
c:
RESEARCH J INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

CRAY-OS VERSION 1
REFERENCE MANUAL

SR-0011

Copyright© 1976, 1977, 1978,1979,1980,1981,1982,1983,
1984 by CRAY RESEARCH, INC. This manual or parts
thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-OOll

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of 8 page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be diiected to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

A

B

C

C-Ol

Description

June, 1976 - First printing.

September, 1976 - General technical changes; changes to JOB,
MODE, RFL, and DMP statements; names of DS and RETURN changed
to ASSIGN and RELEASE. STAGEI deleted, STAGEO replaced by
DISPOSE. RECALL macro added and expansions provided for all
logical I/O macros. RELEASE, DUMPDS, and LOADPDS renamed to
DELETE, PDSDUMP, and PDSLOAD. Detailed description of BUILD
added (formerly LIB). EDIT renamed to UPDATE.

February, 1977 - Addition of Overlay Loader; deletion of
Loader Tables (information now documented in CRI publication
SR-0012); deletion of UPDATE (information now documented in
CRI publication SR-0013); changes to reflect current
implementation.

July, 1977 - Addition of BKSPF, GETPOS, and POSITION logical
I/O macros and $BKSPF, $GPOS, and $SPOS routines. Addition of
random I/O. Changes to dataset structure, JOB, ASSIGN, MODE,
and DUMP statements; BUILD; logical I/O and system action
macro expansions. General technical changes to reflect
current implementation.

January, 1978 - Correction to DISPOSE and LDR control
statement documentation, addition of description of $WWDS
write routine, miscellaneous changes to bring documentation
into agreement with January 1978 released version of the
operating system.

D February, 1978 - Reprint with revision. This printing is
exactly the same as revision C with the C-Ol change packet
added.

D-Ol

SR-OOll

April, 1978 - Change packet includes the addition of the
ADJUST control statement; MODE and SWITCH macros; and PDD,
ACCESS, SAVE DELETE, and ADJUST permanent dataset macros.
Miscellaneous changes to bring documentation into agreement
with released system, version 1.01.

ii M

Revision Description

E July, 1978 - Represents a complete rewrite of this manual.

E-Ol

F

F-Ol

F-02

G

G-Ol

SR-OOll

Changes are not marked by change bars. New features for
version 1.02 of the operating system that are documented in
this revision include: addition of the MODIFY control
statement and the DSP, SYSID, and DISPOSE macros; the addition
of parameters to some control statements, the implementation
of BUILD. The POSITION macro has been renamed SETPOS. Other
changes to bring documentation into agreement with released
version 1.02 of the operating system.

October, 1978 - Change packet includes the implementation of
ACQUIRE and COMPARE control statements; changes to the AUDIT
and LDR control statements; changes to the MODE control
statement and macro; the addition of control statement
continuation, GETPARAM, and the GETMODE macro; and other minor
changes to bring documentation into agreement with the
released version 1.03 of the operating system.

December, 1978 - Revision F is the same as revision E with
change packet E-Ol added. No additional changes have been
made.

January, 1979 - Change packet includes implementation of some
features of BUILD; the addition of the BUFIN, BUFINP, BUFOUT,
BUFOUTP, BUFEOF, and BUFEOD macros and other minor changes to
bring documentation into agreement with the released version
1.04 of the operating system.

April, 1979 - Change packet includes the implementation of the
DEBUG, RERUN, and NORERUN control statements, the RERUN,
NORERUN, and BUFCHECK macros; changes to DUMP, DSDUMP, AUDIT,
and ASSIGN control statements; implementation of job rerun and
memory resident datasets. Other minor changes were made to
bring documentation into agreement with the released version
1.05 of the operating system.

July, 1979 - Reprint with revision. This printing obsoletes
all previous versions. Changes are marked with change bars.
The changes bring this documentation into agreement with the
released version 1.06 of the operating system.

December, 1979 - Change packet includes the implementation of
the WAIT and NOWAIT options on the DISPOSE control statement;
the addition of a new DUMP format and CFT Linkage Macros; and
other minor changes to bring documentation into agreement with
the released version 1.07 of the operating system.

iii M

Revision Description

H January, 1980 - Revision H is the same as revision G with
change packet G-Ol added. No additional changes have been
made.

I April, 1980 - Revision I is a complete reprint of this
manual. All changes are marked by change bars. New features
for version 1.08 of the operating system that are documented
in this revision include: the addition of the CALL and RETURN
control statements, job classes, the NA parameter on permanent
dataset management control statements, the NRLS parameter on
the DISPOSE control statement and PDD macro, and the CW
parameter on the COMPARE control statement. Changes to the
LDR control statement include the addition of the LLD, NA,
USA, and I parameters and the new selective load directives.
New documentation has been added for unblocked I/O, including
descriptions of the READU and WRlTEU macros. Other new macros
include SETRPV, ENDRPV, DUMPJOB and the debugging aids SNAP,
DUMP, INPUT, OUTPUT, FREAD, FWRITE, UFREAD, UFWRITE, SAVE~GS,
and LOADREGS. Documentation on CRAY-l interactive
capabilities and changes to reflect the CRAY-l S Series have
also been added. Other changes were made to bring
documentation into agreement with released Version 1.08 of the
operating system.

With this rev~s~on, the publication number has been changed
from 2240011 to SR-OOll.

1-01 October, 1980 - Change packet includes the implementation of
the IOAREA, SETRPV, ROLL, and INSFUN macros and the IOAREA
control statement, the addition of execute-only datasets
including adding the EXO parameter to the SAVE and MODIFY
control statements and the PDD macro, the lengthening of the
TEXT parameter field; the addition of the DEB parameter to the
LDR control statement; and a change to the formats of the
UFREAD and UFWRITE macros. The DEBUG option allowing
conditional execution of the SNAP, DUMP, INPUT, and OUTPUT
macros has been implemented. Other minor changes were made to
bring documentation into agreement with the released version
1.09 of the operating system.

SR-OOll iv M

Revision Description

1-02 July, 1981 - This change packet includes changes to Job
Control Language syntax1 the addition of JCL block control
statements for procedure definition (PROC, ENDPROC, & DATA , and
prototype statement), conditional processing (IF, ELSE,
ELSEIF, and ENDIF), and iterative processing (LOOP, EXITLOOP,
and ENDLOOP) 1 the addition of ROLLJOB, SET, LIBRARY, ECHO,
PRINT, FLODUMP, and SYSREF control statements1 the addition of
CSECHO macr01 the addition of CNS parameter to CALL statement,
REPLACE parameter to BUILD statement, ARGSIZE parameter to
ENTER macro, KEEP parameter to EXIT macro, USE parameter to
ARGADD macr01 the addition of the two JCL tables JBI and JST.
Other minor changes were made to bring the documentation into
agreement with the released version of 1.10 of the operating
system.

J February, 1982 - Reprint. This reprint incorporates reV1S1on
I with change packets 1-01 and 1-02. No other changes have
been made.

J-Ol June, 1982 - This change packet includes the following
additions: magnetic tape characteristics, temporary and local
dataset clarification, mass storage permanent datasets,
magnetic tape permanent datasets, tape I/O formats,
interchange format, transparent format, new accounting
information, *gn=nr parameter, several CHARGES parameters,
the OPTION control statement, procedure definition, HOLD
parameter, new information to the ACCESS control statement,
new tape dataset parameters, tape dataset conversion
parameters, SUBMIT job control statement, PDSDUMP and PDSLOAD
sample listings, SID parameter on the LDR control statement,
new loader errors, relocatable overlays, CONTRPV macro, SUBMIT
macro, unrecovered data error information, POSITION macro, new
PDD macro parameters, the LDT macro, and new glossary terms.
The information formerly in Appendix C is now in the COS
EXEC/STP/CSP Internal Reference Manual, publication SM-0040.
Other miscellaneous technical and editorial changes were made
to bring the documentation into agreement with version 1.11 of
the operating system.

K July, 1982 - Reprint. This reprint incorporates reV1S1on J
with change packet J-Ol. No other changes have been made.

SR-OOll v M

Revision

L

L-Ol

L-02

SR-OOll

Description

July, 1983 - Revision L is a rewrite of this manual.
Extensive editorial changes have been made, including moving
macro information which was in part 3 to publication SR-0012,
Macro and Opdefs Reference Manual. Other major reorganization
has occurred. Part 3 now contains job control language
structures. Information has been added on interactive job
processing and job step abort processing. Major new features
documented include enhanced support of tape datasets, the
FETCH control statement, memory management, enhancements to
COS security, permanent dataset privacy, and support of the
CRAY X-MP Computer System. Miscellaneous editorial and
technical changes have been made to bring the documentation
into agreement with version 1.12 of the operating system. All
previous versions are obsolete.

October, 1983 - This change packet describes two new ACCOUNT
control statement parameters: APW and NAPW. The use of APW
and NAPW, and their interrelationship with existing parameters
on ACCOUNT, are also explained. A new parameter on the AUDIT
control statement, ACC, is described. In addition,
illustrative information is provided on how the OWN parameter
of the AUDIT utility affects output listings.

February, 1984 - This change packet supports the COS 1.13
release. It includes editorial and technical amendments to
information which had been included in previous versions of
this manual. The contents reflect new multitasking
capabilities. Additional information has been included for
coding the CALL statement. New parameters have also been
documented in this manual for foreign dataset processing,
particularly on the ASSIGN and ACCESS control statements. The
LDR statement has been modified considerably; RELEASE, SAVE,
MODIFY, DELETE, PERMIT, ACQUIRE and PDSLOAD also have new
parameters. Furthermore, new information is included for
managed memory capabilities, the EXIT IF control statement
block identifier, the COPYU utility for unblocked datasets,
and new error codes for reprieve processing.

vi M

Revision

M

SR-OOll

Description

December, 1984 - This reprint with rev~s~on describes many
technical changes to COS for the 1.14 release, including
contiguous disk allocation and the tape features multi tape
mark, online tape ring processing, partial IBM multifile,
special end-of-volume processing, and superblock size. The
revision describes software to support four-processor CRAY
X-MPs and systems with up to 8 million words of memory.
Appendix B provides instructions for Subsystem Support:
interjob communication, user channel access, and event
recall. This revision also documents the Integrated Support
Processor (ISP). Note that ISP code will be released later.

This revision contains several format changes. To increase
the accuracy of the tables and related information in appendix
A, the section is printed as generated by the system. In the
body of the manual the "parts" have been removed and the
sections numbered consecutively. Material in the four
sections of part 3 has been consolidated into one section,
16. All previous printings are obsolete.

vii M

I

I

I

I

I

PREFACE

This manual describes the external features of the Cray Operating System
(COS). It is intended as a reference document for all users of COS. The
manual deals with three aspects of COS:

• Job processing. Sections 1 through 5 discuss the fundamentals of
creating and running jobs on a Cray Computer System. These
sections describe the system components, storage of information on
a Cray Computer, and job processing. They also introduce COS job
control and describe the use of libraries.

• Job control statements. Sections 6 through 15 describe each COS
job control statement and ,give the format of each with an
explanation of its function.

• Control statement structures. Section 16 describes the control
statement block structures available with COS. Examples at the
end of the section demonstrate the COS control statement procedure
sUbstitution process.

Other CRI publications that may be of interest to the reader are:

Products and

SR-OOIO
SR-0013
SG-0055
SG-0056
SR-0066
SR-0073
SR-0074

Languages

SR-OOOO
SR-0009
SR-0012
SR-0014
SR-0060

SR-OOll

utilities

Software Tools Reference Manual
UPDATE Reference Manual
Text Editor (TEDI) User's Guide
Symbolic Interactive Debugger (SID) User's
Segment Loader (SEGLDR) Reference Manual
Cray Simulator (CSIM) Reference Manual
SORT Reference Manual

CAL Assembler Version 1 Reference Manual
FORTRAN (CFT) Reference Manual
Macros and Opdefs Reference Manual
Library Reference Manual
Pascal Reference Manual

ix

Guide

M

I

Hardware

HR-OO,04
HR-0029
HR-0030
HR-0032
HR-0064
HR-0630

Miscellaneous

CRAY-l Hardware Reference Manual
CRAY-l S Series Mainframe Reference Manual
CRAY I/O Subsystem Reference Manual
CRAY X-MP Series Mainframe Reference Manual
CRAY-l M Series Mainframe Reference Manual
Mass Storage Subsystem Hardware Reference Manual

SR-0039 CRAY-OS Message Manual
SN-0222 Multitasking User Guide

SR-OOll x M

CONTENTS

PREFACE

1.

2.

INTRODUCTION TO JOB PROCESSING

HARDWARE REQUIREMENTS •
SYSTEM INITIALIZATION •
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS •

Memory-resident COS
User area of memory

Job Table Area - JTA
User field

MASS STORAGE CHARACTERISTICS
MAGNETIC TAPE CHARACTERISTICS •

DATASETS

DATASET MEDIUM
MASS STORAGE DATASETS •
MEMORY-RESIDENT DATASETS
INTERACTIVE DATASETS
MAGNETIC TAPE DATASETS
USER TAPE END-OF-VOLUME PROCESSING
TAPE MARK PROCESSING BY TQM •
DATASET STRUCTURE •

Blocked format •
Blank compression •
Block control word
Record control word •

Interactive format •
Unblocked format •
Tape formats •

Interchange format
Transparent format

DATASET LONGEVITY •
Temporary datasets •
Permanent datasets •

Magnetic tape permanent datasets
Mass storage permanent datasets •

LOCAL DATASETS

SR-0011 xi

ix

1-1

1-1
1-2
1-2
1-3
1-4
1-4
1-5
1-5
1-7

2-1

2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-6
2-6
2-7
2-7
2-9
2-9
2-11
2-11
2-12
2-12
2-12
2-14
2-14
2-14
2-15

M

3.

4.

5.

DATASET DISPOSITION CODES •
USER DATASET NAMING CONVENTIONS •
USER I/O INTERFACES •

COS JOB PROCESSING

JOB DECK STRUCTURE
GENERAL DESCRIPTION OF JOB FLOW •

Job entry
Job initiation •
Job advancement
Job termination

JOB MEMORY MANAGEMENT •
Initial memory allocation
Modes of field length reduction
User management of memory

Management by control statement from the run stream •
Management from within a program
Management associated with a program

System management of memory
JOB RERUN •
EXIT PROCESSING •
REPRIEVE PROCESSING •
INTERACTIVE JOB PROCESSING
JOB LOGFILE AND ACCOUNTING INFORMATION

JOB CONTROL LANGUAGE

SYNTAX VIOLATIONS •
VERBS.

System verbs •
Local dataset name verbs •
Library-defined verbs
System dataset name verbs

SEPARATORS
PARAMETERS

Positional parameters
Keyword parameters •
Parameter interpretation •
Conventions

LIBRARIES •

PROCEDURE LIBRARY •
PROGRAM LIBRARY •
OBJECT CODE LIBRARIES •

SR-OOll xii

2-15
2-16
2-16

3-1

3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-4
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-9
3-10
3-10

4-1

4-2
4-2
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-6
4-7
4-7

5-1

5-1
5-1
5-2

M

6.

7.

JOB CONTROL STATEMENTS .
JOB DEFINITION • • • • • • • • • • • • • •
DATASET DEFINITION AND CONTROL • • • •
PERMANENT DATASET MANAGEMENT •••••

Mass storage dataset attributes
Permission control words ••••

. . .

Public access mode attribute • •
Public access tracking attribute •••• • • •
Permits attribute • • • • •
Text attribute • • • • • • • • •
Notes attribute • • • • • • •

. .

Establishing attributes for mass storage datasets ••••
Existing permanent dataset • • • •
New permanent dataset • • • •
Attributes dataset • • • •

Protecting and accessing mass storage datasets •
Privacy • • • • • • • • • • •
Access mode • • • • •
Dataset use tracking
Attribute association • •

DATASET STAGING CONTROL • • •
PERMANENT DATASET UTILITIES •
LOCAL DATASET UTILITIES • •
ANALYTICAL AIDS • • • • • •
EXECUTABLE PROGRAM CREATION •
OBJECT LIBRARY MANAGEMENT • •

JOB DEFINITION AND CONTROL

JOB - JOB IDENTIFICATION • • • •
MODE - SET OPERATING MODE
EXIT - EXIT PROCESSING
MEMORY - REQUEST MEMORY CHANGE
SWITCH - SET OR CLEAR SENSE SWITCH
* - COMMENT STATEMENT • • • • • • •
NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY ••••
IOAREA - CONTROL USER'S ACCESS TO I/O AREA •••••
CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET
RETURN - RETURN CONTROL TO CALLER. • • • • • •
ACCOUNT VALIDATE USER NUMBER AND ACCOUNT
CHARGES - JOB STEP ACCOUNTING • • •

. . .
. .

ROLLJOB - ROLL A USER JOB TO DISK
SET - CHANGE SYMBOL VALUE • • • • •
ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES
LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST •
OPTION - SET USER-DEFINED OPTIONS • • • • • • • •

SR-0011 xiii

6-1

6-2
6-3
6-3
6-4
6-4
6-6
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-9
6-9
6-10
6-10
6-11
6-13
6-13
6-14
6-15
6-15

7-1
7-3
7-5
7-5
7-7
7-7
7-7
7-8
7-9
7-9
7-13
7-14
7-16
7-17
7-18
7-19
7-20
7-21

M

8.

9.

DATASET DEFINITION AND CONTROL

ASSIGN - ASSIGN DATASET CHARACTERISTICS •
RELEASE - RELEASE DATASET • • • • • • •
INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS

PERMANENT DATASET MANAGEMENT

SAVE - SAVE PERMANENT DATASET •
ACCESS - ACCESS PERMANENT DATASET
ADJUST - ADJUST PERMANENT DATASET •
MODIFY - MODIFY PERMANENT DATASET •
DELETE - DELETE PERMANENT DATASET • • • • • • • • • • • • • • •
PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET • • • • • • •
EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS

10. DATASET STAGING CONTROL • • • • • • • •

11.

ACQUIRE - ACQUIRE PERMANENT DATASET •
DISPOSE - DISPOSE DATASET • • • • •
SUBMIT - SUBMIT JOB DATASET
FETCH - FETCH LOCAL DATASET

PERMANENT DATASET UTILITIES • • • •

PDSDUMP - DUMP PERMANENT DATASETS •
PDSLOAD - LOAD PERMANENT DATASETS •
AUDIT - AUDIT PERMANENT DATASETS ••••

12. LOCAL DATASET UTILITIES • • • •

COPYR - COpy BLOCKED RECORDS
COPYF - COPY BLOCKED FILES
COPYD - COpy BLOCKED DATASET • • • •
COPYU - COPY UNBLOCKED DATASETS
SKIPR - SKIP BLOCKED RECORDS • • • • • • • •
SKIPF - SKIP BLOCKED FILES
SKIPD - SKIP BLOCKED DATASET
SKIPU - SKIP UNBLOCKED DATASET
REWIND - REWIND BLOCKED OR UNBLOCKED DATASET • • • • • • • • •
WRITEDS - INITIALIZE A BLOCKED RANDOM OR SEQUENTIAL DATASET

13. ANALYTICAL AIDS • • • • •

DUMPJOB - CREATE $DUMP
DUMP - DUMP REGISTERS AND MEMORY

SR-0011 xiv

8-1

8-1
8-10
8-11

9-1

9-1
9-5
9-15
9-16
9-19
9-20
9-21

10-1

10-1
10-5
10-10
10-11

11-1

11-2
11-5
11-8

12-1

12-1
12-2
12-2
12-3
12-4
12-4
12-5
12-6
12-6
12-7

13-1

13-1
13-2

M

DEBUG - PRODUCE SYMBOLIC DUMP
DSDUMP - DUMP DATASET • • • • •
COMPARE - COMPARE DATASETS
PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE
FLODUMP - FLOW TRACE RECOVERY DUMP
FTREF - GENERATE FORTRAN REFERENCE LISTING

FTREF control statement
Directives • • • • • • •

SUBSET directive
CHKBLK directive
CHKMOD directive •••••

SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING
Use of SYSREF • • • • • • • • • • • • •
Global cross-reference listing format

ITEMIZE - INSPECT LIBRARY DATASETS
File-level output • • • • • •
Output for binary library datasets •

14. EXECUTABLE PROGRAM CREATION •

LDR CONTROL STATEMENT •
LOAD MAP
SELECTIVE LOAD
PARTIALLY RELOCATED MODULES •

Generation of re10catab1e overlays • • • • • • •
Memory layout when re10catab1e overlays exist
Memory layout of a re10catab1e overlay image • • • • •

O'VERLA.YS ••••• • • • • • • • • • •

SR-OOll

Overlay directives •
FILE directive •••••
OVLDN directive •
SBCA directive

Type 1 overlay structure • • • • • •
Type 1 overlay generation directives

ROOT directive •••• • • • •
POVL directive •••• • • • •

Type
Type

Type
Type

SOVL directive
Generation directive example • • • • • • • • • • • •
1 overlay generation rules
1 overlay execution • • • • • •
FORTRAN language call • • • • •
CAL language call • • • • • • • • • • • •
2 overlay structure • •
2 overlay generation directive • • • • • • • • •
OVLL directive •••••••• • • • • • • • • • • •
Generation directive example • • • • • • • • •

Type 2 overlay generation rules
Type 2 overlay execution •

FORTRAN language call •
CAL language call • • • • • • •

Overlay generation log • • • • • • •

xv

13-6
13-9
13-12
13-14
13-15
13-17
13-18
13-19
13-19
13-20
13-21
13-22
13-23
13-23
13-24
13-26
13-27

14-1

14-1
14-10
14-13
14-14
14-15
14-16
14-16
14-17
14-18
14-18
14-18
14-19
14-19
14-20
14-20
14-22
14-22
14-22
14-23
14-24
14-25
14-25
14-26
14-29
14-29
14-30
14-31
14-32
14-32
14-33
14-34

M

15. OBJECT LIBRARY MANAGEMENT •

BUILD CONTROL STATEMENT •
PROGRAM MODULE NAMES
PROGRAM MODULE GROUPS •
PROGRAM MODULE RANGES •
FILE OUTPUT SEQUENCE
FILE SEARCHING CONSIDERATIONS •
BUILD DIRECTIVES

FROM directive •
OMIT directive •
COpy directive •
LIST directive •

EXAMPLES

16. JOB CONTROL LANGUAGE STRUCTURES •

CONTROL STATEMENTS
Simple control statement sequences •
Conditional control statement blocks •

IF - Begin conditional block
ENDIF - End condiditonal block
ELSE - Define alternate condition •
ELSEIF - Define alternate condition •
EXITIF - Exit from conditional block
Conditional block structures
Basic conditional block •

Conditional block with ELSE •
Conditional block with ELSEIF •
Conditional block with ELSEIF and

Iterative control statement blocks •
LOOP - Begin iterative block
ENDLOOP - End iterative block •
EXITLOOP - End iteration

JOB CONTROL LANGUAGE EXPRESSIONS
Operands •

Integer constants •
Literal constants •

Operators

Symbolic variables
Subexpressions

Arithmetic operators
Relational operators
Logical operators •

Expression evaluation
Strings

Literal strings •
Parenthetic strings •

PROCEDURES
Simple procedures

SR-0011 xvi

15-1

15-1
15-3
15-4
15-4
15-4
15-5
15-5
15-6
15-6
15-7
15-8
15-9

16-1

16-1
16-1
16-2
16-2
16-2
16-3
16-3
16-4
16-5
16-5
16-6
16-7

ELSE 16-9
16-10
16-10
16-11
16-11
16-13
16-13
16-13
16-14
16-14
16-16
16-16
16-18
16-18
16-18
16-18
16-19
16-19
16-20
16-21
16-21

M

PROCEDURES (continued)
Complex procedures • • • • • • • • • • • • • • • •

PROC - Begin procedure definition • • • • • •
Prototype statement - Introduce a procedure

Procedure definition body •••• • • • • • • • •••
&DATA - Procedure data ••••
ENDPROC - End procedure definition

Parameter substitution • • • •
positional parameters •
Keyword parameters
Positional and keyword parameters
Apostrophes and parentheses • • • •

APPENDIX SECTION

A.

B.

JOB USER AREA • • • •

JOB TABLE AREA - JTA
JOB COMMUNICATION BLOCK - JCB
LOGICAL FILE TABLE - LFT
DATASET PARAMETER AREA - DSP
PERMANENT DATASET DEFINITION TABLE - PDD
BEGIN CODE EXECUTION TABLE - BGN
DATASET DEFINITION LIST DDL
OPEN DATASET NAME TABLE - ODN
OPTION TABLE - OPT • • • •
JCL BLOCK INFORMATION TABLE - JBI
JCL SYMBOL TABLE - JST
LABEL DEFINITION TABLE - LDT

LDT header • • • •
Volume 1 entry •
Header 1 entry •
Header 2 entry • • • • • • • • •

EVENT RECALL PARAMETER BLOCK - ERPB •
USER DRIVER PARAMETER BLOCK - DRPB
RECEPTIVE CONTROL BLOCK - RCB • • •
NODE CONTROL BLOCK - NCB • • • • •
INTERJOB COMMUNICATION MESSAGE BUFFER MHB
INTERJOB COMMUNICATION PARAMETER BLOCK - IJPB

SUBSYSTEM SUPPORT

INTERJOB COMMUNICATION
Establishing communication
Sending and receiving messages ••••
Closing communication paths • • •
System requests • • • • • • • •

USER CHANNEL ACCESS
EVENT RECALL •

SR-OOll xvii

16-22
16-24
16-25
16-26
16-26
16-27
16-27
16-28
16-28
16-28
16-29

A-I

A-I
A-I
A-a
A-9
A-18
A-29
A-31
A-33
A-34
A-35
A-36
A-37
A-37
A-39
A-42
A-45
A-47
A-49
A-52
A-53
A-54
A-54

B-1

B-1
B-2
B-3
B-4
B-5

B-5
B-6

M

C • CHARACTER SET • C-l

D. EXCHANGE PACKAGES • D-l

E. ERROR AND STATUS CODES

SYSTEM ERROR CODES
PERMANENT DATASET STATUS CODES

FIGURES

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
3-1

Cray Computer System configuration
Central Memory assignment • • •
Data hierarchy within a dataset •
Format of a block control word
Format of a record control word • • • • • • • • •
Example of dataset control words (octal values shown) • • • • •
Interchange-format tape dataset (octal values shown)
Relationship of levels of user I/O • • • •
Basic job deck ••••• • • • •

3-2 User area of memory for a job •
3-3 Example of a job logfile
11-1 PDSDUMP listing • •
11-2 PDSLOAD listing • •
11-3 AUDIT, LO=S listing
11-4 AUDIT, LO=P listing • • • • • •
11-5 AUDIT, LO=L:P:N listing • • • • • • • • •
11-6 AUDIT, LO=L listing • • • • • • •
11-7 AUDIT, LO=N Listing (AUDIT, LO=T is nearly identical)
13-1 Example of a flow trace summary • • • • • • • • • • • •
13-2 Example of a flow trace recovery dump • • • • • • • • • •
13-3 Sample listing of ITEMIZE for a PL • • • • • • • • • • • • • •
13-4 Sample listing of ITEMIZE for a binary library dataset

with X and NF parameters • • • •
14-1 Example of a load map • • • • • •
14-2 Example of Type 1 overlay loading • •
14-3 Example of the Type 2 overlay tree
14-4 Example of Type 2 overlay loading • • •
16-1 Basic conditional block structure • •
16-2 Conditional block structure including ELSE
16-3 Conditional block structure including ELSEIF
16-4 Conditional block structure including ELSE IF and ELSE •
16-5 Iterative block structure • • • • • • • • • •
16-6 Procedure definition deck structure • • • • • • • • •

SR-OOll xviii

E-l

E-l
E-7

1-3
1-4
2-6
2-7
2-7
2-10
2-13
2-17
3-1
3-5
3-11
11-5
11-8
11-12
11-13
11-14
11-16
11-17
13-16
13-17
13-26

13-28
14-11
14-21
14-27
14-28
16-5
16-7
16-8
16-9
16-12
16-24

M

FIGURES (continued)

A-I
A-2
A-3
A-4

Job Communication Block (JCB) • • • • • •
Logical File Table (LFT) entry
Dataset Parameter Area • • • • • • • • •
CDC record format • • • • • • • • • • • •

A-5 Save areas used by asynchronous SETPOS • • • • • • •
A-6 Permanent Dataset Definition Table (PDD) • • • •
A-7 Permanent Dataset Definition Table (PDD) format 2 • • • • •
A-8 Permanent Dataset Definition Table (PDD) format 3 •
A-9 Permanent Dataset Definition Table (PDD) format 4 •
A-IO Begin Code Execution Table (BGN) ••••••••••••
A-II Dataset Definition List (DDL) • • • • • • • • • •
A-12 Open Dataset Name Table (ODN) • • • • • • • • •
A-13 Option Table (OPT) ••••••••••• • • • •
A-14 JCL conditional block information • • • • • • • • •
A-IS JCL iterative block information • • • •••••••••
A-16 JCL Symbol Table (JST) ••••••••••••••
A-17 Label Definition Table (LDT) header ••••
A-18 Header redefinition of LDDNT • • • • • • • • • • • • • •
A-19 Label Definition Table (LDT) volume 1 entry •
A-20 Beginning of VSN list • • • • • • • • • • • • • • • •
A-21 Label Definition Table (LDT) header 1 entry •
A-22 Label Definition Table (LDT) header 2 entry •
A-23 Event Recall parameter block • • • • •
A-24 Channel Access parameter block • • • • • • • •
A-25 Receptive control block • • • • • • • • • • • • • • • • • •
A-26 Node control block •••••• • • • •
A-27 Interjob Communication Message Buffer • • • • • • • •
A-28 Interjob communication parameter block ••••••
B-1 A typical subsystem interjob communication structure
D-l CRAY-l Exchange Package • • • • • • • •• • • • • • • •
D-2 CRAY X-MP Exchange Package ••• • • • • • • • • • • • • •

TABLES

1-1
4-1
6-1

8-1
8-2
9-1
9-2
13-1
16-1
16-2
16-3
16-4

Physical characteristics of 200 ips, 9-track tape devices •
Control statement separators •••••• • • •
Permanent dataset management control statements for each
medium • • • • • • • • • • • •
RS defaults for IBM tape files • • • • • •
RS restrictions for IBM tape files • • • • • • • • • •
RS defaults for IBM tape files • • • • • • •
RS restrictions for IBM tape files • • • •
DSDUMP output format • • • • • • • • •
Symbolic variable table • • • • • • •• • • •
Expression operator table • • • • • • • • • •
Keyword substitution after expansion • • • •
Expansion of parenthetic and literal string values

SR-OOll xix

A-I
A-8
A-9
A-16
A-17
A-19
A-26
A-27
A-27
A-29
A-31
A-33
A-34
A-35
A-35
A-36
A-38
A-39
A-40
A-41
A-42
A-45
A-47
A-49
A-52
A-53
A-54
A-55
B-3
D-l
D-2

1-7
4-5

6-5
8-8
8-9
9-14
9-15
13-12
16-15
16-17
16-29
16-30

M

TABLES (continued)

A-I
E-I
E-2

Permanent dataset function codes
Error codes for reprieve processing • •
PDD status ••••••••••••••

GLOSSARY

SUMMARY

INDEX

SR-OOII xx

A-18
E-I
E-8

M

I

INTRODUCTION TO JOB
PROCESSING

The Cray Operating System (COS) is a multiprogramming, multiprocessing,
and multitasking operating system for Cray Computer Systems. The
opepating system provides for efficient use of system resources by
monitoring and controlling the flow of work presented to the system in
the form of jobs. The operating system optimizes resource usage and
resolves conflicts when more than one job is in need of resources.

COS is a collection of programs residing in Cray mainframe Central Memory
or on system mass storage following staPtup of the system. (Startup is
the process of bringing the Cray Computer System and the operating system
to an operational state.)

Jobs are presented to the Cray Computer System by one or more computers
referred to as fpont-end computeps (also referred to as stations in
Cray Research manuals). A front-end computer can be any of a variety of
computer systems. Software executing on the front-end computer system is
beyond the scope of this publication.

COS includes linkages providing for the initiation and control of
interactive jobs and data transfers between the Cray Computer System and
front-end terminals. These features are available only where supported
by the front-end system.

The FORTRAN compiler (CFT), library routines, the CAL assembler, and the
UPDATE source maintenance program are described in separate publications.

HARDWARE REQUIREMENTS

The Cray Operating System (COS) executes on the basic configuration of
any CRAY-l or CRAY X-MP Computer System. Each computer system contains
the following components:

• One or more Central Processing Units (CPUs)

• Central Memory

• An I/O Subsystem (lOS) or a minicomputer-based Maintenance Control
Unit (MCU). The I/O Subsystem performs all required Maintenance
Control Unit functions.

SR-OOll 1-1 M

1

I
• A Mass Storage Subsystem. The Mass Storage Subsystem consists of

disk drives, an optional Solid-state Storage Device (SSD) , and lOS
Buffer Memory (BMR).

• An optional IBM-compatible tape subsystem. The tape subsystem
requires that an I/O Subsystem be present.

The I/O Subsystem consists of from two to four I/O processors and
one-half million, one million, four million, or eight million words of
shared Buffer Memory. The optional tape subsystem is composed of at
least one block multiplexer channel, one tape controller, and two tape
units. The tape units supported are IBM-compatible 9-track, 200 ips,
1600/6250 bpi devices.

Figure 1-1 illustrates a basic system configuration. For more
information about CRAY-l or CRAY X-MP hardware characteristics, refer to
the appropriate mainframe reference manual listed in the preface.

SYSTEM INITIALIZATION

COS is loaded into Central Memory and activated through a system startup
I procedure performed at the I/O Subsystem or MCU. At startup, linkage to

the Permanent Dataset Catalog (DSC) is reestablished on mass storage.
All permanent mass storage datasets are recorded in the DSC; thus,
permanent datasets survive startup and the user can always assume that
they are present. See section 2 of this manual for more information on
datasets.

CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Central Memory is shared by COS, jobs running on the Cray mainframe,
dataset I/O buffers, and system tables associated with those jobs. COS
allocates resources to each job, when needed, as these resources become
available. As a job progresses, information is transferred between
Central Memory and mass storage. These transfers can be initiated by
either the job or by COS.

Figure 1-2 illustrates the assignment of memory to COS and to jobs.

SR-OOll 1-2 M

DISPLAYS
MAGNETIC TAPE

SUBSYSTEM
OPTION

LOCAL OR
REMOTE

INTERACTIVE L CRAY
TERMINALS FRONT.END

COMPUTER COMPUTER
LOCAL OR SYSTEMS SYSTEM REMOTE

JOB ENTRY

STATIONS

PERIPHERALS MASS STORAGE

Figure 1-1. Cray Computer System configuration

MEMORY-RESIDENT COS

COS occupies two areas of Central Memory. The memory-resident portion of
the operating system occupying lower memory consists of Exchange
Packages, the System Executive (EXEC), the System Task Processor (STP),
and optionally the Control Statement Processor (CSP). The
memory-resident portion of the operating system occupying extreme upper
memory contains station I/O buffers, space for the system log buffer, and
Permanent Dataset Catalog (DSC) information and buffers.

SR-OOll 1-3 M

o

MAXIMUM
MEMORY

User areal

User area2

User area3

User arean

Figure 1-2. Central Memory assignment

USER AREA OF MEMORY

COS assigns every job a user apea in Central Memory. The user area
consists of a Job Table Area (JTA) and a user field.

Job Table Area - JTA

For each job, the operating system maintains an area in memory that
contains the parameters and information required for monitoring and
managing the job. This area is called the Job Table Area (JTA). Each
active job has a separate Job Table Area adjacent to the job's user
field. The Job Table Area is not accessible to the user, although it can
be dumped for analysis (see section 13 of this manual).

SR-OOll 1-4 M

I

I

User field

The user fieLd for a job is a block of memory immediately following the
job's JTA. The user field is always a multiple of 512 words. The
beginning or Base Address (BA) and the end or Limit Address (LA) are
set by the operating system. The maximum user field size is specified by
a parameter on one of the job control statements (see section 6) or by
installation-defined default. A user can request changes in user field
size during the course of a job.

Compilers, assemblers, system utility programs, and user programs are
loaded from mass storage into the user field and are executed in response
to control statements in the job deck. Each load and execution of a
program is referred to as a job step.

A detailed description of the contents of the user field is given in
section 3 of this manual. Briefly, however, the first 200a words of
the user field are reserved for an operating system/job communication
area known as the Job Communication Block (JCB). Programs are loaded
starting at BA+200a and reside in the lower portion of the user field.
The upper portion of the user field contains tables and dataset I/O
buffers. The user field addressing limit is equal to LA-I.

Memory addresses for instructions and operands are relative to BA. The
Cray mainframe adds the contents of BA to the address specified by a
memory reference instruction to form an absolute address. A user cannot
reference memory outside of the user field as defined by the BA and LA
register contents; LA-I is the user limit. (Refer to the appropriate
mainframe hardware reference manual noted in the preface for more
information.)

MASS STORAGE CHARACTERISTICS

All information maintained on mass storage by the Cray Operating System
(except specific pre-allocated areas such as the Device Label) is
organized into quantities of inform~tion known as datasets. In
general, the user need not be concerned with the physical transfer of
data between the disks and memory nor with the exact location and
physical form in which datasets are maintained on mass storage. COS
translates the user's logical requests for data input and output into
disk controller functions automatically.

Each disk storage unit contains a device label, datasets, and unused
space to be allocated to datasets. The device LabeL notes usable and
unusable (unflawed and flawed) space on the disk unit and designates one
of the devices as the Master Device. The Master Device is the disk
storage unit containing a table known as the Dataset CataLog (DSC),
which contains information for maintaining permanent datasets.

SR-OOll 1-5 M

To the user, mass storage pePmanent datasets are always present and
available on mass storage. This permanence is achieved through
techniques permitting the datasets noted in the DSC to be recovered or
reestablished in the event of system failures. Portions of COS, such as
the loader, utility programs, the compiler, the assembler, and library
maintenance and generation routines, reside in permanent datasets
accessible by user jobs at any time.

Datasets containing job input decks and output from jobs also reside on
mass storage. Because these datasets are listed in the Dataset Catalog
they are also regarded as permanent. This designation is somewhat
misleading since their permanence is by definition rather than by tenure
in the system. That is, the input dataset is permanent from the time it
is staged from the front-end system to the Cray Computer System until the
job terminates. Output datasets being disposed to a front end are
permanent from job termination (or whenever the disposition was
initiated) until the disposition is complete. The permanence of these
system-defined datasets allows them to be recovered along with other
permanent datasets after a system failure.

Any user job can create a mass storage permanent dataset. It can be
subsequently accessed, modified, or deleted by any other job having
correct access privileges and producing the correct permission control
words when attempting to associate it with the job. Permission control
words are defined at the time the dataset is designated as permanent
(that is, saved).

A permanent dataset ceases to be permanent when a user with the correct
permission control word deletes it. This deletion notifies COS that the
space occupied by the dataset is no longer permanent. However, the space
is still reserved by the dataset until it is released by the user (see
sections 8 and 10, respectively, for information on the RELEASE and
DISPOSE control statements).

In addition to the various permanent datasets, mass storage is used for
temporary datasets. A tempoPQPy dataset is created by the job using it
and remains temporary unless it is designated as permanent, released, or
disposed to a front end by the job. A temporary dataset neither saved as
permanent nor disposed of is termed a scpatch dataset and ceases to
exist when the job releases it or terminates.

COS allocates space to datasets as needed by tracks. Storage assigned to
a single dataset can be noncontiguous and can even be on multiple disk
units. Default and maximum sizes for datasets are defined by system
parameters. The user has limited control over the allocation of storage
to a dataset through the ASSIGN control statement.

SR-OOll 1-6 M

MAGNETIC TAPE CHARACTERISTICS

An I/O Subsystem can include an Auxiliary I/O Processor (XIOP) with the
capability of addressing up to 16 block multiplexer channels of tape
units. Each block multiplexer channel can be attached to IBM-compatible
control units and tape units in a variety of configurations. The block
multiplexer channels communicate with the control units and tape units to
allow reading and writing data that can also be read and written on
IBM-compatible CPUs. The physical characteristics of tape devices are
summarized in table 1-1. The block sizes in this table are used by the
COS tape system for transparent-format tape datasets (described in
section 2).

Density
(bits/inch)

6250
1600

SR-OOll

Table 1-1. Physical characteristics of 200 ips,
9-track tape devices

Transfer rate Data/2400 ft. Percent of
(kilobytes/sec) reel (megabytes) reel con-

taining data

1170 168 94
300 43 94

1-7

Block size
(bytes)

32768
16384

M

DATASETS

Nearly all information maintained by the Cray Operating System (COS) is
organized into quantities of information known as datasets. The
following are some of the more important factors to remember about
datasets.

• The dataset medium is the type of physical device on which the
dataset resides.

• The dataset structupe is the logical organization of the dataset.

• The dataset longevity is the retention period for the dataset.

• A dataset must be local to be usable.

• The dataset disposition code tells the operating system what
action to take when the dataset is no longer local.

• Each dataset is known by its dataset name.

• Datasets are read and written using operating system requests
(user I/O interfaces).

DATASET MEDIUM

Datasets can be classified by medium, as follows:

• Mass storage datasets

• Memory-resident datasets

• Interactive datasets

• Magnetic tape datasets

MASS STORAGE DATASETS

2

All datasets, unless otherwise specified, reside on Cray mass storage,
that is, on mass storage attached directly to the mainframe or to the I/O
Subsystem.

SR-OOll 2-1 M

MEMORY-RESIDENT DATASETS

Some datasets can be specified by the user as memory-resident datasets.
A memopy-pesident dataset is wholly contained within one buffer (see BS
parameter on the ASSIGN control statement in section 8 of this manual)
and remains in memory at all times. Such a dataset ordinarily occupies
no mass storage. A memory-resident dataset is normally a temporary
dataset; however, a mass storage permanent dataset can be declared memory
resident.

A dataset can be declared memory resident to reduce the number of I/O
requests and disk blocks transferred. Memory residence is particularly
useful for intermediate datasets not intended to be saved or disposed to
another mainframe. All I/O performed on a memory-resident dataset takes
place in the dataset buffers in memory and the contents of the buffers
are not ordinarily written to mass storage. Such a dataset cannot be
made permanent, nor may it be disposed to another mainframe, unless
copied to mass storage.

Normally, a memory-resident dataset is empty until written on. If an
existing dataset is declared memory resident, it is loaded when the first
read occurs. A user attempting to write to a memory-resident dataset
must have write permission. However, as long as the buffer does not
appear full, no actual write to mass storage ever occurs. Therefore,
changes made to an existing dataset declared memory resident are not
reflected on the mass storage copy of the dataset.

A memory-resident dataset must be defined through an ASSIGN control
statement containing the MR parameter or through an F$DNT call to the
system. If the F$DNT call is used, the Dataset Definition List (DDL)
supplied should specify DDMR=I. (See the description of the ASSIGN
control statement in section 8 of this manual.) In addition, the buffer
size parameter should specify a buffer large enough to contain the entire
dataset plus one block.

If at any time the system I/O routines are called to write to the dataset
and the buffer appears to be full, the dataset ceases to be treated as
memory resident, the buffer is flushed to mass storage, and all
memory-resident indicators for the dataset are cleared.

Magnetic tape, execute-only, and interactive datasets cannot be declared
memory resident.

INTERACTIVE DATASETS

A dataset can be specified as interactive by an interactive job, provided
that interactive datasets are supported by the front end. Batch users
cannot create interactive datasets. An interactive dataset differs from
a local dataset in that a disk image of the dataset is not maintained.

SR-OOII 2-2 M

I

Instead, records are transmitted to and from a terminal attached to a
front-end station. Record positioning (for example, REWIND or BACKSPACE)
is not possible.

Interactive datasets can be created by interactive jobs through the use
of the ASSIGN control statement or F$DNT system call.

MAGNETIC TAPE DATASETS

A magnetic tape dataset is available to any job declaring tape resource
requirements on the JOB statement and specifying the appropriate
information on its ACCESS request.

To gain access to an existing tape dataset for reading and/or rewriting,
the correct file identifier (permanent dataset name), the desired device
type, and, optionally, a volume identifier list must be specified. The
volume identifier list can consist of I to 255 volume identifiers. If
the permanent dataset name (PDN) is omitted from the ACCESS request, the
local dataset name is used as the file identifier.

To gain access to a tape dataset for creating, the file identifier,
desired device type, and the NEW parameter option must be specified on
the ACCESS request. If no file identifier is present, the local dataset
name is used. If the volume identifier list is missing from the access
request, it is called a non-specific volume allocation. A specific
volume allocation occurs when the volume identifier list is present at
the time of the access request. New tape datasets must be written to
before a read is allowed.

Other options describing the tape dataset are available from the access
request. See the ACCESS control statement description (section 9 of this
manual) for more details. Using other parameter options allows more
efficient tape dataset descriptions.

COS automatically switches volumes during dataset processing unless user
EOV processing is requested, and returns to the first volume of a
multivolume dataset in response to a REWIND command. If a permanent
write error occurs when trying to write a tape block for the user, COS
automatically attempts to close the current volume and continues to the
next volume.

The COS tape system uses Buffer Memory as a tape block buffering area so
that the job's I/O buffer need not be as large as the tape block (as with
other operating systems). This technique can result in significant
memory savings whenever large tape blocks are being processed and in
increased transfer rates whenever smaller blocks are being processed.
The advantage in having a large COS buffer is a reduction in the overhead
in the tape subsystem.

SR-OOll 2-3 M

I

USER TAPE END-OF-VOLUME PROCESSING

The user tape end-of-volume (EOV) feature allows the user to gain control
at tape end of volume and perform special EOV and BOV processing. The
macros used are SETSP, STARTSP, ENDSP, TAPES TAT and CLOSEV. These macros
are used on individual datasets. If EOV processing is needed for more
than one dataset, the macros must be issued for each tape dataset. Refer
to CRI publication SR-OOI2, Macros and Opdefs Reference Manual for more
information.

The user instructs the system to perform EOV processing by issuing the
SETSP macro (with the ON option) after a tape dataset is opened. Using
SETSP with the OFF option informs the system that EOV processing is no
longer needed. The CLOSE macro also terminates EOV special processing.

To test that the tape dataset is at EOV, you must use the TAPESTAT macro
after every READ, WRITE, and SYNCH macro. Not all macros that result in
I/O operations return EOV status7 for example, the CLOSE, POSITION, and
REWIND macros do not return EOV status. For output datasets, the user
should use the SYNCH macro to flush the buffers and check to see if EOV
has been encountered before using such macros.

After EOV is encountered, the user starts EOV processing by issuing the
STARTSP macro. During EOV processing the user may do read, write, and
position operations. Volume switching is done by issuing the CLOSEV
macro. When EOV processing is completed, the ENDSP macro notifies the
system to return to normal processing.

During EOV processing, no read ahead is performed. Data blocks are read
one at a time. Also, a position request with relative block number is
positioned from the current tape position, not from the last I/O block.

For an output dataset, the data in the lOP buffer when EOV is encountered
is considered part of the dataset and may be read during EOV processing.
Once the data is read, it is no longer part of output data. Because no
read ahead is performed during EOV processing, the program may position
backwards and read only the blocks on the tape. If this is the case, the
data in the lOP buffer is written to tape when the ENDSP macro is issued.

The use of the CLOSEV macro is not restricted to the EOV routine. The
CLOSEV macro may be issued by the user anytime during dataset
processing. This macro allows the user to terminate an output tape
anywhere and continue the dataset on the next tape. It also allows the
user to read part of a tape and switch to the following tape.

TAPE MARK PROCESSING BY TQM

Three label types are available that allow tape marks to be embedded in
data. They also allow a user to process the tape mark as data and

SR-OOll 2-4 M

I

continue processing after its occurrence is detected. The label types
are specified on the ACCESS statement and allow processing of field ANSI
labels (FAL), field standard IBM labels (FSL) , and field nonlabeled (FNL)
tapes.

When TQM recognizes a tape mark in the data, it translates it to an EOF
record control word and puts it in the data. The user gets a tape mark
indication when processing the data using the TAPESTAT macro and then is
able to continue normal processing. The recognition of end-of-file
conditions is the responsibility of the user.

To keep the program from running off the end of the tape on reads, the
software stops processing (that is, no reading ahead occurs) when a tape
mark is detected and does not move forward until the user catches up to
the tape position, recognizes the tape mark, and issues further read
commands.

Any attempt to position past a tape mark (using the POSITION macro)
results in the tape moving until the tape mark is encountered. At that
point, tape movement stops and the user job gets control. A residual
record count is returned to find the position on tape. The tape is
physically positioned after the tape mark just encountered.

For input, all field format tapes (FAL/FNL/FSL) are processed for labels
in the same way. At BOT, if a label is encountered it is validated based
on its type. If no label is found, there is no validation. When a
tapemark is detected, the system checks the next record for a EOVI or
EOFI trailer label. If EOVI is found, the system performs an automatic
volume switch. If an EOFI is found, the system performs end-of-data
processing. If neither EOVI or EOFI is encountered, the tape is left
positioned immediately following the tape mark ready for the next read.
Tapes not terminated with either SL or AL standard labels must be
terminated by the program using CLOSE or CLOSEV system calls.

For output, field format tapes are labeled based on the LB parameter on
the ACCESS statement. End-of-volume labels are processed when either the
EOT reflective marker is sensed or when the user program calls the CLOSEV
routine. End-of-file labels are written when the dataset is closed,
rewound, or released.

DATASET STRUCTURE

COS supports several dataset structures:

• Blocked format
• Interactive format
• Unblocked format
• Tape formats (interchange or transparent)

SR-OOII 2-5 M

BLOCKED FORMAT

Blocked format is used by default for external types of datasets, such as
user input and output datasets. Record positioning requires a blocked
format. The blocked format adds control words to the data to allow for
processing of variable-length records and to allow for delimiting of
levels of data within a dataset. A blocked dataset can be composed of
one or more files, which are, in turn, composed of one or more records.
Figure 2-1 illustrates the data hierarchy within a dataset.

Dataset

Record 2

Figure 2-1. Data hierarchy within a dataset

The data in a blocked dataset can be coded and/or binary. Blanks are
normally compressed in blocked coded datasets. Each block consists of
512 words. Blocked datasets use two types of control words: block and
record.

Blank compression

Blank fields can be compressed for blocked coded files. Blank field
compression is indicated by a blank field initiator code followed by a
count. The default blank field initiator code is defined by the
installation parameter I@BFI which is either an ASCII code or 7778
indicating that blank compression will not be done. Blank compression
can be inhibited using an ASSIGN statement parameter or an F$DNT system
call. A blank field of 3 through 96 characters is compressed to a
2-character field. The count is biased by 3681 the actual character
count is limited to 418 ~ chapacter count ~ 1768 (the ASCII graphics).

SR-OOll 2-6 M

I

I

Block control word

The block control word (BCW) is the first word of every 5l2-word block.
The format of a block control word is depicted in figure 2-2.

Field

M

BDF

BN

FWI

o 4 11 31 54 55 63
MI////////I 1/////////////////1 BN I FWI

BDF

Figure 2-2. Format of a block control word

Bits

0-3

11

31-54

55-63

Description

Type of control word (for block control word,
M=O)

Bad Data flag; indicates the following data, up
to the next control word, is bad. This flag is
set by the I/O Subsystem for magnetic tape
datasets in interchange format.

Block number. Designates the number of the
current data block. The first block in a
dataset is block O.

Forward index. Designates the number of words
(starting with 0) to the next record control
word or block control word.

Record control word

A record control word (RCW) occurs at the end of each record, file, or
dataset. The format of a record control word is illustrated in figure
2-3.

4 39 40 54 55 63

MI

Field

M

SR-OOll

PFI PRI I FWI

Figure 2-3. Format of a record control word

Bits

0-3

Description

Type of control word:
lOa End-of-record (EOR)
l6a End-of-file (EOF)
l7a End-of-data (EOD)

2-7 M

Field Bits

UBC 4-9

TRAN 10

BDF 11

I
SRS 12

PFI 20-39

PRI 40-54

FWI 55-63

SR-OOll

Description

Unused bit count. For end-of-record, UBC
designates the number of unused low-order bits
in the last data word of the record terminated
by the end-of-record. For end-of-file and
end-of-data ROWs, this field is O. The data
area protected by UBC must be zero-filled.

Transparent record field; used for an
interactive output dataset only. If set,
sUbstitution of end-of-record ROWs is suppressed.

Bad Data flag; indicates the following data, up
to the next control word, is bad. This flag is
set by the I/O Subsystem for magnetic tape
datasets in interchange format. If flag is set,
an irrecoverable error was encountered in
following data.

Skip remainder of sector; indicates that the
next control word to follow is a BOW and the
data after this ROW is not to be processed.
This is used only in tape dataset processing.

Previous file index. This field contains an
index modulo 220 (20,000,0008) to the beginning
of the file. The index is relative to the
current block such that if the beginning of the
file is in the same block as this ROW, the PFI
is o.

Previous record (ROW) index. This field
contains an index modulo 215 (100,0008) to the
block where the current record starts. The
index is relative to the current block such that
if the first word of data in this record is in
the same block as this ROW, PRI is o.

Forward word index. This field points to the
next control word (ROW or BOW) and consists of a
count of the number of data words up to the
control word (that is, if the next word is an
ROW or BCW, FWI is 0).

2-8 M

Disregarding block control words occurring at 5l2-word intervals in a
dataset, RCWs have the following logical relationship in a dataset.

An end-of-record RCW immediately follows the data for the record it
terminates. If the record is null, that is, if it contains no data, an
end-of-record RCW can immediately follow an end-of-record or end-of-file
RCW or can be the first word of the dataset.

An end-of-file RCW immediately follows the end-of-record RCW for the
final record in a file. If the file is null, that is, if it contains no
records, the end-of-file ROW can immediately follow an end-of-file RCW or
can be the first word of the dataset.

An end-of-data RCW immediately follows the end-of-file RCW for the final
file in the dataset. If the dataset is null, the end-of-data RCW can be
the first word on the dataset.

The typical dataset has many end-of-record RCWs per block. An example of
dataset control words is illustrated in figure 2-4. In this example, a
dataset is contained within four physical sectors, each beginning with a
BCW (thus the four BCWs in this example are numbered 0, 1, 2, 3). The
dataset contains four files shown as Fl, F2, F3, and F4. Fl contains the
four records shown as Rl through R4J F2 contains records R5 through R7J
F3 contains no records at all; F4 contains record R8.

INTERACTIVE FORMAT

Interactive format closely resembles blocked format; however, each buffer
begins with a block 0 BCW. Each record transmitted to or from COS by an
F$RDC or an F$WDC call must contain a single record consisting of a BCW,
data, and an end-of-record RCW.

Two formats for interactive output can be assigned when the dataset is
created: character blocked and transparent. Character blocked mode is
the default. In character blocked mode, an end-of-record RCW is
interpreted as a line feed or a carriage return. In transparent mode,
the end-of-record RCW is ignored and the user is responsible for
supplying carriage control characters.

UNBLOCKED FORMAT

Dataset I/O can also be performed using unblocked datasets. The data
stream for unblocked datasets does not contain Cray Operating System
record control words (RCWs) or block control words (BCWs).

SR-OOll 2-9 M

Fl

Dataset

F2

SR-OOll

R6(null)

I
R7

L

Figure 2-4. Example of dataset control words
(octal values shown)

2-10

Bew

EOR

EOR

EOR

Bew

EOR

[OF

EOR

EOR

EOR

BeW
EOF

EOF

Bew

EOR

EOF

EOD

M

I

The system does not allocate buffers in the job's I/O buffer area for
unblocked datasets; the user must specify an area for data transfer.
When a read or write is performed on an unblocked dataset, the data goes
directly to or from the user data area without passing through an I/O
buffer. The word count of data to be transferred must be a multiple of
512.

Unblocked I/O cannot be performed on an interchange format tape dataset.

TAPE FORMATS

Tape datasets are written and read on tape volumes. A tape volume is a
reel of tape. A tape volume is also known as a dataset section (for
example, in FSEC= on the ACCESS statement).

Data is read or written in tape blocks. A tape blook is a unit of data
recorded on magnetic tape between two consecutive interblock gaps. The
size of tape blocks can vary from one byte to an installation-defined
maximum.

Tape datasets can be read or written using two different formats:
intepohange or tPanspapent. Tape datasets can also be labeled or
unlabeled.

Interchange format

Interchange format facilitates reading and writing tapes that are also to
be read or written on other vendors' systems. In intepohange format,
each tape block of data corresponds to a single logical record in COS
blocked format (that is, the data between record control words).

In interchange format, tape block lengths can vary up to an
installation-defined maximum which cannot exceed 1,048,576 bytes (131,072
64-bit words). It is recommended that the maximum block size not exceed
100 to 200 kilobytes. Blocks exceeding these sizes may require special
operational procedures (such as the use of specially prepared tape
volumes having an extended length of tape following the end-of-tape (EOT)
reflective marker) and yield little increase in transfer rates or storage
capacity.

When a tape dataset is read in interchange mode, physical tape blocks are
represented in the user's I/O buffer with block control words (BCWs) and
record control words (RCWs) added by COS. The data in each tape block is
terminated by anRCW. The unused bit count field in the RCW indicates
the amount of data in the last word of the tape block that is not valid
data. A BCW is inserted before every 511 words of data, including the
RCWs. The formats of RCWs and BCWs are described previously in this
section and shown in figures 2-2 and 2-3.

SR-OOll 2-11 M

Figure 2-5 depicts a tape dataset in interchange format. Tape blocks
within tape label groups are not included in this format. The end of the
dataset is represented by an end-of-file (EOF) RCW followed by an
end-of-data (EOD) RCW.

When a tape dataset is written in interchange format, the data must be in
the I/O buffer in the user field in COS blocked format. The data in each
logical record is written as a single tape block. BCWs and RCWs are not
recorded on tape. BCWs within a record are discarded and the unused bits
and terminating RCW are also discarded. The unused bit count must be a
multiple of 8. Tape datasets written in interchange mode must consist of
a single file (single EOF RCW). Multiple-file tape datasets are not
supported in interchange mode.

Transparent format

In tpanspapent format (disk image), each tape block is a fixed multiple
of 4096 bytes (512 words), generally based on the dataset density (that
is, 16,384 bytes at 1600 bpi and 32,768 bytes at 6250 bpi). The data in
the tape block is transferred unaltered between the tape and the I/O
buffer in the user field, no control words are added on reading or
discarded on writing. In transparent mode, the data can be in COS
blocked format or COS unblocked format. Transparent format tapes are not
generally read or written by other vendors' equipment.

DATASET LONGEVITY

Permanent datasets are retained by the operating system until instructed
otherwise. All other datasets are considered temporary.

TEMPORARY DATASETS

A temporapy dataset is available only to the job that created it.
Temporary datasets can be created in two ways: either explicitly by use
of the ASSIGN control statement, or implicitly upon first reference to a
dataset by name or unit number on an I/O request or an OPEN macro call.

A temporary mass storage dataset is empty until written on. Rewind or
backspace of the dataset is necessary before it can be read. A temporary
dataset can be made permanent by use of the SAVE control statement. If
the dataset is not made permanent, it is released at job termination or
by the specific RELEASE function request and its mass storage made
available to the system.

SR-OOll 2-12 M

TAPE DATA AS IT APPEARS IN I/O
BUFFER (IN 512-WORD UNITS)

BCW

EOR 10

EOR 10

BCW

EOR 10

BCI-I

EOR 10 60

EOF 16 00

EOD 17 no

unused

Figure 2-5.

SR-OOll

DATA IN TAPE BLOCKS

VOLl

HDRl

HDR2

* (Tapemark)

* (Tapemark)

EOFl

EOF2

Header Label
Group (if labeled)

block 0

block 1

block 2

last
data

block

End of Data

Label Group

(if labeled)

OR

End of Volume

Label

Group

(if labeled)

Interchange-format tape dataset
(octal values shown)

2-13

* (Tapemark)

EOVl

EOV2

M

PERMANENT DATASETS

Only mass storage or magnetic tape datasets can be permanent.

Magnetic tape permanent datasets

Tape datasets are discussed under Dataset Media earlier in this section.

Mass storage permanent datasets

A mass storage pep,manent dataset is available to the system and to
other jobs and is maintained across system startups. Permanent datasets
are of two types: those created by SAVE requests made by the user or
front-end system (user permanent datasets), and input, output, or COS
internal datasets (system permanent datasets).

Usep pepmanent datasets are maintained for as long as the user or
installation desires. They can be protected from unauthorized access by
use of permission control words and ownership values.

When a user permanent dataset is accessed via an ACCESS control statement
(see section 9 of this manual), it is treated as a local dataset by the
job requesting access. However, it still exists as a permanent dataset
on the system and can be used by other jobs unless unique access to that
dataset was granted. When a user attempts to write to a permanent
dataset, the write occurs only when the buffer is at least half full. If
any information in an existing permanent dataset is overwritten or if the
size of a permanent dataset is changed, an ADJUST should be performed on
that dataset (see section 9 of this manual). An ADJUST is performed
automatically when a permanent dataset is released.

System pepmanent datasets relate to particular jobs or reflect the
current operational state of COS. A job's input dataset is made
permanent when the job is received by the Cray Computer System and is
deleted when the job terminates. Output datasets local to the job can
be disposed while the job is running or can be automatically made
permanent when the job terminates and then deleted from the Cray Computer
System after being sent to the front-end system for processing. An
example of a system permanent dataset is the system log.

An exeoute-only dataset is a user permanent mass storage dataset for
which all forms of examination and modification by users are prohibited.
An execute-only dataset is loaded by the Control Statement Processor
(CSP) for execution. It differs in usage from other user permanent
datasets in several ways:

• The accessor of the dataset cannot open the dataset for reading or
writing.

SR-OOll 2-14 M

• While an execute-only dataset is loaded in memory, no DUMPJOB
requests are honored.

• The dataset cannot be staged via a DISPOSE request.

• The dataset must be loaded by a dataset name call rather than by
the LDR control statement.

• The dataset cannot be dumped via PDSDUMP for archiving purposes.

Because execute-only is a dataset state rather than a permission mode, it
is advisable to set, at minimum, a maintenance permission control word to
disallow modification or deletion of the dataset.

LOCAL DATASETS

A dataset to which a job has access is a local dataset. A local dataset
can be temporary or permanent. Permanent datasets are made local with
the ACCESS control statement or the ACCESS library subroutine (described
in the Library Reference Manual, CRI publication SR-0014). If the
dataset referenced is a tape dataset, the device resource must also be
specified on the JOB control statement (see section 7 of this manual).

DATASET DISPOSITION CODES

Each dataset is assigned a disposition code telling the operating system
the disposition to be made of the dataset when the job is terminated or
the dataset is released. The disposition code is one of the parameters
of the DISPOSE and ASSIGN control statements (see section 8 of this
manual).

Each disposition code is a 2-character alphabetic code describing the
destination medium of the dataset. The default disposition code for a
dataset is SC (scratch) when a dataset is opened, unless the dataset
named is one of a group of special names such as $PLOT, $ PUNCH , and
$OUT. By default, COS assigns the disposition code PR (print) to $OUT
when the dataset is created. No DISPOSE statement is required for $OUT;
it is automatically routed back to the originating mainframe with a PR
(print) disposition.

SR-OOll 2-15 M

USER DATASET NAMING CONVENTIONS

The user assigns a symbolic name to each user dataset. This name, the
tooat dataset name, is one through seven characters, the first of which

I must be a through z (in either upper- or lowercase), $, @, or %;
remaining characters may also be numeric. A permanent dataset name is
less restrictive. A permanent dataset name may contain any printable
character. The name must be enclosed in quotes if it contains a
character other than upper or lowercase letters, digits, $, @, or %. Do
not use characters with the octal codes 000 through 037 or 177 through
377. These are unprintable characters. Refer to the ASCII character set
in Appendix C for details. Certain language processors place further
restrictions on dataset names.

Most datasets defined by COS are assigned names of the form $dn. Since
datasets whose names begin with a $ may receive special handling by the
system, refrain from using this format when naming datasets.

USER I/O INTERFACES

When using logical I/O, the user is never directly concerned with the
actual transfer of data between the devices and the system buffers.
Figure 2-6 illustrates the relationship of different levels of user
logical I/O interfaces and routines. In this figure, the request levels
and routine calls are summarized without going into detail on the
movement of data between the system buffers and user program areas. For
details on logical I/O, see the Macros and Opdefs Reference Manual, CRI
publication SR-0012.

The highest level of user interface is FORTRAN I/O statements; the lowest
level is in the form of specially formatted requests called Exchange
Processor requests.

FORTRAN statements fall into two categories: formatted/unformatted and
buffered. The formatted/unformatted statements result in calls to
library routines $RFI through $WUF. If the dataset is blocked, these
routines call the logical record I/O routines. The logical record I/O
routines perform blocking and deblocking. The logical record I/O
routines communicate with COS through the Exchange Processor requests,
F$RDC and F$WDC.

If the dataset is unblocked, $RUA or $WUA calls the unblocked dataset
routine $RLB or $WLB. These routines do no blocking or unblocking of
data. The unblocked I/O routines communicate with the system through the
F$RDC and F$WDC Exchange Processor calls.

SR-OOll 2-16 M

Asynchronous I/O

CAL BUFFERED

I/O MACROS

BUFIN BUFOUT BUFEOF

BUF INP BUFOUTP BUFEOD

BUFCHECK

CAL BUFFERED I/O

INTERFACE

$CBIO

F$BIO

"
TIO

$RWDR $WWDR $WEOF

$RWDP $WWDP $WEOD

$WWDS $REWD

CH HUFFER ED I/O
STATEMENTS

HUFFER IN

BUFFER OUT

"
BUFFERED I/O

$RB

$WB

Figure 2-6.

SR-OOll

CAL UNBLOCKED

I/O MACROS

READU

WRITEU

UNBLOCKED DATASETS

$RLB

$WLB

Synchronous I/O

CFT FORMATTED/
UNFORMATTED STATEMENTS

READ

PR INT

PUNCH

WRITE

"
$RFI $WFI $RUI

$RFA $WFA $RUA

$RFV $WFV $RUV

$RFF $WFF $RUF

F$RDC

F$WDC

"
CIa

RDCS

$WUI

$WUA

$WUV

$WUF

-.
~ WDCS

ClOS

user
interface

CAL BLOCKED I/O MACROS

READ WR ITE WR ITEF

READP WRITEP WRITED

READC WR ITEC BKSP

READCP WRITECP BKSPF

GETPOS

SETPOS

REWIND

library
routines

,r
LOGICAL RECORD I/O

$RWDR $WWDR $WEOF $GPOS

$RWDP $WWDP

$RCHR $WCHR

$RCHP $WCHP

$WWDS

$WEOD

$REWD

$BKSP

$BKSPF

$SPOS

system
calls

USER
SYSTEM

Relationship of levels of user I/O

2-17 M

Buffered I/O takes a different path from formatted/unformatted I/O.
These routines interface (through an F$BIO Exchange Processor request) to
routines in COS that normally perform logical I/O for system tasks.
These routines, called Task I/O or TIO, closely resemble the logical
record I/O routines. TIO and the logical record I/O routines make
similar requests of circular I/O routines in COS although the mechanism
for making these requests is different.

Circular I/O routines (CIO) are the focal point for all logical I/O
generated by COS. CIO communicates its needs for physical I/O to the
Disk Queue Manager or Tape Queue Manager.

A FORTRAN buffered I/O request issued for an unblocked dataset results in
the buffered I/O routines calling the unblocked dataset routines $RLB and
$WLB, which then process these requests. These requests are processed
the same as formatted/unformatted requests except that buffered I/O
requests return control to the user after initiating I/O rather than
waiting for completion of the I/O request. For a CAL buffered I/O
request, $CBIO is called to route the request to either the blocked or
unblocked I/O processing routines.

Cray Assembly Language (CAL) I/O macros are described in the Macros and
Opdefs Reference Manual, CRI publication SR-0012. Logical record I/O
routines and FORTRAN I/O routines are described in the Library Reference
Manual, CRI publication SR-0014. See the FORTRAN (CFT) Reference Manual,
CRI publication SR-0009, for a description of FORTRAN statements.

SR-OOll 2-18 M

COS JOB PROCESSING

A job is a unit of work submitted to the Cray Computer System. It
consists of one or more files of card images contained in a job deck
dataset. Each job passes through several stages from job entry through
job termination.

JOB DECK STRUCTURE

A job originates as a card deck (or its equivalent) at a front-end
computer system. Card images in the job deck dataset are organized into
one or more files. Figure 3-1 illustrates a typical job deck consisting
of a control statement file, a source file, and a data file. (The
physical card forms for end-of-file and end-of-data are defined by
the front-end system.)

SR-OOll

JCL CONTROL STATEMENT
FILE

Figure 3-1. Basic job deck

3-1 M

3

The first (or only) file of the job deck must contain the job control
language (JCL) control statements that specify the job processing
requirements (JCL is described in section 4 of this manual). Each job
begins with a JOB statement, identifying the job to the system. If
accounting is mandatory in the user's system, the ACCOUNT statement must
immediately follow the JOB statement. All other control statements
follow the JOB statement. Control statements can also be grouped into
control statement blocks as decribed in section 16 of this manual. The
end of the control statement file is designated by an end-of-file record
(or an end-of-data record if the job consists of a control statement file
only).

Files following the control statement file can contain source code or
data. These files are handled according to instructions given in the
control statement file.

The final card in a job deck must be an end-of-data.

GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by the
front-end computer system until it completes:

• Entry

• Initiation

• Advancement

• Termination

JOB ENTRY

A job can enter the system in the form of a dataset submitted from a
front-end computer system or a local or remote job entry station. The
job is transferred to Cray Computer System mass storage, where it resides
until it is scheduled to begin processing. The job input dataset is made
permanent until it is deleted at the completion of the job.

JOB INITIATION

The operating system examines the parameters on the JOB control statement
to determine the resources needed. When system resources required for
initiation are available, the job is initiated (scheduled to begin
processing).

SR-OOII 3-2 M

Initiation of a job includes preparing a Job Table Area (JTA) and user
field, positioning the input dataset for the first job step, and placing
the job in a waiting queue for the cpu.

When cos schedules the job for processing, it creates four datasets:
$CS, $IN, $OUT, and $LOG.

$CS is a copy of the job's control statement file from $IN and is used
only by the system; the user cannot access $CS by name. This dataset is
used to read job control statements. The disposition code for $CS is SC
(scratch) •

$IN is the job input dataset. The job itself can access the input
dataset, with read-only permission, by its local name, $IN, or as FORTRAN
unit 5.

$OUT is the job output dataset. The job can access this dataset by name
Or as FORTRAN unit 6. The disposition code for $OUT is PR (print).

The job's logfile ($LOG) contains a history of the job. This dataset is
known only to the operating system and is not accessible to the user.
User messages can be added to the job's logfile with the MESSAGE system
action request macro (see the Macros and Opdefs Reference Manual, CRI
publication SR-OOI2) or the REMARK, REMARK2, or REMARKF subroutines (see
the Library Reference Manual, CRI publication SR-OOI4).

JOB ADVANCEMENT

Job advancement is the processing of a job according to the instructions
in a control statement file. Advancement occurs as a normal advance or
as an abort advance.

A normal advance causes COS to interpret the next control statement in
the job's control statement file. When a job step is multitasked, a job
advance deletes all user tasks except the one that causes the advance.

An abort advance occurs if the operating system detects an error or if
the user requests that the job abort. Abort advances are described fully
under Exit Processing later in this section.

JOB TERMINATION

Output from a job is placed on system mass storage. At completion of a
job, the operating system appends $LOG to $OUT and returns $OUT to its
originating station. $IN, $CS, and $LOG are released. $OUT is renamed
jn (from the IN parameter value of the JOB control statement described
in section 7 of this manual) and is directed to the output queue for

SR-OOII 3-3 M

I

staging to the specified front-end computer system. When the front end
has received the entire contents of $OUT, the output dataset is deleted
from COS mass storage.

The front-end computer processes $OUT as specified by the dataset
disposition code. If, for any reason, $OUT does not exist, $LOG is the
only output returned at job termination.

If EXP encounters an error as it attempts to copy $LOG to $OUT, $LOG is
disposed on a separate file.

JOB MEMORY MANAGEMENT

Central Memory is a resource that is allocated to jobs by the operating
system. A job's memory is composed of several distinct areas. Some of
these areas are managed exclusively by the system for the user, others
are managed by both the system and the user.

Figure 3-2 illustrates a job in memory. The total job size equals the
length of the job's Job Table Area (JTA) plus user field length. The
lined area between JCHLM and JCLFT is unused space within the job. This
area contains enough memory to guarantee that the job size is always a
multiple of 512 words.

INITIAL MEMORY ALLOCATION

When the job initiates it is given sufficient memory for the Control
Statement Processor (CSP) to execute. Once the JOB statement is
processed, the job is allowed a field length no larger than the amount
specified by the MFL parameter on the JOB control statement (see section
7 of this manual).

MODES OF FIELD LENGTH REDUCTION

There are two modes of field length reduction: automatic and user
managed.

• Automatic field length reduction mode. When the job is in
automatic field length reduction mode, the system automatically
increases and decreases the job's field length as the areas within
the job increase and decrease. A job initiates in automatic field
length reduction mode.

SR-OOll 3-4 M

• User-managed field length reduction mode. When the job is in
user-managed field length reduction mode, the system continues to
increase the job's field length as before, but never automatically
decreases it. The job's field length can be decreased only by the
user until the job is returned to automatic field length reduction
mode.

n

o

128

WJCHLM

WJCLFT

WJCDSP

WJCBFB

W@JCFL

///
/////////1//
//
////////////////// Job Table Area //////////////////
//

Job Communication Block

User code/data

Blank Common

///
////////////////////// Unused //////////////////////

Logical File Tables

Dataset Parameter Area

I/O Buffers

Figure 3-2. User area of memory for a job

t Although the heap follows blank common in the figure, it can
optionally precede blank common.

SR-OOll 3-5

user
field

M

The field length can be reduced at the beginning of each job step and
during each job step if the job is in automatic field length reduction
mode and any area of the job decreases. Since increases in field length
can result in the job's requiring more memory than can be immediately
supplied, which causes the job to be delayed until sufficient memory can
be given to it, the user may want to manage the job's field length when
it is known that the job will undergo frequent short-lived fluctuations
in size.

USER MANAGEMENT OF MEMORY

A user can dynamically manage the user code/data area of the job by
requesting an increase or decrease of memory at the end of the user
code/data area.

A user can manage the field length of the job by requesting a specific
field length.

When the user manages the field length of the job, the job is placed in
user-managed field length reduction mode for the_duration of the job step
(next job step when using the MEMORY control statement described in
section 9 of this manual).

A user can place the job in user-managed field length reduction mode
across job steps by explicitly requesting that mode. The job remains in
user-managed field length reduction mode until the user explicitly
requests automatic field length reduction mode.

Management by control statement from the run stream

A user can use the MEMORY control statement to manage the job's field
length. When the user manages the job's field length, the job will be
placed in user-managed field length reduction mode for the duration of
the next job step. The MEMORY control statement may also place the job
in user-managed field length reduction mode across job steps or return
the job to automatic mode.

Management from within a program

From within a program, use of the MEMORY macro or MEMORY routine,
respectively, requests user management of the job's user code/data area
and field length. When the user manages the job's field length, the job
is placed in user-managed field length reduction mode for the duration of
the job step. The MEMORY macro or MEMORY routine may also place the job
in user-managed field length reduction mode across job steps or return
the job to automatic mode.

SR-OOll 3-6 M

Management associated with a program

Use of the BC, PAD, and NORED parameters on the LDR control statement
(see section 14 of this manual) causes certain memory management to be
associated with the binary being loaded. This association is stored with
the binary if the binary is saved on a dataset. The management
associated can be user code/data area management or field length
management and occurs when the binary is loaded for execution. If the
field length is being managed, the job is placed in user-managed field
length reduction mode for the duration of program execution.

SYSTEM MANAGEMENT OF MEMORY

The system changes appropriate areas of the job's memory when a job
initiates certain system actions (that is, advances to the next job step,
does I/O, etc.). The Job Table Area, Logical File Tables, and Dataset
Parameter Area pictured in figure 3-2 can increase, but will never
decrease. The user code/data and buffer areas may both increase and
decrease in size. If the job is in automatic field length reduction
mode, the system automatically increases and decreases the job's field
length when any area in the job increases or decreases. If the job is in
user-managed field length reduction mode, the system continues to
increase the field length when it needs to, but never automatically
decreases the field length.

JOB RERUN

Under certain circumstances, restarting of a job from its beginning may
become necessary or desirable. This is referred to as rerunning a job.
Conditions causing the system to attempt to rerun a job are:

• Operator command,

• Uncorrectable memory error,

• Uncorrectable error reading the mass storage image of a job, and

• System restart.

A user job may perform certain functions that normally make its rerunning
impossible. The functions render a job nonrerunnable because they
produce results that might cause the job to run differently if it were
rerun. These functions include:

SR-OOll 3-7 M

• Writing to a permanent dataset

• Saving, deleting, adjusting, or modifying a permanent dataset

• Acquiring a dataset from a front-end system

Ordinarily, when a job becomes nonrerunnable, it remains so. However,
the user may declare that the job is rerunnable. The user should do this
only when changes in job results due to execution of nonrerunnable
functions are acceptable. COS never makes a job rerunnable automatically.

The user can also override system monitoring of job rerunnability,
regardless of what functions the job performs. This ordinarily is done
only if the job is structured to run correctly regardless of whether
nonrerunnable functions are performed.

EXIT PROCESSING

When an error condition is detected by COS or when the user requests a
job step abort, COS checks to see if the condition is to be reprieved
(Reprieve Processing is described in the next subsection). If no
reprieve occurs, exit processing occurs. Generally, when a job step
abort occurs, the current job step is immediately abandoned and control
statements are skipped until the next eligible EXIT statement is
encountered (EXIT is described in section 7). Normal job advancement
occurs with the EXIT statement that is found. If no eligible EXIT
statement is found, the job is terminated.

EXIT statements that are within control statement blocks (iterative,
conditional, or in-line procedure) that have not yet been invoked are
ignored during the search for the next eligible EXIT statement.

If the block currently being processed is a conditional block (see
section 16), only the group of control statements preceding the next
conditional statement in the block is searched for an eligible EXIT
statement; if none is found, the search continues with the first
statement following the conditional block. For example, in the following
sample control statement sequence, an abort advance occurs at the control
statement THIS IS A JOB STEP ABORT CONDITION because it does not begin
with a valid verb. Control statement interpretation resumes with the
control statement: *. RESUME HERE. The EXIT statements that are
included in the conditional block are ignored because they reside in
blocks that are not executed.

