
USA 1985 FALL

PROCEEDINGS OF THE DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

l l

---1 D

____, E

- c

- u 1--t-

/1 ~ I\
s - I--

\J _L/

[Ql
DEC US

PROCEEDINGS
OF THE

DIGITAL EQUIPMENT
COMPUTER USERS

SOCIETY

Presentation and Reports
USA Fall 1985

Anaheim, California
December 9-13, 1985

Printed 1n the U.SA

"The Following are trademarks of Digital Equipment Corporation"

ALL-I N-1 D1g1tal logo Rainbow
DEC Edu System RSTS
DECnet Eve RSX
DECmate IAS RT
DECsystem-10 MASS BUS UNIBUS
DECSYSTE M-20 PDP VAX
DECUS PDT VMS
DECwriter P/OS VT
DIBOL Professional Work Processor

Copyright DEC US and Digital Equipment Corporation 1986
All Rights Reserved

The 1nformat1on in this document is sub1ect to change without notice and should not be construed as a commitment by Digital Equip­
ment Corporation or DECUS. D1g1tal Equipment Corporation and DEC US assume no responsibility for any errors that may appear in
this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DEC US PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY
OTHER PRODUCT WILL NOT CONTAIN TECHNICAL DATNINFORMATION THAT IS PROPRIETARY, CLASSIFIED UNDER U.S.
GOVERNED BY THE U.S. DEPARTMENT OF STATE'S INTER NA T/ONAL TRAFFIC IN ARMS REGULATIONS (/TAR)."

DECUS and Digital Equipment Corporation make no representation that in the interconnection of products in the manner described
herein will not infringe on any existing or future patent rights nor do the descriptions contained herein imply the granting of licenses
to utilize any software so described or to make, use or sell equipment constructed 1n accordance with these descriptions.

Ada 1s a trademark of the U.S. Government, XE ROX 1s a trademark of Xerox Corporation, IBM, PROFS are trademarks of International
Business Machines Corporation, UN IX 1s a trademark of AT&T Bell Laboratories, CP/ M, PU I are trademarks of Digital Research, Inc.,
MS-DOS is a trademark of Microsoft Corporation, TSX-PLUS is a trademark of S&H Computer Systems Inc, R:BASE.4000 1s a
trademark of M1crorim, Intel 8088 is a trademark of Intel Corporation, LOTUS 1-2-3 1s a trademark of Lotus Development
Corporation, M UL Tl PLAN 1s a trademark of Microsoft Corporation, Mylar is a trademark of E. I. DuPont deNemours & Co., PLOTLN 1s
a trademark of Image Research and Compugraphic Corporation, MUM PS is a trademark of Massachusetts General Hospital,
Macintosh is a trademark of licensed to Apple Computer, Inc., Multibus is a registered mark of Intel Corporation, 8086 is a trademark
Intel Corporation, VENIX is a trademark of Ventur Com., Inc, Appletalk is a trademark of Apple Computers, Inc., INGRES 1s a
trademark of Relational Technology, Inc ..

The articles are the responsibility of the authors and therefore, DECUS and D1g1tal Equipment Corporations, assume no respon­
sibility or liability for aritcles or information appearing in the document.
The views herein expressed are those of the authors and do not necessaily express the views of DECUS or Digital Equipment
Corporation.

FOR EWARD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide
society of users of computers, computer peripheral equipment and software manufactured by Digital
Equipment Corporation. The U.S. Chapter of DECUS has approximately 41,000 active members.

DEC US maintains a library of programs for exchange among members and organizes meetings on local,
national and international levels tofu lfi 11 its primary functions of advancing the art of computation and pro­
vid i ng a means of interchange of information and ideas among members. Two major technical symposia
are held annually in the United States.

For information on theavailabilityof back issues of Proceedings as well as forthcoming DEC US symposia,
contact the following:

DECUS U.S. Chapter
Digital Equipment Corporation
219 Boston Post Road, BP02
Marlboro, MA 01752-1850

All issues of past Proceedings are available on microfilm from:

University Microfilms International
300 North Zeeb Road
Ann Arbor, Ml 48106

This volume of the Proceedings contains papers
which were presented at the Fall 1985 Symposium of
the Digital Equipment Computer Users Society.

The Fall 1985 Symposium was held at the Disneyland
Hotel and Convention Center, in Anaheim, California,
from December 9 through December 14, 1985.

Five thousand seven hundred and sixteen DECUS
members converged on the Disneyland Hotel, and Dis­
neyland itself that week. They attended birds-of--a­
feather sessions, 70 pre-symposium seminars, and
approximately 1 000 presentations.

In Anaheim, Digital and DEC US emphasized networks.
Increasingly, networks are moving out of the computer
room and into the office, out of the office and into the cor­
porate backbone. Most SI Gs had sessions which high­
lighted the benefits and problems of using their products
in networks. Networks, whether composed of people or
computers, are becoming more important in the global
scheme of things.

The National Science Foundation is sponsoring a super­
computer project by linking United States universities
to computer centers with supercomputers. The inter­
connection of multiple campus networks that this pro­
ject requires raises many questions-who is responsible
for naming and addressing? How will routing be done?
What implications are there for networks that the univer­
sities may be connected to? None of these are answered
easily. This is the kind of problem that is becoming com­
mon, the interconnection of large networks. Digital has
Easynet, 40,000 computers in one DECnet network.
DEC US has" Usernets," thousands of smaller networks.
By working together, Digital and DECUS can provide
tools and technology to ease the interconnection of
networks.

PREFACE

Each day, more and more Digital computers are linked
into larger and larger networks, and networks begin to
expand until they touch one another. The global inter­
net, in which any system can communicate with any
other system, is quickly moving upon us. Com­
munications across the city, the state, the country, and
the world are more and more commonplace; soon an
electronic mail message from Sydney will be as com­
mon as one from New York. Computer networks will
expand the number of people we talk to, and change the
way we do the talking.

In this time of high global tensions, the increased
availablility of a direct channel between one human
being and another will help our ability to speak to one
another, to reach out to one another, and to understand
one another. It is not easy to fight with someone that you
talk to every day; it is impossible to have conflict with
someone you truly understand. By linking ourselves
together electronically, we will strengthen the bonds
that hold us together as one people, sharing one planet,
in peace.

My thanks on behalf to the entire membership go out to
Mr. Jack Cundiff and Dr. Jeff Jalbert, the DEC US volun­
teers who led the Anaheim symposium effort Their inten­
sive weeks of work with Ms. Nancy Wilga, Ms. Joanie
Mann, and Ms. Gloria Caputo of the DEC US staff made
our national meeting truly impressive. Their experience
and leadership are sincerely appreciated. For her spe­
cial work on the Proceedings, I would also like to thank
my colleague, DECUS staff member Cheryl Smith.

Proceedings Editor
DECUS U. S. Chapter Publications Committee

TABLE OF CONTENTS

ARTICLE PAGE

ARTIFICIAL INTELLIGENCE SIG

A VAX LISP Expert System for Analyzing Security Alarm Data
Sarah Townsend........ 3

The Implementation of the Fault Localization, Assessment, and
Repair Expert System (FLARES)-Tools, Languages, and Issues
Susan E. Bill-Wray, John T. Williamson..... 7

BUSINESS APPLICATIONS SIG

Design Principles for Software Manufacturing Tools
Paul G. Bassett. 1 5

Decision Support Systems and DEC Micros
Kuriakose Athappilly............ 25

DATA ACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

LISREL: An Application, An Explanation
Leanne Whiteside...................................... 33

System Chargeback and Resource Tracking using RS/1
Robert B. Goldstein, Gertrude Stabiner.. 55

Development of a Digital Interactive Controlled Evaluation
System
Scott B. Eckert, Robert L Ewing, Gary B. Lamont.... 61

Customizing RS/1 a GA Technologies
Aram K. Kevorkian. 65

PRO: A Multiple Priority, Multitasking Process Control System
and Language as Implemented in an Inhalation Exposure
Facility
Edwin R. Lappi, Leon C. Walsh. 69

Expert System Usage in the Laboratory
Thomas A. Turano...................................... 77

DATA MANAGEMENT SIG

Encryption for Beginners
Bart Z. Lederman. 93

Introduction to VAX Information Architecture Databases
Eric A. Newcomer 102

The Implementation of an Academic Faculty and Student
Database Management System
David A. Gaitros, Robert L Weing, Gary B. Lamont. 111

Data Management System for Academic Personnel Admins­
tration
Lisa M. Rotunni .. 11 5

SQUDSRI and QUEUDSRI Implementation
John D. Markel. .. 121

DBMS-20 Sorted Set Structures
Jeffrey S. Finton, David W. Chilson 129

A Programmers Database System for Software Development
and Maintenance
Rachel Schwab .. 1 59

MATRIX: A File Organization for Image Processing
Philippe E. Collard 163

ARTICLE PAGE

DATATRIEVE SIG

DATATRIEVE-11 to VAX DATATRIEVE Conversion Panel
Joe H. Gallagher, Bart Z. Lederman 1 73

EDUSIG

Computerized Decision Support for College Administrators
Walter H. Frey, Vernon M. Cline 181

Evaluation, Selecting, and Implementing an On-Line Library
Card Catalog
Rob Robinson ... 185

DAL Magic - Some Surprising Features of DAL
Pete Boysen ... 1 93

8088 Macro Assembler on the Rainbow Micro Computer
Robert S. Workman 211

GRAPHICS APPLICATIONS SIG

TCHART: Development of a Device Independent Chart Draw­
ing Program
Judith Bardell. ... 219

A Software Display System for Medical Image Processing
Luc Bidaut. .. 225

LARGE SYSTEMS SIG

Using Personal Computers with System 1 022
Randolph M. Pacetti 237

VMS for TOPS Users: End User Interface
Kathy Rosenbluh 247

VMS for TOPS Users: Program Development
Kathy Rosenbluh 253

TOPS to VMS Business Application: TOPS-1 O/VAX Perfor­
mance Comparison
Frank Francois, Ralph Bender 257

LISP on 36-Bit Systems
Randolph M. Pacetti 277

TOPS-20 Directions
Donald A. Kassebaum 279

TOPS-20 V6.1 for Users
Carla J. Rissmeyer 281

TOPS-20 V6.1 for System Administrators 283

TOPS-20 V6.1 for Systems Programmers
Douglas Bigelow 285

Ethernet Planning and Installation Considerations
Donald A. Kassebaum 287

Hardware Planning for Integration Customers
Gary Bremer ... 317

TOPS/VMS Performance Comparison
Gary Bremer ... 319

TOPS-10/20 and VMS Layered Product Comparisons
Gary Bremer ... 325

A VAX LISP Expert System for Analyzing Security Alarm Data

Sarah J. Townsend
Institute for Defense Analyses

Alexandria, Virginia

Version 4 of VAX VMS provides auditing capabilities designed
to notify managers of security attacks and breaks. This
paper outlines a prototype of an expert system designed to
analyze these security alarm messages in order to recognize
events causing a break as well as persons attempting an
attack.

This paper describes the workings of this LISP program, in
more detail than general artificial intelligence theory, but
including no LISP code. Plans for future enhancements of the
system are given. Suggestions to DEC for security auditing
improvements are also included.

The research for this paper was done at the Univer­
sity of Maryland at Baltimore County on a VAX 8600
running VMS Version 4.2. I would like to thank
them for their support of this research, especially
Jack Seuss of the Computer Center at UMBC who made
computer resources available for this research.

Much of the security theory and some of the A.I.
theory used in the research described in this paper
is from work done by Dr. David J. Slater {UMBC In­
structor) and I would like to thank him for his
many valuable contributions and suggestions.

Before the main description of the system begins, a
few definitions are needed.

Definitions

Prototype

A prototype has the following properties:

Event

A. It demonstrates the basic workings of the
system.

B. It is extensible. That is, there is noth­
ing in the prototype system that only
works because what is being handled is a
subcase of the total problem.

C. It gives a clear picture of how a more
fully developed system will operate.

An event is meant to mean anything recordable that
might relate to the security of the system. Cur­
rently this includes only the security alarm mes­
sages generated by the audit command {new in VMS
Version 4). Later it will include other data
sources, such as monitor and accounting data.

Thread

Threads are chains of events which are linked in
one of two manners. Either they are chains of
events all of which are similar in some manner, as

Proceedings of the Digital Equipment Computer Users Society 3

in A below, or they are chains of events, such that
each event is a precondition for some subsequent
events, as shown in B below.

Frame

A frame is a description of a possible type of secu­
rity problem, with descriptions of what types of
threads are necessary for, and what types of threads
are relevant to this type of problem. This is the
standard usage of the term in artificial intelligence.

Picture

A picture is an instantiation of a frame. That is,
it is a collection of threads that match some
notion of a security problem.

Why LISP?

This system was written in VAX COMMON LISP, because
LISP is the language most adapted to our applica­
tion. Two features of LISP make it particularly
suited to our needs:

Flexibility

Traditional expert systems involve well defined
problems which are understood by experts and solely
use knowledge from experts. This program deals
with heuristics imitating common sense in a poorly
defined problem which is not well understood, and
in which many of the experts disagree. Thus, it
was clear from the start that the evolution of new
expert system techniques was going to be part of
this research. Specifically, the ability to rede­
fine a connection and change the type of logic used
in making connections was essential. Only in LISP
are relationships defined in such a way as to allow
logic containing relationships of relationships.
It was also necessary to extend the traditional
concept of a frame.

A ~ccessful mlLLJk!UCcessful rn• 1-~~ful rn•
~ -ABC.Dl\]'T~s -ABC.DI\~ - ABC.Dl\n

B l~~s~ ~. ~ ~~I~Mri· I =~~~es

Anaheim, California-December 1985

Tools

LISP provided tools which easily facilitate the
maintenance of events and the manipulation of frames
even though both items are complicated structures.

Overview

The system first creates a list of events,
Figure 1.

Figure 1

These events are then checked for connections to
form threads, Figure 2. Any number of events may
be in a single thread. An event may be in any
number of threads. A single event may be a thread.
An example is mofidication of the operator log
file. If an unauthorized person modifies that
file, no other evidence of the attack may exist.

:e ! +'e~ i +ie~ ! +ie~ 1
1+ie,,1

: 1 ' I ! ' r. ; : ~ . ' . ~ .
:__j_j ~ L.__Jj ~ LJ.!J

-- /T...-..
• .. 1)
\.~-

--
'e, : "':
: i ! --.. ' ·--·

Figure 2

A good way to picture threads is as different
shaped objects, like those depicted in Figure 3.
Each shape represents a different type of thread.
For example, a series of illegal login attempts
may be thought of as an oval.

Figure 3

A frame can then be pictured as a block with dif­
ferent shaped holes in it (Figure 4). Only a par­
ticular shape of thread fits into each of the
frame's holes.

4

l 1

ill'-1
11 •.

11 I
Figure 4

For each thread it is then determined which frames
these threads may be used in, Figure 5.

Each time such a frame is found, an attempt is made
to find the remaining threads necessary to form a
picture from this frame, Figure 6. Finally, a
search is made for threads which help to clarify
the picture created.

The final part of the system is a description
facility, which prints out a report on each of the
pictures. The user decides the level of detail
printed.

Thread Creation

Each event is linked to objects in the system
based on any piece of information connected with
the event. These include:

1. User name
2. Device
3. Fi le name
4. Time

Two routines then look at this structure of events,
attempting to create threads. The first such rou­
tine simply looks for a multiplicity of events re­
lating to the same object. The second routine
looks for chained events where the attacked object
of the first event is the attacker in a later event,
Example 1.

I.le 1 j e7 1le12
1

1

1 r 1

11 Progra• A I + I PrograM B + •PrograM c
II Modifies 1

1
I Modifies I 11Modifies I

ii i l
. , I I ' I I i I Prograrw1 B i Prografl'I C I ,SYSUAF. DAT!

Example 1

The actual method of establishing connections is a
series of complex heuristics. Some connections
are simple pattern matching. Others recognize more
complex relationships, such as the fact that a par­
ticular program behaves differently when activated
by a privileged user. Future versions of the sys­
tem will allow thread recognition to be user tun­
able depending on the environment. A site where
all software used is written in-house may decide
to ignore functions that test for Trojan Horse
programs, for example.

ltmlm, 181
I : I : I

iJ~I
ii
I

/~ .,
+

Figure 5

!+•
l~

~\
\
'
\
•

<~
\

Figure 6

Creation of Pictures

In our program, the holes of a frame are actually
heuristic routines. They compare the thread passed
to the routine with the shape they want, and return
a flag designating whether the thread matched.

Not all the holes of a frame need to be filled for
a picture to exist. Some of the holes are flagged
as necessary (those labeled I in Example 2), while
others are flagged such that only one of a group of
holes must be filled for the frame to be full
(those labeled X in Example 2). For exdmple, the
oval in Example 2 may be modification of the system
startup file. The other holes then represent dif­
ferent methods of accomplishing the attack: the
plus sign changing the file's protection; the tri­
angle changing the UIC of the user; and the
squiggly shape changing mode to kernel.

x+•r
xJ~x

Example 2

Each hole labeled X in Example 2 is significant
unto itself. Even though they are optional in this
frame, each hole is part of another frame where it
is necessary (labeled I) and where other holes ex­
plain how the attack was accomplished.

Holes also have a number associated with them desig­
nating the number of occurrences of the thread to be
counted as part of a single picture. Infinitely
many illegal login attempts are part of the same

5

picture, for example, while each occurrence of
SYSUAF.DAT modification is a separate picture.

Future versions of our program will include the
concept of dynamic frames. This will allow a frame
to create a new frame if data shows the old one to
be inadequate.

The basic technique used to create adjustable frames
is that a three-valued recognition function is
associated with each frame. This function can re­
turn the traditional values of match and failure to
match. However, it can also return a value which
indicates that the matching criteria may need to be
extended.

This returned value invokes a series of procedures
which try to determine what extensions to the frame
or matching criteria would enable a match. Then a
second series of procedures is invoked which attempt
to determine which, if any, of these extensions are
reasonable. An extension may be the addition of a
hole, the removal of a hole, or the initiation of
monitoring to collect relevant data.

To extend Example 2, suppose the system startup file
was modified but none of the holes labeled X are
filled. The program will then search through events
for anything which is connected to the system start­
up file or the atatcker. If an entry is found, such
as gaining SYSPRIV privilege, then a new frame is
created containing 5 holes, Example 3.
!

I +er Ix
I

i

J~x
x !

Ix
I
I
I

Example 3

Reporting

One of the features of this system is that it gives
a summary report classifying pictures as to their
nature. Some of the possible natures of pictures
are:

1. Definite successful breach of system.
2. Possible breach of system.
3. Dangerous attack.
4. Attack of lesser danger.
5. Suspicious unexplained happenings.
6. User who probably needs greater system

education.

This summary report is short, approximately one
line per entry. The security manager may then re­
quest reports at higher levels of detail on any of
the pictures.

Areas of Planned Improvement

* At present the only events the system looks at
are those signaled by the VMS security auditing
mechanism. Additional monitoring planned includes:

A. Accounting records.
B. Monitor records.
C. Detached processes created specifically

by this system.
D. A user-history database of each user's

typical activities.

* At present the system does not have the capa­
bility of increasing the monitoring of areas where
it looks like there is the possibility of suspicious
activity.

* At present the system runs extremely slowly.

* The heuristics for establishing connections, and
the types and capabilities of the frames, will be
continually enhanced.

* The concept of dynamic frames as described ear-
1 ier will be added.

* Thread-making tunability will be included to
allow the system to closely fit individual sites.

Suggestions for DEC Security Auditing Improvement

During the development of this system, we noticed
several areas where DEC's security auditing might
be improved:

* There should be several classes of security
audit so that one could reply/disable a terminal
for some but not all security events. This is im­
portant because most events are meaningful only
when viewed in a larger picture, while there are a
few events of which one might want immediate
notification.

* Allowing security events to be recorded in a
file other than OPERATOR.LOG.

*Having security events recorded in a compressed
form.

6

*Having some form of hardware that makes it impos­
sible for a user no matter how privileged to alter
the security log (such as a tape drive that cannot
be rewound under software control).

THE IMPLEMENTATION OF THE FAULT LOCALIZATION, ASSESSMENT AND REPAIR
EXPERT SYSTEM (FLARES) -- TOOLS, LANCUAGES, AND ISSUES

Susan E. Bill-Wray
John T. Williamson

Combat Control Systems Department
Naval Underwater Systems Center

Newport, R. I.

AVAILABLE FOR PUBLIC RELEASE

ABSTRACT

Digital Equipment Corporation's BLISS-based OPSS,
Version 1, is currently being used in the development
of an expert system named FLARES. The authors'
experience with OPSS has led to the discovery of five
maxims on the use of OPSS. The experience has also
provided the basis upon which to form an evaluation
of OPSS as an expert system development language.
This paper presents the FLARES activity, the five
maxims on OPSS, and the evaluation.

1. INTRODUCTION

FLARES (Fault Localization, Assessment and Repair
Expert System) is a knowledge-based system
currently under development at the Naval
Underwater Systems Center. FLARES has the three
functions of diagnostic reasoning, system
assessment, and equipment repair assistance. The
major development language is Digital Equipment
Corporation's BLISS-based OPSS, Version 1. The
FLARES project has provided the authors with
experience in the use of OPSS which is being
shared through this paper. First, in sections 2
and 3, an overview of the FLARES domain and the
system design are presented. Section 4 describes
the OPSS language in preparation for more
detailed discussions on the lessons that have
been learned about using OPSS. These learned
lessons are presented in section 5. An
evaluation of OPSS as an expert system
development language is given in section 6, and a
summary is given in section 7.

2. THE FLARES DOMAIN

FLARES is a knowledge-based expert system
designed to aid submarine personnel in the
troubleshooting of faulted equipment, to perform
an assessment of the degraded equipment, and to
provide repair guidance. One of the duties of
submarine personnel is the operation and
maintenance of complex electronic equipment.
During times of equipment failure, this duty
requires the ability to locate hardware faults,
assess the operational status of equipment that
is in a degraded mode, and successfully repair
the equipment. Knowledge is needed about
electronic equipment, the interpretation of fault
indicators, troubleshooting procedures, output
signal requirements for various uses of the
equipment, current and possible equipment
configurations, and maintenance and repair

Proceedings of the Digital Equipment Computer Users Society 7

procedures.

The particular piece of equipment for which
FLARES is targeted contains self-diagnostic tests
which are used in the troubleshooting
procedures. These tests, however, are not
exhaustive, and they do not, by themselves,
always indicate a single source of the fault.
The tests provide fault codes when electrical
malfunctions are detected in the circuitry being
tested. Associated with each fault code is a
list of the circuit cards that could have caused
the test to fail. T~bles of the available
diagnostic tests, their purposes, their possible
fault codes, and the circuit cards associated
with each fault code exist for the operator's
use. Troubleshooting this equipment involves an
iterative process of the interpretation of fault
codes and the execution of appropriate diagnostic
tests in an attempt to minimize the number of
suspected cards.

This equipment also has the capability of
graceful degradation. It is a subpart of a
larger, multi-equipment system. The system is
used to perform a number of functions, and each
function may require only a subset of the
equipment's generated signals. If the required
signals are not affected by the equipment's
fault, then the equipment, and therefore the
overall system, will still be operational. After
the successful diagnosis of the cause of failure,
an assessment can be made of the severity of the
equipment's faults and the impact on the system
functions. This is accomplished through
knowledge of possible re-configurations and the
system's signal requirements of the equipment.
If the assessment is made that the equipment is
in an operational state, then the issue of repair
can be delayed.

Repair of this equipment is relatively

Anaheim, California- December 1985

straightforward. The faulted card is located
within the equipment, removed, and replaced with
a spare. Of course, a spare unit in working
condition is not always available, especially
aboard a submarine; so an updated inventory of
repair supplies should be made before attempting
equipment repair. If system repair is not an
option, then assessment of the equipment's
operational status takes on greater importance.
FLARES has been designed to closely follow the
characteristics of this domain. The design is
presented in the next section.

3. SYSTEM DESIGN OF FLARES

The design of FLARES incorporates three sections
that correlate with the sub-tasks of equipment
operation and maintenance. (See Figure 1 for a
pictorial view of the FLARES design.) FLARES has
a Fault Localization section that performs the
diagnostic reasoning needed to troubleshoot the
equipment. It also has a System Assessment
section that determines the operational status of
the degraded equipment given the conclusion from
the first section. The last section, System
Repair, provides maintenance and repair support
such as instructions, diagrams, inventory
updates, etc. The user can communicate with
each of the three sections through a graphical
user interface. Upon completion of fault
localization, the user has the option of having
FLARES perform the system assessment and then, if
desired, continue to the repair of the system.
Alternatively, the user may have FLARES go
directly to the system repair section avoiding
the assessment section altogether.

u
s
E
R

I
N
T
E
R
F
A
c
E

FAULT LOCALIZATION

SYSTEM REPAIR

Figure 1. Overview of FLARES Design

FLARES is being developed on a Digital Equipment
Corporation VAX 11/780, VMS 4 .2. The main
development language is DFC 's BLISS-based OPS5,
Version 1. DEC's DATATRIEVE database formatting

language is being used for storage and retrieval

8

of the diagnostic tables. The user interface
consists of a graphics display with a touch
screen, an optional voice recognition unit, and
possibly a laser videodisc system. FORTRAN 77 is
being used for the interfaces between equipment,
languages, and tools (see Figure 2).

USER INTERFACE

GRAPHICS
DISPLAY

TOUCH SCREEN

VOICE
RECOGNITION

SYSTEM

LASER
VIDEODISC

Figure 2.

F
0
R
T
R
A
N

FAULT LOCALIZATION

OPS5

~
~

OPS5

OPS5?

DATATRIEVE
1,=_::::~~=-1 ~-:::-i

~ I i1::i~S!t~.-r I . . ·r'? I ~~~ ____ Jli

~
LUlJJJj)

DAT A TRIEVE?

FORTRAN?

FLARES Implementation Languages
and Tools

The knowledge-based portions of FLARES, the Fault
Localization and System Assessment sections, are
bein~ implemented in OPSS. However, these two
sections utilize OPS5 for different types of
functions. Within the Fault Localization
section, OPSS is being used to perform
interpretation and diagnostic reasoning.
Interfacing with DATATRIEVE for supporting data
from the diagnostic tables, the OPSS program will
interpret what is currently known about the
equipment failure, suggest the next test(s) to be
run by the user, and integrate any new
information, in an attempt to correctly diagnose
the faulted card that is causing the failure.

In the System Assessment section OPSS is being
used to create a model of the equipment. The
model traces the functional flow of electronic
signals through the equipment. The assessment
takes place by running the OPSS model with those
signals that have not been affected by the
faulted card, and by examining the output signals
generated. These output signals are compared to
those required for operational use of the
equipment to determine the equipment's functional
utility.

The System Repair section of FLARES is still in
the design phase. It may be implemented with
OPS5, DATATRIEVE, and/or FORTRAN 77, and it may
use a laser videodisc sys tern, depending on the
extent to which FLARES will aid the user in
repairing the equipment.

The extensive use of OPSS for the development of
FLARES has provided a basis upon which to form an

evaluation of the language, and has led to the
discovery of five maxims about the use of OPS5.
These maxims and the evaluation are presented
later in the paper. Fi rs t, however, a
description of the OPS5 language is provided for
background to these next topics.

4. THE OPS5 PROGRAMMING LANGUAGE

OPS5 is a forward-chaining, production-rule
language. It executes in a cyclic manner of
pattern matching, conflict resolution, and rule
activation (see Figure 3). An OPS5 program
consists of static production rules in an "IF -
THEN" format and dynamic working memory elements
that indicate the current status of its "world".

PRODUCTION RULES
WORKING MEMORY

;;: I 12 I
~::3 110 I

121 !

CONFLICT SEl'

LIF _J~_ -___J~:i I
~N .

IF

/" __ ~ __ , ~·1
_!HEN "'~~-ol.--<...J

THEN

Figure 3. Pictorial View of OPS5

NEW OR MODIFIED
WORKING MEMORY

ELEMENT(S)

f I:~ I

The working memory elements each have an
associated time tag. This is a sequential
assignment of a number to the working memory
element upon its creation. The time tag
designates the relative recency of the working
memory element. The working memory elements are
pat tern matched with the conditions in the IF
portions of all the production rules. Any
production rule that has its complete IF portion
satisfied is placed in a conflict set. At the
completion of pattern matching, a conflict
resolution strategy is invoked to resolve the
rules in the conflict set down to one rule that
will be chosen for activation. The selected rule
is activated; the statements in the rule's THEN
portion are executed. These statements usually
update the working memory by adding, deleting,
and modifying working memory elements. The cycle
is then repeated, starting again by pattern
matching between the now updated working memory
and the production rules.

This cycle is called data driven, or forward
chaining, because of the influence the updated
working memory elements have on the selection of
a production rule for activation. The conflict
resolution strategies utilize the recency of
working memory elements matched with a rule
(indicated by the time tags) for their
selection. The strategies also consider the size
of the IF portion of an instantiated (or matched)

9

production rule, and the specificity (number) of
the _relational tests used during pattern
ma tchi.ng. However, the matching working memory
elements' recencies are the first basis of
selection.

OPS5 offers two conflict resolution strategies,
LEX and MEA. (The name LEX comes from the
strategy's s imi lari ty to lexicographic ordering,
and MEA_from the term means-ends analysis.) They
are basi.cally the same, with the exception that
MEA places heavier emphasis on the recency of the
working memory element matched with the first
condition in the IF portion of each of the
instantiated production rules.

5. LESSONS LEARNED THROUGH EXPERIENCE WITH OPS5

Five maxims on the use of OPS5 were discovered
during the development of FLARES. Figure 4 lists
these maxims. This section of the paper
addresses each of these maxims for the benefit of
others who are thinking of, or are currently,
using OPS5.

1.
2.

3.
4.
5.

OPS5 IS DECEIVINGLY SIMPLE
CONTROL ONLY ENOUGH TO GET THE JOB DONE
OPS5 IS NOT AN ISLAND
ALL IS NOT BLISS
DETAILED OPS5 DOCUMENTATION IS NEEDED FOR
RAPID DEVELOPMNET OF PROGRAMMING TECHNIQUES

Figure 4. OPS5 Maxims

5.1. OPS5 Is Deceivingly Simple

The first maxim discovered is that OPS5 is not as
simple as it initially seems. Upon first
inspection of OPS5 with its simple cyclic
performance of pattern matching, conflict
resolution, and working memory update, and its
symbolic syntax for production rules and working
memory elements, one can conclude that OPS5 is an
easy, straightforward language. In a sense, it
is, in that it functions in the forward-chaining
manner which is readily understood. However, the
conflict resolution strategies, which implement
the forward-chaining program flow, are more
complex than may be originally assumed. The
resolution tests employed by LEX and MEA tightly
couple the format of the production rules with
the rule se lee ti on process. For exarnp le, such
things as the order in which the programmer
writes the condition elements (in a rule's IF
sect ion) , and the order in which the s ta temen ts
in the THEN section are written can affect the
outcome of the strategies' tests and therefore
the selection of the next rule for activation.
The programmer unaware of the subtleties of the
resolution strategies may find unexpected results
when the program is executed. The causes behind
the program's unexpected performance, however,
can be revealed through closer examination of the
conflict resolution strategies. This examination
should be completed before undertaking a major
programming effort to avoid frustrating
trial-and-error learning.

5.2. Control Only Enough To Get The Job Done

The second maxim addresses the issue of
controlling the flow of an OPSS program: control
only enough to get the job done. Theoretically,
the beauty of the data-driven program flow lies
in the influence of new data. As new data is
created from the old data, the program extends
what it "knows" by using what it has recently
acquired. Placing control within the data-driven
program flow will detract from this elegance.
The initial selection of OPSS implies a desire
for this type of program flow. However, it is
often the case that a programmer needs to
influence the flow for efficiency's sake, or to
implement some sequentiality. During the
development of FLARES, it was found that control
of the program flow can be accomplished but that
it must be done with care, adding only enough
control to produce a manageable application.

By paying close attention to the selection
criteria of the chosen conflict resolution
strategy, the programmer can influence the
activation of specific production rules. This
control can be implemented through the careful
tailoring of the production rules 1 IF and THEN
sections. Within the IF sections control can be
accomplished by altering the number of condition
elements, the specificity of the condition
elements, and the ordering of the elements to
force a production rule to best meet the conflict
resolution strategy's criteria.

Control can also be accomplished from the THEN
section of the production rules. Because the
recency of working memory elements has such an
influential role in the conflict resolution
strategies, the selection of a production rule
can be controlled by controlling the order in
which elements are added to working memory. This
will insure that a particular working memory
element will have the highest time tag during the
next eye le. Care fu 1 ordering of the MAKE and
MODIFY statements in the production rule's THEN
section will accomplish this.

Control can also be added to an OPSS program on a
more global scale. OPSS allows for actions that
take place on the whole of working memory, such
as 1) saving a copy of working memory in a file,
2) adding a previously saved state to the current
working memory, and 3) restoring working memory
to a previous state. Alteration of the global
state of working memory could change the subset
of production rules placed in the conflict set
and thus affect the overall performance of the
program.

Of course, the most obvious control method is
through the choice of a conflict resolution
strategy, either LEX or MEA. Be aware, however,
the choice of a strategy and the use of the other
control methods are not independent. To control
an OPSS program's flow is to pre-plan the
selection of a production rule for activation
based on the criteria of the strategy being used.

5.3. OPSS Is Not An Island

The third maxim discovered during the development
of FLARES is that OPSS is not an island, that is,

10

a program written in OPSS is not independent of
the remaining computing environment. DEC's OPSS
contains routines that are used to communicate
with utility routines written in other
languages. An OPSS program can invoke a utility
routine, and it can pass working memory elements
to and from the routines. Many languages used
for knowledge-based systems view the environment
as a closed world, making it difficult to work
around those aspects that the language cannot
perform well. With accessibility to the world
outside OPSS, an OPSS program can take advantage
of the capabilities offered by other software
(and therefore hardware, such as graphic
displays, as well). This broadens the
application areas of OPSS and leads to more
productive use.

5 .4. All Is Not BLISS

As previously stated, FLARES is being written in
DEC's BLISS-based OPSS (Version 1). A LISP-based
OPSS is also available. While the use of the
BLISS-based version has some advantages, there
are also associated disadvantages, thus the
fourth maxim: all is not BLISS.

The advantages include its speed and the
accessibility of interim files. The BLISS-based
OPSS production rules are pre-compiled. This
affords a quick running program. The compilation
results in separate intermediate object files of
the IF and THEN sections of the rules. Through
the development of FLARES it was found that
interesting use can be made of these intermediate
files. For example, one copy of the compiled
file of the IF sections of some production rules
can be alternately linked with different versions
of the THEN sections' interim files, providing
variations of a production rule program. Other
advantages have been previously mentioned under
different topics, for example, the capability to
store working memory in a file for future use,
and the capability to communicate with the
outside computing environment.

One disadvantage of the BLISS-based OPSS lies in
its limited support of mathematical functions.
It offers only the integer functions of addition,
subtraction, multiplication and modular division;
no floating point arithmetic and no high-level
functions are supported.

Two other disadvantages deal with the BLISS-based
OPSS treatment of production rules. First, while
the working memory elements can be viewed by the
user, the production rules cannot. Once the
rules are compiled the programmer cannot view
them to determine the compilation outcome. To be
able to do so would aid in debugging the
program. Secondly, it has been stated that the
LISP-based version of OPSS has the capability of
creating new production rules from inside a
running OPSS program. This option does not exist
with the BLISS-based version. This capability is
desirable for the development of more extensive
and powerful programs.

The last disadvantage arises in the execution
order of the statements in the THEN section of an
activated rule. The BLISS-based OPSS has a
pre-defined order in which it executes statements

that alter working memory. Any actions that add
to working memory are executed first, then any
actions that save working memory are executed,
followed by the execution of any actions that
delete from working memory. This pre-defined
ordering removes any control the programmer had
over the order of actions and can cause some

·unexpected happenings. For example, a specific
incident occurred where a production rule was
written whose action was to delete some elements
from working memory and then to save the state of
working memory in a file. It was later
discovered that the saving of working memory
happened before the deletions, thus saving an
unwanted working-memory state. To accomp 1 ish the
desired result required writing one logical
production rule as two separate rules.

5.5. Detailed OPS5 Documentation Is Needed For
Rapid Development Of Programming Techniques

The final, and perhaps hardest, lesson learned
through experience with DEC's OPS5 is the need
for adequate documentation. lfilile the
documentation provided by DEC [1,2] is a good
dictionary of commands, it is not sufficient for
learning how to program with OPS5. The
documentation lacks details on the basic workings
of OPS5 (i.e., the conflict resolution
strategies) and provided an insufficient number
of examples. This led to an increase in the
amount of time required to become proficient in
programming in OPS5, and time lost in the
development of application programs. However, a
good text book does exist. Programming Expert
Systems in OPS5: An Introduction to Rule-Based
Programming, by Brownston, et al., [3] is a good
resource for learning to program with OPS5. It
has numerous examples and sufficient detail for
both novices and experienced OPS5 programmers.

6. EVALUATION OF OPS5

An evaluation of DEC's BLISS-based OPS5, Version
1, has been made based on its use during the

development of FLARES. Overall, OPS5 is a
versatile tool that allows for the rapid
prototyping and development of knowledge-based
sys terns.

OPS5 provides the basics of a knowledge-based
system: knowledge representation formats and an
inference mechanism. Production rules and the
working memory elements' s true tu res are the two
knowledge representation formats provided by
OPS5. Knowledge that fits the "IF-THEN" format
is stared in the production rules. Working
memory elements are stored in a representation
format that allows the grouping of related
knowledge in an attribute-value format. OPS5
also provides the inference mechanism of forward
chaining; i.e,, it supplies the processes needed
to perform pattern matching, conflict resolution,
and rule activation.

The syntax of the OPS5 language is not overly
cumbersome. There is a relatively small set of
statements and syntactic requirements. While
initial exposure to OPS5 may cause some
confusion, simple examples of the use of OPS5 can
give a newcomer the confidence to produce

11

substantial programs in a short amount of time.

A weakness of OPS5, like most artificial
intelligence tools, is that it is not a general
tool. It does not offer an extensive selection
of knowledge representation formats, and it does
not offer optional inference mechanisms. It is a
tool designed only for forward-chaining,
production-rule systems, However, because OPS5
does provide for communication with programs
outside of its own environment, there is the
possibility of using OPS5 as a portion of a
larger, more extensive system.

7. SUMMARY

In summary, FLARES, a knowledge-based expert
system is being developed to aid submarine
operators in the operation and maintenance of
complex electronic equipment. Its design
consists of three sections: Fault Localization,
System Assessment, and System Repair, DEC's
BLISS-based OPS5, Version 1, is the major
development language. OPS5 is being used in
FLARES to perform the two functions of diagnostic
reasoning and electronic equipment modelling. It
is a forward-chaining, pro due tion-ru le language.
The major control of execution lies in the
conflict resolution strategies, LEX and MEA.
Five maxims about OPS5 have been formulated
through this work: 1) OPS5 is deceivingly
simple, 2) Control only enough to get the job
done, 3) OPS5 is not an island, 4) All is not
BLISS, and 5) Detailed OPS5 documentation is
needed for rapid development of programming
techniques.

Based on the authors' experience with OPS5, it
can be concluded that OPS5 is a versatile tool
that supports the rapid prototyping and
development of data-driven, production-rule

expert systems. The original selection of OPS5
for the FLARES project was done without much
knowledge of OPS5 's capabilities, however, the
choice was a good one, Given the chance to once
again select an artificial intelligence language
for FLARES there would be no hesitation to
re-choose OPS5. The best way to select an
art ific ia 1 in te 11 igence language or too 1 for the
development of a particular knowledge-based
system is through a thorough examination of the
domain's requirements for knowledge
re pre sen ta ti on and inference techniques and the
capabilities offered by the languages and tools
that best meet those needs. OPS5 may not be
appropriate for app 1 ica t ion domains that are
complex and extensive. Such domains may not
adhere to the forward-chaining inference
mechanism and may require more complex knowledge
representation methods. But, for those domains,
such as that of FLARES, that do follow the
data-driven flow, that contain knowledge that can
be stored in production rules, and that do not
require extensive knowledge representation
methods, OPS5 is recommended.

REFERENCES

1. Forgy, OPSS User's Manual,
reproduction by Digital
Corporation, AA-BHOOA-TE, 1981.

Authorized
Equipment

2. OPSS For VAX Us er' s Guide, Digi ta 1 Equipment
Corporation, AA-BH99A-TE, March 1984.

3. Browns ton, Farrell, Kant and Martin,
Programming Expert Systems in OPSS: An
Introduction to Rule-Based Programming,
Addison-Wesley Publishing Company, Inc.,
1985.

12

DESIGN PRINCIPLES FOR SOFTWARE MANUFACTURING TOOLS

PAUL G. BASSETT

VICE PRESIDENT - RESEARCH
NETRON INC.

TORONTO, ONTARIO (CANADA)

Abstract

A good solution to the reusable code problem turns out to pro­
vide a solid technical basis from which to understand and deal
with the production, quality, and maintenance issues currently
besieging the software industry. To this end, a software man­
ufacturing methodology called CAP™ (Computer Automated Pro­
gramming) has been developed. CAP is based on Bassett Frame
Technology, which uses a functional.programming concept called
a 'frame', motivated in turn by the reusable code problem.

The Introduction explains the necessary background ideas about
'frames'. Section 2 analyses the subtle but important dis­
tinction between problem-solving and programming. CAP design
principles are then developed which show how to build software
tools that support problem-solving through open-ended, struct­
ured, program manufacturing techniques. The principles are
organized around the flow of program specifications from
'under' to 'optimally', to 'over' specified, machine-execut­
able instructions.

The components of an existing CAP system are described in
Section 3, and Section 4 discusses the usage of CAP as a man­
ufacturing technique. Statistics from a case study are pre­
sented which indicate that: (a) production quality commercial
software can be manufactured at rates exceeding 2000 lines of
debugged COBOL per man-day (including systems design time),
and (b) less than 10 percent of this code needs to be hand­
written/maintained.

1.0 Introduction: The Reusable Code Problem solution to the reusable code problem turns out to
provide a solid technical basis from which to
understand and deal with the production, quality,
and maintenance issues currently besieging the
software industry.

In the software industry's current cottage industry
style, it is common practice to build new programs
by "cutting and splicing" pieces of old programs
together. This approach demonstrates that

(a) there is a great deal of potentially reusable
code available, and

(b) it is worth the effort to adapt it rather
than starting from scratch [16).

Unfortunately [7),

(a) the programmer does not have any systematic
way of isolating just what portions of prog­
rams are relevant;

(b) the customization process is time-consuming,
tedious, and prone to error;

(c) once the process is finished, both old and
new programs must be maintained as if each is
completely unique, despite the considerable
common functionality. Maintenance effort
should be proportional to the novelty in the
system, not the number of source statements
[4].

The central thesis of this paper is that a good

Proceedings of the Digital Equipment Computer Users Society 15

1.1 External Subroutines

It is still widely believed that external subrou­
tines form a satisfactory repository of reusable
code. Separately compiled and linked subroutines
are obviously useful, but they are limited because
there is no graceful or systematic means of
effecting:

(a) local customization of an external subroutine
to fit each calling program's particular con­
text of use, and

(b) global evolution of a subroutine when it must
change to benefit all future callers of that
subroutine without victimizing current
callers.

The fundamental problem is that a subroutine is a
representation for a single function which is not
adaptable at source-program (function) construction
time. It may have considerable run-time flexibil­
ity, but at the time of actually molding the sub­
routine into the program that must use it, an ex­
ternal subroutine by its very nature has no flexi-

Anaheim, California - December 1985

bility at all.

1.2 Code Generators

Code generators have been around for years (e.g.
RPG) and although they are usually very succinct
and expressive, they have never enjoyed widespread
use l2,10]. The simplest kind of code generators
are those that generate "raw" source code. The
problem with those generators is that they are bas­
ically "one-shot" tools. Because each generator is
an expert at only a part of the overall problem
[3,17], programmers must supplement and modify the
generated source code to suit their own needs.
Having adapted the code, they have no means of re­
using the generator without destroying all of their
manual modifications. To be more useful, a code
generator must allow some follow-on mechanism which
can adapt the generated source code automatically,
thus allowing reuse of the generator without the
loss of the customizations.

More sophisticated code generators typically supply
"user exits" for handling this problem. These pro­
vide linkage to separately compiled, external sub­
routines which can usually be written in a variety
of general purpose languages. The trouble is that:

(a) this is always an additive technique; there
is no way to change or remove generated func­
tionality;

(b)

(c)

predefined interfaces often omit information
that is essential in the customization (the
"black box" effect);

all non-procedural parts of the generated
code, such as data declarations, are simply
unavailable for customization.

A proper solution requires generators to provide
for automatic customization of generated code (not
just run-time communication with generated modules).

1.3 The Frame Methodology

A frame [13,14] methodology has been developed to
address the reusable code problem from the perspec­
tives of both programmers and code generators [3].
A frame is a machine-processable representation of
an abstract data type [9], with "abstract" meaning
functional [1, 3]. Because the data operators are
functionals, not functions, frames can accommodate
both local customization into an individual prog­
ram, and global evolution to benefit all future em­
bedding programs. Frames are implemented as files
containing a mixture of source code (e.g. COBOL)
and (pre-processor) macro commands but quite unlike
the proposals of Backus [l] or Evans [8]. This
mixture is called frame text.

There are just four macro commands whose essential
role is to automate the "cutting and splicing" of
programs:

COPY-INSERT allows a frame hierarchy to be cop­
ied into a program (by naming the frame at the
root of the hierarchy), and causes customizing
frame text to be INSERTed anywhere into that
hierarchy.

BREAK-DEFAULT defines a named "breakpoint".
Breakpoints mark arbitrary places in a frame

16

where custom frame text can be INSERTed to sup­
plement and/or replace DEFAULT frame function­
ality.

REPLACE systematically substitutes a specific
code string for a generic one (throughout a
frame hierarchy). For example, field names,
picture clause elements, etc. are generic if
they tend to vary from program to program.

SELECT incorporates into a program one frame
text module from a set of modules in the
frame. SELECTS are like CASE statements (with
arbitrary nesting) which operate at text con­
struction time. An important use of SELECT is
to automate version control (global evolution).

Frames are written by both analysts and CAP tools.
Having code generators produce frames solves the
problem of destroying subsequent modifications by
automating the "cutting and splicing" of the cus­
tomizing frame text into the generated frame text.

All customizing frame text for one program is loc­
alized into a SPECIFICATION or SPC frame. An SPC
governs the entire process of building the compil­
able source program from its frame components. As
will be seen, a methodology incorporating frames at
its heart offers a potential for:

(a)

(b)

(c)

(d)

(e)

fill-in-the-blanks program
(rapid prototyping),

specifications

automation of the process of reusing
iously built, high quality software
human and machine written),

automatic customization in context,

prev­
(both

maintenance of only what is unique in a
program,

evolution without obsolescence (elimination
of unnecessary retrofits),

(f) painless enforcement of good programming
technique (standards).

1.4 Software as a Manufacturing Enterprise

In the next section principles for designing soft­
ware construction tools are analyzed from the ab­
stract perspective of function spaces. It should
be borne in mind, however, that CAP is fundament­
ally a practical manufacturing paradigm, in which
standard frames are the standard sub-assemblies,
various code generation steps are the processing
operations on basic components (raw materials) to
produce fabricated parts, and the CAP text proces­
sor operating on the SPC frame is the process of
final assembly with any custom options.

2.0 CAP Design Principles

In order to focus on the proper roles to be played
by people and machines in the software production
process, it is important to understand what is ap­
propriate for the various actors. When higher lev­
el languages such as Assembler and FORTRAN were
first invented, it was proclaimed that "self-prog­
ramming" computers had arrived (remember IBM 1401
AUTOCODER ?). In what sense, if any, does a soft­
ware construction tool differ from a programming

language? Is it really possible to automate prog­
ramming, or will software tool designers be caught
in the same mental trap as the pioneers of higher
level languages?

2.1 Problem Solving Versus Programming

Problem solving and programming are related but
distinct concepts, and the distinction is critical
to the proper design of tools. The job of a prob­
lem solver is to find a good function_: one which
accepts the information specified by the problem,
and provides results consistent with the problem's
goals and constraints. Concurrently, the problem
solver often jumps to the meta-problem of reshaping
the problem - and this is precisely the role of the
system's analyst.

Sometimes finding a good function can be reduced to
matching the problem information to a list of al­
ready available functions. None would claim that
selecting from a menu is programming. It is the
very antithesis: an effective way for non-program­
mers to obtain the functionality they need, but
cannot program. However, for professional problem
solvers, life is seldom so kind. Usually many
functions must be combined in some non-obvious way
to create the desired function.

If a problem can be solved by simply grouping the
names of some sub-functions under a new function
name, without regard to the order in which these
sub-functions are performed, and without regard to
how these sub-functions must communicate with each
other, then it remains plausible to claim that pro­
gramming is not involved. This function grouping
approach to problem solving turi;is out to be quite
powerful. But first the technique must be further
clarified and formalized.

Most problems do not exist in isolation. Recall
that a function must be consistent with a problem's
constraints in order to qualify as a solution. By
varying the constraints in meaningful ways, differ­
ent but related problems are created which are
solved by different but related functions. Each
variable constraint is called a degree of freedom.
A function space is then implicitly defined to be
the set of functions which solve a set of problems
which are related to each other by their common de­
grees of freedom.

Thus degrees of freedom can be used to characterize
otherwise implicit function spaces. A degree of
freedom is usually specified by expressing one of a
(possibly infinite) set of optional sub-functions
(constants and variable parameters are simple cases
of this). Then any formal notation which allows us
to create a function by simply referencing a sub-­
function from within each degree of freedom indep­
endently is, in effect, a language for solving
problems without programming.

Conversely, a language rich in irrelevant degrees
of freedom (those which are unrelated to problems
for which solutions are needed), and poor in rele­
vant degrees of freedom, forces programming tQ be a
part of the problem solving process. Most general
purpose computer languages restrict their usage to
problem solvers who are also programmers. FORTRAN
is a non-programming language to the extent that
algebraic expressions solve problems; otherwise,
programming must be done.

17

Now, it would be ideal if problem solvers could al­
ways have notations at their disposal which have
just the right degrees of freedom for the problems
needing solutions. Programming could be completely
relegated to the machine. Perhaps when Artificial
Intelligence creates a meta-notation with which the
machine can develop -its own notations for new prob­
lem classes, we can all humbly retire. For now I
have attacked the more realistic meta-problem of
designing tools which eliminate programming for
known, highly useful function spaces.

Any given program (function) must usually combine
sub-functions from various automated function
spaces with sub-functions which are custom-built
for the problem. Here it is vital that the "black
box" effect be avoided. Black boxes, whose actions
are imprecisely understood and have difficult or
uncontrollable side effects, are the bane of prog­
rammers!* Thus, integrating the automatically
produced code with manually produced customizing
code must be a convenient, effective process.
Computer Automated Programming derives its name
from the importance attached to this tool design
philosophy.

*unfortunately many so called fourth generation
languages use black boxes [11].

2.2 The Role of Languages

Our industry continues unabated to proliferate lan­
guages, and this is both necessary and desirable
[17]. The creation of each language is motivated
by a desire to reduce the effort of solving, in
computer executable form, some class of problems.
By distinguishing problem solving from programming,
it becomes possible, with respect to a given class
of problems, to group languages into three levels:
over-specified, optimally-specified, and under-­
specified.

2.2.1 Optimal-Specification

A language is said to optimally-specify a function
space (and hence an associated problem class) if
and only if:

(a) the language is isomorphic to the function
space; that is, each distinct function is de­
noted by only one distinct expression, and
only the functions in the space are express­
ible;

(b) the degrees of freedom are independent, opti­
mally-specified sub-spaces (of constants,
variables, or functions);

(c) the language's well-formed expressions are
the "most compact" (see next paragraph) with
respect to all languages satisfying (a) and
(b).

In practice, this definition is weakened as fol­
lows: (a) is approximated by first designing the
language to be virtually one-to-one, then assuming
the function space (implied by the language's sem­
antics) to be what was "really meant" by the solu­
tions of the original, unformalized problem class;
(b) is approximated first by striving for as much
independence as possible, then by applying as many
context-sensitive error tests as are practical to
any remaining dependent degrees of freedom; while

(c) is ignored as long as the language users are
happy.

In practice, such "weak optimally-specified" lan­
guages are a realistic approach to problem solving
without programming. Functions can usually be de­
fined by simply grouping the names of some sub­
-functions under a new function name, without re­
gard to the order in which these sub-functions are
performed and without regard to how these sub-func­
tions must communicate with each other. Their com­
pilers are called code generators because each gen­
erator plays the role of a programmer, converting a
declarative, optimal specification into procedural,
over-specified code, which itself must be com­
piled. As has been noted (c.f. Sections 1.3, 2.2.3
and 2.3.2) CAP design principles require the gener­
ated code to be in the form of frames.
CAP design strives to optimize the syntax burden
for both the human user of an optimally-specified
language, and the tools which must also read and
write in the language. For people, a special pur­
pose editor should be written. Its special purpose
is to be the friendly interface (translator) be­
tween the problem solver and the optimized-for-­
internal-use form. Accordingly, it presents a syn­
tax-suppressed, problem-oriented view of the func­
tion space, it provides user-resettable defaults
for all the functional parameters (degrees of free­
dom), and it checks for inconsistent parameter set­
tings whenever possible.

2.2.2 Under-specification

An under-specified language is like an optimally-­
specified one except that the relationship of well­
-formed expressions in the language to the possible
solution functions is one-to-many. There may be
many degrees of freedom which play a secondary or
lesser role in the structure of the overall func­
tion space. There may be several functions, each
expressible ln a different language, which must be
combined, but whose degrees of freedom intersect or
are inter-dependent. In these situations, an un­
der-specified language can be used to quickly
"broad brush" the major functional features of the
solution. The code generator then employs heurist­
ics to specify one solution function at the optimal
level, which is reasonable, and consistent with any
overlapping degrees of freedom.

Whereas an optimally-specified language is typical­
ly used in a declarative (what, not how) mode, an
under-specified language is typically used in a
prescriptive mode. That is, the special purpose
editor engages in a dialogue of questions and an­
swers, and actively prescribes sub-sets of the de­
grees of freedom to be specified, depending on an­
swers to previous questions. The code generator
then uses heuristic logic (i) to specify all the
minor degrees of freedom, creating one or more opt­
imally-specified expressions, and (ii) to specify
an SPC frame containing any context-sensitive func­
tionality. The code in (ii) may be necessary to
properly combine the functions being expressed in
(i). (Thus a generator operating on under-speci­
fied expressions may write some over-specified code
too.)

Clearly, using an under-specified language is even
further from programming than using an optimally-­
specified language. Unfortunately the one-to-many
nature of the language means that the result is

18

seldom the exact function wanted. However, for
this approach to be viable, the result must be an
excellent first approximation. That is, the prob­
lem solver must be able to spend less time by
starting at the under-specified level, then alter­
ing the optimally-specified and over-specified re­
sults to arrive at the specific function wanted,
than by simply starting at the optimally-specified
and over-specified levels. One drawback is that
inexperienced users of under-specified language
tools can all too easily err on the optimistic
side, discovering only with hindsight that they
would have been better off to begin at the optimal­
ly-specified level. On the other hand, providing a
rich set of under-specified "front ends" enhances
the problem solving power of a CAP system and re­
duces this drawback.

2.2.3 Over-specified Languages

In an over-specified language, the relationship of
well-formed expressions to functions is many-to-­
one, and properties (b) and (c) of an optimal lan­
guage do not hold even weakly. Over-specified lan­
guages are ubiquitous. For example, every comput­
er' s binary or assembly language lacks the syntax
to express directly the right degrees of freedom
for most of the problem classes to which the ma­
chine is applied. And so programming (often done
by a compiler) is inevitable at this final stage of
problem solving.

(But, with respect to the function space with which
the computer hardware can directly deal, assembly
language is not over-specified. In this context it
is probably an optimally-specified language, or
even an under-specified one, if the machine sup­
ports micro-programming. Care must be taken not to
confuse the issue of which function space best
spans a given problem class with the issue of which
language best spans a given function space. The
function spaces of all useful computers are isomor­
phic to the (universal) class of all algorithmical­
ly solvable (in finite time and space) problems.
The assembly language example is really a special
case, since each machine architecture forces the
consideration of a specific function space. Above
the hardware context, each "reasonable" problem
class induces, in principle, a "reasonable" (assoc­
iative, acceptable performance) function space in
which to compose solutions for the problems in the
class.)

General purpose languages are usually, though not
inevitably, over-specified with respect to most
formally characterizable function spaces, even uni­
versal function spaces. On the other hand, a gen­
eral purpose language may not be over-specified for
several restricted problem classes, which vindic­
ates the language's design. Despite having tools
which support under-specified and optimally-speci­
fied languages, the source language used in frame
text must be a general purpose language in order to
permit custom functions to be defined. If a CAP
system builder has the luxury to design his own
language (which I did not), then I believe it is
possible to design one which is a good approxima­
tion to being optimally specified with respect to
some universal function space.

To sum up the role of languages (see also Sect
2.4), whenever a useful function space can be de­
fined by an optimally-specified language, program-

ming can be relegated to the computer. To further
enhance problem solving leverage, multiple under-­
specified, front-end editor-generator pairs can be
built which create optimally-specified expres­
sions. These expressions are processed in turn by
editor-generator pairs which create programs at the
over-specified level, but maintain them at the opt­
imal level. Any special purpose, custom function­
ality is kept in the SPC frame which directs the
CAP processor in its final assembly tasks of (re)­
building the complete source program, then compil­
ing and linking it into executable form.

2.3 The Role of Frames

Frames are used to formalize the common intermedi­
ate stage in the program construction process,
prior to the frames being combined and customized
into a single program (function). There are two
reasons for having this stage. First, recognizing
the open-ended nature of problem solving, an exten­
sible library of standard frames and templates (see
Sect. 2.3.1), together with generated frames, can
support custom programming for any problem. Sec­
ondly, the ability to mechanize the assembly of a
program, given the diversity of its components, de­
pends on bringing them to a common notation.

2.3.1 Standard Frames

As problems are discovered to be related to each
other, a standard frame can be evolved to span the
implicit function space. Each frame denotes a
functional, whose domain defines (using the COPY,
and REPLAC~ commands) the degrees of freedom appro­
priate to the class of related problems, and whose
range (all possible instantiations of the frame
text) is the corresponding function space. By fix­
ing those degrees of freedom in various ways, vari­
ous problems in the class can be solved without
programming. This is not to say that programming
has been eliminated. Usually real problems refuse
to confine themselves to neat, predefined classes.
Accordingly, a frame's BREAK points and SELECT
clauses constitute open-ended degrees of freedom,
where solutions can be arbitrarily extended, if
necessary.

Standard frames are used whenever the function
space is too limited in scope or usage to warrant a
new optimally-specified language. This approach to
problem solving is implemented by using templates.
A template is an uncustomized SPC frame, and usual­
ly spans a hierarchy of frames. It collects in one
linear list (a file) all degrees of freedom appro­
priate for a useful class of problems. The replac­
eable strings, sub-function selection choices, and
insertion points for the frames in the hierarchy
constitute a fill-in-the-blanks method of customiz­
ing the program. Thus templates and frames toget­
her permit problems to be solved in a manner which
progressively reduces traditional programming to a
minimum, given the open-ended nature of real prob­
lems.

To the degree that system design
stored inside the system, the SPC
be created by "designer" tools
under-specified level (see Section

2.3.2 Generated Frames

expertise can be
frame can itself
working at the

3.1).

Certain function spaces have degrees of freedom

19

which are too dynamic to be represented by fixed,
standard frames. Well known examples are screen/­
keyboard interfaces and report definitions. For
these cases, optimal languages can be developed in
association with frame-writing generators.

By generating frames instead of raw source code,
open-ended (programming) degrees of freedom become
available. Such degrees of freedom are required in
the overall problem class, but should be suppressed
in the various optimal specification languages.
Further customizing can be specified via an SPC
without the hand editing or restrictive user exits
associated with conventional generators. Basically
what has happened is that the editing that would
otherwise be necessary to properly customize the
generated code has been mechanized. In so doing,
we gain both an assembly line style of constructing
programs and an ability to maintain the program us­
ing its optimally defined pieces (rather than its
over-specified code).

2.4 Anatomy of a CAP tool

The following diagram depicts the flow of specific­
ations from the under-specified or Designer level,
through the optimally-specified or Customizer lev­
el, down to the over-specified or Source and Object
levels. Life cycle maintenance is performed with
the Customizer (special purpose) editors. Please
note that where it refers to screen and report
specifications, these are examples of optimally-­
specified languages with respect to the problems of
commercial data processing. A CAP tool may use
either, both, or neither of these languages, as
well as other notations, if the problems warrant.

3.0 An Actual CAP System

At Netron Inc. a CAP system has been developed for
use on a VAX/VMS system and also for the WANG VS
computer systems, applied to commercial data pro­
cessing using COBOL. The following reflects cur­
rent functionality and some soon-to-be released
tools.

3.1 Underspecified level tools

CAPinput - for building interact! ve file mainten­
ance and data entry programs.

CAPoutput - for building report programs based on
general data selection criteria.

CAPfile - for building general files-to-files
transforms and interfaces.

These three tools are each structured as shown in
Fig. 1. Specification of a complete program re­
quires that an analyst answer a small number of
questions (most of which have defaults). The heart
of each tool is a frame hierarchy which covers most
of the "nooks and crannies" of a formalized problem
space. The tool writes a small SPC frame which
references the hierarchy and defines the specific
function wanted. As well, each tool writes several
(weakly) optimal specifications to handle screen/­
keyboard interactions and reports. These specific­
ations are generated using heuristics (designed by
human analysts) which produce acceptable (if not
inspired) specifications.

SPECIFIC
Screen & Report
Specifications

Fill-in-the-blanks
DESIGNER SPECIFIC M

Fill-in-the-blanks
Report & Screen

CUSTOMIZERS

SPECIFIC
NEEDS

Frame
Specifications

Fill-in-the-blanks
SPC Frame

CUSTOMIZER.

0
D
E
L

s
0
L
u
T

GENERATE CUSTOM FRAMES I

Splice
Compile

Link

0
N

F
R
A
M
E
s

CUSTOM EXECUTABLE
PROGRAM

Figure 1

3.2 Optimal Specification level tools

CaPscreen - for designing and maintaining interac­
tive screen/keyboard functionality.

CAPreport - for designing and maintaining report
functionality.

The (weakly) optimal notations are used by designer
tools and by analysts, either in conjunction with
underspecified level tools or independently. CAP­
input, CAPoutput, and CAPfile create consistent
specifications directly in the optimal notations,
whereas people interface indirectly via special
purpose editors which suppress syntax and error-­
check dependent degrees of freedom.

A complete description of these languages is beyond
the scope of this paper. Very briefly, independ­
ence of degrees of freedom is typified by having
screen (report) layout facilities which are com­
pletely independent of the attributes of each
screen (report) variable. On the other hand, some
degrees of freedom are not completely independent.
For example, if a variable on a screen is declared
as having run-time error checks, and is declared as
not being assigned to an internal variable after
the operator enters it at run-time, then these two
degrees of freedom are in conflict (and must be re­
solved).

The tools themselves generate frames from the opti­
mal specification. These frames in turn make ex­
tensive use of the hierarchy of available CAP
frames. Because the frames are written using gen­
eral purpose (but sadly overspecified) COBOL, the
programmer has exact control over the '"fine tuning'"
which his particular application may need in order
to convert a functional into the required function.

3.3 Standard Frames

Netron provides an open-ended library of frames,
ranging from simple abstract data types to frames
which create complete, multiple records per screen,
interactive file maintenance programs. These
frames are '"application independent'"; Netron's cus-

20

tomers add their own frames according to the appli­
cations and standards they require. CAPeditor is a
special purpose editor for customizing SPC frames
based on this library.

Here is a small, ad hoc sample of some standard
frames:

-File-maintenance frame
-General batch data entry screen handling frame
-Search screen for CAPinput
-Frame for preparing CAPinput logfile reports
-COBOL FD to data dictionary translator; allows
several alternate keys
-Abstract data type for reports using CAPreport
-Multiple screen-frame integrator
-Screen definition abstract data type
-Screen-variable edits
-Left justify strings
-Concatenate two strings, remove trailing blanks
from first string
-Set tabs stops on screen
-Abstract data type for all screen attributes
-Allow large numbers of screen attributes to be
manipulated at one time
-Convert system time and date to any of three
different formats
-Interface to other system data (e.g. USERID,
libraries, volumes etc.)
-Check if file exists and optionally create it
-Divisions and section headers needed for COBOL
program.
-COBOL SELECT declarations within the INPUT-OUTPUT
section
-Provide the COBOL necessary for the FD declaration
within the FILE SECTION
-For creating wenus with CAPscreen
-For scanning/pattern-matching
-Abstract data type for indexed files
-Abstract data type for sequential files

The CAPframes are the heart of the CAP system.
Each frame implements a useful function space whose
patterns have been recognized by their appearance
in several programs. The frames are organized into
a taxonomy which guides the problem solver to the
relevant functionality.

4.0 Discussion of Tool Usage

4.1 Types of Users

The consistent application of the "under-optimal-­
over" design principle offers access potential to
the industry's three major user groups: end-users,
analysts, and programmers. In CAP's current imple­
mentation, it is an analyst-oriented software manu­
facturing system. The focus has been to provide
tools which aid in the manufacture of larger, more
complex systems.

CAP could be designed for non-programmers, but few
are inclined to cope with open-ended applications
building/maintenance which is CAP' s main strength.
Most people like driving cars and some even enjoy
fixing or rebuilding them. But who wants to design
and manufacture them?

Because CAP is a manufacturing paradigm, most of
the benefits stemming from the organization of a
conventional manufacturing enterprise become avail­
able to DP shops. In particular, the frame engin­
eering department is quite analogous to a conven­
tional engineering department. A useful di vision
of labor is created. Those responsible for design­
ing and maintaining the organization's inventory of
standard software components (frames) can work in­
dependently from those charged with getting the ap­
plication software products out the door. The ben­
efit of having centralized standards control is ob­
vious.

4.2 Rapid Prototyping

Conventional wisdom, stemming from the software
disasters of the 60' s and early 70' s, has firmly
entrenched the hedging policies of preparing ex­
haustive feasibility studies, formal requirements
definitions, structured walk-throughs, and the
like. Often, the time and costs to plan a system
are greater than the costs of building it. In
turn, the specifications are usually out of date by
the time they are finally approved, and the end-­
users still don't really know what they are get­
ting, or if what they get is what they need. Anot­
her danger is that it is so easy to specify fea­
tures which turn out to be much more difficult to
implement than they are worth to the user. In
short, the institutionalized policies of large DP
groups are no small contributor to the enormous ap­
plications backlog.

Conventional wisdom can now be made wiser
[5,6,11,12,15]. CAP tools can write formal speci­
fications which are understood by both people and
computers, then convert the spec's to equivalent
programs. We can now adopt the attitude of "what
you see is what you get", and even let small proto­
types constitute part of the design spec.

End-users can "kick its tires" and iteratively
guide the specifications. The implementation team
can provide specific, detailed arguments as to why
certain features should or should not be in the
system, and can more accurately cost-estimate the
system's implementation based on deviations from
the organization's current frame inventory.

4.3 Productivity and Quality

Using a tool such as CAPinput typically requires

21

that the user spend a few minutes at the under-­
specified level. Without further customization, an
executable program is available shortly thereaf­
ter. The following is the summary from a detailed
case study which analyzes the actual usage of CAP.

4.3.1 CASE STUDY: The Manufacture of the
CANADIANA Requisition System

CANADIANA OUTDOOR PRODUCTS INC. is a subsidiary of
NOMA INDUSTRIES LTD. In March 1983, Canadiana em­
ployed Netron Inc. to create a computerized Requis­
ition system to replace Canadiana's manual Requisi­
tion system.

The system was created using CAP and is run on a
WAN~ VS computer using interactive terminals. The
system allows requisitions to be created, main­
tained, displayed, searched, authorized, ordered,
recorded and reported upon.

The Requisition system was built by a student anal­
yst during his first work term leave from the Univ­
ersity of Waterloo. After the first week, enough
of the system had been prototyped that Canadianna
users recognized serious design problems. The sys­
tem was redesigned and put into production by the
end of the third week.

Sixteen programs were created using CAP tools, to
create and control the interaction of the 22
screens and 3 reports through which the Requisition
system is operated. CAP tools enabled the author
to create the Requisition system by writing less
than 10% of the total COBOL lines needed.

One method of judging COBOL program production with
and without CAP tools is to compare the total num­
ber of lines of submitted source code in the entire
Requisition system with the number of hand-written
lines. Purely comment lines were discarded.

The results show more than a 10:1 productivity gain
by this measure. Of 34,000 lines of submitted code
contained in the 16 programs of the Requisition
system, only 3,000 lines were written by hand.

The following table shows, for each of the 16 prog­
rams forming the Requisition system, the number of
lines (i) hand written in the SPC frame, (ii) in
the generated frames, (iii) in standard frames, and
(iv) in the total submitted to the COBOL compiler.

4.3.2 Quality

Of course, the issue here is not merely to show a
capability of producing in excess of 2000 lines of
production COBOL per man day (including design
time). Further analysis of the manufactured prog­
rams will show that they are more consistent with
respect to user-interface and structured program
style, more reliable, more functionally complete,
much more easily maintained, and no less efficient
than conventional, hand written programs. The rea­
son is that the standard frames and frame genera­
tors are highly seasoned components in the course
of whose evolution many improvements and optimiza­
tions have been made. The cumulative effects are
capital assets (no pun intended) which yield a re­
turn on investment in every incorporating program.
Programs handwritten from scratch have no chance to
acquire the quality and thoroughness that is the
hallmark of a good frame [15].

Number of Code Lines

Program Main Total SPC Generated Standard
Name CAPTool Source Frame Frames Frames

PREQl CAPinput 2979 56 1731 1192
PREQ2 CAPinput 2130 71 1264 795
PREQ3 CAPinput 2318 78 1013 1227
PREQ4 CAPinput 1721 62 869 790
PREQ5 CAPinput 3440 421 1904 1115
PREQ6 CAPinput 2776 157 1766 853
PREQ7 CAPinput 1510 40 673 797
PREQ8 CAPinput 3018 206 1806 1006
PREQ9 CAPinput 3238 281 1910 1047
PREQA CAPinput 3659 436 2223 1000
PREQI CAPinput 3399 436 1916 1047
PREQF Frame Lib. 274 187 0 87
PREQG Frame Lib. 223 136 0 87
PREQR CAPreport 954 140 198 616
PREQS CAPreport 1086 226 216 644
PRE QT CAPreport 1152 179 290 683

Figure 2

4.4 Life Cycle Support

Maintenance is one of CAP's strongest features. By
storing all source code customizations in one spot,
factored away from both standard and generated
frames, typical program maintenance is collapsed
from 50 - 60 pages of source listing to two or
three pages. By having the code generators emit
frame code which can be automatically customized,
the declarative specifications also support the
life cycle maintenance of the programs in a very
convenient manner.

4.4.1 Frame Maintenance

As with all software, frames change through time.
Standard frames tend to be relatively stable since
they rapidly become seasoned through frequent re­
use. But additionally, because they are function­
als, they are able to absorb arbitrary amounts of
change (including complete rewrites) without risk­
ing any previously written program. It is easy to
arrange that the range (function space) of a new
version of a functional be a superset of the previ­
ous version's range. Simply provide a version con­
trol parameter governing a SELECT clause. This al­
lows the improved functional to still recreate all
old functional versions. An old program's SPC, un­
aware of subsequent changes, references the frame

hierarchy with its old version symbol (if any!),
and gets exactly the same code it has always got­
ten, even though new programs may get something
quite different (the Template always contains the
latest version symbol).

This does not mean that frames and libraries become
more cluttered than in conventional shops. Conven­
tionally, complete copies are kept of all versions
(using distinct names), even though only small
changes might have been made. Frames keep an auto­
matic audit trail of the version differences, with

22

only occasional rewrites done to eliminate clut­
ter. The obsolete (but still active) rewritten
versions are placed in a separate library, again to
eliminate clutter. Internal version references
automate the retrieval of the correct version.
Thus a single external name is common to all ver­
sions and less space overall is actually required.

4.5 Conclusion

CAP grew out of a need in the world of business
data processing to solve the reusable code prob­
lem. The resulting design principles are quite
general and are applicable in any application area
which can be factored into recurring problem
classes. To build the tools and work-in-process
inventory of a CAP software factory for a new prob­
lem domain, the following is required.

First, a CAP preprocessor is built for the current­
ly used, general purpose programming language.
Standard frames can then be written to form the re­
usable components of new programs. Often, well-­
structured, existing programs can serve as models
for creating these frames. If the degrees of free­
dom for any function spaces can be formalized, then
special purpose declarative languages can be de­
fined at the optimal level. By building an editor­
-generator pair for each language which emits
frames, further automation can take place. Final­
ly, if several function spaces (currently spanned
by a combination of standard frames and code gener­
ators) often need to be combined to produce needed
programs, then designer front-ends can be built
which operate at the under-specified level to prov­
ide rapid prototyping of complete programs.

Software has been very successful in automating
conventional manufacturin6 • It is now possible for
our own industry to gain the same benefits.

References

1. BACKUS, J. Can programming be liberated from
the von Neumann style? A functional style and
its algebra of programs. Communications of the
ACM, 21, 8 (August 1978), 196-206.

2. BALZER, R. An alternative approach to software
automation. In Research Directions in Software
Technology, P. Wegner (Ed.) , MIT Press, Cam­
bridge, Mass., 1979, pp. 851-856.

3. BASSETT, P. B. and GIBLON, J. Computer Auto­
mated Programming (Part I). In proceedings of
IEEE conference on Software Tools and Tech­
niques (Soft Fair), Washington D.C., July 1983.

4. BASSETT, P.B. and RANKINE, S. The Maintenance
Challenge. Computerworld In Depth, May 16, 1983.

5. BIANCHI, M.H., MASHEY, J .R. Rapid Prototyping
on UNixtm, Presented at the Software Engin­
eering Symposium: Rapid Prototyping, Columbia
Maryland, April 19-21 1982.

6. BLATTNER., M., FROBOSE, R. Prototyping and the
Life Cycle of Software. Presented at the Soft­
ware Engineering Symposium: Rapid PrototyPillg,
Columbia Maryland, April 19-21 1982.

7. CHEATHAM, T.E. The Harvard PDS Project: an
Overview. Presented at the Software Engineering
Symposium: Rapid Prototyping, ~olumbia Mary­
land, April 19-21 1982.

8. EVANS, M. Software Engineering for the Cobol
Environment. Communications of the ACM, 25, 12
(December 1982), 874-882.

9. GOGUEN, J.A., THATCHER, J.W., and WAGNER, E.G.
An Initial Algebra Approach to the specifica­
tion, correctness and implementation of ab­
stract data types. In Current Trends In Pro­
gramming Methodology, vol 4, R. Yeh (Ed.).
Prentice-Hall, 1979 pp. 80-149.

10. HAMMER, M., RUTH, G. Automating the Software
Development Process. In Research Directions in
Software '.fechnology, P. Wegner (Ed.), MIT
Press, Cambridge, Mass., 1979, pp. 767-790.

23

11. HOUGHTON, R.C.jr. Rapid Prototyping Tools:
What can we Learn From the MIS World l' Pres­
ented at the Software Engineering Symposium:
Rapid Prototyping, Columbia Maryland, April
19-21 1982.

12. MASON, R.E.A., CAREY, T.T.
active Information Systems.
No. 5 p 347

Prototyping Inter­
In CACM Vol. 26

13. MINSKY, M. A Framework for Representing Know­
ledge. In The Psychology of Computer Vision,
P. Winston (Ed.), McGraw-Hill Inc., U.S.A.,
1975, pp. 211-277.

14. RICH J. Inspection Methods In Programming,
Ph.D. Thesis M.I.T. technical report AI-TR-604,
June 1981

15. TAYLOR, T., STANDISH, T.A. Initial Thoughts on
Rapid Prototyping Techniques. Presented at the
Software Engineering Symposium: Rapid Prototyp­
~. Columbia Maryland, April 19-21 1982.

16. WASSEKMAN, A.I., GUTZ, S.
gramming. Communications
(March 1982), 196-206.

The Future of Pro­
of the ACM, 25, 3

17. WULF, W.A. Some Thoughts on the Next Genera­
tion of Programming Languages. In Perspectives
on Computer Science, Academic Press, New York,
New York, 1977, pp. 217-234.

DECISION SUPPORT SYS1'EMS
A~m

DEC-MICROS

Dr. Kuriak'Jse Athappilly, Associate Professor
BIS Department

Western Michigan University
Kalamazoo, Michigan

ABSTRACT

This paper deals with Decision Support Systems (DSS) and their
impact in the dee-micros. Since DSS is not a very well known
concept today, the paper attempts to explain briefly what DSS
is and then illustrates the existance of several hardware/soft­
ware configurations that are entitled as Decision Support
Systems in the Dec-family.

INTRODUCTION

Decision Support Systems, better known as DSS have
become the hallmark of the modern executive. It
has been growing in popularity since the 1970s.
It has evolved from EDP, MIS, and MS, but it
differs from all of them as its main function is
to aid managers directly and quickly in their
decision making process. There are many different
views on how to approach the question, "What is a
DSS?". It is generally understood as "an inter­
active system that provides the user with easy
access to decision models and data in order to
support semi-structured and unstructured decision
making tasks." (1) The intent of DSS is not to
automate the decision making process, but to
provide information and add insight as support for
managers' decision making process. (See Chart 1)
With a DSS the Manager can combine its benefits
with liis analytical skills and judgment to reach
the optimal solution. Parallel to the growth and
development of DSS as a concept, we witness an
evolution in the family of Dec-systems toward the
development of many hardware and software
configurations for several general and specific
Decision Support Systems.

General Characteristics of DSS

There are many different and unique decisions a
manager is faced with and for this reason a DSS
must contain some unique qualities to make it an
effective tool. They are flexibility, inter­
activeness, discovery orientation, and easy-to­
learn. Flexibility allows a manager to create
different models, manipulate data in a variety of
ways, and to match information to the problem at
hand. Interactiveness is important as it
facilitates the manager's communication with the
system, for quick and clear results. Discovery
orientation allows managers to probe trends,
isolate problems and ask new questions. Easy - to
-learn feature helps managers use the system with­
out learning its technical aspects. The focus of
all these features is on the user which enable
the DSS to follow his or her thought process.

" •.. Decision support systems rely on the
decision makers' insights and judgment at all
stages of problem solving--from problem formulation
to choosing the relevant data to work with, to
picking the approach to be used in generating
solutions, and on to evaluating the solutions
presented to the decision maker." (2)

Chart 1: A comparative view of the three systems; MIS, OR/MS, and DSS in terms
of their impact, payoff, and relevance.

IMPACT PAYOFF RELEVAi'lCE

HIS STRUCTURED EFFICIENCY INDIRECT
TASKS REPORT -

OR/ STRUCTURED SOLUTIONS RECOMMENDATIONS &
MS PROBLEMS SOLUTIONS

-
DECISIONS EFFECTIVENESS TOOL

DSS -OWN CONTROL
-DIRECT
-NO AUTOMATION

Proceedings of the Digital Equipment Computer Users Society 25 Anaheim, California - December 1985

Technical Characteristics of DSS

The general characteristics reveal what DSSs are
supposed to do, but the question "What is a DSS?"
remains to be answered for a complete understand­
ing.

It is generally agreed that a software program to
qualify as a DSS must have three general
capabilities: Database management, model base
management, and dialog generation as shown in
Figure 1.

The database management within the DSS which
basically consists of data insertion, extraction,
and retention processes is essential for an
efficient and effective DSS generating phase. This
component provides for the memory requirements in
decision support. Considerations for database
management include security procedures, a data
dictionary, ease of data entry, multiple access
availability, and audit trail capability. Because
the accuracy, integrity and reliability of the
information provided by the DSS depends on the
accuracy, integrity and reliability of the data

Figure 1: COMPONENTS OF THE DECISION SUPPORT SYSTEM

DATA BASE

TASK

The DSS

I
I
I
I

DBMSlMBMS
I
I

-----------~------------
DGMS

User

SOFTWARE
SYSTEM

ENVIRONMENT

from Sprague & Carlson, Building Effective Decision
Support Systems, Prentice-Hall, lOR?.

26

used in the database, it's important that the data~
base management system be considered an important
function.

The model base management system makes DSS a
unique software system. Modeling is the primary
function of DSS because it can be used to create
ad-hoc models and scenarios that represent real
world situations. Those scenarios help the manager
explore alternatives and examine the consequences
of such alternate decisions on the computer before
implementation in the real world. This capability
of exploring and testing many alternatives and
getting answers to several "what if" questions is
the unique strength of DSS. Naturally, since this
modeling capability reveals the strengths and
weaknesses of the design structure the user
manager can create appropriate designs by repeated
what if test questions to suit the real world
decision environment in a natural and logical
format.

The model base management system includes also
several statistical and mathematical manipulations
which offer DSS a good deal of analytical ability
and flexibility. Forecasting, ranking, sorting,
simultaneous equation solving, totaling decision
analysis, optimization, and averaging all aid in
model building. Most of these manipulations are
offered in many of the advanced spreadsheets.
With spreadsheets it is easy to introduce new
variables and instantly calculate their effect
through a chain of events and a multitude of
products. Consequently user managers can create
one or more models, expand or reduce them, and

Chart 2

modify them to help explore more and more
alternatives.

The dialog component of a DSS is the means through
which the users communicate with DSS. Much of the
power, flexibility and ease-of-use characteristics
of a DSS depends on the efficiency of the dialog
component. The communication with DSS depends on
three factors. They are: i) the knowledge base,
ii) the action language, and iii) the representa­
tion language. The knowledge base consists of what
the user manager needs to know in order to use the
system efficiently. The action language indicates
what the user can do communicating with the system.
The representation language indicates what the
user manager sees. This third characteristic, is
perhaps, the most important of the three cited
above, especially because of the developments in
graphics display.

Graphic display enhances DSS by displaying graphs,
reports and charts or other forms of communicating
commands and results to the user. Spreadsheets
that can demonstrate DSS qualities must have the
ability to generate personalized reports with
standard formats.

Each of the functions described are not seperate
features when contained in DSS, but are combined
to give flexibility to do many things at once (see
Chart 2 for summary of the DSS characteristics).
They are all integrated to give the software a
dynamic and paradigmatic quality. Ideally a
decision support system is "a comprehensive
computer software system encompassing everything

DSS CHARACTERISTICS

General
r-- Charac­

teristics

Technical
1-------1 Charac­

teristics

Flexibility

~Interactiveness
~Discovery Orientation

Easy-to-Learn

Data Insertion

Da<aba•e Manag~en<~Da<a Re<en<ion

Data Extraction

+----- Model Base
Management

Statistical
~ Manipulation

~Mathematical
Manipulation

Knowledge Base

Dialog Generation ~Action Language

--------------- Rep res en ta ti on
Language

27

a manager needs: Highly flexible; adaptable
database management; powerful modeling
capabilities; a wide range of easily accessible
statistical and mathematical techniques; presen­
tation - quality graphics; and report writing." (3)

Decision Aid and Decision Modeling

There are two types of decision support programs,
decision-aid and decision-modeling. Decision-aid
programs allow users to evaluate alternate options
by assigning weighted values to each factor in a
decision. Then the computer calculates the highest
score and reports the recommended course of action.
Since the assigning of values is subjective, this
type of program can bring an outcome that matches a
decision already made.

The second type of program, decision-modeling
programs, are usually considered more useful
because of their ability to use many variables and
answer "what if" questions. This type of software
aids the user in choosing the most effective
strategy for carrying out a decision. Both
decision-aid and modeling programs give managers
many features to choose from.

DEC-Micros Towards DSS

Hith the introduction of Digital Office Work­
stations, Micro VAX-11, and Micro PDP-11 series in

the hardware area and numerous specific and generic
DSS packages in the software area, the Decision
Support Systems have become a conspicuous feature
in the Dec-family. Figure 2 shows the office work
stations with VAXes, indicating the different
machines and their capabilities. Figure 3
displays the range of solutions that a manager
can work out with VAXes in his/her decision
making process. Figure 4 shows the integrated
system, a typical DSS environment, that can be
created using Dec-micros.

There are several DSS application software
available on the market that are compatible with
Dec-systems. Chart 3 shows the available software
in their rank order in different functional areas.
Chart 4 lists several of the existing DSS software
that are compatible with the Dec-micros.

Figure 2: Office Workstations with VAXes

[I
I p

DISTRIBUTED APPLICATIONS N R
T 0

PERSONAL SOFTWARE I I I E C
G E

NETWORKING ! I I R S

[I ! I I
A S

WORK PROCESSING T I
EN

ELECTRONIS MAIL [11 I I D G

ALL-IN-1 UI DI II I I :J TERMINAL

VI2XX DECMATE Rainbow Professional

Figure 3: Range of Solutions with VAXes

!cAD/CAM ENGINEERING GRAPHIC USER VAX
Station

MRP I Professional I INVENTORY CUSTOM APPLICATION SW USER
CONTROL

I

I LOTUS I Rainbow I PERSONAL COMPUTING SW USER
1-2-3

I

WORD TEXT INTENSIVE USER I DECMATE I
PROCESSING I I

I I
I

I VT~XX I
I

?????? CASUAL USER I I
?'/???? I I

I I
I I I I
$ $ $ $ $

28

Figure 4: Integrated Office System

Communications

.-----------,, ... _

DDP "'-,, EM
\

\

D
s

\ s
\

\

' /
/

APPLICATION SYSTEM OFFICE SYSTEMS

Chart 3: DSS application software according to
the rank of order of availability.

(Items ranked by order from most availability to
least availability)

MAXIMUM
1. Financial Management
2. Management
3. Information Management
4. Accounting
S. Office Systems
6. Sales and Marketing
7. Education
8. Manufacturing
9. Real Estate
10. Distribution
11. Construction
12. Engineering
13. Law
14. Personal Computing

MINIMUM
------------·---------------'

29

Chart 4: DSS Application Software in different
functional areas.

Accounting
MAPS/AP----- A.P.
MAPS/GL----- G.L.
MAPS/MODEL-- FP/FA

Construction
SUPERVISOR-- CPM/PERT

Distribution
DACMS------- Inventory
CDIS-------- Forecasting

Education
DSMTUTOR---- FP, Simulator
FINAID------ FP

Engineering
CADAT------- CAD/CAM

Financial Management
ASSET-LIABILITY system
BAi~KMASTER

BUSINESS MODELER
CALC-II/CALC-II PLUS
DATAMODEL
DATACALC
DECCALC
DIGICALC
FLOWCALC
INVESTMASTER
MO NEYMAN
MODELER
OPTIQUBE
PLANPLUS
UNICALC 3-D
XSP

Information Management
ACCENT R
GRS
MAPS/DB
READER
XPLAN PLUS

Law
INMAGIC

Management
AIM BENCHMARK -- Suites I and II
DYNAMO
LP
MISTER
MOSAIC
RISKANl/2
SIBYL/RUNNER

Manufacturing
COMETS
HS/LP

Office Systems
MATRIX
PLESSEY-CALC
THEMIS
vc

Personal Computing
SUPERCOMP-TWENTY

LISREL
An application. Aa ei:pluatioa

Interfaced vith SPSSX on a VAX/VMS 111780

Leuae W.hiteside

University of Arkansas at Little Rock

Little Rock. Arkansas

ABSTRACT

LISREL VI is a computer progam for estimating the unknovn

coefficients in set of Linear Structural RELationships. It is accessed on

the VAX/VMS computer via the statistical package SPSSX (Statistical

Package for the Social Sciences). The purpose of this paper is to explain

the application of LISREL to actual data and to provide a guide to nev

users of LISREL. First. a discussion of the LISREL program and it's

model vill be presented. followed by t'To examples. The first example.

ta.ken frr<m the LISREL VI User's Guide. contains both latent

(unobservable) and manifest (observable) variables. The output is

examined in detail. The second example is the analysis of data provided

by a study in progress at the Center of Child Development and Education

at the University of Arkansas at Little Rock. This second example

contains only observed variables. Throughout this paper the LISREL VI

User's Guide by Karl G. joreskog and Dag Sorbom is heavily used as a

source of information.

1 Terminology and Conventions

To discuss LISREL. it is necessary to review related

terminology and path diagram conventions. LISREL can

provide estimates for equations involving both aaiaifest

(observed) and Jateal (unobserved) variables. Any variable

vhose variability is assumed to be determined by other causes

outside the causal model is called eHgenoas. When a

variable's variation is e:1plained by e:sogenous variables or

other variables in the system, the variable is called

endo1eaoas.

coefficient vould be named ~4,3. AU observable variables are

represented by squares; all unobservable variables are

represented by circles. The correlation between exogenous

variables is indicated by curved lines with arrowheads at both

ends. Straight lines vith one arrow are dravn from the

variables ta.ken as causes (exogenous. independent) to the

variables taken as effects (endogenous. dependent).

The path coefficient indicates the direct effect of a

variable upon another variable. The coefficient ususally has

a double subscript indicating the cause and effect variables.

For e:1ampe. if T)3 has a direct effect upon l)4. the path

Proceedings of the Digital Equipment Computer Users Society 33

2 la.troduclioa

In 1966 Karl G. joreskog presented an efficient numerical

method for the maximization of functions of many variables.

This led to the development of the LISREL model. It has since

played such a major role in the application and analysis of

structural equation models that such models are often

referred to as "LISREL" models. Models of this kind are also

Anaheim, California - December 1985

knov as simultaneous equation systems, linear causal

analysis, path analysis and dependence analysis.

Joreskog's LISREL program is based on a general model that

may include:

1) a measurement model specifying the relations between the

observed variables and the unobserved Clatent) variables

including measurement errors

and

2) a linear structural equation model specifying causal

relationships among the unobserved variables with

possible reciprocal causation and random disturbance

terms.

LISREL can provided estimates for models that include one or

both of these sets of equations.

LISREL will not only estimate the unknown coefficients in

the structural equations but will allow for errors in equations

(residuals, disturbances) and errors in variables

(measurement, observation). The variance-covariance

matrices for these errors will also be estimated. The LISREL

model can handle correlated errors and residuals. LISREL can

estimate unknown parameters by any of five different

methods for fully identified models. <Identification of models

is discussed below.) The five methods in elude two-stage least

squares. unweighted least squares and generalized least

squares. The method of maximum likelihood estimation is

the default method in LISREL. This method is knovn as a "full

information" approach since it uses alJ the information in the

data and parameters are estimated simultaneously. AH

methods give consistent estimates for fully identified models.

3 The General LISREL Model

In the general model. the relationship among a set of

observed variables and a set of unobserved variables is

examined. The observed variables are ta.ken to be measures

of the unobserved variables. The relationships among the

observed variables are contained in the covariances among

the observed variables. Let I be the matrix of the covariance

for the population. The sample covariance matrix. S. is input

by the researcher. LISREL uses the sample covariance (or

correlations) matrix Sand constraints on the parameters to

compute an estimate of :£. In the process of this estimation

the unknown parameters are estimated. Actually LISREL is

not restricted to the covariance or correlation matrix as

input. but the examples in this paper uses only the

34

covariance and correlation matrices.

The measurement model is a set of equations that lin.k the

observed variables to the unobserved variables. The

relationship of the unobserved variables to each other are

contained in the structural model. The problem is then one of

estimating the unknovn parameters and determining the

goodness of fit of the parameters and model.

To illustrate the general LISREL model. consider the

following path diajram in figure 1. Observed independent

and dependent variables. xi and Yi . are indicated vith boxes.

Latent (unobserved) independent and dependent variables ti

and l)i are enclosed in circles. The observed variables x 1 and

x2 are measures of the unobserved variable t1. 7'.5 and 7'.t;

are the regression coefficients of x 1 and x2 on t1 . The error

of measurement of x1 and :x2 is indicated by 61 and oz.

Similiarly, Y1 and Y2 are measures of TJ1. <1 and <2 are

errors of measurement of Y1 and Y2 and 7'.1 and 7'.2 are

regression coefficients of Y1 and Y2 on l)1 .

flcJ're 1

The relationships discribed above can be summarized in

the follovins system of equations called the measurement

model.

y 4 • A4 'Tl2 + E4

Or in matru form:

I· tll.x t + 6

Where the elements of Ax and ?ty are regression

coefficients. The vectors E: and 6 are the errors of

measurement of the observable variables. Two matrices

related to E: and 6 computed by LISREL are called El E and El 6·

EIE contains on its diagonal the variances of the E1 errors of

measurement of y 1 . The off diagonal elements are the

covariances of the E1 variables. Similarly, El 6 is the

variance I covariance matru for the 6 1 errors of

measurement of x1 .

The structural model describes the relationships between

the unobservable (latent) variables. In this example the

indepentent latent variable e has a direct causal effect on the

latent variables 'flt and T't2· This model also indicates that the

latent variable T'tl has a direct causal effect on Tl2· These

effects are indicated in the coefficients ~1. 'Yl and 'Y2. '1

and C2 are the errors (random disturbances) of the structural

equations. The structural equations are:

T't1 a 'Yt e, + t 1

Tt2 • ~1 Tlt • 'Y2 t'1 • C2

Or in matrix form:

vhere I' and 1' are coefficient matrices and (is a vector of

errors in equations (random disturbance terms). Notice that

the matrix I' contains information about the effects of T)

35

variables on other Tl variables. The diagonal of I' is alvays

zero since T) variables are not allowed to directly "cause"

themselves. 1' contains information about the effects of

latent exogenous variables (e) on latent endogenous

variables (11). By definition exogenous variables are those

that cause other variables and vhose variability is assumed to

be determined by other causes outside the causal model.

Endogenous variables variation is explained by exogenous

variables or other variables in the system.

Tvo additional matrices estimated by LISREL are + (PHI)

and+ (PSI). The first + (PHI) is the variance/covariance

matrix of the latent exogenous variables (t'). The second<+)

is the variance/ covariance matrix of the errors in the

equations (' variables).

3.1 Assuaptions

Joreskog makes five assumptions in the LISREL model.

From the LISREL User's Guide they are:

1) I;. is uncorrelated with e
2) £ is uncorrelated with 11

3) 6 is uncorrelated withe

4) t , £, 6 are mutually uncorrelated

5) ~has zeros on the diagonal and I-BIT A is

non-singular.

The first four assumptions involve the correlation of error

terms with latent variables or each other. To see why these

assumptions might be rea..<;Qnable look at the path diagram in

figure l or the equations above. The first assumption states

that the disturbance terms in the structural equations are

uncorrelated with the exogenous variables in the structural

equations model. The second states that the errors of

measurment of the observed dependent variables are

uncorrelated with the latent independent variables. The

third states that the errors of measurement of the observed

independent variables are uncorrelated with the latent

dependent variables. The forth states that the errors of

measurement and the disturbances in the structural

equations are uncorrelated. Notice that the error terms can

be correlated amC1ng themselves. For example EJ could be

correlated with Ez. The last assumption simply states that

none of the equatiC1ns in the model are redundant.

In addition. all variables are assumed to be measured as

deviations from their means. This implies that the

expectation of the variable is zero and the expectation of a

product is a variance or a covariance. This is not a limitation

to the model since it involves only a change in origin. This

assumption will prove useful in the equations used to prove

the model is identified. If the method of Maximum Likelihood

(MU is used the additional assumption is that the input

correlation matrix Sis positive definite. Although the

manual is not clear, the program does seem to check the

input matrix to verify that it is positive definite. If it is not

the analysis is canceled by the program and a message is

issued.

The elements of the eight matrices contained in the full

LISREL model can be controJJed by the researcher in three

ways. They can be fixed, constrained or freed. Free

parameters are unknown and are estimated by LISREL.

Constrained elements are unknown but set equal to one or

more other parameters in the model. Fixed parameters have

been assigned a value (zero or otherwise) by the researcher

and are not estimated by LISREL. Each of these eight matrices

have a default mode, either fixed or free. That is, if the

researcher does not indicate the mode of a paticular matrix it

is given a default of fixed or free. Each matrix has a default

form. either a full non-symmetric matrix, zero matrix,

symmetric matrix or diagonal matrix. Table 2 in the first

example gives the defaults for each matrix.

3.2 Estiaation

It can be shown that the elements of the population

correlation matrix of the observed variables I are functions

of these eight matrices, ~ , -y, 11.x , 11.y , 9 c • 9 8· + and + . For

some models the elements of these matrices will be fixed to

zero or the identity matrix. Estimation of the free parameters

of these matrices is accomplished by an iterative scheme (an

application of the Davidon-Fletcher-Powell method) that

produces an estimate of I. When the method of maximum

likelihood is used the fitting function below is minimized by

the iterative procedure until the solution converges, that is.

until the estimated I is" close" to the true I. Since I is not

known the sample correlation matrix S is used. The scheme

must have initial estimates (provided by LISREL or the

researcher) and must satisfy the constraints that have been

imposed on the model. It is possible for the iterative scheme

to converge to a local minimum. This would result in

36

incorrect estimates for parameters. However, this problem i~

thought to be rare. (Long, 1983).

The fitting function for the ML estimator is defined by:

F<S. I ") = tr(S I" -l) + !LOG II "I - LOG !Sil - (p+q)

where I" is the estimated I , I" -l is the inverse of I" ,

and LOG II "I istheLOGofthedeterminantofI ". As Long

0983) points out it is not hard to see intuitively how this

function reflects the distance between S and I ". If S and :E"

have elements similar in value, then their inverses also. As S

and I* become close (SI* -I) become closer to a (p•q by

p+q) identity matrix, since the dimensions of both Sand :E" -I

is(p•qby p+q). Thetraceofa(p+qby p•q)identitymatrix

is equal to p+q, so the first term of the fitting function goes to

p+q as Sand :t• become close. Also as I" and S become closer

their determinants (and the logs of their determinants)

become closer and the second term of F approaches zero. The

last term of p+q is to cancel the first p+q in the fitting

function so that F approaches zero as S approches I ".

3.3 ldeatification

During the calculations, LISREL assumes the model is

identified. A model is identified if the choice of the model and

the constraints (or lack of constraints) on the matrix

elements result in one and only one estimate of I.

Unfortunately there is not a general and practical way to

determine if a general model is identified. (Some special cases

of the LISREL model have necessary and sufficent conditions

defined.> LISREL will attempt to analyze any model regardless

of the question of identification, but results can not be

trusted unless it is .know the model is identified. In some

cases warnings will be issued by LISREL indicating

parameters that may not be identified. Other LISREL results

that indicate an unidentified model will be discussed in the

following output. A necessary (but not sufficient) condition

for identification is the following inequality.

t < (l/2)(p•q)(p+q+ 1)

where tis the total number of independent parameters to be

estimated, p is the number of xi variables and q the number

of y i variables.

An effective (although time-consuming) vay to determine

that a model is identified is to shov that each parameter can

be solved in terms of the population variances and

covariances of the observed variables. In this vay

parameters are proven identified individually. This method is

illustrated in the folloving examples. If all the parameters

are identified the model as a vhole is identified. If a

parameter can be solved in more than one vay the parameter

is over-identified and the model as a vhole is said to be

over-identified. Note that individual parameters can be

identified but the model as a vhole is not identified unless

All. the parameters are identified. Hovever these identified

parameters can be estimated even though the estimated for

the unidentified paramenters can not be used. If a parameter

can not be solved in terms of the variances and covariances

of the observed variables then the parameter is unidentified

and the model is unidentified.

In summary, identified and over-identified models can be

completely estimated, vhile unidentified (also called

under-identified) models can not.

If a model is not identified all is not lost! Additional

limitations can be imposed on the coefficients linking

measured variables or the reseacher can make assumptions

about the correlation among residual terms.

LISREL does not constrain estimates to be vithin any

boundary range. this means that the program may give

estimates of negative variances. correlations larger than one

in absolute value, etc. Solutions of this kind can occur if the

model is not identified. Hovever it can also occur vhen the

model does not fit the data or the sample size is too small.

Another situation that can cause unacceptable estimates is

the case of many missing values in the data. Researchers

often handle missing data by pair-wise deletion in the

calculation of l.he covariance (or correlation) matrix. This

means that each correlation coefficient is calcl'l.atcd with a

different population. In this case the correlation matrix

should be used in the analysis by LISREL.

37

3.4 LISREL Data Input

As was mentioned before LISREL can take several forms of

data as input. These input forms include rav data, the

moment matrix. the covariance matrix or the correlation

matrix. You may choose to analyze any one of the three

matrices. LISREL can compute the matrix to be analyzed

regardless of vhat has been read as input. Where necessary

LISREL vill use default values of zero for the means and one

for the standard deviations. The decision of which matrix to

use as input for LISREL and in the analysis by LISREL can be

a difficult one for the researcher. The tables belov should

prove useful in this task. Parts of the folJoving tables are

taken from the notes of a workshop conducted by Karl

Joreskog (see also Joreskog, 1984).

Table 1

INFORMATION RIT AI NED AND LOST

Mi!rix
Raw data
Moment Matrix

Covariance Matrix

Correlation Matrix

Retained
all
means,
standard deviations.
correlations
standard deviations.
correlations
correlations

~
none

means

means. standard
deviations

MATRIX TO BE USED IN ANALYSIS

LISRELName

CM Covariance

KM Correlation

MM Moment

Details

-this should be used in general

-use if it is desired to retain the
original units of measurements in
the observed variables

-use if the model is scale-free and the
units of measurement of the observed
variables are arbitrary or irrelevant

-use when pairwise deletion of missing
values has occured

-use if the model contains intercept
terms and/or mean values of the
latent variables

4 Eiample I. U.nbiaa Lateat and llanifest
Varialtles

The following example will serve to illustrate the LISREL

control cards necessary to perform an analysis of a model

and to explain the meaning of the LISREL output. This

example found in the LISREL manual (198.f) was originally

taken from Wheaton et al 0977). The data was collected over

three points in time: 1966, 1967and1971. Two observed

variables. Education and SEI (Socioeconomic Index) are used

to measure the unobservable variable SES (Socioeconomic

Status). The observable variables, the Anomia subscale and

the Powerlessness subscale, are used in the model to measure

the unobservable variable Alienation. Data were collected

from 932 persons. This example uses data from 1967 and 1971

only. The path diagram for this model is the one discussed in

the beginning of this paper (figure 1).

The observable exogenous variables in the model are:

x1 Education

xz SEI (Socioeconomic lnde:1)

They are indicators of the latent exogenous variable:

(1 = SES (Socioeconomic Status)

The observable endogenous variables in the model are:

Y1 = Anomia 67 Y3 = Anomia 71

Y2 =Powerlessness 67 y 4 = Po"Verlessness 71

They are indicators of the latent endogenous variables:

Y11 = Alienation 67 Y12 = Alienation 71

All eight matrices in the LISREL model ban parameters to

be estimated in this example. These matrices are listed along

with their LISREL name and a brief description. The default

form and mode refer to the specification of the matrix that

LISREL assumes if the researcher does not define them. The

default forms are FU (full. non-symmetric matrix). ZE (a

matrix of zeros). SY (symmetric matrix which is not

diagonal), and DI (diagonal matrix i.e. off diagonal elements

are zero). The default modes are FI (fixed i.e. not to be

estimated) or FR (free i.e. to be estimated).

38

Taltle2
MATRICES IN LISREL

Matrix Llsrel Default
SmboUNam.12 .M&IU f11tml'.m11de PJ!111ti11Li11a
1'y LAMBDA-Y LY FU/Fl Factor matrix ofyi

OnY)1

"-x LAMBDA-I LI FU/Fl Factor matrix of xi

on!1

ft BETA BE ZE/FI Coefficient matrix
for dependent
variables ., GAMMA GA FU/FR Coefficient matrix
for independent
variables

• PHI PH SY/FR Covariance matrix

of ! 1's

• PSI PS SY/FR Covariance matrix

of e1 errors

eE: THETA-EPSILON TE DI/FR Covariance matrix

of E:1errors

66 THETA-DELTA TD DI/FR Covariance matrix

of 61 errors

4.1 The Eqaalioas

The structural and measurement equations for the model

follow. The measurement error terms< 1 and < 3 are

constrained to be correlated in the model. Rememeber that <i

is the error of measurement of Yi. It is reasonable that the

error of measurement of a variable observed at two points in

time would be correlated. Since TJi and ei are unobserved

they do not have a definite scale. The l's assigned in each

column of i\x and ?>.g assigns the scale of the unobserved

vadbles to be the same as 1: and y respectively. In matdi:

form the equations are:

Y1 1 r 0 1 r (1 1
Y2 I I i\2 0 I r TJ1 l I < 2 I
Y3 I I o 1 I l 112 J • I < 3 I
Y4 J l 0 i\ 4 J l (4 J

r 1:1) r 11 r 0 1 i
I I I I el • I I
l x2 J l ~J l 0 2 J

r l)1 1 r 0 0 l r TJ1 l r 'Y1 l r c1 i
I I I I I I • I I e 1 • I
l TJ2 J l~ 0 J l 112 J l 'Y2 J l C2 J

or y ?\g 1l . (
I = hx e • 6

11 - ~ 1l • 'Y e • c

4.2 Ideatificatioa

The question of identification must be answered before the

LISREL model can safely be applied. The first test is the

necessary (although not sufficient) condition oft< .5(p+q)

(p•q+ 1) when tis the total para.meters to be estimated, p is the

number of observed 1 varables and q is the number of

observed y varables. The count of t includes i\2 , ~ , ~ ,

~ . y 1 and 'Y2 , as well as the freed elements of • , +. 6 E:

and e IJ . Which elements of these matrices are free to be

estimated are determined by the researcher in the

specification of the model. In this example • , the matrix of

I

39

the variance of the latent varable ei . is free to be estimated.

+.the matrix of variance I covariance of the (1 error terms,

has two elements free. The (1 error terms are assumed to be

uncorrelated so the matrix contains the variance of (1 and (2

on the dia,onal and zeroes elsewhere e 6 has two el.ements

to be estimated. these are t.he variance of the 6 error terms

The correlation of < 1 and <3 will be estimated along with

the variances of each < i. Therefore, 6£ has 4 variance

elements on the diagonal and one off diagonal covariance

element to be estimated. Agaln, the paraments that are free

to be estimated are determined in the model by the researcher

but are summarized by LISREL in the output labeled

PARAMENTER SPECIFICATIONS (see following output).

In this example there are a total of 16 independent

parameters to be estimated (i.e. t•l6). Then with p•2 and q=4

the necessary condition is satisfied. That is, t = 16 < (112)

(2+4)(2•4• l) = 21. This does not mean that the model is

identified! This condition is necessary but not sufficient. As

stated earlier there is not an easy way to determine if a model

is identified. There has been work done to show sufficient

conditions to verify that certain types of models are

identified. Some of these types and conditions are outlined by

Long (l 983, Covariance Structure Models page 34). In

general, to show that a model is identified it must be possible

to solve for all parameters to be estimated in terms of the

variance and covariance of the observed varables. To do this,

first working with the measurement equations solve for all

parameters and variance I covariance of latent varables in

terms of the variance/ covariance of the observed varables.

With these parameters identified, wort with the structural

equations to solve for the elements of ~ • -, and + in terms

of the variance/covariance of the latent varables.

The following equations come from the measurement

equations by multipling an equation by itself (or by another

equation) and taking expectations. Notice the terms that are

zero by assumption. These terms are zero because the

researcher assumed no correlation or no correlation was

assumed by the model in general. For example, since it is

assumed that the 6 error terms. the (error terms and the <

error terms are uncorrelated with each other the expectation

of the product of any two of these is zero. That is, E[6 (TJ =

Starting with the first. measurement equation. multiply the

equation by itself to obtain Y1 Y1 • l)1 l)1 + 2 l)1 E1 + E1 E1 ·

Take expectations and use the assumptions above to see that

the ne1t two equations are equivalent.

ElY1Y1 j=EIT)l l)1] +[(2l)1 E1l + [(E1 E1l

VAR (Y1) • VAR(l)1) + 0 +VAR (E1)

The idea is to solve all parameters to be estimated in terms of

the variance and covariance of the observed variables. We

now have one equation and two untnovns. Continuing vith

the remaining measurement equations -ve have the following

set of new equations. The equations are numbered on the left.

The first six are obtained by multiplying an equation by

itself. The last 15 come from multiplying one equation by

another. The terms that are zero by assumptions in the model

(either in general or set by the input model) are omitted.

1) VAR (Y1) = VAR('111) +VAR (E1 }

2) VAR (IJ2) = 'A.j VAR(l)1) +VAR (E2)

3) VAR (y3) = VAR(112) +VAR (E3)

4) VAR (~) = 'A,,.2 VAR(Tt:z) +VAR (E4)

5) VAR (X1) = VAR(e,) +VAR (61)

6) VAR (X2) = 1'{- VAR(e1) +VAR (62)

7) COV (IJ1 Yi) = 1'2 VAR(Tt1)

01 cov <1:111:13> = cove,,, Tt2> + cov (E1E3)

9) COV (IJ1 Y4) = 'A4 COV(ll1 Y)2)

10J cov <1:11><i J = cov c ,,, e,>
11) COV (IJ1X2) = 'A5COV (111 e,)

12} COV (Y2Y3) = 'A2COV (111 Tt2)

13) COV (1J2!J4) = 1'.2'4COV (111 1)2)

14} COV (y2X,) = 1'.2COV (111 e,>

15) COV (IJ2 X:l) = 1\2 "6 COV (111 e1)

16) COV (y31J4) = A4VAR(l)2)

17) COV(IJ3X1) = COV(l]2e1)

18) cov (y3X2) = 'A5COV C112!1l

19) cov (y4X1) = A4COV r 112e1)

20) COV (IJ4X2) = 1\4 'AsCOV (T)2!1)

21) COV (X1X2) = ?\5VAR(!,J

We -vant to use the9e equations to verify that each parameter

to be estimated in the model can be solved for in terms of the

variance or covariance of the 11 and/or y1 's. Using the

identified parameters -ve must then consider the structural

equations and their parameters. Make a list of the parameters

to be identified and solve for each. The follo-ving is a table of

the parameters to be identified and the equations used.

40

Table 3

E111.1ation 1.1ad E111.1ation 1.1ad

'A2 10,14 '4 17,19

"6 10,11 VAR ce,) 21 tmd "6
VAR(E1) 1, 7 ona 'A2 VAR(E2) 'A2 end 7, 2

VAR(E3) '4.16,3 VAR(E1) 16.4. '4

COV (E1 E3' '4 ,8,9 VAR (61) "6. 21. 5

VAR (8:z) ?\e.21,6

This proves all the parameters from the measurment

equations are identified. There are still 5 parameters left to

check <!31 1"1 1"2 and two terms from the variance of the , , '
error terms). These come from the strutural equations:

[eq stl l

r12

To identify y 1 and VAR(t::1) we will obtain two equations with

two unknowns. Multiply [eq stl] by itself for one equation.

For the second. multiply [eq stl l by e 1. take expectations of

both equations. The two equations have only 'Y1 and VAR(e 1)

as unknowns. all other parameters are already proved

identified. To identify the remaining three parameters we

will work with [eq stZL First multiply [eq st2l by TJ2 and take

expectations to obtain the equation COV(T)I T)z) = '31 VAR(T)1)

.;.y 2 COVC! 1 T)1) •El l)1 ez). We do not have an assumption

that sets the la..c;t term equal to zero. To see that it is zero.

multiply !eq stl l by <:2 and take expectations. The right side

of the equation is zero by previous assumptions. Now

multiply [eq stl] bye t and take expectations. Use this and

the equation above to solve two equations in two unknowns.

This identifies the parameters ~1 and y 2. The last

parameter to identify is VARC/;;2). This can be done by

multiply [eq st2] by itself and ta.king expectations. Since all

parameters are identified the model is identified.

4.3 LISREL Coaaaads

The following LISREL program includes the SPSSX

statements necessary for execution. LISREL will al-vays print

the LISREL commands again on page 2 of the output. The line

numbers on the left side of the page are generated by SPSSX

and will be used in the following discussion to explain each

line of the program.

28-SEP-8'.5 SPSS-I RELEASE 2.1 FOR VAX/VMS
l'.5:'.52:17 UNIV.OFAR.ATLITII.EROCK DECVAX-111780

VMS V<(.1

For VMS V<t.l UNIV. OF AR. AT LITTLE ROCK
License Number 18805

1
2
3
4

TITLE Llsrel example - STABILITY OF ALIENATION
SUBTITLE DATA FROM WHEATON ET. AL.<1977) - LISREL
SET WIDTH..SO

5 INPUT PROGRAM
6 NUMERIC DUMMY /*DUMMY VARIABLE
7 END FILE /• DUMMY FILE
8 END INPUT PROGRAM
9
10 USERPROC NAME·LISREL

THERE ARE 2913947 BYTES OF MEMORY AVAILABLE.
THE LARGEST CONTIGUOUS AREA HAS 2331157 BYTES.

11 Llsrel ALIENATION MODEL B Llsrel Manual III.54-63
12 DA NI-6 N0=932
13CM
l<f
15 11.834
16 6.947 9.364
17 6.819 5.091 12.532
18 4.783 5.028 7.495 9.986
19 -3.839 -3.889 -3.841 -3.625 9.61
20 -21.899 -18.831 -21.748 -18.775 35.522 450.288
21 LA
22 'ANOM67' 'POWL67' 'ANOM71' 'POWL 71' 'EDUC' 'SEI'
23 MO NY =4 Nl=2 NE=2 N'K=l BE=SD PS=DI TE=SY
24 FR LY 2 1 LY 4 2 LX 2 1 TE 3 1
25 ST 1LY11LY32 LX 11
26LE
27 'ALIEN 6 7' 'ALIEN 71'
28ll
29 'SES'
300U ALL
31 END USER

The TITLE and SUBTITLE are SPSSX commands are used for

documentation. Since the data vill be read in LISREL. SPSSX

vill not have an active file defined. Lines 5 thru 8 are used

to set up the dummy active file and dictionary necessary for

SPSSX to execute. USERPROC NAME z LISREL calls LISREL and

all commands after this statement are LISREL commands.

LISREL commands may be abbreviated to two characters

Blanks are used to separate different keywords and may not

be used within keywords or commands and may not be placed

before or after an equal(=) sign. LISREL commands are not

required to begin in column 1 (SPSSX commands must begin

in column 11. The User's Guide is not clear but upper and

lower t.:ase seem to matter. All commands and keywords must

be upper case. All para.meters are expected to be on the same

line as the command although command lines can be

continued by ending a line the a. C.

41

The first statement in LISREL must be the title. More than

one line is alloved for the title, to continue the title to more

than one line type any character (non-blank) in column 80.

The next command (DA) on line 12 gives the specification of

the data. NI-6 indicates that there are six observable

variables and N0=932 sets the sample size as 932.

Nov the input matrix will be read. LISREL can read data in

several forms. The data could be rav data, a moment matrix, a

covariance or correlation matrix. CM indic'ates that the data

that follows to be read is a covariance matrix. The data is

entered in the program in free form with spaces acting as

delimeters. The matrix is assumed to be ordered with

endogenous (y) variables first then exogenous (x) variables.

If this is not the case the SE command can be use" • ·porder

the variables. In this example the matrix is in the correct

order.

The LA card Cline 21) assigns 8 character labels to the

observed variables as represtented in the input matrix (or

Rav data if used). On lines 26 thru 27. the LE and U cards are

used to assign labels to the unobservable independent <tl and

dependent (T)) variables respectively. Labels are necessary

for documentation and readability only. although they may

be used with the SE card to reorder the variables.

The model to be estimated is specified with the MO

command. In this case on line 23. the number of y (NY)

variables is 4. the number of x (NI) variables is 2. the number

oft <NK> is 2 and there is only 1 Tl (NE) variable. The

coefficient matrix ~ is. by default in LISREL. defined to be

fixed to zero. In this example BE·SD defines~ to be

subdiagonal. This means the diagonal and upper triangle are

fixed to zero and the subdiagonal is free to be estimated. The

covariance matrix + is defined as diagonal. This implies that

there is no covariance of the errors of the structural

equation. TE·SY sets eE (Theta-Epsilon, the covariance matrix

of the measures of errors for y variables) as a symmetric

matrix. It is by default diagonal and free.

The previous commands defined the structure of the whole

matrices. It is also possible to relax or put contra.in ts on

individual elements of a matrix. On line 24 the elements

(2.1) and (4,2) of ?-.y are freed. Line 25 gives the elements

(1.1) and (3.2) of Ay the starting value of 1 The (3.1)

element of eE is freed so that the correlation between (1

alld t: 3 will be estimated.

The OU commalld is used to indicate the output desired from

LISREL. LISREL Call obtain estimates by five different

methods: IV (instrumental variables). TSLS (two-stage least

squares). ULS (unweighted least squares). GLS (generalized

least squares) and ML (maximum likelihood). All methods

give consistent estimates for fully identified models. The

default is ML in the LISREL program. Joreskog (198-4) page

Il.26 and Il.27 give details of the types of output that can be

obtained.

.f.4 Output and hplaia.atioa. for Ei:aaple l

The following output generated by LISREL gives a

summary of the specifications of the model and the output

requested.

LIS REL YI-YERSIOH 6.6

1..11rei fl.mlA110H MOOEL B l..llr.i M....i m~

t1ME1 OF Il'l'UT YflWllLES 6

tlMEI OF Y- YflWllLES ..
tlMEI OF ><- YflWllLES 2

tlMEI OF ETA- YflWllLES 2

tlMEI OF KSI- YflWllLES

tlMEI OF OOSERYATUllS 932

oom.rr REQlESTED
TEOliICfl. oom.rr YES

STflORI EJRe YES

T-Yfl.W YES

aJllELATUltS OF ESTJHITES YES

FITTED l"Oel'TS YES

TOTfl. EFFECTS YES

FACTOR SCORES flEOAESS10l'tS YES

FIRST ORDER CERIYATMS YES

STflORIIZED SCl..UTIClt YES

flJT0'1ATIC MODJFICATUlt I'll

42

LISREL ahvays prints the matrii: that is to be analyzed. In

this example it is the same as the in.put matrii:. It is possible

that the matrii: to be analyzed is not the same type as the

in.put mat.rii:. Also if the variables Yere reordered by a SE

card the new reordered mat.rii: Yould be printed.

The determinant C8.ll be used as a measure of "ill

conditioning" of the matrix. If the determinant is small

relative to the magnitude of the diagonal elements, it is

possible that there is a strong linear relationship betYeen

one or more of the observed variables. One or more of these

variables should be excluded from the model. or use the ULS

<Unweighted Least Squares) method instead of ML. By

checking the determinant we Call see that this is not the case

in this example.

COVARIANCE MATRIX TO BE ANALYZED

ANOM 67 POWL 67 ANOM 71 POWL 71 EU1!L Sfil._

ANOM 67 11.831
POWL67 6.917 9.364
ANOM71 6.819 .5.091 12 . .532
POWL 71 4.783 .5.028 7.49.5 9.986
EDUC -3.839 -3.889 -3.811 -3.62.5 9.610
SEI -21.899 -18.831 -21.718 -18.77.5 3.5 . .522 450.28

DETERMINANT· 0.6080570+07

The output titled PARAMETER SPECIFICATIONS indicates the

constraints placed on each element of each matrix involved

ill the model. A zero entry indicates that the element is not to

be estimated. that is, it is fii:ed. An integer indicates that the

entry is to be estimated. If two entries have the same integer

index. these two entries have be constrained to be equal.

Check the parameter specification to verify that you have

defined the model as you in.tended!

AtlOM 67 0 0
POUl. 67 1 0
AtlOM 71 0 0
POUl. 71 0 2

LAl'1IDA)(

EDUC
SEI

BETA

FUEH67
FUEH71

_m

0
3

fl.IEtt 67 &m1l1

0 .. 0
0

OfH1t

_m

flJEl't 67 :s
fUEl't 7t 6

PHI

_m

SES 7

PSI

fUEl't 67 rn
e 9

TIETAEPS

flP167 POOl,67 flP171 M...71

flllM67 10
POOl.67 0 11
FllJM7t 12 0 13
POOi. 7t 0 0 0 14

TIETADELTA

1:5 16

Initial estimates or st.art.in& values are automatically

generated by LISREL. They are obtained from a non-iterative

scheme and can therefore be obtained with a minimum of

computer resources. These values are true estimates and can

be used in the early stages of development of a model to save

computer time. Starting values (if set by the researcher) and

fixed values are not estimated.

DtI1lfl. ESTlMATE8 (TIILS)

flllM 67 1.000
POOi. 67 1.003
flllM 7t 0.000
POOi. 7t 0.000

m.c
SEI

BETA

1.000
4.97S

0.000
0.000
1.000
0.963

fl.mt 67 ..fl.mt..71

fUEl't 67 0.000 0.000
fUEl't 7t 0.:591 0.000

43

fUEl't 67 -0.:571
fUEl't 7t -0.242

PHI

SES 7.140

PSI
fl.mt67 rn

4.:598 J.774

TIETAEPS

flllM67
POOi. 67
flllM7t
POOi. 7t

flP167 POOi. 67 flP171 M...71

4.907
0.000

1.716
0.000

TIETADELTA

2.397
0.000
0.000

_m&... ..JU

2.470 273.:564

4.7:51
0.000 2.767

Loo.king at If the elements should be interpreted as follows:

fj t,j indicates that a unit change inl)j results in a change of

fji,j units in T'li. vith all other variables held constant. If the

variables have been standardized. a standard deviation

change in T'IJ results in f:J i,j standard deviation change in T'li .

with all other variables held constant. However. because of

indirect effects other variables are usually effected by a

change in one variable. For this reason it is informative to

examine the TOT AL EFFECTS of one variable on the others.

LISREL will calculate the TOTAL EFFECTS (see later output). A

similar interpretation can be made for -y.

USREL ESTIMATES (l'ft<IH.N LIKELIHOOD)

LAMBOAY

fl0167
POOl.67
flllM 7t
POOL 7t

.flJmj1
1.000
1.027
0.000
0.000

LAMBDA X
mi

m.c 1.000
SEI 5.163

BETA

fUEt! 7t
0.000
0.000
1.000
0.971

fl.IEN67 rn
fLIBi 6 7 0.000 0.000
fLIBi 7t 0.617 0.000

fUEl'167
fUEl'171

PHI

_m
-0.~
-0.211

..m
SES 6.880

PSI
fUEt167 .&W111

4.70:5 3.866

TI£TAEPS
fH)M67
15.065
0.000
1.887
0.000

AI0167
POU.l. 67
AI0171
POU.l. 71

TI£TA DEL TA
...w&__.Hl

POU&. 67

2.2115
0.000
0.000

2. 730 266.896

4.812
0.000 2.683

8QllHD 1"11. TIPLE CORFIELATIOl'IS FOA Y- YflWllLES

fllt1 6'l POUL 6'l fllt1 71 .m&L.II.
0.572 0. 764 0.616 0. 731

TOTfl. aJEFFICmfT <F DETEfl'1ll'tn'U FOR Y- YFIUFB.£S IS 0. "2

SCURD 1"11. TIPLE aJHUn'UltS FOR X- YFIUFB.£S

Im&.. ..HI
0.716 0.407

TOTfl. COEFFJCJEttT <F DETEfl'1ll'tn'U FOR X- YFIUFB.£S IS 0. 762

8QllHD 1"11.TIPLE CORFIELATIOl'IS FOR ST'FIOCTLM. ~

fLIEN 6'l &lfl1I1
o.!06 0.:501

There are several indicators of the goodness-of-fit of the

model. The squared multiple correlations and the coefficient

of determination are calculated for the observed variables (:s:

and y) and the structural equations when initial estimates or

the muimum likelihood estimates are printed. For the ith

observed variable the squared multiple correlation is defined

as:

1- e• .. Is·· 1,1 1,1

where 6\ 1 is the estimated error variance of the ith

observed variable and s1,1 is the observed variance of the ith

variable. The coefficient of determination is defined:

1- 16*1 I I SI

where 16*1 is the determinant of the matrix containin& the

estimated error variance and I SI is the determinant of the

44

covariance matrix. For the structural equations the squared

multiple correlation is defined as:

1 -var((1)/var<T)1)

and the coefficient of determination for the structural

equations is defined as:

I - I +I I I Cov <"r1> I
In both cases the squared multiple correlations and the

coefficient of determination should be between zero and one,

'With la.r1e values indicating a good model. LISREL will not

restrict the values bef.'W'een zero and one. neaative values are

an indication of a bad model.

The multiple correlations can be viewed as a measure of the

strength or reliability of variable. In this example the

variables ANOM 67 and POWL 67 are measures of the latent

variable ALIEN 67, of these POWL 67 is the more reliable

indicator since it has the larsest squared multiple

correlations. For ALIEN 71, POWL 71 is the more reliable

indicator. For the e:s:osenous variable SES, EDUC is the more

reliable indicator with a squared multiple correlation of .716

for the Maximum Likelihood estimate.

For the structural equations the squared multiple

correlations can be interpreted as the proportion of variance

in each Tli variable explained by the (i variables. In this

e:umple there is only one e variable. SES. ALIEN 71 has a

squared multiple correlation of .501 which is higher than for

ALIEN 67 (.306). That is, SES is a better indicator of the

variance of ALIEN71 than ALIEN67.

The total coefficient of determination can be viewed as the

strength of several relationships jointly. Fo.r example the

value of .952 for the Y variables indicates that all the Y

variables jointly serve as a good measure of the T)J latent

variables. In this case these are ALIEN71 and ALIEN67.

MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL:
CHI-SQUARE Wim 5 DEGREES OF FREEDOM IS 6.33

(PROB. LEVEL"' 0.275)
GOODNESS OF FIT INDEX IS 0.998

ADJUSTED GOODNESS OF FIT INDEX IS 0.990
ROOT MEAN SQUARE RESIDUAL IS 0.754

Three measures are used to judge hov well the model "fits".

The -x.2 along with it's degrees of freedom. the goodness-of-fit

index and the .root mean square .residual. These measures

indicate the overall fit of the model. It can happen that the

overall fit is "good" but individual .relationships are modeled

poorly.

The i2- measure is N-1 times the minimum value of the

fitting function. The degrees of freedom is 1/ 2 t (t+ 1) - t

where tis the number of observed variables (k:•p+q) and tis

the number of independent parameters to be estimated. Notice

t should be equal to the largest index in the parameter

specification. Under some situations the i2- measure can be

viewed as a test statistic for testing a hypothesis against a

alternative. but the ideal conditions for this to be valid seldom

erist. To use the i2- in this way it is assumed that the observed

variables have normal distribution. the sample size must be

large enough to justify the asympyotic properties of the il­
test, and the analysis must be based on the sample covariance

matrix. not the correlation matrix. Instead the i2- measure

should be used as a measure of the goodness of fit with large

values (relative to the degrees of freedom) indicating a bad fit

and small values indicating a good fit.

The goodness-of-fit is a measure of the relative amount of

variances and covariances jointly accounted for by the model.

The adjusted goodness-of-fit index is adjusted for the degrees of

freedom for the model. Both of these values should be

between zero and one. although LISREL does not restrict them

to any range. The root mean square residual can be thought

of as an average of the residual variances and covariances.

Both goodness of fit indexes and the root mean square

residual can be used to compare the fit of two different models

for the same data. The goodness-of-fit index can also be used

to compare the fit of the model for different data.

Other indicators of the fit of the model include an

examination of the parameter estimates. Unreasonable values

indicate that the model may not be identified or the sample

size too small. High correlation of parameter estimates may

indicate a "nearly" non-identified model. The correlation

matrix for the estimates is computed and can be printed by

requesting PC on the OU command line.

If the indicator!! of the goodneS!I of fit of the model are not

acceptable, the next question is how to improve the model.

Sorbom suggests selecting the parameter with the largest

partial derivative of the fitting function with respect to the

fixed parameter. This seems logical since the derivative

indicates change in the fitting function. However it can be

shown that freeing a parameter with a large derivative does

not always correspond to a large change in the Chi-square.

45

A better indicator, introduced by Jores.kog and Sorbom. of

which parameter to free, is called the modification index. For

each fixed and constrained parameter, the modification index

is defined as N/2 times the ratio between the squared

first-order derivative and the second-order derivative.

Freeing the parameter with the largest modification index

will result in a reduction of the Chi-square at least as great as

the modification index. Free only one parameter at a time

and only if it makes sense in the model to estimate that

parameter. A modification index of zero indicates that the

model will not be identified if the parameter is freed or that

the pa.rameter is already freed.

In this example the largest modification index is for

element (4.2) of the matrix 0£ (Theta-epsilon). Freeing this

parameter would indicate that the error terms for the measure

ofy2 (POWL67) and Y4 (POWL 71) are correlated. We are

guaranteed that the x.2 will drop at least by 1.59 and a loss of

one degree of freedom.

MODIFICATION INDICES

l.Al'-1BDA y

ANOM67
POUi. 67
ANOM71
POUl. 71

A!.I£t! 67
0.000
0.000
0.5!4
0.534

LAMBDAX
m

EDUC 0.000
SEI 0.000

BETA

BYir:l.11
0.700
0.700
0.000
0.000

fll.mW !!Yml!
ALIEN 67 0.000 0.000
fl.IEN 71 0. 000 0. 000

..m
ALIEN 67 0.000
ALIEN 71 0.000

PHI
_m

SES 0.000

THETAEPS
Al10Mi1 POUi. iZ

fll'tOM 67 0.000
POWl.67 0.000
AtlOM 71 0.000
POWL 71 0.700

THETA CE.TA
...m&.. .m

0.000
0.534
1.591

0.000 0.000

PSI
fll.IEN67 YlU!

0.000 0.000

Al'IOMZ! fQll&.lt

0.000
0.000 0.000

MflXIl'wU1 MODIFICATION INDEX IS 1.59
FOA ELEMENT (4, 2) OF THETA EPS

The next two sections of output contain the STANDARD TI£TAEPS TI£TA CE. TA

ERRORS and the T-V ALUES. The standard errors are used to fl«lM 6I POOL6I fl«lM Il fWL.11 m£... m
calculate the I-values, but they can also be used to detect a bad AtlOM 67 0.371 0.516 18.19!

model. Extremely large standard errors may indicate that the POOL67 0.000 o.!18

model is nearly non-identified (some of the parameters AtlOM71 0.240 0.000 O,!CJS

cannot be estimated). POOL 71 0.000 0.000 0.000 O.!!O

T- VALUES are calculated by dividing the parameter

estimate by its standard error. T-V ALUES greater than two T-VALUES

(in absolute value) indicate that the parameter is different UHIDAY

than zero If the fit of the model is not good. consider fixing fLIEtl 6I fLIEtl Il

(to zero) parameters with T-V ALUES less than 2 in magnitude. AtlOM67 0.000 0.000

(Be cautious of the T-V ALUE when the sample size is small.) POOl.67 1U20 0.000

ln this example all parameters have significate T-V ALUES. AtlOM71 0.000 0.000

POUl. 71 0.000 19.647

LJHIDA)(

..m
STANDARD ERRORS EOOC 0.000

UHIDAY SEI 122S3

fllElt6I rn
AtlOM67 0.000 0.000

POOi. 67 0.09 0.000

fl«lM 71 0.000 0.000 BETA
POOi. 71 0.000 0.049 flJEIW IUEHIJ

IUEH67 0.000 0.000
LJHIDA)(fl.mt 71 12.420 0.000

..m
EOOC 0.000 GAt+fl
SEI 0.421 m

fl.mt 67 -10.293

BETA fl.IEH71 -4.292
f\IQf 6I ..fLJml1

IUEH67 0.000 0.000 PHI
fl.IEH 71 o.oso 0.000 ..m

SES 10.4S7
GAt+fl

m PSI
IUEH67 O.OS! f\IQf 6I fl.mt Il
fl.IEl'l 71 0.049 10.863 11.5

PHI TI£TAEPS TI£TRCE.TR

.m fl«lM 6I m&l..iI fl«lM Il ..mlL.l1 ,m&_KI

SES 0.6S8 AtlOM67 1!.6SO 5.287

14.670

PSI POUl.67 0.000 6.972

IUEH6I 8Jml1 AtlOM71 7.864 0.000 12.17'

0.4!! 0.!4! POUl. 71 0.000 0.000 0.000 8.1!!

46

Correlations of parameter estimates a.re calculated for the

ML method only. Pan.mete.rs with high correlations are

indications of a model that is nearly non-identified.

CORAEl..ATIOHS ~ ESTIMATES

~ w...... JJlh 11.ll mil~
LY 21 1.000

LY'42 0.232 1.000

l.)(2 1 0.000 0.000 1.000

BE21 0.100 -0.297 -0.112 1.000

OA 11 o.~ 0.12:5 -0.517 0.145 1.000

OA21 -0.~ 0.108 -0.278 o.m 0.173 1.000

PH 11 0.000 0.000 -0.708 0.118 o.~ 0.296

PS 11 -0.605 -0.215 -0.1~ -0.11'4 0.002 0.02'4

PS22 -0.105 -0.528 -0.029 0.082 -0.0'40 -0.0'43

TE 11 0.5'46 0.117 0.000 o.~ 0.20'4 -0.032

TE2 2 -0.669 -0.063 0.000 0.0'47 -0.2'47 0.130

TE 31 0.238 0.210 0.000 -0.126 o.~ -0.0'47

TE33 0.133 o.~ 0.000 -0.17'4 0.073 o.~

TEH -0.068 ..0.66'4 0.000 0.168 -0.052 -0.10'4

TD 11 0.000 0.000 0.763 -0.150 -0.~ -0.329

TD22 0.000 0.000 ..o.m 0.071 0.317 0.171

CORAEl..ATIOHS ~ ESTD11TES

ffil.1 fill_ fi.U Il..11.. n.u. .IU..!
PH 11 1.000

PS 11 0.1~ 1.000

PS22 0.031 0.130 1.000

TE 11 0.000 -0.32:5 -0.~ 1.000

TE2 2 0.000 0.231 -0.015 -0.~1 1.000

TE 31 0.000 -0.1!6 -0.02:5 o.~ -0.230 tooo
TE33 0.000 -0.1~ -0.351 0.1'45 -0.033 0.'476

TEH 0.000 0.101 0.208 -0.026 -0.~ -0.189

TD 11 -0.738 -0.211 -0.039 0.000 0.000 0.000

TD22 0.'427 0.099 0.019 0.000 0.000 0.000

COAAELATIOtlS~ESTD11TES

..1UJ... .Ilil .IIUl J1Uj

TE!! 1.000

TE'4 '4 -0.~ 1.000

TD 11 0.000 0.000 1.000

TD22 0.000 0.000 -0.~ 1.000

The matrix labeled FfITED MOMENTS is the fitted sigma.

Remember that LISREL is estimating parameters so that the

fitted sigma is "close" to the matrix S. The FfITED RESIDUALS

is the matrix of S - I. The size of the residuals should be

small relative to the size of the elements of S. This may be

bard to determine if S is not a correlation matri1. It will be

easier to inspect the NORMALIZED RESIDUALS matrix. A

47

simple test of how veU the model accounts for the element s1,J

is to check the magnitude of the elements of the NORMALIZED

RESIDUAL matrix. If an element is larger than 121 the

corresponding si,j element is not accounted for well in the

model.

FITTED l'1Cl-£NTS flt() RESIDlft.S

FITTED 1'1C11"£NTS

ANOM67
POUJL 67
ANOM 71
POUJl. 71
EDUC

fH!::W:
11.850
6.965
6.876
'4.843

POOl. 67 fHt111 fWl..11 -™- ..w
9.364

-3.783
S£I -19.528

5.121
'4.972

-3.883
-20.046

ITTTED AESiruA..S

ANOM~7 POUJL ~7
ANOM67 -0.016
POUJL 67 -0.018 0.000
ANOM71 -0.~ -0.030
POUJL 71 -0.060 0.056
EDUC -0.056 -0.006
S£I -2.371 1.215

NOAMfl.IZED RESIDUALS

ANOM~7 POUJL ~:z
ANOM67 -0.029
POUJL 67 -0.043 0.000
ANOM 71 -0.123 -0.075
POUJL 71 -0.15'4 0.158
EDUC -0.152 -0.018
S£I -0.~ 0.5'46

12559
7.522

-3.790
-19.566

fU!:1..Z1

-0.027
-0.027
-0.051
-2.182

flNCN 71

-0.046
-0.060
-0.134
-0.857

9.986
-3.680 9.610
-18. 997 35.522 '450.28

0.000
o.~ o.ooo
0.222 0.000 -0.001

0.000
0.159 0.000
0.097 0.000 0.00

A visual summary of the fit of the model as indicated by the

normalized residuals is shown in the following QPLOT. Single

points are labeled with an X, multiple points with an ", and a

45 degree line by small dots. Fit a straight line through the

X's and ... s. Use the 45 degree line to determine if the line you

have fitted has slope larger than one (good fit of modeD.

nearly equal to one (fair fit of model), or less than one (poor

fit of model I In our example the slope is greater than one

indicating a good fit of the model. If the line you fit is

non-linear, the model may be incorrectly specified.

3.5.

" . 0 .
R .
M.
A .
L .

Q
u
A

" T
I .
L
E •
s . • I(

)(

I(

)(.
)(.
)C.

IC.
)(

• I(

.)(
I(

I(

I(

-3.:5 .. .
-3.S 3.

S IOHl.IZED FDIOOfU

From the path diagram it is obvious that there are both

direct and indirect effects of the €1 variable SES on T)i and Yi

variables. The direct effects are found in the fJ and -y

matrices. The total effects shown in the following matrices

are the sum of the indirect and direct effects. For example

examine the matrix TOT AL EFFECTS OF KSI (SES) ON ET A. The

total effect of SES on the ri1 variable ALIEN 67 is simply the

value of 'YI (-.550). since there are no indirect effects. The

total effect of SES on YJ2 is the sum of the direct effects ('Y2 =

-.211)andtheindirecteffects('YI =-.55times f31 = 617). In

this example the TOTAL EFFECTS OF ETA ON ETA is exacUy the

same as the fJ matrix. It is interesting to note that the total

effects of SES on each YJi variable is nearly equal.

48

TOTAL EFFECTS

TOTAL EFFECTS CF l<SI Ol'i ETA

..m
fUEl'l 67 -0.SSO
fUEl'l 71 -O.SS1

TOTAL EFFECTS CF l<SI Ol'i Y

.m
ll0'167
POOl.67
ll0'171
POOi. 71

-0.SSO
-0.:564
-O.SS1
..o.m

TOTAL EFFECTS CF ETA Ol'i ETA

f\IEN 67 rn
fUEl'l 67 0.000 0.000
fUEl'l 71 0.617 0.000

LAROEST EIGEttYALUE CF ~A)l(l..BETA).. TRAHSPOSED (STABILITY
I1llE>O IS 0.381

TOTAL EFFECTS CF ETA Ol'i Y

11.mt 67 rn
ll0'167 1.000 0.000
POOi. 67 1.027 0.000
ll0'171 0.617 1.000
POOi. 71 0.:599 0. 971

Varioius variances and covariances may be requested. These
are the matrices listed below.

\IARlflUS flt) COYfllifn::ES

ETA-ETA

f\IEN 67 ..f\IEN.11
fUEl'l67 6.m
fUEl'l 71 4.988 7.747

ETA-l<SI

.m
fUEl'l 67 -3.783

fUEl'l 71 -3.79

Y-ETA

f\IEN67 rn
ll0'167 6.m 4.988

POOl.67 6.96:5 S.121

ll0'171 4.988 7.747

POOi. 71 4.843 7.:522

Y- l<SI

.m
ll0'167 -3.783

POOl.67 -3.883

ll0'171 -3.790

POOL 71 -3.680

X- ETA

fl.IEtt 67 rn
EDUC -3. 783 -3. 790

SEI -19.:528 -19.:566

><- KSI

EDUC

SEI

m
6.880

3:5.:522

Other output not printed in this paper includes the first

order derivatives, the factor scores regressions a.nd the

standardized solution. The factor scores are the regression

coefficients of unobserved varables on observed variables.

The standardized solution is the solution in which T)1 and T)2

are scaled to unit variance.

4.~ Suaaary

The analysis of this model indicates that it is a good fit as

indicated by the i- of 6.33 with 5 degrees of freedom. Also the

largest modification index is 1.59. Indicating that the only

improvement to the i- would result from freeing element

(4,2) of e € • The path diagram with the estimated

coefficients is shown in figure 2.

In summary to assess the fit or detect the lack of fit you

should examine:

1) Parameter estimates

2) Standard errors (for ML method only)

3) Squared multiple correlations

<t) Coefficients of determination

5) Correlations of estimates (for ML method only)

If any of these seem unreasonable (too large, negative

variances, correlations which are larger than one in

magnitude, ect.), either the model is fundamentally wrong or

the data is not informative. To adjust the model a specification

search can be performed. This involves eliminating

parameters that are not significant as indicated by the

I-values. That is, if the free parameter is not judged to be

different from zero, fix the parameter to zero. Another option

is to free the parameter with the largest modification index.

But only if it makes sense to the model to estimate the

parameter. When these changes to the model are bases on the

fit of the data it is necessary to verify the model by testing it

against another independent data set and each new model

must be tested for identification.

Measures of the overall fit of the model are found by

examining:

1) Chi-square, Degrees of freedom (ML method only)

2) Goodness-of-fit index

Adjusted goodness-of-fit index

3) Root mean square residual

And for a more detailed assessment of fit the following

parameters should be examined.

1) Residuals

2) Normalized residuals

3) Q-plot of normalized residuals

<t) Modification indices

I --------------------1
<t +----I <4

figcre 2

49

5 Eiample 2 - ia..-olns only obsenable Tariables

The following analysis uses data from a study in progress

at. the Center of Child Development and Education at the

University of Arkansas at Little Rock. The data were collected

by eleven researchers from six sites in North America. The

study involves a total of 930 children beginning in the 70's.

The data gathered at each site was similar. however because

the data was pooled after the fact. some sites are missing data

for certain variables. The six sites are Washington (N•l93).

Ontario (N=l21l. North Carolina (N=S-4), Texas (N=255),

California (N-129) and Arkansas <N·l-48). The seven variables

that vill be eumined in this analysis are mothers education.

an indicator of the child's IQ at 12, 2-4, and 36 months of age.

and an indicator of the home environment at each point in

time. The information for mothers education -was nearly

complete vith a total only 1-4 cases missing.

The measure, used at all six sites, of the child's IQ at both 12

and 2-4 months was the Bayley Scales of Infant Development.

lhis measure vas available on 810 children at 12 months and

652 children at 2-4 months. The Stanford-Binet Intelligence

Test was given at the age of 3 years. IQ data were available on

628 children.

The Home Observation for .lleaurement of the

Environment Inventory was used to determine the three

home environment variables. The HOME Inventory is

designed to assess the quality of stimulation and support

available to a child in the home environment. HOME's at age

one were available on 865 families, at age two on 507 families

and at age three on 559 families. HOME's at age two were not

available from two sites, California and Ontario. HOME's at age

three were not available from the Texas site.

5.1 llissia1 Data

The correlation matrix used by LISREL was created using

pair-wise deletion of missing data. This means that when data

were missing the variables involved were deleted in the

calculations of that particular cell of the matrix. The result is

a matrix with coefficients calculated with different values of

N. In the LISREL model the x2and the modification index a.re

directly related to the value of N. Remember. the x2 is

defined as N-1 times the minimum value of the fitting

function and the modification index is defined as N/2 times

the ratio between the squared first-order derivative and the

second-order derivative. As long as we choose a reasonable

50

value for N and keep it constant in all the models we can use

these two indicators as we have in the past. A low -11.2 relative

to the degrees of freedom vill have to be used cautiously, but

changes in the -11.2 from one model to the nen will still be an

indication of improvement in the fit of the model. A large

drop compared to the difference in degrees of freedom,

indicates that the change made in the model represents a real

improvement. A drop in x2 close to the difference in degrees

of freedom indicates that the improvement in fit is obtained

by "capitalizing on chance", and the added parameters may

not have real significance and meaning (joreskog,198-4).

Thi" modification index can be used as before, since the use of

the modification index depended on the values of the index

relative to each other and the value of the it-. The correlation

matrix and each cells value for N follows.

Table 4
morntd t1ll12 IO"E12 t1lI24 tD'E24 lQ!6

H(to£!6

morntd 1.00
(0)

t1ll12 .293 1.00
(798) (0)

IO"E12 .464 .253 1.00
(~) (764) (0)

11)124 .S26 .482 .~ 1.00
(643) (633) (610) (0)

to-£24 .496 .336 .614 .~ 1.00
(SOI) (4S:S) (471) (408) (0)

IQ36 .49S .440 .530 .696 .618 1.00
(621) (~) (Sg()) (572) (376) (0)

H(to£!6 .463 .301 .623 .5:52 .738 .5936 1.00
(S54) (535) (544) (S07) (297) (506) (0)

5.2 LISREL Specifications

Since all of the variables are observed some of the matrices

in the LISREL model vill be set to zero and the x1 and y 1

variables vill be set equal to thee, and l)j variables,

respectively. In this model there is only one independent

variable, mother's education. All variables in this analysis

are:

x1 • mother's education

y1 • MDI at 12 months y4 = HOME at2-4 months

Y2 & HOME at 12 months Ys = IQ at 36 months

Y3 • MDI at 2-4 months Y6 = HOME 1t36 months

The following path diagram illustrates the first attempt to

define a model for this data. To simplify the drawing the

paths are not labeled. Mother's Education is allowed to

directly effect all 6 dependent observed variables. Path

coefficients are to be calculated from each y variables to the

variables in the next time period. For example the direct

effect of MDI 12 is calculated for both MDl2'4 and HOME2'4. The

covaciances among the errors in equations are allowed and

indicated with curved lines. Covariance between the errors at

the same period of time might occur if the model were

misspecified by the exclusion of variables that affect both the

indicator of HOME and IQ.

12 llOllTBS 2.f llONTHS

,,. ~
,• I 3

/

11DJI Ell

\

,...,..1

36 llONTBS

\
\
\'f' 't.

The structural equations for this path diagram are:

1) Y1 = 'Y! 1 X1 + C1

2) Y2 = Y21 X1 + C2

3) Y3 = ~31 Y1 + ~32Y2 + 'Y31 X1 + C3

-4) Y4 = ~41 Y1 + ~42Y2 + 'Y41 X1 + C4

5) Ys = fJ5 3 Y3 + fJ54Y4+ 'Y51 X1 + C5

6) Y6 = ~3Y3 + ~4Y4 + 'Y61 X1 + C5

Since aH the variables in this analysis are observed. we set

the x; and Y; variables equal to the ti and TJ1 variables. In

terms of the LISREL model this means that the xi and Y1

variables are perfect indicators of the ti and TJi variables. We

will therefore set both e £ a.nd e IJ to zero a.nd the factor

51

matrices ?-.y and i>l.x will each be set to identity matrices. +
is defined by default in LISREL to be symmetric and free with

the variances of the error terms on the diagonal and the

covariance of the error terms elsewhere. We will request that

only three covariance estimates be calculated and the other

off diagonal terms fixed. Since the matrix is by default

symmetric we will only need to fix or free the lower

elements. f' is defined in the LISREL program to be fixed to

zero, this means that none of the elements of this matrix will

be estimated unless they are freed by the researcher. The

appropriate elements of this matrix will be freed as indicated

by the equations above. The full matrix -y is by default

estimated, therefore we need only fix the elements that should

not be estimated. As for+. since we have only one x variable

and are using the correlation matrix in the analysis. this

variance/covariance matrix will not give any new

information and will not be estimated. The LISREL commands

for this model follow, the SPSSX commands necessary to

execute this program are identical to the first example.

DA NI:7 N0:500 MA:KM
LA
'l'D1 ED' 'l"IJI 12' 'to-£ 12M' 'l"IJI 24' 'to-£ 24M' 'IQ 36' 'to-£ 36M'
SE
'l"IJI 12' 'to-£ 12M' 'l"IJI 24' 'to-£ 24M' 'IQ 36' 'to-£ 36M' 'MCt1 FD'
KMSY

1.000
.2838
.4648
.s~
.4962
.49S3
.4634
1.000

1.000
.2S!
.4821
.3362
."4402
.3011

MO HX:1 l'fl':6 BETA:FU
PABE
000000
000000
110000
110000
001100
001100
PAPS
1
11
001
0011
00001
000011
00 TY RS EF MI

1.000
.SOS!
.614S
.S301
.6231

1.000
.S818
.6967
.SS~

1.000
.6190 1.000
.7379 .sm

We have chosen a value of500 for the number of

observations as indicated by N0=500 on the first line. There

are 7 input variables and the correlation matrix (MA·KM) is

used as input. The variables are labeled with the LA

command. The matrix to be analysed should be ordered with

they variables first. This is not the case in this example. The

input matrix is reorderd with the SE command. The symmetic

correlation matrix is read after the KM SY command. Since

the program uses spaces to separate elements of the matrix,

the values could have been listed across the line instead of in

matrix form.

All remaining commands (except the OU command) are to

define the free and fixed elements of the various matrices

involved in the model. In the first example the FI and FR

commands were used to fix or free individual parameters.

Sometimes this is inconvenient, instead the PA command

can be used. This command is a signal to the program to read

a pattern matrix of zeroes and ones. vhere a zero means a

fixed element and a one means a free elem.ent. In this

example this is done for the BE (13) and the PS (+)

matrices.

The last command controls the output that is printed and

the method of estimation used. Since a method is not indicated

on the OU line. ML is used by default. The other output

requested includes TV, the t-values, RS. the residuals and

()-plot, EF, the total effects, Ml, the modification indices.

5.3 lde.a.tificatio.a.

The next question that must be answered involves that of

identification. The parameters must be proved to be identified

before the results of the estimation can be used. The

parameters to be identified include all the free elements of 13,

all of y and the six variances and three covariances oft.

Beginning with the first equation multiply by x 1 and take

expectations. Since the covariance term in the resulting

equation is equal to zero by the specification of the model. y 11

is proved identified. Now multiply equation l by itself and

take expectations to obtain VAR(!J1)=Y112var{x1) +2 'Yl CDV(x1l.:1)

+ VAR(/; 1). In this equation the covariance term is zero by

assumption and Yl 1 is identified, therefore VAR(t1) is

identified. Equation 2 can be manipulated in a similar way to

52

identify the parameters 'Y21 and VAR(l.:2). The COV(<:1 <:2)

term can be shown to be identified by multiplying equation 1

and 2, taking expectations and using terms previously

identified

Next use equation 3 to obtain three equations in three

unknowns as foJlows: multiply equation 3 by X1 for the first

equation, by !:J1 for the second, and by !:J2 for the third. take

expectations of all three equations. The last two equations

will have four unknows, this forth unknown is a covariance

term involving y 1 0=1,2) and l.:3. These terms can be shown

to equal zero by multiplying both equation 1 and 2 by l.:3

Equations 4, 5 and 6 can be handled in a similar way to

identify the remaining parameters. Since each parameter

can be solved for in terms of the variances and covariances of

the observed variables, the model is identified.

5.4 LISREL Results and Explai.a.atioa

The results of the ML estimation of this and two additional

models are summarized in table 5. The fit of the first model is

poor. notice the i'- of 53 53 with 4 degrees of freedom and the

AGF (Adjusted Goodness of Fit Index) of .799. All of the

parameters estimated are judged to be different from zero by

the t-values. The largest modification index (35 44) is for (346 .

Estimating (34 6 would be estimating the direct effect of HOME

36 on HOME 24 which is not reasonable. The second largest

modification index (31.874) is for 1% 2 , to estimate the direct

effect of HOME 12 on HOME 36

In model 2 135 2 is freed. Model 2 must also be proved to be

identified. Since only one new parameter is added and one

equation affected. we need only look at equation 6 again.

With this new parameter equation 6 nov looks like:

Y6 = ~6 2 Y2 + 136 3 Y3 + f36 4 Y4 + Y6 1 X1 + (5

Using the same pattern used before. multiply this equation

first by x1• then by Y1 • then by y 2 • then by y3 and take

expectations of all four equations. These four equations wilJ

have the 13 and y terms as unknown as weU as three

covariance terms. These terms involving y; (i=l.2.3) and l,;5

can be shown to equal zero by multiplying equations 1. 2 and

3 by l.:5 . taking expectations and using assumptions.

Model 2 is an improvement over model 1 by all indicators.

The'/?- vas reduced by 33.5. more than the 31.8 that ve vere

guaranteed. The GF and AGF are both larger and the RMSR is

smaller. The t-value for 'Y6 1 was not large enough to safely

assume it be different than zero. The largest modification

index (18.03) is for +5,3. Freeing this parameter would allow

the errors for MDI 24 and IQ 36 to be correlated. Because of

the nature of these tests, it is reasonable that the error in

measurement of these wo variables could be correlated.

In model 3 "15,3 is freed. Again there is significant

improvement of the fit of the model. The ~ vas reduced by

18.61 and the degrees of freedom by only 1. the GF and AGF

indicators vere increased and RMSR is again smaller. Notice

that two parameters had t-values too small to safely assume to

be different than zero.

Other results from model 3 follow. The squared multiple

correlations for the strutural equations is interpreted as the

proportion of variance of each dependent variable explained

by the independent variables. In this example we have only

one independent variable, mother's education. Mothers's

education explains more of the variance of the home

environment at 36 months than the other variables.

SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL

EQUATIONS

Ml!I 12 llQME 12M ltml..K 11QME24M Iil.lL
HOME36M

0.081 0.216 0.461 0.455 0.466

0.603

The total effects of mother's education on the intelligence

and home variables are given in the following results. It is

interesting that, exrept for the MDI at 12 months, the total

effect of mother's education is nearly equal on all variables.

And finally the complete path diagram using model 3 for the

coefficients.

TOT AL EFFECTS

TOT AL EFFECTS OF X ON Y

MOM.m
MDI 12 0.284

HOME 12M 0.-465

MDI 24 0.527

HOME 24M 0.496

IQ36 0.495

HOME 38M 0.463

53

Table'

fARAMEIER MODEL! MODELZ MODEL3

1331 .325 .325 .315

1332 .282 .282 .298

1341 .151 .151 .151

1342 .466 .466 .466

1353 .473 .473 .87'

fils4 .293 .293 .122

1362 .219 229

1363 .158 .121 .120

1364 .607 .511 .506

'YI I .284 .284 .286

'Yl2 .465 .465 .465

'Y13 .303 .303 .299

'YI 4 .237 237 237

'YI 5 .101 .101 -.026*

'YI 6 .079 .044* .043*

+11 .919 .919 .919

+21 .121 .121 .121

+22 784 .784 .784

"133 .541 .541 ,539

+43 .149 .149 .145

+44 .545 .545 .545

+53 -.236

+ss .439 .439 .534

+ss .069 .055 .054

+66 .428 .397 .397

x2 53.53 20,03 1.32
df 4 3 2
p 0.0 0.0 .516
GF .971 .989 .999
AGF .799 .896 .989
RMSR ,032 .020 .004

where * indicates at-value leas tban 2 In magnitude, and - indicates
tbe parameter was not free

I

figure 4 \

REFERENCF..5

Afifi. A. and Clark, Virginia (1984). Computer-aided .
Multivariate Analysis. London: Lifetime Learning
Publications.

Dillon. William R. and Goldstein. Matthew (1984) Multivariate
Analysis: Methods and Applications. New York: john
Wiley & Sons.

EveriUe. B. S. and Dunn G. 0983) Advanced Methods of Data
Exploration and Modelling. London: Heinemann
Educational Books.

Heise. DavidR. (1975) Causal Analysis. New York: john Wiley
&Sons.

Goldberger. Arthur S. and Duncan, O.D .. Eds. 0973) Structural
Equation Models in the Social Sciences. New York:
Seminar Press.

Hogg, Robert V. and Craig, Allen T. (1978). Intr~duction ~ .
Mathematical Statistics.New York: Macmillan Pubhsh1ng
Co .. Inc.

Joreskog. Karl G. and Sorbom, Dag 0984) LISREL VI Analysis
of Linear Structural Relationships by the Method of
Maximum Likelihood. Uppsala. Sweden: University of
Uppsala.

Kenny, David A. 0979) Correlation and Causality. New York:
Wiley.

54

..... ~le" Ir 3
.

Long, j. Scou 0983) Covariance Structure Models: An
introduction to LISREL. London: Sage.

Long. J Scott 0983) Confirmatory Factor Analysis: A Preface to
LISREL London: Sage.

Marsden, Peter V. Ed. (1981) Linear Models in Social Research.
London: Sage

Noble. Ben and Daniel, James W. 09n) Applied Linear
Algrebra. Englewood Cliffs. NJ : Prentice-Hall. Inc.

Nunnally. Jum C. 0978) Psychometric Theory. New York:
McGraw-Hill.

Pedhazur. Elazar J 0973) Multiple Regression In Behavioral
Research: Explanation a.nd Prediction. New York: Holt.
Rinehart and Winston.

SPSS Inc. 0984) Userproc LISREL: Using LISREL VI within
SPSSX. Chicago: SPSS Inc.

Tatsuloka, Maurice M. (1971) Multivariate Analysis:
Techniques for Educational and Psychological Research.
New York: John Wiley & Sons.

SYSTEM CHARGEBACK AND RESOURCE TRACKING USING RS/1

Robert B. Goldstein and Gertrude Stabiner
Eye Research Institute of Retina Foundation

20 Staniford St
Boston, MA 02114

ABSTRACT

RS/1 has been used for system resource chargeback
and long-term tracking of system usage. The re­
source chargeback application (a set of interre­
lated DCL command files, FORTRAN programs, RPL pro­
grams,, and ~S/1 tables) runs automatically during
th~ first night of each month. By using RS/ 1 for
this purpose we (1) save the cost of an expensive
chargeback program, and (2) can tailor the appli­
cation to our specific needs. Long-term tracking
of our the resource usage of our VAX780 and
PDP11/70 computers is implemented through RS/1
tables which are maintained manually. The graphs
illustrate the evolution of our computer systems
and are useful in presenting company DP needs to
management.

INTRODUCTION

This paper addresses two issues: system re­
source chargeback and long-term tracking of
system usage. System chargeback is proble­
matic because the DEC accounting utility,
under VMS, does not handle disk space
usage. Another utility, DISKQUOTA, must be
used to obtain this information. Since
DISKQUOTA reports usage based on UIC, not
on account number, we must combine the
results of the DISKQUOTA and ACCOUNTING
utilities. Long-term tracking of system
usage has been implemented for 6 years, and
the resulting graphs illustrate the evolu­
tion of our computer systems. We will also
show the changes in resource usage that are
the result of system tuning efforts.

CHARGEBACK

Although many commercial chargeback pack­
ages are available for VMS, we chose to
implement our own system for the following
reasons:

0 We have greater control over the pro­
cess.

o It is more interesting for us to write
our own procedures.

o It gives the c;:omputer Unit at the Eye
Research Institute (ER!) an opportunity
to use RS/1, which we must know in order
to support it.

o It is tailored to our specific needs.

Implementing our own package was not cheap­
er than purchasing a commercial package.
The cost of the man-hours we spent writing

Proceedings of the Digital Equipment Computer Users Society 55

the procedures and "baby-sitting" the pro­
grams has equaled the price we would have
paid for a commercial package.

The chargeback procedure is divided into
two parts: the chargeback phase and the
RS/1 phase. The chargeback phase gathers
the; i.nf.ormation by running the DEC-supplied
utilities; the RS/1 phase merges the
results produced by the utilities.

Figure 1 shows a flow diagram of the
chargeback phase. The steps are:

1. Run ACCOUNTING to produce a report and
to start a new accounting file. The
reported fields are CPU time, Elapsed
time, and Pages printed.

2. Run AUTHORIZE (UAF) to obtain a cur­
rent user list.

3. Run DISKQUOTA to obtain the disk usage
as a function of UIC.

4. Run several FORTRAN programs to per­
form the following:

a. Strip the extraneous headers from
the log files produced by the
above steps.

b. Match the ACCOUNT numbers with the
UICs in the disk usage records.
At the same time, combine multiple
records per account (caused by
multiple users having the same
account number) into one record
per account.

Anaheim, California- December 1985

spa.rt

spacmmmyy.lls

accounting

accoun ng.dat
acctmmmyy.lls
acctmmmyy.dat

chrQbOCk
. com

occttl.lts

1. Initialize the RS/ 1 tables. A
separate RS/1 table is needed to hold
the data from the two files produced
in the first phase .

2 . Import the files from the chargeback
phase.

3. Convert elapsed and CPU times (of the
hh:mm:ss type) produced in phase 1 to
fractional hours. (For example,
03:15:00 is converted to 3.25.)

4. Merge the accounting and disk usage
data into the shell table.

5. Apply the charging formula, which is
in the form:

old RS/I $ = A*cpu hours + B*connect hours

modified
RS/I tables

Figure 1. Flow Diagram of Chargeback Phase

c. Produce two final files for input
into RS/ 1 : SPACESUM. OUT, which
contains the disk usage as a fun­
t ion of account, and ACCTI.LIS,
which contains the other usage
information (CPU, Elapsed, Pages)
as a function of account.

5. Submit the batch procedure to run the
RS/1 phase.

The RS/1 phase makes use of a "shell
table," which is an empty version of the
final report table. Figure 2 shows a por­
tion of the shell table, in which the empty
cells are filled by the procedures. Figure
3 shows a flow diagram of the RS/1 phase.
The steps are:

+ C*number of blocks
+D*number of pages + E

6. Total all charges and insert into the
last row of the table.

The advantages of this method of performing
system resource chargeback were discussed
above. Its disadvantages are:

o The need for constant maintenance. With
every new user an entry must be added
into the shell table.

o The programs depend heavily on the
formatted output of several DEC
utilities. If the output format changes
(as it did when VMS went from version 3
to version 4), the programs must be
altered.

o It is not robust. The system fails
about once every 3 months for various
causes, for example, when a deleted
account has not been removed from the
shell table, when an incorrect algorithm
was used for the end of year change, or
when the batch and command procedures
were improperly synchronized.

Shell For VAX Usage

0

1 Smith
2 Jones
3 User X
4 User Y

33 Goldstein
34 Librarian
35 Medical Database
36 Low Vision
37 NDFQ
38 Biguser

39 Totals

1 Fund 2 UIC
Number

Fl0008
Fl0043
Fl0044
Fl0121

F21003
F21004
F21422
F21423
F704
F707

[70,7]
[120,4]
[120,5]
[70,12]

[160,14]
[160,13]
[240,l]
[240,2]
[160,12]
[2,5]

3 Elapsed 4 CPU 5 ERI2 6 ERI3 7 Pages 8 Charge ($)
Time Time Blocks Blocks

- [70,7]
- [120,4]
- [120,5]
- [70,12]

- [160,14]
- [160,13]
- [240,3]
- [240,2]
- [160,12]
- [220,27]

Figure 2. Shell Table

56

old spacesum,
acctt1me, and
shell tables

inlt1al1zed
.--~~~~~~~~~~~spacesum,

spacesum.out

procedure
acctsp

final spacesum

accttime, and
shell------~

acctti.lts

procedure
acctt1

cols 1 - 6 of
acctt1me

procedure
dateconv

final accttime

all but last row and col of shell

final spacesum

o The system and all peripherals must be
up and running at midnight on the first
of the month.

o RS/1 runs on only one of the machines in
the net. Therefore, data must be trans­
ferred, via DECnet, from one machine to
the other.

LONG-TERM TRACKING

Our site was one of the earliest to use the
RS/ 1 package. We have been recording sy­
stem usage statistics in RS/1 tables since
1980. The resulting graphs illustrate the
evolution of our PDP11/70 computer system
and are probably typical of usage patterns
of other computer systems.

Figure 4 shows four graphs that plot system
resource usage versus time. The "connect
time" shown in the upper left panel
exhibits a pattern that is repeated in the
other three panels. During the first 2
years usage gradually climbed to a maximum,
followed by about 1-1.5 years in which
usage remained at this level and response
time on the PDP11/70 was intolerable.

57

Idle time during this period (averaged over
7 days/week and 24 hours/day) was only
about 30%. In mid-1983 we removed one big
application and resource usage dropped, but
response time was still very poor. In
December 1983 we obtained a VAX780 and
started to transfer applications from the
PDP11/70 to the VAX. Resource usage drop­
ped to a minimum on the PDP 11 /70 and has
remained low because only two applications
are left on the PDP. These are scheduled
to be transferred to the VAX soon.

We are currently keeping similar types of
statistics on the VAX (Figure 5). Since we
are careful not to overload the VAX, the
VAX CPU time usage does not show a rising
trend, al though the VAX elapsed time does
show signs of increase.

On both machines disk usage rises rapidly
to the critical region (defined as 80% of
total disk capacity), and is kept at this
level only by constantly reminding users to
clean out their disk directories. Figure 6
shows this behavior.

SYSTEM TUNING

We have used RS/1 to display the results of
system tuning efforts. Figure 7 shows the
number of pagefaults resulting from two
different RS/1 commands. The data were
obtained by setting the WSDEFAULT, WSQUOTA,
and WSEXTENT parameters to the same value
for a selected user. Then, when no other
users were on the system, we issued the

$ rsl

command
faults.

and examined the number of page­
Within RS/1, we issued the

dir

command and examined again the number of
pagefaults. By means of these measurements
we determined the optimum values for the
WSDEFAULT, WSQUOTA and WSEXTENT parameters
for RS/ 1 users.

The best measure of system response is user
perception. It matters little, for exam­
ple, that "swapping is at 3%" if the users
still think that response time is poor.
Therefore, we wrote a program called "Re­
sponse Logger," which upon user logout
queries the user on how well the system
responded to his needs. The user is asked
to give the system a letter grade of A, B,
C, D, or F. A record is then written to a
log file containing the grade and other
information such as number of users, time
of day, and user category. At the end of
the month we examine the log file, plot the
results, and take appropriate actions if
necessary.

Figure 8 shows some of the information that
may be obtained with the Response Logger.
The upper left panel shows how system re­
sponse degraded after VMS 4.1 was installed
and how it improved after more memory was

H
a

3000

u 2000
r

•

1000

I

toot

I
I

p 80r

•
601

r
c

•
n
t

40

20

200

H
0
u
r

•
100

Jan-81

Jen-81

PDP11/70 Connect Ti••

Jan-83

Month

PDP11/70 Idle Ti•a

Jan-83

Month

Figure

YAX CPU Ti•e

Jen-85

Man th

4.

Jan-85

Jen-85

H
0

800

u 400
r

•

200

S.Oa+09

8.0•+08

K &.oa+oe
c
T

4.0a+oe

2.oa+oe

T

I
I
j

I

PDP11/70 Usage for 6

HOO

1200

H
0
u
r 800
•

400

Jen-88

Figure 5. VAX Usage

58

Jan-es

Jen-81

Year

PDP11/70 CPU Ueege

Jan-83

Month

PDPSt/70 Kilocora Ticka

~
!
!

Jen-83

Month

Period

YAX Elepead Ti ..

Jen-85

Man th

-------+-
Jan-85

Jen-85

r

Nav-85

B
l
0

c
k
s

VAX Disk Use

--0--- Chargad Block•
-<r- ERI1
-tr- ERI2
---9--- ERI3
= Critical Ragion

Nov-84

'

\
v

<>

Nov-85

-
-

B -
l
0

c
k
s
I
1 -
0
0

0 -

...

Jan-81

PDP11/70 Disk Usage

~critical Region
--0--- drO
--tr-- dr1
--<r- dr2

Jan-83 Jan-85

Month Month

Figure 6. Disk Usage for VAX and PDP11/70

added. The upper right panel shows how
system response degrades as the number of
users changes throughout the day. One
measure of the sensitivity of this program
is that the lower left panel exhibits an
expected dip at lunchtime. The correspond­
ing improvement in response time is shown
in the lower right panel.

CONCLUSION

The chargeback procedure is currently a
mixture of command procedures, FORTRAN
programs, and RPL procedures. To make it
more general, simpler, and more robust, we
should attempt to reduce this mixture by
replacing the RPL procedures with FORTRAN,
or by removing RS/1 from the procedure
altogether.

We have been using RS/1 and the Response
Logger to obtain information about system
utilization, to display tuning results, and
to accomplish chargeback of resources.
These procedures help us satisfy our users'
needs and justify the acquisition of new
equipment when necessary.

59

p

•
II

•
f •
•
u
1
t

•

~+-~-... 1--~ ... -+-~-... +-~-... +-~-IO+--OO~ -+-~-.~ ... ---""---i, ...

working Ht

Figure 7. Tuning Measurements for RS/1

T
i

4.o+

I
+
I

5 !
c 3.0"'1"'

0
r
e

l

T

Response score•

--G- Overell
----Ir- RS1

/

L-- -- t- -----·+------ -r-----+------4~----+-----+- -- -~--------f

u
s
e
r
B

Apr--85 Jun--85 Aug--85 Oct--85

Month

I Avg Number of Users vs Hour

1ot
I

i
I 8t

s+
I

t

4-<-

2+
i
i 3----- --e--B""""

~----! 1---- -- +~----+----+------!- ---t ------+- - ·- -!- ----+----t
6 8 10 12 14 16 18 20 22 24 2 4

Hour of Day

l Response vs. Number of Users

5
c
0 4
r
e

3t

I
-I-- -.. --f . -·- -··-+- -- -+-·---+-- --+--- _,____ - -+- - ----+------;

T

5 i
c !
0 4.07
r i
e

4 8 12 16

Number of Users

Response By Hour

L--·--- -+--- ,... ... ·---+---~-------+--+- --- +---· I· - -· +-+---1
4 8 12 16 20 24

Hour of Day

Figure 8. Response Logger Results

60

DEVELOPMENT OF A DIGITAL INTERACTIVE CONTROLLED EVALUATION SYSTEM (DICES)

INTRODUCTION

Capt Scott B. Eckert
Robert L. Ewing

Department of Electrical and Computer Engineering
Air Force Institute of Technology

Wright-Patterson AFB OH 45433-6583

Dr. Gary B. Lamont
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Visiting Professor
Wright State University

Dayton OH

Abstract

DICES is a user interactive system which permits the
implementation of digital controllers based on the TMS32010
digital signal processing microprocessor for a given single
input-single output plant model. DICES partitions the
controller design into second-order 3D filter sections and
quantizes the coefficients. These coefficients are loaded
into a generic filter program written in TMS32010 assembly
language, which is then assembled and loaded into the TMS32010
for execution. The controller is then placed in the forward
or feedback path of an analog computer system which simulates
the plant. Performance data is obtained via IEEE-488
controlled instrumentation using a VAX 11/780 VMS system.

Digital controllers and filters can be
designed using a myriad of techniques. At the Air
Force Institute of Technology (AFIT), several CAD
packages are available to electrical engineering
students for designing digital controllers and
computer-aided design programs that currently
reside on the AFIT VAX 11/780 with Vitural Memory
System (VMS) (1,2). However, the controller is
typically only simulated in the design/analysis
software package using high-precision coeffi­
cients. It would be desirable during the design
phase to use the designed controller parameters to
implement the control algorithm on a microcomputer
system operating within an analog computer simula­
tion of the plant. This would permit direct
observation of effects of finite word size, the
filter coefficients, changes in sampling rates,
etc. This controller could then be used as a cas­
cade or feedback controller in a real-world hard­
ware/software environment. The physical plant is
modelled using analog transfer modelled using ana­
log transfer functions. A performance evaluation
of the implemented controller is normally desired.
This performance evaluation consists of deter­
mination of the "standard" figures of merit (3)
that most designers are interested in obtaining
(e.g.) peak overshoot, settling time, peak time,
frequency response, etc.). The analysis is typi­
cally performed using both the open-loop and

closed-loop tranfer function. The implementation
of the controller design is tested in a closed­
loop configuration since this is the normal opera­
tional mode.

Proceedings of the Digital Equipment Computer Users Society 61

SCOPE

The purpose of this work is to investigate
the requirements of a digital controller/digital
signal processor implementation and performance
evaluation system and to implement a basic system
which provides current capability while allowing
for future expansion. It is not the intent to
develop a new test equipment, but rather to
integrate a practical system that will assist in
the design, coding, test, and evaluation of
linear, time-invariant digital controllers. It is
assumed that one of several digital design soft­
ware packages will be used to design the
controller/processor algorithms (1,2).

SYSTEM CONCEPT

DICES permits implementation of a digital
controller or filter design. The system inter­
faces with existing software design packages such
as TOTAL or ICECAP (1,2) which are available on
the AFIT VAX 11/780 VMS system. It will also

Anaheim, California - December 1985

allow direct input of DSP or controller algorithms
in the form of Z-domain transfer functions. Once
the controller transfer function is determined, it
can be implemented on DICES using the 16-bit Texas
Instrument TMS32010 DSP microprocessor. (4)
This, together with a model of the basic plant can
be formed into a closed-loop system for eva­
luation. The performance of this system can then
be assessed using test instrumentation programmed
via an IEEE-488 instrument bus. The VAX 11/780
contains a National Instruments GPIBll-2 IEEE-488
Interface Controller and highlevel software inter­
face to the VMS device driver (5). The overall
system concept is shown in figure 1.

HARDWARE DESCRIPTION

DICES consists of many hardware items which
perform the various system functions required to
form an automated system. The main hardware items
are listed below, each with a brief description of
its function.

1. VAX 11/780 and peripherals - Executes the
main DICES FORTRAN program and remotely controls
the IEEE-488 instruments via the IEEE-488 bus.

2. Bruel and Kjaer 2032 System Analyzer -
Performs step response and frequency (magnitude
and phase) testing on the closed-loop
plant/controller system. Uses Fast Fourier
Transform techniques to obtain frequency response
data.

3. EAI TR-48 Analog Computer System -
Simulates the plant model to allow closed loop
testing of the digital controller.

4. TMS32010 Evaluation Module - Contains the
TMS32010 microprocessor, RAM, ROM and executive.
A separate board contains the Analog-to-Digital
and Digital-to-Analog converter used to interface
with the analog computer.

S. Wavetek 172B Signal Generator - Provides
the step input used to perform step response
testing on the system-under-test.

6. National Instruments GPIBll-2 IEEE-488
Interface Board - Provides the interface between
the VAX 11/780 and an IEEE-488 instrument bus.

The above items are used to provide stimulus
to the closed-loop system, implement the digital
controller, execute the CAD package and DICES
software and then perform measurements of the
system. These results can then be displayed and
used to determine if a design iteration is
required for the digital controller.

62

DICES

Figure 1. System Concept

SOFTWARE.

DICES software consists of three main modules,
DICES main program, VAX VMS device driver, and
TMS32010 controller code. Each of these modules
is briefly discussed below.

1. DICES Main Program - Coordinates the
general flow through the "control problem" (see
figure 2). Program presents option menus to user
for selection of desired function. This program
relies heavily on use of DEC Forms Management
System (FMS) for menu generation to select desired
steps in the design and simulation of the
controller (see figure 2). The main program
implements digital controller design by par­
titioning the desired controller transfer function
into second-order sections. Sections are then
implemented on a TMS32010 microcomputer.
Performance testing is then initiated and
controlled using IEEE-488 compatible instruments.

2. VAX VMS IEEE-488 Card Interface Driver
- This software provides the interface to the
IEEE-488 card. There are three levels of inter­
face (see figure 3), two of which provide a
simplified interface to the IEEE-488 instrument
bus. The VAX VMS device driver resides as a
system driver and performs the detailed
handshaking with the IEEE-488 hardware -

transoarent to the application program.

3. TMS32010 Object Code - This object
code is generated by the TMS Assembler from a
source file which contains the digital controller
parameters. The object code is generated on the
VAX and downloaded via an RS-232 link to the
TMS32010 to implement the digital controller
design.

Example Problem

A simple plant transfer function is given
which has unacceptable closed-loop step-response
behavior (figures 4 and 5), i.e., peak overshoot
is excessive (1.45 units).

2 (1)
s(s+l)(s+2)

A digital controller is desired which will
improve the step-response characteristics of this
plant. Following adesign session using DICES as
the coordinator, a design is obtained which impro­
ves the step-response characteristics.

Gc(Z) • 39 7 4 (z-. 99 5)
(Z-.998)

(2)

The theoretical and actual responses of the simu­
lation are shown in figures 6 and 7.

llllTl'-l'IOllll --------------·

Figure 2. Typical Steps in a Control Problem

63

TERPIIHAL

BlK 2932
SY STE"

ANALYZER

CPU ftEl'IOAY

UNIBUS

IEEE-411
INT(RF'ACE

IEEE-"188 BUS

DISK

UH ITS

YAUETEK
SIQHAL

QE!ff:RATOR

Figure 3. IEEE-488 Software Interfaces.

CONCLUSION

By combining a general purpose computer
system with programable instrumentation and
flexible interface software, an interactive
system for implementing digital controller
designs on a state-of-the-art digital signal
processing microcomputer has been developed.
DICES allows the designer to implement the
controller and test it using an analog com­
puter simulation. This assists in deter­
mining the effects of finite word-length,
quantization errors, filter structure, and
other typical effects of implementing a "near
infinite precision" design on a finite word­
length machine.

REFERENCES

1. Larimer, Stanley J., An Interactive
Computer-Aided Design Program for Digital and
Continuous Control System Analysis and Synthesis.
MS Thesis, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB
OH, December 1978.

2. Gembrowski, Charles J., Development of an
Interactive Control Engineering Package (ICECAP)
for Discrete and Continuous Systems. MS Thesis,
School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December
1982.

3. Houpis, Constantine H. and Lamont, Gary
B., Digital Control Systems Theory, Hardware,
Software. New York: McGraw-Hill Book Company,
1985.

4. Texa~ Instruments, Inc., TMS32010 User's
Guide. 1983

5. National Instruments Corporation.
GPIBll-2 Operating and Service Manual. Austin
TX, July 1982.

6. Bruel and Kjaer. 2032 Instruction Manual,
Vols 1, 2 and 3. September 1983.

LLIJSUJ-LUtJf' !NO LL111f'lNSnruR - s f'LANf I

/0~--
/

cli.oo 1.so '1b'.no 12.so 15.ou
1 IME I Sf[(lNDS I

Figure 4.
Theoretical Uncompensated Closed-Loop Response

.. ,.
1.0

rads

(I

Figure 5.
Actual Uncompensated Closed-Loop Response

64

IUCOl1Pt:NSATOR ITSOMP =.OSI l((HJc.9%.l'OLL-.'J~ltl

93.oo 7.50 I J. nl'l I:.>. ~fl
T !ME I SECON[15 I

Figure 6.
Theoretical Compensated Closed-Loop Response

redo

1.2
1.0

(I

Figure 7.

' 20 9

Actual Compensated Closed-Loop Response

Customizing RS/1 at GA Technologies

ARAM K. KEVORKIAN

GA Technologies Inc.
San Diego, California 92138, U.S.A.

This paper presents an interactive program for temporarily
changing the appearance of RS/1 "data objects," and for printing and
plotting these data objects in different ways, and on various printers
and plotters at different locations, including dedicated devices that
may be attached to a terminal. The program is menu-driven and user­
friendly and by enabling users to make a variety of choices with simple
"yes" or "no" answers to prompts, the task of temporarily changing
the appearance of RS/1 data objects and setting up hardcopy output
is considerably lightened. The development of this interactive pro­
gram is a major step toward improving the productivity of computer
users at GA through customizing third-party software.

Introduction

RS/1, a software product developed by Bolt Beranek
and Newman (BBN) Incorporated, provides capabilities for
data management, graphics, electronic spreadsheets, statis­
tical analysis, and applications programming, all integrated
in a single easy-to-use system.

A table is the primary means for storing any kind of
data in RS/1. Tables are the fundamental data objects in
RS/1. They are used for analysis and for generating a va­
riety of other data objects, including bargraphs, piecharts,
graphs, three-dimensional plots, models, and procedures.

RS/1 outputs to a large number of printers, plotters,
and dedicated devices that may be attached to a terminal.
To set up hardcopy output of any RS/1 data object, the
system requires the code name of the printer, plotter, or
dedicated device, the name of the file to receive the data
object, and the appropriate print or plot command. Al­
though all the required information is available in the In­
formation Systems Division (ISD) Users Guide, in the RS/1
manual, and from Systems personnel, the fact that it is to
be found piecemeal at different points makes setting up
hardcopy output cumbersome and time-consuming for the
average user.

In addition, the user may want to choose between hor­
izontal and vertical orientation, regular and pretty printing,
or decide between the printers and plotters in the users' and
operators' areas.

With the use of modifiers, finally, RS/1 allows tem­
porary changes in the appearance of a data object. For ex­
ample, the use of the modifier "NOCOLNUMBERS" may

Proceedings of the Digital Equipment Computer Users Society 65

have the effect of displaying a table without column num­
bers, and the use of the modifier "BOX" will produce box
lines around a graph, a bargraph, a piechart, or a three­
dimensional plot. Each data object in RS/1 has a differ­
ent list of modifiers which appears separately in the three­
volume RS/1 manual.

All of this know-how from the ISD Users Guide, the
RS/1 manual, and the Systems Group has been put into a
single menu-driven and user-friendly interactive program.
By enabling users to make a variety of choices with simple
"yes" or "no" answers to prompts, the task of temporarily
changing the appearance of RS/1 data objects and setting
up hardcopy output is considerably lightened.

The development of this interactive program is viewed
as a major step toward improving the productivity of com­
puter users at GA through the customizing of third-party
software.

The Program

The subject of this paper, the interactive program
called $HARDCOPY, is written in RS/l's Research Pro­
gramming Language (RPL). $HARDCOPY consists of 14
RPL procedures, including a procedure which can be in­
voked outside $HARDCOPY and that provides a glossary
of procedures, arguments, variables, and tables used in
$HARDCOPY, as well as a version history. Figure 1, shown
below, enumerates the three versions of the program which
have been released since May of this year.

Apart from matters of documentation, the most im­
portant changes in Version 1.1 and 1.2 had the effect of

Anaheim, California- December 1985

shortening the system response time. The latter is defined
as the time span 1 between the moment the user enters a
command the the moment a complete response is displayed
on the screen. This improvement in efficiency was accom­
plished by eliminating array arguments, and the results
have been verified by comparison testing.

VERSION HISTORY

VERSION DESCRIPTION RELEASE
NUMBER DATE

1.0 Initial version MAV-86

1.1 Added: Menu of useful hints; glossary of procedures, JUN-86
arguments, variables and tables used in SHARDCOPV;
effective ranges for reducing height and width of
graphic date objects for "hardcopy output" and for
·display on terminal.·
Shortened: Response time to some prompts by avoiding
use of array arguments in parts of the program.

1.2 Added: SHARDCOPV version history; capability to OCT-86
axil $HARDCOPV with original terminal setting;
expanded lists of available laser printers. LA50 and
LA 100 printers column widths, !!nd DEC LP26 lineprintar
locations.
Included: "Modal" in list of data objects to print or
plot.
Shortened: Response time to most prompts by avoiding
use of array arguments throughout the program.
Improved: The display of menus.

Figure 1

The testing in this case consisted of a program com­
prising two RPL procedures, INITIATE and COMPUTE,
with the second having five one-dimensional array argu­
ments A, B, C, D, and E, each of length k. The compu­
tation performed in COMPUTE involved an evaluation of
three conditional branching statements of the type IF ...
THEN ... ELSE; one FLOOR and one MIN function evalu­
ations; 2 + 5k multiplicative operations (addition, subtrac­
tion, multiplication, division); and five ALLOCATE com­
mands. The procedure INITIATE contained the following
brief series:

X = <FPN>;
TYPEX;
CALL COMPUTE (A,B,C,D,E);
TYPE X;

where <FPN> equals any floating point number.

The time span between the two successive displays
of the X value is the amount of time, T1, needed to call
the procedure COMPUTE with the array arguments A, B,
C, D, and E. To determine T1 on a VAX computer, we
used an automated system response timer SYSMON which
utilizes the built-in clock of an IBM PC to measure response
time on the VAX. Table 1, reporting odd-numbered runs,
summarizes the results obtained on a VAX-11/785 running
under VMS 3.5, for the case where k = 1. Table 2, on the
other hand, reports even-numbered runs in the same way.
Table 2 differs from Table 1 in that array arguments are

66

excluded in COMPUTE calls. Odd- and even-numbered
runs follow each other in order to make comparable pairs.

TIME IN SECONDS (T 1) FOR CALLS OF "COMPUTE" WITH
6 ARRAY ARGUMENTS EACH OF LENGTH = 1

RUN DAY 1 DAY2 DAY 3 DAY4 DAY 5 DAY 6 DAY7 OVERALL
NUMBER AVERAGE

(ODDI

1 4.51 7.42 4.11 7.03 4.01 7.96 4.94
3 4.40 4.61 3.63 5.27 2.91 5.77 3.73
5 4.62 5.21 4.7B 6.20 4.12 7.91 3.57
7 4.89 5.50 3.79 8.62 3.96 4.56 3.24
9 4.61 4.56 2.91 9.66 3.79 6.65 4.40

11 4.62 4.84 3.07 10.16 3.19 6.21 5.66
13 5.10 3.90 3.18 8.40 3.62 5.55 10.71
15 4.94 4.34 3.41 8.46 3.52 5.B8 4.01
17 5.00 4.12 2.B6 6.42 4.06 4.78 4.56
19 4.72 4.23 2.86 5.9B 3.79 5.55 3.73

AVERAGE 4.74 4.B7 3.46 7.61 3.69 5.97 4.86 5.03

Table 1

TIME IN SECONDS (T 2) FOR CALLS OF "COMPUTE" WITH
NULL ARRAY ARGUMENTS

RUN DAY 1 DAY 2 DAY 3 DAY4 DAV 5 DAY 6 DAY7 OVERALL
NUMBER AVERAGE
(EVEN!

2 0.50 0.77 0.66 0.71 0.55 0.72 1.10
4 0.49 0.49 0.50 0.55 0.66 0.49 0.55
6 0.55 0.50 0.60 0.50 0.66 0.50 0.55
8 0.50 0.49 0.49 1.37 0.55 0.77 0.55

10 0.50 0.50 0.55 0.55 0.60 0.50 0.55
12 0.55 0.49 0.49 0.49 0.55 0.49 0.83
14 0.55 0.50 0.55 0.60 0.65 0.61 0.61
16 0.55 0.50 0.60 0.55 0.66 0.55 0.66
18 0.55 0.54 0.50 0.66 0.54 0.49 0.61
20 0.49 0.55 0.49 0.55 0.60 0.61 0.71

AVERAGE 0.52 0.53 0.54 0.65 0.59 0.62 0.67 0.59

Table 2

The results show that by eliminating array arguments,
an eightfold improvement in average response time is
achieved (5.03 versus 0.59 seconds).

Typical Series of Prompts

After entering RS/1, the program is invoked with

CALL $HARDCOPY

from # prompt. Figure 2 shows a typical series of prompts
that follows the invocation of $HARDCOPY. The first re­
sponse identifies the current version of the procedure. The
response regarding LOCAL HELP in the USEFUL HINTS
menu reminds the user that the context-sensitive nature
of local help in RS/1 system has been extended into this
program.

