ry with
the volt-ampere characteristic curve for the tube corresponding to the
grid voltage & at the overshoot. This load line will of course have to
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be drawn on a set of tube characteristics in which curves are given for
positive grid voltages.

If the overshoot should be objectionable in a particular application, it
could be made smaller if ., could be reduced. Since r, is usually not

tEbb

L

+o

3
E

H
i

(a)

- (b)

=
= ()
F1c. 4-32. (a) A peaking circuit. (b) The equivalent circuit when the tube is cut off.
(c) The equivalent circuit when the tube is in clamp.

adjustable, the overshoot may be reduced by making the time constant
R,C > T, since under these conditions E' =~ F.

Tube Switch with Inductive Load (Peaking). The circuit of Fig. 4-32
shows a peaking coil L shunted by a damping resistor R in the plate
circuit of a tube, the grid of which is initially clamped to the cathode.
In the quiescent state the plate current I, corresponding to e, =2 0 and
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¢, = Ey, flows through the inductor. During the time interval T; a
negative step of magnitude E cuts the tube off. The equivalent circuit
in this interval is indicated in Fig. 4-32b, and the instantaneous current ¢
must decrease exponentially with the time constant L/R. Since the
initial current is I,, the output voltage is

e, = Ew -+ [oRe BV (4—10)

This voltage is indicated as the positive spike in Fig. 4-33. The peak
of the pulse attains a value Ey + IoR which may become very large if
R is large. In practice, the peak may be limited by stray capacitance,
but even so peak values several times larger than the supply voltage
may be attained.

During the interval T'; the grid is clamped to the cathode and the tube
behaves like a resistor r,, the plate resistance corresponding to e, = 0.
The equivalent circuit is indicated in Fig. 4-32¢. Since r, is not truly
cr constant, the current ¢z in the

L damping resistor at the instant
T + = T+ is best found by a graphi-

LR cal construction rather than from
i the equivalent circuit. Since the
Ey ] | LR current through the inductor can-
[PEPSEROPIN| T not change instantaneously, it acts
as an open circuit at ¢ = T,+.
0 ¢ Hence a load line is drawn on the
’FL“;G' 4-33. The plate voltage of Fig. 4-32.  plate characteristics corresponding
¢ interval T' starts at ¢ = 0. to R and Ey and the intersection of
this line and the plate curve for e, = 0 gives the current Ijat ¢ = T,+.
This current then decreases exponentially to zero with a time constant
given by L/R’; where R’ is the parallel combination of B and r,. If ¢’ is
measured from the instant ¢ = T, then the output is given by

€y = Ebb — IGRG_R/”/L (4-11)

This voltage is indicated as the negative spike in Fig. 4-33. Since I,
corresponds to a zero-resistance load line whereas I; corresponds to a
resistance R, then the negative peak is always less than the positive peak.
The voltage at the peak of the negative spike is the voltage corresponding
to the intersection of the load line for the resistor R and the tube char-
acteristic for ¢, = 0. This voltage will always be positive with respect
to ground. The negative pulses decay slower than do the positive pulses
because R’ is always less than B. This output should be compared with
the voltage obtained from this peaking circuit (see Fig. 2-22) when it is
operating linearly (i.e., with an input square wave of small amplitude).
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AEs AEy,

:

- °+ o+
P €o P €y
1 1

(a) = () =
T1g. 4-34. (@) The damper diode allows the output only to go positive with respect to
Ew. (b) The diode allows the output only to go negative with respect to Eu.

The above discussion has neglected the capacitance shunting the out-
put terminals. If this capacitance is taken into account, we can have
responses similar to those discussed in Sec. 2-7. For example, if the
circuit is underdamped, each pulse
in Fig. 4-33 will be converted into
a train of oscillations. Because the
damping is greater when the tube
conducts than when it is noncon-
ducting, it is possible to have oscil- aimh f
lations near ¢ = 0 instead of the b &

pi Y Y

[L3)

positive peak and at the same time +
a single negative pip near ¢ = T,. (a) =

In the above discussion we as-
sumed that the clamping action at E I %
the grid was perfect. If the finite * 3%
value of 7, is taken into account and ==_3'
the grid time constant is not large c

enough, there will be a slight over- ) =+
shoot in grid voltage above the )

valuee, = 0ati = T+ and I will | %R
L

correspond to this positive grid Ey

voltage. ;:—i
Damper Diodes. 1f, in the peak- " C_;
ing circuit just discussed, it is de- ) —

sired to have only positive output Fre. 4.35. (a) An amplifier. (b) The
pulses, we can connect a diode equivalent circuit when the tube is cut

across the coil as indicated in Fig off. (c) The equivalent circuit when the
.©"  tube is in clamp.

4-34a. If the output voltage tries

to fall below L, the diode conducts and the small forward resistance of

the diode quickly damps out this portion of the waveform. If, in Fig.

4-33, there were oscillations in the vicinity of ¢ = 0, the diode of Fig.
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4-34a would allow only the first positive peak to appear in the output
because of the heavy damping which it imposes on the ringing circuit.
This action accounts for the name damper diode.

If the damper diode is inserted across the peaking coil with the polarity
indicated in Fig. 4-34b, then the output will contain a single negative
peak in the vicinity of £ = T1. In this case the diode conducts whenever
the output voltage tries to rise above Ep.

Tube Switch with Resistor-Capacitor Load. Consider the amplifier
circuit of Fig. 4-35. The total capacitance from plate to ground is
designated by C. The tube is in clamp, and the quiescent plate current
I, is found from the intersection of the load line (corresponding to Ej
and R.) and the plate characteristic for e, = 0. At ¢ = 04 the tube is
cut off by the negative input step of magnitude E which is larger than the
grid base of the tube. The equivalent circuit is indicated in Fig. 4-35b,
and the output will rise exponentially with a time constant R;C to the
plate-supply voltage Ey. During the interval T, the tube is in clamp
and the equivalent circuit is given in Fig. 4-35¢, where r, represents the
plate resistance for zero grid voltage. The time constant of the circuit
is now R’C, where R’ is the parallel combination of Rz and r,. Since R’
must be smaller than Rp, the output falls faster than it rises, as indicated
by the solid curve in Fig. 4-36. For a pentode this difference in time
constants may be negligible because r, is usually very much greater than
R;, but for a triode there will be an appreciable difference in rise and fall
times.

If the finite value of 7, is taken into account and the grid time constant
is not large enough, there will be an overshoot in grid voltage at ¢ = T+
and the output voltage may fall
below Ey, — IoRr and then increase
toward this value, as indicated by
the dashed curve in Fig. 4-36.

In drawing the waveform of Fig.
4-36, we have implicitly assumed

- - that the plate time constants were

0 1 small compared with the period of
I"_Tl_+—T2_'|  the square wave. If instead of this

F1a. 4-36. The output waveform for the condition we assume that R.C is

circuit of Fig. 4-35. The dashed curve ,0h greater than T, then the
takes imperfect clamping into account. . . .
exponential rise can be approxi-
mated by a linear increase. The circuit behaves as an integrator and the
output is a ramp voltage. This sweep circuit is discussed in detail in
Chap. 7.
Plate-catching Diode. The effective rise time of the output of Fig. 4-35
can be shortened by clipping off the top of the wave. The diode which

€

Eyy

7’
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is used for this purpose (T in Fig. 4-37) is called a plate-catching diode
because it catches the plate at the voltage E, which is lower than the
voltage Ey, to which the plate would return if the diode were not present.
For example, if the output swing is reduced 20 per cent by the clipping
action, the rise time is approximately one-half its original value.

Ebl)
i €o
T

j-’-
s () A s L s R g
e; T J - -
F1a. 4-37. Plate-catching diodes added to F1a. 4-38. The output from the circuit
the circuit of Fig. 4-35. E; and E: are of Fig. 4-37 is indicated as a solid line.
d-c bias voltages, with E; > E|. If plate-catching diodes had not been
used, the dashed curve would represent
the output.

A second diode T'; is added at the plate in Fig. 4-37 with its polarity
reversed from that of T, and with its plate at the voltage E;. This
second plate-catching diode will not allow the output voltage to drop
below the clipping level E,. The output voltage is now sensibly square

TEbb

7/l

b A i€
ey |6 "
t=0 1 | 1
| -
4 ey
Ty >e-T, E e; ea 11 '
T - - _
o,

Fic. 4-39. An overdriven two-stage RC coupled amplifier.

as indicated in Fig. 4-38. This arrangement is similar to the double-
ended clipper of Fig. 4-10.

4-8. An Overdriven Two-stage RC Coupled Amphﬁer The circuit of
this cascaded amplifier is shown in Fig. 4-39. We shall assume that all
shunt capacitances are negligible, since we have already considered their
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effect in connection with Fig. 4-35. Furthermore, we shall assume that
the clamping at G, is perfect, since we have already taken into account
the finite value of r.; in Fig. 4-36. We shall also assume thatat¢ = 0—
the voltage at G is e.; = —E, where E is larger than the grid base | Eeoi
of Ty. Hence at t = 0— the voltage at P, is e;1 = Ey; at G2 the voltage

Zer0 is €2 = 0; at P, the voltage is

- €2 = Eyp — IozRLz, where 7. is the
e ' T :lecox clamped plate current in tube T..
-E These voltages are indicated in Fig.

t=0 t=T, t=N+T  4-40.

At t = 04, e, returns to zero
and tube T isin clamp. The plate
P, drops in potential. This causes
G2 to fall and cut off T.. The
equivalent circuit for computing e..
at this instant is indicated in Fig.
4-41. If the current in R, is
neglected in comparison with that
in Ry, then the current in Rz will
be the clamped current Io;. The
voltage at P; drops by Io1Rz1, and

R
—E %Rm c % &
B 12

N Gz

llm

Fra. 4-40. The waveforms for the circuit  Fig. 4-41. Equivalent circuit of Fig. 4-39
of Fig. 4-39. when 7', is in clamp and 7', is cut off.

L+

since the voltage across C; cannot change instantaneously, the voltage at
G2 must drop by this same amount, as indicated in Fig. 4-40. Since T'; is
now cut off, e;o = Eip.

From Fig. 4-41 we see that for R,; > Rz, the time constant r, with
which the voltage at G» changes is approximately given by 72 = R,2C..
Att = 0+, e.2 = — Io1Rr1 and if permitted to do so e,2 would approach Ey,
asymptotically. Hence, the grid voltage is given by

ez = Eyp — (B + TonRr1)e ™ (4-12)

Att = T1—,eq = E!,. Weshall assume that T; < 7250 that E.,is below
the cutoff voltage E... of tube T,.

At t = T1+, e,; drops to —FE and cuts off tube T:. The voltage at
P, tries to rise and in so doing causes G; to be driven positively. The
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equivalent circuit for the calculation of e.s under these conditions is indi-
cated in Tig. 4-42. The grid current is made up of two components:
1.2 which flows through the load resistor Rz, and is of the order of magni-
tude of milliamperes and ¢’ which flows through the grid resistor R,. and
is of the order of magnitude of micro-

amperes. We shall neglect ¢/ com-
pared with 7, and then the calcu- R, R
lation of .. is very simple. From _T - % |02 G
Kirchhoff’s voltage law, we have » YE” 2 |
! . Te2
le2

— LBy + taRpy + Eg ‘
+ 1:,;27',_-2 =0 (4—13)

. . Fia. 4-42. Equivalent circuit of Fig.
where E, is the capacitor voltage. 4-39 when 7} is cut off.

The voltage E4 at t = T1— is Ey
— IniRr1 — E!,. Since the voltage across a capacitor cannot change
instantaneously, then, at { = T4,

Es = Eyw — InRy — El, (4-14)
Substituting this value of E4 into Eq. (4-13), we obtain at t = T+,

i = IuR: + El,
o Rry 4 7ee

The voltage at Py at ¢ = T1+4 is @1 = Ew — I.2R11.  The voltage at G-
at £ = T+ is I.r.e and is of the order of a few volts positive. If the
plate current of tube T, corresponding to this grid voltage is Iy,, then
Cp2 = Ebb - IazRL2 at { = T1+.

Tor £ > T, e rises exponentially toward Ey with a time constant
CiRy. If C1Ry1 > T, then at t = Ty + Ty, ec1 = —E, which we have
assumed to be below the cutoff voltage of tube 7';. From Fig. 4-42 we
see that the time constant 7; for the grid current of 7', is given approx-
imately by

= I (4-15)

T1 = (RLl + cm)CZ

Hence, e;1, €2, and e all vary exponentially with the time constant 7,
toward the steady-state values indicated in Fig. 4-40. The waveforms
are drawn on the assumption that 7's > 7..

Incidentally, since the voltage across Cs cannot change instantaneously,
then the jump in voltage at Gs must equal the jump in voltage at P, at
{ = Tl, or

Iores — Ely = InRp1 — I2R1s (4-16)

This equation is equivalent to Eq. (4-15).

Since at t = (Ty + Ts) — the voltages in Fig. 4-40 are the same as the
corresponding values at ¢ = 0—, then this figure depicts one steady-state
cycle of waveforms. Hence, the above analysis completes the solution.
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4-9. Cathode Follower with Capacitive Load. A cathode follower with

a capacitive load is shown in Fig. 4-43a. We may easily verify from the
12AT7 tube characteristics in Fig. A-5 that, neglecting the effect of the
capacitor, the allowable input grid swing from cutoff to the point of grid-
current flow is approximately from —107 to 492 volts. When the
input signal is a fast waveform, the
effect of the capacitance is to re-
duce the allowable input swing to
the grid base, as will now be shown.
Suppose that the tube is biased
initially at zero grid-to-cathode
voltage (e; = 92 volts) and that a
negative step is applied which is
larger in amplitude than the grid
base. Because of the presence of
the capacitor C the cathode can not
(a) instantaneously follow this abrupt
drop in grid voltage, and as a result

the tube will be driven to cutoff.

The capacitor C must now start an

+200v

eD
A ‘ exponential discharge toward —100
~7 | volts with a time constant R;C. If,
0 typically, E; = 20 K and C = 100
__l 7 ¢ uuf, the time constant of the fall
B L\ will ber, = 20 X 10% X 100 X 10~

-100 .

b psec = 2 usec. If the negativestep
(0) islarger than 107 4 92 = 199 volts,

Fic. 4-43. (a) Cathode follower with

capacitive load; (b) output waveform. the tube will remain cut off as the

cathode falls. If the applied nega-
tive step is smaller than 199 volts, the tube will enter its grid base before
the cathode voltage attains its asymptotic limit of —100 volts, and the
last part of the decay will occur with a time constant R,C, R, being the
output impedance of the cathode follower.

Similarly, suppose that the tube is initially biased at cutoff (¢; = — 107
volts) and that a positive step is applied at the grid which is larger
than the grid base. Then, again, the cathode will not be able to
respond instantaneously to the grid signal, and the grid will be driven
positive with respect to the cathode. The capacitor C will now charge
from an impedance that is the parallel combination of R, and r,, where
r. 1s the grid-to-cathode resistance. If the input-signal amplitude is less
than 199 volts, the last part of the rise of cathode voltage will occur
with a time constant R,C. The rise of cathode voltage will be more
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rapid than the fall, but the usefulness of the cathode follower for a fast
positive-going signal is limited because of the flow of grid current.

The waveform of I'ig. 4-43b shows the response of the cathode follower

to a square-wave signal e; which makes positive excursions above 92
volts and negative excursions below —107 volts and whose period is
comparable to the time constant R;C.

[e B er)
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CHAPTER 5

THE BISTABLE MULTIVIBRATOR

A bistable multivibrator or binary* is a two-tube regenerative circuit
which can exist indefinitely in either of two stable states and ecan be
caused to make an abrupt transition from one state to the other. The
binary finds extensive application in pulse circuitry. It is used not only

for the generation of square waves
TE"" from pulses but also for the per-
Y formance of certain digital opera-
tions, such as counting.

6-1. The Stable States of a Bi-
nary.! The circuit diagram of a
binary is shown in Fig. 5-1. Note
that each tube is an amplifier, the
plate of which is d-¢ coupled to the
grid of the other tube. The plate
load resistor R is usually of the order
of magnitude of the plate-circuit re-
sistor to be found in a conventional
amplifier, i.e., several times the plate
resistance of the tube. Since the fraction of the plate signal which is
coupled across to the grid depends only on the ratio of the resistors R,
and R,, these resistors are usually made large enough to avoid loading
the amplifier output excessively. In a typical case, for a type 5965
vacuum tube, Ry will lie in the range 10 to 50 K, while &y and R, are
of the same order of magnitude and lie in the range 100 to 500 K.

Because of the symmetry of the circuit we might expect that the
quiescent current in each of the tubes will be the same. Such would
indeed be the case if both tubes were cut off or both were in clamp.

* The bistable multivibrator is also known as the Eccles-Jordan circuit (after the
inventors) and as the “flip-flop” circuit. The authors suggest that, if colloquial
expressions are to be used, the designation “flip-flip”’ is more appropriate for the
bistable multivibrator and that the term ‘‘flip-flop”’ be reserved for the monostable
multivibrator (Chap. 6). In this text we shall, however, refer to the circuit as a
“‘binary’’ since this latter term is short and suggests the essential character of the
circuit. The word “binary” will be used as a noun and will be understood to mean
“two-vacuum-tube bistable circuit.”

—E
Fic. 5-1. A binary circuit.

140
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These cases are, however, of no interest to us. The important case is
the one in which both tubes would be operating normally (with the grid
voltage within the grid base) if the currents were identical. In such a
circumstance, it is possible to find tube currents I, = I, which are con-
sistent with the tube characteristics and with Kirchhoff’s laws and hence
such a state of the binary is an equilibrium state. This state, how-
ever, is one of unstable equilibrium, as may be seen from the following
considerations.

Suppose that there should be the most minute fluctuation in the cur-
rent I,. If I, increases, the voltage at the plate P; will decrease, the
voltage change at P, will be amplified and inverted in polarity by tube
T,, and the grid of T'; will become more positive. As a consequence the
current I, increases still further and the cycle of events repeats itself.
The current I, continues to increase, while the current I» continues to
decrease, the circuit moving progressively further away from its initial
condition. This action takes place because of the regenerative feedback
incorporated in the ecircuit, and will occur only if the loop gain of the
circuit is larger than unity. The speed with which the regenerative
action takes place is limited by the shunt capacitances. These capaci-
tances are neglected for the present since we are interested now only in
the stable states.

From the above discussion it is clear that a stable state of a binary is
one in which the currents and voltages satisfy Kirchhoff’s laws and are
consistent with the tube characteristics and in which, in addition, the
condition is satisfied that the loop gain is less than unity. The condition
with respect to the loop gain will certainly be satisfied if either of the two
tubes is below cutoff or if either of the two tubes is tightly clamped as
would be the case if the grid draws current which must flow through a
resistance which is large in comparison with the grid-cathode resistance
7.. In principle, in order that the binary be in a stable state, it would be
sufficient either that one of the tubes be below cutoff or that one of the
tubes be in clamp. Actually, for certain practical reasons to be discussed
shortly, the arrangement almost invariably employed is one in which one
of the tubes is in clamp and the other is below cutoff.

The procedure for calculating the circuit currents and voltages in a
stable state is particularly simple if we take advantage of the fact that
R, and R. are large in comparison with Rz and large also in comparison
with the grid-to-cathode resistance .. In such a case the tube which is
in clamp will be tightly clamped and we shall not make a serious error if
we consider that the grid-to-cathode voltage is zero. Furthermore, in
such a case the tube currents may be considered to be identical to the
currents through the load resistors Rz.. A typical calculation is given
in the following illustrative example.
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ExampLeE. Compute the stable-state currents and voltages for the binary circuit
of Fig. 5-2. The triodes are the two sections of a type 5965 vacuum tube (Fig. A-11).

Solution. Assume that tube 7' is cut off and tube T, is in clamp with a grid-to-
cathode voltage equal to zero. The plate voltage of T is calculated from the equiv-
alent circuit of Fig. 5-3a. We find that E,; = 250 X 220/(220 + 47) = 206 volts.

TEbb= 250v

5965
tube

Ri=220K  R;=220K

—E.=-150v
Fic. 5-2. A typical binary circuit.
+250v

2 .
At ground -—150 v
tential
(a) potentia (b)

~150v

F1c. 5-3. Equivalent circuits for computing the stable states of the binary circuit with
the parameters given in Fig. 5-2.

To find the plate voltage at T, we neglect the loading of R; and R, and draw a load
line corresponding to 47 K on the plate characteristics of the tube. The plate current
and voltage for E.; = 0 are found to be Ey; = 33 volts and I, = 4.6 ma.

We must now check to see whether or not T is indeed cut off and T’y is in clamp.
The grid voltage of T, is calculated from the equivalent circuit of Fig. 5-3b. The
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voltage E., is calculated by superposition to be

270 220

350 + 270 T (7150) 555 g7 = —49 volts

E;l = 33
Since, at a plate-to-cathode voltage of 206 volts, cutoff occurs at —8 volts, T is
well below cutoff. If the grid of 7'; were not drawing grid current, then, from the
equivalent circuit drawn in Fig. 5-3¢, the voltage E.; would be

270
220 + 270 + 47

220 + 47

Eer = 250 350 + 270 + 47

+ (—150) = 50 volts

This 50 volts is applied to the grid of 7; from a source whose Thévenin equivalent
impedance is essentially equal to the parallel combination of R; and R,. This
equivalent impedance is 122 K. If we calculate the grid voltage by considering that
the grid-to-cathode resistance is . = 250 ohms (see Sec. 4-2), we have

0.250
E., = 50 1—22— = 0.10 volt

This same result can be obtained by multiplying the short-circuit current by the
impedance from G» to ground. Thus

B, = (25%67 — 159470)(0.250) = 0.10 volt

Hence T'; is indeed in clamp and we have made only a very small error in assuming
that the grid-to-cathode voltage is zero. Similarly if the loading of R; and R, is
taken into account the value of E,, is found to be 32 volts instead of 33 volts. These
errors may well be smaller than the error involved in applying the average tube char-
acteristics to a particular tube. To summarize, in the stable state we have approxi-
mately

I, =0 E;, = 206 volts E, = —49 volts

Iz = 4.6 ma E’bg = 33 volts E;z = 0 volt

Tube T, in being at cutoff keeps tube T'; in clamp, while 7'; in being in clamp keeps 7'
at cutoff.

The binary has {wo stable states. In one state T'; is cut off and T is
in clamp. In the second state T. is cut off and T, is in clamp. The
principal importance of the binary results from the fact that it is possible,
by a varicty of means, to transfer the binary from one stable state to the
other. Suppose, for example, that initially 7' is conducting (on), while
T, is not conducting (off). If tube T, were removed from its tube socket,
T, would go on and the voltage at the tube socket grid pin of T'; would go
negative. If the tube T is now replaced in its socket, it would remain
cut off. A permanent transition between states will have been accom-
plished. Or suppose that the grid of the off tube were momentarily
shorted to ground. This off tube would go on and in so doing would turn
off the tube that was initially on. This condition would again persist
permanently even after the short circuit is removed. These means of
transferring conduction are, however, only of academic interest. More
practically useful methods will be considered later.
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The useful plate signal, called the output or plale swing, from the binary
is usually the voltage change at one or the other plate corresponding
to a transition from one stable state to the other. This signal is custom-
arily large and for large R; may be comparable to the plate-supply
voltage. The plate swing E, in the illustrative example above is nom-
inally 206 — 33 = 173 volts.

It was pointed out above that a stable state is possible even if one
of the tubes is permitted to operate as a normal amplifier, with its grid
neither clamped nor below cutoff. An initial disadvantage of such an
arrangement is that the plate swing is reduced. A more important
difficulty has to do with the reliability of operation of the binary. Sup-
pose that in Fig. 5-2 the negative supply voltage is set at —260 volts.
Then one tube will be cut off, while the on tube, say T's, will have a grid
voltage

270
Ber = 250 o5 om0 + a7 + (7260)
= 125.7 — 129.3 = —3.6 volts

This resultant grid voltage is the small difference between two large
numbers. The grid voltage and consequently the tube current will
change by a large percentage if either of the coupling resistors changes
even slightly. For example, if the resistors R, should change by only
about 1 per cent from 270 to 267 K, the grid voltage will become —5.0
volts instead of —3.6 volts. The corresponding plate swing would then
change by 36 volts. A larger change in the coupling resistors might then
easily cause the supposedly on tube to be below cutoff. In such a case
there would be only one stable state for the binary and the circuit would
be useless.

In practice, we should like to be able to assemble these binary circuits
using components which are held to a tolerance no better than, say,
10 per cent. And we should like to feel confident that the binary will
continue to operate as the tubes age or are changed and despite reason-
able variations in supply voltages. For these reasons the binary is
usually adjusted so that in a stable state one tube is well in clamp while
the other is well below cutoff.!

b-2. The Self-biased Binary. The need for a negative supply as in
TFig. 5-2 may be eliminated by using a common cathode resistor Ry to
provide self-bias as in Fig. 5-4. The procedure for calculating the stable
states is in principle the same as is employed for the fixed-bias binary.

220 +- 47
270 + 220 - 47

ExampLE. Find the currents and voltages corresponding to the stable states for
the self-biased binary of Fig. 5-4.

Solution. Assume 7T is cut off and 7'y is clamped with a grid-to-cathode voltage
equal to zero. The clamped current of 7. is determined by drawing on the plate
characteristics a load line which passes through the supply voltage Ey = 175 volts
and has a slope corresponding to a load resistor of 47 + 15 = 62 K. The intersection
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of this load line with the curve for zero grid voltage gives a tube current of 2.5 ma.
The cathode-to-ground voltage is, therefore, Er. = 15 X 2.5 = 37.5 volts. The
plate-to-ground voltage of T is Eiue = 175 — 47 X 2.5 = 57 volts. The grid-to-
ground voltage of T is E.; = 57 X (15%g0) = 17.8 volts. The grid-to-cathode

voltage of Ty is Eo = 17.8 — 37.5 = —10.7 volts. The cutoff voltage is about
T +175v
é R,=47K Ry=47K
5
R,=330K —13 R,=330K
5965 _—— 2
tube
:_7
K
R,=150K RS 15K R,=150K
N

F1c. 5-4. A seli-biased binary circuit.

—7 volts so that T’ is well below cutoff, as was assumed at the start. In the absence
of grid current, the voltage at the grid of 7'» would be

150
47 + 330 4 150

Since T'; clamps when E... = 37.5 volts, the assumption that T’ is clamped is seen to
be justified. The plate-to-ground voltage of T'; is
47 330
Ebnl = 37.5 X m + 175 X 33T—|-—47
Hence the plate swing is 158 — 57 = 101 volts.

In the calculation above a number of approximations have been made. We have
again neglected the loading effect of the coupling resistors and have assumed that at
clamping the grid-to-cathode voltage is zero. Furthermore, in computing the drop
across the cathode resistor, we have neglected the fact that the cathode resistor
carries not only the plate current but also the grid current. But again, since we must
work from average tube characteristics and since voltage levels in a binary never
need to be known with precision, a more detailed calculation is hardly warranted.

Eer = 175 X = 49.7 volts

= 158 volts

The drop across the cathode resistor is nominally the same for the two
stable states. However, during the course of a transition, the current
through R will vary and may even drop to zero. To keep the cathode
voltage constant during the transition, Rj is bypassed with a capacitor.
Typically a transition is completed in a time of the order of a micro-
second. Since Ry is of the order of 10 K, a capacitor C; = 0.01 uf will
provide a cathode time constant of 100 usec, which is large enough in
comparison with the transition time to maintain an essentially constant
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cathode voltage. The stable states are, of course, not affected by the
presence of the cathode capacitor, but the ease of inducing a transition
between states and the rapidity with which the binary settles into its new
state may be adversely affected if the capacitor is omitted.

5-3. Commutating Capacitors. A binary will remain in one of its
stable states until caused to make a transition by a ‘“triggering’ signal
such as a pulse applied from some external source. Often these triggering
signals are of short duration, and in order that the binary shall be able to
respond to each of these triggering signals it is necessary that the binary
make its transition abruptly. Otherwise it is possible that the triggering
pulse will have passed before the binary is able to complete its response.

Suppose, for example, that a transition is to be induced in a binary
by applying in series with the grid of the conducting tube a short-duration
negative pulse of sufficient amplitude to drive the tube beyond cutoff.
Refer to Fig. 5-2. If the tube 7'; is driven to cutoff, the plate P, will rise
toward Ey, at a rate determined by the plate load resistor and the shunt
capacitance between plate and ground. This rising plate voltage must
now be transmitted through the attenuator consisting of R, and R;. The
rising voltage at G, will be further delayed since the capacitance effec-
tively shunting G» to ground must charge through a resistance which is
essentially equal to the parallel combination of B; and R,. Because of
the over-all delay in the rise of voltage at G2 it may well be that the
applied pulse at G; will have passed before T, can be brought out of
cutoff. As a result the binary will not respond to the applied pulse.

To ensure a transition, it is not enough that the grid G, shall just
pass the cutoff point. It is necessary also that the plate P, shall fall
sufficiently to keep T'; cut off even after the input pulse passes. Hence
the grid G; must rise somewhat into the region where 7'y acts as an
amplifier. In this region the input capacitance of the triode, because of
the Miller effect, may easily attain values of the order of 50 yuf. In a
typical case, as in Fig. 5-2, the impedance through which this capacitance
must charge may be of the order of 100 K, in.which case the charging time
constant is about 5 usec. The charging time constant at the plate of T’y
is smaller than this amount and hence the principal delay will occur in the
grid coupling circuit. It is therefore required that the coupling attenu-
ator be compensated (Sec. 3-10) by shunting the resistors R; by small
capacitances Cy, as in Fig. 5-5, such that R,C; = R:C,, where C; is the
effective capacitance across R,. If capacitances C; are large enough to
provide compensation when the Miller effect is operative, the attenuator
will be very much overcompensated when the tube is beyond cutoff.
Such a situation is quite acceptable in the present case since we are not so
much concerned with preserving a waveshape as we are with obtaining,
at a grid, an abrupt response to a voltage change at a plate. The larger
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(4, the faster will be the response at G» due to a change in P;. However,
we shall find in Sec. 5-5 that a large C; has other adverse effects upon the
operation of the binary. The exact value of C; is not critical, but it
should be chosen so that the attenuator R; and R, is approximately
compensated. Ior a triode, C; is ordinarily of the order of 50 puf.
Since these capacitors, C1, are used to assist the binary to make an abrupt
transition between states they are known variously as commutaling,
transpose, or speed-up capacitors.
TEbb

y

_Ecc

Fig. 5-5. A binary circuit including commutating capacitors.

5-4. Regeneration in a Binary.? The situation in which both tubes of
the binary are operating as amplifiers and in which both tubes are carrying
the same current is one of unstable equilibrium. If the circuit is displaced
from this initial state, it will continue to move in the direction in which it
was displaced until further excursion is limited by tube nonlinearities.
We may get some rough idea of the rapidity of this regenerative action
from the following considerations.

"Let us assume, for simplicity, that the commutating capacitors in
Fig. 5-5 have been selected to compensate exactly the coupling attenuator.
In this case the impedance seen looking into the attenuator consists
exactly of a parallel combination of a resistor and a capacitor. The
resistance has a value equal to R; + R; and the capacitance has a value
equal to the series combination of C; and the grid input capacitance. An
equivalent circuit for the binary which applies so long as the binary
continues to operate linearly is given in Fig. 5-6. The gain A is the
nominal gain of the amplifier, neglecting all capacitive loading, including,
however, the attenuation and loading of the coupling network, R; and
R2.  The resistance R is what the output impedance of a stage would be
if the signal were taken from the plate including also the loading effect
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of the coupling network. Finally, C is the parallel combination of the
capacitance seen looking into the coupling attenuator and any other
plate-to-ground capacitance.

R R
|-°°Gn oWV °G; +o T MWNV—1
A 4e,| i)Y eE:c A Ac| T,y eflb_c
[ — —N —

F1a. 5-6. Approximate equivalent circuit for a binary when both tubes are operating
as amplifiers.

If e; and e, are, respectively, the voltages on the two capacitors with
the polarities as in Fig. 5-6, Kirchhoff’s voltage law yields

RC d61 deg

+ ey — A62 =0 RC + €2 — Ael =0 (5-1)
Substituting solutions of the form e, = Bie?* and e; = Bje?*, we find, using
v = RC, that the two values of p are
_A-1 =441
Pr=—7— pr=-—_"— (5-2)
In the first case (p = p,) we find that B; = B, = D, while in the second

case (p = ps), B = —B; =TF. Hence,

A— _A+1, :

o= DiT P (5-3)
A-1, _A+1,

=Der —Fe * (5-4)

In Eqgs. (5-3) and (5-4) e; and e» are the departures of the grid voltages
from those potentials which correspond to the state of unstable equi-
librium. Forife; = ¢; = 0att = 0, thene; = e; = 0 permanently since
in this case F = D = 0. And the only state in which the circuit will
remain ‘‘permanently’’ is this state of unstable equilibrium.

The gain A in Eqgs. (5-3) and (5-4) is a negative real number. The
exponent in the first term of each of these equations is therefore always
negative. However, if the magnitude of the gain is larger than unity the
exponent of the second term is positive. Here then is the reason for the
regenerative departure of the binary from its unstable equilibrium state.
Suppose, for example, that both grids should be displaced in the same
direction from the equilibrium state by means of external voltage sources
which are then abruptly removed. In this case F = 0 and the binary
simply decays exponentially back to its equilibrium state. If, however,
the grids are displaced by equal amounts E in opposite directions and
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then released, the regenerative action will take place. In this case
D=0,F =E,and
141-1, l4l-1,

e =Fe e = —FEe (5-5)

If E is positive, e; increases and e, decreases rapidly with time, and we
have verified the statement previously made that if the circuit is displaced
from its initial state it will continue to move in the direction in which it
was displaced until further excursion is limited by nonlinearities which
reduce the loop gain below unity.

The rapidity of the regenerative action is measured by the quantity
(Al = 1)/ =¢ |A|/r = |A]/RC. Wemay easily verify that |A|/R = agn
in which ¢ = R,/(R, + R,), is the attenuation of the coupling resistors
and ¢.. is the tube transconductance. Hence |A|/RC = ag./C. Since
the capacitance C, of the attenuator is usually about 50 uuf and a reason-
able value for a is a = 14, the capacitance at the plate due to the attenu-
ator is about 25 puf. Let us, then, take the total plate capacitance
C = 35 ppf. TFor a tube such as the type 5965 for which the average
g is about 4 millimhos, ag,,/C = 6 X 107 sec—.

We may now make an estimate of the speed with which regenerative
action will carry a binary through the region where both tubes are operat-
ing as amplifiers. Suppose that we consider a situation in which the
grids of the binary are released from a point which is 0.1 volt different
from the grid voltages corresponding to unstable equilibrium. Suppose
that one or the other grid can swing an additional 10 volts before the
regenerative action must stop because a tube goes into either cutoff or
clamp. From Eq. (5-5) the time of regenerative action T may be com-
puted from 10 = 0.1 exp (6 X 107T). We find that

T =8 X 108 sec = 0.08 usec

The value of the resistance R does not enter explicitly into the calcu-
lation of the regeneration time. Actually, when the tubes are triodes,
the load R, may have some bearing on the regeneration time. The
reason for this circumstance is that the grid input capacitance increases
with increasing gain and hence increases with increasing Rz. If the
tubes employed were pentodes, however, the regeneration time would be
quite independent of Rj.

We shall look shortly into the matter of how long a time is required
to complete a transition from one stable state to the other., We shall
find that in very many cases the time required is so much longer than the
regeneration time that the regeneration time may be entirely neglected.
More than this, we shall find, frequently, that a binary will make a
transition without at any time being in a region where regeneration is
possible.
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b-b. Resolving Time in a Binary. An exact and general analysis of the
transition between states in a binary triggered in an arbitrary fashion
would be extremely complicated. It will be worthwhile, however, to
examine in some detail a particular example to get some idea of the time
required for the transition to be completed. The shortest interval
between triggering pulses for which the binary will operate reliably is
called the resolving time. This time is made up of several components,
each of which will now be considered separately.

Let us consider the binary circuit of Fig. 5-7. The generator E is to
be used to trigger the transition. The tubes are the two sections of a
type 5963 (see the curves in Fig. A-7). The electrode voltages in one of
the stable states are indicated in the figure. For simplicity, the voltages
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> +95 v 00v
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I R by A
220K 220K
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F1G. 5-7. Relating to the transition between states in a binary.

are given only approximately. In order to allow for stray capacitances,
we have assumed that a capacitance of 5 uuf is shunted from plate to
ground of each tube. Again allowing for stray capacitance, we may con-
sider that, so long as a tube is cut off, the input capacitance at the
grid, C;, is approximately 10 yuf. When the tube is within its grid base,
we shall consider that the Miller effect increases C; to about 50 uuf so
that the coupling attenuator is approximately compensated. The gain,
grid to plate, is about 17, so that assuming the Miller capacitance to be
40 puf allows for a total grid-to-plate capacitance, both internal and
external to the tube, of about 2.2 uuf.

Now let us consider that the generator E provides an abrupt positive
step large enough to cut off tube 7T;. The plate of T; and the grid of
T will rise and the plate of T'» will fall so that eventually, when the posi-
tive step passes, the tube T; will remain cut off and a transition is accom-
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plished. Note particularly that at no time are both tubes operating as
amplifiers and hence there will be no regeneration.

For simplicity, let us assume that, when 7'; is cut off, the commutating
capacitor C, is large enough in comparison with C; so that any voltage
change at the plate T, appears unattenuated at the grid of T.. To the
same order of approximation we shall assume that the total capacitance
shunting the plate of T, is 5 4+ C; = 15 upf. The cutoff voltage of T is
about 15 volts; hence the plate of T, will rise the first 40 volts with a time
constant T, = 47 X 103 X 15 X 10712 =2 0.75 psec. During this time the
voltage across the capacitor Cy will not have changed appreciably. As
the voltage at the grid of 7'y increases from — 15 volts to zero, the attenu-
ator is compensated. The capacitance of the attenuator is now 25 uuf
and the capacitance at the plate 7'; is 30 puf. Hence, the voltage at this
plate rises the next 30 volts with a time constant

72 = 47 X 10% X 30 X 1072 = 1.5 psec

The voltage across C; will also have changed by 15 volts to make the
capacitor voltage equal to 110 volts. TFinally, as T's goes into clamp, the
plate of T rises from 110 volts to 200 volts. During this time the total
capacitance at the plate is 55 puf which will charge with a time constant
approximately equal to 73 = 47 X 103 X 55 X 10~12 = 2.5 usec.

Next consider the coupling from the plate of T to the grid of T\.
For simplicity, let us neglect the finite rise time of the grid of Ts. The
plate of T will eventually drop to 40 volts. Since T'; is conducting, the
impedance through which the plate capacitance charges is the parallel
combination of I; and the plate resistance r,. The plate resistance is
roughly 7 K so that the capacitors discharge essentially through this 7 K
resistance. The plate P; drops from 200 volts to 40 volts with a time
constant 7, =7 X 103 X 15 X 1012 ==20.11 psec. Again, considering
that C{ is large enough so that the signal at P, is transmitted unattenu-
ated to Gy, the grid G; drops from zero to — 160 volts. The voltage across
C must discharge from 200 volts to 95 volts. Also C] and C; must charge
through a resistance which is essentially equal to the parallel combination
of the two 220-K coupling resistors. The time constant for this discharge
is 75 = 110 X 103 X 60 X 10712 =< 6.6 usec.

We may note also that the principal delays involved in establishing
the binary in its new stable state are the delays due to the need for the
capacitors C; and C] to charge to a new voltage level. Capacitor C,
charges on grid-current flow through the load resistor Rz, while C]
charges through the parallel combination of the coupling resistors.

Since so large a time relatively is involved in recharging the com-
mutating capacitors, we might stop to reconsider in somewhat more detail
the function of these capacitors to see whether or not they do more good
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than harm. For this purpose let us divide the total cycle of events
involved in a complete change from one state into the other state into two
parts. The first of these we shall call the transition time, while the second
is to be called the settling or recovery time. The transition time is to be the
time which must elapse before the grid G, just drops below cutoff so that
even if the input step E should then return to zero (the input signal
constituting, then, a pulse) the binary would continue the rest of the way
unaided by any external signal. The settling time is the additional time
which must pass before the binary has completely established itself in its
new state. This recovery time is essentially the time required for the
commutating capacitors to recharge. Removing the commutating capac-
itors would certainly reduce the recovery time but would at the same time
lengthen the transition time because of the long delays associated with
the uncompensated attenuators. As a result the pulse applied to effect
the transition would have to be appreciably longer in duration, while the
sum of the transition time and recovery time would not have been mate-
rially reduced. In many cases the signal available for inducing the transi-
tion is not a flat-topped pulse but rather a spike-type voltage such as
results from the differentiation of an abrupt voltage step. In such a case
a small transition time is more important than a short recovery time.

We will find an even more important reason for retaining the com-
mutating capacitors in the following discussion. Let us consider that the
commutating capacitors have been removed and that the input pulse F is
not large enough to drive 7' to cutoff but only large enough so that the
plate of T’ rises to 100 volts. (We assume that G, remains fixed, tem-
porarily at least, at zero volts with respect to ground because of the shunt
capacitance at this grid.) There will be an abrupt change of 60 volts at
P,, the signal transmitted to G» will be less than 30 volts in amplitude,
and T, will not come out of cutoff. When the triggering pulse passes, the
binary will find itself in its original state. If, however, capacitor C, were
present and were large in comparison with C; the signal transmitted
through the attenuator would be large enough initially to drive T into
the conducting region.