SR-OOll 3-8 M

SET,Jl=O.
IF(Jl.EQ.O)

THIS IS A JOB STEP ABORT CONDITION.
ELSEIF (Jl.EQ.l)

EXIT.
ELSE.

EXIT.
ENDIF.

EXIT.
* RESUME HERE

Exit processing is not performed for interactive jobs except inside an
invoked procedure. After a job step abort occurs, the user is simply
prompted for the next control statement.

REPRIEVE PROCESSING

Normally, when a job step abort error occurs, exit processing begins (see
the previous section for a full description of exit processing).
Reprieve processing, however, allows a user program to attempt recovery
from many of the job step abort errors or to perform clean-up functions
before continuing with the abort.

Reprieve processing can also be used during the normal termination of a
job step. In this case, control transfers to the user's reprieve code
instead of to the next normal job step.

Two types of error conditions are related to a job step: nonfatal and
fatal.

• Nonfatal error conditions are those which can be reprieved any
number of times per job step by the user.

• Fatal error conditions can be reprieved only once for each type
per job step.

SR-OOll 3-9 M

See Appendix D for a listing of all fatal and nonfatal error conditions.

When requesting reprieve processing, the user selects the error
conditions to be reprieved by setting a mask in the SETRPV subroutine or
macro call. If a selected error condition occurs during job processing,
the user's current job step maintains control. The user's exchange
package, vector mask register, error code, and error class are saved and
control passes to the user's reprieve code.

INTERACTIVE JOB PROCESSING

An interactive job dataset has interleaved control statements, program
or utility input, and program or utility output. In an interactive job,
the control statement file ($CS), standard input dataset ($IN) , standard
output dataset ($OUT), and logfile ($LOG) are all defined by the system
to be interactive datasets. See section 2 for more information on
interactive datasets.

Each job step of an interactive job is initiated with a control
statement. Control statements can be either part of a procedure
invocation or entered directly from the interactive terminal. After
each control statement is received by COS, input to the job step can be
entered from the terminal and output and logfile information is returned
to the terminal. When the current job step is complete, normal job
advancement occurs and COS prompts for the next control statement (or
reads it from the invoked procedure file). Exit processing (see section
3) is never performed on an interactive job except within a procedure
invocation.

Whenever a program or utility executing as part of an interactive job
requests to read from the standard input dataset, the interactive user
is prompted to enter data one record at a time. Likewise any data
written to $OUT, the standard output dataset, is sent to the interactive
terminal. User logfile messages are also sent to the interactive
terminal.

JOB LOGFILE AND ACCOUNTING INFORMATION

For each job run, the system produces a logfile--an abbreviated history
of the progress of the job through the system. The logfile for a job
appears at the end of the job output. Each job control statement is
listed sequentially, followed by any messages associated with the job
step. Clock time, accumulated CPU time, and COS information are also

SR-OOll 3-10 M

given for each job step. A logfile usually consists of the items
illustrated in figure 3-3. Item 6 illustrates the accounting information
given to the user.

~
14:57:06 0.0000 csp
14:57:06 0.0000 csp
14:57:06 0.0000 csp
14:57:06 0.0000 csp
14:57:06 0.0000 csp
14:57:06 0.0000 csp
14:57:06 0.0000 csp
14:57:06 0.0001 csp
14:57:06 0.0001 csp
14:57:06 0.0001 csp
14:57:06 0.0001 csp
14:57:06 0.0010 csp
14:57:07 0.0017 EXP
14:57:07 0.0017 EXP
14:57:07 0.0017 EXP
14:57:07 0.0022 CSP
14:57:07 0.0024 USER
14:57:07 0.0029 CSP
14:57:07 0.0040 USER
14:57:08 0.0043 CSP
14:57:08 0.0043 PDM
14:57:08 0.0043 PDM
14:57:08 0.0043 CSP
14:57:08 0.0044 CSP
14:57:08 0.0044 CSP
14:57:08 0.0044 CSP
14:57:08 0.0046 USER
14:57:08 0.0046 USER
14:57:08 0.0047 USER
14:57:08 0.0047 USER
14:57:08 0.0047 USER
14:57:08 0.0047 USER
14:57:08 0.0048 USER
14:57:08 0.0048 USER
14:57:08 0.0048 USER
14:57:08 0.0048 USER
14:57:08 0.0048 USER
14:57:08 0.0048 USER
14:57:08 0.0048 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER
14:57:08 0.0049 USER

03/07/83 - The current COS on SN27 is 03/03. This system was brought up
(]) at 1000, 03/07.

---(I) CRAY-l SERIAL 27/4 CRI - MENDOTA HEIGHTS, MINN. 03/23/83

o CRAY OPERATING SYSTEM COS 1.12 ASSEMBLY DATE 03/03/83

JOB,JN=SAMPJOB,US=PROJECT2013,MFL=28000,T=1.
ACCOUNT,AC=.

* 0: GENERATE A PERMANENT DATASET

COPYF(O=PERMDS)
FT048 - COpy OF 9 RECORDS 1 FILES COMPLETED
COPYF,O=PERMDS.
FT048 - COPY OF 72 RECORDS 1 FILES COMPLETED
SAVE (DN=PERMDS, ID=P2013)

f5\ PDOOO - PDN = PERMDS ID = P2013 ED =
~PDOOO - SAVE COMPLETE

EXIT.
END OF JOB

® JOB NAME -
USER NUMBER -
TIME EXECUTING IN CPU -
TIME WAITING TO EXECUTE -
TIME WAITING FOR I/O -

SAMPJOB
PROJECT 2 0 13
0000:00:00.0046
0000:00:00.2999
0000:00:01.6256
0000:00:00.0624 TIME WAITING IN INPUT QUEUE -

MEMORY * CPU TIME (MWDS*SEC) -
MEMORY * I/O WAIT TIME (MWDS*SEC) -
MINIMUM JOB SIZE (WORDS) -

0.11527
47.48925

13312
30208
10240
27136

MAXIMUM JOB SIZE (WORDS) -
MINIMUM FL (WORDS) -
MAXIMUM FL (WORDS) -
MINIMUM JTA (WORDS) -
MAXIMUM JTA (WORDS) -
DISK SECTORS MOVED -
USER I/O REQUESTS -
OPEN CALLS -
CLOSE CALLS -
MEMORY RESIDENT DATASETS -
TEMPORARY DATASET SECTORS USED -

3072
3072

96
18
11

9

PERMANENT DATASET SECTORS ACCESSED - 20
PERMANENT DATASET SECTORS SAVED - 1
SECTORS RECEIVED FROM FRONT END -
SECTORS QUEUED TO FRONT END -

1 US PROJECT2013

Figure 3-3. Example of a job logfile

C!) First header line: Installation-defined message, usually
identifying the site and date the job was run.

~ Second header line: Installation-defined message, usually
identifying the operating system, its current revision level, and
the date of the last revision.

SR-OOll 3-11 M

~ Columns: The leftmost column identifies the wallclock time for
each job step and the middle column identifies the accumulated CPU
time for the job. The rightmost column identifies a system module
or the user as the originator of the message. All times are in
decimal. Entries commonly noted include the following:

CSP
PDM
EXP
ABORT
USER

Control Statement Processor
Permanent Dataset Manager
Exchange Processor
Abort Message
Program in user field

C!) Control statements: Control statements are listed in the logfile
as they are processed unless requested otherwise with the ECHO
statement described in section 6 of this manual. When the job
terminates, the last control statement processed that may be echoed
is the last control statement printed. Control statements are not
listed if the JCL message class (see the ECHO control statement) is
disabled.

~ Logfile messages: Any messages related to control statement
processing are shown below the statement.

~ Accounting information: When a job reaches completion, COS writes
a summary of basic accounting data onto the logfile for the job.
All times given are in hours, minutes, and seconds (to the nearest
ten-thousandth of a second). The following accounting information
is provided (in decimal):

• Job name and user number

• CPU time used by the job and by each job task in a multitasked
job step

• Time waiting to execute, for the job and for each job task in
a multitasked job step, includes time waiting for the CPU,
memory, operator suspension, and recovery.

• Time waiting for I/O, for the job and for each job task in a
multi tasked job step

• Time waiting in input queue

• Memory usage based on the execution and I/O wait time in million
word-seconds

• Minimum and maximum job size including Job Table Area (JTA)
(words)

• Minimum and maximum field length used (words)

SR-001I 3-12 M

• Minimum and maximum JTA used (words)

• Number of 5l2-word disk blocks (sectors) moved

• Number of user I/O requests made by the job

• Open and close calls

• Memory-resident datasets

• Number of 5l2-word disk blocks (sectors) used for temporary
datasets

• Number of 5l2-word disk blocks (sectors) accessed and saved for
permanent datasets

• Number of 5l2-word disk blocks (sectors) received from and
queued to the front end

• Number of tape devices reserved; message issued only if magnetic
tape datasets have been processed.

• Number of tape volumes mounted; message issued only if magnetic
tape datasets have been processed.

• Amount of tape data moved, expressed as a multiple of 512 words;
message issued only if magnetic tape datasets have been
processed. Each disk sector consists of 512 words, and in COS
blocked format each block consists of 512 words.

• Number of tape blocks moved; message issued only if magnetic
tape datasets have been processed.

(1) System Bulletin: The system bulletin allows the installation to
print messages in the logfile, usually about the status of the
system environment. It is an installation-maintained message
dataset.

SR-OOll 3-13 M

JOB CONTROL LANGUAGE

The job control language of the Cray Operating System (COS) allows the
user to present a job to the Cray Computer System, define and control
execution of programs, and manipulate datasets.

The job control language is composed of oontrol statements with each
control statement containing information for a job step. COS initially
creates a oontrol statement dataset, $CS, to hold job control

4

statements. Additional control statement datasets can be created through
procedure definition or the CALL control statement (see section 6).

The syntax of a control statement is:

verb sePl paraml seP2 param2 ... sePn paramn term oomrnents

All control statements must adhere to a set of general syntax rules.
Every control statement consists of a verb and a terminator (term) as a
minimum, except for the comment control statement (*) which does not
require a terminator. Additionally, most control statements require
parameters (parami) and separators (sePi) between the verb and the
terminator. The maximum number of parameters (zero, one, or more)
depends on the verb.

The continuation separator (the caret symbol) allows a control statement
to consist of more than one line image (80 characters). The JOB,
ACCOUNT, DUMPJOB, EXIT, and comment control statements cannot be
continued. All other control statements can have any number of
continuation card images, subject to restriction by the verb. A caret
occurring within a literal string has no special significance.

A oomment is an optional annotation to a control statement and can be a
string of any ASCII graphic characters. The comment follows the line
image terminator. The control statement interpreter ignores comments.
All comments appear in the logfile unless suppressed by the ECHO control
statement.

Blanks are ignored unless they are embedded in a literal string. Blanks
cannot precede the verb on the JOB control statement.

SR-OOll 4-1 M

SYNTAX VIOLATIONS

COS notes syntax violations in the system and user logfiles. If the JOB
control statement is in error, processing of the job terminates
immediately. If accounting is mandatory, ACCOUNT statement errors also
cause job termination. All other syntax errors cause a job step abopt
condition, which causes the system to search for an EXIT control
statement. A successful search resumes contro+ statement processing with
the job step following EXIT. If no such job step exists or if an EXIT
statement is not found, the job is terminated. Job step abort can also
direct control to a user-specified routine (see exit processing and
reprieve processing in section 3).

VERBS

A eontpol statement vepb is the first nonblank field of a control
statement specifying the action to be taken by COS during control
statement processing. COS recognizes three types of control statement
verbs: system verbs, dataset name vepbs (loeal and system), and
libpapy-defined vepbs. A control statement verb cannot be continued
across a card boundary.

When COS encounters a verb in a control statement file, it searches for a
match to that verb in the following order:

1. System verbs
2. Local dataset name verbs
3. Library-defined verbs
4. System dataset name verbs

COS first searches the list of system verbs for a match. If the verb is
not a system verb, COS searches for a local dataset name that might match
the verb. If the verb is not the name of a local dataset, COS searches
each library in the library searchlist for a match. If it does not find
a library entry that matches the verb, it searches the System Directory
Table (SDR) for a matching system dataset name. If a match for the verb
is not found under any of these categories, COS issues a control
statement error and aborts the job step.

SR-OOll 4-2 M

SYSTEM VERBS

A system verb consists of an alphabetic character which can be followed
one through seven alphanumeric characters. t The verb requests that
COS perform the indicated function. The system verbs are:

* DISPOSE EXIT LIBRARY PERMIT ROLLJOB
ACCESS ECHO EXITIF LOOP PRINT SAVE
ACQUIRE ELSE EXITLOOP MEMORY PROC SET
ADJUST ELSEIF FETCH MODE RELEASE SIMABORT
ASSIGN ENDIF IF MODIFY RERUN SUBMIT
CALL ENDLOOP IOAREA NORERUN RETURN SWITCH
DELETE ENDPROC JOB OPTION REWIND

The SIMABORT control statement is described in the COS Simulator (CSIM)
Reference Manual, publication SR-0073.

LOCAL DATASET NAME VERBS

A verb that is the name of a local dataset consists of an alphabetic
character followed by one through six alphanumeric characters. t This
verb requests that COS load and execute an absolute binary program from
the first record of the named dataset. If the user job has a dataset
with the indicated name, COS loads and executes the program from that
dataset.

LIBRARY-DEFINED VERBS

A library-defined verb consists of one through eight characters. The
library-defined verb is either a program or procedure definition (see
section 16 of this manual) residing in a library that is a part of the
current tibpapy seapchtist. (The library searchlist defines the
library and the order in which the libraries are searched by COS. This
order can be specified with the LIBRARY statement described in section
7.) A program in a library is an absolute binary program to be loaded
and executed. A procedure definition is a group of control statements
and/or data to be processed (see section 16).

t Alphabetic characters include $, %, @, and the letters A through Z.
Alphanumeric characters include all the alphabetic characters and the
digits 0 through 9.

SR-OOll 4-3 M

by

SYSTEM DATASET NAME VERBS

COS searches for a verb that is the name of a system-defined dataset in
the System Directory Table (SDR). A system-defined dataset name verb
consists of an alphabetic character which can be followed by one through
six alphanumeric characters. t The System Directory Table is a list of
common language processors and utilities known to the system and made
available to users at startup. The name of the program (for example,
CAL, CFT, or DUMP) is also the name of the dataset containing the
absolute binary of the program. The exact list of system dataset name
verbs is site-dependent.

SEPARATORS

A sepapatop is a character used as a delimiter in a control statement.
It separates the verb from the first parameter, separates parameters from
one another, delimits subparameters, terminates verbs and parameters, and
separates a keyword from its value in parameters having keyword form.

The control statement separators allowed by COS are given in table 4-1.

PARAMETERS

A pa~ametep is a control statement argument, whose exact requirements
are defined by the control statement verb. Parameters are used in
control statements to specify information to be used by the verb-defined
process. Parameters that can be used with COS control statements are
either positional or keyword. For certain verbs, a parameter value can
be an expression. Detailed information on the use of expressions is
presented later in this section. Parameters are separated by commas.

POSITIONAL PARAMETERS

A positional parameter has a precise position relative to the separators
in the control statement. Even a null positional parameter must be
delimited from the control statement verb or other parameters by a
separator.

t Alphabetic characters include $, i, @, and the 26 uppercase letters A
through Z. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

SR-OOll 4-4 M

Table 4-1. Control statement separators

Function

Initial separator (comma or open
parenthesis) t - Separates the
verb from the first parameter

Statement terminator (period if
initial separator is comma; close
parenthesis if initial separator
is open parenthesis)t - Signifies
end of control statement

Character Examples

VERB, parameter.
VERB (parameter)

VERB.
VERB, parameter.
VERB (parameter)

Parameter separator (comma) -
Indicates the end of one parameter
and the beginning of the next

VERB(parameter,paramete~

Equivalence separator (equal sign) -
Delimits a parameter keyword from the
first parameter value for that key­
word. Adjacent equivalence separa­
tors are illegal.

Concatenation separator (colon) -
Separates multiple parameter values
from each other

Continuation character (caret) -
Indicates that the control statement
consists of more than one SO-character
card; may appear anywhere after the
initial separator

Literal string delimiters
(apostrophes) tt - Identify the
beginning and end of a literal string

, ••• I

VERB(keyword=value)

VERB(••• parameters ••• A

parameters)

VERB(keyword='string')

Parenthesis delimiters (open and close (•••)
parentheses) - Indicate a group of
characters to be treated as one value

VERB(keywoPd=(value:value)

t By convention in this manual, the comma and period are used as
initial and terminator separators for all control statements except
or the JCL block control statements (procedure definition, iterative,
and conditional) where paired parentheses are conventional.

tt See section 16 for additional information on strings and string
delimiters.

SR-OOll 4-5 M

The formats for a positional parameter follow:

value

Each valuei is a string of alphanumeric characters, a literal string,
or a null string. All positional parameters are required to be
represented by at least one value, although the value can be null.
Rules for strings are given in section 16.

Examples of positional parameters:

• • • ,ABCDE, •••

... , , ...
Parameter value is ABCDE •

The adjacent parameter separators
indicate a null positional parameter.

••• ,Pl:P2:P3, ••• The parameter consists of multiple values •

VERB () or VERB,. Positional parameter 1 is null

KEYWORD PARAMETERS

A keyword parameter is identified by its form rather than by
in the control statement. The keyword is a string of one to
alphanumeric characters uniquely identifying the parameter.
of this type can occur in any order but must be placed after
positional parameters for the control statement, or they can

The formats of keyworq parameters are:

keyword

keyword=value

its position
eight
Parameters
all of the
be omitted.

keywoPd is an alphanumeric string that depends on the requirements of
the verb, and valuei is the value associated with the keyword. A
keyword parameter can occur anywhere in the control statement after all
positional parameters are specified. Whether or not a keyword parameter
is required depends on the verb's requirements. If the keyword is not
included in the control statement, a default value can be assigned.

SR-OOll 4-6 M

Examples of keyword parameters:

••• ,DN=FILEI,... Parameter consists of keyword and value •

••• ,UQ,... Parameter consists of keyword only •

••• ,DN=FILEI:FILE2:FILE3, ••• Parameter consists of keyword and list of
values.

••• ,DN=, •••

••• ,DN=A:::B, •••

Null parameter value, as if omitted from
the statement

A, B, and two null parameter values are
listed.

The parameter associated with a keyword may be defined as a secure
parameter. Every secure parameter is edited out of the statement before
it is echoed to the user logfile. When a keyword is secure, all that
appears in the user's logfile is the keyword and the = sign, followed by
the next delimiter. Secure parameters are defined when calling GETPARAM
as described in the Library Reference Manual, CRI publication SR-OOI4.

PARAMETER INTERPRETATION

The decoding (cracking) of control statement parameters is normally
performed by the routines $CCS and GETPARAM, as described in the Library
Reference Manual, CRI publication SR-OOI4. Parameter interpretation is
performed by the particular program or utility that calls $CCS or
GETPARAM.

CONVENTIONS

The following conventions are used in this manual.

Convention

Italios

[] Brackets

{} Braces

SR-OOII

Description

Define generic terms representing the words or
symbols to be supplied by the user

Enclose optional portions of a command format

Enclose alternate choices, one of which must be used

4-7 M

LIBRARIES 5

Job control statements, programs, and compiled subprograms are maintained
in libraries. The following types of libraries are available on the Cray
Operating system:

• Procedure libraries

• Program libraries

• Object code libraries

The CALL and LIBRARY control statements (see section 7 of this manual)
refer to procedure libraries1 UPDATE (see the UPDATE Reference Manual,
CRI publication SR-0013) maintains program libraries1 BUILD (see section
15 of this manual) maintains object code and procedure libraries. The
LIB and NOLIB parameters of the LDR control statement (see section 14)
refer to object code.

PROCEDURE LIBRARY

A prooedure library is created by the in-line procedure definition
process described in section 16 of this manual. After creation,
procedure libraries are made available for use by the LIBRARY control
statement (see section 7).

A procedure library is made up of procedures which are a sequence of
control statements and/or data saved for processing at a later time.
Procedures are described in section 16 of this manual.

PROGRAM LIBRARY

A program library is a means of maintaining programs and other data on
datasets. These datasets are created and maintained by the UPDATE
utility described in the UPDATE Reference Manual, CRI publication
SR-0013. A program library (PL) consists of one or more specially
formatted card image decks, each separated by an end-of-file record.
These decks can be programs, portions of programs, input data for
programs, or even job control statements. See the UPDATE Reference
Manual for full information on using program libraries.

SR-OOll 5-1 M

OBJECT CODE LIBRARIES

Object code libraries are termed library datasets or simply libraries. A
library dataset is a dataset containing a program file followed by a
directory file. Library datasets are designed primarily to provide the
Relocatable Loader (see section 14) with a means of rapidly locating and
accessing program modules. Library datasets are created and maintained
by the BUILD utility as described in section 15 of this manual. Any
library dataset can be inspected and described by ITEMIZE. See section
13 for more information on ITEMIZE.

SR-OOll 5-2 M

JOB CONTROL STATEMENTS

Job control statements perform the following functions:

• Identify a job to the system

• Define operating characteristics for the job

• Manipulate datasets

• Call for the loading and execution of user programs

• Call COS programs that perform utility functions for the user

• Define and manipulate other control statements

The first file of a job dataset contains control statements that are
read, interpreted, and processed one at a time. The sequential
processing of control statements determines the job flow through the
operating system. See section 3 for a general description of job flow.
Sequential processing of control statements can be altered by exit or
reprieve processing, or by control statement structures described in
section 16.

Information on the general syntax rules and conventions for control
statements is presented in section 4. Sections 6 through 15 describe
COS control statements and give example in some cases. The control
statements are described in the following categories:

• Job definition

• Dataset definition and control

• Permanent dataset management

• Dataset staging control

• Permanent dataset utilities

• Local dataset utilities

• Analytical aids

• Executable program creation

• Object library management

SR-OOll 6-1 M

6

JOB DEFINITION

Several control statements allow the user to specify job processing
requirements. Control statements defining a job and its operating
characteristics to the operating system include the following.

JOB

MODE

EXIT

MEMORY

SWITCH

*

Function

Introduces the job to the operating system and
defines characteristics such as size, time limit, and
priority levels

Sets or clears mode bits in the job's Exchange Package

Indicates the point in a series of control statements
at which processing of control statements resumes
following a job step abort from a program or
indicates the end of control statement processing

Requests a new field length and/or mode of field
length reduction

Turns on or turn off pseudo sense switches

Annotates control statements with comments

RERUN, NORERUN Controls job rerunnability

IOAREA, Denies or allows access to the job's I/O area, the
upper (high-address) portion of user memory that
contains tables and buffers managed by the system I/O
library routines

CALL, RETURN Allows the use of alternate control statement files

ACCOUNT Validates the job's account number, user number, and
optional passwords

CHARGES Obtains partial or total resource reporting for a job

ROLLJOB Protects a job by writing it to disk

SET Changes the value of a job control language (JCL)
symbolic variable

ECHO Controls types of messages written to the job's
logfile

SR-OOll 6-2 M

Verb

LIBRARY

OPTION

Function

Specifies the datasets to be searched, when looking
for defined procedures, during job processing.
LIBRARY also specifies the order in which to perform
the search.

Specifies user-defined options, such as the format of
the job's listing and the amount of dataset
accounting statistics produced

Job definition and control statements are fully described in section 7.

DATASET DEFINITION AND CONTROL

Datasets can be defined and managed by the user with the following
dataset control statements: ASSIGN, ACCESS, and RELEASE.

Verb Function

ASSIGN Defines characteristics for datasets, such as the
amount of user memory to allocate for the dataset's
I/O buffer. ASSIGN also can be used to create a mass
storage dataset. ACCESS must first be used to create
a tape dataset.

RELEASE Relinquishes access to the named dataset for the job

ASSIGN and RELEASE are fully defined in section 8. ACCESS is described
later in this section under Permanent Dataset Management because it is
primarily used in managing permanent datasets.

PERMANENT DATASET MANAGEMENT

Control statements for managing permanent datasets provide for creating,
protecting, and accessing datasets assigned permanently to mass storage
or magnetic tape. Such datasets cannot be destroyed by normal system
activity or engineering maintenance.

Front-end computer systems cannot directly affect Cray-resident
permanent datasets, since permanent dataset management is handled
entirely by COS. However, permanent magnetic tape dataset management
can optionally be coordinated with a front-end computer system.

SR-OOII 6-3 M

Users can manage user permanent datasets only; system permanent datasets
cannot be managed (modified or deleted) by the user. (See section 2 for
a description of the types of datasets.)

The control statements available for user permanent mass storage and
magnetic tape dataset management are shown in table 6-1. Actual
processing of these requests depends upon the medium on which the
dataset resides. Mass storage datasets are controlled by the COS system
task called the Permanent Dataset Manager (PDM). Magnetic tape datasets
are controlled by a system task called the Tape Queue Manager (TQM).
Both of these system tasks (PDM and TQM) have mechanisms for retaining
the characteristic information about the dataset. Information for mass
storage datasets is retained in the Central Memory-resident Dataset
Catalog (nSC). Magnetic tape datasets can have characteristic
information retained on a front-end computer system.

The permanent dataset management control statements are fully described
in section 9.

MASS STORAGE DATASET ATTRIBUTES

Every mass storage permanent dataset has several attributes associated
with it. These attributes are:

• Read, write, and maintenance permission control words,

• Public access mode,

• public access tracking,

• Permits,

• Text, and

• Notes

Permission control words

A pep,mission eontpot word is a password that must be supplied to gain
access to a particular permanent dataset. Permanent datasets are not
required to have a permission control word, but if a permission control
word is specified for the mode of dataset access desired (read, write,
maintenance), the control word must be specified to gain access to the
named dataset. If more than one mode of access is desired (for example,
both read and write), all appropriate control words must be supplied.

SR-OOII 6-4 M

Table 6-1. Permanent dataset management control statements
for each medium

Verb

SAVE

ACCESS

DELETE

MODIFY

ADJUST

PERMIT

SR-OOll

Mass storage

Enters a dataset's
identification and location
in a system-maintained
Dataset Catalog. Datasets
recorded in the Dataset
Catalog via a user SAVE
request are user permanent
datasets and are recoverable
at deadstart.

Assigns (makes local) a user
permanent dataset to the
requesting job, with the
requested and/or allowable
modes (execute, read,
write, maintenance)

Removes the definition of
a user permanent dataset
from the Dataset Catalog
(DSC). It is possible
to delete a dataset's
contents and have its
attributes retained by
the system.

Changes the characteristic
information for an existing
user permanent dataset

Records the change in any of
the size or allocation
information for a dataset
that might have contracted
or expanded

Explicitly grants or denies
specified users or groups
of users access to a
permanent dataset

6-5

Magnetic tape

Supplies to a front-end
computer system the
characteristic information
about a dataset for its
retention

Assigns an existing tape
dataset to the job or
defines a NEW-type tape
dataset that will be created
by the job. Also optionally,
defines the front-end computer
system that will be the
central point for servicing
that dataset.

Requests the front-end
computer system servicing
the dataset to remove
(delete) any information
concerning the dataset

Not applicable

Not applicable

Not applicable

M

Public access mode attribute

If all users are to be allowed some kind of access to a permanent
dataset, that dataset must have a pubtia aaaess mode defined. The
public access mode is the type of access, as a minimum, all users can
have to the permanent dataset. Users can be allowed read, write, and/or
maintenance mode access to the dataset. Users can be restricted to only
executing the dataset; the public access mode can alternatively be NONE,
signifying that public access is not permitted.

Public access tracking attribute

Pubtia aaaess tpaaking is a facility that can be turned on or off. A
record can be kept of every user who accesses a public dataset. See
Dataset Use Tracking later in this section for more details on the
public access tracking mechanism.

Permits attribute

User permanent mass storage datasets can have a list of alternate users
of the dataset and in what mode or modes each alternate user can access
the dataset. Each element of the list is known as a permit and names
a specific alternate user and that user's allowed mode of dataset
access. Permits are described more fully under Access Mode later in
this section.

Text attribute

text is a character string to be passed to a front-end computer system
when requesting transfer of the dataset to or from Cray mass storage.
Text is more fully described under Dataset Staging Control later in this
section.

Notes attribute

notes is a string of up to 480 characters associated with a permanent
dataset. There is no restriction on what notes contains. When
notes is listed using the AUDIT utility (see Permanent Dataset
Utilities later in this section), the caret symbol is interpreted as an
end-of-line signal and AUDIT advances to a new line when listing the
dataset notes. notes can contain such information as dataset
structure, usage instructions, or history. For example, if several
versions of a program exist as different permanent datasets, the notes
could identify the purpose, difference, and origin of each dataset.

SR-OOII 6-6 M

ESTABLISHING ATTRIBUTES FOR MASS STORAGE DATASETS

Mass storage permanent dataset attributes are established at dataset
creation time, though they can be later modified (or added to in the
case of permits). Attribute establishment depends on whether a dataset
with the same name (PDN), additional identification (ID), and ownership
already exists.

Supplying the entire set of attributes every time a new permanent
dataset is created, that is, when no permanent dataset with the same
PDN, ID, and ownership currently exists, can become quite tedious,
especially if a long list of permits must be established. Instead, the
dataset creator can supply an attributes dataset.

Existing permanent dataset

If a permanent dataset with the requested PDN, ID, and ownership already
exists, the current dataset's permission control words, public access
mode, public access tracking, and permit list are set to the
corresponding attributes of the permanent dataset with the highest
existing edition number (ED) and identical PDN, ID, and ownership.

The text attribute is also copied from the highest existing edition
unless otherwise specified; the notes attribute is not copied.

The discussion of creating a new edition of an existing permanent
dataset applies to datasets created by SAVE or PDSLOAD (see Permanent
Dataset utilities later in this section for information on PDSLOAD). If
MODIFY is used to create a new edition of an existing dataset (by
changing the PDN or ID), any dataset attributes not explicitly modified
remain unchanged. Thus, it is possible, though not recommended, for
different permanent datasets with the same PDN, ID, and ownership to
have different attributes.

New permanent dataset

Using SAVE or ACQUIRE when no permanent dataset currently exists with
the same PDN, ID, and ownership causes a new permanent dataset to be
created.

All permanent dataset attributes can be established for a new permanent
dataset; no attribute is associated with any other dataset. For
example, if the new permanent dataset is to have a read permission
control word, then the control word must be supplied. If a list of
permits is needed, then the list must be supplied. Establishing an
attributes dataset provides a convenient way of supplying a list of
permits described in the following sUbsection.

SR-OOll 6-7 M

Attributes dataset

An attpibutes dataset is an existing permanent mass storage dataset
from which any (or all) permanent dataset attributes can be copied. The
actual dataset content is ignored; the attributes are copied from the
dataset's catalog entry. The attributes dataset can even be partially
deleted (see Dataset Staging Control later in this section for a
discussion of partial dataset deletion). The attributes dataset must be
local to the job referencing it.

The attributes dataset is referenced with the ADN parameter on the SAVE
or ACQUIRE control statement. When the attributes dataset is
referenced, all desired attributes (such as permission control words and'
the public access mode) are copied from the attributes dataset and used
in establishing the attributes of the current dataset. Any attribute
explicitly specified on the SAVE or ACQUIRE control statement is used
instead of the attributes dataset's attribute. Examples of attribute
dataset use are included at the end of section 9.

An attributes dataset can also be used with the PERMIT control
statement, although it is used slightly differently. When an attributes
dataset is used with PERMIT, the entire permit list (but no other
attribute) is copied from the attributes dataset and added to the permit
list established (or being established) for the current dataset.

For example, suppose the same permit list is being used for several
different datasets. A single permanent dataset can be created and the
list of permits established. Then whenever a new dataset is created,
the original dataset can be accessed and used as an attributes dataset.
The new dataset creator need not even know what permits are being
established.

PROTECTING AND ACCESSING MASS STORAGE DATASETS

Access of mass storage datasets can be restricted on two levels:

• Which users can access the dataset (privacy)

• What type of access is allowed (access mode)

The mass storage dataset protection system has two other dataset
management aspects:

• Dataset use tracking

• Attribute association

SR-OOII 6-8 M

Privacy

Mass storage permanent datasets fall into three categories, depending on
which users can access the permanent dataset.

• ppivate datasets are accessible only to the dataset owner.

• Semippivate datasets are accessible to the dataset owner and to
a specific group of other users.

• Publie datasets are accessible to all users.

New mass storage datasets are either public or private (not semiprivate)
by default. Contact your Cray Research site analyst for the default
value at your site. A new dataset can be explicitly declared as either
public or private with the PAM (public access mode) parameter on the
SAVE control statement. (See section 9.)

Access mode

In addition to establishing which users may access a dataset, the owner
must establish what mode of access alternate users are allowed; that is,
whether users other than the dataset owner may execute, read, write, or
maintain the permanent dataset. Specifying the mode of alternate access
depends upon what category of user is being granted the access. The
three categories of users are:

• The dataset owner. The dataset owner is allowed all modes of
access.

• Specific alternate users. Specific alternate users are named
with the USER parameter of the PERMIT control statement (see
section 9); the alternate user's allowed mode of access is
declared with the AM (access mode) parameter of the same PERMIT
control statement. Multiple PERMIT statements can be issued for
the same permanent dataset to provide a list of alternate users.
PERMIT can also be used to change or remove the allowed mode of
access for an alternate user of the dataset. The allowed access
mode for a specific user is known as a pepmit.

• All other users (the public). All users of a dataset not in the
two categories above can be allowed (or denied) access to the

SR-OOll

dataset by using the PAM (public access mode) parameter on the
ACQUIRE (section 10), SAVE, or MODIFY control statement (see
section 9). The mode of public access to a dataset can be
changed at any time with the MODIFY control statement.

6-9 M

Any mass storage permanent dataset can have a public access mode with
any combination of permits. If an alternate user desiring access to a
permanent dataset is allowed both public access and is named in a
permit, the alternate user is allowed the access named in the permit.
The permit takes precedence over the public access mode.

Such a combination of public and permitted access is often desirable.
For example, suppose dataset FROG is to be used (executed as a program)
by many groups of users, maintained by the dataset owner, and backed up
or restored as needed by another user. Then, the dataset should have a
public access mode of execute only and a permit of maintenance mode
access for the alternate user who does dataset backup and restoration.

Note that all users, including the owner, must correctly specify any
existing permission control words corresponding to the mode of access
desired. For example, suppose dataset BIG has a public access mode of
READ and a read password of README. Any user desiring to read the
dataset must supply the read password (README) to gain access to the
dataset. An exception occurs if the permanent dataset utilities are
used. For more information, refer to section 11.

Dataset use tracking

The total access count and date/time of last access are recorded for
each dataset in the Dataset Catalog (DSC). Access tracking capabilities
include recording who accessed the dataset, how many times, and the
date/time of last access. The permit mechanism described earlier in
this section provides access tracking whenever a permit is issued for a
user. A dataset that allows public access can also be tracked.
However, the owner must explicitly state that public access tracking is
required with the TA (track accesses) parameter on the ACQUIRE, SAVE, or
MODIFY control statement; the system does not normally provide it.

Attribute association

The system allows permanent datasets having the same permanent dataset
name (PDN) and additional identification (ID) to be distinguished by an
edition number (ED). That is, there can be several datasets with
different edition numbers that have the same PDN, ID, and ownership
value.

A user permanent dataset is uniquely identified by the PDN, ID, ED and
ownepship value. The ownership value recorded in the DSC when a
dataset is made permanent is normally equal to the user number as
specified on the ACCOUNT or JOB control statement. Specific
installations can choose to define dataset ownership as the account
number rather than the user number. Contact your Cray Research site
analyst to find out which type of ownership value is used.

SR-OOll 6-10 M

Permanent mass storage datasets with the same PDN, ID, and ownership are
assumed to be closely related. Therefore, most permanent dataset
attributes are the same for all editions of the permanent dataset. The
read, write, and maintenance permission control words, public access
mode, public access tracking, and permits are the same for all datasets
with the same PDN, ID, and ownership.

The text attribute is treated slightly differently. Any text supplied
when the dataset is created is kept as a dataset attribute, if no text
is supplied, the text attribute from the highest existing edition of the
permanent dataset, if any, is used.

The notes attribute is treated similarly to text except that notes are
assumed to be different for each dataset edition. notes supplied at
dataset creation time are used, if no notes are supplied, none are
used.

Deleting the data in a permanent dataset while leaving the dataset's
name and attributes recorded in the Dataset Catalog (DSC) is possible.
Such a dataset is referred to as a paptially deleted dataset. Partial
dataset deletion is described under Dataset Staging Control.

DATASET STAGING CONTROL

Staging is the process of transferring jobs and data in the form of COS
datasets from a front-end computer system to Cray mass storage or of
transferring datasets from Cray mass storage to a front-end computer
system. Three control statements support staging datasets between COS
and a front-end system: ACQUIRE, FETCH, and DISPOSE. Another control
statement, SUBMIT, directs datasets to the COS input queue.

Verb

ACQUIRE

DISPOSE

SR-OOll

Function

Checks to see if the requested dataset is currently
permanent on mass storage. If the dataset is already
permanent, ACQUIRE works exactly like ACCESS
(described earlier in this section) and allows
dataset access to the job making the request.
Alternatively, if the dataset is not mass storage
resident, ACQUIRE obtains a front-end resident
dataset, stages it to Cray mass storage, and makes it
permanent and accessible to the job making the
request. The dataset is staged from the front-end
only if it is not already permanent.

Directs a dataset to the specified queue for staging
to a front-end system. DISPOSE can also be used to
release a local dataset or to change dataset
disposition characteristics.

6-11 M

Verb

SUBMIT

FETCH

. Function

Directs a dataset on Cray mass storage local to the
submitting job to the COS input queue

Obtains a front-end resident dataset and makes it
local to the requesting job

The above control statements are fully described in section 10.

DISPOSE is invalid with tape datasets because DISPOSE applies only to
the staging of datasets from mass storage to a front-end computer system.

Dataset control information such as save or access codes is usually
required by a front-end system for management of its own files. Such
control information can be sent by the Cray system user to the front-end
system through the use of the text parameter (expressed as TEXT=text),
which is a special parameter of the SAVE, MODIFY, ACQUIRE, FETCH, and
DISPOSE statements. The content of the character string provided with
the TEXT parameter is defined by the front-end system (see the
appropriate station reference manual for the use of the TEXT parameter
at your front-end system).

The text information not only provides most of the directives for
obtaining the dataset from the front-end computer system but can contain
sensitive or secure information as well. When using the ACQUIRE control
statement, the staged dataset is recorded in the Dataset Catalog (DSC)
and thus made permanent. Like any other mass storage permanent dataset,
the staged dataset's attributes are recorded and protected as described
under Protecting and Accessing Mass Storage Datasets, earlier in this
section.

The owner of an acquired dataset can provide permission to acquire the
dataset to other users by specifying a public access mode or by issuing
permits. The actual dataset (that is, the data) need not reside on mass
storage for the permissions to be issued. For this reason the text,
as specified by the owner when the dataset was initially acquired, is
retained by the system as an attribute. The owner can, at a later date,
delete the data while still retaining all of the permanent dataset
attributes. A dataset registered in the DSC·in this manner is referred
to as a partially deleted dataset.

When an authorized user acquires a partially deleted dataset, the text
required to obtain the dataset from the front-end computer system is
retrieved from the Dataset Catalog and sent along with the request.
Therefore, the user need not specify the text in the ACQUIRE request.
In fact, if the ACQUIRE is being issued by an alternate user as opposed
to the owner, any text in the request is ignored. In this manner, the
owner does not have to disclose the text information to other users.

SR-OOll 6-12 M

The owner can at any time replace the text via the MODIFY command.
After a partially deleted permanent dataset has been successfully
acquired, the data is once again made permanent and is considered
completely Cray mass storage resident. A subsequent ACQUIRE request,
since the dataset is mass storage resident, is treated as an ACCESS
request. Remember that the ACQUIRE request stages a dataset only if it
is not already permanent on Cray mass storage.

PERMANENT DATASET UTILITIES

Three utilities (PDSDUMP, PDSLOAD, and AUDIT) can be used with any mass
storage permanent datasets available to the user. Datasets processed by
these utilities need not be local to the user job. The following
utility routines are provided for mass storage permanent datasets.

Verb

PDSDUMP

PDSLOAD

AUDIT

Function

Dumps all specified permanent datasets to a
user-specified dataset. Input and output datasets
managed by the operating system can be included in
the dump.

Loads permanent datasets that have been dumped by
PDSDUMP and updates or regenerates the Dataset
Catalog. Input and output datasets managed by the
operating system can also be loaded with PDSLOAD.

Produces a report containing status information for
each permanent dataset. AUDIT does not include
system input or output datasets.

The above control statements are fully described in section 11.

LOCAL DATASET UTILITIES

Utility control statements provide the user with a convenient means of
copying, positioning, or initializing local datasets. The following
utilities are available to the user.

Verb

COPYR, COPYF
COPYD

COPYU

SR-OOll

Function

Copies blocked records, files, and datasets,
respectively

Copies unblocked datasets

6-13 M

SKIPR, SKIPF
SKIPD

REWIND

WRITEDS

Function

Skips blocked records, files, and datasets,
respectively

Positions a blocked or unblocked dataset at the
beginning of data, that is, before the first word of
the dataset

Initializes a blocked random or sequential dataset.
WRITEDS can also initialize a sequential dataset.

The above control statements are described in section 12.

ANALYTICAL AIDS

The following control statements provide analytical aids to the
programmer.

DUMPJOB
DUMP

DEBUG

DSDUMP

COMPARE

FLODUMP

PRINT

SYSREF

SR-OOll

Function

DUMPJOB and DUMP are generally used together to
examine the contents of registers and memory as they
were at a specific time during job processing.
DUMPJOB captures the information so that DUMP can
later format selected parts of it.

Produces a symbolic dump of the same data produced by
DUMPJOB described above. DEBUG prints out the values
of symbolic variables defined in the program being
dumped.

Dumps all or part of a blocked or unblocked dataset
to another dataset in octal format

Compares two blocked datasets and lists all
differences

Dumps flowtrace tables when a program aborts with
flowtrace active

Writes the value of a JCL expression (as defined in
section 16 of this manual) to the logfile

Generates a global cross-reference listing for one or
more CAL or APML programs

6-14 M

Verb

ITEMIZE

Function

Inspects and generates statistics about library
datasets. Libraries are described in section 5 of
this manual; library dataset management is described
under Object Library Management.

The above control statements are fully described in section 13.

EXECUTABLE PROGRAM CREATION

The LDR control statement calls the COS Relocatable Loader into
execution. This utility prepares programs for execution from
relo~table modules. A series of relocatable modules is normally
created when a program is compiled or assembled. Each relocatable
module normally represents one subroutine of the whole program, or the
main program itself. Each relocatable module (also known as a module,
an object module, a relocatable, or a binary) consists of a series
of tables. The tables contain such information as executable machine
(program) instructions, references to other modules (such as when one
subroutine calls another), and the location of where the main program is
to start execution.

Before a collection of relocatable modules (the program) can be
executed, the collection of modules must be linked together into a
single module. This single module, the absolute load module, contains
the main program and a copy of every subroutine called, including ones
found in the various system libraries. An absolute load module can be
executed any time without having to be reprocessed by the Relocatable
Loader. The COS Relocatable Loader executes as a utility program within
the user field and provides the loading and linking in memory of
relocatable modules from datasets on mass storage.

Very large programs might not fit in the available user memory space or
might not use large portions of memory while other parts of the program
are in execution. For such programs, the Relocatable Loader includes
the ability to define and generate overlays--separate modules that the
user creates and then calls and executes as necessary.

Executable program creation is fully described in section 14.

OBJECT LIBRARY MANAGEMENT

BUILD, a utility called through the BUILD control statement, creates and
maintains object libraries.

SR-OOll 6-15 M

Compiled subroutines (relocatable modules) can be collected into
libraries that can be referred to later when creating a new program.
COS provides several standard object libraries (see the Library
Reference Manual, CRI publication SR-0014, for a description of the
standard library routines available).

Any number of object libraries can be created, however, in addition to
the ones supplied with cos.

Library data sets are designed primarily to provide the Relocatable
Loader (see previous subsection) with a means of rapidly locating and
accessing program modules. A libpapy dataset is a dataset containing
a program file followed by a directory file. The program file is
composed of loader tables for one or more absolute or relocatable
program modules. The directory file contains an entry for each program
module.

BUILD is fully described in section 15.

SR-OOll 6-16 M

JOB DEFINITION AND CONTROL 7

Several control statements allow the user to specify job processing
requirements. This section contains the specifications for the following
control statements used in defining a job and its operating
characteristics to the operating system.

• JOB

• MODE

• EXIT

• MEMORY
• SWITCH

• *
• NORERUN

• RERUN

• IOAREA

• CALL

• RETURN

• ACCOUNT

• CHARGES

• ROLLJOB

• SET

• ECHO

• LIBRARY

• OPTION

JOB - JOB IDENTIFICATION

The JOB control statement defines the job to the operating system. It
must be the first statement in a control statement file. The JOB control

I statement cannot be continued to subsequent lines or records. No leading
blanks are allowed on the JOB statement. JOB is a system verb.

Format:

JOB,JN=jn,MFL=fl,T=tl,p=p,US=U8,OLM=olm,CL=jen,gn=n~.

SR-OOll 7-1 M

Parameters are in keyword form, the only required parameter is IN.

IN=jn Job name. 1 through 7 alphanumeric characters.
identifies the job and its subsequent output.
required parameter.

This name
IN is a

Maximum field length (decimal) allowed the job, in words.
The job's maximum field length is set to the greater of
ft, rounded up to the nearest multiple of 512 words, or
the amount needed to load the Control Statement Processor
(CSP). The job is aborted if the maximum field length is
greater than the system maximum described below.

If this parameter is omitted, the maximum field length is
set by the system to a value determined by an installation
parameter.

If MFL is present without a value, the field length is the
system maximum. The system maximum is the smaller of the
total amount of memory available after the operating system
is initialized minus the job's JTA size (see section 1) or
an installation-defined maximum job field length.

T=tt Time limit (decimal) in seconds after which the job is
terminated by the system. If this parameter is omitted,
the time limit is set to a value determined by an
installation parameter. If T is present without a value, a
maximum of 16,777,215 seconds (approximately 194 days) is
allowed.

P=p Priority level at which the job enters the system. This
parameter can assume the values of 0 through 15 decimal.
If P is 0, the job is not initiated. If omitted, a value
specified by the installation is assumed.

US=us User number. 1 through 15 alphanumeric characters. The
default is no user number. This parameter identifies the
user submitting the job. Specific usage is installation
defined.

OLM=otm Maximum size of $OUT. otm specifies a decimal count of
512~ord blocks. A block holds about 45 print lines. The
default and maximum values for otm are defined by the
installation.

t The ft parameter on the JOB statement excludes the job's Job Table
Area (JTA) 1 space for the JTA is added by the system.

SR-OOll 7-2 M

I

CL=jcn

gn=nr

Name of the installation-defined job class where this job is
to be placed. 1 through 7 alphanumeric characters. The job
is aborted if it does not fit the requirements of the
indicated class or if the indicated class does not exist.
The default is no class name.

Type and number of dedicated resources required by a job.

gn is a generic resource name of 1 through 7
alphanumeric characters. A generic resource name
corresponds to a device type. For example, a generic name
of SSD could be given to a Solid-state Storage Device.
Generic names are defined by site administration. COS
provides one generic name (*TAPE, which refers to a dual
density tape unit capable of 1600 or 6250 bpi), but sites
may define up to 16 generic names. COntact your Cray
Research site analyst for the generic names used at your
site.

nr is a positive integer and represents the maximum
amount of the associated resource that may be used
concurrently during job execution; the default is O. A
job is initiated only when the amount of each resource
reserved is eligible for use. The job is aborted if it
attempts to access more resources than are reserved with
the JOB control statement.

nr is the decimal number of units of the specified
resource type. If gn refers to a tape device type, nr
is the number of tape units to be used concurrently. If
gn refers to a disk device type, nr is the aecimal
number of sectors required.

MODE - SET OPERATING MODE

The MODE control statement allows the user to set or clear mode flags in
the Exchange Package for the job. MODE is a system verb.

Format:

MODE,FI=option,BT=option,EMA=option,AVL=option,ORI=option.

Parameters are in keyword form. At least one parameter must be
specified. The parameters are:

SR-OOll 7-3 M

I

FI=option Floating-point interrupt mode. Option can be either:

ENABLE Enable floating-point error interrupts; default.
DISABLE Disable floating-point error interrupts;

floating-point errors are ignored.

BT=option Bidirectional transfer mode. The BT parameter is used
on CRAY X-MP Series Computer Systems only. option can
be either:

EMA=option

AVL=option

ORI=option

ENABLE Enable bidirectional memory transfers; default.
DISABLE Disable bidirectional memory transfers; block

reads and writes are not performed concurrently.

Extended memory addressing mode. The EMA parameter is
used on CRAY X-MPt Series Computer Systems only; it
causes an abort on CRAY-I dystems. option can be either:

ENABLE Enables extended memory addressing.
DISABLE Disables extended memory addressing; default is

an installation option, released as EMA=DISABLE.
On the CRAY X-MP model 48, the default is released
as EMA=ENABLE.

Second vector logical functional unit mode. The AVL
parameter is used on CRAY X-MP t Series Computer
Systems only; it causes an abort on CRAY-I systems.
option can be either:

ENABLE Makes available two logical functional units,
the first of which shares reservation logic
with the vector floating multiply unit.

DISABLE Makes available only one vector logical unit.
The vector multiply reservation path is not
shared; default is an installation parameter,
released as AVL=DISABLE.

Operand range error interrupt mode. The ORI parameter is
used on CRAY X-MP Series Computer Systems only; option
can be either:

ENABLE Enables interrupts on operand range errors;
default.

DISABLE Disables interrupts on operand range errors.

t Not available on all CRAY X-MP systems. Check with a site analyst
to determine if this feature is available.

SR-OOII 7-4 M

EXIT - EXIT PROCESSING

An EXIT control statement indicates the point in the control statement
file where processing of control statements resumes following a job step
abort from a program. If no job step abort occurs, the EXIT control
statement indicates the end of the control statement processing. EXIT
is a system verb.

Format:

Parameters: None

MEMORY - REQUEST MEMORY CHANGE

The MEMORY control statement allows the user to request a new field
length and/or mode of field length reduction. Job memory management is
further discussed in section 3.

MEMORY is a system verb.

Format:

MEMORY[,FL=j'Ll [{,~;:}].

The keywords USER and AUTO are mutually exclusive. However, at least
one of the following three parameters must be specified:

FL=f7,

USER

AUTO

SR-OOll

Field length. f7, specifies the decimal number of words
of field length to be allocated to the job. If FL is
specified without a value, the new field length is set to
the maximum allowed the job.

Field length reduction is managed by the user (user mode)

Field length reduction is managed by the system (automatic
mode)

7-5 M

The job's field length can be changed by using the FL parameter. The
field length is set to the larger of the requested amount rounded up to
the nearest multiple of 512 words or the smallest multiple of 512
decimal words large enough to contain the user code/data, LFT, DSP and
buffer areas. Field length management is in user mode for the duration
of the next job step.

The management of a job's field length can be changed by using either
the USER or AUTO parameters. When the USER parameter is specified, the
job is placed in user mode until a subsequent request is made to return
it to automatic mode. When the AUTO parameter is specified, the job is
placed in automatic mode.

The job step is aborted if completing the request results in a field
length greater than the maximum allowed the job. The maximum is the
smaller of the total number of words available to user jobs minus the
job's JTA or the amount determined by the MFL parameter on the JOB
statement.

Examples:

MEMORY,FL,USER.

The job's field length is set to the maximum allowed the job and the
job is placed in user mode until an explicit request is made to
return it to automatic mode.

MEMORY,AUTO.

The job is returned to automatic mode. Its field length is reduced
at the next job step.

MEMORY,FL=28988.

The field length is adjusted. If the job is in user mode by
explicit user request, no change in mode occurs; otherwise, the job
is placed in user mode for the duration of the next job step.

MEMORY,FL=28988,AUTO.

The field length is adjusted and the job is placed in user mode for
the duration of the next job step. After the next job step, the job
is put in automatic mode.

SR-OOll 7-6 M

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH control statement allows a user to turn on or turn off pseudo
sense switches. SWITCH is a system verb.

Format:

SWITCH,n~.

Parameters:

n Number of switch (1 through 6) to be set or cleared

x Switch position
ON Switch n is turned on, set to 1.
OFF Switch n is turned off; set to o.

* - COMMENT STATEMENT

The comment control statement allows the user to annotate job control
statements with comments. A terminator is not required on a comment
control statement. * is a system verb.

Format:

I * eomment text

Parameters: None

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN control statement allows the user to specify whether the
operating system is to recognize functions that would make a job
rerunnable. The current rerunnability of the job is not affected.
NORERUN is a system verb.

SR-OOll 7-7 M

Format:

NORERUN, {ENABLE }.
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. The default for
the system as released is NORERUN,ENABLE, however, this is an
installation option.

Selecting ENABLE instructs the system to begin monitoring functions
performed by the job and to declare the job nonrerunnable if any of the
nonrerunnable functions are performed.

Selecting DISABLE instructs the system to stop monitoring functions for
nonrerunnable operations. If a job has already been declared to be
nonrerunnable, specifying DISABLE does not make the job rerunnable again.

RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN control statement allows the user to unconditionally declare a
job to be either rerunnable or nonrerunnable. If RERUN is used to
declare a job rerunnable, the subsequent execution of a nonrerunnable
function may cause the system to declare the job nonrerunnable,
depending on whether a NORERUN control statement or macro is also
present. RERUN is a system verb.

Format:

RERUN, {ENABLE }.
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. If no parameter
is specified on the control statement, installation option determines if
the job is to be rerunnable, the default for the system as released is
RERUN, ENABLE.

If ENABLE is selected, the system is instructed to consider the job to
be rerunnable, regardless of what functions have been executed
previously.

If DISABLE is selected, the system marks the job not rerunnable
regardless of what functions have been executed previously.

SR-OOll 7-8 M

The RERUN control statement does not affect the monitoring of the user
job for nonrerunnable functions.

IOAREA - CONTROL USER'S ACCESS TO I/O AREA

The IOAREA control statement locks (denies the user access to) or
unlocks (gives the user access to) that portion of the user field
containing the user's Dataset Parameter Area (DSP) and I/O buffers.
This area follows the High Limit Memory address (HLM) of the user
field. The user of the stack version of the COS libraries needs to
note that IOAREA does not protect I/O buffers or DSPs that have been
allocated within the user's stack space. IOAREA is a system verb.

Format:

IOAREA, {LOCK j.
UNLOCK

The keywords LOCK and UNLOCK are mutually exclusive. A parameter must
be specified on the control statement. When the control statement is
not used, the user's I/O area is assumed to be unlocked.

If LOCK is selected, the system sets the limit address to the base of
the DSPs, thereby denying direct access to the user's DSP area and I/O
buffers. When the I/O area is locked, the library I/O routines make a
system request to gain access to the I/O area. Although the system
request introduces additional overhead in job processing, it should
prevent accidental destruction of the I/O area.

If UNLOCK is selected, the system sets the limit address to the value
specified in JCFL, allowing access to the user's DSP area and I/O
buffers.

CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET

The CALL control statement instructs COS to begin reading control
statements from the first file of the indicated dataset. CALL can
appear anywhere in the control statement file. Nesting of CALL
statements to seven levels is allowed. COS reads and processes the
control statements from the indicated dataset until COS encounters an
end-of-file or a RETURN statement. Control then reverts to the
previous control statement dataset.

SR-OOll 7-9 M

CALL does not rewind the specified dataset before reading it.

The indicated dataset can contain either simple control statements or
a procedure definition. Simple control statements are executed
without any parameter substitution. On the other hand, parameter
sUbstitution is possible when the indicated dataset contains a
procedure definition. The optional CNS parameter on the CALL
statement allows COS to determine the form of control statements
used. If CNS is not present, the statements on the indicated dataset
are assumed to be simple control statements. In this case, they are
executed exactly as read from the dataset, beginning with the first
statement.

However, if CNS is present on the CALL statement, the statements on
the dataset are treated as a procedure definition. This means that
parameter SUbstitution can be performed before executing the
statements. In this case, the first statement is assumed to be a
prototype statement and subsequent statements are the procedure body
definition. If the indicated dataset contains a procedure definition,
the dataset will be closed after parameter substitution and before
invocation of the procedure.

If the dataset contains a procedure definition, the PROC and ENDPROC
statements must not enclose the definition, unlike a procedure defined
in-line within a control statement file. The PROC and ENDPROC
statements may appear within the definition. Any statement enclosed
by PROC and ENDPROC becomes a procedure definition which is included
in the $PROC system procedure dataset when the enclosing procedure is
invoked by a CALL statement. The enclosing procedure is not added to
the $PROC dataset.

When the CNS option is used and the procedure definition contains a
nested PROC/ENDPROC sequence, the parameter substitution performed
according to the prototype statement for the outermost procedure
definition (the first statement of the dataset) is also performed on
all nested definitions. This can produce warning messages if the
inner definitions use keywords or positional parameters different from
those specified for the outer definition. The nested definitions are
written to $PROC with all matching SUbstitutions performed and all
nonmatching substitutions retained in the original form.

CALL is a system verb.

Format:

CALL,DN~n[,CNS].

SR-OOll 7-10 M

Parameters are in keyword form.

DN=dn

CNS

Examples:

Name of dataset from which to begin reading control
statements. This is a required parameter.

Crack next statement. This is an optional parameter.
If present, the first statement on the dataset named by
DN will be treated as the prototype statement for the
procedure whose body is defined by the remaining
statements in the first file of the dataset, and the
next statement in the control statement dataset
containing the CALL statement will be read by COS and
treated as an invocation of the procedure. Parameters
supplied on that statement are substituted according to
the rules of parameter substitution described in section
16 of this manual.

1. Use of CALL without CNS:

Assume that dataset X contains the following control statements:

ACCESS,DN=A,PDN=B,UQ.
DELETE,DN=A.
RELEASE, DN=A.

If dataset B has been previously saved, then the result of the
statement:

CALL,DN=X.

would be:

ACCESS,DN=A,PDN=B,UQ.
PDOOO - PDN = B
PDOOl - ACCESS COMPLETE
DELETE,DN=A.
PDOOO - PDN = B
PDOOl - DELETE COMPLETE
RELEASE, DN=A.

ID = ED = 1 OWN = ABC

ID = ED = 1 OWN = ABC

2. Use of CALL with CNS:

SR-OOll

Assuming the contents for dataset X are the same as in example 1,
the result of the statement:

CALL,DN=X,CNS.

7-11 M

would be:

ACCESS,DN=A,PDN=B,UQ.
CS109 - POSITIONAL PARAM. AFTER KEYWORDS IN PROTOTYPE: UQ
*,DN=A.
CS122 - NO VALUE WAS ASSIGNED TO UQ
AB025 - USER PROGRAM REQUESTED ABORT
ABOOO - JOB STEP ABORTED. P = 00000743b

In this case the CNS parameter causes COS to consider the ACCESS
statement to be a prototype statement; the DN, PDN and UQ
keywords are assumed to be the identifiers of substitutable
parameters.

3. Valid CALL with CNS without nested definitions:

Assuming that the contents of dataset X are:

D,A,B.
ACCESS,DN=&A,PDN=&B,UQ.
DELETE,DN=&A.
RELEASE,DN=&A.

If the permanent dataset EXAMPLE exists, the result of the
statements:

CALL,DN=X,CNS.
* ,DS ,EXAMPLE •

would be:

ACCESS,DN=DS,PDN=EXAMPLE,UQ.
PDOOO - PDN = EXAMPLE ID = ED = 1 OWN = ABC
PDOOl - ACCESS COMPLETE
DELETE,DN=DS.
PDOOO - PDN = EXAMPLE ID = ED = 1 OWN
PDOOl - DELETE COMPLETE
RELEASE,DN=DS.

4. CALL with a nested PROC/ENDPROC definition:

Assuming that dataset X contains the following statements:

SR-OOll

D,A,B.
PROC.
A,Q,B.
ACCESS,DN=&Q,ID=&B.
ENDPROC.
ACCESS,DN=&A,ID=&B,UQ.
DELETE,DN=&A.
RELEASE,DN=&A.

7-12

= ABC

M

If permanent dataset Z with ID D exists, the result of the
statements:

CALL,DN=X,CNS.
*,Z,D.

would be:

CS125 - NO SUCH FORMAL PARAMETER: Q
<DEFINITION> PROC.
<DEFINITION>
<DEFINITION>
<DEFINITION>

A,Q,B.
ACCESS,DN=&Q,ID=D.
ENDPROC.

ACCESS,DN=Z,ID=D,UQ.
PDOOO - PDN = Z ID =
PDOOl ACCESS COMPLETE
DELETE,DN=Z.

ED = 1 OWN = ABC

PDOOO - PDN = Z ID = ED = 1 OWN = ABC
PDOOl - DELETE COMPLETE
RELEASE, DN=Z •

The $PROC dataset would contain a procedure with the definition:

A,Q,B.
ACCESS,DN=&Q,ID=D.

The &B in the original definition was replaced by the value
which was specified for the corresponding parameter B in the
outermost procedure. The &Q was retained, since there was no
corresponding replacement in the outermost procedure.

RETURN - RETURN CONTROL TO CALLER

The RETURN control statement returns control to the caller. The caller
can be a procedure or the job's control statement file. Processing
resumes with the caller's next control statement. A RETURN control
statement can be embedded anywhere within the called procedure. However,
a RETURN control statement need not be placed at the end of the procedure
because an end-of-file record is interpreted as the control statement
sequence of an EXIT, RETURN, and RETURN ,ABORT. A RETURN encountered in
the primary control statement file is ignored. RETURN is a system verb.

Format:

RETURN [, ABORT] •

SR-OOll 7-13 M

Parameter:

ABORT After returning to the previous control statement level,
ABORT causes COS to issue a job step abort. ABORT is an
optional parameter.

ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT

The ACCOUNT control statement validates the job's user number, user
password, account number, and account password. A job is processed only
if the user number/password pair and the account number/password pair (if
specified) are valid. The ACCOUNT control statement provides accounting
data for the installation. Moreover, the installation and the individual
users are also provided means for ensuring both privacy and security
through the use of ACCOUNT parameters.

The ACCOUNT statement declares the user's account and charge numbers to
COS. It must immediately follow the JOB control statement if the
installation has defined accounting or security as mandatory. Only one
ACCOUNT statement is allowed per job. ACCOUNT is a system verb.

If the job is interactive, and accounting is mandatory, the ACCOUNT
statement must be the first statement entered in a session. If it is
not, a prompt is issued to the terminal requesting the ACCOUNT
statement. A similar prompt is issued for syntax errors made on the
ACCOUNT statement.

N~E

The ACCOUNT control statement parameters do not appear
with the ACCOUNT control statement in the job logfile.

Format:

ACCOUNT,AC~C,APW~p~,NAPW=napw,US=U8,UPW=upw,NUPW=nUpw.

Parameters are in keyword form. The only required parameter is AC; the
installation defines whether one or more passwords are needed.

SR-OOll 7-14 M

The installation generally sets up AC, APW, US, and UPW parameters.
However, the user specifies NAPW and NUPW. Including a new account
password provides the user accounting protection, since only the person
who knows the NAPW can run a job under a given user's account number.
NUPW is an additional security check available to the user. Therefore,
NAPW and NUPW values should be known only to the individual user who
specifies them.

AC=aa

APW=apw

Account number. 1 through 15 alphanumeric characters
assigned to the user. This number identifies the user for
accounting purposes, and is a required parameter. The
account number is not the same as the user number on the
JOB control statement, unless the site chooses to use the
same characters for both numbers.

Account password. 1 through 15 alphanumeric characters or
null. A password must be specified if the installation has
made the password mandatory by installation parameter. To
change a null account password to a non-null account
password, a user must specify the keyword APW without a
value and NAPW with the new value.

NAPw=napw New account password. 1 through 15 alphanumeric
characters or null. This new password replaces the old
account password if the account number/password pair given
by the AC and APW parameters is valid. NAPW may be
specified without a value to change the account password to
null. To change a null account password to a non-null
account password, APW must be specified without a value and
NAPW must be specified with the new value.

US=UB User number. 1 through 15 alphanumeric characters assigned
to the user. This number identifies the user for system
access purposes and is an optional parameter. The user
number is not the same as the account number, unless the
site chooses to use the same characters for both numbers.
This parameter, if specified, overrides the user number on
the JOB control statement. If US is not specified on the
ACCOUNT control statement, the user number on the JOB
statement is used by COS.

User password. 1 through 15 alphanumeric characters. A
password must be specified if the installation has made
security checking mandatory.

NUPW=nUPW New user password. 1 through 15 alphanumeric characters.

SR-OOll

This new password replaces the old user password upw if
the user number/password pair given by the US and UPW
parameters is valid.

7-15 M

CHARGES - JOB STEP ACCOUNTING

The CHARGES control statement allows the user to monitor a job's usage of
computer resources up to a specific point in a job. Hence, CHARGES can
be used for either partial or total resource reporting.

Partial reporting occurs when parameters are specified on the control
statement. In this case, usage statistics for the computer resources
specified on the CHARGES statement are obtained for the job steps
preceding the CHARGES statement. The summary is placed in the user log
and the system log.

Total reporting occurs when usage statistics are obtained for all the
resources in all the available resource groups. The summary is placed in
the user log and the system log.

CHARGES is automatically invoked when a job terminates so that usage
statistics of the entire job are reported.

Format:

CHARGES,SR=options.

Parameters are in keyword form.

SR=options

SR-0011

System resources used. Anyone or more of the following
groups of resources can be specified. Options are
separated by colons. The default is a listing of the job's
usage of resources in all of the following groups:

JNU Job name and user number

DS Permanent dataset space accessed, permanent dataset
space saved, temporary dataset space used, 5l2-word
disk blocks (sectors) moved, user I/O requests,
memory-resident datasets used, number of OPEN calls
and number of CLOSE calls

WT Time waiting in the input queue before beginning
execution

7-16 M

MM Minimum job size (words), maximum job size (words),
execution-time memory usage in million word-seconds,
I/O wait-time memory usage in million word-seconds,
maximum field length used (words), minimum field
length used (words), maximum JTA used (words), and
minimum JTA used (words)

CPU Time executing in CPU, I/O waiting time, and time
waiting for CPU. CPU gives the totals for the entire
job.

NBF Number of 5l2-word blocks (sectors) received from a
front end and number of 5l2-word blocks (sectors)
queued to a front end

TASK Time executing in CPU, I/O wait time, and time
waiting for CPU. The TASK option breaks down the
time information according to user task number, and
provides a total for the entire job.

TPS Number of tape devices reserved, number of tape
volumes mounted, amount of tape data moved
(expressed as a multiple of 512 words) and number of
physical tape blocks moved

FSUt Fast storage usage. Amount of SSD or BMR
(Solid-state Storage Device or Buffer Memory) space
reserved and used.

The amounts are returned as two values7 one is the
wall-clock time times the reserved space usage
amount and the other is CPU time multiplied by the
reserved space usage amount for each device. Any of
the four usage amounts, if nonzero, are placed in
the user logfile.

ROLLJOB - ROLL A USER JOB TO DISK

The ROLLJOB control statement allows the user to protect a job by writing
it to disk so that it can be recovered in case a system interruption
occurs. ROLLJOB is a system verb.

t Deferred implementation

SR-OOll 7-17 M

Format:

I ROLLJOB·I

Parameters: None

SET - CHANGE SYMBOL VALUE

The SET control statement changes the value of a specified valid job
control language symbol. Valid symbols are those classified as alterable
by the user (U) in table 16-1. A job step abort occurs if a symbol
included in a SET control statement is unknown to the system, can be set
only by COS, or is a constant. SET is a system verb.

Format:

SET(symbol=e~pression)

Parameters:

symbol

expression

Examples:

A valid user-alterable symbol; symbol is a required
parameter.

A valid arithmetic, logical, or literal assignment
expression. It may be delimited with parentheses to
simplify interpretation during control statement
evaluation. expression is a required parameter.

SET (Jl=Jl+l)

This example increases the procedure-local register Jl by 1.

SET(Gl=(SYSID.AND.177777B»

The global register Gl is given an ASCII value that is the low-order
two characters from the current system revision level (COS X.XX).

SR-OOll 7-18 M

I

SET(G3=«ABTCODE.EQ.74).AND.(G2.EQ.O»)

The global register G3 is assigned a value, depending upon the
current values of ABTCODE and G2.

ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES

The ECHO control statement allows the user to control the message classes
to be written to the user's logfile by turning the classes ON or OFF.
ECHO may be used more than once during a job to toggle the printing or
suppression of message classes. ECHO is a system verb.

Format:

Parameters are in keyword form.

ON=ela88i When a program or the operating system issues messages,
they are written to the user's logfile in the classes
specified. If any other classes were specified but not
turned off by this statement, the union of the two sets of
classes is enabled. If the ECHO control statement contains
only the keyword ON or ON=ALL, all messages are written to
the logfile. This is the default for the start of a job.

OFF=cla88i
Messages in the classes specified are not written to the
user's logfile. If any other classes were specified but not
turned on by this statement, the union of the two sets of
classes is suppressed. If the ECHO control statement
contains only the keyword OFF or OFF=ALL, all messages in
the defined classes are supressed.

Messages that are not classified may not be turned off.

The only classes that the operating system acknowledges are the following:

SR-OOll 7-19 M

I

Class Description

JCL Messages that originate in the user's JCL input file

ABORT ABxxx and system traceback messages that COS issues
when a job fails

PDMINF Dataset information messages produced by PDM

PDMERR Error messages produced by PDM

The keywords ON and OFF may be used in any combination. However, ensure
that the classes specified do not overlap between the keywords, and that
both defaults are not included.

When a job calls a procedure, the echo state of the job is the same upon
return from the procedure as before, even though the procedure may use a
different echo state. The following occurs when ECHO is used with CALL
and PROC:

• The echo state of the caller (a job or another procedure) is saved
so that on return to the caller the same state is in effect as
before the call.

• When the procedure includes an ECHO statement, the new echo state
is in effect only for the duration of the procedure. If the
procedure does not include an ECHO statement, the echo state of
the caller is in effect.

LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST

The LIBRARY control statement allows the user to specify the library
datasets to be searched during the processing of control statement
verbs. LIBRARY also allows the user to list the current or new
searchlist to the logfile for verification.

When modifying the searchlist, the current members of the searchlist can
be retained in the new searchlist by including an asterisk in the LIBRARY
control statement. The asterisk corresponds to all members of the
current searchlist in their present order. If the asterisk is omitted,
the new searchlist contains only the library dataset names identified on
the LIBRARY control statement. LIBRARY is a system verb.

The default library searchlist upon job initiation consists of the single
library dataset $PROC.

SR-OOII 7-20 M

Format:

Parameters:

DN=dn·
~

Library dataset names to become members of the new
library searchlist. A maximum of 64 names (separated by
colons) can be specified. The order in which they appear
is the order they are searched. An asterisk included in
the list signifies the current searchlist members are to be
part of the new searchlist in their current order.

v List the current library searchlist on the logfile for
verification. When specified along with the new
searchlist, the new searchlist is listed.

OPTION - SET USER-DEFINED OPTIONS

The OPTION control statement allows the user to specify user-defined
options, such as the format of the job's listing. OPTION is a system
verb.

Format:

Parameters:

LPP=n Number of lines per page; a decimal number from 0 through
255. If 0 is specified, the current number of lines per
page is not changed. The default is an installation
parameter.

STAT={ON }STAT=ON has two effects. First, it enables accounting for
OFF any mass storage datasets created while STAT=ON is in

effect; statistics are reported separately for each device
containing all or part of such datasets. Second, it
enables the printing of the dataset I/O statistics
collected for all datasets to user $LOG at release time.

SR-OOll 7-21 M

STAT generates a short- or long-form I/O statistic,
depending on when the option is invoked. The short-form
consists of the dataset name, device name, dataset size,
number of user I/O requests, , number of 5l2-word blocks
transferred, and total time blocked for I/O for the dataset.

SY005 - $IN OO-A2-24 5l2W lR lS • 248SEC

The long-form output line consists of the dataset name,
device name, size in sectors, number of read requests,
number of sectors read, number of write requests, number of
sectors written, and time.

SY005 - TEST DD-Al-32 IS ORR OSR lWR lSW .05S

No statistics are collected or printed if STAT=OFF, which
is the default condition. However, datasets created while
STAT=OFF, then released while STAT=ON have the short-form
output line printed out.

Examples:

1. ASSIGN,DN=X.
OPTION,STAT=ON.
COPYF, ••••• ,O=X.
RELEASE,ON=X.

Short-form I/O statistics are printed for X.

2. OPTION,STAT=ON.
ASSIGN,DN=X.
COPYF, ••••• ,O=X.
RELEASE, DN=X.

Long-form I/O statistics are printed for X.

3. OPTION,STAT=ON.
ASSIGN,ON=X.
COPYF, •••••• ,O=X.
OPTION,STAT=OFF.
RELEASE,DN=X.

No I/O statistics are printed for X, even though statistics were
collected.

SR-OOll 7-22 M

4. OPTION, STAT=ON.
ASSIGN,DN=X.
COPYF, •••• ,O=X.
OPTION,STAT=OFF.

OPTION,STAT=ON.
RELEASE, DN=X.

Long-form I/O statistics are printed for X.

SR-OOll 7-23 M

I

I

DATASET DEFINITION
AND CONTROL

Datasets are defined and managed by the user through three dataset
control statements: ASSIGN, ACCESS, and RELEASE. ACCESS is not used for
Integrated Support Processor (ISP) datasets. Instead, the ISP control
statement gives a user job access to an ISP, and the CONNECT control
statement accesses a specific dataset. Refer to the ISP General
Information Manual, CRI pub~ication SG-0094, for details t

•

• ASSIGN defines characteristics for datasets. ASSIGN also can be
used to create a mass storage dataset.

• ACCESS (described in section 9) makes an existing disk or tape
permanent dataset local to a job or can be used to create a
dataset on magnetic tape.

• RELEASE relinquishes access to the named dataset for the job.

ASSIGN - ASSIGN DATASET CHARACTERISTICS

The ASSIGN control statement creates a mass storage dataset and assigns
dataset characteristics for tape and mass storage. If an ASSIGN is used
for dataset creation, it must appear before the first reference to the
dataset; otherwise, the characteristics are defined at the first
reference. If an ASSIGN is used for a tape dataset, it must follow the
tape ACCESS request. ASSIGNtt is a system verb.

t Publication SG-0094 will be available when the ISP software is
released.

tt ASSIGN does not create a dataset that the eFT OPEN statement
recognizes as existing unless the FILE parameter is on the OPEN
statement. See CRI publication SR-0009, FORTRAN (CFT) Reference
Manual.

SR-OOll 8-1 M

8

•

I

I

Format:

ASSIGN,DN~n,s=size,sz=size,NOF,BS=bsz:bpt,DV=ldv,DT~t,DF=df,

RDM,U,MR,LM=lm,INc=nds,C,DC~O,BFI=bfi,A=FTXx,FD=fd,cv=ov,

cS=os,F=f,RF=rf,RS=rs,MBS=mbs.

Parameters are in keyword form. The only required parameter is DN.

DN~n

s=size

sz=size

SR-OOll

Local dataset name. 1 through 7 alphanumeric characters,
the first of which is A through Z, $, i, or @1 remaining
characters may also be numeric. DN is a required parameter.

Dataset size. Octal number of sectors (Sl2-word blocks) to
be reserved for the dataset. If the dataset size is not
given, the space for the dataset is dynamically allocated
as needed. S and the SZ option are mutually exclusive.
Furthermore, S applies to mass storage datasets only, and
is ignored when used for magnetic tape datasets.

Dataset size. Decimal number of sectors (Sl2-word blocks)
to be reserved for the dataset. If the DV option specifies
a generic resource or ifldv is a controlled device, SZ
is the largest number of sectors associated with this
dataset which can reside on the device. The mass storage
space reservation occurs when the ASSIGN command is
processed. If the SZ option is not specified, the space
for the dataset is dynamically allocated as needed. Sand
the SZ option are mutually exclusive. SZ applies to mass
storage datasets only and is ignored when used for magnetic
tape datasets.

Although the SZ option is specified as decimal sectors,
disk space is allocated by COS in tracks which are larger
than sectors. When an ASSIGN statement declares dataset
size, COS rounds the sector count up to an integral
multiple of track size and allocates that number of
tracks. For example, when ASSIGN(••• ,S=l, •••) is
specified, COS allocates one track to the dataset, even
though the request "is for one sector. If the dataset

8-2 M

I

I

I

resides on a DD-19 or a DD-29, a track is equivalent to 18
decimal sectors. Other disk devices can have different
track sizes.

When the disk device specified on the ASSIGN statement is a
controlled device with a generic name, the total concurrent
use of the device must be declared on the JOB statement as
decimal sectors. If the space on the device is divided
among several datasets with the SZ option on the ASSIGN
statement, a rounding error may occur with each use of the
SZ or S options. The result can be an unexpected GENERIC
RESOURCE LIMIT EXCEEDED error or an unexpected device
overflow. The SZ option can produce other results when it
is used with the NOF parameter of ASSIGN. Those results
are described under NOF in this section.

If both INC and SZ are specified, SZ is used initially and
INC is used subsequently.

To divide space among several datasets on a generic
resource such as Buffer Memory or Solid-state Disk, sector
counts should be specified as multiples of track size.
Track size is currently 18 decimal for all controlled
devices.

NOF No overflow. When NOF is indicated, the dataset does not
span any more than the specified device. The SZ and NOF
options on the ASSIGN statement produce the following:

BS=bsz

SR-OOll

SZ and NOF specified: abort at MIN (Remaining Job
Limit, SZ)

SZ specified without NOF: overflow at MIN (Remaining
Job Limit, SZ)

NOF specified without SZ: abort at Remaining Job Limit

Neither SZ nor NOF specified: overflow at Remaining Job
Limit

Buffer size and partitioning value. The value given to
bsz specifies the size of a dataset's circular I/O buffer
in S12-word blocks. The default is the value defined by
the installation parameter. The U and BS parameters are
mutually exclusive.