$HARD COPY deals with the seven data objects listed
in the PRINT /PLOT menu in different ways as appropri­
ate. The choice of BARGRAPH from the PRINT /PLOT
menu in Figure 3a leads to the prompts shown in Figures
3a through 3c.

INVOCATION OF $HARDCOPY

#CALL $HAADCOPY <AET>

..••.....••••...•..••...••
$HAADCOPY Version 1.2

..........................
Do you wish to see introductory screen or menu of useful
hints? [YES] <AET>

Introductory screen? [YES] N <RET>

Menu of useful hints? [YES] <RET>

USEFUL HINTS

1 How to EXIT AT ANY TIME
2 DEFAULT CONVENTION
3 How to obtain LOCAL HELP
4 EXIT

Enter choice: [1] 3 <AET>

LOCAL HELP

To obtain local (context-sensitive) help to any prompt.
enter -7-. For example, when you are at the following prompt

Enter AOWHEIGHT: [2]

and it is not clear to you what ROWHEIGHT means. simply
enter ·7- and press <AET> and you will get the following
assistance.

Expands cell height by number of rows indicated by expression

After this message the same prompt is repeated.

USEFUL HINTS

1 How to EXIT AT ANY TIME
2 DEFAULT CONVENTION
3 How to obtain LOCAL HELP
4 EXIT

Enter choice: [1] 4 <RET>

Figure 2

In Figure 3b it may be noted that $HARDCOPY
provides the user with effective ranges for reducing height
and width of graphic data objects for "hardcopy output"
and for "display on terminal" in anticipation of equipment
limitations.

All figures and tables in this paper were created using
ISSCO's graphics software package TELLAGRAF, whereas
the text portion was processed using the computer typeset­

ting software TEX-

Acknowledgments

The author wishes to acknowledge the invaluable as­
sistance received from Jim Binder and Dave Rapp, both
of ISD. To the first the author is indebted for advice on
documentation techniques, and to the second he owes much
thanks for developing the SYSMON measuring tool for
monitoring system response and applying it for this study.

Reference

1 The Economic Value of Rapid Response Time, IBM pub­
lication GE20-0752-0 (November 1982).

67

TYPICAL SERIES OF PROMPTS FOR A BARGRAPH (1 OF 3)

DATA OBJECTS TO PRINT/PLOT

1 TABLE
2 MODEL
3 PROCEDURE
4 BARGRAPH
5 PIECHART
6 GRAPH
7 THREED
8 EXIT

Enter choice: [1] 4 <RET>

Display list of bargraphs? [YES] N <RET>

Enter name of bargraph: ABCEE <RET>

Is your terminal in the following list of high resolution terminals?

VT125
GRAPHON
TEKTRONIX 4010
TEKTRONIX 4105
TEKTRONIX 4662

If yes press <RET> else type no (n): [YES] N <RET>

Display on VT100 series (excluding VT125) of bargraphs and
graphs with less than optimal quality is possible. For piecharts
the quality of display will be only marginal, and for threeds it
is unusable.

Is your terminal in VT100 series? [YES] <RET>

Display bargraph7 [YES] N <RET>

Modify default bargraph? [YES] <RET>

BARGRAPH MODIFIERS THAT CAN BE CHANGED

1 TITLE or HEADER (Exclude)
2 HEIGHT or WIDTH (Modify)
3 BOX (Include)
4 NOTES (Exclude or Postpone)
5 BRAGRAPH KEY (Exclude or Postpone)
6 BARGRAPH KEY (Change location)
7 I or D TICKS (Display either one)
8 I and D TICKS (Display both or neither)
9 EXIT

Enter choice: [1] 2 <RET>

Figure 3a

TYPICAL SERIES OF PROMPTS FOR A BARGRAPH (2 OF 3)

Effective range for hardcopy output:

0.40 <- HEIGHT. WIDTH <- 1

Effective range to display on terminal:

0.65 <- HEIGHT. WIDTH <- 1

Enter HEIGHT: [1] 0.3 <RET>

HEIGHT may not be less than 0.40. Otherwise program
will fail to plot or display the bargraph

Enter HEIGHT: [1] 0.5 <RET>

Do you intend to display bargraph? [YES] <RET>

HEIGHT may not be less than 0.65 if you intend to
display tha bargraph

Enter HEIGHT: [1] 0.7 <RET>

Enter WIDTH: [1) 0.8 <RET>

BAR GRAPH MODIFIERS THAT CAN BE CHANGED

1 TITLE or HEADER (Exclude)
2 HEIGHT or WIDTH (Modify)
3 BOX (Include)
4 NOTES (Exclude or Postpone)
5 BRAGRAPH KEY (Exclude or Postpone)
6 BARGRAPH KEY (Change Location)
7 I or D TICKS (Display either one)
8 I and D TICKS (Display both or neither)
9 EXIT

Enter choice: [1] 9 <RET>

Display modified bargraph? [YES] N <RET>

AVAILABLE OUTPUT DEVICES

1 LASER
2 PRINTRONIX
3 CALCOMP
4 DEC LP26
5 PRINTER AT TERMINAL

Enter choice: [1] <RET>

Vertical orientation? [YES) N <RET>

Figure 3b

68

TYPICAL SERIES OF PROMPTS FOR A BARGRAPH (3 OF 3)

With horizontal orientation, there are two possibilities:

o Character size: 1/16 inch (regular printing)
o Character size: 1/8 inch (pretty printing)

Regular printing? [YES] <RET>

AVAILABLE LASER PRINTERS

1 In users area
2 In operators area
3 In 15-125 (for permission call x 3986)
4 Display queues

Enter choice: [1] 4 <RET>

QUEUES FOR LASER PRINTERS

1 In users area
2 In operators area
3 In both areas
4 Exit

Enter choice: [1) <RET>

Queue for laser printer in users area:
CURR 4121 KEVORKIAN DECUSBAR6 PRI - 4 12-SEP-85 SIZE= 3

AVAILABLE LASER PRINTERS

1 In users area
2 In operators area
3 In 15-125 (for permission call x 3986)
4 Display queues

Enter choice: (1] <RET>

Bargraph plotted. Any more bargraphs to plot? [YES] N <RET>

DATA OBJECTS TO PRINT/PLOT

1 TABLE
2 MODEL
3 PROCEDURE
4 BARGRAPH
6 PIECHART
6 GRAPH
7 THREED
8 EXIT

Enter choice: [1] 8 <RET>

Figure 3c

PRO: A Multiple Priority, Multitasking Process Control System and Language
as Implemented in an Inhalation Exposure Facility

Edwin R. Lappi and Leon C. Walsh, Ill
Inhalation Exposure Group

Northrop Services, Inc. - Environmental Sciences
Research Triangle Park, NC

ABSTRACT

A number of vendors offer process control systems and software for the
manufacturing environment. PRO is one such system and language that runs
on an LSI 11/23 CPU. This paper discusses PRO's implementation in a small
animal inhalation exposure laboratory as the control system for pollutant
concentration profiles in environmental exposure chambers. In particular,
this paper addresses PRO's ability to control the generation of smoke
obscurants for a study evaluating the potential human health hazards of
these obscurants. Also, the acquisition of chamber environment data during
the exposure is described.

INTRODUCTION EXPOSURE FACILITY

Northrop Services, Inc. - Environmental Sciences (NSl-ES)
conducts animal inhalation exposure testing under contract with
the U.S. Environmental Protection Agency. One current project is
the whole-body inhalation exposure of small rodents to an aerosol
generated from 10-weight motor oil. The oil aerosol can be field
generated at sufficient concentrations to be an effective smoke
obscurant for troop movements or other military activities.
Evaluation of the health effects of repeated acute and subchronic
exposure to this aerosol, which might occur during troop training
exercises, is the overall goal of the project.

A special laboratory facility was constructed for the project.

Operation of a facility for scientific testing involving animals
is, at best, an extremely complicated undertaking. Critical
considerations include the environmental control systems, animal
housing and care, specific research protocols, and the actual
testing procedures to be implemented. This paper addresses the
operation of the exposure system, specifically the monitoring and
control of pollutant levels during an animal inhalation test.

The aerosol particles are generated from the bulk oil using a
vaporization/condensation technique that produces particles
approximately 1.0 to 1.3 µmin diameter. The concentration of the
aerosol in the exposure chamber is monitored with a real-time
aerosol monitor (RAM-1, GCA Corp., Bedford, MA) equipped with
a diluter to allow high concentrations to be effectively sampled.
Since a complete regimen of toxicological tests must be conducted
on a population of animals large enough to yield statistically
significant results, the exposure facility consists of multiple
chambers, each equipped to generate and monitor the oil aerosol
at individually controllable levels.

Operation of this exposure system requires that all critical
parameters be continuously monitored and controlled within
limits established by the study protocol. Items to be monitored
include oil aerosol concentration within the chamber; aerosol
particle size; chamber air flow, temperature, and negative
pressure with respect to the laboratory; temperature of the two
heaters contained in the generator; three separate temperature
limit sensors; the inlet air conditioning unit; and the chamber
exhaust system. As shown here, this is an extremely complex
system - hence the rationale for utilizing automated control
wherever possible to ensure the concise, repetitious exposures
required for long-term research projects.

Proceedings of the Digital Equipment Computer Users Society 69

The exposure facility consists of an exposure control laboratory,
exposure room, necropsy room, shower room, and three total­
exhaust animal rooms (1,2]. Only the first two rooms, the
exposure control laboratory and the exposure room, are of
concern in this paper. The room layouts are shown in Figures 1, 2,
and 3. A barrier separates the exposure control laboratory from

Inhalation Exposure Room

Inhalation Exposure
Control Laboratory

Figure 1. Exposure Facility Floor Plan.

[] [] [] [] Room

r-
1

[][] To 1 :4 6 Post-
Exposure

Animal
'---~~~~~~~~~~~-, Room

Quarantine
and Pre- Legend:

Exposure 1. Exposure Chamber 4. Wall Cabinet
Animal Rooms 2. Control Chamber 5. Sink

3. Chiller 6. Pasa Through Window

Figure 2. Exposure Laboratory.

I
I
L.-

Anaheim, California- December 1985

I I 12 !J
r.------~-------~--:o:::J IQ§I 8
I

9 I _,
llil

Legend:

7

[J] [J) [] [[J]
I I ~I I §

To~--~
Exposure

Room

11

1. Exposure Control Panel 7. High Pressure Liquid Chromatograph Terminal
2. Chiller Control Panel 8. Casework
3. Recorder 9. Wall Cabinet
4. Gas Chromatograph 10. Sink
5. Gas Chromatograph Terminal 11. Pressure Monitoring System
6. High Pressure Liquid Chromatograph 12. Instrument Parts Storage

Figure 3. Exposure Control Laboratory.

the exposure room. All air lines and electrical connections for the
exposure monitors and control devices pass through sealed
bulkheads attached to the barrier wall. The top half of the barrier
is constructed of plate glass windows to allow visual inspection of
the exposure room from the exposure control laboratory and vice
versa.

The exposure room contains six stainless-steel Rochester
chambers for whole-body exposure of small animals. Four
chambers are used for pollutant exposures, and two chambers are
used for control animals. The system's design, even prior to
automation, allows the use of any one or any combination of the
exposure chambers simultaneously; this provides a high degree of
flexibility in chamber operations. The exposure control laboratory
contains the exposure control panel, scientific instrumentation,
and the control computer.

SYSTEM OVERVIEW

The basic requirements for the control and monitoring
system follow:

• on-line interactive, multiple priority, and multitasking
operation;

• ease of use by the scientist involved with the exposures;
and

• modular construction.

For this application, availability for quick implementation
was also necessary, as time constraints were rather severe. Writing
the tasks by using machine language subroutines for data
acquisition and control tasks and by using FORTRAN for the other
tasks operating under RSX or even RT-11 would have been a
possibility, except for these time constraints. These constraints did
not allow for adequate design and testing of user-written
software, even though the necessary expertise was available.

Since most of the control and monitoring requirements fall
under the domain of process control-type operation, a search was
conducted for a suitable process control operating system and
language available for use with readily obtainable, reliable
hardware.

SYSTEM DESCRIPTION

The process control unit, named PROSYS I, is fabricated and
assembled by the Adaptive Data Acquisition and Control
Corporation (ADAC, Woburn, MA) using a DEC LSI 11/23 CPU with

70

256 K bytes of memory, which is custom designed for industrial
process control. Peripheral devices include a printer (DEC LA-120).
a terminal monitor (Lear Seagler ADM-SA). a dual floppy disk
system (DEC RX02), and a ceiling-mounted large video monitor
(19-in. Sony Trinitron Model CVM1900) (see Figures 4 and 5). The
computer is interfaced to monitor the following system functions:
chamber temperature, Vycor heater temperature, heat tape
temperature, chamber negative pressure, generator nitrogen
flow, and RAM-1 concentration sensing for each chamber. The
computer system is interfaced to control exhaust blower speed,
temperature on/off relays, and oil flow to the generator (see
Figure 4).

Video
Monitor

r------------,
I
I
I Chamber

~ Video
Terminal ;<I

Temperature
Vycor Heater
Temperature

Pollutant
Concentration
Readings from
the Real Time
Aerosol Monitors
(rams)

G- CPU Inputs

CPU Outputs

Disk
Drive

Printing
Terminal

7 "<i
Vycor Heater
Power

Heater Tape
Power

Control Panel
Reset Relays

Oil Flow Control
Voltages

Over-Concentration
Relays

Oil Solenoids
PIO Control

I
L~----------------------_~.J

Loop Outputs

Chamber 11
(typical for 41

Figure 4. Automated Control System Configuration.

ADAC 1012 EX AD
32 SE Channels

System
Monitor
Terminal

DEC LA 120
Dacwritar
(printer)

Ch~nel ' J!f Channel

I ADAC 1750 l/D

11

\

~
1601 General I

Purpose Timer
..______,...___

ADAC 1113
Low Leval AD
64 Channels

r-------...,
ADAC 1616 CCI

2 Channels 16 Bit/Ea

Contact Closure
Inputs

I

DEC
LSI 11/23
256 KB

Memory

DEC DLU·11J
4 Channels

13 C7annal

Ceiling
Mounted Video

Status
Monitor

NCC-IBM~

6 DA Boards

ADAC 1412 DA
24 Channels

ADAC 1616 HCC
1 Channel 16 Bits

High Current Outputs

B

RXV21

2 RX02
Floppy
Drives

Figure 5. Hardware Configuration.

SOFTWARE

PRO (developed by Staff Computer Technology Corp., San
Diego, CA) is a memory resident, multiple priority, multitasking
process control and monitoring software package. PRO can
handle up to 256 tasks concurrently. User statements may be
entered from the system terminal or from off-line storage media.
Statements may be added, listed, deleted, and changed· while
other activated tasks (programs) are executing. Four main
elements: compiler, operating system, run time program, and 1/0
drivers, provide everything that is necessary to accept user
statements written in PRO.

Compiler

The compiler is an interactive incremental compiler that
examines each program statement as it is entered for syntax and
sequence errors. It then either accepts and compiles the statement
or immediately notifies the programmer of an error by a
diagnostic error message that requests correction of the
statement. This interactive attribute makes PRO easy to learn,
program, and debug because the programmer is immediately
made aware of an error. Additional checks are made after all
statements have been incrementally compiled to further reduce
the possibility of program errors. A full discussion of the
advantages of PRO's compiler and a comparison of it with the
batch compiler and interactive interpreter can be found in an
article by Benton [3]. (Also, see Figures 6, 7, and 8.)

Compile

Program
Definition

+
Code

Source
Program

+
Load

Compiler

+-CD
Enter

Source
Statement

t

Examine Enter
Statement ·correct
for Error Statement

t • 0··cp
+No

Translate
Statement

into
Mach. Code

+

Examine
Mach. Code

Run
®
i-

for Error Execute

<370~No
+No ~

Store +Yes

®

for Error
t

~:_sf,;\
~0

t No

CD

Edit

®
i

Edit
Source

Statements

Figure 6. Interactive Incremental Compiler.

71

Compile

gram Pro
Def mition

+
ode c

So
Pro

urce
gram

+ ..
oad L

Com piler

t
oad L

So urce

+
mine
. Code

Exa
Mach

for Errors

t

ror
7

t No
slate Tran

Sourc
Mach

e into
. Code

t

ror
7

l No

CD

Yes®
~3

Yes@)
-3

c

1
Examine
Source

for Errors

'
Error

f No
Store

Object
Program

' Done

Edit

0
+

Load
Editor

t
Correct
Machine
Readable
Source

t
CD

Run
Load

Object
Program)

---~
Run

Program

Figure 7. Batch Compiler.

Operating System

PRO provides a complete stand-alone operating system for
scheduling, setting priorities, allocating system resources,
implementing general "housekeeping" routines, and monitoring
the operation of the system.

PRO operates as a multitasking system, i.e., it is capable of
handling numerous tasks concurrently. User-assigned priorities
control the scheduling of these tasks. The operating system
controls execution by suspending low priority tasks until high
priority tasks have been executed or suspended.

Run Time System

PRO's run time system is the collection of programs required
to execute both the system and user tasks. Run time includes
system initialization, processing of alarms, and detection and
interpretation of errors in the executing task.

Compile
Program

Definition

• Code
Source

Program

+
Load

Interpreter

t.
Enter

Source
Statement

CD

Enter
Correct

for Error Statement

0v .. I
tNo

Stora
Source

Statement

+
CD

Edit

®
Edit

Source
Statement

Run

®
+

Fetch
Source

Statement

+
Interpret

Statement

+
Check

for
Error

~Yes{.;\
~-0

t No

Execute
Statement

~Yes{.;\
~-0

~No

®

Figure 8. Interactive Interpreter.

PRO provides the ability to modify or fine tune tasks on line
while all other unrelated tasks are still being executed on the same
system. The operator may examine any input, change any output
variable, or completely activate or deactivate any task or 1/0 in real
time.

The PRO editor enables the computer to list programs in
their alphanumeric source formats, even though these source
statements are not stored. The editor allows additions and
corrections to be made by using standard PRO statements.

1/0 Drivers

PRO provides all necessary software drivers to control the
operation of both communications and process 1/0 devices. These
include

• 2048 discrete inputs or outputs,

• 256 analog outputs,

• 1024analog inputs, and

• 8 serial 1/0 ports.

Figures 4 and 5 show the automated control system and hardware
configurations.

72

PROGRAMMING

Once PRO is booted up, the user begins by defining the
digital outputs, analog outputs, digital inputs, analog inputs, and
automatic control loops (i.e., PIO-Proportional, Integral, and
Derivative Control). Figures 9 through 13 illustrate each of these
definitions.

DEF: DOUT:BITS;
CHAN:66;
1* BITOUT:VIC(O);

2* BITOUT: HTR(1);
3* BITOUT:RST(2);

4* BITOUT:VIC2(3);
5* BITOUT:HTR2(4);
6* BITOUT:RST2(5);
7* BITOUT:VIC3(6);
8* BITOUT:HTR3(7);
9* BITOUT:RST3(8);

10* BITOUT:VIC4(9);
11* BITOUT: HTR4(10);
12* BITOUT: RST4(11);
/;

Figure 9. Digital Outputs.

DEF: AOUT:OFLW1;
CHAN:133;
/;
SEL:OPMP1;
LIST(1);

DEF: AOUT:OPMP1;
CHAN:130;
I;
SEL:OSOL1;
LIST(1);

DEF: AOUT:OSOL 1;
CHAN:129;
/;
SEL:OCNC1;
LIST(1);

DEF: AOUT:OCNC1;
CHAN:132;
/;

Figure 10. Analog Outputs.

DEF: AIN:VC1;
PER:5;
CHAN:8;
CONV:LIN;
IRG:0,41,25;
ERG :20.000, 1000.0: DEGC;
/;

Figure 11. Digital Inputs.

DEF: AIN:RAM1;
PER:5;
CHAN:512;
CONV:LIN;
IRG:0,9997;
ERG:O E3,177.60:MGPERM3;
1* FIL T;
FILTV:1,0000;
2* ALM;
HIAL:210.0;
LOAL:O E3;
DB:O E3;
3* PID:RAM1PID;
HSPLM :201.00;
LSPLM:O E3;
DB:O E3;
DEVL:201.00;
PGAIN:RAM1GAIN;
SETPT: DESCON1;
OUTMX:105;
OUTMN:O;
OUTPT:OFLW1;
IGAIN:.03808;
DGAIN:O E3;
/;

Figure 12. Analog Inputs and Control Loop.

The programmer can then begin writing applications tasks -
the sequencing and management logic created by the user to
direct the management and control of the process. Figure 13
illustrates a portion of the main control task as used at NSl-ES.

73

DEF: TASK:CONTROLEXP(1);
1* STRING:R(1);
2* ARRAY:CN1(48);
3* ARRAY:CN2(48);
4* ARRAY:CN3(48);
5* ARRAY:CN4(48);
6* ARRAY:CT1(48);
7* ARRAY:CT2{48);
8* ARRAY:CT3(48);
9* ARRAY:CT4(48);
10* ARRAY:OV1(48);
11* ARRAY:OV2{48);
12* ARRAY:OV3148);
13* ARRAY:OV4{48);

43* READ:(1)R;
44* IF(CHAR(1.RI = 89)GOT0:10;
45* LET: EX= EX+ 1;
46* GOT0:15;
47* 10: LET:N1A=1;
48* 15: PRINT:(11""WILL CHAMBER TW0(2) BE USED TODAY (Y/N)?

65* 40: LET:N4A= 1;
66* GOT0:50;
67* 45: IF(EX=4)GOT0:70;
68* 50: ACT:INIT;
69* WAITUNTIL(IN = 99);
70* DEACT:INIT;
71* 55: IF(SEC<SSC)GOTO:&O;
72* IF(MIN<SMNIGOTO:&O;
73* IF(HOUR<SHR)GOT0:60;
74* GOT0:65;
75* 60: WAIT:10;
76* GOT0:55;
n* 65: ACT:BITS;
78* WAIT:1;
79* ACT:BLWRS;
80* WAITUNTIL(Bl=99);
81* DEACT:BLWRS;
82* WAIT:1;
83* ACT:HTRS;
84* WAITUNTIL(HT=99);
85* DEACT:HTRS;
86* WAIT:1;
87* ACT:OILFLW;
88* WAITUNTIL(OL=991;
89* DEACT:OILFLW;

Figure 13. Portion of Main Control Task.

PRO allows modular construction of the minor and major
tasks; this enables the user to break overall tasks into manageable
units for ease of debugging and comprehension.

At NSl-ES, the tasks are written so that one main task
activates one subtask at a time during the exposure. The tasks are
as follows:

• CONTROLEXP - main task that activates and deactivates
all subtasks during the exposure. After activating each
subtask, CONTROLEXP waits for the subtask flag to be
set, which signals CONTROLEXP to deactivate the
subtask. CONTROLEXP initializes all storage arrays to
zero before any data are stored and requests input from
the operator as to which chamber(s) are to be used (see
Figure 14).

• INIT - subtask that requests that the operator input the
exposure start and stop times. It activates subtask
ECHO, which lists the active and inactive chambers as a
check for the operator.

• ECHO - subtask that prints a summary of chambers
activated and the set points being used during the
current exposure (see Figure 15).

• BITS - subtask that activates the high current outputs
(HCOs) so that the heaters for all generators can be
turned on and off as required.

• BLWRS - subtask that checks for active chambers and
whether or not chambers are to be controlled, activates

(Start)
i

Initialize
Data

Arrays

l
Initialize

End of Task
Indicators

Activate
Task Htrs

.---!d
~o~a••

HT=99

~Yes

Deactivate
Task Htrs

+
Activate

Task Oilflw

r--id
~~;~sk

OL=99

i Yes

Deactivate
Task Oilflw

Activate
Task Monitor

rop-;;:;-r
I Selects
: Chambers

---i to be
I used
I during

L~~~~

:-Thi;--
1 Task
: Starts
I the
: Fog
1 Generator,
1 Act1vates

Tasks
Echo,
Adapgain,
Watchdog.
and
all the
Ram
Inputs
and PIO
Control
Tasks

:-ch-;.~k-;-
, for End

: of
: Exposure,

--! g~~~~::
: Disk.
1 Activates
I Report , _____ _

Deactivate
Task INIT

~Yes

Activate
Bits

Activate
Task Blwrs

M t
End
Task

BL=:o99
I

t Yes

Deactivate
Task Blwrs

~Yes

Deactivates
Task Monitor

Deactivates
Task Adapgain

Deactivates
Task Watchdog

Activates
Task Shutdown

r---'Jd
~~E;~sk

SH=99
I

+ Yes

Deactivate
Task Shutdown

r---
1 Task
I Turns

__ Jon
I System
I Exhaust

Ls~o~!'"s

:-T;sk--
1 Completes
I End of
I Exposure
' by

_ -: Shutting
1 Down
I Oil Flow

: ~e::;:~rs,
I &Writes
I Data to Disk , _____ _

74

Deactivate
Bits

• Message to
Operator

Giving Time
System was
Shutdown

+
Deactivate

Task
Control Exp

+
(End)

Figure 14. Control Task.

CURRENT TIME IS 8:50:11
EXPOSURE START TIME IS 8:45:0
EXPOSURE STOP TIME IS 9:45:0

CHAMBERS ON CONTROL FOLLOW; 0= NO CONTROL, 1 =CONTROLLED
CHAMBER 1 1
CHAMBER 2 1
CHAMBER 3 1
CHAMBER 4 1

RAM SETPOINTS FOR CHAMBERS FOLLOW
CHAMBER 1 70.00
CHAMBER 2 61.00
CHAMBER 3 148.00
CHAMBER 4 52.00

•

•

•

•

Figure 15. Control Variables ECHO.

the associated analog outputs and resets the
overconcentration relays, makes sure heaters are off,
and activates analog inputs to read chamber
tern peratu res.

HTRS - subtask that checks for active chambers, turns on
associated heaters, waits for Vycor heater temperatures
to reach 500°C, turns off Vycor heaters for 30 sand then
turns them back on for the duration of the exposure,
and turns off all resets and deactivates the analog
inputs to read Vycor heater temperatures.

OILFLW - subtask that initializes oil solenoids to zero,
activates the analog output to the oil solenoid for an
active chamber, activates the analog output to the oil
pump, activates analog inputs to read the RAMs,
activates the PIO control loops, and requests entry of the
desired set points for activated chambers. It activates
ECHO to list active chambers and set points being used
and activates subtask ADAPGAIN.

ADAPGAIN - abbreviation for ADAPTIVE GAIN - subtask
that is used primarily to slow the PID's response during
chamber start-up, when the error is large, and to speed
the Pl D's response when errors occur once the set point
has been reached. It is a commonly used method in
process control for varying the proportional gain, Kc. in
the PIO equation to vary the speed of the response for
different degrees of error, E.

WATCHDOG - subtask that contains oil flow checking
and limiting. Every five seconds the subtask checks each
chamber's oil flow and compares it to the high oil flow
limit for the chamber; it does not allow the oil flow to

go above the limiting value. No alarm bells or messages
are given when the oil flow limit is reached.

• MONITOR - subtask that activates all chamber
temperature analog inputs, activates subtasks REPORT
and VDISPLA Y, and checks every 10 s to see if the end
time for the exposure has been reached yet. If the end
time for the exposure has been reached, MONITOR
deactivates REPORT and VDISPLA Y; saves all final
readings of the RAMs, chamber temperatures, and oil
flow control voltages in their respective arrays; and
prints a final report of all active chambers on the line
printer (see Figure 16).

TIME=9:0:7

THE OUTPUT OF RAM1=47.88
THE TEMP IN CHAMBER ONE= - 99.00 DEG F
THE OIL FLOW VOLTAGE FOR CHAMBER 1 =67 MVOLTS

ALL CHAMBERS SHUTDOWN AT: 9:0:45
Figure 16. Final Report for all Active Chambers.

• REPORT - subtask that makes sure VDISPLAY is
activated, saves data into arrays every S min, and prints
a S-min report of data on the line printer.

• VDISPLA Y - subtask that displays 5-min status data on all
active chambers on a ceiling-mounted video display.

• SHUTDOWN - subtask that deactivates oil flow, the PIO
control loop, and analog inputs and displays a message
on the console that the chamber oil flows have been
shut down. SHUTDOWN activates STOREARRAYS and
Vycor heater analog inputs, turns Vycor heaters and
heat tape heaters off, waits until Vycor heater
temperatures have cooled to below 200°C, turns off
overconcentration relays, prints a message on the
console indicating that the chambers have been shut
down, and deactivates Vycor heater analog and
temperature analog inputs.

• STOREARRAYS - subtask that sets up block addresses on
disk for each array and writes data from an active
chamber onto disk.

DATA

Chamber environmental data collected during each
exposure include the following: the output readings of the RAMs,
chamber temperature, and oil flow control voltage to the oil
pumps (see Figure 17).

CONCLUSIONS

One of the limitations of PRO is that it uses block addresses
to write data onto disk. This means that it writes an array of data,
even a small one, onto one block of the disk. The next array must
then be written onto the next contiguous block on the disk. In
addition, PRO's format is not readable by either RT-11 or RSX;
therefore, these data disks cannot be interchanged with one of
the standard DEC systems. However, this lack of compatibility with
one of the standard DEC operating systems was easily overcome
and proved to be only a minor nuisance to NSl-ES during this
project.

75

AT TIME=8:55:35

THE OUTPUT OF RAM1=12.406
THE TEMP IN CHAMBER ONE= -99.00 DEG F
THE OIL FLOW VOLTAGE FOR CHAMBER 1=48 MVOLTS

THE OUTPUT OF RAM2=7.383
THE TEMP IN CHAMBER TWO= -99.00 DEG F
THE OIL FLOW VOLTAGE FOR CHAMBER 2=53 MVOLTS

THE OUTPUT OF RAM3=2.609
THE TEMP IN CHAMBER THREE= -99.00 DEG F
THE OIL FLOW VOLTAGE FOR CHAMBER 3= 150 MVOLTS

THE OUTPUT OF RAM4= E3
THE TEMP IN CHAMBER FOUR=69.04 DEG F
THE OIL FLOW VOLTAGE FOR CHAMBER 4=53 MVOLTS

Figure 17. Five-Minute Report for all Active Chambers.

Overall, NSl-ES was extremely pleased with the ease with
which PRO was implemented and learned by the staff. PRO has
been proven to be a very powerful and flexible system that runs on
the reliable DEC LSI 11/23 computer.

1.

2.

3.

REFERENCES

Northrop Services, Inc. - Environmental Sciences. 1983.
Facility Description: Oil Aerosol Inhalation Exposure
Facility. Research Triangle Park, NC: Northrop Services, Inc.
- Environmental Sciences.

Davies, D.W. 1984. Inhalation Toxicology of Fog Oil
Obscurant, Phase I: Inhalation Exposure Facility. Research
Triangle Park, NC: Toxicology Branch, Inhalation Toxicology
Division, Health Effects Research Laboratory, U.S.
Environmental Protection Agency.

Benton, L.A. 1978. Interactive Compiler Translates Step-by­
Step and Stores Translation. Reprint from Control
Engineering.

Expert System Usage in the Laboratory

Thomas A. Turano
Digital Equipment Corporation

Marlboro, Massachusetts

ABSTRACT

Although expert systems are becoming more

prevalent, their application as an aid in the

laboratory has been minimal. LOP is investigating

the use of expert systems to aid the scientist

both in configuring real-time data collection

systems and in statistically analyzing the data

collected. These expert systems would use sets

of rules enumerated by experts in various fields

to provide consultation to the experimenter.

The purpose of a real-time system configurer

is to help the experimenter select the system

components necessary to collect the required

data. This interactive expert system, similar

to XCON the system currently used within DIGITAL

to configure VAXen, would ask questions concerning

the nature of the experiment and the type of

computer system being used. From this data, the

expert system would determine what combination of

components is available for such a data collection

system.

Similarly, the statistics expert system would

suggest to the experimenter which statistical methods

are the most suitable for the analysis of the data

as determined by the nature of the data and the

hypothesis presented.

This talk will describe the current results of

the ongoing investigation into the feasibility of

these systems.

Proceedings of the Digital Equipment Computer Users Society 77 Anaheim California - December 1985

l INTRODUCTION

This paper concerns a use of a branch

of artificial intelligence (AI) in the

laboratory. It is not concerned with the

research side of AI which attempts to

determine what human intelligence is and

emulate

will

its functions.

address one

Instead, this paper

application of AI

technology, the Expert System.

2 EXPERT SYSTEMS

2.1 The Approach

In recent years, a subspeciality of AI

called expert systems has developed. An

expert system is defined as a program which

goes about solving a problem in a manner

that an expert would use. An expert does

several things in approaching a problem

(11).

First, the expert quickly discards

avenues of inquiry that he believes will be

unsuccessful. For example, if you go to the

doctor complaining of pain in your arm, the

doctor will not simply recall all she knows

about anatomy. She immediately discards all

the knowledge she has that is unconnected to

what might cause a pain in the arm. In this

case, there is no reason to think about

toes, so any toe knowledge is not examined.

Since a heart attack may cause a radiating

pain in the arm, the knowledge base she has

78

concerning the heart is examined until she

is confident that the heart is not a cause

of the pain. Once heart problems have been

ruled out, she ceases to use the knowledge

she has about the heart. By approaching a

problem in this manner, the expert moves

through a huge amount of data very quickly.

Had each piece of information known by the

expert been examined, the total time

required for a search would be prohibitively

long.

Another thing an expert does not

immediately do is attack the problem from

fundamental principles. Going back to the

example: the doctor looking for the cause

of pain in the arm does not immediately

begin by thinking about the conduction of

nerve impulses

potentials. That

fundamental and,

in terms

approach

even if

of membrane

would be too

the cause and

effect relationship between the membrane

potential and the perception of pain were

completely understood, getting to a solution

of the problem at hand from this high level

of detail would again take too long. In

reality, many problems are incompletely

understood, so that it would not be possible

to arrive at any solutions from fundamental

principles.

Instead of basic principles, the expert

uses rules of thumb or heuristics to isolate

the problem. The use of rules of thumb is

termed shallow knowledge. You do not have

to know about Maxwell's equations of

electricity

generally

to use a light switch.

have both shallow and

Experts

deep

knowledge about the problem area (domain).

Expert systems have shallow knowledge only,

and still satisfactorily solve problems

within their domain.

The question is then: why bother with

deep knowledge if shallow knowledge will do?

The answer is that the performance of

something or someone with deep knowledge

will degrade more gracefully than someone or

something with shallow knowledge as the

limits of the domain knowledge are reached.

Going back to the example again; assume you,

having a pain in the arm, go to a knee

expert instead of a general practitioner.

The knee expert mi-ght not know which muscles

or nerves are in the arm; but, having deep

knowledge he can analogize using the

commonality of

with the knee.

properties he knows exists

A knee expert system having

shallow knowledge would simply not function

when this arm domain boundary is reached.

2.2 The Justification

The justification of the effort in

building an expert system comes from several

considerations. First, there is so little

natural intelligence to go around. This is

not meant to be derogatory. Just consider

what an expert is. Here is a person who has

79

spent considerable study and acquired

considerable experience. Generally, true

experts are scarce and therefore expensive.

Second, the use of an expert may be

inconvenient. For example, an expert oil

3rilling geologist's idea of a great time

might not be to spend six months in the

arctic tundra advising the drillers, yet it

might be necessary to have such a person on

station.

Third, the expertise within an

organization is ephemeral. Companies spend

a great deal of money and effort generating

experience. So, after someone is trained

and is an expert, what can the company

expect? The

dies, or quits.

person eventually retires,

This fundamental truth is

the reason behind the apprentice system. It

would be far more efficient if the knowledge

base kept increasing instead of being

rebuilt each time an expert leaves the

organization.

Finally, the expert system is immortal,

and for the egotists among us, so is the

expert knowledge incorporated into it. By

analogy, so then is the expert whose

knowledge has been incorporated.

2.3 The Criteria

The question then arises, why are there

relatively few

is that not all

expert systems?

problems are

The answer

amenable to

solution by expert systems. There is a

small set of criteria by which the success

of an expert system approach can be

estimated. The first criterion is that the

problem must be of the correct size. What

is the correct size? The correct size is

one which is small enough to have a

reasonable amount of code and large enough

to be worth doing. The proper size has been

described as the type of problem you could

attempt to

describing the

phone. This

have an

problem

limited

expert solve by

to him over the

bandwidth problem

description is perfect for expert systems.

The second criterion is that there be a

consensus of opinion by experts. If the

experts can not agree on the solution, then

one expert's view will have to be chosen,

and the results will be biased toward this

view. This is generally not satisfactory.

On the other hand, there has been some

discussion of using expert systems where

there are NO experts. The idea follows the

scientific principle that if no one knows

the solution, anyone's guess is as good as

anyone else's. One then programs the expert

system with the best guesses, and from there

determines the result. If the result is

satisfactory, the system is left alone. If

the result is unsatisfactory, a portion of

the system is changed, and the result of the

80

change on the outcome is examined. This can

be considered to be equivalent to building a

prototype expert. The problem with this

approach is that it is time

not guaranteed to converge

answer. Each rule has to

consuming and

on a correct

be varied

separately and in combination, and it is not

guaranteed even then that there is not

simply a rule missing.

Finally, the problem must require

specialized rather than generalized

knowledge. This frequently poses a problem

since some general knowledge is always

assumed by an expert. Consider an expert

system that does some form of medical

diagnosis. Assume the expert approaches the

problem that if the patient is pregnant and

has high blood pressure, then there may be

toxemia. The expert would automatically

rule out toxemia of pregnancy as a

possibility if the patient is male. The

fact that males do not become pregnant is

general knowledge and would be the type of

knowledge that might be missing from a

medical diagnostician program. As a result

the program would be forced to ask "Is the

patient pregnant?" even if the patient is a

male.

2.4 Some History

The earliest expert systems developed

were for use by the scientific community.

rhe first such system was DENDRAL, which

interpreted mass spectrographic data to

~etermine molecular structure. Construction

of this system was begun at Stanford in 1965

by Buchanan, Mitchell, and Feigenbaum (6).

Many others have contributed to it over its

20 years of existence. In this time period

DENDRAL has been constantly learning and it

is a good example of retaining knowledge

which would otherwise be lost. In addition,

because DENDRAL has been examining spectra

for so long a time, it has become very good

at molecular analysis. Some claim that it

now better than any analytical chemist.

Medical expert systems came into being

with the beginning construction in 1976 of

MYCIN, an expert system which diagnoses

infectious blood diseases (14) . Dr.

Shortliffe of Stanford, realizing that the

heuristics of medical diagnosis could be

placed into an expert system, created MYCIN.

MYCIN's success in turn was the inspiration

for many other medical diagnostic programs.

The first commercially sold system was

developed in 1979 at the Stanford Research

Institute by Duda, Gaschnig and Hart. This

system examined geological data to locate

mineral deposits suitable for mining. The

system showed its worth by discovering a

previously unknown molybdenum deposit (14).

Another commercially successful tool is

XCON. This system started as Rl at Carnegie

81

Mellon in 1980. McDermott produced this

program to incorporate the expertise of

technical editors who configure VAX

computers

Corporation.

for the DIGITAL Equipment

A complex computer system

previously was assigned to a technical

editor who verifies all the components

ordered are present and correct. This was a

tedious task that has been greatly improved

by the use of an expert system. DIGITAL has

saved millions of dollars with this program.

Several laboratories have experimented

with expert systems to help people use

statistics (l,3,4,8,9,12). These programs

help a user select the correct statistical

tests to analyse his data. One such system

operating at the U.S. National Institutes

of Health helped clinicians and researchers

with t-statistics and regression analysis.

In its first year of operation it was used

by 100 different people approximately 12,000

times (12) .

Finally, just for general information,

expert systems have not been restricted to

the scientific field. Systems have been

developed that attempt to teach marketing

strategy, understand tax law (2) and compose

newspapers. It should be apparent that

expert systems will be giving advice in the

future to people in both technical and

social areas.

2.5 The Implementation

Expert systems fall into two major

categories, rule based and frame based. A

rule-based system simply takes the rules

used by an expert and puts them into a

machine format (5,10). The general form of

the rule is:

IF condition THEN action

so, if you were building an expert

system to tell you when to use your

umbrella, the first attempt at the rule

might laok like:

IF

[raining)

THEN

[use umbrella)

This first attempt at the rule is too

general. If this rule were followed

strictly, the system would tell you to use

an umbrella if it were raining even if you

had no intention of leaving your living

room. To correct this oversight, you might

try:

IF

[raining and you are going outside]

THEN

[use umbrella]

82

This is better, but, according to this

rule, if you going for a ride in your car,

you'd have to use the umbrella. The rule

would have to be made more specific still by

putting in as part of the conditions,

something about walking outside:

IF

(raining and you are walking outside)

THEN

[use umbrella]

The right hand side of the rule is also

used to modify the set of data against which

the rule is compared. In the example then,

assume that you could control the weather.

The rule might then be modified:

IF

[raining and you are walking outside]

THEN

[use umbrella and make it stop raining]

With this additional action, once the

rule was invoked (fired), the "MAKE IT STOP

RAINING" clause of the rule would modify the

dataset so that, on the next cycle, it would

not be raining, and this rule would not be

invoked again.

The second approach to an expert system

is the frame-based approach(?). Some AI

people favor this because it groups things

together that seem to belong together.

Using the same example, the first frame

would be a procedure frame explaining what

is to be done undet which circumstances.

FRAME NAME:

Precipitation Weather Procedure

CAUSE OF FRAME ACTIVATION:

Precipitation

Outside travel on foot

PROCEDURE CAUSES:

Use umbrella

The second type of frame could be

described as an "is a" frame, which

describes what something is. In this case,

the frame explains that rain and snow both

are precipitation.

FRAME NAME:

Precipitation

CONDITION:

Rain

Snow

IS:

Precipitation

Once the Precipitation Weather

Procedure was invoked, the system would

attempt to determine if the causes of frame

activation were present. That is, is there

precipitation? The system would then

activate the precipitation frame and

determine that rain or snow is

precipitation. Then, the system would check

to see if rain or snow existed in the

83

current database. If it were raining, the

precipitation frame would be valid. Once

this check is complete, the precipitation

weather procedure would then be valid if the

database indicates the person is going out

on foot.

2.6 Gathering The Knowledge

It is fine to talk about how the system

is implemented once the knowledge is

available, but the more difficult part of

building the system is extracting the

knowledge from experts. People, in general,

have difficulty articulating how they attack

a problem. First, they are not conscious of

some of the steps they take. If pressed for

an explanation, people tend to justify what

they did rather than explain it. This means

they will rationalize what they did because

they were not conscious of the real approach

to the problem.

The process of knowledge extraction is

called knowledge engineering. Knowledge

engineers use a variety of approaches to get

the information from the expert, including

interviews and having the expert speak as he

is solving a problem (15). The difficulty

in generating rules has led to some

interesting experiments in automatic rule

generation.

However, once a rudimentary set of

rules is in place the expert can then

modify, add, or remove rules as necessary.

Remembering our IF-RAIN-THEN-USE-UMBRELLA

expert system, a rudimentary rule would be

the first one: IF [rain] THEN [use

umbrella]. Now the expert uses the system

and finds that this rule leads to the use of

an umbrella if you are sitting in your

living room and it happens to be raining.

She'd then say that the result wasn't right

and that the rule should include a reference

to going outside. You'd then probably

modify the rule so that it looks like the

second example, with the result that, if you

were riding in your car, you'd use an

umbrella. Again, the expert would say this

isn't right and this cycle of modify and

test would continue until the rule the

expert is looking for is achieved.

There have been some successful

automatic expert system modifier programs

which change the rules by interacting with

the expert directly and without the use of

the knowledge engineer. TEIRESIAS is a

modifier program for the expert system

MYCIN. When an expert uses MYCIN and finds

that MYCIN is coming to the wrong

conclusion, TEIRESIAS is invoked and it

tells the expert which rules were used to

come to the conclusion, asks whether a rule

is missing, or if a present rule is wrong or

incomplete. TEIRESIAS then takes the reply

from the expert translates it into the

format required by MYCIN, and determines the

effect of the rule change on the result. If

the result is still wrong, the cycle

repeats.

84

2.7 Success Rate

Eventually the question arises: How

successful are these systems? Without

intending to hedge, the answer depends on

what you mean by success. These systems get

very good at what they do; so if by

successful you mean accurate, these systems

are very successful. If by successful you

mean used by the people for whom they are

intended, they are less successful.

Some of the systems, especially those

physically located where there are few or no

human experts, for example, the oil drilling

expert systems, are used frequently. Those

which are to be used by experts themselves,

such as the medical expert systems to be

used by doctors, are under utilized. The

reason for this user resistance has to do

more with the psychology of the user than

with the accuracy of the system.

To understand this consider how two

human experts interact. It isn't simply one

expert telling another the answer. There is

an exchange of opinions and ideas with both

sides explaining their reasoning. The early

expert systems didn't necessarily take this

exchange into account, and instead would

just tell the user what the answer was

without telling him how this answer was

arrived at. No reasonable doctor would

simply take the diagnosis given by a

computer without knowing how this was

arrived at. Some of this user resistance

can be removed by including as part of the

system an explanation facility to show the

reasoning behind the result. Some of the

more sophisticated expert systems under

development actually have several, levels of

explanation, so that an expert familiar with

the reasoning doesn't have to be bothered by

detail, while someone who is less familiar

can keep asking for more justification (16).

3 LABORATORY DATA PRODUCTS

3.1 Current Investigations

in

Currently, there are two expert systems

early research and development at

Laboratory Data Products. The first is a

Real-Time System Configurer, similar to

XCON. The second is a Statistics Expert

Advisor and Process Monitor.

3.2 Real-Time System Configurer

With the various real-time hardware

products available and certified to work

with DIGITAL computer systems, it is

difficult for the sales reprentatives to

know what is available for each system type.

This has been further complicated by having

some options not certified for different

systems, although both those systems have

the same bus. For example, not every option

built for the Q-bus is certified to work on

the microVAX, although the microVAX has a

Q-bus.

85

XCON is used to configure complete

systems, so if a sales representative wants

to add an A/D converter to an existing

system, he can not use XCON to select the

A/D. It was decided to make a system

similar to XCON, but capable of specifying

real-time product configurations. The

proposed system will encompass both DIGITAL

and third-party vendor products.

Additionally, the intent is to expand the

prototype

available

library.

system

through

to include software

LDP's public domain

The prototype is being written in OPSS,

a DIGITAL-supported

rule-based

constructed.

expert

language, from which

systems are easily

For an example of the type of

rules that make up the system, assume that

the user has specified that the computer

used is a VAX 780 and that an A/D is

required. Once the user has entered A/D,

the system must inquire how many channels

are needed. The rule to ask how many

channels are required if the application is

an A/D would look like (in OPSS):

(p number_chan_required

(appli_reply Aapplication <c> = A/D)

- - >

(write (crlf)

How many single ended channels required?)

(make reply Achannels (accept)))

This rule is read as follows. The p

indicates this is a production, another word

for a rule. number_chan_required is the

name of the rule. The next set of

parentheses, anything before the arrow and

after the name of the rule, is the

conditional part of the rule, the IF part.

The IF part of this rule says that, if the

variable, Application, in the answer

appli_reply is equal to the analog to

digital converter A/D THEN (THEN is

indicated by the arrow) write the sentence

shown, and accept the answer into a variable

Channels and name this answer reply.

After a number of such questions are

answered, the following rule would be used

to select the proper device.

(p admux_u_selection

(AD_module)

(unibus)

(mux_required)

-->

(write (crlf)

The modules required are

ADll-K, LPAll-K and AMll-K.))

Again translating this rule, the p

indicates a procedure which has for a name

admux_U_selection, an abbreviation for A/D

multiplexer selection for the unibus. The

requirements for the rule to fire are: the

need be for an A/D, AD_module, that it be

for a unibus, unibus, and that more than 16

channels be needed, mux_required. When

86

these requirements are met, the rule

specifies the modules listed after the

arrow.

When this system is completed, it

should make the selection of real-time

hardware and software less complicated.

Eventually a user will be able to call into

the system and see what options are

available for various configurations.

3.3 Statistics Expert Advisor

A second system in LOP research is a

statistics expert system. The statistics

expert system is a joint effort involving

within Digital; LOP, the Central Quality

Group, and the AI Applications Group. The

system as now envisioned consists of two

portions, an automated data-monitoring

system and a statistics advisor.

The assumption in creating a data

monitoring system is that a higher degree of

monitoring would lead to bette~ process

control. An automated system is suggested

because humans have a difficult time keeping

up with the large amount of data generated

by manufacturing processes.

The implementation consists of a

database into which the process is placing

data, a statistics subsystem to calculate

the relevant statistics about the process, a

system monitor to evaluate the statistics

and determine how the process is behaving,

and a user

information

assimilate.

interface

in a

to

form

provide

the user

the

can

process--> Database <--Statistics packages

System Monitor

User Interface

The system monitor may be either an

expert system or algorithmic in nature. An

example of the heuristics which could be

used as part of a system monitor built from

an expert system is:

IF

2 out of 3 consecutive data points

fall outside 2 standard deviations on

the same side of the mean

THEN

IF

THEN

the process is shifting toward that

side of the mean]

7 consecutive data points fall outside

1 standard deviation on the same side

of the mean J

the process is shifting toward that

side of the mean]

87

The second part of this system is an

expert statistics advisor. This

will help the investigator choose

advisor

the most

appropriate statistical techniques for

analyzing the data under investigation. The

assumption here is that most researchers

misuse statistics either by using the wrong

statistical techniques or by using

statistical techniques which are not the

most applicable to the data. The system

will not be able to help the researcher

determine whether the results are

meaningful, only whether they are

significant statistically. This system is

coupled with the automated process monitor,

so that a user will be able to go into the

database, and examine the data using various

techniques and then inform the monitor which

parameters should be monitored. Together

the complete system would be configured:

process--> Database <--Statistics packages

-------+

/

v v v

Expert Statistics System Monitor

Advisor

v

+-------> user Interface

The expert statistics advisor notifies

the user if a data point is too far from the

value expected, and gives the user the

ability to modify, ignore, or use the data

point as is. The expert system would make

calls to the statistics packages when

appropriate and give the user the results

through a multiwindow user interface.

To do this a set of heuristics which

determine applicable statistical tests are

used. For example, two rules which might be

used by the system to help the user with

t-statistics are:

IF

a t-test has been requested to compare

2 sets of data and there are an equal

number of data points in each set J

THEN

IF

suggest a paired t-test to

the user as a stronger test

a paired t-test has been requested

~o compare 2 sets of data and there

are an unequal number of data points

in each set J

THEN

inform the uer that this test

is invalid

In all, many statistical tests have

subtleties which are generally lost on the

casual user. A statistician examining the

88

data would prevent a user from using an

inappropriate test. This expert system will

attempt to do the same.

The four -window user interface

contains:

1. The interactive window

2.

The user interacts with the

system through this window,

answering questions and getting

replies.

The inference engine monitor

The user views, through this

window, how the system came to the

conclusions it did.

3. The database window

The user can examine and

modify the database through this

window.

4. The graphics window

This window is used to display

control charts, scatter diagrams,

and other statistical graphs that

the user may require.

The expert system prototype will be

built in LISP and will run under VMS. If

possible, the system will be built as a

system of interfaces which will allow the

user to specify any database management

package and any callable statistics package.

Whether we will have the ability to make the

interface standard enough to allow this is

not currently known. The' graphics portion

of the system will require GKS.

4 CONCLUSIONS

LOP is beginning to investigate areas

in which expert systems might be useful in

the laboratory. Currently, there are two

systems under investigation. The first is a

real-time system configurer which will aid

the user in determining what hardware and

software meets his needs. The second is a

statistics system which will monitor

processes to increase process control and

give expert advice as to which statistical

tests are most appropriate in analyzing

data. It is hoped that these systems will

bring the power of statistical analysis to

users in a form that will help them extract

a maximum of information from their data.

This paper presents ongoing research

within the DIGITAL EQUIPMENT CORPORATION and

as such does not represent a commitment by

DIGITAL to continue to develop or produce as

products the investigations and prototypes

mentioned within this paper.

89

5 ACKNOWLBDGEMBNTS

The author would like to thank Dr. M.

Joshi, Mark Turner, Meyer Billmers Dan

Theriault, and Will Anderson for their

helpful discussions. In addition, I would

like to especially thank Susan Brown for her

editing of this and other papers and Jane

Whitney for preparing the paper for

publication.

6 BIBLIOGRAPHY

1. Some Thoughts on Expe~t Software,

J. Chambers, Computer Science and

Statistics: Proceedings of the

13th Symposium on the Interface,

W.F. Eddy (Ed.) Spinger-Verlag,

N.Y. 1981, pg. 36

2. The Applications of Artificial

Intelligence to Law: A Survey of

Six Current Projects, Cook et al.,

Proceedings of the National

Computer Conference, 1981, pg. 689

3. Expert Systems and Statistics,

Darius, SEAS SM84 Session Report

p.529 1984

4. A Logic-Based Expert System for

Model-Building in Regression

Analysis, F. Darvas, K. Bein, and

z. Gabanyi, Logic Programming

Workshop, 1983, pg. 229

5. An Overview of Production Systems,

Davis -and King, Machine

Intelligence, 8, 1977, pg. 300

6. The Fifth Generation, E.Feigenbaum

and P. McCorduck, Addison-Wesley,

Reading, Massachusetts, 1983

7. The Role of Frame-Based

Representation in Reasoning, R.

Fikes and T. Kehler,

Communications of the ACM, Vol.

28, No. 9, Sept. 1985, pg. 904

8. Artificial Intelligence Research in

Statistics, W.A. Gale and D.

Pregibon, The AI Magazine, Winter,

1985 pg. '72

9. An Expert System for Regression

Analysis, W.A. Gale and

Pregibon, Computer Science

D.

and

Statistics; Proceedings of the 14th

Symposium on the Interface, Heiner

(Ed.), Springer-Verlag, New York,

1982, pg. 110

10. Rule-Based Systems, Hayes-Roth,

Communications of the ACM, Vol.

28, No. 9, Sept 1985, p.921

11. The Technology of Expert Systems,

Michaelsen, Michie and Boulanger,

BYTE, April 1985, pg. 303

12. An Expert System For Statistics,

R.O'Keefe, presented at Theory and

Practice

Systems,

of

14

Knowledge Based

Sept 1982, Brunel

90

University, Surrey, England, pg.

23

13. Development Of A Friendly,

Interactive Self-Teaching,

Statistical Package For The

Analysis of Clinical Research Data:

The BRIGHT STAT-PACK, Rodbard, Cole

and Munson, 1983 IEEE Computer

Applications In Medical Care, p.701

14. Artificial Intelligence and the

Future of Medical Computing,

Shortliffe, Computers in Medicine,

Feb 12, 1984

15. Inferring an Expert's Reasoning by

Watching, Wilkins, Buchanan, and

16.

Clancey,

Programming

Stanford

Project,

Heuristic

HPP-84-29,

June 1984, (appearing also in 1984

Conference on Intelligent Systems

and Machines)

Human Interface Aspects of Expert

Systems, R.M. Young, in Expert

Systems, State of the Art Report

12:7, Ed. J. Fox, Pergamon

Infotech Ltd. (1984)

Copies of the slides from the

presentation are available from the the

author.

Encryption for Beginners

B. Z. Lederman

2572 E. 22nd St.
Brooklyn, N.Y. 11235-2504

The purpose of this paper is to make people aware of what data
encryption is, how it is used, who needs it, and why it is
needed. It is intended as an introduction to the subject, so
it will not go deeply into the mathematical internals of
ciphers.

As is true for many subjects, what something is
and how it is used is often interlinked, so that one
needs to understand one before the other can be
explained; so to begin with, some very .simple
definitions will be given, and later they will be
expanded.

Yhat is it?

Cryptography covers the general field of
transmission of information which is protected from
unauthorized access, and includes secret writing
(concealing a message by various means), codes,
ciphers, and their use and defeat. Lately,
encryption and decryption have come to be used in
place of encipher and decipher to refer specifically
to the use of ciphers to protect data, and will
generally be used as such here.

Stated more simply, data encryption is a method
of protecting data so that it can be accessed only
by the people who are supposed to be ~ble to get to
it. This definition, while correct, is rather v~gue
(it could apply equally well to the physical
protection of data such as locking it up in a saf7,
or translating it into an obscure language): . 1t
does however, explain the purpose of encryption,
which is to limit the accessibility of selected
items of information. This will be explained first,
as it is desirable to understand why access should
be limited to understand how it is to be done

Yhy is it used?

If you are working on a computer system which
can be accessed by one or a very limited number of
users and which has no outside lines (no modems or
dial-in lines), and which stores all information on
easily removable media (floppy disks or tape
cartridges), and you always remove ~his ~edia and
lock it in a safe when you are not using it, then
you may not need encryption. If you can eliminate
all access to your data other than by having the key
or combination to the safe, and if no-one can look
over your shoulder or other~ise tap into .Y~ur
computer or terminal lines while you are examining
your data then access to your information has been
made abo~t as secure as possible through physical
means and encryption is probably not necessary.
Unfor~unately, this ideal state of affa~rs does not
often exist. Sometimes your storage media cannot be
kept in a safe, or you must store your information
on a fixed disk which cannot be removed, or you must
share the system with many other users at the same
time, or you must have dial-in lines so that people
outside your physical location can access the same

Proceedings of the Digital Equipment Computer Users Society 93

machine, or you must send information to other
locations: in any of these cases, you may need to
limit access to your information, and encryption is
one method of doing this.

The immediate reaction many people have to this
is: "Our computer is used only by people within our
company. Ye don't have dial-in lines, [or our
dial-in lines are secured by other methods, such as
passwords or dialback], and all of our terminals are
within our company area. Yhy do I have to protect
my data?" Even in this situation, there may still be
good reasons for using encryption.

Confidentiality.

First, you may have information which you are
obliged to keep confidential. If you use your
system to administer company medical benefits, for
example, you may be obliged to keep personnel
medical records confidential. Yithout some sort of
encryption or other protection scheme, it may be
possible for many people in your company to peruse
the medical records of other employees at will.
Even if you are certain no-one will do this,
increasing demand for rights to privacy of personnel
records may set a legal requirement that you protect
information from indiscriminate access. (Note that
encryption will not protect against the persons who
must still have access to the data: other checks
are needed to insure that persons who must have the
data will not misuse it.)

Next, there may be information you want to keep
confidential. If you use your system to keep track
of employee performance records, or calculate
salaries as part of your budget planning, you might
not want the employees involved to read or modify
that data. It is all well and good to say you trust
your employees, and probably most people can be
trusted: but locks were invented to keep out the
small percentage of society which cannot be trusted.
I rather imagine that most people reading this paper
have locked their houses and cars before leaving
them, even if they trust most of their neighbors:
if you would do that, then you probably have
information which should also be "locked up".
Similarly, you might be preparing information for
contracts, order placements, payroll records,
competitive bids, and similar information which
could represent a significant portion of your
company's assets, and might be several times the
annual salary of many of the people who have access
to it (and they are not always only the people whom
you think have access to it). The more important an
item of information is, the more likely it is that
someone could benefit by getting it, and therefore

Anaheim, California- December 1985

the need to protect it increases directly with it's
importance.

Unauthorized access.

The case where a "hacker" or other unauthorized
person calls into a computer system and proceeds to
cause various type of mischief and/or damage is one
that probably most people fear. You may have a
system where it is necessary to have dial-in access
for your own personnel, and it then becomes
necessary to guard the system as much as possible.
There are various methods of limiting access to a
system through passwords, or through hardware, which
are outside the scope of this paper. Data
encryption can act as a second line of defense,
however, and should also be considered. In many
cases, "hackers" are simply looking for files they
can read, or programs they can run: encryption can
make data unreadable and programs unrunnable, and
thus defeat two of the hackers main goals.
Encryption will not prevent the random modification
of data (where the modifier doesn't care what the
change actually does) or deletion of files: other
methods of protection are required to guard against
that type of damage.

Protection on "outside" systems.

The situation may also be reversed, as many
computer users do not own their own systems and have
to use time-sharing or other outside computer
processing to store data and provide other computer
services. In this case, you may have little co~tro]
over who in the world has access to your data. An
encryption scheme that can be implemented on your
own data on the outside machine would be one way of
protecting your information. Similarly, many
companies store copies of their records in outside
warehouses or other storage facilities to protect
against fire or earthquake damage at their main
location, and while such facilities usually offer
guarantees against unauthorized access, some extra
protection might be desirable.

Protection during transmission.

One last situation which probably occurs to
most people is when data has to be transmitted from
one location to another, usually over some public
facility (telephone, Teletype/telex, leased
communication line, air freight, or mail). It is
actually more likely that the data will be accessed
from within your company than from without
(intercepting telephone channels from microwave
links is possible, but rather difficult), but the
more important the information is, the more likely
it is that someone will try, and it wouldn't hurt to
take some reasonable precautions. If you are
engaged in any type of electronic funds tr~nsfer,
such as depositing your employees payroll directly
to their bank accounts, or transfer of company
assets to your bank or to other companies, the sums
of money involved may be so great that not
encrypting the data in some way is courting
disaster. Consider what would happen if someone
were to change the records just once: if that would
seriously hamper your business, or cost you a
significant amount of money (either by direct loss
or the effort to replace the missing information, or
loss of goodwill of the person at the other end),
then you should consider encrypting your data.
Remember that the true cost of data might not be
just what it cost you to obtain it, but also what it
will cost if you lose it.

94

Other protection methods.

It can be seen, therefore, that many users will
have some use for a data protection scheme of some
kind, as nearly everyone has some type of
information which is not to be accessed by everyone
else. This leads to the methods which can be used
to protect information. Various computer operating
systems are in use today, some of which include
access protection through requ1r1ng users to log
into accounts, or various methods of verifying that
persons accessing dial-in lines are properly
authorized, or through protection codes within the
storage system (such as the file protection codes
used in RSX-11, RSTS, and VMS). These are outside
the range of this paper, but it will be mentioned
that they don't always provide the limit of
protection needed, either because there has to be at
least one privileged user of the system who can
bypass the checks, or because backup copies of the
data must be stored off of the machine, or from
other limitations of the system. Even when such
schemes work well, they may not be enough, and they
don't work at all if the information has to be sent
outside (by wire or mail, etc.). This leads us back
to data encryption, which will allow the information
to be protected by a method which is independent of
any protection which may be provided by the
operating system. This does not mean that other
protection schemes should not be used, or that
encryption is the answer to everything, either:
different protection schemes cover different areas,
and usually complement rather than substitute for
each other.

Once the need for some type of data protection
is recognized, a protection scheme must be selecte~.
As previously mentioned, cryptography covers, in
general, secret writings, codes, and ciphers.

Secret Writing.

Secret writing covers such things as invisible
inks and concealing messages within other messages.
This' is a highly specialized field, and one which is
not likely to have much general application: it is
usually too cumbersome for easy use, and is not
applicable to storage of large amounts ?f
information on computer media. Just to show what it
is like, consider the message:

"Inspect details for Trigleth, acknowledge the
bonds from Fewell."

which doesn't seem to mean anything. If you take
the third letter of each word, however, you get the
message "Strike Now". This is an example of secret
writing, (a method which follows a fixed formula
like this may also be called a concealment cipher),
and it can be easily seen that it would not be easy
to use: if it had no other faults, the concealed
message has become over 6 times it's original
length, and if you have to pay for disk storage
space or transmission costs, you can see a big
disadvantage to this type of protection. Invisible
inks can be used on paper messages, but obviously
won't work at all on data stored on disk or magnetic
tape. (There was one fictional story where a
message was written on a reel of tape with a grease
pencil, but this tends to gum up the tape drive, and
isn't very practical.) They can be useful to
authenticate documents, as they cannot be duplicated

by photocopying machines, but again, this is a field
where expert assistance from a printing company or
ink manufacturer is required. The one and only
advantage to secret writing is that many countries
are implementing restrictions on trans-border data
transmission: even though they encrypt their data,
they won't let you encrypt your data, so they can
monitor your transmissions: a good method of secret
writing might evade this restriction, but most
methods are too cumbersome to be practical. We will
not give any more attention to this subject.

Codes.

A code is the arbitrary mapping of symbols to
other symbols. It is usually one to one, but can be
one to many or many to one. One example of a code
which is in very common use every day is ASCII, the
American Standard Code for Information Interchange,
used by most computer terminals to map binary
signals to numbers, letters, and other characters, a
portion of which is shown here.

040 SPA 060 0 100 @ 120 p 140 ' 160 p
041 I 061 1 101 A 121 Q 141 a 161 q
042 " 062 2 102 B 122 R 142 b 162 r
043 # 063 3 103 c 123 s 143 c 163 s
044 $ 064 4 104 D 124 T 144 d 164 t
045 % 065 5 105 E 125 u 145 e 165 u
046 & 066 6 106 F 126 v 146 f 166 v
047 , 067 7 107 G 127 w 147 g 167 w
050 (070 8 110 H 130 x 150 h 170 x
051) 071 9 111 I 131 y 151 i 171 y

052 * 072 112 J 132 z 152 j 172 z
053 + 073 ; 113 K 133 [153 k 173 {

054 ' 074 < 114 L 134 \ 154 1 174 I
055 075 115 M 135 l 155 m 175 }

056 076 > 116 N 136 • 156 n 176 -
057 I 077 ? 117 0 137 157 0 177 DEL

It isn't usually thought of as a code, and it
certainly isn't a secret, but it is a code: it
transforms one type of data into another through an
arbitrary mapping. Note that the mapping is indeed
arbitrary, even though the letters do follow the
alphabet for convenience: there is no reason why
they would have to do so for the code to work.

Another code which better
perception of a code is
been used for telegrams,
reproduced here:

fits the general public's
the type of code which has
a portion of which is

MUWUB Improving rapidly
MUXAW Improving slowly
MUXEX Is not improving as I/we could wish
MUXIZ Is there any change
MUXNO Is there any improvement
MUXPU Progressing satisfactorily
MUXRY Sorry to year you are(...... is) ill

MYGEL How would
MYGIM HURRY (See Haste)
MYGON HYPOTHECATE-D
MYHAL IF
MYHCI And if
NYHDO And if not

and so on. It can be seen that the mapping between
the original phrase (the "clear" or "plain" text) on
the right and the code word on the left is
completely arbitrary, and that the book is the only
way to go from one to the other. This particular
code had the advantage that in most cases the coded

95

text was much shorter than the original message:
two groups of five letters could be pushed together
to make one 10 letter group, which was counted as
only one word in the cost of sending the telegram.
Since the mapping is arbitrary, codes can be very
secure. Generally, you have to have the arbitrary
mapping in order to defeat (or "break") the code,
though if the code is re-used often enough, the
mapping can sometimes be deduced. They are also
vulnerable if one can obtain a copy of the plain
text and the coded text which goes with it, and of
course are defeated if the wrong person obtains a
copy of the code book. Some authorities consider
book codes like this that are used once only to be
completely unbreakable, and it would be easy to use
a computer to generate lists of arbitrary code words
to use.

Codes do have many disadvantages in the
computer environment, however. A computer program
to automatically code a message with a scheme like
the example would be very complex, as the context of
the entire message is needed to search through the
list of phrases on the right and find the
appropriate code word: decoding the message by
looking up the letter group would be a easier.
Encoding large strings of numbers is tedious and
likely to increase the size of the message, and
there is always the problem of what to do if you
need a phrase which is not pre-defined in the code
book. Binary data cannot be coded at all which this
particular scheme, and would be difficult to encode
with most coding schemes. Since we would like a
method which would work on a computer, and
accommodate a wide variety of data with a minimum of
human intervention, we will not consider codes
further.

Ciphers.

A cipher is a method of transforming data from
one form to another through a logical process,
usually with a geometric or mathematical basis.
Since a cipher is a method or system rather than a
group of pre-defined mappings, it should be possible
to transform any "plain" or "clear" text, regardless
of length or content, into a single enciphered
message. This is more easily understood with an
example, such as a simple geometrical cipher. I
will take the familiar phrase,

"THE QUICK BROWN FOX JUMPS OVER THE LAZY DOGS BACK"

and write it out in a square in the usual fashion,
left to right, top to bottom.

T H E Q U I
C K B R 0 W
N F 0 X J
U M P S 0 V
E R T H E
L A Z Y D 0
GS BACK

To encipher this message, I can take the letters out
by some sequence other than the way they went in:
for example, top to bottom, right to left. (This is
an example of a transposition cipher, as it works by
transposing or changing the order of the letters in
the message, but not the letters themselves.) This
will give me:

"IYJV OKUO OEDCQRX H A BOSTYBE FP Z HK MRASTCNUELG"

which doesn't look anything like the original. The
underlying principle here is that there is a
definite method of transformation between the
original text and the enciphered. te~t without
considering the actual content (even if it is not
obvious on a cursory inspection), whereas in a code
the transformation was completely arbitrary and very
sensitive to content. Because ciphers work on a
method of translating data from one form to another,
they are generally much easier to implement on a
computer, and they are generally much .less data
sensitive than codes would be. In this example,
each character could easily be a byte or word of
binary data, and the scheme would work just as well.

There are a great many types
more secure than others, and some
others. One which is very common,
in some daily newspapers, is
substitution, where one letter
another. For example,

ABCDEFGHIJKLMNOPQRSTUVYXYZ

can be replaced with

EFGHIJKLMNOPQRSTUVYZYZABCD

of ciphers, some
easier to use than

and even occurs
a simple letter
is replaced by

This is a substitution cipher, which
letters in the message, but not their
message. This would make the sample
QUICK BROWN ... " come out to be:

changes the
order in the
phrase "THE

"ZLI UYMGO FVSAR JSB NYQTW SZIV ZLI PEDC HSKW FEGO"

Since this is a one to one mapping, I am going to
leave it to the purists to determine if it is a code
or a cipher, though it is content insensitive (there
is obviously some overlap between some codes and
ciphers). The drawback to a simple cipher like this
is that it is too easy to break with just a pencil
and paper, and with even the least expensive home
computer it is literally child's play. (You can
read "The Gold Bug" by Edgar Allan Poe or "The
Adventure of the Dancing Men" by Sir Arthur Connan
Doyle to find out how.) There have been many other,
more sophisticated, transposition and substitution
ciphers than the ones demonstrated here in use in
the past few centuries, but since they were all
implemented by hand, they are all too easy to break
by modern methods. You can simply go out an buy a
number of books that will tell you exactly how to do
it with just pencil and paper, and the proliferation
of home computers makes most of them very simple to
break indeed. They may still be adequate for some
purposes however, but considering how good a cipher
needs to be will be discussed later.

Modern Ciphers.

If existing ciphers are too easy to defeat with
computers, then what is left? The answer is that
most modern encryption schemes are based on the same
principles as older ciphers, but use the power of
the computer to expand the ma~n~tude.of the scheme.
For example, in the transposition cipher shown, the

96

box was 7 letters on a side: it could be made
larger, but when encryption is done by hand, a box
much larger than 15 or so on a side becomes too
cumbersome to use. With a computer, however, there
is no limit to the size of the box: simply
increasing the box to 100 per side makes it too
large to "break" the cipher by hand. This scheme of
using the computer to expand on a good encryption
method can be used to create ciphers that are
difficult to defeat, even with another computer (the
box cipher would still be too easy to break by
computer and is given only to illustrate the idea).
One which I have used is a variation on the periodic
number substitution (also known as an addition or
Vigenere) cipher. In this scheme, a number sequence
is added to the text: a simple example would be to
add the sequence

1357135713571357135713571357135713571357135713571

to the numeric value of the ASCII characters in the
message

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOGS BACK

to get this:

UKJ'RXNJL#GYPZS'GR]'KXRWT#T]FU%[IH%SB]"'ERLZ!EFJL

With a number sequence this short, the cipher would
not be too secure (you can see even in this short
message that a SPACE becomes a ' four times, and the
sequence "SPACE-something-U" has twice been changed
to "' -something-X", for example) though it is more
secure than the simple substitution cipher shown
before. Various methods of obtaining a less
repetitive sequence have been tried in the past, but
usually produce no real increase in security. Using
the computer, however, a numbe1 sequence can be
generated that appears to be random, and is
thousands of digits long. Most computer languages
have a random number generator (or more accurately,
a pseudo-random number generator, as the sequence
can be repeated exactly when desired), such as:

LET A = RND(B)

A = RAN(B)

in BASIC, and

in FORTRAN,

and similarly for other languages. There are
theoreti"cally an infinite number of such
pseudo-random sequences, and even for a specific
generator there are a very large number of specific
sequences: in DEC's Fortran-77, the number that
starts the sequence (the variable B) can have at
least two billion possible values. This particular
cipher is sometimes called the Fast "Infinite-Key"
method, and has been widely used with good results.
Ye could then repeat the above procedure by
generating a pseudo-random number sequence such as:

1986833925153857265815341697347183799587665798742

and adding it to

THE QUICK BROYN FOX JUMPS OVER THE LAZY DOGS BACK

to obtain

UOM!XLLM%CloTR_S'HU](KZPTT&X]HV'UPH'UJ_a'JULZ)JHGM

At first glance, this doesn't appear significantly
different from the first example, but if someone
were to attempt to defeat the cipher by the usual
method of looking for repetitive patterns and common
adjacent letters, they wouldn't find any, and would
not be able to defeat the cipher. This cipher has
the additional advantage over the "box" cipher in

that the characters can be processed in the order
they are read: in the box cipher, a large portion
of the message has to be read in and stored before
any of it can be processed. In most computer
ciphers, it is an advantage to be able to process
the message serially, and to not have the length of
the message have any effect on the encryption scheme
itself, especially then the messages being processed
are being transmitted from one place to another
(over a communications line, or to a disk or tape
drive are two examples).

It can be seen, therefore, that even though the
computer has made it easier to defeat some
encryption schemes, the power of the computer can
also be used to raise the complexity of a cipher to
the point where it is very difficult to defeat, even
with another computer. This is the basic principle
behind most good modern computer ciphers: the use
of the computer to raise the complexity of the
cipher until it is (hopefully) beyond the ability to
defeat by any practical means.

Data Compression?

It was mentioned that the telegraph code
example shown earlier also compressed the
information into a more compact form. There are a
number of data compression schemes in use on
computer systems to minimize the amount of space
data occupies when stored, or to reduce the amount
of time needed to transmit information from one
location to another (and hence reduce the cost of
transmission). Some of these compression schemes
could also be thought of as ciphers, as they
transform data from one form to another. Yhile they
have the obvious advantage of compressing the data,
generally the compression algorithms are too well
known for this to act as a really secure cipher.

Yith some understanding of what encryption is,
we can perhaps present a better definition. One
such definition could be:

"Encryption is a
state where it
other than those
ciphers)."

method of transforming data into a
is not easily available to persons

for whom it is intended (using

This is a very general definition, and it does

97

appear to be somewhat cumbersome, but it is worded
in this way deliberately. Note especially the
emphasis of the phrase, "not easily available".
Generally, no encryption scheme is absolutely secure
from ever being defeated, and a decision has to be
made as to how good a scheme is needed. From a
practical standpoint, the real purpose of encryption
can be defined as this:

"To make obtaining the data more expensive than the
data itself is worth."

(Yhere expense is counted in time, effort expended,
cost of labor, cost of computer services, etc.)

Yhile this definition may not precisely define a
cipher, it does clearly define the goal encryption
should achieve.

To evaluate a potential encryption scheme, one
must consider from whom the data is being protected.
Some possibilities are:

1. Curious employees
2. "Hackers"
3. Outside visitors
4. Service personnel and/or vendors
5. Competitors
6. The Criminal Element (internal or
external)
7. The IRS
8. The "spooks" (CIA, NSA, KGB, MIS, etc.)

among others. The first four can probably be
discouraged with even a very simple cipher: as
mentioned before, most "hackers" and other idle
curious are simply looking for files that can be
read or run. If they were to see a file such as
this:

RTP $%& &.2H8I]).4HHQPPJ8IKNUIOQPP
RUP $%& &.3H8I],%.H342DH).4H8III
RVP 2%-
SQP 02).4 B#/-05414)/. /& -/2'1'% 019-%.43B
SRP 02).4
SUP 02).4 B0,%!3%).054 4(&% 02).#)0!, H7)4(
SVP).054 0
SYP 02).4 B).054 4(% ! .. 5!,).4%2%34 2!4% H). EIB[
SXP).054)
SYP 02).4 B).054 4(% 4%2- H). 9%!23IB[
TPP).054 4
TOP 02) .4
TSP 4]4JQR
TUP 1))
TVP)])OQRPP
UPP -]&.2HOJ)OHQMQOHQK)I>4II
UTP 02).4 B02).#)0!,B[4!"HSUI[BDB[O
UUP 02).4 B).4%2%34 2!4%B[4!"HSTI(l[BEB
UVP 02).4 B4%2-B[4!"HSTI[4[4!"HTPI[B-/.4(3B
WP 02).4 B-/.4(,9 0!9-%.4B[4!"HSUI[BDB[4!"HSXM&.3

they might well pass it by, or maybe make a few
simple attempts to read the file as if it was binary
data. But if anyone should happen to figure out or
guess that it is really a BASIC program, then it
would not take long to decipher it, as it happens to
be encrypted with a simple letter substitution
cipher. Since a computer is going to do the work,
it would be just as easy to use a more secure
cipher, and one which will transform the data into
something which will not look like obviously
encrypted data when examined. For example, the
"Infinite-Key" method takes no more computer time or
disk space than simple substitution, is very much

more secure, and. the resulting
all like text, so there is no
simple substitution when such
easily available.

data doesn't look at
reason to use the
superior methods are

If interception of data by a competitor, or by
a dishonest employee (which is really the greatest
threat) is a serious consideration, then you will
probably want the most secure cipher that can be
reasonably implemented (one which protects the data
well, but will not use up so great an amount of
computer resource that it becomes more expensive
than the data it is protecting).

If you intend to protect your data from
categories 2, 3 and 4, then other protection schemes
should be your first choice, such as not allowing
outside visitors to wander un-escorted about your
plant, removing your data from the system before
allowing it to be serviced by outside personnel, and
using various protection schemes to prevent
unauthorized dial-in access. Encryption of data can
act as a second line of defense in these cases,
however, and should still be considered: it must be
stated again, however, that encryption is not
necessarily the best solution to every situation,
and that all methods of protecting data need to be
evaluated to determine what best suits a given need.

Against the last two categories: you have to
be realistic, and understand that any government
agency that can put the gross national product of a
world power into it's efforts is going to be able to
break any cipher you could use. That doesn't mean
you have to make things easy for them, and there are
ciphers available now which are very difficult for
anyone to defeat, but you must remember that no
cipher is absolutely unbreakable.

How Good is Good Enough?

It was stated that a good encryption scheme
costs more to defeat than the information is worth.
This means that the cost of the labor expended, and
computer resource dedicated to the task are more
than the ultimate value received from the
information which may be obtained. For example, the
only ways known to break the Infinite-Key and DES
ciphers is by brute force: trying every possible
key, and looking at the result to see if it makes
sense. Even if someone is willing to dedicate a
computer to the task, it could take months or even
years of effort to break one message, by which time
the information may be useless. In addition, the
time a computer spends on breaking the code cannot
be used for anything else, like doing payroll, or
inventory, or other normal business functions. If
you are preparing bids on a contract which will
yield, say, $10,000 and a competitor tries to steal
your information and under-bid you, then your
encryption scheme is successful if it either takes
so long to break cipher that the competitor can't
meet the deadline for submitting bids, or if it
costs the competitor more in computer resources than
the $10,000 or so that the contract would yield:
even though the cipher is broken, the person who
broke it comes out with a net loss. Few "hackers"
are going to have the patience to let their home
computer run for several months or years to decrypt
one message and not use the computer for anything
else, and not much information is so valuable that
it would be worth while renting a Cyber or Cray
super-computer for several months to break the
message relatively quickly (unless you are a
government agency, and can do whatever you like).

98

It is possible that someone within a company
might use the company computer to try to break a
cipher by brute force, reasoning that the computer
time doesn't cost them anything. Since defeating a
good encryption scheme would use up relatively large
amounts of computer time over an extended period, it
should be possible to detect if anyone within a
company is using the computer system in this manner,
and deal with the problem directly.

Other Necessary Precautions.

A consideration which is equally important as
the selection of an encryption scheme is keeping the
keys themselves secure. Just as it would do no good
to buy the most expensive lock and lock your house
and if you then put the key under the door mat, it
does little good to encrypt your data if anyone can
get the key. In terms of internal security, this
often means correct selection of a key to use:
since most modern ciphers use a number as the key,
there is a great temptation to use an easily
remembered number such as your telephone number,
birth date, social security number, wedding
anniversary, or some such number as a key.
Unfortunately, any number that you can remember
easily will also be easy for anyone who knows you to
guess. If you are trying to protect data internally
in your company, using such a number would defeat
the best cipher: rather than having to try several
billion possible keys, the number of attempts are
reduced to a few dozen or so. This leads to the
paradox that you must chose a number you can
remember (or you may never get your data back if you
forget the key), but one which no one else is likely
to guess; or else you have to write the number down,
but in a place where no one is likely to get it.
The latter scheme is probably better than trusting
to memory, but you should not keep important numbers
laying about: keep them in your wallet (and keep
your wallet with you), or in some other secure
place. Similarly, don't put them in the telephone
directory or card file that sits on top of your
desk, or in other easily accessed places. It is
also a good idea to change the keys periodically,
especially if it is being used for data transmitted
externally. (Internally, the threat is greater that
someone will figure out your key, or may see you
type in the key, or be able to compare the encrypted
data with the "cle~r" data, and deduce the key that
way). Basically, you must use at least as much
caution in dealing with cipher keys as you would use
in handing out door keys to your plant, or
electronic lock keys to your personnel: they all
protect your assets, and have to be treated with the
same respect. While you can hire guards for
physical security in a plant, you cannot do the same
for information in a file or transmitted over a
wire, and information is easier to move than
equipment; so if anything, the cipher keys must be
kept even more secure than other kinds of keys.

Public Keys.

When data has to be transferred from one
location to another, then the risk is doubled, as
the key has to be kept in two places. One absolute
rule is that you never, ever, transmit the key with
the data it protects (you might just as well not
bother encrypting at all). It is usually a good
idea to use an encrypted transmission to send the
next key to be used at one time, and the data at
some other time, and that both parties must exercise
the same caution in protecting the keys. Otherwise,

you must use some secure method of transmitting the
keys to the locations where they will be used (such
as sending someone you can trust to carry them by
hand), and storing them in a safe or other secure
location. One partial solution to the problem is
the Public Key method of selecting keys. This is
not an encryption scheme, but is a method where two
people can create a large numeric key by each
selecting a number which forms half of the key, and
were each party knows only half of each key. The
advantage of this method is that one half of the key
can be made public, and anyone can use it to
encipher a message intended for you, but only you
can decipher the message using the other half of the
key which was kept secret. This can also be used
for source verification if both halves are kept
secret: for you to be able to decipher the message,
it will have to have been enciphered using the
matching half of the key. The method is based on
the fact that it is difficult to factor a very large
number which is the product of two very large prime
numbers (each party picks one of the large primes):
lately, there have been some announcements that it
might not be as difficult to break as was formally
thought, but it may still be useful to many people.
If you are transferring data within an organization,
and can keep the key secret at both ends, then
Publfc Key isn't necessary: it's primary use is
where the security of the key at one end isn't
known, or must be made public.

Hardware Protection and DES.

So far, we have considered encrypting data
while it is in the computer system, and before it is
stored or transmitted. This is not the only way it
can be done: it is also possible to attach a device
to a communications line so that information passing
through it is encrypted in one direction and
decrypted in the other direction. For example, the
device could be attached between your computer and a
modem, so that "clear" information being transmitted
from your computer will be encrypted before it goes
into the modem and out into the world. Most of the
special hardware currently offered for sale for this
purpose use the Data Encryption Standard (DES), also
called the Data Encryption Algorithm (DEA). This
method of encryption was developed by the National
Bureau of Standards to provide a standard, secure
encryption method, and it involves many stages of
transposition and substitution. Furthermore, there
are several modes for data to pass through the
encryption scheme: the method any individual will
use depends upon the application. According to the
developers, the DEA is intended for use only with
hardware encryption schemes for several reasons, two
of which are security of operation and verification
of correctness.

The first reason includes protecting the key
and the encryption method: if it is in special
hardware, you have to enter the key into that piece
of hardware, and it won't be "floating around" your
computer system as it might be if a software program
was used. Similarly, only the manager in charge of
the special hardware knows what the key is: you
don't have individual users losing their keys (or
giving them away). In addition, there are often
ways for one user to monitor another user's program
on the same computer (for example, to watch someone
type in their key), and it was felt that it would be
more difficult to tap into a separate piece of
hardware. Yith the protection in hardware there is
the additional advantage that no-one can forget to
encrypt data before sending it out: anything which

99

is transmitted on that line is automatically
encrypted. It was stated before that encryption
might not prevent "hackers" or other unauthorized
persons from accessing a system, but the one
exception is if there is a hardware encryption
device placed between the system and the modem which
always encrypts the data on that line. Encryption
would then prevent unauthorized access, as anyone
who wishes to dial in on that line must have an
encryption device which uses the same cipher and
key. In a similar manner, a hardware device can be
placed between a computer and a peripheral device:
for example, a disk. If this is done, then all data
on the disk is automatically encrypted, and you
don't have to worry about users forgetting to
encrypt sensitive data, or service personnel reading
it during maintenance.

The second reason, that it would be easier to
test if the hardware is working correctly than to
test if a program is working correctly, is a reason
with which I do not entirely agree. It also means
that the use of DES would be limited to those
applications that can send the data through a line
to the special hardware, and that you would have to
buy the special hardware for every location which
wanted to encrypt data: this meant that locations
with personal or small business computers had to buy
an encryption device that was as large and as
expensive as the computer itself. This is changing
rapidly as more large scale integrated circuits
which implement the DES are being placed on the
market, so that the cost of a peripheral device that
does encryption in hardware is decreasing, but it
still has many drawbacks for some users. As a
result, software houses are offering data encryption
programs that use the DES method to encrypt data on
the system itself with no special hardware.

DES in the future.

Use of the DES was expected to increase over
the next several.years, especially where information
has to be exchanged between different companies,
because it is a standard and it is possible to
obtain different pieces of hardware or software
which implement it and will still be compatible, as
they have to meet the standard to be able to say
they use DES; but recently, a snag has developed.
Like most modern ciphers, DES uses a numeric key,
and there were some arguments about how secure DES
really is, based on the length of the key, which is
56 bits (the scheme adds bits to make it 64 bits
long). Some of the developers suggested that the
key should be 128 bits long, but the National
Security Agency required the NBS shorte~ the ke~:
some critics suggested that a key of this length is
such as to be virtually unbreakable by anyone except
the NSA itself. Even so, it was expected that the
DES would probably be secure enough for most
commercial users for the foreseeable future, or at
least through 1987, but recently the NSA has been
privately telling hardware companies not to put the
DES into any new equipment, and to stop using it
now. They apparently want to use a new algorithm
which will not be made public, ostensibly for better
security, but possibly for other motives. ~n ~pite
of this the DES will continue to be very d1ff1cult
for co~mercial and home users to break, so it will
probably continue in use for some time (remember
what was said earlier about determining from whom
you wish to protect your data).

Additional Precautions.

If you expect a real effort will be made to
defeat your encryption scheme, there are a few extra
precautions that can be taken to reduce the risk.
The easiest way to break a code is if you have a
copy of the enciphered message and the clear text
together, and can compare the two to work back to
the cipher. This indicates that access to important
information should be carefully restricted: for
example, if encryption is used to protect data
during transmission, then when the data is
deciphered and safe, the enciphered copy should be
erased or destroyed. If it is carelessly discarded,
it might give someone a chance to work on it at
leisure, especially if the threat is within the
company, where the clear text might also be
available. Some newspaper codes were broken because
the text of an article was transmitted in cipher (by
radio, where it could be heard) and then printed
word for word the next day in the paper: sending
the contents of the article but re-wording it before
releasing it to the public solved that problem.
Similar precautions could be taken if such things as
financial reports are to be transmitted: if
possible, don't transmit the data in exactly the
same form in which it will be published. In the
case of business letters and memos, most start with
a date and the person to whom it is addressed, and
someone could know (or guess) how the message
starts, and use that to cut down the number of
attempts needed to find the key to the cipher: one
way to stop that is to arbitrarily cut the memo in
the middle somewhere, and put the last part before
the first. The recipient, after deciphering, can
easily see where the real beginning is, and move it
back where it belongs. In short:

Don't be predictable.

There are also a few other precautions one can
take if you feel that someone is really trying to
defeat your encryption scheme. If you think someone
is trying to get your key by brute force, you can
put random garbage at the beginning and end of your
data: anyone who is trying a key and checking only
the beginning of the file to see if the data makes
sense will not realize it if they do find the right
key, as the decrypted data still won't make sense.
Of course, anyone can simply check the entire
contents of the message for every key tried, but
this is much slower, and anything that slows the
process of defeating an encryption scheme means the
scheme is that much more secure. If there is some
reason to believe that whole messages are being
intercepted and stored (with some ciphers, the more
data you have, the easier it is to find the key,
though it might not help much with Infinite-Key, DES
and some other modern ciphers), then you should
change the key more often than you might otherwise
do. In any event, you should not use a given key
for too great a period of time, just in case someone
is collecting your messages. You can also
occasionally send out messages which are the same
length and otherwise look like your real messages,
but which contain enciphered garbage. The contents
(before enciphering) should look as much like real
data as possible, without actually meaning anything.
This will add to the difficulty of defeating the
encryption scheme, but is only worth while if there
is a real possibility that someone is making a
concerted effort to break the cipher.

100

Bibliography

There are a number of good descriptions of
cryptography in popular literature. In addition to
the two examples of the simple substitution cipher
given before ("The Gold Bug" by Edgar Allan Poe and
"The Adventure of the Dancing Men" by Sir Arthur
Cannan Doyle), two books by Dorothy L. Sayers (in
addition to being entertaining in themselves) are of
interest. "Have His Carcass" contains a good
description of the Playfair cipher (a good
combination transposition and substitution cipher
which is easily worked with only a pencil and
paper), and a good description on one way to attempt
to break it which also clearly shows the hazard of
sending messages in a form which allows the content
to be deduced. "The Nine Tailors" contains an
extremely ingenious example of secret writing. Both
are currently published in paperback.

On a more formal basis, the following will be
useful:

"Cryptanalysis, a Study of Ciphers and their
Solutions" by Helen Fouche Gaines (Dover
Publications, Inc.)
though written before computers were developed,
contains thorough descriptions of many ciphers, and
specifically the methods used to defeat them, with
worked examples and reference tables. Dover has a
mail order department.

"Security and Privacy in Computer Systems" by Lance
J. Hoffman (Melville Publishing Co.)
treats a wide variety of computer security subjects,
one of which is the use of data encryption. It
includes a good description of the "Infinite Key"
cipher, with a mathematical test of it's
effectiveness. It also covers operating security,
physical plant security, and other subjects.

"Cryptanalysis for Microcomputers" by Caxton C.
Foster (Hayden Book Co. Inc., Rochelle Park, New
Jersey)
Contains explanations of many ciphers, with programs
in BASIC to implement them or act as aids in
defeating them. The programs may require some work
to implement (you have to search through the book to
find the subroutines, and sometimes the names of
variables change), but some good material is
included. The programs are in a simple version of
BASIC which most computers should handle as is or
with only minor changes.

"Securing Data Inexpensively via Public Keys" by
Brian Schanning (Computer Design, April 5 1983, Vol.
22 #4)
is an article which describes the mathematics used
to generate the two halves of a Public Key.

"The Data Encryption Standard, Recent Controversies"
by John E. Hersey, (Telecommunications, Sept. 1983,
Vol. 17 #9)
gives an encapsulated history of the development of
the DES, with some of the arguments for and against
it's method of implementation and use.

"The Codebreakers" by David Kahn (Macmillan)
gives a good history of ciphers (and other data
protection schemes such as voice scrambling) and
their use, and a description of how some good modern
ciphers were broken. The paperback version may be
abridged. Considered one of the classic works on
the subject.

101

I have not been able to review the following sources
myself, but they may be useful.

"RSA: A Public Key Cryptograph System" by
C. E. Burton, (Dr. Dobb's Journal, Mar 1984, 16-21)

"Mathematical Games" by M. Gardner, (Scientific
American, 237(2), August 1977, 120-124

The following government publications may also be
useful:

"Data Encryption Standard"
Federal Information Processing Standards
Publication 46

"DES Modes of Operation"
Federal Information Processing Standards
Publication 81

Standards Information Office
Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D.C. 20234

The Smithsonian Institution has a section devoted to
cipher machines, and give the following address for
inquiries for more information on the subject:

Division of Mathematics
The National Museum of American History
Smithsonian Institution
Washington, D.C. 20560

INTRODUCTION TO VAX INFORMATION ARCHITECTURE DATABASES

Eric Newcomer
Digital Equipment Corporation

Nashua, New Hampshire

This paper presents an introduction to both types of data­
bases offered by the VAX Information Architecture. The paper
includes benefits/features of each as well as a discussion of
questions to ask and guidelines to follow when choosing
between them.

Introduction

The following is the text of the VAX
Information Architecture Databases
presentation. This presentation provides
introductory information about VAX
Information Architecture relational and
network model databases -- VAX Rdb/VMS and
VAX DBMS, respectively.

This presentation:

o Defines the terms database and
database management system

o Lists the advantages of using a
database management system

o Compares and contrasts the two VAX
Information Architecture database
products

o Provides some guidelines for choosing
the database product that is best for
your application

Definition of Terms:

o Database

A database is an organized collection
of data, usually described

Why Use a Database Management System?

o In general, most applications can
benefit from using any database
management system. A database
management system provides for your
data:

Integrity and security controls

Concurrency and consistency
controls

Centralized definition and storage

Easy access

These features are discussed in the
following sections.

o A database management system improves
the consistency and integrity of your
data, A database management system
provides data recovery and data
validation routines.

0 A database management system controls
the amount of data redundancy, thus
eliminating the problem of updating
data that is stored in multiple
places. A database provides a central
location to store and manage your
data.

independently of the applications that o A database management system can
control which users can access the
database, providing additional
application security.

use it.

o Database Management System

A database management system o
implements a data model that
establishes how data can be described
and accessed and how relationships
among different types of data are
represented.

In short, a database management system
is software that manages a database.

A database management system o
transparently handles such programming
activities as disk I/O, concurrent
file access, and data type conversion.

Proceed;ngs of the Digital Equipment Computer Users Society 1 02

Another benefit of database management
systems is that they increase
programmer productivity. Because the
database management system performs
file access functions, programmers are
free to concentrate on application
development rather than on data
management issues such as concurrent
access.

A database management system usually
includes a straightforward user
interface for retrieving, storing, and
modifying data and performing simple

Anaheim. California- December 1985

data manipulation operations. User
interfaces usually fall into two
classes -- an interactive query
language for examining the contents of
the database and testing program
logic, and a programming language
interface for including data
manipulation statements directly in a
high-level language program.

o Most database management systems have
integrated procedures for database
backup and recovery so that you can
save copies of your database at
regular intervals and use them to
rebuild the database in the event of
system failure or database corruption.

Types of Database Management Systems

o A database management system
implements a data model that
establishes how data can be described
and accessed and how relationships
among different types of data are
represented. Like RMS files, database
files contain data and record
definitions, but database files also
contain information that describes
relationships among the data items and
records.

o The three most common data models upon
which database management systems are
based are the:

Hierarchical model

Network model

Relational model

o Hierarchical

A hierarchical database establishes
relationships between records as
hierarchical tree structures, in a
parent-child relationship.
Relationships in a hierarchical
database can be established only
between records logically above or
below each other, like in an
organizational chart or a VMS
directory structure. A hierarchical
structure is good for implementing
one-to-many relationships, but is not
suited for representing many-to-many
relationships.

o Network

A network database establishes
relationships between records using
sets, where one record is the owner
and one or more records are members.
Relationships in a network database
can be established between any two
records in the database, not just
those logically above and below each
other. A network structure can

103

implement one-to-many or many-to-many
relationships.

A network database contains records
organized into set relationships in
which one type of record is the owner
and another type is the member. These
relationships are defined when the
database is created and are maintained
by the database management system
using internal pointers. The pointers
are stored along with data for each
record that particiaptes in a set.
Application programs can then use
these pointers to navigate through the
database and access the data.

o Relational

A relational database establishes
relationships between records by
matching the values of key fields
common to both records. Relationships
in a relational database can be
established dynamically between any
two records in the database. A
relational database provides more
flexibility than either the
hierarchical or network model because
relationships do not exist as
predefined structures. Pointers that
link records together are not embedded
into the records themselves in a
relational database, as they are in a
hierarchical or network database.

A relational database organizes data
into tables, or relations. Each row
in a relation corresponds to a single
record, which is made up of fields.
Unlike a network database, a
relational database does not
explicitly define the relationships
between different types of records;
instead, relationships are established
dynamically at run time by selecting
and sorting r~cords based on the
criteria specified by the user.
Therefore there is no need to embed
pointers in data.

o VAX Information Architecture database
products implement two of these data
models -- the network model and the
relational model. Each has its
advantages and disadvantages, although
one usually is more appropriate for a
particular application than the other.

The network model is suitable for a
database in which relationships are
stable and can be defined in advance,
while the relational model is suitable
for a database in which relationships
change frequently and data access
patterns are not always predictable.
We will talk more about this later.
Right now, let us examine some of the
common features of these two VAX
Information Architecture database
products.

Common Features
of VAX Information Architecture Databases

VAX Information Architecture database
products are full-function database
products. They afford you data integrity
by reducing redundancy, controlling user
access, validating input, and protecting
the database from system failures. They
allow users to share data and support
simultaneous database access of multiple
databases by multiple users from multiple
nodes. Finally, they provide utilities to
maintain the database and to recover it
from hardware and software failure.

Most of these features are what you would
expect any good database management system
to have. In fact both VAX Information
Architecture database products share a
common software foundation that implements
these basic data management features. VAX
DBMS and VAX Rdb/VMS also share other
features specific to DIGITAL styles of
computing. These common features include:

Transactions

Before-image journaling

After-image journaling

Concurrency control

Snapshots

Multiple databases

Interactive query tool

VAX language preprocessors

Common query language (DATATRIEVE)

Security controls

Data validation controls

Common Data Dictionary interface

Run on entire range of VAX processors

Support for run-time environments

VAXcluster compatibility

Remote database access

Part of the VAX Information
Architecture

We will discuss these common features in
more detail in the following sections.

o Transaction

A series of data manipulation
operations is called a transaction.
In a transaction, the operations must
execute as a unit or not at all. If
an error occurs before all the
operations in the transaction are
completed, the operations already

104

performed are rolled back to ensure
the integrity of the data. The use of
transactions guarantees that
operations on the database are never
partially completed.

o Before-Image Journaling

When a transaction must be rolled
back, VAX Information Architecture
databases use before-image journaling
to undo any updates that have already
been made. A before-image journal is
a file in which the database
management system keeps a record of
each transaction before it is
committed to the database.
Before-image journaling is done
automatically.

o After-Image Journaling

An after-image journal is a file that
contains images of records that have
already been updated. You can use
this journal to rebuild a database
that has been corrupted by a hardware
or software failure. In case of
failure, you can recover the database
up to the last successfully completed
transaction by applying the journal
file to a copy of the database that
has been backed up on disk or tape.
The process of using an after-image
journal to replace lost updates is
called recovery or roll-forward.

o Concurrency

VAX Information Architecture databases
support database concurrency and
consistency by allowing multiple users
to read, write, and modify data in the
database simultaneously. To prevent
the introduction of inconsistent data
into the database, the database
management system allows an
application program to protect the
records from access by other programs
during a transaction. For example,
during an update operation, you
prevent other users from modifying the
same record until your transaction has
completed by locking the record.

o Snapshots

Read-only transactions against a
database can use a stable, consistent
version of the database known as a
snapshot. Using a snapshot, you can
retrieve data without locking the
record from access by other users. If
updates are made to the database by
other users after you have started a
transaction, you do not see the
updates. Instead, you see only data
that had been committed when your
transaction began. For simple
retrieval operations where
up-to-the-minute information is not
crucial, snapshots allow fast
performance and a ~inimum of

contention for records in the
database.

o Multiple Databases

VAX Information Architecture databases
support multiple databases on a single
node. You can also use both database
products together in a single
application, or in a single program.

o Interactive Query Tool

Both VAX Information Architecture
database products supply an
interactive database query tool. You
can use these tools for ad-hoc
database querying and for testing the
logic of data manipulation language
statements that you later include in
an application program.

o VAX Language Compatibility

You can access VAX Information
Architecture databases using any VAX
language that adheres to the VAX/VMS
calling standard.

VAX Information Architecture databases
feature a data manipulation language
(DML) designed to work with each
particular type of database.
Precompilers allow you to embed DML
statements directly into source code
for most VAX languages.

o Common Query Language

You can access both VAX Information
Architecture databases using VAX
DATATRIEVE. You can use VAX
DATATRIEVE to combine data from both
types of databases into a single
report. Or you can use VAX DATATRIEVE
to move data between the two types of
databases.

o Security Controls

Access control lists identify which
users are allowed access to databases
and to records within a database, and
what kinds of access they are allowed.
You can use access control lists to
protect records from unauthorized
access and to control the commands and
statements that various users can
execute.

o Data Validation Controls

The use of validity checks further
promotes data integrity by restricting
the values that can be stored in a
record. If you attempt to enter
invalid data, the database management
system generates an error message and
does not permit the entry.

o Common Data Dictionary

VAX Information Architecture databases

105

support the VAX Common Data
Dictionary, a central repository for
data definitions. By storing database
definitions in the CDD, you make them
available to applications that use
other VAX Information Architecture
products and to high-level language
compilers and precompilers.

o Run on Entire Range of VAX Processors

VAX Information Architecture database
products run on the entire range of
VAX processors, with the exception
that VAX DBMS does not run on the
MicroVAX I or the VAX-11/725. In
addition, these products run on all
hardware configurations, ranging from
independent stand-alone systems to the
powerful VAXcluster and all DECnet
configurations. This range of
configurations means that you can
configure your system based on today's
needs and know that your applications
will run on any configuration you may
need tomorrow.

o Support for Run-Time Environments

VAX Information Architecture database
products feature run-time only kits
that allow you to support additional
systems on which you wish to run
applications but not develop them.

o VAXcluster Compatibility

0

Operation in a VAXcluster environment
means you can access the same database
at the same time from all nodes in the
cluster, using shared disk files.
Automatic database recovery procedures
allow users on other nodes to continue
using a database when one node fails.
Properly configured, VAX Information
Architecture databases in a VAXcluster
environment can provide virtually
uninterrupted database availability.

Remote Database Access

Remote database capability means you
can access databases on remote nodes
using DECnet and a server process on
the remote node. Automatic recovery
procedures roll back the remote
database users in the event of network
failure. And you can access remote
and local databases from the same
program.

o Part of VAX Information Architecture

Finally, VAX Rdb/VMS and VAX DBMS are
part of a larger family of information
management tools known as the VAX
Information Architecture. These
products improve productivity and
enhance the usability of databases by
reducing the programming effort
required to implement and maintain an
application. The VAX Information
Architecture products provide you with

all the capabilities you need to build
complete applications. These products
are:

A query and report writer that end
users can use to read and modify
data stored in a database (VAX
DATATRIEVE)

A forms package with a simple
record-level interface that
reduces programming time through
the use of nonprocedural
definitions (VAX TOMS)

An application control and
management system that can be used
to implement complex transaction
processing applications quickly
and efficiently (VAX ACMS)

Graphics products that can produce
bar charts, histograms, and pie
charts from data stored in
databases (VAX DECgraph and
DECslide)

A data dictionary in which to
store and retrieve data
definitions shared by all products
(VAX COD)

VAX Information Architecture products
can be used from most VAX languages,
including Ada, BASIC, C, COBOL, DIBOL,
FORTRAN, PASCAL, and PL/I.

The integration of these products with
the database products improves your
ability to design and maintain
information management applications.

Unique Features of Each VAX Information
Architecture Database

Each VAX Information Architecture database
product has some unique features that
distinguish one from the other. The
following sections describe the unique
features of each product.

The Relational Model -- VAX Rdb/VMS

o To talk about relational databases,
one must first be familiar with the
terminology. Each "table" in the
database is called a relation.

Each row in a table is called a
record, or a tuple, and the data items
that make up each record are called
fields, or attributes. In order to
relate the data in two tables, the
relations must have one or more common
fields or fields of like purpose. For
example, if a DEPARTMENT NUMBER field
is common to both the EMPLOYEE and
DEPARTMENTS relations, you can relate
EMPLOYEE data to DEPARTMENTS data
based on a specific value in this
field. Also, you have the option of
defining indexes for relations,

106

creating an index from fields that are
frequently used in data access
criteria. The index defines an
ordering of record field values that
the database management system uses
whenever possible to improve the speed
of data access.

o Among the capabilities of a relational
database is the dynamic definition of
data relationships. This allows users
to access data in ways that may not
have been thought of when the database
was created. Likewise, a relational
database can easily be restructured if
future applications need new record
types or new fields in existing
records.

Another capability of a relational
database is a set of high-level
relational operations to access data.
These operations are select, project,
and join. We will discuss these in
more detail shortly. Another feature
is the view, a "virtual" relation that
combines fields that are actually
stored in several relations in the
database.

o The select operation retrieves all the
records from a given relation that
satisfy conditions specified by the
user. For example, you can select all
the records in the EMPLOYEES relation
whose department number is 46.

o The project operation retrieves
specific fields from a relation,
optionally sorting the field values
and reducing them to unique values.
For example, you can "project" the
department number column in the
EMPLOYEES relation, suppressing
duplicate values and sorting them in
ascending order.

o The join operation combines fields in
two relations based on field values.
Conceptually it appears to create a
third relation by combining the
records in the two relations. For
example, the EMPLOYEES and DEPARTMENTS
relations can be joined on the
department number field to form a
conceptual relation that contains all
the fields in the two relations.

o A view is a way of making a permanent
definition of the result from some
combination of relational operations.
It simplifies database usage by
eliminating the need for many users to
perform the same combination of
select, project, and join operations
over and over. Moreover, it can be
used to control database access if a
user is allowed to access data only by
means of a view. Thus confidential
information can be secured if it is
not included in a view definition.
For example, a view can be created by
joining the EMPLOYEES and DEPARTMENTS

relations on the department number
field and selecting the EMPLOYEE NAME
and DEPARTMENT NAME fields.

o The specific components of VAX Rdb/VMS
are:

A relational database operator
utility, RDO, that provides a
single interactive environment for
database activities: creating and
modifying the definitions of
database elements, interactive
storing and manipulating of small
amounts of data during program
testing, and maintaining the
database

Precompilers that support VAX
high-level languages, namely
BASIC, FORTRAN, COBOL, and PASCAL.
A precompiler allows you to
include data manipulation
statements directly into in your
program in virtually the same form
you use in interactive RDO.

A callable RDO interface for all
other VAX languages that support
the VAX/VMS calling standard. The
callable interface allow you to
execute data manipulation
statements through imbedded calls
to RDO from such VAX languages as
Ada, C, DIBOL, and PL/I.

A sample database that you can
create on your system when you
install VAX Rdb/VMS, allowing you
to experiment with RDO and study
the database design

An interactive help facility
available from within RDO

o VAX Rdb/VMS performance enhancements
include the automatic optimization of
database queries to produce the
fastest, most efficient data
operations possible. As mentioned
earlier, database indexes improve
performance by allowing the database
management system to sort records
based on an indexed field and thus
minimize physical disk activity.
Another performance gain is the use of
sort/merge techniques to speed a join
operation that uses non-indexed
fields.

o The database can easily be
restructured if changing application
needs warrant it, and the user's
interface to the product has a simple,
easy-to-learn syntax.

o Constraints placed on a relation
restrict the values that can be stored
in the relation. You can use the
VALID IF clause to test the values
being stored against constants, but
you can also use database-wide

constraints to check for existence,
uniqueness, and nonexistence of values
in other fields in the same or other
relations.

o DSRI

Characteristic of all DIGITAL's
relational database products is their
implementation of a common database
architecture known as the DIGITAL
Standard Relational Interface. DSRI
ensures interface compatibility
between applications and all DIGITAL
relational product family members,
present and future. For the user,
DSRI means that applications built on
one DIGITAL relational product family
member, such as VAX Rdb/ELN, are
compatible with other family members,
such as VAX Rdb/VMS.

o DSRI supports large unformatted data
types called segmented strings. The
database management system stores,
maintains, and manages such data
without interpreting the structure,
leaving the user to analyze the data.

The Network Model -- VAX DBMS:

107

o VAX DBMS is an implementation of the
network model that complies with the
CODASYL model specified in the March
1981 working document of the ANSI Data
Definition Language Committee.

o The network database model is based on
establishing relationships among
records in a database by the way in
which the records participate in sets.

o A set is defined as a combination of
two or more records, one of which is
the owner, and one or more of which
are members. VAX DBMS provides three
types of sets:

Indexed

Chain (sequential)

Cale (hashed key)

Records are stored and retrieved
according to the type of set in which
they participate as owner or member -­
sequentially, according to the value
of an index key, or according to the
value of a hashed key.

o Records can participate in more than
one set, and can, for example, be a
member of one set and an owner of
another set. Records are placed into
set membership according to their
relationships with each other. For
example, a DEPARTMENT may consist of a
certain number of employees. EMPLOYEE
records are identified as belonging to
a department by their membership in
the set owned that DEPARTMENT record.

Therefore the set of employees
belonging to a certain department
consists of all EMPLOYEE records owned
by a DEPARTMENT record.

o Each record in a network database
includes data items and set pointers.
Set pointers contain the database
address (or database key) of the next,
previous, and owner record in the set.
Whenever a record is retrieved, VAX
DBMS can use the pointers on that
record to directly retrieve other
members of the set using the database
key.

o Records in a user's buffers are called
current and are used to navigate the
database set structure. Entry to
database structures is accomplished
through SYSTEM records.

o A record's set membership is
determined when the database is
created, and in most cases cannot be
changed without unloading and
reloading the data. When you use a
network database, you should be sure
of the relationships among your
records and data items. If you are,
you can take advantage of network
database imbedded pointers to speed
record retrieval, and to organize your
records into complex relationships.

o In a network database, you can
organize your records so that whenever
you retrieve an owner record you also
retrieve into your buffers all member
records for that owner. This can
speed retrieval of related records.

o The specific components of VAX DBMS
are:

A 4-schema model (logical schema,
storage schema, subschema, and
security schema)

Database Operator (DBO) utility
for creating, deleting, backing
up, restoring, and recovering
databases

Data Description Language (DDL)
for writing schemas

Database Query (DBQ) utility for
interactive database querying,
including a callable interface

o VAX DBMS allows you to split your
record storage into multiple area
files, which you can distribute among
your disk devices

o VAX DBMS provides Load/Unload
facilities to help you load and unload
your database

Evaluating VAX DBMS and Rdb/VMS

There is no standard answer to the question
of whether you should use VAX Rdb/VMS or
VAX DBMS for a particular application. Nor
are there any hard and fast statistics that
clearly delineate trade-off points between
the network and relational models.
Everything depends on the nature of the
application you will be building. You must
judge which database product to use within
the context of what you are trying to
accomplish with your application, and
according to your application's particular
needs.

However, there are some general guidelines
that you can use in making your decision.
The following sections present some of
these guidelines.

108

o Training

In general, you need more training to
use VAX DBMS than to use VAX Rdb/VMS.
Typically, applications implemented
using VAX DBMS are long-term,
highly-strutured applications. The
investment in additional training and
technical expertise pays off in
performance benefits over the long
term of the application. VAX DBMS,
because of its predefined structure,
needs a good initial database design.
VAX Rdb/VMS is easier to learn and
use, and a poor database design
usually can be corrected dynamically.

o Size

VAX Rdb/VMS databases are created and
maintained in a single file, while VAX
DBMS databases are created and
maintained in separate files under
control of the user. VAX Rdb/VMS
databases cannot as easily be as large
as VAX DBMS databases.

A practical size limit on VAX Rdb/VMS
databases is 500 megabytes -- or about
the size of an entire disk volume.
Once a VAX Rdb/VMS database grows
larger than a single disk you will
have to create your database using a
bound volume set.

VAX DBMS databases can be as large as
several gigabytes. Separate area and
root files allow VAX DBMS storage
capacity to be easily spread among
several disk devices.

If you need to create and maintain a
very large database, VAX DBMS is
probably more suitable.

o Complexity

VAX DBMS databases are generally
better for more complex data models.

Complex refers to the number of
records (or relations) in the
database, and the number of
relationships among the records.

If you have more than 30 records or
more than 30 relationships among your
records, consider using VAX DBMS
instead of VAX Rdb/VMS.

o Stability

If you know that your application or
database will not change very much,
use VAX DBMS.

In general, it is not worth incurring
the performance penalty of using the
relational model if you are not going
to take advantage of its capabilities
to dynamically restructure database
relationships.

o Prototyping

VAX Rdb/VMS is much better suited to
application prototyping than VAX DBMS
because a VAX Rdb/VMS database design
can be changed so easily. In fact,
you may want to prototype your
database design using VAX Rdb/VMS and
implement it using VAX DBMS once the
design is stable.

o Ad-Hoc Access

Because the VAX Rdb/VMS syntax is
similar to DATATRIEVE syntax, VAX
Rdb/VMS databases are easier to work
with using DATATRIEVE than VAX DBMS
databases. If ad-hoc and end-user
access is important for your
application, VAX Rdb/VMS may be a
better choice.

You may want to maintain a VAX Rdb/VMS
database that is a subset of the data
you keep in a VAX DBMS database for
end-user queries and reports. You
could refresh such a database daily or
weekly.

o Unstructured Data

VAX Rdb/VMS's "segmented string" data
type allows you to store and
manipulate unstructured data. VAX
DBMS does not support the segmented
string datatype. The segmented string
allows you to mix data types and
lengths in a single data item. If
unstructured data manipulation is
important for your application, VAX
Rdb/VMS may be a better choice.

o Performance

Database performance depends on what
you are using a database for. This
includes such factors as:

The number of database users

109

The response time required by
application users

The percentage of update
transactions compared to read-only
transactions

In general, the more database users
you have, the more you will need the
performance of the network model.
This is especially true when your
users are performing many update
transactions online, and quick
response time is very important.

VAX DBMS provides several performance
tuning features and performance
evaluation tools to help you optimize
database performance.

If you are planning to implement an
application that requires high
transaction loads per hour, you should
probably use VAX DBMS and invest some
time and training in learning to
properly design and tune a network
model database.

There are other ways to increase the
performance of your database
application. You can use ACMS to use
operating system and hardware
resources more eff eciently. You can
also expand your hardware resources
using DECNET or VAXcluster
configurations.

o Precompiler

0

If you are programming in Ada, C,
DIBOL, or PL/I, VAX DBMS may be a
better choice because it provides a
precompiler for each of these
languages. VAX Rdb/VMS provides a
precompiler for BASIC, COBOL, FORTRAN,
and PASCAL only. You can use VAX
Rdb/VMS and VAX DBMS with any VAX
language that adheres to the VAX
language calling standard, but using a
precompiler offers a performance
advantage over using a callable
interface.

Standards

VAX DBMS adheres to the CODASYL
standard for network model databases.
If standards are important to your
application or your application
development shop, you may want to
choose VAX DBMS. There are no
standards for relational model
databases.

Also, VAX DBMS data manipulation
language statements are included in
VAX/VMS extensions to the COBOL
language.

Evaluating Your Application

This section provides some overall
guidelines for evaluating your application
in terms of the type of file storage
method or methods appropriate for it, with
emphasis on relational and network
databases,

o At one time, sequential files were the
only available method of storing data.
Now, however, you have the following
methods to choose from:

Sequential files

Relative record files

Indexed sequential file~

Hierarchical databases

Network databases

Relational databases

o In general, the advances in file
storage technology over time provide
more and more functionality at a cost.
The cost is the performance of the
file storage system, which takes over
more and more of the tasks that
previously were performed in
application programs.

o In designing and developing an
application you must evaluate various
methods of data storage and
organization and choose the right one
or ones to meet your application's
requirements. In making the decision,
you have to weigh the benefits of each
method against its overhead costs.

o In deciding between network and
relational databases, for example, you
should consider the following:

Relational technology currently
does not perform as well overall
as network technology

There are applications for which a
network database is more
appropriate, regardless of
performance, than a relational
database, and vice versa

We will discuss this last point in the
following sections.

o In general, applications that do not
change very often are better suited to
VAX DBMS databases. Applications
whose data definitions and data
relationships change frequently should
use VAX Rdb/VMS databases.

o These different types of applications
can be characterized as dynamic and
static applications.

110

o An example of a static application is
an order-entry and
inventory-management application, A
company does not frequently change the
way it processes orders and organizes
its warehouses -- it is too expensive,
An application that automates this
type of business procedure can be
characterized as a static application.
Such static applications would change
only when the company changes the way
it does business, which should be
infrequent. Static applications are
good candidates for VAX DBMS
databases.

o An example of a dynamic application is
a sales analysis application. A
company might want to spot sales
trends to plan for manufacturing
capacity, or to evaluate the impact on
sales of various forms of advertising.
This raw sales data might be available
by product, region, sales
representative, or customer. Company
executives may want to change the
method of analysis many times in order
to evaluate various factors. Such an
application can be characterized as
dynamic -- changing it is part of the
way the application is used. Dynamic
applications are good candidates for
VAX Rdb/VMS databases.

o There are some limits and restrictions
that apply to these general rules:

If your database is very large
more than 500 megabytes -- or must
satisfy heavy throughput demands
of online transactions, you should
consider using VAX DBMS. VAX DBMS
allows you to partition the
database by placing the separate
root, area, and snapshot files on
different disk devices. This will
spread the I/O among disks,
increasing performance.

If your application development
staffing requirements are not
completely filled, you should
consider using VAX Rdb/VMS, VAX
Rdb/VMS is easier to learn and use
than VAX DBMS and does not usually
require a full-time database
administrator.

The Implementation of Academic Faculty and Student
Database Management System

Capt. David A. Gaitros
Robert L. Ewing

Dept. of Computer and Electical Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

Gary B. Lamont
Dept. of Computer and Electical Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

Visiting Professor
Wright State University

Dayton, Ohio

Abstract

The database presented in this paper
describes a detailed design effort incorporating
a data base system as a management information
and decision support tool. It was designed to
handle student, faculty and management
information in the academic environment.
Modular design, prototype development, data type
abstraction techniques and emphasis on
user-friendliness of the system has resulted in
a complete and operational data base. The
specific network data base used in this
development was the TOTAL Data Base Management
System marketed by CINCOM Systems Inc.

The Air Force Institute of Technology,
Engineering and Computer Science Department
Faculty and Student Database Management System
(AFIT/ENG DBMS) has the potential for being a
system that contains tens of thousands of lines
of code and considerably more data. With a
project of this magnitude, an ordinary approach
to software development would invite disaster.
With the ever increasing cost of software
development (6:1) a systematic method was needed
to build layers of software that could be tested
separately, validated, and implemented over a
period of time. This paper will discuss the
requirements definition, design and
implementation phases of the development in
addition to the unique software engineering
techniques used to implement the AFIT/ENG DBMS
on a VAX 11/780, VMS system and a commercial
DBMS (TOTAL).

Requirements Definition
The requirements definition phase is

the most critical and time consuming
portion of the Software Development Life
Cycle (1:13).The critical element of this
specific database implementation involves
student; and faculty and their associated
interelationships including class
enrollment, grades, professor, schedule,
educational plans, class advisement,
thesis/dissertation advisement, and
personal information. Despite the amount
of time and effort spent on obtaining
system requirements (2,3) another
extensive requirements definition phase
was conducted to update the associated
document. This document consisted of an

on-line list and tables. To aid in
defining the requirements, a fast
prototype of a major sub component, the
Education Plan program, was developed.
The program was presented to prospective
users of the system and their likes and
dislikes were noted and analyzed for
completeness, consistency and validity.
Appropriate items were translated into
specifications and used to augment the
requirements document. The requirements
were then divided into the functional
requirements and user-computer interface
requirements.

Proceedings of the Digital Equipment Computer Users Society 111 Anaheim, California- December 1985

The functional requirements specify
what functions the system is required to
perform. These included database
transactions, management information
displays, required reports, space
specifications, and program language
specification.

The user-computer interface
requirements are those traits of a
computer system that make it
"user-friendly" to a typical user of the
organization. The "typical user" was
defined and the interface characteristics
were designed for a person with the
following traits:

1. Has run a word processor, computer or
typewriter.

2. Will use the system on a casual basis.
3. Will have limited access to manuals.
4. Will not know many of the abbreviations

used in the database.
5. Will not have access to social security

numbers or record keys in general.

The definition of the typical user
led to the design of a menu driven system
with on-line help capability. With a menu
driven system, the user would not have to
memorize a complex command language or
have need of a users manual to operate the
system. The casual user could operate the
system with little guidance and a short
leaning period. The on-line help feature
was provided by a commercial forms
management system (FMS) which acts as the
input/output media to the user. (5)

It was apparent early in the
requirements phase that the system would
have a long life and would require a long
maintenance period to implement all of the
design. To limit the amount of code
necessary to program the system after the
design, a set of standard routines were
required that would act as abstracted
routines to the database system TOTAL (4).
Examples of some functions include
routines that format records, write
records, provide error checking, check
database status, and sign on and off of
the DBMS. Additional routines were needed
to maintain lists of students and faculty
members that could be searched and sorted
in a short period of time for access to
detailed information.
Design Phase

The design phase initially reviewed
the characteristics of the requirements as
they pertained to development of the
system. The system requirements were
decomposed into eight distinct components.
The modularity specification required a
structured development of the database
software and its interaction with these
components. The high level design was
defined using hierarchial structure charts
and module narratives (7). A layered
software organization reflected this
approach to the problem (figure 1). Layer
l of the system would be the very toe

112

I Database user I
!---------------------------------------!
I LAYER 1: MENU SELECT SOFTWARE I
!---------------------------------------!
I LAYER 2: FUNCTION SELECT I
!---------------------------------------!
I LAYER 3: FUNCTION PERFORMED I
!---------------------------------------!
I LAYER 4: FUNCTION UNIQUE SOFTWARE I
!---------------------------------------!
I LAYER 5: STANDARD DBMS ROUTINES I
!---------------------------------------!
I LAYER 6: THE TOTAL DBMS I
!---------------------------------------!
I LAYER 7: VMS OPERATING SYSTEM I
!---------------------------------------!
I LAYER 8: MACHINE LEVEL SOFTWARE I
I I

FIGURE 1: SOFTWARE LAYER

level controller and would control the
entire database, calling all of the five
main modules (figure 2). The second layer
of software would provide access to
different areas of the database that would
correspond to student related file,
faculty related file, thesis related
files, etc. The third layer of software
would contain the main function calling
routines that control the procedures
necessary to perform the function. Layer
4 are software procedures called by the
layer 3 software and are unique to the
related function. Layer 5 is the standard
set of routines developed in the
requirements definition phase and can be
called by any of the above layers. Layer
6 is the TOTAL DBMS and runs in the batch
mode on machine and should only be called
by layer 5 modules. Layers 7 and 8 are
the machine dependent code and hardware.
Note that layer 6 is the abstracted DBMS
and thus other DBMSs could be interfaced
at this level without impacting the other
layers.
Implementation

The coding and testing of the
application software for the AFIT/ENG DBMS
encompassed the implementation portion of
the software development. In order to
demonstrate and provide prototype user
interaction, the lower level routines
(layer 5) were coded and tested during the
last phase of the requirements definition
and the beginning of the design phase.
This code accounted for 40% of the actual
Pascal code needed to develop the
Education Plan program. Note that Pascal
was chosen as the implementation language
because of its ability to implement some
of the principles of software engineering
such as data abstraction, type
declarations, modularity and information
hiding as well as the previous effort (2)

AF IT /EN DATABASE SVSTEM

COMPLETE SVSTEM OVERVIEW

LAVER 3: FUNCTION PERFORMED

LAVER ~: FUNCTION UNIQUE PROCEDURES

LAVER 5: STANDARD DATABASE PROCEDURES

LAVER 6 I TOTAL DBMS

LAVER 7 ~ 8: SYSTEM INTERFACES

FIGURE 2: FIVE MAIN MODULES

The standards employed at this phase
were associated with documentation (8)
declaration naming, coupling and '
cohesion, modularity and data abstraction
(9:328). Resulting from this effort was
a consistent structure embodying the
following major routines: EDPLAN,
FACTMOD, CRSEMOD, SEQUMOD, BOOKMOD and
THESMOD. The EDPLAN module maintained
the students education plan for the
faculty and students. The FACTMOD module
maintained the faculty members personal
and professional data. The CRSEMOD
module maintained the course data used by
the EDPLAN module. The SEQUMOD
maintained the valid course sequences
students were allowed to take. The
BOOKMOD module maintained the data on
required text books for each of the
courses. Finally, THESMOD module
maintains the data on past and current
theses efforts.

To illustrate the complexity in this
phase of the development, the actual
coding and integration of the EDPLAN
module is discussed. The standard
routines and type declarations from the
design phase were coded and defined as
EDPLAN.PAS. The main routine was coded
first. Stubs were insert for the layer 3
procedures to permit testing. The main
program was tested to insure all routines
interfaced properly and according to
design specifications. One by one the
layer 3 and 4 procedures were added and
tested. Once this was completed, the
complete EDPLAN program was demonstrated
to various individuals and used on a
limited basis. The program was modified
to accommodate minor enhancements and a
number of minor errors were corrected. It
should be realized that this process of
meeting user objectives is an on going
activity, thus it is very important that
extensive documentation be defined for
each phase to facilitate maintenance.

Conclusion
The software engineering methods of

data abstraction, data hiding, modular
structure, fast prototyping, and software
layering contributed a great deal to the
development of the AFIT/ENG DBMS . In this
paper, the EDPLAN component was presented
in detail to illustrate the above
concepts. It is only a small example of
the vast amount of software needed to
fully implement the design, but it acts as
a template to future programmers on the
method of implementation. The softw~re
developed by this project was meant to be
modified and was written with the
maintenance programmer in mind. In this
regard,a major part of this approach is
the configuration and control of the
documentation associated with the
requirements phase (list and tables)
design phase (structure charts and m~dule
narratives), implementation phase
(commented code and users manual) and the
integrated and comprehensive data
dictionary for all phases. The use of
various tools such as FMS, TOTAL, COD,
GKS,,SDW <.ref), and Pascal can help
provide this type of documentation and
make large database development easier.
If the systems analyst and programmers
assigned to continue this effort adhere to
the principles and practices set down by
this example, the AFIT/ENG DBMS will
develop into a highly flexible and
responsive system for the AFIT School of
Engineering or for any academic database
environment.

113

Bibliography

1. Peters, Lawrence J. Software Desiqn:
Methods and Technigues,Yourdon Press, New
York, 1981
2. Pangman, Myron E. Complete
Development and Implement AFIT/EN Database
Management System 1 Masters Thesis, School
of Engineering, Air Force Institute of
Technology, Air University (AU)
Wright-Patterson AFB, Oh, 1983 '
3. Allred, Dean S. Consolidated AFIT
Database, Masters Thesis, School of
Engineering, Air Force Institute of
Technology, Air University (AU)
Wright-Patterson AFB, Oh, 1980 '
4. Cincom Systems, Inc. TOTAL User's
Guide. Digital Equipment Corporation,
Canada, 1980
5. Digital Equipment Corporation,
VAX-11 FMS Software Reference Manual Order
No. AA J260A TE.Digital Equipment
Corporation, Maynard, Ma, September, 1980
6. Myers, Ware.The Need For Software
Engineering, Computer, Feburary 1978
7. Gaitros, David A. Implementation of
the AFIT/ENG

Student and Faculty Database
Management System, Masters Thesis School
of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB Oh
1985 ' •
8. AFIT/ENG Development Documentation
Guidlines and Standards, Draft #2, Air
Fo:ce Institute of Technology (AU),
Wright-Patterson AFB, OH, Sept 26, 1984
9. Stevens, W.P., Myers, G.L.,
Constantine, L.L. "Structured Design",IBM
Systems Journal, Volume 13, Number 2, 1974

DATA MANAGEMENT SYSTEM FOR ACADEMIC PERSONNEL ADMINISTRATION

Lisa M. Rotunni
Edward C. Hohmann
James A. Rounds

School of Engineering
California State Polytechnic University

Pomona, California 91768

The School of Engineering at California State Polytechnic
university, Pomona employs 120 regular ~nd 185 temporary
faculty members, and 50 clerical and technical st~ff persons.
A data management application, SAPS (School Academic Personnel
system) has been written in the database management program
RDM to handle all the administrative, personal, and workload
information for these faculty and staff members. The use of
database technology insures consistency of ~ny dis~imil~r
reports and provides the ability to tabulate information. in
unique ways. This paper will describe the ~lanning,
programming and operation of ~S, along with .. the
administrative implications of on-line access to critical
information.

OVERVIEW

California State Polytechnic University, Pomona
has the largest School of Engineering in California
with some 4,300 full and part time students. The
administration of the School has to keep track of
120 regular and 185 temporary faculty members, and
50 clerical and technical staff persons. In order
to handle this task quickly and efficiently, the
School Administration decided in the Sununer of 1984
to begin implementation of an off ice automation
system. This system would include word processing,
spreadsheet facilities, and database technology
capable of handling employee administration
information, course and facility scheduling and
student information.

As the first step toward achieving this
automated office, the School obtained a computer
system consisting of a PDP 11/23 processor with 1
megabyte of memory and a 76 megabyte winchester
disk, 7 DEC VT102 terminals, a dot matrix printer
and two laser printers. The total value of this
system is under $25,000. Use of the RSX multi-user
operating system with this collection of hardware
allows us to keep two secretaries busy using the
database system, entering and reporting information,
and one programmer developing and enhancing data
management applications, with spare terminals
available for word processing and other intermittent
tasks.

The word processing and spreadsheet capabilities
desired were effective almost immediately with the
purchase of packaged software. A database
management system was also purchased, but unlike the
word processor and spreadsheet, it required custom
programming in order to fill our needs. Therefore,
we chose to start on our most critical need, an
employee administration application.

Proceedings of the Digital Equipment Computer Users Society 115

Why use a database system? First, it allows us
to have all of the information needed in one place
at one time. We can go to the same place to find an
employee's home address and the year he received his
bachelor's degree. Second, the information we give
out is consistent. The information only has to be
correct in one place, and if diligence is used in
keeping it up to date we can be certain of its
accuracy at any given time. Then, whether we're
printing the payroll or a phone list, everyone's
name is spelled the same, correct, way in both
places. Third, information can be arranged in
unique ways. Until the need arises, it is hard to
imagine why anyone would want mailing labels sorted
by office phone extension. But the need arose when
we had to distribute campus phone books, and we were
ready.

SAPS (School Academic Personnel System), the
database system developed for the School of
Engineering at Cal Poly University, Pomona comprises
the administrative, personal, and workload
information for the faculty and staff of the school.
It allows us to produce reports like the on-campus
location directory, the payroll list, home mailing
labels, and a list of what companies the part-time
faculty members are affiliated with.

SAPS is an applications package written within
the commercial data base management system RDM
(Responsive Data Manager), produced by Interactive
Technologies, Incorporated. RDM provides the
framework for the system through a series of PASCAL
programs which handle the actual file manipulation
and data input and output functions. The progranuner
working in RDM deals with a programming applications
package to define data files, create data input
screens, write reports, and set up menus for a
specific application.

Anaheim, California - December 1985

The SAPS package is designed to be a time saver.
Through menus the user can add new data, edit old
information, and print all or portions of the
information in many different formats. SAPS doesn't
really do anything that wasn't done before in some
fashion or other. But SAPS makes it possible to do
the work more easily, accurately and reproducibly.

Perhaps the most impressive feature of SAPS is
the constant on-line availability of information.
Any information or grouping of information that
anyone 'wants can be produced quickly and
efficiently, provided the general ~ of request
was anticipated properly. And if it wasn't, as long
as the information is in the system and the
progranuner is available, it just takes a little
longer. ---

PLANNING THE SYSTEM

This is the tricky part. Ideally, the whole
puzzle should be fit together before attempting to
program the required system. However, the long lead
time often required to accomplish this is not always
available. It is sometimes necessary to use the
system and modify it at the same time. This real
time approach can be an advantage, since it makes it
possible to try it, see if you like it, and then try
something else if you don't.

The planning of SAPS was and is an ~ngoing
function. The product SAPS described here is the
final form of three distinct attempts at a
computerized data management system for employee
administrative information. The first attempt was
made at the departmental level using programs in
BASIC and sequential data files. This approach was
severly limited in that these programs were written
for the convenience of a single progranuner and could
not readily be used by anyone else. Data entry was
performed with a text editor and was tedious and
frequently inaccurate.

The next level of complexity in data management
was reached when a systematic attempt was made to
determine the administrative information and
products required and to write a unified program
package to meet these needs. These programs were
still written in BASIC, but were designed for easy
use and future progranuning. A menu system was also
set up for program access. Data entry was still
performed with a text editor, however, and this
became a significant difficulty as the amount of
information which needed to be stored became larger.

At this point we moved to the school level and
invested in a conunercial database system. In a
package system the complex task of file
interrelation is automatically performed. The ROM
system is designed for ease of data entry and with
~e pro~r hard disk storage, large volumes of
information can be stored and quickly accessed.

The most critical part of a database system is
the data structure: the actual data elements which
are going to be stored and relationships between
them. If the data structure is well designed then
the reports and user conveniences can be developed
as the need arises. Effective data structure
design requires an absolutely thorough understanding
o~ wi:iere the info~tion comes from, what people do
with it, and where it goes to when they're finished.
Gathering this information can be difficult
especially for the progranuner who is not familia~
with the particular administrative system which is
being computerized. It is hard to find the right

116

questions and people to ask. The person who has
been performing some task can't always describe the
details of what they do and how they do it or what
information they want when. However, even when
planning time is in short supply, don't cut corners
in designing the data structure.

In designing the data structure for SAPS we
first looked at the more obvious reports that were
being generated by the administrative and clerical
staff of the School and determined what information
they contained. For the Location Directory we
needed to know employee's names, departments,
offices and phone extensions. To print the payroll
report we needed social security numbers, position
numbers and teaching load. We needed home addresses
for home mailing labels. After thinking of as many
items as we could, and categorizing them according
to type, a group of data files were defined to hold
this information and a secretary was trained to
enter it.

Once we had on-line access to the vital
statistics of each faculty and staff member, we
could produce the reports we needed.
Then the fun began. In the further development of
SAPS it was planned, progranuned and used
simultaneously in the environment in which it was
needed. This real time evolution of the system
permitted a constant realistic evaluation of its
effectiveness and responsiveness.

In an effort to categorize the structure and
function of SAPS, the information can be broken down
into four types, each leading to a different variety
of reports. The personal and location information
within SAPS allows the production of such reports as
a directory of faculty and staff offices and phone
numbers, a social directory of employees' home
addresses and phones, and home mailing labels. The
workload information facilitates keeping track of
the number and type of units being taught during the
year and the amount of money spent on faculty
salaries. The position information yields a roster
of faculty positions and their funding, and the
department information may be used at any time to
identify the various names, numbers and other codes
associated with the administrative and academic
departments.

The basic functions which SAPS needed to perform
may be categorized as well. Taking information from
hiring forms, payroll charts, university
administrative documents and other places and
putting it into the system is considered an
information management task. Also included in
management is the purging of outdated or incorrect
information.

Projection tasks involve the production of
information which aids in intelligent decision
making about some future event. The faculty
workload report can be used as a projection tool
because it shows how much will be taught in future
quarters and aids in planning. The faculty roster
provides salary information and allows the
projection of spending for the academic year.

Because of the School's intermediate position
between university administration and the academic
departments, many of the tasks which must be
performed can be described as auditing functions.
For example, payroll sends a list of who is being
paid out of what fund. The school office must
certify that the employee is actually working,
report time off and identify any discrepancies or
errors. The approach taken in SAPS to auditing

outside information is to print the same list from
the information within SAPS and then manually
compare the two lists. The information within SAPS
is known to be accurate, and therefore discrepancies
between the two sources of information indicate an
error which must be corrected.

These categories of information and tasks
facilitate clear thinking about what the system does
and what it should do in the future.

PROGRAMMING THE SYSTEM

This is the critical part. If the programmer
knew exactly what was needed right from the
beginning, it would be a breeze. If it were really
possible, all planning should be complete before
programming begins. But since having a system
sooner is usually better than later, and something
is usually better than nothing, programming may need
to commence before planning is really finished. And
in dealing with people who have done administrative
tasks by hand, it is often efficient to show them
what can be done and see how they like it.

The main programming tasks involved in the
development of SAPS were defining the data file
structures, describing the data input screens,
creating the menus which facilitate system use, and
writing the reports which print or display the data
in a variety of formats. ROM provides convenient
methods for accomplishing all of these tasks.

In ROM, data files are formed of a collection of
fields. The programmer defines the fields, giving
each a name and data type. The group of fields
which is repeated within the file is called a
record. For example, in the SAPS employee file
eighty-three separate fields have been defined.
Items like surname, teaching department, home
address and job title each have their own field.
The group of fields, all related to the same
employee, is designated a record. If there are
forty employees in the file, there will be forty
records. Data types available in ROM include real
numbers, integers, alphanumeric fields called
strings, boolean (yes/no) fields, dates and times.

Input screens are described in ROM by entering
into a form control table the name of the data field
and its desired location on the screen. ROM then
uses this file to display records on the screen and
to accept data into the fields of a record.
Additional headers, boxes and other special items
may also be displayed using special conunands. Menu
screens are defined in a similar fashion. Conunand
names are entered into a menu conunand table, along
with instructions on what the results of entering
each conunand should be. In effect, ROM is
programmed using ROM. The conunand tables are
accessed and edited by the programmer in the same
way that data files are edited by the users.

The end result of most information manipulation
tasks is a report. Some group of data items is
printed, either to a terminal screen or on paper.
In ROM the specifications for reports are defined in
Report control and Report Format Tables. Through an
ROM internal programming language, the programmer
can determine what data files will be used, what
fields will be reported, the field or fields by
which the output will be sorted, and the appearance
of the final document. Reports are defined by
entering values in fields which appear on report
definition input screens.

117

Each report must have a primary data file, which
is the main source of information for the report.
The records in this file are usually processed in
turn and therefore the file is usually sorted to
obtain the final order for output. Other files can
also be accessed in the report and information to be
printed can be taken from them as well as the
primary file. The records in these secondary files
are located and processed due to their
interrelationship with the primary file.

Almost any final report format is possible
through the report definition in ROM. Any
information in the primary file and up to three
secondary files can be printed, plus additional
supporting text, headings and other information.
Several examples of SAPS reports are provided in
Appendix I.

USING THE SYSTEM

This is the fun part. This is where the
feedback comes from, the critique of what has been
produced by all the planning and programming. It
isn't until the system is actually being operated by
the people who need it that anyone can really
determine its advantages and shortcomings. And no
matter how much time and effort was spent planning,
once the system is running the users always want
something extra, or something else.

In its current and more or less finished state,
SAPS is made up of several data files which allow
for distinct groupings of information. The employee
file is by far the largest. All of the SAPS
information relating specifically to each employee
is listed in a record for that employee. This
information is taken from hiring forms, personal
information provided by the employee, payroll forms,
information provided by the departments, and other
administrative sources. Because of the large size
of the total employee data, three separate files are
used for data entry. Although identical in
structure, they permit the grouping of employees
into the three distinct categories which affect the
nature of the data entered for each employee.
Separate data files are used for regular faculty,
temporary lecturers and staff. The combination of
these three files makes up the employee file.

The faculty positions file is not organized
according to people but according to the
university's construct of positions. When a new
faculty member is hired there must be a position
open to hire him into; when a faculty member leaves
a position becomes open, and that position may be
filled by hiring another faculty member. The staff
positions file is also organized according to
positions. In addition to position information, it
also keeps track of vacation and sick time used and
accrued by the staff members in those positions.

The salary information file contains the dollar
amounts associated with each salary rank and step.
Thus, given the faculty member's salary schedule,
rank, step and number of teaching units from the
employee file, it is possible to calculate his
salary for the quarter from the salary information.
The departmental file contains the abbreviations,
full names and other identifying codes associated
with the various administrative and academic
departments. It serves as a dictionary to which
reports using the other data files may refer for
more information.

In SAPS data entry is performed through input
screens which display the field names and blank
lines of the correct length for the data item named.
Arrows and other conunands may be used to move from
record to record within the file and from field to
field on the input screen. Data is add7d or ed~ted
in the fields by positioning the cursor in the field
and typing the new data. Each SAPS data file has
its own input screen.

The primary file for SAPS reports is usually one
of the standard data files, most frequen~ly the
employee or positions file. However, occasionally
it is necessary to work with some data gr~up~ng
which is not provided for in any of the existing
files. In that case, the data must be process7d
before it can be reported. An example of this
situation is the list of employee degrees and the
institutions at which they were received. The
employee data contains one record for each employee
and this record lists all the employee's degrees.
This data format made it impossible to produce a
final report sorted by the institutions at which the
degrees were received. Therefore, it was necessary
to create an intermediate file which had one record
for each degree for each employee. The ability to
pre-process data is very useful. However, it does
increase the time necessary to produce a report and
should be used only when necessary.

Normally, ROM reports print information from all
of the records within the primary file for the
report. However, it is possible to limit the
records which will be reported through either
progranuned or user selections. Progranuned
selections are defined into the report by the
progranuner. For example, no staff should appear on
the faculty roster. Therefore, within the Report
Control Table, the report has been instructed to
skip over any staff records in the primary file when
it prints that report. This progranuned selection
can not be changed by the user and· applies every
time the report is printed.

User selections may vary with each report
printing. Through the selection mode, displayed
before the report is actually printed, the user may
limit the records to be considered for printing by
defining a range of values for specific data fields.
These selections then apply in addition to any
progranuned selections. For example, if the faculty
roster was desired for only the Electrical &
Computer Engineering Department, the user could
specify that the 'Department' field of the employee
file be equal to 'ECE'. The report would still skip
all staff records and, in addition, it would now
skip any record which did not have 'Department'
equal to 'ECE'. Multiple selections may be made to
further limit the information printed and selections
may be based on any field in the primary data file.
User selections greatly enhance the flexibility of
SAPS by making it possible to print almost any
grouping of desired information in any of the
standard report formats.

One of the requirements for SAPS was that it be
comfortable for use, not just by the progranuner but
by the faculty, staff and administrators who would
be working with the system. This requirement is met
through the use of menus, help files and user
documentation.

The most prominent SAPS feature seen by users is
the menu. The SAPS Menu consists of six screen
pages full of commands which can be displayed in a
continuous loop. The last command on each menu page

displays the next menu page. The conunands on the
menu pages are divided according to categories of
information. The first page contains the various
directory reports available in SAPS. The second
page allows the printing of reports which are of
interest in departmental administration. The third
is devoted to school administrative reports.
Employee information is added and edited on the
fourth menu page and other files are edited on the

118

fifth page. The last page lists the conunands which
perform various information checking and auditing
functions.

The menu conunands are easily accessed through
the keyboard arrow keys, or by typing the conunand.
The user does not need to know any file or report
names in order to use the system.

Each command line on the menu lists a brief
description of the function of the command, which is
generally only enough to jog the user's memory. If
the user is unfamiliar with the system or needs a
more complete description, help information is
available directly from the menu by pressing the
help key on the numeric keypad. For reports, a
complete description and example of the print format
is displayed on the screen. For editing and
checking functions, other appropriate information is
provided. When the user is finished reviewing the
help information he may return to the menu.

When editing or adding information to the data
files of the system, help text is available for
each record field. By positioning the cursor at the
field for which help is desired and pressing the
function help keys, the user can access a screen of
text describing the field and listing the type and
range of information which should be entered.

All of these menus and help screens are designed
to allow convenient use of SAPS without the need for
memorizing many commands or remembering exactly what
each field may contain from one editing session to
the next.

A complete user manual for SAPS is available,
written so that someone who is not familiar with ROM
and has never used SAPS before can enter the system
and print reports or perform data management tasks.

This fall was the beginning of the second
academic year that SAPS has been in use in the
School of Engineering. Therefore, we were able to
see how the data editing functions and reports
developed and progranuned as they were needed last
year filled our ongoing needs. New information
entry went smoothly, the system functioned
effectively without modification, and no additional
reports were needed. In academic terms, SAPS passed
its final exams.

The success of SAPS has encouraged the
development of other complete systems. The student
Requests And Tracking System (RATS) is currently in
use to keep track of change-of-major requests,
general academic petitions and other student related
items. The School Instructional Planning System
(SIPS) is currently being developed to handle course
and room scheduling.

APPENDIX I - SAMPLE REPORTS

CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA
SCHOOL OF ENGINEERING

Aerospace Engineering

Sutherland, Rodney D.
Professor and Chair

Bowles, Stephanie I.
Dept Secretary

Howard, Rollen D.
Equip Technician

Faculty
Davey, Robert F. (Dr.)
Graves, George R.
Hudson, Terrance J. *
Lehr, Mark E. *
Lord, Paul A.
Mardis, Larry D. *
Mortensen, William E.
Newberry, Conrad F.
O'Cain, Brian D. *
Rickard, William w. *
Schoneman, Scott R. *
White, Terry *

WINTER 1985 LOCATION DIRECTORY

13-229 4301

13-227 4301

13-119a 4306

13-223
13-223
13-101
13-101
13-225
13-101
13-101
13-225
13-106
13-106
13-106
13-101

4304
4304
0242
0242
4303
0242
0242
4303
4348
4348
4348
0242

* P/'l' Lecturer # F/'l' Lecturer + Retired (FERP Qtr)

List of Employee Degrees and Institutions

24-APR-85 15:05:24
Name Dept Type Institution Degr Discp Year

Darweesh, Farouk IME N Bolton Inst GCE Mechanical 64

Baher, Farrokh ECE P Cal Poly Pomona ME Engr 78

Epperson, Jr., Edwin H. ECE p CSU Los Angeles BS Math 62
Epperson, Jr., Edwin H. ECE P CSU Los Angeles MA Math 66
Schoenwetter, Earl E. ET T CSU Los Angeles MS Industrial 75

Janger, Frank J. CE T Manhattan College BCE Civil 68
Janger, Frank J. CE T Manhattan College ME Sanitation 69

Hohmann, Edward C. EGR T Michigan State Univ MS Chemical 67

Rubinstein, Eli ECE P Pomona College BA Physics 61

Eke, Fidelis O. ME p Stanford Univ PhD ME 79

Williams, Edwin H. ME T UC Berkeley BS Mechanical 49

Darweesh, Farouk IME N Univ of Bermingham BS Mechanical 67
Darweesh, Farouk IME N Univ of Bermingham PhD Mechanical 70

Galbraith, Edward D. IME T Univ of Toledo BSME Mechanical 52
Galbraith, Edward D. IME T Univ of Toledo MIE Industrial 60

Rossman, Edward A. ET P Univ of Washington MS Aero 49

Schoenwetter, Earl E. ET T Univ Of Wisconsin BS Electrical 57

Hohmann, Edward C. EGR T USC BS Chemical 66
Williams, Edwin H. ME T USC MS Mechanical 66

119

CAMPUS LOCATICN LABELS
(A similar format is used for home address mailing labels.)

Mr. Robert R. Schneider A

Civil Engineering
Rm 11-114 Ext 4321

Mr. William M. Harris
Chemical & Materials Engineering
Rm 13-116 Ext 4314

Dr. Thuan K. Nguyen
Chemical & Materials Engineering
Rm 13-226 Ext 4364

Dr. Robert L. Bernick
Electrical & Computer Engineering
Rm 09-415 Ext 4330

Dr. Mysore R. Lakshminarayana
Electrical & Computer Engineering
Rm 09-415 Ext 4330

Dr. F.dward c. Hohmann A

School of Engineering
Rm 09-227 Ext 4311

Mr. Earl E. Schoenwetter
Engineering Technology
Rm 09-246 Ext 4801

Mr. Leonhard M. Myers
Industrial & Manufacturing Engr
Rm 11-128 Ext 4369

120

Mr. Robert R. Schneider
Civil Engineering
Rm 11-114 Ext 4321

Mr. William M. Harris
Chemical & Materials Engineering
Rm 13-116 Ext 4314

Dr. Thuan K. Nguyen
Chemical & Materials Engineering
Rm 13-226 Ext 4364

Dr. Robert L. Bernick
Electrical & Computer Engineering
Rm 09-415 Ext 4330

Dr. Mysore R. Lakshminarayana
Electrical & Computer Engineering
Rm 09-415 Ext 4330

Dr. F.dward c. Hohmann
School of Engineering
Rm 09-227 Ext 4311

Mr. Earl E. Schoenwetter
Engineering Technology
Rm 09-246 Ext 4801

Mr. Leonhard M. Myers
Industrial & Manufacturing Engr
Rm 11-128 Ext 4369

SQL/DSRI and QUEL/DSRI Implementation

JOHN D. MARKEL, Ph.D.
SIGNAL TECHNOLOGY, INC.

GOLETA, CA 93117

Abstract

This paper describes the first Digital Standard Relational
Interface implementation of the two de-facto Standard Relational
Query Languages. The Structured Query Language (SQL) is
rapidly becoming the industry standard. It is the query language
syntax used by commercial products such as IBM's DB2. The
QUEL syntax as developed for the Berkeley Ingres project is also
a widely used. commercially available syntax. In this paper, issues
are presented which relate to what can and can't be efficiently
implemented through the DSRI. Syntax comparisons among
implementable SQL and QUEL commands and the Rdb/VMS
interactive query utility (RDO) are presented along with actual
performance results.

1 INTRODUCTION

I. I Overview

In the VAX/VMS environment. there are three widely
used relational languages. The language currently
available for Digital VAX Information Architecture pro­
ducts is the Datatrieve language. With only minor
variations. the Datatrieve syntax is what is used in
Digital"s relational database products Rdb/VMS and
Rdb/ELN.

Two other widely used languages in the VAX/VMS
environment are QUEL and SEQUEL (or SQL). The
QUEL language was developed at the University of
California at Berkeley as part of the Ingres project.
Ingres has been converted into a commercial product by
Relational Technology. Inc.. using its own proprietary
database file structures under VAX/VMS.

The SEQUEL (or SQU language (which stands for
Structured Query Language) was developed at the IBM
Research Laboratory in San Jose. California. In 1977.
the public domain specifications of SQL were imple­
mented by Oracle Corporation as part of their commer­
cial product. using its own proprietary database access
methods under VAX/VMS. IBM's new relational product
DB2 is also based upon the SQL relational query
syntax. This syntax has been proposed as an ANSI
standard and is rapidly becoming at least the de-facto
standard relational query language in the computer
industry.

Proceedings of the Digital Equipment Computer Users Society 121

Meanwhile. Digital Equipment Corporation has devel­
oped the Digital Standard Relational Interface (DSRI)
which is the foundation of its current relational database
offerings, and of its future offerings (such as RALLY
and TEAMDAT A, discussed by Digital at the Fall 1985
Decus Symposium). In effect. the VAX/VMS file
management standard (RMS) is being joined by a new
relational database management standard (DSRI).

Neither RMS nor DSRI have any inherent language
syntax associated with them. They define only the
"backend" file or database file structures.

I .2 Purpose of This Paper

Digital"s first VAX/VMS database product introduction
is Rdb/VMS which uses the Datatrieve-like syntax. Since
QUEL and SQL are widely used relational languages not
only with VAX/VMS but also with many other computer
systems. we decided to implement QUEL and SQL
"bridges" into the Digital standard RMS and DSRI
backend structures as illustrated in Figure I. The
development for QUEL has been completed and is
offered by Digital as part of the Digital Classified
Software product SMARTST AR. An SQL development is
ongoing.

Signal Technology is the first company (outside of
Digital) to successfully develop a commercially available
intert·ace to DSRI. In this paper. we would like to
share some of our observations about using the DSRI for
implementing QUEL and SQL language structures along

Anaheim, California - December 1985

USER
l

_± ~
QUEL SQL

INTERACTIVE INTERACTIVE
REPORTING REPORTING

INTERACTIVE INTERACTIVE
QUERY QUERY

l l
DSRI/RMS

Figure 1 - Unified Bridge FOR QUEL/SQL With
Both DSRI And RMS

with performance measurements. Although parallel lan­
guage developments have been undertaken with the RMS
file structures for consistency. only the DSRI implemen­
tations will be discussed in this paper.

The presentation is organized as follows:

• First. Rdb/VMS is briefly introduced and its rela-
tionship with DSRI is illustrated. Relative perfor-
mance among Rdb/VMS components is shown.

• Next. the DSRI itself is briefly · introduced and
several observations about complexity versus benefit
are presented.

• The QUEL/DSRI implementation is discussed along
with performance measurements.

• The SQL/DSRI implementation is then discussed
along with certain complexities that arose.

• Finally. a brief summary of our experiences is
presented with recommendations.

It is assumed that the reader is already familiar with
QUEL and/or SQL for this presentation.

2 RDB/VMS AND THE DSRI

2.1 Introduction

The Digital Standard Relational Interface (DSRI) was
introduced by Digital at the Fall 1984 Decus Sym­
posium. To date, a small number of organizations have
been given access to the DSRI programming specifi­
cations for developing DSRI compatible third party

122

software products. Digital has stated that the DSRI
specifications will be made available during 1986 (DSRI
is already available to those who have Rdb/VMS. since
Rdb/VMS is in effect a layered product on top of
DSRI.) What is missing are the programming language
specifications for directly accessing the DSRI instead of
indirectly accessing DSRI through the Rdb/VMS facil­
ities.

At the current time Digital has three products which
can access the DSRI: Rdb/VMS. Rdb/ELN and Data­
trieve (DTR). as illustrated in Figure 2. All local and
remote data access is handled through the DSRI.

Rdb/VMS

LOCAL
DATA

Rdb/ELN DTR

DSRI

----- REMOTE
DATA

Figure 2 - Digital Products Which Are
Layered On Top Of DSRI

Within the product Rdb/VMS for example. there are
several components which individually access the DSRl
as shown in Figure 3.

Interactive
User

User
Applkation

Pre-Compilers

DSRI

User
Application

Callable
RDO

Figure 3 - Individual Rdb/VMS Components
Which Access The DSRI

This diagram shows the three important methods for
data access within a relational database system.

• Interactive access

• Compile time binding access (preprocessor. pre­
compiler. embedded query access)

• Run-time binding access (callable or run-time access)

Each of these methods has associated advantages and
disadvantages. Interactive access is very convenient for
performing random ad-hoc query. In addition. all Data

Definition Language (DDL) activity must occur here
(through RDO). Whenever a query is executed. it is
interpreted as though it is a brand new query each
time. For example, if you wish to find the count of all
records where salary is greater than 20K, 30K and 40K
in sequence. three distinct queries must be run. each
totally independent of the other.

Compile time binding on the other hand "binds" the
database variables to the VAX host variables. and also
parses the query into a set of tokens which can be read
by DSRI at run-time. Thus if the above query is placed
into a loop with SALARY as a variable which incre­
ments over the desired range of values. no additional
reparsing of the command is necessary. Thus the
Rdb/VMS pre-compiler offers t\\O primary performance
advantages:

• At run-time. the user query has already been
decomposed into a set of low-level DSRI calls.

and

• If the query is in a program loop. then it can be
re-executed without additional time required for
parsing.

Turning these statements around. it is important to
note that if ad-hoc queries are entered which are
independent of one another, then interactive query
performance using the DSRI can be theoretically as good
as through the pre-compiler except for the parsing time
of each query <generally a small percentage of the query
execute time). There are two major disadvantages of
pre-compilers:

• A separate pre-compiler must be made available for
every supported language.

• Only pre-defined queries with parameters can be
allowed (you cannot run a query with one qualifier
and then decide to run it again with two qualifiers.
or a different qualifier).

The solution to this problem is run-time binding
access. In this case. general purpose queries can be
executed at run-time. For example. the program can
prompt you to enter an ad-hoc query under program
control. This is not possible with compile-time access.
Furthermore. all VAX host languages can be supported
with run-time binding access because only standard
run-time library types of calls are required. For
example. with callable RDO and FORTRAN. we might
use

CALL RDB$INTERPRET ('
I FOR J IN JOB
I WITH J.JOBCLS > 5
I PRINT J.•
I END_FOR ')

In summary. the benefits of run-time binding are:

• All VAX host languages can be supported

• Ad-hoc queries can be supported under program
control

Currently with Rdb/VMS. the user sees several signif­
icant disadvantages:

• The run-time Data Manipulation Language (DML) is
somewhat restrictive (no transaction management is
allowed. for example).

• The measured performance (as opposed to theore­
tically achievable performance) is rather poor relative
to the pre-compilers.

To obtain a frame of reference for what is currently
implemented with Rdb/VMS. the following graph in
Figure 4 is instructive:

1.5

1.0

.5

.0

RELATIVE CPU TIME

-
- Callable

- RDO RDO
Precompiler

Figure 4 - Relative CPU Performance
Measured From Rdb/VMS Components

With interactive RDO marked as 1.0. we have
measured callable RDO to require as much as 1.4 in
terms of CPU requirements for many examples. whereas
the pre-compiler requires as little as 0. 7. What is
important to understand is that these significant differ­
ences are primarily implementation dependent and not
inherent in using these three access methods with DSRI.

123

3 A BRIEF INTRODUCTION TO DSRI

Due to the fact that the DSRI specifications are not
yet public. only basic. DSRI concepts will be presented
here. The most important thing to understand about

DSRI is that it is a relational database management
system standard in the same manner that RMS is the
VAX/VMS Record Management Services file standard. It
does not. however. define a high-level language struc­
ture. That task is left to the system implementer. The
Datatrieve language implementation is the first language
implemented with DSRI. The only other high-level
relational language currently available which uses DSRI
is QUEL as implemented in SMARTSTAR. Other
languages such as SQL can also be implemented. Each
language will have different complexities to deal with, as
discussed in the following sections.

The DSRI consists of a low-level call interface from
the programmers point of view. This call interface is
fully programmable with access to control structures.
recursion, aggregates, comparison operators. transaction
management and data definition (create/destroy database.
table. index, etc.).

The DSRI consists of two or three strictly layered
protocols depending on whether or not remote access is
desired (as illustrated in Figure 2). The essential
protocol from the system programmers viewpoint is the
BLR or Binary Language Representation. It is a
low-level procedural language which includes commands
for data definition and updating of these definitions and
moving data between the host (system implementation)
software and the database (DSRI) software. The BLR
transmits instructions to the database software by way of
requests. The essential items to understand about pro­
gramming with the DSRI are:

• DSRI provides a complete program language as
Digitars relational standard for the future. Thus. if
system interfaces are developed with DSRI then the
resultant information can be shared with any other
program using DSRI.

• DSRI is low-level. complex programming. not for
junior-level programmers or those faint-of-heart.

• DSRI is the only method for gaining access to the
internal data definition language for layered product
development such as we are addressing with higher
level language development (high-level data manipu­
lation language development can. however, be ac­
complished by "indirect" access to the DSRI via
callable RDO. Unfortunately, the performance is
unacceptable as will be shown).

4 THE QUEL/DSRI IMPLEMENTATION

4.1 Overview

We first started with the QUEL implementation of an
Interactive Query Language (IQL), and with the Data

124

Manipulation Language only, since RDO can be used to
perform the Data Definition Language requirements. We
implemented two different systems. The first we call
"Indirect DSRI Access" via the callable RDO facility,
and the second "Direct DSRI Access" via the low-level
DSRI calls without any reference to the Rdb/VMS
components (such as the pre-compilers or the callable
RDO.

4.2 The "Easy Way"

Our first attempt (the "easy way") is illustrated in
Figure 5.

IQL Interface

Callable RDO

DSRI

Figure 5 - First Attempt At Indirect
Access To The DSRI - The "Easy Way"

This is the approach any current Rdb/VMS facility can
use to indirectly access DSRI through callable RDO (the
pre-compiler, as described earlier. cannot be used be­
cause the design objective is to allow totally flexible user
query from the QUEL syntax). The system programmers
task is limited to the box called "IQL Interface". The
user·s QUEL commands must be parsed or decomposed
into basic elements and then recomposed into the
language syntax required by callable RDO (the Data­
trieve syntax). The results of this approach are
illustrated in Figure 6. for a data retrieval operation.

2.0 -
1.5 - IQL Interface

1.0 -
Callable

RDO ..., RDO .5

.0

Figure 6 - First Attempt Performance Results

As shown earlier, not only is callable RDO a poor
performer relative to RDO, but in addition the overhead
in decomposing and recomposing the query is simply
added to that of callable RDO. Even though the
performance of this approach is clearly unacceptable, it
is the only method available with the Rdb/VMS product.
outside of direct DSRI programming, if one wishes to
interface a different language syntax or system set of
capabilities (such as spreadsheet access) to Rdb/VMS
files.

4.3 The "Right Way"

Direct program access to the DSRI as illustrated in
Figure 7 is the "right way".

User

IQL Interface

IQL/DSRI
System Level

DSRI

Figure 7 - Second Attempt At Direct Access
To The DSRI - The "Right Way"

The first task "IQL Interface" requires development of a
parser to decompose the user's arbitrary QUEL syntax
into a set of keyword tokens with associated data
values. The "IQL/DSRI system level" represents all of
the DSRI interface coding which takes the parser output
and formats it into the Binary Language Representation
(BLR) for the DSRI.

4.4 Performance Results

The performance improvement is substantial. The
following IQL command (using the QUEL syntax) on a
demo database was executed:

range of e ;s emp
range of d ;s dept
range of s ;s sal
retr;eve Cd.name, e.name, s.salary)
ordered by d.name
where e.deptno = d.deptno

and e.empno = s.empno
and e.name = "A*"

\go

The results are shown as a function of CPU time and
wall clock time for a single user stand-alone VAX-780
system in Figures 8 and 9. respectively. The perfor­
mance improvement over using callable RDO is approx­
imately a factor of three.

125

25

20

IQL CPU SEC
via

15

10

5 CRDO
IQL/DSRI

0

Figure 8 - QUEL/DSRI Performance Results
For Complex Query (CDRO = Callable RDO,

IQL = QUEL)

30

IQL

20 via WALLCLOC K TIME (SEC)

10 - CRDO IQL/DSRI

0

Figure 9 - QUEL/DSRI Performance Results
For Complex Query (CORO = Callable RDO,

IQL = QUEL)

As one final performance measurement. the same
query. only restructured as a report with formatting.
headings, pages and control breaks without the "A*"
qualification. was used to create a 55 page report from
Datatrieve (which is the only method for obtaining
reports using RDB databases) and from our IQL (even
though not discussed here the QUELIDSRI implemen­
tation has been extended to support complete report
writing capabilities also). The results are shown in
Figure 10 for both wall clock and CPU times.

A significant performance advantage over Datatrieve
was measured. It is important to understand that in this
case, we are comparing two different language imple­
mentations directly to DSRI. The performance differ­
ences relate to such things as the high-level language
structure used, the parsing efficiency. and the number of
messages used in communicating with the DSRl. In
essence, it represents an "efficiency" rating of the system
level interface coding.

WALLCLOCK

100 ., 80
CPU .,

60

DTR - -50 40
DTR

IQL 20 IQL

0 0

Figure lO - A 3-Table Report
DTR;DSRI Versus IQL = QUEL/DSRI

5 THE SQL/DSRI IMPLEMENT A TI ON

5.1 Overview

The QUEL/DSRI implementation has evolved into a
production product. SQL/DSRI implementation is cur­
rently undergoing checkout. Here we will focus more on
implementation concepts and observations rather than on
performance details. However, a few preliminary results
will be presented.

5.2 Language Differences

An illustration of the currently available relational
language interfaces to DSRI (RDO/DTR and QUEL) and
our proposed SQL interface is shown in Figure 11.
along with who the typical interested user might be.

CURRENT
VIA USERS

RDO/
DTR

INGRES
USERS

QUEL

DSRI/RMS

ORACLE/
IBM DB2 USERS

SQL

Figure 11 - Relational Languages Now
Available Or Being Developed For The DSRI

At the surface level. for simple queries, the language
choice would seem to be one of style over substance.
For example. consider this simple one table example:

FOR J IN JOB
WITH J.JOBCLS > 5
PRINT J.•
END_FOR

RANGE OF J IS JOB
RETRIEVE CJ.ALL>
WHERE J.JOBCLS > 5
\GO

SELECT *
FROM JOB
WHERE JOBCLS > 5

CRDO)

CQUEL>

C SQL>

Now, consider the following SQL example:

SELECT DEPT.NAME, COUNTC*)
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO

AND EMP.EMPNO < 20500
GROUP BY DEPT.NAME

We are asking for a list of department names and the
number of employees in each department. where the
employee numbers are less than 20500. For an
experienced query language user, this is a relatively
simple query. In contrast. note the RDO syntax required
to obtain the same result:

FOR E IN EMP CROSS D IN DEPT
WITH D.DEPTNO = E.DEPTNO
AND E.EMPNO < 20500
REDUCED TO D.NAME

PRINT D.NAME, COUNT OF -
E1 IN EMP CROSS -
D1 IN DEPT WITH -
D.NAME = D1.NAME AND -
D1.DEPTNO = E1.DEPTNO -
AND E1.EMPNO < 20500

END_FOR

The substantial complexity of this query is due to the
fact that DSRI does not currently support the "GROUP
BY" statement of SQL. Even though RDO supports
aggregate functions, each aggregate function has its own
tables and WHERE clause. In SQL. the aggregate
functions are applied automatically to the same set of
records as results from the FROM and WHERE clause.
Thus. to support the GROUP BY statement. the system
programmer has to implement the DSRI FOR loop and
then for each unique department name generates the
required result. We have implemented the SQL GROUP
BY statement in this manner with very satisfactory
results relative to RDO. For the above example. our
SQL/DSRI implementation required 1.63 CPU seconlis
whereas RDO requires 2 .4 7 CPU seconds (both imple­
mentations were running the same Version 2.0 of the
underlying DSRI code).

126

5.3 Additional SQL/DSRI Issues

Consider the same SQL query with one additional
statement added after the GROUP BY statement:

GROUP BY DEPT.NAME
HAVING COUNT<•> > 10;

In this case. only the departments having more than I 0
employees will be listed. This query cannot be executed
from RDO because the DSRI IF clause is required and
it is not supported by RDO. We have also successfully
implemented this structure using DSRI.

The final SELECT clause supported m the SQL
language syntax is ORDER BY. Consider the statement
extension to the above syntax:

GROUP BY DEPT.NAME
HAVING COUNT<•> > 10
ORDER BY 2 DESC, DEPT.NAME

In this case. the final results are list ordered by the
largest number of employees alphabetized by department
name.

DSRI does not currently support this SQL structure
since its ORDER statement is associated with the FOR
loop and the final ordering desired is outside of the
FOR loop. We have implemented the final sort
externally from DSRI as part of the system develop­
ment.

The most complex aspect of SQL/DSRI implemen­
tation. which fortunately is not generally needed, is
GROUP BY and HAVING support within "subselect"
statements. Until DSRI is extended to directly support
GROUP BY and HAVING. SQL/DSRI subselect state­
ment~ have to be limited to SELECT. FROM and
WHERE. For example. an acceptable SQL/DSRI state­
ment with a subselect statement is:

SELECT * f.ROM JOB
WHERE JOBCLS >

(SELECT MAX CJOBCLS>
WHERE TITLE LIKE "S%">

5.4 SQL/DSRI Extensions

There are several areas of extension to the SQL
language that can be directly or indirectly supported by
DSRI. Extensions that we have been able to support
include, for example:

• Report Writer integrated with query

• Outer Joins

• Control Constructs

• Import/Export (to/from RDB/RMS)

127

In addition. to fully support SQL in both interactive
and programming environments. additional major devel­
opment is required to support the SQL programming
language syntax as specified in the proposal SQL ANSI
standard and as implemented in IBM's relational data­
base system DB2.

6 TECHNICAL SUMMARY

It appears that the design of DSRI has been strongly
influenced by the QUEL syntax. Very few difficulties
occurred in the QUEL/DSRI implementation. The
complete set of QUEL DML operations have been
implemented through DSRI including transaction manage­
ment (BEGIN. END and ABORT). scalar aggregates
(MIN. MAX. AVG. SUM. COUNT) and functions such
as COPYIN and COPYOUT (file import/export).

Implementing SQL with DSRI has been much more
complex for several reasons. As discussed earlier. SQL
provides a much more concise syntax than QUEL or
RDO for certain operations such as grouping. Simplicity
to the user generally translated to complexity for the
designer. The complexity is compounded by the fact
that DSRI currently does not have request definitions in
its binary language representation for GROUP BY and
HAVING.

We have chosen to implement the outer join function
as an SQL extension even though it is not part of the
ANSI standard definition for SQL. due to its practical
importance for "master detail" relationships. Since DSRI
does not currently support request definitions for outer
joins. it becomes a rather complex systems programming
task to create the proper frontend (non-DSRI) and
backend (DSRI) interaction.

The end results of our effort can be summarized as
follows:

• DSRI programming is complex and time consuming.

• DSRI is at an early stage in its life and will
undoubtedly have many new important features added
to assist developers (such as. hopefully. GROUP BY.
HAVING and outer join capabilities).

• We have been able to achieve comparable or better
performance than other currently available Digital
products layered onto DSRI with careful program­
ming.

• The effort is well worth it in the final performance
if you need to build a layered program on DSRI
rather than being an applications user of DSRI.

JNTROCUCTION

"DBMS--20 Sorted Set Structures"

Jeffrey S. Finton and David W. Chilson
Bowling Green State University

Bowling Green. Ohio

ABSTRACT

The paper is a summary of a study conducted by the authors which
examined the sorted set structure [owner .record. index block(s). buoy
record(s), and member record(sl] utilized by versions 5 and 6 of
DBMS-20. Using a schema. a COBOL application program. and the DBINFO
utility, the study investigated~ 1.1 the addition of a new member record to
the beginning. the middle. and the end of an existing buoy chain which
had already reached its maximum length, (2) the addition of a new
member record between two existing buoy chains. both of which had
already r·eached their maximum length, (31 the modification of the sort
key of a member record in a buoy chain. (41 the removal of a member
record from a buoy chain, and (SI the deletion of a member record from
a buoy chain A discussion of the results is provided. as are before and
after" diagrams of aH sorted set structures

This paper is a summary of a study conducted by the
authors which examined the sorted set structure [owner record.
index block(s). buoy record(s). and member record(s)] utilized
by versions 5 and 6 of DBMS-20. Using a schema. a COBOL
application program. and the DBINFO utility the study
investigated:

I 11 the addition of a new member record to the
beginning. the middle. and the end of a.n existing buoy chain
which had already reached its maximum length:

I 2) the addition of a new member record between two
existing buoy chains. both of which had already reached their
maximum length;

(3) the modification of the sort key of a ltlember record
in a buoy chain;

(4) the .removal of a member record from a buoy chain:
and

('))the deletion of a member record from a buoy chain.

MEfHOD

AREA2 AREAl

GRADE

{intersection

STUDENil

--,-·

The schema. and application program used in the study
we.re taken from a class project used in the graduate leveJ
data.base course at Bowling Green State University (Computer
Science '.562. "Techniques of Database Organization" l. Basically,
the project involved loading, modifying, and querying a
student-course database. Because of the many-to-many
relationship between students and courses, and because
DBMS-20 as a CODASYL system cannot directly rep.resent such a
relationship, three record types were necessary for
implementation:

lThe schema and subschemas are shown in Figure 1.l

Record types: COURSE
STUDENT

Set types:

GRADE (an "intersection" record and a "member"
of both the COURSE-GRADE and STUDENT-GRADE
sets)

COURSE-GRADE
STUDENT-GRADE

Proceedings of the Digital Equipment Computer Users Society 129

AH three record types were assigned and loaded into
AREAL the first of two areas in the database The second area.
AREA2. was used in the class project for a second version of the
STUDENT records. but is not relevant to this study. It should be
noted that AREAl had 9 pages !PAGE 1 to PAGE 9). a page size of
'.512 words. and allowed for 29 records per page. Also, since
version '.5 of DBMS-20 was used. the maximum length fo.r a buoy
cha.in was the default of 8.

The two set types. COURSE-GRADE a.nd STUDENT-GRADE.
we.re sorted and did not allow fo.r dupJicate member .records. In
the case of the COURSE-GRADE set, the ascending key was the
R-SEQ data item in the GRADE record. At the time of initial
loading of the database, this data item corresponded to the

Anaheim, California - December 1985

alphabetical sequence of student last names. !This data item.
however. was modified in parts of the study and at those points
no longer yielded an alphabetical sequence.) In the case of the
STUDENT-GRADE set. the ascending key was a combination of
R-COURSE and R-SECTION. since there could be multiple sections
of the same course.

The COURSE and STUDENT records each contained four
pointers: a CALC chain pointer. an INDEX pointer. a Nm
pointer, and a PRIOR pointer. The GRADE rewrds each
contained six pointers a Nm pointer. a PRIOR pointer. and an
OWNER pointer in each of the two sets in whicb they
participated (i.e .. in which they were members)

Primary attention was given in the study to one
occurrence of the COURSE-GRADE set. specifically that for
course CS ')62 SECTION 0766.

Numerous program runs (application program and
DBINFO utility) were made to produce the figures in this paper.
Four of the figures show initial loadings of the database 0.e ..
AREAi). The remaining figures show the effect of various
transactions against the database (i e., additions. modifications.
removals. and deletions)

ADDITION OF A MEMBER RECORD TO AN EXISTING BUOY CHAIN

In this part of the study, intersectionimember records
thereafter referred to as just "member" records) were added to
the beginning (head), the middle (interior), and the end <taill
of an existing buoy chain which had already reached its
maximum length of eight records.

Figure 2 shows the makeup of the CS 562 COURSE-GRADE
set after the intial loading of the database. There is one owner
record. one buoy record. and eight member records. In all
cases. the entries using parentheses [e.g., (? /??) J indicate the
page number and line number (i.e , the database key l of the
record occurrence. The remaining entries in the member
records indicate the following for the STUDENT owner in the
STUDENT GRADE set student last name. student ID number. and
student sequence number.

Th.e continuation of Figure 2 shows the makeup of four
STUDENT-GRADE sets. where students are enrolled respectively
in no courses, one course, two courses, and four courses.

Addition to the Beginning <Head) of a Complete Buoy Chain
Figure 3 shows the result of adding a member record to the
beginning of a buoy chain which has reached its maximum
length of eight member records .. <~ote the .seque~ce_number
030 coming before 040.l The original chain sphts into two
chains of length two and seven, and the newly added record
becomes the first record in the first chain. A second buoy
record is created. as is an index block (record), and both are
stored on page 7, which is the page of the record immediately
preceding the split.

Addition to the Interior of a Complete Buoy Chain. Figure 4
shows the result of adding a member record to the second
position in a buoy chain which has reached its maxim.um
length of eight. (Note the sequence number 060 coming
between 040 and 080.) The original chain splits into two chains
of three and six. and the newly-added record becomes the
second record in the first chain. The newly-created buoy and
index records are stored on page 2 instead of page 1 tthe page of
the member record immediately preceding the split) only
because page l has reached its maximum of 29 records.

Figure j shows the result of adding a member record to
the third position in a buoy chain which has reached its
maximum length of eight. (Note the sequence number 08'.)
coming between 080 and 090.) The original chain splits into
two chains of four and five, and the newly-added record

becomes the third tecord in the first chain. The newly- created
buoy and inde& records are stored on page 4, which is the page
of the member record immediately preceding the split.

Figure 6 shows the result of adding a member record to
the fourth position in a buoy chain which has reached its
maximum length of eight. !Note the sequence number 09'
coming between 090 and 100 l The original chain splits into
two chains of five and four, and the newly-added record
becomes the fourth record in the first chain. The
newly-created buoy and index records are again on page 4.
which is the page of the member record immediately preceding
the split.

Figure 7 shows the result of adding a member record to
the fifth position in a buoy chain which has reached its
maximum length of eight. (Note the sequence number 10'
coming between lOO and 110. l The original chain splits into
two chains of four and five, and the newly-added record
hecomes the first record in the second chain. The
newly-created buoy and index records are once again stored on
page 4, which is the page of the member record immediately
preceding the split.

Figure 8 shows the result of adding a member recoi·d to
the sixth position in a buoy chain which has reached its
maximum length of eight. !Note the sequence number 11~
coming between l 10 and 120) The original chain splits into
two chains of five and four. and the newly-added record again
becomes the first record in the second chain. The
newly-created buoy and index records are still again stored on
page 4 which is the page of the record immediately preceding
the split.

Figure 9 shows the result of adding a member record to
the seventh position in a buoy chain which has reached its
maximum length of eight. (Note the sequence number 130
coming between 120 and 140.) The original chain splits into
two chains of six and three. and the newly-added record again
becomes the first record in the second chain. The
newly-created buoy and index records are stored on page 2
instead of page l (the page of the member record immediately
preceding the splill only because page 1 has reached its
maximum of zq records

130

Figure 10 shows the result of adding a member record to
the eighth position in a buoy chain which has reaced its
maximum length of eight. <Note the sequence number 145
coming between 140 and 1'0.J The original chain splits into
two chains of seven and two, and the newly-added record again
becomes the first record in the second chain. The
newly-created buoy and index records are again stored on page
2 instead of page 1 !the page of the member record immediately
preceding the splill only because page l has reached its
maximum of 29 records.

Addition to the End (fail) of a Complete Buoy Chain. Figure 11
shows the result of adding a member record to the end of a buoy
chain which has reached its maximum length of eight (i.e .. to
the ninth position in the chain l. <Note the sequence number
160 coming after 1'.)0J The original chain does not split in this
case. Instead, the newly-added member record becomes the sole
record in a buoy chain by itself. The newly-created buoy and
index records are placed on page 8, which is the page of the last
member record in the original chain.

ADDITION OF A MEMBER RECORD BITWEEN TWO EXISTING BUOY
CHAINS

In this part of the study, member records were added
between two existing buoy chains, both of which had reached
their maximum length of eight records.

figure 12 shows the makeup of the CS j(\2 COURSE-GRADF
~et after the second loading of the database There is one owner
record. one index record, three buoy records, two buoy chains
of length eight, and one buoy cha.in of length three.

Figure 13 shows the result of adding a member record
between two chains. both of which have reached their
maximum length of eight. tNote the sequence number 160
coming between 150 and 170. I The second chain splits into two
chains of two and seven. and the newly-added record becomes
the first record in the chain of two. It should be noted that this
result is the same as that observed in adding a member record to
the beginning of a complete buoy chain. (Refer back to Figure
3) The newly-created buoy record is stored on page 2. which is
the page of the member record immediately preceding the split

Figure 14 shows the makeup of the CS 562 COURSE-GRADE
set after the third loading of the database. There is one owner
record, one index record, three buoy records. two buoy chains
of length eight. and one buoy chain of length one. Figure 14
also shows the makeup of one STUDHff-GRADE set occurrence
(STUDENT 'TOWNSEND'). with one buoy record and three
member r in tet'section records

CHA:.;GE (MODIFICATION) OF A SORT KEY IN A MEMBER RECORD

In this part of the study. the sort keys of member
records in a buoy chain were changed (modified)

Change of a Sort Key within a Buoy Chain. Figure 1~ shows the::
result of changing (modifying) a sort key so as to change the::
position of a member record with an existing buoy chain. The
sort key for the membe1· rerord corresponding to STUDE!'liT
'FINTON' has been changed from 090 to 1 lj, causing this
member reco1·d to be moved from the fourth position in the
first buoy chain to the sixth position in the buoy chain. (Note
the sequence number 115 coming between 110 and 120.) The
other two buoy chains remain unchanged. and the index and
buoy records at'e unaffected.

Change of a Sort Key so as to Divide a Buoy Chain. Figure 15
shows the result of changing (modifying) a sort key so as to
divide a buoy chain which has reached its maxim.um length of
eight. The sort key for the member record corresponding to
STUDENT 'FINTON' has been changed from 090 to 215. causing
this member record to be moved from the fourth position in the
first buoy chain to the fifth position in the second buoy chain.
This in turn causes the second cha.in to split into two chains of
four and five, and the modified record becomes the first record
in the chain of five. <Note the sequence number of 215 coming
between 210 and 250.) It should be noted that this result is the
same as that observed in adding a member record to the fifth
position in a complete buoy chain. (Refer back to Figure 7 J
The newly-created buoy record is stored on page 4, which is the
page of the member record immediately preceding the split.

Figure 17 also shows the result of changing (modifying)
a sort .key so as to divide a buoy chain which has reached its
maximum length of eight. In this case, the sort .key for the
member record corresponding to STUDENT 'TOWNSEND' has been
changed from 320 to 045, causing this member record to be
moved from the first (and only) position in the third buoy
chain to the third position in the first buoy chain. This in turn
causes the first chain to split into two chains of four and five.
and the modified record becomes the third record in the chain
of four. It should be noted that this result is the same as that
observed in adding a member record to the third position in a
complete buoy chain. (Refer back to Figure j.) The
newly-created buoy record is stored on page 2, which is the
page after that of the member record immediately preceding
the split (page 1 having already been filled to its maximum of
29 records). Also to be noted in Figure 17 is the fact that the
buoy record for the fourth buoy chain (7 /022) remains in the
database, even though it has no member records beneath it.

131

And finally to be noted in figure 17 is the fact that the
STrDD:T GRADE set occurrence is unaffet.:ted by the
modification of the COURSE-GRADE sort key.

Change of a Sort Key so as to Split Two Buoy Chains Figure 18
shows the result of changing !modifying) a sort key so as to
split two buoy chains. both of which have reached their
maximum length of eight. Essentially. the modification is one
which attempts to make the member record the ninth t'ecord in
the first buoy chain The sort key for the membet' record
corresponding to STUDENT TOWNSEND' has been changed from
320 to 14j, causing this member record to be moved from the
first (and only I position in the third buoy chain lo the last
position in the first buoy chain. Since a ninth member is not
possible. the record becomes the firt.lt record in the second buoy
chain and causes the second buoy chain to split into two chains
of two and seven. This result is the same as that observed in
adding a member record to the beginning of a complete buoy
chain. (Refer back to Figure 3.J The newly-created buoy
record is stored on page 9 instead of page 8 (the page of the
member record immediately preceding the split! only because
page 8 has reached its maximum of 29 records. (Note that the
record with database key 8/02q does not appear in Figure 18).

REMOVAL/DELETION Of A .MEMBER RECORD FROM A BUOY CHAIN

In this part of the study, member records were removed
or deleted from a buoy chain. Removal was from a particular
set occurrence. and deletion was from the database as a whole

figure 19 shows the result of removing (or deletingJ all
member records from a buoy chain (two in this case. from the
second buoy chain) The buoy record for this chain remains.
with no member records beneath it, and points directly to the
buoy record for the third buoy chain.

Figure 20 shows the result of removing (or deleting) a
member record from a buoy chain. The effect of removing or
deleting the member record corresponding to STUDENT 'MEARA'
and COURSE ·cs 562' is the same in terms of the diagrams in
Figure 20. That is. the removal or deletion of this record causes
the logical deletion of the member record from both the
COURSE-GRADE and STUDENT-GRADE sets. In the case of
removal, deletion is only logical. The member record still exists
physically in the database, but its NEXT pointers have been set
to 0/000 (null). The NEXT pointers of the records logically
preceding the removed record (one in each set) are modified so
as to point around the removed record, and the PRIOR pointers
of the records logically succeeding the removed record (again
one in each set) are modified so as to likewise point around the
record. In the case of deletion, the member record is truly
(physically) deleted from the database and the space formerly
occupied by the record is reclaimed the member record with
the database key 21021 "moves up" on lhe page from an offset of
•259 word!: to •249 words and is now adjacent to the member
record with the database .key 21019.

Figure 20 also shows the result of removing (or
deleting) a member record from a buoy chain. In this case, t.he
purpose was to show that for a student having only a single
member record, removal or deletion causes the logical (and
perhaps physical) deletion of the member record, but leaves
the buoy record pt'esent (for the STUDENT-GRADE set.), even
though there is no longer a member record beneath it.

DISCUSSION

The most important summary to be made in this paper
concerns the location of newly-created buoy records and the
type of buoy chain split (if any) that occurs.

Figure 11 showed the simplest case, namely the addition
of a member record to the end of a complete buoy chain. The
existing buoy chain remained intact, the new buoy record was

created a.Ad stored 011 the same page as the last member record
in the existing buoy chain, and the new member record was the
sole member in the newly-created chain.

Figures 3 through 10. 011 the other hand, demonstrated
two methods for accommodating a new buoy record and a
corresponding buoy chain split. In Figures 3 through 6 where
the new member record was added just before the first, second.
third, and fourth member records in the existing chain
(respectively), the new member record was placed in the
existing buoy chain and the new buoy record was in all cases
placed two records after the new member. In Figures 7 through
10 where the new member was added just before the fifth. sixth,
seventh, and eighth member records in the existing chain
(respectively). the new member record was placed in the
newly-created buoy chain and the new buoy record was in all
cases placed on record before the new member.

132

·····························•••t••••··································· • OEYit:r.: '4f.D·T !\.I :nN'l'R'J[, [,,NGiJl\G~ E'H~IE<l *
••~•••t••••••••••••••••••••$t••••••••~ft•0•'$•;•~•~·~~u••t•••~••i~•••••~•

n11:;gs I'J '1R"l!:R F:\Y c:1~:'ll\•ID.·

r~r€~Cr?r U?~~Tg, ~r:~PTl~~S.•

1J ~; ~· c u 'I ili ·1 r r : I :i .!\ r i:: r.> ;;:: x c ''.Pr 11 ~1 s •
J:;q:(nj. JS 5:'.':r, •.

as~r~u !\,q~'i r~ scns~1

R•'? IS 2:J
qJ~FFR :1JNr [5 1
~llL: AT l<)<;f l· RPP
fJ.':(ST PA'.;S lS t
!,AH Pl\:;E: TS ~
oti~L srz~ !5 512 dORQS.

~S5IGN Aqe:A2 ro SCDB,2
RPr.• JS 1~
RJFFER :JJNr IS 1
=~L: AT ~Jsr s RPP
r Ji~ ST PA'.; e:. IS t :>
!,A'H p,:;r, TS 14
P/li:;e; STZ!!: IS 512 llORDS 0 •

·~···~ • ~CHE~~ •
••t$t•••···,·········· ... , ,
$ J)~NPIF'ICll.~l,~ OYVtSTJ~ ' , .. , $,J•••·~······~···

r, RE~ NA 14!0'. rs &.RI!: Al
PkTV&.:Y r,1JCl(F' 0 R UPDATE: IS
PttUa.:v [,•J~!(ror: PR::JrE~TP.:D

PfltV&.:V L'JCK P'~R EXCt.USI VE:
Pl<Tl!\:Y L•J::"K f'OR REIRIE:ill\L
PRIV&.:Y r.,•J::'K f'OR PR:JTECfE:D
PRY ii !\:.Y [,·Jt'l< FOR EXCLUSIVE

1'RE:A NAl\E JS 'RC:A2
PR I'/ !'\::rt LiJCK F'DR UPDll.TE IS
PRtvl\:'l L•JCK F'OR PR:Jl'ECrE:o
PRIV&.::Y [,iJCK F'OR E>CCC.,USIVE
PRIV&.::? [,•JC)(FOR REfQIEVAL
PRTV a.::r [,•JCK roR PR::>rEcre:o
PRIV&.:Y [,•J('.'1(FOR Ex:c.usxve:

Figure 1. Schema and Sub-Schema.

