REAL-TIME EXECUTIVE (RTX)
USER’S MANUAL

90-94500-00G1

DECEMBER 1978

@\ ComputerAutomation .

NAKED MINI. Division

18651 Von Karman, Irvine, CA 92713
tel. (714) 833-8830 TWX: (910) 595-1767

Revision

A0

Al to E6

FO

F2

F3

F4

GO

Gl

REVISION HISTORY

Issue Date

November 1976

April 1977

July 1977

October 1977

November 1977

December 1978

ii

Comments
Original issue.
Misc. RTX/IOX updates.

Adds Magnetic Tape Intelligent
Cable, Storage Module Disk, and
IEEE Intelligent Cable IOX
Handlers. Adds block diagrams
for IOB, UAT, DIB and CIB.

Adds IOX Handler listing.

Adds File Manager to IOX,
and overall documentation
cleanup.

Add A/D, D/A Handler Use
Description to Manual.

Misc. RTX revision errors.
Description of capability of 0’
I0X Handler for IEEE Intelligent

Cable.

Adds COMX as part III of RIX
Manual.

Removes COMX; corrects
one documentation error.

Computerautomation (Of\ ——
w - TABLE OF CONTENTS
N
PART I. REAL-TIME EXECUTIVE;(RTX)
Section ! Page
1 INTRODUCTION TO RTX
1.1 WHAT IS RTX? & & & ¢ v v« e o o o & L e o s & s+ s e o s e e e I/1-1
1.2 WHEN SHOULD RTX BE USED? S V4 £
1.3 WHAT DOES AN APPLICATION PROGRAM LOOK?LIKE?) I/1-3
1.4 DEFINITIONS .+« & ¢ 4 o o o o o « o o o« o o o o o o o o o o « I/1-3
2 - RTX ORGANIZATION
2.1 WORK AREA (USER BLOCKS) e 8 o o o s & s s s e 4 e o s e o e I/2=-2
2.2 RTX FUNCTIONS & & & @ o 4 o o o 4 e et e e e e e e e e e e I/2-2
2.2.1 1Initialize Work Area (RTX:) « « ¢ « « o o « « 1/2-2
2.2.2 Initiate New Task (BEGIN:) . . © ¢ v v v v v o o o « I/2-3
2.2.3 Terminate Current Task (END:) « « ¢« « « « . 1/2-6
2.2.4 sSuspend Current Task (PAUSE:) « & « ¢ « « « « . I/2-6
— 2.2.5 Coordinate NUmMberS. . . v « v v « o« o o o o o o« o « o @ I/2-7
2.2.6 Inter Task Coordination (PUT:/GET:) . « . « ¢« « « « o = 1/2~7
2.2.7 Delay Current Task (DELAY:) . . + « « o« & « « « « o« o & I/2-8
3 INTERRUPT PROCESSING
3.1 SAVE ENVIRONMENT (INTSV:) e 6 e e s e 4 e e s e e e & o + = . I/3-2
3.2 KESTORE ENVIRONMENT (INTRS:I) . v & & & v o o o « o o o o o « I3-2
3.3 INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE (INTAC:) . . -I/3—2
3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:) . &« « « « o =+ o « « = I/3-3
3.5 COMMON SUBROUTINES (REENTRANCE) e e e e 4 e e e e e e e a4 e e 1/3-4
3.6 WRITING COMMON SUBROUTINES . . . +. « « o & o o o o o o « o « = 1/3-5
3.7 CALL A COMMON SUBROUTINE (SUBR:) . . « ¢ <« ¢ o « o « o o o o« 1/3-6
3.8 EXIT FROM COMMONVSUBROUTINE (SUBX:) e o o o s e e o o o o « o 1/3-6
3.9 PROTECYT A FACTILITY (PROT:) v & & vt e e e e e o o o o o o o =« 1/3-7
3.10 RELEASE A PROTECTED FACILITY (UNPR:)b. - 1/3-8
3.11 LOCK OUT A FACILITY (LOCK:) . © = « « « ¢ ¢ « « « « « = « « - I/3-10
3.12 UNLOCK A LOCKED FACILITY (UNLK:) e e e e e o o o o = ; « o . I/3-11
iii

|

Section

Figure

el
=N

Tablec

PART 1I.

3.13 ABORT A TASK (ABORT:)
3.14 OBTAIN CURRENT PRIORITY (GETPR:)
3.15 SET TASK PRIORITY (SETPR:) . . .
3.16 INCREMENT TASK PRIORITY (INCPR:)
3.17 DECREMENT TASK PRIORITY (DECPR:)
ADDITIONAL RTX FEATURES

4.1 RTX DEBUG FEATURE (ZBG)

4.2 PROGRAM LOADING WITH ZBG . . .

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:)
4.4 TELETYPE INPUT/OUTPUT
4.5 LSI-3/05 SOFTWARE CONSOLE ROUTINE
RTX OPERATING PROCEDURES

A SAMPLE RTX PROGRAM - RTX DEMO

6.1 PROGRAM DESCRIPTION

6.2 PROGRAM MODULE FUNCTIONS
6.2.1 BEGIN . . . « ¢ & « ¢« o o« o o &«
6.2.2 TASKL . . . v ¢« v ¢ + & o o o
6.2.3 TASK2 . . ¢ « ¢ ¢ v 4 ¢ v v e
. 6.2.4 TASK3 - L0 e ee .
6.2.5 TIOTASK . . « ¢ ¢ v« v ¢ « o « &
6.2.6 ADDI

TABLE OF CONTENTS

o . e o

(CNSOL3)

LIST OF ILLUSTRATIONS

Typical Example of RTX
RTXSoftware Configuration
RTX Demo Program - Flow Diagram (Sheet

I.IST OF TABLES

User Blocks for RTX Functions

iv

o o o e -

no. ..

(Cont'd)

Page

I/3-11

1/3-11

I1/3-12

I/3-12

- 1/3-12

1/4-1
1/4-4
I/4-A
1/4-4

I/4-4

I/6-1

I/6-2
1/6-3
1/6-3
1/6-4
I/6-4

1/6-4
1/6-4

1/1-4
1/1-5
1/6-5

1/2-4

TABLE OF CONTENTS

PART II. INPUT/OUTPUT EXECUTIVE (RTX)
Section Page
1 IOX GENERAL DESCRIPTION

1.1 GENERAL DESCRIPTION . . + & & ¢ v o ¢ « o o o o o o o = o o o o II/1-2

1.2 CALLING SEQUENCES . +. « & & ¢ o &+ + ¢ o« o o o o« + « o o « o o« « II/1-3
1.3 DEVICE DEDICATION . . . & v 4 « ¢ o o o o s o o o o o « « « « « II/1-5

1.4 LOADING . « « v v & o o o o o o o o« o « o o s o o o « o o o o« I1/1-5
1.5 RESTARTABILITY & & & ¢ ¢ o o o o o o« o o o o o o o o« I1/1-7

2 IOB AND UAT ORGANIZATION
2.1 INPUT/OUTPUT BLOCK (IOB) = 10 words . . . « « « o o « « o« « o o 1II/2-1

2.2 UNIT ASSIGNMENT TABLE (UAT) . . ¢ & ¢ « o « « o « o « « o « o« « II/2-6
2.3 STANDARD DIB NAMES . . . & ¢ & ¢ o & &« o o o + o o o o o o o« « 1II/2-7

2.4 SAMPLE UAT . . + + « « o« 4 o o« o o o v o o o o o o v o o« v o . II/2-8

3 I/O HANDLER ORGANIZATION . . « &« & o o & ¢ &« o o o s « o« « o o« o« « « 1II/3-1

3.1 THE STANDARD HANDLERS . © « « o « + « o o o s o o o o o o « o « I1/3-1
3.1.1 Character-Oriented Device Handler (Non-Fortran) II/3-1
3.1.2 Fortran List Device Handler ¢« ¢ ¢« ¢ ¢« o o « - 1I/3-1
3.1.3 Card Reader Handler ¢« « & o« « « o « « « « 1II/3-1
3.1.4 Magnetic Tape Handler ¢ ¢ ¢ ¢« ¢« ¢« ¢« o o « o - 1I/3-2
3.1.5 Disk and Storage Module Disk Handler (Non-Fortran). . . II/3-2
3.1.6 Floppy Disk Handler (Non-Fortran) « . « « « . 1I/3-3
3.1.7 Disk, Storage Module Disk, and Floppy Disk Handler

(FOXrtran) . . . o o« o o o « « « « « o o o o o o« « « & « 1I/3-3

3.1.8 Magnetic Tape Intelligent Cable (MTIC) Handler II/3-4

3.2 I/O HANDLER REQUIREMENTS . . &« « « « + « o o« 2 s « = + o« « « « 11/3-4
3.2.1 SINT: (Set up an instruction at the Word Interrupt
Location) . . + o & 4 ¢ ¢ + 4 4 « o s o o s o o & o « . II/3-5
SIO: (Start I/0 and Watchdog Timer) « II/3-5
INTP: (End of Block Interrupt Return Point) II/3-7
WAIT: (End of Record Delay Routine) II/3-9
EOFQ: (End of File Check Routine) II/3-9
EOF: (End of File Routine « . +« ¢« ¢« ¢« « « « « » II/3-10
EOR: (End of Record Routine) : II/3-10
EORST: (Alternate Entry Point to EOR:) II/3-10
FETCH: (Input one character from an I/O device) II/3-11
0 BUFFQ: (Store input character into buffer) II/3-12
1 UNRES: (Unresponsive Device Routine) II/3-12
2 IORTN: (Return to I/O Scheduler) « . . . 1II/3-13

.
.

W WwwWwWwwwwwwww
.

NN DN N

0 0N W

3.3 CHARACTER-ORIENTED DEVICE HANDLER LISTING « « . . . II/3-13

v

"

Section

4

4.4

4.5

4.6
FILE

5.1

5.3

DEVI

6.1

PART II.

AND CIB DESCRIPTIONS

DEVICE INFORMATION BLOCK (DIB) - 11 to 18 words
REGULAR DIB CONFIGURATION (ALL HANDLERS)

ADDITIONAL DIB CONFIGURATIONS - UP TO 18 WORDS

Distributed I/0 DIB . . .

Disk DIB . . + v v o o o « =«
Fortran Disk DIB

SAMPLE DISKDIB « . .

CONTROLLER INFORMATION BLOCK (CIB) - 38

STORAGE MODULE DISK)
STANDARD CIB NAMES
MANAGER

ILE ORGANIZATION . . ¢« v ¢ « o« « « &«
1 Sequential File Access . . .
2 File Opening and Closing . .

.3 File Positioning
4 File Functions

F
5.1
5.1.
5.1
5.1

-

TABLE ORGANIZATION . . v ¢ « o« o . .
5.2.1 File Device Information Block
5.2

ILE LABEL UTILITY
Environment
. Program Operation

CE DEPENDENT CONSIDERATIONS

STANDARD CHARACTER DEVICE HANDLERS .

6.1.1 Line Printer
6.1.2 Teletype Keyboard (TK) . . .
6.1.3 Teletype Console (7TY) (implies tape

for input, whichever is ready)

6.1.4 Teletype Reader (TR)

6.1.5 Teletype Punch (TP)

6.1.6 Card Reader (CRY
1.7 High Speed Reader (PR) . . .
1.8

High Speed Punch (PP)

vi

.

.

(DIB)
.2 Controller Information Block (CIB)

.

-

TABLE OF CONTENTS (Cont'd)

Magnetic Tape Intelligent Cable DIB .

.

.

-

.

.

.

.

.

.

-

- WORDS 0 TO

reader or

10

.

-

.

Storage Module Disk DIB (Fortran and Non-Fortran)

-

-

-

.

keyboard

'11/5-18

\

IT/4-1
I1/4-3

I1/4-6
I11/4-6
11/4-7
11/4-9
I1/4-11
II/4-12

II1/4-14

I1/4-14

11/4-17

II/5-1
I11/5-5
11/5-5
11/5-6
11/5-7

I1/5-9
I1/5-9
I1/5-15

I1/5-18
I1/5-18

I1/6-1

I1/6-1
I1/6-1
I1/6-1

11/6-2
11/6-2
11/6-2
11/6-3

I11/6-3 ‘1‘

I1/6-3

PART TI. TABLE OF CONTENTS (Cont'd)

®

Section ‘ Page
6.2 FORTRAN LIST DEVICE HANDLER D I1/6-3
6.2.1 Line Printer (LPF) . . . « ¢ ¢ « v ¢ v v & o« « « « « . TI1/6-3
6.2.2 Teletype Keyboard (TKF) . . v ¢« « ¢ v ¢« ¢« o o o « « « . 1II/6-4
6.2.3 Teletype Console (TYF) (implies tape reader or keyboard
for input, whichever is ready) 1II/6-4
6.3 MAGNETIC TAPE HANDLER e e e e e e e e e e e e e . IT/6-

Ul U

6.3.1 Magnetic Tape (MT) . . ¢ & &« ¢ 4« ¢ @« v 4 o o o o o« o . II/6-
6.4 DISK, STORAGE MODULE DISK, AND FLOPPY DISK HANDLER 11/6-6
6.4.1 Disk (DK), Storage Module Disk (SM), and Floppy
Disk (FD) . & v v v v v v e o o o o o o o e e v v v ou. I1/6-6
6.4.2 Fortran Disk (DKF), Storage Module Disk (SMF), and
? Floppy Disk (FDF) : & « « « ¢ ¢« ¢ o o o « « o« o o « « . 11/6-6
6.5 MAGNETIC TAPE INTELLIGENT CABLE (MTIC) HANDLER . . . « I1/6-7
6.6 STANDARD CHARACTER EDITING e e o o o s+ e & e o o o o o & e o o 11/6-9
7 NON-STANDARD HANDLER DESCRIPTIONS e e e e 4 e e e e e e e e e e e . IT/7-1

7.1 IEEE INTELLIGENT CABLE (IEC) HANDLER . . + v &« « & « « « - . . 1I/7-1

w 7.1.1 IEC IOB Configuration -- 9 to 12 words I1/7-2
7.1.2 IEC DIB Configuration -- llwords « « « « . . . I1/7-8
7.1.3 IEC CIB Configuration -- 34 words 1I/7-8
7.1.4 IEC Device Dependent Considerations II/7-10

7.2 A/D, D/A HANDLER PACKAGE (ADAHP) . . . « « « « o« « « o « « « . I1/7-10

LIST OF ILLUSTRATIONS

Figure

IOB Configuration ¢ o o o o o« o ¢ o o o o o o o o o« o « o« o II/2-2
UAT Configuration ¢ «© ¢ & ¢ ¢ ¢ & o o e o o o =« o o « « . ITI/2-6

- DIB Configuration . . ¢ v v v ¢ ¢ ¢ o o o o o ¢ e « e e w e e e e . II/4-2
- CIB Configuration & ¢« ¢ & &« v ¢ ¢ o « o & o o « « « . II/4-15
- Disk Directory Structure S & /4%)
- Disk Description Table (DDT) in Volumn Table of Contents 1II/5-3
- Disk File LinkA@ge . . v v v« v o « « = o o o« « o o « o o« = s o « « . II/5-4

Sequential File Positionaing Examples . . . « « « « « « « « « . . . 11/5-8

Table Organization o & V43 (¢
DIB Definition When Used With the File Manager . . . « « « « 1I1/5-11
CIB Definition When Used With the File Manager II/5-16
IEC IOB Configuration —— 9 to 12 Words . . « « « v « o « o o o« =« « - II/7-2
IEC Status Byte Configuration ¢ . ¢ ¢ ¢ ¢ ¢ o« « « « . 1I1/7-6
IEC Set Mode Command Word Format« ¢ v v ¢ v o v o o« o o o o« « 11/7-7
IOC CIB Configuration . . . « v v v o o o = o o o o v o = o « o o « II/7-9

FIFFOo oo an sy
BWNFNNOUBWNRNKREN M

vii

Section

1

TABLE OF CONTENTS

PART III. COMMUNICATIONS EXECUTIVE (COMX)

INTRODUCTION TO COMX

1.1 HARDWARE . . . &+ v & & o o o o o o o o o o o o o «

1.2

1.6

SOFTWARE . + + ¢ ¢ o & = o o o o o o s o o s s o =

PROTOCOL DRIVERS . . &« ¢ ¢ ¢ o o o o o o o o « o &

CIRCUIT CONFIGURATIONS . .+ + o o o o & o o = o o =
SYSTEM CONFIGURATIONS . . =« o « o o o o o o o o =«
RELATED DOCUMENTS . . « o ¢ « o o o o o o =« =« o =

CONCEPTS OF DATA COMMUNICATIONS

2.1

2.6

DATA TRANSMISSTON . . .« ¢ o o o o o o o o o o o =

ERROR CHECKING . . . +. + ¢« ¢ o o o o o o o o o = =«

CIRCUIT CONFIGURATIONS - « « « « « .
SYSTEM CONFIGURATIONS . . . « « « o o o « o o o =
PROTOCOLS + ¢ v « & « o =« o o o o o o o o« o o =« =
TRANSMISSION CODES . . . &« « o o o « o o =« o o =

CONCEPTS OF COMX

3.1

3.2

PROTOCOLS '« & o « & = o o o o o o o o o o = =« =

TRANSMISSION CODES . « « o o o o o o o o o o o « =

PROTOCOL DRIVERS

4.1

4.2

4.3

CLASSES = v « v o o e e e e e e e e e e e e e e
BISYNC PROTOCOL DRIVER . « « « « = « « « « « « -

PROTOCOT, DRIVER SERVICES . . .« - & « = = « « « « -
INPUT/OUTPUT REQUESTS . . .« o = o o o o o o o o s

PROTOCOL, DRIVER "TABLES o 0 0 o ¢ @ o o o o+ o - =«

viii

Page

I11/1-1
IT1/1-2
I11/1-2
I11/1-2
IIT/1-2

I11/1-4

I1T/2-1
I11/2-2
II1/2-2
III/2-2
III/2-3

I11/2-3

IT1I/3-1

I11/3-1

I1I/4-1
I11/4-3
IT1/4-4
II1/4-11

111/4-16

(O

Section

5

PART III. TABLE OF CONTENTS (Cont'd)

DEVICE DRIVERS
5.1 SYNCHRONOUS MODEM CONTROLLER DEVICE
5.2 DEVICE DRIVER SERVICES

5.3 I/0 REQUEST HANDLING . . & « + o .

5.4 DEVICE DRIVER TABLES + .

SYSTEM GENERATION
6.1 TABLE REQUIREMENTS « « « .

6.2 TABLE-GENERATING MACROS

APPENDIX A

GLOSSARY ¢ v v & v v v o o o o o o 2 o

APPENDIX B
B.1 ASCII CHARACTER CODES . . . « « «

B.2 EBCDIC CHARACTER CODES . . « « . .

APPENDIX C

DRIVER AND ROUTINES

C.1l PROTOCOL DRIVER DEVICE INFORMATION BLOCK (DIB)

C.2 PROTOCOL DRIVER CONTROLLER INFORMATION BLOCK (CIB) . .

C.3 DEVICE DRIVER INPUT CIB
C.4 DEVICE DRIVER OUTPUT CIB

C.5 LINE INFORMATION BLOCK (LIB) . . .

ix

. e o o e e o - « e

Page

II1/5-1
III/5-8
III/5-11

IT1/5-12

III/6-1

II1/6-2

III/A-1

I11/B-1

I1I/B-2

I1I/C-1
III/C-4
I11/C-7
III/C-12

III/C-13

Figure

Table

[l <%

AU Dd LB D WN

N e

=0 W

e

PART III. TABLE OF CONTENTS (Cont'qd)

LIST OF ILLUSTRATIONS

Flow of Preparing a Program Using COMX .
Diagram of Data Communications
Diagram of COMX « « « « &« « « .

‘Example of Multiple DIB's per CIB . . .

Examples of CPREAD « .« « o « .
Examples of CPWRIT . . . « ¢« ¢ « « o « =

Example of I/O READ Request from Protocol Driver to Device Driver .

Example of a Sequence Table
Example of CD:IFN« « « « .
Example of Using Table-Generating Macros

LIST OF TABLES

Function Codes . v & ¢ « o « o o « « o =
Line Identification

-

II1/1-3
I11/2-1
I1I/3-2
1I1/4-2
I1I1/4-6
III/4-8
II1/4-13
I1II/4-18
III/5-10
I11/6-2

. a - e« o e e o = - -

- - - o e o e o . e . -
- . - « e e o e

- - - - e . - . - - - -

I1T/4-15
III/6-4

~

("

PART T

REAL-TIME EXECUTIVE (RTX)

=

SECTION 1

INTRODUCTION TO RTX

This section presents an overview of Computer Automation's Real-Time Executive (RT%)
program which operates on the ALPHA-16, LSI-2, and LSI-305 processors. The following
discussion is concerned with three basic questions:

1. What is RTX?
2. When should RTX be used?
3. What does an application program look like?

1.1 WHAT IS RTX?

RTX is a modular package of service routines that handles both the overhead functions
and the scheduling services associated with a real-time environment. Modular con-
struction allows you to select only the portions of RTX required for your application.
Real-time environment means that if your application requires that certain tasks be
performed at selected intervals or in response to an external signal or event, then
RTX will manage the orderly interruption and resumption of your program. RTX does
all the overhead functions to maintain and direct the execution of your application
during both normal and real-time processing.

RTX is also a powerful multi-task executive that controls all tasks of the overall
application. These tasks include priority scheduling, response and assignment,
interrupt servicing, and communication among RTX tasks and user-developed handlers.
Overall task control:

1. Allows the application program to be designed as a number of either inter-related
or subordinate tasks. The nature of the application determines the task relation-
ships. RTX will completely handle the switching from task to task as required.

2. Allows the application program to dynamically define (and redefine) the priority
level of the various tasks in the application using RTX service routines. This
is a software priority which is then used by the RTX scheduler function to direct
the sequence of task execution.

3. Allows RTX priority scheduling, response and assignment to share the computer
among tasks with equal priority. When all tasks of the highest priority are
temporarily waiting for some event to occur, the next highest priority level is
scheduled in the same manner.

4. Allows response to interrupts, as generated, because the user provides the
interrupt instructions which transfer control to an interrupt service routine.
This interrupt service routine will save status (using an RTX function), perform
the necessary instructions to assure no data loss, and then restore status (using
an RTX function). This routine can also cause a lower priority routine to be

I/1-1 ' Revised 11/77

scheduled if additional processing of the interrupt data is required; the lower (
priority routine can be temporarily deferred until any higher priority tasks have
had their turn at executing.

5. Allows the various tasks in the application to communicate between themselves (or
with RTX) through RTX communication routines. These routines allow a task to
uniquely identify the communication request and then post it. Posting consists
of presenting information to, or requesting information from, another task. This
facility may be used to operate simply as a signaling device, or it may be as
complex as both a signaling and parametric (pointer-passing) function.

All of these RTX features combine to produce a multi-tasking, real-time scheduling
executive that is, despite its small size, the most powerful and easy to use system
of its kind on the market. Figure 1-1 illustrates a typical example of RTX.‘

1.2 WHEN SHOULD RTX BE USED?

The most significant reason for using RTX is that your application program requires a
real-time environment. Real-time environments are found in many circumstances,
varying from high speed data acquisition to occasional sampling of an electro-
mechanical device such as a relay. The basic criterion is that a need exists for the
application to communicate with some external device or event in a time-dependent
manner. If this criterion is met, then RTX is a suitable vehicle for defining the
relationship between the external device or event and the application programming
tasks which control and service that device or event. Some of the more obvious
applications are: '

1. Communications
Message Switching
Store~and-Forward
Networks
Reservation Systems

2. Process Control
Plant Operations
Flow Monitoring
Equipment Direction
X-Y Positioning
Petro-chemical Applications

3. Data Acquisition
Test cells, such as automotive or airframe/aircraft
Traffic Control
Instrumentation Control
Source Data Entry
0il Field Data Monitoring

4. Medical Data Processing
- EKG/EEG Analysis
Patient Monitoring
Cardiac Monitoring
Patient Billing

¥

1/1=2

s’

5. Security Systems
Plant/Facility Security
X-Ray Security Systems
Video Transmission Systems

6. Financial Transactions
Point-of-Sale
Automatic Banking
Inventory Control

1.3 WHAT DOES AN APPLICATION PROGRAM LOOK LIKE?

RTX allows the user to construct his application in modules. These modules are then
combined with RTX during the loading process to produce the final application program.
The user may choose any arrangement of his program into modules that suit his needs.
Figure 1-1 shows a general diagram of this type of arrangement. This modularity
concept applies not only to the user's application, but also to RTX itself. The RTX
package is simply a library of separate subroutines which may be referenced by the
user's modules; certain of the RTX subroutines in turn reference others, and the
linking of all required modules (performed by the LAMBDA loader or by the OS:LNK
program) results in a configuration consisting of only those modules needed for the
application. Figure 1-2 shows how the modules and user programs are loaded into
memory and the size of the individual RTX modules. Keep in mind that the only RTX
modules actually loaded for a given program will be the ones required by the
particular program.

1.4 DEFINITIONS

1. Activity: A task which has been initialized (via BEGIN: for example) and is
receiving support from RTX.

2. Common Subroutines: Subroutines which may be used by two or more different
activities concurrently. These require special coding to provide reentrant
capability.

3. Coordination Number: A decimal integer used to identify a task to RTX. It is
analagous to a telephone number in that it is used to "connect" a task to another
task or to the DELAY: process.

4. Interrupt Data Processing: That portion of code that processes the data obtained
by an Interrupt Service routine.

5. Interrupt Service: That portion of code that must be executed immediately after
the interrupt occurs (so as not to lose data). It should be limited to only that
code which is necessary to assure no data loss.

6. Inter-Task Coordination: A method for tasks to communicate and pass parameters

using two 16-bit computer words. These words may contain any information, such
as a table address, a pointer to a list of values, or a value itself.

1/1-3

Communications Task

Peripheral Device Task

| Additional Communication AND

Peripheral Device Tasks as
needed

File Manager

Task 1

Task 2

Task n

(1)
(2)

(3)

RTX Nucleus provides control, scheduling, priority handling.
CAI-supplied tasks provide handlers for I/O (such as printers, tapes,
etc.,), for communications (such as BISYNC, ASYNC, etc.), and others.
The user need only supply tasks which perform his application's work,
while utilizing the CAI-supplied software for support.

Figure 1-1. Typical Example of RTX

1/1-4

(2) CAI-Supplied Tasks
(I0X)

(3) User-written Application

Tasks (as many as
needed)

Revised 1/77

(M

ADDRESS

MEMORY

ComputerAutomation m ——

MODULE SIZE

: 0000

Literals and Interrupts

Scratch Pad = :100
\

:00FF

User - Mainline (i.e., RTX
Initialization), Tasks,
Data/Work Areas and
Interrupt Service Routines

3

User Programs

IOX - TTY, Line Printer,
CRT and Paper Tape
Tables and Drivers

:200+

IOX - Card Reader and
Mag Tape
Tables and Drivers

o
¥

IOX - Disk
Tables and Drivers

o
¥

.

RTX/IOX Library

IOX Scheduler

Segment 1

RTX Nucleus

RTX:, BEGIN:, END:, . « .,
List Pinters and
Scheduler

Debug (ZBG)

Y

IOX Controls

IONIT:, EOR:, EOF:,
s10:, . . ., SINT:, IO:
and EOFCK:

o

RTX/IOX Library
Segment 2

RTX Services

DECPR:, DELAY:, GET:, PUT:,
. ., SUBR:, SUBX:, INTG:

and RTOSZ:

o

:nFFF

File Manager

o
o

.

Figure 1-2. RTX Software Configuration

1/1-5

11.

 Computerautomation (G ——

Main Line: A short initializing sequence which resets all task table pointers,

‘and then begins one or more tasks. (Tasks may also be begun by other tasks, or

upon an interrupt from an external device.)

Priority: A software defined method for assigning (and re-assigning) the rela-
tive importance of a task to RTX.

Re-entrant Programs: A program specifically written such that it may be directly
entered by more than one program, concurrently. Under RTX, this is necessary
only if two or more Interrupt Service routines require immediate use of the same
program. For example, Interrupt Service A calls routine C. While C is executing,
Interrupt Service B becomes active and also calls routine C. If C were not re-
entrant, this second call to C would replace the return address at C's entry
point, causing the return address for routine A to be lost.

Task: A program or set of programs which operate to perform a specific function
within the real-time application.

Work Area: An area of storage dedicated to table space for RTX. This table
contains all the necessary information for RTX to perform its functions. Its
usage is dynamic and is dependent upon the maximum concurrent usage of RTX
functions.

I/1-6

(

O

Comwhrmmm-—-j

SECTION 2

RTX ORGANIZATION

RTX is basically a collection of functions (subroutines) and a user-supplied work
area, which are linked to the user's Mainline sequence and tasks prior to execution.
Each RTX function may be called as a subroutine by the user as it is needed, to
perform a specific job. (See below for descriptions and. calling sequences of these
functions.) RTX also includes a task scheduler (SCHED:) which is used to execute the
task of highest priority. The priority of a task is defined when the task is begun,
and may be changed by the task, using the SETPR:, INCPR:, and DECPR: functions.
Priorities may range from 1 to 8191, with larger numbers representing the higher
priority.