In the case where the signal E is not large enough to cut off 7'y, a part
of the cycle involved in the fransition will be regenerative. However,
no appreciable extra time is required for the circuit to complete by
regenerative action that part of the cycle which would already be com-
pleted if I were large enough to cut off tube T';.

6-6. Methods of Improving Resolution. A first step in the direction
of decreasing the resolution time of a binary is clearly to reduce all stray
capacitances to a minimum. Beyond this, it is necessary to reduce the
sizes of all the resistors Ry, B, and Rs. The reduction of Bz will improve
the rise time of the waveforms at the tube plates and will reduce also the
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recharging time of the commutating capacitor connected between the
plate of the off tube and the clamped grid. The reduction of Z, and R,
will reduce the recharging time of the other commutating capacitor.

The price that must be paid for these improvements in resolution time
is, in the first place, increased dissipation of power in the circuit since,
because of the smaller resistors, the current drain from the supply voltages
will increase. Second, unless it is possible to increase the tube current
in proportion, as the load resistor is reduced, the plate swing will become
smaller, Hence, not only will the useful output signal be reduced but
the total grid swing will be reduced and it may be difficult to maintain
d-c stability in the binary. When the grid swing is reduced, it may
become necessary to use 5 per cent or perhaps even 1 per cent components.

Let us compare the binary circuits of Fig. 5-8a and b. The binary
in Fig. 5-8a is used in the Berkeley model 705A counter. It has a resolu-
tion time of approximately 5 psec and is used in an application where it
must respond to evenly spaced pulses which occur at a rate of 100,000 per
second. The binary in Fig. 5-8b is used in the Hewlett-Packard model
524 A counter in an application where it must respond to regularly spaced
pulses which occur at a rate of 1 Mec. In both circuits approximate
values of quiescent voltages are given.

Note that in going from Fig. 5-8a to b there is a substantial reduction in
Ry and in the value of the parallel combination R, and R,. The smaller
load resistor also reduces the Miller capacitance at the grid and hence
permits a reduction in the size of the commutating capacitors from 50 to
25 puf. A further factor that speeds up the transition is that in Fig. 5-8a
the change in the voltage across the commutating capacitor is 90 volts
while in Fig. 5-8b the change is only 24 volts. On the other hand, the
output swing in the binary of Fig. 5-8a is 110 volts against 40 volts in
that of Tig. 5-8b. The total dissipation in the binary of Fig. 5-8a (exclu-
sive of heater power) is about 0.8 watt against 1.9 watts in that of Fig.
5-8b.

At the expense of appreciably increased complexity the resolution time
may be improved further. Figure 5-9 shows the circuit used in the
Hewlett-Packard 524A counter which responds to a 10-Mec signal. The
grid excursion is from grid clamp to —2 volts, being limited in the nega-
tive direction by the 1N34 crystal diode in the grid circuit. Here is an
example of a binary operating with one tube in clamp and the other part
on instead of below cutoff. The grid need never recover from a large
negative voltage, and the d-c¢ stability that would normally be provided
by having one tube below cutoff is provided instead by the crystal diode
clamp. The plate loads are large but the plate swing is again limited
by plate-catching diodes (see Fig. 4-37) to a total excursion of 20 volts.
The advantage of the plate clamping arrangement as against the use of
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small plate resistors is made clear by Tig. 5-10. Suppose that, correspond-
ing to the grid swing allowed, the plate-current change is AI. For a small
resistor, the exponential rise of plate voltage due to the shunting capaci-
tance is shown by the solid curve in Fig. 5-10a. The resistor would be
selected to be somewhat larger than necessary to provide the minimum
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Fic. 5-8. (a) A 100-ke binary (10 per cent components); (b) a 1-Mec binary (5 per cent
components). The voltage valves indicated are nominal.

plate swing required as an output signal and to ensure that there is
adequate voltage to swing the grids over the required range. Suppose
now that as the tube ages its cathode emission falls. Then, as shown by
the dotted curve in Fig. 5-10a, the plate swing may fall below the mini-
mum acceptable value. In Fig. 5-10b the situation depicted is one in
which the plate resistor is much larger than in a. Now, if A should
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decrease as indicated by the dotted curve in Fig. 5-10b, the plate
swing will remain unaltered. Also, the time ¢, need not be appreciably
longer than ¢.. To make the rise and fall times at the plate equal,
the clamped region is placed approximately midway between the limits
of the unclamped excursion.

An important point to note is that in the present circuit the com-
mutating capacitors need not charge at the end of a transition through
the plate resistor or coupling resistors. Instead, one of the capacitors will
discharge through the grid-to-cathode resistance and through the crystal
diode connected to the +90-volt source. The other capacitor will charge
through the grid crystal diode and the diode connected to the +70-volt
source. The recovery time will therefore be very small, since the diode
resistances are only of the order of 200 ohms.

Finally, we may note the use of high g. pentodes. The high g,
reduces the regeneration time and also results in a large (unclamped)
plate swing for a small grid-voltage swing. The use of pentodes virtually

-eliminates the Miller effect and allows the use of smaller commutating
capacitors. Also, since the plate swing gets progressively smaller as we
go from the circuit of Fig. 5-8a to b to Fig. 5-9, we are not surprised to
find that the first of these circuits uses 10 per cent components, the
second 5 per cent components, and the last 1 per cent components.

b-7. Triggering of the Binary. The triggering signal which is usually
employed to induce a transition from one state to the other is either a
pulse of short duration or the step voltage. This puise or step may be
introduced in such a manner that will produce either symmetrical or
unsymmetrical triggering. In unsymmetrical triggering the triggering
signal is effective in inducing a transition in only one direction. A second
triggering signal from a separate source must be introduced in a different
manner to achieve the reverse transition. In symmetrical triggering
each successive triggering signal induces a transition independently of
the state in which the binary happens to be. Unsymmetrical triggering,
using two triggering sources, is found frequently where the binary is to
be used as a generator of a gate whose width equals the interval between
triggers. Symmetrical triggering is used in binary counting circuits
(Sec. 11-1). Decade counting circuits (Sec. 11-3) employ a combination
of symmetrical and unsymmetrical triggering. We shall consider in this
present section only the method of triggering unsymmetrically.

A positive step voltage, of sufficient amplitude, applied through a
capacitor to the grid of the off tube of a binary will cause a transition.
Similarly a negative step applied to the grid of the on tube will induce
a transition. It is important to understand that ordinarily the sensitivity
of the binary fo the negative step will appreciably exceed the sensitivity
to a positive step. For the sake of being specific, let us consider a binary
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in which the grid base of a tube extends from 0 to —10 volts and in
which, in the stable state, one grid is in clamp while the other grid is
at —25 volts. Assume also that the nominal gain of a stage from grid to
grid is 10. A negative step of amplitude 1.5 volts applied to the on grid
will bring the off grid to the point of cutoff. A negative step of amplitude
2.5 volts will bring the initially off grid to zero voltage. A step of some-
what smaller amplitude than 2.5 volts will be sufficient to leave the binary
in a situation in which the current in the initially off tube is larger than the
current in the initially on tube, and we may expect the binary to complete
the transition through regenerative action. If the coupling attenuator is
overcompensated, the response at the initially off grid will be larger and
the negative step required to induce a transition will be correspondingly
smaller. Now consider a positive step applied to the off grid. Since the
tube is 15 volts below cutoff, no response is to be anticipated until the step
voltage exceeds 15 volts in amplitude. The binary will therefore respond
to a smaller negative step voltage than to a positive step.

Suppose that a positive pulse is applied to the grid of the off tube. The
pulse is a combination of a positive step and a delayed negative step.
The result to be anticipated is therefore a combination of the response of
the binary to a positive step applied to the off grid followed by a negative
step applied to the on grid. Because of the greater sensitivity to the
negative step, a positive pulse applied to the grid of the off tube will flip
the binary at the leading edge of the input pulse and flip it right back
again at the trailing edge of the input pulse.

Next consider a negative pulse applied to the on grid. Since the
binary responds to a smaller negative step than positive step, we may
adjust the pulse amplitude to prevent the binary from making a reverse
transition on the trailing edge of the pulse. For the binary described
above, the negative pulse amplitude may lie in the range roughly from
somewhat less than 2.5 volts to somewhat less than 15 volts. The binary
is more sensitive to a negative step applied to the on grid than to a positive
step applied to the off grid. Therefore, to achieve a transition without a
reversal, the negative step must precede the positive step.

It is possible to arrange a permanent binary transition through the
use of a positive pulse, provided that the positive pulse is applied to
the grid of the on tube. The leading edge of the positive pulse, applied
to the on grid through a capacitor, will raise the voltage of the grid and
additional grid current will flow, charging the input capacitor. This
capacitor will charge rapidly through the low grid-to-cathode resistance
and the voltage at the grid side of the input capacitor will decay rapidly
back to zero. So far, then, all that has happened is that the conducting
tube has been driven temporarily to conduct more current than in the
quiescent state. Now, however, at the occurrence of the negative-going
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trailing edge of the input pulse the grid will be driven negative by an
amount equal to the amplitude of the pulse. And since the binary is
very sensitive to a negative step applied to the on grid, a transition may
result. As a matter of fact if we consider as above that the grid-to-grid
gain is 10 and that the grid of the nonconducting tube is 15 volts below
cutoff, a positive pulse of somewhat more than 1.5 volt amplitude will
suffice. Itisto be noted particularly, however, that the transition, when
it does occur, occurs at the trailing edge of the triggering pulse.

Up to the present we have neglected, for simplicity, the finite imped-
anceto be seen looking into the grid to which the triggering signal is applied,
and we have assumed that the triggering pulses had arbitrarily steep
leading and trailing edges. Let us consider qualitatively how these two
factors affect the conclusions arrived at above with respect to triggering.
In the first place, the capacitive input impedance may well be comparable
to the capacitance of the trigger input capacitor whose value typically
may be of the order of 50 uuf. In this case the two capacitors will form
a voltage divider, and if a signal of particular amplitude is required at the
grid to cause triggering, the input signal may have to be appreciably
larger. Next consider the case in which a positive pulse is applied to
the grid of the on tube. We saw that if the pulse has a sharp leading and
trailing edge a transition will result. But suppose that instead the pulse

has the form shown in Fig. 5-11.

Trigger The sharp leadi.ng edge will charge
inlput the input capacitor by drawing grid
voltage , current. If the pulse now falls

l slowly and the voltage drop across

the input capacitor can decrease at
about the same rate as the pulse
falls, the grid-to-cathode voltage will never become negative and no transi-
tion will take place. Similarly, if a pulse form as in Fig. 5-11 is applied
to turn on the initially off tube in a binary, it may be that the slow falling
portion of the pulse will not reverse the transition. Quite generally, as a
matter of fact, since the input capacitor transmits preferentially fast wave-
forms, a slow portion of a waveform may not affect the binary.

The application of a triggering signal directly to a grid through a
capacitor has two important disadvantages. First, the presence at the
grid of the additional trigger input capacitor will slow down the transi-
tion between states. Second, the circuit may respond at the termination
of a positive pulse applied to the or grid. Both these disadvantages may
be eliminated if the input trigger is applied not directly through a capaci-
tor but instead through a series combination of a capacitor and a large
resistor. Or, equivalently, the trigger source may be a source of high
resistive output impedance. Typically, the series resistor may be of the

Fia. 5-11. A binary triggering waveform.
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order of several hundred kilohms while the capacitor may again be of the
order of 50 puf. Of course, under these circumstances, because of the
finite impedance scen looking into the grid, the trigger-source voltage will
have to be appreciably larger than is required when the signal is applied
directly through the capacitor. This larger signal is required not only
because of the attenuation of the signal but also because the capacitance
at the grid will cause the trigger signal at the grid to rise more slowly.

The series resistor will have no material effect on the response of the
binary to a positive pulse applied to the off grid or a negative pulse
applied to the on grid. But suppose a positive pulse is applied to the on
grid. The input capacitor will now charge with a time constant equal,
say, to 50 puf X 200 K = 10 gsec. If the input pulse has a duration of
only several microseconds, the input capacitor may not have charged
appreciably and it is probable that no transition will take place at the
trailing edge of the pulse.

The triggering signal may be applied at the plate of one of the tubes
of the binary rather than at the grid, again preferably through a resistor
and capacitor. Any signal so applied will immediately appear at the grid
of the other tube, being transmitted directly through the commutating
capacitor. The presence of the series resistor will serve to accentuate
even further the sensitivity of the binary to a negative pulse. This extra
sensitivity results because the positive step would have to be introduced
at a point where the signal looks directly or through a coupling capacitor
at the plate of a tube which is conducting. For example, in Fig. 5-7
a positive step must be applied at P, in an attempt to bring G5 out of
cutoff. At the plate P, however, the impedance presented to the trigger-
ing signal is low. A negative signal would be introduced, on the other
hand, at the plate of a cutoff tube (P; in Fig. 5-7).

The discussion in this section may be summarized as follows: The most
reliable method for triggering a binary unsymmetrically is to apply a negative
pulse from a high-impedance source to the plate of the nonconducting tube.
In the next section the advantages of introducing the triggering pulse ~
through an auxiliary diode (or triode) are discussed.

5-8. Unsymmetrical Triggering Through a Triggering Tube. A very
effective and reliable triggering method is shown in Tig. 5-12. The trig-
gering tube T'; has a sufficient negative bias so that the tube will be in the
region beyond cutoff even when T'; is not conducting so that the plate
voltage of T'; is high. Independently of which state the binary is in, a
negative pulse or step applied to the grid of T; will have no effect. If,
however, the binary is in the state in which T'; is not conducting, a posi-
tive input pulse will drop the plate voltage at P; and a transition will
occur. The situation is essentially the same as obtains when a negative
pulse is applied at P, except that the resistor R will serve also as a plate
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resistor for Ts;. Hence T'; will provide gain, and the input trigger may be
correspondingly reduced in amplitude. It will usually not be necessary
to couple together the plates of T'; and T1. Depending on how large a
current flows through 7’5, it may be possible to connect the plate of T';
to a point on Ry closer to the supply voltage, as indicated by the dotted
alternative connection. The extent to which the triggering tube inter-
feres with the fast action of the binary, because of the additional capaci-
tance at the plate, will become progressively smaller as the tap point
moves closer to the supply voltage.

If the binary is in the state in which T'; is conducting, a positive input
trigger will only drop further the plate P, and drive the grid @, further
into cutoff.

o—j

Input
trigger

—E —Ee
Fic. 5-12. The use of a triode to trigger a binary.

Recalling the discussion of Sec. 5-7, we note that, when a triggering
pulse is impressed directly, the possibility exists that the binary will
respond to either negative or positive pulses and that, when positive pulses
are applied, the binary may respond independently of the state in which
_the binary is initially situated. In the present case we find that the
"binary will respond only to a positive pulse and only when the binary
is in a particular state. This last feature is a result of the unilateral
action of the triggering tube and, where the gain of the triggering tube is
not required, may be achieved through the use of a diode (thermionic or
crystal). Diode triggering is shown in Fig. 5-13a. When T is con-
ducting, the plate of the diode is negative with respect to the cathode and
the diode will not transmit a triggering signal. When T is off, the diode
drop is zero. The diode will still fail to transmit a positive-going trigger
but will transmit a negative step or pulse to the grid of 7.. Observe
that here, as in the case also of the triggering triode, the signal to which
the binary responds is the signal which effectively applies a negative
signal to the on grid, to which signal the binary is most sensitive. The
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time constant REC of the input circuit is not critical, but should be small
enough so that any charge which accumulates on C during the time 7’5
conduets shall have time to decay during the interval between pulses.
An alternative diode triggering arrangement is shown in Fig. 5-13b.
Here the negative signal is applied through 7’3 directly to the grid of
the on tube T;. The resistor R is returned to ground (corresponding to
the grid voltage at clamp) rather than to the supply voltage.

el
Trigger
input

t .

o0—

Trigger
input R %Rz
¥

()
Frac. 5-13. (a) Trigger injected at plate through a diode. (b) Trigger injected at grid
through diode.

6-9. Symmetrical Triggering.? Symmetrical triggering may be accom-
plished with any of the circuits of Fig. 5-14. For example, in Fig. 5-14a
neither diode will conduct unless the input signal is negative. A nega-
tive input signal will be transmitted only to the clamped grid. The
diodes serve exactly the same function as described in Sec. 5-8 in connec-
tion with Fig. 5-13a. The only difference is that, since there are two
diodes, the binary will transfer at each successive negative input pulse.
The circuit will also respond to either a negative pulse or step but will not
respond to a positive pulse or step. We shall see in Chap. 11 the very
important application which is made of the fact that it is possible to
trigger a binary with a signal applied symmetrically and to have the
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binary respond for only one polarity of triggering signal. It turns out
to be possible to accomplish this same end without the aid of auxiliary
unilateral devices, and we shall examine now the mechanism by which
this result is accomplished.

Consider the binary circuit of Fig. 5-15. This circuit differs from
the binary circuits previously encountered only in that an additional
resistor has been included directly in series with the supply voltage. Of

Binary
TEbb tubes \

R
< 0—'
Negative .
; Negative
trigger trigger

Positive )
trigger Binary ==

" tubes
L

L %R
(¢) —Eee

Fra. 5-14. (a) Symmetrical triggering at binary plates through diodes (analogous to
the unsymmetrical triggering method of Fig. 5-13a). (b) Symmetrical triggering at
binary grids through diodes (analogous to Fig. 5-13b). (¢) Symmetrical triggering
using triode triggering tubes (analogous to Fig. 5-12).

course, to allow for the drop in this resistor a higher supply voltage is
required. Note, however, that the effective supply voltage (the drop
between point A and ground) is nominally the same for the two states
of the binary so that the presence of this extra resistor does not materially
complicate the calculation of the stable states.

The voltage levels of the plates and grids and the voltage across the
commutating capacitor corresponding to a stable state are given in the
figure. For simplicity, we have taken R, = R, = R. We have also
assumed that the coupling resistors are large enough so that their loading
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effect at the tube plates is negligible. The response of the circuit depends
importantly on the presence of the commutating capacitors. To see
this effect without extensive complication, let us neglect all other capaci-
tances which may be present.

Now let us apply a negative input step of amplitude 90 volts and
assume that the input step has

dropped so rapidly that the com- +250v
mutating capacitors have not been

able to discharge appreciably. If R'S20K
we now further assume that, as a o 1t ¢ 150v
consequence of the applied step, Negative L 4

both binary tubes are cut off, the i“rfggt
voltages at the various electrodes
are easily computed. Since neither —i—s ma
tube is conducting, the plate volt-
ages are equal and are equal also to
the voltage at point A. This volt-
age is 60 volts, being 150 volts
minus the 90-volt input step. The
voltage at G:is equal to the voltage
at P; minus the drop across the
commutating capacitor connected
between P; and G.. Hence G is
at —15 volts. Similarly, the volt-
age at G1is —90 volts. Since these —100v
grid voltages are well below the Fie. 5-15. A symmetrical triggering ar-
cutoff voltage of — 12 volts, we have ngement which docs not employ aux-
. ) ? iliary triggering diodes or triodes.
verified the assumption that both
tubes have been cut off by the input step.

The negative step applied at A will now start to decay and the voltage
“at A will start to rise exponentially toward the supply voltage. So
long as the tubes remain cut off, the plates, both of which start at 60 volts,
will rise together. If we assume also that the commutating capacitors
continue to hold their charge, then both grids will also rise at the same
rate. Since G starts at —15 volts while Gy starts at —90 volts, it is
clear that G, will reach the cutoff level first. Hence when point 4
returns to its quiescent level, we shall find that T, is conducting while
T, is cut off; i.e., a transition has taken place. After the transition has
been completed, the commutating capacitors will interchange voltages in
the manner described in Sec. 5-5 in connection with the recovery time of
the binary.

Suppose that the commutating capacitors were absent. The pre-
dominant capacitance present would then be the effective capacitance

5963
Tube
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present at the tube grids. When the plates drop to 60 volts in response
to the applied step, the grids will decay toward their quiescent value,
which in this case is —20 volts for both grids. The grid G, therefore
starts to rise from —25 to —20 volts, while G, starts to change expo-
nentially from 0 to —20 volts. Since the cutoff voltage is —12 volts,
tube T, remains off. Tube T; may go off for a short interval of time
(if its grid falls below —12 volts), but as the input step decays and both
the plates and grids start to rise, tube T; will again conduct. The result
18 that no transition can take place if the commutating capacitors are removed
from the circuit.

An important point to note in connection with the circuit of Fig. 5-15
is that it is appreciably more sensitive to a negative step than to a positive
step. To see in a general way how this sensitivity arises, consider that
the input negative step is only 1 volt in amplitude. The plate P, will
drop to 149 volts and the grid G; will drop to —1 volt. The principal
change at P; will be due to the grid-voltage change and the plate P, will
jump (as determined from the tube characteristics) to about 62 volts.
The grid (2 will then jump to —13 volts, which is just about the cutoff
voltage of Ts. If, therefore, the step input were slightly larger, tube T,
would start to conduct, dropping P, and G, even further and in turn
raising P; and G.. Of course, since we have neglected the other capaci-
tances associated with the circuit, we may not conclude that a 1-volt
signal is adequate to ensure a transition. This discussion is useful only
for the purpose of comparing the effect of the step polarity. For next
consider that the step is positive. The positive step transmitted to P,
and from P: to @, will only serve to drive G; further into the positive
grid region. The positive step which is transmitted to P,, and from P,
to Gy, is first of all attenuated owing to the fact that 7', is conducting.
The plate resistance of the tube is about 7 K so that the step at point A
appears at P, and G; attenuated by the factor 7/27 =2 0.26. One may
now estimate that, even if it is assumed that G; does not go appreciably *
positive a 50-volt step, roughly, will be required to bring T up to the
cutoff voltage.

Two additional triggering schemes similar in principle of operation are
shown in Fig. 5-16a and b. It may be found that to ensure reliable
triggering the commutating capacitors may have to be made larger than
is consistent with a short recovery time. Hence the methods of Figs.
5-15 and 5-16 are normally not employed where resolution times are
required which are shorter than about 10 usec. Where shorter resolution
times are important, the schemes of Fig. 5-14, using auxiliary unilateral
devices, are more common.

6-10. The Cathode-coupled Binary.* A cathode-coupled binary cir-
cuit (also known as the Schmitt circuit after its inventor) is shown in
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Fig. 5-17. 'This binary differs from the binary considered previously in
that one plate-to-grid coupling attenuator has been replaced by a coupling
connection through an unbypassed common cathode resistor B;. We will
be able to appreciate the usefulness of this circuit by considering its
response as the voltage ¢ is varied.

Consider that in Fig. 5-17, ¢ = 0. Then we shall be able shortly to
verify that 7'; will be cut off and, neglecting the loading effect of the
coupling attenuator, P, will be at
250 volts. Let the attenuator ratio
a [= Ry/(R1 + R.)] be selected so
that the grid-to-cathode voltage of
Tyis —1volt. It may then be veri-
fied from the tube characteristics

o]

Negative E,, (=250v)
trigger T
Z
il /RL(=10K)\ li
1 2
R, R,
Negative “
trigger +
T & o
- R, (=15K) € R,
(b) hE

F1a. 5-16. Alternative symmetrical trigger-  Fia. 5-17. The cathode-coupled binary.
ing arrangements which do not require the
use of auxiliary diodes or triodes.

that 72 = 6.2 ma so that the cathode voltage = 6.2 X 15 = 93 volts
and T is indeed cut off. The voltage at G is 93 — 1 = 92 volts and
a = 92459 = 0.37. Now as the voltage e is increased, the circuit will
not respond until 7; comes out of cutoff. Note that the plate-to-
cathode drop of 7, is 250 — 93 = 157 volts, for which voltage cutoff
occurs at a bias of —6 volts. Hence, when ¢ = —6 4 93 = 87 volts,
T, starts to conduct. At this moment P, will drop and G, will drop.
The signal at G: is transferred to T, through the cathode circuit and
reappears at P; with the same polarity as at G.. The signal at P; is now
transferred again to G and if the loop gain exceeds unity a regenerative
action will take place driving T2 to cutoff.
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Assuming then that T’ is cut off and e = 87 volts, we find 7; = 5.9 ma
(see Sec. 1-7). The voltage at G, is (250 — 5.9 X 10) X 0.37 =2 70.7
volts, while the cathode voltageis 5.9 X 15 = 88.5. The grid-to-cathode
voltage of T, is 70.7 — 88.5 = —17.8 volts, which verifies that T is
cut off.

So long as R is large enough so that the voltage drop across Ry is
large in comparison with the grid base of the tube, the results above may
be stated approximately in the following manner. Initially G:is at Epa
and the cathode is approximately at the same voltage. A transition will
take place when e rises approximately to Eya (provided that T’ is not in
clamp). When 7; conducts, its current ¢; will be nominally the same as
72 and the cathode voltage will change only slightly.

The output signal is customarily taken from P, and consists of a
negative step of amplitude 73Rz, (= 62 volts in Fig. 5-17). Obscrve that
the resistor Ry in the plate circuit of T’ is not actually required for the
operation of the circuit. This resistor may then be adjusted over a wide
range to adjust the output signal amplitude. Furthermore, capacitive
loading at P» will not slow the regenerative action, although such capaci-
tance will slow the waveform at P..

If an output pulse instead of a step is desired, the plate load resistor
of the right-hand tube may be replaced by an inductor or by a trans-
former (see Sec. 2-6). ,

The grid G4 is free to receive the triggering signal and the impedance
of the triggering signal source will have no influence on the operation
of the circuit. After the circuit has been triggered, further increase of e
has no influence on the voltage at Ps.

It will now be shown that this circuit exhibits hysteresis or backlash.
In other words, the value of voltage at which triggering occurs depends
upon whether ¢ is increasing or decreasing. Let us call the value for
increasing e (T going from off to on) E*+ and the decreasing value (T
going from on to off) E—. The value of e (= 87 volts) calculated in the
above illustration is E+. If e has increased above I+ and then decreased
again to slightly below E*, the circuit will not flip back. The reason for
this hysteresis is that, whereas the cathode voltage is approximately its
previous value, the grid-to-ground voltage of T is much lower than its
previous value, and 7's stays cut off. In order to bring 7T'» into conduc-
tion, ¢ must be decreased further. This decreases 7; and the cathode
voltage e, and increases the grid-to-ground voltage at G. Finally, the
grid-to-cathode voltage of T's exceeds the cutoff voltage E... correspond-
ing to plate voltage Ew — ex. To find E—; we first find the current IT
in T'; just at cutin of T's from the equation (Ey, — ITRL)a — ITR, = E.e,
from which we find

_ Ewa — Eeor

5= FRatr (5-6)
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In Eq. (5-6) E.: is not known because it is the cutoff voltage corre-
sponding to a plate voltage Iy — ITR; and IT is unknown. However,
as a first approximation E.. may be set equal to some value between
zero and the cutoff voltage corresponding to K. Using this assumed
value of E,2, Eq. (5-6) gives the first approximation to IT, say Ig.
Then E.,: corresponding to By, — IgRyis found from the plate character-
istics. This value of F.,, is then used to find the new value of I7. This
process converges very rapidly. IKnowing I7 (corresponding to It—), it
is a simple matter to find E—. A load line corresponding to I, and a
resistance Ry .+ R is drawn and I7 is located on this load line. The
corresponding grid-to-cathode voltage £ is read, and then

E- = E; + ITR: (5-7)

If e falls below E—, T starts to conduct and the circuit flips back
to its original state with Ty on. If ¢ continues to decrease, T’y remains
cut off and the output remains constant.

If the above calculations are carried out for the numerical values
given in Fig. 5-17, the results are IT = 5.27 ma, E; = —1.6 volts, and
E- = 77 volts. The hysteresis voltage E) is defined as the difference
between E+ and E—:

By = B+ — E- (5-8)

For the circuit under consideration, E, = 87 — 77 = 10 volts.

In the illustrative circuit described above, the quiescent conditions
were adjusted so that, when 7', is cut off, T, is within its normal grid base
rather than in clamp. If instead T, had been in clamp, the regeneration
would start not when G, passes cutoff but rather when G; comes out of
clamp sufficiently so that the loop gain equals unity. Because of the
presence of the commutating capacitor C;, the regeneration point will
then be a function of the speed of the input waveform since the response
at G2 to a fast waveform will be greater than for a slow waveform. When
it is required that the triggering level £+ be more independent of input
waveshape, it is therefore necessary to adjust circuit parameters so that
@, is initially within its grid base. Now, however, since the d-c stability
of clamping is no longer available, it may be required that R, and R,
be stable wire-wound resistors.

A large cathode resistor introduces into the circuit a number of worth-
while features of stability. To achieve this high effective cathode
resistance without a correspondingly large cathode voltage, it is common
to use in the cathode a constant-current device such as a pentode or the
plate impedance of a triode with a moderately large resistor in the cathode
of the triode (see Sec. 1-10). As we shall see (Sec. 15-13), the constant-
current source minimizes the effect of heater-voltage variation on the
effective cutoff voltages of the tubes. Second, it keeps constant the
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drop I,R;, independently of variations of tube T';. Both these features
serve to stabilize the triggering voltages E+ and E-.

From the above description of the action of the circuit, it is clear
that one application is as a squaring circuit. This means that the output
will be a square wave independently of the shape of the input voltage
waveform. The duration of the positive portion of the square wave
corresponds to the interval between the time when the input voltage
exceeds E+ and the time when ¢ decreases to E—. This application is
illustrated in Fig. 5-18. Note that the output amplitude is independent
of input amplitude and that the output waveform may have much
faster leading and trailing edges than the input waveform. The circuit
is also used as a regenerative amplitude comparison circuit (see Sec. 15-10).

Input e

0 ¢
Output
at b,
e,
° iRy
0

t
F1c. 5-18. Response of the cathode-coupled binary to an arbitrary input signal.

Thus the circuit responds only to signals whose amplitude exceeds a
definite value E+. In another application the circuit is triggered between
its two stable states by alternate positive and negative pulses. Thus,
if the grid of T’ is biased to a voltage E’ between E— and E+ and a posi-
tive pulse (whose amplitude is larger than E+ — E’) is RC coupled to
@4, then T will conduct and T'; will be driven to cutoff. If now a nega-
tive pulse is applied (whose amplitude is in excess of E/ — E-), the
circuit will flip back to the state where T; is off and T, is conducting.
This behavior is the same as that of a plate-coupled multi with alternate
positive and negative pulses applied to one grid. However, for the
cathode-coupled multi the possible triggering difficulties discussed earlier
are not encountered because the pulses are applied to the first grid
which is not connected to any other point in the circuit.

6-11. Hysteresis in the Cathode-coupled Binary. In order to study
the hysteresis effect in more detail, let us examine the circuit from the
point of view of a feedback amplifier. Figure 5-19 shows a Schmitt
circuit in which the quantity a [= R./(R: 4+ R.)] is adjustable. The
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resistor R. is returned to an adjustable voltage source so that the initial
voltage at G2 may be kept constant as the ratio a is varied.

Let us consider that the attenuation a has been adjusted so that the
loop gain is less than unity. In this case a plot of output voltage ¢, as a
function of input voltage e would have the appearance of curve 1 in Fig.
520a. The voltage ¢ = E, corresponds to cutoff in 7', of Fig. 5-19.
For e < E,, ¢, = By — IRy, where I, is the current furnished by the
constant-current source in the cathode. Fore > E,, the output increases

TEbb

T

©
(to adjustable

voltage)

Ry

—Ec
Fia. 5-19. A cathode-coupled binary with adjustable attenuator and a constant-cur-
rent cathode load.
with I until tube T'; cuts off at ¢ = E,. At this point e, = Ey. In the
region between E; and E. both tubes operate as amplifiers and the output
follows the input approximately linearly, the nonlinearity being most
pronounced in the neighborhood of E; and E,, where either Ty or T is
near cutoff. The slope of the curve between E, and E; is Ae,/Ae = A,
the forward gain of the amplifier. If we assume a constant-current
source in the cathode and if we continue to neglect the loading effect
of the coupling attenuator, we find (from an analysis similar to that
given in Sec. 1-10) that
A= % — plL
Ae 2(RL + rp) - aﬂRL
If now the quantity a is increased, the gain of the amplifier will increase
and correspondingly the slope in Fig. 5-20a will increase and the voltage

(5-9)
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E, will move closer to the voltage E,;. Tinally, the denominator in
Eq. (5-6) will become zero, the gain will become infinite, and the response
of the amplifier will have the appearance of curve 2 in Fig. 5-20a. The
gain becomes infinite when a = (2/p)[(Rr + r,)/Rz]. This result is con-
sistent with the fact that, as may
be verified, the loop gain of the
amplifier is

€
Eyr——————
(2) Loop gain =1

|

1

t
(1)L00' ain <1
?g A (IOOp) = %%‘L—l‘a—m; (5—10)

Ey-LR,

|
|
i
| Hence the forward gain A = Ae,/Ae
: is infinite when the loop gain of the
£, amplifier A (loop) = 1.

If @ is increased to the point
where the loop gain exceeds unity,
then Eq. (5-9) indicates a negative
gain and slope. This fact, together
with our previous discussion in con-
nection with hysteresis, indicates
that, if a plot should now be made
showing for each value of e the
corresponding value of ¢, which is
consistent with the tube character-

(d) istics and Kirchhoff’s law, the re-
F1a. 5-20. Response of Schmitt circuit (@)  gult would be as shown in Tig.
for loop gain <1, (b) for loop gain >1. 5-20b. The voltages E+ and E-
are indicated. For a value ¢ = E’, where E— < E’ < E*, there are
three possible consistent (hence equilibrium) values of e, Of these,
two, x and #, are points of stable equilibrium, while one, y, is a point of
unstable equilibrium. Hence, point ¢ cannot be attained experimentally
and the circuit will be in one or the other stable state, depending on the
direction of approach. For example, if e is increased uniformly from
zero, the output will remain at the lower value until ¢ = E+. TFor
e > E+ the only consistent output is e, = Ey; hence at e = Et a transi-
tion must take place. The path which the circuit takes in making the
transition is determined largely by the capacitances present in the circuit
and is not related to that part of the curve joining the two states in
Tig. 5-20b.

The response indicated in Tig. 5-20a, curve 2, is often particularly
advantageous. It indicatesan abrupt transition between states whenever
e passes a fixed reference voltage independently of the direction of
approach. It is achieved by adjusting the loop gain of the amplifier to
unity.
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For the circuit of Fig. 5-17 there are several methods of eliminating
hysteresis. Tor example, a resistor By, may be inserted into the cathode
of Ts, as shown in Fig. 5-21. The value of It required to bring T’ just
out of cutoff is unaffected by Rj. since there will be zero voltage drop
across this resistor if 7', is nonconducting. Hence, I~ = 77 volts, the
value calculated for Rx; = 0. Tor zero hysteresis, £+ must equal this
same value. Hence, Ry, may be found by analyzing the circuit of Fig.
5-21 subject to the condition that Ey
e = It = 77 volts with T'; at cutoff. T
However, such a calculation is only '
approximate because we have made
the assumption that regeneration
takes place when either one or the
other tube just comes out of cutoff.
Actually the circuit is triggered when
the off tube is brought into conduc-
tion sufficiently so that the loop gain

equals unity. Since Rj. introduces (e) ~
%R,, R,
-4

degeneration into the circuit, then
the larger the value of R., the
greater must be the current in the
tube being brought out of cutoff L
before the loop gain reaches unity. Fic. 5-21. Hysteresis may be reduced to
As the current in one tube increases, 2ero by adjusting R, so that the loop
the current in the second decreases S 18 Uity

and hence the g, of the first tube is increasing while that of the other is
decreasing. When Ry, is large enough to reduce the hysteresis to zero,
both tubes are conducting heavily and the gain is unity at the same input
voltage whether this voltage is increasing or decreasing.

From the above discussion we can conclude that the grid voltage of
T2 must be increased over the cutoff value before hysteresis is eliminated.
This condition requires an increase in the plate voltage of 7'; and a corre-
sponding decrease in the grid voltage of Th. Hence, the input voltage I
for zero hysteresis will be somewhat smaller than E— = 77 volts. Experi-
mentally a value of £ = 75.5 volts was found. The calculation of Ry
suggested above leads to a value which is about 20 per cent smaller than
the value found experimentally.

A second method of eliminating hysteresis is to add a resistor Ry in
series with the cathode of T;. By reasoning in a manner similar to
that given above we can conclude that as a first approximation E* is
unchanged and hence remains at the value of 87 volts found in Sec. 5-10.
An approximate value for Ri can be found by analyzing the circuit
subject to the requirement that E— also equal 87 volts. As already
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emphasized, the correct value of Rj; will occur when both tubes are
conducting current and the loop gain is unity. The corresponding input
voltage will be somewhat larger than 87 volts; experimentally a value of
88.5 volts was found.

If Ry or Ry is made larger than the value required to give zero hys-
teresis, then the loop gain will be less than unity and the circuit will not
flip from one state to the other. Usually, Ry or Rys is chosen so that a
small amount of backlash remains in order to ensure that the loop gain
will remain greater than unity even if the circuit drifts somewhat (due
to supply voltage changes, tube aging, etc.). Also, R or Ry is usually
bypassed with a small capacitor. During the transition interval this
capacitor reduces the degeneration caused by these resistors and hence a
faster output pulse or step is delivered. The size of this capacitor will
affect somewhat the value of Ryi (or Rie) at which zero hysteresis is
obtained.

If a value of Ry (or Rye) is used which is larger than required for zero
hysteresis but the resistor is bypassed so that the a-c loop gain exceeds
unity, then it is possible to trigger the circuit from one state to the next.
Under these circumstances E— > E*+ and hence mnegative hysteresis
(E, < 0) exists. This condition is unstable and the circuit. will perform
relaxation oscillations if the input voltage moves slowly between E+ and
E-. Hence, here is another reason why the resistor R (or Rys) is
so chosen as to make E; slightly positive.

6-12. Cathode Interface Resistance in the Binary. Cathode interface
resistance (see Sec. 3-18) which develops to some extent in tubes when
used as amplifiers may be very much more serious in a tube used in a
binary. The reason for this situation is that the flow of cathode current
inhibits the formation of interface resistance; but in a binary one tube is
normally at cutoff. Under cutoff conditions the inhibiting effect of tube
current is not present and the interface resistance may become very large.
When a tube has been operated with a heated cathode, but at cutoff, for
many hundreds of hours, the interface resistance may become large
enough, when the tube is finally turned on, to reduce the quiescent current
by as much as a factor of 2. Hence when a binary has remained in one
state for a long interval of time, it may well be impossible to induce a
permanent transition. The problem of interface resistance is particu-
larly serious in large-scale digital computers in which a binary may well
find itself in one state for a long period.

There have been developed in recent years a series of dual triode
vacuum tubes, the cathodes of which have been carefully treated to
remove all impurities, such as silicon, which give rise to interface resist-
ance. These tubes have been designed specifically for computer service.
Notable among these are the types 5963, 5965, and 5844. The 5963 in
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other respects is not unlike the 12AU7. The types 5965 and 5844
incorporate other improvements such as better balance of cutoff in the
two sections and a high zero-bias plate current to permit the use of small
plate load resistors.
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CHAPTER 0

MONOSTABLE AND ASTABLE MULTIVIBRATORS

The binary circuit, it will be recalled, has two stable states in either
one of which it may remain permanently. The monostable multivi-
brator (multi) has instead only one permanently stable state and one
quasi-stable state. In the monostable multi, a triggering signal is
required to induce a transition from the stable state to the quasi-stable
state. The multi may remain in its quasi-stable state for a time which
is very long in comparison with the time of transition between states.
Eventually, however, the multi will return from the quasi-stable state
to its stable state, no external signal being required to induce this reverse
transition.*

The astable multi has two states, both of which are quasi-stable.
Without the aid of an external triggering signal the astable multi will
make successive transitions from one quasi-stable state to the other.

Both these multis find extensive application in pulse circuitry. The
basic application of the monostable multi results from the fact that
it may be used to establish a fixed time interval, the beginning and end
of which are marked by an abrupt discontinuity in a voltage waveform.
The astable multi is an oscillator and is used as a generator of “square
waves” and, since it requires no triggering signal, is itself often a basic
source of fast waveforms.

6-1. The Plate-coupled Monostable Multi—The Stable State. The
circuit of a plate-coupled monostable multi is shown in Fig. 6-1. Asin
the binary circuit, so also here, the plate P, is coupled to the grid G4
through a resistance attenuator in which C; is a small commutating
capacitor. The d-c coupling of the binary from P; to G; is here replaced
by a-c¢ coupling. The capacitor C is the coupling capacitor, while R is
the grid-leak resistor. While the grid resistor R is shown to be returned

* Since after an input trigger ‘“flips”’ the circuit over, it “flops” back by itself
after a time 7, it is known as a one-shot, a single-cycle, a single-step mulli or a uni-
vibrator. Since it generates a rectangular waveform and hence can be used to gate
other circuits, it is also called a gating multi. Furthermore, since the output can
be differentiated to give a pulse at a predetermined time T after the input trigger,
it is also called a delay multi. These names are very suggestive of the uses to which

the circuit can be put.
174
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{o the plate-supply voltage, this feature of the circuit is not essential.
The resistor ® may be returned to any voltage in the range from zero
(ground) to Ey.  We shall, however, at another point, discuss the advan-
tage of returning R to the plate-supply voltage.

