USA 1985 FALL

PROCEEDINGS OF THE DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
—-- #

|
O

|
| O | m




PROCEEDINGS

OF THE

DIGITAL EQUIPMENT
COMPUTER USERS
SOCIETY

Presentation and Reports
USA Fall 1985

Anaheim, California
December9-13, 1985






Printed in the U.S.A.

“The Following are trademarks of Digital Equipment Corporation”

ALL-IN-1 Digital logo Rainbow

DEC EduSystem RSTS

DECnet Eve RSX

DECmate IAS RT
DECsystem-10 MASSBUS UNIBUS
DECSYSTEM-20 PDP VAX

DECUS PDT VMS

DECwriter P/OS VT

DIBOL Professional Work Processor

Copyright * DECUS and Digital Equipment Corporation 1986
All Rights Reserved

The information inthisdocumentis subjectto change without notice and should notbe construed as acommitment by Digital Equip-
ment Corporation or DECUS. Digital Equipment Corporation and DECUS assume no responsibility forany errors that may appearin
this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS “DECUS PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY
OTHER PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION THAT IS PROPRIETARY, CLASSIFIED UNDER U.S.
GOVERNED BY THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR).”

DECUS and Digital Equipment Corporation make norepresentation thatinthe interconnection of products in the manner described
herein will notinfringe on any existing or future patentrights nor do the descriptions contained herein imply the granting of licenses
to utilize any software so described or to make, use or sell equipment constructed in accordance with these descriptions.

Adais atrademark of the U.S. Government, XEROX is atrademark of Xerox Corporation, IBM, PROFS are trademarks of International
Business Machines Corporation, UNIXisatrademark of AT&T Bell Laboratories, CP/M, PL/I are trademarks of Digital Research, Inc.,
MS-DOS is a trademark of Microsoft Corporation, TSX-PLUS is a trademark of S&H Computer Systems Inc, R.BASE.4000 is a
trademark of Microrim, Intel 8088 is a trademark of Intel Corporation, LOTUS 1-2-3 is a trademark of Lotus Development
Corporation, MULTIPLAN is atrademark of Microsoft Corporation, Mylaris a trademark of E.|. DuPontdeNemours & Co., PLOTLN is
a trademark of Image Research and Compugraphic Corporation, MUMPS is a trademark of Massachusetts General Hospital,
Macintoshis atrademark of licensed to Apple Computer, Inc., Multibus is aregistered mark of Intel Corporation, 8086 is a trademark
Intel Corporation, VENIX is a trademark of Ventur Com., Inc, Appletalk is a trademark of Apple Computers, Inc, INGRES is a
trademark of Relational Technology, Inc..

The articles are the responsibility of the authors and therefore, DECUS and Digital Equipment Corporations, assume no respon-
sibility or liability for aritcles or information appearing in the document.
The views herein expressed are those of the authors and do not necessaily express the views of DECUS or Digital Equipment

Corporation.






FOREWARD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide
society of users of computers, computer peripheral equipment and software manufactured by Digital
Equipment Corporation. The U.S. Chapter of DECUS has approximately 41,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local,
national and international levels to fulfill its primary functions of advancing the art of computation and pro-
viding a means of interchange of information and ideas among members. Two major technical symposia
are held annually in the United States.

Forinformation onthe availability of backissues of Proceedings as well as forthcoming DECUS symposia,
contact the following:

DECUS U.S. Chapter

Digital Equipment Corporation
219 Boston Post Road, BP0O2
Marlboro, MA01752-1850

All issues of past Proceedings are available on microfilm from:

University Microfilms International
300 North Zeeb Road
Ann Arbor, Ml 48106






PREFACE

This volume of the Proceedings contains papers
which were presented at the Fall 1985 Symposium of
the Digital Equipment Computer Users Society.

The Fall 1985 Symposium was held at the Disneyland
Hotel and Convention Center, in Anaheim, California,
from December 9 through December 14, 1985.

Five thousand seven hundred and sixteen DECUS
members converged on the Disneyland Hotel, and Dis-
neyland itself that week. They attended birds-ofta-
feather sessions, 70 pre-symposium seminars, and
approximately 1000 presentations.

In Anaheim, Digital and DECUS emphasized networks.
Increasingly, networks are moving out of the computer
roomand intothe office, outofthe office andintothe cor-
porate backbone. Most SIGs had sessions which high-
lighted the benefits and problems of using their products
in networks. Networks, whether composed of people or
computers, are becoming more important in the global
scheme of things.

The National Science Foundation is sponsoring a super-
computer project by linking United States universities
to computer centers with supercomputers. The inter-
connection of multiple campus networks that this pro-
ject requires raises many questions—who is responsible
for naming and addressing? How will routing be done?
Whatimplications are there for networks that the univer-
sities may be connected to? None of these are answered
easily. Thisis the kind of problem that is becoming com-
mon, the interconnection of large networks. Digital has
Easynet, 40,000 computers in one DECnet network.
DECUS has'Usernets,” thousands of smaller networks.
By working together, Digital and DECUS can provide
tools and technology to ease the interconnection of
networks.

Each day, more and more Digital computers are linked
into larger and larger networks, and networks begin to
expand until they touch one another. The global inter-
net in which any system can communicate with any
other system, is quickly moving upon us. Com-
munications across the city, the state, the country, and
the world are more and more commonplace; soon an
electronic mail message from Sydney will be as com-
mon as one from New York. Computer networks will
expandthe number of people we talk to, and change the
way we do the talking.

In this time of high global tensions, the increased
availablility of a direct channel between one human
being and another will help our ability to speak to one
another, to reach outto one another, and to understand
one another. Itis noteasy to fight with someone thatyou
talk to every day; it is impossible to have conflict with
someone you truly understand. By linking ourselves
together electronically, we will strengthen the bonds
that hold us togetheras one people, sharing one planet,
in peace.

My thanks on behalf to the entire membership go outto
Mr. Jack Cundiff and Dr. Jeff Jalbert, the DECUS volun-
teers who led the Anaheim symposium effort. Their inten-
sive weeks of work with Ms. Nancy Wilga, Ms. Joanie
Mann, and Ms. Gloria Caputo of the DECUS staff made
our national meeting truly impressive. Their experience
and leadership are sincerely appreciated. For her spe-
cial work on the Proceedings, | would also like to thank
my colleague, DECUS staff member Cheryl Smith.

1 4

Proceedings Editor
DECUS U. S. Chapter Publications Committee






TABLE OF CONTENTS

ARTICLE PAGE

ARTIFICIAL INTELLIGENCE SIG

A VAX LISP Expert System for Analyzing Security Alarm Data
Sarah Townsend . ....... ...ttt 3

The.Implementation of the Fault Localization, Assessment, and
Repair Expert System (FLARES)—Tools, Languages, and Issues
Susan E. BilkWray, John T. Williamson. ................. 7

BUSINESS APPLICATIONS SIG

Design Principles for Software Manufacturing Tools
PaulG.Bassett. ............... ... i 15

Decision Support Systems and DEC Micros
Kuriakose Athappilly ............ ... 25

DATA ACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

LISREL: An Application, An Explanation

Leanne Whiteside............. ... i 33
System Chargeback and Resource Tracking using RS/1
Robert B. Goldstein, Gertrude Stabiner.................. 55
Development of a Digital Interactive Controlled Evaluation
System

Scott B. Eckert, Robert L. Ewing, Gary B. Lamont........ 61

Customizing RS/1 a GA Technologies
Aram K Kevorkian. . ... 65

PRO: A Multiple Priority, Multitasking Process Control System
and Language as Implemented in an Inhalation Exposure
Facility

Edwin R. Lappi, LeonC. Walsh....................... ... 69
Expert System Usage in the Laboratory

Thomas A. TUrANO. . ..ot e 77
DATA MANAGEMENT SIG

Encryption for Beginners

BartZ Lederman. ... 93

Introduction to VAX Information Architecture Databases
Eric AL NEWCOMEr. . ... e 102

The Implementation of an Academic Faculty and Student
Database Management System
David A. Gaitros, Robert L. Weing, Gary B. Lamont....... 111

Data Management System for Academic Personnel Admins-
tration

LisaM. Rotunni ... 115
SQL/DSR!I and QUEL/DSRI Implementation

JohnD.Markel. ... 121
DBMS-20 Sorted Set Structures

Jeffrey S. Finton, David W. Chilson...................... 129

A Programmer's Database System for Software Development
and Maintenance
RachelSchwab.................. . 159

MATRIX: A File Organization for Image Processing
Philippe E.Collard ............ .o i 163

ARTICLE PAGE
DATATRIEVE SIG

DATATRIEVE-11 to VAX DATATRIEVE Conversion Panel
Joe H. Gallagher, Bart Z. Lederman..................... 173
EDUSIG

Computerized Decision Support for College Administrators
Walter H. Frey, Vernon M. Cline ......................... 181

Evaluation, Selecting, and Implementing an On-Line Library
Card Catalog
Rob Robinson ............. 185

DAL Magic — Some Surprising Features of DAL
Pete BOySern ... 193

8088 Macro Assembler on the Rainbow Micro Computer
Robert S. Workman. ........... ... ... . 211

GRAPHICS APPLICATIONS SIG
TCHART: Development of a Device Independent Chart Draw-

ing Program
JudithBardell............. ... 219
A Software Display System for Medical Image Processing
Luc Bidaut. ... 225
LARGE SYSTEMS SIG

Using Personal Computers with System 1022

Randolph M. Pacetti ..., 237
VMS for TOPS Users: End User Interface

Kathy Rosenbluh............... ... ... ... ... ........ 247
VMS for TOPS Users: Program Development

Kathy Rosenbluh........... ... . i 253

TOPS to VMS Business Application. TOPS-10/VAX Perfor-
mance Comparison

Frank Francois, Ralph Bender.......................... 257
LISP on 36-Bit Systems

Randolph M. Pacetti ..., 277
TOPS-20 Directions

Donald A. Kassebaum. ... 279
TOPS-20 V6.1 for Users

Carla J. RiSSMeYer . ... ... 281
TOPS-20 V6.1 for System Administrators................ 283
TOPS-20 V6.1 for Systems Programmers

Douglas Bigelow. . ... 285
Ethernet Planning and Installation Considerations

Donald A. Kassebaum. ..., 287
Hardware Planning for Integration Customers

Gary Bremer . ... 317
TOPS/VMS Performance Comparison

Gary Bremer . ... 319
TOPS-10/20 and VMS Layered Product Comparisons

Gary Bremer. ... 325






A VAX LISP Expert System for Analyzing Security Alarm Data

Sarah J. Townsend
Institute for Defense Analyses
Alexandria, Virginia

Version 4 of VAX VMS provides auditing capabilities designed
to notify managers of security attacks and breaks. This
paper outlines a prototype of an expert system designed to
analyze these security alarm messages in order to recognize
events causing a break as well as persons attempting an

attack.

This paper describes the workings of this LISP program, in
more detail than general artificial intelligence theory, but
including no LISP code. Plans for future enhancements of the
system are given. Suggestions to DEC for security auditing

improvements are also included.

The research for this paper was done at the Univer-
sity of Maryland at Baltimore County on a VAX 8600
running VMS Version 4.2. I would like to thank
them for their support of this research, especially
Jack Seuss of the Computer Center at UMBC who made
computer resources available for this research.

Much of the security theory and some of the A.I.
theory used in the research described in this paper
is from work done by Dr. David J. Slater (UMBC In-
structor) and I would like to thank him for his
many valuable contributions and suggestions.

Before the main description of the system begins, a
few definitions are needed.

Definitions
Prototype
A prototype has the following properties:

A. It demonstrates the basic workings of the
system.

B. It is extensible. That is, there is noth-
ing in the prototype system that only
works because what is being handled is a
subcase of the total problem.

C. It gives a clear picture of how a more
fully developed system will operate.

Event

An event is meant to mean anything recordable that
might relate to the security of the system. Cur-
rently this includes only the security alarm mes-
sages generated by the audit command (new in VMS
Version 4). Later it will include other data
sources, such as monitor and accounting data.

Thread
Threads are chains of events which are linked in

one of two manners. Either they are chains of
events all of which are similar in some manner, as

Proceedings of the Digital EQuipment Computer Users Society

in A below, or they are chains of events, such that
each event is a precondition for some subsequent
events, as shown in B below.

Frame

A frame is a description of a possible type of secu-
rity problem, with descriptions of what types of
threads are necessary for, and what types of threads
are relevant to this type of problem. This is the
standard usage of the term in artificial intelligence.

Picture

A picture is an instantiation of a frame. That is,
it is a collection of threads that match some
notion of a security problem.

Why LISP?

This system was written in VAX COMMON LISP, because
LISP is the language most adapted to our applica-
tion. Two features of LISP make it particularly
suited to our needs:

Flexibility

Traditional expert systems involve well defined
problems which are understood by experts and solely
use knowledge from experts. This program deals
with heuristics imitating common sense in a poorly
defined problem which is not well understood, and
in which many of the experts disagree. Thus, it
was clear from the start that the evolution of new
expert system techniques was going to be part of
this research. Specifically, the ability to rede-
fine a connection and change the type of logic used
in making connections was essential. Only in LISP
are relationships defined in such a way as to allow
logic containing relationships of relationships.

It was also necessary to extend the traditional
concept of a frame.

1

i gs—uccessful fil ccessful file|
i A cess -~ ABC.M%"'Ecsc:ss ~— ABC,DA
1

i

USERY changes prot. USERY changes prot. USERS modifies
B of #I8.2IR + of [HISIABC. DAT + [NISIABC, DAT

ccessful file
cess — ARC. DAT)

Anaheim, Calitornia - Di ber 1985




Tools

LISP provided tools which easily facilitate the
maintenance of events and the manipulation of frames
even though both items are complicated structures.

Overview

The system first creates a list of events,
Figure 1.

|
i
[

-1+--+E'—r!+ 4+er§ gt 45

! {

Figure 1

These events are then checked for connections to
form threads, Figure 2. Any number of events may
be in a single thread. An event may be in any
number of threads. A single event may be a thread.
An example is mofidication of the operator log
file. If an unauthorized person modifies that
file, no other evidence of the attack may exist.

888808 = T
oy b ' N

ii

e e e - T
: L. +; I L4 r - .= i

! . i ! Wi S i
\'—"'—'3 ..,__\\

- L] T \";

1 - b =

i e

Figure 2

A good way to picture threads is as different
shaped objects, like those depicted in Figure 3.
Each shape represents a different type of thread.
For example, a series of illegal login attempts
may be thought of as an oval.

Figure 3

A frame can then be pictured as a block with dif-
ferent shaped holes in it (Figure 4). Only a par-
ticular shape of thread fits into each of the
frame's holes.

I
Ty

T

> -

Figure 4

For each thread it is then determined which frames
these threads may be used in, Figure 5.

Each time such a frame is found, an attempt is wmade
to find the remaining threads necessary to form a
picture from this frame, Figure 6. Finally, a
search is made for threads which help to clarify
the picture created.

The final part of the system is a description
facility, which prints out a report on each of the
pictures. The user decides the level of detail
printed.

Thread Creation

Each event is linked to objects in the system
based on any piece of information connected with
the event. These include:

1 User name
2. Device

3. File name
4. Time

Two routines then look at this structure of events,
attempting to create threads. The first such rou-
tine simply looks for a multiplicity of events re-
lating to the same object. The second routine

looks for chained events where the attacked object
of the first event is the attacker in a later event,
Example 1.

| 1

e a7 812 ,

I
i
gi
i
l

iProgram A Program B Program C
Ty
i

l

modifies modifies modifies
Program B EProgram C SYSUAF ., DAT!
Example 1

The actual method of establishing connections is a
series of complex heuristics. Some connections

are simple pattern matching. Others recognize more
complex relationships, such as the fact that a par-
ticular program behaves differently when activated
by a privileged user. Future versions of the sys-
tem will allow thread recognition to be user tun-
able depending on the environment. A site where
all software used is written in-house may decide

to ignore functions that test for Trojan Horse
programs, for example.



NN |
i | ?
| |
|
|
Figure 5
- )
™ TN YN
\ \ { i
|
A i
i i ;
\;l --‘;‘}' E
I A ¢ |
Figure 6

Creation of Pictures

In our program, the holes of a frame are actually
heuristic routines. They compare the thread passed
to the routine with the shape they want, and return
a flag designating whether the thread matched.

Not all the holes of a frame need to be filled for
a picture to exist. Some of the holes are flagged
as necessary (those labeled I in Example 2), while
others are flagged such that only one of a group of
holes must be filled for the frame to be full
(those labeled X in Example 2). For example, the
oval in Example 2 may be modification of the system
startup file. The other holes then represent dif-
ferent methods of accomplishing the attack: the
plus sign changing the file's protection; the tri-
angle changing the UIC of the user; and the
squiggly shape changing mode to kernel.

Example 2

Each hole labeled X in Example 2 is significant
unto itself. Even though they are optional in this
frame, each hole is part of another frame where it
is necessary (labeled I) and where other holes ex-
plain how the attack was accomplished.

Holes also have a number associated with them desig-
nating the number of occurrences of the thread to be
counted as part of a single picture. Infinitely
many illegal login attempts are part of the same

picture, for example, while each occurrence of
SYSUAF.DAT modification is a separate picture.

Future versions of our program will include the
concept of dynamic frames. This will allow a frame
to create a new frame if data shows the old one to
be inadequate.

The basic technique used to create adjustable frames
is that a three-valued recognition function is
associated with each frame. This function can re-
turn the traditional values of match and failure to
match. However, it can also return a value which
indicates that the matching criteria may need to be
extended.

This returned value invokes a series of procedures
which try to determine what extensions to the frame
or matching criteria would enable a match. Then a
second series of procedures is invoked which attempt
to determine which, if any, of these extensions are
reasonable. An extension may be the addition of a
hole, the removal of a hole, or the initiation of
monitoring to collect relevant data.

To extend Example 2, suppose the system startup file
was modified but none of the holes labeled X are
filled. The program will then search through events
for anything which is connected to the system start-
up file or the atatcker. 1If an entry is found, such
as gaining SYSPRIV privilege, then a new frame is
created containing 5 holes, Example 3.
f

r 1

- x|
- <

Example 3

l




Reporting *Having some form of hardware that makes it impos-
sible for a user no matter how privileged to alter

One of the features of this system is that it gives the security log (such as a tape drive that cannot
a summary report classifying pictures as to their be rewound under software control).
nature. Some of the possible natures of pictures
are:
1. Definite successful breach of system.
2. Possible breach of system.
3. Dangerous attack.
4. Attack of lesser danger.
5. Suspicious unexplained happenings.
6. User who probably needs greater system

education.

This summary report is short, approximately one
line per entry. The security manager may then re-
quest reports at higher levels of detail on any of
the pictures.

Areas of Planned Improvement

* At present the only events the system looks at
are those signaled by the VMS security auditing
mechanism. Additional monitoring planned includes:

A. Accounting records.

B. Monitor records.

C. Detached processes created specifically
by this system.

D. A user-history database of each user's
typical activities.

* At present the system does not have the capa-
bility of increasing the monitoring of areas where
it looks like there is the possibility of suspicious
activity.

* At present the system runs extremely slowly.

* The heuristics for establishing connections, and
the types and capabilities of the frames, will be
continually enhanced.

* The concept of dynamic frames as described ear-
lier will be added.

* Thread-making tunability will be included to
allow the system to closely fit individual sites.

Suggestions for DEC Security Auditing Improvement

During the development of this system, we noticed
several areas where DEC's security auditing might
be improved:

* There should be several classes of security
audit so that one could reply/disable a terminal
for some but not all security events. This is im-
portant because most events are meaningful only
when viewed in a larger picture, while there are a
few events of which one might want immediate
notification.

* Allowing security events to be recorded in a
file other than OPERATOR.LOG.

*Having security events recorded in a compressed
form.



THE IMPLEMENTATION OF THE FAULT LOCALIZATION, ASSESSMENT AND REPAIR
EXPERT SYSTEM (FLARES) -- TOOLS, LANCUACES, AND ISSUES

Susan E. Bill-Wray

John T.

Williamson

Combat Control Systems Department
Naval Underwater Systems Center
Newport, R.I.

AVAILABLE FOR PUBLIC RELEASE

ABSTRACT
Digital Equipment Corporation's

BLISS-based OPS5,

Version 1, is currently being used in the development

of an expert system named

FLARES. The authors'

experience with OPS5 has led to the discovery of five

maxims on the use of OPSS5.

The experience has also

provided the basis upon which to form an evaluation

of OPS5 as an expert system

This paper presents the

development language.
FLARES activity, the five

maxims on OPS5, and the evaluation.

1. INTRODUCTION

FLARES (Fault Localization, Assessment and Repair
Expert System) is a knowledge-based system
currently  under development at the Naval
Underwater Systems Center. FLARES has the three
functions of diagnostic reasoning, system
assessment, and equipment repair assistance. The
major development language is Digital Equipment
Corporation's BLISS-based OPS5, Version 1. The
FLARES project has provided the authors with
experience in the use of OPS5 which is being
shared through this paper. First, in sections 2
and 3, an overview of the FLARES domain and the
system design are presented. Section 4 describes
the OPS5 language 1in preparation for more
detailed discussions on the lessons that have
been learned about wusing OPS5. These learned
lessons  are presented in section 5. An
evaluation of  OPS5 as an expert system
development language is given in section 6, and a
summary is given in section 7.

2. THE FLARES DOMAIN

FLARES is a knowledge-based expert system
designed to aid submarine personnel in the
troubleshooting of faulted equipment, to perform
an assessment of the degraded equipment, and to
provide repair guidance. One of the duties of
submarine personnel is the operation and
maintenance of complex electronic equipment.
During times of equipment failure, this duty
requires the ability to locate hardware faults,
assess the operational status of equipment that
is in a degraded mode, and successfully repair
the equipment. Knowledge is needed about
electronic equipment, the interpretation of fault
indicators, troubleshooting procedures, output
signal requirements for various uses of the
equipment, current and possible equipment
configurations, and maintenance and repair

Proceedings of the Digital Equipment Computer Users Society

procedures.

The particular piece of equipment for which
FLARES is targeted contains self-diagnostic tests
which are used in the troubleshooting
procedures. These tests, however, are not
exhaustive, and they do not, by themselves,
always indicate a single source of the fault.
The tests provide fault codes when electrical
malfunctions are detected in the circuitry being
tested. Associated with each fault code 1is a
list of the circuit cards that could have caused
the test to fail. Tables of the available
diagnostic tests, their purposes, their possible
fault codes, and the circuit cards associated
with each fault code exist for the operator's
use. Troubleshooting this equipment involves an
iterative process of the interpretation of fault
codes and the execution of appropriate diagnostic
tests in an attempt to minimize the number of
suspected cards.

This equipment also has the capability of
graceful degradation. It is a subpart of a
larger, multi-equipment system. The system 1is
used to perform a number of functions, and each
function may require only a subset of the
equipment's generated signals. If the required
signals are not affected by the equipment's
fault, then the -equipment, and therefore the
overall system, will still be operational. After
the successful diagnosis of the cause of failure,
an assessment can be made of the severity of the
equipment's faults and the impact on the system
functions. This is accomplished through
knowledge of possible re-configurations and the
system's signal requirements of the equipment.
If the assessment is made that the equipment 1is
in an operational state, then the issue of repair
can be delayed.

Repair of this equipment is relatively

Anaheim, California— December 1985



straightforward. The faulted card is located
within the equipment, removed, and replaced with
a spare. Of course, a spare unit in working
condition is not always available, especially
aboard a submarine; so an updated inventory of
repair supplies should be made before attempting
equipment repair. If system repair is not an
option, then assessment of the equipment's
operational status takes on greater importance.
FLARES has been designed to closely follow the
characteristics of this domain. The design 1is
presented in the next section.

3. SYSTEM DESIGN OF FLARES

The design of FLARES incorporates three sections
that correlate with the sub-tasks of equipment
operation and maintenance. (See Figure 1 for a
pictorial view of the FLARES design.) FLARES has
a Fault Localization section that performs the
diagnostic reasoning needed to troubleshoot the
equipment. It also has a System Assessment
section that determines the operational status of
the degraded equipment given the conclusion from
the first section. The 1last section, System
Repair, provides maintenance and repair support
such as instructions, diagrams, inventory
updates, etc. The wuser can communicate with
each of the three sections through a graphical
user interface. Upon  completion of fault
localization, the user has the option of having
FLARES perform the system assessment and then, if
desired, continue to the repair of the system.
Alternatively, the user may have FLARES go
directly to the system repair section avoiding
the assessment section altogether.

of the diagnostic tables. The wuser interface
consists of a graphics display with a touch
screen, an optional voice recognition unit, and
possibly a laser videodisc system. FORTRAN 77 1is
being used for the interfaces between equipment,
languages, and tools (see Figure 2).

