
-

____.;

-

____,

____,

USA FALL 1986

PROCEEDINGS OF THE DIGIT AL EQUIPMENT COMPUTER USERS SOCIETY

D

E

c

u I--+-

s I--
I

4

;-

~

25th SILVER
ANNIVERSARY

]

[Q]
DEC US

PROCEEDINGS
OF THE

DIGITAL EQUIPMENT
COMPUTER USERS

SOCIETY

USA FALL 1986

Printed in the U. S.A

"The following are trademarks of Digital Equipment Corporation"

ALL-IN-1 FALCON Q-bus
BASEWAY IAS Rainbow
DATATRIEVE LAlOO RSTS
DEC MASSBUS RSX
DEClab MicroPDP-11 RT
DECmate MicroPower/ Pascal UNIBUS
DECnet Micro/RSX VAX
DECpage MicroVAX VAXcluster
DECSYSTEM-10/20 Micro VMS VMS
DECUS PDP (et al) VTIOO (et al)
DECwriter PDT Work Processor
DIBOL P/OS WPS-PLUS
Digital logo Professional

Copyright "'DECUS and Digital Equipment Corporation 1987 All Rights Reserved

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation or DECUS. Digital
Equipment Corporation and DECUS assume no responsibility for any errors that may appear in this document

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DEC US PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER PRODUCT
WILL NOT CONTAIN TECHNICAL DATA/INFORMATION THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNEDBYTHE U.S. DEPARTMENT
OF STATE'S INTERNATIONAL TRAFFIC IN ARMS REGULATIONS(JTAR)."

DECOS and Digital Equipment Corporation make no representation that in the interconnection of products in the manner described herein will not infringe on any existing
or future patent rights nor do the descriptions contained herein imply the granting of licenses to utilize any software so described or to make, use or sell equipment con­
structed in accordance with these descriptions.

Ada is a trademark of the U.S. Government XEROX, and XNS are trademarks of Xerox Corporation, IBM, PROFS. PC-XT, and BITNET are trademarks of International
Business Machines Corporation, UNIX is a trademark of AT&T Bell Laboratories. CP/M, PUI are trademarks of Digital Research, Inc., MS-DOS is a trademark of Mi0-
rosoft Corporation, TSX-PLUS is a trademark of S&H Computer Systems Inc, R BASE.4000 is a trademark of Microrim, Intel 8088 is a trademark of Intel Corporation,
LOTUS 1-2-3 is a trademark of Lotus Development Corporation, MULTIPLAN is a trademark of Microsoft Corporation, Mylar is a trademark of E. l DuPont deNemours
& Co., PLOTLN is a trademark of Image Research and Compugraphic Corporation, MUMPS is a trademark of Massachusetts General Hospital Macintosh is a trademark
and licensed to Apple Computer. Inc., Multibus is a registered mark of Intel Corporation, 8086 is a trademark Intel Corporation, VEN IX is a trademark of Ventur Com, Inc,
Appletalk, and Apple II are a trademarks of Apple Computers. Inc., INGRES is a trademark of Relational Technology, Inc, Scribe is a trademark ofUnilogic Ltd, Uni LINK
is a trademark of Applitek, HYPERchannel is a trademark of Network Systems Corporation, TI way is a trademark of Texas Instruments. Inc, TCP/IP is a trademark of
Darpa, 32000 is a trademark of National Cyber 180 is a trademark of Control Data, Modbus is a trademark of Gould. Inc, 68000 is a trademark of Motorola, Inc.

The articles are the responsibility of the authors and therefore, DECOS and Digital Equipment Corporations. assume no responsibility or liability for articles or informa­
tion appearing in the document

The views herein expressed are those of the authors and do not necessaily express the views of DECUS or Digital Equipment Corporation.

TABLE OF CONTENTS

ARTICLE

ARTIFICIAL INTELLIGENCE SIG

Performance in the Evolution of Lisp as a General­
purpose Language

PAGE

Richard P. Gabriel . 1

A Distributed Knowledge Network Model
Steven Hughes..................................... 7

Knowledge Representation Issues
Rebecca Wise. 13

BUSINESS APPLICATIONS SIG

Applications Software Design for the Multi-lingual
Environment
Paul Mistretta, Phil Racine. 21

COMMERCIAL LANGUAGES SIG

Guidelines For Writing VAX COBOL Program Generators
Ray Davis . 29

DATA ACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

MicroVAX Ancillary Control Process for Realtime Human­
Machine Interface
Thomas Kane. 35

A Distributed Data Base For Real Time Data Acquisition and
Process Control
David McGuigan, Robert Carey . 39

MicroVAX II Image Processing Tutorial
John Molinari. 47

Real Time Throughput of MicroVAX II and Micro VMS
Richard K Somes . 51

Speakeasy: An Interactive Data Analysis Tool for the
Research Scientist
David H. Saxe. 83

Real Time Acquisition Using the C Language
J-F Vibert ... 95

An Investigation into the use of ELN in a Multiprocessor
Compute Engine
Thomas Turano 103

DATA MANAGEMENT SIG

Data Normalization
Pamela A Valentine 113

Data Engineering
Jam es R. Yoder 123

DATATRIEVF)4GL SIG

Advanced DATATRIEVE Record Definitions
Bart Z Lederman 129

Managing ALlrIN-1 with DATATRIEVE
Bart Z Lederman 139

Uses of Accent R
Winston Tellis 149

ARTICLE PAGE

EDUSIG

MAKA CT: An Account Maintenance Program for Large VAX/
VMS Environments
Pat Feldner, George Stefanek 161

Printing Across the Network
Ray Peterson, Mark Draughn, George Stefanek 165

Faculty/Student Communications by Computer
Claude M. Watson 167

Planning, Implementing and Managing a Comprehensive
Campu~ Wide Network
Don Shehi ... 175

CMU Tutor
Bruce A Sherwood 179

Microcomputers: Support And Other Issues
David V. Cossey 181

State of Washington School Network
Al Huff ... 187

Enhancing Campus and Community Communications Through
Voice, and Video Telecommunications
J. D. Thomas 191

Data Management System For Academic Instructional
Planning
Lisa M. Rotunn~ Edward C Hohmann,
James A Rounds 195

GRAPHICS APPLICATIONS SIG

What is Postscript?
Ann Robinson 207

Halftone - A Program For Converting Grey-Scale Images to
Halftones
Robert Goldstein, Eli Pel~ Karl Wooledge 209

A Graphics Editor for 3-D CT-Scan Data For Musculo­
Skeletal Modeling
L M. Myers, W. L Buford, Jr, D. E. Thompson 213

Simplified User Interface for Technical Systems
Charles S. Janik. 219

Portable Graphics Packages for the C Language
J- F Vibert, J- N Albert, M. Rousseaux 225

HARDWARE AND MICROS SIG

Giving the PDP-11/73 a Better Image
Clyde L Tyndale and Richard R Waltz 229

A Simple Bootstrap Prom Programmer
Frank R. Borger 249

IAS SIG

REESE BASIC (The Other BASIC)
Frank R. Borger 257

A Multi-Terminal Task
Ted Smith ... 261

ARTICLE PAGE

LANGUAGES & TOOLS SIG

Filling Some Holes in the VAX C Run-Time Library
Wayne E. Baisley 275

Choosing Automated Structured Analysis Tools
June Baker .. 281

A Generalized Coding Standard and Some Associated Tools
E. J. Straub, A L Slavich, C Winter 287

Systems Programming in a High- Level Language
E. W. Sewell. 293

Choosing a Document Formatting System
Richard K Wallace 313

Use of the DEC Test Manager in an ANSI Standard
Maintenance Test Strategy
James Tibbetts. 317

Guided Tour of an Emacs Extension: dired
Peter Kaiser 327

Using the CMS Callable Interface
Glen Del Merritt 331

NETWORKS SIG

Developing a Message Bus for Integrating VMS High Speed
Task to Task Communications
Glen Macko .. 339

Network Print Servers
Robert E. McGee, W. V. Dixon 349

Using the KXTil-CA as an Intelligent Communications
Controller
Arthur Hartwig 357

Development of a Packet Switch Exchange
Arthur Hartwig Danny Smith 365

DMI Tutorial and Design Approaches for a VAX..DMI Front.
End
Roger Russ .. 369

TransLAN Technical Product Overview and Network
Configuration Guidelines
Michael R Coker 375

MAP/ OSI Protocol Package for VAX Computers
Stan Froyd .. 393

Utilizing the VAXcluster as a Network Hub
John Dennis 399

OFFICE AUTOMATION SIG

Development of an In-house Training Program
Jennifer L Rieck 405

From User Documentation to Sharing Information: Problems
and Solutions in User Communications
Daniel Barrett 407

PERSONAL COMPUTERS SIG

Remote Operation of the DEC Rainbow using MS.DOS
Larry D. Scott 415

Advanced PRO Toolkit
Robert Uleski 427

ARTICLE

RSX SIG

Lotus Blossoms Under RSX-HM-PLUS

PAGE

Art Hurst ... 435

How to Get that Upgrade
Denny Walthers 449

Oceanographic Data Quality Control And Distribution
System
Lloyd K Thomas 453

Archiving System for RSX
James R Jackson 457

SITE MANAGEMENT SIG

Organizing. Maintaining. and Distributing Software
Products
Peter Heinicke, Tom Nicinski 463

Developing a Computer Training Program for a DEC/IBM
Environment at DuPont
Marlys Denison 469

Computer Room Design and Construction: A Case History
Brent Teeter P. E. 473

VAX SYSTEMS SIG

Effective use of VAX/VMS Autogen
Dennis L W. Thury 479

Heterogeneous V AXclusters
Frank J. Nagy 489

Primarily ULTRIX and a Little VMS on MicroVAXes
Wendy Rannenberg 493

XDELTA/DELTA Command Strings
RC Leahy .. 501

Trojan Horses, Worms, Viruses, and Robin
Steven Szep 505

A VMS Response Logger- What the Users Think of
Response Time
Robert R Goldstein, Daniel P. R Smith,
Rivkah Stabiner 511

MOBIUS: New Directions in Micro and Host Integration
E. William Merriam 517

VMS File 1/0 Via QIO to an ACP
Al Tyrrill .. 521

The Overseer: An Activity Based Resource Management
System for VAX/VMS
Steven G Du~ Joseph W. Fiedeldey 531

Ins and Outs of VMS Shareable Images
Ted A Marshall. 535

A New Technique for"System Performance Evaluation''
Schumann Rafizadeh 541

Programming with The VAX/VMS Screen Management
Routines
Michael D. Orosz 545

A VMS Facility for Data Encryption to the Data Encryption
Standard
John Yardley 553

VAX Network Backups
D. G. Darkangelo 557

POSTER PAPER

Creating Common Spooled Resources in a V AXcluster
Bob Rasmussen, Bob Nestor 565

FOREWORD

This Proceedings is published by D ECUS (Digital Equipment Computer Users Society), a world-wide society of users of
computers, computer peripheral equipment and software manufactured by Digital Equipment Corporation The U. S.
Chapter of DECUS has approximately 50,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on locai national and
international levels to fulfill its primary functions of advancing the art of computation and providing a means of
interchange of information ideas among members. Two major technical symposia are held annually in the United
States.

For information on the availability of back issues of Proceedings as well as forthcoming DECUS symposia, contact the
following:

DECUS U. S. Chapter
219 Boston Post Road BRl2
Marlboro, Massachusetts 01752-1850

All issues of past Proceedings are available on microfilmfrom·

University Microfilms International
300 North Zeeb Road
Ann Arbor, MI 48106

PREFACE

This volume of the Proceedings contains papers which
were presented at Symposia sponsored by the Digital
Equipment Computer Users Society during the Fall
and Winter of 1986. It includes submissions from the
Fall National Symposium

The Fall 1986 Symposium was held at the Moscone Con­
vention Center in San Francisco, California, from
October 6 through 10, 1986. 6425 DECUS members
attended the Fall Symposium in San Francisco, just 33
shy of a new record They took part in birds-of- a­
feather sessions, pre- symposium seminars, and over
1000 presentations made by both DECUS members and
Digital All of the papers within this volume were
presented at that symposium

The Mark Twain adage, "the coldest winter I ever saw
was the summer I spent in San Francisco," didn't hold
true for DECUS; San Francisco was in an Indian
Summer the week we visited The city (known to its
natives as" The City") welcomed DECUS heartily; the
only problem with the great success of this meeting was
the lack of anticipation of our own success! Moscone
Convention Center made for quite cramped quarters,
and the huge number of attendees stretched the
boundaries of each meeting room to their utmost

Of the more than 75 papers in this volume, one-third
were produced using the TeX document preparation
system with Barbara Beeton's DeProc package. This

provides a consistency and quality of document that
has not been seen since the Proceedings were re- typed
by hand on an IBM Magnetic Card Composer twenty
years ago. As these DECUS Proceedings continue to
mature, it is clear that machine-readable copies will be
available in the near future. The new DECUServe
project, aimed at bringing DECUS members together
through electronic maiL database, and conferencing
systems, would be a logical candidate as a distribution
medium for future electronic editions of the Proceedings.

My thanks on behalf of the attendees of the Fall
National Symposium go out to Mr. Joe Angelico and Dr.
Jeffrey Jalbert, the DECUS volunteers who led the
Symposium Committee. They worked together with
DECUS staff members Ms. Nancy Wilga, Ms. Joanie
Mann, and Ms. Gloria Caputo to put together the San
Francisco meeting. The leadership of the entire Sym­
posium Committee is sincerely appreciated For her
special work on the Proceedings, I would also like to
thank my colleague, DECUS staff member Ms. Cheryl
Smith. In addition, it is important for me to express my
thanks to Ms. Judy Arsenault and Mr. Mark Grundler
for their continuing support of this work

Joel M. Snyder
Proceedings Editor
DECUS U. S. Chapter Publications Committee

Papers Presented at

Fan, 1986
National Symposium

San Francisco, California
October 6-10, 1986

Performance in the Evolution of Lisp as a General-purpose Language
by

R. P. Gabriel
Lucid, Inc.

Menlo Park, California

Abstract

Lisp is the premier Artificial Intelligence programming language. It has not been
used as a general-purpose programming language because its performance has been poor.
Modern compilers and modern computers are improving the performance of Lisp so that
it can be effectively used as a general-purpose programming language.

1. Introduction

Lisp was invented about 30 years ago
to serve as the programming language for
artificial intelligence reseach and for rea­
soning about programs. Lisp is a symbolic
language in that the primary objects ma­
nipulated by Lisp programs are symbols or
composites of symbols. Lisp has gained a
reputation for being a slow language be­
cause many Lisps have never been extended
to support a wide range of data types­
programmers have had to emulate them­
and because few Lisp implementors have
concentrated on performance.

However, Lisp is now becoming a lan­
guage with performance within the range
expected of traditional programming lan­
guages. This paper presents some of the
performance issues for Lisp along with how
those issues have been addressed over the
30-year history of Lisp. We will see Lisp as
a language becoming suitable as a general­
purpose programming language.

2. Weak Typing

One of the most striking aspects of
Lisp is that it supports weak typing. Weak
typing requires that objects at runtime,
rather than variables at compile time, have
types associated with them. This usu­
ally requires that the format of objects as
stored in memory be fixed, perhaps with
some variation in representation among the
types.

Proceedings of the Digital Equipment Computer Users Society 1

Everything in a Lisp system is a
pointer, which is an address along with a
tag. The tag specifies the type of the ob­
ject and the tag plus the address specify
the location of the object.

There are a number of techniques for
implementing pointers on special-purpose
machines (Lisp machines) and on general­
purpose machines. One is to have the tag
and the address be separate parts of the
pointer. The Symbolics 3600 family uses
this method-32 bits are set aside for the
address and 4 bits for the tag.

On stock hardware there are a va­
riety of methods for implementing point­
ers, depending on the underlying hard­
ware. A pointer can be split across the
address of the object and the object it­
self: A Lisp pointer can be simply an ad­
dress that points to the object, in which
the tag is stored-usually it is stored in the
first (header) word. To determine the type
of an object the header must be fetched,
which involves a possibly additional mem­
ory fetch. A memory fetch might also incur
the overhead of a page fault, and if the pro­
gram is to simply examine the type of the
object and not access any subparts of the
object, this memory fetch and the possible
page fault are unnecessary overhead.

Another method is to place the tag in
the high-order byte of the address word.
This way there are 8 bits for tag and 24 bits
for address. If the addressing hardware

San Francisco, CA - 1986

ignores the high-order byte, accessing the
object is fast. However, objects of vari­
ous types are scattered through the address
space, and there are only at most 224 ob­
jects of each type. Determining the type
of the object involves a byte extraction and
comparison.

A third method-probably the most
commonly used technique for 32-bit, byte­
addressable architectures-is called 'low­
tag.' In an example lowtag system objects
are stored on double-word boundaries and
pointers are 32-bit words with the bottom
3 bits taken as the tag. The pointer is used
as a byte address that points at some byte
offset from the beginning of the object by
the tag. To access a subpart of the object
requires that an offset whose magnitude is
equal to the tag be added to the pointer.
Because the addition of a constant offset
is frequently supported by the addressing
hardware of the target computer, this oper­
ation is 'free.' If, in addition, the computer
supports word-aligned loads with a hard­
ware exception upon misalignment, type­
checking can be nearly free.

Even in the case that type checking
must be accomplished with inline code, the
relative infrequency of type-checked opera­
tions with respect to the code emitted to
implement the dynamic logic of a program
leads to a minimal slowdown in the fully
type-checked case.

Type-checking at runtime can nearly
be eliminated with the addition of a layer
of strong typing on top of a Lisp. Sev­
eral Lisp dialects-MacLisp and Common
Lisp-support such strong typing.

With the virtual elimination of type­
checking at runtime, Lisp performance can
be nearly as good as any other program­
ming language, assuming that a similar
programming style is adopted for Lisp as
for the other programming language. That
is, programming languages with static or

2

stack-like memory management have an ad­
vantage over Lisp in that Lisp supports a
relatively expensive form of dynamic mem­
ory management. If the Lisp programmer
writes programs that use only static mem­
ory management, the performance differen­
tial between Lisp and procedural program­
ming language will be minimal.

The problem of an inadequate set of
data types has been met over the years.
Lisp 1.5, the first Lisp dialect, had only
5 data types: atoms, fixed precision num­
bers, floating point numbers, arrays, and
CONS cells. Common Lisp has approx­
imately 20 data types, including a user­
extensible record type.

The key to improved performance over
the course evolution of Lisp has been the
increasingly clever uses of data representa­
tions and the increased use of strong typing
by compilers.

3. Garbage Collection

Lisp has provisions for dynamic stor­
age management, which enables program­
mers to write programs that create new ob­
jects dynamically and that abandon those
objects; the storage occupied by objects
that have been abandoned can be reclaimed
by a technique called 'garbage collection.'
In the early literature the problem of how
to reclaim storage allocated but no longer
needed is called the 'erasure problem.'

Two basic techniques have been em­
ployed with many variations on each; one
is true garbage collection in which storage
no longer needed is placed into a free list
of storage, and the other is garbage aban­
donment in which storage in use is moved
from a current allocation area to a new al­
location area.

Garbage abandonment is frequently
referred to as 'stop and copy,' and it has
some additional beneficial features. Be­
cause only storage in use is moved or

copied, the storage not in use is left be­
hind. Copying to a new area compacts the
storage in use-unused storage is typically
found amidst used storage-and the pag­
ing behavior of the program is possibly im­
proved. Because storage is allocated lin­
early within the storage allocation areas,
faster allocation of storage for objects is
accomplished. New objects allocated ad­
jacently in time are allocated adjacently in
storage, so that paging performance is also
improved by this technique.

The essential procedure for both of
these techniques is to stop normal Lisp pro­
cessing when free storage is exhausted and
to perform the action of finding free storage
either by reclaiming now-unused storage or
by abandoning it.

Variations on these techniques gener­
ally involve amortizing the cost of garbage
collection or abandonment over the life­
time of the running program by perform­
ing some small percentage of the task while
normal Lisp processing takes place. These
techniques are called 'incremental' garbage
collection, and when true garbage collec­
tion is the base technique reference count­
ing is usually the incremental variation,
and when garbage abandonment is the base
technique Baker incremental garbage col­
lection is usually the incremental variation.

The Xerox D machines implement ref­
erence counting while the Symbolics 3600
family implements Baker. Because the
3600 family now utilizes a composite tech­
nique called 'ephemeral' garbage collection,
and because very few users of Symbolics
machines enabled the Baker garbage col­
lector when it was the only collection tech­
nique available on the machine, one can
conclude that incremental garbage aban­
donment is not a workable solution. Fur­
thermore, because the Xerox machines are
used regularly with incremental reference
counting enabled, one can conclude that it
is a workable solution.

3

Ephemeral garbage collection is a com­
posite technique; it comprises incremen­
tal Baker collection and incremental gen­
eration scavenging. Generation scaveng­
ing is a technique built, again, on top
of garbage abandonment. The key ob­
servation for generation scavenging is that
Lisp objects that will be eventualy garbage­
collected have very short lifetimes. That is,
if some object is to be abandoned it will be
abandoned soon after it is created. Genera­
tion scavenging performs garbage abandon­
ment in a context that takes into considera­
tion only the most recently created objects.
There are a series of 'generations,' and re­
cently created objects are copied from one
generation to the next as in garbage aban­
donment. If an object is to be eventually
abandoned, it will probably be abandoned
while in one of the generations. Objects
that make it past the last generation are
placed in the permanent heap.

Because generation scavenging is sim­
ply a variation on garbage abandonment, it
can be performed incrementally.

Reference counting requires a reference
count-a small number-to be associated
with each Lisp object, that count being the
number of other Lisp objects that point to
the one in question. If the reference count
is not zero, then the object is in use; if it
is zero, it is not in used and the storage
for that object can be collected. In prac­
tice it is not possible to keep accurate refer­
ence counts-the values can become larger
than most practical storage sizes assigned
to hold such counts-and circular struc­
tures can lead to locally correct but globally
incorrect counts.

No Lisp implementation on stock hard­
ware implements reference counting, but
other garbage-collection-based languages
on stock hardware have used reference
counting.

As it happens, incremental garbage
abandonment is not best suited to stock

hardware, because the techniques require
a change of representation to the Lisp ob­
jects at some point in the collection process,
and the change of representation will not be
made at the same time to all Lisp objects;
the Lisp process will be required to per­
form different operations depending on the
state of the garbage collection. Moreover,
the nature of the representation change also
can result in much worse paging behav­
ior, so that the conditionalization along
with the increased paging activity might
slow down the Lisp process, perhaps to
the point where the incremental time spent
on the conditionalization renders the tech­
nique unusable.

Generation scavenging is a technique
that can be implemented on stock hard­
ware (again, other garbage-collection-based
languages than Lisp implement generation
scavenging) and some major Lisp imple­
mentations may soon implement it to see
whether the amortization of collection over
normal Lisp processing is effective.

The problem with garbage collection
on Lisp stock hardware is not that the
start-to-finish time with a stop-style collec­
tor is worse than the start-to-finish time for
Lisp machines with incremental collection,
it is that the pauses might be either dis­
tracting, frustrating, or intolerbale for real­
time applications.

The main hope for stock hardware is
that RISC technology and large, fast caches
will enable the cycle count for the overhead
steps in incremental collection to be small
with respect to the overhead steps inherent
in Lisp processing. That is, if, for exam­
ple, incremental collection requires 5 addi­
tional instructions to be executed every 50
instructions, the impact of these additional
instructions is minimal if they are single cy­
cle instructions while many of the other 50
are multi-cycle instructions.

4

4. Compilers

Over the evolution of Lisp, compiler
technology has improved dramatically. It is
in this area, rather tha,n in areas of clever
design of Lisp implementations, that per­
formance has been gained for Lisp pro­
grams over against programs in other lan­
guages.

Early Lisp compilers were quite sim­
ple; compilation involved compiling into
machine language the control aspects of
programs-conditionals, function calls and
returns, and GO statements-as well as the
binding of variables. Calls to low level data
structure accessors and modifiers was ac­
complish with function calls. This style
of compilation resulted in these low level
routines being relatively slow, because the
work they accomplished was on the order of
single instructions while the protocol over­
head for function calling is on the order of
tens of instructions.

Numeric processing remained slow for
many years because the representation of
numbers in Lisp was not efficient, and be­
cause there were not good techniques for
strong typing (to eliminate allocating inter­
mediate numeric results in the heap) and
because there were no good techniques for
stack allocation of these intermediate re­
sults.

The first compiler to solve some of
these problems was the MacLisp compiler
in the early 1970's.[White 1970] This com­
piler had sufficient strong typing capabili­
ties to enable programmers to express ef­
ficient numeric code, and MacLisp solved
the stack allocation problem using a tech­
nique called 'pdlnums' (Push Down List
NUMberS). The numeric performance of
code produced by this compiler was bench­
marked at speeds comparable to that pro­
duced by contemporary FORTRAN com­
pilers.

Since then, strong typing has been
applied to type checking situations, so

that not only are the low level data
structure manipulation primitives 'open­
coded '-coded as a sequence of instructions
rather than as function calls-but the type
checking usually necessary before the appli­
cation of the primitives can be eliminated
by reasoning about the types of the vari­
ables at compile time.

The first very high quality Lisp com­
piler was the Sl Lisp compiler [Brooks
1982a], [Brooks 1982b]. This compiler was
the first to do reasonable register alloca­
tion, data fl.ow analysis, binding environ­
ment analysis, and lexical closure analysis.
Furthermore, it was the first compiler to
include a pdlnum analysis phase in such
a way that the fl.ow of information of the
analysis could be understood and modified.

More recently, Lisp compilers have
been able to begin to produce code whose
performance is similar to that of code pro­
duced by compilers for procedural lan­
guages like C.

The following are results from a small
series of benchmarks, which were per­
formed to measure the approximate rela­
tive speeds of C and Lisp in the best of sit­
uations. There are three benchmarks: tri­
angular numbers, the Traverse benchmark,
and the Puzzle benchmark.

The triangular numbers are defined as,

n

T(n) =Li
i=l

In the two programs-one in Lisp, the
other in C-the Lisp code is in a very Lisp­
like programming style, using temporarily
defined functions in place of iteration con­
structs; the C code is an straightforward
iterative formulation of the definition of tri­
angular numbers. The Lisp code is about
30% faster than the C code.

Traverse is one of the benchmarks
from the Gabriel Benchmark suite [Gabriel

5

1985], and it builds a random graph in the
initialization phase and performs a garbage
collection algorithm over it.

The initialization phase-building the
graph-runs 30% faster in Lisp than in C,
while the collection phase runs 20% faster
in C than in Lisp.

The third benchmark is the Puzzle
benchmark; it is one of the classic bench­
marks used both in the Gabriel Benchmark
Suite and in the Pascal/C world. Here C is
17% faster than Lisp.

All that can safely be concluded from
this small benchmark series is that Lisp
in not necessarily large factors slower than
procedural languages.

5. Machine Architectures

The key to faster Lisp systems are
faster processors with fewer cycles per in­
struction and many general-purpose reg­
isters; faster, larger caches, possibly par­
titioned into instruction, data, and stack
caches; and larger, faster memories of at
least 16 megabytes; faster paging disks.

Lisp is not an inherently large or slow
programming language, but with the pro­
gram development features it provides it is
easy to write very large programs. These
large, user-written programs are what drive
the need for larger, faster machines.

6. Conclusions

Lisp is jumping the performance hur­
dle; this hurdle has been one of the reasons
that Lisp has not been the programming
language of choice for general-purpose pro­
gramming. Lisp programs are large, be­
cause it is easy to write large programs.

References

[Brooks 1982a] Brooks, R. A., Gabriel, R.
P., Steele, G. L. An Optimizing Com­
piler For Lexically Scoped Lisp, Pro­
ceedings of the 1982 ACM Compiler
Construction Conference, June 1982.

[Brooks 1982b] Brooks, R. A., Gabriel, R.
P., Steele, G. L. S-1 Common Lisp Im­
plementation, Proceedings of the 1982
ACM Symposium on Lisp and Func­
tional Programming, August 1982.

[Gabriel 1985] Gabriel, R. P., Perfor­
mance and Evaluation of Lisp
Systems, The MIT Press, 1985.

[White 1970] White, J. L., An Interim
Lisp User's Guide, Masachusetts In­
stitute of Technology, Artificial Intelli­
gence Memo No. 190, 1970.

6

A Distributed Knowlege Network Model

J. Steven Hughes
Jet Propulsion Laboratory

Pasadena, California

Abstract

This paper presents a model of a distributed system architecture that promotes
the implementation of knowledge based objects in a data flow network. The
model which is based on the integration of a message passing protocol, data
flow concepts, the object-oriented model, and knowledge base processing, pro­
vides an alternative to a strictly hierarchical network control structure and also
exploits parallelism. The objects manage knowledge bases through the use of
procedures that have been developed using tools and techniques from a variety
of system engineering disciplines such as symbolic processing, data management,
and numeric processing.

Introduction

The need for addressing distributed knowledge base pro­
cessing is evident when one considers the tools that are
now available to the systems engineer. In the area of hard­
ware architecture, advances in microprocessor technology
and the subsequent availabilityof cheap, powerful, and dis­
tributed workstations allow systems engineers to consider
distributed solutions when faced with complex problems.
In the area of software development, Artificial Intelligence
(AI) research has made available a variety of tools and
techniques that have been developed for addressing hard
problems. The emergence of a subdiscipline termed sym­
bolic processing, promotes the use of these tools and tech­
niques. Expert systems for example are no longer limited
to the research laboratories but are commercially available
and readily applied to a wide range of practical tasks.

Increasingly, systems engineers will merge conven­
tional methods, symbolic processing techniques, and dis­
tributed processing in the design and development of sys­
tems. The resultant systems will integrate disparate mod­
ules as well as manage networks that are more sophis­
ticated than the typical distributed processing networks.
These resultant networks will contain more powerful mod­
ules such as expert systems that will interact with one
another in the problem solving process and will need to
know the distribution of network components [5].

In the balance of the paper, a model of a distributed
knowledge network is developed that is based on the in­
tegration of concepts from the object-oriented model, the
data fl.ow model, data management, and the Time Warp
discrete event mechanism. This model supplies a dis­
tributed environment in which a variety of organizational
structures may be implemented. Preliminary to the de­
velopment of the model, there are brief discussions on the

Proceedings of the Digital Equipment Computer Users Society 7

criticality of resource management, a review of computer
processing trends that supply a perspective on the issues,
and a brief overview of the four subject areas. Finally, two
issues that the model addresses are discussed.

Early Lessons

At a recent conference on Expert Data Base Systems, four
early lessons from distributed AI research were presented.
These include 1) the need for more formal software engi­
neering, 2) the criticality of resource managment, 3) that
new solutions result in old and new problems, and 4) the
currently available tools are inadequate. The broad scope
of these lessons reveals both the infancy of the subdis­
cipline of distributed AI and a number of directions for
research. The second lesson, the criticality of resource
management, is briefly discussed to help focus our atten­
tion.

Fox [1] views distributed systems as being analogous
to human organizations and applies concepts and theories
from the management science field of organizational theory
to help in the design of distributed systems. He concludes
that as problems to be automated grow in size, resource
limitations appear which limit the success of the result­
ing implementations. These resource limitations can be
viewed as being caused by "bounded rationality". Refer­
enced as Simon's theory of bounded rationality, it implies
that both the information absorbed and the detail of con­
trol are limited for a single entity in a system.

Fox observes that the encapsulation of both mecha­
nism and information is primary to the proper structur­
ing of an organization. When the resulting concepts from
organizational theory are applied to the design of a dis­
tributed system, five requirements result:

San Francisco, CA - I 986

• the products of the process must be well defined;

• the interactions between processes must be minimal;

• the effects of a process upon other processes must be
understood;

• clear lines of authority must be recognized;

• clear lines of information fl.ow must be recognized.

These five requirements not only focus attention on
some distributed application development issues but also
help define the characteristics of the distributed environ­
ment in which the application is to be implemented.

Computer Processing Trends

From an application point of view, the mainstream usage
of computers is experiencing a trend of four ascending lev­
els of sophistication: data processing, information process­
ing, knowledge processing, and intelligence processing. [2]
Data processing involves data items which are considered
mutually unrelated, such as numbers, character symbols
and multidimensional measures. Next in level of sophis~
tication is information processing, the processing of data
items that are related by some syntatic or relational struc­
ture. Knowledge processing is the processing of informa­
tion items with associated semantic attributes and finally
intelligence can be view as what is gained from a collection
of knowledge items.

These trends help to distinguish the techniques and
~ools currently in use by system engineers. For example,
mformation processing, a critical function in any modern
business, is typified by the processing of information stored
in data base management systems. These systems allow
data items to be stored, updated, and retrieved in an ef­
ficient and useful manner, based on the constraints, rela­
tionships, and specifications stored in a data base schema.

In an AI application, these four trends can also be
considered to be levels of processing that will take place
either in support of or as an integral part of the imple­
mentation. Raw data items will first have to be collected
and validated, relationships determined and implemented
in relational structures, semantic meaning applied either
declaratively or procedurally and ultimately intelligence
gained.

Conceptual Basis

Based on the preceeding discussions, it is apparent that
we need a distributed environment that promotes system
~odula.i:ity, flexibility, and efficiency while allowing the
mtegrat10n of tools and techniques from a variety of dis­
ciplines. The model proposed in this paper attempts to
address these issues and is the result of the integration
of concepts from four subject areas. These include the
object-oriented model, the data fl.ow model, data manage­
ment, and the Time Warp discrete event mechanism. The

8

lesson previously mentioned about new solutions resulting
in old problems, support the use of tools and techniques
from other disciplines whenever applicable. The first three
subject areas are in this category. The Time Warp discrete
event mechanism is a relatively new tool and supplies a
critical item in the integration. In the following we will
briefly discuss each of these areas.

Data Management

Martin [6] states that the term "data base" became popu­
lar about 1970. Since that time, a number of characteris­
tics attributable to data bases have developed. These in­
clude data independence, speedy handling of spontaneous
information requests, nonredundancy, versatility in repre­
senting relationships between data items, security, protec­
tion and real time accessability. He subsequently defines
data management as a general term that collectively de­
scribes those functions of the system that provide creation
of and access to stored data, enforce data storage conven­
tions, and regulate the use of input/output.

Data Management is an important issue in knowledge
processing, since as we have shown above, knowledge is de­
rived from data. For example, an expert system is typified
by the aspects of knowledge representation and search.

Knowledge representation implies the storage of data
syntax, relationships, and semantics. Therefore, one~
knowledge engineering is complete, there exists a data
management aspect of the system whether the knowledge
base consists of rules and facts or any other representa­
tion. In turn, the search aspect of an expert system has
the largest impact on efficiency since in its uncontrolled
form, combinatorial explosion occurs. Solutions to the
combinatorial explosion problem are typically a combi­
nation of more efficient search heuristics and continued
knowledge engineering. The continued knowledge engi­
neering of course increases the data management load.

Object-Oriented Methodology

Where the term data base introduces the concept of data
independence, object-oriented introduces the concept of
both data and procedural independence. According to Ste­
fik and Brobow [7], an object is an entity that combines
the properties of procedures and data since it performs
computations and saves its local state. Some applicable
attributes of the object-oriented model follow. Objects in
an object-oriented environment communicate using mes­
sages that specify the receiving object, a method (proce­
dure) for processing the message, and the data. External
to the object, there is no knowledge of procedural imple­
mentation, data structure, or state. The object-oriented
model also supports data and procedural abstraction and
encapsulation.

Data Flow

The concept of data How has been ingrained in computer
science from the beginning. For instance, early analog
computers with their operational amplifiers and poten­
tiometers were early data flow machines. Later, certain
systems analysis and structured design techniques empha­
sized the creation of data How graphs during the system
analysis phase. Finally data flow hardware architectures
are currently being considered as alternatives to Von Neu­
man machine architectures.

There are several attractive characteristics of the data
How model that will be considered here. The first is the
concept of dependencies. A data How graph typically con­
sists of nodes and arcs where the nodes represent process­
ing and the arcs represent data How and dependencies be­
tween nodes. For example, a simple data How graph with
two nodes A and B connected to a third node C by two
directed arcs toward node C, represents processing in node
C that is dependent on prior processing in nodes A and B.
Most importantly, node C is considered ready for process­
ing as soon as the output from nodes A and B is available.

The next characteristic involves the ease of mapping
many problems onto a data flow architecture. In most
software applications, there will exist several data repre­
sentations and most tasks will require conversions between
those representations. For example, a single user request
in an interactive application may require data from sev­
eral sources. Each of these sources probably has its own
representation and the data will generally require several
conversions before final presentation. These conversions,
considered as events may be expressed as either a series of
filters along a pipeline or a series of objects communicating
via messages [4].

The final characteristics involve parallelism. Data
How is considered an excellent model for exhibiting paral­
lelism. A data flow graph resulting from systems analysis
of a proposed or existing system helps exhibit much of the
inherent parallelism of the system.

Time Warp Discrete Event Mechanism

The Time Warp mechanism [3] is essentially a distributed
operating system specialized for simulation. It uses virtual
time (simulation time) stamped messages to signify when
events are to occur. Objects or processing entities are
dynamically created and destroyed and communicate via
the time stamped messages. There is no required pattern
of communication since objects may send a message to be
received by any other object at the present or any future
time.

Concept Integration - Object-Oriented and Data
Management

Zaniolo, et al [8] have reviewed the research involved with
the "grand unification" of data base technology, the object­
oriented model, and logic programming. The end result

9

of this research is expected to be a powerful expert data
management model which integrates the salient features of
the three subject areas. While the full scope of the research
is no doubt applicable, only a part will be discussed here
in support of our proposed model.

Modern data base management systems typically cen­
ter around a data dictionary. The data dictionary is itself
a data base and consists of meta data (data about data)
pertaining to the data in the target data base. This meta
data can include item and group descriptions, logical data
base description, sources of the data and users of the data.
Typically a data dictionary, especially its schema (logical
data base description), is static in nature. In other words,
once the description of the data base has been specified in
the dictionary, it is not easily changed.

However, the need for more dynamic data dictionaries
is evident in at least two applications areas, CAD/CAM
and knowledge based engineering. For example, in knowl­
edge based applications where knowledge engineering plays
a critical role, the data structures and their descriptions
need to evolve over time. Specifically the cycles of data
base design, dictionary definition and data acquisition are
intertwined and need to be integrated. In other words, a
data dictionary, or the meta data, should be able to be
used as a knowledge base for data base design and plan­
ning.

The paper proposed a knowledge based management
model based on the object-oriented methodology. In this
model there is no clear distinction between data and meta
data as far as implementation and management are con­
cerned. Instead, a continuum of concepts, from tokens rep­
resenting data base instances to objects representing goals
and learning criteria would exist. Data base tokens, types,
operations, and transactions would all be implemented as
individual objects.

The integration of data and meta data using the
object-oriented model, leads us to the concept of parti­
tioning the knowledge in a knowledge based application
along a functional line and then developing objects that
manage the individual groups of knowledge items. This
management would include not only the traditional con­
trolling of access to the data, ensuring data integrity, su­
pervising the distribution of data, and documenting the
content and structure of the data base, but could also in­
clude more semantic level concepts such as organization
via semantic nets and behavioral specifications. Behav­
ioral specifications could include how individual knowledge
bases relate to one another and the external environment
when accessed.

Data Flow Architecture - Data Flow and Time
Warp

The next level of integration consists of applying the Time
Warp mechanism to the data flow model to produce a
distributed environment. As has been shown, the Time
Warp mechanism is essentially object-oriented, allowing
communication between objects using time stamped mes-

sages. These time stamped messages may be one of two
types. First, event messages a.re the main elements of con­
trol since they not only pass message text between objects
but also signify when an event is to occur. Specifically,
when an object processes an event message, it executes
with its local time set to the receive time of the message.
The Time Warp mechanism insures proper ordering of ob­
ject execution. Query messages, the second type of mes­
sages, allow the querying of the state of an object. The
query, a request and corresponding reply, does not allow
the state of the queried object to be changed and the local
times of the objects involved a.re assumed to be equal.

The mapping of data fl.ow graphs into an implemen­
tation of the Time Warp mechanism is readily apparent.
Graph nodes a.re implemented using objects and the data
flow dependencies a.re handled using time stamped mes­
sages. The flexible nature of Time Warp message passing
mechanism will allow the implementation of varied orga­
nizational structures and possible dynamic restructuring
of the system.

Realization of a Knowledge Network

We next consider each node of the data fl.ow architecture to
be a knowledge base object. Having as a subset the prop­
erties of a data base management module, the object will
be able to manage data and relational structures. With
the additional capability of being able to handle semantic
attributes such as behavior, an object acts as an expert in
regard to its own knowledge base. This includes how the
knowledge base relates in terms of dependencies to other
knowledge bases and how it responds to updates, ageing
of data, and requests for information.

A shift of emphasis should be noted here with regard
to the nature of the model and the conceptualization of
applications that use it. At least two concepts support a
data driven view as opposed to a procedure driven view of
processing. First, the data fl.ow model supports the former
since it is the underlying network architecture.

In a more subtle manner, the objects themselves take
on more of the characteristics of the knowledge base they
manage as opposed to the type of processing present in the
object. The notion that messages a.re handled by meth­
ods (procedures) of an object, relegates the processing,
whether an inference procedure or a simple array reference,
to a role supportive of the knowledge base. The character­
istics of the individual nodes are now more closely related
to the knowledge that exists at the node and its dependen­
cies involving knowledge bases in pa.rent and sibling nodes
in the data fl.ow network. The processing consists of man­
aging a class of knowledge items and supporting the data
flow model by notifying all nodes that manage knowledge
bases that might be affected by any local modifications.

Issues Addressed

At least two issues are addressed by the Distributed
Knowledge Network Architecture presented. The first in-

10

volves the design of an interactive application that pro­
cesses continuous streams of input data. Some general
requirements of such a system are:

• validate incoming data,

• update the appropriate data base,

• handle effect of input data on current state of the
system,

• perform ageing of processed data and subsequent re­
moval,

• handle effect of removed data on current state of the
system,

• handle user information requests,

• handle user processing requests,

• minimize response times,

• insure data security and integrity,

• dynamically alter processing mode to handle either a
change in user needs or a change in incoming data
rates.

The proposed model addresses in particular the re­
quirements of handling the effect of local modifications on
the state of the system. Through the use of dependencies
in the data flow network, knowledge base objects can prop­
agate changes throughout the system. This ripple effect
can occur without hierarchical control.

The proposed model also addresses the issue of par­
allelism since data flow is considered a good model for ex­
ploiting parallelism. Parallelism can be classified as either
temporal, spatial, or asynchronous [2]. Temporal paral­
lelism is that which occurs in a pipelined architecture. In
a data fl.ow model, temporal parallelism would exist be­
tween adjacent connected nodes when both nodes process
simultaneously. For example, consider two nodes A and B
where the output from node A is input to node B. Tempo­
ral parallelism occurs when an input data stream causes
both nodes A and B to process simultaneously. Speedup
is realized by considering the time required to do the same
processing when node A is allowed to process and then is
blocked as node B processes.

Spatial parallelism is typified by a Single Instruction
Multiple Data (SIMD) hardware architecture. In this
model, the data is partitioned out to several processing
elements that all perform the same function. In the data
fl.ow model, if a particular node was determined to be a
bottleneck and if the data being processed at that node
was partitionable then either an SIMD machine could be
installed at the node or the processing could be distributed
to more than one identical node on separate processing el­
ements to achieve speedup.

Asynchronous parallelism occurs when two or more
objects process simultaneously without lockstep control.

This implies a loose dependency between the asynchronous
objects. The discrete event mechanism inherently allows
this.

Conclusion and Qualifications

This model was developed while implementing a dis­
tributed situation assessment prototype. Three modules
had been developed independently and the remaining task
was to perform the integration. The modules included a
message parser for handling free text messages, a prepro­
cessor module that used a numerical clustering algorithm
for data reduction, and a rule based expert system that
infered higher level attributes about the data clusters. A
user interface module was in the process of being devel­
oped. The added requirment of handling a continuous
stream of input data prompted the idea of developing data
base objects supporting the three modules. The evolution
to knowledge base objects, where the procedural aspects
of the original modules are implemented as methods, re­
sulted after considering the object-oriented model in more
detail.

The model is still somewhat intuitive since language
constraints and resource limitations have limited the im­
plementation effort. These constraints are in the process
of being resolved.

The availability of the Time Warp Simulator on a
uniprocessor system provides a friendly environment for
the development of the application. For example, the sim­
ulator has its own development tools, the system debug­
ging resources of the host machine are available, and the
initial development and debugging of a distributed system
in a simulated concurrent processing environment will cer­
tainly be easier.

References

[1] Fox, M., "An Organizational View of Distributed Sys­
tems," IEEE Transactions on Systems, Man, and Cy­
bernectics, Vol. SMC-11, No.l, January 1981.

[2] Hwang, K. and Briggs, F. A., Computer Architecture
and Parallel Processing, McGraw-Hill, 1984.

[3] Jefferson, D. and Sowizral, H., "Fast Concurrent Sim­
ulation Using the Time Warp Mechanism," SCG con­
ferences on Distributed Simulation, San Diego, Jan­
uary 1986.

[4] Laussana, R., "Pipelining with Unix," Computer
Graphics World, April 1985.

[5] Lesser, V. and Corkill, D., "The Distributed Vehicle
Monitoring Testbed: A Tool For Investigating Dis­
tributed Problem Solving Networks," The AI Maga­
zine, Fall 1983.

[6] Martin, J., Principles of Data Base Management,
Prentice-Hall, 1976.

11

[7] Stefik, M. and Brobow, D., "Object-Oriented Pro­
gramming: Themes and Variations," The AI Mag­
azine, Winter 1986.

[8] Zaniolo, Ait-Kaci, Beech, Cammarata, Kerschberg,
and Maier, "Object Oriented Database Systems and
Knowledge Systems," Expert Database Systems, Pro­
ceedings from First International Workshop. 1986.

Knowledge Representation Issues

Rebecca Wise
Amdahl Communications Systems Division

Abstract

Knowledge representation is an area of active research within the field of Ar­
tificial Intelligence. This paper gives an introduction to this field. First, some
justification for even discussing knowledge representation is presented. Next,
an introduction to the knowledge representation field is given, followed by some
criteria for evaluating alternative representations. A survey of several popular
representations is given next. Finally, some areas of research into the knowl­
edge representation problem are discussed. The bibliography includes several
references to allow further study into this area.

Much attention has been given recently to the expert
systems methodology for problem solving in the Artificial
Intelligence arena. However, expert systems are just one
of the many techniques that Artificial Intelligence research
has made available for use in problem solving. There is
a great deal of information available on the expert sys­
tems methodology. However, there has been little em­
phasis placed on the alternatives to expert systems. This
paper addresses that void by providing information on the
other mechanisms for representation and problem solving
that are in use or have been used.

In addition, there are several problems facing the
Artificial Intelligence researchers that center around the
knowledge representation issue. Many people believe that
true intelligence can not be achieved without incorporating
a vast amount of commonsense knowledge into the com­
puter's base of knowledge. This commonsense knowledge
problem is really a problem of how to represent and re­
trieve this knowledge. Thus, the problem is one of finding
an appropriate knowledge representation mechanism.

In addition to the problem of commonsense knowl­
edge, there are huge knowledge bases that must be con­
structed even in specialized domains. The technology
simply does not exist to properly handle such enormous
amounts of data.

Definition of Knowledge Representation

Knowledge Representation refers to the method of storing
the information about a problem. In the traditional soft­
ware environment, data structures are considered to be
the knowledge representation technique. The knowledge
representation that is used for a problem is closely related
to the technique that is used to solve the problem. The
solution for a given problem includes both the algorithm
used to solve the problem and the knowledge representa­
tion selected to store the information used in the solution

Proceedings of the Digital Equipment Computer Users Society 13

process. The knowledge representation selected to solve a
problem should, in some sense, make the solution to the
problem appear trivial (in the best case) or at least ob­
vious, making it an integral part of the problem solving
process.

Types of Knowledge

In talking about knowledge representation, it must be rec­
ognized that there are different types of knowledge that
must be represented. These different types of knowledge
are described below:

• Objects - Objects are entities that can be reasoned
about as a unit. Examples of objects include dog,
chair, car, as well as facts such as 'the ball is red'.
Although objects can still be made up of parts, the
object can also be thought of as a complete unit. As
an example, a dog has a heart. A heart is an ob­
ject; however, a dog can be thought of as an entity
without considering the heart. Thus, the relation­
ships between objects must be accounted for when
representing objects.

• Events - Events have a time component associated
with them. Events can be thought of in terms of state
changes in the environment. The event causes the
change from state A to state B. The temporal nature
of events must be accounted for in addition to the
state transitions and the details of the actual event.

• Performance - Performance knowledge refers to a
sequential act or a procedure for performing a task.
There are planning aspects associated with perfor­
mance knowledge when alternative actions can be per­
formed to produce the desired result. There are also
time considerations in performance knowledge in ad­
dition to the specific how-to knowledge.

San Francisco. CA - 1986

• Meta-knowledge - Knowledge can be thought of
as a hierarchy. The meta-knowledge refers to the
system's knowledge about its knowledge base. This
higher level knowledge is used to guide the reasoning
or problem solving process. The domain of knowledge
is a piece of meta-knowledge for a system.

This list should provide some insight into the problem
of knowledge representation by highlighting the diverse
types of information that must be accounted for within
a system. Knowledge from each of these classifications is
required to solve real world problems ..

Uses of Knowledge

In order to understand the knowledge representation prob­
lem, the ways that knowledge can be used must first be
understood. There are three uses for knowledge: acquisi­
tion, retrieval, and reasoning.

To use knowledge, there first must be some knowl­
edge within the system. Thus, the first step is knowledge
acquisition. The process of knowledge acquisition can be
11.S simple as prompting an operator for input or 11.S com­
plex u an automated acquisition process that can deduce
new information from existing information. Part of the
knowledge acquisition process involves formatting the in­
formation into the chosen representation. Updating of a
knowledge base is a critical part of the acquisition process.

Once knowledge has been stored, it must be retrieved.
The appropriateness of a representation is judged in part
by how easy required information is to retrieve. As in
conventional software systems, the type of access required
must be considered in deciding upon the storage mecha­
msm.

Finally, the knowledge must be used in a reasoning
or problem solving process. As stated earlier, there is a
close relationship between the problem solving process and
the representation of the knowledge. The representation
should facilitate the problem solving process. The purpose
of having the knowledge available is to allow the system to
reuon about the knowledge in order to solve the problem.

Types of Reasoning

There are several different methods of reasoning about
knowledge. Some of the more common methods are listed
below. The list represents many of the popular methods
of reuoning.

• Formal - Formal reasoning is mathematical in nature.
This reasoning is based in the well defined rules and
laws of logical inference. Formal reasoning is used ex­
tensively in theorem proving programs. In addition,
the Prolog language is based around this type of for­
mal reasoning.

• Procedural - In procedural reasoning, there are spe­
cialized procedures that encode the reasoning process

14

for specialized cll.Ses. Thus, the reasoning is specific
to the problem.

• Analogy - In analogic reasoning, characteristics are
inherited for an object from a similar object. As an
example, we know that sparrows fly and that robins
are like sparrows. Using analogic reasoning, we con­
clude that robins probably fly. Many psychologists
feel that most human reasoning is analogic in nature.
The MCC research into knowledge also centers around
the use of analogic reasoning. The problem with ana­
logic reasoning is the enormous amount of information
that is required to form useful analogies. Thus, the
problem of large knowledge bases appears again.

• Generalization - Generalization is related to anal­
ogy. In generalization, we deduce that if a certain
significant number of members of a class display a
given characteristic, then all members of that class
probably will display that characteristic. As an exam­
ple, robins have wings, blue jays have wings, sparrows
have wings, therefore all birds probably have wings.
As with the ana.logic reasoning, a vast store of knowl­
edge is required to perform reasoning by generaliza­
tion. In fact, an enormous amount of information
is required to even begin to identify class member­
ship and characteristics significant enough to warrant
thinking about.

• Meta-reasoning - As with meta-knowledge, meta.­
reasoning concerns reasoning about the reasoning pro­
cess and the problem domain. Knowledge about the
domain of the world that the problem exists in and
how problems are addressed in that domain, fall under
the guise of meta-reasoning.

Evaluating Alternative Knowledge
Representations

To evaluate alternative representations, first the features
of a good representation must be known. Next, the crite­
ria for evaluating representations is discussed. Finally, the
different classifications for representations must be under­
stood to allow comparisons to be drawn.

Features of a Good Knowledge Representation

As stated previously, the knowledge representation chosen
for a problem should facilitate the problem solving process.
The method of solution should appear at least obvious, if
not trivial, given the proper representation mechanism. H
the representation interferes with the solution to a prob­
lem, then a new representation should be found.

The representation chosen for a problem should be
understandable. Thus, an outsider should be able to see a
reasonable connection between the problem and the rep­
resentation (the representation should "make sense"). For
example, for the image processing problem, if the data
input is the digitized representation of a scene, a logical

representation might be one which represents ea.ch bit of
the image in 11. field with some indicator of the intensity
of the image in that area. The scene would then 11.ppea.r
as 11. grid of these fields representing the image. This rep­
resentation intuitively makes sense to 11.n observer. It is
likely that 11. logical representation will facilitate the prob­
lem solution; however, this is not always the ell.Se. Ease of
solution is the overriding factor in this situation.

In addition, the representation chosen for 11. problem
should expose the constraints involved in the problem.
The knowledge that is important to the solution should
be explicitly represented.

A representation should be computable. It should
completely represent the problem, in 11. concise manner re­
quiring u little processing resources u possible.

Finally, the knowledge representation should display
the appropriate level of detail for the needs of the prob­
lem. Unimportant details for one stage may be critical at
another stage. Thus, the details should be suppressed by
the representation but not deleted. These alternate views
may require different access methods into the representa­
tion, but the representation remains the same.

Considerations for Knowledge Representation Se­
lection

There a.re sever11.l 11.Spects of the knowledge representation
problem that must be considered when ma.king 11. selection.
As mentioned previously, the granularity of the data re­
quired must be considered. In addition, the scope of data
required for the problem solution is important. Irrelevant
information can hinder the problem solving process.

lndeterminancy is another upect of knowledge repre­
sentation. There a.re multiple ways to represent the same
fact. For example, the statements "11. bird hu wings" 11.nd
"wings are 11. pa.rt of 11. bird" state the same fact from two
different perspectives. The representation 11.nd the prob­
lem solving process must be 11.ble to determine this equiv­
alence. Related to this problem is the fact that there can
be equivalent yet distinct representations for the same in­
formation. At the lowest level, 11.ll representations a.re the
same since they all break down to bits in storage. How­
ever, different representations allow different types of pro­
cessing to be performed. In certain situations, it might
be advantageous to translate the knowledge b11.Se from one
representation to another to allow for more efficient pro­
cessing.

As with software programs, 11. representation should
support modularity. Modifications to one portion of the
knowledge b11.Se should only effect the portions of the
knowledge hue related to the altered fact.

As stated previously, there is explicit 11.nd implicit
knowledge that must be considered in selecting 11. knowl­
edge representation. It is critical to insure that the in­
formation that is important to the problem solution be
explicit in the representation.

Uncertainty is an important factor in the problem
solving process. When attempting to solve real world

15

problems, statements that a.re certain or conclusions that
a.re 100 percent correct a.re difficult to obtain. Instead,
these problems require methods to handle "maybe" an­
swers, or "I think this is the ell.Se". The area of uncer­
tainty extends to both the reasoning itself as well as the
facts. Methods of propagating these uncertainty ratings
through the reasoning process must be considered.

Finally, there is the selection between procedural rep­
resentations and declarative representations. The debate
within the field of Artificial Intelligence still rages as to
which representation is best. The distinction between
these two classifications is described in the next section.
The debate itself has advanced the level of interest and
research in the knowledge representation area.

Classification of Knowledge Representations

There a.re numerous methods of classifying representa­
tions. The classifications used here a.re broad categories
only for the purpose of allowing comparisons between the
different representations. Following is a list of four classi­
fications for knowledge representations:

• Declarative structures provide distinct separation be­
tween the knowledge and the inference engine (the
reasoning process). These representations allow a
great deal of flexibility in the structure of the repre­
sentation. Traditional tables a.re examples of a declar­
ative structure

• Procedural representations encode some of the reason­
ing process in the knowledge base, allowing objects to
know how to reason about themselves. This represen­
tation generally allows for a simpler reasoning process
at the expense of the flexibility of the structure. This
difference is the central issue in the debate between
the procedurah11Ls and the declarativists.

• Most expert systems use the production representa­
tion. This representation uses if-then rules to encode
the knowledge. The inference engine then reasons
through the rule base using either forward or back­
ward reasoning. Forward reasoning proceeds from the
data to 11. solution; backward reasoning proceeds from
a hypothesis to see if the data supports the hypothe­
sis.

• There are several specialized representations that can
not easily be classified under one of these categories.

Survey of Knowledge Representation Techniques

Following is a description of several popular representa­
tion techniques. This list is not exhaustive. However,
the knowledge representations listed here represent a cross
section of the techniques available for solving 11. variety of
problems.

• Semantic Nets - Semantic nets are connected graphs
containing nodes and arcs. The net shows rela­
tionships among related concepts. This technique
Wll.B first used to store dictionary-like word defini­
tions. The nodes of the graph represent the con­
cepts while the arcs show the relationships between
the nodes. Retrieval of nodes and retrieval of related
nodes within the net are major issues.

• State-Space Representation - The state-space
representation is generally a tree-like structure that
contains an entry for each possible state that the sys­
tem could be in. This representation is popular in
game-playing programs where each entry represents a
board position. The transitions from one entry to the
next represent the legal moves. Theoretically, this
representation contains all possible states. Reason­
ing for this representation generally takes the form of
a search of the tree to determine the optimal path.
Much of the early work in Artificial Intelligence cen­
tered around optimizing search strategies for just this
purpose. Heuristics are used to control and limit the
search.

• Semantic Primitives - Semantic Primitives have
historically been used in the natural language area
of Artificial Intelligence. Essentially, semantic prim­
itives represent atomic ideas by translating verbs to
their b11.Sic meaning. Sample primitives include the
following: move, ingest, transfer-ownership, etc. This
representation is used to store the basic meaning of a
construct.

• Case Grammars - Cll.Be grammars are similar to
the semantic primitives mentioned previously. Case
grammars 11.Ssociate the verbs with the objects nor­
mally required to properly interpret the sentence. For
example, with the verb "throw", the following items
are generally expected to be referenced either explic­
itly or implicitly: the object being thrown, the person
{generally) doing the throwing, possibly a person to
catch the object, the original location of the object,
the ultimate location of the object, and perhaps the
path the object took. Thus, in analyzing a sentence
containing the verb to throw, the system has some
knowledge of what types of objects might be in the
dentence.

• Frames - Frame representations are generating a
great deal of interest. Frames are an extension to
ell.Be grammars in some respects. With frames, there
are slots in the representation to be filled with infor­
mation. The slots in general are predefined to give
some knowledge of what should be present. There
can be procedures associated with slots that specify
how the information is to be obtained if the infor­
mation in that slot is required. In addition, frames
generally support a default value for a slot, as well as
perspectives to allow different default values in differ­
ent situations. Finally, an important feature of frames

16

is the inheritance of slot values from superordinate
frames. A hiera.rchical relationship can be defined in
frames using the is-a link. Then, specification of a
value for the superordinate frame allows the inheri­
tance of that value to the subordinate frames. As an
example, there exists a chair, called chairl. The frame
for chair specifies a default value for number of legs
of four. In addition, the slot for composition speci­
fies a default of wood, with an additional perspective
of royal chairs with a composition default of brass.
The frame for chairl specifies an is-a link to the chair
frame. Thus, by default, the system determines that
chairl has 4 legs. This default must be overridden
by an explicit value in the chairl frame if the chair
happens to have three legs {ie a stool). Frames are
being used extensively in research into the storage of
commonsense knowledge.

• Scripts - Scripts are similar to frames in that there is
a predefined set of information. However, scripts in­
corporate time by specifying a sequence of events that
occur for an event. The classic example of a script is
the restaurant. If the system knows that the bill is be­
ing paid, the script provides the information that food
has probably been served and eaten. Scripts allow for
different contexts as well. For example, when a person
enters a restaurant and sees a plastic counter, lines of
people waiting at registers, and plastic tables, the as­
sumption is made that this is a fast food restaurant.
The expected sequence of events is different here than
at an exclusive restaurant where the host approaches
the patron, in a tuxedo, and seats the party at a ta­
ble covered with a lace tablecloth. Scripts allow the
sequential actions in these various situations to be en­
coded to allow interpretation of information generated
from these contexts.

• Transition Networks- Transition networks consists
of nodes and arcs. The arcs represent the transitions
from states, represented by the nodes. The network
has explicit start and end states. A variation of transi­
tion networks, called Augmented Transition Networks
(ATNs), are used extensively for sentence parsing.
The ATNs differ from traditional transition networks
in that conditional processing is allowed on the arcs.
In addition, side effects, such as structure building,
are included which allows the network to output not
just valid/invalid but to output the parse tree as well.

• Procedural Representation - As stated earlier,
procedural representations encode knowledge of how
to reason about an object in the representation for
the object. The classic example of a procedural rep­
resentation is the SHRDLU Project (also referred to
as Blocksworld). SHRDLU was built as a natural lan­
guage processing system. The domain of SHRDL U
was a world consisting of a room with blocks of dif­
ferent shapes, sizes, and colors and a robot that could
move the blocks around. The blocks had information

about their characteristics. In addition, the sequence
of actions required to perform a request were encoded
in the representation for the request. The SHRDLU
system was quite proficient in its limited domain. It
should be noted that the use of a restricted domain
for prototyping has become a popular research tool in
Artificial Intelligence.

• Logic - Logic representations encode all information
in terms of facts and rules. The facts can then be
reasoned about using the rules and the laws of le­
gal inference. The Prolog language is built around
the use of the Logic representation. Many of these
systems are based on first order predicate calculus
or propositional calculus. Much work is going on in
determining the use of the logic representation with
relational databases.

• Production SysteJDS - Expert systems generally use
the production knowledge representation. The knowl­
edge is encoded as IF-THEN rules. Reasoning pro­
gresses based on the ability to satisfy the rules in the
knowledge base. Due to the preponderance of infor­
mation on expert systems, this topic will not be ad­
dressed further.

• Direct Representations-These representations are
useful in circumstances where the data to be processed
is already available in a reasonable representation. An
example of this is the use of a grid for image process­
ing. When dealing with a digitized image of a picture,
the image is generally stored with some indication of
each pixel's intensity. The grid representation is a
direct representation for the digitized image. No ad­
ditional structure or other information is added to the
representation to facilitate processing.

• Special Purpose Representations - In some cases,
combinations of the above techniques are required for
an applications. Other cases actually require multi­
ple representations for various stages of the analysis.
The problem of speech recognition is generally ad­
dressed using multiple representations of the speech
input. Frames are often combined in networks or with
other representations to augment their capabilities.

This list should provide an overview of the numerous
techniques available for solving a wide range of problems.

Current Problems in Knowledge Representation

Several problems are actively being researched in the
knowledge representation area. Work in these areas is per­
formed not only by Artificial Intelligence researches but
also by cognitive scientists.

The problem of encoding commonsense knowledge,
also referred to as world knowledge, is under active re­
search. Many people feel that the difficult problems of
Artificial Intelligence can not be addressed until the com­
puter systems can use commonsense in solving a problem.

17

Related to the commonsense knowledge problem is
the problem of large knowledge bases. As the amount of
knowledge available to a system grows, the access methods
must be improved to allow the information to be retrieved
and used in the reasoning process. This work relates to
that in the traditional database field as well as that dealing
with large databases.

Context information is used to understand the situa­
tion at hand. An understanding of how to represent con­
text as well as knowing when to switch contexts is another
important area of research.

Many people are investigating the nature of represen­
tation within the human brain and how people represent
and retrieve the vast amount of knowledge that is applied
to solving everyday problems. Research into this area is
also being extended to trying to actually simulate the brain
in hardware.

Conclusion

This paper attempted to give an overview of the numerous
representation alternatives available to address problems
in Artificial Intelligence. The features of a good repre­
sentation were presented to give some criteria for evaluat­
ing competing representations. Some directions of further
work in the area of knowledge representation were pre­
sented.

For further study in the knowledge representation
area, refer to any introductory Artificial Intelligence text.
Most AI texts give an overview of knowledge representa­
tion but include the author's bias to his favorite repre­
sentation. Frames and scripts are treated extensively in
Schank.

The area of knowledge representation offers numerous
opportunities for study. It is important to recognize that
expert systems are not the only approach to problem solv­
ing in Artificial Intelligence. While expert systems are a
valuable tool, many problem sets do not fit well into that
paradigm. Many other possibilities exist.

References

[1] Bass, Avron, and Feigenbaum, Edward; Handbook of
Artificial Intelligence - Volume 1.

[2] Schank, Roger and Childers, Peter; The Cognitive
Computer.

[SJ Winston, Patrick; Artificial Intelligence.

[4] Charniak, Eugene, and McDermott, Drew; Introduc­
tion to Artificial Intelligence.

Applications Software Design for the Multi-lingual Environment

Paul Mistretta and Phil Racine
The Fa.she Group

Lowell, Massachusetts

Abstract

In an environment where distributing processing loads may involve maintaining
a network of VAXes using DECNET, it is becoming increasingly important to
retain control and auditability over these systems at a minimal cost. For a
large corporation, these systems may span international boundaries. From this
environment arises the need for an application that can use the same set of
executable images regardless of local language requirements .

. Systems .are . not considered friendly if frozen in American language. A
busmess apphcat1on must communicate to its' users in their native language.
In a multi-lingual environment, the methodology employed by the system to
accomplish this is conducive to the successful support and on-going maintenance
of the system. What design considerations exist for applications software that
be translated without modifying the software? How can one have the same set of
programs running at several different installations, each with a different native
language 7

This program session will present the areas of Application Software De­
sign that are pertinent to the Multi-lingual environment. Some of the design
elements covered will be: Design, Translation, Auditability, Consolidation, and
Maintenance routines.

Multi-lingual Applications Environment

Anticipated Market for the System

With the recent technology developed by DIGITAL, there
is an increasing variety of computing power being used
throughout the world. The combination of hardware de­
velopment advancements and some fairly significant cost
reductions have brought more computing power into ap­
plications users' hands. At the forefront of this technology
are distributed data processing networks. The total pro­
cessing for a corporation may be spread across many phys­
ical installations. Depending on the nature of the system,
some installations within a system may span international
boundaries.

Some data processing organizations are finding it
worthwhile to distribute the systems throughout the cor­
poration. This places computing power directly into the
users' hands who can make best use of it for the company.
This can mean some good things and some bad things for
the DP shop. Among the positive aspects are a reduced
load on the hardware for the central site. It is not nec­
essary to have one big machine that supports all users
throughout the company. This also can reduce communi­
cation costs, because you don't have users accessing the
system by telephone lines. This means the main system is

Proceedings of the Digital Equipment Computer Users Society 21

less burdened, and can concentrate on servicing the main
site.

It can make a lot of sense to distribute computing re­
sources throughout an organization. Depending on a com­
pany's business concepts, decentralization can be a desir­
able way to go. From a technological standpoint, there are
distinct advantages, some of which can be more effective
use of computing resources, and increased productivity for
the application end users. However, from this distribution
arises the need to support and control the various instal­
lations in the company. It is especially important for an
organization to have financial systems possessing integrity
and auditability. It is probably safe to say that a com­
pany would not want several different financial systems to
be running within a successful organization.

The United States has recently enjoyed a period of
reduced inflation and increased business activity. A major
portion of current and potential business has developed
in the overseas market. Traditionally, Western Europe is
one of the major sources of business for American corpora­
tions. With this international business, it is quite conceiv­
able that a DP organization may need to support computer
installations overseas. A company may have these instal­
lations in countries with different language requirements.
The concept of the multi-lingual environment arises from
the approach of using distributed systems in an interna-

San Francisco, CA - 1986

tional environment. It can also be applied to an appli­
cation that services sites with different language require­
ments that are not necessarily part of the same system.

In selecting the computer systems to support these
sites, it is important to select the proper hardware and
systems software to support the desired functions. Within
11. distributed system, the sites will want to select a com­
puter that can provide resources to their users adequately
and efficiently. The size of the computer should be ap­
propriate for the size of the installation. So, within a dis­
tributed system, you may find large computers at the main
sites, medium-range computers at the intermediate sites,
and smaller computers, at the smaller sites.

If 11.n organization chooses to use 11. configuration with
different operating systems, there is more work involved
in controlling the software at the user sites. However, if
an organization chooses systems that use the same operat­
ing system software at each site, some advantages start to
arise. With one set of system software, it is now possible to
run the same application software at each site This allows
for greater integrity and control of the sites within the or­
ganization. This becomes important for the organiHtion
that wants to decentralize their computer operations, but
while doing so, maintain control and integrity over the sys­
tem. Once the system software is set, the environment for
the application software can be defined.

A good deal of an application systems' worth is mea­
sured by how euy it is to use. This can be directly re­
lated to the productivity of the end users who use the
system. Most of the financial applications software that
currently exists is written in the United States for Amer­
icans. This constraint makes it more difficult for foreign
installations to use a system that does not speak in their
native language. Granted, most installations are probably
fluent in English in some form or another. But, wouldn't a
computer system, especially an important application, be
more user friendly, more productive, and more valuable if
it could communicate with the users in their own language
?

The concept of being able to customize the user in­
terface for an application can be very intriguing. It can
obviously be done by programmers changing the software,
but how do you support multiple versions of a application
? From a support standpoint, it can be very attractive to
have an application in which the user interface text can be
translated without changing the software.

Computing Needs of an International Corporation

Within a DP organization that services multiple sites, it
is highly desirable for the systems to be supportable with
a reasonable amount of resources. If there are multiple
versions of a system to support different languages, this
can become very cumbersome to manage. One set of ex­
ecutable images that can support multiple languages is a
very attractive solution. Wouldn't it be nice to have soft­
ware that allows the user to translate it ?

There are many 11.Ctivities related to supporting the

22

users of multiple sites in a DP organiHtion. These in­
clude satisfying users' requests, solving complex applica­
tion problems, and implementing software modifications.
This can become an excruciatingly difficult nightmare if
there are many versions of a particular application. This
is obviously a situation that one wants to avoid.

The integrity and auditability of the system is that
much greater if one set of executable images can service
each installation. A successful company relies heavily on
accurate and timely financial information. If the same
set of executable images is used at each site, the oper­
ations, maintenance, and support resources can be opti­
mized. The consolidation of financial data should be much
smoother. Software modifications can be implemented
once to a commonly-used set of programs. The techni­
cal staff can concentrate their skills on one system, thus
becoming more proficient with that application. The sup­
port network can be much smoother because they're only
dealing with one set of application programs, rather than
multiple versions.

Every successful organiZ11.tion wants to optimize the
utilization of resources. A system that uses one set of
executable images makes this possible.

Language Independent Applications Software

With the objective of having one set of executable images
servicing installations with many different languages, there
are some inherent characteristics present in these pro­
grams. First and foremost is a strict requirement against
using hard-coded text for user interface. User interface
includes screens, messages, report headings, and control
options. All user interface text must be fully translat­
able. There should be no software modifications required
to handle a supported translation. In addition to trans­
lating the user interf11.Ce text, an application should allow
the date format and decimal presentation to be modified,
to provide optimal service to a multi-lingual site.

These characteristics define the requirements for
multi-lingual application software. The design information
that follows is the implementation of the multi-lingual de­
sign into the applications of The Fasbe Group. We feel
it incorporates the important concepts of a multi-lingual
system.

Characteristics of a Multi-lingual Financial Appli­
cation

Our application is built with a layered architecture. This
employs different levels of software for the system func­
tions. The Application layer is used to communicate with
the end user. Combined with the Algorithm layer, it
contains the processing logic for the application system.
These levels are purely hardware and operating system in­
dependent. To provide the translated user interface text
to the application layer, a layer of subroutines are used.
These subroutines access data files to extract the user in­
terface text, and return it to the calling program. One

subroutine exists for each kind of text: (Messages, Report
Headings, Control Options, Date Format, and Decimal
Format). The data entry screens a.re translatable through
SCOPE, our screen management package. SCOPE em­
ploys a source file for the screen definition. This source
file can be translated through a on-line program.

The messages, report headings, and control options
were typically hard-coded as literal values in programs.
These text items a.re referred to symbolically in a multi­
lingual system. A unique identification code is assigned
to ea.ch message, report heading, and control option. At
run time, the multi-lingual subroutine layer uses this key
to retrieve the message or report heading. All text is fully
translatable, and the symbolic referencing technique al­
lows one set of executable images to service any supported
translation. All data fields that store system indicators
(Y /N, etc.) always store an American value. This will
reduce the programming changes to implement the multi­
lingual design into existing applications.

Within the application, there a.re four categories of
translatable user interface text: Messages, Report Head­
ings, Screens, and Control Options. The messages include
error, instructional, informational, or prompting text sen­
tences to the user. This is any message not included as
pa.rt of a data entry screen. Messages a.re stored on an in­
dexed data file and referenced by a symbolic key. Report
Headings a.re classified by program, and a.re also stored
on an indexed data file. The subroutines retrieve and/or
display the messages and report headings from the file at
run-time. Data entry screens consist of prompts and help
messages that can be translated. Each screen translation
is stored in separate source and executable form files. The
Control Options a.re stored in a data file and accessed at
run-time by a subroutine.

Multi-lingual Application System Concepts

Multi-lingual Utilities

Several on-line programs for the messages and report head­
ings were developed to establish the records in the file that
store the text. There is a set of file maintenance, transla­
tion, report, send, insert, and integrity check programs for
both the messages and report headings. The file mainte­
nance and translation programs establish the text records
on the file. Once a file has been established, the send and
insert programs a.re used to update a file with modified
text. The report and integrity check programs help to
verify the contents of the text files and provide a level of
integrity and control for the system.

There a.re on-line translation programs for the data
entry screens, and control options. A global definition ex­
ists for the date and decimal formats. These a.re used by
the date and decimal formatting subroutines which process
those data items at data entry time and output time.

23

Message Utilities

A file maintenance program (add, change, delete) is ini­
tially used to set up the message text records. This ini­
tially establishes the message records with American text
on the data file. This program is used by the system devel­
opers to establish the text records on the file. Messages can
be Fatal, Warning, or Informational type. This is specified
in the Severity field. When a program needs a message,
it is added to the message file. A certain amount of ca.re
should be taken here to control the amount of messages in
the file. In order to provide a smoother translation, it is
desirable not to have many variations of the same message.
When possible, it is preferable to use an existing message
on the file, rather than add a new one.

The message key structure is designed to provide a
unique and symbolic reference for each message. It also
serves as a run-time guide to the message subroutine for
loading frequently-used messages into a memory table.

It consists of three parts:
The first pa.rt is a six-character code that indicates

how the message is used. A message can be program­
specific, subsystem-specific, or a system-wide type. The
second pa.rt is a three-character code, that indicates the
type of message. There a.re Informational, Invalid, Help,
ASK=Prompt, OPT=Prompt for options, FIL=File Mes­
sages. The remainder of the key is a programmer-defined
21 character area that is used to describe the message it­
self. For file lookup and storage efficiency, it is important
to design a key that is technically efficient, and symboli­
cally meaningful.

To translate the messages, an on-line translation pro­
gram allows the user to enter the translated text for the
messages. The user can select between sequential and ran­
dom translation mode. In sequential mode, the program
displays the next message to be translated. In random
mode, the user can enter the key of the message to trans­
late. The translated text is then stored on the data file,
along with the American text.

At run-time, the message subroutine is employed by
the application layer to read the messages from the data
file. To optimize the retrieval and display of frequently­
used messages, a run-time table is employed to store
the messages in memory, from which they a.re later ac­
cessed. In this day of inexpensive memory, it is desirable
to improve application performance by storing messages
in memory, so the access is quicker than it would be if
they were stored on disk. As a general rule, all program­
specific messages a.re loaded into the memory table when a
program starts. This is limited by a number of 100 to not
significantly degrade program initialization. The first part
of the message key allows for a initial search, (START)
and then sequential reads for each message in that pro­
gram category. Only the informational and warning mes­
sages are loaded into the table. The fatal messages will
always remain on the file, because they are used when the
program is ready to terminate, so the extra retrieval time
is insignificant. When it comes time to display a message,

the subroutine logic goes to the table or the data file to
get a message.

A good side-product of collecting all messages for a
system in the report is that it provides a format for re­
viewing all the messages together. This gives the user the
opportunity to utilize the terminology of the business in
their application system. One can also ensure a consistent
means of communicating the messages from the system to
the user.

Report Heading Utilities

A file maintenance program (add, change, delete) is ini­
tially used to set up the report heading text records. This
initially establishes the report heading records with Amer­
ican text on the data file.

The key to the Report Headings record consists of two
parts: The first part is a six-character ID which identifies
the program that uses the heading. The second part is
a sequential number that is incremented for each heading
within a program set. The headings for a program are
retrieved from disk when needed.

The sequential and random translation modes are
supported with this function. The sequential translation
mode will automatically display the next report heading
that is eligible to be translated.

To translate the report headings, an on-line transla­
tion program allows the user to enter the translated report
headings. The translated text is then stored on the data
file, along with the American text. When translating the
report headings, the user must be aware of the format of
the report detail lines. Some care must be taken so the
column headings line up with the data lines. The column
numbers are displayed on the screen to assist the transla­
tor in lining up the detail line columns with the titles.

The data record layout for the text records con­
tains both the American and translated text. This stores
the translated and un-translated text side-by-side on the
record. This allows the subroutine to choose which text
is to be used at run-time. There is a switch on the user
record that controls whether he looks at the translated or
un-translated text record.

Reports are available to print the messages on the
system. The report can be sorted by message key, message
type, or the actual text of the message. The user can select
between translated and un-translated text. The report
headings are sorted by program, and the user can select
to print headings for a particular report. The user can
choose between un-translated and translated text for the
report headings also.

Screen Utilities

The screen management utility, SCOPE provides an ES­
SAY source file that is compiled into an executable .FRM
file which is then used by the system at run-time. The
source file containing the screen definition is translated
with an on-line program, which writes a new source file

24

with the translated text. This source file was one of the
primary characteristics of SCOPE that was of great value
to the design. Some other useful features of SCOPE for
the multi-lingual design are the ability to specify the deci­
mal presentation format as an installation parameter, and
the ability to define a field as being of date type.

The user can translate screens by subsystem. Within
a subsystem, the user can choose to translate screens in se­
quential mode, or at random by entering the screen name.
The screen names for each subsystem are stored on a data
file, which is read in by the program at run-time. In se­
quential mode, the program brings up the screens to be
translated one at a time. In random mode, the screen
names for a subsystem are displayed for the user to select.
The program allows the user to translate prompts and
help messages, which are then stored on the new source
file. The date format is automatically converted to the
global system format. When translating prompts, the user
is restricted to working within the current length of the
American text. The SCOPE utility can be used to further
manipulate the prompts and fields if desired, but technical
experience is required to do this. The translations for help
messages can use the full 80 characters available.

This source file is then compiled into the executable
file. With the process logicals and multiple directories that
are available on the VAX, the system can save multiple
sets of form files, each of which can contain a different
translation.

Control Option Utilities

Control options are verbs that the user enters to control
functions of the application software. At the bottom of the
data entry screens, the user is prompted for an option that
will guide the next action for the program to take. These
verbs were identified during conversion, and placed on a
data file. There is an on-line translation program which
allows the user to translate these verbs. The translation
is placed on the file with the American text, using the
'side-by-side' technique, allowing the language variation
at run-time.