If the negative supply voltage —E,, and the coupling resistors I, and
R, are adjusted so that T is below cutoff, the multi will find itself in its
(permanently) stable state with 7'y cut off and 7'; in clamp.

\ Ers=(200v)

Js "
R
R,;(ZOK)% % R;=(20K)
1 c
1§ G
Ry=(1M
__ A UMl
+ AT} I\ T, +
— 12007 \Gof ___
€y e
l eI_l_ R2=(1 M) ) I
-E,,=(-210v)

F1a. 6-1. The plate-coupled monostable multivibrator. The values of the components
given in parentheses refer to the illustrative problem of Sec. 6-3.

We shall defer for discussion at a later point (Sec. 6-11) the situation
which results when 7'; is not cut off. In the stable state the current in
T, is zero and that in T is I,, corresponding to a clamped grid. The
plate P, is at Ey and the plate P. (neglecting the loading effect of the
attenuator) is at By — I:Rp = Ep. The grid G, is at zero (approx-
imately) while the grid-to-ground voltage of T’ is

eer = (B + Bee — IR1)a — Eee = By (6-1)

in which @ = R:/(R: + R.).

6-2. The Quasi-stable State. The multi may be induced to make a
transition out of its stable state by an application of a positive trigger at
G, or P; or by the application of a negative trigger at Gs or P;. As with
the binary, diode or triode triggering may be used to advantage. Itisto



176 PULSE AND DIGITAL CIRCUITS

be emphasized that the triggering is unsymmetrical, being applied to one
tube only and not to both tubes simultaneously.

Consider that a single negative trigger is applied to G2 and that a
cegenerative action takes place driving T's completely below cutoff. The
voltage at P is now Ej, and e, is given by

€c1 = (Ebb + Ecc)a - Ecc = EN (6-2)

If En, as computed from Eq. (6-2), is greater than zero, then T, is in
clamp and Ey is nominally zero. It is not necessary, however, that 7',

.
S

A4
I\
3777 G
€2
(a)
Ey
R
Ro P1 |[C —e
+ N= + 2
+
:L_ Ey=[Ey~LRy) ¢2=rhRy
) (b)

F1a. 6-2. (@) Simplified circuit for computing the voltage at G5 during the quasi-stable
state; (b) equivalent circuit. The capacitor voltage and the voltage e are given for
the instant immediately after the transition.

be in clamp. The tube may be either in clamp or within its grid base.
In any event a current I, now flows in T’y and the voltage at P, drops
abruptly by an amount I;®;. The voltage at G2 drops abruptly by this
same amount because the voltage across C cannot change instantaneously.
The multi is now in its quasi-stable state. The tube voltages are as fol-
lows: ey2 = E, €61 = Ew — I1R1, €1 = Ey is zero, or as given by Eq.
(6-2), and e.o = — I R;.

The multi will remain in this quasi-stable state for only a finite fime,
since the only d-c connection to G is through R to Ey. Eventually,
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therefore, @, will rise in voltage, and when G, passes the cutoff voltage of
T,, a regenerative action will take place turning T'; off and eventually
returning the multi to its initial stable state. We look now into the
matter of determining the time duration of the quasi-stable state.

During the quasi-stable state T is off and the voltage changes at G»
may then be computed from the circuit of Fig. 6-2a in which again e
is zero or as given by Eq. (6-2). A circuit equivalent to that in Fig. 6-2a
is given in Fig. 6-2b in which the tube T'; has been replaced by a Théve-
nin equivalent. The voltage Ej; is the quiescent plate voltage

Ebl = Ebb - IlRL

and R, is the output impedance, being given by the parallel combination
of R; and the dynamic plate resistance of the tube r,. The voltage
variation at @ during the quasi-
stable state is shown in Fig. 6-3. | B
The transition from stable to quasi- e
stable state occurs at { = 0. For il
t <0, e2 =0, while at { = 04, Ve
ec2 = —I,R;. The voltage will /
rise exponentially toward Ej with =0 T [/
]
]
|

a time constant + = (R + R,)C. 0
This exponential rise will actually if
continue, however, only until e
rises to the cutoff voltage E., at
which time a reverse transition will
occur. Since ordinarily R > R,,
we shall make little error if we con- —x
sider that r = RC. . -
It will be recalled (Sec. 2-4) that 511: 'qﬁai'i.zfciluﬁff Ztmar.mtmn of G2 during
when the voltage e¢ at a point in a
circuit changes as the result of the charging of a capacitor through a
resistor, then the voltage may be expressed as a function of the time by

e = Ef — (Ef — Ei)e"”' (6-3)

Here E; is the value of ¢ at ¢t = 0, while E; is the final voltage value, that
is, the value being asymptotically approached by e. Applying Eq. (6-3)
in the present case gives

ec2 = By — (Byw + I RL)eVEC (6-4)

The quasi-stable state will terminate when e, = E., or after a time T
given by
Ey 4+ LLEL

T = RC In m (6'5)
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The time T may be varied either through the time constant RC or by
varying I;. The current I is controlled by e.;, which may be varied by
means of I,,.

The duration T' of a monostable multi is ordinarily not particularly
stable, depending as it does on the tube characteristics through I, and
E.. The stability is somewhat better if R is returned to a high voltage
such as Ey rather than to ground. The reason for this feature is to be
seen in Fig. 6-4. Curve 1 corresponds to returning R to Ey, while curve 2
corresponds to R returned to ground. The RC time constants have been

%TO Ebb

€c2

Fr1a. 6-4. Illustrating the advantage with respect to timing stability of returning the
grid resistor to Ei.

adjusted in the two cases to give the same initial time duration 7.
Suppose that E., now changes by AE., due to, say, a change in heater
voltage. Then the change in timing, T, — 7'y, is smaller than T, — T's.
This matter is discussed in more detail in Sec. 12-5.

6-3. Waveforms of Plate-coupled Multi. We shall now investigate
the appearance of the waveforms at both plates and both grids from the
time before a trigger is applied to the time the multi has restored itself
to its initial stable state. The waveforms are shown in Fig. 6-5. The
triggering signal occurs at { = 0 and the reverse transition occurs at
t=T.

At £ =0, T, goes off and Ty goes on. The voltages e and e, drop
abruptly by the same amount, I1R;. The voltage e;: rises abruptly
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by I:R: and e rises abruptly by the amount al:R:. The voltage at G»
now starts to rise exponentially with time constant RC toward Iy.
Until e.. reaches the cutoff voltage F.,, all voltages at the other electrodes
remain unaltered.

Refer now to Fig. 6-5a¢ and b. At time ¢ = 0, tube 7'y was driven on,
as a consequence of which e, and e.; dropped by I1Br. At ¢ = T, tube

t=0 t=T I =[2.6]
=
R
€2 ! (=90v)

ey | LR, (=70v)

Ebb_I RL — T, _— -
P [1s0v)- k.- [26+15=17.6V]

(b)

E,,,,—-—T————— -——-T————

LR, ,
l(=140v) LR, [=165V]

[60 v]/

A T
7597 anr, i-1) Rye=[125]
J )

(d)

Fra. 6-5. Waveforms of the plate-coupled multi. The exponential portions of the
waveforms beginning at ¢ = 7' all have a time constant (R + r.)C. The numerical
values in parentheses refer to the illustrative example on page 181.

T, will be driven back to cutoff and, if were not constrained from so
doing, the plate P, (Fig. 6-1) would rise abruptly by IR and thus carry
the grid G5 upward by the same amount. At¢ = T, however, the grid G,
is much closer to zero voltage than at ¢ = 04. If, therefore, the grid G
were driven positive by amount /1R from an initial level E.,, the grid
G; would go positive by the amount I;R. + E., and appreciable grid



180 PULSE AND DIGITAL CIRCUITS

current would flow. Since T, is cut off and R is much larger than Rz (in
the plate of T'y), this grid current must flow predominantly through the
plate load of T:.. The voltage e is therefore constrained from jumping
upward abruptly by I, R;, and as a matter of fact e will not attain E
until grid current has ceased. Consequently, while the abrupt upward
jump at G is smaller than /1R;, the grid G does not return gracefully to

TEbb

Fia. 6-6. Circuit for calculating the overshoot in the plate-coupled multi. (e) Situa-
tion immediately before reverse transition. (b) Situation immediately after reverse
transition.
zero voltage, but instead initially overshoots its mark and then finally
decays to zero. It will be recognized that the overshoot here described
is identical in origin to the overshoot shown in Fig. 4-40. We shall now
make a quantitative estimate of the magnitude of this overshoot.

The situation immediately before the reverse transition is shown in
Fig. 6-6a. The voltage drop across the capacitor is

Es = By — I1R1, — Eo (6-6)

Immediately after the reverse transition the situation is as shown in
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Fig. 6-6b. Since the transition is abrupt, we may consider that E, is the
same in I'ig. 6-6¢ and b. We assume that the flow of grid current may be
accounted for adequately by including the resistor 7., which is the static
grid-to-cathode resistance of 7’s. And since R 3> R;, we may neglect the
grid current through R in comparison with the current through R;. The
path of the grid current I, is as shown in Fig. 6-6b. Equating to zero
the sum of the voltage drops encountered yields

_Ebb + RLIc + EA. + rcIc =0 (6-’7)
Combining Eqs. (6-6) and (6-7) gives for the size of the grid overshoot

_ (IIRL + Eco)rc
- RL + Te

The total amplitude of the abrupt jump at the grid G is r.I, — E.,.
The abrupt jump at the plate P is equal to the grid jump, since G5 and
P, are coupled by a capacitor. The overshoot decays to zero with a
time constant (RBy + r.)C, and as the grid overshoot decays exponentially,
the plate P, rises exponentially to Ew. Corresponding to the overshoot
at @, there is an undershoot at P,;. The current I; in 7 at the time
of the overshoot may be determined by drawing a load line for Ry on
the positive grid characteristics of the tube and noting the current cor-
responding to a grid voltage 7.J.. The undershoot at P, similarly is
reflected in an undershoot at ;. Of course, all the sharp corners indi-
cated in Fig. 6-5 are actually slightly rounded by tube and stray shunt-
ing capacitances. Ordinarily, however, this rounding is of a different
order of magnitude from the rounding apparent on the trailing edge of
the waveform at P;.

The following illustrative example will indicate more specifically how
one may determine the waveforms to be anticipated in a plate-coupled
multi.

r.d, (6-8)

ExamprLe. Compute the voltage levels for the waveforms of Fig. 6-5 for a plate-
coupled multi whose components and supply voltages are as given in Fig. 6-1. The
tubes employed are the two halves of a type 12AU7.

Solution. Drawing a load line for Rz, = 20 K and E,; = 200 volts on the negative-
grid plate characteristics for the type 12AU7 (Fig. A-7), we find I,R; = 140 volts
and E,, — I,Rr = 60 volts. From Eq. (6-1), we find Er = —75 volts. From Eq.
(6-2), we have Exy = —b5 volts, corresponding to which

IRy = 70 volts and Ey, — IiR1 = 130 volts

Beginning immediately after ¢ = 0, the grid waveform rises from —70 volts expo-
nentially toward 200 volts with a time constant which is essentially + = RC. The
quasi-stable state persists until e, reaches the cutoff voltage E., = —15 volts,
during which time all other voltage levels remain constant.

We must now compute the amplitude of the grid overshoot, for which we may use
Eq. (6-8), provided that we are able to decide op a reasonable value of 7.. Examine
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now the positive-grid tube characteristics for the 12AU7 given in Fig. A-8. Observe
that over quite a range of plate voltage, the grid current is 10 ma for a grid voltage of
10 volts. We therefore tentatively accept for r. the value r, = 1,000 ohms. The grid
overshoot, is therefore

(70 — 15) X 1,000 _ 1

rele = —36,:600 + 1,000~ 21

55 = 2.6 volts (6-9)

The abrupt portion of the risc of the plate voltage e, has a magnitude
rele — Eeo = 2.6 4 15 = 17.6 volts

The remainder of the approach to the supply voltage occurs with a time constant
(R + 7.)C, which is also the time constant with which the overshoot decays.

To find IRz, we draw the load line for 20 K and E, = 200 volts on the positive
grid characteristics, finding approximately that corresponding to e.» = +2.6 volts
IR = 165 volts. At the overshoot, then, the voltage e,» drops to 35 volts. The
amplitude of the undershoot in e is (I:Rr — I:Rz)a = (165 — 140) X 14 = 12.5
volts.

The least certain feature of the above calculation has to do with the
overshoot amplitude. This difficulty results from the fact that the
static grid resistance 7. is not constant but is rather a function of the
plate voltage, decreasing with decreasing plate voltage. We may, how-
ever, note that r, does remain fairly constant, provided the plate voltage
remains large in comparison with the grid voltage. This result is borne
out by the curves of Fig. A-8, where it appears that for high plate
voltage in comparison to grid voltage . = 1,000 ohms. In our present
case we require to know the value of . under the circumstance that
e2 = 2.6 volts and e;2 = 35 volts; hence we may reasonably corsider
r. = 1,000 ohms.

The matter is usually further complicated by the fact that normally
tube characteristics do not furnish very precise data in the neighborhood
of small positive grid voltages. The curves of Fig. A-8 are typical.
If more detailed plate and grid-current curves should happen to be avail-
able, the calculation of the overshoot may be improved by the following
procedure. We select first some reasonable value for r. and compute,
as above, the grid and plate voltage corresponding to the overshoot.
Corresponding to this first approximation for grid and plate voltages
we note from the tube characteristics a better value for r.. We may
now recalculate the overshoots, leading to a still better value of 7., ete.
Normally, however, the first approximation gives sufficiently good results
and successive calculations are not warranted.

In the general discussion above of the monostable multi waveforms as
well as in the illustrative example, we have, in the interest of simplicity,
made two approximations which may not always be well justified in
practice. The first of these approximations has to do with the fact
that we have neglected the loading effect of the attenuator consisting of
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R;and I; on the voltage which appears at the plate of T;. The effect of
this loading is clearly to reduce somewhat the voltage at P, and is more
pronounced when 7 is off, during the quasi-stable state, than during the
stable state when 7 is on.

The second approximation may be seen by referring again to Fig. 6-2,
which indicates the charging path for the capacitor C' during the quasi-
stable state. The current which charges the capacitor flows also through
the output impedance R, toward the voltage source Ey;. As a result
of this current the voltage at P, is slightly larger than Ey, — I,R;, by the
amount of the voltage drop across R,. Furthermore, during the time
of the quasi-stable state, the capacitor-charging current decreases and
as a result the voltage at P; decreases. Altogether, then, the waveform
of e in Fig. 6-5b is slightly incorrectly drawn. At time ¢ = 04, the
waveform voltage should be slightly higher than E,, — I Ry and the
nominally flat portion of the waveform between ¢t = 0 and ¢ = T should
as a matter of fact exhibit a slight downward tilt.

6-4. The Influence of Tube Current I, on Waveforms. The tube cur-
rent I, determines the initial drop I.R. at P; and G2 This initial
drop is conveniently adjustable through the negative supply voltage E...
The current I, has an effect not only on the duration of the quasi-stable
state T, as is apparent from Eq. (6-5), but also on the general appear-
ance of the waveforms.

First, let us note that there is a minimum allowable value of I,
I, = I;(min), which is required in order that there shall be a quasi-stable
state. This current I;(min) is clearly determined by the condition that
the drop I;(min) Ry, shall be sufficient to drive G below cutoff. Hence
Ii(min) Ry, = |E.| or I,(min) = |E,|/Rr. This result is consistent with
Eq. (6-5) since this condition makes T = 0. Corresponding to I;(min)
there is a maximum value E..(max) of the bias supply. Similarly, there
is a minimum value F.(min) dictated by the consideration that in the
stable state tube Ty must be at cutoff. If E..is adjusted so that 7', may
not be at cutoff, then the multi has no permanently stable state. In this
case, as will be described in Sec. 6-11, the multi becomes astable and
will switch back and forth between two quasi-stable states.

In Tig. 6-7 are to be seen the waveforms at G2 and P, for two cases.
In one case I; = I, which is only slightly larger than I;(min). In the
second case, I; = I{, which is very much larger than 7;(min). The time
T’ corresponding to I} is of course larger than 7 corresponding to I].
This difference in timing is, however, not the essential feature to be
noted here, since, by adjusting appropriately the time constant RC in the
two cases, the times may be made the same. Rather, it is to be noted
that in the case I; = Ij the waveforms are much more nearly rectangular
than for I; = I{. The overshoot is smaller, as is to be expected, since
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from Eq. (6-8) the overshoot depends on the quantity I:R; + E., which
is the amount by which the voltage e,» drops below the cutoff level.
Similarly, the exponential rise in e.» is much less pronounced for I than
for I, Again in the waveforms for ¢,; the abrupt portion of the rise is a
much larger fraction of the total jump for I; than for I;'. The waveforms
at G, and P, will also be more rectangular for 7] since the overshoot will
be smaller than for IY.

t=0 t=T' t=T"
€c2 l

IR, ]

\ Arc I
t
—E, +r. 1

e

ebl

Fi16. 6-7. Comparison of waveforms for I, small and I, large.

It will be clear from an examination of the grid waveforms of Fig. 6-7
that an adjustment of I for a nearly rectangular waveform carries with
it the disadvantage of poor stability of multi time duration. The dura-
tion is determined by the interval during which the grid of T remains
below cutoff. Initially, at ¢ = 0, the grid is below cutoff by the amount
IR, + E, If I1R. + E, is small in comparison with £, a small per-
centage change in I; will make a large percentage change in I:1 Ry, + E.,
with a correspondingly large percentage change in timing,.

6-b. Recovery Time in a Monostable Multi. After the formation of
the gate of duration T, the multi will not have completely returned to its
stable state until all overshoots have decayed to zero. The decay time
of these overshoots is called the recovery time. The recovery time depends
on the time constant (R + r.)C, while T depends on EC. Where a short
recovery time is of importance, a fixed required time constant RC is
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attained by making R as large as possible and C correspondingly small.
A practical upper limit for R is of the order of 10 Meg and is set by the
same considerations which limit grid-leak-resistor sizes generally (see
Sec. 3-5). Additionally, if R is large and C small, the effective imped-
ance between G and ground will be large during the interval when G2 is
not in clamp and the circuit may become excessively sensitive to stray

Triggers
'8 3 4 5
! 1 | 1 { |

€2 E

Ey~

T

0
t
Fic. 6-8. Waveforms of multi when interval between triggers does not allow complete
recovery.
fields. The advantage of a short recovery time may be seen from the
following discussion.

Consider what might happen if regularly spaced triggers are to gen-
erate gates which are as wide as possible (T to be nearly equal to the
interval between pulses). At the end of the time 7T the capacitance C
must recharge through R, before the next trigger comes along. Suppose
that C is not completely recharged and hence that P, has not reached Ey
before the next trigger is injected. This next impulse will trip the cir-
cuit and P, will drop to its clamped-on value. The change in voltage S
at P is less than the full swing S; = IR, because the plate did not reach
Ew. This new smaller increment S{ appears at G, as shown in Fig. 6-8.
Furthermore, the voltage at G; will not have decayed to zero when the
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second trigger arrives. The result is that, after this second trigger, G,
starts at a more positive voltage than after the first trigger. Therefore
the length of the quasi-stable state T after the second trigger is lessthan
T after the first trigger. Hence, there is a longer time available for C to
charge before the third trigger appears. Thus the drop in G at this third

| :
I : %R
%RLI C1

A Eyp

AEy

€1
Eypy

Epp

[Bw TR ] '

L

(b) t

F1G. 6-9. (@) Monostable multi using plate-catching diode to shorten recovery time.
(b) Comparison of plate waveforms with and without diode.

impulse may again be the original S;. If so, then at the fourth trigger it
will be S;. This will lead to the peculiar situation pictured in Fig. 6-8
in which not all cycles are alike, but rather alternate cycles have the
same character.

There are a number of steps which may be taken if it should become
important to reduce the recovery time. The most straightforward
method is to reduce the size of the plate load resistance of tube T;. It may
then become necessary, however, to replace the tube T'; by a larger tube
since the tube dissipation will increase. Thus, for a given swing at P;,
the current I, must increase as Ry is decreased.

A second method is illustrated in Fig. 6-9, which displays the use
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of a plate-catching diode to eliminate the slow portion of the rise at the
plate of T;. Note that in this case the plate resistor of T must be
returned to a higher supply voltage than the plate resistor of T's.

After these first two methods have been employed, some further
improvement may result if an additional diode is shunted from grid to
cathode of T: in order to reduce r.. Finally, we may use a cathode
follower to couple the plate P; to the grid G.. Since the plate P, is

Ill Izl
% %RIFUK) éR R (=7K)
<
C
I
f K
Positive cl
trigger P G, F
+
B K
R, (=3K)

=

Fic. 6-10. A cathode-coupled monostable multi. Components and supply voltage
specified refer to the illustrative example of Sec. 6-7.

coupled directly to the grid of the cathode follower, it is required that
the cathode-follower supply voltage be higher than the multi supply
voltage. The timing capacitor is connected between the cathode of the
cathode follower and the grid G.. The timing capacitor will now be able
to recharge through the low output impedance of the cathode follower.
The use of a cathode follower or of a small plate load resistance for
tube T'; will reduce the recovery time as already noted, but the amplitude
of the overshoots will be greater than before [see Eq. (6-8)].

6-6. The Cathode-coupled Monostable Multi Waveforms. An alter-
native form of the monostable multi, the cathode-coupled multi, is shown
in Fig. 6-10. This circuit bears the same relation to the plate-coupled
monostable multi as the Schmitt circuit bears to the plate-coupled
binary. Observe that the coupling from P, to @ is lacking and that in its
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place has been substituted a common cathode resistor Rx. No negative
supply is required. The signal at P, is not directly’involved in the regen-
erative loop. Hence, the plate P, makes an ideal point from which to
obtain an output voltage. The grid G, is an ideal point at which to

LR,

ebnz (=+96v) (Iz +AI2 )RL
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(154v) (143
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z
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IfL T
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| AR o
'AL__‘I RC \IR+E
7= c02=
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Fra. 6-11. Waveforms of the cathode-coupled monostable multi. Numerical values
in parentheses correspond to the illustrative example of Sec. 6-7.

inject the triggering signal, since this grid is coupled to no other point in
the circuit. Hence, the trigger source cannot load the circuit. It also
turns out that the width of the multi gate is an accurately linear function
of the d-c bias voltage E on G, and hence this circuit makes an excellent
gate generator whose width is easily and linearly controllable. -
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The waveforms of the cathode-coupled multi are shown in Fig. 6-11.
The waveform at G, is now of no interest since it consists only of the
triggering pulse. In its place, however, we have a waveform at the
cathode. Initially, tube T, in Fig. 6-10 carries a current I, correspond-
ing to a clamped grid. The grid of T'; and the common cathode are at a
voltage I.R.. It is, of course required here as in the case of the plate-
coupled multi, that T be cut off when T';is conducting. Hence, the bias
voltage I on the grid of 7'y must be less than I.R; by at least the cutoff
voltage L1 of the tube Th. We may therefore note that the maximum
allowable value for E is

Emax = I2Rk ._*_ Ecol (6-10)

When a triggering signal causes a transition from the stable to the
quasi-stable state, the current in 7' becomes zero and a current I, flows
in Ty. This current may be determined by the value at which I has been
set. Hence in ¥ig. 6-11, immediately after ¢ = 0, P, rises abruptly by
IRz, while Py, and G drop abruptly by I:Rz. The cathode voltage
changes from I.R; to I,Ry.

In order that there shall be a quasi-stable state, the current I; must
be large enough to drive T below cutoff. This minimum required
current I, is easily calculated as follows. At ¢ = 0+, the grid G, which
was at a voltage IR, with respect to ground, drops by I, Rz volts. Hence,
at ¢ = 04, the grid-to-ground voltage of tube 7'z is

en2 = IoRy — I1Rg,
At this time also the cathode-to-ground voltage is
€ = Ile

It is required that ec.. be less than e, by at least the cutoff voltage E.oq
of tube T,. Hence [, is given by the condition that at { = 0+

€en2 — € = Evo2

or LRy — IyRy, — IoRr = Eeoe
% _ I2Rk - Ew? A
so that Iy = R, ¥ R (6-11)

*In IEq. (6-11) as in (6-10), the cutoff voltages E .. and E.: correspond to the
actual plate-to-cathode voltages E,: of the tubes, which voltages are smaller than
E\, because of the drop across the cathode resistor. In Eq. (6-10), E,x = Eyp — IR,
and I, is known. Hence E.; may be determined directly from the tube charac-
teristics. In Eq. (6-11), E..; corresponds to E, = Ey, — IoRk, in which I, is not
known. We may, however, find E..; by successive approximations. We assume
initially that E... corresponds to E,, and use this value in Eq. (6-11) to find a first
approximation to I,. Using this value for I, we may determine E . more precisely.
Ordinarily, however, the error involved is small and the more detailed calculation is
not warranted.
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The voltage E on G; must not be less than a value E.., corresponding
to the current 7,. And the waveforms of Fig. 6-11 apply only, of course,
for the case Euux > E > Euin.

After the initial abrupt jump in all the waveforms, the voltage at G»
starts to rise exponentially toward E. All other voltages remain con-
stant until e,z rises to the cutoff voltage of 7’5, which occurs, as indicated
in Fig. 6-11, when e = I1R; + Eo2. At this point the quasi-stable
state is terminated, and asin the plate-coupled multi, there is an overshoot
in the waveform at G2 before the waveform finally settles to the quiescent
level I.R:. Associated with this overshoot there are overshoots in the
waveforms at P, and at the cathode and a delay in the attainment of the
final level Ey by the waveform at P;.

The computation of the overshoot in the cathode-coupled multi is
somewhat more involved than the calculation of the overshoot in the case
of the plate-coupled multi. This complication results in the former case
from the presence of the cathode resistor. In See. 6-7 we inquire into
the overshoot, and we shall then be able to complete the discussion of
the waveforms of Fig. 6-11.

6-7. Overshoots in Cathode-coupled Multi. The amplitude of the
overshoot may be calculated from the circuit shown in Fig. 6-12q, since at
the instant of the overshoot T'; is off and T's is on. Neglecting the small
current through R, we may replace a by b. In b, E; is the difference
between the supply voltage Ey, and the voltage F4 across the capacitor.
The voltage I, is the capacitor voltage immediately before the overshoot
and may be determined from ¢, which depicts the situation just at the time
when T'; reaches cutoff. We have

Ey = (B — IiRL) — (IR + Ee)
and By =FEy — Ey = IRy + Ri) + Ecor (6-12)

If, in Fig. 6-12b, E4 were equal to I, Rk, then there would be no overshoot.
For the purpose then of computing the amount by which the grid voltage
exceeds the quiescent level I.R:, we may use the circuit shown in Fig.
6-12d, in which

E)=E; — IR, = I,(R1 + Ri) + Eez — IRy
= (I — Io)(BL + Ry) (6-13)

where use has been made of Eq. (6-11). Since here we are interested
in a case in which the grid goes positive with respect to the cathode, the
resistor r, has been included to account for the flow of grid current.
Since the overshoot is ordinarily small, we may use the linear equiv-
alent circuit of the vacuum tube as in Fig. 6-12¢, to find the departure of
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TEbb

(e)
F16. 6-12. Development of an equivalent circuit from which to calculate the overshoot
in a cathode-coupled monostable multi.

voltages and currents from the quiescent condition. The quiescent con-
dition is the one in which ¢, = e... = I, and the grid current is zero.
The change in plate current is Al,, and the change in grid current is
Al, = I, — 0 = I.. The mesh equations of Fig. 6-12¢ are

Rk(AIz -+ Ic) + (RL + "'p)AI2 = ply = FTcIG
(Rp, + 1)1 + Ri(I, + Aly) = E}

i
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It may now easily be verified that, in terms of the symbol v defined by

ure — Ry
T= By + Ry +
E;
Bmrntdrom M4 Ah=aL (615
Equation (6-15) also indicates that the coupling capacitor C charges
from an effective voltage E} through a resistance R + r. + (1 + v) Rx.
The time constant of the decay of the overshoot will accordingly be
(Ry + 7. + (1 + 7)RC. '
In terms of the grid current I, and the increment in plate current
AT, the waveforms of the cathode-coupled multi may now be completed
with the results indicated in Fig. 6-11. An illustrative example follows.

(6-14)

that I, =

ExamprLE. Compute the voltages Emax and Eni, for the cathode-coupled multi
whose components and supply voltage are as given in Fig. 6-10. For a value of E
approximately midway between E.x and Emi, calculate the voltage levels of the
waveforms of Fig. 6-11. The tubes employed are the two half sections of a type
12AU7 tube.

Solution. Drawing a load line corresponding to Rz + Rr = 10 K and E,;, = 250
volts on the negative grid-plate characteristics for the type 12AU7 (Fig. A-7), we
find I, = 13.7 ma. Hence I,R; = 7 X 13.7 = 96 volts and I,R; = 3 X 13.7 = 41
volts. The voltage Enmax is given by Eq. (6-10) in which E.,; is the cutoff voltage
corresponding to a plate-to-cathode voltage of 250 — 41 = 209. We find E.,; = —15
volts so that Enax = 41 — 15 = 26 volts.

To find E.nin, we must first find Io from Eq. (6-11). Assuming tentatively that
E.o2 is also equal approximately to —15 volts, we find

41 + 15
743

It appears, then, that E... is actually the cutoff voltage corresponding to a plate-to-
cathode voltage of 250 — 3 X 5.6 = 233, so that E..: is more nearly equal to
—17 volts. However, the precision with which tube characteristics apply to an
individual tube hardly warrant applying this correction. We find now from the
tube characteristics that a current I, = 5.6 ma flows when the grid-to-cathode voltage
is —8 volts. Hence

Io—- = 5.6 ma

Euwin = Eoi + IoR: = —8 4+ 5.6 X 3 = 8.8 volts

Now let us compute the voltage levels in Fig. 6-11 for E = 18 volts. Using the
method of Sec. 1-7, we find that corresponding to E = 18 volts I; = 8.0 ma, giving
IR. = 56 volts and I;R; = 24 volts. Also, as noted above, I.Ry = 96 volts
and I,R: = 41 volts. These voltage levels are indicated in parentheses in Fig. 6-11.

At the current corresponding to grid clamping (I = 13.7 ma) and at a plate
voltage of 250 — 96 — 41 = 113 volts, we have (see Fig. A-9) p = 18, r, = 6 K. If
we assume as before that r, = 1,000 ohms, we find, from Eq. (6-14), that

18 —3

Y=3x7+6 0%



MONOSTABLE AND ASTABLE MULTIVIBRATORS 193

Combining Eqs. (6-13) and (6-15), we have

I = Iy — IR+ R) _ (8.0 —5.6)(7 +3)
O RL e+ 1+ )R 74+1+4+194 X3
and Al = vI, = 0.94 X 1.7 = 1.6 ma

=17 ma

Hence at the overshoot the cathode voltage rises to
Iz + AL 4+ IR = (13.7 + 1.6 4+ 1.7)3 = 51 volts

and the voltage at G. rises to 51 + I, = 51 + 1.7 = 53 volts. It is now easily
verified that the remaining voltages indicated in Fig. 6-11 are given correctly.

6-8. Linearity of Delay of Cathode-coupled Multi. A useful feature
of the cathode-coupled monostable multi is the fact that the delay is
quite accurately linearly related to the voltage E (Fig. 6-10) on grid G:.
If, therefore, a delay or a gate duration is required which is proportional
to an electrical control signal, this signal need only be applied to G;.
Similarly, if manual control of the delay is intended, then the voltage E
may be derived from a linear potentiometer.

The linearity results from the facts that the tube current I, is linearly
related to the voltage E and that the duration of the delay is linearly
proportional, in turn, to I;. The linearity of I; with E is to be expected
from the discussion of Sec. 1-6, where it is pointed out that the presence
of the cathode resistor introduces negative feedback which serves to
make the current I; vary more linearly with I. To see that the delay T
is fairly linear with I, we proceed as follows.

Let us apply Eq. (6-3) to the exponentially rising portion of Gs (see
TFig. 6-11c). Then E; = Ew, E; = I.R: — I1R;, and when ¢ =T,
e = I1R; + E.s. Substituting these values into Eq. (6-3) and solving
for T/r = T/RC, we find

r _ lnEbb + LR, — IRy

RC By — Eo2 — IR,
It is convenient to introduce the variable Iy = I; — Io, I1o being the
departure of the tube current from the current corresponding to FEui.
Also let

(6-16)

L = Ebb + IoRL - Isz (6-17)
Using Eq. (6-11) for I, we also find
E’ = Ebb - Eco2 - IORk (6-18)

In arriving at Eq. (6-18), we have neglected the fact that F.»in Eq. (6-16)
actually depends somewhat on I, while E.: in Eq. (6-11) corresponds
to a value I; = I,. Using Eq. (6-17) in the numerator of Eq. (6-16)
and Eq. (6-18) in the denominator, we have
T _ nEl + TR _ In 1+ IoRL/E’
RC ~ T E — IwR: 1 — LR/E

(6-19)
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From the expansion In (1 4+ 2) =2 — 22/2 +2%/3 — - - -, we find
approximately, for IRz and IR both small in comparison with E’, that

T o Io(Ry + Ry) (1 _ Tw(Rr — Rk))
RC— E’ 2L

We may therefore expect linearity so long as Io(Rr — Rx) K 2E’. TFor

the circuit of Fig. 6-10, it is easily computed that E’ = 248 volts and that

the maximum value of I1o(R; — Ri) = 18 volts. Hence the correction

term in the parentheses in the above equation is never larger than

18
2 X 248

If we select R = R, then Eq. (6-20) gives a zero correction and we
should then carry out the expansion to a higher order (see Prob. 6-15).

T
RC |

(6-20)

= 0.03

l%dmax ZT

!
|
|
|
|
|
|
1

Enin Enax E
Fia. 6-13. Pertaining to the definition of linearity of delay.

The linearity of delay 7 with input voltage E depends on the linearity
with which I, follows E (see Prob. 6-16). Experimentally it has been
determined that it is possible to adjust the cathode-coupled multi to
provide a linearity error of 1 per cent. The definition of linearity error e
employed here is given in connection with Fig. 6-13 as
_ A
¢ " (T/RC) e
in which A is the maximum discrepancy between an experimental plot

of T/(RC) vs. E and a straight line joining the beginning and end points
of the plot (see Prob. 6-14). From Prob. 6-14, we have

_ Lio(RL — Ry)
€= 8E’
The delay T is a sensitive function of supply-voltage variations. For
example, if the Ej supply changes by 10 per cent, we may expect
about a 5 per cent change in delay. Another type of delay circuit which

is much less dependent upon supply-voltage variations than this multi is
described in Sec. 7-7,

(6-21)
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6-9. The Influence of £ on Waveforms. The gate width T of the
cathode-coupled multi is determined by E and the product RC, assuming
that all other parameters are held constant. As E is varied from En, to
E..ux, the logarithmic term in Eq. (6-16) varies from zero to a maximum,
M. The maximum delay Tm.: is given by Tmexe = RCM. A given delay
can be obtained by using either a small F and a large RC or a large F and
a small RC. If E is near E... (so that I is near I,), then the overshoots
in waveform will be small, whereas if I is near E... (large I,), the over-
shoots will be emphasized. This situation corresponds to the analogous
state of affairs for the plate-coupled multi discussed in Sec. 6-4.

If RC is held fixed and E is slowly increased from zero, then the
following events will take place. Ifor voltages below En:., the circuit
cannot be triggered. Tor E > ., the waveforms will change from a
narrow gate with little overshoot (analogous to those indicated to the left
in Fig. 6-7) to wider and wider gates with progressively higher and higher
overshoots (analogous to those indicated to the right in Fig. 6-7). When
E reaches E.,,.., the circuit becomes an astable instead of a monostable
multi and it continues to operate even when the triggers are removed
(as discussed in Sec. 6-11).

The above assumes that the triggers are widely spaced compared with
the maximum multi width. If this is not true, then the above sequence
of events takes place until the multi width approaches the time between
triggers. Then the situation pictured in Fig. 6-8 takes place, where

“alternate cycles have different waveforms. As a matter of fact this
anomalous situation may be obtained even at narrow widths if the
recovery time constant is comparable to the time between pulses. This
emphasizes the importance of keeping C as small as possible, just as
with the plate-coupled monostable multi.

6-10. Triggering of the Monostable Multi. The monostable multi
may be triggered by applying a positive pulse to the normally off grid G,.
The pulse must be at least large enough to bring Gy out of cutoff. For
example, in the cathode-coupled multi, the trigger amplitude when added
to E;; = E — IR, must exceed the value F,;. Hence for any value
of E the trigger Ey required must have an amplitude of at least

ET = IZRk — K + Ecol
Using Eq. (6-10), we find
ET = Enmx - E (6-22)

The largest trigger amplitude Er = Ep (max) = Euu — Faia will be
required when
E = Emin
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If triggers of amplitude less than Er (max) are employed, then the
multi will trigger when E is set for large delays but not when E is set
for short delays. Thus, if E is initially near E.,. and then progressively
decreased, the multi will operate properly with progressively shorter
delays until finally a critical value of E will be attained where the multi
will fail to respond. At this point if the trigger size is increased the
multi will once again function properly.

In the plate-coupled multi, if the trigger is introduced at G; through
a capacitor, the capacitance must be small, since a signal appears at G4
due to the regeneration in the multi. The remarks made earlier (Sec.
5-7) in connection with the triggering of a binary with a positive pulse
through a small capacitor apply equally well in the present case. If
the input time constant is small in comparison to the triggering pulse
duration and if the pulse is rectangular in form, the multi may well make
a reverse transition at the trailing edge of the trigger. Furthermore, if
the trigger source impedance is low, the input capacitor may charge due
to grid current and again a reverse transition may occur at the trailing
edge of the trigger. This grid current may result if the pulse amplitude
is large enough temporarily to drive the grid positive or if the quasi-
stable state is one in which the grid G, is normally in clamp. In the
cathode-coupled multi the input capacitor may be quite large and it is
easier to avoid the reverse transition.

However, even in the case of the cathode-coupled multi there is a
difficulty that arises when the triggered grid is permitted to draw grid
current. As a result of the grid current the input capacitor charges
and decreases the average value of the grid voltage, and the time of the
quasi-stable state is correspondingly reduced. This shortening of the
delay becomes more pronounced as the width of the triggering pulse
increases.

A negative pulse applied to the on grid G» (or equivalently at the plate
P,) has, as in the binary, the advantage that the multi responds more
sensitively. Also, as in the binary, there is less likelihood of a reverse
transition occurring at the trailing edge of the trigger since, after the
initial transition, G is well below cutoff.

The triggering arrangement shown in Fig. 6-14 has a twofold advan-
tage. First, it takes advantage of the improved sensitivity of the multi
to a negative signal applied to G;. Second, at the instant of the transi-
tion the plate of T drops, the diode no longer conducts, and the multi
is unresponsive to the triggering signal until the quasi-stable state is com-
pleted. This second feature is particularly important in a case where the
input signal is not a short trigger but is rather a continuous waveform, say
a sine wave. An application of this triggering scheme will be seen in Sec.
7-3 in connection with the synchronization of a vacuum-tube sweep circuit.
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6-11. The Monostable Circuit Adjusted for Free-running Operation.
The monostable multi circuit has a permanently stable state only if
the tube T, is able to remain permanently cut off. We inquire now
into the matter of what happens when the bias on T, is adjusted so
that T, is not able to remain cut off. TFor this purpose consider the
circuit of Fig. 6-15. The form of the circuit is the same as for the
cathode-coupled monostable multi. However, since the return for both
grids is the same ground point, it is clear that it is not possible for the
tube current I, to keep tube T'; permanently cut off. This circuit has no
stable state but instead has two quasi-stable states between which the
multi makes transitions periodically without the aid of external triggers.

TEbb

: .

°—|(— | N
Negative T,
signal

1

T, T,

Fic. 6-14. Triggering of a monostable multi with a negative-going signal through a
diode.

We shall look now qualitatively into the waveform which will appear
at the grid Go. 1In a particular case the waveform voltage levels may be
determined quantitatively by the methods given above, as may also the
waveforms and voltage levels at other points in the circuit. The discus-
sion below will be directed at the circuit of Fig. 6-15, but the results will
apply in a general way to any monostable circuit similarly adjusted.
For example, the cathode-coupled multi with E > E... will behave in an
astable manner similar to that discussed below.

Referring to Fig. 6-15a and b, we consider the grid G: waveform begin-
ning at a time ¢t = 0. Assume that at this time, because of the past
history of the circuit, the tube T, is carrying a current I, while T’ is
below cutoff. The voltage at @. is rising exponentially toward ground
voltage. This exponential rise continues until ..., the grid-to-ground
voltage of G, passes the cutin point of T's, which occurs at

ez = IRy + Eooe

At this point a regenerative transition occurs since now both tubes may
operate as amplifiers. The voltage at G2 jumps to a high value because
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the change in voltage at Py, as T goes off, is transferred through C to G..
So long as e..» remains appreciably higher than ground voltage, the
increased current through 7's will be large enough to keep T’y cut off because
of the common cathode resistor. The capacitor C' charges initially
through the flow of grid current, and then at ¢ = {, the grid current falls

c]l;

(a)

€cn2

C charging through

grid current
\ C charging through R
[}

fe—1 ™
(LR, +E.2) 7

()
Fra. 6-15. (a) A monostable type circuit which has no stable state. (b) The waveform
at the grid G..

to zero and C continues to charge through B. The initial decay of ecns is
therefore rapid, the remainder relatively slow. Sometime before e... drops
to zero the current I; is no longer adequate to keep T'; cut off. This is
the premise with which we started. When this condition is attained,
the reverse transition occurs, driving T'; to cutoff. We have now returned
to our starting point. Ordinarily the partial period 7’ is appreciably
smaller than 7"/, Usually a more symmetrical waveform is of advantage,
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and when a free-running multi is required the symmetrical circuit form
discussed in Sec. 6-12 is more commonly employed.

