f

)

ENT(

=
-

E

PROCEEDINGS

OF THE

DIGITAL EQUIPMENT
COMPUTER USERS
SOCIETY

Copyright © 1979, Digital Equipment Corporation
Maynard, Massachusetts

ISSN 0095-2095

Digital Equipment Corporation assumes no
responsibility for the articles which appear
in this document.

The following are trademarks of Digital Equipment Corporation:

COMPUTER LABS

COMTEX
DDT

DEC
DECCOMM
DECsystem-10

DECSYSTEM-20

DECTAPE
DECUS
DIBOL

DIGITAL PDP
EDUSYSTEM PHA

FLIP CHIP RSTS
FOCAL RSX

1AS TYPESET-8
INDAC TYPESET-11
LAB-8 UNIBUS
MASSBUS VAX
OMNIBUS VMS

0s/8

1/79-14

FOREWORD

This journal is a publication of the Digital Equipment Computer Users Society, a world-wide society of users of computers
manufactured by Digital Equipment Corporation. The Society has at present more than 33,000 members, and has offices in
Geneva, Switzerland; Kanata, Ontario, Canada; and Crows Nest, Australia as well as headquarter offices in Marlboro,
Massachusetts, U.S.A.

The Society maintains a library of programs for interchange between members, and organizes meetings on local, national, and
international scales to fulfill its primary functions of advancing the art of computation and of providing means of interchange
of information and ideas between members. Five major technical Symposia are at present held annually, one each in Canada,
Australia, and Europe, and two in the United States.

This journal consists of an annual volume in five parts, each the Proceedings of one of the annual DECUS Symposia.
The issues are numbered according to the sequence in which the Symposia take place.

No. 1 — DECUS Europe Symposium
No. 2 — DECUS U.S. Fall Symposium
No. 3 — DECUS Canada Symposium
No. 4 — DECUS U.S. Spring Symposium
No. 5 — DECUS Australia Symposium

A cumulative index for the volume will be published with Number 5.

Proceedings for Symposia held prior to September 1974 are not assimilated into the series.
In addition, all past Proceedings are available on microfilm from:

Europe and Eastern Hemisphere: All Others:

University Microfilms International University Microfilms International
18 Bedford Row 300 North Zeeb Road

London WC1R-4EJ, England Ann Arbor, Michigan 48106

For details of subscription rates for the Proceedings, of back-issues availability, and of forthcoming DECUS Symposia,
contact one of the following:

CHAPTER OFFICES

Australia/NZ: Canada: Europe/Middle East: U.S. and All Others:
DECUS Australia DECUS Canada DECUS Europe DECUS U.S.

P.O. Box 491 P.O. Box 11500 12, avenue des Morgines One lron Way

Crows Nest, N.S.W. 2065 Ottawa, Ontario K2H 8K8 C.P. 510 Marlboro, MA 01752
Australia Canada CH-1213 Petit-Lancy 1, Geneva U.S.A.

Switzerland

TABLE OF CONTENTS

PDP-11 SOFTWARE RSTS

Page
OPERATING SYSTEMS, LANGUAGES & UTILITIES

A SIMPLE INDIRECT COMMAND FILE PROCESSOR
FOR RSTS/E
N. Seethoff 559
TEDIT: ASIMPLE ALTERNATIVE
D. Portz 563
PERFORMANCE MEASUREMENT OF
TERMINAL-ORIENTED SYSTEMS

M. Dashevsky, T. Evans . 567
RSTS/E APPLICATION LIBRARY: CONCEPTS

IN STRUCTURE AND CONTENT

J.A. Hayes . 571

HOW TO PRODUCE AND DEVELOP YOUR
OWN RSTS/E PUBLICATIONS

J.A. Hayes . 579
RSTS/E SYSTEM CALLS FROM PASCAL AND
FORTRAN

D.M. Vann . 587
NETWORKING

X.25 PACKET SWITCHING NETWORK AND
RSTS/E TIME SHARING

L.R. lrons . 589
EDUCATION APPLICATIONS

SCHEDULING STUDENT ASSISTANTS IN THE
COMPUTING LABORATORY

J.D. Rose 595
CURRICULUM INTEGRATION AND USER
SUPPORT OF RSTS IN A SMALL BUSINESS
COLLEGE

A.K. Lash 599
COMMERCIAL APPLICATIONS, DBMS

ON-TARGET — AN EFFECTIVE BOTTOM-UP
APPROACH TO SHOP CONTROL

N.J. Viehmann 605
QDMS: A DATA MANAGEMENT SYSTEM

UNDER RSTS/E

P. Tofil, C. Darling, T.E. Moriarty,

R.B. Enders, P.J. Cruson 615

Page

PDP-11 SOFTWARE RSX-11

OPERATING SYSTEMS, LANGUAGES AND UTILITIES

OVERLAP SEEK DISK DRIVER
P.J. Wirtz 623
IAS TIMESHARING CONTROL SERVICES AND
PROGRAM DEVELOPMENT

E.A. Johnson . 625
AN IMPLEMENTATION OF BASIC USING
MACRO-11

J. Clemens . 629
CONVERSION OF VERY LARGE PROGRAMS
TO RSX-11 BASED SYSTEMS

S.R. Deller . 637
RUNNING ‘REAL-TIME’ WITH IAS
E. Bolson, M. Frimer 653
REPLACING MCR IN AN OEM ENVIRONMENT
D.M. Kristol 657
THE DEC FORTRAN ENVIRONMENT FOR
BUSINESS APPLICATIONS

D.J. Hirschfeld 663
NETWORKING

SIZING AND PLANNING A DECNET NETWORK
R. Pigman, W. Lahtinen 665
ENGINEERING AND SCIENTIFIC APPLICATIONS

A SOFTWARE DEVELOPMENT SYSTEM FOR
SMALL DEDICATED AND FRONT-END
MICROCOMPUTER (LSI-11) APPLICATIONS*
J.W. Tippie, P.E. Rynes e e 671
ACCELERATOR CONTROL USING RSX-11M
AND CAMAC

J.E. Kulaga 675
BUREAU OF MINES DATA ACQUISITION AND
PROCESSING SYSTEM

D.N.H. Chi, H.E. Perlee 681
INTERACTIVE GRAPHICS SUPPORT FOR
MINICOMPUTER SYSTEMS

S.J. Choy 687
PDP-11 IMPLEMENTATION OF A PROPOSED

ANSI DATA EXCHANGE STANDARD

E.R. Hill, J. Bower, P.J. Dionne, A. Medford,

D. Mathisen 693

Page

PDP-11 SOFTWARE RT-11

OPERATING SYSTEMS, LANGUAGES AND UTILITIES

A MEMORY RESIDENT OVERLAY HANDLER
FOR RT-11V3

D. Ritchie, Y. Kang . 701
SOFTWARE DEVELOPMENT FOR A SIGNAL
PROCESSING TASK: A COMPARISON OF
LABFORTH WITH FORTRAN AND ASSEMBLY
LANGUAGE

R.M. Harper, D.J. Sirag 707
TIME SHARE TERMINAL EMULATOR
UNDER RT-11

T.L. Starr, L.T. Nieh 711
ENGINEERING AND SCIENTIFIC APPLICATIONS

BEINII: ON-LINE BEHAVIOR INPUT
S. Walker, M. Reite . 715
ATOMIC ABSORPTION SPECTROMETER
READOUT AND DATA REDUCTION USING
THE LSI-11 MICROCOMPUTER

M.J. Allen, R.W. Wikkerink 719
APPLICATION OF MU-BASIC, VIRTUAL FILES
TO MARINE CHEMICAL RESEARCH

G. Kerr . 727
GT-43 AIRPLANE FLIGHT SIMULATION
C.F. Kyle, P. Sherrod

PDP-11 HARDWARE

AN INEXPENSIVE SYSTEM FOR DIGITIZING
PICTORIAL INFORMATION
C. Kapps

733

735

THE MIK-11: INSTRUMENTATION INTERFACING
MADE SIMPLE
D. Abbott . 751
HIGH SPEED SQUARE-ROOTING BY

IN-FIELD ENHANCEMENT OF A PDP-11/45FPP
G.A. Moyle,* N.M. Wilson™® 755
THE NEUROSCIENCE DISPLAY PROCESSOR

MODEL 2

J.J. Capowski . 763

PDP -8 SOFTWARE

Page

OPERATING SYSTEMS, LANGUAGES AND UTILITIES

THE REAL-TIME CAPABILITY OF THE
EDUCOMP TIMESHARED OPERATING SYSTEM
D.C. Buddenhagen 767
SIMPLE MULTI-0S/8 BACKGROUND SHARING
UNDER RTS-8

C.T. Teague, E.W. Yund, J.W. Brodrick 775
ENGINEERING AND SCIENTIFIC APPLICATIONS

MICROPROCESSOR BASED OCEAN BOTTOM
SEISMOMETER

R.D. Moore, C.-Y. Huang . 781
CMOS DATA ACQUISITION SYSTEM OF
OFFSHORE OIL RIGS

J.M. Kracik 787
PDP-8/E DEVELOPMENT SYSTEM FOR
BIT-SLICE MICROPROCESSORS

D.F. Gluntz 793
THE GDP-12 GEOPHYSICAL DATA

ACQUISITION SYSTEM

R.B. Staley, R.B. Clark, K.L. Zonge 799

GENERAL PAPERS

LANGUAGES AND UTILITIES

IN INTRODUCTION TO PASCAL FOR BASIC
AND FORTRAN PROGRAMMERS

J.A. Krupp . 803
LSI-11 WRITABLE CONTROL STORE
ENHANCEMENTS TO U.C.S.D. PASCAL
G. Smith, R. Anderson . 813
PASCAL/P-CODE CROSS COMPILER FOR THE
LSt-11*

B.L. Hitson 819
BLISS COMPILER OPTIMIZATION TECHNIQUES
A.P. Lehotsky 825
ACCURATE DESCRIPTION OF SYSTEM

STRUCTURE - A NEW STANDARD FOR

LANGUAGE QUALITY

E.S. Lowry 833

Page
PUTTING THE NAG LIBRARY ON THE
VAX 11/780
B. Ford, S.J. Hague, S. Vaughn 841

MATHEMATICAL - STATISTICAL LIBRARIES:
STATE-OF-THE-ART
TJ Ad 847

NUMERICAL METHODS IN LABORATORY
MEDICINE USING THE MUMPS PROGRAMMING
LANGUAGE

F.B. Griffith 851

CHARACTERIZATION OF PDP-11
PSEUDO-RANDOM NUMBER GENERATORS(a)
P.R. Nicholson(b), J.M. Thomas, C.R. Watson . . 853

NETWORKING

NET - A POWERFUL FILE-TRANSFER FACILITY*
R.D. Burris, C.E. Hammons, C.0. Kemper . . . 865

ENGINEERING, SCIENTIFIC AND MEDICAL
APPLICATIONS

POLYNOMIAL OF DEGREE N-1 FROM N
DATA POINTS
G.Roux 83

ATROPOS - A VERSATILE DATA ACQUISITION
AND ANALYSIS SYSTEM*
C.A. Logg, R.L.A. Cottrell 875

MUMPS/IDS OPTOMETRIC OUT-PATIENT
TURNKEY INSTALLATION - A CASE HISTORY
R. Dippner 883

GRAPHICS

STANDARDIZATION IN COMPUTER GRAPHICS -
AN OVERVIEW
RE.Fryer 887

A GENERALIZED PLOTTING FACILITY*
R.D. Burris, WH.Gray 89

DESIGN CONSIDERATIONS AND PHILOSOPHY

OF A DEVICE - INDEPENDENT PUBLICATIONS/-
GRAPHICS SYSTEM

JS.Burt 899

EDUCATION

A SPECIAL PURPOSE LANGUAGE (STATUS)

FOR TEACHING STATISTICS: SOME OF ITS
DESIGN PRINCIPLES, AND VALUES AS AN
EDUCATIONAL TOOL

JC.Tumer 915

Page

ENGLISH STRANDS
E.leventhal 91

A PROPOSAL ON THE FUTURE DIRECTION
OF COMPUTER ASSISTED INSTRUCTION
BG.Alcock 92%

COMMERICAL APPLICATIONS, OFFICE
AUTOMATION

ELECTRONIC MAIL SYSTEM
R. Andreoli, J. Melnick 929

COMPUTERIZED FINANCIAL ACCOUNTING:
JOURNAL ENTRIES THROUGH FINANCIAL
STATEMENTS

CP.Carter 933

APPENDIX A
(Papers presented at 1978 Spring DECUS Meeting)

A SYSTEM ACCOUNTING PACKAGE FOR

RSX-11M

G. Bernstein, C. Granja, A.Brown A-1l
‘RDCL’ REMOTE DEVICE VIA COMMUNICATION
LINK :

A. Brown, G. Bernstein A7

AMULTI - DETECTOR PULSE - HEIGHT
ANALYSIS SYSTEM
C.P.J. Kelly, D. Stafford, A.J. Hulbert A-15

A MULTI-USER, MULTI-DETECTOR PULSE
HEIGHT ANALYSIS/GAMMA CAMERA DATA
COLLECTION SYSTEM USING CAMAC AND
PLAS

D. Stafford, C.P.J. Kelly, A.J. Hulbert A-21
APPENDIX B

AUTHOR/SPEAKER INDEX B-
PAPERS NOT SUBMITTED FOR

PUBLICATION B3
ATTENDANCE LIST Bb

A SIMPLE INDIRECT COMMAND FILE PROCESSOR

FOR RSTS/E

Norm Seethoff
John Fluke Manufacturing Company
Seattle, Washington

ABSTRACT

A few modifications to the BUILD program
(distributed with all RSTS kits) are described. The
modified BUILD program will execute commands from a
file, saving the user from typing long or repetive
input strings. This program is especially suitable
for use with BACKUP, and an example shows how to
automate BACKUP commands.

INTRODUCTION RUN &BEGIN
BEGIN Ver. 1.0 RSTS V
BEGIN is a utility program designed to BEGIN>EXAMPL,SRC,DRO,ggg,g;?n Fhuke Mre
execute a named command file from any RSTS ‘c
terminal. This capability permits a user HELLO
to specify a file name from which commands RSTS VO6C John Fluke Mfg Job 17 KBO
are to be read and executed as if they were #100.100
typed directly from the terminal. BEGIN is Password:
an alternative to typing in a lengthy Job 10 is detached under this account
series of commands for repetitive Job numer to attach to?
operations such as large assemblies, 1 other user is logged in
compilations and program linking. It is Ready
also very useful for applications in which ASSIGN DRO:1I
another program can generate a complex Ready
sequence of commands to be executed by an A RO:0
inexperienced operator using BEGIN. In Ready
addition to command file exectuion, BEGIN AS DR1:L
presently offers the <capability for one Ready
wild card string replacement and three] le Command File for BEGI
private logical device assignments. RUN $FORTRAN
¥0:TEST,L:TEST=I:TEST/L:SRC
.MAIN.
%~
EXAMPLES Rgfdy
Q LP:EAAMPL=L:TEST/NH/DE
. : Ready
FORTRAN Compilation BEG let
As an example, assume that the file

EXAMPL.CTL contains the following:
System Disk Backu

;S;mg;gﬁggﬁgand File for BEGIN BEGIN is a useful aid in the automation of
N . . disk backups. The following example shows
0:TEST,L:TEST=1:TEST/L:? the use of BEGIN to perform a system disk
. backup by executing a command file
Q LP:EXAMPL=L:TEST/NH/DE generated by yet another program. By using
a separate program to generate the command
When executed with the following commands file, a shell of commands can be
(user entries are in bold type): constructed and the actual variable
parameters (BACKUP setname, expiration
gggli‘las‘”“ (0 RSTS VO6C John Fluke Mg date, etc.) can be filled in by the
er. . 1 ohn uke g
program. Use of such an approach for
BEGIN>EXAMPL, SRC,DRO,DRO,DR1 system Dbackup minimizes the chances of
. operator errors during the backup. For
The following command dialogue takes place clarity, the commands generated by BEGIN
(commands generated by BEGIN are are underlined. User entries are in bold
underlined): type.

Proceedings of the Digital Equipment Computer Users Society 559 San Francisco — November 1978

RUN SYSBAK
Today's backup set tapes are:
THUDRO
THUDR1
To back up the system disks,
the following commands:
For DRO enter:
BEGIN DR1:DRO
For DR1 enter:
BEGIN DRO:DR1
After you have completed the disk
backup, enter the following command to
QUE the listings and delete the scratch
disk files:
BEGIN DR1:BACKUP
Have at it............ s
Ready

enter

BEGIN DR1:DRO

Zc

HELLO

RSTS V06C John Fluke Mfg Job 17 KBO
#1/100

Password:

Job 9 is detached under this account
Job number to attach to?

1 other user is logged in

Ready
! BEGIN control file for system
! isk backup

Mount the first volume of backup
set THUDRO on MTO:

1
-
!
!

R B P
BACKUP V06C-03A
BAC[KUP] OR RES[TORE]? BACKUP
WORK FILE NAME? DR1: DRO.WR
LISTING FILE<KB:>? DR1:THUDRO.LST
FROM DISK<SY:>? DRO:
FROM FILESK[1,100]% . %>7 [#* #1#% #
TO DEVICE<MT:>? MT:
BEGIN ATCK[*,*#]% #>2 [# %)%
DELETE FILES<KNONE>? NONE
gOMPARE FILES<KNONE>? NONE
BACKUP SET NAME<THUDRO>? THUDRO
EXP DATE<26-0CT=-79>? 01-NOV-78
DENSITY IN BPI<800>7? 800
PARITY<ODD>? oDD
MOUNT DEVICE: MT:
ID: THUDRO
SEQ# : 1
DENSITY: 800 BPI
PARITY: 0DD

IDENTIFICATION WILL BE FINAL UPON MOUNT
DEVICE? MTO:
#*

DISMOUNT DEVICE: MTO:
ID: THUDRO
SEQ#: 1
DENSITY: 800 BPI
PARITY: ODD
EXPIRATION DATE: 01-NOV-78

PLEASE LABEL THIS VOLUME!
*

BEGIN Complete

560

USAGE

When run, BEGIN displays:

BEGIN>

as a prompt for entry of the name of the
command file to be -executed, an optional
wild card string replacement, and three

logical device names for device assignment.
CCL entry is also supported. The format of
the user entry is:

cmndfile,wilderd,logdevI,logdev0,logdevL

where cmndfile is the name of the command
file to be executed; wilderd 1is the
wildecard replacement string; logdevI,
logdevO, and 1logdevL are the the physical
devices to be associated with 1logical
devices I:, O0:, and L:. All parameters
specified must be separated by commas.
Note that this prohibits the use of commas
in the wildcard string. The default
command file extension is 'CTL'. The

default wildcard string is null.
no default parameters supplied for device
assignment. If a wildecard replacement
string is supplied for substititution, this
string will be used to replace to all
occurrences of '?' in the command file
being executed. If device names are
supplied for 1logical assignment, they are
assigned to the logical names I, O, and L.
This permits one wildcard replacement
string and to three 1logical device
assignment names to be passed to the
command file being executed. All
occurrences of a single '*“* in the command
file will be replaced by a control 2Z
character. A '"'" followed by an ASCII
capital letter will be converted to the
equivalent ASCII control character. Null
parameters are allowed. BEGIN is capable

There are

up

of detecting the entry of a control C on
the terminal and terminating without
executing the remainder of the command
file.
OPERATION

The sequence of operations performed by
BEGIN is nearly identical to those
performed by BUILD. Normal operation of

BEGIN is as follows:
1) Determine the job number and keyboard
number of the job initiating BEGIN.

2) Issue command
command 1line,

entry prompt, input
and parse to extract
parameters (unless invoked by a CCL
command and the parameters were passed
in the CCL command).

3)

4)

5)

6)

7)

8)

9)

Copy the command file to a temporary
file. The temporary file is then
closed, re-opened for input, and marked
for deletion at completion.

BEGIN then detaches from the wuser's
terminal.

Running detached, BEGIN then 1logs in
the terminal (under the same account
number) from which it detached.

Any logical device assignments
specified 1in the parameter 1list are
then forced to the terminal.

All commands contained in the command
file are forced to the terminal.

Command lines beginning with a '!' in
column one are broadcast (rather than

forced) to increase the processing
speed of these comment 1lines. All
occurrences of a single '"' are

converted to control Z characters; all
occurrences of '"' followed by a valid
ASCII letter are converted to the
equivalent ASCII control character.
Execution continues at this step until
the end of the command file is reached
or a control C 1is entered on the
terminal by the user.

If a control C is detected, an
appropriate message is broadcast to the
terminal and the detached job kills
itself.

When the end of the command file is
reached, a message is broadcast to the
controlled Jjob indicating completion
and the detached job then kills itself.

AVAILABILITY

Copies of this document and the source of

the APPEND file have been submitted to the
RSTS SIG Library. The SYSBAK program used

to generate the indirect command files for
system backups using BEGIN has also
submitted to the SIG Library.