PLUl
iJP:>ArE IS PLPl11
JOOA rE IS PLEUl
IS PLIU
RErRIEVAt. IS PL PIH
Rll:rqIEVllL IS PLE:Rl •'

Pl.U2
UPOArE IS PLPU2
UPOUE IS PLEU2
IS Pt.R2
R@:fRIEVAL IS PLPR2
REIRIEVAt. IS PLE:R2 •'

133

**••*·····~··~···· • R~roRJ se:rr~~ • ••••••••• ,., ••• * ••
RE:C:Jf.'D •J.l\"1!1: r:;· Sl'UDE:'H

[,OcArI'lll '40Df. rs CA(,C' USIN:;. R•SfUD€~H .. IO
DJPL~:-rr.s AQE ~jT A(,LjN~D

WirHt'i l\R!:~1, AR~A?. ~REA•I'." IS ~REll•lN•USE;.
02 R•SfU)€~r-ro PTC 1(()05).1
02 R•SE:,··~O PIC 1((005).·
02 R•Ni\11:;: ?IC X022) •'
n2 Q•~I~~~R PIC KCD0~).•
02 Q•~Dl~ESS SIZ~ tS 15 USAGE IS DIS?t~Y·&.1
02 R•Pi1~! ?IC K(009) OCCURS 2 r1~ES~1
02 R•Sf~~OING PIC K(004).'
02 R•F.XP•GttJID•DJlfE PIC K(~2~) •.
02 R•'IAJJQS PIC K(035) 0 •

r)2 R•HJ>ll:iT'JWN PTC XC0?'.)) 0 1

02 R•SEll•Gi?JI PIC '1\J99;)9.,
02 R•SE~·EARN•HRS PIC ~()02) 0 1
02 R•SEllaPJT'lT 0 :·!flS PIC il('.)02) •'
02 R•SE~·DUJIL•PTS PIC ~(~03) 0 1
02 R•C:Jll•G?t.
02 R•CU~-F~RN•HRS
02 R•CJtt•PJI'l!•qns
02 R·~JW·~~\L•PrS
02 ~·CU~·~£ME~TER

•; :: :: J ~ D Ill a '41!: T s' : nu R 5 E:'

P'\'C 9lfiJ'.};!9 0 1

P~C 9("0'3).·

P!C ;ic:: ;i} 0 1

PIC ;J(OC:3).
PIC X(G'.l;J).•

rncAr!Jll ~:J~E TS DIRE:Cr C•D9··!<f.~
lilrH~l <\i"n:lllt.'
02 R•SE~T1JN•NUllB
02 R•CJ~1~E-~U~q
02 ~·CJ~~S~·rTrLE
02 R•CJO~S~·HOUQS
02 R·~~[~T~~·TI~E

1'2 '1•.!'ISrP:JC?DR
02 R•MEt!T'IG•PLAC~

R~C~RD ~-~~ y5· ~RADE
LOCAT[~~ ~o~~ rs VIA
14 Ir ii IN AR!:Jll.
02 R•CJ'.HSE:.
02 R•S!:Cil'tJN
02 R•S?!D€NT
02 R•Se:~,

02 R•.Gct~O€

Pre
?IC
?J.C
PIC
P!C
PIC
PIC

K!OO<l}.1
X(D07).
ii:cno).1
9(')01). 1

XC011) 0 1

:{(()1~).1

XCOOS),1

P!C XC007) •'
PIC KC00~),1
P!C XC005),•
PIC XCOOS).•
PIC XC001).,

Figure 1. Schema and Sub-Schema (continued).

134

, t;•(t~· . ;1\l•ll•

* SET s:'.:Ci"fJ•J *
t0*~**•f-(:$t,:f<·~~

~ f. I '1 t. \, :'. 1. 'O •;r il D S ~ T • ::; H A D :0:
~on~ lS ~~-1~ GI~K~D IO PRIJR
.H c> E !'.! ! S) '.i R T' :: ')
Ow~S~ TS S~JDENt

~E~~E~ rs· ~Rr.Df JPTIJN~L ~Ur1~Aric
UN!<!)• ro 'JW'H:R
'SC~N)~~G KEr IS R•COURSE R•SECTION
ryJPLT:~rss 'RE NJT ALLJN~D

SET J:CJq1!11CE S~LECrlON IS r~RU.

LJC~T[~~ ~OD~ OF OWNER.t

SET NAME IS ~lURSE·~RADE
i.,or;S: IS ~i~1N LI~KE:D TO PRIJR
OHF)S:R rs S'BTEf'l
OW'JER IS :nuRsr.
ME~aER I5 :RAD~ OPTIONAL AUfO~ArIC.

LINKE)• ra '.Jii'IER
'SCEN)f llG KEY IS R•SEQ
)JPL!T:!l\rr.s ARE NOT ALLO~E:!)·

SET 1:cu~1~~re: SEL~:rIO~ rs T~RU
LOCA?IDN ~OD!' OF OWNER.t

········••4••••··~·····~~····••f•·········•*¥*••··················~*~'** • SU~·SCij~MAS t

••t.~f.······~·~················~*·······~···~···~·················~···~~'

············~~··········~·····~·$·0~····
t SUR1 SIJ~-5~-IJ.:"IA. • 'IOR 11i\[, FULL' ACCS:55 *
••*•'••~•••••v•••••••••••***~•~•¢•tt•~•~

SUR•SCH~~' ~~~~ IS SJBt
PIH vlCY LtJ:X IS SSt •'

AREA SE'.CTIOll·.t
tOPi' ALu' 'PEAS.•

RE~ORD se::.ritJ'fo.1
01 SIUD€H.1

02 R•i'J.OORE:SS.·
0 ~· R•STREEr
03• R•ct rY
H• R•STl\TE
03• R•ZIP

C:JPi' JTHERS.,
01 CJURt;!:J.t
01 ~;u.o~.•

sc:r SECITJN,
C'OPJ:' 'LC.' SErS.•

PtC XC023) •'
PIC XC01S).1
?IC XC002J •'
?IC XC005) •'

Figure 1. Schema and Sub-Schema (continued).

135

·····*······························•••f···················· ' SUB1T sus-s:~E~A - rES!ING PULL ACCESS CrEMPORARY 'REAS] '

············••¥•••••••••••*••·······························
Sll8•SCHP:\lA ~1\14!':1 IS SU:\1'1'

PPIVAC:t t:.~:K IS SSH.'

ARC:A SEC rt J~ •'
COPY f!~Pj~-RY AREAl AREA2.

F1€C11RD ~E~n J'l .1

J1 STJO!Vf'.•
02 R• \OC>RESS .1

'.n R•STRe:ET
G3 R•Ctr't'
:>) R•S'TA l'E
03 R•ZTP

::np,y '..llH:!R5 0 •

0\ :JJRSE:.1
Ot ;;R A0€:0 1

se:r SEC!'I::J~ •.
C'lPV' ALL s::rs ..

l'IC KC023)"
PJ.C KC01!)).
?LC iCC00?.) 0 1

PIC KC005),·

Figure 1. Schema and Sub-Schema (continued).

136

COURSL
cs 562
'SECT 0766
(3/023)

GRESSLER
07863/040
(7/020)

FINCH
sg9G2 /'J00
(1 /IJ?I\)

FINTON
49491 /090
(4/018)

FRILLMAN
45487 / J ()[)

(4/019)

GANESH
02510/110
(4/020)

LEE
80220/120
(l/029)

MEARA
26487/140
(2/020)

MEYF!1
f\7409/lSO
(8/027)

Figure 2. First Loading of the Database.

137

cs 529
(l/026)

cs 562
(2/020)

cs 598
(2/023)

CS U570
(2/022)

Figure 2. First Loading of the Database (continued).

138

,-----
/ SlUIHrn

Gf\tl[SH
02510
(3/005)

cs ~i(i2
(4/020)

cs 529
(5/015)

cs 598
(5/016)

~ STUOn!TAnnl
.,, 00474/030

(4/023)

BRESSLER
07863/040
(7 /020)

-·- ·- - --·---·--·-·· -1

COURSE
cs !il1i'
SECT 0766
(3/023)

INDEX
(7/024)

FINCH
89952/080
(1/028)

FINTON
49491/090
(4/018)

FRILLMAN
45487/100
(4/019)

GANESH
02510/110
(4/020)

LEE
80220/120
(1/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

cs 562
(4/023)

Figure 3. Addition of a Member (Intersection) Record to the Beginning (Head) of a
Complete Buoy Chain.

139

Figure 4.

flRESSLER
Q7863/040
{7/020)

STUDrtn Ann2
~ 55555/060

(8/029)

FINCH
89952/080
(1/028)

COURSE
cs 562
SCCT 0766
(3/023)

INDEX

(2/025)

r INTON
49491/090
(4/018)

FRILLMAN
45487/100
(4/019)

GANESH
02510/110
(4/020)

'
LEE
80220/120
{l/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Second ·Position in the Chain).

140

llRESSl.f.R
07863/040
(7 /020)

FINCH
89952/080
(1/028)

STUDENTADU3
~ 77777 /085

(4/023)

FINTON
49491/090
(4/018)

COURSE
cs 5fi2
SECT 0766
(3/0?3)

INDEX
(4/025)

FHILLMl\N
4541!7 /lOO
(4/019)

GANESH
02510/110
(4/020)

LEE
80220/120
(1/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

Figure 5. Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Third Position in the Chain).

141

Figure 6.

~

1rnrss1.rn
07863/040
(7 /02'))

FINCH
89952/080
(l/028)

FINTON
49491/090
(4/018)

STUDENTADD4
77777 /095
(4/023)

FRILLMAN
45487/100
(4/019)

COURSE
cs 562
SECT 0766
(3/023)

INDEX

(4/025)

GANESH
02510/110
(4/020)

LEE
80220/120
(l/029)

MEARA
26'187 /140
(2/02.0)

MEYER
87409/150
(8/027)

Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Fourth Position in the Chain).

142

Figure 7.

lll~ESSLER
07863/040
(7/020)

rINCfl
89952/080
(1/028)

FINTON
49491/090
(4/0Hl)

FRILLMAN
45487/100
(4/1)19)

COURSE
cs 562
SECT 0766
(3/023)

INDEX
(4/025)

Gl\lffSH
02?10/110
(4/020)

LEE
80220/120
(1 /fl29)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Fifth Position in the Chain).

143

BlffSSLER
07863/040
(7/020)

FINCH
89952/0BO
(l/028)

FINTON
49491/090
(4/018)

FRILLMAN
45487/100
(4/019)

GANESH
02510/110
(1\/020)

COURSE
cs 562
SECT 0766
(3/0?:!)

INDEX
(4/025)

STlJOrNT llODfi
77777 /115
(4/023)

LEE
80220/120
(l/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(fl/027)

Figure 8. Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Sixth Position in the Chain).

144

BRESSLER
07863/040
(7/020)

FINCH
89952/080
(l/028)

FINTON
49491/090
(4/018)

FRILLMAN
45487/100
(4/019)

GANESH
02510/110
(4/020)

LEE
80220/120
(l/029)

COURSE
cs 562
SECT 0766
(3/()23)

INDEX
(2/025)

STUDENTADD7
77777 /130
(4/023)

MEARA
264P7/llll)
(2/020)

MEYER
87409/l 50
(8/027)

Figure 9. Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Seventh Position in the Chain).

145

BRESSLER
07863/040
(7/020)

COlll!'.,I_
cs !.>li2
SECT 0766
(3/023)

INDEX
(2/025)

FINCH :=J 89952/080
(l /028)

FINTON
49491/090
(4/018)

FRILLMAN
45487/100

.. (4/019)

G.ANESH
02510/110
(4/020)

LEE
80220/120
(l/029)

MEARA
26487/140
(2/1)20)

STUOENTADD8
77777 /145
(4/023)

MEYER
87409/150
(8/027)

Figure 10. Addition of a Member (Intersection) Record to the Interior of a Complete
Buoy Chain (Eighth Position in the Chain).

146

Bl?! SSl.lfl
07863/040
(7/020) ,,
FINCH
8995?/0BO
(1/028)

\

FIN TON
49491/090
(4/0lfl)

FRILLMAN
45487/100
(4/019)

GANESH
02510/110
(4/020)

LEE
80220/120
(l/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

COURSE
cs 562
SECT 0766
(3/023)

INDEX
(9/023)

S TlJDl!H /\lll!'J
40il76/160
(5/017)

cs 529
(5/015)

cs 562
(5/017)

cs 598
(5/016)

F~gure 11. Addition of a Member (Intersection) Record to the End (Tail) of a Complete
Buoy Chain.

147

BRESSLER
07863/040
(7/020)

FINCH
89952/080
{l/028)

FINTON
49491/090
(4/018)

FRILLMAN
45487 /100
(4/019)

GANESH
02510/110
(4/020)

LEE
80220/120
(1/029)

MEARA
26487/140
(2/020)

MEYER
87409,1150
(8/027)

COURSE
cs 562
SECT 0766
(3/023)

INDEX
(8/029)

MORl1! S
OB673/l70
(2/021)

OLLAR
41404/210
(4/021)

QUINN
00412/250
(5/016)

REPKA
60939/270
(6/014)

\

SANCHEZ J 47007/290
(q/022)

I

SUL LI VAN
03528/310
(7 /021)

TOWNSEND
42333/320
(9/023)

WATSON
07908/330
(4/022)

Figure 12. Second Loading of the Database.

148

WIEGAND
03?48/340
(2/022)

\

WRIGHT
04851/350
(6/015)

YEil
10051/360
(2/023)

!lfffSSLER
07863/040
(7/020)

FINCH
89952/080
(1 /028)

FINTON
49491/090
(4/018)

FRILL MAN
45487/100
(4/019)

GAtJESH
02510/110
(4/020)

LEE
80220/120
(l/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

STUOENTllDDlO
~ 40U76/l60

(5/018)

MORRIS
08673/170
(2/021)

COURSE
cs 562
SECT 0766
(3/0?3)

INDEX

(8/029)

Ol LllR WIEGllWJ
41404/210 0324$Jf3'10
(4/021) (2/022)

QUINN WRIGHT
00412/250 0'1851 /350
(5/016) (6/015)

REPKll YEH
60939/270 10051/360
(6/014) (2/023)

SANCHEZ
47007/290
(9/022)

SULL IV llN
0352P /310
(7/021)

J TOWNSEN!J
42333/320
(9/023)

WATSON
07908/330
(4/IJ22)

Figure 13. Addition of a Member (Intersection) Record Between Complete Buoy Chains.

149

BRENSKELLE
00474/030
(4/018)

BRESSLER
07863/040
(7/020)

I' I NCH
89952/080
(1/028)

FINTON
49491/090
(4/019)

rRILLMl\N
45487/100
(4/020)

GANESH
02510/110
(4/021)

LEE
80220/120
(1/029)

MEARA
87409/140
(2/ 02'.l)

COURSE
cs 562
SECT 0766
(3/0?3)

INDEX

(2/022)

MEYER
87409/1 'iO
(B/ll?7)

MlUNS ~ 40876/160
(5ilJl6)

MORPJS
()P,fi73/l 70
(2/023)

OLLAR
4Wl4/210
(4/0?2)

QUINN
00412/250
(5/017)

REPKA
60939/270
(fi/014)

Sl\NCllf7
47007/29[)
(9/022)

SULLIVl\rl
03528/310
(7 /021)

Figure 14. Third Loading of the Database.

150

TOWNSEND
42133/120
(9/fl??)

STUDENT
lL\Wi~s::r-o

42333
(CJ/001)

cs 529
(9/021)

cs 5fi?
(9/022)

cs 59il
(9/0"3)

' j L---c j

flRENSKELLE
00474/030
(4/018)

BRESSLER
07863/040
(7/020)

FINCH
89952/080
(l /028)

FR!LLMAN
4S4P.7 /l 00
(4/0?0)

GANESH
02510/110
(4/021)

runoN

..... 49491/115
(4/019)

LEE
80220/120
(l/029)

ME.i\RA
fl7'r09/l 40
(2/020)

COURSE
cs 5f12
SECT 0766
(3j023)

INDEX

(2/022)

M[YER
P.7409/150
(8/027)

MILL NS
40876/160
(5/016)

MORRIS
OB673/l70
(2/0l'J)

OLLl\1<
41404/210
(4 /021')

QUHIN I
0011?/250
(S/017)

~£-_J

rn rf<A
60939/27Ll
(6/014)

Sl\NCHFZ
47007/290
(9/022)

SULLIVAN
03528/310
(7 /IJ?l)

figure 15. Change of a Sort Key within a Buoy Chain.

151

rmm'.:~:r;n

421.;3/320
(9/flt'?)

BRENSKELL E
00474/030
(4/018)

BRESSLER
07863/040
(7/020)

F!NCll
89952/080
(l/028) ...
FR!LLMAN
45487/100
(4/020)

GANESH
02510/110
(4/021)

LEE
80220/120
(l/029)

MEARA
87409/140
(2/020)

MEYER
87409/150
(8/027)

MILLNS
40876/160
(5/016)

MOllRIS
08673/170
(2/023)

OLLAR
41404/210
(4/022)

COURSE
CS5fi2
SECT 0766
(3/023)

INDEX
12/022)

FINTON
49491/215
(4/019)

OU INN
00412/250
(5/01 7)

RrPK/\
60039/270
(6/014)

S/\NCHEZ
47007/290
(9/022)

SULL!V/\N
03528/310
(7 /021)

Figure 16. Change of a Sort Key so as to Divide a Buoy Chain.

152

TOWNSEND
42333/320
(9/022)

BRENSKELL.E FINTON
00474/030 4CJ49l/090
(4/018) (4/019)

BRESSLER FRILLMAN
07863/040 45487/100
(7/020) (4/020)

~
TOWNSEND G/INESll
42333/045 02510/110
(9/022) (4/021)

FINCH LEE
89952/080 80220/120
(l/028) (1/029)

MEARA
87409/140
(2/020)

COURS[
cs 5f>2
SECT 0766
(3/023)

INDEX
(2/022)

MEYER
B7409/l50
(8/027)

MILLNS
40P76/160
(5/016)

MOHli IS
08673/170
(2/023)

OLL/\R
41404/210
(4/022)

QUHlN
00412/250
(5/017)

REPKA
60939/270
(6/014)

S/\NCHE7
47007/290
(9/02?)

SUL LI V/\N
0352q1310
(7/11?1)

Figure 17. Change of a Sort Key so as to Divide a

153

..

cs 529
(9/'121)

cs 5()2
(9/U22)

cs 598
(9/023)

ain.

BRCNSKELLE
00474/030
(4/018)

BRESSLER
07863/040
(7/020)

Fl NCH
899'.12/080
(l/028)

F !NTOrl
49491 /090
(4/019)

rllll.LMAN
45487 /100
(4/020)

GANESH
02510/ll 0
(4/021)

LEE
80220/120
(l/029)

MEARA
87409/140
(2/020)

~·
TOWNSEND
42333/145
(9/022)

MEYER
87409/150
(8/027)

COURSE
cs 562
SECT 0766
(3/023)

INDEX
(2/022)

Ml I INS
40fl7G/l 60
(5/016)

MOHR IS
08673/170
(?/0?3)

011 IW
41404/210
(4/112?)

QUINN
01141? /2'10
('i/lll 7)

Pf l'f'./\
5r1q19;no
(6/Ul4)

S/\NI Ill 7
470'J7 /290
(9/0?2)

SULLJ V/\M
0352B/310
(7/021)

Figure 18. Change of a Sort Key so as to Split Two Buoy Chains.

154

llRENSKELLE
00474/030
(4/018)

BRESSLER
07863/040
(7/020)

f!NCH
H9952/0BO
(l/028)

FINTON
49491/090
(4/019)

rRlLLMAN
45487/100
(4/020)

GANESH
02510/110
(4/021)

LEE
80221)/120
(l/029)

riE /\RI\
87409/140
(2/020)

~ ..

COURSE
cs 562
SECT 0766
(3/023)

INDEX
(2/022)

Ml LL NS
40876/lfiO
(5/016)

MORRIS
08673/170
(2/023)

OIL /\R
41401\/210
(4/022)

QUINN
00412/250
(5/017)

RU'K/\
5n939;270
(6/014)

SANCHEZ
ll7007/290
(9/022)

SULLIV/\N
03528/110
(7/'J?l)

Figure 19. Removal or Deletion of All Member (Intersection) Records from an
Intermediate Buoy Chain.

155

..

COURSE
cs 56?
SCCT 0766
(3/023)

flRESSLrn
07'163/040
(7/020)

FINCH
89952/080
(l/028)

FINTON
49491/090
(4/019)

FRILLMAN
45487/100
(4/020)

GANESH
02510/110
(4/021)

LEE
80220/120
(l/029)

1

....-------......
MEYER
87409/150
(8/027)

•
cs 529
(l/025)

-----lt----
CS 59B
(2/023)

CS U570
(2/022)

j{EMOV_E GFflD_E FROM ALL SETS

Line 2/019: at +239 uses 10 words
Line 2/020: at +249 uses 10 words
Line 2/021: at +259 uses 10 words

SET NA_fi_E_ _______ _f l_E_X_I_ _ _P_R_!_UJ~ _ _9!/JlE_f~

STUDENT-GRADE 0/000 1/026 1/006
_(:QUB_S_l:.G_E_A_Q_E ____ Q(_Q~ _ _ll0?_9 _]_/_9_23
POINTER STATUS ~ SamP. Same--

(Record exists with null NEXT pointers.)

DELETE GRADE

L 'n 2 019: at +239 uses 10 words
Line 2/021: at +249 uses O wor s

(DeletPd space has been reclaimed.)

Figure 20. Removal or Deletion of a Member (Intersection) Record from a Buoy
Chain

156

..

COURSE
cs 562
SECT 0766
(3/023)

BRESSLER
07863/040
(7/020)

FINCH
89952/ono
(l/028)

FINTON
49491/090
(4/019)

FRILU1AN
45487/100
(4/020)

-----~
LEE
80220/120
(l/029)

MEARA
26487/140
(2/020)

MEYER
87409/150
(8/027)

..

Figure 21. Removal or Deletion of a Member (Intersection) Record from a Buoy
Chain ~- Example 2.

157

A PROGRAMMER'S DATABASE SYSTEM FOR SOFTWARE
DEVELOPMENT AND MAINTENANCE

Rachel Schwab, Division of Nuclear Medicine and Biophysics
Department of Radiological Sciences & The Laboratory '
of Nuclear Medicine (DOE), UCLA School of Medicine,

Los Angeles, California 90024

ABSTRACT

Large software systems require tools for their
management during both development and maintenance stages. A
database is a good tool for managing the source files that
compose a software system. The information in a software
database falls into three areas: (1) information about each
source file, (2) information about each module (i.e., program
or subprogram) in each source file, and (3) information about
the references each module makes to other modules.

This paper describes a database developed to monitor the
source files of a large medicial imaging processing system
written in our division. This system runs on VAX 11/730 and
VAX 11/780 computers and contains over 85,000 lines of source
code.

INTRODUCTION

As a software system develops and grows,
programmers must be aware of how the system is
changing or else chaos will result. If programmers
become confused about how the different programs and
subprograms relate to each other, they are likely to
make changes that cause unpredictable side effects
on other system components.

In our division, four programmers worked for a
period of 18 months on a large medical image
processing system (UCLAPET), which is still
undergoing additions and modifications. The sources
for this system reside in 21 directories containing
a total of 382 source files. These source files
have code for 765 modules, 580 of which reside in
one of the eight UCLAPET libraries.

When we began dreading even minor software
changes, we realized something had to be done to
keep our system organized and give us information
about our sources. Ile developed a programmer's
database system (PROGDB) using Relational Technology
Inc.'s INGRES relational database management system
to monitor the development and maintenance of our
source files. PROGDB contains information about the
contents of each source file along with cross
reference data. Since we had already purchased
INGRES to develop a clinical database system, we had
a reliable tool to use to develop PROGDB.

This paper describes what data we put into our
database, how we extract the data and organize it,
and how PROGDB is used to retrieve information about
our system.

DATABASE INPUT

The majority of our system source files are
written in RATFIV, a FORTRAN preprocessor, with the
remainder written in MACRO. Source files fall into
three categories:

1. MACRO subprograms.
2. RATFIV subprograms.

Proceedings of the Digital Equipment Computer Users Society 159

3. RATFIV program with (optionally) program­
specific subprograms.

All files in the first two categories exist in one
of the UCLAPET libraries. These libraries are
organized by functionality. For example, DISPLYLIB
contains subprograms which handle image display,
ROILIB contains subprograms specific to the regions
of interest program, etc.

Database data falls into two categories: data
from source file headers and cross references.
Whenever a programmer creates a new system source
file, he or she uses the NEYPROG VAX/VMS command
file to generate a source header. NE\lPROG uses the
appropriate comment marker (e.g., RATFIV="#",
MACRO=";") for each language. Following is an
example RATFIV source header:

FILE.RAS - one line file description.

#-

Last Edit
Application
Author
Modifications

06-Jan-1986
example.
Rachel Schwab

06-Jan-1986 : Rachel Schwab : initial
version.

•.. other information

PROGDB has routines which extract information
from the source headers of MACRO and RATFIV files
and put this information into the database. The
information extracted directly from the source
header includes: the last edit date for the file,
the author, and the package name (e.g., Display,
Regions of Interest, Profile, etc.).

Cross reference data is extracted using a
variety of tools. For RATFIV sources, first RATFIV
translates the source into FORTRAN. Then, FORTRAN
produces a listing file; no object file is created.
A PROGDB routine scans the FORTRAN listing and picks

Anaheim. California- December 1985

off module and reference information. For MACRO
sources, MACRO produces an object module. Then the
LIBRARY utility creates a dummy library, inserts the
object module into it, creates a listing file, and
deletes the library. A PROGDB routine picks off
module information from the listing file and inserts
the data into the database. The LIBRARY utility is
also used to determine when RATFIV and MACRO library
modules were last inserted into one of the UCLAPET
libraries.

IMPLEMENTATION

TABLES

The database contains four major tables:
SOURCES, MODULES, REFS, and LIBMODS. Descriptions
of each of these tables follows.

SOURCES. The SOURCES table holds general
information about source files; there is one record
per source file in the system. The following
attributes are kept:

1. file name 5. package
2. directory 6. status
3. author 7. document
4. last edit

The file name and the directory are determined from
file lookups when the user appends, modifies, or
updates source file information. The author, last
edit, and package attributes are extracted directly
from the file's source header. The status attribute
can have a value of "okay" or "under development";
the default is "okay". The document field defaults
to "none" which is hopefully not true! PROGDB's FIX
option (described below) permits the user to change
the values of the status and document fields.

MODULES. This
information about the
files; there is one
system. The attributes

1. file name
2. directory
3. module

table contains general
modules in each of the source

record per module in the
for this table are:

4. module type
5. library
6. library insert date

As above, the file name and the directory are
determined from file lookups when the user appends,
modifies, or updates source file information. The
module names are extracted using PROGDB routines.
The module type may be either "PROGRAM" or
"SUBPROGRAM". If a module resides in one of the
eight UCLAPET libraries, the library where it
resides and the date the module was last inserted
into the library are also kept with the module
record. This information is retrieved from the
LIBMODS table (see below).

REFS.
reference
references
reference,
this table.

This table contains information for each
made from a RATFIV module; MACRO

are not recorded. One record exists per
and presently there are 4159 records in

The following attributes are kept:

1. file name
2. directory
3. module
4. module reference

160

LIBMODS. This table is used when updating the
MODULES table to determine which library a library
module lives in and when it was last inserted into
it. LIBMODS has the following fields:

1. module
2. library
3. last insert date into the library

The user must invoke the LIBMODS update procedure
(described below) from the ADD, MODIFY, and UPDATE
options to make sure the LIBMODS table is up to
date. If LIBMODS is not up to date, the "library"
and "last insert date into library" fields in the
MODULES table will not be up to date either.

PROGDB OPTIONS

Upon initially activating PROGDB the following
form is displayed to the user:

Programmer's Database System

Welcome to the programmer's database system
This database allows you to manage the source
files in our system by using the following
six main options:

1. ADD information to the database.
2. DELETE existing database information.
3. MODIFY existing database information.
4. Get INFOrmation on the database contents.
5. FIX status and document fields of SOURCES.
6. UPDATE database information.

I Option (1 to 6) ? I

The user can choose one of the six available
options. Options 1, 3, and 6 (ADD, MODIFY, and
UPDATE) append or update database data. Option 2
(DELETE) deletes information from the database.
Option 5 (FIX) lets the user fix the status and
document fields of source records. Option 4 (INFO)
allows the user to query the data stored in the
database. The various options are described in more
detail below.

ADD and MODIFY Options:

Upon entering the ADD or MODIFY option the user
is given two choices: update the LIBMODS table or
proceed with the specified operation. If any of the
UCLAPET libraries were changed since the last time
the database was accessed for appending or updating,
the user should update the LIBMODS table to insure
that the library references are up to date before
proceeding to add or modify source file information.
The LIBMODS frame displayed below allows the user to
specify the libraries that need their module
information updated in the LIBMODS table.

Library Modules Update

Enter the name of the library you want to
update module information for. Type "ALL"
for all libraries.

Available libraries

ATTEN, CONTOUR, DISPLYLIB, ECATIII
PROGUTIL, PROFILE, ROILIB, UTYLIB

+---------------------------+
I Library ?
+---------------------------+

If the user is satisfied with the state of the
LIBMODS table, the add or modify operation can
proceed. A form is displayed, and the user can fill
it with the device, directory, and file of the
source file entries to add or modify. Vildcards may
be used. For example, in the form below the user
specifies to modify information about all MACRO
files in the directory [UCLA.SOURCES.VAL] on the
device UCLA$SOFT. As information about each module
is updated, the module name is displayed on the
form.

Updating Source File Information

Operation = MOD

File *.MAR

Directory UCLA.SOURCES.VAL

Device UCLASOFT:

+------------------------+
I Module =
+------------------------+

UPDATE Option:

Similarly to the ADD and MODIFY options, upon
entering the UPDATE option the user can either
update the LIBMODS table or immediately perform the
update operation. The user should update the
LIBMODS table if any of the UCLA libraries have been
changed since the last ADD, MODIFY, or UPDATE
options were performed on the database. Vhen
finished updating the LIBMODS table, the update
opertion can begin. Any file with a directory date
greater than or equal to the date the last updates
were done, will have its database information added
(for newly created files) or modified (for files
that already have information in the database).
Items such as the last edit date and library module
insertion date need to be updated. Additionally,
cross references may have changed.

The database maintains an internal table which
keeps the last update date. For example, if the
last updates were performed on December 1, 1985, all
files with a directory date greater than or equal to
December 1, 1985, will have their database
information updated. Below is the form that is
displayed to the user as the updates are performed.

161

Database Update Frame

Database updates will be performed on all
files in the source directories which were
created or modifed on or after the date below.

+--------------------------+
I Update Date : I
+--------------------------+

File being processed

Device
Directory
File

The UPDATE option provides a way of
automatically updating the contents of the database.
Ve run it on a regular basis to make sure our
database is valid.

DELETE Option:

The DELETE option allows the user to delete
information about a source file from the database;
this does not delete the source file itself. As
with all other PROGDB options, this option simply
deals with the information about a source file, not
the file itself. This option is used only when a
file has been removed from the source area. The
programmer who deletes the source file from the
source area must remember to invoke this option to
delete the corresponding database information.
Otherwise, the database will contain information
about files that no longer exist on the source area.

The form displayed when the DELETE option is
choosen is displayed below.

Deletion Frame

Enter the file name and the directory for the
source file information to delete from the
database.

File ?

Directory ?

FIX Option:

The FIX option allows the user to change the
"status" and "document" fields in the SOURCES table.
These fields default to "okay" and "none"
respectively, and the only way to change these
values is by invoking this option. The form
displayed when the user chooses this option is shown
below.

Source Record Update Frame

Fill in the form with specifications for the
source record you want to fix. You can only
change the status and document fields. Updates
other fields must be done using the MODIFY
option.

File Directory

Author Last Edit

Package

Status

Document

INFO Option:

The INFO option allows the user to retrieve
database information. There are five possible types
of retrievals:

1. Retrieve information from
table.

2. Retrieve information from
table.

the

the

SOURCES

MODULES

3. Retrieve information
4. Retrieve information

source file (join
MODULES tables).

from the REFS table.
about modules in a
of the SOURCES and

5. Retrieve information about
from a module (join of the
tables).

references to or
MODULES and REFS

Example queries for each of these five categories of
retrievals follow:

1. Vhich files have a last edit date greater
than date D? Vhich files were written by
author A?

2. Vhich modules live in library L? Vhet are
all the p1ogram modules?

3. Vhich modules does program P call? Vhich
modules call subprogram S?

4. Vhich modules reside in files written by
author A?

5. Vhich modules inserted into any UCLAPET
library after date D call subprogram S?

Users choose one of the five types of
retrievals and a form is displayed on their
terminals which can be filled with a query to
process. Vildcards may be used in the query
specifications. For example, the form below is
displayed for the first type of retrieval
(information from the SOURCES table). It is filled
in with a query to retrieve all files in directory
[UCLA.COMMONS) edited on or after January 1, 1986.

General Source File Information

+--------+--------------+----------+------------+
I File I Directory I Author I Last Edit I
!========+==============+==========+============!
I !UCLA.COMMONS I i>=l-jan-19861
I I I I I
I I I I I
I I I I I
+--------+--------------+----------+------------+

162

The data will be retrieved from the database and
displayed on the terminal. Scrolling is provided if
there is too much data to display on the screen at
one time.

It is also possible to specify more than one
query at a time. For example, if we wanted to
specify the previous query (retrieve all files in
directory [UCLA.COMMONS) that were edited on or
after January 1, 1986) and also specify a query to
retrieve source file information for all RATFIV
sources with a file name starting with the letter
"V", we would fill in the form as follows.

General Source File Information

+--------+--------------+----------+------------+
I File I Directory I Author I Last Edit I
!========+==============+==========+============!
I !UCLA.COMMONS I 1>=1-jan-19861
I V*. RAS I I I I
I I I I I
I I I I I
+--------+--------------+----------+------------+

Below is another example of information
retrieval from the database. This form corresponds
to the fifth type of retrieval (information about
references to or from a module). It has been filled
with a query to retrieve information about all
modules that call "INTVAL".

Module Reference Information

Fill in one or more attributes with specifications
and type GO to execute the query.

+---------------+
Module I Calls I

1===============1
File IINTVAL I

I I
Directory I I

I I
Type I I

I I
Library I I

I I
Date +---------------+

CONCLUSIONS

PROGDB has proven to be a useful tool for
managing the source files in our medic~l ~maging
application system. It allows easy transm1ss1on of
information between programmers and facilitates the
training of new programmers. Our database could be
expanded to contain more information if need7d.
Programmers must be conscientious about updating
source headers when they modify source files. Ve
must develop methods to enforce this and ensure the
validity of the information in the source header,
and consequently, the database.

MATRIX - A FILE ORGANIZATION FOR IMAGE PROCESSING

Philippe Collard, Division of Nuclear Medicine and Biophysics
Department of Radiological Sciences & The Laboratory
of Nuclear Medicine (DOE), UCLA School of Medicine,

Los Angeles, California 90024

ABSTRACT

The MATRIX package addresses the problem of file
organization for image processing applications. The package
was developed for both VAX/VMS and PDP 11/RSX systems.

From the operating system standpoint, MATRIX files are
sequential access files with fixed record lengths (512
bytes). Both record and block I/Os may be performed on
MATRIX files. These files are divided into blocks of data
called matrices. Matrices are made up of contigously
numbered lists of virtual disk blocks and have two parts:
the header (first matrix block) and the data (remaining disk
blocks). The first virtual block in the matrix file is the
file header. It contains information common to all matrices
in the file.

A matrix directory is maintained in the file to keep
track of virtual disk block allocation. This directory is a
doubly-linked list of virtual blocks divided into four-word
entries, one entry per matrix. Matrices can be created,
read, written, deleted and "write protected" within the file.

1. GENERAL DESCRIPTION

From the VHS standpoint, MATRIX files are
sequential access files with fixed record lengths
(512 bytes). Two primary criteria were considered
during the file system design. One, since image
processing was the target for this file structure,
the record size had to correspond evenly to image
size. Two, the file organization had to allow
access optimization.

The chosen structure meets these two
requirements. A record size of 512 bytes is useful
since most image processing applications concern
images with resolutions which are multiples of 256
(e.g., 1024, 2048, etc.). Therefore, an image row
is stored in an even number of records or disk
blocks. Access optimization is provided by the
support of both record and block I/O. RMS is used
as the primary interface. Therefore, either FORTRAN
record I/O or RMS block I/O can be used, depending
on how critical the access optimization is. By
using FORTRAN and RMS, a high level of compatibility
is kept with VMS and its layered products (e.g.,
DECNET).

MATRIX files have three components: the
matrices, the directory list and the main header.
The programmer may only access the matrices and the
main header. The MATRIX package maintains the
directory list. Following are detailed descriptions
of these three components.

MATRICES. Matrices provide a way of orderly
storing "objects" in a file. They are composed of
contigously-numbered lists of records and are
divided into two parts: the matrix subheader (first
record of the matrix) and the data (remaining

Proceedings of the Digital Equipment Computer Users Society
163

records). The data block may be any size, even
null, and matrices may have data blocks of varying
sizes within the same file.

Several parameters are used to handle a matrix
within a MATRIX file. Those parameters are saved in
the "directory list", a structure described below.
Each matrix is assigned a unique 32-bit word
identifier when it is created. This identifier can
be considered as an integer or as a four-character
string. Therefore, matrices can be referenced by
either a number or a name. The matrix identifier is
one of the parameters saved in the directory list.

The subheader stores information specific to
the object in the data block. For example, if one
saves images in the data blocks, the following
information could be saved in the subheader: image
dimensions, image maximum, image minimum, scale
factor, etc.

The MATRIX package contains routines for
creating and performing I/Os on both the matrix
subheader and the matrix data. The package
maintains the structure's integrity and provides
easy access to the data blocks and the subheaders.
The user is responsible for handling the contents of
the matrices.

DIRECTORY LIST. The directory list allows
smooth management of the matrices in a MATRIX file.
MATRIX routines operate on the directory list to
create, retrieve, perform I/Os and delete matrices.
A detailed description of the directory list
organization is given below.

MAIN HEADER. The main header is the first
record of a matrix file. One could consider it as
matrix number zero with a null data block. Since
the main header always is the same length for any
MATRIX file, no entry exists for it in the directory

Anaheim, California- December 1985

list. This structure provides storage space for
information common to all matrices in the file.

2. DIRECTORY LIST STRUCTURE

The directory contains a list of "directory
records" which are inserted, as needed, in a MATRIX
file. Information about matrix location within the
file and matrix status is kept in this list. A
directory record has the same length as the other
records of a matrix file (512 bytes). A matrix file
can have one or more directory records and these
records form a circular list. Each directory record
points to its following one with the last directory
record pointing to the first one.

A directory record is divided into 32 entries
of four long integers. The first entry is used for
managing and linking the directory records. The
remaining 31 entries are used for matrix management.

Vhen a MATRIX file is created, only the main
header (record number 1) and the first directory
record (record number 2) are inserted in the file.
Also, the first entry of the directory list is
filled and set to point to itself. As matrices are
created, entries are allocated in the first
directory record until there are no more entries in
the directory record (i.e., creation of the 32nd
matrix in the file). At this point, a second
directory record is created, the entry for the new
matrix is inserted into this record, and the
pointers are updated to link the two directory
records. New directory records are created whenever
a directory record becomes full.

First Entry of a Directory Record:

word 1 = number of available matrix entries in
the directory record (initial value=
31; minimum value = 0)

word 2

word 3

word 4

Notes:

forward pointer to next directory record
OR

if record is the last in the list,
pointer to the first directory record.

backward pointer to preceeding record
OR

0 if record is the first one

number of allocated matrix entries in
the record (initial value = O; minimum
value = 31)

1. word 1 + word 4 is always equal to 31

2. Vhen the file is created, the first
entry of the initially-created
directory record is:

word 1 31
word 2 2 (points to itself)
word 3 0
word 4 0

3. The backward pointer allows another link
between directory records.

164

Structure of a Matrix Entry in a Directory Block:

word 1 = matrix identifier (integer*4 - matrix
number or four-character string -
matrix name)

word 2 matrix subheader record number

word 3 last record number of matrix data block

word 4 matrix status
l=matrix exists (access = read/write)
2=matrix exists (access = read only)

-l=matrix deleted (access = none)

Since all directory record pointers and matrix
pointers (words two and three of a matrix entry) are
long integers, the MATRIX structure supports files
of almost unlimited length. Additionally, the
matrix identifier is also a long integer, and,
therefore, the number of matrices one can store in a
MATRIX file is very large.

The MATRIX package ensures the uniqueness of a
matrix identifier within a MATRIX file, regardless
of whether matrix names or matrix numbers are used.
Vi thin a file, any given identifer references one
and only one matrix. Vith characters string
identifiers, lower case and upper case characters
are significant. For example, the identifier "IMAl"
differs from "imal" or "Imal". Vhen numbers are
used as idenitifiers, matrices can be created in any
order (e.g., matrix number 10 can be created before
matrix number 1).

The second and third words of a matrix entry
define where the matrix lives within the MATRIX
file. Since matrices consist of contigous records,
if the record number of the matrix subheader (first
record of a matrix) and the record number of the
last record of the data block are known, the
location of the matrix in the file is completely
defined.

The fourth word of a matrix entry gives the
matrix status. If this word has a value of 1, the
matrix exists and can be read or written. If it is
set to 2, the matrix exists but can only be read.
If a MATRIX routine is called to write to a matrix
whose status is 2, the routine returns an error
since the matrix is "write protected". If the
matrix status is -1, the matrix has been deleted.
The space it occupies in the file can be recovered.
Additional details on matrix creation and deletion
may be found in the next chapter.

3. MATRIX ACCESS

A. Directory Lookup:

Almost all operations performed on MATRIX files
involve directory lookups. This operation scans the
directory list to check for the existence of a
particular matrix. If the matrix exists, its
directory entry is returned to the requesting
module. Depending on the operation, the entire
directory list or only a part of it will be scanned.

For example, when a new matrix is created, the
entire directory list is scanned to check if the
matrix already exists. When retrieving matrices,
the lookup terminates when the specified entry is
found; the list is completely scanned only if the
matrix does not exist in the file.

Scanning of the directory list is sequential,
and, therefore, directory lookup operations are a
performance bottleneck. Some features of the design
help reduce this negative effect. The directory
list has a circular structure which allows lookups
to begin anywhere in the list. Also, a "cache" was
implemented for directory lookup. This cache is
large enough to hold one directory record.
Directory records are read directly into the cache,
and at any time, the cache contains a copy of the
last directory record accessed by the package.

Directory lookups begin by scanning the cache.
If necessary, the next directory record is read into
the cache and the lookup continues. This scenario
greatly improves directory lookup in two specific
cases. First, when the number of matrices in the
file is less than 31. In this case, the entire
directory list is resident in the cache after the
first lookup is performed on the file. Second, when
matrices are stored in the file in the order they
are ~ost likely to be processed. Performing
operations on a long series of matrices will only
require a few file I/Os for the directory records,
since the cache contains up to 31 matrices which can
be sequentially processed.

Of course, if matrices are saved and retrieved
in random order, the cache is of no great help.
Another case where the cache is not useful is if
several files are processed at the same time. Since
the cache is labeled with the logical unit number
(LUN) of the corresponding matrix file, the cache
ownership changes as access switches from one file
to another.

Whenever a modification is made on a directory
record (e.g., matrix deletion), the operation is
performed on the cache and the cache is written back
to the file. This ensures that information in the
cache is always up to date.

B. Opening and Closing MATRIX Files:

MATRIX files must be opened and closed by using
special routines described below. The routine to
open or create a MATRIX file is called by:

where:

CALL MATST(FPA,ACCESS,STATUS,ERROR)

FPA file parameters array. A specially
formatted array holding the LUN, the
file name and other file attributes.

ACCESS = file access code. Can have one of
the following values:

STATUS

1) READ
2) WRITE
3) SHARE

file status code. Can have one of
the following values:

165

1) OLD
2) NEY
3) UNKNOWN
4) SCRATCH

ERROR error status:
- if positive, number of matrices

in the file (0 = no matrices)
- if negative, file operation error

This routine opens a MATRIX file and allows the
other MATRIX routines to operate on the file. The
FPA is easily formatted by calling another MATRIX
package routine not described in this article. It
allows the specifications of various parameters,
e.g., "multi-buffer count".

MATST is the only package routine which uses
the FPA. All the other routines reference the file

·by its LUN (logical unit number) which is associated
to it during the call to MATST.

The ACCESS and STATUS parameters have the same
meaning as for an equivalent FORTRAN OPEN statement.
For example, a file opened SCRATCH will be deleted
when closed.

Yhen a new file is created, the main header and
the first directory record are inserted into it.
MATST returns the number of matrices present in the
file as its error status.

MATRIX files are closed by calling MATFIN.

CALL MATFIN(LUN,ERROR)

where:

LUN = the associated logical unit number
ERROR = the error status

After a call to MATFIN, the file is unavailable for
further MATRIX operations. A file opened SCRATCH is
deleted.

Additional explanations for the necessity of
special open and close routines are given in the
next chapter.

C. Creating and Deleting Matrices:

Creating a matrix in a MATRIX file is the most
complex operation performed by the package. First
the directory is scanned and during this process,
several operations are simultaneously performed.
One, the package checks that there is no matrix in
the file with the same identifier as the one to be
created. If there is a matrix with the same
identifier, the operation aborts and an error code
is returned. Two, the package keeps tracks of the
holes in the files (i.e., deleted matrices) and
determines which hole best fits the matrix that is
to be created.

If a large enough hole to hold the new matrix
is found, we have all the necessary information for
creating the matrix. Only the space needed for the
new matrix will be allocated to it if the hole is
larger than needed. The directory block containing
information about the hole is updated with the
parameters of the new matrix and the creation
completes.

Yhen there is no hole available for the new
matrix, the package checks for an available
directory entry in the last directory record of the
directory list. If one exists, the space needed for
the new matrix is added to the file. In this
situation, matrix creation occurs at the EOF (End Of
File).

If there is no room for a directory entry in
the last directory record, a new directory record is
created at the EOF. Pointers are set up to link the
new directory record to the directory list. Then
the matrix creation resumes as in the previous case.

Matrices and new directory records
added to the EOF. The package keeps
highest record number found in the
directory lookup and this record points

are always
track of the
file during
to the EOF.

No data is transferred when a matrix is
created. The matrix creation only locates a place
for the new matrix and updates all necessary
information. In order to write data to the matrix,
the appropriate routines must be used once the
matrix is successfully created.

The call to the matrix creation routine is:

where:

CALL MATCRE(LUN,MATNUM,LEN,ERROR)

LUN
MATNUM
LEN

ERROR

the logical unit number
matrix identifier (number or name)
length (in number of records) of
matrix data block (actual space
occupied by the matrix will be
LEN+l records. LEN for the data
block and one for the subheader).
the error status for the operation

> 0: ok
0: matrix already exists

< 0: file operation error

A routine for deleting matrices from a MATRIX
file also exists. This is a simple operation. The
directory list is scanned for the directory entry of
the matrix to be deleted. If found, it is updated
to reflect its new status, i.e., removed from
structure. From then on, the space formerly
occupied by the matrix may be allocated to create a
new matrix. The subroutine to delete a matrix is
called as follows:

where:

CALL MATDEL(LUN,MATNUM,ERROR)

LUN
MATNUM
ERROR

the associated logical unit number
matrix identifier (number or name)
the error status for the operation

> 0: ok
0: matrix does not exist

< 0: file operation error

D. Reading and Writing Matrix Data:

Several routines are provided to perform I/O on
matrix data blocks. They fall into three
categories: record mode I/O, word mode I/O, and
fast mode I/O.

Yhen I/Os are performed on a matrix, the I/O
parameters are checked against the allocation of the

166

matrix. For example, if the data block of a matrix
is ten records long, it is impossible to read the
eleventh record of it. The package does not know
what the data blocks are used for, but it insures
that the file structure remains valid.

RECORD MODE. In record mode the matrix data
block is considered as a list of 512-byte records.
The routine provided to perform I/Os in record mode
can be called as follows:

where:

CALL MATIOR(LUN,MATNUM,BUFFER,FIRST,NUMBER,
INCREMENT,IOCODE,ERROR)

LUN
MATNUM
BUFFER
FIRST
NUMBER
INCREMENT
IOCODE

ERROR

the associated logical unit number
matrix identifier (number or name)
I/O buffer (read or write)
first record of matrix to access
number of records to access
= record number increment
has one of two possible values:

1) write operation
2) read operation

the error status for the operation

> 0: ok
0: matrix does not exist

< 0: file operation error

The first record accessed is FIRST, then
FIRST+INCREMENT, etc. until the I/O completes or a
matrix boundary is reached. Since INCREMENT can be
positive or negative, the boundary can be either the
top or the bottom of the data block. Specifying a
negative INCREMENT allows the record to be read in
reverse order.

YORD MODE. In word mode, the matrix data block
is considered as a list of short integers
(integer*2). The routine for performing I/O in word
mode is called as follows:

where:

CALL MATIOY(LUN,MATNUM,BUFFER,FIRST,NUMBER,
INCREMENT,IOCODE,ERROR)

LUN
MATNUM
BUFFER
FIRST
NUMBER
INCREMENT
IOCODE

ERROR

the associated logical unit number
matrix identifier (number or name)
I/O buffer (read or write)
first word of the matrix to access
number of words to access
= word number increment
has one of two possible values:

1) write operation
2) read operation

error status for the operation
> 0: ok

0: matrix does not exist
< 0: file operation error

FAST MODE. Yhen repeatedily accessing the same
matrix, the overhead caused by matrix lookup can be
significant. Fast mode was designed to reduce this
overhead. Before performing fast mode I/O an I/O
identifier must be associated to the matrix. This
causes the matrix parameters to be placed in a table
where they are known to the package. I/O
identifiers can be reused, but only the last
association is known to the package.

Vhen an I/O is performed on the matrix, the
caller specifies the associated I/O identifier. The
I/O parameters are then retrieved from the internal
table without directory lookup. The directory
lookup will be done only once, regardless of the
number of I/O operations performed on the matrix.

A matrix is considered as a list of short
integers (integer*2) in this mode.

Associating an I/O Identifier to a Matrix:
--

where:

ERROR = MATIMG(LUN,MATNUM,IDENTIFIER)

(FORTRAN function)

LUN = the logical unit number
MATNUM = matrix identifier (number or name)
IDENTIFIER = I/O identifier to associate

to the couple (LUN,MATNUM)
ERROR = error status:

> 0: ok
O: matrix does not exist

< 0: file operation error

Reading from a Matrix in "Fast Mode":

ERROR=MATGET(IDENTIFIER,BUFFER,FIRST,NUMBER)

where:
IDENTIFIER = associated I/O identifier
BUFFER user's I/O buffer
FIRST first word to read from the matrix
NUMBER number of words to read
ERROR error status

Vriting from a Matrix in "Fast Mode":

ERROR=MATPUT(IDENTIFIER,BUFFER,FIRST,NUMBER)

where:
IDENTIFIER = associated I/O identifier
BUFFER user's I/O buffer
FIRST first word to write
NUMBER number of words to write
ERROR error status

The I/O list defined by FIRST and NUMBER, for
the MATPUT and MATGET routines can be any size.
Therefore a very large matrix (e.g., a 1024 by 1024
image) can be read or written in one call.

During package implementation, it be7ame
obvious that for efficiency's sake I/O operations
would have to be done using other facilities than
simple FORTRAN READ and VRITE statements. Reading
or writing large quantities of data requires fast

I/Os. On the other hand, it was not desirable to
use VMS features such as direct QIOs to the file ACP
since this would have made package implementation
sensitive to operating system changes.

The developed design allowed an intermediate
solution: RMS block I/O mode. Both record and
block I/Os are supported by the file design, at the
RMS level. Vhen I/O is to be done, two checks are

167

pertormed. First the routines determine if
consecutive records or blocks will be accessed. If
INCREMENT is different from 1 (MATIOR and MATIOV),
this is not true. If it is true, the length of the
I/O list is examined. If it equals or is less than
two blocks, nothing special happens. If it is
longer than two blocks, the package switches to
block I/O mode, performs the I/O, and returns to
record I/O so that following FORTRAN I/O statements
work properly. This entire processing is completely
transparent to the user.

It was experimentally determined that for lists
smaller than three blocks, FORTRAN I/Os and block
I/Os are equivalent. Vith this implementation
scheme, I/O throughput was greatly improved.
Comparative performance evaluation between this
scheme and another involving direct QIOs to the VMS
file ACP were performed. Degradation in performance
due to RMS overhead was on the average 10%, which
was satisfactory.

The last chapter of this article contains more
information about the implementation of the block
I/O mode on VAX/VMS systems.

E. Reading and Vriting Main and Subheaders:

Reading or writing the file main header or any
matrix subheader is done using the MATHED
subroutine. A call to this subroutine has the
following format:

where:

CALL MATHED(LUN,MATNUM,HEADER,IOCODE,ERROR)

LUN
MATNUM
HEADER

IOCODE
ERROR

the logical unit number
matrix identifier (number or name)
512-byte array to be written

into or to receive the designated
header record

two possible values: read or write
the error status for the operation

> 0: ok
0: matrix does not exist

< 0: file operation error

F. Vrite Protect Switch:

Matrices can be individually protected against
write operations performed by the I/O routines of
the package. Vrite protected matrix data can be
read but not rewritten. Vhenever an I/O module
tries to write to a write protected matrix, it
returns an error code. Since this switch works on a
per matrix basis, it provides an easy method for
protecting critical data from corruption while still
allowing free access to non-critical data.
Additionally, a write protected matrix cannot be
deleted from a file.

The call to the routine that sets the write protect
switch is as follows:

where:

CALL MATVPS(LUN,MATNUM,SVITCH,ERROR)

LUN
MATNUM
SWITCH
ERROR

the logical unit number
matrix identifier (number or name)
set or reset write protect switch
the error status for the operation

> 0: ok

0: matrix does not exist
< 0: file operation error

G. Miscellaneous Routines:

It is often necessary to check the existence of
a matrix in a file or to know which matrices
currently reside in a files. Also, it is sometimes
useful to known the largest and smallest matrix
numbers of the matrices in a file. The following
routines provide these facilities.

1. MATTST (FORTRAN function)

where:

TEST = MATTST(LUN,MATNUM,FIRST,LAST)

LUN
MATNIJM
FIRST

LAST

the logical unit number
matrix identifier (number or name)
if matrix exists, matrix subheader
record number

if matrix exists, record number of
the last record for the matrix
data block

The result of the function is:

> 0 matrix exists
= 0 matrix does not exist

< 0 = file operation error

2. MATLST

This subroutine returns a
identifiers existing in a file.
matrices.

list of matrix
It ignores deleted

where:

CALL MATLST(LUN,LIST,ERROR)

LUN
LIST

ERROR

the logical unit number
buffer to receive the matrix
identifiers

the error status for the operation
> 0: ok
< 0: file operation error

LIST must be an array of long words (integer*4)
large enough to receive all the matrix numbers
extracted from the file. The end of the list is
marked with a zero. The matrix numbers are returned
as they are found in the file.

3. MATMIN and MATMAX

These two FORTRAN functions consider the matrix
identifiers as numbers. They return the largest and
smallest matrix numbers that exist in a file.

MAXNUM
or

MATMIN

where:

LUN

MATMAX(LUN)

MATMIN(LUN)

the logical unit number

168

4. VMS IMPLEMENTATION DETAILS

This chapter gives some specific details of the
implementation of the MATRIX package on VAX/VMS
systems.

A. Opening and Closing MATRIX Files:

We mentioned previously that MATRIX files must
be opened and closed using special routines. One
reason for this is to allow block mode I/O. In
order to do this, the File Access Block and the
Record Access Block of the designated file must be
updated to reflect that both record and block I/Os
will be performed. This can be done by opening a
file with a FORTRAN OPEN statement including a
USEROPEN clause. This OPEN statement performs the
allocation of the FAB and RAB and then passes
control to a user-specified routine which makes the
desired changes to the two access blocks and opens
the file. More details on this process can be found
in the VAX FORTRAN manual and the RMS/VMS manual.

To perform block I/O, we need the address of
the Record Access Block (RAB). During execution of
the user-specified routine, the address of the RAB
is saved in an internal table of the package along
with its associated LUN. When a block I/O is
performed, the address of the RAB corresponding to
the specified LUN is fetched from this table. This
is another reason why MATST must be called to open a
MATRIX file. The internal table has a limited,
although large, number of entries. MATST checks
that one is available when opening a new file and if
so, opens the file.

When MATFIN is called, the file is closed and
the allocated entry in the RAB address table is
released. If the file was not close with MATFIN,
this entry would never be released.

B. Long Block I/Os:

One of the limitation of RMS is that it does
not allow I/Os longer than 64K bytes. This can be
inconvenient for applications dealing with large
matrices (e.g., 1024 by 1024 images). The block I/O
routines (MATPUT and MATGET) subdivide I/Os longer
than 64K bytes into several I/Os of 64k bytes (or
less for the last one). This is one reason for the
performance degradation observed in comparison to
direct calls to the VMS file ACP. This degradation
(less than 10%) was not considered severe enough to
warrant a more efficient scheme. The developed
system has a satisfactory throughput, a relatively
simple implementation, and a high level of
independence with lower levels of the VMS operating
system. For example, the package supports, with no
additional coding, remote file access through
DECNET.

C. RSX vs. VMS Implementation Differences:

The MATRIX package is also available on RSX
systems. The RSX implementation is completely
compatible with the VMS one and files produced by

one package can be processed by the other. However,
block I/O mode is unavailable on RSX systems, which
makes the system inefficient when dealing with large
data sets. In addition, the package contains a
significant amount of code and given the limited
address space of RSX systems, this could make its
use quite cumbersome.

5. CONCLUSIONS

The MATRIX package was used by our group for
the implementation of a large software system for
medical image processing. It is a convenient
package that serves as the base for our file
organization. In our system, all files, except
ASCII files, are MATRIX files. The MATRIX structure
also serves as the basic layer for upper level file
organizations we developed. It has proven to be a
simple, versatile and very efficient tool.

6. REFERENCES

- VAX/VMS Service Routines: Record
Management Services

- VAX/VMS I/O User's: Part I
- VAX FORTRAN 77 User's Guide

169

DATATRIEVE-11 to VAX-DATATRIEVE Conversion Panel

Joe H. Gallagher

Research Medical Center

Kansas City, MO 64132

Bart Z. Lederman

Greenberg Bros. Part.

New York, N.Y. 10010

Session Chairman:

Alex L. Lamb

USASATCOMA

AMCPM-SC-4G

Ft. Monmouth, N.J. 07724

Transcribed by B. Z. Lederman

This session was originally planned to be a recounting of
users' experiences in converting to VAX-DTR from DTR-11. Due to
various difficulties which arose between scheduling the session
and the symposium (such as non-functioning equipment, and jobs
being eliminated), the final panel had to speak partially from
experience and partially on generic terms. Nevertheless, many
important points were covered, and the information was judged to
be quite useful by those attending the session. This is not
intended to be an exact transcription of the session: rather, it
simply presents the information in a readable form. I will not
attempt do distinguish which person made what contributions. I
would also like to acknowledge the presence of Suellen Harris and
Bill Opalka from DEC, who sat in the audience and kept us from
going astray.

Major Points.

DTR-11 is an almost perfect subset of VAX-DTR.

DTR-11 is a nearly perfect subset of VAX-DTR.
(It was, of course, developed first, and VAX-DTR was
developed later using the same syntax so users could
migrate.) The primary point of difficulty has to do
with a difference in how the hardware addresses
memory. The PDP-11 cannot address a word which
starts on an odd byte boundary, while the VAX can:
therefore, such data types as REAL, DOUBLE, INTEGER,
DATE, and other word, double word, and quad word
variables, must be aligned to word boundaries on the
PDP-11. DTR-11 will automatically do this by
inserting invisible bytes where needed. Consider
the following record definition:

01 RECORD.
10 FIELDl PIC X.
10 FIELD2 PIC 99 USAGE IS INTEGER.

FIELDl is one byte long, and FIELD2 is two bytes
long. In VAX-DTR, this record would be 3 bytes
long: on the PDP-11, it will be 4 bytes long, as an
extra byte has to be inserted between the two fields
to make FIELD2 start on an even byte boundary.
DTR-11 will do this wherever necessary (and only

Proceedings of the Digital Equipment Computer Users Society

where necessary), and does not issue warnings or
error messages. This will become apparent if the
data files are moved from one system to another, and
the same record definition is used on the VAX
without taking precautions. It is possible to make
VAX-DTR allocate on word boundaries by using the
clause

"ALLOCATION IS LEFT-RIGHT"

within the record definition; therefore, you should
change the record definition to:

DEFINE RECORD TEST REC
USING -
ALLOCATION IS LEFT-RIGHT
01 RECORD.

10 FIELDl PIC X.
10 FIELD2 PIC 99 USAGE IS INTEGER.

If you do this, VAX-DTR will allocate space in the
same way as DTR-11, and there should be no problems.
If you don't, you may get an error message similar
to "RECORD LENGTH DOES NOT MATCH" when you try to
READY the new domain on the VAX, which is an
indication that you may have an alignment problem.
See also the section on moving data below.

173 Anaheim, California - December 1985

If you do get these messages, and don't do
anything about it before storing new data, you will
corrupt the data file. It would be a good
precaution to be certain that the first time you
READY the domain after moving the data that you do
so READ ONLY, and look at the data. If there are
any alignment problems, you will immediately see
that data isn't coming out correctly, and can take
corrective measures.

Planning the move: more dictionary options.

The Common Data Dictionary has more
functionality than the Dictionaries on the PDP-11,
and some thought should be given to using this. On
the PDP-11, there is often a separate dictionary for
each application, and the data files often aren't
shared. On the VAX, all definitions go into the
CDD, and makes sharing easier. The CDD has a
hierarchical structure, and if you have many
separate projects you will want to plan which
sub-directories should hold what definitions, and
which definitions should go into a site common
directory (for everyone to use), which should go
into project wide directories, and which may be left
in individual directories. The protection options
are also greater on the VAX than on the PDP-11: if
you are not using protection now, then you can move
with no protection without making any changes. If,
however, you have been using UIC type protection on
the PDP-11, then you may want to change, as it is
unlikely that you will keep the same UIC scheme on
your VAX disks that you had on your PDP-11 disks.
(VMS does have UICs, but most people go to named
directories and hierarchical sub-directories, as
these tend to be easier to use and more closely
follow the way most data is organized.) Therefore,
you may want to change UIC and/or password
protection, and use some of the new protection
options available in VMS.

You do not have to learn much about the CDD
before moving if you do everything in DTR. You can
put everything into one dictionary like DTR-11, but
you will get better performance if you make a good
division from the beginning. You can move
definitions from one sub-section to another later,
but it's best to make some plans first. A quick
read-through of the manual to understand the
concepts, or attending some DECUS sessions are good
ideas. For the new user, no new training is needed
to begin with, as they will see a dictionary just
like what they are used to (with the addition of
version numbers), and can see one big dictionary or
their own dictionary, whichever matches the PDP-11
installation; but the person planning the move and
organ1z1ng the application should know something
about the CDD. The CDD structure can copy the
existing PDP-11 setup, but usually matches the
company or application organization. Arranging the
dictionary well has both performance and maintenance
advantages. Note also that VAX-DTR can have startup
files for individual users just as DTR-11 has, to
put individuals into the proper dictionary and
perform READYs or start procedures, as needed:
also, the dictionary that the user sees for PLOTS
can be different from that for all other dictionary
elements, so the users can get all of their domains,
records, procedures, and tables from an individual
dictionary, and at the same time get the PLOTS from
the system wide dictionary. You might also give
them a procedure to set their dictionary into the

system wide DEMO library if you want them to play
with YACHTS, EMPLOYEES, or other sample files
supplied with DTR. There is also a command
procedure NEWUSER.COM that comes with DTR that can
be used to easily set up a dictionary for a new
user. In addition, there is also a logical name
that designates the CDD dictionary in which the user
will start.

Moving the data.

One must move both the data files, and the
dictionary objects (record definitions, domain
definitions, tables, etc.). You can EXTRACT
individual definitions, but DTR-11 is supplied with
a utility called QXTR, which will extract all of the
definitions in a dictionary at one time into a
single command file in a manner similar to
EXTRACT ALL in VAX-DTR. This utility inserts the
"ALLOCATION IS LEFT-RIGHT" clause into the record
definitions, which should simplify the move
considerably. [This is probably true only for
DTR-11 V3.0 and V3.1, and not for earlier versions
of DTR. QXTR is not supplied with PRO-DTR. DTR-11
itself does not insert the ALLOCATION clause when
extracting.] If you are using individual
dictionaries for different users, you must extract
each dictionary individually. QXTR also gives you
the option of extracting the protection qualifiers,
or not, as you choose. This single file can then be
moved to the VAX and invoked to re-create all of
your records, tables, domains, etc. One factor not
covered in the original talk is that explicit
references to disks and/or directories in domain
definitions will probably have to be changed, as
your device names will change, and you will probably
be using symbolic device names and/or named
directories, as mentioned before. To actually get
the information across, there are several options.

Moving data on disks.

If you are using RSX (which in this paper
includes llM, llM-Plus, !AS, and possibly llD), and
you have the same kind of disk drive on both
systems, or are going to move the disk drive to the
new system, then you can read your old disks on VMS.
You will want to copy the information to a new disk,
to take advantage of some VMS features like named
directories, but the files can be read while on the
old disk, or copied. This applies both to the data
files, and the file created by QXTR (or the
DATATRIEVE EXTRACT command). If you are running
RSTS/E, then you are out of luck: no other
operating system will read your disks. If you don't
have a disk type in common on both systems and are
not moving the devices, you might want to consider
plugging in your old disk on the VAX just long
enough to copy the data, if possible. If not, then
the local DEC office may be able to copy the disks,
or your local DECUS LUG may help you find a user who
may let you do it, or you may be able to locate a
commercial service company that will do it.

Moving data by Network.

If both systems run DECNet (no matter what the
operating system), then any file that DATATRIEVE can
read can be read over the network. You can COPY (or
NFT or FTS) the file with the definitions to the
VAX, define your domains, copy the data file, and be

174

ready to go. Alternatively, you can define a two
domains with the same record definition, with one
having a normal file specification on the VAX, the
second having a file specification which includes
the node name for the PDP-11 (something you can do
with VAX-DTR but not DTR-11); or what may be better,
if you have remote DATATRIEVE installed on the
PDP-11 you can use the "READY domain AT node"
feature of VAX-DTR, and simply read from the old
domain on the PDP-11 to the new domain on the VAX.
This will be a little slow, as DTR is not optimized
for this type of operation the way DECNet utilities
are, and the data will be going over the network,
but hopefully it will only be done once. The
advantage of doing this is that it can avoid the
problems of record alignment mentioned before. By
using the DTR-11 remote server on the PDP-11, the
data will be read exactly as it has always been
read: on the VAX side, you can define a record
without the ALIGNMENT clause, and pack the data in
without worrying about hidden bytes. You may also
want to consider other methods of converting data
mentioned below. Remote DATATRIEVE is available
starting with V3.0, not in earlier versions. If you
are not using DECNet, you may not have special
communications devices normally used for networking.
DECNet will work over normal asynchronous lines used
for terminals, however. You may have to give up 8
or 16 lines for a while, as DECNet grabs the entire
device on PDP-lls, and the maximum speed may be 9600
baud so transfers may be a little slow, but
hopefully you will only do the conversion once. If
you don't have DECNet, maybe you can persuade the
local office to let you use it just for a few days
while you move your data.

Hoving data on Magnetic Tape.

If both systems have magnetic tape (or you are
moving the tape drive), you may be able to store the
definitions and information on tape. Once again,
the RSX family provides the best compatibility, with
most systems writing ANSI tapes which can be read by
VMS. (On earlier RSX systems, this was a SYSGEN
option, so check carefully before you write out the
tapes and disconnect your PDP-11.) If not, you can
write DOS-11 format tapes on all RSX family systems
which can be read on the VAX with FLX (in
compatibility mode) or the new EXCHANGE utility.
Though you might possibly get indexed files over if
transferred in image mode it will be much safer if
you first convert the data to a sequential file and
re-construct it on the VAX, as will be mentioned
again later. If you have RSTS/E, then you are again
stuck with a system which works differently than
everyone else. You might be able to generate DOS-11
format tapes, or you may want to upgrade to V9.0:
this is the latest version of RSTS/E, and it
includes a utility which writes tapes that are
compatible with the VMS BACKUP utility. For RSTS/E
users this will probably be the easiest way to move
files, though V9.0 is a new release and those of us
on the panel have not yet had any feedback from
users. Moving data from RSTS/E to other systems can
be so much of a problem that some people plan to
upgrade to RSTS/E primarily for the purpose of being
able to use the new utility to write VMS readable
tapes with the new utility.

There is
is intended
files from
automatically

an RMS utility set, BCK and RST, which
for backing up files to and restoring
magnetic tape. These utilities
convert indexed files to a form which

will store properly on magnetic tape, and place
error checking and other useful information on the
tape for all types of files. Because they are
supplied as part of RMS, they should be available on
all PDP-11 systems (that can run DATATRIEVE). The
problem is that VMS may not have a utility
corresponding to RST to get the data off: so unless
you have compatibility mode on your VMS system (and
it is now an optional layered product), this may not
be a viable option.

Other file transfer methods.

If none of the above are available, you may
want to look into some of the communications
packages which will operate over normal serial
(terminal) lines. KERMIT is a public domain program
available from the DECUS library (and elsewhere)
which runs on virtually any computer and operating
system, will work on serial lines, does error
checking, and can transfer (in most cases) both text
and binary files. It may be slow, but it will work.
There are also other communications packages that
perform similarly: you may even be able to use
SET HOST/DTE/LOG on the VAX to go in to the PDP-11
and type the file out (this works best if the data
is all text) or a similar "dumb" text transfer.

Re-Organizing your data.

VMS has some options not available on the
PDP-11 for indexed files, notably Prolog-3, which
allows some space saving. Since indexed files
should be re-organized occasionally for best
performance, and since the same data will occupy
less space in a sequential file and take less time
to transfer over networks, and transfer more easily
on magnetic tape, the time of transfer would also be
a good opportunity to re-organize and optimize the
data file by converting it to sequential, and
re-populating an indexed file on the VAX. Even if
you can move your disk packs and can read your old
files directly, re-organizing at this point is a
good idea, though in this case you don't have to
convert to an intermediate sequential file.

First, you need a description of the current
indexed file: you can simply make a note of the
record length (which you get from DTR when you
define the record), and figure out where the keyed
fields are in the record, but there are two RMS
utilities, the older DSP and the newer DES which are
designed to record file characteristics and define
new files: it's a good idea to have such a
description file for documentation purposes, even if
you aren't anticipating a conversion. DES creates a
file definition which is quite similar to that used
by the VMS FOL utility: in actual tests, I was very
surprised to find that FOL will actually read the
descriptor file produced by DES! It may give you a
few warning messages, especially if the SOURCE and
TARGET fields are empty, but this shouldn't cause
any serious problems. If the utility refuses to
read your descriptor file and aborts, check to see
that when you transferred the description file over
it did not pick up trailing blanks on the
description items, and that the file position
qualifier says NONE with no numbers trailing. You
can use a regular text editor such as EDT to go over
the file before reading it with EDIT/FOL if
necessary to touch it up. If you don't take this
approach, then you can move the record definition,

175

define a domain and define a file: DTR will create
a file that matches the record definition. You can
then look at that file with EDIT/FOL if you wish, or
do the optimization shown below. If you move your
disk packs FOL can probably read your original data
file, and may also be able to do this over the
network if you are using DECNet.

Converting the data file from indexed to
sequential on the PDP-11 is quite simple: the CNV
utility will perform this conversion by default.
Simply give the name of the indexed file on input,
and the file name you want for the sequential file
on output.

Once the file description and the data file are
on the VAX, you can populate the file with CONVERT:
however, now would be a good time to review the file
design for possible performance improvements. the
FOL utility (EDIT/FOL) has an OPTIMIZE script which
can make the decisions a little easier, as it will
look at your data file and give you some information
about what can be done to improve access. The one
factor which comes up quite often is bucket size:
on the PDP-11, bucket size is almost always the
smallest possible value that will hold the record
size you are using, as larger buckets use up pool
space. On the VAX, this is no longer a problem, and
larger bucket sizes are a viable option. If you
often retrieve records which are next to each other,
such as retrieving a record by the primary key and
then reading the next several records in order, then
a larger bucket size may improve performance. If,
however, you retrieve records scattered all over the
file in no particular order, then a larger bucket
size won't help and may hurt, but a different index
structure may be of benefit. If you don't know what
options to take, use the FOL utility and let it
optimize: it will usually take reasonable options.
Once this is done, you can populate a new file again
with CONVERT.

Combining related domains.

Another consideration in DTR-11 is that the
data is sometimes separated into several domains
rather than one, to prevent the record definition
and buffers from getting so large as to use up all
of your pool space. When converting to VAX-DTR, you
may want to recombine them by moving all of the
individual files (and domain definitions) over,
define a VIEW to combine them and a single record
definition with all of the fields, and read from one
into the other. This may be a little slow, but
again, this will only be done once. You will then
want to use FOL as described before to optimize the
new combined file.

Reports.

For reports, the VAX-DTR works very much the
same as DTR-11. If you have reports which are
adjusted so that field breaks occur just at the
beginning or end of a page, or are otherwise
'finagled' to match a pre-printed form, you may find
that you have to do a little adjustment to the lines
per page or number of lines skipped qualifiers, but
most straight forward reports will work with no
changes.

Expanded features in VAX-DATATRIEVE.

Tables.

While VAX-DTR has dictionary tables just like
DTR-11, it also has domain tables: this allows data
in a domain to also be accessed like a table. One
field (preferably a keyed field for good
performance) takes the place of the "left" side of
the table, and another field (any one in the domain)
takes the place of the table entry on the "right".
Dictionary tables are faster for small tables:
domain tables can be faster for large tables if
keyed fields are used, can take the place of several
tables, and can also be accessed as a regular
domain, which makes changing the table the same as
modifying the data in any other domain; therefore,
tables which are modified of ten are easier to
maintain as domain tables.

Functions.

VAX-DTR has all of the functions (MIN, MAX,
TOTAL, etc.) that DTR-11 has, plus several more
(standard deviation, and running count, for
example). In addition, there is a new set of
functions of the FN$xxx family which can do things
like convert lower case text to upper case, move
sub-sections of text strings, format output strings,
get system information, do mathematical operations,
and many other functions. If that isn't enough, you
can add your own functions. In many cases, things
that you are doing, perhaps with some difficulty,
with procedures or COMPUTED BY clauses may be much
easier with the extra functions available in
VAX-DTR, and a review of what you are doing may
reveal some areas where improvements may be made.
Though you may want to wait until your application
is moved over and running, this is an area where you
will want to do some work quite soon after the move

No Pool Space Restrictions!

In DTR-11, procedures are often broken into
small pieces to conserve pool space, and more things
were done in command files. You may consider moving
more of the work into DTR procedures, especially
when you can get large blocks into single WHILE or
BEGIN-END blocks. This may take a little longer to
compile, but once compiled will execute faster than
separate blocks.

In DTR-11, especially if your application was
just on the edge of available pool space, things
tended to be pared down to the minimum, especially
in record definitions. Variable names were very
short, edit-strings removed, etc. On the VAX, you
have the opportunity to put more descriptive field
names back in, and make the fields more
self-documenting, put in query names, edit strings,
and so on. Don't drop your good habits, however.
Some users think they have infinite space on the
VAX, and don't FINISH unused domains or RELEASE
unused variables. This will cost you something
eventually on the VAX (usually in paging), and it
won't be as obvious as running out of pool space was
in DTR-11: your application, or the whole system,
just slowly degrades. You also may interfere with
other users who want to access the data if you are
keeping files open and are possibly locking records.
You can keep domains open if you expect to use them
again and save the time it would take to READY the
domain, but when you are done with a domain you
should FINISH it.

176

Other improvements.

All users will be happy to learn that VAX-DTR
uses EDT when editing, rather than the built-in
editor of DTR-11. If you have an EDTINI.EDT command
file in your account, it will be used when you edit
something in VAX-DTR; keypad and all other commands
will work, etc. You will also notice that with the
newer .versions of VAX-DTR, you have version numbers
on definitions, so you can keep the old definition
around until you find that the new version works.
Users should be reminded to purge out old versions
regularly.

An option available in VAX-DTR is the use of
FMS or TOMS to have form driven screens. After your
dat.a is on the VAX and working, you may want to
start thinking of converting some of your old
procedures, especially if they were working like
menus, to form driven screens. Something you do
need to consider before you do this, however, is
whether to buy FMS or TOMS: they look very much the
same to DTR, so the choice is often determined by
what other software you are using. Some packages
will require one or the other, (for example,
All-In-One uses FMS) while DTR can work with either,
one at a time.

There are various other features that are
present in VAX-DTR (three types of concatenation
rather than two, CROSS statements, the CHOICE
statement, and all of the graphics capabilities),
which you will soon discover and will want to
incorporate into your applications; but none are
needed immediately for conversion, and you can wait
to learn about them until after the problems of
conversion are over.

177

COMPUTERIZED DECISION SUPPORT FOR COLLEGE ADMINISTRATORS

Walter H. Frey
Vernon M. Cline, Jr.

Carl Albert Junior College
Poteau, Oklahoma

The development of a Decision Support
System for college administrators is
described. The system is based on
integrating a microcomputer with a DEC
PDP 11/44. Software on the microcomputer
expands the capabilities of the PDP 11/44
and its resident software. Novice
computer users in the administration can
access the college data base using plain
English commands to produce a variety of
information in different formats.

INTRODUCTION

This paper describes our efforts to
provide a Decision Support System (DSS) for
the administrators of Carl Albert Junior
College. We define DSS as the interactive
use of computers by the administrator to
get information in an interesting format,
when it is needed, to promote insight and
the probability of making better decisions.

Two major problems had to be solved in
this process: First, naive computer users,
had to get access to data in a simple,
"user friendly" manner. Second, the old
minicomputer and its resident software
could not be replaced due to budgetary
constraints. In this presentation we will
discuss:

1. The hardware and software
configuration.

2. The advantages of using a
microcomputer.

3. The downloading process.

4. Data manipulation on the
microcomputer.

5. The payoff - DSS for administrators.

CONFIGURATION

HARDWARE - MINICOMPUTER

Our main computer system is a DEC PDP
11/44 with 4M bytes of memory. There are
670M bytes of disk storage available and a
TSll tape drive for backup. Sixty-four

Proceedings of the Digital Equipment Computer Users Society 181

peripherals are connected to the system.
These user devices range from old VT52
terminals to microcomputers and a LN03
laser printer. An average of 30 to 40
users are on the system at any one time.

SOFTWARE - MINICOMPUTER

The computer operates under RSTS/E
Version 8.0. Data on the system are
managed by the POISE data management
system. The data are collected in various
application packages: Registration and
reporting, student billing and receivables,
financial-aid reporting and fiscal
reporting. The payroll and personnel
packages on the system were produced
locally using the POISE computerized
programmer. The other packages are
customized POISE programs.

HARDWARE - MICROCOMPUTER

The system is an IBM compatible
personal computer with 640K bytes of
memory. It has two double density disk
drives, which will be expanded by the
additions of a lOM byte hard disk drive to
better handle administrative requests
involving large blocks of data. The system
has a color graphics card, color monitor
and a dot matrix printer.

SOFTWARE - MICROCOMPUTER

The operating system of our
microcomputer is PC DOS Version 3.0. We
have an integrated spreadsheet available
for spreadsheet, graphic and limited data
base functions. We also have a relational
data base management system and an English
language inquiry program. Downloading,
communication, and MACRO key capabilities
are provided by an emulator program.

Anaheim, California - December 1985

ADVANTAGES OF THE MICROCOMPUTER SOLUTION

The biggest advantage of the
microcomputer approach to DSS
implementation was the cost, which was
under $6000.00 for hardware, software and
computer services' time. This compared to
alternative costs of $20,000.00 or much
more to get similar or improved results. A
second advantage is that our 11/44 now has
graphic capabilities and any suitable data
on the system can be represented
graphically. The relational data base
management system allows us to access
several POISE files at the same time and
the English language inquiry program allows
administrators to access their data in
plain English.

THE DOWN LOADING PROCESS

THE MICRO - MINI CONNECTION

Because all the buildings on our
campus are within 500 feet of the computer
center, we have hardwired (null modem
wires) all our terminals to the PDP 11/44.
Wiring the microcomputer follows the same
procedure used for a VTlOO terminal.
Standard RS232 connectors are utilized,
with pins 1, 2, 3, and 7 connected.

COMMUNICATIONS AND EMULATION PROGRAM

Several features are desired in this
program and all but one are included. The
program has to emulate a DEC VT series
terminal and communicate with the PDP
11/44. Key MACROS can be produced so that
data extraction and downloading are
accomplished transparent to the user. Data
are transported from the PDP 11/44 to the
Micro's diskettes as ASCII delimited files.
One feature we wanted, but could not find
in the emulators we examined, was
scripting. This feature would allow fuller
automation of communication between the
computers and simplification of operation
for the user.

DATA SELECTION PROGRAMS ON THE PDP 11/44

Selection programs for the POISE data
files are produced by our systems
analyst/programmer in BASIC. These
programs take the contents of selected
fields in POISE data files and assemble
them into ASCII delimited files for
downloading.

In response to a structured request by
an administrator, certain selection
programs are activated to collect data from
predetermined fields and files. These data
are then displayed on the microcomputer in
a standard format. Other selection
programs, which are activated by an
unstructured request, collect as many data
fields from a file as can be stored on the

182

microcomputer. This larger, varied, data
selection can then be manipulated on the
microcomputer to produce information in an
exploratory manner.

MICROCOMPUTER DATA MANIPULATION

All downloaded data is in the form of
ASCII delimited files which are read into
the relational data base management system.
We chose RBASE 5000 by MICRORIM because of
the ease with which a data base can be
created with this program. Another major
factor for choosing RBASE was its
compatibility with an English language
inquiry system. RBASE can output data as
an ASCII delimited file. This capability
is essential for smooth transfer of data to
the spreadsheet program.

If the administrators cannot get the
desired information from the data base
manipulation, they may choose to have the
program, via MACROS,. transfer the data to
an integrated speadsheet program. We chose
SYMPHONY by LOTUS Corporation, because it
could accept data in our standard file
format - ASCII delimited. Furthermore,
SYMPHONY is easy to use and produces a
variety of graphic output. Best of all,
many of its functions can be made
transparent to the user through the use of
MACRO commands. Several companies have
built program "shells" for SYMPHONY. These
outline programs allow "what if" analysis,
projection, and more with downloaded local
data.

CLOUT, by MICRORIM, is the English
language program we have chosen for the
system. It is completely compatible with
our relational DBMS and is truly user
friendly. An administrator can become
reasonably proficient in its use in one
hour. The program is very forgiving of
user's quirks and will adapt to the jargon
of the user rather than requiring the
strict syntax of the data base.
Furthermore, it has the capacity to refer
to multiple files within the database.

THE PAYOFF - DSS FOR ADMINISTRATORS

From the microcomputer terminal at his
desk, the administrator can get direct
access to the college database. He can do
so without extensive training in syntax or
computer esoterics. Structured, recurring
information demands are filled when needed.
Confidential data and "what if" analysis
are perused by the administrator in privacy
without interference of intermediaries.
Information is explored in a variety of
formats, quickly and easily leading to
better understanding and greater
utilization of the data.

In the case of novel, unstructured
demands, computer services personnel can
produce necessary modifications in a very
short time (hours). This short response
time provides administrators with the
information while it can best be used to
enhance the quality of a decision.

SUMMARY

Computerized decision support is being
provided to college administrators. This
has been accomplished at a cost of less
than $6000.00. The system can handle both
structured and unstructured administrative
requests. The English language inquiry
option and the use of MACRO commands allows
computer-naive administrators to use the
system with ease. The system has released
computer services personnel time by
allowing administrators to serve
themselves. Administrators are more
satisfied because request flexibility is
increased and turnaround time is reduced.
The weakest link in the system at this
point is the lack of scripting in the
emulator program.

183

EVALUATING, SELECTING AND IMPLEMENTING
AN ON-LINE LIBRARY CARD CATALOG

Rob Robinson
Northwestern College
Orange City, IA 51041

ABSTRACT

This paper will include a description of our
assessment of our needs for library computing
services, the process of evaluation of available
software, our efforts in data conversion, and our
implementation experiences with the BRS/SEARCH
database program. It will include a discussion of
the side benefits we've received elsewhere on the
campus with text and information oriented database
software. It is our desire that this paper may be
used as an evaluation of the BRS/SEARCH program and
as a guideline for other colleges and libraries who
are considering similar projects.

INTRODUCTION

Northwestern College is a Christian
liberal arts college with 850 students,
located in the northwest corner of Iowa.
Ramaker library, one of the newer
additions to the campus, holds 72,000
titles. An additional 5,000 items of
audio, visual and computer software are
located in the Learning Resource Center
in a separate building on campus. Both
collections are managed and circulated
by the library staff.

In the fall of 1983, NWC planned to move
it's academic computer users from an
administrative PDP-11/44 system to a new
academic computer. At that same time,
they also began a search for library
automation software. The search for
library automation software and the
resulting implementation are detailed
below, including our needs assessment,
the evaluation and selection process and
the implementation process.

NEEDS ASSESSMENT

The first step of our needs assessment
involved listing the desired features

Proceedings of the Digital Equipment Computer Users Society 185

that a library automation package should
have and setting the priorities for each
feature. The top seven features in
order of importance were:

1. On line card catalog
2. keyword searching and boolean logic
3. Local entry cataloging
4. Full MARC record searching
5. Circulation management
6. Serials management
7. Acquisitions management

The listing of these priorities indicate
a major difference that exists between
university libraries and public
libraries. The emphasis at a university
library is on the access to information
rather than the management of the circu­
lation. At a university, finding rele­
vant material is the biggest job. At a
public library, Circulation is the big­
gest. A typical patron of a public
library will have a specific title, or
author in mind when searching for a book
and will usually check the book out to
read at home. A typical patron at a
university library will have a topic in
mind, and will want to find a fairly
sizeable list of books which address
that topic. The books are usually used

Anaheim, California - December 1985

in the library and not checked out.
Consequently, a public library might
have features five through seven at the
top of the list rather than the bottom.

Another important part of our needs
assessment was to choose between using a
central data base on somebody else's
computer or a local data base on our
own. Initially, libraries created cen­
tralized databases such as the OCLC
system. The high cost of computers and
storage devices easily justified this
move. Continuing high costs in telecom­
munication costs and falling costs for
disk storage along with cheaper compu­
ters are creating a trend towards the
use of a local data base right in the
library. It was our desire to follow
this trend and develop our own in-house
database.

A third issue for our needs assessment
was to choose between purchasing a
separate computer for the library, or
purchasing an academic computer which
would service both the library applica­
tions and the teaching and research
applications for the faculty and stu­
dents. We felt that since the library
is used by over 99 percent of the stu­
dents and faculty, that it should be
accessible from any terminal on campus.
and it seemed more efficient to do that
with one computer rather than trying to
network two computers together.

Each of
assessment
evaluation
software.

these issues in our needs
strongly impacted our

and selection of library

SOFTWARE EVALUATION

The initial stages of the software
search was done almost entirely by the
librarian, using the idea that the
software should be considered first
without regard to the type of computer
it runs on. This approach was very
successful in giving a thorough view of
what is currently available in the best
of library automation systems. The
most significant aid in this search was
the book entitled Public Access to On­
line Catalogs (Joseph R. Mathews, Online
Inc., 1982) giving a very good survey of

186

currently available systems. Conferen­
ces on library automation and colleagues
from other libraries also helped to make
the search. After this initial evalua­
tion, the possible choices were narrowed
to the following six packages:

NOTIS by Northwestern University
LS-2000 by OCLC Inc.
VTLS by Virginia Polytechnic Inst.
PALS by Minnesota State University
ATLAS by Data Research Associates
BRS/SEARCH by BRS Inc.
DOBIS-LEUVEN by IBM Corp.

Two of the systems were available only
on large mainframes and one was de­
veloped on a minicomputer which did not
have strong support in our area. Conse­
quently, the list was reduced to four
systems including the VTLS system on an
HP-42 Hewlett Packard computer, DOBIS
LEUBEN on an IBM 4331 computer and
BRS/SEARCH and ATLAS which were both
available for the DEC VAX. These
three computers were also our final
three candidates in our search for an
academic computer. Each of the four
final packages were studied in detail
through demonstrations and telephone
calls. They differed a lot in features
and functionality, but each had enough
good features, that the librarians were
confident that a successful system could
be developed with any one of them.

The final choice could not be made until
the entire academic community had agreed
on a computer system. Choosing an
academic computer is always delicate,
because the needs and uses are so many
and varied. Sacrifices and compromises
have to be made, because no computer
rates first in every discipline. We
felt that we had three main groups which
should have equal weight in a decision:
the computer science department who
wanted power and up-to-date technology,
a large group of faculty who wanted a
user friendly system, and the library
who wanted a special application. The
VAX was chosen because it came the
closest to meeting everybody's needs.

After selection of the computer, two
software packages remained and were very
different in features and functionality.
The ATLAS package by DRA had a very good

system for circulation, serials and
aquisitions but was weak on searching
capabilities. BRS/SEARCH was very
strong for searching capabilities but
had no circulation, serials or
aquisitions package. Our needs
assessment played a valuable role at
this point. With their priorities firm­
ly in mind, the library decided that the
searching capabilities were well worth
the sacrifice of the other features.
Since our purchase, The SIRSI
corporation has integrated BRS/SEARCH
into their total library system. The
SIRSI corporation package is available
for unix and Xenix based systems, but
not for VMS based systems.

PREPARING THE DATA

In 1978, Ramaker Library installed an
OCLC terminal and modem which was con­
nected to the OCLC cataloging service in
Ohio. The first person to catalog a
record with OCLC enters all the informa­
tion about the book via the keyboard.
Future catalogers can recall that record
and will only have to add their own
local information to it. Once cata­
loged, the local version of the record
is left on-line for two weeks, then
archived onto a magnetic tape. A copy
of the archived tape may be requested at
anytime.

We started cataloging and creating MARC
records in 1978, and had all 72,000 of
our main holdings entered. Many
libraries used this service to catalog
only new purchases. The process of
going back and cataloging previous books
is called retroconversion, and if done
by an outside service can cost as much
as $1.25 per title. Fortunately for us,
the retroconversion project was done by
our own staff in the early years when
there was no charge for cataloging with
OCLC.

The state library receives tapes each
quarter from OCLC for holdings of all
libraries in Iowa. Although tapes can
be ordered directly from OCLC, we were
able to save on costs by having the
state library select our records from
their tapes and send us a tape with only
our holdings.

187

Defining The BRS data base was the next
step. BRS/SEARCH uses the terms docu­
ment and paragraph for database
definition. The actual content and
meaning of these terms are left for the
user to define. We defined a document
to be one MARC record, or one card in
the card catalog. A paragraph is one
field or logically related set of infor­
mation. A paragraph may be a single
number such as publication date, or a
single line such as the call number, or
several lines such as the title, or
several text paragraphs such as the
contents notes. A paragraph is preceded
by a paragraph label. We used TI for
title, AU for author, SU for subject,
etc.

We followed the model used
and Purdue Colleges as a
formulating our own
(The appendix contains a
paragraphs that we chose.)

by Dartmouth
guideline in

paragraphs.
list of the

THE DATA CONVERSION

The catalogued records from OCLC come on
a one-half inch, nine track, 1600 bpi
magnetic tape.. They are recorded in
MARC format which is a standard set by
the library of congress for catalogued
records. Details of this format may be
obtained by ordering the manual "OCLC­
MARC Subscription Service Documentation"
(OCLC Inc., Dublin Ohio, 1981). The
data conversion process was the most
time consuming and labor consuming part
of the implementation. The MARC record
contains a 24 character field of fixed
information, and from 1 to 300 variable
length tag fields, each with a different
meaning. We had to decide which BRS
paragraph should be used for the infor­
mation from each tag field in the MARC
record. Once converted, the BRS records
were written onto an ASCII text file
with an appropriate identifier in front
of each paragraph. The following func­
tions were performed during the data
conversion process:

1. Fixed fields and tagged fields from
the MARC record were grouped into
BRS paragraphs.

2.

3.

4.

5.

6.

Foreign language symbols
etc.) were converted to
searching process.

(umlauts,
ease the

A sortable field was created from
the call number making it possible
to generate a list of the books in
shelf list order.

Inconsistent abbreviations were con­
verted to consistent ones. (US,
U.S., USA, United States, etc. were
all converted to United States)

Improperly connected words were un­
connected.

The format was standardized for the
paragraphs for imprint, subject,
collation, and contents notes.

7. Duplicate records were checked for
and weeded out, taking only the most
recent version.

Writing and designing the program took
200 hours. Running the programs took 22
hours of connect time and 7 hours of
personnel time. We actually made two
passes and reconverted the database
after a few months. The necessity for
Items 4-7 above was only discovered
after we used the data for several
months. Dartmouth College indicated
that they have done this same process
four times, so it's apparently fairly
connnon with a large database.

INSTALLING THE BRS SOFTWARE

The software comes in executable load
modules which are ready to use as soon
as they are copied from the tape. Some
editing of text files is required to
define system hardware characteristics
and database storage locations. The
process took 4 hours for reading and
preparation and 4 hours to install.

LOADING THE DATA BASE

We loaded our entire 71,000 records at
one time with one connnand to the BRSLOAD
program. The initial load on an other­
wise idle VAX-11/750 took 46 hours of

188

connect time. We later revised the data
conversion program and reloaded the
database during the middle of the semes­
ter when use was moderate, requiring 60
hours of connect time.

The size of the source file for the
database was 50 megabytes. After the
database was loaded and the dictionaries
and inverted index files were built, the
database occupied a total of 70
megabytes, or almost 1000 bytes per
record. During the middle of the load
process, 120 megabytes of space were
used, with the extra 50 megabytes being
used for temporary work space.

PROVIDING EQUIPMENT

The following equipment is currently
required by the library for BRS/SEARCH.

4 dedicated CRT terminals for public.
1 printer in the library.
1 CRT for the reference librarian.
1 CRT for technical services.
1 modem for dial-up
1 set of 8 connnunication ports
1 RA81 disk (250 MB for library use)
2 megabytes of memory

USING BRS/SEARCH

Searching

To search for a single word with
BRS/SEARCH, just type the word and press
RETURN. Searching for a single word
results in an almost instant response of
less than 1 second showing the
number of documents containing that
word. To search for combinations of
words, type the words using a boolean
operator like AND or OR in between each
word. Using a boolean operator with two
words requires more time, usually less
than five seconds, but it depends on the
number of individual occurences
of each word. In addition to the
standard boolean operators like AND, OR
and NOT, the special operators ADJ,
WITH, SAME, and NEAR may be used to find
words which are located next to each
other or are close to each other. For
example, the operator NEAR4 will select
a document if the requested words are

within 4 words of each other. The SAME
operator finds documents in which the
words are in the same paragraph.

Parentheses may be used to construct
statements that are as logically complex
as the user can handle. For example,
the statement:

(ONE OR SINGLE) AND (PARENT OR PARENTS)

will find in one search command, most
documents which mention something about
single parents. For the more typical
person who has problems with complex
logic statements, individual searches
can be combined. For example, the
requests:

1: ONE OR SINGLE
2: PARENT OR PARENTS
3: 1 AND 2

will find the same set of documents by
combining search requests 1 and 2.

Searches may be restricted to a single
paragraph by adding a period and the
paragraph label. For example, BIRD.AU
will search only for documents which
have the word BIRD in the author
paragraph.

The ability of BRS/SEARCH to search the
entire MARC record, makes computer
searching much more powerful than the
card catalog. A good example of this is
the concept of "world view". "World
view" is a fairly new topic among
Christian scholars dealing with the way
the Christian views the world as
compared with people of other beliefs.
When one of our religion professors
looked in the card catalog, he found no
books on world view. The term is too
new to be used in the subject index and
the book could only be located in the
title index, if the title actually began
with the words "world view". Using the
search term

WORLD ADJ VIEW

quickly brought up 15 different books in
which the words "world view" were men­
tioned either in the middle of a title
or in the notes about the book. The
professor was delighted to find them.

189

Printing

Any word that is typed is considered as
a search request. Special commands are
given by preceeding the command with two
periods. The most connnon of these
commands is •• PRINT which switches
BRS/SEARCH from search mode to print
mode. The system then asks, "which
paragraphs and which documents?". Most
people press RETURN twice indicating all
paragraphs and all documents.

Printing to a paper printer in the lib­
rary or in the learning resource center
is also possible. The program remains
in print mode until the command •• SEARCH
is used to return to the search mode.

Changing Databases

The connnand •• CHANGE will switch from
the card catalog to any other database
and back again. We've found this
option very useful, because it didn't
take long for us to find other uses for
the program.

Asking for Help

The •• WHAT connnand provides access to
quick help. General categories for the
WHAT connnand are: paragraphs, databases,
commands, operators, terminals, and
ikeys. Typing •• WHAT along with the
category, will result in detailed
information about that topic. The en­
tire user's guide is also available for
searching by typing " •• CHANGE MMUG".

Updating Records

The •• MODIFY command may be used by
anyone with the proper privilege to
update a record at any time. Records
modified in this way are placed on a
waiting queue and will be added between
1:00 am and 6:00 am the following
morning. The actual times that the
program works on the queue can be set by
the system manager.

Our biggest fear of the BRS/SEARCH
system was the time and resources that
might be used while the databases are

being updated. We could see that the
searching was very quick and efficient,
but we knew that all those special
inverted index files that made searching
so quick, would probably make updating
slow. It was very nice to know that BRS
had already resolved the situation by
using the night queue. Librarians are
able to make their changes to the data­
base during the day, when they like to,
but the real resource consuming work is
done during the night when it won't hurt
anybody else.

New records from new OCLC tapes can be
added using the BRSLOAD program. Our
experience on our VAX-11/750 has shown
that adding 1000 records to the existing
71000 records took 4-1/2 hours of con­
nect time. Adding 30 records took 1-1/4
hours of connect time.

The connnands •• DELETE, and •• ADD may
also be used to delete or add records.
These commands are carried out through
the same waiting queue that the •• MODIFY
command uses.

TRAINING STUDENTS AND FACULTY

Northwestern cooperated as a beta test
site for the conversion of BRS/SEARCH
from unix to VMS. Because of the beta
arrangement, we decided not to publicize
the program or to give training classes
until the beta test was over. The dedi­
cated terminals, however, were right
next to the card catalog in the library.
After a week, we noticed that many
people were using it as is. We then
added a two page handout and laid it
beside the terminals. After two more
weeks, we observed that more than half
of the students and faculty were
choosing the BRS/SEARCH terminals over
the card catalog with nothing more than
a two page writeup.

We now use the BRS/SEARCH program as the
first introduction to a computer for
beginning students and faculty. Form­
erly, we used word processing as the
first introduction, but searching the
card catalog, requires less instruction
and less keyboard input and results in a
wealth of information in return. The
only obstacle we have to overcome is to

190

explain that the program operates in two
modes: a search mode and a print mode
and that it responds differently and
obeys different commands in each mode.
One can switch from search mode to print
mode by typing •• PRINT and back to
search mode again by typing •• SEARCH.

SIDE BENEFITS AND GOALS FOR THE FUTURE

A Campus Wide Information System

Since BRS/SEARCH is a text management
information system, it can be easily
used for other databases. It is espe­
cially good for relatively stable text­
oriented databases where finding and
retrieving information on individual
records is the primary function. A good
example of this is a database containing
the minutes of all the various commit­
tees on campus. BRS/SEARCH does not
work particularly well with databases in
which the individual records must be
grouped together for a summary report,
or in which the individual records are
changing often. An expendable supplies
inventory is a good example of this type
of database.

Data bases which we have either deve­
loped or are planning to develop are:

Choral and instrumental sheet music
Theatre costume inventory
Art slide collection
Government documents
Vertical files
The Bible

Each of these databases contain 4,000 -
6,000 items with 200 - 400 characters
per item. The King James Version of the
Bible will be a full text data base
containing the entire 5 megabytes of
text.

If you plan on developing other applica­
tions for BRS/SEARCH, check your license
agreement. Some licenses are for one
database only.

The Information Gateway Concept

Many campuses, especially those with a
college of medicine or a college of law,

may find it worth while to purchase
databases which can be searched locally.
In this way, the campus computer system
can function the same as the library by
becoming a gateway to vast amounts of
information. The full text capability,
makes it possible to not only find the
proper journal article, but to also
retrieve the entire text of the article.

Adding Circulation and Other Functions

Several developers of library software
are beginning to take note of the good
searching capability of BRS/SEARCH and
are adding it as a module of their
systems. The SIRS! corporation has
incorporated BRS/SEARCH as a part of
their full library system under the Unix
and Xenix operating systems. OCLC has
added BRS/SEARCH to their cataloging
service, allowing the searching of the
most recent one million entries in the
MARC record database. Northwestern
University has announced plans of adding
it to the NOTIS system. Nothing is
available or announced yet for the VMS
operating system.

CONCLUSION

In conclusion, we would certainly agree
that bringing a text management database
system to the campus was as exciting as
it was when we started to realize the
power of word processing. The
BRS/SEARCH program and the online card
catalog has impacted the entire campus.
The library is used by virtually
everyone on campus, and 75 to 80 percent
of those who come into the library
choose the online search system over the
card catalog. We receive many compli­
ments about the increased help it gives
to locate information in the library.
Within a few more months, we will
actually make the break and remove the
old card catalog from the library. The
final step to a successful and
beneficial library automation project.

APPENDIX

The following listing shows each para­
graph in the card catalog database,

191

with the name, description, and the tag
fields from the MARC record which were
used to create the paragraph.

LO The location field indicates the
physical location of the item.
MARC tag field 049 is used for the
building, holding or collection
code. The holding code is followed
by the call number. Our own call
number is used if available (tag
field 099). If it's not available,
tag field 090 is used. If tag
field 090 is also missing, the LC
call number (tag field 050) is
used. If all three fields are
missing, the letters "MISSING" are
placed in the location field.

AU The author field combines the main
entry items from the MARC record
tag numbers 100, 110, and 111.
This field may contain the name of
the author, the company or the
meeting/conference which produced
the work.

TI The Title and edition statement are
included here. Tag field 245 plus
field 250.

IM

PD

co

SE

LN

SU

The imprint is derived from MARC
tag field 260. It gives informa­
tion about the name, place and date
of publication.

The publication date comes from the
date portion of MARC tag field 008.
It contains the year of publication
as a four digit number.

The collation information combines
MARC tag fields 300 through 399.
It gives the physical description
for the item, including number of
pages, duration, price, etc.

The Series entry combines MARC tag
fields 400 through 499.

The Local note comes from MARC tag
field 590.

The subject paragraph combines all
MARC tags from 600 through 695. It
contains the standard library sub­
ject classifications.

AE

AT

NT

CP

The added entry field combines MARC
items 700-715.

The alternate title paragraph com­
bines MARC tag fields 130, 240,
241, 242, 246, 247, 730, 740, 830,
and 840.

The notes paragraph combines MARC
tag fields 500 through 589 and 591
through 599.

The
from
008.
code.

country of publication
a portion of MARC tag
It contains a 2 or 3

comes
field

letter

LANG The language code also comes from a
portion of MARC tag field 008. It
contains a 2 or 3 letter code.

OCLC The OCLC number comes from tag
field 001 and is the main accession
key for records that are cataloged
with OCLC. The OCLC number is an
eight digit number.

ISBN The International Standard Book
number comes from tag field 020.

LC The library of Congress call number
comes from tag field 050.

DDC The Dewey Decimal Code comes from
tag field 082.

LCCN The library of congress card number
comes from tag field 010.

ISSN The International Standard Serial
number comes from tag field 022.

PBNO The publishers number for music
comes from field 028.

CODN The CODEN designation comes from
tag field 030.

GPO The Government Printing Office Num-
ber is in tag field 074.

REPT The Government Report Classifica-
tion number comes from tag field
086.

LP! The local processing information
combines tag fields 910, and 949.

192

SRT The sorting field is derived from
the location field, but the charac­
ters in the sorting field are
arranged so that the information
can be sorted by computer into the
same order as the order of the
books on the shelf. Although it
doesn't always get the books exact­
ly the same as the shelf order, it
comes very close. The sort field
assumes that the call number is
based on the library of congress
format.

DAL Magic:
Some Surprising Features of DAL

Dr. Pete Boysen
Iowa State University
233 Computer Science

Ames, Iowa 50011

ABSTRACT
The Digital Authoring Language (DAL) was designed to simplify
the task of building sophisticated computer-based lessons.
In addition to its answer-judging and graphics capabilities,
DAL also has some lesser known features which simplify the
lesson designer's task.

INTRODUCTION

The use of the Digital Authoring Language (DAL)
greatly enhances the computer-based instructional
capabilities of the VAX/VMS system. Answer-judging,
high-resolution graphics and scoring are just some
of the features which enable the lesson designer to
build effective instructional lessons using this
structured language. However, DAL has some lesser
known features which can also assist in the pro­
gramming of lessons.

If you are a Pascal, FORTRAN or BASIC programmer,
you should feel at home with most of the commands
available in DAL. For example, IF, LOOP, FOR and
subroutines (units) are all available to control
execution. Other commands can set colors, display
graphics, load fonts and access files, to name a
few. You may not be as familiar with the answer­
judging commands, but once you understand the
answer-judging process, using commands like QUERY,
RIGHT, SPECS and JUDGE are just as straight-forward
as using the control structures.

Once you have mastered all of these commands, you
might be content to program without further inves­
tigation of DAL features. But there are other
features which are well worth investigating because
they can simplify your programming task and enhance
the capabilities of your lessons.

These features are described in the next few sec­
tions. Each feature is described in terms of an
instructional task which needs to be solved. The
DAL code for each task is shown in the Appendix.
(In some cases, the code was simplified for clarity
and may not contain all the code necessary to in­
sure a good instructional lesson.) I hope these
examples will broaden your view of what is possible
in DAL.

TABLES

In a recent article (1), the advantages of
"associative arrays" in the language AWK were de­
scribed (you may wish to read this article for
additional applications of associative arrays.)
This same capability is available in DAL through
the use of tables. Tables are essentially arrays
in which the index to the array is a string rather
than an integer. A table is unbounded and is de­
fined with the syntax

DEFINE tab[] : INTEGER

Proceedings of the Digital Equipment Computer Users Society 193

The elements may be INTEGER, REAL, BOOLEAN or
STRING. To access an element you use the syntax

ASSIGN x := tab["red"]

where the index is a string expression.

One common instructional task is to ask the student
to name several examples from a larger collection
of items. In the code in Figure 1, for example,
the student is asked to name three of the four
western states, making sure that the student
doesn't get credit by naming the same state twice.

Three units are called which evaluate the student
answer in different ways. In the first unit, the
"brute-force" method of maintaining an array and
repeating code is used: effective but inelegant.
This is probably the first solution which comes to
mind to most programmers.

The second solution uses tables. The table acts
like an array, noting choices which have already
been given. The advantage is that you don't have
to repeat any code and the code is easily expand­
able to additional choices. Note that the BOOLEAN
table entries are initially FALSE. The disadvan­
tage of this scheme is that you cannot allow mis­
spellings since any misspellings would have dif­
ferent entries in the table from the correct
spellings.

The third solution uses synonyms. This solution
will be discussed in the next section.

The second instructional task in which tables are
useful is in the development of a grammar analyzer.
Our goal here is not to build a perfect analyzer,
but rather to build one which can identify possible
problem areas for the student. The section of
code shown in Figure 2 attempts to determine the
voice of the sentence, identify some common mis­
spellings and count adverbs and "wordy" words.
The tense of each sentence starts in active voice
and progresses through various states depending on
subsequent words like "to be" words. The tables
are used either as lists of target words, which
we know most instances of, or as lists of excep­
tion words. For examples, a word ending in "ward"
is likely to be an adverb unless it is one of
several exceptions like "forward." Thus, each
word in the composition is passed through these
table "filters" to help identify various charac­
teristics of the composition. While these methods

Anaheim, California- December 1985

don't always identify all the adverbs or the correct
voice of a sentence, they are sufficient to help
students improve their compositions.

SYNONYMS

One of the judging features of DAL is the specifi­
cation of synonyms for words in an answer. For
example,

SYN+ "noun", "boy", "girl"
SYN + "verb", "runs", "walks"

indicates that "boy" and "girl" are to be added to
the list of synonyms for "noun" and "run" and
"walk" are to be added to the list of synonyms for
"verb". Then the statement

RIGHT The ((noun),) <'.{verb>}

will match the four possible simple sentences "the
boy walks", "the girl walks", "the boy runs" and
"the girl runs". A minus sign removes the synonym
from the list.

The synonym facility provides considerable flexibil­
ity to the judgment of student answers. But if you
extend the concept of synonyms beyond the restricted
meaning shown above, synonyms can be quite useful
in other contexts.

The problem of state names previously mentioned is
one example. If you think of "right-ans" as
having the state names as synonyms, the command

RIGHT <<right-ans)}

will match any of the names the first time. If you
then remove the state name just entered and add it
as a synonym for "wrong-ans", you can easily de­
tect duplicate names. Again, this method is easily
extended but suffers from the spelling drawback
described for the TABLE example. It will accept
misspelled but correct states but there will be no
way to remove a misspelled state name from
"right-ans". But if you want to enforce spelling
the code couldn't be much simpler.

PATTERNS

Many lessons require that a student type in a
command consisting of words and numbers like
"move x[3] to x[4]". While the answer-judging of
DAL lets you judge such commands properly, it
doesn't help you extract the numbers from the com­
mand for subsequent processing. What is needed is
a string function which will extract the next
number in a string and return it, removing it from
the string so that a subsequent call to the function
can retrieve the next number.

The function in Figure 3 does this. It uses a DAL
feature called a pattern. A pattern is a string of
alternative strings which are separated by CTRL/Ps.
A pattern is created by using the ALT function:

assign digit := ALT("O", "l", "2", "3", "4",
"5"' "6 11 , 11 711 ' 11 8 11 , "9")

The functions INSTRING and DELETE can accept pat­
terns as parameters. Thus, INSTRING (s,digit)
would find the location of the first digit in the

194

string s. Note that it uses a breadth-first
search, first looking for a "O" in the whole
string, and if a "O" is not found, it looks for a
"l" etc. That is why SUBSTR (str, firstloc,I) is
used. It looks for a sign, digit or period at the
firstloc location before the search moves to the
firstloc+l location. This application is reminis­
cent of the['+','-', ...] notation in Pascal,
albeit less efficient. But patterns may consist of
strings and can thus be extended to look for
patterns like ALT("AND", "OR", "NOT"), for example.

MATRICES

Matrix operations are available in subroutine pack­
ages on most minicomputer systems. In DAL these
matrix operations are built into the language.
Thus statements like

ASSIGN X := A*B
ASSIGN X := INV(Y)

perform matrix multiplication and inversion, re­
spectively, assuming that the arrays are properly
dimensioned. In Figure 4, I have included two
units which perform three-dimensional rotation,
translation, scaling and perspective of an array of
points. Using standard computer graphics tech­
niques, these units show how matrices can greatly
simplify a complex application and how easily they
are used in DAL.

BACKUP

A unit which we frequently use displays a "Press
RETURN to continue" message on the bottom of the
screen and then pauses until the student presses
RETURN. This is not adequate, however, when we are
displaying a series of screens in a help sequence
because the student often would like to quit in
the middle of the sequence and return to a menu.

Figure 5 shows a unit called PFRETURN which solves
this task. A unit name is passed as a parameter to
PFRETURN. If the student presses PF4, the new
BACKUP command is used to return gracefully to the
unit which called the help sequence. If the stu­
dent presses RETURN, the lesson continues.

A second use of the BACKUP command is shown in
Figure 6. This code is taken from a Pascal com­
piler written in DAL which accepts a subset of the
Pascal language and produces psuedo-code which runs
on an interpreter also built in DAL. In this case,
unit Workbench calls compile which calls other
units. The nesting of these units can be several
levels deep and, prior to the BACKUP command, the
code to handle syntax errors was much more complex.
Now only one error unit needs to be called if an
error is detected.

MACROGRAPHS, SET AND SAVE

For English applications, we often want a student
to enter an entire sentence as an answer. If a
mistake is made, the student normally must retype
the whole sentence. This process is error-prone
and time-consuming for the student and detracts
from the instruction. Furthermore, the students
often type outside of the space on the screen you
have provided, destroying the information already
on the screen.

In Figure 7 is a unit called GetString which col­
lects the student response. It is essentially a
screen editor for one line of text. It displays a
cursor and lets the student type in text, use the
left and right arrow keys, move to the beginning
and end of the line, and delete the next word, the
remaining text or all of the text. If a non-empty
string is passed, the student may edit that string.
It also limits the typed text to the width of the
line. This code demonstrates the use of a macro­
graph to display the cursor, the SET commands
needed to pick up individual characters, and the
SAVE and RESTORE commands which help reset the
terminal status to conditions which occurred prior
to the call to GetString. If you would like to use
it as part of a QUERY, try the code

; force judging after a second
ASSIGN qelapsed := 1
PROMPT "" $$ don't show prompt
QUERY 205
DO GetString(s,205,30,col)
ASSIGN response := s
RIGHT •.•..
ENDQ
ASSIGN qelapsed := 0

You may wish to use JUDGE AGAIN if you want the
student to reenter the response to avoid the one
second delay at the QUERY.

CONCLUSION

The Digital Authoring Language has a variety of
features which assist the lesson author in develop­
ing sophisticated computer-based instruction. An
understanding of these features can greatly enhance
the lesson development process.

REFERENCES

1. Bentley, Jon. "Associative Arrays,"
Communications of the ACM, Vol. 28, No. G,
June 1985.

195

APPENDIX

;AA~AA~' ~fff~

; Assi."-Jnment: Create· c1 ~H1 it whic:h wi ~ -~ a~_ik fnr· l:hL-L'C cif t};.e fa~· wt:::.;Lcr·n
; Fjtat~~s. Make ;_,1.a(·· Lb.at. you ·ldentiiy (~i1t_--1 li_cat\··. t'ii=:trnc.~s.
;AAAff)AfAA~fAAAAAAAAJ •AAAl.•AAAfJAA•

lPsson states
define cnL INTEGI:::{
do brute force
do ;;:,c_tables
do uc;e_syn

unit brute_forcc
; ma in ta.in
define
erase

lisle> ot states which li.1ve al r·pady LH'en ') ~V1'n
gi.ven[4J : DOOLEl\.N

at 205
write Name three fat" wcr\t stdLC~J

assign cnt : •• O
qu<>ry f

erase 30">;4!:10
at. 305
assign cc:o;ponc;c' : 0 · lowc·r (n'c,ponsc l
right washington

if qiVl~n[.J]

write You already gdv~· L~1dt .

. Judge ignon.'
else

t1 2; :-_) ·j (:Jn
a5:s:i.gn
if

g.i vc;.i L J Ti-<UL

end it
end.if

right ca.l lfon1ia

cnL : :.:- cnt
cnt < J
judge iqnur·e

; same code as washingLon irnL w-;e given[i.J
r·iqht oregon
; same r.ode as washin(Jtur1 but use q ivcn[JJ
r i·:Jht nevada
; :.;ame r.ode C>:s wash ington but u::;c (Ji ven[4l
wrong

write P~ease type a state.
endq

urrl t use_table:.>
; use a table to keep
define given[]

Li:·ac;i{ of <JlVl'fl :,Ld.LCS
: DOOLEAN

er a.se
at. 20'>
write Name three far west states
assign cnt := 0
i;p(·~c:s exilct $$need Lhi~; fur· Lab-~e

query A
erase 305;4E\O
at 305
;,n;sigri respon:;e : - 1owe;r(re:'>pon,~e)

right Washington j Or·egon i J\levadci C:ali_forn.ia
.if given[i:-c;c;;::•c,:iseJ

else

wr· i tt; You a1 r:·ca.dy 9d vc Lh.(.. tt~. l
judge ignore•

FIGURE 1: Using Tables with States

196

end if
wrong

write
endq
specs noexact

unit use_syn

assign
assign
H

end if

given[respunseJ :'
cnt : ' <.:nt + l

cnt. < 3
judg•~ ignon~

Type a state name.

TRUE

; maintain synonym lists of no yet given and altc·.:.iJy given an:;wers
syn +" r ight_ans", "washing ton", "ot·cgon", "cal ii or n ia", "rH.:V<:tda"
erase
at 205
write Name three far west states
assign cnt := 0
query *
erase 305;480
at 305
assign response :'-' lower(respon:wl
right <<right_ans>>

write Good!
• assign cnt := cnt + l
• syn --"right_ans",response

syn + "wr·ong_ans", response
if cnt < 3
. judge ignore
end if

wrong <<wrong_ans>>
. write you already gave that!
wrong
• write Type a state!
endq
end lesson

FIGURE 1 (Cont.): Using Tables with States

197

;AA*AAA,AAAAAAA~•A\~AAAAAAAAAAAAAAAAAAAAAAAAAAAAA~A'AAAAAAAA~ft~-•·•~A'AA~ • ·•·

; DetPriitirie voice of sentellCt', po~;~;ible .ldvc!r·b>;, ·;;oniy wonL; .>mi common
; m:i ~;pe11 ings.
;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA,•AA,AAAAAA,AA~AAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAA••

uni.t get.;;tyle
di.~1 finf~ temp,wrd STHTr'1G

i INTEGER

assign misspellcnt 0
a::; sign numberbcg in : ,, F'AL~-::E

for i : ,, 1 , n ,; F' n t
;u;;;ign vr1iceriJ :"'act.iv<'
assign nadverbs[iJ := 0
a s:c; ign nwordy[i] : , 0
a::;sign nwordr;[t·1 :·· 0
as!.-:;iqn t .. ~~mp := Jower(:Jcnt[i])
assign wrd :~ wot·J(l,t~mpl

i.f isnumber (wnU
assi13n numbei bcgi:1 'l'HUE

end if
loop wrd <>

:l.-

end i.f
if

end if
H

end if
if

eridi[
if

midi[
if

1:mcl.if

(r·~c;ht(wrd,4) 0 "w:1ni') 1\ND '.not wardwonif1,o1nU)
d~3ign exadvword : · wrd
a::;:-;:ign cxaclv:;('11t
assign nadvPrhsliJ :~ nadvl'1bs[il t 1
bra11ch ¢ricxtwn:l

(r-ight(wnl,2Jco"ly") AND (nut iyword[wr·d])
assign cxadvword := w1·d
assign exadvsent :- i
a,;::;ign nadvL'r.bs[.i_] ;,;,dverb~>I i 1 + 1
bn1nch $nf~xtwni

tobewonHwr ,_J:] AND (vc; j,·p[:[J
a:; .sign ex.br!Wor<i : •= wnl
i..t3~;ign vu.ice[i"l :-~ Lobe
branch $nextwrd

voice[~]

if
tobe

(i. i9ht (wr-rl, 2} =· "t:d")

a:;:-i.i·::1n voice[i J
llr.:uich ~:n1-'xlwni

,;c L:i v~ ,1

AND \ noL

1•ndif
if (r·ighl(wrd,J)"'"ing"} AND (nut ingwor·d[wnlJ)

.:i;•; 3 ign vol cc[.i J rn-ogres s i ve
lir'i..i.nch $nex Lwt d

enrli f
if stn.Jn<Jwucd!"wr-dl

a.:;>;1gn vo.[ce[LI : 00 pa;;sive
branch. $nex t..wt d

endif

wnrdyworl!Twni]
a,:;t;ign exwCJrdy : 0= wrd
assic:i-n nwonlyl.l J nwor-d.y[i l r 1
bn.tncli ;;nexLwTd

mi ,;:.;pel 1Lwnl.J
~ssign mi~s~ellcnL m.i.::;spellcnl. ;- l

FIGURE 2: Using Tables for Sentence Analysis

198

end loop
test
value

value

end test
if

end if

$nextwrd
assign nwords[iJ := nwords[i] + 1
assign wrd := word(nwords(iJ,temp)

voice(iJ
tobe
assign extobesent := i
passive
assign expassive := i

nwordy[iJ > 1
assign exwrdysent := i

assign nwords[iJ := nwords[i] - 1
endfor

FIGURE 2 (Cont.): Using Tables for Sentence Analysis

199

·AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAftAAAAAAAAAAA~*AAAAAAAAAAA~AAAAAAAAAAAAAA~~·

; GetNum : Get the next nwr.bei::· in the str i.ng ~:;:·n and return it. i11'1:1uv!1
it from str· also so t.hat subsequent. ,·:,111 s can remove~ cf'ma i r: [ng
numbers. Numbet·s consif;t of an oµti.onal si,;n, d'i.qiL:; ;;,ml Ut;•.:iinnl

; point. Return .:1 null strinq :i: no number j~' Luumi.
;AAA••
funct getnum(str):STRING
define str :.J'l'H1.N;; ~$ lhc :.:1tf·ing wh:ich ;na.y l:or1ta iu cl \1L1: .. :.,

$$ the ;o;tc .lng rcpresentaL i.on of U11• nuinb•~r.· numstr
<ii(Jit
lirstloc
endloc
foundperiod

STRING
STRING
INTEGF.R
INTEGER
BOOLEAN

$$ pattern of digits
$$ location of f i n;t; ch1u· uf nur:'.'.ier
$!~ 1nc,d:.i.on or (>rtd 1har
:;;ll TRUE if a period w.1s in nurr;;,,·t

digiL will match any string which 12, a d iq it
assign dig·it : " alt("O", "l", "2", ".)", "4", "~i", ··r,", "7", "8", "':l"
assign flrstloc := l
assign numstr : .~
; look for· beginnirnJ of number a character :oit a timP. A numLL·i: may ln-•Jin
; with a sign, digit. cit· dee imal poi.nt
loop instring(substr(st.r,firsUoc,ll,alt(diglL,"·',"f",".")) ~!

assign firstloc := firstloc + l
if firstloc > len(strl

assign getnum : ,.
return

$$ no numl1t·r t ounti

end if
end loop
assign cndloc : ·' firstloc + 1
; allow for space:;; after sign
if instr i ng (subs tr (st. r , firs t.l c,-, 1 J , a 1 t.c " - " , " f") } G

end if

loop ascii(str,endloc) ~>2 $~~.loop whjle r.tH-~r·f' ar·e s2a.cPs
assign endloc := endloc + 1

endloop

if endloc > lenCstrl
assign getnum :=
return $$ sign only ::.o ignon'

end if

assign foundperiod := FALSE
; keep looping as long as digits or one decimal poir1t fourul.
; quit early if second decimal point found.
loop instring(substdstr,endloc,11,alt<digit, "."I) 0

if subst.r<str,endloc,l) = "."
outloop foundperiod

Ll.;.;:.;i<Jri :tuurn.iper- iori : .-. Ti<UE
end if
assign endloc := endloc + l

outloop endloc > len(str)
endloop
; now pull it out of the string. It is between fir:::.tloc: and endloc.
assign nurnstr := substr(str,firstloc,endloc·fir·stloc)
if isnumber(numstr> $$ double check that :it iG a number

assign str := delete(str,numstrl
assign getnum := numstr

else
assign getnum :=

end if

FIGURE 3: Using Patterns for Lexical Analysis

200

; A J.:. A)..:,.,\.*. A A f ,i.. ,.~·°"·A ,ii; A A A A ,A... A ~ .\A)t. A,;\ A A .J. \). .~. A}. A .~ .• ~ . .\ ,\ 1 .~ ~ • • ~ 1 ;_ ~ ,.1. ;._ .~ .1, ,.. ;

'frz;.tr1sfur·n:: Perfor·rn r·1·d,dLi.1._:n:--;, ~:t.:ti'LJ·; ~CJi'1 ~tnd ~1;.:.J, 1 •• f i·J;-: Lh.1.:' •tl"tdy

of point::;; f'T .. E~H~h. r-1..:··w of PT-~~; uf L.ii::~ fll\:'"r1;:

(.i<,V,?:,.:) wh.ere ;--:_~Y and Z a~-t"·: r~cal·\,,;o(!d -,~·tH'"dindLP..t.;

'I11e z::<ir·m arr .. 1y i~_:; ed." Lf1c· form:
(Hx,ny,Rz) t:t"\present.lnq· l<oLu.t.iun~s in (;_,,-··1Jr·t-_"t~[1

('f'x,Ty,'fz) Y't:.'pl:'.·eserit:i.ng 1l't·d.n~J1.,-tt.-~'~.ir1:.:) i.n ~:.ir1ct.t:c ;_~;1l\,~·i
; (Sx,Sy,~lz) r(.'t)r·, ,;f:r1Lir1{J Sl.:l:tlin(J
; ;., cl .A·"· .A .A }. ,•, i, ! . . '< r. o.\. r. ,\ r. A,,.~ A .i; .A A A A f, .i.. ~A A.' ·'· !'< ..\).. f. ·'·}.} . ..\A A A A f. i i. '· ,. · f . . c. '· ·'· h .A .'.,.'.A ' ' .• ·' .'· .\A ' '· · •. · r.

UNIT Trans[orm(pl,parml
DEFINE pt['?] : :·;:.·:AL :;:~ Nx'1 ,uray ot ~11•ints

parm[?l
c[3l,!;L3.I

REA~ $$ lx] atray
~ RJ<J\L$~ t,, ·mpot a.r·y
INTEGER

of r-\Jtd.!., i"·:>n:·i, t .t:'dz;:-_,lctt.L~ -11 «lr,(1 ~iCr:t.~ Jn1_;
:;!~ut·i1i:Je ftir· '.5i1;c:~, ;~nd co~1inv~_;

xform[•1,4] ; HEAL
I T;'

.L (DI rflAX (pt , ~~) < > 4) 0 H (D T XA){ (pd t n1 r "i. > < > .1 > 0 H (f) I !'flJ\X (p.:t r:· m , ;;) < > :~)
ERASE iioo;24R4
~:;I;.;;.;

AT
WRITE

i'i\USE
HETlmN

; tcmpur·ar i 1 y
FOR i:"l,J

AS~>ICN
ASSICN

':NDFOR

27.00
The po.int matt:·ix nn.JsL be N.l\··1 wheri:: ,_j th1·• l'!tirr:lJc·t· nt ~·(tf~d .. ~.,

'The par·m ar .. ray mu::;t .bt' ~xl

c[iJ :: COS(HAi:J(parm[l,iJ))
sLiJ ;:)TN{nAD(pai--m[1, iJ >)

; now 1._·r·eale xfonn Mi\':'I~.:;-;

AS~TGN xf0~mr~.lJ p;n·m[:; , l.J i, (c[LJ.-1,:[::])
parmL1, ;uA (:,;I CJ.,,,;[2J J

· -- l?,c1nnrJ,JJ'-(-:;r:~])
ASSIGN xform[l,7.J
ASSIGN xform[l,Jl
ASSIGN
A:~STGN

ASSIGN
A;;SIGN
ASSTGN
ASSIGN
A~5SIGN
ASSIGN
A~)SIGN

ASSIGN
A~> SIGN
ASSIGN
ASSIGN
; now do d.:

AS~>IGN

xf <H mL 1, 4 J
xfonnl ;; , 1]
xfoi: ml2, :J..J : ""

pa1. 111[J, l _; .i. (,·;f l -, Ac CJ] 1 c [1 J-"' :; ['.2 J .~ ,; L 3 :J)
pat ITi (c; , ;;J "- (C [1]f, c [' .' > ! , ,, ! ~ J ;. ;; [~'.].A "' [J 1)
pa rm[:;, 3]A (cl. 2JA:sL 3.l I

: ,- 0
xformt::::, :n
xfor;u[2,4]
xformrJ,lJ
xfonn[3,? ·1
xformrJ,3J
xformr:;., 1}J
xfor·m[4,lJ --­
xf onnr 4, 2J
xform[4,31
xfnnn[4,4J

!.ja .nu [3 , l .F { :A 1] ":s [J .l t 1 '. ['. l A :; [: : _p c -LU l
pdrmLl. ;;JA (-c[1]f..:c;[.l] f :;[l]A:;[Fl/ d TJ)

.c pa. nn[J , 3] "· (c [~; v. c fl 1 l
; ~ 0

pt : -' ptAxfor·m

parm[2,lJ
pa rm[/, 2:1
parm[2,31

FIGURE 4; Using Matrix Operations

201

;*****************************AA*AAA
; Perspective: Convert the points in array PT to two-dimensional values
; so that the image appears to be viewed from DISTANCE away
; from the eye.
;***
UNIT Perspective(pt,distance)
DEFINE pt[?J : REAL $$ array of points CX,Y,Z,l)

distance : REAL $$ length between eye and center of object
pers[4,4l : REAL$$ array used to produce perspective constants
i,j : INTEGER

IF distance <= 0
ERASE 2300;2480

END IF

AT 2300
WRITE The distance from the object must be positive.
PAUSE
RETURN

to transform the normalized array PT into perspective coordinates, use
the pers array of the following form:
(1,0,0,0)

; (0,1,0,0)
C0,0,0,-1/D) where D is distance from center of object

pers := IDEN(4)
pers[3,3l := 0

(0,0,0,1)
ASSIGN
ASSIGN
ASSIGN pers[3,4l := -1.0/distance
; do the hard work again!
ASSIGN pt := pt*pers
; the
; the
FOR

4th column now contains the adjustment factor for that row.
X and Y coordinates appropriately.
i:=l,DIMAXCpt,l>
IF pt[i,41 <> 0

ASSIGN pt[i,ll := pt[i,ll/pt[i,4J
ASSIGN pt[i,2J := pt[i,2J/pt[i,4J

END IF
ENDFOR
ENDLESS ON

FIGURE 4 (Cont.): Using Matrix Operations

202

Convert

b~f~ ~Ef26,4l : REAL
xf[~,3l : REAL
npt[26,4l,xpt[26,4l : REAL

DO init
DO try

UNIT init
DEFINE rec : STRING

i : INTEGER
OPEN "edge.dat",1,READ
GEI' 1,REC
ASSIGN i := 1
LOOP NOT EOF(l)

ASSIGN pt[i,ll := NUMBERCWORDCl,REC))
ASSIGN pt[i,2l := NUMBERCWORDC2,REC))
ASSIGN pt[i,3l := NUMBERCWORDC3,REC))
ASSIGN pt[i,4l := 1
ASSIGN pt[i+l,lJ := NUMBERCWORDC4,REC>>
ASSIGN pt[i+l,2J := NUMBERCWORDC5,REC))
ASSIGN pt[i+l,3] := NUMBERCWORDC6,REC))
ASSIGN ptCi+l,4J := 1
ASSIGN i := i + 2
GEI' 1,REC

ENDLOOP
ASSIGN xf[2,ll := -25
ASSIGN xf[2,2l := -25
ASSIGN xfC2,3l := -25
ASSIGN xf[3,ll := 1.0
ASSIGN xf[3,2l := 1.0
ASSIGN xf[3,3l := 1.0
do transformCpt,xf >
ASSIGN xf[2,ll := 0
ASSIGN xf[2,2l := 0
ASSIGN xf[2,3J := 0
ASSIGN xf[3,ll := 1.0
ASSIGN xf[3,2l := 1.0
ASSIGN xfC3,3l := 1.0
CLOSE 1

UNIT try
DEFINE i,j INTEGER

p REAL
axis : STRING

ERASE
at 205
write Rotate about X,Y or Z?
query * right x

assign j:=3
right y

assign j:=2
right z

assign j:=l
endq
assign axis := UPPERCresponse)
at 305
write Perspective Cl-1000)?
input *

FIGURE 4 (Cont.): Using Matrix Operations

203

t1-S:::i·Lqn p : · NUJ\'!HLr<(r t-•::-it.J"-)i1~-)1.: J

dLlsign xpt pl
ror i:,O,:H>0,1()

AS~lGN xffl,ll 0
ASSIGN xf[l,21 0
ASSIGN xfr1,JJ 0
ASSIGN xiU,jJ : ,- 10
DO Tr·a11:-,f onu (xpt, x f
A~>~5TGN npL : ~- xp t
DO F'c:c,pec ti v. __ , (npL, p I

.tL 250
wr.· i tc
clu

< (;.J , Et X j_ ~~ > > ,·1 t < < ~-' , i.)) d t~· q .t ('(' :-;
d i:,[-'L>y

c nd t en·
pau:;p
v cdo

pclU5C'

mode

CJN f'T' d.U>play
DI~F' U•J f-: i
COJdGTN JOO, 240

T :\f'1··F:C;El·l

;.':Jp_ i: 0 1,DlMAXCnpl~,}) ,L'.
CL: N::; .[N1_, (np tr i , -~]) , I N'r (n pt [L , ;.~ i) ; 4 :\ -~, (f i.l=-' Lr ; 1 '" r 1) , _j ~r;-: (np Lr i ; , ~~ I F

C:NDFOH

L:ND1JESSON

FIGURE 4 (Cont.): Using Matrix Operations

204

;AAA\A 'AAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAA•

PFHuturT1: Di.;.;p1ay '}{ETUHN Continue I'F··l Cxil" ai. the llottcim of Lhe :sett F:n
~-tnd th(~n pau~;c. CuntTnuf1 Lf r<J-_;'_r·:_JHN "i Cl prt:ls~ed, ot.})ctw·i;_~e

llACKUP to u name if PF'4 .i,: pre!,.sc'd.
;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAhAh~A

unit pfn.~Lurn(u __ name)
def _ine c_~st:.at ,·:_1 ___ stat, k_. __ :_;LaL, ; ___ stat f.N 1J'l·'.CF:H

u_ndme : STRING
.:unlinue : HOOLl"AN

sav(; cur-r1,•nt. statue; ~1nd £'Cstore at encl of uu:LL
:su.ve 10, prompt, where,;,; i ze, ·[t al .i.1_::;
prompt
as~>i.gn

assign k_sLal
·= termstaL(t_LypeahPad)

l.ermst:at (t_f key)
assign c __ stat fcolor
assign q __ stat · ~ q.length
; <i.ic.iCd ni :1ny char·act,,rs pr·ebr>cd
set typeahcad,uff
set fkey, t:cnninat.c
assign qlcngth
charset ":;Landard"
mudc> f .i X('U
:..3 l:.:.:c-· i ... '
: l (l .l j I• ~~ 0
at
do
wr· i te
Jo

;: ') 4 '4 f, 0
keycha.r ("HETUim")
cr .. ntinue

keycl1ar ("PF4")
write Exit

1

loup until CR or PF4 is pressed
~L.:;:.::.ign continue : = TRUE
t>f.~L ccho,off
loop contLnue

input. 0
Le:st. cespon::;c
value "", "[PF4_KEYJ"

as,; ign cont. inul:

cr.d:oop
set t'l ·h.o, on
e Ya.;.; c 2]) '~ ; 2 4 6 O
:.:;c1 t Lypcahead, t __ ~JLat
het fkl_'y, k_r>tat
a:;sign qlength . - q __ :iLat
t' c :.; t.) { t' l 0
aL ·wltere
if n~~;pon::;e" "fi-'F1_KEYJ"

cnd·i f

if upper (u __ na.me) '"TOP"
backup TOP

backup u_n.ime
t~nd :i r

end 1. ~--,:-; snn

t.o U1c pat.we

FALSE

FIGURE 5: Using BACKUP for Return from Help

205

; A .i,, A A A A A A A A A k -I< A -I< A A A A A A A.* f; f: l<c A A I< A fc ,•, r . . 4. ,, ;A A A A A A A> ; .·' .i, \ 1. •, '· ' ' '· \ '). \ ;,, ' ; < A}. I I, • • ' ' • ,. 1. ;_ .< ! A. '

: pt·escnt opt.ion;; Lo Edit, Cumpi1e, ;Jclele etc.
;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:AAAfAAAAAAAAA:AAAA:AAAAAAAAAAAAf~IAAAAAAAAAAAAAA~•A

unit wor·kl.>cnch
test co1
vaJuP l

fcc<i.or gr.·een
ci:r-a::Je 200;1959
do
do
as~sign

i1!SSign

cditor(:;uurc::t>,:C;oo,lfl,FJO, 1 inc·cnt,colcr1i:,TFHJF)
showmesSillJC ("" l

value 8
do

col 8
in : ~ :·"

compile ...
l I ir. -~ $$ then; wa:; an er-ror·

e l::;c
a;,;;;;ign col := l

lirli·cnt : "' l
co Lent : ~ L

assign
ass.i.qn
do :3howrnf'c~sage("Cumpilat.ion l~; complpic!")
i:i:~ ~;j il)n ('() l : c 113

end if
; ... uther· code
;AA•I";,,

; <:ompi 1 f• '..he ry·ogtam in Soun:e a.nci retun1 l!w P Cude in IN
;A*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA•~A

unit comp.ile
define fi lc~List

progname
info,<>tr,id
i , j

do Compi1ein:it
do <Jct token
.~f to ken < > ' PROGRAM"

STRING
STRING
INTEGER

S'l'T<lNG

do comper·ror·("'P!WGHAM' t;Xpecl:l•d. ")
ern.1.if
rto gctl·.nken
acosi9n progname : ·~ to;,en
clo gr~ttokl'ri

if Luken 11
(

11

t:'lldi c

d.o qet lokc~n
do Get 1 dL is L \ f L l (' ·; i ~' t. l
i r t ()ken < > ") "

endi.f
ass·i(Jn
do
do
do

do comperTor (,.) ' cxpcct,cd. ")

lnfo 'PROC,N," + filcl.isl
f\ddSyrnbo 1 (pr·ognam<', t rif (J)

Add~~ymbol (f i 1P list, "FTLE")
get Luken

if token <>
do comperr·or ("';' expeclc:d. ")

end if
c:,; get token
do p;rocbody (proc3name)
if token <>

do competTOl"("'.' exp<:cL(>d. ")
end if
;AAf:AAAAAAAAAAAAAAAAA~fA

FIGURE 6: Using BACKUP in a Pascal Compiler

206

; repoi.-L error and return t.o workl;ench
;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~!f AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
unit comp~~rror (msg J
define msg ~)'HUNG
open IHSTFII.E, 2, update
put 2,"Compile:"+rnsg
close 2
; now c1.:impute column it.. was on
as~ign colcnt := 0
loop ASCIIlin,inptrl <> 13

assign colcnt := colcnt l
a~;:.:;ign inptr inptc - 1

end loop
assign in :~

assign errfound :=- THUE
do showmcssage("Compil.e Error: "Jmf;gJ
;:,.;cku£:> "WOHKBENCH"

;AAA~AAAAA

; get a lifit of id0ntifiers which are separated .by comma:-,
;AAA•~

un:i t GPtidI..i~c,i,(l i.stl
define list : STRING
if not TsTD<tok~nJ

Jo cornpPrror· ("Ident:i fi Pr' expected." I
endif
assi9n
do gt:->lLokPn
luop token

do
j, f

end if

list token

,
get token
noL l~;TD(tokenl

do comperror·("Tdent.ifiET expccLvd. ")

as::;ign list : 0 1:ist ·f

do yet token
endloup

FIGURE 6 (Cont.): Using BACKUP in a Pascal Compiler

207

;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl)>•<AJA•AAAAA;• A,)A• 'li4jA\AA•AA,~AiAAAAAAA~A•

GctString : Get u. st.ring st:arL.ing at LOC pu:.dtion (Crose; grid) on the
scn~<'n. Al low up to wldLh character~. Lu bf' lyped. The
iniLial and final value of the : .. tring will b(: iri LlNF: and
Uw initial and fi,.1<;1] ll•caLion of U1c cur;.;c1r will :tie ill
COL. The cursor key~, and DELJ':TE lH"Y W<ffk as normal the
the additional furwi:lons provided by pre::;::.;ing SELECT OJ.'

PFl are IJrovlded:
S goes to ~)tar L of f>inc
E goes to End ol Line
W delc•les next Word
L delt:tc•s re~;t of Linc

; X d\~1ete:s whole li.ntc·
;AAAAAAAAAAAAAAAAAAAAAAAAAhAAAAAAAAAAAAJAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAA~

UNIT CeU>t;ring (1 ine, lac ,width, coll
DEFINE line S'l'lUNC

loc JNTT:GF.R
width INTEGF:r<
col INTEGER
i,j INTEGER
Ma.rg:i n INTE<;}·;R
Cur Row IN'l'F:GEf~
~ STfHNG
d_stat
k __ 5 tat
CL.Stat
Bell

INTEGER
INTEGER
INTEGER
~~THING

; sav~ old settings
A~>~-;.rcN u __ st.~i t
ASSIGN k_slat
ASSIGN q_stat :=

terms tat ld_statl
Le r 111~1 ta L (L _ _f key)
qlength

ASSIGN qlength 1
SET f key, Le nni na te
SET dt:•h·te, off
SAVE l 0, pnnnpt
SET echo,off
ASSIGN Bell : '' CHAH < 7)
PROMPT
lF LEN(Line) > WIDT!I

ASSIGN L·ir1l-! : 0c LEFT(Line,if~idth)

El'i:D:rF'
ASSIGN
ASSIGN

Marqin : ' (Lor: MOD 100) · 1
ClffRow : ' lOU"-TNT(l.oc/100)

Lhe fo:i lciwlr1g rnacrug·raph wi.l l (i.i:5play a cyt.<n Llock curo;or hy usinq a
c-umbination of TNVI::Il~;t:, l<Hi\~'a·: .:ind complc·m•.·nl. 'I'he [;ext consisl:,; of
ct space fo1.lcJWt:·ci. 1Jy a EIAC.KSP!1CL :.u pt;l. Uw Cl.ff'.".'<1r· L;tck at t.he ur .igirial
local. Lon.

MGRAPf! '}{"
HEGH> 'T\B)\AOl<W(NlCI<C)l)''(f,;)

E:NIJMGRAPI-l
MODE HF:PLACE
$~3'T1ART
; ma.•\t~ sure (~ilr.·~scH·· ~~Lay~'J within C • ~d

IF Col < l
AS~~ ·r CN CuJ 1

ENIJIF'
:T Col > LF.N(Ltrwl

lT LEN(LltlL') < Width
l'.SSIGN Co1 : ·· LEN(l.incl + 1

FIGURE 7: Using Save and Restore for Student Editing of Responses

208

ASSIGN Col :=Width
END IF

END IF
A~r Cur-now+Ma.r9.irJ 1 col
MPLOT "X" $:1 plot tht· Cut"SC>r

INPUT *
MPLOT "X" $$ f'raf;e Uw cur~;or

Tf'.;~>T kf'ypt e:ost•d
VALUE 32 •. 126 $$add the text.

A~;!_;IGN L.ine : 0 LEFT(lim:•,col l.)tchar(kcypressed)+RTGHT(line,colJ
IF LEN (L.i nP.) > Wid Lh

/\;,~; :GN Lim~ : :c LEFT(Lim· ,Width)
ENDlF
WHl'f'l<
M;~HGN

VALUE .l21
If'

F'.ND.lF

<<:;,RTGHT(1inc,coi l >>
Col : .· Col l

$$ de.lC't<' a c:harac:LCT
cn·i > 1
IF (Col LEN(linr->)) AND (C'n1 ·Width)

ENTlU'
AT
M':STGN
wn::TE

ASSIGN Lir1e LEF'T(line,col])

M>STCN L.ir1tc : · LE:FT(lim.~,col 7.l+R1Gf!T(1ine,coll
AS!:.>H;N col : -. col·l

c:urrlc•1.,n Marg :in+ col
··' . ·· H] GI J'.l, (] i n e , c n 1) f 11 "

<<s,,~>>

lF Col = W.idth
ASSIGN L:ine : :
l\T Cur.Reow+Ma rt] j. n t Co ·l

F:NDIF

VA:_,~_;r; 7.~)6,:>1ti ~;1$ PF! ur· SEL};~CT f(it· opL.io11~>

input ~.

AGSIG~ La~tKvy :' 2Sb
TI" ikf'ypn'."'<'d<:;2) OU (kp_ypre:,Red)'J .. :bJ

CONTIWi. ;:ie 11
ENlHi
'T'F:~)'f'

VALUE

VALUJ~

lJP}'EI<\• ti:,r (kt'Yf'rc:c•~•t•dJ)
llX''
AT

!~ !~ (d <."' 1 c L f~ who 1 e i J t H-·)
C\;dlowt·Mar9in 1 l
:: \ 0;, H'lanl;:F'au C ., ",LEN (L LNE)) > >

Af;:>IGN CoJ :·· 1
A~m f(;N L:i m · : " " "

/\~·;;~:,:;N i :· COL
LCl(ll' (i < T.P.N(;,int)i AND CASCii(l.inc,i) <> J2l

I::NUL()()l l
LOOP

ENDLOOi'

i ·I

(_l; LEN(L~rn J) AND (;\;>;C}~(L.irn~,fl ··· 3.l)
ASSIGN :·· i i l

IF (i -. LEN(L:ine)) AND (ASCIICLirlc,i ll <> 32)
A:>S.LGN i : '· i f .:

ENllTF'
v.;;~ T, ;·;.
ASS1GN
"L"

< < ;-; , H 1.a n kf\1.d (Hi •,.;h 1. (L.Lrif~, :L l , Li'.:N (LINl·:) .. -Colt l l > >
Lint':~ LEl"TCLinc,Co.1 1l ~ RJGll'T'(Line,Jl
!?$ (rJp'i etc· Lo F:nd nf ;, irie)

FIGURE 7 (Cont.): Using Save and Restore for Student Editing of Responses.

209

VALUE .
VALUE

HRITE
ASSIGN
"S"
ASSIGN
"Eu
ASSIGN

ENDTEST
VALUE 276

ASSIGN Col :=
VALUE 277
• ASSIGN Col :=
VALUE 13,256 •• 316

BRANCH $RET
ENDTEST
BRANCH
$RET

$START

«:.; ,lllankPad<" ",LEN<LINE)-Col+ll »
Line := LEFT(Line,COL-1>
$$ Cqo to start of line>
Col := 1
$$ Cqo to END of line>
Col := LENCLine)+l

Col-1

Col+l

ASSIGN LastKey := keypressed
q_stat ASSIGN qlenqth :=

SET fkey,k_stat
SET delete,d stat
SET echo,on -
RESTORE 10

FIGURE 7 (Cont.): Using Save and Restore for Student Editing of Responses

210

8088 MACRO ASSEMBLER ON THE RAINBOW MICRO COMPUTER

Robert S. Workman
Southern Connecticut State University

New Haven, Connecticut

ABSTRACT

Rainbow lOOA micro computers were used as
the laboratory computer in an 8088 Macro
Assembler Programming course. The goals
of the course were to introduce the
architecture of the Intel 8088 micro
processor and its associated
coprocessors and to teach 8088 Macro
Assembler Language. Emphasis was placed
on the use of modular programming anw ~n
line debugging techniques.

INTRODUCTION
Almost all books and articles about the
Intel 8088 Microprocessor and the 8088
Macro Assembler Language are written
with the assumption that the reader is
working with an IBM PC. This paper
assumes that the reader has access to
and is familiar with IBM PC oriented
Macro Assembler Language material, but
is using a Rainbow 100 with the MS-DOS
operating system. Methods for
organizing code to take advantages of
Rainbow features and changes that must
be made to accommodate Rainbow
differences will be emphasized in this
paper.

Most I BM PC oriented mat er i al i ~­
directly applicable to the Rainbow. The
MS-DOS operating system appears to the
user to be almost identical to PC-DOS
that is used on the IBM. The 8088
microprocessor, its architecture and
instruction set are identical for both
machines. The Macro Assembler Language
appears to be the same Microsoft
product. So does the line editor EDLIN,
the on line debugger DEBUG,

Many differences between the Rainbow and
the IBM PC arise from the Rainbow's
version of Microsoft's Disk Operating
System use of different interrupts and
interrupt function codes than the
Microsoft's DOS written for the IBM.
Other differences between the Rainbow
and the IBM PC stem from different
implementation or lack of implementation
of specific hardware feature s1Jch as
graphics, audio capability, and disk
storage. A knowledge of a few
differences between Rainbow DOS and I BM
PC DOS will allow one to use most of the
material in IBM PC oriented books or

Proceedings of the Digital Equipment Computer Users Society 211

articles that do not deal with IBM PC
specific features.

This paper will first present a
demonstration Assembler Language
program, illustrating program the
organization that is recommended for
beginning level Macro Assembler coding.
Some of the most useful Rainbow
interrupt functions will then be
summarized along with keyboard related
differences in the use of EDLIN.
Finally a Rainbow translation will be
given of a recently published procedure
written for the IBM PC. The procedure
demonstrates how to replaces the DOS
keyboard I/O interrupt handler with user
v.iritten code. The IBM to Rainbow
translation is representative of what
must be done to transport code to the
Rainbow or make use of IBM PC oriented
reference.

A DEMONSTRATION MACRO ASSEMBLER LANGUAGE
PROGRAM 1.--lRITTEN FOR THE RAINBOW

Pro gr am 1 is an example of a first
assembler language program. The program
displays a message, the user's response
to the message will cause one of two
responses to be displayed. The program
illustrates Macro Assembler Language
organization. The version of the
program will be a COM file. Segment
registers will be set to the same value.
Very simple macros are used to display
messages, accept a response, and
terminate the program. The macros are
u~ually placed in a separate library
file name MAC.LIB. When this is done the
assembler directive, INCLUDE MAC.LIB
must be put in the program in place of

Anaheim, California- December 1985

TITLE Demonstration Macro Assembler Language Program
;=========start of macros may be placed in MAC.LIB==============

READ_KEYBOARD_AND_ECHO MACRO ;pgl-34 DOS prog ref man
PUSH AX
XOR AX,AX
MOV AH,OlH
INT 21H
POP

;waits for character to be typed,
;displays it and returns it in AL

AX
ENDM
DISPLAY_CHARACTER MACRO ;pgl-35 DOS prog ref man

PUSH AX
MOV AH,02H ;displays character in DL
INT 21H
POP AX

ENDM
DISPLAY_STRING

PUSH AX
MACRO ;PG 1-44 DOS prog ref man

MOV AH,09H
INT 21H

;DX must contain offset of string,
;The string must in with"$".

POP AX
ENDM
PRINT_CHARACTER MACRO

PUSH AX
;pgl-38 DOS prog ref man

MOV AH,05H
INT 21H
POP AX

ENDM
STOP MACRO ;pgl-134 DOS prog ref man

MOV AH,4CH
INT 21H
ENDM

;==End of macros, remove";" from next line if macros are in MAC.LIB==
;INCLUDE MAC.LIB
CODE SEGMENT
ASSUME CS:CODE,DS:CODE,ES:CODE
ORG OlOOH

MAIN: JMP BEGIN
START_MESSAGE DB 'ARE YOU HAPPY? ENTER N OR Y $'
YES_MESSAGE DB ' THATS GREAT!$'
NO_MESSAGE DB ' CHEER UP!$'
ERROR_MESSAGE DB 'YORN PLEASE !' ,OAH,ODH,'$'

BEGIN:
PROCl PROC NEAR

MOV DX,OFFSET START MESSAGE
DISPLAY_STRING

READ_KEY:
READ_KEYBOARD_AND_ECHO ;macro character in AL
CMP AL, 'N'
JE DISPLAY_NO_MESSAGE
CMP AL, 'Y'
JE DISPLAY_YES_MESSAGE
MOV DX,OFFSET ERROR_MESSAGE ;output a string of characters
DISPLAY_STRING
JMP READ_KEY

DISPLAY_NO_MESSAGE:

DONE:

MOV DX,OFFSET NO MESSAGE
DISPLAY_STRING -
JMP DONE
DISPLAY_YES_MESSAGE:
MOV DX,OFFSET YES MESSAGE
DISPLAY_STRING -

STOP
PROCl ENDP
CODE ENDS
END MAIN

Program 1. An 8088 Macro Assembler Program showing macro
definition and use.

212

all the macro code.

When more complex input or output is
needed it is highly recommended that
code from a source such as Bluebook of
Assembly Routines for the IBM PC & XT[7]
be used. SGNDEC16IN which accepts a
signed decimal number from the keyboard
and converts the number to internal
signed two's complement 16-bit binary
form is typical of the code in the
reference.

When writing beginning level programs it
is recommended that the line editor
EDLIN be used and that the programs use
to assemble, link, changed to a COM
file, and execute the source program be
placed in a batch file. Figure 1. shows
a sample batch file. As can be seen
from the batch file, programs that are
used in the assembly process have been
place in E: drive using the Rainbow's
virtual disk drive feature. On systems
with at least 320K bytes of memory all
needed programs including DEBUG and
EDLIN will fit in memory. The use of E:
drive greatly speeds up the assembly
process as long as the programs being
tested do not frequently crash the
system. Figure 2. shows the batch file
used to place the programs and the
macro and procedure libraries on E:
drive. Before ending an E: drive
session the user should be sure to copy
the new version of the source program
to a non virtual diskette.

One of the most interesting features of
Macro Assembler Language use is that
programs can be traced with DEBUG an
interactive debugger[3]. DEBUG displays
the contents of all the 8088 registers
and allows the programmer to step
through the program one instruction at a
time. At any time the contents of
memory may be displayed either as data
or unassembled as instructions. The
experience of seeing the imediate effect
of an instruction on registers and
memory is an invaluable help in aiding
students in understanding the operation
of the microprocessor.

MASM %1;
LINK %1;
EXE2BIN %1 %1.COM
%1

Figure 1. Batch File for assembling,
linking, converting, and executing a
Macro Assembler Source Program

213

COPY MASH.* E:
COPY LINK·* E:
COPY EDLIN.* E:
COPY %1.ASM E:
COPY EXE2BIN.* E:
COPY G.BAT E:
COPY DEBUG.* E:
COPY MAC.LIB E:
COPY PROC. LIB E :
E:
DIR

Figure 2. Batch file for copying
programs to memory.

SOME RAINBOW MS-DOS INTERRUPTS AND
INTERRUPT FUNCTION CODES

Figure 3 contains a summary of
interrupts used in Program 1 and two
other interrupts useful to beginning
assembly language coders, Print
Character and Read Keyboard Without
Echo. To use these interrupts move the
function code to AH first. See the
examples in Proqr~. i. A complete list
of Rainbow MS-DOS interrupts may be
found in Microsoft MS-DOS Operating
System Programmer's Reference Manual[6],
A number followed by a "h" indicates
that the number is written in
hexadecimal, format.

Function
Olh

02h

05h

08h

09h

4Ch

Use
Read Keyboard and echo
Character returned in AL
Display Character
Character displayed in DL
Print Character
Character to print in DL
Read Keyboard no echo
Character returned in AL
Display String
Offset in DX, end with"$"
Terminate a Process
Preferred end of program

Figure 3. Some frequently used
Interrupt 21h functions.

The Fall 1985 special issue of "Byte" is
devoted to articles about the IBM PCs.
As with most IBM PC material a great
deal, but not all of the material
relates to the Rainbow. A
representative example of this may be
found in "Writing Desk Accessories"[ll].
This article shows how to modify the IBM
PC keyboard interrupt handler. For this
material to useful to the Rainbow
programmer a few of changes must be made
to the code.

1he first problem encountered in
converting the program to the Rainbow is
that the IBM PC cassette I/O vector is
modified during testing. As cassette
tape I/O is not supported on the Rainbow
and the cassette I/O vector use is not
essential to the program, refrence to it
may be removed. Next the IBM interrupts
shown in Figure 3 are replaced by their
Rainbow equivalents. The equates are
showr1 in Figure 4. In all, thanks
to Wadlow's well written code, only five
changes must be made. One of which has
to do with a hardware difference and the
others with interrupt numbering
differences. This type of revision is
typical of that encountered when working
with IBM PC oriented material.

DOS_keyboard_io equ 16h
DOS_replace_vector equ 15h
DOS function equ 21h
DOS-terminate resident equ 27h
get:=vector equ 35h
set_vector equ 25h

Figure 3. IBM PC version of equate<:.
keyboard interrupt handler routine [11].

DOS_keyboard_io equ 21h ;set ah=Ol
DOS_replace_vector equ 21h
DOS function equ 21h
DOS-terminate resident equ 31h
get:=vector equ 35h
set_vector equ 25h

Figure 4. Rainbow version of equates for
keyboard interrupt handler routine.

KEYBOARD DIFFERENCES THAT EFFECT THE USE
OF EDLIN

The EDLIN line editor is frequently used
to edit 8088 Assembly Language programs.
As it is short it loads quickly and may
also be placed on E: drive Two EDLIN
instructions may cause the beginning
Rainbow programmer problems. The IBM PC
format for the Replace Text instruction
is:
[line][line][?]R[string][<F6>string].
"<F6>" refers to Function Key 6 on the
IBM PC. This is a control z. On the
Rainbow the Exit Key or simultaneously
pressing the Ctr Key and Z do the same
thing as Function Key 6 on the IBM PC.

214

A minor inconsistency exists on the
Rainbow that may cause some confusion.
For EDLIN users, the "escape" character
is entered by using the "interrupt" key
not the "escape" key.

CONCLUSION
This paper has presented some methods
for organizing Macro Assembler Language
programs on the Rainbow and given
examples of how IBM PC oriented material
can be modified for Rainbow use. It has
been my experience that IBM PC oriented
texts and articles can be used with
little problem in courses where the
Rainbow is the primary laboratory 8088
microcomputer.

REFERENCES
1. Able, Peter, Assembler for the
IBM PC and the PC-XT, RestOil -­
Publishing Company, Inc., Reston,
Virginia, 1984.

z. iAPXBB Book, Intel Corporation
Santa Clara, Ca, 19B1.

3, Microsoft Debug Utility for 8086
and BOBB Microprocessors,
Microsoft Corporation.

4. Microsoft Link Linker Utility for
BOB6 and BOBB Microprocessors,
Microsoft Corporation.

5. Microsoft MS-DOS Operating System
Macro Assembler Manual, Microsoft
Corporation, Bellevue, Washington,
November 19B4.

6. Microsoft MS-DOS Operating System
Programmer's Reference Manual,
Microsoft Corporation, Bellevue,
Washington, 19B3.

7. Morgan, Christopher L., Bluebook
of Assembly Routines for the
IBM PC & KT, A Plume/Waite Book
New American Library, New Vork,
1984.

8. Norton, Peter, Inside the IBM PC,
Access to Advanced Features and
Programming, Robert J. Brady Co.,
Bowie, Maryland, 1983.

9. Rainbow MS-DOS V2.05 Programmer's
~' Digital Equipment
Corporation, November 1984.

10. Raipbow MS-DOS V2.11. Update Notes,
Digital Equipment Corporation,
November 1984.

11. Wadlow, Tom, "Writing Desk
Accessories, Design you own memory­
resident programs for the IBM PC,
available at the touch of a key",
~' (Fall 1985), 105-122.

215

TCHART: Development of a Device Independent
Chart Drawing Program

Judith Bardell
Boeing Computer Services
P.O. Box 24346, M/S lE-32
Seattle, Washington 98124

(206) 241-3079

ABSTRACT
New graphics terminals and hardcopy devices are being introduced
every year. The current challenge is to provide application
software which is compatible with many different devices.
TCHART is an interactive chart drawing program based on the
DI-3000 graphics package (Precision Visuals Inc.). TCHART
is executed on the VAX/VMS operating system and runs on a
variety of DI-3000 supported graphics devices. The advantages
as well as limitations of basing interactive software on a
well developed graphics package will be discussed. It will
be seen that a program like TCHART acts as a doorway allowing
an unsophisticated user almost complete access to the graphics
package capabilities.

The Problem and Its Environment

TCHART was developed by the Boeing Aerospace Company
(BAC) Support Division of Boeing Computer Services
(BCS). This group is specifically tasked with
graphics software support of BAC owned VAX computer
centers. Graphics software is provided to more than
50 sites intended for engineering use. Site com­
puters include VAX 730, 750, 780, 785, 8600, and
Micro VAX.

As a graphics software support group, we develop
and maintain engineering application programs and
act as a distribution point for licensed software.
The group also produces a newsletter (The VAX
Graphics News) on a monthly basis to insure that
engineers are kept informed about the changing
availability of software/hardware products for
their use.

Variety is the rule in the computing environment in
which our graphics software is used. Each site has
its own set of interactive terminals and hardcopy
plotting devices. For this reason, the decision was
made several years ago to produce device independent
software wherever possible. The Precision Visuals
Inc. (PVI) DI-3000 software was chosen as a basis
for new applications. DI-3000 is a rich graphics
package with a large number of device drivers sup­
ported. For devices not supported, PVI makes it
relatively easy for the programmer to write his own
driver.

The problem addressed by TCHART was to create a
chart drawing program which was easy and natural
to use interactively and which could eventually be
linked to output produced by other products we sup­
port, such as:

EGG
PLOTMAKER
PILGRIM

Engineering Graphics Generator
Bar, Line, Contour plots
Text slide generating program

TCHART would be executed on devices ranging from
TEKTRONIX 4014 to IRIS 2400. TCHART would be writ­
ten in the DI-3000 graphics language. These two
given conditions created constraints on the original

Proceedings of the Digital Equipment Computer Users Society 219

goal of producing the most natural and easy-to-use
drawing package.

The Goal - A Good Interactive Program

The factors of a good interactive program are
defined all the time by disgruntled users, but
seldom thought about carefully by programmers
actually writing the program. This is because
programmers are dealing with what is possible
given the actual program and the time available
to make changes.

In the case of TCHART, there was ample time to
think about a good interface because the program
was modified from a primitive form to the current
version over a two-year period. A lot of comments
from users were received, some contradictory, all
useful.

Eventually, we decided that a good interactive
drawing program must have the following properties:

1. It does what the user expects. The program is
consistent and symmetric in its menu/command
structure.

2. It is easy for him to learn. A program is
easiest to learn if it is simple in structure.
It is also best if there is little the user has
to remember. For example, a menu/command set
which is always available for viewing is best.

3.

4.

It requires a minimum number of steps to accom­
plish a function. The user should not be
forced to traverse menu lists and/or restate
information he has previously given the program.
The program should retain all reusable informa­
tion.

The response to an accomplished function is
immediate and obvious. The screen is immediate­
ly updated in response to user chart changes.
Messages to the user appear if functions cannot
be performed.

Anaheim, California- December 1985

5. It saves the user from himself. The user is
not allowed to move chart segments to irretriev­
able locations outside the screen. He is pro­
tected from any abort which will terminate the
program prematurely. Error messages keep him
informed if he makes a mistake.

6. It allows control of all aspects of the process
being performed. All of a developing figure's
attributes are under user control.

7. It provides for hierarchy of detail. Scale
functions are provided. Previously generated
chart figures may be read into specific areas
of the screen.

8. It allows precision control for picking func­
tions. The user is allowed to specify in some
way the density of possible picking locations.
This allows him to line up drawn figures and/or
to locate specific chart points without using
inhuman precision.

9. Chart files are saved on user command. This
allows the user to save different versions of
the developing chart without exiting from the
program.

10. Chart files are read on user command. The user
may read any number of chart files during pro­
gram execution. This eliminates the need to
recreate chart elements.

11. It allows the user to save his drawing environ­
ment. Specific attribute information such as
character type and font, color, etc., may be
read/saved at any time to assist the user's
memory between chart drawing sessions.

12. It has a help facility. New users can receive
information on menu or command functions during
program execution.

13. It is expandable for future enhancements. If
new functions are required, they can be added
without much alteration to the user interface.

Attempts to Reach the Goal - TCHART Development

Can a program based on a graphics package, which
runs on many different devices and which contains
no device-specific code, reach the goals outlined
above? The story follows.

TCHART was originally written to provide users with
a chart drawing tool to be executed primarily on the
TEKTRONIX 4014, thus its name T-CHART. It was based
on DI-3000 and was a well-structured program.

Since we had no product like it at the time, a pro­
grammer was assigned to look at the program and
"clean it up." Naturally, as soon as it was cleaned
up enough for anyone to make much use of it, com­
plaints about the way in which it worked started to
come in.

Over a period of two years, as time has been avail­
able, TCHART has been modified. Some of the major
changes have been the following:

1. The data base was completely reformatted.

220

2. FORTRAN 77 DI-3000 routines were substituted
for FORTRAN 66 routines.

3. The menu structure was consolidated from two
levels to one.

4. New drawing functions were added.

5. Input/Output functions have been added.

6. Attribute functions have been enlarged to make
use of most DI-3000 capabilities.

TCHART today is an interactive program based on
DI-3000 which creates and modifies charts and
diagrams. The user draws diagrams on the graphics
terminal and plots them to the specified hardcopy
device.

When TCHART is executed, the user is prompted for
the name of the chart file he wishes to generate
or update. This chart is then displayed with the
TCHART menu set. The TCHART menu set consists of
six menus:

ACTION
OBJECT
SWITCH
OPTIONS
INPUT/OUTPUT

EXIT

Chart operation to perform
Type of figure upon which operate
Switch function options
Grid and attribute options
Plot output, chart file genera­

tion and input
Exit with/without saving existing

chart

The user picks from the menu set with the terminal
locator input device. No particular order of
selection is enforced. The function performed in
chart area is determined by the user's selection
for the ACTION and OBJECT menus. Figure 1 shows
the TCHART menu during a user chart drawing
session.

The ACTION menu defines the operation to be per­
formed on existing chart figures. The selections
available in the ACTION menu are as follows:

ADD
MOVE
COPY
ROTATE

SCALE
CHANGE
DELETE

Add a figure to the chart
Move a figure to another location
Copy a figure to other locations
Rotate a figure a specified number

of degrees
Scale a figure's size up or down
Change a figure's existing attributes
Delete a figure from the chart

The OBJECT menu defines the type of figure to be
created or modified •. Creation of the following
objects is accomplished through the user selection
of a minimum number of defining points:

ARC (3)
ARROW (2)
CIRCLE (2)
DIAMOND (3)
ELLIPSE (3)
LINE (2)
PARALLELOGRAM (2)

PARABOLA (3)
POLYGON (n)
RECTANGLE (2)
SYMBOL (2)
TEXT (l+Text)
TRAPAZOID (3)
TRIANGLE (3)

Attributes such as color, line style, line width,
fill, character style, font, and size may be
selected from the OPTIONS menu to apply to the

USER

DISPLAY KEYBOARD LOCATOR

FILES

.-·-·-·-·- -·-·-·-·-·-·-·-·-· ·-·-·-·-·~ i i
i i

! TCHART i
i i
i i ·-·-·-·-·-·-·-·-·-~-·-·-·-·-·-·-·-·-· ...

~--·--- .. ····-·--·--········--·--·--··············--····--· -------········---------·-·····--·----------·-············ I

ij OPTIONS

J

METAFILE ij __ cH_A_R_r __

...

1· • ---•• • • • •• •• • • •••• •••• •• • ••• • • • •• •••••·--•• - • •• •• •, • - • - ·•· - - ·--- - • • •, .. •• • • • • • • • ••••, • - '"'• .. '"' • • .. "' • • •r • -- "''"' • - ---- ,.. • • • -- ..,

! 0 ADD TEllPLATE PARABOLA i llElfU OR/OFP ! COLOR ! READ TORK! RG ! REDRA'f !
i D D C> llOVE LI !IE ELLIPSE i llElfU TOP/BOT i Fl LL l SAVE 'fORKI NG l RESTART !
! COPY ARRO'f AllY ! AREA 011/0FP ! CHARACTER ! READ OPT! ONS ! Ell T !
l ROTATE DUllOND i CElfTER TEXT i LI NE i SAVE OPT! ONS i QUIT i : CJ SCALE RECTANGLE : BOX TEXT ; EDGE : READ llEU : :
! CHlRGE POLYGOll ! GllU DI SP I ! SAVE META ! !
! 0 r:;/\ Q (;;:\ DELETE TEXT ! Giii ii DI SP i CONSTR SPEC i *PLO'l' ! !
! \.(Y e ~ ARC ! HELP ON/OFF ! ! POTO ! !
L_ ... __ ------............................. _ __ __ _ ... _ _ _ ____ -~!-~: :~ _ _ j_ __ ... _J _ ___ __ __ 1 _ ... __ ______ .. l _ i

Figure 1

221

figures and text generated. The TCHART OPTIONS
menu also allows the user to define the mesh
density of a snap-to grid. This grid (only
displayed if desired) is used to constrain the
user locator input to assist him in lining up
his picture elements.

At any time during TCHART execution, the working
chart may be written to disk without interrupting
chart development. In the same way, previously
generated working files may be added to user­
defined windows in the developing chart.

Grid and attribute selections from the OPTIONS
menu may be written to file for later retrieval
to provide uniformity between chart generating
sessions.

DI-3000 metafile output may generated for use
by other DI-3000 based routines. In the same way
DI-3000 metafiles may be read by TCHART so that
plot output generated by other routines may be
"decorated" by the user.

Figures,2 and 3 are examples of TCHART generated
charts.

Some Goals Unmet

The most obvious loss associated with the use of
any graphics package is in performance. Dl-3000
overhead is particularly noticeable during figure
generation and the execution of picking functions.

Use of a graphics package as a device interface
meant that the TCHART program lost direct control
over the update of display list memory (when
present). This was an important negative result
from the standpoint of the immediate response goal
because it made a complete redraw of the screen
necessary to update the chart following DELETE or
MOVE operations. Dragging functions could not be
performed. Because a complete redraw of the screen
is so time consuming for a complex chart, screen
updates of this kind only occur when the user
requests a redraw.

The lack of a textport (ASCII screen) control made
necessary a somewhat clumsy user message system
which overwrites the developing chart until the
user requests the screen to be redrawn. This
difficulty has also prevented the implementation
of a help facility because of the additional screen
clutter.

It should be noted that most of the limitations
imposed by the use of device independent software
were only important with reference to the newer
terminals which would allow the programmer display
list and/or ASCII screen control. In practice,
many of our engineers are still using TEKTRONIX
4014 terminals where immediate screen update
without complete redraw is impossible in any case.

222

Benefits of the Use of a Graphics Package

The basic benefit of a device independent graphics
package is the simplification of code to do output
to a variety of interactive and hardcopy devices.
An extra benefit in the use of DI-3000 is the large
number of other tasks performed by the software.
Many TCHART capabilities are really DI-3000 func­
tions slightly transformed into a form which is
natural for the user.

Circle, arc, rectangle, line, polygon, generation
functions were directly passed from TCHART to
DI-3000 subroutine calls.

DI-3000 keeps track of figure locations, freeing
TCHART of much of the code needed for picking
functions.

Users were given indirect control of DI-3000
attribute functions: line style, color, fill
pattern, and character definition.

Extensive software character fonts were provided
for Graphic Arts and Polygonal character types.

Advantage was taken of the DI-3000 segment trans­
formation capability to provide TCHART ROTATE
and SCALE functions.

An unexpected benefit of the use of DI-3000 was
the metafile capability. This feature allowed
readable file output to be generated from any
DI-3000 based plot routine. By writing code to
read this file, TCHART was able to take advantage
of engineering and presentation chart output
generated by other routines.
Conclusion
It seems inevitable that some departure from TCHART
device independence will be made in the future.
Additional code will be added to enquire the device
type and to bypass DI-3000 to perform such functions
as:
1. Background writes to "delete" figures

the screen.
2. Textported message output scrolled in

area of the screen.

from

a defined

These capabilities can be added as time is avail­
able. "Unrecognized" devices will utilize the
vanilla device independent capabilities. Even
though device independence has proved to fall short
of full utilization of device capabilities, it has
been the wisest place to begin program development.
Starting with device independence as a goal has re­
sulted in development of a program which is usable
on any device while not precluding special device
tailored software at a later date. When such soft­
ware is implemented, it will be functionally sepa­
rate from the main design of the program, and as
such program changes will be easy to control as
devices come and go in the future.

SANTA'S GIFT INVENTORY
Total Requested Gifts

Figure 3

223

GIFTS
r:=:::::J Ela ck s
ISSSSJ Teddy Bears
62S22S2S2! Do 11 s
IZZZZJ World Peace
CIJIJID Tricycles
cs:::s::sJ Drums
~ Tin. Horns
~Trains

(2. 25 - 3)

Ethernet/DECnet Trunk

VAX
11/780

VAX
11/780

Terminal
Room

UNCLASSIFIED
FACILITY

32 DIAL-UP LINES

Figure 2

224

VAX
11/785

Terminal
Room

CLASSIFIED
FACILITY

12 DIAL-UP LINES

A SOFT\./'ARE DISPLAY SYSTEM FOR MEDICAL IMAGE PROCESSING

Luc Bidaut, Division of Nuclear Medicine and Biophysics,
Department of Radiological Sciences & The Laboratory
of Nuclear Medicine (DOE), UCLA School of Medicine,

Los Angeles, California 90024

ABSTRACT

For years, medical imaging has been lacking a truly versatile
system to display and process images coming from various sour­
ces.

The few systems commercially available were just able to handle
local data coming from a specific device and nothing else. This
situation was particularly sensitive in our division which daily
deals with images coming from both X-ray Computed Tomography
(XCT), Nuclear Magnetic Resonance (NMR), Single Photon Emission
Computed Tomography (SPECT), Positron Emission Tomography (PET)
and autoradiography digitizers. '

This paper describes the design of an original display system
intended to address this lack and to be commercialized with a
new generation of Positron Emission Tomographs.

INTRODUCTION

In a medical research laboratory, the needs for a
display system range from data display and proces­
sing to slide preparation for meetings.

The data manipulated during a display session can
come from sources as varied as X-ray Computed Tomo­
graphy (XCT), Nuclear Magnetic Resonance (NMR), Po­
sitron Emission Tomography (PET), Single Photon E­
mission Computed Tomography (SPECT), and autoradio­
graphy (Figure 1).

This diversity requires a system able to handle
various high-level functions, some of them very lin­
ked to the nature of the data to process.

Such a system was not currently available in our
field and it had to be designed and implemented in
our division to counteract the new needs created by
a rapidly increasing number and variety of the ima­
ges we had to process and study.

The display system described in this paper has
been designed to handle a wide choice of display
functions, along with a complex display memory mana­
gement.

By restricting the device dependent functions to
a minimum (mostly device access), and handling all
the memory management through high-level routines,
the design allows transportability and easy further
maintenance/development of the system.

REQUIREMENTS

The basic requirements of a medical imaging sys­
tem can be summarized as follows:

Display images from various sources and of va­
rious dimensions, both spatially and dyna­
mically. The images can come from several
"medical" sources (XCT, NMR, PET, SPECT,

Proceedings of the Digital Equipment Computer Users Society 225

autoradiography, ...) and have various spa­
tial dimensions and dynamic range.

Drawing any kind of figure on the screen, with
the possibility of relying on specific data.
This feature is more particularly needed to
draw Regions Of Interest (ROI's) on display­
ed image data which are not actually stored
within the display memory, and to process
these ROI's offline.

Ability to process images both before and after
displaying them on the screen, which is re­
quested to enhance whatever information needs
it. A preliminary processing could be a smo­
othing or contrast enhancement, a subsequent
one a color scale modification.

Display of any kind of informations on the scre­
en, both by text and graphics, to allow a good
understanding of the information provided to the
user.

Some features may be added for convenience and to
describe a truly versatile system:

Extensive use of interactive medias for user in­
put. This feature is almost unavoidable when­
ever ease of use and speed of processing are
involved.

Several addressing modes and scan sequences to
access the memory, which is needed to deal with
various data types.

Several overlay planes to be used for plotting
and text, permitting the independent handling of
graphic and text information.

Give the user the possibility of defining his own
display screen format and his own color scale
to adapt the system to his application.

Saving within files of any color scale and screen
format as defined by a user for further resto­
ration whenever necessary. This feature makes
the color and format definition step necessary

Anaheim. California~ December 1985

8 SPECT Auto

Disks
c:::J

CJ Terminal
Trackball

Addressing modes

D
Display

Medical Imaging Configuration

FIGURE 1.