If R. or Ry or both are selected to be quite small, it may happen that
neither tube is able even temporarily to keep the other tube cut off.
In such a case the circuit will behave approximately as a sinusoidal
oscillator. The frequency of oscillation will be determined by the stray
capacitances associated with the circuit. These circumstances would
correspond to the case in which the loop gain of the circuit is not much
in excess of unity.

6-12. The Astable Plate-coupled Multi.2 The circuit diagram of an
astable plate-coupled multi is shown in Fig. 6-16. Since the coupling, in
this case, is entirely capacitive, it is clear that neither tube can remain
permanently cut off. This multi has, therefore, no stable state but has
instead two quasi-stable states be- E
tween which the circuit will make T bb
periodic transitions.

We discuss now the waveforms at
the plates and grids of the astable
multi of Fig. 6-16. These wave- R % R % % R % R
forms are shown in Fig. 6-17a to d. £ 2 ! L
We consider that at the time im-
mediately before ¢ = 0, tube T is at
grid clamp and carrying correspond-
ingly a current I, while tube T, is
below cutoff. The capacitor C,
charges through resistor R, and at
t = 0 the grid G; reaches the tube
cutoff voltage E,,. Tube T goes on,
driving T to cutoff and causing the
plate of T, to start to rise to L.
The voltage rise at plate P, is trans-
ferred to G, causing the customary grid overshoot at G;. The amplitude
of this overshoot is calculated in precisely the same manner as the grid
overshoot which occurs in the plate-coupled monostable multi of Fig. 6-1.
The amplitude of the overshoot is given by Eq. (6-8) as

_ (IRL + Eca)"‘c
TCIC B RL + Te

in which we have replaced I, by I since the clamped current for both tubes
of I'ig. 6-16 is the same.

If the tube current at the moment of the overshoot is I’, then the
corresponding undershoot at the plate P, will carry the plate from
Ey (att = 0—) to By — I'Ry (at ¢ = 0-+), while G, will change from zero

Fra. 6-16. The plate-coupled astable
multi.
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(clamp) to —I’R;. The abrupt portion of the rise at P, is the same in
amplitude as at the grid Gy and therefore is of magnitude r.J, — E.
The overshoot at G; and the undershoots at G» and P; decay with a time
constant (R -+ r.)Cs, which is the time constant also with which e,
eventually attains the level Ey. After the overshoot has decayed, the

0 t=T, t=T+T,=T
I |
)

e v
<2 ! Time
|

€p1

rel—E, I'R (d)

Fic. 6-17. Waveforms of the plate-coupled multi of Fig. 6-16.

grid @, is left at the voltage — I Ry, from which point it rises toward Ey,
with the time constant RsCs. When G, reaches the cutoff level, the
reverse transition occurs. The second part of the cycle produces the
same waveshapes as does the first part described above except for the
fact that if the grid time constants are different the duration of the
individual portions of a complete cycle are different.
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The time durations of the overshoots are ordinarily very small in
comparison with the times required for C; to charge through £, and C; to
charge through .. Using Eq. (6-5), we find that the time required for a
complete cycle is, neglecting the overshoot times,

Ey + IR,

T'=Ti+ To = (B:iCy + BaCy) In "=

(6-23)
We may neglect E., in comparison with K. Then for values of plate
swing IRy which vary all the way from !4 to 34 of E, the logarithm
in Eq. (6-23) varies only between 0.25 and 0.55. Hence as a rough but
useful general approximation

B.Cy 4+ RyC,
LT R R (6-24)

T =~
in the symmetrical case when R.C; = E.C: = RC.

Since the plate characteristic for L, = 0 can be approximated by a
straight line through the origin, 7R, is roughly proportional to Ey. To
a first approximation, —FE, = Eu/u. Under these circumstances the
factor Ey can be canceled in the numerator and the denominator of
Eq. (6-23). Thus, the frequency of the multi will vary only of the order
of several per cent for a supply-voltage variation of the order of 100 volts.
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CHAPTER 7/

VOLTAGE TIME-BASE GENERATORS

A linear time-base circuit is one that provides an output waveform,
a portion of which exhibits a linear variation of voltage with time. An
application of first importance of such a waveform is in connection with
a cathode-ray oscilloscope. The display on the screen of a scope* of the
variation with respect to time of an arbitrary waveform requires that
there be applied to one set of deflecting plates a voltage which varies
linearly with time. Since this waveform is used to sweep the electron
beam horizontally across the screen, it is called a sweep voltage. There
are in addition many other important applications for time-base circuits
such as in radar and television indicators, in precise time measurements,
and in time modulation,

e

F1a. 7-1. A general sweep voltage. The Fie. 7-2. A saw-tooth voltage.
sweep time is T, and the return time
is T,.

7-1. General Features of a Time-base Signal. The typical form of a
time-base voltage is as shown in Fig. 7-1. Here it appears that the volt-
age, starting from some initial value, increases linearly with time to a
maximum value, after which it returns again to its initial value. The
time required for the return to the initial value is called the restoration
time, the return time, or the flyback time. Very frequently the shape
of the waveform during the restoration time and the restoration time
itself are matters of no special consequence. In some cases, however, a
restoration time is desired which is very short in comparison with the
time occupied by the linear portion of the waveform. If it should happen

* It is customary to refer to a cathode-ray oscilloscope simply as a scope.

202



VOLTAGE TIME-BASE GENERATORS 203

that the restoration time is extremely short and that a new lincar voltage
is initiated at the instant the previous one is terminated, then the wave-
form will appear as in Fig. 7-2. This figure suggests the designation
saw-tooth generator or ramp generator. It is customary to refer to wave-
forms of the type indicated in Figs. 7-1 and 7-2 as sweep waveforms even
in applications not involving the deflection of an electron beam.

We shall see that generators of time-base signals do not ordinarily
provide sweep voltages which are precisely linear. Additionally a
nominally linear sweep may be distorted in the course of transmission
through a coupling network (see Secs. 2-1 and 2-4). The three most
useful ways of expressing the deviation from linearity, and the correlation
between them, are given in the following.

The Slope or Sweep Speed Error e.. In the case of a general-purpose
cathode-ray oscillograph an important requirement of the sweep is that
the sweep speed (i.e., the rate of change of sweep voltage with time) be
constant. A reasonable definition of the deviation from linearity is

difference in slope at beginning and end of sweep
initial value of slope

Il

€s

The Displacement Error e In connection with other timing appli-
cations a more important criterion of linearity is the maximum difference

€ e
Byl e
Egf— — — —— I
A B l———— -
es |
oo |
es—eg es |
, |
eg 1
o 1 [ ¢
F1a. 7-3. Relating to the definition Fia. 7-4. Relating to the definition
of displacement error. of transmission error.

between the actual sweep voltage and linear sweep which passes through
the beginning and end points of the actual sweep as in Fig. 7-3. Here
we may define
_ (e = €)max
“=TE
The Transmission Error ¢. If a ramp voltage is transmitted through
a high-pass RC network, the output falls away from the input, as indi-
cated in I'ig. 2-10a and in Fig. 7-4. The lransmission error is defined
as the difference between the input and output divided by the input.
Thus, with reference to Tig. 7-4, we have (at time { = T',)
E, — E,
€& = —_.ET,——
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If the deviation from linearity is small so that the sweep voltage may
be approximated by the sum of a linear and a quadratic term in ¢, then
it can be shown from the above definitions that

€ = Y& = Ve (7-1)

7-2. The Thyratron Sweep Circuits. We consider first the sweep
circuit using a thyratron tube, the schematic of which is shown in Fig.
7-5. The circuit lacks much of the versatility of sweep circuits employ-
ing vacuum tubes and is limited in its ability to provide sweeps of high
speed. However, because of its simplicity it is employed commonly in
many general-purpose laboratory oscilloscopes.

In order that the arc of a thyratron® be ignited, the plate-to-cathode
voltage must first attain the breakdown voltage E;. The breakdown

Fra. 7-5. A thyratron sweep circuit.

voltage is a funetion of the grid bias and for the type 884 thyratron the
variation of Fy with grid bias voltage e. is given approximately by the
relationship E; = —8e..

Once the arc has formed in a thyratron, the grid loses its ability to
control the tube current. Variations in grid voltage accomplish nothing
but a variation of the thickness of the positive ion sheath surrounding the
grid. The arc will persist just as long as the current through the tube is
large enough to maintain an adequate supply of positive ions to replace
those ions which are lost through the process of recombination. If the
current is large enough to maintain the ion supply and is less than the
saturation current of the tube, the tube drop will remain essentially con-
stant at the maintaining voltage F,, independently of the current. Over
this range of currents, the tube current is determined by the circuit
external to the tube. The arc may be extinguished only by reducing the
tube current below the minimum required to maintain ionization. When
the arc has been extinguished, the grid once again regains control
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and determines the plate voltage which must be applied to the tube to
cause breakdown.

The output waveform of the circuit of Tfig. 7-5 is the voltage which
appears across the capacitor €. This waveform is plotted in TFig. 7-6.
A negative bias .. is maintained on the grid, and the tube consequently
does not conduct until the plate voltage rises to the breakdown voltage
E; which corresponds to E,.. The capacitor C charges through R,
approaching asymptotically the supply voltage Ey, as shown. When the
capacitor attains the voltage E,, the thyratron ignites. At this point the
thyratron may be considered to be replaced by a battery whose terminal
voltage is equal to the maintaining voltage of the tube. The capacitor
C will discharge through the tube and series resistor r until the capacitor
voltage drops to the maintaining voltage. The arc will extinguish itself

€c

Fia. 7-6. Waveform obtained from a thyratron sweep.

at the instant the tube current is less than the minimum required to
maintain the arc and the charging of the capacitor through R from the
supply voltage will begin again. The resistor r is made small enough
to permit a rapid discharge of the capacitor but not so small that it
permits a larger discharge current through the tube than the tube can
safely handle. The maintaining voltage of the 884 thyratron is about
16 volts, the minimum current required to maintain the arc is of the
order of magnitude of 1.0 ma, while the maximum peak current which
should be permitted to flow at the discharge of the capacitor is about
0.5 amp. To limit the positive ion grid current to a safe value, a resistor
R, (=2 10 K) is inserted in the grid circuit.
The sweep voltage e, = e, — I, is given by

e, = E(1 — ¢t/EC) (7-2)
in which £ = Ey — E,. If the definition of sweep-speed error is ap-
plied to the above waveform, we find that ¢, is given exactly by
JR
B

€ =

(7-3)
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where E; = E; — E,, is the sweep amplitude. From Eq. (7-1), the dis-
placement error is given approximately by e; = WE,/E.

If t/RC < 1, it is convenient to expand the exponential in Eq. (7-2),
so that

i t 12
e*—Ez—e‘é(l‘m““W““) (7-4)
Since ¢, = E, when t = T,, we have to a first approximation that
E, T
T~ RC (7-5)

Hence, if the sweep is to be reasonably linear, the time constant RC
must be large compared with the sweep time T',.

In the sweep circuit presently being considered the waveform is repet-
itive; one sweep is initiated immediately at the termination of the
previous sweep and the circuit does not wait for some external signal to
initiate the sweep. The sweep is termed recurrent and it is customary
to calibrate the control dials of the scope in frequency rather than sweep
time. The frequency is a function of Ew, E.. (since E, is a function of
E.), R, and C. In practice, B and E.. are kept constant and the fre-
quency is varied through R and C. In this way the amplitude and
linearity of the sweep are kept constant. Continuous variation of fre-
quency is accomplished through varying R, while the ranges are changed
by switching the value of C. The resistance R must always be large
enough to prevent the supply voltage from furnishing to the tube a
current large enough to maintain the arc, since in such a case the circuit
will stop oscillating.

If a periodic signal of frequency f, is applied to the vertical axis of a
scope while a sweep of frequency f, is applied to the horizontal axis, a
stationary pattern of n cycles will appear if f, = nf,. A small portion
of the last cycle occurs during the return time and is ordinarily not visible
because of the speed with which the beam moves during the return. It
is customary to apply to the grid of the cathode-ray tube a voltage derived
by differentiating the sweep. This differentiated voltage consists essen-
tially of sharp negative pulses which serve to turn off the cathode-ray
tube-beam during the retrace. This process of turning off the beam
is referred to as blanking.

To maintain the condition f, = nf, exactly for long periods of time, it is
necessary to synchronize the sweep generator to the signal. If f, is only
very slightly different from nf,, the waveform will drift slowly across
the screen. Synchronization is accomplished by applying to the grid of
the thyratron the vertical deflecting signal, increased or reduced in ampli-
tude as may be required. The process of synchronization is explained
in detail in Chap. 12.
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It sometimes happens that a waveform is not periodic but occurs
rather at irregular intervals. In such a case it is desirable that the sweep
circuit, instead of running continuously, should remain quiescent and wait
to be initiated by the waveform itsclf. Even if it should happen that the
waveform does recur regularly, it may happen that the interesting part of
the waveform is short in time duration in comparison with the period of
the waveform. For example, the waveform might consist of 1-msec
pulses with a time interval of 100 msec between pulses. In this case
the fastest recurrent sweep which will provide a synchronized pattern will
have a period of 100 msee. If, typically, the time base is spread out
over 4 in. (on a 5-in. CRT*), the pulse will occupy 0.04 in. and none
of the detail of form of the pulse will be apparent. If, on the other hand,

AEy,

Sync
signal

—E.,
¢ IF _
L

F1a. 7-7. A thyratron driven sweep.

a sweep of period 1 msec or somewhat larger could be used, the pulse
would be spread across the entire screen. Therefore, what is required
here is a sweep set for, say, a 1.5-msec interval which remains quiescent
until it is initiated by the pulse. Such a sweep is known as a driven
sweep or a {riggered sweep.

The circuit for a thyratron driven sweep is shown in Fig. 7-7. The
bias E; on the cathode of the diode T'» is adjusted by resistors R; and
R.. The grid bias on the thyratron is adjusted so that the firing voltage
is slightly higher than the diode cathode voltage. Accordingly, as the
capacitor voltage increases, a point is reached. before the thyratron firing
voltage is attained, where the diode begins to conduct and prevents the
further rise of the capacitor voltage. Tube T'; acts as a plate-catching
diode clamp (see Sec. 4-5). Now let a signal be applied to the grid which
even instantaneously raises the grid voltage to the point where the firing
voltage is equal to or less than the voltage E;. Then the capacitor will
discharge abruptly and will charge again to the diode cathode voltage.

* It is customary to abbreviate cathode-ray tube by CRT.
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Here the circuit will remain until another sweep is initiated by a sync*
signal applied to the thyratron grid.

Figure 7-8 shows the operation of a triggered sweep for a case in which
the waveform to be observed on the scope consists of a train of pulses.
This signal e, is applied to the vertical-deflection amplifier of the scope
and is used also to trigger the sweep circuit. Observe that at the occur-
rence of the leading edge of a pulse the circuit capacitor first discharges,
after which a linear sweep occurs. Note also that the sweep speed has
e been adjusted so that the pulse will

be spread out over a large portion
_l—l l_] of the sweep trace.
(a) : ¢ A typical thyratron sweep circuit
\ec_ : for a general-purpose scope (Du

Mont type 304) is shown in Fig.

7-9. T, is used for adjustment of

the polarity and amplitude of the

sync signal. Tsisasyncsignal am-
I A A —— —En

plifier. 7T'5 is the thyratron sweep
(b) t tube. T, is the diode clamp used
F1c. 7-8. (a) A pulse waveform. (b) The when the circuit is set for driven
driven sweep triggered by the waveform sweep. T is a buffer stage which
in (a). is used as a cathode follower not
only to provide a low output impedance but also because it can
handle the relatively large amplitude of the sweep signal. Observe
that T has no grid-leak resistor. The 22-uuf capacitor and 15-K
resistor in the cathode circuit of T'; generate the blanking pulse. T is
an amplifier for the blanking pulse. The pulse is applied to the
CRT cathode so that the CRT grid may be available at a front-panel
terminal for external intensity modulation (called Z axis modulation).
The 5-Meg potentiometer is used for fine frequency control, and, to
change frequency ranges, the capacitor C is changed by switching (not
shown). The bias for the 6Q5G thyratron is applied to the cathode and
is derived from a bleeder. For recurrent operation, switch S is closed
and the diode T’y never conducts. For driven sweep operation, S is open
and R is adjusted so that the cathode voltage of T, is just slightly less
than the peak sweep voltage. The circuit will operate reliably up to
sweep repetition rates of about 30 ke. Operation at high frequencies is
inconvenient because of the time required between sweeps for the thy-
ratron to deionize.
7-3. Vacuum-tube Sweep Circuit. The basic circuit of a vacuum-tube
sweep generator is shown in Fig. 7-10a. The grid is clamped to the
cathode and the capacitor voltage is held at a low value, say, E,. If the

* 1t is customary to refer to a synchronizing signal as the sync signal.
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Fig. 7-9. The thyratron sweep circuit for the type 304 general-purpose scope.
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“gating”’ waveform e; of Fig. 7-10b is applied to the grid so as to cut the
tube off for a time T4, then C charges through B. The initial charging
current is (Ew — E,)/R = E/R. Hence, the sweep amplitude is given
approximately by

__ET,
* T RC

For the thyratron sweep, the amplitude is equal to the difference between
the breakdown and maintaining voltage of the thyratron. For the
vacuum sweep, the amplitude is
almost independent of the tube
(there is a slight dependence be-
cause E,, is determined by the tube,
R but E, can be made much smaller
%Rr than Ey). The displacement
error is determined, as before, by
c, e =2 W4E,/E =~ 14T,/RC.
T;l(— At the end of the sweep time T,
TC %  the tube is in clamp again and the
;{ capacitor discharges through the
= tube to its quiescent value E,, as
() 7 indicated in Fig. 7-10c. If the time
constant R,C, is not very large com-
e pared with T, there will be an over-
: shoot at the grid at the end of the
gate which will drive the grid positive
< T (see Sec. 4-7) and aid in discharging
C all the more rapidly.
A practical vacuum-tube sweep cir-
cuit such as is used in the Tektronix

I

I

|
K3 : type 511 and 514 scopes is shown in
ms /\ Fig. 7-12. Switching arrangements
! Em and certain other details have been

; omitted to avoid excessive com-
(¢) plexity. The circuit is more com-
F1c. 7-10. (a) A vacuum-tube sweep cir-  plicated, but is also more versatile
cuit. (b) The input gating waveform. than g gas-tube sweep and is capa-
(c) The output sweep voltage. ble of the much higher sweep speeds
which are required in a high-frequency oscilloscope. The sweep circuit is
intended to be used as a triggered or driven sweep at all times. High g.
pentodes are used in almost every case for good high-frequency response.
The type 514 scope vertical amplifier response extends from 0 to 10 Mec
(rise time equals 0.04 usec) and the sweep speed is continuously adjust-
able from 0.01 sec/cm to 0.1 usec/cm.

E (7-6)

Ey

;c]l—

€
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The syne or triggering signal is applied to the grid of tube T, (T'ig.
7-12). Switch S is used to select proper polarity whenever the sync
signal is very unsymmetrical, as in case of a pulse. Tube T'; amplifies
the sync voltage and applies it to the triggering diode T';. Tubes T4 and
Ts constitute a plate-to-grid coupled monostable multivibrator which is
used as a gate generator. T, is the “time-base former”; capacitor C;
charges through R, to provide the sweep voltage when T is cut off. In
the quiescent condition the plate of T is at Ey and the grid of T is
clamped at zero. The swing at the plate of T4 when the multi is triggered
is large enough to drive T's well into cutoff. The sweep speed is deter-
mined by R.Cs, while the gate width is determined by R,C;. If the sweep
amplitude is to remain nominally constant, the gate width controls R,
and C, must be adjusted whenever the sweep speed controls R, and C; are
varied. Capacitors C and C, are switched simultaneously to change the
range of sweep speed, and resistor Rs, which is used for continuous varia-
tion of sweep speed, is ganged to R;. No attempt is made to maintain
constant amplitude with any precision. The sweep amplitude is deliber-
ately made so large that the end of the sweep occurs at a point well off
the CRT screen, so that variations of amplitude are not observed.

The magnitude of the sync signal which is applied to the grid of T
through diode T'; and capacitor C; is controlled by the bias on Ts. The
negative bias on T is adjusted by the potentiometer labeled “trigger
amplitude.” A syne signal large enough to bring T's out of cutoff causes
the plate of T to fall. This drop in voltage is transmitted through the
diode. As soon as the multi is triggered, the plate of T, falls abruptly,
and unless the sync signal is extremely large in amplitude, the multi is
disconnected from the sync voltage during the formation of the gate.
The distortion of the sync signal produced by the limiting amplifier T, is
of no consequence since the sync voltage serves only to initiate the gate.
Varying the amplitude of the sync signal by adjusting cutoff makes a
compensated sync signal attenuator unnecessary. The ‘“‘sweep-stabil-
ity”’ control permits an adjustment of the bias of T4 so that the tube is
only slightly below cutoff and consequently only a small syne signal is
required to trigger the multi. Since the ratio of sweep time to time
between sweep is variable, a d-c¢ restorer (7)) and a d-c amplifier are
used to ensure that each sweep starts at the same place on the CRT
screen.

In a case in which the sweep time is short in comparison to the time
between sweeps the CRT beam will remain in one place most of the time.
If the intensity is reduced to prevent screen burns, the fast trace will be
very faint. To intensify the trace during the sweep, a positive gate, at
the cathode of T's, which is derived from the plate of T's is applied to the
CRT grid. As a matter of fact in the presence of this ‘“‘unblanking
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signal” the beam intensity may be adjusted so that the spot is initially

invisible and the trace will become visible as soon as the sweep starts.
In operation the “trigger-amplitude” control is initially set at maxi-
mum negative bias so that no synec signal reaches the multi. The arm
on the ‘“sweep-stability” control is initially set at ground so that the
multi is astable and a trace appears on the CRT screen. The bias on T4
is now increased just beyond the point where the trace disappears. The
multi is now monostable; that is, T4 is cut off. At this point the bias on
T is reduced to just beyond the point where the sweep reappears and the
sweep speed controls are adjusted until a stationary pattern is observed.
It is possible to use the circuit under circumstances where the gate
generator operates as a synchronized
free-running multi but under these
X R conditions the operation is not so

+ ' clean-cut as in the triggered case.
- The sweep voltage is applied to a
—1 paraphase-inverter amplifier of the
—c type desecribed in Sec. 1-10. The
S push-pull output sweep voltages
{ from this amplifier are d-c coupled
to the CRT horizontal deflection
(a) plates. In order to improve the
linearity, some degeneration is intro-
\v duced into each amplifier cathode

R
13

and then a small cathode bypass
capacitor is used in order to improve

X the rise time so as to be able to pass
pud BIPSS the fastest sweep without apprecia-
ble distortion.

T-4. Circuits to Improve Sweep
Linearity. In general-purpose scope
sweeps E,/E is usually of the order

(0) . of 2{p, giving a slope error of 10 per
Fic. 7-11. In (e) the current varies ex- .
ponentially with time, whereas in (b) it cent and a displacement error of
remains constant, provided that e is about 1.25 per cent. In many tim-
equal to the instantaneous voltage ing applications a much higher pre-
across C. cision sweep is required.

The basic sweep circuit is shown in Fig. 7-11a in which S opens to
form the sweep. If, as in Fig. 7-11b, an auxiliary variable generator e is
introduced and if e is always kept equal to the voltage drop across C,
the charging current will be kept constant at ¢+ = E/R and perfect line-
arity will have been achieved. Methods of simulating the fictitious
generator e with an amplifier will now be given.

[
Z +/[I;_ 'Y
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Fig. 7-12. The vacuum-tube sweep circuit similar to those of the types 511 or 514 scopes. (Courtesy of Tektroniz, Inc.)
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It is common practice to build electronic circuits on a metallic chassis
and to have one point in the circuit electrically connected to the chassis.
The chassis is then referred to as ground, and customarily the voltage
at any point in the circuit is given with respect to ground. Differences
in the point selected to be grounded yield different descriptions of the
mechanism whereby the linearity is improved. Suppose that the point Z
of Fig. 7-11b is grounded as in Fig. 7-13a. A linear sweep will appear
between Y and ground and will increase in the negative direction. Let

€c

=¥

T i

Z
(a)
c
Il
It
R
AW f Y .
i I
_‘[ ¢ ;mélfi:: éo
'— l—
X z L

(b)
F1a. 7-13. (a) Figure 7-11b with point Z grounded. (b) The same circuit simulated
with an operational (Miller) integrator with 4 = — «.

us now replace the fictitious generator by an amplifier with output
terminals YZ and input terminals XZ as in Fig. 7-13b. Since we have
assumed that the magnitude of the generator voltage ¢ equals the voltage
e. across the capacitor at every instant of time, then the input e; to the
amplifier is zero. In other words, point X behaves as a virtual ground,
and in order to obtain a finite output, the amplifier gain A should ideally
be infinite. Figure 7-13b should be recognized as the operational inte-
grating amplifier of Sec. 1-13 and is customarily referred to as a Miller
integrator.

Suppose that point ¥ of Fig. 7-11b is grounded as in Fig. 7-14a. A
linear sweep will appear between Z and ground and will increase in the
positive direction. Let us now replace the fictitious generator by an
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amplifier with output terminals ZY and input terminals XY as in Fig.
7-14b. Since we have assumed that ¢ = e, (co = ¢;), then the amplifier

R X
v'\,\/\N 4
E_i +
T~ C=<e.

+ ;l — —
Z =
e
(a)
R X Z
VWA T
.—*i
+ +[C
B €T~ Amplifier
-] AZH] ¢
i —
()

Fia. 7-14. (a) Figure 7-11b with point ¥ grounded. (b) The same circuit simulated
with a noninverting unity-gain amplifier (a booisirap integrator).

gain A must equal unity. The circuit of Fig. 7-14b is referred to as
a bootstrap sweep, since the voltage E is lifted, as it were, by its own
bootstraps.

Since the mechanism of linearity improvement is,
in both cases, the same, it may seem strange that
two such radically different amplifiers are required,
one with a gain — « and the other with a gain --1.

It may be shown that actually these amplifiers are
identical, i.e., that given one and the same amplifier, 2Z
the gain may be changed from unity to — « by sim- Fic. 7-15. An ampli-
ply redefining the input and output terminals. The ger lh“s ttthre". ”;'
amplifiers of Figs. 7-13b and 7-14b have three inde- Xe, pfzr,l a?d Z?rmmas
pendent terminals X, ¥, and Z, as in Fig. 7-15.

Suppose that Z is taken as the terminal common to input and output,
then take e,, to be the input, e,, to be the output, and let the gain
be A = e,./e.., as in Fig. 7-13b. Next, as in Fig. 7-14b, take Y to be
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the common terminal, and let e., be the input, e,, be the output, and let
the gain A’ = e,,/€,,. Then

A’ = .eﬂ! = _eyz = _eyz = '—eyz/ezz = —A
Czy (2 + €2y €zz — €yz 1 - eyz/exz 1 - A
If A = —w, A’ = 41, as anticipated.

The effect of a finite value of A on the linearity of a Miller sweep is
now to be investigated. In accordance with the principle of the virtual

= I I R
| i I

nd

Fi1g. 7-16. The equivalent circuit of the Miller integrator for finite gain A.

ground explained in Sec. 1-12 the equivalent circuit is as drawn in Fig.
7-16. The output or sweep voltage is given by

€ = AE(l — e—t/RC(l—A))

~ A t 4 A
=E1—AR—C’[1_2RC(1—A)+ ]

[a Et . t “ o e -
=‘RT*<1_2R0|A|+ ) @D

since A is large and negative. Comparison of Eq. (7-7) with Eq. (7-4)
shows that, for a fixed sweep amplitude E, relative to the supply voltage
E [see Eq. (7-5)], the deviation from linearity of the Miller sweep is
1/]| 4] times that of the uncompensated time base.

The effect of a deviation of A from 1 for the bootstrap sweep is now
to be investigated. Referring to Fig. 7-14b, we have

E=1IR+e—e=1iR+ el —A) (7-8)
because ¢, = Ae;. Dividing by 1 — A, gives
E . R "
T—4 - ‘T—aTe (7-9)

Remembering that e; is the voltage across eapacitor C, Eq. (7-9) leads
to the equivalent circuit of Fig. 7-17. The output or sweep voltage is
given by
_t1—4)
e, = ﬂ (]_ — € RC )

I—4
N t (-4,
= AB 5 [1 - + ] (7-10)

2RC
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Since A is close to unity, we see, by comparing Eq. (7-10) with Eq. (7-4),
that the deviation from linearity of the bootstrap circuit is (1 — A)

times that of the uncompensated time base.

R
1-A

It follows from this dis-

VVWWA

E+| —i

1-4 _'l' =

-+ +

€p=¢€s

LT

TF1a. 7-17. The equivalent circuit of the bootstrap sweep.

cussion that a Miller amplifier (of gain A) will give the same ampli-
tude, sweep speed, and deviation from linearity as a bootstrap amplifier

(of gain Ap), provided that |Ax| = 1/(1 — Ap).

strap circuit with a gain of 0.95 is
equivalent to a Miller circuit with
a gain of 20. The decision between
these two circuits is often difficult
to make. Some practical consider-
ations are given in the following
sections. Other fine points are
brought out in Chap. 16 in connec-
tion with the use of these sweep cir-
cuits for precision time modulation.

7-b. The Miller Sweep.? A sim-
ple Miller sweep is shown in Fig.
7-18a. The negative bias should
not be so large that the tube is cut
off. Observe that E, is used both
to charge C and to supply tube
current. When 8 opens, a nega-
tive-going sweep will appear at the
plate. However, as indicated in
Fig. 7-18b, the sweep will be pre-
ceded by a positive jump. The
jump results from the finite output
impedance of the amplifier which

has heretofore been neglected (see Prob. 7-13).

For example, a boot-

TE»

0
(d)
Fie. 7-18. A Miller sweep with the gate

applied to the grid. (a) Circuit; (b) out-
put waveform.

This jump can be elim-

inated by the addition of a resistor » = 1/g,, in series with the capacitor

C (see Prob. 7-14).

A Miller sweep with symmetrical outputs isindicated in Fig. 7-19. The
triode T; with its grid clamped to ground acts as the closed switch S
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of Fig. 7-18. A negative gate applied to the grid cuts T', off and allows C
to charge from Ej, through R and the Miller tube 7T.. The output e,
from the plate of T’ is a negative-going sweep. This voltage is applied
to the grid of T'; through the resistor R. and an cqual resistor R, is used
for feedback from plate to grid of 7's. Hence, 7's acts as an operational
phase inverter (see Sec. 1-13) and the output e,; is a positive-going sweep.
The symmetrical voltages e, and e, drive the CRT horizontal plates.
It should be noted that the negative bias of Fig. 7-18 has been replaced
by the voltage across the cathode resistor Rj. This resistor does not
introduce degeneration because the current through it remains constant.
Thus, as the current in 7', increases, the symmetrical current in T';

TEbb

Fia. 7-19. A symmetrical Miller sweep. The switch tube is T, the Miller integrator
is T';, and the operational inverter is 7'5.

decreases by the same amount, leaving the current in Rj unchanged.
The grid leak for T'; is B3 and the blocking capacitor C; keeps the high
plate voltage of T: from reaching the grid of Ts. The time constant
R;C» must be large enough to introduce negligible transmission error
(see Sec. 7-1).

A total sweep voltage equal to the supply voltage can be obtained
by choosing e,; = —F/2 and hence e,; = +E/2. From the theory
developed in See. 7-4 the displacement error under this condition is

~ 1 E,100 _ 100 . . . .
«“=gq TA] = T6[4] per cent. It is not difficult to obtain a gain |A4]|
of 15 with a triode (say, a 12AU7 tube), and then e; = 0.4 per cent for a
total swing of Ey volts. The sweep speed is Ey/RC volts/sec.

At the end of the sweep time the capacitor C must discharge and
return to its quiescent voltage. The discharge path is through the ampli-
fier output impedance and through a switching tube such as T in Fig.
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7-19. If fast retrace time is important, then C should be kept as small
as possible and R chosen sufficiently large to give the desired sweep
speed. Tor practical reasons it is advisable not to permit R to exceed
several megohms. A high-current switching tube and, additionally, the
use of a cathode follower interposed between the capacitor C and the
amplifier output will reduce the recovery time still further. The recov-
ery may also be hastened by selecting the time constant R,C; (Fig. 7-19)
to be comparable to the width of the gating signal, since under these
circumstances there will be a pronounced overshoot at the grid at the
termination of the gate. A Miller sweep using a cathode follower to
speed recovery and using a pentode amplifier for higher gain is shown
in Fig. 7-20. Note that the low output impedance of the cathode follower
makes the resistor r in series with C (Iig. 7-19) unnecessary.

TEbb

R BL
Ig Ess +
S ‘ C_J Rk €
L
-Ecc - .
F1a. 7-20. A Miller sweep using a cath- Fia. 7-21. A suppressor-gated Miller
ode follower in order to reduce the re- time-base generator.

trace time. Note that a negative-
going sweep is obtained at the low
impedance output of the cathode
follower.

7-6. Pentode Miller Sweep with Suppressor Gating. If a pentode is
used as the amplifier tube of a Miller sweep, then the gating voltage may
be applied to the suppressor grid instead of to the control grid. A
suppressor-gated Miller integrator is indicated in Fig. 7-21. A tube with
a sharp cutoff suppressor characteristic is used, such as the types 6AS6,
TAK7, 5915 (RCA), 6CS6 (Raytheon), and 6BH6 (Tungsol). The 6SA7
converter tube® has also been used in this application. Initially the
suppressor grid is biased to plate current cutoff, while the control grid
is clamped to the cathode. All the cathode current flows to the screen
and hence the screen voltage is low. The waveforms at all the electrodes
are given in Fig. 7-22. A positive gate applied to the suppressor drives
this electrode either slightly positive or to clamp. Clamping may occur
either because the impedance of the driving source is large in comparison
with the suppressor-cathode resistance or because a diode is added to the



220 PULSE AND DIGITAL CIRCUITS

circuit from suppressor to ground. This increased suppressor voltage
permits plate current to flow and the plate voltage drops. Since the
voltage across the Miller capacitor C' cannot change instantaneously, the
grid voltage must drop by the same amount E; that the plate falls.
The grid voltage is now — Ej, the tube finds itself operating above cutoff,
and a negative-going sweep forms at the plate. The load resistor R
is large so that bottoming will take place (see Sec. 4-3). The load line
is drawn on the plate characteristics in Fig. 7-23. Since —FE; is very
close to the cutoff bias, we have considered that the tube characteristic
corresponding to the grid voltage —E, is coincident with the abscissa.

Suppressor
0 Y t
E, E,
Plate| E,p =2
N3
T
0 ; n
id |
Gri E, : .
0 Y : &
L— ¢
' 1
Screen ] :
|
1 i Il T
0 = \ r t
t=0 Ts Ty

F1a. 7-22. The waveforms for a suppressor-gated Miller sweep generator.

For a type 6AS6 tube, the order of magnitude of E, is 5 volts and bottom-
ing begins when the grid has increased by only one or two volts. For
example, if Ey = 300 and the amplifier gain is 150, then the grid will
increase by 399{5¢ = 2 volts for complete ‘‘run-down.”

When the grid voltage drops from zero to —E;, the cathode current
falls, the screen current drops, and hence the screen voltage rises as
indicated in Fig. 7-22. During the formation of the sweep the grid rises
slightly, as noted above, and the increased screen current results in a slight
decrease in screen voltage. When the plate voltage bottoms, the grid
voltage increases to zero with a time constant RC, the space current and
hence screen current increases, and the screen voltage drops, as indicated
in Fig. 7-22, The screen voltage does not quite fall to its value for { < 0
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because some of the cathode current is now being collected by the plate,
whereas for ¢ < 0 all the space current goes to the screen.

At the end of the gate the suppressor again cuts off the plate current.
The capacitor C whose voltage has fallen almost to zero recharges
toward Ep through R and the grid-cathode resistance r, with a time
constant 7+ = (Rp + r.)C = R;C. The grid voltage will be driven posi-
tive by approximately r.Ew/RrL
volts. This positive grid voltage
will increase the cathode current
above its value for ¢ < 0, and hence

i

]
-1
-2

there will be a dip in screen voltage . ’ -E+2
below its value for ¢t < 0. The a—”,',"; “Et1
overshoot in grid voltage and under- Ab %

shoot in screen voltage are indi- Frg. 7-23. Illustrating bottoming in a
cated in Fig. 7-22. pentode and the fact that the grid volt-
Att = 0+, the voltage across B 2&e chqnges by only a few volts during
is Ew + E,, and since the current the entire sweep voltage.
through R passes through C, the initial sweep speed is (Bw + E1)/RC
volts/sec. As long as the amplifier gain remains high, the sweep speed
remains essentially constant. Hence, a linear ramp results for almost
the entire plate voltage rundown except near the very bottom.

If the gate width T, is less than the time T, for the capacitor to dis-
charge completely, then there will be no bottoming and the flat portions
of Fig. 7-22 between T, and T, are missing. The screen voltage is itself
a gating voltage, and, if the sweep is being used in connection with
a scope display, can be used as an intensifier to brighten the CRT trace
during the sweep time and to cut off the CRT beam during the retrace
time. The recovery time may be made quite small by driving the
capacitor C from a cathode follower as in Fig. 7-20. Under these circum-
stances the recovery time constant is 7 = (C)(R, + r.), where I, is the
output impedance of the cathode follower and r, is the grid-cathode
resistance,

The step in the plate voltage at ¢ = 04 cannot be eliminated by adding
a resistor r in series with ' in Fig. 7-21, as was done for the grid-gated
Miller integrator. The use of the resistor r is effective because the
amplifier of the grid-gated circuit is initially biased within its grid base.
The suppressor-gated circuit, however, is held beyond cutoff in the
quiescent condition. When the gate is applied, the tube must draw
some plate current, and hence the plate voltage must drop somewhat.

7-7. Phantastron Circuits.* The screen waveform of Fig. 7-22 is a
positive step for the interval of the linear rundown. Hence, it is possible
to start the sweep by means of a narrow pulse or trigger and to couple the
output from the screen to the suppressor so that the positive gate needed
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at the latter grid is supplied internally. A circuit in which a Miller time
base is initiated with a trigger and the circuit then supplies its own gate
is called a phantastron.*

The screen-coupled phantastron is drawn in Fig. 7-24. This circuit
differs from the suppressor-gated Miller sweep (Fig. 7-21) only in that the
screen and suppressor voltages are obtained from a bleeder arrangement
Ri;-Rx-R;. These resistors are so chosen that in the quiescent state the
suppressor grid is sufficiently negative (say, — E») so that no plate current
flows, all the space current going to the screen. Assume now that a
positive trigger is applied at { = 0 to the suppressor so as to allow the
plate to draw current. The plate voltage drops, the grid voltage drops
the same amount (say, E;), the cathode current falls, and the screen

F1a. 7-24. The screen-gated phantastron.

voltage rises. This causes the suppressor voltage to rise because it is
obtained from the same bleeder as the screen potential. The capacitor C,
is a speed-up capacitor (see Sec. 5-3). The action described above is
regenerative and the tube is rapidly driven from cutoff to its normally on
condition and the Miller sweep is initiated.

The waveforms at all the electrodes are given in Fig. 7-25 and are
identical with those in Fig. 7-22 except that the flat portions at the end
of the run-down are missing. As soon as the tube bottoms and the plate
can fall no further, the plate side of C in Fig. 7-24 remains at a fixed
potential. Hence, the grid side of C' must rise with respect to ground
(with a time constant EC) because current continues to flow from Ej
through R through C into the tube plate. As the grid rises, the cathode
current increases, the screen current increases, and the screen voltage
drops. Because of the action of the bleeder arrangement the suppressor
voltage also falls and the plate current decreases. A reduction of plate
current means an increase in plate voltage which in turn causes the grid

* The British considered the operation of this circuit as fanfastic and dignified it
with the name phantastron.
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to rise still further. This action is regenerative and the suppressor
voltage is rapidly driven negative. The waveshapes for ¢ > T, in Fig.
7-25 are explained in exactly the same manner as the waveshapes for
{ > T, in Tig. 7-22. There is one difference between these two figures
in the region under consideration. Since the suppressor voltage comes
from the same bleeder as the screen voltage, there will be an undershoot
at the suppressor, as indicated in Fig. 7-25.

Triggering may also be done with negative pulses applied to the plate
and hence fed to the grid through the capacitor C. A negative trigger so
applied reduces the cathode current and consequently raises the screen
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F1c. 7-25. Waveforms in the screen-coupled phantastron.

voltage. The rise of screen voltage is transmitted to the suppressor to
bring the suppressor above the point of plate current cutoff. The trigger
size should be large enough to start the regenerative action but not so
large as to cut off the tube current. If the tube should be driven below
cutoff, the grid voltage will rise initially with a time constant RC into
the conducting region and there will be a delay between the apphcatlon
of the trigger and the start of the sweep.