The scheduler maintains a "Ready" list of each task in order of priority. The highest
priority task is executed until it suspends itself by calling any of the following
RTX functions:

DELAY: (unless altering or cancelling a previous delay)

GET: (if no corresponding PUT: yet, and not a cancel call)

SUBR: (if the common subroutine is.busy)

PAUSE: (essentially reschedules the pausing task at the same priority)

I0: (BEGINs, at I/0 completion time, the normal or abnormal return at the

same priority)
SETPR: (if the new priority is lower than that of another task)
DECPR: (if the new priority is lower than that of another task)
Once the task has been suspended, RTX executes the new highest priority task. The

rule for determining the highest of equal priority tasks is, "first in - first out".
Thus, if a task suspends itself, it thereby becomes "last in" within its priority.

In addition to the user-invoked suspends listed above, occurrence of an interrupt
will cause a task to be suspended, if the new priority is higher than that of the
current task. An interrupt is defined to be:
1. A hardware (external) interrupt, with INTQ: or INTAC: attached, or
2. A software. (internal) interrupt:

a DELAY: expiring

a PUT: which satisfies an outstanding GET:
a SUBX, UNIK:, or UNPR:, with a higher priority task waiting

I/2-1

In addition, an Input Output Executive package (IOX) is available, which may be @
linked to run in conjunction with RTX. Its function is to perform I/0 operations to |
the standard CAI I/O devices (teletype, high speed paper tape reader and punch, card
reader, magnetic tape units, and disk) and resolve confilicts of concurrent I/O
utilization. ‘

A File Manager operates in conjunction with IOX. It enables the user to communicate
with data files by name, independent of the physical medium storing the file.
Requests for access are made through IOX using Logical Units (LUNSs).

2.1 WORK AREA (USER BLOCKS)

| “’
|
i

The user must Supply a contiquous work area for RTX to build its tables. The address
and length of this work area is specified in the call to the RTX: function. It is
grouped by RTX into blocks of five words each, and there must be at least two of
these blocks (10 words) reserved; otherwise an error return will be made from the
initialization routine. Table 2-1 gives a list of the RTX functions which allocate
and de—-allocate this area. The left hand column denotes the number of blocks allo-
cated (+) or de-allocated (~) by the function in the right-hand column. The user
must supply sufficient work area for the maximum number of five-word blocks which
may be allocated at any one time.

2.2 RTX FUNCTIONS:
2.2.1 Initialize Work Area (RTX:)

Calling Sequence:

N EQU (NUMBER OF TASK BLOCKS)
WKAREA RES N+N+N+N+N, O AREA FOR BLOCKS
JST RTX:
DATA N # OF CONCURRENT ACTIVITIES
DATA WKAREA
ERROR RETURN WORK AREA EXCEEDED
NORMAL RETURN

Returns With:

INTERRUPTS ENABLED
OVERFLOW RESET

WORD MODE ’
A REGISTER --- CURRENT RTX REVISION NUMBER IN ASCII
X REGISTER --- CURRENT RTX REVISION NUMBER IN ASCII

This subroutine is called in the user's Mainline sequence to initialize the working
area of RTX. The work area is broken into N blocks of five words each, which are
then used by the remainder of RTX during system operation. The number N must be
large enough to allow for all concurrent activities. Work area overflow will cause a
jump to the RTX: routine's error return at any subsequent time during the running of J‘:@
the program, not just during the call to RTX:.

1/2-2 B Revised 1/77

Computerautomation O\ ——

NOTE

A call to this subroutine causes activation of the RTX Scheduler.
Upon return, the calling program (normally the user's Mainline
sequence) is thenceforth considered a task with a priority of 8172.

In addition to initializing the work area, the RTX: subroutine can also reset all I/O
tables, if desired; this feature will insure restartability of a user's program. The
feature may be referenced in the user program, if restart capability is required;
otherwise it may be omitted, thereby shortening the overall length of the program.
(Upon initial loading, I/O reset is not required before execution.)

To include this feature in the RTX: subroutine, simply reference the module "IONIT:"
in the Mainline sequence; either of the following directives:

IONIT: REF
or
LOAD IONIT:

will serve this purpose.

2.2.2 Initiate New Task (BEGIN:)

Calling Sequence:

JST BEGIN:
DATA (*) START ADDRESS OF NEW TASK
DATA PRIORITY OF NEW TASK

Returns With:

INTERRUPTS --—~ ENABLED
OV --- UNCHANGED
A REGISTER --- UNCHANGED

X REGISTER --- UNCHANGED

| nove |

When the new task starts executing, the A and X registers will
contain the values at the time of the JST to BEGIN:, OV will be
reset, and the computer will be in word mode.

This subroutine is called to initiate a new task. The task is scheduled and BEGIN:
then exits to the task Scheduler. This means that the calling program will not
receive control back immediately if the new ("begun") activity is of higher priority,
or if another task of higher priority is ready to begin execution. '

I/2-3

Table 2-1. User Blocks for RTX Functions

No. of
Blocks Function

+1 RTX:

+1 BEGIN:

-1 END:

0 PAUSE:
+1 PUT: (If a new, unique PUT: and no corresponding GET: is waiting
for it) ‘
0 PUT: (If a new unique PUT: and the corresponding GET: is already
waiting for it) ’
0 PUT: (To change the information in a previous PUT:)

-1 PUT: (To cancel an outstanding PUT:)

0 GET: (If a new, unique GET: and no corresponding PUT: is waiting
for it)

-1 GET: (If a new, unique GET:, and the corresponding PUT: is already
waiting for it)

-1 GET: (To replace a previous task currently waiting for a PUT:
with the current task; the new GET: must be called with the
same coordination number as the task to be replaced)

-1 GET: (To cancel an outstanding GET:)

0 DELAY: (To initiate a new delay)
0 PFTAY: (To change the length of an oﬁtstanding delay)

-1 DELAY: (To cancel an outstanding delay)

0 INDPSV:
0 INTRS:

+1 INTAC:

+1 INTQ:

+1 SUBR: (If the common subroutine is not already in use)

0 SUBR: (If the common subroutine is already in use)

I/2-4

Table 2-1. User Blocks For RTX Functions {Continued)

(e

o

No. of
Blocks Function

-1 SUBX: (If no other tasks are waiting to use the common sub-
routine)

0 SUBX: (If one or more tasks are waiting to use the common sub-
routine)

+1 PROT: (If the facility is not already protected)

0 PROT: (If the facility is already protected)

-1 UNPR: (If no other tasks are waiting to protect the facility)

0 - UNPR: (If one or more tasks are waiting to protect the facility)
+1 LOCK: (If the facility is not already locked)
0 LOCK: (If the facility is already locked)

-1 UNLK: (If no other tasks are waiting to LOCK: the facility)

-1 ABORT: (In addition, -1 for each resultant SUBX: call where no
other tasks are waiting to use the common subroutine, and -1 for
each resultant UNPR: and UNLK: call where no other tasks are
waiting to PROT: or LOCK: the facility)

0 GETPR:

0 SETPR:

0o INCPR:

0 DECPR:

0 IOREL:

0 JOWAT:

3 or 4 I0: (as follows:)
+1 For the immediate return +1 For setting a watchdog timer
+l For scheduling +1 If I/O completes before
scheduling completes

1/2-5

ComputerAutomation m —

NOTE

Priorities are integers from 0 (lowest) to 8191 (highest). Users
should limit priority to less than 7000 because certain RTX functions
use those of 7000 and higher.

2.2.3 Terminate Current Task (END:)
Calling Sequence:

JSsT END:

The current task may terminate itself with a call to END:. No arguments are required
and control will not return.

NOTE
The Mainline sequence (as a result of the JST to RTX:) has a priority
of 8172. This sequence should begin other necessary tasks and then

terminate itself by a call to END:. If it does not terminate, no
tasks of a lower priority can execute.

2.2.4 Suspend Current Task (PAUSE:)
Calling Sequence:
JST PAUSE:

Returns With:

INTERRUPTS --- ENABLED
STATUS —--- UNCHANGED
A REGISTFR --- UNCHANGFD
X REGISTER ~-- UNCHANGED
This subroutine is called by a program which desires to allow other tasks at the same

priority level to gect service. This is useful if a program is unusually long or is a
closed loop. PAUSE: is essentially similar to a BEGIN:, END: pair, but is less de-
manding on work area space in RTX.

NOTE

Programs which loop indefinitely are permissible, but should be used
carefully since they will block execution of all activities of a
lower priority. Tasks should begin in response to a stimulus,
generate the appropriate reaction,»and end.

2.2.5 Coordination Numbers

Before discussing GET:, PUT:, and DELAY: the concept of coordination number must be
understood. A ¢pordination number is a 16-bit value which is supplied as an argument
to GET:, PUT:, DELAY:, PROT:, UNPR:, LOCK:, UNLK:, IO: and IOREL:. This number
serves to identify the activity so that it may be referenced by a later call.

For GET:, PUT: AND DELAY:, the same coordination number used in the same type of call
supersedes the previous call. The negative (2's complement) of a coordination

number cancels the previous call. FORTRAN uses the following coordination numbers,
and the designer should avoid their re-use:

F:RBPG address (for LOCK:)

:FFDC (for. LOCK:))
In addition, all DELAYs performed in IOX and COMX use memory addresses as coordination
numbers. These memory addresses fall within the IOX or COMX boundaries, or their
associated tables (CIB's). Thus, it is strongly suggested that the system designer
follow this practice, and use as coordination numbers, only memory addresses of
locations within his program. Basically, it is the system designer's responsibility
to allocate coordination numbers so that no conflicts arise.

NOTE

Zero has no separate identifiable two's complement, and therefore a
coordination number of zero should not be used.

2.2.6 Inter Task Coordination (PUT:/GET:)
These two facilities are generally used together as a pair. 1In general, PUT: passes
32 bits (the A and X registers) to a GET:. Coordination numbers are-used to insure
proper reference. There are no timing restrictions on associated PUT:/GET: pairs.
(If a task calls GET: before another task has made the corresponding PUT: call, the
GETting task will suspend until the PUT: is made.)
PUT:

Calling Sequence:

JST PUT:
DATA COORDINATION NUMBER

Returns With:
INTERRUPTS —-— ENABLED
STATUS --—- UNCHANGED
A REGISTER --- UNCHANGED
X REGISTER --- UNCHANGED
This subroutine is called to do one of three things:
1. Pass 32 bits to another task; call PUT: with the same (positive) coordination

number which will be used in the call to GET;

1/2-7

‘2. Change the information in a previous PUT:; call PUT: with the same coordination

number used previously.

3. Delete an outstanding PUT:; call PUT: with the 2's complement of the coordination
number of the PUT: to be deleted.

NOTE

If a PUT: is issued before the associated GET: is called, one block
is used from the work area in RTX. If the GET: is called first no
additional demands are made on the work area.

GET:

Calling Sequence:

JST GET:
DATA COORDINATION NUMBER

Returns With:

INTERRUPTS --- ENABLED

STATUS --~ UNCHANGED

A REGISTER -~- FROM ASSOCIATED PUT
X REGISTER --- FROM ASSOCIATED PUT

This subroutine is called for one of three reasons:

1. To obtain 32 bits (A and X registers) from another task: call GET: with the
positive coordination number to be used with PUT:.

2. To delete a task currently in a GET: waiting for the associated PUT:; call GET:
with the 2's complement of the coordination number.

3. To replace a task currently waiting for a PUT: with the current task; call GET:
with the same coordination number as the task to be replaced.

After GET: is called, control will not be returned until the associated PUT: is
issued.

2.2.7 Delay Current Task (DELAY:) (Requires Real-Time Clock Option)

Calling Sequence:

JST DELAY:
DATA # OF TICKS ON THE CLOCK FOR DELAY
DATA COORDINATION NUMBER ‘

Returns with:

INTERRUPTS --- ENABLED
STATUS --~ UNCHANGED

1/2-8

This

If deleting or changing an outstanding delay:

A REGISTER --- UNCHANGED
X REGISTER --- UNCHANGED

If actually executing a delay:

A REGISTER ~-- COORDINATION NUMBER
X REGISTER --- UNDEFINED

subroutine is called for one of three reasons:

To delay the current task for a specified period of time. (The number of ticks
referred to above is the number of time interrupts from the Real-Time Clock.
These interrupts normally occur every 10 msec but may be changed by a jumper
wire. (See the appropriate ALPHA-16 or ALPHA LSI Computer Reference Manual).
For this call, supply a currently unused positive coordination number.

‘To delete an‘outstanding delay. A call to DELAY: with the 2's complement of the

coordination number of any current delay will delete the delay request (and the
task that called it). This is useful for deleting a watchdog routine.

To change an outstanding delay. A call to DELAY: with the coordination number of
a currently active delay will change the outstanding delay. This is equivalent
to deleting a task in a delay and immediately starting the same task with a new
delay.

1/2-9

.

=)

SECTION 3

INTERRUPT PROCESSING

Most interrupt service routines can be divided into two sections. First, the recog-
nition that the requesting device usually has an immediate need which will result in
data being lost if it is not met. Second, a subsequent need to perform some pro-
cessing upon that data. In the case of output, the device may not continue to operate
at full speed if its request is not answered within a certain interval. After meeting
this very high-speed requirement, the need for continued rapid servicing diminishes
considerably, until the next request is made.

RTX provides two alternative methods for interrupt service. One is the INTQ: service,
which combines the functions of saving status, queueing or scheduling of support
tasks, and then dismissing the interrupt since it has been honored. The second is to
use the INTSV;, INTAC:, and INTRS: services to provide each of those three functions
separately. Use of these three functions is described below.

\
Upon receiving control after an interrupt, the interrupt handler should immediately
call INTSV:, to preserve the register status. When control returns, the handler may
utilize the registers as required. Processing, at this point, should be restricted
to the very high speed "lost data" requirements. The handler may then schedule other
activities, by calling INTAC:, with the start address and priority as arguments.
Processing is ended for this phase, by issuing a call to INTRS:, which resumes pro-
cessing. Normally, the newly scheduled activity will have a high priority. Note,
however, that the programmer may assign this priority, as distinct from those systems
where the hardware has the device priorities wired in. When the scheduled processing
activity receives control, it will be considered a normal activity, and may make use
of all RTX functions. Interrupts will be enabled, so that other devices which require
service may receive control during their "lost data" intervals, after which the
system Scheduler will return control to the highest priority processing program.

The A and X register are passed between the scheduling and the scheduled routines, so
that word or byte transfer devices can pass the data itself to the processing pro-
grams. After the processing program has finished its task, it may terminate, or it
may schedule other responding tasks.

By using INTSV: and INTRS: to save and restore status, the user is relieved of one of
the most important and error-prone types of coding. With INTAC:, he can schedule
routines which are normal, interruptable programs, and which can utilize all of RTX's
capabilities.

Note that the INTSV:, INTRS:, INTAC:, and INTQ: routines are necessary only for the
user who is using RTX in conjunction with his own special (non-standard) device and
has written his own interrupt handler for it. The RTX I/O Executive (IOX), discussed
in Chapter 2 of this manual, contains the necessary I/0 handler routines for the
standard CAI-supplied I1/0 devices (card reader, teletype, high speed paper tape punch

_and reader, magnetic tape, disk and floppy disk). These standard handlers within IOX

make use of the INTQ: routine internally.

I/3-1

3.1 SAVE ENVIRONMENT (INTSV:)
Calling Sequence:

JST INTSV: INTERRUPTS MUST BE DISABLED
DATA SUBENT LOCATION OF ENTRY POINT TO INTERRUPT ROUTINE

Returns With:

INTERRUPTS---STILL DISABLED
STATUS-~-OV RESET, WORD MODE
A REGISTER---SAVED P REGISTER
X REGISTER---UNCHANGED

This subroutine must be called by an interrupt subroutine to save the current
environment.
3.2 RESTORE ENVIRONMENT (INTRS:)

Calling Sequence:

JsT INTRS:
- DOES NOT RETURN

This subroutine is called by an interrupt subroutine to exit. If RTX was interrupted,

control is returned to RTX. Otherwise, task control is moved to the block at the top
of the scheduler ready chain and the system Scheduler is entered.

3.3 INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE (INTAC:)

Calling Sequence:

JST INTAC: (MUST BE IN WORD MODE)
DATA (*) START ADDRESS
DATA PRTORITY

Returns With:

INTERRUPTS~~--UNCHANGED
OV-~~~INDETERMINATE

A REGISTER---DFSTROYED
X REGISTER---DESTROYED

1/3-2 | Revised 10/77

(O

(kunuxﬂnnAutmnuﬂkui 6@2"5 EE—

3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)

This service méy be used in place of the INTSV:, INTRS:, INTAC:, sequence. It is
functionally identical to the combination of those three services when they are used
as follows:

SUBENT ENT
JST INTSV: SAVE ENVIRONMENT
DATA SUBENT
JST INTAC: QUEUE "TASKC" AT "PRIOR"
DATA TASKC, PRIOR
JST INTRS: DISMISS INTERRUPT AND GO TO RTX

SCHEDULER

The advantage to using INTQ: is that it is faster; i.e., it shortens the period of
time during which interrupts are disabled.

Calling Sequence:

JST INTQ:

DATA $,0,0,0 CALLING LOCATION, 3 TEMPS REQUIRED
DATA TASK-ADDRESS FOR TASK WHICH IS QUEUED

DATA PRIORITY FOR QUEUED TASK

DATA A-REGISTER VALUE PASSED TO QUEUED TASK IN A
DATA X~-REGISTER VALUE PASSED TO QUEUED TASK IN X
DATA P-1.0C LOCATION OF SAVED P-REGISTER AT

TIME OF INTERRUPT
Returns With:

DOES NOT RETURN. QUEUES TASK FOR SCHEDULER AND DISMISSES
INTERRUPT.

Sample Usage

1. Interrupt for End-of-Block

EOBENT ENT VECTORED INTERRUPT
JST INTQ:
DATA $,0,0,0
DATA TASKB,PRIORB, 0,0, EOBENT

I/3-3 Revised 10/77

2. Interrupt for Data (Input) Ready

DATENT ENT VECTORED INTERRUPT
SIN . 3 _ . BLOCK BYTE MODE
' STA AREG SAVE A-REG
INA ADDR,FCN INPUT THE DATA VALUE
EMA AREG RESTORE PROPER A-REG AND PASS INPUT

VALUE TO QUEUED TASK
JST INTQ:
DATA $,0,0,0
: DATA TASKA, PRIORA

AREG DATA 0 A-REG VALUE FOR TASK

XREG DATA 0 X-REG VALUE FOR TASK
DATA DATENT RETURN POINTER FROM INTERRUPT

3.5 COMMON SUBROUTINES (REENTRANCE)

Normally, different activities are independent of each other. However, it is not
unusual to have two unrelated programs use the same utility subroutines, therefore
defining a "common" subroutine. One example would be mathematical functions library
routines. Rather than duplicating copies in each using program, a single copy is
loaded, and entered with subroutine calls (JST instructions). If control is within
the common subroutine when an interrupt occurs, and another program gains control and
re-calls the subroutine, the second call will destroy the return location of the
first. When control finally returns to the middle of the interrupted subroutine
(clearing the interrupt), it will complete its execution, and again return to the
second caller. The original caller never sees control come back. The later caller
gets two returns from one call. This dilemma is referred to as the common subroutine
problem, and it occurs in any system which allows interrupt processing. It is solved
in different ways. Most simply, common subroutines can be forbidden. Alternatively,
push-down stacks are utilized, scratch storage is forbidden, (except in the stack),
and the programming task is made significantly more imposing.

RTX has implemented an alternative solution to this problem, that of a "shared"
facility. In our context a shared facility is a body of code which may be called
concurrently from more than one task. 1In this sense, a shared facility is then
common to several tasks. '

This implementation consists of two services which are contained in RTX. These are:

SUBR: To initiate the execution of a shared facility
SUBX: To return from a shared facility

| To illustrate usage of these services, consider the following example. If the

subroutine CUP is a common subroutine to two tasks (named COFFEE and TEA), then it is
possible that an interrupt could occur which causes task COFFEE to execute before
task TEA Finished. This means that subroutine CUP could be entered from COFFEE
before it completed the processing due to its prior entry from TEA. 1In this case,
subroutine CUP is in common usage. It is designated as a shared facility and must be

1/3-4

Computerautomation (Cf\ ——

(0

designed to accomodate that condition. The method here is to use the following
sequence of code in both COFFEE and TEA whenever it is desired to call subroutine
CUP:

JST SUBR: ACTUALLY CALL SUBR: SERVICE
DATA Ccup NAME OF COMMON SUBROUTINE

instead of the usual method

JST cup

NOTE

NEVER call a common subroutine directly; that is, with a JST name.
ALWAYS call a common subroutine using

JST SUBR: CALL THE SUBR: SERVICE
DATA NAME NAME OF COMMON SUBROUTINE

(or using the LOCK: or PROT: routines described below).

3.6 WRITING COMMON SUBROUTINES

The rules for writing a common subroutine are very simple. They apply to the sub-
routine exit instruction. There are two rules:

1. Instead of the traditional RTN instruction, use a JMP to the location directly
before the subroutine entry point. '

2. In the location directly before the subroutine entry point, place a JST SUBX:.

Use of these two rules will allow an orderly exit from the common subroutine. In our
previous example, subroutine CUP looks like this:

NAM Cup
EXTR SUBX:
JST SUBX:
Cup ENT ENTRY TO COMMON ROUTINE CUP
JMP Cupr-1 EXIT COMMON ROUTINE

When SUBR: and SUBX: are used, all subsequent calls to the common subroutine are
"locked out" until the current call to the subroutine has completed and the jump to
SUBX: has been made. Then, each subsequent call (made while the common subroutine was
busy) is completed in priority order.

If this procedure is not followed, the system behavior will appear to be very erratic.
Although the system will probably correct itself, when the doubly-returned task
finally terminates, one activity has been lost, and one has been duplicated, probably
incorrectly. If the user understands this section thoroughly, he can have the con-
venience of library subroutines, without the difficulty of accidental re-entry.

I/3-5

ComputerAutomation (g:??Qs —"

3.7 CALL A COMMON SUBROUTINE (SUBR:)

This subroutine is called by a user task to schedule a subroutine which may

be used by more than one task.
I NOTE

This subroutine does not return directly to the calling program. Tt
exits through the Scheduler (SCHED:).

Calling Sequence:

JsT SUBR:
DATA (*) ADDRESS OF COMMON SUBROUTINE

Enters Subroutine With:

INTERRUPTS---ENABLED
STATUS---UNCHANGED

A REGISTER-—--UNCHANGED
X REGISTER---UNCHANGED

NOTE

The return address put in the entry point of the common subroutine is
the location following the data in the above call. That is, it
appears to the subroutine as if it were called from the 1ocat10n of
its address (Not the location of the "JST SUBR:").

3.8 EXIT FROM COMMON SUBROUTINE (SUBX:)

This subroutine is called from within a common subroutine to return to the calling
task.

NOTE

This subroutine does not return directly to the calling program. It
exits through the Scheduler (SCHED:).

Calling Sequence

JST SUBX:
SUB ENT
where: SUB is the entry point of the common
subroutine. This call must immediately
precede the entry so that RTX can keep
its chains straight.
JMP SUB-1 RETURN

1/3-6

‘\J

e

Returns to calling task with:

INTERRUPTS--ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER---UNCHANGED

NOTE

Each SUBR: call made must have a corresponding call made to SUBX: once
the routine has completed. If a call to END: (to terminate the calling
task) is made from within a sy ;quing ca1led by SUBR:, all other tasks
will be permanently denied the user of that routine. To terminate a task
from within a SUBR'd subroutine, the ABORT: routine should be used.

3.9 PROTECT A FACILITY (PROT:)

PROT: is called by a user's subroutine to protect itself from usage by other tasks.

It is in a way similar to SUBR: in that reentrance to a common subroutine is prevgnted
during its usage; however, in SUBR:, the determination to protect the subroutine is
made by the calling program, while in PROT:, the determination is made by the sub-
routine itself.

Calling sequence:

DATA 0
SUB ENT

JST PROT:

DATA $-3

The call to PROT: must be the first instruction following the entry point. The temp
cell SUB-1 is used by PROT: to store the contents of SUB (the return address from the
caller). Note that exiting from the routine SUB must be done via the return address
in SUB-1, not the address in SUB.

Returns with:

INTERRUPTS~-~ENABLED
STATUS~--UNCHANGED
A-REGISTER---UNCHANGED
X-REGISTER---UNCHANGED

PROT: may be called more than once using the same coordination number by the same

task. However, a different task is effectively locked out of the subroutine until it
is released by executing a call to UNPR:.

1/3-7

NOTE

The INTRS: and INTQ: subroutines contain logic to preclude task-
switching caused by an interrupt occuring immediately before a JST
LOCK: or JST PROT: instruction. This involves checking the inter=-
rupted instruction to see if it is a JST LOCK: or JST PROT:. This
check is effective only if the instruction is a JST indirect through
a base page pointer to LOCK: or PROT:; that is, an :F9xx instruction.
To insure this protection feature, reference LOCK: or PROT: by means
of an EXTR directive, rather than a REF directive. This also implies
that if EXTR directives are used in conjunction with the LPOOL
directive, then an EXTR LOCK: or EXTR PROT: must be accompanied by a
SPAD LOCK: or SPAD PROT: directive to insure that the pointer remains
in the base page.

3.10 RELEASE A PROTECTED FACILITY (UNPR:)

UNPR: is called by a common subroutine to delete its protected condition caused by a
previous call to PROT:

Calling Sequence:

JeT UNPR:
DATA Coordination Number

Returns with:

INTERRUPTS~~~ENABLED
STATUS==~~UNCHANGED
A~REGISTER~—-UNCHANGED
X=REGISTER-~~UNCHANGED

I effect, RTX treats the address of a common subroutine (as used in SUBR: and SUBX:)
as a coordination number. These are shared with the coordination numbers used by
PRQT: and UNPR:. 'hat is, the list in which the common subroutine addresses are

saved for SUBR: is the same list that saves the coordination numbers for PROT: and
LOCK:, Results will be unpredictable (and probably disastrous) if the coordinaticnq
number used by PROT:, UNPR:, TLOCK: or UNLK: is also the address of a common subroutine
(called by SUBR:).

Because RTX maintains a single list for PROT: and LOCK: coordination numbers and
SUBR: common subreoutine addresses, an alternative method for writing commen sub-
routines exists. The rules for this type of common subroutine are:

1. Instead of the standard "RTN SUB" instruction, use a "JMP suB-2".

2. In the 2 lecatiens directly before the subroutine entry point, place:

J8T QUBY:
RES 1

o

I—/ 3"'8

3. In the two locations immediately following the subroutine entry point, place:
JST PROT:
DATA SUB-1
4. Because PROT: moves the return address from SUB to SUB-1, references to parameters

must be made through SUB-1, rather than SUB. For example, a typical routine,
that adds the arguments presented to it and returns the sum in the A register,
would normally be coded as follows:

Calling Sequence:

JST A ADDM
DATA 3
DATA 4
ADDM ENT
LDA *ADDM
IMS ADDM
ADD *ADDM
IMS ADDM
RTN ADDM
NOTE

This may not be used as a common subroutine because it has no
protection from re-entrance.

Using the SUBR: common subroutine feature, the routine would appear as follows:

Calling Sequence:

JST SUBR:
DATA ADDM
DATA 3
DATA 4

JST SUBX:

ADDM ENT

LDA *ADDM
IMS ADDM
ADD *ADDM
IMS ADDM
JMP ADDM-1

I/3-9

The alternative method, using the PROT: common subroutine feature, is as follows:

calling Sequence:

JST ADDM
DATA 3
DATA 4
JST SUBX:
RES ' 1

ADDM ENT
JST PROT:
DATA ADDM-1
LDA ' *ADDM-1
IMS : ADDM-1
ADD *ADDM-1
IMS - ADDM~-1
JMp ADDM-2

The advantages of the last example, using the PROT:/SUBX: sequence, are:

1. The calling sequence is shorter than that calling SUBR: (the standard JST SUB is
used) .

2. The burden for insuring that the subroutine is common (re-entrance protected)
lies solely with the subroutine writer, not the subroutine caller.

3. If the subroutine is capable of stacking multiple return addresses (not :shown in
this example), the subroutine is then recursive, and may call itself. (Note that
if recursive, SUBX: should only be called on the last return (use RTN SuUB-1 for
all returns but the last)).

3.11 ILOCK OUT A FACILITY (LOCK:)

LOCK: was designed for use by Real Time FORTRAN, and is similar to PROT:. The only
difference between them is that the return address from the subroutine is stored in
the location following the coordination number, instead of the location in front of

the entry point, e.g.:

Calling Sequence:

SUB ENT
: JST LOCK:
DATA Coordination Number
DATA 0 (Return address stored here)

Returns With:
INTERRUPTS~~--ENABLED
STATUS---UNCHANGED
A-REGISTER~~--UNCHANGED
X-REGISTER---UNCHANGED
The JST to LOCK: must be the first instruction following the subroutine entry point.