[] [gJ EJ []
absolute windowed indexed relative

- 8 bits, 256 data colors
bits plotting overlay

bits text overlay

Memory allocation 512

Clipping modes

Scan sequences

~~~ 
1-i-J-' ~i~ 

~~-5-1-2~~~~ 15 

increasing 
priority 

F--=i ... ~ ,.\ 1-:1 ·"' 
L_J L_J. L_J 

module reflexion limitation 

COBOJBDJBDB 
Display Memory Management 

FIGURE 2. 

226 



only once for a specific user application. 

Providing the user with a screen editing utility 
to enhance information display and allow more 
attractive displays, up to slide creation. 

Ability to save/restore the display screen as of­
ten as requested, which is particularly useful 
to keep track of a specific display session or 
of a complex screen editing. 

Considering these needs, the system design has been 
divided into several categories: 

Color scale, screen format management 

Image display from the current file structure 

Pre-processing, post-processing of images and data 

Screen editing, saving/restoration. 

HARDVARE BASIS AND ITS SOFTVARE UPGRADING 

Besides the functionnality required by our environ­
ment, we also sought a maximum independence from the 
hardware portion of the display system, to ensure that 
we would further be able to use new hardware while 
retaining the same processing power. 

The hardware used for our application was conse­
quently assumed to be a "minimum" one for the techno­
logy actually available: 

Screen definition of 512x512, one absolute addres­
sing mode 

16 bits data: 

12 bits (4096 levels) video look-up table with 
3 fundamentals (red, green, blue) of 8 bits 
each (256 values) 

4 bits of overlay 

One trackball and cursor management. 

From this basic hardware configuration, the memory 
management has been boosted by software to: 

4 addressing modes: 

Absolute, which deals with the full screen 
Vindowed, which restricts the memory access 

to the selected display window 
Indexed, which fixes an origin within the 

display memory 
Relative, which takes the last accessed point 

as the new access origin 

8 display scan sequences: they set the way the 
data are going to be written/read within the 
current window of the display memory 

3 clipping modes for plotting: modulo the current 
window, reflexion on its boundaries, limita­
tion to its boundaries 

227 

Up to 256 color levels for data display that can 
be edited individually to define a color scale 

4 bits overlay for plotting which will be written 
on top of the current color scale levels 

4 bits overlay for text writing, on top of all the 
other colors. 

Figure 2 describes the system characteristics. 

Eventually, this software can take into account any 
function handled by other hardware (window management 
for example), which can shorten processing time, along 
with some possible limitations or new parameter values 
(screen definition, number of color levels, ••. ). 

To allow a complex handling of every parameter, the 
system has been divided into several routines, each 
one dedicated to a specific parameter. 

Vhenever necessary, the modification resulting from 
one of these routines is passed along a display ses­
sion by using a local section to store the current 
parameter values. 

This design sometimes requires chaining from the 
current routine to another one, whenever a parameter 
(format, color scale, etc.) needs to be modified with­
in the display session. 

Figure 3 describes such a structure. 

IMPLEMENTATION 

The implementation of this system took place on 
VAX's(730 and 780), running VHS (3.6 and 4.0). Besi­
des the display device access written in Macro 11, 
the whole package has been written in RATFIV (FORTRAN, 
4.1 compiler) for easy transportability. 

The routines have be divided in two sets: One needed 
to display images and one mostly used for data manage­
ment (images, curves, ••• )and customization. 

The basic set of routines is: 

DISINIT to initialize the display system 

DISCO LR to handle the color scales 

DISFORH to handle the screen formatting 

DI SDI SP to display images 

The extended set is: 

DISCINE to roam through the screen windows (movie 
mode) 

DISLABL to edit the screen (drawings, text) 

DISSAVE to save/restore part of the screen. 



Task B 

Task A 

Shared 
Global 
Section 

Parameters, Data transfers 

Task chaining 

Software interconnections 

FIGURE 3. 

228 

Task C 



THE VAY IT LOOKS 

From your point of view (that of the user), this 
display system looks like a multiple parameter system, 
each one being accessible for a new definition, along 
with several utilities allowing you to display what-· 
ever information is needed, wherever you need it. 

The default color scale or screen format that will 
be in effect anytime you enter a new display session 
can be defined at any time (DISFORM, DISCOLR). 
These defaults can either come from a software prede­
finition, a previous selection stored in a file, or 
an on-line modification. 

Once a color scale and/or a format have been selec­
ted, they are in effect for the rest of the display 
session, at least until the next modification. This 
feature allows the display system to keep track of its 
contents during a session. 

You can then display images, or process the images 
already displayed, within any window of the current 
screen format (DISDISP). These images mostly come 
from files where they are stored as matrices. For our 
application, as 16 bits data represent a sufficient 
dynamic and a good information/storage space ratio, 
most images come from integer files. Their storage 
format (directories, parameters, •.• )was defined by 
taking into account medical imaging structure, but it 
is easily upgradable to accept any other kind of data, 
particularly that coming from our centralized databasE 

SOME INTERESTING POINTS 

Several parameters can affect an image display, and 
you can select any of them before any display opera-
tion: 

Screen window: any of the ones defined in the cur· 
rent format: up to 64, any shape, size and lo­
cation on the screen (even overlapping ones). 

Scan sequence: 1 among 8. They can be matched to 
the data representation which the best suits 
the application: a scan can better be used to 
display images as they should appear, while 
another one can be best suited for matrix data. 
representation. 

Zoom to consider: square, rectangular, integer, 
real: 
a square zoom will not modify the shape of the 
data, a rectangular will expand this shape along 
its largest axis. An integer zoom will be faster 
than a real one because of its equivalence to 
pixel duplication, but it will be less optimal 
for screen space occupation. 

Data portion to zoom, which can be selected from 
a previous display (even already zoomed), and 
displayed in any current screen window. 

Range of the data values to display: it can be 
used to actually compare data values when disp­
laying and not only the way they look with their 
own dynamic: an image with data from 0 to 1 may 
look the same as an image from 1 to 2, but they 
will look different if the display value range 
is from 0 to 2 for both displays. 

Range of the color levels used for displaying: it 
limits the actual portion of the color scale u­
sed for display. It can be used to display data 
on several color scales, each one being a por­
tion of the current one. 

Bit planes to be accessed within the display memo­
ry by the next display operations. This allows 
retaining some of the bit planes (data, overlay, 
etc.) while affecting others. 

The plottings are all restricted to the current win­
dow, with the clipping modes previously defined (modu­
lo, reflexion, limitation) (Figure 2). 

Besides solid and various dot line selection, they 
can take place with 9 patterns (point, circle, square, 
+, x, star, triangle, lozenge, and even text), that 
can be combined together. Any new one can easily be 
defined. 

The curve plottings can take place in 8 different 
referential orientations and be automatically matched 
to the current window dimensions. 

The screen savings are done on all or part of the 
screen and on all or part of the display memory bit 
planes (16 total). The data read from the display me­
mory (maximum 16 bits data) are run-length compressed 
on a byte basis (most significant [overlays] and least 
significant [data] bytes separately) before storage in 
a file. This compression is really efficient for most 
of the display screens which contain a relatively low 
number of pixels ("picture elements") actually used, 
and more particularly for graphics and text. 

229 

The restoration can be done on any bit plane of the 
display memory and with any among 8 scan sequences 
(rotation/reflexion). 

A summary of the options for each of the main routi­
nes follows: 

The ones marked (*) are mainly handled through the 
interactive media (trackball). 

DISINIT : 

Soft initialization: initialize the communica­
tion with the display device. This step is 
needed whenever entering a display routine. 

Color scale: loads the default color scale for 
the user. This scale can either come from a 
file or be a predefined one. 

Screen format: loads the default screen format 
for the user. As for the color scale, this 
format can either come from a file or be a 
predefined one. 

Hard initialization of the display device: 
initializes the hardware part of the display 
system by clearing memory and registers and 
loads the default color scale and format spe­
cific to the user. 



At the beginning of a display session, the color sca­
le and the format are set to the user's defaults as 
he defined them. 

DISCOLR : This routine handles color scales on two . 
levels: 

A local scale which is only manipulated through 
the routine 

A current scale which is the one used by the sys­
tem along the display session 

Once a local scale has been set, it can either be­
come the new current one for the rest of the 
session or be stored into a file for further 
use. 

Local scale options: 

Number of color levels: this option is the main 
one for this routine from a display point of 
view for it affects the way the data are going 
to be written within the display memory. It sets 
the actual dynamic of the image visualization on 
the screen. 

Display or Erase its representation on the screen: 
the color scale is represented on the right of 
the video screen. This reference can be disa­
bled whenever the color scale does not add any­
thing to the actual screen content (text slides, ... ) . 

Modify color levels (*): interactively modifies 
the percentage of each fundamental (red, green, 
blue) within a specified color level of the color 
scale. 

Switch, Invert, Copy portions of the color scale 
(*): exchange the location of 2 portions of the 
color scale, put a portion upside/down, copy a 
portion on another location. 

Define new colors (*): interactively select the 
amount of each fundamental (red, green, blue) for 
a new color and copy it in a portion of the color 
scale. 

Load part of the color scale with predefined sca­
les (compression, expansion to match the actual 
portion to load) (*). These scales may be coming 
from a file. 

Move a colored window through the color scale (*): 
fills all or part of the color scale with a fixed 
color. 

Rotate part of it (*): interactively rotate all or 
part of the color scale, which sometime results 
in interesting visual effects. 

Enhance the contrast by modifying the levels re­
partition (logarithmic and linear) (*): it inter­
actively modifies the way the colors succeed 
within the color scale (shorten the upper levels 
portion and enlarge the lower levels one, or the 
contrary, ••• ). 

Store the color scale issued from any kind of pre­
vious processing within a file for further use. 
The color scale is compressed before storage to 

230 

save space. It may be restored whenever necessary 
during a display session for further modifica­
tions or to use it as the current one for the 
rest of the session. 

Current scale options: 

Read the current scale for it to become the new 
local one 

Write the new current scale as the actual local 
one. 

DISFORM : This routine is similar to DISCOLR for 
screen formatting. 

Instead of manipulating color scale levels, it ma­
nipulates screen windows that will be further 
used to restrict the access within the display 
device memory. 

A set of windows represents a format. 

As for DISCOLR, there are two levels of format 
handlings: 

A local format temporarily manipulated through 
the routine 

A current format which is used for every display 
operation 

Once a local format has been set, it can either 
be saved in a file for further use or become the 
new current format for the rest of the display 
session. 

Local format options: 

Display or Erase the format representation on the 
screen (green dotted lines around the window 
boxes). 

Modify or Delete a window (*): interactively se­
lect a window to erase from the format descrip­
tion or interactively modify. 

Load the format with predefined formats. These 
formats may be fixed size windows ones or may be 
coming from a file. 

Store the local format within a file for further 
use. As for the color scale, it may be restored 
whenever necessary during a display session for 
further modifications, or may be used as the cur­
rent one for the rest of the session. 

Current format options: 

Read the current format for it to become the new 
local one 

Write the new current format as the actual local 
one. 

DISDISP This task deals with all the image display 
once a color scale and a format have been 
defined. 



The options for this routine have been divided in 
two sets, the second one being reserved for skil­
led users wanting to modify the basic parameters 
of the display system to best match their own 
display requests. 

Basic set: 

Color scale handling on the flight: load basic 
software predefined color scales (UCLA, Hot 
Point, Tricolor, Black & Vhite) as current for 
the rest of the session. 

Screen formatting on the flight: chain on the for­
matting utility to modify the current format (mo­
dify it, load a previously defined one, ... ) 

Selection of the next display window and of the 
automatic increment to use between each display 
(*): it sets the way the display utility is going 
to access the windows of the current format. The 
increment chosen may be positive, negative or 
null (same window). 

Selection of the type of image to display: it 
tells the display system what kind of information 
to look for when displaying the next images. This 
information is linked to the specific way any 
kind of data is stored within our file structu­
re. Ve currently have 3 different types of data 
(images, scans, attenuations) but this number 
can be expanded or reduced according to any new 
application. 

Enable/disable the writing of the image name: if 
enabled, the writing of the identifier (file na­
me, image index within this file) for each image 
which is going to be displayed occurs in the win­
dow it is displayed in. 

Show the parameters of an image (dimensions, va·­
lues): it eventually allows the determination of 
a value range to display and compare a set of .i­
mages, or a size of window for the screen format. 

Set the range of values to consider for display: 
the display of images becomes absolute: images 
can be compared on a value basis instead of just 
the dynamic of their representation with the cur­
rent color scale. 

Display an image: access image data and display 
them according to the current parameters. 

Smooth a displayed image (*): eventually smooth a 
display window when too noisy. 

Zoom part of a displayed image (*): interactively 
selects a portion of a previously displayed 
screen window (which corresponds to the portion 
of a data matrix stored in a file) and zoom it on 
another window of the current format. The display 
system keeping track of its contents, the zoom 
takes place on the initial data and not only on 
the ones which are contained within the display 
memory. It makes it possible to take advantage of 
the true data resolution and not only the one of 
their representation on the screen. 

Erase a window (*): interactively select a window 
of the current format to clear. 

Clear the screen. 

231 

Restricted set: 

Addressing mode selection: absolute, windowed, in­
dexed, relative: 
the absolute mode forces the program to use the 
full screen as the only window. The windowed one 
forces it to use the windows defined by the cur­
rent format. Indexed and relative are some spe­
cial modes (see Figure 2), which may be used by 
some functions (plottings, •.• ) 

Scan sequence selection: one among eight: it al­
lows matching the display representation to the 
actual data structure (image, matrix data, ... ). 

Zoom control: this parameter is used whenever an 
image dimension do not match the size of the win­
dow where the image data must be displayed. Seve­
ral modes are available: integer (pixel duplica­
tion, which only works for expansion from data to 
screen window) or real (maximum space occupancy) 
factors, forced or not to square (i.e. square for 
no deformation of the image shape). 

Mask on the bit planes of the display memory to 
access when displaying. It restricts or extends 
the bit planes (16 of them) which are going to be 
affected by the following display operations. 
A display may be done on just one bit plane or on 
any combination of the 16. 

Range of color levels to consider within the cur­
rent color scale when displaying: it sets the 
portion of the color scale which is going to be 
used for data display. This can be used for mul­
tiple color scale display when the current color 
scale has been loaded with a corresponding scale. 

DISCINE : This routine allows simulation of a movie 
mode (cartoon-like) display by roaming all or 
part of the current format windows on the screen. 
It uses another feature of our hardware: roaming 
through the display memory (origin of the display 
memory) and hardware zoom (integer factors 1, 2, 
4). 

Screen format handling: chains on the screen for­
matting utility (DISFORM) to set the current for­
mat whose windows are going to be roamed. 

Image display, deletion: chains on the image disp­
lay utility (DISDISP) to display the images that 
will further be roamed. 

Range of the windows to roam and basic increment 
(algebraic): it selects the windows that are 
going to be roamed and in which direction (in­
creasing or decreasing index within the current 
format description) when in automatic mode (see 
below). 

Interactive (trackball) or automatic (time inter­
val) roaming: selects wether the roaming will be 
done interactively by using the trackball, or 
automatically according to the window increment 
and a time interval, previously chosen, between 
each display. 

Size of the screen window where to display a roa­
med one: it can be set to the full screen or re­
duced to a quarter of it, independently from the 
initial window size. 



DISLABL : This routine deals with every kind of dra­
wing and text writing on the screen. It is parti­
cularly useful to write a text or to edit and 
draw pictures (slide preparation, •.• ). 

Clear part of the screen (display memory), and on 
which bit planes. 

Draw basic figures: squares, circles, rectangles, 
ellipses (*): plot a figure with the current 
plotting parameters (see below) on an interacti­
vely chosen location. 

Fill basic figures, frames (2 concentric figures), 
two-figure combinations (*): after 2 basic figu­
res (see above) (1 + width for frames) have been 
selected, the space belonging to only one of them 
is filled with the current filling parameters. 

Select filling, plotting parameters: color, type 
of overlay (additive, for color of the combina­
tion, or priority for color of the most signifi­
cant one), type of plotting (additive which does 
not erase the other bit planes, destructive which 
does), solid, dotted lines, hash lines (spaced 
lines for filling) and filling directions combi­
nation. The filling (shadowing) can occur with 
any of the plotting parameters and with any com­
bination of 4 directions(--, I, I, \). 

Draw pointers: arrow, circle, square (*): after 
selecting the type and size of the pointer pat­
tern, interactively selects its origin and direc­
tion. 

Text writing: this option does everything for text 
writing/erasing. 

Mask on the bit planes to access within the disp­
lay device memory: 

this mask is used whenever a text writing/ 
erasing is requested. As it accesses the da­
ta and overlays bit planes, it sets the co­
lor of the text to be written on the screen. 

Blinking for the device overlay which is exclusi­
vely used for text writing (bits 12 to 15 of 
the display memory). This can be used to enhan­
ce the visual impact of some text (warning, . . . ) . 

Vriting directions: 8 of them covering rotation 
and reflexion of the current text. 

Vriting mode: normal (colored text), box (black 
text, colored box), italic or not for each of 
the previous choices. 

Expansion factors along each character dimension: 
the basic size of the text characters along 
each one of their dimensions can be independen­
tly set. 

Select text location (*): once the text to write 
has been selected, the location of the writing 
on the screen is interactively selected on the 
screen according to the current text writing 
parameters (string size, expansion, direction). 

DISSAVE This routine handles the saving and restora­
tion of all or part of the screen. 

After having been compressed (run-length), the 
least and most significant parts (bytes) of the 
display data are stored within a file. 

The restoration will pick these data and restore 
them on the screen whenever necessary. 

Saving: 

Select the bit mask on the planes of the display 
device memory to save: it restricts the saving 
only to the display memory bit planes we are 
interested in (image data, plotting, text, •.• ). 

Select the window to save (*): interactively se­
lects the screen portion to save. 

Restoration: 

Erase part of the screen (*): interactively se­
lects the screen portion and the display memory 
bit planes to erase. 

Select the mask on the bit planes of the display 
device memory to restore: sets the bit planes 
to be affected by the restoration. It makes it 
possible to only restore part of the saved data 
(image data, plotting, text) and/or to keep 
some planes previously filled in the display 
memory. 

Select the restoration scan sequence (1 among 8): 
allows rotation/reflexion of a previously saved 
screen portion. 

Select the location where to restore (*): inter­
actively selects the screen portion where to 
restore a previous saving. 

Set of subroutines: 

Besides the main display options available through 
the routines previously described, several basic 
display operations are also accessible through a 
set of high-level subroutines . 

Some of them deal with the following functions: 

Initialization: all the options of DISINIT 

Display parameters setting and reading (format 
description, addressing mode, number of color 
levels, etc ••• ) 

Plottings: any kind of pattern (point, cross, star, 
circle, square, lozenge, triangle, text, .•. )and 
line type (solid, dotted with variable cyclic ra­
tio) to draw line, polygon, rectangle, ellipse, 
curve (with automatic matching to the display 
window and axis plotting). 

Text writing: any color, direction (8), size (2 
independant expansions), mode (normal, box, + 
italic) 

Interactive media access: several enabling modes, 
both for cursors (display, shape and tracking), 
and switch management. 

232 



Display of data matrices with the current parame­
ters. 

CONCLUSION 

This package is now currently in use in our division 
and in other facilities around the world for all the 
studies currently being carried out in either clinical 
examinations or medical research. 

The set of subroutines has been used extensively to 
develop the display aspects of regions of interest 
computation and several display-related utilities: 
contour drawings, edge detection, profile and histo­
gram computation, automated roi drawings, etc .•• 

It is used for developing new means of looking at 
medical data, with more interactive/display related 
modalities than the ones actually available, both as 
a time saver and as an aide for more accurate inter­
pretations and/or diagnosis. 

This system will also be a main component of the 
software developed for a new concept in medical ima­
ging: the PET clinical integrated center. This will be 
a fully computerized medical center whose mainframe 
will link acquisition devices, database, remote work­
stations (almost entirely dedicated to display proces­
sing), and handle all the communication and data pro­
cessing management (Figure 4). 

233 



8 

Mainframe: 
management 

Central processing 
storage 

SPECT 

Tapes 

t--------1 Q 
0 

Database 

FIGURE 4. 

234 

g 
Auto 

radiography 

Disks 
c:J 

Cl 

CJ 

Data acquisition 

local processing 

Network link 

Mainframe 

Network link 

Work stations 

Electronic Imaging 
Clinic Center 



SIG 





USING PERSONAL COMPUTERS WITH SYSTEM 1022 

Randolph M. Pacetti 
AT&T Technologies, Inc. 

Lisle, IL 

ABSTRACT 

PCs can be a valuable tool for DECsystem-10/20 users. By 
moving selected tasks to a personal computer, system 
administrators can reduce the load on the mainframe and 
extend the variety of software available to the end-user. 
But, the administrator is also faced with the problems 
posed by communication methods, security, and user 
retraining. 

This session will review those and other PC issues and 
suggest an approach for integrating PCs with a 
DECsystem-10/20 running 1022. We will review a new System 
1022 feature which allows users to extract 1022 data and 
create WKS (LOTUS) and DIF formatted files. We will also 
show how MOBIUS (a PC interface product from FEL 
Industries) can be combined with System 1022 to simplify 
access to the extracted data and to other 1022 features. 

Agenda 

1. Introduction 
Barbara Bersack, Software House 

2. 1022 PC extract feature 
John Duesenberry, Software House 

3. MOBIUS 
Chris Kayes, FEL Industries 

Introduction 

Barbara Bersack, Software House 

Personal computers are assuming an increasingly 
important role in the workplace. At Software House, 
we have been examining the ways in which our users 
can combine System 1022* with their PCs. This 
session focuses on our approach and how it was 
selected. Version 117B includes a PC extract 
feature that allows users to create WKS and DIF 
formatted files from within 1022. MOBIUS* can then 
be used to simplify access to the data and to other 
System 1022 features. 

Why are PCs so popular? According to one 
survey**, which examined 83 users of PCs and 34 
information system managers in ten major U.S. firms, 
PCs are attractive because they give end users 
flexibility at a low cost. Users can choose the 
type of software they want as well as when and how 
they use it. Also, they do not need to rely on MIS 
staff for all of their application development 
needs. 

Although PC users may free themselves from 
dependence on central MIS support, they still need 
the corporate data that the MIS staff controls. 
Communication software and terminal emulators for 
the PC provide access to that data but also 

Proceedings of the Digital Equipment Computer Users Society 

introduce problems Of security, redundant or 
inaccurate data, and user retraining. Our aim is to 
find the best way to access corporate data and 
facilities from a PC while maintaining all the 
flexibility that these devices offer the user. 

To consider how PCs could be combined with 
1022, we examined the needs of our 1022 customers. 
We spoke to a number of our customers who are 
currently using PCs or who want to integrate them 
with their DECSystem-10s or DECSYSTEM-20s. We also 
discussed the 1022/PC issue with many of our 
customers at our users' conference. This customer 
information became the basis for the 1022 PC extract 
feature. 

237 

Primarily, our users want to be able to offload 
tasks from mainframes to PCs in order to increase 
mainframe performance and user productivity. They 
want to extract data from 1022 and to upload data 
from the PC to the mainframe data base. Currently, 
we have implemented an extract function, and we are 
looking at ways to handle data uploading. 

Most of the customers we contacted use 1-2-3 or 
Symphony* but also want support for DIF* file 
format. There is some interest in interfacing with 
dBASE II*. Since comma-delimited output can already 
be produced with formatted PRINT commands in 1022, 
increased support for that feature was considered 
unnecessary. 

*System 1022 is a registered trademark of Software 
House. MOBIUS is a trademark of FEL computing, a 
division of FEL Industries, Inc. 1-2-3 and Symphony 
are registered trademarks of Lotus Development 
Corporation. DIF is a trademark of Software Arts. 
dBASE II is a trademark of Ashton-Tate, Inc. 

**Quillard, J.A., et al., "A Study of the Corporate 
Use of Personal Computers," Cambridge, 1983. 

Anaheim, California - December 1985 



Totalling was important to a few users. We 
feel that subtotalling will become increasingly 
important. Other requests from our users include 
labeling capability, control over placement of data 
in cells, and reasonable defaults. 

As a result of user requests and suggestions, 
we have developed the PC extract feature. This 
feature involves enhancing the 1022 INIT and PRINT 
commands in order to create WKS or DIF files. 

The extract feature gives users the ability to 
produce a file directly readable by Lotus software. 
DIF is directly readable by other spreadsheet 
programs or importable by existing conversion 
utilities. Users can take advantage of the 
sophisticated totalling capabilities already 
available in the System 1022 report writer. Our 
defaults in this mode allow the casual user to do a 
simple INIT/FIND/PRINT ALL/RELEASE sequence. 
Conveniences for users of 1-2-3 include control over 
display of individual data items, arbitrary 
positioning of cells in the spreadsheet, and use of 
the Range Name feature. 

We then needed an easy way to access that data 
from the PC. Our goal was to find a versatile 
product with a solid record of performance. We 
looked for a way that would minimize user 
retraining. We wanted to build on the existing 
operating system and 1022 security provisions, thus 
avoiding the need for new security conventions. 

MOBIUS meets these requirements. The 1022 DBA, 
in conjunction with the MOBIUS user, can quickly 
enable naive users to extract current information 
from the data base as often as required. Users can 
then load the data directly into their spreadsheets 
or other PC applications. 

Extraction of 1022 Data to PC Files: 
New INIT and PRINT Features in V117B 

1 .O OVERVIEW 

John Duesenberry 
Software House 

This paper previews new features in V117B for the 
extraction of 1022 data to spreadsheet and other 
applications on personal computers. Enhancements to 
the System 1022 PRINT and INIT commands will provide 
users of Lotus 1-2-3 and Symphony with data in Lotus 
Worksheet file format from within 1022. 1022 will 
also provide data in Data Interchange Format (DIF). 
These features are currently in testing and may be 
modified before final release. 

The following examples illustrate command 
sequences such as a user might employ to obtain data 
at his or her PC. We will assume that the user's 
link between the PC and the host computer is MOBIUS. 

2.0 CREATING LOTUS PRN FILES WITH FORMATTED PRINTS 

Before considering the new 117B features, let us 
briefly look at what is probably the most direct 
method currently available for extracting 1022 data 
into a file that Lotus 1-2-3 can translate. 

FIGURE 1 is an example program; MAKPRN.DMC 
creates a file in Lotus 'PRN' format. In this 
format, all data items are separated by commas, text 
strings are delimited by quotes,and each CRLF 
delimits a spreadsheet row. 

238 

MAKPRN.DMC 
A DMC to write out 1022 data in Lotus PRN format. 

OPEN MOBDEM RO. 
F SYSID BET 1 10. 
SORT LN FN. 
INIT 2 DEM02.PRN. 
PRINT ON 2 "'From 1022 Dataset: "+$TRIM(SYSDSNAME)+" in " -

+$TRIM(SYSDSFILE) FMT ' 111 ,1:z:,'"',',' 1111 ,A,'" 1 END. 
PRINT ON 2 SYSDATE FMT -

111 ',1x,' 11 ',',' ,'"',"Extracted on: 11 , 1 " 1 , 1 ,','"',D2,' 111 END. 
!skip a row 
PRINT ON 2 FJo\T '"', '"' END. 
PRINT ON 2 "FIRST NAME" "LAST NAME"' "# CHILDREN" "CITY" -

"STATE" "'ZIP" FMT 5( '"',A,'",') "",A,"" END. 
!skip s row 
PRINT ON 2 FMT "", "" END. 
PRINT ON 2 FN,LN,NCH,CITY,STATE,ZIP FMT -
2(''",A,"",','),I,2( 1 , 1 ,"",A, '"' ',') 1111 ,A, 11

" END. 
! skip a row · 
PRINT ON 2 FMT '"' , '"'' END. 
PRINT ON 2 MEAN(NCH) FMT -
'"',1X,'"',',', '"',"Average# Children:",'"',',', F2.1 END. 

RELEASE 2. 
TYPE "DEM02.PRN has been created on host. -

It can be FILE IMPORTed to 1-2-3." 

Fig. 

FIGURE 2 is the actual output of MAKPRN.DMC. 
Note the use of quote-delimited spaces in order to 
'indent' 1 cell at the start of some rows. The null 
string is printed to skip a row. 

•","From 1022 Dataset: NEW in llOBDEM.DMS" 
: .. ","Extracted on: ","Jul-29-1985" 

:!IRST NAME", "LAST NAME","# CHILDREN", "CITY"', "'STATE", "ZIP" 

"CHARLES", "CARAGIANES" ,3, "DEDHAM",, "NY", "02138" 
"RICH"' "GARLAND" 4 "BRISTOL"' "CT" "02138" 
"CHARLES", "GOTT" :2: "BRISTOL":: "CT": "22209" 
"'KATHY", "HOUSMAN" ,0, "AUGUSTA"',, "GA", "43220" 
"MARK" "JONES" 0 "DEDHAM" "NY" "60064" 
"ROGER:', "LEVINSON" ,3, "BRISTOL",: "CT", "11729" 
"'LOUIS", "MERZ" ,0, "ROXBURY",, "TX", "77056" 
"OLGA", "PONG" ,3, "STONEllAllf"',, "'MA", "02238" 
"ALFRED", "SAVIO", 1, "ROXBURY",, "IN", "46225" 
::~FRED", "STEVENS" ,O, "BRISTOL'',, "CT", "02238" 

" n, "Average # Children: II' 1 .6 

Fig. 2 

FIGURE 3 shows the sequence of commands the 
user would give in order to create the .PRN file on 
the host and load it into 1-2-3 after having defined 
the device D: as the host area where the datasets 
and output files reside and having created the PC 
command "1022" with the MOBIUS MAKE feature: 

A>1022 
*USE MAKPRN 
DEM02.PRN has been created on host. 
It can be FILE IMPORTed by 1-2-3. 
*QUIT 
A>123 
/File Import Numbers D:DEM02 

Fig. 3 



Having imported the file and changed the width 
of a few spreadsheet columns, the user sees the 
1-2-3 screen of FIGURE 4. 

From 1022 Dataset: NEW in l!OBDEM.DMS 
Extracted on: Jul-29-1985 

FIRST NAJIIE LAST NAJIIE # CHILDREN CITY STATE ZIP 

CHARLES CARAGIANES 3 DEDHAM NY 02138 
RICH GARLAND 4 BRISTOL CT 02138 
CHARLES GOTT 2 BRISTOL CT 22209 
KATHY HOUSMAN 0 AUGUSTA GA 43220 
MARK JONES 0 DEDHAM NY 60064 
ROGER LEVINSON 3 BRISTOL CT 11729 
LOUIS MERZ 0 ROXBURY TX 77056 
OLGA PONG 3 STONEHAM MA 02238 
ALFRED SAVIO 1 ROXBURY IN 46225 
ALFRED STEVENS 0 BRISTOL CT 02238 

Average # Children: 1.6 

Fig. 4 

To the end user, this is quite straightforward, 
thanks to MOBIUS. However, if we return to the DMC 
of FIGURE 2, various deficiencies become apparent, 
from the viewpoint of the programmer who must write 
such DMC's: 

* Coding the format statements is tedious and 
error-prone. The code becomes virtually 
unreadable, and making a simple change in the 
program, such as adding a new item to a PRINT 
list, is more difficult than one would wish. 

* Kludges (the aforementioned blanks and null 
strings) must be used if empty cells or rows are 
desired. 

* 

* 

Ad hoc queries are difficult, especially for end 
users who are likely to know little of 1022 
PRINT formats. 

The resulting file is not native to 1-2-3, in 
the sense that the PRN file must be translated 
and loaded into the spreadsheet and the result 
saved to a WKS file. 

CREATING A LOTUS WORKSHEET FILE DIRECTLY 
FROM 1022 

By way of contrast, consider FIGURE 5. MAKWKS.DMC 
is a working program that uses the V117B enhanced 
!NIT and PRINT commands to produce a 1-2-3 worksheet 
file directly from 1022. A cursory glance shows 
that the FORMAT statements have been eliminated or 
greatly simplified. 

MAK1IKS. Dl!C 
A program to create a Lotus WKS file 
using V117B INIT/PRINT features 

OPEN l!OBDEM RO. 
F SYSID BET 1 10. 
SORT LN FN. 
INIT 123 2 DEM03. 
PR ON 2 "From 1022 Dataset: "'+$TRil!(SYSDSNAME)+" in " -

+$TRil!(SYSDSFILE) Fl!T 1X,A END. 
PRINT ON 2 SYSDATE Fl!T 1X,"Extracted on: '',LB/ END. 
PRINT ON 2 "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" -

"STATE" "ZIP" • 
PRINT ON 2 ALL. 
PRINT ON 2 MEAN(NCH) Fl!T /, 1X, "Average # Children: ",L1.1 END. 
RELEASE 2. 
TYPE "demo3. WKS has been created on host. -
It can be FILE RETRIEVEd by 1-2-3." 

Fig. 5 

how 
1022 

Before walking through the code, let's look at 
the user would produce the file with MOBIUS and 
(FIGURE 6): 

A>1022 
*USE llAKWKS 
DEM03.WKS has been created on host. 
It can be FILE RETRIEVed by 1-2-3. 
*QUIT 
A>123 
/File Retrieve D:DEM03 

Fig. 6 

FIGURE 7 is a screen dump from 1-2-3 after 
loading the resulting file. The results are 
practically identical to those obtained with the PRN 
file, with the exception of the formatting of 
SYSDATE. (This will be explained below). 

239 

J'rom 1022 Dataset: NEW in l!OBDEM.Dl!S 
Extracted on: 30-Jul-85 

FIRST NAJIIE LAST NAJIIE # CHILDREN CITY STATE ZIP 

CHARLES CARAGIANES 3 DEDHAM NY 02138 
RICH GARLAND 4 BRISTOL CT 02138 
CHARLES GOTT 2 BRISTOL CT 22209 
KATHY HOUSMAN 0 AUGUSTA GA 43220 
MARK JONES 0 DEDHAM NY 60064 
ROGER LEVINSON 3 BRISTOL CT 11729 
LOUIS MERZ 0 ROXBURY TX 77056 
OLGA PONG 3 STONEHAM MA 02238 
ALFRED SAVIO 1 ROXBURY IN 46225 
ALFRED STEVENS 0 BRISTOL CT 02238 

Average # Children: 1.6 

Fig. 7 

Returning to FIGURE 5, notice the following 
features of the DMC: 

* 

* 

The new '123' keyword in the !NIT command 
informs 1022 that any output directed to PRINT 
channel 2 must be formatted as 1-2-3 data cells, 
rather than the usual ASCII strings. The 
extension for the output filespec is defaulted 
to .WKS, and several other actions are taken in 
the background at !NIT-time. The most 
significant action is the initialization of 
internal counters which, in effect, always point 
to the spreadsheet cell to which 1022 will next 
PRINT data. These counters are automatically 
updated in the course of printing, and are also 
accessible to user programs in the form of 
system variables. They will be discussed in 
more detail below. For now, it suffices to say 
that in our example, after the !NIT command the 
counters will point to cell A1, by default. 

There are two instances in the example of a new 
format spec "L" format. (The L stands for 
Lotus). This format serves a dual purpose: 

1. It enables a 1022-to-1-2-3 data 
transformation which maps 1022 datatypes 
(integer,real,date,double integer,or text) 
into Lotus datatypes (integer, real, or text 
[label] ). 

2. It allows the user to specify a Lotus 
display format to be used with the item. In 
our example, a date(SYSDATE) is printed 
under L8 format. This causes a Lotus binary 
date to be written, with its format code set 
to (D1) - 1-2-3's day-mon-yr format. (This 



* 

is why SYSDATE shows up differently in 
FIGURE 7). In the last PRINT of the 
example, a 1022 function result (type real) 
is printed under L1.1 format. The 1022 real 
is converted to a Lotus real, with a format 
code set to Fixed format, 1 decimal 
place. "L1" format signifies Fixed format, 
with the argument after the "."indicating 
the desired number of decimal places. 

Unformatted PRINT statements also occur in the 
DMC. Unformatted PRINTS simply default to "L" 
format by virtue of the fact that they are 
directed to a PRINT channel that has been INITed 
to a 1-2-3 file. Thus, in the PRINT ALL 
statement, 1022 looks at each attribute it is to 
write out, and produces a 1-2-3 label, integer, 
or real record on the basis of the attribute's 
data type. 

The data transformations made under L 
format are summarized in FIGURE 8: 

1022 
TYPE 

INTEGER 
DOUllLE Il'l'rEGER 
REAL 
DATE 
TEXT 

LOTUS 
TYPE 

INTEGER or REAL * 
Il'l'rEGER or REAL * 
REAL (8087 DP floating point) 
INTEGER or REAL ** 
LABEL ... 

• Integers or double integers that exceed the range 
+/- 32767 will be converted to 1022 reals and then 
to Lotus floating point • 

.. The stored binary date is offset such that 
Jan.1,1900 • 1. The Lotus format byte is set 
for (D1) format. 

***The maximum length of a LABEL is 240 characters, 
including a Label-Prefix(') and a terminating null, 
both of which are automatically added to the string 
by 1022. Any text epression or literal longer than 
238 characters will be truncated to 238 characters. 

Fig. 8 

FIGURE 9 summarizes the possible L format 
specs and the resultant Lotus format types: 

Form of an L-format spec: rLm.n 

where r • repeat count 
m • integer signifying Lotus format type 
n • number of decimal places (O<•n<•15) 

Default form• 12 

Default for n • 2, in accordance with 1-2-3 default 
(n is applicable only to types 1-5 below) 

Values of m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Fig. 9 

Lotus type 

fixed 
scientific 
currency ($) 
percent 
comma (xxx,xxx.xx) 
+/- horiz. bar graph 
general 
day/mon/yr 
day/mon 
mon/yr 
text 
default 

* Notice also in FIGURE 5 the presence of 
conventional 1022 format specs: "A" format, "/" 
format, "X" format and quoted literals. 
Conventional 1022 formats, in the context of 
PRINTing to 1-2-3 files, work differently than 
in normal printing. 

240 

"'X" format is a means to skip some number 
of cells within a row. Thus, in our example the 
1X format in the first PRINT command repositions 
the internal cell counter such that the first 
actual data item in the worksheet is in cell B1. 

"/" format is a means to skip some number 
of rows.The "/" spec at the end of the 2nd PRINT 
command in the example repositions the internal 
cell counter such that the next item will be 
written to cell A3, instead of to the next 
consecutive row. 

Most of the other conventional 1022 formats 
(such as the "A" format in the first PRINT 
command or the literal in the second) will cause 
a LABEL to be written to the worksheet, whether 
the type of the 1022 expression being printed 
was text or not. The content of the label will 
be an ASCII string identical to that which 1022 
would have produced while printing 'normally'. 
For example, consider the following command 
sequence: 

*!NIT 123 3 FOO.WKS. 
*DEFINE INTEGER Q. LET Q 9999. 
*PRINT ON 3 Q Q+1 FMT L I. 
*RELEASE 3. 

When loaded into 1-2-3, the spreadsheet 
will contain the binary integer 9999 in cell A1, 
while cell B1 will contain a label consisting of 
the DIGIT STRING '10000'. Since, presumably, 
most of the data that 1022 users will want to 
extract will be for computational purposes, they 
will therefore wish in most instances to use L 
format, which is the default. 

3.1 Summary Of 1-2-3-Related !NIT/PRINT Features 

Our example has covered the basics of PRINTing to 
Lotus 1-2-3 files. Let us now summarize the points 
covered so far, and explore further options 
available under this file format: 

3.1.1 L Format - is the default format used when 
PRINTING to a channel that has been INITed to a 
1-2-3 file. The optional specification m.n 
following the L selects the Lotus format type and 
(if applicable) number of decimal places. L format 
MUST be used to derive computational spreadsheet 
data from 1022 numeric data. 

3.1.2 Conventional Formats - such as I, F, E, 
etc. are used to produce labels. /, X, and 
among the means available for controlling the 
location of data. H format and literals 
produce labels. 

A, D, 
$ are 
cell 
also 

3.1.3 Data-Positioning Options - One requirement of 
Lotus worksheet format is that the cell coordinates 
of every data item be included in the data record. 
In order to do this, 1022 maintains three counters 
for each channel that has been initialized to a 
1-2-3 file. These counters are available to user 
programs in the form of three system variables, 
indexed on channel number N. 

3.1.3.1 Cell Location Counters SYSPCROW,SYSPCCOL, 
SYSPCICOL 

* SYSPCROW(N) points to the spreadsheet row to 
which 1022 is currently printing or is about to 



* 

* 

print. By default, SYSPCROW points to row 1 at 
!NIT-time and is incremented upon completion of 
every PRINT command. "/" format may be used to 
increment SYSPCROW at any time. SYSPCROW is 
user-settable. 

SYSPCCOL(N) points to the spreadsheet column to 
which 1022 is currently printing or is about to 
print. By default, SYSPCCOL points to column A 
at !NIT-time. It is then incremented once for 
every cell produced in a given PRINT command. 
"nX" format adds n to SYSPCCOL, effectively 
skipping cells. Whenever a new-row action is 
triggered (as at the conclusion of a PRINT 
command or the execution of a "/" format), 
SYSPCCOL is reset to point to the column whose 
value is stored in a third PC-related variable, 
SYSPCICOL. 

SYSPCICOL(N) (!COL stands for Initial COLumn) 
points to the column at which each new row is to 
start. By default, SYSPCICOL points to column A 
at !NIT-time. 

SYSPCCOL and 
user-settable. 

SYSPCICOL, like SYSPCROW, are 

NOTE that all the SYSPC variables are "zero 
origin": that is, when the column and row counters 
are pointing to A1, they are both set to O. To 
advance SYSPCROW to row 5 and SYSPCCOL to column D, 
therefore: 

LET SYSPCROW(N) 4 SYSPCCOL(N) 3. 

3.1.3.2 $SYSPCPOS Function - As a convenience, the 
string function $SYSPCPOS(N) has been added. 
$SYSPCCOS(N) returns the ASCII representation of the 
cell coordinates to which SYSPCROW(N) and 
SYSPCCOL(N) currently point. An example: 

*LET SYSPCROW(2) 5 SYSPCCOL(2) 4 
*TYPE $SYSPCPOS(2) 
*E6 

3.1.3.3 Controlling Data Position Via The SYSPC 
Variables 

- FIGURE 10 shows an example of manipulating the 
position of data within a target spreadsheet by 
changing the values of the SYSPC variables.: 

!program fragment showing placement of data in spreadsheet 
!via alteration of SYSPCxxx variables. 
!attributes AT1 ••• AT5 are from GOO.DMS 
!attributes VV ••• zz are from POO.DMS 
! 

OPEN GOO.DMS POO.DMS. FIND SYSID BET 1 10. 
INIT 123 2 FOO.WKS. 

!start at A1 
!SYSPCROW(2),SYSPCICOL(2),SYSPCCOL(2) all•O 
!fill COLS A-E of ROWS 1-10 

PRINT ON 2 AT1 AT2 AT3 AT4 AT5. 
DBS POO.DMS. FIND SYSID BET 1 10. !go to another ds 

! right now, SYSPCROW•10,SYSPCCOL-0 
LET SYSPCROW(2) O. !reset to row 1 
LET SYSPCICOL(2) 6. !slide over to col.#G 

!NOTE! ! SYSPCICOL is now pointing to COL. G. but if we 
!do not also set SYSPCCOL, SYSPCCOL vill be set to COL. A 
!when the first record is printed below. 

LET SYSPCCOL(2) SYSPCICOL(2). 
PRINT ON 2 VV WW XX YY ZZ !fill cols G-K on rows 1-10 

Fig. 10 

241 

Setting The SYSPC Variables At !NIT-Time -
arguments have been provided in order to 
user to set initial values of SYSPCROW, 

SYSPCICOL prior to PRINTing data. The 

3.1.3.4 
Two new 
allow the 
SYSPCCOL, 
syntax is as follows: 

!NIT 123 [COL c] [ROW r] ••• 

If COL is present, SYSPCICOL and SYSPCCOL are 
set to c. If ROW is present SYSPCROW is set to r. 
The defaults for c and r are A1, as mentioned 
previously. 

3.1.3.5 Columnwise Vs. Rowwise Data Formatting - In 
all our examples thus far, data cells have been 
written in left-to- right fashion within each PRINT 
command, with the row counter advancing down the 
spreadsheet upon each new PRINT. This is termed 
"columnwise" representation in spreadsheet parlance, 
and is the default action. However, a "rowwise" 
representation is also possible when printing to a 
1-2-3 file. We include an optional CWISE/RWISE 
clause in the !NIT command for this purpose: 

CWISE 
!NIT 123 [COL c] [ROW r] I } 

RWISE 

FIGURE 11 shows a DMC using these options. 
FIGURES 12A-12B show the spreadsheet results: 

!this DMC prints the same data to tvo Lotus WKS files. 
!the first files is INITed CWISE (by default) 
!while the second is INITed RWISE. 
INIT 123 2 EELS1.WKS. 
INIT 123 RWISE 3 EELS2.WKS. 
DEF TEXT 10 A B C D E F. 
LET A "My" B "Hovercraft" C "is" D "full" E "of" F "eels." 
PRINT ON 2 A B C D E F. 
PRINT ON 3 A B C D E F. 
RELEASE. 

Fig. 11 

B1: 'Hovercraft READY 

A 
1 My 
2 
3 
4 
5 
6 
7 

A1: 'My 

A 
1 My 

B C 
Hovercraft is 

B c 

D E 
full of 

Fig. 12A - CWISE 

D E 

F 
eels. 

F 

G 

READY 

G 

2 Hovercraft 
3 is 
4 full 
5 of 
6 eels. 
7 

Fig. 12B - RWISE 

As one might imagine, the underlying effect of 
the RWISE option is simply to switch counters; 
SYSPCROW is auto-incremented as individual items are 
printed, "X" formats executed etc. SYS PC COL is 
auto-incremented on the end of each PRINT command, 
by "/" formats, etc. Programmers who want to change 
the count~rs would do well to remember this. 

3.1 .3.6 
analog 
disables 

"$" Format - "$" format behaves as 
to "$"-format in normal printing: 
automatic incrementing of SYSPCROW 

an 
it 

and 



resetting of SYSPCCOL at the end of a PRINT command. 
This enables your program to (for example) print 
some data to a given row, "save its place" and do 
more calculation, and resume printing in the same 
row. 

3.1 .4 NAMED RANGE (NRANGE) Option - The final INIT 
option for 1-2-3 files is the ability to designate a 
block of cells within a worksheet as a Named Range: 

INIT 123 NRANGE FRED B3 D10 

uses the defaults for COL,ROW, and CWISE, 
creates the Named Range FRED in the worksheet. 
could use this with the File Combine feature, 
example, to extract the subset FRED of the 1022 
into 1-2-3. 

The default is no NRANGE present. 

4.0 CREATING DIF FILES DIRECTLY FROM 1022 

and 
One 
for 

data 

DIF is an ASCII format; therefore DIF files can be 
written from 1022 using normal formatted PRINTs. 
FIGURE 13 is an example: 

!This DMC extracts 1022 records and fields and produces a DIF 
!file. Note that the number of 'VECTORS' • 7 (6 attr's and one 
!blank cell) and IWDITH is set accordingly. The number of 'TUPLES' 
!equals the number of selected records, + 1 for the 'tuple' of 
!labels, + 1 for the blank 'tuple' and NTUPLES is set accordingly. 
CLEAR. 
OPEN MOBDEM.DMS RO. 
F SYSID BET 1 10. SORT LN FN. 
INIT 2 DEMDIF.DIF. 
DEF TEXT 9 SKIPCELL TEXT 11 BOT EOD TEXT 2 CRLF TEXT 63 SKIPROW. 
LET CRLF $CHAR(13)+$CHAR(10). 
LET SKIPCELL "1 ,O"+CRLF+' ""'+CRLF. 
LET SKIPROW SKIPCELL+SKIPCELL+SKIPCELL+SKIPCELL+SKIPCELL -

+SKIPCELL+SKIPCELL. 
LET BOT "-1 ,O"+CRLF+"BOT"+CRLF. 
LET EOD $REPLACE( "BOT", "EOD", BOT). 
LET !WIDTH 7. ! kludge to setup correct VECTORS item 
LET NTUPLES SYSNREC+2. !kludge works as long as we print !WIDTH 

!cells for SYSNREC+ (# of label rows and 
!blank rows) records 

!print the header section, note vectors and tuples counts. 
PR ON 2 "TABLE" "0, 1" """ "VECTORS" "0," !WIDTH -

FMT 4(G I ) 2G I ...... END. 
PR ON 2 "TUPLES" "O," NTUPLES FMT G / 2G / '"'" END. 
PR ON 2 "DATA" "0,0" """ FMT 2(G / ) G END. 
!print the data section. start with a row of text labels, with a 
!blank cell in col. A (all rows will be like this) 
PR ON 2 BOT "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" -

"STATE" SKIPCELL "ZIP" FMT G 5("1 ,O" / '"' G "" / ) G "1 ,O" / -
"" G "" END. 

!now print a row of blank cells 
PR ON 2 BOT SKIPROW FMT G G $ END. 
!now print the stuff from the records 
PR ON 2 BOT FN LN NCH CITY STATE SKIPCELL ZIP -

FMT G 2("1 ,O" I .... G .... I ) "O, .. G I -
"V" /2("1,0" I .... G .... I ) G "1,0" I .... G .... END. 

PR ON 2 EDD FMT G $ END. 
PR ON 2 $CHAR(26) FMT G $ END. !ctrl-Z eof mark 
RELEASE 2. 
TYPE "DEMDIF.DIF has been created on host and may be File". 
TYPE "Translated into 1-2-3 format.". 

Fig. 13 

Like our previous example (MAKPRN), this one 
suffers from intractably complicated FORMATS. 
Furthermore, there are two requirements imposed by 
DIF which our DMC does not really address: 

1 . The file must consist of a known number of 
"TUPLES" (we can consider them spreadsheet rows) 
and this number must be recorded in the file 
header; 

2. Each "TUPLE" must be of equal length i.e. 
each tuple must consist of the same number of 
"VECTORS" (we can consider them spreadsheet 

·cells) and this number must be recorded in the 

file header. 

Our example 
because it was 
counts in advance. 
the case. 

meets these requirements only 
constructed knowing the correct 

Obviously this is not usually 

A more general way to handle requirement (1) 
would be to have the program keep track of the 
number of lines(TUPLES) printed, and to write this 
count to the DIF file header when done. This is in 
fact what the 1022 DIF printing option does. The 
means of counting "TUPLES" is SYSPCROW, whose value 
is used for the count at RELEASE-time. 

Requirement (2) is handled by assuming that 
each "TUPLE" will contain 100 cells ("VECTORS") 
unless the user says otherwise at INIT-time. The 
user specifies this via an optional NCOLS (Number of 
COLumns) clause in the INIT command. Given this 
NCOLS parameter, 1022 ensures that each row is of 
equal width. 

Given a large enough NCOLS, then, a program 
need not worry about uniform length of its PRINT 
commands. If the correct NCOLS value can be known 
in advanvce at INIT-time, however, it can be used to 
advantage by avoiding padding and therefore saving 
file space. 

4.1 INIT Syntax For Printing DIF 

The full INIT syntax for DIF is: 

INIT DIF [COL c] [ROW r] NCOLS n chan filespec 

defaults: 
extension= .DIF 

c=A, 

4.2 DIF Example DMC 

FIGURE 14 shows a DMC 
features to produce a 
previous example. Note 
formats. 

r=1, NCOLS=100, filespec 

using the new INIT/PRINT 
DIF file equivalent to the 

the use of ''X'' and ''/'' 

!This DMC extracts 1022 records and fields and produces 
!a DIF file using V117B DIF printing features. 
OPEN MOBDEJII.DMS RO. 
F SYSID BET 1 10. SORT LN FN. 
INIT DIF 2 DEJIIDIF. 
!INIT wrote the header •... no fuss, no muss. 
!Note use of X and I fmts in next command 
PRINT ON 2 "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" -

"STATE" "ZIP" FMT G 1 X G / END. 
!now print the data from the records 
PR ON 2 FN LN NCH CITY STATE ZIP FMT 5G 1X G END. 
RELEASE 2. 
TYPE "DEJIIDIF.DIF has been created on host nd may be File" 
TYPE "Translated into 1-2-3 format.". 

Fig. 14 

"X" and "/" (as well as the COL and ROW 
options) are functionally identical to their usage 
in printing 1-2-3 files. However, they actually 
work by writing out "padding" (blank cells). 

FIGURE 15 is the result of using the Lotus File 
Translate utility to derive a WKS file from the DIF 
file produced by the program of FIG. 14, and 
loading the WKS file into 1-2-3: 

242 



FIRST BAllE LAST BAllE # CHILDREN CITY STATE 

CHARLES 
RICH 
CHA!tLES 
KATHY 
IURK 
ROGER 
LOUIS 
OLGA 
ALFRED 
ALFRED 

CARAGIABES 
GARLAND 
GOTT 
HOUSllAB 
JOBES 
LEVINSON 
MERZ 
PONG 
SAVIO 
STEVENS 

Fig. 15 

3 DEDHAM 'llY 
4 BRISTOL CT 
2 mISTOL CT 
0 AUGUSTA GA 
0 DEDHAM 'llY 
3 BRISTOL CT 
0 BIJXBURY TX 
3 STOBEHAJll MA 
1 ROXBURY IR 
0 BRISTOL CT 

4.3 1022 --> DIF Data Transformations 

ZIP 

02n0 
02138 
22209 
43220 
60064 
11729 
77056 
02238 
46225 
02238 

DIF format recognizes only two datatypes: text and 
numeric. Numeric data is represented by ASCII digit 
strings. The rules for data transformation and 
formatting are quite simple: 

1. The type of the 1022 item 
determines the DIF datatype: 

1022 type 

Integer 
Double Integer 
Real 
Date 
Text 

being printed 

DIF type 

Numeric 
Numeric 
Numeric 
Text 
Text 

(Note the date --> text transformation. If 
a computational date is desired, $INT(date-item) 
should be printed. This does not guarantee that 
the resultant number will be correct when read 
into the target spreadsheet or other program, 
which is likely to represent dates differently 
than 1022. The $INT result may have to be 
offset by an amount that will cover the 
difference.) 

2. Conventional 1022 formats are employed when 
printing to DIF files; there is no DIF 
equivalent to "L" format. The actual text or 
digit string that results is the same as ~hat 
which would normally be produced under a giv~n 
format spec. It is the programmer_s 
responsibility to ensure that such a result is 
appropriate for the spreadsheet or other program 
which is to receive the DIF file. To mention a 
fairly obvious example, PRINTing an integ~r 
under "O" (octal) format would produce a numeric 
DIF item which would be interpreted as a string 
of decimal digits by any program that adheres to 
the DIF standard. 

Using Mobius to Extend 1022 and 1032 
Capabilities to Personal Computers 

Chris Kayes, FEL Computing 

Mobius is a micro/host integration package that 
extends the capabilities of Software House's 1022 or 
1032 systems to personal computers. The personal 
computer user can now extract data from a large 
central data base and process it using the vast 
array of readily available personal computer 
software. This can all be accomplished without ever 
leaving the familiar environment of the 
microcomputer. In addition, host system 
capabilities, such as its mail system, are now 
directly available to the microcomputer user. 

This paper shows how the 1022 system interacts with 
Mobius to provide a smooth interface between the 
host and micro computers. While the examples given 
are for 1022, the principles and most of the details 
are identical for 1032. How Mobius meets the 
varying needs of the microcomputer end user, host 
computer user, programmer, and information manager 
will also be addressed. More complete information 
and technical details about Mobius may be obtained 
by contacting the author. 

1.0 MOBIUS, 1022, AND THE MICROCOMPUTER END USER 

Mobius allows the microcomputer user to access host 
programs, data, and other resources (such as 
printers) in exactly the same way that the micro's 
own programs, data, and resources are accessed. 
Thus, the end user only needs to master one 
computing environment - that of the microcomputer. 
Mobius handles access to host resources completely 
transparently, so that the user can be totally 
unaware of where the programs and/or data actually 
reside. Therefore, the user is left to concentrate 
on the task to be accomplished, unencumbered by 
difficult and error-prone file transfer and 
communication tasks. This results in more efficient 
use of the person's time, both because no additional 
training is required and because the operations 
being performed are handled smoothly and easily. 

1 .1 An Example 

An example will illustrate how easily the 
micro-to-host interaction becomes to the end user. 
Here, the host 1022 data base management system is 
used to extract information from a central data 
base, and then that information is loaded into a 
Lotus 1-2-3 spreadsheet on the micro. With Mobius, 
this task is performed completely on the user's 
microcomputer with the following sequence of 
commands: 

( 1) A>1022 
(2) *USE MAKWKS 
(3) *QUIT 
(4) A>123 
(5) /File Retrieve D:DEM03 

Line (1) of this example shows the "A>" prompt 
displayed on the user's personal computer (IBM-PC, 
Rainbow, etc.). The user now wants to run the 1022 
system which is written for and runs on the host 
machine, so he enters the "1022" command to the 
microcomputer's prompt. Notice that this is exactly 
how the user would start a program that was written 
for and runs on the microcomputer. As far as this 
user is concerned, he is simply running a program; 
he does not know or need to know where it actually 
resides. 

Between lines (1) and (2) of the example, Mobius 
operates invisibly so as to make the host program 
access completely transparent to the user. First, 
Mobius starts the host 1022 program and then it 
automatically causes the microcomputer to operate as 
a VT-100 terminal. Thus, when 1022 outputs its "*" 
prompt, it appears on the screen just as would the 
prompt from any microcomputer program. 

Lines (2) and (3) are commands which the user enters 
into the 1022 system. These commands can be as 
simple or elaborate as the application requires, and 
all features of the host 1022 system can be 
utilized. In this example, MAKWKS is a program that 

243 



extracts data from a 1022 data base file and outputs 
a file in a format that can be read by the Lotus 
1-2-3 spreadsheet program which runs on the user's 
microcomputer. The file itself is stored in a 
directory on the host computer, but the user need 
not be concerned about this. All the user in this 
example needs to know is that when the MAKWKS 
program is run, it produces a file called "DEM03" on 
the microcomputer's "D" drive which is internal to 
his machine and which he can't actually see. In 
fact, later on, Mobius will perform the appropriate 
tasks, invisibly to the user, which cause this file 
to be retrieved when the "D" drive is referenced. 

Between lines (3) and (4), Mobius again operates 
invisibly. First, it detects that the host 1022 
program has terminated; then it causes the 
microcomputer to operate as it normally does, 
instead of as a VT-100 terminal; and finally, it 
causes the micro's "A>" prompt to again appear. 

Now, when the Lotus 1-2-3 program is started (line 
4), all that the user needs to do is to retrieve the 
file D:DEM03 that was created by the 1022 system, 
just as any other file would be retrieved with 1-2-3 
(line 5). Again, Mobius operates invisibly to 
retrieve the file from the host system and to make 
it available to the 1-2-3 program. 

1 .2 An Even Simpler Example 

The above example illustrates how Mobius operates to 
provide truly integrated micro/host interaction. 
The entire process can be even further simplified by 
using still other features of Mobius. For example, 
for users who do not know how to use 1022, but still 
have a need to access its data, Mobius provides a 
facility where lines (1) through (3) of the example 
can be combined into what appears to the user simply 
as a microcomputer program. If we call this program 
"GETWKS", then the following user commands to the 
micro perform the same function as the previous 
example: 

(6) A>GETWKS 
(7) A>123 
(8) /File Retrieve D:DEM03 

In this example, the user isfreed from needing to 
know anything about the host 1022 system. This is 
particularly useful in the somewhat common situation 
where the user wishes the same type of updated data 
on a regular basis. 

Since Mobius is completely integrated into the 
microcomputer's operating system, its "batch" 
facility can be used to even further simplify the 
action required by the user. For example, if lines 
(6) and (7) are combined into a batch file called 
"START123", then the entire process of accessing the 
host, starting the 1022 system, extracting data from 
the data base, outputting the extracted data into 
1-2-3 file format, and loading that data into a 
1-2-3 spreadsheet can be performed with only two 
microcomputer commands: 

(g) A>START123 
(10) /File Retrieve D:DEM03 

Note that in these examples, Mobius has worked 
completely invisibly and has not required the user 
to deviate from normal microcomputer procedures in 
any way. 

1 .3 Additional Versatility 

The above is only one illustration of how Mobius 
allows end users to access host resources without 
needing to know any of the details of the host 
system. While the examples used the 1022 and 1-2-3 
programs, they are equally valid for any host and/or 
micro program or combination of them. For instance, 
the host MAIL program can be run just as 
conveniently as 1022 was run in the example, thus 
providing the micro user with access to all of the 
features of the host mail facility as if that 
facility resided on the micro. 

As another example, a microcomputer text editor, 
such as WordStar, can be used to edit files that 
have been created by a host program. In this case, 
Mobius allows the host file to be read directly into 
WordStar, eliminating the need to perform any 
complex file transfer tasks. 

As can be seen by all of these examples, the 
integrated applications which Mobius makes available 
are virtually unlimited, since every host program 
can now be run as if it were on the micro, and every 
micro program can directly access host data and 
other resources. Mobius imposes no constraints on 
these whatsoever, thus eliminating user retraining 
and preserving current investments in software. 

244 

2.0 HOW MOBIUS SUPPORTS THE HOST USER WHO HAS A 
MICROCOMPUTER 

While Mobius allows the microcomputer end user 
complete transparency when accessing a host machine, 
such transparency may not always be desired by a 
person who is familiar with the use of the host. 
Also, this type of person is most likely to be 
setting up applications for end users, and therefore 
needs a mechanism to accomplish this quickly and 
conveniently. 

2.1 Switching Between the Micro and Host 

Switching directly between the microcomputer and 
host environments can be accomplished in a variety 
of ways with Mobius. The way most familiar to most 
host users is simply to type the following 
microcomputer commands: 

A> PUSH 
A> SPAWN 

(if the host is TOPS-20) 
(if the host is VMS) 

When this is done, Mobius invisibly starts a new 
host process and causes the microcomputer to operate 
as a VT-100 terminal. At this point, any host 
program or function can be performed, such as 
editing a file, reading mail, running a data base 
system, etc. When Mobius detects that the process 
is terminated ( ie: the user enters "POP" on 
TOPS-20, "LOGO" on VMS), it causes the microcomputer 
to operate as it normally does, instead of as a 
VT-100 terminal, and then to display the "A>" prompt 
again. 

2.2 Configuring the Micro/Host Environment 

Rather than requiring direct access to the host 
operating system functions as above, the user may 
wish instead to access that portion of the Mobius 
system itself which resides on the host machine. It 
is this portion of Mobius that contains an 
easy-to-use set of commands which allow the user to 
configure the Mobius environment, as was necessary 



for the 1022 example given above. To do this, the 
user simply enters a single keyboard character 
(initially defined as "CONTROL-A", but resettable by 
the user). Then, the current activity taking place 
on the microcomputer is instantly suspended (so that 
it can be resumed later), the host Mobius system is 
activated, and its "MOBIUS»" prompt is displayed. 
At this point, Mobius is waiting for a command to be 
entered by the user. 

The host Mobius commands provide a tremendous amount 
of convenience and capability for setting up 
applications as well as for performing useful host 
functions. In the 1022 example above, a file called 
"DEM03" was written to a host directory, and that 
file was seen by the microcomputer to reside on its 
disk drive "D:". This relationship between host and 
micro resources is established using the Mobius 
"DEFINE" command. For instance, the command 

MOBIUS>>DEFINE (micro device) D: 
(resource) *.* 

(to be) Host 

tells Mobius that whenever the microcomputer's 11 D:'' 
device is referenced (such as was done with Lotus 
1-2-3 in the example), the files of the currently 
accessed directory (as specified by the "*.*") are 
to be accessed. Thus, as an additional example, the 
microcomputer command 

A>DIR D: 

will display all of the files on the user's 
currently accessed host directory. If the list of 
files specified to the DEFINE command had been 
"*.DOC,*.MEM", then only those files with "DOC" and 
"MEM" extensions would be listed. Similarly, if 
"SYS:" had been specified, then all of the files 
associated with that logical name would be 
displayed, no matter how many directories that 
represents. 

The DEFINE command can also be used to specify that 
output normally destined for the microcomputer's 
printer will instead be routed to a host device. 
For example, 

MOBIUS>>DEFINE (micro device) PRN: (to be) HOST 
(resource) PRINTR.OUT 

would route all microcomputer printer output to the 
host file "PRINTR.OUT". This output could have just 
as easily been routed to a host line printer or 
other device. 

The "DEFINE" command is only one of about thirty 
commands that the host Mobius system provides. Some 
of the other commands replicate host system commands 
such as "COPY", "DELETE", "RENAME", etc., so that 
these functions can be performed easily and without 
leaving the Mobius system. Others allow for the 
tailoring of the Mobius environment for individual 
user's needs, such as changing the "CONTROL-A" 
character mentioned above, specifying the amount and 
type of information given when help is requested, 
and outputting specific application-oriented 
information. Still other commands allow setting the 
parameters of the communication channel or showing 
the status of the Mobius environment. 

245 

Once it has been determined how the Mobius 
environment is to be configured, all of the 
necessary host commands can be put into a data file. 
This file is then read when host Mobius is started 
and each command is executed, just as if it had been 
entered from the keyboard. Thus, the entire 
micro/host environment can be set up automatically 
and invisibly to the user. 

3.0 MOBIUS AND THE PROGRAMMER 

For most organizations, Mobius provides all 
necessary micro-to-host integration functions 
without requiring any special programming 
whatsoever. However, for those organizations which 
wish to create specialized distributed applications, 
Mobius simplifies the process by prviding an 
Advanced Programmer's Interface (API). The API is 
designed to give programmers direct access to the 
Mobius features that are available to the user at 
the microcomputer keyboard. For example, the user 
activates the VT-100 terminal emulator by typing a 
special character. Similarly, a program can 
activate the terminal emulator by using a Mobius API 
"system call". 

The Advanced Programmer's Interface appears to the 
programmer as an extension of the micro's operating 
system. As such, it gives the programmer access to 
several new system calls which are utilized in 
exactly the same way as normal system calls are 
utilized. Any programming language which can make 
calls to the microcomputer's operating system (which 
is virtually all of them) can call upon Mobius to 
perform its micro-to-host integration tasks. Thus, 
the API allows end-user organizations and OEMs to 
create sophisticated distributed applications 
without requiring systems programmers or 
communication specialists. 

4.0 MOBIUS AND THE INFORMATION MANAGER 

The previous sections have shown some features of 
Mobius as they related to particular types of host 
and/or personal computer users. To the Information 
Manager, though, Mobius is more than a set of 
technical features and capabilities. Rather, it is 
a single unified solution to the problems created by 
a diverse set of micr07host users, using a variety 
of programs and machine types. The inherent 
versatility of Mobius is illustrated in the previous 
section by the ease of use for the microcomputer end 
user, host system user, and programmer alike. 
Mobius provides each class of user with the same 
environment they are already used to, thus 
increasing their productivity and minimizing (even 
eliminating) the need for retraining. Each class of 
user is also provided with easy access to the rich 
set of features that are available to the other 
classes of users, should they wish to take advantage 
of them. 

This versatility is complemented by close attention 
to the needs of managing host data and security. 
Mobius provides this through a combination of host 
file access mechanisms and special Host Mobius 
features. A key element of Mobius is that 
first-level access security is not controlled at the 
microcomputer, which is the most vulnerable part of 
a micro-to-host system, or even by Mobius itself; 
but rather it is controlled through the host 
operating system. 



5.0 HOST-BASED ACCESS PROTECTION 

The Host Mobius program operates as a normal user 
program running under the host operating system. 
Therefore, Mobius can provide the microcomputer user 
with no more file access than that user would have 
if accessing the host from a normal computer 
terminal. This design was chosen over a "server" or 
"privileged program" concept because it allows easy 
custom tailoring to individual users without 
introducing security problems. 

Some of the advantages of this design are: 

1 . The host system manager needs to establish 
directory and file access privileges only once. 
There is no additional mechanism needed to 
provide protection for microcomputer users. 

2. No passwords can be entered by the user when 
running a program from the microcomputer, nor 
can any passwords be accidentally displayed. 

3. Because of (2), it is useless to enter passwords 
into data files stored on the microcomputer 
since they can not be functional from such 
files. Storing passwords in such files is one 
of the most common areas of security breach. 

4. The microcomputer user has full access to those 
host files normally available to that user. No 
additional procedures must be learned to access 
them. 

5. The host system manager remains in full control 
of the access and integrity of the host system 
files. 

6.0 MOBIUS-BASED ACCESS PROTECTION 

By design, Mobius can not allow access to host files 
beyond what is allowed by the host operating system. 
However, it can further restrict such access. For 
example, if the host system allows a user to read 
and write all files in a particular directory, 
Mobius can be set to allow reading only those files 
written by the user during the current Mobius 
session. 

Mobius also provides the ability to mark sets of 
host files as "read only". This is accomplished 
with the Host Mobius "LOCK" command, which not only 
prevents writing to files that already exist, but 
also prevents new host files from being created. 

It is also possible to prevent the user from 
accessing the host except through Mobius and/or to 
issue any Host Mobius commands. Thus, the 
micro-to-host environment can be set up so that the 
user will never be able to change it, but all 
required host resources will still be available to 
the microcomputer user. 

246 

7.0 INTEGRATING PCS AND HOSTS 

Mobius is a system which fully integrates personal 
computers with host machines. While traditional 
file transfer and terminal emulation capabilities 
are built into Mobius, these only scratch the 
surface of the tremendous versatility available to 
the user and/or system integrator. 

The example illustrating the use of the 1022 data 
base system with the 1-2-3 spreadsheet shows that 
Mobius supplies direct access to an organization's 
data and facilities from a personal computer, while 
maintaining all of the flexibility that these 
machines offer the user. Also, by offloading tasks 
to the personal computer, host performance and user 
productivity is increased. 

The versatility of Mobius is further enhanced by the 
wide variety of machines on which it is implemented, 
including VAX, DECsystem-10, and DECsystem-20 host 
computers and PC-DOS (IBM-PC and compatibles), 
MS-DOS, and CP/M microcomputers. This range of 
machines allows integration to take place not just 
between PCs and hosts, but between dissimilar hosts 
and microcomputers as well. 

All of this adds up to an unusually flexible system 
for the 1022/1032 user. First, Mobius allows the 
capabilities of these systems to be immediately 
extended to the microcomputer user. Then, extracted 
h~st data can be used in 1-2-3, dBase, and other 
microcomputer programs. As the user's needs grow 
additional host systems can also be extended to th~ 
micro. What may initially be viewed as an adjunct 
to the 1022 or 1032 system, in fact provides 
general-purpose capabilities that can be used to 
integrate virtually any micro/host application. 



VMS For TOPS Users: End User Interface 

Kathy Rosenb l uh 
Digital Equipment Corporation 

Marlboro, Massachusetts 

ABSTRACT 

This session covered VMS user interfaces and concentrated on 
the functionality that end users need as they move from TOPS 
to VMS. Areas discussed included definition of a user, 
logging on, directories, processes, queues, batch and spooling 
systems, file access protection, file manipulation, device 
allocation and mounting, system services, program development, 
mail, editors, networks, command procedures, symbols and 
logicals, lexical functions, error handling, DCL, inter 
process corrmunication, linker images and debuggers. 

Kathy indicated that both systems managers and 
programmers could use the information in this 
presentation. She said that the session could 
be used as a guide for a short course as you 
move to VMS from TOPS. Following are the slides 
presented during this presentation. More informa­
tion has been interspersed in the original slides 
to cover additional items discussed during the 
session. 

LOGGING ON VMS 

When logging on, you get a username prompt, 
unlike on TOPS-10 and TOPS-20 
You can implement a system password feature 
- Requires a user to enter a system password 

before getting announcement of the system 
you are on 
: Especially useful for dial-up lines 

when people are trying to break into 
a system 

• Initially prompt for a username if not using 
a system password 

USER 

• An entry in the SYSUAF file creates a User. 
It contains such things as: account strings, 
UIC, login name, password, quotes, privileges 
Entry also specifies the login directory 

• Username UIC 

Text string Octal number 
Used for login only For everything else 

Unique for each user 
The login directory can be a subdirectory 
(defined by the system manager), but the user­
name does not therefore become a sub-username 
EXAMPLE: 
UAF> add SMITH /DIRECTORY=! [PROJECTl.SMITH] 

/QUOTA=4000 /OVERDRAFT=lQOO /CLI=xxx 

DIRECTORIES 

QUOTA and OVERDRAFT QUOTA, on a per-structure 
basis 

Proceedings of the Digital Equipment Computer Users Society 247 

File is charged to File Owner (can be different 
from Directory Owner) 
Directory owner may create subdirectories 
(unlike TOPS) 
- Example: 

CREATE/DIRECTORY DISKA:[PROJECTl.SMITH] 
/OWNER_UIC:xxx/PROTECTION=(S:RWED,O:RWED,G:RE,W:) 

DIRECTORIES 

$ SET DEFAULT device:[directory] 
- Changes "connected" directory 
- No limitation to number of directories to 

which a user can be connected 
No access checking is done for SET DEFAULT 
- File access checking is done when file opera-

tion is attempted 
Search lists: 
- Implemented through logical name definitions 
- $DEFINE DSK [dirl],[dir2],[dir3] 
- $ SET DEFAULT DSK 

A PROCESS 

Process = Context + Executable Image 
Has one 32-bit physical address space 
Has 4 30-bit virtual address spaces 
Contains current image in PO 
Contains stacks, I/O database, quota and pr1v1-
lege information, logical name tables, PSL, etc. 
in Pl 
Contains system space, shared by all processes 
in SO 
The last space is not yet used but it is re­
served for Digital 

A PROCESS CAN 

Execute images or run programs 
Execute DCL commands 
Execute procedures 
Spawn another process 

GETTING PROCESS/SYSTEM INFO 

• SHOW STATUS 

Anaheim, California- December 1985 



- Sbow~ e.0. 1 workinto set sdize1 quota used, cloCK ana ~ystem ime use fur current 
process 

• SHOW SYSTEM 
- Show version of VMS being run 
- One line message for every process running 
SHOW PROCESS 
- More detail then SHOW SYSTEM 
- Describes a users current process in full 
- Privileges enabled, resource information on 

process are shown 
• SHOW NETWORK 

- IF DECNET is running, show physical connec­
tion, whether end or routing node, and a list 
of possible connections if it is a routing 
node 

PRINTING & BATCH QUEUES 

Getting Information: 
(Information is clusterwide) 
SHOW QUEUE/DEVICE 
- Shows status of all queues on the system 
- Shows all characteristics of the queues if 

you use the /FULL switch 
- Default is to show only queue entries matching 

the user name of the logged in process. To 
see all entries in the queue, use the /ALL 
switch 

• SHOW QUEUE 
- Shows status of output queues 
SHOW QUEUE BATCH 
- Shows status of batch queues 

QUEUES 

Queue manipulation commands are available to 
users 
SUBMIT filename(s) 

<==== to batch queue 
• PRINT filename(s) 

<===== to output print queue 
MODIFY jobname(s) 

<===== to modify a queue entry 
once submitted 

• SYNCHRONIZE entry 
- allows two batch jobs to be interdependent; 

This command is included in the second 
batch job 

• DELETE I entry 
- To cancel/delete a queue entry 

BATCH & SPOOLING SYSTEMS 

Queue entries can be moved between queues by 
operator 
Typical queue characteristics; not user setable 
- JOB LIMIT, BASE PRIORITY, RESTART VALUE, 

SPOOLED, FORM, CHARACTERISTIC, BLOCK LIMIT 
Default values for flag, trailer & separation 
pages and bursting are set by operator, but 
may be overridden by user queue entry 
Operator chooses position-in-file when print 
queue is restarted 
Batch jobs can be restarted from point of com­
pletion 

BATCH & SPOOLING SYSTEMS 

Print and batch queues can be cluster-wide 
Users can load forms for programmable printers 

248 

Ge8eric queu~s . 
- utput: printer and terminal queues can be 

assigned to a generic queue 

jobs in generic queues go to first 
available device assigned to the 
generic queue 

- Batch: used in clustered systems 

FILE ACCESS 

This is a description of the UIC based protection 
available for files on VMS 
- For files, directories, queues, etc. 
Divide world into 4 groups: 
- Group defined as members of the same UIC group 

number 
- Owner, System, Group, World 
Each group can have any/none/all of 4 kinds of 
access: 
- Read, Write, Execute, Delete 
- The user sets these up for each file 
- Defaults are set up for directories so these 

do not have to be set up for each file written 

FILE ACCESS LISTS 

New to VMS V.4 
Can include/exclude access by identifier e.g., 
UIC, , type-of-connection 
Utilities exist to create/modify access lists 
and identifiers 
List is stored in file header 

• Fine-tuned control of file access is possible 
at cost of slight cpu overhead 

OTHER FILE FUNCTIONS 

• A full file specification looks like this 
- node"username password account"::device 

[directory]filename.ext;n 
Standard format for APPEND, COPY, TYPE 
- $ copy oldfile-spec newfile-spec 

$ copy 
From file: oldfile-spec 
To file: newfile-spec 

- Can be done on same line or can prompt for it 
Wildcards can be used 

FILE MANIPULATION 

No UNDELETE command is available 
$ DELETE filP_Pxt:n 

- $ DELETE /BY OWNER can look for matching UIC 
anywhere on a disk 

• $ PURGE file.ext 
- Deletes all but the last generation (by 

default) or a specified number of generations 
$ SET file/ENTER = alternate name allows multi­
ple directory entries for one file 
- Be careful with this. Deleting one name 

deletes all alternate names in a directory 

MORE FILE MANIPULATION 

• File attributes are stored in file header 
Include information about data format, recording 



mode, etc. rc~n see these with the DIRECTORY/ 
FULL command • J 

• ANALYZE/RMS FILE shows internal structure of 
file -
CONVERT command used to set file attributes and 
structure 
SET FILE/ERASE ON DELETE for better security 
- Costs in extra overhead so you may not want 

this for every file in the system 

DEVICE ALLOCATION -- DISK 

To see detailed information about device 
characteristics: 
- $ SHOW DEVICES /FULL DMAO 

[DM] [MYDISK] 
$ ALLOCATE device-name logical-name 

[MYDISK] [PROJECTl] 
$ INITIALIZE device-name volume-label 
- Done once only. Wipes out current data on 

disk 
- On non-blank disk requires VOLPRO, or same 

UIC as disk-owner 
[MYDISK] [PROJECTl] [Pl] 

$MOUNT device-name, volumn-label, logical-name 
Can use generic define name 

MOUNTING TAPES 

[MTAl:] [MYTAPE] 
$ ALLOCATE device-name logical-name 

[MYTAPE] [PROJECTl] 
$ INITIALIZE logical-name label 
- This writes a volume label, headers, 

BOT, EOT, EOF and EOV 
[MTA:l] [PROJECTl] 

$ MOUNT device-name label 

MOUNTING TAPES 

• Switches to MOUNT 
- BLOCKSIZE, LABEL (type) 
- OVERRIDE (access checks) 
- RECORDSIZE can be specified 
- FOREIGN 

[Pl] 
logical-name 

• User must DISMOUNT and DEALLOCATE device 

PROGRAM DEVELOPMENT 

Native-Mode VMS Languages: 
- FORTRAN, COBOL, BASIC, PL/l, RPG, Pascal, 

MACRO, ADA 
- Can all call one another 
No explicit Compile command (as in TOPS) or 
Save command 
- $ FORTRAN FILE-1.FOR, FILE-2.FOR, ••• 
- $COBOL FILE-3.COB, FILE-4.COB, .•• 
- $LINK FILE-l,FILE-2,FILE-3,FILE-4, 

SYSTEM SERVICES 

From two basic sources 
- Common Run-Time Procedure Library 

: Used for file activity for RMS, e.g. 
- Base System Services - Information, e.g., on 

the state of the world, state of the process 
or outstanding asynchronous interrupts 

Analogous to UUO's and JSYS's 
Can be used directly for native-mode VMS 
languages 

249 

LINKER 

• Invoked with "$ LINK ••• " command 
• Creates executable and shareable images 
• Lin'ker can find and include library information 

-- object modules, macros, help text, record 
descriptors 

MAIL 

VMSMail 
- Available by default to all users with VMS 
- Subset of TOPS MS features 
- Can call any editor 
- Can store mail in folders 

MAIL 

DECMail 
- Has its own editor 
- Users must be explicitly made known to DECMail 
- Two-step send 
- Can store mailing lists 
- Has storage folder management functions 
- Menu or command mode 

EDITORS 

SOS --line oriented editor 
EDT --line mode 
- screen mode with keypad functionality 
- screen mode with typed-in commands 

(now also available on TOPS) 
EMACS-32 --available from third-party 
TECO/TV ~oth available on Integration 
SED,,----(Tools Tape, unsupported 
TPU ~ Programmable editing utility 

NETWORK ACCESS 

Same network access as on TOPS 
Virtual terminal support through 
- $ SET HOST hostname 
Proxy logins allow remote file access without 
specifying password/username 
Network file operations are transparent -- just 
include nodename in file specification 
Batch jobs can be executed on remote DECnetted 
nodes at user request 

SPAWNED PROCESSES 

Can execute single line of DCL without attaching 
Can DISCONNECT virtual terminal from process 
- CONNECT to relink to physical terminal 
Can ATTACH to move among processes 
For speedier spawn, specify /NOLOGICAL /NOKEYPAD 
/NOSYMBOL 
Can run images detached 

COMMAND PROCEDURES 

Procedures can be executed interactively, can 
be nested up to 16 levels deep, or can be sub­
mitted as a batch job; or a sub process can be 
spawned, and a procedure can be submitted from 
that sub process 

• Interactive: $ @procedure-file 
OR define a command-name synonym 

$ taskl = "@procedure-file" 
$ taskl 



• Batch: $ submit procedure-file 

PROCEDURE DEBUGGING 

SET VERIFY will display lines of DCL and/or 
image i/o while procedure executes 

• Reset SET MESSAGE to show full error strings 
Look for contradictory logical and symbol 
definitions 

• Do SET PROCESS /DUMP and ANALYZE /PROCESS_DUMP 

COMMAND PROCEDURES 

• After each login (Batch or interactive} 
3 commands files are automatically executed 
(if they exist}: 

• System "GROUP" LOGIN.COM in user's directory 
• Procedures can be nested up to 16 levels deep 

PROCEDURE 1/0 

Procedures can contain DCL commands and data 
lines. Can have data and flow control commands 

• Procedures are interpreted and not compiled 
INQUIRE statement will ask for input from 
terminal 
Up to 8 parameters can be pased to a procedure 
You can redirect input and output to files 

• Can specify number of seconds to wait for input 
with READ/TIME OUT = n 

EXAMPLE 1 --- PROCEDURE 1/0 

$ if 'pl' • nes. "" then goto do it 
$ if f$mode (} .nes. "INTERACTIVE" then exit 
$ inquire pl "Directory name" 
$ do it 
$set default 'pl' 
$ directory /size /date 
$ run progyy.exe 
option 3 
$ define/user mode sys$input message.txt 
$ mail -
$ exit 

EXAMPLE 1 EXECUTION 

Interactive submission 
- $ @examl -OR-

• Interactive define symbol 
- $ examl rosenbluh.projectl /output dirfil.txt 

-OR-
Batch submission 
- $ submit examl /parameters=(rosenbluh.projectl} 

SYMBOLS & LOGICALS 

Symbols can stand for CHARACTER STRINGS or 
INTEGER VALUES 

• Both kinds of symbols can be used in expressions 
Logical names are equated to a character string, 
usually representing file specifications, dir­
ectories and devices 

SYMBOLS & LOGICALS 

Logical names are expected by VMS in file manip­
ulating commands 

250 

Symbol nam~s ere expected by VMS 
- On the right side of an = assignment statement 
- In arguments to lexical functions 
- In IF, WRITE, DEPOSIT and EXAMINE commands 
- Wherever else symbol substitution is requested 

with an operator 

SYMBOLS EXAMPLES 

PLAIN SYMBOL ASSIGNMENTS 
Can assign integers to the symbol name count 
- $ count = 123 $ octal count = %123 

• 2 ways to specify character streams 
- $ infile = "magic.dat" $prompt :=Hello all 
Can define a file specification to a symbol 
- $ symdat = "disk2:[develop.data]" 

EXPRESSIONS USING SYMBOLS 
Can do arithmetic manipulation with symbols 
- $ count = count + 1 
Can do character manipulation 
- $ infile .eqs. infile - ".dat" 
$ sum = f$length(infile} + 1 

LOGICALS EXAMPLES 

Define is used to set up a logical; can con­
catenate files 
$define logdat disk2:[devel.data],userl:[prod. 
data] 
$directory logdat:*.dat 
$directory 'symdat':*.dat 
$ if symdat .nes. "" then filspc symdat + 
infile 

LEXICAL FUNCTIONS 

Can be used interactively or inside command pro­
cedure 
Return system and process environment information 
(interactive or batch, network or local. e.g.} 
Do string manipulation 
Do data type manipulation 
Parse file specs, get file attributes and device 
information 

• Translate logical names 

LEXICAL FUNCTIONS 
EXAMPLES 

f$environment will tell you what the current 
directory is 
- $ dirnam = f$environment( "default"} 

- $ set default userl:[projectl] 

- $ 

- $ set default 'dirname' 

LEXICAL FUNCTIONS 
EXAMPLES 

$ filspec = f$parse(filspec,"*.*;*"} 

$ filspec f$search(filspec} 

$ dirspec f$parse(filspec,,,"DEVICE"}-
+f$ parse( fi 1 spec,,, "DIRECTORY"} 



$ filnam = f$parse(filspec,,,"NAME")­
+f$parse( fil spec,,," TYPE") 

• $ write sys$output dirspec+filnam 

CONTROL STRUCTURES 

• Loops are implemented with: 
- IF true (expression) THEN [$] command 
- GOTO label 
- GOSUB for subroutines 

• Case statements implemented with: 
- $ command list = "EXIT/HELP/OPTION1/0PTION2" 
- $ inquire command(command list+>) 
- $ if f$locate(command+"/ 11: command list) .eq.-

f$length(command list) then goto error 
- goto 'command' -
- optionl: 

ERROR HANDLING 

• Error handling is up to the person writing the 
procedure 

• Global symbol $STATUS contains last-error 
information: 
- severity level, message number, who gener­

ated, flags 
• Global symbol $SEVERITY - serverity level only 
• By default, error or severe error result in an 

EX IT command 
Turn on error handling with $ SET ON, disable 
with $ SET NOON 

ERROR HANDLING 

• Control Commands: 
- $ ON WARNING THEN command 
- $ ON ERROR THEN command 
- $ ON SEVERE ERROR THEN command 
- $ ON CONTROL Y THEN command 
- Can SET VERIFY to do command procedure de-

bugging 

SOME DCL LIMITS 

Limits increased in Version 4 
• Command buffer size is 2048 characters 

Command line limit is 255 characters 
• File name and extension can each be 39 charac­

ters 
Version numbers go up to 32767 

DCL -- KEYPAD DEFINITIONS 

• You can define certain terminal keyboard keys 
to a character string 
Exanple: $ SET TERMINAL/APPLICATION KEYPAD 
$ DEFINE/KEY PFl "SHOW" I SET STATE=DLIBBLE/ 
NOTERM/NOECHO -
$ DEFINE/KEY PFl "DEFAULT" /TERMINATE/IF _State 
=DUBBLE/ ECHO 
Then pressing PFl twice will do: 

$ SHOW DEFAULT 
• Key states can be explicitly defined, 

e.g: $ SET KEY /STATE=DUBBLE 
• $ SHOW KEY displays settings and states 

COMMAND LINE EDITTING 

Up to 20 previous lines of DCL commands can be 
recalled to correct lines 

251 

Each line can be edited, using control charac­
ters, and then re-executed 

COMMAND LINE EDITTING 

• Example: $ show default 
$ directory *.mem 
$ set default [projectl.review] 
$ recall/all 
1 set default [projectl.review] 
2 directory *.mem 
3 show default 
$ recall 2 
$ directory *.mem 

COMMAND LANGUAGE INTERPRETER 

Ways to tailor the command language: 
- SET CLI allows you to define which command­

line-interpreter will be used by your process 
: Possibilities: 

DCL DECShell User-written 
• You can write a program to do a function, and 

define a foreign command which runs that program 
• With the Command Definition Utility, you can add 

commands to standard DCL 

TERMINAL ENVIRONMENT 

• SET HOST 0 /LOG to create terminal log 
• SET MESSAGE controls amount of feedback 
• SET BROADCAST controls reception of information 

from others (e.g., Mail, line detects from other 
terminals) 

• SET PROMPT (to • or @ or anything) 

COMMUNICATION WITH USERS 

MAIL 
PHONE -- split screen tty linker allows logging 
of session and can show directory of users on 
remote node 

• REQUEST sends line of text to operator terminal 

INTERPROCESS COMMUNICATION 

Via shared files 
• Via decnet 
• Via mailboxes 
• Via corrmon event flags 

Via resource locks 
• Via asynchrouous software trap 

IMAGES 

• Shareable images 
- Must be INSTALLed in memory 
- Use only one copy of page in physical memory 

at run time so reduce physical memory require­
ments 

• Executable image is saved in a disk file by the 
Linker 
- Can call Shareable image 
- Can be INSTALLed 





VMS for TOPS Users: Program Development 

Kathy Rosenb l uh 
Digital Equipment Corporation 

Marlboro, Massachusetts 

ABSTRACT 

The purpose of this session was to cover the basics of pro­
gramming under VMS so that TOPS users could understand what 
is involved in the transition to VMS. The areas covered 
included processes, inter-process communication, system 
services, program development, CCJTlpilers, object libraries, 
runtime libraries, the Linker, global symbols, shareable 
images, privileges, monitoring running programs, debugging, 
breakpoints, editors, system routines, intra-process commun­
ication and the file system. 

Presented below are the slides used during this 
presentation. Comments brought up during the 
session are sometimes interspersed in the slides. 

A PROCESS 

• Process = Context + Executable Image. 
A process is what is established for a user when 
he logs in, 
Has one 32-bit physical address space. 
Has 4 30-bit virtual address spaces. 
Contains current image in PO. 
Contains stacks, I/O database, quota and priv­
ilege information, logical name tables, PSL, etc. 
in Pl. 

, Contains system space, shared by all processes 
in SO. 

SYSTEM SERVICES 

From 
- Common Run-Time Procedure Library. 
- Base System Services. 
Analogous to UUO's and JSYS's. 
Can be used directly from native-mode VMS 
languages. 

PROGRAM DEVELOPMENT 

, Native-Mode VMS Languages: 
- FORTRAN, COBOL, BASIC, PL/1, AOA, C, RPG, 

Pascal, MACRO, BLISS-32. 
- Can all call one another. 
No explicit CCJTlpile command or Save command 
- $ FORTRAN FILE 1.FOR, FILE 2.FOR, 
- $COBOL FILE 3-;coB, FILE 4-;coB, ••• 
- $LINK FILE_T,FILE_2,FILE_3,FILE_4, ••• 

COMPILERS 

Create object modules from source code. 
Source code can have multiple program units. 
-AND- object file can have multiple object 
modules. 

Proceedings of the Digital Equipment Computer Users Society 253 

Some switches that you can use on the compiler 
command. 

/DEBUG adds symbols, entry point, line # info. 
- /CHECK for out-of-bound subscripts, arithmetic 

overflows and underflows. 
/NOOPTIMIZE - Speeds up compile time; espec­
ially useful during early CCJTlpiles • 
/LIST (can use in conjunction with /NOOBJECT) 
line #'s, variable datatypes & addresses. 

OBJECT LIBRARIES 

Created with $ LIBRARY/CREATE lib_name. 
Add entries with: 
- $ LIBRARY/REPLACE lib name object module. 

• Entries can be extractea and deletea. 
Libraries contain compiled object modules. 
-and- other objects (not CCJTlpiled): 
- command language descriptions. 
- error descriptions. 
- symbol definitions. 
- system-defined procedures. 

LINKER 

• Invoked with "$ LINK ••• " command. 
• Gets object modules from object files and/or 

library files. 
• Creates executable and shareable images. 

- A shareable image cannot be run by itself; 
useful for routines called from multiple pro­
grams • 

• /DEBUG appends symbol, line# info to image. 
- causes image to run under debugger by default. 
- override default at runtime with $ RUN/NODEBUG 

(and still enter debugger after CTRL/Y). 
/TRACEBACK dumps image/process state after error. 
- Very useful during program development. 
/MAP/FULL provides virtual memory map, global 
symbols, cross reference, module synopses ••• 

GLOBAL SYMBOLS, LIBRARIES 

• Linker resolves global symbols by searches of: 
- Explicitly named modules & libraries. 

Anaheim, California - December 1985 



- System default libraries. 
- User default libraries. 
User default libraries: (mylib is an object 
library). 

$ DEFINE LNK$LIBRARY dev:[dir]MYLIB 

SHAREABLE IMAGES 

Shareable images = nonexecutable. 
- Saves disk space. 

Executable images link to it without 
physically including it. 
Linkage is setup when image is activated. 
Use transfer vector macro to save having to 
relink executing image when shareable changes. 
Use CLUSTER in options file to bind macro+image. 

SHAREABLE IMAGES 

• Use /GSMATCH in options file to indicate whether 
executable image must relink when shareable 
changes. 

• Create shareable image libraries with. 
- $ LIBRARY /CREATE /SHAREABLE image name. 
- Default file type is .OLB. -
ADV: Save Disk Space, Maintainability. 
DISADV: Image execution is slower, depending 

on number and size of shareable images. 

PRIVILEGED PROGRAMS 

Some programs execute privileged system services, 
or obtain access and resources through enabled 
privs. 
Instead of giving all users the privileges: 
- Install image with privs. 
- $ INSTALL 

INSTALL> CREATE dev:[dir]image /PRIV=(privname) 

SHARED IMAGES 

Shared image: only one copy in memory. 
Use Install Utility to make image shared. 

CHECKING UP ON PROGRAMS 

SHOW PROCESS /CONTINUOUS /ID=xxx 
- Information on program counters, amount of 

CPU, e.g. 
CTRL/T 
RUN /PROCESS image /DUMP 
- examine dump with System Dump Analyzer. 
RUN /PROCESS image /ERROR. 
Relink image with /DEBUG and/or /TRACEBACK. 

DEBUGGER 

Can be invoked at compile, link or execution 
time. 
If invoked only at execution time, won't have 
access to symbol table. 

DEBUGGING COMFORT 

In window mode, shows 3 default displays: 
Debugger output, Source code, Register contents. 
You can save a snapshot of a display. 
You can define other displays. 
Has keypad mode. 

254 

• Has HELP and SPAWN commands. 
There are language sensitive editors for some 
languages that can interact with the debugger. 

WHERE TO BREAK, WHAT TO DO 

Can set breakpoint at routine start, at exception 
break, at any location, on a type of instruc-
t ion, ••• 
Can set tracepoints at same places, to just dis­
play execution of interesting instruction and 
continue. 
Can activate breakpoint /AFTER n iterations. 
Can conditionally execute list of commands at 
break. 
Set watchpoint to display modifications to loca­
tion. 

OTHER INFORMATION 

SHOW MODULES 
SHOW REGISTERS 
SHOW CALLS 

SYMBOLS 

• SET SCOPE to define program region to use in 
interpreting symbols; done at link time. 

• Make symbol uniquely identifiable with pathname 
prefix. 

module\routine\block\section\line\symbolname 

EDITORS AVAILABLE ON VMS 

SOS --line oriented editor. 
EDT --line mode. 

screen mode with keypad functionality. 
screen mode with typed-in commands. 

- Now on TOPS-10 and TOPS-20 also. 
EMACS-32 --available from third-party/ 

• TECO/TV I Both available on Integration 
SEO ) Tools Tape, unsupported. 
TPU 

SYSTEM ROUTINES 

Languages which can call system routines: 
- MACRO, BASIC, BLISS-32, C, COBOL(-74), ADA, 

CORAL, DIBOL, FORTRAN, Pascal, PL/1. 
Arguments are passed by 
- value, reference or descriptor. 

• Condition value always returned. 
Kinds of system routines: 
- System services. 
- Run time library routines, e.g., RMS file 

handling. 
- Utility routines. 

SYSTEM SERVICES 

Functions: 
- Security - check protections, ACE's, identi­

fiers, disk erase. 
Event Flag Services. 
ASTs - set and deliver. 
Logical Names - create, delete, translate. 
I/O - assign channels, pass messages to QIO, 
device, volume mailbox, brkthru, message to job 



controller, operator, etc. 
- Process Control - creation, state, priority, 

privs. 

SYSTEM SERVICES 2 

Timer and Time Conversion (between various date 
and time formats}. 
Condition Handling Set Up. 
Memory Management. 
working set, global section, lock page 
swap mode, stack limits, map section ••• 

• Lock Management - enqueue/dequeue, get lock 
information. 

INTERPROCESS COMMUNICATION 

List is ordered, more or less, by size. 
Common Event Flags (fast, but only bits}. 
Logical Name Tables \ 

\ 
\ 

Mail boxes /,.. 
limited amount of 
data accepted. 

• Global Sections (fastest}. 
, Lock Management (fast, but only bytes}. 

Shared Files (slowest, unlimited data}. 
Decnet task-to-task - any length across 

RUN TIME LIBRARY 

Decnet. 

Same calling and return standards as System 
Routines. 
Use RMS for file I/O. 
Execute in same access mode as caller. 
Major Subsets such as the following utility 
libraries: 
- Mathematics 
- Resource Allocation 
- Condition Handling 
- Screen Management 
- Image/Process Handling 

OTHER SYSTEM ROUTINES 

• Command Line Interpreter (CLI} Parsing • 
• RMS Services. 

File Definition Language Routines. 
Sort/Merge Routines. 
File Conversion Services. 
Data Compression/Expansion. 
EDT Access as well as access to other editors. 
Librarian Routines • 

• Print Symbiont, Job Controller Interface. 

INTRA PROCESS COMMUNICATION 

(Between different images executed by same 
process.} 
Local. Event Flags. 
Per-process Common Blocks. 
ASTs. 
Symbol Table. 

FILE SYSTEM 

File ORGANIZATION can be: 
Sequential 

- Relative 
- Indexed 

255 

FILE SYSTEM 

Record Formats: 
- Fixed length (all organizations}. 
- Variable length (all organizations}. 
- Variable with fixed-length control 

(Sequential and Relative}. 
- Stream (terminator delimited}(Disk Sequential 

only}. 

FILE SYSTEM 

File ACCESS modes: 
- Sequential (works with all organizations}. 
- Random Access by Key Value (for Indexed only}. 
- Random by relative record number 

(Sequential and Relative}. 
Random by Record File Address (works with all}. 

- Block I/O. 





TOPS TO VMS BUSINESS APPLICATION 
TOPS-10/VAX PERFORMANCE COMPARISON 

Frank Francois and Ralph Bender 
Federal Home Loan Bank Board 

Washington, D.C. 
(202) 377-6115 

ABSTRACT 

This session was a presentation of a COBOL applications 
benchmark conducted by the Federal Home Loan Bank Board. 
The benchmark was run on a DECsystem-10, a VAX-11/780, a 
VAX-11/785 and a VAX-8600; and the results of all runs were 
presented and compared. 

Ralph Bender presented background on the Federal 
Home Loan Bank Board (FHLBB) and on the business 
benchmark. The configuration for the FHLBB's 
Computer Center is in Exhibit I; it shows the 
TRI-SMP DECsystem-10, the VAX-11/780, the VAX-
11/785 and all peripherals. The FHLBB is the 
federal government agency that regulates the 
savings and loan industry. Users of the Computer 
Center are 500 people in Washington, the 12 Fed­
eral Home Loan Banks throughout the United States 
and the 27 Examination Offices throughout the 
United States. Remote access is done through 
Telenet. 

This session was planned at DECUS in New Orleans 
in May 1985. None of the benchmarks presented 
previously at DECUS showed DECsystem-10 to VAX 
comparisons, nor did they show COBOL, business 
applications. The need for a DECUS session co­
incided with the Bank Board's study of future 
data processing needs. The results of that study 
were to migrate to the VAX-8600 from the DECsys­
tem-IO. However, the FHLBB wanted to do bench­
marks before making the final decision, 

The FHLBB had experience in benchmarks dating back 
to the purchase of their first KA1050 in 1973. 
The FHLBB's DP division uses COBOL for 90% of its 
production, and they also have applications 
running in !FPS, DPL and FORTRAN. The benchmark 
was designed to reflect the normal, COBOL busi­
ness workload. Operator jobs plus 18 application 
jobs were run concurrently for 90 minutes to 
heavily load the four systems that were bench­
marked. Ralph indicated that the participants in 
the FHLBB benchmark project were Tom Wood (Compu­
ter Center Manager), Frank Francois (Technical 
Support Manager), Donn Lindsey (Programming Mana­
ger), Carl Spellacy (Computer Operations Manager) 
and Jean Nowak and Ron Leisey of the Technical 
Support staff. Ralph then introduced Frank Fran­
cois, who did much of the management of the bench­
mark and who presented the results. 

Frank used the enclosed exhibits to present the 
results of the benchmark. 

Proceedings of the Digital Equipment Computer Users Society 257 

Exhibit 2 shows in detail the purpose and content 
of the 18 jobs in the benchmark mix. The jobs 
consisted of 8 types of jobs: 3 COBOL compiles, 3 
COBOL jobs doing disk input and terminal output, 
a "normal" COBOL application program, 3 COBOL 
programs doing intensive computations, 3 COBOL 
programs that exercise memory, 3 COBOL programs 
doing terminal input, 1 backup utility doing 
backup, and 1 COBOL sort program. 

Exhibit 3 - The DECsystem-IO (running TOPS-
10/7 .02) benchmark configuration. 

Exhibit 4 - The VAX-11/780 (running VMS 4.2) 
benchmark configuration. 

Exhibit 5 - The VAX-11/785 (running VMS 4.2) 
benchmark configuration. 

Exhibit 6 - The VAX-8600 (running VMS 4.2) bench­
mark configuration. The benchmark was run on the 
VAX-8600 with 6MB of memory and again with 8MB of 
memory. 

Exhibit 7 - For each of the 8 types of jobs, this 
shows transactions processed on the KL-1090, VAX-
780 and VAX-785. Transactions equals number of 
lines compiled for compiles, transactions input/ 
output for terminal input/output, number of comp­
utations for computational programs, number of 
records backed up for backup, and number of 
records sorted for sort. 

Exhibit 8 - For each of the 8 types of jobs, this 
shows transactions processed on the KL-1090, VAX-
780, VAX-785 and VAX-8600 with 6MB of memory. 

Exhibit 9 - For each of the 8 types of jobs, this 
shows transactions processed on all five of the 
benchmark configurations - the KL-1090, VAX-780, 
VAX-785, VAX-8600 with 6MB and VAX-8600 with 8MB. 

Exhibit 10 - For the 8 types of jobs, this shows 
the CPU time allotted on the KL-1090, VAX-780, 
VAX-785, VAX-8600 with 6MB and VAX-8600 with 8MB. 

Anaheim, California- December 1985 



• Exhibit 11 - For each of the five benchmark con­
figurations, these graphs show performance on 
the compiles. 

Exhibit 12 - These graphs show performance on 
the BMKBIG program that exercised memory paging. 

Exhibit 13 - These graphs show performance on 
terminal input • 

• Exhibit 14 - These graphs show performance on 
terminal output. 

Exhibit 15 - These graphs show performance on 
BMK31, the program that has a heavy computa­
tional load • 

• Exhibit 16 - These graphs show performance on 
BMK32, the second program that has a heavy comp­
utational load • 

• Exhibit 17 - These graphs show performance on 
BMK21, the "normal" COBOL program • 

• Exhibit 18 - These graphs show performance on 
the Backup utility. 

Exhibit 19 - These graphs show performance on 
the sort. 

Exhibit 20 - For the 8 types of jobs, this graph 
shows the relative processing power of the KL-
1090, VAX-780, VAX-785, VAX-8600 with 6MB and 
VAX-8600 with 8MB. 

Conclusion: The overall results of these bench­
marks indicated that the VAX-8600 performed very 
well on COBOL applications and processing power 
appeared to be consistent with FORTRAN benchmarks 
previously presented at DECUS. The FHLBB was 
satisfied that the VAX-8600 would give us the 
processing power needed for our follow-on computer 
to the DECsystem-IO. 

258 



LCCAL DIAL-UP 
1200 BAUD 

---------

LOCAL DIAL-UP I 

1200 BAUD 

T".'K) 96!il!il BAUD OAF Is 
- 24!il!il BAUD 
- 12!il!il BAUD 

- - - - .:. l2!!il -~UQ - - - -

I DN87S 

I DN87S I 

TELENEI' 
BOX AT 
FHLBB 

4031 

.......... 

1111111111 

_________ J _ _J I I I 11111 

TELENET 

I.JXAL DIAL-UP 
2400 BAUD 

I DEX:NEI' I 

/ 

LCCAL DIAL-UP I 11 DN87S I '1111/ 1200 BAUD 

---------

CPU2 I CPUl I CPU0 

'IOPS-10 TRI-SMP NODE. 

3. SM IDRDS MEM)RY 

ONE 9600 BAUD OAF 

0 I "'"'""" ~ U > I O -

I.JXAL DIAL-UP 
24!il!il BAUD 

rrk~ 
~ 

. STAR COUPLER 

HSC50 
lorsK/TAPE s 

I 
. 
Z-

\n~ 

11/785 

O'> 
l!) 
N 



Exhibit 2 
Page 1 of 2 

EXPLANATION OF BENCHMARK PROGRAMS 

Benchmark * Benchmark * 
Job # Program ReQetitions Job # Program ReQetitions 

1 Campi les 90 10 BMK 32 90 
2 Compiles 90 11 BMKBIG 90 
3 Compiles 90 12 BMKBIG 90 
4 BMK 01 90 13 BMKBIG 90 
5 BMK 01 90 14 BMKACC c 
6 BMK 01 90 15 BMKACC c 
7 BMK 21 90 16 BMKACC c 
8 BMK 31 90 17 BACKUP c 
9 BMK 31 90 18 SORT 90 

* 90 Ran for 90 wa 11 clock minutes; c = Ran once to completion. 

Jobs 1,2,3: COBOL Compiles - Each of these jobs consists of the same six COBOL 
programs, compiled with the cross reference and compile list options, the lat­
ter to keep the line printer busy during the benchmark. The number of state­
ments for each program is shown below: 

Non Procedure 
Procedure Division Total 

Program 1 174 465 639 

Program 2 674 1180 1854 

Program 3 2155 1101 3256 

Program 4 1870 797 2667 

Program 5 166 355 521 

Program 6 1498 894 2392 
11, 329 

These programs are not executed, only clean-compiled in a round-robin fashion 
by job; e.g., after program 6 in job 1 is finished, program 1 in job 1 begins 
compiling again. 

Jobs 4,5,6: Program BMKOl - The purpose of this COBOL program is to put a disk 
input and 1200 baud CRT terminal output load on the system. Upon loading, the 
program first (and one-time only) creates a fifty (50) 132 character record 
random file. During the normal processing loop, a random file record is read 
and a 72 character message is displayed on a 1200 baud CRT. The message con­
tains a sequential number, the calculated response time in seconds since the 
last message was displayed, and the time of day (HH MM SS) of this current 
message. For a subsequent hard copy review, every 200 displays, the same mes­
sage is sent to a report file on disk. 

260 



Exhibit 2 
Page 2 of 2 

Job 7: Program BMK21 - This COBOL program simulates a typical program at our 
installation. It is neither 1/0 nor compute bound. A normal processing loop 
consists of twenty (20) internal Working Storage moves followed by 200 calcula­
tions, a record written to random file 1, then this sequence repeated except 
that a record is written to random file 2. There is no terminal display. For a 
hard copy audit of system response and thru-put for this program, for every 200 
complete processing loops a record is sent to a report file showing time of 
day, the response time since the last timing, and the calculated average re­
sponse time of the last 10 timings. 

Jobs 8,9: Program BMK31 - This COBOL program puts a computational load (as 
opposed to an 1/0 load) on the system. A 500 element array is initialized with 
the same number throughout. During each normal processing loop, the program 
takes the square root of successive elements in the array, from 1 to 500 (with­
out replacing the computed values back into the array). At the end of each 
loop, a message is sent to a report file showing time of day and the time nec­
essary to complete this loop. 

Job 10: Program BMK32 - This COBOL program is identical to BMK31. 

Jobs 11,12,13: Program BMKBIG - This COBOL program exercises memory paging 
through successive references to individual fields in non-contiguous memory 
locations. Six Working Storage tables, work-1 thru work-6, each contain 7000 
numeric [S9(12)] Comp fields. In each normal processing loop the program in­
crements a subscript, then moves a numeric constant to a single subscripted 
field in each of the six tables. Every 100 loops, the program displays a mes­
sage showing the time-of-day and the number of loops completed. 

Jobs 14,15,16: Program BMKACC - This COBOL program uses a micro computer with 
one file on a single floppy disk to upload data to the mainframe at 1200 baud, 
for the purpose of putting a terminal input load on the system. The floppy 
disk file contains 2,344 records of 128 characters each. COBOL program BMKACC 
reads a record, checks position 1-4 for the next sequential tally, checks 
position 80 for an*, and position 128 (the last character) for a# sign to 
insure that the entire record is read and available for processing. After this 
is done, the program reads the next record and repeats the checking. The pro­
gram terminates upon completion of the file upload. 

Job 17: Backup Utility - This job uses the backup system utility (DECIO or 
VAX) to backup a file to a 1600 BPI tape. A file of one hundred thousand 
(100,000) records of 128 characters each is backed up to tape once during the 
benchmark. The file is not accessed by any other program or utility during the 
benchmark. 

Job 18: Sort Utility - This job uses a COBOL Sort Program to sort a file of 
twenty thousand (20,000) 128 character records. The sort is in ascending se­
quence on a single 11 position numeric field. When the sort is finished, it 
cycles around to again sort the unsorted file. 

261 



EXHIBIT 3 

'IOPS 10 BENCHMARK CONFIGURATION 

1. 5 M Words Maro:ry 
KL1090B CPU 
TX01/DX10/'IU72 Tape system 
0087 (1200 Baud) 
3 RP07's - Just used for SWapping 
1 RP06 - System pack 
1 RP07 - User Disk 
1 LP07C - Line Printer 
M)nitor - 702 

With Galaxy 4.1 

EXHIBIT 4 

WJ{.-11/780 BENCHMARK CONFIGURATION 

6 M characters naro:ry 
780 CPU 
'IU80 Tape Drive 
CMZ32 Cormrunication Device 
HSC50/RA81 Disk (system Disk, SWapper Disk and User Disk) 
M)nitor VMS V4.l 
LP27 Line Printer 

EXHIBIT 5 

WJ{.-11/785 BENCHMARK CONFIGURATION 

6 M characters nerro:ry 
785 CPU 
'IU80 Tape Drive 
CMZ32 Ccmnunication Device 
HSC50/RA81 Disk (system Disk, swapper Disk and User Disk) 
M)nitor VMS V4.l 

EXHIBIT 6 

WJ{. 8600 BENCHMARK CONFIGURATION 

6 M characters nerro:ry 
8600 CPU (with floating point) 
Tape T478 
UDS50/RA81 (2) (System Disk, SWapping Disk and User Disk) 
:r.bnitor VMS V4.l 
LP27 Line Printer 
™Z32 camn.mication Device 

262 



FHLBB BENCHMARK 
Transactions Processed 

120 

-- i I 1 I KL-1090 
(f) 

D 

100 1 11 IVAX-780 z: 
cc 

I f2Z/Z3 VAX-785 (f) 1 
~ 
D 
I 
I--- 80 
D 
w 
(f) 
(f) 

~ I IS~ I (") 
CD w N 

u 60 
D 
0:::: 
CL 

(j) 

z: 
40 D 

f--1 

I-
u 
cc 

20J I (f) 

L. 
er:: 
er: 
f-

0 I 1 11 •r<• • 11 1rr1 ' 11 •r<• ' 11 1rr1 1 •r:-Jr<• r=ic=.,c-z:J r==ic:Jr/1 1 •c:Jr/1 1 1c:Jr?1 I I I I I I I I I 

COMPrLE BMKBrG TERM TERM BMK31 BMK32 BMK21 BACKUP SORT 
fNPUT OUTPUT 



--(/) 
Cl 
z 
cc 
(/) 

::::> 
0 
I 
r---
Cl 
w 
CJ) 
(/) 

w 
u 
D 
a:.: 
0..... 
(/) 

z 
0 
~ 

r­
u 
cc 
(/) 

z 
a: 
a::: 
I-

FHLBB BENCHMARK 
Transactions Processed 

150.--~~~~~~~-==================~~~~~~~~--, 

100 

50 

I I KL-1090 

I I VAX-780 

17/7/A VAX-785 

lllllllllVAX-8600 6MB 

COMPILE BMKBIG TERM TERM BMK31 
INPUT OUTPUT 

'\t co 
C\I 



FHLBB BENCHMARK 
Transactions Processed 

800-r-~~~~-~~~====================;:--~~~~~---, 

,..--... 
Cf) 

D 700 z 
a: 
Cf) 

~ 600 
I 
I-

'---"' 

D 500 w 
(/) 
Cf) 

w 
u 400 
0 
a:: 
CL 

Cf) 300 z 
0 
1-1 

I-· 

u 200 a: 
CJ) 

z 
cc: 
er.: 100 
I--· 

I IKL-1090 

I I VAX-780 

. 177///1 VAX-785 

I 111111111 VAX-8600 6MB 

I ~"'"4 VAX-8600 8MB 

0 I 1 11 1v11111"1 =nll !!'1 ----- I ICJVlll 11'1 rnc:a _...,, CD/Ill IN I IMV!ll INI I !MV!ll INI I I I I I I I I I 

COMPILE BMKBIG TERM TERM BMK31 BMK32 BMK21 BACKUP SORT 
INPUT OUTPUT 

LO 
<O 
C\I 



FHLBB BENCHMARK 
Allotted CPU TiMe 

1400-,-~~~~~~~-;=:===================;-~~~~~~~--, 

(/) 

Cl 

1200 

1000 

:z 800 
D 
Ll 
w 
(/) 

::::> 600 
a.... 
Ll 

400 

200 

I I KL-1090 

I I VAX-780 

f7/Zl/I VAX-785 

111111111 VAX-8600 6MB 

~"'"'i VAX-8600 8MB 

COMPILE BMKBIG TERM TERM BMK31 BMK32 
INPUT OUTPUT 

co 
co 
C\I 



......... 
ti) 
:::> 
0 
:c 
I-
~ 

Cl 
w 
...J .... 
0.... 
i:: 
0 
u 
U) 
w 
z .... 
..J 

COBOL STflTEtfENTS COtlPILEO 
200-r.=====================:::;--~~~~----, 

r- --=i KL-1090 

I I VAX-780 

fZ//7/1 VAX-785 

111111111 VAX-8600 6MB 

100-ff ~~~ VAX-8600 8MB 

0 I I II I v I'/ /I II II II ""' "..... I 

~ 

Ul 
:::> 
0 
:r: 
!::. 
0 w 
Ul 
Ul 
w 
u 
0 
0::: 
0... 

Ul 
z 
0 -1-
u 
a: 
Cl) 
z 
a: 
0:::: 
I-

ITERfl TIO NS PER CPU ti/NUTE 
1sr---------:__:__:==~-----. 

10 I ~.~."'I I 

5 I I I 11 I I I I I l~ .. ~ .. "I I 

0 I I I [ ==:J v ///I II I I I I I '"''''I I 

BENCHMARK - 90 Minutes {COMPILE) 

flLLOTTEO CPU TltfE 
1200--.-~~~~~~~~~~~~~~~---, 

PROCESSING POJJER OF vns TO TOPS-JO 
2~~~~~~~~~~~~~~ 

1000 
U) 
Cl 
z 

~ 800 l I 1~1111111~ I 
0 -I- 1 a: 
0:::: ::::> 

0... 
(..) 

600 

4001 I II JV///111111111"-"-"' I 0 I I I I I V///I II 11 111 (>), "-'1 I 

,...... 
co 
C\I 



c 

cru SECONDS 

C'J1 
C> 
c 

-c 
0 
0 

-- __________ L ______ _ 

RfHID 

-01 
c 
0 

268 

0 

f'ROORHM LOOf'S (THOUS) 

-c 

< < <<A 
:J> :J> :J> :J> r 
X X X X I 
I I I I -co co ~ ~ 0 

0> 0> CD CD CO 
o o en o o 
0 0 
co O> 
::I ::I 
tD aJ 

----·-· ______ .....__ 

PROGRAM LOOPS 

en 
0 
C> 

-0 
c 
0 



RSC!! CHFIRS TRflNSF£RRED FR0/1 PC ITERfl TIONS PER CPU /1INUT£ 
1600--------------- s--~~~~~~~~~~~~~~--

4 I II I I I I I l'Q>,~~ I 

u; 
z u; 
0 ..... :::> _. 0 1000 

I _. ::c 
..... I-
r; -(I) -

2 I V//A II I I 11 I l"~ .. ~ .. 'I I 

(/) 0::: 
0:: cc 
cc ::c 

I ::c (..) 
(..) ...... 

600 
I 

..... ..... 

..... (...) 
i I (...) (() l 

I Cf.) cc I I 
cc 

01 I II IV<<<lllllllll»>C>)l I 0 I I I I I v ///I II I I I I I •» »" I 

BENCHMARK - 90 Minutes {TERM INPUT) 

(I) 
Cl z 
0 

800 

600 

~ 400 
fl) 

::> 
0.. 
(...) 

200 

0 

flllOTTED CPU Tl/1£ 

I 1 I KL-1090 II 
_____ __.i I I VAX-780 ~ n I f77/b1 VAX-785 l 

j I j 111111111 VAX-8600 6MB I 
T Tl. l ~""'~ VAX-8600 8MB 1 

'1 I L I I ___________ _., 

I I 
l 
I 

_J l''"=zz 

0 ..... 
I­
CC 
a::: 

PROCESSING POJIER OF V/1S TO TOPS-JO 
60..,....---------------

40 I II I I I I I F'~0~J I 

20 I I I V7771 1111111 ~'\'1 I 

0 I I I I I v ,(//I II I I I I I '"" "")i I 

O> 
CD 
(\j 



u; 
z 
0 ..... 
..J 
...J ..... 
c ......... 

FISC!l CHFIKS OUTPUT - 1200 BFIUD 
2.00-----------------. 

.... 
~ 1.60 I I I 11''///i Ii I I! I! R\:'~c;:~ I 

.... 
;:J 
0 
(() 
0:: 
cc 
:c 
u n i.....--.-1 

I ......._____, 
1.00 I I I I i v < < <. lj I • I I I I» » , I 

-Cl;) 
::::> 
0 

ITERFI TIONS PEI? CPU 11/NUTE 
16001.=========::;--------, 

L--=i KL-1090 

I I VAX-780 

f7/Z%3 VAX-786 

~ 100011111111111 VHX-8600 6MB 

- ~~'\"I:! VAX-8600 8MB .... 
::::> 
a... 
I­
::> 
0 

~ 600 I V/7'>1 II I I I I I P~c~c'I I 

a: 
:c 
t.> 

0 I I I I I K'''' 1111111 •»»'! I 

BENCHMARK - 90 Minutes (TERM OUTPUT} 

FILLOTTED CPU Tl/1£ PKOCESSING POJIER OF V/1S TO TOPS-JO 
300--------------------, 3 1111111Kn:cc1 

Ct) 200 ····--·· 2 
0 z 
0 0 ..... .... 

a: 
a: 

u 
w 
Ct) 

;:J 
a... 

1 I 
C..> 

I 
J I l l 1~111111 1 ~ I 0 

0 
f'.. 
C\I 



c • c 
c 

CfU SECONDS 

RftTIO 

C> -. . 
01 c 
Cl c 

c 

c 

271 

fROORftM LO Of 5 (THOUS) 

< < < < ~ 
:D :D :D :D r 
X X X X I 
I I I I -

CJ) CJ) ':I ':I 0 
0>0>mmCD 
o o en o c 
0 0 
CJ) (J) 
::t ::t 
m m 

PROGRftM LOOPS 

N) .... 
0 c 
c c 

en 

en c 
c 



';; 
= 0 
:c .... -CQ 
fL. 
0 
0 
..J 
c a: 
0::: 
0 
0 
0::: 
fL. 

(I) 
Q 
z 
0 
(.) 
aa.r 
(I) 

= fL. 
(.) 

PROGRFl/1 CFIL CUL fl T IONS 
S.O-r.==~~~====r-----, 

C=1 KL-1090 
2•6-ff I I VRX-780 

2.o-ff t'l/7/if VAX-785 

111111111 VRX-8600 SMB 
1•6-H 1§..'"~ VRX-8600 BMB 

1.0 I I I II I I I I I P~.~ .. ~ I 

0.6 I I I 1 : V//A 11111 i I ~~~ I 

o.o• . ,, •K<<<••·······»», 1 

Cl) 

fL. 
0 
0 
..J 

ITERFITIONS PER CPU 11/NUTE 
400--~~~~~~~~~~~~~--, 

SOO I I I II I I I I I ~ .. '}.~ I 

C 200 I I I I I I ~'}~ I a: 
0::: 
C!> 
0 
0::: a.. 

100 I I I l//,<,4 II I I I I I fo.t~c:~cl I 

QI 1 1 1 1 r<<<• 1111111 '»»'1 I 

BENCHMARK - 90 Minutes (B.MK32} 

flLLOTTED CPU Tl/1E PROCESSING POJJER OF vns TO TOPS-10 
soo--~~~~~~~~~~~~~---, 1.60--------------

400 
j J?01 II I I I I I t««1 I 1.00 

soo ~ I 1~1111111~ I 
0 .... .... a: 
0::: 

~ I 1~~1111111~~ I 0.60 
200 

100 I • r 1 1 r < < <• 11 1 1 1 1 1 '»»)I I o.oo• ... ,K,,,,"''''''»»,. 1 

(\J 
r-­
(\J 



cru SECONDS 

01 
C) 
c 

RATIO 

-c 
c 
0 

-01 C) 

------~---·-----· ---·-·--

-01 
0 
0 

273 

c 

PRDORftMLOOf8(THOU~ 

OI c 

< < < < =" :o:o:o:or 
x x x x r 
r r r r -
a>a>~~o 
CD en CX> CX> CD 
o o en o o 
C> 0 
a> en 
::! ::! 
01 OJ 

----------·· ·-·--·· ---·---·---··-

PROGRAM Loors 

~ ~ c c 
C) c 

c c c 

---·- ---·---- ··-

-c 
c 

O> 
c 
c 
c 



~ 
Q z cc 
~ 

BflCl<UP DISK TO TflPE 1021 _________ ....:_ ___ _ 

g 101,-~~~~~~~~~~~~~~~~---I 

z .... ........ 
a.. 
::> :a 100 I 1 1 1 1 :!IC: " 11 1• 1111111 K<«« I 

(..) 

cc 
ill 
~ 
Q 
ct:: 
0 
(..) 
1LI 
ct: 

99 I I I I I V//A II 11 I I I !<'~<'hi I 

98 I I I I I y<<<• 1111111 '''»' I 

-(I) 
Q 
z cc 
(I) 
::> 

ITERflTIONS PER CPU !1INUTE 
300--~~~~~~~~~~~~~~--

~ 200 I 11 I I I I I N~<~ I -a.. 
::> 
Q 
1LI 
:!IC: 

ucc 1 1 v 1 'Aflllllllt~~<'I I ill 100 I ~,I 
(I) 
Q 
ct:: 
0 
u 
1LI 
ct: 

0 I I I I I V<<<I 1111111 '»»., I 

BENCHMARK - 90 Minutes (BACKUP} 

(I) 
Cl :z 
0 
u 
Id 
ti;) 

::> 
0.. 
u 

flllOTTED CPU Til1E 
eo--~~~~~~~~~~~~~---

so-L------E~=l--------1 

, , , I 40 I I I I t V ' ' 4 

20 I 1 1 1 1 r < < c 1 11 1 1 1 1 1 1 » >> '' I 

0 .... ..... 
er: 
ct:: 

PROCESSING POJJ£R OF vns TO TOPS-JO 
3u===============~~~~~ 

C-- - -I KL-1090 

I I VAX-780 

2-fl f'Z//Zd VAX-785 

[IlJTffi VAX-8600 SMB 

~ VAX-8600 8MB 

1 I I I 6 , > A II I I I I I ~~"'i I 

0 I I I I I g<<<I 1111111 •>>»'> I 

""" f'-. 
C\J 



u; 
;:) 
0 
:c .... 
Q 
ILi .... 
a:: 
0 
(Q 

TRflNSflCTIONS SORTED 
700-,;:::==================.-~~~~-., 

600 

500 

400 

300 

[- -:i KL-1090 

I I VAX-780 

f77LZ/i VAX-785 

111111111 VAX-8600 6MB 

~~ VAX-8600 8MB 

co 
~ 200...L~~~~~~~~~~~~~~~---J 
a:: .... 

100 I II I I I I I l'>~<-.,~<'i I 

0 I I I l I .. < < < I II I I I I I I» '> > I 

u; 
;:) 
0 
::c: .... -
Cl 
11.J .... 
a:: 
0 
co 
co 
z. 
0 -.... u 
cc co z cc a:: 
t-

ITERflTIONS PER CPU !1/NUT£ 
100--~~~~~~~~~~~~~~--, 

50 I 11 I I I I I I~'('<'~ I 

o--~--~---~------.......... --.....-..----~-
BENCHMARK - 90 Minutes {SORT) 

flllOTT£0 CPU Tll1E 
soo--~~~~~~~~~~~~~~--, 

400-+-~~~~~~~~~~--'~~~---1 

co 
~ 300-t-~~~~~~~~~~~~~~~~~-4 
0 
(..) 
ILi 
co 
~ 200-t-~~~~~~~~~~~~~~~~~~ 

u 

100 I I I .. , , . 11111 11 ~~ I 

QI I II IK<<<lllllllll>>»::f I 

0 -t-ee a:: 

PROCESSING POJJ£R OF Vl1S TO TOPS-JO 
10--------------

61 1111111~ .. .,,~~~ I 

QI I II IV<<<lllllllll»»:t I 

I.() 
t-­
C\I 



D -.._ 
a: 
a:: 

50 
J 

40~ 

I 

30 
j 

20 

10 

FHLBB BENCHMARK 
Processing Power of VMS to TOPS-10 

!Tl~ I 
L I KL-1090 

I IVAX-780 

111~ I V///A VAX-785 

111111111 VAX-8600 6MB 

~~~ VAX-8600 8MB 
II ll 'i I

~1118 I

0 I , •nr< '" 11 ,, , 11 av'" 11 >J , 11 1v 'II 11 >1 , 11 n< "' 'I,, 1 '=:z!CJ" 11 >I , 'r=V"" 11 >I , 11 1v '" 11 >I , 11 1v "' 11 y , 11 1v "' 11 y I I I I

COMPILE BMKBIG TERM TERM BMK31 BMK32 BMK21 BACKUP SORT
INPUT OUTPUT

co
I'--
C\J

LISP ON 36-BIT SYSTEMS

Randolph M. Pacetti
AT&r Technologies, Inc.

Lisle, IL

ABSTRACT

Peter Samson of Systems Concepts, Inc, provided an overview
of the history of the LISP programming language on 36-bit
systems and new developments in the field.

The first publicly-available LISP was on a 36-bit
machine, an IBM 704, and was called LISP 1,5, This
was developed at MIT in 1958, LISP 1.0 lacked a
great many features, and was never released to
anyone outside the development group. LISP 1,5 set
the standard for LISP for a long time, The manual is
still in print and available in bookstores today.
Many of the syntactic peculiarities of LISP were
handed down from this original program. Users
interacted with LISP 1.5 through the 026 card punch,
which had a very limited character set1 uppercase
letters, numerals, and about a dozen punctuation
marks.

CDR CAR

Figure 1

The data format illustrated in Figure 1 is that of a
CONS cell, or LISP node. LISP 1.5 used a 36-bit word
as a CONS cell. The IBM 704 divided its 36-bit word
into four fields; from left to right these were
called the prefix (J bits), the decrement (15 bits),
the tag (3 bits), and the address (15 bits), The two
15-bit fields were used in the implementation of LISP
1,5 as two data pointers known as the CDR and the CAR.
They were 15 bits because that was all the machine
could address.

CDR Tag Atom Flag

Integer or Floating Point

Figure 2

In certain cases the tag field was used by the LISP
interpreter, as in Figure 2, which shows how a number
was stored, In this case the CDR points to a memory
location containing the munber, the CAR field
contains a flag indicating that the data is an atom,
and the tag field distinguishes between various types
of atoms (literal, integer, floating point),

At MIT, someone wrote a LISP interpreter for the
PDP-1, which was an 18-bit machine with 12 bits of
address. It worked, but it was essentially useless
because of the very small address space available and
the fact that it took two words per node. Several
efforts were made to have virtual memory going off to
a disk, but this was unspeakably slow. The idea of
having an interactive LISP where you could type in

Proceedings of the Digital Equipment Computer Users Society 277

definitions or function calls and get responses
immediately served as an inspiration for the first
LISP on DEC's first 36-bit machine, the PDP-6.

The PDP-6 was designed, in part, with LISP in mind.
The 36-bit word is processed in half words by a
large class of instructions, Because the machine
could address 18 bits of physical memory, having
CAR and CDR occupy one 36-bit word was the intention
right from the start, PDP-6 LISP was written in
large part next door to the Tech Model Railroad Club
at MIT in 1965-66, The 256K addressability of the
PDP-6 was used up by LISP right away, This is a
situation which hasn't changed since.

CAR CDR

Figure 3

Atom Flag CDR

FIXNUM

Large Integer

Figure 4

The data format of PDP-6 LISP is shown in Figure 3,
with the CAR having moved to the left half of the
word, Figure 4 shows how a large integer is
expressed in the machine, This is not as compact as
the representation on the IBM 704, where the tag
bits were available, Another representation of
numbers, the INUMs or small integers, could be
encoded right in the pointer so that numbers of plus­
or-minus a couple of thousand could be represented
without further storage.

PDP-6 LISP has a great many offspring. An early
copy was sent to Stanford, where they got many bugs
out and released a cleaned-up version with the name
LISP 1.6 in 1968. The University of California/
Irvine made some additions to LISP 1.6 and released
UCI LISP in 1973, Rutgers took over maintenance of
UCI LISP and released R/UCI LISP in 1978, Another
version was released as T/UCI LISP from the
University of Texas,

36-bit LISP development also stayed at MIT, continu­
ing on the PDP-10 and now given the name MAC LISP,

Anaheim, California- December 1985

MAC LISP is different from PDP-6 LISP in that it was
tuned for speed while PDP-6 LISP was tuned for space.
MAC LISP got a great many enhancements in performance
out of user demand, particularly in numeric opera­
tions, making it in many ways a non-standard LISP.
On PDP-10-compatible machines it is one of the
fastest LISPs available.

A totally independent line of work producing LISPs
on PDP-10-like systems was started at a company
called Bolt, Beranek, and Newman in Cambridge. MIT's
PDP-1 LISP was copied to BBN's PDP-1, where they made
some improvements but didn't fully succeed in making
a reasonable system. This was copied to an SDS 940,
and was then rewritten from scratch for the PDP-10 as
BBN LISP around 1970. In 1972, BBN entered into a
joint agreement with Xerox which took BBN LISP, added
a great deal to it, and called the result INTERLISP.
One way to tell this line of development from that
stemming from PDP-6 LISP is that BBN put the CDR in
the left half of the word, as was done on the IBM
704. One nice feature internal to BBN LISP is that
large integers and floating point numbers didn't
require a special atom header.

~:I
CAR

CDR

1Typ1 Integer

Figure 5

In 1982, LISP was developed on the S-1 36-bit multi­
processing supercomputer at Lawrence Livermore
National Laboratories, If you have your choice of
hardware, this is one of the fastest LISPs around.
As shown in Figure 5, the data format consisted of
5-bit type fields and 31-bit address fields. Several
types are reserved for integer, so you can get a
32-bit integer in the space of one pointer, It also
has a tremendous number of other kinds of objects.

1::1 CAR

CDR

Integer or Floating Point

Figure 6

A decendent of the Rutgers version of UGI LISP is
ELISP, or Extended Addressing LISP, which uses the
full theoretical JO-bit addressing of the extended
addressing KL-10. The high order 6 bits are reserved
for type information, as shown in Figure 6. Some
types are classed together to get 32-bit integers and
32-bit immediate floating point in the space of one
pointer, ELISP is a fully multi-sectioned program.

While all this proliferation of LISPs was going on,
an effort was being made under the sponsorship of the
Department of Defense to converge the various LISPs
into one version that would run without conversion on
a number of different machines. Common LISP is
considered to be more the union of all possible LISPs
than the intersection, and is therefore a rather
large language. It derives more from MAC LISP than

278

from BEN/INTERLISP or Rutgers/UGI LISP. There is a
version of Common LISP for PDP-10-like machines,
called CLISP, from Rutgers. It uses the same data
formats as ELISP, but is a bit slower because of
what Common LISP requires of the interpreter and
function call mechanism.

The next line of development is specific hardware
for LISP. Xerox at Palo Alto made a PDP-10-compat­
ible machine called Maxc and wrote LISP microcode
for it. They wrote a few LISP-specific for it which
sped up INTERLISP by 25%. They also had something
called BYTE LISP, in which the LISP compiled code
was in 9-bit bytes, which were opcodes that they
interpreted for an additional 15% performance
improvement.

In 1978, MIT built 32-bit LISP machines which
interpreted LISP in the hardware. The first machine
was called simply "the LISP machine" and the second
was called "CADR." Two companies spun off from the
MIT lab1 LISP Machines, Inc, and Symbolics. LMI
came out with the 32-bit LM-2. The Symbolics 3600
is a 36-bit machine which uses an 8-bit type field
and a 28-bit address.

Systems Concepts is currently developing SC LISP for
their PDP-10-compatible SC-30M computer. SC LISP is
CLISP with hardware interpretation of the type codes.

TOPS-20 Directions

Donald A Kassebaum
University of Texas at Austin Computation Center

Austin, TX 78712

Abstract

Diane Lorion, Tops-20 Product Manager, and David Braithwaite from Digital
Equipment Corporation presented an update on TOPS-20 directions.

Engineering Topics

o Message from TOPS-20 Developers
o Engineering's View of V6.1 Impact
o Performance Expectionations For V6.1
o Near Future (Autopatch)
o Maintentance Goals and Progress
o Planning for V7.0

Message from TOPS-20 Developers

•THANK YOU
o Patience
o Quality of SPRs

- Helpful Suggestions
- Amount of Analysis

o Feedback From UPR Response Cards
o Quality of Field Test Relationships
o Positive Attitude During Critical Problems

• TOPS-20 V6.1 Availability
o IT'S ABOUT TIME !!!!

• LATE KITS (SORRY)
o Available January
o QT029 - RSX20F Source Pack
o QT102 - Combined Sources

(Monitor, Exec, RSX20F)

Engineering's View of V6.1 Impact

• Based on Customers Information:
o V5.4 Customers
o V6.0 Customers
o V6.1 Field Test Customers
o V6.1 Pre-Release Customers

• HSC50 Disks
o Trend to Replace Massbus disks
o Multiple HSC50's for failure
o Inceased disk space - Mostly RA81's (not RA60's)

• Common File System
o Customers Move to CFS

- Quickly
- Fully (painful fallback}

o As many systems (up to 4} as possible

Proceedings of the Digital Equipment Computer Users Society

o All structures visible from all systems
o All accounts on all systems

- Users seek system with best response
- LAT groups used to load-balance
- Users move quickly if system crash

• DECnet on NI
o KL used as End Node
o DN20's Being Eliminated
o Increase in Number of Customers Using DECnet
o CTERM Chosen Over NRT for Terminals

• LAT on NI
o Terminals Being Eliminated From Front-End
o One Group-Name for All Systems in CFS Cluster
o Replacing other Electronic Switches

• TCP/IP
o Being used in Mixed Vendor Sites
o Only A Few Customers Beyond "ARPA"
o Not much Feedback

• MCA25/MG20
MCA25

o Being Used to Buffer Transition to V6.1
o Providing 10%-20% Performance Increase

MG20
o Popular in Sites With Tight Floorspace

• Other TOPS-20 V6.1 Features
o New EXEC Features - no information
o Password Encryption - most customers using it
o Other V6.l Features - not much feedback

• Reliability

279

a Lo-0-0-0-ng Uptime
o Bigger Impact of Disk Hangs in CFS Environ­

ments
o Most CFS Related Problems With More Than 2

KL's

Anaheim, California- December 1985

Performance Expectionations For V6.1

• Planning Guidelines
o V5.1 (AP 10) to V6.1 - down 8%
o V6.0 to V6.1- up 4%

• Customer Feedback on V6.1 Performance
o Mixed
o Worst Performance is Specific Applications:

- Heavy Random Access to Long Files
- Frequent OPEN/CLOSE Sequences

o More Even Response to Increased Load
o Several Sites Believe Performance is Better
o Benchmarks Show Mixed Results
o Further Discussion at TOPS-20 USER PANEL

Near Future (Autopatch)

• Autopatch Tape 12 - Availability
o Undergoing Final Verification
o Expected Availability - Spring 86

• Autopatch Tape 12 - SPR Fixes
o SPR fixes since Tape 11
o Problems fixed after July 85

• Autopatch Tape 12 - Common File System
o 3 and 4 System CFS Cluster Supportable
o CFS Token Caching (Performance)
o Elimination of Known System Hangs (Bugs)

Maintentance Goals and Progress

• SPR Backlog
250
xxx
xxx
xxx 216
xxx xxx
xxx xxx 180
xxx xxx xxx
xxx xxx 165 xxx
xxx xxx xxx xxx
xxx xxx xxx xxx

Nov 84 May 85 Sep 85 Nov 85
• Customers Waiting

141
xxx
xxx
xxx 121
xxx xxx
xxx xxx 102
xxx xxx xxx
xxx xxx 97 xxx
xxx xxx xxx xxx
xxx xxx xxx xxx

Nov 84 May 85 Sep 85 Nov 85
• Goals For Next Year

o Resolve ALL CURRENT SPRs
o Resolve any SPR within 6 Months
o Resolve most SPRs within 2 Months
o Reach this level of Service During 1986

• Future Plan
o Continue Maintaining V4.1 for KS Customers
o KL Maintenance Base if V6.1

- Performance Improvement
- Reliability Improvement

Planning for V7 .0

• Planning for TOPS-20 V7.0 Target Schedule
o Finalize Requirements - Winter 86
o Available for Field Test - Winter 87
o Available to Customers - Fall 87

• TOPS-20 V7.0 OBJECTIVES
o Complete Commitment
o Increase Reliability (Up Time)
o Enhance Performance
o Enhance Maintainability
o Minimize External Change
o Minimize Impact of Upgrade

• Complete Commitment
o 3 and 4 System CFS
o Domains and EG P for ARPA Customers

• Increase Reliability
o Forced Dismount of Hung Disks
o Better Freespace Management
o More Consistent Error Handling Under Evalua­

tion
• Enhance Performance

280

o Microcode
o Buffering SYSERR Packets
o Caching of Directory Index Pages
o Pre-made Internal Memory Packets
o HSC50 Disk CPU Time Under Evaluation

• Enhance Maintainability
o Increase Error Detail
o Find and Eliminate Kludges Under Evaluation

• Minimize External Change
o Most Change Will Impact System Manager
o Little Need For Changed User Documentation

Under Evaluation
• Minimize Impact of Upgrade

o No New Procedures
o Simplified Packaging
o Simplified Autopatch Mechanism Under Evalua­

tion

TOPS-20 V6.1 for Users

Carla J. Rissmeyer
University of Texas at Austin Computation Center

Austin, TX 78712

Abstract

This session featured a presentation by DEC Software Engineers Jim McCollom
and Bill Melohn about changes to the Exec and user impressions of the CFS
environment. Also discussed were LAT and CTERM.

CHANGES TO THE EXEC

Besides many new commands, the V6.1 Exec has two
major new features. The Exec now does multi-forking. As
an example of this, a user could run a program, control-C
out of it and keep it in order to continue it later. The
Exec's second enhancement is the addition of ephemeral
programs. Programs run ephemerally look like commands
to the user.

Commands

INFORMATION FORK-STATUS shows the fork struc­
ture of a job
COMPILE /STAY compiles, keeping job at Exec level
CONTINUE continues a fork

o /BACKGROUND signals terminal for program input
o /NORMALLY continues normally
o /STAY used for programs which do not need input

START starts a fork
o /BACKGROUND signals terminal for program input
o /NORMALLY continues normally
o /STAY used for programs which do not need input

FORK specifies current fork
KEEP keeps a fork for the job
UNKEEP removes a kept fork
FREEZE temporarily holds a fork
RESET resets specified fork(s)
SET NAME sets name of the current fork
ERUN runs a program ephemerally
SET FILE [NO] EPHEMERAL sets or removes ephemeral
status
SET DEFAULT PROGRAM [NO-]

o EPHEMERAL sets or removes ephemeral status
default

o KEEP sets or removes kept status default
o NONE removes all defaults

INFORMATION DEFAULT PROGRAM shows defaults
for program
SET PROGRAM [NO-]

o EPHEMERAL sets or removes ephemeral status

Proceedings of the Digital Equipment Computer Users Society

o KEEP (and) CONTINUE sets to continue when
recalled

o KEEP (and} START sets to start when recalled
o KEEP (and) REENTER sets to reenter when recalled
o NONE clears defaults

"ESET [NO]
o FAST-LOGINS-ALLOWED takes no .cmd files on

login
o LEVEL-ONE-MESSAGES enables level one messages
o LEVEL-ZERO-MESSAGES enables level zero mes­

sages
o WORKING-SET-PRELOADING enables working set

pre loads
SET [NO] TRAP JSYS

o /DEFINED sets trap for defined system calls
o /UNDEFINED sets trap for undefined system calls

TERMINAL
o [NO] INHIBIT prohibits receipt of all messages
o [NO] RECEIVE allows selection of types of messages
o VT200 set terminal type for VT200 series

TYPE UNFORMATTED does an image mode type
SET HOST runs CTERM server or program pointed to
by NRT:
SET STATUS-WATCH allows settable char to type out
file status
SYSTAT ORIGIN gives LAT information for each line
PERUSE runs EDITOR: with read-only option
PUSH runs program pointed to by DEFAULT-EXEC:
RECEIVE USER-MESSAGE receives for unprivileged
TTMSG%
REFUSE USER-MESSAGE refuses from unprivileged
TTMSG%
"ES END now allows username instead of line number
LOGIN /FAST does not take .CMD files
LOGOUT now uses system and job-wide LOGOUT.CMD
files
INFORMATION

o CLUSTER gives information on all CFS nodes
o DECNET [(nodename) J
o LOGICAL-NAMES now accepts wildcards
o JOB now outputs information on network host names

281 Anaheim, California- December 1985

o SUPERIOR displays number of the superior fork
o VERSION displays in decimal if VI%DEC is set

"ECEASE requires confirmation and adds NOW keyword
COPY has SUPERSEDE [ALWAYS,NEVER,OLDER]
subcommand
DDT and MERGE now allow /OVERLAY switch
DEFINE nows employs escape recognition
DIRECTORY

o COMPLETE includes all file information
BUILD and "ECREATE

o PRESERVE leaves superior's quotas alone
o TOPS-10-PROGRAMMER-PROJECT-NUMBER
o PERMANENT INFINITY
o WORKING INFINITY
o Will not type out passwords

LAT

LAT stands for Local Area Transport. The LAT operates
over ethemet. The TOPS-20 implementation does not
require DECnet. LAT was designed to be used in the
local environment, generally within one building, and was
not made for use over bridges.

Characteristics of Communications Methods

Direct terminal communications:
o Not flexible
o One for one wiring
o Use of multiple systems is difficult
o Each system must be configured for maximum use

Plug boards:
o Manual intervention is necessary
o Limited flexibility
o System side is often over-configured
o More wiring than often needed

Electronic switches:
o Intelligent switching
o System side may be over-configured
o Multiple wires
o New switching problems
o Pooling of modems across systems

Local Area Transports:
o Intelligent switching
o Minimal wire runs
o No ansynchronous ports on systems
o Service groups of systems on ethemet
o Cluster node addressing

CTERM

CTERM is the new DEC standard protocol which replaces
the NRT protocol. It is layered on DECnet. At the present

time there are some incompatibilities with TOPS-20 to
VMS communications.

THE CFS ENVIRONMENT

Perceptions

The user is generally unaware of the CFS environment.
Multiple access to files and directories is similar to a single
system. Some resources may be restricted.

Performance

Overhead in non-shared files is noticed only in opens or
closes, as is overhead in read-only files.

Failure Modes

In disk failures, programs receive the same indications as
they would with local disks. If feasible, disks will be
accessed through other ports during a disk port failure.
During a CI failure, there is no access to HSC disks,
and access to dual-ported disks may be stopped by the
monitor to avoid corruption. During a system failure,
CFS restarts all votes and the systems which are not
crashed continue normally.

Constraints

ENQ on a file works only on a single system. There is no
reclaiming of inter-system PIDs. DBMS files opened with
OF%DUD cause interlock problems.

COMMENTS FROM THE Q&:A PERIOD

TTMSG% will not be going away.

A 6.1 Exec may be run with a 5.1 monitor. A 5.1
Exec may be run with a 6.1 monitor after one location is
patched.

There are no plans for ATTACH or DETACH command
files.

The LAT is down-line loadable from TOPS-20.

MIC, PCL and a command line editor are distributed
(without support) on the tools tape.

Better documentation for MIC and PCL is needed before
TOPS-20 is frozen.

Develop a mechanism for automatic mounting of and
connecting to structures on login (non-PS: logins).

It would be nice to have a "save all except -----" tape
command.

Patch LPTSPL to allow spooling to printing terminals.

282

TOPS-20 V6. l for System Administrators

Douglas Bigelow
Wesleyan University

Middletown. Connecticut

Abstract

This session covered features in TOPS-20 monitor release 6. 1 which are
of particular interest to system administrators. Topics included system
configuration file changes. new SETSPD options. new OPR commands. a
complete DUMPER rewrite. and new GALAXY features.

Introduction

This session discussed the new features of the
6. l monitor which were of importance to svstem
administrators, involving changes to the op~rator
interface. system backup performance improvements,
changes to disk structure management. and DECnet
Phase IV features. The speakers. all from Digital.
were Da.ve Braithwaite, Jim McCo/lom, Bill Me/ohn and
Scott Mayo.

General Features

New product features of TOPS-20 V6. I include
the following:

• NIA20 support.

• DECnet-20 Phase IV. V4.0 support.

• CTERM support for heterogeneous
command terminals.

• DECnet Router and LAT terminal
concentrator support.

• Cl/CFS common file system support.

• Hardware support for MG20 memory.
MCA25 cache upgrade, HSCSO. RA8 I and
RA60.

• Maximum 4 Meg memory.

Software enhancements include password
encryption, with a one-way encryption algorithm which
can be replaced by a customer algorithm if necessary.
Another optional security feature is password
rejections. involving monitoring of failed login
attempts.

Proceedings of the Digital Equipment Computer Users Society 283

RSX-20F will now autobaud from 110 to 9600
baud. and has had several other modifications for
performance enhancement or new hardware support.

DECnet

Version 6. 1 includes DECnet phase IV level I
router support on both Ethernet and CI. Systems
with no CI and no MCB can be an elective endnode
on the Ethernet, at a considerable overhead savings
and no loss in network access. Ethernet buffers have
been expanded to 1450 bytes for greater throughput.
and the end communications layer has been re-written
with optimizations. NODES.EXE and MCBNRT have
now been moved into the monitor.

There are several DECnet tools available.
including the monitor utility DNSNUP. the packet
printer DNTATL. DCNSPY to see monitor data
structures. NETPTH to find packet paths and
RMTCON to provide remote console access.

SETSPD has a number of new network oriented
commands. including Ethemet. LAT-State. and
DECNET : Buffer-size, Default-Buffers, Default-Flow­
Control, il-laximum-.4.ddress, ,Hinimum-Address, Router­
Endnode, Router-Level-I:.

SETS PD

SETSPD has several new features. including the
ability to write monitor crash dumps to DMP: instead
of to PS:< SYSTEM>. In addition. SETSPD is
automatically run whenever a Massbus disk comes on­
line (for MSCP.) New enable/disable options include
Fast-Login, Hangup-If-Logged-In, Hangup-If-Logged­
Out, JobO-CTY-Output. and system message level

Anaheim, California - December 1985

control.

Additions for CI and MSCP include commands
to regulate access to shared disks. namely Allow,
Restrict, DontCare {drive-type serial-no}.

MOUNTR.CMD is no longer necessary. since
the file SYSTEM:DEVICE-STATUS.BIN has replaced
ifs functionality.

DUMPER

DUMPER has had a complete re-write, including
new documentation and the following improvements:

• Faster speed!

• Better "E interrupt handling.

• Automatic detection of interchange tapes.

• Better error and information messages.

• Longer saveset names.

• Optional mail messages for several
functions.

• Optional features may be assembled out to
improve performance further.

284

Galaxy

New Galaxy commands include Show
Configuration, Set Port Cl/NI {Un }Available, Set
Strocture Exclusive/Shared. In addition, the new
QUEUE% jsys allows user programs to communicate
with Galaxy components. MOUNTR has changed or
added several structure commands such as Mount,
Dismount and Undefine.

TOPS-20 V6. l for Systems Programmers

Douglas Bigelow
Wesleyan University

Middletown, Connecticut

Abstract

This session covered features in TOPS-20 monitor release 6.1 which are
of particular interest to systems programmers. Topics included new JSYS
calls. modifications to current JSYS calls, new DDT features, and new
SYSDPY features.

Introduction

This session discussed the new features of the
6.1 monitor which were of importance to systems
programmers. involving changes to the addressing
space, new JSYS calls. and new versions of DDT and
SYSDPY. The speakers. all from Digital, were Dave
Braithwaite, Jim McCollom, Bill Melohn and Scott
Mayo.

General Features

Many new extended memory sections are being
used under 6.1. to accomodate among other things the
additional data structures necessary for Cl/CFS
support. Multi-section support in general has been
enhanced, with DDT in particular being better able to
debug extended memory programs.

Increased network information and control was
another major thrust. with new JSYS calls and many
more displays in SYSDPY pertaining to network status.

New JSYS Calls

• XPEEK, an extended version of PEEK.

• WSMGR, for managing process working
sets.

• NTINF. for general network information.

• CNFIG, for general hardware, software
and CFS information.

• SCS. for CI communications status.

• NI, for Ethernet communications status.

• LA TOP, for LAT control.

Proceedings of the Digital Equipment Computer Users Society 285

• LLMOP. for network interconnect remote
console service.

In addition, changes were made to an additional
50 existing JSYS calls.

DDT Version 43

DDT was enhanced to provide better breakpoint
control, with inter-section breakpoints provided. DDT
is now loaded into the highest free section of memory
and no longer interferes with the use of pages over
760. Non-zero section symbols may be used during
debugging. Breakpoints may be set in any section.
with n$4M specifying the breakpoint block address in
section n.

PDV support has been added. with commands to
select PDVs by name or by address or to type the
current name.

XDDT is the new version of DDT which uses
it's own section. UDDT remains as a program stub
to preserve the old DDT behavior when necessary.
Single stepping has been enhanced. with $X working
in non-DDT sections.

Other new features include n-bit ASCII text
support. byte pointer typeout mode via $IT, symbol
prefix searching, and $I: to type the open module
name.

Anaheim, California- December 1985

Monitor DDT

• Monitor breakpoint blocks EDDBLK and
MDDBLK are mapped to all code sections.

• Monitor PDV is at location MONPDV.

• All $U commands work in KDDT.

• FILDDT is no longer able to patch the
monitor.

All binary patching should be done using the
normal sequence of GET: START 140: patches:
SAVE.

286

SYSDPY

SYSDPY has a new version of the MONRD%
jsys and the following new displays:

• ANCn: Show TCB for index n.

• ANG. ANN. ANT: Show Internet
information.

• ARP: Show contents of ARP tables.

• DR: Show disk drive status.

• MS. MC: Show MSCP information.

• SC. sen. SCD. SS: Show SCA
information.

Ethernet Planning and Installation Considerations

Donald A Kassebaum
University of Texas at Austin Computation Center

Austin, TX 78712

Abstract

Dan Deuffel, Network Consultant for Large System Group, presented a session
on Ethernet planning and installation considerations.

Mr. Deuffel presented and explained a set of slides, a copy
of which is contained in this report. In terms of planning,
topics such as Ethernet components, configuration rules
and examples were discussed. Also reviewed were in­
stallation considerations, including common problems and
diagnosis, maintenance aids and tips, and documentation
sources. Use of the new thinwire Ethernet was included
among the topics.

Proceedings of the Digital Equipment Computer Users Society 287 Anaheim, California - December 1985

ETHERNET

• BRANCHING BUS TOPOLOGY

• 10 MEGABIT DATA RATE

• CSMA/CD

• MUL Tl-PROTOCOL

• ORIG I NALL V BASEBAND

•BROADBAND IMPLEMENTATION AVAILABLE

• 802 .3 STANDARD

• MUL Tl-VENDOR SUPPORT

• DIGITAL"S NETWORK INTERCONNECT

ETHERNET COMPONENTS

• ETHERNET CABLE

• ETHERNET TRANSCEIVER

• TRANSCEIVER CABLE

• ETHERNET CONTROLLER

•REPEATERS

•BRIDGES

co
co
C\I

ETHERNET CABLE

• CO-AXIAL - TEFLON COATED

• 23.4, 70.2, 117 .0, OR 500 METER
LENGTHS AVAILABLE

• MULTIPLE LENGTHS MAY BE JOINED

THINWIRE ETHERNET CABLE

•CO-AXIAL

• RGS8

Soo NOT KINK

O>
00
C\I

TRANS CE I VER CABLE

• IEEE 802.3 OR ETHERNET VERSIONS

• TEFLON OR PVC COATED

•5. 10. 20. OR 40 METER LENGTHS

• STRAIGHT OR RIGHT ANGLE CONNECTOR

• USABLE WITH BOTH H400x AND DECOM

ETHERNET TRANSCEIVERS

• H4000 - BASEBAND TRANSCEIVER
.. VAMPIRE TAP

.. POWERED BY CONTROLLER

.. NO INSTALLATION DOWNTIME

• H4005 A/B - BASEBAND TRANSCEIVER
.. COMPATIBLE WITH EXISTING HARDWARE

.. IEEE 802.3 COMPATIBLE

.. AVAILIBLE WITH HEARTBEAT (H4005-A)

.. OR WITHOUT HEARTBEAT (H4005-B)

• DEST A - THINWIRE STATION ADAPTOR

.. CONNECTS EXISTING ETHERNET INTERFACES
TO A THINWIRE SEGMENT

.. CONNECTS TO T-CONNECTOR IN THE THINWIRE
SEGMENT

• DECOM - BROADBAND TRANSCEIVER

.. USED WITH EITHER ONE CABLE OR TWO
CABLE SYSTEMS

.. DEFTR - FREQUENCY TRANSLATOR FOR
ONE CABLE SYSTEMS AVAILABLE

0
0)
C\I

DELNI

• IN LOCAL MODE DELNls MAY BE HOOKED • CONCENTRATES 8 ETHERNET DEVICES
TOGETHER TO CONNECT UP TO 64 NODES
WITHOUT USING AN ETHERNET CABLE • OPERA TES STANDALONE (LOCAL)

-10

LNI

0 I DSRVA '...J LNI I IVAX
Ill 1111 --DE CSA ----

·~::m::::::ssw·1 1 g 1-2 o I l.:!...!

LNI
-10 I 1-20

MVAX
MVAXn ' ,

VAX LNI
• CONNECTS TO CABLE (REMOTE)

VAX
0~~11~SR,YA

D~SRVA

.....
(J')
C\I

VAX

Application

Presentation

Session

Transport

Network

Data Ltnk

Physical

DEC20

REPEATER

DECserYer-1 oo

REPEATER

Signnl Signnl

REPEATER

Application

Presentation

Session

Transport

Network

Data Link

Physical

N

°' N

REPEATERS

• ELECTRICALLY JOINS TWO CABLE SEGMENTS

• REGENERATES THE FRAME PREAMBLE

• DOES NOT MODIFY FRAME DA TA

•THREE REPEATERS AVAILABLE

.. DEREP-AA
- JOINS TWO LOCAL SEGMENTS
- SMART (AUTO SEGMENT ISOLATION)

.. DEREP-RA
- JOINS TWO REMOTE SEGMENTS
- UP TO I 000 METERS OF FIBER OPTIC

CABLE BETWEEN

.. DEMPR
- JOINS UP TO EIGHT THINWIRE SEGMENTS
- CONNECTS TO A BACKBONE SEGMENT

('I)
O>
C\I

DEBET - LANBRI OGE 100

VAX -

Application

Presentation

Session

Transport

DEC20

DECseryer-100

Frame +-+ Frame

BRIDGE

Apphcation

Presentation

Session

Transport

Network lr .. :I Network

Data Unk

Physical

Data Unk Data Unk Data Unk

• EXTENDS ETHERNETS BEYOND
2800 METERS

• PROTOCOL INDEPENDENT

• STORE AND FORWARD

• PACKET ADDRESS FILTERING

• 802 .3/ETHERNET COM PL I ANT

• AUTOBACKUP CAPABILITIES

• TWO VERSIONS AVAILABLE

.. LOCAL BRIDGE (WITH TWO XCVR
DROP CABLES)

•REMOTE BRIDGE (WITH FIBER-OPTIC
LINK)

""" °' C\I

ROUTER

YAX DECserver-100

DEC20

Application Application

Presentation DECnet • • DECnet Presentation

Session ROUTER Session

Transport
.. Transport

Network Network
~

Network Network iill
Data Unk Data Unk Data Unk Data Link

Physical . Physical Physical Physical .

l 1 ~ t t ············t~··························P:~············· g
'1:mm::::::::m::m::mmmmmm::::~ ';;::::mm;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;m:~

I.()
O')
C\I

• I VAX -
X.25

GATEWAY

• I DEC20

GATEWAY

DECnet X.25

GATEWAY
:··:

HOST

: :
Application Application Application App It cation

Presentation Presentation Presentation Presentation

Session Sesston ~ Session ~ Session

Transport Transport Transport ~ Transport

Net work Net work Net work ~ Net work .
Data Link Data Unlc Data Link Data Link :...,_ ___ __
Physical Physical Physical ~ Physical

~

:;!:::

co
O')
C\J

ETHERNET CONFIGURATION
RULES

• 500 METERS MAXIMUM SEGMENT LENGTH • IF A DEBET IS CONNECTED BY FIBER-OPTIC
LINK TO A DEREP-RA, THE FIBER-OPTIC

• MAXIMUM OF 100 TAPS PER SEGMENT LENGTH COUNTS TOWARDS THE OVERALL
LAN LENGTH

• 50 METERS MAXIMUM FROM TRANSCEIVER
TO CONTROLLER

• 2800 METERS MAXIMUM END TO END
DISTANCE

• MAXIMUM AGGREGATE OF 1000 METERS OF
FIBER-OPTIC LINKS BETWEEN REPEATERS
IS ALLOWED BETWEEN ANY TWO STATIONS

• MAXIMUM OF 2 REPEATERS BETWEEN ANY
TWO STATIONS

• 2.5 METER TAP SPACING

•MAXIMUM OF 1024 STATIONS

• NO LOOPS ARE ALLOWED

• A DEREP CAN'T BE CONNECTED TO A DELNI

r-..
en
C\J

ETHERNET CONFIGURATIONS

A SMALL SINGLE SEGMENT
CONFIGURATION

_______ COAXIAL CABLE SEGMENT _____ _
(500 METERS MAXIMUM)

TRANSCEIVER CABLE

A MEDIUM TWO SEGMENT
CONFIGURATION

SEGMENT 1

---REPEATER

(50 METERS MAX) ---••
TERMINATOR~

T~.,__.....,..._----ll~i -1---,T
TRANSCEIVER

& TAP
(100 PER SEGMENT)

·D
SEGMENT 2

00
0)
N

ETHERNET CONFIGURATIONS

SEG"[IT 3

A LARGE FIVE SEGMENT
CONFIGURATION

REMOTE REPEATER/

1000 M FIBER/
OPTIC CABLE

SEG"ENT S

a>
a>
C\I

TRANCE I VER USAGE SUMMARY

•STATIONS MUST CONNECT TO H4000 OR
H4005A

• DEBET MUST CONNECT TO H4000 OR
H4005A

• DEREP MUST CONNECT TO H4000

• DEMPR MUST CONNECT TO H4000 OR
H4005B

• DENLI WITH DEMPR CONNECTED MUST
CONNECT TO H4005B ONLY

• DELNI MUST CONNECT TO H4000 OR
H4005A

0
0
(Y)

THINWIRE CONFIGURATION
RULES

• 185 METERS MAXIMUM THINWIRE SEGMENT
LENGTH

• MAXIMUM OF 30 STATIONS PER SEGMENT

• THINWIRE SEGMENTS CAN BE CONNECTED
TOGETHER WITH A DEMPR

• DEMPRs MUST TERM I NA TE A SEGMENT

• MAXIMUM OF 2 REPEATERS BETWEEN ANY
TWO ST A TIONS (DERER's & DEMPRs EACH
COUNT AS A REPEATER)

• ST A TIONS MUST BE CONNECTED DIRECTLY
TO THE BNC T-CONNECTOR. NO CABLE IS
ALLOWED BETWEEN THE STATION AND THE
T-CONNECTOR

.,....
0
Cl)

THINWIRE CONFIGURATION

r-~~~-. .. --~~~~~ ~~--;1

CD RGSB

BNC T -CONNECTOR
(30 PER SEGMENT)

l
TERMINATOI

l) / ""-. I

MUL Tl-SEGMENT COFIGURATION

en STANDARD ETHERNET CABLE

STANDARD
ETHERNET
TRANSCEIVER

/ --...---,z~[T
OEM PR L--1

L.-~ .. 19-~--11 .. ~~~--tT

N
0
(')

BROADBAND CONFIGURATION
RULES

• THE ONLY WAY TO GET FROM A BROADBAND
ETHERNET TO A STANDARD OR THINWIRE
ETHERNET IS VIA BRIDGES

• NO REPEATERS MAY BE CONNECTED TO THE
BROADBAND ETHERNET

• MAXIMUM LENGTH OF A DUAL BROADBAND
CABLE IS 15 .53 uSECONDS OR APPROX.
4000 METERS OF TRUNK CABLE BEFORE
DROP CABLE AND AMPLIFIER DELA VS
ACCOUNTED FOR

• FOR A SINGLE CABLE SYSTEM THIS IS
REDUCED TO 15 .03 uSEC. OR 3900 METERS
(THIS ACCOUNTS FOR DEFTR DELAYS)

C')
0
C')

BROADBAND CONFIGURATION

DUAL CABLE SYSTEM

• TO HEAD-END

DEC OM

TRANSCEIVER IP

CABLE
VAX

DEC OM

-20

TERMINAL
SERVER

DELNI I I I

TERMINAL
SERVER

-20

DE COM

VAX

SINGLE CABLE SYSTEM

• TO HEAD-END

TRANSCEIVER 411

CABLE
VAX

-20 VAX

------.,;-------------------...... ---IDEFTR

TERMINAL
SERVER

DELHI I i i

TERMINAL
SERVER

-20

""" 0
C')

-I

"' ~/
n ...,
< ...,
"'

l

305

OJ
:0
0

n)>
oO z OJ
.,.,)>
-z
~CJ
:::0 ~
)> 0
~ OJ
0)>
zUl rn

OJ
)>
z
0

306

n• o• z,.,,
11 G">
->
G'l r
Cm
::0 -i
)> :c
-i ,.,.,
- ::0
Oz
Zrn

-i

ILLEGAL ETHERNET
CONF I GU RAT I ON

BROADBAND DUAL CABLE SYSTEM

X + Y > 1000 METERS

y

THINWIRE SEGMENT

t--
0
C')

308

n>
or
zrn
,, (j)
-)>
G"> r
c :c rr1
)> -I
-I :c
- rr1 o:c
zZ rn

-I

ETHERNET PERFORMANCE
CONSIDERATIONS

• KEEP THE NETWORK LENGTH AS SHORT
AS POSSIBLE

• MONITOR NETWORK PERIODICALLY.
LOOK FOR SIGNS OF MALFUNCTIONING
HARDWARE.

• CONSIDER USING A BRIDGE OR BRIDGES
TO SEGREGATE USER COMMUNITIES

0)
0
CV)

SEG'1ENT 3

J)attJ! Mtubb
ltnit>~tsitl!

COMPUTER SCIENCE
DEPARTMENT

REMOTE REPEATER/

1000 M FIBER/
OPTIC CABLE

............................. . .
UNIV. ADMIN. :

: IT .

SEG'1EfllT 5

COMPUTER SCIENCE
DEPARTMENT

BRIDGE/

I 000 M FIBER/
OPTIC CABLE

............................. . .
UNIV. ADMIN.

~ SEG'1ENT 5 ~

0
C'I)

COMMON PROBLEMS

• NO NETWORK COMMUNICATIONS

- TYPICAL CAUSES

.. CABLE BREAKS

.. CABLE SHORTS

.. JABBER

• STATION MALFUNCTION

.. CONNECT NEW STATION TO TRANSCEIVER
IF SYMPTOMS PERSIST,, REPLACE TRANSCEIVER

_,.. IF NEW ST A TION WORKS,, PROBLEM LIES IN
THE SUSPECT ST A TION'S TRANSCEIVER CABLE ..
NETWORK INTERFACE,, THE STATION ITSELF,, OR
THE STATION'S SOFTWARE. USE A LOOPBACK
TRANSCEIVER AND DIAGNOSTICS TO ISOLA TE
THE PROBLEM.

.­

.-
('I)

COMMON CURES

CURES

.. A TOR WILL AID IN LOCATING CABLE SHORTS
AND BREAKS .

.. LACKING A TOR. A VOLT-OHM METER WILL HELP
IDENTIFY THE EXISTANCE OF A SHORT OR BREAK

.. ISOLA TE THE PROBLEM TO A SEGMENT. DISABLE
REPEATERS AND DIVIDE CABLE INTO SMALLER
INDIVIDUAL SEGMENTS .

.. CONSULT THE OPERATIONS LOGBOOK.

C\J
C")

MAINTENANCE AIDS

• VOLT -OHM METER

• TIME DOMAIN REFLECTOMETER (TOR)

• DOCUMENTATION
C')
T'""
C')

•A '"CLEAN'" INSPECTABLE INSTALLATION

• HOST SYSTEM DIAGNOSTICS

• SPARES (TRANSCEIVERS, CABLES, ETC.)

INSTALLATION TIPS

•START BY READING ONE OR MORE OF THE •PLAN AHEAD ... BEFORE YOU INSTALL ANY
BOOKS LISTED IN THE BIBLIOGRAPHY. CABLES. THINK ABOUT FUTURE NEEDS

AND HOW YOUR PLANNED NETWORK WILL
ACCOMODA TE THEM OR IS EXTENSIBLE TO
SUPPLY THE NEEDED SERVICES.

• PERFORM A SITE SURVEY .

.. IDENTIFY THE SYSTEMS WHICH NEED TO BE
CONNECTED INTO THE NETWORK.

.. SPECIFY THE PROPOSED CABLE ROUTE AND
LOCATION OF EQUIPMENT ON PAPER

•DOCUMENT-COMPILE AND MAINTAIN A
COMPLETE RECORD OF THE INSTALLATION

.. VISIBLY INSPECT THE PROPOSED CABLE ROUTE • LEAVE SUFFICIENT SLACK IN THE CABLE
TO ALLOW EASY TRANSCEIVER INSTALL­
ATION.

v
C')

DOCUMENTATION

• CABLES TYPICALLY HAVE MARKINGS AT
2.5 METER INTERVALS. DURING INSTALL­
ATION NUMBER THE MARKINGS.

• MAINTAIN AN OPERATIONS LOGBOOK. LOG
• DOCUMENT THOROUGHLY YOUR CABLE

INST ALLA Tl ON. INCLUDE:

.. CABLE ROUTES

.. CABLE TRAY DISCRIPTION

.. LOCATION OF CABLE MARKS

.. LOCATION OF BARREL CONNECTORS

.. LOCATION OF TRANSCEIVERS

All
ADDITIONS. DELETIONS. & CHANGES

I()
..-
(")

BIBLIOGRAPHY

•Local Area Networks - John E. McNamara.
Bedford, Mass.: Di gi ta 1 Press, 1985

• Technical Aspects of Data Communication,
2nd ed. - John E. McNamara. Bedford.
Mass.: Digital Press, 1982.

• Ethernet Installation Gui de. Document
EK-ETHER-IN. Digital Equipment Corp.

• The Ethernet Saurce Book - Edi led by
Robyn E. Shotwell. New York, N.Y .:
Elsevier Science Publishing. 1985.

CD ,....
('I)

HARDWARE PLANNING FOR INTEGRATION CUSTOMERS

Gary Bremer
Enerson Electric Co.

St. Louis, Mo.

ABSTRACT

This session.was presented by Reed Powell, Marketing
Consultant w1th DEC Large Systems Marketing. In this session
Reed.cov~red DEC-10/20 peripherals and their possible
appl1cat1on on VAX systems.

Information that came out in the presentation that
was not on the slides:

There is no RP20 support on VMS. The TM03
controllers on KL 's differ slightly from the TM03
controllers on VAX's. TM02 and KL TM03 controllers
would need to be replaced in order to use TU45 and
TUl7 masters. Under VMS, TU70 and TU72 tape drives
can be used for everything except booting the
system. LP05 and LP01 printers with LPll
controllers, and LP27 printers with the long lines
interface can be moved to VAX's. For other LP05,
LP07 and LP27 printers, Dataproducts has never
produced an upgrade or exchange facility to be able
to migrate them to VMS. DN20's can be changed into
LAT-11 terminal servers for an Ethernet. DEC is not
interested in RP06's and DN20's for trade-ins.

Question: What do we have to do to change 18-bit
RA81's which are on an HSC50 to 16-bit RA81's?

Answer: The 18-bit disk drives can be reformatted
on-site if the drive is in excellent shape. If not,
ii will have to be removed and reformatted in
Colorado.

Question: What is the recormiended buy to put 6250
bpi tape drive capability on my KL that I can
transfer to my 8600 in 2 years?

Answer: Buy a TU78 master, and when it is migrated
change it into a TA78.

Question: Can I move my LP07 printer with an LP100
controller?

Answer: I don't think so.

RP06, RP07 DISK DRIVES
MASSBUS DISKS

• WILL WORK ON VAXES

• DISKS MUST BE REFORMATTED

• MASSBUS BEING PHASED OUT ON VAX

Proceedings of the Digital Equipment Computer Users Society 317

TU45, TU77 TAPES DRIVES
MASSBUS TAPES

• SLAVES CAN BE USED ON VAX

• NEED NEW TM03 FORMATTER FOR VAX

• MASSBUS BEING PHASED OUT ON VAX

TU78 TAPE DRIVES
MASSBUS

• SLAVES CAN BE USED ON VAX

• FORMATl'ER NEEDS C1DP CHANGE

• TU78 : TA78 UPGRADE AVAILABLE

• BEST BET: MOVE THEM TO HSC/TA78

TU70, TU72 TAPE DRIVES
MASSBUS & IBM CHANNEL

• DRIVER AVAILABLE FOR VMS

• MUST ALREADY HAVE DRIVES

• A FEW TX02/TX03/TX05S AVAILABLE

• A FEW DX20S ARE AVAILABLE

• MASSBUS NOT STANDARD ON 8600/8650

• BEING DEMOED IN DECUS BOOTH

• BEING DEMOED IN DECUS BOOTH

Anaheim, California - December 1985

PRINTERS
MANY. MANY PROBLEMS

• IO BUS PRINTERS ARE PDP·8

• CFE PRINTERS USE LP20

• DN87/DN20 PRINTERS USE LP11

• LPll CAN MOVE TO VMS

COMMUNICATIONS GEAR
MOST CANNOT MOVE TO l*X

• DC20-X, DNSl·X IDHll/DMlD NOT ON VMS

• DZ-ll <AKA DN25-X> SUPPORTED ON VMS

• DMC-ll <AKA DN2D SUPPORTED ON VMS

• DMR·ll SUPPORTED ON VMS

KLIO: VAX-8600/8650 TRADE
CASE BY CASE BASIS

• SOME PERIPHERALS WILL BE TAKEN

• SOME ARE NEEDED FOR SPARES

• DEPENEDS ON THE PERIPHERAL

10/20 HARDWARE MIGRATIO!-

• MOST PERIPHERALS CANNOT MOVE

• SOME WILL BE TAKEN BACK IN TRADE

• OTHERS MAY BE USED ON PDPU

• OTHERS MAY BE SOLD: OPEN MRKT

318

TOPS/VMS PERFORMANCE COMPARISON

Gary Bremer
Emerson Electric Co.

St. Louis, Mo.

ABSTRACT

This session.was presented by Thomas Blinn Technical
Consultant w1th DEC Large Systems Marketing. This session
was a repeat of the one given at the last symposium in New
~rl~ans. Using data from various benchmarks that he ran on a
2065 and a 780 along with benchmark data for a 785 and an
8600 obtained from other performance groups within DEC Tom
pr:oduced some per~ormanc~ ~raphs. These graphs were '
presented along w1th add1t1onal explanation in this session.

Information that came out in the presentation that
was not on the slides:

Tom did not have the VAX 8650 performance data with
sufficient lead time to incorporate that data into
this comparison. He stated that one could presume
that for compute intensive benchmarks, which are the
majority of these benchmarks, the 8650 will be 40-
451. faster than the 8600.

The Whetstone performance comparisons were based on
fully optimized computations (optimization showed
little or no performance improvement on the 2065).

On single precision computations the 2065 fell in
between the 780 and 785, and was about 1/3 the speed
of the 8600. With double precision the 2065 came in
slower than the 780 and 785, and about 1/4 the rate
of the 8600. Though the 2065 performed better than
either the 780 or the 785 on G floating, the 8600,
which was designed to do G floating well, was 6.5 to
7 times faster than the 2065. With the exception of
the 8600 each of the systems did double precision
significant 1 y better than G fl oat i ng. Over a 11, for
these compute intensive Whetstone benchmarks the
8600 came in about 4 times faster than a 780 and 3.5
times faster than a 2065.

A total of 69 different FORTRAN benchmarks were run.

In the integer benchmarks which were used, the 8600
was 2.4 to 3.5 times faster than the 2065.

Most of the benchmarks were single precision
benchmarks. With these the 8600 was from 2.3 to
almost 13 times faster than the 2065.

The ratio of performance is not a consistent number
because the rules the VAX used for compiling FORTRAN
programs were not the same as for the KL. The VAX
FORTRAN compiler does a lot of optimization that the
KL does not do. These benchmarks reflect not on 1 y
the differences between the operating systems and
the hardware, but also the differences in the
1 ayered products, such as the FORTRAN compilers.
These benchmarks were almost exclusively computation
and include very little I/O.

With double precision arithmetic the 8600 ran from 3
to 4 times faster than the KL.

Proceedings of the Digital Equipment Computer Users Society 319

For all the FORTRAN benchmarks the range appears to
be somewhere between 2 and 4 times ·faster than the
2065 for compute performance, with most falling
between 3 and 4 times faster. ·

On the compute intensive single-user COBOL
benchmarks the KL does not do as well (501.-1001.) as
~he 780. The COB~L benchmarks on the 8600 range
from 3.7 to 6.1 t1mes the performance of those
benchmarks on the 2065. COBOL on a KL does a lot
better when doing SIXBIT then when it does ASCII
Using SIXBIT the KL is roughly equivalent to the.
780, but with ASCII, the 780 was more than 4 times
faster.

On the sorting benchrr~rk the 8600 was roughly twice
as fast as the 2065.

One benchmark was run that was nominally a multi­
user benchmark. It used a line oriented text editor
l.o do some simple editing, then it compiles, links
and runs ~ simple program, and does that repeatedly.
For the 8600 the benchmark was running in PDP-11
co~1patibility mode for the editing tasks. With tt1e
2065 response time rose gradually out to about 85
users at which point it spiked. The 8600 also rose
gradually, but did not begin spiking until about 190
users. The KL and the 8600 were roughly comparible
out to about 70 users.

If you really want to know how well an 8600 wi 11
handle your applications, you probably want to run
some benchmarks using your applications.

TOPS-20 spends a lot of its time and energy on
scheduling the system and trying to keep the system
very responsive for interactive users, possibly at
the cost of not getting production work done. The
VMS layered products do better optimization.

Anaheim, California - December 1985

System Conrtgurations

TOPS-20 on a ZMW 2065
Monitor version 5.4
Field-image layered sortware

YAX/VMS on 3ZMB 11 /?80, 11 /?85, 8600
Monitor version 4.1
Field-im~ge layered sortware

Whetdone Performance
TOPS-20 V5.4 on a 2065

VAX/VHS on 780, 785, 8600
u 6000-~~~~~~~~~~~~~~===-~-,
• m
• c
a
• s:;
>
I
a ..
....
"

u
• m • c
0
• s:;
>
I
0

u
• m • c
D • s:;
>
I
0
"

4000

3000

2000

1000

0

3000

2500

2000

1500

1000

500

0

3000

2500

2000

1900

1000

500

0

7BO V3 780 V4 T20 V7 785 V4 8600 V4
Single Precision Computations

New Orleans DECUS

Whebtone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS on 780, 7B5, B600

780 V3 780 V4 T20 V7 785 V4 8600 V4
Double Precision Computations

Whetdone Performance
TOPS-20 V5.4 on a 2065

VAX/VKS on 780, 785, 8600

New O~leans DECUS

7BO V3 ?BO V4 T20 V7 785 V4 8600 V4
G Floating Co•putations

New Orleans DECUS

320

u 5000 • m • c
a ..
II ..
• s:;
>
I
a

a
' a:

• u
c

' • L
a ...
L • ...

D
' a:

4000

3000

2000

1000

2.0

l.5

l.O

0.5

o.o

5.0

4.0

0 5

Whetstone Perl ormance
TOPS-20 V5.4 on a 2065

VAX/VKS on 7BO, 785, 8600

Data Format
IE!flll Sing le
rI1lIJJ Double
g C-float

780 V3 no V4 T20 V7 785 V4 8600 V4
Opti•ized Compilation

New Orleans OECUS

Single-User

Benchmark

Results

Fortran CPU Performance
All Benchmark Programs

Compiler Used
· · · · F20 V7
----F20 V10
-··-· F20 X 10
-- VAX 4.1

10 25 30 35 40 45 50 55 60 65 70
Benchmark Index

Fortran CPU Performance
Relative to 111780 with FPA

lntegtr Benchmarks

New Orleans OECUS

System Tested
flm.\1 2065 V7
m!B 2065 VlO
rI1lIJJ 2065 XIO
- VAX 8600

··-----···-----

• u 3.0 ---------------

~
&
L
D ...
L

• ...

2.0 ·····•··•·••·•·

New Orleans DECUS

D

Fortran CPU Performance
Relative to 11/780 with FPA
Single Precision Benchmarks

System Tested
fiml:l 2065 V7
EfHI! 2065 VlO
UlillJ 2065 XIO
lllliI!I VAX 8600

" 4.0 ••·•••·•••·•··········••••••• •·•··············•••·•·············· «

• u

i
I
L
D ...
L • ..

D
" "' • u
i
I
L
D ...
L

• ..

D
«

• u
i
I
L
0 ...
L

• L

D
" «

• u
i • L
D ...
L • A.

3.0

2.0

1.0

o.o

Fortran CPU Performance
R1l1tlve to 11/780 with FPA
Single Precision Benchmarks

New Orleans DECUS

System Tested
1
.

fiml:l 2065 V7
mmzo65 VIO
UlillJ 2065 XII) I
- VAX 8600 I

n.o"'T'"~~~~~~~~~~~~~~~~~-, 1

4.0

3.0

2.0

New Orleans DECUS

Fortran CPU Performance System Tested
fiml:l 2065 V7

Relative to 11/780 with FPA mm 2065 VlO
Single Precision Benchmarks UlillJ 20€.5 XIO

n.o - VAX 8600

4.0

3.0

2.0

1.0

o.o

New Orleans DEC US

Fortran CPU Performance System Tested
fiml:l 2065 V7

R1l1tiv1 to 11/780 with FPA mf!I 2065 V10
Single Precision Benchaarks UlillJ 2065 XIO

llli\lll VAX 8600
!.O

4.0 ...

3.0

2.0

1.0

o.o

New Orleans DEC US

321

D 5.0
... ..

Fortran CPU Performance
Relative to 11/780 with FPA
Double Precision Benchmarks

Systn Tested
fim1j 2065 V7
mm 2065 VlO
UlillJ 2065 X!O
llUll VAX 8600

" 4.0 ······························---------------------------
"' • u

i
E
L
D ...
L

• A.

D
" "' • u
i • L
D ...
L

• A.

D
" "' .,
u
c ..
E
L
0 ...
L

• ...

0
" "' • u
c ..
E
L
D ...
L

• ...

2.0 ·······•··•••··

New Orleans DECUS

rortran CPU Performance
YAX 8600 compared to 2065

Integer Bench•arks 5.0 -.-~~~~~~~~~~~~~~~~~~--.

4.0

3.0

2.0

1.0

o.o _._ __
Airco-I Airco-S Hanoi Prime

New Orleans OECUS

Fortran CPU Performance
VAX 8600 compared to 2065

5.0
Single Precision Benchmarks

4.0

3.o

2.0

1.0

o.o
Airco-R Ase a CAE1 CAEZ

New Orleans DEC US

Fortran CPU Performance
VAX 8600 compared to 2065

5.0
Single Precision Benchmarks

4.0

3.0

2.0

1.0

o.o
DC3 Egupt FFT45 Gauss Hughes

New Orleans DEC US

0
~ .. • "' • u

5
E
L
0 ...
L

• A.

D
~ .. • "' • u

5
E
L
D ...
L

• A.

D
~ .. • "' • u

5
&
L
D ...
L

• A.

! .. • "' • u

5 • L
D ...
L

• A.

5.0

4.0

3.0

2.0

1.0

o.o

J'ortran CPU Performance
YAX 8600 compared to 2065

Sln9le Precision Bench•arks

Llttl Lusty l'latrix l'lflops Neff

New Orleans OECUS

Fortran CPU Performance
YAX 8600 CO•pared to 2065

!.O ~---S-in~g~l~•-Pr_e_c_i_s_io_n_B_e_nc_h_•_a_r_ks~

4.0

3.0

2.0

1.0

o.o

4.0

3.0

2.0

1.0

RR1 RR2 RR3 RR4 Single

J'ortran CPU Performance
YAX 8600 co•pared to 2065

Double Precision Benchaarks

New Orleans OECUS

Double Jacobi Philco SP1111

New Orleans OECUS

Fortran CPU Performance
YAX 8600 coapared to 2065

10 ~---------------------,

8 ••••••••••••••••••••• •••••••••• ························--········

6 ••••••••••••••••••••• •••••••••• • •.•••••••••••••••••••••.••..•.•

4 •••••••• •••••••• • •••••••••••••••••••

New Orleans OECUS

322

COBOL Performance
TOPS-20 COBOL Y13

CPU Utilization

Switches
m None
Bmll /Prod
'il!llJ!Optim
l1llll /Qu1c<

D 1.25~~~~~~~~~~~~~~~~~~--,
~ ..
.. 1.00

"'
~ 0.76

5
&
L
D ...
L • A.

0.!10

0.25

COBOL Performance
TOPS-20 COBOL Y13
Elapsed Run Time

New Orleans OECUS

Switches
m None ·
Bmll I Prod I
'lil1IJ /Opt 1m

- /Quick
D 1.25 ~------------------~
~ ..
• 1.00
"'
~ 0.75

~
I
L
0 ...
L • A.

0.50

0.25

COBOL CPU Performance
COBOL-20 Y13 on TOPS-20

YAX COBOL Y3.1 on Yl'IS

New Orleans OECUS

System Tested
mm 2065

4.0 ~--------

flllllJ 111785
IB!l 8600

D
~
"'
• u

5
e
L
D ...
L • A.

D
~ .. • "' • u

5
• L
0 ...
L • A.

1.0

o.o

6.0

4.0

2.0

British Profile T iHTest USSteel

New Orleans OECUS

COBOL CPU Performance
Yl'IS COBOL V3.1 on YAX 8600 with FPA
Relative to COBOL•20 Y13 on a 2065

Brltl&h Profile TiHTest USSteel

New Orleans DECUS

0 1.25
" 1.00
GI:

• 0.75 u
c
' & 0.!50
L
0 ... 0.25 L • A. o.oo

700.0

• 600.0 ;
IC 600.0
c
0 400.0
u 300,0
' • c zoo.o
" L

100.0

o.o

2.00

1.50
• ,.
c
0 1.00
u • ID

0.!50

IODnll Performance Switches
m None

COBDL-20 Y13 !!mil /Prod
'llil1J /Opt 1 m
1111111111 /Quick

SIXBIT
CPU UH E 1 apsed Time

New Orleans DECUS !

Bortln~

...............................

................................

..

S~stu Tested
New Orleans OECUS

Mult.i-user

.. ECS/Anker ..

Benchmark

Result.a

l!CS/ Anker Response Times
TOPS-20 V5.1 on 20S5

Z"W •t•ory, KCA25

O 10 20 30 40 50 SO 70 BO 90
Nu•ber of users

New Orleans DECUS

z.oo

1.50
• ,.
c
0
u

1.00

• ID

0,50

2.00

1.50
• ,.
c
0
u 1.00

• ID

0.50

o.oo

323

l:CS/ Anker Response Times
VHS V4.1 on YAX BSOO

32MB aemory, FPA

·-···r····r····-r···-r .. ·T·····r··-·-r···T····r··­
-----r·----r r r r T r .. ··r ··--·r···
------:---·--:·--·--:----·-·:--·-··"······"

0 20 40 so 80 100 120 140 160 180 200
Nu•btr of u11rs

New Orleans DECUS

ECS/ Anker Response Times Sys tu
.... 20S5
- - - . 8600 TOPS-20 Y!l.1 on 2065

YKS Y4.1 on VAX 8600

10 20 30 40 50 GO 70 80 90
Nu•ber of users

New Orleans DECUS I

lOPS-10/20 AND VMS LAYERED PROUUCT COMPARISONS

Gary Bremer
Emerson Electric Co.

St. Louis, Mo.

ABSTRACT

This session was presented by Reed Powell, Marketing
Consultant w1th DEC Large Systems Marketing, and was a review
directed to TOPS-10/20 people, of VMS layered products and
their significant features.

COBOL c
• ANSI 74 • FULL K&R IMPLEMENTATION

• MOST ANSI 85 FEATURES • LSE EDITOR SUPPORT

• SUPPORTS DBMS'S DML • OPTIMIZED VAX CODE

• LSE EDITOR SUPPORT • USER DEFINED/ENU~l SCALERS

• REPORT WRITER SUPPORT APL
• FORl\'lS SUPPORT WITH ACCEPT/DISPL

• INTERACTIVE INTERPRETER
• IO: RANDOM, INDEXED, SEQUENT

• TABLES UP TO 64K DIMENSIONS

FORTRAN ADA

• ANSI 77
• STRUCTURED PROGRAMMING LANG

• POSSIBLE TO SELECT ANSI 66 • DOD SPECIFICATION

• OPTIMIZED CODE
• PROGRAMMING ENVffiONMENT

• GENERATE SHARABLE CODE
• COMPIL LIBRARY MANAGER

• COMMON DATA DICTIONARY SUPPORT
• n-IS DEBUGGER

• CAN CALL RUNTIME LIBRARY

BASIC PASCAL
• RMS FILE IO SUPPORT • ANSI/ISO COMPATIBLE

• LSE EDITOR SUPPORT • BLOCK STRUCTURED LANGUAGE

• CONDmONAL COMPILATION • DEBUGGER SUPPORT

• CHARACTER LABELS • LSE EDITOR SUPPORT

• STRUCTURED PROGRAMMING CONSTR

Proceedings of the Digital Equipment Computer Users Society 325 Anaheim, California- December 1985

PL/I
• "EXTENDED SUBSET' OF ANSI 76

• USEFUL FOR SYSTEM PROGRAMMING

• GOOD FOR BUSINESS IRMS SUPPORT!

• SUPPORT FOR ALL VAX DATATYPES

• LSE EDITOR SUPPORT

• BLOCK STRUCTURED

• AUTOMATIC INITIALIATION OF VARS

LSE
LANGUAGE SENSITIVE EDITOR

• "KNOWS" ABOUT LANGUAGES

• EDIT-COMPILE-DEBUG SCENARIO

• INVOKE COMPILERS FROM EDITOR

• INVOKE LANGUAGE CONSTRUCTS

• EDTKEYPAD

• ONLINE HELP

• E !EXPAND! COMMAND

• TAILORABLE TO SPECIFIC ENVIRONMT

• TAILORABLE TO SPECIFIC ENVIRONMT

SCAN
• GENERALIZED TEXT TO TEXT XLATION

• PROCEDURALIZED LANGUAGE

• PROGRAMMING LANGUAGE CONV

• TEXT CONVERSION

326

VMS FOR TOPS USERS: SYSfEM MANAGEMENT

Gary Bremer
Emerson Electric Co.

St. Louis, Mo.

ABSTRACT

This session was presented by Kathy Rosenbluh from the DEC
Large Systems Marketing Technical Support Group. The main
goals of this session were for TOPS people to become familiar
with the utilities and decisions necessary for a system
manager to set up a VAX system. A large screen projection TV
system was set up to display the screen of a terminal
connected to one of the VAX's in the exhibit hall.

Using the pl'ojection TV system Kathy demonstrated:

1. How to show user parameters in the utility
AUTHORIZE and explained what those parameters
were.

2. How to add a new user by copying an existing
user and changing some of the user
parameters.

3. How to create a directory for the default
d·i rectory.

4. Using the utility DISKQUOTA did a SHOW of
directory for the directory being copied from
and did an ADD of a directory.

5. Using the utility AUTHORIZE again, did a SHOW
of proxy accounts.

6. Displayed what gets accounted for buy using
SHOW ACCOUNTING.

7. Demonstrated how to display accounting
reports for a particular user including how
to tai 1 or them.

Goals

o Introduce VMS Sys Management Concepts

o Give feel for similarities/differences

o Explain choices and options in VMS

Proceedings of the Digital Equipment Computer Users Society

Topics

o Setting up user accounts

o Accounting

o System startup, shutdown, and error analysis

o File system, file structures

o Security

o Work load, image considerations, tuning

o Mountable devices

o Batch and Print Queues

User Accounts

0 It's all done with Authorize, Directory Creation, and Disk Quotas

o User = = existence of user record in the rights database

o Authorize = = utility to manipulate SYSUAF.OAT

o Record defines: Allowable types and times of Login

Quotas and privileges

Default directory

Login (and logout) procedures

Default CLI

Username, UIC, password

Determining Username and UIC

o Personal -or functional account?

o Determine group structures (common files and logical names)

o GRPPRIV gives some sysmanager control

o One user can be a member of only one group

o Some UIC group numbers mean •system Manager•

o Raw UIC is almost never seen by end user

o Usernames can't have tree structure

327 Anaheim, California- December 1985

Passwords

o Three possible password levels:

- System password

• Primary user password

- Secondary user password

o Max of 2 can be enabled on any one system

o Password can be changed by end user ·OR·

• Password changing can be disabled per user

o Account can be set up with no· password required

Can enforce:

Password length requirements

• Regular password changing

• Use of generated passwords

o Passwords don't echo on login.

Special types of accounts

o Captive acount

o Proxy account

o Application-only account

o Group manager account

Other Account Control Parameters

Specify:

priorities for user processes

allowable hours for access

allowable connection modes
(DIALUP, INTERACTIVE, LOCAL, REMOTE)

0 Can audit security-relevant actions

0 Can disable mail receipt, control-Y interrupts, etc.

o Can disable the account completely
• They CAN echo in network file operations -AND·

• In batch log files

Quota

o 18 quotas. All have defined defaults

o Systemwide ones are about Max Jobs and Processes

o Pooled are about open files, enqueues, timer queues,
byte i/o, subprocesses

o Nondeductible (each sub/process gets entire amount):
AST, buffered and direct l/o, working set

o CPUtime is deductible. Usually set to infinite.

Privileges

35 Individual Privileges; 7 Functional Levels

None

Normal

Group

Devour (resources)

System (for operators)

Files

All

o Enforce systemwide, groupwide & ·personal login proc execution

o Define alternate CLI

Proxy Accounts

o Represented by records in NETUAF.DAT.

Created by Authorize

o Provides access to FILES from decnetted node

Without login or access string

o Can provide access

• for all users or tor individual from remote system x

• to all accounts on your system which match remote username

• or to a specific account on your system

o Incoming or outgoing proxy access can be dynamically turned on/off

Authorize is not enough ...

o Default login directory is defined in SYSUAF.DAT

o It must also be created, using

$CREATE /DIRECTORY= devlce:[topdir.subdlr] /OWNER_UIC = [xxx,yyy]

o Permanent and overdraft quotas may be established

PER UIC PER DISK

using the DISKQUOTA utility. This is optional, on a PER DISK basis.

328

Accounting Elements in System Startup

o What gets accounted for DEFBOO.CMD

o Format of accounting file STARTUP.COM

o Utility to extract records SYSTARTUP.COM

o SET ACCOUNTING command to start shifts SYCONFIG.COM

Accounting
AUTOGEN

SET ACCOUNTING causes records to be sent to ACCOUNTING.DAT for:
SYSGEN

System initialization

Process, image termination

Print job completion

Login failure

Optional user messages

Accounting

Accounting utllity sorts, selects
and reports accounting records

2 important packets: RESOURCE and PRINT

Resource packet: Includes info on process performance
(page faults, working set size, i/o)

Print packet: includes info on QIO's,
symbiont CPU time

System Files

PAGEFILE Operator Log

SWAPFILE Error Log

DUMPFILE Old system dumps

Secondary *FILE Security audit file

System Generation and Modification

o Use AUTOGEN to redefine hardware configuration,
sizes of system files (PAGEFILE, SWAPFILE, DUMPFILE)

o AUTOGEN can also figure "best values" of above on Its own

o If you modify some parameters via AUTOGEN, It will
adjust other relevant parameters on Its own to match

o (AUTOGEN runs SYSGEN once the parameter files are OK)

o SYSGEN - modify dynamic parameters on current system

System Startup Procedure

o Automatic restart - no human intervention required
Can be set via SYSGEN

o Else, in simplest case, at the console
type CONTROL-P to halt system
deposit pc = -1 and psi = 1 FOOOO
and BOOT to reboot

o BOOT procedure can be nonstop or conversational

• SYSGEN params can be redefined

DEFBOO

o Variety of bootstrap command files provided

o Choice of nonstop or conversational modes

o Rename the one you want as default to OEFBOO CMD

o Edit file to modify the unit number used, and the directory use

-OR- deposit mod interactively in console mode

SYSTARTUP.COM

STARTUP executes SYCONFIG, runs SYSGEN, and autoconflgures

SYSTARTUP used to define queues, logical names,

install images, set terminal characteristics

manage large system files, make announceme

set # of interactive users, submit batch jobs

mount public disks

System Shutdown

Use SHUTDOWN procedure to gracefully stop queues, logins, etc

·OR· run OPCCRASH

-OR- halt from console by running CRASH
(Gets PC, PSL, and stack pointers first)

Crash Dumps

o Errors are logged In SYSSERRORLOG:ERROR.SYS

o ANALYZE/ERROR LOG to produce report

o SDA can be run from SYSTARTUP

o SYSDUMP.DMP must exist; size = physical memory +4 (in ,

o Typical commands: SHOW CRASH, SHOW STACK, SHOW

o Other useful files: SYS.STB, SYSDEF.STB, SYS.MAP

Checking on System Performance

o Primary tools are MONITOR

o SHOW commands (PROCESS, SYSTEM, CLUSTOR have dpy m

o Accounting records

o Less useful: ANALVZE/SYSTEM

329

System Tuning - Most Useful Goals

Try tor:

• Nearly-zero page faulting

• No job swapping

- No direct or buffered 1/0 waits

- No outswapped computable

• No DZ's

System Tuning Tools

Tuning is always a trade-off

Primary tools:

- AUTOGEN (SYSGEN)

• Authorize facility (UAF)

• More code sharing

Installing Known and Shared Images

o Saves physical memory requirements and activation time

o Uses up some memory for resident headers, etc. even when
image is not being used

o Usually done in SYSTARTUP.COM , can be done anytime

Image Privileges

o Executable Images can be installed with extra privs
allowing non-privileged users to run them.

o Shareable Images can be Installed with extra privs,
allowing non-privileged executable images to run them.

Setting up File Structures

o Decisions: Public or Private?

Quota'd or non-quota'd

Multi-pack or single pack

Separate. User Login disk from System disk?

Separate Swapping space from System disk?