561

TEDIT:

A SIMPLE ALTERNATIVE

Donna Portz
Academic Computing Services
Arizona State University

Tempe, Arizona

85281

ABSTRACT

TEDIT is an ideal text editor for students and novice computer

users.

It's appeal is derived from its simplicity, ease

of usage, line orientation, and minimal number of commands.
Enhancements to the original version have made this editor

more versatile without losing its simplicity.

Users can

learn it with minimal time investment and optionally utilize
features characteristic of more sophisticated editors.

INTRODUCTION

Text editors should be at sale prices these days
due to their abundance on many computer systems.
For instance, the PDP 11/70 system at Arizona
State University emerged with EDIT, TECO, SOS,
TEDIT and, more recently, EDT, the DEC Common
Editor. But numbers alone are secondary to the
practice that every editor written tries to
outdo its predeccessors in capabilities.
Learning some text editors is like learning a
higher level language, with READ, WRITE, and DO-
loop command equivalents being just a taste of
what lies ahead for the unsuspecting user.

WHY TEDIT?

At Arizona State University, three PDP 11/70
computers running RSTS/E are used primarily for
classroom instruction with the majority of

classes learning a programming language. Since
ASU has no batch facilities into these machines,
all input must be accomplished through timesharing
terminals. Programs and data in Fortran or Cobol
must be entered via a text editor. For many
classes, use of terminals and text editing is a
new experience from the batch processing procedures
they previously used, Instead of learning to
keypunch, students now must learn to edit. It was
imperative that editing be an easy task and
maintain a low profile as a means to the final

end product, not burdening the learning process,

With all the editing power that was available,

a choice had to be made. Which editor was the

best for students and novice users? It had to

be simple to learn, easy to use, preferably

line oriented, and contain a minimal number of
commands to do the job. TEDIT fit the requirements
best.

INTRODUCING TEDIT

Still available through the DECUS library as EDIT,
TEDIT, was written originally by William H.
Blake of Purdue University. Enhancements were

Proceedings of the Digital Equipment Computer Users Society 563

added by Brian Nelson of the University of

Toledo, and Rick Catron of ASU to make the version
of TEDIT currently used at ASU. The remainder

of this discussion describes ASU's TEDIT.

Signing On

TEDIT is easy to enter when creating a file for the
first time. In the example below the user response
is underlined:

TEDIT

Tedit Version 6.5
Filename? LABl.FOR
Creating file LAB1.FOR
*

When a previously created file is to be edited,
the signon procedure is identical except that the
output line '"Creating file..." becomes "Editing
file...". Thus the student always knows whether
the filename given previously exists or not.

This feature was added at ASU. The asterisk (%)
indicates TEDIT is ready for commands.

Command Overview

TEDIT has seven commands that allow the user to
accomplish any editing task. They are: INSERT,
LIST, DELETE, SEARCH, CHANGE, REPLACE, and END.
Some of the commands may be combined to imitate
more sophisticated manipulations typical of
larger editors. These features will be discussed
later. Use of TEDIT commands is illustrated in
Figure 1.

All TEDIT commands have the same general format to
lessen the confusion:

command name lines/filename

For example:

LIST 10
DELETE 7,9
INSERT 20/NEW.DAT

Command names may be the complete name or a one
letter abbreviation which is the first letter of
the command name, e.g. I for INSERT, L for LIST,
etc. The minimal form of the command allowed

is just a command name or abbreviation. The lines

San Francisco — November 1978

and filename field are optional depending on the
intended use.

Line Numbers

TEDIT line numbers may be specified in 3 ways:

a) (blank) no line number given
b) n a single line
c) n,m a group of lines

Format a) assumes all lines or the entire file.
Format b) allows one line to be referenced, and
Format c¢) an inclusive range of lines beginning
with "n" and ending with '"m". Line numbers
cannot exceed the file's range with one exception.
The user may append lines to the end of a file by
specifying a line number one greater than the
last line. 1In addition, the letter 'L' may be used
to represent the last line number of the file,
which prevents the user from giving an out~of-
range line number and receiving an error, as in:

LIST 25,L

Both the last line plus one and 'L' specifications
are enhancements to the original version. TUse
of the filename field will be discussed later.

Editing Modes

TEDIT has two operational modes: command level
(or editing) mode and text insertion. The INSERT
and CHANGE commands automatically put the TEDIT
user in text insertion mode (see Figure 1). TEDIT
provides line numbers as each line is entered,
however, the line numbers do not remain with the
file upon exit from TEDIT.

Positioning

TEDIT has no pointer to reference. It can be
assumed that the user is positioned at the
beginning of the file after each command is
completed. Lines are renumbered immediately after
a command is executed. There is no relative
positioning; absolute line numbers are used to
reach the desired line of text.

Command Functions

Please refer to Figure 1 for examples of command
usage.

INSERT is used to enter new lines of text into the
file. Only the command or abbreviation (I) is
used when first creating text lines. When a line
number is specified in the command, the new text
is inserted before the line specified. After
typing INSERT, TEDIT prints a line number and a
greater than character (), referred to hereafter
as a "prompt" character, and waits for the input
line to be typed. TEDIT continues to solicit

new lines by printing line numbers in sequential
order followed by a prompt character. The process
is terminated by a Control/Z. Note the Control/Z
character is not entered in the file. Line
renumbering occurs immediately and the user is left
in command mode (*). As mentioned previously,

new lines may be appended to the end of the file
by specifying a line number one greater than

the actual last line number.

LIST allows the contents of the lines specified
to be printed at the terminal unless a filename
is given in the command. The entire file may
be listed by omitting the line number field.
Control/0 is used to terminate the output
prematurely.

DELETE is used to eliminate lines no longer needed
in the file. A user will generally utilize

line numbers with this command. Without line
numbers specified, DELETE will eliminate the entire
file. To prevent accidental destruction, TEDIT
asks the user to confirm this situation with a
"YES" reply. If the file is deleted, TEDIT will
terminate. Lines are renumbered immediately after
selective deletion occurs.

CHANGE provides the TEDIT user with a combination
DELETE and INSERT sequence. The lines specified
are deleted first, then, TEDIT solicits the user
for replacement lines (similar to the INSERT
command). Insertions are terminated by a
Control/Z. Line renumbering occurs immediately
after.

REPLACE is used to replace character strings in
a file with a new string. After receiving the
command, TEDIT responds with "0ld character(s)?".
The user types the characters he wants replaced.
Then TEDIT prints "New character(s)?" and waits
for the replacement string. Each line in which
a replacement occurs is printed.

SEARCH allows the TEDIT user to locate a specific
character string. When the command is typed,

TEDIT prints "Character(s)?" and waits for the user
to supply the target string (including blanks if
needed). The lines containing the matched string
are printed at the terminal unless a filename was
given in the command.

END command terminates TEDIT upon completion of
editing. It is used without the line number and
filename fields. If the file being used was just
created in this edit session, TEDIT is exited
immediately. If a file was created in a previous
session, TEDIT responds with "Output file?". The
user types a carriage return if he wants the
updates to replace the previous text in the file
originally edited. The original input text

may be retained if the user specifies a different
filename to hold the edited text. This is
particularly useful if the user has made a bad
editing error and wants the original text back.
In this case the output file can be deleted. END
should always be used for a normal exit since
TEDIT edits a temporary file and copies the
contents to the user's file when END is used.

Alternate File Usage

The filename portion of TEDIT commands enhances
the capability of TEDIT. Depending upon the
command, the filename given may act as an alternate
input or output file. With the INSERT and CHANGE
commands, it acts as an input file, that is the
contents of the file are inserted into the file
being edited before the line specified. E.g.
INSERT 15/NEW.DAT would insert the contents of
NEW.DAT before line 15. The filename field acts
as an output file with LIST, DELETE, and SEARCH.
No output lines are printed at the terminal when
alternate files are used.

Special Commands

Four specialized commands have been added to the
original version:
?L or ?LAST LINE returns the line number of
the last line of the file
?F or ?FILENAME returns the name of the file
currently being worked on

, "HEADER produces a heading showing
column numbers. No abbrevia-
tions are allowed.

!TIME displays the current time of

day. No abbreviations are
allowed.

The HEADER and TIME commands may be used at
command level "*" or while inserting text.

Simulated Commands

A "move'" and '"ditto" command may be effected by
using pairs of the basic TEDIT commands along with
an alternate file specification. A move is
accomplished, for example, by:

DELETE
INSERT

25,30/MOVE. TXT
50/MOVE.TXT

In the above example lines 25 through 30 were

"moved" to precede line 50 with the aid of an
alternate file. Similarly a "ditto" is performed
by:

LIST 25,30/DITTO.TXT

INSERT 50/DITTO.TXT

In this example lines 25 through 30 were repeated
just before line 50 in the file being edited.

Additional Comments

The following comments pertain to TEDIT usage:

-~ Editing a previously created file is best
accomplished from the bottom up since
line renumbering occurs after a command
is performed.

- Control/Z may be used to return to command
level "*" when in suboption level, e.g.
when TEDIT is requesting character strings
for the SEARCH and REPLACE commands. Also,
Control/Z will return the user to command
level when "Output file?" is solicited by
TEDIT.

- When an input file lacks an extension, TEDIT
searches the user file directory for a file
with the same filename and a null extension.
If a match is not found, the user's directory
is searched from the beginning for a file of
the same name but with a valid source file
extension (APL, B2S, BAS, CBL, CMD, CIL,

DAT, DOC, FOR, FTIN, MAC, SRC, TXT). 1If a
match is found, TEDIT opens the file for edit-
ing. If no match occurs, TEDIT will create

a new file.

565

ASU TEDIT Details

TEDIT was converted to BASIC-PLUS 2 for increased
efficiency. It executes approximately 407% faster
than when it was run under BASIC-PLUS (Personal
Communication Rick Catron). Storage requirements
are about 11K under BASIC-~2. Under BASIC-PLUS
(extend mode) it required about 13K. TEDIT

will handle a maximum of 256 characters per single

line and allows variable line lengths with a maximum

capacity of 246,000 characters.

CONCLUSIONS

TEDIT meets the requirements of an easy to use
student text editor. Its simplicity allows

even novice users to learn it quickly and readily.
Because it is line oriented, the author thinks

it adapts well to the type of usage it receives
at ASU. It is less confusing than character
oriented editors.

The author found the DEC Common Editor was too
complex for student use. Its command formats

and abbreviations are variable; some command
functions are redundant and unclear in absolute
function; and the subcommand level for string
manipulations is far too sophisticated for novices.
The character editor, EDIT, is awkward in handling
buffers and keeping track of "Dot" requires as
much time as the editing session itself.

TEDIT can be utilized in its most elementary form
by means of seven basic commands. Additional
editing power is an optional feature for those
who choose to utilize it. A minimal investment
in time is required.

REFERENCES

1. DEC EDITOR Reference Manual, Digital Equipment
Corporation, Maynard, Mass., 1977.

2. PDP Information Packet, Copyright 1978 Arizona
Board of Regents, Academic Computing Services,
Arizona State University, Tempe.

3. RSTS/E Text Editor Manual, Digital Equipment
Corporation, Maynard, Mass., 1977.

ACKNOWLEDGEMENTS

The author wishes to thank Jim Brodie of ASU for
his helpful ideas and notes in preparing this
manuscript. Thanks also are due to Rick Catron,
formerly of ASU, for information on enhancements
made to TEDIT and to Brian Nelson, University

of Toledo for his contributions to TEDIT. Lastly,
thanks are in order to William Blake of Purdue,
without whom this paper would not have been
presented.

TEDIT

Tedit Ver. 6.5

File name? GETTYS.ADD
Creating file GETTYS.ADD

*1

Type CTRL/Z to stop insertions.
>FOUR SCCORE AND SEVEN

>YEARS AGO OUR PHOREFATHERS
>THIS IS AN EXTRA LINE
>BTROUGHT FORTH ON THIS
>CONTINENT A NEW

>CONCIEVED IN LBIERTY AND
>DEDICATED TO THE PROPOSITION
>"Z

oot W

*END

Ready

TEDIT

Tedit Ver. 6.5

File name? GETTYS.ADD
Editing file GETTYS.ADD

*L

>FOUR SCCORE AND SEVEN

>YEARS AGO OUR PHOREFATHERS
>THIS IS AN EXTRA LINE
>BTROUGHT FORTH ON THIS
>CONTINENT A NEW

>CONCIEVED IN LBIERTY AND
>DEDICATED TO THE PROPOSITION

NouUTe W

*1 8

Type CTRL/Z to stop insertions.
8 >THAT ALL WOMEN ARE CREATED EQUAL
9 >"z

*R 6

0l1d character(s)? bi

New character(s)? ib

*L 6
6 >CONCIEVED IN LBIERTY AND

*R 6

014 character(s)? BI

New character(s)? IB
6 >CONCIEVED IN LIBERTY AND

FIGURE 1.

566

*R6
0l1d character(s)? IE
New character(s)? EI

6 >CONCEIVED IN LIBERTY AND
*C 5
Type CTRL/Z to stop insertions.

5 >continent a new nation”U
CONTINENT A NEW NATION

6 >"2
*
INVALID COMMAND
*R 4
0l1ld character(s)? TR
New character(s)? R

4 >BROUGHT FORTH ON THIS
*D 3
*R 2
0l1d charaCter (s)? PH
New character(s)? F

2 >YEARS AGO OUR FOREFATHERS
*R 1
01d character(s)? CC
New character(s)? C

1 >FOUR SCORE AND SEVEN
*L
>FOUR SCORE AND SEVEN
>YEARS AGO OUR FOREFATHERS
>BROUGHT FORTH ON THIS
>CONTINENT A NEW NATION
>CONCEIVED IN LIBERTY AND
>DEDICATED TO THE PROPOSITION
>THAT ALL WOMEN ARE CREATED EQUAL

NOUT s WN

*S
Character (s)? WOMEN
7 >THAT ALL WOMEN ARE CREATED EQUAL
*R 7
01d character(s)? WO
New character(s)?

7 >THAT ALL MEN ARE CREATED EQUAL

*

R 7
01ld character(s)? MEN
New character (s)? MEN
7 >THAT ALL MEN ARE CREATED EQUAL
*END
Output file?

Ready

PERFORMANCE MEASUREMENT OF TERMINAL-ORIENTED SYSTEMS

Marc A. Dashevsky and Thomas G, Evans
Evans Griffiths and Hart, Inc.
Lexington, Massachusetts

ABSTRACT

Computer system performance measurement can play a number
of useful roles, but to measure the performance of a
terminal-oriented application it is necessary to be able
to apply a terminal input load to a number of lines in a

reproducible way.
for this purpose.

DIALOG is a RSTS/E program developed
Its operation is discussed and some

examples of its use are illustrated.

Computer system performance measurement can play
a number of useful roles. It can aid in "tuning" a
system running a single application or a set of
concurrent applications for improved response time or
throughput. It can be useful in determining hardware
"bottlenecks"” and pointing toward changes in system
configuration to alleviate them., For a software
product, it can provide valuable data as to the
capacity of the product to cope with a specified
workload in a specified operating system/hardware
configuration environment. RSTS/E has a quite useful
set of facilities to aid in the collection of such
performance information, primarily the "monitor
statistics” sysgen option and the corresponding
STATUS utility for exhibiting the data thus collected
in a convenient form, A useful introduction to these
facilities 1s contained in an article on performance
evaluation by Rich Marino in the RSTS-11 SIG
Newsletter (vol. 5, No, 3) for May, 1978. RSX-11M
has no such facilities available as part of the
operating system, but there exists at least one
“task accounting package” (ACCLOG, DECUS 11-329),
which runs under RSX-11M and permits gathering at
least a subset of the performance information
available from RSTS/E,

Given these tools (and a great deal of care,
patience, and cross-checking; interpretation of
performance statistics can be a quite tricky task)
what else is necessary to put an application through
its paces in a controlled, reproducible way? Since
many applications tend to be terminal oriented, we
must have a convenient means of placing a specified
terminal input load on a system. A number of .
facilities to permit such terminal input simulation
have been developed for various computers and
operating systems., For example, the SCRIPT program
(part of the User Environment Test Package included
on the RSTS/E V6C kit) is a facility for controlling
programs through simulated terminal input contained
in a sort of command file, or "script", and fed to
the program being controlled via the RSTS/E
pseudo-keyboard facility,

Our requirement, however, was for a mechanism by
which one system could be used to simulate terminal
input on a number of lines into another system on
which only the application of interest is running, so
that clear-cut performance results could be obtained,
What follows is a description of a program called
DIAIOG which was developed for this purpose and some
examples of performance results obtained with it.,

Proceedings of the Digital Equipment Computer Users Society

DIALOG is a BASIC-PLUS program which uses the
multiple-terminal feature of the RSTS/E terminal
service to put characters onto output lines which are
plugged into terminal ports on the system to be
driven, and to receive as input on those lines the
terminal outputs of that system. The specification
of the characters to be sent out over the lines being
controlled by DIALOG and those that are expected to
be received is contained in "DIALOG text files"
(.DIF), one for each line, (Note: the driving
system and driven system may be the same. This may
often be useful for test purposes, though it is
normally quite difficult to disentangle the
performance to be measured from the other activity on
the system.)

DIALOG starts by looking at a specified "DIALOG
control file" (,DCF) which indicates which lines
(i.e. keyboard numbers on the driving system) are to
be used, the name of the ,DIF file to use for each,
and an average input rate (in characters/second)
which DIALOG should attempt to maintain for that
line., A ,DTF file consists of commands indicating
what text and control characters are to be sent on
its associated line by DIALOG, intermixed, as
desired, with commands specifying that DIALOG should
stall execution of the commands in the ,DTF file at
the current point until a specified pattern is found
in the character stream that DIALOG is receiving on
that line. This provides a means of synchronizing as
required the execution of DIALOG and the program or
programs being driven, There are also facilities for
specifying both "overlapped" and "non-overlapped"
delays, simulating several kinds of "user think
time", though these delays are not used in the
performance measurement experiments described below,
The .DTF files may also contain repeat and go-to
commands as well as commands turning on or off
writing to a log file kept by DIALOG, Since a single
DIALOG job uses one I/O channel for multi-terminal
access, and another channel for both the ,DCF file
and the log file, this leaves up to ten channels on
which ,DTF files may be open, So, although DIALOG
could conceivably control as many as 127 lines (the
RSTS/E terminal 1limit), there is still a limit of ten
unique "dialogues" that may be carried on over these
lines. It is also possible to specify "begin" and
"end" ,DIF-type command files to DIALOG to be
executed before and after the test run specified in
the ,DCF file and its associated ,DTF files., This
makes it possible to execute, say, SYSTAT or STATUS
on the system being driven.

San Francisco — November 1978

DIALOG has a variety of uses; the first version
was developed at EGH to simulate an input load to a
system from a customer's special-purpose terminals,
More recently we have been using the current version
to place an input load on KDSS, EGH's key-to-disk
data entry software package, which exists in both
RSTS/E and RSX-11M versions, and expect to put it to
a variety of other uses., At the time of writing, we
have done a number of experiments in driving KDSS
under various terminal input loads on an 11/35
running RSTS/E or RSX-11M, DIALOG itself, as we have
noted, runs on RSTS/E but there is, of course, no
reason why the system being driven needs to be a
RSTS/E one or even a PDP-11 as long as port-to-port
connection is possible (by, say, a null modem
connecting two EIA ports).

Performance measurements with DIALOG on KDSS are
of interest to us for several reasons, First, it
places us in a position to respond to performance
inquiries with reliable data which is virtually
impossible to obtain in any other way. GCustomer
experience with KDSS performance is difficult to
extrapolate to new situations because so many things
vary, not least because KDSS is normally running
concurrently with one or more customer-written
applications with which we are unfamiliar. Second, a
range of performance experiments permits us to vary a
number of parameters and examine their effect,
information that gives us a better feel for the
performance costs and benefits of various ways of
using KDSS, For example we conducted an experiment
entering a number of records with a particular data
entry format, following this with the same experiment
modified only by removing from that format all the
prompting text it normally displays, in order to
determine by how much CPU load and disk accesses to
the format library would diminish, In this case it
turned out to be substantial, on the order of a 25%
saving in both, which is the kind of information
helpful to a KDSS user making the tradeoffs involved
in format design.

A typical run from our experiments with KDSS
under RSTS/E using DIALOG consists of (apart from
setup of the system-to-system connections and other
preliminary details) starting up the necessary jobs,
getting a SYSTAT report, getting a STATUS report
(itself of no special interest), executing the KDSS
experiment specified in the DIALOG control files
(e.g., simulating operators at four terminals, each
entering a 50-record batch using a specified format
and entering specified data into its fields), getting
another STATUS report from the STATUS job which has
been sleeping since the last one, getting another
SYSTAT report, and getting KDSS's own batch status
report, operator statistics report and log. The
printout of these reports forms rather complete
documentation of the run., The most informative
portion of this data is normally the second STATUS
report which provides information on CPU and disk
usage, among other things, in the system being driven
over the interval since the initial report from
STATUS, During this period we insure that only KDSS
is running so that we get "pure" performance numbers,

The procedure used under RSX-11M is similar to
that just described for RSTS/E, ACCLOG is started
and provided with the names of the tasks about which
it is to collect statistics (i.e. the KDSS data entry
task(s) and the KDSS file handler FILTSK), These
tasks are run and data entry is begun. When data
entry is completed, the tasks are terminated and

568

ACCLOG is shut down by running ACCOFF, The file
which contains the statistics accumulated by ACCLOG
is printed, along with the KDSS batch status report,
operator statistics report, and log.