FAULT LOCALIZATION N\
u T\
S
E
R
|
v /N
T SYSTEM ASSESSMENT
E
R
F
A
(o]
E 4
SYSTEM REPAIR

Figure 1. Overview of FLARES Design

FLARES is being developed on a Digital Equipment
Corporation VAX 11/780, VMS 4.2. The main
development language is DFC's BLISS-based OPS5,
Version 1. DEC's DATATRIEVE database formatting

language is being used for storage and retrieval

FAULT LOCALIZATION A
OPS5 DATATRIEVE
\ - s ]
; [ w“
il
|
: ]
USER INTERFACI L )
GRAPHICS
DISPLAY - SveTEM A -
F 1
o
TOUCH SCREEN °
T — OPS5
VOICE i
RECOGNITION a p
SYSTEM L )
LASER ~ ~N
VIDEODISC
. v

Figure 2. FLARES Implementation Languages
and Tools

The knowledge-based portions of FLARES, the Fault
Localization and System Assessment sections, are
being implemented in OPS5. However, these two
sections utilize OPS5 for different types of
functions. Within the Fault Localization
section, OPS5 is being  used to perform
interpretation and diagnostic reasoning.
Interfacing with DATATRIEVE for supporting data
from the diagnostic tables, the OPS5 program will
interpret what is currently known about the
equipment failure, suggest the next test(s) to be
run by the user, and integrate any new
information, in an attempt to correctly diagnose
the faulted card that is causing the failure.

In the System Assessment section OPS5 1is being
used to create a model of the equipment. The
model traces the functional flow of electronic
signals through the equipment. The assessment
takes place by running the OPS5 model with those
signals that have not been affected by the
faulted card, and by examining the output signals
generated. These output signals are compared to
those required for operational wuse of the
equipment to determine the equipment's functional
utility.

The System Repair section of FLARES is still in
the design phase. It may be implemented with
OPS5, DATATRIEVE, and/or FORTRAN 77, and it may
use a laser videodisc system, depending on the
extent to which FLARES will aid the wuser in
repairing the equipment.

The extensive use of OPS5 for the development of
FLARES has provided a basis upon which to form an



evaluation of the language, and has led to the
discovery of five maxims about the use of OPSS5.
These maxims and the evaluation are presented
later in the  paper. First, however, a
description of the OPS5 language is provided for
background to these next topics.

4. THE OPS5 PROGRAMMING LANGUAGE

OPS5 is a forward-chaining, production-rule
language. It executes in a cyclic manner of
pattern matching, conflict resolution, and rule
activation (see Figure 3). An  OPS5 program
consists of static production rules in an "IF -
THEN" format and dynamic working memory elements
that indicate the current status of its "world".

WORKING MEMORY

PRODUCTION RULES

NEW OR MODIFIED
WORKING MEMORY
ELEMENT(S)

CONFLICT SET
10

3 IF %
12 | T

IF

THEN

P
13 12
|3 THEN
THEN

Figure 3. Pictorial View of OPS5

The working memory elements each have an

associated time tag. This is a sequential
assignment of a number to the working memory
element upon its creation. The time tag

designates the relative recency of the working
memory element. The working memory elements are
pattern matched with the conditions in the IF
portions of all the production rules. Any
production rule that has its complete IF portion
satisfied is placed in a conflict set. At the
completion of pattern matching, a conflict
resolution strategy is invoked to resolve the
rules in the conflict set down to one rule that
will be chosen for activation. The selected rule
is activated; the statements in the rule's THEN
portion are executed. These statements usually
update the working memory by adding, deleting,
and modifying working memory elements. The cycle
is then repeated, starting again by pattern
matching between the now updated working memory
and the production rules.

This cycle 1is called data drivem, or forward
chaining, because of the influence the updated
working memory elements have on the selection of
a production rule for activation. The conflict
resolution strategies utilize the recency of
working memory elements matched with a rule
(indicated by the time tags) for their
selection. The strategies also consider the size
of the IF portion of an instantiated (or matched)

production rule, and the specificity (number) of
the relational tests used during pattern
matching. However, the matching working memory
elements' recencies are the first basis of
selection.

OPS5 offers two conflict resolution strategies,
LEX and MEA. (The name LEX comes from the
strategy's similarity to lexicographic ordering,
and MEA from the term means-ends analysis.) They
are basically the same, with the exception that
MEA places heavier emphasis on the recency of the
working memory element matched with the first
condition 1in the IF portion of each of the
instantiated production rules.

5. LESSONS LEARNED THROUGH EXPERIENCE WITH OPS5

Five maxims on the use of OPS5 were discovered
during the development of FLARES. Figure 4 lists
these maxims. This section of the paper
addresses each of these maxims for the benefit of
others who are thinking of, or are currently,
using OPS5.

1. OPS5 IS DECEIVINGLY SIMPLE

2. CONTROL ONLY ENOUGH TO GET THE JOB DONE

3. OPS5 IS NOT AN ISLAND

4. ALL IS NOT BLISS

5. DETAILED OPS5 DOCUMENTATION IS NEEDED FOR
RAPID DEVELOPMNET OF PROGRAMMING TECHNIQUES

Figure 4. OPS5 Maxims

5.1. OPS5 Is Deceivingly Simple

The first maxim discovered is that OPS5 is not as
simple as it 1initially seems. Upon first
inspection of OPS5 with its simple cyclic
performance of pattern matching, conflict
resolution, and working memory update, and its
symbolic syntax for production rules and working
memory elements, one can conclude that OPS5 is an
easy, straightforward language. In a sense, it
is, in that it functions in the forward-chaining
manner which is readily understood. However, the
conflict resolution strategies, which implement
the forward-chaining program flow, are more
complex than may be originally assumed. The
resolution tests employed by LEX and MEA tightly
couple the format of the production rules with
the rule selection process. For example, such
things as the order in which the programmer
writes the condition elements (in a rule's IF
section), and the order in which the statements
in the THEN section are written can affect the
outcome of the strategies' tests and therefore
the selection of the next rule for activation.
The programmer unaware of the subtleties of the
resolution strategies may find unexpected results
when the program is executed. The causes behind
the program's unexpected performance, however,
can be revealed through closer examination of the
conflict resolution strategies. This examination
should be completed before undertaking a major
programming effort to avoid frustrating
trial-and-error learning.



5.2. Control Only Enough To Get The Job Done

The second maxim addresses the issue of
controlling the flow of an OPS5 program: control
only enough to get the job done. Theoretically,
the beauty of the data-driven program flow lies
in the influence of new data. As new data is
created from the old data, the program extends
what it "knows" by wusing what it has recently
acquired. Placing control within the data-driven
program flow will detract from this elegance.
The initial selection of OPS5 implies a desire
for this type of program flow. However, it is
often the case that a programmer needs to
influence the flow for efficiency's sake, or to
implement some sequentiality. During the
development of FLARES, it was found that control
of the program flow can be accomplished but that
it must be done with care, adding only enough
control to produce a manageable application.

selection
resolution
the

close attention to the
the chosen conflict

programmer can influence
activation of specific production rules. This
control can be implemented through the careful
tailoring of the production rules' IF and THEN
sections. Within the IF sections control can be
accomplished by altering the number of condition
elements, the specificity of the condition
elements, and the ordering of the elements to
force a production rule to best meet the conflict
resolution strategy's criteria.

By paying
criteria of
strategy, the

Control can also be accomplished from the THEN
section of the production rules., Because the
recency of working memory elements has such an
influential role in the conflict resolution

strategies, the selection of a production rule

can be controlled by controlling the order in
which elements are added to working memory. This
will insure that a particular working memory

element will have the highest time tag during the
next cycle. Careful ordering of the MAKE and
MODIFY statements in the production rule's THEN
section will accomplish this.

Control can also be added to an OPS5 program on a
more global scale. OPS5 allows for actions that
take place on the whole of working memory, such
as 1) saving a copy of working memory in a file,
2) adding a previously saved state to the current
working memory, and 3) restoring working memory
to a previous state. Alteration of the global
state of working memory could change the subset

of production rules placed in the conflict set
and thus affect the overall performance of the
program.

0f course, the most obvious
through the choice of a conflict resolution
strategy, either LEX or MEA. Be aware, however,
the choice of a strategy and the use of the other
control methods are not independent. To control
an OPS5 program's flow is to pre-plan the
selection of a production rule for activation
based on the criteria of the strategy being used.

control method 1is

5.3. OPS5 Is Not An Island

The third maxim discovered during the development
of FLARES is that OPS5 is not an island, that is,

10

a program written in OPS5 is not independent of

the remaining computing environment. DEC's OPS5
contains routines that are used to communicate
with utility routines written in other

languages. An OPS5 program can invoke a utility
routine, and it can pass working memory elements
to and from the routines. Many languages used
for knowledge-based systems view the environment
as a closed world, making it difficult to work
around those aspects that the language cannot
perform well. With accessibility to the world
outside OPS5, an OPS5 program can take advantage
of the capabilities offered by other softwafe
(and therefore  hardware, such as graphic
displays, as well). This broadens the
application areas of and leads to more
productive use.

OPS5

S5.4. All Is Not BLISS

As previously stated, FLARES is being written in
DEC's BLISS-based OPS5 (Version 1). A LISP-based

0PS5 is also available. While the use of the
BLISS-based version has some advantages, there
are also associated disadvantages, thus the
fourth maxim: all is not BLISS.

The advantages include its speed and the
accessibility of interim files. The BLISS-based
OPS5 production rules are pre-compiled. This

affords a quick running program. The compilation
results in separate intermediate object files of
the IF and THEN sections of the rules. Through
the development of FLARES it was found that
interesting use can be made of these intermediate
files. For example, one copy of the compiled
file of the IF sections of some production rules
can be alternately linked with different versions
of the THEN sections' interim files, providing
variations of a production rule program. Other
advantages have been previously mentioned under
different topics, for example, the capability to
store working memory in a file for future use,
and the capability to communicate with the
outside computing environment.

One disadvantage of the BLISS-based OPS5 lies in
its limited support of mathematical functions.
It offers only the integer functions of addition,
subtraction, multiplication and modular division;
no floating point arithmetic and no high-level
functions are supported.

Two other disadvantages deal with the BLISS-based
OPS5 treatment of production rules. First, while
the working memory elements can be viewed by the
user, the production rules cannot. Once the
rules are compiled the programmer cannot view
them to determine the compilation outcome. To be
able to do so would aid in debugging the
program. Secondly, it has been stated that the
LISP-based version of OPS5 has the capability of
creating new production rules from inside a
running OPS5 program. This option does not exist
with the BLISS-based version. This capability is
desirable for the development of more extensive
and powerful programs.

The last disadvantage arises 1in the execution
order of the statements in the THEN section of an
activated rule, The BLISS-based OPS5 has a
pre-defined order in which it executes statements



that alter working memory.
to working memory are executed first, then any
actions that save working memory are executed,
followed by the execution of any actions that
delete from working memory. This pre-defined
ordering removes any control the programmer had

Any actions that add

over the order of actions and can cause some
‘unexpected happenings. For example, a specific
incident occurred where a production rule was

written whose action was to delete some elements
from working memory and then to save the state of
working memory in a file. It was later
discovered that the saving of working memory
happened before the deletions, thus saving an
unwanted working-memory state. To accomplish the
desired result required writing one logical
production rule as two separate rules.

5.5. Detailed OPS5 Documentation Is Needed For
Rapid Development Of Programming Techniques

The final, and perhaps hardest, lesson learned
through experience with DEC's OPS5 1is the need
for adequate documentation. While the
documentation provided by DEC [1,2] is a good
dictionary of commands, it is not sufficient for
learning how to program with  OPS5. The
documentation lacks details on the basic workings
of OPS5 (i.e., the conflict resolution
strategies) and provided an insufficient number
of examples. This led to an increase in the
amount of time required to become proficient in
programming in OPS5, and time lost in the
development of application programs. However, a
good text book does exist., Programming Expert
Systems in OPS5: An Introduction to Rule-Based
Programming, by Brownston, et al., [3] is a good
resource for learning to program with OPS5. It
has numerous examples and sufficient detail for
both novices and experienced OPS5 programmers.

6. EVALUATION OF OPS5

An evaluation of DEC's BLISS-based OPS5, Version
1, has been made based on its use during the
development of FLARES. Overall, O©OPS5 is a
versatile tool that allows for the rapid
prototyping and development of knowledge-based
systems.

OPS5 provides the basics of a knowledge-based
system: knowledge representation formats and an
inference mechanism. Production rules and the
working memory elements' structures are the two
knowledge representation formats provided by
OPS5. Knowledge that fits the "IF-THEN" format
is stored in the production rules. Working
memory elements are stored in a representation
format that allows the grouping of related
knowledge in an attribute-value format. OPS5
also provides the inference mechanism of forward
chaining; i.e., it supplies the processes needed
to perform pattern matching, conflict resolution,
and rule activation.

not overly

The syntax of the OPS5 language is

cumbersome. There is a relatively small set of
statements and syntactic requirements. While
initial exposure to OPS5 may cause some

confusion, simple examples of the use of OPS5 can

give a newcomer the confidence to produce

11

substantial programs in a short amount of time.

A weakness of 0OPS5, like most artificial
intelligence tools, is that it is not a general
tool. It does not offer an extensive selection
of knowledge representation formats, and it does
not offer optional inference mechanisms. It is a
tool designed only for forward-chaining,
production-rule systems. However, because OPS5
does provide for communication with programs
outside of 1its own environment, there is the
possibility of wusing OPS5 as a portion of a
larger, more extensive system.

7. SUMMARY

In summary, FLARES, a knowledge-based expert
system is being developed to aid submarine
operators in the operation and maintenance of
comp lex electronic equipment. Its design
consists of three sections: Fault Localization,
System Assessment, and System Repair. DEC's
BLISS-based OPS5, Version 1, is the major
development language. OPS5 1is being wused in

FLARES to perform the two functions of diagnostic
reasoning and electronic equipment modelling. It

is a forward-chaining, production-rule language.
The major control of execution 1lies in the
conflict resolution strategies, LEX and MEA.
Five maxims about OPS5 have been formulated
through this work: 1) o0PS5 is deceivingly
simple, 2) Control only enough to get the job
done, 3) OPS5 is not an island, 4) All is not
BLISS, and 5) Detailed OPS5 documentation is
needed for rapid development of programming

techniques.

Based on the authors' experience with OP35, it

can be concluded that OPS5 is a versatile tool
that supports the rapid prototyping and
development of data-driven, production-rule
expert systems. The original selection of OPS5
for the FLARES project was done without much
knowledge of OPS5's capabilities, however, the

Given the chance to once
intelligence language

choice was a good one.
again select an artificial
for FLARES there would be no hesitation to
re-choose OPS5. The best way to select an
artificial intelligence language or tool for the
development of a particular knowledge-based
system 1is through a thorough examination of the
domain's requirements for knowledge
representation and inference techniques and the
capabilities offered by the languages and tools

that best meet those needs. OPS5 may not be
appropriate for application domains that are
complex and extensive. Such domains may not
adhere to the forward-chaining inference

mechanism and may require more complex knowledge
representation methods. But, for those domains,
such as that of FLARES, that do follow the
data-driven flow, that contain knowledge that can
be stored in production rules, and that do not

require extensive knowledge representation

methods, OPS5 is recommended.

REFERENCES

1. Forgy, OPS5 User's Manual, Authorized
reproduction by Digital Equipment

Corporation, AA-BHOOA-TE, 1981.



OPS5 For VAX User's (Cuide, Digital Equipment

Corporation, AA-BH99A-TE, March 1984.

Brownston, Farrell, Kant and Martin,
Programming Expert Systems in OPS5: An

Introduction to Rule-Based Programming,

Addison-Wesley Publishing Company, Ince.,
1985.

12









1.0

Introduction: The Reusable Code Problem

DESIGN PRINCIPLES FOR SOFTWARE MANUFACTURING TOOLS
PAUL G. BASSETIT

VICE PRESIDENT - RESEARCH
NEIRON INC.
TORONTO, ONTARIO (CANADA)

Abstract

A good solution to the reusable code problem turns out to pro-
vide a solid technical basis from which to understand and deal
with the production, quality, and malntenance issues currently
besieging the software industry. To this end, a software man-
ufacturing methodology called CAPIM (Computer Automated Pro-
gramming) has been developed. CAP is based on Bassett Frame
Technology, which uses a functional.programming concept called
a 'frame', motivated in turn by the reusable code problem.

The Introduction explains the necessary background ideas about
'frames'. Section 2 analyses the subtle but important dis-
tinction between problem-solving and programming. CAP design
principles are then developed which show how to build software
tools that support problem-solving through open-ended, struct-
ured, program manufacturing techniques. The principles are
organized around the flow of program specifications from
'under' to 'optimally', to 'over' specified, machine-execut-
able instructioms.

The components of an existing CAP system are described in
Section 3, and Section 4 discusses the usage of CAP as a man-
ufacturing technique. Statistics from a case study are pre-
sented which indicate that: (a) production quality commercial
software can be manufactured at rates exceeding 2000 lines of
debugged COBOL per man-day (including systems design time),
and (b) less than 10 percent of this code needs to be hand-
written/maintained.

solution to the reusable code problem turns out to
provide a solid technical basis from which to

In the software industry's current cottage industry
style, it is common practice to build new programs
by "cutting and splicing” pieces of old programs
together. This approach demonstrates that

(a) there is a great deal of potentially reusable
code available, and

(b) it is worth the effort to adapt it rather
than starting from scratch [16].

Unfortunately [7],

(a) the programmer does not have any systematic
way of isolating just what portions of prog-
rams are relevant;

(b) the customization process is time-consuming,
tedious, and prone to error;

(c) once the process is finished, both o0ld and
new programs must be maintained as if each is
completely unique, despite the considerable
common functionality. Maintenance effort
should be proportional to the novelty in the
system, not the number of source statements

[4].

The central thesis of this paper 1is that a good

Proceedings of the Digital Equipment Computer Users Society

understand and deal with the production, quality,
and maintenance issues currently besieging the
software industry.

1.1 External Subroutines

It is still widely believed that external subrou-
tines form a satisfactory repository of reusable
code. Separately compiled and linked subroutines
are obviously useful, but they are limited because
there is no graceful or systematic means of
effecting:

(a) local customization of an external subroutine
to fit each calling program's particular con-
text of use, and

(b) global evolution of a subroutine when it must
change to benefit all future callers of that
subroutine without victimizing current
callers.

The fundamental problem is that a subroutine is a
representation for a single function which is not
adaptable at source-program (function) construction
time. It may have considerable run—-time flexibil-
ity, but at the time of actually molding the sub-
routine into the program that must use it, an ex-
ternal subroutine by its very nature has no flexi-

Anaheim, California— Di ber 1985




bility at all.

1.2 Code Generators

Code generators have been around for years (e.g.
RPG) and although they are usually very succinct
and expressive, they have never enjoyed widespread
use [2,10]. The simplest kind of code generators
are those that generate "raw" source code. The
problem with those generators is that they are bas-
ically "one-shot" tools. Because each generator is
an expert at only a part of the overall problem
[3,17], programmers must supplement and modify the
generated source code to suit their own needs.
Having adapted the code, they have no means of re-
using the generator without destroying all of their
manual modifications. To be more useful, a code
generator must allow some follow-on mechanism which
can adapt the generated source code automatically,
thus allowing reuse of the generator without the
loss of the customizations.

More sophisticated code generators typically supply
"user exits" for handling this problem. These pro-
vide linkage to separately compiled, external sub-
routines which can usually be written in a variety
of general purpose languages. The trouble is that:
(a) this is always an additive technique; there
is no way to change or remove generated func-
tionality;

(b) predefined interfaces often omit information
that is essential in the customization (the
"black box" effect);

(c) all non-procedural parts of the
code, such as data declaratioms,
unavailable for customization.

generated
are simply

A proper solution requires generators to provide
for automatic customization of generated code (not
just run—time communication with generated modules).

1.3 The Frame Methodology

A frame [13,14] methodology has been developed to
address the reusable code problem from the perspec-
tives of both programmers and code generators [3].
A frame is a machine-processable representation of
an abstract data type [9], with "abstract” meaning
functional [1,3]. Because the data operators are
functionals, not functions, frames can accommodate
both local customization into an individual prog-
ram, and global evolution to benefit all future em-
bedding programs. Frames are implemented as files
containing a mixture of source code (e.g. COBOL)
and (pre-processor) macro commands but quite unlike
the proposals of Backus [1] or Evans [8]. This
mixture is called frame text.

There are just four macro commands whose essential
role is to automate the "cutting and splicing” of
programs:

COPY-INSERT allows a frame hierarchy to be cop-
ied into a program (by naming the frame at the
root of the hierarchy), and causes customizing
frame text to be INSERTed anywhere into that
hierarchy.

BREAK-DEFAULT defines a named "breakpoint”.
Breakpoints mark arbitrary places in a frame

16

where custom frame text can be INSERTed to sup-
plement and/or replace DEFAULT frame function-
ality.

REPLACE systematically substitutes a specific
code string for a generic one (throughout a
frame hierarchy). For example, field names,
picture clause elements, etc. are generic if
they tend to vary from program to program.

SELECT incorporates into a program one frame
text module from a set of modules in the
frame. SELECTs are like CASE statements (with
arbitrary nesting) which operate at text con-—
struction time. An important use of SELECT is
to automate version control (global evolution).

Frames are written by both analysts and CAP tools.
Having code generators produce frames solves the
problem of destroying subsequent modifications by
automating the "cutting and splicing” of the cus-
tomizing frame text into the generated frame text.

All customizing frame text for one program is loc-
alized into a SPECIFICATION or SPC frame. An SPC
governs the entire process of building the compil-
able source program from its frame components. As
will be seen, a methodology incorporating frames at
its heart offers a potential for:

(a) fill-in-the-blanks program specifications
(rapid prototyping),

(b) automation of the process of reusing prev-
iously built, high quality software (both
human and machine written),

(c) automatic customization in context,

(d) maintenance of only what is unique in a
program,

(e) evolution without obsolescence (elimination
of unnecessary retrofits),

(£) painless enforcement of good programming
technique (standards).

1.4 Software as a Manufacturing Enterprise

In the next section principles for designing soft-
ware construction tools are analyzed from the ab-
stract perspective of function spaces. It should
be borne in mind, however, that CAP is fundament-
ally a practical manufacturing paradigm, in which
standard frames are the standard sub-assemblies,
various code generation steps are the processing
operations on basic components (raw materials) to
produce fabricated parts, and the CAP text proces-
sor operating on the SPC frame is the process of
final assembly with any custom options.

2.0 CAP Design Principles

In order to focus on the proper roles to be played
by people and machines in the software production
process, it is important to understand what is ap-—
propriate for the various actors. When higher lev-
el languages such as Assembler and FORTRAN were
first invented, it was proclaimed that "self-prog-
ramming” computers had arrived (remember IBM 1401
AUTOCODER ?). In what sense, if any, does a soft-
ware construction tool differ from a programming



language? Is it really possible to automate prog-
ramming, or will software tool designers be caught
in the same mental trap as the pioneers of higher
level languages?

2,1 Problem Solving Versus Programming

Problem solving and programming are related but
distinct concepts, and the distinction is critical
to the proper design of tools. The job of a prob-
lem solver is to find a good function: one which
accepts the information specified by the problem,
and provides results consistent with the problem's
goals and constraints. Concurrently, the problem
solver often jumps to the meta-problem of reshaping
the problem — and this is precisely the role of the
system's analyst.

Sometimes finding a good function can be reduced to
matching the problem information to a list of al-
ready available functions. None would claim that
selecting from a menu is programming. It is the
very antithesis: an effective way for non-program—
mers to obtain the functionality they need, but
cannot program. However, for professional problem
solvers, life is seldom so kind. Usually many
functions must be combined in some non-obvious way
to create the desired functionm.

If a problem can be solved by simply grouping the
names of some sub-functions under a new function
name, without regard to the order in which these
sub—functions are performed, and without regard to
how these sub-functions must communicate with each
other, then it remains plausible to claim that pro-
gramming is not involved. This function grouping
approach to problem solving turns out to be quite
powerful. But first the technique must be further
clarified and formalized.

Most problems do not exist in isolation. Recall
that a function must be consistent with a problem's
constraints in order to qualify as a solution. By
varying the constraints in meaningful ways, differ-
ent but related problems are created which are
solved by different but related functions. Each
variable constraint is called a degree of freedom.
A function space is then implicitly defined to be
the set of functions which solve a set of problems
which are related to each other by their common de-
grees of freedom.

Thus degrees of freedom can be used to characterize
otherwise implicit function spaces. A degree of
freedom is usually specified by expressing one of a
(possibly infinite) set of optional sub-functions
(constants and variable parameters are simple cases
of this). Then any formal notation which allows us
to create a function by simply referencing a sub—-
function from within each degree of freedom indep-
endently is, in effect, a language for solving
problems without programming.

Conversely, a language rich in irrelevant degrees
of freedom (those which are unrelated to problems
for which solutions are needed), and poor in rele-
vant degrees of freedom, forces programming tq be a
part of the problem solving process. Most general
purpose computer languages restrict their usage to
problem solvers who are also programmers. FORTRAN
is a non-programming language to the extent that
algebraic expressions solve problems; otherwise,
programming must be done.

17

Now, it would be ideal if problem solvers could al-
ways have notations at their disposal which have
just the right degrees of freedom for the problems
needing solutions. Programming could be completely
relegated to the machine. Perhaps when Artificial
Intelligence creates a meta-notation with which the
machine can develop its own notations for new prob-
lem classes, we can all humbly retire. For now I
have attacked the more realistic meta-problem of
designing tools which eliminate programming for
known, highly useful function spaces.