Disk Space Management

o Disk quotas

o Fiie expiration dates

o Archiving program from Decus

o 3rd party Archive program

Optimizing File System Performance

o Ensute proper RMS_EXTEND_SIZE is being used (SYSGEN)

o Ancillary Control Processes:

- MONITOR FCP to see If more are needed

- Set up separate ACP tor slow disks

- Distribute swapping to 2 disks and add an ACP

• Extra ACP's cost memory

Mountable devices • Disks

o At disk Initialization time, select values tor:

0 ACCESSED, CLUSTER_SIZE, EXTENSION, MAX.FILES, etc.

o Users can request MOUNT on generic device type

o (MOUNT utility picks a drive and tells operator)

o A single volume disk can be expanded in size with:

-MOUNT/BIND (unreverslble)

Tapes

o Can use DISMOUNT/NOUNLOAD but No /REWIND

o No /NOWAIT

o Users can request a tape to be mounted on a generic device-·

o INIT needed only for writing labels

o Useful MOUNT switches:
/FOREIGN, /OVERRIDE=, /NOLABEL, /RECORD

o During write operation, continuation tape
automatically Fequested from operator

o Multi-tape volume sets can be mounted on one or more drives

o Multiple tape drives can be preallocated and loaded
for later use by a batch process

330

Kinds of Queues

o Batch, Printer, Terminal, Symbiont

o Generic
- Batch only on clusters

o Logical ("holding pattern") for printers
- HOLD switch for batch

o Server

Queue Control

o UIC protection scheme applies to queues

o User can re-start batch jobs

o INIT/QUEUE doesn't delete jobs

o Operator can restart a stopped print queue,
and set starting position within file

o Falling jobs can be retained in the queue

o Operator can re-assign jobs to different queue

Queue Control - Printers

o Users can force forms changes on programmable printers

o Default settings for job/file burst flag and trailer pa9ea
• Users can modify for their jobs

o Default settings for job separation pages
- Users can't modify

o Defaults can be modified

Queue Performance

o Batch Queue performance manipulation:
• PRIORITY
• JOB.LIMIT, CPU.LIMIT, Working set quotas
• Swap mode

o Print Queue performance manipulation:
• by size in blocks expressable as range
• schedule by [no]size
- by priority

Queue Management Functions

o At startup, start the queue manager and open JBCSYSQUE file

o Select and define spool medium

o INITIALIZE and START queues

Backup

o Backup is a command with switches, not a program

o Backup to disks, to tapes, or to disk and then to tape

o IMAGE SAVE COPY modes

o Standalone backup for system disks

o Effects of /IMAGE, /PHYSICAL, /COPY, /INCREMENTAL

331

Communicating with Users

o OPCOM

·REQUEST

• REPLY

o SYSSNOTICE_TEXT

o SYSSANNOUNCE

o SYSSWELCOME

Security - ACL's

- logging security events

- captive accounts

- elevated privs for images

- password control

- volume erase and highwater

- tape volume protection

INTEGRATION TOOLS FOR TOPS CUSTOMERS

Gary Bremer
Emerson Electric Co.

St. Louis, Mo.

ABSTRACT

This session was presented by two speakers, lhomas Blinn,
Technical Consultant with DEC Large Systems Marketing, and
Peggy Sullivan, Integration Too 1 s Coordinator in Large
Systems Marketing. Joining them for the Questions and
Answers was Larry Burke with High Performance Systems in DEC
Maintainability Engineering. Tom presented the previously
announced tools and how to receive them, and Peggy announced
the new tools products.

Information that came out in the presentation that
was not on the slides:

Mail gateways which are presP.ntly used to get mail
between TOPS-20 and VMS will become obselete when MS
is bundled with TOPS-20 in spring 1986. PHONE-20
will allow phone between TOPS-20 and VMS systems.
The HOST program wi 11 be obse I eted by CT ERM which is
being st1i pped with TOPS-20 V6.1.

The VAX TU70/72 device driver will be distributed to
TOPS-10 and TOPS-20 customers and is for sharing
these drives between TOPS systems and VMS systems.
MVUSRS moves user accounts with their passwords and
priviledges from TOPS systems to VMS.

Question: How often will tools tapes be coming out?

Answer: We are hoping for quarterly. You need to
make sure you are on the mailing list.

Question: Will the tape utility support reading of
BACKUP tapes in non-INIERCHANGE format?

Answer: I believe that is the goal.

Question: Are the clearinghouse tools available
on-line?

Answer: Some of them are, but I suggest using
magtape instead of KERMIT. Also, I will try.to
provide sources for most of the VAX tools which have
sources on MARKET.

Question: Currently we are on TOPS-10 V7.01A. Are
we going to have to go to V7.02 in order to share
TU/2 's?

Answer: We won't look.

Question: Are you looking for VAX 8600 test sites
for the TU70/72 device driver?

Answer: Yes. See me, Peggy Sullivan.

Proceedings of the Digital Equipment Computer Users Society 333

TOOLS CLEARINGHOUSE

o Similar to DECUS Library
o Tools Received from Customers or

from within Digital
o No Support or Warranty
o Distributed "AS-IS"
o Software and Documentation

SOFTWARE TOOLS

o Util Hies
o User Colllllands and Interface
o Program and Data Conversion
o Text Editors

UTILITIES

o Tape Utilities
o Mail Gateways
o PHONE-20
o New HOST program
o DECnet-10 Utfl ities
o REV for VMS
o Others

TAPE PROCESSING UTILITIES

TENVAX - TOPS-10 Program to READ/WRITE
VMS ANSI Tapes

10BACKUP - VMS Program to READ TOPS-10
BACKUP Tapes

CONVRT - VMS Program to READ TOPS-10
BACKUP Tapes

DUMPERC - VMS Program to READ TOPS-20
DIJllPER Tapes

MAIL GATEWAY UTILITIES

o VMM - "MM" for VMS V3. X
o VMAIL/VMAILR - Exchange Mail Between

VAX-MAIL and TOPS-20 DECMAIL-MS

Anaheim, California-December 1985

NEW HOST PROGRAM

o For TOPS-20
o Establishes Virtual Connections

to VMS via DECnet
o Passes Escape Sequences Used

by Video Terminals

DECNff-10 UTILITIES

o FAL-10 Patches for VMS Connections
o "TELL" Program for Remote

Execution of User Commands

REV FOR VMS

o Used to Aid Users in Disk Space Management
o Interactive Deletion, Viewing &

Organizing of Disk Files

USER COMMANDS AND INTERFACE

o Inline Help Facility
o TOPS-20 Commands on VMS: Conrnand File Library
o TOPS-10 Commands on VMS: Command File Library
o COMPILE Class Conrnands

TEACH-VMS

o Runs on VMS
o Interprets TOPS-20 Commands
o Displays VMS Equivalents
o Provides Command Completion and Incremental Help

TOPS-10 COMMAND FILE LIBRARY

o Library of Command Files
o LOCATE Command Simulation

"COMPILE" AND "COMPIL2"

o Support for TOPS-Style Commands:
COMPILE, EXECUTE, LOAD, DEBUG, ...

o Data-checking on .OBJ Files

INLINE HELP FACILITY - "RECOG"

o Runs on VMS
o Provides TOPS-20 Style Help
o Comn~nd and Filename Completion
o Incremental Help - "?"

PROGRAM AND DATA CONVERSION

o APLSF Workspace Converter
o COBOL Conversion Aids
o BATCH and MIC Command Conversion
o SPSS Conversion Aids
o 1022 to 1032 Data Conversion

SFTOVX-APLSF WORKSPACE CONVERTER

o Use with APLSF-10/20
o Converts Workspace to VAX-11 APL
o Written in APLSF

334

COBOL CONVERSION AIDS

o JSACON - ISAM file Unload/Reload Program
Generator

o Reads TOPS COBOL Program
o Writes TOPS Program to UNLOAD ISAM File
o Writes VMS COBOL Program to Load

RMS/ISAM File
o Writes COBOL Record Definitions for Use

with the VAX Common Data Dictionary

MIC & BATCH FILE CONVERSION

o CONBAT Converts Commands
o Generates Comments Which Show

Incompatible Commands
o Allows for User Enhancement of Tools

SPSS CONVERSION AIDS

o SPSS Routines
o Aids in Converting SPSS Files to VMS

1022 TO 1032 DATA CONVERSION

o "DSCONVl"
o Written by Software House, Inc.
o Performs Dataset Conversion from 1022 to 1032

TEXT EDITORS

o TV for VMS
o SED for VMS
o EDT-10

DOCUMENTATION

o Comparisons
o Case Studies
o Third-Party Software

COMPARISONS

o Command Language
o Editors

- TECO
o Languages

- BASIC
- COBOL
- FORTRAN

CASE STUDIES

o COBOL-10/20, DBMS-20 & TRAFFIC-20
to VMS COBOL, VAX-DBMS, & VAX-TOMS

o DEC M.I.S. Department
o COBOL-10 & DBMS to VAX COBOL & VAX-DBMS
o FORTRAN to VAX-FORTRAN

THIRD-PARTY SOFTWARE

o Clearinghouse Contains Documentation
and Related Information

o Software is Believed to be of General Interest
o Documentation Includes:

Resource Accounting Package
EMACS Editor

TOOLS INFORMATION SYSTEM

o On MARKET, LSM's 2065 Timesharinq ::;vsL~m
o Dialup: (617)467-7437
o ARPAnet: OEC-MARLBORO
o Interactive Access - at the "@"

LOGIN LCG.CUSTOMER CUSTOMER

GETTING INFORMATION

o Use "HELP ?" to Get a List of
Topics You Can Select

o Use "HE.LP Topic" to Get Information on
a Specific Topic, e.g., "HELP REQUEST"

o Use "NEWS" to Read the Integration
Bulletin Board

o Use "TOOLS" to Read the Tools
Bulletin Board

SHARING INFORMAJION

o Issue the Command "MAIL"
o Send to: TOOLS to Place a Message

on the TOOLS Bu 11 et:i n Boa rd
o Send to: NEWS to Place a Message

on the NEWS Bulletin Board
o Answer the Other Prompts with the Subject

of the Message, Your Name, and so Forth

REQUESTING TOOLS

o Issue the Command "MAIL"
o Answer "To:" with "REQUEST"
o Answer "Subject:" with "RE.QUEST FOR JOOLS"
o Answer the Other Prompts with Your

Name, Phone, etc.
o We Will Mail the Appropriate Tape(s)

to You at no Charge

OBTAINING TOOLS BY MAIL

o US Mail, Send Request to:
Technical Support - Tools Clearinghouse
Digital Equipment Corporation
MR02-2/8D2
1 Iron Way
Marlboro, MA 01752

o Specify Whether You Have a DEC-10 or a DEC-20

TOOLS SUBMISSION

o Please Share Tools!
o Use the LCG.CUSTOMER Account to

Send Mail to SUBMISSION
o Use Postal Mail to:

Tools Submission
Large Systen5 Marketinq
Digital E.quipment Corporation
One Iron Way MR02-2/C2
Marlboro, MA 01152
U.S.A.

335

LARGE. SYSTEM NEWS

o LSM's Newspaper
o Free to Interested Parties
o Covers Integration, Tools, and Other Topics
o Send Subscription Request to:

P&CS Mailing List Maintenance
Digital Equipment Corporation
10 Forbes Road NR03-l/Ml
Northboro, MA 01532-2597

o Include Your Name, Company, Job Title,
Complete Mailing Adress, and Telephone Number

NEW INTEGRATION PRODUCT ANNOUNCEMENT

VAX TU70/72 DEVICE DRIVER

o Allows TU70/TU72 Tape Subsystems to be Shared
with VAX-11/780, VAX-111782, or VAX-111785
Systems Running VMS

o Protects Hardware Investment
o Provides High Duty Cycle Tape Drives
o future Support for VAX 8600

VAX/VMS LAYERED PRODUCT

o No Special DCL Interface Required
o Full Support from Digital

PREREQUISITES:

o VMS V4.3 or Later
o TOPS-10 V7.02 or Later

or
TOPS-20 V6.0 or Later

SOFTWARE PACKAGES INCLUDE:

o QE187 Device Ori ver
o Diagnostics
o Documentation

HARDWARE OPTIONS

o TX03A-AA/AB = DX20 + RH780 + fX03
o Cables
o TX03A-BA/BB = RH780 + Cables

THIRD-PARTY INTEGRATION TOOLS

CLONE

o Convert COBOL-10/20 to VAX-11 COBOL
o Menu Oriven
o User Definable
o Online or Batch Mode

RAF - REMOTE ACCESS FACILITY

o Access Remote System 1022, System 1032, Databases
o Request Remote Processors to:

·- Execute Procedures
- Perform Predefined Remote

FUTURE IN.IEGRATION TOOLS

FORTRAN TRANSLATOR

o Translates FORTRAN-10/20 to VAX-11 FORTRAN
o Rule-based System

GENERALIZED TAPE UTILITY

o Read BACKUP and DUMPER Tapes Under VMS
o Read Fore;gn Tapes Under VMS

336

Converting FORTRAN Programs from TOPS-10/20 VAX/VMS

William G. Gerken
Personal Products Company

Milltown, N.J. 08850

Abstract.

This session involved a discussion on TRANSFORT, the
automatic language translator which converts DECsystem-lo
and DECSYSTEM-20 FORTRAN programs to VAX/VMS FORTRAN.

Peggy Sullivan, DEC's Integration Tools Coor­
dinator, described TRANSFORT as a FORTRAN translator
that will help to convert FORTRAN programs from a
DECsystem-10 or DECSYSTEM-20 to VAX FORTRAN.
TRANSFORT was developed by the Lexeme Corporation in
Pittsburgh to run on the VAX and works on all
versions of FORTRAN programs created on FORTRAN VS
thru FORTRAN VlO on the lO's and 20's.

Since FORTRAN 10/20 has many extensions and VAX
FORTRAN follows much closer to the ANSI standard, it
makes translation very difficult with an automatic
translator. TRANSFORT will do some, but not all
translations. Based on previous testing TRANSFORT
will be able to convert and eliminate approximately
50% of the errors that would occur during a first
pass thru the VAX FORTRAN compiler. TRANSFORT will
comment on all code it has converted and will give
warnings on what differences it cannot convert. The
number of differences that cannot be converted will
depend on how closely your code follows the ANSI
standard. In regard to AS and AlO formats, TRANS­
FORT will only give warnings.

TRANSFORT has gone through an acceptance
testing at Digital and was sent back to Lexeme for
modifications. The new version was received by
Digital and sent to 3 or 4 "field test" customers at
the end of November. Due to the short period of
time between distribution and this symposium, the
feedback has been minimal. Peggy Sullivan reported
that John Collinger of the University of Pittsburgh
had run a "fairly large" FORTRAN program thru
TRANSFORT and reduced 90 some errors thru the first
pass of VAX FORTRAN to about 42 errors with no ad­
justments (as described by the warnings). Another
copy was sent DEC's Colorado Springs facility where
George Clinard reported that he originally had
problems with running TRANSFORT until he set the
page fault limit on the VAX to 30000 and then it ran
fine. He also experienced that approximately 50% of
the errors found in his programs were corrected.

Peggy reported that TRANSFORT should be
available thru the Integrations Tools Clearinghouse
possibly by the end of February. Although it does
not handle all of the errors found in the code,
TRANSFORT will help in the "grunt" work of con­
verting your FORTRAN programs to the VAX.

Proceedings of the Digital Equipment Computer Users Society 337 Anaheim, California - December 1985

BENCHMARKING THE 8600: A DEC-20 USER MAKES THE MOVE TO VAXLAND

by
Samuel B. Whidden

Director, Computer Services, American Mathematical Society1

DECUS - Anaheim, CA, December, 1985

Abstract-The American Mathematical Society has been a satisfied user of DECSYSTEM-20s since
1978 and at present has two 2060s. DEC's 1983 Jupiter decision forced the AMS to select a new
computer system to succeed its 20s. Believing that VAXes and VMS were as foreign to its experience
as any other system, in 1984 the AMS issued a Request for Proposal to several computer vendors,
describing in detail required hardware and software capabilities. The RFP covered requirements for
performance, networking and communications, office automation, and applications development in
light of the AMS' 5-year plan for acquisition of new computing resources.

This article will examine the AMS' comparison of Digital's VAX 8600, Data General's MV /10000,
and IBM's 4381 as solutions to its computing requirements. The systems were compared on the basis
of cost-performance indexes, communications facilities, and potential software functionality. The
performance of each machine was benchmarked against the 2060s, using performance tests devised
from in-house production applications. From the point of view of AMS requirements, the 8600
out-performed its competition in nearly all respects.

. ' .)I 111' (Clt1rl1Tl!IG S'fSTCM CAr,\cttr

:!.~! R. 1

I

'

2H ANNl'AL DE~ND
f--- GRO\./Tll CURVE

71 7• to II u IJ 14 95 86 81 8t u 90 II u n

Figure 1: AMS 36-bit System Capacity

The American Mathematical Society, a 36-bit user.
The AMS bought its first DEC-20, a 2020, in 1978. The power
(approximately 0.7 MIPS) of our original 2020 was quickly ex­
hausted. The 2020 was replaced by a 2060 (1.3 MIPS) in 1980. A
second 2060 was added in 1983, giving us a total of 2.6 MIPS. Fig­
ure 1 shows our consumption of MIPS over the years. A growth
curve of 25% per year, relatively common in the industry, fits
these points reasonably well. Projecting that curve out a few
years showed a potential need for 8 MIPS by 1989. We couldn't
be sure that growth rate would persist, but we had to plan as
though it would.

Is there a Jupiter in your future? It seemed clear that
we would eventually be a candidate for the Jupiter. Jupiter was
rumored to be a processor four times as powerful as the 2060's
KL-IO. We attended a non-disclosure meeting about Jupiter at
Digital and began to plan for the time when we would make this
major upgrade. It looked as though our Jupiter ought to arrive
in 1986.

But at the Spring DECUS of 1983 in St. Louis, DEC an-

1 ©American Mathematical Society, 1985.

Proceedings of the Digital Equipment Computer Users Society 339

11lPS

IO

Bl ANNUAL OE/UNO
f-- CR01,/TH CL'HE

r-------- --1----------1

I (2) 0601 ir- - - - - -

,. 1' 10 ll 12 fl ... 115 86

HARD1.',\RE & SOff;.',\H
SUPPO~f CONT[N'}f.S

'

•Q n ti n 91

Figure 2: DEC's 36-bit phase-out schedule

nounced Jupiter's cancellation. With Jupiter went the end of
DEC's 36-bit product line. We were faced not only with no path
for expansion, but the computer systems in which we had invested
years of development and use would have to be replaced.

DEC's timetable for 36-bit euthanasia. (Figure 2.)DEC
promised that DECSYSTEM-20 hardware and software develop­
ment would continue for five years, through 1988. They promised
that hardware and software support would be available for at
least five years beyond that, through 1993. In 1984, the year
after the Jupiter decision, the AMS had to decide what its new
strategy would be. Since our DEC-20s were facing extinction, we
knew we had to abandon them. One question was, how quickly?
We decided that, with DEC promising support through 1993, we
would be wise to be independent of the 20s by 1990. 1990 was
far enough away to give us plenty of time to make the shift, but
was early enough to give a comfortable margin of safety in case
either our schedules slipped during the interval, or the level of
DEC support dropped faster than expected. So we developed a
five-year plan covering 1985 through 1989, during which we would
select, install, and migrate our extensive applications systems to

Anaheim, California - December 1985

THE REQUEST FOR PROPOSAL
Table of Contents:

• The American Mathematical Society

• The Existing Computing Environment

• The Proposed Computing Environment

• The Five-Year Hardware/Software Plan

• Vendors Proposal: Instructions and
Requirements

• General System Requirements

• Technical System Information

Figure 3: RFP, Table of Contents

some new computing system.
But which computing system? Should it be a VAX? To us

as DEC 36-bit users, VAX was as foreign as any system from
any other manufacturer. Worse, VAX was a product of Digital
Equipment Corporation, who had just badly let us down over
Jupiter. We weren't about to jump blindly onto the VAXwagon.
We decided to prepare a formal RFP for a new system, describing
all the characteristics of hardware and software we wanted, and
submit it to vendors who might have the systems we needed.

The RFP. (Figure 3.) Our RFP was very detailed. We wanted
to cover all the bases, to set forth all the ideas we had accumu­
lated about the ideal (for us) system. These included hardware
and operating system capacity and performance, availability of
vendor and third party software utilities and tools, and the future
outlook.

We described our existing environment in detail, and the new
environment we wanted to construct. We outlined our five-year
development plan.

We told the vendors how we wanted them to propose and what
we wanted them to propose, both generally and in technical de­
tail. In appendixes, we provided them with all the characteristics
and usage statistics we could for our existing systems. Altogether,
we provided some 70 pages of specifications.

We discussed our RFP with more than a dozen vendors and
actually submitted it to eight who seemed to qualify by virtue
of their size and product line and their apparent stability in the
large computer market. We received responses from six vendors
and eventually narrowed the field to three: IBM, Data General,
and DEC.

We went over each of the three proposals with the vendor in
detail. Each vendor refined his proposal more than once, making
it more responsive and more competitive. We invited three dif­
ferent groups of independent consultants to examine our options,
including the hardware, software, and communications aspects of
each of the proposals. It was apparent that any of the three sys­
tems was capable of meeting our requirements. Our task became
that of selecting the one that would do so best.

In the end, we and our consultants chose the 8600. What made
a good choice for the American Mathematical Society won't nec­
essarily be the right one for someone else. But there are common
concerns in almost any computer selection and I think our expe­
rience is worth sharing.

340

SOME CONCERNS:

• A Distributed Or A Centralized System?

• We Had Little Need To Convert Existing Applications

• But timing was important

• "We're Interested In Your Future, But You Can Only
Sell Us What You Can Deliver"

Figure 4: Some Criteria For Computer System Selection

A distributed vs. a centralized system. (Figure 4.) At
first we thought that our existing centralized system should be­
come more distributed. We thought that for some, if not many,
purposes, individual users should have personal computers; per­
haps some of the computing power in our present central com­
puters should be distributed to users. Our users are largely office
workers, not engineers with CAD/CAM requirements, but indus­
try literature seemed to be telling us that users wanted desk-top
computing and independence from central domination. Perhaps
when the user recognized that the impossibly heavy load on his
computer was due to nobody but himself, he might ease up a
little in his criticism of the computing center.

But none of the vendors with whom we talked offered a con­
vincing distributed system. Our office is heavily computerized,
with the number of terminals roughly equalling the number of
employees (about 200). Although there was no broadly inte­
grated package of office automation tools available for TOPS-20,
our unsophisticated users had available to them many powerful
and reasonably user-friendly tools, in addition to the TOPS-20
operating system itself, through the mainframes. These were
such tools as EMACS, the highly functional MM mail system, a
spelling checker, a spreadsheet, SCRIBE, and good laser hard­
copy output. At the time of our investigation, micro technology
had not reached a point where that kind of power could be made
available to that many users at a price much less than about
twice the cost of similarly equipping them through the central
computer. Nor were we much encouraged by the degree of user
friendliness we found in micro systems, or by the horror stories
we heard from users in firms where micros grew like mushrooms
in every dark corner. Nor did it seem that good distributed ac­
cess to central data bases was yet available. So early on, we
moved away from the idea of distributing our computing power,
and concentrated on cost-effective shared systems.

We didn't need to convert existing applications. At the
time of the Jupiter announcement, the AMS was a year into a
major software redevelopment project. We had earlier decided to
recreate our business data processing applications, pretty much
from scratch. Most of these applications were publishing and fi­
nancial systems written in-house in the early 1970's. They had
become too worn and patched to be serviceable. We had decided
it was time to redevelop them using up-to-date specifications.
When we undertook this redevelopment project, it was with our
2060s, or their 36-bit succesor, in mind as the operational com­
puter. The Jupiter decision changed our expectations, but we
did have the advantage of not having the large-scale conversion
of existing applications as one of the major criteria for selection
of a replacement. We didn't necessarily have to have a new sys-

SOFTWARE REQUIREMENTS:

• A powerful, user-friendly operating system

• Good application development tools

• Integrated Office Automation tools

• Broad availability of third-party software

Figure 5: Software Requirements

tern that would support TOPS-20. We could select a system on
which to develop brand new versions of our applications.

But timing was important. Our board of trustees had ap­
proved an applications development schedule that called for the
start of program development by January 1, 1986. That meant
that benchmarking, selection, and testing of new development
tools had to start by the preceding September 1. The new com­
puter, whatever it was, had to be delivered and up and running
by then.

"We're very interested in the future, but you can only
sell us what you can deliver". We started our investigation
in September, 1984. Because of our development schedule, we
needed delivery of the first new system by September, 1985. We
were very interested, of course, in vendors' future plans, and we
listened to them eagerly, if a bit skeptically, at each non-disclosure
session. But we couldn't buy it if the vendor couldn't deliver it
to meet our schedule. So vendors were forced to restrain some of
their enthusiasm for future products and concentrate on showing
us how their present equipment beat the competition.

A powerful, user-friendly operating system. (Figure 5.)
We had nearly 200 interactive users who had become accustomed
to the very user-friendly TOPS-20 operating system. We couldn't
afford to dump them onto some user-insensitive, unforgiving op­
erating system with cryptic error messages and un-mnemonic
commands. Nor could we afford to sacrifice operating system
power for ease of use. In addition, the operating system had to
be one which supported the '.I'.E;X: typesetting system, which the
AMS uses for publishing much of its mathematical literature.

Good application development tools. We had been
charged with a massive applications redevelopment program.
In addition to standard compilers and utilities, our program­
mer /analysts needed the best fourth-generation applications de­
velopment tools we could afford. Either our new computer vendor
had to supply them, or they had to be available from third parties
for the new equipment.

Integrated Oftlce Automation tools. We wanted to of­
fer those 200 interactive, managerial, administrative, and clerical
users a broadly competent, thoroughly integrated office automa­
tion system-one which combined word processing, editing, elec­
tronic mail, spreadsheet, business graphics, calculator, calendar,
scheduler, and whatever else was available, into an easy-to-use,
efficient office tool.

Broad availability of third-party software. One of the
weaknesses of TOPS-20 has been the relative scarcity of good
third-party software. We wanted our new system to improve on
that.

A Local Area Network ••. (Figure 6.) Inevitably, our system
would grow beyond a single machine. Our two DEC-20s were

341

COMMUNICATIONS REQUIREMENTS:

• A Local Area Network ...

• ... that would couple the new system efficiently to the
DEC-20s

Figure 6: Communications

HARDWARE REQUIREMENTS:

• Computing Power

• Cost/Performance

• State Of The Art

Figure 7: Hardware Requirements

connected only by a version of FTP and a shared disk drive.
We wanted virtual terminal and terminal server capabilities. We
wanted to be able to add specialized work stations to the system
when we needed to.

... that would couple the new system eftlciently to the
DEC-20's. The 20s would be around for five years or more. We
needed easy access to them for existing data and programs as we
rebuilt our applications on the new system. Whatever the new
system was, there had to be a mechanism to connect it smoothly
to the 20s.

Computing power. (Figure 7). The new system had to
assure us enough computing power to meet our projected need
for 8 MIPS, or the equivalent, by 1989.

Cost-Performance. The AMS is neither large nor rich, and
we needed the lowest ratio of cost to performance we could find.

State of the art. We wanted our new system to be of recent­
enough architecture that we wouldn't spend a lot of time in the
next year or two wishing we had waited for something better.

What the Vendors Offered. The vendors responded to our
RFP as shown in Figure 8. IBM suggested we start with a 4381
Model Group 1, to be replaced by a Model Group 2 machine in
1987, to be replaced in turn by a 4381 Model 3, the largest in
this series, in the last year of our 5-year plan. We calculated total
5-year costs for this option to be about $2.6 million, including all
the costs of the system: vendor and third-party hardware and
software.

DEC offered twin 8600s, one in 1986 and another the following
year. These two machines together would provide for our tenta­
tive requirement for 8 MIPS by the end of the planning period.
Since at the time of the proposal, DEC could not promise de­
livery of the first 8600 in 1985, when we needed it, they offered
to install, temporarily, an 11/785 at no extra cost. Overall costs
were projected at just under $2 million.

Data General proposed three MVlOOOOs over the planning pe­
riod to bring us close to the 8 MIPS level, at a 5-year overall cost
of about $1.9 million.

With any of these proposals, careful monitoring of machine
usage would be the real determinant of timing for installation of
machines after the first.

IBM's proposal left us substantially below that 8 MIPS figure,
but both we and IBM believed that the mainframe architecture

Benchmark Seconds:

The Vendors' Proposals:
DEC VAX MV IBM

T 1985 I 1986 l 1987 I 1988 I 1989 I TotaP- 2060 8600 10000 4381-2

Memory: lMW 12 Mb 6Mb 16 Mb

IBM (VM/CMS) CPU Time, Standalone:

Syst: 1 4381-1 I j 4381-2 j 1 4381-3 j $2,607K TeX run 248.9 119.9 339.6 151.0
12.7 1.7

MIPS: 1 2.1 1 2.7] 4.6 4.6 Cobol compile 6.1 3.8
Fortran compile 1.3 .7 1.4 .3
Application run 73.3 9.6 59.4 7.7

DEC (VMS)

Syst: 1 11/785 T 8600 I 8600 t t I $1,974K CPU Time, With Load:

MIPS: I 1 4.46 I J 8.9 TeX run 283.5 122.2 N/A 160.8 1.7 4.46
Cobol compile 6.1 3.8 12.8 2.3

Fortran compile 1.3 .7 1.4 .3

Data General (AOS/VS) Application run 78.0 9.7 61.4 8.1

Syst: I MVlOOOO l l MVlOOOO T T MVlOOOO T $1,906K
Elapsed Time, Standalone:

MIPS: 1 2.5 I l 2.5 1 1 2.5 l 7.5

Figure 8: The Choices

of the 4381 would allow that machine to perform as well as, or
better than, the DEC or Data General superminis despite the
difference in MIPS. IBM's representatives expalined to us that
mainframes like the 4381 utilize relatively powerful and intelligent
peripheral controllers to relieve the CPU of the overhead and I/O
that burden minicom t r pu er p ocessors. In the end, though, our
findings didn't support this contention.

A Benchmark for AMS. Our systems programming group,
led in this task by Betsy Ramsey and Barbara Beeton, devised a
series of benchmarks by means of which we could compare these
machines.

Computing at the AMS mainly comprises four categories: busi­
ness data processing (primarily batch production in the areas of
membership records, subscription and order fulfillment, and fi­
nancial record keeping); typesetting; office automati~n; and ap­
plication development. We based our estimates of machfo.e effi­
ciency on the first two areas: on performance measurements in
application processing and in production typesetting. For fourth­
generation development tools and for office productivity software,
we planned to examine vendor and third-party software offerings.

The COBOL Benchmark. We expect to move eventu­
ally to fourth generation development tools, but we've been a
COBOL shop for years so an important part of our benchmark
was based on COBOL. A multi-program segment of one of the
Society's business application systems was selected as the produc­
tion benchmark. Successful compilation and linking of the several
programs and modules (one of which was a Fortran module), as
well as the actual running of the application, was required as part
of the benchmark of each vendor's system. The COBOL portion
of the benchmark represented an I/0-intensive application.

The '!EX Benchmark. The AMS publishes several jour­
nals and book series of mathematical research. Such material is

2 Costs are for complete system, including both vendor and
third-party hardware and software, not for computers alone.

342

TeX run 285.0 128.0 373.0 170.0
Cobol compile 13.3 4.9 27.0 6.0

Fortran compile 4.4 2.3 8.0 2.0
Application run 99.0 37.0 310.0 35.0

Elapsed Time, With Load :
TeX run 2210.0 209.0 N/A 329.0

Cobol compile 37.4 10.6 37.0 15.0
Fortran compile 11.2 7.9 18.0 2.0
Application run 519.3 78.0 1209.0 52.0

Figure 9: Raw Benchmark Data

difficult and costly to typeset by conventional methods, and we
have turned in recent years to in-house, computerized composi­
tion. As a result, the AMS has become a leading supporter of the
1E;X typesetting language, a system devised by Donald Knuth of
Stanford for the typesetting of scientific and mathematical litera­
ture. Versions of TEX were already available for each of the target
machines, and part of our benchmark consisted of a production
run of this typesetting language. The 1E;X typesetting portion of
the benchmark represented a relatively compute-intensive appli­
cation.

Each vendor was given a tape containing our sources and input
files. Each was asked to do the necessary installations, compiles
and links, to run the benchmarks, and to report the results. Al­
though we were present to observe the benchmark runs in most
cases, we were not there for all. But vendors were told that were
we to buy their machine, our acceptance test would con~ist of
duplicating the reported benchmark results.

For comparison, the full benchmark was run on our DEC 2060
as well. '

None of the three vendors had any difficulty installing the 1E;X
language on their systems and processing our test input file. None
of the three, however, was able to port our COBOL application
completely successfully. They all did finally run the application
successfully enough to get what we believe were reliable timings,
but fully correct final output was never obtained by any of the

Standalone Power Of Machines,
Relative To 2060:

1 20601 8600 J MVlOOOO J 4381-2

Tex Run:
CPU J I.DO] 2.08] .73

1
1.65

Wall] 1.00] 2.23] .76 1.68

Application Run:
CPU I I.DO l 7.64 j 1.23 1 9.52
Wall j I.DO j 2.68 j .32 2.83

Figure 10: Speed relative to the 2060

three vendors.

Benchmark Performances. Figure 9 presents the raw
benchmark data. Each machine was configured with the amount
of memory we would buy initially.

There were four parts to the benchmark: the T.E;X produc­
tion run, a series of COBOL compiles, a Fortran compile, and a
production run of the resulting application system. CPU time
and elapsed time were measured for each part under both stan­
dalone and loaded conditions. For tests under load, a moder­
ate standard load was applied, consisting of four continuously
self-resubmitting batch streams containing the four parts of the
benchmark. Timings were then taken on each part of the bench­
mark, run separately. Each measurement was taken a number of
times.

An error occurred during the timing of the typesetting produc­
tion run on the Data General machine under loaded conditions
which invalidated the results.

IBM ran the benchmark on the 4381 Model Group 2 but would
not run it on the Model Group 3 machine. Instead, they sug­
gested we estimate the speed of the 4381-3 as I. 7 times that of
the Model Group 2, which we did.

Computing Speed Relative to the 2060. Because our
experience with our data processing workload is based entirely
on DECSYSTEM-2060s, we wanted to understand these propos­
als in terms of the 2060. Figure IO compares the speed of each
machine to that of the 2060 on the two production runs in stan­
dalone mode. The numbers represent the time taken by the 2060
divided by the time taken by each of the other machines; the
higher the number, the faster the machine (the greater the ma­
chine's power, by this measure). The 8600 showed about twice
the power of the 2060 on the compute-intensive T.E;X benchmark.
The 4381-2 was a little slower than the 8600 on this test.

The 8600 performed more than seven times faster than the
2060 on the I/O intensive COBOL application run when CPU
time was measured, but fell to little more than twice the speed
of the 2060 in wallclock terms. We took this as a reflection of
relatively high waiting time for I/O service in the 8600, under the
particular circumstances of this COBOL application. The 4381-2
was superior to the 8600 on this test, giving a performance equal
to more than nine 2060s in CPU terms. But to our surprise, the

343

Standalone Power Of Proposals,
Relative To 2060:

l 8600 l MVlOOOO J 4381-3

TeX Run:
CPU 1 4.16 1 2.19 j 2.81
Wall 1 4.46 2.28 2.86

Application Run:
CPU 115.28 l 3.69 l 16.18
Wall] 5.36 1 .96 l 4.81

Figure 11: Relative Processing Power Of Each Proposal

4381 showed an even greater vulnerability to I/O than the 8600,
using nearly the elapsed time required by the 8600.

The generally better CPU performance shown in the applica­
tion run, relative to the T.E;X run, is due to the fact that the com­
puting requirements imposed by the COBOL application were
lighter in both quality. and quantity than those of the TEX run.
Not only does TEX do its own memory management, but, be­
cause of its stringent requirement for portability, it uses only
integer arithmetic-its results on one machine must be precisely
the same as those on any other. The Fortran module imbedded
in the COBOL application, on the other hand, does all its cal­
culations in floating point, at which both the 8600 and the 4381,
equipped with floating point accelerators, excel.

The numbers in Figure 10 can be read as the number of 2060s
to which each of these machines would be equivalent, under the
special circumstances of the AMS production benchmarks. The
8600 gave a performance equal to between two and seven and a
half 2060s. The performance of the 4381-2 equalled about one
and a half to nine and a half 2060s. Since AMS data processing
contains roughly 12 times as much COBOL application process­
ing as T.E;X processing, the extra strength of these machines in
this area was important.

Our performance tests did not yield quantitative comparisons
of these machines in interactive mode, although we did assess
qualitatively the strengths of each vendor's office automation sys­
tem. We were also unable to measure machine performance under
overloaded conditions. At the time of our investigation (early
spring of 1985), no user whom we contacted had had an 8600
long enough to saturate it, in terms of either batch production or
number of interactive users. Subsequently, there was this tanta­
lizing quote from the introduction to Tom Blinn's session at the
New Orleans Symposium, comparing 2065 vs. 8600 benchmark
results:

ECS Anker was the basis for the multi user bench­
mark. This benchmark on the KL produced accept­
able response times which ranged from 1/4 second to
1 1 /2 seconds at 90 users. The 8600's response curve
was fiat out to 90 users; the maximum response time
was 1 second and occurred at 200 users ... There is still
a need for better multi-user benchmarks ... 8

Throughput Comparisons:

Throughput = 1 DEC 1 VAX l MV l IBM
CPU Time/wall 2060 8600 10000 4381-2

Standalone:
TeX Run: j .87 1 .94 j .91 j .89

Applic. Run: .74 .26 .19 .22

With Load:
TeX Run: l .13 l .58] j .49

Applic. Run: 1 .15 1 .12 l .05 .16

Figure 12: Relative Throughput

Comparing Proposals. (Figure 11.) To assess the power of
the full set of machines in each proposal, we simply multiplied
the relative results obtained for each machine alone by the num­
ber of machines proposed by each vendor: two for DEC, three for
Data General, and 1.7 to relate the IBM 4381 Model Group 3 to
the 4381-2. The numbers in this figure are again relative to the
performance of a single DECSYSTEM-2060. They can be inter·
preted as the "2060-equivalence" of each of the three proposals,
again under these limited circumstances.

Throughput Comparisons. The ratio of CPU time to
elapsed time can be viewed as a measure of "throughput effi­
ciency". That is, in the standalone case, it should reveal the
percentage of available CPU cycles devoted to the problem task.
The remaining CPU cycles can be assumed to be devoted to
operating system overhead and input/output waiting time. In
the case of the TEX benchmark, I/O wait time is small, so the
throughput ratio can be viewed as a rough measure of operating
system efficiency. The standalpone numbers in Figure 12 show
the 8600, with a ratio of 94%, to be the most efficient in this
respect. The MV /10000 yielded 91 %. The 2060 CPU devoted
only 87% of available cycles to the task, and the IBM 4381-2
89%, possibly as a result of these systems' relatively high level of
attention to time-sharing overhead.

The COBOL application run involves greater I/O activity than
the TEX run. Comparing the throughput ratios of the various
machines under this circumstance gives a rough estimate of their
sensitivity to I/O demands. The 2060, with its ratio of 74%,
appeared to be relatively "I/0-resistant". Both the 8600, its
throughput ratio dropping from 94% to 26%, and the MV /10000,
dropping from 91% to 19%, were, at least in this test, much
more affected by I/O demands. The low resistance to I/O of the
4381, as measured here, surprised us. As I noted earlpier, it was
our understanding that, in the supermini computers-the 8600
and the MV /10000-I/O is handled largely by the CPU itself,
whereas in mainframes, such as the 2060 and the IBM machines,

8 Blinn, Thomas P. and Kazzaz, Dan, "TOPS/VMS Performance
Comparisons", Proceedinga of the Digital Equipment Uaera Society,
Spring, 1985

344

Standalone Weighted Production Units:
2060 8600 MVlOOOO 4381-2

Weighted Units: 1128.5 235.1 1052.4 243.4
Rel. to 2060 1.00 4.80 1.07 4.64

Figure 13: Weighted Benchmark Seconds

separate intelligent I/O controllers are supposed to absorb much
of that load.

When a load is added, the CPU must deal with the increased
overhead requirements of scheduling, page swapping, additional
memory management, and background tasks, as well as with the
computing requirements of competing tasks and their 1/0 re­
quirements. It can be seen by comparing the throughput ratios
for the TEX benchmark under conditions of load and no load,
that the 2060 is more sensitive to load than the 8600 when 1/0
demands are small. Adding an I/O demand puts a strain on both
machines, with the 2060 perhaps a slightly better performer un­
der the limited conditions of this test. Complete data are not
available for the MV /10000, but it appears sensitive to 1/0, with
or without load. The 4381 's performance shows a greater resis­
tance to workload than to I/O, very much like the 8600. We
would have expected the reverse to be true, and the 4381 to re­
semble more the 2060 than the VAX.

Summarizing The Benchmark Results. To take account
of our mix of production requirements, we derived a weighted
benchmark unit for each machine, which was simply twelve times
the number of CPU seconds required for the COBOL application
run, plus the number of seconds used for the typesetting run.
Figure 13 relates these weighted units to the performance of the
2060. We used these weighted units to summarize our findings.

Figure 14 summarizes our benchmark results. We compared
the three proposals quantitatively in several ways. We had three
basic pieces of information to work with: the total cost of each
proposal, the total number of MIPS each proposal would provide
us, and the benchmarked performance of each machine.

Once again, the total cost figures given in Figure 14 represent
all projected costs, over the five-year planning period, for vendor
and third-party hardware and software, not just the cost of the
proposed machines. The figure for total MIPS is the number of
MIPS for each machine times the number of machines in the pro­
posal. Weighted benchmark units are those derived in Figure
13.

One way to view the proposals was to rank them in terms of
a known quantity. "2060-equivalents" is the number of 2060s
to which each machine was equivalent, determined in Figure 13,
multiplied by the number of machines in the proposal. Liberally
interpreted, this is the number of 2060s we would have to buy
to accomplish the same amount of production (in the mix repre­
sented by the benchmark) of which these proposals are capable.

Cost per MIPS and cost per 2060-equivalent are sim­
ply the total proposal costs divided by total MIPS or by 2060-
equivalents. These ratios help put the total costs in perspective.

VENDOR No. of TOTAL TOTAL COST/ WT'D COST- 2060 COST/
MACHINES COST MIPS MIPS BENCH- PERFORM- EQUIV A- 2060-

$OOO'S $OOO'S MARK ANCE LENTS EQUIV
UNITS INDEX $OOO'S

DEC 2 1,974 8.9 222 235.l 23.2 9.6 206

D.G. 3 1,906 7.5 254 1052.4 66.9 3.2 592

IBM 1. 7 2,607 4.6 567 243.4 37.3 7.9 331

Figure 14: Comparing The Options

Finally, The cost-performance index is the proposal's total
cost per machine (its total cost divided by the proposed number
of machines) multiplied by the weighted benchmark units for that
machine (divided by 1000). Both cost and benchmark units are
better the smaller they are, and so is the index. The product of
the cost and the measured speed of each machine constitutes its
cost-performance index.

The Conclusion. Admittedly, our benchmarks were a small
sample of the kinds of work that might be done on these machines.
Nor could we control all the variables to the extent we would have
liked. Nonetheless, to whatever extent they are valid, every way
we analyze these results appears to tell us that the VAX 8600
offers the best fit for our mix of production and our pocketbook.
In every case, the vendors themselves ran the benchmark, either
with our people or on their own. All the vendors saw the results
of these tests, were invited to criticize our analyses, and could
not (or did not) offer alternate interpretations.

There were other factors, of course, beyond the benchmark,
that contributed to our decision. A major one was VAX cluster­
ing, in which the common file system makes it relatively simple
and inexpensive to add computing power to the system under a
wide range of circumstances, minimizing the cost of being wrong
about the power needed. Another was DECnet/Ethernet, allow­
ing easy communication between the new system and the exist­
ing DECSYSTEM-2060s. And finally, the VMS operating system

345

l\"S J6 l[T COrttllTtll'C

- - _lO.l:O - - -'

VAX 8&00

,l~)-2 - .! - 2

I

___ Q~_p_J

C A P II C l T Y

(2) 'J/l.X86001
i---- -----

' I
I

I
I 1H ANNL'AL Df:-V.NO

f-----.- G~OlitM CURVE

71 79 IQ ll 12 9J 14 85 86 81 81 1<0 90 'I 9Z 9J

Figure 15: Two 8600s Match the Demand Curve

comes as close to TOPS-20 as any we could find.

A good match for projected demand. And, as Figure 15
shows, two 8600s will certainly fit our expected 25%/year curve
of growth.

All we need now is for DEC to stay on course through the rest
of this decade. And maybe a little into the next.

January 3, 1986 8:44

Typesetting Articles for the DECUS Proceedings with '.IEX.1

Barbara N. Beeton
American Mathematical Society

Providence, Rhode Island

Abstract

The DECUS Proceedings have traditionally been published from copy supplied
by the authors, prepared according to rules devised for typewritten material.
The power of the computer typesetting language TEX has now been applied to
this task, and a formatting package, named DEPROC, has been submitted to the
DECUS Program Library for use by authors who have access to a working TEX
system. (The TEX program and related software, created by Donald Knuth of
Stanford, are in the public domain.)

This paper presents the important features of DEPROC and, through
examples, shows how it is to be used. Use of DEPROC, which is encouraged, will
produce the author's work, nicely typeset, in the standard Proceedings format.
There is a general description of how the package works and of the mechanical
requirements for camera copy of Proceedings articles, which will be created on
the author's local output device.

No prior knowledge of TEX is required, but authors using DEPROC will be
expected to learn some rudiments, especially if their papers contain special
notation or formats such as tables.

The DECUS Proceedings, like the conference proceedings
of many other organizations, is rushed to publication
as quickly as possible so that the material will reach
the conference participants and other interested readers
before its value is diminished by time. Reproducing
author-prepared copy eliminates the considerable bother
and expense of typesetting, proofreading and corrections.
The published document should be compact, uniform
in appearance, and readable, regardless of the kind or
quality of printing device available to the author. For
these reasons, instructions to authors have heretofore
assumed that nothing more elaborate is available than an
ordinary typewriter or dot matrix printer.

To enforce uniformity, the author is provided with
"model paper", on which are printed (in non-reproducing
ink) column and page borders, alignment marks, and
instructions for placement of title, author, and the other
parts of a proceedings article. The dimensions of the
model paper are almost always larger than those of the
published Proceedings - this permits more text to be
packed onto each page, and also improves its appearance
or "quality" when photographically reduced, smoothing
out the rough edges of letters and symbols generated by
a typewriter, dot-matrix printer or other "low-resolution"
device.

1 TEX is a trademark of the American Mathematical Society.

Proceedings of the Digital Equipment Computer Users Society
349

Within the past few years, advances in laser-printer
technology have made good-quality output accessible to
a growing number of users, through a widening selection
of low-cost output systems based on print engines with
300 dot-per-inch resolution and (relatively) easy-to-use
interfaces. Such devices have been attached to most
kinds of DEC computers, and drivers now exist to print
the output from such programs as Scribe2 TEX and
Troff. Most low-end laser printers cannot use paper wider
than 81/2", however, so even if both a good composition
program and output printer had been available, until now
an author would have been discouraged from using them
for mechanical reasons.

The editor of the DECUS Proceedings has now agreed
to accept typeset copy printed on such a system at 100%
on 81/2 x 11" paper, provided it conforms to the published
format. This article (which has itself been produced by
the technique it describes) introduces a package, DEPROC,
designed to prepare Proceedings articles using TEX·

What is '!EX?

TEX is a public-domain typesetting language created by
Donald Knuth of Stanford University. His original aim
was to typeset his own books, in particular The Art
of Computer Programming [ACP], with a quality equal

2 Scribe is a trademark of Unilogic Ltd.

Anaheim, California- December 1985

no space is wanted between the last item on a line and
the first item on the next, a % can be used to suppress it
intentionally.

Control sequenres, also ralled marros

A "control sequence" ca is an instruction for 1E;X to
perform some action or to produce a particular symbol.
A ca begins with a backslash, \. There are two types of
ca-es:

- A "control word" consists of\ followed by one or more
letters. It is terminated by any non-letter, including
a space. Spaces after a control word disappear, and a
special technique (see next paragraph) is required to
create an output space after a control word. \TeX is
an example of a control word; it produces the 1E;X
logo.

- A "control symbol" consists of\ followed by exactly
one non-letter. Since its length is known, no special
terminator is required. \&: is a control symbol to
produce an &. \u (\ followed by a space) is an
explicit space, to be used where an output space
should follow an element input as a control word.

New ca-es can be defined within a document to make
input easier or clearer. A few rules governing ca names
should be observed carefully.

- Case matters; \caname is not the same as \Caname or
\CSName. Try to pick a name that means something
to you, and is easy to type.

- A new definition will replace an existing one. If
you specify a ca name that performs an important
function in the document formatting, results, as they
say "may be unpredictable".

You can use the PLAIN method of defining a ca:

\def\caname{ ... something ... }

but if you are not really familiar with 1E;X or with DEPROC,
you might choose a \caname that already exists. DEPROC
provides a simple alternative, that checks to make sure
your \caname isn't already reserved for something else:

\define\caname{ ... something ... }

If this name has been used before, 1E;X will stop to
give you a warning, which you may ignore by responding
with a (CR), after which the definition will be made as
requested. You may continue to ignore the warning, if
you know the prior use won't affect you, but it's usually
better to change \csname to avoid the interruption.

The control symbols \0, ... , \Q always start out
undefined, so they are available for transient use without
checking.

Math

Mathematical expressions are input between $... $. Dis­
play math is begun and ended with $$... $$. For details
of math input, see [FG], [TB] or [Joy], in order of
increasing complexity of expressions handled.

352

Starting a DECUS Proceedings artide

The first step in preparing an article is to create a file.
The first line in this file should be

\input deproc

This will cause the formatting definitions to be loaded
when the file is input to TE;X.

Next, enter the "top matter". This consists of such
things as the title of the article, the author(s) and their
addresses, and the abstract.

Title and authors

For an article with a short title and one author, they are
input like this:

\title{A One-Line Title}
\author{Author Name\\

Author's Organization\\
City, State}

The double backslashes \ \ indicate line breaks. This
technique is also used to break up long titles:

\title{Here We Have a Particularly
Long Title\\That Can't Possibly
Fit on a Single Line}

This will be set (in a boldface font slightly larger than
text size) as

Here We Have a Partirularly Long Title
That Can't Possibly Fit on a Single Line

Notice that the way the lines are broken in the input file
is not how they appear in the output - only \ \ matters to
TE;X. Actually, TEX will break long titles into lines short
enough to fit on the page, but a multi-line title usually
makes more sense to the reader if the author decides
where the line breaks should occur.

For multiple authors, the same \author tag is used
with \and or \And:

or

\author{Firat Author
\and

Second Author\\
Common Organization\\
City, State}

\author{Firat Author\\
First Organization\\
City, State

\And
Second Author\\
Second Organization\\
City, State}

and so forth, which will appear thus in the output:

or

First Author and Serond Author
Common Organization

City, State

First Author
First Organization

City, State

Second Author
Second Organization

City, State

Authors' names (the first line, and the first line after
\And) are printed in boldface; if an author name is to
appear on any other line, begin that line with \bf (the
TEX instruction for boldface type).

The title and author of the present paper look like
this in the file:

\title{Typesetting Articles for the DECUS
Proceedings with \TeX\footnotemark[l)}

\author{Barbara N. Beeton\\
\AMS\\
Providence, Rhode Island}

A couple of additional points can be noted in these few
lines. First is the \footnotemark[l) which follows \TeX.
Where is the footnote text? (After all, TEX is supposed to
take care of formatting, leaving the author free to worry
about content.) For TEXnical reasons too complicated to
explain here, footnotes on items in the top matter are
lost unless extraordinary measures are taken, and I hadn't
developed a reliable solution in time to install it in the
first release. Fortunately, there is a simple alternative,
to enter the footnote marker (as shown here) and the
footnote text separately. This is covered in more detail in
the section on footnotes.

The other item to look at is \AMS, which becomes
American Mathematical Society in the output. This is
an example of a "local definition", something that is not
likely to he useful to anyone else, hut can save the author
a lot of time correcting typing errors. Local definitions
that are used throughout an article are best input right
after the request to load DEPROC:

\input deproc
\define\AMS{American Mathematical Society}

Abstract

The abstract is the final part of the top matter.

\begin{abstract}
This is a short summary of what
the article is about.
\end{abstract}

The heading "Abstract" is provided automatically; don't
input it. The abstract may contain more than one
paragraph. Paragraphs are separated by a blank line or
by \par, as usual.

353

The top matter is now complete. The body of the
article follows.

\begin{document}
\maketitle
(Text of footnotes to the top matter is given here)

This is the first sentence of article text.

\end{document}

The body of the article

An article can start out with text or with a heading.
Three levels of headings are provided by DEPROC:

\section Section heading\par
\subsection Subsection heading\par
\subsubsection Subsubsection heading\par

(As usual, a blank line is equivalent to \par.) These
produce headings (with extra space above and below, not
shown here) in the following styles:

Section heading

Subsection heading

Subsubsection heading

The first paragraph following a heading will not be
indented in the default style. This may be changed if
you prefer, so that all paragraphs will he indented, by
specifying

\NormalParindent

on the line after \begin{document}.
Paragraph indentation can be suppressed throughout

by specifying \NoParindent but that would probably make
the article too hard to read without other alterations to
the style; for an example of unindented style, see the
article by Richard Southall [TD] in TUGboat.

To suppress indentation on a single paragraph,
precede it by \noindent.

Footnotes

The use of \footnotemark in a title has already been
illustrated. A footnote consists of two parts, the mark
and the text. These are usually entered as a unit8 :

as a unit\footnote[3]{Like this.}:

When the marks and text must be entered separately4 •6 ,

two statements are needed:

entered separately\footnotemark[4,6]~
\footnotetext[4]{Two footnotes ...

separately.}\footnotetext[6]{This ... }

3 Like this.
' Two footnotes assigned to one item must be marked and entered

separately
11 This situation is slightly different from what happens in the top

matter.

Note the use of the '!. after the \footnotemark- care
must be taken to avoid spaces that might creep unwanted
into the text, and suppressing the (CR) at the end of the
line is probably the easiest way.

Marks are set as superscripts in the default style, but
this can be changed by specifying

\footnotemarkstext

just after \input deproc.

Quotations

Short quotations, of less than a paragraph, are set with

\begin{quote}
If you can't fix it, . . . {\em Button}
\end{quote}

and look like this:

If you can't fix it, call it a feature. Button

For longer quotations, use

\begin{quotation}

\end{quotation}

in a similar manner, separating paragraphs with blank
lines as usual.

Lists

Itemized and enumerated lists occur in many DECUS
Proceedings articles. IJi.'fEX provides automatic counters
and up to four levels of nesting. DEPROC users will have to
make do with two levels, and no automatic counters. The
general input structure is this:

\item[label] text
\itemitem[label] text

Any desired labels can be used;
• \bullet,
o \circ, and
- en-dash (input as --)

are common choices, as are numerals and single letters.
Here is a short example of a two-level list.

\item[\bullet] first item
\item[\bullet] second item
\itemitem[\circ] new level
\itemitem[\circ] one more
\item[\bullet] back a level

Here's what this looks like, after padding out the text a
bit to show how longer items look.

• The first item in this list isn't particularly interesting,
but it has to be long enough to make two lines.

• The second item isn't either.
o Even going to a new level doesn't add very much

excitement to this exercise.
o We'll do one more at this level.

• Then we'll go back a level to finish things off.

Each item comprises one paragraph; an unlabeled para­
graph can be produced by specifying an empty label.

354

Extra space above and below a list can be obtained
by specifying \small skip or \medskip. It is usually
advisable either to insert extra space after a list or to
apply \noindent to the following paragraph, for clarity.
For example, the sample list above ended this way:

finish things off.
\smallskip
\no indent

Figures

Figures come in several sizes and shapes:
small figures which can be set in place, i.e., in the
same relative position where they occur in the input
file;

- one-column figures to be set at the top or bottom of
the first available column;
double-column figures to be set at the top or bottom
of the first available page;
full-page figures.

Not all of these formats are supported yet by DEPROC.
In particular, two-column figures cannot be incorporated
into text pages, although there is a mechanism for leaving
space at the bottom of a page, so that separately-prepared
figures can be pasted in later. Similarly, space (i.e. blank
pages) can be reserved for full-page figures.

One-column figures

To get a single-column, in-line figure, enter

\begin{figure}
content of figure
\caption{Figure n. Caption text}
\end{f igure}

"Figure" and the figure number must be input. (This is
not necessary in IJi.'fEX, where figures are numbered by a
counter reserved for that purpose.) If the figure will be
prepared separately and pasted in, space can be reserved:

\begin{f igure}
\vspace{2.6in}
\caption{Figure n. Caption text}
\end{figure}

Space equivalent to a blank line is skipped above and
below an in-line figure, and a half-line between the figure
and the caption, so the dimension given with \vspace
should be precisely the size of the item to be pasted in.

If insufficient space remains in the column to accom­
modate the figure in-line, it will automatically be shifted
to the top of the next available column. Figures can be
placed at the tops of columns explicitly by specifying

\begin{topfigure}

\end{topfigure}

A topfigure will be set at the top of the current
column, if space is available, otherwise at the top of the

next available column. When both regular figures and
topfigures are used concurrently, they may possibly be
set out of order, depending on their sizes and the other
contents of the article; it is safer to use only one style or
the other within a single article, and even then, to check
the results carefully before sending your article off to be
published.

Two-column figures

Double-column figures, as mentioned earlier, cannot yet
be incorporated into text pages by DEPROC. However,
space can be reserved for figures prepared separately; see
the next section, full-page figures.

To reserve space, you must know the page number, or
the relative page, on which you want to place the figure;
you must also know the size of the figure, including its
caption. Space will be reserved by shortening the text
area on the specified page, so double-column figures at
present will be placed only at the bottom of a page.

The command to shorten a page must appear on a
line by itself.

\ShortenPage n by di men.

or

\ShortenPage +n by di men.

(The spaces and the period at the end are necessary.) The
first form would be used if you know the page number;
otherwise, +n equals the number of pages after the one
on which the command is given. For example, if you give
the command on page 1, and the figure is to appear on
page 3, n = 2. For dimen, enter the height of the figure
as measured, plus about .211 for appearance (extra space
is not added, unlike figure and topfigure). This height
may also be expressed in terms of number of text lines:

by 12\linea.

will reserve the same space occupied by 12 lines of text,
about 211 •

\ShortenPage will not shorten the first page of an
article, and only one \ShortenPage command can be in
effect at once. But a page that is being shortened can also
include a command \ShortenPage +1 to adjust the next
page.

Full-page figures

Full-page figures are partially supported by DEPROC. Pages
are reserved during the main 'IEX run, and figures can
be prepared separately, to replace the reserved pages. To
reserve a page for a figure, on the page before the one to
be reserved (this will most likely be near the first reference
to the figure), enter a line of the form

\reservefigurepages[1]{Replace by Figure N}

Multiple pages may be reserved at once, say for a program
listing:

\reservefigurepages[3]{Listing of XYPROG}

355

Each reserved page will contain only a page number and
a two-line message:

Page reserved for figures
Text input with \reaervefigurepagea

A separate file can be created for figure input, if you
wish to use any of the DEPROC facilities. It should begin
with these three lines:

\input deproc
\figurepagea
\pageno=nn

The value assigned to \pageno should be the page number
to appear on the first figure page; subsequent page
numbers can be reset in the same manner as appropriate.
\figurepages will redefine the output format to be one
column 5" wide. This page format is called \onenarrow.
Two other single-column page formats are available:

\onecol is the same width as the two-column page;
\onemedium is 611 wide.

(The normal output format is called \ twocol.) Any one
of these output formats can be specified just after a page
break, before anything has been set on the new page.
A page break can be forced by the command \newpage.
(In two-column format, a column break is forced by
\newcol; in one-column format, \newcol is equivalent to
\newpage.)

Within the figure input file, most DEPROC options are
available for use. Exceptions are the top matter commands
(\author, \title and \abstract), \begin{document}
and \end{document}, and \maketitle. Almost all plain
'J.EX facilities can be used, although it is advisable to
check the DEPROC definitions if you intend to make changes
in page format.

When you have completed the file of figure input, end
it with the command \bye.

Tables

There is no support yet in DEPROC for tables. Tables can
be coded using plain 'IEX rules for tabbed or \halign
environments. See The T.EXbook for details.

Verbatim

Verbatim items are printed in so-called "typewriter" style,
using 'J.EX's \tt font. In-text verbatim items are enclosed
in vertical bars I ... I ; blocks of verbatim code are
delimited by

\begintt

\endtt

\begintt and \endtt should be on lines by themselves.
Within verbatim mode, (cR)s are obeyed as line breaks,
not spaces. An input line that is too long for the current
column width will be broken at a space if possible, and
the remainder of the line hanging indented on the next
output line; since this may change the meaning of the

verbatim passage, such passages should be checked with
special care in the output. Overlong lines also frequently
result in overfull \hboxes, which are indicated clearly on
the output by black boxes: I·

A passage between \begintt ... \endtt is treated as
a unit by 'IEX - if it is too long for the vertical space
available, it either will be carried over as a unit to the
next column or page, or will result in an overfull \ vbox,
which will be noted only in the transcript of the 'IEX run.
In such a case, the best remedy is to break the passage in
two, by inserting another \endtt \begintt.

Verbatim mode is suitable for program listings,
indicating keyboarding instructions, file names, and
similar uses.

References, bibliography

References in text to items in the bibliography are input
as

\bibref{label}

where the label that will be used in the bibliography must
be entered; there is no automatic association between the
two as in :U.'fBX. For a label "ABC", the text reference
will be rendered [ABC].

Before you start to input the reference list, some
housekeeping is required-you must decide what you
want the list to look like. This is what the input looks
like for one of the items in the reference list at the end of
this article:

\bibitem[TB] Knuth, Donald E., \TB,
Addison-Wesley and \AMS, 1979.

(\TB and \AMS are among the local definitions for this
article.) Default output looks like this:
[TB] Knuth, Donald E., The '.fEXbook, Addison-Wesley and

American Mathematical Society, 1979.

If you prefer the reference labels to be enclosed in
parentheses instead of square brackets, \bibbrackets ()
will replace them. (\bibbrackets [] will restore the
square brackets.) Brackets may be eliminated by
\omitbibbrackets. If your labels are simply numbers,
1, ... , n, brackets will be omitted automatically (see
below).

Now give the command to begin the reference list

\Bibliography{wideat label}

entering the widest label that will actually be used in the
list; this will be used to control the formatting.

If you do not wish to use labels, substitute \omit for
the widest label. (The [...] are still required in the
context of \bibitem.)

\bibitem[] Knuth, Donald E., ...

will result in
Knuth, Donald E., The '.lli;Xbook, Addison-Wesley and American

Mathematical Society, 1979.

356

If your labels are numeric, substitute \numeric for
the widest label. The input

\bibitem[2] Knuth, Donald E.,

will now look like this:
2. Knuth, Donald E., The '.fEXbook, Addison-Wesley and

American Mathematical Society, 1979.

Caveats

DEPROC and this article were created on a DECSYSTEM-
20 at the American Mathematical Society, running 'IEX
version 1.5. The AMS installation is standard in all ways
except that a few memory cells have been increased for
reasons not relevant to, and not affecting the performance
of, DEPROC.

With one exception, none of the changes to the 'IEX
program since version 1.0 should have any noticeable effect
on an article produced with DEPROC. The exception is
large, complex tables -tables incorporating many boxes
and rules require large amounts of 'IEX memory. Memory
management was radically changed in version 1.3 to
make more memory available to the user without actually
changing the physical memory allotment. (Otherwise, if
you run out of memory, the most likely cause is an input
error.)

Although thorough testing has been attempted, no
one outside the AMS has tried to use DEPROC yet, so bugs
are sure to be found. In fact, the version of DEPROC first
placed in the Program Library should best be considered
a beta test version. If you find a bug, please communicate
it to the author, accompanied by an example which
demonstrates the bug as simply as possible. Suggestions
for improvements are also welcome. Send everything to

Barbara Beeton
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940

References

[ACPJ Knuth, Donald E., The Art of Computer Programming,
Addison-Wesley, Vol. 2, second edition, 1981.

[TB] Knuth, Donald E., The '.fEXbook, Addison-Wesley and
American Mathematical Society, 1979.

[LT] Lamport, Leslie, U.'.fEX, A document preparation system,
Addison-Wesley, 1985.

[TD] Southall, Richard, First principles of typographic design

[FGJ
[Joy]

[TUB]

for document production, TUGboat Vol. 5 (1984), No. 2,
79-90; Corrigenda, Vol. 6 (1985), No. 1, p. 6.
Samuel, Arthur, First Grade TEX, 'JEX Users Group, 1984.
Spivak, Michael, The Joy of TEX, American Mathematical
Society, 1980; new edition in preparation, 1985.
TUGboat, the Newsletter of the TEX Users Group,
'!EX Users Group, C/o American Mathematical Society,
P. 0. Box 9506, Providence, RI, 02940.

PRODUCTIVITY BOOSTERS IN A SOFTWARE ENGINEERING ENVIRONMENT

Robert Lanphar
Senior Scientist

Hughes Aircraft Company
Fullerton, California

(714) 732-6207

I Introduction

Numerous other speakers and authors at or,cus
Symposia present software engineering concepts
which are amenable to the building of small
products. This paper presents a functionally
complete software engineering environment which is
in use at Hughes Aircraft Company. This
environment has as its goal the support of the
many diversified product lines of the company, the
support of both classified and unclassified
projects, project staffing ranging fran 5 to 200,
language requirements fran assembler through
Ada(l), and application sizes ranging from several
thousand to over one million lines of code. The
talk focuses on those issues which have made the
Hu~hes Software Engineering environment (Hughes 2
SC) a success. The paper presents the Hughes SE
in terms of the justification, evolution, current
configuration, and a surrrnary(2).

II Justification

The Hughes SE2 is a creation of necessity
resulting fran the ever-increasing complexity of
software requirad for large scale defense systems.
For over 20 years, Hughes has been involved with
the development of large corrrnand and control
systems requiring hundreds of thousands of lines
of code and upwards of two hundred software
engineers. (See Table 1). The major contracts
have been largely fixed-price, thereby making the
proper management of software development a matter
of survival. Thus, Hughes considers its
environment a vital resource in its ability to
build large-scale military systems.

(1) Ada is a registered trademark of the u.s.
Government, Ada Joint Program Office

(2) SE2 is a registered trademark of
Hughes Aircraft Company

Proceedings of the Digital Equipment Computer Users Society 357

Deve2oping a competitive, state-of-the-art
Hughes SE has proved a difficult process. The
fact that the environment must satisfy customers
fran the Air Force, Navy, Marines, Army, and
foreign nations has placed extraordinary demands
on the capabilities. As the environment expands
to provide more automated capability, the demand
of the users increases. A direct outcome of this
explosive growth is a four-year plan to
canmunicate and coordinate the needs and goals of
the different user communities. However, it is
not planning alone, but the day-to-day use on many
projects, the constant assessment of galloping
technology, and the consistent so2ving of user
problems which has made Hughes SE so necessary
for its 1700 users.

The Hughes SE2 is not just software tools but
a collection of entities (Figure 1) working in
concert to enable the quality production of
software products. The ORGANIZATION entity
consists of approximately 21 large projects (the
paying customers), a technology lab which assists
in the orderly evolution of the environment, and
various traditional business management functions.
The SOFTWARE PRODUCTS entity consists of
approximately seven million lines of code and
their associated documents and plans, both
deliverable and non-deliverable, which have been
successfully produced. The FACILITIES entity
consists of the various computers (16 large VIV<
systems, corporate mainframes, and workstations),
buildings, and networking which assist in the
quality production of software products. The
TOOLS entity consists of approximately 47 software
development tools and the project specific tools.
Projects are allowed some degree of freedan in
tailoring their project specific environment to
satisfy their objectives. The METHODS entity
consists of approximately 74 formal standards and
procedures, Hughes Practices, and the installed
base of engineering expertise. The methods govern
the way software is produced. The PEOPLE entity
consists of approximately 1700 software engineers
with extensive experience and education,
interacting with the environment to produce
quality software products.

The entire enviro~nt must be considered in
deploying the Hughes SE" to ensure that the
quality production of software products is
accentuated and not debilitated.

Anaheim, California - December 1985

Proouct Line Language
Number of

Lines of Code ------

0 Command and Control FORTRAN 745 K
Information Systems

0 CCMM Systems CMS-2, FORTRAN 748 K

0 Sonar Systems CMS-2, Ultra-32 672 K

0 Radar Control Systems Jovial, FORTRAN 365 K

0 Air Defense Systems Jovial 4000 K

Table 1: Typical Hughes SE2 Products And Their Characteristics

III Evolution

Hughes SE2 has evolved from a card-oriented
batch environment (pre-1977) to an interactive
software development support environment
(1977-1984) to a workstation-based software
engineering environment (post 1984) (see Figure
2). The architectural description of this
environment is explained in the context of these
time periods or stages. Currently, the
environment is in a transition period moving from
a centralized terminal environment to a
distributed workstation-based software engineering
environment, where all the activities of the
software engineer are supported. This transition
is necessary to take advantage of today's
technology, which is required to meet the needs of
complex military systems development. Hughes'
expertise in developing software engineering
environments grew along with the evolution.
Hughes' philosophy in building the environment has
emphasized methods, procedures, and techniques
that work in a software production environment,
coupled with continual research in new areas of
the software engineering field.

III.! Pre-1977 Evolution

Prior to 1977 the software environrrent was
the target environment. Coding forms were
prepared, cards punched, and (perhaps) paper tape
was cut. The programs were compiled from cards
and paper tape to magnetic tape or disk to form
the executing system. The software was debugged
by using the target computer front panel controls
and by obtaining memory dumps.

Because the system generation process was
lengthy, patch decks were used to make small
changes to the system. The patch decks were
incorporated into the source code (by punching new
source code cards) every week or two. That is,
the system was "baselined" every one or two weeks
and a new set of source listings was produced.
This process was normally performed overnight.

358

The primary methodologies used were block
diagrams for requirements and flowcharts, and
Program Design Language (PDL) for design. The
primary analysis tool was simulation. 'Ihe source
code listings comprised the bulk of the
maintenance documentation and secretaries typed
the documents.

This software development environment was
adequate for the sixties because the systems were
relatively small and less sophisticated. A
typical system was usually built by a half-dozen
software engineers in two years. The software
executed in a single computer, or in two or three
simply-connected, very small computers. Hardware
was expensive and documentation was minimal.
Software accounted for less than two percent of
the total system cost.

During the early seventies, this began to
change. Software began to be used as the system
"glue". By 1977 software accounted for 6-10
percent of the total system cost. A typical
system required 30 software engineers for two or
three years. Some systems contained computers
which were arranged in a geographically dispersed
network. Some systems contained multiple
centralized groups of computers. For example, an
Air Defense system usually contained four
colocated computers per site with perhaps six
geographically dispersed sites in the network.

This ever-increasing emphasis on software put
greater pressure on the software methodologies and
documentation. The size of the projects alone
caused significant problems in communications.
The primary problem was in the area of software
design. The high level design methodology shifted
from flowcharts to PDL, which had the versatility
and data orientation that seemed to be needed, but
lacked the graphics vital to rapid c011111Unications.
The Structured Design Methodology was introduced
in 1974 because it had the needed data orientation
and graphics and appeared to be one of the better
software design methodologies. The first use of
this methodology proved successful on a large Air
Defense project, but it took four more years to
transfer this technology to all of the Hughes
projects.

7000K
CODE
DOCUMENTS - -
PLANS

(16) SE2
COMPUTERS,
BLDG,
HACNET

(47) SE2

PROJECT. - - -
SPECIFIC

TOOLS METHODS

21 PROJECTS
_____ TECHNOLOGY LAB

BUSINESS
MANAGEMENT

1700 S/W ENGINEERS
- - - - - - - - 8.1 YRS EXPERIENCE (AVG)

16.4 YRS EDUCATION (AVG)

74 FORMAL STANDARDS
____ AND PROCEDURES

GSG PRACTICES
ENGINEERING EXPERTISE

Figure 1: The Hughes SE2 is more than tools and methods, it is people
properly trained in the ways in which the environment elements
can best serve them.

By 1977 the target systems were larger, more
complex, and distributed. Block diagrams were
used in requirements. The Structured tesign
Methodology was the primary technj.que used in top
level design. A mixture of POL, flowcharts, and
Hierarchical Input Process OUtput (HIPO) charts
was used in detailed design. Structured
Walkthroughs and simulation were used in all
phases. Secretaries still typed the documents.
The corporate mainframes (non-target machines)
began to be used to help with the documentation
and system analysis efforts. Although most usage
was still card-oriented batch, some timeshare
usage on teletype terminals had begun in an effort
to speed up turnaround time.

Because of the many engineers and the heavy
text requirements, an interactive, multiuser
environment was needed. Although the corporate
mainframes might have been used for such an
environment, greater support was needed than they
could provide. It became important to move
engineers on and off a system rapidly, to obtain
resources (e.g., printers/plotters) and listings
rapidly, and to avoid the slowdown caused by the
month-end corporate financial reports. Therefore,
Hughes looked to Digital Equipment Corporation
(DEC) and the Western Electric Prograrrmers W:>rk
Bench (PWB) to provide a cost-effective software
development environrrent(3).

(3) PWB is a registered trademark of
Bell Laboratories

359

III.2 1977 to 1984 Evolution

Interactive software development began in
1977 with the purchase of three DEC PDP 11/70
computers. However, before the third 11/70 could
be installed, the environment evolved to the DEC
VKX 11/780. The 11/70 machines were adequate for
srrall projects, but not for larger projects. The
VKX machines were selected based on
price/performance, the number of interactive users
that could be supported, the virtual merrory
organization, and the availability of the
Programmers Work Bench (PWB) • The VKX became the
standard computer.

The first terminals selected for standard
tasks were BEEHIVE and SOROC. Other terminals
were selected for experimentation, including the
ADM 500 and the Interactive Systems Corporation
Intext terminal. Other terminals were selected
for special tasks including the HP2647/48, and the
GENISCO. By 1980, the DEC VTlOO terminal was the
standard terminal because of its reasonable
price/performance and reliability. The standard
graphics terminal was the VTlOO with a Selanar
graphics card (made by Selanar, Inc). This
combination of terminal and graphics card was
selected based on price/performance, reliability,
and the ability of the graphics card to emulate
the (defacto standard) Tektronix 4010 graphics.

In 1977, there were 70 interactive users, 14
terminals, and 3 computers in the software
engineering environrrent. This expanded to 1500
users, 665 terminals, and 16 computers by 1984.
The mission of the environment during this time
was to support software development for large
real-time military systems, i.e., to write code
and documentation.

• Pre-1977: Batch
• 1977 - 1984: Interactive software development

• Post-1984: Distributed software engineering environment

PRE-1977 1977-1984 POST-1984

SINGLE
MUL..Tl-MINI MULTI-NETWORK
NETWORK +"ENGINES"

MAINFRAME (SOS) (SE2)

CARO TERMINAL WORKSTATION

Figure 2: The Hughes SE2 has progressed through three stages to satisfy
the demands of the users.

During the 1977 to 1984 period, the software
development environment evolved at the average
rate of two VAX. computers, 90 terminals, and 200
users per year. Offices were wired to a
collllTU.Jnications switch so terminals could be
located more conveniently in the software
engineer's office (i.e., remote from the VAX.
center). Because of space problems, whole
projects were moved to remote locations along with
their VAX.. DECNET was installed to provide
communications among the local VAX.s and the remote
VAX.s. The disk farm was installed to reduce the
effective cost of disk space.

The reason for this growth was to provide
high interactivity and fast turnaround to the
projects, and to develop and refine the software
methodologies and tools. For example, the
structure chart (graphics) part of the Structured
Design Methodology, while vital to the technique,
was difficult to modify and maintain. Therefore,
the Structure Chart Graphics (SCG) tool was
developed in 1978 to help draw and maintain the
charts. Although the tool looked like it would
help, it did little because it was only a picture
editor and not a design tool. However, SCG did
show that graphics could be valuable in software
engineering. The Automated Interactive Design and
Evaluation System (AIDES) was deployed in 1982 to
overcome the problems found with SCG. Although
AIDES draws structure charts, it is also a design
tool. All structure chart pictures are drawn
automatically from the design database. From this
experience we learned that tools must reflect the
underlying methodology. That is, simple editors
(text or graphics) are not, themselves, a
methodology any more than a hamrrer is a
methodology.

360

Requirements issues were becoming more of a
problem. This was either a result of design
problems coming under control, or the systems
getting larger, or both. The Structured Analysis
Methodology was selected for the requirements area
because it was related to the familiar Structured
Design Methodology. It also seemed to be one of
the best methodologies available for real-time
systems. In developing the System Engineer's
Workbench (SEWB) to support requirements
development and analysis, it was found that the
VTlOO terminals with Selanar boards on 2400 baud
communication lines were inadequate. The drawings
were coarse and the response slow. Therefore,
Apollo workstations were brought in to help solve
these problems. The Apollo was selected because
it was about the only workstation available at the
time. The closed architecture and proprietary
operating system of the Apollo would eventually
cause Hughes to look at other workstations.

By 1984 communication speed problems and raw
processor power problems were becoming apparent
(an estimated 128 VAX.'s would be needed by
December 1987), only limited support for the DoD
classified project environments could be provided
(which were getting larger, but not large enough
to nee~ an individual VAX.); and, most important,
more direct support was needed to assist the
software engineer in performing his total job.
Therefore, in April 1984, the Software Development
System (SOS) Architecture Group was formed to
define the next generation software engineering
environment.

III.3 Post-1984 Evolution

The next generation Hughes SE2 was defined by
the SOS Architecture Corrunittee Report of August
1984. The report findings focused on improving
the productivity of our software engineers in 1987
by 50% over 1983 levels. This process was to be
achieved through a combination of techniques
including: 100% support for the software
engineers job, tool integration, introduction of
the workstation form factor, the use of a comnon
operating system (UNIX), the use of a
communications infra-structure (ethernet, TCP/IP),
and making sure that the new technology was
introouced to the user community in an orderly
manner(4). A Daployment Plan was established to
satisfy the technical plan. Hughes is well into
the Daployment Plan with 90 workstations
installed, with the objective of having 450
workstations by the end of 1987.

The mission of the pre-1984 software
environment was to provide a software development
environment for real-time systems. The new
environment is canposed of software, hardware,
courseware (training), and people dedicated to
supporting all of the roles of the software
engineer (not just software development). The
roles include requirements, design, code, and test
plus canmunication, project management,
documentation, configuration control,
and report and presentation generation. The
environment specifically excludes secretarial
roles (e.g., general typing), senior management
roles (e.g., corporate business forecasting), and
supervisory roles (e.g., performance
appraisals). Therefore, the mission is complete
support of the software engineer in developing
real-time military systems.

Implementation of the advanced Hughes sE2
began in 1984 with the purchase of four SUN 2/120
workstations. The SUN workstation was selected
because of its processing power, display
capabilities, open architecture, and adherence to
the popular standards. The processing power and
high resolution display capabilities are essential
to the proper functioning of the more
sophisticated graphics tools. The ooen
architecture allows foreign boards t~ be included
in the SUN. For example, Multibus allows a direct
connection to our air defense target system.

(4) UNIX is a registered trademark of
Bell Laboratories

361

Adherence to the popular standards is most
important. For example, Unix and standard
Fortran 77 improve the portability of our tools.
Ethernet, with the popular TCP/IP, provides the
high speed communications in the workstation
network and between the workstation networks,
process engines, central VAX system, target
systems, and the Hughes corporate network (see
Figure 3). The ability to add process engines is
limited by the comrrunications protocol, not by the
operating system of the engine. This provides the
ability to evolve snoothly and to create a virtual
network (i.e., network login, not machine login).
Therefore, all VAX-based tools are available to
the workstation user. For small, classified
environments, the MicroVAX (rather than an 11/780)
can be used to support the VAX based tools in a
more cost effective manner. W'len and if VAX-based
tools are rehosted to another computer, they can
look and act the same as they did before
rehosting. This greatly reduces the shock of
changing hardware.

Most importantly, arguments over whether a
single (integrated) database is better than
multiple databases go away. In the same way that
the user sees a virtual network (although the
network is composed of many machines), the user
will see a virtual database. That is, the user
will see objects (not files) in the virtual
network. W'lile it is important that the user see
objects and not files, it is not important to know
where the object is, or whether it is part of a
larger database or simply a single file.
Therefore, the environment may evolve to a single
database or to many individual databases based on
factors other than the user's view of the system.

IV The Current Hughes SE2

This section now2 takes three slices through
the current Hughes SE to provide visability int.c
how the collection of resources are administereu
to satisfy the needs of a large population of
software engineers. Concepts to be expanded upon
include:

a. The ability to assign hardware resource
sufficient to satisfy requirements.

b. The ability to introduce technology in ar
orderly way.

c. Support for the full life cycle is
mandatory.

d. Integration is necessary.
e. A comrron user interface provides an

easily learned paradigm.
f. Training greatly amplifies the correct

dissemination and use of the resources.
g. Established maintenance mechanisms ensu

that the environment evolves in an
orderly way.

IV.l 2 Hughes SE Hardware

The evolving Hughes SE2 hardware architecture
addresses the needs for optimized assignrrent of
hardware and improved information bandwidth.

Figure 4 provides a diagramatic view of the
hardware architecture. The tailorability of this
architecture to satisfy project needs is
imrrediately apparent when one envisions portions
of this network resource being optimally assigned
to specific projects. The ethernet cormunication
network provides the ability to configure a
distributed environrrent to meet the varied needs
of the projects. As opposed to the 1984 situation
where a whole computer, typically a VAX ll/78X,
was dedicated to a classified project, now a
grouping of workstations and special servers can
be optimally configured.

The ethernet comrrunication network
establishes the basis for tailoring the
distributed environrrent. This network, employing
TCP/IP protocol, can be mixed and matched to
fulfill the requirements of the user. For
example, the Micro-VAX II special purpose server
can easily be replaced with a larger, more
powerful computer to provide better throughput of
the VAX-designated functions. If a JOVIAL compile
engine is required for the development
environment, the IBM PC AT/370 can be added to the
network. Similarly, microprocessor development
systems and other target hardware systems can be
added as necessary, to the network.

The environment is manageable, since the
physical requirements are minimized. That is,
facility size, power demands, and environmental
needs meet the specific requirements of the
project. As project needs change, hardware
components can be added or deleted fran the
distributed system. For example, during the
requirements and design phase of the software
lifecycle, the classified facility may include the
SUN local area network only, because JOVIAL cross
compilers are not necessary at that time.
Allowing flexibility of this sort makes for a cost
effective and manageable distributed computer
system.

The improved information bandwidth is
primarily achieved through the incorporation of
the workstation as the software engineer's w~ndow
into the network. The high resolution (1000
addressable pixels), large display (19") window
provides for the display of much more of the
software engineer's work on the screen at once.
As opposed to the prior art VTlOO, which limited
the viewing area, the workstation allows for
enhanced tradeoffs in a design iteration. The
higher speed ethernet eliminates the 2400 baud
choke which was a characteristic of the ASCII
terminal.

362

IV.2 2 Hughes SE Software

The tools which comprise the Hughes SE2 have
evolved to a state where full support for the
software engineer is provided, tool integration is
fact, and a cOJT110C>n user interface provides an
easily learned paradigm. Full life cycle support
is provided, to mimic the COD standard 2167 phases
including: system software requirements,
preliminary and detailed design, code and unit
test, and system integration and testing. Tool
integration allows the tools in the life cycle
phases to pass on information into previous or
subsequent lifecycle phase tools. This minimizes
costly and error-prone re-input of design
information. The canrron user interface is
currently under development to provide the user
with a standard way of interacting with the tools.

The Hughes SE2 supports the software
development life cycle, as shown in the Figure 5.

Software development begins with requirements
generation. The System Engineer's W::>rkbench
(SEWB) is used to generate data flow diagrams
(DFD), a data dictionary, and mini-specs. After
the data has been analyzed for completeness and
consistency, the requirements document is
automatically generated and the requirements
database is updated using the Automated
Specification Analysis Tool (ASAT). The
requirements document can be generated in
MIL-STD-1679 or IX>D-STD-2167 format.

Next, the Analysis and Design Interface
Transforms (ADIT) tool is used to provide an
initial translation of the requirements database
to the design database and the design data
dictionary. The Automated Interactive Design and
Evaluation System (AIDES) is used to refine the
design and to provide sumnary reports and
structure chart drawings. The structure charts
are usually produced in a 6 by 4 foot size for
design walkthroughs and in an 8-1/2 by 11 inch
size for final delivery. In addition, the Data
Dictionary (DD) editor is used to refine the
design data dictionary information and the AIDES
Metrics (AIM) tool measures the completeness and
complexity of the design.

When the design has been completed, another
ADIT transform is used to provide an initial
translation of the design and design data
dictionary databases to the detailed design
database. The translation generates module
prologues, skeletal PDLs in Software Design and
Documentation Language (SDDL) format, and
exception information based on differences between
the design database and the design data
dictionary. A standard text editor is used to
refine the PDL, and the SDDL tool is used to
provide PDL cross-reference and summary reports.

SPECIAL
ENGINES

CENTRAL
VAX
SYSTEM

TARGET
SYSTEM

COMMUNICATIONS INFRASTRUCTURE

WORKSTATION
NETWORK

Figure 3: Distributed Software Engineering Environment. An open­
architecture, virtual network connects the workstation user to
needed resources.

MOS

ETHERNET BACKBONE

MICRO
VAX

LOCKED UP
FACILITIES

IBMPC
AT/370

FILE
SERVER

Figure 4: The Hughes SE2 Hardware Architecture is designed with
tailorability to rreet project needs.

The translation of PDL into the progranming
language of choice is a manual process accentuated
through the use of a text editor with macro
capability. However, the Design Recovery System
(DRS) is used to verify that the code produced
matches the design through an autcmatic process of
generating the as built design (in a graphical
AIDES context) fran the actual source code. A
software module is entered into the Change Control
And Reporting System (CCARS) after it has been
coded and compiled without error. CCARS provides
rigid control of the system elerrents, provides
version control, and generates status reports. To
generate an executable version of a system, CCARS
provides the desired version of the software in
soorce form, the source code is compiled by the
applicable compiler, and an executable image is
produced.

363

If the target system is a local system (e.g.,
VAX), the image is executed irru:nediately. The
interactive debug capabilities are used and
reports (e.g., table dumps) are generated as
necessary to test the system. If the target
system is a rerrote system (e.g., Hughes MX
computer or the Navy's AN/UYK series computer),
the image is first executed using a target
computer sil!U.llator. Again, the interactive debug
capabilities are used to test the (sil!U.llated)
system.

The final testing is performed on the remote
system by transferring the executable image to
magnetic tape, walking the tape to the target
facility, and loading the executable image on the
remote target system. The data recording and
system monitor functions in the target program are
usually used to extract table data (i.e., dumps)
and to monitor the execution speed of the various
functions. In addition, the Debugger for Common
ALGE Networks (DECON) for Hughes MX computers or
the Remote Access Interactive Debugger (RAID) for
Navy AN/UYK computers is used to help debug
distributed networks. DECON and RAID are used to
set breakpoints, initiate variables, etc., and to
synchronize data collection in a distributed
system. All testing and maintenance is supported
using Library Change Request (LCRs) which report
problems encountered with the software. The LCRs
are used by CCARS to monitor, control, and report
changes to the software.

There are several tools which are currently
not integrated into the dynamic view, but
nevertheless provide valuable software project
checks and balances. The SCER tool imple!!Ents the
Jensen model (Dr. Randy Jensen of Hughes) for
software life cycle staffing and costing. Project
2 is an example of a PERI' or critical path l!Ethod
tool which is used for project resource tracking.
The Managel!Ent Information and Reporting (MIRG)
tool is a managel!Ent reporting aid which provides
the capability to retrieve standard status reports
dealing with project productivity statistics.
Various modeling tools are available for
evaluating target environl!Ent budgets in terms of
a percentage of resource saturation, such as cpu,
memory, or i/o capacity. These tools are being
integrated into the envirorunent currently and will
greatly enhance managel!Ent's view of the software
develop!!Ent process.

2 IV.3 Hughes SE Peopleware

The Hughes SE2 is a success because of the
commitl!Ent which has been made to the proper
introduction of the environl!Ent to the user
community. An evolving set of training classes is
presented which covers the entire range of
capabilities available in the environl!Ent.
Classes are constantly being reorganized to make
sure that information is transferred to those in
need. New forms of information dissemination are
being evaluated to make sure that the user is
informed in a timely fashion. Examples of these
new forms of information dissemination include
videotape and computer assisted instruction. The
training component of the supporting
intrastructure ensures that the envirorunent is
used in a productive and conscientious fashion.

The user's first line of support comes from
the user consultants. Most of the til!E (75
percent by survey) tl1e user can obtain the answer
to questions/problems directly over the phone.
This is a real boon to productivity and also
provides a valuable indication of what needs to be
fixed or better communicated. The user
consultants are the user advocates, smoothing out
the path towards productive use of the
environment.

364

The orderly evolution of the Hughes SE2
requires that the proper information be available
to the managel!Ent level making the decision. This
process has been constructed from several
information items with differing frequencies of
checks, balances, dissemination, and management
involvel!Ent. Figure 6 provides a visual
representation of the various processes which are
executed to guarantee that informed decision
making is the rule. On an annual basis a document
is prepared which details the proposed tactical
plans and their justification. An annual "State
of SHARE" (SHARE is the name of the computer
facility) presentation is given to the entire user
community highlighting the major components of the
plan. On a six month interval a workload forecast
is constructed, individual project managel!Ent is
interviewed, computer or workstation groups are
reviewed, and facility plans are updated. On a
monthly basis the Steering Committee l!Eets to
review policy statel!Ents and workload allocations.
Project and facility utilization is formally
comrrunicated to managel!Ent, vendor performance is
reviewed, distributed offsite facilities are
reviewed, and the software tools are fixed and
enhanced by the Software Change Review Board
(SCRB). A semi-monthly newspaper is published and
distributed to all users. Weekly, system messages
are reviewed for information content, and internal
facility and project reviews are held. An open
door policy is extended to all users and
management. This process of informed decision
making ensures that technology is introduced into
the environl!Ent in an orderly fashion, always
ensuring that the near-term needs of the project
communities are met.

V Surrmary

2 The Hughes SE supports the develop!!Ent of
large real-til!E systems requiring thousands of
lines of code and upwards of a couple hundred
software engineers per project. The envirorunent
has evolved from card-oriented batch using target
machines, through an interactive software
develop!!Ent capabilities using minicomputers, to a
workstation based software engineering
environl!Ent.

The early environl!Ent was primitive (i.e.,
used coding forms, punch cards, and paper tape),
but was adequate for the development of the
relatively smaller and less complex systems of the
til!E. However, by 1977 the target systems were
larger, more complex, and distributed. Therefore,
new l!Ethodologies were introduced and the
corporate mainfral!Es were used to help develop the
systems. Because of the many engineers and the
heavy text requirel!Ents, Hughes looked to Digital
Equip!!Ent Corporation (DEC) and the Western
Electric Prograffil!Ers W:>rk Bench (PWB) to provide
the needed interactive, multiuser environment.

DFD

SEWB

REPORTS

STATUS
REPORTS

LISTINGS,

RE QM TS

DD
EDITOR
(AOIT)

ORS

CCARS

TRANSFORM
(AOIT)

MEMORY MAPS,'1., ------I
XREFS

INTERACTIVE
DEBUG

REPORTS

COMPLEXITY &
COMPLETENESS
REPORTS

RXVPSO
(FORTRAN)

AIDES

SUMMARY
REPORTS

STRUCTURE
CHARTS

EXCEPTION
REPORTS

TRANSFORM
(ADIT)

POL
REPORTS

SDDL

ANALYSIS
REPORTS

• •

INTERACTIVE
DEBUG

SEER

PROJECT 2

MIRG

MODELING

Figure 5: Dynamic View of the Hughes SE2• The block diagram illustrates
the flow of data and control arrong environrrent components which
support the development life cycle.

Fran 1977 to 1984 software engineering
explooed, interactive software development began,
and software engineering methoos were developed
and refined. In 1977 there were 70 interactive
users, 14 terminals, and 3 computers in the
software engineering environment. This expanded
to 1500 users, 665 terminals, and 16 computers by
1984. The DEC VAX 11/780 minicomputer and the DEC
vr100 terminal became the standard hardware
because of price/performance, the number of
interactive users that could be supported, and the
availability of the PWB. In addition, offices
were wired to a carmunications switch so that
terminals could be located more conveniently.

365

DECNET was installed to provide comnunications
among the Vru<s, and a disk farm was installed to
reduce the effective cost of disk space. Also,
the Automated Interactive Design and Evaluation
System (AIDES) tool was developed to support the
Structured Design Methooology. The System
Engineer's Vbrkbench (SEWB) tool was developed to
support the Structured Analysis Methooology.
However, the SEWS stressed the VAX/Vl'lOO
capabilities and precipitated the step toward
workstations in 1984.

ANNUAL

6 MONTH

MONTHLY

PROJECT
REVIEW

DIVISION
REVIEW

SYSTEM
USER
FORUMS

VENDOR
REVIEW

OFFSITE
FACILITIES
REVIEW

SUN
SYSTEM
MESSAGES

WEEKLY
FACILITY
REVIEW

SE2
PROJECT
REVIEW

OPEN DOOR
POLICY

Figure 6: The Hughes SE2 supporting Infra-structure. Layered reviews ~nd
constant canm.mication ensure that the required support services
are efficiently and effectively provided for project personnel.

The next generation Hughes SE2 was defined by
the SC6 Architecture Canmittee Report of August
1984. Hughes is currently well into the
deployment plan of 450 workstations and a 50
percent productivity improvement (January 1983
basis) by December 1987. ttmile the mission of the
pre-1984 software environment was to provide a
software development environment for real-time
systems, the current mission is complete support
of the software engineer. Implementation of the
advanced environment began in 1984 with the
purchase of four SUN workstations. The SUN
workstation was selected because of its processing
power, display capabilities, open architecture,
and adherence to popular standards. Adherence to
popular standards was rost important, for
example, UNIX and standard Fortran 77 improves
tool portability, and ethemet, with the popular
TCP/IP, provides the ability to evolve SJl'K)Othly.
Ethernet also provides the high speed
canrrunications in the workstation network and
between workstation networks, process engines,
central VAX system, target systems, and the ~ughes
corporate network. Therefore, the Hughes SE is
evolving toward an open architecture, virtual
network which connects the workstation user to
needed resources.

366

2 . d The current, large Hughes SE is sprea over
16 VAX computers and 90 workstations, which
support 1700 software engineers. The dynamic view
shows that the environment supports the entire
software development life cycle using standard
tools such as editors, formatters, and compilers,
as well as specialized software development tools.
In addition to tools which support each phase of
software development, the Analysis and Design
Interface Transforms (ADIT) tool integrates the
requireirents, preliminary design, and detailed
design phases by providing the ability to
automatically transfer en;;Jineering data fran one
phase to the next. The Change Control and
Reporting System (CCARS) tool is used to control
the source code by providing rigid control of the
system eleirents, providing version control, and
generating status reports. Sirulators and target
system tools are used to debug the system
software.

A supporting infra-structure of training,
user support, and informed decision making ties
together the hardware, software, and methcrlologies
to allow the environment to evolve in an orderly
manner to meet the demands of the software
er¥Jineer. A set of training classes is provided
which covers the entire range of capabilities
available. Classes are continually being
reorganized to make sure that inforrnation is
transferred to those in need. New forms of
information dissemination are constantly being
evaluated to ensure that the user is informed in a
timely fashion. 'llle user's first line of support
canes from the user consul tan ts. Often the user
can obtain the answer to questions/problems
directly over the phone. 'llle informed decision
makif'kJ process has been constructed of several
components with differing frequencies of checks,
balances, information dissemination, and
management involvement to achieve orderly growth.

The Hughes SE2 was a creation of necessity
resulting from the ever-increasing canplexity of
the software required for large scale military
systems. Developir¥J a competitive, state-of-the­
art environment has not been easy. The fact that
the environment must satisfy a variety of military
custaners has caused the environment's
capabilities to be stretched. However, it is the
day-to-day use on many projects, the constant
assessment of galloping technology, and the
mundane solvi2g of user problems which has made
the Hughes SE a fact of life for 1700 users.

367

DESCRIPTION OF A PORTABLE COMPILER

David M. Barnes
Oregon Software, Inc.

Portland, Oregon

ABSTRACT

This paper describes the development and structure of Oregon Software's Pascal-2 com­
piler. Originally developed for DEC's PDP-11, Pascal-2 now runs on a variety of hosts
under several different operating systems. The compiler is written entirely in Pascal,
with machine dependencies and operating system dependencies isolated through param­
eterization, source control, and creative use of directory structures. Most of the source
code is shared among the various implementations, so the compiler is relatively portable
and enhancements are quickly propagated.

HISTORY OF PASCAL-2

Oregon Software's first compiler was Pascal-I, at one time the most
popular Pascal available for Digital's PDP-II. h was a one-pass com­
piler written entirely in MACR0-11, and was known for qukk com­
pilation time and reliable generated code. Language extensions, such
as an ORIGIN declaration for assigning variables to certain addresses,
provided access to the hardware at the system level. Pascal-I found its
widest market in academia, but it also is also used in process control
industry applications and the like.

Despite the almost immediate success of Pascal-I, it soon became clear
to the developers that there was room for improvement. Pascal-I was
written in Macro-11, and so could not be transported to machines other
than the PDP-11. Why not write the new Pascal compiler in Pascal, so
it would be, to a large extent, portable across various machines? The
developers also realized that they could improve the code optimizations
of the compiler, but to do so using the existing Pascal-I sources would
be awkward, since Pascal-I was implemented as a single-pass compiler.
Another improvement they hoped to incorporate was improved error
reporting.

The first commercial implementation of Pascal-2, the successor to Pas­
cal-I, became available in 1980. Pascal-2 was written in Pascal, and
surpassed its ancestor in code optimization and error reporting. It was
also portable, as evidenced by the fact that the first implementation
tau on the Honeywell Level-6 machine. The PDP-11 release was not fa.r
behind, and Digital bought a copy of the sources, from which it devel­
oped MicroPower Pascal and RSX Pascal.

Pascal-2 is now well-established as the only Pascal compiler that runs
on all Digital machines, from the 11/23 to the VAX 8600. It is also
available as a cross-compiler and a native compiler for non-DEC hosts,
such as the l\fotorola G.SOOO series, and runs under various operating
systems, including VMS and ULTRIX.

STRUCTURE OF PASCAL-2

Pascal-2 is a five-pass compiler. This does not mean that the compiler
reads the source code five times, but simply that the compiler does its
work in five distinct phases.

There are two reasons for implementing the compiler in multiple passes.
One is to accommodate the compiler on the PDP-11, whose memory
constraints restrict the amount of code that can be loaded into mem­
ory at any one time. On the PDP-11, the five passes correspond to five
overlays, invoked in sequence. Another reason for multiple passes is the
desire to modularize the code with an eye toward isolating machine­
dependencies as much as possible. With machine dependencies isolated,
porting the compiler to another host requires modifying a few modules
rather than an entire program.

The five passes into which the Pascal-2 compiler is divided are:

.&n
SCAN
ANALYS
TRAVRS
CODE
LIST

Purpose
lexical analysis
program parsing, semantic checking
optimizations
code generation
listing and error reporting

Each pass does its work and leaves behind an output file, which serves
as input to the next pass. Auxiliary files are also created during com­
pilation, such as the string file, which holds string information. On vir­
tual memory hosts, such as the VAX, the auxiliary files reside in virtual
memory, rather than on disk. Figure I shows the relationships between
compiler passes and their intermediate files.

• 1 ·rir m. 1
Source.-j SCAN I- Temp - IANALYS I-Temp --1 TRAVRS I-Temp -I CODE I

i ,~0-ib-je-c-:-fl.-. 1-e~
!Error Tablel

Figure 1: Compiler Structure

Proceedings of the Digital Equipment Computer Users Society 369 Anaheim, California - December 1985

Of the five phases, only CODE, the code generator, and a portion of
SCAN containing the command string interpreter, are heavily machine
dependent. The other sections of the compiler's source code are essen­
tially independent of machine architecture. Occasional operating sys­
tem dependencies in the remainder of the code are accounted for by
means of conditional compilation, which we'll describe later.

First, let's take a tour through the five phases of the compiler.

The SCAN Phase

The SCAN phase reads the source program and separates the source
text into lexemes; its output is a stream of tokens (Figure 2). The to­
kens are fixed-length, encoded forms of the source text. ldentiflen and
string constants are represented by fixed length tokens that point to
the identifiers or strings, which are stored separately in the string file.

Source File --- lsCANj --- Fixed-Length Tokens
String File

Figure 2: The SCAN Phase

The ANALYS Phase

The workhorse of the compiler's front end is the ANALYS phase (Fig­
ure 3). In an "average" compilation (if there is such a thing), about the
same amount of time is spent in ANALYS as in code generation - each
of these passes consumes about 3S percent, each.

The ANALYS phase reads the token stream from SCAN and parses
it using a top-down, recursive-descent parser. The recursive-descent
parser occupies less space in memory than other parser designs, an im­
portant consideration on some machines, particularly the PDP-11. The
parser recognizes correct language constructs and encodes declarations
in a symbol table. Incorrect constructs are diagnosed and noted in an
error table.

Fixed Lenqth--1ANALYS1---Reverse~Polish
Tokens Expressions

Figure 3: The ANALYS Phase

If ANALYS encounters fatal errors, it passes control directly to LIST,
the fifth phase of the compiler, which handles error reporting. This
short cut saves time for the user by eliminating the unnecessary code
generation step.

Output from ANALYS is a stream of operators and operands in reverse
Polish notation, the simplest form of output from a recursive descent
parser.

Pascal code:

if A + 8 > 8 then
A :=A + 8

else
8 := A + 8;

Generated code:

The TRAVRS Phase

TR.A VRS transforms the reverse-Polish expressions produced by the
ANALYS phase into pseudocode used by the code generator (Figure 4).
More than any other phase, TRAVRS follows Pascal formalisms, so it's
very reliable from a maintenance standpoint.

Reverse~Polish-ITRAVRS 1-Pseudo-Code
Expressions

Figure 4: The mA VRS Phase

The compiler only spends about 10 percent of its time in TR.AVRS (as
compared to about 30 percent for code generation). Nonetheless, its
function is quite important, as the output from TRAVRS marks the in­
terface between the machine-independent front end of the compiler, and
its machine-dependent back end. Pseudocode output from TRAVRS is
a stream of labelled triples that all of our code generators understand.
This powerful but concise pseuodocode vocabulary makes it possible for
us to mix and match front and back ends to produce a variety of native
compilers and cross-compilers.

TRAVRS converts its reverse-Polish input stream into pseudocode by
building an expression tree from the input stream, one procedure at a
time, and then parsing that tree to produce the pseudocode output. As
it creates the expression tree, TRAVRS manipulates the tree structure
in such a way as to optimize the pseudocode it generates.

Optjmjzatjons

Here, let us take a moment and examine in some detail a few of the
optimizations performed by the compiler. Many of the most interesting
optimizations take place here in the TRAVRS phase.

Common Subexpression Elimination - One very effective optimization
performed by TRAVRS is the re-use of repeated expressions. This tech­
nique is known as "common subexpression elimination."

In the code fragment shown in Figure S, for example, the expression
"A+ B" appears three times. Common subexpression elimination rec­
ognizes that it is necessary to calculate the value of the expression only
once. The value can be referenced rather than recalculated. This op­
timization saves not only the execution time required to recalculate
the value, but reduces the register usage demands of the procedure in
which the common subexpression occurs.

movl
movl
addl3
cmpl
bleq
movl
brb
movl

5~12 (Rll) ,Rl2
5~9 (Rll) ,RlO
(RlO) , (R12) ,R9

R9, (RlO)

get A
get B
store A + 8 in R9
comparison

branch

L3.:

L3.
R9, (R12)
L4.
R9, (RlO)

A :=A+ B
branch

B :=A+ B

Figure 5: Common Subexpression Elimination

370

Pointers can be treated as common subexpressions, but only with great
care. Because of the difficulty in detecting when the value pointed to
has changed, the solution adopted is a conservative one: when compar­
ing two pointers, TRA VRS checks to see if the types pointed to are the
same. If so, it assumes that the value may have been modified and re­
generates the value.

Constant Folding - Constant folding is another optimization, which is
actually performed in the ANALYS phase. Constant folding involves
calculating simple constant expressions at compile time. In the example
in Figure 6, the expression "lt/axLength - 1" is assigned at compile
time a value of nine.

Pascal code:

con st
MaxLength = 10;

var
a: packed array [1 .. MaxLength] of 0 .. 10000;

for i := 0 to MaxLength - 1 do
a [i + 1] .- i;

Generated code:

clrl R12
L2.: movw R12, L-var [R12]

aobleq s-#9,R12,L2.

; MaxLength - 1 => 9

Figure 6: Constant Folding

Dead Code Elimination - An optimization on which we rely heavily in
our own development work is "dead code elimination." Dead code is
code that will never be executed.

while false do
A := A + 1;

Figure 1: Dead Code Elimination

In the simple example of Figure 7, the statement "A:= A+ 1" is never
executed. Similar cases that are not as obvious occur in real programs,
often unintentionally. Dead code elimination deletes such passages dur­
ing the TRAVRS phase, so no unnecessary output code is generated.

We use dead code elimination at Oregon Software to implement a form
of conditional compilation. For example, suppose a module that is
shared by all implementations of the compiler contains a small ma­
chine dependency. It may not be necessary to rewrite the code to iso­
late the dependency in another module. We can create an enumerated
type and use it as the basis for a CASE statement, where each case el­
ement specifies a processor-specific action (Figure 8). By editing the
source file to set the value of the constant HOSTOPSYS, we can rely
on the compiler to delete code not related to that operating system.
The resulting software contains only the code which is used.

371

type
OPSYS =(VMS, ULTRIX, RSX, MSDOS ...);

con st
HOSTOPSYS = VMS;

case HOSTOPSYS
VMS, ULTRIX
RSX
MSOOS

of
processor
processor
processor

= VAX;
PDPll;

= IAPX86;

Figure 8: Conditional Compilation

Short Circ.nit Evahiation Of Booleans - Sometimes the value of a bool­
ean expression can be ascertained without evaluating all of its terms.

Unless the value of one of the later terms is needed for subsequent ref­
erence, it's more elegant, and less costly in terms of instructions, to use
"short-circuit" evaluation. The Pascal-2 compiler generates code that
performs short-circuit evaluation where it's safe to do so, that is, in any
situation in which the value of the skipped expression is not needed
later by the program.

The example in Figure 9, while unlikely, illustrates short-circuit evalu­
ation. The compiler determines that all of the constant terms are true,
and that the result of the test depends solely on the value of the vari­
able B. Thus, in the generated code, only B is tested.

Pascal code:

if band (5 > 3) and ((2 = 7)
or (7 div 3 = 2)) then
b := false;

Generated code:

L3.:

mo vb
beql
clrb

s-#l,R12
L3.
R12

set true
test b
.. set false

Figure 9: Short-Circuit Evaluation of Booleans

Loop Invariant Removal - Loop invariant removal is an optimization in
which unchanged expressions occurring within the body of a loop are
evaluated once outside the loop and referenced from within the loop,
instead of being recalculated on every pass. In Figure 10, for example,
the expressions "k • j" and "k + j" remain unchanged throughout ex­
ecution of the loop. The compiler generates code that calculates these
expressions only once and stores them in registers RS and R7, respec­
tively, for easy access.

Pascal code:

for i := 1 to 10 do
a[i + k * j] .- k + j;

Generated code:

mull3
addl3
movl

Rl0,R9,R8
Rl0,R9,R7
s-#l,Rl2

k * j stored in RS
k + j stored in R7
i .- 1

; Loop is 3 instructions, beginning at L2.

L2.: addl3
movl
aobleq

R8,Rl2,R6
R7, L -var+B [R6]
s-#10,Rl2,L2.

i + k * j stored in R6
R7 assigned to array
(loop index)

Figure 10: Loop Invariant Removal

Expression Targeting - Expression targeting is a register optimization
that takes into account the ultimate destination of an expression to
guide register allocation during the expression's evaluation, thus avoid­
ing register usage conflicts. In Figure 11, for example, if the compiler
recognizes that it is possible to put the value of the computation A + 1
directly into the target location A, it will generate one instruction to
increment A in place, thus overwriting the old value with the new one.

Pascal code:

A :=A + 1

Generated code:
(without expression targeting)

movl A, RO
incl RO
movl RO, A

(with targeting)

incl RO

Figure 11: Expression Targeting

In those cases where changing the value of A directly might interfere
with evaluation of the expression, the compiler must generate an inter­
mediate value to avoid prematurely overwriting the target.

The CODE Phase

The CODE phase reads the pseudocode produced by TRAVRS (Fig­
ure 12). CODE maintains a record of the object machine state, and
as each pseudo-op is read, it generates the minimum number of ma­
chine instructions to achieve the desired state change. CODE also in­
cludes a peephole optimizer that performs simple optimizations, such
as branch/jump resolution and assigning constants or frequently-used
addresses to unused registers for faster access. CODE then writes the
generated code directly to an object file.

Pseudo-Code -1 CODE 1-Object Code

Figure 12: The CODE Phase

The LIST Plia-e

LIST is the final phase of the compiler. It performs error reporting,
if necessary, and generates a source listing with embedded diagnostics
from the error table (Figure 13).

Source File~ jLISTI ~Listing File
Error Table

Fig1're 13: The LIST Phase

COMMON FRONT END

Pascal-2 was well-received, and we soon offered the product on the en­
tire DEC line, as well as systems based on the Motorc;la-68000, Intel
80186, and National Semiconductor 32000 processors. and as stand­
alone systems. The rapidity with which these applications were devel­
oped led to multiple copies of the Pascal-2 sources, each of which dif­
fered ever-so-slightly from the others. Maintenance became a problem.
Figure 14 shows the distribution of compiler phases with respect to ma­
chine dependence or independence.

372

Machine-Independent

SCAN
ANALYS
TRAVRS

LIST

Machine-Dependent

Figure 14: Machine Dependence/Independence

We undertook to re-integrate similar portions of the source code into
one set of sources, in which conditional compilation was used to segre­
gate the slight differences between vcrsio:is. The result of this effort,
known as the "Common Front-End" was completed in 1985.

The Common Front End has the advantage of propagating improve­
ments to the software throughout subsequent versions, regardless of the
host for which the improvements were made. Of course, there is always
the risk that a bug introduced in the Common Front End will find its
way into other versions of the compiler. But, through judicious test­
ing and the use of source control, we are able to easily restore earlier
versions of the code and weed out introduced errors.

What is involved in a typical compiler port? The time involved to cre­
ate a new compiler is however long it takes to write a new code gener­
ator and command string interpreter. A stranger who had never seen
the compiler before ported it to the 80186, under UNIX in six months.
The ULTRIX compiler took about four months.

USING VMS DIRECTORY STRUCTURES

Development of the Common Front End was quite a boost to our main­
tenance and enhancement efforts. Separating the machine-independent
modules from the machine-dependent ones is not always as simple as
it sounds, however. Some modules, for example, are used for compilers
that run on the VAX, regardless of operating system (VMS, ULTRIX,
or UNIX). Other modules contain code for a certain operating system,
such as UNIX, regardless of the type of the host machine. So, while
most components of the compiler fall clearly into one classifl.cation or
the other, machine-independent or machine-dependent, others lie in the
gray area in between.

We do most of our development work under VMS. Our solution to this
problem was to organize the directory structure of the Common Front
End Illes to allow us to build any compiler in any configuration from a
related set of directories. We rely heavily on the MAKE component of
SourceTools to track the locations of various components in the VMS
directory structure.

.vax
I

.iapx86

~
.vms .unix

I
I

·11x .msdos .xr
T

.vax

I
.vax

I
.vms .vms .vms

The organization of the files is a tre«>, where the root of the tree con­
tains the machine-independent modules. Proceeding from the root to
the branches, the files become increasingly version-specifl.c. Files lo­
cated in the terminal nodes of the directory tree are completely version­
specific. The MAKE files that generate each version of the compiler are
located in terminal nodes, for example. In general, the level below the
machine-independent modules is processor specific, and the level be-
low that one is operating system specific. Certain files are specific to an
operating system, but not different between various processors. These
modules are stored in a processor branch, called "ALL.~ Some modules
can be integrated into a single module by means of dead code elimina­
tion. These modules are also stored in the ALL node.

There may be functionally equivalent modules lower in the tree. If
such modules exist, they apply; otherwise the generic module applies.
For cross-compilers in the structure, a distinction must be made be­
tween host and target, both for processor and operating system. Tar­
get processor and operating system are higher in the tree, followed
by branches for host processor and host operating system. Figure IS
shows a portion of the Common Front End directory tree.

I I
.m68000 .all

~ ~
.vms .rsx .unix .unix .vdos

~ rT
.rsx n

.vms .unix

Figure 15: Common Front End Directory Structure

Distribution of the Bies over the various nodes of this structure is not
permanently fixed. The goal is to move as many files as possible high
in the tree, so that only one (or a few) copies of a module exist. This
approach minimizes our maintenance efl'ort and improves the quality of
the product.

One way of pushing a module upward in the tree is by splitting it up
into small machine-dependent parts and a larger machine-independent
module. The machine-independent module "floats up" to a higher level
in the tree. Another way is to parameterize code, using dead code elim­
ination to handle all cases, thus making the module more generalized.

SOURCE CONTROL

A key component of the Common Front-End is a source control system
developed in-house, known as SourceTools. The source control system
allows us to do development work on the common set of sources with­
out stepping on each other's toes, and maintains an audit trail of modi­
fications to the sources.

SourceTools maintains centralized control over the source code for each
module in the compiler and maintains an audit history. We can eas­
ily review the changes made to a given module: what the change was,
who made it, and when. We can also recreate any version of the com­
piler when necessary to back out a misguided bug fix or investigate a
customer inquiry.

A typic.al source control record of a compiler source module looks like
the one in Figure 16.

373

Sourcecon Module: ANALYS

Owner: (2,26) File: ANALYS.PAS Module name: ANALYS

descr: Pascal-2 module

PROCESSOR: ALL

SYSTEM: ALL

50: 2.lF.2 made on 8-Nov-1985 at 04:23:48 by JANR Next delta: 49

purpose:
Added an errorcheck to handle the case where there are more
array elements than 'maxaddr', the maximum we can index.

49: 2.lF.1 made on 7-Nov-1985 at 07:35:03 by DON Next delta: 48

purpose: Update to revision 2.lF

48: 2. lE. 23 made on 23-0ct-1985 at 12:15:40 by JANR Next delta: 47

purpose: Initialized the variable "nullboundindex".

47: 2.lE.22 made on 23-0ct-1985 at 01:21:33 by RICK Next delta: 46

purpose: Added initialization of the boolean "standardfilesreferenced".

Figure 16: Source Control Record

Another nice feature of SourceTools is automatic keyl\•ord substitution.
We use it in a number of ways: to insert revision information into the
source code, for example.

Last modified by: -name- on -upddate•

Last modified by: JANR on 8-Nov-1985

Figure 11: Keyword Substitution

COMPILER CERTIFICATION

Our efforts to centralize our compiler sources paid ofl' in July of 1985
when Oregon Software became the first American vendor to certify not
just one Pascal compiler, but eleven Pascal compilers. A twelfth was
certified shortly afterward. All twelve certified compilers (Figure 18)
were generated using the common front-end technology.

VAX/VMS native
VAX/UNIX (BSD 4.2) native
VAX/UL'IRIX-32 native
SCI-1000 80186/UNIX (IN/ix) native
VAX/VMS to 80186/UNIX (IN/ix) cross
VAX/UNIX (BSD 4.2) to 80186/UNIX (IN/ix) cross
VAX/UL'IRIX-32 to 80186/UNIX (IN/ix) cross
VAX/VMS to 68000/UNIX (RTU) cross
VAX/UNIX (BSD 4.2) to 68000/UNIX (RTU) cross
VAX/ULlRIX-32 to 68000/UNIX (RTU) cross
Masscomp MC500 (68000)/UNIX (RTU) native
SUN Workstation II (68000)/UNIX native

Figure 18: Certified Compilers

MODULA·3

Our latest challenge is a difl'erent sort of compiler port - a Modula-2
compiler whose development begins with Pascal-2 code generators and
optimization logic.

To parse a difl'erent syntax, changes to the front-end are required. For
a language such as Modula-2, whose syntax is very similar to that of
Pascal, the changes should be minimal. Existing code generators will
change somewhat, too, as the front-end redesign introduces additional
pseudo-ops.

CONCLUSION

Our experience in developing and porting the Pascal-2 compiler ver­
ifies that a a systematic, modular approach to software development
yields the expected benefits. In our case, we developed a compiler en­
tirely in a high-level language, and the resulting compiler is, indeed,
highly portable and efficiently maintained. Source control tools and
methodical isolation of machine dependencies via modularity and care­
fully designed directory structures also improve the transportability of
our compiler.

ACKNOWLEDGEMENTS

Pascal-2 and SourceTools are trademarks of Oregon Software, Inc.

VAX, VMS, PDP-11, and ULTRIX are trademarks of Digital Equip­
ment Co?Poration.

M68000 is a trademark of Motorola, Inc.

UNIX is a trademark of AT & T Bell Laboratories, Inco?Porated.

374

AN APPROACH TO BUILDING LARGE,
MODULAR SOFTWARE PROGRAMS

F.E. Cross
Naval Weapons Center

China Lake, California

ABSTRACT

The paper suggests an approach for defining and
building large, but modular, and configurable soft­
ware programs. The areas addressed by this approach
are goals, requirements, concepts, tools, and en­
vironment. Included are some architectural features
such as control of program flow and access to (auto­
mated) debug data. In addition, module standardiza­
tion, ground rules for the software environment, and
an effective, yet lenient, configuration control
system are included.

This approach is best suited to those programmers
who want to fellow the software engineering princi­
ples of modularity and hierarchial decomposition,
but who must also integrate their work with others'
to incrementally build large programs. This ap­
proach was applied on a VAX/VMS system to build a
Fortran avionic simulation of more than 2000 gubrou­
tines.

INTRODUCTION

Rarely does one find software pro­
grams that are designed to grow, or are
even configurable enough to permit growth.
Instead, growth or modification is a pain­
ful procedure requiring "patches" to hase-
1 ine modules (and resulting configuration
control of those patches). Patches corrupt
small, singular-concept modules by making
them into larger, multiple-concept ones.
At best, some growth in capabilities
occurs. At worst, some baseline capabili­
ties are lost. In any case, the documen­
tation (if it ever existed or was of suf­
ficient quality) is outdated by the
change. After a few layers of patching,
the program becomes very fragile to any
change. The net result is that dis­
couraged programmers move on to new pro­
jects where a "fresh start" means getting
out of the "patch-it-and-see-how-it-works"
mode.

There is no reason why programs can­
not be designed to grow and even to accom­
modate multiple functions if one discards
old habits that are limitations to
cleaner, more modular programs. Old
habits are those things that programmers
do because they've always done them, and
do not really trust tools or a new ap­
proach. Some examples are manual coding
of module's data declarations (In FORTRAN,
these are COMMONs, type, and DIMENSION
statements.) and manual insertion of debug
or diagnostic code. Being freed of these
manual tasks would allow programmers to be
more creative, therefore, more productive.

Proceedings of the Digital Equipment Computer Users Society

This paper presents some lofty goals
for software development, but a reasonable
approach for attaining them. The founda­
tion for this approach are the three keys
to successful programming architectures:
modularity, standardization, and generic­
ness. These are concepts that programmers
should look for in all software architec­
tures. This approach will be described
under five general areas: goals, require­
ments, concepts, tools, and environment
that are related as follows:

1. Goals provide purpose and per­
spective,

2. Requirements are those necessary
to meet the goals,

3. Concepts represent the
taken to satisfy the
ments,

approach
require-

4. Tools are those needed to sup­
port the concepts, and

5. Software environment prescribes
the use of the tools to accomp­
lish the goals.

Figure 1 shows these five general
areas along with the subtopics presented
under each.

375 Anaheim, California- December 1985

APPROACH

GOALS REQUIREMENTS CONCEPTS TOOLS

SOFTWARE SYSTEM GROUND
MODULE RULES

CONCURRENCY STANDARDIZE

SOFTWARE SOFTWARE TESTING
PROGRAM TOOLS

PERSONNEL VS.
TOOLS

DATABASE

• FLECS

• MODULE
REPEATABILITY AUTOMATE GENERATOR

• MODULE
BUILDER

GROWTH PATH CONFIGURABILITY • DOCUMENT-
ATION

BUILDER

Figure 1. Approach Tree.

GOALS

Before any software project is
started, there should be some clearly
stated goals. The goals provide technical
people with the best possible "big pic­
ture." They should include some indi­
cations of the project's purpose, scope,
and rationale. While this information may
seem extraneous (especially to manage­
ment), it provides programmers with an
understanding of their function in the
project, and is probably the best moti­
vating factor for. them. The following
goals are a recommended subset of any pro­
ject's goals. The qualifications that a
project adopt these goals are that it is
"big enough" to require more than one pro­
grammer, that it last more than one year,
and that it experience at least one change
in user requirements sometime in its life­
time. The goals are:

1. Support concurrent development
and use,

2. Consider personnel versus tools,

3. Ensure test repeatability, and

4. Provide a growth path.

Support Concurrent Development and Use

Software is often in use and under
development at the same time. This occurs
because the user usually cannot wait for
the finished product and is willing to use
a preliminary version. For this reason,
the user tasks and development tasks must
be accomplished concurrently, but not at
each other's expense. The software design
should take this into account in the early
project phases, and should anticipate that

376

it will continue throughout the later
phases.

Consider Personnel Versus Tools

The software development approach
should consider automation in the software
development proc-ess. The computer-aiding
tools considered should address reduction
of manpower requirements. Neither the
software development environment nor the
program developed for the project should
require much repetition of mundane ac­
tivity by the programmers. Experience has
shown that such repetition leads to bore­
dom that results in errors. An environ­
ment that fosters errors often has a high
personnel turnover; therefore, the soft­
ware development approach should allow the
programmers time to automate less creative
activities.

Ensure Test Repeatability

Any integration test must be run in
such a manner that the results can be
duplicated later. This appears to be
self-evident, but many engineers have
conducted tests and reported results that
could not be reproduced. This usually
happens in situations where there are too
many variables over which the testers have
too little control (such as hardware chan­
ges). The purpose of this goal is to
create an awareness of the problem so that
these situations can be avoided.

Provide a Growth Path

The approach taken to accomplish the
early phases of the project should allow a
natural growth into later phases with
little or no redevelopment of previous

capabilities. In other words, developers
should design and build a flexible program
so that code will not have to be thrown
away later when user requirements change.

REQUIREMENTS

Having set the goals above, let's
identify some general software require­
ments to try to meet those goals. Some
requirements that should be incorporated
into any large software project are:

1.

2.

3.

Standardize the software de­
velopment procedures,

Data base the information,

Automate the procedures, and

4. Create a configurable set of
software that can grow
and adapt easily to changing
requirements.

Standardize

Of all the software development re­
quirements, the degree of standardization
is the factor that probably most in­
fluences the coding activity. Without
standardization, configurability is dif­
ficult, but automation and data basing are
nearly impossible. More on those later.
The topics to be covered under standardi­
zation are;

1.

2.

3.

4.

Review the benefits of stan­
dardization,

Formalize the approach to imple­
menting software,

Adopt a single format for mod­
ules (coded routines), and

Standardize documentation forms.

Benefits of Standardization

Programmers sometimes resist stan­
dardization of the software development
process. This resistence usually in­
creases with the programmer's age and/or
past volume of written code. If program­
mers are to accept standards, this resis­
tence must be outweighed by the benefits.
The benefits of standardization are im­
proved communication, increased control
over the code, and decreased time needed
to turn ideas into code.

Communication is improved by stan­
dardization because programmers will
"speak the same language" when reviewing
each other's modules. This occurs because
the concepts are structured in the same
format and are easily recognized.

377

Standardization can increase the pro­
grammers' control over the code. This can
be both a dynamic or static control. Dy­
namic control, which occurs while the
program executes, is attainable because
access and interfaces to the code can also
be standardized. We will see later bow
standardizing the access (subroutine
calls) can simplify configuration manage­
ment. Static control, which is control
over the source code, is attainable
through automated procedures because the
information stored in each software module
is found in the same format.

Standardization decreases the time
and effort required to turn ideas into
code. This can happen because many of the
manual tasks (such as insertion of module
debug code, testing, and generation of
documentation sets) can be automated.

Formalize Approach to Implementing Soft­
ware

Most organizations that generate
software like to think that they have an
efficient, formal approach to coding. In
reality, few do. Those that have for­
malized, have benefited from it because,
in the process, they also standardized
their approach. To formalize one's ap­
proach is to define a target for others to
criticize; so be open to feedback. It is
better to formalize one's approach to
developing software, offer it for criti­
cism, and use the feedback to improve the
approach, than to never address it at all.

Single Format for Modules

Most programmers will agree that it
is best to have a single format for all
software modules. Each, of course, thinks
that his/her format is best. Some pro­
grammers will compromise more than others
on the module's format; but, in the end,
there should be only one who decides.
This one person should address both coding
and documentation formats for the module.

Coding standards and formats are
criticized loudest by those programmers
who most need them. Therefore, the best
coding standards are those that stan­
dardize the format of coded concepts or
ideas and leave the implementation details
to the programmer's style. This creates
an environment where the walkthroughs are
high enough in level to be productive and
not sessions of haggling over variable
names or "look-how-you-can-code-this-in-3-
lines-of-code-instead-of-4," and other
such trivia.

The module format should also include
a documentation format. Without a format,
the documentation will (if it gets done at
all) be even more stylized than the code
it documents. So, if the documentation is

not in a recognizable standard format for
other programmers, it and the code it
documents will be meaningful only to its
author.

Standard Documentation Forms

Every software project should have
some standard documentation forms. These
forms serve two purposes. They provide an
overview of the project software and its
progress and provide access to the various
levels of software information. Some of
the standard documentation forms are
listed below.

1. Structure trees - show how one
concept module breaks down into
others.

2. Status reports - show the stage
of development of each module.

3.

4.

5.

6.

7.

Module listings - provide de­
tails to the implementation of
the module.

Symbol dictionaries - list all
the program's symbol names with
their description and specifica­
tions.

Cross references - show which
modules reference the symbols
listed in the symbol dictionary.

Keyword searches - list the mod­
ules that contain specified key­
words.

Test input/output files - pro­
vide records of the test per­
formed and their results.

Data Base

The next general software requirement
that every project should consider is that
of data basing its information. A data
base of the software work can r~quire a
standardized and dedicated approach, but
it can also provide an accessible, per­
manent storehouse of the project's cor­
porate knowledge. The data base should be
a part of the software development system
and not some separate, therefore ne­
glected, activity. The two data base
topics to be covered are: the software
module as a unit of the data base and the
data base being expandable and modifiable.

Software Module Units

One way to ensure that the data bas­
i~g of software information does not be­
come a neglected activity (and cease to
represent the program as implemented) is
to make the coding and the data basing the
same activity. This can be assured by
requiring that each software module of the

378

program be a unit of the data base. While
this collection of software modules is not
a formal data base, it does ensure that
its data is current and accurate. It also
provides a starting point for a later
conversion to a formal data base.

Expandable and Modifiable Data Base

The data base of software modules
should be expandable and modifiable. The
number of software modules in a project
can grow rapidly, and usually does when
the early phases of the project are suc­
cessful. Therefore, the method for acces­
sing the data base modules should not be
hindered by increasing the number of mod­
ules. The format of the modules will also
be subject to change, so the data base
should not be restricted, or introduce
restrictions, to the module's format.

Automate

The third general software require­
ment that every project should consider is
that of automating as much of its methodo­
logy as possible. The degree to which any
activity can be automated is directly
influenced by the availability and regu­
larity of the data input. For software
development, input data consists of the
information needed to build the software
modules (such as module inputs, outputs,
and algorithms). If the modules are all
standardized to one format, and that for­
mat identifies the module's inputs and
outputs, then a great deal of automation
can be achieved. Two areas where this
automation can be accomplished are:

1. Generation of module-related
functions of code, and

2. Updating of standard documenta­
tion forms.

Module-related Functions of Code

There are module-related functions
whose code can be easily generated automa­
tically (i.e., by tools). Some examples
of these functions are the trace of pro­
gram flow at the module level, the display
of the values of the module's inputs and
outputs, and timing of the execution of a
module. A tool that would generate the
code to perform the above functions would
require only the list of the module's
input and output symbol names and their
data type specifications. That same in­
formation is required to build the module,
and would be available in the module for­
mat.

Update Standard Documentation Forms

Some of the standard documentation
forms, such as structure trees, status

report, symbol dictionary, cross refer­
ence, and keyword search, were described
earlier under REQUIREMENTS. These docu­
mentation forms all make use of data
needed to build modules so that data is
available in the standard module's format.
If the requirement to treat all the soft­
ware modules collectively as a data base
is satisfied, then all the data necessary
to automate the update of the standard
documentation forms is available.

Configurabil i ty

The last general software requirement
that every project should include in its
approach to software development is con­
figurabil i ty. Configurability, without
defining what it is yet, allows program­
mers to ignore the rest of the program
while they concentrate their attention on
their task but still remain an integrated
part of the total program. Configura­
bility does not just happen nor can it be
easily "added on" later. Configurability
must be addressed as a desired requirement
and planned into the software development
approach. To better understand this con­
cept, consider:

I. Definition of configuration,

2. Uses for configurations, and

3. Benefits of configurability.

Definition of Configuration

There are ways to refer to individual
module~. Usually this is done by refer­
encing the module's name or the module's
number. One can also refer to a collec­
tion of modules. Usually this is done by
calling it "the program." However, there
is no common way to refer to a subset of
modules within a program. To do this, we
have selected the term "configuration."
For the purposes of this paper, the word
"configuration" refers to a specific set
of modules that are a subset of the entire
program.

The approach set forth in this paper
recommends that software modules be
uniquely identified by number instead of
the more traditional title or name. In
practice, we have found that programmers
accept this policy, if the number is al­
ways followed by the module's title (For
example, AV1234 ! AIRFRAME MODEL where
all module names begin with "AV" and the
in-line comment delimiter "!" is used to
precede the title). This lets one pre­
name all the modules in a program (al­
lowing for as much growth as desired),
create skeletons of those modules, and
fill them in as the program grows. Naming
a module with a number permits the crea­
tion of the generic subroutine call be­
cause a number can be associated easily

379

with an address (whereas, names do not
associate well). Identification by number
also makes configuration modules possible.
A configuration module is a software
module whose sole purpose is to specify a
set of numbers. That set of numbers iden­
tifies a group of modules whose uses are
discussed below.

Uses for Configurations

How are configurations to be used?
They will be used to activate a specific
capability that is a subset of the total
capability. Consider the following exam­
ples. Suppose that the call to every
routine (software module) in the program
is preceded by a test on a logical that is
uniquely associated with the module, such
as;

IF (ACTIVEMODULE(l234)) CALL AV1234

where ACTIVEMODULE is a logical array and
AV1234 is a subroutine name. Then, a
configuration can be used to activate the
set of logicals (ACTIVEMODULE) and "switch
on" the desired set of modules for execu­
tion. This provides effective control of
program flow at the module level.

As another example, suppose that some
modules serve only diagnostic or test
purposes in the program. They can still
be designed into and left in the program
because they are always "switched off" or
activated only when desired.

Benefits of Configurability

In general, configurability gives
programmers and users a large degree of
control and flexibility over their program
and its operating environment.

Consider, for example, what the im­
pact of configurability is on program
versions. Since any module can be acti­
vated or deactivated on demand, there is
never a need to "patch" a baselined
module. A new module, by a different
number, can be copied from the old one
instead. Thus, no baseline code is ever
thrown away or changed to meet new re­
quirements. This means that conceptually,
program versions are replaced by con­
figurations that are activated by an input
file to the program. There is only one
linked version of the program and all
"versions," "baselines," etc. , exist as
configurations within the program.

Consider, too, the working environ­
ment. Code that is baselined and code
that is under development can coexist in
the same executable program. The code
under development will not impact the users
of baselined. code because those users will
not activate any modules that are under
developement.

Configurability can eliminate the
conflict among programmers that occurs in
situations where one programmer changes
another's code. Now, programmers can copy
that code into a new module and change
that, instead. With the support of con­
figurability, all modules can be treated
as the "private property" of each pro­
grammer. No one need worry that someone
might change his/her module and, conse­
quently, introduce problems.

The quality of code also increases
with configurability. Tests and diagnos­
tics are no longer lost in the development
rush but remain as a part of the program,
ready to be activated when demonstrations
are desired.

Configurability, along with modu­
larity, increases the portability of the
program's code. While it is quite unlike­
ly that any program is entirely portable
from one system to another, the ability to
deactivate modules that are not portable
increases the likelihood that the re­
mainder can be run on another system.

One last benefit of configurability
is the flexibility it gives the program
user to consider use of multi-processors
for a program that originally ran on a
single processor. This can be possible by
running the same program on both proces­
sors (having shared data) and activating
the set of modules in one processor that
are deactivated in the other processor.
Distributed processing is not this simple,
of course; but there are situations where
this type of processor loading is feasi­
ble, and configurability allows it to be
considered.

There can be some disadvantages with
configurability and modularity to consider
as well. First, there are longer link
times to handle many modules. Second, if
a VMS system is not used, lots of memory
will be needed to hold the "dead" code.
Third, modules may tend to get too small
(fragmentation) as developers seek greater
control, or configurability, over their
code.

CONCEPTS

Now that we have identified the re­
quirements for this software development
approach, let's look at some concepts that
satisfy those requirements. These con­
cepts are addressed at two levels: the
software module level and the software
program level.

Until now, the ideas presented have
been general enough that they could apply
to most languages and computer systems.
From this point on, however, the details
for these ideas become less general as
they become more application oriented. As
greater detail and specifications are
required, the author has resorted to the
FORTRAN language. This is done for con-

380

venience and is not meant as a language
dependence or restriction. In addition, a
program is referenced as an example that
uses this software development approach.
That program is the avionic simulation
(AVSIM)[l], developed for the A4/AV8 pro­
ject at the Naval Weapons Center in China
Lake, California.

Software Module

The software module is the smallest
configurable unit of a program. It ad­
dresses a single concept and completely
implements that concept so that the module
is self-contained. The software module
topics are:

1. Types of software modules,

2. Module standard, and

3. Context of the module.

Types of Software Modules

There are basically four types of
software modules as listed below. While
each has a different function, all four
have the same standard format.

1. Computation module - does number
crunching.

2. Flow control module - performs
an executive function in that it
selects and calls the desired
modules for execution.

3. Interface module - combination
of the computation and flow
control modules that feeds the
program's data into some general
purpose module, calls the mod­
ule, and then saves the results
of that module for use by the
program.

4. Configuration module - specifies
a set of module numbers as de­
scribed in the configurability
subsection of the REQUIREMENTS
section.

Modules do not always fall neatly
into one of the four types listed above.
For instance, a module can perform both
computation and flow control functions.
In any case, a neat classification of each
module is not necessary to this approach
at this time.

Module Standard

The standard for the software module
selected for this ap~roach is basically
that described in DoD MIL-STD-
1679 (Navy) [2]. This standard interprets
the well-known structured programming con­
cepts and produces a list of do's and
don'ts. For example, it limits modules to

a single entry/single exit, 200 lines of
code, and standard programming control
structures. It prohibits the use of GOTOs
and self-modifying code.

All inputs and outputs (I/O) for the
standard module are passed via central
dictionary COl1MONs or argument lists.
Since all modules' I/0 symbol names appear
in the central dictionary, and the module
identifies that dictionary, all module I/O
code generation can be automated. In most
cases, then, programmers nee1 not be con­
cerned about coding a module s data de­
claration or module-related functions. In
addition, programmers do not need to code
module-related functions. These func­
tions such as trace, debug of outputs,
and timing, are coded automatically by a
tool, upon request.

The format of the module (see Figure
2) consists of:

1. I/0 header section includes, as
a minimum:

2.

3.

a.
b.

c.

d.
e.

f.

g.

module's title and number;
brief description of the
module's purpose;
list of its input, output,
and local variables;
list of external modules;
indicators for generating
module-related code;
name of the central dic­
tionary; and
status indicator for the
level of module completion.

Code section contains the
user's executable code.

Documentation trailer section -
provides explanations for the
code and follows the format in
"STRUCTURED DOCUMENTATION"[3J.

Context of the Module

Now that we have seen what an indivi­
dual software module looks like, let's
consider the context of that module in the
total software development approach.
First each module is uniquely numbered
and a 1 total number of modules is decided.
For the AVSIM example, the modules are
named AVOOOO to AV9999. These 10,000
modules are then created in individual,
permanent files as skeletons or stubs to
be filled in as needed. This large number
was selected on the basis that the modules
be small (and therefore numerous) and the
AVSIM program design be expandable over a
long lifetime.

Second, there is a calling convention
for each module. That convention is to
precede the call with a test on a logical
that is uniquely associated with that
module. Following this convention ensures
configurability of the total program.

381

SOFTWARI!
MOOULI

110 HUOl!ll

CODI!

DOCUMENTATION

TRAILlll

TITLI!

MODULI
NUMHll

PURPOSE

l/OAND
IXTlllNALS

AUTHOR

DATI!

OPTIONS

STATUS

BODY USING
INTERNAL

PROCl!DUllll

DIFINITIONS
OF IXTEllNAL
PROCIDURI
Rl!FIRl!NCIS

·ooc·
HUDLINI

Kl!YWOllDS

SUMMARY

TEXT

EXH•IT

INPUTS
A • c

OUTPUTS
D
E

LOCALS
I

J

EXTERNALS
AVn

TRACI. DEBUG,

TIMWG,

DICTIONARY

STUS, DESIGNED,
CODED, FINAL.
TESTED, etc.

DO•IP•1
00-IP..2
WHl!N(LOG)

DO•IP-3
ELSE DO·IP·•

TO DO•IP•1
Fortr•n

St•t•ment1
FW

TO DO·IP-2

Figure 2. Software Module Expansion.

It is also useful to consider use of
a generic subroutine-calling module. This
module passes one argument, which is the
number of the module to be called. For
example, CALL AV_CALL (1234) produces the
same result as CALL AV1234, where
AV CALL(n) is the generic subroutine­
cailing module.

Software Program

Having discussed the software module,
we will now look at the recommended fea­
tures of software programs. The topics to
be covered are:

1. All modules are linked into one
executable,

2. Program flow is controlled by
the input file, and

3. The selective control of module
debug functions.

All Modules are Linked into One Executable

All of the software modules should be
linked into a large, single executable,
producing a single version of the program.
In this way, no modules are ever lost and
anyone can access the modules developed by
everyone else. Use of the object library
lets the developers write a link command
that need not be updated every time a new
module is written.

Program Flow Controlled by the Input File

The program flow desired by user is
specified by a program's input file which
identifies only those modules the user
wants activated for a run. By default,
all modules are initially "switched off"
until the user turns them "on." The pro­
gram designers may, however, have some
baseline or startup modules that are acti
vated by a bootstrapping portion of the
program. In any case, time-consuming
c~mp~les and links can be reduced by de­
s1gn1ng a configurable program where sec­
tions of code are activated via input
files.

The input file not only activates the
modules desired by the users, but also
allows them to effectively replace one
subroutine with another (without re­
linking). This is accomplished through
the use of the generic subroutine-calling
module and its call list. In the example
seen earlier, we showed that CALL AV CALL
(1234) was equivalent to CALL AV1234. Use
of the call list, REF LIST, allows the
user to reassign the address of the module
called. For example if an input file uses
AV5678 instead of AV1234, the user needs
only to put REF_LIST(l234)=5678 in the
input file and AV5678 will be called every
place in the program where there is a CALL
AV_CALL< 1234>.

Selective Control of Module Debug Func­
tions

The software program has some modules
whose function is to control the section
of module-related debug functions. These
functions, such as trace, debug outputs,
and timing, are selectable by function and
by module or configuration number. In the
cases where the program executes in num­
bered cycles, the module-related func­
tion(s) are also selectable for a begin­
ning cycle number, a terminating cycle
number, and a frequency rate (activated
every second, third cycle, etc.).

TOOLS

Now that we have the above software
development concepts in mind, let's iden­
tify some tools that can support them.
Tools can be generally divided into two
categories, system and software. For the
purposes of this paper, the system tools
are the computer-dependent support pro­
grams and the system that runs them. The
software tools are those programs that are
generally computer independent.

System Tools

The hardware and computer-dependent
support software needed for a program
developed under this approach are listed
below. The VAX/VMS series computers sa­
tisfy these requirements.

382

1.

2.

3.

4.

5.

Virtual memory system (VMS) -• a
VMS is necessary to free the
programmers of memory con­
straints so that the program can
grow as large as required.

Shared memory - shared
provides communications
processors in systems
distributed processing.

memory
between
having

Versatile linker program - the
operating system must provide a
linker that can handle large
numbers of subroutines (modules)
and large numbers of labeled
COMMONs, since there may be as
many labeled COMMONS as there
are central dictionary symbols.

Permanent file directories - the
operating system must provide
directory structures for acces­
sing large numbers of permanent
files because each software mod­
ule is stored in a separate
permanent file.

High resolution clock - a high
resolution clock is necessary
for timing small modules that
run on the order of milli­
seconds. System clocks usually
do not have this resolution.
DEC's KWll-P programmable clock
satisfies this requirement.

Software Tools

The software tools listed in this
section are those required to support the
proposed software development approach.
They are mostly custom-built programs; and
so, all are not available in computer
system libraries. They are, however, all
in the public domain. These software
tools are;

1. Fortran Language Extended Con-
trol Structures (FLECS) [4] ,

2. Module Generator[S],

3. Model Builder[6],

4. Standard documentation forms
tool.

Fortran Language Extended Control Struc­
tures (FLECS)

Since the language selected for the
AVSIM program was FORTRAN, a tool to ex­
tend the language's control structure was
desired. That tool, FLECS, is a FORTRAN
preprocessor that extends the FORTRAN 77
control structures and generates FORTRAN
code. The two primary control structures
(and not provided in ANSI 77) are the
internal procedure and the CASE state­
ments. The internal procedures appear as
pseudocode. Pseudocode allows the pro­
grammer to write modules in English-like

sentences and show the details of imple­
mentation elsewhere in the module.

Module Generator

The Module Generator is used for
design and coding of the programmer's
software module. At the design stage, the
Module Generator format helps the program­
mer identify the module's I/O data and
external modules. Because the Module
Generator accepts FLECS coding, it helps
the programmer design a module's code
through the use of internal procedures and
control structures.

At the coding stage, the Module Gene­
rator generates two different kinds of
code for the programmer. First, it uses
the program's central symbol dictionary to
generate the module's data declarations.
These statements include the labeled COM­
MONs, type, and DIMENSION statements (FOR­
TRAN). Second, it generates the code for
the module-related functions, such as
trace, debug outputs, and timing. These
code generation functions free the pro­
grammer to concentrate on a module's
function and not spend time handling the
module's data declarations or debug code.

Model Builder

The Model Builder generates real-time
code from specified software modules. It
does this by combining the small modules
called by an executive routine into a
single, large subroutine. In the process,
it leaves out all debug code and checks
for conflicts in the use of local names.
The Model Builder does not affect the
source modules, but only creates objects
that are linked into the main program.

Standard Documentation Forms Tool

The standard documentation forms tool
generates and updates the various documen­
tation forms. This documentation program
uses the standard module source files as
input, treating that dictionary of per­
manent files like a data base. The output
of the documentation program are structure
trees, status reports, symbol dictionary
listings, cross references, keyword search
results, and reference manuals.

The structure trees represent the
conceptual decomposition of each module.
They show the modules called from each
module. The listing contains each mod­
ule's number and title and indicates the
level of the module in relationship to the
other modules. The example in Figure 3
illustrates an AVSIM structure tree for
AV1510, a module that controls the samp­
ling of global point data.

The status report is a list of all
the modules in the user's program. It

383

lists the module number, title, module­
related functions implemented, and de­
velopment status. The example in Figure 4
illustrates a portion of the AVSIM status
report. Note that the unused modules, or
stubs, are indicated by "0/0" in the TITLE
column or "S" for STUB under the STATUS
column.

The symbol dictionary list provides
an alphabetical listing of the user's
central dictionary. The format of a dic­
tionary item is:

symbol name= textual description
$shared-memory indicator

[data_declarations]label common name

where the $shared_memory_indicator is op­
tional ($STATE indicates a state variable
to be located in shared memory.), and the
data_declarations consist of data type and
dimension specifications. For examples of
elements in the dictionary, see the cross
reference sample that follows.

The cross reference shows which mod­
ules reference the program's I/O data.
The cross reference is generated from the
symbol dictionary listing and a file of
the I/0 headers from every module in the
program. The example in Figure 5 il­
lustrates a few items from the AVSIM cross
reference. Note that the type of usage is
indicated by *OUT for output, *INP for
input, *LOC for local, and *REF for ref­
erenced (meaning that the variable may be
either input, output, or both).

The keyword search lists all of the
modules containing specified keywords. To
generate the keyword search results, the
program uses the keyword portions of the
documentation trailer of all the software
module source files. The result is a list
of all the modules containing the speci­
fied keywords and a list of each module's
keywords as well. The example in Figure 6
illustrates an AVSIM keyword search list
for the keyword "EARTH." Note that for
many modules the default list of keywords
is simply the title.

The reference manuals are sets of
"docs" grouped by subject matter, model,
author, etc. The "doc" is the documenta­
tion trailer found at the end of each
module (see Figure 2). The user specifies
the keywords and/or other module criteria,
and the tool searches the data base of
documentation for the appropriate "docs"
to compile into a reference manual (as an
example, the list of modules produced into
a reference manual). The list of modules
produced by the keyword search in Figure 6
could also be used as a list of "docs"
that would be compiled into an "earth
model" reference manual.

AV1510 ! SAMPLE GLOBAL POINT DATA

AV1520 SAMPLE EARTH DATA

AV1525 I I/O INTERFACE TO AV1526, GENERIC EARTH DATA

AV1526 I GENERIC EARTH DATA

AV1530 SAMPLE OCEAN DATA

AV1540 SAMPLE ATMOSPHERE DATA

AV1550 ,! I/O A/C INTERFACE TO AV1555, SAMPLE WIND DATA

AV1555 ! GENERIC WIND DATA

NAME CODED

TD T
R E I
ABM
C U E

AV0600 ! FIRST ORDER LAG FUNCTION

AV1560 ! I/O INTERFACE TO AV1565, SAMPLE AIR DATA

AV1565 ! GENERIC AIR DATA

Figure 3. AVSIM Structure Tree.

OPTIONS TITLE STATUS
STATUS

D QUALITY D C Q
I CLASSES; E 0 u
c s STUB S D A
T F = FINAL I E L

T
E
s
T

E G G D I E
N T D
E y
D

AV1519 x x x x '70 s
AV1520 x x x x SAMPLE EARTH DATA x x F
AV1521 x x x x % s
AV1522 x x x x % s
AV1523 x x x x % s
AV1524 x x x x % s
AV1525 x x x x I/O INTERFACE TO AV1526 - GENERIC EARTH x x x
AV1526 x x x x GENERIC EARTH DATA x x F
AV1527 x x x x % s

Figure 4. AVSIM Routine Status List.

GRAVITY= STANDARD GRAVITATIONAL ACCELERATION OF AN OBJECT (FT/SEC2)
$STATE [REAL (7)]GR9248

AV1525*0UT AV1725*INP
GRAVITY G= STANDARD GRAVITATIONAL ACCELERATION (GENERIC) (FT/SEC2)

[REAL]GR3895
AV1525*REF AV1526*0UT AV1725*REF AV1726*INP

RADIUS GEOCEN+ GEOCENTRIC EARTH RADIUS FOR AN OBJECT (FT) $STATE
REAL*8 (7)]RA4970

AV0538*INP AV152S*OUT AV2200*INP AV2320*INP

RADIUS GEOCEN G= GEOCENTRIC EARTH RADIUS (GENERIC) (FT)
[REAL*8]RA7002

AV1525*REF AV1526*0UT

Figure 5. AVSIM System Cross Reference.

384

KEYWORD= EARTH

0459 ! EARTH MODEL GRAVITY INITIALIZATION
KEYWORDS AVSIM AV INIT EARTH MODEL GRAVITY INITIALIZATION

1520 ! SAMPLE EARTH DATA
KEYWORDS AVSIM AV CYCLE SAMPLE EARTH DATA

1525 ! I/O INTERFACE TO AV1526 - GENERIC EARTH DATA
KEYWORDS AVSIM AV_CYCLE I/O INTERFACE TO AV1526 - GENERIC EARTH

1526 ! GENERIC EARTH DATA
KEYWORDS AVSIM AV CYCLE GENERIC EARTH DATA

Figure 6. AVSIM Keyword Search Results

ENVIRONMENT

Having identified the tools above,
let's look at the environment in which to
use them in this approach to software
development. How a tool is used is almost
as important as what the tool does. This
section describes the proper environment
for using these tools. The two areas of
the environment discussed are the ground
rules for coding and the testing philoso­
phy.

Ground Rules

The ground rules represent agreements
among program developers and users on day­
to-day coding practices. For this ap­
proach, the agreements are:

1. Each module is edited by only
one programmer. Each module is
unique and "owned" by its wri­
ter. No one modifies anyone
else's modules or creates multi­
ple versions of the same num­
bered module.

2.

3.

4.

Baselined modules are never
changed. Once a module has
passed its tests, it has satis­
fied some set of requirements.
If the requirements change, then
a new module by a different
number is created. In this way,
no baseline software capabili­
ties are lost.

All modules follow the standard
module format. Any deviations
from the standard should be
considered high risks and care­
fully documented.

All calls to external modules
follow the standard calling con­
vention., i.e. , test on the
module's logical first. Failure
to follow this convention re­
sults in a loss of configura­
bility.

385

5. All modules linked into the
large executable are selectively
activated via the program's in­
put file.

Adherence to these ground rules is
instrumental in satisfying the goals and
requirements described earlier. One of
the interesting side effects of these
rules is that they tend to make program­
mers think more and do less trial-and­
error coding. Maybe this is because pro­
grammers find it more difficult to change
a module they SAID was done, instead of
doing a more complete job on it BEFORE
saying it is done.

Testing

Now that we have looked
ground rules for the generation
let's consider a test philosophy
by the tools. The following
levels of testing:

at some
of code,
supported
are some

1. Standard testbed configuration,

2. Demonstration of program flow,

3. Demonstration of module results,
and

4. Determination of module timing
requirements.

Standard Testbed Configuration

There is a standard testbed configu­
ration built into the AVSIM program that
allows programmers to test their code in a
"stand-alone" mode and still be part of
the total program. All the programmers
have to do is activate these "testbed"
modules and any others that they want to
support the test. These stand-alone con­
figurations usually become diagnostics and
frequently establish baseline capabilities
simply because they are documented tests
that are part of the finished product.

When programmers have completed their
modules and off-line testing, they are
ready to test the modules' integration
with the user program.

The skeleton testbed input file is
shown in Figure 7. It illustrates the
generic interface, AV0511, AV0512, AV0513,
to which a user can assign test modules.
Note that comment lines in the input file
begin with "*."

Demonstration of Program Flow

After generating a test file to acti­
vate their module(s) and any other sup­
porting modules, programmers demonstrate

that their modules are being executed in
the desired context of the total program.
This is usually done by requesting a TRACE
(module-related function) of all modules.
This will tell the programmers the order
in which their modules are executed.
Next, the programmers demonstrate that the
program flow within their model is cor­
rect. This is usually provided by the
same TRACE data. Shown in Yigure 8 is
part of a trace file for the tenth cycle
of a simulation run. It showed the tester
that the earth and atmosphere routines
were called in the desired order.

*
*

Enable modules that might be required.

* Activate the AV CALL modules
DEFINE MOD(CONF(9307)}=.TRUE.
ACTIV MOD(ALL.CONF(9307))=.TRUE.

* -

** * Tailor this section to suit your test.
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Activate generic diagnostic Initialization
ACTIVE_LIST(05ll)=TRUE

Activate generic diagnostic Cycling
ACTIVE_LIST(0512)=TRUE

Activate generic diagnostic Post-Processing
ACTIVE_LIST_(0513)=TRUE

Diagnostic Initialization
REF_LIST(0511)= fill-in

Diagnostic Cycling
REF_LIST(0512)= fill-in

Diagnostic Post Processing
REF_LIST(0513)= fill-in

**
* * Object #1 is a fill-in diagnostic or test

N OBJECT=l OBJECT=DIAGNOSTIC

Figure 7. Testbed Input File.

!CYCLE= 10

1510 SAMPLE GLOBAL POINT DATA
1520 SAMPLE EARTH DATA
1525 I/0 INTERFACE TO AV1526 - GENERIC EARTH DATA
1526 GENERIC EARTH DATA
1540 SAMPLE ATMOSPHERE DATA
1560 l/O INTERFACE TO AV1565 - GENERIC AIR DATA
1565 GENERIC AIR DATA

Figure 8. Trace of Program Flow at the Module Level.

386

Demonstration of Module Results

After the programmers have verified
that their program flow is correct, they
are ready to demonstrate that the outputs
from their modules are valid. The pro­
grammers can accomplish this by requesting
a DEBUG (of outputs) of selected modules
in their program. After the results have
been verified, the programmers are ready
to time their modules. Shown in Figure 9
is part of a debug file for the tenth
cycle of a simulation run. It shows the
values output by the GENERIC EARTH DATA
module, AV1526.

Determine Module Timing Requirements

Once the outputs of a module have
been validated, the programmer can deter­
mine the module's timing requirements by
requesting a TIMING of that module in the
real-time environment. If the module is
an executive, then the recorded time re­
flects the timing requirements of all the
called modules (i.e., model). If the
model is too slow, then the programmer can
time the called modules individually to
determine which module's implementation is
too slow. Shown in Figure 10 is part of a
timing output file for the avionic simula­
tion. It shows the times required to
execute the GENERIC EARTH DATA module,
AV1526, every tenth cycle. Note that the

ICYCLE= 10

times vary, indicating some system over­
head such as interrupt handling.

FUTURE DEVELOPMENTS

One of the requirements stated at the
beginning was the adaptability of the
product (software program) to change. The
program and approach have already changed
several times to become what they are
today. More changes are planned or are in
progress. These changes may formalize
some process to make it more efficient, or
they may add new tools or languages, or
they may address areas that need more
attention.

One of the areas of current develop­
ment is the formalization of the software
data base. With the increase in the num­
~er _ o~ modules, we have found that opening
ind1v1dual permanent files is too time
consuming and are transitioning to the
formal data base, DATATRIEVE. Since we
want the developers to still feel like
they are working on individual modules, we
are also building an interface program to
hide the data base from them.

1526 ! GENERIC EARTH
GRAVITY G
RADIUS EW G
RADIUS-GEOCEN G
RADIUS-NS G -
RNS_REQ_G-

DATA
0.32081070E+02
0.20925742E+08
0.20925742E+08
0.20785654E+08
0.99330546E+OO

Figure 9. Debug of Program Values at the Module Level.

ICYCLE= 10
1526 ! GENERIC EARTH DATA

END TIME= 3346.20 - START TIME= 3332.00 CYCLE TIME= 14.20 MSEC

ICYCLE= 20
1526 ! GENERIC EARTH DATA

END TIME= 5381.60 - START TIME= 5380.40 CYCLE TIME= 1.20 MSEC

ICYCLE= 30
1526 ! GENERIC EARTH DATA

END TIME= 1030.60 - START TIME= 1029.40 CYCLE TIME= 1. 30 MSEC

ICYCLE= 60
1526 ! GENERIC EARTH DATA

END TIME= 560.00 - START TIME= 557.20 CYCLE TIME= 2.80 MSEC

ICYCLE= 70
1526 ! GENERIC EARTH DATA

END TIME=2585.60 - START TIME= 2584.40 CYCLE TIME= 1. 20 MSEC

Figure 10. Timing of Program Performance at the Module Level.

387

An issue that is being addressed now
bas to do with training new personnel and
the centralization of tools. In the past,
new people were taught by example and
given manuals to read. As a result, their
learning was haphazard and tended to be
incomplete. Now, we are using FMS, with
the data base task above, to build an
interactive, menu-driven program. By hav­
ing an extensive HELP feature and a tu­
torial mode in this program, we hope to
remedy this problem.

One area that is not addressed by
this approach is the requirements genera­
tion process. As such, some methodologies
(like Yourdon) and tools (like SREM and
PSA/PSL) are being studied. These re­
quirements tools are still very young,
though, and many programmers are not yet
used to these tools.

Some consideration is also being
given to incorporating the language Ada
into the system. Since this is another
tool lacking maturity (especially in view
of real-time run requirements), it may be
some time before Ada is fully incorporated
into our software development methodology.

An interesting problem that arises
from carrying modularity and configura­
bility to these lengths is that of keeping
track of all the modules and when they are
supposed to be used. This problem usually
shows up when someone wants to activate
someone else's work (modules) in addition
to their own. This information is usually
passed by word of mouth, resulting in
needed modules being left out, and un­
necessary ones being activated. We are
currently looking at tools (similar to
DEC's XCON for configuring hardware compo­
nents) for configuring our software mod­
ules.

SUMMARY

By addressing the areas of goals,
requirements, concepts, tools, and envi­
ronment, an approach for defining and
building large, modular software programs
was proposed. The approach included some
concepts not usually found in other ap­
proaches, such as configurability, and a
built-in configuration control system. It
also included some tools for automating
the generation of software modules and the
updating of standard documentation forms.

This approach was adopted by the
A4/AV8 simulation project at the Naval
Weapons Center for its avionic simulation
(AVSIM) in 1979. The AVSIM program cur­
rently consists of more than 200 modules
and can be configured to satisfy both A4
and AV8 requirements. The program is run
on a multi-VAX-11/780 system using shared
memory and real-time peripheral equipment.
The approach has been found suitable for
the project's needs and will continue to
be modified and expanded to adapt to new
requirem7°ts.

388

ACKNOWLEDGEMENTS

This work was supported by the A4/AV8
Program Office and the A4/AV8 Facility
Branch at the Naval Weapons Center, China
Lake, California. Many thanks to all the
members of the team who contributed to the
effort and were patient during its de­
velopment.

REFERENCES

(1)

(2)

(3)

(4)

(5)

(6)

Cross, F. E. AVSIM MANUAL for the
Avionic Simulation Program. China
Lake, California (1981).

Chief of Naval Material Weapon System
Software Development, MIL-STD-1679
[Navy], AMSC No. 23033. Washington,
D. C. (1978).

Weiss, Dr. E. H. STRUCTURED DOCUMEN­
TATION PROGRAM I: Software Manuals
for Users and Customers (CDR-01-Vl).
Madison: Carnegie Press (1980).

Beyer,
Oregon:

T. FLECS: USER'S MANUAL.
University of Oregon (1981).

Cross, F. E. "Module Generator: A
Practical Definition for a Software
Module." In Proceedings of the Com­
puter Software Applications Confer­
ence 1983. November 7, 1983,
Chicago.

Cross, F. E. and Vigmostand, E. B.
"USER MANUAL for the Model Builder"
(working paper).

APPENDIX A

Module Generator Format

TITLE: Module Title

LIBRARY NUMBER: 0001

PURPOSE:
(Brief description of the module's purpose and method)

DESIGN REQUIREMENTS:
INPUT

OUTPUT

>'<LOCAL*

EXTERNAL
AVOOOX ! Module Title

>'<END>'<

AUTHOR: Last, First MI

DATE: MM-DD-YR

OPTIONS: TRACE, DEBUG, TIMING,
DICTIONARY=AV DICT:MASTERAV.DIC

STATUS: Stub
(Stub, Designed, Coded, Final or Incomplete, Tested)

METHOD:
SUBROUTINE AVOOOl ! Module Title

c
C Format for calling external modules via the generic AV CALL
C CALL AV_CALL(OOOX) ! Module Title
c

RETURN
END

DOCUMENTATION: Reference "STRUCTURED DOCUMENTATION" by Dr. Weiss

*HEADLINE>'<
AVOOOl Title of Documentation

KEYWORDS keywordl, keyword2,

*SUMMARY>'<
(100 - 150 WORDS AVERAGE)

*TEXT>'<
(300 - 700 WORDS AVERAGE)

>'<EXHIBITS*
(GRAPHICAL DISPLAY)

END

389

THE LOS ALAMOS SOFTWARE DEVELOPMENT TOOLS

G. Cort and R. 0. Nelson
Los Alamos National Laboratory

Los Alamos, New Mexico 87545

We present the details of a strategy for acquiring a compre­
hensive set of software tools to support a life-cycle-based
so~ware development methodology. Specific criteria for
evaluating software tools are presented with examples from
the Los Alamos tool kit. The importance of an environment to
support both the tools and the methodology is discussed.

Introduction

The environment in which modern software develop­
ment projects must operate has become increasingly
more complex as the capabilities of computing hard­
ware have advanced, and as more functionality and
performance have been required of the associated
software systems. The earliest attempts at addres­
sing these problems led naturally to the first
practical software tools: text editors, assemblers,
compilers and linkage-editors. Each of these tools
rapidly proved to be of enormous utility. To this
day these tools comprise the basic tool kit of
every software developer.

As applications continued to increase in complexity
the simple tools were supplemented with methodolo­
gies designed to organize the overall software
development effort. These methodologies identify
and emphasize activities which are not directly
associated with code generation, and as such the
simple tool kit is of little use in supporting
them. For this, and a variety of other reasons,
most comprehensive so~ware development methodolo­
gies have evolved virtually without supporting
software tools. As a result, the implementation of
these methodologies (and by extension the entire
software development process) can be a tedious,
time-consuming, labor-intensive activity.

This situation prevailed until approximately the
beginning of the current decade. Previously, the
tools which existed to support software development
activities generally were developed in-house by by
individual programmers to address a specific need
or activity. The use of such tools was limited
almost exclusively to their authors, and these
tools were not supported or maintained in any orga­
nized fashion.

Within the past five years, however, many tools
supporting software development activities have
become generally available. The most casual market
survey reveals literally hundreds of commercially
available software products designed to address
some aspect of the so~ware development activity.
In addition, many larger organizations develop
proprietary tools for universal in-house utiliza­
tion.

Moreover, there has been a fundamental metamorpho-

Proceedings of the Digital Equipment Computer Users Society 391

sis in the attitudes of software managers and deve­
lopers regarding the use of software tools. Mana­
gers widely perceive software tools as vehicles
through which more powerful development techniques
and methodologies can be implemented without intro­
ducing the stifling overheads which previously were
a necessary accomi:animent. Tools are perceived as
a means of improving programmer effectiveness,
increasing productivity and enhancing the overall
quality of the delivered software product.

Developers, on the other hand, expect their tools
to free them from many of the tedious, time­
intensive and boring activities associated with
many aspects of modern software development metho­
dologies. Tools are expected to simplify the rou­
tine of implementing the methodology and to
identify (and often to mitigate) errors which might
otherwise remain undiscovered until a subsequent
phase of the development project. In this
capacity, tools should support the development, by
iterative refinement, of the final deliverable
software product. In this respect, software tools
may be considered the analogs of computer-aided
design systems which are already being employed so
successfully to develop electronic hardware.

Although the expectations described above for both
groups seem eminently reasonable, it is often the
case that developers and/or managers become ex­
tremely dissatisfied with the operation or perfor­
mance of their newly acquired software tools. It
is o~en reported that a tool does not perform the
function for which it was acquired, or that the
task performed is too trivial to be useful.

Many tools are difficult to use and require a
greater committment of resources to training than
either managers or developers are willing to ab­
sorb. Most o~en, however, it is discovered that a
suite of tools (often acquired from different
sources) cannot be made to work together. Conse­
quently, developers and managers must devote inor­
dinately large blocks of time to interfacing the
tools together. Often this requires extensive
manual effort on an ongoing basis.

The ultimate result of all of these factors can be
a significant degradation of productivity, product
quality and project morale. Project personnel at
all levels perceive that utilization of the tool(s)

Anaheim. California - December 1985

significantly complicates the performance of their
duties, and a considerable negative backlash may
develop.

The LANSCE Approach

For the past three years at the Los Alamos Neutron
Scattering Center (LANSCE), we have been involved
in the development of a moderately large (150K
lines) real-time data acquisition system to support
condensed matter and nuclear physics research. The
size of the project, as well as the mission­
critical nature of the software, dictated the use
of a formal software development methodology.
Owing to stringent time constraints and the very
limited resources available to the project, we
decided from the outset to utilize software tools
extensively, thereby to automate many aspects of
the methodology and to reduce significantly the
corresponding overheads.

Also at an early stage of the LANSCE project, it
was recognized that most of the tool utilization
problems described in the preceding section are
byproducts of the tool evaluation and acquisition
processes and do not necessarily reflect deficien­
cies of the tools themselves. We therefore
resolved to determine, before the fact, those cha­
racteristics of a so~ware tool which are necessary
for the tool to be useful. In addition, we decided
that, whenever possible, tools would be acquired
from commercial sources. However, any tool which
could not satisfy all of our criteria would be
automatically excluded from consideration. It
should be noted that this policy resulted in the
vast majority of our tools being developed in­
house.

The four criteria employed by the LANSCE software
development project to judge the efficacy of a
software tool are utility, scope, interface and
integration. These concepts are discussed in de­
tail in the following sections.

Tool Utility

Fundamental to the ultimate usefulness of any soft­
ware tool is whether it performs the task(s) for
which it is acquired. Although this statement may
seem obvious to the point of being trite, it is
misapplied or overlooked in a surprising number of
instances.

The most common error which is committed in evalua­
ting the utility of a so~ware tool is to mistake a
tool which performs ~ job for a tool which does the
job. Almost all tools perform some function, but
whether that function addresses precisely the job
which you want done makes all the difference.
Tools which are not carefully matched to the task
at hand create bottlenecks and generate frustration
by forcing users and managers to compensate for the
inadequacies or idiosyncrasies of the tool.

The LANSCE system employs two different classes of
tools: configuration management (CM) tools and
developer support tools. The utility required for
each class and for each tool within a class was
formally specified and reviewed before the acquisi­
tion process was begun.

392

The CM tools were specified to perform all transac­
tions between project participants and the local
secure repository of software baselines. Con­
straints were identified to define all aspects of
the operation of these tools.

Additional CM tools were specified to perform auto­
mated rebuilds of all or part of the software
system. Other tools were specified to provide a
comprehensive, automated, configuration accounting
system to track the changes to, and to record the
status of, every software component in the system.

Developer support tools were specified to assist in
the implementation of various aspects of the local
software development methodology. Tools were spe­
cified to support development of each of the five
software baselines which must be met for each deli­
verable product. These tools provide extensive
automated support for the evolutionary development
of comprehensive inline documentation for each
software baseline. This includes multiple levels
of procedural documentation (including structured
pseudocode), a comprehensive data dictionary, and
module structure charts. In addition, these tools
enforce facility coding and documentation stan­
dards, promote a high degree of uniformity, and
ensure completeness of the final product.

Other suppport tools simplify and extend the deve­
lopers interface to standard compilers and linkage
editors. These tools virtually eliminate the need
for developers to create and maintain special com­
mand files to compile and/or link computer pro­
grams.

An additional tool provides users the run-time
option of choosing a particular version of an ap­
plication for execution. This is particularly
useful when an uncertified version (perhaps under
maintenance) has a feature which is required by
some subset of the user community, but which is not
generally available in the certified version. In
this situation, any user requiring the uncertified
software version may choose to execute it without
affecting the environment of any other user on the
system.

Because the utility of each of these tools was
specified well in advance of acquisition, the ac­
quisition and evaluation processes were signifi­
cantly simplified and the utility of each tool was
guaranteed. As a result, each tool was integrated
into the existing environment without undue disrup­
tion.

Tool Scope

The issue of tool scope requires that a software
tool address the targeted problem at a level which
is appropriate to the context in which the problem
is encountered by the user. Scope and utility are
closely related, owing to the fact that inappro­
priate scope can often-nullify a tool's utility.
The issue of tool scope often reduces to whether
the tool performs the expected function without
requiring the user to extensively reconfigure
either the tool or the environment in which it
functions.

The scope which is appropriate for a specific tool
often depends strongly upon the purpose, desired
versatility and audience which the tool must serve.
The LANSCE documentation tools, for example, exhi­
bit a relatively narrow scope. These tools are
designed to perform a particular function at a
well-defined stage in the development life cycle.
Their inputs and outputs are standardized and sim­
plified to accomodate the LANSCE methodology and
environment. The user expects these tools to per­
form a specific documentation task expeditiously
and without requiring special configuration. From
the user's perspective, the inability of the tool
to deal with the documentation needs of a wide
range of methodologies and project organizations is
unimportant .

Tools that exhibit a narrow scope are therefore
generally preferred in situations that are charac­
terized by a narrow class of problems and/or a
large community of relatively unsophisticated
users. The narrow-scope tool satisfies the desire
of most individuals to be tool users -- not tool
builders.

The LANSCE CM tools are characteristic of the wide­
scope alternative. In order to meet our CM re­
quirements, an environment consisting of many pri­
mitive tools was acquired. The environment pro­
vides a procedural command language which allows
the primitives to be combined into highly custo­
mized applications. The CM tools which are thereby
constructed are general purpose in nature and col­
lectively exhibit a very wide scope. That special
knowledge and experience is required to utilize the
CM tools is unimportant in light of the very res­
tricted user base and the wide variety of problems
which can be addressed.

Tool Interface

By virtue of being the most visible feature of any
software tool, the user interface plays the most
important role in determining whether a tool will
be accepted by its intended audience. As the com­
ponent which interacts most strongly with a subjec­
tive human being, the tool interface should be at
least as carefully designed, tested (and evalu­
ated!) as the tool's functionality. Yet it is
often obvious that a tool's interface has been
hastily thrown together and tacked onto a "working"
tool just prior to release.

An effective interface must at once be simple,
appropriate, uniform and consistent. Simplicity
avoids presenting the tool user with a confusing
plethora of choices or options. The interface
should be tailored to the level of sophistication
of the user. Oversimplified interfaces engender
feelings of impatience and inefficiency on the part
of their users, whereas interfaces which are too
complex cause confusion and frustration.

Consistent interface syntax and semantics are abso­
lutely necessary for a user to gain confidence in
the associated tool. In many instances, problems
assessed as failures of tool functionality can be
traced to the (unintentional) misapplication of an
inadequate or inconsistent interface.

The importance of uniformity among tool interfaces

393

cannot be overemphasized. Particularly in cases in
which a suite of tools is employed, it is of enor­
mous advantage if a uniform interface is employed
by all tools. Uniformity results in the minimiza­
tion of the effort required of a user to become
familiar with the operation of the tool set. Be­
cause all tool interfaces are semantically and
syntactically equivalent, moving between tools
becomes much more comfortable.

All LANSCE tools employ a standardized interface by
utilizing the VMS Command Definition Utility (CDU)
to define a DCL command to invoke each tool. This
guarantees that the interfaces are uniform across
the entire spectrum of tools. The syntax and
semantics associated with DCL commands, parameters
and qualifiers are familiar to even our most casual
users and therefore impose no additional overhead
to assimilate. Combined with online help and user
documentation in the VMS style, the interface is
appropriate for users at essentially any level of
sophistication. A derivative, but verv important,
benefit of this approach is the extreme ease with
which interfaces can be written -- the need to
develop parsers, menu drivers or command language
interpreters is completely eliminated.

Tool Integration

The last criterion for software tool suitability
concerns the issue of tool integration. This cri­
terion expresses how well a tool fits into the
environment in which it is expected to function.
The integration issue accounts for the most insi­
dious cases of tool failure -- instances in which a
tool (or suite of tools) can be demonstrated to
have the appropriate utility and scope, as well as
an effective interface, yet still contributes nega­
tively to a project.

A successful software development tool must inte­
grate effectively with three external entities:
other tools, the software environment, and the
development methodology. It should be realized
that these external entities cannot generally be
considered independently.

For example, the choice of a development methodo­
logy will to some extent determine the environment
and tools required to support it. However, the
environment (operating system, local data bases,
etc.) may play an important role in determining the
appropriate methodology as well as in determining
which tools can be effectively supported. A power­
ful set of tools, on the other hand, can signifi­
cantly enhance the environment.

The point of identifying these mutual dependencies
is to establish the importance of promoting and
nurturing a healthy symbiotic relationship among
the tools, the environment and the methodology
embraced by a software development project. Any
attempt to consider one of the three in a vacuum
and without regard for the others, must necessarily
have an adverse effect upon the collective system.

That tools must integrate with each other is a
necessary consequence of the size and complexity of
the tasks to we apply them. Text editors must
produce source files which can be processed by
compilers, and the resulting object modules must be

compatible with linkage-editors which use them as
input. Within the context of these simple, fami­
liar tools the concept of tool integration seems
natural and obvious.

Within the larger context of the typical software
development project, however, tool integration
becomes a far more subtle problem. This problem
can be compounded when tools are acquired from
multiple sources.

Often, a tool employed during one phase of a so~­
ware development project produces information which
is inappropriate or incompatible for use with ano­
ther tool in a subsequent phase. In other cases
the information is appropriate but the format in
which is is presented is not. Consequently, pro­
ject managers and developers are forced to take
remedial action (often in the form of additional
manual procedures) to transform the information
which is produced by one tool into a form or format
which is acceptable to another. In addition to
draining precious resources from the project, these
activities lead to the tools being (correctly)
perceived as encumbrances by project participants.
Project managers rapidly become alienated when
expensive tools produce no appreciable benefits or
even detract from overall productivity.

The problems generated by lack of integration of
most software tools could be ameliorated to some
extent if the tools were integrable into a common
software environment. Here, the term software
environment refers to a common body of information
to which all tools have access. An operating sys­
tem is a simple example of such an environment,
although modern software development projects al­
ready utilize environments comprised of extensive
data bases and other complex information struc­
tures.

Unfortunately, very few software development tools
(particularly commercially available tools) have
the flexibility to integrate into customized soft­
ware environments. Some tools define their own
environments, within which they can function rather
effectively, but with only rare exceptions, they
cannot integrate effectively with any external
environment.

Finally, the lack of integration of software tools
with standard software development methodologies is
a most serious deficiency. Indeed, it was this
problem which primarily influenced the LANSCE pro­
ject to develop its own methodology (1) and to
support it with locally developed tools. These
statements should not be misconstrued to mean that
there are no so~ware tools available to support
the various phases of a so~ware development pro­
ject, but merely that there is no tool, set of
tools or combination thereof which lends automated
support to the entire software development activity
without encountering severe integration problems
between its components and the underlying environ­
ment.

The LANSCE approach to addressing the integration
problem has been to define the methodology, envi­
ronment and tools in terms of each other. Our
methodology is therefore designed to be implemented
with, and supported by, a comprehensive set of
software tools. The tools and methodology together

394

define a unique so~ware environment which encom­
passes the methodology (so~ware baselines, stan­
dards, tools) as well as extensive information
structures used to meld the methodology and tools
into a cohesive, cooperating structure. The degree
of integration achieved in this manner has been
extremely high and provides a stable foundation
upon which new tools, more powerful methodological
features and environmental enhancements can be
added.

Conclusions

In the preceding sections we have attempted to
present our philosophy for acquiring and implemen­
ting a comprehensive suite of software development
tools to support a life-cycle-based development
methodology. The philosophy is based upon four
criteria which we believe to be essential charac­
teristics of successful software tools.

It has not been our intention to provide detailed
descriptions of the purpose and functionality of
each tool in our system, or to expound upon the
details of our software development methodology.
These topics have been discussed elsewhere (2,3).
It was our purpose to present a rational framework
within which a comprehensive set of software tools
can be specified and and ultimately acquired.

Finally, it must be stressed that the criteria
which we have advanced for useful tools are quite
stringent. Very few commercial tools have been able
to satisfy them. Regardless, careful and thorough
specification of software tools is crucial to any
successful program of acquisition. In the final
analysis, it is far better to develop your own
tool, or to forego acquisition altogether, than to
introduce an inadequate, frustrating and disruptive
influence into your software development project.

References

1. G. Cort, J. A. Goldstone, R. O. Nelson, R. V.
Poore, L. Miller and D. M. Barrus, IEEE Trans.
Nuclear Science, NS-32, 1439, 1985.

2. G. Cort, in Conference on Software Tools, John
Manning, ed., IEEE Computer Society Pres~85.

3. G. Cort and D. M. Barrus, Proceedings of the
First Meeting of the Softool Users Group, Septem­
ber, 1984.

Acknowledgement

This work was performed under the auspices of the
U. S. Department of Energy.

THE LOS ALAMOS TOOL-ORIENTED SOFTWARE DEVELOPMENT SYSTEM

G. Cort and R. 0. Nelson

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

We present the details of a software development methodology
which addresses all phases of the software development life
cycle, yet is well suited for application by small projects
with limited resources. The methodology has been developed
at the Los Alamos Neutron Scattering Center (LANSCE) and was
utilized during the recent development of the LANSCE Data
Acquisition Command Language. The methodology employs a
comprehensive set of software tools to support development
and maintenance of exhaustive documentation for all software
components. The impact of the methodology upon software
quality and programmer productivity is assessed.

Introduction

With the rapid advance of hardware technology, and
the increasing complexity of software applications,
modern software systems are becoming much larger
and significantly more difficult to manage. For
numerous reasons, these factors have had a particu­
larly serious impact on the quality of scientific
software. Whereas large engineering organiza­
tions can devote considerable resources to
software management, most scientific software
development projects are characterized by small
staffs with very limited resources. That most
scientific programmers have little or no familia­
rity or experience with software management
issues exacerbates the problem. As a result, soft­
ware developed in this environment is often fra­
gile, haphazardly designed, difficult to use and
impossible to maintain. Documentation, if it exists
at all, is frequently inconsistent and inaccurate.

In order to address these problems, and with the
ultimate goal of improving software reliability
and maintainability, the Computer Group at the Los
Alamos Neutron Scattering Center (LANSCE) has estab­
lished a comprehensive development methodology
for scientific software. This methodology employs
many of the strategies and techniques utilized
by large projects to manage the software develop­
ment process, but significantly reduces the asso­
ciated overheads.

Assumptions and Implementation Strategy

The so~ware systems that are developed and main­
tained by the LANSCE staff can be characterized
as mission-critical. (This is particularly true of
the real-time systems.) The operational lifetime
of most of these systems is expected to be rather
long--approximately ten years. The LANSCE
methodology must, therefore, promote the development
of highly reliable software that can be maintained
by a small staff. We base this strategy upon three
assumptions.

Proceedings of the Digital Equipment Computer Users Society

1. Large-scale methodologies are not suitable for
use by projects of small or intermediate size.
Very effective methodologies already exist for
managing software development projects. Histori­
cally, these strategies have been pioneered by, and
perfected for, large-scale software development
projects which can devote considerable resources to
applying them. These methodologies usually re­
quire a dedicated staff to perform time inten­
sive activities within a highly stratified ma­
nagement structure. A commitment such as this us­
ually represents only a small fraction of the total
resources available to a large project. The LANSCE
staff, however, consists of approximately four
full-time programmers and a single manager. As
would most small or intermediate size projects,
the LANSCE effort would be overwhelmed by the
institution
methodology.

of a large scale development

2. Coding is the least important activity asso­
ciated with any development or maintenance opera­
tion. Coding should correspond to merely the trans­
lation of a sound design into an implementation.
The most critical development activities are
performed either before (specification and de­
sign) or a~er (testing) the coding phase.
Most small projects (especially those of a scien­
tific nature) emphasize the coding activity,
often to the complete exclusion of the other
phases. Reliability, consistency and maintainabi­
lity are very difficult to introduce into an
application during the coding phase, so many sci­
entific applications are characterized by very low
quality.

3. Documentation is fundamentally more important
than code. Every software professional has been
exposed to inadequately documented code, usually
during a maintenance operation. The precedence
of documentation over code, however, has far wider
implications: over the entire software life cycle,
complete documentation is crucial to the successful

395 Anaheim, California- December 1985

operation of any software system or component.
In addition to adequate maintenance documentation,
requirements must be fully documented (for
comparison with validation test results). A
carefully documented design is invaluable when the
software requires enhancement or repair. Exhaus­
tive documentation of test coverage, specific
test cases and all test results is essential
for validation and verification of subsequent
versions. For these reasons, the LANSCE methodology
emphasizes the development of complete, consis­
tent and uniform documentation for every phase of
the life cycle.

The LANSCE methodology implements these assumptions
by applying policies of universal standardiza­
tion and strict modularity. Standardization of all
development/maintenance activities (and the re­
sults thereof) is the simplest means for promoting
uniformity and completeness in the final product.
This can be accomplished without adding appre­
ciably to the management overhead. Standards
application and verification can often be accom­
plished with automated tools, further reducing the
overhead.

In order for standards to be effective, however,
a certain level of management commitment is re­
quired. Of primary importance is enforcement of
existing standards. Standards must be compulsory
and universally applied. Voluntary standards or
selective application doom the effort to failure
at its inception. In the very rare instances in
which exceptions are made and standards violations
are permitted, there must be significant other
advantages to be gained (improved functionality,
clarity of expression, etc.) other than mere conve­
nience.

Standards, to be effective, must exist in writ­
ten form. Unrecorded conventions that are presumed
to be understood by all participants are often worse
than no standards at all. Interpretations vary
with individuals, and standards application
subtly changes with time. Hence, the content
and uniformity of resulting software varies ra­
dically with author and date of development.

The LANSCE facility standards address all aspects
of the software development project. They establish
development procedures, specify the components
to be be produced during each phase and define
acceptance criteria. At a lower level, they promote
complete and uniform documentation by defining
a partitioned documentation template and rigidly
specify the information required in each parti­
tion. Coding and style standards are provided to
specify the implementation language, to identify
illegal control structures, to establish formatting
rules (indentation levels and case rules), to
set naming conventions and to define modularity
constraints.

The policy of strict modularity is defined in
the facility standards and specifies limitations
for the size and contents of a software module, as
well as the allowed forms of communication between
modules. The goal of this policy is to com­
partmentalize the software, thereby reducing side
effects which are attributable to pathological
intermodule connections.

The LANSCE methodology limits the number of
software routines (programs or subprograms) per
source file (module) to one. Module length is not
to exceed 100 executeable lines. Communication
between modules must be performed exclusively
through calling parameters. Global common data
structures are explicitly forbidden. These
rules promote the development of small, highly
functional modules with simple interfaces.
Reuse of existing modules is therefore encouraged
and maintenance can be performed on individual
modules without jeapordizing other unrelated compo­
nents.

The Life Cycle Approach

The LANSCE methodology is based upon a software
life cycle model. The model partitions a deve­
lopment or maintenance operation into three
phases: specification, design and implementation.
The implementation phase is further subdivided
into coding and testing activities.

The activities that may be performed during a
particular phase of the life cycle are rigidly
specified in the facility standards. During the
specification phase, functional requirements are
analyzed, general algorithms are established, and
top level constraints are identified. The de­
sign phase addresses the detailed algorithmic
and procedural aspects of the software product.
The coding activity translates the design informa­
tion into the appropriate programming language.
The testing activity is required to generate a
formal test plan which specifies the test co­
verage and which describes each test case in detail
(purpose, inputs and results required to pass
the test). The testing activity must also generate
a test report that contains the actual results of
every test case.

Work on a particular development/maintenance
cycle proceeds sequentially through each of the
phases described above. Generally, all work speci­
fied for a particular phase or activity must be
completed prior to beginning the subsequent phase.
(The development of the test plan may, however,
proceed concurrently with the coding activity.)

Peer reviews are employed to verify the complete­
ness, correctness and appropriateness of all work
performed during a particular phase of activity.
Work is subjected to a mandatory review at the
conclusion of each phase. For extremely complex
projects, intermediate reviews may also be re­
quired (e.g. a test plan review).

The reviewing body is composed of the entire pro­
gramming staff, the section leader, and a repre­
sentative of the user community. Collectively iden­
tified as the Configuration Control Board (CCB),
these individuals determine the completeness of
submittals by comparison with standard baselines. A
baseline is defined in the facility standards for
every phase am activity. Each baseline details
specific components that must be completed to satis­
fy the requirements of the corresponding phase or
activity.

Submittals are also reviewed for compliance
with general facility standards (coding and documen-

396

tation). Algorithms are critically evaluated and
required changes are identified. The reviews there­
fore provide a means for identifying and elimina­
ting errors at the earliest opportunity. This gua­
rantees that each phase of the life cycle is addres­
sed in the appropriate order and in a complete and
consistent manner.

Documentation

Documentation is the cornerstone of any success­
ful development methodology. The LANSCE strategy
emphasizes the development of exhaustive documen­
tation for each system component during each
phase of the software life cycle. The software
review process promotes the generation of complete,
uniform, accurate and current documentation. Of
equal importance to the small project is the
requirement that the documentation be easily ma­
naged.

One of the problems associated with large­
scale methodologies is that although they producf'
very comprehensive documentation for each lifci
cycle phase, this documentation exists as many
separate components (requirements documents, state­
ments of work, design documents, user's guides,
reference guides, etc.) and in many different
forms (text, graphics or binary). The sheer num­
ber of components makes cataloging and tracking
the various versions extremely difficult. Some
entities (e.g. graphical data flow diagrams and
structure charts) are tedious and time consuming
to produce and very difficult to maintain. As a
result many components become obsolete as the
project evolves, thereby undermining confidence in
all existing documentation. For small projects
with limited resources, the effort required to sup­
port a documentation strategy such as this is prohi­
bitive.

The LANSCE methodology is designed to drastically
reduce both the number of distinct documentation
components and their manifestations, without severe­
ly restricting the documentation scope. Only one
manifestation is permitted: all documentation
is required to be electronically readable and
modifiable with a text editor. Documentation
which does not meet this criterion (structure
charts, for example) is reorganized to comply,
or eliminated. Unwieldy media (e.g. paper-only
copies) are thereby eliminated and the update
procedure is simplified considerably. Because
all documentation is computer readable, auto­
mated software tools can be employed extensively
to streamline much of the effort.

The number of documentation components is reduced
to three. The first component consists of all spe­
cification, design and maintenance documenta­
tion. This component is generated and main­
tained inline within the source code module. The
second documentation component consists of a users'
guide that describes the operation of the soft­
ware and contains no design or maintenance informa­
tion. The last documentation component contains
all testing information and consists of the test
plan (test description) and the test report (test
results).