The phantastron circuit has a recovery time constant r = R.C. If a
shorter retrace time is desired, then a cathode follower can be interposed
between the plate of the amplifier and the capacitor C, as was done for the
externally control-grid-gated Miller sweep of Fig. 7-20. Since the sweep
voltage at the plate of the pentode starts near E;, and since this voltage
is applied directly to the grid of the cathode follower, a separate supply



224 PULSE AND DIGITAL CIRCUITS

E}, must be used for the cathode follower with Ej, > Ey. The magni-
tude of the overshoots and undershoots is greatly increased (perhaps
by a factor of 10) if a cathode follower is used. The reason for this
feature is that the plate of the amplifier is no longer loaded down by the
low grid-cathode resistance r. which allowed the grid to overshoot to
only r.Ew/Ry1 volts. With a cathode follower in the circuit, when the
plate rises at the end of the sweep it carries the grid of the cathode
follower way up with it and hence the grid of the pentode can be driven
several volts positive.

The sweep speed is, as with the simple Miller integrator, (Ew + E1)/RC
volts/sec and can be adjusted by changing Ey, R, or C. If the rundown
proceeds to within E; volts of ground (see Fig. 7-25), then the amplitude
of the sweep is Ew — E1 — E;. The sweep time T, is the amplitude
divided by the speed, so that

Ty, Ew— E,— E;
RC ~ ~ Ew + E:
If B> E1 + E;, then T, = RC, a result which is independent of

variations in Ey. The next approximation is obtained by dividing the
numerator in Eq. (7-11) by the denominator with the result

T, 2E: + E;5 1 — 2E; 4 E;

(7-11)

=R T m I T (7-12)
Taking the derivative, we find
_37 ~ 2E, + E, dEbb
z Ew Euw (7-13)

For example, if E, = E; = 5 volts and Ey = 150 volts, then a 10 per
cent change in supply voltage (dEwu/Ew = 0.1) gives

do _

o 150><01-—001

or a 1.0 per cent change in sweep time.

A diode (T in.Fig. 7-26) may be used to clamp the suppressor to
-ground during the time when the time base is being formed. Hence the
negative supply —E, plays no part in determining conditions during the
interval T,. The voltage —FE, is needed only to ensure plate-current
cutoff before the circuit is triggered. Variations in the negative supply
have negligible effect on the sweep time T',.

Variations in filament voltage should affect £, and E; to some extent.
Experimentally it is found that a 10 per cent change in filament voltage
results in only a few tenths of a per cent change in T, and in a direction
opposite to the change due to a plate supply variation. If tubes are
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changed, then T, may change by a few per cent because 2E, + E; varies
from tube to tube.
Comparing Eq. (7-7) with Eq. (7-4), it follows that

17, 1 11

Gd—gm‘m:gm . (7‘14)

If the amplifier gain is 100, then ¢; =2 0.13 per cent. (Incidentally, if
linearities under 1 per cent are to be realized, then the capacitance C
must be independent of voltage to this precision. A mica capacitor is
usually satisfactory, whereas a paper capacitor may not be.) Here,
then, is a circuit possessing many fine characteristics: excellent linearity
of sweep and a time-base duration whose value is not very sensitive
to positive, negative, or filament supply voltages and whose sweep speed
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F1G. 7-26. The screen-coupled phantastron as a delay unit.

is readily adjusted. With a trigger input a square-wave output is
obtained at the screen, in addition to the linear output at the plate, and
hence the circuit is analogous to the plate-coupled monostable multi dis-
cussed in Chap. 6. One of the principal applications of the phantastron
is as a delay unit. If the output at the screen is differentiated (peaked),
then a negative output pulse is obtained, delayed T sec from the trigger-
ing pip. The delay is adjusted by controlling the voltage E from which
the run-down begins. A plate-catching diode 7'; is ideal for this purpose
and the complete circuit is shown in Fig. 7-26. The waveforms are given
in Fig. 7-25 except that the plate voltage starts at E rather than Ey.
The overshoot at the grid is approximately Ewr./Rr, where r, is the static
grid-cathode resistance and is independent of F and therefore T,. This
characteristic is different from the corresponding one for the plate-coupled
multivibrator where the overshoot increases with delay. The delay T,
is a linear function of E except for small delays where curvature due to
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bottoming becomes important. Incidentally, T'; also serves the useful
purpose of reducing the recovery time because it catches the plate which
is rising toward Ey, when it reaches IJ (see Fig. 7-28).

Analogous to the cathode-coupled monostable multi a cathode-coupled
monostable phantastron can be constructed as indicated in Fig. 7-27.
In the quiescent state the suppressor potential (the voltage E. across R,)
is much lower than the cathode voltage so that the plate current in T is
zero. The grid is clamped to the cathode and the plate is clamped to the
control voltage E. A positive trigger of large enough magnitude is
applied to the suppressor so that plate current commences to flow. This
current causes the plate to fall, and because of the capacitive coupling
the grid falls an equal amount. This drop in grid voltage decreases the

AEy,

T
91
It !
Positive R ’
trigger 1
input
o —_

Fra. 7-27. The cathode-coupled phantastron as a delay circuit.

cathode current and the cathode potential falls. Hence, the suppressor
voltage increases relative to the cathode and more plate current is drawn,
etec. This explanation shows that the circuit is regenerative, and at
t = 0+ normal plate current flows and the Miller run-down commences.

The waveforms are indicated in Fig. 7-28. Because of cathode-follower
action the grid and cathode waveforms are almost identical. Since the
grid follows the cathode drop at ¢ = 04, the plate, which is tied to the
grid through C, must drop the same amount. Hence, the initial fall in
plate potential K, may be larger by a factor of about 10 than the corre-
sponding drop in the screen-coupled phantastron. The overshoots at
the grid and cathode and the undershoot at the screen can be minimized
by using a grid-catching diode connected with its plate at the grid of T',
and its cathode at a tap on R, such that the voltage at this point is 1
or 2 volts less than the quiescent cathode potential. The exponential
voltage at the plate during the retrace time ends abruptly at £ because
of the plate-catching diode. This abrupt termination of the plate wave-
form is reflected in the other waveforms in Fig. 7-28, as indicated. The
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vertical sides in Fig. 7-28 are actually of the order of 1 usec in duration.
These waveforms should be compared with the analogous ones in Fig.
6-11 for the cathode-coupled monostable muiti.

The cathode-coupled phantastron has the following advantages over
the screen-coupled circuit. No negative supply is needed. The screen
is a free (unloaded) electrode from which a positive gate is obtained. A
negative gate is available at the cathode. The principal disadvantages

Suppressor
z, |

Cathode

Grid

Plate

Screen

=0 T, ot
Fic. 7-28. Waveforms in the cathode-coupled phantastron.

are that there is a larger initial step in plate voltage and the gain of the
amplifier is smaller because of the cathode degeneration introduced by
R;. This decreased gain means that the linearity is somewhat poorer.

The phantastron has the advantage over the cathode-coupled multi
in that the former is much less sensitive to tube characteristics and to
supply-voltage variations than the latter. For example, if the Ey, supply
changes by 10 per cent in a multi circuit, we may expect the delay to
change by perhaps 5 per cent, which is five or ten times what can be
expected in the phantastron ecircuit. Also, the phantastron delay can
be made more linear than that of the multi if sufficient gain is used.
An astable phantastron circuit is suggested in Prob. 7-16.
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The phantastron circuit is limited to the generation of linear sweeps
of duration of the order of 10 usec or longer because of the effect of the
stray capacitance to ground at the various tube electrodes. Williams

=C o+
%Rk €s
=

(d)

F1a. 7-29. Tllustrating that a Miller integrator and a bootstrap sweep are different
forms of the same circuit.
and Moody? describe circuits of the Miller type, called sanatron or sana-
phant, which are capable of giving precise delays as short as 1 psec.
These circuits are essentially phantastrons in which a separate tube is
used to generate the necessary gate from the input trigger.

7-8. The Bootstrap Sweep. In Fig. 7-29¢ the Miller sweep of Fig. 7-18
has been redrawn. The switch S has been omitted, no ground connection
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is indicated, and the tube supply voltage has been separated from the
capacitor-charging voltage. Tigure 7-29b is equivalent to Tig. 7-29a.
In Fig. 7-29¢ one terminal of C has been moved from one side of Iy, to
the other. This change will have no effect on signal voltages. In
Fig. 7-29d one point has been grounded, output terminals have been
selected, and Ry has been relabeled Ri. The switch S which clamps the
circuit at some initial level until opened is located in different positions
in this last circuit and in Iig. 7-18. Because of this new switch location

Ey
P,
R
P ——
S C/H<
7 o
%Rk €s
1 °=
(a) =
E
+ =
[ e,
2r
RD .-,+
+ S A A1 e
st o o o
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Fia. 7-30. (@) A practical form of the bootstrap sweep; (b) the equivalent circuit.
there will be no jump in the output voltage when S is opened. The cir-
cuit of Fig. 7-29d has the form given in Fig. 7-14b for the bootstrap sweep.
The above discussion illustrates once more that the Miller integrator and
the bootstrap sweep are two forms of the same circuit. The sweep
voltage may be calculated from Eq. (7-10).

The practical disadvantage in Fig. 7-29 is that neither side of the
supply E is grounded. This disadvantage may be remedied essentially by
replacing E by a charged capacitor Cp, as shown in Fig. 7-30. It is
necessary that Cp be large enough so that the voltage across Cp does not
change appreciably during the sweep time. If the voltage across Cp
were truly constant and if the cathode follower had exactly unity gain,
then point P; in Fig, 7-30 would exactly follow point P,. Hence, the
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voltage difference between P; and P; would remain constant and
the current through R would remain constant. Under these con-
ditions the current through capacitor C' (which equals that through R) is
constant and the sweep is truly linear.

In the equivalent circuit of Fig. 7-30b, if we neglect the small initial drop
across the cathode resistor, E = REy/(R + Rp). If the output imped-
ance of the amplifier (cathode follower) is small in comparison to Ep, the
branch consisting of Rp and Ey may be neglected in Fig. 7-30b and the
resultant circuit is identical to that of Fig. 7-14b. The nominal sweep
speed is E/RC = EwR/(R + Rp)RC = Ew/(R + Rp)C so that the
sweep speed is the same as if C charged through R + Rp directly from Ey,.
The amplifier gain in the presence of the load is A’ = ARp/(R, + Rbp),
in which R, is the amplifier output impedance. From the discussion in
Sec. 7-4 it follows that the displacement error is

1 E, R+ Rp ARp
80y & (1 o o RD> (7-15)

where E, is the sweep amplitude.

This equation shows that for best linearity Ep should be chosen small
compared with R and very large compared with R,. For example, if
Rp = 0.1R, the error is multiplied by 1.1. However, if Bp = 10R, and
A =0.95 thenl — 4 = 0.05 and

ARp 10
1—m=1—095xl—1'=0135
so that the error is multiplied by 0.135/0.05 = 2.7! This numerical
example illustrates the fact that
TE”’ Rp/R, must indeed be very large
¢ ' if the displacement error is to be
kept small.

At the termination of the sweep,
Cp must recharge through a resist-
ance which is equal to the parallel
combination of R and Rp. In a
repetitive sweep, if the restoration
time is not long enough to permit
the capacitor Cp to recharge fully,
the sweep speed will be a function
= of the restoration time and hence of
Fra. 7-31. A diode is used to replace Ep  the repetition rate. Much of the
gfaf:’i'igﬁo in order to decrease the re-  gimoulty associated with Rp is

eliminated in the circuit of Fig.
7-31, in which the resistor is replaced with a diode.

1 E, N
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Initially the voltage at the cathode of the diode is only slightly nega-
tive with respect to the plate since the diode need supply only the small
current Iy, /R. At the instant S opens the cathode voltage rises and the
diode is cut off. The current to recharge Cp flows through the low-
resistance diode and the low output impedance of the cathode follower.
Since the cathode voltage of the diode must rise a few tenths of a volt
before its resistance becomes very large compared with the output imped-
ance R, of the cathode follower, then the beginning (=2 0.2 volt) of the
sweep will be nonlinear.

We now estimate how large C'p must be in order that it have negligible
influence on linearity. TFrom Fig. 7-31 we find (see Prob. 7-21) that

¢ = E,,,,% (1 — evney o Tt (1 S > (7-16)
o1 1 1—4 t ot (., .C
in which _CW = 'CTD‘ ‘I‘ —C—" The term m = ‘zm <1 A + CD>

and ‘the factor by which the linearity is multiplied is (1 — 4 + g—)
D

rather than 1 — A. Therefore it is required that Cp > C/(1 — A).
Too large a value of Cp will mean a very long restoration time and the
circuit will be sensitive to changes in the repetition rate. Hence C should
be chosen small (so that C'p will not be too large) and the sweep speed is
adjusted to the desired value by the proper choice of R. The maximum
value of R is limited to a few megohms by practical considerations. For
sweep lengths of, say, 0.01 sec and longer, C' will be of the order of mag-
nitude of 0.2 uf and Cp should be much larger than this value. Even if
Rp is a diode, the restoration time may be several thousand microseconds,

A method® of avoiding the use of large capacitors and of making the
sweep speed independent of the repetition rate is to replace Cp in Fig.
7-30a by a l4s-watt neon lamp. This lamp has a voltage drop E of
about 65 volts which remains constant over the current range from 30 to
300 pa. The sweep speed is now almost independent of the supply volt-
age, since it is given by (Er + Ei)/RC, where Ej is the quiescent cathode
voltage. Very slow sweeps (of the order of 40 sec) have been obtained
with retrace times as short as 10 usec! The restoration time is now
determined by how fast C can be discharged through the resistance of the
switch.

Instead of a cathode follower we could use a noninverting amplifier
and adjust the gain to be exactly unity. The linearity would then be
perfect. However, as the gain varied in the neighborhood of unity due
to tube aging, temperature effects, line-supply variations, etc., the output
would vary asshown in IFig. 7-32. To minimize the drift in gain, we might
use a two-stage negative-feedback amplifier. This circuit would have to
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be stabilized so that it would not oscillate. Also the amplifier bandwidth

A1 would have to be large enough so as to

es pass the sweep undistorted. As we
A=1 have mentioned before, this latter re-
A<1 quirement is not an easy one to fulfill.

Several modifications of the simple

bootstrap circuit are discussed in the

problems.
7 7-9. Additional Methods of Line-
F1c. 7-32. Tf the amplifier gain in o ATity Improvement. In addition to the
bootstrap circuit is different from feedback methods discussed above,
unity, the sweep voltage curves {here are a number of other circuits
away from the ideal linear sweep. which improve the linearity over that
which is obtained by the simple exponential charging of a capacitor.

A Compensating Network. If a distorted sweep voltage of the form
e = At — Aqd? + Ast* — - - - is put into an integrating network, the
output is of the form e, = Bqf? — Bjt® + - - - . If the integrator out-
put is added to the original voltage and if the network parameters are
chosen so that As = B,, then the result is

e+ e, = At + (4; — B)t3 + - - -

This voltage is much more linear than the original sweep because the
quadratic term is missing. This type of
compensation is easily applied to improve .
the bootstrap linearity.® L

Use of an Inductor. If an inductor L
is added in series with the resistor Bz in | R
the plate circuit of a Miller-type sweep E
amplifier, then an improvement in line- ——-T+
arity results because the gain of the am- S[_:= c
plifier is thereby increased. (

An inductor L may also be used to im- ! -
proy © johe hne.arlt).r of a simple RQ sweep, Fia. 7-33. A large inductance L
as indicated in Fig. 7-33. The inductor improve the sweep linearity
also allows a sweep to be obtained whose because an inductor tries to
amplitude is larger than the supply volt- keep constant current flowing

. through it.
age because of the oscillatory nature of
the circuit. Assuming that the switch S opens at ¢ = 0, the solution
for e, is

-

% = 1 4 ¢ B/2L(A sin wi — cos wl) (7-17)

1{1 R _\/1 R\
where A= - <Rf' — ﬁ) and ©=Afo~ (Qf) (7-18)



VOLTAGE TIME-BASE GENERATORS 233

The voltage may be expanded in a power series in ¢ with the result

i 1 t 2 1 t 2t
“=Rc [1 ~% (Tz?c) T (T;To) SR~ ] (7-19)
If enough inductance has been added to Eai(e the circuit oscillatory, then
1//LC is larger than R/2L and t/+/LC is larger than t/(2L/R). If,

therefore, t/+/LC <« 1, then the third term in Eq. (7-19) is less than
1{2(t/A/LC)*. We may then write as a good approximation

E 2

The improvement in linearitv results from the fact that there is no quad-
ratic term in ¥a. (7-20).
The value of L for critical damping is L, = R*C/4. Tor L = nL,,

z2 .7 2(¢tY
Equation (7-21) appiies if n> 1. If n=0, ¢ = 2t (1 — 5o
quation (7-21) appues if n > 1. n=0, e=1px 5RO/
From Prob. 6-15, the displacement error under the conditions that Eq.
(7-21) is valid is given by
— o385 |2 (L (7-22)
= 2% 3n \RC

Even if » is only equal to 1, a considerable improvement in linearity
results. For example, if T./RC = 0.1, then ¢; for the circuit without
the inductor is T./8 RC = 1.25 per cent, and for n = 1,

ea = 0.385 X 0.667 = 0.26 per cent

If n is larger than 1, ¢; varies inversely with n.

It is possible to trade linearity for amplitude. For example, let us
keep the displacement error at the uncompensated value, discussed
above, of 1.25 per cent. If we use n = 100, then, from Eq. (7-22),
T,/RC = [0.0125 X 300/(0.385 X 2)]** = 2.2, so that the sweep ampli-
tude is 2.2 times the supply voltage. A value of » = 100 may mean an
inductance equal to several hundred henrys, but it is feasible to obtain
such inductors today pecause the inductor current is small and because
of the presently available high-permeability magnetic cores. In other
types of sweep circuits 1t is possible to trade linearity for sweep amplitude
only so long as the amplitude remains reasonably small in comparison
with the supply voltage. In the feedback sweep circuits, when the sweep
amplitude becomes comparable to the supply voltage, the vacuum tubes
in the circuit begin to operate nonlinearly.
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The inductor current is smaller at the end of the sweep period than
at the beginning. The initial inductor current depends on the restora-
tion period allowed between sweeps and therefore the sweep speed will
be a function of the repetition rate of the sweep. The time constant
associated with the restoration period is L/R, but, on the other hand,
the percentage difference in the inductor current between beginning and
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Fia. 7-34. (a) A sweep circuit using the constant-current characteristics of a pentode
for linearization. (b) The output waveform. E,, and E; are, respectively, the main-
taining and breakdown voltages of the thyratron.

end of the sweep is small. Therefore the restoration period need not be
large in comparison with L/ R to make the initial inductor current approx-
imately independent of repetition rate.

The Use of a Pentode. The plate current in a pentode, for fixed screen-
to-cathode voltage, is largely independent of plate voltage except for
quite low voltages. Therefore a capacitor charging from a supply
voltage through a pentode will charge at approximately constant current.
For example, in a 6AUSG, if the supply voltage is 300 volts, the grid bias
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—2 volts, and the screen voltage 150 volts, the initial charging current
is 5.8 ma (Fig. A-1). When the capacitor voltage is 200 volts, the tube
voltage is 100 volts, and the charging current is 5.7 ma. The percentage
slope error is therefore 100(5.8 — 5.7)/5.8 = 2 per cent. Without the
pentode the slope error would be 100 X 20944, = 67 per cent.

A thyratron sweep circuit using a pentode for linearization is shown
in Fig. 7-34a. A thyratron is used for the switch tube. The capacitor
C charges rapidly through the thyratron until the difference between the
supply voltage and the capacitor voltage drops to less than the thyratron
maintaining voltage E,.. The sweep voltage is formed as the capacitor
discharges through the pentode. The cathode resistor stabilizes the
quiescent tube current, and the rheostat adjusts the nominal tube current
and hence the sweep rate. Coarse frequency changes are accomplished
by changing the capacitor C. The sweep at the output terminals is
negative-going as indicated in Fig. 7-34b. The amplitude of the sweep
may be adjusted as in a conventional thyratron sweep circuit by adjust-
ing the thyratron bias.
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CHAPTER 8

CURRENT TIME-BASE GENERATORS

For some applications it is necessary to provide for deflection of the
beam of a cathode-ray tube by the use of a magnetic coil rather thar
through the use of electrostatic plates. A set of coils is arranged with
an axis perpendicular to the desired direction of deflection. The beam
deflection angle is proportional to the coil current! and for a linear sweep.
it is, of course, required that the coil current increase linearly with time.

8-1. The Generator Waveform. Consider that a current generator is
ased to drive the deflection coil. In Tig. 8-1, L is the deflection coil

inductance, Ry is the coil resist-
+ ance, and C is the effective distrib-
,-Rl ,-cl ,-Ll L uted capacitance of the coil. The
_ ¢ resistor R is a damping resistor
CTD %R 7? R which has been included for a pur-
, L pose that will appear shortly.
- We shall now find the waveform
Fig. 81. A current generator 7 feeds a of the current ¢ which the generator
magnetic deflection coil. must supply in order that the induc-
tor current 7, shall increase linearly
with time. We assume that the inductor current is ¢z = kf, in which &
is a constant. The drop across L and R in series equals the voltage
across R and C in parallel. This voltage is

e = LUL 4 Ryiy = KL + bRy (8-1)
Hence, the current taken by the damping resistor is
. _ e _ kL A+ kRgt
“TRTT R

The sweep is to begin at { = 0. The capacitor is uncharged at { = 0—
and, as indicated by Eq. (8-1), the capacitor voltage must jump to kL
att = 0+4. Hence, a current 7¢ must be furnished by the generator which
will charge the capacitor to the voltage kL in zero time. This current
must be infinite in magnitude but must last for only an infinitesimal time
duration and must have the property that (1/C)[i¢c dt = kL or
Jic dt = KLC
236
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Also, an additional capacitor current must flow which is equal to kR.C
so that the voltage across the capacitor will continue to rise at the same
rate at which the voltage e is rising.

It is convenient to introduce the unit impulse or delta function §(¢)
defined by 8(f) = « when{ = 0, §({) = 0 when ¢t > 0, and

/_+°° 5(0) dt = 1
We may now write that

i =iy in 4 i =kt + (WL + kRal) % + bRLC + ELC 8(2)

L

Altogether the current generator must furnish a current which consists
of an impulse, a step, and a linear rise as indicated in Fig. 8-2.

or i = kLC (1) + % (1 + RRLC) -+ Kt (1 + %) (8-2)

To oo
i Ai/lmpulse, ELCS(¢)
" Linear
rise, kt (1+—RA)
R
~_ y;_( BR C
Step, R 1+ 1
t=0 t

F1a. 8-2. In order to obtain a linear sweep, a current generator must supply three
components of current: an impulse, a step, and a linear rise.

At the termination of the sweep the energy stored in the inductor
must be dissipated. It is usually desired that the decay of inductor
current shall not be accompanied by an oscillation in the circuit. The
resistor R serves to provide damping for the circuit and is usually adjusted
so that the circuit is either critically damped or overdamped. If we
neglect the effect on the damping of the small resistance Ry, (see Prob. 8-1),
the value of R for critical dampingis R = 14 A/L/C = R,. The param-
eters for some typical deflection coils are given in Table 8-1.

TaBLE 8-1. DEFLECTION-COIL PARAMETERS?

1,./L
L, mh Ry c R, =1 \/: R.R1C X 108
Core | 44 1,000 cps | ohms | puf 2 VO’ | VLC, usec L
ohms
Iron.... 280 340 200 19,000 7 5
Iron.... 70 73 250 8,000 4 2
Air..... 97 408 25 31,000 1.5 3
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8-2, Effect of the Omission of the Impulsive Component of Current.
It is physically impossible to generate exactly the impulse term in Eq.
(8-2). Let us investigate the effect of omitting it completely. If 7 is
given by Eq. (8-2) except that the term kLC 8(¢) is missing, the differ-
ential equation for ¢ for the circuit of Fig. 8-1 is found to be

Ri = RLC ‘fit‘; + (BR:C + L) -7 d“ + (R + Rp)iL

= kL + RR.Ck+ (R + RL)lct (8-3)

The solution of the inhomogeneous equation is ¢;, = kt, as is to be antici-
pated. The transient part of the solution is to be found by setting
the right-hand member of Eq. (8-3) equal to zero. Consider first that R

ir i s
—/b' RC
= /
‘L"kt\y/
/
ip=ht //
\/ _e /7 i, =k (t-RC
7 1-e ) S A (t=RC)
’ ) ¢
e ERC
¢ A K

(@) (%)

Fia. 8-3. The coil current resulting from the omission of the impulsive current term
in Eq. (8-2). In (@) R equals the critically damped value R,, and in () R < R..

has been selected for critical damping, R = R,. Then RR;C < L and
also Ry < R (see Table 8-1) so that

d% 1L
drr

The single root of Eq. (8-4) for critical dampingis p = —1/4/LC and the
form of the complete solution is

ir, = (A + Bt)et/VIC + ki (8-5)
At ¢ = 0, the coil current 7, is zero and the capacitor voltage e is zero.

Since ¢ = L dir/dt + Rrir = 0, then the initial conditions are ¢7, = 0 and
dir/dt = 0. Subject to these conditions we find that

ip = kt(l — e~t/VLC) (8-6)
which is plotted as a solid line in Fig. 8-3a. The maximum deviation
between the actual sweep and the ideal sweep is 0.37k V/LC and occurs
at a time t = A/LC. The sweep is temporarily delayed for an interval

which is several times 4/LC. Values of 4/LC are tabulated in Table 8-1.
Consider the extreme case of very heavy damping. Since now R is

d’LL

RLCE 4 L% Riy =0 (8-4)
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even smaller than R,, then certainly RR.C <« L, but it may not be that
R, < R. Replacing the term Rir in Eq. (8-4) by (R 4+ RL.)iz, we find

for the roots
_ 1 1 AR+ Ry)RC
P= =350 % 3x0C \/l L (8-7)

If R is smaller than one-tenth R, then, for the typical coil parameters
in Table 8-1, the second term under the square root sign is less than
0.01. Neglecting this term compared with unity, we have for the two
roots

p1=—~l§16y and p2 =0

The form of the complete solution is
i, = A + Be¥EC 4 ki

Subject to the initial condition iz, = dir/dt = 0 at ¢ = 0, we find for the
complete solution
i = kt + RCk(e B¢ — 1) (8-8)

The current 7., is plotted (solid line) in Fig. 8-3b, where it is seen that
the sweep is permanently delayed by a time RC. The time delay will be
smaller than the delay in the case of critical damping. TFor example, say,
R is reduced to R./10 = 1,900 ohms for the first entry in Table 8-1.
Then the delay is of the order of 0.38 usec rather than several times 7 usec.
This result is to be expected since C

using a type of winding which gives
the minimum distributed capaci- Ry
tance and by keeping stray circuit
capacitances at -a minimum. One
very effective procedure is to reduce
the number of turns on the coil,
but in this case the deflection produced per unit coil current is corre-
spondingly low. In applications where fast sweeps are required, it is
not uncommon to use small transmitting tubes to provide the necessary
current,.

Alternatively, we may use the circuit of Fig. 8-4 in which the current
generator of Iig. 8-1 is replaced by a voltage generator e;, The series
combination of the voltage generator e¢; and the series resistor R is com-

may now charge from a lower im- ‘N\ﬁNL
pedance source.
The effective capacitance across L
a deflection coil should, of course, +
always be kept as low as possible by Q) L
C

Fic. 8-4. A voltage gencrator used to
drive a deflection coil.
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pletely equivalent to the combination of a current generator 7 shunted
by a resistor R, provided that e; and 7 are related by e¢; = ¢R. Therefore
it is required that e¢; = 7R, where ¢

PULSE AND DIGITAL CIRCUITS

L
(a)
E,
R,
T'l‘
y R, e,
B SO
EI T " =
(v)

T'1c. 8-5. (a) A circuit for generating a
trapezoidal waveform. (b) A more gen-
eral circuit.

is given by Eq. (8-2). Thus,

e; = kRLC 5(1) -+ k(L + RRC)
4+ (R + Rp)kt (8-9)

8-3. Current Drivers. The de-
flection coil is usually placed in
series with a tube which is used to
supply the current and is called the
current driver. The coil may be
placed either in the plate or cathode
circuit. A signal voltage which has
the form shown for the current in
Fig. 8-2 (but without the impulse)
is applied to the grid of the current
driver. The circuits of either Fig.
8-1 or Fig. 8-4 may then be used to
analyze the result, depending on
whether the tube approximates
more nearly a current source or a
voltage source.

The trapezoidal voltage wave-
form required is generated by a
voltage sweep circuit, modified, as
in Fig. 8-5a, by the inclusion of a
resistor R, in series with the sweep

capacitor Cy. If the switch S opens at ¢ = 0, the output e, is given by

e =E —

R.E
B, + R,

e t/(RiHRDCy

(8-10)

This equation is consistent with the facts that at { = «, e, = E, and at

{ = 0, e, = ERl/(R1 + Rz).
0o O R1E
T Ri+ Ry

R.E t
R+ R: (R, 4+ R,)C,
Since usually R;>> R, then

RE = Ei
T T RaCh

_I._

€ =

Expanding the exponential, we find

¢

TIRF R T ] (8-11)

4
~ SR 4 ) (8-12)

As long as t/R.C; < 1, then e, is trapezoidal as required.
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A more general form of a trapezoidal waveform génerator is shown
in Fig. 8-5b. Here a switch resistance r has been included and the switch
and capacitor Cy have been returned to arbitrary voltages E’ and E”,
respectively. Equations (8-10) to (8-12) continue to apply, however,
provided that E is taken to be the quiescent voltage across R, and e, is
interpreted as the departure of the output voltage from its quiescent
value.

ExampLe. In Fig. 8-6 a cathode follower is used as a current driver for the deflec-
tion coil. Assume that the coil is the one described in the first entry in Table 8-1.
Let the gating tube 7'y be a 6J5, while 7'; is a 6F6, triode connected. Take Ey = 300
volts. Let it be required that the sweep duration be 103 sec during which time the

TE,,,,= 300 v

Fic. 8-6. An illustrative problem. The 6J5 is equivalent to one section of a 6SN7 (sce
Fig. A-2).

coil current is to change by 50 ma so that & = 50 amp/sec. Choose reasonable
values for Rs, E., R1, and C;. Also find the waveform at G and the waveform of the
coil current.

Solution. Initially the grid of 7' is clamped to the cathode and the sweep starts
when T is driven beyond cutoff by the application to the grid of a negative gate, as
shown. Wearbitrarily select R to be 1 Meg so that with 7'; in clamp the plate voltage
of T is close to the cathode voltage. From the 6F6 triode tube characteristics of
Fig. 8-7a we find that 7> will be cut off when the grid voltage is about —50 velts.
We bias T» at —25 volts with respect to ground. We then find that, in the presence
of the 340-ohm cathode resistance, the tube current is about 20 ma. In this way
the tube nonlinearity at low current is avoided. The drop through R, must then be
325 volts so that the current in 7' is about 0.3 ma. At zero grid-to-cathode voltage
T'; will conduct 0.3 ma when the plate-to-cathode voltage is about 5 volts. Accord-
ingly 'we set —E., = —30 volts. The quiescent voltage across C; is 5 volts.

The equivalent circuit for the cathode follower 7'; is given in Fig. 8-7b in which e, is
the voltage applied to the grid of T.. The plate resistance of the 6F6 is r, = 2,600
ohms and 4 = 6.8. R = rp/(z + 1) = 330 ohms, while u/(u + 1) = 0.87. Hence
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.
from Eq. (8-9), with the impulse voltage missing,

e = ;ij_;l = k(L + RR1C) + (R + Rkt (8-13)

Substituting ¥ = 50 amp/sec, L = 0.28 henry, R = 330 ohms, 2z = 340 ohms,
C = 200 puf, and p/(u + 1) = 0.87, we find

e, = 16.1 + 38.5 X 10% (8-14)
This equation must be compared with Eq. (8-12). Hence,

Jp) = __EL_ = 3
EE = 16.1 and =0 38.5 X 10

Since the quiescent voltage across R, is 325 volts, then E = 325 volts. For this value
of £ and R; = 1 Meg, we find R, = 50 K and C; = 0.0084 .f.

200 o7
175 //% I%Q/
STAARY,
g 150 / 7j/ “9 L
- 125 / // / X S
<
g 1A T IA 1A o
8 100 // /( 4 7 /‘\,/ S
/D ARy ARVany ey
2 /i AL IATIAL A 9
Pduy - Py ~ 0 ]
o PP T AT 170
0 100 200 300 400 500
Plate volts
(a) ()

Fre. 8-7. (a) The 6F6 triode plate characteristics. (b) Equivalent circuit (for
changes from the quiescent value) of the 6F6 cathode follower in Fig. 8-6.

Because we have omitted the impulsive component of current there is a delay in
the start of the sweep. In Sec. 8-2 we showed that, for a heavily damped coil, this
time is RC = 330(200 X 10712) se¢c = 0.06 psec. This delay is so small that it is
evident that this circuit would also be suitable for use at very much faster sweep
speeds.

The grid-to-ground voltage of tube T, ec.2 equals —25 - e,, because the quiescent
voltage is —25 volts and e, represents the increase from the quiescent value. Assum-
ing that the trapezoidal voltage given in Eq. (8-14) is a sufficiently good approxi-
mation to the true exponential of Eq. (8-10), then ec: rises linearly from
—25 +16.1 = —8.9 volts at ¢ = 0+ to —25 4 16.1 4+ 38.5 = 29.6 volts at t = 1
msec. This voltage is plotted in Fig. 8-8a. The coil current is 20 ma in the quiescent
condition and increases linearly at the rate of 50 amp/sec to 70 ma at { = 1 msec, as
indicated in Fig. 8-8b.

We shall now investigate the grid voltage of T, at the end of the sweep. At
t = 1 msec, the capacitor will be charged to 88.5 + 5 = 43.5 volts. The equivalent
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circuit of 7'y at this instant is indicated in Fig. 8-9, where we assume that the current
in the 1-Meg load remains approximately 0.3 ma. From Kirchhoff’s law we find

—43.5 4 50(% — 0.3) +e =0 or e + 500, = 58.5 (8-15)

If this load line is plotted on the plate characteristics of the 6J5, the intersection with
the e. = 0 characteristic is found to be at e, = 12 volts. Hence, from Fig. 8-9,
€n2 = —30 + e = —30 + 12 = —18 volts at ¢ = 1 4+ msee. This value is plotted
in Fig. 8-8¢. The grid decreases to the quiescent value of —25 volts with a time
constant (R + rp)Cy, 22 0.5 msec. Actually there will probably be an overshoot to
the grid waveform of 7', so that the abrupt drop in Fig. 8-8a will be even larger.

€ca2 VOlts
] 300v
4
o t=0 2
—gol———- t, msec 10'3 ma
_)8 = ——— _—— N 1 M
—25 [ S ——
(a)
G,
iy, ma -
/1) S i,—0.3
) 50K T””
l
|
i +
! Cy==43.5v
! -
20 t
0 1 2 t, msec
;——»t‘
(d) ~30v

Fic. 8-8. (¢) The grid-to-ground voltage Fia. 8-9. Equivalent circuit for caleulat-
of T2, and (b) the coil current in the illus- - ing the voltage at G: at the end of the
trative problem of Fig. 8-6. sweep.

We shall assume, for simplicity, that the grid of T2 drops to its quiescent (—25 volt)
level immediately at the termination of the gate, as indicated by the broken line
portion of the waveform of Fig. 8-8a. The equivalent circuit to describe the decay
of current in the induetor is now as shown in Fig. 8-7 except with the generator shorted.
If ¢’ is the time measured from the end of the sweep, then the instantaneous coil
current is given by

~ (R-l-RL) ,
i1 = 50e L 420 ma (8-16)

The current decays with a time constant L/(R + R1) = 0.28/670 = 0.42 msec, as
indicated in Fig. 8-8b.

If the circuit had been critically damped, R, = 19 K, then the recovery
time constant would have been 0.28/19 X 10 = 15 psec. In this case
the start of the sweep would have been delayed by several times \/LC = 7
usec. Altogether then we conclude that critical damping gives a rela-
tively large delay and small recovery time, whereas heavy damping
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gives a short delay and large recovery time. The waveform across the
deflection coil (the voltage at the cathode of T's) will have a backswing
at the end of the sweep as the voltage across the coil changes sign. This
waveform is given in Prob. 8-8.

The deflection coil may be placed in the plate circuit of Fig. 8-6
instead of in the cathode circuit. A pentode or beam power tube is used
for T, and an external damping resistor R is added across the coil. The
calculation of voltage and current waveforms and of the required com-
ponent values may be carried out in a straightforward manner, as in the
illustrative problem above.

8-4. Methods of Linearity Improvement.? The simple sweep circuits
discussed in Sec. 8-3 will not provide precisely linear sweeps for the follow-
ing four essential reasons.

1. The impulse term required by Eq. 8-2 is lacking.

+ 2. The driver tubes which provide the inductor currents do not oper-
ate with sufficiently linearity, especially over the large current ranges
required.

3. The nominally linear portion of the trapezoidal waveform provided -
by the circuit of Fig. 8-5 is actually exponential in form.

4. The inductance of an iron-core coil
varies with current. This nonlinearity of
the iron is avoided by using an air-core
coil. The first three nonlinearities men-
tioned above will now be discussed.

Circuits for Generating an Impulse. In
Fig. 8-10 is shown a pentode driver for the
deflection coil which is in the plate circuit.
A resistor R, bypassed with a small ca-
pacitor C is placed in the cathode circuit.
The input voltage is a trapezoidal voltage
e;, as shown. The degenerative effect of
the cathode resistor R; will not make
itself felt until C; has charged. The out-
put current ¢ of the pentode will appear as
Fie. 8-10. A cathode RiCy com- 11 I'ig. 8-11. During the relatively slow
bination is used to approxi- rise of the linear part of the trapezoidal
mate an impulsive component of  yoltage the presence of C will have little
current. influence on the output current and the
effect of C; may be neglected. The time constant R,C; is taken of the
order of magnitude of the sweep delay resulting from the omission of the
impulse. Since the spike in Fig. 8-11 is only a crude approximation to an
impulse, the final value of C is obtained experimentally for optimum
linearity.
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Alternatively, instead of adjusting the current driver so that it pro-
vides a current spike, we may instead produce a spike in the voltage
applied to the driver tube. Ifor exam-
ple, we may invert the gating square
wave in Iig. 8-6, differentiate it with a
small RC circuit (see Sec. 2-2), and apply
the resultant positive pip at the begin-
ning of the sweep across Bi. The volt-
age at G2 will then have the waveshape
depicted in Fig. 8-11. Another circuit

which produces the same result is given ¢
in Prob. 8-14. Fic. 8-11. The plate current in Fig.

. . 8-10 contains a sptke because of the
Improvement of Linearity of Current . u RiCl time constant.

Driver for Deflection Coil. The obvious

remedy for the nonlinearity of the ecurrent driver for the deflec-
tion coil is the use of negative feedback. A method of incorporating
inverse feedback is illustrated in Fig. 8-12a. The coil (L, Rz, C) together
with its damping resistance I? is arranged to be the load on the amplifier
with current feedback. The amplifier has a gain A, output impedance

i

R, ZL
+o- AN 7
e A R L2
: D wE 3 o
— O MVY
R;
(a)
R, (I_A)Rs
_'i:_ ANV VWWWA—
Ae, A:D Zy
-
(0)

F1a. 8-12. (a) An amplifier with current feedback; (b) the equivalent circuit.

R,, and the feedback impedance is the resistor B,. The effect of current
feedback is to leave unchanged the gain of the amplifier but to increase
the output impedance of the amplifier by the term (1 — 4)R, (see Sec.
1-3). Hence, we may replace Tig. 8-12a by the equivalent circuit in
Fig. 8-12b. Now, if (1 — A)R, > |R, + Z.| and if |4| >> 1 then

.~ "'Aee ~ ee
1= m = -R—s (8—17)
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and the resultant current is independent of the amplifier characteristics.
The negative current feedback has transformed the amplifier into a
device which acts as a current generator whose output current is pro-
portional to the applied input signal e,. The coil current will vary
linearly with time, provided that the input voltage is given by e, = ¢R,,
where 7 is given in Eq. (8-2).

The amplifier of Fig. 8-12 will usually consist of several stages of
preamplification together with an output current driver. The deflection
coil may then be placed either in the cathode circuit of the current driver
or in the plate circuit. In the latter case the current driver is invariably
a pentode. It isusually advantageous to use the plate circuit connection
since in this case the driver tube contributes to the overall amplification.

o m
18 —MVWWW
R,
f’\N\/‘v —o +
E Sir A €o
[ o
[

Frc. 8-13. An operational amplifier used to generate a trapezoidal waveform.

Alternatively, of course, voltage feedback may be used. In this case,
it will be recalled (see Sec. 1-2) that the equivalent generator seen looking
back into the output terminals is Ae,/(1 — BA) =2 —(e./B) if [BA| > 1 s0
that again the equivalent voltage generator is independent of the amplifier
characteristics. The output impedance is R,/(1 — B4).

Linearization of Trapezoidal Voltage. Referring to Fig. 8-5, it is
clear that a perfect trapezoid will be developed if the current through
R, is kept constant. The current will be constant at E/R, if the top
of the resistor R. is bootstrapped to the output voltage e,. This boot-
strapping is conveniently done in the case of an amplifier with current
feedback. From Eq. (8-17), the voltage developed across the feedback
resistor is R, = e,, and since the output voltage in Fig. 8-5 is e, = e,,
it is only necessary to bootstrap the top of R, to the voltage drop across
the feedback resistor.