There is one rule that must be followed during trans­
lation of the options. Basically, all options within a group
must start with a unique first character. The applica­
tion prompts for one character options, so there must be
a unique first character at each system prompt.

Within the system, there are many option relation­
ships which make up the different groups. These relation­
ships a.re built into the translation program, which guides
the user through the translation process.

At run time, the options are loaded into a memory
table from the data file during program initialization. This
establishes the text that is used for both display and to
check data entry responses. It was a design objective to
use the same data for both purposes. This ensures that the
system will always display the same text as the application
program is checking for.

Send/Receive Utilities

Once the system is up and running at an installation,
the users' translations are stored on the message file used
with the application. As software modifications are im­
plemented, there also changes and additions to the mes­
sage and report headings file. In order to update existing
sites that have translated text, these utilities were cre­
ated. They allow the files to be updated with only those
text records that are new or have changed. There are indi­
cators on the text records indicating that they are eligible
for translation and to update an existing site. The SEND
program extracts text records that are eligible to be sent
from the file, and builds a transmit file to be sent to the site
(by tape or DECNET). The send indicator on the record
controls which messages/report headings to be sent. Once
the file has arrived at the site, the RECEIVE program will
update an existing file with those records that are new or
have changed. After the records are in the file, they are
marked as being eligible for translation. This causes the
translation programs to display them in sequential mode.
Any message or report heading can be translated in ran­
dom mode whenever the user desires. This accomplishes
the updating of messages and report headings to an exist­
ing site when required for software updates.

Integrity Check Utilities

After the application has been installed at a site, it is
conceivable that some problems may arise. It becomes de­
sirable to eliminate the message and report heading file as
a possible source of the problem. You would not want the
system to fail based on a missing message or heading. This
utility will compare the file from the site against a known
good file, and report on any differences that are found.
This includes: A text record missing from either file, and
a count of text records on each file. The send/insert and
integrity check utilities provide the central DP site with a
means to control the integrity of the message/report head­
ing files at the satellite installations.

Conversion Approach

During our development project, we started with an ex­
isting application, and modified it to support the multi­
lingual environment. This involved a series of steps to
attack the problem. First, the utilities to maintain and
translate the text files were developed. This was followed
by the development of the run-time subroutines to s~p­
port the application layer. This makes up the supporting
mechanism for an application program.

Each program was reviewed to locate the hard-coded
text and literals that were employed as part of the inter­
face. These were each given a symbolic ID, and added
to the text files with the file maintenance programs. Any
output field that includes a date or decimal had to be
modified to use a common routine. This routine arranged
the date/decimal format per the global system definition.
The program would then process this field as required.

25

This modular approach localizes the multi-lingual depen­
dent routines in one place. The conversion of three ap­
plications (G/L, A/P, and Security) was accomplished by
two programmers in 4 months. Our system is not flawless,
but we feel that it is capable of supporting any translation
that reads left to right and uses a VT220 keyboard. We
hope to receive feedback from the translators who use the
system, so that we can make it a better system in the fu­
ture. As the system matures, we will recognize the areas
to improve and make adjustments accordingly.

The VMS features provided us with a superior devel­
opment environment in which to accomplish this project.
Without much experience with other vendors' machines, it
is difficult to relate this design to other systems. However,
we can definitely say that the VAX/VMS development
environment was a key part of our design and develop­
ment effort. This proves that it is possible and feasible to
develop, maintain, and support multi-lingual applications
software.

The credit for the multi-lingual design concepts
should go to Gary Neidhardt, the Director of Software
Development at The Fasbe Group. Upon being hired by
the company, it was our charter to implement the multi­
lingual design into ~ome existing applications for a Fortune
250 company. This becomes a feasible and economic ap­
proach for a software development organization to develop
and maintain applications software for the multi-lingual
environment.

GUIDELINES FOR WRITING VAX COBOL PROGRAM GENERATORS

RAY DAVIS
Sheffield Steel Corporation

Sand Springs, Oklahoma

AN EXAMINATION OF METHODOLOGIES AND HELPFUL HINTS FOR THE
DEVELOPMENT OF CUSTOMIZED COBOL SOURCE CODE GENERATORS

A recent COMPUTERWORLD article explored the re­
imergence of COBOL as the language of choice in many
data centers across the United States. Many of these
shops, after trying to implement 4GL(4th Generation
Language) packages, found that the overheads of the
package were too great or the ability of the package
to create the complex code the users needed was lack­
ing, Often, the packages that possessed the ability
to create the complex procedures resulted in very
long spagetti code modules that were extremely dif­
ficult to maintain, or close to impossible for their
average user to develope. The article went on to
develope the hypothesis that COBOL can remain a very
cost effective tool with the growth of new code gen-
eration tools.

Numerous manhours are expended each year writing
and maintaining very large and complex C6BOL program~
With COBOL still a heavily used business programming
language, considerable time is used creating Working
Storage modules, I-0 Sections, Etc., the general
'housekeeping' of COBOL. While there are numerous
program generators available for oreating standard
maintenance programs, inquiry routines, print jobs
or programs similiar to these, many companies don't
like to expend the dollars to acquire something that
does not have that 'customization' they have gr'own
to love or the code that the generator creates is
not to their own standards and would be difficult to
maintain. Often, these third party generators, trying
to cater to the needs of many, are sc 'soft' that
operation of the generator sometiffies takes more time
than actually coding the program by hand or the code
produced is so generic that variable names all begin
to look alike. To acquire the highly customized and
yet have the benefits that a generator provides may
indicate that the company should examine the possib­
ilities of writing its own source cede generator.

A custom written program generator can become an
enormous asset in any shop. It creates programs that
have similiar logic flows, thus simplifying documen­
tation and maintenance. Per' haps mo:re importantly, a
good program generator can help iropl~ment programm­
ing standards. This highly structured, standardized
code can greatly reduce the maintenance overheads.
A generator typically creates these programs over a
short timeframe, and can be used as the basic ske­
letal structure for much more complicatec pr•ograms.
There are several basic steps that can be utilized
to create your own program generator, and their
simplicity belays the mistique that seems to surround
program generators. These steps can be implerr,ented
in many programming languages but for example pur­
poses, we will use a generator producing a VAX COBOL
isam (Index Sequential) maintenance program"

Step 1: Design the Ultimate Maintenance Program

Proceedings of the Digital Equipment Computer Users Society 29

The most important part cf any program generator
is the final product. In that our final product in
this example is an isam file maintenance progr'arr:,we
should create a standard maintenance program that
includes all of the bells and whistles that the com­
pany requires in a program of this nature. This
program should ce staff reviewed, letting everyone's
input contribute to the final product, thus insuring
that this program has everything the company would
want in a standard maintenance program. Remember,
the basic code generated in this program will be
replicated time and time again, so an error-free
program that adheres to company standards is very
important. Once this basic maintenance program is
completed, we can proceed to the first design stages
of our generator. For our example, a basic program
we want to generate is shown below:

IDENTIFICATION DIVISION.
PROGRAM-ID. GL03P030.
AUTHOR. RAY DAVIS.
INSTALLATION. SHEFFIELD.
DATE-WRITTEN. 02/03/86.
DATE-COMPILED.
SECURITY.
ENVIRONMENT DIVISION ..
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

SPECIAL-NAMES.
SYMBOLIC CHARACTERS

CR-VAL CTRL-Z-VAL CTRL-N-VAL CTRL-0-VAL ESC-V
ARE 14 18 15 16 28.

INPUT--OUTPUT SECTICN.

FILE-CONTROL.
SELECT GL03

ASSIGN TO GL03
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS GL03-VOUCHER.

DATA DIVISION.

FILE SECTION.

FD GL03.
01 GL03-RECORD.

03 GL03-VOUCHER
03 GL03-STD-VOU-·FLAG
03 GL03-VOUCHER-DESCRIPTION
03 GL03-VOUCHER-EXPLANATION

WORKING-STORAGE SECTION.

PIC X(3).
PIC X.
PIC X(30).
PIC X(30).

77 WS-COMMENT PIC X(9) VALUE "WS-BEGINS".

San Francisco, CA- 1986

77 SWITCH PIC XXX VALUE "OFF".
77 SELECTION PIC 999.
77 ANS PIC X VALUE SPACES.
77 RCD--SW PIC X VALUE "X".
77 LINE23 PIC X(79) VALUE SPACES.
77 LINE24 PIC X(79) VALUE

"PF1-BACKUP PF2-UPDATE PF3-DELETE PF4-EXIT".

01 CONTROL-KEY.
03 FIRST-CHAR-CONTROL-KEY

88 ESC
88 CR
88 CTRL-Z
88 CTRL-N
88 CTRL-0

03 REMAINDER-KEY
88 PF1
88 PF2
88 PF3
88 PF4

PROCEDURE DIVISION.
MAIN SECTION.
MAIN-1.

OPEN 1-0 GL03.
PERFORM DRIVER UNTIL

SWITCH = "EOJ".
CLOSE GL03.
DISPLAY " " ERASE SCREEN.
STOP RUN.

MAIN-EXIT.
EXIT.

DRIVER SECTION.
DRIVER-1.

PERFORM DISP-SCR.
PERFORM GET-KEYS.

IF SWITCH =- "MOD"

PIC X.
VALUE ESC-V.
VALUE CR-VAL.
VALUE CTRL-Z-VAL.
VALUE CTRL-N-VAL.
VALUE CTRL-0-VAL.

PIC X(4).
VALUE 11pu.

VALUE "Q".
VALUE "R".
VALUE "S".

PERFORM MOD-DATA UNTIL SWITCH "XXX''
GO TO DRIVER-EXIT.

IF SWITCH = "ADD"
PERFORM KEYIN
PERFORM ADD-RECORD
GO TO DRIVER-EXIT,

DRIVER-EXIT.
EXIT.

GET-KEYS SECTION.
GET-KEYS-1,

DISPLAY "VOUCHER" LINE 3 COLUMN 1 ERASE LINE.
ACCEPT GL03-VOUCHER KEY IN CONTROL-KEY

UNDERLINED LINE 3 COLUMN 40.

IF PF4 MOVE "EOJ" TO SWITCH
GO TO GET-KEYS-EXIT.

READ GL03 INVALID KEY
GO TO GET-KEYS-2.

MOVE "MOD" TO SWITCH
PERFORM DISP-DATA
GO TO GET-KEYS-EXIT.

GET-KEYS-2.
DISPLAY "ADD THIS RECORD?" LINE 23 COLUMN :l

ERASE LINE.
ACCEPT ANS LINE 23 COLUMN 40 UNDERLINED.

IF ANS = "Y"
MOVE "ADD" TO SWITCH
GO TO GET-KEYS-EXIT,

30

MOVE "XXX'' TO SWITCH.
GET-KEYS-EXIT.

EXIT.

MOD-DATA SECTION.
MOD-DATA-1.

DISPLAY "ENTER SELECTION:" LINE 23 COLUMN :l
ERASE LINE.

ACCEPT SELECTION KEY IN CONTROL-KEY WITH
CONVERSION LINE 23 COLUMN 40 UNDERLINED.

IF PF1 MOVE "XXX" TO SWITCH
GO TO MOD-DATA-EXIT.

IF PF2 PERFORM MODIFY-RECORD
MOVE "XXX" TO SWITCH
GO TO MOD-DATA-EXIT.

IF PF3 PERFORM DELETE-RECORD
MOVE "XXX" TO SWITCH
GO TO MOD-DATA-EXIT.

IF PF4 GO TO MOD-·DATA-EXIT.

IF SELECTION = ZERO
PERFORM DISP-SCR
PERFORM DISP-DATA.

IF SELECTION 1 PERFORM K001.
IF SELECTION 2 PERFORM K002.
IF SELECTION 3 PERFORM K003.

MOD-DATA-EXIT.
EXIT.

KEYIN SECTION.
KOOL

ACCEPT GL03-STD-VOU-FLAG KEY IN CONTROL-KEY
LINE 04 COLUMN 40 UNDERLINED PROTECTED.

DISPLAY GL03-STD-VOU-FLAG LINE 4 COLUMN 40.
K002.

ACCEPT GL03-VOUCHER-DESCRIPTION KEY IN CONTROL--KEY
LINE 05 COLUMN 40 UNDERLINED PROTECTED.

IF PF1 GO TO K001.
DISPLAY GL03-VOUCHER-DESCRIPTION LINE 5 COLUMN 40.

K003.
ACCEPT GL03-VOUCHER-EXPLANATION KEY IN CONTROL--KEY

LINE 06 COLUMN 40 UNDERLINED PROTECTED.
IF PF1 GO TO K002.
DISPLAY GL03-VOUCHER-EXPLANATION LINE 6 COLUMN 40.

KEYIN-EXIT.
EXIT.

DISP-SCR SECTION.
DISP-SCR-1.

DISPLAY "SHEFFIELD STEEL CORPORATION"
LINE 1 COLUMN 30 ERASE SCREEN.

DISPLAY "G/L VOUCHER DEFINITION MASTER"
LINE 2 COLUMN 30.

DISPLAY "1.STD VOU.FLAG:" LINE 04 COLUMN 1.
DISPLAY ''2. VOU. DESCRIPTION:" LINE 05 COLUMN 1.
DISPLAY "3.VOU.EXPLANATION:" LINE 06 COLUMN L
DISPLAY LINE24 LINE 23 COLUMN 1 UNDERLINED.

DISP-SCR-EXIT.
EXIT.

DISP-DATA SECTION.
DISP-DATA-1.

DISPLAY GL03-STD-VOU-FLAG LINE 04 COLUMN 40.
DISPLAY GL03-VOUCHER-DESCRIPTION LINE 05 COLUMN 40.
DISPLAY GL03-VOUCHER-EXPLANATION LINE 06 COLUMN 40.

DISP-DATA-EXIT.
EXIT.

ADD-RECORD SECTION.
ADD-RECORD-1.

WRITE GL03-RECORD INVALID KEY
PERFORM ERROR
GO TO ADD-RECORD-EXIT.

ADD-RECORD-EXIT.

MODIFY-RECORD SECTION.
MODIFY-RECORD-1.

REWRITE GL03--RECORD INVALID KEY
PERFORM ERROR.

MODIFY-RECORD-EXIT.
EXIT.

DELETE-RECORD SECTION.
DELETE-RECORD-1.

DISPLAY "ARE YOU SURE" LINE 23 COLUMN 1
ERASF LINE.

ACCEPT ANS LINE 23 COLUMN 40 UNDERLINED.
IF ANS EQUAL "Y" GO TO DELETE-RECORD-2.
GO TO DELETE-RECORD-EXIT.

DELETE-RECORD-2.
DELETE MASTER INVALID KEY

PERFORM ERROR.
DELETE-RECORD-EXIT.

EXIT.

ERROR SECTION.
ERROR-·1.

DISPLAY 1'.ERROR-CONTACT-SYSTEMS" LINE 23
COLUMN 1 ERASE LINE UNDERLINED.

ACCEPT ANS LINE 23 COLUMN 40 UNDERLINED.
ERROR-EXIT.

EXIT.

S~: Identifying The Variables

This next step consists of taking a listing of the
maintenance program and going over it line by line,
highliting any item that will change from program to
program. Obvious items would be field names, data
types, cursor positions, file names, etc. Not so
obvious would be page number (what happens when your
file definition exceeds the number of lines on the
screen? Go to another page? Another Column?). Each
variable that you identify may become an item that
must be keyed into the generator when you run it.
One situation that occurs in many shops is the use
of include modules or dictionaries for data defini­
tions. The program generator makes a good place to
create these definitions because in the case of the
maintenance program, you must key in the field names
anyway.

Step 3: Coding the Data Entry for the Generator

Once you have identified all the variables within
the program format you will generate, you should now
divide these variables into two categories, re-occur­
ing and non-reoccuring. The non-reoccuring variables
(author, date, etc) should be captured in working
storage while the recccuring variables (variable
names, file names, etc) should be stored in a file
or array structure to allow repeat access. The
information you capture is dependent on how sophis­
ticated you want your generator to be. If you are
using a generator product like CDD, you will probably
want to capture additional field level information.
COBOL field structures will require information to
tell the generator, yes, I want this in the CDD but
I do not want it as a keyin field in my program.
Because a real easy way to identify structures in a
COBOL file is the level number, it may be easiest
to require the level number on each field name. Also
remember that packed data fields require 'with conver
sion' on display and accept, so identification of the
field structures is necessary.

31

Step 4: Creating the Generator Prom~ Entry

Now that the basic 'dictionary' for the generator is
in place, the next step is to process this informa­
tion back out in the form of a COBOL program. COBOL
provides sufficient string manipulation so we chose
to write the generator itself in COBOL. Some hints
you may want to utilize when writing a generator in
COBOL are:

A) Make extensive use of the new STRING verb
B) Have a SPACE7 and SPACE12 variable valued space

defined in working storage for indentation in
the generated program

C) Pre-define many of the section and paragraph
names in working storage or the generator

D) Set up counters with good mnemonic names
(PAGE-CTR,LINE-CTR,COLUMN-CTR)

The basic flow of a generator could be as follows:

1) Perform Data Entry
2) Create IDENTIFICATION,DATA & WORKING STORAGE

sections with data capture.d in generator data
entry (non-reoccuring)

3) Create MAIN and DRIVER sections with similiar
non-reoccuring data

4) Process one pass thru the reoccuring data to
create the KEYIN section

5) Process another pass thru the reoccuring data
to create the DISPLAY-SCREEN section

6) Process another pass thru the reoccuring data
to create the DISPLAY-DATA section

7) Create file I/O and error routines with the
non-reoccuring data

8) EOJ

Obviously, by writing your first generator with a
'one screen per program' limit you will eliminate
the need for tracking multiple screens. Once you
have perfected the single screen program, you can
expand to multiple screen generation by adding the
code to track lines per page and pages per program.
Other hints you may want to keep in mind when design
ing your generator are:

a) If your shop uses standard naming conventions,
make use of these in your generator. For
example, if a file defined as GL03.MAS has
'GL03-' preceeding each field name you need not
enter that pref ix for each field name but can
have the generator do it for you

b) Use the generator to help enforce corporate
standards. If your company uses PF4 as the exit
key, write the generator in this manner and it
will help evolve these standards throughout the
system. Because a good generator will be used
by programmers to develope highly customized
programs (skeletal starting code) this has the
effect of accelerating the implementation of
standards.

c) Structure your generator as highly as possible.
These custom written products have a tendancy
to become 'enhanced' as the staff uses the
product and finds new ways to add to the gene­
rator functionality.

d) While 100% program generation is great, many
times a generator that can produce 50% of a
program (ie; a print generator that creates
the working storage code for heavily formated
reports) will be utilized more than the genera­
tor that creates the entire product because it
can be used by programmers to reduce the heavy

grind of coding these large sections of repetative
code and still keep their 'style' intact.

Keep in mind when writing a generator that many
programmers consider everything in a COBOL program
above the Procedure Division as 'overhead'. Style,
as it is known in programming is just not that
important in these areas so a generator that will
take away the time consuming task of coding these
'overhead' sections will probably be met with open
arms. Any code created by a generator in the
Procedure Division should be well documented and
easily modified by the staff because in many cases,
it will be modified anyway •••

32

MicroVAX Ancillary Control Process (ACP) for Realtime Human-Machine Interface

Thomas Kane
Tom Kane Computer Engineering

Glendale, AZ

Abstract

This pa.per discusses the design and implementation of the human factors engi­
neering of a. Computer Aided Instruction (CAI) system. The unique demands of
the CAI system were met by designing a. custom VAX/VMS Ancillary Control
Process (ACP). The ACP controlled and managed the graphics display as well
as accepting mouse and keyboard input.

Human Engineering

Since the system was intended to be used for training pur­
poses, human engineering was considered a. high priority.
Many students would use the system for only a. few weeks.
For this reason an important design goal was ease of use
and simplicity of operation. This goal proved to be harder
than expected to achieve because some users (courseware
authors and instructors) would use the ma.chine regularly
while students would use the system only for a. limited
time. In addition, opinions on human factors vary widely.

Colors for the menu display were chosen to enhance
readability and to indicate the availability of functions. IN
general, functions which are available are displayed in yel­
low. Functions which are not available are displayed in
white or gray. It was decided to display unavailable func­
tions (rather than eliminate them entirely) so that stu­
dents would always see the same menu. In particular, it
was determined that new users of the system might oc­
casionally search the menu trees for a function that was
previously enabled only to discover that the function was
no longer available.

The following human factors goals were considered
during the design of the system:

• consistent method of data entry

• minimal entry action

• minimal memory load

• flexibility

Graphics Display

Figure 1 illustrates the areas of the graphics display screen.
The graphics display screen is discussed in the following
sections.

Proceedings oflhe Digi1al Equipment Computer Users Society 35

Function Menu History Area

The function menu history area displays the previous
menu choices which placed the user at the current posi­
tion within the hierarchical menu tree. These items are
never selectable, but provide a. map for navigating the
menu tree. The items are displayed as white text on a
black background.

Function Menu Area

The function menu area displays menu selections which
are appropriate for currently active function. Available
options are displayed using yellow text on a black back­
ground. Non-available options are displayed in gray. As
the crosshair is moved pa.st an available menu option, its
color changes from yellow to green. Courseware authors
determine which options are to be available at any given
time. Non-available options are displayed in gray (rather
than eliminated from the display) so that menu displays
are always consistent. This prevents the situation where a
student searches the menu tree for a function he just used,
only to find that the option is currently not available.

List Selection Area

The function menu area is also used to display lists from
which the operator may select one item (such as directory
lists or help topic lists). The colors used for display is
identical to the function menu area..

Utility Area

The utility area contains frequently used options which are
desirable to display at all times. Examples are logoff and
toggle communication area. Items are displayed using the
same colors as the function menu area.

San Francisco, CA - 1986

w
O'I

SECURITYBANNER

IMAGE DISPLAY /WORK AREA

TERMINAL EMULATION AREA

PROMPT AND TEXT ENTRY COMMUNICATION AREA

(OVERLAYS IMAGE AND TERMINAL AREA)

SECURITY BANNER

FIGURE 1

HISTORY AREA

FUNCTION MENU

LIST SELECTION

UTILITY MENU

SYSTEM STATUS

System Status Indicator

The system status indicator is used to indicate the cur­
rent system status to the workstation operator. When the
system is waiting for input, the word 'READY' appears
in green letters. After input is successfully accepted, and
passed to the system for processing, the word 'PROCESS­
ING' appears in red letters. The processing message re­
mains until a request for input is received by the ACP.

Prompt and Text Communication Area

The communication area is used to prompt the user for
data entry and to display advisory and error messages.
Prompts and advisory messages are displayed using white
letters on a blue background. Error messages are displayed
as white text on a red background.

Image Display Area

The image area is used for the display of imagery associ­
ated with the current lesson. The image area is also used to
present courseware and forms to the student and consists
of a 24 by 80 column display. This area is used to emu­
late a VTlOO terminal and a TEKTRONIX 4105 terminal.
For VTlOO emulation, a monochrome display is generated.
Reverse video, bold, blink, double height and double wide
text are supported. For TEKTRONIX emulation, 8 colors
and pixel graphics are supported.

Security Banners

The security banners present the security classification of
the currently displayed image. The security banner con­
sists of white text on a red background.

System Requirements

The Computer Based Training system was designed to
meet the following requirements:

• display of black/white imagery in 16 shades of gray

• display of imagery annotation (line, symbol and text)
in 8 colors

• display of Computer Based Training course material
emulating a TEKTRONIX 4105 terminal

• Forms display and update (using FMS) by emulating
a VTlOO terminal

• Color display of menus

• Menu selection using the mouse

• Textual keyboard input

In order to maximize the use of existing software,
the ACP was designed to perform two types of terminal
emulation. VTlOO emulation allows the use of standard

37

DIGITAL editors and Forms Management (FMS). TEK­
TRONIX emulation allows the existing Computer Based
Training software to run with minimal modifications. The
emulations are never performed concurrently. The ACP is
either emulating a VTlOO or a TEKTRONIX terminal in
the terminal area of the screen.

ACP Design

A Micro VMS Ancillary Control Process (ACP) was chosen
to meet the system requirements. The ACP fits logically
between the hardware devices (graphics display, keyboard,
mouse) and the workstation application software. As a
privileged process, an ACP often executes in kernel mode
allowing it to access VMS data structures. As a process, an
ACP can call VMS system services and Run-time Library
routines. In addition, an ACP has the full VMS 32 bit
address spaces.

DIGITAL has traditionally used ACPs to manage
non-sharable resources, such as disks, tapes and commu­
nication network hardware. ACPs are currently used to
control tape devices and to allow several application pro­
grams to 'share' network devices. Additional processing
can also be performed on data as it passes between hard­
ware and the application programs. NETACP, for exam­
ple, implements several layers of the ISO network model.

The Computer Aided Instruction ACP performs the
following functions:

• accept keyboard input

• accept mouse input

• share the input and output devices between several
processes

• manage the v&rious zones of the graphics display

• temporarily stop process activity by delaying the com­
pletion of QIO read requests

Since all input passes through the ACP before it is
delivered to the appropriate application process, the ACP
can accept menu selections and convert them to a sequence
of key presses to be passed to the application. This feature
is especially useful when running software which requires
a sequence of function or control keys to be pressed (ie
editors and FMS). The application software receives the
input and runs accordingly, without knowing that the in­
put keystrokes were actually generated by the ACP.

The ACP maintains a separate data structure for each
of the four workstations it supports. Each workstation
database contains variables which define the current state
of the workstation, including emulation state, cursor posi­
tion, current color, crosshair location, etc.

Terminal emulation (VTlOO) is provided by the use
of a VMS virtual terminal. The standard TT class driver
is joined to a unique 'port' driver. The 'port driver' passes
all data from the application to the ACP for display. The

ACP passes data through the 'port driver' back to the ap­
plication. This technique minimized the amount of soft­
ware required to implement terminal emulation. The VMS
TT class driver understands all standard terminal QIO re­
quests and simply passes data to the ACP. Likewise, the
ACP passes input data to the TT class driver who delivers
it back to the user with any associated ASTs and status
blocks.

The terminal emulation software is designed using a
state machine approach. A state machine defines the cur­
rent state of software by describing each state transition.
Each character received and processed by the terminal em­
ulation software causes a state transition to occur. Escape
sequences are handled in this manner. Receipt of an es­
cape character (ASCII lB) causes a transition to state
ESC. Receipt of a J when in this state causes part of the
screen to be erased. Receipt of a J in the normal state
results in the displaying of a capital J.

Mouse and keyboard input is achieved by using the
VMS connect to interrupt mechanism. All interrupts from
the devices cause data to be stored in a system mapped
buffer. The character handling routines that process data
from the mouse and keyboard also use non-paged pool
when data must be passed to the ACP. The interrupt ser­
vice routine buffers characters (with line number) into a
ring buffer which is doubly mapped in system and process
space. A fork routine is started to empty the ring buffer.
The fork routine removes data and determines the context
of the data from data stored in workstation databases. The
appropriate workstation database is located by using the
line number stored with the data as an index into a list
containing the addresses of the 4 workstation databases.

The graphics card (MATROX QG-640} is controlled
by a modified VMS driver. The graphics board supports 3
dimensional graphics, raster pixel moves and a hardware
supported cursor. The ACP places graphics commands in
a display buffer (within the workstation database) and is­
sues a QIO to the driver. Since the workstation database
is locked in memory, direct IO is used. The data is moved
via programmed IO (1 byte at a time) to the graphics
hardware control/status register. The driver also contains
an alternate startio entry point which is used for cursor
movement. H the driver is busy, the cursor movement (al­
ternate startio routine) simply stores the new crosshair
position in the Unit Control Block (UCB). After the cur­
rent IO completes, the driver issues the update crosshair
commands. H the driver is not busy, the alternate startio
routine updates the crosshair immediately by issuing the
necessary graphics commands to the graphics controller ..

Application programs request the display of menus
and images by issuing request to a pseudo driver (GT:).
Communication between components of the IO subsystem
is achieved using non-paged pool. The QIO system service
(EXE$QIO) allocates an IO request packet for requests to
the GT device. FDT routines in the GT driver allocate
additional non-paged pool to hold data to be passed to
the ACP. The address of the system buffer is stored in the
IRP at offset IRP$1-SVAPTE, so that it can returned to

38

pool as part of IO completion. In addition, the number
of bytes of pool charged against the requesting process is
stored in the IRP so that quota can be updated during IO
completion.

The Virtual Terminal (VT) port driver uses non­
paged pool to pass characters to the ACP. For large data
transfers, the VT startio routine allocates a system buffer
of sufficient size to buffer the data. For single character
(or small requests) the VT driver allocates a small request
packet (SRP) from the SRP look-aside list.

Conclusions

The ACP design has proven to be flexible and efficient.
By isolating all human factors issues to a single image
(the ACP), changes are easy to implement and are done
transparently to the application software. In addition, all
communication between application software and the ACP
is achieved via pseudo devices. The association to devices
is done at run time using the $ASSIGN system service.
No application code is linked to the ACP. The interface
is thus easier to define and modifications are simpler to
implement.

One problem was encountered during the implemen­
tation. In order to update the system status indicator, it
is necessary to know when a read is currently outstanding
to the virtual terminal. The port/class driver interface
does not explicitly pass this information. It is assumed
that all data received from the port driver will be passed
to the TT class driver. The TT class driver then buffers
the data in the type-ahead buffer or returns it to the ap­
plication program. One possible solution is to check the
Virtual terminal Unit Control Block (UCB). Presumably
the information will be available here.

A DISTRIBUTION DATA BASE FOR REAL TIME
DATA ACQUISITION AND PROCESS CONTROL*

David L. McGuigan and Robert w. Carey
Scientific Software Division

Computations Department
Lawrence Livermore National Laboratory

Livermore, California

ABSTRACT

We are developing a distributed data base for real
time data acquisition and process control. The data

base has a relational structure with the added
capability of associating executable code with data
access providing the flavor of an object oriented
system. This flavor of an object oriented system
allows the development of a hierarchy of objects
that are made up of lower level objects already

defined. This structure provides for a unified view
of the system operation reducing development costs

while enhancing system flexibility.

The contents of the real data base are described by
an offline configuration data base. Management of the
offline configuration data base contents is provided
through an RDB (1) data base on a VMS host. The user
interface to the configuration information is provided

through the use of the FMS-11 Forms Management
System. This provides a controllable interface that

is easy for novice users to utilize.

The system works on a network of MicroVAX II's running ELN
and additional host systems running VMS. It is used to
support a complex control system application currently

in development.

INTRODUCTION

We are developing a control system for a
complex application that requires highly
interactive user interfaces and signal reporting
for approximately 3000 I/O points every second.

oriented system to increase system modularity and
easily support data driven software. The use of a
distributed data base was driven by a desire to
reduce system complexity. This data base provides
a common view of the system to both levels of the
control system.

The control system is organized into two levels.
The first level interfaces directly with the
process hardware and is called the Process
Interface level. This level provides control
capability through a video terminal interface.
There is very little human engineering at this
level. The second level is called the Supervisory
level. This level incorporates a high degree of
human engineering in the interface supplied to the
operators. Graphics displays with touch panels are
the interface. This level provides very high level
control functions such as sequences.

The control system software provides generic
data acquisition and control capability. It is
based on a distributed data base that maintains all
the real time values in the control system. The
data base provides the capabilities of an object

*This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No.
W-7405-Eng-48.

Proceedings of the Digital Equipment Computer Users Society 39

In this paper we discuss the object oriented
distributed data base system. We start with a
discussion on the philosophy of an object oriented
system and its applicability to a control
environment. Then we describe our implementation
of that philosophy. A discussion of some of the
internal details including system configuration,
system generation, the local data base interface,
the remote data base interface, and some important
underlying data structures is included. We then
summarize with the current status of the project
and its future directions.

THE OBJECT ORIENTED SYSTEM

In a process control system, it is easy to
identify objects that must be controlled and
monitored. These are things like valves, pumps,
and temperature monitors. In a conventional
control system, there are some data that represent
these objects that are available to the application
programs. When it is necessary to perform an

San Francisco, CA- 1986

action, these data are accessed by the application
program. The proper method to perform the action
is then determined, and the action is executed in
the system. It is the responsibility of the
application program to know how an action must be
carried out. This requires the application
programs to accomplish two complex tasks; to
determine WHAT must be done and HOW to do it. The
following subsections deal with an object oriented
approach to system design. We will briefly define
what a classical object oriented system provides
using Smalltalk (2) as an example. We follow this
with a discussion of our implementation that gives
us much of the same flavor.

Object Oriented System Defined
In an Object Oriented System, an object is a
complex data structure and a set of operations that
can be performed on that data structure through a
well defined interface. To perform an operation on
the object, the user sends a message to the object
asking it to perform the operation. The object
responds with a message reflecting the completion
status of that operation. The benefit of the
object oriented approach is the enhancing of
modularity. Determining WHAT to be done is
separated from determining HOW to do it, resulting
in reduced system complexity. If the information
or method of accomplishing an operation changes for
an object, only the object needs to be modified as
long as the well-defined interface is not affected.

The use of an object oriented approach
facilitates a hierarchical system development. The
lowest levels handle the details of the
input/output devices and the higher levels abstract
the lower level devices into something more
meaningful to the user. As an example, there could
be several binary points that give different
information about a valve. There would be objects
representing each hardware binary point. The valve
object would then reference the point objects to
determine its information. If the hardware system
was changed from CAMAC to RS232, only the binary
point objects would be affected and the valve
object would remain the same.

In a control system there is assuredly a
multiplicity of similar objects, such as valves or
temperature monitors. Using the terminology from
the Smalltalk Environment, these are CLASSES of
objects. Classes represent objects in the system
that behave in a similar fashion. An INSTANCE of a
class is the representation of a particular object
in the system, such as Intake Valve 23 and Outlet
Temperature Monitor S. All instances in a class
accept the same messages and use the same logic, or
METHODS, for executing the message requests. The
contents of the data structure, or INSTANCE
VARIABLES, allows each instance to perform in its
system specific manner. In the above example, each
valve would reference a different set of binary
points, but each set would be referenced in the
same way.

The Run Time Object Data Base
Our system has several features that parallel the
Smalltalk Environment. We have GROUPS that are
made up of MEMBERs. Each GROUP is of a defined
GROUPTYPE that has a specific set of PROPERTIES. A
GROUPTYPE is equivalent to a class, a MEMBER is

40

equivalent to an instance, and a PROPERTY is
equivalent to an instance variable. The methods of
a member are defined by routines or ACTIONS that
are associated with the accessing of properties.
Accessing a property is the way a message is sent
to a member to perform a method. The properties
can be defined to have ACTIONS executed before or
after the reading or writing of a property,
providing much flexibility in how the methods are
accomplished.

In our system, there can be several GROUPs of
a GROUPTYPE. The necessity of having several
GROUPs to represent the same type of object comes
from the distributed nature of our data base and
will be discussed in more detail in the section
describing updates around the network.

The groups are organized in a relational
structure. The MEMBERS ~ake up the rows and the
PROPERTIES make up the columns. We then extended
the relational structure to provide the
capabilities of an object oriented system. The
relational structure was chosen because it maps
directly onto the structure of the configuration
data base maintained in an RDB data base. The
relational structure also allows the system to
handle data base requirements that are not
optimally supported by a totally object oriented
system.

This organization has the benefits of both the
relational data base and an object oriented
system. It provides the benefits of an object
oriented system through modularity and easy
abstraction. This easily supports the definition
of objects, such as valves and temperature
monitors, that the user programs can reference
without having to consider the details of the
implementation of those objects. It also provides
the standard data base functionality of a
relational system. The users only have to learn
one set of interface routines to access the data in
a relational or object oriented manner.

We call the system the Run Time Object Data
Base and it is a collection of several smaller
subsystems. There is an interactive program used
to manage the configuration information called the
Configuration Manager. There is also a utility
program that translates the configuration
information into a form that can be built into the
running system called the Object Allocation
System. These tools make up the offline support.
The run time system is made up of two subsystems,
the first of which is a set of routines called the
Run Time Object Interface (RTOI) that the user
programs utilize to access the data base. The
second major component of the run time system is
the Network Server, which is implemented as a
process per node that maintains the consistency of
the data base around the network. The software
organization is shown in Fig. 1.

SYSTEM INTERNALS

This section provides a detailed description
of the software architecture and the functionality
provided that implements the distributed real time
control data base. We start with a description of
configuration definition and data object allocation
to different nodes in the network. Then we discuss
the run time system by describing operation of the

SOFTWARE ARCHITECTURE

Operator

offltne

runttme

Conftgurat1on
Manager

Conftguratton Data Base

Object Allocatton

Run Time
Object Interface

User Programs

Ftgure 1.

Other Network Nodes

data base in a local node and then extend that to a
network of cooperating nodes. At the time of the
writing of this paper, the single processor version
was up and running and work was proceeding to
extend it to the distributed architecture. For
ease of presentation, we will describe it as if it
were implemented according to the current design.
Complete details on the status and performance of
the system are provided in a following section.

The Offline System

Configuration Management. The Configuration
Management brings together RDB and FMS to allow for
menu driven configuration definition. With this
tool the user can define data GROUPTYPEs, GROUPs,
GROUP locations, and the initial run time values
for MEMBERs. These logical organizations of data
are defined in RDB as tables that are used to
generate a run time data base. The Configuration
Manager allows for the creation, modification,
deletion, and selection of control system data
objects. It provides a menu for access to
different types of data definition, field
validation on data entry, and help processing.
There are three main system configuration tables
plus all the actual MEMBER tables that are managed
by the Configuration Manager.

The three system configuration tables that
describe the structure of data managed by the run
time system are the GROUP, PROPERTY, and
GROUPLOCATION tables. The GROUP table describes
the run time data tables. It contains the GROUP
name, the GROUPTYPE, and the primary location of a
GROUP in the network. The PROPERTY table contains
the GROUPTYPE definitions. It describes the

41

attributes of each different GROUPTYPE. Each
attribute or PROPERTY of a GROUPTYPE is defined by
the owning GROUPTYPE name, the PROPERTY name, the
names of the routines that perform the pre and post
read/write actions, the field type, the field size,
and whether the field contains static or dynamic
data. The GROUPLOCATION table defines all network
locations that a table is distributed to. The
significance of GROUP locations in the network is
presented in the section on the run time system.

The MEMBER tables comprise the actual run
time data base that describes the application
system. The design of the configuration data base
is of paramount importance since it is directly
translated into a run time format. Adherence to
standard data normalization rules for the
relational data model are the first set of
guidelines. MEMBER tables are described by a set
of PROPERTIES that are organized as a primary key
and a set of attributes. All attributes should
directly describe the primary key and not be
dependent on other attributes.

Beyond normalization rules for data base
design, we must take into account
the concepts of the object oriented data base and
the control environment. The main idea is to
design a hierarchy of data objects starting with
low level I/O point data and then abstracting that
data logically and repeatedly. The final
abstraction may then represent an entire
subsystem. Once the data base is designed, we use
the configuration manager to input the hierarchy of
data objects in RDB. This method of configuration
management is working well and will remain an
integral part of building and maintaining the
application control system.

Object Allocation. The Object Allocation component
of the system provides the program mechanisms for
translating the RDB control system configuration
data base into a run time data base in the form of
a link loadable program section for a specified
control system node. It takes the RDB data base
defined by the Configuration Manager tool and
builds a completely initialized run time format
that can be linked with the target application
programs. The format includes GROUP definition
information, PROPERTY definition information, and
the actual MEMBER data as extracted from RDB.
Object Allocation also builds indexing structures
as part of this run-time data base that allow fast
access to GROUP, MEMBER, and PROPERTY information.
The index structures are built using chained hash
tables.

The Object Allocation subsystem outputs the
contents of the configuration data base as a VAX-11
Macro file, which is assembled into an object
program section. The object file is then linked
with the rest of the application programs as a
shared data segment. The final result is an
executable image containing a fully initialized
data base. The use of the macro intermediate file
allows for symbolic names to be used in the
definitions of the data base, which simplifies the
job of data definition. The names are resolved by
the linker, reducing the complexity of the object
allocation subsystem.

The association of actions to the data is done
with three other output files that are generated by

the Object Allocation Subsystem. The first is the
action routine nomination module, which is a Pascal
source module that has the calling structure for
all data action routines defined for the GROUPs
being allocated. As each group is defined in the
macro file, a unique index is generated for all the
routines associated with the properties. The index
of the action routine to execute upon data access
is stored in the run-time data base as part of the
PROPERTY information for each GROUPTYPE. This
index is used as an offset to the proper procedure
call in this nomination module. Another of the
output files generated by Object Allocation is the
action routine definition file, which contains all
of the included statements that bring the action
routines in at system compile time. It also is a
Pascal source module. The last output file of the
Object Allocation system is a PASCAL type
declaration module, which contains a set of PASCAL
record definitions that map to the GROUPTYPEs
defined in the system.

Object allocation is also important in terms
of the distributed nature of our system. It allows
us to build specific run time configurations for
different nodes in the distributed control system.
With the Configuration Manager, we can specify that
a particular GROUP be in one or more nodes in the
network. Object allocation takes care of
distributing GROUPs across one or more run time
configurations. In the section on the Network
Server, we discuss more fully how this distribution
of GROUPs is maintained and where the associated
action routines reside.

The Run Time System
The run time system consists of some node specific
global data, the application specific action
routines, a set of shared data access routines, and
a process for maintaining the global integrity of
the data base. The node specific global data
consists of all of the groups allocated to the
node. The action routines are associated with
particular attributes of data object classes and
contain the logic of HOW actions are performed on
the data objects. The shared routines are called
the Run Time Object Interface or RTOI and represent
a controlled interface to the run time data base.
The process that maintains the global integrity is
called the Network Server. The run time system
provides the real time information to the processes
running in the control system.

Run Time Object Interface. The Run Time Object
Interface (RTOI) is a set of shared routines that
is linked into the processes and provides access to
all the information in the data base that a node
was configured to contain. That information can be
pure data or can represent objects; the interface
makes no distinction. This provides a consistent
access method across the system. The interface
provides a restricted relational view of the data
with some enhancements for simplifying the
accessing of individual objects in the system.

All information is accessed by symbolic name
through the RTOI. The use of symbolic names does
incur some run time penalties but increases the
flexibility of the system dramatically. Using
symbol names, a much more generic system can be
built by encoding system specifics in the data of
the system. While it is possible to resolve

42

symbols before run time, this increases the
complexity of the system support software and
increases the coupling of the system. Results
presented in the project status show that the
performance is sufficient using symbolic references.

The relational operations that the RTOI
provides are selection, which is a subset of the
,.,EMBERs, and projection, which is a subset of the
properties. These operations conveniently provide
access to subsets of information contained in
GROUPs, for both reading and writing. The Join
operation was not provided because of the potential
impact at run time. This is not a severe
limitation because the Object Allocation subsystem
can build GROUPs that are joins of tables in the
off-line configuration data base. Since the data
accesses in a control system can be defined in
advance, any join operations can be done at
configuration time, significantly reducing the run
time overhead.

With the PASCAL types generated by the Object
Allocation component that map to all GROUPTYPEs,
the control system processes can access the run
time data base through the defined relational
operations. Using the variant record that maps
onto all the GROUPTYPEs, we eliminate the need to
do run time binding of program variables to query
statements. The RTOI can do field to field copies
of the data into and from the variant record since
the variant corresponding to the GROUP being
accessed matches the structure of the MEMBER of
that GROUP. This provides the applications with
the ability to store and retrieve data from
specific GROUPs in the run time data base using
standard Pascal syntax and semantics.

Since the system does not distinguish between
pure data and objects, it is very easy to perform
operations on a set of objects. Performing
operations such as opening a set of valves is
easily accomplished. A selection criteria
describing the set is defined. A projection
specifying the COMMAND property is set up. The
relational interface is then used to store the
value OPEN in each of the valve objects specified.
We believe this to be a powerful and very flexible
control mechanism.

Access to individual objects is provided in
the capability to access individual values in the
global data base. Using the GROUP, MEMBER,
PROPERTY the hashed indexed structures are quickly
traversed for rapid access to the desired value.
This access to individual values easily supports a
data driven user interface. The GROUP, MEMBER,
PROPERTY to be manipulated can be maintained
symbolically in the data structures defining the
screens that are presented to the user. The user
interface can maintain a pointer into the data
structures for referencing which set of names is
associated with a field the user is currently
interested in. Using the names and a value the
user specifies, the interface software can access
the data base. The object oriented data base then
handles all the system specific functions so the
user interface software is not tied to application.

Network Server. The Network Server process
provides a communications center in each control
system node. The primary purpose of the Network
Server is to maintain the distributed data base.

This entails refreshing distributed copies of data
throughout the network. To describe how this is
accomplished, we first describe how groups are
handled in the system.

In the system, a GROUP can exist in one of two
forms. It can be a primary GROUP or it can be a
ghost GROUP. A ghost GROUP is a read-only copy of
a primary GROUP that exists on another node in the
system. There are no actions associated with a
ghost GROUP. Only the primary GROUP has the
actions, if any. One primary GROUP in the system
can have many ghost copies of it distributed around
the network.

The primary GROUP is allocated to the node
that has the highest update frequency to reduce
network overhead. Only the primary GROUP is
updated by the processes in the system. A data
base update directed to a local ghost GROUP is
intercepted by the RTOI and sent as an immediate
message to the node containing the primary copy.
This remote update will then be reflected in the
local ghost copy in the next update sent by the
remote network server. This prevents
inconsistencies resulting from multiple
simultaneous updates by insuring all copies reflect
the primary copy. The latency introduced here
amounts to a maximum of one cycle of the network
server that is designed to be one second.

To maintain what changes have been made to the
primary copies of groups on a node, a shared data
structure is managed by the RTOI and the Network
Server. The structure is a doubly linked list that
is threaded by groups in one direction and nodes in
the other. When a write is done to a primary
group, the RTOI walks the structure through the
group links, putting an entry at each node
intersection describing the change that has been
made. When the Network Server for a particular
executor node does the periodic updating, it walks
the structure through the node links, building a
package for each remote node containing what needs
to be updated from the executor node's primary
groups. All changes directed to a remote node are
packaged into one message. The message overhead
for update information to ghost copies is low since
data for many GROUPs can be packaged as one message
that is sent periodically. This provides an
efficient method for maintaining the distributed
data base consistency.

The need for multiple groups of the same type
comes from the desire to reduce the network
overhead. By providing multiple groups of the same
GROUPTYPE, the commonalty of the treatment of the
data is preserved while the segmentation of the
data is increased. The increased segmentation
allows the distribution of data to only the nodes
that are interested in that information, reducing
the amount of updating in the system. As an
example, if there were only one group in the system
that represented all valves, then when any valve in
the system changed, all copies of the group would
have to be updated to maintain data consistency.
So if a valve on node 1 opened, node 3 would have
to be informed even though node 3 does not care
about the valves on node 1. By segmenting the
valves into groups related to the nodes, only the
nodes that are interested in valves of node 1 would
be updated when that valve opens.

43

In terms of a control architecture, we have a
polled system. We contrast this to an
interrupt-driven architecture where updates are
pushed out as they occur. We believe a polled
architecture accommodates a wider range of system
activity in a more consistent manner. This is
because of the relatively constant message traffic
regardless of update frequency in the network. In
an interrupt-driven system, each data base update
generates one or more messages, and as the update
frequency goes up, more and more CPU cycles must be
devoted to message processing. Performance can
then vary widely between peak periods of activity
since the number of messages varies directly with
system activity. In a polled architecture, where
we package many updates into a single message, we
avoid this performance variance at peak periods.
This allows us to provide approximately the same
performance over a wider range of system activity.

One of the features of this design is a rapid
local read capability. All data base read
operations are resolved in the local node without
message traffic in the network. If a particular
node needs information contained in primary GROUPs
in another node, the table(s) containing the
information are allocated at system generation time
as ghost copies on the node requiring the data.
Analysis shows that the majority of compute
activity in a control system is for monitoring and
displaying state information. Therefore, we have
endeavored to make the reading of data base
information as cheap as possible in the context of
a node in a distributed process control environment.

Certain applications, such as sequences,
require exclusive update capability for values in
the data base. Sequences are a set of logical
steps that take the state of the system from a
current known state to a new desired state. We
have implemented a data locking primitive in our
distributed data base to ensure exclusive write
access. Each process in the network has a unique
identifier that is used as the lock key. Locks are
implemented to allow locking at the field level
within GROUPs. A lock allows only the owner to
write to the field, but allows any and all read
requests. Locking is particularly important when
performing sequences. There may be many steps
which depend on the outcome and steady state of
previous steps. It is therefore necessary to lock
devices in particular states such that the sequence
can proceed knowing that previous steps will not be
altered by other asynchronous processes in the
network.

Another important function of the network
server is the maintenance of the communication
links. It is responsible for initiating and
accepting communications with other interested
nodes at system startup. For each logical link
between two nodes, there is an acceptor and a
requester node. The network server works using a
link data base that describes each link that is
maintained on a particular node. A node may accept
connection with some node(s) and request connection
with some other node(s) based on the definitions in
the link data base.

The network server is also responsible for
detecting when a communication link fails and for
re-establishing that communication. Failure
detection is simple since all nodes are in periodic

communciation in our polled architecture. The same
logic for accepting or requesting a connection is
followed. The attempt to make connection is
repeated on a periodic basis until such time as the
connection is re-established.

The network server is built around the use of
VAXELN circuits, ports, names, and messages. These
kernel data objects combined with the ETHERNET data
link driver from the VAXELN Network Service. This
Network Service uses the Phase IV DECnet Network
Services Protocol (NSP) Version 4.0 and Session
Control Protocol Version 1.0 to provide transparent
application-level circuits to remote nodes. Each
node in our control system network has a network
server process that uses the VAXELN Network Service
mechanisms to communicate with other cooperating
control system nodes. We found the networking
capabilities provided by VAXELN to be very useful
in simplifying the design of our network server and
the required distributed processing overall.

PROJECT STATUS AND BENCHMARKS

The project is progressing on
schedule at this point. The single node
configuration is currently functioning and
performing local control functions in several
prototype environments. Data base access times
were tested for the single value and relational
access mechanisms. For a direct retrieval of a
single data base value from one GROUP, the delivery
time is approximately 0.67 milliseconds, which
equates to 1500 data base values per second. Using
the relational operators for retrieving mutiple
PROPERTIES from mutiple MEMBERs from a single
GROUP, we get single value delivery times of 0.17
milli seconds or 6000 values per second. These
access times should remain relatively constant with
different table sizes based on the hash table
access method. Our table sizes are relatively
small with the largest ones only around a few
hundred MEMBERs. The above access times seem to be
quite acceptable for the data base traffic we are
observing.

In evaluating the above times, two points need
to be considered. First is that these times do not
include any accesses invoking actions. There is no
reasonable way to estimate what an average action
is so they were omitted from the timings. The
second point is that in using an object oriented
approach, we can significantly reduce the number of
data accesses required. To perform an operation
requires accessing only one value, which is
equivalent to sending the member a message, and
letting the member handle the details. This
significantly reduces the overhead because the
member can reference its properties with almost no
overhead. This one access by an application can
accomplish a task that would require many accesses
with a non-object oriented system.

We have performed some benchmark testing of
the run time data base to determine access times
and cycle times for data acquisition. The data
acquisition time for a single node configured for
300 1/0 points is approximately one half second per
scan cycle. This time includes the display of the
information on a VT200 class video terminal. This
affords us room to add on the network functions and
still meet the one second cycle time requirement.

44

We have also done some network benchmark
testing to measure network message processing
speeds for VAXELN and VAX/VMS. We tested message
passing between two dedicated MicroVAX II's running
the VAX/VMS operating system. Here we observed
full machine saturation at approximately 60
messages per second for message sizes of 512 bytes
or less. The same test done when both nodes were
using the VAXELN run time environment, yielded
repeatable results of 200 messages per second. We,
of course, feel much more comfortable using VAXELN
because of its much lower message processing cost.
We feel that we can process as many as 40 network
messages per second in each node without severely
impacting system performance. Our analysis shows
that message traffic will usually be less than 20
messages per second worst case.

These benchmark results give us confidence
that the design decisions were valid. They
indicate that there is sufficient capacity to
handle the requirements of our system with room to
spare.

SUMMARY

In summary, we have designed and are in the
process of implementing a distributed data base for
real time data acquisition and process control. We
have selected hardware and software products from
Digital Equipment Corporation that give us a good
system base to build from. These include the
VAXELN operating environment, VAX/Rdb VMS and
FMS-11. The real time data base operation is based
on the precepts of an object oriented system and a
performance focused relational data base design.
The object oriented features provide for the
association of a set of operations as part of data
definition and data access. The relational model
provides well defined data normalization techniques
and data independence. The overall approach
facilitates a hierarchical system development and
greatly enhances system modularity. The design
also supports the consistent distribution of the
data base across many processing nodes.

We are very pleased with progress to date and
the empirical results, both in functionality and
performance. The majority of the software is
generic in nature and very amenable to different
control applications. This is due to the fact that
system operation is largely data driven. We have
built several different single processor systems
using the current implementation. The majority of
work for new control applications is basically
designing the data base and action routines.

We are anxiously proceeding with the design
and implementation of the fully distributed Run
Time Data Base. We believe the flexibility and
elegance of the software architecture will allow us
to address any problems that arise. When fully
implemented, the Run Time Data Base will allow the
development of application software without
consideration of the distributed environment. The
run time data base will manage all those details
for the application. The application software will
not and should not be aware of or burdened with the
problems of dealing with a distributed process
control environment.

ACKNcx.lLEDGEMENTS

We would like to thank all the members of the
EDS control system development team for their
efforts in the development of this system. Their
help with the review of the analysis and design of
the system helped remove many problems from the
system early in the development life cycle.

45

REFERENCES

1. DEC, VAX, MicroVAX II, ELN, RDB, FMS-11,
VAXELN, VAX/Rdb, DECnet and NSP are trademarks
of the Digital Equipment Corporation, 12 Crosby
Drive, Bedford MA 01730

2. A. Goldberg and D. Robson. Smalltalk-80, The
Language and Its Implementation.
(Addison-Wesley), 1983.

MicroVAX II IMAGE PROCESSING TUTORIAL

John Molinari
Data Translation, Inc.

Marlboro, MA

Digital image processing is the technology of using computers to receive and interpret
visual information from real-world scenes. Applications of this technology are growing
fast in medicine, factory automation,robotics,and surveillance as specialized hardware
for computers such as the MicroVAX II becomes more powerful and less expensive.
Frame grabber.frame processor, and array processor products for the MicroVAX II
exemplify this rapid development. This article introduces the basics of frame grabbing
and frame processing for digital image processing.

The technology of using computers to receive and interpret visual infor­
mation from real-life scenes is taking off. This technology, called digital
image processing, allows doctors to enhance and examine diagnostic
images from computed-axial-tomography (CAT) scanners, ultrasound,
magnetic-resonance.and radiography devices; manufacturing engineers
put robots to work, or employ "vision" systems for quality assurance
inspection; and scientists monitor details on the earth's surface and voyage
vicariously through billions of miles of space to seek new planets, moons,
and stars.

Although the recent surge in the popularity of digital image processing is
new, interest in the technology is not. Researchers and scientists have been
interested since the early sixties when NASA was hard at work studying the
surface of the moon in preparation for the Apollo program. And another
government agency, the United States Geological Survey, years ago
started a program called LANDSAT whose reconnaissance satellites
capture digital images of earth, and most recently provided some of the
images of the nuclear reactor mishap in Chernobyl.

Key to the growing popularity of digital image processing is the availability
of low cost image data acquisition and processing boards and software for
the MicroVAX II. The mostpopular of these, the frame grabber, can digitize
a video signal, store an image in on-board memory for processing, and
display the image at a real-time rate of 30 images per second. Auxiliary
processing boards such as pipelined frame processors and array pro­
cessors are also popular. These boards incorporate specialized hardware
for executing lengthy arithmetic calculations typical of many image
processing operations.

Video
Before a computer can process image data for manipulation and enhance­
ment, the image data must be made available to the computer. Video
cameras are a typical source of real-world image data and present this data
in the form of an analog video signal. Ordinary VCRs are also a common
video source since they provide an inexpensive and convenient means for
storing real-world images. Most video devices, like video cameras and
VCRs, conform to the RS-170 (CCIR, 50Hz systems) or NTSC (PAL, 50Hz
systems) television standards. RS-170 contains lines of black-and-white
(monochrome) video-visual data-and synchronization (sync) data. NTSC
is basically identical to RS-170, except NTSC signals contain color visual
data as well as monochrome video and sync data.

A single image frame from either of these signals contains two fields of
lines, an odd field comprising all odd-numbered lines, and an even field
comprising all even-numbered lines. Horizontal sync pulses separate lines
of video from each other while vertical sync pulses separate entire fields
from each other. Displaying one field after the other, at a rate of 60
fields/second, called interlacing, yields a complete image frame display at a
real-time rate of 30 frames/second.

Some video sources, such as CAT scanners.scanning electron micro­
scopes (SEMs), and slow-scan cameras, provide non-standard video
signals which are not compatible with recognized video standards such as
RS-170 and NTSC. To accommodate these signals, frame grabbers must
provide separate sync inputs for setting variable frame, line, and pixel
digitization rates.

Capturing Images
An analog-to-digital converter is required to digitize the video signal. All
frame grabbers, to operate in real time, use a high speed flash A/D
converter. The conversion procedure is analogous to placing a grid over the
input image. This grid is typically 256 or 512 units across by 256 or 512 units
high. The image sampling circuitry effectively looks at the contents of each
unit in the grid, determines an analog voltage value corresponding to the
average brightness level of that unit, and, using the AID converter, changes
that analog voltage into a binary value called a pixel.

Proceedings of the Digital Equipment Computer Users Society 47

Note that the proportional shape of the pixels, and thus the proportional
shape of the entire image, may be square or rectangular. The ratio of the
horizontal dimension of the image to the vertical dimension of the image is
termed the aspect ratio. RS-170 signals have an aspect ratio of 4:3-their
width is 1.3 times their height.

The number of pixels which make up a digitized frame determines the
spatial resolution of the image. This may be thought of as the spatial
granularity of the image-the number of light and dark dots which make up
the image. Spatial resolution is analogous to the number of scan lines
displayed in a television picture.

The spatial resolution of digitized frames is expressed as a matrix: the
number of lines (rows) into which the image is divided by the number of
pixels (columns) per line. Typically spatial resolutions are 256 lines by 256
pixels, or 512 lines by 512 pixels. A second kind of resolution is
brightness or gray scale resolution. The possible range of brightness values
or gray levels for a given pixel is determined by the resolution of the A/D
converter: an 8-bit AID converter produces a range of 256 possible gray
level values; a 6-bit A/D converter produces a range of 64 possible gray level
values.

Most frame grabbers use a special circuit, called a phase-locked loop
(PLL), to align the internal timing of the board to the timing of the incoming
video signal. The PLL is designed literally to "lock" onto a stable frequency;
therefore, PLLs work well with video cameras since they produce stable
horizontal and vertical sync pulses marking new lines and frames of video.
To operate with less pristine signals, such as those produced by most VCRs
which contain signal noise, noise spikes, and missing sync pulses, PLLs
must be specifically designed for robustness.

Because most frame grabbers acquire images in real time (that is, in the
1 /30 second RS-170 allows for each video frame), special video-speed A/D
converters must be used. RS-170 allows 52.59 us for each line in the image
to be sampled. This is called the active line time. In this time a 512 by 512
frame grabber, for example, must convert 512 pixels, or perform 512 A/D
conversions. This requires an A/D converter with a throughput of almost
10MHz (52.59 us divided by 512 equals 103 ns; 103 ns is equivalent to 9.74
MHz). Thus, the advent of low-cost monolithic 6-bit and 8-bit A/D flash
converters has greatly reduced the cost of frame grabber designs.

Frame grabbers, by definition, operate in real time. Of crucial importance to
capturing and displaying- not to mention processing images - at this rate is
on-board memory, called frame-store memory. The frame-store memory is
usually dual-ported - both the host MicroVAX II CPU and the acquisition
hardware have access to it. Frame grabbers designed for use with auxiliary
frame processing boards ideally have additional 1/0 ports which connect
the acquisition and processing devices using dedicated data lines. One
synchronous or asynchronous input port is provided at the input to frame­
store memory. A similar output port is provided at the output from memory.

The memory requirements of image processing systems are extraordinary:
a 512 X 512 X 8 image requires 256 Kbytes of memory, while a 256 X 256 XS
image requires 64 Kbytes. Add to this the requirement for high speed
memory access (in order to provide real-time image acquisition and
display), and the requirement for greatly increased processing speed
imposed by only moderate increases in resolution (doubling the line and
pixel resolution from 256 by 256 to 512 by 512 quadruples the number of
data points in each image) and some architectural features of real-time
frame grabbers become apparent. First, for real-time operation, high speed
memory, mapped directly into the address space of the MicroVAX II CPU,
for storing at least one complete frame should be provided on the board.
Frame grabber boards with highly advanced memory architectures may
feature more than one complete frame-store memory buffer for the parallel
processing of multiple images at once. Second, the frame-store memory
should provide input and output access to a dedicated high speed data bus

San Francisco, CA - 1986

for access to an auxiliary frame processor. To speed operations which do
use the host 022 bus, BLOCK MODE DMA should be supported to speed
bus throughput.

Careful consideration should be given to the selection of frame grabber
resolution. Higher resolution boards, in addition to being morn expensive
to buy, place much more stringent demands on the host MicroVAX 11
system, particularly if they are used for real-time acquisition and display.
Frame data from lower resolution devices requires much less memory
space for frame storage and much less processing po~er than data from
higher resolution hardware. Most frame grabbers which a~e compat~ble
with RS-170 or CCIR video signals provide 512 by 512 spatial resolution,
with 8-bit brightness resolution. A number of recent designs with 256 by 256
spatial resolution and 6-bit brightness r~soluUon are available. ~hil~ the
higher resolution models can be used in a wider range of appl1cat1ons,
many users will find the lower resolution frame grabbers entirely adequate
for their applications.

Some video digitizer boards are built without on-board frame-store
memory. Such devices typically can neither acquire nor display images in
real time. Real-time acquisition or display of 512 X 512 X 8 frame data
requires transfers of 10 million bytes per second, well beyond the maximum
DMA (direct memory access) transfer speeds of the 022 bus. These modest
data transfer speeds necessarily make all kinds of pixel processing very
much slower on boards without than on boards with frame-store memory.

Processing Images
Digital image processing is a general term applied to a range of operations
which alter image data from a real scene in order to extract information
about the real scene which is not otherwise readily perceptible. Common
processing techniques allow images to be added together, or subtracted
from one another; images can be offset by a constant or operated on by
logic functions. More sophisticated operations enhance the edges of
objects or remove signal noise. Still other operations can implement
thresholds to eliminate gray levels from images, or can attribute false colors
to gray level regions in images.

Digital image processing operations can be discussed in two broad
categories, those which are performed on individual pixels (_pixel p~int
processing), and those which are performed on groups ?f pixels (~1xel
group processing). Pixel point processing divides further into operations
performed on a single image, and operations performed on two or more
images.

One Pixel at a Time
Single image pixel point processing operations change the gray level
values of pixels in a single frame, one-at-a-time to produce new pixels with
new gray level values whose spatial location in the image is the same as
before the operation. Pixel point processing operations are important for
effecting contrast enhancement. A multiplication operation, for instance,
changes each pixel value in an image by multiplying each pixel value in an
image by a constant. Multiplication increases the contrast of an image
uniformly, and can be used to brighten a dark image. When applied to an
image whose pixel values all fall in the lower half of the possible gray scale,
frame multiplication can stretch the range of those values so that better use
is made of the possible gray scale.

A complementary operation, division, causes pixel values to be divided by a
constant. Division reduces the contrast of an image, and can be used to
darken a bright or washed-out image.

An offset operation uniformly increases or decreases in pixel value in an
image by a constant value. Offsetting does not alter the resolution of the
image, but uniformly brightens or darkens the regions of the image which
contain the most information, so the features of the image can be seen more
clearly. The difference between the lowest and highest intensity value is not
changed (as it would be if a multiplication had been used), but the range of
intensities is shifted to become brighter or darker.

The principles of dual image pixel point operations are the same as single
image pixel point operations, except two or more images are involved.
Again, to alter entire frames the gray levels of individual pixels are operated
upon on-at-a-time to produce new output pixels, one-at-a-time. The
addition operation takes the pixel values of one frame and adds them to the
corresponding pixel values of a second frame. This has the effect of
combining two images, and can be used to apply graphic overlays, to
superimpose one image on another, or to combine live images with
animation. The subtraction operation, conversely, reduces all pixel values
in a frame by the corresponding pixel values in another. Subtraction shows
the difference between two frames, and can be used to detect product
variations in automated inspection work, or to detect moving objects in
surveillance or security systems.

Note that both single image and dual image pixel point processing affect
only the intensity content of a frame - the frame can be made brighter or
darker. The spatial content of the image is not changed.

48

Groups of Pixels at a Time
Pixel Group Processing, on the other hand, looks not JUSt at ind1v1dual
pixels, but also at the region or neighborhood around each pixel to produce
one output pixel. Group processing is most notably used for spatial f1ltenng
operations which operate on pixels, groups-of-pix~ls-at-a-time, to enhance
edges (high pass filtering) or smooth image details ~low pass flltenng) by
accentuating or attenuating frequency components in the image.

A classic group processing operation, the spatial convolution, is. a mathe­
matical method for calculating a weighted average of pixel inens1t1es
around and including a pixel point. Repeating this operation for every pixel
in an image produces a convolved or filtered output image.

The actual region or neighborhood of pixels which is operated upon by a
spatial convolution operation is called the convolution kernel. Usually, the
convolution kernel is a square or rectangular-shaped array of pixels. One
operation on one kernel of pixels produces on output pixel value which,
usually, is placed at the same spatial location in the output image as the
center pixel in the kernel matrix.

Kernel dimensions are specified as N x M, where N and M are the two
dimensions of the kernel. For example, in a 3 X 3 convolution, the kernel
consists of a square of nine pixels (three pixels high by three pixels wide),
with the target pixel at the center of the square.

The spatial convolution operates by multiplying each pixel in the kernel by
a coefficient, and summing all these values to produce one output pixel, a
weighted average. Thus, for a 3 x 3 kernel, 3 x 3 or nine total coefficients
must be defined. These coefficients comprise a matrix called a coeff1c1ent
mask and may be all the same, or all different; their values determine the
characteristics of the convolution. And since every output pixel in the
output image is actually produced by as many multiplications and as many
additions as there are pixels in the convolution kernel, spatial convolutions
are extremely arithmetic-intensive. The larger the convolution kernel, the
more arithmetic-intensive and time-consuming the entire operation.

Several types of filters can be implemented using spatial convolutions.
High pass filters make high frequency information (that is, rapid changes in
intensity, associated with image details, edges, or textures) more promi­
nent. A coefficient mask like the one below is typically implemented for a
3 x 3 high pass filter:

-1 -1 -1
-1 -9 -1
-1 -1 -1

The high pass filter makes small changes in the image easier to see.

Conversely, low pass filters tend to attenuate high frequency information,
and thus reduce detail and blur edges in the image:

1/10 1/10 1/10
1/10 1/10 1/10
1/10 1/10 1/10

Low pass filters can be useful in removing noise from an image, or in
reducing details in one part of the image so the shape of the image as a
whole can be seen more clearly.

Another form of pixel group processing is Laplacian edge enhancement,
also implemented using a spatial convolution. In this method, high
frequencies are made very prominent, and low frequencies are highly
attenuated.

-1 -1 -1
-1 +8 -1
-1 -1 -1

Since edges within an image constitute high frequency information,
Laplacian edge enhancement is esnP.cially good at locating boundaries
between objects.

Hardware Versus Software
Digital image processing can be implemented either in software or in
hardware. Software implementations use the host MicroVAX II computer
system. Execution speeds for software implementations are typically much
slower, especially for arithmetic-intensive operations like spatial convolu­
tion, but these implementations offer flexibility. Hardware implementations
require the use of specialized image processing hardware which may reside
on the frame grabber board or may connect directly to the frame grabber
board over dedicated 1/0 ports. Hardware implementations offer one very
important advantage over software implementions: speed.

Image processing hardware varies greatly in sophistication, from simple
look-up tables to complete array processors. Depending on the type of
processing hardware provided, all or most of the pixel processing can be
performed without using the host MicroVAX II.

Although specialized image processing hardware incurs additional cost, it
can operate much more quickly than can the host MicroVAX II. Single and
multiple frame pixel point process operations can be performed in real­
time. Group processing operations can oftentimes be performed in real­
time, or near-real-time.

For hardware processing, some frame grabber architectures incorporate
look-up tables (LUTs) between the A/D conversion hardware and the
frame-store memory. The input look-up tables map any data value to any
other value. Look-up tables are fast and inexpensive to implement, and can
be used for thresholding and frame addition, subtraction, multiplication,
and division.

Each input LUT uses the digital data value of the pixel as an input or index
into the table. Each index value has a corresponding output value. The
output values are determined at the time the LUT is defined. Note that there
is no necessary correspondence between the input or index value and the
output value. Increasing index values can map to decreasing output values;
all index values can map to a single value; groups of four index values can
map to a single value, which increments; and so on. The choice is
determined by the function the input LUT is intended to serve.

Single image pixel point processes can be implemented using input LUTs:
the input or index value to the LUT is the first element in the operation. For
each index value, the user simply performs the desired operation and loads
the result as the LUT's output value. For example, to perform a pixel
multiplication by two, the LUTwould be loaded as follows: index value 0 has
an output value of 0 (0 times 2 is O); index value 1 has an output value of 2 (1
times 2 is 2); index value 2, output value 4; index value n, output value 2n;
and so on. Once the LUT has been loaded with the appropriate values,
simply passing pixel values through it performs the operation.

Providing a feedback loop between the output of the frame grabber's
frame-store memeory and the input of the input look-up tables adds
considerable flexibility. Very advanced frame grabber architectures may
even incorporate an arithmetic logic unit (ALU) between the A/D conver­
sion hardware and the frame-store memory. Operating in conjuction with
the feedback loop and the input LUTs, the ALU allow real-time pixel point
processing on single or multiple frames to occur in real time.

More sophisticated operations like convolutions require more complex
operations on frame data. An auxiliary frame processor board with a built-in
arithmetic logic unit, a frame-store buffer, and the ability to handle more
than one pixel value at a time {piplined architecture) greatly speeds these
operations, and provides greater accuracy than a look-up table alone on
operations involving more than eight bits of resolution on itermediate
results. Some frame processing hardware supports only fixed convolution
kernel sizes, like the popular 3 x 3 convolution. More flexible designs
support N x M convolutions, in which the kernel dimensions can be any size
or shape, even rectangular or star-shaped.

Convolutions typically place enormous demands on procesing hardware,
and can be slow to perform unless specialized hardware is provided. A 3 X 3
convolution, for example, requires nine multiplications and nine additions
for each pixel in the frame. For a 512 by 512 image, a 3 x 3 convolution
requires 2,359,296 multiplications and 2,359,296 additions.

Displaying Images
Once an image has been acquired and processed, it will normally be
viewed. This requires image display hardware, which converts the digital
pixel data back into an RS-170 analog signal. In most systms, the image
display hardware consists of several ouput look-up tables and three digital­
to-analog converters (DACs).

The first step in displaying a frame of digital pixel data is to transform the
data through an output look-up table. After transformation through the
output LUT, the data passes to the output circuitry, which converts the
digital data back into analog values for display on the image monitor.

As the first step in the display operation, the data from the frame-store
memory is sent to the output LUTs. The pixel data from memory becomes
an index into the table. Each output LUT is 2 to then elements long, where n
is the number of bits in each pixel value in the frame-store memory. For
example, if the pixel data is eight bits wide, the LUT contains 256 elements
because 2 to the eighth power is 256. Thus there is one LUT entry for every
possible pixel value.

In our example, look-up table elements are numbered 0 to 255. Each
location in the output LUT maps to a separate value, the number of bits in
the mapped value being a function of the system architecture. Let us
assume an output LUT which maps 8-bit index values to 24-bit data words.
The 24-bit data words determine the color and intensity of the output signal
displayed on the image monitor.

As with the input look-up tables, the output values of the output look-up
tables are determined at the time the look-up tables are defined. Moreover,
the output values do not bear any special relationship to the input or index
values.

49

Typical output circuitry consists of three 8-bit digital-to-analog converters
(DACs), which provide RS-170 (or CCIR, 50Hz systems) analog outputs to
drive the red, green, and blue inputs of an RGB monitor. The 24-bit value
from the output look-up table divides into three 8-bit values which
determine the output of the three DACs. The relative output levels of these
DACs determine the color and intensity of each output pixel.

Embedded in each DAC output are the vertical sync and horizontal sync
signals required by RS-170. In addition, the voltage output range of the
DAC conforms to RS-170.

As was the case with image acquisition hardware, image display hardware
typically operates in real time-a complete frame must be written out in 1/30
second. To accomplish this, special video-speed converters must be used­
for a 512 by 512 frame grabber, DACs with a throughput of almost 10MHz
are required.

REAL TIME THROUGHPUT OF MICROVAX II AND MICROVMS

By Richard K. Somes
Digital Equipment Corporation

Marlboro, Massachussetts

ABSTRACT

This paper, the second paper in a series, presents
new data on polled IO throughput, interrupt
processing rates, and the DMA data rates which can
be supported using single transfer and block mode
protocols.

Real time applications may be characterized in
terms of the sample rate or the control loop
update rate limitations imposed by system
interrupt latency. Other applications may depend
on the maximum rate at which data can be moved
continuously between I/O devices and physical
memory. The contents of this paper seeks to
address both sets of issues.

The author has elected to publish, in Appendix A,
the overhead transparencies presented at the DECUS
Symposium on October 8, 1986. Appendix B contains
listings of one of the test programs, written in
VAX-11 C, and the CIN code, written in MACR0-32,
used to acquire some of the test data presented.

Summary of contents:

o APPENDIX A

* POLLED IO - UPDATE

* INTERRUPT PERFORMANCE
- Structure of the CIN Driver
- QIO Interface to the CIN Driver
- Synchronization Techniques
- Test Methodology
- Results

* DMA THROUGHPUT
- QIO Interface to a DMA device
- Single transfer and Burst Mode
- Block Mode

o APPENDIX B - LISTINGS

Proceedings of the Digital Equipment Computer Users Sociely 51 San Francisco, CA - 1986

APPENDIX A - DECUS Presentation of October 8, 1986

Polled I/O Code

Called from main program using SYS$CMKRNL system service.

;MODULE TO ACQUIRE N (FIRST ARG OF CALL) POINTS FROM A DRQll-C BY POLLED I/
;AND STORE THEM IN A DATA ARRAY DEFINED BY THE SECOND ARG OF THE CALL
;THIS VERSION PERFORMS THE ACQUISITION AT IPL 30

.LIBRARY /SYS$LIBRARY:LIB.MLB/

$IDBDEF
$UCBDEF
$IODEF
$CINDEF
$CRBDEF
$VECDEF

DRQ SCR
DRQ-COR
DRQ-ADR
DRQ=DATA

CLEAR
PRESET
START
STOP
TRIGGER

=
=
=
=

=
=
=
=
=

0
2
4
6

8
14
4
12
5

Definition for I/O drivers
Data structurs
I/0 function codes
Connect-to-interrupt
CRB stuff
more

.PSECT

.ENTRY
DRQ PIO,PAGE
DRQ=PIO, AM<R2,R3,R4,R5,R6>

MOVL
MOVL
MOVL
ADDL3

DSBINT
$1:
$2:

BBC
MOVW
SOBGTR
ENBINT
MOVZWL
RET

4 (AP), R3
8 (AP), R4
12 (AP), R2
#6, R2, R6

#30
MOVW #TRIGGER, (R2)

11, (R2) , $ 2
(R6) , (R4) +
R3,$1

R2,RO

LOOP END:: .LONG 0

.END

52

GET THE VALUE OF N AND SET LOOP CTR
GET THE ADDRESS OF THE DATA ARRAY
GET ~HE BASE ADDRESS OF THE DRQll-C
PUT ADDR OF DBR IN R6

ELEVATE IPL TO 30
TRIGGER THE HOLDING REGISTER

; TEST THE DATA AVAILABLE FLAG
AND WAIT HERE UNTIL IT SETS
STORE THE DATA
TEST THE LOOP COUNTER
RESTORE IPL

RETURN

Polled IO Performance Data

Maximum guaranteed response latency (microseconds):

13.5 Microseconds

Response latency histogram:

1024*1024 Data points

9.0 332497
9.5 604787

10.0 107195
10.5 625
11.0 2678
11. 5 760
12. 0 2
12.5 21
13.0 9
13.5 1

Note: When operated on the network, DEQNA DMA traffic can cause bus content
which lengthens PIO times even when IPL is raised to IPL 30. The following
data shows this effect.