8-3 M

I

I

Bs=bsz:bptt

Dv=ldv

DT~t

DF~f

The value given bpt specifies the m1n1mum size in
Sl2-word blocks for transfers to and from the circular
buffer. This value must be less than or equal to the
buffer size. The default transfer size is half a buffer.

Logical device on which the dataset begins. If a logical
device name is not given, one is chosen by the system.
ldv can also be a generic resource name. Consult site
operations for possible logical device names and generic
resource names. This parameter applies to mass storage
datasets only and is ignored when used for magnetic tape
datasets.

Device type. The allowable device types are CRT
(interactive) and MS (mass storage). MS is the default.
This parameter is ignored when used for magnetic tape
datasets.

Dataset format. This parameter is used only on output; it
is valid only when DT=CRT. This parameter is ignored when
used for magnetic tape datasets. Two formats are supported:

CB Character blocked. End-of-record Rews are converted
by the station to the format which the station
supports. CB is the default.

TR Transparent. End-of-record Rews are not converted.
The user is responsible for inserting cursor controls.

RDM Random dataset. If the RDM parameter is present, the
dataset is read and written randomly (that is, records may
be read or written out of sequence). If the RDM parameter
is not specified, only sequential or FORTRAN direct access
I/O is allowed on the datasets. This parameter applies to
mass storage datasets only and is invalid for magnetic tape
datasets.

u Unblocked dataset structure. If the U parameter is
present, the dataset is not in COS-defined blocked format.
If the U parameter is absent, the dataset is a COS blocked
dataset. (See section 2 for information on unblocked
dataset format.) This parameter is invalid for interchange
format tape datasets. The U and BS parameters are mutually
exclusive.

t Deferred implementation

SR-OOll 8-4 M

MR

LM=lm

INC=ndB

C

DC=do

SR-OOII

Memory-resident dataset. If this parameter is present, the
system I/O routines write the buffers to mass storage only
if they become full. If the MR parameter is absent, the
dataset is not a memory-resident dataset. MR generates an
error if the U parameter is specified. This parameter
applies to mass storage datasets only and is invalid for
magnetic tape datasets.

Maximum size limit for this dataset. lm specifies a
decimal count of Sl2-word blocks. The job step will be
aborted if this size is exceeded. The default and maximum
dataset size limits are set by an installation parameter.
This parameter applies to mass storage datasets only and is
ignored for magnetic tape datasets.

Number of decimal sectors to allocate each time allocation
occurs. If both INC and SZ are specified, SZ is used
initially and INC is used subsequently.

Contiguous space allocation. Use C to allocate contiguous
space requested by the SZ or INC parameter or the default
size. If C is not specified, the system tries to find
contiguous space on the selected device only. If C is
specified, the system searches on every eligible device.

If contiguous space cannot be found when C has been
specified, the return status SPACE NOT AVAILABLE appears.

Disposition code. Disposition to be made of the dataset
when it is released. This parameter applies to mass
storage datasets only and is ignored for tape datasets.
The default is SC.

do is a 2-character alphabetic code describing the
destination of the dataset as follows:

IN The dataset is placed in the input queue of the
destination station.

ST Stage to mainframe. Dataset is made permanent at the
mainframe of job origin.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on printer at the
mainframe of job origin.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe of job origin.

8-5 M

I
I

BFI=bfi

A=FTXX

FD=fd

SR-OOll

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe of job origin.

MT Magnetic tape. Dataset is written on magnetic tape
at the mainframe of job origin.

Blank field initiation. Octal representation of ASCII code
indicating the beginning of a sequence of blanks. BFI=OFF
means that blank compression is inhibited. The default
code is 338 (ASCII ESC code) but can be changed by an
installation parameter. BFI is ignored for ISP datasets.

unit name. Unit names allow the user to refer to a dataset
from a FORTRAN program. Each unit name is 4 characters in
the form FTXX, where xx is the unit number specified.

The unit number is an integer value in the range 0 through
102. However, because unit numbers 100, 101, and 102 are
reserved for system use, a user may designate unit numbers
o through 99.

Use of this parameter associates the designated unit with
the dataset specified by the ON parameter. At job
initiation, unit FT05 is associated with dataset $IN and
unit FT06 is associated with dataset $OUT. Unit names
should not be used as dataset names.

NOTE

If a dataset name is used in place of a unit
name or vice versa, FORTRAN '77 auxiliary
statements (that is, OPEN, CLOSE, and INQUIRE)
produce unpredictable results.

Foreign dataset translation identifier. fd is a 3-character
code which indicates that foreign dataset translation is to
be performed on the dataset. This parameter is required
for runtime translation. Valid values for fd are:

IBM IBM-compatible sequential file

CDC CDC-compatible sequential file

The default is no translation.

8-6 M

CV=ov

CS=cs

Foreign dataset conversion mode. CV indicates if implicit
data conversion is to be done by the run-time library. CV
values are:

ON Data conversion turned on. ON causes the library to
convert the foreign internal representation to or
from Cray internal representation, according to the
I/O list.

OFF Data conversion turned off. The data type is not
considered when OFF is specified. Full Cray words
are moved to or from the foreign dataset.

The default is no data conversion.

Foreign data character set. This parameter specifies the
character set to represent the internal data on the foreign
dataset. Run-time library routines convert character data
from the os character set to ASCII when implicit data
conversion is turned on. The valid os values are:

AS ASCII

EB EBCDIC. EB is the default for IBM tape file
translation.

DC Control Data display code. This option is illegal
when IBM tape file translation is requested. DC is
also the default for CDC tape file translation.

F=f Tape format. f is a 1- or 2-character code which
describes a CDC tape format type. It is required for CDC
tape file translation, no default value is provided for F.
Valid F values are:

SR-OOll

I Internal tape format
SI System or SCOPE internal tape format

Record format, or block and record type. When defined for
IBM tape files, RF refers to record format. pf is a I-
to 3-character code which describes an IBM record format.
Valid values for RF when defining IBM tape files are:

U Undefined-length records
F Fixed-length records
FB Fixed-length blocked records
V Variable-length records
VB Variable-length, blocked records
VBS Variable-length, blocked, spanned records

No default value is provided.

8-7 M

RS=rs

SR-OOll

When defined for CDC tape files, RF refers to block and
record type. In this case rl is a 2-character code which
describes a CDC block and record type. The first of the
2-character code describes the block type:

I Internal block type
C Character-count block type

The second character of the 2-character code describes the
record type:

W Control-word record type
Z Zero-byte record type
S System-logical record type

No default value is provided. RF is required for CDC tape
file translation. The following rf values are supported
for CDC tape files:

IW Internal block type, control-word record type
CW Character-count block type, control-word record type
CZ Character-count block type, zero-byte record type
CS Character-count block type, system-logical record type

Tape dataset record size. rs is the decimal length of
the record, and its expression varies for IBM and CDC tape
files.

When defined for IBM tape files, rB is the decimal length
of the record in 8-bit bytes. The default is set according
to the requested record format. Table 8-1 shows the
defaults for which RS is set for IBM tape files.

Table 8-1. RS defaults for IBM tape files

Record format Default

Undefined-length

Fixed-length RS=~S

Fixed-length, blocked

Variable-length

Variable-length, blocked RS<~S-4
......

Variable-length,_ blocked, spanned

8-8 M

MBS=mbs

SR-OOll

In addition, restrictions are enforced on IBM tape files at
ASSIGN processing time. Table 8-2 summarizes those
restrictions.

Table 8-2. RS restrictions for IBM tape files

Record format Restriction

Undefined-length RS=MBS

Fixed-length

Fixed-length, blocked RS is multiple
of MBS

Variable-length RS<MBS-4 -
Variable-length, blocked

Variable-length, blocked, spanned None

For CDC tape files, ps is the decimal length of the
record in 6-bit characters. PS refers to the maximum
record length when W is specified as a value for RF. The
default or RS=O imply that there is no maximum record
length.

When Z is specified as a value for RF, PS becomes the CDC
equivalent of the FL parameter: PS specifies the length
to which zero-byte records are to be extended on input, and
the length of a zero-byte record on output. This parameter
is required for zero-byte record translation. No default
value is provided for PS when Z is specified as an RF
value.

For CDC system-logical records, PS is the maximum record
length. The default or RS=O imply that there is no maximum
record length.

Maximum tape block size. mbs values are different for
IBM and CDC tape files.

When defined for IBM tape files, mbs is the maximum block
length in 8-bit bytes. The only mbs restriction for IBM
tape files is that the value be less than or equal to 32760
bytes.

8-9 M

When defined for CDC tape files, mba is the maximum block
length in 6-bit characters. The default is 0'5120
characters. It is recommended that the user not override
this default value.

RELEASE - RELEASE DATASET

The RELEASE control statement relinquishes access to the named datasets
for the job. If a dataset is not permanent and its disposition code is
SC (scratch), the mass storage assigned to the dataset is released to the
system. If the dataset is to be staged, the dataset is entered in the
output queue for staging to the destination station. An end-of-data
record is written to a permanent dataset and an ADJUST is performed when
it is released if the dataset is blocked sequential and the previous
operation was a write.

Format:

Parameters:

DN=dn o

1.-

HOLD

SR-OOll

Name of dataset to be released. A maximum of eight
datasets may be specified.

Hold generic resource. Do not return the resource
allocation to the system pool.

8-10 M

I

INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS

ISP datasets are controlled by two types of COS control statements:

• ISP - initiates communication with the ISP system on behalf of a
COS job

• CONNECT - provides access by a COS job to a dataset in the MVS
system

See the ISP General Information Manual, CRI publication SG-0094t , for a
complete description of these control statements and their use.

t Publication SG-0094 will be available when the ISP software is
released.

SR-OOll 8-11 M

PERMANENT DATASET
MANAGEMENT

9

The permanent dataset management control statements provide methods for
creating, protecting', and accessing datasets assigned permanently to mass
storage or magnetic tape. Such datasets cannot be destroyed by normal
system activity or engineering maintenance.

Permanent dataset management is introduced in section 6. The following
permanent dataset management control statements are described in this
section:

• SAVE

• ACCESS

• ADJUST
• MODIFY

• DELETE

• PERMIT

SAVE - SAVE PERMANENT DATASET

The SAVE control statement makes a local dataset permanent and defines
its associated characteristics for the system. For mass storage
datasets, saving involves making an entry in the COS-resident Dataset
Catalog (DSC), which uniquely identifies the dataset. For magnetic tape
datasets, saving involves front-end servicing to the defined front-end
computer system. Under the appropriate conditions, SAVE forces any
unwritten data (left in the output buffer) to be written, ensuring that
all the data is made permanent. Since this situation occurs when the
dataset has been recently written but not yet rewound or closed, SAVE
attempts to close the dataset. The specific conditions that the dataset
must meet are described under the SAVE macro (see the Macros and Opdefs
Reference Manual, CRI publication SR-OOI2). A permanent dataset is
uniquely identified by permanent dataset name (PDN), additional user
identification (10), edition number (ED), and ownership value. SAVE is a
system verb.

SR-OOll 9-1 M

SAVE has a twofold function:

• Creation of an initial edition of a permanent dataset

• Creation of an additional edition of a permanent dataset

Format:

SAVE,DN~n,PDN=pdn,ID=uid,ED=ed,RT=pt,R=pd,w~t,M=mn,UQ,NA,ERR,MSG,

EXO= {~:F}'PAM=mode,ADN=adn(m),TA=OPt,TEXT=text,NoTES=notes.

Parameters are in keyword form; the only required parameter is DN. Only
the DN parameter is valid for tape datasets.

DN~n

PDN=pdn

ID=uid

ED=ed

SR-OOll

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. This
dataset can be closed before the dataset is made permanent.

Permanent dataset name. The default value is dn. The
name can be 1 through 15 alphanumeric characters.

Additional user identification. 1 through 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

Edition number. A value from 1 through 4095 assigned by
the dataset creator. The default value is:

• One, if a permanent dataset with the same PDN and ID
does not exist, or

• The current highest edition number plus one, if a
permanent dataset with the same PDN and ID does exist.

Retention period. User-defined value from I through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The default value is an
installation-defined parameter.

9-2 M

W=wt

M=mn

UQ

NA

ERR

MSG

Read control word. I through 8 alphanumeric characters
assigned by the dataset creator. The read control word of
the highest numbered existing edition of a permanent
dataset applies to all subsequent editions of that
dataset. The default is no read control word.

Write control word. I through 8 alphanumeric characters
assigned by the dataset creator. The write control word of
the highest numbered existing edition of a permanent
dataset applies to all subsequent editions of that
dataset. To obtain write permission, the user must also
have unique access (UQ) to that dataset. The default is no
write control word.

Maintenance control word. I through 8 alphanumeric
characters. The maintenance control word must be specified
if a subsequent edition of the same permanent dataset is
saved. The default is no maintenance control word.

Unique access. If the UQ parameter is specified, only this
job can access the permanent dataset at the completion of
the SAVE function. Otherwise, multiuser access to the
permanent dataset is granted.

No abort. If this parameter is omitted, an error causes
the job to abort.

Error message. If this parameter is specified, error
termination messages are suppressed.

Termination message. Normal termination messages are
suppressed if MSG is specified.

EXO={ON } Execute-only dataset. This parameter sets or clears the
OFF execute-only status of the dataset. EXO only or EXO=ON

causes the dataset to be saved as execute-only. EXO=OFF or
omission of this parameter causes the dataset to be saved as
nonexecute-only dataset. When EXO=ON has been specified it
over ides permitted and public access modes.

SR-OOII

NOTE

When processing for the SAVE request is
complete and EXO=ON, all forms of examination
of this dataset are prohibited.

9-3 M

I

PAM=mode Public access mode. The following modes are allowed:

N No public access allowed
E Execute-only
R Read-only
W Write-only
M Maintenance-only

The installation controls the default PAM value.

Combinations of R, W, and M permissions are allowed, for
example, PAM=R:W gives both read and write permissions.
Note that PAM=E has the same effect as the EXO or EXO=ON
parameter and nullifies any other permissions specified.

ADN=adn em)
Name of the attributes dataset from which attributes,
indicated by the modifiers m, are selected. If no
modifiers are present, then all attributes are selected.
Attribute parameters such as NOTES=, TEXT=, PAM=, R=, etc.
take precedence over the modifiers. adn must be the
local dataset name of a permanent dataset. The modifiers
must be enclosed with parentheses and separated by colons.
The following modifiers are supported:

Modifier

P~

TRACK
CW
PERMITS
TEXT
NOTES
ALL

Selection from attributes dataset

Public access mode attribute
Public access tracking attribute
Control words
Permit list
Text attribute
Notes attribute
All attributes

TA=Opt Track accesses. opt can be either YES or NO and
indicates whether the owner requires that public accesses
to the dataset be tracked. See section 6 for a description
of public access and access tracking. The default TA value
is NO.

TEXT=text Text to be passed to a front-end computer system requesting
transfer of the dataset. A maximum of 240 characters can be
specified. This text information is considered an attribute
of the dataset and is retained along with any other
attributes. See section 6 for an explanation of all
permanent dataset attributes.

SR-OOII 9-4 M

NOTES=notes
Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on
the content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the
480 character maximum limit. notes is a permanent
dataset attribute. See section 6 for an explanation of all
permanent dataset attributes.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS control statement makes an existing permanent dataset local to
a job and can be used to create a tape dataset. Following the ACCESS
statement, all references to the permanent dataset must be by the local
dataset name specified by the DN parameter. ACCESS assures that the user
is authorized to use the permanent dataset. The ACCESS control statement
must precede the ASSIGN control statement or the request call for the
dataset. All tape datasets, whether they are new or not, must be made
local via the ACCESS control statement or system request. ACCESS is a
system verb.

The user need not access a permanent dataset entered into the System
Directory (SDR). A tape dataset cannot reside in the SDR. A basic set
of datasets is entered into the System Directory when the operating
system is installed. These datasets include the loader, the CFT
compiler, the CAL assembler, UPDATE, BUILD, and system utility programs
such as copies and dumps (all utilities described in sections 6 through
15 are entered in the System Directory). Other datasets can be entered
into the System Directory according to site requirements.

The processing of the ACCESS system request ensures the following:

• The dataset already exists or for new magnetic tape datasets the
dataset does not already exist.

• The requested permissions are allowed.

• The type of medium on which the dataset resides has been
previously allocated by the job, provided the medium is a
dedicated resource (such as magnetic tape).

SR-OOll 9-5 M

I

I

I

Format:

ACCESS,DN~n,NA,ERR,MSG,IR,PDN=pdn,ID=uid,ED=ed,R=pd,w~t,M=mn,UQ,

OWN=OV,DT=dt,NEW,RING={~~T},DEN=den,MF=fes,

vOL=voll:Vol2: ••• voln,FSEC=fseo,LB=lb,DF=df,PROT,MBs=mbs ,MOD,

XDT=yyddd,RT=rt,FD=fd,cv=ov,CS=Os,F=f,RF=rf,RS=ps,FSEQ=fseq.

Parameters are in keyword form; DN is the only required parameter for mass
storage datasets to make an existing permanent dataset local to a job.

The following parameters can be used with mass storage datasets:

DN=dn Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. This is a
required parameter.

NA No abort indicator. This parameter when selected indicates
that the job step is not to be aborted if an error arises
from the access attempt. If omitted, an error condition
causes the job step to be aborted.

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppressed when MSG is specified.

IR Immediate reply. An ACCESS request cannot always be honored
immediately. When this is the case, the operating system
automatically delays the request until it can be honored.

SR-OOll

IR indicates that control is to return to the caller instead
of delaying the request. If IR is specified, the caller has
to re-issue the ACCESS request.

9-6 M

PDN=pdn Name of a permanent dataset being accessed and already
existing in the system. The default value is dn. The
name can be 1 through 15 characters for mass storage
datasets.

ID=uid Additional user identification. 1 through 8 alphanumeric
characters. If uid was specified at SAVE time, the ID
parameter must be specified on the ACCESS control
statement. The default is no user ID. This parameter
applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

ED=ed Edition number of permanent dataset being accessed; a value
from 1 through 4095 was assigned by the dataset creator.
If the ED parameter is not specified, the default is the
highest edition number known to the system (for this
permanent dataset). This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

The following parameters are used to identify the permissions for the
accessing of a mass storage permanent dataset.

R=rd

W=wt

M=mn

SR-OOll

Read control word as specified at SAVE time. 1 through 8
alphanumeric characters assigned by the dataset creator.
The default is no read control word. To obtain read
permission, this parameter must be specified on the ACCESS
control statement if a read parameter is specified when the
dataset is saved. This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

write control word as specified at SAVE time. To obtain
write permission, this parameter must be specified in
conjunction with a UQ parameter on the ACCESS control
statement if a W parameter is specified when the dataset is
saved. Write permission is required for an ADJUST and
applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

Maintenance control word as specified at SAVE time. This
parameter is specified in conjunction with a UQ parameter
on an ACCESS control statement if the dataset is to be
subsequently deleted. That is, maintenance permission is
required to delete a dataset. This parameter applies to
mass storage datasets only; it is ignored when used for
magnetic tape datasets.

9-7 M

I

I

I

UQ

OWN=ov

Unique access. This parameter indicates exclusive access
to the dataset is desired. If the UQ parameter is
specified and the appropriate write or maintenance control
words are specified, then write, maintenance, and/or read
permission is granted. If UQ is not specified, then
multiuser read access is granted by default (if at a
minimum, the read control word is specified). UQ is
required to delete a permanent dataset using the DELETE
control statement. This parameter applies to mass storage
datasets onlYJ it is ignored for magnetic tape datasets.

OWnership value. If the own parameter is specified and the
user has been granted access by the owner, the dataset is
made local to the job. OWN is ignored if ov matches the
active ownership value of the job (users need not be
permitted to their own datasets).

The following list describes the parameters available for the accessing
and/or definition of magnetic tape datasets.

DN~n

DT=dt

SR-OOll

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. This
parameter must be present and equated to a valid local
dataset name not already in use.

Tape dataset generic resource name. This parameter is
required for tape datasets. Up to 16 generic resource
names can be defined by the installation. Only one generic
resource name is available with the released system:

Generic Resource Name Significance

* TAPE Device capable of 1600 or 6250 bpi

Creation disposition. Selection of this parameter
indicates the dataset does not yet exist and is to be
created by this job. If omitted, the dataset is assumed to
already exist. NEW datasets must be written before any
read can occur. NEW and MOD are mutually exclusive. NEW
automatically selects RING=IN if ring processing is in
effect.

9-8 M

RING= {~~Tl

DEN=den

MF=fes

Tape write ring option. The choices are IN if the tape is
to be written, and OUT if the tape is to be read only.
This parameter is in effect only if the installation
parameter I@RNGABT is selected at your site.

Density of the tape dataset. This parameter applies only
to tape datasets; it is ignored when used for mass storage
datasets.

6250 Dataset density of 6250 bpi, default
1600 Dataset density of 1600 bpi

Front-end servicing mainframe identifier. This parameter
allows specification of an alternate front-end computer
system to which servicing requests are directed. If
omitted, the front-end of job origin is used. Front-end
servicing is a mechanism whereby auxiliary servicing (such
as updating of front-end resident catalogs and tape
management systems) of the dataset and/or tape volumes is
performed.

The following parameters identify the magnetic tape dataset to be
accessed:

PDN=pdn

VOL=VO~

Permanent dataset name or file identifier. This parameter
can be 1 to 44 characters and is the primary means of
identifying the dataset. For labeled tape datasets (AL and
SL), the rightmost 17 characters of the PDN are used to
match the file identifier from the label group. with
front-end servicing the whole value given is generally used
as the identifier. If PDN is omitted, then the DN value is
used.

Volume identifier list. An optional list of 1- through
6-character volume identifiers (VIS) identify tape volumes
where the dataset resides. The list contains up to 255
VIs. If the VI list is omitted for a new tape dataset,
then the tape volumes on which the dataset is written are
selected by the operator and front-end servicing routine.
This condition is termed a nonspecific volume allocation.
If the VI list is omitted for an old tape dataset, then the
volumes on which the dataset resides are determined by
front-end servicing. If front-end servicing has no
knowledge of the dataset or is inactive, the omission of
the VI list results in a job step abort.

FSEC=fsee File section number or volume sequence number. This
I parameter describes on which volume, relative to the first

physical volume of the dataset, to begin processing.

SR-001I 9-9 M

LB=lb

The volume sequence number for the first volume of the
dataset is 1. If fse~ is omitted, a value of 1 is
assumed. This parameter has a direct relationship to the
VIs specified in the VOL parameter. The volume sequence
number corresponds to the first VI identified in the VOL
parameter. For example, to access a tape dataset starting
with the eighth section, specify FSEC=8 on the ACCESS call.
If both the MOD and FSEC=fse~ are coded, the FSEC
parameter is not used for validating the header label.
Instead it represents the position of the volume serial
number in the volume list where MOD processing will begin.

Example: coding the following causes processing to start
with tape T2.

ACCESS, ••• MOO,VOL=Tl:T2:T3,FSEC=2, •••

Tape dataset label type indicating the format of the tape.
If this parameter is omitted, label type NL is assumed.

SL IBM standard labeled tapes
NL Unlabeled tapes; default.
AL ANSI standard labeled tapes
FSL Field format with IBM standard labels
FAL Field format with ANSII standard labels
FNL Field format with no labels

Field format tape datasets treat .imbedded end-of-files or
tapemarks as data. Tapemarks that are not followed by a
label are returned in the data EOF control words. On
output, EOF control words that are not followed by an EOO
control word are converted to physical tapemarks.

The following parameters identify the characteristics of a magnetic tape
dataset.

OF~f Recording format. This parameter identifies in which
format the tape dataset is to be read and/or written.
Legal values for this parameter are:

TR Transparent format
IC Interchange format

If omitted the format is transparent. For a description of
the formats and the associated properties see section 2.

9-10 M

I

I

MBS~ba

MOD

Front-end protect indicator. This parameter indicates to
the front-end computer system performing the service
functions that the tape dataset and/or its volumes are to
be protected. PROT is recognized for new tape datasets
only. If PROT is omitted, the dataset and its volumes are
not protected.

Maximum tape block size. If foreign dataset translation is
requested by specifying FD, values for mba are different.
See the description of the FD parameter below. mba values
are different for IBM and CDC tape files.

When defined for IBM tape files, mba is the maximum block
length in 8-bit bytes. The only mba restriction for IBM
tape files is that the value be less than or equal to 32760
bytes.

When defined for CDC tape files, mba is the maximum block
length in 6-bit characters. The default is 0'5120
characters. It is recommended that the user not override
this default value to ensure interchangeability with all
CYBER operating systems.

If MBS is omitted and the dataset is new, a default size
determined by the site is used. The limiting value of the
parameter is also left to site definition. If omitted for
an existing labeled dataset (AL or SL), the maximum block
size is set to the value from the label group. Exceeding
this size when writing results in a job abort condition of
WRITE FORMAT ERROR. When reading a tape block that is
larger than the specified value, a job abort condition of
LARGE BLOCK ENCOUNTERED is produced. MBS is rounded up to
the next multiple of 4096 bytes for transparent format tape
datasets.

Existing tape dataset modification identifier. This
parameter allows the user to position single volume and
multivolume datasets on tape. It specifies that data will
be added at the end of an existing dataset on either
standard labeled or unlabeled tapes. Access requests using
MOD for tape volume positioning are only successful if the
end of a dataset is indicated by the end-of-file trailer
label for a labeled tape volume, and by a tape mark for an
unlabeled tape. MOD and NEW are mutually exclusive. MOD
selects RING=IN if ring processing is in effect.

t Deferred implementation

SR-OOll 9-11 M

I

XDT=yyddd Expiration date. Indicates the date this tape dataset

~=n

may be overwritten. yy specifies the year and is a
number from 0 through 99. ddd specifies the day in
theyear and is a number from 001 through 366. This
parameter identifies the year and the day on which a new
tape dataset is considered dormant. If omitted and the
dataset is going to be written, the current date is used.
This parameter is also used as a means of communicating
with a servicing front-end computer system. The XDT and RT
parameters are mutually exclusive.

Retention period. User-defined value from 1 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The RT parameter is similar to the
XDT parameter but allows the user to specify relative
expiration date. If RT is omitted, the default value used
is no days of retention. This parameter is mutually
exclusive with the XDT parameter.

The following tape dataset parameters specify that record and data format
conversion are to be performed on the tape dataset at run time.

FD=fd

cv=cv

CS=cs

SR-OOll

Foreign dataset translation identifier. fd is a
3-character code which indicates that foreign dataset
translation is to be performed on the dataset. This
parameter is required for run-time translation. Valid
values for fd are:

IBM IBM-compatible sequential file
CDC CDC-compatible sequential file

The default is no translation.

Foreign dataset conversion mode. CV indicates if implicit
data conversion is to be done by the runtime library. CV
values are:

ON Data conversion turned on. ON causes the library
to convert the foreign internal representation to
or from Cray internal representation, according
to the I/O list.

OFF Data conversion turned off. The data type is not
considered when OFF is specified. Full Cray words
are moved to or from the foreign dataset.

The default is no data conversion.

Foreign data character set. This parameter specifies the
character set to represent the internal data on the foreign
dataset. Run-time library routines convert character data
from the cs character set to ASCII when implicit data
conversion is turned on.

9-12 M

The valid CB values are:

AS ASCII
EB EBCDIC. EB is the default for IBM tape file

translation.
DC Control Data display code. This option is illegal

when IBM tape file translation is requested. DC is
also the default for CDC tape file translation.

F=f Tape format. f is a 1- or 2-character code which
describes a CDC tape format type. It is required for CDC
tape file translation. No default value is provided for
F. Valid F values are:

RF=pf

SR-OOll

I Internal tape format
SI System or SCOPE internal tape format

Record format, or block and record type. When defined
for IBM tape files, RF refers to record format. pf is a
1- to 3-character code which describes an IBM record format.
Valid values for RF when defining IBM tape files are:

U Undefined-length records
F Fixed-length records
FB Fixed-length blocked records
V Variable-length records
VB Variable-length, blocked records
VBS Variable-length, blocked, spanned records

No default value is provided. However, RF can be omitted
when accessing an IBM standard labeled tape file. In that
case the record format designated on the label is used. If
NEW is specified, RF=U.

When defined for CDC tape files, RF refers to block and
record type. In this case pf is a 2-character code which
describes a CDC block and record type. The first of the
2-character code describes the block type:

I Internal block type
C Character-count block type

The second character of the 2-character code describes the
record type:

W Control-word record type
Z Zero-byte record type
S System-logical record type

No default value is provided. RF is required for CDC tape
file translation. The following pf values are supported
for CDC tape files:

9-13 M

RS=rs

SR-OOll

IW Internal block type, control-word record type
CW Character-count block type, control-word record type
CZ Character-count block type, zero-byte record type
CS Character-count block type, system-logical record type

Tape dataset record size. P8 is the decimal length of
the record, and its expression varies for IBM and CDC tape
files.

When defined for IBM tape files, P8 is the decimal length
of the record in 8-bit bytes. The default is set according
to the requested record format. However, no default value
is used when accessin9 an IBM standard labeled tape file.
Instead the record size designated by the label is used.
Table 9-1 shows the defaults for which RS is set for IBM
tape files.

Table 9-1. RS defaults for IBM tape files

Record format Default

Undefined-length

Fixed-length RS=MBS

Fixed-length, blocked

Variable-length

Variable-length, blocked RS=MBS-4

Variable-length, blocked, spanned

In addition, restrictions are enforced on IBM tape files
at ACCESS processing time. Table 9-2 summarizes those
restrictions. Nonetheless, restrictions are not enforced
if the tape file accessed is an IBM standard labeled tape
file, and if neither RS nor MBS are specified.

9-14 M

I

I

I

Table 9-2. RS restrictions for IBM tape files

Record format Restriction

Undefined-length RS=~.aBS

Fixed-length

Fixed-length, blocked MBS is multiple
of RS

Variable-length RS<MBS-4 -
Variable-length, blocked

Variable-length, blocked, spanned None

For CDC tape files, PB is the decimal length of the
record in 6-bit characters.

PB refers to the maximum record length when W is specified
as a value for RF. The default or RS=O imply that there is
no maximum record length.

When Z is specified as a value for RF, PB becomes the
equivalent of the CDC FL parameter: PB specifies the
length to which zero-byte records are to be extended with
blank characters on input and the length of a zero-byte
record on output. This parameter is required for zero-byte
record translation. No default value is provided for PB
when Z is specified as an RF value.

For CDC system-logical records, PB is the maximum record
length. The default or RS=O imply that there is no maximum
record length.

FSEQ=fBeq File sequence number. This is a one- to four-digit
number that describes the relative position of the dataset
on the tape volume. The default is 1.

ADJUST - ADJUST PERMANENT DATASET

The ADJUST control statement changes the size of a mass storage permanent
dataset; that is, it redefines the size of the dataset. When a permanent
dataset is overwritten, and the dataset size changes, issuing an ADJUST

SR-OOll 9-15 M

statement informs the system of the dataset's new size. An ADJUST of a
permanent dataset can be issued if the dataset has been previously
accessed within the job with write permission. ADJUST is a system verb.

Under the appropriate conditions, ADJUST forces any unwritten data to
mass storage to ensure that all of the dataset is made permanent. Since
this situation occurs when the dataset has been recently written to but
not yet closed, ADJUST attempts to close the dataset. The specific
conditions that the dataset must meet are described under the ADJUST
macro (see the Macros and Opdefs Reference Manual, CRI publication
SR-0012).

The ADJUST statement is ignored when used with magnetic tape datasets.

Format:

ADJUST,DN=dn,NA,ERR,MSG.

Parameters:

DN=dn

NA

E~

MSG

Local dataset name of a permanent dataset that has been
accessed with write permission. This dataset can be closed
before the ADJUST statement is processed.

No abort. If this parameter is omitted, an error causes the
job step to abort.

Error message. If this parameter is specified, error
termination messages are suppressed.

Termination message. Normal termination messages are
suppressed when MSG is specified.

MODIFY - MODIFY PERMANENT DATASET

The MODIFY control statement changes permanent dataset information
established by the SAVE function or a previously executed MODIFY
function. A permanent dataset must be accessed with unique access (UQ)
and all permissions before MODIFY can be issued. MODIFY is a system verb.

Once a permanent dataset exists, the read, write, and maintenance control
words, public access mode, and access tracking may apply to subsequent
editions of that permanent dataset. MODIFY applies to mass storage
datasets only; it is ignored for tape datasets.

SR-OOll 9-16 M

Fbrmat:

MODIFy,DN~n,PDN=pdn,ID=uid,ED=ed,RT=pt,R=pd,w~t,M=mn,NA,ERR,MSG,

EXO={~~}'PAM-mode'TA=opt'TEXT=text'NOTEs=notes.

Parameters are in keyword form; the only required parameter is DN.

DN=dn

PDN=pdn

ID=uid

ED=ed

RT=pt

R=Pd

w~t

SR-OOll

Local dataset name of a permanent dataset that has been
accessed with all permissions. DN is a required parameter.

New permanent dataset name to be applied to the existing
dataset. If this parameter is omitted, the existing
permanent dataset name is retained.

New additional user identification, to be applied to the
existing permanent dataset. 1 through 8 alphanumeric
characters. If this parameter is omitted, the existing
user ID is retained. If this parameter is present without
a value, user identification is established as binary zeros.

New edition number to be applied to the existing permanent
dataset. If this parameter is omitted, the existing
edition number is retained.

New retention period to be applied to the existing
permanent dataset. If this parameter is omitted, the
current retention period is retained. If this parameter is
present without a value, the retention period is set to the
installation-defined value.

New read permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing read permission is retained. If R is present
without a value, read permission is established as binary
zeros.

New write permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing write permission is retained. If W is present
without a value, write permission is established as binary
zeros.

9-17 M

I

M=mn

NA

ERR

MSG

EXO={ON }
OFF

New maintenance permission control word to be applied to
the existing permanent dataset. If this parameter is
omitted, the existing maintenance permission is retained.
If M is present without a value, maintenance permission is
established as binary zeros.

No abort. If this parameter is omitted, an error causes
the job to abort.

Error message. If this parameter is specified, error
termination messages are suppressed.

Termination message. Normal termination messages are
suppressed when MSG is specified.

Execute-only dataset. This parameter sets or clears
the execute-only status of a dataset. EXO only or
EXO=ON causes the dataset to be modified to execute-only.
EXO=OFF causes the dataset to be modified to a
nonexecute-only dataset. If this parameter is omitted, the
execute-only status of a dataset is unchanged.

NOTE

When processing for the MODIFY request is
complete and EXO=ON, all forms of examination
of this dataset are prohibited.

PAM~ode Public access mode. The following modes are allowed:

TA=Opt

SR-OOll

N No public access allowed
E Execute only
R Read only
W Write only
M Maintenance only

The installation controls the default PAM value.
Combinations of R, W, and M permissions are allowed; for
example, PAM=R:W gives both read and write permissions.
Note that PAM=E has the same effect as the EXO or EXO=ON
parameter and nullifies any other permissions specified.

Track accesses. opt can be either YES or NO and
indicates whether the owner requires that public accesses
to the dataset be tracked. See section 6 for a description
of public access and access tracking. The default TA value
is NO.

9-18 M

TEXT=text Text to be passed to a front-end computer system requesting
transfer of the dataset. A maximum of 240 characters can
be specified. This text information is considered an
attribute of the dataset and is retained along with any
other attributes. See section 6 for an explanation of all
permanent dataset attributes.

NOTES=notes
Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on
the content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the
480 character maximum limit. notes is a permanent
dataset attribute. See section 6 for an explanation of all
permanent dataset attributes.

DELETE - DELETE PERMANENT DATASET

The DELETE control statement clears the permanence state for a dataset.
For mass storage datasets this involves clearing the dataset's definition
from the Dataset Catalog (DSC). For magnetic tape datasets, a request to
remove the dataset's definition from the front-end's catalog is sent to
the servicing front-end computer system. If PARTIAL is specified, the
dataset is deleted but its attributes are retained. To issue a DELETE of
a dataset, the job must have previously accessed the dataset with
maintenance permission, if a maintenance control word exists for the
dataset, and unique access (UQ). The dataset remains a local dataset
after deletion until job termination or execution of a RELEASE control
statement. DELETE is a system verb.

Format:

DELETE,DN~n,NA,ERR,MSG,PARTIAL.

Parameters:

DN~n

NA

SR-OOll

Local dataset name of a permanent dataset accessed with
maintenance permission and unique access

No abort. If this parameter is omitted, a fatal error
causes the job step to abort.

9-19 M

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppressed if MSG is specified.

PARTIAL Partial delete. Presence of this keyword causes the system
to delete only the mass storage resident data. The DSC
entry and the dataset's attributes information are"
retained. PARTIAL can be specified only for a mass storage
dataset.

PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET

The PERMIT control statement allows a user to explicitly designate who
can access a particular permanent dataset. PERMIT applies to all
editions of the permanent dataset. This dataset need not be local for
PERMIT to be executed. PERMIT applies to user permanent mass storage
datasets only. Access permission given with a PERMIT control statement
takes precedence over the PAM parameter described under SAVE and MODIFY.
PERMIT is a system verb.

Format:

PERMIT,PDN=pdn,ID=uid,AM=m,RP,USER=OV,ADN=adn,NA,ERR,MSG.

Parameters:

PDN~n

ID=uid

AM=m

SR-OOll

Name of an existing user permanent dataset. The name can
be 1 through 15 characters. PDN is a required parameter.

Additional user identification. 1 through 8 alphanumeric
characters. If ID was specified on the SAVE request, the
ID parameter must be specified on the PERMIT control
statement. The default is no user ID.

Access mode permitted for alternate user. These modes are:

N No dataset access allowed
E Execute-only
R Read-only
W Write-only
M Maintenance-only

9-20 M

I
RP

USER=oV

ADN~n

NA

MSG

Each installation controls the default AM value.
Combinations of R, W, and M permissions are allowed; for
example, AM=R:W gives both read and write permissions.
Note that AM=E gives the permitted user execute-only access
to the dataset, effectively nullifying any other
permissions specified.

Remove permit parameter. Removes the permit associated
with the specified ownership value.

User ownership value associated with the user being
permitted

Local dataset name of the attributes dataset from which the
permit list is copied

No abort. If this parameter is omitted, an error causes
the job step to abort.

Error message. If this parameter is specified, error
termination messages are suppressed.

Termination message. Normal termination messages are
suppressed when MSG is specified.

EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS

To clarify the permanent dataset management control statements, some
examples follow:

1. A user identified as USERXYZ creates a permanent dataset, which
no other user can access. All subsequent editions of this
dataset share this attribute.

SAVE,DN=ABC,PDN=EXAMPLEl,ED=l,PAM=N,TA=NO.

2. A user identified as USERXYZ, creates a permanent dataset, which
can be accessed by all other users in read mode.

SAVE,DN=XYZ,PDN=EXAMPLE2,ED=1,PAM=R,TA=NO.

3. An alternate user is accessing the permanent dataset created in
example 2.

SR-OOll

ACCESS,DN=LOCAL,PDN=EXAMPLE2,ED=1,OWN=USERXYZ.

The system does not track the alternate user access since the
dataset was created with TA=NO.

9-21 M

4. Allow another user (known in this example as USERl) to access the
permanent dataset created in example 1 in read and execute mode
only.

PERMIT,PDN=EXAMPLEl,USER=USERl,AM=R:E.

5. Enable public access tracking for the permanent dataset created
in example 2.

ACCESS,DN=LOCAL,PDN=EXAMPLE2,ED=l,UQ.
MODIFY,DN=LOCAL,TA=YES.

6. Permit write mode access for PDN=EXAMPLE2 to users known as USER2
and USER3.

PERMIT,PDN=EXAMPLE2,USER=USER2,AM=W.
PERMIT,PDN=EXAMPLE2,USER=USER3,AM=W.

7. Change the permission granted to USERl in example 4 to AM=W.

PERMIT,PDN=EXAMPLEl,USER=USERl,AM=W.

8. Remove the access permission granted to USERI in example 7.

PERMIT,PDN=EXAMPLEl,USER=USERl,RP.

9. User USERXYZ acquires a dataset, then permits another user to use
it and subsequently partially deletes the dataset to retain just
the PERMITs and TEXT information.

ACQUIRE,DN=EX9,TEXT=· •••••••••• ·,UQ.
PERMIT ,PDN=EX9,USER=SOMEONE,AM=R.
DELETE ,DN=EX9,PARTIAL.

10. User USERXYZ creates a permits template.

A

SAVE,DN=EXlO,PDN=PERMS,
NOTES='PERMITS TEMPLATE FOR AERO USERS.
'THESE PERMITS SHOULD BE REMOVED AFTER OCT 31, 1983.·,UQ.

PERMIT,PDN=PERMS,USER=USERA,AM=E.
PERMIT, PDN=PERMS, USER=USERB,AM=R.
PERMIT,PDN=PERMS,USER=USERC,AM=W.
DELETE,DN=EXlO,PARTIAL.

11. User SOMEONE acquires the dataset that was partially deleted in
example 9.

SR-OOll

ACQUIRE,DN=LOCAL,PDN=EX9,OWN=USERXYZ.

Note that the TEXT need not be specified and that after the
dataset has been acquired from the front-end computer system, it
is made permanent and belongs to user USERXYZ.

9-22 M

DATASET STAGING CONTROL 10

Staging is the process of transferring jobs and data in the form of COS
datasets from a front-end computer system to Cray mass storage or of
transferring datasets from Cray mass storage to a front-end computer
system. Dataset staging control is introduced in section 6.

Three control statements support staging datasets between Cray mass
storage and a front-end system: ACQUIRE, FETCH, and DISPOSE. Another
control statement, SUBMIT, directs datasets to the COS input queue.

ACQUIRE - ACQUIRE PERMANENT DATASET

The ACQUIRE control statement allows the user to make a dataset permanent
and accessible to the job making the request. ACQUIRE is a system verb.
Some ACQUIRE control statement examples are included with the permanent
dataset management examples (see section 10) •

When an ACQUIRE control statement is issued, COS determines if the
requested dataset is front-end resident or permanently resident on Cray
mass storage by checking the COS Permanent Dataset Catalog (DSC) for a
dataset with matching PDN, ID, ED, and ownership value fields.

If COS determines that the requested dataset is already permanently
resident on Cray mass storage, dataset access is granted to the job
making the request.

If the requested dataset is not a COS mass storage permanent dataset, the
request for the dataset is sent to the front-end system. The front-end
system stages the dataset to Cray mass storage. COS then makes the
dataset permanent and grants dataset access to the job making the
request. until the dataset is made permanent, processing of the job
making the request is delayed.

SR-OOll 10-1 M

I

I

Format:

ACQUIRE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=pt,R=pd,w=wt,M=mn,UQ,

TEXT=text,MF~f,TID=tid,DF~f,OWN=own,PAM=mode,

ADN=adn(m),TA=opt,NOTES=notes,ERR,MSG.

Parameters are in keyword form: the only required parameter is DN.

DN~n

PDN=pdn

Io=uid

ED=ed

RT=rt

SR-OOll

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. 1 through 7
alphanumeric characters, the first of which is A through Z,
$, @, or %: remaining characters can also be numeric. DN
is a required parameter.

Name of COS permanent dataset to be accessed or staged
from a front-end system, saved, and accessed. The
permanent dataset name is passed to the front-end system:
it is the name saved by the system if the dataset is
staged. pdn is 1 through 15 alphanumeric characters
assigned by the dataset creator. The default for pdn is
~.

Additional user identification. 1 through 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

Edition number. A value from 1 through 4095 assigned by
the dataset creator. The default value is:

• One, if a permanent dataset with the same PDN and ID
does not currently exist, or

• The current highest edition number of that dataset if
the permanent dataset with the specified PDN and ID
does exist.

Retention period. User-defined value from 1 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The default value is an
installation-defined parameter.

10-2 M

w~t

M=mn

UQ

Read control word. 1 through 8 alphanumeric characters
assigned by the dataset creator. The default is no read
control word.

write control word. 1 through 8 alphanumeric characters
assigned by the dataset creator. The default is no write
control word.

Maintenance control word. 1 through 8 alphanumeric
characters assigned by the dataset creator. The control
word must be specified if a subsequent edition of the
permanent dataset is saved. If no staging occurs, and the
dataset is to be deleted, this parameter can be specified
in conjunction with the UQ parameter (that is, maintenance
permission is required to delete a dataset).

Unique access. If the UQ parameter is specified, the job
is granted unique access to the permanent dataset;
otherwise, mUltiaccess to the permanent dataset is
granted. If no staging is performed because the dataset
already exists, write, maintenance, and/or read permission
can be granted if the appropriate read, write, and/or
maintenance control words are specified.

TEXT=text Text to be passed to a front-end computer system requesting
transfer of the dataset. A maximum of 240 characters can be
specified. This text information is considered an attribute
of the dataset and is retained along with any other
attributes. See section 6 for an explanation of all
permanent dataset attributes.

MF=rrif'

TID=tid

DF=df

SR-OOll

Identifier for the front-end computer. 2 alphanumeric
characters. The default is the front end of job origin.

Terminal identifier. 1 through 8 alphanumeric characters
identifying destination terminal. The default is the
terminal of job origin.

Dataset format. This parameter defines whether a dataset is
to be presented to the Cray Computer System in COS blocked
format and whether the front-end system is to perform
character conversion. The default is CB.

For example, a user wishes to acquire a dataset from
magnetic tape in blocked binary as it appears at the
front-end system. In this case, BB is specified.

df is a 2-character alphanumeric code defined for use on
the front-end system. Cray Research, Inc., suggests support
of the following codes:

10-3 M

I

OWN=ov

CD Character deblocked. The front-end system performs
character conversion to 8-bit ASCII, if necessary.

CB Character blocked. The front-end system blocks the
dataset before staging and performs character
conversion to 8-bit ASCII, if necessary.

BD Binary deblocked. The front-end system does not
perform character conversion. For ACQUIRE, BD is
the same as TR.

BB Binary blocked. The front-end system blocks the
dataset before staging but does not do character
conversion.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Ownership value. If the own parameter is specified and the
user has been granted access by the owner, the dataset is
made local to the job. OWN is ignored if OV matches the
active ownership value of the job (users need not be
permitted to their own datasets). •

PAM~ode Public access mode. The following modes are allowed:

ADN=adn (m)

SR-OOll

N No public access allowed
E Execute only
R Read only
W Write only
M Maintenance only

Combinations of R, W, and M permissions are allowed; for
example, PAM=R:W gives both read and write permissions.
Note that PAM=E has the same effect as the EXO or EXO=ON
parameter and nullifies any other permissions specified.
Each installation controls the default PAM value.

Name of attributes dataset from which attributes, indicated
by the modifiers m, are selected. If no modifiers are
present, then all attributes are selected. Attribute
parameters such as NOTES=, TEXT=, PAM=, R=, etc. take
precedence over the modifiers. adn must be the local
dataset name of a permanent dataset. The modifiers must be
enclosed with parentheses and separated by colons. The
following modifiers are supported:

10-4 M

TA=opt

Modifier

PAM
TRACK
CW
PERMITS
TEXT
NOTES
ALL

Selection from attributes dataset

Public access mode attribute
Public access tracking attribute
COntrol words
Permit list
Text attribute
Notes attribute
All attributes

Track accesses. opt can be either YES or NO and indicates
whether the owner requires that public accesses to ~he
dataset be tracked. See section 6 for a description of
public access and access tracking. The default TA value is
NO.

NOTES=notes
Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on the
content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the 480
character maximum limit. notes is a permanent dataset
attribute. See section 6 for an explanation of all permanent
dataset attributes.

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppresed when MSG is specified.

DISPOSE - DISPOSE DATASET

The DISPOSE control statement directs a dataset to the COS output queue
for staging to a specified front-end computer system. DISPOSE can also
be used to alter the effects of a previous DISPOSE,DEFER of the same
dataset.

Defining the DISPOSE characteristics can be done before the actual
staging via the DEFER parameter. The DEFER parameter saves all selected
dispose parameters for use when the dataset is released, which is when
the actual staging is initiated. DISPOSE is a system verb.

SR-OOII 10-5 M

Format:

DISPOSE,DN=dn,SDN=sdn,DC~o,DF=df,MF=mf,SF=sf,ID=uid,TID=tid,

ED=ed,RT=rt,R=rd,w=wt,M=mn,TEXT=text,wAIT,NOWAIT,DEFER,NRLS.

Parameters are in keyword form, the only required parameter is DN.

DN=dn

SDN=sdn

Dc=do

SR-OOll

Local dataset name. Name by which the dataset is known to
the user job. DN is a required parameter.

staged dataset name. 1 through 15 character name by which
the dataset is to be known at the destination front end.
The default for sdn is dn.

Disposition code. Disposition to be made of the dataset.
If the DC parameter is omitted, the default is PRe

do is a 2-character alphanumeric code describing the
destination of the dataset as follows:

IN Input (job) dataset. Dataset is queued as a job on
the mainframe specified with the MF parameter.

ST Stage to front end. Dataset is made permanent at the
front end designated by the MF parameter.

SC Scratch dataset. Dataset is released, unless another
DISPOSE request is still pending on the dataset.
This parameter has the same effect as RELEASE,DN=dn.

PR Print dataset. Dataset is printed on a printer
available at the front end designated by the MF
parameter.

PU Punch dataset. Dataset is punched on any card punch
available at the front end designated by the MF
parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the front end designated by the MF
parameter.

10-6 M

DF~f

SR-OOll

MT write dataset on magnetic tape at the front end
designated by the MF parameter.

N~E

The dataset dispositions noted above are by
convention only. Actual dataset disposition
is determined by the destination front end.

Dataset format. This parameter defines whether a dataset
is sent from the Cray Computer System in COS-blocked format
and whether the front-end system is to perform character
conversion. The default is CB.

For example, a user wishes to save a dataset on magnetic
tape in blocked binary as it appears on COS mass storage.
In this case, BB is specified. A user who wants a dataset
printed can specify CB if the front-end computer handles
deblocking.

df is a 2-character alphanumeric code defined for use on
the front-end system. Cray Research, Inc., suggests
support of the following codes:

CD Character deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

CB Character blocked. No deblocking is performed at the
Cray mainframe before staging. The front-end system
performs deblocking and character conversion from
8-bit ASCII, if necessary.

BD Binary deblocked. The front-end system does not
perform character conversion. For DISPOSE, BD is the
same as TR.

BB Binary blocked. The front-end system does not
perform character conversion. The Cray mainframe
does not perform deblocking before staging. The
front-end system is expected to perform deblocking.

TR Transparent. No blocking/deblocking or character
conversion is performed.

10-7 M

•

Other codes can be added by the local site. Undefined
pairs of characters can be passed but are treated as
transparent mode by cos.

MF~f Front-end computer identifier. 2 alphanumeric characters.
Identifies the front end to which the dataset is to be
staged. If omitted, the front end where the issuing job
originated is used. If MF is given a value of a Cray
mainframe ID and DC=IN, an error message is issued and the
job step is aborted (see the SUBMIT control statement later
in this section).

SF=sf Special form information to be passed to the front-end
system. 1 through 8 alphanumeric characters. SF is
defined by the needs of the front-end system.

ID=uid Additional user identification. 1 through 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

TID=tid Terminal identifier. 1 through 8 alphanumeric characters
identifying destination terminal. The default is terminal
of job origin, where applicable.

ED=ed Edition number, meaningful only if DC=ST. A user-defined
value from 1 through 4095. The default value depends on
the destination front end.

RT=rt

R=,ro

W=uJt

M=rrm

SR-OOll

Retention period, meaningful only if DC=ST. A user-defined
value from 1 through 4095 specifying the number of days a
dataset is to be retained by the destination front end.
The default value depends on the destination front end.

Read control word, meaningful only if DC=ST. 1 through 8
alphanumeric characters. The default is no read control
word.

write control word, meaningful only if DC=ST. 1 through 8
alphanumeric characters. The default is no write control
word.

Maintenance control word, meaningful only if DC=ST. 1
through 8 alphanumeric characters. The default is no
maintenance control word.

10-8 M

TEXT=text Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. text cannot exceed 240 characters.

WAIT

NOWAIT

DEFER

N~S

SR-OOll

NOTE

text specified on the DISPOSE control
statement is not the same as the permanent
dataset text attribute. Any text
existing as a permanent dataset attribute is
ignored by DISPOSE (see section 6 for
discussion) •

Job wait. When this parameter is specified, the job does
not resume processing until the disposed dataset has been
staged to the front-end system. If the front-end system
cancels the transfer, the waiting job is aborted and job
step abort processing occurs as described in section 3. If
WAIT is not specified, processing can resume immediately
upon issue of the DISPOSE, depending upon an installation
option. The WAIT parameter is useful in detecting
unsuccessful transfers.

When this parameter is specified, the job does not wait
until the dataset has been staged to the front-end system
but resumes processing immediately. If the front-end
system cancels the transfer, no special action is taken;
that is, the job is not aborted. If neither WAIT or NOWAIT
are specified, processing can resume immediately upon issue
of the DISPOSE, depending upon an installation option.

When this parameter is specified, the disposition occurs
when the dataset is released either by a RELEASE request or
job termination. The dispose characteristics are saved and
used when the dataset is released.

No release. When this parameter is specified, the dataset
remains local to the job after the DISPOSE request has been
processed. When NRLS is specified on a DISPOSE control
statement, the dataset cannot be written to, until the
transfer to the specified front end is completed.
Therefore, it is advisable to use WAIT with NRLS.

10-9 M

SUBMIT - SUBMIT JOB DATASET

With SUBMIT, a job running on the Cray mainframe can direct another
dataset (which must also be a job) to the COS input queue. The job that
is submitted executes independently of the submitting job. SUBMIT is a
system verb.

Format:

SUBMIT,DN~n,SID=sf,DID~f,TID=tid,DEFER,NRLS.

Parameters are in keyword format; the only required parameter is ON.

DN=dn Local dataset name. A valid local dataset name. ON is a
required parameter and must be given a value.

SID=sf Default source front-end system identifier; 2 alphanumeric
characters. If an MF parameter is not specified in an
ACQUIRE or FETCH control statement within the submitted
job, the SID parameter defines the default source front-end
system for the dataset to be acquired. If the MF and SID
parameters are omitted, the default source identifier of
the submitting job is used.

DID~f Default destination front-end identifier; 2 alphanumeric
characters. If an MF parameter is not specified in a
DISPOSE control statement within the submitted job, the DID
parameter defines the default destination front-end system
for the dataset to be disposed. If the MF and DID
parameters are omitted, the default destination identifier
of the submitting job is used.

TID=tid Default terminal identifier. 1 through 8 alphanumeric
character identifier defining the default terminal 10 for
the submitted job. If TID is omitted, then the terminal ID
of the submitting job is used.

DEFER Deferred submit. Selection of this parameter causes the
SUBMIT characteristics to be defined, with a release of the
dataset actually initiating the submit of the dataset. If
DEFER is omitted, the SUBMIT occurs immediately.

NRLS No release. This parameter indicates if the dataset is to
remain local to the job after SUBMIT has been processed.
If NRLS is omitted, the dataset is released after the

SR-OOll

SUBMIT. If selected, the dataset remains local to the job
after the SUBMIT and is available for reading only.

10-10 M

I

I

FETCH - FETCH LOCAL DATASET

The FETCH control statement allows the user to make a dataset that
resides on a front-end computer system local to the COS job. The dataset
is transferred from the front-end computer system. The dataset is not
made permanent on the Cray Computer System. The originating job is
delayed until the dataset arrives on Cray mass storage.

Format:

FETCH,DN~n,SDN=sdn,TEXT=text,MF~f,TID=tid,DF=df.

Parameters are in keyword form; the only required parameter is DN.

DN=dn

SDN=sdn

DF--df

SR-OOll

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. 1 through 7
alphanumeric characters, the first of which is A through Z,
$, @, or %; remaining characters can also be numeric. DN
is a required parameter.

Staged dataset name. 1 through 15 alphanumeric
characters. Name by which the dataset is known on the
front end. The default for sdn is dn.

Dataset format. This parameter defines whether a dataset
is sent from the Cray Computer System in COS blocked format
and whether the front-end system is to perform character
conversion. The default is CB.

For example, a user wishes to save a dataset on magnetic
tape in blocked binary as it appears on COS mass storage.
In this case, BB is specified. A user who wants a dataset
printed can specify CB if the front-end computer handles
deblocking.

df is a 2-character alphanumeric code defined for use on
the front-end system. Cray Research, Inc., suggests
support of the following codes:

CD Character deblocked. The front-end system performs
character conversion to a-bit ASCII, if necessary.

CB Character blocked. The front-end system blocks the
dataset before staging and performs character
conversion to a-bit ASCII, if necessary.

10-11 M

I

I

BD Binary deblocked. The front-end system does not
perform character conversion. For FETCH, BD is the
same as TR.

BB Binary blocked. The front-end system blocks the
dataset before staging but does not do character
conversion.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes can be added by the local site. Undefined
pairs of characters can be passed but are treated as
transparent mode by cos.

MF=mf Mainframe computer identifier. 2 alphanumeric characters.
The default is the front end of job origin.

TID=tid Terminal identifier. 1 through 8 characters identifying
destination terminal. The default is terminal of job

·ori9in where applicable.

TEXT=text Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for ·the front
end. text cannot exceed 240 characters.

SR-OOll 10-12 M

I
I

PERMANENT DATASET UTILITIES 1 1

The following utility routines support permanent datasets:

• PDSDUMP dumps all specified permanent datasets to a user-specified
dataset. Input and output datasets can be included in the dump.

• PDSLOAD loads permanent datasets that have been dumped by PDSDUMP
and updates or regenerates the Dataset Catalog. Input and output
datasets are also loaded through PDSLOAD.

• AUDIT produces a report containing status information for each
permanent dataset. AUDIT does not include input or output
datasets.

All of the permanent dataset utilities permit a shorthand notation for
the arguments to the PDN (or PDS), ID, US, and OWN parameters. Using
this notatation, a dash represents any number of characters or no
characters and an asterisk represents anyone character.

Examples:

PDN=ABC- List all permanent dataset names beginning with ABC.

PDN=A*** List all 4-character permanent dataset names beginning with
A.

PDN=-A*- List all permanent dataset names containing the letter A
followed by one or more other characters.

PDN=- List all permanent dataset names.

PDN=***- List all permanent dataset names having three or more
characters.

When permanent dataset privacy is enabled, callers of these utilities are
limited to actions on their own datasets unless the CW parameter is
present on the control card. The OWN and NOWN parameters cannot be
specified unless CW is also specified. When privacy is enabled, the US
value from the JOB or ACCOUNT control statement is an implied dataset
selection criterion, unless the CW parameter is present. When privacy is
not enabled, the US value from the JOB or ACCOUNT control statement is
not used as a selection criterion. CW must be specified if US is
specified on the permanent dataset utility control statement.

SR-OOll 11-1 M

I

I

PDSDUMP - DUMP PERMANENT DATASETS

PDSDUMP dumps specified permanent datasets to a dataset that can be saved
or staged to a station as desired. Characteristics and conditions that
cause a dataset to be omitted from dumping include:

• Execute-only dataset
• Dataset allocation conflict
• Catastrophic dataset error
• Inconsistent dataset allocation
• Device on which the dataset resides is down
• Inactive dataset entry in the system's Queued Dataset Table (QDT)

Format:

{
PDN} PDSDUMP,DN=dn,DV=ldv, PDS =pdn,ED=ed,cw=cw,ID=uid,

US=usn,OWN=ov,INc=mm/dd/yy:'hh:mm:ss',

ARc=mm/dd/yy:'hh:mm:ss',TS=opt,X,C,D,B,SO,I,O,S.

All parameters are in keyword form. Optional parameters identify which
datasets are to be dumped or not dumped.

DN~n

Dv=ldv

PDN=pdn
or

PDs=pds

ED=ed

Name of dataset to which dump is written. The default is
$PDS. Multiple dumps to a dataset are possible; if the
dataset specified already exists, the dump is appended to
it.

Dumps all datasets residing on logical device ldv.
Currently only one ldv can be specified. t Datasets
can be limited by the B parameter.

Dumps all editions of the specified permanent dataset.
Editions can be limited by ED parameter. t

Edition number of permanent dataset dumped; meaningful
only if PDS parameter is specified. t

t By default, all permanent datasets that could be specified by the
parameters are dumped.

SR-OOll 11-2 M

I

ID=uid

US=usn

OWN=ov

Installation-defined control word regulating use of
PDSDUMP. If the CW parameter is omitted, only the datasets
belonging to the job owner can be dumped. If the OW
parameter is present and the correct control word is used,
any dataset can be dumped. If an invalid control word is
given, the job step is aborted.

Dumps all datasets with additional user identification as
specified. t If ID is specified without a value, all
datasets which meet the rest of the criteria and have a
null ID are dumped.

Dumps all datasets with specified user number. t

Dumps all datasets with specified ownership value. t

INC=mm/dd/yy:'hh:mm:ss'
Incremental dump. Dumps only datasets modified since the
specified date and time.

ARC=mm/dd/yy:'hh:mm:ss'

TS=opt

x

C

D

B

Archive datasets. Dumps and deletes datasets, regardless
of the D option, that have not been accessed since the
specified date and time.

Timestamp conversion option. opt may be:

NS Writes timestamp in nanosecond (new) format.
RT Writes timestamp in real-time clock (old) format.
SAME Does not convert timestamp.
CURR Writes timestamp in whatever format is the current

system default for writing timestamps.

If TS is not specified, TS=CURR is assumed.

Dumps expired datasets

Dumps selected datasets never dumped or datasets modified
or adjusted since the last dump of the dataset

Deletes datasets that are dumped

Dumps only datasets that begin on the logical device
specified by the DV parameter

SO Performs selection only (suppress actual dumping or
deleting)

t By default, all permanent datasets that match the criteria specified
by the parameters are dumped.

SR-OOll 11-3 M

I Dumps

0 Dumps

S Dumps

system input datasets

system output datasets I See the following note.

user permanent datasets

NOTE

If none of these parameters is specified, the
input, output, and user permanent datasets
are all dumped. If any of these parameters
is specified, only those datasets of the type
specified are dumped.

Multiple calls to PDSDUMP can be made if the dump dataset is to include
several permanent datasets requiring specification of different
parameters.

Example:

PDSDUMP,DN=DUMPA,PDS=LIBI.
PDSDUMP,DN=DUMPA,PDS=LIB2.

This example results in a dataset DUMPA that contains all editions of
LIBI and all editions of LIB2.

PDSDUMP produces a listing (see figure 11-1) on $OUT identifying the
datasets dumped or bypassed and summarizing the dump run. The date and
time in the heading line refer to the time when the dump run started.
The permanent dataset name, edition number, ID, and user number are
extracted from the DSC entry for each dataset selected. Each message is
followed by the notation DUMPED, DUMPED AND DELETED, or NOT DUMPED. The
notation NOT DUMPED indicates the dataset was selected but could not be
accessed for dumping. A user logfi1e message further explains the
problem encountered.

When dumping to a tape dataset, the recording format for the tape dataset
must be transparent (for example, DF=TR on ACCESS statement). If the
dataset is recorded in interchange format, loading of the dumped datasets
cannot be performed.

SR-001l 11-4 M

I
I

PDSLOAD - LOAD PERMANENT DATASETS

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP. If
any of the permanent datasets already exist on Cray mass storage, it is
reloaded only if the RP parameter is present.

PDSDUMP - PERMANENT DATASET DUMP UTILITY DUMP ON 01/07/82 AT 14:50:44
AUDPL ED=OOOI ID=QITTYQAT USR=SYSTEM DUMPED
AUDPL ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=OOOI ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=OOOI ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=OOOI ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=OOOI ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
AUDPL ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
AUDPL ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED

20DATASETS SELECTED FOR DUMPING

Figure 11-1. PDSDUMP listing

Format:

{
PDN}

PDSLOAD,L=ldn,DN~n, PDS =pds,ED=ed,Cw=~W,ID=uid,NID=nuid,

US=usn,OWN=ov,NOWN=nOV,Dv~vn,RP,CR,A,I,O,S,NA,SO,TLA.

SR-0011 11-5 M

I

All parameters are in keyword form. Optional parameters identify which
datasets are to be loaded or not loaded.

L=tdn

DN=dn

PDN=pdn
or

PDs=pdn

ED=ed

cw=(JlU

ID=uid

List dataset name. The default is $OUT.

Name of dataset from which permanent datasets are to be
loaded. The default is $PDS.

Loads all editions of the specified permanent dataset.
Editions can be limited by the ED parameter. t

Edition number of dataset to be loaded; meaningful only if
PDS parameter is specified. t

Installation-defined control word regulating the use of
PDSLOAD. If CW is omitted, only datasets belonging to the
job owner are loaded.

Loads all datasets with additional user identification as
specified

NID=nuid Loads selected datasets with new user identification. '

Us=usn

OWN=ov

NOWN=nov

Dv=dvn

RP

CR

This parameter is used to change the user identification of
selected datasets.

Loads all datasets with specified user number t

Loads all datasets with specified ownership valuet

Loads selected datasets to owner nov. This parameter is
used to change the ownership value of the selected datasets.

Name of logical device where the output dataset is
assigned before it is opened. If omitted, COS assigns a
device at open time. If this parameter is specified, the
supplied device name is requested for the output dataset
(the one being loaded). Note that COS can choose not to
honor this assignment (for example, the device might not be
currently available). This parameter is not involved in
any way in the selection of a dataset for loading.

If any of the specified datasets already exists, replaces
with the one being loaded.

Loads the most current version of a dataset, based on
creation time. This option allows incremental loads to be
performed in any order.

t By default, all permanent datasets that could be specified by the
parameters are loaded.

SR-OOll 11-6 M

I

A

I

o

S

Loads only active datasets7 that is, does not load expired
datasets.

Loads input datasets I
Loads output datasets

Loads saved datasets

See the following note.

NOTE

If none of these parameters is specified, the
input, output, and saved datasets are
loaded. If any of these parameters is
specified, only those datasets of the type
specified are loaded.

NA Does not abort if there is not a dataset matching the
specifications to load on the $PDS dataset. This parameter
applies only to this situation. It does not prevent any
other abort condition from occurring or offer reprieve
processing of any kind.

SO Performs selection onlY7 suppresses actual loading of
datasets.

T~ Updates time of last access as the time that the load was
performed.

PDSLOAD produces a listing on the list dataset identifying the datasets
loaded or bypassed and summarizing the load run (see figure 11-2). The
date and time in the heading line refer to the time when the load run
started. The permanent dataset name, edition number, 10, and user number
are extracted from the POD for each dataset selected and successfully
loaded. Each message is followed by the notation LOADED or NOT LOADED.
The notation NOT LOADED indicates the dataset was selected but not
loaded. An error message further explains the problem encountered.

SR-OOll 11-7 M

PDSLOAD -
ENTIT
DSBUILD

PERMANENT DATASET RESTORE UTILITY LOAD ON
ED=OOOI ID=TAQI USR=SYSTEM

01/07/82 AT 17:13:47
LOADED

TXBUILD
AUDPL
DSCED

ED=OOOI ID=TAQI USR=SYSTEM
ED=OOOI ID=TAQI USR=SYSTEM
ED=OOOI ID=TAQI USR=SYSTEM
ED=OOOI ID=TAQI USR=SYSTEM

5 DATASETS SELECTED FOR LOADING

Figure 11-2. PDSLOAD listing

AUDIT - AUDIT PERMANENT DATASETS

LOADED
LOADED
LOADED
LOADED

The AUDIT utility provides reports on the status of each permanent dataset
known to the system. AUDIT does not include input and output datasets.

If more than one parameter is selected, only those datasets which meet all
criteria are listed.

AUDIT supplies the following information on the listing:

Permanent dataset name
Dataset identifier
Edition number
User identifications
Dataset size in words
Retention time in decimal
Number of accesses in decimal
Public access mode
Total block count in decimal
Track access flag setting

SR-OOll

Creation date/time
Last dump date/time
Last access date/time
Last modification date/time
Device name
note information
text information

11-8

Permitted users
Access counts by user
Number of datasets selected

M

Format:

AUDIT,L=ldn,B=bdn,PDN=pdn,ID=uid,uS=usn,Dv=dvn,sz=dsz,

Acc=opt:opt,x=mm/dd/yy:'hh:mm:sS',TCR=mm/dd/yy:'hh:mm:ss',

TLA~m/dd/yY:'hh:mm:ss',TLM=mm/dd/yy:'hh:mm:ss',Cw=cw,

OWN=Ov,LO=opt:opt:opt:Opt:Opt,BO=opt:Opt:Opt:Opt.

Parameters are in keyword form.

L=ldn

B=bdn

PDN=pdn

ID=uid

US =usn

Dv=dvn

sz=dsz

SR-OOll

List dataset name. The default is $OUT.

Name of dataset to receive the binary output. If B is
specified alone, the dataset is $BINAUD. If the B
parameter is omitted, no binary output is written. For a
description of the binary output format, see the Binary
Audit Table description in the COS Table Descriptions
Internal Reference Manual, publication SM-0045.

Name of permanent dataset or datasets to be listed

List all permanent datasets with the specified additional
user identification. The default is to list all IDs. If
ID is present without an equated value, datasets having a
null ID are selected.

List all permanent datasets with the specified user
number. The default is to list all user numbers.

List all permanent datasets on the specified logical
device. The default is to list permanent datasets on all
devices.

List all permanent datasets greater than or equal to the
specified size. Size is specified in words. The default
is to list all sizes.

11-9 M

ACC=opt:Opt
Access option parameters. The options are:

AM List only those datasets belonging to OWN which have
an explicit permit for the job's ownership value.

PAM List only those datasets belonging to OWN which
have any form of public access (R:W:M:E).

If the OWN parameter is omitted, all datasets are searched
for the permit or public access. If the CW parameter is
specified, the AM includes any permit for any owner value.
If the OWN parameter is specified and the CW and Ace
parameters are omitted, AUDIT assumes the ACC=AM:PAM
parameter on the control statement.

X=mm/dd/yy: 'hh :mm: ss '
List all permanent datasets expired as of the specified
mm/dd/yy: 'hh:mm:ss'. mn/dd/yy can be specified alone. The
default expiration date and time are "now" if only X is
specified.

TCR~m/dd/yY:'hh:mm:ss'
List all permanent datasets that have been created since the
specified mm/dd/yy:'hh:mm:ss'. The keyword cannot be
specified alone, however, TCR=mmVdd/yy is sufficient.

TLA=rnrn/dd/yy: 'hh :mm: ss '
List all permanent datasets that have not been accessed
since the specified mm/dd/yy:'hh:mm:ss'. The keyword cannot
be specified alone, however, TLA=mmVdd/yy is sufficient.

TIM=mm/dd/yy:' hh:mm: ss'

CW=CJW

OWN=ov

SR-OOll

List all permanent datasets that have been modified since
the specified mm/dd/yy:'hh:mm:ss'. The keyword cannot be
specified alone, however, TLM=mmVdd/yy is sufficient.

Installation-defined control word regulating use of
AUDIT. If the CW parameter is omitted, only the datasets
belonging to the job owner can be listed. If the CW
parameter is present and the correct control word is used,
any dataset can be listed. If an invalid control word is
given, the job step is aborted. When the CW and ACC
parameters are omitted, but the OWN parameter is specified,
AUDIT assumes the ACC=AM:PAM parameter on the control
statement.

List all permanent datasets with the specified ownership
value. If OWN is not specified, the job's ownership value
is used.

11-10 M

Output formatting parameters:

LO=Opt:Opt:Opt:Opt:Opt
Listing option selection. The options are:

S Short list which includes PON, 10, and ED listed two
per line. This is the default for interactive jobs
when LO is not specified. This list option cannot be
mixed with any others.

The following options can be specified alone or in
combination separated by colons:

L Long list which includes PON, 10, ED, size in words,
retention time, access count, track access flag, public
access mode, creation, last access, last modification,
last dump time, and device name. L is the default for
batch jobs when LO is not specified.

P Permit list which includes permitted owner name, access
mode, access count, time of last access, and time of
permit creation

A Access tracking which includes accessing owner name,
access count, time of last access, and time of first
access

T Text list which displays the dataset catalog text
field

N Notes list which displays the dataset catalog notes
field

BO=opt:Opt:Opt:Opt

SR-OOll

Binary audit options. These options specify what
additional information, if any, is to be added to the
standard binary audit file. They are ignored without
comment unless a binary audit is requested (via the B
parameter). If more than one option is desired, separate
them with colons. The options are:

P Permits; one permit record is generated for each
permitted user for each selected dataset.

A Access tracking; one record is generated for each
accessing user for each selected dataset.

T Text; one record is generated for each selected dataset
that has text.

N Notes; one record is generated for each selected
dataset that has notes.

11-11 M

Figures 11-3 through 11-7 illustrate some of the LO options as they appear
when the listing is directed to a mass storage dataset. Interactive
reports omit the page header line. Non-private systems suppress the owner
line unless OWN is used as a control statement parameter.

AUDIT COS 1.12

-------------------------- OWN =

PDN ID ED

$DEBUG DJB 1
$OVL DJB 5
ARCHIVE DJB 2
COSNL DJB 1
PROFILE DJB 1

9 DATASETS, 3099 BLOCKS,

OS/24/83 12:35:33

UVWXY

PDN

$DS
ARCHIVE
AUDIT
ISAMPL

ID

DJB
DJB
DJB
DJB

1585585 WORDS

Figure 11-3. AUDIT, LO=S listing

SR-0011 11-12

PAGE

ED

5
1
1
1

M

]

AUDIT COS 1.12 OS/24/83 12:35:45 PAGE

OWN = UVWXy

ID = DJB

PERMITTED USERS FOR PDN = ARCHIVE ID = DJB

USER

XYZ
ABCD
QRZX
ZILCH

AM

RWM
R
RW
E

ACC

o
o
o
o

LAST ACCESS CREATED

05/16/83 12:09:09
OS/20/83 06:46:13
OS/20/83 06:46:28
OS/20/83 06:46:49

PERMITTED USERS FOR PDN = ARCHIVE ID = DJB

USER

XYZ
ABCD
QRZX
ZILCH

9 DATASETS,

SR-0011

AM ACC

RWM 0
R 0
RW 0
E 0

3099 BLOCKS,

LAST ACCESS CREATED

05/16/83 12:09:09
OS/20/83 06:46:13
OS/20/83 06:46:28
OS/20/83 06:46:49

1585585 WORDS

Figure 11-4. AUDIT, LO=P listing

11-13 M

1

AUDIT COS 1.12 OS/24/83 12:36:10 PAGE

OWN = UVWXY
ID = DJB

PDN

SZ

$ DEBUG
5574

$DS
4608

NOTES:

10 ED LAST LAST LAST DEVICE
RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

DJB 1 05/16/83 05/16/83
45 4 N RWM 11:47:36 12:22:27

OS/20/83 DD-A1-24
06:02:22

DJB 5 03/29/83 05/18/83 05/14/83 OS/20/83 DD-A2-20
45 7 N N 10:45:29 14:27:09 15:08:22 06:03:00

THE FOLLOWING NOTES LINE IS MORE THAN 72 CHARACTERS IN LENGTH.
123456789012345678901234567890123456789012345678901234567890123456789012
34567890
THE NEXT LINE IS ONLY ONE CHARACTER LONG.
1

PDN 10 ED LAST LAST LAST DEVICE
SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

$OVL
39424

NOTES:

DJB 5 03/29/83 05/14/83
45 6 N RWM 10:45:29 17:15:38

SAMPLE NOTES DXT

PDN 10 ED LAST LAST

OS/20/83 DD-A1-21
06:05:29

LAST DEVICE
SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

ARCHIVE
4096

DJB 1 05/12/83 OS/20/83
45 4 N RWM 11:18:10 06:44:22

PERMITTED USERS:

Figure 11-5. AUDIT, LO=L:P:N listing

SR-0011 11-14

OS/20/83 DD-A1-24
06:04:01

M

1

AUDIT

OWN = UVWXY

PDN

USER

XYZ
ABeD
QRZX
ZILCH

SZ

ARCHIVE
3671

COS 1.12 OS/24/83 12:36:10 PAGE

AM ACC LAST ACCESS CREATED

RWM
R
RW
E

ID ED
RT ACC TA PAM

DJB 2
45 1 N RWM

0 05/16/83 12:09:09
0 OS/20/83 06:46:13
0 OS/20/83 06:46:28
0 OS/20/83 06:46:49

LAST LAST LAST DEVICE
CREATED ACCESSED MODIFIED DUMPED

OS/20/83 OS/20/83
06:45:12 06:45:12

OS/20/83 DD-A2-21
17:08:48

PERMITTED USERS:

USER

XYZ
ABCD
QRZX
ZILCH

PDN ID
SZ RT

AUDIT DJB
26467 45

COSNL DJB
1498112 45

ISAMPL DJB
3584 100

PROFILE DJB
49 45

9 DATASETS,

AM ACC

RWM 0
R 0
RW 0
E 0

ED

LAST ACCESS

LAST

CREATED

05/16/83 12:09:09
OS/20/83 06:46:13
OS/20/83 06:46:28
OS/20/83 06:46:49

LAST LAST DEVICE
ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

1 OS/24/83 OS/24/83 DD-Al-22
3 N RWM 10:13:33 12:35:30

1 04/06/83 04/07/83 OS/20/83 DD-A2-20
3 N RWM 11:28:00 09:41:58 06:05:04

1 08/11/81 04/22/83 03/03/83 OS/20/83 DD-A2-20
24 N RWM 10:07:41 17:21:54 10:02:58 06:04:46

1 04/30/83 OS/24/83 OS/20/83 DD-A2-21
52 N RWM 14:10:28 10:13:32 06:02:54

3099 BLOCKS, 1585585 WORDS

Figure 11-5. AUDIT, LO=L:P:N listing (continued)

SR-0011 11-15 M

2

AUDIT COS 1.12 OS/24/83 12:35:37 PAGE 1

OWN = UVWXY
ID = DJB

PDN ID ED LAST LAST LAST DEVICE

SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

$ DEBUG DJB 1 05/16/83 05/16/83 OS/20/83 DD-Al-24

5574 45 4 N RWM 11:47:36 12:22:27 06:02:22

$DS DJB 5 03/29/83 05/18/83 05/14/83 OS/20/83 DD-A2-20

4608 45 7 N N 10:45:29 14:27:09 15:08:22 06:03:00

$OVL DJB 5 03/29/83 05/14/83 OS/20/83 DD-Al-21
39424 45 6 N RWM 10:45:29 17:15:38 06:05:29

ARCHIVE DJB 1 05/12/83 OS/20/83 OS/20/83 DD-Al-24
4096 45 4 N RWM 11:18:10 06:44:22 06:04:01

ARCHIVE DJB 2 OS/20/83 OS/20/83 OS/20/83 DD-A2-21
3671 45 1 N RWM 06:45:12 06:45:12 17:08:48

AUDIT DJB 1 OS/24/83 OS/24/83 DD-Al-22
26467 45 3 N RWM 10:13:33 12:35:30

COSNL DJB 1 04/06/83 04/07/83 OS/20/83 DD-A2-20
1498112 45 3 N RWM 11:28:00 09:41:58 06:05:04

ISAlv"lPL DJB 1 08/11/81 04/22/83 03/03/83 OS/20/83 DD-A2-20
3584 100 24 N RWM 10:07:41 17:21:54 10:02:58 06:04:46

PROFILE DJB 1 04/30/83 OS/24/83 OS/20/83 DD-A2-21
49 45 52 N RWM 14:10:28 10:13:32 06:02:54

9 DATASETS, 3099 BLOCKS, 1585585 WORDS

Figure 11-6. AUDIT, LO=L listing

SR-0011 11-16 M

AUDIT COS 1.12 OS/24/83 12:35:53 PAGE

OWN = UVWXY
ID = DJB

NOTES FOR PDN = $DS ID = DJB ED = 5

THE FOLLOWING NOTES LINE IS MORE THAN 72 CHARACTERS IN LENGTH.
123456789012345678901234567890123456789012345678901234567890123456789012
34567890
THE NEXT LINE IS ONLY ONE CHARACTER LONG.
1

NOTES FOR PDN = $OVL ID = DJB

SAMPLE NOTES DXT

9 DATASETS, 3099 BLOCKS,

ED = 5

1585585 WORDS

Figure 11-7. AUDIT, LO=N listing (AUDIT, LO=T is nearly identical)

SR-0011 11-17 M

1

I

LOCAL DATASET UTILITIES

Local dataset utilities provide the user with a convenient means of
copying, positioning, or initializing local datasets. The following
utilities are available to the user:

12

• COPYR, COPYF, and COPYD copy blocked records, files, and datasets,
respectively.