Any given program (function) must usually combine
sub-functions from various automated function
spaces with sub-functions which are custom-built
for the problem. Here it is vital that the "black
box" effect be avoided. Black boxes, whose actions
are imprecisely understood and have difficult or
uncontrollable side effects, are the bane of prog-
rammers! Thus, 1integrating the automatically
produced code with manually produced customizing
code must be a convenient, effective process.
Computer Automated Programming derives its name
from the importance attached to this tool design
philosophy.

*Unfortunately many so called fourth generation
languages use black boxes [11].

2,2 The Role of Languages

Our industry continues unabated to proliferate lan-
guages, and this is both necessary and desirable
[17]. The creation of each language is motivated
by a desire to reduce the effort of solving, in
computer executable form, some class of problems.
By distinguishing problem solving from programming,
it becomes possible, with respect to a given class
of problems, to group languages into three levels:
over—specified, optimally-specified, and wunder--
specified.

2.2.1 Optimal-Specification

A language is said to optimally-specify a function
space (and hence an associated problem class) if
and only if:

(a) the language is isomorphic to the function
space; that is, each distinct function is de-
noted by only one distinct expression, and
only the functions in the space are express-
ible;

(b) the degrees of freedom are independent, opti-
mally-specified sub-spaces (of constants,
variables, or functions);

(e) the language's well-formed expressions are

the "most compact” (see next paragraph) with
respect to all languages satisfying (a) and
(b).

In practice, this definition is weakened as fol-
lows: (a) 1is approximated by first designing the
language to be virtually one-to-one, then assuming
the function space (implied by the language's sem-
antics) to be what was "really meant” by the solu—
tions of the original, unformalized problem class;
(b) is approximated first by striving for as much
independence as possible, then by applying as many
context-sensitive error tests as are practical to
any remaining dependent degrees of freedom; while



(¢) is ignored as long as the language users are
happy.

In practice, such "weak optimally-specified"” lan-
guages are a realistic approach to problem solving
without programming. Functions can usually be de-
fined by simply grouping the names of some sub-
—functions under a new function name, without re-
gard to the order in which these sub-functions are
performed and without regard to how these sub-func-
tions must communicate with each other. Their com-
pilers are called code generators because each gen-
erator plays the role of a programmer, converting a
declarative, optimal specification into procedural,
over—specified code, which itself must be com-
piled. As has been noted (c.f. Sections 1.3, 2.2.3
and 2.3.2) CAP design principles require the gener-
ated code to be in the form of frames.

CAP design strives to optimize the syntax burden
for both the human user of an optimally-specified
language, and the tools which must also read and
write in the language. For people, a special pur-
pose editor should be written. Its special purpose
is to be the friendly interface (translator) be-
tween the problem solver and the optimized-for--
internal-use form. Accordingly, it presents a syn—
tax-suppressed, problem—oriented view of the func-
tion space, it provides user-resettable defaults
for all the functional parameters (degrees of free-
dom), and it checks for inconsistent parameter set-
tings whenever possible.

2,2,2 Under-specification

An under-specified language is like an optimally—-—
specified one except that the relationship of well-
-formed expressions in the language to the possible
solution functions is one-to-many. There may be
many degrees of freedom which play a secondary or
lesser role in the structure of the overall func-
tion space. There may be several functions, each
expressible in a different language, which must be
combined, but whose degrees of freedom intersect or
are inter-dependent. In these situations, an un-
der-specified language can be wused to quickly
"broad brush" the major functional features of the
solution. The code generator then employs heurist-
ics to specify one solution function at the optimal
level, which is reasonable, and consistent with any
overlapping degrees of freedom.

Whereas an optimally-specified language is typical-
ly used in a declarative (what, not how) mode, an
under-specified language is typically wused in a
prescriptive mode. That is, the special purpose
editor engages in a dialogue of questions and an-—
swers, and actively prescribes sub-sets of the de-
grees of freedom to be specified, depending on an-
swers to previous questions. The code generator
then uses heuristic logic (i) to specify all the
minor degrees of freedom, creating one or more opt-
imally-specified expressions, and (ii) to specify
an SPC frame containing any context-sensitive func-
tionality. The code in (ii) may be necessary to
properly combine the functions being expressed in
(i). (Thus a generator operating on under—speci-
fied expressions may write some over—specified code
too.)

Clearly, using an under-specified language is even
further from programming than using an optimally—-
specified language. Unfortunately the one-to-many
nature of the language means that the result is

18

seldom the exact function wanted. However, for
this approach to be viable, the result must be an
excellent first approximation. That is, the prob-
lem solver must be able to spend less time by
starting at the under-specified level, then alter-
ing the optimally-specified and over-specified re-
sults to arrive at the specific function wanted,
than by simply starting at the optimally-specified
and over-specified levels. One drawback is that
inexperienced wusers of under-specified language
tools can all too easily err on the optimistic
side, discovering only with hindsight that they
would have been better off to begin at the optimal-
ly-specified level. On the other hand, providing a
rich set of under-specified "front ends" enhances
the problem solving power of a CAP system and re—
duces this drawback.

2.2.3 Over-specified Languages

In an over-specified language, the relationship of
well-formed expressions to functions is many-to--
one, and properties (b) and (c¢) of an optimal lan—
guage do not hold even weakly. Over-specified lan-
guages are ubiquitous. For example, every comput-
er's binary or assembly language lacks the syntax
to express directly the right degrees of freedom
for most of the problem classes to which the ma-
chine is applied. And so programming (often done
by a compiler) is inevitable at this final stage of
problem solving.

(But, with respect to the function space with which
the computer hardware can directly deal, assembly
language is not over-specified. In this context it
is probably an optimally-specified language, or
even an under-specified one, if the machine sup-
ports micro-programming. Care must be taken not to
confuse the issue of which function space best
spans a given problem class with the issue of which
language best spans a given function space. The
function spaces of all useful computers are isomor—
phic to the (universal) class of all algorithmical-
ly solvable (in finite time and space) problems.
The assembly language example is really a special
case, since each machine architecture forces the
consideration of a specific function space. Above
the hardware context, each “reasonable” problem
class induces, in principle, a "reasonable"” (assoc—
iative, acceptable performance) function space in
which to compose solutions for the problems in the
class.)

General purpose languages are usually, though not
inevitably, over-specified with respect to most
formally characterizable function spaces, even uni-
versal function spaces. On the other hand, a gen-
eral purpose language may not be over-specified for
several restricted problem classes, which vindic-
ates the language's design. Despite having tools
which support under-specified and optimally-speci-
fied languages, the source language used in frame
text must be a general purpose language in order to
permit custom functions to be defined. If a CAP
system builder has the luxury to design his own
language (which I did not), then I believe it is
possible to design one which is a good approxima-
tion to being optimally specified with respect to
some universal function space.

To sum up the role of languages (see also Sect
2.4), whenever a useful function space can be de-
fined by an optimally-specified language, program—



ming can be relegated to the computer. To further
enhance problem solving leverage, multiple under--
specified, front-end editor-generator pairs can be
built which create optimally-specified expres—
sions. These expressions are processed in turn by
editor-generator pairs which create programs at the
over-specified level, but maintain them at the opt-
imal level. Any special purpose, custom function-
ality is kept in the SPC frame which directs the
CAP processor in its final assembly tasks of (re)-
building the complete source program, then compil-
ing and linking it into executable form.

2.3 The Role of Frames

Frames are used to formalize the common intermedi-
ate stage in the program construction process,
prior to the frames being combined and customized
into a single program (function). There are two
reasons for having this stage. First, recognizing
the open-ended nature of problem solving, an exten-—
sible library of standard frames and templates (see
Sect. 2.3.1), together with generated frames, can
support custom programming for any problem. Sec-
ondly, the ability to mechanize the assembly of a
program, given the diversity of its components, de-
pends on bringing them to a common notation.

2.3.1 Standard Frames

As problems are discovered to be related to each
other, a standard frame can be evolved to span the
implicit function space. Each frame denotes a
functional, whose domain defines (using the COPY,
and REPLACE commands) the degrees of freedom appro-
priate to the class of related problems, and whose
range (all possible instantiations of the frame
text) is the corresponding function space. By fix-
ing those degrees of freedom in various ways, vari-
ous problems in the class can be solved without
programmning. This is not to say that programming
has been eliminated. Usually real problems refuse
to confine themselves to neat, predefined classes.
Accordingly, a frame's BREAK points and SELECT
clauses constitute open-ended degrees of freedom,
where solutions can be arbitrarily extended, 1if
necessary.

Standard frames are wused whenever the function
space is too limited in scope or usage to warrant a
new optimally-specified language. This approach to
problem solving is implemented by using templates.
A template is an uncustomized SPC frame, and usual-
ly spans a hierarchy of frames. It collects in one
linear list (a file) all degrees of freedom appro-
priate for a useful class of problems. The replac-
eable strings, sub-function selection choices, and
insertion points for the frames in the hierarchy
constitute a fill-in-the-blanks method of customiz-
ing the program. Thus templates and frames toget-
her permit problems to be solved in a manner which
progressively reduces traditional programming to a
minimum, given the open—-ended nature of real prob-
lems.

To the degree that system design expertise can be
stored inside the system, the SPC frame can itself
be created by “"designer"” tools working at the
under-specified level (see Section 3.1).

2.3.2 Generated Frames

Certain function spaces have degrees of freedom

19

which are too dynamic to be represented by fixed,
standard frames. Well known examples are screen/-
keyboard interfaces and report definitions. For
these cases, optimal languages can be developed in
association with frame-writing generators.

By generating frames instead of raw source code,
open—ended (programming) degrees of freedom become
available. Such degrees of freedom are required in
the overall problem class, but should be suppressed
in the various optimal specification languages.
Further customizing can be specified via an SPC
without the hand editing or restrictive user exits
associated with conventional generators. Basically
what has happened is that the editing that would
otherwise be necessary to properly customize the
generated code has been mechanized. In so doing,
we gain both an assembly line style of constructing
programs and an ability to maintain the program us-
ing its optimally defined pieces (rather than its
over—-specified code).

2.4 Anatomy of a CAP tool

The following diagram depicts the flow of specific-
ations from the under-specified or Designer level,
through the optimally-specified or Customizer lev-
el, down to the over-specified or Source and Object
levels. Life cycle maintenance is performed with
the Customizer (special purpose) editors. Please
note that where it refers to screen and report
specifications, these are examples of optimally--
specified languages with respect to the problems of
commercial data processing. A CAP tool may use
either, both, or neither of these languages, as
well as other notations, if the problems warrant.

3.0 An Actual CAP System

At Netron Inc. a CAP system has been developed for
use on a VAX/VMS system and also for the WANG VS
computer systems, applied to commercial data pro-
cessing using COBOL. The following reflects cur-

rent functionality and some soon-to-be released
tools.

3.1 Underspecified level tools

CAPinput - for building interactive file mainten-

ance and data entry programs.
CAPoutput - for building report programs based on
general data selection criteria.
- for building general files-to-files
transforms and interfaces.

CAPfile

These three tools are each structured as shown in
Fig. 1. Specification of a complete program re-
quires that an analyst answer a small number of
questions (most of which have defaults). The heart
of each tool is a frame hierarchy which covers most
of the "nooks and crannies” of a formalized problem
space. The tool writes a small SPC frame which
references the hierarchy and defines the specific
function wanted. As well, each tool writes several
(weakly) optimal specifications to handle screen/-
keyboard interactions and reports. These specific-
ations are generated using heuristics (designed by
human analysts) which produce acceptable (if not
inspired) specifications.



F111-1n-the-blanks __——

SPECIFIC DESIGNER SPECIFIC M
Screen & Report Frame 0
Specifications [ Specifications D
E
V1 t v

SPECIFIC
Fill-in-the-blanks NEEDS Fill-in-the-blanks s
Report & Screen SPC Frame 0
CUSTOMIZERS h h CUSTOMIZER. - !
U
T
GENERATE CUSTOM FRAMES M 1
0
N
Splice F
Compile R
Link A
M
E
S

CUSTOM EXECUTABLE
PROGRAM
Figure 1

3.2 Optimal Specification level tools

CaPscreen - for designing and maintaining interac-
tive screen/keyboard functionality.

CAPreport - for designing and maintaining report
functionality.

The (weakly) optimal notations are used by designer
tools and by analysts, either in conjunction with
underspecified level tools or independently. CAP-
input, CAPoutput, and CAPfile create consistent
specifications directly in the optimal notatioms,
whereas people interface indirectly via special
purpose editors which suppress syntax and error—-
check dependent degrees of freedom.

A complete description of these languages is beyond
the scope of this paper. Very briefly, independ-
ence of degrees of freedom is typified by having
screen (report) layout facilities which are com-
pletely independent of the attributes of each
screen (report) variable. On the other hand, some
degrees of freedom are not completely independent.
For example, if a variable on a screen is declared
as having run—-time error checks, and is declared as
not being assigned to an internal variable after
the operator enters it at run-time, then these two
degrees of freedom are in conflict (and must be re-—
solved).

The tools themselves generate frames from the opti-
mal specification. These frames in turn make ex-
tensive use of the hierarchy of available CAP
frames. Because the frames are written using gen-
eral purpose (but sadly overspecified) COBOL, the
programmer has exact control over the "fine tuning”
which his particular application may need in order
to convert a functional into the required function.

3.3 Standard Frames

Netron provides an open—ended library of frames,
ranging from simple abstract data types to frames
which create complete, multiple records per screen,
interactive file maintenance programs. These
frames are "application independent”; Netron's cus—

20

tomers add their own frames according to the appli-
cations and standards they require. CAPeditor is a
special purpose editor for customizing SPC frames
based on this library.

Here is a small,
frames:

ad hoc sample of some standard

-File-maintenance frame

~General batch data entry screen handling frame
-Search screen for CAPinput

~Frame for preparing CAPinput logfile reports
-COBOL FD to data dictionary tramslator;
several alternate keys

—-Abstract data type for reports using CAPreport
-Multiple screen—frame integrator

-Screen definition abstract data type
—-Screen—-variable edits
-Left justify strings
—-Concatenate two strings,
from first string

-Set tabs stops on screen
—-Abstract data type for all screen attributes
-Allow large numbers of screen attributes to be
manipulated at one time

—-Convert system time and date to any of three
different formats

-Interface to other system
libraries, volumes etc.)
—Check if file exists and optionally create it
-Divisions and section headers needed for COBOL
program.

—-COBOL SELECT declarations within the INPUT-OUTPUT
section

-Provide the COBOL necessary for the FD declaration
within the FILE SECTION

-For creating wenus with CAPscreen

-For scanning/pattern—matching

-Abstract data type for indexed files

—Abstract data type for sequential files

allows

remove trailing blanks

data (e.g. USERID,

The CAPframes are the heart of the CAP system.
Each frame implements a useful function space whose
patterns have been recognized by their appearance
in several programs. The frames are organized into
a taxonomy which guides the problem solver to the
relevant functionality.



4,0 Discussion of Tool Usage
4.1 Types of Users

The consistent application of the "under-optimal--
over" design principle offers access potential to
the industry's three major user groups: end-users,
analysts, and programmers. In CAP's current imple-
mentation, it is an analyst-oriented software manu-
facturing system. The focus has been to provide

tools which aid in the manufacture of larger, more
complex systems.
CAP could be designed for non-programmers, but few

are inclined to cope with open-ended applications
building/maintenance which is CAP's main strength.
Most people like driving cars and some even enjoy
fixing or rebuilding them. But who wants to design
and manufacture them?

Because CAP is a manufacturing paradigm, most of
the benefits stemming from the organization of a
conventional manufacturing enterprise become avail-
able to DP shops. In particular, the frame engin-
eering department is quite analogous to a conven-
tional engineering department. A useful division
of labor is created. Those responsible for design-
ing and maintaining the organization's inventory of
standard software components (frames) can work in-
dependently from those charged with getting the ap-
plication software products out the door. The ben-
efit of having centralized standards control is ob-
vious.

4,2 Rapid Prototyping
Conventional wisdom, stemming from the software
disasters of the 60's and early 70's, has firmly

entrenched the hedging policies of preparing ex-
haustive feasibility studies, formal requirements
definitions, structured walk-throughs, and the
like. Often, the time and costs to plan a system
are greater than the costs of building it. In
turn, the specifications are usually out of date by
the time they are finally approved, and the end--
users still don't really know what they are get-—
ting, or if what they get is what they need. Anot-
her danger is that it is so easy to specify fea-
tures which turn out to be much more difficult to
implement than they are worth to the user. In
short, the institutionalized policies of large DP
groups are no small contributor to the enormous ap-
plications backlog.

Conventional wisdom can now be made wiser
[5,6,11,12,15]. CAP tools can write formal speci-
fications which are understood by both people and
computers, then convert the spec's to equivalent
programs. We can now adopt the attitude of "what
you see is what you get"”, and even let small proto-
types constitute part of the design spec.

End-users can "kick its tires"” and iteratively
guide the specifications. The implementation team
can provide specific, detailed arguments as to why
certain features should or should not be in the
system, and can more accurately cost-estimate the
system's implementation based on deviations from
the organization's current frame inventory.

4.3 Productivity and Quality

Using a tool such as CAPinput typically requires

21

that the user spend a few minutes at the under—--
specified level. Without further customization, an
executable program is available shortly thereaf-
ter. The following is the summary from a detailed
case study which analyzes the actual usage of CAP.

4.3.1 CASE STUDY: The Manufacture of the
CANADIANA Requisition System

CANADIANA OUTDOOR PRODUCTS INC. is a subsidiary of
NOMA INDUSTRIES LTD. In March 1983, Canadiana em-—
ployed Netron Inc. to create a computerized Requis—
ition system to replace Canadiana's manual Requisi-
tion system.

The system was created using CAP and is run on a

WANG VS computer using interactive terminals. The
system allows requisitions to be created, main-
tained, displayed, searched, authorized, ordered,

recorded and reported upon.

The Requisition system was built by a student anal-
yst during his first work term leave from the Univ-
ersity of Waterloo. After the first week, enough
of the system had been prototyped that Canadianna
users recognized serious design problems. The sys—
tem was redesigned and put into production by the
end of the third week.

Sixteen programs were created using CAP tools, to
create and control the interaction of the 22
screens and 3 reports through which the Requisition
system is operated. CAP tools enabled the author
to create the Requisition system by writing less
than 10% of the total COBOL lines needed.

One method of judging COBOL program production with
and without CAP tools is to compare the total num—
ber of lines of submitted source code in the entire
Requisition system with the number of hand-written
lines. Purely comment lines were discarded.

The results show more than a 10:1 productivity gain
by this measure. Of 34,000 lines of submitted code
contained in the 16 programs of the Requisition
system, only 3,000 lines were written by hand.

The following table shows, for each of the 16 prog-
rams forming the Requisition system, the number of
lines (i) hand written in the SPC frame, (ii) in
the generated frames, (iii) in standard frames, and
(iv) in the total submitted to the COBOL compiler.

4,3.2 Quality

0f course, the issue here is not merely to show a
capability of producing in excess of 2000 lines of
production COBOL per man day (including design
time). Further analysis of the manufactured prog-
rams will show that they are more consistent with
respect to user-interface and structured program
style, more reliable, more functionally complete,
much more easily maintained, and no less efficient
than conventional, hand written programs. The rea-
son is that the standard frames and frame genera-
tors are highly seasoned components in the course
of whose evolution many improvements and optimiza-
tions have been made. The cumulative effects are
capital assets (no pun intended) which yield a re-
turn on investment in every incorporating program.
Programs handwritten from scratch have no chance to
acquire the quality and thoroughness that is the
hallmark of a good frame [15].



Number of Code Lines

Program Main Total SPC Generated Standard
Name CAPTool Source Frame Frames Frames
PREQI1 CAPinput 2979 56 1731 1192
PREQ2 CAPinput 2130 71 1264 795
PREQ3 CAPinput 2318 78 1013 1227
PREQ4 CAPinput 1721 62 869 790
PREQS CAPinput 3440 421 1904 1115
PREQ6 CAPinput 2776 157 1766 853
PREQ7 CAPinput 1510 40 673 797
PREQS CAPinput 3018 206 1806 1006
PREQ9 CAPinput 3238 281 1910 1047
PREQA CAPinput 3659 436 2223 1000
PREQI CAPinput 3399 436 1916 1047
PREQF Frame Lib. 274 187 0 87
PREQG Frame Lib. 223 136 0 87
PREQR CAPreport 954 140 198 616
PREQS CAPreport 1086 226 216 644
PREQT CAPreport 1152 179 290 683

Figure 2

4.4 Life Cycle Support

Maintenance is one of CAP's strongest features. By
storing all source code customizations in one spot,
factored away from both standard and generated
frames, typical program maintenance 1is collapsed
from 50 - 60 pages of source listing to two or
three pages. By having the code generators emit
frame code which can be automatically customized,
the declarative specifications also support the
life cycle maintenance of the programs in a very
convenient manner.

4.4.1 Frame Maintenance

As with all software, frames change through time.
Standard frames tend to be relatively stable since
they rapidly become seasoned through frequent re-
use. But additionally, because they are function-
als, they are able to absorb arbitrary amounts of
change (including complete rewrites) without risk-
ing any previously written program. It is easy to
arrange that the range (function space) of a new
version of a functional be a superset of the previ-
ous version's range. Simply provide a version con-
trol parameter governing a SELECT clause. This al-
lows the improved functional to still recreate all
old functional versions. An old program's SPC, un-
aware of subsequent changes, references the frame

hierarchy with its old version symbol (if any!),
and gets exactly the same code it has always got-
ten, even though new programs may get something
quite different (the Template always contains the
latest version symbol).

This does not mean that frames and libraries become
more cluttered than in conventional shops. Conven-
tionally, complete copies are kept of all versions
(using distinct names), even though only small
changes might have been made. Frames keep an auto-
matic audit trail of the version differences, with

22

only occasional rewrites done to eliminate clut-
ter. The obsolete (but still active) rewritten
versions are placed in a separate library, again to
eliminate clutter. Internal version references
automate the retrieval of the correct version.
Thus a single external name is common to all ver-
sions and less space overall is actually required.
4.5 Conclusion

CAP grew out of a need in the world of business
data processing to solve the reusable code prob-
lem. The resulting design principles are quite
general and are applicable in any application area
which can be factored into recurring problem
classes. To build the tools and work-in—-process
inventory of a CAP software factory for a new prob-
lem domain, the following is required.

First, a CAP preprocessor is built for the current-
ly wused, general purpose programming language.
Standard frames can then be written to form the re-
usable components of new programs. Often, well--
structured, existing programs can serve as models
for creating these frames. If the degrees of free-
dom for any function spaces can be formalized, then
special purpose declarative languages can be de-
fined at the optimal level. By building an editor-
—-generator pair for each language which emits
frames, further automation can take place. Final-
ly, if several function spaces (currently spanned
by a combination of standard frames and code gener-
ators) often need to be combined to produce needed
programs, then designer front—ends can be built
which operate at the under-specified level to prov-
ide rapid prototyping of complete programs.

Software has been very successful in automating
conventional manufacturing. It is now possible for
our own industry to gain the same benefits.



10.

References

BACKUS, J. Can programming be liberated from
the von Neumann style? A functional style and
its algebra of programs. Communications of the
ACM, 21, 8 (August 1978), 196-206.

BALZER, R. An alternative approach to software
automation. In Research Directions in Software
Technology, P. Wegner (Ed.), MIT Press, Cam—

bridge, Mass., 1979, pp. 851-856.

BASSETT, P.B. and GIBLON,
mated Programming (Part I). In proceedings of
IEEE conference on Software Tools and Tech-
niques (Soft Fair), Washington D.C., July 1983.

J. Computer Auto-

BASSETT, P.B. and RANKINE, S. The Maintenance
Challenge. Computerworld In Depth, May 16, 1983.

BIANCHI, M.H., MASHEY, J.R. Rapid Prototyping
on UNIXt®, Presented at the Software Engin-
eering Symposium: Rapid Prototyping, Columbia
Maryland, April 19-21 1982,

BLATTNER, M., FROBOSE, R. Prototyping and the
Life Cycle of Software. Presented at the Soft-
ware Engineering Symposium: Rapid Prototyping,
Columbia Maryland, April 19-21 1982,

CHEATHAM, T.E. The Harvard PDS Project: an
Overview. Presented at the Software Engineering

Symposium: Rapid Prototyping, Columbia Mary-

land, April 19-21 1982.

EVANS, M. Software Engineering for the Cobol
Environment. Communications of the ACM, 25, 12
(December 1982), 874-882.

GOGUEN, J.A., THATCHER, J.W., and WAGNER, E.G.
An Initial Algebra Approach to the specifica-
tion, correctness and implementation of ab-
stract data types. In Current Trends In Pro-
gramming Methodology, vol 4, R. Yeh (Ed.).
Prentice-Hall, 1979 pp. 80-149.

HAMMER, M., RUTH, G. Automating the Software
Development Process. In Research Directions in
Software ‘lechnology, P. Wegner (Ed.), MIT

Press, Cambridge, Mass., 1979, pp. 767-790.

23

11.

12.

13.

14.

15.

16.

17.

HOUGHTON, R.C.jr. Rapid Prototyping Tools:
What can we Learn From the MIS World ? Pres-
ented at the Software Engineering Symposium:

Rapid Prototyping, Columbia Maryland, April
19-21 1982,
MASON, R.E.A., CAREY, T.T. Prototyping Inter-
active Information Systems. In CACM Vol. 26
No. 5 p 347
MINSKY, M. A Framework for Representing Know—

In The Psychology of Computer Vision,
McGraw-Hill Inc., U.S.A.,

ledge.
P. Winston (Ed.),
1975, pp. 211-277.