I/3-10

S

The user should reference the LOCK: or PROT: subroutine with an EXTR dircctive,

rather than a REF directive. See the note in the PROT: description regarding this.

Note that the PROT:/SUBX: example shown above does not apply to LOCK:.

3.12 UNLOCK A LOCKED FACILITY (UNLK:)

UNLK: is an alternate name for UNPR:, and is provided solely for symmetry in
documentation.

3.13 ABORT A TASK (ABORT:)

ABORT: is called from within a common subroutine to terminate the task which called
the subroutine.

In addition to performing the END: function, ABORT: also deletes any PROT:, LOCK: or
SUBR: conditions previously set by the aborted task.

Calling Sequence:
JsT ABORT:

ABORT: exits to the scheduler (SCHED:).

NOTE

The duration of an ABORT: call is significantly longer than an FND:
call, and therefore it should ke called only if in a common subroutine,
or in a PROTected or LOCKed condition.

3.14 OBTAIN CURRENT PRIORITY (GETPR:)
Calling Sequence:
JsT GETPR:
Returns With:
INTERRUPTS---ENABLED
STATUS—~--UNCHANGED
A REGISTER CONTAINS TASK PRIORITY

X REGISTER---UNCHANGED

The subroutine is called to get the current priority of a task. It is usually
called so that a task's priority may be restored after it is temporarily altered.

1/3=11 Revised 10/77

3.15 SET TASK PRIORITY (SETPR:)
Calling Sequence:

LDA DESIRED PRIORITY
JST SETPR:

Returns With:

INTERRUPTS~~-ENABLED
STATUS--~0V RESET, WORD MCDE
A REGISTER---UNCHANGED

X REGISTER--~UNCHANGED

This subroutine is called whenever a task desires to alter its priority.

3.16 INCREMENT TASK PRIORITY (INCPR:)

Calling Sequence:

JST INCPR:
Returns With:

INTERRUPTS~--~ENABLED
STATUS~~-UNCHANGED

A REGISTER--~UNCHANGED
X REGISTER-~--UNCHANGED

This subroutine will increment the priority of the calling task by 1. No range

checking is performed.

3.17 DECREMENT TASK PRIORITY (DECPR:)
Calling Sequence:
JST DECPR:
Returns With:

INTERRUPTS~--ENABLED
STATUS=~~UNCHANGED

A REGISTER=~==-UNCHANGED
X REGISTFR--~UNCHANGED

This subroutine will decrement the calling task's priority by 1. No range checking
is performed.

1/3-13

SECTION 4

ADDITIONAL RTX FEATURES

4,1 RTX DEBUG FEATURE (2ZBG)

The standard CAI DEBUG program is included in the RTX library tape (Segment 1) under
the name ZBG. (Detailed descriptions of DEBUG are included in LSI-2 AutoMagic, CA
document 96045-~00, or LSI-3/05 AutoMagic, CA document 93001-00). When this module is
linked, Relocation Register RF points to the RTX Linked list pointers for use with 2
function; the corresponding length required by the Z function is set to five woxds,
which is the length of each block used in the RTX Linked lists. When displaying a
particular list with the Z function, the first printed line is not an entry in the
list, but simply the pointer to the top of the list, followed by the next four higher
words in memory; this first line may therefore be ignored.

There are eight lists maintained by RTX, and the pointers to the top of each of these
lists reside within the RTX nucleus in eight consecutive memory locations, in the
following order:

ORF Pointer to the list of tasks awaiting execution (READY)

1RF Pointer to the list of INTQ: and INTAC: tasks awaiting execution (FIFO)

2RF " Pointer to the, list of tasks currently awaiting completion of a DELAY
(DLYCH)

3RF Pointer to the list of common subroutines currently requested (COMN)

4RF Pointer to the list of tasks currently awaiting I/O execution (IOCH)

5RF Pointer to the list of tasks awaiting a PUT: response to a requested
GET: (GETCH) :

6RF Pointer to the list of PUT: requests awaiting a GET: response (PUTCH)

7RF Pointer to the list of currently unused blocks (FREE)

The following is a description of the contents and manipulation of a usér block
within each of the lists:

1. READY List (RF) Ready to Run (used by BEGIN:)

RTX maintains a list of all tasks which are ready to execute in the READY list.
This list is sorted into priority order, so that RTX simply executes the task
at the top of the list. The format for a READY block is as follows:

Word Contents
0 Word address pointer to next block entry in the list. (The last

element in the list contains a zero).

Bits 15-3. Task priority number.

Bits 2~-0. (LSI-2 only)
Bit 2. FIN indicator, for reference only. (RTX always
allows interrupts.)
Bit 1. BYTE mode indicator upon next resumption of task.
Bit 0. Overflow indicetor upon next resumption of task.

T/4-1 Revised 11/76

S

Computectutomation (——

Word ~ Contents | | | 1O

Bits 2-0. (LSI-3/05 only)
Bit 2. BYTE mode indicator upon next resumption of task.
Bit 1. OVerflow indicator upon next resumption of task.
Bit 0. Unused

2 P register contents upon next resumption of task.
3 A register contents upon next resumption of task.
4 X register contents upon next resumption of task.

2. FIFO list (1RF) Ready to Run {used by INTAC: and INTQ:)

In order to avoid the problems of interrupting a linked list processor, INTQ;
and INTAC: put the entries for their tasks in the FIFO list. (BEGIN: operates
directly on the READY list). The RTX scheduler (which is never run as an
interrupt routine) empties the FIFO list into the READY list and sorts the
READY list. The format of a FIFO block is the same as a READY block.

3. DLYCH List (2RF') Delay (used by DELAY:)
A call to DELAY: {(with a unique positive coordination number) causes the block

for the currently executing task to be deleted from the READY list and put on top
of the DLYCH list. The format of a DLYCH block is as follows:

Word Contents
0 Word address pointer to next block in the list.
1 Status & Priority. Same as READY list entry. -
2 The P register. Points to address of return from DELAY:
3 The coordination number.
4 Working number of ticks left in Delay.

Upon return, the A register will contain the coordination number. The X register
will contain the number of Real Time Clock "ticks" remaining (normally zero).

4. COMN List (3RF) Common Subroutine (used by SUBR:, SUBX:, LOCK:, UNLK:, PROT:,
UNPR:)

A call to SUBR:. LOCK: nr PROT: causes the COMN list to be searched for a block

for the common sub:icutive, Tf none is found, a block is deleted from the FREE
list and put on top i the COMN list. The format for a COMN block is as follows:
Word Conbents

0 Pointer to the next block in the list
‘ 1 kusy flae (zero = not busy)
: 2 Pointer to the block of the highest priority task waiting to use
the comaon subroutine (0 = no task waiting)

3 Address of the common subtoutine (or coordination number)
4 Unused ' |
) i
If SUBR: is called <. a block for the common subroutine is found with the Busy '

flag set, the block for the currently executing task is deleted from the READY
list, and inscrted iuro a secondary list pointed to by Word 2 above. At the same
time, the P register iz set so that the task will again call SUBR: when RTX next
executes the task. '

1/4-2 Revised 11/76

oz A

(.

IOCH List (4RF) I/O Suspend (used by IOX:, Fortran Interface)

A call to I0: or IOWAT: when the busy flag is set in the IOB, or a Fortran call
for I/0 when no parameter block is currently available, will cause the task block
to be deleted from the READY list and put on the top of the IOCH list. The P
register is set so the task will repeat the call when RTX next executes the task.
The format of an IOCH block is the same as for a READY block. The IOCH list is
emptied into the READY list each time any 1/0 completes.

GETCH List (5RF) Get (used by GET:)
A call to GET: with a unique positive coordination number (and no matching PUT:

yet) causes the block for the currently executing task to be deleted from the
READY list and put on top of the GETCH list.

Word Contents
0 Pointer to next block in the list
1 Status & Priority (same as Ready)
2 P register. Points to return from GET:
3 Coordination No.
4 Unused

When the associated PUT: is done, the block is deleted from the GETCH list, the

A and X register contents are stored into words 3 and 4, and the block is inserted

into the READY list in priority order.
PUTCH List (6RF) Put (used by PUT:)
A call to PUT with a unique positive coordination number (and no waiting GET:)

causes a block to be deleted from the FREE list (see below) and added to the top
of the PUTCH list. The format for a PUTCH block is as follows:

Word Contents
0 Pointer to next block in the list
1 Unused
2 A register contents to be passed
3 Coordination No.
4 X register contents to be passed

When the associated GET is processed, the block is deleted from the PUTCH list
and put on top of the FREE list.

FREE List (7RF) Available Storage

This 1list is initialized to contain the entire work space during a call to RTX:.
As blocks are required, they are taken from the top of the FREE list. As blocks
are no longer required, they are deleted from the appropriate list and put onto
the tail of the FREE list. A FREE block has no specific format. It will simply
contain data from the function which last used the block.

1/4-3

l

. 4.2 PROGRAM LOADING WITH ZBG

.ZBG resides in the RTX library; to make use of ZBG, it is necessary to include a

ZBG ‘REF

instruction within the user's program. Thus ZBG is entered immediately upon execu-
tion, and may then be used to breakpoint through the mainline sequence and any parti-
cular task.

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:)

If the computer being used has the Power Fail option, the user may utilize the RTX
program module which provides service for that device. The loader will cause the
routine to be loaded if the user has a REF to PWRFL:. He must, however, not actually
call that program at execution time. Instead, if a power failure begins, the inter-
rupt hardware will force control into that routine, saving the computer's register
statys, and halt, to prevent loss of information from core storage. When the power
is restored, the program will schedule a user-supplied routine, which must be named
PWRUP:, and must occur in a MAM directive. Re-initiation of the activity which was
in process (at the time of the power failure) w111 also be scheduled and control
will be passed to the system Scheduler.

RTX will schedule PWRUP: as a task at priority 8184 with the contents of the A
register nonzero if the power failure was detected. If power failure was not detected
(e.g., the computer was halted), RTX will transfer control to PWRUP: with the

contents of the A register equal to zero. Note that RTX cannot resume the activity

in progress at the time of the power failure if the power failure was not detected.

4.4 TELETYPE IN?UT/OUTPUT

RTX provides decimal, octal, and hexadecimal I1I/0 on the standard Teletype, by using a
software interface to CAI's Teletype Utility Package (TUP). The calls and usage are
identical to the standard version.

TUP also provides the capability to read and print strings of text, (for headings,
labels, etc.), and this capability is retained in the RTX version.

Refer to the standard TUP documentation (#96014) for a conplete description of each
routine. Additionally, a specific limitation exists with respect to TUP usage through
RTX:. TUP must not be called concurrently by more than one task, because TUP itself
calls subroutines within it with JST instructions, and these subroutines are not
protected from re-entrance.

TUP resides on the RTX Segment » library tape, and its routines should be referenced

with the REF or EXTR directive.

4.5 LSI-3/05 SOFTWARE CONSOLE ROUTINI! (CNSOL3)
The LSI-3/05 version of RTX includes CNSOL3, the Software Console Routine, which may

be linked by a reference to CNSOL3 in the user program module. Usage of the Software
Console Routine is described in the LSI-3/05 Software Manual (90-20010-00).

1/4-4 Revised 11/76

;,__-:

s Rt e S

L e

-

SECTION 5

RTX OPERATING PROCEDURES

Assemble each of your application program modules. Be sure to reference each RTX
function that a module uses in either an EXTR or a REF directive.

When you have a useful object tape for each of your modules, you are ready to
create the executable application program. This requires that you first load
LAMBDA, the relocating, linking loader.

Using LAMBDA, force load the initializer task module of your application.

Then using LAMBDA, load the remainder of your group of application program
modules. You can use the Selective Load feature of LAMBDA to include only the
modules your program actually requires.

Still using LAMBDA, selectively load the RTX Library object modules from the three
RTX Library Tapes. The first tape applies only to COMX and is not needed unless
COMX 1is to be used. The tapes are:

LSI-2 LSI-3/05
Segment 0 - COMX 70-93300-32 70-93301-32
Segment 1 - RTX/IOX 70-93300-30 70-93301-30
,Segment 2 - RTX/IOX 70-93300-31 70-93301-31
NOTE

If the user program does not reference PROT: and LOCK:, LAMBDA and
OS:LNK will declare these subroutines as undefined. This declaration
can be ignored since INTRS: and INTQ: (loaded after PROT: and LOCK:)
check to see if a call to either subroutine is the next instruction
after an interrupt is serviced.

NOTE

When operating under the I0X File Manager, disk devices must be
labeled prior to their use. Labeling is done with the stand-
alone program, RTX File Label Utility (tape Nos. 70-93324-40Al1
and -41Al1). Subsection II/5.3 gives a complete description of
this utility.

Start execution of your program so that the initializer module (Mainline Sequence)
or ZBG, if used, is executed first.

I1/5-1 v Revised 11/77

Cen

Section 6

A SAMPLE RTX PROGRAM - RTX DEMO

6.1 PROGRAM DESCRIPTION

The RTX Demo Program (00-93300-33) demonstrates the basic functions of RTX in a
simple, straightforward manner. It consists of three main tasks (TASKl1l, TASK2,
TASK3). The function of each of these tasks is to delay a specific amount of time,
and then call a routine to output a message to the teletype. The message consists of
the task name followed by the elapsed time in seconds since the start of the program.

An actual user's application of RTX might very well use the interrupt from some
external device to initiate a task. This example simulates the effect of three such
devices which interrupt every 5, 7, and 11 seconds, respectlvely, that is, the delays
themselves simulate external devices.

Each task delays a different amount of time than the other tasks, before printing.

TASK1 delay: 5 seconds
TASK2 delay: 7 seconds
TASK3 delay: 11 seconds

Thus TASK1l will output

"TASK1 0005"
"TASK1 0010"
"TASK1 0015"
etc.

TASK2 will output

"TASK2 0007"
"TASK2 0014"
"TASK2 0021"
etc.

And TASK3 will output

"TASK3 0011"
"TASK3 0022"
"TASK3 0033"

etc.

Because of teletype timing, each message takes more than one second to complete.
Thus the three tasks will contend with each other for the use of the teletype.

I/6-1 Revised 7/77

RSN S

In addition, a fourth task called "IOTASK" oﬁtputs the actual teletype messages. This
task is begun by each of the three main tasks whenever their delays expire, at the
following various priorities:

TASK1 begins IOTASK at priority 5
TASK2 begins IOTASK at priority 7
TASK3 begins IOTASK at priority 11

This means that if TASK1l and TASK3 both begin IOTASK at the same time (which they
will, at 55 seconds), TASK3's message will be output first, since its priority to
begin IOTASK is higher than TASKl's.

To be more specific, and to demonstrate the priority sequence more fully, the actual
teletype output after 55 seconds appears as:

TASK3 0055, TASK2 0056, TASKl 0055,...because each message takes slightly more than
one second to print, thus causing the following sequence:

TIME ACTION
55 seconds after start TASK1 and TASK3 both begin IOTASK with a "55 seconds"
. message. Since TASK3 has the higher priority, its

message is printed first.

56 seconds after start TASK2 begins IOTASK with a "56 seconds" message.
TASK3's "55 seconds" message is still printing, and
TASKl's "55 seconds message" is queued up. Since
. TASK2 has a higher priority than TASK1l, the TASK2 "56
seconds" message gets output when TASK3's message
completes.

57+ seconds after start TASK1's "55 seconds" message is output after TASK2's
"56 seconds" message is completed.

After B0 seconds, the teletype listing should appear as:

TASK1 0005, TASK2 0007, TASK1 0010, TASK3 0011

TASK2 0014, TASK1l 0015, TASK1 0020, TASK2 0021, TASK3 0022

TASK1 0025, TASK2 0028, TASK1 0030, TASK3 0033

TASK2 0035, TASKl 0035, TASK1l 0040, TASK2 0042, TASK3 0044

TASK1 0045, TASK2 0049, TASK1l 0050, TASK3 0055 :
TASK2 0056, TASK1 0055, TASK1 0060, TASK2 0063, TASK1, 0065, TASK3 0066
TASK2 0070, TASK1 0070, TASK1l 0075, TASK3 0077

TASK2 0077, TASK1 0080,

(TASK3's message contains carriage return and line feed control characters).

6.2 PROGRAM MODULE FUNCTTONS

let us now examine the RTX functions used in this program (refer to the flowchart in
figure 6-=1 and the program listing at the end of this section). There are six basic
modules comprising the program:

BEGIN ' TASK3
TASKL TOTASK

TASK2 ADDL

1/6-2

e

e P—
ot aiiis ot

e e s
(BT p

(e

|
i
|

6.2.1 BEGIN (Initialize and Begin Tasks)

The program start occurs at the BEGIN section of the flowchart. The first step is to
initialize RTX. This is performed using the RTX: function to define the maximum
number of RTX tasks which may be in concurrent operation and the required table space
for RTX management of those tasks. If insufficient table space is found or other
peculiarities occur during initialization; the error return is taken. In our example,
we halt the computer to remedy the problem. Using the BEGIN: function of RTX defines
the task name (TASK1l, TASK2 and TASK3 in our example) and its software priority
number (100 for each in our example).

No other tasks have begun their activity at this point. This is because the first
task following the RTX: call (the initialization sequence itself) is automatically
scheduled at the highest software priority. When the END: function is called, this
task is deleted and the Scheduler can then schedule the other tasks in relation to
their priority.

Since the three tasks all have priority 100 and priority 100 is the highest active
priority value, the Scheduler will arrange each task in sequence according to the
order in which it was initiated by the BEGIN: call, and will then start execution of
the first task in that sequence. The sequence is determined by a first-in, first-out
rule. Therefore, TASKl executes until it requests an RTX service which causes it to
be suspended.

When the task is re-scheduled (on completion of one of the above function calls), it
is put back in sequence at the end of all other equal priority tasks.

This type of organization allows for true priority scheduling within an application,
while also allowing the tasks themselves to be executed, interrupted, and resumed in
an orderly fashion.

6.2.2 TASKl (Delay 5 seconds, Then Output Name and Elapsed Time)

When TASK1l is begun, it first performs a five second delay. This is done by a call
to DELAY: with parameters of 500 (number of 10 millisecond real time clock "ticks" to
delay) and 1 (a specific coordination number for this particular task's delay calls).
The coordination number is necessary mainly for identifying a delay to be changed or
deleted; however, it is also required when beginning a new delay, as in this example.
When the delay is completed, control is returned to TASK1l, which then calls the
subroutine ADDl, which increments the elapsed time in the TASK1l message by five
seconds. Note that ADDl is called via SUBR:, because it is a common subroutine used
by all three tasks, and is not re-entrant; thus SUBR: prevents another task from
entering ADDl until this call is completed.

Upon return from ADD1l, the message is ready for output to the teletype. This is done
by a call to BEGIN: to initialize the common task called "IOTASK," which in turn
makes the actual call to the I/0 executive (IOX) to perform the output. Note that
"IOTASK" is a task, not a subroutine; this means that TASK1l may now continue with its
next 5-second delay while the I/0 is in progress rather than upon its completion,
which would invalidate the elapsed time count. Also, the initiation of the common
task is made with a priority of 5. IOTASK is also initiated by TASK2 and TASK3, with
priorities of 7 and 11 respectively, so that a predictable ordering of outputs is
achieved when two or three tasks are vying for the teletype at the same time.

1/6-3

S oo QA —

, £
6.2.3 TASK2 (Delay 7 Seconds, Then Output Name and Elapsed Time) o : ‘;x fi

TASK2 is identical to TASKl in its logical functioning. The only difference between
them is in the parameters passed in their calls to DELAY:, ADD1l, and IOTASK. TASK2
; calls DELAY: with a 7 second count and a coordination number of 2 (to differentiate
- | it from TASKl's delay call). The common subroutine ADDl is called to increment the L
| elapsed time by seven instead of five, and the common task IOTASK is begun at a P
. higher priority (7).

I 6.2.4 TASK3 (Delay 11 Seconds, Then Output Name and Elapsed Time)

TASK3 is similar to TASK1l and TASK2. TASK3 calls DELAY: with an 11 second count and
a coordination number of 3. It calls ADDl to increment the count by eleven, and
i begins IOTASK at priority 11.

6.2.5 IOTASK (Call IOX To Output A Message On The Teletype) .

IOTASK is a common task bequn as a task by BEGIN: calls in TASK1l, TASK2 and TASK3.
Upon entry, the X register contains an address pointer to the I/O Information Block
(IOB) of the calling task. A call is then made to the IOX package (at its entry

point named IO:) passing the IOB address as a parameter. An error status from the : J
- I/0 operation will cause the computer to halt. Otherwise,; the task terminates itself
| with a call to END:.

~orer—2—

6.2.6 ADD1 (Common Subroutine To Increment The Elapsed Time for Printing) \wj

ADD1 is a common subroutine called by TASK1l, TASK2 and TASK3 prior to printing their ' i
messages. Upon entry, the A register contains the amount by which to increment the .
elapsed time tally, which is pointed to by an address in the X register. The routine _
-performs the addition, and then returns to the calling task through SUBX:. This is !
because the subroutine was called via SUBR: to avoid re-entrance.

e ———— - ap—

1/6-4

mi

C™.

Figure 6-1. RTX Demo Program - Flow Diagram (Sheet 1)

(BEGIN)
A
/ RTX: \

Initialize

YES HALT FOR
CORRECTIVE
ACTION

Start

TASK1

)
ol

BEGIN:
Start
TASK2

e
Al

BEGIN:
Start
TASK3

Terminate
nitialization

~

1/6-5

IOTASK at
priority 5

(ADD1 ’
‘ -

Increment
time
count

|

Figure 6-1. RTX Demo Program - Flow Diagram

Start
IOTASK at

priority 7

YES

seconds

)
/ ADD1 \
Add 11 to
time
count

Y
[BEGIN: \

Start
IOTASK &t

riority 11

I/6-6 "

Halt
for

corrective
action

(Cont'd)

s e St

T e B

L=9/1

-1 1
AL

g2
REVEVRT
AQOH
Ny
agto
viil 1
G017
013
0014
au1S
(1W1hk
917
outle
019
0020
Hursl
itn2d
06023
puzZa
2025
Joce
Gue/
0ip2H
0029
0050
N0%1
uids
U 36
N037
(IRR X
0059
U240
0041
DG4
Q04
Duuad

airdd

(aéd)

ay0L
NGES

G000

EEARVEY)
D001
x.!()lte
TR
Dy
JGOs
QU6

0874808/ 17

f“)]'—'- "f’"z‘,s

o0y

[AXRRINY]

Guld

DRVKRY
HUOu
JA8Y
YAKY
YAAS
YAAS
‘AL
QAHI

[BXRRSRY
H0RR
ninl
GUnd
npan
HAVEWE]
voLd

11seneeid LA RN B L Y88/ =T 4]
=i}= ‘
JFF Lal3dns
E v,
& ML PRuGHAA CO8CUN<ERTLY FXECUTES THREFE (§)
* TASrS (laant, 14542, % TASKS) wrlCn DELATY
A TnEAGELVES FUs S, Ty X T SECONGS RESFECTLIVELY
* AsD Tabks Tyvwk al THETR GOERTIFTCETIUYN FOLLOWED
A 8y Thr Nvep o OF SRELONDS TAAT HAVE ELAPSEU
A Sl Tnt PRUGRAM WAS STakTHU, IHE THHEE TASKS
x AxF ALl ronnire AT O TRE SANME PRIOFRITY Anb CALL
A A LHMMUN dedERedT s T0 LGPGATE IHE Nuke kiR oF
xS CunpS T THEIS duirul srSSAGES, £ L MiN
« FAGR (JuTask) Jh kN Wik b To guTRrul ek
x APP=UPRIATE MZSSAGE, frfs TASK 1o WUt ut i)
kAT IHMEE (3) OTFFERENT #RiURKITIFS (lanniss,
k fasneg=7, 2 1ASK3=11) S0 ThAT, Fiuwx bduaL TIMES,
* foe MESHALES SHUULG ARFPEAR s JTrt FoLLOwlNg
A tiepinRs TaSK3, 1ASReZ, Tao5K1,
A
NAM MPAakP L
fu b M lsuafg
FxTw TR s3EINT, mri3e
tXTH SUrre, U= Xs b L AYy:, Liie
ExT FAOSE S
IFF L3195
ExT# sl YDo
] AV
ADLCTS Bwu 20
Wk i
"‘E(JI” tu e
LA ='00! KESH T
STA I .
ST1A 11+t « ALL
STA Te « :
STA e+t e LLAFSHU
STA 1% o
S1A T3+41 o limMbEDH

PAGE 0602 L3730/7177

MACKU? (AZ2) SI=

ST I I r0=

t1:25:27

RTX DEMO PRUGRAM 93300/01=13¢1
LSI=¢ &kTX DEMO #800~95300=13E1

0045 w0OND7 FS0O Du9e Jst R1X: START RTX
0046 000r 0014 LATA NUACTS NUMBER OF ACIIVIETES
0047 0009 0OUE vALA WKAREA RTX OSUFFER AREA
0048 000A 0800 HLT
0049 G008 Feobb 0072 JMP START GO STARYT INITIALIZE ROUTINE
0050 vooC PARFL: REF FORCE LOAD THE POWER FAIL
0051 _ * ROUTINE
0052 UOOD F909 Godu PRkUP: JST END e IGNORE POWER UP RESTART TASK
0053 000k 0000 whaRFA KES NUACTS+NUACTS+NUACTS+NOACTS+NOACTS, 0
- 4
N
oy
I 3
103
IR TRGET TS e 4 CET e - e -

E

Q=

6-9/1

PAGE

MACKUZ (AZ)

0055
0056
0057
0058
0059
0060
0061
0062
0063
D06d
0065
V066
no&e?
0068
0069
0070
0071
0072
0073
06074
0075
0076

Uuo3

Hole
007%
0074

001715
J070
0077

0074
0079
007a

007y

IKYELIVANI

‘Bl= vEMULS

FYOu
Vur7C
o064

FQOQ
0098
gued

F900
DLURA
Q064

F9eoo

2000

D006

Q0u0

0000

11:e%:e/

n=

~TX DEMD PRUGRAM Y3800/01=13¢1
LSL=72 HT1X LEMO #0Uu=9483500=13¢L]

INITIALLIZE TASKS

JST
vaATa
UATA

X h k Kk Kk K

»

»

JS81
DATA
DATA

* k * k %k

Jsti
LDATA
DATA

X k x Kk Kk X

JST

BELINS
TASK1
100

A kA k& Kk kK kA & Kk k *x A X kK k kx %X *x Xk k Kk Kk * k & * X k Xk X k

BEGINS
TASK?Z
100

x X Kk A *
BEGING

TASKS
100

ENDS

START TASK 1

STAw] T1a5x 2

X k & Kk k k Kk k Kk % k k k *k %X A& kX k Xk *x kx *x k Kk %

HALT INJITIALLIZE ROUTINE

A * Kk Kk * Ak A Kk k A k * kX k Kk Kk Kk KX Kk k X ¥ & Kk K %k %X k X

|
%

ot—9/1

PAGE

HACRU? (42)

00176
wer79
GGRO

w1
0082
D083
0084
0085
d086
0087
0088
0DOKRY
0099
4091
0092
0093

0094
0095
0096
0097
0098
0099
0100
0101
01u2

N105%
0104

2105
0106

agud

ap7C
2070
g0 7t

WOTF
G080
0081
G082

gund
G084
UuB9
vihe

ok

0044
0089
tOBA
1085
HOne
SR

DO8E
008k
2990

IRYARY RN

N

F900
al1F g
400}

C705
LU0
F9900
00DA

Eu00
YOO
DOCF
Qugs

Four

0088
Dact
D3CH
B1lAQ
HyHy

rUMO

ALAY
Juyt
0000

0600

000vu

Nl V)

Oyt

HITRSY S
0o

JORE
INESEVEY)

J07C

11:25%:¢27

)=

*
faskil

»
»
*

I

{ukt

Jsi
vatTa

LaMm
LUX
JSi
DATA

LX
JoT
DATA

(Tx DEMO PROGKAM 93400/01=13E1
L3l=g KIX Ubmt 500=-98300=13E1

DELAY: WRIT FOx
500, 1 5 SECONLS

Ak *x * k & % Kk X X $ Kk kK kX %k Kk Kk k % A * kX Kk X % k %X kX X KX *

5 5 TIMES THRUUGLH Avwu
=it PULHTER TO NUMBER

SUBR CALL COMMGN SUBROUTINE
ADLD1 TO ADD IN BCD

A k 2 & k& kK k * Kk Kk 2 k kA kX k kK A R * X %k Kk kA * k k * kA Kk %k

=i{1in] AlNDESS UF TUB
HEGInN: START CCHMmMUN TASK
lujASK,S TGO DU I/0 (PRIORITY IS 5)

A & & k k& Kk A k& X Kk A kR *F k kK A X X Kk £ X KX k * % * k X * *

FASK 1 KEEP GUING

A x & k& k X x Kk K &k K k Kk Kk kX kA kX %X k k A X %k * kX %k k ¥ K.

b

ViasKD

'ouou!