9.0 333078
9.5 604400

10.0 106972
10.5 636
11.0 2634
11.5 794
12.0 2
12.5 30
13.0 10
13.5 l
14.0 2
15.5 2-
16.0 2
16.5 2
17.0 1
17.5 l
18.5 1
18.5 1
20.0 2
20.5 1

.L

21. 0 3
23.5 l

53

STRUCTURE OF THE CIN DRIVER

DRIVER CIN BUFFER
+-------------------------------+

Driver Prologue Table

+-------------------------------+

Driver Dispatch Table

+-------------------------------+
I

Function Decision Table I
I

+-------------------------------+ +-----------------------+
1------>I

Initialization I I User Defined
Routine I I INIT Routine

l<------1
+-------------------------------+ +-----------------------+

FDT Routines

+-------------------------------+ +-----------------------+
1------>I

Start IO Routine I I User Defined
I I START IO Routine
l<------1

+-------------------------------+ +-----------------------+

Device Timeout Routine

+-------------------------------+ +-----------------------+
1------>I

Interrupt Service Routine I I User Defined ISR
I I
f <------1

+-------------------------------+ +-----------------------+
1------>I

Cancel IO Routine I User Defined
I I CANCEL IO Routine
l<------1

+-------------------------------+ +-----------------------+

Miscellaneous Subroutines

+-------------------------------+

54

QIO INTERFACE TO THE CIN DRIVER

In C:

status = sys$qio(efn,
chan,
func,
iosb,
astadr,
astprm,

-+

efn
chan
f unc
iosb
astadr
astprm

pl
p2
p3
p4
p5
p6

Function Codes:

pl,
p2,
p3,
p4,
p5,
p6) ~

-+
I

Device
Independent

I Device
I Dependent
I
I

-+

VMS Local Event Flag Number
Channel number, obtained from SYS$ASSIGN
Longword selecting desired FDT functions
Address of IO status block
Address of user defined IO completion AST
Longword parameter to be passed to AST

Address of CIN Buffer descriptor
Address of CIN entry point list
Longword containing flags
Address of user defined interrupt AST
Longword parameter to be passed to AST
Number of AST Control Blocks to pre-allocate

IO$_CONINTWRITE - CIN Buffer is writeable

IO$_CONINTREAD - CIN Buffer is read-only

Flags:

CIN$M_EFN

CIN$M_USECAL

CIN$M_REPEAT

CIN$M_CANCEL

CIN$M_INIDEV

CIN$M_START

CIN$M_ISR

55

SYNCHRONIZATION TECHNIQUES

o Synchronous QIO - Not of interest

o Hibernate/Wake

0 Wait on VMS LEF

o Poll user defined flag set in AST

o Poll on user defined flag set in ISR

56

MICROVAX II BASED PERFORMANCE TEST SYSTEM

PMI
+-------------------------------+

Q BUS
v v

+---------------+ I +--------------+
Slot 2 I I I Slot 1
MS630 PMI l<------>l<------>I KA630 CPU
4 MB Max I I I

+---------------+ I +--------------+

I
I

CONSOLE
+----------------

+---------------+ I +---------------+
Slot 4 I I I Slot 3
DEQNA i<------>l<------1 KWVll-C I

I I I
+---------------+ I +---------------+

Serial Lines +---------------+ I
<-------->I Slot 5 I I

Video I VCBOl l<------>I
<---------1 or QDSS I I

+---------------+ I

RD5x +---------------+ I
-------->I Slot 6 I I

RX50 I RQDX3 I<------> I
-------->I I I

+---------------+ I

v

57

Test Sequence

o Map IO page into process space - SYS$CRMPSC

o Initialize data structures

o Top of test loop: Assign channel - SYS$ASSIGN

o Clear counter

o SYS$QIO to CIN Driver

o Record Start IO time

o Clear flag, UFLG, AFLG or LEF

o Preset counter, start, and enable interrupts

o Wait for flag to be set

- ISR records latency time, sets UFLG

- AST records latency, sets AFLG

o Measure process latency, record ISR, AST, and Process times

o Reset counter for Cancel time measurement

0 Cancel IO - SYS$CANCEL

o If loop count = NLOOPS, exit and display results
else, return to top of loop

58

INTERRUPT RESPONSE DATA - NO LOAD

o base IPL = O
o SW priority = 17
o loop on user defined EF set in ISR (process is always CUR)
o timer off
o accounting disabled
o no DEQNA
o no QxSS
o CONINTERR driver

65535 data points. Test Time = 1.25 hours

Latencies (microseconds)

min mode max

Start I/0 736 755 774

ISR 40 42 44

Process 80 83 84

Maximum sustainable interrupt rate (Hz): 11 KHz

59

INTERRUPT RESPONSE DATA - NO LOAD

o base IPL = 0
o SW priority = 17
o loop on user defined EF set in AST (process is always CUR)
o timer off
o accounting disabled
0 no DEQNA
o no QxSS
o CONINTERR driver

655536 data points. Test Time = 1.25 hours

Latencies (microseconds)

min mode max

Start I/0 831 835 855

ISR 39 41 41

AST 438 442 444

Process 561 565 568

Maximum sustainable interrupt rate (Hz): 1761 Hz

60

INTERRUPT RESPONSE DATA - NO LOAD

o base IPL = 0
o SW priority = 17
o wait for VMS LEF set in AST (process is in LEF wait state)
o timer off
o accounting disabled
o no DEQNA
o no QxSS
o CONINTERR driver

65536 data points. Test Time = 1.25 hours

Latencies (microseconds)

min mode max

Start I/O 824 829 880

ISR 40 41 43

AST 610 613 623

Process 960 964 975

Maximum sustainable interrupt rate (Hz): 1025 Hz

61

INTERRUPT RESPONSE DATA - NO LOAD

o base IPL = O
o SW priority = 17
o hibernate in main, wake in AST (process is in HIB or HIBO wait state)
o timer off
o accounting disabled
0 no DEQNA
o no QxSS
o CONINTERR driver

64*1024 data points. Test Time = 1.25 hours

Latencies (microseconds)

min mode max

Start I/O 816 831 880

ISR 40 41 43

AST 615 620 625

Process 974 982 991

Maximum sustainable interrupt rate (Hz): 1009 Hz

62

INTERRUPT RESPONSE DATA - COMPOUND LOAD

o base IPL = 0
o SW priority = 17
o loop on VMS LEF set in AST code (process is in wait state until

interrupt)
* timer on
o accounting disabled
* DEQNA installed, no activity to/from host
o no QxSS
o CONINTERR driver

65535 data points. Test Time = 1.25 hours

Min

Latencies (microseconds)

Mode 90
Pct

99
Pct

99.9
Pct

Max

+-------+-------+-------+-------+-------+-------+

Start

!SR

AST

Process

I
816 I

I

I
830 I

I

I
833 I

I

I
961 I

I

I
2001 I

I

I
3242 I

I
+-------+-------+-------+-------+-------+-------+

I
37 I

I

I
40 I

I

I
40 I

I

I
42 I

I

I
71 I

I
123 I

I
+-------+-------+-------+-------+-------+-------+

I I I I I
613 I 622 I 629 I 751 I 1905 I 4670 I

I I I I I I

+-------+-------+-------+-------+-------+-------T
I I I I I

967 I 978 I 1012 I 1109 I 2260 I 5024 I
I

I I I I I
+-------+-------+-------+-------+-------+-------+

Maximum sustainable interrupt rate (Hz): 199 Hz

63

INTERRUPT RESPONSE DATA - COMPOUND LOAD

o base IPL = 0
o SW priority = 17
o loop on VMS LEF (process is in LEF wait state until interrupt)
* timer on
o accounting disabled
0 no DEQNA
* QVSS installed, no screen activity
0 CONINTERR driver

65535 data points. Test Time = 1.25 hours

Start

ISR

AST

Process

Min

Latencies (microseconds)

Mode 90
Pct

99
Pct

99.9
Pct

Max

+-------+-------+-------+-------+-------+-------+
I I I I I I I
I 817 I 822 I 881 I 1005 I 1087 I 3501 I
I I I I I I I
+-------+-------+-------+-------+-------+-------+
I I I I I I I
I 34 I 37 I 37 I 121 I 177 I 221 I
I I I I I I I
+-------+-------+-------+-------+-------+-------+
I I I I I I I
I 524 I 618 I 655 I 1900 I 3339 I 3926 I
I I I I I I I
+-------+-------+-------+-------+-------+-------+
I I I I I I I
I 768 I 972 I 1033 I 2268 I 3696 I 4280 I
I I I I I I I
+-------+-------+-------+-------+-------+-------+

Maximum sustainable interrupt rate (Hz): 233 hz

64

INTERRUPT RESPONSE DATA - COMPOUND LOAD

o base IPL = 0
o SW priority = 17
o loop on VMS LEF (process is in LEF wait state until interrupt)
* timer on
o accounting disabled
o no DEQNA
* QVSS installed, scrolling in 2nd non-occluded window
o CONINTERR driver

65535 data points. Test Time = 1.25 hours

Start

ISR

AST

Process

Min

Latencies (microseconds)

Mode 90
Pct

99
Pct

99.9
Pct

Max

+-------+-------+-------+-------+-------+-------+
I I I I I I

816 I 822 I 878 I 2000 I 2343 I 10046 I
I I I I I I

+-------+-------+-------+-------+-------+-------+
I I I I I I

35 I 38 I 45 I 689 I 1121 I 1211 I
I I I I I I

+-------+-------+-------+-------+-------+-------+
I I I I I I

483 I 623 I 748 I 3585 I 5538 I 10748 I
I I I I I I

+-------+-------+-------+-------+-------+-------+
I I I I I I

839 I 978 I 1112 I 4467 I 6974 I 11102 I
I I I I !

+-------+-------+-------+-------+-------·-------+

Maximum sustainable interrupt rate (Hz): 90 Hz

65

CONCLUSIONS - POLLED IO AND INTERRUPT DRIVEN IO

o SYS$CMKRNL provides mechanism for calling kernel mode
polled IO code

- Burst to memory at >60 KHz

o CIN Driver provides flexible interface to VMS IO subsystem

o Guaranteed ISR latency in well disciplined system configurations

- Single device at any BR level

- Single bus device at BR7

o Guaranteed interrupt rates on dedicated systems

- 10 KHz with ISR flag

- 1700 Hz with AST flag

- 1000 Hz with LEF or Hibernate/Wake

o Interrupt latency can be probably guaranteed at <100 usec for a
single BR7 device on loaded systems, assuming properly designed
device drivers.

o Interrupt rate is dependent on system loading and on application.

- Network activity degrades process latency

- Workstation activity degrades process latency

Worstcase process latency tends to govern maximum interrupt
rate in control aplications

Average process latency tends to govern maximum data rate in
data flow applications

66

QIO INTERFACE TO A TYPICAL OMA DEVICE - DRxll-C

In C:

status

efn
chan
f unc
iosb
astadr
astprm

= sys$qio(efn, -+
chan,
func, Device
iosb, Independent
astadr,
astprm,

-+

pl' I
p2, I Device
p3, I Dependent
p4, I
p5, I
p6) ; -+

VMS Local Event Flag Number
Channel number, obtained from SYS$ASSIGN
Longword selecting desired FDT functions
Address of IO status block
Address of user defined IO completion AST
Longword parameter to be passed to AST

(Device dependent parameters for LBLK and VBLK IO operations only}

pl
p2
p3
p4
p5
p6

Function Codes:

IO$ WRITELBLK
IO$-WRITEVBLK
IO$-READLBLK
I0$=READVBLK

IO$_WRITEWORD

I0$_READWORD

IO$ WRITELARGE
IO$=READLARGE

Address of Buff er 1
Buff er 1 wordcount
Address of Buffer 2
Buff er 2 wordcount
Number of blocks to transfer
Device timeout time in seconds

IO$ NOTIFY
IO$-BURST
I0$-CHANGE
IO$-LOOPBACK

IO$ SETFUNC
IO$-READSTAT
IO$-GETSTATUS
IO$-SETMODE!(options)

- IO$M BUFPATH
I0$M-DIRPATH
IO$M-ATTNAST

IO$ REALEASET(option)
- I0$M_RESET

67

SINGLE TRANSFER AND BURST MODE DMA PERFORMANCE

HISTOGRAM OF DMA TRANSFER TIMES

Data Summary - Large Buffer Mode, 32 buffers of 32K

MicroVAX II VS II
*********** *****

Cycle Single Burst Single Burst
Time Cycle Mode Cycle Mode
usec

2.0 844077 855491 689755 705863
2.333 200051 188635 353651 377505
2.667 95 91 53 68
3.0 1018 1047 777 840
3.333 1141 1103 954 1069
3.667 1290 1273 1480 1398
4.0 797 818 1296 1196
4.333 99 112 318 303
4.667 5 2 70 92
5.0 l 46 49
5.333 54 37
5.667 3 7
6.0 15 21
6.333 44 63
6.667 30 36
7.0 20 21
7.333 7 5

68

BLOCK MODE DMA PERFORMANCE
EXPERIMENTAL PARALLEL IO MODULE

CONCURRENT DMA FROM MS630 TO MS630 THROUGH LOOPBACK

AVERAGE DATA RATE - 650,000 W/SEC FOR SKW BUFFER

INTERPRETATION:

TWO INDEPENDENT DMA CHANNELS, EACH PERFORMING AT THIS RATE.

AGGREGATE DATA RATE = 2x650,000 W/SEC = 1,300,000 W/SEC = 2.6MB/SEC

DESIGN OF KA630 MEMORY CONTROLLER CONSTRAINS MEMORY READS AT 2.6
MB/SEC

EFFECT OF CONTENTION FOR MEMORY:

TOWERS OF HANOI BENCHMARK ACCESSES MEMORY AT MAX RATE

BENCHMARK RUNS IN 11.7 SEC IN ABSENCE OF DMA

BENCHMARK RUNS IN 13.8 SEC IN PRESENCE OF 640 KW/SEC DMA

o MV II

CONCLUSIONS - DMA THROUGHPUT

architecture minimizes contention between CPU and DMA devices

_ Negligible difference between single transfer and burstmode
performance

_ 16% degradation in Hanoi benchmark under heavy block mode
DMA load

_ 2% degradation in blockmode throughput under Hanoi
benchmark

0 DMA Bandwidth is dependent on bus protocol used

_ 1 MB/sec for DRxll-C devices in single or burst mode

_ 2.6 MB/sec in block mode on experimental parallel IO board

69

APPENDIX B
Example program and CIN code

/*
Test of CIN Driver performance using VMS LEF as synchronization mechanism
Written by R. K. Somes, June 1986
Revised in September 1986 to lengthen histograms and to summarize them
*I

#include stdio
#include ssdef
#include errno
#include errnodef
#include iodef
#include timeb
#include secdef
#include descrip

#define KWVOFFSET 010420
#define NULL 0
#define KERNEL 3
#define USER 0

#define HISTO LENGTH 2048

#define GO 1
#define MODEO 0
#define MODEl 2
#define MODE2 4
#define MODE3 6
#define RATElM 8
#define RATElOOK 16
#define RATElOK 24
#define RATElK 32
#define RATElOOH 40
#define RATESTl 48
#define RATEL I NE 56
#define MAINTST2 512
#define IN'l'OV 64

globalref int ISRMON BUF DESC, ISRMON_CIN_ENTRY, ISRMON_CIN_MASK,
ISRMON=CIN=FUNC;

globalref short int RNUM, TISR, TSTRT, TCNCL, UFLG, RQAST;

extern
static
static

struct
{

char IOPAGE[8192];
long piopage[2];
long viopage[2];

unsigned short int csr;
short int bpr;
} *kwv;

70

struct histogram
{
int npoints;
unsigned short int basevalue;
unsigned short int minvalue;
unsigned short int maxvalue;
unsigned short int outlyers;
unsigned short int bins[HISTO_LENGTH];
} isr_time;

struct large histogram
{ -
int npoints;
unsigned short int basevalue;
unsigned short int minvalue;
unsigned short int maxvalue;
unsigned short int outlyers;
unsigned short int bins[B*HISTO LENGTH];
} start_time, ast_time, ast ret=time, cancel_time;

static $DESCRIPTOR(section name, "IOPAGE");
static $DESCRIPTOR(device_name, "_KZAO:");

unsigned short int chan;

int efn, func, astadr, pl, p2, p3, p4, p5, p6, astparam[2], iosb[2];

int status, acmode, flags, pagcnt, vbn, i, j, k;

int size;

FILE *file id;
int *file spec, *access_mode;
char rd acs[] = "r";
char wr-acs[] = "w";
char fiie_name[] = "efn_data.dat";

int NLOOPS, timer sw, user ast(), ast_del time, param, AFLG;
int lim90, lim99,-lim999; -

extern int TIMOFF(), TIMON();
main()

{

/* Map the I/O page to the process */
piopage[O] = IOPAGE;
piopage[l] = IOPAGE+8191;
acrnode = KERNEL;
flags = SEC$M WRT+SEC$M PFNMAP;
pagcnt = 16; - -
vbn = OxlOOOOO;
status = sys$crmpsc(piopage,

viopage,
acmode,
flags,

71

§ion name,
NULL, -
NULL,
NULL,
pagcnt,
vbn,
NULL,
NULL);

/* Prepare for test by soliciting the number of test measurements to be mad
and by initializing the histograms, where necessary */

printf("MicroVAX II Interrupt Performance Data\n");
printf("Complete test with AST and VMS Local EF delivery\n\n");

printf("Number of test measurements? = ");
scanf("%8d", &NLOOPS);
printf("\nNumber of test measurements= %8d\n\n", NLOOPS);

lim90 = NLOOPS-NLOOPS/10;
lim99 = NLOOPS-NLOOPS/100;
lim999 = NLOOPS-NLOOPS/1000;

/*Debug statment
printf(" lim90 = %8d lim 99 = %8d lim999 = %8d\n\n",lim90, lim99, lim99

*I

printf("Interval Timer (OFF= 0, ON= l)? = ");
scanf("%8d", &timer sw);
printf("\ninterval ~imer = %8d\n\n", timer sw);

if (timer sw == 0)
{
status= sys$cmkrnl(&TIMOFF, NULL);
} ;

start time.npoints = 8*HISTO LENGTH;
start-time.basevalue = 500; -
start-time.maxvalue = O;
start=time.minvalue = 65535;

isr time.npoints = HISTO LENGTH;
isr-time.basevalue = O; -
isr-time.maxvalue = O;
isr=time.rninvalue = 65535;

ast tirne.npoints = 8*HISTO LENGTH;
ast-tirne.basevalue = O; -
ast-tirne.rnaxvalue = O;
ast-time.rninvalue = 65535;

ast ret tirne.npoints = 8*HISTO LENGTH;
ast-ret-tirne.basevalue = O: -
ast-ret-tirne.rnaxvalue = O;
ast-ret-tirne.minvalue = 65535:

72

cancel time.npoints = 8*HISTO LENGTH;
cancel time.basevalue = O; -
cancel-time.maxvalue = O;
cancel-time.minvalue = 65535;

/* Issue QIO to map and lock connect-interrupt buffer, and to start I/O. c
is asynchronous, but does not modify the KWVll-C operating mode. User must
configure the option and enable interrupts by direct access to KWVCSR. */

status= sys$assign(&device_name, &chan, NULL, NULL);

pl = &ISRMON BUF DESC; - -
p2 = &ISRMON CIN ENTRY;
p3 = ISRMON CIN_MASK;
p4 = &user ast;
p5 = ¶m;
p6 = NULL;
f unc = ISRMON CIN FUNC; - -

/* Clear the counter in preparation for the QIO call */

kwv = IOPAGE + KWVOFFSET;

for(k=O; k < NLOOPS; k++)
{

kwv->csr = MODEO + RATElM;
kwv->bpr = 0;
kwv->csr = MODE2 + RATElM;
kwv->csr += GO;

status = sys$qio(
chan,
func,
NULL,
NULL,
NULL,
pl,
p2,
p3,
p4,
p5'
p6);

kwv->csr = MAINTST2;

NULL,

status= bin it(&start time, TSTRT);

RQAST = l;
UFLG = O;

status= sys$clref(efn);

kwv->csr = MODEO + RATElM;

73

kwv->bpr = 65436;
kwv->csr = INTOV + MODE2 + RATElM + GO;
kwv->bpr = O;

status= sys$waitfr(efn);

kwv->csr = MAINTST2 + MODE2 + RATElM + GO;

status= bin_it(&isr_time, TISR);

status= bin_it(&ast time, ast del time);

status= bin_it(&ast ret time, kwv->bpr);

/*Measure I/O cancel time from zero base*/

kwv->csr = MODEO + RATElM;
kwv->bpr = O;
kwv->csr = MODE2 + RATElM;
kwv->csr += GO;

status= sys$cancel(chan);

kwv->csr = MAINTST2;

status= bin it(&cancel time, kwv->bpr);

} /* End of for loop */

if(timer sw == 0)
{ -
status= sys$cmkrnl(&TIMON, NULL);
} ;

file_id = fopen(file_name, wr_acs);

size= sizeof(struct histogram);
fwrite(&start time, size, l, file id);
fwrite(&isr tTme, size, l, file id);
fwrite(&ast-time, size, .:., file id);
fwrite(&ast-ret time, size, 1, file id);
size= sizeof(struct large ~istogram);
fwrite(&cancel time, size. l, file id);
fclose(file idT;
printf(" - Min Mode 90 99 99.9 Max \n");
printf(" Pct Pct Pct \n\n");
printf(" +-------~-------+-------+-------+-------+-------+\n");
printf(" I I I I I !\n");
printf("Start I");
show it(&start time);
prinif(" I l\n");
printf(" +-------+-------+-------+-------+-------+-------+\n");
printf(" I i I I l\n"l;
printf("ISR I");
show it(&isr time);

74

l\n"); printf("
printf("
printf("
printf("AST

+-------+-------+-------+-------+-------+-------+\n");
I I I I I I I \n" >;
I ") ;

time); show it(&ast
printf("
printf("
printf("
printf("Process
show it(&ast ret
printf("
printf("
printf("
printf("Cancel
show it(&cancel
printf("
printf("

I I \n");

}

+-------+-------+-------+-------+-------+-------+\n");
I I I I I I I \n") ;
I ") ;

time) ;
I l\n");
+-------+-------+-------+-------+-------+-------+\n");
I I I I I I I \n") ;
I " > ;

time);
I I \n" >;
+-------+-------+-------+-------+-------+-------+\n");

bin it(pointer, datapoint)
struct histogram *pointer;
unsigned short int datapoint;

{
if (datapoint >= pointer->basevalue)

datapoint -= pointer->basevalue;
else

return(O);

if (datapoint < pointer->npoints)
pointer->bins[datapoint] += l;

else
pointer->outlyers += l;

if (datapoint <= pointer->minvalue)
pointer->minvalue = datapoint;

if (datapoint >= pointer->maxvalue)
pointer->maxvalue = datapoint;

return(l);
}

show it(pointer)
struct histogram *pointer;

{
int i, trials, modevalue, mode, time90, time99, time999, sum;

modevalue = O;
sum = O;
time90 = O;
time99 = O;
time999 = O;
trials = pointer->maxvalue
if (pointer->outlyers > 1), -:.:·ials
for(i=O; i <= trials; i++J

75

pointer->npoints;

}

{
if(pointer->bins[i] > modevalue)

{
modevalue = pointer->bins[i];
mode = i+pointer->basevalue;
}

sum
if (
if (
if (
}

+= pointer->bins[i];
sum <= lim90) time90 =
sum <= lim99) time99 =
sum <= lim999) time999

i+pointer->basevalue;
i+pointer->basevalue;
= i+pointer->basevalue;

printf("%6d I", pointer->basevalue+pointer->minvalue);
printf("%6d I", mode);
printf("%6d I", time90);
printf("%6d I", time99);
if (sum < lim999)

printf(" **** I")
else

printf("%6d I", time999);
printf("%6d l\n", pointer->basevalue+pointer->maxvalue);

user ast(param
int *param;
{
kwv->csr +=MAINTST2;
ast del time = kwv->bpr;
status~ sys$setef(efn);
}

76

;===~=============

;USING THE KWVll-C FOR INTERRUPT LATENCY TESTING . ,
;There is a way of using the KWVll-C for interrupt latency testing that is
;poorly documented but works well. This method differs from the recornrnenda
;Bill Forbes in that it does not stop the ,:lock, but accumulates time.

;l. Load the BPR with the 2's complement of the number of microsecs to wait
before an interrupt. This should be randomized.

;2. Set the CSR for INT OV, l MHz, mode 1, GO: (MOVW #A0113,KWCSR)

;3. CLEAR THE BPR!

;4. On interrupt, hit the MAINT ST2 bit: (BISW #AOlOOO,KWCSR). Clock contin
to run so that next measurement can be made cumulatively.

;5. Read the BPR to get the number of microsecs between interrupt and hitti
the MAINT ST2 bit.

;==

.TITLE ISRMON

.LIBRARY /SYS$LIBRARY:LIB.MLB/

$IDBDEF
$UCBDEF
$IODEF
$CINDEF
$CRBDEF
$VECDEF

.PSECT ISRMON CIN

.SBTTL DATA STRUCT~RES

Definition for I/0 drivers
Data structurs
I/0 function codes
Connect-to-interrupt
CRB stuff
more

PIC,USR,CON,REL,LCL,NOSHR,EXE,RD,WRT

CIN BUFFER Data ouf fers for ISRMON

ISRMON CIN BEGIN:
RNUM:: .BLKW 1 ;Randon number passed
TISR:: .BLKW 1 ; ISR latency time
TSTRT: : .BLKW 1 ;Start I/0 latency
TCNCL:: .BLKW l ;Cancel I/0 latency
UFLG:: .BLKW 1 ;User flag spin on

by

RQAST:: .BLKW 1 ;Set by user to activate

77

user

AST.

.SBTTL ISRMON_CIN_START, Start I/0 routine

;++
; ISRMON CIN START - Starts the KWV

; Functional description:

Inputs:
R2
R3
R5

- Addr of count arg list
- Addr of IRP
- Addr of UCB

- arg count of 4 O(R2)
4(R2)
8(R2)
12(R2)
16(R2)

- Process Virtual address of the CIN buffer (to be system mapped)
- Address of the IRP (I/0 request packet)
- Address of the device's CSR
- Address of the UCB (Unit control block)

. ,

Outputs:
none

The routine must preserve all registers except R0-R4 .

. --,
CIN BUF ADD = 4
AST-PARM = 8
CIN-CSR ADD = 12

ISRMON CIN START:
MOVL -CIN CSR_ADD(R2),RO

DSBINT
BISW #A01000, (RO)

MOVW 2(RO), TSTRT
ENBINT

MOVZWL #SS$_NORMAL,RO
RSB

78

;Address of CIN buffer
;Offset to AST parmeter address

;Address of CSR

;Get CSR address

Hit MAINT ST2 bit to xfer counter
to BPR

Xf er BPR content to TSTRT

Load a success code into RO.

.SBTTL ISRMON_CIN_INTERRUPT, Interrupt service routine

;++
ISRMON CIN INTERRUPT
Functional-description:

Inputs:
R2
R4
RS

0(R2)
4(R2)
8(R2)
12(R2)
16(R2)
20(R2)

Outputs:

- Addr of counted agr list
- Addr of IDB
- Addr of UCB

- arg count of 5
- Address of the process buffer
- Address of the AST parameter
- Address of the device's CSR
- Address of the IDB (interrupt dispatch block)
- Address of the UCB (Unit control block)

The routine must preserve all registers except R0-R4

. --,

ISRMON CIN INT:

MOVL
BISW

MOVW
MOVW
MOVZWL

10$:

CIN CSR ADD(R2), RO
#"OlOOO~ (RO)

2(R0), TISR
#1, UFLG
RQAST, RO
RSB

79

Get KWV CSR address
Hit MAINT ST2 bit to xfer counter

to BPR
Xf er BPR content to TISR
Set user defined flag
l =queue the AST, 0 =don't

.SBTTL ISRMON_CIN_CANCEL, Cancel I/0 routine

;++

.
'
.
'

.
'

ISRMON CIN_CANCEL, Cancels an I/O operation in progress

Functional description:

This routine turns off the KWV

Inputs:

JSB interface

R2
R3
R4
R5

Negated value of the channel index number
Addr of current IRP
Addr of PCB of canceling process
Addr of the UCB

CALL interface

O(AP)
4(AP)
8(AP)
12(AP)
16(AP)

Arg count 4
Addr of channel index number
Addr of IRP
Addr of PCB
Addr of UCB

; Outputs:

The routine must preserve all registers except R0,R3 •

. --
'

ISRMON CIN CNCL:
MOVL -UCB$L CRB(R5),RO
MOVL CRB$L-INTD+VEC$L IDB(RO),RO

Get Address of the CRB
Address of the IDB

MOVL IDB$L-CSR(RO),RO-
BISW #AOlOOO, (RO)

MOVW
MOVZWL
RSB

2 (RO), TCNCL
#SS$_NORMAL,RO

80

; Get addr of KWV
Hit MAINT ST2 bit to xfer counter

to BPR
Xf er BPR content to TCNCL
Load a success code into RO.

.
I

.SBTTL ISRMON CIN !NIT ; Dummy dev intialization routine

JSB interface

RO - Addr of UCB
R4 - Addr of CSR . RS - Addr of IDB I . R6 - Addr of DOB I . RB - Addr of CRB I

. CALL interface I

O(AP) Arg count 5
4(AP) Addr of CSR
8(AP) Addr of IDB
12(AP) Addr of DOB
16(AP) Addr of CRB
20(AP) Addr of UCB

ISRMON CIN !NIT:
RSB

.SBTTL ISRMON_CIN_END, End of Module

;++
; Label that marks the end of the module
·--,
ISRMON CIN END: ; Last location in module

;Data structures used by the QIO

ISRMON BUF DESC:: ;Buffer descriptor for CIN

.LONG

.LONG
ISRMON CIN END - ISRMON CIN BEGIN
ISRMON-CIN-BEGIN

ISRMON CIN ENTRY::

.LONG

.LONG

.LONG

.LONG

ISRMON CIN INIT-ISRMON CIN BEGIN
ISRMON-CIN-START-ISRMON CIN BEGIN
ISRMON-CIN-INT-ISRMON CTN BEGIN
ISRMON-CIN-CNCL-ISRMON CIN BEGIN

ISRMON CIN MASK::

;Buffer length
;Address of buffer

;Init code
;Start code
;Interrupt service routi
;I/O cancel routine

.LONG CIN$M_REPEAT!CIN$M_START!CIN$M ISR!CIN$M CANCEL!CIN$M INIDEV

ISRMON CIN FUNC::

.LONG
.END

IO$_CONINTWRITE

81

SPEAKEASY: AN INTERACTIVE DATA ANALYSIS TOOL FOR THE RESEARCH SCIENTIST

David H. Saxe
Speakeasy Consultant

Auburn, NH 03032

ABSTRACT
"Speakeasy is a conversational computer language that has
evolved over the past two decades through the continued use by
a large and varied international community of users. A large
audience of economists, research scientists, statisticians and
students from a large variety of disciplines find Speakeasy a
powerful yet natural means for using a computer. The modular
structure of the language enables each group of users to adapt
the system to its own needs by adding new words to the
existing Speakeasy vocabulary."(2) Speakeasy contains
facilities for defining and operating on a variety of data
structures including scalars, matrices, sets, time series and
character data. This paper discusses the VAX implementation
of Speakeasy and examines its use in elementary data analysis
situations.

INTRODUCTION

Speakeasy is a conversational computer language
in wide use as an interactive problem solving tool on
VAX and IBM mainframes and IBM PC systems. Speakeasy
provides an extremely user-friendly interface to a
powerful set of tools for data analysis and
presentation. Speakeasy was originally developed in
the mid 1960's for large IBM mainframes to provide a
data analysis tool to a research scientist community.
The natural syntax made possible the direct use of
the language by the research scientist at a time when
other languages required extensive familiarity with
the computer system. Also, Speakeasy's design
allowed for simple addition of new operations to meet
the analysis needs of the user. Thus, the early and
continued involvement of the end-user community in
directing the evolution of the language contributed
to the rapid expansion of language features and
capabilities.

LANGUAGE FEATURES

Speakeasy offers both an interactive and program
mode. In the interactive mode, a user is prompted
with :_for a line of input. The user then types a
Speakeasy statement consisting of references to data
objects defined by the user and operators from the
Speakeasy vocabulary. When the line is read,
Speakeasy parses the line and controls the execution
of operations that the user has specified. Results
from the processing may be printed or assigned to a
Speakeasy object. When the execution is complete,
the user receives another prompt and may enter the
next statement. In the program mode, collections of
Speakeasy statements are executed as a single
program. Special statements for use in the program
mode allow for flow control.

data objects are allowed Many different types of
by Speakeasy, including
dimensional arrays, vectors
and sets. Real, complex
used in most structures.
illustrated below.

scalars, one and two
and matrices, time series
and character data may be
A number of these are

Proceedings of the Digital Equipment Computer Users Society 83

Much of Speakeasy's power results from its
ability to operate on collections of numbers or text
without the user having to be concerned about
dimensioning. Operators deal with entire objects,
thus generally eliminating the need for looping and
subscript operations. Presently, there are about 800
operators in the Speakeasy vocabulary, including
numerical operations, such as SQRT which takes the
square root of elements in an object, text
operations, such as TABULATE which automatically
formats and prints objects, and graphics operators
which allow the presentation of results on a variety
of device types. The operators are used in a natural
syntax which resembles that of Fortran but is far
more error tolerant. A general guideline is that if
a line makes sense in an unambiguous way, then
Speakeasy should be able to understand it.

Speakeasy's vocabulary may be extended and
tailored to fit the needs of an individual user
community. Large numbers of statistical, econometric
and graphics operators have been added to the
language by the user community. Since these
operators are generally written as Fortran functions,
compiled and optimized code is executed and parsing
overhead is minimized. Thus, for example, matrix
inversion in Speakeasy is as efficient as that
performed in a Fortran program. A Fortran
preprocessor is used to allow extensions to be ported
across mainframe and PC versions of Speakeasy.

Speakeasy offers extensive online documentation
in the form of interactive tutorial sessions for
learning to use the language, help documents for
locating and using operators and examples of operator
use.

LANGUAGE EXAMPLES

Speakeasy is best understood by actually looking
at some simple examples. In this section, examples
of the use of scalars, arrays and matrices are given.
Later sections discuss the online documentation and
demonstrate the use of Speakeasy in performing
elementary data analysis.

San Francisco, CA- 1986

In the examples below, the user input is typed
in lowercase after the :_ prompt and the computer
output has been set for uppercase. First, some
examples of elementary scalar operations:

:_2 + 2
2 + 2 4

:_2 * 3 + 1
2*3+1 7

:_2 - 2
2 - 2 0

:_sqrt(8) - 2/3
SQRT(8) - 2/3 2.1618

:_answer
ANSWER = 2.1618

:_answer + 4. 94
ANSWER+ 4.94 = 7.1018

:_x = 5 * log(2)
:_x
X= 3.4657

:_angles in degrees
:_y = cos(x) - 2.8
:_y
y = -1.8018

:_names
X, Y, ANSWER

Arrays are objects with multiple elements
arranged in a list (one dimensional array) or table
(two dimensional array). Operations may be performed
on a whole array as shown in these one dimensional
array examples:

:_a 1, 3, 9, 6, x
: a
-A (A 5 COMPONENT ARRAY)

1 3 9 6

:_sum(a)
SUM(A) = 22.466
: answer/noels(a)
ANSWER/NOELS(A) 4.4931

:_mean a
MEAN A 4.4931

:_2 * a + 3
2 * A + 3 (A 5 COMPONENT ARRAY)

5 9 21 15

i locs(a .gt. 3)
==b=a(i)
:_tabulate i, b

I B
* ******
3 9
4 6
5 3.4657

3 .4657

9.9315

84

Two dimensional arrays are also provided. Note
that arithmetic is performed element by element.

:_a= a2d(2, 3: integers(l,6)
:_a; l/a

A (A 2 BY 3 ARRAY)
1 2 3
4 5 6

l/A (A 2 BY 3 ARRAY)
1 .5 .33333
.25 .2 .16667

_total=sumrows(a)
:_tabulate a,total

A TOTAL
***** *****
1 2 3 6
4 5 6 15

:_a
A+

+ l/a
l/A (A 2 BY

2.5
5.2

2
4.25

:_sqrt(a)

3 ARRAY)
3.3333
6.1667

SQRT(A) (A 2 BY 3 ARRAY)
1 1.4142 1.7321
2 2.2361 2.4495

a - 2
A-- 2 (A 2 BY 3 ARRAY)

-1 0 1
2 3 4

Matrices obey the rules of matrix algebra. All
of the elementary matrix operations are included.
Several are demonstrated here:

:_m = matrix(3,3:3 4 2 4 5 6 1 3 4)

: l/m
lfM (A 3 BY 3 MATRIX)
-.1 .5 -.7

.5 -.5 .5
-.35 .25 .05

: answer * m
ANSWER * M (A 3 BY 3 MATRIX)

1 5.5511E-17 l.1102E-16
0 1 -l.1102E-16
7.8063E-18 -3.4694E-18 1

:_eigenvalues(m)
EIGENVALUES(M) (A VECTOR WITH 3 COMPONENTS)
-.89 2.0785 10.811

The online documentation provided includes tutorials and a tree structured help facility. A sample of
the main menu for the tutorial is shown below along with a small portion of the tutorial dealing with matrix
use. In the HELP sample, assume that the user wishes to perform a correlation but does not remember the
correct word. By following the tree structure, the user may arrive at the document describing the word
CORREL.

:_tutorial
INDEX PAGE 0
CONTENTS
Index to the Speakeasy tutorial sessions December 1979

SESSION SUBJECT
An introduction to Speakeasy
Array definitions and operations
Matrix definitions and operations

Start
Arrays
Matrix
Vector Vector definitions and operations including

vector-matrix operations
Logic
Edit

Use of logical and relational operators
Use of the editor

Stat How to use the statistical routines
Keep Saving information between runs
Tektron Using the Tektronix Graphics Package
Tek Tektronix graphing (older package)
Printgraph Graphics for a printer.
Sets Set definition and operations
Misc Miscellaneous information

Type TUTORIAL XXX to begin the tutorial session called XXX.
Type TUTORIAL XXX N to display page N of the session, XXX.
(TUTORIAL XXX will give you a table of contents for that session.)
Type MORE to continue a session.

:_tutorial matrix 5
MATRIX PAGE 5
MATRIX ADDITION AND MULTIPLICATION

Rules for adding and multiplying matrices in Speakeasy are just
those utilized for matrices in mathematics. Hence, if

X=MATRIX(2,2:1,2,3,4) and Y=MAT(2,2:5,6,7,8),
then,

X+Y= 6 8 X-Y= -4 -4 X*Y= 19 22 Y*X= 23 34
10 12 -4 -4 43 50 31 46.

Remember that
Let

A=MAT(3,2:1,
So, A= 1 2

5.6 45
23 0

the order of multiplying matrices does matter.

2, 5.6, 45, 23)
B= 10 0

0 1

and B=DIAGMAT(2:10,l).
A*B= 10 2

56 45
230 o.

Typing B*A will result in an error message because the sizes of A and
B are incompatible in matrix multiplication. Notice that both A+B
and B+A are undefined and therefore Speakeasy will also print out an
error message for them.

:_help
HELP

QUIT
OBJECTS

explains how to use the HELP processor.
is the command to leave Speakeasy.

MATH
ECONOMETRICS
IO WORDS
DATAWORDS
PROGRAMS
MISCELLANEOUS
DOCUMENT
EXAMPLE
NEWS
TUTORIAL

lists words dealing with structured objects.
lists mathematical functions.
lists words which perform econometric analysis.
words about data input, storage, output, and graphing.
lists words relating to data organization or type.
lists words used in writing and running programs.
lists words not falling under any other classification.
explains how to use the Speakeasy documents.
explains how to use the Speakeasy Examples.
lists information on new features in Speakeasy.
tells how to use the Speakeasy tutorial.

TSOPERATIONS lists words relating to TIMESERIES objects.
GRAPHICAL lists words relating to graphical operations.

HELP XXX gives an explanation of the word XXX.
XXX is any vocabulary word.

The following is the name of a tree structure document for
operations which have not been included in the standard Help data set.
CONTRIBUTIONS lists words contributed by users.

85

:_help math
MATH lists categories of mathematical functions.

DIFFEQUATIONS are words used to solve differential equations.
ELEMENTAL are elemental mathematical structures and functions.
FITTING
INTEGRATION
LP
PHYSICS
SINGLEVAR
SPECIAL
STATISTICS

are
are
are
are
are
are
are

words which are used to fit or interpolate fens.
words dealing with numerical integration.
words dealing with linear programming.
functions of interest primarily to physicists.
functions of one variable.
special mathematical functions.
words related to statisical analysis.

To obtain the words in a given subclass SC, enter
HELP SC

:_help statistics
STATISTICS are words related to statistical analysis.

AUTOCOR returns a vector of autocorrelation coefficients.
AUTOCOV returns a vector of autocovariance coefficients.
AVERAGE returns the average value of the elements of an object.
CRIPROB calculates chi-squared probabilities.
CRISQUARED performs a chi-squared test.
COMBINATIONS gives the combinations of X items taken Y at a time.
CORREL returns a correlation matrix.
CORRELATION gives the correlation coefficient between 2 sets of data.
COVARIANCE returns a covariance matrix.
FPROB calculates £-statistic probabilities.
GETRANDOM returns the random number seed.
GET SEED
KURTOSIS
LSQPOL
MEAN
MEDIAN
MODE
MULTIREGRES
NORMRAND
PARTIALAUTO
PERMUTATIONS
PROB IT
RANDOM
RANGE
RMS
SETRANDOM
SET SEED
SKEWNESS
STANDDEV
STAND ERROR
TINDEPT
TPROB
TRELATE
TSAMPPOP
VARIANCE

returns the seed for the next invocation of NORMRAND.
produces a coefficient of kurtosis.
finds a least-squares polynomial fit for two sets of data.
returns the mean of the elements of an object.
returns the median.
returns the most frequently occuring value in an object.
performs multiple linear regression.
returns random numbers from a normal distribution.
returns an array of partial auto-correlation coefficients.
gives the permutations of X items taken Y at a time.
scales data for a probability plot.
generates random numbers.
returns the range of a series of real numbers.
returns the root mean square.
sets the random number seed.
sets the seed for the next invocation of NORMRAND.
returns a coefficient of skewness.
returns the standard deviation.
returns the standard error of the mean.
performs a t-test on two independent sets of data.
returns a significance value for a t-statistic.
performs a t-test on two related sets of data.
performs a t-test on a sample and a population mean.
returns the variance of the elements of an object.

See also the MATRIXOPS tree structure document.
To obtain a description of a given word XXX, enter

HELP XXX.

:_help correl
CORREL(Xl,X2) returns a correlation matrix.

For 1-dimensional arrays or vectors use CORREL(Xl,X2,X3, ••• XN). The
(i,j)th entry is the coefficient of correlation between the ith and the
jth input arguments. Xl to XN must be Cl-dimensional) arrays or vectors
with equal numbers of elements.

If CORREL is called with a 2-dimensional array or matrix as its only
argument, as in CORREL(X), the (i,j)th entry of the correlation matrix
is the coefficient of correlation between the ith and the jth rows
of X. X must have at least two rows and two columns.

86

Examples of the action of Speakeasy
stored commands to demonstrate how a
performs:

words use
given word

:_example median

EXAMPLES OF THE USE OF MEDIAN. SEE HELP STATISTICS
FOR A LIST OF RELATED WORDS. RW

INPUT .•. MEDIAN(l,2,3)
MEDIAN(l,2,3) = 2
INPUT •.. MEDIAN(l,2,3,4)
MEDIAN(l,2,3,4) = 2.5
INPUT .. .
INPUT ... A=(l,2,3,4)
INPUT ..• B=(5,6,7)
INPUT ..• C=(8, 9)
INPUT •.• MEDIAN (A,B, C)
MEDIAN (A,B,C) = 5

STATISTICS EXAMPLE

In the following section, a set of data
representing fuel economy ratings are used to
demonstrate the use of a variety of statistical
words. The variables involved are miles per gallon,
MPG, make of car, CARMODEL, cubic inches of
displacement, CID, number of cylinders, CYL,
transmission type, TRANS, and number of gears, GEARS.
HEAD was previously defined as a character object for
the title of the TABULATE. Methods for obtaining
simple statistics are presented and followed by a
regression. Finally, a printer plot is made of MPG
on CID. Using other plotter devices, regression
lines could be drawn. While this example is
extremely simple, it demonstrates the ease of
interacting with the data to arrive at an
understanding of any underlying relationship in the
data.

:_tabulate(mpg,carmodel,cid,cyl,trans,gears:title=head)

EPA FUEL ECONOMY RATINGS FOR 1985 MODELS
TWO SEATERS - CITY DRIVING
SOURCE: USA TODAY, 9/24/84

MPG CARMODEL CID CYL TRANS GEARS
*** ******************** *** *** ***** *****
21 Alfa Spider 2000 120 4 M 5
23 Bertone Xl/9 91 4 M 5
16 Chevrolet Corvette 350 8 L 4
16 Chevrolet Corvette 350 8 M 4
25 Ford Exp 98 4 A 3
25 Ford Exp 98 4 M 5
23 Ford Exp 98 4 M 5
28 Honda Civic Coupe 91 4 L 3
31 Honda Civic Coupe 91 4 M 5
49 Honda Civic Coupe HF 91 4 M 5
17 Mazda RX-7 70 2 L 4
17 Mazda RX-7 70 2 M 5
16 Mazda RX-7 80 2 M 5
16 Mercedes 380SL 234 8 A 4
16 Nissan 300ZX 181 6 A 4
17 Nissan 300ZX 181 6 L 4
17 Nissan 300ZX 181 6 M 5
19 Nissan 300ZX 181 6 M 5
20 Pininfarina Spider 122 4 A 3
23 Pininfarina Spider 122 4 M 5
25 Pontiac Fiero 151 4 L 3
26 Subaru XT-DL 109 4 M 5

87

:_mean(mpg); median(mpg)
MEAN(MPG) = 22.091
MEDIAN(MPG) = 20.5

:_standdev(mpg) ; standdev(cid)
STANDDEV(MPG) 7.5145
STANDDEV(CID) = 79.85

:_extrema(mpg)
EXTREMA(MPG) (A 2 COMPONENT ARRAY)

16 49

_covariance mpg,cid,cyl,gears
COVARIANCE MPG,CID,CYL,GEARS (A 4 BY 4 MATRIX)

56.468 -250.68 -3.7749 .72727
-250.68 6376 130.15 -13.29
-3.7749 130.15 3.1948 -.24242

.72727 -13 .29 -.24242 .62338

:_correl mpg,cid,cyl,gears
CORREL MPG,CID,CYL,GEARS (A 4 BY 4 MATRIX)

1 -.41778 -.28105 .12258
-.41778 1 .91188 -.2108
-.28105 .91188 1 -.17178

.12258 -.2108 -.17178 1

:_eigenvals(answer)
EIGENVALS(ANSWER) (A VECTOR WITH 4 COMPONENTS)

.075776 .7944 .92719 2.2026

:_regress(mpg,c,cid,cyl,gears)

ORDINARY LEAST SQUARES ESTIMATION

DEPENDENT VARIABLE: MPG
NAME LAG COEFF STD ERROR T-STATISTIC

iFC 0 22.466 10.369 2.1666
CID 0 -.089503 .047719 -1.8756
CYL 0 2.4815 2 .1153 1.1731
GEARS 0 .22353 2.0107 .11117
R-SQUARE .23433
R-SQUARE (CORRECTED) = .10671
NUMBER OF OBSERVATIONS 22
DURBIN WATSON STATISTIC= 1.4148
SUM OF SQUARED RESIDUALS 907.95

STD ERROR OF REGRESSION = 7.1022

The interactive nature of Speakeasy becomes
important when working with data to draw conclusions.
After studying the following graph, variables in the
above regression could be transformed to investigate
log or inverse relationships between the dependent
and independent data. Of course, Speakeasy supports
many graphics devices, but the availability of
reasonable "printer" graphics allows immediate
presentation of a result without moving from a normal
ASCII terminal.

:_graphz mpg cid

•• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••. + •••• + •••• + •••• +.

50 + * +

M
p

G 37.5 + +

*
*

25 + * * * +
* * *

* *
* *

* * * *
12.5 + +

•• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• +.
75 125 175 225 275 325 375

50 100 150 200
CID

250 300 350

PROGRAM EXAMPLE

Once the procedures for an analysis have been set, a Speakeasy program may be written to perform the
analysis using different sets of data. The program shown below performs a simple regression and draws plots
of the variables, predicted values and residuals. The program REGPLOT was prepared using a standard editor
and was then invoked in Speakeasy by simply typing its name. Only one of the plots is shown.

EDITING REGPLOT
1 PROGRAM
2 GRAPHICS TEK4010
3 ERASE
4 "ENTER NAMES OF VARIABLES OR RETURN TO KEEP THE SAME VARIABLES"
5 ASK ("DEPENDENT VARIABLE (Y) ", "Y=")
6 ASK ("INDEPENDENT VARIABLE (X) ", "X=")
7 ASKLIT("ENTER TITLE", "SETTITLE")
8 N=NOELS(X)
9 N

10 MEAN(X);STANDDEV(X)
11 MEAN(Y);STANDDEV(Y)
12 CORRELATION(X,Y)
13 COEF=MULTIREGRES(X,Y:RESID,MULTR)
14 "REGRESSION OF Y ON X GIVES FOLLOWING COEFFICIENTS"
15 TYPE "Y = ",COEF(l)," + ",COEF(2)," * X"
16 SUMSQ(RESID)
17 HARDCOPY
18 SETXLABEL("X - INDEPENDENT VARIABLE")
19 SETYLABEL("Y DEPENDENT VARIABLE")
20 LINECODE=-2
21 GRAPH(Y:X)
22 Xl=MIN(X)-1000,MAX(X)+lOOO
23 Yl=COEF(l)+COEF(2)*Xl
24 LINECODE=l
25 ADDGRAPH(Yl:Xl)
26 Xl=MEAN(X) ; Yl=MEAN(Y)
27 LINECODE = -5
28 ADDGRAPH(Yl,Xl)
29 HARDCOPY
30 LINECODE=-2
31 SETYLABEL("RESIDUALS")
32 GRAPH(RESID:X)
33 HARDCOPY
34 SETXLABEL("PREDICTED Y VALUES")
35 GRAPH(RESID:RESID+Y)
36 HARDCOPY
37 SETXLABEL("ACTUAL Y VALUES")
38 GRAPH(RESID:Y)

*39 HARDCOPY

88

:_regplot
EXECUTION STARTED
ENTER NAMES OF VARIABLES OR RETURN TO KEEP THE SAME VARIABLES
DEPENDENT VARIABLE (Y) mpg
INDEPENDENT VARIABLE (X) c id
ENTER TITLE epa two
N = 22
MEAN(X) = 143.64
STANDDEV(X) = 79.85
MEAN(Y) = 22.091
STANDDEV(Y) = 7.5145
CORRELATION(X,Y) = -.41778
REGRESSION OF Y ON X GIVES FOLLOWING COEFFICIENTS
y = 27.738 + -.039316 * x
SUMSQ(RESID) = 978.85

10
+

5 +

+ +
+

R 0 ++
+

E +
s + +
I +
D -5
u +
A
L -10
s

-15

-20

EPA TWO

+

+

-25._.__._....._._~.__..~_.__~~_...~_.__~~--'-~-'-~~--'-~-'-~...._.

80 120 160 200 240 280 320 360
X - INDEPENDEtH l)ARIABLE

The plot above was done on a Tektronix terminal which has a movable cursor. The program could be
easily modified to allow the interactive use of the cursor to identify and remove or otherwise study points
from the regression.

89

INTERACTION WITH A MODEL

Because Speakeasy is so mathematically oriented, it is very easy to create programs that allow the user
to investigate a mathematical model. In the example shown below, the user's model is given on the left and
the resulting Speakeasy program on the right. This initial program was written in a matter of minutes and
drew a graph of the three functions using different line patterns with automatically scaled and labeled
axes. The program was later expanded by adding about 20 lines to create the legends, axis titles and main
titles. The resulting plot shown below was redrawn on a pen plotter in multiple colors for publication.

Original Handwritten Model Specification

~ (u. c_'\
L > -J

:. ~ \ c_ + (! - c:_ ') l(")

L(\-c_)(l- Lll,\))

Ll~) =- e_ ~; (\ +- e_ 'J

O\) .L

1 PROGRAM
2 X=GRID(-4,4)
3 C=.01
4 LOGOGIVE(HL,X,C)
5 LINECODE=l
6 GRAPH(HL:X)
7 C=.1
8 LOGOGIVE(HL,X,C)
9 LINECODE=2

10 ADDGRAPH(HL:X)
11 C=.2
12 LOGOGIVE(HL,X,C)
13 LINECODE=3
14 ADDGRAPH(HL:X)
15 END

1 SUBROUTINE LOGOGIVE(L,X,C)
2 L=EXP(X)/(l+EXP(X))
3 N=C+(1-C) *L
4 D=(l-C)*(l-L)
5 L=LOG(N/D)
6 END

ILC FOR 3-PARAMETER LOGISTIC OGIVE ICC ~ITH
L A= 0, B = 1, c = .01, .1 AND .2 v .--..-~~--y~~~-.--'-~~,-_:_~--,~~-'--.-~~~..--~~-..~~~-.-~

4

3

2

0

-I -- -
-2 -- - - , - -

-3

-4

c = .01

C = . I

c = .2

- ,

, , - ,

-2

~-
/ "

,,,,;- ,

.....-: : -,

90

0
u

2 4

In a slightly more complicated example, Speakeasy was used to investigate a mathematical model of a
liquid droplet surface. The formulation of the surface is done in a program that took only a very short
time to create. Notice the correspondence between the formula and the Fortran-like program lines. The GRID
operator causes PHI and subsequently derived variables to be arrays. The program was then used to
experiment with differing values of epsilon and N. The model was derived from formulae using complex
variables and could have been programmed in those terms since Speakeasy allows complex arithmetic.

Original Handwritten Model Specification

o{;,_G~\\/L 0' <P£ '1..\\

Ir(\-~
~fE:-
a.vv--.~ V'. .

x.

1 PROGRAM
2 HENCEFORTH GRA IS GRAPH
3 ALPHA="l234567890"
4 VSCALE=-1.5, 1.5
5 HSCALE=l023/780*VSCALE
6 REQUEST N
7 REQUEST EPS
8 REQUEST DIV
9 ZER0=.0001

10 PI=ACOS(-1)
11 PI2=PI*2
12 PI=PI/2
13 PHI=GRID(ZERO ,PI2+ZERO)
14 CP=COS(PHI); SP•SIN(PHI)
15 DT=PI/DIV
16 FOR THETA = ZERO, PI+ZERO, DT
17 CT=COS(THETA); ST=SIN(THETA)
18 S = PHI - PHI
19 FOR J=O,N/2
20 DS=N!/(N-2*J)l/(2*J)l*(CT**(N-2*J))*((-l)**J)
21 DS=DS*((ST*CP)**(2*J))
22 S=S+DS
23 NEXT J
24 R=l+EPS*S
25 X=R*ST*CP
26 Z=R*ST*SP
27 GRA(Z:X)
28 TEXTPUT(ALPHA(IROW), Z(20), X(20))
29 HENCEFORTH GRA IS ADDGRAPH
30 NEXT THETA
31 X=GRID(VSCALE(l), VSCALE(2), .25)
32 LINES(X:X)
33 HARDCOPY
34 END

The graph on the left below shows the contours created by the program above. After determining epsilon and
N values of interest, a second program was used to generate 3-space drawings of one octant of the surface.
The drawing on the right below shows an octant of the surface for epsilon equal to .5 and N equal 10.

91

SYSTEM STRUCTURE

One of the most important features of Speakeasy
is the ability to add words to the language to tailor
it to a specific user community's need. Words in
Speakeasy are really just Fortran function
subprograms, so that it becomes possible to convert
local libraries of analysis routines to operate in
the Speakeasy environment. To understand how this
works, the following section briefly describes
Speakeasy's internal structure shown in figure 1.

+-----------+
Input- I
Output I

+-----------+
I

+-----------+ +-----------+ +-----------+
System l __ I SPEAKEASY l __ I User I

I Libraries I I Processor I I Libraries I
+-----------+ +-----------+

+-----------+
Named

Storage
+-----------+

+-----------+

Speakeasy System Structure

figure 1

The Speakeasy processor is responsible for
accepting input from the user, parsing it and
directing the execution of the various operations
that have been requested. The processor interfaces
with the (Speakeasy) system libraries to map,
activate and unmap the operators as required. A very
few operators are actually implemented in the
processor. The processor also maintains an area of
memory called named storage used to store all objects
used in a session.

All input and output during a Speakeasy session
is controlled through the processor. In addition to
the user prompts and replies shown above, Speakeasy
also provides error handling and, at the user's
request, will log any portion of a session. A number
of the internally used routines are available for use
when adding operators to Speakeasy.

Named storage is an area of memory maintained by
the processor that contains all Speakeasy objects
that are in use. Objects may be defined, read,
modified and freed. Named storage is dynamically
maintained with efficient algorithms for locating and
using objects.

The system libraries contain the help, tutorial
and example files, data to be stored between sessions
and the operators which are also known as "linkules."
Each user may also create libraries corresponding to
the system copies for individual modifications or
enhancements.

SPEAKEASY LINKULES

As mentioned above, Speakeasy linkules are just
Fortran functions. Each linkule is an executable
file that is mapped and activated by the processor
when first used. Speakeasy maintains internal tables
of which linkules have been used and will not unmap a
linkule until necessary. This retention of linkules
speeds repeated use since the linkule does not have
to be remapped. The processor communicates with the
linkule through a standard calling sequence which
provides information about named storage and how the
linkule was invoked by the user. The linkule may use
named storage to examine values of objects and to
compute and define results. It is the responsibility
of the linkule writer to check the calling sequence
specified by the user for errors and to produce error
messages. If the arguments specified are acceptable,
space may be reserved for a result and the result
computed and returned to the user. Typically, a
linkule is written by writing a code fragment that
handles these details and then calls a computational
routine. For example, SQRT would check whether it
had received a positive real argument and then pass
that argument to the correct routine for computing
square roots of real numbers. Finally, the linkule's
Fortran function value is used to tell the processor
if errors occurred and if a result was defined.

A Fortran macro preprocessor, Mortran, may be
used to assist in preparing linkules. If linkules
are being used only on the VAX, Mortran can be used
to generate the standard calling sequence and define
a number of important Fortran variables. Mortran's
primary purpose, however, is to isolate
machine-dependent code in macro form. For instance,
Mortran has a macro which represents the largest real
number. The linkule writer types CONSTANT(BIGEST) in
the Mortran source file, specifies a target machine
and runs the preprocessor. Mortran expands the macro
and outputs a file of Fortran statements that will
compile on the target system. On the VAX,
CONSTANT(BIGEST) expands to 'FFFFFFFFFFFF7FFF'X and
on IBM to Z7FFFFFFF FFFFFFFF. Only the Fortran
compile has to be run on the target system as long as
the appropriate macro files exist. Thus, it is
possible to use the VAX as a development system for
linkules which will run under the IBM version of
Speakeasy. Speakeasy itself is written in Mortran
and uses this facility to support versions for
different machines.

CONCLUSION

Speakeasy's ease of use and extensive vocabulary
make it an ideal tool for interactive data analysis.
Analytical techniques may be developed and formulated
as programs for general use. Existing libraries of
Fortran subprograms may be added to the vocabulary,
thereby extending and tailoring the language to meet
special needs of virtually any user community.
Moreover, by using Mortran, additions to the language
are portable across different machine versions.

92

REFERENCES

For the reader who wishes to learn more about
Speakeasy, the following reading list is suggested.

[l) Cohen, Stanley, "A Look at Speakeasy, The
Interactive Computing System That Found a Home
in VAX", VAX RSTS Professional, August, 1984,
Vo 1. 6 , No. 4, pp • 26 - 34.

[2)

[3]

Cohen, Stanley, "Speakeasy: A Conversational
Language on VAX", Proceedings of the Digital
Eguipment Corporation User SocietI, Spring,
1983, pp. 1 - 7.

Saxe, David, "Introducing Speakeasy to the New
User", SpeakeasI Meeting: 13th Annual
Conference Proceedings, 1985, Speakeasy
Computing Corporation, Chicago, IL.

[4] Introduction to SpeakeasI IV Linkule Writing,
1985, Speakeasy Computing Corporation, Chicago,
IL.

[5] Lectures on SpeakeasI, 1984, Speakeasy Computing
Corporation, Chicago, IL.

[6] Sampler, 1985, Speakeasy Computing Corporation,
Chicago, IL.

[7] Speakeasv IV Help Documents, 1985, Speakeasy
Computing Corporation, Chicago, IL.

[8] The SpeakeasI IV Reference Manual, 1984,
Speakeasy Computing Corporation, Chicago, IL.

ACXNOWLEGEMENTS

SPEAKEASY and are trademarks of the Speakeasy
Computing Corporation.

The author wishes to thank Stanley Cohen of the
Speakeasy Computing Corporation for the use of the
Speakeasy development VAX in preparing some of the
the example sessions used in this paper. The ILC
model is due to Paul Holland at Educational Testing
Service. The liquid droplet model is due to Kerry
Landman.

93

Real Time Acquisition Using The C Language

J-F Vibert
Chu Saint-Antoine

Universite P. & M. Curie
Paris, France

Abstract

The C language allows access to devices registers through pointers. Thus it
is possible to write real-time programs using the C language instead of using
MACR0-11. We have developed in Can acquisition program devoted to electro­
physiological signals (evoked potentials) using an AD converter (ADllK), a pro­
grammable clock (KWllK) and a 16 bit parallel input/output board (DRllC)
used to trigger external stimulators. Using extensively pointers manipulation
to process the sampled data, it is possible to digitize the incoming signal each
50 microseconds on two channels and visualize simultaneously the data on a
graphic display. Using C in real time environment allows rapid development
of applications that would have took very long and tedious programming time
using MACRO. Methods and examples are developed.

The C language allows access to devices registers
through pointers. Thus it is possible to write real-time
programs using the C language instead of using MACR0-
11. Programs written in C can be as quick as those written
in assembly language and much more easier to develop.

Our research field is related to neurosciences and we
are involved in evoked potential signal processing. We have
developed in C several acquisition programs devoted to the
acquisition of electrophysiological signals. Two main type
of signals had to be digitized and processed: acquisition
of cortical evoked potentials using two channels with si­
multaneous graphic visualization and stimulator driving.
In this case, the sampling interval ranged from 100 to 500
us on 2 multiplexed channels. The second was acquisition
of unitary muscular potentials using one channel with also
simultaneous graphic visualization and stimulator driving.
Sampling interval ranged from 25 us to 100 us. Our hard­
ware configuration comprised 2 computers on which these
programs had to be run. The first was a PDP 11/34 with
a floating point processor (FPllA), a dual programmable
clock (KWllK), an analog digital converter (ADllK) and
a general purpose parallel interface (DRllC). A French
Tektronix like graphic processor Arinfo AF410, a RLOl
and 2 RX02 were the main peripherals. The second was
a PDP 11/03 with a dual programmable clock (KWllK),
an analog digital converter plus digital-analog converter
(Analog-Device RTI 1250) ADUK) and a general pur­
pose parallel interface (DRVU). A Tektronix oscilloscope
served as graphic output, and 2 RX02 were the main pe­
ripherals. Each of them runs RTU V5.2.

These fully modular programs were entirely written
in DECUS C using standards for portability. They are

Proceedings of the Digital Equipment Computer Users Society 95

easy to modify for example to adapt to other machines
and boards. In fact all these programs were children of a
first one that derived from their parent for very little in­
structions and address values. They are fully documented
in the code, and associated with an in-source documenta­
tion whose the getrno DECUS-C software tool reads and
produces an UNIX like manual. Programs were developed
and compiled under RSXUM V4.2 on a PDP-11/44, but
linked and run under RTll, the target machines.

Why C, a high level language for speedy
acquisition?

Most of the usual high level languages does not permit
to access device register, thus impairing the direct use of
boards without drivers. C allowing access to physical ad­
dresses and thus to devices registers through pointers us­
age, it appears to be very suitable for real time acquisition,
were AD/DA boards are to be used. Moreover, C allow­
ing single bit operations, it provides an easy way to set or
check the content of such board registers using masks and
its set of logical bit operators.

One other advantage of the C language is represented
by the fact that it produces an assembly code in readable
form that can be checked and if necessary, manually op­
timized. This feature can be implementation dependent:
DECUS C produces a * .S file that is then assembled by
AS, while Whitesmith C produces a *.MAC then assem­
bled by MACRO. The experience proved that this feature
was only useful to verify that the produced assembly code
was really optimized, and if not to understand how to use
the C tips to improve it. The following examples will show

San Francisco, CA - 1986

such an approach.
Since C is a high level structured language, it allows

an easy way to program the man/machine interface that
can be thought in terms of ergonometrics and explicit error
recovery, that represents a tedious work when coding in
assembly language. Last but not least, the source code
developed in C is much easier to read than MACR0-11,
and greatly facilitates the modification and maintenance
of the program.

Pointer usage

Pointers are the C features that allow a direet mapping
of the program to the register board. Program 1 is given
as an example of a function devoted to signal acquisition
using ADUK and a KWllK boards. The comments will
explain the process.

This piece of code demonstrates that programming in
C for real time acquisition is very straightforward and the
programs easy to read.

Warning to compact C code

Reading the above code, the normal C programmer has
probably remarked that compacting this code using the
auto increment or decrement operators would produce bet­
ter performance. Here was the major utility to look at the
produced assembly code. In fact my first version of the
same code was, as a long time C programmer, given as
Program 2.

Those 10 lines of C code produced the following 24
instructions of assembly code:

mov $406,•_pkwear
.3:
;while(num_pt•--)
mov r4,r0
dee r4
tat rO
beq .2
mov •-14(r6),•_padear
mov $_tab_ean,-16(r6)
mov $2,-12(r6)

.6:
;while(n_ean--)
mov -12(r6),r0
dee -12(r6)
tat rO
beq .4

. 7:
;while(!(•padear l 0200));
bit •_padear,$200
beq .7

.6:
;•padear=p_ean++
mov -16(r6),r0

96

add $2,-16(r6)
mov (rO),•_padear
;•p_don++=•padbuf
mov -20(r6),r0
add $2,-20(r6)
mov •_padbuf,(rO)
br .6

.4:
br .3
.2:
elr •_drout
mov $716,r4
.11:

while the code given in Program S give the following
more compact 20 instructions of assembly code.

mov $406,•_pkwear
mov $4000,•_padear

.3:
t•t r4
beq .2
mov •-14(r6),•_padear
mov $_tab_ean,-16(r6)
mov $2,-12(r6)
.6:
tat -12(r6)
beq .4
add $2,-16(r6)
. 7:
bit •_padear,$200
beq .7
.6:
mov •-16(r6),•_padc•r
mov •_padbuf,•-20(r6)
add $2,-20(r6)
dee -12(r6)
br .6
.4:
dee r4
br .3
.2:
clr •_drout
mov $716,r4
.11:

Thus, it is necessary to warn to the use of too compact
C code, that necessitates temporary loading of registers
and forward/backward movements of register values.

Another useful usage of pointers to board register
mapping is the overlook to the keyboard status register,
that allows to respond to any keystroke at any moment.
During an acquisition process for example, it can be nec­
essary to keep a possible control over the experiment in
order to either stop or suspend it if something goes wrong

during the process. This could be done by a program such
as given in program 4.

This mimics the INKEY$ instruction of some BASIC
implementations, but is rarely possible so easily with other
high level languages such as FORTRAN.

Conclusion

Using C in real time environment allows rapid development
of applications that would have taken long and tedious pro­
gramming time using MACR0-11. Moreover, programs
are much easier to modify and maintain.

97

Program 1

/*
*
* DEMOACQ.C Demonstration function for acquisition with a
* prestimulus sampling , send of a stimulus, and post stimulus
* sampling
*
* Author: JF Vibert
* CHU Saint Antoine
* Paris- France
*/

f define NPTS
fdefine NCAN
f define PRE STIM

512
2

int data [NPTS *NCAN] ,

50

/* data array */

/* here are defined and initialized in octal
the pointers mapping board registers */

/* ADllK */

*padcsr=0170400,
*padbuf=0170402,

/* KWllK */

*pkwcsr=0170404,
*pkwpre=0170406,
*pkwbuf=0170430,

/* DRllC */

*drcsr=0177530,
*drout=0177532,

/* DLll */

*pkbcsr=0177560,
*pkbbuf=0177562;

/* ADC csr address */
/* ADC buffer address */

/* clock csr address */
/* clock buffer address */
/* clock counter */

/* DRll-C csr address */
/* DRll-C output buffer address */

/* keyboard csr address */
/* keyboard buffer address */

/* Array defining the ADllK CSR contents for the 16 channels */

int tab can[16]={040,0440,01040,01440,02040,02440,03040,03440,
- 04040,04440,05040,05440,06040,06440,07040,07440};

98

acquis {)
{

Program 1 {continued)

register num_yts; /* sample counter */

int pas,
n_can,
*p chn,
*p-can,
*p don;

/* sampling interval */
/* current channel */
/* channel pointer */
/* pointer on the current channel */
/* pointer on sampled data */

p don=data;
p=chn=tab_can;

/* pointer on data array */
/* start at the 1st channel */

/* NB: a * before the pointer name signifies: the content
of the location pointed by the pointer */

drout=02; / set the DR11-C line 1 output to 1
that silents our stimulator */

*pkwpre=-{pas/10);
*pkwcsr=0405;

/* time inter sample */
/* start the clock at 100 khz,

this value comes from the
KW11K user manual */

/* prestimulus acquisition */

num_yts=PRE_STIM;
while {num_yts)

/* number of pts to sample prestim */
/* 1 sample by channel */

{

}

*padcsr=*p chn;
p can=tab can;
n-can=NCAN;

/* sampled channel */
/* initalise to the 1st channel */
/* max number of channel */

/* in C, all non zero value is considered as true */

while{n can) /* channels sequentially */
{ -

}

p_can++; /* prepare next channel */

/* here is examplifified the use of a mask (0200)
and a logical bit operator {&) : while the bit #7
is not set, we loop on the test. Note the semi-colon
just after the while, it represents an empty
instruction */

while{! {*padcsr & 0200)); /* 1st channel ok ? */

*padcsr=*p_can; /* yes .. next channel */
*p_don =*padbuf; /* save sampled data */
p_don++; /* next data */
n can--; /* next channel */ -

num_yts--; /* next sample ... */

99

Program 1 (continued)

*drout=OO;

/* post-stimulus acquisition */

num_pts=NPTS-PRE_STIM;

while (num_pts)
{

/* bit 1 of DRll-C zeroed
starts stimulation */

/* number of samples after
stimulation */

/*Exactly the same the same things ... */
}
*pkwcsr=012;
*drout=02;

100

/* stop clock */
/* reset the DRll-C output to 1 */

Program 2

pkwcsr=0405; / start the clock at 100 khz*/

/* here an auto decrement operator */

while (num_pts--)
{

*padcsr=*p chn;
p can=tab can;
n=can=NCAN;

/* 1 sample by channel */

/* sampled channel */
/* initalise to the 1st channel
/* max number of channel */

/* here again an auto decrement operator */

}

while(n can--)
{ -

/* channels sequentially */

while(! (*padcsr & 0200)); /* 1st channel ok ? */

/* here auto increment operators */

*padcsr=*p can++; /* yes .. next channel */
*p_don++ =*padbuf; /* save sampled data */

/* next data */
/* next channel */

}
/* next sample ... */

drout=OO; / bit 1 of DRll-C zeroed
starts stimulation */

101

*pkwcsr=0405;
while (num pts)
{ -

}

*padcsr=*p chn;
p can=tab can;
n-can=NCAN;
while(n can)
{ -

}

p can++;
while (! (*padcsr
*padcsr=*p can;
*p don =*padbuf;
p_don++;
n_can--;

num_pts--;

*drout=OO;

for (; ;)
{

Program 3

/* start the clock at 100 khz*/
/* 1 sample by channel */

/* sampled channel */
/* initalise to the 1st channel */
/* max number of channel */
/* channels sequentially */

/*
& 0200));

/*
/*
/*
/*

Program 4

prepare next channel */
/* 1st channel ok ? */
yes .. next channel*/
save sampled data */
next data */
next channel */

/*next sample ... */

/* bit 1 of DR11-C zeroed
starts stimulation */

/* infinite loop */

acquis (); /* here the acquisition function */

}

if (! (*pkbcsr & 0200))
{

/* something typed */

}

/* yes, test it in lower case */

switch(tolower(*pkbbuf))
{

}

case 'e': return;
case's': suspend();

102

An Investigation into the Use of ELN

in a Multiprocessor Compute Engine

Torn Turano

Digital Equipment Corporation

Marlborough, Massachusetts

ABSTRACT

As scientific computations become more

complex, the time required for such computations

on readily available computer systems becomes

prohibitive. In an attempt to increase speed,

computations are decomposed, where possible, into

segments which can be computed in parallel. These

segments are then allocated to separate

processors. The increase in speed can be close to

N times for N processors operating in parallel and

requiring little or no communication.

ELN allows an ELN system image and

application task to be downline loaded to diskless

MicroVAXen. Each MicroVAX can act as an

autonomous compute engine, passing data to another

MicroVAX or to the host as required.

A "farm" of these MicroVAXen with ELN system

images has been used to perform a Monte Carlo

simulation of the movement of particles in a

field-flow fractionation apparatus. This paper

briefly describes the Monte Carlo simulation, and

then it focuses on the configuration of the

MicroVAX farm, the form of the decomposed problem,

and the effect of the decomposition on the

processing speed. Future experiments in this

ongoing investigation are also discussed.

Proceedings of the Digital Equipment Computer Users Society 103 San Francisco, CA - 1986

1 INTRODUCTION

As the complexity of scientific

computing increases, the time required to

complete these calculations also increases.

This increase in time is not necessarily

linear. A slight increase in problem

complexity can result in the problem's

becoming computationally prohibitive. The

that nature of science

become

requires

computations more complex,

reflecting an attempt at a deeper

understanding of the fine structure of the

object under study.

In order to reconcile these two

conficting goals - having a problem which

is computable, while having enough detail

to its calculation to answer the questions

at hand, two distinct methods are employed.

The first is to use a faster CPU. Although

CPU speeds have consistently increased over

the years, general purpose CPUs can not

compete in terms of speed with special

purpose CPUs. The distinguishing features

of these special purpose computers is that

they are very fast and very expensive.

The second method is to employ

multiple CPUs and let all of them work on

the problem in parallel (1,2,3). When a

problem can be broken into several

independent, or nearly independent, compute

tasks, the method of choice is to partition

the problem into these independent tasks

and assign one of those tasks to each CPU

104

of the multiprocessor system. In this way,

the calculation speed can increase close to

N times for a multiprocessor containing N

CPUs. This second method will be discussed

in this paper.

2 THE PROBLEM

A member of the LOP staff, Dr. Mark

Schure, maintains an interest in a

macromolecular separation technique called

field-flow fractionation. Part of the

research is modeling the behavior of groups

of particles undergoing this separation

(4). The model itself is a Monte Carlo

simulation of the trajectories of particles

moving under the fluid flow and centrifugal

fields.

Specifically, the field-flow

fractionation (FFF) apparatus consists of a

tube positioned around the circumference of

a centrifuge. Fluid is pumped through this

tube. A mixture of particles of various

sizes is introduced into the inlet of the

tube and collected at the outlet (Figure

1). As the particles are carried through

the tube, they are separated by size. This

separation occurs because each particle

experiences two forces as it passes though

the tube.

The first is the force caused by net

flow of liquid through the tube. The

velocity of each particle depends upon how

close the particle is to the walls of the

tube. This is due to the parabolic form of

the velocity profile of fluid moving

through the tube. The fluid closest to the

tube walls moves the least, while the fluid

at the center of the tube moves the fastest

(Figure 2). Because of this velocity

distribution, particles which spend more

time at the center of the tube move through

the tube most quickly.

The second force experienced by the

particle is what is generally called

centrifugal force. Although diffusion

carries the particles both toward the

center of the tube and toward the walls of

the tube, the centrifugal effect (not a

real force) causes the larger particles to

experience a stronger tendency to move

toward the tube walls. As a result, larger

particles spend less time in the

higher-velocity portion of the fluid flow,

and so elute later than the smaller

inlet ~

fluid flow 0

Fig. 1

particles.

3 THE MONTE CARLO MODEL

The simulation of field-flow

fractionation (FFF) uses a Monte Carlo

technique whereby initially a random number

is used to position each particle randomly

within the velocity profile. To determine

whether a particle is to diffuse randomly

toward or away from the walls of the tube,

another random number is used.

At each point in the simulation:

1. A direction is randomly selected

(toward or away from the tube walls).

2. The effect on the particle trajectory

of the velocity profile and centrifugal

field at that point is determined.

~ outlet

outer
--- channel

wall

Field-flow Fractionation Apparatus

105

3. The particle is moved to the new

position dictated by the particle

trajectory.

4. The steps are repeated.

Periodically, the time and location of the

particle are written to disk.

4 SIMULATION ON A SINGLE CPU

The simulation was first run on a VAX

8600 computer which is capable of about a

four-fold increase in compute speed over

the VAX 780 (four VAX 780 equivalents).

Therefore, to simulate 1000 particles

(about 30 times the number simulated on the

VAX 8600) would require 1.25 days of VAX

8600 CPU time. To achieve significant

results for various parameter settings

would require several weeks of time on a

dedicated VAX 8600. It becomes obvious

that a single processor of the VAX 8600

class would not be sufficient, and that the

use of multiple processors might provide a

reasonable solution to the problem.

5 MULTIPROCESSOR REQUIREMENTS

The application is ideal for a

With the VAX 8600, approximately 3300
multiprocessor environment. First, each

seconds were required to simulate 1500

seconds of FFF time or -2.2 CPU seconds/FFF

particle calculation is independent of any

other particle calculation, so that the

simulation second.
model can be completely and easily

partitioned among the processors. Second,

0 g field

O ~fluid flow

v. o ~particle
Y•Y

-----~--_.;..,;;.;... ____ ,...._

Fig. 2

Forces and Fields
Acting Upon a Particle

106

outer
channel
wall

there is no requirement for communication

between processors; and third,

communication with the host is minimal.

With this type of application, an

almost N-fold increase in performance can

be realized by the partitioning of the

problem across N processors. The increase

is not strictly N times because the amount

of communications required, although small,

is st ill finite. As a result, there is a

reduction in available compute cycles

because of DECnet overhead. Further, as

the number of processors accessing the

ETHERNET increases, there will be increased

contention for both the ETHERNET and the

host disk.

6 THE VAXFARM

To investigate the possibility of

using multiple MicroVAXen CPUs as a compute

lia'IYAX I
D
E lia'IYAX II L
N
J: lia'IYAX II

lil:rlYAX II

engine for scientific computation, we

constructed a farm of six MicroVAX II class

machines and two MicroVAX Is. We

anticipated that this combination of CPUs

would form a system which should operate at

about 6.6 VAX 780 equivalents.

Each MicroVAX node consisted of a CPU,

memory, and DEQNA. The amount of memory on

each MicroVAX varied between one and four

megabytes. The console panel for each

MicroVAX was connected through a rotary

switch to a single VTlOO (Figure 3). In

this way one VTlOO could act as the console

terminal for any MicroVAX simply by

selecting the MicroVAX with the switch.

In an attempt ~o physical

laboratory space, we rack mounted four

MicroVAXen BA23 boxes in each of two H9610

enclosures. The H9610 power supplies were

connected to the same power controller so

lia'IYAX I

lia'IYAX II

lia'IYAX II VT 100

lia'IYAX II

VT 100

D
E
L
N
:r

microVAX II
(VAXlab)

VMS Dial 1n

(Network) Fig. 3
VAXfarm Configuration

107

that the on/off switch mounted on one H9610

rack controlled the power supplies of both

racks and permitted all six BA23 boxes to

power up by pressino one switch.

The DEQNA of each MicroVAX was

connected to one port of a DELNI. The

output port of the DELNI, rather than

connecting to an H4000 ETHERNET

transceiver, was connected to an input port

of a second DELNI. A second port on the

second DELNI provided the ETHERNET link for

the host system, a VAXlab. The host and

the farm of MicroVAXen were thus

interconnected by the equivalent of a

private ETHERNET.

7 ELN

ELN is a subset of VMS which was

originally constructed to provide real-time

capabilities for the MicroVAX. Although an

ELN image can be booted from disk, it does

not require a disk. If no disk is present,

ELN can be booted from ROM or across the

ETHERNET.

and the

This means that the system image

application must be memory

resident. An ELN system image is built on

the host machine, and the task to be run is

imbedded within this image. The ELN image

can be downline loaded to each node. In

this way, a properly constructed

application need only be built once to be

used on each node of the VAXf arm. ELN also

provides a remote debugger which runs on

the host, but allows the program on the

remote node to be debugged.

108

When each node of the VAXfarm attempts

to boot, the node finds there is no disk or

ROM load device and causes the DEQNA to

issue a boot request across the ETHERNET.

The network database on the host node is

configured so that, when a boot request is

received from a node address within the

database, the host downline loads an ELN

system image to that address and completes

the boot.

8 THE SIMULATION

The simulation experiment consists of

three programs. The first program is

executed on the host and creates one

parameter data file for each of the nodes

of the VAXfarm. These files contain

parameters which describe the system being

simulated, such as particle density,

centrifuge rotor speed, and fluid flow

velocity These files also contain the

random number seeds which will be used by

the VAXfarm nodes to generate the random

numbers used in the calculations. Each

parameter data file has different random

number seeds, so that no two nodes have an

identical series of random numbers for

their calculations. Once these files are

created the host program terminates.

Upon power up, the second program of

the experiment is downline loaded to each

of the nodes of the VAXf arm. When this

program executes, it first opens the

parameter data file assigned to it on the

host and reads the parameters for the

simulation, including the random number

seeds. The program then closes the

parameter data file.