RICH J. Inspection Methods In Programming,
Ph.D. Thesis M.I.T. technical report AI-TR-604,
June 1981

TAYLOR, T., STANDISH, T.A. Initial Thoughts on
Rapid Prototyping Techniques. Presented at the
Software Engineering Symposium: Rapid Prototyp-—
ing, Columbia Maryland, April 19-21 1982.

The Future of Pro-
25, 3

WASSERMAN, A.I., GUTZ, S.
gramming. Communications of the ACM,
(March 1982), 196-206.

WULF, W.A. Some Thoughts on the Next Genera-
tion of Programming Languages. In Perspectives
on Computer Science, Academic Press, New York,
New York, 1977, pp. 217-234.







DECISION SUPPORT SYSTEMS

DEC-MICROS

Dr. Kuriakose Athappilly, Associate Professor
BIS Department
Western Michigan University
Kalamazoo, Michigan

ABSTRACT

This paper deals with Decision Support Systems (DSS) and their

impact in the dec-micros.

Since DSS is not a very well known

concept today, the paper attempts to explain briefly what DSS
is and then illustrates the existance of several hardware/soft-
ware configurations that are entitled as Decision Support

Systems in the Dec-family.

INTRODUCTION

Decision Support Systems, better known as DSS have
become the hallmark of the modern executive. It
has been growing in popularity since the 1970s.

It has evolved from EDP, MIS, and MS, but it
differs from all of them as its main function is
to aid managers directly and quickly in their
decision making process. There are many different
views on how to approach the question, "What is a
DSS?". It is generally understood as 'an inter-
active system that provides the user with easy
access to decision models and data in order to
support semi-structured and unstructured decision
making tasks." (1) The intent of DSS is not to
automate the decision making process, but to
provide information and add insight as support for
managers' decision making process. (See Chart 1)
With a DSS the Manager can combine its benefits
with his analytical skills and judgment to reach
the optimal solution. Parallel to the growth and
development of DSS as a concent, we witness an
evolution in the family of Dec-systems toward the
development of many hardware and software
configurations for several general and specific
Decision Support Systems.

General Characteristics of DSS

There are many different and unique decisions a
manager is faced with and for this reason a DSS
must contain some unique qualities to make it an
effective tool. They are flexibility, inter-
activeness, discovery orientation, and easy-to-
learn. Flexibility allows a manager to create
different models, manipulate data in a variety of
ways, and to match information to the problem at
hand. Interactiveness is important as it
facilitates the manager's communication with the
system, for quick and clear results. Discovery
orientation allows managers to probe trends,
isolate problems and ask new questions. Easy - to
-learn feature helps managers use the system with-
out learning its technical aspects. The focus of
all these features is on the user which enable

the DSS to follow his or her thought process.

". . . Decision support systems rely on the
decision makers' insights and judgment at all
stages of problem solving--from problem formulation
to choosing the relevant data to work with, to
picking the approach to be used in generating
solutions, and on to evaluating the solutions
presented to the decision maker.'" (2)

Chart 1: A comparative view of the three systems; MIS, OR/MS, and DSS in terms
of their impact, payoff, and relevance.

IMPACT PAYOFF RELEVANCE
MIS STRUCTURED EFFICIENCY INDIRECT
TASKS REPORT
OR/ STRUCTURED SOLUTIONS RECOMMENDATIONS &
MS PROBLEMS SOLUTIONS
DECISIONS EFFECTIVENESS TOOL
DSS -OWN CONTROL
-DIRECT
-NO AUTOMATION

Proceedings of the Digital Equipment Computer Users Society

Anaheim, California—- December 1985



Technical Characteristics of DSS

The general characteristics reveal what DSSs are
supposed to do, but the question "What is a DSS?"

remains to be answered for a complete understand-
ing.

It is generally agreed that a software program to
qualify as a DSS must have three general
capabilities: Database management, model base
management, and dialog generation as shown in
Figure 1.

Figure 1: COMPONENTS OF THE DECISION SUPPORT SYSTEM

The database management within the DSS which
basically consists of data insertion, extraction,
and retention processes is essential for an
efficient and effective DSS generating phase. This
component provides for the memory requirements in
decision support. Considerations for database
management include security procedures, a data
dictionary, ease of data entry, multiple access
availability, and audit trail capability. Because
the accuracy, integrity and reliability of the
information provided by the DSS depends on the
accuracy, integrity and reliability of the data

The DSS

DATA BASE ‘\

!

/—MODEL BASE

DBMS

MBMS

b ecmccrcccendeccncacarna=d

SOFTWARE
DGMS SYSTEM

TASK

ENVIRONMENT

User

from

26

Sprague & Carlson, Building Effective Decision
Support Systems, Prentice-Hall, 1087,




used in the database, it's important that the data-
base management system be considered an important
function.

The model base management system makes DSS a
unique software system. Modeling is the primary
function of DSS because it can be used to create
ad-hoc models and scenarios that represent real
world situations. Those scenarios help the manager
explore alternatives and examine the consequences
of such alternate decisions on the computer before
implementation in the real world. This capability
of exploring and testing many alternatives and
getting answers to several ''what if" questions is
the unique strength of DSS. Naturally, since this
modeling capability reveals the strengths and
weaknesses of the design structure the user
manager can create appropriate designs by repeated
what if test questions to suit the real world
decision environment in a natural and logical
format.

The model base management system includes also
several statistical and mathematical manipulations
which offer DSS a good deal of analytical ability
and flexibility. Forecasting, ranking, sorting,
simultaneous equation solving, totaling decision
analysis, optimization, and averaging all aid in
model building. Most of these manipulations are
offered in many of the advanced spreadsheets.
With spreadsheets it is easy to introduce new
variables and instantly calculate their effect
through a chain of events and a multitude of
products. Consequently user managers can create
one or more models, expand or reduce them, and

Chart 2

modify them to help explore more and more
alternatives.

The dialog component of a DSS is the means through
which the users communicate with DSS. Much of the
power, flexibility and ease-of-use characteristics
of a DSS depends on the efficiency of the dialog
component. The communication with DSS depends on
three factors. They are: i) the knowledge base,
ii) the action language, and iii) the representa-
tion language. The knowledge base consists of what
the user manager needs to know in order to use the
system efficiently. The action language indicates
what the user can do communicating with the system.
The representation language indicates what the

user manager sees. This third characteristic, is
perhaps, the most important of the three cited
above, especially because of the developments in
graphics display.

Graphic display enhances DSS by displaying graphs,
reports and charts or other forms of communicating
commands and results to the user. Spreadsheets
that can demonstrate DSS qualities must have the
ability to generate personalized reports with
standard formats.

Each of the functions described are not seperate
features when contained in DSS, but are combined
to give flexibility to do many things at once (see
Chart 2 for summary of the DSS characteristics).
They are all integrated to give the software a
dynamic and paradigmatic quality. Ideally a
decision support system is "'a comprehensive
computer software system encompassing everything

DSS CHARACTERISTICS

Flexibility
General Interactiveness
Charac-
teristics Discovery Orientation
Easy-to-Learn
Data Insertion
Database Management Data Retention
Data Extraction
— Statistical
Technical ///////////‘ Manipulation
Charac- Model Base e
teristics Management “———— Mathematical
Manipulation
Knowledge Base
Dialog Generation Action Language
Representation
Language




a manager needs: Highly flexible: adaptable
database management; powerful modeling
capabilities; a wide range of easily accessible
statistical and mathematical techniques; presen-
tation - quality graphics; and report writing."

(3)

Decision Aid and Decision Modeling

There are two types of decision support programs,
decision-aid and decision-modeling. Decision-aid
programs allow users to evaluate alternate options
by assigning weighted values to each factor in a
decision. Then the computer calculates the highest
score and reports the recommended course of action.
Since the assigning of values is subjective, this
type of program can bring an outcome that matches a
decision already made.

The second type of program, decision-modeling
programs, are usually considered more useful
because of their ability to use many variables and
answer ''what if" questions. This type of software
aids the user in choosing the most effective
strategy for carrying out a decision. Both
decision-aid and modeling programs give managers
many features to choose from.

DEC-Micros Towards DSS

With the introduction of Digital Office Work-
stations, Micro VAX-11, and Micro PDP-11 series in

Figure 2:

the hardware area and numerous specific and generic
DSS packages in the software area, the Decision
Support Systems have become a conspicuous feature
in the Dec-family. Figure 2 shows the office work
stations with VAXes, indicating the different
machines and their capabilities. Figure 3
displays the range of solutions that a manager

can work out with VAXes in his/her decision

making process. Figure 4 shows the integrated
system, a typical DSS environment, that can be
created using Dec-micros.

There are several DSS application software
available on the market that are compatible with
Dec-systems. Chart 3 shows the available software
in their rank order in different functional areas.
Chart 4 lists several of the existing DSS software
that are compatible with the Dec-micros.

Office Workstations with VAXes

IP
DISTRIBUTED APPLICATIONS [::i:::]"__"’N R
T O
PERSONAL SOFTWARE [ [ | 4] EC
GCE
NETWORKING [ 44J RS
| |rs
WORK. PROCESSTNG L [ L J [ } TI
EN
ELECTRONIS MATL [ 4|[ 41 L, AJ —Jpne
ALL-TN-1 UT | | [7 ] [ | | ] | TERMINAL
VI2XX DECMATE Rainbow Professional
Figure 3: Range of Solutions with VAXes
CAD/CAM ENCINEERING CRAPHIC USER VAX
Station
MRP T
INVENTORY CUSTOM APPLICATION SW USER !Professional i
CONTROL - ,
] I
LOTUS PERSONAL COMPUTING SW USER Rainbow |
1-2-3 | !
) ] i ]
WORD TEXT INTENSIVE USER IDECMATE ! ! :
PROCESSING — ! : i
| i
) ]
772722 CASUAL USER | VT2XX | | I '
222227 ! ' '
] | | |
] ] i | ]
$ $ $ $ $

28



Figure 4: Integrated Office System

Communications

OFFICE SYSTEMS

APPLICATION SYSTEM

Chart 3: DSS application software according to

the rank of order of availability.

(Items ranked by order from most availability to
least availability)

MAXIMUM

A Financial Management
Management

Information Management

Accounting

Office Systems

Sales and Marketing

Education

Manufacturing

Real Estate

10. Distribution

11. Construction

12. Engineering

13. Law

Personal Computing

oL WN -

MINIMUM

29

Chart 4: DSS Application Software in different

functional areas.
Accounting

MAPS/GL----- G.L.
MAPS /MODEL-- FP/FA

Construction
SUPERVISOR-- CPM/PERT

Distribution
DACMS—=~————= Inventory
CDIS—=—~———- Forecasting
Education
DSMTUTOR---- FP, Simulator
FINAID-=—-——— FP
Engineering
CADAT-—————— CAD/CAM

Financial Management
ASSET-LIABILITY system
BANKMASTEK
BUSINESS MODELER
CALC-II/CALC-II PLUS
DATAMODEL
DATACALC
DECCALC
DIGICALC
FLOWCALC
INVESTMASTER
MONEYMAN
MODELER
OPTIQUBE
PLANPLUS
UNICALC 3-D
XSP

Information Management
ACCENT R
GRS
MAPS/DB
READER
XPLAN PLUS

Law
INMAGIC

Management
AIM BENCHMARK —- Suites I and II
DYNAMO
LP
MISTER
MOSAIC
RISKAN1/2
SIBYL/RUNNER

Manufacturing
COMETS
HS/LP

Office Systems
MATRIX
PLESSEY~CALC
THEMIS
vC

Personal Computing
SUPERCOMP-TWENTY






: .

..

.

. o
. . ‘ -
. -
. -
...
.
, .

.

L

.
L
L

Lala

e

L
L

...
o

. Sfaxxwawwyﬂmfz
.
-

o

.
-
s






LISREL
An application, An explanation
Interfaced with SPSSX on a VAX/VMS 11/780
Leanne Whiteside
University of Arkansas at Little Rock
Little Rock, Arkansas

ABSTRACT

LISREL VI is a computer progam for estimating the unknown
coefficients in set of LInear Structural RELationships. It is accessed on
the VAX/VMS computer via the statistical package SPSSX (Statistical
Package for the Social Sciences). The purpose of this paper is to explain
the application of LISREL to actual data and to provide a guide to new
users of LISREL. First, a discussion of the LISREL program and it's
model will be presented, followed by two examples. The first example,
taken frcm the LISREL VI User's Guide, contains both latent
(unobservable) and manifest (observable) variables. The output is
examined in detail. The second example is the analysis of data provided
by a study in progress at the Center of Child Development and Education
at the University of Arkansas at Little Rock. This second example
contains only observed variables. Throughout this paper the LISREL VI
User's Guide by Karl G. Joreskog and Dag Sorbom is heavily used as a

source of information.

1 Terminology and Conventions

To discuss LISREL, it is necessary to review related
terminology and path diagram conventions. LISREL can
provide estimates for equations involving both mainifest
(observed) and latent (unobserved) variables. Any variable
whose variability is assumed to be determined by other causes
outside the causal model is called exogenous. When a
variable’s variation is explained by exogenous variables or
other variables in the system, the variable is called
endogenous.

The path coefficient indicates the direct effect of a
variable upon another variable. The coefficient ususally has
a double subscript indicating the cause and effect variables.

For exampe, if 1)z hasa direct effect upon T4, the path

Proceedings of the Digital Equipment Computer Users Society

33

coefficient would be named B4 3 All observable variables are

represented by squares; all unobservable variables are
represented by circles. The currelation between exogenous
variables is indicated by curved lines with arrowheads at both
ends. Straight lines with one arrow are drawn from the
variables taken as causes (exogenous, independent) to the
variables taken as effects (endogenous, dependent).

2 Introduction

In 1966 Karl G. Joreskog presented an efficient numerical
method for the maximization of functions of many variables.
This led to the development of the LISREL model. It has since
played such a major role in the application and analysis of
structural equation models that such models are often
referred to as "LISREL" models. Models of this kind are also

Anaheim, California— December 1985



know as simultaneous equation systems, linear causal
analysis, path analysis and dependence analysis.

Joreskog's LISREL program is based on a general model that
may include:

1) a measurement model specifying the relations between the
observed variables and the unobserved (latent) variables
including measurement errors

and

2) alinear structural equation model specifying causal

relationships among the unobserved variables with
possible reciprocal causation and random disturbance
terms.

LISREL can provided estimates for models that include one or

both of these sets of equations.

LISREL will not only estimate the unknown coefficients in
the structural equations but will allow for errors in equations
(residuals, disturbances) and errors in variables
(measurement, observation). The variance-covariance
matrices for these errors will also be estimated. The LISREL
mode] can handle correlated errors and residuals. LISREL can
estimate unknown parameters by any of five different
methods for fully identified models. (Identification of models
is discussed below.) The five methods include two-stage least
squares, unweighted least squares and generalized least
squares. The method of maximum likelihood estimation is
the default method in LISREL. This method is known as a "full
information” approach since it uses all the information in the
data and parameters are estimated simultaneously. All
methods give consistent estimates for fully identified models.

3 The General LISREL Model

In the general model, the relationship among a set of
observed variables and a set of unobserved variables is
examined. The observed variables are taken to be measures
of the unobserved variables. The relationships among the
observed variables are contained in the covariances among
the observed variables. Let ¥ be the matrix of the covariance
for the population. The sample covariance matrix, S, is input
by the researcher. LISREL uses the sample covariance (or
correlations) matrix S and constraints on the parameters to
compute an estimate of £. In the process of this estimation
the unknown parameters are estimated. Actually LISREL is
not restricted to the covariance or correlation matrix as
input, but the examples in this paper uses only the

34

covariance and correlation matrices.

The measurement mode! is a set of equations that link the
observed variables to the unobserved variables. The
relationship of the unobserved variables to each other are
contained in the structural model. The problem is then one of
estimating the unknown parameters and determining the
goodness of fit of the parameters and model.

To illustrate the general LISREL model, consider the
following path diagram in figure 1. Observed independent

and dependent variables, x; and y, ,are indicated with boxes.
Latent (unobserved) independent and dependent variables ¢
and 1); are enclosed in circles. The observed variables x; and
x; are measures of the unobserved variable £;. A5 and Ag
are the regression coefficients of x; and xo0n ¢;. The error
of measurementof x; andx; is indicated by &, and 5.
Similiarly, yjand y, are measuresof vy, € and ¢; are

errors of measurementof yjandy, and Ay and Apare

regression coefficientsof y; andy, on 7.

Figure 1



The relationships discribed above can be summarized in
the following system of equations called the measurement
model.

Yi=A € X =As & ¢ 8
y2=A2 M+ € 2=Rg € <62
¥3 =Az N2+ €3
Y4 =Aq M2+ €4

Or in matrix form:
Y-Aygn € X=Ag €+6

Where the elements of A, and Ay are regression

coefficients. The vectors € and & are the errors of

measurement of the observable variables. Two matrices

related to € and 6 computed by LISREL are called 6, and 6 4.
6 ¢ contains on its diagonal the variancesof the ¢; errors of
measurement of y, . The off diagonal elements are the
covariances of the ¢; variables. Similarly, 64 isthe
variance / covariance matrix for the 6; errorsof

measurement of x;

The structural model describes the relationships between
the unobservable (latent) variables. In this example the
indepentent latent variable £ has a direct causal effect on the

latent variables njyand v)p. This model also indicates that the
{atent variable 1)) has a direct causal effecton v, These
effects are indicated in the coefficients gy, yjand yo.

and {5 are the errors (random disturbances) of the structural

equations. The structural equations are:
m=né& b
= B mev2 & &2

Or in matrix form:
n=N+y €+
where g and ‘y are coefficient matricesand { isa vector of

errors in equations (random disturbance terms). Notice that
the matrix p contains information about the effects of n

35

variables on other v variables. The diagonal of g is always
zero since v variables are not allowed to directly “cause”
themselves. 7y contains information about the effects of
latent exogenous variables ( € ) on latent endogenous
variables (). By definition exogenous variables are those
that cause other variables and whose variability is assumed to
be determined by other causes outside the causal model.
Endogenous variables variation is explained by exogenous
variables or other variables in the system.

Two additional matrices estimated by LISREL are ¢ (PHI)
and ¢ (PSI). The first ¢ (PHI) is the variance/covariance
matrix of the latent exogenous variables ( £ ). The second (¢)

is the variance/covariance matrix of the errors in the

equations ( { variables).

3.1 Assumptions

Joreskog makes five assumptions in the LISREL model.
From the LISREL User's Guide they are:
1) ¢ isuncorrelated with ¢

2) € isuncorrelated with 7

3) & isuncorrelated with ¢

4) { . €, 6 are mutually uncorrelated

5) g haszeros on the diagonal and I-BETA is

non-singular.

The first four assumptions involve the correlation of error
terms with latent variables or each other. To see why these
assumptions might be reasonable look at the path diagram in
figure 1 or the equations above. The first assumption states
that the disturbance terms in the structural equations are
uncorrelated with the exogenous variables in the structural
equations model. The second states that the errors of
measurment of the observed dependent variables are
uncorrelated with the latent independent variables. The
third states that the errors of measurement of the observed
independent variables are uncorrelated with the latent
dependent variables. The forth states that the errors of
measurement and the disturbances in the structural
equations are uncorrefated. Notice that the error terms can

be correlated among themselves. For example ¢; could be

correlated with €7 . The last assumption simply states that

none of the equations in the model are redundant.



In addition, all variables are assumed to be measured as
deviations from their means. This implies that the
expectation of the variable is zero and the expectation of 2
product is a variance or a covariance. This is not a limitation
to the model since it involves only a change in origin. This
assumption will prove useful in the equations used to prove
the model is identified. If the method of Maximum Likelihood
(ML) is used the additional assumption is that the input
correlation matrix § is positive definite. Although the
manual is not clear, the program does seem to check the
input matrix to verify that it is positive definite. If it is not
the analysis is canceled by the program and a message is
issued.

The elements of the eight matrices contained in the full
LISREL model can be controlled hy the researcher in three
ways. They can be fixed, constrained or freed. Free
parameters are unknown and are estimated by LISREL.
Constrained elements are unknown but set equal to one or
more other parameters in the model. Fixed parameters have
been assigned a value (zero or otherwise) by the researcher
and are not estimated by LISREL. Each of these eight matrices
have a default mode, either fixed or free. That is, if the
researcher does not indicate the mode of a paticular matrix it
is given a default of fixed or free. Each matrix hasa default
form, either a full non-symmetric matrix, zero matrix,
symmetric matrix or diagonal matrix. Table 2 in the first
example gives the defaults for each matrix.

3.2 Estimation

It can be shown that the elements of the population

correlation matrix of the observed variables I are functions

of these eight matrices, .y, Ax. Ay.6¢ .05 ¥andé . For
some models the elements of these matrices will be fixed to
zero or the identity matrix. Estimation of the free parameters
of these matrices is accomplished by an iterative scheme (an
application of the Davidon-Fletcher-Powell method) that
produces an estimate of L. When the method of maximum
likelihood is used the fitting function below is minimized by
the iterative procedure until the solution converges, that is,
until the estimated I is "close” to the true X. Since X is not
known the sample correlation matrix S is used. The scheme
must have initial estimates (provided by LISREL or the
researcher) and must satisfy the constraints that have been
imposed on the model. It is possible for the iterative scheme
to converge to a local minimum. This would result in

36

incorrect estimates for parameters. However, tkis problem is
thought to be rare. (Long, 1983).

The fitting function for the ML estimator is defined by:
F(S,E*)=tr(SE* "+ [LOG IE*| - LOGISI]- (p+q)

where T * is the estimated £, £ * "' is the inverse of £ * ,

and LOG |Z *| isthe LOG of the determinant of T *.
(1983) points out it is not hard to see intuitively how this
function reflectsthe distance between Sand X *. IfS and £*

AsLong

have elements similar in value, then their inverses also. As S

and I * become close (S L * ') become closer to a (p+q by

p+q) identity matrix, since the dimensions of both S and £* -

is(p+q by p+q). Thetrace of a (p+qby p-+q) identity matrix
is equal to p+q, so the first term of the fitting function goesto
p+qasS and I* become close. Alsoas X* and S become closer
their determinants (and the logs of their determinants)
become closer and the second term of F approacheszero. The
last term of p+q isto cancel the first p+qin the fitting
function so that F approaches zero as S approches I *.

3.3 Identification

During the calculations, LISREL assumes the model is
identified. A model is identified if the choice of the mode! and
the constraints (or lack of constraints) on the matrix
elements result in one and only one estimate of X.

Unfortunately there is not a general and practical way to
determine if a general model is identified. (Some special cases
of the LISREL model have necessary and sufficent conditions
defined.) LISREL will attempt to analyze any model regardless
of the question of identification, but results can not be
trusted unless it is know the model is identified. In some
cases warnings will be issued by LISREL indicating
parameters that may not be identified. Other LISREL results
that indicate an unidentified model will be discussed in the
following output. A necessary (but not sufficient) condition
for identification is the following inequality.
t<(1/2)(p+q)(p+q+1)
where i is the total number of independent parameters to be

estimated, p is the number of x; variables and q the number

of y; variables.



An effective (although time-consuming) way to determine
that a model is identified is to show that each parameter can
be solved in terms of the population variances and
covariances of the abserved variables. In this way
parameters are proven identified individually. This method is
illustrated in the following examples. If all the parameters
are identified the model as a whole is identified. If a
parameter can be solved in more than one way the parameter
is over-identified and the model as a whole is said to be
over-identified. Note that individual parameters can be
identified but the model as a whole is not identified unless

ALL the parameters are identified. However these identified
parameters can be estimated even though the estimated for
the unidentified paramenters can not be used. If a parameter
can not be solved in terms of the variances and covariances
of the observed variables then the parameter is unidentified
and the model is unidentified.

In summary, identified and over-identified models can be
completely estimated, while unidentified (also called
under-identified) models can not.

If a model is not identified all is not lost! Additional
limitations can be imposed on the coefficients linking
measured variables or the reseacher can make assumptions
about the correlation among residual terms.

LISREL does not constrain estimates to be within any
boundary range, this means that the program may give
estimates of negative variances, correlations larger than one
in absolute value, etc. Solutions of this kind can occur if the
model is not identified. However it can also occur when the
model does not fit the data or the sample size is too small.
Another situation that can cause unacceptable estimates is
the case of many missing values in the data. Researchers
often handle missing data by pair-wise deletion in the
calculation of ihe covariance (or correlation) matrix. This
means that each correlation coefficient is calcrlated with 2
different population. In this case the correlation matrix
should be used in the analysis by LISREL.

37

3.4 LISREL Data Input

As was mentioned before LISREL can take several forms of
data as input. These input forms include raw data, the
moment matrix, the covariance matrix or the correlation
matrix. You may choose to analyze any one of the three
matrices. LISREL can compute the matrix to be analyzed
regardless of what has been read as input. Where necessary
LISREL will use default values of zero for the means and one
for the standard deviations. The decision of which matrix to
use as input for LISREL and in the analysis by LISREL can be
a difficult one for the researcher. The tables below should
prove useful in this task. Parts of the following tables are
taken from the notes of a workshop conducted by Karl
Joreskog ( see also Joreskog, 1984).