• COPYU copies unblocked datasets.

• SKIPR, SKIPF, and SKIPD skip blocked records, files, and datasets,
respectively.

• SKIPU skips sectors on unblocked datasets.

• REWIND positions a blocked or unblocked dataset at the beginning
of data, that is, before the first word of the dataset.

• WRITEDS initializes a blocked random or sequential dataset.

COPYR - COpy BLOCKED RECORDS

The COPYR utility copies a specified number of records from one blocked
dataset to another starting at the current dataset position. Following
the copy, the datasets are positioned after the EOR for the last record
copied. The COPYR control statement is described below.

Format:

COPYR, I=idn , O=odn, NR=n •

Parameters are in keyword form.

I=idn Name of dataset to be copied. The default is $IN.

o=odn Name of dataset to receive the copy. The default is $OUT.

SR-OOll 12-1 M

NR=n Decimal number of records to copy. The default is 1. If
the dataset contains fewer than n records, the copy
terminates on the next EOF. EOF or EOD is not written. If
the keyword NR is specified without a value, the copy
terminates at the next EOF. If the input dataset is
positioned midrecord, the partial record is counted as one
record.

COPYF - COpy BLOCKED FILES

The COPYF utility copies a specified number of files from one blocked
dataset to another starting at the current dataset position. Following
the copy, the datasets are positioned after the EOF for the last file
copied. The COPYF control statement is described below.

Format:

COPYF,I=idn,o=odn,NF=n.

Parameters are in keyword form.

I=idn

o=odn

NF=n

Name of dataset to be copied. The default is $IN.

Name of dataset to receive the copy. The default is $OUT.

Decimal number of files to copy. The default is 1. If the
dataset contains fewer than n files, the copy terminates
on EOD. EOD is not written. If the keyword NF is
specified without a value, the copy terminates at the EOD.
If the input dataset is positioned midfile, the partial
file counts as one file.

COPYD - COpy BLOCKED DATASET

The COPYD utility copies one blocked dataset to another starting at their
current positions. Following the copy, both datasets are positioned
after the EOF of the last file copied. The EOD is not written to the
output dataset.

SR-OOll 12-2 M

Format:

COPYD,I=idn,O=odn.

Parameters are in keyword form.

I=idn Name of dataset to be copied. The default is $IN.

o=odn Name of dataset to receive the copy. The default is $OUT.

COPYU - COpy UNBLOCKED DATASETS

The COPYU utility copies a specified number of sectors or all data until
EOD. The copy is made to or from the current position on both datasets.
At the end of the copy, the datasets remain positioned after the last
sector copied. The COPYU control statement is described below.

Format:

COPYU,I=i,O=o,NS=ns.

Parameters are in keyword form.

I=i

0=0

NS=ns

Name of unblocked dataset to be copied.

Name of unblocked dataset to receive the copy.

Decimal number of sectors to copy. The default is 1.
If the unblocked dataset contains fewer than ns sectors,
the copy terminates on EOD. If the keyword ns is
specified without a value, the copy terminates at Eon
also.

Parameters I and 0 are required, and no default is given for them.

SR-OOll 12-3 M

I

SKIPR - SKIP BLOCKED RECORDS

The SKIPR utility directs the system to bypass a specified number of
records from the current position of the named blocked dataset. The
SKIPR control statement is described below.

Format:

SKIPR,DN~n,NR=n.

Parameters are in keyword form.

DN~n

N~n

Name of dataset to be bypassed. The default is $IN.

Decimal number of records to skip. The default is 1. If
the keyword NR is specified without a value, the system
positions dn after the last EOR of the current file. If
n is negative, SKIPR skips backward on dn. If dn is
positioned in the middle of the record, the partial record
skipped counts as one record.

SKIPR does not bypass an EOF or beginning-of-data. If an
EOF or beginning-of-data is encountered before n records
have been bypassed when skipping backward, the dataset is
positioned after the EOF or beginning-of-data. When
skipping forward, the dataset is positioned after the last
EOR of the current file. This statement is available for
use with online tapes except that a negative value cannot
be used for NR.

SKIPF - SKIP BLOCKED FILES

The SKIPF utility directs the system to bypass a specified number of
files from the current position of the named blocked dataset. The SKIPF
control statement is described below.

Format:

SKIPF,DN~n,NF=n.

SR-OOll 12-4 M

Parameters are in keyword form.

DN~n Name of dataset to be bypassed. The default is $IN.

NF=n Decimal number of files to bypass. The default is 1. If
the keyword NF is specified without a value, the system
positions dn after the last EOF of the dataset. If n
is negative, SKIPF skips backward on dn.

If dn is positioned midfile, the partial file skipped
counts as one file.

SKIPF does not bypass an EOD or beginning-of-data. If
beginning-of-data is encountered before n files have been
bypassed when skipping backward, the dataset is positioned
after the beginning-of-data. When skipping forward, the
dataset is positioned before the EOD of the current file.
This statement is available for use with online tapes
except that a negative value cannot be used for NF: for
interchange format tapes (DF=IC), NF can only be 1.

For example, if dn is positioned just after an EOF, the
following control statement positions dn after the
previous EOF. If dn is positioned midfile, dn will be
positioned at the beginning of that file.

SKIPF,DN=dn,NF=-l.

SKIPD - SKIP BLOCKED DATASET

The SKIPD utility directs the system to position a blocked dataset at
EOD, that is, after the last EOF of the dataset. It has the same effect
as the following statement:

SKIPF,DN=dn,NF.

If the specified dataset is empty or already at EOD, the statement has no
effect. The SKIPD control statement is described below.

Format:

SKIPD,DN~n.

SR-OOll 12-5 M

The parameter is in keyword form.

DN=dn Name of dataset to be skipped. The default is $IN.

SKIPU - SKIP UNBLOCKED DATASET

The SKIPU utility directs the system to bypass a specified number of
sectors or all data from the current position of the named unblocked
dataset. The SKIPU control statement description follows.

Format:

SKIPU,DN=dn,Ns=ns.

Parameters are in keyword form.

DN=dn Name of unblocked dataset to be bypassed. There is no
default value.

NS=ns Decimal number of sectors to bypass. The default is 1. If
the keyword NS is specified without a value, the system
positions dn after the last sector of the dataset. If
ns is negative, SKIPU skips backwards on dn.

REWIND - REWIND BLOCKED OR UNBLOCKED DATASET

The REWIND control statement positions the named datasets at the
beginning-of-data. The $IN dataset represents an exception. After
REWIND, $IN is positioned after the control statement file. REWIND opens
any of the named datasets that are not open. REWIND is a system verb.

REWIND causes an EOD to be written to the dataset if the previous
operation was a write or if the dataset is null. If the dataset is not
memory resident, the buffers are flushed to mass storage when REWIND
follows a write operation. If the dataset is memory resident, the EOD is
still placed in the buffer, but the buffer is not flushed. For an online
magnetic tape dataset, REWIND positions the tape dataset to the beginning
of the first volume accessed by the user.

SR-OOll 12-6 M

Format:

Parameters are in keyword form.

Names of datasets to be rewound. A maximum of eight
datasets can be specified, separated by colons.

WRITEDS - INITIALIZE A BLOCKED RANDOM OR SEQUENTIAL DATASET

The WRITEDS utility is intended for initializing a blocked dataset. It
writes a dataset containing a single file consisting of a specified
number of records of a specified length. This utility is especially
useful for random datasets because a record written on a random dataset
must end on a pre-existing record boundary. Direct-access datasets,
implemented in CFT as defined by the ANSI X3.9-l978 FORTRAN standard, can
be initialized, and even extended, without the help of WRITEDS.

WRITEDS can also be used to write a sequential dataset.

The WRITEDS control statement is described below.

Format:

WRITEDS,DN~n,NR=np,RL=pl.

Parameters are in keyword form; the only required parameters are DN and
NR.

DN~n

NR=np

SR-OOll

Name of dataset to be written. DN is a required parameter.

Decimal number of records to be written. NR is a required
parameter set to the largest value that may be needed,
since a dataset is generally not extended when it is in
random mode.

Decimal record length, that is, the number of words in each
record. The default is zero words, which generates a null
record.

If the record length is 1 or greater, the first word of
each record is the record number as a binary integer
starting with 1.

12-7 M

I

•

I

ANALYTICAL AIDS 13

The following utilities provide analytical aids to the programmer:

• DUMPJOB and DUMP are generally used together to examine the
contents of registers and memory as they were at a specific time
during job processing. DUMPJOB captures the information so that
DUMP can later format selected parts of it.

• DEBUG produces a symbolic dump.

• DSDUMP dumps all or part of a dataset to another dataset. The
input dataset may be either blocked or unblocked.

• COMPARE compares two datasets and lists all differences.

• FLODUMP dumps flowtrace tables when a program aborts with
flowtrace active.

• PRINT writes the value of an expression to the logfile.

• FTREF generates information about a FORTRAN application •

• SYSREF generates a global cross-reference listing for a group of
CAL or APML programs.

• ITEMIZE inspects library datasets and generates statistics about
them. Libraries are described in section 51 library dataset
management is described in section 15.

DUMPJOB - CREATE $DUMP

The DUMP JOB control statement causes creation of the local dataset $DUMP,
if not already existent. $DUMP receives an image of the memory assigned
to the job (JTA and user field) when the DUMPJOB statement is
encountered. Placing the DUMPJOB statement after a system verb,
excluding the comment and EXIT statements, causes a dump of the Control
statement Processor (CSP). A DUMPJOB statement is not honored if an
execute-only dataset is loaded in memorY1 a DUMPJOB to an execute-only
dataset is rejected.

SR-OOll 13-1 M

I

If the $DUMP dataset already exists, it is overwritten each time a
DUMPJOB control statement is processed. If $DUMP is permanent and the
job does not have write permission, DUMPJOB aborts. If $DUMP is
permanent and the job has write permission, the dataset is overwritten.

If the DUMPJOB/DUMP sequence fails because of such situations as
destroyed syste~managed Dataset Parameter Areas, assign $DUMP before the
job step for which the dump is to be written and save it with unique
access. DUMPJOB writes to $DUMP, and job termination automatically
adjusts $DUMP. $DUMP can then be inspected in a separate job.

$DUMP is created as an unblocked dataset by DUMPJOB for use by DUMP.
I DUMPJOB is a system verb and cannot be continued to subsequent statements.

I

Format:

I D~JOB·I
Parameters: None

DUMP - DUMP REGISTERS AND MEMORY

The DUMP utility reads and formats selected parts of the memory image
contained in $D~lP and writes the information onto another dataset. The
DUMP control statement can be placed anywhere in the control statement
file after $DUMP has been created by the DUMPJOB control statement.

Placing the DUMPJOB and DUMP statements after an EXIT statement is
conventional and provides the advantage of giving the dump regardless of
which part of the job causes an error exit. The usage of DUMP and
DUMPJOB, however, is not restricted to this purpose.

DUMP can be called any number of times within a job. This might be done
to dump selected portions of memory from a single $DUMP dataset or it
might be done if $DUMP has been created more than once in a single job.

Format:

DUMP,I=idn,o=odn,FWA=jWa,LWA=bJa,JTA,NXP,V,DSP,FORMAT=f,CENTER.

SR-OOll 13-2 M

I

I

I

Parameters are in keyword form.

I=idn

o=odn

FWA=!wa

Name of the dataset containing the memory image. The
dataset $DUMP is created by DUMPJOB and is the default, but
any dataset in the $DUMP (unblocked) format is acceptable.

Name of the dataset to receive the dump; default is $OUT.

First word address of memory to dump. The default is word
o of JCB.

LWA=lwa Last word address of memory to dump. The default is word
200 of JCB. Specifying the keyword LWA without a value
causes the limit address to be used. Specifying LWA=O
causes no memory to be dumped.

JTA Job Table Area to be dumped. The default is no JTA dump.

NXP

v

No Exchange Package, B registers, T registers, cluster
registers, or semaphore registers dumped. The default
causes Exchange Package, B registers, T registers, cluster
registers, and semaphore registers to be dumped. Cluster
registers and semaphore registers are available only on
CRAY X-MP mainframe types. NXP overrides the V parameter
if the two are used together.

Vector registers to be dumped. The default is no dump of V
registers.

DSP Logical File Tables (LFTs) and Dataset Parameter Tables
(DSPs) to be dumped. The default is to not dump LFTs and
DSPs.

FORMAT=! Format for the part of memory selected by FWA and LWA.

SR-OOll

The first six of the following options are appropriate for
formatting a dump of data. The I format is for a dump of
of program instructions only.

o Octal integer and ASCII character. This is the
default.

D Decimal integer and ASCII character

X Hexadecimal integer and ASCII character

G Floating-point or exponential, depending on the value
of the number, and ASCII character

P 16-bit parcel (4-word boundaries are forced for FWA
and LWA)

13-3 M

M Mixed hexadecimal and octal written in ASCII. Each
l6-bit parcel is represented as five characters1 the
first character is a hexadecimal digit representing
the high-order 4 bits, and the next four are octal
characters representing the low-order 12 bits.

I I Instruction format. CAL instruction mnemonics printed
with ASCII characters

CENTER Dump 100 (octal) words on each side of the address in the
P register of the Exchange Package. The format is P.

Examples:

I The following example is a portion of a data dump obtained using format
0, the default format type:

*** Dump of memory from 00000000 to= 00000200 *** Format is 0
*** Print Bias is: 00010000 ***
******* Addresses from: 00000000 To: 00000077 Contain the same fol lowing pattern: 0000000000000000000000 *******
0000100 0405031464200000000000 0334000213400102175000 0000050215500002154200 0000213710500002154136 AC30 7
0000104 0000010000375351600000 1144507000650140022000 0415172462013013430465 0000000000000000000000 (A $ COS X.15
0000110 0000000000000000000000 0000000000000000000000 0000000000000000000000 0374400000000000000000
0000114 0000240000000000000000 0000000000000000655540 0000052712040000000002 0000000000040000141520 \
0000120 0000000000000001256241 0000000000000000000000 0000000000000000000000 0000000000000000000000 \
0000124 0000000000000000000000 0000000000000000000000 0000010000000000000000 0000000000000001771753
0000130 0000000005200000000124 0000077476540001771753 0000000000000000000000 0000000000000000000000 T T
0000134 0000000000000000000000 0000000000000000000000 0000000000000000000000 0000000000000000000000

The same portion of one dump in format D:

*** Dump of memory from 00000000 to= 00000200 *** Format is D
*** Print Bias is: 00010000 ***
******* Addresses from: 00000000 To: 00000077 Contain the same fol lowing pattern: 0000000000000000000000 *******
0000100 4702658803055722496 3963177258470406656 1417107280025728 4922006751991902 AC3D 7
0000104 281508995072000 -7410426839300037632 4850186722084794677 0 (A $ COS X.15
0000110 0 0 0 4548635623644200960
0000114 5629499534213120 220000 1509221443043330 4295017296 \
0000120 351393 0 0 0 \
0000124 0 0 281474976710656 521195
0000130 360777252948 2238515480359915 0 0 T T
0000134 0 0 0 0

The same portion of the dump in format X:

*** Dump of memory from 00000000
*** Print Bias is:
******* Addresses from: 00000000
0000100 4143334400000000

to= 00000200 *** Format is X
00010000 ***

0000000000000000000000 *******
00117C8A0008085E AC30 7

0000104 00010007EBA70000

To: 00000077 Contain the
370008B80108FAOO
9928E00041802400
0000000000000000
0000000000035B60
0000000000000000
0000000000000000
0007F3EB0007F3EB
0000000000000000

same fol lowing pattern:
0005080A00080880
434F5320582E3135
0000000000000000
00055CA100000002
0000000000000000
0001000000000000
0000000000000000
0000000000000000

0000000000000000 (A $ COS X.15
0000110 0000000000000000 3F20000000000000
0000114 0014000000000000 000000010000C350 \
0000120 0000000000055CA1 0000000000000000 \
0000124 0000000000000000 000000000007F3EB
0000130 0000005400000054 0000000000000000 T T
0000134 0000000000000000 0000000000000000

SR-OOll 13-4 M

The same portion of the dump in format G:

t** Dump of memory from 00000000
t** P r i n t B i as is:
t****** Addresses from: 00000000
)000100 0.342195969964E+97

to= 00000200 *** Format is G
00010000 ***

same fol lowing pattern: 0000000000000000000000
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO AC3D

7

)000104 O.OOOOOOOOOOOOE+OO
)000110 O.OOOOOOOOOOOOE+OO

To: 00000077 Contain the
0.910133366849-695
O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO

0.304722870097+255 O.OOOOOOOOOOOOE+OO (A $ COS X.15
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO

)000114 O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO
)000120 O.OOOOOOOOOOOOE+OO
)000124 O.OOOOOOOOOOOOE+OO

O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO

\
)000130 O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO T T
)000134 O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO

The same portion of the dump in format P:

.** Dump of memory from 00000000 to= 00000200 *** Format is P
~* Print Bias is: 00010000 ***
.****** Addresses from: 00000000 To: 00000077 Contain the same fol lowing pattern: 0000000000000000000000 *******
1000100 040503 031504 000000 000000 033400 004270 000410 175000 AC3D 7
1000102 000005 004332 000010 154200 000021 076212 000010 154136
1000104 000001 000007 165647 000000 114450 160015 040600 022000 A $
1000106 041517 051440 054056 030465 000000 000000 000000 000000 COS X.15
'000110 000000 000000 000000 000000 000000 000000 000000 000000
'000112 000000 000000 000000 000000 037440 000000 000000 000000
1000114 000024 000000 000000 000000 000000 000000 000003 055540 [
'000116 000005 056241 000000 000002 000000 000001 000000 141520 \ P
1000120 000000 000000 000005 056241 000000 000000 000000 000090 \

The same portion of the dump in format M:

.** Dump of memo ry from 00000000

.** Print Bias is:
to= 00000200 *** Format is M

00010000 ***
.****** Addresses from: 00000000 To: 00000077 Contain the same fol lowing pattern: 0000000000000000000000 *******
1000100 4143334400000000 370008B80108FAOO 0405031464200000000000 0334000213400102175000 AC3D 7
1000102 000508DA0008D880 00117C8A0008D85E 0000050215500002154200 0000213710500002154136
1000104 00010007EBA70000 9928EOOD41802400 0000010000375351600000 1144507000650140022000
1000106 434F5320582E3135 0000000000000000 0415172462013013430465 0000000000000000000000 COS X.15
~00110 0000000000000000 0000000000000000 0000000000000000000000 0000000000000000000000
1000112 0000000000000000 3F20000000000000 0000000000000000000000 0374400000000000000000
'000114 0014000000000000 0000000000035B60 0000240000000000000000 0000000000000000655540
000116 00055CA100000002 000000010000C350 0000052712040000000002 0000000000040000141520 \
'000120 0000000000055CA 1 0000000000000000 0000000000000001256241 0000000000000000000000 \
'000122 0000000000000000 0000000000000000 0000000000000000000000 0000000000000000000000

I A dump of program instructions in format I:

~****** Addresses from: 02154757 To: 02154776 Contain the same fo I I owi ng pattern: 0000000000000000000000 *******
~154717a ERR 000 ERR 000 0000000000000000000000

ERR 000 ERR 000
~155000a ERR 000 ERR 000 0000000000000000040777 A

ERR 000 S7 17660554
~155001a 85 S5>03 0605542667653026054530 a I [!XXYX

Sl Sl<30 S5 S5<30
~155002a S5 S5*FSl SO S2\S5 0645512301243000200363 i i L

JSZ 40074d
~155003a Sl 15 0401000000641202101600 @@

J Bl0 A6 4,A1
2155004a A3 1, A1 0000044054000000231065 25

AO A6-A5
~155005a JAZ 40076d 0100010017546061225370 o *

A3 0+A5 B70 A3
2155006a SO 1,Al 1210000000043400200406

JSP 40101c

SR-0011 13-5

[\

A $

[
P

M

p

I

I

DEBUG -PRODUCE SYMBOLIC DUMP

The symbolic debug utility, DEBUG, provides a means of dumping
portions of memory and interprets the dump in terms of FORTRAN or CAL
symbols. DEBUG is normally used after an EXIT, DUMPJOB sequence when
a job step aborts, but it can be used anywhere provided that a valid
version of $DUMP exists.

In order for DEBUG to display variables, CFT and CAL must write
special tables which the loader (LOR) augments with a version of the
load map. The loader writes this information on a dataset called
$DEBUG, which gives the FORTRAN or CAL symbol names associated with
memory addresses. Table creation is initiated by specifying the ON=Z
option for CFT or the SYM option for CAL. DEBUG reads $DEBUG and
$DUMP and prints out variable names and values in a format appropriate
for the variable type.

The following example shows the conventional use of DEBUG:

JOB, ••••
CFT,ON=Z.
LOR.
EXIT.
DUMPJOB.
DEBUG.

Whether or not $DEBUG is present, DEBUG lists the status of job
datasets and, for a multitasking program, the status of all existing
tasks. Multitasking, stack, and heap statistics are reported whenever
they are available.

The library routine SYMDEBUG is called from either FORTRAN or CAL with
one argument, which is a Hollerith string containing any of the DEBUG
parameters. SYMDEBUG produces output similar to that produced by DUMP
but interprets the memory of the running program rather than $DUMP.
It also uses the $DEBUG dataset. SYMDEBUG does not report the status
of existing tasks or any statistics.

Neither DEBUG nor SYMDEBUG works with overlays or segmented loads.

The SYMS, NOTSYMS, BLOCKS, and NOTBLOCKS parameters permit a shorthand
notation for the arguments specified. Using this notatation, a dash
represents any number of characters or no characters and an asterisk
represents anyone character.

SR-OOII 13-6 M

I

Examples:

SYMS=ABC- Dump all symbols beginning with ABC.

SYMS=A*** Dump all 4-character symbols beginning with A.

SYMS=-A*- Dump all symbols containing the letter A followed by one or
more other characters.

SYMS=- Dump all symbols.

SYMS=***- Dump all symbols having three or more characters.

Format:

DEBUG,I=idn,o=odn,DUMP=ddn,TRACE=n,SYMS=8ym,NOTSYMS=nysm,BLOCKS=blk,

NOTBLKS=nblk,MAXDIM=dim,TASKS,PAGES=np,COMMENTS='string'.

Parameters are in keyword form.

I=idn Name of dataset containing debug symbol tables. The
.default is $DEBUG, which is created by the loader from the
symbol tables produced by CFT and CAL.

o=odn Name of dataset to receive the listing output from the
symbolic debug routine. The default is $OUT.

DUMP=ddn Name of dataset containing the dump of the user field.
This dataset is created by the DUMPJOB control statement.
ddn is used when the symbolic debug routine is invoked
after an abort. The default is $DUMP.

TRACE=n Number of routine levels to be looked at in symbolic dump.
DEBUG traces back through the active subprograms the number
of levels specified by n. If this parameter is omitted or
if TRACE is specified without a value, the default is 50.

SYMS=sym List of symbols to be dumped by DEBUG. Up to 20 symbols
can be specified; symbols are separated by a colon. This
parameter applies to all blocks dumped. The default is all
symbols.

SR-OOll 13-7 M

I

NOTSYMS=nsym

BLOCKS=b7,k

List of symbols to be skipped. Up to 20 symbols can be
specified, symbols are separated by a colon. This parameter
applies to all blocks dumped. The default is that no
symbols are to be skipped. This parameter takes precedence
over the SYMS parameter.

List of common blocks to be included in the symbolic dump.
A maximum of 20 blocks can be specified. All symbols
(qualified by the SYMS and NOTSYMS parameters) in the blocks
named here are to be dumped. If BLOCKS is specified without
a value, all common blocks are dumped.

NOTBLKS=nb7,k
List of common blocks to be excluded from the symbolic
dump. A maximum of 20 blocks can be specified. The default
is to exclude no blocks. NOTBLKS specified without a value
excludes all but the subprogram block. This parameter takes
precedence over the BLOCKS parameter.

MAXDIM=dim

TASKS

Maximum number of each dimension of the arrays to be
dumped. This parameter allows the user to sample the
contents of arrays without creating huge amounts of output.
For example:

... ,MAXDIM=3:2:3,

causes the following elements to be dumped from an array
dimensioned as A(10,3,6):

A(l, 1, 1) A(2, 1, 1) A(3, 1, 1) A(l, 2, 1) A(2, 2, 1)
A (3, 2, 1) A(l, 1, 2) A(2, 1, 2) A(3, 1, 2) A(l, 2, 2)
A(2, 2, 2) A(3, 2, 2) A(l, 1, 3) A(2, 1, 3)
A (3, 1, 3) A(l, 2, 3) A(2, 2, 3) A(3, 2, 3)

This parameter applies to all blocks dumped. The default
is MAXDIM=20:5:2:l:l:1:l. The arrays are dumped in storage
order.

Trace back through all existing tasks, the default is to
trace back only through tasks that were running when the
dump dataset was written. Not available with SYMDEBUG.

PAGES=np Page limit for the symbolic debug routine. The default is
70 pages.

COMMENT='stping'

SR-OOll

Identifier to be printed on the DEBUG output title line.
Up to 8 ASCII characters can be specified.

13-8 M

I

DSDUMP - DUMP DATASET

The DSDUMP utility dumps specified portions of a dataset to another
dataset. A disk dataset can be dumped in either blocked or unblocked
format. A tape dataset can be dumped only in blocked format.

In the blocked format, a group of words within a record, a group of
records within a file, and a group of files within a dataset can be
selected. Initial word number, initial record number, and initial file
number are relative to the current dataset position. Specifying an
initial number greater than 1 (or 0, if the control statement includes
the Z parameter) causes words, records, or files to be skipped starting
from the current position.

Since the initial word, record, or file number is relative to the current
position of the dataset, the dataset must be positioned properly before
calling DSDUMP. A rewind of the dataset before calling DSDUMP makes the
initial word, record, and file numbers relative to the beginning of the
dataset. When DSDUMP is completed, the input dataset is positioned after
the last record dumped.

I The unblocked format is used for dumping a disk dataset without regard to
whether it is blocked. Dumping a blocked dataset in unblocked format (by
sectors) is possible. A group of sectors within the dataset or a group
of words within each sector can be selected. The initial word and
initial sector numbers are relative to the beginning of the dataset.
Specifying an initial sector greater than 1 causes sectors to be skipped
from the beginning of the dataset; specifying an initial word greater
than 1 (or 0, if the control statement includes the Z parameter) causes
words to be skipped from the beginning of each sector. Following a dump
in unblocked format, the dataset is closed.

Two groups of DSDUMP parameters require the specification of numbers:
the values of the initial word, record, file, and sector (I values) and
their counts (N values). These values may be specified in three ways:

• Simple number (for example, 1234). This is interpreted as a
decimal number.

• Explicit decimal number (for example, D'1234' or D1234).

• Explicit octal number (for example, 0'1234' or 01234).

The following lines reference the same first word:

DSDUMP, ••• ,IW=4096.
DSDUMP, ••• ,IW=D'4096'.
DSDUMP, ••• ,IW=O'lOOOO'.

SR-OOll 13-9 M

I

I
I

Format:

DSDUMP,I=idn,O=odn,DF=df,Iw=n,NW=n,IR=n,NR=n,IF=n,

NF=n,IS=n,NS=n,Z,DB=db,DSZ=SZ.

Parameters are in keyword form; the only required parameter is I.

I=idn (or DN=idn)
Name of dataset to be dumped. This is a required parameter.

o=odn (or L=odn)

DF=df

IW=n

NW=n

IR=n

NR=n

Name of dataset to receive the dump. The default is $OUT.

Dump format. The default is B.

B Blocked
U Unblocked

Decimal or octal number (n) of the initial word for each
record/sector on idn. The default is 0 if Z is specified;
1 if Z is not included.

Decimal or octal number (n) of the words per
record/sector to dump. Specifying NW without a value dumps
all words to the end of a record/sector. The default is 1.

Decimal or octal number (n) of the initial record for
each file on idn. Applicable only if DF=B. The default
is 0 if Z is specified; 1 if Z is not included.

Decimal or octal number (n) of the records per file to
dump. Specifying NR without a value dumps all records to
the end of the file. Applicable only if DF=B. The default
is 1.

IF=n Decimal or octal number (n) of the initial file for
dataset on idn. Applicable only if DF=B. The default is
o if Z is specified; 1 if Z is not included.

NF=n Decimal or octal number (n) of the files on idn to

SR-OOll

dump. Specifying NF without a value dumps all files to the
end of the dataset. Applicable only if DF=B. The default
is 1.

13-10 M

•

IS=n Decimal or octal number (n) of the initial sector on
idn. Applicable only if DF=U. The default is 0 if Z is
specified; 1 if Z is not included.

NS=n Decimal or octal number (n) of the sectors to dump.
Specifying NS without a value dumps all sectors to the end
of the dataset. Applicable only if DF=U. The default is 1.

Z Zero-based initial-value parameters (IW, IR, IF, and IS).

DB ==db

DSZ=S2

If Z is specified, the default value for each "I" parameter
is 0, and output referring to word, record, file, and sector
numbers begins at O. The following lines reference the same
first word:

DSDUMP, ••• ,IW=4096.
DSDUMP, ••• ,Z,IW=4095.

If Z is not specified, all "I" parameters are 1 based.

The Z parameter does not affect the "number of" ("N")
parameters.

Numeric base in which to display the data words.

OCTAL or 0 Octal (base 8)
HEX or X Hexadecimal (base 16)

The default is OCTAL.

Size of the data items to dump.

WORD or W CRAY-l words (64 bits)
PARCEL or P CRAY-l parcels (16 bits)

The default is WORD.

For blocked format, each record from idn dumped to odn is preceded by
a header specifying th~ file and record number in both octal and decimal.
For unblocked format, each sector is preceded by a header specifying the
sector number in both octal and decimal.

Table 13-1 summarizes the DSDUMP output records according to the
specification of DB and DSZ parameters •

SR-OOll 13-11 M

Table 13-1. DSDUMP output format

Word Number ASCII
DB,DSZ count interpretation interpretation

OCTAL ,WORD t Four 22-digit One 32-character
octal numbers interpretation

HEX ,WORD t Four l6-digit One 32-character
hexadecimal numbers interpretation

OCTAL ,PARCEL t Sixteen 6-digit None (insufficient
octal numbers space)

HEX ,PARCEL t Sixteen 4-digit One 32-character
hexadecimal numbers interpretation

t If the Z parameter is used, the word count is 0 based and octal. If
the Z parameter is not used, the word count is 1 based and decimal.

A row of five asterisks indicates that one or more groups of four words
have not been formatted because they are identical to the previous four.
Only the first group is formatted. The number of words not formatted can
be determined from the word counts of the formatted lines before and
after the asterisks. The final group of four or less words is always
formatted.

COMPARE - COMPARE DATASETS

The COMPARE utility compares two blocked datasets and lists all
differences found. The output consists of a listing of the location of
each discrepancy, the contents of the differing portions of the datasets,
and a message indicating the number of discrepancies. See the CRAY-OS
Message Manual, publication SR-0039.

Keyword parameters allow the user to specify the maximum number of errors
and the amount of context to be listed.

If portions of two datasets are being compared, the portions must be
copied to a separate dataset before comparison, COMPARE compares complete
datasets only.

COMPARE rewinds both input data sets before and after the comparison.

SR-OOll 13-12 M

Format:

COMPARE,A=adn,B=bdn,L=ldn,DF~f,ME~axe,cp=cpn,

Parameters are in keyword form; both A and B must be specified.

A=adn and B=bdn

L=Ldn

DF=df

ME~axe

cp=cpn

CS=can

SR-OOll

Input dataset names. If adn=bdn, an error message is
issued and the job step is aborted. A and B are required
parameters.

Dataset name for list of discrepancies. ldn must be
different from adn and bdn. The default is $OUT.

Input dataset format. The default is T. df is a
I-character alphabetic code as follows:

B Binary. The input datasets are compared logically to
verify they are identical. If they are not identical,
the differing words are printed in octal and as ASCII
characters. The location printed is a word count in
decimal. The first word of each dataset is called
word 1.

T Text. The input datasets are compared to see if they
are equivalent as text. For example, a
blank-compressed record and its expansion are
considered equivalent. If the two datasets are not
equivalent, the differing records are printed as
text. The location is printed as a record count in
decimal. The first record of each dataset is called
record 1.

Maximum number of differences printed. The default is 100.

Amount of context printed. cpn records to either side
of a difference are printed. The CP parameter applies only
if DF=T; if DF=B and CP are specified, an error message is
generated. The default is o.

Amount of context scanned. can records to either side
of a discrepancy are scanned for a match. The CS parameter
applies only if DF=T; if DF=B and CS are specified, an
error message is generated. The default is o.

13-13 M

If a match is found within the defined range, subsequent
comparisons are made at the same interval. That is, if
record 275 of dataset A is equivalent to record 277 of
dataset B, the next comparison is between record 276 of
dataset A and record 278 of dataset B.

NOTE

If identical records occur within csn
records of each other, the pa1r1ng is
ambiguous and COMPARE can match the wrong
pair.

CW=CW or CW=cwl: CW2
Compare width. If CW=CW is specified, columns 1 through
CW are compared. If CW=CW1:cw2 is specified, columns
cWl through CW2 are compared. Specifying CW without a
value is not permitted. The default is to compare columns 1
through 133, but this can be changed by installation option.
The cw parameter applies only if DF=T; if DF=B and OW are
specified, an error message is generated.

ABORT=aC If ac or more differences are found, the job step aborts.
Specifying ABORT alone is equivalent to ABORT=l and causes
an abort if any differences are found. Specifying ABORT
does not prevent the listing of up to maxe differences.

PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE

The PRINT control statement writes the value of an expression on the
logfile. The value of the expression is written in three different
formats: as a decimal integer, as a 22-digit octal value, and as an ASCII
string. PRINT is a system verb.

Format:

PRINT (expression)

SR-OOll 13-14 M

Parameter:

expression
Any JCL expression (see section 16). This parameter is
required.

Logfile format:

UT060 deoimal ootal ASCII

UT060 Message code indicating origin is PRINT statement

deoimal l6-digit decimal representation of evaluated expression

ootal 22-digit octal representation of evaluated expression

ASCII 8-character ASCII representation of evaluated expression

FLODUMP - FLOW TRACE RECOVERY DUMP

The FLODUMP utility recovers and dumps flow trace tables when a program
aborts with flow tracing active. The flow trace tables are dumped in the
FORTRAN flow trace format.

FLODUMP is invoked by specifying the F option on the CFT control
statement and including the FLODUMP control statement in the COS control
statement file. (Refer to the FORTRAN (CFT) Reference Manual, CRI
publication SR-0009, for more information on the F option.)

Format:

Parameters: None

The following example illustrates the use of the FLODUMP control
statement.

SR-OOll 13-15 M

JOB, ••••
CFT,ON=F.
LDR.
EXIT.
DUMPJOB.
FLODUMP.

A flow trace summary is illustrated in figure 13-1; a flow trace recovery
dump is shown in figure 13-2.

The examples in figures 13-1 and 13-2 show that the total time reported
for the main program, ONF, is larger for the flow trace recovery dump
(FLODUMP) than for the flow trace summary. The difference is that the
time reported with FLODUMP includes the main program's execution time,
the time required to abort the program, and the time required to recover
the flow trace tables.

FLOW TRACE --- SUMMARY
ROUTINE TIME % CALLED AVERAGE T

1 ONF 0.000053 5.42

2 SUB 1 0.000323 32.80

3 SUB2 0.000322 32.75

4 SUB3 0.000286 29.04

*** TOTAL 0.000985

*** OVERHEAD 0.000712

SUBROUTINE LINKAGE OVERHEAD SUMMARY

T REGISTERS
B REGISTERS

ARGUMENTS
TOTAL

MINIMUM
1
2
o

MAXIMUM
2
3
o

MAXIMUM SUBROUTINE DEPTH = 4

AVERAGE
2.0
3.0
0.0

1

9

9

9

0.000053
CALLS SUBl

0.000036 CALLED BY ONF
CALLS SUB2

0.000036 CALLED BY SUBl
CALLS SUB3

0.000032 CALLED BY SUB2

28 CALLS

CYCLES
838
894

o
1732

SECONDS
1.05E-05
1.12E-05
O.OOE+OO
2.l7E-05

%
1.0640
1.1351
0.0000
2.1991

Figure 13-1. Example of a flow trace summary

SR-OOll 13-16 M

FLOW TRACE RECOVERY DUMP RECOVER WITH ONFDMP ACTIVE
FLOW TRACE --- SUMMARY

ROUTINE TIME % CALLED AVERAGE T

1 ONFDMP 0.000328 26.04 1 0.000328
CALLS SUBI

2 SUBI 0.000323 25.64 9 0.000036 CALLED BY ONFDMP
CALLS SUB2

3 SUB2 0.000322 25.61 9 0.000036 CALLED BY SUBI
CALLS SUB3

4 SUB3 0.000286 22.70 9 0.000032 CALLED BY SUB2

*** TOTAL 0.001259

*** OVERHEAD 0.000712

SUBROUTINE LINKAGE OVERHEAD SUMMARY 28 CALLS

MINIMUM MAXIMUM AVERAGE CYCLES SECONDS
T REGISTERS 1 2 2.0 838 1.OsE-Os 0.83
B REGISTERS 2 3 3.0 894 1.12E-Os 0.88

ARGUMENTS 0 0 0.0 0 O.OOE+OO 0.00
TOTAL 1732 2.l7E-Os 1.71

MAXIMUM SUBROUTINE DEPTH = 4

Figure 13-2. Example of a flow trace recovery dump

FTREF - GENERATE FORTRAN REFERENCE LISTING

FTREF is a tool that generates a listing containing several forms of
information about a FORTRAN application. FTREF reports on the cornmon
block variables used in the subroutines within an application. FTREF
provides tabular information that consists of entry names, calling
routines, and called routines for each subroutine and displays this
information as a static calling tree. If the user program is
multitasked, FTREF reports whether a cornmon variable or a subroutine is
locked when it is referenced or redefined.

FTREF requires the output produced when ON=XS is specified in a previous
CFT statement. The dataset to be processed by FTREF may contain any
number of modules used by the application. The more application modules
included in the dataset, the more complete will be the output of FTREF.

SR-OOll 13-17 M

•

FTREF CONTROL STATEMENT

The FTREF control statement follows a CFT control statement that
specified ON=XS.

Format:'

FTREF,I=idn,L=idn,TREE=op,CB=op,ROOT~oot,END=end,

Parameters:

I=idn

L=ldn

LEVEL=n,DIR=dir,NORDER.

Input dataset containing the cross reference table listing
and the source program from CFT with ON=XS. This parameter
is required.

Dataset containing the output listing. The default is $OUT.

TREE=OP Produces information about the routines called and the
static calling tree for the program. The value '**LOOP**'
indicates there is an apparent recursive call in the
program. The options are:

CB=Op

SR-OOll

PART Reports entry names, external calls, other routines
that call the routine, and common block names from
the input dataset.

FULL Reports the information that the PART option
provides plus the static calling tree.

The default is PART.

Global common block cross references. The options are:

PART Identifies the routine names using a common block.

FULL Details the use of the variables of a common block
in a routine.

The default is PART •

13-18 M

I

ROOT=root Produces a tree with the routine poot as a root. ROOT
can be used to get a subtree for the program. As a
default, the routine not called by another routine is
chosen. If there are more than one uncalled routines, the
first routine by alphabetic order is chosen as the root.

END=end

LEVEL=n

DIR=dir

NORDER

DIRECTIVES

Produces a tree with the routine end as the end of the
tree. The value '**STOP**' is printed whenever the routine
is found, and that branch of the tree is terminated. By
default, FTREF generates a tree containing all subroutines
in the program.

Produces a tree of n levels. The default is the entire
program. If both LEVEL and END are specified, FTREF
terminates a branch of the tree at whichever state is
encountered first.

Selects modules to process or common blocks for FTREF to
check to determine whether a variable is in a locked area.
The dataset dip contains a set of directives that control
the processing or check. If DIR is specified without a
value, the directives are taken from the next file of $IN.
The directives are explained in detail in the next
subsection. The default is no directives to be read.

Lists the subroutines in input order instead of alphabetic
order. The default is alphabetic order.

A FTREF directive consists of a keyword and zero or more parameters. A
blank, comma, or open parenthesis separates the keyword and the
parameters. A period, closed parenthesis, or two consecutive blanks are
the terminator. A caret at the end of the directive line indicates that
the next line is a continuation of the current directive. Do not precede
the caret by a blank; it must immediately follow the last non-blank
character of the line. The caret also separates the, parameters from the
next line.

One line may contain only one directive. FTREF processes 80 characters
per line and ignores the rest of the characters.

SUBSET directive

The SUBSET directive specifies the modules to be processed by FTREF.
This directive prevents FTREF from processing modules not on the
parameter list. SUBSET may appear any time and as often as necessary.

SR-OOll 13-19 M

I

If no SUBSET directive appears, or only one SUBSET directive is specified
and it has no parameters, FTREF processes all modules in the input file.

Format:

where md is the name of the module to be processed by FTREF.

CHKBLK directive

The CHKBLK directive specifies the common blocks whose variables FTREF is
to check to determine whether a variable is in a locked area. The
directive may appear any time and as often as necessary. If no CHKBLK
directive appears, FTREF does not check for variables in a locked area.
If there is only one CHKBLK directive and it is without a parameter,
FTREF processes all the block variables in the input.

A locked area begins with a LOCKON call and ends with a LOCKOFF call with
the same lock variable. If a common block variable is referenced or
redefined in such an area, it is considered to be locked; otherwise, it
is unlocked. Check to ensure that this is a safe condition. A locked
area must be completely within a compilation module to be detected by
FTREF. See the Multitasking User Guide, CRI publication SN-0222, for
more information on using the locking feature.

Format:

where blk is the name of the common block whose variables FTREF is to
check to determine whether a variable is in a locked area. Specify II as
the name of a blank common block.

SR-OOll

NOTE

FTREF searches for the presence of the LOCKON and
LOCKOFF calls. It does not attempt a flow analysis,
and it does not consider the effects of IF statements.

13-20 M

I

CHKMOD directive

The CHKMOD directive specifies the external calls whose routines FTREF is
to check to determine whether an external call is in a locked area. The
directive may appear any time and as often as necessary. If no CHKMOD
directive appears, or if there is only one CHKMOD directive and it is
without a parameter, FTREF does not check for external calls in a locked
area. See the CHKBLK directive above for a definition of a locked area.

Format:

where mod is the name of the module whose routines FTREF is to check to
determine whether then module is called from a locked area or not.

Example:

The following example uses the FTREF control statement.

JOB, •••
ACCOUNT, •••
CFT,ON=XS,L=XYZ.
FTREF,I=XYZ,CB=FULL,TREE=FULL,DIR.

IEOF
CFT source

IEOF
CHKBLK
IEOF

If the example

I
SUBSUBI

I
SUB22

I
SUBSUB2

SR-OOll

uses

I
SUBI
I

the following tree structure,

MAIN

I
SUB2

I I
SUBSUB2 SUBSUBI

I
SUB22

I
SUBSUB2

13-21

I
SUB3

M

• • • the portion of the output produced by TREE=FULL is:

MAIN

1 >
1 >

SUBl
2 >

SUB2
SUB3

*
*
*

STATIC CALLING TREE FOR MAIN
*
*
*

SUBSUBl SUB22
SUBSUB2
SUBSUBl SUB22

SUBSUB2

SUBSUB2

****** END OF THE CALLING TREE ******

SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING

The SYSREF utility generates a global cross-reference listing for a group
of CAL or APML programs. The number of CAL or APML programs that can be
included in such a group is limited by the amount of Cray Computer System
memory allocated to a user.

SYSREF reads special binary symbol tables written by CAL or APML and
produces a single cross-reference listing for the program modules
represented in the tables. When the X parameter appears on a CAL or APML
statement, a record is written for each program unit assembled. The
records are written to a dataset specified by the X parameter ($XRF by
default or if X appears alone). Each record has a header containing the
name of the program unit. The rest of the record consists of
cross-reference information for every global symbol used in that program.

Format:

SYSREF,X=xdn,L=ldn.

Parameters:

X~n

L=ldn

SR-OOll

Name of dataset whose first file (normally the only file)
contains one or more symbol records written by CAL and/or
APML. The default is $XRF.

Name of output dataset. The default is $OUT.

13-22 M

USE OF SYSREF

SYSREF is usually used to process symbol records written by CAL and/or
APML earlier in the same job. To do so, add X parameters to each CAL or
APML control statement and follow them with a SYSREF control statement:

CAL,X.
APML,X.
CAL,X.
SYSREF,L=XROUT.

$XRF is used as default in all cases.

To process symbol records written in an earlier job, the following
sequence is used:

The first job:

CAL,X.
APML,X.
SAVE,DN=$XRF,ID=XX.

The second job:

ACCESS,DN=$XRF,ID=XX.
SYSREF,L=XROUT.

To add more symbol records before invoking SYSREF, use:

ACCESS,DN=$XRF,ID=XX,UQ.
SKIPR,DN=$XRF,NR.
CAL,X.
SYSREF.

The format above has the same effect as if the CAL step had been done
before the SAVE step.

GLOBAL CROSS-REFERENCE LISTING FORMAT

The global cross-reference listing contains only global symbols. A
symbol is global if it is anyone of the following:

• Named in an ENTRY or EXTERNAL statement

• Defined before an IDENT statement and after any preceding END
statement

SR-OOII 13-23 M

I

• Defined within a system text such as $SYSTXT

• Defined within a section of source code bracketed by TEXT and
ENDTEXT pseudo instructions

The order of the symbols in the global cross-reference listing is
lexicographic, based first on the symbol name and then (within each
symbol name) on the module name. An exception to the order is made for
symbol names beginning with N@, S@, or W@. These symbol names are sorted
as if @ is the most significant (leftmost) character and the N, S, or W
is the least significant character. The listing displays the symbol name
correctly. The effect is a grouping of all the N@, S@, and W@ symbols
that refer to the same field in a table.

The global cross-reference listing consists of 13 columns:

Column

I
2
3

Heading

Value
Symbol
Origin

Contents

The symbol's value
The symbol's name
The IDENT of the system text in which the symbol is
defined, or the label of the TEXT block in which
the symbol is defined, or *GLOBAL*, if the symbol
is defined outside any program unit, or blank.

4 Module The IDENT of the module within or before which the
symbol is defined or referenced

5-13 References A list of the lines on which the symbol is defined
or referenced

The symbol's name, value, and references appear in the same format as in
a CAL or APML listing. The page number in each reference is a local page
number which starts at 1 for each module. In a CAL or APML listing, this
is the page number that appears in parentheses to the right of the second
title line on each page.

ITEMIZE - INSPECT LIBRARY DATASETS

The ITEMIZE utility prints a formatted report of the contents of a
dataset generated by CAL, CFT, BUILD, LDR, UPDATE, and other compatible
processors. For additional information about the contents of an UPDATE
PL, use AUDPL. See CRI publication SR-0013, UPDATE Reference Manual.

ITEMIZE is executed using the following control statement.

SR-OOll 13-24 M

Format:

ITEMIZE,DN~n,L=odn,NREW,NF=n,T,BL,E,B,X.

Parameters:

DN~n

L=odn

N~W

NF=n

T

BL

E

B

x

SR-OOll

Local dataset name of the dataset to be listed. The default
is $OBL.

Local dataset name where listing is written. If L is
omitted or is specified alone, $OUT is used.

No rewind. Specifies the dataset is not rewound. If NREW
is omitted, the dataset to be listed is rewound before and
after ITEMIZE is executed.

Number of files within a dataset to be listed. If NF is
used alone, the contents of all files within the dataset are
listed. If NF=n, the contents of n files within the
dataset are listed. The default is NF=l.

Truncation. Specifying this parameter truncates lines on
the listing dataset to 80 characters. Optional parameter,
however, specifying this parameter precludes specifying the
E, B, and X parameters.

Burstable listing. When this parameter is specified, each
dataset heading starts at the top of a page. The default is
a compact listing in which a page eject occurs only when the
current page is nearly full.

Entry points. Specifying E causes all entry points to be
included in the listing. Use for binary library datasets
only.

Blocks. Specifying B causes all entry points, code, and
common block information to be included in the listing. Use
for binary library datasets only. (B overrides E.)

Externals. Specifying X causes all entry points, code,
common block, and external information to be included in the
listing. (X overrides B.)

13-25 M

Restrictions:

• An UPDATE PL is recognized only if it is the only item in a
dataset.

• ITEMIZE operates on standard COS blocked datasets only.

I • ITEMIZE does not operate on a tape dataset.

A header containing the jobname, ITEMIZE version number, date, time, and
page number appears at the top of every page. The line shown below
appears following the header on page 1 (or only page). The line gives
the local dataset name of the dataset being processed.

ITEMIZE OF dn

ITEMIZE normally produces file-level output. However, for binary library
datasets, it produces a more detailed record-level output. The following
subsections describe both levels of output.

FILE-LEVEL OUTPUT

ITEMIZE prints one line for each file examined (up to the maximum
specified by the NF parameter or the default of 1). A second header line
appears on each page and contains the column headings shown in figure
13-3.

TITEMA ITEMIZE 1.08 05/10/82 08:58:15 PAGE 1
ITEMIZE OF TESTPL

FILE RECORDS TYPE LENGTH CHECK PART DATE
1 6 PL 18 0650 0650 05/10/82
2 5 PL 15 0512 0512 05/10/82
3 4 PL 12 0313 0313 05/10/82
4 1 PL 6 3075 3075 05/10/82
5 1 PL 6 5756 5756 05/10/82
0 * Eon * 57 2334 2334

Figure 13-3. Sample listing of ITEMIZE for a PL

SR-OOll 13-26 M

Figure 13-3 is an example of ITEMIZE operating on a program library. The
control statement used to generate the listing was ITEMIZE,BL,NF.

FILE Sequence number of the file within the dataset

RECORDS Number of records within the file

TYPE Type of information contained within the file. If the file
is a member of a PL, the column contains PL. Other values
which may appear in this column are ABS, REL, DAT, and
??? ABS and REL indicate absolute and relocatable program
modules, respectively. DAT indicates data, and ??? is used
for otherwise unrecognized files.

LENGTH Length of the file in words

CHECK Checksum of the data within the file

PART This field is the same as CHECK for file-level output.

DATE Date of the PL from its directory or blank if other types
of datasets

A PL created by the UPDATE utility consists of many files. The last file
of the dataset must be a PL directory. If NF is not specified on the
control statement, ITEMIZE prints information only for the first files,
although it has examined the last file. The dataset must contain only a
PL.

OUTPUT FOR BINARY LIBRARY DATASETS

A binary library is a collection of binary records recognized by the
existence of a Program Description Table (PDT) Table. For binary library
datasets, ITEMIZE operates record-by-record rather than file-by-file.
The second header line for binary library datasets contains the column
headings shown in the following figure.

Figure 13-4 is an example of ITEMIZE operating on a binary library
dataset. Th~ control statement used to generate the listing was
ITEMIZE,BL,NF,X. If the control statement had been ITEMIZE,BL,NF.,
lines with no entry in the REC column would not have appeared.

REC Sequence number of the record within the file

NAME Name of the program from the PDT

TYPE ABS or REL. ABS and REL indicate absolute and relocatable
program modules, respectively.

SR-OOll 13-27 M

TITEMA ITEMIZE 1.08 05/10/82 08:58:15 PAGE 1
ITEMIZE OF TESTLIB FILE 1

REC NAME TYPE LENGTH CHECK PART DATE
1 DUMMY1 REL 41 6200 0344 05/10/82 08:58:14 CFT 1.09 03/25/82

COMMENT:
* ENT * DUMMYl
* BLK * DUMMY1 MODULE LENGTH 11
* BLK * iTB MODULE LENGTH : 4
* EXT * DUMMY 2 DUMMY 3

2 DUMMY 2 REL 38 2177 0244 05/10/82 08:58:14 CFT 1.09 03/25/82
COMMENT:

* ENT * DUMMY 2
* BLK * DUMMY 2 MODULE LENGTH 10
* BLK * iTB MODULE LENGTH 4
* EXT * DUMMY 3

3 DUMMY3 REL 34 6403 0637 05/10/82 08:58:14 CFT 1.09 03/25/82
COMMENT:

* ENT * DUMMY 3
* BLK * DUMMY 3 MODULE LENGTH : 9
* BLK * iTB MODULE LENGTH : 4

1 * EOF *

TITEMA ITEMIZE 1.08
ITEMIZE OF TESTLIB

REC NAME TYPE
1 * DIR * REL

113

05/10/82

LENGTH
19

0742 0065

08:58:15 PAGE 2
FILE 2

CHECK
3512

PART DATE
3512

DIRECTORY ID DOl
MODULE NAME : DUMMY1 •

DIRECTORY LENGTH
NO. OF BLOCKS

19 WORDS.
1, NO. OF ENTRIES

* ENT * DUMMY 1
* BLK* iTB
* EXT * gUMMY 2

MODULE NAME : DUMMY2 NO. OF BLOCKS
* ENT * DUMMY 2
* BLK* iTB
* EXT * DUMMY3

MODULE NAME : DUMMY3 • NO. OF BLOCKS
* ENT *
* BLK* iTB

2 * EOF *
o * EOD *

DUMMY 3

19
132

3512
1130

DUMMY 3
1, NO. OF ENTRIES

1, NO. OF ENTRIES

3512
0246

1, NO. OF EXTERNALS

1, NO. OF EXTERNALS

1, NO. OF EXTERNALS

COS 1.11 05/09/82

COS 1.11 05/09/82

COS 1.11 05/09/82

2

1

o

Figure 13-4. Sample listing of ITEMIZE for a binary library dataset
with X and NF parameters

LENGTH Length of the record in words

CHECK Checksums

PART Checksums

DATE Date of compilation from the PDT

One line containing the data listed above is generated for each record.
If any of the E, B, or X options are specified on the control statement,
several additional lines can be printed. The information in these lines
is labeled separately as described in the following paragraphs.

SR-OOll 13-28 M

When E, B, or X is specified, the comment field of the PDT is printed on
a separate line. In addition, the entry point names are printed with
five names per line.

When B or X is specified, a separate line is printed for each block
containing its name and length.

When X is specified, the externals referenced by the program are printed
with five external names per line.

A binary library dataset contains a second directory file containing one
record. If E, B, or X is specified on the control statement, a line is
printed specifing the directory ID and length. In addition, entries,
blocks, and externals are printed as described above for program records.

SR-OOll 13-29 M

EXECUTABLE PROGRAM
CREATION

14

The COS Relocatable Loader is a utility program that executes within the
user field and provides the loading and linking in memory of relocatable
modules from datasets on mass storage.

The relocatable loader is called through the LDR control statement when a
user requires loading of a program in relocatable format. Absolute load
modules can also be loaded. The design of the COS loader tables and
relocatable loader allows program modules to be loaded, relocated, and
linked to externals in a single pass over the dataset being loaded. This
minimizes the time spent in loading activities on the Cray Computer
System. The loader allows the immediate execution of the object module
or the creation of an absolute binary image of the object module on a
specified dataset. Loader features are governed by parameters of the LDR
control statement.

The relocatable loader can also generate a partially relocated module.
This module, referred to as a relocatable overlay, is described later in
this section.

LDR CONTROL STATEMENT

The loader is called into execution by the LDR control statement.
Parameters of the control statement determine the functions to be
performed by the loader.

SR-OOll 14-1 M

Format:

LDR,DN~n,LIB=ldn,NOLIB=ldn,LLD,AB=adn,MAP=op,SID[='string'],T=tra,

NX,DEB=l,C=oom,OVL~ir,CNS,NA,USA,L=ldn,SET=val,E=n,I=sdir,

NOECHO,SECURE,GRANT=SOl:S02:···:S0n,BC=bo,PAD=pad,NORED,

STK[=initial size[:inorement]],MM[=initial size[:inorement]],

{
AFTER}

MMEPS=epsilon,MMLOC= BEFORE •

Parameters are in keyword form.

DN~n

SR-OOll

Dataset containing modules to be loaded. The default is
$BLD. Loading continues until an end-of-file is reached.
Modules are loaded according to block name as determined by
a CAL IDENT statement or a CFT PROGRAM, SUBROUTINE, BLOCK
DATA, or FUNCTION statement. Duplicate blocks are skipped
and an informative message is issued.

Multiple files from the same dataset can be loaded by
specifying the dataset name multiple times separated by
colons. A maximum of eight files can be indicated.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/O tables and
buffers.

Modules to be loaded can be relocatable or absolute.
However, the two types of modules cannot be mixed.

14-2 M

LIB=ldn

SR-OOII

For example,

DN=LOADI:LOAD2:$BLD

causes the loading of all modules in the first file of
datasets LOADI, then LOAD2, and then $BLD.

Normally the dataset is rewound before loading; however,
consecutive occurrences of a dataset name inhibit
subsequent rewind operations. Therefore, the statement

DN=LOAD3:LOAD3

causes the loading of all modules in the first two files of
dataset LOAD3.

The DN parameter takes on a special quality when OVL is
specified: only one dn can be specified. The dataset
named is the initial LOAD file used by the overlay loader.
(See the description of overlay loading later in this
section for more information.)

The LIB parameter names the dataset from which unsatisfied
externals are loaded. A maximum of eight datasets can be
named, with the dataset names separated by colons.

Any default libraries are automatically included in the
library list unless the NOLIB parameter is specified. The
loader accesses the default libraries from the COS System
Directory (SDR) if they are not local to the job; no ACCESS
statement is required.

Datasets specified by the LIB parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/O tables and
buffers.

NOTE

These datasets should be generated using the
BUILD utility to prevent unnecessary overhead in
the loader.

The libraries cannot be tape datasets.

14-3 M

NOLIB=ldn The NOLIB parameter value names the specific default
library to be excluded from the load. Selecting NOLIB with
no value specifies the exclusion of all default system
libraries. If NOLIB is not specified, any default
libraries that a site has are automatically included in the
library list, along with any libraries specified on the LIB
parameter.

LLD Specifying the LLD parameter causes any libraries included
in the load to be retained as local datasets at load
completion. These local datasets remain open. Datasets
automatically accessed are not released at load
completion. If the LLD parameter is not specified, the
loader closes all libraries and releases
automatically-accessed datasets at load completion.

AB=adn

MAP=Op

SR-OOII

Absolute binary object module generation. Use of this
parameter causes an absolute binary object module to be
written to the named dataset after the load process is
completed. Selecting AB does not imply NX (no execution).
Unless NX is also selected, the loaded program begins
execution after the binary is generated. Specifying AB
without adn causes the module to be written on a dataset
named $ABD, the default dataset. Some other dataset can be
specified by AB=adn. The dataset is not rewound before
or after the file is written.

If the AB parameter is omitted, no binary generation occurs.

If OVL is specified on the loader statement, the OVLDN
directive replaces AB; any value specified for AB is
ignored in overlay mode. Overlay loading is fully
described later in this section.

Map control. The MAP parameter causes the loader to
produce a map of the loaded program on the specified
dataset. MAP can take any of the following values:

ON Produces a block list and an entry list including
all cross references to each entry

FULL Same as MAP=ON

OFF No map is produced. MAP=OFF is the default.

PART Produces a block list only. Equivalent to MAP with
no value specified.

14-4 M

SID[='string']

T=tra

NX

DEB=l

SR-OOll

Debug routine loading. The SID parameter indicates the
system debugging routines (SID) are to be loaded with the
code. These routines comprise an additional binary dataset
loaded after all DN specified datasets and before any
libraries.

The 'string', if provided, is passed to SID for
evaluation as a control statement. The verb and initial
separator are not required. For example,
SID='I=IN,ECH=ELIST.' is a proper string specification (the
period is a required terminator). For a complete
description of SID parameters, see the Symbolic Interactive
Debugger (SID) User's Guide, CRI publication SG-00S6. If
only SID is specified, all keyed default SID control
statement parameter values are used.

Transfer name. The T parameter allows specification of an
entry name where the loader transfers control at completion
of the load. The T parameter also specifies the entry
included in absolute binary object modules.

The entry name is a maximum of 8 characters. If no T
parameter is specified, the loader begins object program
execution at either the entry specified by the first
encountered START pseudo from a CAL routine or at the entry
of the first main program in CFT compiled routines. If no
START entries are encountered, a warning message is issued
and the first entry of the first relocatable or absolute
module is used.

N~E

When the SID parameter is used, the load
transfer is to the system debugger, and the T
parameter is ignored. If T is coded,
however, a warning message is issued to the
user logfile.

No execution. Inclusion of this parameter inhibits
execution of the loaded program.

Job Communication Block (JCB) length. The default length
is 2008. Specifying DEB without a value changes the JCB
length to 30008•

14-5 M

C=oam Compressed load. The C parameter allows control of the
starting locations of modules and common blocks. An
align bit is set for each relocatable module and common
block that contains an ALIGN pseudo-oPe Refer to the
CAL Assembler Version I Reference Manual, CRI
publication SR-OOOO, or to the FORTRAN (CFT) Reference
Manual, CRI publication SR-0009.

C can take on any of the following values:

ON Forces the loading of each module and common
block to begin at the next available location
after the previous module or common block,
ignoring the align bit. Equivalent to C with no
value specified.

PART Forces the loading of each module and common
block with the align bit set to an instruction
buffer boundary.t If the align bit is not
set, then that module or common block is loaded
at the next available location after the
previous module or common block. C=PART is the
default.

OFF Forces the loading of every module to an
instruction buffer boundary.t Common blocks
are forced to instruction buffer boundaries only
if the align bit is set.

OVL=dip Overlay load. The OVL parameter indicates an overlay load
sequence is specified on dip. Overlay loading is
explained in detail later in this section. If the OVL
keyword is specified without a value, the loader examines
the next file of $IN for an overlay load sequence. The
default is no overlay load. Selecting OVL implies NX (no
execution).

CNS Crack next control statement record image. This feature
allows the loader to pass parameters on to the loaded
program for analysis and use during execution of the loaded
program. The control statement cracked follows the LDR
control statement and is not available for processing by
the Control Statement Processor (CSP) after processing by
the loaded program.

t Instruction buffer sizes are 208 words for all CRAY-I S models and
408 words for the CRAY X-MP.

SR-OOII 14-6 M

NA

USA

L=ldn

SET=val

When the SID parameter is specified, the CNS
parameter is ignored and a warning message is
written to the user logfile if CNS is
present. SID prompts for the control
statement for the code being debugged.

No abort. If this parameter is omitted, a caution or
higher level loader error causes the job to abort.

Unsatisfied external abort. When USA is specified, the
loader aborts at the end if it finds one or more
unsatisfied externals. A load map listing all unsatisfied
externals is produced, if called for.

Listing output. This parameter allows the user to specify
the name of the dataset to receive the map output. If L=O,
all output is suppressed. The default is $OUT.

Memory initialization. Variables, named and blank common
blocks, and storage areas defined by DIMENSION statements
are set to 0, -1, or an out-of-range floating-point value
during loading. The default is SET=ZERO.

SET=ZERO Memory is set to binary zeros.

SET=ONES Memory is set to -1 (all bits set in word).

SET=INDEF Memory is set to a value that causes an
out-of-range error if the word is referenced
as a floating-point operand. The ones
complement of each memory address is placed in
the low-order 24 bits of the respective word
to aid in reading register and memory dumps.
An example, in octal, of the value loaded into
memory word 13216 is: 0605050037740177764561.

E=n Lists error messages. This parameter indicates which
level of loader-produced error messages are not to be
listed. The user specifies one of five levels of severity,
where n is the highest level to be suppressed. The
default for this parameter is E=l.

SR-OOll 14-7 M

I=sdir

NOECHO

SECURE

GRANT

SR-OOll

Level

1

2

~

COMMENT

NOTE

Description

Error does not hinder program
execution.

Error probably hinders program
execution.

3 CAUTION Job aborts when load process
completes unless NA is selected;
program might not execute properly.

4

5

Example:

WARNING

FATAL

Job aborts when load process
completes unless NX is selected;
program execution is not possible.

Job aborts immediately.

E=2 suppresses COMMENT and NOTE messages and allows
CAUTION, WARNING, and FATAL messages to appear. FATAL
messages are never suppressed.

Selective load. Modules from other datasets can be loaded
according to. a set of directives. sdir indicates the
dataset containing the directives. If the I keyword is
specified without a value, the directives are taken from
the next file of $IN. The selective load directives are
described later in this section.

Suppress writing the current control statement to the user
logfile (that is, the conrol statment which invoked the
actual loading into memory will not be written to the
logfile) •

Define each dataset created during this job step to be
secure (that is, to be released during job advancement
unless specifically overridden with a F$DSD operating
system request).

Grant the privileges defined as parameters if this module
is loaded from the System Directory (SDR). (These
privileges will be merged with the users' only for the
duration of the job step.) The following parameters are
defined if security is enabled:

14-8 M

I SCISPT Allow ISP testing
SCRDSC Read DSC page
SCSPOL SAVE/ACCESS/DELETE/LOAD/DUMP spooled dataset
SCLUSR Load user dataset
SCDTIM Dump time request
SCQSDT Dequeue/queue SDT requests
SCUPDD Access user dataset for PDSDUMP
SCACES Access user-saved dataset without passwords
SCQDXT LINK/MODIFY DXT requests
SCENTR ENTER option on ACCESS
SCNVOK Invoke job class structure
SCDUMP Allow F$DJA requests anytime
SCPRIV Allow special system requests
SCSYSPRG Allow system programmer functions such as

F$PROF and F$CMEM
SCURID Allow use of reserved ID in interjob

communication
SCERCH Allow F$DRIVER requests
SCERQM Allow SDT queue manipulation
SCMLOG Allow a user to send messages to another

user's logfile
SCSYSJ Allow a job to be a system job

BC=be Blank common. be specifies the decimal number of words
to be added to the size of blank common when the program is
loaded for execution. The default is O.

PAD=pad Pad. pad specifies the decimal number of words of
unused space to be made available in the job when the
program is loaded for execution. After the program is
loaded with its requested extra space the job is placed in
user-managed field length reduction mode for the duration
of the job step. The default is o.

NORED No field length reduction. Before the program is loaded
the job is placed in user-managed field length reduction
mode for the duration of the job step.

STK[=initial size[:ine~ement]]

SR-OOll

Initializes for stack processing. STK is a run-time memory
management parameter.

initial size indicates the initial size of a stack in
number of words. An installation parameter defines the
default value. If the initial size value is less than
128, LDR SUbstitutes the default value.

ine~ement specifies the size of additional segments to a
stack (in number of words) if a stack overflows. An
installation parameter defines the default value. A value
of 0 indicates that overflow is prohibited.

14-9 M

MM[=initial si2e[:increment]]
Initializes for managed memory processing. The values
assigned to MM specify the number of words available to
the heap manager.

initial si2e indicates the number of words initially
available to the heap manager. An installation parameter
defines the default value. The loader changes the
specified value if the heap is not allowed to grow, and if
there is no room for heap and stack overhead.

incpement specifies the minimum size, in words, of a
request to the operating system for additional memory if
the heap overflows. Zero means that the size of the heap
is fixed. An increment other than zero cannot be specified
if the heap is before blank common. An installation
parameter defines the default value. If the BEFORE value
is specified for MMLOC, then the default value is o.

MMEPS=epsilon
epsilon is the smallest block that can be left on the
list of available space in the heap. If a request for
additional memory from the heap is made by the run-time
routines, and the request leaves a memory fragment of less
than epsilon words, the additional words are given to the
request. The value must be at least 2. An installation
parameter defines the default value.

(
AFTER 1

MMLOC= BEFORE

LOAD MAP

Specifies the location of the heap. AFTER specifies that
the heap is located after blank common. It is also the
default. If the heap is located before blank common,
BEFORE is specified.

Each time the loader is called, the user has the option of requesting a
listing that describes where each module is loaded and what entry points
and external symbols are used for loading. This listing is called a load
map.

The user specifies the contents of the map or the dataset to receive the
map by setting parameters of the LOR control statement to the desired
values. The MAP parameter of the LDR control statement allows the user
to specify the contents of the map requested. MAP=ON or MAP=FULL
produces a block list and an entry list. The block list gives the names,

SR-OOll 14-10 M

beginning addresses and lengths of the program and subroutines loaded on
this loader call; the entry list includes all cross references to each
entry. MAP=PART supplies a partial map, that is, the block map only.

The load map is printed when requested even if fatal errors abort the
load. In this case, the map contains only those modules loaded up to the
point where the fatal load error occurred.

Figure 14-1 illustrates the load map generated by the following LDR
statement:

LDR,DN=$BLD:LOAD2,LIB=MYLIB,MAP=FULL,MM=16000:4000,STK=1280:128

The block list consists of items 1 through 16 in figure 14-1; the entry
list includes items 17 through 21.

0)
CD

CD
LDRMAP

CD
LDR X.14 84251 TOTAL: 1321 09/24/84

RELOCATABLE LOAD

LOAD TRANSFER IS TO ~ AT «(2)
DATASET BLOCK0 ADDRESS LENGTH DATE OS REV PROCSSR VER.

CD o® ® ® ® ® @ *SYSTEM 200
$BLD LDRMAP 200 1321 09/24/84 COS X.14 CFT 1.13 09/21/84
LOAD2 ABCDEFGH 1521 36 09/24/84 COS X.14 CFT 1.13 09/21/84
MYLIB Xl 1557 41 09/24/84 COS X.14 CFT 1.13 09/21/84

X2 1620 41 09/24/84 COS X.14 CFT 1.13 09/21/84

®: ® ® ® ®
MODULE NAME ENTRIES ENTRY VALUE REF. MODULE ABSOLUTE REFERENCES

LDRMAP
ABCDEFGH
Xl

$FDP
$WFD

@

LDRMAP
ABCDEFGH
Xl

NLERP%
$FDP
$WFI

717a
1525a
1570a

3234a
4640
5451a

*** MANAGED MEMORY STATISTICS ***

LDRMAP 1425a
ABCDEFGH 1531a

$WUT 10603b
LDRMAP 1410a

INITIAL STACK SIZE: 1280(10) 2400(8) WORDS
STACK INCREMENT SIZE: 128(10),200(8) WORDS

1416d

INITIAL MANAGED MEMORY SIZE: 16000(10), 37200(8) WORDS
MANAGED MEMORY INCREMENT SIZE: 4000(10), 7640(8) WORDS
MANAGED MEMORY EPSILON: 2(10),
2(8) WORDS
BASE ADDRESS OF MANAGED MEMORY/STACK: 15566(10),
WORnS
MANAGED MEMORY/STACK LOCATION: AFTER BLANK COMMON

*** LOAD IMAGE STATISTICS *** @
ABSOLUTE BINARY LENGTH: 31438(10), 75316(8) WORDS
PROGRAM IMAGE: FWA = 200(8), LWA = 75516(8)

36316(8)

Figure 14-1. Example of a load map

SR-OOll 14-11

11:54:11

Comment

®

M

CD
PAGE 1

CD Job name from the JOB control statement

(3) Loader level and Julian date of assembly of the loader

CD Date and time of loader execution

(!) Page number

~ Load type, either relocatable, absolute, or overlay

~ Entry name to which initial transfer is given

(Z) Entry address where initial transfer is made

~ Name of load or library dataset containing modules to be loaded

~ Names of blocks loaded from the named dataset. These are common
blocks (identified by the slashes around their names, for
example, lLABEL/) are names of program blocks.

*SYSTEM is always the first block listed in a relocatable load.
It consists of the first 200 (octal) words of the user field,
which is reserved for the Job Communication Block (JCB). For an
absolute load, *SYSTEM is not allocated. Therefore, the CAL
user must set the origin to 200 (octal) via an ORG pseudo
instruction to allow space for the JCB. If this is not done,
the job aborts.

Blank common,indicated as II, is allocated last and appears at
the end of the list (if it has been defined).

Octal starting address of the block

Octal word length of the block

Date the object module was generated

Operating system revision date at the time the object module was
generated

Name and revision level of the processor that generated the
object module

Revision date of the processor that generated the object module

Comment (if any) from CAL COMMENT pseudo included in the load
module

~ Name of program block referenced

~ Entry points in the program block

SR-OOll 14-12 M

I

~ Word address, parcel address, or value of each entry point

@

@
Module name of reference to each entry point

Absolute parcel addresses of references to each entry point.
Eight references are listed per line, some entry points have no
references.

Managed memory statistics. The numbers in parentheses indicate
the base: decimal (10) and octal (8).

Actual length of the binary, the minimum amount of memory
required to load the program. FWA is the first word address of
the load image. LWA is the last word address of the load
image. The numbers in parentheses indicate the base: decimal
(10) and octal (8).

SELECTIVE LOAD

If the I keyword is present on the LDR control statement, one or more
INCLUDE and/or EXCLUDE directives are examined in the specified dataset.

Formats:

EXCLUDE,SDN=sdn,FN=fn,MOD=mdl:md2:···:mdSO·

Parameters are in keyword form.

SDN=sdn Name of dataset containing modules to be selectively
loaded. If SDN is specified without a value, the first
dataset specified on the DN parameter of the LDR statement
is the default. If the SDN parameter is omitted, an error
message results, and the directive is skipped, the load
does not abort. The SDN and FN parameters must refer to
the same dataset.

FN~n

SR-OOll

File number of the specified dataset. A number from 0
through 7. fn refers to the file by its numerical
position in SDN or in the DN parameter of the LDR statement.

14-13 M

For example, if DN=Dl:Dl:D2, the first file of Dl has an
fn of 0, and the second file of 01 has an fn value of
1. If FN is specified without a value, the default is o.
If FN is omitted, the whole of sdn is searched for the
correct module; a message is issued for a complete sdn
search. The SDN and FN parameters must refer to the same
dataset.

To load a module from the first file of Dl, the directive
can include the parameter FN=O; however, if FN is specified
without a value, the default is to load a module from the
first file.

MOD=md Module name or entry point to a module to be included or
excluded from the load. Up to 50 modules can be specified;
the modules must be separated by colons. If the MOD
parameter is omitted, an error message results, and the
directive is skipped.

Example: Given the LDR statement

LDR,DN=Dl:Dl:D2, ••• ,I.

A directive to load a module from the second file of dataset Dl includes
the following directive in the next file of $IN:

INCLUDE,SDN=Dl,FN=l,MOD= ••••

Selective load messages are never suppressed.

PARTIALLY RELOCATED MODULES

When a binary module is defined as a relocatable overlay, the loader can
generate an image of the module that has been only partially relocated.
The image of the binary module contains sufficient information for a user
program to relocate all address references within the module program
block according to the actual address where the user program determines
the module should be executed.

The relocatable overlay is useful because program modules are generated
so that a common memory pool can execute the overlay and any of several
overlays can execute at any address within the pool.

SR-OOll 14-14 M

GENERATION OF RELOCATABLE OVERLAYS

The CAL assembler defines a module as a relocatable overlay at assembly
time with the MODULE pseudo-oPe

Format:

Location Result Ooerand

ignored MODULE type

Parameters:

type A keyword parameter identifying the type of module being
defined. RELOCOVL is the only type currently available.

When the relocatable overlay is defined by the assembler, COS sets a
special flag in the Program Description Table (PDT) for use by the
relocatable loader.

The loader, recognizing that the current module being loaded is a
relocatable overlay, performs limited relocation of the address
references in the module. That is, all references to labeled common
blocks and all references to entry points defined within other modules
are adjusted according to the address where the other module resides in
the memory image being constructed. References to blank common are
illegal. It is also illegal for any other module to make any reference
to any entry point defined to be within the relocatable overlay module.
References from within the module to addresses within the module are not
adjusted at this time. Instead, a copy of the necessary Block Relocation
Table (BRT) entries is included in the memory image of the module. All
BRT entries not needed for satisfying internal references are deleted.

The absolute memory image of the program constructed by the loader
contains the loaded programs, including all relocatable overlay modules.

The relocatable overlays are physically located at the end of the memory
image; all nonrelocatable overlay modules are loaded contiguously in the
order they are encountered. Relocatable overlay modules can appear at
any point in the load sequence and can be contained in libraries. The
loader moves modules in memory as required to order the relocatable
overlays at the end of the image. This placement of the overlays makes
it possible for a user program to locate the images of each overlay and
to copy the overlays to mass storage, if it is desired, in order to make
the memory space used by the overlay images available for use by the
program.