Next, the VAXfarm node opens an output

file on the host. The program begins its

calculation. At certain points along the

trajectory called breakpoints, the

simulation time and the position within the

tube are written to the output file on the

host. When all the particles of the

simulation experiment have completed their

trajectories through the tube, the program

closes the output file on the host and

exits.

In case of irrecoverable error, the

VAXfarm node opens, where

error log file on the host.

possible, an

The VAXfarm

node writes the cause of the fatal error to

this file, and the program terminates. One

reason there is no guarantee that an error

file will be written is the possibility of

a network file access failure. This error

would also prevent the writing of an error

log. The programs are written to terminate

upon fatal error to allow the host to drop

the DECnet links to nonproductive systems

and thereby help reduce the traffic on the

net.
Once all the VAXfarm nodes

completed their calculations. a

have

third

program on the host is used to analyze

data and produce elution profiles.

9 FUTURE PERFORMANCE EXPERIMENTS

Now that the system has

the

been

109

constructed and debugged, we intend to

conduct several experiments to investigate

its performance characteristics. First, we

will run the simulation on from one to

eight VAXfarm nodes and determine how the

overall performance is affected as more

VAXf arm nodes contend for the ETHERNET and

the host disk. We will compare the overall

performance of the VAXf arm against the same

simulation executed on a VAX 750, VAX 780,

and a VAX 8600. From this, we will

determine how the system throughput

deviates from that expected, and then

attempt to determine where the bottlenecks

exist.

10 CONCLUSIONS

A class of problems exist which

exhibit the characteristics required for

large granularity parallel computation.

These characteristics include the problem's

being naturally partitionable, requiring

little communication between nodes and

host, and not requiring the results of one

node's calculations as the input for the

calculations on another node. One of the

problems in this class is the Monte Carlo

simulation of particles under the influence

of several fields.

We have constructed a loosely coupled

group of general purpose processors which

~akes use of these characteristics to

increase the computation speed of a Monte

Carlo simulation. We do this by dividing

the total number of particles to be

simulated among the nodes of the group. In

this way a given node must perform fewer

total calculations. Those which it does

perform occur simultaneously

calculations performed on the other

of the group. The net result

parallelism is an increase

with

nodes

of such

in the

simulation speed without resorting to

expensive high-speed processors.

11 ACKNOWLEDGEMENTS

I would like to take this opportunity

to thank Susan Brown, the long suffering

editor of my publications, Art Filz and

Ivan Goddard, who actually constructed the

farm, Jane Whitney who made the

illustrations and Dr. Mark Schure who

provided the incentive for building a

parallel machine.

12 BIBLIOGRAPHY

1. Fast Special Purpose Computer for Monte

Carlo Simulations in Statistical

Physics, J.H. Condon and A.T.

Ogielski, Review of Scientific

Instruments, 56(9), September 1985, p.

1691.

2. A Special-Purpose Processor for the

Monte Carlo Simulation of Ising Spin

Systems, A. Hoogland et al. Journal

of Computational Physics, 51, 1983, p

250.

3. A Fast Processor for Monte-Carlo

Simulation, R.B. Pearson et al.,

4.

llO

Journal of Computational Physics, 51,

1983' p 241.

Separation of

Continuous

Fractionation,

Coal Fly

Steric

Ash Using

Field-Flow

M.R. Schure et al.,

Environmental Science and Technology,

Vol 19, 1985, p. 686.

Data Normalization

Paaela A. Valentine
Senior Software Engineer

James M. lfontgomery, Consulting Engineers. Inc.
P. O. Box 7009

Pasadena, California 91109-7009

ABSTRACT

Normalization of data into physically separate and logical
groups allows application developers to increase the
integrity of their data, eliminate redundancy, reduce the
size of the database and generally improve performance,
Whether the application is of a business, scientific or
engineering nature, normalized data is easily accessible thru
programming languages and VAX Information Architecture
products such as VAX-11 Datatrieve and Rdb/VMS. This paper
is a tutorial on the process of normalization, By the use of
practical examples, a step-by-step approach to normalization
is shown. If you are an experienced application developer
interested in improving the integrity of your data, or an
inexperienced application developer just getting started with
your database design, then this paper will offer some
techniques to assist you.

Introduction

While the actual steps of data normalization are
fairly simple, obtaining the data that needs to be
normalized is much more complex.

Looking at a lot of applications today (Figure 1)
we find those that contain hundreds even thousands
of files, The same data items appear in many
files, This results in redundant and inconsistent
data because the data resides in various stages of
update, Also within these applications, many
programs are virtually unmodifyable because of the
lack of structure; the lack or absence of
documentation; and because of their involvement
with other programs within the application, A
change to a program causes a dominos syndrome to
the other programs within the application, This
of course makes the programs very inflexible. If
a manager wants a report presented in a different
way, it is impossible without restructuring the
files. Application reruns are also common because
of application failures during update. Failure
means starting the application over at the
beginning because of the complexity of the updates
to the files involved, To be successful in the
management of data, computer files must be able to
accommodate change with minimal impact,

These problems impact more than just the
applications themselves, There are many
corporations spending 80% of their programming
budget in maintenance activities and only 20% in
new development. Backlogs of work are growing to
all time highs. Requirements keep increasing,
Management wants better information for decision
making. They want to play "what if" games with
their data. They want greater productivity,
faster response and of course increased profits,
Government requests too are increasing for better
audit procedures, more security and privacy
controls.

Proceedings of the Digital Equipment Computer Users Society 113

Then there are the users with their many silent
expectations. Of course they expect the
applications to be fast and easy to build, but
they also expect computer applications to be
flexible, They do not understand why, after
paying thousands of dollars for an application,
they can't get the information they want, They
also expect rapid results once a system is built.
They cannot comprehend why a simple change to a
report will take two weeks.

Database Requirements

If Databases are a tool toward greater
productivity, faster development and lower
maintenance costs as advertised. If its true that
with them comes better information for managers,
up-to-date information any way its needed and of
course faster service for the end-users then how
do we get to this miraculous environment?

It is safe to say that a database will only be as
good as its design, The construction of a
database needs to be planned for the same reasons
that the construction of an office building is
planned, All of the pieces need to identified,
documented and designed before construction
starts.

Also the management of the data needs to be
separated from the functions using the data, In
most corporations, this will not be a simple task.
Because information crosses political boundaries
it needs to be managed from the top, Management
needs to recognize its data as a corporate
resource just like its people and equipment. It
also needs to recognize that rivalries over data
will result in the loss of profits.

San Francisco, CA- 1986

Corporate organization charts do not show the
complex relationships between managers and
departments. It is vital for Data Processing
personnel and Management to recognize up front
that more databases have failed due to human
problems and corporate politics than from the lack
of available technology.

To migrate to a database environment we must have
standards. Not only programming but data
standards. It is essential to know that any piece
of data will be the same throughout the database.
The data needs to be independent. Changes to the
data should not cause programs to change. The
database needs to have data integrity both in
recovery and accuracy. Its not only important to
know that a piece of data is the right data but
also if the system crashes that we can get back to
where we were when the system crashed. The
database must provide sharable data to the expert
and novice alike and allow for varying formats in
the data so that a change to a report will take
minutes rather than weeks. Performance is a key
issue today in the database environment. Not only
in response time, but in the reliability of the
hardware and the software. If either is unstable,
the other is of little value.

Data llodeling

The data modelling effort can be divided into two
parts (Figure 2). First the physical or the way
in which the data are physically stored in the
computer and second the logical or the way that
the end-user will see the same data.

Separation of the physical storage allows the
database to be machine independent so that the
database designer can select the best model for
the application. The three most popular physical
formats are the Hierarchical; Codasyl or Network;
and the Relational. This by no means implies an
all or nothing choice for the database designer.
It is certainly possible and sometimes desirable
to split the database into various formats to
obtain the desired results. Each physical format
has strengths and weaknesses and it is important
for the database designer to evaluate all the
physical models and select the one(s) best suited
for the particular application.

The Hierarchical model (Figure 3) orders the data
items in a top-down structure. In this model each
record in the hierarchy is linked with one record
in the next higher level of the hierarchy. This
makes searching for data relatively fast but
modifications to the database have to take into
consideration the lines of connection.

In the Codasyl or Network model (Figure 4) records
are grouped into sets and a record can be part of
more than one set. This model permits more
complex links between data items however
modifications to this type of database can be even
more complex than the hierarchical format.

The Relational model (Figure 5) does not use a
pointer structure. Instead all the data are
represented as rows (records) and columns
(fields). The records contain fields that allow

114

associations with the other fields in that record.
The relational model is the easiest to understand
and maintain because of its tabular form and its
lack of pointers. The order of the records
however are arbitrary and can be slow if
performing sequential searches thru the records.

Thousands of each physical type currently exist
the hot debates over which is best continue.
While the differences can be confusing, they are
advantageous to the designer in selecting the best
model for the application.

The second part of the modeling effort is the
logical or make believe record structures. The
logical model will involve defining, organizing
and documenting hundreds, even thousands, of data
items. This will often be a very difficult and
time consuming task because of the way the data
has been treated in the past. The same data item
will have been defined differently in different
places, even given different names. The data
administrator will need much help from the users
in clearing up the confusion.

Involving the end-user in defining the data
elements and their associations before the
implementation of the database will greatly
improve the final product. Because they know
their data better than anyone else, they need to
be involved from the bottom up and the Data
Processing group needs to make it easy for them to
help. Tools are needed to allow effective
communication between the end-user and data
processing.

There are many available methods for use in
getting data descriptions from users and bubble
charts are only one way. Using them, however,
provides a way of looking at the data that is
independent of hardware and software and they are
easily understood by the end-users. In addition
to being easy to understand, this method produces
three very important results. It will give the
database designer the primary key, the second key
and all the attributes of the entities within the
database.

The first step is to define the units of data
(Figure 6). Reduce the items to their lowest form
or the atom of data in that the data item cannot
be divided into smaller data items and retain any
meaning. For example, the data item "salary" is
defined to be a monthly dollar amount paid to an
employee. We cannot divide this data item into
smaller data items which by themselves are
meaningful. On the other hand, the data item
"name" is defined to be the full name of an
employee. This item can and should be divided
into first name, middle name and last name data
items.

Any single data element by itself is not very
interesting. Only when it is associated with
another data element does it becomes useful. For
example, the data item "Salary" is only
interesting when it is associated with a
particular employee (Figure 7).

There are only three type of data associations;
one to one; one to many; and many to many, These
associations can be represented using two types of
symbols (Figure 8). First the single arrow.
Drawing that arrow from one data element to
another represents a one to one relationship. In
other words, any one employee number has only one
salary associated with it. And second, the double
arrow. Shown from one to another represents a one
to many relationship. In this example any one
employee can work on zero to many projects. The
double arrow drawn in both directions will
represent the many to many relationship.

For the database, the designer needs to combine
all the users' views together, If we use the two
previous examples as two user views of their data,
one interested in salaries and one interested in
projects. Their views can be combined together
eliminating the duplicates and redundancies. When
complete, the element looks like Figure 9, The
redundant employee number data item has been
thrown out and the remaining employee number data
item points to both the salary and projects data
items. This of course needs to be done for all
the views of the data,

There are data items that map in both directions.
Figure 10 shows that an employee can belong to
only one department but many employees can belong
to any one department, To illustrate this, draw
the single arrow from employee to department and
the double arrow from department to employee, If
knowing how many employees work on a given project
will be important to the database then a double
arrow needs to be drawn between employee number
and project number,

Combining all the user views together will result
in many groups or entities of data items that look
like Figure 11. From this entity the keys can be
determined, A primary key will be a bubble with
one or more single-headed arrows leaving it, A
secondary key will be a bubble with one or more
double-headed arrows leaving it and a nonprime
attribute will be a bubble with no arrows leaving
it.

From these data element groups we can derive the
logical (make believe) record structures that will
be used by the programs,

Normalization

Once the data element groups are understood the
steps to normalization are fairly simple. First
we begin with the unnormalized data structure,
The structure is put into first normal form, then
into second normal form and finally into third
normal form.

The problems encountered with unnormalized files
are numerous. Figure 12 shows a record definition
as it would be written based on the record
structure shown in Figure 13. This type of
structure limits the project data to a set number
of occurrences. Increasing this number of
occurrences requires a file restructure. Also
modifications would require searching compound
keys to find the right record. Both the employee

115

number and project number would be required to
find the right record before the modification
could take place. This design also requires
redundant data to be carried along. The project
title and the project engineer is duplicated in
every employee's record working on that project.
In addition to wasting file space, modifications
to the project title or the project engineer for a
project requires searching thru the entire file
for all the occurrences of the data,

These problems can be solved thru normalization,
Begin by putting the data into first normal form
(Figure 14). To do this, very simply remove the
repeating groups of fields into another structure
and carry along the keys. The one structure
therefore becomes two,

The problems with first normal form files are in
additions, deletions and modifications. With this
design, a project cannot exist without an
employee, This would impose a requirement on the
database of having an employee working on a
project before the data could be entered into the
database. Also an employee termination can result
in the loss of the project data if the terminated
employee happens to be the last employee working
on that project. Modifications require searching
part of the compound key. In this example, both
the employee number and project number need to be
searched before modifying the record,

Next put the data into second normal form by
checking for functional dependencies, A data item
(A) will be functionally dependent on another data
item (B) if at every moment of time A has only one
value in B associated with it in a record (R).
Saying that B is functionally dependent on A is
the same as saying that A identifies B. If we
know the value of A we can find the value of B.
In figure 15 we see that the project number data
item is functionally dependent on employee number
because to find out which project an employee is
working on would be accessed via the employee
number. Employee number however is not
functionally dependent on project number because
more than one employee could be working on the
same project. Project Title and Project Engir.etr
however are functionally dependent on project
number so we remove those fields that are not
functionally dependent on the primary key into
another structure (Figure 15) and again carry
along the keys.

Still problems exist with second normal form files
(Figure 16). Department data cannot exist without
an employee, The termination of the last employee
in a department deletes the department data. Also
changes to department information requires
searching every record. Changing the name of a
department from Administration to Corporate
Administration for example requires searching
every employee's record for the department name,

To solution to this problem lies in the removal of
these transitive dependencies. In Figure 17 we
have a data item (Department Number) that itself
identifies two other data items (Department Name
and Department Manager). To remove this
transitive dependency we split the record in two

as shown. The department number item is left in
the original record in order to tie the records
together when needed.

Using third normal form files will provide data
groups that are the least likely to cause
maintenance problems or application programs to be
rewritten.

While its true that other forms of normalization
are possible they are not normally required. Also
it should be noted that there will be rare times
when normalization of data causes performance
problems or when putting data into another
normalized form is best for the particular
application. When deviations are required, it is
best to design in third normal form, investigate
the deviations and completely document the
exceptions.

Data Dictionary

Another kind of normalization that should be
considered for the database is the use of a data
dictionary for the data descriptions. A great
deal of effort is being spent on making sure that
the actual data is not redundant, but the actual
data descriptions or record definitions are being
repeated in hundreds of programs.

Using a data dictionary such as the Common Data
Dictionary (CDD) on the VAX can provide tremendous
benefits in defining, documenting and organizing
the data descriptions for the database. Using the
CDD will enforce standards for field and record
names; field sizes will be set and consistent
within programs and changes to the size of a field
will require only a recompile of programs rather
than editing each program and then recompiling.
In addition to size, the CDD provides other
standards for field definitions. By defining
fields as separate objects in the dictionary, they
can be used in all record definitions using the
"Copy" statement provided by the Common Data
Dictionary Language (CDDL). These field
definitions can provide standard Column Headers
for reports; standard picture strings, default
values, edit strings and condition names for
various programming languages; and documenting
text inside of the fields and records.

Data dictionaries also provide an additional level
of security in the form of Access Control Lists
that are separate from the Access Control Lists
found in Digital's Command Language (DCL).

The CDDL has its own
history lists of the
The CDDL also provides
will force updates to
field fragments.

compiler. This will provide
programs using the records.

a recompile qualifier that
the program from the new

As the number of databases grow, the number of
applications using them can grow
disproportionately. In many cases it will become
easier to rewrite old applications using the
databases than trying to maintain them. The value
of the stored data therefore will increase over
time.

116

The percentage of time spent in maintenance will
be reduced; the productivity and the rate of
application development increases with the
installation of the databases; and most
importantly profits are increased.

Backlogs will be reduced because it takes less
time for the application programmer to get the
information needed. The end-users dependency on
programmers is reduced because of their direct
access to the data. Also as the knowledge of the
end-user grows and as their involvement in the
data processing environment increases, their
understanding of the true effort involved in
building a database will increase thereby making
the next database effort with them much easier.

Successful Data Management isn't easy. It
presents new management challenges and it requires
the commitment of top management, end-users and
data processing working together toward the common
goal.

-rce1 ._.,..the
Data-..... ln•lr.....,.t
IJ• J-• llartla

Figure 1

Data llodellng

'"VllCAL~ICOllOLAVOUT

ONOllll

lOOICAl "fC01'10 LAYOUT

... "". -.ct• t ...
., •·l~t
IJ• J-• Marti•

Figure 2

117

n. _

--

Bierarc:ldcal

IMrUt at .. .,__lea ,..
DM...,_1"4

Figure 3

Cod&BJl or Retwrlt

...... • ... --.1.., 1.

......
EdlMn
Wfoglll

MllucNr .,.,_
well

Wtoglll

--

Figure 4

8elational

...,
,,..,... Alnefcen

°'91119 8riMll

Orvlle ""'*-
JOlln Ameran

°'91119 8riMll "'"" Wilbur Amltcan

1Mree1 T_....hp
Figure 5

118

........
(llctrcloglll

eon,._,
~

eon..-.
(WOlulool'I

a--...,.
~

CDepar'llmen't: ~ II

Figure 6

Data Element Associations

Figure 7

Data Element Links

Figure 8

119

Combining Elements

Figure 9

Reverse Associations

Figure 10

Figure 11

120

..... L••11: - "--
1-=pl Laa ti N e

E=pl P:o.jl

Record Definition

01 EMPLOYEE-RECORD.
03 EMPLOYEE-NUMBER PIC 9(5).
03 LAST-NAME PIC X(20).
03 DEPARTMENT-NUMBER PIC 9(6).
03 DEPARTMENT-NAME PIC X(60).
03 DEPARTMENT-MANAGER PIC 9(5).
03 PROJECTS OCCURS 3 TIMES

05 PROJECT-NUMBER PIC 9(9).
05 PROJECT-TITLE PIC X(60).
05 PROJECT-ENGINEER PIC 9(5).

Figure 12

unn-.-..•1 :1.. •••

D•p't: - D•p't:
N-•

D•p't:
Mar

Pr­-
Figure 13

D•p11: D•pt D•p11: - "-- M•r -
I Dept Dept I Dept I .. Name Mgr

Pro.j I Pro.:t I T.:1.t1e En gr

Figure 14

121

..
T:l.11: 1 •

Pr-.:1
Enar

S•ooncl Nor..•1 IF'o.--
C'h•o'k :Funot:l.on•1 D•pencl•net:I.••

I E=pl
Pr-~ Pr-~ I Pr-~1 • T:A:t:1• l!nar

1~~ I I I I I Pr-~ Pr-~ Pr-~ Pr-~ • • T:l.1:1.•

1-=pl

Figure 15

Figure 16

D•ptl "--

~:A.rel N-.---1 lf'-.--
R __ _,_ Tr-.•:l.t:I.-• D•p•nd•no:I.••

IE=pl L••tl D•pt I D•ptl D•pj • "--- "-- Mar

~=~ I I I I D•ptl D•p1:: D•pt D•pt • • "-- Mar

Figure 17

122

DATA ENGINEERING

James R. Yoder
Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

Data Engineering can be defined as the application of com­
puting, science, mathematics, communications, and other
engineering disciplines to the transformation of data into
information. A Data Engineer is a member of a group devoted
to data engineering or is one who is trained in, or follows
as a profession, the practice of data engineering. This
paper describes the application of data engineering to the
development and operation of a large VAXcluster based product
validation data system. The system has many sources spread
over the country, hundreds of users, and several important
constraints. Data engineering is required to assure contin­
uity of data acquisition, transmission, storage, retrieval,
and analysis. A large volume of data must be reduced and
analyzed with user friendly, interactive tools that provide
broad capabilities in signal processing, statistics, and
graphics. The use of artificial intelligence (expert systems
and pattern recognition) will be a significant aid to
improving system utility.

INTRODUCTION

A substantial body of literature under the generic
heading of Data Engineering exists to define, from
an engineering point of view, the technology and
facilities required to manage information (1,2].
Much of the motivation for the relational database
model stems from problems presented by the manipula­
tion and analysis of scientific and engineering
data [3,4]. In contrast to an exposition of theory
or technique, this paper is intended to describe
some of the underlying professional staff require­
ments necessary for the construction, integration,
and implementation of large technical data systems.
The professional staff requirements for the develop­
ment of administrative databases are reasonably well
known. However, the development of technical data
systems requires academic backgrounds and experience
that are not typically available in administrative
database projects. Ultimately, this paper will
argue that the extended spectrum of background and
talent required to develop and integrate such data
systems can be enveloped into an embryonic disci­
pline called Data Engineering and that those who
practice Data Engineering should be called profes­
sional Data Engineers (although no "legal" certifi­
cation is implied). A paradox will result when we
find that no single academic track will provide an
adequate background for an effective career in Data
Engineering. The concepts will be illustrated by
an example: the design, development, and operation
of the Product Test Data (PTD) system in a VAX­
cluster environment at Sandia National Laboratories.

* Work supported by U. S. Department of Energy
under Contract DE-AC04-76DP00789.

Proceedings of the Digital Equipment Computer Users Society 123

A Note on Terminology
In general, we will use the term "data system" to
include the entire process of acquiring, storing,
and manipulating data. A data system might include
a "database" - a structured repository for the data.
A Database Management System (DBMS) is a program
(perhaps acquired from commercial sources) that
might be used to handle the database.

Administrative vs. Technical Data Systems
In order to develop the thesis of this paper, we
should draw an ad-hoc distinction between two
general classes of computer based facilities: admin­
istrative databases and technical data systems. Ad­
ministrative databases are those operated in support
of the management and administration of an organi­
zation. For this paper, we will define technical
data systems to be computer based information sys­
tems operated in support of scientific or engineer­
ing projects. Although most technical data systems
share similar requirements and constraints, we will,
by example, further restrict our domain to non­
graphic (i.e., non-CAD), large scale, analysis­
oriented engineering data systems (e.g., test data,
environmental stimuli, statistical quality control,
material characteristics).

The essential value of corporate databases is
clearly recognized by modern management. Informa­
tion is critical to the function of most industries
and, for a growing number, information is their sole
product. For the most part, the technology required
to develop and operate corporate databases (person­
nel, finance, library, etc.) is well-in-hand and the
supporting talent, although often in short supply,
can be clearly identified. On the other hand, tech­
nical databases require contributions from several

San Francisco, CA- 1986

disciplines that are not often associated with tra­
ditional database development or administrative
computing projects. The thesis of this paper is that
a new discipline, data engineering, is required to
supplement the effort of computer scientists, pro­
gramers, and hardware engineers to bring about the
successful development of data systems that support
scientific or engineering endeavors.

At the risk of over-simplification, one could state
that administrative databases require the acquisi­
tion, transmission, storage, and retrieval of source
data. The data are often amalgamated and restruc­
tured for analysis and reporting, but there is
rarely a requirement that data be transformed in
order to be understood. In contrast, it is very
often necessary in engineering data systems to apply
some kind of transformation so that data can have
meaning. Further, the product of administrative
data systems is typically a standard form, report,
or transaction (e.g. a paycheck) based upon well
understood conventional algorithms while the product
of an engineering data system is most often a judge­
ment based upon manipulation of data in a problem
driven, ad-hoc manner. In addition, the final pre­
sentation of results can require the application of
esoteric, narrowly understood mathematical transfor­
mations or computations.

We will explore these requirements and their effect
upon the selection and development of the staff
required to create and operate engineering data sys­
tems. Next, an example of such a system will be
given along with the staff and management considera­
tions. Finally, we will conclude that a newly
defined discipline, Data Engineering, is a necessary
and vital profession, essential to the successful
application of computers to the problems of science
and engineering.

ENGINEERING DATA SYSTEM REQUIREMENTS

Before considering the professional requirements for
the development and operation of engineering data
systems, lets examine the nature of these systems in
a little more detail.

Data Determination
Although scientific data systems may be ad-hoc in
nature, engineering systems tend to be archival,
corporate resources. This requirement leads to the
use of the same data by several users and to use of
the same data for many purposes. Often the indi­
vidual responsible for generating the data is not
the same person that needs the information. In
many cases, the use of the data may be somewhat
speculative and in the distant future. It is neces­
sary, in these instances, to assure that all poten­
tial needs for information are considered as the
data system for a given project is formulated. In
the event that the cost of data acquisition is high
(e.g., data from one-shot destructive tests), or
when the data have a long term value, this a-priori
consideration, which we might term "data determina­
tion", should be the product of multiple judgements
under the guidance of an experienced data czar.

Data Acquisition Systems
The requirements for engineering data systems often
include the acquisition of data from measuring sys­
tems whose construction and operation, by itself, is
somewhat complicated. The data acquisition system
might be operated in a severe, hostile environment

124

(e.g., flight test, reactors). The difficulty of
acquiring any data at all in these situations may be
compounded by the sometimes subtle corruption of the
data by a data acquisition system or by the trans­
mission channel. A well known first step in any
engineering data analysis problem is the reduction
or elimination of "noise" and/or the treatment of
missing values [2, pp. 58-66). Although it is some­
times possible to reduce the noise at the data
source, it is the responsibility of the overall data
system designer to minimize the corruption that may
occur at any point in the information delivery path.

DATA DETERMINATION

Data Communications

0...
Englnffr Teat Equipment

EnglnMr {1.C.)

In nearly every case, data must be transported from
the data acquisition facility to the computer used
to manage the database. Often, the transmission
must take place over long distances and between
non-homogeneous computers. The data transmission is
often asynchronous and bursty, i.e. one doesn't know
when to expect the data nor how much he will receive.
Large scale engineering data systems must be able
to handle many different kinds of traffic in modes
that may range from real-time to hand-entered keyed
transactions. The resulting need is for the con­
sideration of the many problems of computer-to-com­
puter data communications, protocols, and, not
infrequently, the potential variety of data formats.
It is here that the problem of data transformation
is first encountered. For example, one may record
a signal via telemetry using pulse code modulation
and need to transform the data into ASCII files.
Perhaps one records a long time sampled waveform via
real-time digitizing but needs to apply a sampling
frequency reduction to fit the computer input buff er
or the analysis program.

The Engineering Database
Once captured, the data must be stored for eventual

use. As with any database problem, the database
organization should be determined by the expected
retrieval and analysis requirements. It is not
always possible, however, to provide even a basic
characterization of the ultimate use of engineering
data. For example, a digital waveform would cer­
tainly be subject to simple time or frequency domain
displays. However, one often needs to derive, from
a set of such waveforms, a vector of random vari­
ables for statistical analysis. These considera­
tions give rise to orthogonal database organization
requirements - a file structure for the original
waveforms and, perhaps, a relational database struc­
ture for the scalar variables.

In order to achieve consistent analysis of engineer­
ing objects, data in engineering applications must
be manipulated in an integrated manner [5]. However,
the attributes described by different tests of an
object, by tests of different objects, or as derived
from data transformations, may not be in any way
homogeneous. Yet, if one is to analyze the data in
an integrated system, the organization of the data­
base must result in a coherent technique for retriev­
al. This and similar problems in engineering data­
base organizations make it difficult to acquire
commercial software (i.e. DMBS) for the archival
storage of engineering data [6].

Engineering Data Analysis
Engineering data may be displayed in simple reports,
plotted in many forms, input to mathematical compu­
tations, or used to drive simulations. Very often,
the end-user, typically a practicing hardware engi­
neer or analyst, is not a frequent computer user
nor especially interested in the underlying mathe­
matical or computational methodology used for the
required analysis. The analytical tools provided
for the user must be well defined, robust, friendly,
and convenient. In order for a computer based
engineering information system to be effective, it
must be easier to use than to avoid. On the other
hand, the tools should not provide to an untutored
user a facility with which to easily hang himself.
For example, a non-statistically trained engineer
can easily make incorrect decisions based upon the
misuse of certain inferential statistics or by
improperly ignoring the underlying assumptions
governing use of the tools.

NEED FOR DATA ENGINEERS

As we list the characteristics of a large scale
engineering data system, we see that the development
of such a system requires talent not usually asso­
ciated with typical database development projects.
Ideally, one would have a team composed of computer
scientists, database administrators, electrical
engineers, programers, mathematicians, statisti­
cians, and other analysts. Should the project be
sufficiently large (or the company sufficiently rich
with people), that is precisely the recommended
formula. However, most projects don't require the
full time, life long contributions from each of
these disciplines and, given the essential need for
an integrated system, we see the need for a prof es­
sional designer to put it all together. The solu­
tion is apparent: develop individuals with a sub­
stantial grasp of all of the required technology and
call them Data Engineers. The task is made much
easier if one were to start with people trained in
an engineering discipline, both because the engi­
neering point of view is important and because it

125

is much easier to teach an engineer some of the con­
cepts of computer science than to teach a computer
scientist engineering. Of course, an individual or
team of Data Engineers should be supported by dedi­
cated professionals as required by the needs of the
project.

Once the system is established, there is a need for
similar professionals to keep the system going.
Since engineering data systems are linked to the
"real" world and, given that the real world is
always changing, such systems are never really
"finished". Frequently, the required changes are
fundamental.

EXAMPLE: PRODUCT TEST DATA (PTD) SYSTEM

Sandia National Laboratories has developed and
oeprates a large scale engineering data system
called the Product Test Data system. The PTD
system is operated in support of the design, devel­
opment, and quality assurance engineers associated
with Sandia's role in the development and stockpile
surveillance of the ordinance components of nuclear
weapons. Nuclear weapons are complex systems with
very high reliability requirements. They must
remain safe and operate under extreme environmental
conditions. The PTD system provides both a working
tool for development engineers and weapon system
analysts and a database intended to characterize
the functional performance and safety of stockpiled
weapons. As such, it is typical of the engineering
data systems described above.

Computing Environment
The system is composed of 6 Gigabytes of test data
related to over 1650 different types of components.
Test data are obtained during all phases of compo­
nent development, production, and stockpile test­
ing. The sources of data range from local labora­
tory tests to flight tests conducted at remote
ranges with a substantial volume of data obtained
from production at sites located throughout the
country. Data types include scalar variables data,
digital waveforms, attributes, and associated
descriptive information. The data are stored in
a single database located on a VAXcluster con­
sisting of one VAX 11/780 and two VAX 8600's oper­
ated under VMS. End-user access to the system is
via a single, interactive, menu-driven program,
which is itself a system of over 100 functional
routines.

The organization of the database presents a parti­
cular problem due to the variety of record types
and, especially, to the fact that no two component
types share the same data descriptions. The data
for each component must, therefore, be defined
independently of any other. Since digital wave­
forms are retrieved and analyzed differently from
scalar variables, each data type for any component
is stored separately from the other.

Data Determination
Data Determination, as described above, is con­
ducted on an individual component or system basis.
The several downstream uses of the data from any
test program are considered during the design of
the component data system. It would be undesirable,
for example, to ignore the need for baseline char­
acteristics related to stockpile surveillance while
measuring component performance during a production
acceptance test. Additionally, since data are

invisible, adequate external documentation of the
database contents must be developed for each compo­
nent or weapon system along with documentation that
defines the entire data acquisition, transmission,
and storage path.

Communications Diagram for the PTD VAXduster

Ana.lysis

distributed
user terminals

Data analysis can take on many forms and is driven
both by the type of data to be analyzed and by the
problem at hand. For the most part, the end-users
of the system are graduate engineers who have little
or no computer training or experience. It is neces­
sary to provide a data retrieval, sub-setting, noise­
reduction, and analysis system in a single, user
friendly package. As noted above, the end-user must
have a data utilization tool that is robust,
friendly, and convenient. A complete, menu driven,
interactive system, called MIRACLE, has been devel­
oped for the PTD system and is in use by engineers
that are, at least somewhat, computer literate. The
ultimate goal, to be achieved in the next couple of
years, is to improve the user interface so that the
system can be used directly by completely untutored
and, perhaps, infrequent users. As an aide to the
use of statistics by such engineers, the system will
incorporate a Statistical Expert System. The expert
system will provide the user with a strategy for
data analysis and will automatically check the data
and procedure for conformance to an appropriate set
of assumptions. Work is also underway on the devel­
opment of a waveform pattern recognition facility
so that large numbers of digital waveforms can be
selected on the basis of user-described shape
features.

To the extent possible, commercial software has been
incorporated into the design of the analysis system.
To date, a relational database system for ad-hoc data
manipulation, two statistical analysis packages, a
preliminary statistical data analysis advisor (expert
system), and a waveform analysis system have been
acquired for PTD analysis.

The PTD Data Engineer
Essentially, individual data systems are created for
each engineering object represented in the PTD sys­
tem. The individual data systems are then folded
into the overall PTD system. The entire process,
from data acquisition to analysis, is conducted
under the control of a PTD Data Engineer assigned to

126

the individual (or several) data systems. The Data
Engineer is, typically, a graduate engineer, scien­
tist, or senior technician with training or exper­
ience in the design or development of computer
based data systems. The Data Engineer is respon­
sible for the design and specification of the indi­
vidual data systems and for their integration into
the PTD database. A Data Engineer has a peer rela­
tionship with engineers in design, development, or
quality assurance and these groups look to the Data
Engineer for solutions to ad-hoc data analysis
problems as well as for the construction of data
systems.

The PTD Data Engineer must, then, be first an engi­
neer as well as a part-time programmer, database
administrator, data communications expert, and
analyst or statistician. Clearly, Data Engineers
are not born nor are they graduated. They develop
their capabilities as they pursue their careers.
Most find the experience to be unique, challenging,
and rewarding.

CONCLUSION

The design, development, and operation of engineer­
ing data systems requires professional contribu­
tions from those not typically associated with
administrative database development projects. Often,
an engineering viewpoint is necessary in order to
define the data systems required for engineering
decisions. These conditions result in the require­
ment for a professional Data Engineer who combines
the discipline of the traditional hardware engineer
with the expertise of certain software professions.

REFERENCES

1. Ramamoorthy, C.V., Proceedings of IEEE Interna­
tional Conference on Data Engineering, IEEE Com­
puter Society, Los Angeles, CA 1984, Forward,
p. iii.

2. Proceedings of the Second IEEE International
Conference on Data Engineering, IEEE Computer
Soc., Los Angeles, CA, 1986.

3. Codd, E.F., "A Relational Model of Data for
Large Shared Data Banks," Co-m. ACM, Vol 13,
No. 6, June 1970, pp. 377-397.

4. Jones, S.E. and Ries, D.R., "A Relational Data
Base Management System for Scientific Data,"
Proc. Sixth International CODATA Conf., 1978,
Santa Flavia, Sicily, Italy. (Lawrence Liver­
more Laboratory Preprint UCLR-80769)

5. Udagawa, Y. and Mizoguchi, "An Advanced Data­
Base System ADAM --- Towards Integrated Manage­
ment of Engineering Data," in ref. [2], pp.
3-11.

6. Benkovitz, C.M. and Tichler, J.L., "Scientific
Data Bases on a VAX 11/780 Running VMS," Proc.
of the Digital Equipment Computer Users Soc.
(DECUS), Fall 1980, DECUS U.S. Chapter, Marlboro,
MA, pp. 55-63.

DATATRIEVE .. SIG

Advanced DATATRIEVE Record Definitions

B. Z. Lederman
ITT World Communications

New York, NY

Abstract

This session is intended to illustrate some of the more advanced features of
DATATRIEVErecord definitions. Lower case text indicates commands typed in
by a user, upper case is printed by DTR or is material stored in the CDD. Please
keep in mind that most examples a.re "stripped down", showing only the fields
necessary to illustrate the principles being demonstrated: "real" applications
would require additional fields, and in most cases more descriptive field names.
Most of these examples use advanced features found in VAX-DTR and DTR-20,
and unfortunately will not work in DTR-11 (or PRO-DTR).

Reading a file whose records differ in length and field
layout is a common problem. In the following sample file,
there are records whose total length is not given directly
by a field in the record.

01 10 bytea.
02 16 byte record
01 10 bytH.
03 Thi• i• 20 byte• ...
02 15 byte record
04 Thi• i• 25 byte• long ...
01 10 bytea.
03 Thi• i• 20 byte• ...
02 16 byte record
01 10 bytes.
04 Thi• i• 26 byte• long ...
01 10 bytea.

You can just define a text field the length of the
longest record, but you get "Record too Short..." error
messages, and the short records are padded with blanks
or zeroes. Also, it would be hard to look at the individ­
ual data items within each record. A first try at 11. better
record definition could be:

DTR> show var-rec

RECORD VAR_REC
01 VAR_REC.

10 TYPE PIC 99 EDIT_STRING Z9.
10 REC_LEN COMPUTED BY TYPE

VIA VAR_LEN_TAB.
10 TOP.

16 VARIABLE OCCURS 0 TO 30 TINES
DEPENDING OH REC_LEN.

20 VTEXT PIC X.
10 A REDEFINES TOP.

Proceedings of the Digital Equipment Computer Users Society 129

20 FILLER PIC X.
20 HBRA PIC 99 EDIT_STRING Z9.
20 FILLER PIC X.
20 TXTA PIC X(6).

10 B REDEFINES TOP.
20 FILLER PIC X.
20 NBRB PIC 99 EDIT_STRING Z9.
20 FILLER PIC X.
20 TXTB PIC X(11).

10 C REDEFINES TOP.
20 FILLER PIC X.
20 TXTCl PIC X(7).
20 FILLER PIC X.
20 NBRC PIC 99 EDIT_STRING Z9.
20 FILLER PIC X.
20 TXTC2 PIC X(B).

10 D REDEFINES TOP.
20 FILLER PIC X.
20 TXTDl PIC X(7).
20 FILLER PIC X.
20 NBRD PIC 99 EDIT_STRING Z9.
20 FILLER PIC X.
20 TXTD2 PIC X(13).

This depends upon a table that converts the record
type to 11. record length. This happens to be in a domain
table, in this example, but could also be in 11. dictionary
table.

DTR> show var-tab-rec

RECORD VAR_TAB_REC
01 VAR_TAB_REC.

10 TYPE PIC 99 EDIT_STRING Z9.
10 LENGTH PIC 99 EDIT_STRING Z9.

San Francisca, CA - 1986

DTR> show var-len-tab

TABLE VAR_LEH_TAB FRON VAR_TAB_DON
USING TYPE : LENGTH
END_ TABLE

DTR> print var-tab-dom

TYPE LENGTH

1
2
3
4

10
16
20
26

H you print this domain, you get the first field by
default.

DTR> print var

REC
TYPE LEH VTEXT

1 10

2 16

1 10

1
0

b

'1
t

•
8

1
6

b

'1
t

•
r
e
c
0

r
d

1
0

b

'1
t

•
•

130

3 20
T
h
i
8

i

•
2
0

b

'1
t

e

•

etc. This is very useful in cases where you want to
get ea.ch character in the record separately, such a.s for
"parsing" data., a.nd you get the length of the text without
having to add an FN$STRJ,ENGTH function to DTR.
However, if you want all of the data in a. single field:

DTR> for var print a

NBRA TXTA

10 bytes.
16 byte r
10 bytes.

Illegal ASCII numeric 11 Th11 •

0 8 is 2
16 byte r

Illegal ASCII numeric 11 Th11 •

0 • is 2
10 bytes.

Illegal ASCII numeric 11 Th11 •

0 8 is 2
16 byte r
10 bytes.

Illegal ASCII numeric 11 Th11 •

0 a ia 2
10 bytes.

and the same happens for all other REDEFINEd
fields, because the numeric fields don't "line up". One
alternative is to use a CHOICE statement in a procedure
to get the proper field to print out. (You can also use
IF-THEN-ELSE statements to accomplish the same re­
sult, and that approach will also work with DTR-11, but
CHOICE is more compact.)

DTR> show var-print

PROCEDURE VAR_PRIHT

FOR VAR BEGIN
PRINT TYPE, CHOICE OF

TYPE = 1 THEN A
TYPE = 2 THEN B
TYPE = 3 THEN C
TYPE = 4 THEN D
ELSE II "

END_CHOICE
END
END_PROCEDURE

DTR> :var-print

TYPE

1 10 b7tes.
2 15 b7te record
1 10 b7tes.
3 Thia ia 20 b7tea ...
2 15 b7te record
4 Thia ia 25 b7tea long ...
1 10 b7tes.
3 Thia ia 20 b7tea ...
2 15 b7te record
1 10 b7tes.
4 Thia ia 25 b7tea long ...
1 10 b7tes.

This suits many applications, but is sometimes incon­
venient. An alternative is a record definition (actually a
VIEW) that will print out the proper fields by default.
(See figure 1.)

DOMAIN VARI OF VAR USING
01 VARIX OCCURS FOR VAR.

10 TYPE FRON VAR.
10 REC_LEN FRON VAR.

02 AV OCCURS FOR VAR WITH TYPE= 1.
10 NBRA FRON VAR.
10 TXTA FRON VAR.

02 BV OCCURS FOR VAR WITH TYPE = 2.
10 NBRB FRON VAR.
10 TXTB FRON VAR.

02 CV OCCURS FOR VAR WITH TYPE = 3.
10 TXTC1 FRON VAR.
10 NBRC FRON VAR.
10 TXTC2 FROM VAR.

02 DV OCCURS FOR VAR WITH TYPE = 4.
10 TXTD1 FROM VAR.
10 NBRD FRON VAR.
10 TXTD2 FROM VAR.

This has the slight drawback that, since there is noth­
ing which identifies unique records in this example, all
records of a given type are obtained for each record in the
view. In cases where there was an additional field with
a unique key, this would not be a problem: in this case,
however, some additional work can solve the problem. (See
figure 2.)

131

DTR> show print-first-vari

PROCEDURE PRINT_FIRST_VARI
DECLARE H PIC Q.
N = 1
FOR VARI BEGIN

WHILE H = 1 BEGIN
H = H + 1
PRINT

END
END
END_PROCEDURE

This is one way to one complete set of records. An­
other method is:

DTR> find vari

(12 records found]

The following is not quite what we want.

DTR> for current print av

NBRA TXTA

10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tes.
10 b7tea.
10 b7tes.
10 bytes.
10 b7tea.
10 bytes.

Execution t•rminated by operator.

but you can do this:

DTR> select f irat

now, you can do some interesting things, like separat­
ing the different groups of similar records.

DTR> print av

DTR> print vari

REC
TYPE LEN NBRA TXTA NBRB TXTB TXTCl

1 10 10 bytes. 15 byte record This is
10 bytes. 15 byte record This is
10 bytes. 15 byte record
10 bytes.
10 bytes.

2 15 10 bytes. 15 byte record This is
10 bytes. 15 byte record This is
10 bytes. 15 byte record
10 bytes.
10 bytes.

1 10 10 bytes. 15 byte record This is
10 bytes. 15 byte record This is
10 bytes. 15 byte record
10 bytes.
10 bytes.

Execution terminated by operator.

Figure 1

DTR> :print-first-vari

REC
TYPE LEN

1 10
NBRA

10
10
10
10
10

TXTA
bytes.
bytes.
bytes.
bytes.
bytes.

NBRB
15
15
15

TXTB TXTCl
byte record This is
byte record This is
byte record

Figure 2

132

NBRC
20
20

20
20

20
20

NBRC
20
20

TXTC2 TXTDl
bytes ... This is
bytes ..• This is

bytes ... This is
bytes ... This is

bytes ... This is
bytes ... This is

TXTC2 TXTDl
bytes ... This is
bytes ... This is

NBRD
25
25

25
25

25
25

NBRD
25
25

TJ!
bytes
bytes

bytes
bytes

bytes
bytes

TJ!
bytes
bytes

NBRA TXT.A.

10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.

DTR> print bv

NBRB TXTB

16 byte record
16 byte record
16 byte record

DTR> print cv

TXTC1 NBRC TXTC2

Thia is 20 byte• .. .
Thi• i• 20 byte• .. .

TXTD1 IBRD TXTD2

Thia i• 26 bytes long .. .
Thi• is 26 bytes long .. .

Normally I would discourage the use of FIND and SE­
LECT, but in this case it can be used to sort and separate
all records of a given type.

Still, this is not quite what we were looking for. If
you can put a CHOICE statement into a procedure, why
not put it into the record definition.

DTR> show cvar_rec

RECORD CVAR_REC USING
01 CVAR_REC.

10 TYPE PIC gg EDIT_STRING zg.
10 REC_LEN COMPUTED BY TYPE

VIA VAR_LEN_TAB.
10 FILLER PIC X.
10 TOP.

16 VARIABLE OCCURS 0 TO 30 TINES
DEPENDING ON REC_LEN.

20 FILLER PIC X.
10 A REDEFINES TOP.

20 ANBR PIC 99.
20 FILLER PIC X.
20 ATXT PIC X(6).

10 B REDEFINES TOP.
20 BNBR PIC 99.
20 FILLER PIC X.
20 BTXT PIC X(11) .

10 C REDEFINES TOP.
20 CTXT1 PIC X(8).
20 CNBR PIC 99.

20 CTXT2 PIC X(9).
10 D REDEFINES TOP.

20 DTXT1 PIC X(8).
20 DNBR PIC 99.
20 DTXT2 PIC X(14).

10 TEXT COMPUTED BY CHOICE OF
TYPE = 1 THEN ATXT
TYPE = 2 THEN BTXT
TYPE = 3 THEN CTXT1 I I I CTXT2
TYPE = 4 THEN DTXT1 I I I DTXT2
ELSE 1111

END_CHOICE.
10 NUMBER EDIT_STRING Z9

COMPUTED BY CHOICE OF
TYPE = 1 THEN ANBR
TYPE = 2 THEN BNBR
TYPE = 3 THEN CNBR
TYPE = 4 THEN DNBR
ELSE 0
END_CHOICE.

DTR> print cvar

REC
TYPE LEN TEXT

1 10 bytes.
2 16 byte record
1 10 bytes.
3 20 Thia is bytes ...
2 16 byte record
4 26 Thia is bytes long ...
1 10 bytes.
3 20 Thia is bytes ...
2 16 byte record
1 10 bytes.
4 25 Thia is bytes long ...
1 10 bytes.

NUMBER

10
16
10
20
16
25
10
20
15
10
25
10

Just to prove that NUMBER is really numeric

DTR> for cvar print fn$log10(number)

1.000
1.176
1.000
1.301
1.176
1.398
1.000
1.301
1.176
1.000
1.398
1.000

Now we finally have the data in the form we want.
Something which is not visible when you look at this print­
out on paper is that the field TEXT always prints out the

133

length of the actual field: it does not pad short records
with spaces or zeroes which is what would happen if you
just defined one field of 25 bytes (you also don't get the
"Record too Short" error messages).

There are a number of applications where data val­
idation in the record definition is desired. In this exam­
ple, the employee number contains a sort of "check sum",
where the last two digits are the sum of the first two. This
sort of thing is sometimes done to verify that the data
does not contains errors (I'd rather depend on the operat­
ing system facilities, but some people would prefer this).
This particular check sum is a bit crude, and done only to
demonstrate the methods which may be used. IT you were
going to do this a lot, it would be worthwhile to define a
new FN$- function to do the computation, especially if
the check method was more complicated such as some sort
of "rule of 11", but not everyone wants to add functions to
DTR. The interesting part is that you can define a VALID
IF clause to work on parts of the same field it validates,
and that the fields used can be defined after the VALID
IF clause.

DTR>show empno-rec

RECORD EMPNO_REC
01 EMPNO_REC.

10 EMPLOYEE_HUMBER PIC 00000
VALID IF CK = (H1 + N2 + N3) .

10 NBRS REDEFINES EMPLOYEE_NUMBER.
20 11 PIC 0.
20 H2 PIC 9.
20 H3 PIC 9.
20 CK PIC 09.

DTR> print empno

EMPLOYEE
HUMBER

12306
66617
98724
11002
00101
32308

Something that users don't always realize is that 11.
COMPUTED BY field can be anywhere in the record def­
inition, and does not have to be computed from fields that
come "ahead" of it in the definition. DTR will read and
parse the entire record definition to resolve all field names
before doing anything with the record: thus, 11. field can,
in some cases, even be computed by itself.

With this definition, you can prevent invalid numbers
from being stored.

DTR> store empno

134

Enter EMPLOYEE_NUMBER: 32301

Validation error for field EMPLOYEE_NUMBER.
Re-enter EMPLOYEE_NUMBER: 32308

You can also find out if all the numbers currently
in the domain are still valid (something which a normal
VALID IF won't do):

DTR> for empno print ck, (n1 + n2 + n3)

CK

06 e
17 17
24 24
02 2
01 1
08 8
08 8

Now look at what happens if 11.n invalid number is
present in the domain.

DTR> print empno

EMPLOYEE
NUMBER

12306
66617
08724
11002
00101
32301 [this number is invalid]

DTR> print empno with ck ne (n1 + n2 + n3)

EMPLOYEE
NUMBER

32301

We can use DTR to go in and fix any checksums.
(I would advise looking 11.t the data first to be certain it
really is valid, unless you want to do something like this to
add checksums to data that was stored previously without
checksums.)

DTR> ready empno modify
DTR> for empno with

begin
CON> modify empno
CON> end

DTR> print empno

EMPLOYEE
NUMBER

ck ne

using

(n1 + n2 + n3)

ck=n1+n2+n3

12306
65617
08724
11002
00101
32308

While thinking up stuff for this presentation, I came
up with the following example which, quite frankly, I
didn't think would work.

DTR> show sci_rec

RECORD SCI_REC
01 SCI_REC.

10 SCI_NOT USAGE REAL EDIT_STRING 00.00.
10 112 COMPUTED BY *."N2 11 •

Depending upon how you access the domain, you can
be prompted for N2 once per record (might be used to
make the system pause during loops), once per domain, or
not at all.

DTR> for sci print sci_not

SCI_ROT

00.01
00.88
01.20
00.80
23.40

DTR> print aci
Enter R2: 30

SCI_ROT R2

00.01 30
00.88 30
01.20 30
00.80 30
23.40 30

DTR> for aci print aci_rec

SCI
ROT R2

Enter 12: 30

00.01 30
Enter 112: 20

00.88 20
Enter 12: 10

01.20 10
Enter 112: 1

135

09.80 1
Enter N2: 0

23.40 0

Having done this, I'm not at all sure what I would
use it for, but I'm sure someone will think of something
someday. Knowledge never goes to waste.

Some COMPUTED BY fields are more useful than
others. For example, if several departments share 11. data
base and you want to make sure that each department
enters the correct sequence of numbers (this example 11.S­

sumes 11. valid range of numbers for each department, just
to make it more difficult):

DTR> show po_rec

RECORD PO_REC
01 PO_REC.

10 DEPT PIC XXX.
10 PO_RUMBER PIC 00000 VALID

IF 1 = CHOICE OF
(DEPT = "AAA" ARD PO_CHECK
BETWEEN 01 ARD 20) THEN 1;

(DEPT = 11BBB" ARD PO_CHECX:
BETWEEN 21 AND 40) THEN 1;

(DEPT = 11 CCC 11 AND PO_CHECK
BETWEEN 41 ARD 60) THEN 1;

ELSE 0
END_CHOICE.

10 PO_CHECK REDEFINES PO_NUMBER.
20 DEPT_NO PIC 00.

DTR> print po

PO
DEPT HUMBER

AAA 01001
BBB 21001

DTR> atore po
Enter DEPT: AAA
Enter PO_NUMBER: 01002
DTR> •tore po
Enter DEPT: BBB
Enter PO_RUMBER: 01003

Validation error for field PO_NUMBER.
Re-enter PO_RUMBER: 21002

This isn't bad, but it could be better. Why store the
department number 11.nd verify it, when you could change
the record definition and force it to always be correct?
(This time I'm assuming one prefix per department.)

DTR> •how po-rec

RECORD PO_REC
01 PO_REC.

10 DEPT PIC XXX VALID
IF DEPT = "AAA", "BBB 11 , "CCC 11 •

10 HIDEIT.
20 FILLER PIC 999.

10 REAL_STUFF REDEFINES HIDEIT.
20 DEPT_SEQ PIC 999.

10 PO_lfUMBER PIC 99999 COMPUTED
BY CHOICE OF

DEPT = "AAA" THEN DEPT_SEQ + 01000
DEPT = "BBB" THEN DEPT_SEQ + 02000
DEPT = "CCC" THEN DEPT_SEQ + 03000
ELSE "00000"

END_CHOICE.

We can also force the sequence number to be correct.

DTR> ahow atore-po

PROCEDURE STORE_PO
DECLARE IUXSEQ PIC 999.
DECLARE TNPDEP PIC XXX.
TNPDEP = FN$UPCASE(•."Department")
llAXSEQ = IUX(DEPT_SEQ) OF PO

WITH DEPT = TJIPDEP
STORE PO USING BEGIN

DEPT = TNPDEP
DEPT_SEQ = IUXSEQ + 1

EID
EllD_PROCEDURE

DTR> :atore-po
Enter Department: bbb
DTR> print po

PO
DEPT BUJIBEI

BBB 02001
BBB 02002
Ail 01001
BBB 02003

DTR> :atore-po
Enter Department:
DTR> print po

PO
DEPT lfUMBER

BBB 02001
BBB 02002
Ail 01001
BBB 02003
BBB 02004

bbb

H you try to store a department which has no records
yet, you get an error message, but you also get the correct
result anyway

136

DTR> :store-po
Enter Department: ccc

Can't take MAX, MIN, or AVERAGE
of zero object•.

DTR> print po

PO
DEPT NUMBER

BBB 02001
BBB 02002
AAA 01001
BBB 02003
BBB 02004
CCC 03001

Something which I have run into, and which others
have asked for at past Q and A sessions, is how to get
non-VMS date strings into the VMS/DTR date type, es­
pecially when you a.re not able to restructure the data.
The following very non-standard date and time is the type
of data I've actually encountered.

$ type date.seq

86:01:02 1003A
86:03:14 120P
86: 09: 29 1100P
86: 11: 11 332A

DTR> show date-rec

RECORD DATE_REC
01 DATE_REC.

10 INPUT.
20 I_YEAR PIC 99.
20 FILLER PIC X.
20 !_MONTH PIC XX.
20 FILLER PIC X.
20 I_DAY PIC 99.
20 FILLER PIC X.
20 T_HOUR PIC XX.
20 !_HOUR PIC 99

COMPUTED BY T_HOUR.
20 I_MINUIT PIC 99.
20 I_AP PIC X.

10 O_DATE COMPUTED BY
FN$DATE(I_DAY I "-"
MONTH_TABLE I 11 -19"

I_MONTH VIA
I_YEAR).

The date pa.rt is easy: you just need a table to turn the
numeric month into an upper case alphanumeric month.

DTR> ahow month_table

TABLE MONTH_TABLE
01 : "JAN",

0:2 "FEB",
03 "MAR",
04 "APR",
06 "KAY",
06 "JUlf",
07 "JUL",
08 "AUG",
09 "SEP",
10 "OCT",
11 "NOV",
1:2 "DEC"
END_ TABLE

DTR> print datei

I I I T I I I 0
YR MNTH DAY HOUR HOUR MINIT AP DATE

86 01 02 10 10 03 A 2-Jan-1986
86 03 14 1 01 20 p 14-Nar-1986
86 00 20 11 11 00 p 29-Sep-1986
86 11 11 3 03 32 A 11-lfov-1986

Not too bad: but when you have to add the time
things get a little bit more complicated. I've shown only
the hour and minuit here, but you can add seconds and
fractions of a second as well. Note that I'm also using
FILLER to hide the input fields, so by default only the
wanted fields print.

DTR> show date-rec

RECORD DATE_REC
01 DATE_REC.

10 HIDEIT.
20 FILLER PIC X(14).

10 INPUT REDEFINES HIDEIT.
20 I_YEAR PIC 90.
20 FILLER PIC X.
20 I_MONTH PIC XX.
20 FILLER PIC X.
20 I_DAY PIC 99.
20 FILLER PIC X.
20 T_HOUR PIC XX.
20 I_HOUR PIC 00

COMPUTED BY T_HOUR.
20 I_MINUIT PIC 90.
20 I_AP PIC X.
20 A_HOUR COMPUTED BY CHOICE OF

(I_AP = "A" AND T_HOUR = 12)
THEN 00

(I_AP = "P" AND T_HOUR < 12)
THEN T_HOUR + 12

ELSE T_HOUR
END_CHOICE.

20 lL TINE COMPUTED BY
((A_HOUR • 60) + I_MINUIT) •
600000000.

137

10 O_DATE COMPUTED BY
FN$DATE(I_DAY I "-" I I_NONTH VIA
NONTH_TABLE I 11 -10" I
I_YEAR I I I FN$TINE(B_TINE)).

The hard part is converting the AM/PM time to a 24
hour time, then getting it to print in the proper format.
There are a number of ways it might be done depending
upon the exact input format: in this case I convert the
hour and minute to "clunks", then use FN$TIME to put
it back to characters long enough to use FN$DATE to
put the date and time back to clunks. This might seem
a bit "clunky", but it's actually the easiest way to get it
to work every time. The alternative is to make all of the
fields "print" in the FN$DATE function the way the day
and year do. (It is sometimes also possible to do this sort
of thing in DTR-11: though there are no FN$- functions,
DTR-11 will handle dates with embedded times in clunks.)

DTR> print datei

O_DATE

:2-Jan-1986
14-Nar-1986
20-Sep-1986
11-Nov-1986
7-Aug-1986
4-Jul-1976

DTR> for datei print i_hour,
i_minuit, i_ap, fn$time(o_date)

I I I
HOUR MINUIT AP FN$TINE

10 03 A 10:03:00.00
01 20 p 13:20:00.00
11 00 p 23:00:00.00
03 32 A 03:32:00.00
12 01 A 00:01:00.00
12 68 p 12:68:00.00

The net result is that O_DATE now contains the com-
plete date and time in VMS format, and all of the normal
DTR boolean comparisons will work.

Managing All-In-1 with Datatrieve

B. Z. Lederman
ITT World Communications

New York, NY

There are b11.Sically two types of uses for Datatrieve in
managing All-In-1: the first one I will present is manipu­
lating the All-In-1 environment. The following is a record
definition for PROFILE.DAT, the file All-In-1 uses to the
user profile information.

NOTE: The Datatrieve structures in this paper, with
additional comments and documentation, and other struc­
tures relevant to All-In-1, are available from the DECUS
library in the Datatrieve Library collection (also submit­
ted to the VAX and RSX SIG tapes), and the older COR­
PHONE submission.

REDEFINE RECORD AI1_PROFILE_REC USING
01 AI1_PROFILE_REC.

10 USER PIC X(30).
10 USER_INFO.

20 VMSNAJI PIC X(12).
20 FULNAM PIC X(32).
20 TITLE PIC X(30).
20 DEPART PIC X(24).
20 STATUS PIC X(68)

EDIT_STRING T(24).
20 PASWRD PIC X(31).
20 PHONE PIC X(20).

10 RESERVED PIC X(15).
10 PRIV.

20 DCL PIC X.
20 SUP PIC X.
20 ERR PIC X.
20 CND PIC X.
20 SRC PIC X.
20 CPHD PIC X.
20 LOG PIC X.
20 MULTI_NODE PIC X.
20 RSVD_FOR_TCS PIC X.

10 ADDRESS.
20 ADDR1 PIC X(30).
20 ADDR2 PIC X(30).
20 ADDR3 PIC X(30).
20 ADDR4 PIC X(30).
20 ZIPCOD PIC X(15).

10 NOTIFY.
20 NOTICE PIC X.
20 BATCH_NOT PIC X.
20 PRINT_NOT PIC X.

Proceedings of the Digital Equipment Computer Users Society 139

20 MAIL_READ_REC PIC X.
20 TICKLER PIC X.
20 ACTITEN PIC X.

10 DIRECTORY PIC X(68)
EDIT_STRING T(32).

10 FORMLIB PIC X(68)
EDIT_STRING T(24).

10 INIT_FORM PIC X(30).
10 EDITOR PIC X(10).
10 PRINTER PIC X(15).
10 NODE PIC X(13).
10 PRINT_PORT PIC X.
10 TERM_MODE PIC X.
10 MAIL.

20 NAIL_FORWARD PIC X(66)
EDIT_STRING T(24).

20 MAIL_REPLY PIC X(31).
20 NAIL_MENU PIC X(10).
20 NAIDES PIC X(10).

10 CALENDAR.
20 CALTINEING PIC X(5).
20 SETUSR PIC X.
20 YESDAYS PIC X.
20 STARTD PIC X.
20 ENDO PIC X.
20 STARTH PIC X(7).
20 ENDH PIC X(7).
20 MEALS PIC X(7).
20 NEALE PIC X(7).
20 CALDAY PIC X.

10 UFLAG.
20 UFLAG1 PIC X.
20 UFLAG2 PIC X.
20 UFLAG3 PIC X.
20 UFLAG4 PIC X.
20 UFLAG5 PIC X.
20 UFLAG6 PIC X.
20 UFLAG7 PIC X.
20 UFLAG8 PIC X.
20 UFLAGO PIC X.
20 UFLAG10 PIC X.
20 CLASS PIC X(10).

10 LANGUAGE PIC X(20).
10 END PIC X(138) EDIT_STRING T(24).

San Francisco, CA - 1986

H you compare this definition with the screens All­
ln-1 gives you for user profile addition, modification, etc.,
you will find the fields match (more or less). Since All-ln-1
gives you these fields, why would you use Datatrieve? The
answer is that All-In-1 management is oriented to process­
ing one user at a time. If you want to find out, for exam­
ple, which users have DCL access enabled, you have to go
through several menus and screens to get an index of users,
write down their names, then examine them all one at a
time to find the ones with DCL. With Datatrieve, you can
ready the PROFILE domain and say 'PRINT PROFILE
WITH DCL = 9 Y"' to find all such users. Similarly, oper­
ations on large numbers of users such as turning DCL or
Logging on or off' for everyone, or finding the users whose
accounts point to certain disks and/or re-assigning them
to other disks, are easier in Datatrieve than in All-In-1 as
presently supplied. You can also use Datatrieve to pro­
duce nice formatted reports of all users or groups of users,
and you can select which information fields are printed in
that report.

Because All-In-1 manipulates several files for user pro­
files, it is NOT a good idea to add or delete user profiles
using Datatrieve, though it could be done in emergencies.

A similar function is to examine the document
database using Datatrieve (this also works for WPS­
Plu1/VMS).

REDEFINE RECORD DOCDB_REC USING
01 DOCDB_UC.

10 FOLDER PIC X(30).
10 11 PIC G(6).
10 12 PIC G(6).
10 SHORT PIC X(6).
10 FILE PIC X(64).
10 P PIC X.
10 TITLE PIC X(72).
10 PERSOI PIC X(30).
10 TYPE PIC X(16).
10 A PIC X(15) .
10 B PIC X(15).
10 C PIC X(50).
10 D1 PIC X(8).
10 D2 PIC X(8).
10 OUT_I PIC X(6).
10 F3 PIC X(30).
10 NAIL_STATUS PIC X(8).
10 F2 PIC X(12).
10 NUMBER PIC G(6) EDIT_STRING Z(6).
10 READ PIC X.
10 SERDABLE PIC X.
10 R3 PIC G(16).
10 F4 PIC X.
10 H PIC G(16).
10 F5 PIC X(16).
10 CORTERT PIC X(16).
10 F6 PIC X(45) .

This definition is still undergoing development, so

140

some of the fields are not as fully defined as they might
be. However, there is one very important field which is
included here which is not usually obtainable within All­
In-1, and that is the VMS file which contains the docu­
ment (the field FILE). It happens (a little too often) that
the DOCDB.DAT file becomes corrupted, and then it is
necessary to try to coordinate the VMS files with the docu­
ments: this record definition allows you to obtain a listing
of all documents All-In-1 (or WPS) knows about and com­
pare it with a directory listing to find missing documents
or files. I also find that it is faster to use Datatrieve to
obtain an index listing of all documents than it is to use
All-In-1.

REDEFINE PROCEDURE DOCDB_REPORT

Fait report of all document•
with their VMS file name.

B. Z. Lederman

REPORT DOCDB 01 •.•file apecification•
SET COLUNNS_PAGE • 132
SET LINES_PAGE • 42
PRIRT HUMBER, FOLDER,

TITLE USIRG T(48), FILE USIRG T(24)
END_REPORT
END-PROCEDURE

Once again, with Datatrieve it is po11ible to easily
change the report for the format you want. I have even
put a Datatrieve procedure like this one into a form and
included it as an All-In-1 application so that users can
simply type one command and have a complete index of
their documents sent to their default printer.

As in the case of PROFILE.DAT, I do not recom­
mend adding or deleting documents with Datatrieve, ex­
cept in emergencies (such as recovering from a corrupted
DOCDB.DAT).

One final such application, still under development,
is manipulation of the Time Management (Calendar) files.
With the tools currently supplied with All-In-1, it is dif­
ficult to remove past appointments. Worse still: when a
user leaves and you use All-In-1 to remove that users' pro­
file and/or account, All-In-1 does NOT search through the
calendar to remove that user's appointments. Using Data­
trieve to search the calendar files, I have been able to purge
out old appointments, and appointments for persons who
are no longer users, much more easily than from within
All-In-1. This is a case where using Datatrieve to delete
records is justified.

There is another type of application using Datatrieve
to manage All-In-1, and that is application usage. All-In-
1 has the ability to generate a logging file, but there are
no utilities or facilities supplied to do anything with the
information generated. DATATRIEVE is a good tool for
reading and analyzing this information.

REDEFINE RECORD AI1_LOG_REC

This will read the logging
file produced by ALL-IN-1 when
logging i• turned on.

B. Z. Lederman

01 AI1_LOG_REC.
06 ID.

10 FACIL_ID USAGE LONG.
10 MSG_ID USAGE LONG.
10 PROC_ID USAGE LONG.

06 TIMES.
10 SYS_DATE USAGE DATE.
10 SYS_TIME PIC X(12)

COMPUTED BY FN$TIME(SYS_DATE).
10 ELAP_TIME USAGE LONG.

06 MESSAGE.
10 INPUT PIC X(10).
10 FUNCTION PIC X(16).
10 TEXT PIC X(200) EDIT_STRING T(32).
10 TX REDEFINES TEXT.

20 FORM_IAME PIC X(32).

To make this information more useful, Datatrieve can
be used to process the information to extract just form and
do script usage, and match it up to the library where the
form or script is stored. See Program 1 for the procedure
AILNORMALIZE, which processes All-In-1 logging files
so that the form names are extarcted and normalized.

There are a number of interesting bits of information
here, but first it might be asked why use Datatrieve to
process the information when a procedure as long as the
one given above is needed? The answer is, if you compare
it with the code needed for a "normal" 3rd generation
language, you would have to write just as much processing
code, plus a lot more for the file open and record handling
work. In processing one serial file to another as we are
here, Datatrieve is going to go just about as fast as any
other program doing the same amount of work.

There are a number of things one can obtain from this
data. One may determine how many users access All-In-
1, when they use it, and the sequence of commands en­
tered. I concentrated on what forms and do scripts were
being used, with the intention of optimizing All-In-1 per­
formance by putting the most used forms in MEMRES
and the most used scripts in the TXL, and moving the
lesser used forms and scripts elsewhere. With Datatrieve,
it's quite easy to get summary information:

REDEFINE PROCEDURE AI1_NORM_RPT

Report •ummarized u•• of form• and •cript•

B. Z. Lederman

READY AI1NORM
REPORT AI1BORM WITH LIBRARY NE " " SORTED BY

141

FUNCTION, NAME ON *."TT or file name"
AT BOTTON OF NAME PRINT FUNCTION, SPACE 1,

LIBRARY, SPACE 1, COUNT, SPACE 1, NAME
AT BOTTON OF FUNCTION PRINT NEV_PAGE
END_REPORT
END-PROCEDURE

FUNCTION LIBRARY COUNT NAME

FORM MENRES 3 AUTO
FORM OAF ORM 1 DISPRENINDER
FORM OAF ORM 4 ENC
FORM OAF ORM 1 ENHEAD
FORM MENRES 4 MAIN
FORM MENRES 1 OA$EDIT
FORM MENRES 2 OA$LIST
FORM OAF ORM 1 IP
FORM OAF ORM 2 IPINDX

This is just a short example, but I actually went
through data from a much larger sample and rearranged
MEMRES and OAFORM to match. If one reads the All­
In-1 manager's manual, it would appear that putting the
most used forms in MEMRES, where they are compiled
and linked into the All-In-1 executable task image itself,
would improve performance: and, I've been told, the All­
In-1 and WPS developers themselves thought so as well. It
was not until I presented this material at the symposium
that I was given additional information from an indepen­
dent testing group within DEC that putting more forms
in MEMRES not only does not improve run-time perfor­
mance, it slows down task initialization. The more forms
there are in MEMRES, the larger the task image and the
longer it takes to start up All-In-1. If you install MEM­
RES and OAFORM in memory (the normal way All-In-1
is run), then the first time a form is used it is stored in
memory, and from then on it doesn't matter much which
library it was in.

When I first went through this exercise, I did rear­
range the two libraries, 11.nd saw improvements: upon re­
examining the libraries involved, I found that, after check­
ing what forms my users actually needed, I ended up with
fewer forms in MEMRES than the DEC distributed li­
braries, which probably accounted for the improvement.
Also, I was working on 11. system which was drastically
short of memory, so there was 11. potential for improve­
ment in not installing any libraries in memory (something
which may also be done if you want to run All-ln-1 11.nd
WPS-Plus/VMS on the same system), and under these cir­
cumstances access to a compiled form in MEMRES might
be an improvement. Additional testing will have to be
done to obtain definitive answers.

This does not mean the information is not useful: far
from it. Do scripts also account for a significant portion
of the work done by All-In-1 (though it happens that none
show in the very short examples in this paper), and putting
the most used scripts into the TXL does improve per­
formance: moving unused scripts out conserves memory.

In addition, this logging information is the best (perhaps
only) method of finding out what your users are actually
doing in All-ln-1, where the most effort is being expended,
and where efforts to improve performance or ell.Se of use
will yield the greatest results, and even how you might
tune your system or adjust quotas to match the work be­
ing done.

As noted, all of the procedures (and additional infor­
mation) is available through the DECUS library, but for
convenience the procedure which creates the domain table
containing the forms and do scripts, and the DCL com­
mand file which goes with it, are appended to this paper.

142

PROGRAM 1

REDEFINE PROCEDURE Ail NORMALIZE

' ! Process Ail logging file so that the form names are extracted
! and normalized. This allows looking them up in a table to

find out which library they are in, and to allow summation
for statistics on use.

B. Z. Lederman

DEFINE FILE FOR AilNORM
READY AilNORM WRITE
READY AilLOG
!
! need a few working variables

DECLARE A FORM PIC X(24).
DECLARE B FORM PIC X(24).
DECLARE El PIC 99 EDIT STRING Z9.
DECLARE E2 PIC 99 EDIT-STRING Z9.

Go through the logging file and pick out uses of forms and
scrips

FOR AilLOG WITH FUNCTION= "FORM", "DO" BEGIN

Now comes the fun part. We want to extract only the form (or
script) name and normalize it.

El = 0
E2 = 0

! initialize end of string
position counters

A FORM = FN$UPCASE (FORM NAME) ! force upper case
El= FN$STR LOC (A FORM,-" ") look for end of form name
E2 = FN$STR-LOC (A-FORM, "/") may have command attached
IF El > 0 El = El ~ 1 want last character
IF E2 > 0 E2 = E2 - 1 not search character

take out the form name if it is not null: the form either ends
with a null or space or with a slash if there was a command
attached.

IF ((E2 > 0) AND ((E2 < El) OR (El = 0))) THEN
B FORM = FN$STR EXTRACT (A FORM, 1, E2) ELSE
B FORM = FN$STR EXTRACT (A FORM, 1, El)

If we can find this form (script) in the domain table we
created which lists the library each form is in, use that
libraries' name, otherwise use a blank space.

IF (B FORM IN FORM TABLE) THEN
A-FORM = B FORM VIA FORM TABLE ELSE A FORM = " "

143

PROGRAM 1 (continued)

we now have nicely normalized data: store it.

STORE AilNORM
FACIL ID
MSG ID
PROC ID
SYS DATE
ELAP TIME
FUNCTION
NAME
LIBRARY

END
END
FINISH

RELEASE A FORM
RELEASE B-FORM
RELEASE El
RELEASE E2
END-PROCEDURE

USING BEGIN
= FACIL ID
= MSG ID
= PROC ID
= SYS DATE
= ELAP TIME
= FUNCTION
= B FORM
= A-FORM

144

REDEFINE PROCEDURE NEW FORM

Read the forms in a number of edited FMS library listings and
scripts in directory listings and put them into a domain so
we can look them up.

B. Z. Lederman

You should only have to use this procedure to rebuild your
data base when you change the arrangement of forms and
scripts used in Ail.

DEFINE FILE FOR AilFORM KEY= FORM(DUP), KEY= LIBRARY(DUP),
ALLOCATION = 55

READY AilFORM WRITE
DELETE T FORM;
! -
! Get forms in OAFORM

DEFINE DOMAIN T FORM USING F T REC ON OAFORM.SEQ;
READY T FORM
PRINT "Storing OAFORM"
FOR T FORM STORE AilFORM USING BEGIN

FORM = FORM
LIBRARY = "OAFORM"

END
FINISH T FORM
DELETE T-FORM;
!
! Get forms in MEMRES

DEFINE DOMAIN T FORM USING F T REC ON MEMRES.SEQ;
READY T FORM
PRINT "Storing MEMRES"
FOR T FORM STORE AilFORM USING BEGIN

FORM = FORM
LIBRARY = "MEMRES"

END
FINISH T FORM
DELETE T FORM;
!
! Get forms in MANAGER

DEFINE DOMAIN T FORM USING F T REC ON MANAGER.SEQ;
READY T FORM
PRINT "Storing MANAGER"
FOR T FORM STORE AilFORM USING BEGIN

FORM = FORM
LIBRARY = "MANAGER"

END
FINISH T FORM

DELETE T_FORM;

! Get scripts in OA$DO
!
DEFINE DOMAIN T FORM USING F T REC ON OADO.SEQ;
READY T FORM
PRINT "Storing OA$DO"
FOR T FORM STORE AilFORM USING BEGIN

145

FORM = FORM
LIBRARY = "OA$DO"

END
FINISH T FORM

DELETE T FORM;
!
! Get scripts in OA$LIB
!
DEFINE DOMAIN T FORM USING F T REC ON OALIB.SEQ;
READY T FORM
PRINT "Storing OA$LIB"
FOR T FORM STORE AilFORM USING BEGIN

FORM = FORM
LIBRARY = "OA$LIB"

END
FINISH T FORM
FINISH AilFORM
END-PROCEDURE

146

$ AilFORMDATA.COM

Create data files with Ail forms listed
$
$
$
$

for processing with DATATRIEVE to create a domain table.

$ B. z. Lederman
$
$
$
$
$
$

This requires the TRIM utility supplied (supposedly) with Ail.
You should be in whatever account you normally use for Ail
system management when you run this (or the same account you
will use when in DATATRIEVE to analyze this data) .

$ SET COMMAND OA$LIB:TRIM
$
$
$
$
$
$
$
$
$

The idea is quite simple. Get a listing (either of a forms
library or a script directory), use TRIM to strip out
everything except the raw data, sort it (partially to make
it look nice and partially because it should load faster and
more cleanly into an indexed file), and purge old copies.
A DATATRIEVE procedure reads the sequential files created
here to load the domain (table) .

$ FMS/DIR/OUT=OAFORM.SEQ OA$LIB:OAFORM
$ TRIM/FIRST=ll OAFORM.SEQ
$ SORT OAFORM.SEQ OAFORM.SEQ
$ PURGE OAFORM.SEQ
$!
$ FMS/DIR/OUT=MEMRES.SEQ OA$LIB:MEMRES
$ TRIM/FIRST=ll MEMRES.SEQ
$ SORT MEMRES.SEQ MEMRES.SEQ
$ PURGE MEMRES.SEQ
$!
$ FMS/DIR/OUT=MANAGER.SEQ OA$LIB:MANAGER
$ TRIM/FIRST=ll MANAGER.SEQ
$ SORT MANAGER.SEQ MANAGER.SEQ
$ PURGE MANAGER.SEQ
$!
$ DIR/COL=l/NOSIZE/NODATE/NOTRAIL/OUT=OADO.SEQ
$ TRIM/FIRST=3/FINAL="." OADO.SEQ
$ PURGE OADO.SEQ
$!
$ DIR/COL=l/NOSIZE/NODATE/NOTRAIL/OUT=OALIB.SEQ
$ TRIM/FIRST=3/FINAL="." OALIB.SEQ
$ PURGE OALIB.SEQ
$!
$ EXIT

147

OA$DO:*.SCP

OA$LIB:*.SCP

For those who wish to experiment with the time management data, I
append preliminary record definitions for ATTENDEE.DAT and
MEETING.DAT

DELETE ATTENDEE REC;
REDEFINE RECORD-ATTENDEE REC
01 ATTENDEE REC.

;

10 NAMEl PIC X(30) EDIT STRING T(lS).
10 MATCHl. -

20 YEAR PIC X(4).
20 MONTH PIC X(2).
20 DAY PIC X(2).
20 TIME PIC X(4).
20 LENGTH PIC X(4).

10 NAME2 PIC X(30) EDIT_STRING T(lS).
10 FLAG PIC X.
10 YES NO PIC X(3).
10 MESSAGE PIC X(56) EDIT STRING T(24).
10 APPOINT OCCURS 6 TIMES~

15 MATCH.
20 YEAR PIC X(4).
20 MONTH PIC X(2).
20 DAY PIC X(2).
20 TIME PIC X(4).
20 LENGTH PIC X(4).

10 END PIC X(19).

DELETE MEETING REC;
REDEFINE RECORD MEETING REC
01 MEETING REC.

;

10 NAMEl PIC X(30) EDIT STRING T(lS).
10 MATCHl. -

20 YEAR PIC X(4).
20 MONTH PIC X(2).
20 DAY PIC X (2) .
20 TIME PIC X(4).
20 LENGTH PIC X(4).

10 MATCH2.
20 YEAR PIC X(4).
20 MONTH PIC X(2).
20 DAY PIC X (2) .
20 TIME PIC X(4).
20 LENGTH PIC X(3).

10 MESSAGE PIC X(60) EDIT STRING T(15).
10 LOCATION PIC X(32) EDIT STRING T(16).
10 AGENT PIC XX. -
10 FILLER PIC X(31).
10 NAME2 PIC X(30) EDIT STRING T(lS).
10 FILLER PIC X(60). -

148

USES OF ACCENT R

Winston Tellis
Fairfield University

Fairfield, Connecticut

ABSTRACT

A look at the applications of ACCENT R in a university
environment, with a brief history of the selection process.
A brief introduction to the data base system.

It would be useful to present some information
about the background about Fairfield University as
well as the way in which the choice was made to
obtain ACCENT R as our data base language.

Fairfield University has about 3000 full-time
and approximately 3500 part-time undergraduate
students as well as about 1000 graduate school
students. There is also a high school on the
campus. In 1968 we leased an IBM 1130 based edu­
cational system called the 1500. In 1980 we pur­
chased a Decsystem 2060 and finally in January
1986, a VAX 8600.