Table 1

INFORMATION RETAINED AND LOST

Matrix Retaiped Lost
Raw data all none
Moment Matrix means, -
standard deviations,
_ correlations
Covariance Matrix standard deviations, means
correlations

Correlation Matrix correlations means, standard

deviations

MATRIX TO BE USED IN ANALYSIS

LISREL Name Details

CM Covariance -this should be used in general
-use if it is desired to retain the
original units of measurements in
the observed variables

KM Correlation -use if the model is scale-free and the

units of measurement of the observed
variables are arbitrary or irrelevant

-use when pairwise deletion of missing
values has occured
MM Moment -use if the model contains intercept
terms and/or mean values of the
latent variables



4 Example 1, involving Latent and Manifest Table 2

Variables MATRICES IN LISREL
Matrix Lisrel Default
Symbol/Name =~ Name Form/mode __ Description

The following example will serve to illustrate the LISREL Ay LAMBDA-Y LY FU/FI Factor matrix of y,
control cards necessary to perform an analysis of a model ony
and to explain the meaning of the LISREL output. This Ax LAMBDA-X 1X FU/F1 Factor matrix of x;
example found in the LISREL manual (1984) was originally on ¢
taken from Wheaton et al (1977). The data was collected over p BETA BE ZE/FL Coefficient matrix
three pointsin time: 1966, 1967 and 1971. Two observed ?&?:&::dent
variables, Education and SEI (Socioeconomic Index) are used Yy GAMMA GA  FU/FR  Coefficient matrix
to measure the unobservable variable SES (Socioeconomic for independent

. variables
Status). The observable variables, the Anomia subscale and ¢ PHI PH SY/FR Covariance matrix
the Powerlessness subscale, are used in the model to measure of &'s
the unobservable variable Alienation. Data were collected v PSI P SY/FR  Covariance matrix
from 932 persons. This example uses data from 1967 and 1971 of ¢ errors
only. The path diagram for this model is the one discussed in ¢ THETA-EPSILON TE  DI/FR  Covariance matrix
the beginning of this paper (figure 1). of ¢jerrors
6s THETA-DELTA TD DI/FR Covariance matrix
The observable exogenous variables in the model are: of Syerrors
x; = Education
xp = SEI(Socioeconomic Index)

They are indicators of the latent exogenous variable:

¢ = SES (Socioeconomic Status)

The observable endogenous variables in the model are:

Y1 =Anomia 67 ¥z =Anomia 71

y2 =Powerlessness67  y,4 -Powerlessness 71

They are indicators of the latent endogenous variables:

M1 = Alienation 67 N2 = Alienation 71

All eight matrices in the LISREL model have parameters to
be estimated in this example. These matrices are listed along
with their LISREL name and a brief description. The default
form and mode refer to the specification of the matrix that
LISREL assumes if the researcher does not define them. The
default forms are FU (full , non-symmetric matrix), ZE (a
matrix of zeros), SY (symmetric matrix which is not
diagonal), and DI (diagonal matrix i.e. off diagonal elements
are zero). The default modes are FI (fixed i.e. not to be
estimated) or FR (free i.e. to be estimated).

38



4.1 The Equations

The structural and measurement equations for the model
follow. The measurementerror terms €| and €3 are
constrained to be correlated in the model. Rememeber that ¢;
is the error of measurement of y;. It is reasonable that the
error of measurement of a variable observed at two points in

time would be correlated. Since ; and ¢; are unobserved

they do not have a definite scale. The 1's assigned in each

column of A, and Ay assigns the scale of the unobserved

varibles to be the same as x and y respectively. In matrix
form the equations are:

[y ] (1 0] [€r]
ly2 | a2 0 | [m] |ez2]
vz | =10 t | lmn) e
lya) Lo A4) | €4

x2 | Ne) 32
(m) (o 0] [m] [m) (&)
= I I B B I SR
ln2) le o) [ m2) [v2) |&2)
or Y=7\g'q’c

X -AE b

n-pfn-r€L

4.2 Identification

The question of identification must be answered before the
LISREL model can safely be applied. The first test is the
necessary (although not sufficient) condition of t < 5(p+q)
(p+q+1) when t is the total parameters to be estimated, p is the
number of observed x varables and q is the number of

observed y varables. The count of tincludes A , A4, Ag .
B. Y1 and 7y, aswellasthe freed elementsof ¢ ., ¥, 6¢

and 65 . Which elements of these matrices are free to be
estimated are determined by the researcher in the
specification of the model. In this example ¢ ,the matrix of

39

the variance of the latent varable ¢;. is free to be estimated.
¢, the matrix of variance / covariance of the  error terms,
has two elements free. The {; error terms are assumed to be
uncorrelated so the matrix contains the variance of {; and {5

on the diagonal and zeroes elsewhere 84 has two elements

to be estimated, these are the variance of the 6 error terms
The correlation of €| and €z will be estimated along with

the variances of each ¢;. Therefore, 6¢ has 4 variance

elements on the diagonal and one off diagonal covariance
element to be estimated. Again, the paraments that are free
to be estimated are determined in the model by the researcher
but are summarized by LISREL in the output labeled
PARAMENTER SPECIFICATIONS (see following output).

In this example there are a total of 16 independent
parameters to be estimated (i.e. t=16). Then with p=2 and q=4
the necessary condition is satisfied. Thatis, t=16 <(1/2)
(2+4)(2+4+1) = 21. This does not mean that the model is
identified! This condition is necessary but not sufficient. As
stated earlier there is not an easy way to determine if a model
is identified. There has been work done to show sufficient
conditions to verify that certain types of models are
identified. Some of these types and conditions are outlined by
Long (1983, Covariance Structure Models page 34). In
general, to show that a model is identified it must be possible
to solve for all parameters to be estimated in terms of the
variance and covariance of the observed varables. To do this,
first working with the measurement equations solve for all
parameters and variance / covariance of latent varables in
terms of the variance/covariance of the observed varables.
With these parameters identified, work with the structural
equations to solve for the elementsof g, 7y and ¢ interms

of the variance/covariance of the latent varables.

The following equations come from the measurement
equations by multipling an equation by itself (or by another
equation) and taking expectations. Notice the terms that are
zero by assumption. These terms are zero because the
researcher assumed no correlation or no correlation was
assumed by the model in general. For example, since it is

assumed that the & error terms, the { error terms and the €
error terms are uncorrelated with each other the expectation

of the product of any two of these iszero. That is, E[6 CT] =

El 6 ¢)-El¢s']-0



Starting with the first measurement equation, multiply the
equation by itself to obtain y,yy = ™ * 2 €€
Take expectations and use the assumptions above to see that
the next two equations are equivalent.

Ely,y J=Elyy m 1 +El2my &l + Elg ql
VAR (y,) = VAR(vy ) + 0+ VAR (¢ )

The idea is to solve all parameters to be estimated in terms of
the variance and covariance of the observed variables. We
now have one equation and two unknowns. Continuing with
the remaining measurement equations we have the following
set of new equations. The equations are numbered on the left.
The first six are obtained by multiplying an equation by
itself. The last 15 come from multiplying one equation by
another. The terms that are zero by assumptions in the model
(either in general or set by the input model) are omitted.

1)  VAR(yY ) = VAR(M ) +VAR(g )
2)  VAR(yYz) = AZ# VAR(M ) +VAR(ez)
3)  VAR(yz) = VAR(Mz) +VARI(e3)
4)  VAR(yY4) = A& VAR(MY +VAR(ey)
5) VAR(x) = VAR() +VAR(S)
6) VAR(xg) = A& VARE) +VAR(S7)

7)  COV (Y = Ag VAR(TY)
8) COV(yys) = COVmy m2) + COV (¢ ez)

9)  COV(YiYa) = AqCOV(NY M2)
10) Ccov (U|K| ) = cov( it f])
1) COV (Yxg) = AgCOV [y &)

12)  COV (Ygus) = AzCOV (1 m2)
13)  COV (Yp4s) = AgAgCOV (1 12)
14)  COV (Yox) = AgCOV (1 &)

15)  COV (Up%a) = AgAeCOV (y &)
16)  COV (ysys) = AqVAR(NZ)

17)  COV (ysx) = COV(mp &)

18) COV (yzXz) = AgCOV (M)

19)
20)
21)

COV (Ya®y) = A4COV [ Mp€))
COV (Yq%2) = Ag4 7\500\’(7]2&)
COV (% %2) = AgVAR(E;)

We want to use these equations to verify that each parameter
to be estimated in the model can be solved for in terms of the
variance or covariance of the x; and/or y,'s. Using the
identified parameters we must then consider the structural
equations and their parameters. Make a list of the parameters
to be identified and solve for each. The following is a table of
the parameters to be identified and the equations used.

40

Table 3

Equation used Equation used
A2 10,14 e 17,19
A 10,11 VAR (€;) 2land Ag
VARle)) 1.7 endA; VAR(€3) Ay and?, 2
VAR(ez) A4,16,3 VAR(g) 16,4, Ay
COV (€1€3 A4.8.9 VAR (81)  Ag.21,5

VAR (8 N, 21,6

This proves all the parameters from the measurment
equations are identified. There are still 5 parameters left to
check (3; 7y ¥ andtwoterms from the variance of the
error terms). These come from the strutural equations:

Yi fy + C] [eqstl]

W=
nz = Bt y2€y + Lo legst2]
To identify 7y and VAR( {;) we will obtain two equations with
two unknowns. Multiply [eqstl] by itself for one equation.

For the second, multiply [eqstl] by £, take expectations of

both equations. The two equations have only ¥y and VAR( ;)
asunknowns, all other parameters are already proved

identified. To identify the remaining three parameters we

will work with [eq st2). First multiply [eq st2] by v, and take
expectations to obtain the equation COV(1y; np) = gy VAR(ny)

+y p COV(€ ;7)) + Elny {2 ]. We do not have an assumption

that sets the last term equal to zero. To see that it is zero,

multiply leq stl] by {>and take expectations. The right side

of the equation is zero by previous assumptions. Now

multiply leq st1] by €| and take expectations. Use thisand

the equation above to solve two equations in two unknowns.
This identifies the parameters gy and 7y . The last

parameter to identify is VAR({,). This can be done by

multiply [eq st2] by itself and taking expectations. Since all
parameters are identified the model is identified.

4.3 LISREL Commands

The following LISREL program includes the SPSSX
statements necessary for execution. LISREL will always print
the LISREL commands again on page 2 of the output. The line
numbers on the left side of the page are generated by SPSSX
and will be used in the following discussion to explain each
line of the program.



28-SEP-85 SPSS-X RELEASE 2.1 FOR VAX/VMS
‘}}54:22‘:,171 UNIV.OF AR. AT LITTLEROCK  DEC VAX-11/780
4.

For VMS V4.1 UNIV. OF AR. AT LITTLE ROCK
License Number 18805

1 TITLE Lisrel example - STABILITY OF ALIENATION

2 SUBTITLE DATA FROM WHEATON ET. AL .(1977) - LISREL
3 SET WIDTH=80
4

5 INPUT PROGRAM

6 NUMERIC DUMMY /*DUMMY VARIABLE
7 ENDFILE /* DUMMY FILE

8 END INPUT PROGRAM

9

10 USERPROC NAME-=LISREL

THERE ARE 2913947 BYTES OF MEMORY AVAILABLE.
THE LARGEST CONTIGUOUS AREA HAS 2331157 BYTES.
11 Lisrel ALIENATION MODEL B Lisrel Manual I11.54-63
12 DA NI<6 NO-932
13CM
14
15 11834
16 6.947 9.364
17 6819 5091 12532
18 4783 5028 7495 9.986
19 -3839 -3.889 -3.841 -3.625 961
20-21.899-18.831 -21.748 -18.775 35.522 450.288
21LA
22 'ANOM 67 'POWL 67° 'ANOM 71' 'POWL 71' 'EDUC' 'SEI'
23 MONY=4 NX-2 NE-=2 NK-=1 BE-SD PS=DI TE-SY
24FRLY21LY421X21TE3 1
5STILY11LY321X11
26 LE
27 'ALIEN 67" ‘ALIEN 71
28 LK
29 'SES’
300U ALL
31 END USER

The TITLE and SUBTITLE are SPSSX commands are used for
documentation. Since the data will be read in LISREL, SPSSX
will not have an active file defined. Lines5 thru 8 are used
to set up the dummy active file and dictionary necessary for
SPSSX to execute. USERPROC NAME = LISREL calls LISREL and
all commands after this statement are LISREL commands.

LISREL commands may be abhreviated to two characters
Blanks are used to separate different keywords and may not
be used within keywords or commands and may not be placed
before or after an equal (=) sign. LISREL commands are not
required to begin in column 1 (SPSSX commands must begin
in column 1). The User's Guide is not clear but upper and
lower case seem to matter. All commands and keywords must
be upper case. All parameters are expected to be on the same
line as the command although command lines can be

continued by ending a line thea C.

41

The first statement in LISREL must be the title. More than
one line is allowed for the title, to continue the title to more
than one line type any character (non-blank) in column 80.
The next command (DA) on line 12 gives the specification of
the data. NI=6 indicates that there are six observable
variables and N0=932 sets the sample size as 932.

Now the input matrix will be read. LISREL can read data in
several forms. The data could be raw data, a momeni natrix, a
covariance or correlation matrix. CM indicates that the data
that follows to be read isa covariance matrix. The data is
entered in the program in free form with spaces acting as
delimeters. The matrix is assumed to be ordered with
endogenous (y) variables first then exogenous (x) variables.
If this is not the case the SE command can be use * order
the variables. In this example the matrix is in the correct
order.

The LA card (line 21) assigns 8 character labels to the
observed variables as represtented in the input matrix (or
Raw data if used). On lines 26 thru 27, the LE and LK cards are
used to assign labels to the unobservable independent (¢) and
dependent (v)) variables respectively. Labels are necessary

for documentation and readability only, although they may
be used with the SE card to reorder the variables.

The model to be estimated is specified with the MO
command. In this case on line 23, the number of y (NY)
variables is 4, the number of x (NX) variables is 2, the number
of ¢ (NK) is2 and there isonly 1 v (NE) variable. The
coefficient matrix g is, by default in LISREL, defined to be

fixed to zero. In this example BE=SD defines g to be
subdiagonal. This means the diagonal and upper triangle are
fixed to zero and the subdiagonal is free to be estimated. The
covariance matrix ¢ is defined as diagonal. This implies that
there is no covariance of the errors of the structural
equation. TE=SY sets 8 (Theta-Epsilon, the covariance matrix
of the measures of errors for y variables) as a symmetric
matrix. It is by default diagonal and free.

The previous commands defined the structure of the whole
matrices. It is also possible to relax or put contraintson
individual elements of a matrix. On line 24 the elements

(2.1)and (42) of Ay are freed. Line 25 gives the elements

(L1)and (32) of Ay thestarting value of 1. The (3,1)



element of 6 is freed so that the correlation between ¢ LISREL always prints the matrix that is to be analyzed. In
this example it is the same as the input matrix. It is possible
that the matrix to be analyzed is not the same type as the
input matrix. Also if the variables were reordered by a SE

and € 3 will be estimated.

The OU command is used to indicate the output desired from
LISREL. LISREL can obtain estimates by five different
methods: IV (instrumental variables), TSLS (two-stage least
squares), ULS (unweighted least squares), GLS (generalized
least squares) and ML (maximum likelihood). All methods
give consistent estimates for fully identified models. The
default is ML in the LISREL program. Joreskog (1984) page
11.26 and 11.27 give details of the types of output that can be

card the new reordered matrix would be printed.

The determinant can be used as a measure of "ill
conditioning"” of the matrix. If the determinant is small
relative to the magnitude of the diagonal elements, it is
possible that there is a strong linear relationship between
one or more of the observed variables. One or more of these
variables should be excluded from the model, or use the ULS
(Unweighted Least Squares) method instead of ML. By

obtained. i . o
checking the determinant we can see that this is not the case
in this example.

4.4 Output and Explaination for Example 1 COVARIANCE MATRIX TO BE ANALYZED

ANOM 67 POWL 67 ANOM71 POWL71 EDUC  SEI

The following output generated by LISREL givesa ANOM67 11834
summary of the specifications of the model and the output POWL67 6947  9.364
requested, ANOM71 6819  5.091 12532
POWL71 4783  5.028 7.495  9.986
EDUC -3.839 -3.889 -3.841 -3.625 9.610

LISREL VI- VERSION 6.6 SEI -21.899 -18.831 -21.748 -18.775 35.522 450.28
Lisrel ALIENATION MODEL B Lisrel Manual II1.54-63 DETERMINANT - 0.608057D+07
NUMBER OF INPUT VARIRBLES 6 The output titled PARAMETER SPECIFICATIONS indicates the

constraints placed on each element of each matrix involved

in the model. A zero entry indicates that the element is not to
NUMBER OF X - YARIABLES 2 be estimated, that is, it is fixed. An integer indicates that the
NUMBER OF ETR- VARIABLES 2 entry is to be estimated. If two entries have the same integer

index, these two entries have be constrained to be equal.

NUMBER OF ¥ - YARIABLES 4

NUMBER OF KSI - VARIABLES 1
Check the parameter specification to verify that you have

NUMBER OF OBSERVATIONS 932 defined the model as you intended!
OUTPUT REQUESTED PARAMETER SPECIFICATIONS
TECHNICAL OUTPUT YES
LAMBDA ¥

STANDARD ERRORS YES
T- VALLES YES

ANOM 67 0 0
CORRELATIONS OF ESTIMATES YES POUWL 67 1 0

ANOM 71 0 0
FITTED MOMENTS YES POWL T 0 2
TOTAL EFFECTS YES LAMBDA X
VARIANCES AND COVARIANCES VES __sfs
MODIFICATION INDICES VES EDUC 8]

SEI 3

FACTOR SCORES REGRESSIONS YES
FIRST ORDER DERIVATIVES  VES

BETA
STANDARDIZED SOLUTION  YES
ALENG6T ALIENTI
PARAMETER PLOTS NO ALIEN 67 0 0
ALIEN 71 4 o

AUTOMATIC MODIFICATION NO

42



—$E8
ALENGT S
ALENTT 6
PHI
—S£8
€S 7
PSI
AIENGT ALIENTI
8 9
THETA EPS
ANoM6E7 POULGT ANOMTI POULTI
ANOM6E7 10
POUL 67 0 "
ANOMTI 12 0 13
POUL 71 0 0 0 14
THETA DELTA
e sel
15 16

Initial estimates or starting values are automatically
generated by LISREL. They are obtained from a non-iterative
scheme and can therefore be obtained with a minimum of
computer resources. These valuesare true estimates and can
be used in the early stages of development of a model to save
computer time. Starting values (if set by the researcher) and
fixed values are not estimated.

INITIAL ESTIMATES (TELS)
LAMBOA ¥
AUIEN6T AENT
ANOM 67 1.000 0.000
POUL 67  1.003 0.000
ANOM T 0.000 1.000
POULTI  0.000 0.963
LAMBOA X
—$£8
EDUC 1000
2 4.973
BETA
ALIEN 6T ALIEN T
ALEN67 0000  0.000
AENTI 0391  0.000

43

OAMMA
—$£8
ALEN67  -0.571
ALENTI  -0.242
PHI
—S£8
SES 7.140
PSI
ALENGT ALENTI
4.598 374
THETA EPS
AorMe7 POULGT ANOMTI POULTI
ANOM 67 4.907
POUL 67 0.000 2397
ANOM 71 1.736 0000 473
POUL 71 0000  0.000 0.000 2767
THETA DELTA
1. J 3
2470 273364

Looking at g the elements should be interpreted as follows:

Bij indicates that a unit change in’qj results in a change of
B,; units in v, with all other variables held constant. If the
variables have been standardized, a standard deviation
change in 1 resultsin B, ;standard deviation change inv); ,
with all other variables held constant. However, because of
indirect effects other variables are usually effected by a
change in one variable. For this reason it is informative to
examine the TOTAL EFFECTS of one variable on the others.
LISREL will calculate the TOTAL EFFECTS (see later output). A
similar interpretation can be made for 7.

LISREL ESTIMATES (MAXIMUM LIKELIHOOD)

LAMBOA ¥
ALEN67 ALIEN 71
ANOM67  1.000  0.000
POUL 67 1027 0.000
ANOMTI  0.000 1.000
POULTI 0000 0.971
LAMBDA X
SES
EDUC  1.000
SEl 5.163
BETA
ALIEN 67 ALIEN 71
ALEEN67 0.000  0.000
ALIENTI  0.617 0.000



—S88
ALIEN67  -0.550
ALENTI  -0.21

PHI
88
SES 6.880
PsI
ALENGT ALENT
4.705 3.866
THETA EPS

_ANOME? POULGT AMOMTI  POULTI

ANOM 67  5.065

POWL 67  0.000 2215

ANOM 71 1.887 0.000 4.812

POWL 7 0.000 0.000 0.000 2683

THETA DELTA

e _sel
2.730 266.89

SQUARED MULTIPLE CORRELATIONS FOR ¥ - YARIABLES

POUA 6T  gHOMTI
0572 074 0616 073
TOTAL COEFFICIENT OF DETERMINATION FOR ¥ - YARIABLES IS 0.952
SQUARED MULTIPLE CORRELATIONS FOR X - YARIABLES

S

0.716 0.407
TOTAL COEFFICTENT OF DETERMINATION FOR X - VARIABLES IS 0.762
SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL EQUATIONS

—ALENGT AUIENTI
0306 0301

TOTAL COEFFICIENT OF DETERMINATION
FOR STRUCTURAL EQUATIONS IS 0.343

There are several indicators of the goodness-of-fit of the
model. The squared multiple correlations and the coefficient
of determination are calculated for the observed variables (x
and y) and the structural equations when initial estimates or
the maximum likelihood estimates are printed. For the ith
observed variable the squared multiple correlation is defined
as:

1-6%,/si,
where 6% ; isthe estimated error variance of the ith

observed variable and §;; isthe observed variance of the ith
variable. The coefficient of determination is defined:

1-|e*| /1Sl
where |6%| is the determinant of the matrix containing the

estimated error variance and | S| isthe determinant of the

covariance matrix. For the structural equations the squared
multiple correlation is defined as:

1-var({;)/var(n,)
and the coefficient of determination for the structural
equations is defined as:

1-l¢l/1Cov ()|
In both cases the squared multiple correlations and the
coefficient of determination should be between zero and one,

with large values indicating a good model. LISREL will not
restrict the values between zero and one, negative values are

an indication of a bad model.

The multiple correlations can be viewed as a measure of the
strength or reliability of variable. In this example the
variables ANOM 67 and POWL 67 are measures of the latent
variable ALIEN 67, of these POWL 67 is the more reliable
indicator since it has the largest squared multiple
correlations. For ALIEN 71, POWL 71 is the more reliable
indicator. For the exogenous variable SES, EDUC is the more
reliable indicator with a squared multiple correlation of .716
for the Maximum Likelihood estimate.

For the structural equations the squared multiple
correlations can be interpreted as the proportion of variance

in each m; variable explained by the ¢; variables. In this
example there isonly one £ variable, SES. ALIEN 71 hasa

squared multiple correlation of .501 which is higher than for
ALIEN 67 (.306). That is, SES is a better indicator of the
variance of ALIEN71 than ALIEN67.

The total coefficient of determination can be viewed as the
strength of several relationships jointly. For example the
value of 952 for the Y variables indicates that all the Y

variables jointly serve as a good measure of the v latent

variables. In this case these are ALIEN71 and ALIEN67.

MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL.:
CHI-SQUARE WITH 5 DEGREES OF FREEDOM IS  6.33
(PROB. LEVEL =0.275)
GOODNESS OF FIT INDEX IS 0.998
AD JUSTED GOODNESS OF FIT INDEX IS 0.990
ROOT MEAN SQUARE RESIDUAL IS 0.754

Three measures are used to judge how well the mode! "fits".

The x2 along with it's degrees of freedom, the goodness-of-fit

index and the root mean square residual. These measures
indicate the overall fit of the model. It can happen that the
overall fit is "good” but individual relationships are modeled
poorly.



The x2 measure is N-1 times the minimum value of the

fitting function. The degrees of freedom is I/2 k(k+s1)-t

where k is the number of observed variables (k=p+q) and t is
the number of independent parameters to be estimated. Notice
t should be equal to the largest index in the parameter

specification. Under some situations the x2 measure can be

viewed asa test statistic for testing a hypothesis against a
alternative, but the ideal conditions for this to be valid seldom

exist. Touse the x2 in this way it is assumed that the observed

variables have normal distribution, the sample size must be
large enough to justify the asympyotic properties of the x2

test, and the analysis must be based on the sample covariance

matrix, not the correlation matrix. Instead the x2 measure

should be used as a measure of the goodness of fit with large
values (relative to the degrees of freedom) indicating a bad fit
and small values indicating a good fit.

The goodness-of-fit is a measure of the relative amount of
variances and covariances jointly accounted for by the model.
The adjusted goodness-of-fit index is adjusted for the degrees of
freedom for the model. Both of these values should be
between zero and one, although LISREL does not restrict them
to any range. The root mean square residual can be thought
of as an average of the residual variances and covariances.
Both goodness of fit indexes and the root mean square
residual can be used to compare the fit of two different models
for the same data. The goodness-of-fit index can also be used
to compare the fit of the model for different data.

Other indicators of the fit of the model include an
examination of the parameter estimates. Unreasonable values
indicate that the model may not be identified or the sample
size too small. High correlation of parameter estimates may
indicate a "nearly” non-identified model. The correlation
matrix for the estimates is computed and can be printed by
requesting PC on the OU command line.