Since, among other things, we want to compare
the performance of the RSTS/E and RSX-11M
implementations of KDSS it must be determined
whether the two different methods of gathering
performance statistics are indeed comparable., Both
STATUS and ACCLOG report what percentage of the time
interval being measured is spent by the CPU (1)
executing monitor code, (2) executing user code, and
(3) in an idle state (STATUS also breaks down the
monitor usage into further categories), STATUS
reports the frequency of disk accesses over this
interval, Although ACCLOG does not report disk
accesses, it collects the number of QIO's issued by
each task being monitored., Since STATUS and ACCLOG
both gather CPU usage information at each clock tick,
it appeared likely that this information would allow
valid comparisons. This was confirmed to our
satisfaction when similar statistics were obtained
by both methods after running identical CPU-bound
test programs under the two operating systems. It
should be noted that information collected only at
clock ticks has the potential for being misleading
when applied to jobs/tasks which get into or out of
synchronization with the clock in some manner.
Cross-checking results of experiments under various
conditions for consistency is recommended before
placing too much confidence in the results of any
single run., That said, we'll conclude with results
of two representative runs which are consistent with
a set of other experiments under varied conditions.

The machine being driven is a PDP-11/35 with
120KW of memory, RKO5 disks, and a DH11 terminal
multiplexer. It runs unmodified RSTS/E V6C, DIALOG
was run on an adjacent PDP-11/40, also with DH11,
and also running RSTS/E V6C. The experiment was a
simulation of eight operators simultaneously
entering 100-record batches (all eight terminals
being handled by one KDSS job) using a data entry
format called EXAMPL, each typing in excess of
12,000 keystrokes/hour, a quite respectable data
entry rate, We consider EXAMPL representative in
terms of prompting text, field edits, etc., and in
fact include it in the KDSS kit as a sample format.
Standard KDSS version 3 was used. The only "tuning"
steps taken were making sure the KDSS batch and
format files on the 11/35 were contiguous and
increasing the output buffer chain limit on the
11/35 for each of the eight lines being driven to 24
to avoid output stalls ("TT state") by the KDSS job,
The lines were set to 9600 baud out from the 11/35
and 110 baud in to it in order to space the arrival
of characters as much like a typing rate as
possible, Briefly, the results shown by STATUS for
the run suggest that even with the relatively slow
RKO5's on the 11/35 the process would run out of CPU
capacity before disk capacity; only 2.3 disk
accesses/second were taking place during the run,
Under other circumstances, however, such as frequent
access by KDSS data entry formats to auxiliary jobs
which do heavy file lookup, this situation could
well be reversed. As for CPU usage, the results
were:

5% User running
21% SYS charged
9% SYS uncharged
0% Lost
65% Idle

100% Total

or, 35% of the CPU time was being consumed, 30% in
the RSTS/E monitor on behalf of the KDSS job
(presumably mostly in input and output processing
associated with the eight terminal lines) and only 5%
of it in execution of code (all in MACRO-11) in the
KDSS job itself, Finally, the average total
character rate over the eight terminals reported by
STATUS for the period of the run was 27.8
characters/second input (simulated typing) and 189.8
characters/second output (echoing of typed input,
prompting text, cursor positioning, etc.).

The above simulation was repeated with DIALOG
driving the same configuration running RSX-11M. The
experimental conditions were identical to those of
the RSTS/E simulation with three exceptions. First,
the RSX-11M operating system used was standard
version 3.1 except that a set of modifications
contained in the RSX-11M KDSS kit were incorporated
into it at sysgen time, principally to permit
buffering of type-ahead, an essential for high-speed
data entry. Second, the notion of a monitor output
buffer chain quota does not apply to RSX-11M, but
since KDSS under RSX-11M handles its own terminal
output buffering, the KDSS task's own buffer pool was
set to a sufficiently large value (60 128-byte
segments) to insure against output stalls, Third,
ACCILOG rather than STATUS, was the performance
measuring process monitoring system activity. CPU-
usage results were as follows:

9% User time
30% Exec time
61% Null time

100% Total

Comparing these figures with those from the previous
experiment it can be seen that overall CPU usage
increased from 35% to 39% while user-mode CPU usage
increased from 5% to 9%. The latter increase is not
surprising considering that under RSX-11M the KDSS
task is performing extensive terminal buffer
management, especially on output, that under RSTS/E
is handled in the monitor's terminal service. It is
perhaps surprising, in view of this shift of
responsibility, that we did not see some corresponding
decrease in exec time,

These results should not be interpreted as a
direct comparison of the performance of RSTS/E and
RSX-11M, While data entry to KDSS under the two
operating systems looks functionally identical to an
operator and while much of the code being executed is
identical, it was necessary to do a number of things
differently because of differences in facilities
provided by the two operating systems, so what is
being compared is the performance of two functionally
identical programs, each implemented with efficiency
under its host operating system in mind, rather than
the performance of two internally identical programs
under the two systems.

569

RSTS/E APPLICATION LIBRARY:

CONCEPTS IN

STRUCTURE AND CONTENT

J. A, Hayes, Academic Coordinator
Computer Center
California State University, Northridge
Northridge, California

ABSTRACT

California State University, Northridge Computer Center sup-

ports nearly 5,000 RSTS/E users each term.

There are two

kinds of users, those who write elementary to intermediate
level programs and those who make use of prewritten applica-

tion library programs.

For these library program users,

there are a number of ways their interaction with the RSTS/E

application library is made easy to use.

For the RSTS/E 1lib-

rarian there are formal library procedures and a unique "lib-
rary system" of programs to assist in library management.

INTRODUCTION

The focus of this presentation will examine some
unique concepts in both structure and content of the
RSTS/E program library:

1. The Use of a CCL LIB to Access Programs - To
eliminate users from having to know the location
of the programs, i.e., the PPN's of the file
names.

2. The Concept of a Library System - A group of
programs to provide library maintenance, user
information programs (the on-line INDEX and
SAMPLE EXECUTIONS) and library statistics.

3. Library Procedures - Formal library procedures
to "keep track" of activity via logs and program
history books.

4, The Content of the Library - High quality, user-
proof programs provided by stringent, user-
oriented Timesharing Library Program Standards
and thorough testing procedures.

These concepts are applicable and transportable to
different sites, both educational and commercial,

HISTORY

The California State University, Northridge Computer
Center academic support staff has had more than 10
years experience with application libraries used by
non-programming users. With a background in 2 time-
sharing systems (GE 435 TIMESHARING, dual CDC 3170
ITS TIMESHARING) and one batch (CDC 3170 MASTER)
system where non-programming users have needed to
access 140 to 300 prewritten library programs, we
have, over the years developed well-defined concepts
in structure, procedures and usability of these
libraries.

With the arrival of the PDP 11/45 operating under
RSTS/E in October 1976, we were faced with some
unique problems and unique capabilities for which
we developed solutions unique to the system's cap-
abilities. Concepts in library procedures and
content were directly carried over from the pre-—

Proceedings of the Digital Equipment Computer Users Socisty

571

viously established timesharing systems.

Certain user-provided information, such as a lib-
rary index and sample executions, were put on-line
for enhanced functionality and updating flexibility.

USE OF A CCL LIB TO ACCESS PROGRAMS

The Problem

On previous timesharing systems, library programs
were entirely "independent" from the account number
of where the programs resided. Users did not pre-
viously need to know account numbers of the program
files. It was quite a surprise, of course, to dis-
cover that on RSTS/E the user would have to include
the PPN of the library program name for access.

Background

By the time RSTS/E was installed, nearly all the
programmers from our previous statewide timeshar-
ing system, which was supported on our site, had
been transferred to the central facility to sup-
port both RSTS/E and the incoming new statewide
system, a CDC CYBER 173, 1In all their infinite
wisdom, the central facility had neglected to pro-
cure a support computer for their own staff while
offering to support 19 campus RSTS/E operating
systems and instructional support functions. The
result was that our old friends, our ex-staff mem-
bers used our campus PDP 11/45 RSTS/E system to

do development work on. Work was done in the dark
of night after our campus users were off the mach-
ine. My compliments go to Tom Hohmann who wrote
most of the programs and to Glenn Dollar who did
all the documentation!. Likewise, my compliments
go to members of my own staff, Pat Kleinhammer and
Steven Stepanek, who wrote other modules of this
package. The design and resulting structure was
done by the high volume, highly vocal, long argu-
mentative method. The results have produced a
stable, well-written, excellently documented pack-
age that runs through several versions of RSTS/E
(V5C, V6A, V6B and V6C).

The Solution

The prime objective was to make life easy for the

San Francisco — Novernber 1978

non-programming user. The application library sys-
tem for RSTS/E was designed and implemented to allow
users to access the programs in the application lib-
rary by name, eliminating the need for the user to
know the location or PPN where the program resides,
To run a program the user merely types the CCL LIB
followed by the program name he wishes to access.

THE CONCEPT OF A LIBRARY SYSTEM

The secondary objective was to make life easier for
the RSTS/E program librarian. The system of pro-
grams behind the LIB CCL:

. Provides the linking mechanism from the time
the user types "LIB program-name'" to the execu-
tion of the program.

. Provides library maintenance functions such as
adding, changing and deleting of library pro-
grams.

. Provides a library utilization program to col-
lect statistics on program usage.

. Provides an on-line index of library programs
and sample executions of any or all programs
for the user.

The library system consists of four programs,
LIBRUN, LIBMAN, LIBIND, and LIBRPT and one or more
data files. LIBPRG.DIR, is a directory to the
application library and LIBIND.BLK is the index
block used by LIBIND. LIBPRG.DIR contains the Call
Name and a Chain specification for programs in the
library and information used by the index program,
LIBIND.

LIBRUN - The Linking Program

The LIBRUN program is called by the "LIB" CCL and
performs the following functions:

1. Compares the program name entered by the user
with the Call Name entries in LIBPRG.DIR.

2. Upon finding a match collects the appropriate
statistics, if the statistics option is enabled,
and

3. Chains to the program requested by the user.

Statistics, if enabled, are collected into a data
file, LIBDAT.ymm, where y = last digit of the year
and mm = a 2 digit numerical month. LIBRUN auto-
matically creates this file at the beginning of
every month., The file is pre-extended to 40 blocks
allowing for 1209 entries. When LIBRUN normally
records statistics, LIBDAT.ymm is opened in update
mode, If LIBDAT,ymm is full, the file is opened in
non-update mode and is extended 10 blocks. The
statistics consist of an entry for each call to the
library containing the program name, the date ac-
cessed, the time accessed, and the PPN of the cal-
ler.

To simplify the design of account independent pro-

grams LIBRUN puts the Chain specification into core
common in a fixed format., This allows a program to
retrieve the PPN and filename of needed data files

or overlays.

LIBMAN - The Library Maintenance Program

LIBMAN, the library maintenance program, allows the
librarian to make modifications to LIBPRG.DIR.
LIBMAN in no way affects the existance of the
actual application program. LIBMAN creates a tem—
porary file, LIBPRG.VRL which is deleted by the
EXIT function. All modifications are made to the
temporary file. All input may be abbreviated to
the first three characters. The following commands
are available:

ADD

Allows the librarian to add a Call Name and an
associated Chain specification to LIBPRG,DIR.

The ADD function asks for a Call Name '"CALL?" and
a Chain specification "CHAIN?", The librarian
should respond with the name used to call the
program, maximum of 6 RAD50 characters, and the
location of the program in the format of a legal
file specification. The program then asks for
Category, Language and Abstract Input File,

The Legal Categories are:

BIOLOGICAL SCIENCES
BUSINESS

CHEMISTRY

DEMOS AND GAMES
EDUCATIONAL APPLICATIONS
ENGINEERING AND COMPUTER SCIENCE
MATH AND STATISTICS
PHYSICS

POLITICAL SCIENCE
SCIENCES, OTHER
UTILITIES

The Legal Languages are:

BASIC-PLUS
FORTRAN IV
MACRO

The abstract (short descriptions of the programs)
input file query may be answered with any legal
file specification. A carriage return indicates
the keyboard. If the abstract is input from the
keyboard, it MUST be terminated with a carriage
return and then a Control-Z. An input file must
be in ASCII format, The maximum length of an
abstract is 498 characters including carriage
returns and line feeds.

An entry CANNOT be added unless ALL the informa-
tion is entered.

CHANGE

Allows the librarian to change a Call Name or
associated Chain specification. The CHANGE
function asks for ''Call Name?" to which the user
responds with the current Call Name he wishes to
change.

CHANGE then requests the following input:

CALL: <call name>?
CHAIN: <file spec>?
CATEGORY: <category>?
LANGUAGE: <language>?
ABSTRACT: <abstract>?

ABSTRACT OK?

The librarian may change any parameter by typing

the new parameter or leave the parameter "as is" by
entering a carriage return., If the librarian an-
swers NO to the "ABSTRACT OK?" query, the program
asks for "ABSTRACT INPUT FILE?"

An entry CANNOT be changed unless ALL information
is entered.

DELETE

Allows the librarian to delete an entry from
LIBPRG.DIR., DELETE asks for a "Call name to
delete?" After the user responds with the program
name to be deleted, DELETE repeats the Call Name
and the Chain specification and then asks 'Delete?"
to which the librarian must respond Yes or No.
DELETE removes the entry from LIBPRG.DIR and nulls
the entry in LIBIND.BLK.

EXIT

Sorts the entries in LIBPRG.DIR alphabetically by
Call Name, updates LIBPRG.DIR, deletes LIBPRG.VRL
and then exits LIBMAN., EXIT reports the number of
ADDs, CHANGEs, DELETEs, and total number of entries
in the library directory.

HELP
Lists legal functionms.
LIST

Allows the librarian to obtain a list of all Call
Names and associated Chain specifications in
LIBPRG.DIR. LIST asks "OUTPUT TO?" to which the
user can enter any legal file specification. A
carriage return in response to the query indicates
the user's terminal. LIST also reports installa-
tion date, language, and category.

LIBIND -~ The Library INDEX Program

LIBIND, a library index program, allows users to
selectively retrieve information about programs
available on the application library. The user sees
this program by the name INDEX. The "FUNCTION"
query allows the user to specify the method by which
the library information is retrievd. The second
query allows the user to specify a program name,
category name, language name, retrieval date, or out=-
put filename. An optional switch may be appended to
the second response to specify what information to
print; the default is /S (S for Short). A carriage
return in response to any question will return the
legal responses.

Legal Functions (only the first three characters are
necessary):

CATEGORY

Lists programs by their category (i.e. Business,
Math, etc.). The keyword "ALL" retrieves all pro-
grams, Switches are available,

DATE

Allows selection of programs by library entry date.
User inputs the date in RSTS/E format; DD-MMM-YY,
where '"DD" is the day, '"MMM" is the first three
characters of the month, and "YY" is the last two
digits of the year (i.e. 21-JUN-76). The DATE

573

function is used in conjunction with any other
function and is in effect for the NEXT FUNCTION
ONLY.

EXECUTIONS

Allows printing of a sample execution for a pro-
gram on the library. Switches cannot be used by
non-privileged users. Sample executions are taken
from the supplied files ??????,EXE which must re-
side in the same account as the associated pro-
gram., An undocumented (see the Program listing)
switch enables the librarian to print all sample
executions at the printer. These can be made
available to users as a reference document and
will save valuable connect time.

EXIT
Exits the program,
HELP
Prints program instructions.
LANGUAGE
Lists programs by their language (i.e. BASIC-PLUS
FORTRAN, etc.). The keyword "ALL" retrieves all

programs. Switches can be used.

NAME

Lists programs by their library name. The key-
word "ALL" retrieves all programs. Switches are
available,

OUTPUT

Directs the output for the NEXT function to a
file., The file specification cannot contain a
device or PPN, The OUTPUT function is used in
conjunction with any other function and is in
effect for the NEXT FUNCTION ONLY. A Control-C
will redirect output to the keyboard.

LEGAL SWITCHES

/N Name: Lists only the program name or
names.

/S Short List: Lists program name, language, and
category.

/L Long List: Lists program name, language, date,
category, and abstract.

LIBRPT - The Library Utilization Program

LIBRPT, a library utilization program, produces a
six month report of library usage statistics.
LIBRPT asks for the starting month and year for the
6 month report. If a carriage return is entered
then a 6 month report for the current half-year is
generated. The program also asks "OUTPUT REPORT
TO?" which requires any legal file specification in
response, A carriage return indicates the librari-
an's terminal.

The generated report is alphabetical by program
name and contains the number of calls for each of
the six months and the last access date for each
program., Also included is the total number of calls

for each month and a grand total. The program is
also capable of reporting the number of calls by
internal accounts if all internal accounts are less
than a specific Project number and the variable "P7%"
is changed on line 113 of LIBRPT to indicate the
first non-internal account,

Library Installation Instructions

LIBRUN is called by the CCL "LIB" and therefore must
be installed, in compilied form, in [1,2] with a pro-
tection code of 232, LIBMAN, LIBRPT, and LIBIND
should be installed in [3,0]. LIBMAN will also
create the data files in [3,0], where they are expec-
ted by LIBRUN and LIBIND.

The installation account or location of the data
files can be changed by program modification. The
statistics option is disabled upon delivery and re-
quires a program change to enable., Changeable par-
ameters are initialized and documented in the begin-
ning of the programs. All programs must be consis-—
tent with respect to location of programs and data
files.

If an installation does not wish to use the system,
wishes to change the location of any program (lib-
rary system or application program), or does not wish
to install ALL programs then a new library directory
and index block must be created using LIBMAN, The
abstract files are needed for this reason only and
are NOT needed by the system for any other reason.

The RSTS/E LIBRARY is designed to use the following
accounts:

ACCOUNT PURPOSE

3,0 LIBRARIAN'S ACCOUNT
3,238 COSAP

3,239 SCIENCE

3,240 DEMOS AND TUTORS
3,241 BIOLOGY

3,242 SOCIAL SCIENCES
3,243 MATHEMATICS

3,244 EDUCATIONAL APPLICATIONS
3,245 BUSINESS

3,246 ENGINEERING

3,248 CHEMISTRY

3,249 PHYSICS

These accounts must be created before the library is
installed. The program and sample execution files
must be installed in the same account.

LIBRARY PROCEDURES

Apart from the library system of programs, the 1lib-
rarian has formal documented procedures2 to assist
him with library maintenance., These aids help him
"keep track" of what's going on. The formalization
of library procedures has been a result of dealing
with the management of large (140 to 300 numbers of
programs on both previous timesharing systems and
batch systems. With a small number of library pro-
grams this kind of structure may not be necessary.
The intent is to document all activities having to
do with an application library.

Library Program Activity Log Procedures

Whenever anything is done to a program (addition,
modification, or deletion) in the RSTS/E Application

574

Library the following entries are made in the Lib-
rary Program Activity Log:

. Date

. Program name

. PPN of program

. Name of person performing the activity

Similar entries are made in the RSTS/E Application
Program History Book.

Program History Book Procedures

The purpose of the Program History Book is to supply
detailed information about each program and to re-
cord detailed activities with each program. There
are two different kinds of information sheets for
each program:

. Program History Data Sheet

This detailed history of the program and its
characteristics is filled out when installing a
new program. Information on the History Data
Sheet includes:

. Program name
. Entry date
. Program description
. Characteristics:
. Source Language
. Program category
. Number of source statements
. Core
. Source of original program
. Original computer and system
. Conversion programmer
. Comments

. Program Update Sheet

Entries on the Program Update Sheet are made
whenever a change is made to a program:

. Date entered into the library
. Documentation change?

. New core

. Source program changes made

. Who entered changes

o Reason for change

. Current PPN

Library Utilization Procedures

On the last day of each month the librarian runs
the LIBRPT program to generate a 6-month utiliza-
tion report reflecting library use for the previous
month and accumulative usage to date.

The LIBRPT program can either be run directly from
the terminal or run via batch using a control file
which can produce an output file and issues a print
request.,

Timesharing Program Testing Procedures

It is the function of the librarian to thoroughly
test all programs being submitted to the library.
His responsibility is to make sure the programs

are user-proof and meet the Timesharing Library
Program Standards3, The objective is to produce a
high quality product that won't need fixing all the
time. This is a particularly high cost and time
consuming activity -~ it may take 50 hours of testing

and program change time., The advantages gained in
making sure you have good working programs by thor-
ough testing are:

. Happy users who know what to expect in the pro-
grams.