Just about the time that the announcement was
made to discontinue the DEC 10 and 20 systems, we
were in the process of investigating data base
systems. We therefore thought it prudent to add
to our list of criteria an item that was to become
important - products that run on both systems DEC
20 and VAX with little or no change.

The criteria we used to evaluate the products
was as follows:

a) User friendliness
b) File description flexibility
c) Programmer productivity
d) DEC 20/VAX similarity
e) Performance

We made a judgement that the University's next
system would be a VAX of some kind - the 8600 was
not on the boards then. We thus planned that we
would start converting each existing software
application to this new data base so that when we
switched to the next system, there would be minimal
conversion problems. On this basis alone, we chose
ACCENT R because the syntax is identical on the two
systems. However all our other criteria was met to
our satisfaction.

a) User Friendliness. The language and
communication process in the data base system
should be understandable without the need to go to
manuals. A HELP facility is highly desirable. The
syntax of the access language should be as close
to natural language as possible so as to encourage
non-technical users to feel comfortable.

b) Programmer Productivity. We feel that
the FORTRAN/COBOL approach to applications pro­
gramming is time consuming considering the usual
backlog we all seem to have. We want this language
to dramatically reduce the time needed to code an
application, be it small or large, with programmer

Proceedings of the Digital Equipment Computer Users Society 149

tools where necessary.

c) File Description Flexibility. We would
like to avoid having to create duplicate copies of
our data files, just so that we may use the data
base system. This language should be able to
describe any file organization and support it.
This turns out to be a very important factor if
you have, as we do, data files being accessed by
multiple languages and being modified by them all.

d) DEC 20/VAX syntax similarity. Our goal
is to move all our software to the VAX with little
or no conversion. Consequently, the software
developed on the DEC 20 should run on the VAX
essentially unaltered.

e) Performance. We estimate that a
significant number of users will be accessing some
files concurrently and they could be large files.
We do not expect a performance level worse than
the current FORTRAN/COBOL applications that are
being replaced. We actually want a performance
superior to the current.

Our choice of ACCENT R was particularly good
in the areas of critical importance to us. The
syntax is identical - in fact we have migrated to
a VAX 8600 and the only software we did not have
to change at all was our ACCENT R code. The file
description flexibility on the DEC 20 was out­
standing. On the VAX the RMS file support is
rapidly becoming available. This feature has saved
us untold amounts of disk space. The typical time
taken to complete an application is better than
FORTRAN/COBOL by a factor of 10 to 1 or even 20 to 1
depending on the application and ACCENT R has
routinely run about 3 times faster than FORTRAN.
We are pleased with our choice and the product keeps
improving.

There are several areas in which we have used
ACCENT R either completely or to complement the
current development. All new applications are done
in ACCENT R.

ACADEMIC

We have a system design course where ACCENT R
is taught for second half of the course. The
students design and develop applications after a
rather brief introduction. It is interesting to
observe how quickly the students become familiar
with the language and how quickly they become
proficient enough to develop their own applications.

San Francisco, CA- 1986

Some of the faculty use it to retrieve
information and do some statistical work.

ADMINISTRATION
ACCOUNTS RECEIVABLE

There is an existing sequence of FORTRAN
and COBOL programs. However all but one of the
programs has been rewritten - the exception being
the Ledger cash totalling, master file updates
etc., are all handled in ACCENT R. The programmer$
feel that they can do the routine maintenance
chores much more productively and in a fraction of
the time if they use ACCENT R, and at the same
time it is much easier to develop a quality user
friendly program or module with very little effort.

There are 6 schools involved, including
the high school all supported by this system.
ACCENT R was particularly useful in dealing with
the slight differences that exist between the
schools.

STUDENT RECORDS
This is the most ambitious project to

date. It was developed entirely in ACCENT R and
in fact we would not even consider doing it other­
wise, taking 2 people working full-time about 2
months. The system includes the usual - biograph­
ical maintenance, grading - including printing
optical scanning grade sheets, transcripts, course
registration, class lists and housing information
(actually a subsystem). All of the above are
available for all authorized users at the screen
or on hardcopy. This information is shared some­
times simultaneously, by the offices of admissions,
financial aid, accounting, the registrar, the pres­
ident, the deans, security and devlopment. All
except the last off ice access the data through AC­
CENT R and the entire project was designed and
developed in a very short period of time that act­
ually overlapped with the conversion from the Dec
20 to the VAX.

The system is initiated by the entry of
data set with the teacher information. Once this
is in place and verified by the Registrar's Office,
the 'add-drop' process can proceed. The students
have used opscan forms that already have their ID
and other pertinent information printed and all
they do is blacken the dots with the course code
number(s) of their choice. When the scanner has
transmitted this data to the VAX, it is processed
through a series of FORTRAN prograns until the file
containing the scheduled courses are ready for in­
clusion in the 'courses' data set in ACCENT R.
Incidentally the reason for the FORTRAN programs
is that they already existed before we obtained

150

ACCENT R and we have not had the time or the cour­
age to change what works fine!

This data becomes part of an already ex­
tensive scheme to make available to a variety of
users any information that they are entitled to
and need. There is a data set containing all the
courses the student has taken at this institution
along with the grades and the semester. Other
containing courses transferred to Fairfield, with
the course(s) equivalent at Fairfield, is entered
and maintained by the Dean charged with this re­
sponsibility, but available to affected officers
at any school at the University. The student's
current schedule is available on demand as is the
dorm residence date maintained by the Housing
Office.

The transcripts are displayed and/or
printed on a laser printer either at the main Com­
puter Center or at the Registrar's Office. This
step has taken a great clerical burden from the
staff and they merely enter the changes and carry
on without the need to recompute the student's
average or rank.

FINANCIAL AID

Completely designed in ACCENT R this sys­
tem was written in about 2 weeks of full-time
equivalent. It includes complicated screens for
data input and update. Aid calculations and
awards are made, the letters written by the system
through a laser printer. Letters are generated on
missing documents and various management and gov­
ernment reports are prepared.

The system begins with tapes arriving from
The College Scholarship Service and being stored
through a COBOL program into a sequential data set.
An ACCENT R program then takes over and adds these
names to the Financial Aid data set for processing.
Screens allow the employees to call up any appli­
cant and check the record and make any change
needed. This is where the routines come in that
have the user automatically send letters to the
applicant8 wno have incomplete applications.
When all the decisions are made by Admissions Of­
fice, this ottice goes into high gear running the
simulation that makes tne awards for the Financial
Aid Office to inspect. wnen tney have make all
the necessary adjustments, award letters are sent
out with all the categories awarded clearly laid
out. The same nrocedure is followed for the
returning upper classmen.

PURCHASING

This is a system that ran in RMS in­
dexed on the DEC 20 system, mainly because of the
numerous views of the data needed by the office.
However, there never was the flexibility and ease
of response to change that a major application de­
mands. Hence knowing that the VAX was ordered we
went about redesigning the application and did it
entirely in ACCENT R in about 2 months from start
to finish with just one part time senior program­
mer.

Using a Decmate for input, the user en­
ters all the purchase order information and saves
it on the diskette while getting immediate print­
out on the Decmate printer. This diskette is
periodically transmitted to the VAX, where a FOR­
TRAN program fixes the input, clearing it of the
extraneous prompts associated with the Decmate and
readies it for ACCENT R.

At this stage, the staff merely tracks
the purchase order through it's life, making full
or partial payments etc. until it is closed and
ready for the Accounting Office to pay the bill.
A program makes a itemized list by vendor for
the Accounting Office by due date for payment.
Meanwhile any item not closed at the end of the
month is automatically included in a report that
becomes a batch in the University's Expense Re­
porting System as 'Open Purchase Orders'. The
latter system is entirely written in FORTRAN,
and ACCENT R has absolutely no problem interfacing
with this system.

ADMISSIONS

This is a very high pressure system with
a great need for both accuracy and quick response
to a great volume of requests in a short period
of time. The system was originally exclusively
in FORTRAN and later in combination with data
entry screens written in COBOL. As applications
are received, the clerical staff enters it as
fast as possible. Another screen allows change to
any field in the system.

Once the data is entered, it is avail­
able to the numerous statistical and reporting
programs that are constantly in demand during
the period of decision making.

We are now at the point that only the
very complex statistical programs are still in
FORTRAN, because we have not had the courage to

151

delve into them. Everything else is in ACCENT R
some of it even generated by the user. Where the
Computer Center was repeatedly in receipt of urgent
requests for service, we now seldom intervene.

Ali the reporting programs were developed
in a few hours with or by the user and a simple
menu now presents the user a choice of reports and
they have become virtually self-sufficient. It
took a short period of time to describe the file
ACCENT R after which the screen programs were
developed with existing tools. We were able to
go a step further using ACCENT R by offering them
the service of using the laser printer to print
the various letters on their own letterheads but
automatically generated in ACCENT R, based on the
major or residence status or other varying criter­
ion.

The net result has been a vastly improved
product as well as throughput for a very important
system to the University.

A relatively simple but useful system was
also developed to analyze a survey mailed out to
all accepted applicants regarding their choice
and general impressions and attitudes. The data
entry and survey analysis is done with existing
ACCENT R statistical statements and a minimum of
programming. Once again the speed with which this
information becomes available is of some importance
to the institution.

PERSONNEL

This is a particularly sensitive system
for obvious reasons. It was developed on the basic
model of the Admissions system with specific modi­
fications to reflect the nature of this office. As
in that system, there are screen entry programs
and numerous reporting programs of varying com­
plexity.

When we obtained ACCENT R, we promptly
described the existing data set in ACCENT R and
began to make use of the tools to generate new
reports with very little effort. Reports that
used to take 20 minutes to program and produce,
now were complete in 2 minutes. The long range
plan is to convert the entire system to ACCENT R.

SECURITY

This is the latest addition to the family
of ACCENT R applications. In essence it had to
wait till several other aspects of our development

fell into place, because the system requires
access to all the data sets that have students
or employees stored in them. With ACCENT R we
are able to search any kind of file match the ID
and take the name and address from there.

It is a system where the user enters
the ID and the make of the vehicle and some other
information at the time the person registers the
vehicle. Only when reports are required do we have
to match the ID against some other file to find
the name and address. We also produce tickets as
a by-product of this system, the ticket being pro­
cessed through to accounting if a student caused
the infraction. It automatically links to the
accounting system, preparing an input file ready
for use.

ALUMNI

This system is no longer in use although
it was one of the first and largest in terms of
volume and number of records. The system was a
hybrid of FORTRAN, COBOL and ACCENT R. When we
found out the vastly superior performance of
ACCENT R over the other two, we used the Host
Language Interface in those programs to improve
the throughput.

The system consisted of data entry and
update using screen programs. There was a link
to the undergraduate information system and there
was complete transaction processing. At critical
times, they would have numerous people doing entry
simultaneously. We found it much easier to deal
with the special purpose reporting that seems to
be peculiar to Development Offices. When the VAX
was obtained, this system was replaced by third
party software.

ALUMNI-REUNION

An urgent request to develop a system
to handle the reservations for residence and the
various events associated with a class reunion.
The system was developed in about 6 hours work,
that included 2 screens to handle the event reser­
vation and another for the overall registration.
Several reporting programs were developed to list
the various event rosters as well as print badges
and the usual incidentals.

We would not have ever considered such a
project in this time frame were it not for ACCENT R.

152

FACILITIES INVENTORY

This is a simple system consisting of one
screen developed in 3 minutes to allow the Manage­
ment Information Office to do a space inventory of
the entire institution. In addition there are a
few reporting programs developed using the QREP
utility. The total development time was about 1
week.

RESERVATIONS

The Campus Center Office makes reservations
for all non-academic events, and this system allows
central control over all the alloted space, checkN
ing for conflicts and printing reports for the
weekly and/or daily event schedule. While the over­
all system is extremely simple in concept and im­
plementation, the conflict checking became quite
involved. The system was developed in about two
weeks.

FUTURE

Future plans include completing all the
pieces of the accounting system so that a General
Ledger System may be developed in ACCENT R and
now that the student information system has been
integrated into one in ACCENT R it is possible to
address that problem.

OVERVIEW OF ACCENT R

At this point I would like to indulge in
a very brief introduction to the syntax of ACCENT
R so that you might be able to make a judgement
about it's features, strengths and weaknesses.
The system forces a consistent standard of struc­
tured code that will last beyond the person pre­
sently doing the coding. The program has sections
that have built in logic relieving the programmer
of most of the mundane tasks of titling and totall­
ing etc. and with no need to define input/output
statements.

All the items are stored in a Data Base
Library (DBL) which is created once the first time
and then repeatedly 'used'. In this DBL is stored
the Data Definition (SD) the Data Files (DS) Data
Indexes (DI) and even Programs (PM) and a few other
items. The data is truly separated from the des­
cription thereof. In other words, the schema defi­
nition (SD) is a separate entity from the Data Set
(DS) and in fact numerous Data Sets may be des­
cribed by a single SD. Data Indexes (DI) store

the various views of the data set that are desired
and are automatically maintained by the system.
With just this much information about the environ­
ment, one may begin to describe the application
to be developed. Below is a short run through a
typical development sequence.

ACCENT

Invoke the system

*create dbl biznis

Create a Data Base Library (once only)

*define sd stock

Create schema to describe data

--10 item.no,c,5,title='Item #'

this 5 position field is a-n

--20 item.desc,c,15,title='Desc'

note the title, it is used in reports

--30 unit.price,n,8,2,title='Price'

this item is numeric with 2 decimals

--40 on.hand,i,3,title='Stock'

This is an integer field

--50 on.order,i,3,title='On Order'

--save

Save this schema definition

*create ds stock sd stock

Create a data set in the format of sd

*dir

At this point an entry is made in the
DBL tying this DS to SD Stock.

A directory of the elements in the DBL

TYPE NAME

DBL BIZNIS

153

DS STOCK SD STOCK

SD STOCK

*use ds stock
Invoke the ds for use in the following commands

*enter new with prompts check

Start entering data into the data set
Stock, with field names being prompted

ITEM.NO: A-101

User's entry is after the colon

ITEM.DESC: Movie Camera

UNIT.PRICE: 445

ON. HAND: 20

ON.ORDER: 5

Okay ? y

And an optional verification.

ITEM.NO: A-102

ITEM.DESC: Movie Screen

UNIT.PRICE: 17.50

ON. HAND: 10

ON. ORDER: 5

Okay ? y

ITEM. NO. ***

Terminate the input session

*type @records

How many records have I entered

*extract

Let me look at all the data edited

A-101 Movie Camera 445.00 20 5

Leaves spaces between fields

A-102 Movie Screen 17.50 10 5

*extract show item.desc,' ',on.hand

Movie Camera 20 Just show me these two fields

Movie Screen 10

There are various clauses that allow conditional
extracts and saving that output on a print file or
on another data set.

*extract if item.no has 'A'

Examples of such clauses

*extract if on.hand + on.order > 50

There are other verbs that are used interactively
as the ones above and are extremely easy to under­
stand even for non-technical users:

SORT

DELETE

ALTER

CONVERT

CHANGE

REMOVE

RENAME

SELECT

UPDATE

Examples

Sort on some field name

Delete a record by value or record number

Change the content of a field(s)

Convert from one sd to another

Change field content

Delete an item from the DBL

Rename an element of the DBL

A Join command to select from 2 data
sets

Allows a Master to updated from a
transaction data set.

*ALTER if cust.name = 'atlas' set '203-555-1212'
to phone & show cust.name,phone

(change all records that meet the condition,
and change the phone number, and show the
new one and the customer name)

*change field on.order with prompts show item.no,
' ',on.hand

(each recordwill be displayed and the user will
be prompted for the value)

*use ds oldset

154

convert to newset
(having created a new ds newset, which perhaps
has fields that ds oldset does not, you wish
to transfer all the old corresponding data to
the new ds. The move takes place if the field
names are identical)

*sort on cust.name
(sort the data set on this field)

*use ds orders

*select with stock match on item.no if: t unit.
price > 4.00 & show item.no, unit.price

(ds orders is the Master, Stock the transaction
set; when item.no matches and the condition
is met - :t meaning the transaction set must
meet the condition - the item is displayed)

Once the data has been described, there are
situations when the capabilities presented above
are not sufficient to cover a particular need.
Thus there are Process Modules - the programming
capability of ACCENT R. It is a very structured
model that is built into the logic of the various
sections of the program. The basic model requires

INITIALIZE

PROCESS

FINALIZE

Tell ACCENT R what to do before
processing records

Which operations to perform on
all records

What to do after processing records

An actual Process module may have up to
twenty different sections that organize the struc­
ture of the task.

In the example below, we have 5 sections to
produce a report that has a heading, details of
each salesperson's activity, district sub-totals
and a grand total, creating a print file.

CONTROL

DECLARE

INITIAL

HEADINGS

DETAIL

Declares the data set(s) to be used

Working storage for temporary values

Sets up initial values

Sets up headings to appear on each
page

Specifies the processing details for
each record

TOTALS

FINAL

Specifies the break point for
sub-totalling

Produces final totals

The actual process module looks like this:

00010 CONTROL SECTION

00020 RELATE DS SALPER AS MASTER
!declare salper as the master file

00030 RELATE TERMINAL AS REPORT 1
!the output will show at the terminal

00040 DECLARE SECTION

00050 CNT,I,2
!variable cnt is 2 position integer

00060 YTD.SALES,N.10,2
!this is a numeric field with 2 dee

00070 INITIAL SECTION

00080 3 TO @TOP.MARGIN,@BOTTOM.MARGIN
!set 3 to these system fields

00090 60 TO @LINES
!this system field stores lines/page

00100 HEADINGS SECTION

00110 SKIP 3

00120 CENTER "DISTRICT SALES REPORT" AT 38
!center this title

00130 CENTER @FDATE AT 38
!center the date also

00140 SKIP 2

00150 PRINT TAB 19,"EMPLOYEE",TAB 60, "YEAR-TO­
DATE SALES"

!col title

00160 PRINT 75"="
!print 75 signs

00170 DETAIL SECTION

00180 0 TO YTD.SALES
!set variable to 0

00190 START FOR CNT = 1 TO 12

155

00200 YTD.SALES + MO.SALES(CNT) TO YTD.SALES

00210 REPEAT

00220

! a loop that adds up the mo.sales field
that has 12

! monthly sales figures, storing the result
in YTD.SALES

00230 PRINT TAB 13,LNAME,lB,FNAME,TAB 63,YTD.SALES
! print the fields

00240 ·roTALS SECTION

00250 ON DISTRICT

00260 PRINT TAB 64,9"-"

00270 PRINT "DISTRICT:, lB,DISTRICT,TAB 51,
"SUBTOTAL",TAB 63,& SUM YTD.SALES

!print the fields and the sum of vtd.sales

00280 PRINT 75"-"

00290 SKIP 5

00300 FINAL SECTION

00310 PRINT TAB 48,"GRAND TOTAL",TAB 63,SUM TYD.
SALES

Notice that there are no input-output state­
ments to read from the data set, as this is built
into the logic of the DETAIL section. The Titling
is automatically taken care of by the HEADINGS
section. On a control break, the TOTALS section
takes care of the mundane chores as does the FINAL
section at the end. This logic is very crisp and
clear, very easy to use and to teach. The framework
of a report is often used to write QREP which pre­
pares all the sections with the headers and fields
all the user does is answer the questions.

There is a facility to control a sequence
of jobs that have to be processed perhaps with some
decisions along the way, even passing data from this
module to a process module. This facility called a
Control Module, is very flexible and useful in keep­
ing control of a, job.

Sample Control Module:

00010 TYPE @CR

00020 TYPE "TYPE 'MENU' FOR A LIST OF AVAILABLE

OPTIONS" '@CR

00030 START
!start a loop

00040 TYPE "OPERATION?",NOCR

00050 ACCEPT @STRING
!allow input of string info

00060 IF:5 @STRING = "MENU"

00070 TYPE "TYPE ONE OF THE FOLLOWING: ",@CR

00080 TYPE "ORDER TO ENTER ORDER,UPDATE STOCK"

00090 TYPE "MO COMMTO COMPUTE A GIVEN MONTH COM­
MISSION"

00100 TYPE "YTD COMM YTD COMMISSION OF A SALES­
PERSON

00110 TYPE "HIRE TO ENTER A NEW SALESMAN"

00120 TYPE "TERM TO TERMINATE A PERSON"

00130 TYPE "STOP TO EXIT THIS PROGRAM"

00140 ORIF:5 @STRING = "ORDER"

00150 USE DS ORDERS

00160 ENTER VIA ORDERS.NEW

00170 ORIF:5 @STRING= "MO COMM"

00180 USE DS OTHER

00190 TYPE "ENTER SALESPERSON NUMBER ",NOCR

00200 ACCEPT @INTEGER

00210 EXTRACT IF SALNUM
COMMISSION

00220 ORIF:5 @STRING

00230 USE DS OTHER

@INTEGER VIA MO.

"YTD COMM"

00240 TYPE "ENTER SALESPERSON NUMBER ",NOCR

00250 ACCEPT @INTEGER

00260 EXTRACT IF SALNUM
MISSION

@INTEGER VIA YTD.COM-

156

00270 ORIF:5 @STRING "HIRE"

00280 USE DS OTHER

00290 ENTER WITH PROMPTS

00300 ORIF:5 @STRING = "TERM"

00310 USE DS OTHER

00310 USE DS OTHER

00320 "ENTER NUMBER OF TERMINATED EMPLOYEE ",NOCR

00330 ACCEPT @INTEGER

00340 DELETE IF SALNUM
TO TERM.EMF

00350 ORIF:5 @STRING

00360 LEAVE

00370 ELSE:5

@INTEGER APPEND DELETED

"STOP"

00380 TYPE "NOT A VALID OPERATION: TRY AGAIN "

00390 REPEAT

The above is rather typical menu where
there is a combination of functions that are
either process modules or ACCENT R's data man­
ipulation language or both. One could also link
to DCL and perform any operation and stay within
ACCENT R. A brief explanation of the above CM
follows:

Any field preceeded by @ indicates that it
is a system field. The START and REPEAT form the
loop to be executed that is terminated by the con­
dition in the ORIF that corresponds to LEAVE being
a true condition. There is a hierarchy to the
logic, hence IF:5 means that is level 5 and all
level 5 statements are equal and superior to level
6 statements, and so on. All the statements below
the IF or ORIF would be executed if the condition
is true.

In statement 160 the 'vie' represents a
call to a PM written to accomplish the task at
hand.

CONCLUSION

This paper is meant to inform the reader of

the capabilities of a data base system that we have
found to be very easy to use, easy to learn and
teach and very cost effective as far as programmer
time is concerned. It has alot of features that
can only be discovered through actual use and could
not adequately be described herein.

All the applications listed are in pro­
duction or have been and continue to run success­
fully on a daily basis, most of them with multiple
simultaneous access. We have not come across an
application that we have felt should not be done in
ACCENT R, although, if there were a primarily
computational job, I am sure we would not rush
headlong into doing it in ACCENT R although it has
a respectable array of statistical and mathematical
routines and functions.

We have found the company to be extremely
responsive to problem reports and even with en­
hancements that our site has needed urgently.

157

MAKACT: An Account Maintenance Program for Large VAX/VMS Environments

Pat Feldner and George Stefanek
Illinois Institute of Technology

Chicago, Illinois

Abstract

MAKACT is an account creation program designed for large VAX/VMS en­
vironments which allows the creation of categories of accounts through a shell
interface. It includes the use of user modifiable templates which specify informa­
tion regarding each category of account. This makes for fast and easy creation
of accounts in an organized manner.

Introduction

MAKACT is an acronym for make account which is a pro­
gram for the creation and maintenance of accounts espe­
cially suited for large VAX/VMS environments. The mo­
tivation behind writing this user account creation program
was to be able to create and delete thousands of accounts
yearly, manage large numbers of dissimilar accounts, build
in a standard organization for account maintenance, and
organize the accounts by category. The application of this
program is currently in a university environment contain­
ing three VAXs connected by DECnet.

Typically, 6000 student accounts are created and re­
moved yearly. Also, there are many research accounts
which are maintained on a yearly bll.Bis. Eventhough this
program is suited for a university environment it can be
used in any setting.

Features

Some of the features of MAKACT are:

• Interaction through a shell: which allows flexibility
and error checking. When MAKACT is invoked it
puts you immediately into a shell which prompts for
a command. From here you can enter "help" or is­
sue one of the allowed commands. After selecting a
command, the shell prompts you for all required in­
formation to create, delete or maintain accounts.

• Modularization: accounts are organized under cat­
egories where each category designates the type of
department to which the account belongs. For in­
stance, there may be types of categories such as dept,
funded, external, and class which would clearly des­
ignate a class of account. These classifications will be
used in creating a directory path for the account (e.g.
drcO:[dept.math.smith]). As each category of account
is created, it uses specific information stored in a tem­
plate for that category. Separate programs and files

Proceedings of the Digital Equipment Computer Users Society 161

are maintained for each command in the shell as well
as to create the various categories of accounts. There­
fore, modifications are easy since specific modules are
modified rather than the entire main program.

• Templates: user modifiable templates are provided
for each type of account. Various templates specify
account information which may be tailored individu­
ally for each type of account. This tailored account
information will be used by MAKACT to create ac­
counts.

• Batch jobs: account creation and removal will occur
when MAKACT submits a batch job with the ap­
propriately created command files. DCL command
files are created by MAKACT to carry out UAF,
diskquota, and directory creation and deletion.

Templates

MAKACT makes use of several templates which hold spe­
cific account information by department. The templates
consist of a budget template, default template, customize
template, and directory template.

The budget template (figure 1) specifies information
for categories of accounts which includes fields for

• type of accounts within a category (e.g. math, chem,
cs),

• disk to be used for a particular account (e.g. drcO:,
draO:),

• permanent and overquota limits,

• charge rate for billing (e.g. 1, 2, 3 where 1 may cor­
respond to a CPU rate of $2.00/cpu minute, 2 corre­
sponds to $2.50/cpu minute etc.)

• budget for the entire year.

San Francisco, CA - 1986

Budget Template for Dept category

Type Sub-typ Dsk Grp

+dept cs drc2 100
+dept chem drc2 220
+dept math drc2 305
+dept econ drc2 250

This template can be modified through MAKACT
and its field can be left blank if not applicable.

The default template specifies default UAF parame­
ters [VMS84] to be setup for every account created. These
usually include the following qualifiers: /device, /flags,
/sfl.ags, /defpriv, /priv and any other qualifiers which set
UAF parameters which may be desired for each account.
This template called default.sav is modifiable manually
through EDT. To customize any of the default UAF set­
tings for a particular type of account, or to add param­
eters which would not normally be added to an account,
the customize template must be modified.

The customize template specifies customized UAF pa­
rameters for a specific category of account. The file cus­
tomize.sav includes a label identifying the type of account
(e.g. #dept, #funded, etc.) followed by modifications to
be made to U AF parameters. These modifications would
typically include granting ACLs and modifying existing
UAF parameters. A typical entry would look like

#EXTERNAL
mod/prclm=1
mod/maxjoba=2
mod/acceaa
grant/id mail_uaer
grant/id tape_uaer

This entry may be followed by another similar entry
for a different type of account. This file is also modifiable
manually using EDT.

Finally, the di.rectory template specifies the last di­
rectory name that was assigned to a new user. This is
an optional template which can be excluded from the cre­
ation of accounts if another methodology of naming user's
directories is used. One way of assigning directory names
is to give the directory a letter followed by a number (usu­
ally S digits) such as "E109.dir". The number "109" can
be associated with a user's box number as well as direc­
tory specification. MAKACT reads the directory template
to find the last directory assigned and increments the box
number by two and then changes letters alphabetically up­
wards once all box numbers within a range (e.g. 0 - 999)
are assigned. If you have fewer or more box numbers at

162

Perm Over Rate Bud

5000 1000 1 10000
5000 1000 1 7000
5000 1000 1 4000
5000 1000 2 9000

your site then MAKACT can be modified to reflect the
appropriate range.

Directory Structure

There is an implied directory structure which is used by
MAKACT. At top level, disk:[OOOOOO], directories corre­
spond to the type of account, such as dept, class, exter­
nal, funded, etc. Under each directory type are the spe­
cific category sub-types such as chem, ee, biol, nmr, etc.
Under each sub-type of directory are the individual user
directories such as xS17, xS19, etc. When creating an ac­
count withing MAKACT, the shell prompts with type of
account, sub-type of account and checks the input against
valid existing types and sub-types in the budget template.
If they do not exist the user is warned that the types or
sub-types do not exist and should be added. If all input is
valid, then MAKACT proceeds to create the account and
checks whether a directory type exists at top level, and if
it doesn't then it creates it along with the sub-type and
individual directories under the top level of the tree.

MAKACT creates three command files during ac­
count creation. Makact.com adds entries to the UAF,
makdir.com creates the directories for new accounts
following the previously described tree structure, and
makquo.com adds quota entries to diskquota. Also, a
roster.dat file is created which lists all new accounts cre­
ated. These three command files are submitted as a batch
job as soon as they are created. The existance of a file
makall.temp is checked before submitting the batch job to
verify that an account creation job is not already running.

During account removal three similar files are created.
Remact.com removes entries from the UAF, remdir.com
removes directories (only the individual user's directory,
not the entire tree path), and remquo.com removes quota
entries from disquota.

Using MAKACT

MAKACT is invoked by typing

$ MAKACT

which prompts with

Command>
Type HELP to see what

commands are available.

Command> help
Topic?<ret>

Add Delete Disuer Exit General_info
Help Labels Make Modify Old Remove Shov

Most of these topics have examples available. A brief
description of the functions of these commands is as fol­
lows,

• add: adds entries into the budget template,

• delete: deletes entries from the budget template,

• disuser: disusers a specified account{s),

• exit: exit the MAKACT program,

• general..info: description of MAKACT,

• help: description of how to use help,

• labels: make labels for many accounts,

• make: create a new account,

• modify: modify an account type in the budget tem­
plate,

• old login: remove account{s) that haven't been used
in a specified period of time,

• remove: remove an account(s),

• show: show all or specific types of accounts in the
budget template.

Creating an Account

To create an account invoke MAKA CT and issue the make
command,

$ MAKACT

Command> make

Type of account> dept
Sub-Type of account> chem
Money per account> 200.00

name> smith
name> jones
name> AZ

$

163

In the example above accounts are created for smith
and jones within the dept type of category belonging to
the chem sub-type. Each account is given $200.00. This
field can be left blank if user accounting is not enabled.
To exit a specific mode of MAKACT, type a A Z which
brings you one level higher. For instance, the A Z after the
"name>" prompt brings you up one level higher at which
point you can enter additional users belonging to a new
type of category. Eventhough you are one level higher,
MAKACT is still within the make mode of account cre­
ation. To exit the make mode of account creation, another
A Z must be typed to move up on more level. Eventually,
after enough A Z's are hit the program exits.

Another feature available in account creation is the
ability to use a /list qualifier after the make command
which allows one to use a file containing a list of new users.

$ NAKACT

Command> make/list
File = cs360.lis
Command> AZ
$

To remove an account the remove command is issued
within MAKACT.

$ MAKACT

Command> remove

Username> cs_taylor
Username> cs440smith
Username> AZ

Command> AZ

$

The /list qualifier can also be used in the removal of
accounts. When there are large numbers of accounts to be
removed at any one time as in a university environment,
a list of usernames can be put into a single file which can
thereafter be used as input for removal. A listing from the
SYSUAF.DAT file can be searched for a specific class of
accounts and the output directed to an output file. That
file can be used as input to the MAKACT program.

Conclusions

This program has been in use in a university environment
for one year and has proved to be extremely useful and
especially time saving in the creation and maintenance of
accounts. It also has forced an organization on the sys­
tems which has simplified system maintenance and prob­
lem solving.

Future modifications to MAKACT include the use of
screen management to visually display accounts as they

are being created, the cleanup of IO to the terminal from
the shell, and the improvement of our treedelete program
to search the index for all files belonging to a user.

References

[1] VAX/VMS, Guide to VAX/VMS System Management
and Daily Operations, Maynard, Mass.: Digital Equip­
ment Corporation, Sept. 1984.

164

Printing Across the Network

Ray Peterson, Mark Draughn, George Stefanek
Illinois Institute of Technology

Chicago, Illinois

Abstract

A program is presented which allows VAXs running VMS to share printers across
DECnet [1]. The DEC output print-symbiont routine is replaced with a user
defined routine which redirects printing to a remote node connected by DECnet.
A server on the remote node drives the printer. This allows the user to issue a
regular print command and have the output printed on a printer attached to a
remote node.

Introduction

The motivation behind writing this program is

• to add the ability to share printers across DECnet,

• to be able to direct printing to an available printer
when the current default printer goes down, and

• give users the option of choosing a printer of their
choice which may be located on another node in a
DECneted environment (e.g. laser, matrix, graphics
printers, etc.).

The advantages of incorporating this ability into a
networked environment are obvious, especially since each
system doesn't have to have a printer attached to it. Based
on one's printing needs a printer may be chosen which
can service a few VAXs which are networked together via
DECnet. If there are many printers scattered across a
network of VAXs, then if one fails, printing can continue
uninterrupted as soon as it is redirected to another work­
ing printer. The user can also choose to override the
default printer by issuing the "print/que=remote..node"
command as long as another print symbiont process is
available which forms a link to the desired remote node.
All qualifiers are honored when printing across the net­
work.

Finally, users can choose specific printers scattered
across various nodes on the network based on their print­
ing needs. For instance, someone may want to print a
document on a high quality printer located on node A,
another person may wish to dump a data file on a regular
impact printer located on node B, and still another per­
son may want to print a graphics file on a graphics matrix
printer located on node C.

hnplementation Features

The implementation features include

Proceedings of the Digital Equipment Computer Users Society 165

• replacing the VMS Output Print Symbiont Routine
(PSM} with a user defined routine [2],

• this routine redirects printing to a network link con­
nected by DECnet to a remote node, and

• a server resides on the remote node which drives the
printer.

The print symbiont consists of several routines the
first of which are a number of VMS PSM input routines
which direct files to be printed into an input buffer. Next,
a formatting routine formats the file(s) in the input buffer
and places them in an output buffer. Finally, an output
routine sends the file(s) in the output buffer to a print­
ing device. The user-defined output routine netwrite re­
places the VMS print symbiont output routine and leaves
the input and format routines untouched. The replace­
ment of the PSM output routine with netwrite is accom­
plished by calling PSM$REPLACE which replaces the
specified PSM routine with a new routine. Once this
is done the PSM is modified and the sending node soft­
ware is in place. All that has to be done on the send­
ing node is to start the PSM specifying the command
"start/queue/on=nodelllpaO: lpaO:". The "/on" qualifier
specifies the node and the device which printing is to take
place on. The double bars "II" are used instead of two
colons "::" since VMS thinks it looks like a cluster. The
"start" command starts the print symbiont on the current
node, opens up a channel to the remote node specified by
the "/on" qualifier, and starts up a server process on the
remote node [2].

The server routine on the receiving end allocates and
deallocates the printer. The printer is deallocated after a
file is printed so that other nodes can allocate the printer
and print to it. Once the printer is allocated the server
process receives a file to be printed from the sending node
and prints it, then deallocates the printer.

San Francisco, CA - 1986

PSM and Server Protocol

This section will discuss the protocol between the print
symbiont on the current node and the server process on
the remote node.

• When the queue is started the PSM$K_OPEN func­
tion code is passed and netwrite opens a channel
through DECnet to a designated remote node and
starts the remote server process (REC).

• A start of task flag (SOTask) is sent to netwrite by the
print symbiont. The user-defined PSM output routine
sends a "B" to the server process on the receiving-end
to inform it of a SOTask.

• Once the receiving-end gets a SOTask, the server pro­
cess allocates the printer and attempts to assign a
channel to it. IT the printer is printing a file from an­
other node which is allocated by another server pro­
cess, then the VMS lock manager is used to arbitrate
access to the printer that is being used.

• Once the printer assignment is done the server pro­
cess returns a VMS status code to the PSM output
routine. The output routine returns the status to the
PSM and waits for information from the PSM.

• When the PSM$K_ WRITE function code is passed to
the output routine netwrite, it sends a "W" followed
by the data to be printed on the receiving-end.

• The receiving-end's server process uses QIOs to print
to the output device (printer) and when it is done it
returns a status to the sending end.

• After receiving a status from the server the print sym­
biont sends another SOTask to netwrite to indicate a
new file to be printed. There is no end of job (EOJ)
sent by the PSM. Once netwrit e receives a new SO­
Task it sends an end of task (EOTask) to the receiving
end.

• After the receiving-end server process gets the EO­
Task status, it deallocates the printer and returns a
VMS status back to the sending-end. At this point
another node can use the printer. IT there is no other
node or another server process which has allocated the
printer, then the server process allocates the printer
again and prints the next file as described in the above
steps.

• ff there is no new job, the receiving-end times out
after 5 seconds. This parameter can be shortened or
extended by the administrator of the system.

These steps describe all the steps in communicating
between the sending node's PSM output routine and the
receiving-end's server routine.

166

Limitations and Conclusions

The routines for printing a.cross DECnet have several limi­
tations. First, error recovery is poor. When the reveiving­
end's node goes down, no status is checked which results
in the job getting lost and the queue manager going down.
The queue manager and all queues have to be manually
restarted. Error recovery should be upgraded to a.void this
problem by requeuing the job.

Another limitation is that the server accepts jobs from
nodes first-come- first-serve. There is no priority set to any
node. Also, the server doesn't differentiate between entire
print jobs and single files. After a single file is printed,
the printer is deallocated and another node prints a file
and then another node prints a file and so on in a circular
manner. Therefore, files from a single print job will be
interspersed between files printed from other nodes. The
"/ lla.g=a.11" qualifier must be set on the print queue so that
each file is identified by a flag page since the files from a
single print job will not be appended together.

Fina.Hy, the server is not multi-threaded. That is,
there is one server process on a node for each node printing
to that node. It may be desired to have one process to
handle all nodes, but this is a difficult task to implement.

In conclusion, printing across the network is a useful
program that lets you share printers across the network in
a way beyond that provided by VMS.

References

[1] DECUS Tape Library, "Source and Documentation
for printing a.cross the network", San Francisco DE­
CUS Tape, 1986.

[2] VAX/VMS Vol. SB, System Routines, PSMl-45,
1984.

STUDENT/FACULTY COMMUNICATIONS BY COMPUTER

Claude M, Watson
Lansing Community College

Lansing, Michigan

ABSTRACT

This paper will focus on the benefits to students and faculty
from internal communications via a VAX-11-780, The basic com­
munication features will be identified with simple enhancements
described, New features and capabilities that this communica­
tion provides the educational environment will be discussed,

Introduction

The importance of communications by computer has
long been recognized. Technology is providing bet­
ter networking solutions to enable better conununica­
tions. Educational institutions have reported on
the design and implementation of communication
projects to deliver more computing to more students.
Common features of these projects include some form
of workstation and campus-wide networking of the
workstations through a large computer system. This
paper will report on some specific benefits in course
management and communication that already exist for
a computer system which supports terminals, and can
be extended to workstation networks as they become
available.

Computing Environment at Lansing Connnunity College

Lansing Community College is located in downtown
Lansing a few blocks from the State Capitol of Michi­
gan and a few miles from Michigan State University.
The College has an enrollment of approximately
20,000 students; equated to about 12,000 full time
students. The College is divided into five semi­
autonomous Divisions,

Computing support consists of an IBM 3083 for admini­
strative functions and students of Computer-Aided­
Design and data processing, an IBM 4381 which is also
for CAD students, a DEC VAX 11/780 with 96 devices
for Computer Based Education, two MicroVAX II's for
CBE in the Arts and Sciences Division, a PDP 11/44
for administrative word processing, a PDP 11/34 for
the Library, a PDP 11/23 for environmental control
of the institution, and over 300 microcomputers
mostly of the IBM family with a few from the Apple
family

CBE Computing Environment on the VAX 11/780

LCC's Computer Based Education environment on the
VAX 11/780 has an account structure that parallels
the administrative structure of the College.
(Figures 1, 2 & 3) Directory and file protection
defaults are set primarily to provide sharing and
access within a group of accounts. (Figure 4) The
user must override the defaults to obtain additional
privacy or to share beyond the group. Accounts for
classes that need computer support on a regular
basis are also organized into groups with the instruc­
tor assigned a "leader account" within the group.

Proceedings of the Digital Equipment Computer Users Society 167

In addition to the standard DCL commands, a number
of local conunands have been created by the System
Manager. (Figure 5) These commands make it easy
for the instructors to access information in librar­
ies and staff and student accounts.

The VAX environment was created by the System Mana­
ger for the support of computer based education.
Two examples that demonstrate the promise and poten­
tial of this new kind of environment are the manage­
ment of classes and the coordination of multiple­
section courses.

Management of Classes

There are many ways tn which the system aids the
instructor's management of a class. Most of them
relate to connnunications. Every group of accounts
has a library for common access. The instructor
creates the contents of the library to provide
instructional support for the course. Such support
often includes samples-of instructional materials,
additional assignments, examples, references, correc­
tions of conmen mistakes, etc, Through his own
account the instructor can leave daily or weekly
messages which appear on the screen at the time the
student logs in to his or her account. The instruc­
tor has access to all of the student accounts in the
class or group, This enables the instructor to be
appraised of each student's progress in classroom
assignments quickly and accurately. Requiring
students to name each assignment with a common name
allows the instructor to view or print any or all of
the students' versions of a single assignment. When
a student asks for assistance with an assignment,
the instructor can copy the student's version into
his own account where it can be modified or debugged
for instructional purposes without changing the
student's original version.

Coordinating Multi-Section Courses

In addition to having a leader account in a class,
each instructor has a personal account in a depart­
mental group. Instructors can access each other's
departmental accounts and the group's common library
in the same manner in which student accounts can be
accessed. Instructors do not have write or delete
privileges in each other's accounts.

Multi-section accounts may have a course manager
who may identify the files (handouts) which have

San Francisco, CA- 1986

been created for the course in the past, distribute
them to the other instructors by paper copy or com­
puter mail, or place them in a group library. In
the latter form, all instructors of a course may
contribute to the development of common assignments,
handouts or tests, working together as a team with­
out the need to schedule group meetings. One
obvious benefit is that errors by one member of a
team are easily seen and corrected by another mem­
ber. Where team effort is not appropriate, individ­
ual instructors may modify materials for their own
sections. Copies of handouts can be placed in the
student library for easy access by students who may
have missed a class.

Examples

Examples describing how many of the activities
discussed above are accomplished in the VAX
CBE environment, including coding used, are
included in the appendix at the end of the paper.

Conclusion and Comments

One of the important points about both the managing
and coordinating activities is that they place very
little burden on the computer system. The system is
primarily used as a file server and at off-peak times.

User Disk Structure

USHUM y

All of the features described can be implemented on
networked micros linked to a VAX or MicroVAX II.

In the class management function, the instructor
can have a more accurate and timely record of each
student's progress and can quickly identify students
who are falling behind or are in need of extra help.
The end result could be both an increase in student
performance and a reduction in the number of drop
outs.

Major benefits relating to course coordination
include improved quality of written course materials
as a result of the cooperative efforts of instruc­
tional staff, and orientation and support of new or
less experienced instructors in a non-threatening
way.

FIGURE 1

168

System Disk
Library Structure

\
~Dept.
L~~c1unt

FIGURE 2

FIGURE 3

169

Default protection

System Owner Group
RE

World
File protection: RWED RWED No Access

Directory protection: RWE RWE RE RE

R = READ W = WRITE E EDIT D = DELETE

FIGURE 4

Examples of commands useful in sharing and communicating

DCL commands Local commands

COPY oldfile.name newfile.name DOWN dirname

DIR [BASQ.BASQ*] UP

DIR LIB NEXT dirnarne

PHONE ENV watson

MAIL ENV AS

SEARCH CAT

SORT WCAT

TYPE [BASQ.BASQ*]*·* MCAT

PRINT [BASQ.BASQ*]RESUME.DOC LIST filename

SEND username

TREE

DIR/CAT LIB

"ENV/DEF/LOG"

FIGURE 5

170

APPENDIX

EXAMPLE: Coll\lllunications with Students

Message to students when they log in to the VAX system.

The instructor creates a LOGIN.COM file in the group library.
This file is activated every time a student logs in to
the system. One of the coll\lllands in the LOGIN.COM file is
$ TYPE MESSAGE.DOC. The instructor also creates a file
called MESSAGE.DOC with the current information to be
provided to the students.

Students status check (viewing names of files students have created)

The instructor logs into his leader account BASQOO and then types
$DIR [BASQ.BASQ*J. The student accounts are numbered
BASQ.BASQOl to BASQ.BASQ40. The asterisk is called a
wild card and substitutes for ALL of the account numbers
of the class. This coll\llland displays the directories of the
entire class on the screen.

Student status check (viewing contents of all student files)

The instructor in his leader account, types
$ TYPE [BASQ.BASQ*J*·* This will display the contents
of all the files from all the accounts. The display
will scroll up the screen unless stopped by toggling
the no scroll key or hold screen key.

student status check (viewing contents of one student files)

The instructor in his leader account, types
$ TYPE [BASQ.BASQ*]RESUME.DOC. This will display only
the files with this name from all the accounts.

Student status check (printing contents of all student files)

The instructor in his leader account, types
$ PRINT [BASQ.BASQ*]RESUME.DOC. This will send to the printer
the files with this name from all the accounts.

All of the files can be printed with
$ PRINT [BASQ.BASQ*]*·*

Checking the output of a student program.

The instructor from his leader account types
$ run [basq.basqOS]progl.exe
This will run the compiled version of the students program.

If the student has source code and not a compiled version
the instructor can copy the program to his account with

171

$ COPY [BASQ.BASQ08)PROG1.BAS *
This will produce a copy of the program in the instructors
account. The program can be run with the BASIC interpreter
or compiled. If there are errors they may be corrected
to show the correct method or to debug the program.

Private message to a student.

The instructor can move to the students directory and use the
editor to create a message. The instructor and student can
agree on the file names for each to use to exchange messages.
The instructor must delete any files he creates since the
student cannot.

MAIL is disabled to make it more difficult for students to copy
each others work.

EXAMPLES: Course Preparation and Management

Move default to class lib:

The instructor can create and modify files in the
class library easiest by moving to the library.
This is done by

$ SET DEFAULT LIB or $ CD LIB or $ ENV LIB

Files can then be created or modified with the
default editor by using the command

$ EDT filename.ext

Move default to computer Science Library:

Similarly, the instructor types

$ SET DEFAULT CPSLIB or $ CD CPSLIB or $ ENV CPSLIB

The dir command will show the files and subdirectories
in the department library. Wild cards can be used to narrow
down the amount of information displayed. For example

$ DIR *.DIR will list only the subdirectories.

Finding the Course directory and the Topic subdirectories

The subdirectory containing many of the shared files for the
BASIC course is called CPSllOCRD. After setting default to
this directory typing
$ DIR *.DIR will show the directory names. Among them will be
CPSlOOCRD and CPSllOCRD.
Typing the command $ DOWN CPSllOCRD will move the default
directory to this subdirectory. Typing $ DIR wil now give
a list of the subdirectories that contain course material.

172

Moving a file from the library subdirectory

A file can be copied from one location to another
by using COPY and specifing the complete directory
name and file name for both the source and destination.
This process can made easier by using symbols,
logicals, and/or command files.

For example the SAVE command can be defined to run
a command file that saves the name of the default
directory. The name is saved in the logical "T:"
by default or any other letter or letters specified.

The sequence
$ CD CPSLIB
$ DIR *.DIR

of commands could
This
This

$ DOWN CPSllOCRD
$ DIR
$ DOWN HANDOUTS
$ SAVE
$ HOME
$ COPY T:HANDOUTl.DOC *

This
This
This
Sets
This
This

be as follows
changes the default dir to cpslib
shows the subdirectories
changes the default dir to CPSllOCRD
shows the subdirectories
changes the default dir to HANDOUTS
T = CPSLIB:[CPSllOCRD.HANDOUTS]
changes the default dir to login dir
copies the file handoutl.doc

Examples of Sharing and Communications

Computer students are assigned user names coded so that
each section is a separate group. The instructor has a
"leader account" as a part of the group. A typical group would
be assigned the name CPLITQOO through CPLITQ40, or BASQOO
through BASQ40 with the leader account being the 11 00 11 account.
The group shares a class library. In the library a LOGIN.COM
file will apply to the whole group.

If the command $ TYPE MESSAGE.DOC is placed in the LOGIN.COM
file and a file MESSAGE.DOC created, the contents of this
file will be displayed on the screen of each user when he/she
logs in. Instructors use this method of communicating with
the members of the class on a regular basis.

If the instructor wants to quickly determine the productivity
of each student, the command

$ DIR cplitq.cplitq* <RETURN>
will display the names of all the files in all the student accounts.

If the students have been asked to write an assignment or program,
the instructor can quickly survey the entire class by looking at the
contents of the paper or program with the command

$ TYPE CPLITQ.CPLITQ*:filename.ext <RETURN>
That file, when it exists, will be displayed on the screen
starting with the 11 00 11 account and ranging through the entire
group.

If an instructor wishes to examine a specific student's paper or
program, the easiest way is to type:

$ NEXT CPLIT07 <RETURN>
$ DIR/CAT <RETURN>
$ TYPE filename <RETURN>

or
$ RUN filename <RETURN>, if the file is executable.

If the instructor wishes to debug a student's program he/she can
copy the program to his/her own account with

$ HOME <RETURN>
$ COPY CPLITQ.CPLITQ07:filename.ext * <RETURN>

The instructor can modify the program as much as desired;
however the original unmodified program is still in the
student's account.

173

PLANNING, IMPLEMENTING AND MANAGING
A COMPREHENSIVE CAMPU5-WIDE NE'IW)RK

Don Shehi
Maricopa Conmunity Colleges

Phoenix, AZ 85034

The purpose of this paper is to share with you the way in
which a large canmrunity college computer system converted from
a centralized mainframe computer shop to a decentralized
computer network. In 1982, we started with five VAX 11/780's
and now have six times the computing power and a conmrunication
network that covers the metropolitan Phoenix area.

MARICOPA'S NE'IWORK

Maricopa's network started in 1982 with the
purchase of five VAX 11/780 computers. Each
computer had the capacity to handle 96 commu­
nication lines. At this time, the computers were
configured using the Digital DZ communication
hardware. The computers were installed at five

different college sites.

Now let's talk about just what Maricopa is and
where it is!

The Maricopa Community College system is made up
of seven individual colleges. Five of the seven
colleges are full service colleges. By this, I
mean they are comprehensive, including university
transfer and occupational programs. The sixth
college is more occupationally oriented. The
seventh college is a nontraditional college with
centralized administrative offices but with all of
the classes held in remote classrooms. Some of
these classrooms are rented for the class period
and others are leasted on a permanent basis. TWo

additional full service colleges are currently
under construction. These are scheduled to open
in the fall of 1987.

The college system operates in Maricopa County
which takes in the Phoenix metropolitan area. The
Maricopa Community College District is the third
largest community college system in the United
States. our enrollment this year is greater than
70,000 for credit courses. If you include the

Proceedings of the Digital Equipment Computer Users Society 175

non-credit courses that we teach, we have an
enrollment of greater than 100,000.

The first, and largest, computer site is located at
the District office. This· is where the centralized
accounting, personnel, purchasing, etc., is for the
district-wide system. This location is shared with
a technically oriented college, Maricopa Technical
Community College. The district support center
site is centrally located among all our community
colleges.

The other four computer sites
largest traditional colleges:

are located at our
Glendale Community

College, on the northwest side of the Phoenix area;
Scottsdale Community College on the northeast side
of the Phoenix metropolitan area; Phoenix College,
in about the center of Phoenix, and Mesa Community
College on the southwest side of the Phoenix
metropolitan area.

The other two colleges, which do not have locally
installed computer systems are being serviced by
the district support center. one of these colleges
is our non-traditional college, known as Rio Salado
Community College, whose administrative offices are
located in downtown Phoenix. South Mountain
Community College is the other college which does
not have a computer center on campus. This campus
is located in the South central part of Phoenix.

San Francisco. CA - 1986

The colleges with computers, each of which started

with one VAX 11/780 computer, use their campus
computers for student instructional support. They
also maintain all student records for online
registration at their site.

Now that you have an idea of our size and where
the campuses are located, you can see that when we
installed the five 11/780 computers we were going
to a decentralized concept. At the initial
installation of the five sites, we started our
star network. We connected all four campus
computer sites to the district office via standard
telephone lines. We operated these at 9600 baud
and used Digital's DECnet for the protocol to
connect all of our computers together. We used
the DECnet primarily for the application program­
ming staff, the system software staff and
electronic mail. All administrative progranuning
support is still centralized from the district
office computer site. All use Digital's All-In-1
software product extensively for district-wide
electronic mail.

In planning for the computer installation at each
college site, a survey was made to determine what
the needs were. At that time, our concept was to
have all terminals that students used for class­
work centralized in large lab areas at each
college. Our first local network effort was to
direct-wire all terminals to the computer at each
site. The remote buildings, such as student
services, administration, and admissions and
records (online registration area), were connected
to the computer building by multiple pair copper
wire cables. These cables are like the ones you
would see when your local telephone company
installs a telephone system. We used line drivers
on all lines going to remote buildings. This

device will extend a terminal for several miles
and solve the problem of electrical differences
that one may have between buildings.

The colleges without computers on their campuses
are operated by using telephone lines and
statistical multiplexers. We found we could

176

support 16 terminal lines at 2400 baud using a 9600

baud telephone line. The Rio Salado administrative
office started with one set of statistical
multiplexers and the South Mountain campus started
with two sets; one for the administration and
online registration and the other for instructional
support.

The next three years only saw the need for more
computers, more microcomputers and more terminals.

By the end of the third year, we had a network of
ten VAX 11/780s. We had 1,100 microcomputers,
1,000 terminals, and 250 word processors in our
district-wide computer system. Terminals were
still connected directly to computers via DZ
communication devices and the need to have a better
communication network was required.

In the sununer of 1985, we installed Ethernet at our
central support complex. By this time, the
district office computer center had grown to three
VAX 11/780 computers and they were operating in the
Digital cluster.

With three computers at the district location
supporting the functions of the district support
center and three colleges, we were continually
moving terminals from one system to another.
Before Ethernet, this required physical cable wire
movement. Ethernet gave us the flexibility we
needed to move terminals with a simple software
change or simply letting the users decide which
computer they wanted to use. Ethernet also gave us
the ease to add new terminal ports to the district
complex at a reasonable dollar rate per terminal.
Even with using the new technology of Ethernet, we
have still maintained the use of the statistical
multiplexer for the colleges served out of the

district support center complex. We simply
extended the connection from the Ethernet terminal
server by use of our existing equipment.

With the successful installation of Ethernet at the
district site, which proved to us the usefulness of
Ethernet. We extended our plan for Ethernet to our
other computer sites.

In January of 1986, we upgraded all computer

sites. At the Glendale and Mesa Conmrunity College
locations, we added a VAX 8600 to each site and

installed Ethernet. Each of these sites now has

one 8600 for administration and two ll/780s
clustered for instruction. Again, Ethernet gives
us the flexibility to move terminals to any
computer and to add terminals at a reasonable
cost.

In this same timeframe, we added three MicroVAX II
computers and Ethernet at Scottsdale Conmrunity
College. They are using the MicroVAX's to support
the instructional program. The VAX 11/780 is used
to support the administrative computer needs.
The Ethernet at Scottsdale allows them to use any
terminal on any computer.

Ethernet was also installed at Phoenix College,
which now has two VAX 11/780's and a MicroVAX II
to support educational and instructional computing
needs.

Our two new colleges, scheduled to open in the
fall of 1987, are now operating as educational
centers. one is being supported by the Scottsdale
Conmrunity College computers, using 9600 baud
telephone lines and statistical multiplexers, and
the other is being supported by our Mesa Conmrunity
College with the same types of conmrunication
equipment.

All computer sites originally used Ethernet only
in the computer room. Late in 1985, Glendale
Conmrunity College installed a fiber optic cable
from their computer room to their student services
building. In this same timeframe, Phoenix College
extended the Ethernet cable across campus to three
additional buildings. Four more buildings are
currently being wired with Ethernet.

With the increasing needs to teach and use appli­
cation software that requires the use of a hard
disk on microcomputers, we are planning the
implementation of DECnet-DOS at two of our campus
sites. DECnet-DOS will allow us to use the disk

177

on a VAX in place of adding a hard disk to each

microcomputer. We will be using Digital's thin

wire Ethernet to connect groups of microcomputers

to our backbone Ethernet.

We are in the process of implementing a district­
wide library automation system. This system will
require an additional 200 terminals to be
installed, with a proportionate number per
library. These terminals are to be connected to a
central VAX 8700 located at the district support
center. In library systems, this has tradition­
ally been done by the use of telephone lines and
multiplexers. We will be using our Ethernet
conmrunication system to connect the 200 terminals
to the central VAX.

We are in the process of logically connecting the
Ethernet at our five sites. we will be using a
digital 56 Kb line and translan bridges manufac­
tured by VitaLink. Through the use of this equip­
ment, a terminal at the Mesa Conmrunity College
campus will use the Ethernet conmrunication system
to connect to the library VAX at the district
computer site. The colleges that do not have a
computer on-site will have a local Ethernet that
is connected to the district complex by the use of
the translan bridges. We plan to have Ethernet to
all colleges and logically connected via the
bridges by the end of 1986.

As you can see, when this project is completed we
can install a special purpose computer anywhere in
our college system and allow any college in our
district to use it.

Within 18 months, we will have all colleges
connected via our own microwave system. We will
allocate a Tl circuit to be used by the bridges.
At that time, we will have our 10 Mb Ethernet on
each college connected by a 1.54 Mb microwave
conmrunication link. In future years, as the
requirement for faster links between our colleges
become necessary for more distributed processing,
we will enhance this microwave system to meet our
needs.

--..I
00

Rio
Comm·

No On

Eth

Maricopa
Community

Colleges

Current Computer Network
October 1, 1986

Glendale Communi1J' Northeast Valley
F.ducation Center College

1 VAX 8600 No On-Site Computers
2VAX111780 Mux/Terminals only

',
District Support

Services
Phoenix College 1 VAX8600

2 VAX 111780 ~
2 MicroVAX II

1 MicroVAX II

~ MTG SMCC

..... ,. VAX 111780 VAX 11/780 VAX 111780

......... -·""'' -·-"''-·"'""_,~- l II
Salado
ni1J'College
:e Computers
aLink
Let Bridge

Maricopa. Skill South Mountain
Center Communi1J'College

No On-Site Computers No On-Site Computers
Mux/Terminals only Mux/Terminals only

""""""" Dedicated Full Duplex Phone Line
................. ,... Dedicated 56KB Digital Data Circut

Scottsdale Communi1J'
College

1 VAX 111780
3 MicroVAX II

Mesa Communi1J'
College

1 VAX 8600
2VAX11/780

Chandler/Gilbert
F.ducation Center

No On-Site Computers
Mux/Terminals only

CMUTUTOR

Bruce Ame Sherwood

Carnegie Mellon University
Pittsburgh PA 15213 (412-268-8530)

ABSTRACT

CMU Tutor is a programming environment which makes it possible for
non-expert programmers to exploit the potential of advanced-function

workstations. Productivity tools include an integrated graphics editor and
an interactive on-line-reference manual.

An integrated programming environment called CMU Tutor has

been developed at Carnegie Mellon University. CMU Tutor fills
the need for an easy-to-use programming environment that

exploits the power of advanced-function workstations, especially

in the context of the window-oriented Andrew system developed
at Carnegie Mellon in a joint IBM-CMU project. CMU Tutor
enables those with limited programming experience to develop

interactive graphics applications, especially educational
applications, without having to depi:nd completely on the
assistance of professional programmers.

CMU Tutor is based on the MicroTutor language developed at
the Computer-based Education Research Laboratory at the
University of Illinois (the PLATO project). It incorporates
MicroTutor's important constructs for interactive educational
programming, including easy graphics production, support for
diverse kinds of text, rich sequencing facilities, various input
analysis routines, and good calculational capabilities.

CMU Tutor uses incremental compilation; that is, only those

program segments which have been changed are automatically
recompiled. As a result, after making a change in the source
code the developer can see the effect right away. Since the
source code is compiled rather than interpreted, execution speed
is quite fast.

All special text forms supported by the Andrew editor (italics,
bold, large, small, centered, etc.) appear as such in the source
code, eliminating the need for complex text output commands.
A novel graphics editor, tightly coupled with the source code,
obviates the need to use a separate command language for
creating and editing displays. Automatic scaling to arbitrary
window dimensions is supported with options to scale x, scale y,
preserve aspect ratio, and scale text. Compile-time and

execution-time error diagnostics are very specific, both in the
content of diagnostic messages and in pinpointing the location of

the error.

An important component of the programming environment is a
powerful on-line reference manual for the CMU Tutor language.
Language features can be accessed either through hierarchical
indices or through names of commands in the language. In
either case selections are made simply by pointing with a mouse.
Language features are illustrated in context by sample routines.
A unique feature is the ability to execute these samples
immediately by using the mouse to copy them into the
programming window where they can be executed right away.

Proceedings of the Digital Equipment Computer Users Society 179

These sample routines can act as nuclei for further elaboration
by the programmer.

The Andrew system software operates on Berkeley Unix-based
workstations, including the IBM RT PC, DEC's Vaxstation II,
and Sun workstations. CMU Tutor source code can be
compiled and executed on ordinary IBM PC's and Apple
Macintoshes. Although these microcomputers don't offer the
programming productivity tools of the workstations, such as the
integrated graphics editor and on-line reference manual, the
ability to port applications among all these systems is extremely
useful.

REFERENCES

Crecine, J. P. The next generation of personal computers.
Science 231, 935-943 (Feb. 28, 1986).

Morris, J. H., Satyanarayanan M., Conner, M. H., Howard, J.
H., Rosenthal, D. S. H., and Smith, F. D. Andrew: a
distributed personal computing environment.
Communications of the ACM 29, 184-201 (March
1986).

Sherwood, B. A. An integrated authoring environment.
Proceedings of the IBM Academic Information Systems
University AEP Conference, Alexandria, Virginia, 29-35
(June 1985). Here it is explained that CMU Tutor gets
its name from being implemented in C, with MU being
the Greek letter for Micro.

Sherwood, B. A., and Sherwood, J. N. CMU Tutor: An
integrated programming environment for advanccd­
function workstations. Proceedings of the IBM
Academic Information Systems University AEP
Conference, San Diego (April 1986).

Sherwood, B. A., and Sherwood, J. N. The CMU Tutor
Language, Preliminary Edition. Stipes Publishing
Company, 10 Chester Street, Champaign, Illinois 61820
(1986).

Sherwood, J. N. CAfU Tutor Reference Manual. Carnegie
Mellon University internal report (1986). This 1s a
printed version of the on-line reference manual.

San Francisco, CA - 1986

Trowbridge, D. Using Andrew for development of educational
applications. Proceedings of the IBM Academic
Information Systems University AEP Conference,
Alexandria, Virginia, 85-89 (June 1985).

Trowbridge, D. A sampler of educational software at CMU.
Proceedings of the National Educational Computing
Conference, San Diego, 135-142 (June 1986).

Sherwood, B. A. Workstations
Proceedings of the Fall Joint
Conference (November 1986).

at Carnegie Mellon.
ACM-IEEE Computer

180

MICROCOMPUTERS: SUPPORT ARD OTHER ISSUES

David v. Cossey
Union College

Schenectady, New York 12308

ABSTRACT

Microcomputers have been touted in many institutions as the
cure to all computing problems. They are inexpensive, small and
user-friendly. They also come with their own set of support
problems, and many of these problems require solutions outside of
those normally and traditionally provided by a mainframe-oriented
computer center staff. The microcommputer also provides a
tremendous opportunity for the college, university, staff member,
faculty member, student and yes, for the computer center.

Some of the support problems that will be addressed in this
paper include: computer center staff training and retraining,
user training (especially college/university staff and faculty),
maintenance support, microcomputer laboratory support, delivery
and setup, staff incentives, staff overload, software evaluation
and selection, hardware and software support.

In addition to problems that need to be solved, there are some
unique opportunities that are created for the college/university
and computer center. It is exciting to see faculty and staff
members get excited about computing. The microcomputer, and all
the media attention it is receiving, is making nontraditional
computing users take notice. They get the feeling that if they
do not get in on the microcomputer revolution, they are missing
something. They look to someone for guidance. The computer
center has a tremendous opportunity to lead. If the center does
not lead, it will be forced to follow.

The work described in this paper pertains to work done while
the author was Director of Computing at The Wharton School of the
University of Pennsylvania. Since July 1, 1986 he has been
Director of Computer Services at Union College.

Standing faculty:

1 Introduction MBA Students:
PhD students:
Undergraduates:
Evening students:

176

1,500
400

2,200
1,500 This paper will describe a project

that took place during the Spring and
Summer of 1984 at The Wharton School of
the University of Pennsylvania. The
project involved the largescale
introduction of microcomputers at
Wharton to support academic, research
and administrative functions.

Administrative/Staff: 275

The Wharton School is the business
school at the University of
Pennsylvania, and the population of
potential computer users is divided
approximately as follows:

Proceedings of the Digital Equipment Computer Users Society 181

Wharton installed a DECsystem-10
timesharing system in 1974, and the
Wharton Computer Center was established
around 1975-76 to support computer use.
The University of Pennsylvania is a very
decentralized university, and
essentially each school is responsible
for meeting its own computing needs.
There is no central university computer

San Francisco, CA - 1986

center. In June, 1984, a Vice Provost
for Computing was hired by the
university, and through this office a
central computing support function is
being established.

It became clear that a major
commitment needed to be made in the area
of microcomputers, and during the
1983-84 academic year serious
negotiations and discussions were
conducted which culminated in a purchase
of over 350 microcomputers. This paper
will discuss the implementation of
microcomputers and associated services
at Wharton.

The Wharton Computer Center, which pad
been responsible for the DECsystem-10
and its support, was combined with
Wharton Audio-Visual Services and
augmented with new support personnel to
form Wharton Computing and Instructional
Technology (known as WCIT). WCIT is now
responsible for supporting th7 la7ge
system, microcomputer and audio-visual
needs for Wharton.

The selection of computer hardware was
done through a process of negotiation
with various vendors, and was
coordinated by the university. The
computer system chosen was the Digital
Rainbow-100, and the configuration
chosen was as follows:

Hardware:

Digital Rainbow-100
256 KB of memory
5 MB hard disk
Graphics option
Floor stand
LASO dot matrix printer

Software:

MS-DOS operating system
Lotus 1-2-3
The Finalword word

processing package

In addition, a lab of twenty
Hewlett-Packard HP-150 computer systems
was established.

2 Preparation

The Rainbow systems were ordered in
March/April, 1984 and the first group of
twenty-one systems arrived in April.
These systems were distributed to WCIT
personnel and other key users. The
second group of 129 machines arrived in
May, and the remaining systems arrived
during the remainder of the summer. In

182

all, 372 Rainbow systems were delivered,
and the distribution was divided roughly
as follows:

Public labs
Faculty
WCIT
Other

100
150

25
97

During the time when the project was
beginning, responsibilities for support
were divided between the Computer Center
and Audio-Visual Services. The Computer
Center was responsible for hardware
preparation, setup, delivery and
support, and Audio-Visual Servic7s was
responsible for software evaluation,
selection and support. A hotline phone
number was also established that would
take any calls regarding Rainbows. A
document was drawn up that detailed all
issues that we anticipated as well as
possible solutions. This document,
while not complete, formed the focus and
basis for our subsequent planning and
implementation. The members of the
Computer Center fulltime staff assumed
responsibilities for different aspects
of the project.

In preparation for the summer, .
approximately twenty students were hired
to work for the microcomputer project.
There were not enough fulltime staff
members to handle the scale of the
project (eight in the Computer Center
and six in Audio-Visual Services).
Without the valuable contributions of
the students, the project would have
been impossible. Many of these students
continued on a parttime basis during the
1984-85 academic year.

3 Delivery and Setup

The first delivery of twenty one
systems went smoothly, except for one
problem. Delivery on each order was
specified as an "Inside Delivery".
However, as each truck arrived the
driver pleaded that this was
impossible. Faced with a non-delivery,
we were forced to unload the first
trucks ourselves. Unloading a full
truck took between three and four hours,
with 10-12 people. The later deliveries
were "inside" deliveries.

There is no loading dock at Wharton,
and there is a lack of storage space
available. For the summer, we were able
to get classrooms to use for storage,
setup and testing. These rooms were
equipped with security systems.

After a delivery the classrooms were
piled to the ceiling with boxes of

Rainbows (each system came in
approximately 6-7 boxes). The Rainbows
were unboxed, assembled and tested
before being delivered. They were not
"burned in." Each Rainbow came with a
one year warrantee, and most problems
showed up in the first 30-60 days of
use. An ongoing problem was that of
keeping track of serial numbers (system,
keyboard, monitor and printer).

4 Software Decisions

It became clear that the MS-DOS
operating system would be the one that
we would support (the Rainbow also came
with CP/M). Also, Lotus 1-2-3 would be
the spreadsheet package that would be
supported. This was the almost
unanimous choice of the faculty and
students, and we did not seriously
evaluate any other spreadsheet package.
In the area of terminal emulation/file
transfer packages it was decided to
support the KERMIT protocol since we
already had KERMIT on the DECsystem-10
and the VAX 11/750. LCterm was a public
domain package that provided terminal
emulation and both the KERMIT and XMODEM
protocols. LCterm is now sold
commercially, and it is also available
for the IBM PC. Other areas where the
choice was not as apparent were database
and word processing packages.

4.1 Evaluation and Selection

Since many faculty members owned IBM
PC's, and this trend would probably
continue, it was decided to only
evaluate software packages that ran on
both the DEC Rainbow and the IBM PC.
Although this limited our choices at the
time, it was felt that this would make
future support easier.

The most pressing need was to choose a
word processing package. A list of
selection criteria was drawn up, and
approximately eight packages were
evaluated. The final choice was between
The Finalword by Mark of the Unicorn and
WordPerfect from SSI. We chose
Finalword. There are now additional
packages that would be considered that
were not available in 1984. One of the
features available in Finalword was a
means to protect the user from
inadvertent loss of work in the case of
a power failure or inadvertent powering
down of the system. This feature has
since been added to WordPerfect.

In the database area the package
chosen was KnowledgeManager from Micro
Data Base Systems, Inc. Again, today,
there are other options that would be

183

considered.

Some of the criteria used in
evaluating software were:

Availability for both the
DEC Rainbow and IBM PC

Availability under MS-DOS
for the Rainbow

Ease of use
Flexibility
Price
User-friendliness

4.2 Support

A telephone hotline and a walkin
support area was established.
Documentation was written to provide
quick and easy introductions to the
various packages. In the case of Lotus
1-2-3, users were pointed to the
Lotus-supplied tutorial as an
introduction. For the Fall, short
courses were established for the various
packages. These short courses now
include:

Introduction to Microcomputers

Introduction to Spreadsheets
Introduction to Lotus 1-2-3
Lotus 1-2-3 Database facilities
Lotus 1-2-3 Graphics
Lotus 1-2-3 Macros

Introduction to Finalword
Advanced Finalword

5 Training

When the microcomputer summer project
began, there was a lack of fulltime
staff members to support the effort.
During the summer, the fulltime staff
performed their "old" duties as well as
new duties. While this effort could
work for a time, it could not be
sustained through the academic year that
began in September, 1984. Additional
fulltime staff were hired, but most of
them did not begin work until September,
1984 through Spring, 1985.

One of the functions that needed to be
provided was for initial training for
faculty and staff, The decision was
made to contract with an outside vendor
for these services. Three vendors were
contacted, and Digital Equipment
Corporation's local Software Services
group was chosen to develop a one-day
training session and associated
materials. The one-day session was most
convenient for the majority of those who
would receive the training. It would

have been difficult to sustain a program
spread out over several days for 2-3
hours per day.

The course was divided as follows:

Morning

Introduction to Microcomputers
Introduction to MS-DOS

Afternoon

Introduction to Finalword
Introduction to Lotus 1-2-3

Everyone who was going to receive a
Rainbow system was required to attend a
session. The sessions ran for
approximately 30-35 days, and attendance
was limited to nine per session. There
were two instructors available at all
times - one instructing and one
available for individual help. Each
"student" had his/her own Rainbow
system, and the instructor had a Rainbow
connected to a video projection system
connected to two large monitors. The
session followed the prepared materials,
so that there was a constant
reinforcement of the concepts
presented. This also eliminated the
need for the student to take copious
notes.

Delivery of the Rainbow systems to an
individual's office was coordinated with
the instruction. The Rainbow was
delivered the day before the person was
scheduled to take the course. We did
not want the systems to show up too many
days before an individual received
instruction, since we did not want the
individual to be overwhelmed by the
amount of documentation delivered. On
the other hand, we wanted the student to
know that the system was in his/her
office, and that immediately after the
class the system was available for use.

The classes were well-received. The
audience was mixed (those with no
computer experience and those who had
used computers for years were in the
classes). Although it would have been
nice to separate the new users from the
more experienced ones, it was not
practical to schedule.

6 Maintenance Support

The Rainbow systems came with a full
year's warranty, which alleviated the
need for us to find a vendor to service
the systems during the first year. This
year also gave us experience in
diagnosing the problems, and many of

184

these turned out to be software
related. What emerged was a system
whereby we would take a call on the
hotline, and we would send someone to
the office to diagnose or fix the
problem. If the problem turned out to
be a hardware problem, we would swap the
faulty part (we kept back some machines
to use as "swappers") or the entire
machine. The technician from Digital
Equipment Corporation would then swap
the faulty part for a good one when he
made his service call to our "depot"
location.

By attending to the machine
immediately, we were able to reduce the
downtime experienced by a user. Thus,
we were able to reduce some of the
frustration of firsttime computer
users.

7 Staff

When the project began, we were not
staffed at appropriate levels to provide
ongoing support for the microcomputer
use at Wharton. Thus, immediate steps
were taken to hire new staff, and to set
up a new organization, built around the
existing Wharton Computer Center and
Audio-Visual Services. However, it
takes time to assess one's needs and
also to hire people. Most of these new
people were hired after the summer was
over.

7.1 Needs

We divided up the responsibilities for
microcomputer support within our
Operations, User Services (newly
developed) Technical Services (Systems)
groups and Audio-Visual groups. The
bulk of the support eventually centered
in the Operations and User Services
units. This has since evolved into a
model in which most of the support is
centered in the User Services group.
Network and communications support is
provided out of the Technical Services
group.

We felt the need to hire a fulltime
consultant within the User Service group
with responsibility for microcomputer
support. We also hired a fulltime
person with responsibility for
logistical and operational support for
microcomputers. These fulltime people
were supplemented by many student
parttime employees.

7.2 Training

Most of the initial training for
microcomputers was done by individuals
on an ad hoc basis. Later, as formal
courses were developed (such as the
one-day training session), staff members
were encouraged to participate.
Enthusiasm was high, and most staff
members did not want to be left out. It
was an exciting, but hectic, time.

7.3 Incentives

Incentives for the efforts during the
summer were mainly intangibles, but
bonuses were obtained for those who
participated heavily in the project.

8 Opportunities

The introduction of microcomputers at
Wharton provided many opportunities for
WCIT. It was a time in which many
people were being introduced to
computing for the first time. There
were many people who had never used
computers before, and many others who
had never used a microcomputer. There
were others who were very frustrated
with computers because of bad past
experiences. Thus, a goal at WCIT was
to make the experience as enjoyable and
as painless as possible.

We had an opportunity to show that we
could be responsive to the needs of
individuals and departments. I received
more thank yous and commendations from
this project than I had in my previous
five years at Wharton. Part of this was
a result of increasing the base of
computer users at Wharton perhaps by a
factor of three or four.

Many computer centers have faced the
introduction of microcomputers as a
threat rather than as an opportunity.
They will be the losers if they
persist. Microcomputers are here to
stay, and they will continue to pervade
the academic and business environment.
The computer center can follow or lead7
it cannot afford to ignore.

185

STATE OF WASHINGTON SCHOOL NE'.M)RK

Al Huff, E;xecutive Director
Washington School Infonnation Processing Cooperative

Lynnwood, washington 98036

This paper briefly describes the WSIPC organization and four
aspects of its operations: namely its equipnent and network
strategy, in-house maintenance, centralized systems software
support and the software developnent envirorment.

The WSIPC (washington School Infonnation
Processing Cooperative) is a rather unique
agency in the public sector in that it exists
solely to provide data processing services to
the State of washington K-12 Public School
system. It has its own Board of Directors
which represent the state geographically in
their individual appointments. WSIPC
contracts with I) the state Office of the
superintendent of Public Instruction, 2) the
nine Educational Service Districts in the
state, and 3) 270 of the 298 local school
districts to supply services. WSIPC receives
no funds other than what is earned via the
above contracts which are mostly signed on an
annual basis. So far as I know, WSIPC is
unique in providing software services through
an integrated network to all three tiers of
the school hierarchy.

WSIPC currently operates with an annual
budget of about $5,000,000 and employs 60
people. The software applications are
payroll/personnel, general ledger, budgeting,
purchasing, payables, receiveables,
inventories, warehousing, student grading,
scheduling, transcript, attendance and general
danographics, special education and user
defined data bases, state reporting in all
areas and electronic mail services.

WSIPC has created a DEC VAX network,
utilizing DECNET to facilitate processing and
support up and down this structure. It should
be understood that the software developed by
WSIPC in the administrative area is highly
integrated with state reporting requirements
and by its nature, would not be suitable for
use in another environment without significant
modification. So what is of interest to
members of DECUS? I believe that there are at
least four things which WSIPC has developed
which are useful for other service agencies.
They are:

I. A practical, useable hardware model.

2. An example of in-house maintenance and
systems integration.

3. A successful model for centralized systems
support over a distributed network.

Proceedings of the Digital Equipment Computer Users Society 187

4. A successful evolutionary applications
software developnent model.

The WSIPC hardware model is relatively
simple due to the nature of DEC's networking
and configuration tools. The theory at
present is that canputing ought to be as
close to the end user as is econanically
possible and therefore, the 19 VAX systems
are spread around the state. They are
generally in the population centers with
additional local access provided by
statistical multiplexors in the secondary
population centers. Further, where school
districts desire more canputational power,
they have a VAX on their premises and/or PDP
lls in their secondary schools. The PDP lls
are not networked and are scheduled for
replacement by VAX systems.

All VAX machines are pennanently linked
into the carmunications network through
Digital Router Servers. They are either
connected to the Router Servers via leased
lines and 9600 Baud modems or on Ethernet.
With this straight-forward "star" type
network, every VAX is virtually one step away
fran any other VAX and the state goverrmental
pyramid is relatively simple to implement.
~ found that using pass-through VAX nodes on
DECNET was undesirable for perfonnance and
that the network is much more stable with the
nodes arranged so that no single node is
dependent upon another to function in the
network. Since we do not have critical
realtime considerations, it is acceptable to
have a node out of the network temporarily.
The only central failure point is one of the
Router Servers and they are not a problem.
They have few canponents which might fail and
they are engineered to allow on-the-fly
plug-ins. The long term network
configuration will have several Router
Servers connected via high-speed links. This
topology will be predaninantly influenced by
costs of the carmunications lines and is
almost infinitely flexible.

A typical configuration for a VAX node
is an 11/785 with 24MB of memory, one system
pack and a three or four disc packset for
user data (or a gigabyte of storage), two

San Francisco, CA - 1986

high speed line printers, two 6250BPI tapes
and around 64 or 80 catlllunication lines which
are a mixture of hardwired, local dial-up and
multiplexed lines. Such a configuration can
handle the interactive and batch work of about
50 concurrent users before response time
degrades. '!he network is mostly 785s with
three 750s, three MicroVAX !Is and two 8300s.
All systems have a DECNET connection.