SR-OOII 14-15 M

MEMORY LAYOUT WHEN RELOCATABLE OVERLAYS EXIST

When the loader has detected the existence of one or more relocatable
overlays, memory is laid out in the following manner:

1. All nonrelocatable modules, in the order they are encountered on
load datasets or in libraries

2. Labeled common blocks interspersed among the nonrelocatable
modules so that a labeled common block precedes the absolute
image of the first block encountered which defines the block

3. All labeled common blocks defined first within a relocatable
overlay module and not defined within any other type of module

4. Images of all relocatable overlays in the order they are
encountered on load datasets or in libraries

5. unsatified external (USX) program which is the loader's internal
program for processing unsatisfied external references

6. Blank common if defined by any program module

Note that the placement of USX and blank common can defeat the purpose of
relocatable overlays, since the overlay images must remain reserved.
With proper care, the program can use the space occupied by the overlay
images for internal tables and other data with nonallocated space.

MEMORY LAYOUT OF A RELOCATABLE OVERLAY IMAGE

When the loader completes constructing the image of the complete program
being loaded, the relocatable overlay portions have a different structure
than do the nonrelocatable overlay portions. Normal modules are loaded
as an absolute image with all loader-related tables removed. All address
references, both internal to the module and to other modules, are
adjusted so that the code executes correctly. If the C parameter is
specified when the loader is called into execution, individual modules
can begin immediately after the previous module, or they can begin at the
next 16-word (decimal) boundary.

Because relocatable overlay modules are expected by the loader to be
moved to a different address for execution, the C specification has no
meaning to a relocatable overlay module, and the first and subsequent
such modules begin immediately after the last word of the previous module.

Relocatable overlay module images also contain loader-relocated tables.
These tables are required so that the user program can adjust address
references within a relocatable overlay when it has determined the
address where the overlay will execute. The tables are:

SR-OOll 14-16 M

PDT Program Description Table
TXT Text Table
BRT Block Relocation Table

The PDT contains information regarding the number of entry points defined
and the number of blocks and external references. The TXT contains a
count of the words in the actual image of the code, followed by the
semi-absolute image of the code. The BRT contains information necessary
for adjusting address references within the module. If the user program
wants to write the overlays to mass storage, the information in the PDT
can be used to construct a directory or similar table for locating
specific overlays or entry points, and then can be discarded. TXT and
BRT must be retained in the mass storage copy for future relocation of
address references.

OVERLAYS

Very large programs might not fit in the available user memory space or
might not use large portions of memory while other parts of the program
are in execution. For such programs, the COS relocatable loader includes
the ability to define and generate oveplays, separating modules that
the user creates and then calling and executing as necessary.

Two types of overlays are available.

• Type 1 oveplays are generated by using the directives ROOT,
POVL, and SOVL. Two levels of overlays in addition to the root
overlay are allowed with calls to a maximum of 999 adjacent
overlays.

• Type 2 oveplays are generated by using the directive OVLL. Ten
levels of overlays in addition to the root overlay are allowed
with calls to a maximum of 63 adjacent overlays.

The overlay loader can also generate a partially relocated module,
referred to as a relocatable overlay. Relocatable overlays have been
fully described earlier in this section.

The overlay structure, rules for overlay generation, and overlay calls
for both types are described in this section. The control statements
used to generate the overlay and the directives common to both types of
overlays are described first. Specific rules for generation of Type 1
and Type 2 overlays are described separately in the following subsections.

Overlay generation consists of a load operation in which the loader
performs relocatable loading and writes the resulting binary image to
disk. One named absolute binary record is written per root and each
overlay.

SR-OOll 14-17 M

If the LOR control statement has the parameter oVL=dip, the loader
finds the overlay generation directives on the named dataset, dip. If
no dataset is given (that is, OVL), then the loader reads overlay
generation directives from $IN.

Format:

LDR, ••• ,OVL~ip, ••••

OVERLAY DIRECTIVES

An overlay directive consists of a keyword and a parameter. A blank,
comma, or open parenthesis must separate the keyword from the parameter.
A period, closed parenthesis, or two consecutive blanks serve as the
terminator. A caret at the end of the directive line indicates that the
next line is a continuation of the current directive. The caret cannot
be preceded by a blank~ it must immediately follow the last character of
the line.

FILE directive

The FILE directive indicates the dataset, dn, containing the routines
to be loaded. This directive's function is similar to that of the DN
parameter on the LDR control statement. It is generally the first
directive on the directives dataset but appears at any time and as often
as necessary thereafter. If no FILE directive appears, the loading
proceeds from the dataset specified on the DN parameter of the LDR
control statement. If that too has been omitted, loading initially
occurs from $BLO. This directive is common to both overlay types.

Format:

OVLON directive

The function of this directive is similar to that of the AB parameter on
the LDR control statement. This directive names the dataset, dn, on
which overlays are written. The dn parameter must be present. If no
OVLDN directive is present, the default overlay binary dataset ($OBD) is
assigned. All overlays generated following an OVLDN directive reside as

SR-OOll 14-18 M

separate binary records on dataset dn. OVLDN directives appear as
often as desired. This directive is common to both overlay types.

Format:

SBCA directive

The SBCA directive sets the blank common starting address to the
specified address. This directive allows the user to place blank common
after all load modules in the current overlay structure. The address
specified must be larger than any address used in the overlay structure.
This directive must appear before any overlay generation directive, such
as ROOT or OVLL.

Format:

SBCA,address.

where address is the octal address assigned to blank common.

TYPE 1 OVERLAY STRUCTURE

Each Type 1 overlay is identified by a pair of decimal numbers, each from
o through 999. There must be one and only one root overlay; its level
numbers are (0,0). This root remains in memory throughout program
execution. Primary overlays all have level numbers (n,O) where n is
in the range 1 through 999.

Primary overlays are called at various times by the root and are loaded
at the same address immediately following the root. A secondary overlay
is associated with a specific primary overlay, and can be called only by
the corresponding primary overlay. The secondary level numbers are
(n,m), where n is the primary level, and m is in the range 1
through 999. All secondary overlays associated with a given primary
(that is, the same n) are loaded at the same address immediately
following that primary.

Only the root, one primary overlay, and one secondary overlay can be in
memory at one time.

SR-OOll 14-19 M

Figure 14-2 is a diagram of a sample Type 1 overlay loading. The primary
and secondary overlays are shown in time sequence. The sequence of
generation does not imply that the routines are loaded into memory in the
same sequence or that they remain in memory for a set period of time when
they are executed.

All external references must be directed toward an overlay nearer to the
root. For example, overlay (1,0) can contain references to the root
(0,0) but not to overlay (1,1). Overlay (1,1) can contain references to
both (1,0) and (0,0).

The loader places named common before the routine that first references
it. All named common references must be directed toward a lower level
routine. The lowest level routine with a named common block must contain
data statements for that block.

For example, in figure 14-2,

MAIN Can reference named common A only

SUBI and SUB2 Can reference named common A and B only

TEST Can reference named common A, B, and C

The loader allocates blank common immediately after the first overlay
where it is declared. If blank common is declared in the root overlay
(0,0), it is allocated at the highest address of the root overlay and is
accessible to all overlays. If blank common is first declared in primary
overlay (1,0) and not declared in the root (0,0), then it is accessible
only to the (l,x) overlays. Allocation and placement of blank common
is also manipulated by the user through the SBCA directive.

JCHLM is set to the highest address of the root overlay before loading.
If a subsequent overlay module requires additional memory, JCHLM is reset
to the highest address of that module.

TYPE 1 OVERLAY GENERATION DIRECTIVES

The overlay generation directives define the structure of the overlay.
Included in this class are the ROOT, POVL, and SOVL directives.

ROOT directive

This directive defines programs, subroutines, and/or entry points
comprising the load from dn. For programs written in CAL, list each
entry referenced. FORTRAN programs need the program name only. All
members for this directive reside on the same dataset, dn, as defined
by the FILE directive.

SR-OOll 14-20 M

Format:

0

200 8
NAMED COMMON A
PROGRAM MAIN

M

------------NAMED COMMON B
E SUBROUTINE SUB1 ROOT (0,0)

SUBROUTINE SUB2

M ------------
I HEAP

BLANK COMMON

0

NAMED COMMON C SUBROUTINE
PRIMARY ALPHA

R (1,0) (2,0) (3,0) (2,0)
SUBROUTINE TEST -----

SUBROUTINE (5,0)
Y SUB- BETA

ROUTINE ROU-
NEW1 TINE SUBROUTINE

NEW 2 DELTA
SECONDARY (1,2)

(1,1) (2,1)
JCHLM

(5,1) (5,2) (5,3)

____________________________a. _~

time ------.....;.~

Figure 14-2. Example of Type 1 overlay loading

I

SR-0011 14-21 M

POVL directive

This directive causes relocatable loading of the named blocks to the
primary overlay with the name plevel:OOO. The size of the root
determines the base location. All members for this directive reside on
the same dataset, dn. The first member in the list is the one that
receives control when the overlay is loaded. For routines written in
CAL, the first entry point of the first routine receives control.

Format:

where plevel is between I and 999.

SOVL directive

This directive causes relocatable loading of the named blocks to the
secondary overlay with the name plevel:slevel. The length of POVL
(plevel:OoO) determines the base location. All members for this
directive reside on the same dataset, dn. The first member in the
list is the one that receives control when the overlay is loaded. For
routines written in CAL, the first entry point of the first routine
receives control.

Format:

where slevel is between I and 999.

Generation directive example

In the following example,

DSETI contains routines THETA, TEST, GAMMA, SUBI, MAIN, SUB2.

DSET2 contains routines NEW2, ALPHA, OVER, NEWI, DELTA, EPSILON,
SIGMA, BETA.

SR-OOII 14-22 M

Format of the control statement that initializes overlay generation:

LOR, ••• ,OVL=OVLIN, ••••

Dataset OVLIN contains the following directives:

FILE,DSETI. Loader selectively loads from dataset DSETI.

OVLDN,LEVOO. The following overlay modules are written to the
dataset LEVOO.

ROOT,MAIN,SUBI
,SUB2.

POVL,l,TEST.

FILE,DSET2.

SOVL,l,NEWl.

OVLDN,LEV12.

SOVL,2,NEW2.

The absolute binary of MAIN,SUBl,SUB2 is
written as the first record on dataset LEVOO.

The binary of TEST is named 001:000 and is
binary record 2 on dataset LEVOO.

Loader selectively loads from dataset DSET2.

The binary of NEWI is named 001:001 and is
binary record 3 on dataset LEVOO.

The subsequent overlay modules are written to
the dataset LEV12.

The binary of NEW2 is named 001:002 and is
binary record 1 on dataset LEV12.

POVL,2,ALPHA,BETA. The binary of ALPHA,BETA is named 002:000 and is
record 2 on dataset LEV12.

End of overlay load sequence

TYPE 1 OVERLAY GENERATION RULES

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LOR control
statement. If that is also omitted, loading will initially
occur from $BLD. Currently, the relocatable modules of all
members for any overlay level must reside on the same file.

2. The overlays are generated in the order of the directives.

SR-OOll 14-23 M

3. There must be one and only one root.

4. Level hierarchy must be maintained. The root overlay must be
generated first~ hence the ROOT directives appear first.
Following the root generation, a primary overlay (POVL) is
generated. No limitation is placed on which primary overlay
number (plevel) is generated~ however, all secondary overlays
(SOVL) associated with the plevel must follow. The secondary

overlay slevels can be generated in any order following their
respective primary level.

5. An end-of-file in the directives file ends the input of overlay
directives~ hence overlay generation.

6. Any directive other than FILE, OVLDN, SBCA, ROOT, POVL, or SOVL
causes a fatal error.

7. The list of members can be continued to another line by using a
caret immediately following the last nonblank character at the
end of the directive line. The A does not replace a separator
and must not appear within a member name.

8. Any number of lines can be used to name the members of an overlay.

9. A secondary overlay can only be called by the corresponding
primary overlay.

TYPE 1 OVERLAY EXECUTION

A control statement call of the dataset containing the ROOT overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the ROOT, the dataset $OBD contains the ROOT overlay.

The following sequence executes the root overlay after generation:

LDR, ••• ,OVL~ir, ••••
$OBD.

During overlay generation the members are loaded from the FILE dataset in
the order they appear on the dataset, regardless of their order of
appearance in the members list. The entry for POVL and SOVL overlays is
defined by the first member listed on the generation directive. Control
is transferred to this address after loading by the $OVERLAY routine
during program execution. The ROOT entry is named using the T parameter
on the LDR control statement.

The user calls for the loading of overlays from within the program, and
the method by which they are called depends on the program language in
use (FORTRAN or CAL). OVERLAY is a subroutine of the root overlay and is
loaded into memory with the root.

SR-OOll 14-24 M

FORTRAN language call

A FORTRAN program calls for the loading of overlays as follows:

dn Dataset name or unit number that contains the file
to be skipped. Must be a character constant,
integer variable, or an array element containing
Hollerith data of not more than seven characters.

Primary level number of the overlay

Secondary level number of the overlay

r An optional recall parameter. If the user wishes to re-execute
an overlay without reloading it, 6LRECALL is entered. If not
currently loaded, it will be loaded.

CAL language call

A sample call sequence from a CAL program is as follows:

Location Result

OVLDN
PLEV
SLEV

EXT

C~L

CON
CON
CON

Operand

OWR~Y

OW~y,(OVLDN,PLEV,SLEV)

A'LEV12'L
2
o

where OVLDN is the address of the dataset name, PLEV is the address of
the primary level, and SLEV is the address of the secondary level. If
recall is desired, the address of the literal 'RECALL' is transmitted as
the fourth argument.

SR-OOll 14-25 M

Example:

Location Result Operand Comment
1 10 20 35

CALL OVERLAY, (OVLDN, PLEV , SLEV, RECL)

· · · · · · REeL CON 'RECALL'L

For both FORTRAN and CAL language calls, during execution of the
ROOT (0, 0) program MAIN, the statement

CALL OVERLAY(5LLEV12,2,0) or the above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named
002:000. OVERLAY positions the dataset LEV12 to the location of the
absolute binary named 002:000 using information supplied by the loader,
loads the overlay, and transfers control to the first member specified on
the POVL or SOVL directive. After execution of the overlay, control
returns to the statement in MAIN immediately following the CALL
statement. Following the load, dataset LEV12 is positioned immediately
after the end of record for the overlay (2,0). If overlay (2,0) is not
on dataset LEV12, a fatal error results.

Placing a call for a secondary overlay for which the corresponding
primary overlay is not already loaded causes a fatal error. A fatal
error also results if the primary and secondary overlays are not both on
the named ov Zdn •

TYPE 2 OVERLAY STRUCTURE

Figure 14-3 shows an example of a tree structure of the Type 2 overlay.
There is only one root overlay, and its level number is 0. The root
overlay remains in memory during program execution and calls only level 1
overlays. Only one branch is in memory at any time. Overlay (2,1) under
overlay (1,1) is different from the (2,1) under (1,5). Moreover, overlay
(2,1) under overlay (1,1) can be called only by overlay (1,1)

Figure 14-4 shows a sample Type 2 overlay loading diagram. The overlays
are shown in time sequence. The sequence of generation does not imply
that the programs are loaded into memory in the same sequence or that
they remain in memory for a set period of time when they are executed.

SR-OOll 14-26 M

I
(3,1)

SR-OOll

(1,1) (1,5)

~

ROOT
(0)

I
(1,2)

~
(2,1) (2,2) (2,1) (2,1) (2,4)

I
(3,2) (3,1)

I
(4,1) (4,2)

(1,3)

Figure 14-3. Example of the Type 2 overlay tree

14-27

(1,4)

(2,1)

M

•

I

o

200 8

M

E

M

o

R

y

(2,1)

NAMED COMMON A
PROGRAM MAIN

NAMED COMMON B
SUBROUTINE SUBI

SUBROUTINE SUB2

HEAP

BLANK COMMON

NAMED COMMON C
LEVEL

(1,1)
SUBROUTINE TEST

SUBROUTINE
NEWI

SUB­
ROUTINE

ALPHA

SUB­
ROUTINE

NEW 2

(2,2)

(1,5)

(2,1)

ROOT (0,0)

(1,3)
(1,2)

(2,1) (2,4)

(3,1)

~---------------------~~~~
time ----------~.~

Figure 14-4. Example of Type 2 overlay loading

SR-OOll 14-28 M

Levell overlays are called at various times by the root overlay. Each
call loads the named overlay at the same address, immediately following
the location of the root. The first level overlay must be called by the
root. Each upper level overlay must be called by the associated overlay
at the adjacent lower level. A hierarchy exists among overlay levelsJ
an upper level overlay is subordinate to the proximate lower level
overlay. An upper level overlay associated with overlay (2,1) might be
(3,2), (3,3) or (3,4).

An overlay can call into memory any overlay in the next higher levelJ it
cannot call an overlay more than one level above it in the hierarchy.
For example, overlay (2,1) can call (3,1) through (3,63), but it cannot
call (4,1). Each call for an overlay loads the named overlay at the
same address location immediately following the location of the calling
overlay. Only the root and one overlay at each level can be in memory
concurrently.

All external references must be directed toward an overlay nearer the
root overlay. Overlay (1,1) can contain references to the root overlay
but not to overlay (1,2) or overlay (2,1). The (2,1) overlay can
reference externals in both the (1,1) overlay and the root overlay.

The loader places named common blocks before the routine that first
references it. All named common references must be directed toward a
lower level routine (toward the root overlay). If blank common is
declared in the root overlay, it is allocated at the highest address of
the root and is accessible to all overlays. If blank common is declared
first in a level 1 overlay, for example, and is not declared in the root
overlay, it is accessible only to levelland upper level overlays.

JCHLM is set to the highest address of the root overlay before loading.
If a subsequent overlay module requires additional memory, JCHLM is
reset to the highest address of that module.

TYPE 2 OVERLAY GENERATION DIRECTIVE

The Type 2 overlay directive defines the structure of the overlay within
the directive format.

OVLL directive

This directive causes relocatable loading of the named blocks of an
overlay. The size of the lower level overlays in the group determines
the base location. All members for this directive reside on the same
dataset, dn, specified by the FILE directive. The first member in the
list is the one that receives control when the overlay is loaded. For
programs written in CAL, the first entry point of the first routine
receives control.

SR-OOll 14-29 M

Format:

level Either a level number of the overlay (1 through 10), or the
root phase (0). If the root phase is being generated,
number must be omitted.

number Number of the overlay (1 through 63) within the level

member' Module names for the individual overlays

Generation directive example

In the following example,

DSETI contains routines THETA, TEST, GAMMA, SUBl, MAIN, SUB2.

DSET2 contains routines NEW2, ALPHA, OVER, NEWl, DELTA, EPSILON,
SIGMA, BETA.

Format of the control statement that initializes overlay generation:

LDR, ••• ,OVL=OVLIN, •••

Dataset OVLIN contains the following directives:

FILE,DSETI.

OVLDN, LEVO 0 •

OVLL,O,MAIN,SUBl,
SUB2.

OVLL,l,l,TEST.

FILE,DSET2.

OVLL,2,1,NEWl.

OVLDN, LEVI 2 •

SR-OOll

Loader selectively loads from dataset DSETl.

The following overlay modules are written to the
dataset LEVOO.

The absolute binary of MAIN,SUBl,SUB2 is the first
record on dataset LEVOO.

The binary of TEST is binary record 2 on dataset
LEVOO.

Loader selectively loads from dataset DSET2.

The binary of NEWl is binary record 3 on dataset
LEVOO.

The subsequent overlay modules are written to the
dataset LEV12.

14-30 M

OVLL,2,2,NEW2. The binary of NEW2 is binary record 1 on dataset
LEVI 2.

OVLL,3,1,ALPHA. The binary of ALPHA is binary record 2 on dataset
LEV12.

OVLL,3,2,BETA. The binary of BETA is binary record 3 on dataset
LEV12.

eof End of overlay load sequence.

TYPE 2 OVERLAY GENERATION RULES

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading initially occurs
from $BLD.

2. The overlays are generated in the order of the directives.

3. There must be one and only one root per dataset.

4. Level hierarchy must be maintained. The root overlay must be
generated first. Following the root generation, a first level
overlay is generated. No limitation is placed on which overlay
number is generated; however, all overlays associated with that
first level overlay must follow. The overlays can be generated
in any order; the same restrictions apply for all levels of
overlays (1 through 10).

5. The first level overlay must be called by the root. An overlay
can call into memory any overlay in the next higher level.
However, an overlay cannot call an overlay that is more than
one level above it in the hierarchy.

6. An end-of-file ends the input of overlay directives.

7. Any directive other than FILE, OVLDN, SBCA or OVLL causes a
fatal error.

8. The list of members can be continued to another line by using a
caret immediately following the last character at the end of the
directive line (that is, no blanks). The caret does not replace
a separator and must not appear within a member name.

9. Any number of lines can name the members of an overlay.

SR-OOll 14-31 M

TYPE 2 OVERLAY EXECUTION

A control statement call of the dataset containing the root overlay
initiates the root overlay's loading and execution. If no OVLDN
directives are used before generating the root, the dataset $OBD
contains the root overlay. All overlays reside on the datasets
specified on the overlay directives. The entry for higher level
overlays is defined by the first member listed on the generation
directive. Control is transferred to this address after loading by the
$OVERLAY routine during program execution. The root entry is named
using the T parameter on the LDR control statement.

The following sequence executes the root overlay after generation:

LDR, ••• ,OVL=dir, ••••
$OBD.

When the program is to be executed, the root overlay is brought into
memory as a result of a control statement call in the job deck.
Thereafter, additional overlays are called into memory by the executing
program. Overlay loading allows any overlay to call for the loading of
an adjacent upper level overlay.

The user calls for the loading of Type 2 overlays from within the
program, and the method by which they are called depends on the program
language in use (FORTRAN or CAL). OVERLAY is a subroutine of the root
overlay and is loaded into memory with the root.

FORTRAN language call

A FORTRAN program calls for the loading of Type 2 overlays as follows:

CALL OVERLAY(nLdn,level,number,r)

n

L

level

number

SR-OOll

Number of characters in the name

Left-adjusted; zero-filled.

Dataset name where this overlay resides

Level number of the overlay

Number of the overlay within the level

Optional recall parameter. If the user wishes to
re-execute an overlay without reloading it, 6LRECALL is
entered. If not currently loaded, it will be loaded.

14-32 M

CAL language call

A sample call sequence from a CAL program is as follows:

Location Result

OVLDN
PLEV
SLEV

EXT

CALL

CON
CON
CON

QDerand

OVERLAY

OVERLAY, (OVLDN ,PLEV, SLEV)

A'LEV12'L
2
o

where OVLDN is the address of the dataset name, PLEV is the address of
the primary level, and SLEV is the address of the secondary level. If
recall is desired, the address of the literal 'RECALL' is transmitted as
the fourth argument.

Example:

Location Result Operand Comment
1 10 20 3.5

CALL OVERLAY, (OVLDN,PLEV,SLEV,RECL)

· · · · · · REeL CON 'RECALL'L

For both FORTRAN and CAL language calls, during execution of the ROOT
program MAIN, the statement

CALL OVERLAY(5LLEV12,1,2), or above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named 2.
OVERLAY positions the dataset LEV12 to the location of the absolute
binary named 2 using information supplied by the loader, loads the
overlay, and transfers control to the first member specified on the OVLL
directive. After execution of the overlay, control returns to the
statement in MAIN immediately following the CALL statement. Following
the load, dataset LEV12 is positioned immediately after the end of record
for the overlay 2. If overlay 2 is not on dataset LEV12, a fatal error
results.

SR-OOll 14-33 M

OVERLAY GENERATION LOG

When MAP is specified on the LOR control statement, a listing is obtained
describing where each module is loaded and what entry points and external
symbols are used for loading. This listing is an overlay load map and is
similar to the map of a nonover1ay load. A log of the directives used
follows the map of the last overlay generated. If overlay loading
aborts, the directives are not listed.

SR-OOll 14-34 M

OBJECT LIBRARY MANAGEMENT

BUILD is an operating system utility program for generating and
maintaining library datasets. A libpapy dataset contains a program
file followed by a directory file. Library datasets primarily provide
the loader a means of rapidly locating and accessing program modules.
The program file is composed of loader tables for one or more absolute
or relocatable program modules. The directory file contains an entry
for each program. The entry contains the name of the program module;
the relative location of the program module in the dataset; and block
names, entry names, and external names.

The BUILD program constructs a library from one or more input datasets
named by the user when BUILD is called. A library dataset created by
a BUILD run can be used as input to a subsequent BUILD run. Through
BUILD directives, the user designates the program modules to be copied
from the input datasets to the new library and their order in the
library. However, no directives or control statement parameters are
needed for the most frequent application of BUILD, which is to add new
binaries from $BLD to an existing library of binary programs,
replacing the old binaries where necessary.

BUILD does not use tape datasets.

BUILD CONTROL STATEMENT

Format:

BUILD,I=idn,L=ldn,OBL=odn,B=bdn,NBL=ndn,SORT,NODIR,REPLACE.

Parameters are in keyword form.

15

I=idn Name of dataset containing BUILD directives, if any.
Directives can be included in the $IN dataset, or they can
be submitted in a separate dataset.

SR-OOll

If the I parameter appears alone or is omitted, all
directives are taken from the $IN dataset, starting at its
current position and stopping when an end-of-file is read.

15-1 M

L=ldn

OBL=odn

B=bdn

NBL=ndn

SR-OOll

If I=ddn, all directives are taken from the specified
dataset, ddn, stopping when an end-of-file is read.

If 1=0, no directives are read. The most common condition
is to merge the modules from odn (the OBL dataset) with
those from bdn (the B dataset), replacing OBL modules
with B modules whenever the names conflict, and to write
the output to ndn (the NBL dataset). Note that the input
dataset specified by the B parameter corresponds to the
binary output from CAL and eFT, also designated by B.

Name of list output dataset.

If the L keyword appears alone or is omitted, list output
is written to $OUT.

If L=ldn, list output is written to ldn.

If L=O, no list output is written.

Name of the first input dataset, usually a previously
created library dataset.

If the OBL parameter is omitted or appears alone, the
first dataset read is $OBL.

If OBL=odn, the first dataset read is odn.

If OBL=O, no old binary library exists. This is a
creation run.

Name of the second input dataset, whose modules will be
added to or will replace the modules in the first
dataset.

If the B parameter appears alone or is omitted, the
second dataset read is $BLD.

If B=bdn is specified, the second dataset read is
bdn, which is read to the first end-of-file.

If B=O, no modules are being added. This run edits an
old library.

Name of the output dataset, usually a new library
dataset. If the NODIR parameter is also present, ndn
is not in library format.

If the NBL parameter appears alone or is omitted, output
is written to $NBL.

15-2 M

SORT

NODIR

If NBL=ndn, output is written to ndn.

If NBL=O, no output is written.

Specifies that all modules are to be listed
alphabetically according to their new names. The
default is to list the modules in the order they are
first read. Note that SORT only applies to the list
dataset and not to the output library.

Specifies that no directory is to be appended to the
output dataset, resulting in an ordinary sequential
dataset like $BLD. The default is to append the
directory.

The dataset ndn specified by NBL is not rewound if
NODIR is specified.

REPLACE Specifies that the output library is to contain modules in
the same order as the old library. If omitted, the new
library contains modules from the old library which are not
replaced by modules from the input binary dataset, followed
by modules from the input dataset, whether the module from
the input dataset replace modules from the old library, or
are new, in the order encountered on the input dataset.

Any of the following errors causes BUILD to abort:

• A module specified explicitly in a COpy or OMIT directive is
not in the current input dataset.

• A module specified explicitly in a COpy directive has already
been selected for output.

• Improper syntax is used in the BUILD control statement or in
the directive dataset.

• An unrecognized directive or control statement keyword is used.

• A dataset name or module name is too long or contains illegal
characters.

PROGRAM MODULE NAMES

BUILD directives refer to program modules by their names as given in
the directory or, if the directory is missing or is unrecognizable, by
the names given in the program modules.

SR-OOll 15-3 M

PROGRAM MODULE GROUPS

In the COpy and OMIT directives, program modules with names containing
one or more identical groups of characters can be specified together.
To accomplish this, variable parts of each name are replaced by one or
more hyphens. For example, XYZ- represents all names beginning with
XYZ, including XYZ itself. In the extreme case, a name consisting of
only a hyphen represents all possible names.

In addition, up to eight asterisks can be used anywhere in a name as
wild characters matching any character other than a blank. For
example, GE* specifies a group of modules having 3-character names
including GET and GEM but not GE or GEMS, although GE*S could
represent GEMS.

PROGRAM MODULE RANGES

In order to facilitate the copying of large numbers of contiguous
program modules, the COpy directive allows use of a range specifier
instead of a single name or group specifier. The range specifier has
the general form:

(first,tast)

which means: skip to the first module specified and copy all modules
from the first up to and including the last module specified.

FILE OUTPUT SEQUENCE

If the SORT parameter appears in the BUILD control statement, all
modules are copied alphabetically according to their new names. In
the absence of a SORT parameter, modules are written in the order they
are originally read from the input datasets.

The order of the entries in the directory is always the same as the
order of the modules themselves.

SR-OOII 15-4 M

FILE SEARCHING CONSIDERATIONS

The user need not be aware of the order of modules in the input
dataset unless (1) two or more modules have the same name or (2) a
range is specified in a COpy directive.

If two or more modules with the same name are in the input datasets,
the last of the modules read is the one that survives, unless the user
specifically omits that last module while its original dataset is the
currently active input dataset.

The concept of current position in the input file is used to interpret
range specifiers where the first name is omitted as in (,tast) or (,).
In such cases, the current position is defined to be either immediately
after the last module copied or at the beginning of the dataset if no
modules have yet been copied.

BUILD DIRECTIVES

BUILD is controlled through directives in a dataset defined by the I
parameter on the BUILD control statement. A directive consists of a
keyword and, if the keyword requires it, a list of dataset names or
module names. When names are required, the keyword must be separated
from the first name by a blank; subsequent names (if any) in the list are
separated from each other by commas. Extra blanks are optional except
within the keyword.

A line can contain more than one directive; periods or semicolons are
used to separate directives on the same line from each other. A
directive cannot be continued from one directive line to the next.

Examples of directives:

OMIT ENCODE,DECODE

COpy **CODE.

Examples of multiple directives on one line:

FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE

FROM $BLD. LIST.

SR-OOll 15-5 M

FROM DIRECTIVE

A FROM directive names a single dataset, which is thus established as
the input dataset for succeeding COPY, OMIT, and LIST directives, or
it lists several datasets that (except for the last dataset in the
list) are to be copied in their entirety to the output dataset
($NBL). The last dataset in the list is established as the current
input dataset, just as if it were specified alone in the FROM
directive. If no COpy or OMIT directive follows, the last dataset is
also copied in its entirety to the output dataset.

An input dataset can be a library (with a directory) or an ordinary
sequential dataset (such as $BLD). BUILD always determines whether a
directory is present at the end of the dataset and attempts to use it
if it is there. A library dataset is treated as sequential if its
directory file is unrecognizable any reason.

Format:

The following rule allows the user to copy several datasets with one
FROM directive or to omit COpy (which means copy all) when it would be
the only directive (except for OMIT directives) in the range of a
particular FROM directive:

If any dataset named on a FROM directive is not acted on by any
LIST or COpy directive, then BUILD copies all of the modules
belonging to that dataset. BUILD takes this action when it
encounters the next FROM dataset name or the end of the directive
file, whichever comes first.

If there are two input datasets to be read as soon as BUILD begins to
execute (that is, if neither OBL=O nor B=O is specified), the modules
from these two datasets are treated as if they belong to a single
dataset as far as the OMIT, COPY, and LIST directives are concerned.
However, if either of them is named in a FROM directive, it is treated
as a separate dataset and OMIT, COPY, and LIST directives apply only
to whichever is the current input dataset.

OMIT DIRECTIVE

The OMIT directive allows a user to specify certain modules otherwise
included in a group be omitted from the group on subsequent copy
operations. An OMIT affects modules on the current input dataset
only; its effect ends when a FROM directive is encountered.

SR-OOll 15-6 M

Format:

Each fni can be one of the following:

• A single name, such as $AB@CDEF or CAB22, by which binary
records can be explicitly prevented from being copied, or

• A group name, such as F$- or *AB**, by which binary records are
prevented from being copied unless they are specified
explicitly (that is, singly) in a COpy directive (see the
introduction to this chapter under Program Module Groups for a
description of * and - usage).

If an fn parameter specifies a module not in the input dataset or a
group of modules having no representatives in the input dataset, a
diagnostic message is included in the list output and BUILD aborts.

COpy DIRECTIVE

COpy directives cause BUILD to select the specified modules for
copying from current input dataset to the output dataset. The user
specifies single modules, groups of modules, or ranges of modules to
be copied. If the user specifies a module not in the current input
dataset, a diagnostic message is included in the list output and BUILD
aborts.

Format:

Each fni is either of the two forms valid in OMIT directives:

• A single module name by which modules are explicitly selected
for copying even if they belong to a group named in a previous
OMIT directive, or

• A group specifier by which all the modules in the group are
selected for copying unless they are specified either
explicitly or implicitly in a previous OMIT directive.

SR-OOll 15-7 M

In addition, two special forms are allowed for each fni in COpy
directives:

• A form to rename a single module whose old name is specified
explicitly; for example, OLDNAME=NEWNAME. (The name is changed
both in the output directory and in the module's Program
Description Table.)

• A form to copy an inclusive range, as in (FIRST,LAST), by which
all the modules in the range are selected for copying unless
they are specified either explicitly or implicitly in a
previous OMIT directive.

These two forms are mutually exclusive. A module copied by being
included in a range cannot at the same time be renamed. Nor can
either form accept a hyphen or asterisk specifying a group of modules.

Examples:

BUG=ROACH

(LOKI,THOR)

(THOTH,)

(,ISIS)

(,)

Copies BUG, renaming it to ROACH

Copies all modules from LOKI through THOR

Copies all modules from THOTH to the end of the
input dataset

Copies all modules from the current dataset
position-through ISIS

Copies all modules from the current dataset
position to the end of the input dataset

The current dataset position is defined as the beginning of the input
dataset if no modules have been selected for copying yet, or else as
the beginning of the record immediately after the last module that has
been selected for copying.

LIST DIRECTIVE

The LIST directive tells BUILD to list the characteristics of the
modules in the current input dataset. Its effect is immediate.
(BUILD's standard list output describes the contents of the output
dataset and is produced at the end of the run so as not to interfere
with output triggered by LIST directives.)

SR-OOll 15-8 M

Format:

EXAMPLES

The following are examples of various uses of the BUILD program:

• Creating a new library dataset, using as input whatever binary
modules have been written out to $BLD (for example, by CAL
and/or CFT).

Control statements:

BUILD,OBL=O,I=O.
SAVE,DN=$NBL,PDN=MYLIB.

• Adding one or more modules to an already existing library
dataset, again taking the input from $BLD.

Control statements:

ACCESS,DN=$OBL,PDN=MYLIB.
BUILD,I=O.
SAVE,DN=$NBL,PDN=MYLIB.

Any modules whose names were already in the directory of MYLIB
are replaced by the new binaries from $BLD in the new edition
of MYLIB that is created by BUILD and saved by the SAVE control
statement.

• Merging several libraries.

SR-OOll

Control statements:

ACCESS,DN=LIBONE,PDN=HERLIB.
ACCESS,DN=LIBTWO,PDN=HISLIB.
ACCESS,DN=ANOTHER,PDN=ITSLIB.
ACCESS,DN=LASTONE,PDN=MYLIB.
BUILD,I,OBL=O,B=O.
SAVE,DN=$NBL,PDN=NEWLIB.

15-9 M

Directives:

FROM LIBTWO,ANOTHER,LIBONE,LASTONE

The order of the dataset names in the FROM directives, not the
order of the ACCESS control statements, determines the order of
processing. If two datasets contain modules of the same name,
the surviving module is the one in the dataset whose name
occurs later in the FROM directive. (Any module could be
renamed before input from a succeeding dataset is begun, in
order to prevent it from being discarded. Note the section on
File Searching Considerations in the introduction to this
chapter for a description of the interaction with OMIT
d irecti ves.)

• Deleting a program module from a library.

Control statements:

ACCESS,DN=$OBL,PDN=MYLIB.
BUILD,B=O.
SAVE,DN=$NBL,PDN=MYLIB.

Directive:

OMIT BADPROG

• Extracting a program module from a library for input to the
system loader, using the local dataset name $BLD as the
intermediate file.

SR-OOll

Control statements:

ACCESS,DN=XXX,PDN=MYLIB.
BUILD,I,OBL=XXX,B=O,NBL=$BLD,NODIR.

Directive:

COpy RUNPROG

15-10 M

JOB CONTROL LANGUAGE
STRUCTURES

16

This section discusses three aspects of job control language structures:

• Control statements

• Job control language expressions

• Procedures

CONTROL STATEMENTS

The COS job control language allows three fundamental logic structures:

• Simple oontrol statement sequenoes. Control statements are
processed one after another.

• Conditional oontrol statement blooks. A sequence of control
statements is processed only if the specified condition is met.

• Iterative oontrol statement blooks. A sequence of control
statements is processed repetitively until the specified condition
is met.

Most computer algorithms can be expressed in terms of the three above
structures or as combinations of them.

SIMPLE CONTROL STATEMENT SEQUENCES

A simple control statement sequence is a series of one or more of the
control statements described in sections 6 through 15 of this manual.
The individual control statements are processed sequentially as described
in section 3 of this manual.

SR-OOll 16-1 M

CONDITIONAL CONTROL STATEMENT BLOCKS

A conditional control statement block is a group of control statements
that is processed only if a specified condition is met. The control
statements IF, ELSE, ELSEIF, EXITIF, and ENDIF allow other control
statements to be placed in a conditional block structure.

• IF defines the beginning of a conditional block.

• ENDIF defines the end of a conditional block.

• ELSE is used to define an alternate condition.

• ELSEIF defines an alternate condition to test when the previous
one tested is false.

• EXITIF defines a condition which causes an escape from a
conditional block.

ELSE, ELSEIF, and EXITIF sequences are optional.

IF - Begin conditional block

The IF control statement defines the beginning of a conditional block.
Each IF control statement must have a corresponding ENDIF control
statement. IF is a system verb.

Format:

IF (expression)

Parameter:

expression
A valid JCL expression (discussed later in this section).
This parameter is required.

ENDIF - End conditional block

The ENDIF control statement defines the end of a conditional block. END IF
is a system verb.

SR-OOll 16-2 M

Format:

Parameters: None

ELSE - Define alternate condition

The ELSE control statement is used to define an alternate condition. An
IF statement, as well as any ELSEIF statements, must precede the ELSE
control statement. If all conditions specified by the IF and ELSEIF
statements that precede the ELSE in the conditional block test as false,
then the sequence of statements that follow the ELSE statement is executed.

Within a conditional block, only one ELSE sequence is permitted. The ELSE
statement, if present, must follow any ELSEIF statement.

ELSE is a system verb.

Format:

Parameters: None

ELSE IF - Define alternate condition

The ELSE IF control statement defines an alternate condition to test if the
previously tested condition was false. The sequence of statements
following the ELSEIF statement is executed when the ELSEIF expression is
true. All ELSE IF control statements must precede the optional ELSE
control statement for a conditional block. An ELSEIF statement without a
previously processed IF statement results in a job step abort. An
unlimited number of ELSEIF sequences can be used in a conditional block.

ELSEIF is a system verb.

Format:

ELSEIF(exppession)

SR-OOll 16-3 M

Parameter:

exppession
A valid JCL expression (discussed later in this section).
This parameter is required.

A conditional block can contain any number of ELSEIF control statements.
The block of control statements following an ELSEIF statement is processed
under the following conditions:

• The expression for the IF statement is false.

• All preceding ELSEIF statement expressions are false.

• The ELSEIF expression is true.

EXITIF - Exit from conditional block

The EXITIF control statement defines the conditions that must be met so
that the remaining control statements in the conditional block are
skipped. EXITIF is a means of skipping to the ENDIF statement without
regard to EXIT statements. If the EXITIF expression is true, the
remainder of the conditional block is skipped; if the expression is false,
the control statements which follow the EXITIF statement are executed.

EXIT IF may appear anywhere within a conditional block. An EXITIF
statement that is not within a conditional block causes a job step abort.
When conditional blocks are nested, the EXITIF control statement applies
to the innermost conditional block which contains it.

EXITIF is a system verb.

Formats:

EXITIF.

EXITIF(exppession)

Parameter:

exppession

SR-OOll

A valid JCL expression (discussed later in this section).
If expression is omitted, the remainder of the block is
skipped unconditionally.

16-4 M

Conditional block structures

The conditional block is first scanned to verify the validity of the
block's syntax. If any syntax errors exist, the block is skipped without
being evaluated and a job step abort error occurs. Note that any EXIT
control statements within the conditional block are ignored when a syntax
error exists in that conditional block. This validation occurs when the
control statement file, where it is contained, is invoked. (Validation
occurs at job initiation if the control statement file is $CS, it can also
occur at the time that a procedure is invoked, or when a CALL statement is
encountered.)

Null sequences (for example, an ELSE statement immediately following an
ELSEIF) are ignored without comment.

Conditional blocks can be constructed in the following ways:

• Basic conditional block

• Conditional block with ELSE

• Conditional block with ELSEIFs

• Conditional block with ELSEIFs and ELSE

Basic conditional block - The format of a basic conditional block (figure
16-1) begins with an IF statement and ends with an ENDIF statement. When
the IF statement expression is true, the control statement sequence that
follows is processed. If the expression is false, the control statement
sequence is not processed.

SR-OOll

ENOIF.

F-= - --=--~
Iill =-- -==-- -===-~
11: 1 control statement ~

-111
1

sequence

II I IF (expression)
~
~-

Figure 16-1. Basic conditional block structure

16-5 M

Example:

Following is an example of the conditional block structure.

ACCESS,DN=MYPROG.
MYPROG.
EXIT.
IF (PDMST.EQ.l)

*
* UNEXPECTED JOB STEP ABORT ERROR

*
EXIT.

ENDIF.

In this example, if the ACCESS request or execution of MYPROG fails, the
conditional block after the EXIT control statement is processed. The
conditional block determines if the job step abort occurred because the
ACCESS (for example, the dataset was not found), in which case the
processing of control statements resumes after the ENDIF control
statement. If this is not the reason for the abort, the job terminates
with the EXIT control statement.

Following is an example of a conditional block using EXITIF.

ACCESS,DN=MYPROG,NA.
IF (PDMST.NE.l)

*.
*
*
ENDIF.
MYPROG.

UPDATE (Q=MYPROG)
CFT(I=$CPL,ON=A)
LDR(AB=MYPROG,NX,USA)
SAVE (DN=MYPROG,NA)
EXITIF.
EXIT.

ERROR GENERATING MYPROG

EXIT.

In this example, a conditional block is used to generate a dataset if that
dataset is not found. EXITIF is used to skip the remaining statements in
the conditional block if the dataset is generated successfully.
Otherwise, the job terminates.

Conditional block with ELSE - The second conditional block structure
includes the ELSE control statemen.t. The control statement sequence is
processed if the expression on the IF statement is true. If the
expression is not true, the sequence following the ELSE statement is
processed. The block structure is illustrated in figure 16-2.

SR-OOll 16-6 M

ENDIF.

I F(expression)

Figure 16-2. Conditional block structure including ELSE

Example:

An example of a conditional block structure using the ELSE statement
follows.

ACCESS,DN=INITJCL.
ACCESS,DN=PREPROG.
ACCESS,DN=PROG.
PREPROG.
IF(JSR.NE.O)

CALL,DN=INITJCL.
SWITCH,l=ON.

ELSE.
SWITCH,l=OFF.

ENDIF.
PROG.

After PREPROG is executed, the conditional block determines if PREPROG has
successfully executed (by its setting of JSR). The procedure INITJCL
is executed and a sense switch is set if JSR is nonzero. The sense
switch is cleared if PREPROG set JSR to zero.

Conditional block with ELSE IF - The third conditional block structure
(figure 16-3) includes one or more ELSEIF statements. Each logical
expression on the IF and ELSEIF statements is tested in sequence until a
true condition is found; then the corresponding control statement sequence
is processed.

SR-OOll 16-7 M

ENDIF.

IF(expression

Figure 16-3. Conditional block structure including ELSEIF

A conditional block can contain any number of ELSE IF control statements.
The block of control statements following an ELSEIF statement is processed
under the following conditions:

• The expression for the IF statement is false.

• All preceding ELSE IF statement expressions are false.

• The ELSEIF expression is true.

Example:

An example of a deck including the ELSE IF statement is:

IF (SYSID.EQ. 'COS 1.07')
ACCESS,DN=$FTLIB,ID=Vl07.

ELSEIF(SYSID.EQ.'COS 1.OS')
ACCESS,DN=$FTLIB,ID=VlOS.

ELSEIF(SYSID.EQ.'COS 1.09')
ACCESS,DN=$FTLIB,ID=Vl09.

ENDIF.
LDR,NOLIB,LIB=$FTLIB.

This conditional block tries to access the correct version of the FORTRAN
library, $FTLIB, for the execution of the loader following the conditional
block.

SR-OOll l6-S M

Conditional block with ELSEIF and ELSE - The fourth conditional block
structure, shown in figure 16-4, uses ELSEIF and the ELSE statements. A
block can contain any number of ELSEIF statements but can contain only one
ELSE, which must be the last conditional statement before the ENDIF.

The ELSE control statement sequence in this case is processed only if:

• The expression on the IF statement is false, and

• All ELSEIF statement expressions are also false.

Example:

ENDIF.

---=-----
control statement

sequence

IF (exppession)

Figure 16-4. Conditional block structure including
ELSEIF and ELSE

This example is an expansion of the example for the third format and
allows execution of the compiled program if there is enough time left and

SR-OOll 16-9 M

if the correct library is accessible. On a successful run, the dataset
called RESULTS is disposed as a staged dataset.

IF (TlMELEFT.GT.175)
IF (SYSID.EQ. 'COS 1.08')

ACCESS,DN=$FTLIB,ID=V108.
ELSEIF(SYSID.EQ.'COS 1.09')

ACCESS,DN=$FTLIB,ID=V109.
ELSE.

*
* CURRENT SYSTEM LEVEL NOT RECENT ENOUGH
*.
EXIT.

ENDIF.
LDR,NOLIB,LIB=$FTLIB.
SET,Jl='YES'L.

ELSE.
SET,Jl='NOTlME'L.

ENDIF.
IF(Jl.EQ.'YES'L)

DISPOSE,DN=RESULTS,DC=ST.
ELSE.

*
* JOB DID NOT RUN TO NORMAL COMPLETION

ENDIF.
EXIT.

ITERATIVE CONTROL STATEMENT BLOCKS

An iterative control statement block is the third fundamental logic
structure allowed by the COS job control language. It contains a control
statement sequence that is to be processed more than once during the
processing of a job.

• LOOP defines the beginning of an iterative block.

• ENDLOOP defines the end of an iterative control statement block.

• EXITLOOP defines the conditions under which the control statement
block iteration is to end.

LOOP - Begin iterative block

The LOOP control statement is required to define the beginning of an
iterative block. An ENDLOOP control statement is required at the same
nesting level to terminate the iterative block. LOOP is a system verb.

SR-OOll 16-10 M

Format:

Parameters: None

ENDLOOP - End iterative block

The ENDLOOP control statement terminates an iterative control statement
block. If an END LOOP control statement occurs without a preceding LOOP
statement at the same nesting level, a job step abort occurs. Execution
of the ENDLOOP statement results in control being passed to the preceding
LOOP statement which begins another iteration of the loop.

Format:

Parameters: None

EXITLOOP - End iteration

The EXITLOOP control statement defines the conditions under which the
control statement block iteration is to end. If its expression is true,
the loop is exited; if it is false, the control statements which follow
are executed.

An EXITLOOP statement that does not appear within an iterative block
causes a job step abort. When nesting iterative control statement blocks,
the EXITLOOP control statement defines the exit conditions for only the
most immediate iterative block. EXITLOOP is a system verb.

Formats:

EXITLOOP.

EXITLOOP(expression)

SR-OOll 16-11 M

Parameter:

expression
Optional valid JCL expression (discussed later in this
section). If omitted, an unconditional exit from the
iterative block occurs.

Figure 16-5 illustrates an iterative control statement block.

ENDLOOP.

Figure 16-5. Iterative block structure

Iterative blocks are prescanned for syntax errors before actual processing
begins. Any errors in the block structure cause a skipping of that block
followed by a job step abort. If an iterative block is included within a
conditional block, it must be totally contained within that conditional
block.

Example:

The following example merges the two datasets DSINl and DSIN2 for 60
records.

SET,Jl=O.
SET,J2=60.
LOOP.

EXITLOOP(J2.EQ.0)
IF(Jl.EQ.O)

COPYR,I=DSIN1,O=OUTDS.
SET,Jl=l.

SR-OOll 16-12 M

ELSE.
COPYR,I=DSIN2,O=OUTDS.
SET,Jl=O.

ENDIF.
SET,J2=J2-l.

ENDLOOP.
REWIND,DN=DSINl:DSIN2:0UTDS.

JOB CONTROL LANGUAGE EXPRESSIONS

Much of the power of the control statements described in this section
derives from the use of exppessions. Expressions allow operations such
as incrementing counters, checking error codes, and comparing strings.

An exppession is a stping consisting of opepands and opepatops.
Expressions are evaluated from left to right, honoring nested parentheses
and operator hierarchy. This subsection begins by defining operands and
operators, and ends by discussing expression evaluation and strings.

OPERANDS

Expression opepands are of four types:

• Integer constants

• Literal constants

• Symbolic variables

• Subexpressions

Integer constants

An integep oGnstant is a character string with two possible forms:

~ ddd •••

nnn ••• B

d is a decimal digit and n is an octal digit.

An integer constant has an approximate decimal range O~III~1019. Range
overflow is not detected and overflow results may be unpredictable.

SR-OOll 16-13 M

Literal constants

A literal aonstant is a string of one to eight characters of the form:

·aaa ••• ·L
·aaa ••• ·R
·aaa ••• ·H

a is a character code with an ordinal number in the the range 040
(octal) through 176. The value of a character constant corresponds to
the ASCII character codes positioned within a 64-bit word. Alignment is
indicated by the following suffixes:

L Left-adjusted, zero-filled
R Right-adjusted, zero-filled
H Left-adjusted, space-filled,

If no suffix is supplied, H is assumed.

Symbolic variables

A symbolia variable is a string of one to eight alphanumeric characters,
beginning with an alphabetic character.

A symbolic variable always has an associated value. COS defines a set of
symbols when the job is initiated. Symbols are mnemonics for values
maintained by COS and/or the user. The user can manipulate the group of
symbols listed in table 16-1 through COS control statements or through
system requests.

Certain symbols allow communication between COS and the job being
processed. Used in the JCL block control statements defined in this
section, these symbols provide the user with powerful tools for analyzing
the progress of a job. For example, a job can request the reason for an
abort situation and proceed, based on the reply from COS, through the use
of conditional control statements.

Symbols that are preserved over subprocedure calls are called loaal to
a procedure; they are saved when a subprocedure is called. Those that
are not preserved are global over all procedures and can be altered by
any procedure. Constants are symbols that are never altered.

Information on predefined symbols is summarized in table 16-1. In table
16-1, the only local symbols are JO through J7.

SR-OOll 16-14 M

Symbol

JO-J7

GO-G7

JSR

FL

FLM

SYSID

SID

SN

SSWn

ABTCODE

TRUE

U User
S COS

Table 16-1. Symbolic variable table

Set by Range Description

U Any 64-bit value Job pseudo-registers; represent
user-alterable data local to a
procedure. Each procedure level can
be considered to have its own set of
J registers.

U

U

S

S

I

I

I

S

S

I

Any 64-bit value

Any 64-bit value

0-777777778

0-777777778

Literal value

Literal value

64-bit integer

Global job pseudo-registers;
represent user-alterable data global
over all procedure levels. Data can
be passed into or returned from
procedures with the G registers.

Job status register; previous job
step completion code (normally 0).

Current job field length; can be
set with MEMORY statement.

Maximum job field length; determined
by JOB statement.

COS system level of the form
·COS X.XX·

Mainframe identifier for front-end
of job origin; 2 right-justified
ASCII characters.

CPU serial number

Job pseudo sense switch settings;
can be set with the SWITCH statement.

System error codes COS job abort code; abort code
(See Appendix D) corresponding to the last job step
O-nnn abort. The abort code corresponds

-1

to the abort message number (the
nnn in ABnnn) issued by COS.

True value

I System constant

SR-OOll 16-15 M

Table 16-1. Symbolic variable table (continued)

Symbol

FALSE

TIME
hh:rron:ss

DATE

TIMELEFT

PDMFC

PDMST

U User
S COS

Set by

I

S

S

S

S

S·

I System constant

Subexpressions

Range

0

Literal value

Literal value

64-bit integer

64-bit value

64-bit value

Description

False value

Time of day in the form:

Date in the form: mm/dd/yy

Job time remaining in milliseconds
as an integer value

Most recent user-issued Permanent
Dataset Manager request. See
Appendix D.

Status of most recent Permanent
Dataset Manager request. See
Appendix D.

A subexpression is an expression that is evaluated so that its result
becomes an operand.

OPERATORS

Expression opepatops are of three types:

• Arithmetic

• Relational

• Logical

These operators are used in the FORTRAN sense. The expression operators
are detailed in table 16-2.

SR-OOll 16-16 M

Table 16-2. Expression operator table

Type Function

A Addition

A Unary plus

A Subtraction

A Unary minus

A Multiplication

A Division

R Equal

R Not equal

R Less than
R Greater than

R Less than or
equal

R Greater than or
equal

L Inclusive OR

L Intersection

L Exclusive OR

L Unary complement

A Arl.thmetl.c
R Relational
L Logical

SR-OOll

Symbol Results

+ 64-bit sum of operands

+ Following integer operand is positive.

- 64-bit difference of operands

- Following integer operand is negative.

* 64-bit product of operands

/ 64-bit quotient of operands

.EQ. True/false

.NE. True/false

.LT. True/false

.GT. True/false

.LE. True/false

.GE. True/false

.OR. A 1 bit in either operand sets
corresponding bit in the result •

• AND. A 1 bit in both operands sets
corresponding bit in the result.

.XOR. A 1 bit is set in the result if
either (but not both) corresponding
bit in the operands is 1 •

• NOT. A 1 bit (or 0) is set in the result
if the corresponding operand bit is 0
(or 1).

16-17 M

Arithmetic operators

All arithmetic operations are performed on 64-bit integer quantities.
Care must be used with arithmetic operators because:

• Multiplication/division underflow or overflow of the result is not
detected,

• Division by zero produces a zero result, and

• Intermediate and final results are truncated. For example,
2*(13/2) yields 12 whereas (2*13)/2 yields 13.

Relational operators

Relational operations return a -1 value for a TRUE result and a 0 value
for a false result. A value produced by an arithmetic or logical
operation is considered true if it is a negative value.

Logical operators

Logical operations return a 64-bit result. Their functions are
performed on a bit-by-bit basis.

EXPRESSION EVALUATION

Expressions are evaluated from left to right, honoring nested
parentheses. The operator hierarchy is:

1. Multiplication and division
2. Addition, subtraction, and negation
3. Relational operation
4. Complement (.NOT.)
5. Intersection (.AND.)
6. Inclusive OR (.OR.)
7. Exclusive OR (.XOR.)

Parentheses can be used to change the order of evaluation. For example,
2+3*4 is evaluated as 14 whereas (2+3)*4 is evaluated as 20.

SR-OOll 16-18 M

I

STRINGS

CAUTION

Because COS does not check for type, the results of
expression evaluation may not be as expected. For
example, although both Jl.EQ.l and J2.EQ.2 are TRUE,
(Jl .AND. J2) is FALSE.

A stping is a group of characters which is to be taken literally as a
parameter value.

• Strings are normally delimited with apostrophes, in which case
they are referred to as literal strings.

• Strings can also be delimited with open and close parentheses, in
which case they are referred to as parenthetie strings.

Characters in a string can be any ASCII graphic characters (codes 0408
through 1768).

Literal strings

Apostrophes are never treated as part of a literal string during
evaluation except when doubled or when the literal string is a part of an
expression (see examples). To continue literal strings across card
images, place an apostrophe followed by a continuation character at the
end of the line, and place the remainder of the string on the next card
image preceded by an apostrophe. Characters otherwise recognized as
separators are not evaluated as such when part of a literal string.
Doubled apostrophes within a literal string are interpreted as a single
apostrophe. A literal string without characters is the null string.

Examples:

String

••• ·LITERAL STRING'

••• ·LITERAL STRING·A
'ACROSS CARD IMAGES'

SR-OOll

Interpretation

LITERAL STRING

LITERAL STRINGACROSS CARD IMAGES

16-19 M

I

String Interpretation

• •• 'WON' 'T SHOW' WON'T SHOW

• •• 'LITERAL 1\ STRING' LITERAL 1\ STRING

, , Null string

••• IF (GO.EQ.'COS1.Ol'L) GO.EQ.'COS1.Ol'L

Parenthetic strings

There are two main differences between parenthetic strings and literal
strings: in parenthetic strings, (1) blanks are removed, and (2) some
separators are evaluated. The separators are evaluated as follows:

• If apostrophes appear in a parenthetic string, the enclosed
characters are interpreted as a literal string.

• The continuation character is interpreted within a parenthetic
string.

• Nested parentheses within a parenthetic string are not treated as
separators.

Examples:

String

••• (LITERAL STRING)

••• (LITERAL STRING
ACROSS CARD IMAGES)

• •• (WON' 'T SHOW)

••• « NESTED PARENTHESES »

••• (STRING 'LITERAL STRING')

••• (CLOSED PARENTHESIS') ')

••• (KEYWORD=ABC.DEF)

· .. (

· .. ()

SR-OOll

Interpretation

LITERALSTRING

LITERALSTRINGACROSSCARDlMAGES

WONTS HOW

(NESTEDPARENTHESES)

STRINGLITERAL STRING

CLOSEDPARENTHESIS

KEYWORD=ABC.DEF

Null string

Null string

16-20 M

PROCEDURES

Just as FORTRAN programs can be divided into separate modules called
subprograms, control statement sequences can be divided into modules
called ppocedupes. A ppocedupe is a sequence of control statements
or data or both that have been saved for processing at a later time.
Procedures simplify control statement use in three ways:

• Generalized procedures can be written to perform many similar
tasks. Work is saved because a new control statement sequence
need not be written to perform each separate task.

• Complex control statement structures can be decomposed into
separate subtasks, with a separate procedure written for each
subtask. Such modularization reduces the job's design complexity
and allows each subtask to be individually tested.

• Procedure libraries can be built. Procedures need be defined only
once and placed in a library; different jobs and users can use the
procedures and make them part of their own control statement
structures.

Procedures have two formats:

• A simple ppocedupe consists of only the control statement body.

• A complex ppocedupe consists of a prototype definition
statement, control statement body, and optional data.

SIMPLE PROCEDURES

A simple procedure is a series of control statements that does not reside
in the primary control statement dataset ($CS). No parameter
substitution occurs in a simple procedure.

Since a simple procedure has no name associated with it, a simple
procedure can only reside in a nonlibrary dataset. It therefore, must be
invoked with the CALL control statement without the CNS parameter.

Example:

The first file of dataset MOVER contains five control statements. The
five control statements can be executed with the following procedure
calling statement:

CALL,DN=MOVER.

SR-OOll 16-21 M

In the above example, interpretation of control statements from dataset
MOVER terminates when a RETURN statement is encountered (see section 7 of
this manual), when the end of the first file (in dataset MOVER) is
reached, or an EXIT statement.

COMPLEX PROCEDURES

A complex procedure provides the capability of replacing values within
the procedure body with values supplied from the procedure call. These
values are called substitution parameters and are governed by the
prototype statement of the procedure.

A complex procedure can reside in a library or nonlibrary dataset.

Complex procedures are invoked (executed) in one of two fashions:

• Procedure name call. The procedure must first reside in a known
control statement library (either $PROC or a local dataset named
with a LIBRARY control statement); the procedure is called
(invoked) by using the procedure name as the control statement
verb.

• CALL statement call. The procedure must reside in the first file
of a separate dataset; the dataset is named in the CALL control
statement. The CNS (crack next statement) parameter must be used
for the operating system to properly recognize and process the
procedure prototype statement. PROC and ENDPROC are not used with
CALL.

Complex procedures can be defined within the control statement stream
(in-tine definition) or as input to the BUILD utility.t When
an in-line procedure definition is encountered in the JCL control
statement file, it is processed and written to the system default library
$PROC. See example 8 later in this section for an example of how to
create a user permanent procedure library.

A complex procedure can contain format parameters that define what
sUbstitution is to occur in the procedure body. A character string that
is eligible for sUbstitution is listed in the prototype statement as a
format parameter speeifieation. This name, when preceded by an
ampersand in the definition body, indicates that a value is to be
substituted during procedure invocation. COS replaces the ampersand and
parameter name with corresponding value supplied by the procedure
invocation. If the parameter listed in the prototype statement is not
preceded by an ampersand in the body, sUbstitution does not occur. If
two ampersands precede the string, one is removed and substitution is
inhibited.

t BUILD currently does not suppport procedure entries in libraries.

SR-OOll 16-22 M

Any string consisting of one through eight characters (ampersand
included) can be selected for substitution.

When a statement in the current control statement file calls a procedure,
COS searches the definition body for the character strings preceded by
ampersands. For each occurrence, COS substitutes the values supplied by
either the calling statement or the prototype statement.

Whereas simple procedures consist only of a control statement body,
complex procedures contain five elements as shown in figure 16-6.

• PROC defines the beginning of an in-line procedure definition
block.

• The prototype statement specifies the name of the procedure and
identifies character strings within the procedure that are to be
sUbstituted when the procedure is called. COS uses values
supplied with the procedure call and default parameter values from
the prototype statement to replace these strings.

• The procedure definition body is a sequence of COS control
statements processed as part of the current control statement file
when the procedure is called. It can optionally include lines of
text data preceded in the definition body by an &DATA control
statement.

• &DATA introduces text information to be included in the procedure
definition body, and names the dataset to be created and written
to when the procedure is invoked. When the procedure is invoked,
the named dataset is created and the text information is available
in that local dataset, including any substitutions resulting from
the call. This temporary dataset remains local and allows
programs such as CAL or CFT to use the temporary dataset as source
data.

• ENDPROC indicates the end of an in-line procedure definition block.

The first control statement in an in-line procedure is PROC1 the last is
ENDPROC. A prototype statement follows PROC providing the name of the
procedure and optionally a list of parameters that identify the
substitution values within the definition body.

In addition to defining the values to be substituted, the prototype
statement parameters control the selection or omission of the parameters
and define the default value assignments. The control statements and
data to be processed are contained in the definition body. The control
statements are grouped in a sequence.

SR-OOll 16-23 M

ENDPROC.

F-- -_ --=- ~
1"11'1= ~

-- /1:1 definition body

II/I
III prototype statement ,
~ PROC. -

--

•

I
COS control
statements

Figure 16-6. Procedure definition deck structure

If data is included in a procedure, the data is preceded by an &DATA
statement and follows the control statement sequence. The &DATA
statement also includes the name of the dataset to which the data is to
be written after processing so that programs can use the data as source
data.

A definition can be placed within a definition1 such nesting can occur to
any level. However, nested definitions do not become defined until the
outermost procedure is invoked.

PROC - Begin procedure definition

The PROC control statement defines the beginning of an in-line procedure
definition block. PROC is a system verb.

SR-OOll 16-24 M

Format:

Parameters: None

Prototype statement - Introduce a procedure

The prototype control statement has two functions: (1) to specify the
name of the procedure and (2) to provide the fopmal papametep
specifications that define where sUbstitution is to occur within the
definition body. Value substitution is described later in this section.

Format:

Parameters:

name

Pi

SR-OOll

Procedure name; 1 to 8 alphanumeric characters. The
name should not be the same as a system verb; if it
is, the results are unpredictable.

Formal parameter specifications, using one of the
formats listed below. A formal parameter identifies a
character string within the definition body. All
formal positional parameters, if any, must precede all
formal keyword parameters; if they do not, the
procedure definition is in error and the job aborts.

positional formal parameter specification

keYi= dvalue:kvalue
Keyword formal parameter specification as
follows:

dvalue

Formal keyword parameter

Optional default value; this
value is substituted if entire
keyword parameter is omitted from
the calling statement.

16-25 M

PROCEDURE DEFINITION BODY

kvaLue Optional keyed default value1
this value is substituted if the
keyword is present but no value
is specified.

Special cases:

Provides no default values and
requires the caller to provide a
non-null value.

Provides no default values,
but allows the user to specify
keYi= or just keYi.

The procedure definition body consists of a sequence of COS control
statements processed as part of the current control statement file when
the procedure is called. (It can optionally include lines of text data
preceded in the definition body by an &DATA control statement. See
& DATA , which follows.)

The prototype statement identifies character strings within the
procedure that are to be substituted when the procedure is called. COS
uses values supplied with the procedure call and default parameter
values from the prototype statement to replace these strings.

An ampersand (&) must precede each parameter to be substituted
(substitution papametep) within the definition body. If a parameter
appears in the prototype, a matching string in the body is found but not
preceded by an ampersand, substitution does not occur.

&DATA - Procedure data

Data can be included within the procedure definition body after the
procedure data card.

The dn parameter creates a temporary dataset composed of the data
identified in the procedure, including any substitutions resulting from
the call. This temporary dataset allows programs such as CAL or CFT to
use it as source data.

SR-OOII 16-26 M

Format:

&DATA,dn.

Parameter:

dn Name of dataset to contain the data that follows; dn is
required.

The initial separator for an &DATA statement can be a blank, comma, or
an open parenthesis; the statement terminator can be a blank, period, or
a close parenthesis.

An &DATA specification cannot be continued to subsequent cards. All
card images following an &DATA card up to the next &DATA card are
written to the specified dataset after string substitution is
performed. See example 7 later in this section.

ENDPROC - End procedure definition

The ENDPROC control statement indicates the end of an in-line procedure
definition block. ENDPROC is a system verb.

Format:

Parameters: None

PARAMETER SUBSTITUTION

Formal parameter specifications can be selected for substitution.
Character strings to be substituted are delimited by any character other
than numerals, alphabetics, commercial at (@), dollar sign ($), and the
percent sign (%). An ASCII underline is used as a string delimiter when
the next character is one of these characters. See example 3 later in
this section. COS deletes the underline after evaluating the string it
delimits. Thus, the underline concatenates the strings it delimits.

Formal parameter specifications can be in positional or keyword format.

SR-OOll 16-27 M

positional parameters

PositionaL formaL parameters allow the user to list the strings within
the body that can be substituted. The calling statement lists values to
be substituted for these strings in the same order in which they are
listed in the prototype statement. The value supplied with the calling
statement is substituted for every occurrence of the corresponding
formal positional parameter within the definition body. If the caller
passes too few positional parameters, null strings are substituted for
the remaining formal positional parameters. If too many positional
parameters are passed, the procedure call is in error and the job aborts.

Keyword parameters

Keyword formaL parameters are listed in any order after all positional
parameters are given on the prototype statement and the calling
statement. A keyword formal parameter allows the user to specify
substitution values on the prototype statement that are to be used when
one is not given on the calling statement.

If the keyword formal parameter is included in the calling statement
with a value, that value is substituted. If the entire keyword formal
parameter is omitted from the calling statement, the defauLt vaLue on
the prototype statement is sUbstituted. If a default value is not
provided on the prototype statement, the character string within the
body corresponding to that formal parameter is not included in the
procedure expansion.

If only the keyword portion of the keyword formal parameter (the
character string itself) is included in the calling statement, without a
value assigned to it, then a keyed defauLt vaLue from the prototype
statement is substituted. If a keyed default value is not provided on
the prototype statement, again the character string within the body
corresponding to that formal parameter is not included in the procedure
expansion.

A keyword parameter enclosed in apostrophes ('KEY=vaLue') is
considered a positional parameter.

The forms of keyword substitution are summarized in table 16-3.

Positional and keyword parameters

When supplying both positional and keyword parameters, all positional
parameters must precede all keyword parameters1 COS evaluates the call's
positional parameters first. The end of the caller's list of positional
parameters is signaled by the appearance of a keyword parameter,
statement terminator, or by specifying all positionals.

SR-OOll 16-28 M

Table 16-3. Keyword sUbstitution after expansion

Format for ~rd
Calling Prototype

Statement Statement

1. name, va~ue.

2. name, key.

3. name.
name, ().

4. name, key=va~ue.

5. name, key=.

kV=keyword value
dV=default value

Error messages:

key=dv:kv
key key=:kv key=(dv) :kv

(positional) key=: (kv) key=dv: (kv)

Va~ue CSl19 CSl19

CS121 kv kv

Null Null dv

Va~ue Va~ue Va~ue

Null Null Null

CSl19 - EXTRA POSITIONAL PARAMETER: vatue
CS12l - KEYWORD USED WITHOUT ASSIGNING IT A VALUE: key
CS122 - NO VALUE WAS ASSIGNED TO key

Apostrophes and parentheses

key
(not

positional)

CSl19 and
CS122

CS121

CS122

Va~ue

Null

key=dv
key=(dv)

CS 119

CS121

dv

Va~ue

Null

Sometimes parameter values in a procedure definition or a procedure
calling statement require a special format. If a literal string (a
string delimited with apostrophes) appears in either of these
statements, it is processed as if it were a literal constant. That is,
all apostrophes in the value remain when the value is substituted. See
example 5 later in this section.

To avoid any possibility of erroneous processing, use parentheses as
string delimiters in these statements. Outermost parentheses preceded
by the initial, parameter, equivalence, or concatenation separators are
removed during value SUbstitution. This procedure delays processing of
any separator characters in the string until the statement itself, with
substituted values, is .processed.

This delay is also required when specifying multiple values for the
default value and/or keyed default value parameters on a procedure
definition statement. See examples 1, 2, 4, and 6. Parentheses are
advised in the procedure calling statement when the use of the value in
the procedure statements is unknown. See examples 4, 5, and 6 later in
this section.

SR-OOll 16-29 M

The forms of parenthetical sUbstitution are summarized in table 16-4.

Table 16-4. Expansion of parenthetic and
literal string values

Invocation Expansion

vatue vatue
(vatuel=vatue2) va tuel=vatue2
vatuel'.'vatue2 vatuel'.'vatue2
vatuel (.) vatue2 vatuel.vatue2

Examples:

The following examples demonstrate the COS control statement procedure
sUbstitution process.

Example 1:

Consider a single statement procedure called LOAD defined as follows:

Definition

PROC.
LOAD,NOGO=:NX,LIBRARY=($FTLIB:$SYSLIB):MYLIB.
LDR,&NOGO,LIB=&LIBRARY.
ENDPROC.

Ppototype statement
Definition body

The prototype statement in this example defines two formal parameters,
both of which are in keyword format. The keyword NOGO has a null value
when omitted from the calling statement and a value of NX when included
on the calling statement in keyword-only format. The keyword LIBRARY
has the default value of $FTLIB:$SYSLIB. When LIBRARY is used in the
calling statement without a value, the keyed default value, MYLIB, is
substituted.

When the LOAD procedure is invoked, it expands to a single statement
whose form depends on the choice of parameters:

Invocation

LOAD, NOGO.
LOAD.
LOAD,LIBRARY=THISLIB.
LOAD,LIBRARY,NOGO.

SR-OOll 16-30 M

Expansion

LDR,NX,LIB=$FTLIB:$SYSLIB.
LDR"LIB=$FTLIB:$SYSLIB.
LDR"LIB=THISLIB.
LDR,NX,LIB=MYLIB.

Example 2:

The following in-line procedure definition creates a procedure called
BLDABS.

Definition

PROC.
BLDABS,SOURCE,LIST,GO='NO':'YES',LIB=

: ($SYSLIB:$FTLIB),MAP=FULL:PART.
REWIND,DN=$BLD:&SOURCE.
CAL,I=&SOURCE,L=&LIST,ABORT.
LDR,NX,LIB=&LIB,MAP=&MAP,L=&LIST,AB=$ABD.
REWIND,DN=$ABD:&LIST.
SAVE,DN=$ABD,PDN=MYPROGRAM.
IF (&GO.EQ. 'YES')
$ABD.
ENDIF.
ENDPROC.

Invocation

BLDABS,WORK"GO,LIB=VLIB2.

Expansion

REWIND,DN=$BLD:WORK.
CAL,I=WORK,L=,ABORT.
LDR,NX,LIB=VLIB2,MAP=FULL,L=.
REWIND, DN=$ABD: •
SAVE,DN=$ABD,PDN=MYPROGRAM.
IF (• YES • • EQ. I YES')
$ABD.
ENDIF.

Example 3:

Prototype statement

Definition body

This procedure exemplifies the proper use of the underscore character for
the definition of a formal parameter. It creates a procedure called
AUDJCL.

SR-OOll 16-31 M

Definition

PROC.
AUDJCL,DN, LEVEL, L=$OUT:AUDLST.
AUDIT,PDN=&DN&LEVEL_JCL,ID=JCL,L=&L.
ENDPROC.

Invocation

AUDJCL,-,05.

Expansion

AUDIT,PDN=-05JCL,ID=JCL,L=$OUT.

Example 4:

Prototype statement
Definition body

Parentheses are required when specifying multiple values for a single
parameter value on a procedure definition prototype statement or on a
calling statement. In these cases, the colon is used to separate default
and Boolean values in a keyword parameter. For example:

Procedure-definition prototype statement

MYPROC,POSl,KEY=(DEFl:DEF2):(BOOl:B002).

Invocation

MYPROC,(POSIA:POSIB) •

When substitution occurs during this call, POSIA:POSIB replaces all POSI
occurrences within the definition body. Both values (POSIA and POSIB)
are evaluated separately during control statement evaluation. If
apostrophes are on the call, I POSIA:POSIBI is evaluated as one literal
string.

Example 5:

The following procedure definition exemplifies the use of literal strings
instead of parenthetical strings.

Definition

PROC.
PURGER,PDN,ID,ED,M. Prototype
ACCESS,DN=$PURGE,PDN=&PDN,ID=&ID,ED=&ED,M=&M,UQ,NA.
DELETE,DN=$PURGE,NA. Definition body
RELEASE,DN=$PURGE.
ENDPROC.

SR-OOll 16-32 M

Invocation

PURGER,'SOURCE.MAIN',PROJECT.

Expansion

ACCESS,DN=$PURGE,PDN='SOURCE.MAIN',ID=PROJECT,ED=,M=,UQ,NA.
DELETE ,DN=$PURGE ,NA.

The apostrophes remain as part of the string in the expansion. If
parentheses had been used in the invocation instead of apostrophes for
the permanent dataset name, (SOURCE.MAIN), the value when the ACCESS
statement is evaluated would be SOURCE.MAIN because the outermost
parentheses are removed when preceded by a valid separator. This action
would cause an error because the period in SOURCE.MAIN would be evaluated
as a statement terminator during evaluation.

Example 6:

The following example illustrates the use of parenthetical strings
instead of literal strings in a procedure definition.

Definition

PROC.
LGO,CALSORC,ABS,NLIB=$SCILIB:($SCILIB:

$SYSLIB:$FTLIB).
CAL,I=&CALSORC.
LDR,NX,AB=&ABS,NOLIB=&NLIB.
ENDPROC.

Invocation

LGO",NLIB.

Expansion

CAL,I=.
LDR,NX,AB=,NOLIB=$SCILIB:$SYSLIB:$FTLIB.

Prototype

Definition body

Parentheses were not included for the expansion of the NLIB keyed default
value because parentheses are removed during processing when preceded by
the concatenation delimiter (:).

If apostrophes had been used instead of parentheses for the NLIB
parameter value, the colons would have been ignored as separators during
expansion. Also, apostrophes are treated as part of the value when
included in a procedure definition prototype statement or a calling

SR-OOll 16-33 M

statement. Therefore, if apostrophes had been used, the following
expansion would have occurred.

CAL,I=.
LDR,NX,AB=,NOLIB='$SCILIB:$SYSLIB:$FTLIB'.

When the LDR statement is executed, the value assigned to the NOLIB
parameter is the literal string $SCILIB:$SYSLIB:$FTLIB which violates the
syntax for the NOLIB parameter.

Example 7:

Consider the following procedure definition. This procedure is used to
retrieve specified source decks from an UPDATE program library by the use
of the &DATA option.

PROC.
GDECK,PLNAME,MASTERCH,DECKRNGE.
ACCESS,DN=&PLNAME.
UPDATE,I=QZRRZQ2,Q,C=O,S,P=&PLNAME.
RELEASE,DN=QZRRZQ2:&PLNAME.

Ppototype statement

Definition body
&DATA QZRRZQ2
&MASTERCH COMPILE &DECKRNGE
ENDPROC.

Two sample invocations and their expansions follow:

Invocation

GDECK,COSPL,*,(ST,CT).

GDECK,FTLIBPL,*,(COS.RFD).

SR-OOll

Expansion

ACCESS,DN=COSPL.
UPDATE,I=QZRRZQ2,Q,C=O,S,P=COSPL.
RELEASE,DN=QZRRZQ2:COSPL.

(Dataset QZRRZQ2 contains:
*COMPlLE ST,CT)

ACCESS,DN=FTLIBPL.
UPDATE,I=QZRRZQ2,Q,C=O,S,P=FTLIBPL.
RELEASE,DN=QZRRZQ2:FTLIBPL.

(Dataset QZRRZQ2 contains:
*COMPILE COS.RFD)

16-34 M

Example 8:

The example illustrates one mechanism for defining and maintaining user
procedure libraries. Note the new procedure library is saved on mass
storage for later use.

ACCESS,DN=GENLIB.
CALL,DN=GENLIB.

The permanent dataset GENLIB contains:

ECHO ,OFF.
RELEASE , DN=$PROC.
*.
* Define procedure for ACCESS of commonly used ID.
*.
PROC.
UQ,DN,ED=:l,PDN=:GENLIB,R=:READCW,W=:WRITECW,M=:MAINCW,NA=:NA.
ACCESS,DN=&DN,ID=MYUID,PDN=&PDN,ED=&ED,R=&R,W=&W,M=&M,NA=&NA.
RETURN.
EXIT.
RETURN, ABORT.
ENDPROC.
*
*
*

Edit a local dataset.

PROC.
ED,DN,AC=:'ACCESS'.
IF ('&AC' .EQ. 'ACCESS')

UQ,&DN.
ENDIF
TEDI,DN=&DN.
RETURN.
EXIT.
RETURN, ABORT.
ENDPROC.

*
*
*

End of definitions

UQ,PROCLIB,NA.
SAVE,DN=$PROC,PDN=PROCLIB,ID=MYUID.
DELETE,DN=PROCLIB,NA.
RELEASE,DN=$PROC.
ACCESS,DN=PROCLIB,ID=MYUID.
LIBRARY,DN=*:PROCLIB.
ECHO,ON.