. Reduced consulting - very little of our consult-
ing has to do with RSTS/E library programs.

. Reduced program "fixing" activity.

More information on testing procedures will be dis~
cussed in the following section: The Content of the

Library.

Updating Library Source Tapes Procedures

Due to the size of the RSTS/E Application Library,
the program sources are not maintained on the system
disk. As programs are added or modified, the sources
are temporarily stored in the library account where
the compiled files and sample executions are stored.
Periodically, the sources are archived on magnetic
tape for back-up and to reduce disk storage.

Two series of tapes are generated: A complete back-
up of the library accounts containing all program
sources and individual back-up by program categories.
Program sources on the system disk are then deleted.
The complete back-up tape includes the librarian
accounts where there are current activities in prog-
ress (holding areas, testing accounts, DECAL lessons,
and on-line documents) as well as the files for the
library programs themselves including the abstracts
for the Index and Sample Execution file,

Library Program Tape Log Procedures

The Library Program Tape Log provides a tracking
mechanism for the source tapes. Entries include:

. Reel number
. File number
. Tape label description
. Date
Directories are kept with the log.

Summary of Library Procedures

By now, you think we'd run out of procedures., Some
or all of these procedures can be used by a site to
control the library activity. Some of the proce-
dures perhaps are not critical - you can "fly by the
seat of your pants" if you want to. Problems will
arise when someone can't remember if something was
done or when you change librarians, or worse, when
library functions are performed by a number of
people. To see the whole picture, a flowchart sum—
mary of some of the library procedures is presented
(we are assuming that the program has been completely

tested):
START

MAKE ENTRIES INTO
PROGRAM ACITIVTY LOG

575

MAKE ENTRIES INTO PROGRAM HISTORY BOOK
(PROGRAM HISTORY DATA SHEET
AND
PROGRAM .UPDATE SHEET)

MOVE SOURCES AND RELATED FILES TO
APPROPRIATE LIBRARY ACCOUNT

b

COMPILE PROGRAM GENERATING .BAC
OR .SAV FILE

!

MAKE SURE ALL FILES HAVE
PROPER PROTECTIUN CODES

TEST PROGRAM AGAIN TO VERIFY
THAT IT STILL WORKS PROPERLY

CREATE INDEX ABSTRACT (.ABS) FILE
IN [3, 51] WITH PROTECTION CODE 40

RUN LIBMAN IN [3, 0] TO ENTER THE
PROGRAM INTO LIB AND INDEX DIRECTORIES

CREATE A SAMPLE EXECUTION FILE (.CTL)
IN [3, 102] AND SUBMIT TO BATCH

¥

WHILE STILL IN [3, 102], RUN STRIPPING
PROGRAM TO REFORMAT THE FILE INTO A .EXE
FILE. MOVE .EXE FILE TO ACCOUNT

CONTAINING SOURCE PROGRAM.

!

RUN INDEX TO CHECK ACCURACY OF
PROGRAM ABSTRACT AND SAMPLE EXECUTION

FILE LISTINGS OF ALL PROGRAM SOURCE
AND DOCUMENTATION FILES

!

FILE LISTING OF SAMPLE EXECUTION

REVIEW CONTENT OF "PROGRAM" FOLDER
FOR RELEVANT MATERIAL FILE.

THE CONTENT OF THE LIBRARY

From our point of view, the library programs are not
just any old programs some one wants on the library
nor do we blindly just put programs on that we get
from other sites. Essentially we're very picky about
what goes on the library., Our goal is to provide
high quality, good, user-proof programs that our
users can rely upon.

Program Acceptance

The factors we consider before accepting a program
for the library include:

. Predicted usage

. Will the program be used in a class?
. What is the potential number of users?

. Support

. Is this a program we want to support?
. Is the program submitter willing to offer
support assistance?

. Standards
. Can this program be brought up to Time-
sharing Library Program Standards?
. Is the person submitting the program willing

to bring the program "up to standards"?

Timesharing Library Program Standards

The document "Timesharing Library Program Standards'
3442546 i3 a crucial key to the quality of the indi-
vidual programs that make up the content of the 1lib-
rary. The standards were designed with the user in
mind, These are not internal programming standards
although we are now encouraging our programmers and
users to abide by the DEC BASIC-PLUS Software
Conventions®., Our user-oriented standards define
what the user sees, the format of the program and how
the program helps the user respond with the correct
input information.

The structure of "Timesharing Library Program
Standards'" first presents standards concepts follow-
ed by system (and language) coding specifics. The
primary topics include:

. Justification for inclusion in the timesharing
library
« Documentation
. Program name (header format)
. Program description
. Self-contained program instructions
. Separate documentation
. Specifications
. Sample data and sample execution
. Programming conventions
. Remarks
. Credits
. ANSTI standards
. Requests for user responses
. Syntax
. Form
. Checking the user's responses
. Repeating boundary conditions or valid
responses
. Data entry from file to terminal, formatted
or free format)

576

. File handling
. Preferred form of I/0 statements
. Program interrupt processing

. Program structure suggestions

. Program submissions procedures

Program Testing Procedures

It's not enough for a programmer to say the program
is "up to standards". We've come to know better.
The programmer's intent is good, but the thorough-
ness is lacking. The program librarian is respon-
sible for complete checkout and testing. Sometimes
very special student assistants are "trained" as
program testers., This alleviates most of very time
consuming ''start-up'" testing from the librarian and
gives these student-assistants some very valuable
human engineering program experience. It's one
thing to write a program, and it's another thing

to know how to thoroughly test it. Although pro-
gram testers are used, the program librarian usu-
ally runs a complete test 2 or 3 times also. (Just
checking.)

While the "Timesharing Library Program Standards" is
the primary document a program is tested against,
having student-assistant program testers meant that
we eventually developed a document "Timesharing
Program Testing Procedures'". This is a "check off"

list that the librarian uses when reviewing the hard
copy of a program execution from a tester.

Library Content

So what's in our library? Currently there are 140
programs in the following categories:

. Biological Sciences

. Business

. Chemistry

. Educational Applications

. Engineering and Computer Science
. Math and Statistics

. Physics

. Political Science

. Other Sciences

. Utilities

Besides the very useful INDEX program which provides
our users with a list and description of the 1ib-
rary programs, there is another very special util-
ity program. This program is called DOCUME“”® and
allows users to select on-line publications to be
printed either at the terminal/printer or on the
system line printer. (During peak usage periods
this program is disabled and is used only by in-
house staff, Hard copies of these publications are
available during these times.)10

Some programs have come from our users and faculty,
but most of them have been converted from our pre-
vious timesharing systems. These programs have
come from Dartmouth, the Huntington I and II pro-
jects, the DELTA project, from DEC, from DECUS and
from other sites.

CONCULSION

This paper, "RSTS/E APPLICATION LIBRARY: CONCEPTS
IN STRUCTURE AND CONTENT" has presented many ideas
and helpful hints to managing a timesharing applica-
tion library. Some concepts are peculiar to an
educational environment but most of the concepts can

be transported to both educational and commercial
sites. The use of a CCL LIB and the library system
of programs can be very convenient and useful. Lib-
rary procedures, even with their formality and forms,
can provide you with a well-managed library. Program
standards and testing procedures can enable you to
produce good software products regardless of the
application.

References

1. Dollar, Glenn and Academic Applications, RSTS/E
LIBRARY SYSTEM, The Division of Information
Systems, California State University and
Colleges, and Computer Center, California State
University, Northridge, revised July 1978.

2. Stepanek, Steven, RSTS/E APPLICATION LIBRARY
SUPPORT, Computer Center, California State
University, Northridge, July 1977.

3. Dollar, Glenn; Hohmann, Tom; Hayes, J. A.;
TIMESHARING LIBRARY PROGRAM STANDARDS, Statewide
Timesharing Data Center, California State
University, Northridge.

4. Hayes, J. A., USER—ORTENTED PUBLICATIONS: ON
RSTS/E AND FOR RSTS/E, Fall 1977 DECUS Symposium.

5. Hayes, J. A., USER-ACCESSIBLE PUBLICATIONS: HELP

YOUR RSTS/E USER HELP HIMSELF, Spring 1978 DECUS
Symposium,

6. Stepanek, Steven, PROGRAMMING STANDARDS; DO THEY
REALLY HELP THE USER?, Computer Center, Califor-
nia State University, Northridge, Fall 1977 DECUS
Symposium,

7. Hayes, J. A., HOW TO USE RSTS/E: A USER-ORIENTED

TRAINING PACKAGE, Fall 1977 DECUS Symposium.

8. Hayes, J. A., HOW TO USE RSTS/E: HELP FOR THE
USER, Spring 1978 DECUS Symposium,

9. BASIC-PLUS SOFTWARE CONVENTIONS, Digital Equip~
ment Corporation.

10. Hayes, J. A., HOW TO PRODUCE AND DEVELOP YOUR OWN

RSTS/E PUBLICATIONS, Fall 1978 DECUS Symposium.

577

HOW TO PRODUCE AND DEVELOP YOUR OWN
RSTS/E PUBLICATIONS

J. A. Hayes, Academic Coordinator
Computer Center
California State University, Northridge
Northridge, California

ABSTRACT

The California State University, Northridge Computer
Center has become well-known for both the quantity and

quality of user-oriented RSTS/E publications.

Educa-

tional and commercial sites have expressed strong in-
terest in the development and production of documen-

tation for users.

This paper will describe the "how

to's" involved in the production and development of
readily-accessible, inexpensive publications.

The topics will cover:

1. Determining whether publications are needed.

2. Evaluation of cost-effectiveness.

3. Determining what publications should be developed.

4, Development vs. procurement from other sites.

5. Development of site-specific vs. transportable

publications.

6. On-line publications vs. hardcopy publications.

7. Publication plans and production schedules.
INTRODUCTION

In the past ten years, the user population of the
California State University, Northridge computer
systems has grown from a few hundred users to well
over 12,000 users per semester. The staff size has
grown from 3 members to 6 full time staff who sup-
port these users in a multi-system environment.
While there is a crew of 6 to 14 part time student
assistants to assist in consulting services, there
is no way to provide one-to-one assistance for the
majority of the academic user population.

In order to provide users with the necessary infor-
mation to use the four major computing systems, the
academic support staff writes, compiles and produces
a large number of publications to "help the user
help himself", Although vendor documentation is
readily accessible via free microfiched manuals

and reference copies3“%, the needs of the users
have dictated the development of special user-
oriented publications. Many of these are special-
ly developed for the novice user. Some publica-
tions are designed as supplemental documents and
still others provide otherwise undocumented infor-
mation.

Of the 12,000 computer users in this university
environment, approximately 5,000 are RSTS/E users.
When the PDP 11/45 RSTS/E system was installed in
October 1976 a simplistic, user-oriented publica-
tion, "How To Use RSTS/E Timesharing" was quickly
developed and provided free of charge to first-
time RSTS/E users. Within 3 weeks a "BASIC-PLUS"
Instant was out of production. Knowing what the
users needed and expected was determined from
having experience with 2 previous timesharing
systems.

Proceedings of the Digital Equipment Computer Users Society 579

Whenever a site, whether commercial or acadenic,
installs a new computer all the problems of learn-
ing about the new system are there again. In com-
mercial sites or small academic sites, programmers
and sophisticated users can supposedly make their
way through the voluminous and expensive vendor
manuals. In larger academic communities with «
high number of novice users each term, the ledar:iing
of basics of the system must be quick and the costs
must be minimized. As the number of new users
grows at a much faster rate than support staff size,
one means of providing these users with information
is small, free or low cost publications designed to
teach them basic functional commands, utilities and
concepts. So where do you start? What do you con-
sider? And how do you do it without extensive
staff and development costs? The remainder of this
paper discusses the answers to these questions.

DETERMINING WHETHER PUBLICATIONS ARE NEEDED

Learning With Only Vendor Manuals

In a conmercial site, with professional prog

you most certainly can buy them all the vendor iwan-
uals and let them dig out what they need tc get
started on the new operating system. Hopefully
professional programmers know what they're looking
for and have a good idea in which kind of manual to
find it in. The considerations involved in this
approach include:

. The cost of the manuals.

Not knowing how many of which manuals to

buy (not all the programmers need all the
manuals).

A lengthy learning curve to determine the
important essentials and basic concepts.

.

San Francisco — November 1978

Small academic sites can use the vendor manual only
approach providing they are dealing with a small num-
ber of users. Small informal sessions can be used
to "get the users started". After that they too

can read the vendor manuals.

Alternative Approaches to Vendor Manuals

In large commercial sites and in large academic en-
vironments, using only vendor manuals becomes a very
large problem. For academic sites some vendors
(DEC and CDC, for example) are willing to negotiate
reproduction rights to manuals applicable to your
operating system.2 Certain very popular manuals,
1ike the BASIC-PLUS Language Manual can be repro-
duced in hardcopy form and sold at greatly reduced
prices in local campus bookstores for student and
faculty users. Alternately, vendor manuals can be
reproduced in microfiche form and can be given away
free or sold at a nominal cost (6¢-25¢) to campus
users.

While both these approaches get the very expensive
manuals into the hands of the users at a relatively
low cost, there are still problems in reaching large
numbers of users. Many faculty members are reluc-
tant to require their students to purchase vendor
manuals as class texts and there is still the cost
of the hardcopy manual ($5.00-$7.00) that produces
a certain amount of reluctancy on the part of a
student. Microfiche, while certainly the lowest
cost method of making manuals available to large
number of users, carries with it the inherent prob-
lem of having microfiche readers available. While
campus libraries have microfiche readers available
and campus computer centers can purchase microfiche
readers for user work areas, many users prefer to
read manuals away from campus. High quality, in-
expensive portable microfiche readers can be pur-
chased for approximately $200 but hand held, small,
even less expensive readers are still in the early
stages of technology. In a few years there will be
high quality, very inexpensive, very compact micro-
fiche readers - and then student users can be ex-
pected to acquire a microfiche reader much as they
do the small calculators today.

When You Need More Than Vendor Manuals

Getting vendor manuals into the hands of the users
in a high turnover environment of academia still
does not solve a very crucial problem: how to get
the user on a system with only the information he
needs to know immediately. This is the decision
point in providing special user-oriented information
that is a "distillation" of the huge amounts of
information found in the many manuals available for
only one operating system. The objective is to
provide the new user with only the information he
needs right away, such as:

. logging on and logging off,

. basic system commands,

. simplistic access methods to the language
processors,

. simple file concepts,

. the simplest form of file manipulation
capability,

. easy access to the application library
programs® and

. any site specific peculiarities.

580

The types of user-oriented publications that pro-

vide this information are the system specific primers,
tutorials, or what we call the "how to use" publica-
tions. At California State University, Northridge

we have "HOW TO USE RSTS/E TIMESHARING" and "HOW TO
USE_RSTS/E EDIT" ("IOW 70 USC RSTS/E EDIT" is now
"AN INTRODUCTION TO TECO™).

Another very popular type of publication are the
pocketsized "instants". Initially we brought up a
quickie titled "BASIC-PLUS INSTANT". Later we de-
veloped a “RSTS/E FORTRAN INSTANT". The "BASIC-PLUS
INSTANT" has now been replaced by the DEC RSTS/E

§DCKQI GUIDE (the RSTS/E documentation people final-
ly got the hint).

Other types or categories of publications can be
provided when the need warrants. In a previous
paper, User-Oriented Publications: On RSTS/E and
For RSTS/E, there is a thorough discussion of:

Auxiliary Publications which provide
supplemental or site specific infor-
mation.

Stand-Alone Documentation which is de-
veloped when there is no readily avail-
able documentation from the vendor or
which provides specific program docu-
mentation.

. Indexes and Sample Executions which
provide users with information on
library programs.

EVALUATION OF COST LFFECTIVENESS

The Cost To Your Support Staff Without Publications

Without small packets of "distilled” information
about the systems, the academic support staff in
medium to large university environments, is faced
with having to repeat the basic information, such
as logging on, access to languages, etc., over and
over again either on a one-to-one basis or in a
seminar context. Each term the users ask the same
questions of the staff. As mentioned earlier, the
user population grows faster than the staff who
must serve them. The cost is a time cost to your
staff. As the number of academic users grow, cer-
tain other academic computer support services are
needed. The staff must be used to support these
new and fast growing service needs leaving less
time for the staff to introduce new users to the
systems. While services such as providing users
with multimedia shows‘“" can alleviate the repe-
titious, time consuming one-to-one or seminar ses-
sions, the users still need something they can
take away and read or something they can reterence
while at a terminal. Small publications "tit the
bill" in this aspect and free your consulting
staff to help students debug their programs, assist
faculty members in course development, and provide
a multitude of other academic services.

The Cost to Your Users

The prime intent of most courses that use the com-
puter as part of their curriculum is not to spend
an excessive amount of time learning how to use a
particular computer system. Courses are designed:

to teach computer concepts in general;

. to teach specific computer languages;

to use the computer as a tool to teach con-
cepts that would require a lot of time if
done by hand or calculator (i.e., statistics,
engineering applications, geographical appli-
cations, etc.); and

to "assist" the instructor in the teaching

of specific topics such as English, numer-
ical analysis, graphics, etc. (CAI).

To this end, the users in an academic community
should not be required to spend the majority of the
term just learning the basics of using an operating
system which might happen if just vendor manuals
were relied upon. The answer to this problem is
again, to provide users with just the information
they need - a small publication, information that
is distilled and written in a way they can under-
stand it quickly. A lot of vendor manuals have im-
proved in their readability, but the size in number
of pages is formidable to the novice or casual user.

The Cost of Producing Publications

Every computer center manager will question the
cost of producing publications for the users. The
most common thing you'll hear is "we're not in the
publishing business". Certainly the cost of pub-
lications must be weighed against the computer
center budget and the personnel time required to
produce good, useable, user-oriented publications.
The objective is to reduce these costs as low as
possible. On the other hand, when the cost of us-
ing staff to train large number of students and
faculty about the computer systems each term be-
comes noticeably high in terms of time and man-
power, it's time to look into alternative means to
provide this service. Other academic support ser-
vices may require more and more time and manpower.

The cost factors that must be considered include:

. Development costs - Writing publications
"from scratch™ or- just bringing together
appropriate materials (i.e., compiling a
publication) requires time and people.

. Typing costs - Once put together, material
must be typed by secretaries, clerical as-
sistants or put on-line by staff or student
assistants.

. Publishing costs - The cost of paper has
increased a great deal in the last few
years and reproduction facilities can be
Timited in some academic environments.

. Management costs - With a few publica-
tions, this is a minimal cost. Managing
larger numbers of publications (10-60)
requires management cost in decision
making, scheduling and planning.

Needless to say, the cost impact of producing your
own publications must be carefully considered. It
is very easy to get in over your head very fast.
Producing publications out of a campus computer
center must be identified as a specific academic
support service and warrants the full support of
the management.

581

DETERMINING WHAT PUBLICATIONS ARE NLEDLD

The Planned Approach

One method of determining what publications are
needed is planning. Evaluate the entire situation
in terms of the cost to the user, the cost impact
to the staff and the budget. The users may desper-
ately need small publications to learn about the
system and the staff may need publications to "keep
the users off their back" but the budget may limit
the whole concept very severely. In this case, be-
gin with only the absolute essentials that can be
produced for the lowest cost to the staff and to
the budget. On the other hand, if the budget is not
a severely limiting factor and/or costs can be re-
covered through sale of small publications, then a
"full blown" set of publications can be determined.

The essential considerations, after cost, are the
needs of the users. Find out what are the most fre-
quent problems or what information is requested most
frequently:

Most users will need to know how to operate
the equipment they will be using, therefore
a modest beginning in producing publications
may be providing terminal or keypunch in-
structions.

.

. After that, the biggest problem may be ac-
cess to the operating system - how to log
on or how to set up JCL cards. In a multi-
system environment, users may be required
to access more than one system per term for
a given class. The solution to this prob-
lem is to provide brief, compact, dis-
tilled information in the form of a primer
or guide publication for the operating sys-
tem. These are the "how to use" publica-
tions.

When your consulting staff gets deluged by
questions on a certain utility or language,
it's time to consider the "instant" form
of a publication. This is usually a re-
sult of too much information in a vendor
manual, poorly written vendor manuals, or
having to cearch through several manuals
on a specific utility or language. In-
stants can be one-pages, folding cards or
pocket size booklets. Sometimes the "how
to use" form may be needed to supplement
the "instant” form. For example, althouyh
there is a TLCO Manual and a TECO Pochet
Guide, an "INTRODUCTION TO TECO" may also
be needed.

When vendor documentation 1+ not yeadily
available (either cost prohibitive or in-
comprehensible) or site specific implemen-
tions differ from vendor manuals, publica-
tions of the "auxiliary or supplementary"
category are warranted. Language textbooks
teach the language but site specific infor-
mation to access the language may be needed
to use it. Certain sites may have special
site specific functions or routines that
are used with vendor software. Auxiliary
publications are required for the users in
this case.