The inline documentation component consists of a

397

stC<r.dard documentatior. template that resides
at the beginning of every software module. The
template is divided into ten sections, each of
which is dedicated to a particular category of
documentation. These categories are organized into
narrative documentation and tabular documentation
classes.

The narrative documentation categories are format­
ted as paragraphs, and are divided into sections
for module purpose, history, functional descrip­
tion, assumptions and limitations, special com­
ments, references and pseudocode. These sections
contain information documenting the requirements,
previous maintenance , activities, algorithm,
procedure, general data structures and special
features of the associated module. Automated
tools are provided to support the generation and
update of narrative documentation.

Several special components of the narrative documen­
!.ation class are notable. The pseudocode ca­
Gegory contains a concise, but detailed descrip­
~ibn of the module procedure. Pseudocode is ex­
pressed as structured English statements associated
with keywords that denote control information. As
such, the pseudocode comprises a very high level,
structured program-design language with fully
bracketed syntax, and is used to express the de­
tailed design of a module. Pseudocode is easily
translated into code at implementation time, yet it
is far simpler to comprehend for either the designer
or the maintenance programmer. Tools are provided
that format and verify the syntax of this documenta­
tion.

The second special construct provided as part of
the narrative documentation is a module structure
chart. This documentation uses a tree structure to
represent the hierarchical organization of the
module and all subordinate modules. This al­
lows a maintenance programmer to determine the
precise calling structure of a system or subsystem.
Tools are provided to build the structure chart
automatically and to format the structure chart in
any of several ways.

The tabular documentation class is dedicated
to describing specific data items (symbolic con­
stants and variables), data types and subprograms.
There are three tabular categories: interfaces (for
documenting the routine's formal parameters and
external files), global identifiers (for documen­
ting objects that are visible outside the declaring
routine) and local identifiers (for objects of local
scope).

Each documentation table is organized into a series
of columns. The names of the objects being docu­
mented are listed alphabetically in the left­
most column. Succeeding columns contain information
which specifies base type, attributes, parameter
passage mechanisms and other information. The
rightmost column contains a definition of the ob­
ject. Every identifier that appears in a module
must be documented in one of the tabular catego­
ries. Automated tools are available to construct
the tabular portion of the template and complete
most of the entries in each table (including, in
many instances, the description). These tools gua­
rantee that all identifiers are indeed included in
the tabular documentation. In addition, the

tools delete tabular documentation for objects
that no longer appear in the module, and thereby
contribute to keeping the documentation current.
In this manner a complete, uniform and accurate
data dictionary is maintained within the source
code.

The LANSCE methodology is designed to produce prog­
ressive and cumulative evolutionary documenta­
tion. The LANSCE philosophy organizes all docu­
mentation according to its intended audience.
Documentation that is of principal use to designers,
programmers and maintenance personnel is
placed inline with the appropriate source
code. Thus, all specification, design and main­
tenance documentation is maintained within the
corresponding source module and the test plan is
contained within the testing software. This close
association of documentation with source code has
the advantage of making all documentation imme­
diately available with the associated sources. This
enhanced access to the documentation makes documen­
tation updates simpler to perform and less likely
to be forgotten.

The users' guide documentation is targeted for
individuals who do not require the detailed
knowledge of a developer. Users' guides are there­
fore organized to contain practical information
that is required to integrate the software into
an application. Detailed information regarding the
design and implementation of the software is deli­
berately omitted as irrelevant to the users' needs.
As such, the users' guide documentation is main­
tained separately from the source code.

The above organization for documentation allows
the various software baselines to be expressed
entirely in terms of documentation components. In
this manner, as the development progresses through
each stage of the life cycle, each baseline con­
tributes to completing the documentation for a
particular system or module. This approach produces
source modules that evolve from their documentation.
Every module begins as an empty documentation tem­
plate that is completed in stages until, as the
final step, code is generated.

The specification baseline, for example, is com­
prised of specific categories of narrative and
tabular documentation that define the requirements
and constraints for a software system. The modules
in which the specification baseline is built even­
tually evolve into the system's executive rou­
tines. Requirements and constraints are specified
in narrative format in the purpose, assumptions
and limitations and special comments categories.
References are provided as needed. Top level
interfaces are defined in the interfaces documenta­
tion table. The general algorithm is described
in the functional description narrative category.

The design baseline is also constructed principally
within the documentation template. Executive
logic design is appended to the specification
baseline. This corresponds to pseudocode that
details the top level procedural flow as well as a
preliminary structure chart to document the system
calling hierarchy. Detailed subprogram design is
then accomplished by completing all narrative docu­
mentation and the interface tabular documentation
for every module in the system (as derived from

the structure chart). This includes a functional
description and pseudocode for each module. The
users' guide is then composed for the software
system. It should be noted that through this point
in the development no code has been written.

Upon completion of the design baseline virtually
all documentation which is required to operate and
maintain the system is complete. Only the data
dictionary documentation and the testing documenta­
tion remain to be developed. The former can be
(to a large degree) automatically generated after
the coding is completed. The latter is developed
concurrently with the coding activity and as a
result of executing the test procedures.

The advantages of this approach are nume­
rous. Detailed documentation is available to
guide the programmer in translating the design
into code. The resulting code is therefore much
more likely to reflect the requirements and
design than if no such guidance were available.
Several levels of procedural documentation (func­
tional description and the more detailed pseudo­
code) are provided, thereby simplifying the imple­
mentation and future maintenance operations. Prob­
lems of omission and inaccuracy which are normally
associated with retrofitting documentation to exis­
ting code are avoided entirely.

The test plan baseline contains documentation for
each test case to be executed. For each test case,
this information includes a unique identifying
number, a description of the function tested,
the inputs required and a description of the expec­
ted outputs (for comparison with test results).
The test data pack is also specified as part of the
test plan baseline. The test procedure is ulti­
mately derived from (and will reside in the same
module as) the test test plan baseline.

The implementation baseline consists of all
source modules (with completed documentation), the
test plan and test procedure module, the users'
guide and the test report. In particular, all tabu­
lar documentation is completed. The implementation
baseline thus emerges as a fully documented, prog­
ressively developed software product.

398

Configuration Management
The last element of the LANSCE methodology is a
strategy for controlling access and tracking
changes to the components of each software system.
This configuration management strategy is based upon
a philosophy of modular maintenance: during the
conduct of any maintenance operation, only those
modules that actually require modification are
made available to the maintenance programmer.
All maintenance operations, including a list of
modules to be modified, must be certified by the
CCB prior to the initiation of any maintenance acti­
vity.

These very strict policies derive from the mission­
critical nature of the LANSCE software:
failures in system components can result in total
disruption of the facility, with serious economic,
political and scientific consequences. By rigidly
controlling access to system sources, errors
introduced through inadvertent or unauthorized
access are eliminated. Backup configurations are

provided for use in the event of the failure of
a primary system component, thereby allowing the
system to remain operational (although at re­
duced capability) while the primary component is
under repair.

The LANSCE configuration management system is
built around an automated tool that provides a
secure repository for controlled modules as well as
a command language for automating configuration
management activities. Only one individual, the
Configuration Manager (CM), has access to control­
led modules. This individual is responsible
for moving software (implementation baselines)
into the controlled environment after certifica­
tion by the CCB, and for releasing modules
which have been approved for maintenance to the
designated maintenance programmer.

In order to request maintenance (either enhancement
or repair) on a particular system or component, a
work request must be submitted to the CCB. The
request is reviewed for accuracy, relevance and
importance. If approved, it is assigned to a
programmer for determination of the work re­
quired and the modules affected. The analyst's
recommendations are reviewed by the CCB and, if
approved, the designated modules are released to
a programmer for modification. The standard LANSCE
methodology is utilized to perform the maintenance
activities and review the results. Upon completion
and subsequent certification by the CCB, the new
implementation baseline is admitted to the control­
led environment.

Logs of work requests are maintained to track
the status of all software products. Automated
tools are provided to simplify the process of
completing, submitting and cataloging these re­
quests. Other tools are provided to automate the
process of moving modules into and out of the
controlled environment as Nell as for rebuilding
systems and libraries affected by maintenance
operations.

Conclusions

In the preceding sections we have detailed the
features of a powerful software development metho­
dology that is suitable for use by projects of
small or intermediate size. The methodology is
designed to maximize the reliability and main­
tainability of software components developed from
it. This is done by emphasizing phases of the
development life cycle that are generally ig­
nored by small projects: specification, design
and testing. Exhaustive documentation is pro­
gressively generated for each phase, and the
coding activity is demoted to consume minimal pro­
ject resources. A suite of automated tools is pro­
vided to support all phases of the development
effort.

Although the LANSCE methodoloisY is designed to
minimize the overheads imposed upon programmers
and software managers, application of the methodo­
logy undoubtedly increases the development time for
a so~ware product. Estimates of the additional
time required for software development are necessa­
rily subjective, but a conservative estimate for
this methodology indicates a programmer overhead of

approximately 200%. Utilization of the configura­
tion management strategy described is expected to
place a burden of an additional 15% upon one parti­
cipant.

The predicted overheads are based upon the increased
effort that must be expended by each partici­
pant during the specification, design and testing
phases (the time required for coding should
actually decreases significantly). Peer reviews
also consume a significant amount of time, both
in preparation and execution. In order to maintain
a proper perspective, however, it must be noted
that the resulting software product is of signifi­
cantly higher quality than a comparable system
developed with traditional methods. Documentation
is complete and accurate. Formal testing introduces
a level of reliability that cannot beattained
through the ad hoc exercising that might other­
wise be performed. In summary, although the
development time is tripled, the resulting software
is exceedingly more reliable, maintainable and
robust. This enhanced quality is expected to
manifest itself in much longer mean times between
failures as well as simplification of
enhancement/repair activities.

The LANSCE methodology may also be tailored to
the requirements of individual projects, particu­
larly in terms of the degree of implementation and
accompanying overhead. The simplest subset to
implement retains the policy of evolutionary docu­
mentation and combines the specification and design
phases. No peer reviews or formal testing are
performed. This implementation significantly re­
duces the overheads associated with the methodo­
logy, although the quality of resulting software
can also be expected to be much lower. The addi­
tion of peer reviews provides a very powerful
means for improving software quality at the expense
of increased overhead. A formal testing program and
configuration management procedures then provide the
full benefit (at maximum cost).

Whatever the degree of implementation, the
LANSCE methodology promotes enhanced software
quality by shifting a major portion of the deve­
lopment effort to the early stages of the life
cycle. Regardless of project size, increased atten­
tion to specification and design issues will always
produce a better result.

Acknowledgement
This work was performed under the auspices of the
U. S. Department of Energy.

399

A HIGH SPEED LOCAL AREA NETWORK OUTPUT NODE

Robert J. Aiken
Networks Division, 8234

Sandia National Laboratories, Livermore, Ca.

Prepared by Sandia National Laboratories
Albuquerque, New Mexico 87185
and Livermore, California 94550

for the United States Department of Energy
under Contract DE-AC04-76DP00789

ABSTRACT

Sandia National Laboratories,
Livermore has implemented a high speed local
area network (LAN) Output Node in order to
provide the user corrrnunity with high quality
non-interactive output in a fair and
efficient manner. This report will discuss
the major ideas and issues that were
encountered during the implementation cycle
of the output node.

SNLL provides for the computational
needs of its scientific corrrnunity with a high
speed local area network which is comprised
of two CRAY lSs running the Cray Time Sharing
System (CTSS), two IBM 434ls running the
common file storage (CFS) system on top of
IBM's MVS operating system, and seven VAX
ll/780s running DEC's VMS operating system.
The backbone for this network is the 50
megabit/sec Hyperchannel from Network Systems
Corporation {NSC) and the 70 megabit/sec
Computer Interconnect (CI) from DEC. Two of
the VAX ll/780s provide a special service to
the network. A gateway VAX 11/780 is used to
facilitate the transfer of files from a
worker VAX 11/780 to either a CRAY lS or the
CFS system. The output node VAX 11/780
provides network wide access to
non-interactive graphics devices and laser
printers. See Figure 1.1 for a representation
of SNLL's network.

The implementation of the output node
was performed in stages, with the first phase
being the installation of two XEROX 8700
laser printers. Subsequent phases of the
output node added QMS laser printers and
DICOMED film recorders. Many of the design
concepts and implementation techniques that
were used during the first phase were also
applicable to subsequent phases. Figure 1.2
shows the current output node configuration
with a more detailed view of the XEROX to VAX
interface found in Figure 1.3.

Proceedings of the Digital Equipment Computer Users Society 403

There are five different conceptual
areas of a network that must be addressed
when implementing an output node. The user
interface, the worker node, the network
protocols, the output node and the output
devices must be integrated in such a manner
as to provide the user with access to high
quality output devices from any node in the
network. These conceptual areas exist in all
LANs that provide a "server" function for the
whole network regardless of the networks'
respective bandwidth.

The first area is the user interface
which allows the user to invoke the
utility(s) needed to have a file processed by
the output node. The utility must be designed
for ease of use by providing acceptable
default parameters and a friendly invocation
format that is forgiving of user errors. This
interface must be consistent on every worker
node regardless of machine or system type.
The ability to have a file processed by the
output node also infers the need for a status
reporting tool that the users can invoke in
order to follow the progress of their jobs
through the system.

Anaheim, California- December 1985

The second area constitutes the
system type functions of the worker node
where the user is located. The main concerns
of this area are what kinds of system
software and languages are available for the
implementation of the user and network
interfaces. These will not always be the same
for each node due to the heterogeneity of the
network; therefore each participating nodes'
software must be tailored to provide a
consistent interface at both the user and
network area. This area is not as concerned
with what the users sees at the interface
level or how the user invokes the utility but
how to transform that users' request into the
proper system/network requests to produce the
expected results.

The third area can be categorized as
the network area due to the fact that its
primary function is related to the actual
error free transfer of a file from one node
to another. In order to accomplish this goal
~ll worker nodes must agree upon a system
independent network protocol such that they
can properly corrmunicate with each other.
There must also exist some corrnnon file
definition that all nodes agree upon, which
defines the type of file being transferred
and any other pertinent information needed to
properly process that file once it reaches
its de st i nation.

The fourth area is the output node
itself. This machine is dedicated to
providing fair and reliable access to the
different devices it supports. The main
concerns of this area follow. Temporary disk
storage must be provided for jobs until they
have been successfully processed. The output
node must provide an interface to the network
in order that it can receive the files that
need processing on its devices. Once a job
has been received from the network it must be
scheduled for the destination device in a
manner that is both fair and efficient. After
a job is chosen as being next in line for
processing the output node must provide a
device interface that allows for the proper
use and control of that device even if the
t~rget device is not host compatible. At all
times the output node must be able to detect
errors and recover from them if at all
possible.

. . The final area is the actual output
device itself. There are certain devices
such ~s the XEROX 8700 laser printers, that
are microprocessor controlled and need to be
pr~granvned to perform their tasks properly.
This class of machine is starting to replace
the older "dumb" devices and will make this
interface that much more complicated due to
the fact that the corrmunications between the
output node and the output device becomes a
point to point network connection.

404

There exist some problems that span
all five of the areas discussed above. Error
handling and recovery become quite complex
when one has to decide which of the five
areas is responsible for detection, user
notification, retry and cleanup. This problem
becomes even more complicated in a network
that is based on loosely coupled third
generation operating systems which do not
offer the same system services and file
management schemes. Revision control of
worker node software is also very difficult
to handle in a consistent and proper manner
in a heterogeneous network environment.

Homogeneous network environments may
not appear to suffer from the same problems
as a highly diversified heterogeneous network
but there are lessons to be learned that may
well save time and effort in the future.
Whenever a server node, such as the output
node, is introduced into a network it
behooves the implementor to examine the five
areas listed above and decide in advance upon
well defined interfaces from the user to the
output device. A server node is of value to
the network only if it can be easily and
reliably used from any worker node, which
means that time and effort will have to be
invested in each of the five different areas.

F16URE 1.1

SLTS1
CRAY C

SLTS2

URH
DISK SLTS3 C:RAY D FRRM

E
1

SLTS4
H:

(E ;
R:
N_; SL6W1
(

CFS
1

SLOP1

: [Sl!tMl]

-> SL TS 1 ,SL TS2 ,SL TS3 ,SL TS1 are
marker vex 11/78Ds

-> SLGW 1 is the gatemag vex 11 /780
-> SLOP 1 is the output node vex 11 /780
-> SLem1 is the applied mechanics

vex 111130
-> CRRY C and CRRY Dare CReY 1Ss
->CFS is tmo IBm 13111s mith a

cartridge store device

405

DECnE:T (Cl)

HYPERCHRnnEL

D D
I I
c c
0 0
m m
E E
D D

(color) (BW)

Figure 1.2

OUTPUT DODE

VRX 11/780

(SLOP 1)

x x
E E
R R
0 0
x x

B B
7 7
0 0
0 0

406

a a
m m
5 5

1 2
2 i
0 0
0 0

rigare 1.3

XEROX - VRX
IIlTERFRCE

VAX 11 /780

(SLOP 1)

[- -~ XEROX
8700

-•••·~--M•••••·--- •••

vms Block
~ oriented QIO

(DJDE's buried
in DRTR)

SYSTEms conCEPTS
<::=------- SR-11 board makes

the VRX look like an
like IBffi channel for
an IBm 3211 printer

407

accepts data with
imbedded DJDE's

(XEROX 8700 laser
printer expects an
IBm channel interface)

rigare 1.1

vms LPRIIlT

[~~~erVRX (- LPRIIlT from
SLTSl , ... ,SLTS'i

D
E
c
n
E
T
(Cl)

<- 360 byte header
+ name of file to

OUTPUT
IlODE

(SLOP 1)

be printed is shipped
to the OUTPUT IlODE

- reads 360 byte header
- gets filename
- concatenates header

+file
- submits file to the

XEROX Queue

408

H
y
p

E
R
c
H
R
n
n
E
L

D
E
c
n
E
T
(CI)

Figare 1.5

CTSS LPRIIlT

CRRY ~ LPRIIlT

f- 360 byte header with the appended
user file is sent to OUTPUT
IlODE via the GRTEWRY

GRTEWRY
VRX

(SLGW 1)

OUTPUT
IlODE

(SLOP 1)

(ffiRGIC)

f- ffiRGICS the file to the
OUTPUT IlODE via
DECilET

- checks CTSS directory for
files

- submits those files to the
XEROX Queue

409

INTERACTIVE FORMAT OONVERSION SYSTEM (lfCS)

Steven J. Kempler
NASA/Goddrd Spece Fli~t Cenler

Llborltary of Extraterrestrial Physics
Gc-Nnbelt, Mrylllld

ABSTRACT

The lnlll'8Ctive Format Conwrsion System (IFCS) is 1 plCbge designed to fldllllte the
lrlnsfer of cllll between heterogeneous computers. The system ha the genenlized
capability of: 1) .1«9Pting if1lul dlt.I from 1 runber of devices (disk, u.it. dill
line); 2) performing useful cllll COllY8rsions, llld; 3) producing output on 1
variety of devices. The structure of the dill conwrsion subsystem silll.lllles 1
subwl of the presentation lll'fll" in a nelwvrt comnuricalions link bv: converting inpul
dill into an inlernll l'lllChine independent format llld then converting the inlernll
data lo the output format. This COllY8rsion subsystem is derived by the inpuls of lhe
application. The TrSl!ipOl"lable Applic1tions Executive (I AE) is used to provide a
consislenl user inlerface llld lie.the various !Ubsyslems logether.

1.0 INm<DUCTICltl computers. Such 1 systam solves the problem for the users or space-derivtd

data that his not been attacked in eny general sense up lo now.

1. 1 BACKGRQH)

The lr111Sfer or space-derived data between computers, both heterogeneous

Ind homooeneous. have become more common Ind Increasingly desirable. The

International Orglnizatlon of Standardization (ISO) his established a sewn

layer model for nelworli:ing. (T..nbaum describes this in detail in his boot

O!qiutar Ha!.wod:s.) See Flgll't 1. The nve lower layers or the networking

model ere being addressed by vrious organizations. including the National

Blreau of Standards (NBS), International Standards Org1nlzallon (ISO), Ind

the IEEE. CllT8t\Uy, the sixth layer. the Presentation layer. is being

developed on a case-by-case basis m111y limes over for a variety or

space-related data. This layer specifically performs lr111Sformations on

data, such es text compression, format conversions, encryption, etc.

t .2 CURR£NT EFF<RT

Problem: CurrenUy, Presentation layer, specifically format conversion

sonwere, Is being developed on 1 case-by-case basis many limes over for 1

Ylf'iety of space-related science data, leading to IOOCh duplic1Uon of effort

Ind code.

Solution: The lnllrlclive Formal Conversion System (IFCS) Is • 5Wset of

Presentation Layer Sonwll't. ll oeneralizes formal converting by

inlerecllwly generating sonwere that lr11Mforms data from Ind lo the

desired l'lllChine formals. The generated code Is lr111SPGrleble Ind can be

generated ror 1 particular application Ind used on 1 iunber of different

Proceedings of the Digital Equipment Computer Users Society 411

t
IFCS

T
NBS&. ISO

l

NBS

f

T
SCOPE Of

I

HOST A

LAVER 7

APPLICATION

LAVER 1

PHYSICAL

LAVER 7
PROTOCAL

LAVER 6
PROTOCAL

LAVER 5
PROTOCAL

LAVER 4
PROTOCAL

LAVER 3
PROTOCAL

LAVER 2
PROTOCAL

LAVER 1
PROTOCAL

HOST 8

LAVER 7

APPLICATION

LAVER 1

PHYSICAL

FIGURE 1 - SEVEN LAVER NETWORKING MOOEL

Anaheim. California - December 1985

User inputs lo I.he system Include global varllbles which are defined and used

throuQhout the IFCS session. After IFCS is llllllChed (figure 2). the CVTGEN

11xacutss by rac11iving convnunic1Uons (inputs) rrom I.he user: dill d11finiUon

files, fi111 llld machine names. CVTGEN generates 1 stand alone conversion

rouUne, lhlt mey bit linked lo 1 user supplied program or link lo the General

Format Conversion UUlity (CVTLINK). To execute the General Format

COllYllrsion UUlity (GFCUTIL), I.he dill Input devices (containing the dell lo

be converted) ll1d dell output device. llld device 1llribules must be

comm111lc1led (Input) lo the uUlity. IS well IS the number or records lo

convert. The result is converted data.

IFCS presenUy resides on I.he Llbor1t.ory or Exlr1larreslri1I Physics (LEP)

(Code 690) VAX 111760, In Building 2 1t Goddard Space Flight Center. This

computer supports 1 wide range or scienUfic space-related deta 1nd I.he

-lysis or this dell. Included - dell rrom Mlriner, Voyager, ISEE end IMP

selelliles. In lddiUon, I.he LEP VAX supports ITllllY d1la -lysis packages

Ind numerical llbrrles. Therefore, I.he need hl5 grown to lr111sfer dell on

the LEP VAX lo other computers 1s well IS visa Y81'51, lo support the needs

of scientific dill 1111lysis In f1mlll1r environments. This need is not limillld

by any means.

1 .3 DESIGN CONSIDERATIONS

The primary objective in designing end implementing IFCS was to develop 1

system l.het allows chlracleristics of the S01rce end target dell slr8111\S,

along with identifier information, to be 81Sily specified Interactively. IFCS

utilizes this input to produce lrlllSpOl'table computer code that maintains the

semantics of the dlla a they ere lrllllSformed from one computer to -lher.

In 1ddillon. IFCS wes developed to be friendly and flexible. The user need not

supply more information then is lbsolulely necessary for the fllldion to be

performed. Also, inlerlctive input requirements must be INl'llbiguous end

check for i11Y1lid inputs. IFCS is l11lde flexible enough to handle 1 wide

speclrum'Of pGssjble dlla Inputs. Finally, the system was designed to lsollle

host specific code so lhlt it may be trensporled with minimal change.

2.0 CAPABILITIES

2 .1 FUNCTIONAL CAPABILITIES

The first step of IFCS is I.he conversion generator program. Required inputs

include input and output record deflnlUon and opUonel nemelist file names,

ITllChine rormat 1Ssocl1led with the dell and the llll'll8 or the output

conwrsion routin11. The conversion generator -lyzes the input and output

rllCOl'd definitions ll1d builds 1 file (1 subroutine) that contains 111 the ldull

fi11ld cOllVll'sion routln11s in 8lCICl order 1s defined by the record definition.

The library containing these lower level conversion routines is the heart of

412

USER INPUTS FOR I FCS

DATA DEFINITION I/;
FILES; ~
FILE AND

/
/

I

11
J

MACHINE NAMES

__ ._. ~~CVTGEN _ __,...

~k~i~_ --
I

CVTLINKI

~
DEVICES USED 1 GFCUTIL

AND THEIR ffc ~~ ATTRIBUTES; ~~),!/

~~rg~~s0~o ..
CONVERT

Fl&URE 2

TOUSER
SUPPLIED
PROGRAM

IFCS. Each routine performs 1 different rll'ICUon. (i.e. conwrt DEC R11 4,

convert lo IBM R11 B , elc. See PERFORMANCE CAPABILITIES for • rurlher

discussion on converting.) The conversion generator creates the routine

which in Lim 1CCesses these pre-existing routines when r111. The second

step in IFCS is lo compile llld link the conversion routine. ll may be linked lo

1 user developed program or il 11111y utilize I.he General FDmlll Conwrsion

Utility (GFCU). This utility will perrorm 111 general input or dell, convert the

dill using the conversion rouUne and output the results. Finally. GFCU or the

user application program is executed lo perrorm the rorm1t conversion.

In addition, IFCS Includes 1 Mlchin11 Definition program ror when It becomes

desirable to add new machines to the system CIFCS presently supports DEC

VAX, IBM and SIGMA 9 computars). New conwrsion library routines will

also ne11d to be implemented.

IFCS utilizes TrlllSPOl'tlble Appllc1Uons Executive CT AE) to enhlnca its

functional cmpebililin IS well IS rumll design objecllws. Inputs ... entered

using TAE standerds. This provides e•se for the experienced user end

support ror the less 8Xp8rlenced user. MerMJS llld help mes provide

inform1Uon ror the first time user. In lddltlon. IFCS c111 be e1Sily

trensporled lo 111y Inst.nation that maintains TAE.

22 PERFtR1AN<:E CAPABILITIES

IFCS his sewr1l important perfOl'lllllnce aplbilities. A pri11111ry capability is

its use of Mm111ists. This provides the user with the lbillly lo conwrl only

certain fields or dllta rrom the Input record. GFCU is capable or Inputting data

rrom l4l lo tine input scxrces. converting the dllta and outputting lo 1 single

sink. Also, GFCU can input and output lo llpe or disk. Most important is lhll

IFCS uses an intermediate dllll rorm1l when conwrting dell. Thal is, .very

field transrormed is actually converted twice (I.e. 181'1 -> lnlermedl1t.e rorm

->VAX). This deslQl'I was implemented so lhll when lddltional llllthines re

added, source code will increase 1l 1 much smaller rite (fig1n 3). CAii new

routines will convert lo or rrom intermediate rorm1l.) Finally, IFCS is

cljllble or checking ror precision loss and overflow when it Is desirable lo

convert values lo utilize less space (i.e. R•4 lo 1•2). A value. or the users

choice, representing BAD data is inserted. Also, the user may choose 1

loler111Ce level in which IFCS will slop ir BAD must be Inserted loo 111111y

limes.

3.0 <HRAIIW

IFCS is Ible lo perform six basic operations thrOUljl the use or the TAE menus

(Flvire 4). IFCSGBL is 1 11lobll procedure lhll allows the user lo define

certain variables. CVTGEN, CVnlNC llld GFCUTIL re the thrn steps for

developing and executing 1 data conversion program (Figure 5). The

proceckre, IFCS, combines the previous thrn POF's in one proceckre.

NUMBER OF CONVERSION ROUTINES REQUIRED AS A

FUNCTION OF THE NUMBER OF MACHINES IN IFCS

CONVERTING ONE DATA TYPE TO THE SAME DATA TYPE:

~ Q!::!E BQl.!I I !::!E llQE:i Y!'.IItl IF(;:i l!:ilEBl:IEl116IE

l:!ACl:!l!::!E:i !!:!! W:!~B:i IQf:! (!:!!!ll:!- !ll EQBtlt.I !1:1!!2!
2 2 (1 IN EACH DIRECTION) 4 (2 IN EACH DIRECTION)

6 6

4 12 8

5 20 10

CONVERTING ONE DATA TYPE TO ANY OF 4 DATA TYPES:

!:!. 16 *I:!" Cl:!-ll ~

2 32 (16 IN EACH DIRECTION) 16 (8 IN EACH DIRECTION)

3 96 24

4 192 32

5 320 40

ORDINARILLY, IT TAKES 32 ROUTINES TO BE ABLE TO CONVERT ANY

6 DATA TYPES (R*4, R*B, R*16. 1*2, 1*4, C*B) FROM ONE MACHINE

TO ANY OF THOSE DATA TYPES ON ONE OTHER MACHINE.

USING IFCS 1NTERl1EDIATE FORMAT IT TAKES ONLY 16.

FIGURE J

413

JIB "ROOT", I ibrary "DISK$USER3: IYSJFY.PLS.DEMOI"

INTERACTIVE FOP.MAT CONVERSION SYSTEM

1) TO RL TER I FCS GLOBAL VAR I ABLES
< IFCSGBL>

2) TO GENERATE AN I FCS CONVERSION R(IUT I NE
<CVTGEN>

3) TO LINK THE CONUERS I ON R(IUT I NE TO THE
GENEP.RL FORMAT CONVERSION UTILITY
<CUTLINK>

<I) TO EXECUTE THE GENERAL FORMAT CONUERS I ON
UTILITY <GFCUTIL)

5 > TO EXECtlTE PROCS CUTGEN, C.VTLI NK RNO GFCUT IL
(I FCS >

6 > TO I MPLEMENT A NEIJ MACH I NE 'S ATTRIBUTES
<MACHOEF)

Enter : se I ec t i on nutllber, HELP, BACK, TOP, 1£NU, C01111A11l, or LOGOFF .
?

T AE MAIN MENU FOR IFCS •FIGURE 4

Finally. MAetaF allows the IJl'OCTll'Mlll" lo implement lddiUon1l 1111Chines.

3.1 IFCSGBL

Two variables set in this Qlobll are used t.hrouQhoul IFCS.

- the n1m1 or thl IFCS generated COIMl'Sion rouUne lo be linked llld

llltCuled.

- the lunber or input SCKrC1S (14) lo thrH).

3.2 CVTGEN

CVTGEN represents the first step Ir IFCS <Fivirt 6). Using inrorm1Uon

reclewd rrom user created Internal files and user input, CVTGEN creates •

f<RTRAN routine thll, when executed, will receive dlla according lo the

specified formll, conwrt. the dll8 lo the desired ll'llChine and output only the

INTERACTIVE FORMAT CONVERSION SYSTEM (IFCS)

USER
INPUT

RUN
CONVERSION

ROUTINE
GENERATOR

DATA
DEFINTIDN

INPUT

STEP I

CONVERSION
PRDGRAl1
SOURCE

CONVERSION
LIBRARY

C011PILE
AND LINK
TD GFCU

1/0
LIBRARY

STEP 2

EXECUTABLE
CONVERSION

PRDGRAl1

FIGURE 5

DATA
INPUT

RUN

GFCU

DATA

CONVERTED

DA A

DESCRIPTION
INPUT

STEP 3

CONVERSION ROUTINE GENERA TOR

INTERACTIVE
SPECIFICATION

CONVERSION

ROUTINE

GENERATOR

~
DESCRIPTIONS

INTERNAL
REPRESENT.

FIGURE 6

~
TRANSPORTABLE

FORMAT I

~

data fields within the record that re of interest. The conversion routine Is

made up of a series of calls to pre-existing lower l9Y81 routines. For each

data field, a lower 19Y81 routine is accessed to perform the correct bit

manipulations to move that field into and out of the intermediate format (as

described e .. ller).

3 .2. I hllluf,a

The required Internal files include:

- the record definlUon files which contain the exact field rormat or the data

lo be input Cone is required ror each input source).

- the record definlUon file which contains the exact field formal or the data

to be output.

- the opUonal namelisl files which contain e name that corresponds lo each

field in the record definiUon files (one ror each input SCMrce) or the data lo be

input.

- the optional namelist file which contains only the names of the fields that

are lo be conwrted and output. If nemelist files are not specified or the input

data and output data nemellsts n exact. then all fields re converted.

The user inputs include:

- the name of the file that contains the record definitions (one for each of

up to three i..,ut SOll'C85).

- Iha name o(the file that contains the input namelists (up lo thrH). This

is optional.

- the name of each machine which the input data was generated on (up lo

three).

- Iha neme of the me that contains the record definition for the output.

- the neme of the me that contains the output namellsl. This is optional.

- the neme of the machine which the output data is generated ror.

- the name to be olwn lo the me that will contain the newly Q8118rated

tom111rsion routine.

414

GENERAL FORMAT CONVERSION UTILITY (GFCU)

f

3.2.2~

CONVERSION ROUTINE
SPECIAi. OPERATION LIBRARY

CONYERSKlN LIBRARY
110 rACllTV

DEYICE/rl.E SPECFICATIONS

••usER·,•

FIGURE 7

The CVTGEN oupul is the reusable conwrsion routine created lo user

specification.

3.3 CVTLINK

Al this point the COllll9rsion routine may be utilized with a user application or

it may be linked lo the General Formal Conversion Utility (GFCU). This

procedure compiles lllld links a conwrsion routine to the GFCU. The name of

the object lllld load modules will be the same IS the source me. which are

defined in IFCSGBl. No interecliw inputs re required for this step.

3.4GFCUTIL

The third step, GFCUTIL, acl.ually C011119rls Uie specified data (figure 7).

This procedure, using the tape 1/0 library, provides a means for reading

tapes created on and writing tapes ror other machines in 111y formal IS well

IS reading end writing lo disk. Generally. GFCU acquires the input data.

performs the specified COllYlrsions, and outputs the results.

3.3.1 Jmllll.i

To operate GFCU. the following inputs re requested:

- the type of device in which the input is receiwd fmm (TAPE or DISK).

One for each input source.

- the type or device in which the output is lo be sent (TAPE or DISK).

For each TAPE used, the rollowing must also be provided:

- the name of the I.ape drive.

- the I.ape label if the I.ape is labeled.

- the machine rormat of the tape (presenUy. IBM. VAX or 519).

- the record type of the tape file.

- the logical record size.

- the Lipe block size.

- the me 1111111 or the data (for lrc>Ut data tapes and output data tapes), or

the file number of the data (ror irc>Ul data tapes).

- the starting record number in the file of the I.ape where data COIN9l"Sion

is lo commence (for input data llpes).

For each DISK file used, the following must also be provided.

- the organization of the disk.

- the disk access method.

- the record size of the disk.

- the 1181118 of the disk file.

- the starUng record in the file where data conwrsion is lo conmence (for

input data).

In lddiUon, these pramelers are also required:

- the number or data records lo be COIMll'ted.

- whether GFCUTIL is lo be executed in interac:Uw mode or batch mode.

- a BAD value lo be Inserted when precision is lost in convarUng lo real

numbers. (Default = -99.9)

- a BAD value lo be inserted when precision is lost in converUng lo integer

numbers. (Default= -9999)

- an inleQer rapresenUng the runber or BAD values lhel may be inserted

before IFCS will slop processing data.

3.3.2 ~

The output generated Is a me containing the desired converted dale.

3.5 IFCS

The IJll'llOS8 of this oparaUon is lo combine the three slaps of IFCS into one

procecb'e. Thisjlf'ovidls much convenience when it is desired lo create, link

and execute IFCS all al once.

3.6 MACtl>EF

This oparaUon is primarily used by the IFCS manager. When a new machine is

Implemented Into IFCS, the manager roost: create lower l8Y8l conversion

allJOf'IUvns lhet convert data lo and from the inlermediate formal; provide

for any Lape formaWng dissimllarlUes that the new machine has lo the

exisUag machines (In the tape 1/0 libr.-y) and; execute MACtf)fF. MACK>Ef

Is a sonwra malnlelnance program that Implements the characterlsUcs of

any newly added machine lo IFCS. As manUoned, only the IBM. VAX and

SIGMA 9 .,.. presanUy supported. This sonwre receiws the machine

characterlsUcs and places them in a machine definition file.

415

3 .6.1 lDliul.s

The inputs include:

- the name that idenUfies the machine whose attributes are being entered

(ex. VAX).

- a two character machine idenUfiar (ex. VX for VAX).

- the number or bits per byte or this machine.

- the default Hollerith code lo be assigned lo this machine (ASCII or

EBCDIC).

- up lo 20. two character data formal idenUfiers (ax. R4 for REAL• 4).

- up to 20, integers describing the length in-bytes or each dale format

identifier entered.

- up lo 20. one character data type idenUfiar for each dale formal

idenUfier entered U. F. H or Z).

3.6.2~

The output or this process Is the addition or the new machine speclncauons In

the machine definlUon table.

4.0 FUTURE COOSIDEQAT!CllS

Plans exist for IFCS on all fronts. Enhancements lo the system include adding

a provision for special data types (for example, spacecrafl telemetry).

E11ha11cemenls for 1/0 include implementing electronic communication into ·

GFCU. Adding other machines lo the system is another immediate

consideration. as well as implementing IFCS on other machines. From an

operational point of view, optimizing the speed of IFCS is being addressed.

I wish to acknowledge William Mish. Thurston Carleton and Jack Yambor for

their design and implementaUon of IFCS.

REFERENCES

Carlson, Patricia A.. al al., Prjmar for the Trlll!jQl!Cleble ApplicaUn

Exm:u1i.lla. NASA/GSFC. Janu.-y, 1984.

Century Computing, Inc., Agglicalion ProvllJ!l!l§r) Refermx;e Mmgl fgc Uw

Irnporleble ApglicaUOO!i Em.uUya March. 1984.

Century Computing, Inc., User's Rtf!lf'!!OCe Mlooal for Ille Tramjpgrleb!e

ApplicaUn ExecuUve

March, 1984.

CompuUog ~.Vol. 13, No. 4, December, 1961.

Tanenbaum. Andrew S., Coap!!.er fftlwgrts PrenUce-Hall, 1961.

VAX COMMUNICATION CONTROLLERS

Roger Russ
Advanced Computer Communications

Santa Barbara, California

ABSTRACT

This paper discusses design problems encountered in developing
microprocessor-based front-end communication controllers for the VAX product
family. As network data rates increase, these problems become more acute.
Two example connections to networks with high bit rates are described, and a
design that solves potential data-overflow problems 1s discussed. Performance
graphs show the correlations between VAX load and network throughput.

INTRODUCTION

The essential elements of a point-to-point link between two VAX
processors across a network are the two host systems and the
network. As shown in figure 1, each host system consists of a
VAX and its UNIBUS. Also shown 1s a front-end commun1cat1on
processor making the connection to a network (any of various
physical transmission media including public networks, broadband
or baseband networks, local area networks, or other commonly
known networks). Our d1scuss1on focuses on the design problems
that arise when the 1nd1v1dual components are integrated into a
typ1cal-des1gn front-end commun1cat1on processor; optimal
component performance typically cannot be maintained during
worst-case front-end loading. We describe two example network
connections (one to the Ethernet and one to an RS-422 high-speed
serial (HSIO) link at Tl rates) and our unconventional front-end
design solution to the network-data overflow problem and other
limitations imposed by typical front-end designs.

VAX

Network

Comm.
Front
End

VAX

Figure 1. Typical Network Configuration

DAT A TRANSMISSION RATES (BANDWIDTHS)

The key parameters influencing front-end design are data
transm1ss1on rates: network bandwidth, microprocessor bandwidth,
and UNIBUS bandwidth. Ethernet bandwidth 1s 10 million bits/sec
(Mbps), about six times the Tl rate of 1.544 Mbps.

The bandwidth of the microprocessor bus in the front-end 1s
particularly important. The 16-b1t 68000 microprocessor unit
(MPU) operating at 12 megahertz (MHz) 1s a commonly used
microprocessor that has excellent performance characteristics.
The MPU requires a minimum of four clocks to complete a transfer
on the microprocessor bus, that 1s, 333 nanoseconds (nsec); the
consequent bandwidth 1s 3 m1ll1on words/second (i'vfotorola
Microprocessors Data Manual, 1981).

Proceedings of the Digital Equipment Computer Users Society

UNIBUS bandwidth 1s another important factor in the data
transm1ss1on rate. We use VAX-11/780 UNIBUS values in this
d1scuss1on (see the VAX-11/780 Archltecture Handbook, 1971).
The data rate depends on which data path 1s used through the
UNIBUS adapter. The direct data-path rate 1s 425 thousand
words/second (425K) for a write, and 316K for a read. The
buffered data-path rate 1s 695K for both reads and writes. These
rates are summarized in table 1, where they have been converted
to kilobytes/second for ease of comparison.

Table 1. Data Path Bandwidths

DATA PATH BA>.'D\VLDTH
Tl 193 Kbps

Ethernet 1:250 Kbps

68000 bus 6000 Kbps

UNIBL:S:
direct data path 8.SO Kbps (write)

6:~2 Kbps (read)
buffered data path U90 Kbps

TYPICAL FRONT-END DESIGN

The design of a typical front end 1s shown in figure 2. The key
element 1s the microprocessor and microprocessor bus. The other
elements either support program execution or facilitate data flow.
Program execution elements include RAM, EPROM and counter­
t1mer. Data flow elements include host interface, network
interface, and DMA controller.

417

To
Host

RAM

Counter­
Timer

Host
Interface

Microprocessor

EPROM

OMA
--- µBUS --- Controller

Network
Interface

To
Network

Figure 2. Typical Front-End Design

Anaheim, California- December 1985

Data Transfer Rates
When we examine data transfer within this structure, and survey
the rates of various elements, particularly under worst-case h1gh­
traffic conditions, several design problems emerge.

MPU (12 MHz) execution times are listed in table 2. These
numbers are valid for instructions without additional memory
cycles. Execution times range from 333 nsec (0 wait states) for
execution from fast-access EPROM to 667 nsec (4 wait states) for
execution from a large, slower-access dynamic RAM.

Table 2. MPU (12MHz) Execution Times

Wait States Time (nsec)

0 ;3;3;3
l 417
2 .)00
3 .)i\:3
4 667

In comparison, OMA transfer times for the currently available
68450 OMA Controller (OMAC) are given in table 3. This four­
channel device is available with 8 MHz or 10 MHz clock. Table 3
lists the times for a single transfer into a device or memory with
no wait states. These times are similar to those for the MPU.

Table 3. DMAC Transfer Times (no wait states)

DMAC Clock Transfer Ti
(MHz) (nsec)

8 .)00

10 400

However, brief analysis of a worse-case high-traffic situation points
out a problem. With all four OMAC channels active and with one
OMA transfer interleaved with one MPU cycle, four cycles or 4.67
microseconds (4.67 µsec = 4 x (500 + 667 nsec)) would elapse
before the lowest priority channel could transfer a word; this word
would be transfered an order of magnitude slower than shown in
table 3.

Next we consider a realistic UNIBUS access time for the front end
in figure 2. Because the 256-kilobyte UNIBUS comprises only
1.63 of the addresses available on a 68000 bus, a likely method
of interfacing with the host 1s to memory-map the UNIBUS into a
segment of the MPU and 68000 bus's 16-megabyte address range.
To perform a memory-mapped cycle, the OMA controller puts a
UNIBUS-mapped address on the 68000 bus. This address 1s
recognized by the host-interface logic which then requests a
UNIBUS cycle (NPR). The data transfer (requiring about 0.6
µsec) occurs when the bus 1s granted (NPG). However, because
bus acqu1s1tion depends on the hardware configuration of the
UNIBUS, a worst-case high-traffic time cannot be determined.
Higher priority OMA devices, particularly those doing burst
transfers, might use the bus repeatedly or for long periods. With
a few such higher priority OMA devices, bus grant delays longer
than 40 to 50 µsec might occur.

The final element in this front-end design 1s the network interface.
We consider two examples of network hardware: the AMO 7990
Local Area Network Controller for Ethernet (LANCE) and a high­
speed RS-422 serial interface using the Rockwell 68561 Multi­
Protocol Communications Controller (MPCC).

418

Figure 3 diagrams how the LANCE 1s attached to the 68000 bus.
Because the LANCE is not 68000 compatible, bus conversion logic
(providing control timing and data and address multiplexing, not
shown) is necessary. One example converter 1s a state machine
implemented 1n PLAs that has a worst-case time of 900 nsec. The
LANCE has an internal 48-byte FIFO; at the Ethernet data rate
(10 Mbps), 1t overflows 1n 38.4 µsec unless data are removed.

Microprocessor
BUS

7990
Lance

7991
SIA

Figure 3. LANCE Attachment

Figure 4 diagrams the HSIO interface. The MPCC is 68000
compatible; its worst-case access time is 440 nsec. The MPCC
has an internal 8-byte FIFO; at the Tl data rate (1.544 Mbps), it
overflows in 31 µsec unless data are removed.

Microprocessor BUS

68450
DMAC

68561
MPCC

RS-422/423

Figure 4. MPCC Attachment

Handling Network Data Overflows
How does the front-end operate when the network interface 1s
about to overflow and the host interface owns the microprocessor
bus for an 1ndefm1te period of time? The simplest solution is
simply to ignore 1t and let the network interface overflow and post
an interrupt to the MPU. A retransm1ss1on would then be
1nit1ated. This 1s not a very elegant solution, and throughput 1s
seriously reduced 1f retransmissions occur frequently. A variety of
other mechanisms also could be used with this type of front-end
design, for example isolation of the host interface, a dual port
RAM for the network interface, or an abort mechanism for the
host interface. Alternatively, a substantially different front-end
design could be implemented, as described in the following
sections.

68000
CPU

CBUS

Cache
Memory

68450
DMAC

D p
68450
DMAC

68561
MPCC

Bi--_ ___. RAM __ ___. B

u t--.....-----~ u
S Communication S

Registers

UNIBUS
Control

UNIBUS

Figure 5. ACP 6000 Architecture

A UNIQUE DESIGN SOLUTION

A design that elegantly handles the potential conflicts discussed in
the preceding paragraphs 1s shown in figure 5. The depicted
architecture constitutes the core of the ACP 6000 commun1cat1on
front-end processor. Its central feature 1s a four-port RAM; each
port accessed by a segment of the 68000 bus. The segments,
named the CBUS, DBUS, PBUS and UBUS attach or detach in
accord with the act1v1ty taking place.

By supporting only one DMA device on each bus segment, this
four-bus architecture guarantees that each DMA device has access
to its local bus, virtually eliminating bus contention. The
functional result is that generally RAM arb1trat1on occurs rather
than bus arb1trat1on and contention, and because RAM arbitration
is an order of magnitude faster, overall throughput 1s enhanced.
An additional advantage 1s that different operations (described
below) can occur simultaneously on separate buses.

Typical Front-End Operations
Typical ACP 6000 operations include microprocessor instruction
execution, host communication, DMA transfers with the host, and
network transfers. Microprocessor instruction execution involves
only the MPU, the CBUS and local cache memory. Host
communication occurs via the Commun1cat1on Registers (actually
located 1n RAM) and the hard-wired, dual-port UNIBUS Control
and Status Register (UCSR). When the host uses the
Communication Registers, only RAM, the UBUS and UNIBUS­
control logic are used. DMA transfers with the host are examples
of two buses connecting to perform a transfer. During such
transfers, the DBUS DMAC transfers data into its internal data
register using only the DBUS, UBUS and UNIBUS-control logic.
During network transfers, the PBUS DMAC either reads a byte
from RAM and writes it into the MPCC's FIFO, or reads from the
FIFO and writes to RAM.

The following narrative traces the sequence of events by which the
ACP 6000 transfers a packet of data from the host to the
network. First, the host initializes the Communication Registers
with information about the data packet: the of size the packet's
data block and the block's UNIBUS address, plus other packet­
related information. As the last step of the initialization, the host
writes a bit in the UCSR that causes an interrupt to the MPU.

The MPU then reads the packet information in the Communication
Registers and in1tial1zes the DBUS DMAC with the UNIBUS
information and local (ACP 6000) RAM buffer addresses. The
MPU's final step in taking the information from the host is to set
a start bit in the DMAC, causing the DMAC to transfer the data
from the UNIBUS into local RAM. When this data block is
transfered, the DMAC sends a completion interrupt to the MPU,
which in turn writes ending status in the Communication Registers
and interrupts the host by writing a bit in the UCSR. This
interrupt informs the host that the transfer 1s complete. At this
point, the ACP 6000 might have further processing to perform on
the data packet such as further protocol processing, buffer
management and copying. When the packet 1s ready, the MPU
1n1t1alizes the PBUS DMAC, which then transfers the packet from
RAM to the MPCC. The MPCC then transmits the packet to the
network.

VAX System Performance
When considering the use of a front end, it is important to see
how its data rates affect host performance. Graphs 1 through 8
show the relat1onsh1ps between packet size, line speed, aggregate
throughput, and VAX CPU loading using an ACP 6000 front end
(data collected and graphed by Peggy Cornell of ACC). Each
graph depicts the performance of three VAX hosts: the 11/730,
11/750 and 11/785. The ACP 6000 was doing complete HDLC
protocol processing; the host was creating data to be transfered,
requesting transfer by the ACP 6000, receiving and checking
returned data, and logging a running total of (correct) received
data.

Four sets of graphs are provided, one set each for packets of 256
bytes, 1024 bytes, 2048 bytes, and 4096 bytes. Each set of
graphs plots aggregate throughput (input + output) versus
linespeed, and VAX CPU load versus linespeed.

Several general comments can be made about these graphs. First,
it can be seen that the 730 reaches saturation much faster than
the other processors. Interpacket processing on the VAX 1s the
limiting factor, and the 730 reaches a limit of about 200 packets
per second. As packet sizes increase this factor becomes
secondary, and overall throughput becomes larger. With 2048-
byte packets, both the 750 and 785 achieve throughput that
approximates the linespeed up to 1 Mbps. With 4096-byte
packets, all processors achieve high data throughputs, although
the 730 does saturate above 1 Mbps.

419

Graph 1. 256-Byte Buffers: VAX Loading vs Linespeed

CPU LOAD <%>

100 --------------------------------------

80

60

40

20

0o.o

/
/

------­,/_,;--

VAX.-7'JS VAX-7':/J VAX-730

.2 .4 .6 .8 1. 0 1. 2
LINESPEED <Mb/s)

Graph 2. 256-Byte Buffers: Throughput vs Linespeed

AGGREGATE THROUGHPUT <Mb/s)

2. 4

2. 1 VAX-7'JS VAX-7':/J VAX-730

1. 8

1. s

1. 2

.9

.6

.3

o.oo.o .2 • 4 .6 .8 1. 0 1. 2
LINESPEED (Mb/s)

420

1. 4

1. 4

100

80

60

40

20

Graph 3. 1024-Byte Buffers: VAX Loading vs Lines peed

CPU LOAD C%)

I
I

I
I

--

I
I

I
I

I

/
/

,/
_./ --

~--------------------------

/

/
/

/

/
/

,/

,/
,/

/

/~-

_... -------------
_.- _... ----- ----

VAX-7":JJ VAX-~

0 ..__,__.__..___.~..___.__,__.___.~..__.__.__.___.~.._...__.__..___..__..__.__,___.~....__,__.__..___.
0. 0 • 2 • 4 • 6 . 8 1. 0 1. 2 1. 4

LINESPEED CMb/s)

Graph 4. 1024-Byte Buffers: Throughput vs Linespeed

AGGREGATE THROUGHPUT CMb/s)

2. 7

2. 4 VAX-785 VAX-750 VAX-730

2. 1

1. 8

1. 5

1. 2 ------

.9

.6 -------------------------------
/

/
/

.3 /-~-

0. oo. 0 .2 • 4 .6 .8 1. 0 1. 2 1. 4
LINESPEEO <Mb/s)

421

Graph 5. 2048-Byte Buffers: VAX Loading vs Linespeed

CPU LOAD (%)

100

80

60

40

20

0o. 0

VAX-7't15

/
/

/

/

/
/

/

.2

VAX-7':JJ

/

• 4

/

/
/

/

VAX-730

_,,,,------------------

.6 .8 !. 0 !. 2
LINESPEED <Mb/s)

Graph 6. 2048-Byte Buffers: Throughput vs Linespeed

AGGREGATE THROUGHPUT <Mb/s)

2. 7
VAX-7'ifS

2.4

2. I

!. 8

!. 5

!. 2

.9

• 6
/

/

.3 / ----"
fr-~'

0. oo. 0 .2

/
/

/
/

/

VAX-750

/,
/

/

• 4

VAX-730

_7' _________________ _

• 6 . 8 !. 0 1. 2
LINESPEED <Mb/s)

422

!. 4

!. 4

Graph 7. 4096-Byte Buffers: VAX Loading vs Linespeed

CPU LOAD (%)

VAX-785 VAX-750 VAX-730

100

BO

60

40

20

0o. 0 .2 • 4 .6 .B 1. 0 1. 2 1. 4
LINESPEED CMb/s)

Graph 8. 4096-Byte Buffers: Throughput vs Linespeed

AGGREGATE THROUGHPUT CMb/s)

2. 4
VAX-785 VAX-750 VAX-730

2. 1

1. B

---1. 5 --------- ------ ---------1. 2 --------- ------ /'

.9

• 6

.3

o.oo.o .2 .4 .6 .8 1. 0 1. 2 1. 4
LINESPEED CMb/s)

423

FUNCTION TO FUNCTION COMMUNICATION WITH
HIGH LEVEL TRANSPARENCY

Thomas B. Macy
~odak Colorado Division
Windsor, Colorado

High Level Transparency allows one program to
connect to another program without needing to know
where the other function resides or how that
connection physically takes place. It also provides
a standard method of inter-function communication.
High Level Transparency can simplify the design.
implementation, and maintenance of systems.

INTRODUCTION

In some contexts it's called High Level
Transparency and refers to a characteristic
of a high level communication protocol. In
other applications it's a characteristic of
Message Routing and refers to common
methods of communicating messages. In some
computer systems it might be part of an
inter-process communication protocol which
consists of a comprehensive set of rules
governing communication and data access.
In still other computer systems it is a
characteristic of what might be called an
application bus. What it is. is
inter-function communication without regard
to node residency. These concepts provide
a framework for exchange of information
among functions. And. in a network, the
interface to this framework is independent
of node residency. Two functions can
exchange information and they can reside on
the same computer or on different nodes in
a multi-computer network. Where functions
physically reside is transparent. In this
paper I'll call it function to function
communication with High Level Transparency.
or JUSt HLT for short. It simplifies
system design, system tuning. system
enhancements. and system maintainability.

Imagine a system in which functions are
sources of information or transformation
into which any function can tap. If you
know some function has information you need
for a new application, pass it an
appropriate request and, with no change to
the called function. wait for the response.
Likewise. the functions you write should
expect requests from the system and respond
according to the rules governing HLT.

Because with HLT you know the
inter-function relationships. the making of
additions or modifications to functions
becomes simplified. The ramifications of
enhancements become more apparent than in
systems without HLT. The total system is
simplified through inherent modular

Proceedings of the Digital Equipment Computer Users Society 425

definition and standard communication
methods. Development times should be
shortened, first because of the enforced
structure and second because of the ready
availability of data already present
elsewhere in a network. New network
applications which need the functionality
already defined elsewhere in the network do
not require any external modifications to
get it. Just tap into existing functions
via HLT. Tuning of an installed
multicomputer application can be as simple
as redistributing functions among nodes
until the right mix is found. Remember,
node residency is transparent. Because of
the ready availability of function
operations throughout a network,
duplication of software can be avoided as
well as the duplication of related
hardware.

Networks are often ignored as a solution to
a problem. and often an application will be
designed without regard to the
pre-existence of information or processes
on other computers. Networking is seldom
considered as a template when solutions to
a problem are being sought. It seems the
tendency of system's analysts in some cases
is to view applications in a parochial
manner. Rather than applying a problem to
a template of a vibrant network of
distributed systems, many analysts apply a
single computer to solving a problem. This
needs to change if the benefits of the
newer technologies are to be realized. <A
single computer may be the best solution,
but it should be viewed as the simplest
kind of network a network of one
computer.) The advent of LAN' s and the
development of communication standards are
signs of an exciting future and a rewarding
one for those who are able to capitalize on
the new technologies.

One way to capitalize on them is to be able
to define the application in terms of the
system functions, not in terms of a

Anaheim, California - December 1986

specific technology. Once these functions
have been identified they can be assigned
to technologies which are chosen based upon
user needs which may not be directly
related to the problem being solved by the
proposed computer system. This
simplification demands that HLT exist so
that functional definition can be
accomplished without regard to node
residency.

DEFINITION

HLT is that quality in a computer system
which allows for inter module or inter
function communication without regard to
supporting system software. Communication
architectures are part of this supporting
software. Providing function to function
communication that causes the physical
connection between functions to be
transparent, implies the ability to both
design and code application modules
communicating with other modules without
the need to consider where in a network the
modules reside. Essentially. they become
"plug-in" software units. If a program
module needs to be added, code it and plug
it in. If it needs to be moved to another
node, unplug it from one node and plug it
into the other. HLT then, while providing
node transparency, transcends simply
definition as another layer in a
communications architecture By providing
an interface between functions, it becomes
a foundation upon which applications can be
built. The definition of the application
environment need no longer be in terms of
the technology used to implement the final
solution.

FUNCTION A T FUNCTION B

OPERATING SYSTEM

Diversity of operating system functional
links

FUNCTION A FUNCTION B

RCHITECTURE OS ARCHITECTURE

Increased diversity from networked
disparate operating systems.

~UNCTION AT FUNCTION B
t-------'--------~COMMON INTERFACE
TRANSPARENCY INTERFACE
---------------'SYSTEM SPECIFIC
~UPPORTING SYSTEM SOFTWARE

Simplification through transparency

Figure 1

SCQPE OF THIS PAPER

To implement HLT, two essentials must be
designed into the system. Standardized
inter-function communication through
routing must exist to perform the transfer
of messages. Provision must be made for
the specification of source and destination
telling the router where to send a message.

In order to make the best use of HLT, we
also used structured design concepts to
promote clearly defined function
definition. An aspect of this is something
called I/O independence. While not
required for HLT, these concepts do enhance
its effectiveness and so are included in
this paper's discussion of HLT.

Based upon an effort to provide HLT, this
paper is the result of work done in a
network of four computers. Two HP 9920
computers with single tasking BASIC
operating systems each control their own
laboratory instrument. A PDP 11/24 running
RSX11M acts as a communications controller
and application coordinator. The IBM IMS
data base system running on an IBM 3033
mainframe provides plantwide access to
instrument readings as well as long term
trending.

While we kept this first system simple,
many enhancements have been identified.
This paper describes the implementation of
HLT on a transaction basis. Single
requests or transactions are exchanged in a
node transparent manner. Future
enhancements could include the following:

426

1. HLT can be part of a more comprehensive
inter-function communication supervisor
providing for scheduling of module
execution based upon some criterion
such as priority and including data
access tokens for mutual exclusion.

3.

Communication between functions could
be established and maintained as
sessions consisting of many exchanges.

Notification of other nodes about the
implmentation of a newly added function
could be a dynamic and automatic
process.

STRUCTURED DESIGN FQR INDEPENDENT FUNCTIONS

Any program unit can be pictured as a
discreet block of logic with an input and
an output defined.

------> 8 ------>

Inputs and outputs can be classified as
either of two types. Functional 1/0 can
connect to the outside world, as is the
case with device drivers, or it can form a
connection between programs within the
computer system as with inter program
communication. Device connections are
defined externally to the a~plication and

are more structured. However, most
functional inputs and outputs within a
modularly defined system exist to connect
functions and are less structured.

What provides an interesting prospect in
the design of systems is the provision of
independent single functioned modules with
inputs and outputs defined in a standard
way. where possible. throughout the
application. The more single functioned a
program module is. the greater the
likelihood of making its input and output
universally available. Defining the input
and output rules in a standard way provides
flexibility in defining program links.
While existence of HLT does not require
such structured design, modular definition
of an application tends to enhance
transparency by making a larger base of
simple functions available for connection.

Before HLT can provide the benefits of
plug-in software modules to the designer of
computer systems. the concept of structured
design should be adhered to. According to
rules of structured design. the goal of any
computer system application should be its
implementation as a group of highly
independent single functioned modules. [3J
Real benefits result when the application
is composed of functions of high cohesion
and low coupling communicating in a common
way throughout the system. Cohesion is a
measure of exactly how "strong." or single
functioned. each module is. Coupling is a
measure of exactly how interdependent the
modules are. [6] Clearly defined single
functioned modules enhance the benefits of
HLT by providing concise module
functionality at a low enough level to have
appeal throughout an application. For
example, while a complex function F may
have only one unique use in an application.
the functions which make it up, say X, Y,
z, may have use elsewhere in the system.

This paper refers to program modules as
functions. If we define a software "system
primitive" as a low-level component whose
feasibility and correct functioning is
absolutely essential in order to implement
the system. then the definition of the
system is essentially complete when all
system primitives are defined. A "simple
function" consists of the implementation of
one system primitive and a "complex
function" consists of calls to other
functions. If all the system primitives
can be identified, then the final
application is nothing more than the
combining of these into functi~ns and the
defining of the lines of communication.

Finally. there are many methods jefined for
decomposing an application into functions.
(2,8) Some people tend to prefer one method
of identifying functions over another.
However, to effectively implement HLT while
maximizing the benefits to be gained from
structure-0 design. any type of
decomposition should to be used. They all
add to the identifying of system primitives
and defining of functions.

STANDARDIZED COMMUNICATIONS

The concept of modular systems made up of
plug-in units is not new. From the concept
of stru~tured software design, a hardware
approach to computer systems has evolved
called Function ~o Function Architecture
<FFA>. In FFA

"a set of functional modules called
actors implements specific system
functions. An actor is a functional
computing element packaged as a
discreet plug-in unit. Each actor has
a defined method of interfacing with
the FFA system, and an FFA­
standard i zed means of communicating
with other actors. The FFA itself is
a set of conventions <rules) for
gaining access to any actor. It
provides the mechanism for
actor-to-actor communication " [ll Cp
142)

HLT is a software parallel to this hardware
concept. The use of structured systerr
design and structured programming provides
for an application consisting of functions
which are as independeht as possible.
However. many discussions on the subject of
structured programming and design have not
addressed the benefits to be gained through
the "standardized" means of communicatior.
among these "software actors" or functions.
As the plug-in nature of hardware modules is
only possible because of a standardized
means of communication among actors. so.
also, is the ability to produce plug-in
software modules dependent upon standardized
communications. HLT provides this.
Software modules can be plugged into the
system anywhere in the network and be
assured of proper inter-function linkages.

The question to be answered is how can a
function be defined and coded so as to
facilitate common communications in the
connection between two functions? This is
the key to node independent function to
function communication in software. In
order to provide this, the first thing to
consider is a special characteristic to be
designed into functions -- I/O independence.
A second cosideration is the technique
chosen to invoke the logical and physical
aspects of inter-function communication.
This is the routing aspect of inter-function
communication. We provided a router to
implement HLT.

I/O INDEPENDENT DESIGN

Given the two functions Fl a~d F2 and a need
for them to exchange data. there exists a
logical connection L and a physical
connection P between them. (See figure 2.)
L defines the end to end relationship and P
defines how it is to be invoked.
Implementation of HLT requires that this
connection between Fl and F2 have the
following characteristics:

1. Connection L must be node independent.
As part of the data format. it defines

427

2.

3.

which functions are connected, not how
they are connected. This also enhances
low coupling. See the common interface
in figure 1.

Connection P is node dependent. It
defines the physical steps necessary to
establish a connection from its node's
point of view. See the system specific
interface of figure i.

Connection L must be common throughout
the network. This provides the hook for
implementation and use of HLT.

B-L- P--H-P-L-1 F21

Figure 2

While L does not manifest itself as code in
the final system, P does. All too often,
even if Fi and F2 are identified as systerr
primitives, P is included as part of their
design. Structured design promotes the
separation of this connection into a
separate and distinct module. It can become
a simple function in the application.
Making L and P independent of Fi and F2 does
more than promote simplicity. It promotes
HLT by removing rules concerning details of
communication from the context of functions.

One consideration when defining application
functions which are inherently node
independent is that they must be designed
free from dependence upon system 1/0. <See
figure 3.) Any function which connects to a
system call with system unique methods will
be dependent upon that node for proper
execution. For example, outputting data to
a terminal may require 1) some kind of an
assign command for gaining access to the
device and 2> execution of some kind of
output statement like a WRITE. These
instructions are interpreted by the
operating system as local to the host node.
If a program generates output specifically
for a terminal, then that function's output
is not available to other functions without
special coding. It's then not available to
other nodes. Therefore, node independence
requires that functions be designed
independent of 1/0. I/O can be separated
into singular functions.

Execution of 1/0 qualifies as a system
primitive. To separate I/O from other
functions, define system primitives which
perform the necessary 1/0 and make these
primitives simple functions. For example,
output to a terminal may be defined as a
singular function. Other functions needing
to output to a terminal link to the singular
terminal output function.

How then can all these functions connect to
each other in a coherent manner where
logical connections L are node transparent
and physical connections are transparent to
the functions involved?

TERMINAL T
~INTERFACE

f--::::1 COMMUNICATIDN~L
t___:_i~ ~INTERFACE

~FUNCTION
Output from a function can go anywhere.

F 1 TERMINAL
•OUTPUT

____,.T

Output from a function tied to a specific
destination.

428

Figure 3

ROUTING FOR STANDARDIZED COMMUNICATION

Once a structured design has yielded an
application design with independent
functions. the key to HLT is the reliability
and effectiveness of the method used to
connect these functions to each other.
Communication between two functions might be
defined as a session which is established
when a function is called and ended when no
further interaction is required. For
simplicity, our application initially
consisted of single transmission sessions.

In this simplest case. a Router is a
program, defined by node, which merely
passes a message from one program to
another. The actual route a message takes
is determined by a Routing File. Refering
back to figure 2. L defines which functions
are connected and is part of the data. This
promotes simplicity. P defines how the
functions are to be linked by the Router.

G----0

Figure 4

The Router and the Routing File implement
the node transparent communication made
possible by the I/O independence gained
through structured design and structured
programming. Those physical aspects of
function to function communication which
tend to be stumbling blocks in networks are
isolated, being limited to the Routers
implemented in the system and to utility
functions performing the mechanics of system
specific interfaces.

THE ROUTING FILE

The Routing File provides the
a Router can facilitate HLT
function communication. It
connections available on
Routing File must contain
information:

1. Legitimate function !D's

means by which
in function to
defines the

its node. A
the following

2. Where in the message the ID's reside
(figure 6)

3. The length of the ID's

4. A map describing where a message is to
be sent on the local node given a
destination function ID

5. A specification of how to send the data
to the function to receive the data on
the local node and how to start that
function

Routing ideally makes use of system
procedures available on the node on which
the Router runs. For ex amp le. on a DEC RSX
11M system. messages can be routed through a
disk file or queue, passed through memory or
common. and passed using EXEC calls.

/ommon-.fil

EJ~ --()Gueue~jFm+1I I I ".,EXEC <all~
: I

Figure 5

D~SINATION_AND_SOURCE_DEFINITION

Often linking from Fn to Fm will require a
response return from Fm to Fn. In order to
provide that capability in a generic manner.
transaction formats should be defined with
fields defining both source and destination
function ID's. Within the application the
length of these names may be determined by
restriction on one of the nodes. For
exdmple. IMS requires 9 character
transaction codes. If an application
requires a link to IBM's IMS data base
system. it may have its function ID fields
defined as 9 characters in length. One
could arbitrarily assign the first 18 data
bytes of a block of data to be the location
of these fields. This provides an adequate
number of meaningful names.

DID SID Data I
Figure 6

429

Here SID refers to the source function ID
and DID refers to the destination function
ID. When this format is adhered to among
nodes. function access can be implemented in
a node transparent manner via the router.
thus providing HLT.

The two-way exchange of data described above
is easily implemented within a single node.
But how can it be implemented when Fm is on
a different node than Fn? With an SID and
DID used as defined, the implementation of a
router on a node will provide for the
exchange through what might be called
indirect routing. Communication with other
nodes is handled by specific functions
usually singular. Routing to a function on
another node is handled by the Routing File.
If Fn wants to connect to Fm and the
functions are on the same node. the Routing
File tells the Router to pass the message
directly from Fn to Fm. However. if En and
Fm are on different nodes Nn and Nm, the
Routing File on Nn tells the Router to pass
the message to the singular utility
function, Ft, handling transmission to the
node containing Fm. On Nm, Fr is the
utility function receiving messages from Nn.
It passes the message to its local Router
which, based on the DID, passes it to Fm.
The Routing File defines these routes.

AN e;xAMPLE

TRANSACTIONS

\ I I
\I I
IMS

I
I

SUPPORTING SYSTEM
SOFTWARE

FIGURE 7

PDP 11/24 APPLICATION
FUNCTIONS
\ I I

\ I I
ROUTER

I'' UTILITY FUNCTIONS
I I I
I I I I

SUPPORTING SYSTEM
SOFTWARE

HP APPLICATION
FUNCTIONS

I

I
ROUTER

I
UTILITY FUNCTKINS

I
I

SUPPORTING SYSTEM
SOFTWARE

APPLICATION DESIGN WITH HLT

In figure 7, the application definition is
implemented in the top layer of functions.
The middle layer. especially on the HP and
DEC systems, provides the node
transparency. From this picture note that
if the application functions are coded in a
high level language using standard language
syntax. they are transportable to other
systems providing support of that language.
If vendor extensions to the language are
used, the functions may not be
transportable to other vendor's hardware,
but they are still compatible with other
systems of like vendor within the network.
In either case the middle or transparency
layer provides benefits in design,
installation, maintenance, and tuning of a
system.

ROUTING
FILE

MEMORY 1
~GUEUE

FUNCTION ~UtTER~GUEUE~UNCTION
~ISK

GUEUE
GUEUES

PDP UTILITi FUNCTIONS

FIGURE 8 PDP SYSTEM HLT OVERVIEW

The one problem encountered in this design
is the transmission delay incurred by
funneling all communication through two
queues and one router. However, in our
application, response time of exchanges was
not considered important because production
operators were not involved in these
exchanges. When response time does become
an issue, new routers can be added to
improve it.

Our application consists of three levels of
computers. The lowest level, level 1, is
the dedicated HP 9920's each controlling a
piece of equipment. Level 2 ~s a PDP 11/24
RSX 11M system acting as the communications
and shop floor resource controller. Level
3 is our IBM central processor. In this
network, a subset of the identified
functions are as follows:

FUNCTION
Fl
F2
F3
F4
F5
F6
F7
FB
F9
FlO
Fll

NODE
L3
L2
L2
L2
L2
L2
L2
Ll
Ll
L1
L1

DESCRIPTION
Display a device's voltages
Transmit to IBM <utility>
Transmit to HP <utility>
Receive from IBM <utility>
Receive from HP <utility>
Request voltages
Output to a terminal
Read voltages
Do calibration
Transmit to PDP <utility>
Receive from PDP <utility>

Diagrammatically. this part of the
application may be represented performing
two operations in the following way. Note
that output from FB goes to different
destinations and can go to more in the
future if desired.

In this example, with the voltage reading
made a separate function, any function on
any node can request a reading of the
voltages and, via routing. get the response
returned. The calibration function can
read voltages and the IMS transaction can
read voltages. At some point in the
future. a function on the PDP 11/24 could
request voltages and require no change to
any other function in the application.
This example shows the same capability for

430

IBM IMS

Fl

PDP

HP

Request voltage display from IBM.

~ROUTE~~
Do Calibration

Figure 9

centrally coordinated time and date.
Correctly defining and specifying
application functions can make functions,
that have traditionally been parochially
defined by node. available to the entire
network as an inherent aspect of correct
system definition.

IN SUMMARY

With a few simple functions defined to
route messages within a structured system,
high level transparency can be achieved.
This should provide 1> the ability to
address application definition without
regard to technology and 2) the ability to
apply networked technologies to the
structured design to meet other criteria.
An application defined with HLT as a
foundation is not limited by technology.
Modules can be plugged in, unplugged, or
moved about in a networked solution. The
benefits gained from High Level
Transparency are these:

1. easy node upgradeability

2. lower application development costs and
lead times

3. simpler software maintenance

4. easier application tuning

5. potentially less capital involved in
hardware.

High level transparency is one way to take
advantage of what the future offers to
computer system design.

Bibliography

1. Conrad. M., Hopkins. W.,
"Distributed Functions Build Modern
Computer Systems", ELECTRONIC
DESIGN, September 3, 1981, <pp
142-147)

2. DeMarco. T., "Structured Analysis
and System Specification." Yourdon,
Inc., 1978

3. Fish. Raymond,
Ensures High
COMPUTER WORLD,
Pg S/13

"Structured
Guality

September

Design
System",
26. 1977.

4. Giloi. W. K., Behr. P., "An IPC

5.

Protocol And Its Hardware
Realization For A High-speed
Distributed Multicomputer System,"
8th Annual Symposium on Computer
Applications. IEEE, 12-14 May,
1981, Cpp 481-493)

McGlinchey • .J.,
App 1 ications,"
Services. 1984

"Real-Time Computer
DIGITAL Educational

6. Stevens, W. , Myers. G. ,
Constantine. L. , "Structured
Design," IBM .JOURNAL, Vol 13,
Number 2, 1974, <pp 115-139)

7. Yohe. .J. M. , "An Overview of
Programming Practices", COMPUTING
SURVEYS, Vol 6, No 4, December
1974, (pp 221-243)

8. Yourdon, E. N. , "Techniq_ues of
Program Structure and Design,"
Prentice Hall. 1975

431

OFFICE AUTOMATION: SYSTEM DESIGN AND PRODUCTIVITY

Lesley Tracy Korns
American Management Systems, Inc.

Arlington, Virginia

Abstract

The purpose of this paper is to discuss the
impacts of information sharing across office lines
upon the the system design and productivity
~easurements of office automation. Because of
information sharing, traditional productivity
m:asurement and system design techniques may not
yield the most efficient and expedient results.
Rath:r, due to the very nature of information
sharing, n?vel techniques can be developed for
system design and productivity measurements which
focu~ _on inf?rmation sharing, instead of the more
traditional view of information processing.

INTRODUCTION

The in~ent of this paper is to discuss office
automation and productivity measurement. However
a plan for ~roductivity measurement must occu;
concurre~tly with a plan for designing the system.
To devise a. methodology for productivity
mea~urem:nt without understanding the system
design _is ~nalogous to a farmer measuring crop
production ~ithout knowing what he is growing, how
many he will grow, or exactly how his crops will
grow.

This discussion centers around information sharing
in an office automation environment.

PRODUCTIVITY AND SYSTEM DESIGN

Productivity

Historically productivity has been measured
quantifiably becduse profits are gauged by
measuring a person's labors, be it manual labor,
industrial labor, manufacturing labor, or farming
labor. ~ecently, another category indigenous to
the twentieth century has emerged. This is white
collar labor, personified by the office worker
whose primary purpose is the creation the
production and the use of information. B~cause
?ffice work is an integral part of doing business,
it too has come to be viewed in terms of
productivity, particularly in light of justifying
expensive computer equipment.

Although technologies for the office have evolved
guickly over the_p~st 10 ye~rs, little has changed
in the traditional view of productivity
measurement - which is a method for assessing the
success of a system in fulfilling its intended
mission. As few as three years ago, articles,
books and Federal Computer Conferences were
discussing productivity measurement techniques for
word processing. Just as these methods for

Proceedings of the Digital Equipment Computer Users Society 435

measuring office productivity were evolving and
becoming standardized, new office technologies
were being introduced. These technologies, now
known as office automation (OA}, are a
consoli~ation of traditional word processing, data
processing and other information tools and
technologies into corporate, packaged systems.
What has resulted is a gap between the existing
standar~ productivity measurements for simple word
processing and the newer more complex productivity
measurements for office automation technology.

System Design

System design is the application of specific
techniques for developing an automated system.
The goal is to develop the system in the shortest
length of time between user request and delivery.°
Traditionally tools for system design have lagged
behind the rapid evolution of computer field
technologies. Commonly used system design
techniques include flow charts, data flow
diagrams, structured English, decision tables,
decision trees, and data dictionaries. Whatever
tools are used, the sequence for designing a
system is as follows: determination of the
requirements; deciding what information is
required for accomplishing the activities; and
ultilizing one of the tools described above to
develop design specifications.

To illustrate more clearly, one such tool, data
flow diagrams developed by Demarco (1), is a
graphical representation of the system. Symbols
are used to represent processes, data flows, and
files. Activities of an organization are broken
into processes and the data is depicted in terms
of data stores. The data stores are sources of
files which are identified in conjunction with the
processes.

Anaheim, California - December 1985

FILE INFORMATION

OWNER:
SIZE:
USAGE:

FIGURE 1

DATA BASE

LE GENO

---+ tWiAllIZATIOll READS FROll THE FILE
4--- ORGMIZATIOll WRITES TO THE FILE
.-+ ORGANIZATION REAOS/URITES THE FILE

1181JZl11•-

FREQUENCY OF USE=-------------------­
CLASSIFICATION:
DESCRIPTION:

436

FIGURE 2

1Jr-.s ofl n e-/

LEGEND

----+ ORGANIZATION READS FROll THE FILE
4-- ORGANIZATION WRITES TO THE FILE
+-+ ORGMIZATION READSlllRITES THE FILE

FILE INFORMATION

OWNER: o1;Yl!:~:f:#-d ffccol{IL-/-;,,dc
SIZE: ::J ,.,~~

USAGE: £1\~dd/i; c.al<!.ul.oi?, arvJ.. pcov1-IL 'fl!-fLJdS

FREQUENCY OF USE:--1:Q.¥Uc.w.oi.;...rP.u:,.::;ic.uty,..c,___ _____________ _

DESCRIPTION:

437

OFFICE AUTOMATION

Office Automation Definition

Office automation has come to mean many things -
from word processing to a wide variety of data
processing technologies used in the office
environment, such as electronic mail, local area
networking, and graphics, to name a few. For the
purposes of this paper, office automation refers
an array of computers organized in a distributed
processing system design. In this case
distributed processing system is comprised of a
typical mainframe, minis and microcomputers
networked together to provide the vehicle for
information sharing or independent processing at
each level.

Information Leveraging

A distributed processing architecture and
corresponding communication network facilitate the
sharing of information. Sharing information
produces information leveraging which is the
electronic sharing of the same information by
authorized offices with the effect of magnifying
the value of information because of the multiple
users. Although the value of information varies
from office to office, all participating will gain
from the leveraging of information which would
otherwise be concentrated in one place. New
processes performed on the information, such as
word processing, data processing and
communications are propelled by information
leveraging among different personnel levels,
different systems and for different applications.
Duplicative collection procedures for similar
information can be consolidated and synthesized
into a comprehensive and coherent set of data
which can be used by managers and professionals
alike, and ultimately shared as a "corporate data
base".

An office automation system, as used here, is a
distributed processing system comprised of
hardware (mainframe, mini and micro) serving
different individuals, different organizations,
and different applications. A unifying factor in
office automation is not the equipment, not the
people, not the application - but rather, it is
tne need to share information. And it is the
resulting synergism among the individuals sharing
that information which makes the design
requirements and the productivity measurement
techniques unique. Therefore, the sharing of
information is the major reason for having an QA
system (as defined here); otherwise clusters of
independent micros would be fine, as would one
mini with a group of terminals connected to it, or
any independent localized design versus a
distributed processing design.

Office Automation - Why it is Difficult to Measure
Productivity

In light of the definition given above, there are
many reasons why office automation productivity is
difficult to measure. One such reason, previously
mentioned, is the leveraging of information which
is an abstract concept that does not lend itself
readily to quantifiable measurement. Below are
related reasons for the difficulties arising from
measuring office automation productivity.

Recent and Dynamic Technologies. Office automation
is comprised of recent and dynamic technologies.
The term office automation and the meaning
discussed here reflect this period of time in the
mid- to late eighties. It is fair to predict that
the meaning here and the meaning five years frc~
now will differ, just as it differed five years
ago when office automation primarily referred to
word processing. Office automation is dynamic
because it is still evolving and changing in
tandem with computer technologies.

Office Automation Greater than the Sum of its
Parts. Another characteristic about DA that makes
productivity measurement difficult, is that the
benefits of office automation are greater than
those of the sum of its parts (word processing,
data processing, other technologies) and,
therefore, to measure only one area of office
automation, such as word processing, does not
address the interaction or synergism among the
parts which generate productivity benefits.
Similarly, office automation affects nearly all
aspects of office life, not just one discrete area
such as typing. Therefore, benefits cannot solely
be measured in terms of greater productivity, but
rather benefits must also be measured in less
quantifiable areas such as greater effectiveness
of time usage, improved decision making, and
better coordination and communication.

An example of this synergism is the use of a data
base which may mean more readily available
information. However, it can also effect the
efficiency of word processing if it can
automatically be reformatted into a report. Or it
can provide time savings if the data can be
automatically converted into a spread sheet for
computations and forecasting.

Shortcomings to Present Approaches to Productivity
Measurement. Productivity measurement has
traditionally focused on quantifiable measurement,
overlooking the crucial role of the manager and
professional. For example, in the area of word
processing, successful productivity measurement
techniques are associated with
secretarial/clerical word processing, rather than
the more costly professional and managerial word
processing which affects productivity quite
differently from the secretarial/clerical ranks.
Similarly, productivity associated with clerical
tasks is typically quantifiable due to the
structured nature of the tasks. For example,
measurement techniques such as counting lines of
output on a word processor or counting the number
of information retrievals to determine the average
time per retrieval in a manual and computer-aided
environment, are all appropriate for the
structured environment of the clerical staff. In
contrast measurement of the executive and
management levels is more difficult due to the
unstructured nature of their work. Most agree
that at these levels the majority of the time is
spent communicating, be it in meetings, telephone
conversations, and conferences, all of which are
unstructured.

438

Office Automation and System Design

System design for office automation nee-Os to
capture the leveraging of information via file
sharing. In the traditional view the major, thrust
of the system design is the determination of what
process requires what specific capabilities.
However, with office automation this area does not
need to receive much initial attention because in
many cases off-the-shelf software predetePmines
the capabilities (electronic mail, data base
management, word processing, spreadsheet,
graphics, and calendaring). These capabilities
are based upon routine administrative requirements
in an office environment. Therefore, system
design for office automation does not have to be
centered on how the data will be manipulated
within a particular environment, because it is
already known. And instead a systems analyst
might say - here are the capabilities, what is
your inform1tion and where does it go? In
traditional system design the processes are the
foundation, but in office automation the
files/data should be the foundation.

NEW APPROACHES TO OA SYSTEM DESIGN AND
PRODUCTIVITY

Presented here is a system design technique which
focuses on the sharing of information. This
approach is recommended in conjunction with the
more traditional techniques. The important point
here is that the information sharing functions are
identified and incorporated into the design.

The initial step of this system technique, which
identifies the information sharing functions, is
to define the data that needs to be shared. A
method for doing this is depicted in the following
illustrations. Figure 1, the Information Diagram,
presents a tool for obtaining the flow of
information/data/files within an organization, as
well as specific descriptive information regarding
the files. This is a tool for creating a concise
list of shared files. First, the file is
identified. Second, the owner, or organization
responsible for the file is requested to identify
organizations that share the file. Third,
information concerning the file, found in the
section called File Information, (Figure 1) are
provided.

Once a diagram is completed on every shared file
identified within the organization, the data can
be organized any number of ways for analysis.
This data is the foundation of the design, insofar
as it depicts the files that are shared throughout
the organization. Figure 2 illustrates a
completed Information Diagram and Figure 3 shows a
representation of the the data.

The second step is to further identify the files
in terms of what capabilities will be performed on
them (i.e. word processing, data base management,
spread sheet, etc.). This is followed by file
size estimations for sizing purposes. The sourcE
of this information is in the file descriptions
accompanying the Information Diagrams.

439

Information Architecture

Once the shared files have been identified as
stated above, a design called the information
architecture is prepared. This design
incorporates the concept of leveraging
information. Essentially, the information
architecture is comprised of two types of files:
public files which are shared by others (and were
identified in the Information Diagrams); and
private files which are files that are not shared.
The private files need to be identified by each
organization, along with the same information
requested on the Information Diagrams. Therefore,
what information needs to be shared and by whom is
determined before the design. The defining and
grouping of information into files can be
accomplished using the Information Diagrams (See
Figure 1). Collectively these files will comprise
the corporate data base. It is the grouping of
files into public and private groups, which
becomes the backbone of the information
architecture.

The size, purpose, and importance of files, are
all factors in determining where they will
reside. It is conceivable that a public file
could reside on a micro, mini or mainframe,
depending upon its purpose.

Measurement of Productivi!z'. Deriving a
Productivitv Factor for Leveraged Information

Presented in this section are some ideas for
measurirg productivity as it relates to the
leveraging of information. The leveraging of
information is characteristic of the managerial
and professional workloads, which are typically
unstructured and information oriented. One way to
measure information leveraging is to look at the
frequency of file usage. An audit trail will give
this information, in addition to tracking the user
of the file. The frequency of file usage can be
an indicator of productivity as it pertains to
information leveraging. It can also indicate the
actual value or ''corporate value" of information
in relation to the office or the corporation as a
whole, as determined by frequency of use.

There are several different ways to use audit
trails as productivity measurements. First of all
an underlying premise is that the more frequently
information within the system is used, the more
productive those workers are that use the
information. This is particularly applicable at
the management and executive levels. In other
words, the more frequently that they are accessing
information, the more productive they are in terms
of efficiency, improved decision making and
effectiveness.

Different views of the audit trails will provide
different indicators of productivity. Below are
some ideas.

FIGURE 3

INFORMATION DIAGRAM
FINANCE AND ACCOUNTING

CHIEF
EXECUTIVE

OFFICER

MARKETING
DEPARTMENT

PERSONNEL
DEPARTMENT PERSONNEL BUDGET

OVERSEAS
DEPARTMENT

COMMERCIAL
DEPARTMENT

OVERSEAS BUDGET

FEDERAL
DEPARTMENT

1. Weekly or monthly audit trail reports of
frequency of file usage can yield a history of the
most widely used files within the "corporate data
base" Likewise, it can reveal those woners or
organizations with the greatest participation in
~nformation leveraging, i.e., productivity
improvement.

2. Files can be assigned a value based upon their
administrative value. For example, an employee
ro~ter from personnel will be assigned a greater
weight that a computer equipment list file. This
is so because the frequency and widespread use of
the personnel file gives it more "value" in an
administrative or office automation sense, than
does a more narrowly defined ar~ used file such as
a computer equipment list.

440

SUPPORT
DEPARTMENT

3. If in fact the files are assigned a value, as
described above, then the frequency of use of
those files of higher corporate value, will
indicate how effectively and efficiently the
system is being used.

SUMMARY

This paper presents some novel approaches for
productivity measurement and system design that
focus on the unique characteristics of office
automation. None of these techniques is intended
to be used exclusively, but rather, to be used in
conjunction with more traditional methods,
depending upon the purpose or goals in mind.

In order to experience the information synergism
or leveraging discussed here, an organization must
be committed to the sharing of information. In
many organizations information is power, and
therefore, it is not something that is readily
shared. This is a principle that appears to be
deeply engrained in many establishments.

Therefore, philosophical ch~nges wil~ have to take
place concerning informati~n and its val~e to a
corporation as a whole, in .terms ~f time and
efficiency, in order for information to be
leveraged effectively.

REFERENCES

1. Structured Analysis and System Specifications,
DeMarco, Tom, Yourdan, New York, 1978.

441

ALL-IN-1 VERSION 2.0 - ONE YEAR OF OPERATION

E. C. Eimutis
Monsanto Research Corporation - Mound
Miamisburg, Ohio

ABSTRACT
An Automated Office Support System CAOSS> pilot
project, consisting of 30 target users from a
manufacturing group and 30 additional training and
computer systems personnel, has been successfully
completed.

The pilot users were connected to a Digital
Equipment Corporation CDEC) VAX 11/780 computer
running External Field Test Versions 2.1, 2.2, 2.3,
and, subsequently, formal release of Version 2.0 of
the ALL-IN-1 office automation software product.
Electronic Messaging was the major office
automation function that was used and evaluated.

OBJECTIVE

The objective of the Automated Office
Support System CAOSS) is to increase
oyerall organizational productivitv.

The major premise is that ALL-IN-1, if
properly implemented, will be a key factor
supporting this increase in organizational
productivity. The increased productivity
will be accomplished in part by:
• improving the timeliness and accuracy

of one-way communications

• minimizing individual work-flow
deviations and unwanted interruptions

• improving the ease and speed of one-way
communications

• minimizing telephone interruptions

• minimizing "telephone tag"

• reducing paperwork and paper handling

• reducing the frequency and volume of
photocopying

• and by reducing the time spent in
searching for and retrieving
information.

The specific results to be worked toward in
the pilot project were:

• to evaluate the office automation
software, ALL-IN-1, especially the
Electronic Messaging aspects of this
software,

• to justify, procure, install, operate,
and evaluate the VAX 11/780 computer
system in an office automation
environment,

• to establish a pilot target user group
from an operational department,
interface them to the computer and

Proceedings of the Digital Equipment Computer Users Society 443

enable them to use the office
automation software,

• to evaluate specific end user
application requirements and how they
could be met,

• and to evaluate system programming
requirements for software upgrades and
for customization of the ALL-IN-1
software product.

RESULTS

The.Automated Office Support System pilot
pro1ect has be~n successfully completed.

A pilot Target User Group of 30 individuals
from a manufacturing group were connected
to the DEC VAX 11/780 computer system
running the ALL-IN-1 office automation
software product. The target users
evaluated Electronic Messaging features of
ALL-IN-1 and a majority of the users found
these features very useful.

An Implementation Plan justifying the
computer system was written and approved.
The computer system was procured,
installed, and made operational on time and
on schedule. The performance of the
computer hardware was initially erratic
but, as of this writing, has stabilized to
provide continuous operation and non-stop
performance for the last four months.
Peripheral breakdowns in the disk drives
and in the communications interfaces,
however, will require that clustering be
implemented to enhance the performance of
these devices and to provide a required
availability of 99.9%

Specific end user observations and
requirements were obtained by means of a
"Needs Assessment". These observations have
been analyzed and are described fully in
this report.

Anaheim, California - December 1985

A number of systems programming
requirements arose concerning both software
upgrades and customization of ALL-IN-1
menus. These requirements are documented
below.

Several additional requirements and needs
were identified in following areas:
training, system software, applications
software development, hardware, and
general. These requirements are summarized
below.

PRODUCTIVITY OBSERVATIONS

• improving the timeliness and accuracy
of one-way communications

There were a number of examples where this
was observed. Several individuals are using
AOSS for weekly report generation and
distribution. The time required for this
routine manual process has been reduced by
approximately 50%. One group in particular,
has established weekly reporting from a
remote office in Phoenix. The weekly
summaries are available for Product
Management on Monday morning via AOSS.

Other individuals have requested that
agency personnel be given access to AOSS.
This has facilitated the exchange of both
routine specification data and occasional
special information, such as an elaborate
meeting agenda, several versions of which
were distributed electronically to over t~o
dozen individuals. The time savings were
significant both in the speed of
dissemination and in the lower effort
required to produce and revise the several
versions until a final agenda was agreed
upon.

• minimizing individual work-flow
deviations and unwanted interruptions

While the evidence for this is not as clear
as in the preceding case, a number of
individuals reported that receiving
electronic mail and being notified
immediately of its presence did not act as
an interruption. Actually, in several
instances, where individuals were expecting
a communication, this aided in the timely
accomplishment of specific tasks. If,
however, the electronic communication was
used instead of an unannounced personal
visit, then the savings in work-flow
interruption are significantly improved.

The key to this aspect of AOSS is that it
allows each individual to operate in the
manner they find most convenient. That is,
how quickly one responds to an electronic
message may be a function of the current
work in progr~ss. The ALL-IN-1 software
provides tools to help in this area. For
example, if while editing a memo, one is
notified of new mail, the "Interrupt"
feature permits the reading of new mail
without having to leave the editing
process.

• minimizing telephone interruptions

Some pilot users have devised imaginative
ways to use AOSS as a means to reduce
telephone interruptions. They have assigned
an individual the task of answering their
phones and routing the phone messages to
them via electronic mail.

• minimizing "telephone tag"

A majority of the pilot users felt that
this was an important, though presently not
readily quantified, time savings
application of ALL-IN-1. That is, if unable
to contact someone by phone, the user
either left a message for the person to
return their call or conveyed the
information by way of ALL-IN-1.

• reducing paperwork and paper handling

The number of mail message files created by
the 60 pilot users over an eight month
period numbered approximately 11,340 (this
corresponds to an average of 23.6
messages/person/month or a Little over one
message/person/day). The estimated average
number of copyees/message is approximately
two. Also, 95% of the messages were one
page in length. the number of pages of
paper saved are thus:

#of µages of paper saved= 11,340 X 3

34,020

• reducing the frequency and volume of
photocopying

444

If one had to photocopy the two paper
copies in the example above, assuming a 5
minute average photocopying time, the
following manhour savings would result:

Photocopying time savings= 11,340 messages
X 5 minutes/message

= 56,700 minutes

945 manhours

Because the ALL-IN-1 system only saves the
original text regardless of the number of
copyees, this is a more cost effective way
of disseminating information.

• reducing the time spent in searching
for and retrieving jnformatjon

A few of the users who made use of the
electronic filing cabinet functions
reported that the "Index" function was
valuable in retrieving previously stored
information.

OTHER RESULTS

Three specific needs were identified as
vital to the successful implementation and
acceptance of AOSS on a plant wide basis:

• The need to devote resources and to
develop plant wide training in office
automation procedures and to
demonstrate how ALL-IN-1 can be used
most productively in the use of those
procedures.

• The need to devote resources to the
customization of the ALL-IN-1 software
product, its forms, and "Help" menus
for specific end user suggested
applications.

• The need to allocate Application
Support resources to identify, analyze,
and implement ALL-IN-1 applications for
a variety of specific end user needs.

ADDITIONAL REQUIREMENTS AND NEEDS

TRAINING

A needs assessment was conducted to
identify both training and non-training
needs. The major training needs that were
identified are as follows.

• The steps for connecting and

•

•

•

disconnecting from the system,
depending upon whether the Mound
Local Area Network (MOLAN), direct
or dial-up connections are used,
need to be documented.

Instructions for setting up the
emulator software need to be
provided.

Training in the use of the full
array of electronic messaging
features needs to be provided.

The ready availability of office
automation tools does not mean
that these tools will be used and
if used that they will be used
effectively. Education and
training in electronic office
procedures and protocols need to
be developed.

• Training in the use of the editor,
WPSPLUS, needs to be developed.

SYSTEM SOFTWARE

During the course of the pilot project, a
number of requirements were identified
relating to system software. These are
summarized below.

• The main menu contains too many
confusing and irrelevant choices.
The main menu needs to be
re-designed to make it more
meaningful for the Mound

•

•

•

•

•

•

•

•

•

445

environment.

The menu's that are modified have
associated "help" forms providing
varying levels of detail to
explain various menu options.
These "help" libraries need to be
modified, as appropriate.

A shared library of often used
forms (for example, expense
reports, ADP justification
forms - the 7772, purchase
requests, and so on) needs to be
developed and made available.

An easy to use, menu driven, file
transfer procedure to transfer
files or ALL-IN-1 messages to and
from the PC's needs to be
developed.

Work station printers, including
single sheet printers such as the
Diablo printer, should be
supported by ALL-IN-1.

While on-line help and training
provide extensive support in most
of the ALL-IN-1 functions, many of
the DEC keyboard references do not
have a match on the IBM PC
keyboards. The help libraries and
training scripts need to be
changed to reflect appropriate
keyboard references.

The mound phone book needs to be
stored and made accessible via
ALL-IN-1.

During the short period of the
pilot study (less than one year)
more than 10,000 documents have
been generated by the pilot users
and stored on the system. While
most of these documents are less
than one page in length and
therefore use little disk storage,
in aggregate they are beginning to
cause some access delay. A
procedure needs to be developed
that will archive (that is, remov~
from on-line storage) electronic
mail messages and all references
to messages older than some
established and published time
period (for example, 3 months).

A number of system programming
functions will be facilitated by
the installation and use of
DATATRIEVE, the DEC database
management system. This needs to
be done.

Presently, users have unlimited
disk storage privileges available
to them. Disk quotas need to be
established to prevent exhaustion
of the on-line disk storage
capacity.

Until the subscriber base is
substantially larger, paper mail
will be commonly used. The
software is designed to ask if
paper mail is desired when it
cannot identify an addressee.
However, when the Answer (A)
function is used, the paper mail
addressees are not identified by
name.

Resources need to be allocated to
the optimization of ALL-JN-1.

APPLJCATJONS SOFTWARE

Several applications software projects were
suggested during the pilot study. The
initial focus was on the development of
various boiler-plate (template) documents
and associated entry forms. Two of the
application projects are summarized below:

B Reimbursable order forms that are

issued by Sandia and that contain
cost and schedule information on
various components need to be
placed on ALL-IN-1 for ease of
communications among the
contractors.

B Monthly status reports on various

HARDWARE

reimbursable projects are prepared
by the project managers and
communicated to a variety of
users. Boiler-plate forms need to
be developed and entry screens
need to be designed to support
this communication function.

B Availability of physical memory is
the single most important aspect
of providing adequate response
time. The existing 12 Megabyte
processor should accommodate
approximately 25 simultaneous
users before response time
degradation occurs.

B The connection of pilot users
directly to the VAX processor by
way of the VAX Communication
boards proved to be unreliable and
resulted, on several occasions, in
individual users being unable to
access the system. Terminal
servers need to be used to provide
a logical as opposed to a
hard-wired physical connection to
the system. The Mound Local Area
Network CMOLAN) will provide this
type of connection.

B Disk storage controller, disk
storage power supply, and disk
drive problems resulted in several
instances of system shutdown
during the prime operating period
of 7:00 A.M. to 5:00 P.M.
Clustering the processor with

446

GENERAL

multiple disk controller units
will minimize this problem.
Multiple storage control units
have been ordered and are
scheduled for installation during
December 1985.

General requirements that were identified
are as follows:

A manageable list describing all
of the ALL-IN-1 functions needs to
be prepared. How these functions
can be accessed also needs to be
concisely displayed.

Documentation on "Getting Started•
and identification of User Manuals
needs to be provided.

The IBM PC keyboard is difficult
to use because of inadequate
template designs to show the large
number of functions that the
keyboard can perform. This is
further compounded by the fact
that the IBM PC's must run a DEC
emulator to communicate with the
AOSS. A well designed multiple
color template needs to be
provided.

A printer needs to be located in
the mail room for printing paper
mail addressed to individuals who
are not subscribers to AOSS.

Anyone connected to ALL-IN-1 via
dial-up Lines wi LL experience
delays when using a 1200 Baua
Modem. Modems capable of operatino
at 2400 Baud or higher need to be~
evaluated for remote use.

The availability goal of ALL-IN-1
during the hours of 7:00 AM to
5:00 PM on Monday through Friday,
considered the prime period, will
be 99.9%. Therefore, any
maintenance on hardware or
software, requiring the shutdown
of the system(s) will not be
performed during this period.

Backups of end user mail messages
and other files stored in
individual electronic file
cabinets will be performed twice a
day, at noon and at 4:00 PM. Full
system (•Jmage•) backups will be
performed nightly.

B The office automation software
product uses WPSPLUS, a full
feature document processing
system, as its default editor.
WPSPLUS is also available for the
IBM PC. A feasibility study needs
to be conducted to evaluate
providing MultiMate as a VAX
resident editor, providing a
translator for WPSPLUS/MultiMate
documents, and using WPSPLUS on
pc IS•

BACKGROUND

MRC - MOUND ENVIRONMENT

The MRC - Mound office automation
environment is characterized by a mature
and advanced use of existing and newly
emerging office automation technologies.
This sophistication is evident in the early
selection and widespread acceptance of both
hardware standards Cviz. the IBM PC) and
standardized professional work station
software (LOTUS 123, MultiMate and dBASE
Ill). The presence of the professional
workstations created a favorable
environment and also presented some unique
challenges for the implementation of the
Automated Office Support System.

The AOSS is ~ computer-based system
designed to improve the way information is
handled in a contemporary organization. The
use of AOSS can improve overall office
productivity. The AOSS is defined by its
hardware, software and communication
components. The hardware and software
consist of a Digital Equipment Corporation
(DEC) VAX 11/780 computer running the
ALL-IN-1 office automation software
product. Communications to the VAX
consisted initially of direct, twisted-pair
(telephone cable) connections and
connections by means of the MOLAN when that
pilot became available.

ALL-IN-1

At the time the pilot project started,
Version 1 of the ALL-IN-1 software product
was being distributed for general use.
Mound, however, had an opportunity to be an
External Field Test site for Version 2 of
the office automation software product.
After an evaluation of the two versions a
decision was made to install External Field

Test Version 2 CEFT V2) of ALL-IN-1. During
the course of the pilot project, three EFT
versions were installed before formal
release of Version 2 was made available.
The pilot users thus had to live with a
number of bugs until formal release of
ALL-IN-1.

447

WHAT ALL-IN-1 DOES FOR THE USER

Most of the computer software used in an
office handles fixed, regular, and
structured transactions very well. For
~nstance, payroll, general Ledger,
inventory, and other software are used for
routine work. However, the more
unstructured and variable aspects of a
user's work are carried out Largely without
the help of a computer. Aside form work
that requires the judgment and experience
of a professional, much of this work
involves tasks such as gathering or
transmitting information, keeping track of
assignments, filing, making copies, filling
out forms, and maintaining a calendar.

In fact, a user may spend much of the
workday on secondary or support activities
including many that might be considered '
administrative and clerical. These tasks
may be essential, but performing them is
the biggest drain on a user's productivity.
ALL-IN-1 has been developed to increase end
user productivity by reducing to a minimum
the need tor them to do this kind of
secondary work, and by speeding the
performance of that minimum.

TARGET USER GROUP

A target user group was identified from a
vertical portion of the manutactuiring
organization. The group consisted of the
two product managers responsible for
production activities and their supporting
functional contacts. This group was
selected because their information handling
requirements were perceived to be important
to the organization and any facilitation of
communications would provide visible
productivity improvement.

ENHANCED COMMUNICATIONS

A majority of the target users felt that
communications were greatly enhanced
through the use of AOSS. One major
observation was that the planned presence
of a larger AOSS subscriber base would
further increase the number of successful
communications contacts. The target user
group initially numbered 30 individuals and
grew during the course of the pilot project
to some 60 users. An additional 50 users
were added during the course of the project
for a variety of support and training
purposes.

TARGET USER SURVEY

The initial users were surveyed to obtain
information about each user and about the
group as a whole in six different areas:

B Access: The difficulty in getting
hold of others for exchange of
information

Intensity: The level, importance,
urgency, and quantity of
information handled

Communication Contacts:
Identification of the
organizational level at which most
communication is occurring

Perceived Productivity: The
perceived efficiency and quality
of the work of the professionals

Activity Profile: A quantitative
picture of the typical workday of
the professional

Computer experience: The level of
experience each professional has
with a computer and a keyboard

IMPLEMENTATION TEAM

Early in the pilot project, an
implementation team was formed to act as:

e Steering group
e Sounding board
e Goal-setting body
e Project monitor

The team also made sure that upper
management was kept informed during the
pilot project of the implementation.

TEAM MEMBERSHIP

Six key areas were considered and
represented on the implementation team:

Administrative Leadership. This was the
focal point for all project activities
within Mound. The Project Leader made
procedural reviews and changes, promoted
and presented the project to upper
management, and was accountable for the
implementation.

Project Coordination. The project
coordinator developed the pilot project
implementation plan, including the schedule
and coordinated all implementation
resources. He also developed tools for
measuring how effectiveness and
productivity will be judged, developed the
specifications for the hardware and
software, developed the acquisition plan,
and managed the installation of all
hardware and software products.

Education. Training materials and initial
pilot user training sessions needed to be
devised, scheduled, delivered, and followed
up on. The in-house training and assistance
team was an important part of the
implementation.

448

System Administration. Such things as the
development of ALL-IN-1 forms, special menu
selections and other custom tailoring of
the software, and other computer systems
and programming considerations needed to be
worked out. Work stations, printers,
storage devices, communications devices and
other hardware is support of ALL-IN-1 had
to be provided. Also, procedures for the
smooth daily operations of the ALL-IN-1
system had to be developed.

Communications Consultant. A communications
consultant on the Pilot AOSS project was
selected from the MOLAN team.

User Representation. The key users
supporting manufacturing were two product
managers. The target user group consisted
of supporting manufacturing personnel
selected by the two product managers.

Issues in User Communications

Sue Ellen Franklin
Digital Equipment Corporation

Maynard, Massachusetts

ABSTRACT

This paper discusses major issues facing user
communications in the office marketplace. Traditional
documentation sets are no longer sufficient to meet the
needs of this market. User communications specialists must
develop new strategies and new approaches. This paper
identifies five such issues and discusses what Office
Systems Documentation is doing to address them.

Office Systems Documentation (OSD) is a group of writers, editors,
and publications personnel responsible for providing documentation
for several of DIGITAL's office automation (OA) products. Our goal
is to provide accurate, useful, and timely user communications
packages for Business and Office Systems Engineering (BOSE)
systems.

Working with OA software, both as users and as documenters, has
made us aware of the importance of documentation and of our
obligation to produce a unified, coherent user communications
package rather than separate pieces of hard-copy documentation,
on-line Help, and on-line training. To meet that goal, we have had
to identify, define, and resolve some of the major issues facing
communications specialists today. This paper addresses five such
issues:

• Documentation for systems, not products

• Definition and role of the user interface

• Task orientation

• Integrated user communications

• The "user friendly" puzzle

Proceedings of the Digital Equipment Computer Users Society

!:!:! Docur11entation
With Sl'steflls
APP roach

Documentation for Systems, not Products
An important challenge facing communications specialists today is
the need to develop a systems approach to documentation. The
initial documentation efforts for ALL-IN-1 and WPS-PLUS were
designed to teach us, as communicators, how to present a system as
a system (providing solutions to business problems) and not as a
collection of products. We needed to learn how to deliver to the
customer a single, organized instructional package.

What Did ALL-IN-1 Teach Us?

The most important, single fact about ALL-IN-1 is that it is a
customizable, open system. This means the customer can:

• Change the appearance of menus and forms

• Add or remove menu options or commands

• Change the way a menu option or command operates

• Rearrange options on different or new menus

• Add or remove applications or entire subsystems

• Remove or redefine keys

In other words, the customer can alter ALL-IN-l's interface and
functionality.

System customization impacts most the documents that describe
the user interface - the ALL-IN-1 Office Menu Getting Started
Guide and the ALL-IN-1 Office Menu User's Reference - and the
on-line Help. Once the product has been customized, the default
user documentation and Help no longer describe what the user
sees. How can a documentation group deal with this issue?

449

Anticipating this issue, we developed the Customizable
Documentation Kit. This optional kit contains the tools and the
information the documenter needs to customize the user manuals
and produce new manuals that physically match the default set.

Anaheim, California- December 1985

The Kit consists of:

•The ALL-IN-1 Style Guide that discusses the ALL-IN-1 V2.0
documentation strategy, standards, conventions, templates, and
specific documentation tools used in the manuals. This guide
includes sample chapters to assist documenters in customizing
the manuals. It provides technical specifications for materials
and processes used, including specifications for type, size, and
weight of paper, use of color, art, and other visual aids, and
packaging information.

The guide also tells documenters how to access the on-line text
files and describes the use of DIGITAL Standard Runoff !DSR)
commands in the default documentation set and on-line Help.

•The ALL-IN-1 Writer's Guide that discusses the software
documentation process, including planning, reviewing,
production, and printing. Technical documentation and
production terms are kept to a minimum.

• A magnetic tape that contains the full text of the Getting Started
Guide and the User's Reference in DSR format. Because these
text files contain the DSR commands that format the documents,
we call them source files. The meaning of the word source in this
context is analogous to its use in programming.

The tape also contains master files and command files to ease the
rebuilding of customized documents.

With the ALL-IN-1 project, the documentation group faced the
challenge of providing a set of books for an interface designed to be
changed (customized). That challenge produced the Customizable
Documentation Kit. The Customizable Documentation Kit
represents a first attempt at defining and delivering to the
customer an on-line documentation system.

What Did WPS-PLUS Teach US?

WPS-PLUS presented a slightly different challenge. Here, the
basic core of functionality stays the same while the interface
changes slightly under different implementations and for different
hardware configurations.

Currently, WPS-PLUS runs under several versions of VMS, ALL­
IN-1, Rainbow/MS-DOS, and IBM's DOS. Because WPS-PLUS is
available in so many configurations, there is interest in making
the software and the documentation:

• Cost-effective

• Easier and faster to produce

• Fully international and easy to translate

However, none of these goals are as important as presenting to the
user a single and consistent approach to learning WPS-PLUS
regardless of the implementation.

The first step toward a solution involved two realizations:

• We realized that WPS-PLUS is basically the same wherever it
operates. We call this sameness the core of WPS-PLUS.

• We realized that the differences between environments and
versions of WPS-PLUS appear, largely, in isolated areas of
functionality.

Therefore, we knew that we would have to devise a documentation
strategy containing a core that was largely environment and
version independent.

The solution that developed represents a highly modular approach
to documentation. It attempts to identify those aspects of
functionality that remain the same across all WPS-PLUS systems.
As this functionality is the core of WPS-PLUS, it forms the basis of
what we call the core concept in WPS-PLUS documentation.

This process creates general purpose, reusable modules of text and
ensures consistent presentation of the software across multiple
systems. It gives writers greater flexibility in building systems of
communications products and makes it easier for customers who

are translating systems or putting together systems from DIGIT AL
and third-party components. This topic of "open" or "loosely­
coupled" systems is very closely related to other important (hot)
issues for both software and documentation: consistency,
customization, and integrated user communications.

Core modules may vary in size from individual phrases and
sentences to entire books. An example of a book that is more than
90% core is WPS-PLUS List and Sort Processing. At the other
extreme, primers, tutorials, and installation guides (because they
are system-dependent) are likely to have less core material. Users
see the simplest illustration of this concept in the WPS-PLUS
product names: WPS-PLUS/VMS, WPS-PLUSIALL-IN-1,
WPS-PLUS/Rainbow, and so on. The core name is the same in all
three cases. Only the appendage that describes the /ALL-IN-1, and
/Rainbow (or any of the other PC-based products) as non-core
elements in this case.

The issue becomes more complex when dealing with functionality
differences. For example, WPS-PLUS Editor Functions documents
the WPS-PLUS editor and every version of the manual contains
the same information - except for specific references to VMS,
ALL-IN-1, or PC-based features.

More specifically, WPS-PLUS/Rainbow Editor Functions doc­
uments WPS-PLUS on a personal computer with floppy disk drives,
and the user must be aware of the physical location of documents.
To select a document, WPS-PLUS/Rainbow users must enter B:
before the document title (if the document is stored on Drive B:).
The B: preface is called the path name of the document.

As a result, WPS-PLUS/Rainbow Editor Functions reminds users
to include the path name when they select a Library or
Abbreviation document. This type of difference appears only in
WPS-PLUS/PC-based Editor Functions and not in the VMS or
ALL-IN-1 versions of this manual.

The following equations may also help make these concepts more
concrete:

Core Software

Core Documentation

Non-Core Software

Non-Core Documentation

Functionality that is always
present, regardless of the
version of the software or the
operating environment

Documentation of that
functionality

Functionality that varies
across operating
environments

Documentation of those
variations

The core approach to documentation is ideal for systems because it:

• Gives consistency in organization and format to users migrating
to and from different operating systems or implementations

• Factors out generic material to create general purpose, reusable
modules of information

• Presents to the user a single and consistent approach to learning
the product regardless of the implementation

• Eliminates needless repetition in instructional material

• Captures and preserves well-designed, written, and tested
modules of information

Since core documentation clearly benefits everyone, it is important
to continue to produce and extend this movement toward user
communications packages that are increasingly modular and
generic (core). This approach gives users greater consistency in the
same way that software achieves consistency from modular and
generic code. We should be able to produce core documentation as
long as engineering produces core products.

450

i~~i Definition
and Role of
User Interface

The Definition and Role of the User Interface
The user interface is critical to every product because it is through
the interface that the user comes to know the product. Often
described as that point where man and machine meet, it is the
medium through which the user receives information about the
software's functionality. Particularly in the Office Automation
area, the user interface IS the product.

With this in mind, we define the user interface as:

• Product interface (menus, forms, screen design, prompts)

• Documentation

• On-Line Help

•Computer-Based Instruction (CBI)

During the development cycles for ALL-IN-I and WPS-PLUS and
other office automation products, the documentation group is able
to provide considerable input in all these areas. We are directly
involved in the writing of Help frames for both ALL-IN-I and
WPS-PLUS and serve as consultants in CBI and user interface
development. We are beginning to write and be fully responsible
for our CBis. Increasingly, every effort is being put forth to make
the on-line information consistent with and complementary to the
hard-copy documentation.

The Product Interface

The software interface itself comes under continual scrutiny during
the development of BOSE products. Important design
considerations are that the products be predictable in behavior and
consistent in the presentation of menus, forms, screens, error
messages, and prompts.

This approach is basically top-down and menu-oriented. It
minimizes memorization by presenting a list of choices available to
the user at each step in an activity. The user is further assisted
through the use of:

• Descriptive phrases and mnemonics

• A small number of form types

• A small number of universal options that may be invoked from
any subsystem

•In ALL-IN-I, an open, customizable architecture that may be
personalized to suit each user

ALL-IN-I and WPS-PLUS also give users the ability to create
User-Defined Procedures (UDPs), which are documents used to
store frequently invoked commands or keystrokes. When the user
invokes a UDP, the system executes this series of commands or
keystrokes automatically. In this way, the system watches and
remembers a sequence of steps.

The overall objective in the design of user interfaces is to apply a
consistent set of simple rules and basic design principles.

Documentation

Everyone knows what hard-copy documentation is. The important
questions today in user communications are: What is on-line
documentation? Is it on-line files in a consistent format (MEM, for
example) that the user can print on demand? Is it some type of on­
line assistance? Is it some type of videotext information base?
What is the relationship between hard-copy documentation, Help,
CBis, and other forms of on-line information?

For ALL-IN-I, OSD defined on-line documentation to be an
optional tape containing RNO and MEM files organized and
formatted exactly as they were for the writers on the project. With
this tape, we supplied a book containing all the rules, guidelines,
and standards that governed the printed, "official," default
documentation.

We arrived at this definition of on-line documentation after careful
study of the product requirements for documentation and the
ALL-IN-I user environment. We were asked to provide an on-line
documentation package that was both flexible and customizable
and both modular and integrated. We addressed these
requirements in the Customizable Documentation Kit. The Kit:

• Is flexible and customizable. Each chapter is written according to
a template or pattern and cross-references are kept to a
minimum. This means that customizers can write new chapters
according to the pattern provided by OSD or add or delete
chapters or portions of chapters as they wish. It is hoped that
writers using the templates will find that they are structured
enough to provide a general pattern and open-ended enough to
allow for individual creativity.

• Is modular and integrated. Each chapter is a single RNO file on
the tape. These modules can be edited individually and
reassembled (integrated).

• Uses documentation tools and editors available on VMS and
ALL-IN-I.

Nevertheless, this is a very crude form of on-line documentation.

The following is a more sophisticated but still preliminary list of
requirements pulled together to describe what on-line
documentation might mean to a group of technical writers, editors,
and publishers. Such a system would have the following
characteristics:

• Reliability, stability (output is the same as input)

• Revisable content (read/write storage)

• Uses one storage format based on generically encoded data

• Handles any data type (compound documents, for example) and
facilitates translation among data types (voice to text, text to
voice)

• Allows separation of content elements, document structure, and
output style

• Allows extraction of outlines based on document structure

• Allows content-based retrieval

• Allows annotation/review comments

• Allows distributed compound document data base

• Provides snapshots of documents in storage format for customer
access

• Provides publications tools (spelling checker, syntax checker,
rhetoric analyzer)

OSD is currently examining alternate distribution media (such as
laser disk, CDROM) to find a system to meet these requirements
and to move toward user communications packages rather than
traditional "documentation sets." There is a growing desire to use
on-line assistance and CBis as an appropriate, and in some cases, a
superior medium to hard-copy documentation. There is a growing
realization that everything doesn't have to be on paper.

451

The On-Line Help

The on-line Help is continually expanded and improved in BOSE
systems. In both WPS-PLUS and ALL-IN-1, you can get Help
anywhere, anytime by pressing Gold H. Providing support to both
new and experienced users, ALL-IN-1 and WPS-PLUS display
context-sensitive messages in a window overlay at the top or the
bottom of the screen. Help messages include a list of related Help
topics as well.

The current on-line Help system:

• Provides Help on menus and forms

• Provides Help on menu options and form fields

• Provides Help on editing keys and general information topics

• Provides modularity - each Help topic is a single module in a
VMS library

• Uses templates

• Builds cross-reference lists automatically

ALL-IN-1 also provides guidelines and templates for those who
wish to write their own Help or supplement the existing ALL-IN-1
Help. It may not always be possible to follow these templates
exactly, but the more consistent the format, the easier it is to
update and customize Help.

The CBls

The CBis for ALL-IN-1 V2.0 and WPS-PLUS embody important
new principles. They are fully integrated with the software
allowing users to get hands-on practice with product features in
task units. In some task units, the CBI pulls in the user's actual
files in the execution of a task. For example, while learning to read
mail, users read their own real mail messages. If they have no
mail, the CBI sends a mail message. This goes beyond simple
interaction and page-turning and lets users learn how while
actually doing. The user interacts with the product instead of
interacting with the CBI simulating an interaction with the
product. Feedback to responses helps guide users to successful
completion of each lesson.

As with the hard-copy documentation, most of the CBis are keyed
to options on the menus. The CBis are available from separate
training menus.

The CBis are designed to be easy to use. A user needs no prior
knowledge of either of these products to activate and run the CBis.

Finally, a new requirement is being heard in this area. This
requirement is that users should be able to access CBis from
within Help, as well as from CBI training menus. This idea opens
up new and exciting possibilities for CBis and Help.

{ Tas f\
Orientation

Task Orientation
Although difficult to define, it is important these days that
documentation be seen to be task-oriented. Whatever the term
means, it recognizes that users have jobs to do and the user
information package should help and not hinder that process. The
user documentation for ALL-IN-1 and WPS-PLUS is task-oriented.

That is, it is task-oriented in as far as the menus themselves are
task-oriented and form lists of activities that the user may wish to
perform. It might, however, be more precise to say that the user
documentation for ALL-IN-1 is menu and procedure-oriented and
the documentation for WPS-PLUS is menu and function-oriented.

More importantly, the documentation and the Help frames for both
ALL-IN-1 and WPS-PLUS are written according to established
templates (patterns). The templates make the structure of each
chapter predictable. This consistency means that the user need
become familiar with only one format or style of presentation.
Because the user manuals are consistent in format, organization,
and writing style, they are also easy to use, update, customize, or
translate.

The ALL-IN-1 templates, in particular, are based on the menu
structure as the organizing element in the product. They copy the
software itself by presenting a top-down view, the user's view, of
the system. The reader gets an overview first and then is led
through a discussion of each option in increasing layers of detail
and complexity.

The templates separate the user interface from the functionality.
What the user does (that is, select options from menus to initiate
actions, functions, applications) is covered by procedures (series of
steps). What happens as a result is described in narrative
paragraphs following the procedures.

This procedural approach means that users can quickly scan the
Getting Started Guide and the User's Reference while getting a
sense of the number of steps in any activity. The steps provide
handy reference points for starting, stopping, continuing, or
skipping tasks.

Finally, templates give greater stability to those documenting a
customized system. User manuals document the user interface, the
area most affected by customization and by differences in operating
systems or implementation environments. This material is isolated
in the procedures and can be easily dealt with there. Descriptions
of functionality are isolated in paragraph modules and can be dealt
with separately.

f~ Inte9rated
User
Co trlfrl uni cations

Integrated User Communications
As stated, OSD is chartered to provide documentation for several of
BOSE's OA products. We work closely with development to produce
technically accurate, useful material. Traditionally, an Educational
Services group provides the training and the development group
produces the user interface (menus, forms, screens, prompts) and
the on-line Help. Therefore, the education of the user was in joint
responsibility of at least three different groups with separate
priorities, schedules, and constraints.

OSD believes that the user would benefit from a more consistent,
complete, and unified approach to the systems that they buy. As
we explored alternatives, we coined the term "integrated user
communications" (UIC) and developed the following working
definition.

452

Currently, "integrated user communications" means applying a
single set of guidelines and conventions to every aspect of the user
interface. As stated previously, the user interface is the critical
component because it is through the interface that the user comes
to know the product. Again, in the Office Automation area, the
user interface IS the product.

To review, we define the user interface as:

• Product interface (menus, forms, screen design, prompts)

• Documentation

•On-line Help

• CBis

Over time, systems will provide additional and improved
information carriers (such as videotext, windows, on-line document
libraries l. These carriers will be added to this growing list of user
interface carriers or components.

The goal of integrated user communications is to have all these
components cooperate in a unified, coherent, consistent manner to
teach the user the system.

It is no longer appropriate to separate information content and the
medium used to deliver that information. Instead, we must match
the strengths of each medium to the individual's level of expertise,
preferred learning style, and type of information that must be
transmitted.

What does this mean in more concrete terms? It means that
instructional materials best serve the new or novice user by
providing basic, step-by-step, task-oriented information. Examples
of instructional material include: primers, tutorials, summaries,
and executive overviews. In hard-copy documentation, this type of
material duplicates the actual screens and menus that the user is
seeing on-line and uses examples and illustrations as often as
possible.

CBis fall into this category also and are ideal for new users or for
passing one-time-only information. They should be short enough to
be quick refreshers, and they get high marks if the user can do
real work while learning through the CBI. The ALL-IN-1 CBis are
interactive in this way. As mentioned previously, the user interacts
with the product instead of interacting with the CBI simulating an
interaction with the product.

rue means providing better on-line Help material for the more
experienced user who has gained some confidence with the system
but who, occasionally, still needs help. User guides, quick lookup
guides, master glossaries, master indexes, and the whole family of
on-line material (prompts, system messages, on-line
documentation) are examples. This material should be context­
sensitive and designed for the person who uses the system
frequently.

Finally, reference material best suits the expert user who wants
only the facts and wants them presented in as concise and
reference-oriented a format as possible. This user demands
technical details, has a high tolerance for dense material, and a
low need for illustrations and examples.

rue also means that, for all users, we produce information
packages that adhere to a single set of guidelines and conventions.
At its highest level, this set of guidelines and conventions consists of:

• Technical accuracy

• Consistency and clarity in terminology and presentation

• The treatment of a system as a system, not as a collection of
products

After technical accuracy, consistency is perhaps the most critical
element. Perhaps surprisingly, it is a difficult goal to achieve -
even within a single area like documentation. Now, however, we
must carry this goal even further until we achieve consistency
within and across documentation sets, on-line Help, CBrs and the
user interface. The elements identified as critical to the issue of
consistency are:

• Terminology (definition of terms)

Terms, particularly those that might be unfamiliar to the user or
used in an unfamiliar way, must be defined clearly throughout
OSD's user communications packages.

•Word usage

Words relating to the operation of the software must be used
consistently thoughout OSD's user communications packages.

• Format (presentation) templates

The way information is presented to the user should be consistent
across products and across media.
We will increase the use of templates in documentation and in all
forms of on-line material. Templates give the user a consistent
instructional approach and help produce communication modules
that are consistent in format, organization, and writing style. In
that way, the user knows what to expect whether reading a
WPS-PLUS book or a DECpage book, a WPS-PLUS Help frame
or an ALL-IN-1 Help frame.

• Grammatical and stylistic elements

• Conventions

OSD is developing a single list of conventions to be used
consistently throughout all office products communications.
Specifically, we are moving toward a consistent usage for dot
matrix, red print, uppercase, boldface, italics, and on-line
prompts.

I The
"User Fr·iendl/'
Puzzle

The "User Friendly" Puzzle
The stated strategic goal of DrGrTAL's Business and Office
Systems Engineering group (BOSE) is "end user information
productivity." OSD is responsible for providing the user
communications segment of that goal - greater and faster user
productivity.

We have identified and discussed four communications issues in
support of that goal: the systems approach to documentation, the
definition and role of the user interface, task orientation, and
integrated user communications. What has been the point of all
this identification and discussion? What puzzle are we trying to
solve? We are trying to solve the puzzle of communication. We are
trying to discover how to transfer a body of knowledge about a
product from our heads to the user's head in the most effective and
efficient manner possible. We call this effort, perhaps rather
loosely, user communications.

The best way of transmitting knowledge has been debated for
centuries. Today, the best ways are called "user-friendly." This
attribute is also known as "ease-of-use" and "easy-to-use."

r suspect that whether or not a system and its accompanying user
communications package is user friendly is, like beauty, in the eye
of the beholder.

r suspect that if users have questions and find the answers easily,
they say that the system is user friendly. And, if they do not, they
believe the system is not adequately meeting their needs, are
slower to learn the system, and are slower to use the system to its
fullest functionality. This is not by way of getting us off the hook.
We have made progress. A sign of our progress may be that our
foreign language translators find our documentation and on-line
Help "too friendly" and are insulted by our air of informality.

User communications packages can never make a complex system
look simple. ALL-IN-1, WPS-PLUS, and DECpage (to name just
three BOSE products) are complex systems. With that complexity,
the user gets greater power and functionality. That complexity also
demands that the user expend more effort during the learning
process.

This complexity also means that we must build ease of use into
systems at the design stage. User friendliness is not a concept that
can be layered on a product like a final coat of varnish. This means
that we must work to design systems that are:

• Simple (not simplistic), intuitive, and logical

• Consistent and, therefore, predictable

• Customizable and open

The messages for us are clear. We have learned much about
building user communications packages for office automation
products and I believe that we continue to move in the right
direction. Learning to document systems, not individual products,
defining and clarifying the role of the user interface, orienting
toward user tasks, learning to define and build integrated user
communications, and struggling to solve the "user friendly" puzzle
all support our common goal of increased user productivity.

453

PUTTING THE READER BACK IN MANUALS:
COMPUTER MANUALS AND THE
PROBLEMS OF READABILITY

By
Thomas L. Warren

Department of English
Oklahoma State University

Stillwater, OK 74078

ABSTRACT
A common myth about aircraft is that the plane is
ready to fly when the weight of the paperwork equals
the weight of the aircraft. That paperwork includes
manuals as well as other documents. As experience
has unfortunately shown, manuals confirm another
myth: When all else fails, read the manual. The
novice and experienced users turn to manuals to
answer questions and solve problems. Various 800
numbers help, but, in the dark of the night, only the
manual is there. This paper examines manuals from
the reader's perspective, beginning with a review of
how humans process information. It then analyzes ten
sample texts using nine readability formulas and a
style analysis program. While demonstrating the
inherent weaknesses of readability and style analysis
results, the study does pinpoint some troublesome
areas in current PC manuals. Ultimately, however, it
is the user using the manual that determines its
value. Writers need to become more aware of this
measure of readability.

i?sychologists tell us that we mortals
have an inordinate fear of many things.
High on the list are death, taxes, and
public speaking. What the list makers
overlook is something that strikes terror in
the hearts of computer users--young and old,
neophyte and pro, l?C or VA.X user. I'm
speaking, of course, of the technical manu­
al, that harbinger of things unenlight­
ening.

Picture the poor user desperately
trying to find out what happened to 35% of a
file that disappeared when he searched
forward <an event that recently happened to
me1. Calls to the 800 number don't work.
Reviewing the manual led to more confusion,
and I still have no idea how "G0'£0" in
"Select-86" can wipe out so much text.

My point is not to swap horror stories
related to poor documentation. Rather, my
purpose is to present some recent findings
about the design of technical manuals-­
putting the reader back in the manual. 1
want to limit my remarks to the PC manuals
first. because they are the manuals I know,
and second, because of time. What 1 have to
say, however, can apply to other manuals.

I want to divide my talk into three
main sections:

l. Reader Considerations
2. Access to the Text
3. Analysis of Ten Texts

Proceedings ol the Digital Equipment Computer Users Society

READER CONSIDERATIONS

When we learn to write, we often forget
that someone must read the material we
write. In school, Miss Grundy and Professor
Flunkemoften were paid to read our essays,
tests. and lab reports. Our families were
glad to read letters 1usually notes pleading
tor more moneyi from the young scholars.
But once we leave school, we enter a much
different world. Teachers read to verify
that the student understands the material;
employers and supervisors read because they
need the information the document contains.

The same is true with PC manuals. I
brought my Rainbow 100+ home in several
boxes, as we all do, but one box was full ot
manuals and programs. As I write this, I
count 24 manuals--an awesome sight for my
wife who wants to learn to use this "new
toy," as she calls it.

When we look at a page from a manual
!Figure l l, what do we see'? What happens
when we read this page looking for infor­
mation?

Insert Fiqure l Here
We see text surrounded by white space with
some words highlighted. If I need the
information on this page, I have to start at
the upper left-hand corner and move to the
right across the line to the end and return

457 Anaheim Clllllornla- December 1885

MOVE

MOVE

The MOVE command moves a block of text from one part of your docu­
ment to another part. The MOVE command is helpful when you want to
rearrange text in your document.

How lo Use

The following steps describe how to use the MOVE command:

I. Set the first pointer (see the POINTER command) at the top of the
block of text you want to move.

2. Set the second pointer at the bottom of the block of text you want to
move.

3. Move the cursor to the point where you want to put the block of text.

4. Press:

The following message displays:

>MOVE: Top Bottom (pointer-') from

Input

Sensory

store
Filter

FIGURE 1.

Pattern

recognition

Text7

MOVE

5. After r.om. press the letter or number of the first pointer. For this
example, press:

The screen displays the following message:

>MOVE: Top Bottom <pointers> Fr"om 1 , To

6. After To, press the letter or number of the second pointer, and the
text is moved.

NOTE
Before using the MOVE command. you must know
how to use pointers. If the block of text that you
move does not start and end at the left margin,
you may need to justify the text afterwards.

Response

Short Long
Selection

term term

memory memory

Figure 2. Information Processing Model
(Taken from Stephen K. Reed. Cognition: Theory and Application
[Monteray, CA: Brookes/Cole Publishing, 1982), p.4)

458

to start the next line. I could scan the
page, noting that one set of highlighted
words indicates how to use the command. If
that is the information .L need, I start
reading, noting that the lead-in sentence is
redundant of the heading, thereby wasting
some of my time.

fiqure l also demonstrates that techni­
cal manuals for computer users are not text
in the same sense that a novel or newspaper
story is text. Readers of manuals are
interested in random access of information,
not reading from beginning to end. 'They
read these manuals differently than they
might other forms of nonfiction prose. Many
computer companies (Digital included)
recognize this situation and prepare two
documents or two sections in one document.
•)ne section is to be read through completely
bv the user <the "Getting Started" section>;
the ,other is for random access \the "Ref er­
ence Manual" or "User· s Guide" l . f'or a
better understanding of why writers must
iteep their readers in mind, let me turn to
how we read--how we process the information
from the printed page.

Information Processinq

When we consider information process­
ing, we must also consider a larger issue:
Why communicate'? One view is especially
relevant here: "The primary purpose of human
communication is to define and to understand
reality so that other human purposes can be
achieved" 'Rogers and Kincaid, 63). When we
find that communication does not allow us to
get on with those other purposes, then we
have poor communication that leaves us in as
much uncertainty as we had before we turned
to the communication. If we can assume that
communication is to change uncertainty,
writers can become better communicators if
they Know how that change occurs, how a
reader processes the text that leads to a
response. Figure 2 shows the stages through
which the material passes during process­
ing.

Insert Figure 2 Here
What follows is a discussion of the maJor
parts of this model: Sensory store, filter,
pattern recognition, and selection. My
focus will be on why Knowing the processing
elements can benefit manual writers and,
ultimately, readers.

Sensory Store

When we process a page of text, the
signal moves through the visual sense
•.sight> and pauses slightly befot'e mo~ing
along for further processing. At this
temporary storage point, many of the
signal's characteristics influence the
encoding of that signal so that it can pass
to the next stage. A rapid analysis of the
signal evaluates the line, angle, and
brightness of the image; its position on the
page; the amount of material in the
foreground and background; and color <see
Appendix A for a list of design variables>.
In addition, the analysis includes the
layout of the text on the page. For ex­
ample, spacing becomes critical when looking

459

for specific pieces of information <the
random access of information>. Consider how
easily the eye can pick up the stimulus from
these pages •Figures 3,4, and 5>. Are these
easy or hard to decipher'?

Insert Figures 3, 4, and 5 Here
The left-hand page in figure 3 presents

the reader with a massive block of text with
a blank line following line 5 (8 lines>. If
the reader wants to move some text, he or
she m•_ist 'l'et throucrh that block. readincr
lert-to-riqht. 'l'he neaa.inq is treatea -
differently by the designer (large letters,
bold-face, extra space, etc.J. The example
("Prepared by" l is set ot"f from what comes
before and follows, b•_it is not treated
differently in ferms of type face and style.
The rest of the page is linear text plus a
figure of what the reader is to assume is a
screen.

The right-hand page contains 4 lines of
text plus what one must assume is what the
screen will look like. Steps are run to­
gether with explanation so that the reader
must use many eye movements: Text to
Keyboard to screen to text to Keyboard to
text to Keyboard to screen to text.

Figures 4 and 5 are also solid blocks
or text with headings in bold-face, all
capitals (Figure 4 > or •..tpper and lower case
letters iFigure 5>, and white space. Past
these, the formidable block of text suggests
that the reader do something else. That
reader is forced to plunge into the text in
traditional, left-to-right and top-to-bottom
ways until finding the information all the
time shifting from text to keyboard to
screen to text.

What the three figures suggest is that
spacing can play an important role in
helping the reader get needed information.
Typically, that spacing is of two types:
vertical and horizontal. (Material in the
following sections adapted from Hartley.)

Vertical Spacing: Space separates one
line on the page from another. Titles,
headings, subheadings, sentences, and para­
graphs have space between them and the next
element. This amount of space between lines
in the text constitutes l unit of space.
Adding extra units of space between heading
elements isolates them and insures that the
eye quickly picks up and separates headings
from text. Coupled with the type style
Croman, italic, boldl, space maKes the
random access of information easier. re­
ducing the amount of text that the reader
must search to find specific information.

Another element in vertical spacing is
the end of the body's text at the bottom of
the page. Traditional layout fixes the
number of lines per page. When pasteup
artists reach that number of lines, they
begin a new page. Dividing the text based
on number of lines often interrupts the
syntactic unit--the group of words in the
sentence that carries meaning. A compli­
cated sentence that continues on the next
page may cause the reader to turn back and
forth between the two pages trying to under­
stand it. Having a flexible line count
insures that the reader will carry a full

Moving a Block

When you want to move a block of text from one location to another in a.
document, label the block and use Del to remove it from its original location.
WRITE puts it in the block buffer. Then move the cursor to the new location
and press F6. WRITE brings in a copy of the block in the block buffer and
inserts it at the cursor location (again, the block remains in the buffer).

For example, suppose you want to move the "prepared by" section of the
annual report so that it appears on the financial statement page of the annual
report. Press Home and then the down arrow to move to the line

Prepared by

Label the section by pressing F5 and then press the Enter key five times. The
screen looks like this: 7-6

""
•1C11Mlllllln

'''"''ah

'"I• II 'f ~ frflll~

' ll; ~M ~!';-,11

Then press Del to remove the lines from that location, as shown below: __ ...,
""

111111 l'*ff• ""'

~ILW.T•;:::::.rUJi.1.Uf'l4>4l~·s~1·~1.1 ,, .. I
r1·1111,

FIGURE 3. Textl

MOVE A BLOCK

.::~r.1.u111u1u..r.&fUJ.tf"IU3UUf.lil&41i..l..lf"'U1S~l6~1:~: I

, ... ,.

Next, move the cursor to the financial statement on page 3 using the down
arrow or PgDn key. Insert 6 blank lines so that the words Financial Statement
appear at the top of page 4. Page 4 now looks like this:

l ... m l,46f,Oll lin•l1 ,.,.,.,, IU,M
tr.1111 ... m os,• L-• s.m.•
llr•l•H Ill l,?lt,1111 l11H.... JH,llD
,..,,,_, "l,IOt
h•• m 1,111, ...
••-l•llloc 111,0IO

lrtlwU 1,7lt, ..

,:,;;,;rull.U.lfU..U1LW.tUU)u..&~H.UfU..•S~i.::"~t7.'::t;,

fl·lltl•

For the next command, select a sentence that has several lines preceding or following it
from your practice file. Mark this sentence with "KB and "KK so that it appears
highlighted. Now move the cursor a good distance away from the marked block in either
direction. Position the cursor in the line you would like your marked block to begin at
and press "KV, the block move command. This is easy to remember because of the Vin
"mo Ve."

If your block is not displayed, "KV will not work.
Your displayed block should disappear from its original place and reappear (in

highlighted letters) at the new location. Press "KH to hide this block.
Your revised paragraphs may need reforming after this move, especially if you

positioned the cursor within a line of text before entering "KV. Use "8, the paragraph
reform command, to correct the text's position.

FIGURE 4. Text2

460

Move

MOVE

llD9ing a Block

The block move command (AKV) moves all the text in the marked block to the
cursor position, deleting the original at its old position. If no block is
marked when the command is given, or if either marker is hidden, an error
message occurs CAE:Pendix B).

The destination may be in the middle of a line, if desired - for example when
rearranging sentences in a paragraph. Just put the cursor where you want the
block moved to. T"ne cursor is left at the beginning of the moved text.

The beginning and end markers move with the block and remain displayed. After
inspecting the result, type AKH to hide the block markers -- both to remove
the distraction from the screen, and to protect against block commands typed
by accident. If you wish to use the same block markers later, just type AKH
again.

The block move command moves exactly the characters you have marked, and does
no automatic reformatting. Thus, text reformatting is often required after a
move. After rearranging sentences, for example, use paragraph reform (AB,
Section 4) to re-establish the margins. You may also notice that you included
too many or too few spaces or carriage returns at the beginning or end of the
block. These errors are easily corrected with a few regular editing commands.

After a block move, the command AQV will move the cursor to the place the
block came from. It's a good idea to inspect here after moving, as you may
have left too many spaces or carriage returns behind, or you may need to
reform the paragraph. Note that any place markers 0-9 in the marked block do
not move with it-they remain at the place the block came from.

For an example of moving a column block, see Figure 6-1.

A
A
A
A
A

IBB ICCCC
IBB ICCCC
IBB ICCCC
IBB ICCCC
l~ICCCC

IDDDDOODD
DDDDDDDD
DDDDDDDD
ODDDDDDD
ODDDDDDD

FIGURE 5. Text3

A
A
A
A
A

ca:::c
ca:::c
ca:::c
ca:::c
ca:::c

Helpful Information

IBB I DDDDDDDD
IBB IDDDDDDDD
I BB I DDDDDDDD
IBB IDDDDDDDD
l.6a.___f DDDDDDDD

Move

Purpose

You use the MOVE command to move a specific block of text from one
place to another. MOVE lets you delete the original block of text and insert
it anywhere else you want.

• The text you move is deleted from its onginal location. If you want to
move a block of text and also retain it in the original file, use the
COPY command.

Moving a Block of Text

1. Position the cursor at the beginning of the text you want to move.

2. Press the Do key.

3. Press the M key (for Move).

4. Shade the text you want to move.

5. Press the Return key.

6. Position the cursor where you want to insert the text.

7. Hold down the Ctrl key while you press the Insert Here key.

8. Press the Return key.

9. Press the N key (for No) if you want SAMNA to insert the text with
its stored format. Press ihe Y key (for Yes) if you want SAMNA to
insert the text with the current format.

10. Press the Return key.

• You can move any amount of text. You shade the text you want to
move using the Word, Sentence, Line, Paragraph, Page, File, and
arrow keys. However, the File key is not recommended.

• Any marks within the text are moved with the text.

• The text you move is temporarily saved, along with its format, in the
TEMP file.

• The TEMP file holds one block of text at a .time. Therefore, when you
move (or copy) text, SAMNA replaces the contents of the TEMP file.

• If you want to save text stored in the TEMP file after you finish
moving or copying, give the TEMP file another name. The text is now
safely in the file with the new name.

• You can display and edit the TEMP file.

FIGURE 6. Text9

461

Text Procedures

Copying or Moving Text

You use the copy or move procedure to save a specific block or column of
text and insert it in a different location in the file. This is useful when you
need to repeat the same information or to copy Format Lines. You can
copy text to a temporary buffer or to a stored file.

Copying or Moving a Block of Text

To copy or move an entire block of text:

1. Position the cursor at the beginning of the text you want to copy.

2. Press the Do key.

3. Type the letter C (for copy) or M (for move).

When you move text, it is deleted from its original location. When you
copy text, it is not deleted from the original location, and therefore
exists twice in your file.

If you are storing the text in a separate file:

• Press the File key.

• If you do not want to use the default file name TEMP, type a file
name.

• Press the Return key.

NOTE
If you do not specify a file to store the text in
when you copy it, Samna stores it in a temporary
buffer. This buffer can hold only about one full
page of text. Therefore, if you have a large block
of text to copy, you should store it in a separate
file.

4. Shade the text you want to copy.

5. Press the Return key.

6. Move the cursor to whPn· you want to insert the copy.

FIGURE 7. Text9

Text Procedures

7. Hold down the Ctr! key while you press the Insert Here key. If you
stored the text in a file:

• Press the File key.

• Type the name of the file, unless you used the default file TEMP.

• Press the Return key.

Samna asks:

Which format should be u•ed?
Type Y to use the current format. Type M to ln•ert the
stored format.

Will the text be inserted into the current Cdl•played>
format? Yes/Mo CM>
Is the text you are inserting a column• Ye•/Mo CM>

8. Respond to these questions and press the Return key.

NOTE
To move text with its original format, you must
save the text in a separate file.

Copying a Format Line

To copy a format line:

1. Position the cursor immediately below the format line you want to
copy.

2. Press the Do key.

3. Press the C key (for copy). If you are storing the line in a separate
file:

• Press the File key.

• Type the name of the file if you do not want to use the default file
name TEMP.

• Press the Return key.

462

syntactic unit over to the next page.
Finaliy, breakincr a paragraph at.the

bottom of the page after one or t~n lines
1ua.j aiso interrupt the syntactic flow.
Paragraphs should not begin on the last line
of a page nor end in the first line of the
next page.

With these thouqhts in mind. let's look
at the sample pages · (Figures 6 and 7).

Insert Figures 6 and 7 Here
Note in Figure 6 how the headings and

subheadings are set apart from the text.
Figure 7 shows good use of vertical space,
but runs the listing to the page bottom and
on to the next page. Had the text ended
before Step 4, Steps 4-8 could occur on a
new page with "Copying a Format Line"
starting another new page. Steps 4-8 also
constitute a sub-block of commands, sepa­
rated from Steps 1-3 by the "Note."

Horizontal Spacing: Editors often want
a uniform line, justified at the right-hand
margin, but the appearance is of a massive
black block of text. Consider the effect
the sample fi:-om the Text3 (Figure B> has on
someone looking for help in moving a block
of text.

Insert Figure 8 Here
'I'he text in Figure 8 has a justified i:-ight­
hand margin, inhibiting to readers looking
for specific information. A principle in
document design (Felker, et al., 81-82>
holds that the more white space you can have
on a page, the easier the text is to access.
Figure 9 shows an unjustified right-hand
margin.

Insert Figure 9 Here
The psychological impact of such an ar­
rangement encourages both random access and
feelings ot reading progress. '!'he extra
white space at the ends of the line reduces
the impact of the solid block of text;
shorter lines mean that you can read more of
the page in a shorter time than with justi­
fied format. The unjustified page also
means less text per page, so that you have
less to scan in looking for the information
you need.

In addition, unjustified right-hand
margins eliminate the need to hyphenate a
word at the end of the line. Hyphenation

forces the reader to hold a part of the
word in memory until picking 1.1p the rest of
it on the next line (Figure 10).

Insert Figure 10 Here
'NOTE: I will indicate paragraph and printed
lines by a number, a period, and another
number. 1.5 means the first paragraph,
fifth printed line. l The fifth line from the
top or column I has a hyphenated word
1. "with-">. Should the reader not catch the
hyphen, the negative ("not"--1.6) could get
lost, giving a decidedly different meaning.
In addition, if the reader accidentally
skips a line (from 1.5 to 1.7>, meaning is
further confused. A third possibility is to
skip from the fourth to the sixth line (1.4
tol.6l.

Another element in horizontal spacing
is that with uniustified right margins, you
are not oblicred to start a sentence at the
end of a lin~. breaking a syntactic unit
when the space runs out <see Figure 11,
1. 8).

463

Insert Fiqure 11 Here
When designers use unjustified right-hand
margins, they can determine line length by
the syntactic units, allowing the reader to
process the units as meaning units and not
as fragments.

Filter

Following the processing by the sensoi:-y
store. the stimulus is now filtered by both
psychological and physical means. Precon­
ceptions can be called from long-term memory
and affect the stimulus as surely as the
physical factors !poor eyesight, for ex­
ample>. Some people have preconceived
notions about computers and manuals so that
their response to the signal will vary from
that of another person who holds another
view.

Pattern Recognition

Following filtering, the signal enters
pattei:-n recognition. Because communication
transfers information and that transfer
involves meaning, the mind extracts that
meaning from three areas: the woi:-d, the
sentence, and the organization.

Word (Semantic): When we communicate
each word conveys a dual meaning: that
meaning found in any dictionary and that
meaning associated with the word. Hit, for
example, has both dictionary and associative
meanings. One may hit a ball, be a hit,
take a hit, or any number of meanings you
can find in a dictionary II count 25 in my
dictionary [Morris, p. 625Jl. Slang hit
though, has meanings not found in a diction·
ary \hit, meaning to rob, as in "hit a
bank," for example). I often wonder what
happens when someone takes the "Hit the
Return" literally.

The problem with manuals is that
writers may use words their readei:- does not
know lat either level!; may know, but in a
different context; or may associate differ­
ent meaning from what th e writers meant. I
have often wondered why manuals tell us to
"delete" characters rather than "erase"
them ffigure 11, 1. 2). My dictionary
tMoi:-ris. 349) tells me that delete means "To
strike out or cancel; omit ... "and that
it comes fi:-om the Latin delere, meaning "to
wipe out, efface." Erase, on the other
hand, means "l. To remove; rub, wipe,
scrape, or blot out; efface. 2. To remove
all traces of 3. Slang. To get rid
of (a person> by murdei:-." Erase comes from
Latin "eraddere, to scrape out, scrape off
.. " (Morris, 443). My point is that the
metaphoric meaning writers want is much
closer to erase than delete.

Paragraphs 2 and 3 of Figure 11 offei:­
additional interesting case studies in why
computer manuals are hard to read. Notice
how sentence l of paragraph 2 12.1-2) has 3
punctuation marks: a comma, a dash, and a
period. These marks are familiar to every­
one, yet put them together and you have a
very hard sentence to process. The comma
and "if desired" on the following line are
standard structures. 'The problem is the

HOW MANY
CHARACTERS
MOVE?

lbvi.ng a Block

The block move command CKV) moves all the text in the marked block to the
cursor position, deleting the original at its old position. If no block is
marked when the command is given, or if either marker is hidden, an error
message occurs (Appendix B).

The destination may be in the middle of a line, if desired - for example when
rearranging sentences in a paragraph. Just put the cursor where you want the
block moved to. T"ne cursor: is left at the beginning of the moved text.

The beginning and end markers move with the block and remain displayed. After
inspecting the result, type AKH to hide the block markers -- both to remove
the distraction from the screen, and to protect against block commands typed
by accident. If you wish to use the same block markers later, just type AKH
again.

The block move command moves exactly the characters you have marked, and does
no automatic reformatting. Thus, text reformatting is often required after a
move. After rearranging sentences, for example, use paragraph reform (AB,
Section 4) to re-establish the margins. You may also notice that you included
too many or too few spaces or carriage returns at the beginning or end of the
block. These errors ar:e easily corrected with a few regular editing commands.

After: a block move, the command AQV will move the cursor to the place the
block came from. It's a good idea to inspect here after moving, as you may
have left too many spaces or carriage returns behind, or: you may need to
reform the paragraph. Note that any place markers 0-9 in the marked block do
not move with it-they remain at the place the block came from.

For an example of moving a column block, see Figure 6-1.

A IBB ICCCC EDDDDDDD
A !BB ICCCC DDDDDDDD
A IBB ICCCC DDDDDDDD
A IBB ICCCC DDDDDDDD
A IIm.._ICCCC DDDDDDDD

FIGURE 8
Text3

1- -.-r: ---

Moving Blocks

Use "KV to moVe all text in a marked block to the
current cursor position. The remaining text will move
up to fill the space left by the moved block.

The destination of your block may be anywhere in
:he text area-between paragraphs or in the middle
of a line. Place the cursor wherever you want to
move the blcck, and press "KV.

Here is an example:

""" r The sechon ol text
which you mark wl11ch you mark
< B > 11x1111x10001xxioouoc11xx is moved where you
XXX)(XXXXXXXkllXIOIJOl.XX)(X ind1ca1e

< K > is moved where xlocox1r.x.101xxxxxxxxu
you 1nd1cate)()11.'CX)(XXXXXXXX)O(XXXXX

,. .,I ,.
--~~~~~~~-

Before A lier

The beginning and end markers move with the block
and remain in the display. After the move, use
"KH to hide the markers, both to remove the distrac­
tion from the screen and to protect against block
commands typed inadvertently. Place markers (0-9) in
the marked block do not move with the block; they
remain at the block's former place.

464

A
A
A
A
A

ca:c !BB IDDDDDDDD
ca:c IBB IDDDDDDDD
cccc IBB IDDDDDDDD
ca:c !BB IDDDDDDDD
cccc !BB IDDDDDDDD

When WordStar print control or dot commands are
within a marked block of text, they move to the
block's new location, too. If any of these commands
are toggle switches, check both the block and the
block's previous location for matching pairs.

With "KV, characters move exactly as they are,
without any reformatting. Use regular editing
commands to make changes or corrections at the
block's new location.

FIGURE 9.
Text4

Moving Blocks

In preoaring letters, reports, lists, tables, articles,
or books, you will frequently frnd 1t necessary to
reorganize the draft as you are polishing it. One
of the great advantages of a word processor is
the freedom it gives you to rearrange text with·
out having to cut and paste everything you want
to move. WordStar can move rows of text, and
later versions can also move columns.

STEP 1. TYPE @:!)13)!) TO MARK THE BEGIN­
NING OF THE BLOCK

t L---!~;~_:~!~!~_::_!-!-!--=~~
j IlBLO:)(lBLJ:o:lBL.O:lllBllD';!-'-1...CX:J:lm.ror!R....:ol!LJrll

BLCQ; 1 SU:O. l 5LO' i au:o: l BLJ)_'l'. l BU'O' 1 BLJ..XJ l 8UXY l
. Bi....CO l BLCo. l BUX;): I BUXl' l Bl.CO l BU...O. 1 &D:: - &.CO l

I~,~·~·~·~ ~·~·~· '~·~·~·~·~ ~=~·~· ' BU:O'. Z 6l.LO' 2 !Ul:f, 2 BLCO 2 Bl.lX> ~ BlOJ 2: BLJXJ: 2 11.lX);. 2

' . ~-~""'~·-· ,,_______..._ _,._. ~..:...,.---~'--'---.. -- ----
Move the cursor under the first letter in the
block you want to move. Type -KB and a control
character (B· will appear on the screen just to the
left of the letter under which you positioned the
cursor. (If you are marking a column see
page 90.)

STEP 2. TYPE @!)iK)~ TO MARK THE END OF
THE BLOCK

l· B;Bl.OCKS Pia. l 1...TJ£ l Cll 01 Il'EER! a-.· r 1-r-:.1-L---1-.1..,..-l-=--L-.1.-1-1~1--J.~
i &iXJ' ... ~ ; BUX> • &a::} 1 a:...co 1 BUX> ~ Bi.LO ~ K.(O, ;

&..:::a ; ~"O : B:..I..O ~ E..i.l:'.! : B;,,.(.Co. j Bl..CC1' l Bl..O::Y ~ B.:.£0 lt
• s:.,xJ : B;, --i:i• l EUU- • Bl..L.'.Cl' ;. B:.....'r:!'· j B:.£0 ; ~TI • tu:O 1 •
! -
'~·~·~·~·~=~·~·~' r BLJX:r_ 2 BUXY. 2 BLCO i Bl..CO: ~ BLCO ~ Bi..(O 'l BW'..J';: ~~_y 2 lm.lo: 2 eu:o 2 Bi.£0. 2 !UO. 2 eLJXJ;. ~ BU:O. 2 9'..lXJ- 2 EUO. 2

~---.......;.,..;._._-. ._ -·· - ~~---- ~~- -- ~·-~·-"'--- -- --~ .. -- -

Move the cursor one space to the right of the
last character in the block you want to move. If
you ended the block with a carriage return,
which will be indicated by a < flag in the far
right column, place the cursor at the beginning
of the next line so the carriage return will be
moved along with the block. (If you are marking
a column see page 90.)

FIGURE 10.

STEP 3. MOVE THE CURSOR ONE LINE BELOW
THE LINE ON WHICH YOU WANT TO MOVE THE
BLOCK

B:fL,'X'Jt;..S f'AGf" l Llt-1: D ca. Cl
L~-!-!-J-!--J-!-!--J-!-!-!---F

BllXJo; 1 eu::o l BLJXY l eu::o l &..o::r j BLCO. l sucx::;.- l BU:O 1
Bl.CO l euo· l BUO l BL.CO~ ~ B:...CO' l BLlO' l B:.DJ l W..::O. l
BUD l BU:O' l BUD' l IUO- ~ &.X7 ~ 13:..D'.)' l BUX:>' : 8'..CO 1

BUD: 2 Bl.LO 2 &..:U 2 Bl..£0 2 &..:x:Y 2 s;,.co 2 s:..D::1: 2 au:o 2
euo- 2 au:o 2 Bl.LO" 2 s;.._a 2 au:o· ~ BL.:XJ' ;: a.co· :: BU:O: 2
B...1:.:CJ• 2 K.lX> ~ Bl.CO' 2 B__,:,)'J' 2 B:..J.:O' i BU.0 ;;: 6'.D'.J' t au:.o· 2

When you move the block, the first line of text
will appear one line ABOVE the line on which
you place the cursor.

STEP 4. TYPE ~!3)~ TO MOVE THE BLOCK

L-l~~~~~~ILU£!9 ~~~-!_:I-~~
BLCO: .:;: m.c:u: 2 BLJU 2 8UX:Y ; BLCCf 2 eu:O' 2 m.cxY 2 Bl.IO 2
BLJXY '} Bu'X1:. , !;liO: = BW'.:l. , B!.JXJ< : B<.LQ: , Bli_""Q' ~ ~- 2 I
&....ca 1 31.£0' :. EUX:J. 2 BLD:J< 2 au.a 2 eu:o- 2 BLCO< 2 BtCO. 2

l'liX> l ~ - l<DJ l BLOC> l w,::;,·: BUX> l """' l BW:> l 1
Bi.J..-U' 1 B<..CC" 1 BUXY l BLCO' ~ 5L':O j EVO l SU::O- l B1.J:XY l · W'

81.m ~ B:..£0:Rl ~ l B:.D'.J' l ~ : ffiLC~ l B.;...(O'. l ~ l

The block will move from its former position to
one line above the line on which you placed the
cursor. The space vacated by the block you
moved will be filled up by the rows of text below
the block, which will move up into this space.

STEP 5. TYPE @!)[9):s'.) TO RETURN TO THE
POSITION FROM WHICH THE BLOCK WAS MOVED

8:EU:ck:s ffiGE l Ll~ 1 OX. 01
L-1-1-1-1-1-~--!--!-!-~-!-~--R

BUXJ,: 2 BlLCJ 2 a.a:J' 2 ew:>: 2 Bl..CO 2 m..a:x 2 BU:X:J ;; 0LOCY 2
BUX)': 2 Bl.C(]I: 2 eux:>:. 2 BlLO. 2 sun: 2 8LD::]i: 2 BL.C.O' 2 Bt.O:I' 2
BLa:J 2 Bl..£0 2 a.o::i.: 2 eu:n 2 BUO 2 Bl...CQ. 2 BUO 2 BUX:"r 2

m.io: l Bl.CO l BUX:J'. 1 eu::a: l BUO l BUD'. l 1U:O l 8LJ:O: l
SU.:O: l m.c:a. l SU:O l aLO. l BUO 1 BUX:J: l BL.O:J: : BUX>' l
SDO' l 8UXJ(1 eu:a: l mlO l &.a:>. l 81...CO l 131..lO 1 BLJ:.o: j

The text in the space vacated by the moved
block, as well as the moved block itself, might
require paragraph reforming with -B. To return
the cursor to the positron from which the block
was moved type 'QV.

Texts

465

Moving a Block

When you want to move a block of text from one location to another in a
document, label the block and use Del to remove it from its original location.
WRITE puts it in the block buffer. Then move the cursor to the new location
and press F6. WRITE brings in a copy of the block in the block buffer and
inserts it at the cursor location (again, the block remains in the buffer).

For example, suppose you want to move the "prepared by" section of the
annual report so that it appears on the financial statement page of the annual
report. Press Home and then the down arrow to move to the line

Prepared by

Label the section by pressing F5 and then press the Enter key five times. The
screen looks like this: 7-6

--· Then press Del to remove the lines from that location, as shown below:
""

P••r••t~ h

l•d' r1 •t I ftrr~
!1!•1,.ttrwt

'• • • !• C1 1f~Or1t

-· ...
""

lllUIC.JftOl'S

~1u..u1 1~1~r~1t~I"'•'
ri-1111,

FIGURE 11. Text2

Next, move the cursor to the financial statement on page 3 using the down
arrow or PgDn key. Insert 6 blank lines so that the words Financial Statement
appear at the top of page 4. Page 4 now looks like this:

l•!ll 1,4'1,... ., ... ,,., •• , ..,, ..
.. 1l•j ... lll tn,.. l ... , S,IJt,•
a..,1-m1,11t,oet lune.. lll,•

[..... , "'··
llori.ng a Block [1111111 ··~!~·=

The block move command (AKV) moves all the text in the marked block to the
cursor position, deleting the original at its old position. If no block is
marked when the command is given, or if either marker is hidden, an error
message occurs (Appendix B).

The destination may be in the middle of a line, if desired - for example when
rearranging sentences in a paragraph. Just put the cursor where you want the
block moved to. Tne cursor is left at the beginning of the moved text.

The beginning and end markers move with the block and remain displayed. After
inspecting the result, type AKH to hide the block markers -- both to remove
the distraction from the screen, and to protect against block commands typed
by accident. If you wish to use the same block markers later, just type AKH
again.

The block move command moves exactly the characters you have marked, and does
no automatic reformatting. Thus, text reformatting is often required after a
move. After rearranging sentences, for example, use paragraph reform (AB,
Section 4) to re-establish the margins. You may also notice that you included
too many or too few spaces or carriage returns at the beginning or end of the
block. These errors are easily corrected with a few regular editing commands.

FIGURE 12.
After a block move, the command AQV will move the cursor to the place the Text2
block came from. It's a good idea to inspect here after moving, as you may
have left too many spaces or carriage returns behind, or you may need to
reform the paragraph. Note that any place markers 0-9 in the marked block do
not move with it-they remain at the place the block came from.

466

dash following "desired." Normally, a dash
introduces elements that further amplify an
idea in the group of words coming before it
(the subject or verb or object/complement or
a combination>. 'l'he "if desired" is a
commonly used tag to indicate that an option
exists. Combine both parts and you get, in
effect, an amplification option. The
problem is what did the writer mean to
amplify: the "desire'?" The "d.estination"'.'
Which''' 'I'he reader must pause to infer the
ref ·2rence.

Paraqraph 2 otters another example of
the typical problems found in a manual.
Sentence l offers information/explanation;
sentence 2 offers instruction !speaking
directly to the reader through "you'' I; and
sentence 3 returns to information/expla­
nation rather abruptly. What is missing is
a tr3.nsition that tell:.o the reader c.1hy
sentence J has an important piece ~t inror­
mation/explanation. The reader is likely to
respond "So whati'" to tr1at third statement.

In paragraph 3, the second sentence
also otters 3 kinds ot information:

l. "After inspecting the results"
tells the reader that she or he
has something that should have
already happened. The writer is
telling the reader to do something
after the reader was assumed to
have already done it.

£. From ". . type A KH . •II to
tells

3.

. markers .
reader to do somethin~.

From " . . - - both to remove

the

. " to the end tells the
reader ,,,hy the action described in
the sec0nd part is necessary.

Individually, each purpose is ~alid !al­
though you muct admit that tel!inq someone
to do something after assuming that they
have already done it is a bit odd>. Com­
bining these 3 sentences leads to confusion.
The reader reads part l and thinks, "'.lh, 1
should have done something." Part 2 opens
with the command [YouJ "type" leading the
reader to infer that this may be the action
to be performed r something like "To .inspect,
type ... "l. The reader is liable t·:> skip
·J'Jer inspecting when typing ""KH" thereby
losing tor the moment the right to inspect.

Lanquaqe (semantics! can also be a
problem ~it~ these 3 paragraphs:

1. ~Jhy did the writer use "beginning"
and "end"? Using "end_lni:r" would
make the words parallel--a way of
showing how ideas relate to one
another. Using "end" ·:-ould
contuse the read.er because "end"
could be interpreted as a command
form of the verb !see J.l).

2. Why did the writer use '"desti-
nation" instead of "placement" or
"location"--both of which save a
syllable and processing (see
2 .1).

3. What i:=- the meaning of "same"
rJ.41? ls the reader to infer
that the previous block markers
are erased !deleted! to be uzed at
the new location? '"Select-86"

467

has a tinite number of markers you
can use to move text.)

4. Why modif7 the command "type" with
"1ust" (see 3.4l'? Such a word
s..:ii:rqests talkinq down to the
reader. It, along with such
modifiers a:o "obviously,"
"merely," and "simply" suggest
that the writer is lecturing to an
uninformed reader.

5. 1Th'=?' writer uses 11 IDO\t€' 11 as a
modifier '· "blc·ck move c-::mmand")
and a verb 1"moves"l in 2.1.
Usinq one word to tunction two
way::;-in a sentence is often
confusinq. (What does this
question-mean: "Who input;_ the
input input?") What is wrong with
words such as "shitts," "changes,"
"transfers," "transposes,"
"conveys," and the like?
1.:ertainly "transfers" and
"transpoces" are more elegant than
"moves," and our writer seems to
prefer elegance over simplicity
lhow else account for
"destination"':').

Multiply these problems by the hundreds of
pages this manual has. and you get some idea
of why reader::; loo~: in the manual as a last
resort

Sentence CSyntacti~): The predominate
sentence pattern in English is the aroup of
words with a subiect. a verb. and, often. an
object or comple~ent. Any of the elements
may be multiple. but each ::;ubject slot
contains subjects, verb slot verbs, and ob­
Ject/complement slot obJects/complements.
Our minds are attuned to that pattern and
can almost understand a sentence regardless
of the words used it it tallows that
pattern. ~or example, Lewis Carroll's
"Jabberwocky" opens

'Twas brillig, and the slithy taves
Did gyre and gimble in the wabe;

All mimsv were the boro•:rO'Jes,
And the mome-raths outgrabe-'Carrolll

And it almost sounds right. Consider next
this example in prose:

The concept of the unit includes a new
structure. The nature ot this tunct1on
supports the u:::e of ba:::1c inputs. This
concept also supports other factors via
a system approach. The system status,
not the structure status, requires that
aspect. In terms of si::e. the ettort
is small. But in terms of function, it
provides the support required. To
address these aoals involves using all
the system s support functii::.n. Among
the factors, of course. are unit input
functions. The support, which •_1ses a
system approach. affects these goals.
These too require n•::w concepts. We
shall reacr1 the-o'C' ac··al<:. "~'0h0n 1

It 1 ikewise almost so1_md.s ricrht. The
mind recoanizes the pattern and tries to
aain meanina from it. We know that ".John
tiit Bill" ditfer::= in meanina trom "Bill hit

John" because of the position of the words
in the sentence Cits syntax). The point is
that the reader expects sentences to fall
into commonly recognized patterns. One
study supports this expectation
<Christensen>. Professional writers of all
sorts of prose use a very high percentage
(98.5%) of basic sentences or that basic
sentence with a short opener. Basic, how­
ever, does not mean primer sentences <"See
Dick runl.

Let's look at a sample from Figure 11:

The block move command moves exactly
the characters you have marked, and
does no automatic reformatting. Thus,
text reformatting is often required
after a move. After rearranging
sentences, for example, use paragraph
reform (B, Section 4l to re-establish
the margins. You may also notice that
you included too many or too few spaces
or carriage returns at the beginning or
end of the block. These errors are
easily corrected with a few regular
editing commands.

The first sentence is really 3 sentences.
The first runs from "The block ... " to
". . . exactly the characters . • . "; the
second is " ... you have marked . . . "
with the connector that omitted; and the
third from " ... does no ... " to ". . .
re-formattinq" with the subject understood
(It) • Table - l shows the structure of the
sentences in that paragraph, their purpose,
and a comment.

SENT.
NO.

l

2

3

4

5

Table 1. Analysis of Sentences
in Paragraph 4

PATTERN*

S-V-O+[Connectorl­
S-V+"and "+(SJ-V-0
[Connectorl+S-V-C

Introductory+[SJ­
V-0
S-V+"that"+S-V-0

s-v-o

PURPOSE

Inform

Inform

Inform+
Action
Inform

Inform

COMMENT

Leads to
action

Prepares
reader
to act.

Prepares
reader
to act.
Informs
of
action
(but
doesn't
tell
what to
dol.

The table shows that this paragraph
contains sentences that are rather complex.
Readers in a hurry to get information will
not want to puzzle over the syntax.

If we look closely at the paragraph, we
can find a number of problems, especially if
we look at both the semantic and syntactic
meanings. I mentioned above the problems

with one word used in two ways ("move" as
noun and verb in sentence one of the
sample>. The main subjects of each sentence
can lead to confusion: Sentence l, "block
move command", with two verbs ("moves" and
"does"); sentence 2, "text reformatting";
sentence 3 "(you]"; sentence 4, "You" and
"you"; and sentence 5, "errors." The
constant shifting could easily confuse the
reader.

Organization: The writer can convey
meaning by sequencing ideas within a
sentence <syntax>, within a paragraph, and
among paragraphs. The reader needing infor­
mation should receive that information with
minimal processing. When the writer places
roadblocks between the reader and the inf or­
mation <for example, using conditional
statements such as "If ... , then. ."),
the reader has to process and discard aux­
iliary information before finding the re­
quired information. Again, Figure 11 offers
some interesting examples. Notice how
various sentences <5 in number> open with a
conditional <l.2-3; 3.1-2 and 3-4; 4.3; and
5.ll. The reader must respond to a con­
dition before performing an act. Two
sentences (2.2 and 5.4) open with the com­
mand form of the verb. 'I'aken as a whole,
the reader faces a lot of information with
relatively few action statements.

Meanincr also ~o~~s througr patterns of
organization. ~u~pose you wanced to list
ten keystrokes that a user needs in order to
move text around in a document. You could
prepare a numbered list with the lower
numbered steps occurring prior to the higher
numbered steps <Figure 6l, or you could,
instead, use letters such as A, B, C, and D.
Another technique is to use bullets <Figure
6>. But what if you used none of these?
That you listed one step before another
tells the reader that that step was chrono­
logically prior to the next one. But what
if, in putting the keystrokes together, they
get somewhat jumbled? The reader is left to
impose an order that may or may not be
correct.

Selection

The third stage in information processing is
pattern selection. When we read a computer
manual, we read it to find specific infor­
mation. In my example from a manual, I need
to know how to move text around the docu­
ment .. Because moving text is not a frequent
occurrence for me, I don't remember all the
commands to use. So, I consult the manual.
My success or failure depends on how easily
I can access the specific information. The
semantic meanings may be there, but other
factors may prevent my getting the infor­
mation (such as layout and design and reada­
bility>.

With these points as background, let me
now turn to my second major point, access of
text.

ACCESS TO TEXT

Random access of information is made
possible by such devices as titles,

468

headings, subheadings, running heads, and
numbering systems. Of these, the two most
important are headings and subheadings, and
numbering systems.

Headings-Subheadings

Because readers of computer manuals do
not read sequentially, retaining and sifting
the information as needed, they must turn to
the relevant sections. Indexes and tables of
contents all help, but they only get the
reader to the page, rarely indicating where
on the page to find the information.

Once having located the page in the
manual, the reader must find a specific
section. If the writer uses headings, they
should allow rapid access to the infor­
mation, and when combined with typographical
access structures (italic, bold, roman,
size, caps, and lower case--see Appendix Al
should prove distinctive enough for quick
access. Positioning the heading is also
important. Is it in the margin? Centered?
Embedded? Finally, the heading's content
should be helpful providing information
rather than a generic label (see Figures 12,
13, and 14 l.

Insert Figures 12, 13 and 14 Here
Figure 12 shows a page with no headings to
break-out the steps. Figures 13 and 14 show
good uses of headings, but, in the case of
Figure 14, a poor use of numbering (see
below!. Figure 14 also uses a generic
heading ("Basic Concepts").

Numbering

The second access device is a numbering
system that indicates the level of heading
in combination with its position. Numbering
systems can be helpful when they do not get
in the way <what if you had to number
headings/subheadings to five levels
[!.A.l.a.Cll or 1.1.l.l.l or lllllJl. Such
systems can be confusing, especially if you
have cross references in the manual. A
reader looking for heading numbered 1023 on
page "10-17" might have problems. If page
and section numbers were commonly written
12-34 as were the figure and table numbers,
imagine the confusion in trying to cross­
ref erence "See Figure 10-11 on page 10-12."
Figure 15 shows decimal headings to 4
levels. <An anomaly with this manual is a
cross-reference in Figure 14, manual page 6-
13. 3.2. For a crossreference, the reader
must scan all of chapter 9.l

Insert Figure 15 Here

Understanding

If the elements discussed above (layout
and design, spacing, headings, numbersJ
contribute to helping readers get into the
text, all is lost if they do not understand
the material. Understanding is but one of
three measures of a reader's access to the
information. At one level, we have reada­
bility (applying various formulae to
passages to determine grade level>, then
understanding, and finally comprehension
<having the information become part of the

469

person's database and permitting that person
to draw inferences!. Mechanically, at
least, readability can be influenced by the
number of syllables and words per sentence
because the formulas assume that long words
and long sentences are hard to understand.
On a different mechanical level, readability
can be influenced by the number of clauses
(groups of words that have subjects and
verbs) because sentences with several
clauses look and are hard to understand.

Understanding occurs when responses
occur--the reader understands when he or she
can perform a task, solve a problem, or
agree with someone on a situation, among
others (Lee>. The material of the material
to the final processing stage of processing
in forms that allow easy access is crucial
to that understanding. The various reada­
bility formulas are important because they
give some insight into the form the signal
takes when it enters final processing.

Now we can turn to the sample texts
<listed in Appendix Bl and evaluate their
availability to the reader.

ANALYSIS OF TEN TEXTS

The various samples I have conform, to some
degree, to the principles mentioned above.
So, why all the fuss about unreadable
manuals? Certainly, they need better layout
and design to improve the random access of
information; certainly the quality of the
writing can be improved. But, do they actu­
ally help the reader understand what to do?

For simplicity, I analyzed the ten
texts for readability and style. What
follows are the methods and discussion of
that analysis.

Methods

I selected one wordprocessing command
to analyze: "Move a Block of Text." I typed
it into two text analysis programs: <ll
"Grammatik" and "Comment" on my 100+, and
(2l"Readability Calculations" on an IBM PC.
"Grammatik" and "Comment" analyze such
factors as Content Index <a measure of the
information in a document--see Appendix Cl,
number of "to be" verbs, number of
prepositions per sentence, percentage of
transitions, use of "Th" openers for
sentences, vagueness, number of short and
long sentences, and number of problems
identified based on a phrase dictionary
(Barker J.

"Readability Calculations" analyzes the
text for nine readability formulas (see
Appendix Cl: Dale Chall, Holmquist, ARI,
Flesch, Kincaid, Powers, Fry, Coleman, and
the Gunning Fog Index <Micro Power & Light
Company).

Appendix D presents the results of
analyzing nine computer manual instructions
for moving a block of text (four examples
from WordStar, four examples from other word
processing programs, and one new version of
a word processing program), plus a control
text <not from a word processing program
manual>.

Copying or Moving Text

You use the copy or move procedure to save a specific block or column of
text and insert it in a different location in the file. This is useful when you
need to repeat the same information or to copy Format Lines. You can
copy text to a temporary buffer or to a stored file.

Copying or Moving a Block of Text

To copy or move an entire block of text:

1. Position the cursor at the beginning of the text you want to copy.

2. Press the Do key.

3. Type the letter C (for copy) or M (for move).

When you move text, it is deleted from its original location. When you
copy text, it is not deleted from the original location, and therefore
exists twice in your file.

If you are storing the text in a separate file:

• Press the File key.

• If you do not want to use the default file name TEMP, type a file
name.

• Press the Return key.

NOTE
If you do not specify a file to store the text in
when you copy it, Samna stores it in a temporary
buffer. This buffer can hold only ;ibout one full
page of text. Therefore, if you have a l;irge block
of text to copy, you should store it in a separate
file.

4. Shade the text you want to copy.

5. Press the Return key.

6. Move the cursor to wlwn· you w;int to insert the copy.

FIGURE 13. Text9

7. l!uld down the Ctr! key while yuu press the Insert Here key. If you
stored the text in a file:

• !'res~ the File key.

• Type the name of the fi:_, unless you used the default file TEMP.

• l'ress the Return key.

Samna asks:

Which format 5hould be u~ed?

Type Y to u•e the current format. Type N to ln•ert the

5tored format.

W1ll the lexl be 1n•erled into the current (dl•played>

formal' Ye•/No (N)

J5 the text you are in5ert1ng a column? Ye~/No <N>

8. Rt'spond to these questions and press the Return key.

NOTE
Tu 111ove text with its original format, you must
save the text in a separate file.

Copying a Format Line

To rnpy a format line:

l. l'lblt1on the cursor immediately below the format line you want to
copy.

:.! . l'rt·ss the Do key.

:1. Press the C key (for copy). If you are storing the line in a separate
file:

• Press the File key.

• Type the name of the file if you do not want to use the default file
name TEMP.

• Press the Return key.

470

6.4.2 THE CUT COMMAND

This feature allows you to remove any amount of text from a document. Using the
Paste command described later in this chapter. you may then move the cut text to
another position within the same document or to another document within the samt:
Document Directory. You may also elect to do nothing with the text you have cut.
thus deleting it from you document. The Paste command in this case allows you to
recover the last block of text you deleted in this manner.

6.4.2.1 Basic Concepts

Think of the Cut function as performing the same operation you would perform with
a knife on a paper document. At the point where you would begin your cut in the
paper document. you place the Select Marker in MASS-11. Moving the cusor in
MASS-11 is similar to running your knife around t~e text you want to remove.
working towards the end of the section. Finally. at the opposite end of the text
from where you started. you executed the MASS-11 Cut function. which is similar
to lifting the section of text from the document. Unlike the knife and paper
operation. however. you are not leJt with a gaping hole in your document. MASS-11
automatically moves the text below the cut up to meet the text above the cut. so
that there is never a hole left by the Cut operation.

The cut text is stored in a temporary holding area. or "'paste buffer". The paste
buffer contains the cut text until another piece of text selected with [SEL) is cut
or copied. until you change Document Directories. or until you exit MASS-11. The
amount of text that can be cut at one time is limited only by the disk quota
allocated to your account by the System Manager.

6.4.2.2 Rulers in Cut Text

If the text you select has any rul
in the paste buffer with the texl
these rulers will be inserted into
cut text with rulers from a docur
will be placed in the document
format of the text which remains

FIGURES 14 AND 15.
Texts

6.4.2.3 To Cut Text Out of a Document

1. Position the cursor on the first character of the text t'.> be cut.

2. Press the (SEL) key. Observe the diamond Select Marker.

3. Using any of the cursor movement commands. position the cursor one
position past the last character to be cut.

4. Press (CUT) ([KP-)) to remove the text.

6.4.3 THE COPY COMMAND

This feature allows you to make a copy of any amount of text in a document.
Using the Paste command described later in this chapter. you may then insert this
text in another position within the same document or in another document within
the same Document Directory. Use this function to avoid having to retype identical
text in several places in a document. or in several different documents. Use it also
when you want to be absolutely sure that text which appears in one place is
identical in every respect to text which appears in another place.

6.4.3.1 Basic Concepts

The operation of the Copy function is fairly straightforward. An identical copy of
the text you have selected is stored in the -same paste buffer which is used for Cut
operations. The paste buffer contains the copied text until another piece of text
selected with (SEL) is cut or copied. until you change Document Directories. or
until you exit MASS-11. The amount of text that can be copied at one time is
limited only by the disk quota allocated to your account by the System Manager.

6.4.3.2 Rulers in Copied Text

If the text you select has any rulers embedded in it. these rulers will also be stored
in the paste buffer with the text. If you paste the copied text into another location.
these rulers will be inserted into the document along with the text.

471

Discussion

We can note a number of unusual
findings when examining the data '·Appendix
01. First, few ot the readability tormulas
can aqree on the arade level ot the text.
The a~ade Levels ~f Text9 ranqe from 2-3
•.Fry" and Af<l) t:o 9. 5 (Dale Chall l , sug­
gesting that readability tormulas may be
statistically valid when lc·oking at multiple
samples using one formula. but that they
ranae widelv when lookina at one text with
sev;ral tor~ulas. This ~iew is supported by
lookina at the actLlal readability scores
•bet ore con,1erting to arade le7el >. While
having a Fog Index of ~. Text~ has a Flesch
Reading Ease score of 88 that is described
as "ea:::y" and f•:>r '::'-th ·Jrade reader:: Jt pulp
magazines •see Appendix El.

The "Grammatik" and "Comment analysi::
3howc that the samples range wiaely in
content 153-99 on a scale of l~O: see Ap­
penaix C for the basi::: ot the ratinasl.
They also show that no text consizt":'ntly
falls in the ~cceptable range on the various
elements tor analysis (Table 2 1 •

TABL.t: .:'.. Aco:c:ptable Levels "C 0:Jmment"

NUMBER
ACCEPTABLE SAMPLES

~~:..:__ _____ LE:VE4.=S~*-----~A~CC~.eJ:1ABLE

IT,_:· Bell
Pt-?!.JC•.2 it l ·:,ns

Tran:::itic·n:::

"Th" Openers

i/agueness

f_l;.1jJ_?r _jf_I~

.:: pel:'." Sentence

Under P;

Short Sentences Undel:'." 30%

Long Sentences Under 22%

l '.T'?xt2 \

4 ' Textl j. ..
c: 8 \ - . •

c.~ •Textl 3
':· 7 ,8 ·'

2 1. Text'=>
l li I

.:. ~Text l ,4
G 7 8
10 \

J ! Text4 "' -B)
All but l

!Text':J)

* See Appendix ~ fol:'." discussion ot Ac­
,:eptance Levels

Tabl-::o : show::: a summar~7 of an .an:tly:is
ot Text~ based on it-::oms discussed in the
fir:t part ot thi::: paper.

'

,

,

473

Ta.t·le 3. '.:'. 1Jmm;:;xy ot Text~ Analysis
Using Factors ':Other than "Grammatik,"

11 Comment ~ 11 and '1 .P.eadability Calculations."

Vertical Spacing Text is justified top and
bottom; extra space be­
tween headings/subhead­
ings and text; breaks
bottom of page in middle
of instructions (sample
p. 6-10 to 6-111.

Horizontal
Spacing

Sentence
3tructul:'."e

Hea•.::tingsr
=11t·he J.d. ing~

Right-hand Justification;
breaks lines based on
character count rather
than syntax.

1 Sections 6.4.2, 6.4.2.l.
and 6.4.2.2 onlyl. 11
simple; 4 complex; and 2
compound.

Arabic numbers plus
decimals; 4 levels.

The table shows that the writers
followed some ot the principles. Most
notable are tne headings/subheading: system
1 but no~ ~he numbering!. They used 65%
!lmple 3entences; 23% complex; and 12%
compound. The hiqh percenta<Je ·:Jt simple
Sentences, hC•W'?'Jer, is Somer,Jhat misleading .
The wri tel:'."s embedded sentences "..Vi thin
sentences. a pra:tice that require::: a more
s1Jphist i•::atej level c·t processing. Embed·:ied
sentences are like subroutines in that they
ser?e a::: intol:'."mation :ources tor the meaning
0f the sen~en::e. ?et do nnt stand alone ~n
o:onvey that inrcrmat1on. ~enten::e .:'. in
paragraph b.4 . .:'. 1 1.2-4l opens with a
sentence embedded 1 ·•• • [which i:::J
·:!escri.ted l:itet· in thi:: :hapter . "\
t 1:1llcwed by the main ·::l3.. 1_i.::.:; i: '!you may t::r!..::-n
mf.J"'.Ie +:he ·: 1.Jt t ex+: 1' i ·rhe ~'1.::xt

sentence • 1.4-~I ::ontains the main o:lause
• "Yo•J may also elect to do nothing . "1

pl 1.J::: :?~n embedded c:l3.u=:~ 1_ 11 you ha"le ·::ut 11)

tollc·wed JJ:r a part1·::1p1.,al phr:aze •:"deleting
it trom yc,,_tr cioc•Jment" \ !Ul in all.. the
reader must proce:::s a large amount or
::-ophi2i:ic-ate·:i text to learn about the 11 move 11

command. Of the 11 simple sentences, 9 are
embedde·:i.

Add structure and layout problems to
the meanirn;r problems (what doe:; "",mrking­
towal:'."ds the end of the section" l2.':iJ me:.i.n?I
and you have a complex. hard-to-read manual.
The sophisti::ation of the sentence structure
in 1'ext8 ri'Tals that of a Time essay. But.
we all can agree th:.i.t the purposes of both
the writers and readel:'."s are quite ctitrer­
ent.

CONCLUSION

The ·:::·nc luz Lm based on the data. it
seems to me. is ob710us. Text8 'Fiaure 14\
had more categories acceptable (51 tnan any
other sample (Table ~l, yet it certainly is

far from easy for the reader to follow. 1t
has the highest Fog Reading and Dale Chall
Grade Level 1121 because of an average
sentence length of 24 words (with the
lon-:,rest being 62 words), supporting the
notion that it requires a higher level of
formal education to comfortably read and
understand. It may have a larger percentage
of simple sentences, but a large percentage
•Jf those sentences are embedded with other
::oentences. The 3 analyses •_tsing the c·th·':'r
factor::: also contribute to the am.tnguity.

The •..tltimate test. hc·we•1er. is JUSt h·:::1:.1
easily the reader can acce::;s the lntor­
mat1on. 'l'he analyses do n0t suggest an
answi::-r 1:0 th.at -:1uest ion. Rather, -;,1e are
left with what actually happens when the
user has a problem to solve: When all else
fails, look in the manual! Writer: and
•je:=igners •,.;rtv::· C:'Jm.b1ne L1yo• . .it an·'.i ·::i'?Sl<Jn,
typograph7, 3.nd stati:ot:1·::al analy'.:l"'S •:an
present manuals for veritication and vali­
dation that will place the reader back into
them. Ultimately, however, all the measures
available a.re useless it the writer tail:;:: to
remember that there is a reader in the a.ct
·.)f re::td1ng whc· needs t-n randomly access
specific inrcrma.tion to ::olve a problem.

REFE.R£NCES CITED

.A.:=pen ::3':1±tware •_'ompany. "Grammatik"
(Incl•-tde2 "Random Hou:=e f'rootre"tder,"
Ver:=ion 1.15 ll982JI. Ver3ion l.84.
A:=pen, CV: Aspen Softw'ire Company.
l '38 l.

Barker. 'I'homa3 'l'. "C::imment."
Texas Tech Microcomputer
1':•84.

L1_1bbocJ.:. T.><'.:
Labor:;.tory.

Carroll. L'.:'Wl.S 1 pse1..1do.'. "Jabberdo•:J.:7." in
Frank Kermode and John Hollander.
·~en~r?tl ed.: tci-~,, T-h~ t'):-:r ':·r'.i ~Df:hQ_l':cr"
·::!f C.:n".:!'lish Liter:::.r.ir"'._, 'l'JL il- l'Jer,7
York: Oxford Univer3ity Pr~::. 1913,
p. 14!:!8.

1_'hristensen, f'rancis. "Notes Toward a New
Rhetoric:," C0l l:>r:re t::rn:rl 'l!'h Octc·ber.
1963, pp. 7-1~.

,_'·::hen' 1]erald. keadability Sample. Pers0nal
Correspondence, 1984.

Felker, Daniel 8 .. et al. 1:>•..tideline2 : :::r
Dr:·cument L'esii:rner::i. lf.Jashington, DC:
American institute for Research, n.d.

Ha.rt ley, James. "t.::'urrent P.e::earch •::!n Tr::-xt
Design," :.:'·-::hol.arl·1 P1.Jbi.ir:at:icm, lt>.
No. 4 119851, 355-368.

L-='::',, l:·v1n-;r J. n~Jhy Diz·::u::;:::.ion::: '-~'':i Astra.:;, II

in :3. I. Hayakawa, ed. 'J'he rJ:;::e :1.n'i.
Mi::;use of_ Lall9J:lacre. 1Jr€-enr,.;i·=h .. 1_1 .~nn.:
Fawcett, 1962. pp . .'.9-4(!.

Micro P':O'l'..Jer :, Lir;rht C·:·mpany. 11 Rea·1ab1.lit:r
Calculations: Acr:ordi~g to Nine
Fo~mul:.:t.S." Llall3.S r 'l'~~: Mi·=~0 t-'01:·1€."r .~(

Light Company. i9g4,

474

M0rri s, !ih Ll i am, ed. '.rf'le .'\mer i i::an Her it a·:re
Diet i·:mar1 21 the Enr:rlish Langu~~­
Boston: Houghton Mittlin Company.
1? !'-;!.

Roger~. ~7erett :1.nd D. Lawrence Kin-::aict.
'.~Q!JlJ!l.'o-ll'}iC_,1!1_~:.Q ~':'..t",-?Ork'.::;: '£QS::9'X'.1 ~ l'Je,:::,'
Par::tdir:rm tor Research. Ne~ York: The
Free Press. a Division or Macmillan
Publishing Co .• lnc., 1981.