If the indicators of the goodness of fit of the model are not
acceptable, the next question is how to improve the model.
Sorbom suggests selecting the parameter with the largest
partial derivative of the fitting function with respect to the
fixed parameter This seems logical since the derivative
indicates change in the fitting function. However it can be
shown that freeing a parameter with a large derivative does
not always correspond to a large change in the Chi-square.

45

A better indicator, introduced by Joreskog and Sorbom, of
which parameter to free, is called the modification index. For
each fixed and constrained parameter, the modification index
is defined as N/2 times the ratio between the squared
first-order derivative and the second-order derivative.
Freeing the parameter with the largest modification index
will result in a reduction of the Chi-square at least as great as
the modification index. Free only one parameter ata time
and only if it makes sense in the model to estimate that
parameter. A modification index of zero indicates that the
model will not be identified if the parameter is freed or that
the parameter is already freed.

In this example the largest modification index is for

element (4,2) of the matrix 6 (Theta-epsilon). F reeing this

parameter would indicate that the error terms for the measure

of yo (POWL67) and y4 (POWL 71) are correlated. We are

guaranteed that the x° will dro p at least by 159 and a loss of

one degree of freedom.

MODIFICATION INDICES

LAMBDA ¥
BLIEN 67 ALIEN 71
0.000 0.700
0.000 0.700
0.534 0.000
053¢ 0.000

ANOM 67
POUL 67
ANOM 71
POWL 71

LAMBDA X

SES
0.000
0.000

EDUC
SEI

BETA

ALIEN 67 ALIEN 71
ALIEN67 0000 0.000
ALIENT1 0000 0.000

GAMMA

_SES
0.000
0.000

ALIEN 67
ALIEN T

PHI PSI

BLIEN 67
0.000

_SES
0.000

THETR EPS
%5&1 POWL 67 ANOM 71 POUL 71
0.000
0.000
0.700

BLIEN 71

ses 0.000

ANOM 67
POWL 67
ANOM 71
POWL 71

0.000
0.534
1.591

0.000

0.000 0.000

THETA DELTA
£ouc SEI
0.000 0.000
MAXIMUM MODIFICATION INDEX IS 1.59
FOR ELEMENT ( 4, 2) OF THETA EPS



The next two sections of output contain the STANDARD
ERRORS and the T-VALUES. The standard errors are used to
calculate the T-values, but they can also be used to detect a bad
model. Extremely large standard errors may indicate that the
model is nearly non-identified (some of the parameters
cannot be estimated).

T- VALUES are calculated by dividing the parameter
estimate by its standard error. T-VALUES greater than two
(in absolute value) indicate that the parameter is different
than zero If the fit of the model is not good. consider fixing
(to zern) parameters with T-VALUES less than 2 in magnitude.

(Be cautious of the T-VALUE when the sample size is small.)
In this example all parameters have significate T-VALUES.

STANDARD ERRORS

LAMBOA ¥
BLIEN 67 ALIEN 71
ANOM67  0.000 0.000
POUL 67  0.053 0.000
ANOM7I  0.000 0.000
POUL7!  0.000 0.049
LAMBOA X
-3
EDUC  0.000
0.421
BETA
AUIEN 67 AIENT
ALIEN67 0.000 0.000
ALEN7I 0050 0000
GAMMA
$E8
ALIEN67  0.053
ALIEN7I  0.049
PHI
S£8
SES 0.638
Psl
ALENGT  ALENTH
0.433 0.242

46

THETA EP8 THETA DELTA
_AHOM67 POULGT ANOMTI POULTI EDUC  SEI
ANOM 67 0.371 0.516 18.193
POUWL 67  0.000 0.318
ANOM 71 0.240 0000 0395
POUL 71 0.000 0000 0000 0330
T-VALUES
LAMBOA Y
BMENGT AIENT
ANOM 67 0.000 0.000
POUL 67  19.320 0.000
ANOMTI  0.000 0.000
POULTI  0.000 19.647
LAMBOA X
$£8
EDUC 0.000
SEl 12.253
BETA
ALENGT ALIEN7I
ALEN67 0000  0.000
ALENTI 12420  0.000
GAMMA
$£3
ALIEN 67 -10.293
ALIEN 71 -4.292
PHI
S£8
SE5  10.457
PsI
AN 6T ALENTI
10.863 11.256
THETA EPS THETA DELTA
AHOME7 POULGT ANOMTI POULTI EDUC KT
ANOM 67 13.630 5.287
14.670
POUL 67 0000 6.972
ANOM7I  7.864 0000 12173
POUWL7 0000 0.000 0.000 8133



Correlations of parameter estimates are calculated for the
ML method only. Parameters with high correlations are
indications of a mode{ that is nearly non-identified.

CORRELATIONS OF ESTIMATES
Av21 Ly42 LX21 BE21 OAI1_0A21

Ly21 1.000
Ly42 0232 1.000
LXx21 0000 0000 1000
BE21 0100 -0.297 -0.112 1.000
GA11 0375 0125 -0.517 0145 1.000
6A21 -0055 0108 -0278 0572 0173 1.000
PH11 0000 0000 -0708 0118 0.554 029
P811 -0.605 -0.215 -0157 -0.114 0.002 0.024
P822 -0105 -0328 -0029 0082 -0.040 -0.043
TE11 0546 ON7 0000 0.057 0204 -0.032
TE22 -0669 -0063 0.000 0047 -0.247 0.130
TE31 0238 0210 0000 -0126 0.095 -0.047
TEZ3Z 0133 05689 0000 -0174 0.073 0.065
TE44 -0068 -0664 0000 0168 -0052 -0.104
TD11 0000 0000 0763 -0.30 -0589 -0.329
1022 0000 0000 -0377 0O00OH 0317 01N

CORRELATIONS OF ESTIMATES

PH11 PS11 PS22 IJEI1 JE22 IES1

PH11  1.000
PS11 0163 1.000
Ps22 0031 01430 1.000
TEt1 0.000 -0325 -0035 1.000
TE22 0000 023 -0015 -0.531 1.000
TEZ1 0000 -0.136 -0025 0503 -0230 1.000
TE33 0000 -0125 -0.351 0145 -0.033 0476
TE44 0000 0.101 0208 -0.026 -0.057 -0.189
TD11 -0.738 -0211 -0039 0000 0000 0.000
TD22 0427 0099 0019 0000 0000 0.000

CORRELATIONS OF ESTIMATES

JEzz IE44 IRI1 ID22

TEZ3 1.000
TE44 -0.35 1.000
7011 0.000 0000 1.000
1322 0000 0000 -0.544 1.000

The matrix labeled FITTED MOMENTS is the fitted sigma.
Remember that LISREL is estimating parameters so that the
fitted sigma is "close” to the matrix S. The FITTED RESIDUALS
is the matrix of S - Z. The size of the residuals should be
small relative to the size of the elements of S. This may be
hard to determine if S is not a correlation matrix. It will be
easier to inspect the NORMALIZED RESIDUALS matrix. A

47

simple test of how well the model accounts for the element S,J
isto check the magnitude of the elements of the NORMALIZED
RESIDUAL matrix. If an element is larger than (2| the

corresponding s; ; element is not accounted for well in the

model.

FITTED MOMENTS AND RESIDUALS

FITTED MOMENTS

BNOM67 POULG7 AHOMT7I POULTI _EDUC SEI
ANOM 67 11.850

POUL 67 6.965 9.364
ANOM T 6.876 S121 12.559
POWL 71 4.843 4.972 7522 9986

EDUC -3.783 -3.883 -3.790 -3680 9.610
SEI -19.528 -20.046 -19.566 -18997 35.522450.28
FITTED RESIDUALS

BHOME7 POULGET ANOMTI POULTI EDUC _SEI
ANOM 67 -0.016

POUL 67 -0.018 0.000

ANOM T -0.057 -0.030 -0.027

POWL T  -0.060 003 -0.027 0.000

EDUC -0.05% -0.006 -0.05 0.055 0.000

=3 -23N 1.215 -2.182 0.222 0.000 -0.001

NORMALIZED RESIDUALS

AHOME7 POULET ANOMTI PO 71 EDUC  SEI
ANOM 67 -0.029

POUL 67 -0.043 0.000

ANOM 71 -0.123 -0.075 -0.046

POUL 71 -0.154 0.158 -0.060 0.000

EDUC -0.152 -0.018 -0.124 0.159 0.000

SEI -0.957 0.546 -0.857 0.097 0.000 0.00

A visual summary of the fit of the model as indicated by the
normalized residuals is shown in the following QPLOT. Single
points are labeled with an X, multiple points with an *,and a
45 degree line by small dots. Fita straight line through the
X'sand *'s. Use the 45 degree line to determine if the line you
have fitted has slope larger than one ( good fit of model),
nearly equal to one (fair fit of model), or less than one ( poor
fit of model). In our example the slope is greater than one
indicating a good fit of the model. If the line you fit is
non-linear, the model may be incorrectly specified.



QPLOT OF NORMALIZED RESIDUALS TOTAL EFFECTS

33 TOTAL EFFECTS OF KSI ON ETA
$£8
ALIEN67  -0.550
ALEENTI  -0.551

TOTAL EFFECTS OF KSTON v
S8

ANOM 67
POUL 67
ANOM T
POWL 71

-0.5530
-0.564
-0.551
-0.533

TOTAL EFFECTS OF ETR ON ETA

AUEN 6T ALIEN 71
ALIEN67 0.000 0.000

ALIEN7I  0.617 0.000

LARGEST EIGENVALUE OF (I-BETAY*(I-BETA)-TRANSPOSED (STABILITY
INDEX) 1S  0.381

TOTAL EFFECTS OF ETR ON ¥

ALIENG7 ALIEN 71
ANOM 67  1.000  0.000

POUL 67 1.027 0.000
ANOM 7T 0617 1.000
POULT 03599 097

o & E-F
x X 5
¢ X XK K KX
€3 xxxx x

nNmMmMr=42X2D2C0O

‘ Varioius variances and covariances may be requested. These
X : are the matrices listed below.

YARIANCES AND COVARIANCES
ETR-ETA
ALENGT ALEN 71
ALIEN67 6.7685
.. ALIEN71 4988 7.747
-3'35.5 ‘ 3 ETA- KSI
5 NORMALIZED RESIDUALS 1}
From the path diagram it is obvious that there are both ALIEN67 -3.763
ALENT -3.79

direct and indirect effects of the £; variable SES on v); andy;

variables. The direct effects are found in the g andy
Y-ETA

AEN6T ALENT
ANOM67  6.785  4.988
POUL 67 6965 5121
ANOMTI 4968 7.747
POUL T 4843 7.522

matrices. The total effects shown in the following matrices
are the sum of the indirect and direct effects. For example
examine the matrix TOTAL EFFECTS OF KSI (SES) ONETA. The

total effect of SES on the vy variable ALIEN 67 is simply the

value of 7y; (-550). since there are no indirect effects. The

¥Y-KsI

total effect of SES on v)pis the sum of the direct effects ( y, = _SES
-.211) and the indirect effects ( y; =-55 times @y = 617). In AHOM 6T 3783
. . POUL 67 -3.883

this example the TOTAL EFFECTS OF ETA ON ETA is exactly the
th trix. It is interesti hat the total o

S Itis S

ame as the g matrix. It is interesting to note that the tota N -3680

effects of SES on each v variable is nearly equal.

48



X-ETA

SAEN6T ALENTI
EUC 3783 -37%0
SEI  -19.528 -19.566

X- KsI
$£8
EDUC 6880
SEI 35.522

Other output not printed in this paper includes the first
order derivatives, the factor scores regressions and the
standardized solution. The factor scores are the regression
coefficients of unobserved varables on observed variables.
The standardized solution is the solution in which v and 1,

are scaled o unit variance.
45 Summary

The analysis of this model indicates that it isa good fit as
indicated by the %2 of 6.33 with 5 degrees of freedom. Also the
largest modification index is 1.59. Indicating that the only

improvement to the ¥2 would result from freeing element

(42)of 6¢ . The path diagram with the estimated

coefficients is shown in figure 2.

In summary to assess the fit or detect the fack of fit you
should examine:
1) Parameter estimates
2) Standard errors (for ML method only)
3) Squared multiple correlations

4) Coefficients of determination

5) Correlations of estimates (for ML method only)
If any of these seem unreasonable (too large, negative
variances, correlations which are larger than one in
magnitude, ect.), either the model is fundamentally wrong or
the data is not informative. To adjust the model a specification
search can be performed. This involves eliminating
parameters that are not significant as indicated by the
T-values. That is, if the free parameter is not judged to be
different from zero, fix the parameter to zero. Another option
is to free the parameter with the largest modification index.
But only if it makes sense to the model to estimate the
parameter. When these changes to the model are bases on the
fit of the data it is necessary to verify the model by testing it
against another independent data set and each new model
must be tested for identification.

Measures of the overall fit of the model are found by
examining:
1) Chi-square, Degrees of freedom (ML method only)
2) Goodness-of-fit index
Adjusted goodness-of-fit index
3) Root mean square residual

And for a more detailed assessment of fit the following
parameters should be examined.

1) Residuals

2) Normalized residuals

3) Q-plot of normalized residuals
4) Modification indices

<4

b

FONERLESSNESS 71

49

Figure 2



S Example 2 - involves only observable variables

The following analysis uses data from a study in progress
at the Center of Child Development and Education at the
University of Arkansas at Little Rock. The data were collected
by eleven researchers from six sites in North America. The
study involves a total of 930 children beginning in the 70's.
The data gathered at each site was similar, however because
the data was pooled after the fact, some sites are missing data
for certain variables. The six sites are Washington (N=193),
Ontario (N=121), North Carolina (N=84), Texas (N=255),
California (N=129) and Arkansas (N=148). The seven variables
that will be examined in this analysis are mothers education,
an indicator of the child's IQ at 12, 24, and 36 months of age,
and an indicator of the home environment at each point in
time. The information for mothers education was nearly
complete with a total only 14 cases missing.

The measure, used at all six sites, of the child's IQ at both 12
and 24 months was the Bayley Scales of Infant Development.
This measure was available on 810 children at 12 months and
652 children at 24 months. The Stanford-Binet Intelligence
Test was given at the age of 3 years. 1Qdata were available on
628 children.

The Home Observation for Meaurement of the
Environment Inventory was used to determine the three
home environment variables. The HOME Inventory is
designed to assess the quality of stimulation and support
available to a child in the home environment. HOME's at age
one were available on 865 families, at age two on 507 families
and at age three on 559 families. HOME's at age two were not
available from two sites, California and Ontario. HOME's at age
three were not available from the Texas site.

5.1 Missing Data

The correlation matrix used by LISREL was created using
pair-wise deletion of missing data. This means that when data
were missin g the variables involved were deleted in the
calculations of that particular cell of the matrix. The result is
a matrix with coefficients calculated with different values of
N. In the LISREL model the x°and the modification index are
directly related to the value of N. Remember, the X2 is
defined as N-1 times the minimum value of the fitting
function and the modification index is defined as N/2 times
the ratio between the squared first-order derivative and the
second-order derivative. Aslong as we choose a reasonable

50

value for N and keep it constant in all the models we can use
these two indicators as we have in the past. A low X2 relative
to the degrees of freedom will have to be used cautiously, but
changes in the X2 from one model to the next will still be an
indication of improvement in the fit of the model. A large
drop compared to the difference in degrees of freedom,
indicates that the change made in the model represents a real
improvement. A drop in XZ close to the difference in degrees
of freedom indicates that the improvement in fit is obtained
by "capitalizing on chance", and the added parameters may
not have real significance and meaning (Joreskog,1984).

The modification index can be used as hefore, since the use of
the modification index depended on the values of the index
relative to each other and the value of the x¢. The correlation

matrix and each cells value for N follows.

Table 4
momed MOII2 HOMEI2Z MODI24 HOME24 1Q36
HOME36
momed  1.00
(0
MOI12 283 1.00
(798) ( 0)
HOMEI2 464 253 1.00
@e51) (164) ( 0)
MDI24 526 482 505 1.00
(643) (633) (610) ( 0)
HOME24 496 336 .614 .582 1.00
(501) (453) (471)  (408) (0
1036 495 440 530 696 618 1.00
(621) (605) (390) (572) @) (0
HOME36 463 300 .623 552 738 5936 1.00
(554) (535) (S44) (S07) (297) (506) ( 0)

5.2 LISREL Specifications

Since all of the variables are observed some of the matrices
in the LISREL model will be set to zero and the x; and y;

variables will be set equal to the §; and v); variables,

respectively. In this model there is only one independent
variable, mother's education. All variables in this analysis
are:
x; = mother's education
yy = MDIat 12 months Y4 = HOME at 24 months
y2 = HOME at12 months  yg = IQat 36 months

yz = MDI at 24 months Ve = HOME st 36 months



The following path diagram illustrates the first attempt to
define a model for this data. To simplify the drawing the
paths are not labeled. Mother's Education is allowed to
directly effect all 6 dependent observed variables. Path
coefficients are to be calculated from each y variables to the
variables in the next time period. For example the direct
effect of MDI12 is calculated for both MDI24 and HOME24. The
covariances among the errors in equations are allowed and
indicated with curved lines. Covariance between the errors at
the same period of time might occur if the model were
misspecified by the exclusion of variables that affect both the

indicator of HOME and 1Q.
12 MONTHS 24 MONTHS 36 MONTHS

- "’ "' g
v » T » 3 X

EDME 36
s

HOHE 12

figure 3

The structural equations for this path diagram are:

Doy = Xt &
) o= oyt &2
3) Yz = B3I Y o+ B32W2t Y3ix t L3
4 UYs = Bar Y+ Ba2t Yarx t 4
5) Ys = Bs3Yz + PBsaba* ¥si¥ * s
6) Ys = Pe3Uz + PBs4lst Y1 * g

Since all the variables in this analysis are observed, we set
the x; and y; variables equal to the £; and 1), variables. In
terms of the LISREL model this means that the x; andy,
variables are perfect indicators of the ¢; and v variables. We

will therefore set both 6¢ and 6 4 tozero and the factor

51

matrices Ay and A, will each be setto identity matrices. ¢

is defined by default in LISREL to be symmetric and free with
the variances of the error terms on the diagonal and the

covariance of the error terms elsewhere. We will request that
only three covariance estimates be calculated and the other
off diagonal terms fixed. Since the matrix is by default
symmetric we will only need to fix or free the lower
elements. g isdefined in the LISREL program to be fixed to

zero, this means that none of the elements of this matrix will
be estimated unless they are freed by the researcher. The
appropriate elements of this matrix will be freed as indicated
by the equations above. The full matrix -y is by default
estimated, therefore we need only fix the elements that should
not be estimated. As for ¢, since we have only one x variable

and are using the correlation matrix in the analysis, this
variance/covariance matrix will not give any new
information and will not be estimated. The LISREL commands
for this model follow, the SPSSX commands necessary to
execute this program are identical to the first example.

DA NI=7 NO=500 MA=KM

LA

‘MOM ED' “MDIT 12° "HOME 12M° "MDI 24° "HOME 24M" °1Q 36' 'HOME 36M'

SE

‘MDI 12' "HOME 12" ‘MD1 24° "HOME 24M° '1Q 36' "HOME 36M' "MOM FD'

KM 8y
1.000
.2838
.4648
.5265
.4962
4953
4634
1.000

MO NX=1 NY=6 BETA=FU

PA BE

000000

000000

110000

110000

001100

001100

PA PS

1

11

001

o011

00001

000011

OU TY RS EF MI

1.000
253
.4821
.3362
.4402
.30n

1.000
6143 1.000
.6180 1.000

6231 7379 5936



We have chosen a value of 500 for the number of
observations as indicated by NO=500 on the first line. There
are 7 input variables and the correlation matrix (MA-KM) is
used as input. The variables are labeled with the LA
command. The matrix to be analysed should be ordered with
the y variables first. This is not the case in this example. The
input matrix is reorderd with the SE command. The symmetic
correlation matrix is read after the KM SY command. Since
the program uses spaces to separate elements of the matrix,
the values could have been listed across the line instead of in
matrix form.

All remaining commands (except the OU command) are to
define the free and fixed elements of the various matrices
involved in the model. In the first example the FI and FR
commands were used to fix or free individual parameters.
instead the PA command
can be used. This command is a signal to the program to read

Sometimes this is inconvenient,

a pattern matrix of zeroes and ones. where a zero meansa
fixed element and a one means a free element. In this
example this isdone forthe BE(B) andthe PS (¢)

matrices.

The last command controls the output that is printed and
the method of estimation used. Since a method is not indicated
on the OU line, ML is used by default. The other output
requested includes TV, the t-values, RS, the residuals and
Q-plot, EF, the total effects, MI, the modification indices.

5.3 Identification

The next question that must be answered involves that of

identification. The parameters must be proved to be identified
before the results of the estimation can be used. The

parameters to be identified include all the free elements of g,

all of y and the six variances and three covariances of {.
Beginning with the first equation multiply by x| and take

expectations. Since the covariance term in the resulting
equation is equal to zero by the specification of the model, yy

is proved identified. Now multiply equation 1 by itself and
take expectations to obtain VAR(Y; )= 7, ,zvar(xi) +2 ¥ COV(xiy)
+ VAR(L,). In thisequation the covariance term is zero by

assumption and yy; is identified, therefore VAR(L)) is

identified. Equation 2 can be manipulated in a similar way to

52

identify the parameters y»1 and VAR({{~). The COV( {({2)

term can be shown to be identified by multiplying equation 1
and 2, taking expectations and using terms previously
identified

Next use equation 3 to obtain three equations in three

unknowns as follows: multiply equation 3 by x; for the first

equation, by y; for the second, and by yo for the third, take

expectations of all three equations. The last two equations
will have four unknows, this forth unknown is a covariance

term involving y, (i=12) and {3 These terms can be shown

to equal zero by multiplying both equation 1and 2 by ¢z

Equations 4, 5 and 6 can be handled in a similar way to
identify the remaining parameters. Since each parameter
can be solved for in terms of the variances and covariances of
the observed variables, the model is identified

5.4 LISREL Results and Explaination

The results of the ML estimation of this and two additional
models are summarized in table 5. The fit of the first model is
poor. notice the ¥¢ of 53 53 with 4 degrees of freedom and the
AGF (Adjusted Goodness of Fit Index) of .799. All of the
parameters estimated are judged to be different [rom zero by
the t-values. The largest modification index (35 44) is for B45.
Estimating 845 would be estimating the direct effect of HOME
36 on HOME 24 which is not reasonable. The second largest
modification index (31.874) is for g5 , to estimate the direct
effect of HOME 12 on HOME 36.

In model 2 B¢, is freed. Model 2 must also be proved to be

identified. Since only one new parameter is added and one
equation affected. we need only look at equation 6 again.
With this new parameter equation 6 now looks like:

Ys= P62Y2 + BE3U3 + Pealls * Ye1x + L6
Using the same pattern used before, multiply this equation
first by x;, then by y, . then by y, . then by y; and take
expectations of all four equations. These four equations will

have the pand y termsasunknown as well as three

covariance terms. These terms involving y; (i=12,3) and g

can be shown to equal zero by multiplying equations 1, 2 and

3by (g .taking expectations and using assumptions.



Model 2 is an improvement over model 1 by all indicators.
The x? was reduced by 33.5, more than the 318 that we were
guaranteed. The GF and AGF are both larger and the RMSR is

smaller. The t-value for g | was not large enough to safely

assume it be different than zero. The largest modification

index (18.03) is for y5 3. Freeing this parameter would allow
the errors for MDI 24 and IQ 36 to be correlated. Because of

the nature of these tests, it is reasonable that the error in
measurement of these two variables could be correlated.

In model 3 53 isfreed. Again there issignificant
improvement of the fit of the model. The ¥ was reduced by
1861 and the degrees of freedom by only 1, the GF and AGF
indicators were increased and RMSR is again smaller. Notice
that two parameters had t-values too small to safely assume to
be different than zero.

Other results from model 3 follow. The squared multiple
correlations for the strutural equations is interpreted as the
proportion of variance of each dependent variable explained
by the independent variables. In this example we have only
one independent variable, mother's education. Mothers's
education explains more of the variance of the home
environment at 36 months than the other variables.

SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL
EQUATIONS

MDI12 HOMEI2M MDI24 HOME24M 036

HOME36M
0.081

0603

0.216 0.461 0.455 0.466

The total effects of mother's education on the intelligence
and home variables are given in the following results. It is
interesting that, except for the MDI at 12 months, the total
effect of mother's education is nearly equal on all variables.
And finally the complete path diagram using model 3 for the

coefficients.
TOTAL EFFECTS
TOTALEFFECTSOFXON'Y
MOMED

MDI 12 0.284

HOME 12M 0.465

MDI 24 0.527

HOME 24M 0.4%

1036 0.495

HOME 38M 0.463

53

Table 5

PARAMETER MODELI ~ MODEL2  MODEL3

Bz 325 325 315
Bz2 282 282 298
B4 151 151 151
Bap 466 466 466
Bsz A3 473 875
Bss 293 293 122
Be2 - 219 229
B3 158 121 120
Bos 607 511 506
7 284 284 286
72 465 465 465
N3 303 .303 299
Y14 237 237 237
ns 101 101 - 026*
ne 079 044* 043*
oy 919 919 919
v 121 121 121
v T84 784 784
vz 54l 541 539
¥4z 149 149 145
v4s 546 545 545
¥53 - - -236
vs5 439 439 534
ves 069 055 054
ves A28 397 397
X2 5353 2003 132
df 4 3 2

p 0.0 0.0 516
GF 971 989 999
AGF 799 896 989
RMSR 032 020 004

where * indicates a t-value less than 2 in magnitude, and - indicates
the parameter was not free



figure 4

REFERENCES

Afifi, A. and Clark, Virginia (1984). Computer-aided
Multivariate Analysis. London: Lifetime Learning
Publications.