When there is no vendor documentation avail-
able, "stand-alone" publications may be
needed. Application programs (i.e., pre-
written or canned programs) for the non-
programming user require stand-alone docu-
mentation also.

. When a site has a library of application
programs, users need to be informed of what
programs are available. An "Index" of the
library, listing program names and brief
descriptions, solves this problem. Users
may want to see the specific program fea-
tures or see how to run the program - the
category of publication is "Instructions
and Sample Executions". If connect time
is at a premium on your site, these may be
hardcopy documents. These two publication
documents inherently have an updating pro-
blem if the application library has a
medium to high growth rate; in this case
on-line versions may be a more efficient
method. Restrictions built in to programs
where the user accesses either Indexes or
Sample Executions (which may be voluminous)
can allow the user to drop off either on a
terminal or the line printer only program
information that he is interested in.

Invariably user needs may suggest publications that
do not fall into the above categories. What is im-
portant is to determine what is needed and to de-
velop a publication to meet the need.

The Random Approach

The alternative to the "planned" approach is the
random approach. It may just so happen that you
don't consider publications as something that means
you sit down and plan out. Repeated consulting
problems or requests for information may mean that
one day you decide that a small publication would
solve the problem. Perhaps a certain instructor is
giving out erroneous or misleading information and
it looks 1ike a brief publication would solve the
problems for everyone. The random approach is
randomly driven by random needs.

With this approach, computer center managers may
find themselves suddenly "in the publishing busi-
ness". Secretaries may suddenly have entirely new
kinds of things they're typing - for which they
have no experience in doing or that impacts the
normal secretarial typing functions. Current
staff loads may be overburdened by in-house copy-
ing and collating on a mimeograph machine. Or
there may be heavy budgetary demands if publica-
tions are "sent out". Programmers may become
writers and proofreaders instead of providing
other academic services.

The random approach, unfortunately, is how most of
us start. If your installation can accommodate the
impact over a period of time, you'll be lucky. If
you are seeing a detrimental impact on your site
or if you are considering publications as a way of
helping the user for a new system, the planned
approach is recommended.

DEVELOPMENT VS. PROCUREMENT FROM OTHER SITES

Now we get down to the "nitty-gritty" of publica-

582

tion production. The needs have been determined,
the cost-effectiveness has been evaluated, and

which publications are needed have been determined.
We're now at the point of making suggestions for
"how to produce and develop your own RSTS/E publica-
tions" which is the title of this paper. The first
step at this point is to determine whether you do
your own development or whether you use available
materials from other sites.

Developing Your Own

Certainly you know the neceds of your own users and
you know the capabilities of your own staff (the
programmers and the typists). When you consider
developing your own publications whether you "write
them from scratch" or whether you collect materials
and put a publication together, you need to consider
the following factors:

Technical expertise - Do I have staff
programmers with the technical expertise?
Do they know the system? If RSTS/L is a
brand new operating system to your site,
you may have a problem. If your techni-
cians learn fast, you may have less of a
problem, but with a new system you have to
allow for a certain amount of time to de-
termine what are the basics or essentials
that are most needed.

. Writing ability - This is a bigger problem
than you realize if you are just beginning
to get into publications. As we all know,
programmers are known to be notoriously bad
writers. If you are lucky, you have one or
two people who can communicate computer
technical jargon into something user: can
read. If you have time, you can sen: some-
one who has shown some writing ability of7
to be trained. If you don't have time or
money for this, the DEC pocketsize hooklet,
"WRITING FOR THE READER" 1is recommeided.

. Development time - Developing new mcterials
or compiling existing materials recuires
time. Judicious project management should
allow you to fit in publications into staff
projects. If your staff doesn't have time,
consider part-time, student assistants or
contract out the writing of the publications.
Both situations require analysis of content
and a well defined outline to work from.

The advantage to developing your own publications

is that they are custom fit to your installation
needs. You may also find that such publications are
not available from other sites or the vendors, in
which case you do it yoursclf.

The disadvantages are personnel time and cost for

the writing, managing, and analysis. Another im-

portant consideration is quality and effectiveness
of the publication.

Procurement From Other Sites

We're all into "not reinventing the wheel" if we
can possibly do so. In terms of RSTS/E publica-
tions, this means getting materials from another
site that are useable. Procurement of existing

RSTS/E publications is done in the following way:

. Search techniques - Start asking people
what they have. User conferences are a
good place to begin. Ask your local ven-
dor representative for names of educational
sites. Get a list of RSTS/E EDUSIG users
and start writing letters.

. Acquisition - After you find contacts, find
out what they have. Ask if you can have a
copy and if you can reproduce it or extract
from it. If you can get "on-line" copies
of documents they will allow you greater
flexibility in customizing them to your
own site.

Evaluation - After acquisition, review the
document to see if it fits your needs. If
the publication is an extraction from a
vendor manual, proofread it. Make sure
the content is what you want your users to
have.

. Customizing - If necessary, modify the pub-
Tication to suit your installation's needs.
Hardcopy publications may require additions
and deletions. The document may be retyped
or you can do clever "cut and paste" jobs
if the copy was in high quality print.
Photo-ready copies, rather than production
copies may be available. On-line publica-
tions give you a greater degree of flexi-
bility for customizing. With a text
editor or a word processor package (RUNOFF,
RNO), modifications are done easily.

The advantages of using already developed publica-
tions are pretty obvious. You've reduced the de-
velopment time. You're not doing something that's
already been done. Chances are that's it's reason-
ably readable for users and you haven't had to
coerce programmers into being writers. You've
traded these advantages for search and acquisition
time and editing time.

Trading of RSTS/E publications carries with it a
snow-balling effect. In your search for a parti-
cular kind of publication, you may find that the
site you are making inquiries from has a lot of
other items you can use.

DEVELOPMENT OF SITE SPECIFIC
VS. TRANSPORTABLE PUBLICATIONS

This can be a hard decision. Your objective is to
serve your users and to meet their needs. Once you
get into producing user documentation, you'll find
that site specific information has a tendency to
change more rapidly than the standard products pro-
vided by the vendor. For example, in our early
"how to's" we included hours of operation, facili-
ties available and amount of equipment in user
work areas. This information changed each term,

so it was removed from the "how to" publications
(which are relatively stable) and put on a one-
page "Facilities Sheet" that is updated each term.
The general rule is: If certain information
changes frequently, separate it from the technical
information on a system, utility or language pub-
lication. This will save you the cost of updating
"large" publications.

583

When considering site specific content against the
transportability of the publication, remove such
items as terminal operation instructions. With the
large number of new terminals on the market, you'll
probably change terminals before you change com-
puters. In this particular case, individual in-
struction publications for each kind of terminal is
recommended. Instead of revising a large general
user's guide for a system whenever you get new ter-
minals, you simply quit producing one kind of ter-
minal instructions and bring up instructions for
the new terminal. Additionally not all users nay
have access to all the terminals. This way they
only need to have instructions for the terminals
they can access.

ON-LINE PUBLICATIONS VS. HARDCOPY PUBLICATIONS

On-1line publications versus hardcopy publications
will be discussed strictly in terms of advantages
and disadvantages of each. The decision of provid-
ing either or both these methods of production

and accessibility is dependent on a number of

factors.

Hardcopy Publications - Disadvantages

A direct noticeable cost when "sent out"
to be reproduced. Small, Tow volume pub-
lications reproduced "in-house" tend not
to have an impact on the budget.

. Increased numbers of publications and in-
crease in size of publications predict the
eventuality of a publication plan and
scheduling of production.

. Printing of large numbers of copies may
mean an inventory problem.

. Reduced updating flexibility. Wit out
small stand-alone word processing urits or
ability to access on-line publication fi'es,
modifications and changes mean the whole
publication must be retyped to updete it.

. Timeliness of updating. Linked tigatly to
publication inventory and the ease of up-
dating, the timeliness of updating is a
crucial factor. Keep your publications
current and correct.

Hardcopy Publications - Advantages

. Readily available to users - something they
can easily get at and take home with them
(immediate gratification).

Can be available free or sold at a low cost
in the campus bookstore.

Highly recommended for "large" publications
or frequently needed publications.

. Can make use of special typing or typeset-
ting techniques; i.e., bold face lettering,
use of italics or color inks.

. Recommended where large quantities are
needed.

On-Line

Large publications can have heavy stock
cover pages which increase their lifespan.
(Users can be asked to "return" publica-
tions when they are finished with them.)

Printing of large quantities reduce the cost
per publication.

Publications - Disadvantages

On-Line

Large sized publications require lots of
connect time to run off at a terminal. The
way around this is to give the user a choice
to access on-line documents either at the
terminal or via the system line printer.
Terminal access to large documents may be
restricted to certain times of the term or
times of the day.

Impact on the system line printers. DEC
furnished printers do not seem to be de-
signed for high volume usage. Additionally,
other users may want to print large program
files on the printer. Large publications
or those frequently accessed should be made
available in hardcopy form to alleviate
this problem.

Publications - Advantages

Ease and flexibility of updating.

Updating can be done by a programmer or
a trained typist.

More changes, "large" changes, and large
insertions are more easily accommodated
using computer text editors and word pro-
cessing utilities. Small individual word
processing units have limited capacities.
No inventory problem. Copies are available
when needed.

Available to the user while he is at the
terminal.

Can be accessed from a user terminal/
printer or can be printed on the system
line printer.

Timeliness. Because of the ease and flexi-
bility in updating, on-1ine publication can
be changed in a timely manner. For example,
library indexes can be updated when a new
program is installed.5

Recommended particularly for large size,
low volume publications. Certain publica-
tions may only be required by a small num-
ber of users or alternately, the size of
the user body cannot be determined before-
hand.

Can be hardcopied. Once document is de-
veloped on-1ine or modified from another
site, large number of copies can be repro-
duced in hardcopy. Photo-ready copy may be
run out on the system line printer (upper
and lower case capability should be con-
sidered) or special hardcopy, impact print-
er terminals (DTC, Diablo) may be used.

When using the system line printer a new
ribbon and white paper should be used.

When using a printer terminal (not dot
matrix, please), use a new print wheel or
ball with carbon ribbon. Many of these
terminals can be programmed to double print
each character to produce exceptionally fine
photo-ready copies.

PUBLICATION PLANS AND PRODUCTION SCHEDULE

Once you have more than 3 to 5 publications, you're
in the publishing business. If mismanaged, you'll
have irate managers, overburdened secretary-typists,
frustrated programmer-writers and dissatisfied users
to deal with. First, to avoid these problems, the
service of providing publications to users must be
an acknowledged and supported service. Secondly,

a publication plan and production schedule is
needed.

The Publication Plan

Everyone involved in your computer center publica-
tions should get together and lay out a publication
plan. The elements of the plan should consider:

. What publications to produce.
. Frequency of updating.
Frequency of production.
Whether publications are typed or done
on-line.
. Reproduction facilities.
. Size of publications.
Who writes or puts together the publication.
How Tong will the publication be in
existence.
Numbers of copies required for a given time
period.
Inventory storage if large number of copies
are produced.
Distribution and inventory checking.

.

Production Schedule

Once the size of the problem (publications are al-
ways a problem) has been defined, the key people
involved such as the head secretary and the "publi-
cations project leader", can determine a production
schedule. A schedule for the entire year is
recommended.

Scheduling considerations should include the
following:

Publication review - Evaluation of whether
it's still needed, evaluation of content,
check for accuracy of content. If changes
are required, schedule time to do it.
First draft due date for typing.
Proofreading of the first draft.

Second draft due date for typing corrections.
Proofing of second draft.

. Final typing.

. Final proofing.

Schedule reproduction facilities.

CONCLUSTON

It is hoped that the many facetted concept of "how
to produce and develop your own RSTS/E publica-
tions" has been covered in this paper. The recom-

‘mendations, the suggestions and awareness of the
problems have been the result of ten years experi-
ence by the California State University, Northridge
Computer Center.

To provide you with a beginning in your search for
existing RSTS/E publications, this paper concludes
with a 1ist of sites and publications available
either on RSTS/E or for RSTS/E:

1.

Computing Facility
University of California at Irvine
Irvine, California

Publication:
PDP-11 PRIMER, September 1975

Academic Computing Services
Arizona State University
Tempe, Arizona 85281

Publication:
PDP INFORMATION PACKET
ESHARIN DE E-
January 1978

Waters Computing Center
Rose-Hulman Institute of Technology
Terra Haute, Indiana

Publication:
COMPUTING AT ROSE, December 1977

Computer Services

The University of Toledo
2801 West Bancroft Street
Toledo, Ohio 43606

Publication:
TIMESHARING USER GUIDE, January 1978

Computer Center
Central State University
Edmond, Oklahoma

Publication:
COMPUTER CENTER USER'S GUIDE, Aug. 1977

Computer Center
California State Polytechnic University,

Pomona
3801 West Temple Avenue
Pomona, California 91768

Publications:

LOCAL TIMESHARING INSTANT

RSTS/E FORTRAN INSTANT (Publishing and
distribution site)

LOCAL TIMESHARING PROGRAM OPTIMIZATION
GUIDE FOR BASIC-PLUS

TELERAY TERMINAL INSTRUCTIONS (from
C.S.U., Northridge)

On-Line Publications:
SAMPLE EXECUTION FOR FORTRAN
SAMPLE EXECUTION FOR BASIC-PLUS

585

10.

Computer Center
San Francisco State University
1600 Holloway Avenue

San Francisco, California 94132

Publications (Developed On-Line):
SYS SYSTEM FUNCTION CALLS, Winter 1976
RSTS/E RECORD 1/0, June 1978
INTRODUCTION TO_ TECO, Fall 1973
INTRODUCTION TO RNO, Fall 1978
INTRODUCTION TO EDT, Winter 1978

Computer Center

California State College, Bakersfield
9001 Stockdale Highway
Bakersfield, California 93309

Publications:

HOW TO USE RSTS/E TIMESHARING (modified,
from C.S.U., Northridge)

HOW TO USL RSTS/E EDIT (modified, from
C.S.U., Northridge)

HOW TO USE RSTS/E FORTRAN

HOW TO USE RSTS/E RUNOFF (modified,
from San Francisco State
University)

EASY EDIT
CALIFORNIA STATE COLLEGE, BAKERSFIELD

COMPUTER CENTER RESOURCE MANUAL ™~
On-Line Publications:

FOR HELP

ED HELP

HOW TO USE THE EDITOR (modified, from
San Francisco State
University)

Computer Center

California State College, Stanislaus
800 Monte Vista Avenue

Turlock, California 95380

On-Line Publication:
COSAP I INSTANT

Publication:

C.S.C., STAWISLAUS COMPUTER CENTER
USERS MANUAL

Computer Center

California State University, Sacramento
6000 J Street
Sacramento, California 95319

Publications:

RSTS/E FORTRAN IV INSTANT (modified,
from DEC materials and from
California State University,
Pomona)

C.S.U., SACRAMENTO LOCAL TIMESHARING

INSTANT (modified, from California State

o Polytechnic University, San
Luis Obispo)

1.

12,

13.

Computer Center

California State University, Fresno

Shaw and Cedar Avenues

Fresno, California 93740

Publications:
HOW TO USE RSTS
USER'S BROCHURE FOR RSTS, Winter 1978
TELERAY TERMINAL INSTRUCTIONS

GUIDE TO REQUESTING COMPUTER SERVICES
FOR RSTS

BASIC PROGRAMMING STANDARDS

Computer Center
California State College, Dominguez Hills
1000 E. Victoria Street
Dominguez Hills, California 90747
Publications:
TELERAY TERMINAL INSTRUCTIONS
DECWRITER INSTRUCTIONS

DEC EDIT

On-Line Information:
Various on-line help files.
Computer Center
California State University, Hayward
24800 Carlos Bee Boulevard
Hayward, California 94542
Publications:
TIMESHARING TERMINAL OPERATION
LOCAL TIMESHARING (RSTS/E)
LOCAL TIMESHARING FORTRAN

On-Line Publications:
"BASIC - BEGINNING USER GUIDE TO RSTS/E

BASIC

BMDP

BPCREF

COSAP

CREF

CVTFNS - GUIDE TO CVT FUNCTIONS
DIRECT

ED - COSAP DATA EDITOR INFORMATION
EDFOR - HELP FILE FOR EDFOR (THE

FORTRAN TDITOR) ™

EDIT - HOW TO USE RSTS/E LDIT (from
C.S.U., Northridge)

SYS SYSTEM FUNCTIONS (frow San Fran-
cisco State University)

FORTRAN INSTANT (from CSU, Northridge)

HELPER - BASIC-PLUS SOURCE EDITOR
(modified, from DECUS)

MACRO - BEGINNING USER'S GUIDE TO THE
MACRO ASSEMBLER

MIOCS - MACRO INPUT/OUTPUT CONTROL

SYSTEM (from California State
Polytechnic University,
San Luis Obispo)

NORTON (from DECUS)

TRAN - COSAP TRANSFORMATIONS

14. Computer Center
California State University, Northridge
18111 Nordhoff Street

Northridge, California 91330

Publications:

HOW TO USE RSTS/E TIMESHARING (with
V6C Addendum)

TELERAY TERMINAL INSTRUCTIONS
FLOPPY DISK INSTRUCTIONS
RSTS/E EDIT INSTANT (V6A)

On-Line Publications:

RSTS/E FORTRAN INSTANT (V6A) (Develop-
ment site)

BASIC-PLUS INSTANT (V6A)
HOW TO USE RSTS/E EDIT (V6A)

RSTS/E RECORD I/0 (from San Francisco
State University)

SYS SYSTEM FUNCTIONS (from San Fran-
cisco State University)

TECO V29 (V6C) (from DEC)
TIMESHARING LIBRARY STANDARDS
RUNOFF (modified to V6A, from DEC)

COSAP 1 INSTANT (from California State
College, Stanislaus)

On-Line Publications (Non-RSTS/E):
HOW TO USE NOS TIMESHARING (CDC CYBER

174)
SPSS 7.0 INSTANT (from California State
University, Bakersticld)
REFERENCES

Hayes, J. A., USER-ORITENTED PUBLICATIONS: ON
RSTS/E AND FOR RSTS/E, Fall DECUS 1977.

Hayes, J. A., USER-ACCESSIBLE PUBLICATIONS:

HELP YOUR RSTS/E USER HELP HIMSELF, Spring
DECUS 1978.

Hayes, Jo Aoy HOW TO USE RSTS/L: A 1SER-
ORTERILD TRAINING PACKAGE, Fall DECUS 1977,

4. Hayes, J. A., HOW TO USE RSTS/E: HELP FOR THE
USER, Spring DECUS T978.

5. Hayes, J. A., RSTS/E APPLICATION LIBRARY:
CONCEPTS IN STRUCTURE AND CONTENT, Fall
DECUS 1978.

JAH: spw

10/24/78

586

RSTS/E System Calls for Pascal and FORTRAN

David M.

Vann

Oregon Minicomputer Software, Inc.
2340 S.W. Canyon Road

Portland, Oregon

97201

(503) 226-7760

ABSTRACT

A set of routines has
capabilities
These capabilities have

been developed which
of the RSTS/E operating system from Pascal and FORTRAN.
previously been

allows access to

available only through

BASIC-Plus SYS() functions or MACRO assembly language.

INTRODUCTION

The RSTS/E operating system provides a large
number of capabilities necessary for a large

time-sharing system. These capabilities
include: assigning and releasing special
devices; setting terminal characteristics;

user login, logout, and accounting; file
directory maintenance; inter-job message
send/receive, and many others. Some of
these capabilities are used by application
programmers; the more specialized features
are used only by system programmers.

Programmer access to these system dependent
features has been provided by extensions in
the BASIC-Plus language, most notably the
SYS() function «calls. The SYS() calls are
well documented, but not especially
readable; for example, the following line
returns the current job number:

J%=(ASCII (SYS (CHRS (6%)+CHRS (9%)))/2%)
AND 127%

BASIC-Plus is also an interpretive language,

and 1is not particularly efficient. The
latest release of RSTS/E therefore includes
some CUSPs (notably PIP.SAV) which are
written in MACRO assembly language.
Unfortunately, documentation on RSTS/E
system calls from MACRO is not easily

MACRO programming also requires

acquired;
very

highly skilled programmers, and can be
sensitive to operating system changes.

FORTRAN AND PASCAL

Compilers for Pascal and FORTRAN are
available for RSTS/E systems; these
languages are much more efficient than
BASIC-Plus. Both languages also offer

reasonable facilities for creating libraries
of subroutines, and can access MACRO
capabilities. Oregon Software has developed
libraries for Pascal and FORTRAN which allow
efficient access to the RSTS/E system
features in a readable fashion.