) 1)
’

¥ 10B 6LOCK
0,0,0,0

AT T e - - e elall e pmms o, T ——

0o

4444050 LW 1 4400%

HEON 4T 4149 I9Y5S i 21

(1M QAL vRaAN 4N T4 N4 S
M7 MR 0e I

LIS T=00SS h=00% (1w 40 x_m;urme
L3S 1=10/0055h HWTNIMNA N I

E

vlyn
v lvel
vivd
viva
vy

G000 [060
NONN S NG
Dty e
oy ne0OR
LODOD S AHNG
{3 Zen
NOGH (e
GO TG 1Ay
[SEREANH

11704 /806G

T
aryo
LUREY
#0710
L1

2MAY Y
v

1/6-11

i

Z1-9/1

PAGE

0114
o114
0115

0116
0117
a11H
o119
0120
0121
0122
0123
vicd
0125
0126
0127
6128

0129
0130
0131
0132
0133
0134
0135
0136
0137

0138

0139
0140
0141

S vluo
MALwue (A2)

UOYR
R
JO9A

U9t
GU9C
009D
JO9E

QOYF
JOAG
UOAL
0oaz

JUAS

HoaYy
DGAS
HUAb
JOAT
SOAN
YaAY

DUAA
JOAB
JOAC

03/38¢/7177

sl=

FY00
0280
0002

Cr707
FoOv
F900
00DA

FOOU
F900
00CF
09007

Doad
na(g
3CH
H2A0
2980
HOBY
ACAQ
O0DAA
0Gvo
ouoo
0000

izg M1}

DU

JOAT
0030

G0AA
Gudo

il

11eensdld

) =

* »

* * w
»
»

ok ke

Te

[un?

JsT
Aala

Lam
Lixx
JS1T
DATA

LiX
JST
DaTa

£l
Texl

TeX1
Texd

£y
LUATA

A1 X DESY PRULRSR

ILSi=¢ rwlx iEdU
LELAYS wAll UK
fut, 7 3FLUNDS

X k % * % %

7

=7/
SuBR?:
ALl

Ak Kk K %

zJuBe
dEGING

LOTASK, 7 TG DO

x A kK * %

TASK?

*

*

94300/701=13¢1
LG0-9383500=15¢E1

x * kA K %k * %k * k Kk k N %X

{ TIMES

THROUGH

ALU

PLTLTER 1O NUMBER
CALL COMMUN SUBROUTINE
Apiy IN BCD

TG

* kX x * X %

ADKESS UF T0#

*

x k k k X X

HLOCK

START CUMMON TASK

170 (PRIOKITY IS 7)

 x & A kX A X X X x *x % *

KEEP

A > kx Kk kK A R

N
tTaske !

0000
. '

’
-

VFEVFRIFRY

10n

*

GUING

¥ X Kk X

H$LLOCK

£

Xk &k k & K X

e

 — Ty

o

€1-9/1

PAGE

0007

03250777

MACKU, (A2) 531=

0142
0143
Qlad
0145
0146

VO0AD

0000

00aE. C3CF

Q0AF
G000
00p1
0ov2
00B3

0005
0uoC
00A4
0000

0000

11:25:27.

DATA
UATA

DATA

Jata

DATA

WTx DEMU PROGRAM 933540/01-13ET

LSI=2 wr1X i*EM0 kﬂu-?ﬁino-ljﬁl

.CUI

S
12

HUFF e

0,0

LUN

FUNC CODE (LUINFORMATTEQD wiki)
MESSAGE BYTE LEMNGIH

MSi> BUFFER ’

PI-9/1

PAGE

MACRI? (a?)

0144
149
N1S§

0151
3152
uln}
U194
0155
0156
9157
0158
615y
0160
0161
0162
163

0164
165
0166
Dlo?
0168
0169
vil/Zo
0171
0172

017

9174
0175

G0R

Uy
JOB5
00rAk

SRy
wloa
4089
GORA

Dty
vl
TNEY)]
JOKE

114

G000
HoC1t
00Ce
50C3
3004

v(CY
00Cs
vOC?7
00CH

I8/ su/llT

al=

F904
Jaqc
V05

Crog
Eu00
F909
00ODA

EOUY
FoQu
QOCF
o0

Feaots

vuCo
NaC]
H3CH
33A0
Buro
HaBs0
GuCh
0oy
Guou
0000
0000

Dby

GG

003
000

REVEDR

30e00

J (.) 3d

Tl2en:
iz

+

TASK S

X

K * *

x

*

x x K

*

*

k k *x

*

* k &

x

SUFFE S

is

[ve

)

JST
AT A

LAM
LuX
JST
DATA

LUX
JST
DaTA

Eud
T RE)

1K HEMD PRUOLGKAM 98500/01=135F]
Lilee wiX ubhU BGO=9530015E]

vel ay: AalT Fok
t1ou, 5 11 StCunus

* x X kX A k A k K Kk * k Ak K R *x %k

1 11 TIME THROUGH ADL
=73 PUlNTER TO NUMBEKR
SUBRz2 CALL CumMMON SUBRUUTINE
ADuU1 TG0 ADD IN #CD

A k A * Kk K kK &k k k *x x k k K Ak &

=1uns ADDKESS Of 108
REGING START COMMON TASK

X A X %* %

* X Ak Kk R

IuTAasr, 11 TU DO I/0 (PRIORITY I5 11)

x * %k Ak x A &k % k A kx X x x x ¥ X

TASK3 KEEP GOING

X Ak ok K A kX k Kk kX k Kk Ax *x Kk & Kk X

b
'TASKS
Y0000

b3 [Us vl BOK
PRI PR)]

*x X k & %

* kx kX k X

C

PR - - AN | Moy N SNRIEET. S 1 S T | R e e S

(@

!
|
|
|
i
m

ComputerAutomation m

Qua=ry 234400 1G9y RS I
BP9 4T 1A 1998 C 4u

(31X T1IEY) Fan) N

NPETY

L4S 1 =N0Y S h=0T Dwdie X
L LS T=I0/6Cs R N XA N A

neo vivQ

§ 44Nt F1ea
0§ Jiva

9 viyn

V1D, viv(

Yl

Goea e
DR TR URAIS L ERE
noypnG 0N
vyt GG
GNeD yjec
43870 RO00

= Crap in = e (2v)
SIS B Y AR WA NI CTE

G0
6110
HL1G
1114
9L1G

RERE R AR
451y -

1/6-15

o)

i

91-9/1

F At

MACH\J/ (ﬂé)

1477
TRN.E
/R Ra2N)
U1RS
Olns
0117
H1HA
0189
0140
0191
192
0193%
H194
0195
0190

gl o

JoCFk
Viouy
00Dt
wobe
DYnNld
Doy
WITDLY

IR YENVAN

ols=

[AROTOY o
64035
tAQ]
F900
000G
k200
Do
FY0G

DL TR

Juoe
J00o

HdoY

JUNQ

11:2%8¢7
Bz

I 4
A
A {
*
X
x
«
i

I

Inls 1S5 T4k
Y 1ASKL,

X

FASK/Z Anb
WALTING FUR THE CUMPLETIUN

DEAD PROGRAM 93300/0)1=13¢]
Lol=2 RTIX OEMU $U0=9330(0~13F]

w1l HBE DFELAaYeo
ar THE L/,

IS ISED,

A5k EnU
Sin
5TX
JOT
DAT,
JSsi
NyP
JarT

b
Z
{6
10
Hho=

NUTE

el

b

END 2

<o
.o

CuMmiln TASK "[UUTASK" LUcUED

TAGKS St THAT THEY w~ILL

THAT THE IuUX PACKAGE (I0:)

COMMUN TASKR ENTRY FUINT
AVOUIL INTERRUPTYS HERE

STURe 108 ADDRESS INTO CALL
CALL I0X .

1UB ADDKESS STORED HALiRE
IMMEODTATE wE TUKN

16NODKE ERPUK KE TURN
TERMINATE THE COMSOUN TASK

(©

ey

o

LT-9/1

ALY

0194
0199
37200
021
DPGP
enld
20d
0205
0206
neond
Neng
0209
02tio
0e2ll
nele
0213
0214
W2els
VAl
0217
0218
0219
ve2n
neet
WA2P
Neesd
ul2lu
0ees
H2eb
et
Neen
weey
Ay
n23
0252
0243

NKIBI

INDA
g7
HOUH
VIR

VOA
EVIVE:]
yone
JUND

VODE
JODF
nGrQ
[TIVE |
O0kF ¢
H0F 3
0r 4
GUFS
torée
e/
DOEA
BoeY
0r A
Ok
ot
ooeb
Okt
DOEF

‘ IRV EMYANI
AL (Al o= 2y

OF Q0w
DAlA
F20n
FYo0

05800
9A1d
15250
Ceos

EALZ
C704
9411}
P20k
(R NVRY
Hdu
Fuo
0150
QLuo
CORA
Feul
Fhrls
Cona
4000
00 Al
1hAQ4
FoOn
Fely

it o
DU
VAR

ok o

0Dy

SRV
gor

GO O
NI

DEVAIRY)
it A
[ERYERY

J () i8] ':}

e o
REVIERY
te)2h

tlee~e 7 -
Atz

x

* THiH 13

x Jasag, aswu

4 FLAab

03
A A Y-
* LRt
L3

wh & f

x

Al

*

LA

Aidir P

T it) w
LS =z

o LOAmOn

TARKS 10

SrU drLunNgs

AL OALE

sl [8brs

THE sart Px ok

Chsoi

SnM
[mS
Jmp
JsT

kT
RAN
LLx
AXl

SIX
LAM
STA
Lisx
Sum
LA
Jul
1AW
Sie:
(-3
Jme
NI
Lapy
STA
P AN
[48
Jmp
\’ &

Stisp a4]

Litiind
L X
IS &

AR SANO/DT=15E]
X @D dhieyssiiu=1 4L]

sUBrilIsE CoLLED BY TASK],

URUATE It NUMsER b

I ArErUFRTALE GUTPU]
CAlL Ine RIS SuskodT Int
ITY, 30 Ymr CALL 10O VAU
EHOTA A =t =bnirY.

0NE 2
by LN L ouE Luete
YES, whllrN PR CUMMDY

Stk | F

Cuhd
1
3
S
3hVE X
A
FUUR
SAVEX

ary)
FANSE

w0
Oqi*l
2
rHE X
TR

a0

bl
apRye
NE X T

ENTwY #iilm]

SYIE suLkESSE UF NiMRE W
ALURERS b LEASI
LGHNIFLCANT ULeId

Save 1

DU iNLY oo yiulls

st I AnuiesS Lk | SE

e T DIGLI

ALLIW KE=ENTRY ATTEMPI
Al vmt (1)

POl 1T mACK

nAS [T 'Gty

Yo, GobTe DU NeXT llld
NGy, CHELCR rOR ODONE
CreataGh Tu LZERG (*0')
PUGT N LT

Poler TO rwpv]Ios vilelld
sy FLUF GEGIT Counl
(SIS A S RN T |

Chm T e

-
-

A wuomwmnvmwoo

F " DM TR

N

[oo]
ns
O
N
[

;) viya Milf14 BONO 2407 4§50

| n ST FX Ay 00GG 1400 QoD

| , 0 vivea o e D DOCH 0400 HG20

!

, LIS T=NN¢ChH=0n% T35 Y1 e[i Chmd4l =[S (2V) AVNIYw

[T T=T0/7006856 =390 4 DI XX L23C210 /765790 2100 Q9v 4
w \
| -

(®

6T-9/1

PALE

ALK ‘¢

T

2548
ve3y
0240
j2ul
24/
tigdl
0244
ueas
240
o247
ueas
0ese
0253
0254

0000
0060

RETE K s/ Nulll

(a2 »l=

DUt 3
JOF 3 CACH

[VATRIRY]
QOF4 Doy
VOFS FEEL

0900
rREJ-S
~ARN NG

oAy

t1else 7

L e

x
* fvifs 18

* Y [Ux,

r oyt l/u

* PriikaM,
*

)

Al lur Eguy
DAl A
1fF
DAT &
ENDLL

Isvsafl pavTa

END

~TX g Prethiae
ILS]=¢ «1x

Irt UNnIT ASSIGH
TrEwRE IS ualy
vevite (11Y) o

b | K¥1 4
oot L
Lol ey

AM S8 01=1 48]
LhRL Bru=Y5500=-14¢t]

*ErT TaBl € reEgUIRED
it FNTKRY, SINUE

LSk Jr

b UAT

frit

ONLY

J2TYOU O ABURESS FUR STu TTY

UATTGR = -y

HEGIw

LEnGTH UF

LAl

|

ComputerAutomation (Cf\ ——

PART II

THE INPUT/OUTPUT EXECUTIVE (IOX)

|

ComputerAutomation (O ——

SECTION 1

IOX GENERAL DESCRIPTION

IOX is a subsystem of RTX which operates under RTX control, and provides the user with
a complete, modular method of input/output device management and support. Application
programming is faster since time-consuming input/output programming for standard
peripherals and communications devices need no longer be done by the user. Since IOX
is open-ended, the user can add capability for virtually any kind of device unique to
his application and program it under IOX control. All I/O performed by IOX is
interrupt-driven and allows other tasks in the system to execute even though I/O is in
progress.

Working in conjunction with IOX is the Filé Manager that enables the user to communi-
cate with data files by name, independent of the physical medium storing the file.
Requests for file access are made through IOX using Logical Units (LUNs).

IOX can perform one operation at a time for each peripheral device. Operations
requiring the use of the same device are done in I/O task priority order (i.e., the
highest priority request is honored whenever the device is available to be used).
Operations performed on different devices are done concurrently. All calls to IOX
specify a Logical Unit (LUN) on which to perform the I/O rather than physical units.
This feature allows a program to be debugged using one set of I/O assignments and
executed using another.

IOX satisfies the following I/0 requirements of the system:
1. Selects the proper commands for communicating with external devices.
2. Processes device interrupts in the following manner:

a. Saves the status of the currently executing task.

b. Determines the task priority of the interrupt. (Must it be serviced immedi-
ately or can it wait for the completion of a higher priority task and if so,
is the higher priority task ready for execution?)

c. Determines whether the task processing the interrupt is a re-entrant task, or

‘ that the interrupt may not be serviced until each prior interrupt has been
fully processed.

d. Determines which of the I/0 tasks awaiting execution has the highest
priority, then restores the CPU status to the environment of that highest

priority and gives control to that task.

e. Ensures that no task may access a device while it is controlled (dedicated)
by another task.

f. Ensures that the interrupt system is not disabled for a period of time which
would prevent a high speed device from performing I/O successfully.

11/1-1 Revised 1/77

1.1 GENERAL DESCRIPTION

‘Because of the likelihood of having several similar devices attached to the computer
(including identical units) in a real time environment, IOX has been designed to make
it easy to support several similar devices (differing only by device address) using
"shareable" code. IOX requires some space for flags, device addresses, etc. Since
the types of flags depend on the device, as well as the interface to which the device
is connected (there may be more than one device per controller), IOX maintains flags
in two separate locations depending on whether the information is unique to the
device or to the controller. In order to utilize the minimum space in memory for
‘these flags and temporary cells, and to facilitate the allocation of these cells, IOX
does most of its interfacing by means of tables which define the type of device and
interface to which it is connéected.

IOX is primarily concerned with four tables:

I0B Input Output Block

UAT Unit Assignment Table

DIB Device Information Block
CIB Controller Information Block

(These tables are more fully described in section 2 (IOB and UAT) and section 4 (DIB
and CIB). The IOB is created by the user (task) and resides within the calling task.
It contains the Logical Unit Name or Number (LUN) as well as specifications for the
I/0 operation to be performed.

The UAT is also created by the user. It is a series of two-word entries, each of
which equates the LUN (specified in the IOB) to a specific device.

The DIB and CIB are tables which are used in communication between IOX and a parti-
cular handler. IOX contains within it DIB's and CIB's for each standard device.
Additionally, the user may create his own tables if he desires; for example, he may
reserve an extent on a disk by specifying its boundaries in his own disk DIB, or he
may create a DIB and CIB (and a handler) for a non-standard device.

In general, the usage of these tables by IOX is as follows: The user constructs the
IOB within his program and calls IOX, giving as the sole argument the address of this

- IOB. IOX must then transfer control to the handler associated with this request. To
do so, it first obtains the logical unit number (LUN) from within the IOB, and com-

- pares it to each entry in the UAT until a match is found. The UAT is simply a list
of each possible Logical Unit Name/Number (LUN), associated with the address of the
DIB which defines the device assigned to that LUN. Thus for each LUN the UAT contains
a pointer to the appropriate DIB. In turn, each DIB contains a pointer to the CIB
which defines the interface to which the device is connected. Finally, the CIB
contains a jump table which points to the particular handlers (procedures) for pro-
cessing the specific request. Therefore, given an IOB and a UAT, IOX can find the
procedure to handle the request made in the IOB.

The following steps are performed during a normal call from the user to IOX:
1. The user calls IOX carrying the word address (may be indirect) of his IOB.
2. IOX examines the status within the IOB. If the IOB is busy (from a previous call

to IOX), the calling task is suspended and control is passed to the RTX task
scheduler.

17/1-2

e s i

e

L e AT

‘?

10.

1.2

The

If the IOB is not busy, it is then flagged as busy, and the UAT is searched to
find a LUN which matches the LUN in the IOB. If not found, an abnormal return is
made to the caller after setting the "Invalid LUN" status bit in the IOB.

If a matching UAT entry is found, the correct DIB is located (the DIB is refer-~
enced within the UAT entry) and the requested function code is compared to the

permissible function code(s) within the DIB. If the requested function code is
found to be illegal, an abnormal return is made to the caller after setting the
"Error" status bit in the IOB.

IOX next queues the I/0 request with any previously pending I/0 requests for the
requested device according to the priority of the calling task and passes control
to its internal I/O scheduling routine.

The scheduling routine then monitors the request queue in each DIB; whenever it
becomes physically possible to begin an I/O request (the I/0 device is available
and no higher priority request is pending), the scheduler calls the appropriate
I/0 handler routine (driver) according to the handler entry address within the
CIB.

In general, the I/O handler routine will set up the required interrupt locations,
select the device, and initiate a watchdog timer, and then return control to the
I/0 scheduler.

The I/O scheduler continues monitoring the I/0 request queues and calling the
applicable I/0 handler routine(s) until each DIB has been examined once. Then
the I/0 scheduler terminates with a call to END:.

When an end-of-block I/O interrupt occurs, it causes a return to the I/O handler

which initiated the I/O operation. The handler will normally at this time, call

an end-of-block routine within IOX, which stores the I/0 status and record count

into the IOB, releases the device from dedication (if desired), returns to the ’

calling task through either the normal or the abnormal return location, depending
on the status, and begins the I/0 scheduler.

If an I/0 error should cause the watchdog timer to expire prior to I/0 completion,
it causes a return to the applicable handler, which will then normally execute an

initialize function to the device, store an "Unresponsive Device" status into the
IOB and return to the caller's abnormal return location.

CALLING SEQUENCES

three entry points to IOX are:
I0: To perform an I/0 operation or special function

IOREL: To release a dedicated device
IOWAT: To wait for completion of an I/O operation

I11/1-3

Each of these entries requires a parameter list (IOB). IOB format is described in
detail in section 2. The IOB specifies the type and mode of operation, data area,
data length, and the Logical Unit Name/Number. It also provides room for status
information to be returned to the calling task. All calls to IOX return with the
registers as follows: v :

A Register Undefined

X Register Pointing to the IOB
OV Register Undefined

Word Mode

LSI Console Data Register Unchanged
The format of a call to IOX to perform an I/O operation is:

JST I0: Call the IOX perform I/O routine
DATA (*)IOB Address of the Input/Output Block
—-—— Immediate Return

-— Operation complete---abnormal return
- Operation complete---normal return

Note that there are three exits from IO: -- two are always taken. As soon as the
request is processed, IOX BEGIN:'s a new task whose starting address is the immediate
return location. When the I/O operation is completed, IOX returns to either the
abnormal or normal return depending on the success of the operation. Having an
immediate exit as well as a complete exit from IOX provides the user with the option
of concurrently executing his program while the I/0 is in progress. If he does not
wish to continue execution until the I/0 has completed, he simply codes:

JST END:
in the location of the Immediate Return.

Alternatively, if a certain amount of concurrent processing can take place during the
I/0 operation, the immediate return location should contain a jump to the processing
routine. When the intermediate processing has finished, and it is necessary to await
I/0 completion before continuing, a call to the IOWAT: routine is made, as in the
following example:

JST I10: Initiate the I/O operation
DATA (*)IOB IOB address
JMP TAG Immediate return - continue processing
JST END: Ignore complete return
JST END: Ignore complete return
TAG EQU $

Concurrent processing

during I/O
JSsT TOWAT: Wait until I/O completion
DATA (*)IOB: IOB address

- Operation complete -~ abnormal return
- ' Operation complete - normal return

Note, that a call to END: must be made at the "complete" returns from the call to IO:,
.in order to terminate the I/0 task. One of these two returns will be made if I/O
completes before the call to IOWAT: is executed.

ComputerAutomation (O ——

11/1-4

N

</

ComputerAutomation m

wore]

A call to I0: is equivalent to a call to BEGIN: (see chapter 1,
RTX Functions) with a starting address of the immediate return and

a priority of the task which calls IO: except that the new task is
queued before all tasks of equal priority.

An abnormal return may result due to the following:

LUN not in UAT

Illegal Operation Request
Device Error

File Mark Input
End-of-Device

A normal exit will result from all other conditions.

1.3 DEVICE DEDICATION

If desired, the user may dedicate a device to specific IO: calls only. Word 3 of the
IOB provides the capability of establishing a specific (non-zero) coordination number
for an I/0 call. Once such a call has established the dedication of a device, all
future I/O requests for that device will be held off (queued) until the device is
released, unless they contain the established coordination number.

A device is released from dedication by a call to the IOREL: subroutine, as follows:

JsT IOREL: |
DATA (*)1I0B
- Rgturn

On return the A register will be zero if the device was released; otherwise, one or
more of the following A register bits will be set:

Bit O set: the LUN entry in the IOB could not be found in the UAT.

Bit 1 set: the IOB contains a coordination number of zero.

Bit 2 set: the coordination number in the DIB does not match the coordination
number in the IOB and no queued IOB has a matching coordination
number.

1.4 LOADING

The user is supplied with two standard relocatable object segments, each residing on
two separate paper tapes:

Segment 1 (paper tape 70-93300/1-01):
This segment contains the following program modules, in the order shown:
1. Character I/0 Drivers
2. Card Reader Drivers

3. Magnetic Tape Drivers
4. Disk Drivers

I1/1-5

5. I/0 Scheduler
6. RTX Nucleus

Segment 2 (paper tape 70-93300/1-02):
This segment contains, in the following order:

1. ZBG

2. IOX Control

3. RTX Services

4. CNSOL3 (If LSI-3 Version)

In addition to these two modules, the user will require:

1. An RTX Mainline sequence, which makes a call to RTX: to initialize the RTX envi-
ronment, and to BEGIN: for each task he wishes to initiate immediately.

2. One or more "task" programs to be run simultaneously under RTX (See chapter 1,
RTX Description)

3. Special device handler program(s) and the associated DIB and CIB tables, for use
in communicating with any device(s) for which a standard handler does not cur-
rently exist in IOX (see section 3, I/0 Handler Organization below). These
handler programs are not necessary if using only the standard devices (teletype,
CRT, high speed paper tape reader and punch, line printer, card reader, magnetic
tape, disk, floppy disk).

NOTE

The user's special DIB's will each contain a CHAN directive to permit
chaining to the other DIB's referenced during linking. The user

who does not have an 0S system will need version DO or higher of

the OMEGA assembler in order to correctly assemble the DIB tables,
because lower versions do not recognize the CHAN directive.

4. A Unit Assignment Table module (UAT) containing entries for each I/O unit to be
accessed (see section 2, UAT Description).)

The user may either load eaéh module using LAMBDA, or produce a binary tape via the 0S
Link Editor. The order of input of the object modules ic as follows:

1. User's main line sequence.

2. User's various tasks.

3. Unit Assignment Table (UAT).

4. Special user-coded DIBs and CIBs, if any.
5. User-coded I/O handlers, if any.

6. RTX/IOX tape, Segment 1.

7. RTX/IOX tape, Segment 2.

The RTX/IOX tapes, Segments 1 and 2, are organized in library format. Each routine on

these tapes is loaded conditionally until the last module of the tape is read. The
routines are organizcd so that only one pass through the loader 1is necessary.

IT/1-6 Revised 10/77

Ckwnpuhuﬁuﬂonuﬂiu“@:zai EEE——

@

B 1SR - - s SN S 3

A EPT ETYT TIC B ogs

e e

e a5 o

P

i
%

ComputerAutomation @ZN»““T

| norte

Fortran tasks to be run under RTX control require additional library
modules to be linked. Refer to the Fortran Operations Manual for a
complete description.

1.5 RESTARTABILITY

In general, if some I/0 error occurs during execution for which the operator wishes to
abort the program, it may not be restartable if the abort condition (e.g., the operator
halts the processor through the console) occurs during the period of any I/O request
(either pending or being serviced). This is because various "busy" flags within the
I/0 tables must be reset upon restarting the program. To insure resetting of these
flags, reference the "IONIT:" module from the Mainline sequence (see chapter 1,
section 2: description of the RTX: initialization routine).

I1/1-7

*\

(‘g

SECTION 2

IOB AND UAT ORGANIZATION

The IOB (Input/Output Block) is created by the user and resides within the calling
task. It contains the Logical Unit Name or Number (LUN) as well as specifications for
the I/0 operation to be performed.

The UAT is also created by the user. It is a series of two-word entries, each of
which equate the LUN (specified in the IOB) to a specific device.

The following IOB description applies to all standard I0OX handlers. The description
is annotated to include File Manager functions. IOB organization for non-standard
handlers (for example, the IEEE Intelligent Cable Handler) is described in Section 7.

2.1 INPUT/OUTPUT BLOCK (IOB) - 10 WORDS °

The IOB must be set up by the user within his own program. Word 0 is temporary
storage and will be destroyed by IOX each time IO: is called. Words 1 and 2 are set
to the device name by I0:. Words 3-~7 are parameters passed by the user on calls to
I0:. Words 5 (bits 8-15) and 8 contain information returned to the user from IOX.
Word 9 is used only on devices which support direct access I/0 (i.e., disk, floppy
disk). (Note that IOB tables are not required for Fortran tasks. Refer to the
Fortran Operations Manual). Figure 2-1 illustrates the IOB configuration.

Sample IOB's are included in TASK1l, TASK2, .and TASK3 of the RTX Demo Program. Refer
to Chapter 1, Section 6.

Word O Temporary Storage for Use by IOX. This word is used by IOX as a
pointer to queue requests for each device. It must NOT be altered by
the user. :

Word 1 Device Type (Two ASCII Characters). This word is set by IO:. It

contains the two character mnemonic for the device type.

Word 2 Device Number. This word is set by I0:. By convention it contains two
ASCII digits (0-9) and is used to distinguish between multiple devices
of the same type.

CAUTION

Words 1 and 2 are used for temporary storage during calls to IO: and
are only valid after one of the complete exits has been taken. These
locations must not be changed when the busy bit in word 5 is set.

I1/2-1 Revised 1/77

Standard
Name#*

ipT

ICUN or

ITCB,

CN

ILUN

ISTA,IOP

IRCNT

IBUFF

IACNT

IDAA

INPUT,/OUTPUT BLOCK

15 14 13 12 11 10 9 8 7 e 5 4 3 2

CHAIN POINTER (RESERVED FOR USE BY IOX)

DEVICE TYPE

DEVICE NUMBER

COORDINATION NUMBER

LOGICAL UNIT NAME/NUMBER

Kncw

" O At

NO
1/0

BAD
LUN

DEV.
UN-

RESP

DEVICE
POS.

INT.
USE

XWO™
on

0) 34
CODE

OoP
MOD.

REQUESTED COUNT

BUFFER ADDRESS‘

Q@

ACTUAL COUNT/PROMPT CHARACTERS

DIRECT ACCESS ADDRESS

Figure 2-1. IOB Configuration

* refer to the I/0 Handler listing at the end of Section 3.

11/2-2

commmmﬁmm ——

O A RO 2R TN

e

Word 3

Word 4

Word 5

I/0 Coordination Number. This word is supplied by the user to
coordinate his I/O requests. If this word is non-zero, the device on
which the call is being made will be dedicated to the coordination
number supplied. When a device is dedicated to a specific coordination
number, only those requests with matching numbers will be honored. All
others will be queued until the device is released. If device dedi-
cation is not required, this word should be set to zero.

Logical Unit Name/Number (LUN). This word is supplied by the user and
it describes the Logical Unit on which the I/O should take place.
Although the LUN may be any 16-bit value, by convention all negative
numbers are considered to be ASCII character pairs (e.g., SI, IO). All
positive numbers are considered to be FORTRAN unit numbers (e.g.,
5,6,10).

Status, Function Code. This word uses the following format:

1 %0 9 8 7 ¢ 5 4 3 2 1 0

15 4 13 12

|
|

Operation code
Special operation
Reserved

Internal use only
Device position
Device unresponsive
Bottom of form
Invalid LUN

1
A A I {r-’_—l::;____OPeration modifier

No I/O performed

Error

I - Busy

Bits 15-8

Bit 15

Bit 14

Bit 13

Bit 12

Status returned to the user by IOX. The breakdown of bits is as
fcllows:

Busy (the operation has not been completed)

Error (an unrecoverable error has occurred); or bit 11 or 12 is
set for the File Manager.