A second method for improving the linearity of the trapezoid is through
the use of an operational amplifier, as shown in Fig. 8-13 (see Sec. 1-11).
When the switch S opens at ¢ = 0, the output is

R, E
60—-'—'1—3—2'E—'mt (8-18)
just as required, provided only that the gain A of the amplifier is very
large.
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8-b. Illustrative Current-sweep Circuits. Because of the feedback the
circuit of Tig. 8-13 not only provides an output of the correct form
but, in the case of large A, has an output which is independent of tube
characteristics, ete. The deflection coil may therefore be placed directly
across the output terminals. Since the output impedance is nominally
zero, the required output voltage [see Eq. (8-1)] is

o = kL + Rkt © (8-19)
Comparing Eqgs. (8-18) and (8-19) and neglecting the arbitrary minus
signs in Eq. (8-18), we may compute the required values of E; and C; as

_ kLR, 0, — E
B E re /CRLRz
where F is the quiescent voltage across R..

A practical circuit which is patterned after the ideal circuit of Fig. 8-13
is shown in Fig. 8-14. Of course, since the amplifier here is only a single

Ey

R, (8-20)

o_c,i
L
il

F1c. 8-14. A single-stage sweep circuit using operational amplifier feedback to linearize
the trapezoidal voltage. Current feedback through R: makes the waveform more
independent of the driver tube characteristics.

pentode, the results in Eq. (8-20) hold only approximately. The grid
of the pentode is clamped except during the sweep time so that no feed-
back exists after the termination of the sweep. The output impedance
is accordingly high after the sweep and a shunt damping resistor is
required. The cathode resistor R serves to stabilize the quiescent tube
current. If the voltage across T; when it is in clamp is neglected, then
I = E, 4+ E,. The circuit of Fig. 8-14 finds wide application prin~
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cipally because of its relative simplicity. It has also a convenience, not
shared by the circuit of Fig. 8-6, that the damping resistor B may be
selected for critical damping to permit a rapid decay of the inductor
current. The location of the deflection coil in the plate circuit, however,
has the difficulty that the effect of power supply ripple is much more
pronounced than when the coil is located in the cathode circuit.

A more elaborate circuit® using current feedback is shown in Fig. 8-15.
A trapezoidal voltage is developed at the grid of 7'; at the opening of
switeh S. This signal is amplified by the two-stage amplifier 7> and T’s
and applied to the grid of the driver tube T4. A voltage proportional
to the output current is developed across the cathode resistor B,. The

+300v
T
C,
R,
1
3 M
L c,
S

Ry

Boots-trapping / Current feedback

Fi1a. 8-15. A three-stage sweep circuit using current feedback and bootstrapping to
improve the linearity.

feedback voltage is injected into the amplifier input through the cathode
of T, since the grid of T, is already being used. At the same time the
feedback voltage is used to bootstrap the trapezoidal voltage-forming
circuit. Since the trapezoidal signal is a-¢ coupled to the driver tube,
then a d-e restorer T's is used to ensure that the d-c level of the grid of T4
1s independent of repetition rate. In the quiescent state T4 is cut off and
it is brought into the conducting region by the step at the beginning of
the sweep.

8-6. Television Sweep Circuit. The frequency of a television hori-
zontal sweep circuit is 15,750 cps (see Sec. 17-4) corresponding to a total
time of 63.5 usec for the combined sweep and retrace times. Since the
flyback should be a small fraction of the complete cycle, one of the special
problems associated with this television sweep is that of obtaining a fast
retrace time (of the order of a few microseconds). Another important
problem is that of conserving power. The peak energy stored in the
inductance L of a deflecting coil is 14L1,.2, where I,, is the peak current.
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Since this energy is dissipated in each cycle, the power lost in the yoke is
P = W4LI..%),, where f, is the horizontal scanning frequency. Typical
values are L = 30 mh, [,, = 300 ma, and f, = 15,750 cps, so that P = 21
watts. This value is about 10 per cent of the total power taken by the
entire television set. By the simple technique of replacing the damping
resistor across the deflecting coil by a damper diode the power loss is
cut to about one-quarter its previous value (for the same deflection) and
also the retrace time is made appreciably smaller. This method will
now be explained in detail and several other interesting and valuable
features of this circuit will be brought out in the discussion.

€
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F1c. 8-16. A diode T’ is shunted across F1G. 8-17. The coil current (b) and coil
coil L. voltage (c) corresponding to the sweep
input voltage (a).

In Fig. 8-16 the damping resistor across the coil L is replaced by the
diode T';. Assume that the input to the grid of the amplifier 7', is a
single-stroke trapezoidal sweep lasting for a time 7', as indicated in Fig.
8-17a. The current iz, in the coil is approximately linear (see Sec. 8-1).
If the coil resistance is neglected, the voltage ez, across the coil is positive
and of constant value for the interval T.. The diode T conducts a
constant current during this interval. At the end of the sweep, the tube
T, is cut off. The plate current immediately falls to zero and the coil
current now flows through the capacitor C. The circuit rings (see Sec.
2-8) for one-half a cycle during which time e¢;, = L di/dt is negative and
the diode T is cut off. The coil current changes in a cosinusoidal manner
from a positive peak I to a negative value — I in a time 1/2f, where f is the
resonant frequency corresponding to L and C. At the end of this half
cycle the voltage er, reverses sign (see Fig. 8-17¢) and T conducts again.
The current 7; and the voltage ez now decrease to zero with a time
constant L/ R;, where R; is the forward resistance of the diode.

The retrace time is 1/2f. Since the resonant frequency of a coil used
in a commercial television set is at least 70 ke, the flyback time is less
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than 1/(2 X 7 X 10%) =2 7 usee. This calculation demonstrates that the
circuit does indeed have the desired fast recovery time.

TFFor the sake of simplicity, we assumed a single-stroke sweep in the
above discussion. For a recurrent sweep, the situation is as pictured in
Fig. 8-18. The sweep time T’ is chosen so that the period T of the input
voltage is only slightly longer than T, 4+ 1/2f. Under these circumstances
tube 7'; begins to conduct again before tube T's stops conducting. Hence,
now the total coil current (shown dashed in Fig. 8-18) is made up of two
components: the positive one is that part of the coil current which flows
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I T e—1—  f—12f

Current Current Ringing~
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in T: \ in T‘ 7| (retrace) =7\
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F1c. 8-18. A recurrent sweep. The coil current is seen in (b) to be made up of the
superposition of two currents.

in 7', and the negative one is that portion of the coil current which flows
in T2.

We see also from Fig. 8-180 that the total sweep corresponds to a
current of 21 and yet the peak energy stored in the inductor is 24L 1% and
not WL(2I)2. This observation verifies our previous claim that the
power loss due to the magnetic-coil energy which is dissipated each cycle
can be cut to one-quarter its value by using a damper diode.

The horizontal sweep circuit of a television receiver is indicated in
Fig. 8-19. Because the kinescope is a flat-faced tube, the rate of change
of yoke current must be greatest at the center of the scan and must
decrease when the beam reaches the edges of the tube. The current
waveform is shaped by means of the network consisting of two capaci-
tors C; and C. (see Fig. 8-19) and the adjustable inductor Ly resonating
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near the scanning frequency. Hence this combination controls the hor-
izontal linearity of the television picture. We have also indicated in
Tig. 8-19 an adjustable resistor Ry in series with the deflection coil.
This resistor controls the peak coil current and hence the width of the
television picture.

During the sweep time, when the diode T'» conducts, the positive
voltage E’ (Fig. 8-18¢) is impressed across C.. Neglecting the d-¢ drop
in Ly, this voltage appears also across C;. Hence, at the junction of the
capacitors C; and C; (marked “boosted d-c output’ in I'ig. 8-19) there

Boosted Ey,
d-c output
Q
I Horizontal
L, linearity
= control
Width 2
control Z/RW
6W4
Damper

Deflection =C
coil L

High
AYAAY -0 voltage
output

rectifier

Trapezoidal 4 T -~
input 6BQ6
driver

Fia. 8-19. The horizontal sweep circuit of a TV receiver, including the flyback high-
voltage supply.

appears a voltage which is greater than that provided by the low voltage
supply Ew. This boosted voltage is the effective plate-supply voltage
for the sweep driver and also for other tubes in the television set. The
increase in voltage E’ over Ey, is of the order of 50 to 350 volts.

The voltage induced across the deflection coil during the flyback time
(see Fig. 8-18¢) can be very high—of the order of thousands of volts.
Advantage is taken of this phenomenon in order to supply the high
voltages (say, 12 kv at 100 ua) required for acceleration of the electron
beam. Thus, in Fig. 8-19 an autotransformer has been added with its
primary in series with the deflection coil and its secondary in series with a
rectifier tube 7's. The sum of the voltages induced in L, in the trans-
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former primary, and in its secondary is rectified by 7's. This arrange-
ment is called a flyback (or kickback) power supply.

The deflection coil may be transformer-coupled into the plate circuit
of the driver tube instead of being placed directly in series with this tube
as in Fig. 8-19. An autotransformer is often used for this purpose.
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CHAPTER 9

PULSE TRANSFORMERS AND BLOCKING OSCILLATORS

Iron-cored transformers are used in the transmission and shaping of
pulses which range in width from a fraction of a microsecond to about
25 usec. Among the extensive applications of pulse transformers are the
following:

1. To change the amplitude and impedance level of a pulse.

2. To invert the polarity of a pulse. Also to provide, with the aid
of a center-tapped winding, equal positive and negative pulses simul-
taneously.

3. To produce a pulse in a circuit having negligible d-c resistance.

4. To effect ‘“d-c isolation” between a source and a load. In other
words, to produce a pulse in a winding whose d-¢ voltage level may be
arbitrarily selected.

5. To couple between stages of pulse amplifiers.

6. To differentiate a pulse.

7. To act as a coupling element in certain pulse-generating circuits
such as the blocking oscillator (considered in this chapter) and the muliiar
(discussed in Chap. 15).

In many instances the functions listed above may be accomplished as
well or better by vacuum-tube circuitry. But the transformer, being a
completely passive circuit element, has none of the instability normally
associated with tubes and in addi- M
tion avoids the inconvenience of N

supplying the voltages required for 4+ °c T
tube operation. e ::,,) G:RL €
9-1. Equivalent Circuit. The > Ly L

schematic diagram for a trans-
former is indicated in Fig. 9-1. Fra. 9-1. Schematic diagram of a
The primary inductance is L,, the fransformer.

secondary inductance is L,, and the mutual inductance is M henrys. The
load resistance is Rz ohms. In this section, we shall ignore the primary,
secondary, and source resistances and also all capacitances. We shall
also neglect core loss and the nonlinearity of the magnetic circuit. These
parameters, however, will be added later to the equivalent circuit. The

253




254 PULSE AND DIGITAL CIRCUITS

coefficient of coupling K between primary and secondary is defined by
K = M/+/L,L,., Under the circumstances specified above, an ideal
transformer is one for which L, is infinite and K = 1. In this case the
output e, is an exact replica of the input e; and the transformation ratio
n is independent of the load. For the ideal transformer,

_t _t_ [L_ N .
n= T \/L,, N, (O-1)

where 7, is the primary current, i, is the secondary current, N, is the
primary number of turns, and N, is the secondary number of turns.

An iron-cored transformer, such as a pulse transformer, behaves as a
reasonable approximation to a perfect transformer, when used in con-
nection with the fast waveforms it is intended to handle. In such a case
it is advantageous to replace the actual transformer by an ideal trans-
former together with additional circuit components which represent the

a-zRL

e afied

Ideal (5)

Fic. 9-2. (a) A mrcult whxch is equivalent to that of Fig. 9-1, in which an ideal trans-
former T'» having a voltage step-up ratio 1/« is introduced. Hence, the primary cur-
rent in T'; is 1/« times the secondary current. (b) The load impedance Ry, is reflected
into the primary of T as a?Ry.

departure of the real transformer from perfection. This representation is
particularly worthwhile if we are able to compute from the geometry
of the transformer the magnitude of the circuit elements which represent
the imperfections.

In Fig. 9-2 is drawn a circuit consisting of an ideal transformer 7.
in cascade with a transformer T,;. The transformation ratio of 7. is
1/a = secondary volts/primary volts, where « is a number which will be
specified later. For the ideal transformer T's, the secondary impedance
R may be reflected into the primary as «?R;, as indicated in Fig. 9-2b.
The network of Fig. 9-2 is to be equivalent to that of Fig. 9-1 in the sense
that both are to draw the same current 7, from a given source e; and are
to deliver the same current to a given load Rz. The parameters L), L.,
and M’ are now to be found. TFor the circuit of Fig. 9-1, we may write

e = LZ,CZ” + Md“
t
o d (9-2)
0 = l”+L b 4 iRy

sdt
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The corresponding equations for the circuit of IFig. 9-2b are

oo gy B M
P odt a di
diy | Lidi, i (9-3)
0=M ”—|- — E"(Rw?)
The above two sets of equations are equivalent if
L, =1L, M =aM L, =, (9-4)

Finally, we replace the transformer T of Fig. 9-2 by its equivalent
T network and the circuit of Fig. 9-3 results. It is easily verified that the
mesh equations of Fig. 9-3 agree with those of Fig.9-2. Different
equivalent circuits are obtained depending upon the value selected for

0/2=L,(1-K) of2

F1c. 9-3. The transformer T’ of Fig. 9-2is  Fig. 9-4. An equivalent circuit in which
replaced by its equivalent T network. the series inductance is divided into two
equal parts.

1/a. Consider, for example, the equivalent circuits which result when
1/« is selected so that ¢; = o2 = ¢/2 or ¢y = 0 or g3 = 0.
Casel. oy =03 =0/2

L, — aM = o’L, — M or o= \/ i (9-5)
Then %=L,,-—aM=Lp—\/%K\/IT.L,
remembering that K = M/~/L,L,.
Hence i;- =L,1 —K) and oM =KL, (9-6)
The equivalent circuit is given in Fig. 9-4.
Case2. ¢, =0
L,—aM =0 or - %’ — %\/Igﬂ ©9-7)

g = oL, —aM =1L, (I_éé — 1) and aM =L, (9-8)

The equivalent circuit is given in Fig. 9-5.
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Case3. og2=0
M L,
2 — — = = -r -
a’Ly — aM =0 _or «a L. K \/ I (9-9)
therefore oM =K \/%’ KA/ L,L, = K?L,
and o1 =L, — aM = L,(1 — K? (9-10)

The equivalent circuit is given in Fig. 9-6.

For a well-constructed pulse transformer the coefficient of coupling
differs from unity by less than 1 per cent. For such a transformer
(K =2 1), the equivalent circuits of Figs. 9-4 to 9-6 each give very nearly

a,=Ly(1-K?)

—T— V000
. |
Ry €o @ Ksz Ry €o

Ideal Ideal

F1g. 9-5. An equivalent circuit in which  Fra. 9-6. An equivalent circuit in which
the series inductance is placed to the right  the series inductance is placed to the left
of the shunt inductance. of the shunt inductance.

the same value for the shunt inductance and for the total series induct-
ance. The total series inductance, called the leakage inductance, is
Case 1:
¢ =2L,(1 — K)
Case 2:

02=L,,(7::.—2— 1) -1, _KI)<(2,1+K)E2L,,(1 — &)
Case 3:

o1=Ly(1 — K?) = L,(1 — K)1 + K) =~ 2L,(1 — K)

Similarly, the shunt inductance, called the magnetizing inductance, is
approximately L, for all three cases if K =2 1. To summarize, the equiv-
alent circuit of a pulse transformer consists of a series leakage inductance
¢ = 2L,(1 — K) and a shunt magnetizing inductance L,. These ele-
ments are in cascade with an ideal output transformer of stepup voltage
ratio n = 1/a =~ A/L,/L, = N,/N, (because the inductance is propor-
tional to the square of the turns). The leakage inductance ¢ may be
placed entirely to the right of L,, entirely to its left, or split into two
induectors, one to the right and the other to the left of L,. The equivalent
circuit discussed above must be modified to take the transformer losses
and capacitances into account. These modifications are made in Sec. 9-5.

9-2. Transformer Inductance Parameters. The equivalent circuits
derived above indicate how the leakage and magnetizing inductances may
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be obtained experimentally. TFrom Fig. 9-6 we see that, if the secondary
is short-circuited, then the input impedance is the leakage inductance o.
This inductance may be measured on a @ meter. A second method of
determining o is to short the secondary, shunt the primary with a capaci-
tance Cy, and measure the resonant frequency fi. In order to eliminate
the effect of the transformer and other unknown external capacitors which
are in shunt with C;, the above measurement is repeated with a second
capacitor C;. If the resonant frequency is now found to be fs, then we
can show that

— Ji? — fo?
= @nfif29*(C: — Cy) (9-11)

A simple procedure for measuring the resonant frequencies f; and f- is the
following: The transformer is placed in the plate circuit of a tube whose

o

kil — b —
) B3
_‘—il—t i
(a) ()

Fr1a. 9-7. A transformer core made by winding a continuous strip of high-permeability
iron into a rectangular shape. The secondary winding is not indicated.

grid is clamped to its cathode. A negative pulse (or a square wave) is
applied to the grid to cut the tube off. The transformer will now ring
and the resonant period may be measured from the waveform, as observed
on a scope. This method also allows the simultaneous measurement of
the effective losses in the transformer. Thus, as explained in Sec. 2-8, if
the amplitude of the waveform falls to 1/e of its initial value in N cycles,
the @ of the circuit is N.

From TFig. 9-5 we see that the input impedance consists of the mag-
netizing inductance L,, if the secondary is open-circuited. Hence, if the
above experiment is repeated with the secondary unloaded, then L, may
be determined.

It is also possible to estimate the inductances from the geometry
of the transformer. Figure 9-7 shows a rectangular core made from
high-permeability alloys such as Hipersil (Westinghouse), pm.. =% 12,000,
or Permalloy (Western Electric), pm.. =2 80,000. In order to reduce
eddy-current losses, the iron should, of course, be laminated. It has been
found that Hipersil and Permalloy can be rolled into strips as thin as
2 mils and cores are often formed by winding a continuous strip as indi-
cated in Fig. 9-7b. The permeability actually achieved in pulse trans-
formers is much less than the maximum values indicated above. The
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principal reason for this reduction in u is that at the instant the pulse is
applied the flux in the core is confined largely to the surface (the “skin
effect’”) because of the eddy currents that flow. The effective cross
section of the core is thus reduced. As time passes, the flux penetrates
deeper into the core and eventually becomes uniform. Accordingly the
effective permeability of the core increases with increasing pulse dura-
tion.! The effective permeability of Hipersil is of the order of 400 for
microsecond pulses.

The primary inductance L, is easily calculated? for the simple mag-
netic circuit of Fig. 9-7. If I is the mean length of the magnetic path,
A the cross section of the core, and N, the number of primary turns,

AN 2

L, =" o (9-12)

where all quantities are expressed in mks units.
In order to see in a typical case how the leakage inductance ¢ depends
on the geometry, consider the simple geometrical arrangement of Fig.
Circuital path
for computing H
Primary -’-é P g
_Secondary (

se
XXX
XXXXXX

(a) (b)
Fi1a. 9-8 (a) A one-layer secondary wound directly over a one-layer primary. A cross
indicates current into the page, and a dot indicates current out of the page. (b) A
top view of the windings considered as current sheets and the magnetic flux density
between windings.

9-8a where a single-layer secondary is wound over a one-layer primary.
We have already emphasized that the secondary must be short-circuited
in order to find ¢. For this connection the output voltage is, of course,
zero. Hence the net flux in the iron is zero and the primary and second-
ary ampere-turns must be equal and oppositely directed, N,I, = N.I,.
Almost all the flux appears in the space between the coils. For simplic-
ity, we replace the coils by current sheets carrying the currents N,I, and
N.I, (= N,I,), respectively. A top view of the concentric solenoidal
windings is shown in Fig. 9-8b and the magnetic field intensity H between
windings is also indicated. The current sheets are of the same length A
(in the direction perpendicular to the current flow) as the coils are long,
We locate the current sheets at the point midway through the thickness
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of the wires of the coils. The value of H in the region between sheets is
H = N,I,/x. This result for H is computed by applying Ampére’s cir-
cuital law to the path indicated in Fig. 9-80. The energy density stored
in the magnetic field is given by 24uH? joules/m3. Hence the total energy
W stored is W = 14uH?V, where V is the volume between coils and
where we have replaced u by uo, the permeability of free space because the
medium between the coilsis air. The energy may also be calculated from
W = 1401,%since this magnetic energy (with the secondary shorted) may
be considered to reside in the leakage inductance 0. Equating the above
two expressions for W, we obtain

_ poH®V N2V
TETI T

(9-13)

where all quantities are expressed in mks units. This calculation indi-
cates clearly that o is due to the leakage flux, that is, the flux which links
one but not both windings. Hence, o is essentially independent of the
magnetic circuit of the transformer, since the leakage flux is almost
entirely in air. Note that the ratio of magnetizing to leakage inductance
L,/ = uAX*/uyV1 is independent of the number of turns and is propor-
tional to the permeability of the iron. One of the main reasons for using
high-permeability cores in pulse transformers is in order to have a large
ratio of magnetizing to leakage inductance.

More accurate calculations of ¢ taking into account the current distri-
bution throughout the windings and also taking into consideration multi-
layer windings are given in the literature® and in Probs. 9-3 and 9-4.

9-3. Transformer Capacitances. We shall now consider the capaci-
tances present in a transformer. A simple calculation (see Prob. 9-6)
shows that the interturn capacitance is negligibly small in comparison
with the capacitance between windings and hence may be neglected. If
the separation d between windings is small compared with the core thick-
ness, then the two layers may be considered the plates of a parallel-plate
capacitor and the capacitance C, between layers is given by

¢, = = (9-14)

d

where S is the mean circumference, ¢ is the dielectric constant of the
insulation, and all quantities are expressed in mks units. It is not evi-
dent how to include C, into the equivalent circuit. Let us assume,
therefore, that the proper capacitance to use is not C, but rather a differ-
ent value C’ which is to be connected as a shunt element in the equiv-
alent circuit. This value C” will be chosen such that the electric energy
stored in C’ equals the energy stored in the electric field between layers
of the windings. This assumption seems reasonable and is justified
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because it leads to a transformer behavior which is verified experimen-
tally. In Fig. 9-9 is shown the trace in the plane of the paper of the two
windings of Fig. 9-8. We assume that the voltage distribution along a
winding is linear with distance z so that the voltage difference between
windings V', at a height z measured from the bottom, is given by

Vz = Vcd + (Vab - cd) ;‘ (9-15)

where V. and V,, are the potential differences between windings at the
bottom and top, respectively. The electric field E at the height z is
E = V.,/d. The energy stored per cubic meter is 14eE? = 14(eV,2/d?).
If S is the mean circumference, then the element of volume is Sd dr
and the total energy W is

1eV,2
W = /2 i (9-16)

If V, from Eq. (9-15) is substituted into Eq. (9-16) and the integral is
evaluated, the result is

W= SVt + VaVu + V) (9-17)

where C,is given in Eq. (9-14). If the adjacent ends of the windings are
connected together as in Fig. 9-9b, the transformer is noninverting. If
the step-up ratio is n and the input voltage is e;, then V4 = 0,

Vab = (1 - n)ei
and, from Eq. (9-17),

W = 3 (n — 1)%? ' (9-18)

If we now introduce the capacitance C’ across the magnetizing inductance
in Fig. 9-6, then the energy stored in C’ is approximately 14C’¢;%.  Actu-
ally the voltage across C’ will be less than e; by the drop across the leak-
age inductance. But the voltage across ¢ will normally be small in com-
parison with e;. '

If the quantity 14C’e? is equated to W in Eq. (9-18), we have for the
capacitance C’, which is to be included as a shunt element in the equiv-
alent circuit,

¢ = (n — 1)2%‘3 (9-19)

If opposite ends of the windings are connected together as in Fig. 9-9¢,
the transformer is inverting. The capacitance C’ is now larger and is
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found, by proceeding as above, to be
¢ =@ —n+1) % (9-20)

The symbol # in the above equations is a positive number.

For the special case of a 1:1 noninverting transformer, n = 1 and Eq.
(9-19) gives ¢’ = 0. A more accurate equivalent circuit* based upon the
transmission-line approximation to the transformer has been given for
this special case.

The capacitance of a transformer may be measured on a @ meter.
It also may be determined as a by-product of the ringing-method measure-
ment of the inductance L,. The result of the measurement is not only
the transformer capacitance C” but it also includes all external shunting
capacitance C.. Unfortunately, C. may often be much larger than C’
and furthermore C, may be difficult to estimate.

B _AB _A B

e‘ ne, e‘ 0
dx ° L] ° °
s
L
cC D "~ ° 0—¢ p =
(a) (b) ()

Fia. 9-9. (@) AC and BD represent the traces of the windings of Fig. 9-8 in the plane
of the paper. (b) The noninverting transformer connections. (¢) The inverting
transformer connection.

We have taken the transformer capacitance into account by including
a shunt capacitor €, which is connected on the load side of the leakage
inductance. Actually the transformer capacitance is a distributed ele-
ment, and no matter what location is selected for a single lumped capaci-
tance, the result is an approximate equivalent circuit. A somewhat
better approximation would result if the capacitance C’ were split so that
a part of it appeared on the generator side and a part appeared on the load
side of the leakage inductance. Such a division, however, leads to an
equivalent circuit whose extra complexity is not warranted, since a single
capacitor in the equivalent circuit usually gives reasonably good agree-
ment with experimental results.

Having decided to use a single lumped capacitor representation of the
distributed capacitance, we have located this capacitance at the load end
of the leakage inductance for the following reasons. First, if C’ were
located on the generator side, then if the generator had a nominally zero
output impedance the effect of this capacitor would disappear—a result
which is not in accord with experiment. Second, the external shunt-
loading capacitance encountered with a pulse transformer is very fre-
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quently heavier on the output side of the leakage inductance, and this
external shunt capacitance may simply be added to C’.

9-4. Ferrite Cup-core Transformers. Cores molded from a magnetic
ceramic such as sintered manganese-zinc ferrite are now available which
are excellent for pulse transformers. The maximum permeability of this
material is not very great, but its resistivity is at least 10 million times
that of Hipersil or Permalloy. This high resistivity means that the skin
effect due to eddy currents is very small and an effective permeability of
the order of 1,000 is attained. This value is larger than the effective
permeability of strip alloys. Also, because of this high resistivity the
core loss is very small and a @ of the order of 5-15 is obtained at a fre-
quency of 1 Mc. Three views of one-half of a ferrite core are shown in
Fig. 9-10a. Because of its shape this element is called a ““pot” or ‘“cup”’
core. The windings are placed on a circular nylon or paper bobbin which
is then inserted in the core. An end view of the complete core, assembled
by butting two halves together, is indicated in Fig. 9-10b. The two sec-
tions are held together, with a machine screw through a small hole in the
center of the core and the entire assembly is dipped into a hard-setting
resin. The magnetic circuit thus completely encloses the windings.

The primary inductance of a pot core may be calculated? from

®Ri + Re + Rz 4+ Ry

where ®;, Rz, ®s, and Q4 are the reluctances of paths 1, 2, 3, and 4 of
Fig. 9-10b, respectively. Since the flux is radial along paths 2 and 4,
the cross-sectional area through which it passes is not constant. This
fact must be taken into account when evaluating ®: (= ®,4). The result
of the calculation for a core whose dimensions are given in Fig. 9-10a is
L, = 1.1N,? ph, to within about 10 per cent. For a 100-turn primary,
L, = 11 mh.

The windings in a pot core may be arranged in solenoidal layers as
they are for a rectangular core or instead may be put side by side in
slots in the bobbin. In the latter case, the turns pile up radially in the
shape of a flat disk. The leakage inductance is given approximately by
Eq. (9-13), where V is the volume of the air between windings and X is the
radial extent of the disks. The capacitances are given approximately by
Eqs. (9-14), (9-19), and (9-20), where S is the mean circumference of the
windings and d is the separation between windings. Since d is much
greater for the slot-type winding than for the solenoidal-type arrange-
ment, ¢ is greater, whereas C’ is smaller for the slot-type winding.

The order of magnitude of the parameters of transformers designed
for pulses in the range 0.1 to 20 usec are the following: L, = 0.1 to 100 mh,
‘K = 0.990 to 0.999, and C’ = 1 to 100 puf.

L, (9-21) -
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9-6. Rise-time Response of a Transformer. If capacitances and
resistances are taken into account, the equivalent circuit of a transformer
is given in Fig. 9-11. The resistance R; is the sum of the generator
impedance (assumed resistive) and the primary winding resistance. If
Ry is the load resistance and R} is the secondary winding resistance,
R, = (R; + R})/n*. If the transformer core losses are appreciable, thesc

Secondary —
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| X%

5 x |
Ixxf x :

Flux lines— [ \**] *x

-4

X Screw hole> ::_:_ I—
- 0438 0.075 i oo }
s w12 1)
1007 V) Ul
RS “'l I‘— Primary — 31
0.079 Secondary—/
(a) (b)

F1g. 9-10. (@) Three views of a small ferrite pot core. Dimensions are in inches.
(Courtesy of Ferroxcube Corporation of America.) (b) The assembled transformer.

may be represented by a resistor R, in parallel with R,. If C is the
capacitance shunting the secondary terminals, then C = n?CL + (',
where (" is the effective interwinding capacitance as given by Eq. (9-19)
or Eq. (9-20). The primary inductance is indicated by L. The circuit
of Tig. 9-11 is represented by a third-order differential equation whose
solution would be quite involved. Turthermore, this complete solution
would not clearly indicate the physical behavior of the circuit. Hence,

1in -
Fic. 9-11. The equivalent circuit of a  Fia. 9-12. The approximate equivalent
transformer including capacitances and  circuit used to calculate the rise-time
resistances. response.
if the input is a pulse, it is advantageous to divide the solution into three
parts; the first gives the response near the front edge of the pulse, the
second gives the response during the flat top, and the third gives the
response after the termination of the pulse. In this section we consider
- the rise-time response and in the following two sections the remainder of
the waveform is discussed. ‘
The response near the front edge of the pulse is given by the high-
frequency equivalent circuit of Fig. 9-12, which is obtained from Fig. 9-11
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by neglecting the effect of L. The magnitude of the input step is E.
Writing down the differential equations for this network and assuming a
solution in the form ¢?, we find for the roots p of the characteristic
equation®

_ (R, 1 Ri, 1Y Ri+Rs|*

p= (% + 2R20> t [(% + 2ch) ~ oCRs (9-22)
Let us introduce the atltenualion a, the damping constant k, and the
period T defined by

= R, = 1% _ (& _1_>£
=% Tk T = 2x(aCa) k= <o‘ R.C) ir (9-23)
in which case Eq. (9-22) can be put in the form
2 42T s
p = Tki-JT(l k%) (9-24)

If & = 0, we see that the roots are purely imaginary, +72x/7T, and hence
the response is an undamped sinusoid of period 7. In order for k& to
approach zero, we must have B; — 0 and R:-— <, in which case

T = 2z \/oC

is the free period of oscillations of the ¢C circuit. If & = 1, the two roots
are equal, corresponding to the critically damped case. If k > 1, there
are no oscillations in the output, and the response is said to be overdamped.
If & < 1, the response will be a sinusoid whose amplitude decays with
time and the response is said to be underdamped.

If we introduce the parameter z = {/T, the responsec is given by the
following:

Critical Damping, k = 1

—27T !
- E (9-25)
Overdamped, k > 1
€o —_ — 4k2 —Tét/k —A4rkx
nall — 1 72 — 1 T o1 4lc 1°€ (9-26)

If 4k% > 1, the response may be approximated by

nZE o] — el (9-27)

Underdamped, k < 1

€o

_ k .2\ _ 2%] —2rkz X
na—E—l [(1 kz),ﬁsm%r(l k) ¥z 4 cos 2r(L — k%)% | e (9-28)



PULSE TRANSFORMERS AND BLOCKING OSCILLATORS 265

These responses are plotted in Fig. 9-13 for several values of k. If the
rise time t, is defined as the time interval required for the critically damped
output to rise from 0.1 to 0.9 its final value, we find, from Eq. (9-25) or
Fig. 9-13, that

t, = 0.537 = 3.35(cCa)* (9-29)

We note that in order for the output to rise rapidly, the leakage induct-
ance and the shunt capacitance must be kept small. The rise time may
also be reduced by reducing a, but a small value of @ will result in a highly
attenuated output voltage.
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F1a. 9-13. The rise-time response of a pulse transformer.

If the derivative of Eq. (9-28) is set equal to zero, the positions z,,
and magnitudes ¢, of the maxima and minima are obtained. The result
is

=g E  end pep = L= (ZDrenie (9:30)
where m is an integer. The maxima occur for odd values of m and the
minima are obtained for even values of m. By using Eq. (9-30) the
waveshape of the underdamped output may be sketched very rapidly.

9-6. The Flat Top of the Pulse. The response during the top of the
pulse is obtained from the low-frequency equivalent circuit of Fig. 9-14a,
which is obtained from Iig. 9-11 by neglecting the effect of the leakage
inductance and shunt capacitance. Applying Thévenin’s theorem, we
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obtain Fig. 9-14b. The output is given by

€o
nall

where B = Ri1R:/(R, + R»). TFor small values of Rt/L, the output is
approximated by

= RuL (9-31)

_ _q1_ Rt

nall L

Hence, the top of the output pulse will be tilted downward and the per
cent tilt P is given by

(9-32)

= R—lf’—’ X 1009, (9-33)

where {, is the pulse width. Near the beginning of the pulse there will be
superposed upon the linear fall the response pictured in Fig. 9-13.

(@) (b)
F1a. 9-14. (a) The equivalent circuit used to calculate the flat-top response of a trans-
former. (b) The Thévenin equivalent. a = Ry/(R: + Ry); B = RiR:/(R1 + R»).

We have assumed that the inductance L is a constant. This assump-
tion is valid as long as the iron does not begin to saturate. For a ferrite
core, the permeability is fairly constant for flux densities B up to a max-
imum B,, of about 1,500 gauss (0.15 weber/m?). Saturation occurs if
B exceeds the above value B,,. Now

. = nN,AdB
° dt

where n is the step-up ratio, N, is the number of primary turns, and A is
the cross-sectional area of the core. Assuming that the top of the pulse
is constant and equals naF, the flux density at the end of the pulse is

b akt,
B = ﬁ AN A dt = N, A (9-34)
In any particular application we must be sure not to saturate the core.
For example, consider that a pulse generator having an adjustable pulse
width is applied to a transformer. The output pulse will be a reasonable
reproduction of the input for small widths. When the input duration
exceeds the value of ¢, given by Eq. (9-34) with B = B,, = 0.15 weber/m?,
the output will drop rapidly. This behavior follows from the fact that,
when the iron saturates, the inductance drops to a very low value.
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Also, because of the skin effect mentioned earlier, it is found* that for
certain sheet steels the effective inductance is proportional to the square
root of the pulse width.

9-7. Decay-time Response of a Transformer. During the time of the
pulse a current builds up in the magnetizing inductor and the nature of
the output pulse decay results largely from the

discharge of this current. The effect of o is T“'
only important in the immediate neighborhood R cL 1 co
of the end of the pulse. We shall consider this T
region later and hence shall now neglect ¢ so l—

that the equivalent circuit is givenin Fig. 9-15.  Fie. 9-15. The equivalent
This parallel ELC combination is discussed in  growt used to evlolate the
detail in Sec. 2-8 in connection with ringing ’
circuits. The response is given by Eqs. (2-47) to (2-49) and is plotted in
Figs. 2-30 to 2-32. In using these equations, we must remember that

_ 1 L _ b=,
E, = naE k-ﬁ\% T, =2r\LC z= - (9-35)

The parameter A is defined as the ratio of the current in the inductor to
the current in R att = ¢,. Itisfound that usually the response is heavily
overdamped, 4k >> 1, at the end of the pulse and the response is given by
Eq. (2-48), which is repeated here for easy reference:

nZoE - ( 41%2 4 A) ek 4 (1 4 A)eirke (9-36)

For all values of x, except those close to 2 = 0, the second term in Eq.
(9-36) is negligible compared with the first. From Egs. (9-35),

mx _ R(t —tp)

k L

and hence the response for ¢ > ¢, can be approximated by

nZoE =~ — (4_}0—2 -+ A) e (B/D) =ty (9-37)
We thus see that for this heavily damped case the output at the end of the
pulse drops to a negative value and then decays exponentially toward
zero with the same time constant with which the top of the wave tilts.
In order to find A, we note, from Fig. 9-14b, that the inductor current ¢y,
and voltage er during the flat-top response are given, respectively, by

. Ea —RUL
i = —R— (]_ — ¢ RU. ) and er = Eae®vL (9'38)
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The current in L at ¢ = ¢,- is the same as at ¢ = {,—, because the cur-
rent in an inductor cannot change instantaneously. Similarly, because
the voltage across a capacitor cannot change instantaneously (remember
that C is in shunt with L), the value of ez at { = ¢, is the same as that
at ¢t = t,—. At the end of the pulse the input drops to zero and e,
appears across E. Hence, the ratio of inductor to resistor current is

‘ 1 — e—Rtp/L
A - 61;_7_}—3 t=tp - W (9—39)
or A = HRGE _ ] o % (9-40)

if Rt,/L is small compared with unity. From Eq. (9-33) we see that the
fractional tilt during the pulse is given by Rt,/L, which, by Eq. (9-40),
equals A. If we desire to reproduce the pulse well, then A will be small,
say, less than 0.2 (corresponding to 20 per cent droop).

Let us now consider the response in the neighborhood of ¢ = ¢,. A
pulse may be considered to be the sum of a step of voltage +E whose dis-
continuity occurs at ¢ = 0 and a step of voltage —E whose discontinuity
oceurs at t = ¢, (see Fig. 2-3). Hence, if the transformer response to a
step E at t = 0 is e,(t), then the output for t > ¢, is e, (f) — e.(t — £p).
The waveform e,(f) is the composite of the rise-ftme response and the
Aflat-top response found above. For the underdamped case, the trailing
edge of the output waveform will contain the same high-frequency
oscillations as are present on the leading edge. For ¢ greater than approx-
imately 2, the effect of o is negligible, the equivalent circuit of Fig. 9-15
is valid, and the response is given by Eq. (9-37), assuming heavy damping
at the end of the pulse.

It should be stated that the output impedance of the pulse gener-
ator may be different at the termination of the pulse than during the time
of the pulse. If this condition exists, then a different value of R, must
be used when calculating the response for ¢ > ¢, than for t < ¢,. TFor
example, if Ri(t > ¢,) is much greater than E:(t < {,), then the high-
frequency oscillations at the trailing edge will be greatly damped. How-
ever, even when the pulse is terminated by opening a generator switch,
in which case ¢ could be omitted, at least in Fig. 0-12. oscillations often
persist. The reason for this behavior is that actually the capacitance is
not properly included in the circuit as a lumped element, but should
really be included as an element continuously distributed between the
leakage inductance and ground.

In every case the area under the pulse which is above the zero axis
is equal to the area below the axis. This conclusion follows from the fact
that a transformer cannot pass a d-c voltage. This feature may also be
verified thus: The output voltage may be written as e, = n d(Liz)/dt,
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where 71, is the current in the magnetizing inductor. The total area "inder
the output voltage waveform is

f odl =n / L) 0y — aliy| w0 (9-41)
0 0 dt 0

since i, = 0 at £ = 0 and at { = «. This proof does not assume that
L is a constant. Even if saturation takes place so that L is not constant,
the area above the zero axis equals that below the zero axis and hence
there is no shift in d-c level.

The response of a transformer of typical parameters is computed in the
following illustrative example.

ExaMpLE. A pot-core transformer has the following parameters: L = 5 mh,

= 40 ph, C = 50 puf, B, = 200 ohms, B> = 2 K, n = 1. Find the response to a
2-psec 10-volt pulse.

Solution. TFor the rise-time response we have, from Eq. (9-23),

R, 2000
¢ =B+ R ~ 200 F2000 2909
T = 2x(sCa)¥ = 20(40 X 10-¢ X 50 X 1012 X 0.900)% = 0.267 usec

L = (& +L) To_ (20 1 )'2.67 X 10~
"\ TRC) 2 T\20 X107 T 2X 10° X 50 X 102 4
= 0318

Since k < 1, the response is underdamped and is given by Eq. (9-28), namely,

o Ik —anl ;zzi] —2wkt/T
naE—l [(1—k2)}’zsm2"(1 k%)Y T+cos21r(1 k)Y 7| R

Substituting numerical values into this equation, we obtain
o = 9.09[1 — (0.325 sin 22.3¢ + cos 22.3¢)e=7-45¢]

where ¢ is expressed in microseconds.
From Egs. (9-30) we find that the maxima and minima occur at

mT
tmn = 2(1'_—102)% = 0.141m

where m = 1,2,3 . . ., and that the magnitudes at ¢,, are
eom = 9.00[1 — (—1)me1.01m]
The flat-top response is given by Iq. (9-31), namely,
o = naEeR/L = 90000364 &~ 9 09(1 — 0.0364¢)

where ¢ is expressed in microseconds. The percentage tilt of the top of the pulse is
3.64t, = 7.28 per cent.
At the end of the pulse the damping factor k is given by Eq. (9-35), namely,

k

_ 1 L _ 2000+ 200 (5><10-3 B _grs
T 2R VC T 2X 2,000 X 200 \50 x 10-3) ~“*
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This value of k should not be confused with the damping factor of 0.318 which is
valid during the rise-time response. Since 4k% >> 1, then Eq. (9-37) gives the response,
namely,

e _ (1 ~R(t—~t)/L
nall (4k2 +A) T

Since A equals the fractional tilt at ¢ = {,, then A = 0.0728 and
e, = —9.00 X 0.073¢0-0364(t=¢p)

The complete response (up to ¢ = 6 wsec) is sketched in Fig. 9-16. The composite
curve was constructed by first drawing the exponential (almost linear) portions at
the top of the pulse and after the pulse terminates. Then the positive and negative
peak overshoots, given by e.m/9.09 — 1, were superposed upon these exponentials.
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Fia. 9-16. The response of the transformer whose parameters are given in the illustra-
tive example.