Proceedings of the Digital Equipment Computer Users Society

Examples:

(acquiring the current job number, as above)

Pascal: J:=Job;

FORTRAN: J=JOB

(Deassign a device by name)

BASIC:
X$=SYS (CHRS (6%) +CHRS (10%) +STRINGS (6%, 0%)

+RIGHT (SYS (CHRS (6%) +CHRS (-10%) +DEVS) ,9%))

Pascal: Deassign (DEV) ;

FORTRAN: CALL DASSGN (DEV)

A more complex example shows accessing a
file in update mode, waiting for other users
to release the desired record:

BASIC: 100 ON ERROR GOTO 120
110 GET #1%, RECORD R%
120 UNLOCK #1% GOTO 200
130 IF ERR=19% THEN SLEEP 2%
140 RESUME 110

Pascal: IgnorelQerror (true) ;
UpdateFile (fileid,2);
Seek (fileid,recordnum) ;
IF IOerror THEN FatalIO;
Unlock (fileid) ;

FORTRAN:

110 READ(1'IRECORD,END=999,ERR=120) VALUE
CALL UNLOCK(1)
GOTO 200
120 IF (IOERR .NE. 19) GOTO 999
I = ISLEEP(0,0,2,0)
GOTO 110

San Francisco — November 1978

Examples of system calls:

Action Pascal FORTRAN
Echo off Echo (false); CALL ECHO(.FALSE)
Rgname file Rename (0ldf,newf) ; CALL RENAME (OLDF,NEWF)
Dismount disk Dismount (disk) ; CALL DISMNT (DISK)
Advance magtape MTskip (fileid,count); CALL MTSKIP (UNIT,COUNT)
Get keyboard number K := KBnum; K = KBNUM
Do CCL command CCL (Command) ; CALL CCL (COMMAND)
Is file a TTY? IF TTYtype(fileid) IF (TTYTYP (UNIT))
Get project number J := ProjectNumber; J = PRJNUM

EXPERIENCE TO DATE

Our experience with these routines is rather
limited, but generally favorable. Several
application programs (in Pascal) use the
routines for simple functions such as
enabling single character terminal
interaction. Our timesharing accounting
system has been rewritten, also in Pascal,
with marked gains in clarity. Probably most
interesting is a Pascal version of the
directory reordering program ($REORDR) which
reorders our RP06 disk in about 5 minutes,
compared to 90 minutes for the BASIC-Plus

program,

AVAILABILITY

The Pascal and FORTRAN libraries, with
supporting documentation and some sample
programs will be submitted to the DECUS
library in early 1979.

588

X.25 PACKET SWITCHING NETWORK AND RSTS/E TIME SHARING

L. R.

Irons

Tested Time Sharing Ltd.
Calgary, Alberta, Canada

ABSTRACT

The objective of this paper is to present an overview of X.25
Packet Switching Network and outline some methods of accessing

this type of network.

The body of this text evolved as a

result of implementing a package to access an X.25 based

network.

Although the X.25 portion of the interface is

rigidly defined, the rest of the package is easily configured

for specific applications.

Specificall¥ I will use the Canadian Packet Switching Network,

"DataPac" (1

as an example of an X.25 type Packet Switching

Network, although any X.25 based network would provide equally

as good an example.

It is the interface between DataPac and

DEC 2), RSTS(3) system which will be my main concern.

As the software required for X.25 protocol is
not readily available from computer manufacturers at
present, there may be some question of its practical
value. On the other hand, with the increase in
number of X.25 based Packet Switching Networks
internationally, and the current and future inter-
connection of these networks, it seems that they are
here to stay. Currently the Canadian and American
Packet Switching Networks are connected to one
another via a Gateway Interface (X.75). The United
States Network is also interconnected to the British
International Packet Switch Network. The list of
X.25 based networks is growing to include Japan,
Australia, France and an Inter-European network.
With these factors in mind it seems appropriate to
have a closer look at X.25 based networks.

The Canadian DataPac network provides prospec-—
tive customers with a nation-wide network and a
network interface facility for a variety of ter-
minals. The interface between a host and the network
has been left to the user. This has led to the
development, by many companies, of a variety of
useful network interfaces, allowing a prospective
DataPac user an interface which not only connects
him to the DataPac network but may also increase the
efficiency of his communications hardware and soft-
ware. There are trade offs, such as the introduction
of another vendor between the telephone company and
the computer.

Packet switching is not the answer to all com-
munications requirements, it is just another alter-
native. Factors such as response, throughput,
access and methods of billing must be taken into
consideration, as they would for any communications
application.

One could describe time division multiplexing
as a number of users sharing a single communications
line with each user being given a specific time slot
on the line. To use a similar analogy, packet
switching could be described as a number of users
sharing a single communications line, where each user
is required to uniquely identify his data. With time

Proceedings of the Digital Equipment Computer Users Society

division multiplexing, if a time slot is not used it
is lost, while with packet switching the network can
control the number of users on any given line and
optimize the use of that line.

The goal of X.25 then is to uniquely identify
user data. This is accomplished through four basic
levels of protocol. The first of these levels of
protocol is the physical level and it is composed of
a synchronous interface and modem which are con-
nected to the network via a full duplex 4-wire line.
This interface will allow communications to the
network at speeds up to 9600 baud. Included in this
physical level is a synchronous protocol either
Binary Synchronous (BSC) or High-Level Data Link
Control (HDLC).

With the HDLC protocol, which is a bit oriented
protocol, data sent on the synchronous link will be
delimited by a flag bit sequence, which is a string
of six consecutive 1 bits (01111110). HDLC also
requires that after the last data bit and preceding
the terminating flag there be 16 bits of circular
redundancy check, (x' +x' +x®+1). HDLC allows for
the rejection of any data sequence by transmitting
an abort sequence which consists of seven consecu-
tive 1 bits (111111).

As previously mentioned HDLC is a bit oriented
protocol and thus possible random occurrences of six
or seven consetutive 1 bits must be avoided. This
is accomplished by a procedure appropriately called
"bit stuffing'. Bit stuffing entails analyzing data
to be transmitted: when a sequence of five con-
secutive 1 bits is encountered, regardless of word
or byte boundaries, a zero bit is inserted into the
bit stream. The reverse is true for the receiver
(bit unstuffing), which requires deletion of a bit
after the occurrence of five consecutive 1 bits in a
data sequence. The procedures for HDLC and BSC are
standard and fortunately performed very well by a
DEC DUP-11(7) synchronous line interface.

The data stream between flags in HDLC contains
the next level of protocol, namely the frame level

San Francisco — November 1978

protocol. The minimum length of a frame is two bytes
or 16 bits. The frame level is responsible for
establishing, maintaining and clearing the link to
the network. A frame contains an 8-bit address
field, an 8-bit control field and an optional data
field. The address field of a frame can be either
"A" or "B", and will determine whitch side of the full
duplex link is being controlled - for example, from
the host point of view, reception of a command frame
with an address of "A" will require transmission of
the appropriate response frame with the address of
A", Similarly the host will transmit its command
frames with an address of "B'" and expect to receive
the appropriate response with a "B'" address. The
control field defines the type of frame transmitted
or received.

To establish the link, the host will transmit a
""'set asynchronous response mode' (SARM) and wait a
specified timeout period for an "unnumbered acknow-
ledge frame" (UA) from the network. This establishes
the link from host to network. The network
establishes its side of the link by sending a SARM
frame: on receipt of this frame the host has a
timeout period in which to transmit a UA response
which will completely establish the link. The link
between host and network is cleared in the same
manner, with the use of a disconnect frame (DISC)
rather than a SARM frame.

Once the link has been established, data trans-
mission can commence. At this point the host will
set two frame-related flow-control variables to zero.
We will call these two variables V(S) send variable,
and V(R) receive variable. These variables are used
to keep track of data transmitted or received and
will cycle from O - 7, or modulus 8. All data is
transmitted through information frames or I-frames
which will be transmitted with the values of V(R)
and V(S) in their control field. The variable V(S)
contains the number of the next I-frame to be trans-
mitted by the host, hence if an I-frame is being
transmitted the current value of V(S) is loaded into
the control field of that I-frame and V(S) is
incremented to the number of the next I-frame to be
transmitted. The variable V(R) contains the number
of the next information frame we expect to receive
from the network. If we receive a valid I-frame
from the network the number of that I-frame will
match our V(R) value (it was the one we expected)
and V(R) will be updated to the next expected I-frame.

host or
either
ready"
V(R)

In response to receiving an I-frame the
the network must acknowledge by transmitting
a "received ready frame" (RR), 'received not
(RNR) or its own I-frame - all of which have
contained in their control field. This V(R) acknow-
ledges the V(R)-1 information frame received. The
RNR frame requests the remote to suspend transmission
of I-frames. I-frames, RR, RNR, or "reject frames'
(REJ) are the only frames which contain this flow-
control information.

The remaining frame types are used for link
recovery. In the event the number of a received
I-frame does not match V(R) (it is out of order) we
will issue a "reject frame" (REJ) in response. This
reject frame will contain the value of our V(R) in
its control field and will request that the remote
begin retransmission of I-frames whose V(S) value
was equal to the V(R) value contained within the
received REJ frame. The 'command reject frame'

590

(CMDR) acts as a catch all for most other errors.

It will be transmitted with the current values of
V(R) and V(S) and error cause information. Reception
of a CMDR usually implies reinitialization of at
least one side of the link.

To complicate things slightly, X.25 allows a
number of information frames to be transmitted
before any acknowledgement of receipt of these
I-frames is received, so the updating of V(R) and
V(S) must take this into account. The number of
I-frames allowed to be outstanding is referred to as
window size. It should also be mentioned that the
frame level protocol is time dependent. In other
words, command frames (SARM, DISC, I) must receive
responses (UA, RR, RNR, REJ, CMDR) within a given
timeout period.

The next level of protocol is the packet level.
All of this packet level protocol is contained
within information frames.

The packet level protocol is much the same in
principle as the frame level, although it is more
comprehensive. It is the responsibility of the
packet level to connect, control and clear a number
of calls across the host-network link maintained by
the frame level.

A packet contains 16 bits of addressing infor-
mation referred to as a logical channel number, or
LCN. This LCN is only meaningful between the host
and local network node. Furthermore, the packet
also contains 8 bits of packet "type" information.
The packet may also contain information used only
to control the call or user data for transmission.

A call is established when either end receives
a call request packet and responds with a call
accepted packet. The call request packet will con-
tain a unique LCN for this host-network link, the
address of the calling host, the address of the
called host and information about the call such as
user data field size, which host is to be billed
for the call, packed level window size, and trans-
mission throughput parameters.

A call may be rejected by transmission of a
"clear request' packet which will contain an 8-bit
field which specifies the reason for refusing the
call. Similarly an established call may be cleared
by transmission of a clear request packet. On
receipt of a clear request packet a "clear confirm'
is transmitted.

Calls are distinguished from one another by the
LCN. Once a call is accepted all packets transmitted
or received for that call will contain the specific
LCN given in the LCN field of the call request
packet. The LCN is freed upon receipt of clear
confirm or clear request packets.

Once a call has been established, data on the
packet level can be transmitted across the host-
network link. As with frame level, we will need to
maintain variables to govern data flow. These may
be called PV(S) and PV(R) - packet send variable and
packet receive variable respectively — and are main-
tained in the same manner as V(R) and V(S), with the
appropriate adjustment for window size. A unique
PV(R) and PV(S) variable is maintained for each

established call. Data, ''received ready" and

"received not ready" are the only packets which will
contain the PV(R) or PV(S) flow control information.

There are two forms of data packets - level 0
and level 1. Level O data packets contain data
destined for the user while level 1 data packets
are used for X.3, X.28, X.26 interactive terminal
protocols (ITI) which will be discussed later.
Different data packet types are distinguished by a
qualifier bit (Q bit) in a restricted sub field of
the LCN. Data packets are allowed a user data field
of 128 bytes, for priority, or 256 bytes for normal
traffic where the shorter packets are given trans-
mission priority within the network. When the data
field is completely filled the 'more data" bit
(M bit) is set in the type field indicating a logical
continuation of data in the next expected data
packet. The M bit is peculiar to the data packet.

On receipt of a data packet a response will be
required. The response may be a data packet, RR or
RNR packet. This follows the same principles out-
lined for the frame level.

Recovery of errors such as out-of-sequence
packets is facilitated by resetting the PV(R), PV(S)
variables to synchronize both ends of the link on
the packet level for a specific call. This is
accomplished by transmission of a reset indication
packet. In response to a reset indication packet a
reset confirm packet is transmitted. The call will
remain connected and transmission can resume. In the
event of major packet level problems, a restart
indication packet is transmitted clearing the entire
packet level calls as well as packet variables. The
response to a restart indication is a restart confirm
packet.

Control of the packet level during a call is
performed by transmission of level 1 data packets or
interrupt packets. The interrupt indication packet
contains an 8-bit data field and is given trans-
mission priority over data packets. It is ideally
suited for control C or break indication. The res-
ponse to an interrupt indication is an interrupt
confirm packet. It should be noted that only one
interrupt indication may be outstanding.

This very basically describes the packet level
except for level 1 data packets, which are used
mainly for the interactive terminal interface
protocols.

The interactive terminal interface protocol
allows the host and network to establish the terminal
characteristics of the remote user. The actual set
up of the ITI will depend on the remote user's
application as well as his hardware.

The ITI protocol is established by exchange of
level 1 data packets which contain a parameter list
and parameter values or acknowledgements within the
data field. The ITI protocol is set before data
transfer and is set for the link between the remote
user and the network. There is nothing to prevent
the change of ITI parameters during any one call.

Until computer vendor software for interfacing
to packet switch networks becomes readily available,
users are left in the realm of the communications
processor or black box. The basic functions of a
communications processor are to provide the protocol

591

for data destined for transmission and to strip
protocol from received data. The protocol in this
case is X.25 and data is in a format acceptable for
RSTS input/output.

When related to X.25 these functions can easily
be reduced to eight processes, namely:
1. physical level decode (DUP-11 receiver
handler);
. frame level decode;
packet level decode;
. host transmitter handler;
host receiver handler;
packet level encode;
frame level encode;
physical level encode (DUP-11 transmitter
handler).

oL B WN

Keeping in mind the previously described levels
of protocol and the idea of command response, these
processes can be evaluated with little problem.

The physical level receiver will synchronize on
flags. Data between flags is '"bit unstuffed'", stored
in a buffer and used in the circular redundancy check
calculation. On completion, the buffer is passed to
the frame level decode operation. Any errors which
might occur cause this process to repeat. With a
DUP-11 this complete process is easily written as a
device handler.

The frame level decode process will be active
only when buffered data is passed to it from the
physical level decode process. When active, frame
level decode will analyze the address and control
field of the buffered data and arrive at one of
four possible conclusions:

A.
B.

the frame was an error;
the frame was a command requiring only a
response.

In both these cases a request is made to frame
level encode for the appropriate response. The
buffer is released.

C. the frame was an expected response in
which case the appropriate variables are
updated and the buffer is released;

D. the frame was a command requiring further

processing (information frame) in which
case a request is made to frame level en-
code for the appropriate response, all
affected variables are updated and the
buffer is passed to packet level decode.

The packet level decode procedure is activated
only by the frame level decode and its actions are
in principle much the same. Packet level decode will
analyze the logical channel number and type fields
and as a result perform one of five different
actions:

(i) the packet was in error, in which case
packet level encode is requested to issue
the correct response; release buffer;

(ii) the packet was a command requiring only a
response;
(iii) the packet was an expected response, in

which case update applicable variables and
release buffer;

(iv) the packet contained ITI pertinent data,
in which case update all relevant
variables, issue a request to packet level
encode for response and release buffer.

(v) the packet contained data destined for
user in which case update all applicable
variables, issue request for packet level
encode for the correct response, replace
LCN and type fields with job number, pass
buffered data to host-level transmit.

Host-level transmit procedure is comprised of a
device handler which will transmit the buffered data
and release the buffer.

Data received from the host via the host re-
ceiver handler procedure is again stored in a buffer.
It must contain some identification to indicate its
source. When this data string is considered com~
plete due to some packet forwarding formula, the
bufifer is passed to the packet level encode
procedure.

The packet level encode procedure is activated
by either a request from packet level decode for a
response or buffered data from the host receiver.
If activated by a request for a response, packet
level encode will capture a free buffer, load
appropriate LCN, type and data and pass this buffer
to the frame level encode procedure. If buffered
data is received from the host receiver, its identi-
fication is exchanged for a valid LCN, a type field
is loaded and it is passed to frame level encode.

Frame level encode may be activated by response
requests from frame level decode. In this case a
buffer is captured and the requested response is
built in this buffer. The buffer is then passed to
the physical level encode procedure. Frame level
encode may also be activated by buffered data from
the packet level encode procedure. Frame level
encode will supply the needed frame level information
and pass this buffered data to physical level encode.

Physical level encode is activated by buffered
data from frame level encode. This data is pre-
ceded by a flag sequence, followed by circular
redundancy check and a terminating flag. Finally
bit stuffing is performed and the resultant data
transmitted.

The physical level decode and host receiver
handler are self-driven. Initially a read request
is made to each of these processes. When a request
is completed the process will reactivate itself with
another request.

The four processes, physical level encode/
decode and host transmit/receive, once active are
driven by hardware interrupts. The remaining four
processes are driven by software interrupts initia-
ted by related processes. These four processes will
execute to completion once they are entered, except
for higher priority hardware interrupts. Each of
these processes also contains a software status
register to show the condition of that process.

This register is accessible by all other processes.

A common buffer pool is declared for use in
passing data between processes. Buffers are cap-
tured or released by the processes via updating a bit
map of the buffer pool.

Buffer pointers and rezuests are passed between
processes through an RT-11(4) type queue structure.
Each process has a queue which is maintained as a
linked list. However processing of the requests
within a queue is not necessarily serial as in
RT"llp

The actual implementation of the two host
related processes is subject to many changes as
there is a wide variety of devices suitable for
these processes. The physical device could be
almost anything from a DH-11(5) to another synchro-
nous interface depending on the type of host or the
desired format of data. By using different devices
and handlers for these two processes the scope of
the communications processor can be completely
changed.

There are many other possible procedures one
could follow to perform the same functions as
described above. In the same light there is no
specific type of hardware required to perform this
function.

This type of application does not require a
great amount of processor power or memory, although
a lack of either will limit its capabilities. These
communications processors have been implemented on
machines varying from 8-bit microprocessors to
PDP 11/40's(6),

For the user or manager who has a phobia of
"more computing power', the manufacturers of these
devices can cleverly disguise them to '"set your
mind at ease'. Whether they are marketed as
communications processors or fancy-type modems, one
brand might be more suited to your application.

Packet switched communications poses some
problems to a time sharing environment like RSTS.
The main problem encountered is the question of
forwarding the data packets to and from the remote
user.

In the case of file transfer, a majority of
data packets can be filled, however, in the case of
an interactive remote user the efficiency of a
packet switch system will suffer, as not all packets
can be completely filled. Consider the Basic Plus(7)
instruction "input 'password' AS$;" in some arbitrary
program. The string "password ?" must be output to
the remote user and his response obtained before
execution of the program will continue. Two
relatively empty data packets must be transferred,
but how are we to know if the data packet is to be
sent or if more data is available to fill it?

One solution to this problem is to forward
either full data packets, or data packets that have
not been altered for some arbitrary time. The time
of course would be dependent on whether input is
expected from a user on a 300. baud terminal or input
from the host machine at very high speed. 1In
practice, this method works fairly well, although it
causes an additional delay. RSTS/E however provides
an even better indication of when a data packet
should be forwarded by entering a 'keyboard wait'
state.

Another major concern from a timesharing point
of view is that of end to end delays. Depending on
packet level window size, what a remote user is

receiving on his terminal at any given moment may be
only a portion of the output, which is already on
the network destined for him.

The undesirable effects of this delay are
demonstrated through input/output control commands
such as control (C, S, Q, 0). A control "S" for
example may be immediately forwarded to RSRS, which
will cause RSTS to suspend output. Output is not
necessarily suspended to the user terminal, however,
as the remainder of the current data packet and any
subsequent data packets already held by the network
will be sent to the user's terminal. There is
currently no absolute solution to this problem,
although its effects can be minimized by varying
packet level window size, data field size within
data packets and ITI parameters.

These constraints should be considered when
appraising the value of a packet switch facility or
when writing software which could possibly be used
on such a network. For many applications the
benefits of packet switching outweigh the drawbacks.

Currently, as previously mentioned, most DataPac
access 1s provided in the form of a communications
processor which is physically located between the
host and the network. In general these interfaces
do not require any modification of the host, hard-
ware or operating system, they simply interface
line for line to a number of the host communications
ports, hence an interface which will connect 16 EIA
ports to the DataPac network should handle 16 calls
over the DataPac network. The processing abilities
of these communications processors may be used to
better advantage for specific applications.

As a case in point, the communications inter-
face can very easily prefix data from any given X.25
logical channel with a job number suitable for RSTS
multi-terminal input/output. All data can then be
passed to a RSTS multi-terminal type job through a
single keyboard line.

Alternatively a RSTS controlling job can pass
the data on via send/receive to individual jobs on
the system. This can provide substantial advantage
for remote data entry applications.