No I/O performed (e.g., LUN is assigned to dummy device, device
cannot perform the requested operation, LUN not in assignment
table, Read or Write with zero (0) count).

Invalid LUN (LUN cannot be found in Unit Assignment Table), or

File Manager access mode error.

I1/2-3 Revised 1/77

Bit 11

Bit 10

Bits 9
and 8

Bit 7
Bits 6
and 5

Bits 4-0

Bit 4

Bits 3
and 2

Bits 1
and O

Bottom of form (listing device only); or File Manager end of

medium, directory full, directory error, device not labeled or
partition busy.

Device unresponsive (the device has not responded to the request

in a reasonable length of time); not used by the File Manager.

Position of device:

00 . Indeterminate

01 Beginning of device

10 File mark found

11 End of device (disk and Magnetic tape only). For tape, the
EOT reflective marker was encountered. For disk, the last
sector in the extent was accessed. This status does not
necessarily mean that no data was transferred.

This bit is for INTERNAL use only. Initialize to zero and
do not ALTER.

Reserved for future expansion

Requested Function Code. This is supplied by the user and defines
the operation to be performed on the device. The breakdown of
bits is as follows:

Special Operation - If this bit is set, bits 3-0 are ignored.
This is to allow users to supply drivers for devices which perform
special functions.

Operation Code
00 Read
0l Write
10 Position
11 Function

Operation Modifier - These bits define the specific type of
operation to be performed. Their meaning depends on the operation
code. (Some operation modifiers vary for certain Handlers. These
differences are noted accordingly.)

For read: File Manager
00 Direct Access (MTIC only, Read Reverse) Random Access
01 Unformatted, Sequential Sequential
10 Formatted ASCII, Sequential Sequential
11 Formatted Binary, Sequential Sequential
For write: i File Manager
00 Direct Access Random Access
01 Unformatted, Sequential Sequential
10 Formatted ASCII, Sequential Sequential
11 Formatted Binary, Sequential Sequential

I1/2-4 Revised 1/77

Word 6

-Word 7

Word 8

For position: File Manager

00 Absolute, Records ' No change

01 Absolute, Files No change

10 Relative, Records) No change

11 Relative, Files No change

For function: . File Manager

00 Write File Mark R No change

0l Punch leader Reserved

10 MTIC only, Control Edit; Line Set file deleted
Printer only, Eject to Top-of-Form bit in DIB

11 MTIC only, Control Erase Update directory

(New files only)

Requested Count. This word is supplied by the user to specify the I/0
length, which is defined as follows:

For read or write functions, this word is the number of bytes to be
transmitted (1 to 65,535). (If the operation is Write Formatted ASCII,
I0X will alter the requested count to remove trailing blanks before
calling the handler. This is done with an intermediate counter. IOB
Word 6 is not altered.) . . ‘ o

For relative record or relative file positioning, this word is the
number of records or files to skip. (A positive count means skip
forward, a negative count means skip backward).

For absolute record or absolute file positioning, this word is the
actual record or file number to skip to. (For MTIC Handlers, the unit
is rewound and placed offline if this word is equal to minus one.)
NOTE: Positioning a file to absolute -1 (file marks or records) is a
close file operation for-the File Manager (refer to Section 5.1.3).

Buffer Address. This word is supplied by the user to specify the start
address of the I/0 buffer. Note that this address is always a word
address and that indirect addressing is not allowed.

Actual Count/Prompt Characters. This word is returned to the user by -
the File Manager. It contains the number of records or files actually
skipped (for relative position), the actual record or file skipped to
(for absolute position), or the actual record length in bytes (for read
or write). The File Manager will NOT read more bytes into the user's
buffer than requested, but will continue to count characters to estab-
lish the physical record length.

On devices which are capable of prompting, this word is used to hold up
to two prompt characters.

NOTE

Word 8 contents will be assumed to be prompt characters if
negative (bit 15 set). Bits 7-0 not equal to zero indicate
two prompt characters; bits 7-0 equal to zero indicate only
one prompt character (in bits 15-8).

I1/2-5

Woxrd 9 Direct Access Address. This word is the direct access data address
within the device (current record number), for devices capable of
supporting direct access. For sequential access, this word will be
incremented to the current logical record number after each access.
For random access, the user stores the logical record number here.

2.2 UNIT ASSIGNMENT TABLE (UAT)
The Unit Assignment Table is not part of the standard IOX library; it must be "tailor-

made" by the user for the particular configuration of devices he requires. Figure
2-2 illustrates the UAT configuration.

UNIT ASSIGNMENT TABLE

15 . 0 ‘word
LOGICAL UNIT NAME/NUMBER 0
DIB ADDRESS 1
LOGICAL UNIT NAME/NUMBER 2
DIB ADDRESS : 3
|
LOGICAL UNIT NAME/NUMBER N-2
DIB ADDRESS N-1
TABLE LENGTH = - (N + 2) N

Figure 2-2. UAT Configuration

The UAT is a table of two-word entries for each logical unit which can be referencecl
in calls to 10X, plus a terminating word containing the UAT word length. The first
word of the entry is the Logical Unit Name/Number (LUN) which is referenced in the
user's IOB. It may be any value from O to 65535.

The second word of the entry is the address of the corresponding DIB table.

The last word in the table is the count word. It is a negative gquantity representing
the number of words in the table, plus one; that is, two words for each entry, plus
the count word itself, plus one. Thus, if there exist four two-word entries, the
contents of the count would be minus 10, or -(4 x 2 + 1 + 1). The count word must be
the last word in the table, and must be labeled I:UAT, because this is the name used “
by IOX when referencing the UAT. (Refer to the sample UAT at the end of this section

TT/2-6 Revised 1/77 iy

S

S ey,

=

2.3 STANDARD DIB NAMES

N«

The following table shows the DIB names for all devices for which standard and non-
standard handlers exist within IOX. The label is to be used as the second word of the
UAT entry for each device the user wishes to include.

Fortran Fortran
Non-DIO Non-DIO 219‘ DIO
Teletype Console D:TYO0O D:TYFO D:TYOD D:TYFD
Teletype Keyboard D :TKOO D:TKFO D:TKOD D:TKFD
Teletype Tape Reader D:TROO D:TROO D:TROD D:TROD
Teletype Punch : D:TPOO D:TPOO D:TPOD D:TPOD
CRT Console D:TYOO D:TYFO D:TVOD -
CRT Keyboard D:TKOO D:TKFO D:TVCD -
High Speed Paper Tape Reader : D:PROO D:PROO D:PROD D:PROD
High Speed Paper Tape Punch D:PPOO D:PPOO D:PPOD D:PPQOD
Centronics Line Printer D:LP0OO D:LPFO D:LPOD D:LPFD
Tally Line Printer D:LP10 D:LPF1l - -
Data Products Line Printer D:LP20 D:LPF2 - -
Card Reader D:CROO D:CROO D:CROD D:CROD
Disk (43 series, fixed platter), unit O D :DKOO D:DKFO - -
Disk (43 series, fixed platter), unit 1 D:DKO02 D:DKF2 - -
Disk (43 series, fixed platter), unit 2 D:DK04 D :DKF4 - -
Disk (43 series, fixed platter), unit 3 D :DK06 D:DKF6 - -
Disk (43 series, removable platter), unit 0 D:DKO1. D:DKF1 - -
Disk (43 series, removable platter), unit 1 D:DKO3 D:DKF 3 - -
, Disk (43 series, removable platter), unit 2 D:DKO05 D:DKF5 - -
N~ Disk (43 series, removable platter), unit 3 D :DKO7 D:DKF7 - -
Storage Module Disk, unit 0 (cylinders 0-201) D:SMO0O D:SMFO - -
Storage Module Disk, unit 0 (cylinders 202-403) D:SMO1 D:SMF1 - -
Floppy Disk, unit 0 ' o D:FDOO = D:FDFO - --
Floppy Disk, unit 1 D:FDO1 D:FDF1 - --
Floppy Disk, unit 2 , : D:FDO2 D:FDF2 - -
Floppy Disk, unit 3 D:FDO3 D:FDF3 - -
Magnetic Tape, unit O D:MTO0O0 D:MTO00 D:MCO0 -
Magnetic Tape, unit 1 D:MTO1 D:MTO1 D:MCO1 -
Magnetic Tape, unit 2 D:MT02 D:MT02 D :MCO02 --
Magnetic Tape, unit 3 D:MTO3 D:MTO03 D:MCO03 -
IEEE Intelligent Cable - - D:IEOD -

I1/2-7

2.4 SAMPLE UAT

When creating the UAT, the user must declare I:UAT in a NAM directive, and any of the
Standard DIB names in an EXTR directive, e.g.:

UATTOP

I:UAT

NAM

EXTR
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

I:UAT

D:CROO, D:LPOO, D:TKOO, D:LPFO

'CR' Card Reader Entry
D:CROO

'Lp' Centronics Line Printer Entry
D:LPOO

‘cr' Command Input Entry
D:TKOO

'co! Command Output Entry
D:TKOO

5 FORTRAN Unit S
D:CROO

6 FORTRAN Unit 6
D:LPFO

UATTOP-I1:UAT-2 Table Length

I1/2-8

o

SECTION 3

I/0 HANDLER ORGANIZATION

The purpose of an I/0 handler routine is to set up and execute the actual I/O instruc-
tions (normally interrupt-driven Auto-I/O instructions) necessary to perform an input
or output operation to a specified device. The I/0O operatiocn and the Logical Unit
Name/Number are specified in the user's IOB, and the I/0 must be performed within the
constraints of the device as specified in the CIB and DIB. (These tables are des-
cribed fully in section 4.) A listing of the Character-oriented I/O handler is
included at the end of this section.

3.1 THE STANDARD HANDLERS

Each standard IOX handler is described below. Refer to Section 7 for descriptions of
non-standard handlers and to Publication No. 93325-00 for the A/D, D/A Handler.

3.1.1 Character-oriented Device Handler (non-Fortran)

This handler performs I/0, according to specifications within the applicable CIB,
for the teletype, high speed reader and punch, and line printer. (A complete
listing of this handler is found at the end of this section.)

3.1.2 Fortran List Device Handler

This handler exists for I/O to the teletype console, teletype keyboard and line
printer when used as a list output device under Fortran. It differs from the
previously described handler in that it recognizes and processes Fortran carriage
control characters; i.e., a "1" character as the first print character signifies
top-of-form, and a '0' signifies double spacing before printing. (A top-of-form
function to the teletype consists of six consecutive line feeds).

Note that the Fortran task does not use an IOB, but rather Fortran I/O state-
ments; these are passed through the Fortran/RTX I/0 Interface routine which sets
up an internal IOB for the user, according to the DIB's he has included in his
Unit Assignment Table. The Fortran I/0 handler is entered because the third
character of the device name in DIB Words 5 and 6 is an "F"; thus "LPFO" will be
processed by the Fortran handler, and "LPOO" will be processed by the standard
character handler. .) .

3.1.3 Card Reader Handler

The card reader handler is similar to the standard character handler except that
input characters are converted to ASCII before returning.

IT/3-1 Revised 11/76

3.1.4 Magnetic Tape Handler

The Magnetic tape handler processes I/O for magnetic tape devices, and will
perform read, write, write end-of-file and reposition functions.

3.1.5 Disk and Storage Module Disk Handler (Non-Fortran)

The I0X disk handler allows the RTX user to communicate with the disk. The
communication takes place through IOX and the standard calling sequence is used.

The user calls the IOX disk handler by making a standard call to IOX with an IOB
which contains a LUN assigned to a disk DIB. The op-code must be either read-

direct access or write-direct access.

Data Formats

The IOX disk handler supplies no formatting information of its own. It Jjust
reads (or writes) the number of bytes requested by the user. The length of each
"record" is unknown (supplied by calling program) and therefore the disk handler
is unable to read variable length records without some form of external format-
ting routines.

e

S

AT

The IOX disk handler can support multiple "extents" on each disk and can allow

access to them as if each were a separate disk unit. Extents are simply regions
on the disk which may be defined by the user to be handled separately. Without
any outside action by the user, I0X will process contiguous records throughout

the extent. Each record contains the number of bytes requested in the I/O call,
and each record starts at the beginning of a sector. Therefore, for fixed length ~
records, each extent may be considered as a sequential file.

In order to allow "direct access", each sector has a "relative sector number".
The user may direct the IOX disk handler to process a particular record by ini-
tializing IOB Word 9 (IOB Direct Access Address) in the IOB used for the I/0
call. At the completion of each request, this address is appropriately incre-
mented by the IOX disk handler so that the next request will process the next
record. If the record contains 1-512 bytes, the address will be incremented by _ i
one; 513-1024 bytes, the address will be incremented by two; etc. Note that the '
relative sector number and relative record number may not agree (in fact they
will not agree if the records are larger than 512 bytes).

Extents are defined in the disk DIB's. The standard Disk DIB's (DKOO and DKO1)
define an extent as an entire platter (200 cylinders, 2 heads). The user who
wishes to utilize several extents on a single platter may do so by creating his
own disk DIB's, using the following variables within each DIB to define the
parameters of the desired extent:

a. The number of sectors per track (may be less than the physical number).

b. The starting sector number (when added to the number of sectors per track
must be less than or equal to the physical number per track).

Cc. The number of hcads per cylinder (may be less than the physical number).

d. The starting head number (when added to the number of heads per cylinder must
be less than or equal to the physical).

1I1/3-2 Revised 11/76

e. The number of cylinders the extent occupies.

£. The starting cylinder (when added to the number of cylinders must be equal to |
or less than the physical).

g. The drive number.

The IOX disk handler does not check for validity of the resulting sector, head,
and cylinder numbers. It assumes that the dimensions and offsets supplied in the
DIB are valid. This allows the user to take advantage of the "flag" bits des-
cribed in the Disk Interface Manual.

Contiguous sectors occur in the following sequence:

a. Consecutive sectors on a single track (up to the number of sectors per track).

b. The same sectors on the next head (up to the number of heads per cylinder).

c. The same sectors and heads on the next cylinder (up to the number of cylin-
ders).

The disk handler requires four additional words (five if under Fortran) in the DIB
which are not required for the other handlers. These are DIB words 11-14, (11-15
if under Fortran) and are described in section 4.

3.1.6 Floppy Disk Handler (Non-Fortran)

3

An "extent" on a floppy disk is constructed as described for the disk handler, .
taking into account the size limitations in the number of cylinders, heads, and
sectors:

Cylinders per Floppy Disk platter = 77 (00-76)
Heads per platter = 1 (single surface)

Sectors per track = 26 (00-25)

Words per sector = 64

There exists within RTX a standard Floppy Disk DIB (D:FDOO) whose extent is
defined as an entire platter. The user may define his own DIB's as described in
the disk handler description.

.1.7 Disk, Storage Module Disk, and Floppy Disk Handler (Fortran)

Fortran tasks require a certain minimum amount of file management to be performed
by the disk handler. The Fortran disk handler differs from the standard disk
handler as follows: ’

a. The random access address within the IOB is maintained by the Fortran disk
handler itself, rather than the user, since the Fortran task does not create
its own IOB.

b. The Fortrdn disk handler can write and recognize an end-of-file mark. This
is a 2-character ASCII record comprised of "/*" characters.

11/3-3 Revised 11/76

The determination as to whether a Fortran or a non-Fortran disk handler is to be
used is made on the basis of the device name in Words 5 and 6 in the DIB. If the
third character is an "F", it signifies Fortran, and the Fortran disk handler is
used.

In addition, a sixteenth word (Word 15) is required in a Fortran DIB. This word
is used for storage of the current relative record number, which would normally be
maintained in IOB Word 9. Since the Fortran user does not have access to the IOB,
the Fortran/RTX I/O Interface routine keeps this information in the DIB.

3.1.8 Magnetic Tape Intelligent Cable (MTIC) Handler

The MTIC handler controls data transfers between Pertec or Pertec-compatible
formatters and tape transports and the central processor. The handler performs
read, write, write filemark, rewind and offline, control edit, control erase, and
reposition functions.

3.2 I/O HANDLER REQUIREMENTS

The user may write his own handler routine for any type of I/O device he wishes. The
requirements for any I/0O handler to be run under control of IOX are as follows:

1. Since all I/O under RTX must be done under interrupts, the word and block inter-

rupt locations must be set up prior to I/0.

2. A time-out sequence must be included to avoid the possibility of the device
"hanging-up” indefinitely without completing its operations. The real time
clock, via the RTX DELAY: call is normally used for this purpose.

NOTE

The user must not attempt to manipulate the real time clock by
any means other than through the DELAY: call, as this will
adversely affect the operation of RTX.

3. Once I/O is initiated, the handler should pass control back to the IOX scheduler.
This permits other I/0 operations to be executed simultaneously if requested.

4. The I/0 handler should resume control upon either an end-of-block interrupt or
upon watchdog time-out, to check the status and return to the caller at either the
normal or the abnormal return location. ‘

Several IOX- internal subroutines (described below) currently exist to aid the standard
handlers in accomplishing the above requirements. The user-written handler may use any
of these routines he wishes. The names of any of these routines must be declared in
EXTR or REF directives within the user's handler.

Revised 11/76

ComputerAutomation <g:2ﬁ§5 —

I1/3-4

Q

P T s aerr =y

Computerautomation (O ——

3.2.1 SINT: (Set up an Instruction at the Word Interrupt Location)

Calling sequence:

EXTR SINT:
LDX CIB Address’
JST SINT:

DATA : XXXX
Returns with:

INTERRUPTS---UNCHANGED
STATUS~--UNCHANGED

A-REGISTER---UNDEFINED
X~-REGISTER---UNCHANGED

“Where :XXXX represents a constant which is added to CIB Word 1 to form an interrupt

instruction: , '
SINT: does the following: ' -

1. It determines the word “interrupt location of the device. This address must
reside in CIB Word 21.

2. It calculates and stores an instruction intc the word interrupt location. The
actual instruction stored is the arithmetic sum of (contents of CIB Word 1) +
(:XXXX), where :XXXX may be any positive or negative value.

'NOTE

The standard CIB's contain a “SEL DA, 7" instruction in word 1.
3. Preparation is then made for a subsequent call by the handler to the SIO: routine
(the handler need not call SI0:, however). This preparation consists of trans-
ferring the contents of DIB Word 8 into CIB Word 12.

(In the standard DIB's Word 8 will contain Qarious fuﬁcfion codes which are required. -

for SELECT -instructions in order to initiate an Auto I/O sequence during the SIO:

.

routine. If the specific handler does not call SIO:, DIB Word 8 need not be preset.)

3.2.2 SIO: (Start I/0 and Watchdog Timer)

Calling sequence:

EXTR SIO:

LDA DPTR

LDX CIB address
JST SI1I0:

11/3-5

,:"

=

N

S

s e S i e

Returns with:

Does not return directly; if the INTP: subroutine is used, a return will ulti-
mately be made in the following state: ‘

INTERRUPTS~-~ENABLED
STATUS~--WORD MODE OV RESET
A-REGISTER---UNDEF INED
X-REGISTER---CIB Address

DPTR is an address pointer to a two-word information block:

Word 1: Positive number of bytes to be transferred.
Word 2: Word address of I/0 buffer.

(Note that the standard handlers use CIB Words 26 and 27 for this information).
The SIO: routine does the following:

1. Negates the byte count pointed to by the A register, and stores it into the Word
interrupt location plus one.

2. Shifts the Buffer address pointed to by the A register to the left by one bit
(converts to a byte address), then decrements the byte address and stores it into
the word interrupt location plus two.

NOTE

(Steps 1 and 2 above complete the three-word Auto I/0 sequence.
The AIN/AOT instruction itself may be generated by a call to SINT:)

3. Calculates the delay count required for the watchdog timer, as follows (assume a
ten millisecond Real Time Clock rate):

a. The negative byte count created in step 1 is loaded into the A register.

b. The contents of CIB Word 20 are stored in-line and executed as an instruction.

c. The contents of the A register are then negated (converted to positive) and
incremented by 1000.

Steps a, b and ¢ above compute the number of RTC "ticks" (normally 10 milliseconds
each) to delay during the I/0 operation. Since the number is constructed begin-
ning with the byte count (step a) and incremented by 1000 (step c) the minimum
delay possible is ten seconds, plus ten milliseconds for each data byte to be
transferred. The purpose of step b is to permit a larger delay, if necessary.

For example, CIB Word 20 can be set up by the user, when constructing the CIB
prior to execution, to be a shift instruction (e.g., "LLA 1") which would double
the value in the A register, and thus cause a twenty millisecond delay for each
data byte(plus the ten second constant). Note that the instruction in CIB Word 20
is executed before the byte count in the A register has been converted from '
negative to positive, and before the constant 1000 is added. If the minimum delay
(ten seconds, plus 10 milliseconds for each byte to be transferred) is adequate,
then the instruction in CIB Word 20 should be zero (a no-op instruction). It is
the responsibility of the user when creating the CIB table for his handler to
determine how large a delay is required to permit completion of an I/O operation,
and thus what instruction (normally LLA K, where K must be determined) is to be
stored into CIB Word 20.

11/3-6

e e

0.

s

e e i o

5.

Sets up and executes the following I/0O instructions:

SEL DA,X Handler-determined function
SEL DA,S Set word transfer mask
SEL DA,6 Set block transfer mask
SEL DA,Y Handler-determined function

X and Y represent the function codes in bits 15 through 13 and 12 through 10,
respectively, of CIB Word 12. (These function codes were originally copied from
DIB Word 8 in a prior call to SINT:.) Note that if Select instructions of func-
tion X and/or Y are not required by the device, they can be organized in the DIB
so that X=5 and Y=6, so that each is executed twice, or they can be set to a
function code which has no meaning to the device, if such a code exists.

NOTE

If these function codes are all zero, it indicates an operation
under Distributed I/0.

If the device uses functibn codes 5 and 6 for other purposes than
to set the transfer masks, the user may wish toAperform the Select
functions within the handler jtself, rather than calling SIO;:

Once the Select instructions have been executed, é call ﬁo RT* DELAY: is made,
carrying the calculated delay time described in step 3 above.

If the Watchdog Timer expires before an end-of-vlock interrupt occurs, the in-
'struction in CIB Word 1 (normally "SEL DA 7") is executed to disable interrupts
for the device, and the "Error" and "Device Unresponsive" status bits are set in
the DIB, and control is then passed to the EOR: routine at EORST:.

NOTE

SIO: does not set up the end-of-block interrupt location. This
must be done in the handler.

3.2.3 INTP: (End of Block Interrupt Return Point)

The INTP: routine cancels the watchdog timer upon end-of-block interrupt, and passes
Control to the return address of SIO:. Thus INTP: is an extension of SIO:, and is
intended to be used only in conjunction with SIO:.

11/3-7

o

. ——a

To call INTP: at end-of-block, the handler should, prior to calling SIO:, set up the
following sequence at the end-of-block interrupt location:

JST *S4]
DATA TAG
" Example:

EXTR INTQ:, INTP:

TAG ENT
JsT INTQ:
DATA $,0,0,0
DATA INTP:,8180,0
DATA CIB Address
DATA TAG

where TAG is a short calling sequence to the RTX INTQ: subroutine, which points to
INTP: as the task to be queued.

(The user should first familiarize himself with the RTX INTQ: description in chapter 1
RTX Functions).

The above description is the method used by the standard I/O handlers for end-of-block
interrupts. For this purpose, the first 12 words of the applicable CIB may be used to
contain the calling sequence to INTQ:.

For example, the following is a representation of the first twelve locations within the
CIB for the line printer:

C:LP@---LINE PRINTER

LOC INST ADDR LABEL MNEM OPERAND COMMENT
#o0p E NAM C:LP@
EXTR INTQ:, INTP:, 1:READ, | :RITE, | : FUN

i
I
;
i 4

EE S S I ‘ I R T » é
oo DA EQU 4 j’
goL2 INTAD EQU :42 ! !
.‘t L K R T R S U ’ {i
0990 REL # | k |
po00 C:LPF EQU $: | !
pgops P8e0 CIB ENT :
pop1 Lg27 SEL DA,7 SELECT --- FC = 7 ! j
o982 F9@p JST INTQ: ' J
0003 Pp03 DATA $,8,0,0, INTP:,81806,0,CIB,CIB
posL poed
pe95 2009
0806 0000
o897 , : .
PPB8 1FFL _ 0_/
p009 8000 ; ; h
POPA BD00 : :
0008 6060 ‘ }
' 11/3-8 _ o g

_©

Note that the end-of-block interrupt location contains a JST into the CIB itself; Wcrvd

1 of the CIB is the SEL DA,7 instruction used by the SIO: routine. It is also executed

at end of block, thus serving as a convenient method to turn off the interrupt masks
following an I/O operation.

Following this instruction is a JST to INTQ: followed by the required parameters, of
which INTP: is the task to be executed. Note also that this sequence will automati-
cally cause the X register to be loaded with the CIB address upon entry to INTP:.

3.2.4 WAIT: (End of Record Delay Routine)

Calling sequence:

LDX CIB Address
JST WAIT:

Returns with:

INTERRUPTS---ENABLED
STATUS-~-UNCHANGED
A-REGISTER---UNDEFINED
X-REGISTER---CIB Address

The WAIT: routine utilizes the delay length specified in DIB Word 7 to delay a suffi-
cient length of time at end-of-record to ensure that the device is physically ready to
perform the next I/0 request. (Generally, one character time is sufficient for this
delay.)

The routine loads the delay count from DIB Word 7 depending on the I/O instruction at
the Word interrupt location; i.e., if bit 13 of the I/O instruction is on, it is as-
sumed to be an output instruction, and bits 0-7 of DIB Word 7 are used as the delay
count. If bit 13 of the I/O instruction is off, it is assumed to be an input instruc-

tion, and bits 8-15 of DIB Word 7 are used as the delay count. Once the delay count is

established, a call to RTX DELAY: is made; upon return from the delay, the routine
exits to the caller.

3.2.5 EOFQ: (End of File Check Routine)

Once an end-of-block interrupt has occurred, EOFQ: may be called as follows:

LDX CIB Address
JMP EOFQ:

{ This routine does the following:

1. Examines the first two input characters in the buffer to determine whether they
are '/*' '

2. If so, control is passed to the EOF: routine.

3. If not, control is passed to the FOR: routine.

I1/3-9

!

| TESSSNIEE R T o o R

3.2.6 EOF: (End of File Routine)

Calling sequence: .

LDX CIB Address
JMP , EOF:

The EOF: routine is entered when it has been determined that an end-of-file has been
encountered (the routine EOFQ: may be used to determine this).

The routine stores a zero value into CIB Word 28, loads the A register with an end-of-
file status, and transfers control to the EOR: routine at EORST:.

3.2.7 EOR: (End of Record Routine)

Calling sequence:

LDX CIB Address
JMP EOR:

This routine is entered when the handler has completed the requested I/O operation and
wishes to return to the calling task.

The routine loads the A register with the current status from CIB Word 32, and con-
tinues at EORST:. :

3.2.8 EORST: (Alternate Entry Point to EOR:)

(EORST: and EOR: are alternate entry points to the same end-of-record routine. The
difference between the two is that EOR: loads the I/0 status word into the A register

from the CIB. EORST: assumes that the status is already in the A register.

Calling sequence:

LDX CIB Address
LDA I/0 status (from handler)
JMP EORST:

The routine does the following:

1. It copies the actual transfer count of the I/O operation from the CIB into Word 8
of the IOB.

2. It stores the status of the I/O operation (in the A register upon entry) into
bits 15-8 of IOB Word 5.

3. It performs an RTX BEGIN: call, passing as a parameter the normal or abnormal
return address of the caller, depending on the status. The abnormal return
address is taken if any of bits 9, 10, 11, or 14 are set in word 5 of the IOB.

4. It calls WAIT: to perform an end-of-record delay.

I1/3-10 Revised 11/76

et -

5. It loads CIB Word 1 (assumed to be "SEL DA,7), masks off the lpw order two bits
(to make it a SEL DA,4 or initialize instruction) and executes/ it in-line.

6. It empties the IOCH (I/0 suspend) list into the READY 1list.

7. It then transfers to the IOX request scheduler routine to ¢heck to see if another
request is pending for any device on the controller just used.

3.2.9 FETCH: (Input one character from an I/O device)

Calling sequence:

EXTR FETCH:
LDA CIB Address
JST FETCH:

Returns with:

INTERRUPTS--~ENABLED
STATUS-~~-UNCHANGED
A-REGISTER---CONTAINS INPUT BYTE
X-REGISTER---UNCHANGED

The FETCH: routine calls WAIT: to wait one character time, then calls SIO: to perform
a one-character I/0O operation. Upon input of the character, it is checksummed, and
the subroutine exits back to the caller.

The following assumptions are made by FETCH:.

1. The handler has previously zeroed out the checksum word (CIB Word 13) at the
start of the record.

2. There exists in CIB words 34 through 37 the following sequence:

DATA S+1 Pointer to byte count
DATA 1 Byte count (1 character)
DATA S$+1 Buffer address

DATA 0] One-character iﬁput buffer

which are required for FETCH:'s call to SIO:.