The long undershoot for ¢ > ¢, should be noted. This section of the curve will slowly
approach the zero axis so that, as noted above, the positive area will equal the negative
area.

The high-frequency oscillations noted in Fig. 9-16 may be reduced to
zero by increasing the loading on the transformer. Critical damping (at
the beginning of the pulse) for the transformer of the above illustrative
example is obtained when R, = 400 ohms. This result is obtained by cal-
culating the value of R, for £ = 1. The attenuation is now

R, _ 400

whereas the attenuation for B, = 2 K was 0.909. Thus, the oscillations
have been removed at the expense of increased attenuation. Also, the
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output will rise somewhat more slowly toward its peak value, the rise
time ¢, calculated from Eq. (9-29) is 0.056 upsec. On the other hand,
the tilt will now be smaller than it was for R; = 2 K because & = R.a
is reduced. With B = 400 ohms, the droop is calculated to be 5.35 per
cent, which is to be compared with the value of 7.28 per cent found
above for R, = 2 K.

9-8. Pulse-transformer Design Considerations. The number of fac-
tors involved in the design of pulse transformers are too numerous to
permit one to set down a schedule of design procedure. The few remarks
that follow are intended to serve as a general guide and the gaps must be
filled in by trial and error and on the basis of past experience. Initially
one must specify the pulse duration, the pulse voltage, the step-up ratio,
the generator impedance, the load impedance, the allowable rise time
and overshoot on the leading edge of the pulse, the allowable tilt of the
pulse top, and the allowable backswing at the pulse termination.

One must first select a core material. The principal feature required
of the core material is high permeability at high frequencies. As out-
lined in Sec. 9-4, pot cores of ferrite have excellent characteristics for
pulse transformers. These cores are also very convenient to use in con-
structing a transformer. The smallest core on which there is room avail-
able to place the required windings should be selected.

The primary inductance required is determined by the allowable per-
centage tilt P, From Eq. (9-33), L = 100R¢,/P. The number of pri-
mary turns are now calculated from the magnetic circuit [say, using Eq.
(9-21)] so as to obtain the desired inductance. The secondary turns are,
of course, calculable from the step-up ratio given. At this point it is well
to check, with the aid of Eq. (9-34), that the iron is not saturated.

In a small pulse transformer, the preservation of the pulse shape is
more important than efficiency of operation. The winding resistances
may therefore be permitted to be quite large, often as large as 10 per cent
of the load or generator resistances. Small wire sizes may therefore be
used with a conscquent reduction in capacities. If the interwinding and
interlayer distances are kept small, the leakage inductance will be small
but the effective capacity will increase. The reverse will be true if the
interlayer distances are large. When the load and generator impedances
are high, a large series leakage inductance may be much more readily tol-
erated than a large shunt capacity. In this case the windings may be
spaced far apart. If the load and generator resistances are very small, a
close spacing may be preferred.

Large step-up ratios are seldom used in pulse transformers, because
the gain 7 can be obtained only at the price of increasing the rise time by
the factor n. This conclusion is easily verified. If the step-up ratio is n,
then load and interwinding capacitances are multiplied by approximately
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n? [see Egs. (9-19) and (9-20)]. Since the rise time {, varies as C% [see
Eq. (9-29)], ¢ is proportional to n. If, in order to accommodate addi-
tional secondary turns, the geometry is modified so that ¢ also increases,
then the rise time deteriorates even further.

When a tentative design has been made, the transformer response may
be calculated by the methods given above and then the design may be
altered as seems required by the results obtained.

9-9. The Blocking Oscillator.® The blocking oscillator is a circuit
used for the generation of short pulses of duration from about 0.05 to 25
psec. The circuit is indicated in Fig. 9-17 and consists of a triode (or a
pentode) and a pulse transformer. The transformer has a turns ratio
of the order of unity and is wired
into the circuit to provide polarity
inversion, as indicated in Fig. 9-17.

Typical waveforms of plate voltage,

M grid voltage, and cathode current
. appear asin Fig. 9-18a toc. Qualita-
F tively the operation of the circuit

+ is as follows. Consider that initially

% T € there is a negative charge on C,
R Ceg=7< €y .

4 l adequate to bias the tube beyond
= cutoff. The capacitor C, discharges
F1g. 9-17. A blocking-oscillator circuit.

‘Ebb

eC

- ,
==
through R,, and when the grid volt-
age reaches cutoff at { = ¢;, the tube
starts to draw plate current and the plate voltage drops. The drop in
plate voltage causes an increase in grid voltage, which in turn results in a
further decrease in plate voltage. If the a-c loop gain of the circuit is
larger than unity, regeneration takes place. The plate is driven abruptly
downward and the grid is driven abruptly positive. The regenerative
action continues until limited by the nonlinearity of the tube so that the
loop gain drops to unity and, finally, at the peak of the pulse, ¢ = {5, the
loop gain has fallen below unity. The peak plate and grid currents are
very large in comparison with the currents which are normally encoun-
tered in receiving-type tubes.

The plate and grid voltages cannot remain constant at the values
reached at ¢ for two reasons. First, even assuming that the plate voltage
were to remain constant, the grid voltage would have to drop in potential
because of the finite magnetizing inductance of the transformer. This
conclusion follows from the discussion of Sec. 9-6, where it is proved that
a constant voltage impressed on the primary of a transformer gives an
output at the secondary which decreases exponentially with time if L is
finite. The second reason that the blocking oscillator output does not
remain constant is that the grid current charges C, (see Fig. 9-18d) and
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makes the grid voltage less positive, which in turn causes the plate current
to decrease and the plate voltage to increase. Since the loop gain is less
than unity, the changes in plate and grid voltages occur relatively slowly
until the circuit drifts back to a point where the loop gain once again
equals unity and a regenerative action occurs in the direction to turn

the tube off.

€

[}
|
Eyy- |
!
|

(a)

®)

“Cutoff

F1a. 9-18. Waveforms in the blocking oscillator. (a) Plate voltage; (b) grid voltage;
(c) cathode current; (d) voltage across C,.

For a 1:1 inverting transformer, the voltage across the grid winding
is the negative of that across the plate winding. In this case, the wave-
form b of Fig. 9-18 is equal to the waveform d minus a plus the d-c volt-
age Ey.  We can conclude, therefore, that the top of the grid waveform
will be tilted more than the top of the plate waveform, particularly if
C, is small.

At the termination of the pulse there is a finite current flowing in the
magnetizing inductance of the transformer. Since the current through
an inductor cannot change instantaneously, the current must continue to
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flow even when, at ¢ = ¢;, the tube current has dropped to zero. The
path for the magnetizing current is through the effective capacitance
of the transformer. Since the capacitance is small, the magnetizing
current decays rapidly, and hence a large induced voltage appears at the
plate. The rapid decay of the magnetizing current accounts for the
overshoot at the plate and grid. Note in Fig. 9-18 that the overshoot
or backswing at the end of the pulse occurs after the tube current has
dropped to zero.

The grid current which flowed during the course of the pulse will
leave the capacitor C, with a negative voltage larger than that which
existed at the beginning of the pulse (see Fig. 9-18d). The circuit now
remains inoperative until C, again discharges through R, and the grid
voltage reaches cutoff. At this point the cycle repeats itself, the interval
between pulses being of the order of magnitude of the time constant
R,C,.

If the circuit parameters are such that the circuit is underdamped, then
high-frequency oscillations such as those indicated in Fig. 9-16 will be
present near the beginning and immediately after the termination of the
flat top of the plate and grid waveforms.

It is important to note that adequate damping of the backswing is abso-
lutely essential to the operation of the blocking oscillator. In Fig. 9-19
the solid curve represents a typical waveform when the damping is
adequate to cause the backswing to be
completely damped in one half cycle.
The voltage E’ is the additional voltage
acquired by C, during the course of the
pulse. If the dampingisinadequate, the
backswing may oscillate, as indicated by
the dotted curve. Insuch a case, regen-
eration would start again at the point
marked X and the blocking oscillator
would behave more like a generator of a
distorted sinusoidal waveform than a
generator of separated pulses. As a
Fig. 9-19. Illustrating the neces- matter of fact, the circuit of Fig. 9-17
;i{gkigvrinzdieﬂaﬁogﬁggiggc of the  differs from the circuit of a conventional

* tuned-plate oscillator principally in the
tightness of coupling between the plate and grid windings. If the core
losses of the transformer are low, as they are for a ferrite core, then an
external resistor must be shunted across the transformer in order to provide
the proper damping mentioned above. :

The important features in connection with the waveshapes of I'ig. 9-18
are the rise time, the amplitude, the duration of the pulse, and the time

€c
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interval between pulses. The amplitude and decay time of the back-
swing are also of some interest. An exact analysis of the blocking oscil-
lator is very difficult, principally because of the extremely nonlinear
fashion in which the tube operates, but some useful approximate calcula-
tions will be made in the following sections.

9-10. The Blocking-oscillator Rise Time. The equivalent circuit for
the purpose of calculating changes of voltage from some quiescent condi-
tion during the rise of the pulse is shown in Fig. 9-20a and b. We assume
that the change in voltage across C, is negligible during the short rise
time, and hence C, is replaced by a short circuit. The dynamic grid
resistance r, is included in the circuit to account for the grid current which
flows, since during the course of the pulse the grid is driven very far into
the positive grid region. If the transformer is loaded by an external

(@) (b)

Fia. 9-20. The equivalent circuits from which the rise time is calculated.

resistor or by appreciable internal core losses, these equivalent resistors
must be placed in shunt with r,. In Fig. 9-200 the transformer has been
replaced by the equivalent circuit of I'ig. 9-12 which includes the leakage
induetance and the total effective capacitance C. A 1:1 transformer has
been assumed and r, has been reflected from the grid into the plate side
of the transformer. The winding resistance is usually small compared
with the dynamic plate resistance r, of the tube, and hence the symbol r,
is used for the total resistance in the plate circuit. Writing down the
differential equation of this network and assuming a solution in the form
¢?, we find for the roots p of the characteristic equation

= — ﬁzz_;_i + (4 1 2+i 11 % (9-42)

P 2¢  2r,C) — [\2¢ ' 2r,C oC A
where A = ur,/(r, + r,) is the (low-frequency) loop gain of the circuit.
If the loop gain exceeds 1, A > 1, then one root p, is a real positive

number. Hence, the grid-voltage variation e, (measured with respect
to the cutoff voltage) is of the form

¢ = Bient + Baert (9-43)
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Since p, is positive, the first term increases rapidly with time, whereas,
since ps is negative, the second term decreases quickly to zero. Hence,
we shall neglect the second term with respect to the first and approximate
e, by

ey = Bjertt (9-44)

This exponentially increasing grid voltage clearly indicates the regenera-
tive action of the circuit when the loop gain exceeds unity. If the peak
grid swing is E,,, and if the times when the voltage reaches 0.1E,,, and
0.9E,,,, respectively, are designated by #o.; and Zo, then

0.1E,, = Biertn and 0.9E,, = Bertos (9-45)

the rise time ¢, is defined by ¢, = {9 — t,.1. Dividing the two equations
in (9-45), we obtain

_2.20
=

Consider a transformer having the parameters n = 1, L = 5 mh, ¢ = 40
ph, and C = 50 uuf and a 6SN7 for which y = 20,7, = 8 Kandr, = 1 K
(for small positive grid voltages). Then A = ur,/(r, + r,) = 2.2. The
capacitance C = 50 uuf is an estimate of the sum of the transformer
capacitance, the effective input capacitance at the grid, the output
capacitance at the plate, and stray wiring capacitance. Substituting
the above values in Eq. (9-42), we find p; = 2.20 X 107 and, from Eq.
(9-46), ¢, = 0.10 psec.

The above calculation is only approximate, particularly since the
tube parameters are not constant. For example, as the grid is driven
positive, the gain decreases. Hence, p; decreases, and the rate at which
the voltage is changing decreases. We may expect, therefore, that
the rise time of 0.1 psec calculated above is too small. Experimentally
a rise time of 0.25 usec was obtained.

9-11. The Blocking-oscillator Pulse Amplitude. If both C, and the
magnetizing inductance were infinite, the pulse would rise to its full
amplitude and remain there permanently. Under these circumstances
the leakage inductance and stray capacitance may be neglected because
the currents and voltages have stopped changing. Furthermore, at an
instant immediately after the pulse has risen, the magnetizing inductance
may be neglected also since the rise time is too short to have permitted any
appreciable current to have built up in it. At this instant, then, the
transformer may be considered to be a perfect transformer. Also
because of the short rise time the voltage across C, cannot have changed,
and it will remain at E.,, the cutoff voltage. If E, and E, are the plate
voltage and grid voltage, respectively, when the pulse has reached its
full amplitude, then E,, — E, is the change in plate voltage and E. — E,,
is the change in grid voltage. If there are » times as many turns in the

& (9-46)
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grid winding as in the plate winding, then

E,— E, = n(lly, — Ey) (9-47)
For each value of E, given on the plate characteristics of the tube, the
value of E, is calculated from Eq. (9-47) and the locus of corresponding
values of E, and E; can be plotted on the plate characteristics.

Since the flux in a transformer cannot change instantaneously, then,
neglecting the finite rise time of the pulse, the ampere-turns in the primary
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Fr1a. 9-21. Positive grid characteristics for a 6SN7 tube. Illustrating the construction

for obtaining the currents and voltages at the peak of the pulse.
must equal the secondary ampere-turns at the peak of the pulse. Hence,
if I, and I, are the peak plate and grid currents, respectively,

I, = nl, (9-48)

For each value of E, given on the plate characteristic, the value of E, may
be found (by trial and error) such that Eq. (9-48) is satisfied. The locus of
the corresponding values of I, and I, may be plotted. Then the inter-
section of the two curves which have been constructed in accord with
Egs. (9-47) and (9-48) gives the values of E), E., and I corresponding to
the peak of the pulse. The peak grid current is I, = I/n.

The above-outlined construction has been carried out in Fig. 9-21 for
a 6J5 (one-half a 6SN7) tube with Ey = 140 volts and a 1:1 transformer.
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Since n = 1, Eq. (9-48) is satisfied at that value of £, where the plate-
current curve for a given value of E, intersects the grid-current curve
for the same E,. The result is

E, = 57 volts E, = 75 volts I, =1, = 0.25 amp

and hence the cathode current is 0.5 amp. Oxide-coated cathodes such
as are found in receiving-type tubes are capable of furnishing pulsed
currents even up to an ampere. Of course, however, the average tube
current must be kept within the rating of the tube, which, for a 6SN7 is
about 5 or 10 ma. Experimentally, the following values were measured:
Ey = 50 volts, E, = 75 volts, and I, = I, = 0.25 amp.

9-12. The Blocking-oscillator Pulse Width. From Fig. 9-21 we find
that at the top of the pulse r, = (AE./AI.)p,—57 = 200 ohms and

_ (AL, 29N~
Tp = <A[b>m=75 2~ 330 ohms

The value of p is difficult to read from the curves of Fig. 9-21, particularly
since u varies rapidly with grid voltage in the region near the peak of the
pulse. If the curves for E. = 100 volts and E, = 75 volts are used,
u = (AEy/AE)r,—0.25 = 0.4. If the curves for B, = 75 volts and E, = 50
volts are used, p = 2.0. Let us take u as the average of these two values
or p = (04 4+ 2)/2 = 1.2. The loop gain is A = pr,/(ry -+ r,) = 0.45.
Thus the loop gain at the peak of

p the pulse is less than unity, as we

- T already anticipated in Sec. 9-9.

Hence, no regeneration takes place,

MWW

A
@ QI Lg % and the circuit voltages may now
Iy 4 ‘MT :J +l be expected to change relatively
X ,

slowly with time. Let us assume

Fra. 9-22. The equivalent circuit from that C{’ is so large that the Ydtage

which the pulse duration is calculated. across it does not change during the

pulse. The equivalent circuit for

calculating the changes in plate and grid voltages is shown in Fig. 9-22.

Assuming a solution in the form e, we find for the root p of the charac-

teristic equation
R, 1

P=—T1-4 (9-49)

where R, = rpr,/(r, + r,) = 330 X 200/530 = 125 ohms is the output

impedance at the top of the pulse. The grid voltage measured with
respect to the cutoff voltage is

ey = Eyner (9-50)

where Ky, = E, — E;, = 75 + 8 = 83 volts. Since the change in grid
voltage equals the variation in plate voltage (for a 1:1 transformer), then
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the operating point will move along the curve marked “Eq. (9-47)"" in
Fig. 9-21 in the direction of increasing loop gain. When a voltage is
reached for which A = 1, regeneration takes place and the pulse is
quickly terminated. It is very difficult to find, from the curves of Fig
9-21, the exact point at which A = 1, but we may estimate that this
takes place at I, = 60 volts or ¢, = 60 + 8 = 68. Then, from Iq.
(9-50), we find, for the pulse duration,

_ 020
/4

In order to obtain a rough approximate magnitude for ¢,, let us use the
value of B, and A at the beginning of the pulse and assume that p is con-
stant over the top of the pulse. This assumption will lead to too large a
value of {,, because the rate at which the voltage changes increases with
time, since A is increasing from 0.45 to 1. We find p = —4.5 X 10* and
tp = 4.4 psec.

We shall now consider an alternative method of calculating ¢, which
will throw additional light upon the operation of the circuit. From Tig.
9-22, we see that the magnetizing current 7, equals the difference between
the plate and grid currents. TFrom TFig. 9-21, we find that at the end of
the pulse E, = 60 volts, E, = 72 volts, I, = 0.23 amp, and I, = 0.15
amp. Note that the plate current has changed very little over the pulse
width, whereas the grid current has dropped from 0.25 to 0.15 amp.
The magnetizing current at the end of the pulse is

I, =0.23 — 0.15 = 0.08 amp

t, =

(9-51)

The voltage across the magnetizing inductance is Eyw — Ep = L di,/dt.
If we assume E, is approximately constant over the pulse duration, we
can integrate the above equation and obtain

LI,

tp = Ebb '—'Eb

(9-52)
Using for E, the average value over the pulse, namely, (57 -} 72)/2 = 65
volts and L = 5 mh, E,, = 140 volts and I, = 0.08 amp, we obtain
tp, = 5.3 usec. Considering the crude approximations we have made,
this value may be considered in good agreement with the duration of
4.4 usec found above.

The above analysis, which has assumed that the core is not saturated,
leads to the conclusion that ¢, is proportional to L. However, as the
number of turns are increased (for a given core), saturation will set in.
Under these circumstances t, will vary as L* rather than as the first
power of L. This statement may be justified as follows. Integrating the
equation Iy — E, = N d¢/dt leads to the result £, = N/ (Ew — E),
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where ¢,, is the magnetic flux in the core at the end of the pulse. If satu-
ration has been reached, then ¢,, is a constant, and we see that ¢, is pro-
portional to N. However, from Eq. (9-21), N varies as L*, where L is
the initial (low flux density) inductance. Experimentally we find that
for a small pot core wound with 68 turns, which gives an inductance of
5 mh, the observed value of £, = 3 usec. By measurements made directly
on the transformer (not in the blocking-oscillator circuit) it is found that
saturation has begun to set in at 0.08 amp (80 ma). When transformers
with more turns are used in the oscillator, it is verified experimentally
that ¢, does indeed vary as L*.

The calculations made above have neglected the influence of the finite
size of C,. If C, is small enough so that during the pulse time ¢, the
change in voltage across C, is comparable to the change in e., then the
pulse will be shorter in duration. Hence, the value of ¢, given above is
the maximum value possible for a given transformer and smaller pulse dura-~
tions may be secured by reducing the size of C;,. Under these circum-
stances the top of the plate-voltage pulse waveform is fairly flat while the
grid-voltage waveform displays a decided tilt.

The use of a delay line to control the pulse width of a blocking oscil-
lator is discussed in Sec. 10-4.

9-13. The Blocking-oscillator Backswing. At the termination . of the
pulse the grid is driven abruptly negative so that neither grid current nor
plate current flows. The equivalent

output circuit is indicated in Fig. 9-23.

L l C== R l Eu—E, The resistor R is the load resistance
I placed across the transformer and also

7 — includes the transformer core losses

Fia. 9-23. The equivalent circuit 1 these are significant. Since R is
from which the plate voltage over- usually large compared with the output
shoot is calculated. impedance, it has very little effect
on the analysis given above of the pulse size and shape. The primary
inductance is L, the magnetizing current is I,., and the net effective
capacitance across the transformer is C. The analysis of the ring-
ing circuit in Fig. 9-23 is given in Sec. 2-8. The response is given in

I, I+

terms of the damping parameter k = 5:;—3 \/% and A = I,,/Ip, where I,,

is the inductor current and I is the resistor current. From Eq. (9-52),
I, = (Eyw — Eyt,/L and from Fig. 9-23, Iz = (Ew — Ey)/R. Hence,
A=1,/Ir= Rt,/L. In Fig. 9-19 we demonstrated the necessity for
adequate damping of the grid backswing. Hence, let us now assume that
R has been chosen for critical damping; k& = 1 or R = 14 /L/C and
A = 14t,/A/LC. Fort, = 3 psec, L = 5 mh, and C = 50 puf, A = 3.0.
The response can be visualized from the curves of Fig. 2-30 and is given
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analytically by Eq. (2-47). From this equation we find that the peak
grid backswing is 2.2 times the pulse amplitude. TFor a plate-voltage
pulse amplitude of 140 — 50 = 90 volts, this means an overshoot at the
plate of 2.2 X 90 = 200 volts. For the ferrite core under consideration
the inductance decreases with increasing magnetizing current, as indi-
cated in Sec. 9-12. Hence, at the beginning of the backswing L is smaller
than 5 mh, A is larger than 3, and we may expect a larger overshoot than
the 200 volts calculated above. Experimentally an overshoot of 290 volts
was observed.

If, in any given blocking oscillator, the pulse duration is decreased by
decreasing C,, then the amplitude of the backswing will also be reduced.
This result is apparent from the discussion above and also from the fact
that the area under the backswing must equal the area under the pulse
(see Sec. 9-7).

ecy
t=0
ToE
f
tp-y I‘- ///V
) —————— = Ground
El
E;-
< T
(@) (b)

F1a. 9-24. (a) A modification of the circuit of Fig. 9-17. (b) The waveform across C,.

9-14. The Blocking-oscillator Period. The circuit of I'ig. 9-17 may be
modified by connecting the grounded end of R, to an auxiliary voltage
E;, as indicated in Fig. 9-24a. The voltage ec, across C, is shown in
Fig. 9-24b and is given (in the interval outside of the pulse duration) by
the expression

éec, = E/ —_ (Ef - Ei)e_t/R”c" (9-53)

The initial voltage E; on C, at the end of the pulse is E; = E,, — E’,
where B’ = I.t,/C, and I, is the average grid current over the pulse
time ¢{,. The next pulse commences when e¢, has risen to the cutoff volt-
age K., and hence the period T is given by

E;,—E,+ FE
E, — E,

Usually ¢, is negligible compared with T. If R, is connected to ground,
then the period is given by Eq. (9-54) with E; = 0. The period may be
varied by adjusting R, and E; without affecting the pulse shape or dura-
tion. If C, is varied, then both T and ¢, are changed.

T = t, + 2.30R,C, log (9-54)
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The period T is not particularly stable, so that the interval between
pulses may vary from cycle to cycle and with aging of the tube, etc. The
factors affecting the stability are given in Chap. 12. Methods for syn-
chronizing the oscillator with pulses or sine waves on a 1:1 basis or on an
n:1 basis (counting) are also considered in Chap. 12.

9-15. The Blocking-oscillator Output Impedance. Animportant char-
acteristic of the blocking oscillator is that the impedance level of the out-
put pulse is low. In Sec. 9-12 we found that the output impedance
R, = ryry/(rp 4 r,) was 125 ohms. Another method of estimating the

-output impedance at the plate may be made by noting the extent to
which the pulse amplitude decreases when a current is delivered to an
external load. Consider that a load resistor is connected across the plate
winding of the transformer. The plate current is now the sum of the
load current and the transformer primary current. The voltage condi-
tion given in Eq. (9-47) and the corresponding plot in Fig. 9-21 still
apply. Let us assume that a value of load resistor has been selected
such that the peak of the pulse corresponds to the intersection of the
curve with the tube characteristic for a grid voltage of 50 volts. Then
the plate voltage is 82 volts, the plate current is 220 ma, and the grid cur-
rent is about 100 ma, as read from the characteristics of Fig. 9-21. For
a 1:1 transformer, the current in the plate winding equals the grid cur-
rent. The load current is, therefore, 220 — 100 = 120 ma. Originally,
in the absence of a load, the pulse amplitude was 140 — 57 = 83 volts,
while now it is 140 — 82 = 58 volts. The output impedance is, accord-
ingly, (83 — 58)/0.12 = 210 ohms. The discrepancy between this value
and the value of 125 ohms obtained in

Sec. 9-12 is due to the uncertainty with

which positive grid characteristics such as
those plotted in Fig. 9-21 are known. For

F  one particular 6SN7 an experimental value

of 132 ohms was obtained for the output

F' impedance.

9-16. The Blocking-oscillator Output
Terminals. Many different types of out-
put waveforms may be obtained from a
blocking oscillator, depending upon the
Ry choice of output terminals. The basic

circuit has been modified in Fig. 9-25

Fic. 9-25. Output terminals in a DY the addition of a cathode resistor R

blocking oscillator. and a plate resistor Rz. These resistors

: are ordinarily of the order of 10 to 200
ohms. In any particular application either one or the other resistor
or perhaps neither one is used. Outputs at the following terminals (with

R,

1L
— c
Ce

[w i)
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respect to ground) are now available. At A there is the plate waveform
of Iig. 9-18a, consisting of a negative pulse with a positive overswing,.
At B there is the grid waveform of Fig. 9-18b, consisting of a positive
pulse with a negative overswing and a long recovery time. At C there
is the cathode waveform of Fig. 9-18¢, consisting of a positive pulse with
no negative overshoot and at a very low output impedance. At D there
is the capacitor waveform (assuming R, = 0) of Fig. 9-18d, consisting
essentially of a sweep-type voltage. If this point is loaded too heavily,
the pulse shape and the period may be affected. At £ a negative pulse
with no overshoot is available. If the transformer has a tertiary wind-
ing such as FF’ in Fig. 9-25, then an ungrounded output is obtained hav-
ing the same waveshape as that at the plate (output A). KEither polarity
of pulse may be selected. Also, by choosing the turns ratio appropriately,

—
Positive §

trigger Positive
. trigger
input ingpgut

T I

Fia. 9-26. Triggering a monostable
blocking oscillator by means of a cath-
ode follower.

-E./ —E.

Frc. 9-27. Triggering a monostable
blocking oscillator by means of an
amplifier.

the impedance and voltage level of the output may be adjusted. If the
overshoot is undesirable, it may be clipped with a diode.

9-17. The Monostable Blocking Oscillator. The circuit considered
above is a free-running or astable form of blocking oscillator since pulses
are generated periodically independent of any external excitation. If, on
the other hand, E; is made a negative voltage, —E.., so that the tube is
maintained beyond cutoff, the circuit will remain quiescent until the
application of an external trigger brings the grid out of cutoff. A block-
ing oscillator connected in this manner is referred to as a monostable or
triggered circuit. Positive triggers may be injected at B, D, or I' of Tig.
9-25, or negative triggers may be applied at 4, C, E, or F’. It is not
difficult to see that in each case the applied pulse must be provided by a
low impedance source and must be reasonably large in amplitude. In
addition, in each case, the blocking oscillator will react back on the pulse
source. A cathode follower may be used as an impedance-matching
device if necessary, as in Fig. 9-26. Even in this last circuit there may



284 PULSE AND DIGITAL CIRCUITS

be some reaction back on the pulse source. For when the grid current
of the blocking oscillator flows through the output impedance of the
cathode follower, the cathode of the cathode follower may go sufficiently
negative to cause the tube to draw grid current. A triggering circuit
which has much to recommend it is illustrated in Fig. 9-27. Since the
plate resistance of the triggering tube is large in comparison with the
output impedance of the blocking oscillator, the interference with the
operation of the blocking oscillator will be a minimum. In addition, in
this circuit there is no possibility of a reaction back on the pulse source
and also the trigger tube provides some amplification for the applied
pulse. The applied trigger must have a sufficiently steep leading edge
so that the induced transformer voltage brings the blocking-oscillator
grid out of cutoff.

9-18. Applications of Blocking Oscillators. Among the most impor-
tant applications of the blocking oscillator are the following:

1. The astable circuit is used as a master oscillator to supply triggers
for synchronizing a system of pulse-type waveforms—square waves,
sweep voltages, ete.

2. The monostable circuit is used to obtain abrupt pulses from a slowly
varying input triggering voltage.

3. Either form of blocking oscillator is capable of generating a pulse
of large peak power. For example, it is possible to obtain 0.5 amp at
100 volts or 50 watts from a receiving-type tube. Of course, the aver-
age power is small since the duty cycle (the ratio ¢,/T) is low.

4. Using a tertiary winding output, pulses with neither end grounded
may be obtained.

5. The use of the blocking oscillator as a frequency divider or counter
is discussed in Chap. 12,

6. The blocking oscillator as a low impedance switch used to dis-
charge a capacitor quickly is considered in Sec. 11-11.

7. The blocking-oscillator output may be used as a gating waveform
with a very small on-to-off time. Tor example, in some television
receivers the voltage across C, is used as the gating waveform for the
vertical sweep-voltage generator.
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CHAPTER 10

ELECTROMAGNETIC DELAY LINES

Delay lines are passive four-terminal networks which have the prop-
erty that a signal impressed at the input terminals appears at the output
terminals at the end of a time interval {4, called the delay time. Delays
in the range from a few millimicroseconds to hundreds of microseconds
are obtainable with electromagnetic lines. Millisecond delays may be
achieved with acoustical delay lines.

If a pulse is applied to a real (nonidealized) line, the signal will not
only be delayed but will also suffer attenuation and distortion. In such
a line, ¢ is defined as the time interval between the 50 per cent amplitude
points on the rising edge of the incident and delayed pulses. The impor-
tant characteristics of delay lines are the following: the time delay, the
rise time, the attenuation, the distortion, the characteristic impedance,
the volume occupied by the line, the maximum voltage that may be
applied to the line, the stability of delay with temperature and time, the
ease and accuracy of adjusting the delay, and, finally, the cost.

The applications of delay lines are numerous. For example, a CRO
used for observing fast waveforms has a built-in delay line so that the
signal which triggers the sweep is delayed slightly before being applied
to the vertical-deflection circuit. If the sweep were not allowed to start
before the signal was applied, then the first portion of the waveform might
not be visible on the scope face. Other applications of delay lines are
made in distributed amplifiers, in pulse coders and decoders, in precise
time measurement, in radar, in television, and in digital-computer
systems.

The first several sections in this chapter discuss the characteristics of
both distributed-and lumped-parameter electromagnetic delay lines.
The remaining sections consider a number of applications for delay lines.
Other uses are found discussed throughout the text, particularly in
Chap. 13.

10-1. Distributed-parameter Lines.! A uniform lossless transmission
line, terminated in its characteristic impedance Z,, may be used as a
delay line. If a sinusoidal voltage E, = Ae“t is impressed at the send-
ing end of the line of Fig. 10-1, a traveling wave moves to the right along

286
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the line. The voltage as a function of the distance z down the line is
given by £, = Ae«@=5 and the voltage at the receiving end of the line
is given by E, = Ae“*#). These facts follow from elementary trans-
mission-line theory?, where it is shown that 8 = w v/LC, w is the angular
frequency, L is the inductance per meter, and C is the capacitance per
meter. Since the velocity with which the wave progressesisv = (LC)™%,
then 8 = w/v. Hence

I, = Ad@—BD) = [ewlt—l/v) = Awlt—ta) ) (10-1)

where &y = l/v. TFrom this equation we see that the voltage which
appears at the receiving end is the

same as that which was impressed ! }

on the sending end at a time ¢, T —T
earlier. Since any waveform may E, E, Zo r
be resolved into a Fourier spectrum l {
and since the velocity » is inde- D

pendent of frequency, it follows FIG 10-1. Atrz'ms.m_ission line terminated
from Eq. (10-1) that an arbitrary in its characteristic impedance.
waveform impressed on the input terminals will appear at the output
terminals after a delay time ¢,

Both L and C are functions of the geometry of the cross section of the
line, but it turns out that for lines with a uniform cross section the prod-
uct LC is independent of the geometry? and equals pe, where u and ¢ are
the magnetic permeability and the dielectric constant, respectively, of the
medium between the conductors of the line. For a line whose conductors
are in free space, v = (LC)™% = (u,e,) %, where y, = 47 X 107 henry/m
and ¢ = (36r X 10°)~! farad/m so that » =3 X 10® m/sec. This
speed is the same as that with which a wave of electromagnetic radia-
tion travels in free space, i.e., the velocity of light. The delay per meter
T is given by T = v/ue = 1/v and, for air, T = (3 X 108! = 0.0033
wsee/m. For a medium of relative dielectric constant e, the delay is
0.0033¢,% usec/m. TFor the low-loss dielectric media which are available
(polystyrene, polyethylene, or Teflon), e =% 2.3 and T =< 0.005 usec/m.
Such lines are useful in the millimicrosecond delay range, but the length
of cable required is prohibitively long in the microsecond region. For
example, a delay of 1 usec requires a line 200 m long!

Before discussing the constructional modifications necessary in a con-
ventional line in order to increase 7', let us consider the characteristic
impedance Z,. TFor a lossless line, Z, = 4/L/C ohms and is a pure resist-
ance independent of frequency. Tfor the coaxial cable, the values of L
and C can be calculated, and we find Z, = 138¢, % log (a/b) ohms, where
a and b are indicated in Fig. 10-2. When the attenuation in the line
results principally from ohmic losses in the conductors, the loss (for a
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fixed @) is & minimum for a/b = 3.6. For this ratio and for ¢ = 2.3,
Z, = 51 ohms. Most conventional lines have impedances of this order
of magnitude, i.e., from 50 to 125 ohms. These lines have reasonable
physical dimensions. On the other hand, a line with Z, =2 1,000 ohms
would require log (a/b) = 11, or a/b = 10!, which certainly is an imprac-
tical ratio. The low values of characteristic impedance obtainable in

Q(//

Inner \lnsulatlon

conductor
(@) (b)
Fra. 10-2. Coaxial cable. (a) Longitudinal section; (b) transverse section.

lines of uniform cross section are often as much an inconvenience as is
the short delay per meter. For example, consider that we are required
to transmit a 10-volt pulse along a line. If Z, = 50 ohms, the generator
must supply 200-ma peak current, while if Z, = 1,000 ohms only 10 ma
are required. Accordingly in such applications, the higher impedance
line has a distinct advantage over the lower impedance cable.

Helically wound center conductor
{0uter conductor

(possibly
magnetic)  (a) ()]

Fra. 10-3. Helical high-impedance delay cable. (a) Longitudinal section; (b) trans-
verse section.

Since T = +/LC and Z, = \/L/C, then both T and Z, can be increased
if a constructional change is made which increases L. The method of
accomplishing this increase in inductance is illustrated in Fig. 10-3, where
the straight center conductor in Fig. 10-2 is replaced with a continuous
coil of wire in the form of a helix. In such a cable, in which the cross
section is not uniform, the product LC is no longer equal to ue. Since the
center conductor is wound in a tight helix, the magnetic flux in the
region between inner and outer conductors may be neglected. The
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inductance then equals that of a solenoid of diameter d m, with » turns
per meter, or
_ pn’rd?
T4
where p, is the relative permeability of the core on which the solenoid is
wound. The capacitance is that of coaxial cylinders with a material ot
relative dielectric constant e, between the diameter e and b, or

_ 2me 240 X 1071,
" In(a/b) ~  log (a/b)

Tor a type RG-65/U cable (Federal Telephone and Radio Company)
whose parameters are a = 0.285 in,, ¢ = 0.11 in., the helix is AWG
No. 32 wire of diameter 0.008 in., with n = 112 turns per inch and a
polyethylene dielectric (e, = 2.3), values of Z, = +/L/C = 1,100 ohms
and T = v/LC = 0.18 usec/m are calculated. These agree reasonably
well with the measured values of Z, = 950 ohms and 7' = 0.14 psec/m.
Note that the helical center conductor has increased the delay of the con-
ventional polyethylene coaxial cable from 0.005 to 0.13 usec/m, or by a
factor 26, and the impedance from 50 to 950 ohms, or by a factor of
about 20.

The inductance may be further increased by winding the helical inner
conductor upon a ferromagnetic core.®* The type HH-1500 (Columbia
Technical Corporation) is identical with the RG-65/U cable except that
a flexible, stable, low-loss magnetic core (u, = 2) is used. For this line,
Z, = 1,600 ohms and 7' = 0.23 usec/m, which is an improvement by a
factor of vV, =2 1.4.

It follows from Egs. (10-2) and (10-3) that if the dimension b in Fig.
10-3 is increased while maintaining a constant, then both L and C, and
hence T, are increased. The General Electric Company manufactures
a line (type DL1100) in which b is as large as possible, the inner and outer
conductors being separated by a thin layer of insulating tape which is
effectively 0.003 in. thick.* The helical conductor consists of No. 40
insulated wire with 277 turns per inch wound on a 3{g-in.-diameter
flexible plastic tubing. The outer conductor is made of a braid of insu-
lated wires which are electrically connected only at the ends of the cable.
If the braid were not insulated, the eddy currents would be excessive.
For this line, Z, = 1,100 ohms and 7 = 1.8 usec/m.

A higher impedance may be obtained without sacrificing delay by
increasing L and decreasing C. The type HH-2500 line? (Columbia Tech-
nical Corporation) is similar to the DL1100 line just discussed, except
that L is increased by using a magnetic core (u- =< 4) and C'is decreased by
using a thicker polyethylene spacer (0.035 cm) between inner and outer
conductors. For this line, Z, = 2,800 ohms and 7' = 2.0 pse¢/m. The

= un?rd? X 1077 henrys/m (10-2)

C farads/m (10-3)
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HH-4000 and HH-1600 are similar lines having characteristic imped-
ances of 4,000 and 1,700 ohms, respectively, and each has a delay of
3.35 usec/m. For lines of this type, in which the outer conductor is com-
posed of insulated strands, there is unfortunately some leakage of the
fields outside the line. Two lines placed in close proximity side by side
will exhibit some cross coupling of signals.

Experimental lines have been reported® with impedances up to 10,000
ohms and delays up to 30 usec/m. These lines are wound on a 3{g-in.-
diameter polystyrene core 12 in. long. The core is covered with silver
conducting paint which acts as a ground strip. The silver is slotted
axially into 36 thin strips in order to reduce eddy-current losses. The

F1c. 10-4. Response of 1 psec of HH-1600 delay cable (linearized) to a 250-ke square
wave. (Courtesy of Columbia Technical Corporation.)

ground conductor is covered with a thin layer of insulating tape and a
multilayer bank winding is placed over this insulation. From 2 to 5
layers of wire (sizes from No. 32 to No. 47) have been used. These lines
have longer delays per axial inch and less attenuation for the same delay
time, but have poorer rise times and more distortion due to internal
reflections than the helical lines previously discussed.

The assumption that Z, and T are independent of frequency is quite
well satisfied for frequencies below a megacycle. At higher frequencies
there is a substantial progressive phase shift in the current in successive
turns of the helix and the inductance decreases. As a consequence both
the delay and characteristic impedance decrease with frequency. In
addition the attenuation of the line increases with frequency and is due
principally to the dielectric loss in the insulation of the wire of the center
helix., All these factors introduce distortion, the effect of the attenua-
tion (about 6 db/usecat 10 Mc) being particularly marked when long
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lengths of line must be used to provide long delays. The rise time i,
increases with the square root of the delay time ; and the ratio ¢./+/t, for
many helical lines lies in the range 0.02 to 0.08 (with {; and ¢, in micro-
seconds). Iigure 10-4 is an oscillogram of the response of one micro-
second of HH-1600 delay cable to a 250-ke square wave.

Short calibrated lengths of delay lines (with the leads brought out
through plastic endcaps) are available from the manufacturers of the
bulk lines.