593

There are other methods of communication to
RSTS which are even more convenient. The X.25
handling code could be included in the host and
access provided to users and jobs via a run-time
system. If this were done correctly the integrity
of the main operating system could be maintained.
The end result is specific to this operating
system.

0f course the RSTS operating system could be
modified to accept this type of communication inter-
face, although the system is no longer as easily
supported.

The method of implementation is not really of
basic importance as long as one is aware that there
are different methods and trade offs for each.

In conclusion, packet switch communication has
provided us with a very attractive alternative
which complements RSTS time sharing very well.
have expanded our possible customer base while
reducing total communications costs. The benefits
may not be the same for every application but
packet switch communications is an alternative
which should be evaluated.

We

REFERENCES
(1) Trans Canada Telephone System Trademark
DataPac Standarnd Network Access Protocol
Specification, Trans Canada Telephone System,
Computer Communications Group.
(2) Digital Equipment Corporation Trademark
(3) Digital Equipment Corporation Trademark
(4) Digital Equipment Corporation Trademark
(5) Digital Equipment Corporation Trademark
(6) Digital Equipment Corporation Trademark
(7) Digital Equipment Corporation Trademark

SCHEDULING STUDENT ASSISTANTS
IN THE COMPUTING LABORATORY

J.D. Rose
California State University, Hayward
Hayward, California

account the class schedules of the workers.

STRACT
Scheduling of a part-time student workforce must take into

For maximum

stability, it should also take into account their study

habits and other demands on their time.

The job may be

complicated by any limitations or rules imposed by Federal,

State, district or campus policies.

Workload patterns

throughout the week and the academic term can affect the
staffing level required, and hence the scheduling process.
Changes in all these factors may require work schedules to

be prepared frequently.

Unless the workforce is quite small,

this frequent scheduling can become quite tedious and time-

consuming.

This paper discusses the approach used to solve

these problems in scheduling Student Assistants at the
Computing Laboratory facilities of the California State
Special attention is given
to a package of computer programs developed to automate

University campus at Hayward.

much of the process.

Written in BASIC-PLUS, they should

be adaptable to other educational institutions with
similar characteristics and requirements.

INTRODUCTION

California State University, Hayward, supports
instructional computing in part through the
operation of Computing Laboratory facilities. These
contain equipment (such as terminals, card machines,
graphics devices, etc.), user work areas, documen-
tation, and personnel to provide assistance. The
work force largely consists of part-time student
assistants, with staff supervision. The scheduling
of these student assistants must take into account
their own schedules and preferences, budgetary
considerations, workload variations, and the
schedule horizon. To prepare manually a ''good'
schedule at frequent intervals is a time consuming
job, and using the computing facilities themselves
to automate at least partially the scheduling
procedure seems an obvious approach to the problem.
The philosophy used in the development of a pre-
liminary package of programs to achieve partial
automation of the scheduling process is described
below. (Development is continuing, and improved
versions are planned.)

SYSTEM PHILOSOPHY

Student Assistant Inputs

Recognizing that student assistants are students,
we must not schedule them to work during class
times, and should not schedule them during times
they prefer to use for studying. This principle
can be extended to a scheduling system that weights
heavily the assistants' own preferences in general.
The preliminary version of the scheduling package
specifically allows each assistant to specify time
preferences (but not job or location preferences)
by designating a '"1"" for each '"'first-choice' hour,
etc., down to a "6'" for an hour in which work is
impossible due to a class conflict. Figure 1
illustrates a sample preference matrix, prior to

Proceedings of the Digital Equipment Computer Users Society

595

entry into the scheduling system.

MONDAY | TUESDAY | WEDNESDAY| THURSDAY FRIDAY | SATURDAY| SUNDAY
0800
| v ! L 3 Y 5
0900
1000 I 4 / Y 3 Y 5
! 3 ! 3 3 3 5
1100
/ 3] 3 3 3 s
1200
1200 2] 3 b 3 3 3 5
1400 b 3 G 3 3 3 .3
| 3 i -
1500 [3 2 3 3 5
o 3 G 3 3 3 5
1800 :
2 3 s
1700 Ve 2 z 3 : 5
2z 2 2 2 y 4 05
1800 ' -
| : -
1900 i 3 2 : b H q l 5
2 A 2 e 1y ¥y s
2000 T . : :
| 5
2100 ¢ 16 ud 1 1
mo | © 6 ul 4 %
700 3 Y E 3 q H 4 5
2400 3 4 | 3 9 4 $
M ary, Week 3
Figure 1. Assistant's Input (Preferences)

Management Parameters

There may be workweek limitations imposed or
implied by Federal, State, or institutional
policies. For example, a campus may limit student
assistants to, say, 20 hours of work per week.

Or, a student may be receiving 'Work-Study' funds,

San Francisco — November 1978

with an entitlement that averages 15 hours per week
during the term. The fact that such funds may be
derived in part from the Federal government rather
than local sources may be an important factor. And
regardless of the source of funding, there may be
various rates of pay for different jobs, skills, or
educational levels.

Seasonal workload patterns may exist across the
year, over a single term, or even shorter periods.
Thus, the scheduling process may need to take into
account a pattern of staffing densities consistent
with workload fluctuations.

Although some of these management parameters are
collected and stored by the scheduling system,
these data are not actually used by the preliminary
version., Instead, they simply are displayed for
the convenience of the scheduling supervisor.

The Schedule Horizon

Classes at Hayward are scheduled in weekly patterns,
hence student activities tend to follow weekly
patterns. The result is that our student assistants
find it convenient to specify their preferences in
weekly patterns, and that class-generated work-

load also tends to exhibit weekly patterns.

Thus, if the weekly patterns continue throughout
the term, a single schedule with a one-week horizon
is appropriate. However, the factors frequently
change, as when student assistants add or drop
classes in the early part of the term, or alter
their study-time requirements in the latter part of
the term as examinations approach. Here again a
weekly horizon seems appropriate, but new schedules
may have to be prepared with some frequency.

An example of a one-week schedule for a particular
facility is given in Figure 2,

THE SCHEDULING SYSTEM

Information Flow

The supervisor enters various ''parameters' into the
system data base when initializing for a new
academic term. The assistants initially prepare
their "inputs' on forms (Figure 1) and then enter
them into the system via interactive terminals,
allowing the selective retrieval and display by the
supervisor as illustrated in Figure 3.

Software

A simple data base structure provides for the

hourly preference information ("inputs') for each
assistant, plus some management parameters. In
order to allow for the entering of schedule infor-
mation which would become effective at a later date,
the data base is divided into two duplicate file
structures - one for the current information and one
for the future.

The data collection programs select the proper
(current or future) file structure according to
effective-date information (entered by the
assistant), and extract that person's information
from the file (or request it from the user if not
on file). Editing and display functions are
provided, and the data base is then updated.

The supervisor's package creates, updates, displays,
or erases the data base records for personnel or

parameter changes. Current preference data may be

596

TUESDAY
"G MH

WEDNESDAY] THURSDAY | FRIDAY | SATURDAY| SUNDAY

MG MA [

PL Je 3 Je My

PS ™NJ 3 PS M@ MF S | Pw JD

JA M JA JA PmM

SRR BN U E—

8

i i i i

! j |

| E 1 |

Computing Lab Assistant Schedule: Ineek 3
Figure 2. Supervisor's Output (Schedule)

§

Assistants draft inputs using standard forms.

AN

Assistants enter and verify inputs using

\\\i\\j;teractive terminals

urder control of data-collection program(s)

2
program, program| program
copy copy copy

which store information in data base.

. .

DATA BASE

Supervisor uses interactive terminal under
control of data-extraction program(s) to
retrieve information from data base,

¥

Data
Extraction
Program

5

and generate charts in appropriate formats

for use in the actual processing to produce
work schedule(s).

¥
: Manual Schedul
Scheduling Schedule

Figure 3.

Scheduling Process

updated from the ''future' file if requested and

the dates are appropriate, and displayed in formats
found to be most helpful in constructing a schedule.
The displays can be for specified subsets of the
workforce for additional versatility.

The various programs which implement the system

are written in BASIC-PLUS, and are running under
RSTS/E on an 11/45, Although coded in an '!ad-hoc'"
manner, they should be adaptable without difficulty
to another campus facility having similar charac-
teristics, requirements, and computing system.

With additional modification, they should also be
usable with other hardware or software systems.

The scheduling problem investigation is continuing,
and (both structurally and functionally) improved
software will be available at a later date. A
mathematical model of the actual scheduling process
has been derived (1), but additional research

will be needed in order to incorporate it into the
system.

REFERENCE

1. Economides, S., and Rose, J.D., 'Workforce
Scheduling in a State University Computing
Laboratory Facility,'' paper presented at the
American Institute for Decision Sciences
10th Annual Convention, St. Louis, November

1, 1978
ACKNOWLEDGEMENTS

The author gratefully acknowledges the contribution
of Spyros Economides in directing the research
effort into the formal modeling aspects of this
project, and the assistance of Bonnie Benzinger

in implementing and testing the current scheduling
system.

597

CURRICULUM INTEGRATION AND
USER SUPPORT OF RSTS IN A
SMALL BUSINESS COLLEGE
"What do we do now that it works?"

Arthur K. Lash
Nichols College
Dudley, Massachusetts

ABSTRACT

Installing an academic timesharing system requires more than
The users and manager of a
new timesharing system (specifically a RSTS system) are
quickly confronted with a variety of support and curriculum

having an operational system.

decisions.

The experiences at Nichols College (a RSTS user

since September 1977) can serve as a guide for the novice,

and more mature, RSTS installation.

Nichols College is a

700+ student four-year college with an evening graduate
school whose primary emphasis is on business and public

administration,

This paper details the problems and their solutions, the
approaches and techniques Nichols has used since becoming

a RSTS site.

BACKGROUND

Nichols College is a four-year institution whose
primary emphasis is on business and public adminis-
tration. In addition to the 700 undergraduate stu-
dents, a part-time MBA program, with 100 students
is offered. The College acquired its first comput-
er (an IBM 1130) in 1968. 1In 1977 a replacement
system was purchased to bring the College's admin-
istrative and academic capabilities into an inter-
active mode.

System Resources

A PDP 11/34 (purchased through EDUCOMP Corp.) with
96K and running RSTS/E was selected to replace the
batch-oriented 1130. One administrative and four
academic terminals, in addition to a LPO5 line
printer, a TS03 tape drive, and dual RP0O2 disks
comprise Nichols' present configuration. While
most academic work is currently performed on the
11/34, the 1130 continues to handle administrative
needs until a phased-in conversion to the RSTS/E
system can be completed.

Curriculum

Since 97%of Nichols students are in the business
administration curriculum, a fairly structured set
of courses is required of most freshmen and sopho-
mores. Liberal arts requirements (English, history,
social sciences, math, statistics, science) com-
prise the bulk of the first two years. Introductory
managerial and financial accounting as well as the
beginning of the business "core", round out the re-
quirements. Junior and senior courses primarily
follow major concentration, The introductory com-
puter course (which uses BASIC) is not normally
taken until the third year. :

A systems emphasis is offered within the management
concentration. Courses in systems analysis,

Proceedings of the Digital Equipment Computer Users Society

599

computers in modern organizations, applications
programming (COBOL), quantitative methods, and a
capstone management information systems offering,
constitute the systems emphasis.

Support Problems

Limited resources of all types are a problem which
plague many organizations, and Nichols is no ex-
ception. Significant energies had to be directed
toward system selection, acquisition approval, and
the site preparation completion. Since no individ-
ual was assigned these tasks as his/her sole respon-
sibility, long range preparation for the actual run-
ning and support of the system was limited. Once
the joy and frustration of installing the system
was over, the stark realization of providing ser-
vices to users totally unfamiliar with any inter-
active system, struck, Compounding the situation
was the fact that the start of the 1977 Fall semes-
ter coincided with the installation of the system.

It was in this context that NIC (Nichols Interactive
Computer) came into existence. Since the author

was primarily responsible for system operation, sup-
port, education, as well as teaching full-time, the
constraint of time became a major one. However, the
solutions to the problems of supporting all types of
users, and curriculum integration under this con-
straint, can serve as a model to other sites. In
addition, these solutions serve as testimony for
inter-installation cooperation and DECUS.

CURRICULUM INTEGRATION

A primary task of NIC is to support and enhance the
offerings at Nichols. Two distinct areas exist.
The systems courses described are those where orig-
{nal program creation takes place. Support facili-
ties for these types of courses differ from non-

San Francisco — November 1978

system courses where the use of canned library pro-
grams is necessary.

Systems Courses

RSTS/E lends itself well to introductory students.
The introductory computer course is split between
dealing with computers in modern organizations and
programming in BASIC. An account for each intro-
ductory student (approximately 80 per semester) is
created within the same project number. The pro-
ject manager's (XXX,0) account was used extensively.
I1lustration programs, assignments, data, and 1im-
ited operating instructions are made available from
this account. While a programming text for strict-
1y BASIC-PLUS is not used, the differences between
BASIC-PLUS and other BASICs are covered in class
lectures and in the Nichols Interactive Computer
User's Guide (see User Support for a description of
this guide). Introduction to Computer Programming
with the BASIC Tanguage by Harvey Deitel (Prentice-
Hall) is the language text. The computer applica-
tions text is Business Data Processing by Mike
Murach (SRA).

Oriented toward business data processing-type appli-
cations, the introductory students' programs in-
crease in complexity from simple report production
using FOR/NEXT and READ/DATA statements to simulated
file maintenance programs using arrays. Simulation,
two-dimensional arrays and string manipulation are
also covered, but actual BASIC-PLUS files (ASCII,
virtual arrays or Record I/0) are not part of the
introductory course. Thus, the material needed to
produce these types of programs can be adequately
found in a BASIC text supplemented by in-class lec-
tures (the DEC BASIC-PLUS Language Manual is a must
for the instructor, however).

The applications programming course poses a differ-
ent problem. Because of the wide spread use of
COBOL by businesses, it appears appropriate to offer
students a course in the language. Nichols decided
against using DEC COBOL for one major reason: cost.
COBOL would place a considerable operating load on
the system in a student environment because work
would be primarily in a program development (com-
pile) mode. WATBOL from the University of Waterloo
(Canada) was selected to provide COBOL experience
for students at a considerably lower cost and

strain on system operations. Although providing a
less extensive version of the language than the DEC
compiler, WATBOL serves its purpose for student use.
The speed and ease of compilation, combined with
extensive error diagnostics made WATBOL an excellent
compromise for Nichols' purposes. The text used

for the course, An Introduction to COBOL with
WATBOL: A Structured Approach (WATFAC) by Cowan,
Dirksen, and Graham, together with a WATBOL-11 Users

Guide serve as the primary documentation for WATBOL
under RSTS/E.

The final systems course which utilizes NIC is the
capstone offering titled "Management Information
Systems." File structures are discussed and actual
programming of file manipulation operations are re-
quired. Unfortunately, this area is not supported
as adequately as other areas of BASIC under RSTS/E.
The Users Guide contains detailed information on
the construction and programming of sequential
ASCII files. Virtual array and record I/0 files
are not in the current version of the User's Guide

600

primarily due to its perceived inappropriateness in
a general document. A Guide to Programming in
BASIC-PLUS by Bruce Presley, et. al., of the
Lawrenceville School contains a chapter on Virtual
arrays. This paper's author is developing a guide
for the more advanced file handling facilities
(virtual arrays and record I/0, available in the
Spring 1979). While these topics receive adequate
coverage in the BASIC-PLUS Programming Manual, this
publication (and other system reference manuals)
are not appropriate teaching/learning aids. There-
fore, supporting these types of features for stu-
dent users requires more material than DEC supplies.

Non-systems courses

Typically, a student does not encounter his/her
first systems course (the introductory computer
course) until the junior year. A great deal of
computer integration is possible and necessary
prior to junior year, However, this area offers the
widest range of possibilities for system usage and
concurrently an area for potential problems.
Adequate documentation and user support is essential
in this area since these users are unintiated to
the workings of NIC and the BASIC language,

Two major facilities have been established to ser-
vice the non-system courses:

A. Public library - a Tibrary of over 400 canned
programs resides on the system (in a system
library account). These programs have been
acquired in three ways:

1. EDUCOMP starter kit - as a system supplier,
EDUCOMP has compiled most of the DECUS
library educational programs. These
cover accounting, business, economics,
statistics, math, social and natural
sciences, BASIC tutorials and games.
Documentation varies from none to ade-
quate, Many programs have originated
from the Huntington Project or Project
SOLO, Documentation through DEC is
available for some of these programs,

2, Other sites - through the DECUS library
and contacts with other installations,
many additional educational programs have
been placed in the program library.

3. Original programming - students have been
encouraged to submit programs for inclu-
sion in the library. While most programs
seem to be categorized as game or novelty,
a trend toward more useful applications
appears underway.

Communicating the contents of the library to
the users is a substantial problem. While
other installations have developed category
search programs, Nichols has found written
documentation to be sufficient. A text file
of each Tibrary category was established.

The file contains the name of the program and
a brief ex?1anation of its purpose, These
f{les are listed and placed on the walls of
the terminal room for reference. Any changes,
add{tions or deletions made to the library
mandate modification of these text documenta-
tion files, Faculty demand more detailed
instructions and sample runs of programs be-
fore assigning these to classes, A current
project underway is to extablish such docu-
mentation,

The public Tibrary has seen limited actual use
in courses to date. No pressure has been
placed on faculty to integrate these programs
into their offerings. Only those faculty who
have a personal desire to integrate system
facilities into their courses have actually
done so. This has actually been a blessing
in disguise. Due to limited personnel re-
sources and a limited number of terminals, a
sTow increase in system usage beyond system
courses has allowed for a controlled, manage-
able growth in demand.

B. Course library - in order to accomodate those
courses using the system, another library has
been established to hold those programs. De-
creased access time and reduced confusion was
the primary motivation for establishing a sep-
arate library. Most of these course-related
programs have come from the public library.
Each course is given a separate project num-
ber with sufficient programmer numbers to sat-
isfy the particular application. A simulated
payroll program producing checks, stubs, reg-
ister and general journal entries based on
student inputs is required of all freshmen
accounting students. This type of program
characterizes current usage. A/statistical
package was of primary concern. The 1130 had
such a package and one on the new system was
essential. STAT11 from the DECUS library
(DECUS #RSTS11-110) was selected due to its
cost, ease of use and demand on disk space.
The STAT11 package contains a RUNOFF version
user's guide which was modified to meet NIC
characteristics and made available to instruc-
tors and students who needed details beyond
those provided in class.

A slow and deliberate approach has characterized
Nichols' approach to integrating system usage in

the curriculum. While the system has only been
operationas since the Fall of 1977, the system-
related courses are well integrated with computer
usage. Non-systems courses are beginning to incor-
porate system usage. This phased-in approach (most
coincidental) has been helpful in allowing system
shakedown and development of adequate support facil-
ities for the truly novice user.

USER SUPPORT

While most of the users on the system were enrolled
in systems-related courses, it was easy to explain
system operations. Although it placed a large bur-
den on the instructor, it was the only recourse
without adequate documentation for system operations
and usage. To a user at any level, support must be
provided. Ideally, the goal for user support should
be personal assistance when required, combined with
written tutorials and reference material. Nichols
has taken significant steps toward reaching this
goal.

User's Guide

A problem which plagued any efforst to provide user
support was the lack of any adequate written mater-
jals for novice users (and in many cases the system
manager). Programming manuals are not appropriate
learning texts. They are not written as such and
can not be expected to serve the purpose. A guide
for novice users which would serve as a combined

601

statement of RSTS/E as impiemented on NIC and BASIC-
PLUS was essential.

Attempts at writing a user's guide were inconclusive.
The time required for such a project is formidable.
Such time was not available to a system manager
trying to learn system operation and teach on a full-
time basis. The author became aware of a user's
guide which had been written by James Condict and
James Krupp at Middlebury College. They made avail-
able a copy of their 11 chapter guide in RNO.TSK
format (for a nominal fee). Each chapter was edit-
ed to conform to the Nichols environment. A chap-
ter on FORTRAN, in the final version, was omitted
since the language is not taught in any course.

The final copy of the manual was produced on a
daisy-wheel printer to achieve a document which is
easy to read and sells for $5.00.

The guide focuses on three main areas:

1. User orientation - Directed toward a novice
user, the guide leads a person through what a
computer is, how to sign on to RSTS, executing
canned programs and various ways of inputting
data to a program.

2. BASIC programming - a concise presentation of
BASIC-PLUS through matrix commands and sequen-
tial files,

System utilities - the commands necessary for
creating and maintaining BASIC programs as
well as various system utilities (e.g. PIP)
are explained.

The guide is useful to the novice BASIC user, a
user of canned library programs, experienced users
who need to become familiar with RSTS terminology
and function and for programmers who will be writ-
ing in FORTRAN and COBOL. This one document alone
has provided significant support for all system
users.