Upon return from FETCH:, the input character is in CIB word 37 as well as in the
A register, and the cumulative checksum is in CIB word 13.

T1/3-11 Revised 11/76

J

3.2.10 BUFFQ: (Store input character into buffer)

Calling sequence:

EXTR BiFFQ:
LDX CIB Address
JST BUFFQ:

Returns with:

INTERRUPTS~---ENABLED

WORD MODE

OVERFLOW---RESET (unless buffer filled)
A-REGISTER---CONTAINS INPUT BYTE
X-REGISTER---UNCHANGED

The BUFFQ: routine is designed to be used following a call to FETCH:, in that it moves
CIB word 37 (stored into by FETCH:) into the user's buffer. The step-by-step procedure

is:

2. The actual transfer
3. The actual transfer

4. If the actual count
buffer address (CIB

5. If the actual count
to by CIB Word 27.

6. If the actual count
buffer to be full),

1. The overflow register is reset.

count (CIB Word 28) is incremented.
count is compared to the requested count (CIB word 26).

is greater (indicating that the buffer is already full), the
Word 27) is incremented and the subroutine exits.

is less, CIB Word 37 is copied into the user's buffer pointed
Then Word 27 is incremented and the subroutine exits.

is equal (indicating that this character will cause the
overflow is set and CIB Word 37 is copied into the user's

buffer pointed to by CIB Word 27. Then Word 27 is incremented and the subroutine

exits.

3.2.11 UNRES: (Unresponsive Device Routine)

Calling sequence:

EXTR UNRES :
LDX CIB Address
JMP UNRES :

The UNRES: routine may be called when a "Device Unresponsive" status is returned.
This routine masks off the lower two bits of CIB Word 1, which converts it to a SEL
4, or initialize instruction, and executes it to prevent any further interrupts,
stores a zero count into CIB Word 28, (the actual transfer count), loads the A
register with an Error/Unresponsive status, and exits to the EORST: routine.

Computerautomation (Of\ ——

11/3-12 _ Revised 10/77

s

3.2.12 IORTN: (Return to I/O Scheduler)

Calling sequence:

EXTR IORTN:
LDX CIB Address
JMP IORTN:

In practice, an I/0 handler is a subroutine with an

instruction is used, rather than a JST). This is because I/O handlers are only
"called" from one location, and thus the return is known. This return address is
IORTN:. Therefore, once an I/0 operation has been initiated, a jump to IORTN: must
be made. Note that if the SIO: routine is called, it will exit to IORTN:.

3.3 CHARACTER-ORIENTED DEVICE HANDLER LISTING

The following listing illustrates the standard Character-oriented Device Handler
(non-Fortran) written for an LSI-2 processor. The code also includes a table of
equates used by RTX, its subexecutives, and its library modules, as well as a listing

of the TTY console DIB (D:TY00) and TTY CIB (C:TYO).
an alphabetized map of all symbols.

I1/3-13

ComputerAutomation m —_—

abnormal calling sequence (a JMP

CONCORDANCE listings provide

Revised 11/76

PAGE 0001 11/03/77 10:04:27 qU500=10 2TY, TnX, COMX FRUATES
MACRN?Z (42) SI= MACRNS ARn= RIXFAU === ENUATFS USEDN 1M RTX
0003 A Xk K & X &k A * K * k X Kk A A Ak * A * Kk * kA Ak A A * ok ok Ak A % *
0004 % THF FAUATFS CONTAINFD IN THIS ASSEMRLY
0005 ® ARE USFU RY RIX AND TTS SUBEXECUTIVFS ANU
noos * ITS LIRRARY MNDIILFS
0007 *
0008 * IT MUST RF ASSFMBLED AND THE SYMBOL TABLF
0009 * GENFRATFD BF LASSEDR TO THF RPTX MODULE
No10 * BFING ASSEMHELED
nott *
-0012 X ok & Kk & A K & K & K Kk K X k kK R Ak * A K X Kk A * X X % * x * *
0013 *
0014 * EQUATFS COMMON T SEVFRAL BLOCK TYPES
0015 * '
0016 ¥ ok ok ok ok k& kA Ak A ok K A A A K K A A * A A KA x4 X + & Kk 2 *
0017 %
= 0018 0000 "CHAIN ERU) POINTER TN NEXT BLOCK
'; 0019 0001 PRTY EQu 1 PRINKITY (BITS 15-13)
L 0020 0003 CN EQU 3 COORDINATION NUMRFR
& 0021 0002 QUEUF ENU 2 TOP OF CUFUF
- 0022 * _ ;
0023 ok ok kA Kk ok Ak ok Ok Kk K 2 2k Ak Kk Kk A K X A Ak & Kk A A A A *
0024 *
0025 * TCBHB F Q0 U A T E S
0026 * :
0027 AN T A N S T T BT TR S S P S S S SV O o
00218 %
.0029 0001 STAPRT EQU PRI STATUS (BTI1S 0=2) & PRIORITY (BITS 15=3%)
0030 0002 PREG EQU N PROGRAM REGISTFR
0031 0003 AREG EQuU z ACCUMUL ATOR REGISTFR
0032 0004 XREG EQU 4 INDFX RFGISTER
0033 * .
003y R A Kk kA kX Xk & X K KX Kk F K X K X K K K KX A * kA KA £ K x *x &
0035 * . ‘)
0036 *x 1 08B F ¢ U A T FE 8 e
0037 * : x
0038 X K Kk Ak kA F k kA A K A K A K A KX KX A A A A K X & £ Kk & A % F- 4

()

R v o e o e R R

ST-€/I1

(.]

PAGE 0002 11/0%/77 10300227

MACRO?2 (A2) SI= MACRDS HKO=

0039 %
0040 0001 IDT
0041 0002 ICUN
nou2 nno2 I1TCR
0043 0004 TLUN
0044 00GS ISTA
004S 000S 10p
0046 006 JRCNT
0047 - 0007 1BUFF
004R onoa8 TACNT
ooue N0o9 INDAA

EQU
EQu
EQu
EQU
EQu
EQU

FQU

Fnu
Enu
EQU

9YSn0=10 RTX, 10X, ChHmX FGUATFS

RYXFRU

L PN NN S YN -

-== FEQUATFS USED IN RTX

DEVICE TYPE

UNTT NUMRER

ADDRESS OF HSER'S TCB
LOGTICAL UMIT NAME/NUMRER
STATUS

OP=CNODE

REQGUESTED COUNT

BUFFER ADDRESS

ACTUAL COUNT TRANSMTTTED
DIRFCY ACCESS ADDRFSS

-——-—wuonmwmndwoo

91-€/I1

PAGFH

NGSt
n0Se
0053

0054

0055
0056
0087
0058
0059
0060
0061
0062
0063
0064
0065

0066

0067
0n68
00569
0070
0071
0072
0073
0074
0075
0076

- 0077

o078

- 0079

0080
00R1
NNR2

. 0083
LY
- 008S
0086

11703777
MACROZ2 (42) ST= MACROS

0000
nnot
0004
00085
0006
0007
0009
000A
000C
000N
000E
000F
0013
0nt1a
0015
0016
0017
0022
0023

0ot1a
0019
001A
0018
001
0otn

10204227 9

R0=

*
*
*
*
*

»

CROR

CSEL7
L
CTMpP2

CCTMP3

CERTSK
CNFwA
CNFwX
CFUN
CCSum
REQCNT
cCJTHL
CSPLOP
CDFL

CTNTR

EXCESS
CENF
CHDST
CNRS
*

*

*
CIOR
cCOP
CRCMT
CRUFF
CTCNY
CDAA
*

*

c 1

gcy
F (1
Fry
EDU

. EQU

FQu
EQyU
Fiin)
FQu
EQuy
Enu
EQU
EQU
EQU
EQu
EQU
FENY
FQu
Fnu

CFTLLED

EQy
F O
Fou
EfuU
£y
F

S00=10 PTX, 00X, COMX FQUATFES

RTIXEQY

H F

FROM T(OR

24
25
’b
27
PR
29

FILLED FROM D18

== FOUATFS UHSFD IN RTX

Ak kK & % ok k& Ak & Kk & * & K Kk b k% A Ak % A2 A * A Kk £ & * 2 % «

U AT ES

X & kX 2 k x * + % k * A ¥ & A Kk kK F A X A * A A *x *k k * Kk * 3 F A K «

BEGINNIMG OF RrCORD FLAG

CSFLECT FC = 7

TEMP CELL 1

TEMP CELL 72

TEMP CELL 3

END OF RLOCK TASK POIMIFR
& REGISTER FOR FRTSK

X PFGISTFR FOk FRTSK

TEMP CFLL FOR 1/0 INSTRUCT
CHECKSUM TEMP

JUMP TARLF

POINTER TO SPFCIAL OGP PROC
DELAY MONDIFICATION

POINTER T0O INTERRUPT ADDRE

HARDWAKE STATUS
NOTSE RECHORD RUFFER ADDRFSS In ((r

I068 POINTER

CPERATION CODF
REQUFSTED CONNT
RUFFER AGLRFSS
TRANSFER COUNT

DIRECT ACCESS ADDRESS

&

LT-€/1I

PAGE 0004

00R7
0nRe
pora
ango
0nai
0092
0093
0094
Nn9s
N0Qek
0097
0098

11703717
MACRO2 (A?) SI=z

001F
0nyE

0020
0021
0ng»
0023
0020
0025

MACHNS

1he0ie 27 AuSNaG=1i «Tx, T1rix, €COaMx F0UATES
= DY YE g - - FOUATFS USE IM »TX

*

COIR Fay 30 DR POIMNTER

*

* TEMP STARAGFE SFD kY TUY AND [TS DRIVFRS

* .

CRTN EQu 33 RETHRN AODRESS FROM [sSTU

CRCHN BN kY] START OF NATA CHATN

COCHNT EQU CDCHAN+

COCHNZ EQU FLOHN$ D

COCHNI FOy CHOHE+T

PN

81-£/11

R AR

PAGE 0005 11/03/77 10:04:27
MACRO? (A2) SI= ™ACROS BRO=

0135 *

R

9US00=1

RTIXENI

rPTX,

10x, CO“X EQUATES
ECUMTFS USEL IN KTX

S 0ton LN S N O T N I 2 I I T A S T T T T IR T T Y Y
0101 *
n1o2 * DIAR F 0 v A& 1T ¢ S8
0103 *
0104 ok Ak ko A A Kk A X kb X A K F Kk K+ A *x ok kA A Ak * k &
nN10s %
0106 0001 NCIA EQU 1 CIR POTNTF&
06107 0004 DSwW EQu 4 DFVTICE SPFCTFTICATION WOERD
0108 noons D1 EQn S NDEVICE TYPF
0109 0006 NCUN EQu 6 CONTROLIER R UNTT NUMRERS
0110 0007 DDFL EQU 7 EMD OF RLOCY DELAY TIMES
0111 0008 DFUN EQu K FUNCTION CODES & FLAGS
0112 0009 DULS Eau Q UPPER { IMTTS
0113 0N0A NDERRC EQU 10 ERROR COUNTFER
0114 000HK DSTRT E@Y 14 DIO STAFT ADDRISSFS & MEDES
0118 000R NSFCT ENY 11 VERTFY FLAG, DRIVF #, STARTIMNG SFCTOR
0116 N00C DHEAD EQU 12 SFCTORS/TRACK & STARTING HEAD
0117 ooocC DNRSZ EQU 172 NOISE RECORD STIZF IN DIW
0118 000D DCYL EQu 13 SFCTORS/CYLINDER R STARTIMG CYLINDFX
0119 000N nMan EQU 13 LAST MO0E TN ND1R
0120 000F DEND EQU 14 NUMBER OF SECTORS INM FTLFE
0121 000F DCSECT EQU 15 FORMATTED SFECTORP NDO
0122 *
0123 X ok &k A & x 2 Kk * £ k F X A K Kk * Kk Kk *k A A A Kk X Kk A * * 2
0124 * v
0128 * IMTFRRUPT KIOCK F o UV A T F §
- 0126 : *
L0127 X ok * A ok k &k ok K kA k& Kk A k * k k *k A Rk A A * K Kk Kk 4 £ * % *
0128 0000 NTATO EQU 0 1/0 INSTRUCTION
- 0129 0001 NTCNT Fnu 1 COUNT FOR 2UTOD T/0
S 0130 0002 NTRUFF Enu BUFFER ADDKESS = 1
0131 0004 NTFOR EQU 4 FMD=OF=KRI.NCK INTERRUPT
: 0132 0005 NTEORA EQ 5 ANDRESS FOGR EOB THSTRUCTTOM
, 0133 * .
0134 X ok A K kX k k 2 kK X k Kk X k Kk * Kk * K Kk Kk A * A * Kk 2 % & * A %

k]

L I S

&

6T-€/11

FPAGE

MACKND2 (A2)

0136
n137
Ny 3H
N139
w140
otat
ni4z
0143
014y
9148
0146
n1u7
0148

0149
- 0150

0151
0182
0153
01S4
n18S
01Ss
0187
01R]4
0159
0160
0164
0165
0166
0167
0168
0169
0170
0171
0172
173
0174

S00=1(~T¥
ST XF i -

MTISCHIL ARE TOUS r

D00k 11/048777 10s04227 1
ST= »ACRKRNS 1si)=
*
*
X * % A X £
*
01D ARPR(IW [ZMY
0nng FORMSK FEtild
nong FOFMSK EOU
4000 ItFRR EfU
0800 T:80P ENY
0400 T:RES N
0200 IsENF ENY
0100 T:ROD EQU
0300 1:60D FQY
2000 T2NOTO FOU
4000 ERROR FQOU
001F OPMSK EQU
0N06C OPMSK1 EIH
001C OPMSK2 EQU
0080 IORFL FQU
0003 FGRTYP EQU
0004 PREOMPT FOU)
000R FOFTYP FQU
nooon IFF
0onos T0:TMP EN
FNOC
*
* TITLE
* ACCFP
* THEN
* GENFRA
*
MACRI
TFT
TITL
FnOC

IFT

L0000
31

:C

¢ 1C
280

3

]

R
LSI30S%

)

GFNEFRATING
TS TITLY A
PART NHUIMP
TES PART W

TITLF
1.S1308
#y,87=-11

1S12

b TOX, (GMX Eu
-- FLLATER pI€

WLIATES
T N B
HACKARKNOR FLAG

ENDR OF KECORD
Euh OF FTLE MA

BECINMING OF D

(P=CODF MASK =
FUILL OP=CODE ™

TEMP USFD RY]

MACRO

S TFXT STRING
FR AS SFCunp
UMRER HASED O™

etk 3
EfOTN

I
SAME

MASK
SK

EVICF

NOT SRECTAI

ASK

GX

TN FIRST PARAMETE®S
PARAME TH®

A

K1X

* k& * & &

AS ChaA

STATUS HIT

f—EIT

P ST2/LS1305 FLAG

A

-———-wmnmwmwoo

IR B o

PAGE 0007 11/03/77 10204227

9u4500=-10 TX, JTOY, COMX EQUATFS

MACRO2 (A2) SI= MACROS BRO= RIXEU) ==« EQUATES USFD IN RTX
0175 TITL #1,82=10
0176 ENDC
- 0177 ENDM
F0LT7R *
<0179 * k K k Kk * Kk kX Kk k A %X &k % * A Kk * K Kk K Kk r A k kX Kk k k K* Kk Kk X X X *
. 0180 * : '
- 0181 0009 - INTTC FQU 9 PEVICE INTTTIALJZE RITS
0182 *
=
H
~N
W
i
N
(=}
=) (Ve

=)

—

1¢-€/11

PAGE 000H
MACROZ (A2)

- 0184

01RS
0184
0187
01R~
N1A9
0190
0191

0192

0193
0194
0195
0196
0197
0198
0199

- 0200

0201
0202
0203
0204
0208
0206
0207
0208
0209
na10
0211
0e1e?
0213
0214
0215
0216

- 0217

0218

- 0219

11/6%/77 10204z

S1= MACRNS RA=

*

*

A
1tF2 CPHPRT
1FFR CHRPPR]
1FFR CFMNPRT
{FFA8 CIDPRT
1FFAR CTLPRI]
1FFF CINPRI
1FFQ CPIPRT
1FF9 CSFPRI]
{FFEA STIPRI
1EFA STOPRY

*

*

>
H000 STP1IST
4000 STPEPN
2000 STPECN
0100 STPESF
0R00 STPTSC
0400 STP(CKS
00FF STPCMT

4

*

*
0001 NSST™
nooe NSSRM
onoy [PSSEM
NnNna DSSLA
GO10 NSSNHDTR
00720 NSSRTS
0100 NSSDSRKR
0200 NSSCTS
0100 NSSCO
0RND

D3SRI

27

GOSN (=)0
My

PRTORITIES

Fou
£ 01U
Euuy
EQU
FQU
ENU
Fau
ENU
EQu
Fu

STOP

EQu
EGU
EOL)
EQU
EQU
ENU
FOuU

DATA

EGU
F QU
IME
F Ny
EGY
e
EQU
gEnu
Fu

EQy

Ry Te
ARIRA
[(&PPR]
ChPPE]
CRPPR]
R190
CRPPET+ 1
CRPPET+1
»184
STIPRI

TABLE FLAGS

C RN
HEXU
t2000
t 0100
SOROD
e NG
eONF}

SET SIGNALS

0001
0002
1n00y
s ON0OR
t0010
10920
t0100
0200
HOY K Y
SOROD

=T,
GFNERAM

10y,

et
RECFIVE
Fuscrius
TRANSMIT

TR IVER
PROC FRID
PROCE SSNR
NATA PRQOC Fr1Q

FoliaTe g

FOVATES

PRINETTY

PRI

TRANSMTT LINE PROC PRTE

INTFRRUPT
TNTERRUPT

TASK PRID
TASK LQOwFR PRINKITY
SPECTAL FXCHFPTION PROCFSSTANG

START TINPUT PRT(
START UHTOUT PeIQ

WD 0O
wORD
wWNRN N
WORD O
WORND 0
Witk ¢
ORI

ROUTINES PAKAMETER

RIT 0
RTIT 1
K11 2
RTIT 3
sIT u
RIT €
HIT &
K71 ¢
BIT 10

RIT 11

HIT(S)

O T
HTT(S) 1% 18T SINP (AN DF 2 Fain D
FIT(S) 14 FRROPR OTF IST PO, bante ngd
£TIT(S) 13 FRROE JF CHAR NMOT QTN ((Hald
RIT(SR) 17 FRRNR IF STNP CHAT Fivh
KIT(S)Y 11 TRANSFFR STUP (HAR(S)
KIT(S) 10 ACCUMUBLATE (VR CR S i SO
N=7 COHNM]Y
wWORN
TRANSMIT HOnfF
RFCFTIVE MODOF
FCHO MDE
LOOP=RACK MiDE

NATA TFRMINMAL READY
REAQUFST 10 SEHD
DATA SFT READY
ClLEAR T SENT
CARKTEL DFETECT

RING IMDICATOR

TV 10804227 94S00=1y RIX, TNX, COMX FRUATES

35 ROs= CO*X GFNERAL FOUIATES
NS8SA FGL 1009 BIT t2 STOGMNAL ODUALTTY
NS3SCR ENU t 200N BRIT 13 SFCONDARY CHANNEL RECEITVF
DSSRL EQU SOO3F SIGNALS 10 RPAISF OR LOWFK
D8AWY EQU t3F0n SIGNALS T0 WATT FOR
#
* DEVICE DEPEMNDEMT RPNUTTINFES TARLF DPTISPLACEMENTS
% ‘
DDRLNP FQU 1 SET LINF PARAMFETERS
DDRSYN EQU by SFT SYNCH CHARACTER
DRREPC EQU 3 SFY SPECTAL CHAKACIFK
DORINT EQU 4 INTTLIALTZF LTInNG
NORENL FQU 5 FNABLF LTNF
PHRGSL EM & 1BISARIE L INF
DORSTY FRU 7 START [NkUT
DORSPI FRU # S0P INFUT
NORSTO EGU q START ouipur
DORSPO ENU 10 STOP INPHT
PDRICY EQU 11 INPUT CHARACTER PRDCESSOR |
DDRIC2 ENY 17 INPUUT CHARACTER PROCFSSOR /
DOROCY EQU 13 GLUTIPUT CHARPACTFR PROCFSSOR 1
DDROCZ EQU 14 QUTRPUT CHARACTER PROCESSOK 7
DORRON EQU 15 RATSEF AND/OF WATIT FOR DATA SET SIGHMALS M
DDRILOF EQU 16 LAWER ANG/ZOR WAIT FOR DATA SET STGMALS OFF
DDRRSY EQU 17 RESYNC | INF
DDRNSY FRU 1R 1S5SUF NFW SYNC
DDRBRK EOU 19 - TASUE RREAK
DORRVE EAQU 20 REVERSE CHANNEL
NDDRLTP ERU 71 LINF TRANSMIT PROCEDURE
*
* SYNCH MODEM CONTROILER COMMAND wNKD
*
SCCRTS EQU s FIT O REQUEST 10 SEmD
SCCTM EQU tnNe HIT TRANSMTT MODF
SCCR™ EQU t0d RTIT 72 RECFIVE MNODE
RIE SCCIE EQU t0R BIT 1 INTFRRURPTS FNAR|F
ang o SCCDTR EAU 210 BIT o DATA THFRMINAL RFADY

€2-€/11

PAGE

11703777

MACR(OP? (A?2) ST=

- 0256

n2s7
H1P25R
0259
0260
0761
0262
626%
need
0265
0266

. 0267

nee6s
0269
0270
0271
0272

0273
0274
0275

0020
anagon

0pRY

06061
0002
n0o4d
000R
04010
Noe60
0020

0040

0060
00RO
001F
006073
0004
0006

MALWROS KM=

SCCSSC
SCCALS
5CCLH
L4

*

*

SCSNSR
SCSCTS
scsch

SC3RI

]r.ssn

SCSFRC
SCSPE

SCSRDNO
SC3TDO
SCSSCD
SCSLST
SCSPES
SCSkROS
SCSS8CS

10204227

EQY
F i)
F oy

SYNCH

Fou
Fay
EQu
Fau
E ol
Ey
Fou
Ecu
F o
F ity
FQu
FOuU
Fou
EAQU

Q450 0=10 LRTL, 16X, CEMX FUOHATES
COMX GEMNERAL Fislielvs

M}

120
t40
s RO

DE

HEID |
207

KIT & SEARCH SPECIAL CHAZALTFK
RIT ok ALLOW SYMCH CHAxACTE WS
1T 7 | NOP=HACK MODF

CONTRULLFR STATUS wOkD

H11 0 fPATA SET RFEADY
wTT % CLFAR TO SEND
RIT 7 CCARRIER DFTFCT
BHIT 3 FING THDTICATON
BIT 4 STGNAL UALTTY
HIT Se-6 FREOK CDE

PARITY FRROF CODE

RECFIVE ORATLA OVERRUN CUNF

TRANSMIT NATA OVFRERUN CODE

rEY 7 SPECTAL (HARACTER TFTLCT

S¥C STATUS RITS COMMON WITH LSTHS

SHIFT COUNT TO ALIGN PARITY ERROR T4 | &T8¢
SHIFT COUNT TO ALIGN RFCVY DATA OVFERwer T (514
SHIFT COUMT Tn ALTUN SP CEAR DNFTECT 1t 8T8

|

ve~¢/11

PAGE 0011 11/703/77 10:04227 9a500=-10 PT¥, TOY, CCMX FGUATFS

MACROZ (A2) SI= MACRNOS RO= COMX PROTCAHL DPIVE® TARLES FULATFS
0277 *

027R * RISYMC PROTOCOL ~ASTER TARILE DISPIACFMIMNTS
0279 *

0280 000} CRLTBL EQU 1
02R1 * CONTROIL CHARACIER TARLF DISPACEMENTS
N2R2 0001 ACKO EQu 1
0283 nno2 ACK1Y EGY 2
02PRYy 00n03 NAK Fail 3
N28%5 0004 WACK Eny o
0286 0008 RVT FQu S
0287 0006 FNQ EQU)
0288 0007 STX EQU 7
0289 0008 I1TR ENy 8
0290 0009 £1R EGU]
0291 0004A FETX EGU 10
0292 0008 FOT EQU 11
0293 00QC DLFFNR EQU 12
0294 000D DLESTX EQU 13
0295 000F DLFITAR tnU 14
0296 NOQOF DLEETR EQU) 15
0297 0010 DLFETX EQY 16
029R 001 DLFENT Enly 17
n29Q 0012 TTD Fou 18
0300 %

06301 0002 FNQTRBL EQU P4
n3p2 0003 STYTRI. EcU kS
0303 0004 ITRTRL EQiY #
0304 000s FYRTRL FNU 5
030S 0006 ENDTRL EQU)
0304k 0007 AKNTRL BQU 7
0307 000R FAKTHEL EQU K
0308 0009 AR TR Fo) o
0309 0004A PANTHL EQU 10
0310 *

0311 * CIAR FCHUIATES
0312 *

& | C

(@

GZ-¢£/11

PAGE 0t12
MACKQOZ (A2)

0213
0314
0315
04814
n317
0318
0319
0320
0321
n3z2e
ny23
0324
0328
0326
0327
N328
0329
6330
0334
n33p
0333
0334
n33s
6334
0337
N33y
0339
6340
0341
n3yp
0343
034u
0348
0346
0347

N34R

11 706%/77

S1=

00ty
0007
n0oR
0010
0020
0040
0080
06300
0100
0300
100
0400
0coo
EN0Y
2000
6000
0n1s
0017
nnot
0008
0020
00uo
NDORN
0100
0200
01400
1000
4non
Aanon
O3FF
FF8&n
O0FF8
N3FAR
0F80
001F

0opP°P

10sGase/

K=

CPFLGS
CSTATH
CRDORAO

CwRRN

CACKFG
CAXPRNT
CITRFG
CTYOCNT
CININC
CTNMAX
CAKCNT
CAKINC
CAKMAX
CNKCNT
CNKINC
CNKMAX
CPTHL

CLLSTAT
CLSTDO
CLSTFE
CLSTTO
CLSCTS
CLSDSR
cLsco

CLSSTO
CLSFIN
CLSRFFE
CLSPF

CLSkEDD
CLSOFR
CLSIER
CLHTRM
CLSNTE
CLSTTE
CFLGS

CENTA

Foy
EGY
FEou
Fou
F)
FOu
Ernt)
Eni)
EQu
E i
FQu
£y
EQu
F Ny
FQu
EGY
ENy
EGu
E1)
EM
Fny
Eou
FOu
F oty
£
E O
Fou
EGV
Foty
Fau
EuuU
Eau
Faut
Fou
Eny
F i

LRSS I

Coesx PROTEN

20

T00067
tOGaR
010
0620
(A0
TNORQ
L0300
t 0100
t 300
HE RN RY
t0400
o0
sFNO0D
e26000
t6000
~1

23

tN0O01
MEAXARARS
06PN
10040
TONARN
HORRINE
0200
0400
t1000
$UONO
tHRONE
*N3FF
Ll 2]
tOFFH
HURLSE
tHFRO
31

14

“TIX, T10x,

D

WOk D
Ak E
wIrRn
wORED
WO
CTAIZA
WORD 20
wWNRD 20
CINCREMEMN
MAX IMmlim
Wikl 20
TNCREMEN
MAYX MM
wORE 20
INCRFME N
MAXTMIM
whiRn 21
WORD 23
wOkD 23
WORD 23
wORC P23
WwORE 23
WORE 273
whwt: 23
wiikiy 23
ANORN D3
wiiwly 23
wikn 23
wWRD P23
WORD 23
WORM 23
WiiRD 273
WORND DT
wilkti 234
wORP)
wikn 1y

F0
/N
20
Pl
20
o0

Segs

7

v FGUIATERES

TviE TARPLFS EpipTES

HI1T(R]) N=1S PROTCCNL D IVED F ALC
RIT(S) 0= CHREFAMT PROTOC] STATh
RTIT(8]) 3 RFAD REGUEST OHITST ~reis oo,
QYT (S) 1l R TTE BEOLFEST 1 aT s
HITI(S) S ACK KL AL

=11 (8) A TRANSPALENT it b A1
S1T7(8) 7 TNTHIe K NCW AL,

KIT(S) 8=q FTTMENURT Ot F e

T FOR TIMEOUTS

TImFAOITS

BTIT(S) 10=12 INVALID ALK (innTpy

T FQR TNV ACKS

INVALTD ACKS

EIT(S) 13«15 MAK (CilikIbwR

T FOR NAK CNUNTFw

AR COVMEY

IT(S) 0=1% PROJECHE MASTE W T

EIT(S) LINE STATHIS wiivn

RIT(S) i) TRANSHIT DATA GyF R

RIT(S) 3 TRANSMTIT FRASTIMG b2

“TIT(S) 5 TRANSMIT [~ anT

H1T(S) I 1683 0OF (YTC

F17(S) 7 L (1SS F Hisw

211(8) 1 LSS b (e

BIT(R) Q SPFACTAL T et tind

KIT(S) 10 FECFTVE TTsmp0r

HTIT(S) {7 FECETIVE FRAMIA i

RIT(S) 11 PAFTIY Piwee

RIT(S) 15 PTECETVFE DAL L vy ite i,

QrtT(s) N= G OHTET FRwnivy

HIT0S) 7=15 TR ek @

=178 d-11 TERMIMATTON § e N

LJT(S) {=1) OUTPIT YpesaY uaT

RTIT(S) /=11 Tt TPREMT AT [b

wET(S) O=15 TR e o, Pt b
R RS A U127 PR RV SRS I IR ¥ Y IPPRN S

1Y (S)