TYPOGRAPHY
Typefaces
Typesizes

APPENDIX A
DESIGN VARIABLES

Emphasis (underlining, Marginal Notations)
Numerals

PAPER
Color
Weight and Reflectance
Surf ace

COLOR (Contrast)
SPATIAL ARRANGEMENT OF TEXT

Page size
Number of columns
Separation of columns
Length of lines
Leading
Paragrapg Indentation
Vertical spacing
Margin size (Inside, outside, top,bottom)
Margin justification
Hyphenation

SPECIAL FEATURES (Typography, spatial ar­
rangement of text)
Titles
Subheadings
Tables and Figures
Abstracts and sununary
Table of contents
Bibliography and References Cited
Cover and spine titles

AESTHETIC CONSIDERATIONS
Typeface
Page size
Horizontal spacing
PRACTICAL CONSIDERATIONS

INTERACTION OF VARIABLES
Type size, line length, leading
Margin justification, line length, hyphen-

ation
Margin justification and leading
Typeface and type size
Line length and typeface

;>.PPENUlX 8:
MATERIALS ANAL'lZE:D

TEXTi pfs:Wt:'1te. Uset'.''2 M::i.nual. :2oftw::tt:''=' E-'ublish1ng ('ompany,
198J, pp. /-5 to 1-1

TEX'l'2 l?uot in en. '-'.cf. Th·:: Last tiQ..rd 0n !'lorti::' t 3. r. N\' : Holt •
~inehart, and ~inston. 19~J. p. 156.

TEXT3 V-lot:'dStat:' manual supplied with t::pson 1,jX-L'~' 'Pele::t::e 3.3), p.
b-4.

TE:--'.T4 li'J<:·t:'dStat:' manual :''Jpplled •,1ith Yaypro 1 1:-'.<:elease 3.J), l9tlJ.
pp. 4-8 to 4-9; and Painbow 100, 1983, pp. 4-tl to 4-9.

I_E.'l<'.T5 Curtin. Dennie P. The ll'Jor_:::!_::'::t:~_r_ H3.nr:lbootr: 'rel<?3.se 3.3>.
Sornet:'ville. MA: Cut:'tin ci.nd London, Inc., 1983, pp. 88-
89.

TEXT"i Sarnna Wot:'d II m::i.nu::i.l :3upplied •,;1ith Rainbow 100. 1984. pp.
68-':'::I.

Select-~6 manual supplied with Rainbow 100, 1983, pp. Sb-
57.

MASS-ll P.<?f<?t:'enr:e M::i.nual, iilS-.'.0U Etiitor 1 \Jersion 4-Cl,
Hot!rn::i.n E:=tate:=. IL: Micro.sy2tern:= E:ngineet:"ing
Cot:'por::i.tion, 1984. pp. S-9 to 6-lJ.

TEX'l'':I ~~amna ~'lord lil m3.n 1.nl supplied '"i th F'.ainbo~-7 l•.'1_1, 1'::'24, pp.
3-11 to 3-19.

rE~~~~~~ 11 Syrnposi 1_1m ln".rC1.C'~ Form lr-.~tr- 1Jct1c·n::," j..~3.~l_-1. ~-~'~:)~·r.r:.:· ~.[.;;:_ ..
2"'.:-tr:.~~i 1.Jm, l '::-tt'·i:i, p. 1 1.1 ~

1

~~.PFEr1u1~x: r·
C1E:TAlL;; '-'f'

PP.OG!-'!-'.M'.:'

A Revision Aid Pro9ram for ~ritin9 Classes

DESCRIPTION

COMMENT is a computer-assisted revision aid designed to adapt
Grammatik (tm Digital Marketing) a style and grammar analysis
program, to writing classes. After students type in their papers
on a word processor they correct the spelling and then run
Grammatik, COMMENT then prompts students to enter data from
Grammatik's statistical summary.

COMMENT automatically calculatos percentages of surface-level
elements, compares the percentages to standards pre-set by the
i~structor, and prints out advice in several modules (see below),

SET-UP, a companion program to COMMENT allows the instructor to
customize the standards against which COMMENT evaluates atud•nt
writing.

CONTENT INDEX

This module calculates the number of verbs, nouns, adjectives, and pronouns in
• p~per or report. The percentawe of these •content• words over ar~icles,
conJunctions, and pr~pos1tions, structure,• words, 9ives the writer a gauge of
tt.e paper's 1nformat1ve value, The CONTEHT INDEX is also adjusted for tfie
nuaber of weak •to be• verbs and the count of possible vanue terms like •great•
and •many. • "

475

This module counts the number of weak •to be• verbs in a student's paper and
compares the total to standards set by the instructor. The program uses
GR>JIMATIK's count of forms of "be" verbs and adjusts the ficrure iown by 30
percentage points to account for repeated verbs in sentences and to achieve a
more accurate reflection of the percen~ of •to be" verbs per total sentences.

PREPOSITIONS

The PREPOSITIONS module divides the n~aber of sentences by t~• number of
prepositions to calculate the n1111ber of prepositions per sentence. Acceptable
numbers of prepofitions per sentence are pre-set by the instructor. If
students, sar, use more than z prepositions per sentencet they are warned of
possible dul ness and wordiness and given ezaaples as Eooels f~r revision.

CONTINUITY

The CONTINUITY module uses the count Gf transitional phrases and the total
sentence count to calculate th~ percent of transitional phrases per sentence.
Optimum percents of transitional phrases are set by the i~structor. The
program tests t.he calculations for "too few" and "too many• transitional
phrases and advises the writer either to add phrases or to be alert to possible
wordiness. The CONTINUITY module is only useful to writers with an
understanding of the liaits and uses of mechanical transitions.

TH OPENERS

The TH OPENERS module coimts the number of occurrances of•, Th ••• ,•phrases
and calculates the p~rcent of these openers to the total sentence count. The
acceptable oercentage is pre-set by the instructor. The default value of 8" is
based on a study of ZS first-year papers written by Tezas Tech English
students. In the case of descriptive reports (i, •· descri~tions of mechanisms
in technical writing courses) the allowable percentage of TH OPENERS may be as
high u so".

VAGUENESS

The VAGUENESS module uset> the count of possible vaque ter111s in GRAMMATIK'S
Category 7 that is provided by the Microlab with tfie program. The program
calculates the percent of possible vague teras per total words and advises
student to revise if the count is above the instructor's pre-set standard.
Percents for possible vague term& often fall around 2-S".

SENTENCE VARIETY

User

th•

The SENTENCE VARIETY modllle uses the count of short sentences (<14 words)
sentences and the count of long sentences (}3') words), It attempts to give the
writer some idea of the b&lance of long and short sentences. It advises the
writer either to try sentence combining or sentence splitting techniques in
the QVent of a disproportion. The proportions of long and short sentence& are
pre-set by the instructor.

"Readability Calculations"

±±
2

*** GENERAL NOTES ***
This program uses nine different formulas to compute read­
ability. All formulas are not appropriate to all grade levels,
although they may all return scores. For example, it is not
possible to compute grade levels less than FOURTH GRADE with
the Dale Chall formula. It is up to the user to determine
which formula and which scores are most appropriate for
the text being analyzed.

There are more than fifty readability formulas in existence.
A good overview is found in George Klare's article 'ASSESSING
READABILITY' which appeared in READING RESEARCH QUARTERLY,
Volume 10:1 (1974-1975), pp62-102.

PRESS [Q] to QUIT or [ENTER] to Continue

476

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

±±
2

One of the most often asked questions regarding this program
is, 0 Why do scores vary so much?' The answer is complicated,
but one part of it is that most people who have used formulas
in the past have used only one. It is simply too time consum­
ing to compute more than one. Because of this, the wide vari­
ations in scores often was undetected. Formulas tend to give
a false sense of accuracy. By computing more than one form­
ula a valuable element of comparison is added. They do dis­
agree, and some have better 0 reputations' than others. The
notes on the following pages will give you an idea of the
intent and limitations of the formulas used in this program.
For a more complete discussion, see 0 A Readability formula
program for use on microcomputers' JOURNAL OF READING, 25:6,
March, 1982, pp560-591.

PRESS (Q] to QUIT or [ENTER] to Continue

2

2

2

2

2

2

2

2

2

±±
]
]
]
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

*** COLEMAN ***

2

2

2

2

Coleman designed this formula specifically for machine scoring. 2

Rather than count syllables, this formula counts letters per
100 words. Letters can be counted by scanning devices such as
optical character recognition scanners or even barcode read­
ers. This would be especially helpful in measuring text which
has already been typeset. However, there is no reason why a
program such as this could not be incorporated into a word
processing system to measure all words prior to typesetting.

Coleman, Meri & T.L. Liau. 0 A Computer Readability Formula
Designed for Machine Scoring,' JOURNAL OF APPLIED PSYCHOLOGY,
Vol. 60 (1975), pp.283-284.

PRESS [Q] to QUIT or [ENTER] to Continue

2

2

2

2

2

2

2

2

±±
2

*** DALE-CHALL ***

Probably the most highly regarded formula in current use, the
Dale-Chall formula uses an extensive list of 3000 words known
to 80% of a sample of fourth graders. This list is used in
conjunction with sentence length and other factors in an
equation which yields broad grade ranges. Rather than at­
tempting to pin grade level to a month, the Dale Chall scores
cover two grades at a time. The list of 3000 was developed
in the 1940s, is outdated, and difficult to apply manual-
ly, but the formula is well regarded by reading specialists.

See 0 A Formula for Predicting Readability,' EDUCATIONAL RE­
SEARCH QUARTERLY, Vol 27, 1-21-48 (p.11) & 2-17-48 (p.37.)

PRESS [Q] to QUIT or [ENTER] to Continue

477

2

2

2

2

2

2

±±
2

FLESCH READING EASE

Rudolf Flesch published his first readability formula in 1943.
He was primarily interested in adult reading matter both in
terms of reading ease and human interest. He has a formula
for each. It is the 0 Reading Ease' formula which is calcu­
lated here. The formula uses data from the Dale List of 3000
words. The score obtained is an index score which is then
translated to grade level by this program.

Source for this formula is: 0 A New Readability Yardstick'
by Rudolf Flesch, 0 JOURNAL OF APPLIED PSYCHOLOGY', No. 34
December, 1950, pp.384-390.

PRESS [Q] to QUIT or [ENTER] to Continue

2

2

2

2

2

2

2

2

2

2

2

2

±±

*** FLESCH-KINCAID ***

Kincaid has modified the original Flesch formula for use
with Navy enlisted personnel undergoing technical training.
Unlike the original Flesch formula, the Flesch-Kincaid will
calculate grade levels less than fourth. The Flesch-Kincaid
Formula has also become a Military Standard, a dangerous
precedent because 0 READABILITY' may not be so rigidly defined.

The primary source for the Flech-Kincaid Formula is:
Kincaid, Peter, et al. 0 Development and Test of a Computer
Readability Editing System (CRES). Final Report,' Naval
Training and Evaluation Group, TAEG-R-83, March, 1980.
ED 190-064 (ERIC Document)

PRESS [Q] to QUIT or [ENTER] to Continue

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

±±
2

*** The FOG Index ***

The FOG index is a very popular readability formula largely
because of its ease of manual application. It does tend to
give scores which are higher than scores given by other
formulas. One explanation offered for this is that the FOG
formula is designed to measure the level of comprehension
as opposed to the level of speaking. Whether or not this is
considered a valid explanation is up to the reader.

The FOG Index was developed by Robert Gunning in 1952. It
was published originally in °The Technique of Clear Writing'
McGraw Hill, c1952, Revised edition, 1968.

PRESS [Q] to QUIT or [ENTER] to Continue

478

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

±±
l 2

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

±

*** FRY GRAPH ***

The Fry Graph is very popular for assessing readability both
because it is highly regarded and because one needn't use a
formula to apply it manually. The number of words and sent­
ences per 100 words is plotted on a graph containg lines
which indicate grade levels. This program will draw a Fry
Graph and plot the grade level for you.

The Graph itself is available from many sources. One is:
0 Diagnosis Correction and Prevention of Reading Disabilities'
0 by STAUFFER, et al, Harper and Row, c1978, p.152.

PRESS [Q] to QUIT or [ENTER] to Continue

2

2

2

2

2

2

2

2

2

±±±;

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

*** HOLMQUIST ***

This is a re-calculation of the Dale-Chall formula. Holmquist
has developed several formulas, one of which has an updated
0 Dale List.' It is true that the Dale List, developed in the
1940s, is out of date. Words such as 0 Schoolmaster' are on
the list, but words such as 0 television' are not. This
Holmquist formula uses the older list. It is worth noting
that Dale and Chall have recently updated their entire
formula, although it is not yet in general circulation.

PRESS [Q] to QUIT or [ENTER] to Continue

479

2

2

2

2

2

2

2

±±
] 2

] 2

] *** POWERS *** 2
] 2

] This is a re-calculation of the original FLESCH formula. It 2

] gives a score in the 0 grade level' range rather than an index, 2

] but tends to grade much lower than other formulas in the 2

] higher grade ranges. 2

] 2

] A source for this formula is: POWERS, R.D., et al., 0 A Recalc- 2

] ulation of Four Readability Formulas,' in JOURNAL OF EDUCA- 2

] TIONAL PSYCHOLOGY, No. 49, April, 1958, pp.99-105. 2

] 2

] 2

] 2

] 2

] 2

] PRESS [Q] to QUIT or [ENTER] to Continue 2

] 2

±±
] 2

] 2

] *** ARI *** 2

] 2

] The 0 Automated Readability Index' or 'ARI' was developed in 2

] 1961 by Edgar Smith specifically for its ease of automation. 2

] Unfortunately, this general term has been adapted by several 2

] different formulas yielding differing results and confusion. 2

] 2

] The ARI formula used in this program has been taken from: 2

] KINCAID, et al. 0 Derivation of New Readability Formulas' 2

] Research Branch Report 8-75. CNTT Naval Air Station, Memphis- 2

] Millington, TN, February, 1975. 2

] 2

] 2

] 2

] 2

] PRESS [Q] to QUIT or [ENTER] to Continue 2

] 2

480

PROGRAM

Al:'l:'t.:J1JLllX U
TABLE OF DATA

'1't::X1' S.A.MPLE: NfJMl::lER
SE:CTI<.l!IJ ______ l=-- 2. >. 4 5 6

RE.11.DABILl'rY #WORD::: 280 148 288 234 492 300 193 119J 689 JbJ
3-SYLLABL~ 24 20 29 19 JJ 13 9 90 3J 48
SENTENCES 16 10 16 13 2."I 2.b 15 55 59 30
SYLLA8LES 885 211 413 341 611 385 258 lb25 812 569
=2..:Y_,.L'-=L'--'.-'/-'i"-1'-l '=-J _filo..:='=S __ __,l=-·:...37-'---'l 4 7--=l'-'4'-':'-t -'l._4..:...i_:.,_ -=l-"'3-"'6___,l,__,~'-'~ 8"-'.=-1 ::...3 _,_4 _ __,,l,__,3'-'6'--'l=-'"'=-"' -'-7---"'J.""'5-'-/
SENT . ! l <_i 0 WlJS '5 . I 6 . 8 5 . b 5 . b 5 . 5 8 . 7 1 • 8 4 • b B • b 8 . 3
FOG READING 10 11 11 10 10 6 7 12 7 10
FLESCH EASE ·13 68 bl 65 73 86 Bl 70 88 61
!:'LESCH GRADE 6 7-8 1-8 7-8 ,::. 5 5 1. 8 5 "J. tj

POWERS EA!:~E 5. 4 '5. 6 ":-. 1 5. 8 5. 4 4 "' 4. 9 5. 7 4. 5 5. B
HOLMQUIST 6.8 6.6 6.J 7 6 6.b 6 7.1 6.3 6.9
ll..f'.I 7. 5 7. 5 8. b 9 .7. l 3. 2 4. E· 9. 4 3 I. 7
FLESCH/KINCAID 7.4 7.5 8.3 8.6 7.6 4.1 5.2 9 4 7.b
•::'OLEMll..N l . 7 9. 1 8 • B 9 • 2 1. 5 5. 1 6. 4 7 • 8 4. 8 10

-----~D=A=L.=E~C~Hl\~.L=L~ ____ eo,._ ~· =5~9~·~5_4_.~._,_:. -=1=·2~1~·~5~Q~· ~· "-··~/~·~'5 __ ~12 _~5 12

GRADE LEVEL DALE '-'HALL 9. 5 9. 5 9 • '5 U I. 5 9. 5 I '-. 12 ':l.5 12
6-7 '5-6 b

9 2-3 7
7-8 :. /-!:'

GRAMM.A.TH.

COMMENT*

HOLMIJIJIS1' b 6 6 6-7 5-6 6 5
ARI 7 7 B 8-9 7 2-3 4
FLESCH 6 7-8 1-8 7-8 b 5 5
1<: 1111'.Mo..::D,___ _______ 7'-, __ 1_. I - B 8 7 ~ - <l 4 - "

POWERS 5 5 5 "; :. 4 4-'::·
FRY >-...-7 {:.-7 1-8 7-8 b-1 3-4 4-5
COLEMAN 7 8-9 B 8-4 7 4-':: 5-b
•]TJNN IN'.; r~•)G H' 12 12 1.(1 q. ':' 5-f.:', 6- 7

AV. SENT. Ll:.:!'·fGTH
AV.WORD LJ:.:NGTH
LONG.E!"::~T SJ:.:Nl'.
SHORTEST SENT.
"TO BE" VJ::PB::i
PP.EPOS ITI 1)NS

lb l3
4.J 4.~5

Jb
5
1

53

23
b ...,
.:.

21

i6
4. =·

n
9
7

3"!

l / l ':<
4.4 4.1

2:; 4L
11 '::i

5 12
31 16

l1
4.0

2.3
4
5

38

13
4.1

8-'J ·{-4 I

5 4 ".:·
._, -8 .' - l 8-9

7 4 1 1.1

l l ~ '-..t. Lo:,

24
4.2

3
40

194

12 L:
3. '..-' 4. ~

41
2

16
79

25 .,
.:.

ll_l

39

CON'l'ENTr 53 68 58 12 ':12 '.:l':i 51 5b 91 85
"TO BE" (J0%J 24 12 11 6 lb 11 lb 44 l 4
PREPOSlTlUNS !21 3 2 2 J 3 l 2 4 l l
TRANSlTIUNS uo~.) 12 9 29 7 27 12 29 31 7 7
"TH" OPEN=E=R=S~(-'"'-~~o 1_. _l=.l-~9-~2~4-~2~1-~1~5~_4_~2~1~ __ 1_6~· __ 7 __ 0
VAGUENESS <1%) 1). 4 l. 3 l. :. 0 2. 2 0. J 0. 5 O. 6 l. 3
SHORT SENT. i 30%) 44 4'::i 3:; 21 27 58 43 22 69
LONG SENT.!15%l 11 0 0 0 8 0 0 2 0
PROBLEMS NOTED 3 4 I 1 15 1 3 13 1

*For explanation or •1alues, see Appendix C.

APPENDIX E
Interpretation of Reading Ease Scores

(Taken from Rudolf Flesch, The Art of Plain Talk (NY: Harper & Brothers, 1946),p. 205.
Note the date of publication. In a 1979 book [How to Write Plain English] Flesch raises
the "School Grade Completed" one year so that 90-100 now is 5th grade.)

Potential audience
(typical audience one step above)

Score Description of style
Average sentence Syllables per

Typical magazine
length in words 100 words Per cent of

School grade completed United States
adults

Oto30 Very difficult 29 or more 192 or more Scientific College 4.5
30 to so Diflicult 25 167 Academic High school or some college 24
SO to 60 Fairly difficult 21 155 Quality Some high school" 40
60 to 70 Standard 17 147 Digests 7th or 8th grade 75
70 to 80 Fairly easy 14 139 Slick-fiction 6th grade 80
80 to 90 Easy 11 131 Pulp-fiction 5th grade 86
90 to 100 Very easy 8 or less 123 or less Comics 4th grade 90

481

SYMPOSIUM INVOICE FORM INSTRUCTIONS

Do not use the Symposium Invoice Form if you do not plan on attending the Symposium or Pre-symposium
Seminar.

GENERAL INFORMATION:
• Digital employees note: no cross charges will be performed for products offered on Symposium Invoice Form.
• Cancellations: apply only to symposium, session notes, and pre-symposium seminar sections of the invoice

form.
• Transfers:

• Will only be accepted when no changes are made to original attendee's record.
• If any changes to original attendee's record are made. a cancellation will take place and a new registration

form and payment must be submitted.

INVOICE FORM HEADER INFORMATION:
• Make sure DECUS number, if known, is provided.
• If not a DEC US member you are required to fill out a membership form (found on page 89) and submit with the

Symposium Invoice Form.

SYMPOSIUM SECTION:
• Indicate number of days you plan to attend.
• Check which days you are attending if less than five.
• Enter corresponding dollar amount on appropriate line.
• Enter symposium amount due on line (Aj.
• If you are not ordering additional products carry subtotal (A) to line (F) at bottom of form.

SESSION NOTES:
• Enter quantity.
• Enter corr.esponding dollar amount on appropriate line.
• Enter session note amount due and place on line (B).

SUBSCRIPTION SERVICE:
• For U.S. Chapter members only.
• No cancellations for subscriptions will be accepted.
• Enter quantity.
• Enter corresponding dollar amount on appropriate line.
• Enter subscription service amount due and place on line (C).

LIBRARY:
• For U.S. Chapter members only.
• No purchase orders accepted for library programs offered on this form.
• No cancellations of library orders will be accepted.
• If registration is cancelled you will receive library programs by mail.
• Fill out "Ship To" address on back of invoice form.
• LIB1 =11·SP.18

Language System for RSTS/E V?.2,-8, RSX-11 M V4.0, RSX-11 M-PLUS; RT-11 V4.0, VMS V3.2 in Compatibility
Mode, TSX-PLUS V2.2/3.0 on 9 Track Magtape, 800 BPI, DOS-11 Format.

• LIB2=11·SP.47
PORTACALC: 3D Spreadsheet, for IAS, RSX-11 D, RSX-11 M, RSX-11 M-PLUS, VAX/VMS on 9 Track Magtape,
1600 BPI, RMSBCK Formal

• LIB3 = VAX·LIB-3
1985/1986 DECUS VAX/VMS Library Tape #4 on 9 track Magtape 1600 BPI, VMS/BACKUP Format

• LIB4 = PR0-123
PRO Package of BASIC, PASCAL. PORTACALC, KERMIT, anda DeskTopCalendarforPO/Son5'!.'' Floppy Dis·
kettes, FILES-11 Format

• Enter quantity (no more than 9).
• Enter corresponding dollar amount on appropriate line.
• Enter library program amount due and place on line (0).

PRE·SYMPOSiUM SEMINAR:
• Enter code number for first, second, and third choices (see pages 15-52 for code description).
• Enter pre-symposium seminar amount due ($195) and place on line (E).

INVOICE FORM TOTAL:
• Add lines A and other product lines (B,C,D, and E) and place total amount due on line (F).
• Signature: By signing this form you agree to abide by the Canons of Conduct listed on the reverse side of the

invoice form.

Credit Card Customers: • MC= Mastercard • V = Visa • D = Diners Club/Carte Blanche
• Check appropriate credit card box and enter credit card number and expiration date.

• Mail To: DECUS Symposium Administration. 219 Boston Post Road, (BP02), Marlboro, MA 01752

TEXTlO. Control Text

482

Laboratory Data Acquisition Using RT-11 XM

Ned w. Rhodes
Software Systems Group

1684 East Gude Drive
Rockville, MD 20850

ABSTRACT

RT-11 Extended Memory (XM) monitor. It consists
of a foreground data acquisition routine that
acquires data from a DRV-llW interface unit via a
device driver and stores data in a 16KW histogram
array. A background routine controls the entire
data acquisition process and communicates to the
foreground job via MQ, the communications handler.
In order to get the best throughput, a technique
known as "jam queueing" is used to ensure that the
handler always has a queue element to process.
The XM monitor provides an excellent environment
for the development and execution of large,
virtually overlaid data acquisition programs
through its management and support of extended
memory.

1 INTRODUCTION

This paper will describe a real-time
data acquisition system that operates under
the RT-11 operating system, Version 5.1.
The data will be acquired from a two
dimensional, position sensitive,
proportional counter that is used to
examine the structure of polymer blends.
Polymer blends are combinations of
materials that have differing
characteristics. When these materials are
bonded together, the new structure can have
yet another characteristic. For ex~mple,
ABS is a common polymer blend that is used
in most computer terminal enclosures. ABS
is a combination of two different materials
-- one is very rigid to provide structural
strength, while the other is flexible. The
combination results in a material that is
both rigid and that can absorb minor
impacts without breaking.

The paper will be divided into five
major sections. In the first section, the
hardware used in the data acquisition
system will be described. Section 2 will
discuss the system design considerations,
while section 3 will consist of a design
walkthrough of the choosen design. Section
4 will contain listings of the programs
that make up the system. The final section
will summarize the findings of the paper.

Proceedings of the Digital Equipment Computer Users Society 485

1.1 Purpose

The purpose of the paper is to take a
quick look at the hardware involved.in the
system and to then take a more detailed
look at the system design and the system
software. This will be a software oriented
paper rather than a paper that is only
hardware oriented.

1.2 Hardware Description

This data acquisition system is in use
at the National Bureau of Standards in
Washington DC. An LSI-11 is connected to
the two dimensional counter via a DEC
DRV-llW. The device is primarily an XRAY
detection device.

An XRAY source bombards a polymer
sample. The sample gives off electrons
that hit an X-Y grid. When the electrons
hit the grid, a current is detected at both
ends of the X and Y grids. Detection
circuitry measures the relative rise time
of the pulse at each end of the grids,
which delivers two seven bit numbers to the
computer. These seven bit numbers
correspond to the X and the Y coordinates
where the electron hit the grid.

A histogram is a convenient data
structure to store this particular type of
position information. If the X and t~e Y
addresses are combined to form a 14-bit

Anaheim, California - December 1985

address, then a program could increment a
counter at that address whenever an
electron was detected at that position.
The histogram bin counter would the~ give
an reading as to the number of particles
that were detected at each X and Y
positions.

A DRV-llW interface card is used to
transmit data from the counter to the
computer. Once the word count register is
loaded on the ORV and the card is enabled,
the counter will transmit the requested
number of samples at it own rate using
direct memory access (OMA). In other
words, the counter will transmit data
asychronously, depending upon how many .
electrons strike the grids in a given unit
of time and without CPU intervention.

2 DESIGN CONSIDERATIONS

Now that the hardware has been
described, the design of the data
acquisition software can now be discussed.
The data acquisition system had to be
capable of :

1. Acquiring data via OMA using the
DRV-llW.

2. Reaching a 10,000 sample per
second data acquisition rate.

3. Storing the data in a 16 KW
histogram array.

4. Taking periodic snapshots of the
histogram array under progr~m
control.

5. Supporting a background
controlling routine that would do
other tasks while data was being
acquired.

2.1 Possible Solutions

Given the above specifications, it was
important to choose the proper RT-11
monitor for the data acquisition system.
The Single Job (SJ) monitor could not meet
all the requirements due to the fact that
it does not support multiple jobs -- it
would not be possible to collect and
analyze data at the same time. The
Foreground/Background (FB) monitor was
considered, but it had problems supporting
a foreground job that used a 16 KW
histogram and a background job of any
significant size. It seemed that the
Extended Memory (XM) monitor was the
logical choice because of its support of
extended memory.

486

Once the proper monitor had been
chosen, then it was time to divide the
tasks between jobs. It seemed reasonable
to acquire the data in a foreground job,
and to reduce and analyze the data in a
background job. It now had to be decided
on which type of mapping to use for the
various jobs in the system under the XM
monitor.

2.2 FORTRAN Virtual Arrays

Virtual arrays were considered and
immediately dropped due to their slow
implementation. Under the XM monitor, APR
7 is used as a "sliding window" map into
the virtual array. This means that only 4
KW virtual array locations can be mapped at
one time, and that whenever the system
needs to map to an element outside of the
currently mapped window, it must first
slide the window. Due to the random nature
of the experiment, it was thought that this
window would have to be moved for each
element that was updated and the code to
move this window is very costly in time.
Note that in order to map the entire
histogram array, 4 complete APRs would be
required. And, the other problem with
FORTRAN virtual arrays, is that they use
APR 7 to map to the virtual arrays. This
precluded the program from talking directly
to the I/O page and controlling an external
device.

2.3 Privileged Foreground Job

A privileged foreground job initially
maps the low 32 KW of memory under RT-11.
When the program is run, it normally is
loaded so that it uses APR S. If the
program is large enough or there are a
number of handlers loaded in the system,
the program could load so as to use both
APRs 4 and 5. If the histogram requires 4
APR registers, only APRs 0-3 would be
available, which in turn means that the
program could not connect directly to the
DRV-llW interrupt. The net result is that
this type of mapping is very wasteful of
the low memory resource (1-2 APRs) and is
very dependent upon a system's
configuration -- the program would have to
load in nearly the same place each time so
that the correct APR registers would be
available. This did not seem to be an
optimum solution.

2.4 Virtually Overlaid Foreground Job

In order to better utilize the memory
attached to the processor, a virtually
overlaid foreground job was considered.
Because of the mapping, it is not possible
to address either the I/O page or the
interrupt vectors with a virtually overlaid
foreground job. That would mean that a
handler would have to be used to acquire
the data. But, by virtually overlaying the
data acquisition job, very little low
memory would be consumed so that a fairly
large background job could be supported.

The only other problem with a single
foreground job is the fact that the control
of a foreground job is hard to automate due
to the fact that the operator has to type a
control-F to address the foreground job and
then a control-B to address the background
job. Because of this, it is hard to
automate the control of a foreground job
through the use of a command file or IND.

The conclusion here is that a
virtually overlaid job will solve the low
memory problems, but that a handler would
be required to talk to the device and
handle the interrupts. It seems that a
background controlling job would also be
required to command the foreground data
acquisition job due to the fact that a
command file cannot interact directly with
a foreground job.

2.5 Handler

The use of a device handler allows for
the most general solution to the data
acquisition problem. A handler knows how
to map user buffers in extended memory and
it allows the system to hide the specifics
of the interrupt service routine from the
user. And, a handler will work very well
with a virtually overlaid program. The
only potential problem with a handler is
the fact that a handler is queue driven.
This means that a handler processes
requests from its queue in a serial
fashion. That means that after it
processes one queue element, there is a
finite period of time where it is shuffling
queue elements and cannot be acquiring
data. In order to meet the sampling rate
needs of this system, the handler needs to
spend a minimum amount of time shuffling
these queue elements so that it can acquire
data. If the program were to directly
connect to the interrupt vector, it would
receive the end-of-block interrupt, start
the next scan of data and then process the
acquired data. With a handler, it receives
an end-of-block interrupt, returns the
completed queue element and then initiates
the next data request. Note that there is
a longer period of time, in the handler,
where data is not being acquired, than in
the case of the direct connection to the
interrupt vector.

3 SELECTED DESIGN

Overall, the data acquisition system
would consist of :

1. A background controlling routine.

2. A foreground data collection
routine.

3. A handler to acquire the data.

4. Virtually overlaying both jobs to
conserve the use of low memory.

3.1 Background Controlling Routine

This routine is needed to control the
acquisition of data and to interface with
the operator. Because it is a background
routine, it may be automated by the use of
command files or IND control files. In
order to control the foreground routine,
some synchronization commands had to be
defined. They were

1. B Begin data acquisition

2. z Zero the histogram array

3. S Stop data acquisition and
write the histogram to disk

4. I -- Initialize for data
collection

5. X -- Exit

In all cases, the commands are echoed
back to the background routine. Through
the use of these simple commands, a
background routine can effectively control
the acquisition of data.

3.2 MQ Communications

The MQ handler can be used to send
messages between any two jobs in an RT-11
system. The way it is used in this case is
to have the foreground data acquisition
routine "hang" a read from any job to MQ
and then to wait for a message. Now, when
the background controlling routine is
activated, it will send an initialize (I)
command to the foreground job. The
foreground job will receive the initialize
message and then will open a dedicated
communications path to the background
controlling job. Now, the controlling job
and the data collection job can communicate
over MQ.

487

Note that all reads of messages from
MQ use completion routines so that no CPU
time is required to poll MQ to see if there
are messages. A library of subroutines
were written for the background controlling
routine that "hides" the actual
implementation from the user; his interface
is only a set of subroutine calls. And,
because of the use of MQ, the controlling
job can be another system job -- it does
not have to be a background job. This can
orovide extra flexibility when needed for
~pecial data acquisition tasks.

3.3 Foreground Data Collection Routine

The design of the data collection
routine is quite simple as it is a slave
process to the controlling routine. The
routine is all event driven, either off of
messages from MQ or as result of data
collection interrupts. As a result of
being event driven, the foreground routine
consumes very little CPU resources (except
when it is processing an event) so that
there is plenty of CPU time available for
the background routine.

Once the foreground routine receives
the command to collect data, it immediately
queues two data request to the handler,
requesting completion routines once the
data has been acquired. In the completion
routine the data will be added to the
historgram array and then another data
acquisition request will be made to the
handler unless a stop request has been
received. This cycle of collection and
addition will continue until a stop request
is received.

Once a stop request is received, the
foreground job monitors a counter that
contains the number of outstanding I/O
requests that are queued to the handler.
Once that count has gone to zero, the
foreground routine can write the data out
to an intermediate disk file and then wait
for the next command from the controlling
background routine.

3.4 Handler Routine

A device handler to acquire data from
a DRV-llW is a relatively simple program.
All the handler has to do is: 1) validate
the request; 2) convert the user's 16-bit
virtual address into the proper 18-bit
physical address; 3) load the device
registers; and 4) start the conversion.
Once the interface card interrupts after
the data is acquired, the handler will be
entered again to field the interrupt. If
there are no errors, then the handler
simply returns. If there are errors, the
handler will report them back to the user.

488

3.5 Jam Queueing

In order to use this technique, the
data collection routine "jams" two or more
data requests to the handler. This has the
affect of queueing two or more queue
elements to the handler. Then, when the
handler completes the current request and
returns the queue element to the monitor,
the monitor will check to see if they are
any pending queue elements waiting on the
queue for that handler. If there are queue
elements waiting, the monitor will initiate
the first waiting request BEFORE returning
the completed queue element to the calling
program. This has the effect of allowing
for faster system throughput because
waiting requests will be scheduled as fast
as possible by the monitor.

Normally, a program will queue one
request to the hander, wait for it to
complete and then queue the next request.
Using the technique of "jam queueing", two
requests are queued initially so that the
handler always has something to do. A
program can save the time required to
context switch and schedule the data
collection routine, and allow for higher
system throughput.

3.6 Virtual Overlaying

In order to minimize the amount of low
memory that is consumed, both the
controlling routine and the data collection
routine should be virtually overlaid. The
easiest way to accomplish this is to create
a small main routine that calls a
subroutine that performs the real work.
For example, the main routine for the
foreground data collection routine is :

.mcall .qset

.a sect

.=44

.word 2000

.psect code

.globl acquir
AROOT:

• qset #queue,#10 •
jmp acquir

.psect data
queue:.blkw 100.

.end AROOT

Note that the root only consists of
some extra queue elements and a jump
instruction to the main code that is in a
virtual overlay region. The following
instructions link the data collection
routine as a virtually overlaid program.

LINK AROOT/XM/PROMPT/MAP/EXE:ACQUIRE
ACQUIR,SAVRES/V:l
II

4.2 Background Controlling Routine

This routine is the background
controlling routine. Note the use of a
series of library subroutines to talk to
the foreground job.

c
c

subroutine data

c Control the collection of data
c
c

10

call setup
call readit
call mqwrit('z')
call readit
Y=SECNDS(O.)
call mqwrit('B')
call readit
Y2=SECNDS(Y)
IY2=Y2
IF(MOD(IY2,10}.EQ.O) TYPE *,IY2
IF(Y2.LT.300.) GO TO 10
write(7,9000)

4 CODE EXAMPLES

This section contains listings of the
code required to acquire the data and to
control it.

4 .1 DROOT

This is the main routine for the
background controlling routine

program droot
call data
end

init
read the return char
zero the array
read the return

begin data collection
read the return

c
C9000
c
C9001

format(' Hit return to stop data collection',$)
read(5,9001) i

c

100

9000

format(il)
call mqwrit('S')
call readit
call readit
call mqwrit('X')
end
subroutine readit
integer getmq
ichar = getmq()
if (ichar .eq. 0) goto 100
write(7,9000) ichar
format(lx,al)
return
end

489

stop
read
read
stop

the
the
the
the

data
s
w
job

collection

see if a char is avail
if not loop

4.3 Communications Subroutines

These subroutines communicate with the
foreground collection routine •

setup: :

1$:

,
2$:

3$:

• title Foreground communications subroutines

This is a collection of subroutines to support data acquisition
that is taking place in the foreground. The routines are:

SETUP -- Called to setup up things for data acquisition. It
allocates more queue elements, opens channels to the
MQ handler, clears out the command ring buffer and hangs
a read to the MQ handler.

MQWRIT (char) -- Sends this character command to the foreground
job

GETMQ -- This is a character function that returns either a 0 if
no character is available, or the character that the
foreground jobs sends back.

Ned w. Rhodes
Software Systems Group
1684 East Gude Drive
Rockville, MD 20850

.mcall

.mcall

.mcall

.mcall

.globl

.ident

.enabl

.nlist

.sbttl

.page

.psect

.lookup,.close,.readw,.writw

.dstatus,.exit,.print,.twait

.readc,.gtjb,.ttyout

.read,.wait,.qset
igetc
/Vl. 0/
le
bex
SETUP

code

• qset queue, 10 •
mov parm,r5
call igetc
mov rO,mqread
mov parm,r5
call igetc
mov rO,mqwrt
.lookup area ,mqread, jobdes
bee 1$
mov mqopen,rO
jmp error
.lookup area,mqwrt, jobdes
bee 2$
mov mqopen,rO
jmp error

zero out the ring buffer

mov
mov
clr
sob
mov
mov

5. , rO
ring,rl

(rl)+
r0,3$
ring,cur
ring,next

490

let's have more queue ele.
get parameter block
get a free channel
and save it
get parameter block
get a free channel
and save it
open MQ for reading
no error
MQ open error
and exit
open MQ for write
no error
MQ open error
and exit

5 words
the address of the buffer
clear a word
and loop
initialize pointer
initialize pointer

Send an init to the foreground job

.gtjb area, job, -1
mov 6., rO
mov job,rl
add 22,rl
mov i,r2
inc r2

44$: movb (rl)+,(r2)+
sob r0,44$

Hang a read to MQ

.readc area,mqread, commnd, 5. , mqcomp,

bee 4$
mov reader,rO
jmp error

4$: .writw area,mqwrt, i, 5, 0
return
.sbttl MQ read completion routine
.page

mqcomp: mo vb comtxt,@next
inc next
.print hit
cmp rend,next
bne 5$
mov ring,next

5$: .readc area,mqread, commnd, 5., mqcomp,

return
.sbttl GETMQ
.page

getmq: : clr rO
cmp cur,next
beq 6$
mo vb @cur,rO
inc cut·
cmp rend,cur
bne 6$
mov ring,cur

6$: return
.sbttl MQWRIT
.page

mqwrit: :movb @2(r5),cbuf
.writw area ,mqwrt, cbuf, 1, 0
return

.sbttl Error exit

.page
error: .print

.exit

.sbttl Data and Storage

.page

.psect data
jobdes: .rad50 /MQ/

491

get my job name
6 characters
address of one buffer
advance to name
where it goes
really here
move it
and loop

0
hang a read
no error
get the message
and say the error
init it
and return

save in ring buffer
bump pointer

at the end?
nope
reset address
0
hang a read
and return

start with a zero
are pointers the same?
yes, exit
get the character
bump pointer
at the end
nope
reset address
and return

move over character
write it up
and return

say the error

.ascii
queue: .blkw
sblk: .bl kw
area: .blkw
commnd: .word
comtxt: .bl kw
mqread: .word
mqwrt: .word
job: • blkw
ring: .blkb
rend
cur: .word
next: .word
parm: .word
I: .ascii
cbuf: .a sci i

.psect
mqopen: .asciz
reader: .asciz
hit: .asciz

.end

/ACQUIR/
100.
4
10.
0
10.
0
0
12 •
10.

ring
ring
0
/!TEST I
I I
msgs

additional queue elements
status return area
emt area
read buffer
command coming up
mq read channel
mq write channel
job info
10 commands
end of buffer address
current pointer
next empty position
zero parameters
initialize buffer
command buffer

/?SETUP-F-Error opening MQ/
/?SETUP-F-Error posting a read to MQ/
/?MQCOMP-I-Got a read from MQ/

4.4 Foreground Data Collection Routine

This routine is the foreground data
collection routine. It communicates with
the background routine via MQ and it
acquires data using a handler AB •

• title
.sbttl
.meal!
.meal!
.meal!
.meal!
.ident
.enabl
.nlist

Foreground Data Acquisition Routine
Program Description
.lookup,.close,.readw,.writw
.dstatus,.exit,.print,.ttyout
.wait,.write,.readc,.enter,.twait
.mrkt
/Vl.O/
le
bex

Foreground routine that acquires data from a DRll-W under the
control of the background routine. Program should be linked
virtually due to the fact that it has a large buffer.

It works like this:

1.
2.

3.

This routine is started and it zeros the histogram buffer
Next it waits for a command from the background job via
the MQ handler.
This job executes the command and echos it back to the background
once it completes the command.

The commands are :

B Begin data acquisition

z zero the histogram array

S Stop data acquisition and write histogram to disk.
This routine will stop data acquisition only when there are
no outstanding requests to the handler and then echo back to
the background program. After it writes the data to disk, it will
echo back that fact to the background job.

492

w This is returned to the background once the data is written to
disk.

I Initialize for data collection and open an MQ communications
channel to the background.

E This is not really a command, but an error condition that signals
the fnct that the handler detected an error.

X Exit.

In the completion routine, a co-routine is used to save the
registers.

Ned w. Rhodes
Software Systems Group
1684 East Gude Drive
Rockville, MD 20850

.sbttl Program constants

.page
abchan 1
mqread = 2
mqwrit = 3
dchan = 4
hen: = 1
begin = 'B
zerob = 'Z
init = 'I
stop = 'S
hderr = 'E
exit = 'X

.sbttl Program initiation

.page

.psect code
acquir::

.print
call
.dstat
bee
mov
jmp

1$: .print
tst
bne
mov
jmp

2$: .lookup
bee
mov
jmp

3$: .lookup

cmdlop:

1$:

bee
mov
jmp
.sbttl
.[_)age

.print
call
.readw
mov
mov
.ttyout
.ttyout
sob

start
zero
sblk, A.B

1$
sterr,rO

error
tst

sblk+4
2$
noload,rO

error
area, abchan, ab

3$
look,rO

error
area, mqread, jobdes

cmdlop
mqopen,rO

error
Main command loop

wait
ztext
area, mqread,

commnd,r2
comtxt,rl

(rl) +
(rl)+
r2,1$

commnd, 10.

493

AB handler channel
MQ read channel
MQ write channel
the data channel
hard error bit
begin command
zero command
init command
stop command
hard error from handler
exit command

print start message
zero the histogram buffer
get the handler status
no error
get the message
and exit
print handler status
check the status
handler is there
get the message
and exit
open the handler
branch if no error
get the message
and exit
open MQ for any job
no error
MQ open error
and exit

waiting for data
zero the text buffer
hang a read to MQ
number of words transferred
address of buffer
echo command
echo command
for number of words

,
21$:

23$:

22$:

2$:

3$:

7$:

8$:

9$:

4$:

Check for command

cmpb
bne

begin,comtxt
2$

Begin command

tst
bne
clr
inc
.readc

bee
mov
jmp

readc
21$
stopf
readc
area, abchan, buffa, 128.,

22$
reade,rO

error

begin command?
nope

anything going on?
yes, wait til done
clear the stop flag
increment outstanding count

adone, 0
Start buffer a reading
no error
Get the message
.And exit

inc
.readc

readc increment outstanding count
area, abchan, buffb, 128., bdone, 0

Start buffer b reading
bes
.wait
.write
jmp
cmpb
bne

23$ Error from readc
mqwrit
area, mqwrit, comtxt, 1, 0

cmdlop
zerob,comtxt

3$

Zero command

call
.wait
.write
jmp
cmpb
bne

zero
mqwrit
area, mqwrit, comtxt, 1, 0

cmdlop
init,comtxt

4$

Init command

mov 6,ro
mov comtxt,rl
add l,rl
mov userj,r2
clrb {r2)
cmpb 40,{rl)
beq 8$
mo vb {rl),(r2)
inc rl
inc r2
sob r0,7$
.close mqwrit
• lookup area, mqwrit, bg
bee 9$
mov ulook,rO
jmp error
.wait mqwrit
.write area, mqwrit, comtxt, 1, 0
jmp cmdlop
cmpb stop,comtxt
bne 5$

494

wait for previous i/o on MQ
echo command back
and repeat
zero command
nope

zero the buffer
wait for previous i/o on MQ
echo command back
and repeat
init command?
nope

number of characters
get buffer address
past command
address of destination
insure a zero
is it a space
yes
move it
bump the address
bump the address
and loop

open MQ to user's job
no error
get the message
and exit
wait for previous i/o on MQ
echo command back
and repeat
stop command?
nope

55$:

66$:

5$:

;
10$:

Stop command

inc
tst

bne
.wait
.write

stopf
readc

55$
mqwrit
area, mqwrit, comtxt, 1, 0

Now write the data to disk

set the stop flag
see how many reads hung

still some out
wait for previous i/o on MQ
echo command back

Watch the timing here, as this job will continue to run
even though the background now has the signal that collection
has stopped.

.enter area, dchan, df ile, -1
bee 66$
mov enterr,rO
jmp error
.writw area, dchan, hist, 16384.,
.close dchan
.wait mqwrit
.write area, mqwrit, writen, 1, 0
jmp cmdlop
cmpb exit,comtxt
bne 10$
.exit

No command match, just ignore

.print

.wait

.write
jmp
.sbttl
.page

no com
mqwrit
area, mqwrit, comtxt, 1, 0

cmdlop
Buffer a completion routine

0

Open the file
no error
get the error message
and error out
write the data
close the file
wait for previous i/o on MQ
let bg know we wrote it
and repeat
exit command?
nope
exit

message
wait for previous i/o on MQ
echo command back
and repeat

adone: call savres
herr,rO

1$

save all registers
check for error

1$:

2$:

bit
beq

read error

inc
.print
.wait
.write
return

stopf
harder
mqwrit
area, mqwrit, errpt, 1, 0

no read error

buffa,rl
128. ,r2

dohist
stopf
2$

no error

tell program to stop
eeror on read
wait for peevious i/o on MQ
alert bg to error
and t·eturn

get the buffer address
buffer length
do the histogram update
check stop flag

mov
mov
call
tst
bne
.readc area, abchan, buffa, 128.,

; no more data
adone, 0

return
dee
return

readc

495

Start buffer a reading
and return
decrement count
and leave

.sbttl Buffer b completion routine

.page
bdone: call

bit
beq

savres
herr,rO

1$

read error

1$:

inc
.print
.wait
.write
return

stopf
harder
mqwrit
area, mqwrit, errpt, 1, 0

no read error

buffb,rl
128.,r2

dohist
stopf
2$

save all registers
check for error
no error

tell program to stop
error on read
wait for previous i/o on MQ
alert bg to error
and return

get the buffer address
buff er length
do the histogram update
check stop flag

; no more data

mov
mov
call
tst
bne
.readc area, abchan, buffb, 128., adone, 0

2$:
return
dee
return
.sbttl
.page

readc

Do the histogram update

rl contains the buffer address
r2 contains the number of words to do

dohist: mov
asl
inc
sob
return

.sbttl

.page
zero:: mov

mov
1$: clr

sob
return

ztext: mov
mov

1$: clr
sob
1·eturn
.sbttl
.page

error: .print
.exit

(rl)+,rO
rO
hist(rO)
r2,dohist

Zero the histogram

16384. ,rO
hist,rl

(rl)+
r0,1$

10. , rO
commnd,rl

(rl)+
r0,1$

Error exit

496

Start buffer a reading
and return
dec1·ement count
and leave

get the value
word offset
bump the bin value
and repeat

get buffer size
get add1·ess of buffer
clear a word
and loop

ten words
address of buffer
clear the buffer
and loop

say the error

• sbttl
.page
.psect

ab: .rad50
jobdes: .rad50

.word
bg: .rad50
userj: .word
dfile: .rad50
sblk: .blkw
area: .blkw
commnd: .word
comtxt: .blkw
writen: .ascii
errpt: .ascii
stopf: .word
readc: .word
a time: .word
btime: .word
buff a: .blkw
buffb: .blkw
hist:: .blkw

• psect
sterr: .asciz
noload: .asciz
look: .asciz
mqopen: .asciz
nocom: .asciz
ulook: .asciz
reade: .asciz
harder: .asciz
enterr: .asciz
tst: .asciz
start: .asciz
wait: .asciz

.end

Data and Storage

data
/AB
/MQ/
0,0,0
/MQ/

I

0,0,0
/DATHISGRMDAT/
4
10.
0
10.
/W I
/E I
0
0
0,5
0,4
128.
128.
16384 •
msgs

data acquisition handler

users job name
DAT:HISGRM.DAT
status return area
emt area
read buffer
command coming up
data written
error on read
stop flag
outstanding read count
5 ticks
4 ticks
a buff er
b buffer
16-bit buffer

/?ACQUIR-F-Handler is not in system/
/?ACQUIR-F-Handler not loaded/
/?ACQUIR-F-Lookup error/
/?ACQUIR-F-MQ lookup error/
/?ACQUIR-I-Unrecognized command from MQ/
/?ACQUIR-I-MQ lookup error to user job/
/?ACQUIR-F-Read error to handler/
/?ACQUIR-F-Hard error detected by handler/
/?ACQUIR-F-Enter error for data file/
/?ACQUIR-I-.DSTAT call complete/
/?ACQUIR-I-Program started/
/?ACQUIR-I-Waiting for data/

497

4.5 Data Collection Handler

The handler to acquire data from the
DRV-llW is shown below •

• title AB.SYS
• sbttl
.ident
.enabl

ADC/842/DRV-llB OMA Device Driver for RT-11 Version 5.2
/Vl.O/
le

AB is a OMA device driver the ADC chain number one for use under
RT-11 Version 5.2. This driver reads data from an external nuclear
type ADC interfaced to a DEC DRV-118 via a TEC model 842. This
is a re-write of the original handler authored by Paul L.
Robertson 29-Jun-82 •

• sbttl Preamble section
.page

.mcall .drdef

This device is assumed to have a CSR of 172410
and a VECTOR of 124

ab$wct
ab$adr
ab$csr
ab$io

172410
ab$wct + 2
ab$wct + 4
ab$wct + 6

Word count register
Bus address register
Control and status register
Input/output buffer

Function definitions

go
funl
fun2
fun3
ie
• d rde f
.sbttl

1 Go bit
2 Function 1
4 Function 2 and Init for user device
10 Function 3
100 Interrupt enable

ab,377,<ronly$>,O,ab$csr,124
I/O Initiation Section

.page

.drbeg ab
mov
mov
bmi
beq

abcqe,r4
q$wcnt(r4),r0
hderr
abdone

Request validated, we are reading

mov
neg
mov
.if
mov
mov
. iff
cmp
call
mov
mov
bit
bne
bis
mov
.endc
return

fun2,@ ab$csr
rO
t·O,@ ab$wct
eq,mmg$t
q$buff(r4),@ ab$adr

ie!go,@ ab$csr

(r4)+,(r4)
@$mpptr
(sp)+,@ ab$adr
(sp)+,rO
1700,rO

hderr
ie!go,rO

rO,@ ab$csr

Get pointer to queue element
Get word count
write, which is an error
seek, which completes

Reset the device
Make word count minus
Load the word count
Not XM
Load the address
And start the device
XM
Advance to buffer pointer in QE
Convert virtual to physical
Load the lower 16 bits
Get the high order bits
Check for a 22-bit address
Hard error - 18-bit device
Add in interrupt enable and go
Load and start it

And retut·n

498

.sbttl Interrupt Section

.page

.drast ab,5,abdone
tst @ ab$csr
bmi hderr
br abdone
.sbttl Hard error
.page

hderr: mov abcqe,r4
bis hderr$,@-(r4)
br bye
.sbttl Done routine

abdone: mov fun2,@ ab$csr
clr @ ab$csr

bye: .drfin ab
.drend ab
.end

5 CONCLUSIONS

This paper has shown a typical data
collection routine for the RT-11
environment. RT-11 provides a flexible
data acquisition environment when coupled
with the Extended Memory monitor. System
throughput can be maximized through the use
of "jam queueing" queue elements to a
device handler. And, virtually overlayed
programs make good use of the extended
memory that is attached to an LSI-11.

Any error?
Yes
And exit

Reload pointer
Set a hard error
And exit

Reset the device
Stop everything
And return to monitor
End of handler

499

RANDOM SYSTEM CRASHES
or

"BUT IT WAS PROPERLY GROUNDED!"

Thomas J. Shinal
Vice President

General Scientific Corporation
Rockville, Md.

l OVERVIEW

The following scenario is a composite
of a few of our PDP-11 sites and therefore,
I've taken some liberties in the actual
situation. However, the data as presented
actually happened despite all of my
precautions.

The equipment involved is based around
the 11/73 processor with 1 Mbyte of memory,
80 Mbytes of Winchester Disk, 800/1600 BPI
tape, 16 channels of DZ multiplexing and 8
printers on DLV llJs. The operating system
is RT-11 with TSX+. All software and all
hardware is up to current revision level.

The terminals are C-ITOH lOls and are
connected to the DZ's in the following
configuration.

CIT
101
CRT

MI COM
SWITCH

The terminals are as far away as two
miles from the CPU and connect by
statistical multiplexors and short-haul
modems via a Micom or a Gandalf Digital
Switch to the DZ multiplexor.

16 LINES
DZ TYPE
MULTIPLEXER

11/73 PROCESSOR
RUNNING TSX +

2 SYMPTOMS

We would be getting random system
crashes or halts. The problems showed up
as being seasonal. Late Fall, we noticed
an increase of halts and crashes to random
locations. As they occurred over a number
of systems, it was difficult to pinpoint.
Hardware was eliminated by systematic
component swapping, even to the power
supplies and backplanes with no relief.
That left only the operating system as the
culprit. As S & H was far enough away,
they seemed easy to blame. Many, many
calls to S & H resulted in extensive

Proceedings of the Digital Equipment Computer Users Society 501

cooperation from them as to fault
isolation. But, alas, there was no common
thread. We modified handlers and inserted
breakpoints to try to isolate. Symptoms
looked like the Disk Handler was possibly
at fault. We would get TSX messages
indicating that the disk had become unready
and other cryptic messages like that.
Investigation proved that this wasn't the
case. Other times we would lose data going
out to the printers via the DLV-llJ ports
(They also shared the Stat Mux's).

Anaheim, California- December 1985

This continued for months. A crash
every other day might not sound like much
until you multiply that by the number of
systems installed and the workload
affected. These are not software
development machines, but production
systems in a Government installation.
Tempers were getting short and future
business was seriously questioned. We were
living at the site with logic analyzers,
scopes and the such. At one point, after
many nights of frustration, silliness set
in and we tied balloons to the four corners
of the cabinet to help to "KEEP THE SYSTEM
UP".

3 GREMLINS UNMASKED!

Two problems surfaced ..

The first problem showed up under
scrupulous examination after noticing a
light flicker from a test lamp. We checked
the AC power and we found "GLITCHES" ...
What we saw was a power brownout that
lasted about a cycle and a half. This was
enough to tell the power monitoring
circuitry that a "hit" was on its way and
to start an orderly shutdown. The system
did exactly what it was supposed to do ..
It shut down.

NOTE

BPOK H -- The assertion of this
line indicates that there is at
least an 8 ms reserve of DC power
and that BDCOK H has been asserted
for at least 70 ms. Once BDCOK has
been asserted, it must remain
asserted for at least 3 ms. The
negation of this line indicates
that power is failing and that only
4 ms of DC power reserve remains.

Many if not all of non-DEC system
chassis' have larger power supplies and may
or may not have the same timing
requirements. Our particular system at
that time had a linear supply which was
under load specifications, however the
supply did not meet specifications (later
replaced with a switching supply of larger
capacity. Backplane problem also).

The system power recovered prior to
the Power-Fail message showing up. By the
time the operator saw a problem, power had
restored with no indication as to what had
happened. The system was sharing a power
main with a large motor somewhere in the
building. Perhaps it was even the freight
elevator. As it takes the Government
months and months to respond with a
procurement for a Power Line Conditioner
(Procurement Red Tape), we cured the

502

"Symptom" by disconnecting the AC
monitoring circuits from the backplane
(BPOK H). We lost our protection in the
event of a real power hit, but that was the
tradeoff until conditioning could be done.
It hurts on possibly negating disk
shut-down protection, but it didn't affect
ours as they had their own protection
circuitry. Nothing else was to be gained
as without battery back up, there was
nothing to save in event of AC failure.
The BPOK H was a liability.

The second showed up as building heat
was turned on in the Fall. We all know the
problem of static. We suspected that there
was also a problem in the computer room
however, a new room with proper humidity
control and grounding was just around the
corner. With the new installation, we felt
at ease... for a day or so.

We were told that the room was
properly grounded. The floor grids (raised
computer floor) were properly tied to the
building power grounds. We checked. We
discovered that the ground that was
referenced was not grounded at all but
simply the power neutral wire. Any
unbalance on the power lines could and
probably did introduce noise into our
system.

The next step was to install power
~ine conditioners that would totally
isolate the systems from the power grid.
We insisted on our own ground rod. Each of
t~e system sub chas~is' were individually
tied to a common point on each cabinet.
Each cabinet was individually wired to the
ground rod. Heavy gauge tinned braid (3/4
inch) was used throughout. The braid
should be insulated. RF grounding
techniques were employed to eliminate any
possible RF Ground Loops. The ground rod
was buried in a moist area in a salt
impr~gnated earth for good conductivity.
We did all of the right things. We thought
that we were home free. Systems weren't
crashing as much and things were looking
up. We still had a few random crashes, but
we were free to attack them now.

4 IF I HADN'T SEEN IT MYSELF!

I was getting complaints from the
farthest user from the system. My field
s~rvice person~el had visited the site many
times and hadn t found anything. I stopped
in on a whim. As I entered the office, a
CRT operator greeted me with an Ouch! What
Happened? She got a static shock from the
keyboard. Further investigation showed
that the Stat Mux was down as well as the
CRT. I called the Computer Center and
sheepishly asked if System II had just
crashed. You can guess the answer. If one

of my technicians had given me that story
about static crashing the system from two
miles away via stat mux·s and short haul
modems not to mention the digital switch,
I'd be inclined to pink slip him. But ...
being of higher rank, I found it in my
heart to forgive me.

The entire system was floating. The
AC lines in the buildings had high
impedance grounds. The buildings are old
and many of the receptacles although three
prong, were not grounded. We, being the
good guys with the excellent grounding (<2
ohms) became the current sink for the Base.
This further manifested itself whenever the
Micom Switch was powered up from a
maintenance shutdown. Every one of our
systems crashed. Micom confirmed that they
generate "some noise" on power up and will
crash some systems.

We were the good guys that became the
bad guys. The customer hinted that because
we were crashing, we must be at fault.
What to do? Un-ground us and float with
the rest of the world? Ground them (Not in
the budget)?

The only thing that helped was that
other computers (PRIME, BBN, CDC) were
crashing also. We didn't know this for
awhile. We wore blinders and saw only
"our" problems. Stepping back and looking
at a larger picture might have saved us all
some grief.

5 SOLUTIONS

1. Customer recognition of the
problem.

2. Power Line Conditioners

3. Proper Grounding of System
Components

4. Proper Grounding within the
buildings

5. Anti static sprays at the terminal
areas

6. Optical isolators on every
communication line totally
isolating data as well as
isolating ground lines

7. More System Support Balloons

503

MULTIPROCESSING AND HIGH SPEED DATA COMMUNICATION WITH RT-11

Harry Haenen
Dept. Clinical Neurology and Information Processing

University Hospital Groningen
P.O. Box 30.001

9700 RB Groningen, The Netherlands

ABSTRACT

A multiprocessor network concept is described and it's
implementation under RT-11. The multiprocessor concept may be
seen as alternative to using a multi-user single processor
system. However, the multiprocessor option has multiple CPU
power and memory available over a single processor system.
With decreasing hardware prices, the multiprocessor is the
better solution especially in highly demanding environments
such as high speed data acquisition and processing. The
datacommunication software provides transparent use of remote
devices. Memory-only systems may be run using a remote system
disk.

INTRODUCTION

Data processing often starts with a single CPU
system. A multi-user operating system then seemingly
makes CPU and other peripherals available to
multiple users. However, with the advent of newer
user-friendly software like screen editors, graphics
etc. CPU load increased and responsiviness often
decreased considerable. A concept with multiple
systems, connected by high speed datacommunication
links can face the higher demand. Shared disks,
printers etc. assure that data are available to
multiple users and that expensive peripherals do not
run idle for longer periods.

In the laboratory a multi-user system is often
inappropriate. High speed data acquisition may block
the whole system and frustrate other users.
Undisturbed processing may now be realized by giving
each application it's dedicated processor. Again,
high speed datacommunication links assure that
expensive peripherals are not needlessly duplicated,
that data may be shared and realise parallel
processing (multiple CPU power for a single job).

The multiprocessor goal is believed to have been
closely approximated with the package here
presented. An earlier version was already described
elsewhere [l] (reprints available on request).

In the remainder of this article DC will be used as
an abbreviation for datacommunication.

CONCEPT

The multiprocessor concept should fulfill the
following requirements:

- High speed communication: remote systems should
seemingly be close. The data amount to be stored
or processed elsewhere may be quite large,

Proceedings of the Digital Equipment Computer Users Society 505

therefore the transfer speed should be high. Low
cost as well as more sophisticated (DMA) hardware
should be supported.

- Low overhead, simple communication protocol. This
contributes to high speed and may keep CPU load
low during transmissions.

- Any network topology may be realized: from the
simple point to point connection to complex
structures.

- No modification of standard system components: all
software should be realized within programs and
handlers (device drivers).

- Hardware dependent code should only appear within
handlers.

- No arbitration in who issues a transfer request.
One site should always be "listening" to the
other.

A basic point to point connection is symbolically
represented in Fig. 1. System A always issues the
transfer requests. It has a DC handler which
controls the physical data link. System B has
continuously running a so called DC service job
(task), which is ready to serve requests from the DC
handler at the other side. Note that although the

I/O REQUESTS

Figure 1. Data link concept

Anaheim, California- December 1985

I/O requests go in only one direction, the data go
in both directions. With a data read A receives data
from B and with a data write A transmits data to B.
Besides I/O requests for data transfers, also
special function requests may be issued by A. For
example by issuing a special function request, A
could ask B to return the size of disk unit.
Logically there will be several channels within one
data link. £ach channel is then used to allocate a
device unit or file or used to perform a special
operation. For example one channel, the message
channel is reserved for the exchange of messages
("mail") between A and B. For that purpose B has
reserved a "mailbox" file, which stores news for A
as well as B and messages received from A for B and
visa versa. Such a message from A for B may be e.g.
a request to give read and/or write access to a
certain device unit.

In order to safely transfer data over the link, a
datacommunication protocol is needed. The protocol
assures that both sides of the link "understand"
what the other is "doing". Also the data integrity
can'!guarded by applying an error detection algorithm
over all data received.

With the basic link now defined even more complex
networks can be set up as shown in Fig. 2.

Symmetric link

Star

Ring

Figure 2. Basic network structures

506

THE RT-11 LINK

The DC service job runs under RT-11 as a Foreground
or a System job. In a monitor with system job
support up to 7 DC jobs may run simultaneously. The
DC service job links to the DC hardware by using a
handler, called the ·job-handler. A DC job is now
started with the following commands:

.LOAD QJ ! Load the job-handler

.ASS QJ JOB ! Name it logically JOB:

.FRUN/BUFFER:nnnn DCJOB I Run the DC job

next job:

.LOAD DJ

.ASS DJ JOB

.SRUN/BUFFER:nnnn/NAME:DCJOBl DCJOB

etc.

When the /BUFFER:nnnn is specified an extra data
buffer of size nnnn words is allocated to the job.
This buffer is added to the default internal buffer
of 256 words (1 disk block).

The complement of the DC service job is the handler
driving the DC hardware at the other side of the
link. The protocol used by this handler and the
job-handler is a modified Radial Serial Protocol
(RSP, [2]). This protocol basically transfers words
of data and is described in detail in [1]. The RSP
protocol can maintain up to 256 data channels over
one link. The current implementation uses only 15 of
these channels as these channels are one-by-one
coupled to an I/O channel in the service job.
Although RT-11 allows defining up to 256 I/O
channels for each job, 16 is the default number. As
one channel (#15) is used by the job handler, 15
remain to be used for allocating devices. Each data
channel has a number 0-14 which also will be called
the RSP unit number. An example of DC data channel
allocation is given in Fig. 3. As a handler has
maximum 8 device units (0-7), only the first 8 data
channels can be controlled by the DC handler.
Normally the DC handler is defined to the system as
a random access device (disk) and therefore cannot
be used to simulate e.g. a remote lineprinter.

Both problems, accessing the higher data channels
8-14 and simulating several different type devices
are solved with the introduction of pseudo-handlers.
These are handlers that do not drive hardware
themselves, but use the DC handler for that purpose.
The DC-handler has provisions for receiving requests
from pseudo-handlers: an internal queue. I/O
requests from the DC handler itself and from the
pseudo-handlers are stored in this queue and removed
from the queue when they are served. These
pseudo-handlers make it also possible to use also
the data channels higher than 7. For example a
service job has allocated channel #10 to a
lineprinter. This channel may now be accessed by a
pseudo-handler which transforms a request received
on device unit number 0 to a RSP unit number 10 by
adding the value of 10 to the device unit number.
This pseudo-handler may also be defined to the
system as a standard lineprinter so that programs
and RT-11 utilities cannot "see" the difference
between a real lineprinter handler and the pseudo
lineprinter handler. Note that the service job may
also allocate channels to a DC handler within the
same system. In this way devices on all connected

Remote
disk

~=-handl;;-- DC: I
l RSP units: I

0 l 2 7

System A

Remote
disk

I Job-handler (I/O channel 1115)
l__ ___ . __ ----------------

DC service job

I
1 I/O channels:
L2_ l 2 • • • • 7 8 9 10 11 12 11 14 ------1 .. ~:1- -IT---g

HL DC-handler
System R (to next system)

0 l 2 7

Figure 3. DC Data & I/O channels

systems may be accessed, even when there are
intermediate systems.

MT:

Currently the following hardware is implemented as
the physical data link:

LSI-11: DRV-11 (DEC)

PDP-11:

WBV-11 (Buchholz I Hammond, Germany)
Qnector (Westvries Systems, Holland)
(DMA-interface)

DR-llC
DR-llK
WB-11

(DEC)
(DEC)
(Buchholz I Hammond, Germany)

However, as all hardware dependent code is in the
DC-handler and job-handler, implementation of new
hardware only requires that that these handlers are
adapted to drive that hardware. The general purpose
parallel interfaces DRV-11, DR-llC, DR-llK require
simple electronic circuitry in order to form a
handshake connection, which can be used on interrupt
bases. Only one FLIP-FLOP and one OR-gate are the
needed components [l]. In the first version also
DL(V)-11 type hardware was supported. However, this
was dropped as transfer rates are low and DEC
supports these data links within the RT-11 package
(programs VTCOM and TRANSF, handlers XL, XC).

The size of the DC service job is about 1.5 Kw

including it's 256 word default buffer and the
job-handler. The size of the DC handlers is about
700 words and that of the pseudo handlers ca. 50
words. Default the DC job handles read, write,
special function (.SPFUN) and boot requests on all
channels. However, one channel the message channel,
is special purpose and used for message transfer to
the user on the other system. These messa5es and
news are also put in a mailbox, a file which is
present on each system that runs at least one DC
job. The message channel is also used for transfer
of date&time from system to system and DC job
configuration data (list of remote devices,
read/write access).

Normally the job tries to open an I/O channel to all
devices in a list, the job device list. This
requires that these devices are loaded, One
exception on this rule are Special Directory devices
such as Magtape. In fact, these devices have no
directory and require special operations to open a
file. Therefore when an "open file" request
(.LOOKUP, .ENTER) is received, this is forwarded to
the device itself and not processed by the local USR
as for disk devices, Handling Special Directory
devices requires additional code in the DC job, This
code, including handling "asynchronously directory"
operations for Magtape (see RT-11 Software Support
Manual), is about 200 words in size. This code may
be selected at assembly time by setting a
conditional in the DC job source. So two versions
may be kept at hand: one that supports all devices
(DCJOB.SPD) and one that supports all but Special
Directory devices (DCJOB.REL). At the other side of
the link a pseudo Magtape handler is available which
behaves like a normal Magtape handler but is much
smaller in size (ca. 180 words),

USING THE DATA LINK

As already pointed out: remote devices are used in
the same way as local devices are used! However,
pseudo-handlers use the DC-handler and this requires
that the DC-handler must be loaded when using a
pseudo handler! When it's DC-handler is not loaded a
pseudo-handler immediately returns a hard I/O error.

A utility HELLO can be used to send a message to the
user at the remote system. It also checks whether
there is a difference between remote and local
date&time. Further it prints which remote devices
are available, the device's characteristics such as
size, identifier (helps you to "see through" logical
assignments at the DC jobs site), etc, and
read/write access to the remote devices. The JBDATE
utility is very usefull in the startup command file
as it copies remote date&time and sets them locally.
When at a site one or more DC jobs have been
started, the JSHOW utility should be run. It
displays the following data:

.JSHOW

JOB Hndlr Nr. I/O Checks Protoc Buffer
requests errors errors size

DCJOBO (O,QJ) 9K 950 0 0 1024 No SP DIR
DCJOBl (l ,DJ) 12K 372 0 0 256 No SPDIR
DCJOB2 (2,DI) not running!

SHOW ALL I r&w I change r&w I exit

507

No Device name

0 DLO:SYSII .DSK
1 DLO:SOURCE.DSK
2 DLO:VER .DSK
3 DLl:ERPROG.DSK
4 DLl:DATBAS.DSK
5 DLl:ERP .DSK
6 DLO:DIPOL .DSK
7 DLl :ER .DSK
8 SY :JBINFO.DAT
9 HL :

10 SP :
11 DLO:
12 DLl:
13 DM :
14 MT :
15 JOB:

iden.

FILE
FILE
FILE
FILE
FILE

FILE
FILE
FILE

377
LP
DL
VM
DM
MT

300

size

4800.
4800.
4800.
4800.
4800.

1200.
1200.

16.
o.
o.

20450.
384.

53724.
o.
o.

Press RETURN to continue

Central device

0 LDO:
1 LDl:
2 LD2:
3 LD3:
4 LD4:
5 LD5:
6 LD6:
7 LD7:

sys 11 /23

Datbas

8
9

JBINFO Mailbox
REL

10
11
12
13
14
15

SP: Spooler
RDO: Remote disk
RDl:
RD2:
MT:
JOB

Mag tape
handler

DCJOBO

R W
R
R
R
R

R
R

N

R W
R W

R
R
R

N

w

R W

characteristic

* FILE *
* FILE *
* FILE *
* FILE *
* FILE *
Not in system
* FILE *
* FILE *
* FILE *
SP FUN
WONLY
FILST SPFUN VARSZ
FIL ST
FILST SPFUN VARSZ
SPECL HNDLR SPFUN
SPFUN

DCJOBl

R
R W
R
R
R W

N
R
R
R W <=
R W <=

R
R
R

w <=

R W
R W <=

Note: R=read, W=write, N=no device

Show all I r&w I CHANGE R&W I exit

Change ?
Give JOB nr. :1:
RC, RS, we, WS :WS:
Device no.(0-14):13:

Change
Give JOB nr.

Show all I R&W / change r&w I exit :EXIT

With this utility the read and/or write access to a
device for a certain job can be changed. The number
to the left in the device list is the DC channel
number (also RSP unit number). Note that although on
RSP unit no. 12 the device DLl: is specified, this
device in fact is the VM: disk ! This is because the
logical assignment ASSIGN VM DLl has been made
before the DC jobs where started!

A job is simply stopped by aborting it:

.ABORT DCJOBl
• UNLOAD DCJOBl

508

SPECIAL FEATURES

One special feature is using a remote disk as system
disk. When a remote disk is made bootable for the
DC-handler (e.g. DC:) and contains the necessary
systems components such as monitor file and
utilities, it can be booted with the standard
command:

.BOOT DC:

The disk may have been made bootable before with the
command:

COPY/BOOT DC:RTllFB DC:

However, it could also have been made bootable at
the disk's site with the command (assume that the
disk's name is DK:):

.COPY/BOOT:DC DK:RTllFB DK:

The ability to use a remote system disk is a very
powerful feature because it allows using memory-only
(or better: no disk!) systems! In order to serve
memory-only systems, the DC job also acknowledges a
boot command. When such a command is received, it
transmits a block of data (256 words, without
protocol header and tail!) : the BOOT program.
Sending the boot command to the DC job can be done
by a small program which has been put in (P)ROM.
However, it could also be typed in (toggle-in boot)
using CPU-ODT available on most machines. When the
BOOT-program is received and activated, it asks a
password. When the correct password has been
entered, it asks the unit number of the bootable
disk, fetches the bootstrap from that disk and
activates it. RT-11 will then come up. When using a
disk data cache also multiple systems can use the
same (remote) system disk [3,4].

Another feature is parallel processing. By this is
meant that data are transferred from the memory of
one system directly to the memory of another system.
The data can then be processed in parallel by both
systems. This feature is realized by using a special
purpose, internal queuing, handler (refer to:
"Internal queuing handlers" in Chpt. 7, RT-11
Software Support Manual). This special purpose
"parallel" handler can accept a next write request
before a previous read request is finished [l].
Therefore this handler can transmit data from a
buffer within one job to the buffer of another's
job.

Display in detail of the activity of a DC job can be
realized using a device I/O logging&display package
[3]. The packets transmitted and received can in
this way be monitored by selecting the job-handler
as the device under investigation. The I/O display
is activated by loading a special handler and
running another system job (SHOWIO or LOGG). Also a
test version of the DC job may be generated. This
job prints a "C" for each command-packet received, a
"R" for each data-packet received, a "S" for each
data-packet transmitted and an "E" for each
END-packet transmitted. After an "E" the next
characters are printed on a new line •

Not a feature but more a problem is that of "job
blocking". As the DC job runs as Foreground or
System job, it runs at a higher priority than the
Background (BG) job. This may be one of the causes

that intermittent problems occur when the BG job
does high speed A/D cuuversion, while the Foreground
is also active. The A/D converter may report errors
and samples may be lost. In such a situation it
would be desired to block the DC jobs until all time
critical activity of the BG is stopped. Until now
RT-11 has no provisions for such a facility.
Therefore the following "trick" is used. A set of
subroutines, to be used in a BG program, can
block/suspend, unblock/resume DC jobs. When job
blocking is required a "no wait" .SPFUN request is
send to the job-handler. When the job-handler
receives this request, it accepts it but does
nothing. This means that no other I/O requests,
those from the DC job, can enter the job-handler and
the DC job is thus blocked. The BG can in the
meantime process it's critical tasks. When the BG
wants to resume the DC job it aborts the "hanging"
.SPFUN request. The DC job I/O requests can now
enter the job-handler and so can resume it's
activity.

INSTALLATION OF THE SOFTWARE

First of all the DC job programs DCJOB.REL and in
case of special directory support DCJOB.SPD, the
utilities and pseudo-handlers are copied to the
system disk. The DC jobs and utilities may also
reside on another available disk unit. The
pseudo-handlers may also be renamed to a more
appropriate name. The DC and job-handlers should be
inspected for having the correct I/O page and vector
addresses. There is also an option, selected by a
conditional, for disabling the checksum calculation.
When disabled, a fixed bit pattern is transmitted,
instead of the checksum, as the tail of each packet.
When a packet is received the bit pattern is
checked. Although this procedure assures some
minimal error detection, data corruption within a
packet is not noticed. However, in practice, there
are many physical data links which show up seldom an
error. And when it occurs, it comes in bursts so
that these errors are detected in any case. When the
handlers are assembled (with system conditional file
SYSGEN.CND) and linked they are copied to the system
device.

The DC jobs require that a list of devices is
available to which they should open I/O channels at
startup. They expect to find this list within the
job's data file SY:JBINFO.DAT • Within this file
further are stored: default read/write access
settings (may be changed while DC jobs run with
JSHOW), which channel is the message channel and
which reserved for Magtape, a list of the names of
available job-handlers, bootstrap programs for
memory-only processors and the mailbox.

The file SY:JBINFO.DAT can be created and the data
in it are set by the program JOBS. All the
modifiable data mentioned above (device&job lists,
read&write default access), are stored in a readable
format in the file JOBS.CND. Using an editor they
may be changed to the appropriate values. Then JOBS
should be assembled, linked and run once. During the
assembly phase JOBS.CND is read and processed.

509

PERFORMANCE

The performance of the data link was measured for
all hardware types. For this purpose a dummy handler
was constructed comparable to the null-handler
(NL:). This dummy handler immediately satisfies any
I/O request that it receives, but does not perform
any data transfer from or to a buffer. Data were
transmitted in records of 1024 words (4 disk
blocks). As the protocol allows the transfer of max.
2S6 words/packet [1], four data packets are
transmitted for each record. Before these packets
are transmitted a command packet is send and after
the four data packets an End packet is received. The
throughput rates in the table are effective rates.
This means:

including the protocol overhead just described,
+ transfer from memory to interface by DC handler,
+transfer over the cable (20 m.),
+ transfer from interface to buffer of DC job,
+ 6 I/O requests by DC job to interface handler,
+ 4 I/O requests to dummy when buffer job is 2S6 w.
(1 I/O request to dummy when buffer job is 1024 w.)

TRANSMISSION RATES in Kw./s.

No checksum Checksum calculation

Buffer: 1024 2S6 1024 2S6

Qnector:

11/23 3S.7 31.3 22.7 21.3
+ (30) (28) (SS) (SO)

11/23

WB(V)-11:
12.3 11.8 11.9 11.6

11/34 --- (60) (60) (73) (73)
+ I

11/23 --- (74) (74) (86) (86)

DR-11: ---
11/34 16.7 lS.9 14 .7 14.3

+ (92) (88) (94) (92)
11/34

Note that in the table the machines linked, differ.
The PDP 11/34 is in many respects about 20% faster
than the LSI-11/23. The Qnector was not set to it's
highest speed because of high bus load. However, at
it's highest speed a throughput rate of 67.2 Kw./s.
(= 1 Mb.) was measured. The hardware specifies max.
2SO Kw./s. (= 4 Mb.). Therefore it is demonstrated
that the often impressive throughput rates specified
by manufacturers do n~tell much about the effective
throughput under software control! The values
between the pharenthesis give the CPU load in %
during the transmission at the DC handler side. The
CPU load at DC job site shows nearly the same
values. Note that these values apply to the test
situation! Under "normal" circumstances, where I/O's
have to be processed by devices, the CPU load
measured is considerable lower (20-40%) !

CONCLUSIONS

A collection of programs and handlers realises
multiprocessing and high speed data communication
with RT-11. Remote devices are used in the same way
as if they were local. The well-structured software
allows all type networks to be setup. Low cost as
well as high performance hardware is implemented.
Moreover implementing new hardware is a relative
small task as only two handlers have to be coded.
Cheap memory-only systems can be put to work due to
boot capabilities.

510

REFERENCES

1. Haenen, H.T.M.
"A Modular Data Communication Package Providing

a Multiuser Environment and Parallel Processing"
Proceedings DECUS EUROPE
Coventry U.K., Sept. 1982, pp. 81-88

2. The "Radial Serial Protocol (RSP)".
Microcomputer Interfaces Handbook. DEC 1980, p. 640

3. Haenen, H.T.M.
"Disk Usage Analysis and Disk Data Caching
under RT-11"

Proceedings DECUS EUROPE
Zuerich, Switzerland, August/Sept. 1983, pp. 247-252

4. Haenen, H.T.M.
"The Disk Data Cache under RT-11"
Proceedings DECUS U.S.A.
New Orleans, Louisiana, May 1985

RSX 11 ~;lfSTJ:.:M MANAGEMENT, A BEGlNNEH' S PERSPECTIVE

Arnold Scott De Larisch
Florida Atlantic University

College of Engineering
Department of Electri.cal Engineering

Boca Raton, FL 33431

Tilis paper is written with the new system man­
aaer' s needs in mind. Topics include creating new
u~er· disk.s, making use of SYSLOGIN.CMD file facili­
ties, tailoring a system to provide a more user
friendly environment, controlling sy:.;tem access on
dial-in lines, and providing safe use oi privileged
accounts by system operators.

1. CRf::ATIN(; NEW USER DISKS

One of the first post-sysgen
necessities on most systems is the
creation of publi.c: disks. '.L'his process
has several steps and requires the sys­
tem manager to make several important
decisions. The process star· ts with the
formatting of the disk pack. All r,r?w
packs should be formatted to insure the
media's integrity. The task responsi­
ble for the formatting process is
called FMT. FMT writes a complete
header for each sector of the volume
and then by default the address con-­
tents of each sector header is
verified. The FMT utility as well as
some other privileged tasks can be very
hazardous to a working system. If a
disk is spinning and not allocated, any
user can run FM'l' on the pack and des-·
troy its contents. 'l"'herefore great
care should be taken when using the FMT
utility.

There are various switches avail­
able from which to choose many options.
The /WL'I' switch (which stands for Write
Last Track> is one such option. This
is where the Manufacturer Detected Bad
Sector File <MDBSFl is located. When
formatting DL type devices this switch
is manditory and is also highly sug­
gested for use with DM and DR type
devices. The /WLT switch requires a
decimal serial number. If you have
your disk packs under a service con­
tract it is very important that you use
the serial number located on the bottom
of the disk pack when employing this
switch. The /BAD switch which attempts
to spawn BAD from FMT should not be
used when formatting a disk pack. BAD
is a privileged utility which can be
very dangerous if left installed on a
system.

Proceedings of the Digital Equipment Computer Users Society 513

The next step in preparing a user
disk pack is to run the BAD utility on
the disk pack. DAD is used to test
disks for unreliable blocks and updates
the last track information about the
bad blocks. It writes to another last
track file called Software Detected 1lad
Sector File {SDBSFl. Both the SDBSF
and the MDBSF are used when the IN!
command is used to create the
[0,0JBADBLK.SYS file. Normally the /Ll
switch should be used with BAD, this
lists the location of the bad blocks on
the terminal. ft should be noted that
BAD does not prompt you before writting
on the pack as F'MT does, so extra care
must be exercised when using this util­
ity.

The final step in creating a user
pack is to use Ini.tvolume command which
creates a FILES-11. also known as ODS-1
IOn Disk Structure level ll, format on
the disk pack. 'I'he INI command des­
troys all existing files, writes a
dummy bootstrap, writes a home block
and finally builds a directory struc­
ture. A required parameter is the
volume label which is used as the pass­
word when MOUnting the disk pack. The
label should normally not be public
knowledge since private volumes could
be mounted by others if the volume
label is known.

As with the other utilities there
are some switches which should be con­
sidered by the system manager when
u~> ing INI. The one switch which can
qreatly effect the disk performance is
the /INDX switch. This switch speci­
fies the location on the disk pack of
the index file, the storage allocation
file and the Master File Directory
<MFDJ. In general, the index file
should be placed in the middle of the
volume which is the default location.
The only noteworthy exception to this
occurs on small volumes such as floppy
disks in which maximum contiguous space

Anaheim, California- December 1985

2.

is sought. In the latter case eilh~r
the I INDX~BEG Ot" I INDX 0:END shoul<j l)e
used. Furthermore, when initiaJizinq :1
new volume, careful consideration mu:;t
be macle with the defa.ul t file pro tee
ti on. The
/FPRO=[Syslem,Owner,Group,WorldJ swit~h
shuuld be used to modify the default
settings. The default access mask used
when creating a new file on the volume
is Read, Write. Extend and Delete pri ·
vileges for the System, Owner, and
Group. In addition the Read privilege
i.s q-iven to the World class, which is
unsuitable for many settings including
the university environment. Since
users in the same course are generally
placed within the same group there is
nothing stopping one student from copy­
ing or deleting anothers files.

CRE.:ATING A SYSTEM INDIRECT
DIRECTORY

COMMAND

The indirect command processor (@1

is a rather powerful programming
languaqc available to RSX11-M/M-PLlJS
users. If vou are in a development
environment, ~ou have probably created
manv useful command files. There is an
easy way to have a system-wide indirect
command di rectory which would lw
searched whenever a command file was
not found in a user's local User File
Directory (UFUI. A system-wide
Indirect command directory also allows
easy wild-card copying when transport
inq to a new disk after a new sysgen.
It.also reduces unnecessary duplication
of command files, eliminates typinq
device and UFD specifications, ancl
allows easy updating of command fi.lE:'s.

To incorporate this feature the
build file El, 24JICPBLD.CMD must be
slightly modified. The command file
search begins in the user's own UFD and
concludes in SY:[l,54J. 'l'o change the
default from SY:[l,54J to another Uf'JJ
one needs to simply decide which UFD is
to be used on the system disk (thats
the disk assigned to SY:>. This Ui:'D
needs to be conv~rted to an octal
representation of the binary bit pat ·
tern of the Group and Member number.
For example, if we wish to use Ll,3J
for the directory the following pro
cedure can be used.

The group and the member numbec­
can each be represented in an 8-bit
binary pattern as indicated below.

0 000 000 100 000 011
G GGG GGG GMM MMM MMM
0 0 0 4 0 3

Binar"y
Group/Meml;ct~
Octal

514

3.

Invoke SYSGEN3 to rebui. ld I CP
Edit [l,24JICPBLD.CMD
Find the line GBLDEF=D$CUIC:l
Change to new UFD GBLDEF"D$CU1C:000403
Do not forqet to run VMR to
REMove ... AT. and
INStall U.54J1CP/TASK= ... AT.

REBUILDING DCL TO FALL THRU TO MCR

To gain the most flexability from
the Diqital Command Language <DCL> it
should be modified to allow unrecoq­
nized commands to fall through to the
Monitor Console Routine (MCRI I Command
Line Inter.perter ICLII. The modifica­
tion needed to patch DCL involves once
aqain invoking L200,200JSYSGEN3. Only
t~is time DCL must be rebuilt and the
CMD file must be edited. The build
file to be modified is
LL24]DCLBLD.CMD. Search for the glo,·
bal definition GBLDEF=D$$CAT:O and
change the O to a 1 to enable fall
through. Please note that when
rebuildina this task the command file
must taskbuild DCL twice which will
take a fair amount of time Ion an 11/24
with RK07s it takes about an houri.
After the taskbuildinq is done, you
need to run VMR and REMove DCL and
INStall the new version. Do not forget
that the INStall must indicate that the
task is a CLI thus the command would
be:

INS [l,54WCL/TASK= ... DCL/CLI=YES.

Please note that there are some
commands which appear in more than one
CLI with different syntax. For example
the SET command is valid for both DCL
and MCR so if the the user types SET
/NOBRO=TI: from DCL it will return
with a syntax error and not pass
through to MCR since the SET command is
valid for DCL. To use an MCR command
from DCL you must prefix the SET with
an MCR (i.e. MCR SET /NOBRO=Tl:l.

To give further functionality and
convenience to your users a catchall.
program called TDX can be installed.
TDX give several new commands and
allows "flying installs" from a disk.
This can free up valuable pool space
since task headers are not in pool
until the program is requested. Refer
to the RSX-llM Release notes and Sysgen
manual for further information.

4. CONTROLLING DIAL-IN ACCESS

Havinq a modern connected to any
systern leaves it open to "hackers" who
have nothinq better to do than to try
to qct into your system. There are
0;everal ways to deal with this problem.

The e11~;iest: way to remove the• threat of
outside intruder·s is to remove the
modem. This. however. is gern::•rally not
an acceptable action. Anotlwr approach
is to write a security CLI which
requires a password to even get to
enter· <1 command line requesting HELLO.
Still another approach is to use
[l,2JSYSLOGIN.CMD file to restrict
access to the system. The mere exis··
tance of this file causes HELLO to
invoke it, thus setting various parame·
ters and terminal attributes. This
happens after the intruder has given a
valid username and password. The ter
minal attributes are then immediatlv
set to slaved and privileged as well as
having the MCR CLl forced on the termi­
nal. This allows the system to execute
privi.leged command~; in a controlled
manner. Further·more there is a parame ··
ter called <LOCAL> which is set false
if the line is a remote lmodeml line.
At this point you can ask for a pass­
word to further verify the person's
identity. A simple example follows:

.ENABLE SUBSTITUTION

.ENABLE QUIET

. DISABLE DISPLAY

.ENABLE CONTROL-Z

. IFT <LOCAL> .GOTO NMOD

. SETS PAS "XXXXXX"
SET /NOEC!IO-=TI:
.ASKS PAS MODEM PASSWORD
SET /ECHO=Tl:
. IFT < EOF> . SETI' CTRLZ
. IF'l' CTRLZ . SETS PAS " "
. IF"J' CTRLZ .GOTO BADPAS
. IF PAS = "PASSWORD" . GOTO NMOD

. BADPAS : . Dl SABLE QUIET
;*** BAD PASSWORD ***
BYE
.EXIT

. NMOD: . IF PS ""· "P" .GOTO SLAV
SET /NCJPRJV=TI:

. SLAV: . IF PG "' "S" .COTO OVEH
SET /NOSLAVF>TI:

.OVER: CLI /UNOVR
.EXIT

The command file tests <LOCAL> and
skips all the modem restrictions if
true. The r·outine from .NOMOD:
through .OVER: is necessary for the
SYSLOGIN.CMD. Variable PS indicates if
the user should be privileged whereas
P6 indicates if the terminal should be
slaved. Finally, the CLI's override
bit is cleared which allows the default
Command Line Interperter to be invoked
instead of MCR. If the terminal is a
remote line, the user is prompted for a
password.

If the password is correct the
terminal is logged in like any local
terminal, otherwise a bad password mes­
sage is displayed and the user is
logged out. This should eliminate most
modem line security difficulties.

515

This is just a small sample what
can be done in the [l,2JSYSLOGIN.CMD
file. I sw:rgest some caution when ini­
t:ally making the file since all
terminals_are initally slaved al login.
Ii there is a syntax error prior to the
code which sets the terminal to nos­
lave, there is no way of logging back
on to the system. So you should always
keep a second privileged terminal
logged in when ever workinq on the SYS­
LOGIN. CMD file so you can unslave the
terminal incase of difiulties.

AN EFFECTIVE USE OF SLAVED ACCOUNTS

One of the least used but most
powerful security techniques is the use
of a slaved account with a LOGIN.CMD
file. Basically speaking, a slaved
account is unable to accept unsolicited
input. This allows controlled access
to the command line interpreter. Thus
operator accounts which need privilege
to effectively do their work can be
given access only to those commands and
utili.ties in which are needed. Simple
menu driven command files can be qen-·
erated without a great deal of eff~rt .
A simple addition to the end li.e .
before the exit) of [l,2JSYSLOGIN.CMD
will allow a local LOGIN.CMD to be exe­
cuted.

. SE."I'S FILE Pl+P2+ "LOGIN. CMD"

.'I'ES'I'FILE 'FILE'

.IF <FIL.ERH> = 1 .CHAIN 'FILE'/LO

. IF' P6 = "S" .XQT BYE

.EXIT

The proceeding is an example of such
code .

Within the user's UFD
called LOGIN.CMD is executed.
is as follows:

.DISABLE DISPLAY

.ENABLE CONTROL-Z

.ENABLE DECIMAL

.ENABLE SUBSTITUTION

.OPEN TI:

a file
A sample

.OPTION: .DATA OPERATOR COMMAND FILE
.DATA 0 EXIT
.DATA 1 SHOW USERS
.DATA 2 S~'T TIME
.DATA 3 SHUTDOWN

.START: .ASKS CMD ENTER NUMBER >
. IF"I' <EOF> . GOTO OPTION
.TEST CMD
.IFF <NUMBER> .GOTO OPTION
. ONERR OPTION
.GOSUB 'CMD'
.ONERR
.GOTO OPTION

.0: .XQT BYE
.EXIT

.1: DEV /LOG
. RE.''l'URN

.2: .ASKS HR ENTER TlME HH:MM:~3S >
TIM 'HR'
.RETURN

.3: .XQT $SHU'I'UP
. RE''I'URN

Once again this general slaved
account concept can be expanded upon in
many ways includinq· addi.ng an error·
trapping routine or even maintaining a
audit trail of all commands entered.
Using slaved accounts allows the system
mana.ger to minimize costly syntax
errors typed by system operators. This
concept can also be extended to gen­
erate captive demonstration accounts
and even menu driven accounts for occa­
sional users who are not DCL syntax
experts.

As you can see from these few
examples, RSX-11 allows a great deal of
flexability which allows the system
manager to tailor the system to the
needs of the uset·s. This flexability
may be a little difficult tor a new
system manager to quickly grasp, but it
is worth the time and effort learning
these techniques.

516

ETHERNET DATA-ACQUISITION AND CONTROL SYSTEM*

Paul Elkins, MS H821
Los Alamos National Laboratory

Los Alamos, NM 87545

An ETHERNET data-acquisition and control system has been de­
veloped for use on the RSX operating system. This system sup­
ports supervisory control, closed·-loop control, data monitor­
ing, and data recording. An RSX driver has been written for
the DEQNA ElHERNEl controller for use with this system.

INTRODUCTION

The Fusion Materials Irradiation Test (FMIT) con­
trol system 1 is a distributed system consisting of
12 nodes connected by ETHERNET.2 The communication
protocol used is locally defined and does not ad­
here to any of the current network standards. A
list of all computer nodes in this system is shown
in Table l. Supervisory control of the FMIT line­
ar accelerator is the primary function of this sys­
tem; however, it also provides for monitoring of
remote equipment, data recording, plotting, alarm
reporting, etc. The system can be divided into two
levels; the upper level uses the RSXllM (disk-based)
operating system, whereas the lower level uses the
RSXllS (memory-resident) operating system. Also
in the lower level there is one node used as a
Falcon system development node. The Falcon sys­
tem will be discussed later in this paper.

TABLE l
NETWORK NODES SHOWING CPU AND SYSTEM TYPES

2
3
4
5
6
7
8
9

10
11
12
13

CPU

11 /60
11 /23(KDFll -A)
11 /23(KDF 11 -A)
ll/23(KDF11 -A)
11 /23(KDF 11 -A)
11 /23(KDFll -A)
11 /23(KDF 11 -B)
11 /23(KDFll -B)
ll/73(KDJ11-A)
11 /73(KDJll -B)
11 /21+-
ll /23(KDFll -A)

RSXllM
RSXllS
RSXllS
RSXllS
RSXllS
RSXl ·1 S
RSXl l M
RSXllM
RSXllM
RSXllM
Falcon
RSXllM

The functions of the various RSXllM nodes provide
for program development, data analysis, control­
console operation, and dedicated computing that is
concerned with determining beam quality and posi­
tion.

The two control consoles are identical and are used
to remotely control the accelerator. Each console
consists of the following equipment: a color­
graphic scope with an overlaid touch panel and a
set of four control knobs and their associated
plasma display panel that is also touch sensitive.

*work supported by the U.S. Department of Energy.

Proceedings of the Digital Equipment Computer Users Society 517

The graphics scope displays menus, schematics, tab­
ular data, plots, etc.; the overlaid touch panel
selects new graphic displays, knob displays, and
may be used to control remote equipment. Control
knobs are used to adjust remote equipment. An op­
erator assigns a knob to a piece of remote equip­
ment; each time the knob is turned, the correspond­
ing knob counts are sent to the appropriate equip­
ment connected to a remote computer node. The
plasma display panel is a 24-column by 12-line dis­
play that displays data and turns equipment on or
off through its touch-sensitive surface.

The instrumentation nodes are CAMAC 3 based and each
has an LSI-11/23 (KDFll-A) processor plus 124K
words of memory. These systems all run the RSXllS
operating system down-line loaded from a central
host. Each performs a surveillance (limit-checking)
function, certain node-specific processes, and al­
lows for some limited amount of local operator in­
teract ion through the console terminal. These
nodes also process remote requests, such as those
originating at one of the control consoles.

ETHERNET DRIVER

An ETHERNE1 4 driver was written for the DEQNA Q-bus
ETHERNET controller module to enable connecting the
various nodes listed in Table l. Two versions were
written: one for the RSX operating system and one
for stand-alone systems used on single-board com­
puters (SBC) such as the Falcon (SBC-11/21). Both
drivers use the same formatted packet shown in
Table 2 and can therefore communicate with each
other. All protocol fields and many other parame­
ters are defined in a set of macros contained in a
macro library called XQMAC.MLB.

TABLE 2
PACKET FORMAT

Field name
Destination address
Source address
Type
Word count
Destination task name
Source task name
Subtype
Sequence
Data

Field size (bytes)
6
6
2
2
4
4
2
2

32-1486

This driver is intended to manage all ETHERNET
traffic for a given node; therefore, it must never
appear busy to the system. It should always be

Anaheim, California- December 1985

ready to receive and dispatch packets to waiting
tasks or to save them in its internal queue if a
QIO request is not currently pending. Typically,
a task will have a read QIO posted, but in a normal
control-system environment it may receive one or
more messages while it is processing the current
request. That is why the driver tries to save all
incoming packets until they are requested by the
owning task.

The driver occupies 4K words of memory; however,
the code only uses about l.5K, and the last 2.5K
is for storing incoming packets until they can be
dispatched to the appropriate receiving tasks. De­
pending on network traffic, if a packet is not re­
quested it may eventually have to be flushed to
allow the hardware to reuse the data buffer, which
is accomplished by passing the packet to a system
task that prints out the header portion of the
packet on the console log device and thus frees the
buffer for reuse.

The driver must be built for each node it is to be
used on and requires three modules for this opera­
tion. The first two are standard RSX items and are
the driver source code and its database; the third
module is a file (NODEX.MAC where X is the node
address) that defines the node's 14 possible ad­
dresses. The driver departs from standard ETHERNET
address protocol and uses only the sixth byte po­
sition to indicate a physical address; however it
does support broadcast and multicast modes. If the
byte (in file NODEX) is positive, it is considered
to be a physical address. This condition imposes
a limit of 127 nodes for a system, which is suffi­
cient for most control systems. If the byte is
equal to -1, it is considered to be a broadcast
address; if it is negative but not equal to -1, it
is a multicast address. The driver uses the infor­
mation in this file at power-up to initialize the
DEQNA's address fields.

SEND PACKET

A task sends a packet by posting a write QIO after
ensuring proper formatting of the packet. The
driver first checks the packet for proper size; if
it is too large, the packet will be rejected and
the appropriate error code returned to the caller.
If it is too short, its length will be simply in­
creased to conform with the minimum ETHERNET pack­
et size. After all packet-length checks are suc­
cessfully completed, the preformatted packet will
be transferred directly from user task memory
through OMA hardware to an on-board RAM; at this
time, the actual transmit operation is initiated.
When the transmit operation is complete, the task's
event flag will be set and its I/O status will be
updated if these parameters were specified in the
QIO that requested the send. The driver only ini­
tiates one transmit at a time and will not start
the next transmit request until the last one is
complete.

REC EI VE PACKET

A task receives a packet by posting a read QIO; if
a packet is waiting for the task, it will appear
as an immediate transfer. If a packet is not wait­
ing, the transfer will take place whenever a packet
arrives for that task. In any event, at the com­
pletion of a receive-packet transfer, the task's
event flag will be set and its I/O status will be

518

updated if specified in the receive request. If a
packet arrives with errors, they are categorized
and counted, but a packet containing errors is
never transferred to a user buffer. Priority is
given to packet receiving over transmitting, where
appropriate. In actuality, when a packet arrives,
the driver finds the end of it (it may span several
data buffers) and saves all status information and
then makes an entry in the driver-receive queue.
Each entry is four words and contains a link word,
buffer descriptor pointer, and the receiving task's
name. The entry is placed in the driver-receive
queue to minimize the search time required when
trying to match multiple received packets to multi­
ple tasks. This procedure also makes it easy to
flush a packet, if this should become necessary,
by merely changing the task name in the driver­
receive queue.

GET STATUS

A get-status request is initiated by issuing a QIO
to get-link information (GLI) and a byte count. A
task may get its node address by issuing this call
with a byte count of 2, or may get all status in­
formation by requesting 30 bytes. The remaining
28 bytes consist of a count of all error-free pack­
ets sent and received, plus all hardware errors
reported by the controller. The errors are divided
into transmit and receive errors. A slight varia­
tion of this call allows a program to get the link
information and to clear the error counters. This
call is used by network-management tasks to read
and clear network-error counters.

SYSlEM SERVICE

A minimum set of system services are required to
make a distributed network useful. The services
supported by this system are as follows:

Program communication
Down-line system loading
Operator file transfer
Remote file access
Line watcher

Program communication is provided by the basic
driver using the RSX standard QIO system directive;
however, applications programs usually access this
directive through a user-interface routine.

Down-line system loading is required by most
memory-resident systems such as the RSXllS and the
Falcon systems. This operation requires the coop­
eration of at least one program in each CPU; this
system uses two programs in the host CPU. The
loading process is always initiated at the remote
node (the one being loaded) either directly, by the
operator, or indirectly, by sending a break charac­
ter etc., and thus forcing the execution of an
EPROM-based code called the primary loader. The
primary loader sizes and tests memory and requests
the initial load from the host CPU. A fresh copy
of the loader task is spawned so that multiple
nodes can be loaded simultaneously. At the comple­
tion of the load process, the system is automatic­
ally started.

Operator file transfer is provided, allowing an
operator at one node to transfer files to or from
a remote node. The SYNTAX is a subset of DECnet
and an example of transferring a file to a local

node follows:

NFC =NODE::[UIC]FILENAME.EXT

A file can be transferred to a remote node by en­
tering the following:

NFC NODE::=[UIC]FILENAME.EXl

Remote file access is a by-product of the operator
file-transfer system's service referred to earlier.
It allows a program to read, write, or create
files in a remote node. Remote access can be by
sequential-, direct-, or block-mode method of
access. Again, when a remote-file operation is
requested, a fresh copy of the remote-file access
code is spawned so that multiple remote-file
operations can occur simultaneously.

A line-watcher task (LWT) was provided to support
the many miscellaneous network functions:

LWl processes remote-connect requests to the
remote-file access and the down-line loader
tasks. This service provides for simultane­
ous operation of multiple copies of these
programs.
Stale packets are flushed to LWT by the
ETHERNET driver. When LWT receives a stale
packet, the header is printed on the console
log.
Get and set local system time are implemented
to allow a task in any node to read and/or
set the system time in any remote node. This
technique is used by all RSXllS nodes to syn­
chronize their system time to the host node.
It is also useful to synchronize all nodes
to a master clock.
Echoing packets for testing is used for
determining the condition of remote nodes.
This is a simple method of testing a remote
CPU and communication hardware during normal
operation.
LWT sends and accepts ID packets and main­
tains the status of any nodes that are
active in the network. This information is
available to any tasks in the node through
the RSX send/receive directive.
LWT can also "get" or "get and clear" local
error statistics, then sends the results to
a remote node. This capability allows a task
to read and/or clear a selected set of error
counters in remote nodes if desired during
testing operations.

FALCON SYSTEM

The Falcon system was developed to satisfy a need
for a simple, efficient computer system to be used
at the data--acquisition and control level, in a
distributed network environment. Most tasks re­
quired at the lower level of such a system are not
very complex and therefore do not require a sophis­
ticated operating system; in fact, more emphasis
should usually be placed on performance. A system
of this type needs to be able to handle a wide
range of CAMAC 1/0 modules that are most easily
handled by using a set of hardware modules (HM)
(software subroutines) for the more complex types.
Many modules (if well designed) can be accessed by
a single command such as reading an ADC, easily
handled by including the necessary command in the
channel database record. More complex modules can
sometimes be accessed through a string of commands

519

in the database that defines a particular module.
This same approach can be applied to equipment mod­
ules that are a collection of HMs connected to the
remote equipment. The objective here is to develop
a general system that is database driven, requiring
few if any changes as the project develops.

A major program, developed for this system, is a
surveillance program. It is responsible for scan­
ning its database list(s) of channels, checking for
out-of-limit conditions, and (if found) reporting
them to a designated host. The channels are all
accessed using only the information in the database
and a set of macros developed for accessing CAMAC.

Two programs required (not currently developed) are
a remote request handler and a local process mod­
ule. Both programs are driven by command strings,
the first from a received packet and the latter
from strings in its node database. Primarily,
these programs include calls to system functions
such as read or write to a channel, wait for an
operation to complete, etc.

A set of HMs is required for a few, more-complex
module types; however, all CAMAC accesses are made
through the CAMAC macros, which makes the system
independent of a particular manufacturer's CAMAC
controller.

The Falcon system is a memory-resident (can be
EPROM based) multitasking system with a linked­
list, active task list (All). It supports the ex­
ecutive and data-buffer pools, which are simply two
sections of pool, each composed of different but
fixed-length blocks. The executive pool is used
by the system for building executive lists such as
the All and the delayed task list (Dll), but is
also available to programs for temporary use. The
data-buffer pool is used by the XQ driver for
storing ETHERNET messages, and their length is as
specified for the ETHERNET driver (64 bytes at
present). The data-buffer pool may also be used
by programs for building up reply messages, etc.

The Falcon-system services allow for requesting a
program, requesting a program and passing arguments
to it, or delaying a program. When a packet is
sent to a program, it is requested by the ETHERNET
driver along with its arguments, that is, the re­
ceived packet. The program can request a packet
transfer to its own buffer or, if the packet fits
in one data buffer, it can be used as is without
the need for transfer because the driver merely
gets another buffer from pool. The delay function
saves RO-R5, along with the program restart address;
at the end of the specified time interval, the Dll
block is inserted into the ATl. The task is now
ready to run if another task is not running; in any
event, when the task runs, its registers (RO-R5)
will be restored first. This allows a task to be
re-entrant; therefore, many copies of the same task
may be running at the same time. This capability
is particularly useful if a task needs to execute
for awhile and then wait for some event to occur.

The ETHERNET driver is functionally equivalent to
the RSX driver; however, because all of the memory
is addressable by all tasks and the system, some
simplifications are possible. One is that there
is no need for a task to post a receive; the driver
simply makes an entry in the ATl along with the
packet address for each received packet, which will

result in the task running when it reaches
the head of the All. Also, this mode of
operation allows more than one request to
be outstanding for the same task. Another
simplification allows the task to use the
buffer where it arrives, instead of trans­
ferring it to a local buffer.

6 -

These services, along with numerous sys­
tem subroutines, make it fairly easy to
create applications on the Falcon.

SYSTEM PERFORMANCE

5

co e 4
>C

-When the Falcon system was first brought ~
on-line, it became apparent that it had a ~
11 real time" feel and would al low an opera- e
tor to control the accelerator easily. ~
Some measurements were made, and they in­
dicated that the system still provided a

2 -

knob update rate of 10 updates per second
at full load. This rate is certainly fast
enough to do the job required by the
system.

0

Performance is always difficult to measure and can
be somewhat subjective. However, some measurements
were made with the network loaded and some with it
unloaded; the results are shown in Table 3 and
Figures 1-5.

TABLE 3
UNLOADED NETWORK RESPONSE FOR 64-BYTE PACKETS

CPU Type System Type Loop Time
Master/Slave ~~ster/Slave __ l!!!ll_ __

11173a - 11/73 RSX/RSX 6.8
11 /60 - 11 /73 RSX/RSX 7.6
11173a - 11/23 RSX/RSX 8. l
11 /60 - 11 /23 RSX/RSX 8.9
11 /23 - 11 /23 RSX/RSX 10.8
l l/73a - 11 /21 RSX/Falcon 5.3
11 /60 - 11 /21 RSX/Falcon 6.1
11 /23 - 11 /21 RSX/Falcon 8.8

aKOJll -BC CPU Module

First, the unloaded network response will be dis­
cussed. To make this measurement, a 11 network traf -­
f i c was removed and all nonessential tasks were
aborted. The remaining network-overhead traffic
had a minor (unmeasurable) effect on response; how­
ever, the individual tasks initiating this traffic
added some CPU loading for the CPUs involved.
These measurements were made with a variety of CPUs
and two operating systems: the RSX system and the
Falcon stand-alone system. All measurements were
made using a master task (packet originator) and a
slave task (ECHOer). The master sent a packet with
an embedded sequence number, the slave received it
and ECHOed it back to the master. The master check­
ed the packet sequence number and sent another pack­
et; at the end of this process, the average loop
time per packet was recorded. All measurements were
for 1000 packets, each 64 bytes in length. The re­
sults from the various tests are shown in Table 3.

Figure l is a plot of three different tests showing
throughput versus packet size in bytes. All tests
used the master/slave relationship referred to ear-
1 ier. Curves l (ll/73s) and 2 (ll/23s) illustrate

200

520

Two 11/73s Stand-alone Macro Codes

* 2
Two 11/23s Stand-alone Macro Codes

* 3
Two 11/73s Falcon/Macro System

* 4
Two 11/23s Falcon/Macro System

* 5
Two 11/73s RSX/FORTRAN System

* 6 Two 11/23s RSX/FORTRAN System

400 600 800 1000 1200 1400 1600

Packet size in bytes

Figure 1. Ethernet performance versus packet size.

the maximum throughput for two individual nodes
using a stand-alone macro program in each. It
should be noted that this test is of academic in­
terest only; it is unlikely that any operating sys­
tem could support this rate. This is really an
indication of the system hardware limit.

Curves 3 (ll/73s) and 4 (ll/23s) were derived using
the CPUs indicated on the Falcon system; even this
low-overhead system significantly reduces through­
put. Curves 5 (ll/73s) and 6 (ll/23s) use two
FORTRAN codes on the RSX operating system in the
master/slave relationship indicated above.

For all tests, it is obvious that (for increased
packet size) the throughput goes up accordingly
because there is some amount of fixed overhead in
both the hardware (controller) and software. When
this overhead is amortized over longer packets, it
has a decreasing effect on the throughput. Also,
as the operating system complexity increases, the
throughput decreases.

Unfortunately, most control systems must operate
with short packets, which is the least efficient
area on any of the curves. Furthermore, control
systems most frequently require a sophisticated
operating system to be able to handle the changing
demands of the system being controlled. Although
the throughput appears small (compared to 10 mega­
bits/s), it is not that small when considering the
volume of data that can be transferred, even at
these reduced rates. For an 11/73 pair for in­
stance, the rate for a 64-byte packet is 140 kilo­
bits/s; for an 11/23, it is 95 kilobits/s.

The tests 5 results shown in Figures 2-4 were
run with all conditions held constant except the
number of CPUs contending for network access.
These tests were run on a fiber-optic (FO) network
consisting of a four-port passive star and a FO
transceiver at the end of each of the four FO
cables. The tests covered by Figure 5 had one

50

40

...
c 30 Cl>
(,) ...
Cl>
Cl.

...
:> 20
Cl. ...
:>
0

10

0
0

Figure 2.

50

40

c
Cl> 30
(,) ...
Cl>
Cl.

...
:> 20 Cl. ...
:>

0

10

Figure 3.

Ideal result

10 20 30 40 50

Input (percent)

Fiber-optic network performance for
10 nodes in percent of bandwidth.

Ideal result

10 20 30 40 50

Input (percent)

Fiber-optic network performance for
eight nodes in percent of bandwidth.

additional difference: they did not use the FO
network but instead used a local DELNI. This tech­
nique was used to determine what, if any, effect
the FO system had on network throughput. Tests
were run with 10, 8, and 6 CPUs vying for network
access. In all cases a master/slave relationship
existed; that is, for the 10-CPU case, there were
5 masters and 5 slaves. As described in earlier
tests, the master originated the packet, sent it
to its slave (ECHOer), and checked it for validity
upon receipt from the slave. If a packet did not
return within a specified time (10 clock ticks or
167 ms), it was marked lost and retransmitted.
During the course of each load test, the number of

521

50

40

...
c
Cl> 30
(,) ...
Cl>

~ ...
:> 20 Cl. ...
:>
0

10

Figure 4.

50

40

...
c

30 Cl>
(,) ...
Cl>
Cl.

...
:> 20
Cl. ...
:>
0

10

Figure 5.

Ideal result

40 50

Input (percent)

Fiber-optic network performance for
six nodes in percent of bandwidth.

Ideal result ~

40 50

Input (percent)

Nonfiber-optic network performance
for six nodes in percent of bandwidth.

CPUs was held constant, with only the packet size
being varied to increase the load. All CPUs for a
given test were started almost simultaneously
(±25 ms) by a test manager program and were run
for 10 s. At the end of the time interval, the
CPUs reported their results back to this test man­
ager program when polled. This information report­
ed back was the number of packets sent and
received, as well as the number of packets lost.
At the conclusion of a test series, the unloaded
input was measured by running each master/slave
pair, without network loading, for each packet
size used during the load test. The packet sizes
used during all of these tests were 64, 250, 500,

750, 1000, 1250, and 1500 bytes for each test
series.

The results shown in Figure 2 were for the case
where 10 CPUs (5 pairs) were vying for network
access. During the 70-s test (7 runs of 10 s
each), 36.4K packets were sent and 140 were lost.
The total input (unloaded) was 40.4% of the
ETHERNET bandwidth; whereas the output was 37.4%,
thus showing a loss of 3% or 300K bits/s. There
was a total of 1459 collisions for this test
series, not one was fatal. The master/slave node
pairs for this test were as follows (refer to
Table l for the CPU type and system):

Master Node

11
10

9
8
2

Slave Node

7
f>
5
4
3

The results shown in Figure 3 depict the case where
eight CPUs (four pairs) are contending for network
access. During this test series (70 s), a total
of 32.4K packets were sent and 44 packets were
lost. The maximum input was 33.9% for an output
of 31.9%, which shows a net loss of 2%, or 200K
bits/s. The master/slave node pairs for this test
were as follows:

Master Node

11
10

9
2

Slave Node

7
8
6
3

The results shown in Figure 4 were for the case
where six CPUs (three pairs) were vying for net­
work access. During this test series (70 s) a to­
tal of 25.9K packets were sent and 26 were lost.
The maximum input was 26.5%, corresponding to an
output of 25.4% for a loss of 1.1%, or llOK bits/s.
The master/slave node pairs were as follows:

Master Node

11
10

2

Slave Node

5
4
3

The results shown in Figure 5 were also for the
case of six CPUs (three pairs) contending for net­
work access. The major difference was that the FO
system was not used; instead, the CPUs were all on
a single DELNI. During this test series (70 s), a
total of 26.0K packets were sent and no packets
were lost. The maximum input was 26.4%, correspon­
ding to an output of 26.1% for a net loss of 0.3%,
or 30K bits/s. Because no packets were lost, the
drop in throughput was due to collisions. The
physical location of the CPUs in the network made
it necessary for the slave nodes to be different
from those in the previous test. They were as
follows:

Master Node

11
10

2

Slave Node

9
8
7

522

It would appear that the major drop in throughput
was due to packet loss in the FO system; however,
this is not totally conclusive. A better test
would be to configure the network using standard
ETHERNET coaxial cable and H4000 transceivers and
repeat the test shown in Figure 2. This type of
test could not be done because of lack of standard
ETHERNET equipment. It also appears that the
packet loss increases with increasing load (see
Figures 2-4), which is what one would expect.

CONCLUSIONS

This system has met or exceeded our requirements
for speed of response and system flexibility
(expandability). Our control-knob update rate of
10 per second under full load is certainly fast
enough to give a real time feel for accelerator
operation. It would appear that future systems
would use ll/73s and Falcons, where possible, to
improve system response. Also the FO system should
be improved or replaced with a standard ETHERNET
coaxial cable system. With an ETHERNET system,
nodes can be added easily as requirements arise;
this capability facilitates adding new functions
or splitting off functions from an existing over­
loaded system. The ETHERNET system should be
easily upgraded to any new bus or ring network
architecture if one should prove to be superior in
the future.

ACKNOWLEDGMENTS

I would like to acknowledge the efforts of the
entire Instrumentation and Control Section of AT-4
(the Accelerator Technology Division Systems Inte­
gration Group at Los Alamos) for their contribu­
tions toward the design and implementation of the
original FMIT prototype control system. Also, I
would like to give special thanks to Jim Johnson
for his encouraging words and continued support
during the process of developing the ETHERNET
system.

REFERENCES

1. R. M. Suyama, D. R. Machen, and J. A. Johnson,
"The FMIT Facility Control System," IEEE Trans.
Nucl. Sci. 28 (3), 2252 (1981).

2. E. P. Elkins, "Use of ETHERNET for the FMIT
Control System," Los Alamos National Laboratory
memorandum AT-4-82:368 (December 27, 1982).

3. "IEEE Standard Modular Instrumentation and
Digital Interface System (CAMAC)," ANSI
583-1975 (Americal National Standards Insti­
tute, Inc., New York, 1975), IEEE Std.
583-1975, published by The Institute of
Electrical and Electronics Engineers, Inc.,
345 East 47 Street, New York, NY 10017.

4. "The ETHERNET, A Lo ca 1 Area Network Data Link
Layer and Physical Layer Specifications," DEC
order number AA-K759A-TK, Version 1.0
(compiled by Digital Equipment Corporation,
Maynard, Massachusetts; Intel Corporation,
Santa Clara, California; and Xerox Corporation,
Stanford, Connecticut. Version 1.0,
September 30, 1980).

5. J. F. Shoch and J. A. Hupp, "Measured Perform­
ance of an ETHERNET Local Network," Communica­
tions of the Association for Computing Machin­
ery 23 (12), 711 (1980).

UPGRADING A USER-WRITTEN I/O DRIVER
FROM RSX-11M TO RSX-11M-PLUS

Al Tyrrill
Digital Consulting

Garden Grove, California

ABSTRACT

This paper describes the modifications that must be made to
an I/O driver written for RSX-11M to port it to an
RSX-11M-PLUS system. It presents an overview of the I/O data
structures for both systems and describes the entry points
that must be implemented and the macros that are available.
It explains how to modify the RSX-11M driver, gives some
driver hints that apply to I/O drivers for either system and
discusses some of the advanced features available for drivers
in RSX-11M-PLUS. It concludes by explaining how to
incorporate the modified driver into an RSX-11M-PLUS system.

INTRODUCTION

Most application programs can be ported from RSX-11M
to RSX-11M-PLUS without modification. In fact, for
nonprivileged programs, the .TSK file from the 11M
system can usually be copied to the 11M-PLUS system
and executed. Privileged programs must be
recompiled/assembled and retaskbuilt, but can
sometimes be executed without further change.

If this is attempted with an I/O driver, however, the
11M-PLUS system will crash, usually when the driver
is loaded or the associated controller or device is
configured online.

This paper describes the changes that must be made in
an RSX-11M I/O driver to make it run under
RSX-11M-PLUS. If it is necessary that a driver run
under either operating system, the changes must be
conditionalized. The conditional assembly symbol
RSSMPL is defined in RSX-11M-PLUS but not in 11M, and
can be used for this purpose.

The remainder of this paper will cover the following.

An overview of the I/O data structures for RSX-11M
and RSX-11M-PLUS.

Required I/O driver entry points and available
macros for drivers.

Modifying the RSX-11M driver.

Driver hints, applicable to either
system.

Advanced features for the support of I/O
in RSX-11M-PLUS.

Incorporating the modified
RSX-11M-PLUS system.

Proceed;ngs ol the Digital Equipment Computer Users Society

driver

operating

drivers

in an

523

RSX-11M I/O DATA STRUCTURES

The database for an RSX-11M I/O driver consists of
these structures.

Device Control Block (DCB) --- ------
The DCB contains the static characteristics of a
device type. It contains information such as the
device name, range of unit numbers and valid function
masks. There is one DCB for each device type a(
they are linked in a list headed by executive symbol
SDEVHD.

Status Control Block CSCB)

The SCB contains the state of a device controller.
It contains the CSR and interrupt vector addresses,
device priority, space for a fork block and the I/O
queue listhead. There is an SCB for each controller.

Unit Control Block (UCB>

The UCB contains the state of a particular
unit. There is one UCB for each unit in the
It contains, for example, unit status,
characteristics and buffer parameters.

device
system.
device

The I/O packet, not part of the driver's database, is
the interface between the application task and the
driver. The executive constructs the packet on
behalf of the task and queues it to the driver. It
describes the specifics of the I/O operation.

Figure 1, below, illustrates the relationship of the
I/O data structures. The DCB has a pointer to the
UCB for the first device (usually unit Q) and also
contains the length of the UCB. Since all the UCBs
must be the same size, the locations of all the UCBs
can be calculated.

Each UCB contains a pointer to the SCB for the
controller associated with that device. There is
also a back-pointer to the DCB. Figure 1 illustrates
the case of two controllers, each with two units.

Anaheim, California - December 1985

1 ~
DCB LIST

~

D£B

UCB see

UCB
IL

UCB see
Lt.

UCB
LL •

Figure 1) RSX-11M I/O Data Structures

RSX-11M-PLUS I/O DATA STRUCTURES

In RSX-11M-PLUS, the DCB, SCB, UCB and I/O packet
exist as in RSX-11M, but with not exactly the same
structure or interpretations. Two new data
structures exist in 11M-PLUS, the Controller Table
CCTB) and the Controller Request Block (KRB).

Certain special situations also require additional
structures. A Common Interrupt Table is provided
when different device types can be attached to a
single controller, as is the case with the RH11/RH70.
A Subcontroller Request Block CKRB1) is required when
a subcontroller can be connected to a controller, as
with the TM02/03 tape formatter. These situations
are discussed in more detail in the section on
advanced I/O driver features in RSX-11M-PLUS.

Controller Table CCTB)

The CTB defines a unique controller
one CTB for each controller type in
are Linked in a List Like the DCBs,
headed by executive symbol $CTLST.
the following.

type, there is
the system. They
the CTB list is

The CTB contains

Two-Letter ASCII controller code. This must be
unique across the system, but can be the same as
the device code in the DCB.

Link to first Interrupt Control Block (ICB). The
ICB is the code block, built within the executive
when the driver is Loaded, that first receives
control when an interrupt for the driver occurs.

Pointer to
references
present Cin
DCBs).

the associated DCB. This pointer
the Common Interrupt Table when it is
that case there will be multiple

List of KRB addresses.

The format of the CTB is illustrated in
of reference 1.

figure 4-15

524

Controller Request Block (KRB)

This structure defines the status of a
device controller. There is one KRB

particular
for each
following
RSX-11M.

controller, and it contains the
information, most of which is in the SCB in

CSR and interrupt vector addresses,
priority, controller index, status.

device

IIO count. This is a measure of activity on the
controller, used for Load balancing with
dual-controller devices.

List of UCB addresses. The address of the UCB for
each device to which the controller is connected
appears in this List.

Pointer to the owning UCB. This is the UCB of the
device for which the controller is currently
performing I/O.

Controller request queue. This queue is used to
queue fork blocks of processes waiting to use the
controller (distinct from the queues of I/O
packets in the SCBs>.

The format of the KRB is illustrated in figure 4-12
of reference 1.

Status Control Block in RSX-11M-PLUS ----
The SCB has a somewhat different format and
interpretation in RSX-11M-PLUS. The CSR and vector
addresses, priority and controller index fields have
been moved to the KRB. The SCB is now the context
for an I/O operation on a unit by a controller.

There will be an SCB for each parallel operation by a
controller that can be occurring, for example,
parallel seeks on disks. In the case where a device
is connected to the system through more than one
controller Ce.g. multiport disk) the SCB contains a
List of addresses of the corresponding KRBs. Figure
4-9 in reference 1 specifies the format of the SCB in
RSX-11M-PLUS.

SCB .: KRB Interrelationships

The relationship of the KRBs and
depending on which of three
apply.

SCBs will differ,
possible situations

1 • When the controller operates serially, as
for example, a printer, the KRB and
contiguous (parts of the same control
See figure 4-14 in reference 1.

with,
SCB are
block>.

2. When the controller operates in parallel, as with
overlapped disk seeks or mag tape positioning
commands, there is an SCB for each unit. The KRB
has a List of UCB addresses and a pointer to the
UCB for which a data transfer operation is
currently occurring. The UCB has a (static)
pointer to the corresponding SCB.

3. When the device
through several
of the addresses
pointer to the
controller.

is connected to the
controllers, the SCB has

of the associated KRBs,
KRB of the currently

system
a Li st
and a
active

The RSX-11M-PLUS I/O data structure relationships are
illustrated by figures 2-1 through 2-4 of reference
1 •

Other RSX-11M-PLUS Changes

The DCB is unchanged from 11M to 11M-PLUS. The UCB
has certain device dependent changes for accounting
and error Logging.

The I/O packet has two attachment descriptor block
pointers added (used by the executive for making a
region containing an I/O buffer uncheckpointable) and
this changes the packet's Length. Drivers that
allocate blocks of pool the same size as IIO packets
in order to take advantage of the fast allocation for
packets of this size will need to be modified
accordingly.

RSX-11M-PLUS Executive Memory Mapping

In RSX-11M, kernel mapping registers 0 thru 4 are
used to map the "resident" executive, which includes
some of the executive code, the resident I/O data
base and the dynamic storage region, "pool". These
cover the Low 20K words of physical memory.

Registers 5 and 6 are used to map I/O drivers, system
routines in the executive commons and privileged
tasks. Register 7 maps the I/O page.

Processors that have separate mapping registers for
instruction and data space have the I-space and
D-space registers overmapped, as RSX-11M does not
support separate I and D space.

In RSX-11M-PLUS, on processors that support separate
I and D space, both I and D kernel registers 0 map
the first 4K of physical memory. Kernel I-space
registers 1 thru 4 map the executive code in the next
16K of memory.

D-space registers 1 thru 4 map the resident I/O data
base and pool, which is Located in physical memory
right above the executive code. The virtual
addresses of I/O data structures in the resident data
base or pool now no Longer are the same as the
physical addresses. Beware when using the MCR OPEN
command!

I and D registers 5 and 6 map the drivers, executive
commons and privileged tasks just as they do in
RSX-11M, and I and D are overmapped. Thus 11M-PLUS
drivers can contain embedded data, just as 11M
drivers do. Both I and D registers 7 map the I/O
page.

The following entry points must be supported by
drivers in both RSX-11M and RSX-11M-PLUS. xx is the
2-character device name in the DCB.

xxINI: IIO initiation

$xxINT: interrupt service routine
(one or more)

xxCAN: cancel I/O

525

xx OUT:

xxPWF:

device timeout

power fai Lure
carry set - controller
carry clear - unit

In RSX-11M-PLUS, the following additional
points can be provided by a driver.

xxKRB:

xx UCB:

xxCHK:

xx DEA:

controller status change

unit status change

block number check and conversion
(for seek optimization)

deallocation
(buffered I/0)

$xxLOA: entry from MCR LOAD command

$xxUNL: entry from MCR UNLOAD command

Controll~r/Unit Status Change

entry

If the controller status is changed with CON
ONLINE/OFFLINE, entry is made to the driver at
xxKRB:. Likewise, if the unit status is changed with
CON, entry is made at xxUCB:. The direction of
change is indicated with the carry bit, as follows.

carry set - online to offline
carry clear offline to online

The driver indicates success or failure to the
executive by storing a value in Location $SCERR in
kernel data space, as follows.

<O - rejection
=1 - success

The driver can return immediately to the executive
via the address on the top of the processor stack, or
can make a delayed return. The Latter is to
accomodate devices Like disks, which may take a while
to become ready <due to spinning up).

In the delayed return, the driver saves the top
address on the stack, then returns immediately to the
next stack address. It then returns to the top
address sometime in the next 60 seconds. The driver
must arrange for its own activation in this interval,
e.g. with a device interrupt or timer expiration.

Block Number Check and Conversion

Certain disk drivers support ordering of disk
accesses so that seeks occur more optimally than the
random order of arrival. This is described in more
detail in the paragraph on advanced RSX-11M-PLUS
features, below. The code at entry xxCHK: must
determine if the operation is a data transfer, and if
so, convert the disk Logical block number to
cylinder, track and sector for the optimization
algorithm.

Buffer Deallocation

A driver that transfers data through an intermediate
buffer is entered at xxDEA: when the data transfer
is complete. The code at this point must deallocate

the intermediate buffer. This is also described in
more detail in the paragraph on advanced RSX-11M-PLUS
features.

MCR LOAD/UNLOAD Entry Points

If it is necessary that a driver be entered when it
is Loaded or unloaded, the entry points SxxLOA:
and/or SxxUNL: can be implemented. The presence of
these global symbols in the driver's .STB file causes
LOAD or UNLOAD to call the driver after Loading or
before unloading. Drivers with these entry points
cannot be Loaded with VMR, because VMR modifies a
system image on disk, not a running system. VMR
gives an error message if this is attempted.

DRIVER DISPATCH TABLE

In RSX-11M, the driver dispatch
4-word structure, containing
initiator, I/O cancel, device
failure entry points.

table is a simple
the addresses of the

timeout and power

In RSX-11M-PLUS, there are two parts
dispatch table. The first part
entry point address List, as shown.

SxxTBL:

Optimization Entry Point
Deallocation Entry Point
I/O Initiation Entry Point
Cancel I/O Entry Point
Device Timeout Entry Point
Powerfail Entry Point
Controller Status Change EP
Unit Status Change EP

to the driver
is a 6 to 8 word

xxCHK:
xxOEA:
xx IN I:
xx CAN:
xxOUT:
xxPWF:
xxKRB:
xxUCB:

The fields for the optimization and deallocation
entry point addresses have negative offsets from the
head of the table and need not be present if the
feature is not used.

The second part is a List of interrupt entry point
blocks. In RSX-11M-PLUS, an IIO driver can support
multiple controller types, and there must be an
interrupt entry point block for each controller type.
The full duplex terminal driver TTDRV (in the
RSX-11M-PLUS distribution kit) services multiple
controller types.

Each interrupt entry point block contains the generic
2-character controller name from the CTB, a List of
interrupt entry point addresses (terminated by a zero
word) and a pointer to the KRB List in the CTB.

The interrupt entry point address List also contains
offsets so that the executive can calculate the
Locations of all the interrupt vectors, using the
address of the first vector contained in the KRB.
Even numbers in the address List are assumed to be
interrupt entry points and odd numbers are offset
codes.

This mechanism is described in detail in paragraph
4.5.1 of reference 1. The driver dispatch table
format is illustrated in figure 4-18 of that
reference.

RSX-11M-PLUS DRIVER MACROS -------
Three macros are provided to simplify coding of
certain tables and interfaces.

526

DOTS - Generate Driver Dispatch Table (DDT)

GTPKTS - Get Next I/O Packet

INTSVS - Interrupt Save
(modified from RSX-11M)

Generate Driver Dispatch Table

The DOTS macro generates a driver dispatch table for
an RSX-11M-PLUS driver. It is Limited to a single
interrupt entry point block and only handles the case
where the interrupt vectors are contiguous. The
format of DOTS is as follows.

DOTS dev, nctl, ints, iny, tbl, new, opt, buf

The parameters have the following interpretation.

dev xx, the 2-character device name from the DCB.

nctl - number of controllers, usually a symbol of the
form x$Sx11.

ints - interrupt entry points. NONE means there are
none, Leaving this parameter blank means there
is one, named SxxINT. Otherwise, a List of
3-character suffixes enclosed in braces is
coded. For example, if there are two
interrupt entry points, named SxxINP: and
$xxOUT:, this parameter is coded <INP,OUT>.

iny

tbl

new

opt

buf

the 3-character suffix of the initiator entry
point, if it is named something other than
xxINI:.

- the name of a UCB address save table to be
allocated. This is the CNTBL from RSX-11M.

- if anything is coded here, the entry points
xxKRB: and xxUCB: are created, and the power
fail entry point is called on both controller
and unit power failures. Otherwise, code is
generated that calls the driver's powerfail
entry point only on unit power failure, and on
a unit status change from offline to online if
the device's UC.PWF (unconditional call at
power fail) bit is set.

- if anything is coded here, the xxCHK:
point address is built into the DDT.

entry

if anything is coded here, the xxDEA:
(deallocation) entry point address is built
into the DDT.

Get Next I/O Packet ----------
The GTPKT macro implements the call to the SGTPKT
executive routine. In RSX-11M, this is done directly
by the user. GTPKTS has the following format.

GTPKTS dev, nctl, nopk, tbl, sue

The parameters are defined as follows.

dev - xx, the 2-character device name from the DCB.

nctl - the number of controllers, usually a symbol of
the form x$Sx11.

nopk - the address to which a jump is taken if no
packet is available or the device is busy. If
Left blank, a RETURN is generated.

tbl - the name of the UCB address save table coded
in the GTPKTS macro. Usually this will be
CNTBL. The macro generates code to save the
UCB address in this table upon returning from
the SGTPKT routine.

sue - anything coded here indicates the controllers
serviced by this driver control a single unit.

Interrupt Save

This macro is coded at a driver's interrupt entry
points. In resident drivers it extracts the
controller index from the PSW, saves R4 and RS, and
calls the $INTSV routine. In Loadable drivers it
just fetches the UCB address from the save table or
the KRB. INTSV$ in RSX-11M-PLUS has a different
format of that in RSX-11M.

INTSVS dev, pri, nctl, psws, tbl

The parameters have the following interpretations.

dev - xx, the 2-character device name from the DCB.

pri - device priority, PR4 - PR?.

nctl - the number of controllers, usually a symbol of
the form x$$x11.

psws - cell for saving the PSW while initially saving
R4 and RS. This is only necessary in resident
drivers and is provided for compatibility with
RSX-11M. It is not necessary at all in
RSX-11M-PLUS, now that register saves without
modifying the PSW are done with JSR.

tbl - the name of the UCB address save table coded
in the GTPKTS macro. Usually this will be
CNTBL. The macro generates code to fetch the
UCB address from this table •

The INTSES macro, with the same parameters as INTSVS,
is used for error Logging devices. DEC disk seek
overlap drivers do not use INTSV$/INTSE$. They use a
different interface which is described in the
paragraph on advanced features, below.

MODIFYING A DRIVER'S DATABASE

The following describes the modifications necessary
to the database of a "conventional" RSX-11M driver,
i.e. one whose controllers operate serially and do
not use special features such as queue optimization,
in order for it to be used with RSX-11M-PLUS. If the
driver is to be used on both operating systems, the
changes will have to be conditionalized on symbol
R$$MPL.

Create the Controller Table CCTB) allocate space
~tti"e"" ICB link,----;;ext----cTB Link and generic
controller name. It can be the same as the device
name in the DCB, but not as any other controller
name. Use the CTB macro to establish the Link to the
next CTB in a resident database CCTB is a no-op in a
Loadable database). Allocate space for the DCB
pointer, the status byte and number of KRB addresses.

Allocate a word for each KRB address. Figure 2 below
is an example of the CTB for a Loadable driver.

CONTROLLER TABLE

.•ORD
CTR
.l'llORD
.. SCI!
.•ORD
.BYTE
.BYTE

0
/UR/
.uROCB
I

L. JCS, LINK TO I 9T !CS
MACRO THAT GENS LABEL
LINK TO NEXT CT!i
L.NAM1 GENERIC CONTROLLEq NA
L .OCR, DCB Ai DORE SS
L.NUM1 NUMAER KR8 l.ODRESSES
L.STS1 CONTROLLER STATUS

•URCTB::
L.KRR, KRB ADDRESS • WORD SURtCO

• SUREND:: END OF tJR OAT&~ASf

.END

Figure 2) Controller Table

Extract Controller Request Block CKRB) - most of the
fields of the KRB will """"'COiiie from the old SCB.
Allocate the KRB and new SCB contiguously, with the
SCB following. The KRB address fields in other data
structures should reference the CSR word
CK.CSR/S.CSR). The SCB address fields in other
structures should reference the I/O queue Listhead
CS.LHD/K.CRQ). Figure 3 below is an example of a
combined KRB/SCB.

KOB

SURKO::

SURSOs:

ANO STATUS CONTROL A LOCK

.BYTE

.KYTE

.BYTE

••ORO

.•ORO

.WORD

.•ORD

.~ORD

.•ORD

.wORO

.WORD

.WORD
• BYTE
.BYTE
.WORD
el'IORD
ef'llORD

PR5
UROSVC/4
o. 0

•s.oFL

UROSAO
0
0
.URO

o, .-2
o,o,o,o

o, lb •
o,o
92.CON
SURKO
0

1 S.PRy, DEVICE PRtO~tTY
; s.vc:r, VECTOR AOOR/4
I S.CON, K.CON1 K,.[QC, CONTROLLER
I INOEXr I/O COUNT
I K.STS, CONTROLLER STATUS
I KR8 LAAEL
1 s.csR, RECEIVE CSR •DOR (XM!T IS
J K.OFF, OFFSET TO UCB Tt8LE
1 K.HPU, HIGHEST PMYS!CAL UNIT
J K.O .. N, OWNER UC8
I URO STATUS CONTROL ~LOCK
I S.LHQ, !10 PACKET QUEUE LISTHEAO
J S.FRK, SFOAK AREA

J EX TIU WORD FOR S • FRK
J S.PK T, I /0 PACl(ET ADDA
J S.CT"4,S.ITM, CURR & INtTL TIMEOU1
J s.srs, s.STJ, CONTROLLF.R STATUS
• s.sT2, STATUS EXTENSION
J S.KRFh KA8 AODRESS
J EXTKA SPACE

Figure 3) Combined KRB/SCB

MODIFYING A DRIVER'S CODE

This paragraph describes the modifications necessary
to convert the code of a "conventional" RSX-11M
driver, as defined above, to RSX-11M-PLUS.

DOTS Macro - replace the handcoded driver dispatch
table with the DOTS macro, as shown.

DDT$ xx, x$$x11, , , CNTBL

Use the UCB save table CNTBL, and delete or
conditionalize the handcoded CNTBL that most Likely
exists in the RSX-11M driver. Figure 4 below is the
expansion of DDT$ coded as indicated.

GTPKTS Macro - replace the call to SGTPKT with the
GTPKTS iii'a'Cr'O, coded as shown.

GTPKT$ xx, x$$x11, , CNTBL, sue

sue = 1 if controller has a single unit
null otherwise

Figure S illustrates the expansion of GTPKTS coded as
indicated.

527

URINI::

'UIHRL::
.WORO
0 WORO
.WORO
.WORD

IJIJT$
iURTRL:: .WORO

.WORD

.WORD

.wnRO

.I.ORD

.WORD
• A!lC II
.wORO
.wniio

ll~CTR: .WORD
tURTAE::.wORD
b553ts: BITB

REQ
b5'B3S: ACS

J'4P
"5552S: RETURN

URINI
IJRCAN
UROUT
lJRPWF

UR,l, ,,ClllTAL
IJRINI
UR CAN
UR OUT
&5533S
0
b5531S
/UR/
SURI NT

~~CN1'8L.:
#UC.PWF,U.CTL!RSl
b5532S
1>5532$
llPPWF

Figure 4> DDT$ Expansion

5GTPKT
IOS

J OEOllEUE NEXT PACKET
I JUMP IF PACKET DEAUEUEO

I
I
I

CALL
ACC
RETURN

GTPKTS UR1l11CNTAL
; WETURN IF NO WORK OR OEVICE

I GET NEXT PACKET
JSR PC1SGTPKT
BCC 655351
RETURN
MOY R51CNTBL

Figure 5) GTPKT$ Expansion

INTSVS Macro - Make sure CNTBL is coded on the
INTSV$/INTSE$ macro, as shown.

INTSV$ xx, PRn, x$Sx11, , CNTBL

The expansion of GTPKT$ coded as shown appears in
figure 6. When the UCB address is fetched from
CNTBL, one instruction is required. When the UCB
save table is not used, the UCB address is fetched
from the KRB and four instructions are required.

SURINT::
INTSVS
MOY

UR1~~S,l1PSWSV1CNTRL
CNT~L,RS

;;: INTERRUPT SAVE CODE

Figure 6) INTSV$ Expansion

IIO DRIVER HINTS --------
The following hints and suggestions apply to
drivers written for either RSX-11M or 11M-PLUS.

Protect Against Spurious Interrupts

IIO

Certain devices and controllers have been known to
generate spurious interrupts. If there is no
mechanism to detect these, the system will probably
crash when one arrives. The following technique will
help protect the system.

Use the UCB address save table CNTBL and code it on
the three macros DDT$, GTPKTS and INTSV$. At I/O
initiation, save the UCB address in the appropriate
slot in CNTBL CGTPKT$ will do this for you).

After an interrupt is serviced, clear the
corresponding slot in CNTBL. Also do this after a
power failure or device timeout. In the interrupt
service routine, right after INTSVS, check the
element in CNTBL for a nonzero value Cyou need only
check RS, as INTSVS has loaded it from CNTBL).

If the value is zero, dismiss the interrupt.
Spurious interrupts that arrive between I/O
operations will be dismissed because the driver's
initiation routine was not executed. Spurious
interrupts arriving during an IIO operation will be
(improperly) processed and the real interrupt will be
dismissed. This will cause the I/O operation to be
Lost, but the system will probably not crash.

Write-Only Register Bits

It can be dangerous to use any instruction with a
read-modify-write cycle on a device register that has
write-only fields.

Examples of read-modify-write instructions are BIS,
BIC, ADD, SUB, INC, DEC or any byte instruction.

A write-only field in a device register is one into
which a value can be written, but when which read,
always yields zeroes Cor always ones).

The effect is that a read-modify-write instruction
may store a different value into a field, that it
supposedly should not have affected, than was
previously stored. It is wise to only use MOV
to/from a processor register or memory Location when
accessing device registers.

Data Settling Time

The CSRs of most controllers contain a "GO" flag,
which starts an operation on the device, in addition
to other status fields. Among these status fields
are typically the high order bits of the Unibus or
Q-bus address, the direction of transfer and related
information.

In a poorly designed device, when the entire contents
of the CSR are stored together, it might be possible
for the GO flag to start the Logic before the status
values have "settled" to their new value. Thus for
some of the fields the previous value, or some
amalgam of the previous and current values, might be
used by the device.

This can be avoided by setting all
in the CSR prior to setting GO.
does this. Assume RO contains the
all fields except GO is not set.

the other fields
The following code
desired value of

;
; ALL FIELDS FOR CSR IN RO SET EXCEPT GO
;

MOV
MOV
BIS
MOV

K.CSRCR4),R2
RO,CR2)
#GO,RO
RO,CR2>

; GET CSR ADDR
; SET STATUS FIELDS IN CSR
; SET GO FLAG, SETTLE TIME
; NOW START THE DEVICE

ADVANCED RSX-11M-PLUS DRIVER FEATURES

This paragraph describes some advanced features of
RSX-11M-PLUS that are either not supported by RSX-11M
or which must be implemented in a driver without
planned executive support.

Multi Device-Type Controllers

RSX-11M-PLUS supports controllers that can be
connected to several different types of devices, each

528

of which is run by a different driver. For example,
the RH70/RH11 controllers supports DB CRP04/05/06>
and DR CRM02/03/05/80> disks, the EM "semicondutor
disk" and MM magtape devices.

The driver interrupt interface is different from
normal, in that interrupts are handled by executive
routine $RHALT, rather than code in an interrupt
control block.

The database differs from normal in that there is one
ControLL-~ Table for all the devices. The DCB
pointer in the CTB points to a new structure called
the Common Interrupt Table. It contains pointers to
various entry points in the executive interrupt
handler ($RHALT for the RH70/RH11> and a DCB address
List. There is still one DCB for each device type.
There is one KRB for each RH controller, and one SCB
for each unit.

When Loading drivers for the devices on such a
controller, the first is Loaded normally, but
subsequent drivers are Loaded using the /CTB switch
on the LOAD command. This tells LOAD that the CTB is
already Loaded. The parameters on /CTB tell LOAD
which controllers the device is attached to.

If a device on the controller is in fact a
subcontroller, as is the case with the TM03 tape
formatter on the RH70, a Subcontroller Request Block
CKRB1> is required for each subcontroller. The KRB1
is a subset of the KRB. Each unit to which the
subcontroller is connected points to it and the KRB1
has a pointer to its "master" unit.

Over Lapped Disk Seeks

RSX-11M-PLUS supports overlapped operations on
devices connected to controllers that are capable of
it. For example, disk seeks and some tape
positioning commands can be overlapped.

To support overlapped operations of this sort, there
must be an SCB for each unit, which cannot be
combined with a KRB. At any given time, the KRB
points to the active unit for data transfer.

There must be an interrupt handler in the executive
that distinguishes data transfers from control
operations. For data transfers, the executive
interrupt handler drops to fork Level and calls the
driver at its interrupt entry point. For control
operations, the driver is entered at interrupt entry
point + 2, at device priority. The drivers do not
use INTSV$/INTSE$ at their interrupt entry points.

For RH controllers the executive interrupt handler is
routine $RHALT. For RK06/07 disks, it is executive
routine $MHALT. A user wishing to add disks with
controllers that do not look to the system like
either of these will need to implement an interrupt
handler modelled after $RHALT/$MHALT.

Dual-Access Disks

This feature supports devices that are connected to
the system by more than one controller, where the
executive selects the controller to be used for a
particular operation. It is not supported by
RSX-11M, and supported by 11M-PLUS only when both
controllers are on the same system.

The problem with connecting two systems with a
dual-access disk comes when both systems have parts
of the index file and the block allocation bitmap
memory resident, and each system is unaware of
changes made by the other.

With this feature, SCBs are dynamically assigned to
KRBs for the duration of an operation. There are
three executive routines which a driver will use to
implement the dynamic assignment, as follows.

$RQCND - Request Controller
$RLCN - Release Controller
ASKRB - Assign KRB For Dual-Access Device

The executive attempts to balance the Load between
controllers. A measure of I/O activity is maintained
in each KRB for this purpose.

Full-Duplex I/O

No special executive support is provided in RSX-11M
for full-duplex I/O. This is sometimes implemented
with two drivers, one for receiving data, the other
for transmission.

In RSX-11M-PLUS, the driver's initiator routine calls
executive routine $GSPKT rather than $GTPKT. It
passes the address of an acceptance routine to $GSPKT
in R2. SGSPKT dequeues a packet and calls the
acceptance routine.

If the acceptance routine rejects the packet. SGSPKT
dequeues the next packet and calls again. This
continues until the driver accepts a packet or all
are rejected. Note that SGTPKT in the executive is
just SGSPKT with an acceptance routine that always
returns true.

A driver using SGSPKT does not use the normal UCB and
SCB busy flags, and in fact always looks "ready" to
RSX. The driver must be sure not to call SGSPKT if
it is in fact busy in both directions.

The driver is responsible for maintaining the context
of the second I/O operation in augmented data
structures, for example in a UCB extension.

Buffered I/O

Buffering an IIO operation through an intermediate
buffer in primary or secondary pool allows a task to
be checkpointed during the I/O operation. This is
useful for slow devices Like terminals.

Three executive routines support implementation of
buffered I/O.

STSTBF - checks for the legality of buffered I/O.
The task must be checkpointable, stoppable
and not fixed in memory.

$INIBF - initiates buffered I/O
requesting task.

and stops the

$QUEBF - handles buffered I/O completion. It
schedules a kernel AST to transfer the data
and unstops the task.

The driver
deallocating

is responsible for allocating and
the intermediate buffer. The code for

529

the deallocation must be at entry point xxDEA: and
this entry must be defined in the driver dispatch
table.

The full duplex terminal driver TTDRV and the virtual
terminal driver VTDRV both use buffered I/O. The
code for VTDRV, in the 11M-PLUS distibution kit, is
the easier to read.

I/0 Queue Optimization

RSX-11M-PLUS optimizes the order of execution of disk
accesses such as to min1m1ze average seek time.
Three algorithms have been implemented.

Nearest Cylinder
Elevator (triangular wave)
Cylinder Scan (sawtooth wave)

Nearest cylinder sometimes Leaves an operation for
data at the edge of a disk for Long periods without
performing it, but there is a "fairness count" to
Limit the severity of this effect. Elevator gives
preference to data at the center of the disk, which
is where the index file should be Located if using
this algorithm. Cylinder scan gives more equal
preference to all data. Measurements have suggested
that cylinder scan should be tried first.

The driver must provide code at entry point xxCHK:
to determine if an operation is a data transfer, and
if so, to convert Logical block number to cylinder,
track and sector numbers for the disk. $GTPKT scans
the controller queue and performs this optimization.

This feature is enabled and the algorithm selected
with the MCR SET /OPT command.

INCORPORATING A DRIVER IN RSX-11M-PLUS -----
Incorporating a user-written I/O driver into the
system is generally easier than with RSX-11M.

At SYSGEN

When the driver is to be incorporated at SYSGEN, the
sources for the code and database need to be stored
in SY:[11,10J, and the device mnemonic give to SYSGEN
when it asks. SYSGEN builds and executes the
necessary MAC and TKB command files and inserts a
LOAD command for the driver in the VMR command file.

After SYSGEN

When the driver is to be Loaded into a running
system, it must be assembled with RSXMC.MAC and
EXEMC.MLB, and taskbuilt with RSX11M.STB and
EXELIB.OLB, just as with RSX-11M. The symbol LD$xx
must be included in RSXMC.MAC or in the driver files
if the driver is Loadable.

The driver is Loaded with an MCR command Like

MCR LOAD xx:/PAR=GEN/HIGH

then the controller and device are configured online.

530

Generally, one would want to build loadable drivers
under RSX-11M-PLUS, because they are much more
flexible to debug and because of the many consistency
checks in the LOAD and VMR utilities. Resident
drivers should only be used when the faster interrupt
response time they provide is required.

Device Reconfiguration

RSX-11M-PLUS supports changing the CSR and interrupt
vector addresses of loaded drivers. The controller
must be offline when this is done.

CON SET xxy CSR=177440
CON SET xxy VEC=210

When a user-supplied driver has been included in the
SYSGEN, the controllers and devices are configured
online with the CON ONLINE ALL command that appears
in the startup command file. When a driver is loaded
via MCR into a running system, the controller and
device are explicitely configured online, as
illustrated.

CON ONLINE URA,URO:

REFERENCES

1. RSX-11M-PLUS Guide to Writing an I/O Driver,
Order No. AA-H267B-TC, Digital Equipment Corp.,
1982

2. RSX-11M-PLUS System Generation and Installation
Guide, Order No. AA-H431C-TC, Digital Equipment
Corp., 1983

SUPER LIGHTS:
ARENA LIGHTING CONTROLS AT THE LOUISIANA SUPERDOME

Bill Heidler, Jeff Thompson, Tom Cirella,
John Decker, Brent Naseath, Steve Pollman

Johnson Controls, Inc.
Special Systems Operation

San Diego, California

ABSTRACT

The Superdome lighting control system allows its
operators to control more than 2200 stadium lights,
either individually or in a pre-defined
configuration ("mode") suitable for each type of
stadium event. Lighting modes are constructed,
archived, and executed by using a set of
user-friendly tools and commands. The system
consists of a distributed, three-level network,
co-resident with an energy management system. The
top level computer in the network is a PDP-11/24
running RSX-llM, with applications code written in
FORTRAN 77.

SYSTEM OVERVIEW

In September 1983, Johnson Controls
contracted with the State of Louisiana to
develop and install a computerized
facility management system at the
Superdome sport and convention facility.
The system was to include the capability
to monitor and control the heating,
ventilation, and air conditioning (HVAC)
equipment~ in addition, it was to provide
the capability to control the main arena
lights.

The Superdome arena lights are arranged in
four concentric rings on the roof of the
dome. Each ring contains banks of six to
twenty light fixtures, in two or four
horizontal rows. The lights illuminate
the entire arena floor.

The Superdome is used for a variety of
functions, including professional
football, baseball, conventions, and trade
shows (including the Spring 1985 DEXPO).
The major requirements for the lighting
control system were that it be fully
automated, highly reliable, flexible
(allowing lights to be turned on and off
individually), and reconfigurable for new
lighting effects and light fixture types.

The JC/84 lighting control system replaced
a set of manual controls, which consisted
of switqh panels in each of four lighting
control rooms. The lighting control rooms
are located around the perimeter of the
dome, at the very top level (just above
Bob Uecker's seat). To manually change

Proceedings of the Digital Equipment Computer Users Society 531

the lighting configuration a technician
had to go to each of these rooms and flip
a switch for each light that needed to be
turned on or off. Synchronization of
lighting changes from the different rooms
was nearly impossible.

The computerized system allows control to
be centralized in a much more convenient
location. It also permits light
adjustments to be synchronized, and for a
"blackout" effect to be achieved by
turning out all the lights rapidly. Since
the system combines both lighting and HVAC
control functions it eliminates the need
for personnel dedicated to the job of
controlling the lights during events.
Timing of lighting effects is an important
factor in many events: the lights may need
to be adjusted before and after half-time
of a football game~ they must be dimmed or
turned off on cue for some concerts (rock
star Prince refused to come onstage unless
all of the lights were out) .

At the time of the contract bid, much of
the software and other components for the
HVAC controls were already developed and
configured into the JC/84 system. How­
ever, due to the special requirements of
the facility, the lighting controls had to
be custom designed and retro-fitted into
both the JC/84 and the existing lighting
contacts and wiring.

The JC/84 control system is a three level
distributed processing network consisting
of a headend mini-computer system, field
interface microprocessors (FIDs) , and

Anaheim, California-December 1985

JC/84 HEADEND
(DUAL-REDUNDANT PDP 11/24)

1----- TO HVAC
FIDs

FID

128 LIGHT RELAYS

Figure 1 •. JC/84 System A1=~hi tect11re

multiplexors (MUXs), as shown in Figure 1.
The headend provides the centralized
monitoring and control functions,
system-wide database, and operator
consoles. The FIDs act as concentrators
of messages from the field, and provide
limited stand-alone monitoring, control,
and diagnostic capabilities. The MUXs
interface directly with the field hardware
(sensors and actuators).

The lighting control system includes
modifications to the headend software and
FID firmware, and an entirely new MUX (the
Lighting Control Multiplexor, or LCM).
The headend lighting software is
co-resident with the existing HVAC code,
so that the lighting and HVAC systems can
share the same operator consoles and disk
media. Each FID is dedicated to either
the HVAC or lighting control application,
depending on the firmware that it
contains.

There is one lighting FID in each
geographical quadrant of the Superdome.
Each FID communicates with six LCMs, and
each LCM interfaces to 128 light relays.
The system controls a little more than
2200 lights, with a total capacity of 3000
lights without adding more hardware.

Headend Computer

The headend system, the top level of the
distributed network, includes two
PDP-ll/24s, operator consoles and printers
(VTlOO, !SC 8500, and LA120), dual lOMB
disk storage subsystem (RL02), serial I/0
(RS-232-C) communications ports (DZll) for
peripherals and field communications
lines; and the software to support the
monitor, control, and communications
functions for the top level of the

network. The second PDP-11/24 provides
full redundancy. A manual failover switch,
which re-routes the peripheral devices and
communication lines, allows the operator
to transfer control between the computers.
The manual failover allows one computer to
run the standard HVAC system while the
other computer runs the lighting control
system this was useful during the
installation and field checkout of the
lighting control system.

Field Interface Device

The FID, a MULTIBUS-based system, contains
an 8088 microprocessor, serial I/O com­
munications ports to support headend and
MUX communications, and a diagnostic con­
sole. The firmware includes the VR'rX
real-time, multi-tasking executive and
diagnostic facility, as well as the
application code. There is no
non-volatile memory (e.g., disks, tapes,
NV-RAM) to maintain the FIDs
memory-resident database; however, an
uninterruptable power supply provides up
to eight hours of battery backup to main­
tain system integrity.

The HVAC and lighting FIDs have the same
hardware configurations; however, two
separate sets of applications software
support the HVAC and lighting functions.

532

Lighting Control MUX

The lighting control multiplexer (LCM) is
a new device designed to interface to an
existing relay panel at the Superdome.
The LCM, a 6802-microprocessor system, is
a binary output controller capable of
controlling a maximum of 256 momentary
contacts.

-------~--

Table 1 - JC/84 Communications

MASTER MEDIA

Headend Bell 202
Headend Bell 202

HVAC FID proprietary
Lighting FID EIA RS-422

Communications

The communications between the distributed
network levels uses a broadcast
multipolling interface protocol. The
protocol is a half-duplex master/slave
relationship where the "master" device
polls its "slave" devices. Table 1 shows
the communications characteristics of the
JC/84 HVAC and lighting system.

SOFTWARE DESIGN

The lighting control system provides the
operators with five basic capabilities: to
define and modify the database of light
fixtures; to define and store lighting
"modes" (lists of light on/off states
along with time delays between actions) to
be used for arena events; to activate a
mode; to turn single lights on and off;
and to examine the status of each light.
All of these capabilities are provided as
input and output options at the headend
computer consoles.

The Light Database

Each light has a label by which it is
known to the control system and operator.
The label is a character string consisting
of three four-character fields. The first
field identifies the geographical quadrant
(NE, NW, SE, SW) and ring in which the
light is located, the second the bank, and
the third the individual fixture. The
data kept for each light includes the type
of lamp (metal halide, quartz, or
incandescent); its location in the control
network (FID, LCM, and relay address); its
current status (on, off, burned out, or no
lamp present); the last date and time when
the light was turned on or off; and the
total accumulated burn time.

During system installation, the above
information was entered manually into the
database. The system automatically
updates the current status (except for
burned out lamps) and burn time data.
Normally, the other information won't

533

BAUD RATE SLAVE

1200bps HVAC FID
1200bps Lighting FID

4800/9600bps HVAC MUX
9600bps LCM

change; however, the operator does have
commands available which allow him to
modify the characteristics of a light, or
to add or delete lights.

Lig12._t:.._!iod~ Def i~!_~io~

The most important capability of the
system is the ability to define and
activate a complete configuration of the
arena lights for an event. we have termed
such a configuration a "mode". A mode
contains instructions specifying the
lights to be turned on or off, in a
particular sequence, and may contain time
delays anywhere in the sequence. A fairly
extensive set of user-friendly software
tools was developed to allow the operators
to "program" any possible lighting mode,
to translate the user-written mode into a
form suitable for machine processing, to
store the mode in the database, and to
cause the mode to be executed (activated).

The mode definition "language" consists of
eight types of statements: mode name, ring
declaration, bank declaration, light
control action, delay, operator message,
halt, and end of mode. These statement
types are described below. Figure 2 shows
some examples of mode definition
statements.

The "mode name" statement
four-character label with the
label is then used in all
associated with the mode.

associates a
mode; this
operations

The "ring and bank declaration" statements
allow defaults to be set for the first two
levels of each light ID used in subsequent
light control action statements. These
statements save the operator from
repetitive typing.

The "light control action" statement
specifies a particular light (using its ID
label), and two on/off actions that are to
be taken. The two actions correspond to
activation and de-activation of the mode.
usually, a light control action statement
will specify that a light is to be turned

Light mode:

message:

ring: NWR4

FTBL; { Televised Pro Football }

S = "Turning on Stadium work lights",
R = "Turning off Stadium work lights" ;

{ Inner ring, NW quadrant }

bank: BK02;

fixture : LF01 , S = ON, 0.1 sec ,
R=OFF;

halt: S, R { End of work light sequence }

Figure 2. Sample Lighting Mode

Instructions

on when the mode is activated ("mode
startup"), and off when it is de-activated
("mode reset"), but this does not have to
be the case. Associated with each on/off
action is a time delay from zero to twelve
seconds before the next statement in the
mode is executed.

A "delay" statement allows a time period
from one second to nine hours (with one
second granularity) to be specified. This
time is to elapse before the next
statement in the mode is executed.

An "operator message" statement contains
character strings that are to be displayed
at the operator consoles during mode
execution. One message is specified for
mode startup, the other for mode reset.

The "halt" statement causes execution of
the mode to stop. This is the only
mechanism within the mode definition
language that affects the "flow of
control" during execution. The operator
can also halt mode execution by entering a
command at the terminal. After a mode has
been halted, the operator can command
execution to begin at any statement number
in the mode, or to resume where it left
off. Thus, a mode may contain many
"sub-modes" separated by halt statements,
which the operator may activate in any
order.

The "end of mode" statement acts like a
"halt" statement, and is required as the
last statement in a mode file.

To construct a new light mode, the
operator exits the standard console screen
handler and calls up a menu of mode
definition options. The EDT screen editor
is provided for writing the file of mode
statements. When this file is complete,
it is translated into a form suitable for
storage in the database and for execution.
The translator checks the validity of all
light IDs, and for proper syntax; it
allows free insertion of whitespace, and

allows comments anywhere.
found, it identifies the
error in a listing file.
successfully translated, it
in the database.

If errors are
statement in

Once a mode is
can be entered

The mode which sets the lighting for
televised football games contains 1210
instructions divided into 3 sub-modes,
with 1200 light control actions.

'Lig~t M<2~~-~xecution

Although light modes are defined and
stored in the database at the headend
computer, they are actually executed by
the FIDs. Thus, the first step in
activating a mode is to download its
executable form from the headend to the
FIDs. The FIDs do not have mass storage
devices, so they can contain only one mode
at a time.

The operator initiates the download of a
mode with a single command. Due to the
fact that there are four FIDs which must
receive the download, and that other
processing (for the HVAC controls) is
going on concurrently, up to 20 minutes
are required to download a large mode such
as the football mode.

Once a mode is downloaded, the operator
can cause it to be activated by entering a
single command. The command causes the
FIDs to (simultaneously) begin to execute
the sequence of translated instructions.
The operator can specify an ending, as
well as starting, instruction number;
otherwise, the mode will be executed until
either a halt instruction or the end of
the mode is encountered. The operator can
abort mode execution at any time with a
single command.

During the course of executing a lighting
mode, each FID keeps track of the lights
that it has commanded to start or stop.
Once a minute, it reports this 1ata to the
headend computer, which uses the data to
update the burn time history in the
database.

534

Single Light Control

The operator can command either an
individual light, or a bank of lights, to
be turned on or off by entering a single
command. To turn a single light on or
off, its entire ID label is specified; to
turn a bank on or off, the first two
levels of the IDs of the lights in that
bank are specified.

The single light control feature is not
normally used during arena events; it is
useful for maintenance and for developing
new lighting configurations.

Displaying Light Status Information

The operator can obtain information about
the status of the lighting system by
several means. Reports which list current
data for the lights can be generated on
either a video console or a printer; these
reports list on/off status, burn time,
lamp type, etc. (The status of a light is
determined from the last command issued -­
there are no sensors to provide feedback
information.) The operator can obtain a
list of all stored lighting modes, and can
print out a formatted listing of all of
the statements in a mode.

There is also a color graphic display
showing a quadrant, with the status of
each light indicated using a color code.

SOFTWARE IMPLEMENTATION ISSUES

The headend software used in the lighting
control application was added onto the
existing base of software in the JC/84.
This situation had the advantage of
allowing us to use facilities provided by
the existing code. However, it also posed
two problems: the additional code required
for the lighting control application would
add to the processing burden; and the
lighting code needed to fit "neatly" into
the system from a configuration management
standpoint.

The JC/84 headend software runs on a
PDP-11/24 or 11/44, using version 4.1 of
the RSX-llM operating system. The
installation at the Superdome uses the
slower 11/24 processor. The system must
maintain communications with ten FIDs,
performing various forms of processing in
resoonse to the data received; it must
also service requests from four operator
consoles and two printers. The system
contains about 90 tasks (executable
images), of which as many as 20 may be
requesting service from the CPU at a time.

The two areas where we have experienced
the greatest limitations on performance
are database accesses and requests for
dynamic system memory ("pool"). We found
several years ago that the standard
database access calls generated by FORTRAN
(using the record manager utility RMS and
Files-11) would result in unacceptably
slow response, so we wrote our own
database management utilities. When we
added the code to support the lighting
control application, we began to
experience system crashes due to pool
becoming depleted. Our solution to this
problem was to provide a way to install,
run, and remove tasks from FORTRAN.

Database Manager

The database manager in the JC/84 supports
two simple file structures: fixed record

535

size, non-expandable, randomly-accessed
binary data files; and tree-structured
file directories. The files used by the
system are created and initialized
"off-line" (when the application code is
not running). The application code
typically accesses the database to read or
write data elements from a particular
record; less frequently the need arises to
add or delete records from a file.

A database access is initiated from
application code by means of a FORTRAN
call to a standard database manager
routine. This call results in a queued
I/O request (QIO) being directed to a
pseudo-device. The pseudo-device is
simply a convenience to allow all database
requests to be serviced sequentially by a
single entity (the actual database manager
code). The database manager takes the
form of an Ancillary Control Process
(ACP) , which is accessed by a QIO from the
pseudo-device driver.

The database manager contains code which
maps to the requesting task space to
obtain and return the calling arguments in
the access request. The database manager
also supports a set of cache buffers
containing the most recently requested
records; thus, an access request results
in a disk access only if it is a write
request, or if the record requested does
not currently reside in the cache.

About a 300% improvement in maximum
throughput for the HVAC control system was
obtained by this implementation of the
database manager. In addition to
providing a performance improvement over
RMS, this scheme minimizes the amount of
code that must reside within the address
space of each application task. And by
providing a mechanism to ensure sequential
servicing of database requests, it greatly
simplifies the implementation of record
locking and other database integrity
functions.

Dynamically Installing and Removing RSX
Tasks from FORTRAN

The JC/84 contains 21 tasks which process
operator commands involving more than a
single line of input. Under RSX-llM, an
installed task seems to require about 50
words of pool space -- when we had all 21
of these tasks installed during the
operation of the system, they reduced the
available pool space by over 1000 words.
This is a very significant amount in an
RSX-llM system, which does not provide a
secondary pool area.

To free up this pool space, we needed to
find a way to dynamically install, run,
and remove these tasks. This has to be
accomplished from the top-level command
processing task, which handles the initial
command line entered by the operator. In
addition, the data that the operator

enters in the
passed to
installed.

command
the task

line has
which is

to be
being

We accomplished these objectives by using
the FORTRAN-callable SPAWN directive (see
Sections 4. and 5.3.71 of the RSX-llM/M
Plus Executive Reference Manual) . The
top-level command processing task spawns
the MCR command line interpreter, passing
the following command line:

~UN LB: [,]taskfile/TASK=taskname/PRI=60.

command line, "taskfile"
are replaced by the name

the separate command

(In the actual
and "taskname"
associated with
processing task.)

Before the spawn directive is issued, the
command line data is placed in a global
data area and tagged with the name of the
task which is to be activated. The
activated task gets its task name, then
scans the global data area for the proper
command line data. Included with this
data is the unit number of the console
from which the command was issued. This
allows the activated task to prompt for
and accept further operator input.

The JC/84 headend software consists of
over 1200 FOR'rRAN modules, plus over 100
assembler routines and operating system
object modules. During the time the
lighting control system software was being
developed, modifications were also being
made to the "standard" JC/84 system to
support other contracts. The lighting
control application code had to be added
into the rest of the JC/84 system to be
delivered to the Superdome. But since
lighting controls are not required for
other contracts, the standard software had
to allow the lighting code to be added or
omitted during a software manufacture,
without affecting the operation of the
rest of the system.

The lighting control system added 125 new
code modules to the system, and 13 new
database files. We were able to merge
this software into the standard system by
modifying only ten of the "standard"
modules, besides those which are normally
modified to accomodate the configuration
at a particular site.

We provided for a separation between the
"standard" and "custom" software by
identifying five areas of interface
between the HVAC control system and any
additional control functions that might be
added: operator command processing,
network (FID) message handling, report
generation, initialization of global data,
and the database. We then used several
mechanisms of FORTRAN and RSX-llM to
isolate the interface to one or two
modules.

536

In the case of operator command and
network message processing, separate tasks
are used to process lighting commands and
messages. Control is transferred to these
tasks (by intertask queue invocations)
when a message or command number
corresponding to the lighting application
is encountered.

In the case of report generation, a
separate task could not be used; instead,
the modules generating the reports on the
lighting data were isolated into a
separate overlay factor (".ODL") file.
This file is read by the RSX-llM Task
Builder, and defines the overlay structure
of the modules named in it. A version of
the factor file containing only a "null"
factor is used for manufactures for sites
other than the Superdome.

The global data area is initialized by
means of a "block data" task, which
defines the values that each entry is to
take at load {application startup) time.
Separate components (data structures)
within the global data area are defined
and initialized in separate files, which
are incorporated into the block data
module by means of the FORTRAN "INCLUDE"
mechanism. Thus, modifications and
additions to global data for lighting
control were isolated to a few "INCLUDE"
files.

FIELD INTERFACE DEVICE FIRMWARE

The applications code residing in the FID
microprocessor is written mostly in the
high-level language PL/M. This code
relies on a vendor-supplied executive
(VRTX) to accomplish task management,
intercommunication, and other system
utility functions. The entire firmware
occupies about 56K bytes of EPROM memory.

The FID's main responsibility is to store
and execute light modes, under control of
the headend computer. To do this, it must
manage a buffer of up to 36K bytes for
storage of a mode, and must perform the
processing required for the four mode
instruction "primitives": light start/stop
action, time delay, operator message, and
halt.

A FID starts or stops a light by sending
the light's relay address to the proper
LCM. Commands for up to ten lights can be
packed into a single message sent to an
LCM. Such messages must be separated by a
minimum of 0.1 seconds, due to the length
of the pulse which the LCM must use to
activate the relays. Other processing
considerations limit the throughput of the
system to 67 light actions per FID per
second; this allows all the lights in the
arena to be commanded on or off in ten
seconds.

Despite the fact that the four lighting
FIDs cannot communicate with each other,

they remain closely synchronized when
executing a mode. They do this by
replicating each other's actions for each
instruction in the mode, up to the point
of actually sending a light start/stop
message to an LCM.

If communications are lost with the
headend while a light mode is being
executed, a FID will continue to execute
the mode until either an "operator
message" or a "halt" instruction is
reached. At this point, the FID will wait
until communications are re-established
before executing any further mode
instructions.

If communications are lost with an LCM,
the FID will continue to execute a light
mode and will queue all messages
containing light control actions that were
to be sent to that LCM. When
communications are re-established, the
messages are transmitted and the light
control actions are then performed.

Each FID must also maintain and transmit
data on light control actions to the
headend. This is accomplished by using a
circular buffer of time-tagged light
start/stop data. A task periodically
scans the buffer and constructs a message
for the headend, removing the data from
the buffer once acknowledgement of the
data is received from the headend.

LIGHTING CONTROL MULTIPLEXER

Each LCM contains eight "relay interface"
boards and one "CPU/Communications" board.
The LCMs have to provide optical isolation
from the existing relay panel, while
providing an interface to the relay panel.
They use the existing power source to
control the relays. The design of the LCM
needed to be simple and rugged as the
ambient conditions in the lighting control
rooms often reached temperatures of 100
degrees F (air conditioning is shut down
between stadium events).

The application code for the LCM is
written in 6800 assembly language. The
code is used for communicating to the
lighting FID and controlling the momentary
binary output contacts. The entire
firmware occupies about 1000 bytes of
EPROM memory and 128 bytes of RAM.

The control of the binary output
solid-state relays is achieved through
programmable logic located on the CPU
board. The programmable logic provides
each binary output contact, an optically
isolated solid-state relay (SSR), with a
"register" to control the SSR's contact
state (open or closed) • Enable/disable
control logic forces the SSRs to the open
state when the logic is disabled, and
allows the register to control the SSRs
when enabled.

537

CONCLUSIONS

The computerized lighting control system's
first event was a circus which was held in
July 1985. The system worked flawlessly
during all five performances.

The Superdome lighting system demonstrates
the flexibility and customizability of a
large control system hosted on a PDP-11
using RSX-llM. The lighting sys~em
provides the Superdome with a maJor
additional capability and cost savings by
combining lighting controls with an energy
management system.

NOTES

PDP-11, VTlOO, LA120, RL02, DZll,
and RMS are all products of
Equipment Corp.

PL/M and MULTIBUS are products
Corp.

'RSX-11,
Digital

of Intel

VRTX is a product of Hunter & Ready, Inc.

VAX/VMS SYSTEM MANAGEMENT:
A PROBLEM IN RESOURCE ALLOCATION

Robert S. Branchek
ERI Training

New York, New York

ABSTRACT

The major resources of VAX/VMS are controlled
by system mechanisms which allow tailoring of
the system to meet different environment~
C! " •
~everal of these mechanisms for the allocation
o~ the CPU, main memory and disk space are
di7cu7sed including software priorities, IPLs,
pr~ority boost~ng, automatic , working set
ad)ustment, disk quotas, and selected
parameters and quotas.

The reason that there is a problem
in the allocation of the various
resources of a VAX/VMS system has
nothing to do with its organization as
a virtual memory operating system. It
is simply due to its nature as a
multi-user operating system: it's
virtual memory is a strategy used to
solve the problem of the allocation of
one of the resources of the system,
main memory. All multi-user systems
face the problem of how to best
allocate the resources of a computer
system. To solve this problem,
mechanisms have been implemented by
system designers, which are designed
to be flexible, to tailor the system
for particular user environments.

The job of a system manager, which
is to manage the VAX/VMS system, must
begin with the understanding of the
various mechanisms implemented for
allocating resources. Essentially all
manager's responsibilities except for
backup <we will assume that although
operator's may perform backups,
managers have responsibility for them)
involve the use of mechanisms which
solve problems in resource allocation.

For a manager of a VAX system to
understand the designed allocation
strategies available to them, they
must first remember the resources of
the system to be allocated. The three
major resources of the system are the
central processing unit (CPU), main
memory. and the storage on the major
peripheral storaqe device, the disk
space. Though not one of the topics
of discussion of this article, the
allocation of other resources is also
controlled by various mechanisms. For
example, the process of spooling on
the VAX is accomplished through the
use of queues of requests for the use
of designated printers, terminals, or
devices viewed by the system as
printers or terminals, e.g .• plotters.

Proceedings of the Digital Equipment Computer Users Society 541

The word spool, as an acronym for
shared peripheral output on-line,
alone supports the notion of a
5olution to the problem of the use of
some output devices on a computer
system. The selection of print queue
characteristics during the creation of
print queues on VAX/VMS is an effort
to tailor the use of these devices to
the demands of the user environment of
a computer system.

Although there are clearly other
resources for allocation on a computer
system, such as the printers or
terminals already mentioned, much more
effort is expended in solving the
problem of the allocation of the CPU,
main memory and disk space, and our
discussion will center on these three
resources. Both the unchangeable and
changeable mechanisms of the system
which control these resources will be
discussed as will the solutions
provided by VAX/VMS to the problem of
resource allocation.

Allocation of The CPU

The demand basis for the allocation
of the CPU is implemented on VAX/VMS
through the interrupt priority level
CIPLl mechanism. In this mechanism,
almost all system operations are
prioritized by the system designers
according to the scheme shown in
Figure 1. If we examine this figure,
we quickly note that, since this is
the overall priority scheme for use of
the CPU, the first real work of the
system is done to handle part of the
I/O processing, performed by device
drivers. The highest of all system
priorities, the reaction to a loss of
power, at an IPL of 31 (and within
the group of system errors from IPL 25
- 3ll is to put the system to a known
state. a software crash. i.f a
catastrophic error should occur.

Anaheim, California - December 1985

This is within the priority range of
routines which execute onlv to prevent

the CPU from beinq used when reliable
results to operations can't be
assured. But this is not use of the
system for actual user or system
operations, only a mechanism to
disallow use of the system when it
might fail to function properly.
Additionally, the highest priority of
CPU use, other than for system errors,
is at IPL 24 for the purpose of
acknowledging a signal, delivered
every 1/100 sec., to be used to update
the stored system date and time. But
this is a rather small amount of work.
So, the operation of the device
drivers, at IPLs 20-23, are
effectively the highest priority
system operations that are of major
significance.

The use of the CPU for user
requests is scheduled at an overall
system priority of 7, but user code
dosen't execute in the CPU until the
IPL is lowered to 0, the lowest level.
At this level of system use, only
processes which are capable of
executing code immediately can be
selected to use the CPU (those in the
process state computable or COM>, and
these are prioritized in the priority
range shown in Figure 2.

It must be noted that the
allocation of the CPU for use by users
is granted only when there are no high
priority system operations to be done.
These high priority system operations
are operationally defined as those
that are initiated at IPLs greater
then 0. User processes, the
reflection of the user on the system,
are scheduled by the system component,
the scheduler, who chooses the
highest priority process, with the
priorities ranging from 0 - 31 (same
range as the IPLsl, from the list of
all processes who may use the CPU
immediately.

Partly as a result of the
handling of the major component of 1/0
processing as a group operation,
processes will be normally designated
as being in a non-executable or wait
state during which time they cannot
compete for use of the CPU. Processes
waiting for the system to perform data
transfer for them are in the state
local event flag wait (LEFl. Local
event flags are the synchronization
mechanism used to signal that the
requested data of a process has been
transferred in either direction
between a user's buffer and a device.

Additional characteristics are
granted to a process by the assignment
of one of the scheduling priorities,
shown in Figure 2, in either the range
O - 15 or 16 - 31. Processes assigned
the same priority in the the range 0 -
15 do round-robin scheduling,
attempting to share use of the CPU

542

equally. Each process will be granted
use of the CPU up to an interval of
time determined by a system parameter,
QUANTUM.

Processes with the identical
priority within this priority range,
by design, should, if all other
factors are equal (and they're not),
receive equal use of the CPU time.
Appropriately, a process . in t~is
priority range is termed a timesharing
process. Processes in the priority
range 16 - 31 do not share use of the
CPU at the same priority. By design,
at the interval of time defined by
QUANTUM, the CPU will not switch use
of the CPU to another process with an
identical priority to the process
which has use of the CPU currently
(and is referenced as being in the
CURrent process state>. Processes in
the priority range 16 -31 should be
assigned a priority within a well­
defined hierarchy or ranking, one to a
priority level, with the certain
realization that conditions on the
system, which would allow the CPU to
be given to a process at a higher
priority level in the range 16-31
(perhaps because the second process
just entered the system), must be
allowable. It becomes the
responsibility of the site manager to
make correct assignments of priorities
in the range 16 - 31.

Our understanding of the
assignment of different priorities,
and their affect on processes use of
the CPU, gives us a better
understanding of the system parameter
defined interval, quantum. Quantum
becomes the interval of time at which
the system attempts to switch use of
the CPU to another process, with the
identical priority to the process
currently using the CPU, but only in
the scheduling priority range of 0 -
15. It must also be remembered that
the system would always switch use of
the CPU immediately to a process that
has a higher priority, throughout the
entire priority range 0 - 31, than the
one that is now using the CPU - it
dosen't wait until the interval
quantum to make a switch.

The assignment of the CPU is
greatly affected by the states of
processes. As noted earlier, a
Process must be in a state in which it
is capable of using the CPU, the state
COM, to be assigned it's use. A
problem occurs, however, in the equal
distribution of CPU use among
processes having the identical
priorities within the priority range 0
- 15, because some processes remain in
wait or non-runnable states for
different periods of time.

For example, if we had only two
processes at the priority level of 4,
and one was in the COM state 90
percent of the the time, while the

other process was in the COM state
only 3 percent of the time, the first
process, let's call it process A,
should be chosen for use of the CPU
much more of ten than the second
process, let's call it process B.
Process B is effectively overlooked
for use of the CPU often simply
because it is not in the state COM,
or computable, from which the
scheduler chooses processes to use the
CPU. Yet, both processes were
assigned the same priority level in
the range 0 - 15, and, on this basis
alone, were designated to receive
equal use of the CPU.

The solut.ion to this problem on
VAX/VMS is the mechanism of priority
boosting which is designed to even out
the allocation of CPU use among
processes assigned identical
priorities in the range 0 - 15, which
remain in the COM state for very
different periods of time. Through
the mechanism of priority boosting, a
process such as process B, which
remains in a wait state, would receive
an elevation of its scheduling
priority so that on the next occasion
it is in the COM state, and can be
selected for use of the CPU, it will
have a better chance to receive use of
it (by competing against other
processes with a higher priority that
haven't been waiting) in order to make
up for not being able to compete
during earlier selection intervals.

Table I illustrates two of the
different reasons that processes
receive boosts in priority and what
the associated boost is for each
event. Although there are other

operations which also have associated
priority boosts for processes, the
overwhelming majority of the time,
process receive boosts based on
previously requested I/O. From Table
I, we can see that boost associated
with direct I/O is 2, while the boost
associated with buffered I/O is 4 or
6. Direct I/O is data transfer to and
from fast devices such as disk and
tape drives. Buffered I/O is data
transfer to and from terminals and
line printers. The higher priority
boost associated with slow I/O seems
appropriate, because a process that
has requested I/O to slow devices
should remain in a wait state for a
longer period of time before it is
capable of contending for use of the
CPU than if it has requested I/O to a
fast device like a disk. So a larger
boost for slow I/O would be
appropriate in relation to fast I/O.

The boost is always applied to the
starting, base or pre-boosted
priority, and lowered back to the base
priority each time the process is
subsequently scheduled to use the CPU.
So a process like either process A or
B in our example, starting with an
assigned priority of 4, which receives

543

a boost of 6, has its current priority
decremented by one the first and each
time it's scheduled to use the CPU
again (unless it's already back at
it's base priority). In our example,
it is scheduled to use the CPU at a
priority of 9 the first time it is
able to use the CPU after having
requested the buffered I/O.

The decrementing of the priority
of the process occurs so that the
process receives a scheduling
advantage for an appropriate duration
only to make up for the time it was in
a wait state and ineligible to use the
CPU. To leave the process at an
elevated priority after it had
requested I/O and received a boost
would give the process an unfair
advantage over all other processes on
the system for its entire existence.
Decrementing its priority each time it
is scheduled to use the CPU, allows it
to get back to its original designated
priority when an advantage is no
longer necessary.

The boosted process is eligible for
repetitive boosts even before it's
returned back to its base priority,
though a second boost would not be

applied if the resulting priority of
the process would be lower than the
priority resulting from the effects of
the previous boost alone.

For example, if process A, after
receiving a boost of 6 applied to it's
original priority of 4, is first
scheduled at a priority of 9, and
subsequently requests I/O to a disk,
it will be eligible for a second boost
of 2 applied to its base priority of
4. If the second boost were applied,
the priority of process A would next
be 4 plus the boost of 2 but minus l,
or a priority of 5, rather the 8 it
would have been scheduled at next as a
result of the previous boost. So the
second boost, if it would result in a
lower priority for the process, is nqt
applied because it would have the
effect of penalizing the process
unfairly. The second (and third and
fourth etc.) boost is only applied if
the process would have a higher
priority than leaving it at the value
determined by the previous boost.

System events, other than I/O
completion <considered a system event
because data transfer is handled as a
group by VAX/VMS), also make a process
eligible for a priority boost. All
events which cause processes to
receive priority boosts are mechanisms
which serve to aid the allocation of
the CPU as a resource among processes
that, as designated by their original
priority, should receive equal use of
the CPU.

Main Memory Allocation

The allocation of the system
resource main memory is dynamically
adjusted after an original allocation
of memory is given to process. The
allocation of main memory is
controlled both on a process basis and
on a system basis. On a process
basis, processes receive an initial
allocation of main memory which is
controlled by a quota, a mechanism
which determines how much of some
system resource a process can use.
The quotas for most processes are set
by fields in a system user
authorization file, referenced for all
interactive processes when a process
is first created, at login time. Of
the over 20 quotas for a process,
three directly control its allocation
of main memory.

WSQUOTA sets the maximum number of
pages a process may grow to any time
on the system. Although the size of a
page is fixed at 512 bytes, the pages
a process has in memory for its use
varies as it references more and more
pages <we will assume for our
discussion here that these are pages
of code from the runnable copy of the
program on the disk, the image) until
the limit set by WSQUOTA is reached,
the point at which the process is
normally prohibited from exceeding.

There must be times on the
system when there are many more pages
available for use than at other times.
These pages will be listed on the free
page list. The value of WSQUOTA, if it
were used by itself to determine the
maximum number of pages for a
processes memory allocation, could
prevent processes from using
additional pages during the times when
the need for pages of main memory is
less than usual. So a second system
parameter is used to allow processes
to increase their use of pages during
times of surplus.

This second quota, WSEXTENT, serves
as the maximum number of pages a
processes may allocate when there is a
declaration of extra or surplus pages.
The declaration of a surplus occurs
when the number of pages on the free
page list exceeds the number of pages
(pages not specifically allocated for
usel set by the value of the system
parameter BORROWLIM. When the number
of free pages is greater than the
value set by the parameter, processes
can use many more pages than would
normally, without adversely
affectingly other processes or system
components because these surplus
aren't being used anyway.

Some other control mechanisms are
necessary to avoid problems than can
result from an uncontrolled use of the
surplus pages. For example, there

544

must be a way of controlling the
growth of an individual process so
that it dosen't grab too great a share
of the surplus pages. This is
controlled by the system parameter
GROWLIM. If, even when a process has
been allowed to grow beyond its normal
limit of WSQUOTA pages toward a
maximum of WSEXTENT pages, the number
of pages that are being taken by the
process, the free pages, drops below
the number set by the parameter

GROWLIM, the process is not allowed to
get any additional pages. This system
parameter serves as a fast cutoff to
prevent a too rapid depletion of the
surplus pages by an individual
process.

Since each image a process
executes may require different amounts
of memory allocation, and it would be
difficult to predict what each of
their needs for main memory would be,
the process quota WSDEFAULT is used to
control the starting allocation of
main memory for each new image a
process runs. It would also be
wasteful to leave the amount of memory
a process had just used for the last
image it ran for the next image since
it may require far less pages.
Resetting the amount of memory back to
WSDEFAULT before the next image
executes saves available memory for
other processes which may require it.
Also, the process is still free to
request additional pages up to
WSQUOTA.

Another problem, that can result
in the allocation of these additional
pages to processes, is that once the
surplus has diminished to normal
levels, the processes are now,
effectively, over their normally
designated allocations and may be
considered to be too large for the
total amount of available space in
main memory. A mechanism to control
this uses another system parameter,
FREELIM, to set the threshold for the
minimum number of pages which must be
available for dynamic use (free
pages>. When the number of free pages
drops below the number set by FREELIM,
the surplus pages granted to processes
beyond their WSQUOTA values, can be
reclaimed by the system to satisfy its
need for pages. The use of the name,
BORROWLIM, for the threshold at which
processes are permitted to gain extra
pages, denotes that they are only
borrowed and can be reclaimed by the
system when necessary.

Perhaps the most interesting
mechanism that affects the number of
pages a process uses is automatic
working set adjustment. In its
original implementation, VAX/VMS
version 2.5, the system monitored the

page fault rate of processes during a
sample period of time and added or
deleted pages based on the fault rate.
Since page faults are a measure of the

number of times a process references a
page of information that is not in its
allocation of space, or working set,
they're a good basis for determining
whether a process has either enough
pages of memory and no adjustment is
necessary, has more pages than it
requires and can give up a few (with
no detrimental effect on the process>,
or, a process, with a high fault rate,
dosen't have enough pages and would
function better with some additional
pages. Using the sample interval
set by AWSTIME (which should be equal
to or a multiple of quantum>, a
process is granted WSINC number of
extra pages if its page fault rate is
greater than the value set by the
parameter PFRATH. If the processes
page fault rate is less than PFRATL
during the interval set by AWSTIME,
then WSDEC pages are taken away from
the process. This mechanism allows the
dynamic adjustment of the allocation
of main memory for a process based on
its past activity in a manner very
much like the adjustment of the
scheduling priorities of a process
through priority boosting.