SR-OOll 16-35 M

APPENDIX SECTION

I

JOB USER AREA A

The table illustrations and their field descriptions are system generated.

JOB TABLE AREA - JTA

Each job has an area referred to as the Job Table Area (JTA) preceding
the field defined for the user. A JTA is accessible to the operating
system but not to the user. The format of a JTA is described in the COS
Table Descriptions Internal Reference Manual, CRI publication SM-0045.
The Job Table Area contains job-related information such as accounting
data; a JXT pointer; sense switches; one or more task control blocks
(TCBs), each of which contains an exchange package area and an area for
saving B, T, and V register contents; control statement and logfile DSPs;
and buffers; a copy of the user's LFTs; and a Dataset Name Table (DNT)
for each dataset used by the job.

JOB COMMUNICATION BLOCK - JCB

Following the JTA is a l28-word block referred to as the Job
Communication Block (JCB). The user accessible JCB contains a copy of
the current control statement for the job and other job-related
information.

Figure A-l illustrates the JCB.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+
5 I CCI

I
I
I

17 I
+---+

20 I CPR I
I I
I I
I I

77 I I
+---+-------+

100 I IN 1///////1
+-------+--++-+-+-----------------------+---------------+-------+

Figure A-l. Job Communication Block (JCB)

SR-OOll A-l M

I

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+-------+--++-+-+-----------------------+---------------+-------+
101 I LPP I//II/Iul HLM FL

+-------+--++-+-+-----------------------+-----------------------+
102 I NPF BFB I DSP I

+---------------+-----------------------+-----------------------+
103 I NLE MFL LFT

++++++++++++++++++----------------------+-------+-------+-------+
104 I I I I I I I I I I II I I I I I I ULFT I I PNST I STRM I

++++++++++++++++++---+--------+----+----+++-----+-+++++-+-------+
105 I I I I I I CYCL I CPTP I MCP I NLCP I I I lAC I I I I 1///// / / //1

++++++---------------+--------+----+----+++-------+++++---------+
106 I CRL I

+---+
107 I ACN I

+
110 I

+-------+
1///////1

+---+-------+
III I PWD I

+
112 I

+-------+
1///////1

+---+-------+
113 I PROM I

+---------------+---------------+---------------+---------------+
114 I NULE I PLEV I lLEV I CLEV I

+---------------+---------------+---------------+---------------+
115 I MMlN I MMlS

+-------------------------------+-------------------------------+
116 I MMBA I MMEP I

+------------------------------++-------------------------------+
117 I STlN II STlS I

+------------------------------++-------------------------------+
120 J///////////////////////////////I AVBA I

+-------------------------------+-------------------------------+
121 I TSF I

+-------------------------------+-------------------------------+
122 I PSM 1/// ////////////////////////////1

+-------------------------------+-------------------------------+
123 I DMM I

+---+
124 1////////////////////////////111/1///1//111//1////////11/1//////1

+ +
125 1//1/11/////////1/1/1/111////1///1/1////11/1/1/1////111/1///////1

+---------------+---+
126 I NUDP 1/11111///11/1111/1/11//1///1//1///1/111//////1/1

+---------------+ +-------------------------------+
127 1/11/1/1///111/11/1/////1///11/11 TPTR I

+-------------------------------+-------------------------------+
Figure A-I. Job Communication Block (JCB) (continued)

SR-0011 A-2 M

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+-------------------------------+-------------------------------+
130 I RDYQ

+---+
131 I RUNQ I

+---+
132 1///1

I I
1///1
I I

145 1///1
+---+

146 I LDR I
I I
I I
I I

163 I I
+---+

164 I STN

+---+
165 I STF

+---+
166 I BDAT I

+---+
167 I BTIM

+---+
170 I DIG I

I I
I I
I I

177 I I
+---+

200 1///1
+---+

Figure A-I. Job Communication Block (JCB) (continued)

Field Word (base8) Bits Description

0-5 The first five words of the JCB are
assigned as a save area for the BGN
table that is used by F$BGN.

JCCCI 5-17 0-63 Control statement image packed 8
characters per word

JCCPR 20-77 0-63 Control statement parameters,
expanded to two words per parameter

I. SR-OOll A-3 M

I SR-0011

Field Word (base8) Bits Description

JCJN

JCLPP

JCRMSG

JCU
JCUL
JCUG

JCHLM

JCFL

JCNPF

JCBFB

JCDSP

JCNLE

JCMFL

JCLFT

JCDCS

JCCSDB

JCBP

JCNTB

JCIOAC

JCIOAP

JCIA

JCCHG

100

101

101

101
101
101

101

101

102

102

102

103

103

103

104

104

104

104

104

104

104

104

0-55

0-7

11

14-15
14
15

16-39

40-63

0-15

Job name; bits 56-63 must be o.

Lines per page

RFL message sent

User mode indicator:
Local
Global

High limit of user code

Current field length

Number of physical buffers and
datasets

16-39 Base address of I/O buffers

40-63 Base address of DSP area

0-15 Number of entries in LFT

16-39 Maximum FL allowed

40-63 Base of LFT

o CSP dynamic control statement flag

1 CSP debug flag

2 JOB statement breakpoint (BP) flag

3 CSP traceback suppression flag

4 I/O area current status flag:
o User's I/O area is unlocked
1 User's I/O area is locked

5 I/O area previous status flag:
o User's I/O area is unlocked
1 User's I/O area is locked

6 Interactive flag

7 Execute CHARGES utility for trailer
message.

A-4 M

I SR-OOll

Field Word (base8) Bits Description

JCJBS 104

JCCSIM 104

JCDLIT 104

JCRPRN 104

JCVSEP 104

JCSDM 104

JCPDMS 104

JCCSQ 104

JCOVT 104

JCULFT 104

JCPNST 104

JCSTRM 104

JCEFI 105

JCOVL 105

JCSBC 105

JCBDM 105

JCORI 105

JCCYCL 105

JCCPTP 105

JCMCP 105

8 JOB statement flag (if set, JOB
statement just processed)

9 Flag is set when CRAY-l simulator is
running.

10 Display literal delimiters in
control statement crack.

11 Retain level 1 parentheses.

12 Last character was valid separator.

13 NOECHO of current control statement

14 Suppress PDM user logfile messages

15 New CFT calling sequence in effect

16 Overlay type

17-47 Base of user LFTs (JCB-REL)

48-55 Parentheses nesting level for
current control statement

56-63 Statement termination for current
control statement

o Enable floating-point interrupt
flag; used by $ARLIB math routines
to reset floating-point interrupt
flag

1 Overlay flag

2 SBCA flag

3 Enable bidirectional mode flag

4 Interrupt on operand range flag

5-20 CPU cycle time, in picoseconds

21-29 CPU type, @CRAYxxx

30-34 Maximum number of logical CPUs that
can be assigned to a user job

A-5 M

I SR-OOll

Field Word (base8) Bits Description

JCNLCP 105

JCEMA 105

JCAVL 105

JCIAC 105

JCACRQ 105

JCPWRQ 105

JCRYPT 105

JCSLVL 105

JCCRL 106

JCC~S 106

JCACN 107-110

JCACNI 107

JCACN2 110

JCPWD 111-112

JCPWDI III

JCPWD2 112

JCPROM 113

JCNULE 114

JCPLEV 114

JClLEV 114

JCCLEV 114

35-39 Current number of logical CPUs asg'd

40 l=Extended memory addressing enabled

41 l=Additional vector logical unit enab.

42-49 Number of account processing retries
allowed for an interactive job

50 Accounting mandatory flag

51 Password mandatory flag

52 Encryption flag

53 Security level flag

0-63 COS revision level

32-63 COS revision number

0-63 1 through 15 character account number

0-63 Characters 1 through 8 of account
number

0-55 Characters 9 through 15 of account
number

0-63 1 through 15 character password

0-63 Characters 1 through 8 of password

0-55 Characters 9 through 15 of password

0-63 Current user job interactive prompt,
justified, zero-filled. 64 bits of
binary zeroes disables user job
prompt. Set to system default at
beginning of each job step.

0-15 Number of user LFT entries (below HLM)

16-31 Current procedure nesting level

32-47 Current iterative nesting level

48-63 Current conditional nesting level

A-6 M

I SR-0011

Field Word (base8) Bits Description

The next four words are used by the run-time memory manager:

JCMMIN 115

JCMMIS 115

JCMMBA 116

JCMMEP 116

JCSTIN 117

JCSTRT 117

JCSTIS 117

JCAVBA 120

JCTSF 121

JCPSM 122

JCDMM 123

JCNUDP 126

JCTPTR 127

JCRDYQ 130

JCRUNQ 131

JCLDR 146-163

JCSTN 164

JCSTF 165

JCBDAT 166

JCBTIM 167

JCDIG 170-177

0-31 Size of increments to the managed memo

32-63 Initial size of memory to be managed

0-31 Base address of managed space

32-63 Size of smallest block added to
available space list

0-30 Size of increments to a stack

31 Flag to indicate stack for root task

32-63 Initial size of a stack

32-63 Base of available space

0-63 Task scheduling flag

0-31 Pseudo semaphore registers 1 A&B, liS

0-63 Don't move memory when nonzero

0-15 Number of system DSPs in user

32-63 Pointer to list of all tasks

0-63 Multitasking ready queue header

0-63 Multitasking run queue header

0-63 Unsatisfied externals

0-63 Job step count

0-63 Job step failure flag

0-63 Date of absolute load module
generation

0-63

0-63

Time of absolute load module
generation

Reserved for diagnostics

A-7 M

I

LOGICAL FILE TABLE - LFT

The Logical File Table contains a 2-word entry for each dataset name and
each alias for a dataset. Each entry points to the DSP for a dataset.
Figure A-2 illustrates an LFT for a dataset.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+-------+
o I DN 1///////1

+---+-----------------------------------+---------------+-------+
1 IOSTI///////////////////////////////////1 DSP I

+---+-----------------------------------+-----------------------+
Figure A-2. Logical File Table (LFT) entry

Field Word (base8) Bits Description

LFDN o 0-55 Dataset name

LFOST 1 0-3 DATASET OPEN STATUS

LFDSP 1 40-63 DSP address

SR-OOll A-8 M

I

DATASET PARAMETER AREA - DSP

Information concerning the status of a particular dataset and location of
the I/O buffer for the dataset is maintained in the Dataset Parameter
Area (DSP) of the user field. The DSP is illustrated in figure A-3.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+-------+
o I DN 1///////1

++-----------++-+--------+++---++-+++++++---------------+-------+
1 I I ERR I I * I BFI I I lOST I I * I I I I I I I FRST

++--------+--++-+--------+++---++-+++++++-----------------------+
2 1///////// IBP IBN IN I

++-+------+-----+-----------------------+-----------------------+
3 11/1 RBC I OBP I OBN OUT

++-+------+-----+-----------------------+-----------------------+
4 I I I BS I TBN I LMT

++++++----------+--------+--------------+-----------------------+
5 I I I I I I PFI I PRI I RCW I

++++++-------------------+--------------+-----------------------+
6 I I I LPW I

+++-------+-----+-----------------------+-----------------------+
7 I I I BF I BUBC I BWC I BWA I

+++-------+-----+-----------------------+-----------------------+
10 I TM I

I I
I I
1 I

17 I I
+---------------+-----------------------+-----------------------+

20 I TPS 1///////////////////////1 TPV I

+-+-+-----------+---+-------------------+-------+---------------+
21 1*1*1 TAPE I 1///////////////////////////1 MTF I

+++-++------+---+---+-------------------+-------+---------------+
22 IIFD I RF 1///1 MBS I RS I

++---++-+---+-+++-----------------------+-----------------------+
23 IBFBO 1*1///1*1 I I BFBL I BFBA I

+-----+++---+-+++-----------------------+-----------------------+
24 I LPBL I I 1/ / / / / / / I SBL I BLBL I

+-----+++-------+-----------------------+-----------------------+
25 I LOCK

+-----------+---+
26 I EEC 1///1

+-----------+++++-----------------------+-----------------------+
27 1///////////1 I I I I RECL NXRC

+-----------+++++-----------------------+-----------------------+
Figure A-3. Dataset Parameter Area

SR-0011 A-9 M

I SR-OOll

Field Word (base8) Bits Description

DPDN 0 0-55 Dataset name

DPBSY 1 0 Busy flag, circular I/O:
o Not busy
1 Busy

DPERR 1 1-12 Error flags:
DPEOI 1 1 End of data on read; write past

allocated disk space on write.

DPENX
DPEOP
DPEPD
DPEBN
DPEDE
DPEHE
DPERW

DPEPT
DPELE

DPEEP

DPSTS

1
1
1
1
1
1
1

1
1

1

1

2 Dataset does not exist
3 Dataset not open
4 Invalid processing direction
5 Block number error
6 Unrecovered data error
7 Unrecovered hardware error
8 Attempted read after write or

past EOD

9 Dataset prematurely terminated
10 Unrecovered logical data error

Reserved

12 Extended error (see DPEEC)

14-15 Status:
00 Closed
01 Open for output (0)
10 Open for input (I)
11 Open for I/O

DPBFI 1 16-24 Blank compression character in ASCII
(BFI=0'777 implies no compression)

DPQIO 1

DPOST 1

DPABD 1

DPTP 1

DPTRAN 1

DPIA 1

DPMEM 1

26 Queued I/O Request Flag

27-30 Open status

31 Accept bad data flag

32-33 Tape dataset (online/staged)

34 Transparent mode for interactive
dataset

35 Dataset is interactive

36 Dataset is memory resident

A-lO M

I SR-OOll

Field Word (base8) Bits Description

DPRDM 1

DPUDS 1

DPEND 1

DPFRST 1

DPIBP 2

DPIBN 2

DPIN 2

DPSPOS 3

DPRBC 3

DPOBP 3

DPOBN 3

DPOUT 3

DPUEOF 4

DPBS 4

DPTBN 4

DPLMT 4

DPEOR 5

DPEOF 5

37 Random dataset flag:
o Sequential dataset
1 Random dataset

38 Undefined dataset structure:
o COS-blocked dataset structure
1 Undefined dataset structure

39 Write end-of-data flag

40-63 Address of first word of buffer

10-15 Input bit position

16-39 Block number, read request. System
reads from block number until buffer
is filled. DPIBN is then set to the
next block number.

40-63 Address of current input word

o Asynchronous SETPOS busy flag

3-9 Remaining blank count

10-15 Bit position in current output word
(character I/O only)

16-39 Block number, write request. System
writes from block number until
buffer is empty. The next block
number is then in DPOBN.

40-63 Address of current output word

o Uncleared end-of-file (EOF)

1-15 Buffer size (in D'S12 word sectors)

16-39 Temporary block number; used by
random I/O for last block read

40-63 Address of last word+l of buffer.
LMT minus FRST defines buffer size.

o EOR flag

2 EOF flag

A-II M

Field Word (base8) Bits

DPEOD 5 3

DPRW 5 4

DPPFI 5 5-24

DPPRI 5 25-39

DPRCW 5 40-63

DPLPW 6 0-63

DPBIO 7 o

DPBER 7 1

DPBF 7 2-9

DPBPD 7 4

DPBEO 7 6-9

DPBUBC 7 10-15

I SR-OOll

Description

EOD flag

Previous operation read/write flag:
o Read
1 Write

Previous file index; backward index
to block containing previous EOF.

Previous record index; backward
index to block containing previous
EOR.

Control word address:
Previous RCW address if in write
mode
Next RCW if in read mode

Last partial word; used for
character mode I/O

Buffered I/O busy:
o Buffered I/O operation complete
1 Buffered I/O operation

incomplete

Buffered I/O error flag

Function code:
BIOFRRP = 0
BIOFRR = 0'10
BIOEWRP = 0'40
BIOEWR = 0'50
BIOFEOF = 0'52

Read partial record
Read record
Write partial record
Write record
Write EOF

BIOFEOD = 0=56 Write BOP

Processing direction:
o Read
1 Write

Termination condition:
00 Partial
10 Record
12 File, write only
16 Dataset, write only

Unused bit count; must be specified
on a write record request. Value
returned on a read request.

A-12 M

Field Word (base8) Bits Description

DPBWC 7 16-39 Word count; number of words at DPBWA
to read or write. Field contains
actual number of words read when
request is completed.

DPBWA 7 40-63 Word address of user data area
L@DPTM=D'8

DPTM 10-17 0-63
Wd Bits Use
8 0-63 Saved word W@DPPRI
9 0-63 Saved A2 in WB30
10 16-39 $RWDP/$WWDP return

address
10 40-63 $RWDP/$WEOF first word

address (FWA)
11 16-39 WB30/$WEOF return

address
11 40-63 $WEOD return address
12 0-7 JTA 1ength/1000 octal

when registers are saved
12 8-15 Bits 0-7 of RBLK/WBLK

AS
12 16-39 (B. ZE)
12 40-63 RBLK/WBLK BO
13 16-39 DNT address
13 40-63 (A7) JXT address

recall
14 0-15 Bits 8-23 of RBLK/WBLK

AS
14 16-39 RBLK/WBLK A2
14 40-63 RBLK/WBLK A3
15 0-63 RBLK/WBLK S6

DPTPS 20 0-15 Online tape status

DPTPV 20 40-63 Tape pointer to label definition
table

DPTPD 21 0-1 Tape density

DPTPF 21 2-3 Tape format

• SR-0011 A-13 M

I SR-OOll

Field Word (base8) Bits Description

DPTAPE 21 4-19 Tape status
DPAEV 21 4 User is at tape end of volume
DPTOR 21 5 Tape off reel
DPTMS 21 6 Tape mark status
DPBLT 21 7 Blank tape
DPEOVR 21 8 EOV READ

MASKS FOR TESTING TAPE STATUS FIELD

DPMTF 21

DPCV 22

DPFD 22

DPRF 22

TS$EOV=O'lOOOOO
TS$TOR=O'040000

TS$TMS=O'020000

TS$BLT=O'OlOOOO

TS$EOVR=O'004000

EOV mask
Tape off reel
mask
Tape mark status
mask
Blank tape
detected mask
Read completed
in EOV processing

48-63 Maintenance test field

o Data conversion flag
DPCVOFF=O Data conversion off
DPCVON=l Data conversion on

1-4 Translation identifier
DPFDNONE=O NO foreign file
translation

5-11

DPFDIBM=l IBM file translation
DPFDCDC=2 CDC file translation

Record format (if DPCT nonzero)
DPRFUNKN=O'177 Unknown record

format
IBM undefined
IBM fixed

DPRFIU=O
DPRFIF=l
DPRFIFB=2
DPRFIV=3
DPRFIVB=4

IBM fixed blocked

DPRFIVBS=5

A-14

IBM variable
IBM variable
blocked
IBM variable block
span

M

Field Word (base8) Bits Description

Values 21 through 37 are reserved for ANSI record types:

DPRFIIW=O'OO I tape format, I
blocks, W records

DPRFICW=O'IO I tape format, C
blocks, W records

DPRFICZ=O'll I tape format, C
blocks, Z records

DPRFICS=O'12 I tape format, C
blocks, S records

DPRFSIIW=O' 40 SI tape format, I
blocks, W records

DPRFSICW=O' 50 SI tape format, C
blocks, W records

DPRFSICZ=O'SI SI tape format, C
blocks, Z records

DPRFSICS=O'S2 SI tape format, C
blocks, S records

DPMBS 22 16-39 Maximum block size

DPRS 22 40-63 Record length

DPBFBO 23 0-5 User data area current bit offset

DPCS 23 6-7 Character set (if DPCT nonzero)
DPCSAS=O ASCII
DPCSEB=l EBCDIC
DPCSDC=2 CONTROL DATA display code

DPSCC 23 12-13 Record continuation code

DPBDF 23 14 Bad data flag

DPPCR 23 15 Process-characters-remaining flag

DPBFBL 23 16-39 User data area current bit length

DPBFBA 23 40-63 User data area current address

DPLPBL 24 0-5 Last partial word bit length

DPEOLR 24 6 Foreign dataset end of logical record

DPEOLF 24 7 Foreign dataset end of logical file

DPSBL 24 16-39 Current segment/record bit length

DPBLBL 24 40-63 Current tape block bit length

I SR-OOll A-IS M

I

Field Word (base8) Bits Description

DPLOCK 25 0-63 Multitasking lock (nonzero TIB address
if log is set)

DPEEC 26 0-11 Error code if DPEEP is set1
correspond to EXP abort codes.

DPDEL 27 12 FORTRAN file status:
o Keep
1 Delete

DPBLNK 27 13 FORTRAN numeric input blank

DPDIR 27 14

DPUFMT 27 15

DPRECL 27 16-39

DPNXRC 27 40-63

conversion:
o Null
1 Zero

FORTRAN direct access flag

FORTRAN unformatted I/O flag

FORTRAN direct access record length
(in number of characters)

FORTRAN direct access next record
number

When the FD field in word 22 of the Dataset Parameter Area is equal to
CDC, it is redefined as shown in figure A-4.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+----+-+-+--+---+
22 IIIIIIFI*IRTIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIII11/11111/11

+----+-+-+--+---+
Figure A-4. CDC record format

Field Word (base8) Bits Description

DPF 22 5-6 Tape format
DPFI=O Internal
DPFSI=l System or scope internal

DPBT 22 7-8 Block type
DPBTI=O Internal
DPBTC=l Character count

SR-OOll A-16 M

I

Field Word (base8) Bits Description

DPRT 22 9-11 Record type
DPRTW=O Control word
DPRTZ=l Zero byte
DPRTS=2 System-logical

Figure A-5 shows the redefinition of the LPW field in word 6 of the
Dataset Parameter Area used by asynchronous SETPOS as save areas.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+
o 1//1//////////////////////1

I I
1//1//////////////////////1
I I

5 1//1//////////////////////1
+ +--------+--------------------------------+

6 1/////////////////////1 SPWA I SPIN I
+---------------------+--------+--------------------------------+

Figure A-5. Save areas used by asynchronous SETPOS

Field Word (base8) Bits Description

DPSPWA 6 22-30 Word address save areas used

DPSPIN 6 31-63 by asynchronous SETPOS

SR-OOll A-17 M

I

PERMANENT DATASET DEFINITION TABLE - PDD

The PDD is a parameter list that gives input to the Permanent Dataset
Manager. The PDD illustrated in figure A-6 is used for all save, access,
dump access, load, modify, permit, rewrite SDT, pseudo-access, and
permanent dataset name requests. The PDD illustrated in figure A-7 is
used for both DSC and DXT page requests, and for dump time requests. The
PDD illustrated in figure A-8 is used for all delete, release, and adjust
requests. The PDD illustrated in figure A-9 is used for queue and
dequeue SDT requests, and for get and link DXT requests. Table A-I
presents a list of Permanent Dataset function codes.

SR-OOll

Table A-I. Permanent dataset function codes

Symbol
Octal

Code

PMFCSU 10
PMFCSI 12
PMFCSO 14
PMFCAU 20
PMFCAI 26
PMFCAO 26
PMFCDU 30
PMFCDI 36
PMFCDO 36
PMFCPG 40
PMFCPX 41
PMFCLU 50
PMFCLI 52
PMFCLO 54
PMFCRL 60
PMFCPN 70
PMFCDT 100
PMFCDQ 110
PMFCEA 120
PMFCEI 122
PMFCEO 124
PMFCAD 130
PMFCMD 140
PMFCRSDT 150
PMFCPSAC 160
PMFCPU 170
PMFCPO 176
PMFCPI 176
PMFCPE 200
PMFCLKDX 210
PMFCRTDX 220

Function

Save user dataset
Save input dataset
Save output dataset
Access user dataset
Access spooled dataset
Access spooled dataset
Delete user dataset
Delete spooled dataset
Delete spooled dataset
DSC Page request
DXT Page request
Load user dataset
Load input dataset
Load output dataset
PDS/Release request
PDN request
Dump time request
Dequeue SDT
Queue SDT to available queue
Queue SDT to input queue
Queue SDT to output queue
Adjust user dataset
Modify user dataset
Rewrite input SDT entry
Pseudo-access for RRJ
Access user saved dataset for PDSDUMP
Access output dataset for PDSDUMP
Access input dataset for PDSDUMP
Permit Request
Link DXT Request
Get DXT Request

A-18 M

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

++++++-+-+-++++-----------------+-------+-----------+-----------+
o I I I I I 1*1*1*1 I 11/////////////////1 SIZE I ST I FC I

++++++-+-+-++++-----------------+-------+-----------+---+-------+
1 I DN 1// / / / / / I

+---+-------+
2 I PDN I

+
3 I

+-------+
1///////1

+---+-------+
4 I ID I

+---+
5 I USR

+
6 I

+-------+
1///////1

+-----------------------+---------------+-----------+---+-------+
7 I TXT I FM I RT I ED I

+-----------------------+---------------+-----------+---+-------+
10 I OJB 1///////1

+---------------+---------------+---------------+-------+-------+
11 I SID I DID I DC I JSQ I

+---------------+---------------+---------------+---------------+
12 I TID I

+---+
13 I SF

++++-------++++++---------------+-----------------------+-------+
14 I I I I TXL I I I I I I MFL I TL I PR I

++++-------++++++---------------+-----------------------+-------+
15 I RD I

+---+
16 I WT

+---+
17 I MN

+---+-------+
20 . I JCN 1// / / / / / I

+---+-------+
21 I CL 1///////1

++-------+---------------+-----------------------+-----++-------+
22 II JSP I JCR I OLM IRJST II IJSP I

+++--+-+-+-----++--------+--------------+--------+-----++-------+
23 1*1**1*1///////1 I TPB I TPV

+++-++++-+-----++-----------------------+-----------------------+
24 11**1 I 1**1//1

++--+++--+--+
25 I 1//1

++--+
26 I 1//1

+++---+---------------+
Figure A-6. Permanent Dataset Definition Table (PDD)

I SR-0011 A-19 M

I

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+++---+---------------+
27 1*1///1 TXO I

+++-----+-----------------------+---+-----------+---------------+
30 I 1// / / / / I LSD 1// / I FPE I

++------+-------+---------------+---+-----------+---------------+
31 I ACS I DSZ I OJSQ I

+---------------+-------------------------------+---------------+
32 I CRT I

+---+
33 I ACT

+---+
34 I TOM

+---+
35 I MOD

+-------+-------+-----------+-----------------------------------+
36 I SSC I TXC I MML 1///////////////////////////////////1

+++-+---+-------+-----------+---+-------------------------------+
37 I 11*1///1 PAM I ADNM 1///////////////////////////////1

+++-+---+-------+---------------+-----------------------+-------+
40 I ADN 1///////1

+-------+-----------------------+-----------------------+-------+
41 I NOTL I NOTE 1///////////////////////////////1

+-------+-----------------------+-------------------------------+
42 I CHG

+---+
43 I OWN I

+
44 I

+-------+
1///////1

+---+-------+
45 I DNS I

+---+
46 I ACN I

+
47 I

+-------+
1///////1

+---+-------+
Figure A-6. Permanent Dataset Definition Table (POD) (continued)

Field Word (base8) Bits Description

PMSG 0 0 Normal completion message
suppression indicator

PMERR 0 1 Error message suppression indicator

PMWAIT 0 2 WAIT flag for a disposed dataset

SR-OOll A-20 M

I SR-OOll

Field Word (base8) Bits Description

PMNRLS o

PMAQR o

PMTP o

PMTCS o

PMEXO o

PMDTR o

PMSMT o

PMDFFL o

PMSIZE o

PMST o

PMFC o

PMDN 1

PMPDN 2-3

PMPDNI 2

PMPDN2 3

PMID 4

PMUSR 5-6

PMUSRI 5

PMUSR2 6

PMTXT 7

PMFM 7

PMRT 7

PMED 7

3 No release of dataset on DISPOSE

4 Acquire flag for accounting

5-6 Tape dataset (online/staged)

7-8 Tape dataset character set

9-10 Execute only

11 Update dump-time on PDSDUMP access

12 Submit flag

13 Job-used-MFL-default flag

32-39 PDD size in words

40-51 Return status

52-63 Function code (see chart PM-I)

0-55 Local dataset name

0-63 Permanent dataset name

0-63 Characters 1-8

0-55 Characters 9-15

0-63 User identification

0-63 User number

0-63 Characters 1-8

0-55 Characters 9-15

0-23 Address of optional text field

24-39 Format designator (two characters):
FMCD=CD Character/deblocked
FMCB=CB Character/blocked
FMBD=BD Binary/deblocked
FMBB=BB Binary/blocked

40-51 Retention period; 0-4095 days.

52-63 Edition number (0-4095)

A-21 M

I SR-0011

Field Word (base8) Bits Description

PMOJB

PMSID

PMDID

PMDC

PMJSQ

PMTID

PMSF

PMUQ

PMENT

PMIR

PMTXL

PMNRR

PMINIT

PMIA

PMDFR

PMNA

PMMFL
PMSGFL
PMFL

PMTL

10

11

11

11

11

12

13

14

14

14

14

14

14

14

14

14

14
14
14

14

0-55 Originating job name

0-15 Source ID~ 2 characters.

16-31 Destination ID~ 2 characters.

32-47 Disposition code~ 2 characters.
DCIN=IN Job dataset
DCST=ST Dataset to be staged
DCSC=SC Scratch dataset
DCPR=PR Print dataset
DCPU=PU Punch dataset
DCPT=PT Plot dataset
DCMT=MT Magnetic tape dataset

48-63 Job sequence number

0-63 Terminal ID~ 1-8 characters.

0-63 Special forms

o Unique ACCESS/Write ring requested

1 Enter in System Directory

2 Immediate reply requested

3-10 Number of words of text

11 Job rerun f1ag~ set if job cannot be
rerun (input entries only) •

12 Job initiate f1ag~ set if job has
been initiated.

13

14

15

16-31
16

17-31

32-55

Interactive flag

Deferred disposition indicator

No abort flag. If set, processing
continues even if an error is
encountered.

MFL parameter from job card (input)
All available memory requested
Field 1ength/512

Time limit (input datasets)

A-22 M

I SR-0011

Field Word (base8) Bits Description

PMPR 14

PMRD 15

PMWT 16

PMMN 17

PMJCN 20

PMCL 21

PMSYS 22

PMJSP 22

PMJCR 22

PMOLM 22

PMRJST 22

PMIJSP 22

PMTPD 23

PMTPL 23

PMTPF 23

PMTPC 23

PMTPB 23

PMTPV 23

PMTPM 24

PMTPP 24

PMTP2 24

PMTPH 24

PMIDC 24

PM2l64 25

PM2264 26

56-63 Priority (input datasets)

0-63 Read permission control word

0-63 write permission control word

0-63 Maintenance permission control word

0-55 Job class name

0-55 CL parameter from JOB statement

o System job

1-8 JOB statement priority

9-24 Job class rank

25-48 Size of $OUT in 5l2-word block

49-54 Job status flag

56-63 Original job card priority

0-1 Tape density

2-4 Tape label type

5-6 Tape format

15 Tape cataloged dataset

16-39 Tape maximum block size in bytes

40-63 Tape pointer to label definition
table

o Tape online maintenance access

1-3 Tape parallel device count

4 Tape second device assignment

5 Tape hold assigned device

6-8 Tape initial disposition code

o Unused

o Unused

A-23 M

I SR-OOll

Field Word (base8) Bits

PMTSCV 27 0-1

PMTXO

PMOCC

PMLSD

PMFPE
PMFPP
PMFEN

PMACS

PMDSZ

PMOJSQ

PlvlCRT

PMACT

PMTDM

PMMOD

PMSSC

27

30

30

30
30
30

31

31

31

32

33

34

35

36

48-63

o

8-31

36-63
36-59
60-63

0-15

16-47

48-63

0-63

0-63

0-63

0-63

0-7

Description

Timestamp conversion specification
TSCVTHIS=O Convert to current COS

system

TSCVRT=l

TSCVNS=2

Convert to RT-based
timestamp

Convert to NS-based
timestamp

TSCVSAME=3 No conversion leave
timestamp alone

TXT ORDINAL OF USER TASK

Operator-changed-class flag

Temporary SDT address for load
input/output

First DSC page/entry for dataset
First DSC page for dataset
First entry for dataset

Number of accesses (load saved
datasets only)

Size of dataset as reflected by DSC
DAT bodies (used only when a pseudo
access is performed during the
recovery of rolled jobs)

Originating job sequence number

Creation time in cycles (load
request only)

Time of last access in cycles (load
request only)

Time of last dump in cycles (load
request only)

Time of last modification in cycles
(load request only)

Station slot word length

A-24 M

Field Word (base8) Bits Description

PMTXC 36 8-15 Text field word length

PMMML 36 16-27 Interactive maximum message length

PMPDE 37 0 Partial delete flag

PMREM 37 1 Remove permit flag

PMTRA 37 2-3 Track accesses flag:
TRAKNO=l Do not track accesses
TRAKYE=2 Do track accesses

PMPAM 37 8-15 Public/permit access mode:
PAMEX=O' 011 Execute only
PAMRE=O'OOI Read permission
PAMWR=O'002 Write permission
PAMMA=O'004 Maintanence permission
PAMNO=O'200 No permissions
MAXPAM=5

PMADNM 37 16-31 ADN propagate attributes mask:
PACW=O'OOOOOI Control words
PAPAM=O'000002 Public access mode
PATRK=O'000004 Track accesses
PAPER=O'OOOOIO Permits
PATXT=O'000020 Text
PANTS=O'000040 Notes
PAALL=O'000077 All of the above
PANO=O'lOOOOO None
MAXPA=D'8 Maximum allowable

attributes

PMADN 40 0-55 Attributes dataset name

PMNOTL 41 0-7 Notes length in words

PMNOTE 41 8-31 Pointer to notes text
LE@NOTE=D'60 Allow 480 characters
for notes

PMCHG 42 0-63 Last modification time (PDSLOAD)

PMOWN 43-44 0-63 Dataset Owner

I SR-OOll A-25 M

I

Field Word (base8) Bits Description

PMOWN1 43 0-63 Owner (char 1-8)

PMOWN2 44 0-55 Owner (char 9-15)

PMDNS 45 0-63 Reserved for installation

PMACN 46-47 0-63 Account Number

PMACN1 46 0-63 Characters 1-8 of account number

PMACN2 47 0-55 Characters 9-15 of account number

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+++-----------------------------+-------+-----------+-----------+
o 111/////////////////////////////1 SIZE I ST I FC I

+++-----------------------------+-------+-----------+---+-------+
1 I DN 1// / / / / / I

+-------------------------------+---------------+-------+-------+
2 1///////////////////////////////1 NPG I BPG I

+-------+---------------+-------+-------+-------+---------------+
3 1///////1 NHP I NOP I BUF I

+-------+---------------+---------------+-----------------------+
Figure A-7. Permanent Dataset Definition Table (PDD) format 2

Field Word (base8) Bits Description

PMSG o

PMERR o

PMSIZE o

PMST o

PMFC o

PMDN 1

PMNPG 2

o Normal completion message
suppression indicator

1 Error message suppression indicator

32-39 PDD size in words

40-51 Return status

52-63 Function code (see chart PM-I)

0-55 Local Dataset Name (PMFCDT)

32-47 Number of pages (PMFCPG,PMFCPX)

PMBPG 2 48-63 Beginning page number (PMFCPG,PMFCPX)

PMNHP 3

SR-0011

8-23 Number of hash pages (returned by
PDM for PMFCPG requests)

A-26 M

I

Field Word (base8) Bits Description

PMNOP 3 24-39 Number of overflow pages (returned
by PDM for PMFCPG requests)

PMBUF 3 40-63 Buffer address

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+++-----------------------------+-------+-----------+-----------+
o 111/////////////////////////////1 SIZE I ST I FC I

+++-----------------------------+-------+-----------+---+-------+
1 I DN 1/ / / / / / / I

+---+-------+
Figure A-8. Permanent Dataset Definition Table (PDD) format 3

Field Word (base8) Bits Description

PMSG 0 0 Normal completion message
suppression indicator

PMERR 0 1 Error message suppression indicator

PMSIZE 0 32-39 PDD size in words

PMST 0 40-51 Return status

PMFC 0 52-63 Function code (see chart PM-I)

PMDN 1 0-55 Local dataset name

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+++-----------------------------+-------+-----------+-----------+
o 111/////////////////////////////1 SIZE I ST I FC I

+++---------+-------------------+-------+-----------+-----------+
I 1///////////1 DSPE I DXT I

+-----------+---------------------------+-----------------------+
2 I PDN I

+
3 I

+-------+
1///////1

+-----------------------+-----------------------+-------+-------+
4 1///////////////////////1 SDT I SQJ I

+-----------------------+-----------------------+---------------+
Figure A-9. Permanent Dataset Definition Table (PDD) format 4

SR-OOll A-27 M

I SR-0011

Field Word (base8) Bits Description

PMSG o

PMERR o

PMSIZE o

PMST o

PMFC o

PMDSPE 1

PMDSP 1

PMDSE 1

PMDXT 1

PMPDN 2-3

PMPDN1 2

PMPDN2 3

PMSDT 4

PMSQJ 4

o Normal completion message
suppression indicator

1 Error message suppression indicator

32-39 PDD size in words

40-51 Return status

52-63 Function code (see chart PM-I)

12-39 Page/entry of main DSC entry
(PMFCLKDX, PMFCRTDX requests)

12-35 Page number of main DSC entry
(PMFCLKDX, PMFCRTDX requests)

36-39 Entry number of main DSC entry
(PMFCLKDX, PMFCRTDX requests)

40-63 Pointer to DXT information buffer
(PMFCLKDX, PMFCRTDX requests)

0-63 Permanent dataset name

0-63 Characters 1-8

0-55 Characters 9-15

24-47 SDT address
Returned by PDM for PMFCDQ request
Input for PMFCEA, PMFCEI, PMFCEO

48-63 Job sequence number (PMFCDQ request)

A-28 M

I

BEGIN CODE EXECUTION TABLE - BGN

The BGN Table, illustrated in figure A-IO, is input to the F$BGN call
that allows the user program to indicate to the operating system the
location of the executable binary and a P address which the CPU can be
released to. The old BGN format is supported for release 1.14. The
following functions are supported with the new BGN format:

• Load a dataset from mass storage as specified by the DSP.
• Copy memory from a source base address to target base address for

lengths specified.
• Preset memory with supplied pattern from preset base address for

lengths specified.

Support is included for the separation of instruction and data segments.
Instruction segments are currently supported and any attempt to load a data
segment will be aborted.

Define the F$BGN Function codes:
BGNLOAD = 0'1 Load from dataset function code
BGNCOPY = 0'2 Copy from source to destination
BGNFMAX = BGNCOPY Set max Function Code value

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+++-------------+-----------------------+-------+---------------+
o I I 1/////////////1 PRGL 1///////1 FC I

+++-------------+-----------------------+-------+---------------+
1 I I I PSV I

+++-------------------------------+-----+-----------------------+
2 I I I PAD 1/////1 ENT I

+++-------------------------------+-----+-----------------------+
3 1///1

+ +-----------------------+
4 1///////////////////////////////////////1 DSP I

+-------------------------------+-------+-----------------------+
5 I IBA I IBL I

+-------------------------------+-------------------------------+
6 I DBA I DBL I

+-------------------------------+-------------------------------+
7 I IHLM I DHLM I

+-------------------------------+-------------------------------+
10 I PDBA I PDBL I

+-------------------------------+-------------------------------+
11 I SIBA I SIBL I

+-------------------------------+-------------------------------+
12 I SDBA I SDBL I

+-------------------------------+-------------------------------+
Figure A-IO. Begin Code Execution Table (BGN)

SR-OOll A-29 M

Field Word (base8)

BGPSF 0

BGEMA 0

BGPRGL 0

BGFC 0

BGPSV 1

BGBP 2

BGNRD 2

BGPAD 2

BGENT 2

BGDSP 4

BGIBA 5

BGIBL 5

BGDBA 6

BGDBL 6

BGIHLM 7

BGDHLM 7

BGPDBA 10

BGPDBL 10

BGSIBA 11

BGSIBL 11

BGSDBA 12

BGSDBL 12

I SR-OOll

Bits

o

1

16-39

48-63

0-63

o

1

2-33

40-63

40-63

0-31

32-63

0-31

32-63

0-31

32-63

0-31

32-63

0-31

32-63

0-31

32-63

Description

Preset value flag,If=l,preset segment

EMA setting for new calls, l=ENABLE

Program length(Old BGN Format only)

BGN Function Code(O for old)

Preset value

Breakpoint flag

No reduce bit

Pad value

Entry point for instruction segment

DSP address of load dataset

Instruction base address to load to

Instruction segment length

Data base address to load to

Data segment length

Instruction segment HLM value

Data segment HLM value

Preset data base address for pattern

Preset data length for pattern

Source Instruction base address(COPY)

Source Instruction 1ength(COPY)

Source Data base address(COPY)

Source Data length(COPY)

A-30 M

I

DATASET DEFINITION LIST - DDL

A Dataset Definition List in the user field must accompany any create DNT
(F$DNT) request. The DDL is illustrated in figure A-II.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+-------+
o I DN 1/ / / I 1/1 I

+---+-------+
1 I LDV

++++++++--------++----------+-----------+-----------------------+
2 I I I I I I I I BFI I I ERC 1/ I / / / / / / / 1/1 SZ I

++++++++--------++----------+-----------+-------++--------------+
3 I I 1// / / / I / / / / / / I I I DNT 1/1 I / 1/1 I I BFZ I

+++-------------++++--------+-----------+-------++--------------+
4 1/1/111/1111/1///1 I I INC 1/1//////1//111//1/11 DC I

+----------------+++--------+-----------+-------+---------------+
5 1///1/111//1/1//////11////1///1/1/11111/1 LM I

+---------------------------------------+-----------------------+

Field

DDDN

DDLDV

DDRDM

DDUDS

DDNFE

DDS TAT

DDMR

DDIA

SR-0011

Figure A-II. Dataset Definition List (DDL)

Word (base8)

0

1

2

2

2

2

2

2

Bits Description

0-55 Dataset name

0-63 Logical device name

0 Random dataset flag:
0 Sequential
I Random

1 Undefined dataset structure:
o COS blocked dataset structure
1 Undefined structure

2 Return error if dataset does not
exist. Register SO returned nonzero
if DNT does not exist; no DNT is
created.

3 Request dataset statistics; ignored
unless DDNFE=l (see DDDNT)

4 Dataset is to be memory resident

5 Interactive type dataset

A-31 M

I SR-OOll

Field Word (base8) Bits Description

DDTRAN 2

DDBFI 2

DDNA 2

DDERC 2

DDSZ 2

DDSEQ 3

DDBLK 3

DDDNT 3

DDNOF 3

DDBFZ 3

DDC 4

DDINC 4

DDDC 4

DDLM 5

6 Transparent mode for interactive
dataset

7-15 Blank field indicator (octal) for
character I/O:

Value Indicator
=000 BFI=I@BFI

400 BFI=User-specified ASCII
character

=400 BFI=OOO
>400 Blank compression disabled

16 No-Abort flag

17-27 Error code if No-Abort set

40-63 Dataset size in 5l2-word blocks

o Change a dataset from random to
sequential. Valid only if dataset is
currently random, ignored if sequential

1 Change a dataset form unblocked to
blocked. Valid only if dataset is
currently unblocked, ignored if blocked

16-39 Address of DNT image returned by
F$DNT when DDNFE=l and DDSTAT=l

48 No Overflow flag

49-63 Buffer size in 5l2-word blocks
$SYSTXT name

~7 Allocate contiguous space for request

19-27 Sectors to allocate per request

48-63 Disposition code (two characters):

40-63 Dataset size limit in 5l2-word blocks

A-32 M

I

OPEN DATASET NAME TABLE - ODN

A 2-word Open Dataset Name Table (ODN) is generated in the user field the
first time an OPEN of the specified dataset is encountered. Figure A-12
illustrates the ODN.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+-------+
o I DN 1// / / / / / I

+++++++-+-----------------------+---+---+---------------+-------+
1 I I I I I I 1/1 LDT 1// / lOST I DSP I

+++++++-+-----------------------+---+---+-----------------------+

SR-0011

Figure A-12. Open Dataset Name Table (ODN)

Field Word (base8) Bits Description

ODDN 0 0-55 Dataset name

ODV 1 1 Close volume

ODM 1 2 Open for 'mod' (append)

ODS 1 3 Close or open with saved position

ODH 1 4 Hold resources

ODUDS 1 5 Open as unblocked flag

ODLDT 1 8-31 LDT address

ODOST 1 36-39 Type of open requested
OSTSA=O Create DSP/LFT buffer in

system area

ODDSP 1 40-63

OSTUA=l Create DSP/LFT/buffer in
user area

OSTMSY=2 DSP/LFT/buffer moved to
system area

DSP pointer:
Negative: negative offset
Positive: absolute address

A-33 M

I

OPTION TABLE - OPT

The Option Table (OPT) is used for F$OPT calls. Figure A-13 illustrates
the OPT.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+
o LPP

++++---+--+
1 I I I IPNNI//1

++++---+--+
Figure A-13. Option Table (OPT)

Field Word (base8) Bits Description

OPLPP 0 0-63 Page length

OPSTAT 1 0 Dataset statistics enabled

OPPNCH 1 1 NZ if OPTION,PN selected

OPPNAS 1 2 NZ if PN=n, ZR if PN=ANY

OPPNN 1 3-6 Processor number (if @OPPNAS NZ)

SR-OOll A-34 M

I

JCL BLOCK INFORMATION TABLE - JBI

The I-word JCL Block Information Table (JBI) is generated in the user
field and has two formats: one for conditional information (see figure
A-14) and the other for interative information (see figure A-IS).

Conditional block information:

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

++--------------+---------------+---------------+---------------+
o 11//////////////1 LLEV I PLEV I LEVL I

++--------------+---------------+---------------+---------------+
Figure A-14. JCL conditional block information

Field Word (base8) Bits DescriEtion

JBEXC 0 0 Conditional sequence is in execution

JBLLEV 0 16-31 Conditional is contained in this
iterative nesting level

JBPLEV 0 32-47 Iterative is contained in this
procedure level

JBLEVL 0 48-63 Current iterative nesting level

Iterative block information:

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+-------+-----------------------+---------------+---------------+
o 1// / / / / / I CNT I PLEV I LEVL I

+-------+-----------------------+---------------+---------------+
Figure A-IS. JCL iterative block information

Field Word (base8) Bits DescriEtion

JBCNT 0 8-31 Iteration count

JBPLEV 0 32-47 Iterative is contained in this
procedure level

JBLEVL 0 48-63 Current iterative nesting level

SR-OOll A-35 M

I

JCL SYMBOL TABLE - JST

The 4-word JCL Symbol Table (JST) is generated in the job table area and
contains information about system and user symbols. See figure A-16.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

++--+
o I 1//1

++--+
1 II SN I

++++++----+-----+-----------------------+-----------------------+
2 I I I I I 1////1 TYPE 1///////////////////////1 LEVL I

++++++----+-+---+-------------------+---+-----------------------+
3 1///////////1 LEN 1///1 VAL

+-----------+-----------------------+---+-----------------------+

SR-OOll

Figure A-16. JCL Symbol Table (JST)

Field Word (base8) Bits Description

JSCRE o

JSSN 1

JSLOC 2

JSCON 2

JSSRS 2

JSUSR 2

JSSYS 2

JSTYPE 2

o Create if not found. Available only
for system use.

0-63 Symbol name

o Local or global. If set, symbol is
procedure local.

1 Constant or variable. If set,
symbol is constant.

2 System reserved. If set, the symbol
name is reserved by the system.

3 User settable. If set, symbol may
be modified by the job.

4 System settable. If set, the symbol
may be modified by COS.

10-15 One of the following symbol types:

A-36

SYMTUND=O'OO Undefined - no type
SYMTBOO=O'Ol Boolean - logical
SYMTINT=O'02 Decimal integer
SYMTLIT=O'03 SCII literal; 1-8

characters.

M

I

Field Word (base8) Bits Description

JSLEVL 2 40-63 Procedure definition level

JSLEN 3 12-35 Length of value

JSVAL 3 40-63 Base of value buffer

LABEL DEFINITION TABLE - LDT

The Label Definition Table describes the tape label. It consists of four
parts: the LDT header, volume header, header 1 entry, and header 2
entry. Except for the LDT header, which points to the other entries,
these entries are optional and can appear anywhere after the header. The
following conditions must be met for constructing a Label Definition
Table (LOT):

• The header must be present.

• The header must precede the first entry.

• Each entry must be pointed to by the offset value in the LDT
header. Zero is used for absent fields.

• The lengths of the whole LDT and of each entry must be set in the
proper fields.

• The length value for volume 1 must be at least large enough to
include the first VSN. The length value for either header 1 or
header 2 must be at least the defined length of the respective
entry.

LDT HEADER

The LDT header, required on all LDTs, serves the following functions:

• Specifies the beginning and end of the LOT

• Specifies the location of each LOT entry with respect to the LOT
base

• Identifies non-standard aspects of a dataset

• Points to labels within a label group

SR-OOll A-37 M

I

The LOT header is illustrated in figure A-l7.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+-----------------------+-----------------------+---------------+
o I TN 1///////////////////////1 TL I

+---+---++++------------+---+---+-------+-------+---------------+
1 IFD ILT I I I I////////////////IIDCI///////I DNT I

+---+---++++----+-----------+---+-------+-----------------------+
2 1///////////////1 VlB I HlB I

+---------------+-----------------------+-----------------------+
3 1///////////////1 H2B 1///////////////////////1

+---------------+-----------------------+-----------------------+

SR-OOll

Figure A-l7. Label Definition Table (LDT) header

Field Word (base8) Bits Description

LDTN 0 0-23 Table name ('LDT' in ASCII)

LDTL 0 48-63 Table length (variable)

LDFD 1 0-3 Foreign dataset translation identifier.
This field is used to indicate whether
run time foreign dataset translation
should be performed on this dataset.

LDLT 1 4-7 Requested label type:

LDPROT 1

LDCAT 1

LDCV 1

LDIDC 1

o TPLNL Non-labeled
1 TPLAL ANSI-standard label
2 TPLSL IBM standard labels

8 Protected access indicator. If
non-zero for a new tape dataset then
the dataset is to be protected on
the servicing front-end.

9 Cataloged dataset indicator

10 Dataset data conversion flag.
This field is used to indicate whether
implicit data conversion shall be done
by the run time library.

28-31 Initial dataset desposition
o TPOLO Old dataset
1 TPNEW New dataset

A-38 M

I

LDDNT 1 40-63 Dataset name table (DNT) pointer.
The field value is JTA-re1ative.

LDV1B 2 16-39 Offset of volume 1 entry, relative
to LDT base. If the LDT does not
contain a VOL 1 entry, this field
must be zero.

LDH1B 2 40-63 Offset of header 1 entry, relative
to LDT base; must be zero if there
is no HDR1 entry.

LDH2B 3 16-39 Offset of header 2 entry, relative
to LDT base; must be zero if there
is no HDR2 entry.

If the tape label is being sent to the front-end for servicing, word 1 of
the Label Definition Table (LDT) header is redifined as shown in figure
A-18.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---------------------------------------+-----------------------+
1 I11 FSH I

+---------------------------------------+-----------------------+
Figure A-18. Header redefiniton of LDDNT

Field Word (base8) Bits Description

LDFSH 1 40-63 Front-end service header offset

VOLUME 1 ENTRY

The volume 1 entry (see figure A-19) corresponds to volume 1 labels for
all volumes in the dataset. The volume 1 entry may be placed anywhere
after the header, so long as the LDV1B header field points to it
properly. The volume 1 entry is optional.

SR-0011 A-39 M

I

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+-------------------------------+---------------+---------------+
o I VOL 1 I VSB I VL1L I

+---------------+---------------+-------+-------+---------------+
1 I VSNL I CVN I DT 1/ / / / / / / I FVN I

+---------------+---------------+-------+-------+---------------+
2 I OlD

+ +---------------+
3 1///////////////1

+---+---------------+
4 I GDN I

+---++--+---+-------+
5 VSN I 1// I VDC I VAC

+---++--+---+-------+

SR-0011

Figure A-19. Label Definition Table (LDT) volume 1 entry

Field Word (base8) Bits Description

LDVOL1 o

LDVSB o

LDVL1L o

LDVSNL 1

LDCVN 1

LDDT 1

LDFVN 1

LOOID 2-3

LDOIDI 2

LOOID2 3

LDGDN 4

LDVSN 5

0-31 Entry name ('VOL1' in ASCII)

32-47 Volume serial list base offset

48-63 Volume 1 length

0-15 Number of VSNs in entry

16-31 Current VSN ordinal

32-39 Device type
o TPD62
1 TPD16

6250 bpi
1600 bpi

48-63 Final VSN ordinal: ordinal of VSN
corresponding with the volume
sequence number in access condition

0-63 Owner identifier

0-63 Characters 1-8

0-47 Characters 9-14

0-63 Generic device name

0-47 Beginning VSN

A-40 M

I

Field Word (base8) Bits Description

LDVRG 5 48 Volume-registered flag, set by a
servicing front-end. When set, the
VSN is from front-end catalog.

LDVDC 5 52-55 Volume disposition
0 TPOLD Existing dataset
1 TPNEW New volume to dataset

LDVAC 5 56-63 Volume accessibility character,
obtained from the label group

Word 5 of the Label Definition Table (LDT) volume 1 entry is the
beginning of the VSN list. Each VSN requires one word as shown in figure
A-20. The maximum number of VSNs is an installation defined parameter,
which is given as I@TMV.

0 •••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••

+---+---------------+
5 I VSNl 1///////////////1

+---+---------------+

Figure A-20. Beginning of VSN list

Field Word (base8) Bits Description

LDVSNl 5 0-47
LE@VOL1=W@LDVSN+I@TMV

SR-OOll A-4l M

I

HEADER 1 ENTRY

The header 1 entry (see figure A-2l) describes dataset attributes and
corresponds to the HDRl, EOF1, and EOVl labels for all volumes in the
dataset. Header 1 shows numeric fields in both binary and ASCII
characters. COS uses the ASCII equivalents for generating and validating
the label group. If a field is changed, both versions must be changed.
ASCII fields are right-justified with leading zeros. The header 1 entry
is optional and can be placed anywhere after the header, so long as it is
pointed to by header field LOH1B.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+-------------------------------+---------------+---------------+
o I HDRl 1///////////////1 HR1L I

+-------------------------------+---------------+---------------+
1 I FIDl I

+---+
2 I FID2 I

+---+
3 I FID3 I
+------------~--+

4 I FID4 I
+---+

5 I FID5 I
+-------------------------------+---------------+---------------+

6 I FID6 I CVSQ I FVSQ I
+-------------------------------+---------------+---------------+

7 I FSEC I CSEC I
+-------------------------------+-------+-------+---------------+

10 I FSEQ I DAC I VN I FSQ I
+-------------------------------+-------+-------+---------------+

11 I GEN I GN I GVN I
+-------------------------------+---------------+---------------+

12 I CDT 1///////////////1
+---++--------------+

13 I XDT I I RT I
+---++--------------+

14 I BLK 1///////////////1
+---+---------------+

15 I SET 1///////////////1
+-------------------------------+---------------+---------------+

16 I FBC I VBC I
+-------------------------------+-------------------------------+

17 I SCOD I
+

20 I
+-----------------------+
1///////////////////////1

+---------------------------------------+-----------------------+
Figure A-2l. Label Definition Table (LOT) header 1 entry

SR-OOll A-42 M

I SR-0011

Field Word (base8) Bits Description

LDHDRl 0 0-31 Entry name ('HDRl' in ASCII)

LDHRIL 0 48-63 Header 1 length

LDFIDI 1 0-63 Characters 1-8

LDFID2 2 0-63 Characters 9-16

LDFID3 3 0-63 Characters 17-24

LDFID4 4 0-63 Characters 25-32

LDFID5 5 0-63 Characters 33-40

LDFID6 6 0-31 Characters 41-44

LDCVSQ 6 32-47 Current volume sequence number (file
section number), binary equivalent
of LDCSEC

LDFVSQ 6 48-63 First volume sequence number (file
section number), binary equivalent
of LDFSEC

LDFSEC 7 0-31 First file section number (volume
sequence number) in ASCII, the
ordinal number of the volume to be
mounted first

LDCSEC 7 32-63 Current file section number (volume

LDFSEQ 10

LDDAC 10

LDVN 10

LDFSQ 10

0-31

32-39

40-47

48-63

sequence number) in ASCII, the
ordinal number of the currently
mounted volume

File sequence number (ASCII) ordinal
of the dataset being accessed. If
FSEQ < 1, volume should have more
than one dataset.

Dataset accessibility character.

Generation version number, numeric
equivalent of LDGVN

File sequence number, numeric
equivalent of LDFSEQ

A-43 M

I SR-OOll

Field Word (base8) Bits

LDGEN 11 0-31

LOON

LDGVN

LDCDT

LDCSP
LDCYR
LDCDY

LDXDT

LDXSP
LDXYR
LDXDY

LDUXD

LDRT

LDBLK

LDSET

LDFBC

11

11

12

12
12
12

13

13
13
13

13

13

14

15

16

32-47

48-63

0-47

0-7
8-23

24-47

0-47

0-7
8-23

24-47

48

49-63

0-47

0-47

0-31

Description

Generation number. Any value other
than one indicates that a dataset is
in a generation data group.

Generation number, numeric
equivalent of LooEN

Generation version number (ASCII).
Any value other than 0 indicates
that the dataset is in a generation
data group.

Creation date (ASCII). This field
indicates the creation date of the
dataset in the julian form:
'yyddd'. Note the space (LDCSP)
must be present.

Space
Year
Day

Expiration date; same format as
creation date above

Space
Year
Day

User specified XDT (expiration date)
flag

Retention period, integer days

Volume block count (ASCII): number
of user data blocks present, read
from or written into the label. can
be inaccurate because overflow
causes it to be cleared; see LDVBC
for an accurate count.

File set identifier, normally set to
the serial number of first volume in
the dataset

File block count (binary)

A-44 M

I

Field Word (base8) Bits Description

LDVBC 16 32-63 Volume block count (binary), number
of blocks written on volume so far

LDSCOD 17-20

LDSCDI 17

LDSCD2 20

HEADER 2 ENTRY

0-63 System identification code, to
identify the operating system or
computer system that generated the
tape

0-63 Character 1-8

0-39 Character 9-13
Identify the operating system or
computer system that generated the
tape:

LE@HDRl=W@LDSCD2+l

The header 2 entry (see figure A-22) describes dataset attributes and
corresponds to the HDR2, EOF2, and EOV2 labels for all volumes in the
dataset. Header 2 shows numeric fields in both binary and ASCII
characters. COS uses the ASCII equivalents for generating and validating
the label group. If a field is changed, both versions must be changed.
ASCII fields are right-justified with leading zeros. The header 2 entry
is optional and can be placed anywhere after the header, as it is pointed
to by header field LOH2B.

0 •••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••

+-------------------------------+---------------+---------------+
o I HDR2 1///////////////1 HR2L I

+-------+-------+------+--------+---------------+---------------+
1 I FMT I BA I RF 1////////1 MBS I

+-------+-------+------+--------+-------------------------------+
2 I BFO 1///////////////1 MRS I
+---------------+--------------~+-------+-----------------------+

3 I BL 1///////////////////////1
+---------------------------------------+-----------------------+

4 1 RL 1///////////////////////1
+---------------------------------------+-----------------------+

Figure A-22. Label Definition Table (LOT) header 2 entry

SR-OOll A-45 M

I SR-0011

Field Word (base8) Bits Description

LDHDR2 0 0-31 Entry name ('HDR2' in ASCII)

LDHR2L 0 48-63 Header 2 length

LDFMT 1 0-7 Record format, two types
IBM label types:

F Fixed-length records
V Variable-length records
U Undefined record format

ANSI label types:
F Fixed-length records
D Variable-length records
S Records span tape blocks

LDBA 1 8-15 Blocking attributes, IBM label types
only:

B Blocks are an integral multiple
of the record size

S Records span tape blocks
R Records span tape blocks, and

the blocks are an integral
multiple of the record size

LDRF 1 16-22 Record format.

LDMBS 1 32-63 Maximum block size (binary), maximum
size of any tape block that can be
read or written

LDBFO 2 0-15 Buffer offset, ANSI only (not
currently supported by COS)

LDMRS 2 32-63 Maximum record size (binary),
maximum size of any record that can
be read or written

LDBL 3 0-39 Maximum block size (ASCII), maximum
number of bytes in a tape block,
read from or written into the
label. Can be inaccurate because
overflow causes it to be cleared;
see LDMBS for an accurate count.

LDRL 4 0-39 Maximum record size (ASCII), maximum
number of bytes in a tape record,
read from or written into the
label. Can be inaccurate because
overflow causes it to be cleared;
see LDMRS for an accurate count.

LE@HDR2=W@LDRL+l

A-46 M

I

EVENT RECALL PARAMETER BLOCK - ERPB

The ERPB, shown in figure A-23, is the parameter block used with F$ERCL
requests.

0 •••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••

+------+--------------------------------+-----------------------+
o IERFUNCIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ERTO I

+------+--------+-----------------------+-----------------------+
1 11111111111111111 ERMASK I ERMAP I

+---------------+-----------------------+-----------------------+

SR-OOll

Figure A-23. Event Recall parameter block

Field Word (base8) Bits

ERFUNC 0 0-6

ERTO

ERMASK

ERMSIJ
ERMSUO

o

1

1
1

40-63

16-39

16
17

Description

Subfunction code

The functions range from ERCL$$MI to
ERCL$$MA-l. When subfunctions are
added adjust the ERCL$$ symbols as
needed.

ERCL$DIS=Ol

ERCL$ENA=02

ERCL$RCL=03
ERCL$RET=04

ERCL$$MI=Ol
ERCL$$MA=05

Disable event
monitoring
Enable event
monitoring
Recall untill event
Return occurred-events

map
Minimum subfunction
Maximum subfunction+l

Timeout value (milliseconds)

Event selection mask

ERCL$$ values must be changed when new
events are added. Bits zero thru
ERM$$MAX-l must always be defined.
Bits ERM$$FP thru ERM$$LP-l must always
be defined.

Inter-job message arrived
Unsolicited oper msg arrived

A-47 M

I SR-OOll

Field Word (base8) Bits Description

ERMSOR

ERMSCH
ERMSIQ
ERMSOQ

ERMAP
ERMPIJ
ERMPUO
ERMPOR
ERMPCH
ERMPIQ
ERMPOQ

1

1
1
1

1
1
1
1
1
1
1

18

26
27
28

40-63
40
41
42
50
51
52

Operator reply arrived
ERM$$MAX=D'18+l Last non-privileged

bit+l
ERM$$FP=O'26 First privileged

bit
Channel function done
SOT placed in INPUT queue
SDT placed in OUTPUT queue

ERM$$LP=O'28+1 Last privileged
bit+l

Occurred-events map
Inter-job message arrived
Unsolicited oper msg arrived
Operator reply arrived
Channel function done
SOT placed in INPUT queue
SOT placed in OUTPUT queue

On return from F$ERCL,
SO can have the following
values.

00 Okay

A-48

ERER$MT=Ol

ERER$PV=02
ERER$BFN=03
ERER$UDB=04

ERER$MDI=O 5

Prohibited to
multitasking job
Not a privileged job
Bad function
Mask contains undefined
bits
Monitoring not enabled

M

I

USER DRIVER PARAMETER BLOCK - DRPB

The DRPB, as shown in figure A-24, is the parameter block used with
F$DRIVER requests.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+-----+
o 1///IPLEN I

+---+-----+
1 I FUNC I

+---+
2 I COSS I

++--+
3 I 1//1

++--+
4 I DRS I

+---+
5 I DP I

+---+
6 I LN I

+---+
7 I DRNM I

+---+---------------+
10 1///1 TO I

+---+---------------+
11 I DIR I

+---+
12 I OPD I

+---------------------------------------+-----------------------+
13 J///////////////////////////////////////I BAD1 I

+---------------------------------------+-------+---------------+
14 1///1 DLNI I

+---+---------------+
15 1///1 TLN1 I

+---------------------------------------+-------+---------------+
16 1///////////////////////////////////////1 BAD 2 I

+---------------------------------------+-------+---------------+
17 1///1 DLN2 I

+---+---------------+
20 1///1 TLN2 I

+---+---------------+
21 I DFP1 I

+---+
22 I DFP2 I

+---+
23 I DFP3 I

+---+
24 I SPAR I

+---+
Figure A-24. Channel Access parameter block

SR-00l1 A-49 M

Field Word (baseS) Bits

DRPLEN o 5S-63

DRFUNC 1 0-63

• SR-OOll

Description

Parameter block length

Subfunction code

The following line is a *CALL to
comdeck COMAPFC.

CFN$xxx codes are used to specify the
type of request to the shell and/or
driver.

If codes are added, CFNMIN, CFNRSV,
CFN$DMIN, and CFN$DMAX must be updated
accordingly.

A-50

CFN$MIN=3 Minimum legal code
CFN$OPE=3 Driver Open
CFN$CLS=4 Driver close
CFN$RD=5 Read header
CFN$RDH=6 Read header and

hold data
CFN$RDD=7 Read both header

and data
CFN$WT=D'S write header
CFN$WTH=D'9 Write header and

hold data
CFN$WTD=D'IO Write header and

data
CFN$RSV=D'll Reserved

thru D'3l
CFN$DMIN=D'32 Minimum legal

driver function code
CFN$DMAX=D'127 Maximum legal

driver function code

CST$xxx codes are returned by the
shell and drivers.

CST$CMP=O
CST$MIN=

CST$CMP
CST$PRO=3
CST$CHN=4
CST$FCN=5
CST$DVN=6
CST$DAE=7
CST$DLE=D'S
CS T$MAX =

CST$DLE

Complete

Minimum status
Protocol error
Illegal channel number
Illegal function code
Illegal driver name
Data address error
Data length error

Maximum status

M

I SR-OOll

Field Word (base8) Bits Description

DRCOSS 2

DRCOMS 3

DRDRS 4

DRDP 5

DRLN 6

DRDRNM 7

DRTO 10

0-63

D '9 - D' 31 Reserved

CST$DMIN=D'32 Min driver specific
code

CST$DMAX=D'127 Max driver specific
code

CST$xxx codes for loopback driver.

CST$TMO=D'32 Loopback Driver
timeout

status of the
DRS$OK=O
DRS$CNO=l
DRS$CAO=2
DRS$RSV=3

DRS$CUK=4
DRS$OFF=5
DRS$BAl=6
DRS$BA2=7
DRS$BLl=8
DRS$BL2=9
DRS$BPS=lO
DRS$BDI=ll
DRS$BSY=12
DRS$BFN=13
DRS$NMT=14

DRS$NRS=15

DRS$MIN=
DRS$OK

DRS$MAX=

request.
Okay
Channel is not open
Channel is already open
Channel is reserved to
another task
Channel is unknown
Channel is off
Bad bufferl address
Bad buffer2 address
Bad bufferl length
Bad buffer2 length
Bad parameter size
Bad channel direction
Channel is busy
Bad function
Not available to
multitasking jobs
Channel is not
reserved to you

Min status

DRS$NRS+l Max status+l

o 'Driver complete' status

0-63 Driver and shell status

0-63 Driver parameter

0-63 Logical channel name; 1-7 chars.
Left justified, blank filled.

0-63 Driver name

48-63 Driver timeout in tenths of a second

A-51 M

I

Field Word (base8) Bits DescriEtion

DRDIR 11 0-63 Direction of channel
DIR$INP=O Input
DIR$OUT=l Output

DROPD 12 0-63 OPEN driver spare

DRBADl 13 40-63 Bufferl address

DRDLNl 14 48-63 Datal length

DRTLNl 15 48-63 Transferl length

DRBAD2 16 40-63 Buffer2 address. Used only with
CFNRDD, CFNWTH, and CFN$WTD

DRDLN2 17 48-63 Data2 length. Used only with CFN$RDD,
CFNRDH, CFNWTH, and CFN$WTD

DRTLN2 20 48-63 Transfer2 length. Length of data
actually transferred from RDBAD2

DRDFPl 21 0-63 DRIVER function parameters

DRDFP2 22 0-63 DRIVER function parameters

DRDFP3 23 0-63 DRIVER function parameters

DRS PAR 24 0-63 Spare for future use

RECEPTIVE CONTROL BLOCK - RCB

The Receptive Control Block (RCB), shown in figure A-25, exists in the
user field of jobs that are receptive to inter-job communication
requests. There is one RCB per ID.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+
o I ID I

+---+
Figure A-25. Receptive control block

SR-OOll A-52 M

I

Field Word (base8) Bits Description

RCBID o 0-63 10 of the job requesting connection

NODE CONTROL BLOCK - NCB

The Node Control Block (NCB), shown in figure A-26, exists in the user
field of jobs having interjob communication paths and contains
information about those paths. There is one NCB per node.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---------------------------------------+-----------------------+
o 1///////////////////////////////////////1 NCPN I

+---------------------------------------+-----------------------+
1 1///////////////////////////////////////1 LEN I

+---------------------------------------+-----------------------+
2 1///////////////////////////////////////1 ADD I

+---------------------------------------+-----------------------+
3 I NCST I

+---+

SR-OOll

Figure A-26. Node control block

Field Word (base8) Bits Description

NCPN 0 40-63 IPT offset for this path

NCB LEN 1 40-63 Length of the node buffer

NCBADD 2 40-63 Address of the node buffer

NCST 3 0-63 status
NCMS 3 0 Message status
NCOS 3 48-63 Open status

If any values are changed, SYSLIB must be changed also.

A-53

NCB$ACC='AC'R Open request
accepted

NCB$REJ='RJ'R Open request
rejected

NCB$CLO='CL'R Path was closed

M

I

INTERJOB COMMUNICATION MESSAGE BUFFER - MHB

The Interjob Communication Message Buffer, shown in figure A-27, exists
in the user field of jobs having interjob communication paths. One
buffer per node exists. The buffer contains a header followed by the
message body. The buffer header contains information about the message
and the buffer body contains the message itself.

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+---+
o MHALEN

+---+
1 I MHSLEN I

+---+
Figure A-27. Interjob Communication Message Buffer

Field Word (base8) Bits Description

MHALEN 0 0-63 Length of message put into the buffer

MHSLEN 1 0-63 Length of the message sent

This header will be followed by
message data in the format defined
by the communicating tasks.

INTERJOB COMMUNICATION PARAMETER BLOCK - IJPB

The Interjob Communication Parameter Block (IJPB), shown in figure A-28,
is the parameter block used with F$IJMSG requests.

SR-0011 A-54 M

I

0 •••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••

+------+-----+--+ o I LEN 1*****1//1
+------+-----+ +-----------------------+

1 1///////////////////////////////////////1 IJLINK

+---------------------------------------+-----------------------+
2 I I JSTAT I

+---+
3 I IJFUNC I

+---+
4 I IJRID I

+---+
5 I IJTID I

+---------------------------------------+-----------------------+
6 1///////////////////////////////////////1 IJRCB I

+---------------------------------------+-----------------------+
7 1///////////////////////////////////////1 IJNCB I

+---------------------------------------+-------+---------------+
10 1///1 IJBLEN I

+---------------------------------------+-------+---------------+
11 1///////////////////////////////////////1 IJBADD I

+---------------------------------------+-----------------------+
12 I IJOVR I

+---+
13 I IJFCS I

+---+
14 I IJFCU I

+---+
15 I IJCLS I

+---+

SR-OOll

Figure A-28. Interjob communication parameter block

Field Word (base8) Bits Description

IJPLEN o 0-6 Length of the parameter block

IJHLEN o 7-12 Message buffer header length (LH@MHB)

IJLINK 1

I JSTAT 2

40-63 Link to next parameter block

0-63 Status
I JMS $OK= 0 0 Completed with no

error

The following responses do not
terminate a request chain. If any
values are changed, SYSLIB must be
changed also.

A-55 M

Field Word (base8) Bits Description

I JMS $AR= 0 1 ID is already receptive
I JMS $AU= 0 2 ID is in use
I JMS $ BA= 0 3 Buffer address or

length bad
I JMS $BN= 0 4 NCB is bad
I JMS $BNA= 0 5 NCB address is bad
IJMS$BP=06 Path is busy
IJMS$HL=07 HLEN error
IJMS$IF=08 IPT full
IJMS$INR=09 ID not registered
IJMS$INS=lO ID not specified
IJMS$MC=ll Bad log message class
IJMS $ML= 1 2 Bad message length
IJMS $NA= 1 3 ID is not attached
IJMS$NE=14 Path is not open
IJMS$NO=15 No outstanding open

request
IJMS$NP=16 Path does not exist
I JMS$NR= 1 7 ID is not receptive
I JMS $00= 1 8 Outstanding OPEN was

found
IJMS$PE=19 Path is already

established
IJMS$PF=20 Memory pool is full
IJMS$PR=21 ID is privileged
IJMS$RB=22 Bad RCB address
IJMS$RF=23 RIT full
IJMS$TA=24 Target's buffer

address is bad
IJMS$TL=25 Target's buffer length

is bad

The following responses terminate a
request chain.

IJMS$BE=32 IJPB length error
IJMS$BF=33 Undefined function
IJMS$LA=34 Bad link address
IJMS$MT=35 More than one active TXT
IJMS$NC=36 RIT or IPT has zero

entries
IJMS$PV=37 Privileged function
IJMS$TP=38 More than I@MPBS

parameter blocks
IJMS$MAX=39 Maximum status value + 1

IJFUNC 3 0-63 Subfunction code

If any values are changed, SYSLIB must
be changed also.

I SR-OOll A-56 M

I SR-OOll

Field Word (base8) Bits Description

IJRID 4

IJTID 5

IJRCB 6

IJNCB 7

IJBLEN 10

IJBADD 11

IJOVR 12

IJFCS 13

IJFCU 14

I JCLS 15

IJM$NOP=OO
IJM$REC=Ol

IJM$OPEN=02

IJM$ACCE=03

IJM$REJE=04

IJM$SNDM=05
IJM$CLOS=06

No op
Request receptivity
state
Open a communication
path
Accept an IJM$OPEN
request
Reject an IJM$OPEN
request
Send a message
Close a
communication path

IJM$END=07 Ends the receptivity
state

IJM$$HNP=07+1 Maximum value + 1 of
unprivileged
subfunctions

IJM$$MIP=32 Minimum privileged
function value

IJM$SNDL=32 Send a logfile
message (privileged)

IJM$$MAX=32+1 Maximum subfunction
value + 1

0-63 ID of the requesting job

0-63 ID of the target job

40-63 RCB address

40-63 NCB address

48-63 Message buffer length

40-63 Message buffer address

0-63 Log message over-ride flag

0-63 Log message to system log

0-63 Log message to user log

0-63 Log message class

A-57 M

I

SUBSYSTEM SUPPORT

Subsystem Suppopt provides a mechanism for the user to develop code
that would otherwise have to be incorporated as part of the Cray
Operating System (COS). Examples of this kind of code are networking
packages and online diagnostics.

Subsystem Suppopt is a collection of independent functions whose use
may be restricted to jobs granted the necessary privilege by COS.

This appendix describes the following Subsystem Support functions:

• Interjob communication

• User channel access

• Event recall

INTERJOB COMMUNICATION

A job may communicate with one or more other jobs. This feature is
available to all single-tasking jobs. It is prohibited to multitasking
jobs.

To establish communication, one job indicates it is receptive to
communication, and the others request to open a communication path
between themselves and the receptive job. Once a path is established,
jobs may freely exchange messages. Anyone job may open as many
communication paths as it needs. An installation defined parameter,
I@MIJPA, determines the total number of communication paths allowed in
the system at one time.

B

Message exchange is memory to memory between jobs if both are resident.
Otherwise, messages are queued for rolled out jobs. The maximum length
of a message is determined by an installation defined parameter, I@MIJML.

A receptive job may place a message in the user logfile of any connected
job. This is a privileged function.

SR-OOll B-1 M

I

ESTABLISHING COMMUNICATION

Each job must have at least one unique nonzero 64-bit ID. The programmer
chooses the ID, so must know the IDs of the communicating jobs. See your
site analyst for the IDs of system supported programs. Because system
supported programs commonly have IDs that begin with a $, refrain from
using this format when choosing an ID.

A job becomes receptive through a system request specifying its ID and
the location of its Receptive Control Block (RCB). The system uses this
RCB when processing requests from other jobs to find out if this job
allows a communication path to be established with another job. The RCB
is one word long and is set to 0 by the system when the job becomes
receptive. When another job makes a request to open communication, that
job's ID is placed in the RCB. The RCB is always set by the system and
read by the user. The user should never write into the RCB.

A job attempts to establish a communication path with another job by
making a system request, specifying its ID and the ID of the target job.
If the target job is receptive the system will put the requesting job's
ID into the target job's RCB if the target job is resident and its RCB is
o. Otherwise, the request is queued. No further requests may be made to
the target job until a response is received. The target job polls its
RCB for a nonzero value, indicating a request for connection. The target
job screens out undesirable jobs. The target job accepts or rejects the
attempt to establish communication by making a system request and
indicating its response (accept or reject), its ID, and the ID of the
initiating job. If it accepts, the communication path is established,
and messages can be transferred freely. The job that requested that a
communication path be established is said to be attached to the target
job. Upon receipt of the response, whether accept or reject, the system
places in th~ RCB, the ID of the next job requesting that a path be
established. If there is no job requesting a path, the RCB is set to o.

The communication path consists of two nodes, one in each job. Each node
consists of a Node Control Block (NCB) and a message buffer (MHB). The
NCB consists of a pointer to the message buffer, the length of the
buffer, and status indicators. The message status indicator must be
polled to see if a message arrived. A zero-length message indicates a
change in open status may have occurred. The open status indicates
whether a reply to an open request arrived or the other job closed this
path. Each job is responsible for clearing its message status after it
has taken appropriate action. No further messages will be put into a
buffer until the message status is O. The NCB allows dynamic message
buffers. The job may change the size of MBB with or without relocating
it, but this change can only be made when the message status has been set
by the system. When the message status has been set by the system, the
system will not do anything further with that buffer until the user
clears the status. The job can then change the buffer and clear the
message status (in that order) so the system resumes message transfer to
that node.

SR-OOII B-2 M

I

When a job requests that a communication path be established with another
job, the requesting job sends the location of its NCB in the request.
When the target job replies, it sends the location of its NCB in the
reply. So, the communication path is well defined. Figure B-1
illustrates a typical subsystem interjob communication structure.