10-2. Lumped-parameter Delay Lines.? A given delay can often be
obtained with less attenuation and in a smaller volume (but with more
distortion) with a lumped-parameter line than with a distributed-param-
eter line. A lumped line is made up of a cascaded series of symmetrical
networks such as the T section of Fig. 10-5a. The image or characteristic

+ + +T>—f0'017\——fwo‘\—T+
E z, E, E; ==c E,
i Lo l
(@) (b)

F1a. 10-5. (a) A prototype filter section. (b) A low-pass constant-k prototype section.

impedance Z, of this section is defined as follows. If the network is ter-
minated in Z,, then the impedance seen looking into the input terminals
is also Z,. Applying this definition, we find

%%
Z, = [2122 (1 + 4Z_212>] (10-4)

The propagation constant v is defined by E,/E; = ¢ under the condi-
tion that the impedance Z, is connected across the output terminals.
The propagation constant is given by

coshy =1+ 2—Z—Zl (10-5)
2

where cosh y = 34(e” + ) is the hyperbolic cosine of y. If (as
indicated in Fig. 10-5b) the series element is an inductor L/2 so that
Z, = joL and the shunt element is a capacitor C so that Z; = —j/wC,
then Z1Z; = L/C =k, a constant, independent of frequency. Such a
network is called a low-pass, constant-k prototype section. The attenua-
tton factor o and the phase factor 8 are defined by v = « + jB, where «
and B are real functions of frequency. Equation (10-5) becomes. for the
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- constant-k section,
w?L.C

cosh (a +78) =1 — 5

(10-6)

The passband of the filter is defined by the frequency band over which
the attenuation factor is zero. Hence,
2
coshjB =cosB=1— w_g_c (10-7)
Since 8 must be real, then cos 8 must have a magnitude between 41 and
—1. Hence, 0 < w2LC/2 < 2. The upper frequency f. given by the
above inequality is called the culoff frequency and is given by

fc = (10'8)

1
v/ LC
For all frequencies between zero and f,, the attenuation is zero and within
this passband the phase factor is given by

f 2
cosB=1—2 (f_> (10-9)
Since cosB =1 — §%/2 4 B*/4! — - - - | wehave the result that for f < f.,

B K1 and 8 = 2(f/f.). For a sinusoidal input to the filter, E; = At
and
E, = Eie? = Aeot=if = Aeotbl) = Agivtt—1/rfo) (10-10)

Thus, if the Fourier spectrum of the input signal to the network consists
of frequencies all of which are much less than f., the output signal will be
a faithful reproduction of the input signal except delayed by a time

~Y 1 —
e = VIO (10-11)

The quantity ¢, is called the {ime delay per section of filter. For the con-
stant-k network, Eq. (10-4) reduces to

N ) I

For f < f,, the characteristic impedance is independent of frequency and
equals \/L/C.

A delay line is specified® by giving the nominal impedance Z,, the total
delay #;, and the rise time ¢, of the output voltage when an ideal step is
applied at the input. The quantity ¢, is related to the delay per section
t;, but steady-state filter theory can give this relationship only after a
very difficult Fourier spectrum analysis. On the other hand, the response
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of a single section can be obtained directly by solving the differential
equations of the two-mesh circuit of Fig. 10-5b. The result of such an
analysis is given (Prob. 10-4) in graphical form in Fig. 10-6. The out-
put is taken across a pure resistance R, equal to the nominal characteristic
impedance A/L/C of the filter. The solid curve a corresponds to a gen-
erator impedance equal to the output impedance R,. The dashed curve
is for a generator impedance equal to zero. We note that the peak over-
shoot is reduced from 22 to 8 per cent as the generator resistance is
increased from zero to the R,. Such an improvement is reasonable
on the grounds that any reflection at the output termination will be
absorbed at the input end.

1.4
12 // == \\
10 Jh = S =il M S0 S
. - —t
/ ~oL
08
[/
y06 ./ l
0.5 6254%/ :
04 /SN
V/
0.2 / !
// |
0 15 {
0 ‘ 1 2 3 4 5 6 7 8
t
br VIC

F1a. 10-6. The step voltage response of a single section constant-k filter terminated in

R, = \/L/C. Curve a: the input impedance is also R,, and y = 2¢,/e;. Curve b:
the input impedance is zero, and y = e,/ei.

In the discussion to follow we shall assume a termination R, at each
end of the filter. From Fig. 10-6 we find the delay per section to be
t, = 1.07 n/LC. This value is to be compared with {, = A/LC of Eq.
(10-11), which is the result that would be obtained if the terminating
impedance was the Z, given in Eq. (10-12) and if all the frequency com-
ponents in the input step could be considered to be small compared
with f.. The rise time per section ¢, is found from Fig. 10-6 to be
t;1 = 1.13 /LC. Experimentally we find that the delay ¢ of n sections
is n times the delay per section, just as would be expected from filter
theory.

la = nt, (10-13)

Also, experimentally? it is found that the rise time ¢, of n sections is n
times that of a single section. It is possible to provide some theoretical
justification for the factor n’, but the matter is involved and we shall
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not pursue the point. We consider then that, approximately,

t, = t,n* (10-14)
From Eqgs. (10-13) and (10-14) it follows that

t 1.5 t 1.5
n = <t—"> (t—1> (10-15)

Using the value of ¢,1/t, = 1.13 A/LC/1.07 A/LC = 1.06, found from Fig.

10-6, we have
t 1.5
n =11 (t—”‘) (10-16)

This equation gives the number of sections required in order to attain
the desired specified value of t4/t,. If Eq. (10-16) does not yield an inte-
ger, then the next larger integer is used for n. From the relationships
t, = 1.07 A/LC, t; = nt,, and R, = \/L/C, we find

_ ta _ taR,
=Tomr, ™ L=347,

C (10-17)
For given values of i, ¢5, and R,, Eqgs. (10-16) and (10-17) are used to
find the number of sections n required and the capacitance C and the
inductance L of each section. The exact value of characteristic imped-
ance is often not of importance. Hence, the standard manufactured
value of C nearest the value obtained from the first of Eqs. (10-17) is
used and then this equation is solved again for R,. Using this value of
R,, the second of Eqgs. (10-17) is solved for L. This inductance is then
wound on a polystyrene cylinder or on a ferrite core.

Often the characteristic impedance required is dictated by the circuitry
in which the line is to be incorporated. If there is some freedom of choice
it is advantageous to design the line for the lowest acceptable impedance.
Most of the attenuation on a line results from the resistance of the induc-
tors, and if R, is small, L can be made small while the time delay may be
kept constant by increasing the size of C.

If experiment shows that the output pulse shape is unsatisfactory (toc
much ringing) for a particular application, then a more conservative
(smaller) value of ¢, is chosen. Of course, a smaller ¢, requires a greater
number of sections. Hence, a line will result which will be more expen-
sive, will occupy more space, and will have more attenuation than a line
based upon a larger value of {,.

We have already emphasized [see Eq. (10-10)] that if 8/w is independ-
ent of frequency the output will be an exact replica of the input but
delayed by an amount {, = 8/w. In Fig. 10-7 the value of ¢, is seen to
be far from constant over the passband of a constant-k filter. The
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constancy of ¢, with frequency can be improved considerably by permitting
coupling to exist between the two inductors of the constant-k section.
This modification leads to the m-derived filter section, which will now be
discussed.

27f. t,

44 - —

—

36 T~

\Constant—k
1.2
0 0.2 04 ; 0.6 0.8 1
A

F1a. 10-7. The variation of delay ¢, vs. frequency over the passband of an m-derived
filter. The special case m = 1 corresponds to the constant-k filter.

Consider the network of Fig. 10-8 in which m is a real number. From
Eqgs. (10-4) and (10-5) we find that the cutoff frequency f. and the char-
acteristic impedance Z, are given by the same expressions as for the pro-
totype filter, namely, Eqgs. (10-8) and (10-12), respectively. From Eq.
(10-5) we find that, within the passband, B is given by

2m2(f/f)*
T= (1 — m) (7 (10-18)
The time delay per section (at a given frequency w) is ¢, = 8/w. Values
of wc, calculated from Eq. (10-18) are
plotted vs. f/f. in Fig. 10-7 with m as a
parameter. It turns out that the value of
m which gives optimum constancy of wt,
vs. fis m = 1.27. For this value of m, the
delay is constant up to about 0.6f., whereas i l
for the constant-k filter (corresponding t.o —Fm. 10-8. An m-derived ﬁlte_r
m = 1) the delay already departs appreci- geetion.
ably from constancy at 0.2f,. We must not,
however, naively conclude that an m-derived filter (with m = 1.27) will be
“three times as good’’ as a constant-k filter. A comparison can only be
made after the transient response is studied, as we shall do later.

cosB=1—
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For small values of f/f., Eq. (10-18) reduces to

2 2
cosﬁ=l—2m2<fi> ~1-%

or 8 = 2mf/f. and the delay per section is

L= B_B _m
T w  2nf  afe
and since f, = 1/ \/LC,
t, = m/LC (10-19)

The m-derived section of Fig. 10-8 is not realizable for m > 1 since the
shunt inductance is negative. It is, however, realizable in the form of
Fig. 10-9 in which there is a mutual inductance between the series induc-
tors. The circuit of Fig. 10-10 is identical to the circuit of Fig. 10-9, as

LM L+M LM
+ J 7 —af + +
E, TG E, E, E,
L ! L T |
F16. 10-9. A network equivalent to the Fic. 10-10. A network equivalent to
m-derived section. ‘ that of Fig. 10-9.

may readily be established from the mesh equations for these two circuits.
Comparing Figs. 10-10 and 10-8, we have

m? — 1 L
2
from which L =" 11— 0515 (10-20)
Also C, =mC = 1.27C (10-21)
and the coefficient of coupling between the inductors L, is
M m?-1

The step-voltage response of a single section terminated at both ends
in a pure resistance R, = /L/C is given in Fig. 10-11. The value of ¢,
is found to be 1.20 /LC, which is to be compared with ¢, = 1.27 A/LC
obtained from Eq. (10-19) for m = 1.27. There are two advantages of
the m-derived filter (with m = 1.27) over the constant-k. The first is
that the peak overshoot of the former is 4 per cent as against 8 per cent
for the latter. The second is that ¢,/t; = 1.06 for the constant-k,
whereas for m = 1.27 this ratio is found from Fig. 10-11 to be 0.96, or
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10 per cent smaller. The number of sections needed is now found from
Eq. (10-15) to be
1.6

n = 0.94 (‘f) (10-23)
Comparing this equation with Eq. (10-16), we see that for the same ratio
of delay to rise time a line with m-derived filters requires about 16 per
cent fewer sections than one constructed from prototype sections. Note,
however, that an m-derived section has an undershoot or preshoot of mag-
nitude 12 per cent.

2e,
€;
12 T
Constant—%
10 m=1__%¢ S~

08 /<;/
Ny // J m=127
M
wl A/
. /// /
-04 \\/

F1a. 10-11. The step-voltage response of a single-section m-derived filter terminated
at each end in B, = \/L/C.

From the relationships ¢, = 1.20 \/LC, t; = nt,, and R, = \/L/C, we
find

N

g
Q

ol taR,
= 1.20nE, 1.20n

For specified values of {4, ¢, and R,, Egs. (10-23) and (10-24) give n, C,
and L. Then Egs. (10-20) to (10-22) give L, Cy, and k. The induct-
ances are often wound on a polystyrene cylinder and the core diameter
and length of winding are chosen so as to give the required value (0.237)
of the coefficient of coupling.? If a delay line is to be used to reproduce
a signal with a minimum of distortion, it may be necessary to use
variable shunt capacitors and to adjust these individually so as to obtain
the best possible step-voltage response. Since the characteristic imped-
ance is not constant, the line should ideally be terminated, as is the prac-
tice with filters, in a half m-derived II section for which m = 0.6. Such
a termination should be used on both the input and output ends of

c and L = " (10-24)
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the line. In practice, it is often found that simpler terminations are
adequate.

If the inductor is wound on a ferrite core, the coefficient of coupling is
very close to unity. If the capacitor C is connected not to the center of
the inductor but rather close to the right-hand end of the coil, then a line
comparable to the m-derived line
results. Still another type of struc-
ture which is used in the construc-
(a) —_______  tion of delay lines is the so-called

Time “bridged-tee’’ section. In thissec-

tion, in addition to the coupling

I\M' between coils, one includes an im-
pedance element which is bridged

() directly across the network from

input to output. Design formulas
for these two types of lines are

given in the literature.®1°
Figure 10-12,shows the response
of a commercially available decade

c
) delayline. A selector switchallows

delays up to 11.0 psec (in steps of
0.1 psec) to be obtained. Several
manufacturers supply (physically)
(d) small lumped-parameter lines hav-
f‘ﬁg-Dlg'ﬁziig:Cillz)ag)r:mQtT::gSisakgn “iiﬂ} ing fixed delays in standard values
(b) output wiéh lqg = 0.3“,usec ; %)cl)1 ozlépssé up to about 20 psec, with imped-
with ¢4 = 3.0 psec; (d) output with ances in the range from 50 ohms
ta = 11.9 psec. (Courtesy Electrom'c‘Com- to 10 K, and with the ratio of delay
puter Division, Underwood Corporation.) to rise time of the order of 10.
Quite typically, lumped-circuit delay lines, even of the most conserva-
tive design, exhibit some ringing. In many applications this type of dis-
tortion is acceptable. Tor example, in computer circuits (Chap. 13) the
occurrence or absence of a pulse is of more importance than the exact
form of the pulse. And where pulses have become badly deteriorated in
form, they may be reshaped. In other applications, notably in a CRO,
ringing is completely intolerable. It will be recalled that in a CRO a
delay line is used to delay the signal until the sweep has started. The
remedy in this latter case is to construct a delay line whose cutoff fre-
quency is well beyond the bandpass of the system in which it is included.
This arrangement is effective because the ringing frequency is of the
order of magnitude of the cutoff frequency of the line. If, as an example,
a line of cutoff frequency 60 Mec is included in cascade with a 10-Mc
amplifier in a CRO, the ringing will not appear in the CRO pattern.
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10-3. Reflections on Transmission Lines. It will be recalled!! that
the general solution for the voltage ¢ and current ¢ on an ideal (lossless)
transmission line is given by

¢ = fi <t - g) + fa (z + %) (10-25)
and i = Ri [fl (t - %) — (t + %)] (10-26)

The positive assumed directions of ¢ and 7 are indicated in Fig. 10-13.
The characteristic impedance of the line is R, and » is the propagation
velocity. The function f; is an

arbitrary function of the argument Sending + — Recei
-
{ —z/v and represents a wave end > ¢ | R
. . . . — —————
traveling to the right (in the posi- :
—_—X

tive z direction) with velocity o. F1a. 10-13. Sign conventions for eurrent

Similarly, f. represents a wave 4nq voltage on a transmission line.
traveling to the left. For a wave

traveling to the right, e/i = R,, while for a wave moving to the left,
e/1 = —R,. This difference in sign results simply from the fact that
in both cases the assumed positive current direction is as shown in
Fig. 10-13. The general solution for wave propagation on a trans-
mission line consists in combining a wave traveling to the right with
a wave traveling to the left in such a way that the boundary condi-
tions at the sending and receiving ends are satisfied (at each end of the
line the ratio ¢/ must equal the terminating resistance). We shall now

e illustrate this principle by applying it to a num-
1 ber of important special cases.
ti=%/ Infinite Line. Assume that a unit step U() is
) —,  applied to the sending end of a line which is arbi-
(a) *  trarily long so that the conditions at the receiv-
e ing end need never be considered. Then the
) boundary conditions are obviously satisfied by
=%/ taking

B T F . U(t—§> . U(t—§> (10-27)
Fia. 10-14. The voltage v R, v

distribution along an in- . s .
finite line at two gparticu- It is understood, from the definition of the unit

lar instances of time # step, that U(t — z/v) is zero whenever the argu-
and &y, with & > 4. ment is negative. The voltage distributions
along the line at two successive times are shown in Fig. 10-14. The
abrupt discontinuity in voltage travels down the line with velocity v.
Finite Line Terminated in Its Characteristic Impedance. An additional
boundary condition now must be satisfied at the termination wbere e/7
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must equal B,. But the solution given by Eq. (10-27) already satisfies
this additional condition so that the voltage and current on the line
remain as before (for an applied unit step). In general, a line terminated
in its characteristic impedance behaves as an infinitely long line.

Finite Line Terminated in R # R,. The boundary condition at the
termination is no longer satisfied by Eq. (10-27). It is now required
that at the termination the ratio e/7 equal R rather than B,. Hence, we
must now find a combination of waves traveling to the right and to the

Ult-x/v)—> |
|

F16. 10-15. Incident and reflected waves at a termination with B > R..

left which will satisfy the boundary condition. The circumstances which
exist at the termination of the line (x = [) for the case of a resistive ter-
mination R > R, are shown at a time ¢{ > /v in Fig. 10-15. The inci-
dent wave of voltage U(t — z/v) has progressed to the point where the
discontinuity has passed beyond the end of the line. The second or
reflected wave is represented by pU(f — 2I/v + z/v) and is one which
travels from right to left and whose discontinuity passes z = latt = I/v.
(Of course, it is understood that the dashed portions of the waves to the
right of z = 1 do not actually exist because the line ends at = 1) The
constant p is called the reflection factor. For times ¢ > I/v, the net volt-
age at the termination is 1 4+ p. The
e ,——|1+,o current associated with the original
1 I wave is 1/R, flowing to the right.
| The current associated with the re-
-"—-l flected wave is p/R, flowing to the
() left. The net current is (1 — p)/R,
flowing to the right. If the termi-
1 nation is R, then it is required that
e L a-pyr, L+ /10 = p)/R) = Ror

! R/R, — 1

° x=l P RIR, + 1

()

Frc. 10-16. The voltage (a) and cur- Th%s result for p, vghich measures the
rent (b) distributions along a line ratio of the amplitudes of the two
with a termination B > R.. waves, is consistent with our expecta-

tion that p=0 if R = R,. We also
note that p is positive if B > R,, whereas the reflected wave is inverted
(p is negative) if the terminating resistance is less than the characteris-
tic resistance (R < R,). The voltage and current distributions along
the line for a particular instant of time, ¢ > /v, are shown in Fig. 10-16.

(10-28)
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The net voltage and current at any point on the line result from the
simultaneous existence of the incident and reflected waves. The time
l/v = t; which it takes the wave to travel down the entire length of the
line is called the one-way delay time.

Note, in particular, that for an open-circuited line p = 41, whereas
for a short-circuited line p = —1.

Multiple Reflections. At a time ¢ = 2¢;, the discontinuity of the
reflected wave will reach the termination at the sending end of the line.
We find that for { > 2¢4 the boundary condition at the sending end is not
satisfied unless the generator impedance equals B,. We must therefore
postulate, for any other termination, the existence of a third wave which
travels to the right and has a discontinuity which passesz = 0 at ¢ = 2¢,.
This wave is represented by pp’U(t — 2t; — z/v), where o’ is the reflec-
tion factor for the sending-end termination and is given by Eq. (10-28),
with R replaced by the sending-end resistance. This third wave is the

Delay line
[ y

=
x

R, {--

U(t) u(t)

u-——— -=

X —>

(a) (d)
F1c. 10-17. (a) A generator with an output impedance R, at the sending end of a line.
(b) The same circuit drawn using the standard symbol for a delay line.

reflection of the second wave and will in turn produce a reflection at the
receiving end, and so on indefinitely.

In the case where the generator at the sending end provides a voltage
U(t) and has an impedance RE,, the amplitude of the first wave is easily
calculated. In Fig. 10-17, the ratio of voltage to current on the line is
R, until the discontinuity of the first wave reaches the termination R.
Hence, at time ¢ = 0, the impedance seen looking to the right is R, and
the amplitude of the first wave is R,/ (R, + R;).

There is an alternative method of describing what takes place on the
line which is quite convenient if the input waveform is a unit step (or a
pulse). Instead of focusing our attention on the entire waveform we
concentrate on the discontinuity. This edge moves down the line with
a velocity v leaving the line behind it charged to unit voltage (if B, = 0)
and leaving behind it a current of 1/R, amp. When the discontinuity
reaches the end of the line, it causes a second discontinuity of magni-
tude p to go back along the line. This second discontinuity charges the
line to an additional voltage p volts as it progresses and it also leaves
behind it an additional current —p/R, amp. This process is repeated at
each reflection from either end of the line. The resultant voltage (or
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current) is the algebraic sum of the individual components. If one end
of the line is terminated in R,, then when the discontinuity reaches this
termination it is completely “absorbed’” and no additional discontinuity
arises.

A Shorted Line. Consider a generator of a step voltage F and imped-
ance B, = R, connected to a line which is short-circuited at the receiving
end as indicated in Fig. 10-18a. What is the appearance of the voltage
waveform at the sending end? At¢ = 0, a step ER,/(R, + R,) = E/2
appears at x = 0. This discontinuity travels to the shorted end where a
second discontinuity —E/2 (since p = —1) will start toward the left.
When this second edge reaches the input end, it will add a voltage — E/2
to the voltage +E/2 established previously. The resultant waveform
will be a pulse of amplitude E/2 and duration 2¢,;, as indicated in Fig.
10-18b. The advantage of producing a pulse in this manner is that the

R, e iR,
500 W-

evm( ) : 1
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(@) (b) (¢)
F1a. 10-18. (a) A step voltage applied to a short-circuited line from a generator whose
impedance matches that of the line. (b) The resulting voltage ¢ and (c) the resulting
current ¢ at the input of the line.

duration depends only on passive elements (the L and C of the line) and
thus may have a stability not shared by pulse generators (blocking oscil-
lators, ete.) which depend upon active elements. The initial current is
E/2R,. This current discontinuity is reflected as —pE/2R, = +E/2R,
so that at time ¢ > 2¢; the input current is E/2R, + E/2R, = E/R,, as
it should be, since the steady-state voltage at the input to the line is zero.
The current waveform is indicated in Fig. 10-18¢ for £ = 1.

Attenuation. In the above discussions we have neglected the attenua-
tion of the line which we shall now take into account. Consider the cir-
cuit of Fig. 10-18 again. The initial discontinuity at the input end will
arrive at the shorted end as 14Fe*, where a = al, a is the attenuation
factor, and [ the length of line. At ¢ = 2¢,4, a negative step of amplitude
14 Ee—2 will appear at the input end and the resultant wave will be as in
Fig. 10-19. We see that a small step voltage ¢’ remains after the pulse.

The above result will yield an expression for « in terms of the d-c input
resistance Ry, of the shorted distortionless line. Sincefor¢ > 2i, there are
no further discontinuities, then ¢/ may be calculated from

, ERdc ‘Eﬂ:

=dec+ RogE Ro

[
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in which we have taken into account the fact that on any practically use-
ful line Ry K B,. From Tig. 10-19 we see that

1, Rdc E —~20 — E
Eg a7 =3
Assuming small attenuation so that e =21 — 2q, we find
a=al = (10-29)

Reflection of Pulses. It will be recalled (see Fig. 2-3) that a pulse of
amplitude £ and duration ¢, may be constructed by superimposing a
voltage EU(t) and a voltage —EU(t — ¢,). Using this fact, we may con-
clude that the results stated above
for step voltages apply equally well
for pulses. To summarize, a voltage

e

pulse of amplitude F is reflected as a | Er 2a
pulse of amplitude pE at a termina- £ 2¢
tion with a reflection factor p. A L l ‘;'

current pulse of amplitude I is re- )
flected at the termination as a pulse 0 2t 1 t
of amplitude —pI. The pulse ampli- Fra. 10-19. The voltage at the input of
tude is attenuated by a factor e¢—ez the line in Fig. 10-18 when attenua-

. tion is taken into consideration.
when the pulse travels the distance z.

In Fig. 10-20a is shown a pulse generator whose impedance R, is less
than the characteristic impedance R, of a line which is terminated in an
impedance B which is greater than R,. Applying the above rules, we
may readily verify that the waveforms at the input and output of the
line are as pictured in Fig. 10-20b and ¢. Note, in particular, the polari-
ties of the pulses. :

Discharge of an Initially Charged Line. In TFig. 10-21a is indicated a
line charged to a voltage E before the switch S is closed at £ = 0. The
Thévenin equivalent of the line with S open is a generator of voltage E
in series with a resistance R,. Hence, when S is closed, the voltage
eacross R is ER/(R + R,). Fort > 0, the change in voltage

ER __,_ _ ER
R+R "7 RTR

travels down the line and is reflected without inversion (p = 4-1) at
the end of the line. If B = R, the initial voltage is £/2 and the dis-
continuity —I7/2 travels down the line, discharging it to half voltage as
it progresses. We shall assume negligible attenuation in the line. At
the end of the line the discontinuity —E/2 is reflected and it discharges
the line to zero as it moves toward the beginning of the line. Attt = 2t,,
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Rg<R,
Pulse N e —r.-
input e; R>R, %
- 4
(a)
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ﬂ "H“ 5
l<——2td——>|<—2t,, L t
Ei3
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t Eo3
” ] -
<—td->-|<——-2td—>|—| , |—IE°4 t
E,
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Fic. 10-20. (a) A pulse applied to a line. (b, ¢) The voltage waveforms at the input
and output of the line, respectively.

N1

2ty

(a) (b)
f1a. 10-21. (a) A charged line discharged through R when sw1tch S is closed. (b) The
output across R is a pulse if R = R,.

the line is completed discharged. The resultant output across R is a
pulse of amplitude E/2 and duration 2i,, as indicated in Fig. 10-21b. If
a mercury relay or a thyratron is used for the switch S, a discharge-line-
type pulse generator!? results which delivers pulses having rise times of
the order of 1 to 10 musec. The polarity and amplitude of the pulse
depend upon the charging voltage, and the pulse width is determined by
the line length.
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If the resistance R does not equal R,, then there will be multiple reflec-
tions from each end of the line. The voltage across I for the two special
cases R = 3R,(p = +14) and R = L4R,(p = —14) are indicated in
Fig. 10-22.

A charged line may be used as a pulse stretcher.’®* Consider, for
example, a constant-k line shorted at the input end and open-circuited

1+ 1+
3
Iy
KN £
E 3 E
B
1
i -—
s 3 4 1
{ 1 1 4 -3_2. 16 l

012345‘;i 011}2311424%

8 2

(2) (b)
Fi1c. 10-22. The voltage across R in Fig. 10-21 if (@) R = 3R,, (b) B = X4R,.
at the output end. Each capacitor is charged simultaneously from an
input pulse through a cathode follower and buffer diodes. At the trail-
ing edge of the input pulse the line starts to discharge, but the output
will remain constant for a time ;. Hence, the input width ¢, has been
stretched to ta.

10-4. Delay-line Control of a Blocking Oscillator.’* An example of a
shorted line used to control the pulse
width of a blocking oscillator is given
in Fig. 10-23. When the blocking
oscillator is triggered, a positive step is
generated at the input to the line.
This discontinuity upon reaching the
shorted end is reversed in polarity.
When this reflected wave reaches the
input to the line, the positive step at
the plate of the tube starts the regenera-
tive action which terminates the block-
ing oscillator pulse. The width of the Frc. 10-23. A delay line in the plate
puse will be 2, provided that tho Sigit e o detrmine the pu
“natural” width, as determined by the
transformer magnetizing inductance, the capacitance C,, and the tube
characteristics, is greater than 24,.

An alternative method of controlling the pulse width is to use an open-
circuited line in the grid circuit in place of C,, as indicated in Fig. 10-24a.
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When the blocking oscillator is triggered, the grid current component I
which passes through R, gives a negative voltage step —I/R, which
travels down the line. At the open end of the line this discontinuity is
reflected without change of sign, and when it reaches the input of the
line again (at £ = 2¢5) the line voltage will become —2I/R, (if attenua-
tion is neglected). This additional negative voltage at the grid of the
tube may be sufficient to initiate the regenerative action which termi-
nates the pulse. The line will then discharge in a staircase manner to
zero, as in Fig. 10-22q¢. The line waveshape is shown in Fig. 10-24b.
Delay lines may also be used to control the repetition rate in a block-
ing oscillator. For example, consider that the delay line in Fig. 10-23 is

t
p— 4
Ty Rg')| Line voltage
— 2 Ry
|

~E, ()

Fic. 10-24. (a) A delay line in the grid circuit used to control the pulse width of a
blocking oscillator. (b) The line voltage and the output pulse.

open-circuited instead of short-circuited and that 2¢; is now longer than
the “natural” width of the blocking-oscillator pulse. If the circuit is
triggered once, it will thereafter continue to deliver pulses separated by
an interval 2{;. This behavior is a result of the fact that the negative
plate pulse travels down the line, is reflected without inversion from the
open end, and retriggers the oscillator when it again reaches the plate end
of the line.

A similar action to that just described is obtained from the circuit of
Fig. 10-24 if the line in the grid circuit is shorted. Again we must use
a line for which 2¢; is longer than the ‘“natural” pulse width. If the cir-
cuit is triggered once, then the negative pulse at the input to the line (see
Fig. 10-24b) travels down the line, is inverted at the shorted end, and
hence reaches the grid as a positive pulse. This positive pulse retriggers
the oscillator.

An alternative arrangement for delay-line control of repetition rate is
indicated in Fig. 10-25. The tube T, is normally biased beyond cutoff
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by the B, — R, divider. The capacitor C is a large blocking capacitor.
The line is terminated in its characteristic impedance. Once the circuit
is triggered, the positive pulse generated at the cathode travels down the
line and is applied at a time {; to the blocking oscillator grid through the
cathode follower T.. This pulse retriggers the oscillator and a train of
pulses separated by an interval {; is obtained.

It is possible to use two delay lines with a blocking oscillator so as to
combine the two actions described above and hence to control simul-
taneously both the pulse width and
the pulse spacing. $Ew

A finite train of pulses may be it
obtained from a blocking oscillator m
for each triggering pulse as follows, 18
The oscillator tube of one of the T, (';
circuits discussed above (for exam- L
ple, T, of Fig. 10-25) is now a R,
pentode with its suppressor grid
biased beyond cutoff. The input
trigger generates a gate (..Say, .by Fie. 10-25. Delay-line control of repeti-
means of a monostable multi) which  0n rate.
effectively removes the suppressor
bias and thereby allows the blocking oscillator to deliver a train of pulses.
At the end of the gate the suppressor voltage returns to its negative
value and the oscillator is again quiescent. The result of this action is
that each input trigger causes some number n (perhaps three or four) of
equally spaced pulses to be obtained.

Timing markers for a scope may be obtained from the circuit just
described. The signal which starts the sweep also triggers the blocking
oscillator and hence delivers a train of accurately spaced pulses synchro-
nous with the sweep. These pulses are used to intensify the trace and
serve as timing markers.

Delay lines may also be used to control the gate width of a monostable
multi in & manner similar to that described above. The gate width can-
not be made too large, however, because an impractically long delay line
would be required.

10-b. Pulse Coders.'® Pulse-type waveforms may be distinguished
from one another by some distinctive feature, called a code. A single
pulse code consists of using, in the system under consideration, pulses of
various widths or amplitudes. A multiple-pulse code may be constructed in
many ways. For example, a train of equally spaced pulses may be char-
acterized by the number of pulses in the group. Alternatively, the code
may consist of a fixed number of pulses in the train, the distinguishing
feature now being the spacing or grouping of the pulses. Digital com-

Ry
(]
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puters (see Chap. 13) use a code which consists of a pulse train in which
both the number and spacing of pulses is significant (although the spac-
ing is always a multiple of some fixed interval). More complicated codes
may be constructed by allowing all four parameters (width, amplitude,
number, and spacing) to be adjustable. A pulse code can carry informa-
tion or give instructions to various portions of a system. Hence, coding
is useful in communications, in television, in computation, in radar iden-
tification (say, of friendly from enemy aircraft), in aerial navigation, ete.

The generation of a pulse code will now be considered. Methods for
adjusting pulse amplitude are evident. Pulse width is controlled by the
length of a delay line for narrow widths or by using a delay multi or a
phantastron for longer durations. A circuit for obtaining a number of

Buffer
e; r—- J{__ a
I e
| L
I
Iy ¢
> G
L
|
R<I
: [<—D>—D,—>}«Dy ¢
i !
S E——
(a) (b)

F1g. 10-26. (a) A pulse-spacing coder using delay lines; (b) the waveforms.

equally spaced pulses was discussed in Sec. 10-4. A circuit for produc-
ing a group of unequally spaced pulses is indicated in Fig. 10-26a. The
delay line terminated in its characteristic impedance is tapped at delay
times D1, D; + D., and at the end of the line where the delay is D, + D,
+ D, The diodes constitute a buffer or OR circuit (discussed in detail
in Sec. 13-2) which prevents interaction between pulses. The output
is a four-pulse code, as indicated in Fig. 10-265.

When the timing intervals required are longer than the spacing for
which delay lines are practicable, delay multivibrators (or phantastrons)
may be employed. One such circuit is shown in Fig. 10-27a. The trail-
ing edge of each multi waveform is differentiated and the resultant spikes
are reformed in the shaper (perhaps a blocking oscillator) to produce a
pulse waveform not unlike the original pulse. The resultant pulses
are combined in the buffer circuit to give the pulse train indicated in
Fig. 10-27b.
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The method of extending the circuits of Figs. 10-26 and 10-27 to any
number of pulses is obvious. The type of coding used in digital com-
puters is discussed in Chap. 13.
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(a) ®)

Fra. 10-27. (a) A pulse-spacing coder using delay multis; (b) the waveforms.

10-6. Pulse Decoders.!” Circuits which respond to a particular code
are called pulse decoders. We shall now discuss several decoder circuits.

Pulsec-amplitude Decoders. A comparator (see Chap. 15) is a circuit
which delivers an output pulse if the input exceeds a definite reference
level Er. Hence, a comparator is the basic element in a pulse ampli-
tude decoder. The circuit of Fig. 10-28 will deliver an output if and
only if the amplitude of the input pulse lies between two definite limits,
say, E, and E, (with E, > E)).

The first comparator delivers a pulse

only if the input amplitude F ex- ngf’i’g*l‘”—[é

ceeds the reference voltage Er; = E,, ¢ INHIBITOR |_%
whereas the second comparator re- —I-( —°
snonds only if E exceeds the refer- Cgmpi%t°' B

ence KEr; = E,. The block marked m22

INHIBITOR (discussed in Sec. Fic. 10-28. A pulse-amplitude decoder.
13-5) delivers an output if there is a

pulse at input A, provided only that there is no pulse at input B. Hence,
if £, < E < E,, the circuit of Fig. 10-28 will deliver a pulse, which is the
desired decoder action.

Pulse-width Decoders. An integrator-type decoder which will detect a
pulse if its duration is greater than some specified minimum value ¢, is
illustrated in TFig. 10-29a. The basic elements used in this type of
decoder are a time-base generator and a comparator. The pulse, nega-
tive in polarity, is applied to the grid of the sweep-forming tube T. This
tube is thereby cut off and the voltage across C rises approximately lin-
early with time. The time constant BC and the supply voltage Ej;, are
adjusted so that the voltage across C' will attain the comparator refer-
ence voltage Iy only if the pulse width ¢, is at least equal to ¢,. Typical
waveforms are indicated in Fig. 10-29b,
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A second type of pulse-width decoder, using as basic elements a delay
line and a voltage selector, is illustrated in Fig. 10-30. The input pulse,
positive in polarity, is applied to an open-circuited delay line. The line
is terminated in its characteristic impedance R, at its input end. The
signal at the input of the line is connected to the grid of a tube which is

€;
0 tmtp
: t
}
I,—o+ [
Com;irato . o | _L
T N
| t
€, i‘l

N t
(d)

F1G. 10-29. (a) An integrator-type pulse-width decoder; (b) the waveforms.
biased beyond cutoff. This bias is made large enough so that the pulse
which appears at the grid, at the instant the external signal is applied,
is not large enough to bring the tube out of cutoff. The pulse will travel
down the line, be reflected without inversion from the open end, and will
return to the input after a time 2D, where D is the one-way delay time
of the line. If 2D is smaller than the pulse duration £, the reflected

A — Voltage
I I selector

_Ecg
F1c. 10-30. A delay-line pulse-width decoder.

1H

pulse will add at the input to the initial pulse. The voltage at the grid
of the tube will rise to nominally twice its previous value, as indicated in
the waveforms of Fig. 10-31. The bias on the tube may be adjusted so
that this larger voltage is sufficient to cause conduction and an output
signal results. On the other hand, if 2D > ¢, no output will appear.
The termination B, at the input is required so that the pulse reflected
from the open end of the line will not be again reflected from the send-
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ing end. The output pulse may be used to trigger a regenerative device
if a larger output signal is required. Alternately, the biased tube may
be replaced by a comparator whose reference level is set, say, midway
between E/2 and E.

The basic principle of a circuit which will respond only to a pulse
width ¢, which lies between a specified minimum and a maximum value

E Input pulse e;

o
__'_—L_ Input pulse at point A
- 2p [~ t

S

I

Reflected pulse at A

mltq
-~

Conduction -
o;et\{zet!? —_— — -It’— Combined signal at A

Output pulse e,

L ‘
F1c. 10-31. The waveforms in the circuit of Fig. 10-30.

is illustrated in Fig. 10-32. Two delay lines and a comparator or volt-
age selector are required. The two-way delay of the first line is 2D,
and of the second line is 2D.. We shall now show that if D; < Dy, then
the range of ¢, which results in an output signal is 2D; 4+ 2Dy > ¢,
> 2Dy, — 2D;. The buffer amplifier is required for isolation and phase
inversion. It is not necessary that the gain have a magnitude of 2, but

Buffer *] r* M

amplifier

gain=—2 Comparator | Output

—0

Fic. 10-32. A pulse decoder that responds to widths which are within a specified range.

it is convenient for the following discussion to assume that such is the
case. ’

An input positive pulse of amplitude 2F appears at point A as a posi-
tive pulse of amplitude E. Since the delay line is shorted, the reflected
pulse which appears at A after a time interval 2D, is negative. These
alternate positive and negative pulses are amplified by a factor of 2 and
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inverted. These pulses appear at B with amplitude F once again because
of the attenuation which results from the terminating resistor R,. The
first pulse, now negative, reappears at B as a positive pulse delayed by a
time 2D.. The second positive pulse, delayed 2D, by the first line, reap-
pears as a negative pulse with total delay 2D; + 2D,. Altogether at B
there are four pulses whose polarities and delays are as indicated in Fig.
10-33. The pulse duration is ¢, in every case, and each amplitude will
be E if the amplifier gain is 2 and we neglect attenuation on the lines.
The resultant waveform at B, and hence the comparator input, is to be
determined by combining the waveforms in Fig. 10-33.

LU
Pl [t p-> ¢ (a)
P |20~ | (b)
| .
DR :
P. |
3 2D, ; ()
<— 2Dkt —> ¢
¢
p, “—2D+2D, (d)

Fre. 10-33. The waveforms in the circuit of Fig. 10-32. (@) Original pulse at A
(drawn inverted); also, the same pulse at B. (b) Reflected pulse of first line (drawn
inverted); also the same pulse at B. (c) Reflection at B of P, in second line. (d)
Reflection at B of P, in second line.

The comparator has its reference level set at a value more positive
than +E. The input to the comparator will exceed E if there is a coin-
cidence of the two positive pulses, provided that there is not simultane-
ously an overlapping of one or both of the negative pulses. For the cir-
cumstances indicated in Fig. 10-33, the voltage at B will be 2E for the
time interval from 2D, to 2D, + ¢,. In general, the limits on ¢, are
arrived at as follows. In order that there shall be at least an overlapping
of P, and P;, it is required that P; begin before P, ends, which means
2D, +t, > 2D, or t, > 2D, — 2D;. Furthermore, there must exist
an instant of time ¢;, at which a coincidence of P, and Pj occurs, when
simultaneously P; and P, are both zero. From Fig. 10-33 we see that
this time ¢; must then satisfy the inequalities {; > ¢, and {; < 2D, + 2Ds.
It follows from the elimination of ¢, from these inequalities that ¢, < 2D,
+ 2D;. These considerations verify the statement made at the begin-
ning of this discussion that the decoder responds to pulse widths in the
range 2D; + 2D, > {, > 2D, — 2D,.
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We have considered above only the simple case where the pulses have
arbitrarily sharp rises and falls. In the more practical case of pulses
with finite rise times, the condition of coincidence or failure to overlap
will not be so sharply defined and the acceptable range for ¢, will be some-
what smaller than indicated above.

The principal advantage of delay-line decoders lies in the fact that the
timing is determined entirely by passive delay lines which therefore rarely
require adjustment. Delay lines to provide delays in excess of 10 usec,
however, become inconveniently bulky. Where longer timing intervals
are required and ease of changing the timing intervals is important, inte-
grator-type decoders are more suitable. The integrator type has the
additional advantage of being less influenced by noise that may accom-
pany the signal. In the circuit of Fig. 10-30, for example, a short sharp

e; ;N ¢
Coincidence
circuit
e
f~=Dy—>«—D,—><D;>| t
Ot
—0 _T €o
e ﬂ
! :
()

(a)

F1a. 10-34. (@) A multiple-pulse decoder; (b) the waveforms.

positive spike of noise added to the signal might easily cause the decoder
to respond even when the input signal pulse is very much shorter than
that for which the decoder is adjusted. However, in Fig. 10-29 the same
noise spike could produce only a very small error.

Pulse Group Decoders. The pulse coder of Tig. 10-26 may be used as
a decoder if the buffer block is replaced by a coincidence circuit, as indi-
cated in Fig. 10-34a. Coincidence or AN D circuits are discussed in Sec.
13-3. As the name implies, a coincidence circuit delivers an output if
and only if there is a pulse at all its inputs simultaneously. Assume
that the input train is the four-pulse system of Ilig. 10-34b. It is clear
that, when the first pulse appears at C, the second pulse is at B, the third
isat A, and the fourth is at the input to the line. Hence, the coincidence
circuit will deliver an output at this instant. If the delay-line taps D;