However, the automatic working
set adjustment <AWSA> mechanism has
not been fully implemented since
VAX/VMS version 3.0. The default value
of PFRATL is set to 0 by default,
turning working set decrementing off
and leaving working set page addition
on. Pages are still removed from a
process through a mechanism that
removes pages from processes only
after a system need for those pages
has already been determined, rather
than taking extra pages from a process
which could be better used in another
way.

This system mechanism for memory
allocation is controlled by the system
process, the swapper, scheduled to use
the CPU at a priority of 16. Since
version 3.0 the swapper does more than
swap or remove working sets of
processes in memory, to allow a larger
number of processes to work on the
system (by using the disk as an
extension of main memory>. It will now
also reclaim space from a process by
taking away first, the borrowed pages
beyond WSQUOTA, and if necessary,
taking even more pages, until the
number of pages in the process is
lowered to SWAPOUTPAGCNT, a system
parameter. The swapper will also

attempt to write out the contents of
the modified page list to the page
file since this action would probably
occur relatively soon anyway, and it
(the swapper) may gain the needed
space by this last action alone.

545

Allocation of Disk Space

These mechanisms will be described
only briefly due to the time
constraints of this presentation. The
most obvious mechanism is the use of
an optional file, QUOTA.SYS, which
when created on any disk through the
use of the utility program DISKQUOTA,
enables direct control over the total
number of blocks allocated on that
disk by users of the computer system.
The quota file must be created on each
disk of the system that is to have
control of the allocation of its
space, and it can be subsequently
disabled (turned off with no control
of the amount of space allocated on
the disk by users> or re-enabled.
Both a permanent quota allocation, the
total number of blocks allowed on the
disk normally, and a one time
overdraft additional allocation is
allowed in order for users not to be
trapped in a situation where writing
out additional blocks of data would
penalize them too severely.

A second mechanism used to control
the allocation of disk space is the
size of the index file that is
established (but not necessarily
preallocated) at the time the disk is
initialized. The number of headers
or records for files that are
established within this file controls
the total number of files that can be
created on the disk, unless it is
reinitialized.

A third mechanism controls the
total number of entries in a directory
of files with the same filename,
filetype but different version numbers
is set on the directories with a
version limit specification.

Quotas, some of which were
discussed earlier, set the amount of
system resources which can be used by
processes or jobs Ca group of related
processes and subprocesses). In
addition, many of the parameters,
shown in Figure 3, in addition to
WSQUOTA and WSEXTENT, indirectly
control the allocation of main memory
space used for setting up dynamic

data structures by the system in a
system work space known as nonpaged
pool, the size of which is itself
controlled by the system parameters
NPAGEDYN and NPAGEVIR. The quota
ENQLM, controls the number of 160 byte
plus one longword (32 bits) locks, a
synchronization mechanism primarily
applied to files, that a process may
allocate out of the nonpaged pool
space.

A second quota, FILLM, controls the
number of files that may be opened
simultaneously, each of which allows a
creation of a data structure generally
known as a file control block which is
also allocated out of nonpaged pool
space. Several other quotas also

indirectly control the allocation of
space of nonpaged pool space just as
some system parameters and process
privileges also control the allocation
of other system memory space.

Allocation of the resources of the
system, main memory, CPU and disk
space is accomplished through the
mechanisms of software priorities and
interrupt priority levels, working set
quotas and various system parameters
and other quotas, and quota files and
other indirect disk allocation
mechanisms respectively. A fundamental
knowledge of the workings of these
mechanisms of VAX/VMS system is a
prerequisite to the management of
resources on VAX/VMS. An good
understanding of VAX/VMS allows both
quicker solutions to problems to be
arrived at when they occur, and the
anticipation and avoidance of other
problems before they arise.

546

SYSTEM PRIORITY LEVELS <INTERRUPT PRIORITY LEVELS)

--,-- IPL 31
I
I SYSTEM ERRORS
I

IPL 25

IPL 24 CLOCK INTERRUPT
-+--- IPL 23

I DEVICE INTERRUPTS
IPL 20

IPL 11
FORK PROCESSING

IPL 8

IPL 7 SCHEDULING

IPL 4 I/O POSTPROCESSING

IPL 0 USER PROCESSES

Figure 1

547

SCHEDULING PRIORITIES FOR PROCESSES

R
E
A
L

T
I
M
E

---r-
1

I
I
I
I
I
I
I
I
I
I
I
I
I

___!__

---r-
1

T I
I I
M I
E I

I
s I
H I
A I
R I
I I
N I
G I

I
l

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

.;... 16

15
14
13
12
11
10

9
8
7
6
5

.;... 4
3
2
1

.;... 0

1 process only
per priority level
in this range

SWAPPER system process

--,
I SYSTEM PROCCESESS

--, I priority range
I I ERRFMT
I I JOBCTL
I I OPCOM
I _J

I scheduled user priority range
_J base priority usual processes

NULL SYSTEM process

Figure 2

548

PARAMETERS AND QUOTAS AFFECTING WORKING SET SIZE

-.--- -.--- -.--- -.---
Fl Fl I G I
RI RI Bl R I
El El free 01 0 I
El El pages RI w I
GI LI RI L I
0\ T1 01 I I _._I

Al Ml WI M I
LI ---'-- LI ---'--

---'-- (pl II (p)
(p) Ml

WSEXTENT (q) I
I

---'--
(p)

WSQUOTA (q)

WSDEFAULT (q)

SWPOUTPGCNT (p)

working set

Figure 3

549

PRIORITY BOOSTS

reason boost

BUFFERED I/O - SLOW I/O 6 (ACTUALLY 4 or 6)

DIRECT I/O - FAST I/O 2
--------- --------- ---------

Note: There are many other reasons a process can receive a boost
in priority.

Table I

550

DESPERATELY SEEKING ACCESS

Identifiers, ACL's, and Alarms

Steven Szep
Chase Manhattan Bank

1 New York Plaza
New York, New York 10081

Abstract This paper begins with an overview of the new
security features of VAX/VMS 4.x. It then explores identi­
fiers, access control lists (ACL's), and security alarms as
extensions to the traditional system management strategies
for resource allocation. Finally, a tutorial on ACL design
and maintenance demonstrates the power of the new features.

Disclaimer The information in this document is for informa­
tional purposes only and is subject to change without
notice. Neither the author nor his firm assumes any respon­
sibility for the material or its use.

Introduction to system security The
material in this paper is intended
for VAX managers who wish to protect
their systems from accidental damage,
illicit observation, or outside tam­
pering -- without discouraging autho­
rized users.

This paper will deal primarily
with access controls. It will also
treat data integrity as a most impor­
tant "side-effect" of security
management.

Design for security Our major goals
will be to:

o Protect those areas where
unauthorized access is least
acceptable;

o Design software to minimize
the opportunity for abuse
and misuse;

o Restrict users to those
activities and resources
needed to perform their
assigned work;

o Hold users accountable for
their actions;

0

0

0

Prevent browsing
private messages;

through

Prevent theft of proprietary
programs, plans, and com­
puter time;

Protect systems from damage,
both intentional and unin­
tentional;

o Permit certain users res­
tricted access to certain
areas in the system.

Proceedings of the Digital Equipment Computer Users Society 551

There is an inherent conflict
between user friendliness and effec­
tive security.

Security problems Security breaches
can be categorized as follows:

0

0

0

The user does the "wrong
thing" and causes harm.

The user exploits insuffici­
ently protected parts of the
system.

The user breaks
existing controls.

through

Security needs Virtually every orga­
nization is a potential victim of
computer crime. To prevent theft of
computer files and services, there
are three major tools available to
the security manager: access con­
trols, integrity checks, and encryp­
tion.

Review of user account management
Privileges restrict the performance
of certain system activities to cer­
tain users. We should grant privi­
leges on the basis of two factors:

o whether the user has the
experience to use it without
endangering your system;

o whether the user has a legi­
timate need.

Anaheim, California- December 1985

If a user needs privileges in
order to execute a program, we shall
install a privileged image. Once
installed, this program has specified
privileges -- eli]minating the ne7d
for the user to have them. To avoid
security problems, we must prevent
this image from disp~aying ~RACEBA~K
information. Before installing this
image, we link it using the /NOTRACE­
BACK qualifier of the $LINK command.

A user's privileges are recorded
in the user's UAF record as a 64-bit
privilege vector. When a user logs
in this vector is stored in the hea­
de~ of the user's process. In this
way the user's privileges are passed
on to the process created for him by
LOGINOUT.

Users can use $SET PROCESS /PRI­
VILEGE to control the privileges
available to the images they run.
Any user with SETPRV privilege can
enable any privilege.

Lo in checks erformed b VAX/VMS
w en a user activates a terminal
which is not already allocated to a
user process, the system prompts for
a name and a password. The person
must type a username - password com­
bination located in a UAF record, or
the system will deny further access.

If the name and password are ac­
cepted, the system performs several
operations:

1. Examines the login flags,
beginning with DISUSER. If
DISUSER is set, the login
attempt fails.

2. If DISUSER is not set, veri­
fies primary or secondary
day restrictions.

3. Determines whether hourly
login restrictions are in
effect (via ACCESS, DIALUP,
INTERACTIVE, LOCAL, and RE­
MOTE qualifiers). If the
current hour is restricted,
then login fails.

4. If the login is successful,
passes control to the com­
mand interpreter named in
this user's UAF record.

5. If SYS$SYLOGIN is defined,
the logical name is transla­
ted and that procedure is
executed.

6. Searches for the name of a
login command procedure in
this user's UAF record. If
so and it exists, it is exe­
cuted; otherwise, the user's
command file named LOGIN.COM
is executed, if it exists.

552

After a successful login, the
command interpreter prompts for user
input -- for example, DCL displays
the familiar "$". The user responds
with commands acceptable to the com­
mand interpreter. The system prohi­
bits activities which violate the
user's privileges or exceed his re­
source quotas.

Each user is limited in the con­
sumption of such resources as system
memory. we set limits when we define
the user to the system via creation
of a UAF record. These limits con­
trol the way in which a process
shares its allotment of a resource
with any subprocesses it may create.

File protection VAX/VMS offers two
primary protection mechanisms:

1. UIC's, which control access
according to the user cate­
gories SYSTEM, OWNER, GROUP,
or WORLD;

2. ACL'S, which specify the ac­
cess granted or denied to
specific users for each ob­
ject in the system.

Access determination VAX/VMS employs
the following scheme:

1. If an object has an associa­
ted ACL, the system uses it.

If the ACL specifically
grants access to this
user, it is granted.

If the ACL does not
specifically permit or
deny access, then the
system uses UIC - based
protection to make its
determination.

If the ACL denies ac­
cess, the system uses
only the SYSTEM and
OWNER fields of UIC -
based protection to
finally decide the ac­
cess issue.

2. If an object does not have an
ACL, the system uses UIC - based
protection to determine access
rights.

3. GRPPRV, SYSPRV, READALL, and BY­
PASS privileges amplify a user's
access to system objects.

UIC-based arotection Each account is
establishe with a standard default
protection code for all files the
user may create. (This code can be
changed with $SET PROTECTION.) Each
user is a member of a group.

Each user's UIC is defined in
the SYSUAF. (This can be modified
via $SET UIC.) Each system object has
an associated UIC identical to
that of its owner, and a protection
code which defines who is allowed
what type of access. The relation­
ship between the user's UIC and the
object's UIC controls access to this
object.

UIC - based protection controls
access to objects such as files, di­
rectories, and volumes.

The system also provides overall
volume protection, which is coded
into the home block of a disk or mag­
tape, as well as for record - orien­
ted devices: terminals, line prin­
ters, mailboxes, etc.

Categories of users

e
/ _____________ __,/

Figure 1 - UIC protection

Categories of access For $SET PROT,
we have

0 READ examine, print, copy

0 WRITE : modify

0 EXECUTE execute

0 DELETE remove.

For $SET ACL,

o CONTROL : change protection
and file characteristics.

Note: CONTROL access grants the user
all of the privileges of the object's
actual owner.

553

Special users Four user privileges
can affect the access a user actu­
ally receives, regardless of his UIC
or any current ACL: SYSPRV, GRPPRV,
READALL, and BYPASS. Whenever we de­
fine ACL's or UIC - based protection
codes, we should realize that users
with these privileges are entitled to
special access to "protected" objects
throughout the system.

A user can access a resource as
soon as the system finds a user cate­
gory he fits into which grants the
access he has requested. Thus, in
order to deny access to a user cate­
gory, we must deny access to all of
the outermost categories.

Access to files We should avoid obvi­
ous names for our directories and
important files. Purge regularly,
and delete often.

MAIL files should only be acces­
sible to yourself and the system (for
MAIL delivery and backups). In addi­
tion, it is important to review revi­
sion dates on personal files, in or­
der to reveal illicit tampering.

Naturally, be wary of running a
command procedure or program image
from an undependable source.

Note: To protect a file totally, we
must protect both the file itself and
the directory in which the file is
stored.

Access control lists and identifiers

ACL's are used in conjunction
with the standard UIC - based protec­
tion scheme in order to "fine - tune"
protection whenever necessary.

UIC's are unique to one user and
can be numeric -- for example, (300,-
100] -- or alphanumeric -- as in
[GROUPl, SAM] .

General identifiers can be se­
lected by the security manager; they
are used to identify a specific sub­
set of the userbase. They are alpha­
numeric -- for example, PERSONNEL.

VMS itself defines certain sys­
tem - wide identifiers:

o BATCH for batch jobs

0 NETWORK for DECnet tasks

o DIALUP for dialup users

0 INTERACTIVE for interactive
users

o LOCAL
users

for local-terminal

o REMOTE for network users

When a user logs in, the identi­
fiers he holds in the rights database
(RIGHTSLIST.DAT) -- including UIC and
system defined identifiers -- are
copied into a "rights list", which is
part of his process. This rights
list is the structure which VAX/VMS
uses to perform all protection
checks. (Additional identifiers may
appear in his rights list; they are
placed there by the Login software or
by in stal lation - specific soft­
ware.)

You must specifically define
which access to grant or deny to the
holder of an identifier, for each ob­
ject requiring this level of protec­
tion. If a few identifiers are re­
quired to represent differing access
needs for each object, the software
creates a list of multiple entries:
the so called "access control
list". (Each entry in an ACL is
called an "access control list
entry", or "ACE".)

ACL's may be created by VMS by
default, by the system manager for
specific system objects, or by users
to protect their own files.

There are two very good reasons
for using ACL's:

o to provide access to an ob­
ject in a way which differs
from UIC - based groupings;

o to set off security
when access to an
succeeds or fails.

alarms
object

Access control list entries There are
three types:

1. Identifier, which controls
access allowed to one user
or a group of users

2. Default, which defines the
DEFAULT protection for a
directory, so that the pro­
tection can be propagated
down to its files and subdi­
rectories

3. Security alarm, which pro­
vides an ALARM message when
an object is accessed in the
designated way.

Note: Security alarms are always
placed at the beginning of an ACL.

Manafing ACL's VAX/VMS provides
leve s of protection:

o access control lists (ACL's);

o protection masks.

two

554

ACL's provide the first level of
protection and are optional. When no
ACL exists, the object is protected
as specified by its (UIC - based)
protection mask.

A protection mask consists of
four fields, each with four indica­
tors. Each field applies to one
category of file ownership. Each in­
dicator within a field applies to one
category of file access.

The fields and indicators are as
follows:

Field Own' ship

SYSTEM
OWNER
GROUP
WORLD

system
owner
group
world

Indic. Access

R
w
E
D

Read (allocate)
Write
Execute (create)
Delete

Formats of ACE's An ACL consists of
one or more ACE's. Each ACE can have
one of three formats:

1) (ALARM~JOURNAL-name)

2) (DEFAULT PROTECTION, -
ownership[:access]' ...)

3) (IDENTIFIER-identifier, -
OPTIONS-option -
+ ... ,ACCESS•access+ ...)

General system access Here are some
"hints and kinks" for the security -
conscious system manager.

1. Do not assume that specify­
ing ACCESSNONE for an iden­
tifier will absolutely pro­
hibit the holder(s) of the
identifier from accessing
the object.

2. watch for errors in the or­
der of ACL entries. Place
the ACE'S which grant the
widest access rights immedi­
ately after the most - res­
trictive ACE's.

3. Do not place ACE's on every­
thing: performance will
suffer. Apply ACL's upon
objects with discretion. Be
aware of how the object will
be used or may be abused.

4. use general identifiers to
create practical groups of
users -- in order to avoid
long ACL's.

5.

6.

7.

8.

9.

10.

Update the SYSUAF and rele­
vant ACL's whenever a user
leaves your firm.

Maintain the shortest and
most current ACL's possible.

Use $DIRECTORY/SECURITY to
display current information
about file security.

Use the ACCESS field in the
SYSUAF when there is only
one set of primary and sec­
ondary hours for all types
of logins. (Otherwise, use
LOCAL, REMOTE, DIALUP,
INTERACTIVE, BATCH, or NET­
WORK, as appropriate.)

Build a
certain
TABLES
SYSUAF

separate
users, and

and DEFCLI
accordingly.

Impose ACL's on the
program files in
SYSROOT:[SYSEXE).

CLI for
set CLI-

in the

system
SYS$-

11. Restrict account duration,
via the EXPIRATION field in
the SYSUAF.

The problem with UIC-based protection
That a firm is organized into several
departments suggests that individuals
in the same department perform many
of the same functions. Employees in
a specific functional area communi­
cate frequently with one another and,
in general, share the same data.

A second reason for the depart­
mental scheme is that everyone in the
company should NOT have access to all
company data. The purpose is to keep
confidential information hidden from
those not meant to have access to it,
AND to protect the integrity of this
data.

If we set up UIC groups accor­
ding to this "natural" departmental
organization, you can partition, and
protect, data according to these
groupings. Users who typically share
data and influence one another's
activities should be places into one
group. As a consequence, the users
who should not have access to these
objects will be assigned to other,
distinct groups.

But, what do you do for that in­
formation to which many users, across
departmental lines, request access?
If many groups of users are able to
access such data, the important pro­
tection feature is effectively des­
troyed. Thus, UIC- based protection
does not offer reliably secure file
protection.

555

The best solution is not to
repeatedly restructure your UIC
groups in an endless effort to find
some "workable" situation, but to ex­
tend the identity of these groups via
ACL's.

Tutorial on ACL design As manager,
you must add new user accounts, as­
sign them their initial passwords,
and modify their accounts in order to
amplify or reduce their permitted
activities and access to system re­
sources.

Your primary tools for these
tasks include:

1. AUTHORIZE, the VAX/VMS user
account management program;

2. DISKQUOTA, the VAX/VMS disk
- space allocation program;

3. EDIT/ACL, the editor for
creating and modifying ac­
cess - control lists.

Your site's operation affects
how you set your user's accounts.
Who requires which computer re­
sources? Try to develop several tem­
plates which work for certain "clas­
ses" of users.

First, you should map out the
functions which you expect the users
to perform on your system. Next,
look for common groups of users who
are involved with a particular func-

tion -- say, quality assurance -- or
engaged in a specific activity
say, a program development team. You
will thereby gain a certain perspec­
tive on the logical groupings in your
organization. This information forms
the basis upon which you can place
users into groups.

You should keep in
such groupings will have an
file protection and will
the granting of privileges
cularly, GROUP, GRPNAM, and

mind that
impact on
influence
-- parti­
GRPPRV.

Case #1: "Fine - tuning" file
protection

Miami Devices is a manufacturer
of peripherals for sixth - generation
computer systems.

MD's payroll is one component of
this firm's central computer system.
Alice Atlas, executive secretary, has
drawn up a list of individuals who
require access to PAYROLL.DAT, the
payroll file. Alice decides to make
UIC groups correspond to her firm's
departments, as shown in the follow­
ing table.

Username Dept. Access
----------- --------- ------
HHIGGINS Exec. RWED
AATLAS Exec. R
JCHEEZEE Acctg. RWED
PNICHOLS Acctg. R
JDONNE Mfg. R
BJONES Mfg. R
MSHELLEY Mfg. R
TTURKEY Shpg. R
BCANTO Shpg. R
SPEREZ Sales R
DPERIGNON Sales R

Figure 2 - Departments in Miami
Devices

President Higgins decides that
dialup terminals cannot be used for
accessing payroll information at his
company.

Alice notices that many of the
prospective users on her list share
the same access requirements and, in­
deed, fall into one of two groups.
The determination is made to define
two general identifiers:

1) PAYROLL, for all users who
need "RWED" access to PAYROLL.DAT

2) PAYREAD, for those who only
require =R" access to this file.

As a result, the following ac­
tions are taken:

$SET DEFAULT SYS$SYSTEM
$RUN AUTHORIZE
UAF> ADD/IDENT PAYROLL
UAF> ADD/IDENT PAYREAD
UAF> CREATE/RIGHTS
UAF> GRANT/IDENT PAYROLL HHIGGINS
UAF> GRANT/IDENT PAYROLL JCHEEZ
UAF> GRANT/IDENT PAYREAD PNICHOLS
UAF> GRANT/IDENT PAYREAD JDONNE
UAF> GRANT/IDENT PAYREAD BJONES
UAF> GRANT/IDENT PAYREAD MSHELLEY
UAF> GRANT/IDENT PAYREAD TTURKEY
UAF> GRANT/IDENT PAYREAD BCANTO
UAF> GRANT/IDENT PAYREAD SPEREZ
UAF> GRANT/IDENT PAYREAD DPERIGNON
UAF> EXIT
$SET DEFAULT MD$PAY
$SET ACL/ACL=(-IDENTIFIER= -
$ PAYROLL+LOCAL,ACCESS=READ+ -
$-WRITE+EXECUTE+DELETE), -
$-(ID=PAYREAD+LOCAL,ACCESS=READ),­
$-(ID=DIALUP,ACCESS=NONE))
$-PAYROLL.DAT

-

556

H H JGG-!{IS :JCµEl:t:f't.-) PA 'lr~'tl_L.
t---- -I

AATLAS PNltl40!...S \.. f\'li~E/.\D

bee.. A~c~-.
'--..

---....

:JlJONi\ £ Tfl.{~)(f'/ SPG~E~

6:r0tJi;s 6CANfO ~?e'Rl'.GNoN

t1SH::LL2Y . 1 ---
__,

M+~- Sh oc.,. So.le .s
j~

Figure 3 - Access to PAYROLL.DAT

Case #2: Chargeback, via resource
control

One of the more interesting ways
in which you can control the owner­
ship of files which, naturally,
also effects the outcome of protec­
tion checks, as well as the charging
of disk space against preset quotas
-- is the use of the RESOURCE attri­
bute with identifiers.

The RESOURCE attribute attached
to an identifier forces file - space
to be owned by, and charged to, that
identifier.

Jean Dark works as a consultant
for both the Computer Science and
Comparative Literature departments at
Rambo University. To charge file
usage properly, Colonel Mustard, the
VAX systems manager, sets up the pro­
ject identifiers "COMPSCI" and "COMP­
LIT", and grants both to Jean with
the RESOURCE attribute.

$SET DEFAULT SYS$SYSTEM
$RUN AUTHORIZE
UAF> ADD/IDENT COMPSCI /ATTR=RES
UAF> ADD/IDENT COMPLIT /ATTR=RES

\

\
--

UAF> GRANT/IDENT COMPSCI JDARK/ATTR=RES
UAF> GRANT/IDENT COMPLIT JDARK/ATTR=RES
UAF> EXIT
$RUN DISKQUOTA
DISKQ> ADD COMPSCI
DISKQ> ADD COMPLIT
DISKQ> EXIT

When Jean logs in, she is told
to create two subdirectories rela­
ting them to these identifiers, as
follows:

$CREATE/DIR [JEAN.COMPSCI] -
$ /OWNER=[COMPSCI]
$CREATE/DIR [JEAN.COMPLIT] -
$_/OWNER-[COMPLIT]

Thereafter, when Jean writes
files into the [JEAN.COMPSCI] direc­
tory, they receive the owner identi­
fier "COMPSCI". When Jean writes
files into [JEAN.COMPLIT], these be­
long to "COMPLIT". And, when Jean
writes files anywhere else, they re­
ceive the owner UIC of [JEAN] -- if
her default directory is not owned by
"COMPSCI" or "COMPLIT", of course.

Case #3: Resource allocation

Third Rail Software is best
known for its Ivory Tower Management
Program, "ITMP" -- which is written
in Pascal and runs on the VAXintosh
mega - microcomputer.

Charlie Cola, President, Foun­
der, CEO, and Director of Software
Development, hears from his program­
ming staff that their development
system is often bogged down when many
users perform interactive compiles.

Johnnie Lee Programmer is given
the task of rectifying this situ­
ation. Johnnie Lee decides to use an
identifier to disallow interactive
access to the Pascal compiler:

lm 10
$SET DEFAULT SYS$SYSTEM
$SET ACL/ACL=(IDENTIFIER= -
$ INTERACTIVE,ACCESS=NONE) -
$==SYS$SYSTEM:PASCAL.EXE

Displaying the rights database It is
important to regularly scan the
rights database for correctness and
completeness. Two AUTHORIZE commands
are used for this purpose: SHOW
/RIGHTS and SHOW /IDENTIFIER.

Auditing access to sensitive files If
one of your users has important files
which she feels may have been impro­
perly accessed, we can audit access
to those files via a security alarm
ACE in the ACL for those files.

If user STONES wants to know
when her file REVIEW.MEM is being ac­
cessed, STONES would add an ACE to
the ACL for this file:

$SET ACL REVIEW.MEM /ACL
$ (ALARM=SECURITY,ACCESS = -
$~READ+WRITE+DELETE+CONTROL -
$==+FAILURE+SUCCESS)

Note: Enabling too many alarms re­
sults in failure to monitor each al­
arm and fosters a lax attitude about
alarms.

Conclusions I will end with a few
cautionary remarks and my wishlist
for improvements to VAX/VMS security.

557

Security cautions

"Do not do unto others as you
would have them do unto you. Their
tastes may not be the same." G.B.
Shaw

A user cannot specify a
dary password in an access -
string for file access over
work.

secon­
control
a net-

There are no restrictions .on
files and directories to which a de­
tached process can gain access.
This is still true for UIC - based
protection, but NOT for ACL protec­
tion!

Prohibit the general use of SDA
and PATCH.

A menu restricting a user to
certain operations is the only true
security in a VAXcluster?

Security "wishlist"

"A journey of a thousand miles
must begin with a single step." -
Chinese proverb

There should be a special option
which permits no one except the
security manager to override an ACL

similar to MOUNT'S request - for
- operator - assistance.

When a user possesses some pri­
vilege which entitles access regard­
less of ACL protection, give us the
option to query a security terminal
-- in order to permit or deny actual
access.

Disallow $EDIT/ACL of a file UN­
LESS the user has SECURITY privilege.

The system should retain three
passwords for each user: the current
(active) one and the two previously
used by a user. $SET PASSWORD should
not allow the reuse of these pass­
words.

References

1. Guide to VAX/VMS System Security
2. Guide to VAX/VMS System Management

and Daily Operations
3. VAX/VMS DCL Dictionary
4. VAX/VMS Utilities Reference

(ACL Editor)
5. Guide to VAXclusters
6. Guide to Networking on VAX/VMS
7. Introduction to VAX/VMS, Terry c.

Shannon (Springhouse, PA:
Professional Press, 1985).

8. "Securitrieve", Al Cini, in VAX
Professional (Vol. 7, No. 4).

9. "Defending Against Trojan Horses",
Larry Kilgallen, in Pageswapper
(Vol. 7, No. 5) .

A Central Message Processing Facility

Georgia A. Pedicini
Los Alamos National Lab

PO Box 1663, Mail Stop H810
Los Alamos, NM 87544

Jamii K. Corley
EDS

Albuquerque, NM

ABSTRACT

The control system for the linear accelerator
at the Los Alamos Meson Physics Facility (LAMPF)
requires a centralized message processing
capability. T~is requirement led to the development
?f a Mes?age Dispatcher process to log anything from
informational messages to hardware failures and
a~plication program crashes, for a variety of users.
Since the Message Dispatcher must be available at
all times, error recovery was also required. This
paper describes our experiences in creating such a
process. Features discussed include the system wide
message facility, the condition handler and the exit
handler. Problems discussed include aspects of
mailbox communication and file organization, process
quotas, and the condition and exit handlers.

1.0 OVERVIEW

The control system at the Los Alamos
Meson Physics Facility (LAMPF) is a
collection of programs, routines, and
device drivers run from consoles to control
and monitor devices along a linear
accelerator. The two main sub-systems are
the Console System and the Data System. A
console consists of a color CRT and a
collection of touch panels, graphics
devices and knobs. For each console there
is a Job Controller that interprets
operator commands and starts other
processes as necessary. The Data System
provides standard software interfaces to
the control and monitoring devices. The
main structure of the LAMPF Control System
(LCS) consists of the processes and
routines required to interact with these
two sub-systems. One of the requirements of
this system was to have standard handling
of all error, warning and informational
messages. The Message Dispatcher (MSD)
provides this capability while still
allowing for flexible treatment of
different types of information.

The VMS message facility was chosen as
the vehicle to centralize the location of
messages. This also minimized the trafic
between routines, and contributed to the
uniformity of error handling. In addition
to VMS messages, many site-specific
messages are defined in include files. To
simplify the use of message codes by
application programs, all LCS messages are
collected into a shareable message image,
and a pointer to this image is put into the

Proceedings of the Digital Equipment Computer Users Society 559

LCS run-time library. Programs linked to
the run-time library are automatically
given access to LCS messages. In addition,
the SET MESSAGE command is executed at
login for all LCS accounts, providing the
same linkage for users.

The Message Dispatcher acts as a
central processor for incoming messages,
using optional routing information to
decide where the messages are to be sent.
Five lines of each color CRT, called the
scratch pad, are reserved for the most
important messages. There are also on-line
log files and hard-copy units. In the
present configuration, one file and
hard-copy unit are used for system
messages. This is also the default route if
none is specified. A second file and
hard-copy unit are used for accelerator
messages. Output to these hard-copy units
is presently coupled to the log files, so
that all important messages are available
in the on-line files.

Messages are passed to the Message
Dispatcher through one of series of
mailboxes. MSD uses a special QIO to advise
the console driver of the permanent mailbox
(DRIVER MBX) for logging hardware errors.
All LCS-specific drivers can then use
DRIVER MBX to communicate with MSD. Each
console has a mailbox associated with it,
called MSDMBXx, where the last letter
indicates the console name (ex. MSDMBXA for
console A). A process permanent file is
created by transparent initialization, and
equated to both SYS$0UTPUT and SYS$ERROR,
resulting in a single copy of each error

Anaheim, California - December 1985

message. This is then assigned to the
appropriate mailbox when a process is
started by a console Job Controller. Since
we are trying to standardize on MSD for all
logging purposes, a general purpose mailbox
(GEN DEL MBX) is also available. This
mailbox Ts used by processes not running
through the Job Controller, and by DCL
routines. MSD itself uses this mailbox to
send a self-diagnostic message.

Expansion capabilities are built into
the program, allowing for a total of eight
consoles with color CRTs, four hard-copy
units, and twenty-four files. The original
configuration consisted of a single console
and two log files and hard-copy units. Two
more consoles have since been added.

The Message Dispatcher program is
written in FORTRAN, and runs on a VAX
11/780 under VMS. The original version of
the program was put into production under
version 3.4, and has survived upgrades
through version 4.2 with very little
trouble. The next major modification
planned for the Message Dispatcher is to
run it on two VAX ll/780s in a cluster
environment. Each VAX will have least two
consoles, and access to system and
accelerator hard-copy units. Since these
devices are not shareable, the plan is to
run a copy of the Message Dispatcher on
each VAX to communicate with the privately
owned devices, while sharing access to the

log files.

2.0 PROGRAM ORGANIZATION

All real work in this program is done
at AST level. The main program simply sets
up everything, and hibernates. "Everything"
consists of opening files, assigning
hard-copy units and CRT lines, and creating
mailboxes and setting up attention ASTs on
them using SYS$QIO. The appropriate routine
or set of routines is then triggered
whenever something is written to a mailbox.
When processing is complete, the
message-processing routines reset their own
ASTs. This required some special handling,
and is discussed later. Control then
returns to the main program, still
hibernating, unless an AST is pending, or
until another AST is delivered.

A subroutine is used to open the log
files, since they require a great deal of
specialized information. This will also
make it easier to add files as needed. The
assumption is made that a copy of the file
already exists, so the file type OLD is
used. If there is an error on the first
try, the open is retried using a file type
of NEW. O~ly after the file open has
succeeded is the unit marked as available
to receive messages. The CRTs and hard-copy
units are also not marked as available

560

until they have been successfully assigned.

Error recovery is vital to this
application. This has been implemented by
including an exit handler and a condition
handler. The exit handler's job is to
restart the Message Dispatcher, helping to
ensure that message processing is always
available. The need for a condition handler
developed for two reasons. First, most
errors detected by MSD are not fatal to the
application, but should not be completely
ignored. Having a condition handler allows
MSD to treat these errors as informational,
log them, and continue to function
normally. Secondly, if MSD does stop, a
traceback is written to the files assigned
as SYS$0UTPUT and SYS$ERROR. When the
Message Dispatcher is restarted, it latches
onto the old copies of these files. At the
time of the original implementation, these
files could not be read while MSD was
running. This problem could be avoided to
some extent by determining the reason for
failure before restarting MSD. However,
this can take time, and if the Message
Dispatcher fails, the first priority is to
get it running again. This led to the file
WARN.LOG, written by the condition handler,
and readable while MSD is running.

The mailboxes can be written in
several different ways, including QIOs,
FORTRAN writes, LIB$SIGNAL/STOP, and a
locally written library routine to pass
status codes to SYS$0UTPUT. Messages sent
from drivers have a different format from
process messages. A driver message is a
packed 30-byte array, containing the
message type (code), the unit number of the
device in error, and the device name.
Process and DCL messages consist of
optional routing information and text. The
routes are parameterized for process
messages; system symbols are being
instituted for DCL route parameters.

3.0 MESSAGE DISPATCHER INPUTS AND OUTPUTS

When the console Job Controller starts
a new process, it makes the connection
between SYS$0UTPUT, SYS$ERROR, and the
correct mailbox for that console,
automatically routing a traceback through
MSD. Standard FORTRAN writes to unit 6,
with optional routing information, also go
through MSD.

WRITE (6, fmt) [MSD_K_route, l text

Non-console processes can open GEN DEL MBX
for standard FORTRAN writes. They can also
use the system service SYS$CREMBX to
identify the mailbox channel, and use
SYS$QIO for writes.

OPEN (UNIT=n,
TYPE='OLD')

FILE='GEN_DEL_MBX' I

WRITE (n, fmt) [MSD_K_route, l text

DCL routines can open GEN DEL MBX for
writes.

$ OPEN outfile GEN DEL MBX
$ WRITE outfile "[route codes] text"
$ CLOSE outf ile

There are also several ways to pass
through status messages. For processes
running under the Job Controller,
LIB$SIGNAL and LIB$STOP automatically send
their status messages through MSD. Any
messages received in this manner are
written to the system log and hard-copy
unit, since no routing is possible. For
those status messages that need to be sent
to some other destination, a locally
written routine called LCS PUTMSG is
available. This routine performs the
functions of the system service SYS$PUTMSG
to format a status message, and sends the
message, including optional routing
information, to MSD. Generally, this is a
simple matter of writing the message to
SYS$0UTPUT. For programs which are being
run from a console, the mailbox connection
for SYS$0UTPUT has already been made by the
Job Controller. In order to have messages
from non-console processes logged,
GEN DEL MBX must be used. This mailbox is
only opened for a non-console process if
the optional routing is specified. Once
GEN DEL MBX has been opened for a process,
all-further messages from that processes
are written to both the mailbox and
SYS$0UTPUT.

The output messages are formatted
differently depending on the type of
message and its destination. All driver
messages use the following 2-line format
(<time> is dd-mmm-yyyy hh:mm:ss.xx), and
are always output to the system log and
hard-copy unit.

<time> Device in error is <dev>, unit <~>
<time> %FAC-S-MSGID <message text>

Other messages sent to the files and/or
hard-copy units have the following 1-line
format, where nnnnnnnn is the PIO. When the
console Job Controller creates a process,
it appends a 3-character console
identification code to the process name
(ex. AO, Cl). The process name can have
up to 12 characters, including the console
iqentification code. Originally, a message
length of 132 characters was used, so that
each message would fit on a single output
line. Unfortunately, some status messages
weren't entirely readable, so an arbitrary
message length of 150 characters is now
being used.

<time> nnnnnnnn PROCNAME text

CRT messages consist of the process name

561

and the message text. Due to space
limitations, these messages must be less
than 48 characters. The five-line scratch
pad area is scrolled whenever a new message
is written, and the most recent message is
flagged, effectively limiting the CRT
message to 47 characters. If a significant
part of the message will be lost when it is
truncated to this length, the Message
Dispatcher will also send the complete
message to the system log file and
hard-copy unit. For CRT messages, the
process name is limited to 9 characters,
and the console identification is not used.

>PROCNAME text

All the information used in the driver
message is contained in the 30-byte input
message. The status code is extracted and
sent to SYS$GETMSG. The resulting string
along with the unit number, name, and the
FAO directive for the present date and time
are sent to SYS$FAO to be formatted. The
complete 2-line message is then written to
the system hard-copy unit using SYS$QIO,
and to the system log file using a FORTRAN
write.

Process messages require some
information in addition to that contained
in the message text. First, the first word
in the mailbox I/O status block (IOSB) is
checked for the status of the mailbox
write. If the status is SS$ ENDOFFILE, it
indicates that a null message-was sent, and
no further processing is done. Other than
this, a success status is assumed. These
blank messages frequently turned up as
termination messages. The second word in
the IOSB is the byte count. This turns out
to be whatever was requested in the call to
SYS$QIO to set up the attention AST, so it
is not useful in detecting blank messages,
or for any other purpose in this
application. The second longword in the
IOSB is the process id (PIO), which is used
to look up the process name and also
appears in log file messages.

Route codes, if any, are always at the
beginning of the message text. These codes
are stripped from the text, and checked
against the available devices. All messages
received from a process cause resolution of
a possible MYCRT route. If invalid (i.e.,
the process is not running at a console, or
the message actually came from a DCL
routine) MYCRT is identified with the
default route. The message text is also
stripped of any non-printing characters.
Any requested CRTs receive the short form
of the message, which may contain special
color formatting sequences interpreted by
the color CRT driver. These color
formatting codes, if any, are then removed
from the text, and the long form of the
message is sent to any requested files and
hard-copy units.

4.0 FILE ACCESS AND ORGANIZATION

Since MSD is a permanent process,
on-line access to the log files had to be
provided. The program PRTLOG, using the
Command Definition Utility, allows access
to MSD files with several sorting options.
These are:

0 /FILE= one of the on-line
log files, or MSD's own error log
file; defaults to system log if
not specified

o /OLD previous version of
requested file; MSD re-opens new
file periodically to keep size
manageable

o /PROCESS= process to search

0

0

0

0

for; defaults to ALL; wildcarding
available; special "process name"
of HW selects all hardware errors

/PIO= overrides PROCESS if both
selected

/AFTER= defaults to midnight
today

/BEFORE= defaults to current
time

/OUTPUT= defaults to terminal

This naturally brings up the
question of file organization.
Sequential files had no advantages for
this application. Indexed files would
have provided the search features
required by PRTLOG. However, neither
indexed nor sequential files flush the
internal buffers immediately. This
means the most recent information
written by MSD would not necessarily
be available to any program reading
the file (PRTLOG). This arrangement
was not acceptable, so we were forced
to use relative files. An alternate
solution, using the RMS service
$FLUSH, might have solved the problem,
but only at the cost of considerable
overhead per file write.

For relative files, the records
must be fixed-cells of a specified
length, acheived by using
RECORDTYPE='FIXED' and RECL=n. In this
case, RECL=175. In order to allow
PRTLOG to access the files, the SHARED
specifier is also required. In order
to have all messages in the file
appear in sequential order, the
USEROPEN specifier references a
locally written routine that positions
an existing shared, relative file to
its "end". The IOSTAT specifier is

562

used to check the status of the open.

Initially, the file type was
declared to be 'UNKNOWN', on the
assumption that either the existing
file would be found, or a new file
would be opened if needed. However,
the USEROPEN routine requires an
existing file. The first way around
this was to have the command procedure
that started MSD first run an
initializing program that opened new
copies of all the files, using all the
same specifiers except the USEROPEN
routine. This worked fine for a while,
but resulted in extreme proliferation
of files under some circumstances, as
when testing drivers at l:OOAM and
having to boot the machine several
times. The next solution was to change
the file type to OLD, and delete the
initializing program. As the weeks
went by and the files got larger, the
time required for PRTLOG to find a
subset of information increased. The
present solution is a command
procedure that stops MSD once a week,
purges its files, renames the
"current" files to "old" files, and
restarts MSD. If the first attempt to
open a file fails, MSD tries again
using a file type of 'NEW' and not
using the USEROPEN procedure. Only if
the open finally succeeds is the unit
marked available to receive messages.

5.0 CONDITION HANDLER

The VMS manuals have a great deal
of information scattered throughout
them about writing a condition
handler. In particular, the Run Time
Library reference manual devotes an
entire chapter to the subject. In the
Version 3 manuals, this was Chapter 6;
it is Chapter 7 in the Version 4
manuals. The Message Dispatcher's
condition handler is a close copy of
the sample in section 6.2.5, "Logging
Error Messages to a File" (Version 3).
Section 7.2.5 in the Version 4 manuals
describes this routine, but does not
give the code. Once the condition
handler has been declared, the program
can use the services LIB$SIGNAL and
LIB$STOP for errors which it detects.
The user's condition handler is also
automatically activated first for any
system-detected errors.

The condition handler uses the
system service SYS$PUTMSG. The second
argument to this service is an
optional action routine, which must be
a function. After SYS$PUTMSG has
translated the status code and
formatted the message, control is
transfered to this routine, and the
formatted text is passed as the first
parameter. The suggested code for the
action routine is to write the text to

a file, and return. In this
application, some additional
formatting is needed so that records
in the error log file conform to
records in the other log files,
allowing the use of PRTLOG on the
error file. If the function's return
value is .TRUE., SYS$PUTMSG will also
write the message to SYS$0UTPUT and
SYS$ERROR. If the return value is
.FALSE., the error message will not be
echoed.

When control is returned to the
user-written condition handler, also a
function, it must determine its return
value, generally either SS$_CONTINUE
or SS$ RESIGNAL. The manual suggests
that user-written condition handlers
always re-signal the error, so that a
traceback is generated. This implies
that a process will die if the error
is re-signalled. Due to this program's
requirements, this is not desirable,
so MSD's condition handler returns the
status SS$ CONTINUE. If the error is
truly catastrophic, the exit handler
will eventually be invoked, and the
program will be restarted.

The action routine comes in handy
for MSD to log additional information
about an error status. MSD, knowing
the context of the error, creates its
own text message and passes it to the
logging function to be logged. For
example, suppose some interaction with
a color CRT has failed. MSD checks the
status, and calls LIB$SIGNAL to log
the error. Since the status message
may simply amount to "something bad
happened", MSD then sends a line of
text to the logging routine,
identifying the CRT name and unit
number and mentioning the context, for
example, could not assign, or could
not read.

One problem with the condition
handler was with one of the required
parameters. A user-written condition
handler has two required parameters,
the signal arguments vector and the
mechanism arguments vector. The
references are somewhat misleading
about the standard format of the
signal arguments vector (SIGARGS). The
first longword in this array is the
number of additional longwords in the
vector. This is followed by one or
more message sequences, each
consisting of a message code, the
number of FAO arguments required, if
any, and the FAO arguments. Following
all the message sequences, the PC and
PSL are appended by system, and these
two longwords are included in the
count in the first longword. Some
messages require one or both of these
items, some ignore them. In some

563

cases, an attempt is made by
SYS$PUTMSG to interpret these two
items as additional messages. All
SIGARGS vectors do indeed have this
format, but system, RMS, and system
exception messages all interpret the
vector using different formats. System
messages expect a message code only.
RMS messages expect not only a message
code, but an additional RMS status
code. System exception messages expect
a message code and FAO arguments, but
no FAO count. In each of these cases,
any FAO arguments that are present, as
well as the PC and PSL, will be
treated as chained messages. Internal
e~rors detected by the Message
Dispatcher are almost always either
system or RMS messages. The program
now calls a locally written MACRO
routine that adjusts the "number of
additional longwords" parameter
depending on the status type.

Although this condition handler
always continues, rather than
re-signalling, there are some cases
when continuing is not allowed. If the
Message Dispatcher has checked for the
error, it uses LIB$SIGNAL, on the
assumption that the program can still
function. However, if the system is
allowed to trap the error, a call to
LIB$STOP may result, and the condition
handler continuation status is not
allowed. In most cases, this will
simply trigger the exit handler and
the program will be restarted.
However, if this occurs in the exit
handler, the program exits at that
point without having started a new
copy. One example of such an error is
a fatal error during a write to one of
the files, while not using the IOSTAT
or ERR keywords. The only solution to
this problem is to have the exit
handler trap all of its own errors.
While this routine is doing more error
checking than it once did, it is
probable that all surprise errors have
not yet been anticipated.

6.0 EXIT HANDLER

When the exit handler is
triggered, it outputs a termination
message to all the available log files
and hard-copy units, and starts a new
copy of the Message Dispatcher
process, using SYS$CREPRC. The Message
Dispatcher name toggles between MSDl
and MSD2, since multiple processes
with the same name are not allowed,
and the created copy uses whichever
name is not the name of the current
process. Since doing a force exit on
the current MSD process triggers the
exit handler, this provides a

convenient way to bring up a new
version of MSD.

The references on writing an exit
handler are scattered throughout the
manuals and are often vague or
ambiguous. An exit handler is declared
by using the system service SYS$DCLEXH
with an exit handler control block of
at least 4 longwords. The first
longword of the control block is a
forward link, for VMS usage. The
second longword is the address of the
exit handler. The third specifies the
number of additional arguments in the
control block. The fourth is the
address of the location where the
system will fill in the reason for the
exit, followed by any additional
arguments to send to the exit handler.
The fourth item is required, but so
far we have found no useful
information deposited as the "reason
for exit".

One of the most irritating bugs
was the question of whether the log
files were still open or not, once the
exit handler was invoked. At first,
the exit handler was writing the
termination message to some FORXXX.DAT
files instead of the real log files.
If an INQUIRE statement was used, the
real log files were identified as
open, and the writes would then go to
the correct files. If the INQUIRE
statement was removed, the files were
again not found. We decided to re-open
the log files in the exit handler just
to be safe. Recently, another program
was written that accidentally did not
re-open its files in its exit handler.
Since it worked correctly, we removed
the file opens from MSD's exit
handler, and it is now working
correctly. The only explanation
suggested for this anomaly is a minor
release of VMS.

A caution on the use of the
system service SYS$CREPRC: all of its
optional arguments are not all
optional. If the INPUT and OUTPUT
arguments are not supplied, for
example, the system service completes
successfully, but the process is not
actually created.

Since the program restarts itself
when exiting, we must be careful to
avoid a crash loop. In case of
catastrophic failure early in the
program, the exit handler is not
declared until after most of the
initial setup and before the attention
ASTs are set up. Only once has a crash
loop occurred, during a period when a
number of other system errors were
happening. The program repeatedly
failed when trying to set up the AST

564

on one of the CRT mailboxes. The error
message that was being logged was
RMS-?-xxxx, and suggested a hardware
problem at the console, a surprising
error to get from the RMS facility.
The question mark indicates that the
system is for some reason not quite
sure. if this is the correct message,
and in fact no hardware error was
found. Without making any changes, the
program was recompiled, the executable
image was replaced, and the problem
disappeared.

As previously discussed, as much
error trapping as possible should be
done in the exit handler, or the
program may fail. Additional
unexpected errors show up as time goes
on, usually file-related. Twice, when
the exit handler needed to extend a
log file in order to write the
termination message, it has failed
because the disk was full. The
solution currently being tested is to
use the IOSTAT keyword on all file
writes, give MSD its own quota, and
mark the files as unavailable for
messages once overdraft is exhausted.

7.0 ADDITIONAL PROBLEMS

Several additional problems
encountered with the program have been
FORTRAN-related, the most notable of
these being that FORTRAN is not AST
re-entrant. Normally, an AST routine
must be declared external before it
can be set. FORTRAN doesn't allow a
routine to be EXTERNAL to itself,
considering that to be recursion. MSD
employs two different methods to get
around this problem.

The driver AST is given the AST
address as the AST parameter when the
attention AST is first set by the main
program. All subsequent ASTs for this
routine are set using this parameter
as both the AST address and its
parameter.

STATUS= SYS$QIO(, %VAL(DR CHAN),
%VAL(IO$_READVBLK), - DR_AST,

DR AST,
%REF(DR_BUFFER), %VAL(30), , , ,)

SUBROUTINE DR AST (ADDR)

STATUS= SYS$QIO(, %VAL(DR_CHAN),
%VAL(IO$_READVBLK), , DR_AST,

DR AST,
%REF(DR_BUFFER), %VAL(30), , , ,)

The other AST routine
(PROCESS MSG) requires some additional
information, namely the "unit number"
of the triggering mailbox, the mailbox
channel, and the mailbox IOSB. This
information is packed into a four
longword array (!DENT) and sent as the
AST parameter. However, the AST is
actually set on a dummy routine
(DO PROCESS) which does nothing but
calI the real processing routine with
the array of useful information. The
real message processing routine can
then declare DO PROCESS EXTERNAL and
reset the AST.

STATUS= SYS$QIO(, %VAL(IDENT(2)),
%VAL(IO$ READVBLK), IDENT(3),
DO PROCESS, !DENT,
%REF(BUFFER), %VAL(l50), , , ,

SUBROUTINE DO PROCESS (!DENT)
CALL PROCESS MSG (!DENT)

SUBROUTINE PROCESS MSG (!DENT)
EXTERNAL DO PROCESS

STATUS= SYS$QIO(, %VAL(IDENT(2)),
%VAL(IO$ READVBLK), IDENT(3),
DO PROCESS, !DENT,
%REF(BUFFER), %VAL(l50), , , ,

Other FORTRAN-related problems
have been minor. Some messages were
truncated to 80 characters, which was
fixed by opening unit 6 in transparent
image initialization using RECL=l32.
FORTRAN also includes carriage returns
and line feeds in some of its error
messages. These non-printing
characters are removed from the
message text during processing.

The LA50s used for the system and
accelerator hard-copy units have a
"ready" state that periodically
changes to "unready" for unknown
reasons, and must be manually reset.
If MSD continues to write to the
device while it is not "ready", the
buffer will eventually fill up and MSD
will enter MWAIT state. The program
now uses a routine which checks the
state of the device before attempting
the write. The message is not written
if the device is not "ready". The next
time the device is "ready", a message
warning of possible lost messages is
written.

565

Some quota-related problems have
also arisen. The buffered I/O limit
(BIOLM) defaults to 6. Using this
limit, the Message Dispatcher
sometimes ran very slowly,
particularly when processing a large
number of messages at once. This was
usually apparent in processing a
traceback, when the dying process
could take several seconds to
disappear. This limit has been boosted
to 40, and is no longer a problem.

A more serious problem was
related to the AST limit (ASTLM). MSD
would start up normally, and then
become stuck in MWAIT state. Oddly
enough, the program would work
correctly when run under the debugger.
It turns out that ASTs are not
returned to the available pool until
the AST routine exits. Since this
program resets its ASTs within the AST
routines, a "spare" AST is needed. MSD
thus needs 2 ASTs for each console, 1
for the driver mailbox, 1 for
GEN DEL_MBX, and 1 spare. The original
coniiguration, with only one console,
used 4 ASTs actively. The default for
ASTLM is 6, leaving 2 spares. When the
second console was added, MSD needed 6
active ASTs plus the spare, leaving it
one short. Once the first message had
been processed and the AST needed to
be reset, it would have to wait for
another AST to become available,
something which could never occur.
When run under debug, however, it was
given the user's quotas, which
happened to include 9 ASTs. The
program is now using an AST limit of
20, which will allow it to run with
the maximum configuration of 8
consoles with no more alterations.

8.0 ACKNOWLEDGEMENTS

We would
Bjorklund for
this project.

like
his

to thank Eric
contributions to

VAXCLUSTER ON A BUDGET

Rochelle Lauer
Yale University

Physics Department
P. O. Box 6666

New Haven, Connecticut 06511

ABSTRACT

Upgrading to VAXcluster hardware can be
prohibitively expensive in low budget
environments. This paper presents a user's
experience with the minimum hardware
configuration necessary to run a VAXcluster
under VMS version 4.

In particular, the paper highlights
functionality which can be achieved without the
HSC50 controller. Experience with common
system disk, shared queues, shared system and
user files, implemented through MSCP served,
UDA50 and MASSBUS, locally attached disks, is
presented.

1 • INTRODUCTION
This core, consisting of a VAX 11/750 system

(CPU,system disk, data disk, tape drives,

printer) and supporting software (VAX/VMS, The task of providing high technology computer

facilities to scientific researchers with

almost non-existent hardware/software budgets,

poses a unique challenge. Each hardware

purchase is carefully considered to meet the

following criteria.

The

- Provides maximum functionality for the
given type of equipment.

- Supports the current
software systems.

state-of-the-art

- Can become part of a migration path to
emerging technologies, to be acquired as
the budget permits.

Yale High Energy Computer Facility

exemplifies this need to maximize available

funding. The facility supports research in

high energy, experimental and theoretical

physics. Yearly funding is minimal, allowing at

most, integration of one significant piece of

hardware and supporting software.

We started with a core system which could be

expanded as technology and funding dictated.

Proceedings of the Digital Equipment Computer Users Society 567

FORTRAN compiler, advanced editor, text

processor) provided sufficient functionality

for one year. Our increasing need for CPU

power became critical just as DEC announced

VAXcluster availability. VAXcluster would suit

our needs, but not our budget.

2. THE PLAN

Our major hardware acquisition was to be a CPU

(VAX 2) ,with some as yet, undefined network

connection to the existing system. Funding for

peripheral equipment was limited to the system

disk necessary to boot and maintain VMS.

Therefore, the network connection would be

instrumental in providing access to the

existing(VAX 1) tape drives, printer, word

processing devices and data disk.

The straightforward application of DECnet would

suffice, if we were willing to live with the

following constraints.

- A set of command procedures would be
needed to provide user transparent access
to devices and files which were not
physically connected to the host VAX.

Anaheim, California - December 1985

- Without tape drives on VAX 2, VAX 1 would
become an intermediary for VAX 2 backups.

DiskVAX 2 + SavesetVAX + tapeVAX l

Cumbersome at best I

Although viable, the DECnet solution provided

no migration path to our desired VAXcluster

goal.

As knowledge of VAXcluster became available,

the MSCP server emerged as the answer to our

problems. Could we have total cluster

functionality without the (unaffordable)HSC50?

It appeared that with MSCP served disks we

could achieve

- Shared print and batch queues.

- Generic queues , spanning both CPU's.

- Direct backup of VAX 2 system disk to VAX
1 tape drive.

- Shared site-specific system files.

- Common mail files.

We found no-one to contradict or confirm our

assessment. We were told that in principal the

idea was sound, in reality, it had never been

tried. We decided to put it to the test.

3. THE CONFIGURATION

Hardware

The new 750 purchase, completing the

VAXcluster, consisted of

- 750 CPU

- RA81 disk

- Cluster upgrade package (2 CI750's; with
cabinet, star coupler, cables)

The total configuration is pictured in figure

3-1.

Software

With the

functionality

procedures

shareability.

spirit of

in mind,

full

system

were designed

Ignoring

for

the

VAXcluster

software

maximum

current

restrictions, VMS version 4 was implemented

assuming the presence of an HSC50, compromising

only when the MSCP server proved inadequate.

~--=-~~~~~~~~~32

VAX2

STAR

COUPLER

Ter11inal
L i n e s

'-~~~-'-~~~~~~8

Figure 3-1:

Ter11inal
Lines

VAXcluster configuration
without HSC50

In this manner, future hardware upgrade would

have minimum impact on the running system.

The following steps were taken to ensure smooth

transition to the homogeneous VAXcluster goal.

568

- A set of commmon system
procedures(systartup.com, sylogin.com,
startq.com) were designed for execution on
any node in the cluster.

- A common system directory structure was
created on each node-specific system disk.
Although an MSCP-served disk is not
supported as a bootable cluster-common
system disk, we were preparing for future
transition to the HSC50 hardware.

- (Shared) common files
whenever possible.

Allowable shared files.

* Queue file

* Mail database

were created

Files not to be shared with MSCP disks.

* SYSUAF.DAT

* NETUAF.DAT

* Files in SYS$SYSTEM

Files to experiment with

* Site-specific
software.

libraries/vendor

4. THE IMPLEMENTATION

We adopted a step-wise, conservative approach

to VMS version 4 installation.

1. The new VAX hardware was installed, while
continuing to run VMS 3,7.

2. Assured that the hardware was functioning
properly, we upgraded to version 4.0,
only after making a backup copy of
version 3,7 on an alternate system root.
Our production system continued to run
version 3,7, with a CI-DECnet connection
between CPU's. We now had two versions of
VMS (3.7 and 4.o-4.1) on each system
disk.

3. We tested the experimental non-HSC50, VMS
version 4.0 cluster at our convenience.

4. Satisfied that the cluster would actually
run, it was transferred from experimental
to production status.

~ System Startup Procedures

The system startup procedures are shown in

tables I-1 through I-4. Common procedures are

used whenever possible. Node-specfic

procedures are in general, named

nodefunction.com; where node is the DECnet node

name, and function indicates the procedure's

purpose. In this manner, node-specific

procedures can be called generically

common procedures.

from

A single

maintain

queue file on SITE$SYSDSK is used to

all queues. This queue file is

resident on a VAX1 local disk, accessible to

VAX2 through the MSCP server.

The single queue file mechanism provides

transparent sharing of local devices With the

definition of cluster wide print queues for the

high speed printer and 3 word processing

devices attached to VAX1, the devices become

available to VAX2 users. A print command

executed on either node, is automatically

routed to the proper device.

569

The single shared queue file

vehicle for implementing generic

across the cluster. Generic

is also the

batch queues

batch queues

provide load balancing, with the queue manager

directing traffic to the least loaded CPU.

The consequences of having a single MSCP-served

queue file are discussed in section 5.

Shared Files

Single shared files provide the data integrity

required in a cluster environment. The

difficulty in maintaining multiple copies of

the same files, unavoidably causes the files to

diverge. Updates applied to one file do not

always get merged into the other. After a

remarkably short time period, the files are

noticebly different. We therefore aimed for

maximum file sharing.

On the system level we started with two

shared files, the queue file, and the mail

database. VMS documentation warned of sharing

system files through MSCP served disks, and

questions on MSCP performance kept us from

implementing a single set of site-specific

software files.

Encouraged by the successful running of the

cluster, we decided to implement a shared

site-specific library directory. As seen in

table I-1 a directory on the VAX1 disk is

designated

directory
as our site-specific

(SITE$SYSDSK:[UTILITY.]),
software

Files in

this area are accessed constantly by users on

both nodes. A single copy of the screen editor,

text processor, graphics package, mathematical

libraries, are resident on the MSCP served

disk.

updating

This consolidation

multiple copies
freed us

of software,

from

and

released a considerable amount of disk space as

well. However, the more important

consideration was that it work, and it did

The non-HSC50 cluster was coming very close to
the real thing.

5. Success with Restrictions

The software implementation of VAXclustering

(i.e. through the MSCP server) was highly

successful. However, the following

restrictions proved serious enough to justify

the purchase of an HSC50 controller.

- Tape drives are accessible only to the
local node. MSCP served disks,
transparently accessible to each node,
solve the backup problem. Howevever, user
tape jobs must execute on the "tape drive"
node, implying that users must either log
onto the required node, or submit jobs to
a specific batch queue. The former option
was, at times, inconvenient, the latter
defeats the purpose of generic, cluster
wide batch queues.

- Our experience has shown that maintenance
of two system disks (two complete sets of
VMS system files) in a consistent manner
requires more than twice the time of
maintaining a single set. For example:

* Updates to VMS must be done twice,
thereby providing you with two
chances to do things wrong. In
reality, you will probably make
different mistakes with each
installation.

* Changes in command procedures must be
copied to each node. If not copied
immediately (one fogets, gets
interrupted, or the node is down),
time is lost in ironing out
inconsistencies. More serious
consequences result if noticeble
differences cause confusion among
users.

- The most serious restriction is the
dependency of VAX2 on VAX1. Common files
on an MSCP-served local VAX1 disk (queue
file, mail file, site-specific software
library) require that VAX1 be up, if VAX2
is to be operational. Therefore, in this
configuration, a single node controls the
uptime for the whole cluster.

To alleviate the problem, one could
restrict the use of common files.
However, such a solution would preclude
the use of generic queues,and would also
compound the consistency problem caused by
multiple copies of the same file. We
aimed for maximum commonality, and learned
to live with the added cluster downtime •

6. Adding the HSC50

With the successful implementation of a

non-HSC50 VAXcluster, we achieved our major

goal. In addition, the following configuration

features prepared us for eventual migration to

an HSC50 based VAXcluster.

570

- Common system disk structure.

- Node-specific procedures,
common procedures.

called from

- Shared files.

- Cluster wide queues.

We were surprised and pleased when, as planned,

the installation of an HSC50 controller caused

little changes to the software structure. In

general all procedures remained intact.

Changes were limited to the actual names of

physical devices.

The system device on each node was already

structured as a common system disk. One of

these disks became the cluster wide, bootable,

system disk with the addition of a node

specific root using MAKEROOT. We deleted all

system files from the other disk, leaving us

with a single (therefore consistent) system

area for the cluster.

The cluster wide system disk is at this time, a

single point of failure. The addition of a new

disk, and a future version of VMS, will allow

us to volume shadow this disk, thereby boosting

the uptime and integrity of the cluster.

7. Conclusion

The MSCP server can be used to provide

HSC50 VAXcluster functional! ty

hardware, thus maximizing the

peripherals and files in

without

availability of

a dual CPU VAX
configuration

most, but not

cluster.

Such

all

a system

tasks of

can perform

an HSC50 based

The demonstrated advantages of shared files and

generic cluster wide queues, combined with the

ease of migration to HSC50 hardware, provide

more than adequate justification for
implementing VAXclusters in this manner.

Table I•1: SITE-SPECIFIC STARTUP PROCEDURE

$ RU sys$system:sysgen
CONNECT CNAO/NOADAPTER
MSCP
EXIT
$ this node = f$getsyi("NODENAME")
$ define/system YALE$NODE 'this node
$ disk proc= "@sys$manager:" + this node + "dsk" + ".com"
$ term-proc s 11 @sys$manager:" + this node+ "trm" + ".com"
$ node-proc= "@sys$manager:"+ this node + ".com"
$1
$ 'disk proc
$ 'node-proc
$ 'term-proc
$1 -
$ define/system/exec /tran=(concealed) -

SITE$SYSDEVICE YALPH1$DUAO:
$ define/system/exec -

SITE$SYSDSK SITE$SYSDEVICE:[v4common.]
$ define/system/exec vmsmail -

site$sysdsk:[sysexe]vmsmail.dat
$!
$ define/system/exec
$ define/system/exec
$!
$ define/system/exec

sys$sylogin site$sysdsk:[sysmgr]sylogin.com
MAIL$SYSTEM_FLAGS 3

site$utility site$sysdevice:[utility.J
$!
$!
$ @sys$manager:startq
$ exit
$! end of systartup.com

EXPLANATION:

The procedure is common to all nodes

The CNAO device allows DECnet connection over the CI bus.

Loading the MSCP server permits local disks to be shared across the cluster.

Node-specific procedures are derived from the node name, and then called.

The definition of SITE$SYSDISK provides a common area for storing site-specific cluster
wide software. The logical name was originally defined to be node-specific, and two
copies of software were maintained. As we gained confidence in the cluster, SITE$SYSDISK
was redefined to be a common area (as seen here) on a VAX1 local disk. The software was
automatically available to VAX2, as the VAX1 disk was MSCP served to VAX2.

571

Table I-2: START QUEUES

$ start/queue/manager SITE$SYSDSK:[sysexe]jbcsysque.dat
$!
$ YALPH1 start = "/NOSTART "
$ YALPH2-start = "/NOSTART "
$ this node = f$getsyi("NODENAME")
$ 'this node' start = "/START"
$!
$! ALL devices are on YALPH1
$ if this node .nes. "YALPH1" then goto init_queues
$ Set devTce/spooled=sys$print LCAO
$!
$INIT QUEUES:
$Initialize /queue/enable generic printing/on=YALPH1::LCAO: -

'YALPH1 start' YALPH1 LCAO-
$ set queue/default=(FEED,FLAG=ONE,NOTRAILER,NOBURST) YALPH1 LCAO
$! -
$ Initialize/queue/generic=(YALPH1 LCAO)/start sys$print
$ set queue/default=(FEED,FLAG=ONE~NOTRAILER,NOBURST) sys$print
$!
$!
$

sys$fast only on local nodes
Initialize/queue/batch/on='this node'::/job limit=2/base priority=4-

/cpudefault=NONE/cpumaximum~0-00:15:00.00-
/wsdefault=O/wsquota=200/wsextent=1000/start 'this node' fast

$ define/system sys$fast 'this node' FAST
$! - -
$ Initialize/queue/on=YALPH1 ::/batch/job limit=2/base priority=3-

/cpudefault=NONE/cpumaximum=0-02:00:00.00- -
/wsdefault=O/wsquota=200/wsextent=1500 'YALPH1 start' YALPH1 batch

$ Initialize/queue/on=YALPH2::/batch/job limit=2/base priority=3=
/cpudefault=NONE/cpumaximum=0-02:00:00.00- -
/wsdefault=0/wsquota=200/wsextent=1500 'YALPH2 start' ALPH2 batch

$ initialize/queue/batch/generic=(YALPH2 BATCH,YALPH1 batch)/START -
SYS$BATCH - -

$! end startq.com

EXPLANATION:

The procedure is common to all nodes.

The queue manager is started using a common queue file.

A generic cluster wide print queue is defined for the single VAX1 printer.

A local (fast) batch queue is defined for each node. Short jobs remain on the VAX where
submitted.

A generic shared batch queue is defined across the cluster. Long jobs will be executed on
the least loaded CPU.

572

Table I-3: NODE SPECIFIC DISK PROCEDURE

YALPH1DSK.COM

$ set device/served YALPH1$DRAO
$ set device/served YALPH1$DUAO
$ set volume/rebuild yalph1$dua0
$ mount/system/noassist YALPH1$DRAO: YALDATADSK

$ mount/system/noassist YALPH2$DUA1: YALPHY1
$!
$ Define/system/exec/tran~(terminal,concealed) User1$disk "YALPH1$DUAO:"
$ define/system/exec/tran=(terminal,concealed) data$disk "YALPH1$DRAO:"
$ Define/system/exec/tran=(terminal,concealed) User2$disk "YALPH2$DUA1:"
$!
$ exit
$!
$!end yalph1dsk.com

EXPLANATION:

For each node in the cluster a procedure named nodeDSK.COM is maintained in the common
system area.

The disks local to this node are served to the other node(s).

Table I-4: NODE SPECIFIC PROCEDURE

YALPH1.COM

$ @sys$sysdevice:[ingres]ingresins.com
$ exit
$!
$!end yalph1.com

EXPLANATION:

For each node in the cluster a procedure named node.COM is maintained in the common system
area. All node-specific software/hardware is installed/loaded through this procedure.

At our site, the only node-specific feature is the installation of the the above software
system on VAX1. The complementary VAX2 procedure (YALPH2.COM) does nothing.

573

RUN-TIME LINKING OF SHAREABLE IMAGES USING
THE IMAGE ACTIVATE SYSTEM SERVICE

Clark Oliphint
2126 Wallace Ave
Aptos, CA 95003
(408)662-0751

Run-time linking of modules is used in the Second Generation
Comprehensive Helicopter Analysis System (2GCHAS). Modules
are Fortran 77 subroutines. One module calls another using
the CALL statement. A command procedure substitutes a Module
Caller for the called module. The Module Caller calls an
Executive service which activates the called module.

INTRODUCTION

The Second Generation Comprehensive Helicopter
Analysis System (2GCHAS) is being developed by the
Army Aeroflightdynamics Directorate which is located
at NASA Ames Research Center in Mountain View,
California.

+---------+
I Perfor- I

mance
+-----> Results

+---------+
+-----------+

+-;~;~~~~i---+I I ;~~bility
Descrip- Control
tion of +---> Results

+-~~=~~~~~~~-:-+! :~~~~~~~~~~~:
+1-Fi~;~~-----i +-;-s:~~~<l------:-+ I !~:~~ic

Conditions +---> Generation +---+ Stability
+------------+ I Compre- +-------> Results

hensive I +-----------+
+------------+ Helicopter +-----+
I Processing +---> Analysis +---+ I +-----------+

Options I +-> System +-+ +-> Loads and I
:~~~~~~~~~:--+ I +-------------+ 1_~;;~~~~::_1
I Output +----+

Options I +----------+
+---------+ +--->I ~~:~~ics I

Results
+----------+
+----------+

+-----> Acous- I
I tics

Results
+----------+

Figure 1. Purpose of 2GCHAS

Proceedings of the Digital Equipment Computer Users Society 575

The purpose of 2GCHAS is to determine the flight
characteristics of a helicopter from a physical
description of the helicopter. Figure 1 shows the
top-level inputs to and outputs from 2GCHAS. The
various results of an analysis are selected by the
input processing options and output options. The
typical analysis does not produce all the results
shown in Figure 1.

+---------------+
Second
Generation
Comprehensive
Helicopter
Analysis
System

+-------+-------+
I

1-------------+-------------1

+------+------+ I Technology I
Complex

+-------------+
Modules Which
Perform Helicopter
Analysis

+-----+-----+
I Executive I

Complex
+-----------+

Isolate Technology modules
from the Host Computer
(Transportability)

Manage data produced and
used by Technology modul

Allow Technology module
substitution

Figure 2. Top-Level Organization of 2GCHAS

Figure 2 shows the sub-division of 2GCHAS into two
complexes. The Technology Complex consists of a
large number of modules which perform the helicopter
analysis. The Technology modules are written in
standard Fortran 77. The Executive Complex provides
services required by the Technology modules, and
isolates the Technology modules from any particular
host operating system. If 2GCHAS is transported to
a different computer, only the Executive Complex is
required to change.

Anaheim, California - December 1985

The Executive Complex of 2GCHAS is being devel0ped
under contract by Computer Sciences Corporation
(CSC). The CSC 2GCHAS project is located on-site at
Ames Research Center.

STATUS OF 2GCHAS PROJECT

The 2GCHAS project is currently under development.
The Executive Complex is being developed in a series
of five builds. CSC delivered Build 2 of the
Executive to the Army on December 19, 1985.
Technology module development contracts will be
awarded in early 1986. The Technology module
development contractors will have remote access to
Build 2 of the Executive. Build 3 of the Executive
will be distributed to Technology module development
contractors. Run-Time Linking was included in Build
1 of the Executive. It was tested by the Army as
part of normal build testing. It was used by CSC in
the development of Build 2 which has just been
delivered to the Army. Run-Time Linking has not yet
been used by Technology module development
contractors.

THE PROBLEM

The 2GCHAS project required an alternative to the
standard technique of linking all modules together
for the following reasons:

1. There will be a large number of Technology
modules in 2GCHAS. By design, new modules will
be added to 2GCHAS throughout the life of the
system as new helicopter analysis techniques are
discovered.

2. A typical analysis uses relatively few of the
available Technology modules. Available modules
might supply alternative approximation methods
or apply different flight simulation techniques
or compute the various output results.

3, It is difficult to predict in advance which
modules are required for an analysis. Modules
are called as required by a combination of the
processing options selected, the output results
required, and the data describing- the helicopter
or the flight conditions.

4. Any module linked into an executable image uses
resources even though it is never executed. For
example, all modules in an executable image are
assigned virtual memory when the image is run.
Modules which are not executed thus reduce the
amount of virtual memory quota remaining to
contain data for the analysis.

5. Simultaneous development of new modules by
multiple developers will continue through the
life of the system. It is complicated to
maintain and distribute a standard set of object
modules to which the modules under development
can be linked.

THE SOLUTION--RUN-TIME LINKING

In order that the Technology modules be
transportable, a module call looks exactly like a
subroutine call. Suppose, for example, Module A
calls Module B. Figure 3 shows how the modules are
linked using the standard linking procedure. Each

576

+-------------------------+
SUBROUTINE A (X, Y, Z) I

COMPILE

~L B (P, Q) ~~----+

+-------------------------+ I A.OBJ t--+
+---------+

+---------------------+
SUBROUTINE B (R,S) I

COMPILE
+--------+

END I +----L---+
+---~~~----------+ ~~~-~~

+----------------------+
I LINK

r---:----+
+---+--
1

+-+-->
I +---------+ +-rr-> B I
+-+--

+---------+
Figure 3. Standard Fortran Subroutine Linkage

module is compiled, producing an object file. The
object files are then linked by the Linker into an
executable image which can be executed using the RUN
command. (There must be a main program linked with
the subroutines, but it has been omitted here to
show the module linkage process more clearly.)

Figure 4 gives an overview of the Run-Time Linking
technique used in the 2GCHAS project. A command
procedure, DEFMODULE (for Define Module), produces a
source file for a module caller from the source file
of the module. DEFMODULE then compiles both source
files to produce object files of the module body
and the module caller. In this example, Module B is
defined first. DEFMODULE produces the source file
for B Caller from the module B source file, then
compiles both source files to produce object files
for B Caller and the body of module B. The object
file for B Caller is put in an object library
containing the module callers for all defined
modules, and the object file for the body of B is
linked to produce a shareable image of B. When
Module A is defined, DEFMODULE similarly produces
object files for the body of A and for A Caller.
The object file for A Caller is put in the module
caller object library, and the object file for the
body of A is linked with the library of module
callers to produce a shareable image for Module A.
Since Module A calls Module B, B Caller is linked
into the shareable image for Module A.

+------------------------+
SUBROUTINE A (X, Y, Z) I DEFMODULE

+---------+ . I
CALL B (P, Q) + - - - + +

+-----------+ •
I A CALLER I

END +-----------+ •
+------------------------+ • +---------+

I A.OBJ t----+
+---------+

+ - - - - - - - +

+--------------------+
SUBROUTINE B (R,S) I DEFMODULE

+ - - - + - - - +
+1---------i

END • +-----------+ .
+--------------------+ I B CALLER +---+

+-----------+
+---------+

+------------------------1 B.OBJ I
I LINK 1---------+

+----+----+
B <--+---+
SHARE- I
ABLE
IMAGE --+-+

+---------+

+ - - - - - - - +

+---+

I LINK

+-----:-----i
+--------------+ --+---+

+-+-- <--+-+ <--+-+ I
MODULE I +-----------+ I
EXECUTION +-+-- <--+-+-+
CONTROL I B CALLER I I

+-+--> --+-+
I +-----------+ (EXECUTIVE)

+---+--> --+-+
+--------------+

Run-Time Linking

Figure 4. Overview of 2GCHAS Technology Module
Run-Time Linking

When Module A executes the "CALL B" statement, it
actually executes a subroutine call on B Caller,
which has been linked into the image in place of
Module B. The B Caller subroutine, which was
created by DEFMODULE, calls an Executive service,
Module Execution Control (XMEC) to activate the
shareable image for Module B. When XMEC is called
to activate a shareable image, it checks a list to
see if the image is already activated. If the image
is not activated, XMEC activates it by calling the
Image Activate and Image Fix System Services. After
XMEC activates the shareable image of Module B (or
finds it already activated), it executes a
subroutine call on Module B and passes the argument
list from the subroutine call executed by Module A.
When Module B completes its execution, it returns to
XMEC, which returns to B Caller, which returns to
Module A.

The activation of the shareable image of a module
when the module is called as a subroutine is the
Run-Time Linking technique used in 2GCHAS. From the
point of view of the calling module, it has executed
a standard subroutine call. From the point of view
of the system, the module is assigned virtual memory
and other resources only if it is executed.

XMEC uses the Image Activate and Image Fix System
Services because at the time Build 1 was
implemented, only Release 3 of VMS was available.
Release 4 of VMS is now available. In Build 3 of
the Executive, XMEC will use the Library Service
LIB$FIND_IMAGE_SYMBOL to activate shareable images.

TRADEOFF CONSIDERATIONS

The advantages of using Run-Time Linking are as
follows:

1. Virtual memory and other resources are allocated
to modules only if the modules are executed.

2. Enhancements to modules can be tested by module
substitution at run time.

3, The option of linking a module directly using
the standard Linker remains available with no
change in the source module, since the source is
standard Fortran 77.

The disadvantages of using Run-Time Linking are as
follows:

1. Program execution time is increased. The first
time a module is called, an elapsed time of
about 0.2 seconds is required to activate the
module. All subsequent calls on the module
execute only slightly longer than a subroutine
call because the LIB$FIND IMAGE SYMBOL Library
Service is executed instead of a subroutine
call, If an analysis runs any significant
amount of time, the overhead time required to
activate the modules which perform the analysis
can be ignored.

2. Fortran COMMON blocks can not be used to
communicate between modules linked at Run-Time,
although the subroutines which are contained
within a single module may communicate with each
other through COMMON blocks as usual. In
2GCHAS, the Executive contains data management
services which provide a data structure intended
to replace Fortran COMMON blocks in
communicating between modules linked at run
time,

SUMMARY

Run-Time Linking promises to be a useful technique
for 2GCHAS because of the large number of modules
which will eventually be in the system, and
because, for a typical analysis, relatively few
modules are executed. The additional execution time
required for run-time linking will be insignificant
compared to the execution time of an analysis.

The degree to which Run-Time Linking is successful
will be determined when the technique is in general
use by Technology module developers.

577

VAXCLUSTER MANAGEMENT AND USER EXPERIENCES

Robert C. Groman
Woods Hole Oceanographic Institution

Woods Hole, Massachusetts 02543

ABSTRACT

This paper reviews Woods Hole Oceanographic Institution's
experiences in implementing a VAXcluster during the summer
and fall of 1985. These experiences may help you prepare
for, and avoid, the hurdles and problems that we encountered.

INTRODUCTION

The Woods Hole Oceanographic Institution (WHOI)
is a private non-profit corporation (about 1000
employees) doing basic research and development
in the field of oceanography. The Institution
consists of five departments: biology,
chemistry, geology and geophysics, ocean
engineering, and physical oceanography.
Researchers in these departments seek grants and
contracts from government agencies and from
private foundations. Institution personnel
share common research tools such as the
laboratory buildings, ocean-going ships and the
central computing facility.

The central computing facility is operated by
the Information Processing and Communications
Laboratory (IPCL), a group of 22 Ocean
Engineering Department employees. Researchers
pay for the computing resources based on the
not-for-profit, cost center, concept: the more
computer time used during the year, the less
costly the computer time. IPCL also provides
computer expertise to the Institution via
consulting services, applications programming,
newsletters, documentation, seminars and classes.

The central facility consists of two VAX-11/780
systems. These systems provide time sharing and
batch services for computer modeling, graphics,
data management and data processing
applications. IPCL also provides systems and
operations support to a project-owned VAX-11/785
and two VAX-ll/750's supporting the National
Marine Fisheries Service, image processing and
analysis, and the Institution's administrative
and accounting needs, respectively. All of
these VAX systems use the VMS operating system.
Many researchers also use microVAX I or and
microVAX II systems for their projects. The
Institution currently has three microVAX I's,
two microVAX II's and three VAXstation I's.
There are a total of thirty-seven (37) disk
drives (over 16 gigabytes) used by the larger
systems, consisting of nineteen (19) RA81 456
megabyte drives, twelve (12) RP07 516 megabyte
drives, two RM05 256 megabyte drives, two RP06
176 megabyte drives, one RM80 124 megabyte
drive, and one RA60 205 megabyte drive.

Proceedings of the Digital Equipment Computer Users Society 579

We connected four of these VAX systems into a
VAXcluster beginning in the summer of 1985. The
four systems, one VAX-11/785, two VAX-ll/780's
and one VAX-11/750, each support a number of
local disk drives and connect to an HSC50 disk
controller with two RA81 disk drives (see Figure
1). Our experiences during this implementation
may serve to aid others who are just beginning
the clustering process.

This paper begins with a brief review of
VAXcluster concepts, including the differences
between homogeneous and heterogeneous clusters.
The next section discusses clustering problems
which are likely to be seen by most new cluster
sites. The last section discusses the unique
problems we encountered due mainly to our
heterogeneous cluster environment.

VAXCLUSTER CONCEPTS

A VAXcluster is an integrated organization of
VAX/VMS computer systems that use a high speed
70 megabit per second communications channel for
information transfer (1). The VAXcluster
provides a single security and management domain
which, under certain circumstances, takes less
human resources to manage than individual
VAX/VMS systems. A VAXcluster (also called a
cluster) can be considered something more than a
local area network of loosely coupled central
processing units (cpu's). The machines in a
VAXcluster can work closely together to share
print and batch queue resources and share a
common disk based file system. However, the
cpu's can also exist independently of one
another (unlike tightly coupled cpu's) if one or
more of the cpu's fail. With appropriate
hardware, end users are less susceptible to
hardware component failures, including whole
cpu's, within the cluster environment.

A homogeneous cluster is a VAXcluster where all
software products are available to all cpu's on
the cluster. (The VAXcluster manual prefers the
statement that all known VAX images are the same
on each cpu.) Also, logical names and all mass
storage devices and queues (print and batch) are
common to all cpu's on the cluster. You can log
onto a homogeneous cluster and accomplish your

Anaheim California - December 1985

VMS

VAX-11/780
RED

SUZI
BUOY
USGS
PORW
0010
SPAK (L)
PODA
CODE

VAX-11/785
GRAY

DSKA/VMS (L)
FSHA (L)
FSHB (L)
FSHC (L)
FSHD (L)
FSHX (L)
FSHY (L)
RA81

(L) "' local disk only

Figure 1
WHO! VAXcluster Confisuration

Star
Coupler

VAX-11/780
BLUE

VAX-11/750
BLACK

(node names) • disk accessed via cluster but access restricted to specific
nodes

SPAK = lower cost, temporary storage space for large disk files.

work with equal ease no matter which cpu you are
logged onto. In fact, there is only one user
authorization file needed in a homogeneous
cluster.

A heterogeneous cluster is a VAXcluster where
one or more attributes of a cpu environment
differentiate it from the other cpu's in the
cluster. For example, not all cpu's may be able
to run the Fortran compiler, you may not be
authorized for every cpu in the cluster (perhaps
one of the cpu's is dedicated to a single
department), or certain mass storage devices
(disk drives) may only be available to one cpu
(perhaps for security reasons). The more
differences there are, the more heterogeneous
the cluster is. The more heterogeneous, the
more human resources it will take to run.

COMMON CLUSTERING PROBLEMS

Our site upgraded from VMS version 3.7 to
version 4.1. Although we were using the cluster
interconnect wiring as a Decnet communications
channel prior to VMS 4.1, we wanted to take
advantage of the VAXcluster capabilities,
especially the easier accessibility of disk
files. However, we encountered a number of
difficulties while implementing the VAXcluster.
Many of these problems are likely to be
encountered by other VAX sites since as one of
our system programmers said (2), "Darn! All the
stuff they say in the book is true." This

580

section reviews those problems, point by point,
so that you may be better prepared for them
yourself.

1. Disks that are mounted with the /SYSTEM
qualifier that you will mount cluster wide
must have unique volume labels. You can
prepare for clustering your VAXes by taking
care of relabeling your disk volumes in
advance.

2. If you remove a cpu from the cluster and run
it independently of the cluster, you must
change the SCSYSTEMID and SCSNODE system
generation (sysgen) parameters. The
SCSYSTEMID is to the cluster what the Decnet
node number is to Decnet and, in fact,
SCSYSTEMID must match the Decnet node number
if the cpu is clustered. SCSNODE is a text
string similar to the DECnet node name. It
is used in the construction of disk logical
names that are mounted cluster wide.
STARTNET attempts to force node names and
IDs to be identical.

3. In addition to possible political problems
in your organization, clustering forces you
to consider the concept of quorum votes.
You must assign votes to each cpu node in
the cluster and possibly to one or more disk
drives to improve cluster availability and
to avoid cluster partitioning. Quorum votes
are used by the cluster software to help
determine how many systems are in the
cluster, what should happen if one or more
of the nodes should fail, and to ensure that
each node in the cluster continues to work
cooperatively with the other nodes. This is
essential for such things as the file system
integrity and the system manager's sanity.
The reference manual (1) adequately
discusses this topic but be sure to read it
carefully.

4. System shutdowns are more complicated in a
clustered environment. VMS provides for a
smooth transition from an "n" cpu cluster to
an "(n-1)" cpu cluster. DEC added code to
the SHUTDOWN.COM procedure to accomplish
this.

However there are other areas of concern.
For example, in a cluster, taking down one
cpu may not just effect the users on that
cpu. Since the cpu can be acting as the
MSCP server (i.e., allowing a non HSC50 disk
to be cluster available) for local disks,
"remote" users (i.e., users logged onto
another cpu) can be drastically effected.
You will be taking away access to their
data. (Dual pathing disk drives takes on
real significance in these situations.) VMS
anticipated this situation by broadcasting
REPLY/ALL messages to all users logged onto
the cluster. However, we have found that
many users are irritated by what they
consider spurious shutdown messages from a
"remote" cpu. We are working on a scheme to
minimize these problems by careful use of
the SET BROADCAST command. Using SET
TERMINAL/NOBROADCAST is not recommended
since this prevents all messages from

reaching your terminal.

There is another consequence of sudden
removal of a cpu from the cluster besides
the fact that a locally connected disk
becomes unavailable to the other cpu's. If
the cpu does not return to the cluster
before the disk mount verification times out
(a sysgen parameter), the disk must be
manually dismounted and mounted. We decided
to increase the timeout period to its
largest value and handle lack of disk
timeouts due to non-cluster related problems
separately since these are rare. Be aware,
however, that processes that are accessing
these wayward disks wait until the disk
returns before continuing.

5. AUTOGEN, the software that helps select
sysgen parameters based on your system size,
did not increase the intermediate and small
request packet sysgen parameters (IRP's and
SRP's) when we clustered. As a result, one
of the cpu's was unable to boot in the
cluster environment until these parameters
were increased manually.

6. The format of the VMS PROCESSID changed.
Any command procedures or other code that
depends on the PROCESSID format may break.

7. At the present time, all cpu's in the
cluster must be at the same VMS release
level. This situation may change. We hope
so since VMS upgrades will be more difficult
in a cluster environment unless you take
full advantage of the common system disk
concept.

8. As with any enhanced software product,
implementing clustering required more
physical memory. Digital Equipment
Corporation recommends that each cpu in a
cluster have at least four megabytes of
physical memory. If you are configuring a
new VAX system do not short change yourself
on this resource. Add a couple of extra
megabytes for good measure.

9. Preparation and testing for the VAXcluster
is more difficult since it involves at least
two cpu's. Whenever the systems staff
needed to test the new cluster, at least two
groups of users were inconvenienced.

SITE SPECIFIC PROBLEMS

Our site also came up against a number of
problems that are due to our heterogeneous
environment. The two VAX-ll/780's are general
purpose machines that can be used by anyone in
the Institution. Fees are charged according to
the resources used, such as cpu time, connect
time, input/output activity, disk storage, pages
printed etc. The VAX-11/750 is run on behalf of
the Ocean Engineering Department and can be used
only by certain staff members. Beginning in
1986 these users will be charged only for cpu
time, connect time, input/output activity and
pages printed. The VAX-11/785 is run on behalf
of the National Marine Fisheries Service. These

581

users pay a fixed fee (time and materials).
Their costs are not based on computer resources
used. On all systems, disk drives may be
privately owned or may be part of the system.
Also, each cpu has its own set of software
products. The heterogeneous nature of the cpu's
on the cluster create some interesting
problems. This section reviews these problems,
point by point.

1. Software installation is more complex than
on a single cpu system. Whether you use a
shared system disk or not, you will have to
be concerned about which cpu has the right
to access different licensed software. This
applies to both DEC and non DEC products.
It can be awkward to prevent access to a
software package (especially a non DEC
product) when the vendor assumes a
homogeneous environment.

2. Each of our cpu's arrived at WHOI and came
on-line at different times, spread over five
years. Because we have so many users (over
1000), it was not possible to keep unique
user identification codes (UIC's) among the
systems prior to VMS release 4. Hence, to
ensure the file system ownership integrity,
the operations staff had to map the old
UIC's into new, unique UIC's and then change
all file ownerships accordingly (via the SET
FILE command). The disk file owners did not
experience significant inconveniences, but
the operations staff spent quite a few
(long) weekends accomplishing these changes
on over thirty disk drives.

3. Our initial intention was to use a single,
shared system disk. But due to performance
considerations we decided to use two system
disks, with the ability to fall back to one
disk if necessary. We struggled with how to
recover from a down, shared system disk
since it will remove two cpu's from the
cluster. It is also very difficult to
maintain these two system disks with up to
date software and procedures in the
heterogeneous environment. Volume
shadowing, the VMS feature that will
automatically keep a multiple copy of a
volume, will help resolve many of these
problems.

4. We had hoped to easily export our VAX/VMS
expertise to MicroVAX I and II system
owners, using the clustered VMS system disk
as the model. However, between the size of
VMS and the command procedures that we wrote
to simplify the operators' lives working in
a clustered environment, the 31 megabyte
disk on the microVAX is too small. Also,
the default system root is SYSO on
microVAXes and it is not clear whether or
not we can force the default somewhere
else. (Even exporting our efforts to the
750 system had its difficulties. To boot a
750 from other than root 0 requires either a
change to the ROM or a powerfail recover
from the TU58 cassette.) While we still can
export our expertise, we cannot define a
"common system disk." Each microVAX is
tailored for its own uses.

5. We had to delay implementation of the
cluster scheme because the HSC50 lacked a
critical microcode update. Field service
was responsible for hardware microcode
updates and they did not always receive
complete information in a timely manner. In
addition to the HSC50 update, our field
service engineer alertly noted that the
cpu's and RA8l's also needed updates if they
were to work with the newest version of the
HSC50. Had he not spotted this potential
problem we might have been in even worse
shape. There has been a recent change in
the microcode distribution scheme. Software
Distribution will now handle microcode
updates too.

Of course, an HSC50 down for repairs or
updates affects more computer users,
especially if it supports system disks as
well as data disks. We either have to
prepare the users for multiple system
unavailability or implement a scheme to keep
the systems up by moving the system disks to
less used data disks. Neither the computer
users nor the operations staff look forward
to this situation.

6. Our site cannot take full advantage of the
VAXcluster software feature due to
accounting requirements. For example, we
hoped to combine our so-called DSKA public
disks (one exists on each cpu) into one,
cluster available, DSKA disk. The DSKA disk
is used by all computer users who do not own
or have access to private disk space for
online storage. Advantages of combining
these disks include better disk space
utilization and easier time for those
computer users that use two or more cpu's.
They do not have to maintain separate copies
of their LOGIN.COM and other customizing
files. However, since the public disk space
on each system is not charged out in the
same manner on each system, we cannot
combine the disks. DSKA on the 11/750 and
11/785 VAXes are free while the 11/780 VAX
users pay daily disk block charges. Using
our existing accounting software would
result in overcharging or undercharging for
disk space, and the administration does not
want any significant effort put into
accounting software changes.

Another problem area is the batch and print
queues. Since each cpu has its own rates
for batch queues, making cluster wide batch
queues becomes difficult. Similarly for
cluster wide print queues, not only are the
per page rates different, but each system
uses its own preferred style of line printer
paper. An unattended cluster wide print
queue becomes quite unmanageable. This
situation is further complicated by system
ownership problems that prevent people from
using the resources on a private cpu even if
they were willing to pay.

7. We are attempting to work out a plan for
adding additional public space (DSKA) to the
cluster. The most direct solution is to use
volume sets. However, volume sets have the

582

disadvantage that if one of the disks in the
set fails, the volume set is unusable until
the disk is repaired. If we create new
logical names for the added disks, such as
DSKB, DSKC, etc., many computer users will
be inconvenienced since they routinely use
DSKA:[•••] to reference command files in
their own as well as their associates'
directories. Since computer users often
have multiple login identities, it will be
awkward for them to use more than one device
name for the "public" disk. (Most users do
not use SYS$LOGIN when referring to their
own login directory; they use DSKA:[•••]
explicitly.)

8. Finally, I was unable to clearly define the
distinction between dual pathing/dual
porting and cluster wide access to disk
drives. Private disk owners did not see the
value of redundant access to MSCP served
disks until after the cluster was up. I
should have done a better job explaining
what happens when a cpu goes down making its
local disks inaccessible to the other cpu's
in the cluster.

CONCLUSION

We did receive positive comments from computer
users once the cluster was implemented. People
especially liked the easier, more direct access
to the disk drives mounted cluster wide. Using
the HSC50 or the MSCP software to access
"remote" disk drives is faster and significantly
less complicated than using DECnet software.
The VAXcluster also offers growth potential both
in cpu and disk resources. However, the VAX­
cluster can be complicated to implement and
administer and certain cluster features, like
shared batch and print queues, may not be
available in a heterogeneous environment. We are
learning more about the VAXcluster environment
as we gain experience with it. With this new
knowledge and with the help of new VMS features,
we are addressing the remaining problems.

ACKNOWLEDGMENT

I would like to thank Debbie Parent for the care
and speed with which she typed this paper.

The National Marine Fisheries Service (project
number 17/71.00) and the Woods Hole
Oceanographic Institution, Information
Processing & Communications Laboratory (project
numbers 5602 and 5610) provided support for this
work.

Woods Hole Oceanographic Institution
Contribution Number 6241.

REFERENCES

1. Guide to VAXclusters, September 1984, Digital
Equipment Corporation, Maynard, MA.

2. Sass, Warren J. Personal communication,
November 4, 1985.

Introduction

Implementing a Pseudo Terminal
Design Approaches and Problems

Forrest A. Kenney, Howard Clifford

Digital Equipment Corporation
8301 Professional Place

Landover, MD 20785

ABSTRACT

This paper describes a software device called
a Pseudo Terminal. A Pseudo Terminal is a software
device that looks like a terminal to the VMS
operating system and its utilities. The Pseudo
Terminal provides a mechanism which allows one
process to intercept another process's terminal I/O
requests. VMS mailboxes partially provide this
capability but programs which use terminals as
their input/output device cannot, without
modification, use VMS mailboxes. Many VMS
utilities, such as the EDT editor, will not run
with a VMS mailbox as the input/output device.
This paper discusses the possible approaches one
can take when building a Pseudo Terminal. The
paper discusses the merits and weaknesses of these
approaches. Finally, the paper will outline some
of the problems we encountered in building one
Pseudo Terminal implementation.

FIGURE 1

+-----+
I EDT I
+--+--+

I
+--+--+
I TTl I
+--+--+

I
+--+--+
I TT2 I
+--+--+

I

What are Pseudo Terminals and why do
we need them? A Pseudo Terminal is a
terminal that appears to the operating
system as a physical terminal but is in
actuality a collection of data structures
and code which describe a terminal. A
Virtual Terminal also appears to the
operating system as a physical terminal,
but its data structures are mapped onto a
physical terminal. For many applications
a Virtual Terminal is ideal. With a
Virtual Terminal a user has control over
the Virtual Terminal session, but he has
no control over its input and output
streams. Having answered what a Virtual
Terminal and what a Pseudo Terminal are,
let's address why we need a Pseudo
Terminal. The best way to do this is to
provide a couple of examples where a
Pseudo Terminal is the only reasonable way
to handle the problem.

+------+------+

In the first example assume we want
to develop an application that will allow
us to receive data from two input devices
and direct this data into the EDT editor.
This first example is one that was
actually built by a colleague; at that
time he did not have access to a Pseudo
Terminal. Figure 1 shows the major
hardware and software components used to
implement this application. As Figure 1
illustrates, the application required four
terminal ports. The basic scheme was to
have an I/O manager allocate a port for
the editor and start a process running the

Proceedings of the Digital Equipment Computer Users Society

I I/0 Manager I
+---+---+-----+

+-------------+ I I +----------------+

I Voice Input +--+ +--+ Keyboard Input I
I I Ed i t Di s p 1 a y

+-------------+ +----------------+

EDT editor. The EDT editor will read and
write data using TTl as shown in Figure 1.
Ports TTl and TT2 are connected in a
manner that causes output from TTl to be
input for TT2, and output from TT2 to be
input for TTl. The I/O manager then reads
a single character at a time from TT2 and
writes it to the users input terminal.
The I/O manager also reads from both the
keyboard input terminal and from the voice
input terminal a single character at a
time and writes it to TT2 which allows the
EDT editor to read it as input data. This
configuration worked but put a heavy I/O
load on the system as every single
character input to the editor required two

583 Anaheim, California- December 1985

I/O operations to be performed by the I/O
manager. In addition to the burden placed
on the system from the extra I/O
operations, it tied up four terminal ports
which on most systems are a scarce
resource.

Having seen how the problem was
solved without using a Pseudo Terminal,
let's see how you could use a Pseudo
Terminal to solve this same problem. The
scheme is that one would build an I/O
manager; the I/O manager would then create
a Pseudo Terminal and start up a process
running EDT. The EDT editor would read
And write to the Pseudo Terminal as if it
were a physical terminal. The I/O manager
would assign I/O channels to the ports
containing the terminal and the voice
input device. The I/O manager would then
be responsible for reading from both the
input devices and writing data to the
display device. The I/O manager would
also be responsible for reading data from
the Pseudo Terminal and writing data back
to the Pseudo Terminal. Depending on how
the Pseudo Terminal is implemented, this
case could have substantially lower I/O
operation overhead on the system. At the
very least, this approach ties up
substantially fewer terminal ports and
also requires fewer hardware interrupts.
Figure 2 shows the major hardware and
software components required if you use a
Pseudo Terminal (PTY) •

FIGURE 2

+-----+
I EDT I
+--+--+

I
+--+--+
I PTY I
+--+--+

I
+------+------+
I I/O Manager I
+---+---+-----+

+-------------+ I I +----------------+

I Voice Input +--+ +--+ Keyboard Input I
I I Edit Display

+-------------+ +----------------+

In the second example, assume we wish
to build what is essentially a poor man's
VAXstation. That is, we want the ability
to build a program that will allow us to
display the output from multiple
independent processes in windows on the
screen of a single terminal. This second
example can be partially accomplished
without Pseudo Terminals through the use
of VMS mailboxes. Figure 3 illustrates
how you would accomplish this using Pseudo
Terminals.

FIGURE 3

+--------+ +--------+ +--------+ I TASK 1 I I TASK 2 I I TASK 3 I
+---+----+ +---+----+ +---+----+

I I I
+--+--+ +--+--+ +--+--+
I PTl I I PT2 I I PT3 I
+--+--+ +--+--+ +--+--+

I I I
+-+--------------+--------------+-+
I I/O MANAGER I
+----------------+----------------+

I
+----+-----+
I TERMINAL I
+----------+

In this example the I/O manager
creates as many Pseudo Terminals as are
required and assigns an I/O channel to the
output terminal. The I/O manager then
determines which window on the terminal is
currently active and directs the data from
the appropriate Pseudo Terminal to the
correct part of the physical terminal's
display. The I/O manager also reads data
from the physical terminal and returns
this data to the appropriate Pseudo
Terminal. There are many advantages when
using Pseudo Terminals for this
application instead of mailboxes; the list
below summarizes some of them:

584

o By using a Pseudo Terminal you do
not have to worry about losing
data because an I/O request was
too small. This is not true if
you use mailboxes.

0 Depending on how the Pseudo
Terminal is implemented you may
be able to use substantially
fewer I/O requests than you would
if you used a mailbox.

o Pseudo Terminals support the use
of out-of-band, CTRL/Y, or CTRL/C
ASTs. This would be absolutely
impossible if you used mailboxes.

o The Pseudo Terminal supports all
valid VMS terminal driver I/O
functions codes and modifiers.
Mailboxes support only a limited
subset of these functions.
Examples of functions not
supported are IO$_EXTEND,
IO$M_OUTBAND.

o Finally, because a Pseudo
Terminal looks exactly like a
physical terminal, utilities that
only work with a terminal still
work as expected. A classic
example is the EDT editor, which

will not work in
unless it believes
hooked directly to
supported terminal.

screen mode
that it is
a Digital

From these examples you can see that
there are many cases where a Pseudo
Terminal is a very desirable device to
have. The examples cited above are by no
means a comprehensive list. Some other
possible uses could be a network terminal
interface for a TCP/IP network, a tool
that would allow you to log to a file or
read from a file for a terminal
application and many more.

Design Considerations

Why did we build a Pseudo Terminal
and what were our primary design
considerations? We were approached with a
request to provide a device that would
allow a window managing process to be
built. The primary request was for a
modification to the mailbox driver to make
its device type terminal. The secondary
request was that the I/O cost for the
device be on the same order of magnitude
as the mailbox driver. The system
configuration had to support up to 20
users with 2 windows per user. The final
restriction was that this device needed to
be completed in less than three months.
With these constraints in mind we began a
study to determine what was the best
approach.

The first alternative examined was to
use the existing Pseudo Terminals that are
available to users of DECNET. These
terminals are RTTDRIVER and CTDRIVER.
Both of these implement a device that has
the functionality needed. Having
determined that either of these devices
met our needs, we studied the flow of
information through DECNET to determine if
the performance would be acceptable. A
read request from the remote node goes
through the following major steps:

1. A read request is issued to the
remote terminal RTTx.

2. The request is sent to the NETACP
through the NET device. The
NETACP does processing on the
request and queues it to the
actual network communications
device.

3. On the node performing the final
terminal read, the read request
is picked up from the network and
fed into the NETACP.

4. The RTPAD reads the request from
NETACP, disassembles the request,
and issues the read to the local

585

5.

6.

terminal. When the read request
is completed, the RTPAD process
sends it to the NETx device.

The NETACP does necessary
processing and queues the request
to the network communication
device.

The NETACP on the originating
node receives the request and
queues it to the Remote Terminal
ACP (REMACP) • REMACP completes
the request and the results are
returned to the user's remote
process.

We determined that the amount of
overhead involved would be unacceptable
for our application, even if the request
were being looped internally and not going
out over the network. An additional
disadvantage is that no published
documentation exists for the protocol used
between the RTTx device and the RTPAD
process. For these reasons this approach
was ruled out.

The second alternative studied was to
make use of the existing VMS terminal
class driver and to implement a Pseudo
Port Device to talk to the class driver.
By using this approach we would be freed
from emulating the terminal driver's
behavior.

We first studied the overhead
associated with this approach. The I/O
manager code would be required to perform
single character reads (with echo
disabled) from the terminal and pass the
characters into the Pseudo Terminal. It
would then need to read any characters to
be output from the Pseudo Terminal and
write them to the actual terminal. In the
worst case this degrades into 4 I/O
operations for every single character
typed. If we assume that every I/O
operation costs approximately 1
millisecond, that each person is typing at
20 characters a second, and that we have
10 typists, then roughly 80% of the
available CPU cycles would be consumed by
the I/O load.

Next we looked at the difficulty of
building a port device. We could find no
published documentation for the terminal
driver port and class interface, this
meant that there was a high risk of us not
being able to build the code in the
allocated time. For these reasons this
approach was ruled.

The final approach considered was to
build a Pseudo Terminal device that met
our need of ease of implementation and low
system overhead. The device was
originally conceived to be a cross between
the VMS mailbox driver and the DECNET

RTTDRIVER. That is, the device would pass
messages that described the I/O to be
performed, but would be much like the
mailbox in terms of device access and
ownership restrictions. By doing this,
the number of I/O operations to the actual
terminal would exactly match the number of
I/O requests to the Pseudo Terminal. For
record-oriented I/O operations this is a
large savings over the previously
discussed approach. For single character
I/O requests this approach saves two I/O
operations when compared to the previously
discussed approach. Additionally, the
device is simple enough that it could be
implemented within the time frame allowed.

The Pseudo Terminal supports all the
terminal driver function codes and
modifiers documented in VAX/VMS I/O User's
Guide version 4.0. The device specific
function codes are listed below:

1. IO$_GETIO passes to the I/O
manager any pending terminal 1/0
requests.

2. IO$_FINISHIO completes
terminal I/O request
requires completion.

any
that

3. 10$ QUEUEAST causes the Pseudo
Terminal to deliver any ASTs that
may be associated with a
specified character.

4. IO$ SETATTN queues an attention
AST- that is delivered to the 1/0
manager whenever the application
side performs a cancel operation.

Figure 4 shows a detailed layout of
all software and hardware components
involved in using our Pseudo Terminal.

To better understand the device let's
look at a typical sequence of events that
an 1/0 manager goes through to use our
Pseudo Terminal. The example below
assumes a relatively simple model. The
model consists of an 1/0 manager, or in
this case an I/O logging process that
wants to capture, log to a file, and
forward to a physical terminal, all the
I/O requests issued by the EDT editor.
The example correlates each step to the
components in Figure 4.

586

FIGURE 4

+-------------+
I Application I

Process
+------+------+

I +-----+----+ I Pseudo I
Terminal

+-----+----+
I +------+------+ I I/O Manager I

+------+------+
I +-------+------+

I VMS T7rminal I
Driver

+-------+------+
I +------+-----+

I Terminal I
+------------+
1.::::::::.1
+----------+

(A)

(B)

(C)

(D)

(E)

1. The I/O logging process (C)
creates a new Pseudo Terminal
using the PT CREATE routine. The
PT CREATE routine assigns a
channel to the template Pseudo
Terminal and receives a channel
number for its Pseudo Terminal.
The routine using the channel
number then gets the device's
name using SYS$GETDVI. This step
causes component (B) to be
created.

2. The I/O logger (C) then uses the
SYS$CREPRC system service and
starts up the EDT editor with its
input and output assigned to the
Pseudo Terminal whose name it
received from PT CREATE. This
step causes component (A) to be
created.

3. The I/O logger (C) reads the
pending terminal I/O request from
the Pseudo Terminal (B). This is
done by using a SYS$QIO(W) with a
function code of IO$_GETIO.

4. The 1/0 logger (C) then writes
out the I/O request to a log
file. It also performs the I/O
request to the terminal driver
(D) •

5. If the request causes data to
output, it appears on
terminal (E).

be
the

6. If the request is one that can be
completed without needing
information returned to the
application (A), we go back to
step 3.

7. If the request is a read request
or a sense operation for
type-ahead count, then the I/O
logger (C) has to wait until the
actual terminal operation is
completed. Once the terminal
driver {D) completes the request
then the I/O logger sends the
results of the operation back to
the EDT editor. This is
accomplished by issuing a
SYS$QIO(W) with a function code
of IO$ FINISHIO to the Pseudo
Terminal (B). The I/O logger (C)
then goes back to step 3.

a. The above loop is be repeated
until the editing session is
completed. At this time the I/O
logger deassigns its channel to
the Pseudo Terminal and it ceases
to exist.

Device Characteristics and Restrictions

Having decided what was the best
approach for our problem, we derived a
broad class of restrictions and
assumptions about the device to keep the
driver down to a manageable size while
retaining acceptable functionality. This
section outlines the device's major
characteristics and restrictions as
originally designed. The next section
discusses some of the problems with these
assumptions and our final solutions to the
problems.

Primary Device Characteristics

Characteristic Explanation

Device Independent The device is set to
have the following
device independent
characteristics
DEV$M AVL, DEV$M CCL,
DEV$M-IDV, DEV$M-ODV,
DEV$M-REC, DEV$M-SHR,
and DEV$M TRM. -

Device Type The terminal type is
set to a VTlOO with 80
columns and 24 lines.

Input Speed The input speed is set
to 9600 baud.

Output Speed The output speed is
set to 9600 baud.

LFfill & CRfill The CRfill and LFfill
values are set to O.

587

The following limitations apply to the
Pseudo Terminal:

o The Pseudo Terminal when created
has VTlOO terminal
characteristics. These
characteristics may be altered by
either the application process or
the I/O manager process.

o Pseudo Terminal does not provide
for associated mailboxes.

o Pseudo Terminal does not provide
for command recall and command
editing.

o Pseudo Terminal does not provide
type-ahead buffering. It does
not accept input from the I/O
manager unless there is a
currently pending request from
the corresponding application
process.

o Pseudo Terminal provides status
returns on write requests which
indicate the validity of the
requests but do not indicate the
actual completion of the write to
the physical terminal.

o The Pseudo Terminal device name
is not the same as the device
name for the standard VMS
terminal driver. Processes must
use the SYS$INPUT and SYS$0UTPUT
devices created for them by the
I/O manager. If other channels
are used to communicate with the
terminal, the Pseudo Terminal
device name must be used when
assigning those channels.

o Pseudo Terminal does not provide
timing of read requests. All
timing requests are forwarded to
the I/O manager.

o The following function modifiers
are masked out before the I/O
request is forwarded to the I/O
manager:

on read: IO$M DSABLMBX

on write: IO$M_ENABLMBX

o In an itemlist read, the item
TRM$M TM DSABLMBX is removed from
the itemiist prior to forwarding
the request to the I/O manager.

o The Pseudo Terminal processes one
request at a time for each Pseudo
Terminal device. Subsequent
requests are queued until the
active request completes.

o The Pseudo Terminal does not
perform write breakthrough
operations in the same manner as
the terminal driver. Write
breakthrough operations are
queued immediately behind the
currently active request for the
Pseudo Terminal. They do not
interrupt the active request but
wait for it to complete.

o The I/O manager, creator of the
Pseudo Terminal, cannot request
the IO$ READxxx or IO$ WRITExxx
functions. -

o The I/O manager, creator of the
Pseudo Terminal, cannot specify
the following modifiers on a set
request:

1. CTRLCAST IO$M_

2. IO$M_CTRLYAST

3. IO$M_OUTBAND

4. IO$M_OUTBAND IO$M_INCLUDE

s. IO$M_OUTBAND IO$M_TT_ABORT

o The I/O manager, creator of the
Pseudo Terminal, cannot specify
the IO$M TYPEAHDCNT function
modifier on a sense request.

0 The IO$ GETIO,
IO$_SETATTN, and
requests can only
the I/O manager.

IO$ FINISHIO,
IO$ QUEUEAST

be issued by

The last major implementation
decision was to save system memory
resources. We accomplished this by not
using the VMS terminal driver Unit Control
Block (UCB) extensions. We felt that this
was ~ good decision as we needed only a
relatively small number of additional
fields beyond those used in the standard
UCB.

Implementation Problems

In this section we will discuss some
of the problems encountered in
implementing our Pseudo Terminal and our
final resolution of these problems. The
first major problem we encountered was
tied to our decision to use our own UCB
extensions. We initially stubbed out the
major portions of the driver so that we
could test to make sure that the driver
tables were correctly set up. At this
point we also tested to make sure that the
VMS utilities that query the driver tables
would work. At this phase they all
behaved as we anticipated. A few days

588

later when we had some code that filled in
some of our device specific UCB fields
these routines caused a system crash.
After several crashes and much study of
the micro-fiche, we discovered that
several terminal driver UCB extension
fields are not optional. UCB$L TL PHYUCB
and UCB$L TT LOGUCB are used by the
SYS$GETDVI system service. These fields
are pointers to the device's logical and
physical UCBs. They must either contain
valid pointers to the terminal devices
logical and physical UCB or they must be
O. If either of these cases is not true
the SYS$GETDVI system service will fail
when used on the Pseudo Terminal. Their
purpose is to allow for the use of Virtual
Terminals in version 4 of VMS. The other
field that we discovered is necessary is
the field UCB$Q TL BRKTHRU. While failure
to have and use-thTs field will not cause
the system to crash, it will cause the
SYS$BRKTHRU system service to allow or
disallow the wrong types of broadcast
messages to be sent to the Pseudo
Terminal.

The second major problem that we
encountered was that a process could not
issue a SYS$BRKTHRU to itself unless it
had operator privilege. We traced these
problems back to another of our design
assumptions. The problem stems from how
the SYS$ASSIGN system service treats
devices that are marked as shared. When a
device is marked as being shared the
SYS$ASSIGN system does not fill in the
device owner field (UCB$L PID). It does
this to allow multiple processes to access
the device. The reason this prevents the
SYS$BRKTHRU system service from working is
that this service checks to see if you are
the owner of the device by matching your
processes internal PID against the device
owner's PID. If they don't match, it
checks to see if the process attempting
the breakthrough write has operator
privilege.

The obvious solution to this problem
is to make the device non-shareable. The
problem with this direct approach is that
the device I/O manager process then
becomes the device owner. This would
prevent connecting of another process to
the Pseudo Terminal unless that process
has SHARE privilege. Our solution was to
mark the device as not being shared and
have the driver modify the call frames so
that the driver's CLONED UCB routine
receives control when the SYS$ASSIGN
system service returns. The CLONED UCB
routine is then able to make changes to
the fields in the devices UCB that
SYS$ASSIGN fills incorrectly for our
purposes. While this seems a rather crude
solution to the problem it is a rather
common approach throughout VMS.

The third major problem that we
encountered was that the Pseudo Terminal
would not allow spawned subprocesses.
This was traced to an undocumented
function modifier I0$M TT PROCESS. This
modifier is used to -set which process
currently has control of the device. The
primary effect of this is to determine
which process receives any ASTs to be
delivered. The solution was to add
support to the Pseudo Terminal set
routines for this undocumented function
modifier.

The last major problem that we
encountered was one we had anticipated
from the beginning. Some utilities take
advantage of the fact that the terminal
driver allows a write to proceed until a
read starts. Since we perform all
operations in the order they are received,
there is a potential for conflict here.
We have noticed problems with SHOW
CLUSTER/CONTINUOUS and PHONE utilities.
They work to varying degrees but not in an
acceptable manner.

Other Pseudo Terminals

While working on our Pseudo Terminal
and on this paper we have discovered the
existence of a couple of other Pseudo
Terminals for VMS. The below are brief
discussions of these other Pseudo
Terminals. The first one of these is
supplied in the DEC/TEST Manager software
version 2.0. It allows the DEC/TEST
Manager to test interactive applications.
If you can figure out the interface to it
you should be able to use it for all your
Pseudo Terminal needs. But be advised; it
is only documented and supported for use
with the DEC/TEST manager. The DEC/TEST
Manager's Pseudo Terminal is implemented
as two devices one being a Pseudo Port
driver for the VMS terminal class driver.
The other driver is used by the Pseudo
Terminals I/0 manger to send characters to
and read characters from the Pseudo Port
driver. For the intended application this
is an optimal solution to the problem as
it removes the I/O manger from having to
emulate any of the VMS terminal driver
functionality.

The second Pseudo Terminal that we
are aware of is in the public domain. It
is available over the ARPANET and is
expected to be on the FALL 85 DECUS VAX
SIG tape. The driver was originally
written by Dale Moore at Carnegie Mellon
University and modified to work on VMS
V4.2 by Kevin Carosso of Hughes Aircraft
Co. The Pseudo Terminal is implemented as
two devices; one is a Pseudo Port driv2c
for the VMS terminal class driver. The
other driver is used by the Pseudo
Terminal I/O manager to send characters to
and read characters from the Pseudo Port

589

driver. The driver appears to have been
written to provide a network terminal.
For networks that are supporting machines
whose terminal drivers do not or cannot
provide similar functionality to the VMS
terminal driver, this is a very good
solution.

Both of these drivers take a similar
approach to the problem of providing a
Pseudo Terminal but vary in their
implementation. Obvious questions to ask
are why did we not use one of these
devices and why did we take the approach
we choose. The answer to the first part
of the question is that at the time when
we were looking for a solution to our
specific problem we were unaware of the
existence of either of these devices. The
answer to the second question has already
been discussed in the Design
Considerations section. But to summarize
for our application the overhead in VMS
QIO mechanism for the most common case
would have been unacceptable.

Future Plans

We feel that the device as it
presently exists is an acceptable
baseline. Some of the planned
enhancements include modifying the device
so that write requests are no longer
blocked by read requests. The first level
would be to have the device send a message
to the VMS job controller if the device is
presently not owned. At a later date we
will investigate adding a more complete
level of unsolicited input support. We
also plan to add support for associated
mailboxes for both the I/O manager and the
applications side of the device. The
mailboxes on the applications side would
provide the same support as the present
terminal driver does. For the I/O manager
side they would be used to notify the I/O
manager of the applications side hanging
up and possibly other significant events.
The final changes fall in the area of
general cosmetics. We will attempt to use
as many of the terminal driver UCB fields
as possible and remove any unnecessary
duplicate fields that we presently have in
the driver.

Summary/Conclusion

This paper has illustrated that there
are many uses for Pseudo Terminals and
many acceptable approaches to building
them for the VMS operating system. It is
fortunate for people wishing to build a
Pseudo Terminal that VMS provides many
alternatives and mechanisms for reaching
their goal. As is frequently the case
there is no one correct or optimal
solution and hopefully this paper has

illustrated this. Based on the number of
requests we have received and the response
to the papers on this topic at the FALL 85
DECUS Symposium, there is a large user
base who feel they have a need for a
Pseudo Terminal. This paper has provided
some insight into the trade-offs and
problems for people wishing to attempt
similar sorts of devices.

Finally, the approach we chose for
our Pseudo Terminal has more than met our
original design objectives. We were able
to build test and debug it in less than
the budgeted time. The device has been in
use for over six months without any
problems and has placed less load on the
system than originally was allowed. We
believe that for applications that are
eventually going to do output to the VMS
terminal driver, our approach is the
optimal one, particularly when performance
is a primary concern.

Acknowledgment

The authors would like to express
their appreciation to Ms. Joy Dorman of
Digital Equipment Corporation and Mr.
Fred Schroeder of Titan Systems. Without
Joy's help and guidance our Pseudo
Terminal would not exist today; she kept
us from making many mistakes during all
phases of the project. Fred was critical
in convincing the final users that the
device we proposed was both feasible and
the only reasonable solution for their
problem.

590

INSTALLING MULTIPLE VERSIONS OF VMS LAYERED PRODUCTS

Gary L. Bellon
Monsanto Company

St. Louis, Mo.

ABSTRACT

This session discusses a method of Installing Multiple Versions of a Layered Product, such as For­
tran, and have all accessible simultaneously. Installation of a new version of a layered product usually
introduces problems. So it is desirable to do the installation at a time which is not critical to the users
of the product. In a large processing environment made up of diverse groups, it is difficult to find a time
which is not critical to one of the groups.

Along with the existing area, referred to as CURRENT, three additional version areas, NEW, OLD.
and TEST are created, each able to hold one version of the same software package. Accessing of the
multiple versions is accomplished by setting up additional directory trees, similar to the COMM OJ'\ tree,
and modifying search list to include one of the Version Areas. Third party packages are placed in a
separate set of trees.

ThP session discusses in detail the problems and limitations of installing and maintaining products in
these directory trees.

GOALS

One of our primary goals was to not conflict with
the standard VMS System Disk structure, or the logi­
cals which define it. We believe that our implementa­
tion accomplished this by the fact that we were able to
perform our VMS Version 4.2 Upgrade without any ad­
verse effects. The only consideration was to move the new
DCLTABLES, and HELPLIB down to the other version
areas.

Another important goal was to allow the normal use
of VMS not to be affected unless specifically requested by
the user, so that the general user would not have to be
concerned about other versions of products in the version
areas.

We also wanted, for those users who did wish to use
other versions. to be able to select which version area
(TEST, NEW, CUR, or OLD) with a minimum of effort.
When references are made to the Current area, this is
actually the standard VMS storage structure.

The implementation should also supply uniform stor­
age for multiple versions of purchased software packages
from Digital and other vendors. While this goal is listed
last, it was actually one of some importance in that it
standardized the way that multiple versions of the same
package, or even just a procedure, were stored. Our ex­
perience had been that each person had his or her own
manner of rr11aining files or directories.

LIMITATIONS AND CONSIDERATIONS

It seem~ that with everything there is some price to be
paid. In thi> case the price is an increase in the amount
of work U111t is involved in maintaining your system. The
increases ar 1· in the following areas:

• Installations will be required multiple times. When

Proceedings of the Digital Equipment Computer Users Society 591

you wish to move a package to another version area,
it will normally require that you go through the
installation procedure another time.

• Records must be carefully maintained in order for
you to know which entries have been made in com­
mon areas such as the DCL Tables and Help Li­
brary.

• The Startup procedures of some packages will have
to be modified to make references directly to the
version area in which the package is currently
stored. This will be discussed in more detail later.

It is important to realize that by the nature of some
products, having multiple versions running concurrently
is difficult, and in some cases, impossible. An example
of difficult is when a package uses system wide names
for mailboxes or writable global sections. An example
of impossible is when the package uses a particular piece
of hardware. Even in this case, though, just the ability
to store more than one version and to quickly stop one
version and start another has proven to be very useful.

USAGE OF VERSION AREAS

The TEST area is used to hold software for which
access is liinited and/ or is under development. This area
is normally used to do initial installations and tests by the
package maintainer. For packages or procedures which are
maintained by several people, this area provides an easy
way to deterinine whether or not another person is already
working on some item. Access to the TEST versions will
be limited by normal UIC based and ACL protection.

The NEW area is used to hold new versions of exist­
ing software and allow testing of them by interested users
while the current version is still used for primary produc­
tion. This allows a new version of a package to be phased

Anaheim, California- December 1985

SYS$SYSDEVICE
Master File Directory

000000

SYSO
SY SC BJ
SYS ERR
SYSEXE
SYSHLP
SYS LIB SYSMAINT .,_ __ _..,
SYSMGR
SYSMSG
SYSTEST
SYSUPD

Figure 1: VMS Single System Volume

into use by each user or group of developers at a time
which is not critical to their development cycle. Access
to this area is World:RE, the same as current.

The OLD area is used to hold the previous version
of a revised software package. This allows isolation of
problems to a particular version by trying to duplicate the
problems encountered when using the revised production
version. In this case the package is removed from the OLD
area after a sufficient period of time has elapsed to insure
the stability of the revised version. A secondary use of the
OLD area is to allow long term use of a replaced version of
one package which is required by another package. Access
to this area is also World:RE.

Interaction of different packages or images between
version areas may exist. By that I mean, there will be
instances when a user or system generated image in the
current area may not be compatible with a library that is
in, for example, the NEW area. This is to be expected,
and in fact, is a major justification for the version areas, in
that these types of incompatibilities can be identified and
corrected before the package is moved to the CURRENT
area and can effect all users.

The primary goal of the system manager should be to
have all versions of packages within the CURRENT area
compatible with one another. The other areas should
be used to hold any images or libraries required for the
correct operation of that area. For example, if a new
version of TDMS is installed in NEW and your version of
Datatrieve is linked with TDMS, switching to the NEW
area and running Datatrieve will still be using the version
in CURRENT, and may not be compatible. Therefore a
version of Datatrieve linked with the TDMS in NEW,

should be created and placed in the NEW area.
A special case to consider, involves indefinitely retain­

ing in OLD, a version of some package that is required by
a second package. There may be some incompatibilities
which you may wish to define and live with. This will be
a judgement call for each particular instance, taking into
consideration the severity and extent of the incompatibil­
ity and the importance of supporting the second package
which requires the older version.

VMS SYSTEM DffiECTORY

The simplest form of the a VMS system volume is one
which contains only one system. See figure 1.

I would like to make one point at this time to ease
the understanding of these figures. The natural way that
people think of a directory is as a group of files. Actually
a directory is a file which contains a list of file names
and pointers to those files. So each box in the figures
represents a directory file and the names inside the box
are the list of the files contained in that directory. As you
can see in the Master File Directory, there is an entry for
itself and the pointer points back to itself.

In the Master File Directory there is an entry for
the directory SYSO. In the directory SYSO is the list
of directories that correspond to the system logicals,
SYS$SYSTEM, SYS$LIBRARY, SYS$MANAGER, etc.
These entries, in turn point to their own individual direc­
tories which contain the list of the actual files. So these
figures show only directory files, no data files.

There may be additional entries in the SYSO direc­
tory depending upon which layered products have been
installed. The VAX 11 RSX product creates the syn-

592

SYS$SYSDEVICE
Master File Directory

V4COMM0Nr------------------,..----.,.---.f""-SY:::::SCB:=::J:-l

SYSn

From other
Sy1lem roola

SYSERR
SYSEXE
SYSHLP
SYSUB SYSMAJNT ,_ ____ ~
SYSllGR 1---9'j
SYS MSG
SYSTEST i-------..i
SYSUPD

Figure 2: VMS Cluster Common System Volume

onym directories; 001001, 001002, and 001054. These en­
tries actually point to the same directory files as SYSLIB,
SYSMSG, and SYSEXE respectively.

This directory tree structure is the basic unit required
for a system and is the building block for the Cluster
Common System Volume.

VMS CLUSTER COMMON

As distributed, the cluster common system vol­
ume has two basic sections, System Specific and Com­
mon. Refer to figure 2. The common area directory,
V4COMMON, has the same format as the directory we
just saw on the Single System volume. The system spe­
cific directory, which is normally referred to as a system's
root, has only one addition entry and that is SYSCOM­
MON. This SYSCOMMON entry also points to the com­
mon area directory.

There can be up to 16 roots, 0 through F, with E being
reserved for Standalone Backup and F being reserved for
VMS Upgrades.

Each root has a pointer to the common directory. Not
being a Digital employee, I can only surmise that this was
done to allow for more than one common area, for exam­
ple during an Upgrade, or possibly to allow a completely
separate system to reside on the pack by removing the
SYSCOM!\10N entry from the root directory. It would
still have to be a member of the cluster to avoid corrupt­
ing the volume.

Most of the VMS files reside in the Common directo­
ries with only those files with specific data for one system
residing in that system's root directory.

593

SYSTEM VOLUME WITH VERSIONS

A VMS system volume is modified to support multiple
versions by creating three addition directory trees, each
being an exact copy of the common directory. The names,
as you might expect, are TEST, NEW, and OLD. Refer
to figure 3

In creating these directories, it is important not to
use rooted logicals, meaning those logicals which contain
a device, a directory and end the directory specification
with a ". ". This is because they have the habit of also
creating a lower level iOOOOOOJ directories. It is best to
use a full device and directory specification such as:

$CREATE/DIR SYS$SYSDEVICE:[TEST.SYSEXE]

The files and directories within these trees are, as is
the case in the other VMS directories, owned by the SYS­
TEM UIC, [1,4]. Access to the NEW and OLD directory
trees will be the same as the access to the Common area.
The world access to the TEST directory tree should be
removed.

If you are performing this procedure on a Single Sys­
tem volume, the operation is exactly the same.

You will need to copy into each directory tree from the
common directories the files; [SYSHELP]HELPLIB.HLB,
[SYSLIB]DCLTABLES.EXE, and an image you will have
to create, [SYSEXEjACCESS_x_ TEST.EXE. The x in
the image name will be T, N, and 0 for the TEST, NEW,
and OLD areas respectively. This image is nothing more
than an exit statement with a successful return status. It
is used when switching versions to insure that the user
has access to this area.

A separate version of the DCLTABLES and HELPLIB
library are required because these files are normally mod-

rnts'ISllSVICS
-Pll•Dl-1'1

NP

OLll

Figure 3: VMS System Volume with Versions

ified when a package is installed, and you will want these
files to reflect the actual contents of the version area.

CUR: "SYS$SYSROOT" "$1$DUAx:[SYSn.]"
"SYS$CONNON"

TEST: "SYS$SYSRDDT" "SYS_SYSTEST"
"SYS$SPECIFIC"
"SYS$CONNON"

NEW: "SYS$SYSRODT" "SYS_SYSNEW"
"SYS$SPECIFIC"
"SYS$CONNDN"

OLD: "SYS$SYSROOT" "SYS_SYSOLD"
"SYS$SPECIFIC"
"SYS$CONMON"

"SYS$SPECIFIC"
"SYS$CONNON"
"SYS SYSTEST"
"SYS_SYSNEW"
"SYS_SYSDLD"

"1DUAx: [SYSn.]"
"1DUAx: [SYSn.SYSCONNON]"
"1DUAx: [TEST.]"
"1DUAx: [NEW.]"
"1DUAx: [OLD.]"

Table 1: System Search Lists

SYSTEM LOGICALS/SEARCH LISTS

The logical search lists required to accomplish access
to the various System Version sections are shown in Table
1. The search list in the normal VMS environment is
the logical SYS$SYSROOT. This standard system logical

search list is modified for searching in the version areas
by adding the logical that defines the version area as the
first item in the search list.

You may have noticed that the second item in the
search list for the version areas was changed from a de­
vice and directory to be a logical which translates to the
same device and directory. This was done because the
search lists which include the version areas are defined
in Supervisory Mode, so that they are not "trusted'' logi­
cal names. A "trusted" logical name being one defined in
Kernel or Executive Mode. This is important in gaining
access to privileged images, sharable images referenced by
privileged images, ... Just as a note, the subject of when
"trusted" logical names are required is covered in detail in
a News Bulletin in the November VMS Systems Dispatch,
but one important detail was left out and that is only the
last logical translated must be a "trusted" logical.

The logical translations at the bottom of the tables
show the logicals used in the search list. The first two are
defined in the STARTUP procedure. The last three, you
will will have to define in your SYSTARTUP as system
wide Executive Mode logicals. We used an "_" instead of
a $ because of possible future conflicts.

On Single System Volumes, logicals SYS$SYSROOT,
SYS$SPECIFIC, and SYS$COMMON all translate to the
value shown in the table for SYS$SPECIFIC. In that case,
all of the search list in the table would leave off the last
item, SYS$COMMON.

SEARCHING A STANDARD VOLUME

The search of a standard VMS volume is performed in
two steps, as defined by the logical SYS$SYSROOT. The

594

SYSISYSDEVJCE
Mallter File Dlrecl.ory

Figure 4: Searching a VMS Cluster Common System Volume

1 NO

OLD

Figure 5: Searching a Volume with Versions

example shown in Figure 4, is a search for an image file
that is referenced using the SYS$SYSTEM logical. The
first step of the search is to open the Master File Directory
(MFD) and search for the system's root directory entry.
Upon finding that, the system opens the root directory
and searches for the SYSEXE entry. It then opens that
directory and searches for the entry of the image file that

595

is to be activated. If thl' entry is not found or access
is blocked, the system then tries the second item in the
search list. This time seafl hing the root directory for the
SYSCOMMON entry. Upon finding that, it opens the
common directory and again searches for the SYSEXE
entry. This directory is tl11·n searched for the entry of the
specified image.

SEARCHING A VOLUME WITH VERSIONS

To use packages from one of the version areas, the
standard VMS search list is modified, as we saw in the
previous table, to include one of the three logicals that
translate to a version directory. So the search now is made
up of three steps. The first step is to search the MFD
for the version directory, and upon finding it, opening
that directory and searching for the SYSEXE directory
entry. Then searching in that directory for the specified
image. If, as before, the image is not found or access is
blocked. the system then proceeds to the next items in
the search list, which are the same as was just described
in the standard VMS search.

SITE SPECIFIC DffiECTORY

For the utilities and procedures that we add to VMS
for system management, operational support, and general
user reference, we have created a separate set of directory
trees shown in Figure 6. Without going into alot of the
specifics concerning our tree structure, all that is really
important to the implementation of version areas is to
take the entries that are in the MFD and copy them to a
lower level directory named CUR. The other version areas
are made by duplicating this tree in their directories

Also software packages purchased from third parties
or developed by an in house staff, can be placed in the
version directory trees. The subdirectory tree structures
can remain as they were defined by the supplier of the
package. The only difference is that they are in a lower
level directory instead of the MFD, but this is made trans­
parent by the use of rooted logicals.

The trees, as far as versions are concerned, are used
in the same manner as the VMS system directories, and
therefore do not need any further explanation.

An interesting point is that these directory trees are
split across two physical volumes.

CUR: 11 RCC ENV 11

TEST: "RCC ENV"

NEW: 11 RCC_ENV"

OLD: 11 RCC_ENV"

11 RCC_CUR"
11 RCC TEST"
11 RCC NEW"
11 RCC OLD"

11 1DUAz: [RCCENV. CUR.] 11

11 RCC_TEST 11

11 RCC CUR"

''RCC_NEW"
11 RCC_CUR"

== "RCC_OLD"
"RCC_CUR"

"1DUAz: [RCCENV.CUR.] 11

"1DUAy: [RCCENV. TEST.] II
"1DUAy: [RCCEllV. NEW.] II

"1DUAy: [RCCEllV. OLD.] II

Table 2: Site Specific Search Lists.

DISK_2
Muter Directory

COlllllAND
DOCUllENT
EXECUTI

HELP
LIBRARY
MANAGER

OPERATION
TEllPUTE

packareN

Figure 6: Version

SITE SPECD'IC LOGICALS/SEARCH LISTS

The logicals used to gain access to our site specific
version areas are shown in Table 2. The manner in which
the search lists are modified for the versions areas is the
same as what is done with the VMS search list, i.e. an
item which defines the version to include is added to the
beginning of the search list. Again, remember to use only
11 trusted" logicals as items of the search list.

SPECIFYING DEFAULT VERSION

In order to use one of the versions other than Current,
the user must request the version by using the command:
VERSION parameter, where the parameter entered is ei­
ther TEST, NEW, CUR, or OLD. This procedure per­
forms the following steps:

• First, the parameter is verified to be one of the
po~~ible version areas, and the procedure branches
ba~Pd upon which version was requested.

• Thi• search list logical for SYS$SYSROOT is cre­
atr•d in the user's process table which will include
th1· specified System Version section, unless the ver­
sin11 requested is CUR, in which case the logical in
th1· process table is removed.

• Tl1l' search list logical for RCC_ENV is created in
th•· user's process table which will includes the spec-

596

ified RCC Version section, unless the version re­
quested is CUR, in which case the logical in the
process table is removed.

• The characters TI , N I , or 0 I , are appended to the
beginning of the users prompt to be a constant re­
minder that the software being referenced may not
be the production version. If the version specified is
CUR, the version indicating characters is removed
from the prompt.

• Since the access to the TEST directory will be lim­
ited and because the noncurrent versions of the site
specific sections are on a separate volume, an im­
age is activated in both the VMS and site specific
sections of the requested version. If the requested
version can not be accessed, the abort sequence will
be activated.

• A list of the packages found in that Version is then
printed. In each RCC_ENV:[DOCUMENT] direc­
tory there is a file called PACKAGE_LIST.DAT

• An error or a request to abort the procedure will
cause the procedure to return the process to the
Current version.

• The DCL tables within that version will be loaded
into the process.

All packages within a version will be accessed when
that version is requested. Individual selection of pack­
ages within a version will, for the most part, not be pos­
sible. Planned to be implemented in the future is a proce­
dure, which will be named EXECUTE.COM, which will
be activated with two parameters; the version to be acti­
vated from, and the symbol normally used to activate the
package. This activation method will not be possible for
packages which are defined in the DCLTABLES, mean­
ing almost all of Digital's layered products, but is pos­
sible for many third party packages. The maintainer of
the packages will allow this type of activation by defining
a command procedure of the name pkg_ VERSION.COM
in the same directory as the normally activated image
or procedure. In this way, each maintainer of a package
can determine individually if that package is suited to be
activated independently.

INSTALLATION PROCEDURE

In order to install a layered product into a version
area all that is required is to switch your process to the
desired version and to specify to VMSINSTAL the ver­
sion directory as the the destination root. The example
shows the product saveset coming from a disk volume.
An explanation of the paraml'I ers for VMSINSTAL can
be found in the Guide to Software Installation.

$! Install a Package in ft Version Area.

$ VERSION NEW

597

$ GSYS$UPDATE:VMSINSTALFORT043 DIST:[FORT043]

OPTIONS R 1DUAx: [NEW]

$DIR SYS$SYSDEVICE: [* ...]/MOD/SINCE=start_time

$

For record keeping purposes, it is a good idea to per­
form a directory on the system device of all the files mod­
ified since the installation started and direct the output
to a file. The listing should be checked to insure that only
files in the root you specified have been changed. This list
will also be needed when the the package is removed from
that version area.

Another planned enhancement is to create a proce­
dure which will call VMSINSTAL for you, but will accept
as parameters, a more understandable name for the pack­
age, and a logical name to define the root. This procedure
will update the PACKAGE_LIST file with a single en­
try, rather than the sometimes multiple, cryptic product
saveset names. This procedure will convert the name to a
proper saveset name(s), translate the logical, and pass the
parameters to VMS INST AL, multiple times if required.

SOFTWARE INSTALLED

As of this time we have successfully installed the fol­
lowing products into a version area:

•FORTRAN

• VAXC

• PASCAL

• LSE

• DECSPELL

• MMS

• BASIC

• CMS (Future versions will not be compatible)

• DAT ATRIEVE (Only after many corrections were
made to the KITINSTAL)

More will be stated later about the specific problems
encountered while installing packages.

VMS updates which only effect utility routines could
also be put into the Version area, although this should
generally be avoided. Modified versions of the standard
System modules and Drivers can not be accessed from the
versions areas during a system boot.

STARTUP CONSIDERATIONS FOR CONCUR­
RENT VERSIONS

The image activator first checks for any possible in­
stalled images based upon the search list that the image
is referenced by. So for example, if the image is spec­
ified as SYS$SYSTEM:1mage, all possible variations of
that search list are checked for an installed image of that

name. This means that if there are two versions of an im­
age, one in a version area and one in the current area, but
only the one in the current area is installed, the current
version will be the only version ever activated because it
is always in the search list. So, if the current version of
an image is installed, then all versions of that image must
be installed.

When an image is installed /SHARE, there are global
sections created based upon the image's file name. So, if
more than one version of the image is installed shared,
there will be global sections of the same name. VMS
does not maintain any link between an image installed
/SHARE and the global sections associated with that file,
it just does a top down search of the table to find a global
section with a name that corresponds to the file name, so
only the entry nearest the top of the table is used. For
this reason, only one version of an image can be installed
/SHARE, normally the one in current because it should be
th1· one most used. The other versions will create private
se< lions for each activation.

If there is a startup procedure supplied with the prod­
uct, it will be necessary to merge the startup proce­
dures from other versions into the one in the current
area, since it is only one called at startup. If some im­
ages are installed, the procedure must be modified to in­
sure that the version directory is specified explicitly, e.g.
SYS_SYSNEW :[SYSEXE].

STARTUP CONSIDERATIONS FOR NON-CON­
CURRENT PACKAGES

Starting of packages which can have only one active
version may be done in one of two ways; the first being
based upon the version which is the first item in the logical
search list, and the second being based upon the directory
tree which holds the procedure which starts the package.

Start Up Based Upon Current Default Area

A package's startup procedure can be made to start
up the version of the package based upon the current val­
ues of the search list logicals. The example shows a loop
to insure that the logical is translated to its final value.
The final value is then appended on to the beginning of
the file specification to be the value of that package's log­
ical names.

$! Define the Package's Root logical name.
$ temp = "RCC_EtlV"
$trans_loop:
$ dev_dir = temp - "]"
$ temp = f$trnlnm(temp)
$ if temp .nee. "" then goto trans_loop
$
$ def/sys PKG_LOGICAL 'dev_dir'PKG]
$

!'-I 11rt Up Based Upon Procedure's Location

Another method is to start up the version of the pack-

age based upon the directory in which the procedures re­
side. Determine the procedure's name from the lexical,
extract the device and top level directory, and then define
the package's logical

$! Define the Package's Root logical name.
$ temp= f$environment("procedure")
$ dev_dir =temp - "]"
$
$ def/sys PKG_LOGICAL 'dev_dir'PKG]
$

SPECIFIC PROBLEMS

The problems encountered maintaining versions areas
can be grouped under the three general headings of; limi­
tations on concurrent versions, installation problems, and
general precautions.

Limits on Concurrent Versions

If a package contains a protected sharable image, this
will preclude it from ever having more than one active
version. This is because of the the limit of no more than
one version installed /SHARE. CMS, CDD, and SPM are
layered products we know include this type of image.

If a package has a writable global section, this will
preclude it from ever having more than one active version.
This too is because of the limit on the number installed
/SHARE.

The use of a system wide mailbox name will also pre­
clude there being more than one active version. There
is a way to specify the logical tables in which the mail
box names go into, but the complications involved with
this were considerable. In any case, the developers of
our major third party packages have the same problem of
running multiple versions so they already change mailbox
names with each new version.

Packages which are associated with a particular piece
of hardware, can also only have one active version.

Installation Problems

During the installation of the layered product, various
system files and utilities must be able to be referenced in
the same root as the installation is being done. Unfortu­
nately, the KITINSTAL.COMs do not precheck all of the
requirements at the beginning of the installation as they
do to generate the list of active processes, so you must run
the installation until it fails on a file reference. In some
cases, as with Datatrieve 3.2, the procedure was not re­
porting which files were not found. So with some packages
you will have to read and interpret the KITINST AL pro­
cedure. After determining all of the files required for read
only reference, they are copied to to the version area, and
then deleted after the installation.

It would be nice if the first thing that any KITINSTAL
performs is a check for required files and reports any defi­
ciencies before starting the main installation. Even better
would be for the KITINSTAL to use the SYS$... logicals

598

for read only references, and the VMI$... logicals created
from the root specified by the input parameter, for the
modify references.

On the other hand, there has been instances when
modify references were made with the SYS$... logicals,
meaning that files in the common area have been mod­
ified. That is why I recommend running a DIR /MOD
/SINCE=start_time after each installations. If files are
found to have been modified they should be moved into
the directory tree in which the installation was being per­
formed.

As long as the products fl.ow through the version areas
in the expected sequence, entries made in common files
in the new area such as the DCL Tables and the Help
Library, will remain compatible with the entries for the
product in the current area, even though the specific files
for that product have been removed from the new area.
Should a version of a product, though, not work out to
your satisfaction and the decision is made to remove it
from tlie system. The specific files can be removed in
the same way they would be if the product had moved
up, but you are left with entries in the DCL Tables and
Help Library which are not compatible with version of
the product in current. The easiest thing to do just may
be to reinstall the version of this product that is in the
current area into the new area and in that way replace
the entries in DCL Tables and Help libraries so that they
are then the same as the current area's entries.

General Precautions

Care should be taken to read the Release Notes of any
product before installing it to try to avoid conflicts such
as the new version changing the format of a file or data
structure, making it incompatible the existing version still
in production. Each situation will require not allowing
concurrent versions, or instructing and trusting the users
of the product that once the new version has been used,
to use only that new version.

Changes in the manner in which an image is acti­
vated, from one version to another can be another source
of problems. For example the previous version of CMS
was activated by a symbol using the dollar sign, the new
version has a DCL Table entry. So those users who pri­
vately created the CMS symbol, received an activation
error when trying to run the new version.

There are still a few peculiarities with the use of search
lists which seem to be limited to commands like SET
FILE/OWN, when a wild card is included in the argu­
ment which makes it span volumes. These types of errors
will have little if any effect on general users but may make
the m11intainer's life a little less predictable.

The most visible aspect of search iist that can some­
times confuse a user is that the status resulting from a
bad fil1• access, is the result of the last item in the search
list. This means that you may get a File Not Found Error,
whr11 l\ctually there was a Protection Violation on the file
found in a higher item of the search list. This seems like
one of those things that has to just be kept in mind while

599

using the system.
Be aware that the different editors handle search list

differently: some always put t-he file in the directory
pointed to by the first item of the search list, others
put the output into the same directory that the input
was found, and still others will do both depending upon
whether it recognizes the directory tree as a VMS struc­
ture or not.

One last little mention of creating directory trees with
rooted logicals, they will sometimes create a middle level
directory by the name of [000000;, so be sure to fully
specify the argument for the Create Directory command.

THE COMPLEMENTARY USE OF MACINTOSH AND VAX COMPUTERS

Daniel P.B. Smith and Robert B. Goldstein
Eye Research Institute of Retina Foundation

20 Staniford St
Boston, MA 02114

ABSTRACT

Our facility is equipped with VAX and Macintosh
computers, and we try to take advantage of the
best features of each. Taking advantage of the
graphics and word processing capabilities of the
Mac, we off-load those applications to the Mac and
thus free the VAX for large database applications
that require good response time. We also use the
VAX as a store-and-forward system for Macintosh
objects, partly eliminating the need for Apple­
talk. We run MacTerminal VT100 emulation software
on our Macs and connect them to the VAX using
existing terminal cabling (RS-232). A program,
MACSnVAX, makes the VAX appear to the Macintosh as
another Macintosh so that MacTerminal can perform
"Mac-to-Mac" file transfers. We have loaded a
large library of Mac software onto our VAX, which
is accessible to all Macs in the building. We
have also written a program, TIF, that inter­
changes MacWrite and Microsoft word documents with
Word-11 documents on the VAX.

INTRODUCTION ERi Facilities
This paper focuses on the operation of a
program called MACSnVAX. We will present a
sample session and several tasks for which
MACSnVAX can be used.

At the Eye Research Institute (ERI) we have
5 VAX computers linked via Ethernet, with
some 50 terminals, printers, and plotters
attached to them through a MICOM switch.
We also have about 20 Apple II, 10 Macin­
tosh, and 5 IBM PC computers (Figure 1).
Our central computer staff consists of
three professional-level people.

DIVISION OF LABOR

On our VAX systems we perform word process­
ing with Word-11, biostatistics and gra­
phics using RS/1, modeling, database appli­
cations, reference library, and general
accounting applications. We use one VAX
for image processing. On the Macintosh
computers we run Microsoft Word for word
processing, NWA-Statpak for statistics, and
the standard Macintosh programs MacDraw and
MacPaint. Some users employ RUNOFF, Apple­
writer II, and MacWrite for word proces­
sing.

In the areas of word processing and statis­
tics some overlap occurs for the following
reasons: (1) Individualism - we have 50
independent investigators who like to exer­
cise total control over their resources and

Proceedings of the Digital Equipment Computer Users Society 601

E
T
H
E
R
II
E
T

ma

lllCOll

(IO)Apple lls
(5) IBllPcs
(IO) Macs

Robert a. GoJdstela
Genrade stablaer
llmliel P .B. Saltll

Figure 1. ERI Computer Facilities and Staff

prefer to use their own microcomputers.
(2) Offloading - we encourage people who
want to do only word processing to use the

Anaheim, California - December 1985

Macintosh. This allows us to maintain a
better response time on the VAX system.
(3) Convenience it is convenient for
database users to do word processing on the
VAX rather than switch to other machines.
This overlap creates problems in the areas
of file transfer and file compatibility.

MACSnVAX

MACSnVAX, one of two programs we wrote to
help solve the above problems, may be used
in the following ways:

o As a "store-and-forward" system. One
user can upload his files to the VAX,
and at a later time another user can
download the file to his Macintosh.

o As a 1 ibrary. The Boston Computer
Society has released approximately 20
disks of public-domain software. We
have loaded a large portion of this
library onto the VAX and made it avail­
able to all the Macintoshes on our net.

o As a slow file server. Users can take
advantage of the vast disk capability of
the VAX to store all their files. When
they wish to use one of them, they can
download it to their Macintosh. Operat­
ing at 9 600 baud, it takes only a few
minutes to download a document of sub­
stantial size. Note, however, that
cost/byte of storage is much higher on
the VAX than on Macintosh disks.

o As an archiver. We have an extensive
backup pol icy for our VAX systems.
Therefore, Macintosh documents that are
no longer needed but shouldn't be delet­
ed, can be loaded onto the VAX where
they will be backed up on tape and kept
for several years.

s File Edit Uiew Special

RRMdislc

0
Empty F o 1d..-

o As a text file converter. MACSnVAX can
convert Microsoft Word documents to VAX
text format for editing with EDT.

MACSnVAX has the following capabilities:

o It works with MacTerminal, using the
XMODEM protocol, to make the VAX look
like a Macintosh for purposes of file
transfer.

0

0

0

It can store any type of Macintosh ob­
ject (programs, documents created with
MacDraw, MacPaint, Microsoft Word, etc.)
on the VAX. Any valid 3-fork Macintosh
file can be stored on the VAX.

It produces a Macintosh-like catalog of
the objects stored on the VAX, using the
CATALOG command.

It can store a descriptive
with each object, using the
command.

paragraph
ANNOTATE

o It can display text from Microsoft Word
files, or extract it so it may be mani­
pulated with EDT or other VAX editors.

o The MACSnVAX internal Command Line In­
terpreter is identical with the VMS CLI,
so that a familiar environment is pro­
vided.

o Wildcards are allowed where appropri­
ate.

MACSnVAX Session and Use

Figures 2 through 5 show a typical MACSnVAX
session.

Figure 2 shows a Macintosh Desktop with the
MacTerminal program and the document "VAX"
that contains the correct settings for the
user to loq in to the VAX.

Figure 2. Initial Macintosh Desktop

602

$ maosnvax
KACSnVAJ v4.1, copyright (c) 1985
by Eye Research Institute of Retina Foundation
All rights reserved

You're now in main section

(:UPLOAD • J
H)elp, C)atalog, G)etinfo, U)pload, D)ownload, S)ection, O)uit

KACSlfVAl>u
Please send your file.

ANNOTATE
~

(pull down "File," select "Send File ... ")

Received Macintosh file ERi
as V1fS file DUl: [COMPUTER.SMITH.MACDEMO)ERI.KAC;

To add a description of this file, use the a)nnotate command.

H)elp, C)atalog, G)etinfo, U)pload, D)ownload, S)ection, O)uit

KACSlfVAJ>a/t
Annotation file: DUl: [COMPUTER.SMITH.MACDEMO)ERI.INF;
Annotation method:TYPE
Limit each line to about 60 characters.
Erase individual characters with RUBOUT, lines with CTRL-U
Type CTRL-Z after last line.
You can begin typing your description when a clear line appears.
Bob--this is the MacPaint document •e use as the ERI startup
screen. Maybe you can use it in the DECUS presentation. --Dan
"Z

Figure 3. Examples of the UPLOAD and ANNOTATE Commands

$ macsnvax
llACSnVAI v4.1, copyright (c) 1985
by Eye Research Institute of Retina Foundation
All rights reserved

You're now in ma.in section

[CATALOG]
H)elp, C)atalog, G)etinfo, U)pload, D)ownload, S)ection, O)uit

llACSl'fVAl>c
Catalog of main section

Annotated
CATALOG ..

VMS name Macintosh file Type S. creator Size Last modified

AUSTIN Austin Econ (Nn) Font doo 34K 14-SEP-1985 12
AUSTIN_DOC Austin Econ Doc MacWrite 11K 2-NOV-1985 10
BIGCURSOR BigCursor Application 2K 14-0CT-1985 02
ERI ERI MacPaint 9K 21-0CT-1984 19

llACSl'fVAl>g eri
Annotated Catalog of main section

VMS name Macintosh file Type S. creator Size Last modified

21 35
48 29
31 52
38 58

ERI ERI MacPaint 9K 21-0CT-1984 19:38:58

Bob--this is the MacPaint document we use as the ERI startup
screen. Kaybe you can use it in the DECUS presentation. --Dan

l OOWNLOA~] llACSHVAl>d eri
., Sending: ERI

9216 bytes (data) 0 bytes (resource) 9216 bytes (total)

Figure 4. Examples of the CATALOG, GETINFO, and DOWNLOAD Commands

603

s File Edit Commands Settings Phone Keypad

RH
vou ;r.· ·r;o,;,· ·in· ii<:11.;· ·sec:·t i o;.- ·

H>elp, C>atalog, G>etinfo, U)pload, D>o.nload, S>ection, Q>ui t

Receiuing the File •ERi •. Size is 9216 characters. To
Cancel, hold down the • key and type a period(.).

ERi
Percentage Complete:

• 111p111111111111111111111111

0 25 50 75 100

l'IACSNVAX>d eri
Sending: ERi

0216 bytes <data> e bytes<~> 0216 bytes <total>

Figure 5. MacTerminal File Transfer Screen

Figure 3 shows a user uploading an object,
ERI, to the VAX. MAC Sn VAX creates a VMS
filename for the object. After the object
is uploaded, the ANNOTATE command is used
to create and store a descriptive paragraph
with the object.

Figure 4 shows the use of the CATALOG and
GETINFO commands to display information
about the object, and the start of the
DOWNLOAD command.

Figure 5 shows the Macintosh screen during
the download operation. After the download
the ERI object appears on the Macintosh
Desktop.

A Macintosh object that resides on the VAX
can be used only in limited ways. Current­
ly, it can be used in conjunction with our
Image Analysis facility, or, if it is a
text object, it can be converted into a
format that can be read by one of the VAX
word processing programs.

The Image Analysis system, an Adage 3000,
has no alphanumeric capability, and there­
fore we must use the Macintosh text to
annotate images. Although MACSnVAX is not
yet in active use for this purpose, it
allows us to use the powerful drawing capa­
bility of MacDraw for Image Analysis appli­
cations.

We have written a program, TIF, that trans­
fers documents from one word processing
program to another (Figure 6). TIF uses a
RUNOFF-like format that contains a least
common denominator set of word processing
capabilities. TIF assumes that if a docu­
ment is transferred, it is also going to be
re-worked. Although TIF does not preserve
complex formatting instructions, such as

604

Figure 6. TIF and its Supported
Word Processing Systems

columnar output, it does preserve center­
ing, paragraphing, and character highlight­
ing (bold and underline). TIF performs a
2-step transfer: first the document is
converted to TIF, and then re-converted
from TIF to its new format. TIF currently
works with RUNOFF, Word-11, Microsoft Word,
MacWrite, and Applewriter II. We also use
TIF to send documents electronically to the
printer of our quarterly newsletter.

FUTURE UPGRADES

We plan the following enhancements to
MACSnVAX:

0 Better handling of VMS filenames.
rently filenames are truncated
characters.

Cur­
to 9

o MACSnVAX options will be handled with a
SET command internal to MACSnVAX.

o Improvement of the primitive VIEW com­
mand that allows us to view MacPaint
documents on a VT24 0, and its i nteg ra­
tion into our image processing system.

o Provisions for a rename and/or delete
function from within MACSnVAX.

o Additional TIF modules, probably to sup­
port IBM PC word processors.

o Addition of a MacMail facility, allowing
Macintosh objects to be mailed from one
user to another.

CONCLUSION

By implementing a program such as MACSnVAX,
we hope to approach the ideal of using VAX
systems and Macintosh computers for what
each does best.

605

A FORTH-83 Standard FORTH

M. P. Hanson
Department of Chemistry

and

R. J. Wilson
Computing Services

Humboldt State University
Arcata, Cai lfornla 95521

James' original version of FORTH has been
substantially revised to bring it into compllence
with the 1983 standard of the language. The source
program is written in MACR0-11 and can be compiled
to run under RT-11, RSX-11 or RSTS/E.

In addition to the standard word set the split file
structure of V. Vinge <SDSU, San Diego) has been
accomodated. This file structure is extremely
useful In a teaching environment using a time
sharing system. With such a system a student
requires a minimum disk allocation, can use the full
language, and can be given messages or software from
the instructor.

The users of FORTH have attempted to
standardize the language. Over the I lte of
the language there have been three standards
adopted. The first FORTH-77 fol I owed
relatively quickly by the standard FO~TH-79
pub I I shed by the FORTH Standards Team In
1980. The most recent standard FORTH-83 was
pub I I shed by the FORTH Standards Team in
1 984.

The program described here is thought to
meet the 1983 standard but no guarantee is
made or impl led to that fact. It is
however, our intent to maintain and Improve
this program for at least the next five
years. We would appreciate any errors being
brought to our attention; especially useful
would be appropriate means of correcting our
error. We would also be Interested in
suggestions tor extensions and Improvements.

In the program described here Jamez'
orlginal MACR0-11 version of FORTH has been
substantial iy revised to bring it into
compi lance with the 1983 standard of the
language. Many of the changes are code
implementations of a hi§her level program
written by Vernor Vlnge • The source

Proceedings of the Digital Equipment Computer Users Society 609

program is written in MACR0-11 and contains
a number of options. The program can be
compiled to run under RT-11, RSX-11M,
RSTS/E. A command file to implement FORTH
under each of these operating systems is
given together with the source file on the
RT-11, RSTS/E, and RSX-11 tapes.

WHAT IS FORTH ?

FORTH is an interpretive language
generating threaded code and having
comp Iler and operating system attributes.
The system the user sees is interpretive.
Th us commands, requests, etc. (WORDS In
FORTH) are entered and executed. Numbers
entered are placed on a stack for temporary
storage until they are needed.
Additionally the machine code tor the
action specified by a number of FORTH WORDS
can be threaded together in a new WORD 1 s
definition in such a fashion that the
interpretation of this new WORD causes
Immediate execution of this new code

FORTH is composed bas I cal iy of a
dictionary, a text string interpreter, and
a comp I I er.

Anaheim, California- December 1985

THE DICTIONARY

Di ct i ona r y Entry For I
ENCLOSE ~

LINK2

• BYTE

• ASCII

• EV EN
. =. -1
BYTE

.WORD

.LINK

PEMIT

204

240

LINK

LI NK2

START OF DICTIONARY
ENTRY FOR EMIT
LENGTH BYTE - SIGN
BIT SET
THE NAME OF THE
FORTH WORD

LAST CHARACTER OF
NAME <OR BLANK
F I L L) W I TH H I G H
BIT SET
PO INTER TO
BEGINNING OF
PREVIOUS
DICTIONARY HEADER
(ENCLOSE HERE)
PO INT L INK TO
BEGINNING OF THIS
WORD
POINTER TO MACHINE
CODE FOR EMIT

Dictionary Entry For I
KEY ~

Dictionary Entry For I
KEY? ~

PEM IT: CMP
BLT

(S),#40
1 $

1$:
I NC
TST
BEQ
MOY
EXIT

42 (u)

@#177564
1 $
<S>+,@#177566

THIS IS A TWO INSTRUCTION
MACRO WHICH TRANSFERS
CONTROL FROM THE MACHINE
CODE OF ONE DEFINITION TO
THAT OF THE NEXT.

610

THE TEXT STRING INTERPRETER

The operation of the text string
interpreter is most easily shown with a
trivial example. A one I ine terminal entry
and its result Is

42 EMIT <CR>
* OK

The text string interpreter breaks the
string 42 (del lneated by a fol lowing blank)
out of the input stream and looks in the
dictionary for its definition. Failure to
find this string leads to an attempt
(successful) to convert It to a number and
place It on the stack (R5) .

The text string interpreter next breaks the
string EMIT (delineated this time by the
end of the input stream) out of the input
stream and looks In the dictionary for its
definition. Success here leads to the
execution of the word I.e., transfer to the
code beginning at PEMIT. In this case the
result Is the display of ASCII character 42
(*)on the terminal.

Successful Interpretation of the entire
input string is acknowledged by the
printing of the string OK.

A search of the dictionary for a WORD (
ASCII string) involves following a linked
I I st of def I ned WORD str I ngs unt 11 a match
Is found or the I 1st terminates. Note In
the dictionary example that LINK contains
the address of the beginning of the last
WORD defined. Note also that this address
contains a length byte followed with that
number of ASCII characters and a
terminating last character or blank with
the high bit set. The next memory location
contains the address of the next to the
fast WORD det!ned and so on to the start of
the dictionary. The beginning of the
dictionary Is flagged by LINK containing
zero. The text string interpreter compares
the ASCII string with the f lrst string it
encounters in the dictionary (that marked
by LINK). A comparison failure leads to a
comparison with the string pointed to by
the I Ink f lei d of the I ast word def I ned and
so on untl I a match Is found or the 11 st
terminates.

THE COMPILER

The operation of the compiler is also most
easily demonstrated with an example. A
terminal entry with the resulting
acknowledgment Is shown as

: ASTERISK 42 EMIT ;<CR>
OK

The appearance of the string : In the input
string puts FORTH in compiler mode and
creates a dictionary header for the word
which appears next In the input string

(ASTERISK here). The code created Is that
displayed below between the first appearance
of LINK2 and DOCOL. Successful conversion
of the next string as a number causes the
address of a machine code routine LITER
(from literal) to be placed next In the
dictionary memory. The effect of LITER Is
to move the contents of the next memory
location to the stack CR5). The string 42
Is then converted to binary and stored In
the fol lowing memory location. The string
EMIT Is found In the dictionary and the
address of the start of the machine code tor
It Is stored In the next memory location.
The final string ; causes the entry for the
control transfer routine EXIT to be stored
In the next memory location and returns the
mode to Interpret.

The effect of the above entry on memory Is
shown as:

Dictionary Entry For l
TASK ____ _L

LI NK2 = •
.BYTE 210
.ASCII A ASTER I SKA
• EV EN
.=.-1
.BYTE
.WORD
LINK=
DO COL

LITER

42.
PEMIT

EXIT

240
LINK

LINK2
A POINTER TO FOUR MACHINE
INSTRUCTIONS WHICH START THE
EXECUTION OF THE WORD POINTED TO
BY THE NEXT MEMORY LOCATION
I.E., LITER
A POINTER TO CODE WHICH
MOVES THE CONTENTS OF THE NEXT
MEMORY LOCATION TO THE STACK
CR5 l.

A POINTER TO THE MACHINE
CODE FOR EMIT
THE USUAL EXIT ROUTINE

OPTIONS

Single Character Input

Single character input can place a
significant load on the processor In a time
sharing system and can degrade performance.
A non FORTH-83 standard optional assembly
can be made so that Instead of one
character, one I Ina of characters Is
processed at a time. The nonstandard
assembly Is made by setting the variable
LOADED to un I ty. If LOADED = 1 Is commented
out In the file FORTH.MAC before assembly
the standard approach to character Input Is
taken.

RSTS Emulation of RSX CKEY?l

The RSTS operating system does not support
unsol lclted 1/0 and as a result KEY? does
not behave as requl red by the standard. The
FORTH word KEY? looks to the Input buffer
and sets a flag If any character appears
there. Under RSTS the Input buffer Is not

611

made available to the program until a
carriage return Is struck so two keys are
needed for KEY?. The proper functioning of
KEY? was thought so important that it was
Implemented In a modified form. A control
C (AC) Interrupt Is available under RSTS.
As Implemented KEY? tests tor AC and sets a
flag If AC has been struck and otherwise
clears the flag.

The Spilt Fiie Structure (RSTS, B.S.Xl

FORTH divides disk storage Into 1024 byte
BLOCKS. These blocks are subdivided tor
display Into 16 I Ines of 64 characters
each. Each BLOCK can be edited to define
new words definitions tor user applications
as tor examp I e:

SCREEN #1
0 (LOAD SCREEN l
1

DECIMAL

2 1 WARNING I (GET ERROR MESSAGES NOT 3
3 NUMBERS l
4
5
6
7
8

THRU (<LO, HI> -- <>
SCREEN LO THRU SCREEN Hll

LOADS FROM

1+ SWAP DO I LOAD LOOP ;

9 (.(LOADING ASSEMBLER l 10 15 THRU)
10 CR
11 .(LOADING EDITOR l 2 LOAD 40 57 THRU
12 (THIS EDITOR IS THE WORK OF S. DANIEL.
13 SEE "The FORTH Inc., Line Editor" In
14 FORTH Dimensions, vol 3, #3. pg 80 l
15 CR 7 EMIT (RING THE BELL)

The BLOCK may also be used tor the storage
of bl nary data.

The sp I It t 11 e structure desgr I bed here is
the creation of Vernor Vinge • In a
typical teaching situation the computer
wil I be running under RSX or the RSTS
emulation of RSX. In this case the
complied nucleus of FORTH (FORTH.TSKl
together with the first 90 BLOCKs of disk
storage (TEACHER.DAT) would reside under
the Instructor's project and programmer
number. These t 11 es would have read/run or
read only privileges granted to other
users. BLOCKs 91 to 180 (STUDENT. DATl
would reside under the student's project
and programmer number with ful I freedom tor
the user. The words servicing disk 1/0
check the project and programmer ID of the
user. If this ID Is that of the
instructor. ful I read/write pr iv ii iges are
granted to the first 90 BLOCKs. If this ID
is that of a student, only read access Is
granted. In either case tul I read/write
access is granted to the BLOCKs from 91
through 181.

This I imlted access to the first 90 BLOCKs
has great pedagogical value. It al lows the
Instructor to edit this region so as to
pass Information and/or software to the
entire student population without tear that
It w I I I be corrupted by anyone but h I mse If.

Additional fy, a student requires a minimum
disk al location, can use the ful I language
and be given messages or software by the
Instructor.

GETTING STARTED

First ~et a copy of "Starting FORTH" by Leo
Brodie. This book Is without a doubt the
best Introduction to the language In
existence. Second, get a copy of this
program from the RT-11, RSTS/E, or RSX-11
symposium tape, compile, load, and run the
program on your system. Start at the
beginning of Brodie's book working the
examples and then solve the end of chapter
problems. It ls really just as easy as It
sounds.

The more serious student would augment
Brodie's book ~Ith membership In the FORTH
Interest Group and study of Its periodical
"FORTH Dimensions."

FUTURE PROSPECTS

With the experience gained here we should be
able to port the publ 15 1omaln version of
F83 by Laxan and Perry ' to RT-11, RSTS/E,
and RSX-11.

REFERENCES

1) FORTH Standards Team
PO Box 4545
Mountain View CA 94040
USA

2) J. James, "PDP-11 FORTH User's Gu I de",
January 1980.

3) Ver nor VI nge
Department of Math Sciences
San Diego State University
San Diego, CA
and
"Teaching FORTH on a VAX", FORTH
Dimensions, IV, #6, 1983

4) Leo Brodie, "Starting FORTH",
Prentice-Hal I Englewood Cl lffs,
NJ 07632

5) FORTH Interest Group
P.O. Box 8231
San Jose, CA 95155

6) Henry Laxan and Michael Perry
No Visible Support Software
Box 1344, 2000 Center Street
Berkeley, CA 94074

7) C. H. Ting, "Inside F83", Offete
Enter pr I ses, Inc.,
San Mateo, CA

612

SUPPLFMFNTAL CONTRO[. ALGORITHMS TO AUGMENT PROPORTIONAL-INTEGRAL-DFRIVATIVF CONTROL
OF THPRMOCHFMTCAL RRACTT0N RATFS

Wenclel ,J. Shuely
Paul 8. Fielrl

Virginia Polytechnic Institute
Rlacksburg, VA 24rHil

The thermal disposil] of hazarrlous compounds is
being studied using a new approach for measuring
the rates of thermal we i~iht-loss rf'•act ions. A
dynamic thermogravimetric method has been
developed for scanning the temperature applied to
a pesticide sample under investigation. The
computer-controlled, closerl-loop experiment
maintains the reaction rate at a prespecif ierl
value to ohti'lin numerous advi'lntages in the
kinetic measurement process. The software can be
generalized to any closed-loop experiment in
which the dependent and independent variahles
have been reversed to obtain improvements in
accuracy, precision, analysis time, or other
measurement advantages. Adequate control for
this experiment type can he obtained with a
software proportional-integral-derivative (Ptn)
algorithm. Further advantages can he derived
from a more complex, dynamic experiment in which
all variables are changing continuously, in
addition to the reversal of the dependent anci
independent variahles. Dynamic, closed-loop
control experiments require supplemental control
modes to auqment the PIO algorithm. Parameter
scan control, coast rate limit, and other modes
were programmed. SYSTF:Jl'l: PDPl 1, RTl 1, FORTRAN
and MACRO.

PJTRODllCTION

The supplemental control modes developed
for closed-loop thermal reaction rate
control should be useful for many related
control processes. In addition, the use
of a single-user, real time operating
system (RT-ll) and lfi bit CPU (PDP-11) is
in line with the trend toward use of
direct digital control (DOC) implemented
on a dedicated computer.

4. The process control functions imple­
mented in the code with definition of
terri1s.

The application of supplemental control
modes in addition to proportional­
integral-derivative (PIO) control can he
described by considering the following
topics:

1. A brief review of the general control
problem and a specific thermochemical
reaction control example.

2. The relationship between reaction rate
and heater control temperature, that is,
between the controlled variable and the
controlling parameter.

1. The flow diagram for the PJO and
supplemental control code.

Proceedings of the Digital Equipment Computer Users Society 613

5. F:xamples of program module code.

fi. Rxamples of experimental results
showing successive improvement of control
with augmentation of PID and supplemental
control modes.

The scope of the research considered here
is limited to the augmentation of PIO
control with additional interacting
control modes. Descriptions of the

data
an<i
are
has

reactions, computational kinetics,
acquisition, signal processing,
applications to hazardous compounds
not included; some of this research
been descrihed elsewhere. (1, 2, 3, 4)

MEASUREMENT THEORY

The limitations of the conventional
thermogravimetric (TGA) technique and ad­
vantages of the cornputer-controlled
closed-loop method can he outlined hy a
comparison of their respective
weight-loss vs time thermograms. Figures

Anaheim, California- December 1985

lA and]R present idealized thermograms
from a conventional TGA experiment in
which the temperature is programmed at a
linear rate. Two consecutivP weight-loss
reactions are shown in Figure lA and it
can he seen that weight-loss is initially
slow, is followed by a rapid weight-loss
indicated by the steep almost vertical
slope, and is again slow at the end of
the reaction. This wide range of rates
can also be seen by inspecting Figure lR
where the change in weight-loss with time
(derivative) is plotted against time.
These peak-shaped curves show that the
weight-loss rate increases rapidly, passes
through a maximum, and decreases rapidly.
The measurement of temperature and weight
is attempted under these highly nonequili­
hrium conditions and under these variable
thermal and mass fluxes. This results in
a decrease in discrimination between
consecutive reactions and a decrease in
data accuracy. An equally important
limitation results because for
differential computational methods,
kinetic parameters must be calculated by
taking the derivative along the steep
weight-loss slopes that are produced when

the sample is submitted to a conventional
linear temperature ramp.

These limitations were overcome by the
development of a system in which the
computer directly interacted with the
thermal chemical process. In concept,
the weight-loss rate is converted to the
independent varia':)le anct the computer
controls the teMperature scan to provide
the requisite, complex, non-linear
profile that maintains the set rate. In
essence, the independent and dependent
variables have been interchanged and this
produces improved experimental conditions
for measurement of reaction rate. Figure
lC shows that the idealized computer­
controlled set rate is a straight diagon­
al line. This rate is at a favorable
velocity, neither too slow nor too rapid,
for accurate calculation of the
derivative. on a microscopic level, the
thermal flux into, and gaseous mass flux
out of the sample take place at a slow,
even rate. Figure ln presents the
derivative of the constant weight-loss
rate which has a square wave shape,
rather than the peak in Figure IR.

PTGtJ'RB l

IDEALIZED THERMOGRAMS AND THEIR FIRST DERIVATIVES

TIME

A CONVENTIONAL THERMOGRAM

TIME

B. CONVENTIONAL FIRST DERIVATIVE THERMOGRAM

CONTROL THEORY

A block diagram of the closed-loop control
system is shown in Figure 2. The process
is a reaction taking place in a sample
cell of the thermogravimetric system
(mid-right block in Figure 2).
Temperature and weight transducers convert
the physical processes to electronic

614

TIME

C. CONSTANT-RATE WEIGHT-LOSS THERMOGRAM

II
;::: ..

TIME

O. CONST ANT-RATE WEIGHT-LOSS FIRST DERIVATIVE lHERlllOGRAM

signals (lower right block). The signals
are converted to digital data and
employed by the minicomputer controller
to compute an appropriate digital control
word. This word is converted to an
analog signal interfaced to the control
element, which adjusts the heater and
temperature of the process reaction.

PTGIJRE: ?.

BLOCK DIAGRAM OF A DIRECT DIGITAL PROCESS CONTROL LOOP REPRESENTING

THE MINICOMPUTER-CONTROLLED THERMOGRAVIMETRIC SYSTEM

DIGITAL
TD.

ANALOG
CONVERTER

CONTROLLER:
MINICOMPUTER

ANALOG TO
DIGITAL

CONVERTER

The idealized relationship between
reaction rate (controlled variable),
heater control wattage (controlling
parameter), and te~perature (secondary
controlling parameter) are shown on a
common axis in Appendix A. The lower
figure displays a typical weight-loss
reaction rate shown as the plateau
(compressed on the time scale). Typical
relative values of the onset of the
proport i.onal derivativt), inteqra 1, and
coast hands are also shown. These times
are propagated vertically on the x-axis to
aid in trac~ing the interaction between
the process controlling parameter
(temperature/heat) and the controllnd
variable (reaction rate).

ThP rather subtle changes shawn in the
middle and upper curves of heater output
and temperature are necPssary to guide the
very sensitive reaction rate to a plateau
without overshoot. These criteria points
are discussed in more detail below.

Note that in the later stages, the hyper­
bolic temperature profile is required to
drive the reaction to completion for this
hypothetical, first order reaction curve.

CONT"ROL ALGORITHM

A simple flow chart for the PIO and
sup~lemental cocie is shown in Figure 3.
Ten control modules are displayed and
these can be referenced to events on the
previous figure displaying reaction­
heater-ternperature interactions.

Note that the system is unusual in that
there is no pre-knowledge required (or
often available) regarding the temperature
at which a measurable rate occurs or at
which the constant-rate set point
criterion will he met.

615

FINAL CONTROL ELEMENT:
FURNACE SYSTEM

MEASUREMENT:
RATE OF WEIGHT-LOSS

Figure 1. General Flow Chart of Propor­
tional-Inte~1ral-nerivative and Supple­
mental rontrol Modules in 'lgorithm.

C<!lcul;:1te
Scan Rate
And Adjust

Proportional Ranci ~odule

1\lo Second >---- neriv;:1tive

Yes

Calculate an<i qe]ect
Pin Control ~ocie

Calculate and Output Heater
Wattaqe Control Word

Module

C:oast
Mo<iu l•'!

The sequence of events leading to a smooth
approach to the desired set point and
reaction rate can be understood by viewing
the display of the controlled variable
(reaction rate and the controlling
parameters (temperature and heater
wattage) as a function of time (Appendix A
and Figure 3). After a reaction is det­
ected during the rapid temperature scan,
classical proportional-derivative (PO)
control is asserted with a reduced full
scale heater wattage. Too rapid an
approach toward the set point is indicated
(Appendix A) by an excursion of the
reaction rate signal out of the second
derivative band. This band is a conical
shaped area radiating upward toward the
desired reaction rate from the point of
assertion of the proportional band.

The heater wattage is reduced until the
rate of approach to the specified reaction
rate reaches the lower limit of the second
derivative band.

The integral hand criterion is met as the
signal approaches set-point. ~s the
signal is driven toward the set-point
asymptote, the coast criterion will be
encountered and the heater wattage is
reduced for an interval in order to
equilibrate the sample at the set point or
specified reaction rate.

Appendix B provides a listing of control
algorithm parameters that have been
grouped according to computational logic
and process control function. The first
column describes the general process
control function while the second column
gives the specific function in the
reaction rate control example. The third
and fourth columns list the FORTRAN code
and datn type.

The control parameters are initially
divided into variables and constants. The
variables consist of four types: (1) the
computed process control parameters that
are updated each program cycle, (2) time
counters that are converted into elapsed
times for comparison with criteria times
for coasting (with zero value of the
controlling parameter), (3) event
counters, that monitor consecutive entries
into a specific control module for
tracking performance of the algorithm,
and, (4) flags, which are used to route
program flow through appropriate modules,
depending on events in previous program
cycles.

The constants are control parameters, gain
multipliers, or criteria values. They are
"constant" for a single experiment or
batch process in the sense that adaptive
programming is not yet used to vary their
values with changes in process load or set
point. However, they may be changed
during the course of the experiment under
operator control for performance tuning or
response-time measurements.

616

There are three full scale values of the
control parameters representing different
ranges of the full scale value of the
controlling parameter (heater wattage or
temperature). These are (1) a zero
value, (2) an intermediate value for use
near the set point, and (3) a high value
used in the initial rapid temperature
scan in search of a reaction. This
program selection of the full scale value
might be considered a primitive adaptive
function.

The three gain factors are the classical
proportionality constants in the PIO
equations. Note that the proportional
band gain is derived from the onset value
of proportional control in the usual
manner.

Several criteria values are listed and
these are employed in IF statement
decisions governing program control.
Most of these can he considered as
initiating or terminating the action of
specific control program modules.

The onset of proportional and integral
control are initiated at BANDP and BAND!.
The first program cycle encountering the
reaction set point coast band is
triggered at BANnC. The slope hand of
the allowable values of the second
derivative are defined in TSTMAX and
TSTMIN. The mnximum time interval for
maintaining zero values of the
controlling parameter are defined in
ISOTST for the initial coast module and
IDITST for the second derivative band
module.

RESULTS

The influence of the supplemental control
modes on the performance of the control
algorithm can be observed by inspection
of an extensive sequence of time vs
weight-loss derivative plots. Two
examples are provided in Figures 4 and 5.

The examples from early versions of the
control algorithm, without suppleJT1ental
control, are omitted. While these
provide a dramatic contrast to the well
behaved control examples, the plots can
he easily described as showing severe
overshoot of the derivative with slow
recovery to the set-point, recovery
occurring either before or near the end
of the reaction.

The examples show aspects of tuning the
criterion constants and hand levels: the
effects of a range of values for tuning
the algorithm can show, at the same time,
the residual overshoot behavior or other
performance problems when the
supplemental modes are not available.
Figure 4 shows the results of a
relatively well tuned set of control
constants. The time vs derivative curve
almost matches the shape of the idealized

curve in Figure ln. The temperature vs
time trace shows an extremely rapid
temperature scan (20 to 120 degrees C in 5
minutes) that is very quickly converted to
closed-loop control of reaction rate.
This example represents close to the limit
of temperature scan speed without
derivative overshoot. Note that the
effect of the second derivative limits on
rate-of-approach to the set point has
resulted in a temperature decrease during
the second 5 minutes of the closed-loop
experiment. Likewise, the onset of the
coast module causes a barely perceptible
hesitation of the derivative approach to
the n.2 mg/min set-point. This hesitation
can be seen at about 60% of set-point or
at coordinates of 10 minutes and 1.2
mg/min. This 1~xample is especially
interesting in that overshoot of the
reaction rate derivative is avoided but
temperature overshoot occurs with respect

to transition into a smoothly increasing
time vs temperature profile. The kinetic
data obtained during the period of
declining temperature will he invalid,
however, the later QO~ of the reaction
data is measured at the
computer-controlled pre-set rate of 0.2
mg/min. Therefore, an operator selected
set of software control constants can
optimize an experiment for extremely
rapid temperature scanned search for a
reaction and obtain kinetic data at over
90% of conversion. Figure 5 show another
extreme of control behavior. Another set
of software constants can provide a
slower computer-controlled search for a
weight-loss reaction. ~ benefit of this
option is a gradual approach to set point
and the acquisition of valid initial rate
data at close to only 1% of conversion.
Figure S shows this slow, controlled rate
of approach to set point.

FIGURE 4

"' ~
~
~

~
~

0.2

0.

SAMPLE: X-AXIS y.~;~s -- r RUN NO. 1 DATE .l9Miw8~
DERIVATl'iE •OPERATOR W, SHUELV

TEMF. SCALE "C SCALE ,"L mg MINUTE I COMPUTER CONTROLLED 0 :

inch inc HEATING RATE C ,
f'IALONIC ACID

SHIFT inch ~~~~EEs:~~~~ ~l QOC/ IN I ATM. NITROGEN _ min '

SIZE 8 mg. TIME SCALE (ALT.) lOMJN/H SUPPRESSION _ mg.j TIME CONSTANT J "'c .

1,....

l---lf-c-+-1---t--+-+---+--+--+---+-- ---
~

7 ' t ! ~ L_JL-J._-L.--'----1----l---1---+------1---1-----+---__j - -

7

1
l-l.-l--+--l--+--+--l--+---+-+--+---l-+--+---1f----+---+-l~' -+-+,----j~

j I ~
'-'--+----+-+---+---+--+---+--- - - - -+--- f I

~ y
r7

!
I t
J l
1

I I
TIME, MINUTES

Fif;lJRP. 5

§ ___J_----l-___j_l----+----l--\-l>o.---1---l----+-----+-+----l-

'\ ~-+--l--+-+---+->-+--4~.-----+--+-f-----+---+-
~----+---1------+---+--+-+--+--+->I--~-+--+---+--+--

v "'~
l

TIME, !f.INUim

617

!

l

DISCUSSION OF SYSTRM PERFORMANCE

System performance here includes adequacy
of the hardware/operating system/language
and not the application code.

Provisions were made in control program
design to monitor and compensate for
excessive control lag due to the time
required for control computations and
decisions. The timing of the control
computations could not be limited or
defined explicitly since decisions and
routing through modules were influenced by
program response to a chemical process in
a closed-loop system.

The array of design considerations
employed need be mentioned only briefly
since the results showed the 16 bit CPU
(PDP-11/10 or 24), real-time operating
system (RTllSJ), and FORTRAN/MACRO
combination was adequately fast. The
control computations were completed before
the end of a data acquisition cycle for
all sets of control parameters at all
deyrees-of-conversion of reactant.

Other applications or higher set points
(reaction rates) may require more rapid
cycle times: program design Features to
accommodate these cases are noted below.
The data acquisition is interrupt driven
and the control crnnputations will be
suspended as needed. After resuming, the
control word will he computed based on
obsolete data. ~owever, the next control
computation always employs the most
recently acquired filtered datun.

Filtering of acquired data can he
performe~ at three rlifferent points in the
program. Two are within the ~ACRn
subroutine and one within the FORTRAN
control code. Immediate consecutive
filtering can be provided by summing into
a register or memory location from each
A-to-D channel (~'ACRO). Fixed interval,
channel sequencing, samaling, and
summation are also available (MACRn). The
FORTRAN code allows averaginq over a
selected number of the latest data before
using the point tn calculate a deviation
from set point. All filters can be used
simultaneously with all available options
in terms of sample number and period.

The degree of control an~ options
available for filtering allow minimization
of sampling when process-to-control time
is unfavorable. Editing modules combine
and resolve all filter timing offsets and
the real time computations of integral and
derivative functions are performed with
exact rate-time data pairs.

The control program was designed to trace
separate module usage and timing
requirements. The system of integer
counters and flags described in Appendix R
were employed to monitor program flow and
debug the proyram. These flags and
counters were US(eful in tuning the control

618

constants: they were not needed to
optimize timing considerations but could

alternate be used to do so for
applications.

CONCUJSIONS

The reaction rate control process
presents several unique and difficult
problems. Software based control
procedures have the flexibility and
computational/logical power to provide
solutions to thesp problems.

The control process demonstrates a
relatively high process load during
certain parts of the process and abruptly
lower process load at the reaction
temperature. Primitive adaptive
programming of appropriate full scale
output level solves this abrupt load
change problem.

A critical transition occurs from the
detection of a reaction to attainment of
a controllerl, constant rate process.
This transition is successfully achieved
by the second derivative hand and
coast-to-asymptote modes.

A smooth temperature-weight synchroniz­
ation can be lost by exertion of frequent
anci abrupt control parameter changes;
however, this early rate data is
important because of the frequent use of
initial rates in kinetic analysis. The
control programs capability to provide
for selection of delayed onset criteria
exertion of control modes provides
initial rate data without allowing
overshoot.

The speed of the RT-11 FORTRAN system
with successive approximation ADC (AR-11)
is aciequate for complex control prohlef'ls
and research on modification and
augmentation of classical Pin control
modes. The output control can he
implemented with FnRTRAN IPFPK/IPOKE
functions. It now appears that the input
or data acquisition may a1so be (hut was
not) implemented with IPEF:K/IPOKF:: this
is partially due to the relatively
favorable process lag to control lag time
ratio that was an inherent beneflt of the
initial objective of attaining a slow
constant rate process.

L TTF:RA'T'llRE CIH~D

l. Shuely, Wendel J. ARCSL-TM-74003.
Novel Thermogravimetric Instrumentation
and the Advantages of Interactive
Computer Control. December lq7R.

2. Shuely, l'\lendel J.
Thermogravimetric System for
the Decomposition Kinetics
AAS Pap ACS 1Q79 (Apr): COMP

Computerized
the Study of
of Liquids.

lP., 1979.

3. Shuely, Wendel ~. and Field, Paul F.
Conputer-Control of Thermal Weight-Loss
Reactions to Improve the Kinetic

Measurement Process. International Union
of Pure and Applied Chemistry. Sixth
International Conference on Computers in
Chemical Research and Education.
Georgetown University, Washington, DC.
,July 1982.

4. Shuely, Wendel J. an<i Field, Paul E.
CoMputer-Controlled Instrumentation for
Investigating Thermal Reactions for
Disposal of sur~lus Hazardous Chemicals.
American Chemical Society Exten<'led
A.bstract. 1932 (Sep): E~VIR: CJ, lCJ'll.

619

CD
t..
::>
IU
t..
CD
Q,
E
CD

ID
IU :s

c
'" E

Appendix A. Idealized Relationships between Reaction
Rate, Heater Control Wattage, and Temperature as a
Function of Time for Typical Parameters of the Computer
Control Algorithm

High Heat Scan

Low Heat ----­
Heat Off -------4~

Coast criterion

J

.-----+-·--------------·-

at Integral Band

i I Derivativ!_:""~---+---H
c
0

'" ..., Proportional Band
u
IU
II)
cc

Time, minutes
500-85-178

620

APPRNDIX R. Control Algorithm Parameters Classified in Terms of
Process Control Function and Computational Logic

VARIARLES:

FUNDAMENTAL PROCESS VARIARLES:

Controlled Variable

Controllerl Variable

Controlling Parameter

TIM~~ COUNTERS:

Controlling Parameter
Zero

EVENT COUNTP.RS:

Algorithm performance
monitoring; counts
number of times a
control morlule is
entered.

FLAGS:

Route control compu­
tations through
modules

CONSTANTS:

Control Worrls

Multipliers: gain
factors

CRITP.RIA:

Reaction Rate

Second Oerviative

Heat/Temperature

Initital Coast

outsine Second
Derivative Rand

Onset Coast
Oven:; hoot
Second deriva-

tive coast

Onset coast
Seconrl rleriva­

tive

Heater
Wattage
Ranges

Off
Low
High

Integral
Derivative
Proportional
(100/PRAND)

Onset of control mode: Proportional
(percent of full scale)

Integral
Coast
Derivative
(maximum)
Derivative
(minimum)
Onset Coast
Derivative Coast

621

DIFNEW

DIFDIF

NHEAT

KOT I ME

IDT I ME

KNTISO
KNTMAX
KNTMIN

KOSTFG
IDIFFG

NOH RAT
LOH RAT
HIHRAT

GA I NJ
GA IND
GA I NP

RAN OP

RANDI
RAN DC
TSTMAX

TS TM IN

ISOTST
IDITST

F

F

I

I

I

I
I
I

I
I

I
I
I

F
F
F

F

F
F
F

F

I
I