Dillon, William R. and Goldstein, Matthew (1984) Multivariate
Analysis: Methods and Applications. New York: John
Wiley & Sons.

Everitte, B.S. and Dunn G. (1983) Advanced Methods of Data
Exploration and Modelling. London: Heinemann
Educational Books.

Heise, David R. (1975) Causal Analysis. New York: John Wiley
& Sons.

Goldberger, Arthur S. and Duncan, 0.D., Eds. (1973) Structural
Equation Models in the Social Sciences. New York:
Seminar Press.

Hogg, Robert V. and Craig, Allen T. (1978). Introduction to
Mathematical Statistics. New York: Macmillan Publishing
Co., Inc.

Joreskog, Karl G. and Sorbom, Dag (1984) LISREL VI Analysis
of Linear Structural Relationships by the Method of
Maximum Likelihood. Uppsala, Sweden: University of
Uppsala.

Kenny, David A. (1979) Correlation and Causality. New York:
Viley.

54

Long, J. Scott (1983) Covariance Structure Models: An
introduction to LISREL. London: Sage.

Long. J. Scott (1983) Confirmatory Factor Analysis: A Preface to
LISREL. London: Sage. y reface

Marsden, Peter V. Ed. (1981) Linear Models in Social Research.
London: Sage.

Noble, Ben and Daniel, James W. (1977) Applied Linear
Algrebra. Englewood Cliffs, N.J. : Prentice-Hall, Inc.

Nunnally, Jum C. (1978) Psychometric Theory. New York:
McGraw-Hill.

Pedhazur, Elazar J. (1973) Multiple Regression In Behavioral
Ro_asearch: Explanation and Prediction. New York: Holt,
Rinehart and Winston.

SPSS Inc. (1984) Userproc LISREL: Using LISREL VI within
SPSSX. Chicago: SPSS Inc.

Tatsuloka, Maurice M. (1971) Multivariate Analysis:
Techniques for Educational and Psychological Research.
New York: John Wiley & Sons.



SYSTEM CHARGEBACK AND RESOURCE TRACKING USING RS/1

Robert B. Goldstein and Gertrude Stabiner
Eye Research Institute of Retina Foundation
20 Staniford St

Boston,

MA

02114

ABSTRACT

RS/ 1

lated DCL command files,
grams, and RS/1 tables)

the first night of each month.
save the cost of an expensive

this purpose we (1)

chargeback program, and

cation to our specific needs.
usage of our VAX780 and
implemented

tables which are maintained manually.

the resource
computers is

of our
PDP11/70

has been used for system resource chargeback
and long-term tracking of system usage.
source chargeback application
FORTRAN programs, RPL pro-

The re-

(a set of interre-

runs automatically during

By using RS/1 for

(2) can tailor the appli-

Long-term tracking

through RS/1
The graphs

illustrate the evolution of our computer systems

and are useful
management.

INTRODUCTION

This paper addresses two issues: system re-
source chargeback and long-term tracking of
system usage. System chargeback is proble-
matic because the DEC accounting utility,
under VMS, does not handle disk space
usage. Another utility, DISKQUOTA, must be
used to obtain this information. Since

DISKQUOTA reports usage based on UIC, not
on account number, we must combine the
results of the DISKQUOTA and ACCOUNTING
utilities. Long-term tracking of system

usage has been implemented for 6 years, and
the resulting graphs illustrate the evolu-
tion of our computer systems. We will also
show the changes in resource usage that are
the result of system tuning efforts.

CHARGEBACK

Although many commercial chargeback pack-
ages are available for VMS, we chose to
implement our own system for the following
reasons:

o We have greater control over the pro-
cess.

o It is more interesting for us to write
our own procedures.

o It gives the Computer Unit at the Eye
Research Institute (ERI) an opportunity
to use RS/1, which we must know in order
to support it.

o It is tailored to our specific needs.
Implementing our own package was not cheap-

er than purchasing a commercial package.
The cost of the man-hours we spent writing

Proceedings of the Digital EQuipment Computer Users Society

55

in presenting company DP needs to

the procedures and "baby-sitting" the pro-
grams has equaled the price we would have
paid for a commercial package.

The chargeback procedure is divided into
two parts: the chargeback phase and the
RS/1 phase. The chargeback phase gathers

the information by running the DEC-supplied
utilities; the RS/1 phase merges the
results produced by the utilities.

Figure 1 shows
chargeback phase.

a flow diagram of the
The steps are:

1. Run ACCOUNTING to produce a report and
to start a new accounting file. The
reported fields are CPU time, Elapsed
time, and Pages printed.

Run AUTHORIZE to obtain a cur-
rent user list.

(UAF)
3. Run DISKQUOTA to obtain the disk usage
as a function of UIC.

Run several FORTRAN programs to per-
form the following:

a. Strip the extraneous headers from
the log files produced by the
above steps.

b. Match the ACCOUNT numbers with the

UICs in the disk usage records.
At the same time, combine multiple

records per account (caused by
multiple wusers having the same
account number) into one record

per account.

Anaheim, California- December 1985



authorize diskquota accounting 1. Initialize the RS/1 tables. A
separate RS/1 table is needed to hold
the data from the two files produced

sysuef space chrgback . .
' oom | (::um | oom in the first phase.

sysuaf.log specs.log acetti.lis 2. Import the files from the chargeback
@3 (@ accountng.dat phase.
axe .exe acctmmmyy.lis
acctmmmyy.dat 3. Convert elapsed and CPU times (of the
sysuat.out speca.srt hh:mm:ss type) produced in phase 1 to
@D spacmmmyy.iis fractiona} hours. (For example,
.com 03:15:00 is converted to 3.25.)

sysuaf.srt

4. Merge the accounting and disk usage
data into the shell table.

5. Apply the charging formula, which is
in the form:

old RS/1
tables

$ = A*cpu hours + B*connect hours
+ C*number of blocks
+D*number of pages + E

6. Total all charges and insert into the
last row of the table.

modified The advantages of this method of performing
RS/1 tables system resource chargeback were discussed
. . above. Its disadvantages are:
Figure 1. Flow Diagram of Chargeback Phase

o The need for constant maintenance. With

c. Produce two final files for input every new user an entry must be added
into RS/1: SPACESUM.OUT, which into the shell table.
contains the disk usage as a fun-
tion of account, and ACCTI.LIS, o The programs depend heavily on the
which contains the other usage formatted output of several DEC
information (CPU, Elapsed, Pages) utilities. 1If the output format changes
as a function of account. (as it did when VMS went from version 3
ver
5. Submit the batch procedure to run the :iterid?lon 4), the programs must be
RS/1 phase.
o It is not robust. The system fails
The RS/1 phase makes use of a "shell about once every 3 months for various
table," which is an empty version of the causes, for example, when a deleted
final report table. Figure 2 shows a por- account has not been removed from the
tion of the shell table, in which the empty shell table, when an incorrect algorithm
cells are filled ?y the procedures. Figure was used for the end of year change, or
3 shows a flow diagram of the RS/1 phase. when the batch and command procedures
The steps are: were improperly synchronized.

Shell For VAX Usage

0 1 Fund 2 UIC 3 Elapsed &4 CPU 5 ERI2 6 ERI3 7 Pages 8 Charge ($)
Number Time Time Blocks Blocks
1 Smith F10008 [70,7] - [70,7]
2 Jones F10043 [120,4] - [120,4]
3 User X F10044 [120,5] - [120,5]
4 User Y F10121 [70,12] - [70,12]
33 Goldstein F21003 [160,14] - [160,14]
34 Librarian F21004 [160,13] - [160,13]
35 Medical Database F21422 [240,1] - [240,3]
36 Low Vision F21423 [240,2] - [240,2]
37 NDFQ F704 [160,12] - [160,12]
38 Biguser F707 [2,5] - [220,27]
39 Totals

Figure 2. Shell Table

56



old spacesum,
accttime, and
shell tables

procedure
cleanup

initialized
spacesum,
accttime, and
shell

spacesum.out
acctti.lis

procedure
acctti

cols 1 -6 of
accttime

procedure
dateconv

final spacesum final accttime

procedure
acctsp

procedure
mergep

all but last row and col of shell
procedure
totalp

final spacesum

o The system and all peripherals must be
up and running at midnight on the first
of the month.

o RS/1 runs on only one of the machines in

the net. Therefore, data must be trans-
ferred, via DECnet, from one machine to
the other.

LONG-TERM TRACKING

Our site was one of the earliest to use the
RS/1 package. We have been recording sy-
stem usage statistics in RS/1 tables since
1980. The resulting graphs illustrate the
evolution of our PDP11/70 computer system
and are probably typical of usage patterns
of other computer systems.

Figure 4 shows four graphs that plot system
resource usage versus time. The "connect
time" shown in the upper 1left panel
exhibits a pattern that is repeated in the
other three panels. During the first 2
years usage gradually climbed to a maximum,
followed by about 1-1.5 years in which
usage remained at this level and response
time on the PDP11/70 was intolerable.

57

Idle time during this period (averaged over
7 days/week and 24 hours/day) was only
about 30%. In mid-1983 we removed one big
application and resource usage dropped, but
response time was still very poor. In
December 1983 we obtained a VAX780 and
started to transfer applications from the
PDP11/70 to the VAX. Resource usage drop-
ped to a minimum on the PDP11/70 and has
remained low because only two applications
are left on the PDP. These are scheduled
to be transferred to the VAX soon.

We are currently keeping similar types of
statistics on the VAX (Figure 5). Since we
are careful not to overload the VAX, the
VAX CPU time usage does not show a rising
trend, although the VAX elapsed time does
show signs of increase.

On both machines disk usage rises rapidly
to the critical region (defined as 80% of
total disk capacity), and is kept at this
level only by constantly reminding users to
clean out their disk directories. Figure 6
shows this behavior.

SYSTEM TUNING

We have used RS/1 to display the results of
system tuning efforts. Figure 7 shows the
number of pagefaults resulting from two
different RS/1 commands. The data were
obtained by setting the WSDEFAULT, WSQUOTA,
and WSEXTENT parameters to the same value
for a selected user. Then, when no other
users were on the system, we issued the

$ rsl

command and examined the number of page-
faults. Within RS/1, we issued the

# dir

command and examined again the number of
pagefaults. By means of these measurements
we determined the optimum values for the
WSDEFAULT, WSQUOTA and WSEXTENT parameters
for RS/1 users.

The best measure of system response is user
perception. It matters little, for exam-
ple, that "swapping is at 3%" if the users
still think that response time 1is poor.
Therefore, we wrote a program called "Re-
sponse Logger," which upon user logout
queries the user on how well the system
responded to his needs. The user is asked
to give the system a letter grade of A, B,
C, D, or F. A record is then written to a
log file containing the grade and other
information such as number of users, time

of day, and user category. At the end of
the month we examine the log file, plot the
results, and take appropriate actions 1if
necessary.

Figure 8 shows some of the information that
may be obtained with the Response Logger.
The upper left panel shows how system re-
sponse degraded after VMS 4.1 was installed
and how it improved after more memory was



wocozx

PDP11/70 CPU Usage
6007
H
°
u 4007 \
r i
s !
2001 S R'
Jan-81 ) Jan-83 ’ Jsn-85
Month
1.00+097
PDP11/70 Kilocore Ticks
[
8.0e+087T
6.0e+081
4.0e+08T
2.0e+081

JnnLai

PDP11/70 Usage for 6 Year Period

PDP11/70 Connect Time
3000t
20001
10007
Jan-81 . Jan-83 ) Jan-85
Month
PDP11/70 Idle Time
1001
801
P
e
r K
c 601 c
° T
n
t
401
201
Jan-81 Jan-83 ) J.nLGS )
Month
Figure 4.
E VAX CPU Time
200
H
[
u 1
r
]
1001
Jan—84 ” Jan-85 i Jan-86
Month
Figure 5.

16007 VAX Elapsed Time
- ’
12001 /
i
H /
. 4
']
r sootT
L ]
4001
4
Jan-84 N " Jan-85 Nov-85
Month
VAX Usage

58



+ VAX Disk Use

o0

wx00+~D

INENNNENNNN

—{— Charged Blocks

—O—— ERI1 <
—&— ERI2

—>— ERI3

===== Critical Region

PDP11/70 Disk Usage

OO0OO0OrLrNUMWXOO D

== Critical Region
—{— dro
—A— dri
—O— dr2

4 ' o AAApAAAAA
t ¢

Nov—84 Nov—85

Month

Figure 6.

added. The upper right panel shows how
system response degrades as the number of
users changes throughout the day. One
measure of the sensitivity of this program
is that the lower left panel exhibits an
expected dip at lunchtime. The correspond-
ing improvement in response time is shown
in the lower right panel.

CONCLUSION

The chargeback procedure 1is currently a
mixture of command procedures, FORTRAN
programs, and RPL procedures. To make it
more general, simpler, and more robust, we
should attempt to reduce this mixture by
replacing the RPL procedures with FORTRAN,
or by removing RS/1 from the procedure
altogether.

We have been using RS/1 and the Response
Logger to obtain information about system
utilization, to display tuning results, and
to accomplish chargeback of resources.
These procedures help us satisfy our users'
needs and justify the acquisition of new
equipment when necessary.

4

®T=CO~00Q0 70

Figure 7.

59

§

" Jan-83

Month

Disk Usage for VAX and PDP11/70

Pegefaults ve Working Set

1000 1400 1800

working set

Tuning Measurements for RS/1



70 0W

®w o nC

Response Scores

-
o7
{ B
i [N BN
! - ~
1 ~—m=__ /
w A—,,_,AA’-”‘;\\ \J/fh ~—a
o~ {
. / H / —0— overs1l
i < —&— RS1
1 VMS 4.1 / A
Installed P
.
Memory
or
- o e - ——
Jun-85 Aug-—-85
Month
I
| Avg Number of Users vs Hour
|
10+
| s
i / ™
8+ _ ki
\
\
6+ \
:
. / \
. \
8
2+
i h\s-—g,
| B———— g8 e
|
— S S
2 4 6 8 10 12 14 16 i8 2 2 24
Hour of Day
Figure 8. Response

60

®J200W

s
B—a
N
/
]

T Response vs. Number of Users
S
c
o 41
r B
e wFi—Hﬂ—k“\
S
34
- + + + IS S
8 12
Number of Users
T Response By Hour
i
|
4.0+ & -——»-45—\(
|
; \
1 = '
i 1\1 a'i\s -t a/“
3.5+ g -
i
i
e
4 12 16

Logger Results

Hour of Day

20

24



DEVELOPMENT OF A DIGITAL INTERACTIVE CONTROLLED EVALUATION SYSTEM (DICES)

Capt Scott B. Eckert
Robert L. Ewing
Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Dr. Gary B. Lamont
Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583
Visiting Professor
Wright State University

Dayton OH

Abstract

DICES is a user interactive system which permits the
implementation of digital controllers based on the TMS32010
digital signal processing microprocessor for a given single

input-single output plant model.

DICES partitions the

controller design into second-order 3D filter sections and

quantizes the coefficients.

These coefficients are loaded

into a generic filter program written in TMS32010 assembly
language, which is then assembled and loaded into the TMS32010

for execution.

The controller is then placed in the forward

or feedback path of an analog computer system which simulates

the plant.

Performance data is obtained via IEEE-488

controlled instrumentation using a VAX 11/780 VMS system.

INTRODUCTION

Digital controllers and filters can be
designed using a myriad of techniques. At the Air
Force Institute of Technology (AFIT), several CAD
packages are available to electrical engineering
students for designing digital controllers and
computer-aided design programs that currently
reside on the AFIT VAX 11/780 with Vitural Memory
System (VMS) (1,2). However, the controller is
typically only simulated in the design/analysis
software package using high-precision coeffi-
cients. It would be desirable during the design
phase to use the designed controller parameters to
implement the control algorithm on a microcomputer
system operating within an analog computer simula-
tion of the plant. This would permit direct
observation of effects of finite word size, the
filter coefficients, changes in sampling rates,
etc. This controller could then be used as a cas-
cade or feedback controller in a real-world hard-
ware/software environment. The physical plant is
modelled using analog transfer modelled using ana-
log transfer functions. A performance evaluation
of the implemented controller is normally desired.
This performance evaluation consists of deter-
mination of the "standard" figures of merit (3)
that most designers are interested in obtaining
(e.g.) peak overshoot, settling time, peak time,
frequency response, etc.). The analysis is typi-
cally performed using both the open-loop and

Proceedings of the Digital Equipment Computer Users Society 6 1

closed-loop tranfer function. The implementation
of the controller design is tested in a closed-
loop configuration since this is the normal opera-
tional mode.

SCOPE

The purpose of this work is to investigate
the requirements of a digital controller/digital
signal processor implementation and performance
evaluation system and to implement a basic system
which provides current capability while allowing
for future expansion. It is not the intent to
develop a new test equipment, but rather to
integrate a practical system that will assist in
the design, coding, test, and evaluation of
linear, time-invariant digital controllers. It is
assumed that one of several digital design soft-
ware packages will be used to design the
controller/processor algorithms (1,2).

SYSTEM CONCEPT

DICES permits implementation of a digital
controller or filter design. The system inter-
faces with existing software design packages such
as TOTAL or ICECAP (1,2) which are available on
the AFIT VAX 11/780 VMS system. It will also

Anaheim, California~ D ber 1985




allow direct input of DSP or controller algorithms
in the form of Z-domain transfer functions. Once
the controller transfer function is determined, it
can be implemented on DICES using the 16-bit Texas
Instrument TMS32010 DSP microprocessor. (4)

This, together with a model of the basic plant can
be formed into a closed-loop system for eva-
luation. The performance of this system can then
be assessed using test instrumentation programmed
via an IEEE-488 instrument bus. The VAX 11/780
contains a National Instruments GPIB1l1-2 IEEE-488
Interface Controller and highlevel software inter-
face to the VMS device driver (5). The overall
system concept is shown in figure 1.

HARDWARE DESCRIPTION

DICES consists of many hardware items which
perform the various system functions required to
form an automated system. The main hardware items
are listed below, each with a brief description of
its function.

1. VAX 11/780 and peripherals - Executes the
main DICES FORTRAN program and remotely controls
the IEEE-488 instruments via the IEEE-488 bus.

2. Bruel and Kjaer 2032 System Analyzer -
Performs step response and frequency (magnitude
and phase) testing on the closed-loop
plant/controller system. Uses Fast Fourier
Transform techniques to obtain frequency response
data.

3. EAI TR-48 Analog Computer System -
Simulates the plant model to allow closed-loop
testing of the digital controller.

4. TMS32010 Evaluation Module - Contains the
TMS32010 microprocessor, RAM, ROM and executive.
A separate board contains the Analog-to-Digital
and Digital-to-Analog converter used to interface
with the analog computer.

5. Wavetek 172B Signal Generator - Provides
the step input used to perform step response
testing on the system-under-test.

6. National Instruments GPIBl1-2 IEEE-488
Interface Board - Provides the interface between
the VAX 11/780 and an IEEE-488 instrument bus.

The above items are used to provide stimulus
to the closed-loop system, implement the digital
controller, execute the CAD package and DICES
software and then perform measurements of the
system., These results can then be displayed and
used to determine if a design iteration is
required for the digital controller.

62

uax
11,780
(x

721 0

\
‘\
\
1728 1o
S1C G

SNALQY CONPUTER

Figure 1. System Concept

SOFTWARE .

DICES software consists of three main modules,
DICES main program, VAX VMS device driver, and
TMS32010 controller code. Each of these modules
is briefly discussed below.

1. DICES Main Program - Coordinates the
general flow through the "control problem" (see
figure 2). Program presents option menus to user
for selection of desired function. This program
relies heavily on use of DEC Forms Management
System (FMS) for menu generation to select desired
steps in the design and simulation of the
controller (see figure 2). The main program
implements digital controller design by par-
titioning the desired controller transfer function
into second-order sections. Sections are then
implemented on a TMS32010 microcomputer.
Performance testing is then initiated and
controlled using IEEE-488 compatible instruments.

2. VAX VMS IEEE-488 Card Interface Driver

- This software provides the interface to the
IEEE-488 card. There are three levels of inter-
face (see figure 3), two of which provide a
simplified interface to the IEEE-488 instrument
bus. The VAX VMS device driver resides as a
system driver and performs the detailed
handshaking with the IEEE-488 hardware -

transparent to the application program.




3. TMS32010 Object Code - This object
code is generated by the TMS Assembler from a
source file which contains the digital controller
parameters. The object code is generated on the
VAX and downloaded via an RS-232 link to the
TMS32010 to implement the digital controller
design,

Example Problem

A simple plant transfer function is given
which has unacceptable closed-loop step-response
behavior (figures 4 and 5), i.e., peak overshoot
is excessive (1.45 units).

~ 2 (1)
Gp(s) T s(s+1)(s+2)

A digital controller is desired which will
improve the step-response characteristics of this
plant. Following adesign session using DICES as
the coordinator, a design is obtained which impro-
ves the step-response characteristics.

Ge(Z) = .3974 (2-.995)
(z-.998)

(2)

The theoretical and actual responses of the simu-
lation are shown in figures 6 and 7.

[conuot ....... ESTABLISH PERFORMANCE
PROBLEN SPECIFICATIONS
PERF-REOTS ==

_____ DEVELOP PLANT MODEL

RATH-HODEL
=== SIMULATE PLANT MODEL

PLANT-§1R < mmmm === ==
== DESIGN CONTROLLER

------ DES1CH-PARANETERS.

== INPLEMENT CONTROLLER

........ IRPLEMENT-PARANS

== CLOSED-LOOP
PERFORMANCE TEST

CoNTROL
PRODLEN
SOLUTION

Figure 2. Typical Steps in a Control Problem

63

TERMINAL cPU MEMORY DISK
UNITS
P — | N
< UNIBUS N
I1EEE-488
INTERFACE
A n
< TEEE-488 BUS :>

i

BAK 2032 VAVETEK
SYSTEM SIGNAL
ANALYZER GENERATOR

Figure 3. IEEE-488 Software Interfaces.

CONCLUSION

By combining a general purpose computer
system with programable instrumentation and
flexible interface software, an interactive
system for implementing digital controller
designs on a state-of-the-art digital signal
processing microcomputer has been developed.
DICES allows the designer to implement the
controller and test it using an analog com-
puter simulation. This assists in deter-
mining the effects of finite word-length,
quantization errors, filter structure, and
other typical effects of implementing a 'near
infinite precision'" design on a finite word-
length machine.

REFERENCES

1. Larimer, Stanley J., An Interactive
Computer—Aided Design Program for Digital and
Continuous Control System Analysis and Synthesis.
MS Thesis, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB
OH, December 1978.

2. Gembrowski, Charles J., Development of an
Interactive Control Engineering Package (ICECAP)
for Discrete and Continuous Systems. MS Thesis,
School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December
1982.

3. Houpis, Constantine H. and Lamont, Gary
B., Digital Control Systems Theory, Hardware,
Software. New York: McGraw-Hill Book Company,

1985.




4. Texas Instruments, Inc., TMS32010 User's
Guide. 1983

5. National Instruments Corporation.
GPIB11-2 Operating and Service Manual. Austin
TX, July 1982.

6. Bruel and Kjaer. 2032 Instruction Manual,
Vols 1, 2 and 3. September 1983.

H/COMPENSATOR (TSAMP = .05) ZERD-.995.P0LL-. 994
LLOSED-L0Ur (N0 LONPENSATOR - S PLANC) P
- | “
5 T ——]
: )
as
— o
Wi //// \\\\\“///// ~— w,
, <
“b.00 2.50 5. 0 7.50 1h-on 12. 50 1500 Ve
o TIME (SECONDS)
Vo0 2.50 5 00 7.50 10,00 | 12.50 | 15.00  17.50  20.00
1IME (SECONDS)
Figure 6.
Theoretical Compensated Closed-Loop Response
Figure 4.

Theoretical Uncompensated Closed-Loop Response

N

. "\‘_—-—_
radg
1.0 - o

1.0

radg

0 20 s

Figure 7.
Actual Compensated Closed-Loop Response

Figure 5.
Actual Uncompensated Closed-Loop Response

64



Customizing RS/1 at GA Technologies

ARAM K. KEVORKIAN
GA Technologies Inc.
San Diego, California 92138, U.S.A.

This paper presents an interactive program for temporarily
changing the appearance of RS/1 “data objects,” and for printing and
plotting these data objects in different ways, and on various printers
and plotters at different locations, including dedicated devices that
may be attached to a terminal. The program is menu-driven and user-
friendly and by enabling users to make a variety of choices with simple
“yes” or “no” answers to prompts, the task of temporarily changing
the appearance of RS/1 data objects and setting up hardcopy output
is considerably lightened. The development of this interactive pro-
gram is a major step toward improving the productivity of computer
users at GA through customizing third-party software.