NCBI

~ ______________________ ~~~----------------------~.~I~ _____ M_e_S_S_a_g_e __ b_U_f_f_e_r __ ~

NCB 2

~ ____ ~.~I Message buffer

NCB3

Message buffer

Figure B-1. A typical subsystem interjob communication structure

The job in figure B-1 has communication paths established with three
other jobs. Messages from JOBI are placed in the buffer pointed to by
NCBl, while JOB3's messages are placed in the buffer pointed to by NCB3.
The location of the buffers is not important. The NCBs, however, should
be allocated so V registers can be used to poll for nonzero status values.

A job may use more than one ID in its communications. This allows for
multiple paths between jobs.

SENDING AND RECEIVING MESSAGES

When a communication path has been established, a job sends a message by
making a system request indicating the location and length of the message
to be sent, and an NCB address.

SR-OOIl B-3 M

I

If a job's NCB message status indicates that a message has been placed in
its message buffer, the job may read the message in the buffer and clear
its NCB message status. The message appears directly after a message
header. The header contains the length of the message sent and the
length of the message actually put in the buffer. A message that is too
large for the buffer is truncated. No further action is taken by the
system.

Message exchange is memory to memory when both jobs are resident.
Otherwise, one message per node is queued for any job that is rolled out
or has a nonzero NCB message status. All requests to send a message to a
job that already has a message queued are rejected with a busy status.
If no pool space is available to queue a message, a pool-full message is
returned. The job tries again later.

When a program removes messages from message buffers and clears the
message status, it issues an event recall return or recall function.
This assures that queued messages move into the buffers as quickly as
possible rather than wait for the system to detect that buffers are
available for new messages.

Sending an ASCII message to an attached job's logfile is a privilege and
can be done by making a system request specifying the location of the
message, an NCB address, a message class indicator, destination
indicator, and an Override flag. The message must be I through 80
characters and must be terminated by a zero byte if less than 80
characters.

CLOSING COMMUNICATION PATHS

A job may close aLL communication paths with a given 1D by specifying
that ID and an NCB address. A job closes a specific communication path
by making a system request specifying its ID, an NCB address, and another
job's ID. The closing job informs the other job of its intention to
close communication before the close request is made. Any messages
queued on either end of this path are discarded and a zero-length npath
closed" message is placed in the other job's message buffer or queued for
the other job. If a job receives a zero-length message it checks its NCB
open status for a change.

A job gives up its receptivity by making a system request specifying its
ID. This request does not affect existing communication paths but
prevents future open requests' referring to that ID from being posted.
If there are any open requests pending when this request is made, a
status indicator is returned in the NCB, and the ID is placed in the
RCB. The job's receptivity is ended, but the job continues to accept or
reject open requests until the RCB is returned with a 0 value. The 0
indicates that no more open requests are queued for this job. If the job
does not perform this function, the queued open requests remain until
either the job becomes receptive again or job advance occurs.

SR-OOII B-4 M

I

All communication must be closed before the end of each job step or the
job aborts. Communication paths do not affect the recoverability of a
job. If a job with paths established is recovered, all paths are
eliminated and the job reestablishes the paths. A job using an
established communication path detects this occurrence when an
ID-not-established status is returned in response to a communication
request.

SYSTEM REQUESTS

The system requests available are F$IJMSG requests with the following
functions: IJMNOP, IJMREC, IJM$OPEN, IJM$ACCE, IJM$REJE, IJM$SNDM,
IJM$SNDL, IJM$CLOS, and IJM$END. Each request requires a parameter block
(IJPB). Up to an installation-defined maximum number of parameter blocks
(I@MPBS) can be linked together allowing for multiple requests with one
F$IJMSG system request.

USER CHANNEL ACCESS

A job can communicate directly with a user-supplied driver using open,
read, write, close, and special driver requests. These requests require
the specification of a logical channel name, a return status word, and
various buffer information. This is a privileged feature available to
single-tasking jobs but prohibited to multitasking jobs.

A user accesses a user-supplied driver with the F$DRlVER system request,
DRIVER macro, or DRIVER FORTRAN subroutine. Only one request for a
channel may be outstanding at a time.

The user opens a channel by specifying a logical channel name, a channel
timeout value, a driver name, and an I/O direction. If no timeout value
is specified, the system uses an installation-defined value (I@CHATIM).
All subsequent functions on this channel use this value unless a timeout
value is specified with a specific function. Specify the driver name
only if the system is not to use the standard driver for the given
channel. The input (or output) channel must be opened before it can be
read (or written). Opening the channel automatically reserves it. The
system rejects all subsequent requests from other jobs for that channel
until the job closes the channel.

Close a channel by specifying the channel name and direction. The
channel reservation is released when the channel is closed.

SR-OOll B-S M

I

The user can send a message to the operator requestin~ that a channel be
turned on or off (see Job-to-Operator Communication).

Transfer data by specifying the channel name (the direction is not
needed), the address of the buffer to or from which data is to be
transferred, and the length of the data to be transferred. The system
returns the length of the data actually transferred.

Issue special requests defined in the individual driver specifications by
specifying the channel name and direction. See the individual driver
specifications for other requirements.

For each function, send additional data to the driver (for example, the
timeout value for this function) in a reserved driver word in the request
parameter block. The driver returns information to the user in this
word. See the individual driver specifications for the use of this word.

Job termination closes and releases all channels currently belonging to a
job. Open channels do not affect the recoverability of a job. In the
event that a job with opened channels is recovered, all channel links are
eliminated and it is the responsibility of the job to re-open them. A
job can detect this occurrence when the status "Channel doesn't belong to
you" is returned in response to a channel request.

EVENT RECALL

An event recall request can cause a job to suspend until ·an event
occurs. When the event occurs, the job is recalled and the event
reported. This feature is available to all single-tasking jobs but is
prohibited to multitasking jobs.

Event recall has two phases: waiting for events and discovering whether
events have occurred. If one or more of the following events is
requested in a job, the job is released from recall when the event
occurs. Note that some of the events are privileged.

• Timeout elapsed
• Interjob communication message received
• Unsolicited operator message receivedt

• Operator reply receivedt

• Channel driver completed (privileged)
• An SDT placed in the INPUT queue (privileged)t
• An SDT placed in the OUTPUT queue (privileged)f

t Deferred implementation

SR-OOII B-6 M

A timeout event is always enabled in order to prevent a job's being
suspended indefinitely.

The F$ERCL system request, ERECALL system macro, and FORTRAN ERECALL
subroutines are available for event recall.

SR-OOll B-7 M

CHARACTER SET C

The ASCII character set contains 128 control and graphic characters shown
in the following table. Numbers, letters, and special characters that
form the Cray FORTRAN character set are identified by the appearance of
the letter C in the fourth column. All other characters are members of
the auxiliary character set. The letter A in the fourth column of the
table indicates those characters belonging to the ANSI FORTRAN character
set.

The letters that appear in parentheses following the descriptions in the
fifth column indicate the following control character usage.

• Cc - Communication control

• FE - Format effector

• IS - Information separator

SR-OOll C-l M

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

NUL 000 12-0-9-8-1 Null

SOH 001 12-9-1 Start of heading (CC)

STX 002 12-9-2 Start of text (CC)

ETX 003 12-9-3 End of text (CC)

J:!!OT 004 9-7 End of transmission (CC)

ENQ 005 0-9-8-5 Enquiry (CC)

ACK 006 0-9-8-6 Acknowledge (Ce)

BEL 007 0-9-8-7 Bell (audible or attention
signal)

BS 010 11-9-6 Backspace (FE)

HT 011 12-9-5 Horizontal tabulation (FE)

LF 012 0-9-5 Line feed (FE)

VT 013 12-9-8-3 Vertical tabulation (FE)

FF 014 12-9-8-4 Form feed (FE)

CR 015 12-9-8-5 Carriage return (FE)

SO 016 12-9-8-6 Shift out

SI 017 12-9-8-7 Shift in

DLE 020 12-11-9-8-1 Data link escape (eC)

DC1 021 11-9-1 Device control 1

DC2 022 11-9-2 Device control 2

DC3 023 11-9-3 Device control 3

DC4 024 9-8-4 Device control 4 (stop)

NAK 025 9-8-5 Negative acknowledge (CC)

SYN 026 9-2 Synchronous idle (eC)

ETB 027 0-9-6 End of transmission block (CC)

CAN 030 11-9-8 cancel J

EM 031 11-9-8-1 End of medium

SUB 032 9-8-7 Substitute

ESC 033 0-9-7 Escape

FS 034 11-9-8-4 File separator (IS)

SR-0011 C-2 M

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

GS 035 11-9-8-5 Group separator (IS)

RS 036 11-9-8-6 Record separator (IS)

US 037 11-9-8-7 Unit separator (IS)

(Space) 040 (None) A,C Space (blank)
I 041 12-8-7 Exclamation mark .
II 042 8-7 C Quotation marks (diaeresis)

i 043 8-3 Number sign

$ 044 11-8-3 A,C Dollar sign (currency symbol)

% 045 0-8-4 Percent

& 046 12 Ampersand
I 047 8-5 A,C Apostrophe (single close

quotation)

(050 12-8-5 A,C Opening (left) parenthesis

) 051 11-8-5 A,C Closing (right) parenthesis

* 052 11-8-4 A,C Asterisk

+ 053 12-8-6 A,C Plus

, 054 0-8-3 A,C Comma (cedilla)

- 055 11 A,C Minus (hyphen)

. 056 12-8-3 A,C Period (decimal point)

/ 057 0-1 A,C Slant (slash, virgule)

0 060 0 A,C Zero

1 061 1 A,C One

2 062 2 A,C Two

3 063 3 A,C Three

4 064 4 A,C Four

5 065 5 A,C Five

6 066 6 A,C Six

7 067 7 A,C Seven

.8 070 8 A,C Eight

SR-001l C-3 M

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

9 071 9 A,C Nine

· 072 8-2 A,C Colon ·
· 073 11-8-6 Semicolon ,
< 074 12-8-4 Less than

= 075 8-6 A,C Equal

> 076 0-8-6 Greater than

? 077 0-8-7 Question mark

@ 100 8-4 Commercial at-sign

A 101 12-1 A,C Uppercase letter

B 102 12-2 A,C Uppercase letter

C 103 12-3 A,C Uppercase letter

D 104 12-4 A,C Uppercase letter

E 105 12-5 A,C Uppercase letter

F 106 12-6 A,C Uppercase letter

G 107 12-7 A,C Uppercase letter

H 110 12-8 A,C Uppercase letter

I III 12-9 A,C Uppercase letter

J 112 11-1 A,C Uppercase letter

K 113 11-2 A,C Uppercase letter

L 114 11-3 A:C Uppercase letter

M 115 11-4 A,C Uppercase letter

N 116 11-5 A,C Uppercase letter

0 117 11-6 A,C Uppercase letter

P 120 11-7 A,C Uppercase letter

Q 121 ·11-8 A,C Uppercase letter

R 122 11-9 A,C Uppercase letter

S 123 0-2 A,C Uppercase letter

T 124 0-3 A,C Uppercase letter

U 125 0-4 A,C Uppercase letter

SR-OOll C-4 M

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

V 126 0-5 A,C Uppercase letter

W 127 0-6 A,C Uppercase letter

X 130 0-7 A,C Uppercase letter

Y 131 0-8 A,C Uppercase letter

Z 132 0-9 A,C Uppercase letter

[133 12-8-2 Opening (left) bracket

\ 134 0-8-2 Reverse slant (backs1ash)

] 135 11-8-2 Closing (right) bracket
A 136 11-8-7 Circumflex

- 137 0-8-5 Underline

• 140 8-1 Grave accent (single open
quotation)

a 141 12-0-1 C Lowercase letter

b 142 12-0-2 C Lowercase letter

c 143 12-0-3 C Lowercase letter

d 144 12-0-4 C Lowercase letter

e 145 12-0-5 C Lowercase letter

f 146 12-0-6 C Lowercase letter

9 147 12-0-7 C Lowercase letter

h 150 12-0-8 C Lowercase letter

i 151 12-0-9 C Lowercase letter

j 152 12-11-1 C Lowercase letter

k 153 12-11-2 C Lowercase letter

1 154 12-11-3 C Lowercase letter

m 155 12-11-4 C Lowercase letter

n 156 12-11-5 C Lowercase letter

0 157 12-11-6 C Lowercase letter

p 160 12-11-7 C Lowercase letter

q 161 12-11-8 C Lowercase letter

r 162 12-11-9 C Lowercase letter

SR-0011 C-5 M

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

s 163 11-0-2 C Lowercase letter

t 164 11-0-3 C Lowercase letter

u 165 11-0-4 C Lowercase letter

v 166 11-0-5 C Lowercase letter

w 167 11-0-6 C Lowercase letter

x 170 11-0-7 C Lowercase letter

y 171 11-0-8 C Lowercase letter

z 172 11-0-9 C Lowercase letter
{ 173 12-0 Opening (left) brace
I

174 12-11 Vertical line I

} 175 11-0 Closing (right) brace

'" 176 11-0-1 Over line (tilde, general
accent)

DEL 177 12-9-7 Delete

SR-001l C-6 M

EXCHANGE PACKAGES

An Exchange Package is a 16-word block of data in memory that is
associated with a particular computer program. An Exchange Package
contains the basic hardware parameters necessary to provide continuity
from one execution interval for the program to the next. The CRAY-1
Exchange Package is illustrated in figure D-1~ the CRAY X-MP Exchange
package is illustrated in figure C-2.

o 8 16 24 32 40 48 56
I 0 E I S IRI BI P h AO

I

1

2

3

4-7

8-15

C III/I BA Illrfl IMM

IIIII/I/III/IRHIII/l LA , M I

VIII/i//III/ii/' XA I VL , F I

11//11/1111/1111/1/11/1111111//1111//111
SO to S7

Figure D-1. CRAY-1 Exchange Package

Field Word

Error type (E) 0
Syndrome bits (S) 0
Read mode (R) 0
Bank error address (B) 0
Program register (P) 0
Chip error address (C) 1
Base address (BA) 1
Interrupt Monitor Mode bit (IMM) 1
High-order bits of memory error read

address (RH) 2
Limit address (LA) 2
Mode bits (M) 2
Exchange address (XA) 3
Vector length (VL) 3
Flag register (F) 3
Current contents of the eight A registers 0-7
Current contents of the eight S registers 8-15

SR-0011 D-1

Al

A2

A3

A4 to A7

Bits

0-1
2-9

10-11
12-15
16-39

0-15
18-35
39

14-15
18-35
36-39
16-23
24-30
31-39
40-63

0-63

M

D

63

I

o 8 16 PN
o ~~ lEI S II11I
1

2 i/

RI CS I B II11I
;rllllllllllllill

VNU
3

ESVL
4

/~IIIIIIIIIIIIIFI

EAM
5
t/
~IIIIIIIIIIIIIIIII

111111111111II111I

XA I

24 32 40 48
P I AO

IBA IIIMI Al

lLA IIIMI A2

VL III F I A3

DBA PS/ I~I Il'fl CLN A4

DLA I111I A5

6-7

8-1

VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII A6 to A7

5 SO to S7

Figure 0-2. CRAY X-MP Exchange Package

Field Word Bits

4-Processor Single-Processor
CRAY X-MP CRAY X-MP

Processor number (PN) 0 0-1 1
Error type (E) 0 2-3 2-3
Syndrome bits (S) 0 4-11 4-11
Program Address

register (P) 0 16-39 16-39
Read mode (R) 1 0-1 0-1
Read address (CSB) 1 2-5 (CS); 2-4 (CS);

6-11 (B) 7-11 (B)
Instruction Base

Address (IBA) 1 16-33 18-34
Instruction Limit

Address (ILA) 2 16-33 18-34
Mode register (M) 1 35-39 35-37; 39

2 35-39 35-39
Vector not used (VNU) 2 0 0
Enable Second Vector

Logical (ESVL)t 3 0 0
Flag register (F) 3 14-15; 15;

31-39 31-39
Exchange Address

register (XA) 3 16-23 16-23
Vector Length 3 24-30 24-30

register (VL)

t Not available on all CRAY X-MPs

SR-0011 0-2

56 63

Dual-Processor
CRAY X-MP

1
2-3
4-11

16-39
0-1
2-6 (CS)
7-11 (B)

18-34

18-34
35-39
35-39
0

0
14-15;
31-39

16-23
24-30

M

Field Word Bits

4-Processor Single-Processor Dual-Processor
X-MP X-MP X-MP

Enhanced Addressing
Mode (EAM) t 4 0 NA NA

Data Base Address (DBA) 4 16-33 18-34 18-34
Program State (PS) 4 35 35 35
Cluster Number (CLN) 4 37-39 38-39 38-39
Data Limit 5 16-33 18-34 18-34

Address (DLA)
Eight A register 0-7 40-63 40-63 40-63

contents
Eight S register 8-15 0-63 0-63 0-63

contents

t 4-processor CRAY X-MP only

I SR-OOll D-3 M

ERROR AND STATUS CODES

SYSTEM ERROR CODES

Table E-I describes the system error codes as released. Installation
differences can change data in this table. Consult the on-site analyst
for details. The CRAY-OS Message Manual, publication SR-0039, also
contains additional descriptions of the abort codes and their
corresponding messages.

System
Error Code

ABOOI

AB002

AB003

AB004

ABOOS

AB006

AB007

Table E-I. Error codes for reprieve processing

Reprieve Error
Fatal/ Class (Octal

Non-fatal Mask Value)

NF 4

NF 4

F 4

NF 4

NF 4

NF 4

NF 4

Description

End-of-file on read

Invalid LOCK or UNLOCK indicator

Device Allocation Table exhausted

Dataset not open

Invalid dataset open request

No read permission

No write permission

E

AB008 NF 4 Illegal bit set in RFL request word

AB009 NF 4

ABOIO F 400

ABOII F 4000

ABOl2 NF 4

SR-OOll E-l

Attempt to delete memory outside
program area

No available disk space

System directory is full

Job Table Area (JTA) overflow

M

Table E-l. Error codes for reprieve processing (continued)

System
Error Code

AB013

AB014

ABOIS

AB016

AB017

AB018

AB019

AB020

AB02l

AB022

AB023

AB024

AB02S

AB026

AB027

AB028 t

AB029

AB030

AB03l

Fatal/
Non-fatal

NF

NF

NF

NF

NF

NF

Reprieve Error
Class (OCtal
Mask Value)

4

4

2000

2000

4

4

NOT REPRIEVABLE

NF 4

NF 4

NF 4

F 200

F 10

NF 2

NF 4

NF 4

NF

NF 4

NF 4

NF 4

Description

More memory requested than
available

More memory requested than allowed

Unknown acquire error

Subdataset $IN cannot be disposed

Invalid dataset close request

Dataset already opened

Job Communication Bloc~ destroyed

Invalid system request parameter

Dataset not found

Invalid program load dataset

Job time limit exceeded

Operator dropped user job

User program requested abort

Invalid (undefined) user request

Call not between user BA and LA

XP errors (no message)

Logical device name not found

Block number error

Unrecoverable data error

t The AB028 error code is set during abort processing when any Exchange
Package error flag is set. It does not represent a single reprievable
condition. One of the Exchange Package error codes (ABOS3 through
ABOS8) will be set later to indicate the appropriate error.

SR-OOll E-2 M

Table E-l. Error codes for reprieve processing (continued)

System
Error Code

AB032

AB033

AB034

AB035

AB036

AB037

AB038

AB039

AB040

AB043

AB044

AB045

AB046

AB047

AB048

AB049

AB05l

AB052

AB053

AB054

AB055

SR-OOll

Fatal/
Non-fatal

NF

NF

NF

NF

NF

NF

Reprieve Error
Class (Octal
Mask Value)

4

4

4

4

4

4

NOT REPRIEVABLE

NF 20

NF 4

F 400

NF 4

NF 400

NF 400

NF 2000

NF 2000

NF 4

F 4

NF 4

NF 100

NF 4

NF 4

E-3

Description

Unrecoverable hardware error

Read after write or after EOD

Unknown error

Invalid processing direction

Dataset prematurely terminated

Dataset Parameter Table invalid

Operator killed user job

Operator reran the job

Invalid disposition code

Allowable user log size exceeded

Invalid dataset name

Specified LM is too big

Dataset size limit exceeded

Dataset not available from station

Dataset cannot be saved on a front
end

Invalid LFTs in user area

Invalid pointer to first JTA LFT

No user LFT DN matches JTA LFT

Floating-point error

Operand range error

Program range error

M

Table E-l. Error codes for reprieve processing (continued)

System
~rror Code

AB056

AB057

AB058

AB06l

AB062

AB063

AB064

AB066

AB067

AB068

AB070

AB07l

AB072

AB073

AB074

AB075

AB076

AB077

AB078

AB079

SR-OOll

Fatal/
Non-fatal

NF

Reprieve Error
Class (Octal
Mask Value)

40

NOT REPRIEVABLE

F 4

NF 4

NF 4

NF 4

NF 4

NF 4

NF 4

NF 4

NF 10000

NF 4

NF 4

NF 4

NF 4000

NF 4000

NF 4

NOT REPRIEVABLE

NF 4000

NF 4

E-4

Description

Uncorrected memory error

Interactive ABORT

Error exit

No invoke request provided

Invoke request abort pending

Invoke length not multiple of 512

Invoke length greater than maximum

Dataset has related disposes active

Invalid procedure dataset

Procedure nest level exceeded

ATTENTION request command was
entered at an interactive terminal

Bad class structure

DSP destroyed by user

Undefined function code in F$INS

DUMPJOB processing has been
inhibited

No permissions granted while
dataset is execute-only

Dataset is already accessed by the
job

CSP internal error

Privileged system request

Unassigned JCL symbol

M

Table E-I. Error codes for reprieve processing (continued)

System
~rror Code

AB080

AB081

AB082

AB083

ABIOO

ABIOI

ABI02

ABI03

ABI04

ABIOS

ABI06

ABI07

ABI08

ABI09

ABIIO

ABIII

ABl12

ABl13

SR-OOII

Fatal/
Non-fatal

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

Reprieve Error
Class (OCtal
Mask Value) Description

4 Receive buffer too small

4 Undefined JCL symbol

4 JCL symbol cannot be modified

4 Invalid message class

4 Nonsequential write for tape
dataset

4 Interchange and unblocked are
mutually exclusive

4 Tape dataset can not be disposed

4 VOL parameter must be equated for
OLD dataset

4 Job has requested more devices
than it has allocated

4 The Label Definition Table has
been omitted for a labeled tape
dataset

4 The LDT has a bad field

4 Unable to write trailer label group

4

4

4

4

4

4

E-S

Write attempted on protected volume

Attempt to write tape block larger
than MBS

write protocol error

Tape went off the end of the reel

Volume is security protected

Dataset is security protected

M

Table E-I. Error codes for reprieve processing (continued)

System
Error Code

ABl14

ABl15

ABl16

ABl17

ABIla

ABll9

ABl20

ABl21

ABl22

ABl23

ABl24

ABl25

ABl26

ABl27

ABI28

ABl29

ABl30

ABl31

ABl32

ABl33

ABl34

SR-OOII

Fatal/
Non-fatal

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

Reprieve Error
Class (Octal
Mask Value)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

E-6

Description

Read attempted of NEW dataset

Dataset not on this volume

File section does not exist

Ill-formed LDT

Label group corrupted

Deferred tape feature

No HDRI in label group

Bad record format

Bad blocking attributes

Bad record length

Bad block Length

Bad buffer offset

Bad owner ID

Incomplete VSN list

Read of expired dataset

write of nonexpired dataset

Invalid expiration date

Difference in volume block counts

Label type can not be scratched

F$POS is illegal for mass
storage datasets

Large block read

M

Table E-I. Error codes for reprieve processing (continued)

System
Error Code

ABl35

ABl36

ABl37

ABl38

ABl39

ABl40

ABl41

ABl42

ABl43

ABl44

ABl73

ABl79

ABl80

ABl81

ABl82

SR-OOII

Fatal/
Non-fatal

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

Reprieve Error
Class (Octal
Mask Value) Description

4 Resource not available

4 Tape volume/dataset access
denied by servicing front-end

4 Tape volume/dataset access denied
due to the lack of security checks
servicing front end

4 Tape dataset has. already been
cataloged.

4 Tape dataset does not reside in
servicing front-end catalog.

4 Update of dataset/volume state to
servicing front end failed

4 The tape device has been closed to
user I/O.

4 Tape volume does not reside in
servicing front-ends catalog.

4 Tape volume mount canceled by
operator

4 Maximum block size exceeded on
write of tape dataset

4 Interjob connections were open at
the time of a job step advance

4 DSP IN/OUT pointer not on a block
boundary for WRITE/READ

4 DSP buffer pointers overlap
LFT/DSP area

4 DSP LIMIT pointer less than FIRST

4 DSP in pointer not between FIRST
and LIMIT

E-7 M

Table E-I. Error codes for reprieve processing (continued)

System
Error Code

ABl83

ABl84

ABl8S

ABl86

ABl87

ABl88

ABl89

ABl90

ABl9l

ABl92

ABl93

ABl94

AB19S

ABl96

ABl97

ABl98

ABl99

SR-OOII

Fatal/
Non-fatal

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

Reprieve Error
Class (OCtal
Mask Value)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

E-8

Description

OSP out pointer not between FIRST
and LIMIT

OSP FIRST pointer out of bounds

OSP LIMIT pointer out of bounds

OSP RCW pointer not between FIRST
and LIMIT

Buffered I/O record address out of
bounds

Unknown buffer I/O function

Buffer length not multiple of O'IS2

Uncleared error in OSP

Attempt to start I/O on busy
dataset

OSP save words destroyed by user

All user tasks deactivated

User deadlock detected

Attempt to deactivate an inactive
task

Attempt to activate an active task

User task attempt to activate
itself

Invalid user task IO

Maximum user tasks per job exceeded

M

PERMANENT DATASET STATUS CODES

The permanent dataset status octal codes are placed in the PMST field of
the Permanent Dataset Definition Table (PDD) which is presented in
Appendix A. PMST can also be tested as the JCL symbol PDMST (see table
16-1). The PDD statuses are listed in table E-2. The logfi1e contains a
corresponding code (of the form PDnnn, where nnn is listed in table
E-2) and message for most of the status conditions.

Table E-2. PDD status

Logfi1e
Code PMST Status

1 Comp1ete1 no error.

1 11 No DNT found for the specified dataset

2 21 Maintenance permission not granted

3 31 Edition already exists

4 41 DSC full

5 51 Function code out of range

6 61 The local dataset name (DN) specified is already in
use by the job

7 71 No permission granted

101 Delay and try again

9 III Requested dataset not in DSC

10 121 Edition does not exist

11 131 Active PDS full

12 141 Dataset not permanent

13 151 Unused

14 161 Continuation error

15 171 DAT full

SR-0011 E-9 M

Logfile
Code

16

18

21

25

26

27

28

29

30

31

SR-OOll

Table E-2. PDD status (continued)

PMST Status

201 DNT full

211 End of DSC

221 Specified permanent dataset already accessed by this
job

231 Request to read zero pages

241 Invalid page number requested

251 No data has been written to disk

261 SDT does not exist

271 SDT entry not on input or output queue

301 Unable to queue SDT entry

311

321

331

341

351

361

371

Dataset name in PDD is 0

Access control word validation error

Notes length exceeds allowable maximum

Unique access is not acceptable because the dataset
is part of the System Directory.

Text length is zero.

The text length specified exceeds the allowable
maximum.

The device on which all or part of the dataset
resides is down.

401 Error occurred while rewriting the SDT, or the SDT
name and dataset type in the DSC do not match those
in the PDD.

411 Permanent dataset to be pseudo accessed is not
available or the DAT in the DSC does not match the
JTA DAT.

E-IO M

Logfile
Code

34

35

36

40

41

42

43

44

45

46

47

48

49

50

51

52

SR-OOll

PMST

421

431

441

Table E-2. PDD status (continued)

Status

Access is denied because crossed allocation unit
exists.

The dataset is already permanent.

The DSC entry was flagged by Startup as containing a
fatal error; access is denied.

451 The DSC or DXT page buffer supplied is outside the
user field length.

461 No available QDT entries exist

471 The dataset has outstanding disposes; do not
deallocate disk space.

501

511

521

531

541

551

561

571

601

611

621

631

641

Allocation of multi type dataset inconsistent with
related datasets

Multitype dataset has nonexistent QDT entry.

Maximum edition reached

Dataset is on an active SDT queue

Bad SDT address on Enqueue SDT request

Dataset is on a scratch device

Access denied due to DXT error

Notes length is zero.

Unused

Maximum number of DXT entries per dataset reached

Attributes dataset not local

Attributes dataset not permanent

Invalid notes buffer specified

E-ll M

Logfile
Code

53

54

SR-OOll

Table E-2. PDD status (continued)

PMST Status

651 Invalid text buffer specified

661 Specified permit entry not found

671 Invalid DXT buffer address (get/link DXT)

701 Bad DXT linkage pointer (get/link DXT)

711 PMPDN and DCPDN do not match (get/link DXT)

721 Unused

731 PMSIZE greater than maximum PDD size

2001 Parameter error (internal to $SYSLIB)

2002-2777 This range of status codes is reserved for magnetic
tape support

E-12 M

GLOSSARY

GLOSSARY

A

Abort - To terminate a program or job when a condition (hardware or
software) exists from which the program or computer cannot recover.

Absolute address - (1) An address permanently assigned by the machine
designator to a storage location. (2) A pattern of characters that
identifies a unique storage location without further modification.
Synonymous with machine address.

Absolute block - Loader tables consisting of the image of a program in
memory. The program image can be saved on a dataset for subsequent
reloading and execution.

Address - (1) An identification, as represented by a name, label, or
number, for a register, location in storage, or any other data source or
destination such as the location of a station in a communication
network. (2) Any part of an instruction that specifies the location of
an operand for the instruction.

Allocate - To reserve an amount of some resource in a computing system
for a specific purpose (usually refers to a data storage medium).

Alphabetic - A character set including, $, %, @, as well as the 26
uppercase letters A through Z.

Alphanumeric - A character set including all alphabetic characters and
the digits 0 through 9.

Arithmetic operator - Part of an expression that indicates action to be
performed during evaluation of expression; can be symbolic character
representing addition, unary plus, subtraction, unary minus,
multiplication, or division.

Assemble - To prepare an object language program from a symbolic language
program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic instructions.

B

Base address - The starting absolute address of the memory field length
assigned to the user's job. This address is maintained in the Base
Address (BA) register. The base address must be a multiple of 208•

SR-OOll Glossary-l M

$BLD - A dataset on which load modules are placed by a compiler or
assembler unless the user designates some other dataset.

Blank common block - A common block where data cannot be stored at load
time. The first declaration need not be the largest. The blank common
block is allocated after all other blocks have been processed.

Block - (1) A tape block is a collection of characters written or read as
a unit. Blocks are separated by aninterblock gap and can be from 1
through 1,048,576 bytes. A tape block and a physical record are
synonymous on magnetic tape. (2) In COS blocked format, a block is a
fixed number of contiguous characters with a block control word as the
first word of the block. The internal block size for the Cray mainframe
is 512 words (one sector on disk). In COS manuals, the terms tape block
and 5l2~ord block are consistently used to distinguish between the two
uses.

Block control word - A word occurring at the beginning of each block in
the COS blocked format that identifies the sequential position of the
block in the dataset and points forward to the next block control word.

BOT - Beginning-af-tape; the position of the beginning-of-tape reflective
marker.

BOV - Beginning-af-volume. See BOT.

BPI - Bits per inch. COS supports the 1600 and 6250 bpi recording
densities.

Buffer - A storage device used to compensate for the difference in rate
of flow of data, or time of occurrence of events, when transmitting data
from one device to another. It is normally a block of memory used by the
system to transmit data from one place to another. Buffers are usually
associated with the I/O subsystem.

Buffer Memory - A 64-bit memory in the I/O Subsystem common to all I/O
Processors.

C

Call - The transfer of control to a specified routine. The called
routine normally transfers control back to the caller after the called
routine has finished its task.

Card image - A one-to-one representation of the contents of a punched
card, for example, a matrix where a 1 represents a punch and a 0
represents the absence of a punch. In COS blocked format, each card
image is a record.

catalog (noun) - A list or table of items with descriptive data, usually
arranged so that a specific kind of information can be readily located.

SR-OOll Glossary-2 M

Channel - A path along which signals can be sent.

Character - A logical unit composed of bits representing alphabetic,
numeric, and special symbols. The Cray software processes a-bit
characters in the ASCII character set.

Code - (1) A system of character and rules representing information in a
form understandable by a computer. (2) Translation of a problem into a
computer language.

Common block - A block that can be declared by more than one program
module during a load operation. More than one program module can specify
data for a common block but if a conflict occurs, information from later
programs is loaded over previously loaded information. A program can
declare no common blocks or as many as 125 common blocks. The two types
of common blocks are labeled and blank.

Conditional control statement block - Defines the conditions under which
a group of control statements are to be processed. The statements which
define the block and conditions are: IF, ELSE, ELSEIF, ENDIF, and EXITIF.

Control statement - The format, consisting of a verb and its parameters,
used to control the operating system and access its products. Directives
are used to control products.

Control statement input file - A dataset containing valid control
statements as its first file.

Controlled device - One of one or more devices or resources which are
allocated to jobs on the basis of resource limits and requests.

~ - The Cray Operating System described in this manual.

$CS - A primary control statement input file.

CSP - The Control Statement Processor (CSP) is a system program that
executes in the user field. CSP initiates the job, analyzes, and stores
the various elements of the control statements (that is, cracks them),
processes system verbs, advances the job step by step, processes errors,
and ends the job.

D

Data - (1) Information manipulated by or produced by a computer program.
(2) Empirical numerical values and numerical constants used in arithmetic
calculation. Data is considered to be that which is transformed by a
process to produce the evidence of work. Parameters, device input, and
working storage are considered data.

SR-OOll Glossary-3 M

Dataset - A quantity of information maintained on mass storage by the
Cray Operating System. Each dataset is identified by a symbolic name
called a dataset name. Datasets are of two types: temporary and
permanent. A temporary dataset is available only to the job that created
it. A permanent dataset is available to the system and to other jobs and
is maintained across system deadstarts.

Dataset characteristic information - The information that describes where
the dataset resides, how large it is, its permanent name, edition number,
information about the creating job, etc.

Dataset name verb - A verb that is the name of a dataset. See local or
system dataset name verb.

Deadstart - The process by which an inactive machine is brought up to an
operational condition ready to process jobs.

Debug - To detect, locate, and remove mistakes from a routine or
malfunction of a computer. Synonymous with troubleshoot.

DEC - Disk Error Correction, a task within the STP portion of COS. DEC
can be called by the Disk Queue Manager (DQM) to attempt correction of a
disk error.

Delimiter - A character that separates items in a control statement or a
directive, synonymous with separator.

Density - See tape density.

Device - A piece of equipment that mechanically contains and drives a
recording medium.

Directive - A command used to control a product, such as UPDATE.

Diagnostic - (1) Pertaining to the detection and isolation of a
malfunction or a mistake. (2) A message printed when an assembler or
compiler detects a program error.

DiSposition code - A code used in I/O processing to indicate the
disposition to be made of a dataset when its corresponding job is
terminated or the dataset is released.

DQM - The Disk Queue Manager is a task within the STP portion of COS.
DQM controls the simUltaneous operation of disk storage units on CPU I/O
channels or on the I/O Subsystem.

Dump - (1) To copy the contents of all or part of a storage device,
usually from internal storage, at a given instant of time. (2) The
process of performing (1). (3) The document resulting from (1).

SR-OOll Glossary-4 M

E

End-of-data delimiter - Indicates the end of a dataset. In COS blocked
format, this is a record control word with a 17a in the mode field.

End-of-file delimiter - Indicates the end of a file. (1) In COS blocked
format, this is a record control word with a 16a in the mode field.
(2) On magnetic tape, this is a tapemark.

End-of-record delimiter - Indicates the end of a record. (1) In COS
blocked format, this is a record control word with a lOa in the mode
field. (2) In an ASCII punched deck, this is indicated by the end of
each card.

Entry point - A location within a block that can be referenced from
program blocks that do not declare the block. Each entry point has a
unique name associated with it. The loader is given a list of entry
points in a loader table. A block can contain any number of entry points.

An entry point name must be 1 to a characters and cannot contain the
characters blank, asterisk, or slash. Some language processors (for
example, FORTRAN) can produce entry point names under more restricted
formats due to their own requirements.

EOD - End-of-data on tape. The definition of EOD is a function of
whether the tape is labeled or nonlabeled and of the type of operation
being performed (input or output). When reading a labeled tape, EOD is
returned to the user when an EOFI trailer label is encountered. When
reading a nonlabeled tape, EOD is returned when a tapemark is read on the
last volume in the volume list for a particular dataset. When writing a
labeled or nonlabeled tape, EOD processing is initiated by a write EOD,
rewind, close, or release request.

EOF - End-of-file on tape, sometimes used to mean end of tape trailer
group.

~ - End-of-information: see EOD.

EOT - End-of-tape: a status, set only on a write operation indicating
sensing of the end of the tape reflective marker.

EOV - End-of-volume. On output, EOV occurs when end-of-tape status is
returned on a write operation. This status occurs when the EOT
reflective marker is sensed by the tape device. For input of a labeled
tape dataset, EOV occurs when an EOVI trailer label is read: for input of
a non labeled dataset, EOV is returned when a tapemark is encountered and
the volume list is not exhausted.

Exchange Package - A l6-word block of data in memory which is associated
with a particular computer program or memory field. It contains the
basic parameters necessary to provide continuity from one execution
interval for the program to the next.

SR-OOll Glossary-S M

EXEC - The COS System Executive (EXEC) is the control center for the
operating system. It alone accesses all of memory, controls the I/O
channels, and selects the next program to execute.

EXP - The User Exchange Processor (EXP or UEP) is a task within the STP
portion of COS. The Exchange Processor task processes all user system
action requests and user error exits. The Exchange Processor also
handles certain requests from the Job Scheduler (JSH) to initiate or
abort a job.

Expression (JCL parameter expression) - A series of characters grouped
into operands and operators which are computed as one value during
parameter evaluation; should be delimited by parentheses.

External reference - A reference in one program block to an entry point
in a block not declared by that program. Throughout the loading process,
externals are matched to entry points (this is also referred to as
satisfying externals); that is, addresses referencing externals are
supplied with the correct address.

F

File - A collection of records in a dataset. In COS blocked format, a
file is terminated by a record control word with 168 in the mode field.

Filemark - See to tapemark.

Foreign label - A special condition that can occur during the label scan
at the beginning of a tape. If a NOT CAPABLE status is returned on a BOV
label scan, TQM declares the tape to be foreign labeled (FRN) which
protects a 7-track tape or a 9-track, 800 bpi tape from being accidently
destroyed.

Formal parameter specifications - Parameters in a procedure definition
which identify the character strings within the procedure body that can

Front-end dataset servicing - The act of requesting and receiving
information concerning a particular dataset that is known to the
front-end computer system. Typical servicing is:

• Direct operator messages concerning tape volume/drive activity,

• Obtaining required information concerning a dataset, such as
what volumes it resides on, the expiration date of each volume,
access permissions, etc., and

• Updating information for a dataset and/or tape volume for use by
that computer system.

SR-OOll Glossary-6 M

Front-end processor - A computer connected to a Cray Computer System
channel. The front-end processor supplies data and jobs to the Cray
mainframe and processes or distributes the output from the jobs.
Front-end systems are also referred to as stations in Cray publications.

G

Generic resource - A device or group of devices connected to the Cray
system which is accessible to user jobs. Devices which constitute a
generic resource are characterized by common attributes, such as tape
drives with 6250 bpi capability. These devices are subject to regulated
access by the system.

H

Heap - An area of memory within the user field managed by user-callable
library routines. The heap provides dynamic storage allocation for a
single job.

HLM - High limit of memory, the highest relative memory address available
to the user for program and data area.

I

$IN - A dataset containing the job control language statements as well as
the source input and data for compilers and assemblers, unless the user
designates some other dataset (FT05 for example).

In-line procedure - A procedure defined in a control statement file.

Input/Output - (1) Commonly called I/O. To communicate from external
equipment to the computer and vice versa. (2) The data involved in such
a communication. (3) Equipment used to communicate with a computer. (4)
The media carrying the data for input/output.

Integer constant - Specifies an octal value or a decimal value that can
be signed as positive or negative.

SR-OOll Glossary-7 M

Interchange format - One of the two ways in which tape data sets can be
read or written. Each tape block of data corresponds to a single logical
record in COS blocked format. Interchange format is selected by setting
DF=IC when a tape dataset is accessed. As far as I/O routines in the
Cray mainframe are concerned, interchange datasets must be in COS blocked
format because the COS blocked structure (BCWs and RCWs) is used to
describe each tape block read or written. This blocked structure allows
the user to write or read variable-length tape blocks at high speed with
data resolution to the a-bit byte level of the tape device. The record
control word (RCW) is used to define the tape block length on output and
to describe the block length on input. No BOW or RCW ever appears in the
data written on the tape.

Interblock gaps The physical separation between successive tape blocks
on magnetic tape.

I/O Subsystem - Part of a CRAY-l S Series Model S/1200 through S/4400,
all models of the CRAY-l M Series and CRAY X-MP Computer Systems
consisting of two to four I/O processors and one-half, one, four, or
eight million words of shared Buffer Memory. The optional tape subsystem
is composed of at least one block multiplexer channel, one tape
controller, and two tape units. The tape units supported are
IBM-compatible 9-track, 200 ips, 1600/6250 bpi devices.

Iterative control statement block - Defines the repeated execution of a
series of statements if a condition is satisfied.

J

JCL block control statement - A statement in the control statement file
that is part of a group of control statements called a block which
specifies an action to be taken by COS, the three types of blocks are:
procedure defintion, conditional, and iterative.

JCM - The Job Class Monitor is a task within the STP portion of COS. JCM
assigns every job to a job class (see JOB statement descr~ption) before
it enters the input queue.

Job - (1) An arbitrarily defined parcel of work submitted to a computing
system. (2) A collection of tasks submitted to the system and treated by
the system as an entity. A job is presented to the system as a formatted
dataset. With respect to a job, the system is parametrically controlled
by the content of the job dataset.

Job Communication Block - The first 200a words of the job memory
field. This area is used to hold the current control statement and
certain job-related parameters. The area is accessible to the user, the
operating system, and the loader for inter-phase job communication.

SR-OOll Glossary-8 M

Job control statement - Any of the statements used to direct the
operating system in its functioning, as compared to data, programs, or
other information needed to process a job but not intended directly for
the operating system itself. A control statement can be expressed in
card, card image, or user terminal keyboard entry medium.

Job deck - The physical representation of a job before processing either
as a deck of cards or as a group of records. The first file of the job
dataset contains the job statements and the job parameters which will be
used to control the job. Following files contain the program and data
which the job will require for the various job control statements. The
job deck is terminated by an end-of-data delimiter.

Job input dataset - A dataset named $IN on which the card images of the
job deck are maintained. This consists of programs and data referenced
by various job steps. The user can manipulate the dataset like any other
dataset (excluding write operations).

Job output dataset - Any of a set of datasets recognized by the system by
a special dataset name (for example, $OUT, $PLOT, and $PUNCH), which
becomes a system permanent dataset at job end and is automatically staged
to a front-end computer for processing.

Job step - A unit of work within a job, such as source language
compilation or object program execution.

JSH - The Job Scheduler (JSH) is a task within the STP portion of COS.
The Job Scheduler task initiates the processing of a job, selects the
currently active job, manages job roll-in and roll-out, and terminates a
job.

K

Keyword parameter - A string of I to 8 alphanumeric characters that
consists of a keyword followed by one or more values: identified by its
form rather than by its position in the control statement.

L

$LOG - See logfile.

Label group - A group of tables that precede and follow the user data at
dataset and/or volume boundary conditions. The label group describes the
characteristics of the volume or dataset.

Labeled common - A common "block into which data can be stored at load
time.

SR-OOII Glossary-9 M

Library - A dataset composed of sequentially organized records and
files. The last file of the library contains a library directory. The
rest of the files and records, known as entries, can consist of processed
procedure definitions and/or relocatable modules. The directory gives a
listing of entry names with their associated characteristics.

Library-defined verb - A 1- through 8-character name of a program or
procedure definition residing in a library that is a part of the current
library searchlist.

Limit address - The upper address of a memory field. This address is
maintained in the limit address (LA) register.

Literal - A symbol which names, describes, or defines itself and not
something else that it might represent.

Literal constant - A string of 1 through 8 characters delimited with
apostrophes whose ordinal numbers are in the range 0408 through 17687
value of a character constant corresponds to the ASCII character codes
positioned within a 64-bit word7 alignment indicated can be left- or
right-adjusted and zero-filled or left-adjusted and space-filled7
apostrophes remain as part of value.

Literal string - A string delimited with apostrophes which are normally
not treated as part of the value, except with JCL block control
statements which treat the apostrophes as part of the string value.

Loader tables - The form in which code is presented to the loader.
Loader tables are generated by compilers and assemblers according to
loader requirements. The tables contain information required for loading
such as type of code, names, types and lengths 6f storage blocks, data to
be stored, etc.

Loading - The placement of instructions and data into memory so that it
is ready for execution. Loader input is obtained from one or more
datasets and/or libraries. Upon completion of loading, execution of the
program in the job!s memory field is optionally initiated. Loading can
also involve the performance of load-related services such as generation
of a loader map, presetting of unused memory to a user-specified value,
and generation of overlays.

Load point - See BOT.

Local dataset - A temporary or permanent dataset accessible by the user.

Local dataset name verb - A verb that is the name of a local dataset
consisting of an alphabetic character followed by I through 6
alphanumeric characters. Requests that COS load and execute an absolute
binary program from the first record of the named dataset.

SR-OOll Glossary-lO M

Logfile - During the processing of the job, a special dataset named $LOG
is maintained. At job termination, this dataset is appended to the $OUT
file for the job. The job logfile serves as a time-ordered record of the
activities of the job: all control statements processed by the job,
significant information such as-dataset usage, all operator interactions
with a job, and errors detected during processing of the job.

Logical operator - Represents logical function performed on operands on a
bit-by-bit basis, returning a 64-bit result, functions are: inclusive
OR, intersection, exclusive OR, unary complement.

M

Macro instruction - An instruction in a source language that is
equivalent to a specified sequence of machine instructions.

Magnetic tape - A tape with a magnetic surface on which data can be
stored by selective polarization of portions of that surface.

Mainframe - The central processor of the computer system. It contains
the arithmetic unit and special register groups. It does not include
input, output, or peripheral units and usually does not include internal
storage. Synonymous with central processing unit (CPU).

Mass storage - The storage of a large amount of data that is also readily
accessible to the central processing unit of a computer.

MEP - The Error Message Processor (MEP) is a task within the STP portion
of COS. Error messages are passed from the System Executive (EXEC) to
the Log Manager (MSG) through the Error Message Processor.

MSG - The Log Manager (MSG) is a task within the STP portion of COS. MSG
writes messages in the system and user logfiles.

Multiprocessing - Use of several computers to logically or functionally
divide jobs or processes, and to execute various programs or segments
asynchronously and simultaneously.

Multiprogramming - A technique for handling multiple routines or programs
simultaneously by overlapping or interleaving their execution, that is,
permitting more than one program to time-share machine components.

Multitasking - A type of multiprocessing in which more than one task may
be simultaneously active for a single job.

N

Nesting - Including a block of statements of one kind into a larger
block of statements of the same kind, such as an iterative block within a
larger iterative block.

SR-OOIl Glossary-II M

Not Capable - A tape status indicating the reel currently mounted cannot
be read by the control unit and drive. The Not Capable status would be
returned if an 800 bpi tape were mounted on a device that supported only
1600 and 6250 bpi, for example. Since it is not possible to read a Not
Capable tape to verify label type and contents, COS rejects (unloads) all
tapes that return a Not Capable status.

o

$OUT - A dataset that contains the list output from compilers and
assemblers unless the user designates some other dataset. At job end,
the job logfile is added to the $OUT dataset and the dataset is sent to a
front-end computer.

Operand - A character string in an expression that is operated on during
evaluation, types are integer constant, literal constant, symbolic
variable, and subexpresion.

Operating system - (1) The executive, monitor, utility, and any other
routines necessary for the performance of a computer system. (2) A
resident executive program that automates certain aspects of machine
operation, particularly as they relate to initiating and controlling the
processing of jobs.

Operator - A symbolic representation indicating the action to be
performed in an expression, types are arithmetic, relational, and logical
operators.

Overlaying - A technique for bringing routines into memory from some
other form of storage during processing so that several routines will
occupy the same storage locations at different times. Overlaying is used
when the total memory requirements for instructions exceeds the available
memory.

OVM - The Overlay Manager (OVM) is a part of the STP portion of COS and
manages the use of the overlaid portion of COS itself.

P

$PROC - A dataset to which in-line procedure definitions are written.

Parallel processing - Simultaneous or approximately simultaneous
processing of jobs, job steps, programs, and parts of programs.

Parameter - A quantity in a control statement which can be given
different values when the control statement is used for a specific
purpose or process.

SR-OOII Glossary-12 M

Parcel - A l6-bit portion of a word which is addressable for instruction
execution but not for operand references. An instruction occupies one or
two parcels; if it occupies two parcels, they can be in separate words.

Parenthetic string - A string delimited with parentheses instead of
apostrophes; parentheses are treated as part of the string when evaluated
except when preceded by an initial, parameter, equivalence, or
concatenation separator character.

PDM - The Permanent Dataset Manager (PDM) is a task within the STP
portion of COS and provides the means for creating, accessing, deleting,
maintaining, and aUditing disk-resident permanent datasets.

Permanent dataset - A dataset known to the operating system as being
permanent; the dataset survives deadstart.

positional parameter - A parameter that must appear in a precise position
relative to the separators in the control statement.

Procedure - A named sequence of control statements and/or data that is
saved in a library for processing at a later time when activated by a
call to its name by a calling statement; provides the capability of
replacing values within the procedure with other values.

Procedure definition - The definition of a procedure saved in a library
to be called for processing at a later time; if defined in a job control
statement is called an in-line procedure definition.

Program - (1) A sequence of coded instructions that solves a problem.
(2) To plan the procedures for solving a problem. This can involve
analyzing the problem, preparing a flow diagram, providing details,
developing and testing subroutines, allocating storage, specifying I/O
formats, and incorporating a computer run into a complete data processing
system.

Program block - The block within a load module usually containing
executable code. It is automatically declared for each program (though
it can be zero-length). It is local to the module; that is, it can be
accessed from other load modules only through use of external symbols.
Data placed in a program block always comes from its own load module.

Program name - Also referred to as IDENT name or deck name, the name
contained in the loader PDT table at the beginning of each load module.

Program library - (PL) The base dataset used by the UPDATE utility. This
dataset consists of one or more specially formatted card image deoks,
each separated by an end-of-file.

SR-OOll Glossary-13 M

R

Record - A group of contiguous words or characters related to each other
by virtue of convention. A record is fixed or variable length. (1) In
COS blocked format, a record ends with a record control word with lOa
in the mode field. (2) In an ASCII-coded punched deck, each card is a
record. (3) For a listable dataset, each line is a record. (4) For a
binary load dataset, each module is a record.

Relational operator - An operator that indicates the comparison to be
performed between the operands in an expression (-1 for a TRUE result and
o for a FALSE result); types are equal, not equal, less than, greater
than, less than or equal, and greater than or equal.

Relative address - An address defined by its relationship to a base
address (BA) such that the base address has a relative address of O.

Relocatable address - An address presented to the loader in such a form
that it can be loaded anywhere in the memory field. A relocatable
address is defined as being relative to the beginning address of a load
module program block or common block.

Relocatable module - This is the basic program unit produced by a
compiler or assembler. CAL produces a relocatable module from source
statements delineated by IDENT and END. In FORTRAN, the corresponding
beginning statements are PROGRAM, SUBROUTINE, BLOCK DATA, or FUNCTION.
The corresponding end statement is END.

A relocatable module consists of several loader tables that define
blocks, their contents, and address relocation information.

Relocate - In programming, to move a routine from one portion of internal
storage to another and to adjust the necessary address references so that
the routine can be executed in its new location. Instruction addresses
are modified relative to a fixed point or origin. If the instruction is
modified using an address below the reference point, relocation is
negative.
positive.

S

If addresses are above the reference point, relocation is
Generally, a program is loaded using positive relocation.

SCP - The Station Call Processor (SCP) is a task within the STP portion
of COS and handles communications with front-end computer systems.

Sector - A physical area on disk equivalent to 512 Cray words. In COS
blocked format, a block is also 512 contiguous words with a block control
word as the first word of the block. Therefore the internal block size
for the Cray is equivalent to one Cray disk sector. This is the unit of
data transfer between the Cray mainframe and the I/O Subsystem.

SR-OOll Glossary-14 M

SPM - The System Performance Monitor (SPM) is the task within COS that
collects and reports statistics about COS system performance.

STG - Stager (STG) task is a subtask of SCP within the STP portion of COS
that handles dataset transfers between the Cray mainframe and its
front-end processors.

STP - The System Task Processor (STP) is the main portion of the COS
operating system and consists of tables, a set of routines called tasks,
and some re-entrant routines common to all tasks.

Separator - Synonym for delimiter.

String - A sequence of characters delimited by apostrophes or parentheses
which is taken literally as a parameter value, see literal string and
parenthetic string.

Subexpression - An expression that is evaluated so that its result
becomes an operand.

Substitution parameters - Parameters on procedure definition prototype
statement or procedure calling statement which provide replacement values
to be substituted during evaluation for strings flagged within the
procedure body.

Symbolic variable - A string of I to 8 alphanumeric characters, beginning
with an alpha character that represents values maintained by COS and/or
the user.

System dataset name verb - A verb that is the name of a system-defined
dataset in the System Directory Table (SDR) , consists of an alphabetic
character which can be followed by I through 6 alphanumeric characters.

System logfile - A permanent dataset named $SYSTEMLOG.

System verb - Requests that COS perform a function, consists of an
alphabetic character which can be followed by I through 6 alphanumeric
characters

T

Table - A collection of data, each item being uniquely identified either
by some label or by its relative position.

Tape block - A group of contiguous characters recorded on and read from
magnetic tape as a unit.

SR-OOII Glossary-IS M

Tape control unit - A piece of equipment connected to a block multiplexer
channel that provides the capability for controlling the operation of one
or more tape devices. Up to four control units can be combined to drive
a maximum of 16 tape devices. The control units are cross connected to
all devices. Such a configuration is called a 4x16 (four by sixteen).
If one control unit were to be connected to three devices, it would be
referred to as a lx3 configuration.

Tape density (bpi) - The number of bits per inch on magnetic tape. COS
supports 6250 bpi and 1600 bpi.

Tape format - The way tape datasets are read or written. In
interchange format, each tape block of data corresponds to a single
logical record in COS blocked format. In tpansparent format, each tape
block is a fixed multiple of 512 words based on the density of the tape.

Tape volume - A reel of magnetic tape.

Tapemark - A special hardware bit configuration recorded on magnetic
tape. It indicates the boundary between combinations of datasets and
labels. It is sometimes called a filemark.

Task - A subprogram or uniquely named process that can have code and data
areas in common with other tasks of the same job. A task is a unit of
computation that can be scheduled independently of other tasks in the
same job step. A job step can consist of a single task, or it may
consist of several tasks running in parallel with each other.

Temporary dataset - A dataset which is not permanent and is available
only to the job that created it.

Time slice - The maximum amount of time during which the CPU can be
assigned to a job without re-evaluation as to which job should have the
CPU next.

Timestamp - A l-word binary number that represents specific date and
time. Timestamps are expressed as the number of (nanosecond/I. 024) units
between the date/and time in question and midnight, 1 January 1973.
Timestamps appear in machine-independent tables used by the operating
system.

TQM - The Tape Queue Manager (TQM) is the System Task Processor (STP)
task that manages tape I/O between one or more user jobs and the I/O
Subsystem.

Track - The smallest amount of disk space which can be allocated or
deallocated by cos. A track is equivalent to 18 sectors for DD-19,
DD-29, Buffer Memory and Solid-state storage device.

SR-OOIl Glossary-16 M

Transparent format - One of two ways tape datasets are read or written.
Each tape block is a fixed multiple of 512 words. Transparent format is
the default tape dataset format and is designated by setting DF=TR when
accessing a tape dataset. This format produces a fixed-length block
dataset (16384 bytes at 1600 bpi or 32768 bytes at 6250 bpi) that can be
a COS blocked or unblocked dataset as far as any I/O routines are
concerned. The tape subsytem merely takes four (1600 bpi) or eight (6250
bpi) sectors and processes them as one physical tape block. When a short
block is read, it is considered to be EOD.

U

UEP - User Exchange Processor. See EXP.

Unit record device - A device such as a card reader, printer, or card
punch for which each unit of data to be processed is considered a record.

Unload - To remove a tape from ready status by rewinding beyond the load
point. The tape is then no longer under control of the computer.

Unsatisfied external - An external reference for which the loader has not
yet loaded a module containing the matching entry point.

User field - A portion of memory containing instructions and data defined
for a specific job. Field limits are defined by the base address and the
limit address. A program cannot execute outside of its field nor refer
to operands outside of its field.

User logfile - A dataset named $LOG created for a job when it is
initiated by the Job Scheduler.

v

Verb - The first nonblank field of a control statement1 specifies the
action to be taken by COS during control statement evaluation.

Volume - A physical unit of storage media that can be dismounted from a
storage device, for example, a reel of magnetic tape.

Volume identifier - Up to 6 alphanumeric characters used to identify a
physical reel of tape. On labeled tapes, the volume identifier is
actually recorded on tape in the volume header label. Volume identifier
is synonomous with volume serial number.

VSN - Volume serial number. See volume identifier.

SR-OOll Glossary-17 M

W

Word - A group of bits between boundaries imposed by the computer. Word
size must be considered in the implementation of logical divisions such
as character. The word size of the CRAY-! and CRAY X-MP computers is 64
bits.

SR-OOIl Glossary-18 M

SUMMARY

SUMMARY

This summary lists control statements in the COS job control language.

A parameter shown in all UPPERCASE letters must be coded literally, while a
value must be substituted for an italicized item. Braces enclose alternate
choices.

The column at the left margin refers to the location in this manual of
additional information on each control statement. References in the form 1-1
indicate a section and page in this manual. Other references are to the
pulication numbers of CRI manuals in which you can find the control
statements described.

SR-OOll Summary-l M

Reference

7-7

9-5

7-14

10-1

9-15

SR-0036

8-1

11-8

SR-0013

15-1

SR-OOOO

7-10

SR-0033

7-16

13-12

SG-0094

12-2

12-2

I SR-OOll

Control statement

* eomment text

ACCESS,DN=dn,NA,ERR,MSG,IR,PDN=pdn,ID=uid,ED=ed,R=rd,w=wt,M=mn,

UQ,LE,OWN=OV,DT=dt,NEW,RING={~~T},DEN=den,MF=fes,
VOL=voLl:voL2: ••• voLn,=fsec,FSEC=fsec,LB=Lb,DF=df,PROT,MBs=mbs,
MOD,XDT=yyddd,RT=rt,FD=fd,cv=cv,CS=Cs,F=f,RF=rf,RS=rs,FSEQ=fseq.

ACCOUNT,Ac=ac,APW=apw,NAPW=napw,uS=us,UPW=upw,NUPW=nupw.

ACQUlRE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,w=wt,M=mn,UQ,
TEXT=text,MF=mf,TID=tid,DF=df,OWN=own,PAM=mode,ADN=adn(m),
TA=opt,NOTES=notes,ERR,MSG.

ADJUST,DN=dn,NA,ERR,MSG.

APML,CPU=type,I=idn,L=Ldn,B=bdn,E=edn,ABORT,DEBUG,options,
LIST=nn,s=sdn,sYM=sym,T=bst,x=xdm.

ASSIGN,DN=dn,s=size,sz=size,NOF,BS=bLk,DV=Ldv,DT=dt,DF=df,RDM,U,
MR,LM=Lm,INc=nds,C,DC=dc,BFI=bfi,A=un,FD=fd,cv=cv,CS=Cs,
F=f,RF=rf,RS=rs,MBs=mbs.

AUDIT,L=Ldn,B=bdn,PDN=pdn,ID=uid,us=usn,Dv=dvn,sz=dsz,
Acc=opt:opt,x=mm/dd/yy:'hh:mm:ss',TCR=mm/dd/yy:'hh:mm:ss',
TLA=mm/dd/yy:'hh:mm:ss',TLM=mm/dd/yy:'hh:mm:ss',cw=cw,
OWN=oV,LO=opt:opt:opt:opt:opt,BO=Opt:opt:opt:opt.

AUDPL,p=pdn,I=idn,L=Ldn,M=mdn,B=bdn,*=m,/=c,DW=dw,LW=Lw,JU=ju,DK=List,
PM=List,LO=string,CM,NA,NR.

BIND,OAL=oaLdn,NAL=naLdn,L=Ldn,DEBUG=i,NA.

BUILD,I=idn,L=Ldn,OBL=odn,B=bdn,NBL=ndn,SORT,NODIR,REPLACE.

CAL,Cpu=type,I=idn,L=Ldn,B=bdn,E=edn,ABORT,DEBUG,options, LIST=nn,
s=sdn,SYM=sym,T=bst,x=xdm.

CFT,I=idn,L=Ldn,B=bdn,c=cdn,E=n,EDN=edn,ON=string,OFF=string,MAXBLOCK=mb,
TRUNC=nn,AIDs=aids,oPT=option,UNROLL=r,INT=iL,ALLOC=aLLocation,
Cpu=cputype: characteristics, DEBUG, SAVEALL,ANSI.

CHARGES,SR=options.

COMPARE,A=adn,B=bdn,L=Ldn,DF=df,ME=maxe,CP=cpn,CS=csn,
CW=CWl: CW2,ABORT=ac.

CONNECT,DN=dn[,Dv=dv] [,MF=mf] [,DF=df] [,TEXT=text] [,STEXT=stext].

COPYD,I=idn,o=odn.

COPYF,COPYF,I=idn,o=odn,NF=n.

Summary-2 M

Reference

12-1

12-3

SM-0072

16-28

13-6

9-19

10-5

13-9

13-2

13-1

7-19

16-3

16-3

16-2

16-12

16-28

7-5

16-4

16-4

16-12

16-12

10-11

13-15

13-17

16-2

I SR-OOll

Control statement

COPYR,I=idn,o=odn,NR=n.

COPYU,I=i,o=o,Ns=ns.

&DATA,dn.

DEBUG,I=idn,o=odn,DUMP=ddn,TRACE=n,SYMS=sym,NOTSYMs=nsym,
MAXDIM=dim,BLOCKS=btk,NOTBLKS=nbtk,PAGES=np,
COMMENTS='string ' •

DELETE,DN=dn,NA,ERR,MSG,PARTIAL.

DISPOSE,DN=dn,SDN=sdn,Dc=do,DF=df,MF=mf,SF=sf,ID=uid,TID=tid,
ED=ed,RT=rt,R=rd,w=wt,M=mn,TEXT=texi,WAIT,NOWAIT,DEFER,NRLS.

DSDUMP,I=idn,o=odn,DF=df,Iw=n,NW=n,IR=n,NR=n,IF=n,NF=n,IS=n,NS=n,
Z,DB=db,DSZ=SZ.

DUMP, I=idn,o=odn, FWA=fwa, LWA= twa, JTA, NXP,V,DSP,FORMAT=f,CE NTER.

DUMPJOB.

ELSE.

ELSE IF (expression)

ENDIF.

ENDLOOP.

ENDPROC.

EXIT.

EXITIF.

EXITIF(expression)

EXITLOOP.

EX I TLOOP (exppession)

FETCH,DN=dn, SDN=sdn,TEXT=text,MF=mf, TID= tid, DF=df.

FLODUMP.

FTREF,I=idn,L=idn,TREE=op,CB=Op,ROOT=root,END=end,LEVEL=n,
DIR=dip,NORDER.

IF (expression)

Summary-3 M

I

Reference

7-9

SG-0094

13-24

7-1

14-1
SG-0056

7-20

16-12

7-5

7-3

9-16

7-7

7-21

SR-0060

11-2

11-5

9-20

13-14

16-26

8-10

SR-OOll

Control statement

IOAREA, {LOCK }.
UNLOCK

ISP[,MF=mf] [,TEXT=text] [,STEXT=stext].

ITEMIZE,DN=dn,L=odn,NREW,NF=n,T,BL,E,B,X.

JOB,JN=jn,MFL=fL,T=tL,P=p,US=us,OLM=oLm,CL=jcn,gn=np.

LDR,DN=dn,LIB=Ldn,NOLIB=Ldn,LLD,AB=adn,MAP=op,SID[='stping'] ,
T=tpa,NX,DEB=L,c=com,OVL=dip,CNS,NA,USA,L=Ldn,
SET=VaL,E=n,I=sdip,NOECHO,SECURE,
GRANT=SC1: SC2:···: SCn,BC=bc,PAD=pad,NORED,
STK[=initiaL size[:incpement]],MM[=initiaL size[:incpement]],

{
AFTER }

MMEPS=epsiLon,MMLOC= BEFORE •

LOOP.

MEMORY [,FL=fL] [{, ~~:}] •

MODE,FI=option,BT=option,ORI=option,EMA=option,AVL=option.

MODIFY,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=pt,R=pd,w=wt,M=mn, NA,ERR,

MSG'EXO={~:F}'PAM=mode'TA=Opt,TEXT=text,NoTES=notes.
NORERUN, {ENABLE }.

DISABLE

OPTION,[LPP=n,] STAT={ON }.
OFF

PASCAL,I=idn,L=Ldn,B=bdn,O=List.

{
PDN} PDSDUMP, DN=dn, DV=Ldv, PDS =pdn,ED=ed,CW=CW,ID=uid,uS=uSn,OWN=OV,

INC=mm/dd/yy:'hh:mm:ss',ARC=mm/dd/yy:'hh:mm:ss',
TS=Opt,X,C,D,I,O,S,B,SO.

{PDN}
PDSLOAD,L=Ldn,DN=dn, PDS =pds,ED=ed,CW=CW,ID=uid,NID=nuid,

US=usn,OWN=oV,NOWN=nOV,DV=dvn,RP,CR,A,I,O,S,NA,SO,TLA.

PERMIT,PDN=pdn,ID=uid,AM=m,RP,USER=oV,ADN=adn,NA,ERR,MSG.

PRINT (exppession)

PROC.

Surnmary-4 M

Reference

7-8

7-13

12-6

7-17

9-2

SR-0066

SR-0066

7-18

SG-0056

12-5

12-4

12-4

12-6

SR-0033

10-10

7-7

13-22

SG-0055

SR-0013

12-7

I SR-OOll

Control statement

RERUN, {ENABLE }.
DISABLE

RETURN [, ABORT] •

ROLLJOB.

SAVE,DN=dn,PDN=p'dn,ID=uid,ED=ed,RT=rt,R=rd,w=wt,M=mn,UQ,NA,ERR,
MSG,EXO={ON },PAM=mode,ADN=adn(m),TA=Opt,TEXT=text,

OFF
NOTES=notes.

SEGLDR,I=idn,L=tdn,nw=dw,CMD='dirstr'.

SEGRLS.

SET (symbot=expression)

SID=adn,I=idn,L=tdn,ECH=edn,CNT=n.

SKIPD,DN=dn.

SKIPF,DN=dn,NF=n.

SKIPR,DN=dn,NR=n.

SKIPU,DN=dn,NS=ns.

SKOL,I=idn,L=tdn,x=xdn,E=edn,o=odn,M=mdn,vIEW,LISTOFF,""=x,
@=y,t=z.

SUBMIT,DN=dn,SID=sf,DID=df,TID=tid,DEFER,NRLS.

SWITCH,n=x.

SYSREF,X=xdn,L=Ldn.

TEDI,DN=dn,I=idn,L=Ldn.

UPDATE,p=pdn,I=idn1:idn2: ••• :idnn,C=~dn,N=ndn,L=tdn,E=edn,
s=sdn,*=m,/=c,nw=dw,nc=dc,FML=n,Q[=d1:d2:···:dn,
options. Q='d1,d2, ••• ,dj.dk, ••• ,dn'

WRITEDS,DN=dn,NR=nr,RL=rt.