At

=

boaeens

P

-

\

£
-k
N

2

9-£/I1

PAGE 0013 11703777 10:04:27
MACRO? (A2) SI= MACRNS BRN=

0349 00°3% CURCNT ENY
0350 0023 CPSTY F0U
0351 0024 CURUFF EQU
0352 0ney CPSTZ2 FOU
0353 002S - LPCTR FOU
0354 *
035% *
0356 | *
0357 0007 DCTMR EQUY
0358 000AR DFLLGS EQU
0359 NO00A DDFLGS EQU!
- 0360 0001 NNFMAS FQU
. 03k1 004 DPODFACH FRU
0362 000A DPFLGS EOQY
7163 0100 DPFUWX ERU
0364 0200 DPFAWX EGQU
0365 0400 DPFUSR ERU
. 0366 0A0D OPFDIS EQU
0367 0008 NDBLKS ENRU
03KR 000C DLPARM EQU
0369 0001 DLPPEN EQU
0370 0002 DLPPSL EQU
0371 000C DLPWSL EAQU
0372 000D DIXI TR EQU
0373 000F DOXLTR ENY
0374 DOOF DLUN EAQU
0375 0010 noiIn EQU
0376 0011 DSRTN EQU
0377 0012 DTMPL EQU
0378 0013 NDTMP2 EQU
0379 0014 DCKSR ENU
038R0 0015 DCKSF EQU
0381 00FF DCKSM EGU
0382 8000 NDCKSL Ewy
0383 0016 DCHSP EQU

0384 0017 NCxSA EQY

94500=10 RTX, 10X, CiomXx EQUATFS
DRTVER TARLES FQUATES

COMX PRATCAL

35
8 O
Tk
26
37

DIR FOHATES

7

[}

10
0001
tQ0ny
10
£H100
t0200
30400
20800
11
12
HOL VR
10002
t000C
13

14

15

16

17

18

19

20

21
cO0FF
t8000
27

23

wORT:
WOk
NORD
WORD

35
15
36
36

#“11(S)
BIT(S)
RIT(S)
HITCS)

LFNCTE 0OF PRDY

WORD
WORD

WORD

WNRD
wnrp
wWORN
wWORD
wRD
RORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WO
WwOoRND
WORD
WORD
WORD
WNRD
WORD
WO RPN
wOROD
WNRD
WORD
WORD

7

R

10
10
10
10
10
10
10
10
11
12
12
12
12
13
14
15
16
17
18
19
20
21
21
21
22

3

BIT(S)
BHiT(S)
RIT(S)
RIT(S)
RIT(S)
+IT(S)
BIT(S)
BIT(S)
RIT(S)
BIT(S)
BIT(S)
RIT(S)
BIT(S)
BT1T(S)
17(8)
BIT(S)
RIT(S)
RIT(S)
RIT(S)
BIT(S)
BIT(S)
BIT(S)
RIT(S)
RIT(S)
RTT(S)
BIT(S)
BIT(S)

BIT(S)

0=15%
0=15
0=1%
0=-1%5
CIR =

0=15
N=15
O=7
0

B=15

10
11
0=15

2=3

0=15
0=15
0=15
0=-15
0=15
0=15
0=15
0=15

H=17
15
0-18
0=15

TEMP FAR UHSERS RE((i g
TEME FOk SURROHTTHFS
TEMP FOR USER HUFE ADUW
TEME FOR SURPOHTINFS
CPST2+1

INPUT CHAR TTIMER VAL UE
PROTOCNL FLALS

NDEVICE DEPENNENT FL AGSE
MASTER STATTINN

AUTO=CALY THIS | TNF ,
PROTOCOL GEPENDENT I AGS
UNFORMATFD wWoTTES PunT
ALL WRITFS XBRMT

HSFR LINE CONMTROL

NISCONNFCT ON “RITF BT EMAW

MAX HLOCK S17F

LINF PARAME [FWS

DARITY FNAKLE

PARKTTY SFLECT, 1=k VESH

WORD LFNGRTH SELHEN]

TNPIIT XLATF PRPAUTINF AR
NUTPUT XLATE R20UTIHE ADDRY
NEVICE LuN

LINE 018 THKEAD
SURKOUTINE RIN aADDR

TEMP CFLIL 1

TEMP CEILL 2

CHFCKSHM wOpTivE ADIRG
FHFCKSHM FLAGS

CHECKSUIM (CHAR ~1ASK
CHFCKSHUM LFNGIH, 1= CHARS
CHFCKSHM POLYNOMT AL
CHECKSI'M ACCUMULATTION

(@

(((

LZ-€/1I1

PAGE 001a 11/048/77 1000227 QubGii=Ye Wlx, Jiix, (fbY FiMgATEQ

MACKRN? (A2) ST= mACROS Koz Cii Rl Rk R TAVL S fGiaTe

03RS ((X1B o) DHDROT Friu 2u WHRD 24 HiT(S) Nel& HEADFR RBYJF i T

0386A 6019 DHNC1?2 ERY 25 R 26 BTIT(S) 0Oe=tih HFADFR wYTES 1+ (&

03R7 0071A NHRC R4 F L ch WKL 26 BITIS) 0=15 HFADFR KYTFS ¢ ¢+ &

NIRK QN nHOLS6 F il 7 Wiare 27 =711(5) U 1& AN BWYTFS v 4 &

0389 001C NUNC 78 Forl PR WK DR RIT(S) 0=1% HFEADER 8YTFSY 7 4 5,

0390 910 DHDCOA B 29 AR 29 s IT(S) O0=18 HEAGER WRYTES 9 3 1o

0391 *

0392 * TOR FINIATFS

0393 *

0394 060l 10PNMNOD E QY 20003 AR S BTIT(SY =1 0P (1 0DF »0DTE 1

0395 0neo TOPMRO E01y L0000 AN S BTT(8) Oe & GFAD ~0 (00, wEADL n R
0396 0001 [uPMRL ERNU 0001 WORD & KTIT(S) U=3 READ MO 1, BE{F[E fangn
0397 0nge? TOPMRY BNy s0ulig Wik S WTT(S) C=3 KEAND MCHD 10,0 (FiwQ - vy 2py
039~ 0aotg JoPMwl FnOu t0N0t WOk & BRIT(S) D=3 wRITE Mubh 01, e =<f1t (iawn
0394 000A IOPMFZ2 Fly 0008 WORD & WTIT1(S) Ged FUMCTINN Gf (e, 4 :
0400 oonNc THROPE 1L s 000 WAOKRE & BTT(S) 2«3 GRERATTOD b

ngoet 0000 TOPNPEK F LU 000 Witkl & =TT (8) A= WEAD P o

0402 0004 TGPGPW EQU s a0y WNRN & IT(S) P=3 WRITE O [nOF

0403 0008 TOPOPF EGU HEES TR wiRD S RTIT(S) -3 FUNCTINN af iy

naog 0ooor TOPORER ENL t0eor WAKD & RYT(S) o TR 4 BOSTTINN i g

0405 0ne1o TOPSPOY FQUY OGRS whEN S HIT(S) 4 SEFCYIAL ORF AT T

0406 0020 JOPSTR FAQu 0PN wNRN &5 1JIT(S) 5 O= STulb, 1= iv0=51 0

oany 0040 TGRPTXYT FQll LYY W € HTT(S) "~ Nz CONT®OL, 1= TFx1 g
1408 0300 TOPTMD it MRS WORD &% 1 1T(8) B=9 0P COF TWRANSFY o ot T T
0409 0100 ICPTRT EOUN AR TS WOKD & BIT(S)Y H=9 READ INTTIAL TRANSGHEE

0atn 0100 T0PTWI EQU 20100 WOHED & 1 TIS) AR=G whTH [TivTFRMETTATE TRar 2vr -
Nyt 0200 INPTwT UL 10200 OGS RTT(8) RBaeG WEITE TEWMTINATIANG T AwSE b,
0412 0309 T1OPTWE kO RN CORD S RTT(S) He=9 AR[TF FAD] 1. Toa Res .

0413 VRV TOPXLT EGU AR WORND & BIT(S) 15 TRANS| ATY

Nyt14a 0EQU INPCKS FU 1800 wWORP 5 RIT(8) i1 ACCHIN L ATE (bt /80

L B 1000 TOPHDPR E0u 1000 WOk 5 BKIT(S) 17 FE AR R 2E O

0416 2000 [tiPSCK ENU 22000 AR 5 RIT(S) 13 CHECK A b e ST

0417 * NOTE S TNPSCK TS TN TRE SAME POSTITINON AS STRPECN TS ST [asd b b i
041R ' 0009 TSTANK ¢ T OO0 Wl & RT108S) 10=14 M FERAOWS, pin

nag9 0000 TSRTFTR kNI s OGO WPRI & W [T(S) KeQ WS Ca b gt 00 fot o

0420 0100 TSTETX Eny N0 AR S ITO8) ket WS Ce 7Y W R [

8C¢-£/11

PAGE 0018 11/0%/7l> tuenu=27 AQnSONe1D »Tx, [6A, (CiiMmx FRidll s

MACRN? (A2) STz MACRNS Ki= COPY PRl URIVEY TARLFS 00T, 5
nu21 0200 [&STEOT E£ain $)200 wORE S T OS) He=G S e Fic) iy [t
0422 ‘ 0300 ISTITH Fiu 10500 Wkl G e P 8) He S E&Ce P T i d
0ag3 4000 TSTLFR® by THANON WiED S HTHS) 10=1d Fus (e [TaF 5
nu2a aqua0n ISTONUN EQU U406 WU S ETT(S) 10=10 b whhbe OFvT0E 000 a0 g
0425 u4con ISTICS 0 t4dC 0o Wit B RTTESY 10=140 FRi{ie TUVAL T 0 Ky
NuUk NnenQ ISTHIET Fiu THRON wikP & LITCSY 1h=14d Fwifivmbtgl |} /70
0427 51900 ISTILY FOH *HN(N WAl L KT T(S) to=ta FROgbe= Tyt 1 :
042K 5400 TSTRRT Foig N6 Wl & T T(8) Q=i DB 0e b i N T Tt Te
0429 SE00 TSTEFL Fu tSR00 ADER S DT 1(S) Jo=1d FRiibe [asie) iRy g,
U430 SO0 ISTNRY Foy :5000 WOk & HITER) 10=18 FWEOL=- OAJA 0 70 s
0uly 3coo0 ISTERC EQU $3C00 WORE & = [1(8) 10=13 F RO (1OF

Y RY 0007 ICCHAR Futt THUFF COMY CLkabNTZLAST CHARIS)Y SFE 0 vy o v Tie o {
043z 0NnA TCYRL FOY TACNT COMY FONTREE SFGUFMOE TaRIF Aitga
n43y 0009 TEOME By ThRAg Comy PROTDICOL (RAs 000 E i] at
04a3s 0NoA 10K Frn 10 COMY CHASALTES T 1rre

6Z-€/11

PAGF 0016
MACRO2 (A2)

oy7
Q43R
nazqg
Hguan
ocadal
0442
nagy
o444
ngus
NQue
0a47
0448
0uuQ
04S0
0451
nusye
0453
048y
n4ss
0456
0457
N4dsAa
0489,
0d60
04A1
0462
nNuks
Qubu
0468
nake6
DuK7
0u6R
NuesQ
0470
0471
ou7re

11703777

51=

o004k
o007
noon
NGNF

0014,

on1s
Nile
O0R
0010
ong22
00235
0Ny
0n2s
0NPA
6027
0NnPR

VN9

ONA2A
002K
nnAc
0nen
oo2n

0one
O003F
0001
00027
nocH
NOO0OR
0010
0020

MACRNS

FOLATES
FUUATES

NelY
N=1%
O=1%
0=1%
O=15%
O=15%
0=-15
=15
O=14%
0=1%
O=14
O=1%
O=1%
N=1%

0=15%
0=1%
0=15
U=-1%
0=18

(re

DEFINITTIONMNS

10204227 Valhvete T, [{x, (timy
R{l= ey DEVICFE Nk]VFEY
*
* CTe DPEFINITIONS
*
CINTSK Eaig A WOKD A 4TT1(8)
COTTSK EQII 7 WHRT 7 #<11(S)
CTIMER EGI 13 Witk 14 HIT(S)
CH IR £EQu 14 WORD 14 BT1T(8)
CINKTIN FQU 20 WARD 20 KTIT(S)
CNSPIN FRU 21 Wik 21 r1T(S)
CSTRPTR Fipi °r wWED 22 RTIT(S)
CFuUNPE EGU CRUFF wWNKD P27 KIT(S)
COMR EQu 29 R 29 ®IT(S)
C{HMAIN ENL LY WO 34 RTIT(S)
CCCADR EOU 34 WOKDE 35 KIT(S)
CCCHAR Ey In wORD 3/ KIT(S)
CIMP2t En 37 ANKD 37 RTIT(S)
CTMP22 BN iR WORD 28 KRIT(S)
CSTPFG FOU 19 WORD 34 RTIT(S)
CXLTR Fnu 0o wlkD 40 RIT(S)
CAFOR EQIUI 41 WOk 4] ~IT(S)
CIMTRF ENU 47 WHIRE a2 F11(S)
CINTCT Fau 03 WORD 42 RI1T(S)
COHMSK F Qb udq wiRy ad4 +17(8)
LOICIR ENY as LENGTH CF TNPUT CIr
LONCIR FAQU ue LENGTH i GiJTRPUT
*
* LIK (LInFE INFOPMATION BLOCK)
*
LSTNS Fou 0 wOKD 0 (1T (8)
LSTLSG FAn T 3F WORT: G 1T (8)
LSTNSK # 0L 0001 WORD 0 KIT(S)
LSTCTIS £nu t000p Wikl 0 T T(S)
LSTUD pan HONRY]| whRD 0 HIT(S)
LSTKT F o3 e A Wik O 11 6S)
LSTSN EQY t001n WOk 0 «]T(S)
I STSCR EnY I ANKRE ¢ KIT(S)

INPUT T Ta3x
QuiTPHT I&T TASK
TINFR/T9I6 1 STATE FI AL
LTIR ADDKFSS

INPOT INT enulraf

Ajicery

LR TR

Ajanyie

SURE RE Titlenr ADDW

Ty) Re ST Tasgp b Afe
FUNCT Gty PRVAAE [0D
TUR) Ge Chadl PROC WV
NEVICFE (I CHaln ()
CUEFENT CitARr Al

CHRRENT Chek(9)

TEMP CFEL Y

TEwR CFLL 2

STeP TARLE FLAGSH
TRANSLATE RODTInNF Ao

A PEC O WETukMED Ty DAL

CURPEFNT IMTEwUR] SRR
ADLITTONAL THTEwRR0RT - v
CHLPACTFRS 1T cniw
COMMSE ¢+

- C{HMSK+

CSTANIARIDY § T F STATIS -
LINE STsval s

DATA SET wEany

CLEMAR TO Skt

CARRTIER DE T

RING TP DTCA 0y

STONAL e 1T1Y

SECOGNG AW Y Credciti | =) Or [V

3

i

A

PAGE 0017 11/04/77 10204227 94500=10 &T5, Tk, (59X b fbThs

MACKN? (A2) STz MALRGS A= ClMx DEVICE DiIVEW ROUATES
TR 0ouop ESTTFE Bty MBS whkB 6 wTT(S) £ FRAMSATT Bicas] ., o
0474 0080 LSTHFF R TuaRg ViRl b AT (s) £ ERCCTVE B2 ey
cu7s n1oo LSTPE FOU 20100 Wi 6 BTT(]) a VELLTY b e
n4ls6 0200 LSTTHO Feb tN20N WORP G KTT(S8) o THANSMYT baTa dayi ot
6av7 0000 LSTRDO Fop t0400 wERD O ETTeSY o FECETVE DATA sive e
0u7R 0ROO 1 STRCHL ENU TR0 WORE 0 = 1T(S) 11 SECONDARY (ot e s Eo
na79 1000 LSTRRD Ey s1ap SAALAOININEENCY B O R PATE ek aBY '
DARG 2000 FSTIMT &0 tene WL G RTTS) 18 Twan Qe Tiki aininy
HuR1 0no1 | SOFS Fop 1 At 3 TU(S) AT LA EE LR N
nag 0001 LSFTM Fy 0001 wpRry I T(8) D TRARSYT Atk
G4R3 0en? LSFRM Edn 10002 wOKE 1 HTT(S) ! FECETVE 0D
0481 0004 USFFEM Fl s000n #OPLYRTTES) 2 FOHE wonE
GEELS 00O0R LSFLR Fou r00en NERP RTT(S) Lo Lnnk dagk Mk
LY nnto LSFPNX Fro $000 w1 BIT(S) 4 GRATCONL nart by
NUR7 0np0 LSFLDX 0y 020 Witk 1 /T T(S) 5 LImE DhiFLE
~ DORE 0040 L SFMTY Fuu $0040 WOKT 1 KTT(S)) MOREMZEONTROLEE e Bt
{ huro 0080 LSFANM FGY TONRE Wikn 3 HITCS) / ANSwb v ehF
T 0u99 0100 LSFCTY Enu t0100 WORD L KTTES) 0 CARKTEL TYRE ;
a 0491 0200 LSENCD F (it $0200 w1 KT (S) < «Cl BFONTRED L6 R s e [
ngap 3000 LSFCND EQU $3900 whiwl 1 RIT(S) 12=15% 1 IMF CO0F S
0493 4900 LSFEML BNy $N000 AORL] TES) 1l L TivE Bra b
naou BOGO LSFINT Fhuy TRO0C WOKD 1 BTT0S) 16 LR INT T A2t
0u9s 0no? LDADK FQuy - wWORD @ BTT(S) 0=1% DFVICE ACrig ss
0496 0en3 LDFLG EQy 3 WOET 2 BIT(S) PEVLOE e B Ay
0897 0004 LERTRE EQ 4 L a RETES) =15 BEVICE JYAnEI e VG T
049R 000s LICTR EN 5 WAKE & RTT(S) 0=15 TuPLT e Arnw
0499 0006 : LGCTYR ED # R e HITCER) =18 OUTPLT (e At
0500 0007 LORIR - Fiul 7 WORR 7 EIT(S) 0=15 QUTROT Fon BNT o ongl] oo
nsny 00048 LIINT ROU s whki § $1T(S) Dw 1S INFHT wwh AT o
0502 0009 LUINT Fay G WORE @ WTTES) 0=1% OUTRET Wil 10T)
oSN Nn0A LISIN o Fni 10 Witk 10 RTT(S) C=h START Jroed e ST i
nsny 0068 LTKFS EOQU 1 VK1 RTTS) u=15 INPUT [a0t s Aeg
0508 000C LIBFF Enu 12 AORE 12 BTT0S) Oe)S INPUT Trb wEF b ae i
0506 ooon LORFS Fou 13 WOKD 12 WIT0S) G=18 OUIOU] DEVTEF miF b iy
n507 000E LOKLIF E£0QU 1d WOERE 14 KWTT(S) | 0=18 OQUTRUT INT b Eey aoie

0SO0R 000F Lorcr Eau 1S WOKD 1S KIT(S)Y 0«16 0UTPUT JNT wY T v

(o | ('<:>3.

1€-€/11

0038 11/703/77

LEXRIN

FQu
Ewu
Eau
Enu
EQut
EQu
Fau
EQU
EQU
Enu
£
EQu
EQU
EQL
FQu
EQU
EQu
EQU
EQU
EQU
EQU
FQy
EQU
Eruy
ENyY
EQy
EQU
EQU

EQU
“EQU

Eny
FoU

PAGF 10204227
MACRN? (A2) ST= “ACPNS n0s
0509 0010 LFCIR
0510 0nty LFwCTH
0511 0012 LLFUN
0512 0013 LHDWS
0514 0014 LI PARM
0514 0015 LLSDLY
6515 0016 LODKDY

0516 ROGD LDWTMD
0517 6000 LDWTXP
0514 2000 LUWRXP
0519 0001 LDWDLE
0520 0017 LDDWD?2
0521 0018 LDOWD3
0522 0019 LPAD
n523 DOFF LPDENT
0524 FFOO LPPCHR
0525 001A LSPCH
0526 0018 LEXCPT
0527 0021 LEXTSK
0528 0023 LEXARG
0529 0028 LIMSK1
0530 0029 LIMSK2
0531 0024 L(AMSK 1
0532 - 002K LOMSK?
0533 no2c LGMSK 1
0534 002D LGMSKR
0835 002F LGFXCP
0536 002F LGEPRI
0537 nozn LSMSK1
0538 0031 LSMSK?
0539 0032 LSEXCP
0540 0033

MY PF

fe

17

1a

19

20

A1

°?

28000
24000
22000
$0001

23

24

25

¢ 00FF
tFFOO

26

27
LEXCPT+6
LEXCPT+8
LEXCPT+13
LEXCPT+14
LEXYCPT+15
LEXCPT+16
LEXCPT+17Y
LEXCPT41R
LEXCPT+19
LEXCPT+20
LFEXCPTe21
LEXCPT+22
LEXCPT+23

LEXCPT+24

VICct

E181782)
wiep
wr.pn
wirRD
WORD
WORD
WOKE
wnen
wWORM
AOR:
wORD
WORD

WNRD

wien
wNkD
wORD
wnED
WORD
WORD
WORM
WORD
WORD

CANDRD

w(RrD
wORD
WORD
WORD
wlRD
w(rD

GuS00=10 «T4, TGx, (UMY BEUUATES

PRTIVER FOUATE S

16P]11(8)

17
L o]
19
20
21
22
22
P2
?2
22
23
Py
25
25
25
26

27

WOKD

wOFD

wWNORD

BITCS) 0=15 FUNCTION PrOC NEXT 76
HTIT(S) 0=1% LAST FUNCTIGOwN [CSiFi
HIT(S) LAST HARDNARE STA§UIS il
HITS 0«15 CURRFNT LINE PARAHETE W wiwhd
RIT(S) 0=15 LINE (MODEM) STHNAL O LAY
K11(S) DEVICE DFPERDENT Rt 1
B171(S) 15 TRANSMIT MODTFICATINN
RIT(SY 14 TRANSMIT TRANSPARE ST
RIT(S) 13 RFCFTIVF TrRANSPARERT
H1T(S) 0 DLF SEFN
RYT(S) DEVICE DEPFNDEANT afivn 2
HIT(S) NEVICE DFPENDENT wOwiy 3
RIT(S) 0=1% PAD CHARACTER INFORMATTON
RTIT(S) O0=7 PAD CHARACTFW (Cubing
RIT(S) A=1S PAD CHARACTEw
RIT(S) O=T7 SM{ SYNM(/S+EC (itAw
RIT(S) 0=15 FXCEP INT POTINT OF InT
BIT(S) O0O=1% FXCEPTION INMT TaASK ANDDR
BIT(S)Y 0=1%5 FXCFP INT A REG = STATUS
RIT(S) 0«15 EXCFP INPUT MASK |
BIT(S) 0«15 EXCFEP INPUT MASK P
RIT(S) (=15 EYCFP OHTRUT ~ASKY
RIT(S) N=15 FXCEP OUTPUT MASK
RIT(S) 0=1% EXCFP RFENEWRAL MASK
BIT(S) 0«18 FXCEP GENFERAL MaAS¥ 2
KIT(S) 0=18 EXCFP GFNERAL MASK pRuC
FIT(S) 0=15 FXCFFP GENERAL MASKR PRTIGW]TY
RIT(S) 0«15 EXCEP GFNFKAL »a5« 1
RIT(S) 0=15 FXCEP GHENFEKAL ™MASK 2
RIT(S) 0=15 BFACEP GFMNERAL HMASK PO

RIT(S)

0=1% FUNCTION PRCL Cubw Ok

0=15 EXCEPTTUN INT

RO INE ADGE

=

TS

8

AN

PAGE 0Nty
MACKODY (A2)

~fS4p
YR
nS44
354S
Sa6
0547
nsan

550
0851
0852
ng81
n584
nege
0556
0887
NSSE
0559
NS960
0541

0562

563
G8k4
09A5
NSké
Y
0568
1569
asS7u
NS71
nN872
G573
0574
0875
0576

1170637177

Si=

anno
QN
U(‘H’lH
00(}1
0049
0ROO
nans
046G
0106
1000
NGO
20006
n1on
03ng

naot
0002
0603
R ERS!
nnny
0004
0607

“ACROGS

Yo L2 27

LN A g
e
AP
Enne
FYTrR
JsT
EA)

TECONF

ETEESE 2 S S ALY
NDw=F T Fiy

T Y

OeEsF ool
NFEYT- T ¥4
(s ~-« & !
ML " e Fiil
A= R A ey
S1°8 R T
ST TOr A 1)
e et
we R Ei
f.vL]"g’Q r ot
L AN T Y
*

* FuNCTINN
*

LiF Fist)
Qe sl
Sy, T
int £
Fr F o
DS Eqy
®ST Fau

QS G=- i

[0 §
NERXTO
J141
1|

FPeXif

rr’:x'f

[uPIP K
TR e
TaeaeF
TOPMK1
TORTx]
TOR(CKS
TEMrD
THkXT
INDTGT
THPHNR
THPS(x
eHGOL

TwTe]
TP Twk

DFEF TN

LTy, Tix,
PG

ChxY FLLBATES
QECVICF HACRES

Sk e
TARLE

I+ 21 = =3
““’“INAL

FXFOUTY J/700 Catbd

DEFINTTIONS

KEAD CRCCDF

ADTTE LREODF

FOmMOY IO GRCODY
DELETE Crnav(S)

THXT MOPE
ACCHMULATE CHECKSijM
(HECK CHECKSUW
TEANSLATE

THTTT AL
HEADER FERQUFSTED

CHECK TMCOMING pATA

e TR CONTREL SFOUFACE -
THIROMETATE STOP

FapInG STOE

FLaf, dvrep v (o

TTTONS

SFT Lt INME RPARAMFIERS
SFT SPECTAL CHARACTFE ¢
SET SYNCH CHARACTER
IHYTTALTZY 1 INE
E~ARLF 1 TNE

NTSABLE | INF

W“EAML STATHS

Y

-

€E-€/1T

PAGE 020 11703777 10:04:27 Y4500=10 Wiy, [hix, (COKY Fi00ATES

MACROZ (AP2) ST1= MA(CHOS PO= Cihmx PLnThCLL SERVICE “ACKNS

0577 0008 RON EU s RATSFE +/007 ~AIT FUR DATA ST SIECNALS it
0878 ne09 LOF Fuu 9 L OWFR 4 /008 wATT Frw DATA SKFT SIGNALS DFF
0579 000a RVC F 10 REVFRSF CHANNEL '
0580 0008 RRK Fau 11 TS8UE HEF AR

0SR1 000C NSY kb 12 TSSUF NFwWw SYNC

0582 noon RSY By 13 LE=ESTARLISKE SYRCHWRONTZATION

nseal NOOF SLwW ENU 14 SET DFEVICEY DNERPENDENT wORD 1 21T (5)

. 0584 000F RDW EQu 15 RFSFT DFVICF DEFFNDENT wORD 1 51T(3)

0S86 : MACKO CPKREAD
0SR7? nP: SETY OPREAD SFT RFAR GPCUDF

08RR . K SET 1

0589 1FT B>

0590 KEPT g72=1 DO OALL GRPTIONS

0591 OPSET #2,83,84,85,86,87,8R,49,810

059°2 ENDC

0593 GENXTO #1 SET PARAM AMD CALL XTn

0594 1FT NPsLNPTFXT

0595 DATA nee ACCUMLILATED ORCODF

0596 DATA (1,0, 0 HSFE KFOUFSTARS QUFFER [F TEXT
0597 \ ENDC

0598 IFF DPLROPTEXT |

0599 DATA OP2;TOPSTR ACCUMIILATED GPCNDE 4 SKIF HWTT
0600 PATA 0,=1,2 USF NO RUFFFR OTHFRWISH

0601 ENDC

0602 ENDM

0604 MACRD CPwKIT

0608 P SFT NPWRTT SET wkITE OPCODE

0606 K SET 1

0607 : IFT 572> 1

0608 REPT LR DO ALL OPTINONS

-—-—wuonmnvmnduno

be-c/11

PAGE 0021

V1703777 10204327

MACRNZ (22)Y S1= MACRNS rO=

0609
N610
0611
n612
0613
0614
0615
0h16
06117
0618
0619

0621
06622
0623
0624
0625
0626
0h27
0628
0h29

n631
0637
0633
0634

OPSET
FEDC
GEMNX]O
DATA
JFT
DATE
EnDE
IFF
NATA
£NOC
ENDM

MACHD
GENY N
1FF
DATA
ENDC
IFTY
DATA
FNDC
ENDMm

MALCRG
SFT
SFT
ENOM

INHN0N=10 T, {6X, e X FOUATES

COMY FROTOCOL SEYVILCE MACKOS
m2, 8, nd,0h,0h, B, , 009,110

a1 SET e Babav a0 Cpat) %N
NP Ix\OPHCS ACCUMUL ATED GPrghr
OPexXiPwee

1 TavtE 1 JF w(S

MR s X iPw(8
RPRIFRt HSERS bHERFES TR NiTT w(S

(PFiNG

-1 Catt 21 = ~0 PAkAM
H?=2 .
ORPFUNEG, 0, %, 51 SFLECTED FiinGT 6N
#2=p

NEFRC, 0,22, 81

(RQF g
iRt ghne ACCH™HL ATE OFTTION THTO 1iPCN00)
Kesd v, ME W e

EET

¢
[)

Se-£/11

PAGE 0022
MACROZ2 (A2)

0636
0637
0638
0639
0640
0641
0642
0643
0644
0648
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658

0659

0660

0661

0662
0663

0664

0665

0666

0667

0668

0669

0670

11/03/77 10:04:27

SI= MACROS FK0O=s

K:

PROT
FCHO
EVFN
by
NISCON
ASCTY
ERCDIC
XLATE
XPRNT
UXPRNT
uLc
SLAVE
WATTCO
CONSTC
SMC1
SMC?
DMODEM
DYTY
DCRT
TTY
BSC
DMAD
HOR:CT

*

»

MACRO
SFT
REPT
ND
SET
SET

- SET

SET
SETY
SET
SFT
SET
SET
SETY
SET
SET
SET
SET
EQU
EQU
EQu
EQU
EQU
EQU
EQU
EQU
SET
ENDM

MACRO
NAM
SFT
ENDM

Qu%00=-10 RPTY, 160X, COMX EFQUATES

MAMDEF MACKU

NAMDFF
1
#?