Introduction

RS/1, a software product developed by Bolt Beranek
and Newman (BBN) Incorporated, provides capabilities for
data management, graphics, electronic spreadsheets, statis-
tical analysis, and applications programming, all integrated
in a single easy-to-use system.

A table is the primary means for storing any kind of
data in RS/1. Tables are the fundamental data objects in
RS/1. They are used for analysis and for generating a va-
riety of other data objects, including bargraphs, piecharts,
graphs, three-dimensional plots, models, and procedures.

RS/1 outputs to a large number of printers, plotters,
and dedicated devices that may be attached to a terminal.
To set up hardcopy output of any RS/1 data object, the
system requires the code name of the printer, plotter, or
dedicated device, the name of the file to receive the data
object, and the appropriate print or plot command. Al-
though all the required information is available in the In-
formation Systems Division (ISD) Users Guide, in the RS/1
manual, and from Systems personnel, the fact that it is to
be found piecemeal at different points makes setting up
hardcopy output cumbersome and time-consuming for the
average user.

In addition, the user may want to choose between hor-
izontal and vertical orientation, regular and pretty printing,
or decide between the printers and plotters in the users’ and
operators’ areas.

With the use of modifiers, finally, RS/1 allows tem-
porary changes in the appearance of a data object. For ex-
ample, the use of the modifier “NOCOLNUMBERS” may

Proceedings of the Digital Equipment Computer Users Society

65

have the effect of displaying a table without column num-
bers, and the use of the modifier “BOX” will produce box
lines around a graph, a bargraph, a piechart, or a three-
dimensional plot. Each data object in RS/1 has a differ-
ent list of modifiers which appears separately in the three-
volume RS/1 manual.

All of this know-how from the ISD Users Guide, the
RS/1 manual, and the Systems Group has been put into a
single menu-driven and user-friendly interactive program.
By enabling users to make a variety of choices with simple
“yes” or “no” answers to prompts, the task of temporarily
changing the appearance of RS/1 data objects and setting
up hardcopy output is considerably lightened.

The development of this interactive program is viewed
as a major step toward improving the productivity of com-
puter users at GA through the customizing of third-party
software.

The Program

The subject of this paper, the interactive program
called $SHARDCOPY, is written in RS/1’s Research Pro-
gramming Language (RPL). $HARDCOPY consists of 14
RPL procedures, including a procedure which can be in-
voked outside $HARDCOPY and that provides a glossary
of procedures, arguments, variables, and tables used in
$HARDCOPY, as well as a version history. Figure 1, shown
below, enumerates the three versions of the program which
have been released since May of this year.

Apart from matters of documentation, the most im-
portant changes in Version 1.1 and 1.2 had the effect of

Anaheim, California— December 1985



shortening the system response time. The latter is defined
as the time span! between the moment the user enters a
command the the moment a complete response is displayed
on the screen. This improvement in efficiency was accom-
plished by eliminating array arguments, and the results
have been verified by comparison testing.

VERSION HISTORY

VERSION DESCRIPTION RELEASE
NUMBER DATE
1.0 Initial version MAY-85
11 Added: Menu of useful hints; glossary of procedures, JUN-85
arguments, variables and tables used in $HARDCOPY;
effective ranges for reducing height and width of
graphic data objects for “hardcopy output® and for
“display on terminal.”
Shortened: Response time to some prompts by avoiding
use of array arguments in parts of the program.
1.2 Added: $SHARDCOPY version history; capability to OCT-85

exit $SHARDCOPY with original terminal setting;
expanded lists of available laser printers, LA50 and
LA100 printers column widths, and DEC LP26 lineprinter
locations.

Included: “Model” in list of data objects to print or
plot.

Shortened: Response time to most prompts by avoiding
use of array arguments throughout the program.
Improved: The display of menus.

Figure 1

The testing in this case consisted of a program com-
prising two RPL procedures, INITIATE and COMPUTE,
with the second having five one-dimensional array argu-
ments A, B, C, D, and E, each of length k. The compu-
tation performed in COMPUTE involved an evaluation of
three conditional branching statements of the type IF ...
THEN ... ELSE; one FLOOR and one MIN function evalu-
ations; 2 + 5k multiplicative operations (addition, subtrac-
tion, multiplication, division); and five ALLOCATE com-
mands. The procedure INITIATE contained the following
brief series:

X = <FPN>;

TYPE X;

CALL COMPUTE (A,B,C,D,E);
TYPE X;

where <FPN> equals any floating point number.

The time span between the two successive displays
of the X value is the amount of time, Ty, needed to call
the procedure COMPUTE with the array arguments A, B,
C, D, and E. To determine T; on a VAX computer, we
used an automated system response timer SYSMON which
utilizes the built-in clock of an IBM PC to measure response
time on the VAX. Table 1, reporting odd-numbered runs,
summarizes the results obtained on a VAX-11/785 running
under VMS 3.5, for the case where k = 1. Table 2, on the
other hand, reports even-numbered runs in the same way.
Table 2 differs from Table 1 in that array arguments are

66

excluded in COMPUTE calls. Odd- and even-numbered

runs follow each other in order to make comparable pairs.

TIME IN SECONDS ( T, ) FOR CALLS OF "COMPUTE" WITH
5 ARRAY ARGUMENTS EACH OF LENGTH =1

RUN DAY1 DAY2 DAY3 DAY4 DAY5 DAY 6 DAY7 OVERALL
NUMBER AVERAGE
(ODD)
1 451 7.42 4an 7.03 4.01 7.96 4.94
3 440 4.61 363 527 291 577 373
6 462 521 478 6.20 4.12 7.9 357
7 4.89 5.50 379 8.62 3.96 456 324
9 4.61 456 291 9.66 379 5.65 440
1 462 4.84 3.07 10.18 3.19 6.21 5.66
13 5.10 3.90 3.18 840 352 5.66 1071
15 494 4.34 341 8.46 3.52 5.88 401
7 5.00 412 2.88 6.42 4.06 478 456
19 472 423 288 598 379 5.56 373
AVERAGE 474 4.87 346 7.61 369 5.97 4.86 5.03
Table 1
TIME IN SECONDS ( T, ) FOR CALLS OF "COMPUTE" WITH
NULL ARRAY ARGUMENTS
RUN DAY1 DAY2 DAY3 DAY4 DAY5 DAY®6 DAY7 OVERALL
NUMBER AVERAGE
(EVEN)
2 0.50 0.77 0.66 071 0.55 072 110
4 0.49 0.49 0.50 0.55 0.66 0.49 0.55
6 0.55 0.60 0.60 0.50 0.66 0.50 0.55
8 0.50 0.49 0.49 137 0.55 077 0.55
10 0.60 0.50 0.66 0.65 0.60 0.50 0.65
12 0.55 0.49 0.49 049 0.55 0.49 0.83
14 0.55 0.50 0.55 0.60 0.65 0.61 0.61
16 0.55 0.50 0.60 0.55 0.66 055 0.66
18 0.56 0.54 0.50 0.66 054 049 0.61
20 0.49 0.55 049 0.55 0.60 0.61 07
AVERAGE 0.52 0.563 0.54 0.65 0.59 0.62 0.67 0.59
Table 2

The results show that by eliminating array arguments,
an eightfold improvement in average response time is
achieved (5.03 versus 0.59 seconds).

Typical Series of Prompts

After entering RS/1, the program is invoked with
CALL $HARDCOPY

from # prompt. Figure 2 shows a typical series of prompts
that follows the invocation of §HARDCOPY. The first re-
sponse identifies the current version of the procedure. The
response regarding LOCAL HELP in the USEFUL HINTS
menu reminds the user that the context-sensitive nature
of local help in RS/1 system has been extended into this
program.

$HARDCOPY deals with the seven data objects listed
in the PRINT/PLOT menu in different ways as appropri-
ate. The choice of BARGRAPH from the PRINT/PLOT
menu in Figure 3a leads to the prompts shown in Figures
3a through 3c.



INVOCATION OF $HARDCOPY

# CALL SHARDCOPY <RET>
SUSBBTENBIBIRBBRTRIBBBORRS
$HARDCOPY Version 1.2

L Y R R R R Y Y Y Y

Do you wish to see introductory screen or menu of useful
hints? [YES] <RET>

Introductory screen? [YES] N <RET>
Menu of useful hints? [YES] <RET>

USEFUL HINTS
1 How to EXIT AT ANY TIME
2 DEFAULT CONVENTION
3 How to obtain LOCAL HELP
4 EXIT

Enter choice: [1] 3 <RET>

LOCAL HELP

To obtain local ( context-sensitive ) help to any prompt,
enter “?°. For example, when you are at the following prompt

Enter ROWHEIGHT: [2]

and it is not clear to you what ROWHEIGHT means, simply
enter “?° and press <RET> and you will get the following
assistance.

Expands cell height by number of rows indicated by expression
After this message the same prompt is repeated.

USEFUL HINTS
1 How to EXIT AT ANY TIME
2 DEFAULT CONVENTION
3 How to obtain LOCAL HELP
4 EXIT

Enter choice: [11 4 <RET>

Figure 2

In Figure 3b it may be noted that $SHARDCOPY
provides the user with effective ranges for reducing height
and width of graphic data objects for “hardcopy output”
and for “display on terminal” in anticipation of equipment
limitations.

All figures and tables in this paper were created using
ISSCO’s graphics software package TELLAGRAF, whereas
the text portion was processed using the computer typeset-
ting software TEX.

Acknowledgments

The author wishes to acknowledge the invaluable as-
sistance received from Jim Binder and Dave Rapp, both
of ISD. To the first the author is indebted for advice on
documentation techniques, and to the second he owes much
thanks for developing the SYSMON measuring tool for
monitoring system response and applying it for this study.

Reference

L The Economic Value of Rapid Response Time, IBM pub-
lication GE20-0752-0 (November 1982).

67

TYPICAL SERIES OF PROMPTS FOR A BARGRAPH (1 OF 3)

DATA OBJECTS TO PRINT/PLOT

PROCEDURE
BARGRAPH
PIECHART
GRAPH
THREED
EXIT

Enter choice: [1] 4 <RET>

ONOODWN

Display list of bargraphs? [YESIN <RET>
Enter name of bargraph: ABCEE <RET>
Is your terminal in the following list of high resolution terminals?

VT125

GRAPHON
TEKTRONIX 4010
TEKTRONIX 4105
TEKTRONIX 4662

If yes press <RET> else type no (n): [YES] N <RET>

Display on VT100 series (excluding VT125) of bargraphs and
graphs with less than optimal quality is possible. For piecharts
the quality of display will be only marginal, and for threeds it
is unusable.

Is your termineal in VT100 series? [YES] <RET>
Display bargraph? [YES] N <RET>
Modify default bargraph? [YES] <RET>

BARGRAPH MODIFIERS THAT CAN BE CHANGED

1 TITLE or HEADER (Exclude)

HEIGHT or WIDTH (Modify)

BOX (Inciude)

NOTES (Exclude or Postpone)

BRAGRAPH KEY (Exclude or Postpone)

BARGRAPH KEY (Change Location)

| or D TICKS (Display either one)

IE;n_lg D TICKS (Display both or neither)
|

Enter choice: [1] 2 <RET>

CONOOLWN

Figure 3a



TYPICAL SERIES OF PROMPTS FOR A BARGRAPH (2 OF 3) TYPICAL SERIES OF PROMPTS FOR A BARGRAPH (3 OF 3)

Effective range for hardcopy output: With horizontal orientation, there are two possibilities:

0.40 <= HEIGHT, WIDTH <=1 o Character size: 1/16 inch ( regular printing )
Effective range to display on terminal: o Character size: 1/8 inch ( pretty printing )
0.65 <= HEIGHT, WIDTH <=1 Regular printing? [YES] <RET>
Enter HEIGHT: [1] 0.3 <RET>

HEIGHT may not be less than 0.40. Otherwise program 1 In users area
will fail to plot or display the bargraph 2 In operators area

. 3 In 16-125 (for permission call x 3986)
Enter HEIGHT: [1] 0.6 <RET> 4 Display queues

Enter choice: [1] 4 <RET>
QUEUES FOR LASER PRINTERS

AVAILABLE LASER PRINTERS

Do you intend to display bargraph? [YES] <RET>

HEIGHT may not be less than 0.85 if you intend to
display the bargraph

11
Enter HEIGHT: [1] 0.7 <RET> 2 l':\l:)speerrsa:(r)?se area
Enter WIDTH: [1] 0.8 <RET> i lEn,(ﬂc’th areas
BARGRAPH MODIFIERS THAT CAN BE CHANGED Enter choice: (11 <RET>

1 TITLE or HEADER (Exclude) Queue for laser printer in users area:

2 HEIGHT or WIDTH (Modify) CURR 4121 KEVORKIAN DECUSBAR6 PRI =4 12-SEP-85 SIZE = 3
3 BOX (Include)

4 NOTES (Exclude or Postpone)

5 BRAGRAPH KEY (Exclude or Postpone) AVAILABLE LASER PRINTERS

6 BARGRAPH KEY (Change Location) 1 In users area

7 lor D TICKS (Display either one) 2 lnuoperators area

g IE;?TS’ D TICKS (Display both or neither) 3 In 15-125 (for permission call x 3986)

4 Display queues

Enter choice: [1] 9 <RET> Enter choice: [1] <RET>

Display modified bargraph? [YES] N <RET>

AVAILABLE OUTPUT DEVICES Bargraph plotted. Any more bargraphs to plot? [YES] N <RET>
1 LASER
2 PRINTRONIX DATA OBJECTS TO PRINT/PLOT
3 CALCOMP 1 TABLE
4 DEC LP26 2 MODEL
65 PRINTER AT TERMINAL 3 EFA%(G:%D%!RE
APH
Enter choice: [1] <RET> 5 PIECHART
6 GRAPH
Vertical orientation? [YES] N <RET> Z; P)!?TEED

Enter choice: [1] 8 <RET>
Figure 3b
Figure 3c

68



PRO: A Multiple Priority, Multitasking Process Control System and Language
as Implemented in an Inhalation Exposure Facility

Edwin R. Lappi and Leon C. Walsh, Il
Inhalation Exposure Group
Northrop Services, Inc. — Environmental Sciences
Research Triangle Park, NC

ABSTRACT

A number of vendors offer process control systems and software for the
manufacturing environment. PRO is one such system and language that runs
on an LSI 11/23 CPU. This paper discusses PRO’s implementation in a small
animal inhalation exposure laboratory as the control system for pollutant

concentration profiles in environmental exposure chambers.

In particular,

this paper addresses PRO’s ability to control the generation of smoke
obscurants for a study evaluating the potential human health hazards of
these obscurants. Also, the acquisition of chamber environment data during

the exposure is described.

INTRODUCTION

Northrop Services, Inc. - Environmental Sciences (NSI-ES)
conducts animal inhalation exposure testing under contract with
the U.S. Environmental Protection Agency. One current project is
the whole-body inhalation exposure of small rodents to an aerosol
generated from 10-weight motor oil. The oil aerosol can be field
generated at sufficient concentrations to be an effective smoke
obscurant for troop movements or other military activities.
Evaluation of the health effects of repeated acute and subchronic
exposure to this aerosol, which might occur during troop training
exercises, is the overall goal of the project.

Operation of a facility for scientific testing involving animals
is, at best, an extremely complicated undertaking. Critical
considerations include the environmental control systems, animal
housing and care, specific research protocols, and the actual
testing procedures to be implemented. This paper addresses the
operation of the exposure system, specifically the monitoring and
control of pollutant levels during an animal inhalation test.

The aerosol particles are generated from the bulk oil using a
vaporization/condensation technique that produces particles
approximately 1.0 to 1.3 um in diameter. The concentration of the
aerosol in the exposure chamber is monitored with a real-time
aerosol monitor (RAM-1, GCA Corp., Bedford, MA) equipped with
a diluter to allow high concentrations to be effectively sampled.
Since a complete regimen of toxicological tests must be conducted
on a population of animals large enough to yield statistically
significant results, the exposure facility consists of multiple
chambers, each equipped to generate and monitor the oil aerosol
atindividually controllable levels.

Operation of this exposure system requires that all critical
parameters be continuously monitored and controlled within
limits established by the study protocol. Items to be monitored
include oil aerosol concentration within the chamber; aerosol
particle size; chamber air flow, temperature, and negative
pressure with respect to the laboratory; temperature of the two
heaters contained in the generator; three separate temperature
limit sensors; the inlet air conditioning unit; and the chamber
exhaust system. As shown here, this is an extremely complex
system — hence the rationale for utilizing automated control
wherever possible to ensure the concise, repetitious exposures
required for long-term research projects.

Proceedings of the Digital Equipment Computer Users Society

69

EXPOSURE FACILITY

A special laboratory facility was constructed for the project.
The exposure facility consists of an exposure control laboratory,
exposure room, necropsy room, shower room, and three total-
exhaust animal rooms [1,2]. Only the first two rooms, the
exposure control laboratory and the exposure room, are of
concern in this paper. The room layouts are shown in Figures 1, 2,
and 3. A barrier separates the exposure control laboratory from

4

Inhalation Exposure Room

Inhalation Exposure
Control Laboratory

Figure 1. Exposure Facility Floor Plan.

[

To

ExposureTl 4 __| Shower| |f,,
3 Control —==—=
Room
1 1 1 1

L}

r

1

To :
2 2 Post- |4 6

Exposure :

To Animal |

" Room
Quarantine

and Pre-
Exposure
Animal Rooms

Legend:

1. Exposure Chamber 4. Wall Cabinet
2. Control Chamber 5. Sink

3. Chiller 6. Pass Through Window

Figure 2. Exposure Laboratory.

Anaheim, California- December 1985



n

T

Entrance

ﬂ 10
'Q‘ al
To 18]

Exposure

Room

Legend:
1. Exposure Control Panel 7. High Pressure Liquid Chromatograph Terminal
2. Chiller Control Panel 8. Casework
3. Recorder 9. Wall Cabinet
4. Gas Chromatograph 10. Sink
5. Gas Chromatograph Terminal 11. Pressure Monitoring System
6. High Pressure Liquid Chromatograph 12. Instrument Parts Storage

Figure 3. Exposure Control Laboratory.

the exposure room. All air lines and electrical connections for the
exposure monitors and control devices pass through sealed
bulkheads attached to the barrier wall. The top half of the barrier
is constructed of plate glass windows to allow visual inspection of
the exposure room from the exposure control laboratory and vice
versa.

The exposure room contains six stainless-steel Rochester
chambers for whole-body exposure of small animals. Four
chambers are used for pollutant exposures, and two chambers are
used for control animals. The system’s design, even prior to
automation, allows the use of any one or any combination of the
exposure chambers simultaneously; this provides a high degree of
flexibility in chamber operations. The exposure control laboratory
contains the exposure control panel, scientific instrumentation,
and the control computer.

SYSTEM OVERVIEW

The basic requirements for the control and monitoring
system follow:

® on-line interactive, multiple priority, and multitasking
operation;

® ease of use by the scientist involved with the exposures;
and

® modular construction.

For this application, availability for quick implementation
was also necessary, as time constraints were rather severe. Writing
the tasks by using machine language subroutines for data
acquisition and control tasks and by using FORTRAN for the other
tasks operating under RSX or even RT-11 would have been a
possibility, except for these time constraints. These constraints did
not allow for adequate design and testing of user-written
software, even though the necessary expertise was available.

Since most of the control and monitoring requirements fall
under the domain of process control-type operation, a search was
conducted for a suitable process control operating system and
language available for use with readily obtainable, reliable
hardware.

SYSTEM DESCRIPTION

The process control unit, named PROSYS |, is fabricated and
assembled by the Adaptive Data Acquisition and Control
Corporation (ADAC, Woburn, MA) using a DEC LSI 11/23 CPU with

70

256 K bytes of memory, which is custom designed for industrial
process control. Peripheral devices include a printer (DEC LA-120),
a terminal monitor (Lear Seagler ADM-5A), a dual floppy disk
system (DEC RX02), and a ceiling-mounted large video monitor
(19-in. Sony Trinitron Model CVM1900) (see Figures 4 and 5). The
computer is interfaced to monitor the following system functions:
chamber temperature, Vycor heater temperature, heat tape
temperature, chamber negative pressure, generator nitrogen
flow, and RAM-1 concentration sensing for each chamber. The
computer system is interfaced to control exhaust blower speed,
temperature on/off relays, and oil flow to the generator (see
Figure 4).

Video
Monitor

Video
Terminal

DEC
LSl 11/23
256 KB

Memory

—————— e e

Disk
Drive

Printing
Terminal

r————L———

- - ———— —————

-

Chamber
Temperature
Vycor Heater
Temperature
Pollutant
Concentration
Readings from
the Real Time
Aerosol Monitors
(rams)

CPU Inputs
CPU Outputs

Vycor Heater
Power

Heater Tape
Power

Control Panel
Reset Relays

0il Flow Control
Voltages

Over-Concentration
Relays

0il Solenoids
PID Control
Loop Outputs

o o e e e e e e e —— = —————— ——

—— — ——— ————— -
Chamber #1
(typical for 4)

Figure 4. Automated Control System Configuration.

Systel

Monitor
Terminal

DEC LA 120
Decwriter

m

(printer)

Channel \ Channel
10 Fal
ADAC 1012 EX AD
32 SE Channels ADAC 1750 1/0
1601 General
Purpose Timer
6 DA Boards

ADAC 1412 DA
24 Channels

ADAC 1616 HCO
1 Channel 16 Bits
High Current Outputs

RXV21

ADAC 113 DEC
Low Level AD - L§5Is1 ."(/323 g
64 Channels
Memory
ADAC 1616 CCI
2 Channels 16 Bit/Ea
DEC DLU-11J
Contact Closure 4 Channels
Inputs
Channel Channel
3 1
Ceiling
Mounted Video
Status Modem

Monitor

2 RX02
Floppy
Drives

P

NCC-1BM

Figure 5. Hardware Configuration.



SOFTWARE

PRO (developed by Staff Computer Technology Corp., San
Diego, CA) is a memory resident, multiple priority, multitasking
process control and monitoring software package. PRO can
handle up to 256 tasks concurrently. User statements may be
entered from the system terminal or from off-line storage media.
Statements may be added, listed, deleted, and changed while
other activated tasks (programs) are executing. Four main
elements: compiler, operating system, run time program, and I/0
drivers, provide everything that is necessary to accept user
statements written in PRO.

Compiler

The compiler is an interactive incremental compiler that
examines each program statement as it is entered for syntax and
sequence errors. It then either accepts and compiles the statement
or immediately notifies the programmer of an error by a
diagnostic error message that requests correction of the
statement. This interactive attribute makes PRO easy to learn,
program, and debug because the programmer is immediately
made aware of an error. Additional checks are made after all
statements have been incrementally compiled to further reduce
the possibility of program errors. A full discussion of the
advantages of PRO’s compiler and a comparison of it with the
batch compiler and interactive interpreter can be found in an
article by Benton [3]. (Also, see Figures 6, 7, and 8.)

Compile Run
Program * @
Definition Examine l

Mach. Code
‘ for Error Execute
Code ] Mach. Code
Source
Program Yes Y
>
* No
Load ‘ No
Compiler
Store ¥ Yes
* @ Statement
Enter
Source ¥
Statement Last No
Statement >® .
? Edit
Yes
~ f Yes ®
Examine ‘
*4-——-' Mach. Code
for Error Edit
Examine . Enter Source
Statement Correct Statements
for Error Statement Yes
¥ A - }
Yes@ @
e ¥ No
y No
Translate
Statement
into
Mach. Code

Figure 6. Interactive Incremental Compiler.

71

Compile —
Program Examine
Definition Source
for Errors
V v
Code
Source Y_eﬁ
Program
Loa¢_:| Store
Compiler Object Run
* Program
(7 Load
Load Object
Source ( Done > Proi;ram
Examine o Run
Mach. Code rogram
for Errors '
1]
No
Yes -
~®
¥ No Edit ¥
Translate @ @
Source into
Mach. Code *
! Load
oa
Yes Editor
-3
¥
Correct
No Machine
| Readable
Source

]

@

Figure 7. Batch Compiler.

Operating System

PRO provides a complete stand-alone operating system for
scheduling, setting priorities, allocating system resources,
implementing general “housekeeping” routines, and monitoring
the operation of the system.

PRO operates as a multitasking system, i.e., it is capable of
handling numerous tasks concurrently. User-assigned priorities
control the scheduling of these tasks. The operating system
controls execution by suspending low priority tasks until high
priority tasks have been executed or suspended.

Run Time System

PRO’s run time system is the collection of programs required
to execute both the system and user tasks. Run time includes
system initialization, processing of alarms, and detection and
interpretation of errors in the executing task.



Compile Run
Program @
Definition *
‘ Fetch
Source
S%:?:e Statement
Program ¥
* Interpret
Load Statement
Interpreter *
—0) Check
Enter Ef°'
Source rror
Statement
y No
I I Execute
Examine Enter Statement
Statement Correct
for Error Statement
[] Edlt
0 Yes
Edit { No
v No Source
Store Statement
Source

Statc;ment @
@

Figure 8. Interactive Interpreter.

PRO provides the ability to modify or fine tune tasks on line
while all other unrelated tasks are still being executed on the same
system. The operator may examine any input, change any output
variable, or completely activate or deactivate any task or /O in real
time.

The PRO editor enables the computer to list programs in
their alphanumeric <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>