Summary-S M

INDEX

INDEX

* verb described, 6-2
$BLD

and B parameter on BUILD, 15-2
and BUILD, 15-1
default dataset with LDR, 14-2
and FILE directive, 14-18, 14-23, 14-31

$CCS routine in parameter interpretation,
4-7

$CS dataset
at job termination, 3-3
control statement

creation of, 4-1
file in interactive job processing,

3-10
described, 3-3

$DUMP local dataset created, 13-1
$IN datasets

described, 3-3
in interactive job processing, 3-10
at job termination, 3-3

$LOG
dataset described, 3-3
datasets at job termination, 3-3 to 3-4

$OUT
dataset

described, 3-3
name, 2-15

datasets at job termination, 3-3 to 3-4
maximum size specified, 7-2
output dataset in interactive job

processing, 3-10
$P1OT dataset name, 2-15
$PROC

with LIBRARY, 7-20
system procedure dataset, 7-10

$PUNCH dataset name, 2-15
$RFI library routine, 2-16
$RLB unblocked dataset routine in user I/O

interfaces, 2-16
$RUA call in user I/O interfaces, 2-16
$SYSTXT relation to global symbols, 13-24
$WLB unblocked dataset routine in user I/O

interfaces, 2-16
$WUA call in user I/O interfaces, 2-16
$WUF library routine, 2-16
& DATA

in complex procedures, 16-23
control statement - Procedure data,

16-26
*SYSTEM in a relocatable load, 14-12

SR-OOll Index-l

A

parameter
on the ASSIGN control statement,

8-6
on the COMPARE control statement,

13-13
on the PDSLOAD control statement,

11-7
value

for the BO output formatting
parameter on AUDIT, 11-11

for the 10 output formatting
parameter on AUDIT, 11-11

AB parameter on the LDR control statement,
14-4

Abort
job advance, described, 3-3
message on logfile, 3-12

ABORT parameter
on the COMPARE control statement,

13-14
on the RETURN control statement,

7-14
Absolute

address and base address, 1-5
binary object module generation,

14-4
load module described, 6-15

AC parameter on the ACCOUNT control
statement, 7-15

ACC parameter on the AUDIT control
statement, 11-10

ACCESS
control statement - Access permanent

dataset, 9-5
to make permanent datasets local,

2-15
request and magnetic tape datasets,

2-3
to specify label types for tape mark

processing, 2-5
system verb, 4-3
verb described, 6-5

Access
mode

for mass storage datasets, 6-9
permitted for alternate user,

parameter for, 9-20 to 9-21
public, described, 6-6
restriction for mass storage

datasets, 6-8

M

Access (continued)
privileges for a permanent dataset,

1-6
tracking, public, 6-6
unique, parameter on ACQUIRE, 10-3

ACCOUNT
control statement - Validate user

number and account, 7-14
errors, 4-2
format, 7-14
in interactive jobs, 7-14
in job deck, 3-2

verb described, 6-2
Account

number
parameter, 7-14, 7-15
validated, 7-14

password parameter, 7-14, 7-15
Accounting

information in logfile, 3-12
mandatory, 3-2

ACQUIRE
control statement - Acquire permanent

dataset, 10-1 thru 10-5
for new permanent datasets, 6-7

request treated as an ACCESS request,
6-13

system verb, 4-3
verb for dataset staging control,

7-11
ADJUST

to change permanent datasets, 2-14
control statement - Adjust permanent

dataset, 9-15 to 9-16
macro, 9-16
system verb, 4-3
verb described, 6-5

ADN parameter
on the ACQUIRE control statement, 10-4
on the PERMIT control statement, 9-21
on the SAVE control statement, 6-8,

ALL
9-4

modifier for the ADN parameter on
ACQUIRE, 10-5

value for the ~~N parameter en SA\~,
9-4

Alphanumeric
characters, values in positional

parameters, 4-6
string, values in keyword parameters,

4-6
AM parameter

on the PERMIT control statement,
6-9, 9-20 to 9-21

value for the Ace parameter on AUDIT,
11-10

Analytical aids, section 13
described, 6-14

Apostrophes
for key word parameters, 16-29

APW parameter on the ACCOUNT control
statement, 7-14, 7-15

SR-OOll Index-2

ARC parameter on the PDSDUMP control
statement, 11-3

Archive datasets
parameter on PDSDUMP, 11-3

Argument, control statement described, 4-4
Arithmetic

operators, 16-18
Arrays dumped with DEBUG, 13-7
AS value

for the CS parameter on ACCESS,
9-13

for the CS parameter on ASSIGN, 8-7
ASCII character set, Appendix C
Assemblers loaded into user field, 1-5
ASSIGN

control statement - Assign dataset
characteristics, 8-1 to 8-10
to create a temporary dataset,

2-12
to create interactive datasets, 2-3
dataset disposition code stated on,

2-15
format, 8-2
to inhibit blank compression, 2-6
used to define a memory-resident

dataset, 2-2
user allocation of storage through,

1-6
system verb, 4-3
verb described, 6-3

Attribute association, 6-8, 6-10
Attributes dataset

described, 6-8
name

parameter for, on ACQUIRE, 10-4
AUDIT

utility - Audit permanent datasets,
11-8 thru 11-17
described, 11-1
information supplied by, 11-8
listing example, 11-12 thru 11-17
used for Notes, 6-6

verb for permanent datasets, 6-13
AUTO parameter on the MEMORY control

statement, 7-5
Automatic field length reduction mode,

3-4
in system management of memory, 3-7

Auxiliary I/O Processor with I/O Subsystem,
1-7

B
parameter

on the AUDIT control statement,
11-9

on the BUILD control statement,
15-2

on the ITEMIZE control statement,
13-25

on the PDSDUMP control statement, 11-3
value

for the DF parameter on COMPARE,
13-13

M

BACKSPACE unavailable with interactive
datasets, 2-3

Bad data flag field, 2-7
Base address of the user field, 1-5
BB value for the DF parameter

on ACQUIRE, 10-4
on DISPOSE, 10-7

BC parameter on the LDR control statement,
14-9

in memory management, 3-7
BD value for the DF parameter

on ACQUIRE, 10-4
on DISPOSE, 10-7
on FETCH, 10-12

BDF, (Bad data flag), 2-7
Begin Code Execution Table (BGN)

described, A-29 thru A-30
Beginning-of-data not skipped by SKIPR,

12-4
BFI parameter on the ASSIGN control

statement, 8-6
BGN, (Begin Code Execution Table), A-29

thru A-30
Bidirectional transfer mode, 7-4
Binary, see also Relocatable modules

audit options specified on AUDIT,
11-11

blocked format value
on ACQUIRE, 10-4
on DISPOSE, 10-7

data in a blocked dataset, 2-6
deblocked format value

on ACQUIRE, 10-4
on DISPOSE, 10-7
on FETCH, 10-12

library datasets, output for, 13-27
thru 13-29

memory management associated with,
3-7

BL parameter on the ITEMIZE control
statement, 13-25

Blank
common

location in user field illustrated,
3-5

and relocatable overlays, 14-16
starting address set by SBCA

directive, 14-19
compression

described, 2-6
inhibited by ASSIGN, 2-6

field initiation, parameter on ASSIGN,
8-6

fields compressed, 2-6
Blank common

size of, 14-9
parameter, 14-9

Blanks
compressed in blocked coded datasets,

2-6
in a control statement, 4-1

SR-OOll Index-3

Block
control word

described, 2-7
disregarding, 2-9
format illustrated, 2-7
for interchange tape format, 2-11

multiplexer channel
and an Auxiliary I/O Processor,

1-7
in hardware requirements, 1-2

number field in block control word,
2-7

Relocation Table and relocatable
overlays, 14-15, 14-17

type, codes for, 9-13 to 9-14
Blocked

coded files, blank field compression
in, 2-6

datasets
copied, 6-13
skipped, 6-14

files
copied, 6-13
skipped, 6-14

format described, 2-6
records

copied, 6-13
skipped, 6-14

BLOCKS parameter on the DEBUG control
statement, 13-8

BMR, see Buffer Memory
BN, (Block number field in block control

word), 2-7
BO parameter on the AUDIT control

statement, 11-11
Braces convention described, 4-7
Brackets convention described, 4-7
BS parameter on the ASSIGN control

statement, 8-3, 8-4
and memory-resident datasets, 2-2

BT parameter on the MODE control statement,
7-4

Buffer
datasets within, 2-2
flushed to mass storage, 2-2
full, and memory-resident dataset

clearance, 2-2
Memory

dataset space divided in, 8-3, 8-4
in hardware requirements, 1-2
used as a tape block buffering area,

2-3
size parameter

BUILD

on the ASSIGN control statement,
8-3, 8-4

for memory-resident dataset
definition, 2-2

abort errors, 15-3
to add binaries from $BLD, 15-1
control statement, 15-1 to 15-3

for object library management,
6-15

M

BUILD (continued)
directives, 15-3

described, 15-5
for procedure libraries, 5-1
utility

complex procedures and, 16-22
in object library management,

6-15, 15-1
Burstable listing parameter on ITEMIZE,

13-25

C
parameter

on the LDR control statement,
14-6

on the PDSDDUMP control statement,
11-3

value for RF parameter
on ACCESS, 9-13
on ASSIGN, 8-8

C parameter on the ASSIGN control
statement, 8-5

CAL (Cray Assembly Language)
language call

for loading overlays, 14-25
in Type 2 overlay execution, 14-33

tables, expanded by LDR, 13-6
CALL

control statement - Read control
statements from alternate dataset,
7-9

CALL

in creation of datasets, 4-1
examples, 7-11 thru 7-13
for procedure libraries, 5-1

system verb, 4-3
used with ECHO, 7-20
verb described, 6-2

statement call
for complex procedures, 16-22

Caret symbol explained, 4-1
CAUTION error message, 14-8
CB parameter on the FTREF control

statement, 13-18
CB value for the DF parameter

on ACQUIRE, 10-4
on ASSIGN, 8-4
on DISPOSE, 10-7
on FETCH, 10-11

CD value for the DF parameter
on ACQUIRE, 10-4
on DISPOSE, 10-7
on FETCH, 10-11

CDC, see also Control Data
system-logical records

RS parameter for, 9-15
RS restriction for, 8-9

tape files
MBS values on ACCESS, 9-11
RF parameter on ASSIGN, 8-7
RS restrictions for, 8-9

tape format parameter on ASSIGN, 8-7

SR-OOll Index-4

CDC-compatible sequential file, 9-12
parameter, 8-6

CENTER parameter on the DUMP control
statement, 13-4

Central Memory
assignment illustrated, 1-4
characteristics summarized, 1-2
and the Cray Operating System, 1-1
in hardware requirements, 1-1
use by jobs, 3-4

Central Processing unit in hardware
requirements, 1-1

CFT, see also FORTRAN
tables expanded by LDR, 13-6

Channel access
user, B-5
described, B-5, B-6

Character blocked
format, 2-9

value on ACQUIRE, 10-4
value on ASSIGN, 8-4
value on DISPOSE, 10-7
value on FETCH, 10-11

mode for interactive format datasets,
2-9

Character deblocked format
value parameter

on ACQUIRE, 10-4
on DISPOSE, 10-7

value on FETCH, 10-11
Character set

described, Appendix C
foreign data, 9-12

parameter for, on ASSIGN, 8-7
Character-count block type, value on

ASSIGN, 8-8
CHARGES

control statement - Job step
accounting, 7-16

verb described, 6-2
CHECK field on ITEMIZE listing, 13-27,

13-28
CHKBLK directive for FTREF, 13-20
CHKMOD directive for FTREF, 13-21
CIO, (Circular I/O routines), 2-18
Circular I/O routines in logical I/O,

2-18
CL parameter on the JOB control statement,

7-3
Classes of messages written to logfile, 7-20
CLOSE macro with user tape end-of-volume

processing, 2-4
CLOSEV macro with user tape end-of-volume

processing, 2-4
CNS parameter

on the CALL control statement, 7-10,
7-11

on the LDR control statement, 14-6
Coded data in a blocked dataset, 2-6
Comment

control statement, 4-1
on load map, 14-12
statement described, 7-7

M

COMMENT
error message, 14-8
parameter on the DEBUG control

statement, 13-8
Common block variables

reports, 13-17
Communication paths

in establishing Interjob
Communication, B-2

Communication Paths
in Interjob Communication, B-3
sending and receiving messages, B-3

Communication paths
in closing Interjob Communication, B-4

COMPARE
as analytical aid, 6-14
utility - Compare datasets, 13-12 to

13-14
COMPARE

utility, 13-1
summarized, 13-1

Compilers loaded into user field, 1-5
Complex

procedure, 16-22
Compressed load parameter, 14-6
Concatenation separator described, 4-5
Conditional

block
basic described, 16-5 to 16-10
basic illustrated, 16-5
with ELSE, 16-6 to 16-7
with ELSEIF and ELSE, 16-9 to 16-10
with ELSEIF, 16-7 to 16-8
in exit processing, 3-8
structures, 16-5 to 16-10

control statement blocks
described, 16-2 to 16-10
summarized, 16-1

Constants
integer defined, 16-13
literal defined, 16-14
statement

blocks, conditional, 16-2 to 16-10
blocks, iterative, 16-10 to 16-13
prototype, 16-26
sequences, simple, 16-1

Context printed or scanned, 13-13
Contiguous space allocation parameter on

ASSIGN, 8-5
Continuation

character described, 4-5
separator, 4-1

Control
statement

dataset created, 4-1
file in a job deck, 3-1
read, 7-9 to 7-10
separators illustrated, 4-5
syntax, 4-1
verbs described, 4-2

Statement Processor (CSP)
in the Cray Operating System, 1-3
dumped, 13-1
in initial memory allocation, 3-4

SR-OOll Index-S

Control (continued)
information on logfile, 3-12
to load an execute-only dataset,

2-14
statements

for job definition, 6-2
for permanent dataset control,

examples of, 9-21 thru 9-22
listed in logfile, 3-12

word block
described, 2-7
disregarding, 2-9
for interchange tape format, 2-11
format, 2-7

word record described, 2-7
words

added to data, 2-6
of blocked datasets, 2-6
modifier on SAVE, 9-4
permission, 1-6
record, 2-6
record for interchange tape format,

2-11
record value on ASSIGN, 8-7 to 8-8

Control Data display code value
on ASSIGN, 8-7
on ACCESS, 9-13

Control statements
logic structures, 16-1 to 16-13

Conventions described, 4-7
Conversion mode parameter on ASSIGN, 8-7
COpy directive

described, 15-7 to 15-8
examples, 15-8
and file searching considerations,

15-5
COPYD utility - Copy blocked dataset,

12-2 to 12-3
for local datasets, 6-13
summarized, 12-1

COPYF utility - Copy blocked files, 12-2
for local datasets, 6-13
summarized, 12-1

COPYR utility - Copy blocked records, 12-1
for local datasets, 6-13
summarized, 12-1

COPYU utility - Copy unblocked datasets,
12-3

for local datasets, 6-13
summarized, 12-1

COS, see Cray Operating System
CP parameter on the COMPARE control

statement, 13-13
CPU, see also Central Processing unit

option on the CHARGES control
statement, 7-17

serial number symbol, 16-15
CR parameter on the PDSLOAD control

statement, 11-6
Crack next control statement, parameter

to, 14-6
Cracking, see Decoding

M

Cray
Assembly language, see CAL
Computer System configuration

illustrated, 1-3
Operating System

and job control language, 4-1
described, 1-1
job processing described, section 3
loaded at system initialization,

1-2
memory-resident summarized, 1-3

Creation disposition parameter on ACCESS,
9-8

Cross-reference listing
global

format for, 13-23 to 13-24
generated, 6-14
generated by SYSREF, 13-22

CRT value for the DT parameter on ASSIGN,
8-4

CS
parameter

on the ACCESS control statement,
9-12 to 9-13

on the ASSIGN control statement,
8-7

on the COMPARE control statement,
13-13

value for the RF parameter
on ACCESS, 9-14
on ASSIGN, 8-8

CSP, see Control Statement Processor
Cursor controls inserted by user, 8-4
cv parameter

on the ACCESS control statement, 9-12
on the ASSIGN control statement, 8-7

cw
modifier for the ADN parameter on

ACQUIRE, 10-5
parameter

on the AUDIT control statement,
11-10

on the COMPARE control statement,
13-14

on the PDSDUMP control statement,
11-3

on the PDSLOAD control statement,
11-6

value
for the ADN parameter on SAVE, 9-4
for the RF parameter on ACCESS,

9-14
for the RF parameter on ASSIGN,

8-7
CYBER operating system

MBS
parameter on ASSIGN and, 8-9
values for, on ACCESS, 9-11

cz value for RF parameter
on ACCESS, 9-14
on ASSIGN, 8-8

SR-OOll Index-6

D

parameter on the PDSDUMP control
statement, 11-3

value for the FORMAT parameter on DUMP,
13-3

Data
conversion enabled or disabled, 8-7
file, 3-1
hierarchy within a dataset illustrated,

2-6
transfer in user channel access, B-6
transfers controlled by the Cray

Operating System, 1-1
Dataset

access
controlled, 9-20
through permission control words,

6-4
relinquished, 8-1, 8-10

attributes, mass storage, 6-4
blocked

copied, 12-1, 12-2
format described, 2-6
initialized, 6-14, 12-1,

12-7
skipped, 12-5

Catalog
changes with DELETE, 9-19
entries with SAVE, 9-1
and Master Device, 1-5

cessation of permanence, 1-6
characteristics defined, 8-1
closed at the end of the load process,

14-3
compared, 13-12
control verbs for, 6-3
control words example, 2-10
copied, 12-1
declared memory resident, effect of,

2-2
default sizes defined by system

parameters, 1-6
defined, 1-5, 2-1

by the Cray Operating System, 2-16
definition

and control, section 8
verbs for, 6-3

Definition List (DDL)
described, A-3l thru A-32
with F$DNT for dataset definition,

2-2
deleted after dump, 11-3
deletion disallowed, 2-15
directed

to the input queue, 10-10
to the output queue for staging,

10-5
disposition code

described, 2-15
role of, 2-1

dumped, 13-9
execute-only

described, 2-14
not memory resident, 2-2

M

Dataset (continued)
expired, 11-3
foreign

conversion mode parameter on ACCESS,
9-12

format
interactive, 2-9
parameter on ACQUIRE, 10-3
parameter on ASSIGN, 8-4
parameter on DISPOSE, 10-7
parameter on FETCH, 10-11
summarized, 2-6
unblocked, 2-9

input
described, 1-6
dumped, 11-4
in job entry, 3-2
loaded, 11-7
made permanent, 2-14
rewound with COMPARE, 13-12

interactive
described, 2-2 to 2-3

intermediate, as memory-resident, 2-2
job, submitted, 10-10
job deck, 3-1
library

described, 6-16
generated and maintained by BUILD,

15-1
inspected by ITEMIZE, 13-24
output for, 13-27

local, 2-1, 4-3, 8-1, 9-5
dataset-name verbs, 4-3
described, 2-15
fetched, 10-11
JOB control statement for, 2-15
necessary for use, 2-1
permanent dataset made local, 8-1,

9-5
utilities for, 6-13, 12-1

longevity
defined, 2-1
described, 2-12

made permanent and accessible to the
job, 10-1

magnetic tape
availability, 2-3
current volume closed, 2-3
density of, parameter, 9-9
described, 2-3
formats described, 2-11
ignored by ADJUST, 9-16
ignored by MODIFY, 9-16
label-type parameter, 9-10
modification identifier on ACCESS,

9-11
not memory-resident, 2-2
parameters, 9-9, 9-10
record size parameter on ACCESS,

9-13
run time conver·sion parameters,

9-12
management, handling of, 6-3
manipulation through job control

language, 4-1

SR-OOll Index-7

Dataset (continued)
mass storage

attributes for, 6-7 to 6-8
created, 8-1
described, 2-1
MODIFY used for, 9-16
protection of, 6-8
permanent, described, 2-14
temporary, 2-12

maximum size
defined by system parameters, 1-6
limit parameter on ASSIGN,

8-5
media classified, 2-1
memory-resident

changes made to, 2-2
described, 2-2
loading, 2-2

modification disallowed, 2-15
name

local, as file identifier for tape
datasets, 2-3

restrictions on, 2-16
role of, 2-1
verbs, 4-2 thru 4-4

naming conventions described, 2-16
not destroyed, 6-3
output

deleted at job termination, 3-4
described, 1-6
disposition of, 2-14
dumped, 11-4
loaded, 11-7

output and user tape end-of-volume
processing, 2-4

owner, 6-9
Parameter Area (DSP)

described, A-9 thru A-17
and $DUMP, 13-2
location in user field illustrated,

3-5
relation to IOAREA, 7-9
in system memory management, 3-7

partially deleted, 6-11
permanent

access control statement, 9-5
additional edition created, 9-2
audited with AUDIT, 11-8
characteristics defined for, 9-1
control statements for, 9-21 thru

9-22
described, 2-14
deleted, 9-19
dumped through PDSDUMP, 11-2
editions dumped through PDSDUMP,

11-2
information changed, 9-16
initial edition created, 9-2
listed with AUDIT, 11-9, 11-10
loaded with PDSLOAD utility, 11-5 to

11-8
maintenance, 1-6
management, 6-3, section 9
mass storage, 9-7, 9-15 to 9-16

M

Dataset (continued)
privacy for, 11-1
saved with SAVE control statement,

9-1
space accessed, 7-16
status codes, E-7 thru E-ll
system described, 2-14
user, 2-14
utilities for, 6-13, section 11

positioned at the beginning of data,
12-1

recovered, 1-6
reestablished, 1-6
recovery after a system failure, 1-6
residing on logical device, dumped by

PDSDUMP, 11-2, 11-3
saved, 1-6
scratch described, 1-6
sequential, initialized, 6-14
size parameter on the ASSIGN control

statement, 8-2 to 8-3
skipped, 6-14, 12-6
staged, and use of RELEASE, 8-10
staging control, 6-11 to 6-13,

section 10
structure

defined, 2-1
summarized, 2-6
unblocked, parameter on ASSIGN,

8-4
system, 4-4
temporary, 2-2

created with &DATA, 16-26
creation of, 2-12
described, 1-6

translation, 8-6, 9-12
unblocked, 12-6
unblocked, copied, 6-13, 12-3
use tracking, 6-8, 6-10
user

naming conventions, 2-16
symbolic name assigned to, 2-16

Datasets, section 2
DATE field on ITEMIZE listing, 13-27,

13-28
DB parameter on the DSDUMP control

statement, 13-11
DC

parameter
on the ASSIGN control statement,

8-5 to 8-6
on the DISPOSE control statement,

10-6 to 10-7
value

for the CS parameter
9-13

for the CS parameter
8-7

DD-19 disk drive
dataset size, 8-3

DD-29 disk drive
dataset size, 8-3

on ACCESS,

on ASSIGN,

DDL, see Dataset Definition List

SR-OOll Index-8

DEB parameter on the LDR control statement,
14-5

DEBUG
as analytical aid, 6-14
utility - Produce symbolic debug, 13-6

thru 13-8
example, 13-7
parameters for arguments, 13-6

Debug
routine loading, parameter for, 14-5
symbolic, 13-6

Decoding of control statement parameters,
4-7

Default parameter on SUBMIT, 10-10
DEFER parameter

on the DISPOSE control statement,
10-5, 10-9

on the SUBMIT control statement, 10-10
Deferred submit parameter on SUBMIT, 10-10
DELETE

control statement - Delete permanent
dataset, 9-19 to 9-20

system verb, 4-3
verb described, 6-5

Delimiters
for keyword parameters, 16-28
for parameter substitution, 16-27

DEN parameter on the ACCESS control
statement, 9-9

Density of the tape dataset
parameter on ACCESS, 9-9

Destination medium of the dataset
stated through disposition code, 2-15

Device
label

and mass storage, 1-5
in disk storage space allocation, 1-5

type parameter on the ASSIGN control
statement, 8-4

OF parameter
on the ACCESS control statement, 9-10
on the ACQUIRE control statement, 10-3
on the ASSIGN control statement, 8-4
on the COMPARE control statement,

13-13
on the DISPOSE control statement, 10-7
on the DSDUMP control statement, 13-10
on the FETCH control statement, 10-11

DID parameter on the SUBMIT control
statement, 10-10

DIR parameter on the FTREF control
statement, 13-19

Directive

Disk

for BUILD, 15-5
for overlay generation, example of,

14-22
for type 2 overlay generation, 14-29

example of, 14-30

drives, 1-2
DD-19 and 00-29 drives, 8-3
Queue Manager

Circular I/O routines communicate
with, 2-18

M

DISPOSE
control statement - Dispose dataset,

10-5 thru 10-9
dataset disposition code stated on,

2-15
invalid with tape datasets, 6-12
requests not honored, 2-15
system verb, 4-3
verb for dataset staging control,

6-11
Disposition code

parameter
on DISPOSE, 10-6 to 10-7
on ASSIGN, 8-4 to 8-6

role of, 2-1
Disposition codes dataset described, 2-15
DQM (Disk Queue Manager), 2-18
Driver

macro, B-5
for user channel access, B-5

Driver FORTRAN
subroutine, B-5
to user channel access, B-5

DRPB (User Driver Parameter Block)
described, A-49 through A-52

DS option on the CHARGES control statement,
7-16

DSC, see Dataset Catalog, Permanent
Dataset Catalog

DSDUMP
as analytical aid, 6-14
output format, 13-12
utility - Dump dataset, 13-9 to 13-12

summarized, 13-1
DSP, see also Dataset Parameter Area

parameter on the DUMP control
statement, 13-3

DSU, see Disk Storage Unit
DSZ parameter on the DSDUMP control

statement, 13-11
DT parameter

on the ACCESS control statement, 9-8
on the ASSIGN control statement, 8-4

DUMP
as analytical aid, 6-14
parameter on the DEBUG control

statement, 13-7
utility - Dump registers and memory,

13-2 thru 13-5
format examples, 13-4 thru 13-5
summarized, 13-1

DUMPJOB
as analytical aid, 6-14
control statement not continued, 4-1
requests not honored, 2-15
summarized, 13-1
utility - Create $DUMP, 13-1 to 13-2

DV parameter
on the ASSIGN control statement, 8-4
on the AUDIT control statement, 11-9
on the PDSDUMP control statement, 11-2
on the PDSLOAD control statement, 11-6

SR-OOll Index-9

E

parameter
on the ITEMIZE control statement,

13-24
on the LDR control statement, 14-7

to 14-8
value

for the AM parameter on PERMIT,
9-20

for the PAM parameter on MODIFY,
9-18

for the PAM parameter on SAVE, 9-4
EB value

for the CS parameter on ACCESS, 9-13
for the CS parameter on ASSIGN, 8-7

ECHO
control statement - Enable or suppress

logfile messages, 7-19
statement and control statements listed

in logfile, 3-12
system verb, 4-3
verb described, 6-2

ED parameter
on the ACCESS control statement, 9-7
on the ACQUIRE control statement, 10-2
on the DISPOSE control statement, 10-8
on the MODIFY control statement, 9-17
on the PDSDUMP control statement, 11-2
on the PDSLOAD control statement, 11-6
on the SAVE control statement, 9-2

Edition number
new, parameter for, 9-17
parameter

on ACCESS, 9-7
on ACQUIRE, 10-2
on DISPOSE, 10-8
on PDSLOAD, 11-6
on SAVE, 9-2

of permanent dataset dumped through
PDSDUMP, 11-2

ELSE
system verb, 4-3

ELSE control statement - Define alternate
condition, 16-3

ELSEIF
system verb, 4-3

ELSEIF control statement - Define alternate
condition, 16-3 to 16-4

EMA parameter on the MODE control
statement, 7-4

END parameter on the FTREF control
statement, 13-19

End-oi-data in job deck, 3-2
End-of-file record in job deck, 3-2
End-oi-record control word, 2-9
ENDIF

system verb, 4-3
ENDIF control statement - End conditional

block, 16-2 to 16-3
ENDLOOP

system verb, 4-3
ENDLOOP control statement - End iterative

block, 16-11

M

ENDPROC
in complex procedures, 16-23
control statement - End procedure

definition, 16-27
effect on procedure definition, 7-10
system verb, 4-3

ENDSP macro with user tape end-of-volume
processing, 2-4

Entry points
parameter for, on ITEMIZE, 13-24

EOF not skipped by SKIPR, 12-4
Equivalence separator described, 4-5
ERECALL

macro, B-7
for Event Recall, B-7
FORTRAN subroutines, B-7

ERPB (Event Recall Parameter Block)
described, A-47 through A-49

ERR parameter
on the ACCESS control statement, 8-6
on the ACQUIRE control statement, 10-5
on the ADJUST control statement, 9-16
on the DELETE control statement, 9-20
on the MODIFY control statement, 9-18
on the PERMIT control statement, 9-21
on the SAVE control statement, 9-3

Error
class saved on reprieve processing,

3-10
code saved on reprieve processing,

3-10
codes described, Appendix E
conditions described, 3-9 to 3-10
at job termination, 3-4
listing, parameter for, 14-7 to 14-8
message parameter

Errors

on ACCESS, 9-6
on ACQUIRE, 10-5
on ADJUST, 9-16
on DELETE, 9-20
on MODIFY, 9-18
on PERMIT, 9-21
on SAVE control statement, 9-3

cause BUILD to abort, 15-3
syntax, see Syntax violations

Establishing attributes for mass storage
datasets, 6-7 to 6-8

Event Recall
described, B-6 and B-7

Event Recall Parameter Block (ERPB)
described, A-47

Exchange Package
described, Appendix D
in the Cray Operating System, 1-3
with the MODE control statement, 7-3

Exchange Processor
calls in user I/O interfaces, 2-18
information on logfile, 3-12
requests

I/O routines communicated through,
2-18

in user I/O interfaces, 2-18

SR-OOll Index-IO

EXCLUDE directive for selective load,
14-13

EXEC in the Cray Operating System, 1-3
Executable program creation, section 14

summarized, 6-15
Execute-only dataset

described, 2-14
differences from other user permanent

datasets, 2-14 thru 2-15
not memory-resident, 2-2
parameter

on MODIFY, 9-18
on SAVE, 9-3

Existing permanent dataset
attributes for, 6-7

EXIT
control statement - Exit processing,

3-8, 7-5
in job step aborts, 4-2
not continued, 4-1
within control statement blocks,

3-8
system verb, 4-3
verb described, 6-2

Exit processing
described, 3-8
on an interactive job, 3-10

EXIT IF
system verb, 4-3

EXITIF control statement - Exit from
conditional block, 16-4

EXITLOOP
system verb, 4-3

EXITLOOP control statement - End iteration,
16-11 to 16-13

EXO parameter
on the MODIFY control statement, 9-18
on the SAVE control statement, 9-3

EXP, see Exchange Processor
Expiration date parameter on the ACCESS

control statement, 9-12
Expression

defined, 16-13
evaluation, 16-18
operands, 16-13 to 16-16
operator table, 16-17
operators, 16-16 to 16-18
parameter on the SET control statement,

7-18
value of, written to logfile, 13-14

Extended memory addressing mode, 7-4

F
parameter

on the ACCESS control statement,
9-13

on the ASSIGN control statement,
8-7

value for the RF parameter
on ACCESS, 9-13
on ASSIGN, 8-7

M

F$DNT system call
to create interactive datasets, 2-3
to define a memory-resident dataset,

2-2
F$DRlVER

system request, B-5
for user channel access, S-5

F$ERCL
system request, B-7"
for Event Recall, B-7
FORTRAN subroutines, B-7

F$RDC call, record control words and, 2-9
F$WDC call, record control words and, 2-9
False value, symbol for, 16-16
FATAL error message, 14-8
FB value for the RF parameter

on ACCESS, 9-13
on ASSIGN, 8-7

FD parameter
on the ACCESS control statement, 9-12
on the ASSIGN control statement, 8-6

FETCH
control statement - Fetch local

dataset, 10-11
system verb, 4-3
verb for dataset staging control,

6-12
FI parameter on the MODE control statement,

7-4
Field label types

for tape mark processing, 2-4, 2-5
Field length

FILE

reduction of, 3-4 to 3-5
specified on the MEMORY control

statement, 7-5
user managed, 3-5

directive described, 14-18
field on ITEMIZE listing, 13-27

File
control statement, 3-1
data, 3-1
identifier for tape datasets, 2-3
number, specified on the selective load

directives, 14-13 to 14-14
output sequence, and BUILD, 15-4
searching considerations, 15-5
section number parameter on ACCESS,

9-9 to 9-10
source, 3-1
sequence number parameter on

ACCESS, 9-15
File-level output, with ITEMIZE, 13-26
Files

blocked
copied, 6-13, 12-1, 12-2
skipped, 12-4 to 12-5

following the control statement file,
3-2

skipped, 6-14
First word address of memory dumped, 13-3
Fixed-length blocked records value

on ACCESS, 9-13
on ASSIGN, 8-7

SR-OOII Index-II

FL parameter on the MEMORY control
statement, 7-5

Floating-point interrupt mode, 7-4
FLODUMP utility

summarized, 13-1
FLODUMP utility - Flow trace recovery dump,

13-15
as analytical aid, 6-14
examples, 13-16, 13-17

Flow trace
recovery dump, 13-15

example, 13-17
summary example, 13-16

FN parameter on the selective load
directives, 14-13 to 14-14

Foreign
data character set parameter

on ACCESS, 9~12 to 9-13
on ASSIGN, 8-7

dataset
conversion mode parameter on ACCESS,

9-12
conversion mode parameter, 8-7
translation identifier parameter on

ACCESS, 9-12
translation identifier parameter on

ASSIGN, 8-6
Formal parameters

in complex procedures, 16-22
specifications for substitution, 16-25

Format
for interactive output, 2-9
tape dataset, described, 2-11
transparent, for interactive output,

2-9
unblocked, 2-9

FORMAT parameter on the DUMP control
statement, 13-3

FORTRAN
I/O statements, user interface levels,

2-16
language call

for loading overlays, 14-25
in Type 2 overlay execution, 14-32

statements categories, 2-16
FORTRAN reference listing generated

by FTREF, 13-17
Forward index field

in block control word, 2-7
in record control word, 2-8

FROM directive for BUILD, 15-6
Front-end

computer identifier parameter
on ACQUIRE, 10-3
on DISPOSE, 10-8

job presentation to the Cray Operating
System, 1-1

protect indicator parameter on ACCESS,
9-11

servicing mainframe identifier
parameter on ACCESS, 9-9

FSEC parameter on the ACCESS control
statement, 9-9 to 9-10

FSEQ parameter on the ACCESS control
statement, 9-15

M

FSU option on the CHARGES control
statement, 7-17

FTREF
directives, 13-19
example, 13-21 through 13-22

FTREF utility
summarized, 13-1

FTREF utility generate FORTRAN
listing, 13-17

FULL
value

for the CB parameter on FTREF, 13-18
for the TREE parameter on FTREF, 13-18
for the MAP parameter on LDR, 14-4

FWA parameter on the DUMP control statement,
13-3

FWI (Forward index field)
in block control word, 2-7
in record control word, 2-8

G value for the FORMAT parameter on DUMP,
13-3

Generation
directive

for type 2 overlays, example, 14-30
example, 14-22

of relocatable overlays described,
14-15

Generic
name with a controlled device, 8-3
resource held with RELEASE, 8-10

GETPARAM routine in parameter
interpretation, 4-7

Global
cross-reference listing

format for, 13-23 to 13-24
generated, 6-14
symbols defined, 16-14

GRANT parameter on the LDR control
statement, 14-8 to 14-9

Hardware requirements summarized, 1-1 to 1-2
Header entry in the Label Definition

Table, A-42, A-45
Heap

location
specified, 14-10
in user field illustrated, 3-5

manager, 14-10
smallest block of available space in

the, 14-10
High Limit Memory Address relation to

IOAREA, 7-9
HLM (High Limit Memory Address), 7-9
HOLD parameter on the RELEASE control

statement, 8-10
Hollerith string and library routine

SYMDEBUG, 13-6

SR-OOll Index-12

I

I/O

parameter
on the BUILD control statement,

15-1
on the COPYD control statement,

12-3
on the COPYF control statement,

12-2
on the COPYR control statement,

12-1
on the COPYU control statement,

12-3
on the DEBUG control statement,

13-7
on the DSDUMP control statement,

13-10
on the DUMP control statement, 13-3
on the FTREF control statement, 13-18
on the LDR control statement, 14-8
on the PDSDUMP control statement,

11-4
on the-PDSLOAD control statement,

11-7
value

for the F parameter on ACCESS,
9-13

for the F parameter on ASSIGN, 8-7
for the RF parameter on ACCESS,

9-13
for the RF parameter on ASSIGN,

8-8

area, user's access to, 7-9
Buffers location in user field

illustrated, 3-5
circular routines, 2-18
interfaces

Exchange Processor calls in, 2-18
for datasets, 2-1
user, described, 2-16 thru 2-18
user, illustrated, 2-17

statements, FORTRAN user interface
levels, 2-16

Subsystem
components, 1-2
in hardware requirements, 1-2
with Auxiliary I/O Processor, 1-7

wait time listed in logfile, 3-12
I@BFI parameter to define blank field

initiator code, 2-6
IBM

record format parameter on ACCESS,
9-13 to 9-14

tape file translation value on ACCESS,
9-13

tape files
MBS values on ACCESS, 9-11
MBS values on ASSIGN, 8-9
RS defaults for, 8-8
RS restrictions for, 8-9

IBM-compatible
control unit attached to block

multiplexer channel, 1-7

M

IBM-compatible (continued)
sequential file, 9-12

parameter, 8-6
tape subsystem in hardware

requirements, 1-2
IC value for the DF parameter on ACCESS,

9-10
1D parameter

on the ACCESS control statement, 9-7
on the ACQUIRE control statement, 10-2
on the AUDIT control statement, 11-9
on the DISPOSE control statement, 10-8
on the MODIFY control statement, 9-17
on the PDSDUMP control statement, 11-3
on the PDSLOAD control statement, 11-6
on the PERMIT control statement, 9-20

IF
on the SAVE control statement, 9-2

parameter on the DSDUMP control
statement, 13-10

system verb, 4-3
IF control statement - Begin conditional

block, 16-2
IJPB (Interjob Communication Parameter

Block) described, A-55 through A-57
Immediate reply parameter on ACCESS, 9-6
IN value for the DC parameter

on ASSIGN, 8-5
on DISPOSE, 10-6

INC parameter
on the ASSIGN control statement, 8-5
on the PDSDUMP control statement, 11-3
with SZ on the ASSIGN control statement,

8-3, 8-5
INCLUDE directive for selective load,

14-13
Incremental dump parameter on PDSDUMP,

11-3
Initial

memory allocation in job memory
management, 3-4

separator described, 4-5
transfer on load map, 14-12

Initialization of local datasets, 6-13
Initializing for stack processing,

parameter for, 14-9
Input dataset

in job entry, 3-2
at job initiation stage, 3-3
made permanent, 2-14
permanent, described, 1-7
value on DC parameter, 10-6

Installation-defined control word for
PDSDUMP, 11-3

Integer constants
defined, 16-13

Interactive
datasets

described, 2-2 to 2-3
differ from local datasets, 2-2
not memory-resident, 2-2

device type specified on ASSIGN, 8-4
format described, 2-9
job processing described, 3-10

SR-OOII Index-13

Interactive (continued)
job step initiated with a control

statement, 3-10
jobs

control of, by the Cray Operating
System, 1-1

in exit processing, 3-9
output

datasets, TRAN used for, 2-8
formats, 2-9

tape format
described, 2-11
illustrated, 2-13

Interchange value for the DF parameter on
ACCESS, 9-10

Intergrated Support Processor, see ISP
Interjob Communication

closing communication paths, B-4
described, B-1 through B-5
establishing paths, B-2 to B-3
illustrated, B-3
sending and receiving messages, B-3

and B-4
Interjob Communication Message Buffer (MHB)

described, A-54
Interjob Communication Parameter Block

(IJPB)
described, A-55 through A-57

Intermediate datasets as memory-resident
datasets, 2-2

Internal block type value on ASSIGN, 8-8
Interruption, system, 7-17
IOAREA

control statement - Control user's
access to I/O area, 7-9

system verb, 4-3
verb described, 6-2

lOS, see I/O Subsystem
IR parameter

on the ACCESS control statement, 9-6
on the DSDUMP control statement, 13-10

IS parameter on the DSDUMP control
statement, 13-11

ISP
access to, 8-1
blank field initiation, 8-6
control statements, 8-11

Italics convention described, 4-7
ITEMIZE utility - Inspect library datasets,

13-24 thru 13-29
as analytical aid, 6-15
restrictions, 13-26
sample listing for a PL, 13-26
summarized, 13-1

Iterative control statement blocks
described, 16-10 to 16-13
illustrated, 16-12

IW
summarized, 16-1

parameter on the DSDUMP control
statement, 13-10

value for RF parameter
on ACCESS, 9-14
on ASSIGN, 8-8

M

JBI (JCL Block Information Table), A-35
JCB, see Job Communication Block
JCHLM set to the highest address, 14-20
JCL Block Information Table (JBI)

described, A-35
JCL Symbol Table (JST) described, A-35 thru

A-37
JCL, see Job Control Language
IN parameter on the JOB control statement,

7-2
to rename $OUT, 3-3

JNU option on the CHARGES control
statement, 7-16

Job
accounting information described,

3-10 to 3-13
advancement stage described, 3-3
class specified on the JOB control

statement, 7-3
Communication Block (JCB)

described, A-I thru A-7
length parameter, 14-5
location in user field illustrated,

3-5
at type 1 overlay loading,

illustration of, 14-21
at type 2 overlay loading,

illustration of, 14-28
and the user field, 1-5

control language
described, section 4
expression evaluation, 16-18
expressions, 16-13 to 16-20
functions, 6-1
logic structures allowed, section 16
verbs described, 4-2 to 4-4

deck dataset described, 3-1
defined, 3-1
definition and control, 7-1
entry stage described, 3-2
field length

symbol for, 16-15
flow

determined by control statements,
6-1

described, 3-2 thru 3-4
initiation stage described, 3-2
interactive in exit processing, 3-9
logfile described, 3-10
management, see Job Table Area
memory management

described, 3-4
initial memory allocation in, 3-4

name on load map, 14-12
nonrerunnable, reasons for a, 3-7
processing

described, section 3
requirements, control statements to

specify, 7-1
pseudo-registers

symbol for, 16-15
recovery with ROLLJOB, 7-17 to 7-18
reprieve processing, 3-9 to 3-10
rerun described, 3-7

SR-OOll Index-14

Job (continued)

JOB

rolled to disk, 7-17
size

defined, 3-4
minimum and maximum, option on

CHARGES control statement, 7-17
stages described, section 3
status register

symbol for, 16-15
step

abort and syntax errors, 4-2
abort, user-requested, 3-8
error conditions, 3-9
multi tasked, 3-3, 3-12

normal termination of, 3-9
Table Area (JTA)

described, 1-4, A-I
dumped, 13-3
illustrated, 3-5
at job initiation stage, 3-3
in job size, 3-4
listed in logfile, 3-13
in system memory management, 3-7

terminated when EXIT not found, 4-2
termination error, 3-4
termination stage described, 3-3 to 3-4
user area described, Appendix A
wait, parameter on DISPOSE, 10-9

control statement - Job identification,
7-1
execution in memory allocation, 3-4
format, 7-1
IN parameter on, 3-3
in job deck, 3-2
at job initiation stage, 3-2
job name from, on load map, 14-11
and magnetic tape datasets, 2-3
used for local datasets, 2-15

system verb, 4-3
verb - Introduces the job to the

operating system, 6-2
JST, see JCL Symbol Table
JTA (Job Table Area), A-36 thru A-37

parameter on the DUMP control
statement, 13-3

Julian date on load map, 14-12

Keyword
parameters

L

described, 4-6, 16-28
examples, 4-7

and positional parameters, 16-28

parameter
on the AUDIT control statement,

11-9
on the BUILD control statement,

15-2
on the COMPARE control statement,

13-13

M

L (continued)
on the FTREF control statement, 13-18
on the ITEMIZE control statement,

13-25
on the LOR control statement, 14-7
on the PDSLOAD control statement,

11-6
on the SYSREF control statement,

13-22
value for the LO output formatting

parameter on AUDIT, 11-11
Label Definition Table (LOT) described, A-38
Last word address

on load map, 14-13
of memory, dumped, 13-3

LB parameter on the ACCESS control
statement, 9-10

LDR control statement, 14-1 to 14-10
in executable program creation, 6-15
to load a program in relocatable

format, 14-1
not applicable with execute-only

datasets, 2-15
and overlay generation log, 14-34
and overlays, 14-17 thru 14-34

LDT, see Label Definition Table
LENGTH field on ITEMIZE listing, 13-27,

13-28
Level hierarchy in overlay generation,

14-24
LEVEL parameter on the FTREF control

statement, 13-19
LFT, see Logical File Table
LIB parameter on the LDR control statement,

5-1, 14-3
Libraries, section 5

constructed by BUILD program, 15-1
merged through the LIST directive for

BUILD, 15-9
LIBRARY

control statement - List and/or
change library searchlist, 7-20 to

7-21
system verb, 4-3
verb described, 6-3

Library
datasets

described, 6-16
described by ITEMIZE, 5-2
generation and maintenance of,

15-1
routines called by FORTRAN statements,

2-16
searchlist

listed or changed, 7-20
for verbs, 4-2

subroutine ACCESS for local datasets,
2-15

Library-defined verbs, 4-2, 4-3
Limit address of the user field, 1-5
LIST directive for BUILD, 15-8 to 15-9
Literal

delimiters described, 4-5
caret within a, 4-1

SR-OOII Index-IS

Literal (continued)
constants defined, 16-14
strings, 16-19 to 16-20
values in positional parameters,

4-6
LLD parameter on the LDR control statement,

14-4
LM parameter on the ASSIGN control

statement, 8-5
LO parameter on the AUDIT control

statement, 11-11
Load map described, 14-10 to 14-11

illustrated, 14-11
load type indicated on, 14-12

Loader expands special tables from CFT and
CAL, 13-6

Local
dataset, 2-1

described, 2-15
name as file identifier for tape

datasets, 2-3
verbs described, 4-3
utilities, 6-13, section 12

symbols defined, 16-14
LOCK parameter on the IOAREA control

statement, 7-9
Locked area

check for with FTREF, 13-19, 13-20
Logfile

comments in, 4-1
defined, 3-10
illustrated, 3-11
messages

in interactive job processing,
3-10

listed in logfile, 3-12
suppressed or enabled, 7-19

Logical
device indicated on PDSLOAD, 11-6
device parameter on the ASSIGN

control statement, 8-4
File Table (LFT)

described, A-8
location in user field illustrated,

3-5
in system memory management, 3-7

Logical
operators, 16-18

LOOP control statement - Begin iterative
block, 16-10 to 6-11

LPP parameter on the OPTION control
statement, 7-21

LWA parameter on the DUMP control statement,
13-3

M
field, 2-7
parameter

on the ACCESS control statement,
9-7

on the ACQUIRE control statement,
10-3

M

M (continued)
on the DISPOSE control statement,

10-8
on the MODIFY control statement,

9-18
on the SAVE control statement, 9-3

value
for the AM parameter on PERMIT,

9-20
for the FORMAT parameter on DUMP,

13-4
for the PAM parameter on MODIFY,

9-18
for the PAM parameter on SAVE, 9-4

Magnetic tape
characteristics, 1-7
classification, ?-3
dataset

described, 2-3
current volume closed, 2-3
management verbs described, 6-5
not memory-resident, 2-2

value specified on ASSIGN, 8-6
Mainframe

identifier
symbol for, 16-15

Mainframe computer identifier
parameter on FETCH, 10-12

Maintenance
Control Unit in hardware

requirements, 1-1
control word parameter

on ACCESS, 9-7
on ACQUIRE, 10-3
on DISPOSE, 10-8
on SAVE, 9-3

permission control word, 9-18
Managed memory

processing initialized, 14-10
statistics on load map, 14-13

Management of memory, 3-6
Map control, parameter for, 14-4
MAP parameter on the LDR control statement,

14-4
Mass storage

characteristics described, 1-5
and the Cray Operating System, 1-2
datasets

accessing, 6-8
attributes, 6-4, 6-7
described, 2-1
management verbs described, 6-5
protecting, 6-8

permanent dataset
creation of, 1~6
described, 2-14
recovery after a system failure,

1-6
Mass Storage Subsystem in hardware

requirements, 1-2
Master Device described, 1-5
MAXOIM parameter on the DEBUG control

statement, 13-8

SR-OOll Index-16

Maximum
field length on the JOB control

statement, 7-2
size of $OUT specified on the JOB

control statement, 7-2
tape block size parameter

on ACCESS, 9-11
on ASSIGN, 8-9 to 8-10

MBS parameter
on the ACCESS control statement, 9-11
on the ASSIGN control statement, 8-9 to

8-10
MCU (Maintenance Control Unit), 1-1
ME parameter on the COMPARE control

statement, 13-13
Memory

addresses relative to the beginning
address, 1-5

areas, 3-4
dumped with DUMP, 13-2
initilization parameter on LDR, 14-7
layout

and relocatable overlay images,
14-16 to 14-17

and relocatable overlays, 14-16
management, 3-4

associated with a program described,
3-7

by control statement, 3-6
by the system, 3-7
by user, described, 3-6 to 3-7
from within a program, 3-6

set to a value that causes an
out-of-range error, 14-7

transfers enabled and disabled, 7-4
MEMORY

control statement - Request memory
change 7-5 thru 7-6

in user management of memory, 3-6
macro for memory management from within

a program, 3-6
routine in user management of memory,

3-6
system verb, 4-3
verb described, 6-2

Memory-resident datasets
changes made to, 2-2
defined through ASSIGN, 2-2
described, 2-2
loaded, 2-2
parameter on ASSIGN, 8-5
as temporary datasets, 2-2

Message class and logfile listing, 3-12,
7-20

MESSAGE system action request macro with
job's logfile, 3-3

MF parameter
on the ACCESS control statement, 9-9
on the ACQUIRE control statement, 10-3
on the DISPOSE control statement, 10-8
on the FETCH control statement, 10-12

MFL parameter on the JOB control statement,
7-2

in memory allocation, 3-4

M

MHB (Interjob Communication Message Buffer)
described, A-54; also see message buffer

MM parameter
on the CHARGES control statement,

7-17
on the LDR control statement, 14-10

MMEPS parameter on the LDR control
statement, 14-10

MMLOC parameter on the LDR control
statement, 14-10

MOD parameter
on the ACCESS control statement, 9-11
on the selective load directives,

14-14
MODIFY

to change information from, 9-16
for new permanent datas'ets, 6-7
for public access mode declaration, 6-9

MODE
control statement - Set operating mode

described, 7-3
system verb, 4-3
verb - Sets or clears mode bits in the

job's Exchange package, 6-2
Modes of field length reduction described,

3-4 to 3-6
Modifiers to indicate attributes selected

from attributes dataset, 9-4
MODIFY

control statement - Modify permanent
dataset, 9-16 to 9-18

system verb, 4-3
used with existing permanent datasets,

6-7
verb described, 6-5

Module
absolute load, 6-15
heading for global cross-reference

listing, 13-24
name specified on the selective load

directives, 14-14
partially relocated, 14-1, 14-14
relocatable, 6-15, 14-6

Modules
added to an existing library dataset,

15-9
listed alphabetically, specified on

BUILD, 15-3
loaded and linked in memory, 14-1
omitted through the OMIT directive for

BUILD, 15-6
MR parameter on the ASSIGN control

statement, 8-5
to define a memory-resident dataset,

2-2
MS value for the DT parameter on ASSIGN,

8-4
MSG parameter

on the ACCESS control statement, 9-6
on the ACQUIRE control statement, 10-5
on the ADJUST control statement, 9-16
on the DELETE control statement, 9-20
on the MODIFY control statement, 9-18
on the PERMIT control statement, 9-21
on the SAVE control statement, 9-3

SR-OOII Index-17

MT value for the DC parameter
on ASSIGN, 8-6
on DISPOSE, 10-7

Multiprocessing, 1-1
Multiprogramming, 1-1
Multitasked job step, 3-3, 3-12
Multitasking, 1-1

N value
for the AM parameter on PERMIT, 9-20
for the BO output formatting parameter

on AUDIT, 11-11
for the LO output formatting parameter

on AUDIT, 11-11
for the PAM parameter

on MODIFY, 9-18
on SAVE, 9-4

NA parameter
on the ACCESS control statement, 9-6
on the ADJUST control statement, 9-16
on the DELETE control statement, 9-19
on the LDR control statement, 14-7
on the MODIFY control statement, 9-18
on the PDSLOAD control statement, 11-7
on the PERMIT control statement, 9-21
on the SAVE control statement, 9-3

NAME field on ITEMIZE listing, 13-27
NAPW parameter on the ACCOUNT control

statement, 7-14, 7-15
NBF option on the CHARGES control

statement, 7-17
NBL parameter on the BUILD control

statement, 15-2 to 15-3
NCB, see Node Control Block
New

account password parameter, 7-15
permanent datasets, atributes for,

6-7
user password parameter, 7-15

NEW parameter on the ACCESS control
statement, 9-8, 9-11

to access a tape dataset, 2-3
NF parameter

on the COPYF control statement, 12-2
on the DSDUMP control statement, 13-10
on the ITEMIZE control statement,

13-25
on the SKIPF control statement, 12-5

NID parameter on the PDSLOAD
control statement, 11-6

No release parameter
on DISPOSE, 10-9
on SUBMIT, 10-10

Node Control Block (NCB)
in closing communication, B-4
described, A-54
in establishing communication, B-2
in Interjob Communication, B-2, B-4
to send and receive messages, B-4

NODIR parameter on the BUILD control
statement, 15-3

NOECHO parameter on the LDR control
statement, 14-8

M

NOF parameter on the ASSIGN control
statement with SZ option, 8-2, 8-3

NOLIB parameter on the LDR control
statement, 5-1, 14-4

Non-specific volume allocation defined,
2-3

Nonrerunnability, reasons for, 3-7
NORDER parameter on the FTREF control

statement, 13-19
NORED parameter on the LDR control

statement, 14-9
in memory management, 3-7

NORERUN
control statement - Control

detection of nonrerunnable functions,
7-7 to 7-8

system verb, 4-3
verb described, 6-2

Normal
advance job described, 3-3
job advancement with the EXIT

statement, 3-8
termination of a job step, 3-9

NOTBLKS parameter on the DEBUG control
statement, 13-8

NOTE error message, 14-8
Notes

associated with a dataset, 10-5,
9-19

attribute, 6-6
modifier on SAVE, 9-5

NOTES
modifier for the ADN parameter on

ACQUIRE, 10-5
parameter

on the ACQUIRE control statement,
10-5

on the MODIFY control statement,
9-19

on the SAVE control statement, 9-5
value for the ADN parameter on SAVE,

9-4
NOTSYMS parameter on the DEBUG control

statement, 13-8
NOWAIT parameter on the DISPOSE control

statement., 10-9
NOWN parameter on the PDSLOAD control

statement, 11-6
NR parameter

on the COPYR control statement, 12-2
on the DSDUMP control statement, 13-10
on the SKIPR control statement, 12-4
on the WRITEDS control statement, 12-7

NREW parameter on the ITEMIZE control
statement, 13-25

NRLS parameter
on the DISPOSE control statement, 10-9
on the SUBMIT control statement, 10-10

NS parameter
on the COPYU control statement, 12-3
on the DSDUMP control statement, 13-10

Null
record, effect of control word on the,

2-9

SR-OOII Index-18

Null (continued)
string values in positional parameters,

4-6
Number of decimal sectors parameter on

ASSIGN, 8-5
NUPW parameter on the ACCOUNT control

statement, 7-14, 7-15
NW parameter on the DSDUMP control

statement, 13-10
NX parameter on the LDR control statement,

14-5
NXP parameter on the DUMP control

statement, 13-3

o
parameter

on the COPYD control statement,
12-3

on the COPYF control statement,
12-2

on the COPYR control statement,
12-1

on the COPYU control statement,
12-3

on the DEBUG control statement,
13-7

on the DSDUMP control statement,
13-10

on the DUMP control statement, 13-3
on the PDSDUMP control statement,

11-4
on the PDSLOAD control statement,

11-7
value for the FORMAT parameter on DUMP,

13-3
Object

code libraries described, 5-2
library management, section 15

summarized, 6-15 thru 6-16
module, relocatable, 6-15

OBL parameter on the BUILD control
statement, 15-2

ODN (Open Dataset Name Table), A-33
OFF

paramet.er on the ECHO control
statement, 7-19

value
for the C parameter of LDR, 14-6
for the CV parameter, 8-6, 9-12
for the MAP parameter on LDR,

14-4
OLM parameter on the JOB control statement,

7-2
OMIT directive for BUILD, 15-6 to 15-7
ON

parameter on the ECHO control
statement, 7-19

value
for the C parameter on LDR, 14-6
for CV parameter, 8-6, 9-12
for the MAP parameter on LDR,

14-4

M

Open Dataset Name Table (ODN) described,
A-33

OPEN macro call used in creating a
temporary dataset, 2-12

Operand range error interrupt mode, 7-4
Operands

expression, 16-13 to 16-16
Operating system

function described, 1-1
requests for datasets, 2-1

Operators
arithmetic, 16-18
expression, 16-16 to 16-17
logical, 16-18
relational, 16-18

OPT (Option Table), A-34
OPTION

control statement - Set user-defined
options, 7-21

system verb, 4-3
verb described, 6-3

Option Table (OPT) described, A-34
OR! parameter on the MODE control

statement, 7-4
Origin heading for global cross-reference

listing, 13-24
Output

for binary library datasets, 13-27
dataset deleted at job termination,

3-4
datasets

disposition of, 2-14
permanent, described, 1-6

formatting, parameters on AUDIT, 11-11
interactive formats, 2-9
placed on system mass storage, 3-3 to

3-4
Output dataset and user tape end-of-volume

processing, 2-4
Overflow

and use of the NOF parameter on ASSIGN,
8-3

Overhead in tape subsystem, reduction in,
2-3

Overlay
described, 14-17
directives described, 14-18 thru 14-34
execution

type 1, 14-24
type 2, 14-32

generated by the Relocatable Loader,
6-15

generation
described, 14-17
directives for, 14-20, 14-29
type 1, rules for, 14-23 to 14-24
log described, 14-34
rules for type 2 overlays, 14-31

load parameter on LOR, 14-6
loading Type 1, illustrated, 14-21
tree, type 2 illustrated, 14-27
type 1 described, 14-19
type 2

loading example, 14-28
structure described, 14-26

SR-OOll Index-19

OVL parameter on the LDR control statement,
14-6

OVLDN directive described, 14-18 to 14-19
OVLL directive for type 2 overlay

generation, 14-29 to 14-30
OWN parameter

on the ACCESS control statement, 9-8
on the ACQUIRE control statement, 10-4
on the AUDIT control statement, 11-10
on the PDSDUMP control statement, 11-3
on the PDSLOAD control statement, 11-6

Ownership value

P

in attribute association, 6-10
parameter

on ACCESS, 9-8
on ACQUIRE, 10-4

'user parameter on PERMIT, 9-21

parameter on the JOB control statement,
9-2

value
for the BO output formatting

parameter on AUDIT, 11-11
for the FORMAT parameter on DUMP,

13-3
for the LO output formatting

parameter on AUDIT, 11-11
PAD parameter on the LDR control statement,

14-9
in memory management, 3-7

Page number on load map, 14-12
PAGES parameter on the DEBUG control

statement, 13-8
PAM, see also Public access mode

modifier for the ADN parameter on
ACQUIRE, 10-5

parameter
on the ACQUIRE control statement,

10-4
on the MODIFY control statement,

9-18
on the SAVE control statement, 9-4

value
for the ACC parameter on AUDIT,

11-10
for the ADN parameter on SAVE,

Parameter
interpretation described, 4-7
separator described, 4-5
substitution, 7-10

Parameters
described, 4-4
formal

in complex procedures, 16-22
for substitution, 16-25

keyword, 4-4
keyword described, 16-28
positional, 4-4
positional and keyword, 16-28
positional described, 16-28
substitution

in complex procedures, 16-22
described, 16-27

M

9-4

Parentheses
delimiters described, 4-5
for key word parameters, 16-29

Parenthetic
and literal string values, 16-30
strings, 16-20

PART
field on ITEMIZE listing, 13-27,

13-28
value

for the C parameter on LOR, 14-6
for the CB parameter on FTREF, 13-18
for the MAP parameter on LDR, 14-4
for the TREE parameter on FTREF,

13-18
PARTIAL parameter on the DELETE control

statement, 9-19, 9-20
Partially

deleted datasets, 6-11
relocated modules described, 14-14

Partitioning value parameter on the ASSIGN
control statement, 8-3

Password, account parameter for new,
7-14, 7-15

PAT, see Public access tracking
PDM, see Permanent Dataset Manager
PDN parameter

on the ACCESS control statement,
9-7, 9-9

on the ACQUIRE control statement, 10-2
on the AUDIT control statement, 11-9
on the MODIFY control statement, 9-17
on the PDSDUMP control statement, 11-2
on the PDSLOAD control statement, 11-6
on the SAVE control statement, 9-2

PDS parameter
on the PDSDUMP control statement, 11-2
on the PDSLOAD control statement, 11-6

PDSDUMP
utility - Dump permanent datasets,

11-2
described, 11-1

verb for permanent datasets, 6-13
PDSLOAD

utility - Load permanent datasets,
11-5 to 11-8
described, 11-1
used with existing permanent

datasets, 6-7
verb for permanent datasets, 6-13

Permanent Dataset
Catalog

ACQUIRE and, 10-1
in the Cray Operating System, 1-3
linkage to at startup, 1-2

Definition Table (PDD) described, A-18
thru A-28

Manager
information on logfile, 3-12
mass storage datasets controlled by,

6-4

SR-OOll Index-20

Permanent datasets
attributes for, 6-7
availability, 1-6
cessation of permanence, 1-6
classified, 2-14
deletion of, 1-6
described, 2-14
maintenance, 1-6
management, section 9

control statements described, 6-5
name omitted from the ACCESS

request, 2-3
utilities, 6-13, section 11

mass storage described, 2-14
recovery, 1-6
reestablishment, 1-6
system, described, 2-14
user, 2-14

Permission control words defined, 1-6,
6-4

PERMIT
control statement - Explicitly

control access to dataset, 9-20 to
9-21

attributes dataset used with, 6-8
system verb, 4-3

verb described, 6-5
Permit

defined, 6-9
list modifier on SAVE, 9-4
parameter removed, 9-21

PERMITS
modifier for the ADN parameter on

ACQUIRE, 10-5
value for the ADN parameter on SAVE,

9-4
Permits attribute, 6-6
PFI (Previous File Index), 2-8
Physical characteristics of tape devices

summarized, 1-7
PL (Program Library), 5-1
Plot dataset value on DC parameter, 10-6

specified on ASSIGN, 8-6
position macro

and tape mark processing, 2-5
Positional

and keyword parameters, 16-28
parameters described, 16-28

POVL directive for overlay generation,
14-22

PR
disposition code, 2-15

at job initiation, 3-3
value for the DC parameter

on ASSIGN, 8-5
on DISPOSE, 10-6

Previous
file index in record control word,

2-8
record index field in record control

word, 2-8
PRI, 2-8
Primary overlays, 14-19, 14-20

M

PRINT
as analytical aid, 6-14
system verb, 4-3
utility - write value of expression to

logfile, 13-14
Print dataset value on DC parameter, 10-6

specified on ASSIGN, 8-5
PRINT utility

summarized, 13-1
Priority level specified on the JOB control

statement, 7-2
Privacy

permanent dataset, enabled, 11-1
provided by the ACCOUNT control

statement, 7-14
restriction for' mass storage datasets,

6-8
Private datasets,accessibility to, 6-9
Privileges defined, 14-8 to 14-9
PROC

control statement - Begin procedure
definition, 16-24

in complex procedures, 16-23
effect on procedure definition, 7-10
system verb, 4-3
used with ECHO, 7-20

Procedure
begun with PROC, 16-24
complex, 16-22

elements described, 16-23
elements illustrated, 16-24

defined, 16-21
definition, 7-10

body in complex procedures, 16-23
body described, 16-26
deck structure illustrated, 16-24

described, 16-21 thru 16-34
library described, 5-1
name call for complex procdures, 16-22
simple, 16-21
substitution, examples, 16-30 thru 16-34

Processing, reprieve
error codes for, E-l to E-7

Program
creation, executable, 6-15,

section 14
Description Table

flag set for relocatable overlay,
14-15

and relocatable overlays, 14-17
execution defined by job control

language, 4-1
library described, 5-1
module

deleted from a library, 15-10
extracted from a library, 15-10
names and BUILD directives, 15-3
ranges and BUILD directives, 15-4

PROT parameter on the ACCESS control
statement, 9-11

Protecting mass storage datasets, 6-8
Prototype control statement to introduce a

in complex procedures, 16-23
procedure, 16-25 to 16-26

SR-OOll Index-21

PT
value for the DC parameter

on ASSIGN, 8-6
on DISPOSE, 10-6

PU value for the DC parameter
on ASSIGN, 8-5
on DISPOSE, 10-6

Public
access tracking attribute

described, 6-6
modifier on SAVE, 9-4

datasets, accessibility to, 6-9
Public access mode

attribute
described, 6-6
modifier on SAVE, 9-4

parameter
on ACQUIRE, 10-4
on MODIFY, 9-18
on SAVE, 9-4

Punch dataset value for DC parameter, 10-6
specified on ASSIGN, 8-5

Queued Dataset Table (QDT), 11-2

R
parameter

on the ACCESS control statement,
9-7

on the ACQUIRE control statement,
10-3

on the DISPOSE control statement,
10-8

on the MODIFY control statement,
9-17

on the SAVE control statement, 9-3
value

for the AM parameter on PERMIT,
9-20

for the PAM parameter on MODIFY,
9-18

for the PAM parameter on SAVE, 9-4
Random dataset parameter on ASSIGN, 8-4
Range specifier for program module ranges,

15-4
RCB (Receptive Control Block) described,

A-53
RCW, see Record control word
RDM parameter on the ASSIGN control

statement, 8-4
Read control word

parameter
on ACCESS, 9-7
on ACQUIRE, 10-3
on DISPOSE, 10-8
on SAVE, 9-3

REC field on ITEMIZE listing, 13-27
Receptive Control Block (RCB)

in closing communication, B-4
described, A-53
in establishing communication, B-2
in Interjob Communication, B-2, B-4

M

Record
format parameter

on ACCESS, 9-13 to 9-14
on ASSIGN, 8-7 to 8-8

positioning unavailable with
interactive datasets, 2-3

Record control word (RCW), 2-6
described, 2-7 thru 2-9
end-of-record, 2-9

not covered by TR on ASSIGN, 8-4
for interchange tape format, 2-11

Recording format parameter on ACCESS,
9-10

Records
blocked

copied, 12-1
skipped, 12-3

CDC format, 9-13 to 9-14
copied, 6-13
IBM format, 9-13
skipped, 6-14
variable-length, processing of, 2-6

RECORDS field on ITEMIZE listing, 13-27
Recovery

dump, 13-15
of jobs through reprieve processing,

3-9
References heading for global

cross-reference listing, 13-24
Registers

content examined with DUMPJOB, 6-14
dumped with DUMP, 13-2

Relational
operators, 16-18

RELEASE
control statement - Release dataset,

8-10
function request used for temporary

datasets, 2-12
request, effect on the DEFER parameter

of DISPOSE, 10-9
system verb, 4-3
verb described, 6-3

Relocatable
loading of blocks of an overlay, 14-29
modules described, 6-15
overlay, 14-1

described, 14-14
Relocatable Loader

described, 14-1
in executable program creation, 6-15
and object code libraries, 5-2

RELOCOVL parameter on MODULE pseudo-op for
relocatable overlays, 14-15

REMARK subroutine with job's logfile, 3-3
REMARK2 subroutine with job's logfile,

3-3
REMARKF subroutine with job's logfile,

3-3
REPLACE parameter on the BUILD control

statement, 15-3
Report, formatted

printed with ITEMIZE, 13-24

SR-OOll Index-22

Reprieve processing
error codes for, E-l to E-7
and exit processing, 3-8

Requests delayed with ACCESS, 9-6
RERUN

control statement - Unconditionally
set job rerunnability, 7-8

system verb, 4-3
verb described, 6-2

Rerunnability conditions summarized, 3-7
Rerunnable, declaration of a job as, 3-8
Resource, dedicated

specified on the JOB control statement,
7-3

Restrictions for mass storage datasets,
6-8

Retention period parameter
on ACCESS, 9-12
on ACQUIRE, 10-2
on DISPOSE, 10-8
for new, 9-17
on SAVE, 9-2

RETURN
control statement - Return control

to caller, 7-13
system verb, 4-3
verb described, 6-2

REWIND
command and volume switching, 2-3
system verb, 4-3
unavailable with interactive datasets,

2-3
utility - Rewind blocked or unblocked

dataset, 12-6
for local datasets, 6-14
summarized, 12-1

RF parameter
on the ACCESS control statement, 9-14

to 9-14
on the ASSIGN control statement, 8-7 to

8-8
RING parameter on the ACCESS control

statement, 9-9, 9-11
RL parameter on the WRITEDS control

statement, 12-7 to 12-8
ROLLJOB

control statement - Roll a user job
to disk, 7-17 to 7-18

system verb, 4-3
verb described, 6-2

ROOT directive for overlay generation,
14-20 to 14-21

ROOT parameter on the FTREF control
statement, 13-19

Routine levels and symbolic dumps, 13-7
RP parameter

on the PDSLOAD control statement, 11-6
on the PERMIT control statement, 9-21

RS parameter
on the ACCESS control statement, 9-14
defaults for IBM tape files

on ACCESS, 9-14
on ASSIGN, 8-8 to 8-9

M

RS parameter (continued)
restrictions for IBM tape files

on ACCESS, 9-15
on ASSIGN, 8-8 to 8-9

RT parameter

S

on the ACCESS control statement, 9-12
on the ACQUIRE control statement, 10-2
on the DISPOSE control statement, 10-8
on the MODIFY control statement, 9-17
on the SAVE .control statement, 9-2

parameter
on the ASSIGN control statement,

8-2
on the PDSDUMP control statement,

11-4
on the PDSLOAD control statement,

11-7
value

for the RF parameter on ACCESS,
9-13

for the LO output formatting
parameter on AUDIT, 11-11

for the RF parameter on ASSIGN,
8-8

SAVE
control statement - Save permanent

dataset, 9-1
in making a dataset permanent,

2-12
macro, 9-1
MODIFY to change information from,

9-16
for new permanent datasets, 6-7
for public access mode declaration,

6-9
requests to create permanent dataset,

2-14
system verb, 4-3
verb described, 6-5

Saved dataset, 1-6
SBCA directive described, 14-19
SC

disposition code, 2-15
at job initiation, 3-3
when RELEASE is used, 8-10

value for the DC parameter
on ASSIGN, 8-5
on DISPOSE, 10-6

SCOPE internal tape format, value for
on ACCESS, 9-13
on ASSIGN, 8-7

Scratch
dataset value

on DC parameter, 10-6
specified on ASSIGN, 8-5

described, 1-6
temporary dataset as, 1-6
disposition code with RELEASE, 8-10

SR-OOll Index-23

SDN parameter
on the DISPOSE control statement, 10-6
on the FETCH control statement, 10-11
on the selective load directives,

14-13
SDR, see System Directory
Second vector logical functional

unit mode, 7-4
Sector count rounded off, 8-2
Sectors

accessed, listed in logfile, 3-13
used for temporary datasets, listed in

logfile, 3-13
SECURE parameter on the LDR control

statement, 14-8
Security provided by ACCOUNT control

statement, 7-14
Selective load

described, 14-13 to 14-14
parameter for, 14-8

Semiprivate datasets, accessibility to,
6-9

Sense switch
set or cleared, 7-7

Separators described, 4-4
Sequential processing altered by exit

processing, 6-1
Serial number

CPU symbol for, 16-15
SET

control statement - Change symbol
value, 7-18
examples, 7-18 to 7-19

parameter on the LDR control statement,
14-7

system verb, 4-3
verb described, 6-2

SETRPV subroutine in reprieve processing,
3-10

SETSP macro with user tape end-of-volume
processing, 2-4

SF parameter on the DISPOSE control
statement, 10-8

SI value for the F parameter
on ACCESS, 9-13
on ASSIGN, 8-7

SID, see also Symbolic Interactive Debugger
parameter on the LDR control statement,

14-5
effect on CNS, 14-7

parameter on the SUBMIT control
statement, 10-10

SIMABORT system verb, 4-3
Simple

control statement sequences
described, 16-1
summarized, 16-1

procedure, 16-21
Skip remainder of section field, 2-8
SKIPD utility - Skip blocked dataset, 12-5

for local datasets, 6-14
summarized, 12-1

SKIPF utility - Skip blocked files, 12-4
for local datasets, 6-14
summarized, 12-1

M

SKIPR utility - Skip blocked records, 12-4
for local datasets, 6-14
summarized, 12-1

SKIPU utility - Skip unblocked dataset, 12-6
summarized, 12-1

SO parameter
on the PDSDUMP control statement, 11-3
on the PDSLOAD control statement, 11-7

Solid-state Storage Device
dataset space divided in, 8-3
in hardware requirements, 1-2

SORT parameter on the BUILD control
statement, 15-3

effect on file output sequence, 15-4
Source file, 3-1
SOVL directive for overlay generation,

14-22
Special form information parameter on

DISPOSE, 10-8
Specific

alternate owners user category, 6-9
volume allocation defined, 2-3

SR parameter on the CHARGES control
statement, 7-16 to 7-17

SRS, 2-8
SSD, see Solid-state Storage Device
ST value for the DC parameter

on ASSIGN, 8-5
on DISPOSE, 10-6

Stack processing initialized, 14-9
Stage to front end value

on DC parameter, 10-6
specified on ASSIGN, 8-5

Staged dataset name parameter, 10-11
on DISPOSE, 10-6

Stages of job flow described, 3-2 to
3-4

Staging
defined, 6-11, 10-1
control, 6-11 to 6-13

STARTSP macro with user tape end-of-volume
processing, 2-4

Startup and the Cray Operating System,
1-1

STAT
______ , __ ., """ --..::I ..., """'\

t::AQlIIl-'.Lt::O::> , I-~~ Q.IIU I-~~

parameter on the OPTION control
statement, 7-21

Statement terminator described, 4-5
Stations, see Front-end computers
Statistics

on mass storage datasets created, 7-21
printing dataset I/O statistics, 7-21

and 7-22
on system usage, 7-16

Status codes described, E-7 thru E-ll
STK parameter on the LDR control statement,

14-9
STP (System Task Processor), 1-3
Strings

defined, 16-19
literal, 16-19 to 16-20
parenthetic, 16-20

SR-OOll Index-24

Subexpressions
defined, 16-16

SUBMIT control statement - Submit job
dataset, 10-10

system verb, 4-3
verb for dataset staging control,

6-12
SUBSET directive for FTREF, 13-19
Substitution

parameters
in complex procedures, 16-22
described, 16-27

Subsystem support
described, B-1
to develop code, B-1

SWITCH control statement - Set or clear
sense switch, 7-7

system verb, 4-3
verb described, 6-2

Symbol
heading for global cross-reference

listing, 13-24
parameter on the SET control statement,

7-18
value changed with SET, 7-18

Symbolic
dump produced, 6-14
name assigned to user dataset, 2-16
variable table, 16-15 to 16-16
variables defined 16-14 thru 16-17

Symbolic Interactive Debugger (SID), 14-5
Symbols

dumped by DEBUG, 13-7
local and global defined, 16-14

SYMDEBUG library routine, 13-6
SYMS parameter on the DEBUG control

statement, 13-7
Syntax

control statement illustrated, 4-1
violations

described, 4-2
and job step aborts, 4-2

SYSREF utility - Generate global
cross-reference listing, 13-22 to 13-24

as analytical aid, 6-14
SUIlUlIar izeu, 13-1
use of, illustrated, 13-23

System
Bulletin listed in logfile, 3-13
dataset name verbs described, 4-4
debugging routines parameter, 14-5
Directory

access of datasets entered into,
9-5

loader accesses default libraries
from the, 14-3

Table described, 4-4
error codes described, E-l to E-7
Executive in the Cray Operating System,

1-3
failure, 1-6
initialization summarized, 1-2
in Interjob Communication, B-5

M

System (continued)
management of memory described, 3-7
permanent datasets described, 2-14
requests, B-5
resources used, parameter, 7-16 to 7-17
Task Processor in the Cray operating

System, 1-3
utility programs loaded into user

field, 1-5
verbs, 4-2, 4-3

System-logical record type parameter on
ASSIGN, 8-7 to 8-8

SZ parameter
on the ASSIGN control statement, 8-2 to

8-3
on the AUDIT control statement, 11-9

SZ parameter with INC on the ASSIGN control
statement, 8-3, 8-5

T
parameter

on the ITEMIZE control statement,
13-25

on the JOB control statement, 7-2
on the LDR control statement, 14-5

value
for the BO output formatting

parameter on AUDIT, 11-11
for the DF parameter on COMPARE,

13-13
for the LO output formatting

parameter on AUDIT, 11-11
TA parameter

on the ACQUIRE control statement, 10-5
on ACQUIRE, SAVE, or MODIFY for dataset

use tracking, 6-10
on the MODIFY control statement, 9-18
on the SAVE control statement, 9-4

Tables, binary symbol, 13-22
TAPE generic resource name, 9-8
Tape Queue Manager

tape mark processing by, 2-4 through 2-5
Tape, see also Dataset; Magnetic tape block

buffering area, Buffer Memory used
as, 2-3

defined, 2-11
size parameter on ACCESS, 9-11

controller in hardware requirements,
1-2

data moved, listed in logfile, 3-13
dataset

generic resource name parameter on
ACCESS, 9-8

label type parameter on ACCESS,
9-10

record size parameter
on ACCESS, 9-14
on ASSIGN, 8-7

transparent format described, 2-12
devices

characteristics, 1-8
reserved, listed in logfile, 3-13

SR-OOll Index-25

Tape (continued)
files, MBS values on ACCESS, 9-11
format

described, 2-11
internal, 8-7
parameter on ACCESS, 9-13
parameter on ASSIGN, 8-7

magnetic, classification by label,
2-3

mark processing by TQM, 2-4 through 2-5
Queue Manager

Circular I/O routines communicate
with, 2-18

to control magnetic tape datasets,
6-4

resources specified on CHARGES control
statement, 7-17

subsystem, overhead reduction in, 2-3
volumes mounted, listed in logfile,

3-13
write ring parameter on ACCESS, 9-9

TAPESTAT macro
and tape mark processing, 2-5
with user tape end-of-volume

processing, 2-4
TASK option on the CHARGES control

statement, 7-17
TASKS parameter on the DEBUG control

statement, 13-8
TCR parameter on the AUDIT control

statement, 11-10
Temporary dataset

creation of, 2-12
described, 1-6
in mass storage, 1-6
as mass storage dataset, 2-12
and memory-resident datasets, 2-2

Terminal identifier parameter
on ACQUIRE, 10-3
on DISPOSE, 10-8
on FETCH, 10-12

Termination message parameter
on ACCESS, 9-6
on ACQUIRE, 10-5
on ADJUST, 9-16
on DELETE, 9-20
on MODIFY, 9-18
on PERMIT, 9-21
on SAVE, 9-3

Terminator in a control statement, 4-1
Text

attribute, 6-6
modifier on SAVE, 9-4

to be passed, parameter for
on DISPOSE, 10-9
on FETCH, 10-12
on MODIFY, 9-19
on SAVE, 9-4

function, 6-12
replaced through MODIFY command, 6-13
Table and relocatable overlays, 14-17

M

TEXT
modifier for the ADN parameter on

ACQUIRE, 10-5
parameter

on the ACQUIRE control statement,
10-3

on the DISPOSE control statement,
10-9

on the FETCH control statement,
10-12

on the MODIFY control statement,
9-19

on the SAVE control statement, 9-4
value for the ADN parameter on SAVE,

9-4
TID parameter

on the ACQUIRE control statement, 10-3
on the DISPOSE control statement, 10-8
on the FETCH control statement, 10-12

Time
in execution or waiting, 7-16, 7-17
limit specified on the JOB control

statement, 7-2
waiting option on the CHARGES control

statement, 7-16
Timeout

in event recall, B-7
Timestamp conversion option

parameter on PDSDUMP, 11-3
TLA parameter on the AUDIT control

statement, 11-10
TLA parameter

on the AUDIT control statement, 11-10
on the PDSLOAD control statement, 11-7

TPS option on the CHARGES control
statement, 7-17

TQM, see Tape Queue Manager
TR value for the OF parameter

on ACCESS, 9-10
on ACQUIRE, 10-4
on ASSIGN, 8-4
on DISPOSE, 10-7
on FETCH, 10-12

TRACE parameter on the DEBUG control
statement, 13-7

Track
accesses parameter

on ACQUIRE, 10-5
on MODIFY, 9-18
on SAVE, 9-4

size for controlled devices, 8-3
TRACK

modifier for the ADN parameter on
ACQUIRE, 10-5

value for the ADN parameter on SAVE,
9-4

Tracking of dataset use, 6-10
Tracks

dataset space allocation in, 1-6
TRAN (Transparent record field), 2-8
Transfer

data, B-6
of data from front-end system, 10-1
name parameter on LOR, 14-5
in user channel access, B-6

SR-OOll Index-26

Transparent
format

value on ACQUIRE, 10-4
value on DISPOSE, 10-7
value on FETCH, 10-12

for interactive output, 2-9
record field in record control word,

2-8
tape format described, 2-11
value

for the OF parameter on ACCESS,
9-10

specified on ASSIGN, 8-4
TREE parameter on the FTREF control

statement, 13-18
True value

symbol for, 16-15
Truncation

of intermediate and final results, 16-18
parameter on ITEMIZE, 13-25

TS parameter on the PDSDUMP control
statement, 11-3

Type 1 overlay loading illustrated, 14-21
Type 2 over lay

execution described, 14-32
structure described, 14-26

TYPE field on ITEMIZE listing, 13-27
Type parameter on the MODULE pseudo-op,

14-15

U
parameter on the ASSIGN control

statement, 8-4
value

for the RF parameter
9-13

for the RF parameter
8-7

UBC (Unused bit count), 2-8
UBS, 2-8
Unblocked

on ACCESS,

on ASSIGN,

dataset structure parameter on ASSIGN,
8-4

datasets copied, 6-13
format described, 2-9

Undefined-length records value
on ACCESS, 9-13
on ASSIGN, 8-7

Unique access parameter
on ACCESS, 9-8
on ACQUIRE, 10-3
on SAVE, 9-3

unit name parameter on the ASSIGN control
statement, 8-6

UNLOCK parameter on the IOAREA control
statement, 7-9

Unsatisfied external
abort parameter, 14-7
program and relocatable overlays,

14-16
Unused bit count field (UBC), 2-8
UPDATE for program libraries, 5-1
Update time of last access parameter on

PDSLOAD, 11-7

M

UPW parameter on the ACCOUNT control
statement, 7-15

UQ parameter
on the ACCESS control statement, 9-8
on the ACQUIRE control statement, 10-3
relation to MODIFY, 9-16
on the SAVE control statement, 9-3

US parameter
on the ACCOUNT control statement,

7-15
on the AUDIT control statement, 11-9
on the JOB control statement, 7-2
on the PDSLOAD control statement, 11-6

USA parameter on the LDR control statement,
14-7

User
area of memory

described, 1-4 thru 1-5
for a job, 3-5

code location in user field,
illustrated, 3-5

dataset
naming conventions described,

2-16
symbolic name assigned to, 2-16

field,see also User area of memory
described, 1-5
at job initiation stage, 3-3
length in job size, 3-4
in memory, 1-4

I/O interfaces described, 2-16 thru 2-18
management of memory described, 3-6
number

parameter on the ACCOUNT control
statement, 7-15

specified on the JOB control
statement, 7-2

validated, 7-14
ownership value parameter, 9-21
password parameter, 7-15
permanent datasets protected, 2-14
programs loaded into user field, 1-5

USER
information on logfile, 3-12
parameter

on the MEMORY control statement,
7-5

on the PERMIT control statement,
9-21

User channel access
described, B-5 and B-6

User Driver Parameter Block (DRPB)
described, A-49

User identification
additional, parameter for, 9-17

on ACCESS, 9-7
on ACQUIRE, 10-2
on DISPOSE, 10-8

parameter on SAVE, 9-2
specified, 11-3

User tape end-of-volume processing, 2-4
User's

exchange processing saved on reprieve
processing, 3-10

stack space, 7-9

SR-OOll Index-27

User-defined options set, 7-21
User-managed field length reduction mode,

3-5, 3-6
in memory management, 3-7

USX, see Unsatisfied external program
Utilities

local dataset, 6-13 to 6-14
permanent dataset, 6-13
provide analytical aids, summarized,

13-1
Utility

v

program BUILD, 15-1
routines examples, 11-1

parameter
on the DUMP control statement, 13-3
on the LIBRARY control statement,

7-21
value for RF parameter

on ACCESS, 9-13
on ASSIGN, 8-7

Value
of an expression written to logfile,

13-14
heading for global cross-reference

listing, 13-24
Variable-length records

value for
on ACCESS, 9-13
on ASSIGN, 8-7

processing of, 2-6
Variables

symbolic defined, 16-14 thru 16-17
VB value for the RF parameter

on ACCESS, 9-13
on ASSIGN, 8-7

VBS value for the RF parameter
on ACCESS, 9-13
on ASSIGN, 8-7

Vector mask register saved on reprieve
processing, 3-10

Verbs
in a control statement, 4-1
for dataset definition, 6-3
described, 4-2 to 4-4
for job definition, described, 6-2
not found by the Cray Operating System,

4-2
types, 4-2

VI, see Volume identifier
VOL parameter on the ACCESS control

statement, 9-9
Volume

identifier list
parameter, 9-9
capacity, 2-3

sequence number parameter on ACCESS,
9-9 to 9-10

Volume 1 entry in the Label Definition
Table, A-40 to A-42

Volumes switched during tape dataset
processing, 2-3

VSN, see Volume identifier

M

W
parameter

on the ACCESS control statement,
9-7

on the ACQUIRE control statement,
10-3

on the DISPOSE control statement,
10-8

on the MODIFY control statement,
9-17

on the SAVE control statement, 9-3
value

for the AM parameter on PERMIT,
9-20

for the PAM parameter on MODIFY,
9-18

for the PAM parameter on SAVE, 9-4
for RF parameter on ACCESS, 9-13
for the RF parameter on ASSIGN,

8-8
WAIT parameter on the DISPOSE control

statement, 10-9
WARNING error message, 14-8
Write

control word parameter
on ACCESS, 9-7
on DISPOSE, 10-8
on SAVE, 9-3

dataset value on DC parameter, 10-7
permission control word parameter,

9-17
WRITEDS utility - Initialize a blocked

random or sequential dataset, 12-7
for local datasets, 6-14
summarized, 12-1

WT option on the CHARGES control statement,
7-16

x
parameter

on the AUDIT control statement,
11-10

on the ITEMIZE control statement,
13-25

on the PDSDUMP control statement,
11-3

on the SYSREF control statement,
13-22

value for the FORMAT parameter on DUMP,
13-3

XDT parameter on the ACCESS control
statement, 9-12

XIOP (Auxiliary I/O Processor), 1-7

Z
parameter on the DSDUMP control

statement, 13-11
value for RF parameter

on ACCESS, 9-13
on ASSIGN, 8-8

Zero-byte record type
value on ASSIGN, 8-8

SR-OOll Index-28 M

READERS COMMENT FORM

CRAY-OS Version 1 Reference Manual SR-OOll M

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ____

JOB TITLE _______________________________ _

FIRM _____________________________________ _
RESEARCH. INC.

ADDRESS __ ___

CITY ________________ STATE ____ Zl P ___ _

· -- - - - ---I

Attention:
PUBL!CAT!ONS

"""

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST. PAUL. MN

POST AGE WILL BE PAID BY ADDRESSEE

Cli =a,S a :""f'
RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-------------------------------------,

C')

C
-f
»
r o z
C)

-f
J:
c;;
!:
z
m

READERS COMMENT FORM

CRAY-OS Version 1 Reference Manual SR-OOll M

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOB TITLE ______________________________ _

C:1'=liJ'h.'" FIRM ______________________________________ _
RESEARCH. INC.

ADDRESS __________________________________ _

CITY _______________ STATE _____ ZIP ______ _

Attention:
PUBLlCAT!ONS

''''''

BUSINESS REPLY CARD
HRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAlO BY AI')DRESSEE

RESEARCH. INC.

1440 Northland Drive
Mendota Heigh!!, MN 55120
U.S.A.

--- -----~
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-------------------------------------,

C!TADI ·c

(')
C
-f
»
r­o z
Cl
-f
::t
Cii
C
Z
m