WSIPC is sanewhat unusual in that it has
its own maintenance group of five employees.
'!his activity began when the previous Xerox
Sigma 9 systems had little catrnercial support
available. Then, the expansion of our
catlllunications equipnent and lines made it
desirable to have the ability to troubleshoot
and fix modern and multiplexor problems
in-house. The service evolved into printer
maintenance and when difficulties occurred
with two different PDP 11 integraters, we
stepped into first maintaining those systems
and now to integrating MicroVAX II systems for
use in the network. This group will also
maintain the MicroVAX IIs. While this group
does not maintain the other VAX CPUs, they do
work directly with Digital. we have a single
maintenance contract for all the CPUs and
Digital disks. OJr experience with this
indicates that our credibility with the user
is increased because we can address most any
problem without having to ask multiple
vendors to isolate problems which may be
either software, hardware or catlllunications.
So far, this has proved to be less expensive
and more responsive for our network. A great
deal of site planning is done by this group as
well.

WSIPC supports about 35 PDP ll systems
and 19 VAX systems with one centrally located
systems software group of five people. 'Ihese
people must be experienced in handling
operating systems in order to be successful.
Almost none of the other sites have a systems
person on staff. In our opinion, they are not
required. WSIPC staff use lhe network to
monitor and tune VMS. They use the network
with autanated routines to gather device error
statistics and to measure workload. Problem
resolution is of ten done over the network as
well as occasional distribution of software.
We have found that great econanies are
possible with this arrangement. The staff
gets much IOC>re experience than single site
people can and they have ready canparisons
when aberrations appear. They are mutually
supportive in that they can afford to
specialize in particular areas and share the
expertise.

In addition to the systems management
use of the network, WSIPC uses the network as
the vehicle for transferring files which are
usually reporting instrunents destined for the
State Office fran the local school districts.
This process can work in reverse as well. The
network also is used as an electronic message
switch under All-In-1 and our own bulletin
board.

188

The applications software developnent
model has evolved over the years. Several
years ago, we found ourselves totally tied up
with maintenance and enhancement work in
existing code. This often led to
difficulties in implementing related pieces
of code which were in maintenance and at
different points. No new developnent was
possible. we were forced to regroup and
evaluate the process. we decided that
reliability was the nunber one goal. That
meant the software worked like it was
docunented, that systems were up, that phone
lines worked and were not all busy and the
whole gamut of what the user perceives when
he or she wishes to do work. That led us to
a more planned approach to applications
developnent. we pranised that existing code
would only be worked on once per year and it
would be stable the rest of the year. All
modifications and enhancements would be done
at the same time. we called it routine
maintenance and set out an annual schedule.
All requests for enhancements would wait for
the scheduled cycle. If the nunber of
enhancements exceed the amount of budgeted
routine maintenance time, then the project
team must make the decision on deletions
prior to the start of the project. All
reports of deficiencies or bugs would be
classified as critical or not-critical. If
they were critical, an inmediate fix would be
made. If not, they would wait along with the
enhancements for the routine maintenance
schedule. This very quickly stabilized the
applications code and made it more reliable.
Further, it became possible to schedule new
developnent and canplete it. It should be
stated, that it is important for all projects
to be estimated in advance and then agreed to
by the project team. No open-ended projects
are allowed.

The WSIPC applications are coded in
CObol for the financial side and Fortran 77
for the student record side. Several
productivity tools are employed such as PCA,
Language Sensitive Editors, TPU, Symbolic
Debugger and so forth. These are much
appreciated tools. The applications are well
established and contain about 1,000,000 lines
of code. So far, our analysis is that 4GLs
are still not adequate for our purposes.
This could change and is a continuing subject
of research.

WSIPC has a far flung user CCITl!lunity
and must formalize the process for
instituting changes or enhancements or new
programs. All such requests are sutrnitted in
writing and get the sign-off of the
district's chief administrator which in and
of itself deletes sane of the chaff. Then
enhancements are handled as the routine
maintenance schedule can accomnodate if the
enhancement does not negatively impact other
users. Requests for new applications are
given to a representative catlllittee of users
who reject and or prioritize them.

Then our Executive Camtittee determines how
much of the newly prioritized work it can
fund. Once projects are funded, they are
scheduled and turned over to a team made up of
Applications Analysts and Product Support
people. The Product Support people have
control of the objectives of the project and
use several devices for eliciting user input
on design objectives. Once the two groups
have agreed on the design, the Product Support
people begin writing user documentation and
the Applications people begin coding. All
code is turned over to Product Support for
final approval and validation prior to
release. No code is released without the
accanpanying docunentation so these groups
must work in tandem and act as a check on one
another. The Product Support people then sign
off on program release which occurs every
Friday evening in a pre-determined manner
which requires routine operations. Product
Support also schedules training for the field
user trainers and carries that out. We now
can tell users just where projects are and
give expected release dates with about 80%
certainty. We have gone fran a situation of
being al.rrost overwhelmed to a highly
predictable process which gets much more
acccrnplished.

189

"E067 ENHANCING CAMPUS AND COMMUNITY COMMUNICATIONS
THROUGH VOICE, DATA, AND VIDEO TELECOMMUNICATIONS"

J. D. Thomas
Freed-Hardeman College
Henderson, Tennessee

ABSTRACT

Freed-Hardeman College extended campus and community
communications in 1986 in one of the first educational
implementations of the DECconnect cabling scheme,
providing both reduced costs and enhanced services to
faculty, staff, and students at 887 multioutlet
faceplates. A voice-data PBX with LAN features for
occasional users of the central resources, an
Ethernet-DECnet LAN with terminal servers, and continued
direct wiring of some workstations now give on and
off-campus computer access. Parallel fiber optic,
twisted pair, and coaxial cables and an empty conduit
buried between all buildings support enhanced telephone
and CATV services and provide for expansion of the
Ethernet and any future technologies.

THE SETTING

Freed-Hardeman College is a four-year liberal arts
college related to churches of Christ. It is
locate.cl in a small town in rural West Tennessee,
twenty miles south of the regional center of
Jackson and about eighty-five miles northeast of
Memphis. Originating with the Henderson Male and
Female Institute--proudl? but atypically coed when
chartered as a high school and college in 1869, it
has always offered liberal, character, and career
education. General education no longer means the
classics, but there has always been a strong core
curriculum. Teacher, business, and ministerial
education have long been featured. Of the 40 major
programs of study, mass communication, social work,
and computer studies now also attract significant
numbers of students. The Computer Science major is
based on ACM recommendations, and the Computer
Information Systems major on DPMA guidelines. Both
are organizationally in the Department of
Mathematics and Computer Science, and in the fall
of 1986 majors were equally divided between the
two programs.

The college draws its 1083 students from two-thirds
of the states and about ten other countries. The
students and a faculty of 89 full- and part-time
teachers and administrators, along with student
spouses, and other staff employees, have a
substantial impact on a town of under 5,000
population in a county of 11,000. Many local
citizens are alumni or have some connection with
the college or with its personnel. There are
about 25 main buildings on a 100-acre campus.

COMPUTING ON CAMPUS

Combining Title III, Higher Education Act, and
non-Federal funds, Freed-Hardeman has since 1981
acquired and put to good use a significant amount

Proceedings of the Digital Equipment Compuler Users Society 191

of computer equipment. Counting students and
employees, there is approximately 10:1 person to
workstation ratio. Except for some portables
bought primarily for evaluation and for Apple Ile's
used in an introductory applications course for
nonmajors, in teacher education strategies courses,
and in a few other departmental settings, most of
the equipment bears the Digital logo. All but
about 50 of the nearly 200 microcomputers,
terminals, and printers in ten of the buildings
have been hardwired to one or the other of three
DEC minicomputers located in the Computer Center--a
PDP 11/70 used for administrative applications, a
PDP 11/44 used for the library, and a VAX 11/750
dedicated to faculty and student use. Major labs
open to students from all departments are equipped
with VTlOOs, Rainbows, or VT24ls. The color
terminals in the Graphics Place lab are used by
students completing assignments programmed by
faculty from all fifteen academic departments
during a series of three 5-week summer workshops on
Digital's Courseware Authoring System. Three­
fifths of the faculty have some graduate or
on-campus computer training; the published
objective for the eighties is for three-fourths of
the faculty to be active users of computing.

TELECOMMUNICATIONS PLANNING

The telecommunications project under way grew out
of long-range planning; financing for a subset of
it was included in a capital campign. Computer
Services has been stretched to meet faculty and
student requests for access to the academic VAX
mini, and programs being developed for use by
advisers and others for library searches by all
faculty and students require access also to the PDP
lls. Replacement of a deterio.rati)'.lg P:lX aitd rJf
outside cable buried or strung by at least three
different companies over the past thirty years was
an urgent need verified by a firm of consulting

San Francisco, CA - 1986

engineers and by the experience of trying to
maintain a switch and wiring no longer supported by
the manufacturer or vendor.

Vendor Selection
A telecommunications planning committee consisting
of four vice presidents and the director of
computer services began meeting in the fall of 1985
with DEC and telephone marketing representatives.
The vision of comprehensive recabling of the campus
and of enhanced services developed when pre-formal
announcement of the DECconnect cabling scheme was
presented by DEC sales and networking personnel.
The opportunity to do something more significant
than replacing the old PBX was attractive.

To preclude the possibility of buying another PBX
which might be orphaned or which might have to be
serviced by technicians from distant cities, the
committee solicited proposals only from AT&T
Information Systems (ATTIS) and from South Central
Bell Advanced Systems Incorporated (SCBASI)--the
nonregulated subsidiary of the regional Bell
holding company, BellSouth. Advanced Systems made
an office-by-office study of exiRting patterns of
telephone and computer use and pro?osed--from among
the various manufacturers lines they distribute--.a
Northern Telecom (NT) Meridian SLl-N voice-data
PBX. ATTIS spent less time on campus, but prepared
a very competitive bid for a System 85. In the
final analysis, South Central Advanced Systems was
chosen because (1) they were a DEC OEM with access
to DEC information and expertise, (2) Northern
Telecom and Digital had jointly developed the CPI
computer-to-PBX interface, and (3) ATTIS seemed to
be unduly interested in introducing their mini- and
microcomputers to the campus and emphasized Unix
and interfaces with IBM PCs and true ccmpatibles-­
of which we had only one, a Compaq portable bought
for a software transporting project. The first
consideration became a detriment as DEC district
personnel feared loss of control of the college
account and of credit for any sales. The second
became insignificant when a decision was made not
to use the CPI product.

Needs and Opportunities
There were three major communications services
problems: (1) the PBX was obsolete; (2) hardwired
access required choosing one of the three
timesharing computers; and (3) cable TV service was
offered by the local community antenna television
(CATV) company to only three of nine residence
halls. Tone dialing was not available on campus or
through the local central office. Although there
are ways to combine pulse and tone signaling to use
remote databases and discount long-distance
services, the equipment and technique seemed
awkward and many unidentified calls were placed
more expensively with l+ access to AT&T.

In addition to solving the problems identified
above, the telecommunications Rtudy committee saw
other opportunities. These included (1) universal
telephone service for students; (2) elimination of
high installation and service change fees and
deposits charged students by the telephone company;
(3) obtaining less expensive long-distance service
and sharing the discount with students; (4) reduc­
ing the cost of cable TV service; (5) using a
campus cable network to distribute educational and
local origination programs; (6) reducing the

192

incremental cost of adding and connecting a
terminal or a personal computer; and (7) giving
students access to the academic VAX computer when
laboratories and buildings are closed.

Advertisements of the availability of National
College Television (NCTV) and of educational and
documentary collections such as the Video
Encyclopedia of the 20th Century added to the
interest in the project. Broadcasting students and
faculty are interested in significant or realistic
learning activities, and the prospect of producing
documentaries as well as live originations was
exciting. Library AV personnel liked the idea of
transmitting video to classroom monitors without
moving either VCRs or students.

System Design
The cabling, networking, and user equipment plans
were designed by the computer and telephone vendors
and the local CATV company, in consultation with
college personnel. Each of them underwent
significant design changes as vendors came up with
what they believe to be better ideas.

Cabling - Unshielded twisted-pair copper wire,
four-fiber Siecor optical cable, and standard
CATV 75-ohm coaxial cable were direct buried in the
summer of 1986 between all buildings. Fiber at
first was to range from 24- to 4-fiber with
dropoffs at buildings between the center and the
extremes, but was reconfigured to use 4-fiber cable
in a multiple-hub or multiple-star pattern.
Independent engineers reviewed the design and
expressed the opinion that it would support any
foreseeable needs. The committee realized,
however, that nothing is as unforeseeable as the
future. Alongside is a 1-inch flexible plastic
conduit for any replacements or future developments
in cable technology. You could say we have four
nets--a fiber net, a coax net, a twisted pair net,
and the conduit as our safety net.

Faceplates - Three or four twisted pairs and
coaxial cable are terminated at each of nearly 900
triplex faceplates. The DECconnect scheme brings
all cabling into a Satelite Equipment Room, called
by telephone people an IDF (intermediate
distribution facility), including the fiber. Data
is connected to the using locations on twisted pair
or thin-wire Ethernet. Delivery of the four-port
faceplates in sufficient quantity could not be
assured by Digital, so SCB Advanced Systems had
triplex faceplates custom-made for installation in
residence hall rooms, classrooms, laboratories, and
most offices. From top to bottom are telephone,
data, and video jacks. We did get enough quad­
outlet DECconnect faceplates for the CIS faculty
offices in the Education Center--a building being
renovated during the summer.

Ubiquitous campus-standard multioutlet faceplates
eliminate the need to decide in advance where
voice, data, and video will be needed. They do not
necessarily provide the best,solution for a
particular location. In many residence hall rooms,
for example, the TV outlet needs to be on the wall
opposite the telephone and computer connections, so
we have some duplex "RJ" faceplates with video
jacks at a separate location. It seems unlikely
that thin-wire Ethernet for high speed end-node
connections will be needed in all locations. Three

different types of phones used are supported by
different PBX software and line cards, so phones
may not be moved at will or without special
prograllllning.

Central Office Support - To support the college's
new telephone system, South Central Bell installed
a Northern Telecom DMS-10 central office switch-­
bringing 7-digit tone dialing, equal access, and
extra-cost options to the community. The biggest
threat to community relations was the elimination
of 4-digit dialing in the local exchange. Seventy
trunks bring T-1 service from the central office
to the campus; the copper originally used has
been replaced with LightGate fiber.

TELEPHONES, DATA CONNECTIONS, AND SERVICES

Direct inward dialing, call forwarding, easy
conferencing, and a message desk for faculty and
other off ice telephone users have greatly increased
the probability of talking with or getting a
message to a teacher. Electronic mail will be
extended as more desks have computer screens.

Telephones are sufficiently state-of-the-art that
the vendor and installers were unfamiliar with
them, and many of them have been relabeled and
reprogrammed after placement in offices.
Eighty-seven are M2009s which ha~e RS232-C data
jacks ready for a terminal or microcomputer
connection. They use only one pair of wires
between the office and the switch room to provide
independent voice and digital data transmission.
(See figure: LANSTAR Connections.) Voice and data
are then terminated separately on special line
cards. The M3000 multifeatured Touchphones
promised the vice presidents are recedingware-­
apparently beyond the state of the art. Pictures
of them have been available for more than a year,
but distribution has been delayed by problems with
LCD screen visibility. Other casual data users
will have computer connections through the second
RJ-11 (that is, standard telephone) jack. An AIM
(asynchronous interface module) cable may be used
without a modem for dial-up access to other
computers--mini or micro--through the Meridian
LANstar features of the PBX switch, or the user may
be conneced to a terminal server in his building's
equipment room. Heavy users with single access
needs--such as accounting--will continue to be
served with direct-wiring into minicomputer ports.

The NT Meridian SLl-N was placed in service for
testing in mid-August of 1986--two or three weeks
after the central office cutover. The previous
system was left in operation through the end of
August, providing backup service during
orientation, training, debugging, and the
relabeling and reprogramming which proved to be
necessary.

Long Distance Service - Students--except for the
dozen from Alaska, which is outside WATS band 5,
and for international students--buy toll service
at a discount from the college. We have initially
contracted for service and billing with a WATS
reseller based in Jackson, Mississippi, but with
off ices and service in nearby Jackson, Tennessee.
LDDS offers toll service to the U. S. Virgin
Islands, but the college's half dozen Virgin
Islanders are from the British Virgin Islands.

193

Speed call dials the local access code, but each
caller must input a personal or office authoriza­
tion code.

Computer Service - Data connections and
transmission through the switch have been
demonstrated but not yet widely implemented. As
soon as the Ethernet-DECnet backbone connecting
the three DEC minicomputers with each other and
with the PBX has been installed, the need to
activate Ethernet hubs and to switch users to
terminal servers will be evaluated. Use of the
direct CPI connection between the VAX and the
SLl-N was rejected because of the number of ports
it would have utilized and because it appears t.hat
reverse terminal servers will enable the PDP lls
to be accessed as well as the VAX. RSTS/E is not
yet supported on DECnet, so this solution seems to
be the best available.

Message Service - One of the best-received services
associated with the new ~ystem is a message desk.
Calls coming into the campus to office phones not
answered by the fourth ring revert to the campus
operator, who offers to connect the caller with
another party or the message center. Every office
phone has a message waiting indicator. After­
hours and weekend calls are recorded and
transcribed at the beginning of the next business
day. Messages are entered into a computer file and
retrieved and read to the employee by the message
desk attendant. When ALL-IN-1 and DECtalk Mail
Access--now deferred--are installed, those with a
terminal or micro screen should be able to retrieve
their messages through the ALL-IN-1 menu. Others
may use their Message button to autodial the access
codes necessary to have DECtalk read messages to
them over their telephones. We have examined
voice-store-and-forward systems, but they do not
seem necessary or cost-effective for us now. The
message desk is located in Computer and Telecom
Services and makes it easy to conununicate requests.
It is more difficult to fulfill them quickly.

Extended Services - Technology will support
additional services to faculty, students, and
others in the community, off- as well as on-campus.
These include voice, data, and video services.
Negotiations are under way with Essex Cable TV as
to the periods on the time-weather channel which
will be made available for college-originated
programs or NCTV.

Personal Computing - Announcements continue to be
made about hardware and software interfaces between
the Northern Telecom Meridian PBXs and Apple
Macintosh, IBM PC, and other micro- and
minicomputers. These are being studied carefully
in order to develop a plan for promoting personal
computer purchase and use by students. Many of
their questions have gone unanswered as the college
takes preparatory steps to give them authorized
access to some files and programs on each of the
three central DEC minicomputers. Most students are
content to do their computing in one 0f the
laboratories or off-line for a while.

PROGRESS AND PLANS

When resources permit, a shared computer room with
monochrome and color terminals, micros, and a
printer connected through a terminal server will be

LANSTAR Connections
T ennlRll and PenoAll Computef r.oc.-1100S

IBM 3270 Series
le1ma1na!s

RS·?Jl
Terminals
o)lldfl!rsonal
Compu1e1s

D
It , ii

Ma11han M4020

located in each residence hall. These rooms have
been identified and prewired for multiple data
connections. Some things such as this will have to
wait until the need and the feasibility coincide.
Staging full implementation has also been necessary
because of delays in installation, in testing of
fiber and data capabilities, and in deliveries,
some of which are related to fiber and
construction.

Voice communications between faculty and staff and
between faculty and students--who may leave but
not receive messages--have already been
facilitated. Data communications have been
enhanced with a dial-up choice of computers. The
video system will have multiple points of
origination and some 900 potential points of
reception on campus in addition to the 1350
community subscribers. In a town without a
television station, there is considerable interest
in an avening telecast of local news and features.
Videotext is feasible and could be in place by next
year.

Enhanced campus and community communications
through voice, data, and video telecommunications
is a prospect--not just a dream, but like many of
our goals in higher education it is not yet a
reality. Freed-Hardeman College doesn't have it
all now, but we are pleased with what we have and
what we expect.

Meridian
Sl·l

194

Host Compu1er Comec1ions

Cna• Ehmm.:111011
andSwi1•:111ng

8

DATA MANAGEMENT SYSTEM FOR ACADEMIC INSTRUCTIONAL PLANNING

Lisa M. Rotunni
Edward C. Hohmann
James A. Rounds

School of Engineering
California State Polytechnic University

Pomona, California 91768

The School of Engineering at California State Polytechnic University,
Pomona offers approximately eight hundred course sections within sixteen
academic disciplines during each of four quarters per year. A data management
application, SIPS (School Instructional Planning System) has been written in
the database management program RDM to aid in coordinating the information
necessary to schedule courses, provide classrooms and laboratory facilities,
arrange faculty, and communicate effectively with the University and
Departme~tal administr~tions. This paper will discuss the planning,
programming and operation of SIPS as well as the difficulties and the benefits
of applying database technology to this administrative situation.

OVERVIE.W

The School of Engineering at California State
Polytechnic University, Pomona is one of the largest
in California. It offers approximately eight
hundred course sections during each of four quarters
per year, serving roughly 4,300 full and part-time
students. The University uses a computerized system
to enroll students in courses. However, before that
point. is reached, a large administrative effort is
required to schedule courses, provide faculty to
teach them, and arrange the classroom and laboratory
facilities required.

Since the Summer of 1984 we have made a
determined effort to take advantage of computer
technology in performing administrative tasks within
the School of Engineering. The School acquired a
computer system consisting of a PDP 11/23 processor
with 1 megabyte of memory and a 76 megabyte
winchester disk, 7 DEC VT102 terminals, a dot matrix
printer and two laser printers. The total value of
this system is under $30,000. The school computer
system uses the RSX multi-user operating system, and
includes packaged word-processor, spread-sheet and
database management programs.

As part of our computerization effort, we have
developed a data management system to help us
perform course scheduling tasks: SIPS, the School
Instructional Planning System. SIPS is an
applications package written within the commercial
database management system RDM, Responsive Data
Manager, produced by Interactive Technologies,
Incorporated.

RDM provides the system framework in a series of
PASCAL programs which perform file manipulation and
data input and reporting functions. In developing a
custom application, like SIPS, the programmer uses
RDM's programming applications package to define
data files, create data input screens, write reports
and set up menus.

SIPS contains the course schedule information
for each quarter of the academic year, the catalog
of courses which may be offered, the description of
rooms and facilities available, and other data

Proceedings of the Digital Equipment Computer Users Society 195

necessary for printing a variety of course related
reports. SIPS can also look up information
regarding the faculty, stored in the School Academic
Personnel System, SAPS.

COURSE SCHEDULING

In developing a database system, it is important
to understand and keep in mind the requirements of
the task you are trying to facilitate. In order to
schedule courses, it is necessary to decide which
courses should be offered, have faculty to teach
them, and arrange facilities in which to hold them.

Facilities Scheduling

SIPS helps in all areas of course scheduling,
but the best example of what it can do is found in
facilities scheduling. Making sure that 800 course
sections fit, without conflicts, into 65 lecture and
laboratory rooms can be a mind boggling proposition.
Facilities organization is especially difficult in
the School of Engineering, where laboratory work is
an important part of the program. Many courses must
be held in a particular laboratory because of
equipment requirements. Lecture rooms are more
interchangeable than labs, but they are in limited
supply and vary in size. Without a systematic
approach, and even with one sometimes, facility
scheduling is enough to give the scheduler fits.

In an effort to break down the problem, rooms
are initially assigned to each academic department.
The department scheduler attempts to put courses
into the department's rooms. Most departments,
however, are not able to fit all of their courses
into their own rooms. After the department's
original attempt, all rooms in the School belong to
the school scheduler. The school scheduler attempts
to fit all courses without rooms into the school's
rooms. Finally, the university scheduler will help
the school scheduler find rooms belonging to other
schools for any courses which cannot be fit into the
school's rooms.

San Francisco, CA - 1986

Prior to SIPS, the school scheduler wrote all
the courses being offered in each room into a time
chart for that room. After determining which course
sections still needed rooms, by looking through an
inch high stack of schedule request forms, the
scheduler would attempt to find empty slots on the
room charts for these courses. To do this job
efficiently, the school scheduler needs to know how
large a particular room is, and whether .the se~-up
of the room is suitable for the course in question.
Sometimes it is necessary to juggle several courses
in order to fit in as many as possible, which means
dealing with several rooms at once.

Why Computerize?

This work had been performed without the aid of
computers for years. However, with the availability
of computer technology, certain drawbacks in the
system became more apparent. Much of the work being
done by hand could be done more quickly, easily and
accurately on a computer. For example, filling out
room charts by hand seemed like wasted time when a
computer could fill them out for us. The computer
could also generate the list of courses still
needing classrooms, saving a lot of time s~ent
searching through forms. Also, course scheduling,
room scheduling, and faculty hiring were all
performed as separate functions. It was impossible
to coordinate these activities.

From our experience with SAPS, our employee
information system, we knew that the development of
a database system for course scheduling. would
provide some immediate benefits, and inherent
liabilities. Using a database system would help us
gather and coordinate information related to the
course schedule. Developing our own system would
allow us to produce reports in formats convenient
for the work performed in our office, adaptable to
changing needs. However, the information ~eeded to
accomplish these tasks does not leap into the
computer on its own, unfortunately. Someone has to
enter and maintain the required data. New methods
of processing the course schedule paperwork would
also have to be developed in order to put the
computer into the work flow.

Our success with SAPS encouraged us to take the
next logical step and tackle the course schedule.

SCHOOL INSTRUCTIONAL PLANNING SYSTEM

Planning the System

The primary objectives in planning SIPS were
that the system be useful, that it be useable by the
staff who perform course scheduling tasks, and that
it be ready almost immediately.

In planning any database system the most
critical item is the data structure. It is
important to know what ite~s of information wi~l be
needed for a particular proJect and how these items
relate to each other. If all of the necessary
information is gathered together and organized
efficiently to begin with, then it is easy to
produce the procedures for inputing and reporting
this information.

Unfortunately, it is almost impossible to think,
from scratch, of each and every data item needed for
a large project. Some organized approach is
required or all sorts of things will be overlooked.
In planning the data structure for SIPS, we started
by looking at all of the cours~ related paperwork we

196

could find in our office: reports from the
University, handwritten room charts, university
course scheduling forms. These reports contained
the information we wanted our database system to be
able to handle, so we used them to determine the
data items we needed in our system.

In designing our data structure, we were also
able to take advantage of clues provided by the way
the University does course scheduling. For example,
they have a catalog file, separate from their course
file, which contains information common to all
sections of a course. There was good reason to
believe that we would also probably want a catalog
file in addition to our course file.

Database Fundamentals

In RDM, data items are stored in fields. A
group of fields directly related to one another,
which together describe a whole item, is called a
record. Records are grouped in files. For example,
for a particular course, the course code, starting
time, ending time, meeting days, and instructor
would all be separate fields. Together they make up
one record. Each course being offered would have
its own record, and the whole group of records make
up the schedule file.

Different fields can be defined to contain
different types of data. The course code is a
number without a decimal and would be put in a
numeric, integer, field. Time is another data type,
and the instructors name would be placed in an
alphanumeric "string" field. Other possible data
types in RDM include dates, dollars, boolean
(yes/no) and real numbers.

Data is entered into a file using an input form
displayed on the terminal screen. Input f?rms are
defined in a form control table. This table
contains the data field name and the location on the
screen to display or receive data. Additional
headers and other special items may also be defined.
The user never sees the form control table itself,
only the forms on the screen into which data is
typed. Menu screens are defined and f1;1I1ction in a
similar fashion. The command tables in RDM are
accessed by the programmer in the same way that the
applications data files are accessed by the. use~.
Examples of input forms and menus are provided in
Appendix I.

Putting data into the computer doesn't do any
good if you can't get it out again. Data is usually
output in some sort of report. A group of data
items is printed, either on paper or to the
terminal. In RDM, the specifications for reports
are defined through an internal programming
language. The programmer determines which data
files will be used in the report, the sort order for
the data, what information will be printed, and in
what format. Almost any final report format is
possible using RDM.

Work After Database

Once we planned and programmed a database system
for course scheduling, we needed to figure out how
to use it. The first concern was getting and
maintaining the data. Incorrect or outdated
information can be worse than no information at all.
Data input was added to the school scheduler's
tasks. After receiving schedule request forms from
the academic departments, the school scheduler .now
types the information into the database, and prints

out new copies for the university scheduler, instead
of xeroxing the department's forms and forwarding
them. This task definitely adds extra time at this
stage of the process, but the benefits make it
worthwhile.

Focusing again on facilities scheduling, the
school scheduler is able to print room charts for
all the rooms in the School, rather than filling
them out by hand. Time is saved here. A room
specifications file was developed which includes the
information the scheduler needs to know about each
room: capacity, type of room, equipment available,
and other useful items. The most critical parts of
this information are printed right on the room chart
for the room, the rest can be looked up in a
facilities book which is also produced from the
database.

Instead of sifting through several inches of
paper to determine those courses without rooms, the
school scheduler can now print a list directly from
the course schedule, selecting only those courses
with rooms 99-999, the code for "no room". Using
this list, the scheduler can look for empty slots on
the room charts and juggle courses more easily than
in the past. Generally, courses are written into
the charts by hand for awhile, but whenever they
become too messy to be comfortable, the scheduler
can print a new set, containing all the latest
information. If a course is cancelled, the
scheduler cannot forget to remove it from the room
chart, the course will disappear from the room
automatically.

Similar results are obtained in other areas of
course scheduling. Many changes occur to the actual
course schedule after it is published by the
University. Courses are added, and cancelled;
course times, instructors or rooms are changed.
Prior to SIPS, lists were kept by the academic
departments of changes to the schedule. Now, lists
can be prepared for the entire School showing the
most current information, and also showing those
changes that have taken place since the published
course schedule.

By creating a file to contain the off ice hours
of the faculty, we were also able to produce time
schedules for each faculty member in the School.
These schedules show their course information,
office hours, and significant meetings which they
attend. They can be posted outside their offices
for students and other faculty trying to locate
them. Such schedules were previously prepared by
the academic departments, but since we had all of
the course schedule information on-line in SIPS, it
was reasonable to print schedules for the entire
School at one time. We have also developed a
faculty chart, similar to the room charts. These
charts may be superimposed, so that if you wanted to
find a cOllUllOn time for a meeting between four
faculty members, you could look at all four of their
charts simultaneously on a light table and find any
empty slots which they have in co111110n.

Another report never possible before SIPS is the
final exam schedule for courses. The University
determines that, for example, all classes meeting
Monday, Wednesday, and Friday at 7: 30am will have
their final exam on Wednesday of finals week at
7:00am. SIPS contains the university final exam
schedule and can look up the final exam time for
each course in the School. This schedule is then
printed and posted for students during final exam
week, and answers quite a few questions from
students, who are always running around trying to

197

find out when their final exams are. This list also
includes any changes to the final exam time made by
individual instructors for particular courses, which
cannot be included in the generalized schedule
produced by the University.

Several examples of SIPS reports are found in
Appendix II.

Benefits in Work with SIPS

The most significant benefit incurred in working
with SIPS is consistency. Information regarding a
particular course will be the same whether you are
looking at a room chart, the course schedule, a
faculty members schedule, or the final exam
schedule. If the information is entered into the
database correctly, it will remain correct, and it
will be correct everywhere it appears. If the
information is, by chance, entered incorrectly, it
will be wrong everywhere, and perhaps easier to
catch and correct.

Another benefit which is nice, although not as
significant, is neatness. Typed room charts are
more pleasant to read than hand written ones. And
the university scheduler seems to prefer checking
fifty pages of typed course request forms to
checking fifty pages hand written by a variety of
people in all colors of ink or pencil.

Finally, using SIPS, we are able to do some
things which were never possible before. It is now
possible to check and make sure that every faculty
member who was hired for a particular quarter was
also given courses to teach, and that every faculty
member who is teaching courses was actually hired.
There is a rule that full time faculty must have
five office hours on four days during the week.
Using SIPS, it is simple to add up the office hours
for each faculty member, check the number of days
and print a list of any faculty who are deficient in
either. What used to take a clerical staff person
hours can be done by the computer in minutes. These
and other auditing functions are a significant
benefit of using a database system.

APPENDIX I - INPUT FORMS AND MENUS

ROM 3.lG ** RSX **
..---------- SCHOOL INSTRUCTIONAL PLANNING SYSTEM ---------~

>

* SIPS *
* MISCELLANEOUS REPORTS *

SCHEDULE

ROOMS
LOCATION
OWNER
SUMMARY
USE

PHONES
KEYS

RE'IURN

Dump Report of the Schedule Data

Room Specifications - Sorted by Room Number
* - Sorted by Room Location
* - Sorted by Room OWner
Room Assignment Sununary Report
Room Utilization Report

Phone Auditing Report
Room Key Report

Return to the SIPS Main Menu

Serial #IX3S000025 Copyright 1984 Interactive Technology, Inc. ___ __.
Cal Poly Univ

Menu Screen Sample

198

COURSE SCHEDULE INFORMATION

Revised 24-APR-86 Quarter 8671

CourseCode 61 544 01 Units 4.0 Seats 20 Enrollment 16
Continue 0 cs cos- - -

AddLines 0 Combined N GroupCode 1 Status -

M T w T F s s Begin End
y N y N N N N 05:30 pm 07:20 pm

Location 09 521 - -

FI RJH - TeamTeaching% 100

Notes Footnote 0 -

Data Input Screen Sample

199

APPENDIX II - SIPS REPORTS

50m. or ENGINEEIUHG - CM.IFORllIA STATE l'llTTECHHIC lllillERSITY, PlllOlto\
ROOll llSAOC DW!l

For AY8uurt.o.r: W2
IHJCT-86 17:36:08

' OCATilll: 09-400 l.tdure Rom
-Ii•: I.EC Copocity: 42 Ext.eosi111: Motes: Sinls

Ani tl EngineeriJlt Civil Engineering Froo: To:

ltllll!AY
7-:-a-:--9--:-.. -10--:--11-:--12-:--1--:--2-:--J--:--4--:---5--:-6-:-1---:-e-1-t--:-10

xnmm xannx xmm xnmunannnnmx xnnax xanmm
6'30701 6521001 6S22201 6512311 6521002 6533201
Ferguso C.rlyle Clork Coduto Carlyle .longer

TIISllllY
7-:-+--l--9--l-10-·l--11--1-l2-l-1--l-2--l--3---l---4--l---5--l---6--:---7--l-~-:---9-l--l0

xamanax xnanmx xnaaax xnanmx xnamm xanumx xanaannnm
6542401 6533202 6646101 6540301 6542402 6540302 61S6901
Scheid W.115 SI.off toraoic Canto lol'llYit SI.off

IDIESDAY
7-:-e-:-9-:---10-:-11-1--12-:--1-:--2-:-J-l--4-l--5--l-··6-l-7--:-a-:-9--:--10

xnnnax xnanx n•nax xnno xnmx xnaamo
6'30701 6521001 6m201 6522203 6521002 6533201
Ftr9u1;0 C.rlyle Clork lzadi Carlyle Jongtr

o!lllSIAY
7-1--8--1--9-:-10--:---11--:--12--1--1---:-2-:-... 3---:-4--:-s---:---j--:-7--:--e--:--9--:-10

mnnasx xna x xn•nmx xnnnax x nsx nanmnnnx
6542401 6533202 6540301 6542402 6540302 6156901
Sclulei~ Yells toraoic Conl.G lol'llYit SI.off

FRIDAY
7--:--+--:--9-:--10-:--11-:-12--:-1-:--2-:-J-l-4-:--5--:--6-:-1--:-a-:--t---:--10

xnaanax xanax
6630701 6522203
Ftrtuso lze4i

SIPS Room Chart

200

llllllDo\Y

ll£SlllY

FRIDAY

Room t CJfl • 'tOO w;n+eY" Qtr 19"'

50
65
75

110
170
255

7

50
65
75

110
170
255

7 8

50
65
75

110
170
255

7

50
65
75

110
170
255

50
65
75

110
170
255

*Divided into six units of ten minutes each. December 1977

Pre-SIPS Room Chart

201

11671 llCS T
CflllfOBHll\ STt.TE fOl.YTECHHIC UHIVEn:'.:ITY, f•UllOHf1

SCllOOl or [HlllHffRJN(;

Ho•E-: !;to! 1, ''' Georgl•
f·roft?·~<;,ur

l!"l't: Cll[

6147006 COOP Ell CHE
l.14~'106 COOP l:Jl CH£
6147206 COOP [[I Cit[
6147306 COOP L:D Cit[
6342511 UNIT Of' I Lii
l.'34:!~1:? UNlT or I Lil
6346103 Sr. PROJECT
634&20B SR PFcllJfCT

Sth.,du)c• C<1ordihotor

SEl\C lle11L.in9
Clll: Co•11i1. tee.
Ener~y En9ine~ring llinor

T
II

II

l'<oll hr1ul Copy

CLll!;S !;CllfIIUL E

By ll11pt.
By ll1opi..
lly l\ppt.
Dr l\ppt.
03:00 - 05:50 P•
12:00 -· 02:so p•
12:00 - o~:so P•
1~:00 ... 02:so P•

OFFICE HOUf<S/llEETIHGS - -

Th
llTll

T

01!30 - 03!30 ,,.,
11:00 - 11:so o•

09!00 - 11:00 o•

Of'f"icl!: 1J-2ZO
[::t: 2626

98-000
9B··OOO
90-000
98-000
11··135
11-131
90··000
9£1·000

13-228
13··228

09-510

7---:---8---:--9---:--·lt--: ll-:--12--:--1---:--2---:---J--:---4--:--5--1---6---:-7--1--1---:---t-l-10
xutnr.
OUico
13·228

Til:Sll/IY
7--:---e---:--9--:---1~-:--11--:--12--:---l--·:--2--:--3---:---4--:--5--:--6---:---7--:---e---:--9--:-10

mnnmmmxtmtx xusmtmmmmnx
lloe lin~ Orfict '342Sll
09-510 13-228 11-t:r.i

7---:-s---:---9---:--·10--:--11·-:--1:!--:--1--:·--2-:--·J--:-4--:---:;--:-6-:-1--:-a-:-t--:-10
xmnx xmnunnnmmnx
om,. 4342SIZ
13-228 11-131

1--:--1---:---9--:--10--:--11-:--12--:--1--:---2--:-J---:--•--:--s---:-.. -6--:--1-:-~---:--9--:-10
mmmumv.
Office
13-228

m11111 m11i11
1---: ----e---:--9-·- :---10-- :--11-- :---1~--:--1-:---~---:-J-:-4--:--5--:--•---:---1---:-a-:-+--:-10

Faculty Schedule Report

202

CALIFORNIA smE POL YTECHH!C UHIV!:RSITY' POKOHA - Cl.ASS SCHEDULE Flfft

DEl'i\F:Tlt(H'I ""rosp•c• [119inl'trin9 Ph&
OUMTEP. WIHTEP. 1987 16-0CT-86 ITEllS

LIN[Nl!iliT HOURS CLASS AVh!LABlE TEN! FOOT
ACTUll COUP.S!: CODE CONT "1WTFSS CLASS BEGIN END tll!TS 111.DG ROOll sms TEllCHl: NOTE COit!.

In J 6:!35511

INSTRUCTOR'S NNIE socm SECURITY

LINE NIGHT HOOlS cthSS AVAi LADLE TEAii FOOT
ACTIOll COUP.SE CODE cmrr KTWTFSS CLASS BEGIN END UH ITS lllDG ROOll SEm TEflCHI NOTE aw.

ADD I 6240101 2 4 os:oo oi.:so 04.0 13 215 028

INSTROCTllR'S MME Newberry CF SIS-26-0904 SOCIAL SECUUTY

LINE NIGHT HOURS CLASS AVAILABLE TE/tll FOOT
Al:TIOll COUf:".£ CODE CONT KTWTFSS CLASS llEGIN END UH ITS BLDG ROOll SEm TEi\Cll% NOTE COlll.

CH6 ~ 6240901 09 :?:il

INSTRUCTIP.'S llNIE SOCIAL SECIJHTY

LINE Nl6JIT HOURS Cl.ASS AVh!LABlE TEM FOOT
ftCTION COURSE CODE COHl "1WTFSS tLl\,°S BEGIN END UH ITS BLDG ROOll SEATS TEflCHI NOTE coo.

Clli ~ 6241001 09 24S

INSTRUCTIP. 'S NNIE Storr 000-00-000 I SOCIAL SECllUTY

Course Request Form Report

203

What is PostScript?

Ann Robinson
Adobe Systems Incorporated

Palo Alto, California

Abstract

PostScript® is becoming widely acknowledged as an industry
standard for printing. Digital Equipment Corporation, among
others, has adopted PostScript in its low and medium range print­
ers. This talk discusses Postscript and why it is a key ingredient in
printing and publishing.

What is PostScript? PostScript is a powerful programming
language for describing the appearance of pages, includ­
ing pages that combine text, graphics, and scanned im­
ages. Essentially any page can be specified with a Post­
Script program.

Where is PostScript? The interpreter for PostScript resides
in the controller of printers and typesetters. An application
program on a host computer generates PostScript com­
mands describing each page to be printed. Those com­
mands are sent to the printer where they are interpreted.
The interpreter causes the page to be printed.

HOST COMPUTER PRINTER

PostScript J (malling
Interpreter! Horilware

!
'

User PostScript
Commands Commaflds

Printed
Image

Commands in PostScript are independent of the resolution
of the printer to which they are sent. The same file can be
printed on a PostScript-equipped laser printer with a
resolution of 300 dots per inch or on a typesetter with a
resolution of 2540 dots per inch. The application program
does not need to know the resolution of the PostScript
device.

Text in PostScript is treated like graphic images: characters
can be scaled, rotated, stretched, outlined, and filled with
black or shades of gray. PostScript typefaces have been
licensed from Mergenthaler and International Typeface
Corporation, two major type design companies.

And prini.cd .in shades of gray.

PostScript contains a range of graphic primitives including

Proceedings of the Digital Equipment Computer Users Society

line, arc, and area filling commands. These commands al­
low very complex graphics to be described and printed.

Why is it no one ever sent me yet
One perfect limousine, do you suppose?
Ah no, it's always just my luck to get
One perfect rose.

Dorothy p.,.u,

In addition to text and graphics, PostScript's halftone
mechanisms permit full control over halftone screens. Spot
angle, size, and shape can all be specified.

What does a PostScript program look like? PostScript is a full
high-level programming language with a Forth-like syn­
tax. The basic imaging model of PostScript is that of writ­
ing on a page with opaque ink: every successive mark
covers the one below.

In specifying a page, the origin is always in the lower left
corner of the page. Units are in printer's points (1/72").

y

x

207 San Francisco, CA - 1986

To write a line of text, first the proper typeface must be
located, scaled, and set as the current font. In this case, we
are selecting Times-Roman at 40 points.

/Times-Roman findfont
40 scalefont
setfont

Then the current point is positioned where the text is to
begin. Here it is one inch from left edge and one inch from
the bottom edge of the page.

72 72 moveto

Next, the text is put onto the page

(This is a line of text.)show

And the page printed.

showpage

This sequence produces the page:

y

··~

!
:

I

This is a line of text.

'------------'-- x
The text starts one inch from the left and one inch from the
bottom of the page.

Similarly, lines are drawn by moving to a point

72 72 moveto

drawing the path for the lines,

72 144 lineto
144 144 lineto
144 72 lineto

closing the path,

close path

stroking the path,

stroke

and printing the page.

showpage

This program produces a box one inch square, with its left
edge one inch from the left edge of the page, and its bot­
tom edge one inch from the bottom of the page.

y

D
'---------~-x

Postscript commands also include arc, fill, scale (to change
the units of the coordinate system), translate (to move the
default origin), rotate (to rotate the origin), and program­
ming constructs suchs as for and repeat.

Although to date, no color printers have been announced,
PostScript also has a full color model. Colors can be
specified in terms of red, green, blue, and hue, saturation,
brightness.

Future developments for Postscript are expected to in­
clude higher performance printers, color printers, and
PostScript on other raster devices, such as displays.

PostScript is a registered trademark of Adobe Systems Incorporated.

208

HALFTONE· A PROGRAM FOR CONVERTING GREV-SCALE IMAGES TO HALFTONES

Robert B. Goldstein, Eli Peli"
Eye Research Institute of Retina Foundation

20 Staniford St
Boston, MA 02114

Karl Wooledge
Image Analysis Laboratory

Tufts-New England Medical Center
Boston, MA

ABSTRACT

A program has been written that converts grey-scale images to
halftones. This enables the images to be displayed on devices that
normally do not have grey-scale capability.

Target devices for output include the VT100, VT240, LASO, LA120
and LP26. Knowledge of the aspect ratio of those devices is built into
the program so that the image is not distorted when displayed. The sixel
capability of the VT240 and LASO is used.

The algorithm is based on an error-propagation method published
by Saghri, Hou and Tescher. We improved the algorithm by including a
factor that takes into account the difference in size between printed and
non-printed points. Also, the execution time is improved by eliminating
interpolation in most cases.

INTRODUCTION

A program has been written that converts grey-scale images
to halftones. Figure 1 shows the results as printed on an
LASO printer.

This program was written in the search for cheap,
'notebook-quality' output from our image analysis systems.
In addition, we are studying the enhancement of images to
improve the printing process, and halftoning is part of that
process. The algorithm of Saghri, Hou and Tescher1 was
taken as a starting point.

.,

"/)f

·1~;

Figure 1. Halftoned GIRL on LASO

'Eli Peli is also with Tufts-New England Medical Center

Proceedings of the Digital Equipment Computer Users Society 209

The program has the capability of preparing the
image for output onto many devices. Figure 2 shows output
from a VT240 (a sixel device having 800x2SO cells) and
Figure 3 shows output from an LA 120 (130x66). As can be
seen, the fewer cells available for grey-scale simulation, the
cruder the appearance of the output picture.

Figure 2. Halftoned GIRL on a VT240.

San Francisco, CA- 1986

I
I

I
I •

I .
I

I I
I I I I I

I I I I I

I I I
I It I I I I I

I I I I
I I I I I I I I

t 1 I U 11 t I t I I
I t I I 11 It I I I

I t t 11 I I I I I I I
I I 11 I I 111 I I

I I I I 11 I I It t It

I I

• •
I I 1 I I I 111 I I 11 I I

I It t 11 I I I I I I 1 It t t
t I I I I I ti Ill 1 I I U t I

I I I

I I I I tit I I I 1 t I
I I It 11 I I II I t II I I 1

I I 11 It I I I 11 I I I It I I I t
I I II 11 Ill I I I I 1 I I

I I I I 111 t t Ill It t
I 1 I 11 I I I I I I I I I I I

I I I I 11 I I I t t II t I I I
I 1 11 11 1 11 11 I I I 11 I I 1t I 11 t I

1 I I I t I I I t I I I I I I I I I I

I I
I

I I t I I t I I It I t I I
I I 11 t I 11 I I I I I t I I

11 t I I I t t 1 I 11 IU I I II I I I I I
I I I I I I ti II 11 11 I

I It I I I It I It I I I t t It I 1 t1 I I I I t1 I
t ti It I I 11 I I I I I t I I I I

II Ill 1 tt I 1 t 1 t I I 1 t I I I ti 1 1 I I 1

I t I I 1 I I I 1 t I I t
t t t I I t I I ti I I I t I

I I I I I t I I I I I I I It I I t I
t I t I I I I t I I I I I t I

I I I I 11 tlll I I II I I I ti I 1' tt I t I I I I I I I t: I I I I I I I t t I 1'

t I I It It I ltl I I I I II t I I I
I I t I It I I ti I I I I I I

I ti 11 I I t t I t I I I I I
It ti t t I I I 11 I 1 I t I I I I I

It I I I I I t I I t I I I I I t t
t I I I 111 I I I I I I II I I t I

t t I 111 It t I It t I It I I I
I I I I tll 11 I I I I I I II I I I I

I I I I 11 11 I 11 It It 11 I I I I I
I t I I I I I I I I I I I 111 I t I I I

• I I I

I I I I 11 11 I I I 1 t I I II II 1 I I I
I I I I 111 II I t ltl II II I I I

I I I I 11 ti t I t I I I I I I I II 11 I
t ti I llt I I I It I Ill ti II I I I

I ti 1111 I It I I I I I t I I I
I I I II I I I I I I I I It I I I I

I ttl ltl I I I I I II t I I I It I I I I I
I I I I I 11 1 I I I I I I I I I I I I

t t I I 1 I t I I I I I I I I I I I t t t
I I I I 11 I I 1 I I I I I I I I I II I

I I I ti I 11 t1 111 I It t I I 1 1 I 11 I t1 I I I 1 11 I I

Figure 3.Halftoned GIRL on an LA120.

TECHNICAL DETAILS

A flowchart is shown in Figure 4. Logically the process is
divided into 2 tasks: a)choosing and pre-processing of the
image for the 'target device', and b)performing the halftoning.
The original image is expanded or compressed to fit into the
number of 'cells' available on the target device. Knowledge of
the aspect ratios of the pixels on the target devices is built
into the program (for example, the LASO is 2:1) and this is
taken into account in the preprocessing step. The details of
the preprocessing are adequately described in Saghri, Hou

and Tescher1.

Get image into memory

Yes

Convert to 1*2

Get target device characteristics

Pre process

Halftone it

Output to chosen device

Figure 4. Flowchart of Halftone program.

210

When an expansion of the image is required, the
Saghri, Hou and Tescher1 algorithm interpolates to fill in the
'missing' pixels. We have speeded up the process by NOT
interpolating, but replicating the bounding pixels. This works
because the second stage, the halftoning process, is a form
of interpolation and adequately 'fills in' the missing pixels.
The expanded image has the dimensions of the target device
and is now ready for halftoning.

The halftoning process consists of assigning each
cell to be a zero or one. Assigning a zero generates an 'error'
equal to the actual grey-scale value. Equivalently, assigning
a one generates an 'error' equal to the difference between the
maximum and actual grey-scale values. When a cell is
assigned a value, the errors introduced due to assignments
of previous pixels are taken into account. Following the
methodology and notation of Saghri, Hou and Tescher1. we
define Eg(m,n) as the total error generated, l(m,n) as the

grey-scale value, and H(m,n) as the halftone assignment at
position (m,n). Then to calculate the error propagated to point
(m,n), we have (equation 10 of Saghri, Hou and Tescher 1)

where

I J

Ep(m,n) = LZPiiE9[(m-i+ 1),(n-j+1)]
i=1 i=1

and

The C matrix is the error distribution function and
serves to give less weight to positions further from (m,n). As
illustrated in Figure 5, this calculates the errors contributed
by the upper left neighboring pixels.

.... 1 _: __ : __ ~___.1- l(m,n)

Figure 5. Pixels that contribute to error at (m,n)

H(m,n) is assigned in the following way:

{
1 if l(m,n) + EP(m,n) >thresh

H(m,n) =
0 if l(m,n) + Ep(m,n) <thresh

Eg(m,n) is then calculated:

{
l(m,n) + Ep(m,n) + K1act

E (m,n) =
9 l(m,n) + Ep(m,n) - maxval

if H(m,n) = 0

if H(m,n) = 1

The difference from Saghri, Hou and Tescher 's 1

formulation is in the addition of Kfact . On the printed page,
when a black dot is printed, it spreads ink over surrounding

cells so a black pixel is larger than a white pixel. This
introduces additional errors. The Ktact is introduced into the

above equation to account for these additional errors. It is
determined empirically for each device. Presently Kiact

ranges from 0 to 1024.
TUNING

In our experiments with the program we varied the C matrix
and observed the effect on CPU time. Reducing the C matrix
from 2x3 to 2x2 reduced the CPU time from182 to 136
seconds. It degraded the resulting image somewhat but the
quality was still adequate for some purposes. Replacing a
matrix multiplication subroutine with in-line code further
reduced the CPU time to S7 seconds. These timings were for
a SOOx1000 output image where the target device was the
LASO. The CPU was a dedicated microVAX II.

CLINICAL USE

At the Tufts-New England Medical Center in Boston, this
program has been used in a clinical setting. Muscle biopsy
slides are received for image analysis. Measurements of two
types of cells (light and dark) found in these biopsies are
performed. Examples of the types of parameters reported are
number of cells, average diameters, average areas and
descriptors.of clustering and neighborhood relationships.
The physician receives the report on an LASO printer in his
office. The halftoned image (Figure 6) is provided as part of
the report to provide a meaningful reference for the
accompanying statistics. Cell boundaries and the two types
of cells are easily distinguishable in this image.

CONCLUSION

Additional work that will be done on this program includes:

1. Adapt the algorithm so that if more than one
bitplane is available, the program would use it. This would
allow us to use the two bitplanes on the VT240.

2. Use overprinting to simulate grey-scale on an
alpha printer.

211

3. Do additional tuning. For example, some
operations can be done in byte arithmetic rather than integer
arithmetic.

. 4. Add an image enhancement step to pre-process
the image before halftoning. Preliminary experiments using
adaptive enhancement2 look very promising.

This program has been put on a DECUS tape. It
provides an easy-to-use, "entry" level way for users to get
hard-copy outputs from images.

REFERENCES

(1) Saghri, J.A., Hou, H.S., Tescher, A.G. "Personal
Computer Based Image Processing With Halftoning" Optical
Engineerjng 2S:499-S04, 1986. '

(2) Peli, T. and Lim, J.S., "Adaptive Filtering for Image
Enhancement", Ootjcal Engineering 21:108-112, 1982.

ACKNOWLEDGEMENTS

This work was partially supported by NEI grant EYOS9S7 and
a grant from the Alcoa Foundation.

A GRAPHICS EDITOR FOR 3-D CT-SCAN DATA
FOR MUSCULO-SKELETAL MODELING

L.M. Myers (1), W.L. Buford, Jr. (1), and D.E. Thompson (2)

- Rehabilitation Research Dept., Gillis W. Long
Natl Hansens Disease Center, Carville, LA 70721

2 - Department of Mechanical Engineering, Louisiana
State University, Baton Rouge, LA 70808

ABSTRACT

A real time int~ractive graphics system has
been developed for the creation of anatomically
correct kinematic models of the hand from CT scan
data. The system reconstructs three dimensional
skeletal boundaries from planar CT scans of a hand
specimen, segments the 3D boundaries into
individual skeletal units, and interactively
builds a kinematic hierarchy defining Euclidean
transformations which are applied to each segment.
A concurrent processing arrangement is used to
ease the computing burden. This consists of a
VAX 11/750 connected to an Evans and Sutherland
PS 330 high resolution, high speed 3-D graphics
display system via a DMA interface.

With the system, the user manipulates a three
dimensional structure created by the boundary
reconstruction algorithm and identifies and
creates new structures named for each skeletal
segment. The individual segments are manipulated
into proper anatomical positions and iteratively
rotated and translated, thereby defining
transformation nodes in a kinematic hierarchy.
The resultant data structure and kinematic
hierarchy is the basis for a working three
dimensional simulation of the hand. This type of
computer modeling, utilizing realistic imaging,
musculoskeletal models, and interactive
programming shows great potential for bringing
biomechanics models into useful clinical,
research, and educational applications.

INTRODUCTION

Hansen's disease patients, as a result
of peripheral nerve damage, develop
deformities of the hands which are routinely
treated by reconstructive surgery. For such
surgery to be effective, a clear
understanding of the mechanics of the hand
is essential. Unfortunately, most surgeons
do not possess the engineering background
necessary to grasp what is already known
about this subject (5,6,7,8,9) in its
current form.

Work in our lab (9,10,11,12,13,14) is
directed towards learning more about the
biomechanics of the hand, and making that
information available to clinicians in a
form which they can understand. Represented
in mathematical terms or even cleverly
defined graphical plots, the analytical
results of a simulated tendon transfer go
unused in the environment in which they are

-Figure 1. Graphics display depicting

Proceedings of the Digital Equipment Computer Users Societr 213

movement of
manipulation
simulation of

the human thumb during
and analysis with the hand
Buford(l3).

San Francisco. CA - 1986

most needed the orthopedic clinic.
However, when incorporated into a 3D
computer graphics model with which the
clinician interacts in real time, the same
information is readily assimilated (Figures
1, 2).

Essential to the realism and clinical
acceptance of such a model is an accurate 3D
representation of the bones of the hand.
This report describes the development of a
system which uses CT scans of a cadaver
specimen as an initial source from which
skeletal surf aces are detected and
individaul bones derived.

-Figure 2. The PS330
hand simulation

system running

DEVELOPMENT ENVIRONMENT

the

The hardware development system
depicted in Figure 3. runs the Interactive
Graphics Editor as well as the previously
mentioned hand simulation. A VAX 11-750
(host) and an Evans and Sutherland PS330
(display) share the computational load. The

RASO

-Figure.
system.

DEC VAX 11-750

Unibus

DMF-32

Blomechonics
Research
Computer
MINC 11-23

Diaith:ina
Tablet

Parallel l/F

Serial 1/F

EaS PS330

16 bit

GCP

Graphics
Control
Processo

3. Hand simulation

CONTROL UNIT

2MB

Memory

DP

Display
Proc•ssot

PS 330
Color
Colliarophic
Ola play

development

214

PS330 is a high performance color
calligraphic system which handles display
transformations (scaling, rotation,
translation, and viewing transforms), data
structure interactions, and interactive
device I/O. The VAX is assigned the
responsibility for mass storage of raw and
edited data, 2-D edge detection, and
generation of the initial 3D boundary
vectors. In the hand simulation,
muscle-tendon kinematics are solved on the
VAX, updating display variables on the PS330
as required for the simulation.
Communication between the host and the
display is via an RS232 serial line at 9600
baud and a parallel interface at
1 Mbyte£/sec. By sharing the computational
load, the interactive nature of the
simulation is enhanced.

The software environment depicted in
Figure 4 represents three modes of program
activity. FORTRAN programs running on the

HOST
PROGRAM

-Figure

ASCII COMMANDS

BINARY VECTORS

4.
environment.

PS330
FUNCTION
NETWORKS

HOST
MESS ACE
QUEUE

PS300 DISPLAY
DATA STRUCTURES

TRANSFORMATIOllS

The software programming

host send PS330 application programs in
character or binary form to the PS330
Graphics Control Processor where they are
parsed and set up in the display memory.
The FORTRAN program then waits for input
signals from the display programs which
determine subsequent computation action.
The application display programs are derived
from the PS330 display data structure
language and function network language.

The display data structure language
provides the means by which hierarchical
PS330 display structures are built.
Elements of this language define the
transformation nodes required to position
hand structures relative to one another and
to dynamically alter them with respect to
their axes of motion.

The function network language is
composed of a large set of block structured
functions which provide input, output,
arithmetic, logic, manipulation, comparison,
transformation, and conversion capabilities.
Function networks define the connections
between the interactive devices and the hand
display data structures, perform

transformations and other computations to
update interaction and anatomical elements
in the display structure, and define the
link between the display structure (PS330)
and the host program (VAX).

DATA ACQUISITION AND STORAGE

Computed Tomography is a radiological
technique which generates a series of
2-dimensional cross-sectional images at
specified increments along a third axis(Z)
which is perpendicular to the plane(X,Y) of
the cross-sections.

In this study, a cadaver hand specimen
was mounted in wax on a specially designed
fixture which would allow for the rotation
of the specimen by 90 degrees in the Y axis.
The fixture was then attatched to the bed of
a Seimens Somatom DR3 CT scanner so that the
long axis of the hand corresponded to the
direction of bed travel (i.e. parallel to
the Z axis). 172 slices were taken at lmm
increments of bed position, the fixture was
rotated 90 degrees, and an additional 100
slices were taken in the YZ plane, also at
Imm increments. This was done to obtain
additional resolution at joint surfaces in
the resultant 3D data structure.

- Figure 5. Raster vector rendering of
pixel data of a CT section of a right hand
at mid metacarpal level.

Each individual slice is composed of a
matrix of 512 x 512 pixels, each of which is
represented by a 16-bit word. In addition,
each slice contains 8 512 byte header blocks
containing information such as the bed
position, the X,Y reconstruction center, and
the zoom factor for a given slice. This
information is used by the 3D reconstruction
algorithm to determine the Z coordinate, the
X,Y offset of a given pixel from the
physical CT scan center, and the physical
size of each pixel (.29 mm square in our
case) respectively.

Since the total amount of raw data was
in excess of 140 megabytes, it became
necessary to develop some sort of data
compression technique. A run length
encoding algorithm was written and applied

215

to the data, resulting in a reduction of
overall storage requirements by
approximately a factor of 5. A side benefit
of this storage reduction was an increase in
processing speeds of up to an order of
magnitude in certain instances due to the
decreased data load times and system memory
requirements.

-Figure 6. · Raster vector rendering of bones
only at mid metacarpal level.

SURFACE RECONSTRUCTION

Software was developed for viewing
2-dimensional slices which allows the user
to interactively define up to 16 intensity
ranges between 0 and 4095 (the limits of CT
intensities). Each pixel intensity value is
then sorted into one of these 16 ranges.
Each resultant group of horizontal-adjacent
pixels of the same intensity range is then
replaced by a single horizontal vector
segment to form an image such as the one
seen in Figure 5. Using a threshold of 1200
CT intensity units, the image of hand bones
in Figure 6 was generated. A curve-tracing
algorithm is then applied to the set of
horizontal segments corresponding to bone
and a single 2D vector list is generated
(Figure 7).

This processing, when applied over a
range of CT slices, forms the basis for
generation of the initial 3d sturcture. By
obtaining the z coordinate for each 2-D
slice from the Bed position at which that
slice was made, the 3D vector list of the
hand bones shown in Figure 8 is generated.

-Figure 7. Vector list representing the
bone edges at mid metacarpal level.

EDITING AND SEGMENTATION

The vectors representing the axial and
longitudinal sets of orthogonal sections are
combined into a single 3D structure which is
manipulated to create the kinematic model
composed of bone segment primitives. This

-Figure 8. Vector list representing the
bony surface of the entire hand.

-Figure 9. Graphics
interactive segmentation

display of the
tool. 3D display

Menu selection
Reference axes

of the bony surface (top).
and feedback (lower left).
(lower right).

segmentation procedure uses host and graphic
programming to interactively transform the
combined scan data to separate boundary
vector lists for each bone.

The 3D graphics editor has
operational modes of interaction:

three

1. When in the hand icon block, the
graphics tablet allows the user to
select icons which represent bone data
files into which subsequently picked
individual curve vector lists will be
stored or removed.

2. When in the menu block (lower left of
display), the cursor is used to select
editing operations which include:

storage of the next selected vector
list to the current bone file
removal of the last selected vector
list from the current bone file
interactive splitting of a single
vector list into two sub-lists

216

3. Alternatively, when the cursor is within
the 3D viewing window, it is used to
specify the individual curve vector to
which the current menu selection
operation will apply.

Color on the PS330 is used to great
advantage in the editor software. The
currently active bone data file icon is
highlighted in red in the menu window. A
change of color of the displayed curves is
used to denote that they have already been
picked and appended to the currently active
data file. Red is used within a dialogue
box to send error messages to the user when
an abnormal condition has occurred.

Use of the interactive segmentation
tool for the removal of a metacarpal bone is
depicted in the sequence of Figures 9-12.
At all times, the user may interactively
rotate, translate, and scale the entire hand
display using control dials.

-Figure 10. Graphics display of
segmentation during selection of surf ace
vectors from the 3rd metacarpal surface.

-Figure 11. The display following
identification of the third metacarpal.

CONCLUSION

The same system used for interactive
simulation of skeletal kinematics is used in
this application to develop 3D bone segments
from CT scan data. These segments then
become the primitives for inclusion in the
hand model and for later improvement in 3D
bone and joint surface models. Data
structure refinements, tissue deformation
models, musculoskeletal dynamics,
improvements in interaction, display
realism, and the speed of the simulation
will continue to be important factors in the
eventual acceptance of a functional model
for clinical and educational use.
Meanwhile, the system reported here is
proving to be an extremely powerful research
and development biomechanics simulation
tool.

-Figure 12. Isolation and manipulation of
segmented 3rd metacarpal.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the
support of Digital Diagnostics, Inc. of
Baton Rouge (Dr. Charles Grieson, Director)
for their assistance. This research is
supported by USPHS contract number
240-83-0060.

REFERENCES

1. R. Williams and A. A. Seireg,
"Interactive Computer Modeling of the
Musculo-skeletal System," IEEE
Transactions on Biomedical Engineering,
Vol. 24, No. 3, PP• 213-218, May
1977.

2. P. Dev, "A Simulator for the Analysis
of Wrist Position Control," Proceedings
of the 1982 American Control Conference,
Arlington, VA., June 14-16, PP•
1199-1204. 1982.

3. D, C. Hemmy, D. J. David, G. T.
Herman, "Three - dimensional
reconstruction of cranio - facial
deformity using computed tomography,"
Neurosurgery, Vol. 13, no. 5,
pp534-541, Nov 1983.

4. G. T. Herman, H. K. Liu, "Three -
dimensional display. of human organs from
computed tomograms," Computer Graphics

217

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

1 7.

and Image Processing, Vol.
1979.

9, ppl-21,

R. Fick, Handbuch der Anatomie und
Mechanik der Gelenke unter
Berucksichtigung der bewegenden Muskein,
1904-1911, Vol. 3, Specielle Gelenk und
Muskelmechanik, Gustav Fischer, Jena,
1911.
J. M. F. Landsmeer, "Studies in the
anatomy of articulation," Acta
Morphologica Neerlando - Scandinavica,
Vol. III, no. 3-4, pp304-321, Jan,
1960.
A. E. Flatt, G. w. Fischer,
"Biomechanical factors in the
replacement of rheumatoid joints," Ann.
Rheum. Dist., Vol. 28, 1969.
G. w. Fischer, "A Treatise on the
Topographical Anatomy of the Long Finger
and a Biomechanical Investigation of its
Interjoint Movement," Ph.D. thesis,
Engineering Mechanics, Univ. of Iowa,
Univ. Microfilms, Inc. Ann Arbor,
Michigan, 1969.
P. W. Brand, R. B. Beach, D. E.
Thompson, "Relative Tension and
Potential Excursion of Muscles in the
Forearm and Hand," J. of Hand Surgery,
Vol. 6, No. 3, pp. 209-219, May 1981.
K. N. An, E. Y. Chao, W. P. Cooney
III, R. L. Linscheid, "Normative Model
of Human Hand for Biomechanical
Analysis," J. of Biomechanics, Vol.
12, No. 10, pp. 775-788, 1979.
J. Agee, P. W. Brand, D. E.
Thompson, "The moment arms of the
carpometacarpal joint of the thumb:
their laboratory determination and
clinical application," Proc. of the
31th Annual Mtng., Am. Soc. for
Surgery of the Hand, No. 14, New
Orleans, Jan 1982.
D. E. Thompson, "Biomechanics of the
Hand," Perspectives in Computing, Vol.
3, No. 3, pp. 12-19, Oct 1981.
c. A. Ou, "The Biomechanics of the
Carpometacarpal Joint of the Thumb,"
Ph.D. Dissertation, Department of
Mechanical Engineering, Louisiana State
University, Dec 1979.
w. L. Buford, Jr., "An Interactive
three dimensional simulation of the
kinematics of the human thumb," Ph.D.
Dissertation, Dept of Engineering
Science, Louisiana State
University,1984, Ann Arbor, MI:
University Microfilms International
85-15 133, 1985.
w. P. Cooney, M. J. Lucca, E.Y.S.
Chao, R. L. Linscheid, "The
Kinesiology of the Thumb
Trapeziometacarpal Joint," J. of Bone
and Joint Surgery, Vol. 63A, No. 9,
pp. 1371-1381, Dec 1981.
J. M. Ramselaar, Tendon Transfers to
Restore Opposition of the Thumb, Leiden:
H. E. Stenfert Kroese N. V., 1970.
P. K. Scherrer and B. M. Hillberry,
"Piecewise Mathematical Representation
of Articular Surfaces," J. of
Biomechanics, Vol. 12, PP• 301-311,
1979.

Simplified User Interface for Technical Systems

Charles s. Janik

Bell Helicopter TEXTRON

Fort Worth, Texas

The creation of a user interface to a wide variety of
analysis and display programs oan be aooomplished in many
different ways. Use of a process subprocess scheme with
associated global commons allows for new modules to be added
to suoh a system with the minimum of effort.

The System as Image

In any large soale system that seeks to
combine many different analysis and
displays the implementation is required
to maintain information about the current
state of the system in order to allow
for proper processing of the data. In
most suoh systems the programmer has
saved important values in commons and
used these commons in the various
subroutines that handle the individual
parts of the application. This method of
system building laoks suf f ioient
flexibility in that adding a new analysis
or display module to increase the
functionality of the system requires that
the driver routine be modified to include
a oall to the new module subroutine.
That the new subroutine module be
compiled and linked to the driver
routine; and that the image as a whole be
rebuilt. Besides these obstacles, there
is a limit (even on virtual memory
machines) as to how much code can
reasonably be kept in a single image.

If we examine the functionality of the
parts of the single image system we have
built we see three distinct sections.
First, the main routine, which retains
the commons and does all the bookkeeping
and setup required to operate the system.
Next, a section in the main routine which
allow for.selection of the subroutine to
be run. This part of any system is often
a menu screen or command line prompt with
its associated parsing rules to allow the
user to select the flow of control to the
actual module routines. Last, of course
are the actual functional subroutines
whioh do the work. In looking at this
hierarchy we oan see some important
points whioh oan guide us in revising our
methods of system oonstruotion.

In figure 1 these three parts of our
system code are labeled: Main Routine;
Selection Section; and Function Section.
Of these three parts the Main Routine
does not change at all when a new
function is added. The Selection Section
may change by as little as a line or two
in order to aooommodate the new selection

Proceedings of the Digital Equipment Computer Users Society 219

and its parsing rules. The Function
Section will have a new routine added.
From a programming and resource point of
view the need to recompile the Selection
Section is a waste of time; the need to
relink the entire system image to add one
function is also counter productive as
the new module will often require serious
debugging before final use. In faot the
relinking is the largest single toll
extracted in the module adding cyole as
it is performed again and again during
debugging. The changes to the Selection
Section are often completed with little
change thereafter. As the image gets
larger the ohanoe of an unsuooessful link
increases as does the need for larger
working set sizes. If there were some
way to retain the common information and
update the Selection Section as needed
when functionality is increased via a
separate image, the cost of adding a new
function to the system would be simply a
compile and link of the function and a
revision of he parsing rules in the
Selection Section oode.

Fig 1.
+--------------------------------+
I Main Routine 1
I I
I c RETAINS COMMONS
I c DOES INITIAL SETUP
I o DOES BOOKKEEPING

+--------------------------------+
I Selection Section I
I I

o PROMPTS USER FOR INPUT
c PARSES THE INPUT
o SELECTS SUBROUTINE TO RUN

+--------------------------------+
I Function Section I
I I
I o PERFORM ANALYSIS OR DISPLAY I

I

+--------------------------------+

San Francisco, CA-1986

The System as Prooess-Subprooess

A model of how this desirable effect can
be achieved is available to every user of
a VMS system. In particular, VMS retains
for each user process specific
information, much like our Main Routine.
It allows selection of images to run via
the DCL tables, like our selection
routine. Last, the addition of
functionality is provided by images run
to perform actions in response to DCL
command input, just like our Function
Section.
Any system of worth must be able to run
with the minimum of privileges, just like
the operating system. In building our
system we must seek to emulate many
features of the operating system without
any privileges. To do this we will use a
process subprocess pair with a global
oommon to retain system information.

The process subprocess pair is necessary
because under VMS it is not possible to
have two images active in a single
process at the same time. Further as we
retain the information in a global common
there must always be an image active
referencing the global common in order to
keep the oommon's reference count above
zero. The. process must therefore
activate an image we will call SUPERVISOR
which is comparable to the Main Routine
in the single image system or the Process
Control Block in VMS. Supervisor
performs several functions. First, it
learns the identity of the user and image
with a $GETJPI call followed by queries
to the terminal line, if our $GETJPI
reveals an interactive job. Next it
creates a Global common with the $CRMPSC
command using the process id as a base to
build the global section name. Third,
the information garnered in step one is
placed in the global common for use of
the subprocess. The global common is
page aligned and placed at a specific
starting address to insure that the
subprocess can associate with it. The
page align and address setting is
accomplished during the link via an
options file like that in figure 2.

Fourth, a subprocess is initiated with
it's process name based upon the process
id of the creating process. The
subprocess is started with a LIB$SPAWN
call to allow the process to name the
subprocess and set up IO streams back to
the terminal. The oall to LIB$SPAWN is
shown in figure 3.
The SPAWN can either wait for completion
or continue. If continuation is
selected, the process image must
synchronize its im~ge rundown in order
not to remove references to the global
common. The command string references a
command procedure used to perform the
work of the selection section of the
system diagrammed in figure 1.

220

Fig 2.

$LINK SUPERVISOR,(lib),G_COMMON/OPT

$ TYPE G_COMMON.OPT

CLUSTER=COMMON_CLUSTER,%X200,,G_COMMON
PSECT_ATTR-G_COMMON,PAGE
[EOF]

NOTE: G COMMON.OBJ is a module that
contains just the global common storage.
The global common begins at byte address
612 or 200 hex.

FIG 3.

CALL LIE$SPAWN ('@SUBPROCESS'
'TT' ,
'TT' , .
note,,
, , , , 'SUB> ',)

NOTE: Name of subprocess is based upon
the process id of the parent process.

The Subprocess Loop

The subprocess loop provides the
funtionality of the selection section and
the function section of figure 1. It is
a simple DCL command procedure loop that
provides for prompting; function
selection; parsing; and function startup.
This loop is presented in a simplified
form in figure 4.

The image SELECTION.EXE is an executable
that allows for the presentation of a
menu or prompt to allow user input which
is then parsed and the function selected
is activated via a LIB$DO_COMMAND call.
The SELECTION image is associated with
the global common by retrieving the
subprocess name via a $GETJPI call and
then modifying the returned name to
obtain the name of the global common.
This global common name is used to map
the global common created in the process
to the subprocess image. In order to do
this the subprocess image makes a call to
$MGBLSC using the global section name.
At the time this is done all information

in the global common is made available to
the subprocess image. The image
activated via the LIB$DO_COMMAND will
often also link to the global common to
retrieve session specific information.

The sequence of steps involved in the
selection of an image for run are all
handled via the LIB$DO_COMMAND which runs
down the current image (SELECTION) and
loads the function image (selected) .to be
run. At the conclusion of the selected
function image the DCL loop falls through
to the top of the loop and the SELECTION
image is once again initialized to allow
the user to choose a new option. To exit
the system the image activated in the
option selection section should be
LOGINOUT.EXE.

Command Buffer Usage.

In any system such as that described
above the need for a command buffer to
pass execution information to the
function image is required. In
particular this corresponds to the call
frame of the subroutines in the original
method described in figure 1. These
command buffers can be either fixed
length or variable. If a fixed size
command parameter buffer is chosen then
the values can be saved in global common
and passed on to any image that is linked
with the option file of figure 2 and
subsequently maps the global section.
If the buffer is made variable in length
then the linkage to the command parameter
buffer is more complicated. In fact the
use of variable parameter buffers causes
the LIB$SPAWN call to be done as no wait
and then to coordinate the access to the
global common. In this scheme we will
return to the process and perform IO to a
file using QIO's which read and write to
the global common. In the VAX
documentation set volume on RMS services
a method of creating the FIB block for
this sequential buffer file is presented.
The buffer file's FID must be obtained
from the NAM block to build a FIB for use
in A series of QIO calls to directly
update the file. These updates could be
handled via RMS reads and writes, but
that method is wasteful of memory for
buffers which are not needed and
processing time which could be better
used in processing. The use of a file to
hold the parameter buffer allows for the
extension of the parameter buffer to any
desired size and further allows for a
record to be maintained of all calls to
the function images to be kept for
debugging. The file is opended with a
standard RMS open statement and a block

221

FIG 4.

$ LOOP:
$ ON WARNING THEN GOTO LOOP
$ ON ERROR THEN GOTO LOOP
$ ON SEVERE_ERROR THEN GOTO LOOP
$ SET NOON
$ RUN SELECTION
$ GOTO LOOP

is written out to the file. The RAB
address is obtained from which the RAB is
formated. From the formated RAB we
obtain the FAE address and format that
structure. Finally from the formated FAE
we obtain the NAM address which we use to
format the NAM block to obtain the
necessary info to build a FIB for use in
direct access to the file. The use of
the FIB for direct access to the file is
covered in the IO users guide of the VMS
documentation set.
To extend the file for a large buffer the
QIO call is used to deaccess the file and
then the channel is deassigned. The file
is then opened for extend and additional
blocks are written out to meet the size
of the requested buffer. After the
extend is completed the FIB is once again
used to open the file for direct access
to allow paging in of the requested part
of the command buffer. Note that the
subprocess does not handle the IO but
must make request of the SUPERVISOR image
to page in various blocks of the command
buffer. To perform this feat the
SUPERVISOR, SUBPROCESS, and (function)
images must coordinate the order and
block number of command buffer pages.
This coordination can be accomplished via
all the standard VMS methods i.e. event
flag clusters, mailboxes, and files. Of
these three methods the use of mailboxes
to send commands and responses to the
SUPERVISOR code from the subprocess
images is the most understandable and
expandable. The method of extending the
command buffer on the fly in FORTRAN is
provided in the example program in figure
5.

Conclusion

The use of a process-subprocess pair for
a system provides for a flexible method
of system expansion. The use of variable
size command buffers allows the function
images to not be restricted to the usual
constraint of 254 characters per command
line. As a final point the use of
standard documented system services and
library routines mean that the code is
farely easy to support and sturdy over
new releases of the operating system.