Hands-on assistance

Regardless of the breadth of written documentation
provided for system users, there comes a point
where personal assistance is required. The four
academic terminals at MNichols are located next to
the computer room. In order to provide assistance,
student consultants are employed to operate the
terminal room, These individuals are usually work-
study students who have an interest and above-aver-
age knowledge of the system.

The consultants serve three main functions, Pri-
marily, they assist users in distress (e.g. recover-
ing a program which had not been SAVEd). They en-
sure both the quality of the physical treatment of
the terminals and the enforcement of a few essential
rules for terminal use (e.g. Running games is pro-
hibited when there is a waiting line, monitoring

use when a waiting condition exists to keep aimless
work to a minimum and the flow of users constant).
Lastly, the consultants provide a ready force of
interested programmers for simple programming pro-
jects. The Nichols' experience indicates that the
consultants should staff the room continuously dur-
ing operating hours (8 AM to 10 PM) until the in-
troductory programming students have completed their
first round of program creation, saving, modifica-
tion, and running (usually 2 weeks at the start of

a semester). Following that time, the computer
center staff and other users can handle most prob-
lems during the day. Consultants, however, are

used for approximately 4 PM to 10 PM daily, except

Friday and Saturday when the terminal room is closed,
Without the use of student terminal room consultants

a tremendous burden would be placed on the computer
center staff, a high level of student frustration

would exist, and the operating hours would be sharp-

1y curtailed since the security of computer and
terminal rooms could not be insured.

EXTENDED SYSTEM RESOURCES

The need for a system to support a curriculum and
all of its users exists. With limited financial
and personnel resources, a burden is placed on
those responsible for insuring that these needs
are met. Given these time, financial and person-
nel constraints, Nichols has taken the approach of
utilizing the tremendously cooperative nature of
most'RSTS/E sites in acquiring resources which ex-
tend system capabilities and ease of operation
whenever possible.

Account Creation and Accounting

Since account creation is one of the first tasks
with which a new system manager is confronted, it
can be a time consuming operation. After several
different approaches, Nichols now uses a modified
REALT program written at Middlebury College (DECUS
#RSTS11-109). Creation (and deletion) of groups of
accounts is easily accomplished. Most courses have
individual student accounts assigned. The creation
of any number of individual project, programmer
numbers (PPN) is easily accomplished with this pro-
gram. In addition, accounts are assigned random
passwords and a listing file is created for the in-
structor's use in actually assigning the numbers in
class.

An added benefit of this modified REACT program is
the creation of a virtual array file of all PPNs
which is used in modified MONEY utility. The draw-
backs of the standard MONEY program become glaring-
1y obvious the first time the listing is viewed -
no tables, by project or overall! The modified
MONEY program allows for a more usable system ac-
counting program. For non-privileged users, MONEY
allows project managers to see their entire project
and programmers their own utilization. The Middle-
bury MONEY, and others existing accounting pro-
grams achieve the same results, are a necessary
modification to the standard RSTS/E in order for
system management to monitor usage.

Language Processors

The curriculum orientation of Nichols dictated the
acquisition of two additional languages; COBOL and
FORTRAN. FORTRAN was necessary for compatibility
with packaged academic software which might be ac-
quired and written in the language. The justifica-
tion of a COBOL processor and the WATBOL compiler
in particular, has been detailed above. 'Anh added
feature of the WATMON (the monitor under which
WATBOL executes) is the existence of a SORT and
PRINT utility which is very helpful for student
programmers.

While these added languages are needed to support
‘the curriculum needs of the College, they must be
supported by adequate documentation. Again, the

DEC supplied FORTRAN manuals can not be viewed as
tutorial or even reference for most student users.
Fortunately, the Middlebury user's guide contains

a chapter on the FORTRAN implementation of RSTS/E,
When the Nichols® user‘s guide was constructed, this
chapter was excluded. It was, however, utilized as
a stand-alone FORTRAN user's guide. The same ap-
proach can be taken for any chapter or a related

set of chapters in producing specifically oriented
user documentation.

WATBOL documentation was not as concisely available,
As mentioned earlier, a text exists which is

WATBOL oriented (An Introduction to COBOL with
WATBOL (WATFAC) by Cowan et al.). However, there
are slight implementation discrepancies with RSTS/E.
The University of Waterloo provides a WATBOL User's
Guide and File Utility Guide which can be reproduced
to create a fairly concise set of documentation.
Minor modifications are needed to orient the sup-
port materials from a batch to an on-line orienta-
tion,

Text Editor

One of the major facilities of RSTS/E with which
Nichols found faults was an easy to learn and use
text editor, Both FORTRAN and WATBOL acquire the
use of an editor to create source programs. Creat-
ing and modifying documentation (including modifi-
cations to the user's guide) require an easy to
use editor. A line-oriented editor was obtained
from Babson College, Written by Doug Platte, this
editor has proven to be easily learned. Besides
line-oriented commands (add, delete, 1ist, replace),
it has string-oriented operations (insert, delete,
find) and possesses file merge capabilities. A
concise, well-written, manual is also available.

This editor is fairly smal1(27 blocks when compiled)
and has become the editor used at Nichols for all
editing operations.

Other facilities

A number of other facilities have been added to the
system to provide easier operation of the system
for the typical system user.

Modified LOGOUT - These modifications come from
the Middlebury package of utilities. It allows
for a user to respond with a "P" for the
“Confirm" prompt., "P" means, "Please log me out
even though I have exceeded my quota. A1l such
requests are logged into the GRIPE file where
they can be reviewed by the system manager. This
facility is helpful since a novice user may be
confused as to why he is above quota, advanced
users may in fact create programs beyond quota,
or a condition might arise where some backup
files exist and a user is not sure whether they
could be deleted., The philisophy here is “better
safe than sorry." When the computer center staff
or instructor is available, these conditions can
be resolved.

Detached Batch - This is another Middlebury util-
ity which operates as a detached job and does not
need OPSER, QUEMAN or the SPOOLER to be operation-
al. Uhen batch processing is desired, the pro-
gram detaches until the job has been completed.
Functionally, this batch processor is equivalent
to the standard DEC program but operates with
considerably less overhead.

602

Password Changing - Password changing programs
1ift a considerable burden from the shoulders of
the computer center staff and/or instructor,

Once the randomly generated password has been as-
signed (through the modified REACT program) each
student is responsible for remembering and main-

taining the password. The system manager, however,

has the ability to create a file of project num-
bers where this capability is not desired. The
public access number and a course's number (where
many students use the same PPN) fall into the
category of PPNs where this change capability {is
not allowed. The password maintenance facility
and a fixed disk quota instill a sense of con-
trol for each user over his/her account. In ad-
dition, the responsibility for several aspects of
account upkeep is clearly placed in the user's
hand.

SUMMARY AND CONCLUSIONS

Faced with the related problems of supporting nov-
ice users and curriculum integration of a RSTS sys-
tem, the Nichols approach has been an evolutionary
one. Initially, only those courses which were di-
rectly related to computer usage (the systems
courses), utilized the system. Novice users in
these courses were supported by instructor-provided
aids and guidance. Support schemes (terminal room
assistants, operational guidelines, manuals, etc.)
were developed using the students who were most di-
rectly involved with computer usage. In order to
extend the integration of the computer into non-
system courses, these support facilities should be
in place. A gradual integration of these non-sys-
tem courses has been occuring. In this way, each
new application can be observed and stabilized
prior to a new undertaking. This approach seems
mandatory with limited time, personnel, and mone-
tary resources.

Resources beyond the "standard" RSTS system were
also incorporated. Again, the 1imiting resources
in a small college dictated extensive use of mate-
rials produced at other colleges. User application
programs and RSTS utility programs were acquired

at nominal cost from a variety of sources to com-
plement system operation. A comprehensive user's
guide for BASIC-PLUS and RSTS relieved the burden
of having individuals serve as the primary resource
for instruction and assistance. Once completed,
efforts at supporting other system features could
then be undertaken. System accounting, an easy-to-
use text editor, WATBOL, and various utilities re-
lated to the handling of accounts, were added to
enhance the system resources.

Nichols has been able to provide user support and
curriculum integration through combined use of in-
house efforts and shared development from other
sites.

603

ON-TARGET,
An Effective Bottom-Up Approach to Job Shop Control

Norman J. Viehmann, President
Viehmann Corporation
Woburn, Massachusetts

ABSTRACT

Job Shop Managers are measured by the results of delivery
performance, cost performance, and the value of work-in-pro-
cess inventory. These objectives conflict with one another.
Traditionally, managers of Jjob shops have had to base their
decisions on summaries of incomplete data. To obtain useful
information at an appropriate level of detail it is neces-
sary to process very large volumes of data. The computer
can provide such detail. It also makes possible measure-
ment of a shop manager's results separately from those of
the materials manager, the production control manager and
engineering manager. The great change in level of manage-
ment sophistication made possible by the computer is not
always practical to implement in one giant step. This paper
describes a bottom-up approach for providing job shop man-
agers timely, detailed information that has successfully
used the computer to help improve results.

INTRODUCTION

At all levels, managers of job shops are faced with
complex decisions, Typically the reports used by
job shop managers lack the detail necessary to sup-
port good decisions. As a result, work-in-process
becomes excessive, serious bottlenecks develop, and
overall delivery performance remains beyond manage-
ment control in the attempt to balance overall pro-
duction with order input levels.

Traditional reporting includes Total Shop Load by
Week; Number of Jobs In—house/Released; Current
Backschedule (Load and Number of Jobs); Hot List of
Top Priority Jobs; and Open Master List. Planned
capacity is reviewed weekly. Gut feeling of work-
load contributes more to decisions on overtime, hir-
ing and layoffs than data in these reports.

Policy for accepting incoming orders is oversimpli-
fied. Orders are accepted for ship dates requested
by customers unless the shop is shipping signifi-
cantly further behind schedule than normal. In that
event, schedule dates are negotiated. The effect on
load is rarely checked-out during the order accept-
ance process.,

What is needed is a system of reporting that will
do for Jjob shop managers what time-phased require-
ments planning did for material managers. However,
an even more complex reporting scheme is required.
To control deliveries of the hundreds of orders
with tens of thousands of operations in a Jjob shop,
it is necessary to control 1) the size of the
queues of jobs waiting at each work center, 2) the
load by week for each work center, and 3) the cor-
responding effective work center capacities,

Sophisticated computer-generated reports can pin-
point needs for management action. In practice,
these reports cannot be introduced directly to

Proceedings of the Digital Equipment Computer Users Society

replace the old manual system. Intermediate steps
are required to allow management to get the feel
for the new reporting tools.

This paper describes an "entry level" Shop Floor
Control System that has been introduced in two job
shops. The first system was installed in batch
mode and has operated successfully without change
for ten years. The second system, described here,
features on-line entry and update. It is operating
under DEC's RSTS time-sharing system on a PDP-11/70
and is being installed in a manufacturing job shop
on a PDP-11/34 under CTS-500. The programming
language is BASIC PLUS 2.

We have called the system the "ON-TARGET Job Shop
Control System". It provides the means for accum-
ulating and storing all the data that is needed for
basic detailed decision-making on the shop floor
and successive management levels, Before looking
at the system design let's take a closer look at
the problems and decisions that occur daily in
every job shop.

THE JOB SHOP ENVIRONMENT

A typical medium-sized job shop has 50 to 100 work
centers for performing machining, assembly and/or
hand operations on hundreds of different product
items. Bach product item has a unique engineering
drawing or sketch and a unique routing., The rout-
ing defines the sequence of operations and it spe-
cifies the work center, the setup time, and the
production rate for each operation,

Shop orders are created to satisfy either inven-
tory or direct customer orders., Upon acceptance, a
shop order is assigned a scheduled ship date. It
may also be assigned a priority code that defines

San Francisco — November 1978

its importance relative to other orders. Many Jjob
shops accept orders for products that require a new
routing to be prepared by methods engineering. It
may be necessary to procure raw material for the
spetific order. An order can logically be released
for production only after methods engineering is
complete and the material is available.

Machine feeds and speeds used in production often
differ considerably from what is specified on the
routing. Sometimes the tooling and occasionally
the work center actually used are different from
the routing., Once a computer system is installed
it is important that routings be updated to match
actual practice.

MANAGING THE JOB SHOP

Purchasing has the responsibility to furnish mater-
ial, Methods Engineering is responsible for speci-
fying how each product will be manufactured. Manu-
facturing Engineering is responsible for specify-
ing and maintaining the jigs and fixtures and mach-
ines. Manufacturing must see that it completes
shop orders within cost and delivery objectives that
it has accepted.

The effects on delivery of late material, incorrect
methods specifications and machine failures can be
quantified and reported. They seldom are. Most
often, manufacturing bears full responsibility for
deliveries and is expected to make up time for late
material, experimentation with methods and facility
downtime,

It is not uncommon for Manufacturing to find itself
faced with a surge of new load when its backschedule
load has already gone out-of-control and it has
insufficient lead time to hire and train new emplo-
yees., Delivery performance decreases rapidly. Over-
head costs rise. Work piles up on the shop floor.
Lots are split to make partial deliveries. Jobs
are lost in process and expediting effort and over-
time soar.

The most direct solution to this very common situ-
ation is to ppovide a set of reports that can pro-
mote the liklihood of making the best decision at
the right time,

The shop management decisions that directly effect
delivery performance are, from the bottom up:

Shop Floor Scheduling:
What job should be run next on this work center?

Loading/Overtime:

How many man hours should be assigned to each
work center today; this week?

Capacity Planning/Hiring-Layoff:

How many man hours should be scheduled for the
entire shop next month?

Master Scheduling:

How much load shall we plan (or accept) by
period?

In order to make these decisions the manager needs
to have the following information:

606

For Shog Scheduling:

1. What jobs are available to setup on this work

center?

2, What Jobs are about to become available for
setup?

3. What is the Schedule Date; the Priority; the

Hours required on this work center and number
of operations remaining for each job waiting
at this work center?

For Loading:

1. How many standard hours are in queue at this
work center?

How many actual hours are required from this
work center to complete back schedule and
current weekly loads?

3. What is the average production output of this
work center?

What is the current planned capacity of this
work center?

2.

4,

For Capacity Planning:

1. Has the queue been increasing, remaining
stable, or decreasing for this work center,
this department, the shop?

Is the anticipated load increasing? Is there
a load swell or depression moving through the
profile of loading weeks? Is load decreasing
for this work center, this department, the
shop?

2l

For Master Scheduling:

1. If I accept this Jjob will it create or
encounter an overload on any facility?

2. What ship Schedule Date can be assigned to
this job within the limits of current shop
load?

A system that provides this information requires
data on every operation performed on every Jjob.

This same information can be used to record job

costs,

HOW THE ON-TARGET SYSTEM CAME INTO BEING

Design of the system was initiated in response to
what were viewed as serious problems in a job shop
that manufactures heavy equipment. Jobs are both
make-to-order and for inventory.

1. Approximately 75 jobs were being rescheduled
each week., This represented about ten per-
cent of the released jobs.

The critical ratio values shown on the daily
shop schedule presented priorities that did
not coincide with the knowledge of shop man-
agers., The report was not used in the setup
decision-making process.

It was decided to involve key production people:
managers, supervisors, methods engineers, lead men,
expediters in an intensive study to reveal pro-
blems and suggestions. Within one week a workable
priority policy was developed and a system design
concept completed.

The strategy of the system design was to provide
only the essential facts needed, where and when

needed, It was determined that there was a real
need for a reliable shop floor scheduling report.

This report would be used if priority information
was credible. The priority system that was agreed
on reflected solid facts that seldom changed as a
job progressed through the shop.

DESIGN CONCEPTS

General

The Job Shop Control System is part of a total bus-
iness system that includes inventory control, order
processing, general accounting, payroll and sales
applications, This business system is operating on
both in-house systems and on time-sharing services,
using from small PDP-11/34 configurations to large
11/70 systems.

The software design allows maximum flexibility to
accomodate the needs of individual organizations,

A single company can tailor separate Job Shop Con-
trol Systems to the specific needs of different
shops or divisions. For instance, report files and
transaction files are maintained independently of
time periods. Each user can select when to run his
reports and when to clear his files.

Each user has his own unique access code., This
limits him to affecting his own files and protects
his data base from access by other divisions or
departments.

The on-line editing feature facilitates assignment
of the data entry responsibility to the deparument
that is the source of the data. Experience has
shown that this improves the accuracy of the data.
It reduces the cost of data entry by greatly reduc-
ing editing and review effort, On-line updating of
multiple files provides information that is more
current by one to six days.

Every application function is accessable by a dir-
ect command that is contained in the menu, The
application functions fall into the following cat-
egories:

Master File Maintenance and Display
Shop Floor Transactions
Add/Modify/Display Jobs

Reports

Data Entry

Data entry is in conversational mode. Key informa-
tion such as job number, clock number, work center
number and part number are edited on-line. When a
value is entered that is not recognized by the
system an error message is displayed. For certain
fields the user may enter a "HELP" command to cause
a list of valid values to be displayed. The data
entry approach fulfills the self-teaching design
strategy and allows an individual to use simplified
procedure as he becomes familiar with the system.

File Structure

The master files and the Open Job file are keyed
index files. A single record is retrieved with two
accesses, Records in th® Shop Transaction file are
chained internally by Job and externally to the
corresponding operation detail record in the Open
Job file,

607

Reports

Reports are requested from terminals via the Report
Menu. There are four output options: 1) Display at
a CRT terminal, 2) Print at a remote printer term-
inal, 3) Print at the central system printer, and
L4) Create a "spool" file and hold for printing
later.

The print programs are designed to be independent
of periodic cycles, so each user can specify his
own reporting cycles. The result is that one user
can vary his reporting cycles as special needs
arise.

The Job Shop Control System reports are designed to
provide the facts necessary for making well-timed
decisions that will improve in-process inventory,
shop efficiency, costs and deliveries. For in-
stance one user established the following initial
reports:

Daily: Shop Floor Schedule
Transaction Register
Performance Exceptions

Weekly: Work Center Utilization

Direct Labor Analysis
Scrap/Reject Analysis

On Request:Job Status - Selected Categories
Job Cost
Shop Load

DESIGN FEATURES

Direct Inquir

The system provides direct inquiry to Customer,
Employee, Work Center and Routing master records;
to the Standard Rate file, to Open Job records
and to Open Job Routing detail records. Inquiries
can be displayed or printed at remote CRTs or
printer terminals.

The master files and the Job file are up-to-date
as of the last transaction entered to the system.
Inquiry always provides the latest information.

Job Processing

New Jjobs are added to the system via the Job Menu.
The data entry clerk need only key in the product

code, ship schedule, order type, customer number,

customer P. O. number, lot quantity and priority.

The system assigns a sequential Jjob number and an

initial status code. This code can be overridden.,
For instance it may be known that material is al-

ready available when the order is entered.

Besides entering new jobs there are many other
important day-to-day informational functions that
need to be transmitted to the Job Shop Control
System. These include:

Change ordering information,
Change the Jjob routing,
Split the Jjob,

Release Jobs, and

Cancel Jjobs.,

All of these functions plus "Display Job" can be
accessed through the Job Menu.,

The CHANGE JOB command is used to change priority,
ship schedule, or customer purchase order number.
The lot quantity, status and estimated material
cost can also be changed provided the Jjob has not
been released to production,

It is not uncommon for the methods department to
change the routing after an order has been released
to production., ON-TAGET recognizes this reality of
maintaining accurate shop floor schedules and load.
The system makes it possible to change routings and
have the change take effect while a Job is actually
in process., It is possible to change operation time,
to insert or remove or change the sequence of oper-
ations which follow the last operation for which
labor has been reported.

The SPLIT command recognizes another reality of job
shops, the split lot. The new quantities, priorities
and ship schedules are assigned to each split lot
as specified., Actual costs are split proportion-
ately between the jobs to the operation where split.

The RELEASE and CANCEL functions provide a simple
means for changing the status of many jobs with a
single transaction,

Transaction Processing

Shop transactionscan be classified in the following
categories:

Production Labor

. On-standard

. Substitute or Added Operations
. Setup

. Rework

Non-Production Labor or Daywork
Material
Merge Lots

Transactions can be entered either from a shop floor
terminal or from a display terminal located in the
office. The shop floor terminal can capture data
directly from the machine operators. Prepunched
cards save additional effort and can be used to
enter employee clock number and job number. The
shop floor terminal capturesand enters actual hours
automatically.

Only six or seven items are entered for standard
labor transactions:

Clock number

Job number

Operation number

Actual hours (via office CRT only)
Quantity good

Quantity rejected

Operation complete, yes or no.

If off-standard, the work center number needs to be
entered. One manufacturer experiences an average
of only 21 keystrokes per entry.

The MERGE transaction brings the actual cost of one
lot that is combined with another lot into the cost
accounting trail of the second lot, The final job

cost report then accurately reflects the cost of the

808

combined lots,

Non-production transactions capture actual hours in
up to ten daywork categories, These are reported
daily by employee and week<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>