HY,82,83,80,85,86,87,88,89,410

DT ODODD T DO DS DD

0o N =) SN\ O

ND
Dedke
Keel

PROTOCOL DRIVER SPECIFTICATION

TTY ECHO NPTION

TTY EVEM PARITY OPTTON

TTY ODD PARITY OPTION

DISCONNECT ON FILE MAKK OPTION
HSC=ASCI] CHARACTER SFT

RSC=-FRCDTIC CHARACTFR SFE1
BSC=FEHRCNIC=ASCTT TRANSLAYION NPTIND
BSC=FiilLL TRANSPARENT (OPTION
BSC=UNFORMATTED WRITE=TRANSPARENT
RSC=USER LINE CONTROL OPTTON
RSC=S1L AVE STATION QPTION

FAIT FOR CARRIER QFF OPTION
CONSTANT CARRIFR OPTION
SYNCHRONOUS MODFM CONTROLLER - 513%
SYNCHRONDOUS MODEM CONTROLLER = 617
DIO MODEM CARLE

DIC TTY CARLF

DIN CRT CABLF

TTY PROTOCOL DRIVER

BSC PROTOCOL PRIVFR

DMA 10D FLAG

NAM DECLAKE MACRO = ND

hY

(P T T

PAGEH N0 23 11/038/77 1004827 YHSH0= 10 wTY, Fid, CuMx FGielr €
MACROZ (A2) ST= MACK(NS Hibs CLTHE MAUH!
0hTP MACHY) jres
0hT3 * T PARAMS
Ne7n IFTY LNE RS
0675 NOTF Fo'CLTRE MACKU REUUTOES AT LEAST & PAKRANE T -
0676 FrnDC
0617 DLtite SFT &/ GEVICF (it
DKRTH * GFT BROPED DFYTCS LiIVERE SQ, T 2R SR ANy | IMNE SRR}
0679 17 niie
OAR(G PDEvaD: ST &1 HSEOSURPEL R CEVICE AGLRE SS
NhAY EnDIC
0682 1F 7 454 ()
06R3 TARD e SFT 8y USE SRR TED TmTFERIUPT A ¢ 85
NKARY FNDC
NBRS 1F71 2t
fekh LIMES SHT s
0627 ENDC
= 06RHK IFT BT4+0 ;
= 0KRQ SPFED: SFT 27 HSE SHPELTED BAHUD RATF
S YY) FNDO
T 069 * SET UP LINE TREMTIFIFR PARAMETEKS
Nneq? PLIN . PHUOCEFRS | TnF TDENTIFTE W
NAh93 * CHFCK FOR LFEALTITY
0694 1FF GEVAD:
0695 NGTE Fy'"NEVICE ADNPWESS ¢ VL LFGAL
069A FaNDC
0697 1FF 1apie
N69A NOTF B, "TNTERRUPT ADLRFSS O [ILEGAL
0694 ENDC
0700 1FF SPFE":
n7ni NOTE Fo'LINF SPEED O T11LEGAL?
0702 FMDC
P70 * NOW SET R LT+ SOFTwARE STATIHS
0704 PSHDY SET PeFhx=141 4
0705 POSBIT PsLCS, I SFCOD, 11 SFT LINF (nng
0706 POSRTIT WATTEO,LSFMED,T1P2: WAIT FOR CARKIEWN DFTFCI
0707 CC: SF 1 CONSTC=1%1
& C (O
e o

e

LE-E/TI

-

R i IR ~ .

CPAGE 0024 11/03/77 10304327 94500=10 RTX, 10X, COMX EGUATES

. MACR02 (A?) SI= MACROS RO=

i
}
% 0708

CLINE MACRC

POSBIT CC2yLSFCTY,T3: CONTROLLED CARRIER P
: 0709 POSRIT SWITCH,LSFANM,T4: SWITCHFD LINE) ;
. 0710 POSRIT SYNC:,LSFMTY,T5: SYNC MODEM TYPE by
. 0711 POSRIT HDX:,LSFLDX,Té6: HALF DUPLEX LINF Ty
L0712 POSRIT PeHDX,L.SFPDX,T7: HALF DUPFX PROTOCOL - '
0713 SOFS: SET T123T2:3T33;TU2;T92:5T62:T7s i :
i 0714 * , S
S 0715 * NOW GENERATE PROTOCOL TABLES o
: 0716 * ’ ‘ :
: 0717 * CIB P
t 0718 * bl
£ 0719 PICIB SET $ i)
f 0720 DATA 0 CHBOR Loy
0721 RES 9,0 108 £
F 0722 RES 10,0 ENTRY ADDRESSES, ETC. .
0723 DATA P:FLGS FLAGS WORD P
£ 0724 DATA 0 MASTER TABLE ADDRESS {
0725 RES P:LCIB=CPTHL=1,0 o
. 0726 * END OF C1B o
b 0727 * .
; 0728 * PROTOCOL DIB i ;
. 0729 * ! ;
: 0730 PIDIR SET $ i
. 0731 De#l EGU $.
j 0732 CHAN L DIB CHAIN .
£ 0733 "DATA PICIB,0,0 DCIB, QUEUE, CN [
. 0734 DATA P3:DSW DSK i
(0735 DATA P:DVIP DT §
L0736 DATA ‘00 DCUN ;
; 0737 DATA 0 DOFL (
| 0738 DATA 0,0 DFUN, DULS ‘ ;
1 0739 DATA P:DFLG,P3sBLKS,P:LPRM DPFLGS,DRBLKSZ ,DLPARM
' 0740 DATA 0,0 DIXLTR,DOXLTR i
0741 CLUN DLUN: DLUN :
0742 CHAN Oe#i po18B :
0743 RES 3,0 DSRTN, DTMP1, DTMP?2 : ’

B LRE WL POTTIPURPER G P E e Pl =T TTW IR » RIS R e

¥ ol PR s S R el i e g VN g e SRk S VR

PAGEF neps
MACRLGZ (AD) «Ts=

074y
0748
B7d¢
0747
0748
749
079
751
nieg
0753
0784
n75%
0756
G797
0784
0759
0760
0761
0762
0763
(764
N7h%
07KR6k
0767
N76&
n769
0770
0771
0772
nN773%
0774
nrrs
0776
0777
0778
0779

8€-€/11

11/03%7177

MACU[\S o

» ¢ ¥ % » »

1osudas 2y

Al

YnK800=100 ©Tx, f6ix,
L TuE &ACKT
rava Hel kAR Nrk o

THT GO

CETA L BIOKER,PICRSP, 6
ENDC

T¢eF LeCkER

T8 0,0,0

E~GE

hata PeidE e

TET Hw eI >0

FRM RYTFEQ],n, ’

QYTFS 1iDreC1,HORCP
[T HDRe(CT>2

rYTES HDR:(CS, 4Ry
RT HORICT>

=~YTES HORSMFS, =R (¢
IFT HORICT >k

AYTFS HUWSLCT,HER sk
IFT HORSCT>H
HYTFS HDR2CY,CA

EADC C1>0

gENDe fi>2

FENDC LT>u

Fanr rT>H

£xhC o CT>A
cRoReRTCE TAKLES
CEVICE TarLFS
FUFFFR

SET 4

SET &

SeT SPEEzQLROD
SET PROT=TTY

SET PeOCMe)RY

IFT T1:3T2:RT3:

Lerx

FOLATES

DENSE, DEKSD, T Cxaa

(@™

6€-€/11

PAGE

0780
0781
0782
0783
0784
078s

- 0786

0787
0788

. 0789
: 0790
S 0791
- 0792
- 0793
¢ 0794
" 0795

0796

. 0797
- 0798
- 0799
- 0800

0801
0802
0RO3
0804

. 0805
. 0806

0807
0RQR

- 0809
0810

0R11

- 0AtL2
© 0813
. 0814
. N81S

0026

11/703%/77
MACRO? (A?) S1= MACROS

10:04:27 QU500=10 RTX, T0X, (9mX FOLATFS

RO=

RES
ENDC
IFF
RFS
ENDC
EBUFF SET
DATA
IFT
OBUF SET
RES
ENDC

*
*
* OUTPUT CIR
A
0

BIRA SET
XD
EXTR
SPAD
JST
DATA
DATA
DATA
DATA
LOX
JMP
DATA
DATA
RES
DATA
DOCIB SET
IFT
poCcis SET
RFES
ENDC

CLINE ™MACRO
2,0 2 WORD RUFFFR TF SLOW TTY

T1eRT2:RT73:
PemMAXT /2,0 FULL RUFFEKR

b}

0 RUFFER QOVFRFLOW WORD
P:FDXRFDX:&P:OCM

$

PeMAXT/2,0 0UTPUT RUFFFF FOR FULL DUX

h 3

SCHs CROR

INTGS:

INTQS:

INTNS:

$,0,0,0

0

CINPR]

s OBIRA,DRTRA

§=2 ' .
A(JRTRA4+CINRTN JUMP TO INTERRUPT ROUTINF:
-1 CTIMER

L:a3 cLIre

5,0 DRIVEF FNTRIFS

0 CINRTNM

$ OUTPUT CTH ADDK = INPUT CIH
P:FDYRFDX:

DRTRA REAL OUTPUT CIR

L:HOCB=CNSRIN, O

* END OF QUPUT CIH

ov-¢/11

FAGF 1027 11/03/717 16204227 FU4K00=140 BTx, 10x, (MK FQUATES

MACRNZ (AP) ST= ™ACKNS RO= CLTINE MACKD

AR1 kK N . *

0817 * INPUT CIF

11BN *

nNK19 DICIB SET %

nNR20 XD SChee Qe

NR21 EXTR IMTOSe

0K22 SPAN TNTHS:

HR2Z JsT |EERREE-B

0RPu DATaA Pp0,0,0

0825 DATA N

0826 DATA CINPRI]

nNR27 DATA GyDICTIR,BTICTR

0RP28 I RX bep

6R29 JmP AD[CTR+CT~RTA JUMP IO [MYFREDET 2O T+
NARIN DATA -1 CTImE &

0HE31 DATA L:ag CLIP

nR3p RES S,n DRIVEY FENTRIFES
0833 OaTA G,0 CINRTr, CDSETN
0&34 ~FS CCHAIN=CNSRTN=],0

nNgIs CHAN CeC IR CTE CHAIN = COCHATM
NRZH NATA 1Bk COeCanw

Ne37 RFS LeDTCR=CCCHAR=1, 0

0R3IR * END OF INPUT CIF

N& 19 *

0R4D IFT PeFLYRFDX e

Nyt * (NUTPYUT Nin

0Rn2 *

0Rk43 nDobre SEY M

NR4UY CHAN X UTE (CHATHK

N8as DATA PUCT® DCTR

N8R4k NATA 0,0 GiVFLF, €+

NRu7 VDATA eSS NSw

QRug DATA NenyTe r1

n84Q DATA 00! DCUN

0RS(DATA 0,4,0 DDEL, OFUN, DULS

0851 * END OF OUPUT NISX

Y S C

PAGE 002% 11/03/77 10:04:27 . QuSN0G=10 RTx, JOx, CheX FGUATES

MACRO? (A2) SI= MACRNS BRO= ClL INE MACKD :

0RS2 %

“0As3 ENDC

08S4 * INPUT (MATN) DIR

0855 x

D8S4 DINDIB SET b

0857 : De#? SF1 £

0858 CHAN Xsz DIE CHAIN

. 0859 DATA DICIR DCIR

0860 : DATA 0,0 QUEUE, CN

0861 1FF PsFDXRFDX?

0862 D:IDSW SET D:IDSW;D:ODSK 0K INPUF K QUTPUT DSW FOR HDX

0863 ENDC -

0864 DATA DIIDSHW DSw

- 0R6S DATA NDeNVTP DT :

LYY DATA 00! ~ DCUuN -
~ 0867 DATA 0,48,0 DODEL, DFUN, DULS
LY * END OF DIB
¥ 0869 *
& 0870 * DEVICE DRIVER LT8B

10871 *

0872 DLIB SET $

0R73 L2843 SETY %

0874 DATA] I STNS

0R7S DATA SOFS: LSOFS

‘0B76 DATA DEVAD: LDADR

0877 DATA DeDFLG LDFLG

“0B78 DATA 0 LDRTYRL

0879 DATA DICIR LICIB

0880 : DATA DOCIR LOCTR

0881 DATA DBTRA LORIR

0RRB2 DATA 0 LYINT

08873 DATA 0 LOINT

COR8Y DATA 0 LISTN

088S : RAC TRUF LIBFS

. 0886 RAC ERUFF LTRFE

. 0R87 BAC NRUF LOBFS

- Ty-€/11

PAGE 0029
MACRO? (A?2) SI= MACRDS

0R8E
0889
0R90
0891
0R9?
0R93
0R9Y
N89S
NR96K
0897
0898
0AQ9
0900
0901
oene
0903
0904

0905

0906
0907

0908
0909

0910
0911
0912
0913
0914
0915
0916

0917

0918
0919
0920
0921
0922
0923

11703777

1004327

* % o % %

®
*
*

RO=

BAC

DATA
DATA
DATA
DATA
DATA
RFS

DATA
DATA
IFT

DATA
FXTR
SPAD
J&T

DATA
ODATA
DATA
DATA
DATA
DATA
LDX

JMP

RES

ENDC

END OF L
END OF
LPNAN

ESCAPE ™MaA

BRACK SET

DEVF
INTS

9450n=10 KTX, 10X, COMX EQLATES
CLINF MACRO '

Ve LGRIF, LORCT

(UPRY) LECTh, LFwWCIR

0 L FUN

0 LHDWS

Pel PRM LLPARM

D2SNLY LLSHLY

2,0 LODKNY, 2, 4

P2bANS LiPADS ’

0 | SPCH

DsFEXIP

0 | EXCPTY

INTQS e

INTQS:

TMNTOS:

35' ()' ljl, 0

0 TASK T0O PR{CESS INT

CINPRI PRIORTITY

0 LEXARG

2%} X=R§ G

=10 P=RtG STORAGE ADDR

F=p LIk ARDK TO X

*PDLTR+LEXRTN JUMP T PROCESSNHK

12,0 TN, OLT,CEMERAL MASKS AMN FROCFSSHIFS
IR

DEVTICE TARLFS

L
CrROS
%

Ix .
ET .

FIX UP DEVICE JNFO

_SET 1P INTERRUPT VECTORS

©

€Ev-£/11

PAGE 0030 11/03/77 10204327 9nS00=16 wTx, 1ix, Ch¥x | LGATFS

MACRNDP? (A2) Sl= mACRNS s Cl THE mArn

09724 IFT HFROT=TTY

0925 TTYFIX FIX 4P TRLS FOR 11Y
0926 FNDC

0927 IFT PROT=NRSC

0928 BSCFIX FTX UP Tl S FOR RSC
0929 ENDC

n93n REL RACK

0931 ENDM

vv~€/11

PAGF 0031 11/03/77
MACROZ2 (A?2) SI= MACRNS
0933
0934
0938

10204227
BRO=
MACRO
DATA

ENDM

94S00=-10 RTx, JGX, CLMX FQUATES

CLIN MACHG

CLUN
F1424000 COMX STANDARD LUN GENFRATION

s
§4

Sp-€/11

PAGE 0032 11/03%/777
MACRN?2 (&2) STI= MACRNS

0937

. 0938

0939
0940
0941
0942
0943
0944

0945

0946
0947
094¢&
0949
09%0
0951
0952
0953

. 0954
© 0955
09Sé6

0957
0958
0959
0960
0961

. 0962

0963
nee6d
0965
0966

- 0967

0968
0969
0970
0971

- 0972

1604327 GUS0G=10 ©TY, T0ix, Chivx fLIIATFS
s NFVICE MACKND
MACRNO DFVICE
DEVe SFT G INMITTAL DEVICE D
LINES SET 0 INITTIAL L TNF TD
SPFEDr: SET 0 INTTIAL HPFED (RAUHD RATF)
DEVAD: SFT 0 IMTITIAL DFVICFE ADDRESS
Iapd: SET 0 TNITTIAL INTERRUPT ADDRFSS -
} 3
* Pilll PARAMETERS OFF CALI
*
DEV: SET 4140
IF 7 #2?2>=p
LINE: SET #e
ENDC
IFT #2>=3
SPEEDN: SET %3
ENDC
IFTY 2?>=4
NDEvads SET H4+0
TACD: SET 2540
FNDC '
IFT H2>5
K SFT 1
RFPT E7eS
SETONF a6,87,88,89,210
ENDC
*
* NOW START DEVICEF ORTENMTED GENFRATIUN
* SYNC MODEM CONTROLLFR
Tie SET PDEVeI=617T
T2 SET DEV:=S13
SM(C: SET Ti:7°:
IFT SMC e
LeDICR SET LDICIR STANDARD LENGTH CIR
LeONCR SET LNOCTH STANDARD LENMGTH CIH
DINFLG SET 0 LDFLG wlikh
NIFXIP SET 1 EXCEPT INT DEVICE

s S

PAGE 0033 11/708/17 tuvsonzed CAS =T v, dhx, Cdvx Fuiiadi s
MACK(? (A2) STz HAC=NS Rz EVICE MaCy) ‘
0973 vzl Yy SeT 7 FICR 001 e ok S h o rL Gsbk) o
G974 eI SFT saap] LSe = bind P, wEAD U, Y,
Ne7S Nerihisw SF T shaetn By = Byl 0, e= 1T
2676 Delvie SF1 veg
nae77 (LI
G978 Forid e
QR0
NQR Y DEVICF FIYDe A
nauxp
09AR3 MACSY NEVETY R SF SRR TEINN SLARYE ok SRVY B BRI o B B
N9sKy 1FT SMI e
09RS *
YRA *OSET up THRTESRUpP T LhnRrELaE S
o GAR7 x EXCERTION TrTRRLGT
Z NORYH * _
- QHQ [RIX™ DL TR+t F ST
2 G999 X SCsth xw
: neqy (15 DLT=et s XTSY
0992 X1 SCek Y«
K] * TRPUT INTERKUPTS
ngQy OFG DICTReC T SE
naqQu X I3 SCeTrx
N9 R G BINETY S AN
2997 xp SCelkm
0GR * CUOTRUT [riTFwr 11RTS
0999 (it s URTRASC T | Sy
1000 X{: Civelit
1001 OkG SR YR aN EMNYARY
1002 X i S 2Nk ¢ :
1003 * SET O SYHMO DETEOTEG FrtERTIeN PRl S8R AP D
1004 00 O TIke LGB YR
1008 IFT PROT=RA]C
1006 xn SRSy
1007 ENDC

¢
]

/"’a\

LY-€/11

PAGF 0034 11/03/77
MACROZ (42) SI= MACRN:

1008
1009
1010
1011
1012
1013
1014
101S
1016
1017
1018
1019
1020
1021
1022
1023
1024
1029
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

v 27 Au5N0=-10 RTX, T0x, COMx FLUATES
0= DFVICE MAC®Q
- SHIFT DFEVICE TO PRNOPFR RIT POSTTINN
rape SFT ~DEVAD 2% 3 SHIFT LEFT 3 FOR SMC
ENDC
“NDOOF SMC DFVICE NEPENDENT SETUPR

+ DJFVICE DEPENDENT XFFR VFCTOF ADDRESS
¥

ORG DLIB+LDRTBL
IFY DEV:=513
IFT PROT=8SC
IFT ASCIT

EXTR SC:BAS
" DATA *SC:BAS

ENDC

IFT FRCDIC

EXTR SC:HES

DATA *SC:RES

ENDC

ENDC

IFF PRNT=85C
XD SC:513
ENDC

ENDC

IFT DEVeIz=617
IFT PROT=RSC
IFT ASCIT

EXTR SC:8BA6

DATA *SC1RAA
ENDC

IFT EBCDTC

EXTR SC:RBE6

DATA *SC:RES
ENDC

ENDC

Hi-y /1

PAGE 0035 117038777
YACRG?2 (A2) STz MALROS

1044
1048
104A
1047
1048
1049
1050
11051
1052
1083
1054
1088
1086
1087
1088
1059
1060
10A1
1067
1063
1064
1065
10664
10A7
1N6R
1069
1070
1071
1072
1073
1074

1Thsing 27

»

GiaSNoe e wTx, Jrax, (mx FHigaATES

Rij= DENVTICOE AR
1FF PEOT S
X1 SCent?
FNOC
FNDC
SFT SPFC AL 78Ynir {40
NG L T+l P m
IfF 7T Hkve=H173
NATA SUNFFLP SOl SCrP ey S14 Sya((Hiw
FADC |
1FT DFvez=at/
DATA GeSYNC QY il (HAR
FHOC
START INPUT INSTRUCT TN
AN L T 1RT
1F7 5600
SFaA OF V&3 I TQTH
ENOC
START IMPUT THGTRUCT 1M
TFF Qeag g
CTA GEVAR S LISTH
ENDCO
Lis LEVICE ADOR
(G GL TR 4] Nt
DATA i"Fvate
SFT UP DRTvER FrIRY ADDMESSES
nei DICTR$OCTITHL D INVEE ENTHRTES
XN Cisieinng Wb a0V AN
Xy COswht W [TE COnMMAND
DATA G FOSTTIAN COMMARND
XN CreF Nt Fost (T Y lw,MVAhH3
En‘}!'}u

©

6b-¢/11

PAGE 0036 11/0%/77 10:04227 94500=10 RTX, 10X, COMX FNUATES §
MACRUZ? (A2) SI= MACRNS Rns INTERSURT VECTOR SETHP MACRI i
1077 MACRO INTISFT SET UP TNTFPRUPT VECTNORS

1078 * SFT UP INTERRUPT VECINR

1079 IFT SMC:

1080 ARS 1aDD: §
10R1% JST *%+1 :
1082 DATA DLIR+LFYCPT EXCEFETTUN TNT

1083 AlH DEVAD: ITNPUT RYTE

1084 DATA Dp0, 0

1085 JST k%4 INPUT FOR

1086 DATA DICIH

1087 ANH DEVAD: CUTPUT RYTE

10RR8 DATA 0,0,0

10R9 JST *541 BUTPUT FOR

1090 DATA OHIRA

1091 RFL DLIR+LTINT

1092 DATA TADD:+2 INPUT BYTF INTERRUPT ADDK

1093 ORG DLIB+LOINT

1094 DATA TADD:+B OUTPUT BYIE TNTERRLPT ADDK

109S ENDC

1096 ENDM

—-——wmnmnvmm

0%~ /11

PAGE 0037
MACRU2 (r2) ST=

1098
1099
1100
1101
1107
11073
1104
1108
1106
1107
110R
1109
1110
1111
1117
1113
1114
1118

1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1120
1130
1131

11768777

102043727

MACROS KOs
S A
*
* FIRSY AF7
* THFSE Symk
»
K3 SF1
Siym s SETY
LEPT
SE iy
*
x NETFRMY L
*
SWITCH SFT
*
* CHE (K
*
1f+
NOTF
E [FIMI N
*®
% NEYFRMINF
%
I SFT
Fhxs SFT
*
* DFTER™inF
x*
SYNC: SET
~ASYNC: SFT
*
* NF TE b4 [NE
*
MODFMe SFT
FADm™

GaSOhGeld Cfu«,

VAL T Ty it

FOX, (mx PORDATES
L IME I SETUR ma(wTr
el 10
VB LN SY#EOLS To TaliTe 0F | jrFze

LS ARE BSED LATER FOR COnVe [F o}

n
[Cpame - i} L.[\Sf;];.ﬂ b

G s Pa 8,80, T, B AL FOBSTpk

AMEWE I A0
LTeFi>=5

R

Syre=1

Fo®l Tk SEECLIPICAETION Tyap 1D

LINE DitPpt

LesLasLesLR
LOSLIFL35LS;317

S;Y‘)(: A% Abvx,(
L35Lazt 73100
LG 12120058

MR e (W EA T OGP

J*TFF ATE

Lt=15x1

VAL b R

=

16-€/11

PAGE 0038 11/03/77 10304227 94500=10 RTX, I0Y%, COMY FILATFS

MACRQO? (A?2) SI= MACROS

1133
1134
1138
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1109
1150
1191
{152
1153
1194
1155
1156
1157
1188
1159
1160
1161
1162
1163
1164
1165

1167

RO=

FLAG

LA D B I D R R N T O I I IR Y

* »
st
-
>
"p)

*> *

43

%1

MISCFLLANEQUS SERVICE “ACRDS

POSBIT MACRO = CRFATFS A VALUFE IN PROPFR BIT POSTTTON FROM

A TRUF/FALSE FLAG ANMD A MASK FOUATE

CALLED AS:

POSHIT FLAG,MASK,NPTIONAL =tF WeSYMiO|
THE FLAG T8 SHIFTFD INTO THE BIT POSTTINON SEECTIFIFEN Yy
MASK AND THEN JS EGUATED TO ETTHFK THF FIWST PARAMETES
SYMROL 0OR THE THIRD PARAMETFR SYMRML (IF SPECIFIEDR)

FXAMPLE

POSBIT 1,:0400,MYFLG
RESHLTS IN MYFLG HEINE SET O (RGT FLUATER) T4 stuon

SET 0
POSRIT FLAG, :8,AREL
RESULTS TNLARFL BEING SFT TO 6

SET 1

POSEIT FLAG, :8000
RFSHILTS TN FLAG BFIMG SET 10 8006

MACRE POSBIT POSTTION FLAG RIT IN WD

SHFCNT #p CALCULATE SHIFT COUNT

IFT #7=3 SET WFwW FFSULT IF % PARMS

SET AYUSHECNT SHIFT VALUE T0 PROPFE POSTITLNA
ENDC

TFT #7=2

IFF SHFCMT=0 SKIP IF NO SHIFTING

SET BIZSHFCNT SHIFT VALUF Tn PROPER POSITION
ENDC

ENDC

ENDM

1

E— m uopewoiYIeINduWI)

S

26-€/11

PAGE

MACRDZ2 (A2)

116d
1169
1170
117}
1172
1173
1174
1178

1177
117R
1179
118¢
1181
11Rp

11R4
1188
1186
1187
1188
1180

1191
1192
1193
1194
1195
1196
1197
1198
1196
17200

11703777

1004227 GuSat=tn PATH, TUX, X puiiAlrS

Hil=

Tie
L¥ETL:
Slise
K

SHFECNT
VAL

VAL e
SHF(C LT

HMTECRLL AMEOUS SERVTCE »afw0S
SYMKI SF LB i) TIPL b Xitk

MACH» SE Ui

SF1 K2+ ACCHINT Filk PARAMETE R 7PN

SET LIvks=2T1: SET FACH | x F1Trd @ TR ok ol 5y
SET ShimedlL Tl S ReSai 18§

SET ¥+

bty

MACRD SHECAMT OFTERMINE SHIETY (oY 0 8 T anny
SET "

SF1 ¥ VAL TIF [(GF MAGK

KFEPT 1A

SHF e . Cal il aTr SHTETYT ptnd
Frna

MACRO SkF e

IFF VAL 2x =1 Sulb TF wTid]l JUuSTIE LR
SFT1 VAL 7 =1 SR T

SFT SEFONT+ a0 Ot

FNDC

_F.HJDM

THE SFToRE MACKRD SETS THE PROVINDE PARAME T«
TO A C5b AND THCRFMENMTS »e ‘
THIS TS LSFDY Fiie SUANNTNG (FF<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>