N
N
N

PROGRAM FILEPAGER
c
c:;-~~~~~~~~~~~~AT~~~~~~~~~~~~~~~~~-

C
CPDL THE FORTRAN Sl.llROUTINE
c

EXTERNAL FOR$RAB
c
CPDL INCLIJ>E FILES TO FORMAT RMS BLOCKS
c

c

INCLUDE '~$FABDEF~' I NCLIJ>E ' $RABDEF '
I NCLIJ>E ' $NAl.l>EF '
INCLIJ>E ' $Fll:IOEF '

CPDL INCLIJ>E FILES FOR SYSTEM SERVICE CALLS
c

c

INCLIJ>E '~$SYSSRVNAM) '
INCLIJ>E ' $SECDEF)'
INCLIJ>E ' $ICX>EF)'

CPDL QIO READ AN> WRITE BUFFER
c

STRUCTURE /SJ)ATA/
LOGICAL•1 BJ)ATA(512)

00 STRUCTURE
c
CPDL RMS EXTEND BUFFER (NULLS)
c

STRUCTURE js_FILL/
CHARACTER•512 T_BLANK

END STRUCTURE
c
CPDL awtlEL ASSIGtMENT WORD
c

INTEGER•2 W_CHANG
c
CPDL BYTE FOR EQUIVALENCE TO J INDEX
c

LOGICAL•1 B_J
c
CPDL LOCAL STORAGE
c

c

INTEGER•4 J
INTEGER•4 L_STATBLK(2)
INTEGER•4 L_ADDRESS(2)
INTEGER•4 FOR$RAB

CPDL RECORDS FROM BUFFER STRUCTURES
c

c

RECORD /S_DATA/ R_DATA
RECORD /S_FILL/ R...FILL

CPDL RECORDS FROM RMS BLOCK STRUCTURES
c

c

RECORD /FABDEF/ R...FAB
RECORD /RABDEF I R...RAB
RECORD /NNIOEF I R...NAM
RECORD /FIBDEF/ R...FIB

CPDL EQUIVALENCE A BYTE TO THE INDEXES FIRST BYTE
c

EQUIVALENCE (J , B_J)

I DATA BLOCK

I DLU.ff BLOCK

I CHANNEL WORD

I INDEX BYTE

INDEX
STATUS BLOCK
FIB DESCRIPTOR
EXTERNAL

g:~~~~~~~~-COOE'----~~~~~~~~~~-

c
CPDL OPEN THE FILE WE WILL ACCESS VIA QIO'S WITH A FORTRAN OPEN
c

c

OPEN (UNIT • 66 ,
FILE• 'T00000000' ,
FORM• 'UNFORMATIED' ,
STATUS • 'NEW' ,
RECOROSIZE • (512/4) ,
BLOCKSIZE • 512 ,
ORGANIZATION • 'SEQUENTIAL' ,
IOSTAT • L_ISTAT ,
ACCESS • 'SEQUENTIAL' ,
RECORDTYPE • 'FIXED' ,
SHARED ,
INITIALSIZE • 3 ,
EXTEJIDSIZE • 81)

CPDL OBTAIN THE RAB ADDRESS FROM A FORTRAN SUBROUTINE CALL
c

L_RAB • FOR$RAB (66)
c
CPDL WRITE A BLOCK TO THE FILE
c

WRITE (66) R...FILL.T_lll..ANK
c
CPDL COPY THE RAB USING SUBROUTINE
c

CALL t.LCOPY_RABBLK (XVAL (L_RAB) , R...RAB)
c
CPDL FROM THE RAB COPY THE FAB USING A SUBROUTINE •
c

CALL t.LCOPY_FABBLK (XVAL (R,_RAB.RAB$L_FAB) , R...FAB)
c
CPDL FROM THE FAB COPY THE NAM BLOCK USING A SUBROUTINE
c

CALL t.l.COPY_NAr.tll.K (XVAL (R...FAB. FAB$L_NAM) , R...NAM)
c
CPDL USE THE INFORMATION IN THE NAM BLOCK TO BUILD THE FIB c. f. IO USERS GUIDE
c

c

R...FIB. FIB$L_ACCTL • JIOR (FIB$1.l..NCMRITE , FIB$t.LWRITE)
R...FIB.FIB$B_WSIZE • 0
R_FIB.FIB$W_FID_NLM • R,_NAM.NAM$W_FID__NLM
R_FIB.FIB$W_FID_SEQ • R,..NAM.NAM$W_FID_SEQ
R_FIB.FIB$W_FID_RVN • R_NAM.NAM$W_FID__RVN

CPDL CLOSE THE Fl LE
c

CLOSE (UNIT - 66)
c
CPDL SET THE CURRENT BLOCK tu.eER TO THE FIRST BLOCK
c

L_BLOCK .. 1
c
CPDL GET THE CHANNEL NU.llER ASSIGNED DURING THE LAST OPEN AN> DEASSIGN IT
c

L_CHANNEL • R_FAB.FAB$L_STV
L_STATUS ., SYS$DASSGN (XVAL (L_CHANNEL))

c
CPDL DO FOR 512 BLOCKS
c

DO J = 1,511
c
CPDL FILL IN ALL THE BYTES OF THE CURRENT BLOCK WITH THE BLOCK tu.eER
c

DOI=1,512

N
N
~

c
RJ)ATA.B_DATA{I) • B_J

END DO

CPDL ASSIGN A CHNlt!EL TO THE DISK FOR USE IN THE OIO CALLS
c

c
l_STATUS • SYS$ASSIGN ('SYS$0ISK:' , W_CHANG , ,)
L_CHANNEL • W_CHANG

CPDL CREATE THE FUNCTION CODE FOR THE ACCESS 010
c

c
l_FUNCTION • JIOR (10$...ACCESS , IC$LACCESS)

CPDL CREATE THE DESCRIPTOR FOR THE FIB
c

c
L_ADDRESS(1) • FIB$K._LENGTH
L_ADDRESS(2) • XLOC (R..FIB.FIB$1_.ACCTL)

CPDL OPEN THE FILE FOR 010 ACCESS
c

c

L_STATUS • SYS$QIOW (,
XVAL (l_CHANNEL) ,
XVAL (l_FUNCTION) ,
l_STATBLK(1) , , ,
l...,ADORESS(1) , , , , ,

CPDL WRITE THE DATA BUFFER TO THE FILE AT THE CURRENT BLOCK
c

l_STATUS • SYS$QIOW (,

c
CPDL DEACCESS THE FILE
c

XVAL (l_CHANNEL) ,
XVAL (10$_WRITEVBLK)
R_DATA.B_DATA(1) ,
XVAL (512) ,
XVAL (l_BLOCK) , , ,

l_STATUS • SYS$QIOW (,

c
XVAL (l_CHANNEL) ,
XVAL (10$_DEACCESS)

CPDL DEASSIGN THE CHANNEL TO THE FILE TO ALLOW RMS WRITES
c

c
l_STATUS • SYS$DASSGN (XVAL (l_CHANNEL))

CPDL INCREMENT THE CURRENT BLOCK NLM3ER
c

l_BLOCK = l_BLOCK + 1
c
CPDL OPEN THE FI LE FOR EXTEND
c

c

OPEN (UNIT = 66 ,
FILE= 'T00000000' ,
FORM = 'UNFORMATTED'
STATUS = 'OLD' ,
RECORDSIZE • (512/4)
BLOCKSIZE • 512 ,
ORGANIZATION• 'SEQUENTIAL'
IOSTAT = l_ISTAT ,
ACCESS= 'APPEND' ,
RECORDTYPE = 'FIXED' ,
SHARED }

CPDL WRITE OUT ONE KJRE BLOCK TO EXTEND THE FILE
c

WRITE (66) R_FILL.T_BLANK

.)

c
CPDL OBTAIN A CCPY OF THE FAB
c

CALL t.l.._CCPY__RABBLK (XVAL (L_RAB) , fl.RAB)
CALL t.l.._CCPY_FABBLK (XVAL (fl_RAB.RAB$L_FAB) , R_FAB)

c
CPDL CLOSE THE FILE TO ALLOW 010 ACCESS
c

CLOSE (IJlllT • 66)
c
CPDL GET THE CHANNEL NlMlER ASSIGNED DURING THE LAST OPEN AN> DEASSIGN IT
c

l_CHANNEL • R..FAB.FAB$L_STV
l_STATUS • SYS$DASSGN (XVAL (l_CHANNEL))

c
CPDL ASSIGN A CHANNEL TO THE DISK FOR USE IN THE 010 CALLS
c

c
l_STATUS • SYS$ASSIGN ('SYS$0ISK:' , W_CHANG , ,)
l_CHANNEL • W_CHANG

CPDL SET UP THE FILE FOR 010 ACCESS
c

l_FUNCTION = JIOR (IO$...ACCESS , IC$LACCESS)
c
CPDL SET UP A DESCRIPTOR FOR THE FIB
c

L_ADDRESS(1) • FIB$K_LENGTH
L_ADDRESS(2) • XLOC (R_FIB.FIB$L_ACCTL)

c
CPDL OPEN THE FI LE FOR ACCESS
c

l_STATUS • SYS$QIOW (,

c

XVAL (l_CHANNEL) ,
XVAL (l_FUNCTION) ,
l_STATBLK(1) , , ,
LAODRESS(1) , , , ••

CPDL READ THE CURRENT BLOCK (IT WAS JUST WRITTEN VIA FORTRAN)
c

l_STATUS • SYS$QIOW (,

c
CPDL DEACCESS THE FILE
c

XVAL (L_CHANNEL) ,
XVAL (10$__READVBLK) , ,
RJ>ATA.B_DATA(1) ,
XVAL (512) ,
XVAL (l_BLOCK) , , ,)

l_STATUS • SYS$QIOW (,
XVAL (l_CHANNEL) ,
XVAL (IO$_DEACCESS) , , , , , , , , ,)

c
CPDL CLOSE THE CHAl*lEL ASSIGNED
c

l_STATUS = SYS$DASSGN (XVAL (L_CHANNEL))
c
CPDL GO TO THE TOP OF THE LOOP
c

END DO
c
CPDL STOP/END
c

c

STOP
END

N
N
~

c

SUBROUTINE ll..COPY_NAl.ELK (R_NAMI , I INPUT NAM
RJW«l) I OUTPUT NAM

CT - ll..COPY_NAl.ELK (R_llAMI ,
CT - R.)WIJ)
c
CD - RETURN THE NAM FRCM THE NAM ADDRESS
c
CS - R_llAMI IS THE INPUT NAM RECORD
CS - R_tWIJ IS THE OUTPUT NAM RECORD
c

c

c

c

c

c

INCLUDE '($>W.l>EF)'

RECORD /NNA)EF I R_llAMI
RECORD /NNA)EF I RJWIJ

RJWIJ • R_llAMI

RETURN
END

SUBROUTINE ll..COPY_FABBL.K (R....FASI , I INPUT FAS
R....FABO) I OUTPUT FAS

CT - ll,.COPY_FABBLK (R....FASI ,
CT - R....FABO)
c
CD - RETURN THE FAS FRCM THE FAS ADDRESS
c
CS - R_FASI IS THE INPUT FAS RECORD
CS - R....FABO IS THE OUTPUT FAS RECORD
c

c

c

c

c

INCLUDE '($FABDEF)'

RECORD /FABDEF/ R....FASI
RECORD /FABDEF/ R....FABO

R....FABO • R....FABI

RETURN
END

Sl.eROUTINE ll..COPY__RABBL.K (R_RABI , I INPUT RAB
- R_IWIO) I OUTPUT RAB

c
CT - ILCOPY__RABBL.K (R_RABI ,
CT - R_IWIO)
c
CD - R~ THE RAB FRCM THE RAB ADDRESS
c
CS - R_RABI IS THE INPUT RAB RECORD
CS - R_IWIO IS THE OUTPUT RAB RECORD
c

c
c

INCLUDE '($RABOEF)'

c
RECORD /RABOEF/ R....RABI
RECORD /RABOEF I R_IWIO

c
R....R1t80 • R_RABI

R~
END

Portable Graphics Packages for the C Language

J-F Vibert, J-N Albert, and M. Rousseaux
CHU Saint-Antoine

Universite P. & M. Curie
Paris, France

Abstract

Because of LUN conflicts between FORTRAN and Decus-C, it is not possible
to use FORTRAN libraries such as PLOTlO and BENLIB from C programs.
Three libraries entirely written in C were developed in order to access from C
programs graphic displays and plotters. One is devoted to graphic displays and
is intended to be used with TEKTRONIX 4010, 4100 and 4105 or compatible
(VT241 in TEKTRO mode), one is for Regis mode, and the third for BENSON
plotters. Their functionalities will be described. They allow management of 10
independent windows, work in subject and screen (or paper) space, absolute or
relative, and color management. Device dependent code is grouped into a few
modules, thus allowing easy portability to compatible devices. They are written
in "standard" C in order to be portable. All sources and a full documentation
are provided using the DECUS getrno C-tool (UNIX like manual) and will be
submitted to the DECUS library.

After a ten year period of FORTRAN programming,
only C is now used in our laboratory, for several rea­
sons. The most important concerned the possibility of
developing real time acquisition program without have to
use an assembly language, such as MACRO 11, even for
high speed sampling (see Vibert, 1986 in these proceed­
ings). Unfortunately, LUN conflicts between FORTRAN
and Decus-C do not allow calling of FORTRAN-written
subroutines such as those found in PLOTlO (for video
TEKTRONIX terminals and clones), or BENLIB (for the
BENSON incremental plotters) from C programs using the
available call (...) C function. Owning TEKTRONIX
aliases and a BENSON 1332 plotter, we were led to write
the necessary libraries. We run both RSXllM v4.2 and
RTll v5.2.

Four libraries entirely written in C were developed
in order to access from C programs graphic displays and
plotters. Three are devoted to graphic displays and in­
tended to be used with TEKTRONIX 4010, 4100 and 4105
or compatible: QUMEC.OLB is for the 8 colors QUME
QVT511 gtx, which emulates a 4100 and 4105 Tektronix
terminal, AF410.0LB is for the french ARINFO AF410, a
monochrome 4100 and 4010 Tektronix terminal alias, and
VT241TEK.OLB is for the DEC VT240 et 241 in Tektro
4010 mode. PLOT.OLB is devoted to the BENSON plot­
ter 1332, a microprogrammed incremental plotter with 3
colors.

All the code is entirely written in DECUS C, using
only standard functions for purpose of portability. This
code is fully modular and thus easy to modify if some new

Proceedings of the Digital Equipment Computer Users Society

functions are to be added, or existing one to be modified in
order to adapt to some new device. Device dependent code
is grouped into few modules, thus allowing easy portability
to compatible devices. All sources are documented in the
code, and full documentation is provided using the DE­
CUS getrno C-tool that produces an UNIX-like manual.
This manual is in French for the video-terminal graphic
package, and in English for the plotter package. Sources
can be obtained upon request from the authors, and will
be soon available through the DECUS Library.

225

Video terminal graphic packages

The functions are grouped together in several files accord­
ing to their role. The lower functions relate to the internal
conversion from the decimal representation of values to
the special tektronix code with low, high and extra weight
ASCII characters. Only the name of the functions, without
any detailed argument list will be given here. The follow­
ing functions address this problem, and are only used by
others functions of higher level: conv ..int () converts an
integer, conv _txt () a text string, conv ..gin() a graphic
input, conv _._. () convert from absolute to subject space
a coordinate value. Other functions allow to send an in­
teger (entierO), a coordinate (send_xy()) and to move
the beam either switched off (a...move ()) or on (a_draw ()).

The more device dependant functions are those that
permit switching from one mode to another, i.e. from the
Tektronix mode to the ANSI mode (t_ansiO), or vice
versa (t_tektro()). When in Tektronix mode, it is pos-

San Francisco. CA - 1986

sible to be either in alphanumeric mode (t_alpha()) or
in vector mode (t_vecteurO). The screen area can be
cleared by t_eraae (), while the dialog area can be man­
aged by several functions: dial.Area() allows to turn it
on or off, diaLcolor (), dial..aize () and dial..linea ()
manage its color, buffer size and number of visible lines,
while clear..dial() clears it.

For the color video terminals, it is possible to define
colors for text (couLtexte ()), for lines (couLlignea 0)
and for the background area (coul.1ond()).

Text can be drawn on the graphic display using
Uexte() choosing the text direction (txt_dir()), rotation
(txt_:rotO) and size (txt....aizeO). Vector patterns can
be chosen in order to obtain either a continuous (trait 0),
a dotted (dotted()), a dot-dashed (mixte ()) or a dashed
(tiret ()) line. To mark a given position on the screen,
marker() draws a marker of a given shape.

The screen can be subdivided in up to 10 win­
dows that can overlap. Windows are created us­
ing ere .window (w, xl, yl, xr, yr) that defines the phys­
ical window by its absolute diagonal in the screen
space. When created, a current working window
must be selected using window(w) and scaled using
scale(xmin,xlen,ymin,ylen) which makes the corre­
spondence between the physical space on the screen and
the user units referred to as subject space. Thus two spaces
coexist, the screen space in pixel units referred as tektro
(abbreviated as t) and the previously defined subject space
in user units (abbreviated as s).

When a beam move or draw is to be done, the
x-y coordinate given as an argument of the move
or draw function can thus be given in either tek­
tronix (pixel) or subject (user) units. These coor­
dinates can also be understood to be either absolute
(abbreviated as a) or relative (abbreviated as r) to
the previous beam position. This leads to four move
functions (moveta (x, y), movetr (x, y), moves a (x, y),
movear (x, y)) and four draw functions (drawt a (x, y) ,
drawtr(x,y) ,draHa(x,y), drawsr(x,y)).

An important interactive medium is the possibility
of moving a cursor on the screen in order to indicate
a coordinate, a given part of a figure. The function
get_curs (x, y, char) displays a cursor on the screen at
the current position. Entering GIN mode (Graphic IN­
put), allows one to move the cursor using the arrows, the
numeric keypad or a mouse, and sends back its coordinates
and the typed character when a key is depressed.

Other higher level functions allow, for exam­
ple, drawing a surface filled with a predefined pat­
tern (begin..panel () and end..panel ()), drawing a
rectangular frame (cadre (length, width)) or a curve
(courbe(x,y,nb..pts)) whose coordinates are in two (x
and y) floating arrays. Last but not least, the produced
figure can be kept using hd_cpy () that sends a hard_copy,
monochrome or color 1 full or half-size.

A header file (qumec.h, &£410.h or vt241tek.h) must
be included in the C source code in order to use all these
functions. Moreover, it predefines several symbolic con-

226

stants related to the colors, the character size and the text
direction.

Benson plotter graphic package

The graphic package developed for the Benson plotter pro­
duces an ASCII file that is optionally spooled on the Ben­
son Plotter. It is composed of three modules: PLOTO
in which are all the very low level functions and the file
setting, PLOTl that contains the intermediate level func­
tions allowing mainly the raw pen displacement, with
the same names than in BENLIB.OLB (traa(x, y, j),
tr as (x, y, j)), and text plotting (pear a() , pears 0,
etc ... , there exist 14 text plotting functions depending
on the way the text must be drawn according to the
pen position before and after the function call), and fi­
nally PLOT2 that contains the high level displacement
functions. As for video functions, plotting knows two
spaces: the Benson space (abbreviated as b) in cen­
timeters, and the subject space (abbreviated as s) in
user units, and two displacement modes: absolute (ab­
breviated as a) or relative (abbreviated as r). These
pen displacements can be performed with the pen ei­
ther up (with the generic function name pmovxx) or down
(with the generic function name plinxx) thus leading
to the following functions: pmovba (x, y) , pmovbr (x, y) ,
pmovsa(x,y), pmovsr(x,y), plinba(x,y),
plinbr(x,y), plinsa(x,y) and plinsr(x,y). A sim­
pler way to manage the pen movements consist to prese­
lect a working space, either Benson (pbenson ()) or user
(puaer ()), and then to use one of the following functions:
pmovea(x,y), pmover(x,y), to move the pen in the cur­
rent working space, or plinea(x,y), pliner(x,y) to
draw a line.

These libraries have been used as the graphic routine
libraries in our lab for two years. The source code and
sample programs can be obtained upon request through
the authors, and were submitted to the DECUS Library
where they will be available soon.

Giving A PDP-11/73 A Better Image

Clyde L. Tyndale and Rlchard B. Waltz
Lab. of Biophysics, IRP, NINCDS,

National Institutes of Health
at the Marine Biological Laboratory

Woods Hole, Massachusetts

Abstract

A PDP-11/73 system performs image processing of images obtained from light
and electron microscopy via a video camera. The system consists of the KDJ­
llA processor with 4 megabytes of memory, magnetic tape drive, floppy and
Winchester disk drives, array processor, and a video processing subsystem, all
requiring three mounting boxes. The operating system is RSX-HM Plus. The
array processor gives the system VAX like performance when performing vector
calculations. The video subsystem with a dedicated pipe-line ALU can perform
many image processing operations at video rates. We experienced several system
integration problems due to the high speed of the CPU, the number of expansion
cables required, and the mixed vendor nature of the system. The system will be
described in detail along with some of the problems and solutions we encountered
along the way.

Introduction

At the Laboratory of Biophysics in Woods Hole (LB/WH),
the Section on Neural Membranes is conducting research
into the structure and function of nerves and nerve cells.
Some of this work involves the use of both light and elec­
tron microscopes to observe cell tissue. For a number of
reasons, which may be different for different types of obser­
vations or experiments, the observed images require vari­
ous types of processing before useful data can be extracted
from them.

This paper will describe the system we are now using
to perform this image processing and analysis. We will de­
scribe both the hardware and software used. Because the
system evolved over a fairly lengthy period of time, some of
the intermediate stages will be described, including some
of the problems and solutions we encountered.

System Objectives

hnage Subtraction

One of the research projects involves the study of the trans­
port of particles in tissue taken from the giant axon of the
squid, Loligo pea.lei. When live tissue is observed using a
light microscope, small particles can be seen to move in
apparently ordered ways. Because of the nature of the tis­
sue observed and also due to imperfections in the optical
system of even the best microscopes, Image Subtraction
becomes a useful technique for improving the observed im-

Proceedings of the Digital Equipment Computer Users Society 229

ages.
At high magnifications, a fairly complex structure is

observed. The large quantity of detail makes it difficult
to observe the particles which are moving. However, if a
reference image is captured and is then subtracted in real
time from the observed image, those parts of the image
which are static in time will be canceled out, leaving only
the particles which move to be observed against a plain
background.

The image may also contain various defects, such as
dust and stray particles which are in the optical system
of the microscope. It is possible to generate a reference
image with the microscope de-focused from the specimen
but with the defects (which are in a different focal plane)
still in the image. H this image is then subtracted from an
in-focus image of the specimen, the clutter caused by the
defects can be reduced.

Image Enhancement

Due to the nature of the specimens observed, the contrast
of the images is poor. This may be true for both light
and electron microscopy. Various image enhancement pro­
cesses can be used to improve the contrast of the images
in order to better observe the structure present.

False Color

Another way to improve the apparent information content
of an image is the use of false color techniques, in which

San Francisco. CA - 1986

color is used to represent a particular gray level, a region of
particular density, or other similar representations. This
can improve the ease of interpretation of the image.

Image Averaging

Some of the image detectors used, especially for low light
level optical microscopy or for some types of electron mi­
croscopy have an inherent high level of electronic noise
associated with them. This noise level is often sufficient
to obscure the image and the structure we wish to observe.
Averaging is a well known technique for eliminating or re­
ducing the random noise associated with a detection pro­
cess and it can also be applied to image analysis of static
samples. H a successive series of images is captured and
added together, the noise will tend to cancel out of the
resulting summed image. The degree of noise cancellation
is related to the number of image frames added together.

Tomographic Reconstruction

The last problem we wished to attack involves the at­
tempt to understand the fine structure of nerve tissue
in three dimensions. The problem is obviously compli­
cated by the fact that the microscopes used to observe the
tissue at the necessary high magnification are inherently
two-dimensional devices with a limited depth of field of
focus. Using an electron microscope, we wish to obtain
images taken at a variety of angles from a relatively thick
specimen and then use computational methods to derive
the three-dimensional structure from these images. The
computations involved in this tomographic reconstruction
process require a lot of forward and inverse Fourier in ad­
dition to other mathematical operations on a larg~ array
of data points.

Putting the System Together

One of the major constraints we worked under was limited
funding. This forced us to build the system in piecemeal
fashion over a period of several years. This was an advan­
tage in one respect - we were able to refine some of our
goals as we proceeded. On the other hand, proceeding in
the fashion we did caused us to sometimes get "locked in"
to an approach which we might have otherwise not used.

In May of 1982 we were able to obtain funding for the
~rst part of the system, which consisted of some analog
n~age enh.ancement equipment (Colorado Video), along
with the video camera (Dage/MT!), monitor (Panasonic),
and a Video Cassette Recorder (VCR) (Sony U-Matic) for
storing images for off-line processing. By the following De­
cember, the equipment arrived and we were able to begin
using it.

This system is shown in figure 1. The analog process­
ing equipment allowed two basic operations which proved
useful to perform in the analog realm: contrast enhance­
ment including gray scale expansion, and shading correc­
tion. The shading correction is designed to help correct

an image which is not evenly illuminated over its entire
area, which is a common problem with microscope im­
ages. These two processors have proved to be easy to use
(the operator merely adjusts a few knobs while watching
the monitor) and provide significant initial improvements
to the light microscope images.

In March of 1983 we received funding for the next
stage of our system. At this point we had determined that
a computerized digital image processing system would be
required to perform all the tasks which we required it to
do. Do to funding limitations we were unable to purchase a
turnkey system, so we decided to put it together in-house.

At this time, we chose to build a system around a
set of image processing subsystem boards manufactured
by Imaging Technology, Inc. (ITEK). The ITEK subsys­
tem consists of Frame Buffers (FB), an Analog Processor
(AP), and an Arithmetic Logic Unit (ALU), all of which
interconnect by means of a high-speed video bus. The sub­
system is shown in figure 2. (Although three frame buffers
are shown here, the system was originally acquired with
only two; the third was added later.)

Since funding (as usual) was limited, at this time we
could afford to order only the AP, the ALU, and two FB's.
There was no funding available for a computer to operate
the subsystem, so we decided to use the LSI-11/2 embed­
ded within the EDAX (X-ray analysis system) accessory
connected to our electron microscope. The EDAX system
has an LSI-11/2 microprocessor, 32KW of memory, and a
dual floppy disc, along with a DLV-llJ serial line inter­
face and a number of specialized modules for the EDAX
work. It was practical to mount our ITEK subsystem in
an outboard BA-11 type expansion box and connect it to
the QBUS of the EDAX system.

230

In December of 1983, the equipment arrived and we
began the system integration process. Figure 3 shows the
system block diagram. We chose a BA-11 type box from
MDB Systems mainly because it supplied the three power
supply voltages (+5v, +12v, and -12v) at sufficient cur­
rent as required by the ITEK modules. We ran the system
under the RT-11 operating system and used a set of soft­
ware driver modules along with a demonstration program
obtained from ITEK. The driver modules are written in
MACR0-11 and are FORTRAN callable. The demonstra­
tion program is written in FORTRAN.

The system integration process proceeded smoothly
and by February of 1984 we had a running system which
could do some of the processing functions we required but
had a few limitations, most of which were due to the slow
LSI-11/2 processor, the small memory size, and the lack
of a large mass storage device. Due to these limitations
we opted to do any large calculations on our PDP-11/60
system, transferring image data via floppy disk. Because
our 11/60 only had RXOl single density floppies (480 block
capacity), two floppy disks were required to store a com­
plete image since each image required 533 blocks at 512
bytes per block.

At this point we had a limited capability system which
could do real-time image subtraction and other enhance-

Ht~HLOG

FFOC

Figure 1: Block diagram of the Analog Video Processing subsystem

231

Figure 2: Block diagram of the ITEK image processing subsystem.

232

Figure 3: Block diagram of the LSl-11/2 based image processing system.

233

ments. Even with the limited CPU speed, some real-time
processing was possible because of the high speed video bus
inter-connection between the ITEK FB's, AP and ALU.
In fact, this was the feature that attracted us to this sub­
system; the amount of processing that it could do with
minimal intervention from the QBUS CPU and minimal
loading of the QBUS.

The major system limitations at this point included
the lack of color (no color monitor), small memory, limited
mass storage, and limitations on our ability to do image
averaging and convolution due to FB overflows. The last
would not have been a problem if we had been able to
have three FB's on the system (figure 2). In addition,
any processing which required much CPU processing or
memory had to be done on the PDP-11/60, so we were
limited by not being able to do these operations on-line.
On the 11/60 we used a partial implementation of the
Micrography Data Processing Package (MDPP, reference
1) for image processing software.

At this time it was obvious that in order to accomplish
the rest of our project goals, we would need to acquire a
dedicated computer to operate the ITEK subsystem, along
with sufficient memory and mass storage, and additional
FB and a color monitor. A major improvement in the
operating software would also be required. In February of
1984, funding for this next stage became available.

At this time, a software package became available for
the Multibus version of the ITEK subsystem which would
have met many of our needs. H we had been able to start
from scratch 11.t this time we might have chosen to use the
Multibus version, but since we already had 11. significant
investment in the QBUS version of the ITEK subsystem,
it was necessary to specify a QBUS computer system.

We specified a system consisting of the PDP-11/73
CPU, 4 Megabytes of memory, dual floppy disks (DSD), a
340 Megabyte Winchester disk (Fujitsu Eagle), a 9-track
magnetic tape drive (Cipher), DLV-llJ serial line interface
and a SKYMNK array processor, as shown in figure 4.
Because of the number of modules and the power required
by them, the system was specified to be mounted in two
BA-11 type mounting boxes.

We chose the 11/73 for several reasons: as a QBUS
machine, it would operate with the ITEK QBUS boards
on hand, with 22 bit addressing, it would operate with a
large memory, it implements the full PDP-11 instruction
set, it is the fastest QBUS processor, and with I and D
space it would allow use of larger blocks of memory for
program and data storage.

The SKYMNK Array Processor (Sky Computer) is
a key pa.rt of the system. It has Direct Memory Access
(DMA) to allow direct and fast transfer of data into and
out of memory. It allows the use of very large blocks of
memory to hold results of intermediate computations, a
key point for doing large Fourier calculations; otherwise
disk I/O would bog down the speed of the system. It can
perform matrix computations at very high speed. It was
supplied with a set of FORTRAN callable software drivers.

We originally planned to operate the system under

234

RT-11, in order to use existing software, but the vendor
could not supply a handler for the very large disk, so since
we did not wish to write one ourselves, RSX-llM+ was
substituted.

In August of 1984 the additional frame buffer arrived
and was integrated into the LSI-11/2 based system with
no problems. In December of 1984 the PDP-11/73 system
arrived and the fun began!

System Integration Problems

The first problem we experienced with the system was mi­
nor, although annoying: After we booted up the system,
we found that the system time ran at twice normal speed.
Because there were two identical mounting boxes (Sigma
had been supplied), each with a full set of console switches,
we learned that if both LTC switches were enabled, the
clock ran at twice speed; if only one switch was enabled
the clock ran at normal speed.

At this point we had an operating base level system.
We performed the SYSGEN with no unusual problems.
We then added our MDB mounting box containing the
ITEK subsystem to the system.

One of the complications experienced in adding in the
additional box was the bus terminations. In the Sigma
box, the terminators a.re a resistor network soldered in
place. In the MDB, they a.re a plug-in unit. For this
reason, it was decided to implement the system by placing
the MDB box in the middle between the SIGMA boxes.

The system refused to boot up! The boot routine
crashed part way through. After a lot of head-scratching,
consultations with Emulex (the boot ROM was theirs, on
the SC03 Disc controller), and careful study of the DEC
address scheme we discovered the problem. The first un­
expected symptom we noticed was that the system refused
to boot only when the ALU was present, leading us to con­
clude that there was an unexpected interaction between it
and the boot program. The addresses used for the ITEK
units were:

17770000-17770016: Frame buffer FB2,FB3
17770020-17770026: Analog Proceaaor
17770040-17770056: Frame buffer FBO
17770200-17770216: Arith Logic Unit

We had used these addresses mainly because the units
were supplied to us addressed this way. A check of Digi­
tal's address assignments showed that this address region
was not assigned for the QBUS, so we had left them that
way. They had operated successfully for some time on
the LSI-11/EDAX system. However, one of our reference
books (1980 Microcomputer Interfaces Handbook, DEC)
did show that the region 17770000-17770376 was "Digital
Reserved" for the UNIBUS. Further investigation showed
that 17770200 is the starting address for the UNIBUS
MAP Registers for the UNIBUS Memory Management
Unit. A check with Emulex confirmed that this was the
problem; the same PROM was used for both UNIBUS and

• , 4 MB

", . ,MEMORY ,

Figure 4: Block diagram of the PDP-11/73 system before the image processing subsystem was added.

235

QBUS and the presence of a device at 17770200 caused our
problem. The solution was simple; we simply changed the
ALU address to 17770060-17770076.

Now that we had a system that would boot properly,
the next problem appeared promptly: the system crashed
at apparently random times, sometimes even before the
indirect command file at boot time completed. At other
times the system would start up correctly and then crash
during operation, in particular when the tape drive was
used (it seemed to happen more often when running BRU).

After much trying of combinations of equipment on
the QBUS, we learned that the problem was related en­
tirely to the use of three mounting boxes; we had the prob­
lem whenever there were three boxes in the system, even
if one of them was empty. Bus loading did not seem to
be the culprit; only the number of mounting boxes (and
consequently also the number of expansion cable sets). At
this point we started trying to get some more information.

The bad news came first. Review of the DEC Mi­
cronotes showed that DEC did not support a multiple box
22-bit QBUS system with the KDJ-llA processor. Mi­
cronote #5 says that such a system is "Not currently con­
figurable with DEC equipment". Micronote #35 shows
how to properly configure a two-box 22-bit system with a
KDJ-llA, but says that three box systems can be done for
18-bit systems only.

At this time (March of 1985), we were getting pres­
sured to work on other projects for our laboratory. In order
to gain as much use from the system as possible, the sys­
tem was re-configured into a two-box system. Because of
power supply and space limitations it was necessary to re­
move some options in order to do this. We chose to remove
the floppy disc drive and 2 Mb of memory. The remainder
of the system, enough to allow program development to
proceed, was configured as a two-box system, using one
Sigma and one MDB box, since only the MDB had the
necessary power supplies for the ITEK system. Figure 5
shows the block diagram of the "two box" system.

About this time, in order to be able to install more
terminals on the system, an additional DLV-llJ was in­
stalled. One of the additional terminals was a LA-36
DECwriter. When this terminal was powered down at
the end of the day, the system halted. The problem was
unique to this terminal; terminals connected to other ports
did not halt the system when powered down. We traced
this problem to an easily overlooked "feature" on the DLV­
llJ: the HALT on BREAK option. A powered down ter­
minal looks to the DLV-UJ like it is sending a continuous
BREAK signal. We fixed this problem by disabling the
HALT on BREAK option.

The following December, it was possible to return to
the three-box problem. Since the problem seemed to be
related only to the number of expansion boxes used, we
consulted with the manufacturers of the boxes for sugges­
tions. The answer came from MDB, who also happened
to be the manufacturers of the expansion cable sets: the
problem was noise coupling between signal lines on the
expansion cables, a problem that was due in part to the

236

high speed of the 11/73. The suggested remedy was to
use a re-designed version of the expansion cable assembly
that changed the signal groupings so as to reduce coupling
between critical signals.

By March of 1986, the new expansion cables arrived
and the problem was solved! We now reinstalled the floppy
disk controller and the 2 MB of memory that had been re­
moved and the complete system worked without problems.
The final system block diagram is shown in figure 6.

Image Processing Software

We presently have three different image processing soft­
ware packages that use the PDP 11/73 system. They are:

• Micrography Data Processing Package (MDPP)

•LUNG

• Imaging Technology Processing Package (ITPP)

MDPP

The MDPP system (derived in part from P.R. Smith's Uni­
versity of Basel system) was put together to run under
RSX. It was developed over many years in a number of
different laboratories and has a relatively large number
of users. The principal author is P.R. Smith, reference 1).
Other versions run on a number of different DEC and IBM
systems. The software is programmed in FORTRAN 77
with the capability to send a command line to the mon­
itor (MCR) from a FORTRAN program (i.e., to request
an additional task to run). MDPP is operational on our
PDP 11/73 system.

In MDPP, the ITEK subsystem is used primarily for
collecting and displaying images. Since the original design­
ers of MDPP did not have an ITEK subsystem, the pro­
cessing subroutines do not make use of its special features.
The SKYMNK array processor is not yet fully integrated
into the MDPP software for the same reason. The soft­
ware is used primarily in the study of crystalline biological
structures.

LUNG

The LUNG program is a software package used for 3-D
reconstruction from stained serial sections. Images are
obtained by taking photographs of stained slices of bio­
logical structure and manually tracing the outline of the
desired sub-structures using a digitizer to produce sec­
tions. The sections are processed to calculate volume,
area, and sphericity index information. The traced data
is processed, translated and rotated to obtain stereoscopic
projections for output to a Tektronix 4010 graphics dis­
play for observing various perspectives. This program was
developed in another laboratory (S.D. Chawla, reference
2) to study the volume and distribution of tumors in the
lungs of experimental mice. It will require a significant
amount of rework to fully utilize the features provided by
our video and array processors.

2 MB

t1EMORY

Figure 5: Block diagram of the "two box" limited image processing system.

237

' .
• . TWO

OLU-11J.

AP.RAY

PP.OCESSOR .

Figure 6: Block diagram of the complete image processing system.

238

ITPP

The ITPP software package uses some of the features im­
plemented in the MDPP software. ITPP is being pro­
grammed in our laboratory and will therefore be described
in more detail.

The ITPP programs (tasks) are executed under the
control of a main menu and sub-menus plus prompts as
shown in figure 7. We took advantage of the multi-tasking
features of RSX-UM+ and the ability of a task to ac­
tivate a second task. The communication between tasks
and sub-systems hardware is performed through subrou­
tines supplied with the system.

The video processor subroutines were originally writ­
ten for the RT-U operating system and had to be modified
for use with RSX-UM+. This was accomplished by gener­
ating a DEVICE COMMON and mapping the COMMON
with each task. There were other minor changes required
to make the original subroutines compatible with RSX­
llM+.

The ITEK subsystem has one significant limitation for
use in a multi-tasking environment. It lacks hardware in­
terrupt logic. This requires that the drivers must monitor
status conditions under program control. This presents
problems when multiple users attempt to use the PDP
11/73 during tight timing loop execution (i.e. during real
time image subtraction). When these real-time tasks run
in the system they must run with a high priority in order
to block other user's tasks from executing. This prevents
data loss and other problems such as video display monitor
flicker.

The SKYMNK array processor was delivered with a
set of driver-level and data. manipulation routines. It has
logic for hardware interrupts and DMA interface to the
11/73 memory. It is tightly coupled to U/73 memory
because it has a small local memory. When large arrays
are being processed, QBUS activity approaches the upper
limit. This can cause problems for other system users,
especially for the Magnetic tape which tends to exhibit
data late errors under these conditions. Again, this has
not been a serious problem on our system because of the
limited number of concurrent users on the system.

As a result of the above limitations, we do not use
the system as a. true multi-user system, especially when
real-time image processing is being performed. At other
times, concurrent use by two or more users has not been
a problem as long as the array processor is not being uti­
lized. Usually, the only secondary use of the system is for
program development and testing.

The ITPP programs are written in FORTRAN and
MACR0-11. The program package is being used daily
and various modifications and additions are evolving as
experience is gained with use.

Menu

The system as previously described is a tool used by the
scientist in a research project. The primary task is to do

239

research with a minimum burden from ha.rd to use equip­
ment during an experiment. Therefore we implemented
the software for ease of use by employing a menu for pro­
gram commands. A series of two letter commands specifies
the operation or function (task) the user wishes to per­
form. The ma.in menu is not normally displayed, but may
be printed on the users terminal with the HE command. A
list of Display Commands is given in table 1.

COMMAND Meaning of command

VO VIEW FBO
IS REAL TIME IMAGE SUBTRACT
V2 VIEW FB2
SN SNAP (COPY VIDEO INPUT INTO FBO

OR FB2)
V4 VIEW AP512 VIDEO INPUT (CHANNEL 4)
SS SET SYNC
DL DEFAULT LUT FILE TO LUT

LookUp Table)
LD LUT TO DEFAULT LUT FILE
LL LINEARIZATION OF LUT
MT MULTI-LINEAR TRANSFER FUNCTION
WL WR LUTs TO DISK FILE
RL WR DISK FILE TO LUTs
HG COMPUTE HISTOGRAM
DH DISPLAY HISTOGRAM (DEFAULT FILE)
EQ HISTOGRAM EQUALIZATION
LS HISTOGRAM LINEAR STRETCH
CV CONVOLUTION
CO COPY FBO TO FB2 FULL IMAGE
C2 COPY FB2 TO FBO
CS COPY SUB-IMAGE CURSOR SELECTED
FC PERFORM FUNC ON IMAG
AV IMAGE AVERAGE
SP SLOW PASS
II INITIALIZE ITEX
LM LUT MANIPULATION
VX VITEX (write image to diskfile)
GR GRAPHICS (Draw Line, Box,

Circle, etc.)
SF SKYMNK FFT(s) PROCESSING
FF 11/73 FFT(s)
DE DILATE/ERODE AN IMAGE
MD MDPP PROGRAMS (data capture

programs)
P1f SPAWN COMMAND LINE (entered from

console)
SK TEST SKYMNK (MNK)
TI TEST ITEX VIDEO PROCESSOR
HE HELP
EX EXIT
PI INITIALIZE FB,ALU,AP (video

UT
MV
ZR
PX

processor modules)
RUN PIP
MOVE IMAGE
ZOOM OR ROAM
PITEX (read image from disk)

Figure 'f: Hierarchy of the ITPP software package

240

SL GREY LEVEL SLICING
YP DISPLAY Y PLOT (pixel intensity)

OF LINE CONNECTING 2 POINTS
YS DISPLAY Y-SCAN PLOT (pixel

intensity) OF SELECTED ROW
CC COLOR CHART (display of LUT(a)

on monitor)

In a typical session, the user logs in, selects ITP by
typing ITP1cr;., then normally types a two character com­
mand to select a function to be executed (i.e. AV for image
AVerage command). The command is decoded and then
the appropriate task is SPAWNed or, in some cases, a sec­
ond menu may be displayed to allow the user to select an
operation from a larger group of tasks to be SPAWNed.
When the OFFSPRING task is SPAWNed the user is pre­
sented with a series of prompts requesting entry of the
required parameters for the task. A prompt ("*") is dis­
played on the user's terminal after the OFFSPRING task
exits, to indicate readiness to accept the next command.

The program does not allow a user to jump directly
from one sub-menu to another sub-menu. The only allow­
able path is back to the root or main menu and then back
down the tree to the appropriate node or sub-menu. The
tasks have been written to permit a reasonable amount of
flexibility in organizing the analysis but the user should
bear in mind that the order is important if sensible results
are to be obtained.

The main menu is processed with the FORTRAN
statements given in Program 1.

General FORTRAN statements for spawning a task or
or another subroutine with a sub-menu take the following
form:

DDDD CALL SPAWND (NAME,NBYTES)
OR

CALL Sub-Menu

GOTO 6000

SPAWN(ed) task

An active task may activate another task by issuing a
SPAWN directive. The task issuing the spawn directive
is called the PARENT and the SPAWNed task is called
the OFFSPRING. The two FORTRAN directives

CALL SPAWN (MCR,,,IEFN,,,,NAME,
NBYTES,,,,IDS)

CALL WFLOR(IEFN)

worked satisfactorily in our system. The parent task
must be installed as ... tsk where tsk is a three charac­
ter symbol (i.e ITP). The byte array NAME contains
the offspring task to be activated (i.e. RUN CONVOL for
the command "CV" which allows the user to perform con­
volutions on an image stored in a frame buffer). RUN
is required for all non-installed tasks and tsk for a task

241

installed as ... tak. NBYTE designates the number of
characters in the command line (NAME). The Executive
directive "CALL WFLOR(IEFN)" waits for the event flag
IEFN to be set upon completion of the OFFSPRING task
CONVOL and the exit of NCR ... task. There is only one
OFFSPRING task running in a given time interval. As a
result, the WFLOR is sufficient for inter-task communica­
tion by the SPAWN directive. Chapter 5 of the Executive
Reference Manual (reference S) gives a more comprehen­
sive example of activating one or more offspring tasks.

NAME and NBYTE is obtained by an appropriate
FORTRAN statement.

READ (6,100)NBYTES,(NAME(K),K=1,46)
100 FORMAT(Q,46A1)

CALL SPAWND (NAME,NBYTES)

If PW is selected from the main menu, the user will be
prompted to type a command line. For example, if "RUN
CONVOL" or "FLX" is typed, the call to SPAWND will
be:

CALL SPAWND ('RUN CONVOL',10)

or

CALL SPAWND ('FLX',3)

The subroutine SPAWND contains the two Executive
directives SPAWN and WFLOR as given in Program 2.

Batch processing

Tasks may be run using the Batch Processor, allowing a
sequence of commands to be processed. Batch processing
is performed by submitting a JOB to the Queue Manager
with the appropriate Batch Commands plus the image pro­
cessing commands and terminal input data. The terminal
data is handled via a virtual terminal input as obtained
from the JOB list. These two approaches give the scientist
a choice of operating procedures to allow for the command
and terminal data requirements of the specific experiment.

Task to task comm.unication

Sub-system parameters and flags, along with program con­
trol data are passed from task to task via default disk files.
Some typical data passed by default files are LookUp Table
(LUT) values, histogram values, and convolutions kernel
files. This technique was chosen rather than using the
SEND/RECEIVE directive or a shared (COMMON) re­
gion because of the ease of implementation and the amount
of information that can be passed. Commands (i.e. WL)
are available for storing L UT on a disk by other than de­
fault files.

Image storage

Image data to be passed from task to task is normally kept
in Frame Buffers (FB), but sometimes is stored in 11/7S

main memory. This communication is transparent to the
user. We found this to be an acceptable method since
only one user h11.S access to the video and vector proces­
sors during 11. session. Commands are available for copying
images or sub-images from one FB to another, between 11.
FB and main memory. Image data management for sec­
ondary storage is limited to writing (command VX) and
reading (command PX) between frame buffers and disk
storage. The hard (Winchester) disk hll.S 340 Mbytes of
storage, thus providing enough space for all our accumu­
lated images to date. DEC utilities are used to backup
disk data files. The user must organize the data within
these constraints.

APPLICATIONS

The ITPP software is presently used for image enhance­
ment. The package also includes graphics capability to
mark or label features in an image and to label each im­
age for proper identification. The graphic subroutines can
also be used to produce illustrations. With 11. color pho­
tographic unit (N.l.S.E., Rembrandt) attached to the sys­
tem, 35mm slides may be e11.Sily made of the results. The
block diagrams in this paper were created using the graph­
ics subroutines of the system. Listed below are some of the
image enhancement features which are now operational on
the system.

• Image Enhancement by Histogram Modification

a Histogram Equalization

o Histogram Linear Stretch

• Image Smoothing

a Neighborhood Averaging

o Lowp11.Ss Filtering

o Averaging of Multiple Images (see figures 8 and
9)

• Image Sharpening

a Sharpening By differentiation

o Highpass Filtering

• Pseudo-color Image Processing

a Density Slicing

a Gray-level to color Transformation

• Image Subtraction

o Removal of microscope artifacts from the image
(see figure 10)

o Detection of movement in 11. series of images

242

Graphics Features

The graphics subroutines operate by means of 11. cursor
displayed on the video monitor. The operator controls the
cursor position by using the numeric keypad. The even
number keys are used to move left, right, up or down. The
odd number keys are used to move diagonally, except for
key number 5 which is used to terminate cursor movement.
The menu for the graphic features is:

Command Operation

SF Select Framebuff er
CI Set Cursor Intensity
PI Set Pen Intensity
DL Draw Line
DR Draw Rectangle
RF Rectangle Fill
DC Draw Circle
IT Insert Text
EX Exit
HE HElp
SC Set Cursor
CC Clear Cursor from monitor

Arithmetic operations

The ITEK subsystem has an ALU for performing arith­
metic operations at video rates (i.e. subtract at 11. 10 mega­
hertz rate). ITPP provides a menu for selecting the follow
operations:

COMPLEMENT FBm; copy results
into FBn (FBm ==> FBn)

AND FBm A FBn ==> FBn
OR FBm T FBn ==> FBn
ADD FBm + FBn ==> FBn
SUB FBm - FBn ==> FBm
ADDM FBm + c ==> FBm,

where c is a scalar constant
SUBM FBm - c ==> FBm

Hardware Tests

The ITEK subsystem and the SKYMNK array processor
can be exercised using software supplied by the manufac­
turers. These test are accessible via the ma.in menu. The
IOX task may be run by entering the command PW and
typing Run $IOX, to provide 11. means of exercising system
peripherals.

VECTOR PROCESSING SPEED
COMPARISONS

The tomographic three dimensional (3-D) reconstruction
problem requires a considerable a.mount of array process­
ing. The PDP-11/73 without special hardware would be
to slow to process the amount of data required for our par­
ticular application in 11. re11.Son11.ble amount of time. The

Figure 8: An example of image enhancement by averaging of multiple images. The image on the right side is 11. Scanning
Electron Microscope (SEM) image before processing. The image on the left is the same micrograph after multiple image
averaging, in which the inherent detector noise is greatly reduced.

243

244

245

c

c

c
5000

c

5011

5013

5028
c

Program 1

INTEGER*2 COMAND(45)

DATA NCOMND/45/

Array storage command table

Number of 2 char command

DATA COMAND/'VO' ,'IS' ,'V2' ,'SN' ,'V4','SS','DL','LD'
1,'LL' ,'MT','WL' ,'RL','HG' ,'DH' ,'EQ','LS','CV','CO'
1 , ' C 2 ' , ' CS ' , ' F C ' , ' AV' , ' SP ' , ' I I ' , ' LM' , ' VX ' , ' GR' , ' SF '
1, 'FF' , 'DE' , 'MD' , 'PW' , 'SK' , 'TI' , 'HE' , 'EX' , 'PI'
1, 'UT', 'MV',, ZR', 'PX'', SL', 'YP'' 'YS', 'CC' I

CONTINUE Read command from terminal
Decode for task selection

TYPE*,'*' Provide a prompt
READ (5,5011,ERR=5580,END=5591)INSTR ! Read Cmd
FORMAT (A2)
DO 5013 I=l,NCOMND
IANS = I
IF(INSTR .EQ. COMAND(I))GOTO 5028 ! Get the index
CONTINUE
TYPE *,'Command not in table. Type "HE" for help'
GOTO 5000
CONTINUE Select task to SPAWN

Select Sub-menu

IF((I.ANS .LT. 1) .OR. (IANS .GT. 45))GOTO 630
GOTO (101,102,103,104,105,106,107,108,109,110
1, lll,112,113,114,115,116,117,118,119
1, 120,121,122,123,124,125,126,127,128
1, 129,130,131,132,133,134,135,136,137
1, 138,139,140,141,142,143,144,145),IANS

246

c
c

Program 2

C FORTRAN SUBROUTINE TO SPAWN A COMMAND LINE
c
c

SUBROUTINE SPAWND (NAME,NBYTES)
c
C REQUIRED DATA STATEMENTS
c

BYTES NAME(l)
REAL MCR

BYTE AF.RAY FOR COMMAND LINE

DATA MCR/6RMCR ... / CONVERT MCR ... TO RADIX-SO
c
C SPAWN OFFSPRING TASK USING EVENT FLAG IEFN
c

IEFN=9
CALL SPAWN(MCR,,,IEFN,,,,NAME,NBYTES,,,,IDS)
CALL WFLOR(IEFN) ! WAIT IEFN BIT TO BE SET
RETURN ! RETURN TO CALLER
END

* **
PROGRAM 11/03 11/73 SKYMNK 11/780

SIEVE 5.50 0.75 0.21
(in seconds)

FLOATING-POINT ADD 246.0 25.2 10.9 7.8
(in microseconds)

FLOATING-POINT MULT 298.0 31.3 10.9 11.4
(in microseconds)

MULT/ADD (MATRIX) 685.9 53.5 13.2 15.6
(in microseconds)

* Programs copied from reference 3 (pg 41) and modified to
run on our computers.

** 11/780 data from reference 3 (pg 38) .

Table 2 - Benchmark times for various operations and systems

247

cost of very fast array processors exceeded our budget.
We chose to trade some speed for affordable cost and pur­
chased a SKYMNK array processor. The SKYMNK gives
us performance similar to a VAX 780 as shown in table 2.
In actual applications this was confirmed. The SKYMNK
processor is able to compute a 2-D 512 by 512 FFT in 60
seconds, producing a result in complex numbers.

References

[1] Dr. P.R. Smith, Dept of Cell Biology,New York Uni­
versity Medical Center, New York, NY 10016 (Note:
MDPP is copyrighted by P.R. Smith)

[2] Chawla, S.D., Glass, L., Freiwald, S., Proctor, J.W.:
Interactive Computer Graphic System for 3-D Stereo­
scopic Reconstruction from Serial Sections; Analysis
of Metastatic Growth. Computer Biomedic. 12 (3)
223-232, 1982.

[3] Digital Equipment Corporation, RSX-UM/M-PLUS
Executive Reference Manual, Order No. AA-L675A­
TC (For RSX-UM+, version 2.0).

[4] Cobler, Jonathan: Time Trials. Hardcopy. 2 (2): 36-
41, November 1984

248

A Simple Bootstrap Prom Programmer

Frank R. Borger
Michael Reese Medical Center

Chicago, IL

Recently we installed a second disk drive con­
troller on our PDPll system. Since the second
controller had to be installed at a non-standard
address, we were unable to use standard DEC boot­
strap proms. We devised some simple programs and
a hardware programmer to enable us to program
blank proms to fit the standard device.

The first thing we wrote was a simple pro­
gram to print out the contents of the
external page. (Note that the following
program did not do file output. We submit­
ted the program as a batch job, and saved
the spooled batch output file to create an
editable file.

PRINT EXTERNAL PAGE

.MCALL DIR$,QIOW$,EXIT$S,SVTK$S

START: MOV #160000,RS
SVTK$S #SSTTAB,#1
MOV #l,R2
MOV #10000,R3

REGO: MOV R5,Rl
MOV #MESS,RO

CALL $CBOMG
CLR R4
MOV (RS) ,Rl
ADD #2,R5
TST R4
BEQ EXISTS
SOB R3,REGO

EXISTS: MOV #YESCON,RO
CALL $CBOMG
DIR$ #YESQIO
SOB R3,REGO
EXIT$S

;
;SST SERVICE ROUTINE TABLE
;
SSTTAB: . WORD NONEX
;
;SST SERVICE ROUTINE

NONEX: INC
RT!

MESS: .ASCII
YESCON: .ASCII
LEN=.-MESS
.EVEN

R4

/NNNNNN
/NNNNNN

;Set the start
;Set trap vector
;for $CBOMG
;Set loop count
;address in Rl
;point to buffer
;no zero supp.
;convert address
;clear flag
;try address
;next address
;is it there?
;branch if yes
;go again
;point to buffer
;convert address
;print it
;go again

;show not there

I
;/

;
YESQIO: QIOW$ IO.WVB,5,l,,,,<MESS,LEN,40>

.END START

Since we knew from our hardware manuals
that the disk bootstrap code occupied
external page locations 173200 thru 173376,
we edited the batch run to just contain the
contents of those locations. This gave us
a file of the form:

Proceedings of the Digital Equipment Computer Users Society 249

173200
173202

173376

042120
000042

111612

Armed with a PDPll programming card we then
examined this output to determine what the
RM03 bootstrap code was doing. We also new
the following about DEC proms, (from the
M9312 Technical Manual)

The first 9. words are a ROM HEADER.

Word 0

Word 2

Word 4

Word 6

Word 10

Word 12

Word 14

word 16

Word 20

Word 24

word 26

Device Name
(2 Ascii characters, reversed)

Off set to second ROM HEADER
(If a multi device ROM, else 0)

Power up entry - unit 0
Without CPU diagnostics

Power up entry - unit 0
With CPU diagnostics

0 (Unit number for above)

Entry point from console emulator
(Dev # in RO.

Address of device CSR

Entry point for unit >0

BCC to diagnostic code

Must contain•l73000

Must contain 340

Word 376 16-Bit CRC for the whole ROM
(Only used by ROM diagnostics)

After editing the output and figuring out
what the bootstrap code did, we had an out­
put as shown in figure 1. We then wrote a
program to translate the octal data as it

appears on the bus to 4-bit prom data. We
had to take into account the following:

1. A 16-bit DEC word is stored in 4
consecutive 4-bit prom words.

2. Bits 10, 11 and 12 are inverted.

San Francisco, CA- 1986

3. The following table describes the
mapping information used to store
the data. The contents of this
table are the bit numbers, (0 thru
15) of a 16-bit DEC word.

ROM Output
Bit number

4
3
2
1

Rom Address
offset

0

3
2
1
8

1

7
6
5
4

2

11
10

9
0

3

15
14
13
12

The basic program shown in figure 2 reads
in the octal bootstrap program listing, and
outputs the actual prom data. Ou tout looks
like this.

0 0 0 0 0
1 0 1 0 1
2 1 0 0 0
3 0 1 0 1 .ascii PD
4 0 0 1 0
5 0 0 1 0
6 1 1 0 0
7 0 0 0 0 ;offset

We then constructed a simple hardware pro­
grammer. Programming the proms required
the following:

1. Select the 4-bit byte address via
the 9 address lines.

2. To program a "1", apply a 15 volt
programming voltage to the appro­
priate data line and to the VP
control line of the PROM. Only 1
data bit should be programmed at
one time.

3. The programmer was designed with
an address and data readout sys­
tem. This enabled us to verify
the corrrectness of our software
by taking a known prom and apply­
ing the decoding software to gen­
erate the prom data, and then com­
paring the computer output with
the actual prom data.

The unit consists of:

1. A Clock and strobe unit, which
continuously strobes the 4 data
lines to provide a "program"
pulse.

2. An adjustable voltage supply, pro­
viding 12 volts when the program
button is pushed.

3. 4 Data switches with appropriate
programming logic.

4. A 3 digit
switch.

address selection

5. A 3 digit Address readout.

6. A 4-bit data readout.

250

Having built and testeo tne programmer,
Hans Goebel had the honors of programming
the first PROM. Although we had bought a
half dozen blank proms, (expecting the
worst from Murphy,) h~ns got it right the
first time. About 1 hour was required to
program the prom.

In retrospect, had we thought about it
more, we probably could have programmed on­
ly a couple of bit changes to an existing
prom, if we chose our alternate address
correctly. Had we done that, zapping a one
or two bit change could be done using a
breadboard, pulse generator and variable
power supply. One would just hard jumper
the appropriate address and pulse the cor­
rect data line to blow the internal prom
fuse.

173200 042120 ; .ASCII PD RP03/RM03 BOOT
173202 000042 ; ;offset to next device
173204 000261 ;SEC ;show no diags to run
173206 012700 ;JllOV #0,RO ;clear all RMERl flags
173210 000000 ;
173212 012701 >------>;MOV #176714,Rl ;address of RMERl->Rl
173214 176714 ;
173216 010704 ;MOV PC,R4 ;point retries here
173220 103060 A <-----;BCC 173362 ;br if must ret to ucode
173222 000402 v <--;BR 173230 ;otherwise •..
173224 173000 v v , .WORD 173000 ;Must be 173000
173226 000340 v v ; .WORD 000340 ;Must be 000340
173230 010003 v -->;MOV R0,R3 ;RMERl flags->R3
173232 000303 v ;SWAB R3 ;put in upper byte
173234 010311 v ;MOV R3, (Rl)
17.3236 012702 v ;MOV #5,R2 ;seek, go bits for RMCSl
173240 000005 v ;
173242 000425 v <--;BR 173316 ;go start the load
173244 042102 v v ; .ASCII BO ;device name
173246 000132 v v ; ;offset to next device
173250 000261 v v ;SEC ;show no diags run
173252 012700 v v ;MOV #0,RO ;start with unit 0
173254 000000 v v ;
173256 012701 v v ;MOV #176700,Rl ;point Rl to 1st register
173260 176700 v v ;
173262 010704 v v ;MOV PC,R4 ;point retries here
173264 103036 A v<----;BCC 173362 ;br if no error
173266 010061 v v ;MOV RO,lO(Rl) ;set unit bits in RMCS2
173270 000010 v v ;
173272 012702 v v ;MOV #71, R2 ;read, go bits for RMCSl
173274 000071 v v ;
173276 012711 v v ;MOV #21, (Rl) ;set read-in preset
173300 000021 v v ;
173302 012761 v v ;MOV #14000,32(Rl);set FMT,ECI bits in RMOF
173304 014000 v v
173306 000032 v v ;
173310 016161 v v ;MOV 16(Rl),16(Rl);clear any DRIVE ATA bit
173312 000016 v v
173314 000016 v v ;
173316 012761 v -->;MOV #177000,2(Rl);set lk in word count
173320 177000 v
173322 000002 v ;
173324 011103 v ;MOV (Rl) ,R3 ;get RMCSl
173326 042703 v ;BIC #377 ,R3 ;clear lower byte
173330 000377 v ;
173332 050203 v ;BIS R2,R3 ;set seek and go bits
173334 010311 v ;MOV R3, (Rl) ;get RMCSl in Rl
173336 105711 v -->;TSTB (Rl) ;check READY bit
173340 100376 v --;BPL 173336 ;wait for READY bit
173342 005711 v ;TST (Rl) ;check SPEC COND bit
173344 100003 v <--;BPL 173354 ;br if ok
173346 000005 A v v ;RESET ;else do unibus reset
173350 000164 v v ;JMP 2(R4) ;and do full retry
173352 000002 v v ;
173354 042711 v -->;BIC i377,(Rl) ;clear command, int enable
173356 000377 v ;
173360 005007 v ;CLR PC
173362 000137 ----->;JMP 165564 ;go back to console ucode
173364 165564 ;
173366 000261 ;SEC ;show ret to console ucode
173370 012700 ;MOV #1,RO ;with 1 in Rl
173372 000001 ; ;do full re.try
173374 000706 A<------;BR 173212
173376 111612 ;CRC word

251

MICHAEL REESE MEDICAL CENTER - - - DEPARTMENT OF MEDICAL PHYSICS COMPUTER
BOOTDP.BAS;20 PAGE 1

10 l decode boostrap as 16 bits
11 dim a$[8],b$L6],c$[132Jv,x(16),xx$[132]v
12 dim de(16) : ! Decoding bits for bootstrap bit versus rom bit
13 de(16)=3 : de(15)=2 : de(14)=1 : de(13)=8 : de(12)=7 : de(ll)•6
14 de(10)=5 : de(9)•4 : de(8)=11 : de(7)=10 : de(6)=9 : de(5)=0
15 de(4)•15 : de(3)=14 : de(2)•13 : de(l)•l2
16 ! de(n)•x means rom bit n = data bit x
20 open #3, "BOOTDP.DAT/RO/LN:l32"
25 if end i3 then 200
30 open i4,"BOOTDP.OUT/WR/LN:132"
40 input line #3, xx$: zz=zz+l
41 if len(xx$)>5 then 45
42 print i4, xx$
43 goto 40
45 a$=sbs$(xx$,1,8) : b$•sbs$(xx$,9,6) c$=sbs$(xx$,15)
46 ad=oct(sbs$(a$,5,3))
47 if ad<l28 goto 49
48 ad=ad-128 : goto 47
49 ad=ad*2
50 b=oct(b$)
51 for i=l to 16
52 x(i)=b-int(b/2)*2
54 if i=ll then let x(i)=l-x(i) invert data bits 10 thru 12
55 if i=12 then let x(i)=l-x(i) (11-13 counting from 1 instead of 0)
56 if i=13 then let x(i)=l-x(i)
57 b=int(b/2)
58 next i
60 for xx=l to 4
61 print #4, oct$(ad+xx-1);" ";
65 for i=l to 4 : print #4, frmt$(x(de(21-xx*4-i)+l),1);" "; next i
70 if xx=4 then print #4,c$;
71 print #4
72 next xx
80 goto 40
200 close
204 print xx$

252

PROM PROGRAMMER

Clock and Strobe

7
8 1 7 9 10 6 9

2 12 3 5
74161 74 11

6 555 13 2 138 3
·13

3 2 14 1 1

.oiJJ 4 5 15

Arm and V-Prog supply

Arm Zap Arm
_L 13

~o ___ : __ ~ PROG

100

+15v

11 10 11
0 7805 out 0.1

Volt V-PR.06
Re

Program logic

9
P4

5
P3 03 VP3

3
P2 VP2

1

~ Pl
220

Closed for High for
a "0" a "0"

253

Prom socket and display
+~

lSO
16 0.1

14 VP V·PROG +$"'
AS l" lS 9

100~ A7 04 VP4 lk 11 10 lSO L4
1

A6
2 7261 10

AS PROM 03 VP3 lk 13 12 lSO L3
3 ZIF

A4 SOCKET
4 11

A3 02 VP2
7

A2
6 12

Al 01 / VPl
5

AO
s 13

octal 470 PROG
swit- each addr
ches

Address display

lSO +SV
6 13 1 14

12 13
AS 2 11 10 XAN 71

7446 10 s 7-se9
(A7 ' ··-~

1 9 7 Display
15 2

(A6) 7 14 11

lSO +SV
6 13 1 14

12 13
AS 2 11 10 XAN 71

7446 10 s 7-seg
A4 1 9 7 Display

lS 2
A3 7 14 11

lSO +5V
6 13 1 14

12 13
A2 2 11 10 XAN 71

7446 10 s 7-seg
Al 1 9 7 Display

15 2
(AO) 7 14 11

254

REESE BASIC (The Other Basic)

Frank R. Borger
Michael Reese Medical Center

Chicago, IL

Everyone knows about BASIC+2 for RSXll and IAS,
bu~ there is another BASIC available for ll's
which has features that make it a valuable addi­
tion to any RSX/IAS system. It's Reese Basic
It's available from DECUS or from various SIG
tapes.

It's also an Interpreter rather than a com­
piler. (For those who may not understand
the difference between an interpreter and a
compiler, the basic differences are:)

1. Instead of assembling and then task
ilding your source program, you run
BASIC operating system and tell
system to read in your program.

bu­
the
the

2. The program always stays in memory in
text form.

3. The BASIC operating system effectively
does a continuous compilation of your
source text into actual program opera­
tions.

Although interpreters can not be as effi­
cient as compilers, they offer unique ad­
vantages, mainly in program development and
debugging:

1. Any program statement typed in from the
terminal without a line number is exe­
cuted immediately. With the program
stopped you can examine variables, re­
set loop counters, etcetera.

2. Any incorrect code can be replaced
just re-typing the offending line.
program can be re-run immediately.

by
The

3. Diagnostic halts and/or variable
print-out statements may be entered ea­
sily.

4. Program execution may be continued at
any line, single stepped, etc.

5. A trace mode is available, whereby any
goto, computed goto statements are re­
ported.

6. Programs that have been corrected in
memory can then be saved back to disk.

Program development and debugging is in­
credibly faster for an interpreter. As an
example, assume your basic program just
bombed because you made a simple error and
used A(N) instead of A(M). You wish to
correct this error and test the new ver­
sion. Modification time for REESE BASIC
compared to BASIC PLUS 2 are:

REESE BASIC 1 Type new line
2 RUN or CON nnn 5-10 seconds

Proceedings of the Digital Equipment Computer Users Society 257

BASIC PLUS 2 1 Edit source
2 Compile
3 Link

10-30 seconds
20-40 seconds

3-5 minutes

The above compile and link times are for an
11/44 runnin~ IAS, with the large TKB, sep­
arate work disk, etc. With a smaller CPU,
smaller TKB, one disk, the difference would
be even more dramatic. If you don't think
you can debug programs faster with this
difference in time, your programs always
work perfectly the first time. (Mine
don't.) But you never get something for
free, the cost is that interpreters are
s~ow. If we compare execution for a simple
tight loop we find the following:

10 FOR I=l TO
20 A=LOG(I)
30 NEXT I

10000 Reese Basic 15 seconds
Basic Plus 2 4 seconds

40 EXIT

A factor of 4 in speed seems like a very
high price to pay. But nobody I know
writes programs like the above simple test.
If we compare the two basics using more day
to day examples things even out. The fol­
lowing is an example of what we use Basic
for a lot. We are searching a fairly large
data base (1400 70-character fixed length
records.) and wish to print any records
containing a given 6-character string.

10 dim a$[70]
20 open #3, "POLOG.F84"
30 open #4, "POLOG.SEL/WR"
40 if end #3 then 100
50 input line #3, a$
60 if pos(a$,"NEWARK") < 1 then 50
70 print #4, a$
80 goto 50

100 close
110 exit

REESE BASIC

BASIC PLUS 2

14 seconds
60% CPU usage

12 seconds
52% CPU usage

We initially bought BASIC PLUS 2 because we
thought we would get a large speed increase
over o~r "h~me made" basic. A 10% faster
operation didn't really buy us much.

~s a minor digression, the above example
7llustrates the real strength of of a basic
interpreter. It is so easy to write a

San Francisco, CA- 1986

quick 5 to 10 line program like the above
that we do it all the time. That program
was entered, saved to disk and completed
execution before DEC's basic co•piler fin­
ished compiling, to say nothing of TKB
time.

Another thing they didn't tell us was that
BASIC PLUS 2 programs are large.
Incredibly large. That small program above
only takes one block of storage, but the
minimum BASIC PLUS 2 program task image
takes up 186 blocks. I did a wild card
search of our main user's disk and found
just under 1700 basic programs. (That sur­
prised me. I had no idea we had that many
basic programs around.) A comparison of
file storage requirements for the two ba­
sics yields:

REESE BASIC (Source text only)
1676 proqrams - llK blocks

BASIC PLUS 2 (Minimum 186 blocks)
1676 programs - 312K blocks

we have the equivalent of 5 RM05's on our
system, and those disks would be pretty
full if we kept every basic program as a
B+2 task image. I guess DEC likes to sell
RA80's.

While we are looking at relative sizes,
lets compare memory requirements. At first
glance, the llK words of interperter code
would at first seem to be a significant
restriction on program size and/or variable
storage. In fact, DEC's basic hauls in
scads of RMSll file access routines. This
combined with the fact that (for !AS,) the
interpreter code is a shared library, re­
sults in both Basics taking up about the
same memory. DEC basic wins if only one
basic is in memory, Reese basic wins if two
or more are present:

REESE BASIC
Pure code library (shared) 53500
Minimum Program 16300

Total for ONE program 72000
Total for TWO programs 110300

BASIC PLUS 2
Minimum task size 50200

Total for ONE program 50200
Total for TWO programs 120400

Likewise a comparison of maximum varianle
storage yields about equal variable storage
capabilities, (with small program sizes.)
The following program was executed by in­
crementing the size of the dimensioned var­
iable until an error occurred. Results fer
Reese Basic versus DEC basic follow:

10 dim a(64,102)
20 print "Max =";64*102;". variables"
30 print " =";64*102*4;". bytes"
40 exit

MCR>bas sizetest/rn (Reese Basic)
Max = 6528 • variables

= 26112 . bytes
MCR>run sizetest$ (DEC B+2)
Max = 6720 variables

= 26880 . bytes

258

Lets look at some more of the differences
between the two basics. The first thing
that is totally different is the file open
command. Early in the development of Reese
basic it was decided to n0t use the stan­
dard basic "OPEN" "comm;md syntax, but to
use a format compatible ¥ith the standard
DEC file name parser, including various ac­
cess mode switches. Comparing the two
types of open statements we see:

REESE BASIC
20 OPEN #3, "POLOG.F84"
25 OPEN #4 I "POLOG. SEL/WR"

BASIC PLUS 2
20 OPEN 'POLOG.F84' FOR INPUT AS FILE #3
25 OPEN 'POLOG.SEL' FOR OUTPUT AS FILE #4

Reese Basic file specifications are essen­
tially Just String variables, but with sev­
eral 2-character switches that provide the
full range of filesll access modes:

/FX
/RN
/LN:n
/EN:n
/BN
/BL

Fixed Length
Random Access
Length = n
goto n on EOF
Binary file
Virtual Array

/RO
/WR
/UP
/MO
/AP
/SH

Read Only
Write Access
Update Access
Modify Access
Append to file
Shared Access

Note that since file names are string vari­
ables, one has great capability for name
parsing. For example, it is very easy to
check for a file extension and supply a de­
fault one if one is not there:

10 dim na$(25)v
20 input "Name of Input File ";na$
30 if pos(na$,".")<1 then na$=na$+".DAT"
40 open 3, na$+"/RO/SH"

All calculations are done using 2-word flo­
ating point format, (and in fact require a
Floating Point unit, or use of a floating
point emulator.) Variables are stored
however in several different formats, both
to save space and to provide for better
mapping to virtual files. The following
types are supported:

DIM
DIM
DIM
DIM

A&
Bl%
cc
A[n,n)
A$[n)
A$[n)V
A$[n)V(x,y)

8-bit Integer
16-bit Integer
32-bit floating point
Arrays may be 2 dim.
Fixed Length String
Variable Length String
Dimensioned String

Reese basic also supports virtual array
storage. Special forms of the DIM state­
ment and the OPEN statement are used.
These allow one to directly access any
file. The following example shows how to
access any word of a 400 block file. (Note
that for virtual arrays, the first unit of
any array is N(O)) .

120 dim #4,DD%(399,255)

204 open #4,"[ll,17)TEST.DAT/BL/MO"

300 ! Print octal value
305 print oct$(dd%(bl,by))

The above example prints the contents of
offset by into block bl of file test.dat.

Reese Basic has a full set of standard
string functions, (one of the strong points
of any basic,) with some added ones that
make a programmers life easier.

INX/POS
LEN
SEG$
SBS$
RIGHT
LEFT
MID
PIECE$
LTR$
TRM$
RJS$
LJS$
SPACE$
STRING$

Position of substring
Length of a string
Substring from main string
Substring from main string
Right-most N characters
Left-most N characters
Same as SBS$
Substring between dividers
Leading blank trim
Trailing blank trim
Right justify string
Left justify string
String of n spaces
String of n characters

It has a large set of internal and I/O
conversion routines:

VAL
OCT
ARS
ASC
CHR$
STR$
OCT$
OCS$
RSA$
FRMT$
TAB

String to numeric conversion
String to octal conversion
Ascii to RADSO conversion
Ascii character to numeric
Numeric to ascii character
Numeric to string conversion
Octal to Ascii (unsigned)
Octal to Ascii (signed)
RadSO to Ascii conversion.
Print using, FORTRAN style
Tabulate to position n

Some very nice DEC system based functions

NRC
ERR
ERL
FCS
COR
DAT$
DDAT$
TIM$
DCEN
SEC

Number of records in file
Number of last error
Line number at last error
Last FCS related error number
Free space available in bytes
MM/DD/YY from day-of-century
DD-MMM-YY from day-of-century
Time-of-day from seconds
day-of-century from date string
seconds from time-of-day

And some non standard commands also
tailored to DEC system:

STEP Single step program
CON Continue after stop or error
ON ERROR GOTO Transfer if error occurs

BREAK Print using write-pass-all
SET PROMPT Turn on/off question mark
SET TRACE Turn trace on/off
SET UPPER Turn case conversion on/off
SET READ-PASS-ALL
SET WRITE-PASS-AL

SLEEP n units
WAIT n units
TRACE on/off

Do mark-time
Terminal read with time-out
Turn trace on/off

Reese basic contains a simple but effective
method for doing various types of question
processing. Options include single a~d
multiple line questions, single and multi­
ple choice answers, and automatic linking
to further questions based upon question
answers. The text of the questions them­
selves is contained in a special macro
source file. The command:

OPEN LIBRARY #N, FILENAME

259

Opens a macro question source file contain­
ing question text. Questions are of three
basic types:

.MACRO MULTXT 0
This is an example of a

·multiple line question.
.ENDM

.MACRO SINGLE 1
Type your name, (last,first)
.ENDM

.MACRO MULCHO 2
Select your state of mind
GOOD\MUt.CHl
FAIR\MULCH2
TGIF\MULCH3
.ENDM

various routines are available to automati­
cally output these questions and return as­
cii (or numeric for multiple choice ques­
tions) answers. The basic question display
routines are as follows:

Three basic forms of question processing
calls exist:

x=M Reference question by NAME
x=C Reference by link to previous question
x=R Reference by last question accessed

CALL "xDIS"(LUN,STAT,NAME)
CALL "xPOS"(LUN,STAT,NAME)
CALL "xQTXT"(LUN,STAT,NAME,STRING)
CALL "xATXT"(LUN,STAT,NAME,STRING)
CALL "xQNAM"(LUN,STAT,NAME,STRING)

The above question handling routines are
just one of a series of machine language
subroutines that can be loaded on command
into the program area of the basic inter­
preter. Although the mechanism for passing
arguments from basic to the machine
language routine is somewhat complicated,
(since these routines must do what TKB does
when it links a program,) machine language
routines are just as flexible as they are
with DEC basic, Fortran, etc. Machine rou­
tines are handled by three special
commands:

LOAD "PROGNA"
UNLOAD

Loads macro routine
Unloads all routines
Calls macro routine CALL "PROGNA"(...)

Some of the more noteworthy loadable
routines include:

SPAWN
BINSRC
DIRECT
EXITST
IN STAL
LOWCAS
REVS TR
UPPCAS

spawns an MCR command
Fast binary search
Issue any system directive
Exit with status
Install a task
Convert ascii to lower case
gnirts txet a esrever
Convert ascii to upper case

The spawn directive has proved to be a very
powerful one. With it, BASIC has the capa­
bility of acting as a alternative to MCR.
Many of our less sophisticated users inter­
act with a menu program written in BASIC,
and never see or need to use MCR or DCL.
The combination of math capabilities and
string manipulation with spawning capabili­
ty provides a much greater capability than
batch, indirect MCR or DCL.

A MULTI-TERMINAL TASK

Ted Smith
Division of Medical Physics

Department of Radiation Therapy
Hospital of the University of Pennsylvania

Philadelphia, PA 19104

ABSTRACT

This is a discussion of an application task which
collects and displays data on seven or more
terminals. Methods for maintaining adequate
response time while simultaneously processing
different requests are demonstrated by an analysis
of a patient information system used in our
department. Features of the IAS terminal handler
and facilities of the IAS executive that support
the multi-terminal task are described. Specific
examples from our "treatment area status" task
illustrate these features.

Introduction

Some applications require a facility to
efficiently process concurrent requests
from various users in an asynchronous
order. The !AS Version 3.28 operating
system provides the mechanisms needed to
create an ideal environment for
multi-terminal tasks. The design and
implementation of a multi-terminal task
is illustrated by an analysis of the
Radiation Therapy Department's "Patient
Tracking System". The tracking system
replaces an intercom system which
follows the patient's progress through
the department.

The Department of Radiation Therapy
provides many services at various
locations within the department.
Outpatients arrive and await scheduled
services in the reception area. During a
course of treatment, the patient's
status may alternate between outpatient
or inpatient depending on the condition
of the patient. Frequently, patients
are scheduled for services at mulitple
locations. An intercom system had been
used to connect the service areas. When
a patient completed a service, the
technician "buzzed" the reception area
for the next patient.

Although functional and simple to
operate, the intercom system lacked the
pliability to ascertain the progress of
patients through the department. Factors
affecting the technicians' ability to
provide services efficiently, required a
tedious survey of the reception and
service locations. Some prevailing
factors are:

Proceedings of the Digital Equipment Computer Users Society 261

o Who is waiting?

o Which patients are available?

o Where is the patient?

Each day, the reception desk received a
treatment schedule of patients and
services. As patients arrived, the
receptionist marked the treatment

schedule. Service locations must
habitually "buzz" the reception desk to
obtain the names of waiting patients.
Patients scheduled for multiple services
became unavailable to other services
when selected by a service location.
Upon completion of a service, the
technician must know if the patient has
any remaining appointments to properly
direct him either to the reception area
or send the patient home. Locating a
patient required the technician to
"buzz" the reception and service
locations scheduled until the patient
was found.

San Francisco. CA- 1986

Objectives of "Patient Tracking System"

The primary objective of the "Patient
Tracking System" is to follow the
patient's progress through the
department. A description of each
patient is maintained and provided to
the scheduled service locations (Table
1). When a patient is selected for a
service, his description is updated to
reflect his new location and he becomes
unavailable for his other scheduled
services. After the service is provided,
information about the service is
collected and the patient becomes
available for the other services
scheduled.

Table 1. Patient Description

o Name

o Status (Inpatient, Outpatient)

o Availability for service

o Location

o Staff physician

o Type of service scheduled

o Time scheduled

o Time patient arrived in dept

Other objectives include the collection
of service information, a message
utility and the ability to track
unscheduled services. The collection of
information about each service when
provided allows the system to
automatically generate billing charge
information. The patient's file is also
updated providing staff with immediate
access to the progress of the patient.
When an available patient is selected
for a service, the system sends a
message to the patient's current
location. The message contains a request
for the patient to be sent to the
selected service location. Users may
send multi-line free text messages to
one or more service locations. Special
instructions or additional information
about a patient is transmitted using
this message facility.

262

Design of the "Patient Tracking System"

The tracking system consists of three
tasks to interface with the terminals,
lookup patient schedule information and
to update the patient's file with
completed service information (Figure
1). Each task maps to an installed
region providing concurrent shared
access to the system data s~ructures.
The IAS Send/Receive message facility is
used to provide communication links
between the three tasks.

The terminal interface task, TRKHUP,
maintains the system data structures in
the installed region and controls the
flow of information within the system.
This is a menu driven terminal interface
providing the user with a simple command
structure to display and collect patient
data. A VT220 terminal is installed at
each service location. Each function key
on the VT220 transmits a unique escape
sequence allowing an application to
assign and interpret single keystroke
commands. The physical terminal
characteristics are set to "VT220" with
"7 bit controls". These features enable
the use of the entire keyboard and
proper interpretation of ANSI 7 bit
character codes.

Normally, the "escape" character, ESC
{1}, is considered an input terminator.
Thus, two or more QIO$ reads [1] are
necessary to acquire the escape sequence
(e.g. ESC "128-" for the HELP function
key). The first read will contain the
escape sequence inducer ESC and a second
read with a timeout of zero will contain
the escape sequence "[28-". The IAS
terminal handler was reconfigured to
allow "escape sequence support" [2]
enabling the recognition of escape
sequences as the input terminator. Now,
the entire escape sequence, ESC "[28-"
is captured using a single read. Greater
throughput with reduced operating system
overhead was accomplished since most
commands require pressing only a single
function key.

N
O'I
w

TRKFND - - ._. _.. - - -

CLlllC SIM LA I

Figure 1. "Patient Tracking System"

TRKCOM

TRKHUP

L A 2 LA 3

TRKUPD

Fii IT
IUI

The terminals used in the tracking
system are setup as devices instead of
terminals by IAS {2}. This was done to
give the tracking system complete
control over the terminals. Users are
now prevented from interrupting the
system by pressing <Control/C> {3).
Messages from terminals outside the
system are inhibited because the IAS
MESSAGE utility [3) can only transmit
messages among terminals and not to
devices. Each terminal is assigned a
unique I/O buffer, local event flag [4)
~nd logical unit number by the terminal
interface. When an input terminator is
detected, the QIO$ sets the
corresponding local event flag. The
command is then extracted fro~ the
associated input buffer for processing
and the event flag is cleared. When all
input is processed, the terminal
interface issues a "Wait fbr Logical Or
of Flags" (5) to suspend itself until an
event flag is set. Processor time is
saved by not performing a round robin
test of event flags when the interface
is idle.

The patient lookup task, TRKFND,
searches our patient database [6] for
~he pati~nt and all scheduling
information for today. A patient may be
located using either name, social
security number or medical record number
{4}. TRKFND and TRKHUP communicate using
the Send/Receive with AST [7,8]
interta~k message facility. An AST trap
occu~s in TRKFND whenever a message is
received. The AST trap routine sets a
predetermined local event flag enabling
TRKFND to run. TRKFND then receives the
message containing the operation to be
performed for TRKHUP. When completed,
TRKFND sends the results back to TRKHUP
using the same mechanism described
above. When all message are processed
TRKFND issues a "Wait for Single Eveni
Flag" [9] to suspend itself until
ano~her message is sent and the AST trap
again sets the event flag.

If a patient cannot be uniquely
identified using the information
supplied by the user, TRKFND will

collect those patients with similar
information and a unique identifying
database key {5). The list of patients
is then sent to TRKHUP. The user will be
prompted to select the actual patient
from this list, continue searching for
more matches or abort the search. If a
patient is selected, TRKHUP returns the
unique key to TRKFND and the associated
patient and schedule is extracted.

264

The updating task, TRKUPD, adds to the
patient's file all information about the
provided service. Soon TRKUPD will
generate the billing charge information
based on the service information entered
by the user. Communication between the
TRKHUP and TRKUPD tasks is accomplished
using the facility for Send/Receive
messages .. when a service is completed,
the user is asked to provide information
describing the service. Also, the user
selects the type of charge to be
generated (e.g. Simple, Intermediate or
Complex). The information collected is
then sent to TRKUPD. Upon receiving a
message, TRKUPD updates the patient
database to contain the collected
~ervice information. The billing charge
is added to a charge file for later
processing. At the end of each day, the
billing charge file is transmitted to
Central Data Processing by tape and the
charges are then posted to the patient's
account. When not processing messages,
TRKUPD suspends itself by issuing a
"Wait for Single Event Flag" [9].

Send/Receive Messages

The Send/Receive messages used by the
tracking system have a standard format
consisting of a fixed message header and
a variable length message. The message
header (Table 2) is always the first ten
w?r~s of the message. The message is
limited to 250 bytes including the
header. When a message is sent, an AST
trap occurs in the receiving task which
sets a local event flag is set informing
the receiving task about the message.
The terminal interface, TRKHUP, uses
event flags 23 and 24 for messages from
TRKUPD and TRKFND respectively. Both
TRKUPD and TRKFND use event flag 24
indicating a message from TRKHUP.

Table 2. Send/Receive Message Header

Location
(Words)

Length
(Words)

1

2

3 - 4
5 - 6
7 - 8

9
10

Terminal State

1

1

2
2
2
1
1

The terminal interface is required to
allow the independent operation of
terminals while concurrently processing
different requests made in an
asynchronuous order. To provide the
needed flexibility, the state of each
terminal is maintained. Terminal state
consists of the unique characteristics
of the terminal (Table 3) and the
current display menu level being used by
the terminal. Prior to servicing a
terminal, the terminal's state
characteristics are fetched from the
installed region. The command is fetched
from the terminal's input buffer and
tested for validity. The command is
processed only if valid for the current
menu. Otherwise, an appropriate error
message is displayed.

Table 3. Terminal Characteristics

o Name of Location

o Address of input buffer

o Address of mail buffer

o Logical Unit Number

o Terminal unit number (TTnn:)

o Event flag number

o Terminal type (e.g. Service)

o Services performed at location

o Current menu level

o Data pointers

Description

Function to be performed
(e.g. Lookup patient by name)
Service location making request
(Address of Corresponding Post record)
Hospital assigned to Post
Last patient found by primary search
Last patient found by secondary search
Not used
Lenght of message (in bytes)

265

I/O buffering and Event Flags

Special considerations for the handling
of terminals are needed when a single
task controls more than one terminal
(Table 4). A task controlling multiple
terminals must have the ability to
accept input from one or more terminals
while processing completed input from
another terminal. Input entered at
different terminals must be kept
separate and a method determining which
terminals have completed input must be
developed. The FORTRAN READ statement
causes the task to suspend and wait
until the input is terminated. This
prevented TRKHUP from performing
simultaneous reads from different
terminals or processing another
terminal's terminated input.

Each terminal is allocated to TRKHUP
using a FORTRAN OPEN statement. A unique
80 byte input buffer and local event
flag is assigned to each terminal.
Instead of using the FORTRAN READ
statements, an assembly language macro
was written to issue a QIO$ read to each
terminal specifying the local event flag
to be set when input was terminated.
After input is terminated, TRKHUP
extracts the command from the
corresponding input buffer for
processing and issues another QIO$ read
to the terminal.

Table 4. Comparsion of input processing between
single and multi-terminal tasks

Single Terminal

o One input buffer

o FORTRAN READ sufficient
(equivalent to QIOW$)

o Precess input

command Processing

The terminal interface defines many of
the function keys on the VT220 keyboard.
The input terminator informs TRKHUP
which function key was pressed or how
the input was terminated. Currently,
three groups of input terminators exist:
Normal, Timeout and Escape sequences.
Normal input termination consists of
commands enter by the user and
terminated with a carriage return, line
feed or form feed. Timeout occurs when a
read fails to complete in the specified
time (3 minutes). Upon timeout, the
terminal is reset to the main menu.
Escape sequence termination occurs when
the user presses a function key. An
optional command may also precede the
function key.

The command fetched from an input buffer
is parsed into the command line and
input terminator. The input terminator
is then converted into a command code
(Table 5). The command line is used to
modify the defined operation of the
command code. For instance, a user
enters a "5" and presses the <Down
Arrow>. The command line will contain
the "5" and command code is 1. The
operation is modified to move the cursor
five lines down instead of only one.
This modifying feature allowed the user
to "jump" to the desired location with a
single command.

Multi-terminal

o One buffer per terminal

o QIO~ macro with event flag

o One event flag per Terminal

o Whiah terminal completed

o Lookup terminal state

o Select input buffer

o Process input

266

Message Facility

A message facility is provided by the
terminal interface allowing users to
send free format text messages to one or
more other users within the tracking
system. The facility is also used by
the system to inform the receptionist
when a patient is selected for a
service. The message facility provided a
more favorable mechanism of
communication than the intercom system.

Messages can contain up to four lines of
text and may be sent or received from
any menu level. A mail buffer, like the
input buffer, is assigned to each
terminal. Each line of the message is
transferred from the input buffer into
the message buffer as entered by the
user. This process is necessary for two
reasons: the input buffer is too small
to contain multiple lines of text and is
always initialized with spaces before
the next QIO$ read is issued at the
terminal. After the message is
completed, the contents of the mail
buffer are transferred to the installed
region and the message address is placed
in the mail queue of all the receiving
terminals. At each receiving terminal,
the "You have mail." message is
displayed and highlighted. The receiver
decides when to read the message. This
allows the reciever to complete a
function without interruption. The
message is erased and the space
deallocated when the last receiver reads
the message.

Table 5. Input

Code Command Definition

-1 Timeout
0 Normal <CR> <LF> <FF>
1 ESC [B <Down Arrow>
2 ESC [A <Up Arrow>
3 ESC [D <Arrow Left>
4 ESC [C <Arrow Right>
5 ESC [1- <Find>
6 ESC [2- <Insert Here>
7 ESC rr <Remove>
8 ESC rr <Select>
9 ESC rs- <Prev Screen>

10 ESC [6- <Next Screen>
11 ESC [28- <Help>
12 ESC [29- <Do>
13 ESC OP <PF l>
14 ESC OQ <PF 2>
15 ESC OR <PF 3>
16 ESC OS <PF 4>
17 ESC r1r <F 6>
18 ESC [18- <F 7>
19 ESC [19- <F 8>
20 ESC [20- <F 9>
21 ESC [21- <F 10>

Installed Region and Data Structures

The installed region [10], TRKCOM, is an
area in main memory used as a control
and communications common area for the
"Patient Tracking System". The region is
eight "Kw" (6) in size and is shared by
the three tracking system tasks. The
area is divided into 511 nodes of
sixteen words. These nodes are
dynamically allocated and deallocated to
form one of five logical records: Post,
Free, Rumor, Case and Task. All records
are formed using contiguous nodes.
Therefore, a record address is the
address of the first node allocated to
the record. Pointers within each record
contain the address of related records
providing fast access without the need
to search the entire regioh for the
desired record. These pointers are
grouped together forming set
relationships. In addition to the node
pool described, the communications area
also contains 16 one word registers for
control and fast lookup of selected
records.

Command Summary [11]

Code

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Command Definition

ESC r2r <F 11>
ESC [24- <F 12>
ESC [25- <F 13>
ESC [26- <F 14>
ESC [31- u 17>
ESC [3r <F 18>
ESC [3r <F 19>
ESC [34- <F 20>
ESC Op <Keypad 0>
ESC Oq <Keypad 1>
ESC Or <Keypad 2>
ESC Os <Keypad 3>
ESC Ot <Keypad 4>
ESC Ou <Keypad 5>
ESC Ov <Keypad 6>
ESC Ow <Keypad 7>
ESC Ox <Keypad 8>
ESC Oy <Keypad 9>
ESC OM <Keypad Enter>
ESC On <Keypad II . ">
ESC 01 <Keypad II

'" >
ESC Om <Keypad II -" >

Post Records

One Post record is allocated for each
terminal in the tracking system and is
composed of six nodes containing the
terminal characteristics (Table 6a) and
pointers for set relationships with
other records associated to the Post.
Four sets are maintained within the Post
record: Location, Service, Mail and
Dispatch sets. The Location set connects
all che Post records in the installed
pegion. Location of another terminal's
characteristics when sending messages is
the primary function of this set. The
Service set connects the Post to all of
the services (Task records) scheduled
for the Post. The Mail set contains the
address of the messages (Rumor records)
sent to the Post. The Dispatch set
contains the address of all the patients
(Case records) being treated or waiting
at the Post.

267

Table 6a. Contents of a Post record:

Location Length Description
(Bytes) (Bytes)

1 - 2 2 Record type ID (Always 1)
3 - 4 2 Next Post in Location set
5 - 6 2 Prior Post in Location set
7 - 8 2 First Task in Service set
9 - 10 2 Last Task in Service set

11 - 12 2 First Message in Mail set
13 - 14 2 Terminal unit number (TTnn:)
15 - 16 2 Assigned LUN (channel)

17 1 Post Type (Service, Reception)
18 1 Status flags

19 - 28 10 Post Name (e.g. Clinic)
29 - 30 2 Services performed at Post
31 - 32 2 First Case in Dispatch set
33 - 192 160 Mail buffer

Table 6b. Contents of a Free record:

Location
(Bytes)

1 - 2
3 - 4
5 - 6

Location
(Bytes)

1 - 2
3 - 4
5 - 6
7 - 8
9 - 10

11 - nn

Length
(Bytes)

2
2
2

Description

Record type ID (Always 2)
Next Free record in Vacant set
Length of Free record (in nodes)

Table 6c. Contents of a Rumor record:

Length
(Bytes)

2
2
2
2
2

nn 10

Description

Record type ID (Always 3)
Next Rumor record in Mail set
Sender's Post address
Length of Rumor record (in nodes)
Length of Message (in bytes)
Message

268

Free Records

Free records mark unallocated nodes in
the area and have a variable number of
nodes assigned (Table 6b). A Vacant set
is used to connect all Free records in
the region in ascending order by record
address. Adjacent Free records are
always appended to form a single
contiguous Free record. The tracking
system uses a "first fit" algorithm when
allocating a record (e.g. Rumor). The
Vacant set is scanned until the first
Free record is found containing at least
enough nodes to create the record
contiguously. Any remaining nodes are
used to create a new Free record. When a
record is deallocated (e.g. message
read), one of four operations is
performed based on the type of records
adjacent to the deallocated record:

o If neither of the adjacent records
are Free records, then a new Free
record is created.

o If only the previous record is a Free
record, then the deallocated record
is appended to the Free record.

o If only the next record is a Free
record, then a new Free record is
created containing both the
deallocated record and the next Free
record.

o If both of the adjacent records are
Free records, then a new Free record
is created containing the deallocated
record and both of the adjacent Free
records.

The benefit of the "first fit" and
deallocation procedures insure the
formation of the largest possible
contiguous Free record.

Rumor Records

Rumor records are used to transmit
messages between Posts and use a
variable number of nodes depending on
the length of the message (Table 6c).
The message is built from both the
Post's mail buffer and input buffer.
This restricts the length of the message
to 240 bytes (160 byte mail buffer and
80 byte input buffer) or, four lines.
Line terminators are included in the
buffer. If the message fills the mail
buffer, then one additional line may be
entered into the input buffer after
which the message is considered
complete. A Rumor record containing the
message is created for each receiving
Post. The Rumor record address is added
to the Mail set of each recieving Post.
When completed the sending Post's mail
and input buffers are erased.

269

Case Records

Case records contain the demographic
information about a patient currently in
the tracking system (Table 6d). Only one
case record is created for each patient
who is currently a part of the system.
Case records require three nodes and
contain pointers for three sets:
Dispatch, Patient and Schedule. The
Dispatch set contains all the patients
currently at a Post. When a patient
moves to another Post, he is removed
from the current Post's Dispatch set and
placed in the new Post's Dispatch set. A
Patient set connects all the patients in
the region. The Schedule set connects
the patient to all of his scheduled
services (Task records).

Task Records

Task records contains specific
information about each service scheduled
for the patient (Table 6e). For each
service the patient is receiving, one
Task record is created. A Task record
requires one node and has pointers for
two sets: Schedule and Service. In
addition to forward and backward
pointers, an owner pointer is maintained
for each set. An owner pointer contains
the address of the owner of the set:
Case address for the Schedule set and
Post address for the Service set.

Installed Region Registers

In addition to the node pool described
above, the communications area also
contains sixteen "registers" used for
control and fast access to selected
records (Table 7). Only five of the
"registers" are used by the tracking
system: Vacant, Posts, Cases, Nodes and
Wait. The other eleven "registers" are
reserved for future use. When the region
is installed into memory, all of the
terminals are allocated and Post records
created at the top of the region. A
single Free record will contain all
remaining nodes. At the end of each day,
the region is re-initialized to the
startup state.

Table 6d. Contents of a Case record:

Location
(Bytes)

1 - 2
3 - 4
5 - 6
7 - 8
9 - 10

11 - 14
15 - 34
35 - 42
43 - 50
51 - 53
54 - 56
57 - 58
59 - 60
61 - 62
63 - 64
6 5 - 68
69 - 70
71 - 72
73 - 96

Length
(Bytes)

2
2
2
2
2
4

20
8
8
3
3
2
2
2
2
4
2
2

24

Description

Record type ID (Always 4)
Next Case record in Patient set
Prior Case record in Patient set
First Task record in Schedule set
Last Task record in Schedule set
Database Key of patient
Patient's name
Time patient entered system (arrival)
Patient medical record number (Id)
Staff physician initials
Resident physican initials
Status flags (e.g. Available)
Not used
Next Case record in Dispatch set
Current location (Post) of patient
Patient Status (e.g. Outpatient)
Current service (Task) being provided
Critical Care flag
Not used

Table 6e. Contents of a Task record:

Location
(Bytes)

1 - 2
3 - 4
5 - 6
7 - 8
9 - 10

11 - 12
13 - 14
15 - 22
23 - 24
25 - 28
29 - 30

31 - 32

Table 7.

Register

Vacant

Posts

Cases

Nodes

Wait

Length
(Bytes)

2
2
2
2
2
2
2
8
2
4
2

2

Installed Region

Description

Record type ID (Always 5)
Next Task record in Schedule set
Prior Task record in Schedule set
Owner Case record of Schedule set
Next Task record in Service set
Prior Task record in Service set
Owner Post record of Service set
Scheduled time of service
Type of service scheduled
Database Key of assigned Rx course
Schedule time in Tocks since midnight
(One tock = 2 seconds)
Status Flags

Registers

Description

Address of first Free record in region

Address of first Post record in region

Address of first Case record in region

Pool size (in nodes)

Address of Reception area Post record (console)

270

Summary

The "Patient Tracking System" has proven
to be more useful and versatile as the
intercom system previously used by the
Department. Users can now see their
current schedules and patient locations
by glancing at their terminals, Soon
automated billing of services will be
completed, which reduces the amount of
paperwork flowing through the service
areas. Using an installed region to
contain all the tracking system data
structures allows the flexibility to add
new functions without major rewriting of
the system tasks. For instance,
terminals may be added or removed by a
utility task attaching to the installed
region. This is useful when a terminal
line fails and a new line is added while
the tracking system is running without
loss of information.

Footnotes

(l} The escape character ESC has the ASCII 7-bit code 27 decimal.

{2} Upon startup of the !AS timesharing system, terminals may be designated
as either a general purpose timesharing terminal using the "SET TERMINAL"
command or as a device using the "SET DEVICE" command.

(3} The IAS timesharing system, PDS, interprets the <Control/C> as a command to
interrupt and suspend the current task and allows tne user to abort the
task.

{4} Medical recor0 number is issued by the Medical Records Department of the
Hospial and used to uniquely identify the patient throughout the hospital.

{5} Database key is the page and line number where a record is located in
the patient database.

{6} "Kw" is constant equivalent to 1,024 words of memory.

271

References

1. Digital Equipment Corporation, IAS System Directives Reference Manual,
September 1984 Order No. AD-H002B-Tl, pp 4-84 to 4-88.

2. Digital Equipment Corporation, IAS Device Handlers Reference Manual,
September 1984 Order No. AD-H004A-T2, pp 2-33 to 2-37.

3. Digital Equipment Corporation, IAS PDS User's Guide, September 1984
Order No. AD-H003B-Tl, pp 14-120 to 14-121.

4. Digital Equipment Corporation, IAS Executive Facilities Reference
Manual, December 1980 Order No. AA-H005A-TC / AD-H005A-Tl,
pp 2-2 to 2-4.

5. Digital Equipment Corporation, IAS FORTRAN Special Subroutines
Reference Manual, December 1980 Order No. AA-HOOlA-TC / AD-HOOlA-Tl,
p 5-28.

6. Smith, Ted, Baren, Jill M. and Curley, Robert F., "A Radiation Therapy
Patient Information Management System", Proceeding of the Digital
Equipment Computer Users Society, May 1985, pp 83 to 95.

7. Digital Equipment Corporation, IAS System Directives Reference Manual,
September 1984 Order No. AD-H002B-Tl, pp 4-125 to 4-126, 4-154 to 4-156,
4-168 to 4-170.

8. Digital Equipment Corporation, IAS Executive Facilities Reference
Manual, December 1980 Order No. AA-H005A-TC / AD-H005A-Tl,
pp 2-8 to 2-10.2.

9. Digital Equipment Corporation, IAS Fortran Special Subroutines
Reference Manual, December 1980 Order No. AA-HOOlA-TC / AD-H001A-Tl,
p 5-27.

10. Digital Equipment Corporation, IAS Executive Facilities Reference
Manual, December 1980 Order No. AA-H005A-TC / AD-H005A-Tl,
p 2-13 to 2-14.

11. Digital Equipment Corporation, VT220 Programmer Pocket Guide,
Order No. EK-VT220-HR-001, pp 10-13.

272

Filling Some Holes In The V/JXC Run-Time Library -
The "system" function and related support routines

Wayne E. Baisley
Rockwell International / Graphic Systems Division

Lombard, Illinois

LT108, DECUS Fall 1986 Symposium
San Francisco, California

Abstract

The \AXC Run-Time Library provides VMS support for a large subset of the
UNIX system support routines. One notable exception is the "system" function,
which passes a command line to a shell or Command Line Interpreter (probably
the easiest way to make any utility "callable"). This paper describes an imple­
mentation of the "system" function using VfiXC. Also described are a number of
related and general support routines, and header files.

UNIX1 has been the source of many very useful pro­
grams and ideas. Some of the better known examples
are the Make utility, which automates compilation and
linking based on dependency rules and file time-stamps;
the Source Code Control System (SCCS), for managing
multiple versions of source files; the ahells which are pro­
grammable Command Line Interpreters (CLI); pipes which
allow the output of one program to be fed directly into an­
other without having to create an intermediate file; Grep,
Who, and other utilities; and, of course, the C language.

Fortunately for \AX users (the majority of whom use
VMS), VMS is flexible enough to capitalize on, or at least
to accommodate, such useful ideas. Corresponding to
the UNIX facilities mentioned above, VMS has the Mod­
ule Management System (MMS), which is very similar to
Make; the Code Management System (CMS), which is
analogous to SCCS; the DEC/Shell product which is the
UNIX Bourne shell, complete with pipes and many UNIX
utilities on VMS; Grep, Who, and other utilities, which
are available from DECUS; and, of course, VfiXC along
with the \AXC Run-Time Library.

All these, and others, are readily available VMS equiv­
alents of UNIX concepts and programs. The extent of this
cross-pollination leads me to conclude -

VMS can do anything UNIX can do
better

It is left to the reader to interpret that conclusion as
best fits his or her experiences and philosophical bent.

1 UNIX is a trademark of AT&T Bell Laboratories

Proceedings of the Digital Equipment Computer Users Sociely 275

The VfiXC Run-Time Library provides most of the
useful UNIX C features

Let's take a closer look at the \AXC Run-Time Library,
which is DEC's name for their collection of C support rou­
tines. The VAXC Run-Time Library provides most of the
useful features of UNIX C, including

• The character string manipulation functions

• The standard (i. e. generic) I/O functions

• The UNIX-specific I/O functions

• The curaea CRT window management functions

• And many others

The \AXC Run-Time Library also provides unique
VMS features, such as DECnet and RMS support, and
the VfiXC calling standard, which allows \AXC to call and
be called by any other VfiX language.

The \AXC compiler, besides all the standard language
features, also supports the \AX Symbolic Debugger, Lan­
guage Sensitive Editor, Common Data Dictionary and
other software tools. It even goes UNIX one better by
producing listings, if desired.

The \AXC Run-Time Library omits at least one of
the commonly-used UNIX C features

One particularly useful UNIX C feature has yet to be ex­
ploited by the \AXC developers, however.2

2 The "VAX C Futures" talk at the Symposium indicated that
system will likely be supported in the next major release.

San Francisco, CA - I 986

Process

LIB$SPAWN

system ("TIME")

Figure 1

The system function -

is a means of easily passing a command to the shell or CLI.

What do I mean by "easily"? Well, certainly not nec­
essarily easy to implement, at least not on VMS. But an
example will show how easy it is to use. The following C
statement

status= system ("TIME");

shows a static command string being passed to the system
function for execution, with the exit status to be stored
in the variable "status". It's that easy to use. And the
command strings can be constructed "on the fly", rather
than statically defined, as is the case in this example. Since
string manipulation is one of C's stronger points, this com­
bination of features is quite powerful.

The system function provides a very useful service

I first used system on RSX-UM to integrate separate
Whitesmiths Ltd. C compiler components. Rather than
having to invoke a command file or run the individual
components separately, a single compile command can be
issued. For example, the command line -

>pee -fps xyz.c

produces a sequence of commands which are passed by the
system function to the RSX CLI known as MCR -

pee> cpp -xi qr:[301,376] -o xyz.tml >xyz.erO xyz.c

pee> del xyz.erO;*

pee> cpl -cemn6 -o xyz.tm2 >xyz.erl xyz.tml

pee> del xyz.tml;*

pee> del xyz.erl;*

pee> cp2 -fo xyz.tm3 >xyz.er2 xyz.tm2

pee> del xyz.tm2;*

pee> del xyz.er2;*

276

Subprocess

......

$TIME

pee> cp3 -i 6no07n -t xyz -o xyz.tm4 xyz.tm3

pee> del xyz.tmS;*

pee> mac xyz.obj/en:lc,xyz.tm5/nl:toc/-sp=xyz.tm4

pee> del xyz.tm4;*

pee> els -fz 02.14 -i 6no07n -t xyz -o xyz.lst xyz.c

pee> del xyz.tm5;*

The use of system or its equivalent is perhaps the
easiest way to make a "callable" interface for a software
package, and has the advantage of being "portable" in the
sense that it doesn't depend directly on RSX system di­
rectives. Incidentally, the "-fps" part of the PCC com­
mand line stands for "produce a full listing", "don't sub­
mit the listing to the print queue", and "show me the CLI
commands as they are issued". This terse, even cryptic
approach to command line options epitomizes the UNIX
philosophy. Form follows (or, rather, is subsumed into)
function. VMS is nearly the opposite, with every option
spelled out. At least DCL allows abbreviations.8

The system function was reinvented for VMS

A year or so after using system in the PCC program, I
began using a V/!¥.. for RSX development, and had to write
a system function to work with VMS. This proved to be
much more difficult than had been the case for RSX, which
had involved little more than the Spawn (SPWN$) and
Wait For Single Event Flag (WTSE$) directives. The main
reason for this is that a VMS "process" can execute only
one image at a time4 (not counting DCL which executes
in Supervisor Mode).

Fortunately, the LIB$SPAWN routine in the VMS
Run-Time Library does nearly all that system requires,
and certainly all the hard parts. As represented in Fig­
ure 1, it creates a subprocess, copies logical names and
DCL symbols, handles many other messy details, and then

3 1 don't wish to leave a negative overall impression; whatever
VMS may lack in brevity is certainly more than compensated for in
its documentation and error messages.

'It should be noted that RSX enjoys the same comparative advan­
tage over UNIX here as it does over VMS; executable images (tasks)
are run directly, and there is no "process" context to be established.

Process
Commands

Subprocess

......

system calls
Output

DCL Server

Figure 2

passes the command to the CLI. Implementing system
a.s a. straight interface to LIBSSPAWN was fairly simple,
but even a "simple" use of LIBSSPAWN is not as easy
a.s it first appears. This is due to restrictions imposed
whenever SYS$1NPUT or the input-file parameter passed
to LIBSSPAWN is not a terminal, as is the case for com­
mand procedures, MMS processing, and batch jobs, each
of which can produce different results.6 In addition, such a
simple interface is very slow since a new process is created
a.nd then deleted for each call to LIB$SPAWN.

And then performance was improved greatly

Performance was improved greatly by calling LIB$SPAWN
to create a subprocess just once, and then reusing it as a
"server" for DCL commands, as MMS does.

Mailboxes are used to feed commands to the "server"
a.nd to retrieve output and status information, as shown in
Figure 2. System writes commands to the input mailbox,
a.s represented by the upper arrow, which are handled by
the subprocess's CLI. Any output or error messages are
written to the output mailbox represented by the lower
arrow, read by system, and echoed to SYS$0UTPUT.
System also uses the mailboxes to obtain the exit status
of the command, which is discussed more fully below.

Since a typical PCC command calls system 6 times,
the overhead of creating and deleting 5 subprocesses is
a.voided, a savings of about 9 CPU-seconds on a VfJX-
11/750 with this scheme, which can be a large fraction of
the entire compilation process. Besides the performance
improvements, the use of mailboxes resolves the input-file
problems mentioned in the previous section.

The implementation of system on VMS was
complicated, though straightforward

As indicated previously, the implementation of system on
VMS wa.s complicated; however it was straightforward.
The following factors contribute to the difficulty -

6 0ne interesting but annoying variation is to specify the null de­
vice (NLAO:) as the input-/Ue parameter to LIBSSPAWN, which
produces log-out meBBages from the subproceBB after each call.

277

Setting up mailboxes

First, we must create mailboxes. This is not terribly diffi­
cult, but something of a nuisance, particularly since we
wish to avoid inadvertant mailbox (and process) name
conflicts. I chose to derive the mailbox names from the
name of the calling image and the process id (also called
the P-I-D, or pid). For example, a PCC command might
produce a subprocess named PCC_0063, and mailboxes
named PCC_0063..1NPUT and PCC_0063_0UTPUT.

Passing &rguments by descriptor

Next, arguments to the VAX Run-Time Libraries and Sys­
tem Services are usually passed by a means of a general­
purpose object-oriented data structure called a descrip­
tor, which is very flexible but more bother than strings
{from C at least). This is another example of the differ­
ence between UNIX and VMS. UNIX typically uses NUL­
terminated strings, which are adequate for most but not
all situations. Both have arguable advantages, as well as
vocal detractors.

Obtaining the image exit status

Next, we must obtain the image exit status for each com­
mand we issue to the "server". As mentioned above,
system uses the mailboxes to do this. The trick here is
to wait for a read to be posted on the input mailbox
by the subprocess's CLI, issue another command to the
server to write the current value of the $STATUS symbol
to the output mailbox, read the result, and finally return
the severity portion (the low order 3 bits) to the caller.
This trick works like magic, and isn't confounded by at­
tempts of an image in the subprocess to read from the
mailbox, 6 since DCL always appropriates commands lines
which start with a doll&r sign, returning an End-Of-File
status to the reader. 7

I could have used other means to obtain the command
status, such as intercepting image accounting messages,
but this scheme is easy to understand and implement.

8 See the Futures section below for more on this topic.

"The exception to this rule is the $DECK •.. $EOD sequence,
which disables DCL's normal input proceBBing. An attempt to use
this sequence would probably give system severe indigestion. MMS
probably wouldn't like it either.

There are a few other less interesting but important
items which system must take care of, such as

• handling unexpected server process termination,

• handling Ay and AC aborts, and

• cleaning up on the exit of the calling image.

So in spite of some clumsiness, VMS proves quite ca­
pable of supporting a well-behaved, low-overhead imple­
mentation of system.

The system function serves as a useful example

Besides the service it performs, the system function serves
as a useful programming example of

• how to use the LIBSSPAWN routine,

• calling VMS System Services from C,

• using descriptors in C,

• writing AST service routines,

• writing exit handlers,

• how VMS can be difficult for programming.

Other related functions were developed along
with system

Other related functions were developed along with system
which are of some utility on their own.

• cimageid returns the name of the currently executing
image as a string. It is used by system to construct
the mailbox and subprocess name strings.

• complain is a simple way to produce VMS-style error
messages.

• crembz creates a mailbox with a given name and cer­
tain fixed parameters such as buffer length.

• chain executes a single DCL command and exits, us­
ing the LIBSDO_COMMAND Run-Time Library rou­
tine. It is significantly faster than system for a single
command since it doesn't create a subprocess.

A small UNIX C annoyance was fixed, too

Since I use RSX and VMS in my work, I have little expo­
sure to and consequently little criticism of UNIX. But be­
cause \AXC, which I use constantly, owes so much to UNIX
C, I will register a small complaint about a "feature" of
the UNIX C string functions. The string functions

• a treat - concatenate two strings

278

• 1trcp11 - copy a string

and their bounded counterparts

• atrncat - concatenate up to 'n' characters

• 1trncp11 - copy up to 'n' characters

return the address of the beginning of the output string.
The ending address is far more useful, since one almost
always has the beginning address beforehand.8 Having
the string functions return the beginning address results
in many unnecessary calls to atrlen to determine the cur­
rent length of a string under construction, or the use of
atrcat (which is nearly the same) where 11trcp11 would have
sufficed, which seems mildly unUNIXlike.

So some new string functions were invented, namely

• atrzcat - concatenate two strings

• 1trzcp11 - copy a string

and their bounded counterparts

• atrzcat - concatenate up to 'x' characters

• atrzcp11 - copy up to 'x' characters

which perform exactly as do the standard versions, but
return the address of the terminating NUL byte, rather
than the beginning address of the output buffer.

These new functions make constructing a string
so easy ...

The code fragment below shows how the PCC pro­
gram uses the atrzcpfl function to construct the string
"cpp -xo xyz.tml" in the buffer named cmdbuf which it
later passes to the system function. The character pointer
cp is used as a place-holder at each statement, and then
as the starting address for the next copy operation.

cp = atrzcp11 (&cmdbuf, "cpp -xi");

cp = 1trzcp11 (cp, includes);

tmLp = cp = 1trzcp11 (cp, "-o ");

cp = atrzcp11 (cp, outname);

tmLend_p = cp = 1trzcp11 (cp, ".tml");

8 The exception ia the cue where the address paBBed to the string
funtion ia that returned by a memory allocation routine such as calloc.
But it ia trivial to record the addreBB simultaneously. For example,
rircp11 ((addru• = calloc (nze)), "nring');.

This fragment also shows the addresses of intermediate
points in the output string being recorded as they are en­
countered, rather than determined separately. PCC uses
this feature to isolate substrings for later use in deleting
the temporary file "xyz.tml", as in the following code sec­
tion.

•tmLend_p = '\O'; /* terminate the string */
do_delete (tmLp);

Future enhancements looking for a volunteer

System by definition doesn't allow for the commands it ex­
ecutes to perform any direct I/O with the calling process.
Such a feature is the domain of the UNIX C po pen (and
pcloae) function, which could be implemented as a varia­
tion of the system function. The difference between system
and popen is that popen establishes the "server" subpro­
cess and mailboxes, and popen's caller can then write and
read whatever it may desire to and from the subprocess.
Are there any volunteers?

~ GJ GJ [;] GJ has it now.

This software is available on the Symposium Lan­
guages and Tools, and VAX tapes, in the directories
[RIGS . CCLIB ...], including

• Sources

• Command Procedures

• Object Library

• Documentation

• A Simple Test Program

279

References

V{J:Jl../VMS Run-Time Library Routines Reference
Manual, Digital Equipment Corporation, Maynard, Mas­
sachusetts,
V{J:Jl../VMS Version 4.4, April, 1986,
pp. RTL-294 - RTL-298 for the LIBSSPAWN routine

V{J:Jl../VMS DCL Dictionary,
Digital Equipment Corporation, Maynard, Massachusetts,
V{J:Jl../VMS Version 4.4, April, 1986,
pp. DCL-610 - DCL-614 for the DCL SPAWN command
which uses the LIBSSPAWN routine

ULTRIX-11 Programmer's Manual Volume 1,
Digital Equipment Corporation, Maynard, Massachusetts,
or any other UNIX Programmer's Manual,
Volume 1, Section 3 (Subroutines), for the system routine

CHOOSING AUTOMATED STRUCTURED ANALYSIS (SA) TOOLS

June Baker
Computer Sciences Corporation

Falls Church, Virginia

ABSTRACT

In pursuit of increased productivity and quality, organiza­
tions are seeking automated tools to assist in the design
and development process. A plethora of automated structured
analysis tools currently is available, and organizations
must determine which one(s) fulfill their needs.

Our research shows that there are vast differences in the
capabilities and usefulness of commercially available
products. We evaluated several during a six-month period in
order to recommend sets of tools to ongoing and startup
projects at CSC. This paper discusses the criteria we used
to study a subset of available tools and what we found.

1.0 INTRODUCTION

During the past several years automated structured
analysis tools have been introduced in the com­
mercial marketplace. When we began our evaluation
there were approximately six viable products
announced and distributed. Currently, there are
innumerable products available that operate on
IBM* PCs and compatibles, several that operate on
the Digital Equipment Corporation (DEC*) VAXstation
II* and several that operate on APOLLO* and/or
Sun* workstations. At least one product uses a
UNIX* type operating system. We chose four
products for our initial evaluation, and these
products operate on IBM PCs. Al though the eva lu­
at ion and subsequent report were completed early
this year (1986), we have obtained and reviewed
other products which appear to have innovative
features. We have tested, reviewed literature and
have seen demonstrations of twelve (12) automated
structured analysis tools. The report currently is
being updated to be distributed within CSC to
appropriate management.

This paper discusses our goals, basic requirements,
our evaluation approach, comparative results and
conclusions. Although we limited the evaluation to
tools that operate on IBM PCs and compatibles, the
methodology can be used to evaluate any structured
analysis tool.

2.0 OVERVIEW

Organizations responsible for developing software
within time and cost constraints are seeking ways
to both increase the productivity of their soft­
ware engineering staff and improve the quality of
the completed software. Studies have demonstrated
the high cost of fixing problems uncovered during
testing and maintenance, and this has fostered a

*IBM is a registered trademark of International
Business Machine Corp.; DEC and VAXstation II are
registered trademarks of Digital Equipment Corp.
APOLLO is a registered trademark of Apollo
Computer, Inc.; Sun is a trademark of Sun Micro­
systems, Inc.; UNIX is a trademark of AT&T.

281

concern for more complete, verified designs in the
early stages of development. Specifying complete,
accurate requirements and designs early in the
development process is most economical and will
produce better results during the later develop­
ment stages.

The current surge of interest in increased pro­
ductivity and quality of software products has
encouraged creative companies to develop automated
structured analysis tools. These tools are
supposed to enable users (professional software
engineers) to develop complete specifications
based upon proven structured analysis methodolo­
gies developed by DeMarco or Gane and Sarson.

3.0 OUR GOALS IN EVALUATING
STRUCTURED ANALYSIS TOOLS

There were three major reasons that caused us to
evaluate some commercially available structured
analysis tools. First, CSC management believes
that automated tools will enable us to perform
better on software development projects, and it is
necessary to have in-depth knowledge of available
products to demonstrate and recommend throughout
our Division. Certain tools are applicable to the
environment of one project and not to others, and
it is vital to recommend the best tool or an
appropriate selection of tools for a specific
project. From the start of the evaluation process
we have been consultants to project management and
have recommended tools that currently are being
used on projects. We have received some feedback
on the value of these tools to the individual
projects, and eventually we will accumulate
feedback on a formal basis. Furthermore, we are
training project members in the use of tools in
order to get them started using the tool properly.

Second, CSC must demonstrate to current and
potential customers its knowledge of and famili­
arity with those automated tools that it proposes
to use on future projects. We have participated
actively in current proposal efforts by recommend­
ing specific tools, describing them in documenta­
tion and creating data flow diagrams and analysis
reports to be included in the formal proposal.

San Francisco, CA - 1986

Third, we are involved actively in a Division IR&D
project to develop an Integrated Software Engi­
neering Environment (!SEE) to be used internally
as a software development workstation. The work­
station consists of tools spanning the life-cycle
development phases (requirements analysis, initial
design, implementation and testing). We are using
commercial off-the-shelf tools with some inter­
faces that we are developing ourselves. It was
necessary to determine which structured analysis
tool provided us with the most applicable capabil­
ities to include in the !SEE. Several structured
analysis tools will be resident in the workstation,
but we are providing interfaces to one only.

4.0 EVALUATION METHODOLOGY

In an attempt to be as objective as
developed a straightforward strategy
evaluating the automated tools. The

possible we
to use in
evaluators

were senior software engineers with experience
using IBM and DEC equipment. One of the evalu­
ators is a "hacker" and easily learns how to use
diverse products. The other evaluator has been a
manager for the past eight years and has not
programmed recently, but has used VAX- and
PC-based tools on a daily basis.

First, product literature was read to determine if
the tool met a significant subset of our require­
ments. Much product literature transports the
reader to fantasyland. Indeed, at first we
believed that the "next" tool would fulfill all
our desires and needs. We finally did determine
that although vendors promised tremendous
increases in productivity and quality by using
their tools, no one tool satisfied all of our
requirements. We chose two mature, stable tools,
one inexpensive tool which appeared to have good
capabilities and a new tool marketed by a well­
known name in the area of structured analysis. At
the time we began the evaluation there were only
one or two other PC-based tools available, so we
believe that we effectively surveyed the market­
place as it existed at the time.

Next, we acquired the software (we purchased some
and borrowed some from eager vendors), and we
installed the software using directions specified
by the vendor. Hardware adjustments were made
also following vendor instructions. When all else
failed we contacted a vendor representative for
help.

If a tutorial was available it was accessed and
completed (occasionally, the tutorial "bombed").
The user became familiar with the tool's major
capabilities by self-study.

All product documentation was read thoroughly to
learn the complete set of capabilities and to
answer questions about functionality. Also, we
determined the manual(s) usefulness, accuracy and
approach to good English. We had preconceived
ideas that a sloppy manual often reflected a
sloppy approach to a product.

We contacted the vendor's technical support group
whenever there were problems using the tool and
whenever we found software bugs.

A standard set of data flow diagrams was produced
using the DeMarco methodology. The diagrams had

282

previously been drawn manually for an ongoing CSC
project. We created a context diagram, a top­
level (level O) diagram and one exploded diagram
(level l).

Dictionary entries were made to define all objects
and data elements for later reporting and valida­
tion. We created reports based on the dictionary
contents.

The data flow diagrams were validated according to
the capabilities of the tool. We used a fourteen­
point checklist to determine the thoroughness of
the validation process.

Text capabilities were used whenever possible to
create mini-specifications and to add information
to the dictionary and diagrams.

Additional functions of the product were reviewed
and their usefulness evaluated. For example, we
created structure charts and presentation graphs
when the tool permitted, and we added information
to the data dictionary whenever possible.

We gave
personnel,
opinions.

demonstrations
and we noted

of the product to
people's questions

csc
and

We revisited the products that we had evaluated
early in the study in order to eliminate biases
caused by increasing familiarity with use of an
automated tool and a mouse.

Finally, we designo/1 a matrix to include all tools
that were evaluated with an entry for each require­
ment. For example, under the requirement of "User
Friendliness" we rated each of the following
criteria separately: easy to learn and use,
documentation, HELP facility, tutorial, hot line
service and user defined function keys. We used a
scale of 0-3 for the ratings. When the feature
was not available the rating was O. When the
feature was available, but didn't perform as
advertised or performed poorly, the rating was 1.
When the feature worked adequately the rating was
2, and when the feature worked well and helped the
software engineer do the job well the rating was
3. We did not give weights to any features,
although in retrospect we realize that certain
features are more important than others. We wi 11
give weights to criteria in future evaluations.

The underlying principle in our methodology was
our belief that a product could not be evaluated
simply by reviewing the documentation and sales
literature or by viewing a vendor-presented
demonstration. We had to have hands-on access to
the tool in order to feel comfortable with its
features. In addition, we believe that a tool
must be used on a daily basis in a true project
environment for its worth to be revealed. We were
not operating in a project environment for this
evaluation; however, we will be collecting infor­
mation and statistics from project members as the
recommended tools begin to be used throughout our
Division.

5.0 OUR REQUIREMENTS AND WHAT WE FOUND

1. First, all tools had to operate on IBM PCs and

compatibles using the MS*-DOS operating system.
Since there are a number of tools that operate on
VA.Xstations and other workstations, it is conceiv­
able that our prototype ISEE will be moved to a
VAX-based workstation once the initial IR&D
project has been completed and evaluated.

All the tools that we evaluated ran on our IBM
PC/ AT, which operated under MS-DOS version 3. 0,
had 640 KB memory, a hard disk (20 MB), floppy
disk, Hercules* Monochrome Graphics Card, mono­
chrome monitor and an Epson* FX pr inter. All the
vendors gave instructions for using the tool with
other hardware configurations and with compati­
bles; however, we did not attempt to confirm such
capabilities. The tools required much storage (up
to 3 MB) which quickly ate up the capacity of our
hard disk. The data flow diagrams were stored as
MS-DOS files and combined with the data dictionary
gobbled up more storage. Also, the products tend
to be memory hogs, so we needed all of the 640 KB
that we had. Some of the products were sloppy
about cleaning up after themselves, so occasion­
ally when we moved from one tool to another the
system couldn't find enough free space and we had
to reboot.

2. The term "user friendliness" is a popular
buzzword and is prevalent in product literature to
encourage purchase of the vendor's software. A
friendly product is not "chatty" and verbose;
rather, it is unobtrusive and easily accessible.
We believe that software engineers will use auto­
mated structured analysis tools only if they can
be mastered easily and if modifications can be
made quickly as well. Under the basic requirement
for user friendliness we included the ability to
learn the basics of the product quickl) -•id
without extensive training, good user documen­
tation, an on-line HELP facility, a vendor "hot
line" for software and hardware problems, under­
standable prompts and messages as guides through­
out the software and a tutorial to enable the user
to learn to use the product quickly. In addition,
we looked for both expert and novice modes to
appeal to a wide range of users.

Generally, the less complex and sophisticated the
tool, the easier it was to learn quickly and
effectively. The tools with the greatest range of
capabilities were more difficult to learn, and
users had to relearn functions if they did not use
the tool constantly. We were able to use some
functions and create data flow diagrams after one
session with the tool, regardless of its complex­
ity. However, in all cases it took much longer to
learn to use the dictionary and reporting capa­
bilities.

The documentation was necessary to learn how to
use all the features of the tools, but after a
while the evaluators were able to bumble along
with the pop-up menus and the icons. When all
else failed we looked at the documentation. The
manuals provided by the vendors ranged from poor

*MS is a registered trademark of Microsoft Corp.
Epson is a registered trademark of Epson America,
Inc. Hercules is a registered trademark of
Hercules Computer Technology.

283

to adequate. Some were written in barely intel­
ligible English, which tended to detract from the
user's confidence in the product. All of the
documentation would have benefited from the
inclusion of detailed and numerous examples.

On-line HELP facilities were available in most of
the products. None of them was particularly
useful, and we used the manuals to research infor­
mation or called the customer technical support
group.

All tools had error messages and prompts, and
these ranged from cryptic, repetitive, and con­
fusing to adequate. They were no better nor worse
than most software error messages and prompts.

Each of the products we evaluated had tutorials to
help the user get started. These ranged from poor
to excellent. The most mature products had
detailed tutorials and step by step procedures in
the manuals. The users were able to use the
products after working with tke tutorials for one
or two sessions.

One of the products allowed the user to define
function keys to store repetitive operations.
This is an excellent and sophisticated feature,
but it is not for the novice nor casual user. One
of the products had good facilities for both
novice and expert users. In fact, the user could
combine both modes to create an interface most
comfortable for him or her.

Overall, the products made an attempt to be user
friendly, but definitely there is room for improve­
ment. Almost all the tools we evaluated recently
have distributed new releases, but the emphasis
has been on increased functionality and bug fixes
rather than on an improved user interface.

3. All products had to include interactive
graphics manipulation enabling the user to draw
and modify data flow diagrams and other diagrams
quickly and easily. We normally use the Tom
DeMarco structured analysis and system specifi­
cation methodology, and we looked for products
that supported this methodology.

All the products allowed us to create and modify
data flow diagrams following DeMarco methodology.
It is apparent that production of nifty graphics
has become routine, because every product we have
seen does a reasonably good job. The tools differ
in enabling the user to move objects singly, with
adjacent data flows or with multiple objects.
Also, with some tools the user had complete con­
trol over placement of objects and text and with
size of objects, and with others the system deter­
mined placement and size. Some tools allowed the
user to vary the graphics on data flows and
arrows. Some of the tools allowed the user to
draw diagrams with symbology other than that
required for DeMarco data flow diagrams. For
example, several allowed the user to draw struc­
ture charts, some had many different symbols and
some had icons, such as terminals, people, disks,
etc. Therefore, the tool had uses beyond its
original purpose. Several of the tools also
allowed the user to define his or her own symbols
and save them for later inclusion in diagrams.

4. Next, the product had to include an integrated
text facility. Text must be included within
graphic symbols on the diagrams and separately as
mini-specifications for a structured specifica­
tion. Templates to guide the user in entering
text are useful, and these templates should be
capable of being customized.

All of the tools required that the objects
(process, source/sink, data store, ,data flow) be
labeled, but one product did not allow additional
text on the diagram. This product automatically
titled a child diagram with the label appearing in
its parent. Most of the tools allowed the user to
control the placement of the text within the
objects, but one tool gave the user no control
over such placement. One of the tools restricted
amount of text within objects based on the system
printer fonts. One tool required a label to be
affixed to an object before it allowed the user to
continue.

One product automatically numbered process bubbles
in accordance with DeMarco rules. One product
required that a number be placed in a process
bubble, but it never checked beyond determining
that numbers 0-9 were used exclusively. We
entered identical numbers on several process
bubbles and never received an error message. The
other products did not require numbering of
processes.

The capability to add a mini-spec or other project
documentation varied from product to product. Two
had no capabilities whatsoever. The others had
full word processing capabilities, and the user
could link a mini-spec to a primitive process
easily. None of the products had templates to
assist a user to enter a mini-spec.

5. In order to have a complete structured analy­
sis tool it was essential that the product create
and maintain an integrated data dictionary. We
wanted the mechanics of entering and modifying
entries in the data dictionary to be as trans­
parent to the user as possible. Also, the user
needed the capability to query the data dictionary
easily.

Integrated data dictionaries were present in three
of the products. The other product claimed to
have a data dictionary capability, but the user
had to access a separate database management
system to populate the data dictionary. In addi­
tion, the database management system had to be
purchased separately from another vendor. The
process was so cumbersome and so faulty that the
functionality was nil. Including objects in the
data dictionary was automatic in one product as
was the capability to make global changes to the
data flow diagrams and dictionary by making a
change in one place only. It was more tedious to
add or change objects to the data dictionaries in
the remaining two products, but more information
could be stored and query facilities were good.

6. The capability to analyze the structured
specification in terms of conformance to the
DeMarco methodology, consistency, completeness and
accuracy was an essential function for the prod­
ucts we evaluated. A checklist of fourteen 04)
validation requirements was generated to determine
how thoroughly each of the products adhered to the
methodology.

284

No product provided automated support of all
structured analysis functions and conventions.
One product provided almost no analysis (this was
the same tool that had no integrated data diction­
ary). The other three provided analysis of most
of the structured analysis functions and conven­
tions and reported with error messages and some­
times highlighted the errors. One product brou~ht
net input and output data flows to the child
diagram from its parent when the user "exploded"
to the next level. Thus, the user could not
forget accidentally to include these data flows in
the child. The same tool provided many syntacti­
cal checks as the user created the diagram, and it
was useful to catch errors as the diagram was
being created rather than during analysis.

7. Because we needed the capability to interface
inputs to and outputs from the product, we looked
at the capability to extract data into an ASCII
file describing the data flow diagrams and/or the
contents of the data dictionary.

All the tools allowed the user to extract data
into an ASCII file describing the data flow dia­
grams and/or the contents of the data dictionary.
The formats and information captured on the file
differ from product to product. We have not
investigated the individual formats to determine
if the information is useful, but we will do so
later in order to use the files to interface to
other programs.

8. We were concerned with product stability as
well as the length of time the product has been
available to the market. We were looking for
mature companies with a growing customer base in
order to ensure technical support and upgrades to
the product.

Two of the products have been on the market for at
least two years• and the companies have created
new versions to include additional functionality
as well as bug fixes. The companies themselves
are well established, have good technical support
staffs and have provided us with advice and help.
One company is a new startup, probably run by two
or three programmers in the backroom. The product
has many good features, but it has had a tendency
to crash while being used by an actual project and
during evaluation. New releases are sent out, and
the vendor is eager to help, but the company is
far from mature and stable. There have not been
any releases based on increased functionality from
this company. The fourth product comes from a
mature, stable company, but the product has many
bugs and we have had hard crashes while using it.
A new version currently is being distributed, so
we will have the opportunity to determine if it
has become more stable.

9. Since CSC normally develops software for
medium to large systems, multi-user and networking
capabilities scored high in our list of require­
ments. In addition, it was essential that a
product support more than one project (and there­
fore more than one data dictionary) within a
single computer or a network.

Two of the products had access protection that
could be established by a system administrator
even though these products operate on single-user
non-secure PCs. Not only were user IDs and pass-

words (optional) required, but the system adminis­
trator could restrict access to various functions,
most notably access to the data dictionary.

All of the products allowed multiple projects
(multiple data dictionaries) to be established.
Thus, one copy of a product could be shared by a
number of projects. However, since PCs are single­
user workstations, just one person at a time could
access a single project. For projects with more
than two analysts, this could prove to be an
effective barrier to production. Therefore, we
looked for networking capabilities to enable a
product to be used in mediumto large-scale proj­
ects. One product had full networking capabili­
ti~s, and the vendor will work with a user to set
up a network facility. Another product had the
capability of being included in a network, but
access to a project data dictionary was limited to
a single user at one time. The remaining two
products had no multi-user capabilities.

10. Standard formatted reports and user-defined
reports based on dictionary contents were
essential. We wanted to be able to view the
reports immediately on the computer terminal as
well as via the printer.

All products provided some reporting capabilities.
Two allowed the user to define contents of the
reports as well as accept standard system-defined
reports. Unfortunately, creating user-defined
reports is complex, and much effort has to be
expended to become at ease with this function.
Three tools al lowed the user to view reports on
the terminal screen before deciding whether to
save the report and/or print it.

11. Since the graphic material would be used in
formal contract-specified documentation, printing
and/or plotting capabilities were important
features. We required the ability to combine text
and graphics in single documents.

Three of the products provided capabilities to
combine text and graphics in files and documents.
All provided printing capabilities and two pro­
vided plotting capabilities. The range of
printers varied, but even though we used the
inexpensive, low-range Epson for most of our
printing, the results were reasonable and accept­
able for direct reproduction. One tool gave us a
bass le because we used the Epson printer, and we
could not get good graphic output unless we
tinkered with placement of text and objects. In
our report we recommended that users of this tool
invest in a high-quality printer for best perform­
ance.

12. Once the software engineer has developed a
structured specification (data flow diagrams, data
dictionary, mini-specifications), he or she must
begin initial design in a structured manner. One
approach to structured design is to develop struc­
ture charts with control and data flow specified.
Ideally, the outputs from structured analysis
automatically would create structure charts. None
of the tools that we examined had this capability,
but we looked for some that allowed the user to
create structure charts. We believed that if this
capability was present, eventually there could be
automatic generation of the structure charts using
the data dictionary as a central source of infor­
mation.

285

None of the tools we examined provide an automatic
transformation from structured analysis to initial
design. Two currently offer the capability to
draw structure charts, but there is no relation­
ship to the objects created during analysis. A
new release of one of the other tools promises to
provide the capability to create structure charts,
but again there will be no automatic transforma­
tion. The fourth tool provides no design capabil­
ities whatsoever.

13. Finally, we looked for structured analysis
tools that were part of an integrated set of
life-cycle software development tools, including
project management tools, design, development and
testing tools.

The vendor of one tool is dedicated to building
tools for the entire software development life
cycle, and it currently has project management
tools that can be linked to its structured analy­
sis tool, and it provides bridges to application
generators. It is possible that one additional
vendor will be teaming with a vendor of applica­
tion generators and code generators to enhance the
capabilities of their products. No vendor had
tools for testing, and the design capabilities
were not tightly-coupled with the analysis capa­
bilities.

6.0 CONCLUSIONS

The use of an automated tool will speed up the
analysis process by focusing on mechanical efforts
and freeing the analyst of tedious, repetitive
chores. All too often even strong adherents of
structured analysis methodologies balk at modify­
ing data flow diagrams manually, thereby reducing
accuracy in documentation. It should be noted
that the identical effort must be expended in the
concept and original thought processes of indi­
vidual analysts who use automated tools as when
analysis is done manually.

The people who use the tools to develop a struc­
tured specification must be aware of structured
analysis and design approaches in order to under­
stand why and how the tools should be used.
Otherwise, the end result will not be better, just
faster. An abundance of attractively packaged
specifications can easily disguise a bad design.

All the tools we evaluated had good graphics
capabilities. It is easy to draw some nifty
graphics with the tools. However, it is tempting
to fall into the trap of producing pretty pictures
without carefully validating and balancing the
diagrams. The graphics output alone is but one
part of a structured specification, and t~e

analyst must be careful to do the whole job.

The more mature products with better functionality
were more difficult to learn. It took constant
reinforcement to use the tools; for example, if we
left one of the more complex tools for some time
we had to relearn many of the functions. Docu­
mentation varied, but none was as accurate nor
complete as it should have been.

Adherence to DeMarco rules varied from product to
product. Although all vendors claimed to adhere
closely to the DeMarco methodology, only the least
slick product truly followed the rules. We have
noticed that some of the newer products pay

greater attention to the methodology.

In most cases it was not simple to learn to use
the dictionary nor to create meaningful reports.
J.Jiy number of reports could be generated at the
stroke of a key or the click of a mouse, but
interpreting the contents could be mindboggling.
Users will have to concentrate most on accessing
the dictionary, storing information within the
dictionary and creating and understanding reports.

Since only one product allows multi-user access,
the choice of a product could depend upon the size
of the project (how many analysts) as well as
price and functionality. The prices varied by a
factor of 8 for a single-user copy. On a project
about to begin we currently are trying to deter­
mine whether to set up a network with an expensive
product or buy four or five copies of a single­
user tool with excellent functionality and keep a
separate controlled dictionary that would be
updated procedurally. The price differential is
significant, especially when counting costs for
networking the PCs.

7.0 SUMMARY

The crop of commercially available structured
analysis tools are proven productivity and quality
aids. Their greatest impact is on automated docu­
mentation of data flow diagrams and maintenance of
a data dictionary that provide a positive impact
on configuration management.

With all the differences among the tools in func­
tionality, maturity and cost, once you have u;ed a
reasonably well-automated structured analysis
tool, you never again will create a structured
specification manually.

A GENERALIZED CODING STANDARD AND SOME ASSOCIATED TOOLS

E. J. Straub, A. L. Slavich, and C. Winter
Pacific Northwest Laboratory

Richland, Washington

ABSTRACT

This paper describes a general coding standard which was devel­
oped to provide neat, uniform and complete documentation at the
module level and some software tools which were developed to sup­
port the coding standard. The general coding standard is
intended to be used as a tool for writing language specific cod­
ing standards. Although several language specific coding stan­
dards have been developed with this GCS, only the GCS is dis­
cussed in this paper (although tools for the FORTRAN coding
standard are discussed).

INTRODUCTION

In recognition of the increasing need for standard­
ized coding methods among a group of 20 programmers
at Battelle, Pacific Northwest Laboratories, a com­
mittee of staff members was assigned the task of
recommending formal coding practices that would be
used by all members of the group. Specific issues
addressed by the committee were the needs for better
documented code, standard formats for code to ease
software review and maintenance, and improved soft­
ware quality control. Furthermore, any coding
schemes that were recommended would have to require
minimal effort and cost to implement and must be
easily adaptable to the many programming languages
used by the group. As a result the committee,
utilizing recommendations from the staff members,
defined the concept of a generalized coding stan­
dard. Language specific coding standards, or
implementations of the generalized coding standard
to specific programming languages, were designed and
special software tools were developed on the VAX
11/780 to aid users in using these standards, as
well as to take advantage of the parsability of code
documentation which occurs when the standard is
used.

THE GENERAL CODING STANDARD

The General Coding Standard (GCS) is intended to be
used as a tool for forming language specific coding
standards {LSCS). The GCS describes what informa­
tion should be provided at the routine level. The
goals of the standard are to promote localization of
all definitions, information hiding, clarity, and
uniformity.

The objectives of the localization goal included
localizing the definition of the data structures and
global variables used by a system (group of rou­
tines), the explicit definition of named constants
for values used throughout the system, and the
standardization of local variable definitions and
declarations for those routines.

The methods of attaining localization differ con­
siderably among various programming languages.
While localization methods will be different for
each language specific standard, two general types

287

of languages can be considered: compiled languages
and interpreted languages.

For most compilers, include files can be used to
achieve localization. Depending upon the specific
language, these include files may contain declara­
tion statements for global and local variables,
definitions of data structures, and definitions of
named constants.

Although interpreted languages vary considerably,
they tend to offer fewer opportunities for explicit
localization than do compiled languages. Their
tendency to allow global access to variables once
they are defined precludes the local declaration of
variables within subroutines, but also removes the
concern that variables used by more than one routine
will be defined inconsistently. Some interpreted
languages allow for the naming of global constants.
If this is not the case, named constants may be self
imposed by setting a symbol's value to the constant
value and never changing it. If the interpreter
allows, constants which are used by more than one
routine should be defined in include files.

Clear and uniform documentation, as well as infor­
mation hiding, is achieved by dividing each routine
into two blocks: the Definition Block and the
Implementation Block (a third block called the Code
Block may also be useful). Each block consists of a
specified set of information sections. These sec­
tions may all be in one location in the source code,
or they may be located at different locations
(depending on the order in which the specific
language requires).

The Definition Block provides all the information
that is necessary for one to use (call) the routine,
but does not include implementation specific infor­
mation. When someone wants to use a routine, they
only need to look at the Definition block. The
details on how the routine is implemented are
separated from the details on how to use the rou­
tine. This is information hiding, and increases
code maintainability by reducing dependency on
implementation details.

The Implementation Block provides information about
how the routine is implemented. This information is

useful for maintenance and modification the rou­
tine. The implementation block may contain the
code, or a separate block may be added which con­
tains the code (the code block). Whether the code
is given its own block is up to the language
specific standard.

The Definition Block

Following is a brief discussion of the sections of
information required in the Definition Block.

The Routine Name - The name of the routine. If the
specific programming language requires the routine
name as part of the code, then no additional infor­
mation is necessary here. If the language does not,
then the routine name must be included in inline
documentation.

The Arguments - The data type and a description of
each argument to the routine. This description
should also state whether the argument's value is
used when the routine is invoked, or is modified
within the routine.

The Purpose - What the routine does; what problem
the routine solves.

The Limitations and Prerequisites - Describes any
limitations which apply to the routine, as well as
any events which are required to occur prior to
invoking the routine. For example, if another
routine must be called prior to calling this one,
that routine would be mentioned in this section.

The Logical Names and Files Used - Description of
all logical names, files, and other devices which
are explicitly used by the routine. If a logical
unit number is passed to the routine as an argument,
or if a filename is passed as an argument, then
these files do not need to be documented in this
section (since they are already documented in the
Arguments section).

The Routines Used - The names of all external
routines used (explicitly called) by this routine.
Does not list routines which are called by routines
which are called by this routine (ie, only routines
which are explicitly called by this routine need be
referenced here).

The Implementation Block

Following is a brief discussion of the sections of
information required in the Implementation Block.

The Development Information - Identifies who created
the routine, when and where it was created, and the
machine, operating system and compiler/interpreter
used to develop the routine.

The Modification History - Describes the who, what,
when and why of any modification to the
routine made after its development phase.

The Variable and Constant Definitions and
Descriptions - The data types and descriptions of
all variables and named constants. In the FORTRAN
standard three sections are used to achieve this:

• The Variables Section. Contains all local
variable and array declarations and
descriptions.

288

• The Common Block Section. Contains only
include statements which include common block
files.

• The Constants (parameters) Section. Contains
only parameter statements and include
statements which include files which FORTRAN
parameter statements.

The Algorithm - A step by step descr~ptio~ of the
algorithm used by the routine to achieve its
purpose. The algorithm should be described in
pseudo code.

The Coding Standard Tools

Following the coding standard can be burdensome. To
help alleviate this problem, some software tools
were developed to support the standard. Other
software tool are being developed which will utilize
the parsability of inline documentation which is
provided by the standard. Some of the tools work
for all languages supported by the standard, while
others only work for one language. Following is a
discussion of the software tools.

Coding Standard Tools Which Work for All Supported
languages

PUTHEAD - PUTHEAD is probably the most used tool.
It puts a coding standard template on the front (or
back if the language is interpreted such as DCL) of
a source file. PUTHEAD will create the source file
if it does not exist. After executing PUTHEAD, the
programmer edits the file and completes the
template. PUTHEAD examines the filetype specified
to determine both what language and what type of
template to put on a file. Supported languages and
templates are shown in the table below

Language Filetype

DCL
FORTRAN

FORTRAN
FORTRAN
FORTRAN
PASCAL

.COM, .LNK

.FOR, .F,
.FTN

.CMN

.PRM

.VAR

.PAS, .P

Template Type

program template
subroutineorprogramtemplate

common block template
parameter template
variable file template
subroutineorprogramtemplate

As other languages are supported by the coding
standard, Puthead will be modified to recognize
other filetypes.

BLDMANUAL - BLDMANUAL reads a group of files and
generates a new file which contains the Definition
Block from each file. Since the Definition Block
contains information about how to use the routine,
this has the effect of building a users manual.

Coding Standard Tools Which Only Support FORTRAN

GETINFO and PUTINFO - GETINFO and PUTINFO are
currently being developed. They will allow the user
to automatically move documentation between external
documents and source code. GETINFO is given the
name of an entity (a block, section, or
variable/symbol definition) to retrieve from one or
more source files. The information is written to a
specially formatted (Coding Standard Tools (CST)
format) ASCII output file. When given the name of

an entity, a CST format file, and one or more source
files, PUTHEAD will add/replace the information
which is specified for that entity in the CST format
file, into the source files.

GENROUT - GENROUT reads a FORTRAN listing file with
cross reference (file must have been created with
DEC VMS FORTRAN/LIST/CROSS) and generates the
Routines Used section. This is a list of the rou­
tines explicitly called by that routine. The list
has data type declaration statements for all func­
tions called by the routine and lists all of the
explicitly called subroutines in comments.

Furthermore, the routines listed are sorted by pack­
age. When invoking GENROUT, zero or more package
files may be specified. These files contain lists
of routines which belong to a certain package.
GENROUT will then determine which package a routine
belongs to. If the routine does not belong to any
package specified, then it is put in the list before
any of the packages are listed.

GENVAR and Global Naming Strategies - When used in
this text, the phrase "variable name" includes both
variable and array names. The phrase "variable
description" includes the variable name, data type,
and text description of what it is used for.

Global Naming Strategy: What and Why - It is good
practice to use a global naming strategy (GNS) when
developing a software system. GNS means using vari­
able names consistently throughout a system. That
is, any variable in the software with a specific
name is used for one purpose and one purpose only.
Do not confuse GNS with global variables. This
discussion pertains to local variables. The idea is
to use the same name for local variables which are
used for the same thing in different routines. For
example, in FORTRAN, !STAT is a commonly used name
for a variable which receives return statuses from
function or subroutine calls. If a GNS was being
used, each routine in the system would not use vari­
ables with the name !STAT for anything other than
receiving return statuses.

GNS offers several advantages. Some of the
advantages are:

• Reduction of the learning curve when becoming
acquainted with a new system.

• Elimination of confusion resulting from
inadvertent, unrelated uses of the same
variable name in different routines.

• Variable names may be documented at the system
level. Allowing easy creation of a "program­
mer's dictionary" of variable names.

The GENVAR Utility

GENVAR may be run in one of two modes: 1) single
routine mode, and 2) multiple routine mode. When
used in single routine mode, GENVAR's sole function
is to help generate the Variables section of the
routine's coding standard template. GENVAR's
multiple routine mode is used to implement global
naming strategies (GNS), and to generate the
Variables section of the template. Both of these
modes are described.

Nomenclature used in this discussion:

289

SOURCE - FORTRAN source file. This is a file which
contains one (and only one) fortran rou­
tine. This file is compiled to generate
the LISTING file.

LISTING - FORTRAN listing file with cross reference
section. Must have been generated by DEC
FORTRAN compiler with /LIST and /CROSS
switches on.

VSF - Variables Section File. This is the file
which is generated by GENVAR to be
included in the SOURCE file. It contains
the Variables Section.

VDF - Variable Definition File. This file con­
tains definitions for each variable used
in the system. The definitions includes
the variable name, the data type of the
variable, what routines use the variable,
and a description of how the variable is
used. If a variable name is used dif­
ferently in separate routines, then
multiple records will exist in the VDF.
This file is essentially a dictionary of
variable names.

VLF - Variable List File. This file is gener­
ated by GENVAR. It is intended to be
edited and then merged with the VDF using
program GENVDF to form a new VDF.

Single Routine Mode

This mode is useful for generating the Variables
section for one routine when no GNS is being used.
GENVAR will get all variables and descriptions from
the source file and generate the Variables section,
complete with explicit type declarations and com­
ments containing variable names ready for descrip­
tions (if a description for the variable already
exists in the source file, then that description
will be included here).

Single Routine Mode Processing by GENVAR

Source
Listing
with
Cross­
reference
listing.

(LISTING)

LISTING ---> VSF

GE NV AR
---------->

Multiple Routine Mode

New file con­
taining FORTRAN
data type
declaration
statements,
variable names,
and possibly
some variable
descriptions

J..VSFj

VSF is generated from
LISTING file using
GENVAR

This mode is useful when a Global Naming Strategy
(GNS) is used. The goal is to have all variables
defined and described consistently in both source
code, and in the Variable Definition File (VDF).
Each file used by GENVAR will be discussed, followed
by a discussion of how to use GENVAR in GNS mode.

The Variable Definition File (VDF)

The VDF is intended to have descriptions for all
variables. Following is a sample record from the
VDF.

; TEST NM
CHARACTER*80
being performed.

GENTST,GETTST,EXTST,PRTTST
Used to hold the name of the test

The above example illustrates a record for the
variable TESTNM which is used to hold the name of a
test being performed. TESTNM is a CHARACTER*80
variable and is used for this purpose in routines
GENTST, GETTST, EXTST, and PRTTST.

The Variable List File (VLF)

The VLF is generated by GENVAR and contains records
for each variable which was used in the SOURCE file
but is inconsistent with the VDF (either no defini­
tion in the VDF for this variable when used in this
routine· or different descriptions in the SOURCE and
in the VDF). The VLF should be examined and modi­
fied such that it correctly represents the variables
used in SOURCE. Then it is merged with the VDF (via
program GENVDF) to form a new VDF which contains the
new and modified definitions.

GENVAR writes a record to the VLF whenever any of
the following conditions occurs for a variable in
the LISTING file:

• Different descriptions exists for the variable
in LISTING and the VDF for this routine.

• The variable was described in LISTING, but was
not described in the VDF.

• The variable was not described in LISTING and
was described in the VDF for other routines,
but not for this routine.

• The variable was not described anywhere (this
causes only the variable name and type to be
written to the VLF).

Excluding the final case, each of the above
instances would cause one (or more) records con­
taining descriptions of the variables use to be
written to the VLF. The final case would cause a
record to be written to the VLF, but the record
would not contain any description of the variable's
uses. The VLF should then be modified and merged
with the VDF (using program GENVDF) to form a new
VDF.

If more than one record is written to the VLF for
one variable, the user must examine the VLF and
either select one of the descriptions supplied, or
enter a new description. All of the descriptions
which are not correct must then be deleted from the
VLF. After doing this, the VLF may be merged with
the VDF to form a new, current VDF. Program GENVDF
will perform this merge. Following is a discussion
of the format of the VLF.

The Variables Section File (VSF)

This file is generated by GENVAR to be included in
the source code as the Variables section. It

290

contains explicit data type declara~ions for ?11
variables which should be declared in the Variables
section. Furthermore, it contains comments which
have descriptions for each variable which w~s
described consistently between the SOURCE file and
the VDF. In this context, consistently means that
one of the following is true for the variable:

•

•

The variable is described in the SOURCE file,
and not described in the VDF for this routine.

The variable is described in the VDF for this
routine and is not described differently in the
SOURCE file.

Anytime the second case is not true, a record will
be written to the VLF.

The format of this file is the same as the format
described for the Variables section in the FORTRAN
Coding Standard.

How To Use GNS Mode GENVAR

Typically GENVAR is run twice. The first run gener­
ates the VLF which is then modified to correctly
describe all of the variables which were used in the
source code. Then GENVDF is run to merge the VLF
with the VDF. Finally GENVAR is run again. This
time all of the variables are described, so the VSF
is generated and inserted into the source code. Now
all of the variables are described consistently in
both the source code and in the VDF. Figure 1 pro­
vides a more detailed description of this process.
Figure 2 shows how information is moved between the
various files by GENVAR.

SUMMARY

The coding standard has been in use for over a year
now. All of the people who have used the standard
like it. It is mainly a documentation standard, but
we are currently in the process of adding discussion
on control structures. The software tools
BLDMANUAL, PUTHEAD, and GENROUT have been available
for about a year also, and are often used. The
GENVAR tool is currently under development. It is
anticipated that GENVAR will become the most popular
tool for large projects (the idea of a dictionary of
variable names is very appealing) when it becomes
available.

Genmte SOURCE listing by coMpiling l'DUtine with DEC FORTRAN coMpiler

illd the /CROSS illd /LIST switches.

j
Run GElllJAR

Edit the FORTRAN source file il!d add or

N!place the Vil'iahles section with the

Vil'iahles section file <USFl which was

generated by GENUAR. Then EXIT loop.

Exa11ine the Ui!'iahle List File <ULF> as follows:

1l If thel'e is only one N!CO~ tor a vil'iahh, enMinr tl1r description
il!d MDdih it as necessal'!I to Maler it corNct. It no description
was given tor the Vil'i ahh , supp I y one.

2) It the!'f is MON than one record for a variable, either select
one of the descriptions supplied, or add a nrw one. Delete all
of the !'!cords for the variable except the onr which is correct.

Run GEH\IDF to Merge the ULF and the Uil'iable Definition File CUDFl

FIGURE 1. How to Use Genvar

291

EJ

r - - - ,
I vsr 1

L - •• J

EJ

FORTRAN Listing Variable
with X-ref Descriptions

~ .----
(SOURCE>

Variable
Descriptions

I Variable
Section

I File

--,

I <VSF> I

Variable
List
file

(VLF>

L ••••••• J

Uariable
Descriptions

FORTRllN source listing. Hust have been
generated by DEC FORTRAN coMpi ler with
/CROSS and /LIST switches on.

Variable Definition File. This file
contains descriptions £or all variables
used in the systeM.

Variables Section File. This file
contains data type declarations
for all variables to be declared
in source. It also has variable
descriptions for all variables
which were described consistently
in the VDF and the SOURCE file.

file with inforMation about variables
which are either not in the UDF, or are
do not have descriptions in the source,
or which have differing inforMation in
the UDF ;ind source,

FIGURE 2. Files Used by GENVAR

292

Variable
Definition
File

CUDF>

"But That's Impossible in Pascal"
or

Systems Programming in a High-Level Language

E.W. (Wayne) Sewell
Software Engineering Specialist

E-Systems, Garland Division
Mail Stop 53730, P. 0. Box 660023

Dallas, Texas 75266-0023

Abstract

Popular wisdom has always held that systems programming can be done
only in MACRO or Bliss. While this is true for code running in kernel mode
and/or directly accessing the system memory space, it does not automatically
follow that it is not possible to use high level languages at all.

This session illustrates techniques for systems programming in Pascal,
including utilization of user-written system services and accessing the system
memory space. Examples include a simple program to display various system
control blocks and portions of code from an Ancillary Control Process (ACP)
written in Pascal. While the examples are in Pascal, the techniques illustrated
can be used for any high-level language which supports a record structure,
pointers, and the VAX standard calling mechanism.

Special Requirements of Systems Programming

Before we can begin a discussion of how to do systems
programming in a high-level language, we first must
determine what systems programming is. There are many
different definitions for a systems program. Virtually
everyone agrees that the VMS Scheduler is a systems
program and that a payroll system is an application
program, but many other cases are not so clearly cut.
For example, a compiler is logically a systems program,
but the processing it does, although complex, makes no
special demands upon the operating system and can easily
be implemented in a high-level language. For the purposes
of this discussion, we will ignore the function performed
by a program, and instead define a system program to
be any program which requires access to the internals of
the VMS operating system not provided by the standard
libraries (system services, run-time libraries, RMS, etc.).
Using this definition, systems programs are those which
must do the following:

• Access the system address space, including the
nonpaged pool. The system space is simply not
accessible from user mode. An attempt to reference
a system address from a non-privileged mode has the
same result as a reference to a non-existent virtual
address-an access violation, followed by termination
of the process.

Proceedings of the Digital Equipment Computer Users Society 293

• Access VMS routines in system space. Since they
are not addressable, for the reasons mentioned above,
they cannot be called by a user mode program.

• Raise IPL (Interrupt Priority Level, not to be
confused with the priority of a process). Increasing
IPL is a VMS mechanism for synchronization. A
program wishing to lock the I/O data base for
exclusive access raises its IPL to a predefined level,
effectively locking out all other processes in the
system attempting to access the data base. Programs
in user mode run at IPL 0, and cannot issue the
privileged instructions necessary to change IPL.

• Use MUTEXes (MUTual EXclusion-the VMS ver­
sion of a semaphore). The MUTEX structures
themselves and the system routines that manipulate
them are in system space.
All of these functions require processing in kernel

mode. Unfortunately, much as I hate to admit it,
kernel mode processing in a high-level language really is
impossible. There are too many constraints placed on
code which is meant to run in kernel mode. For instance,
all references to memory must be to valid addresses,
because an access violation in kernel mode will crash
the entire system instead of just the offending process
(in MACRO, the PROBE instruction is utilized to test
addresses for validity before actually referencing them).
Many calls to system routines require the parameters
to be passed in registers rather than pushed onto the

San Francisco. CA- 1986

stack as specified in the VMS calling standard. In
fact, these procedures require that the JSB instruction be
used rather than the normal CALLS or CALLG. There are
many other special instructions in the VAX architecture
which are restricted to usage in kernel mode. The
high-level language programmer has very little control
over any code generated by the compiler, especially with
optimization enabled. This is as it should be-one of
the main advantages of using high-level languages is a
lack of involvement with the actual machine code, but it
does make it difficult to generate the special instructions
needed by kernel mode such as JSB or PROBE.

So why not do systems programming in MACRO and
be done with it? The primary reason is that it is tedious
to write entire programs in MACRO. Textual output,
so easy with the Pascal WRITELN, is especially tiresome.
Without the inherent benefits of structured programming,
MACRO programs tend to be harder to read without
conscientious effort on the part of the programmer, and
the control mechanisms supplied by a high-level language
have to be performed manually. Another problem with
MACRO is that some classes of system programs only
need kernel mode at distinct points-the rest of the
processing can be done in user mode. However, most
system programs written in MACRO change to kernel
mode when the program begins and remain in that state
until termination. During development of such a program,
the most trivial oflogic errors can crash the entire system.

So what's the best way? My personal preference for
all types of programming is to code the main program
in a high-level language, supplemented by MACRO
subroutines for whatever functions cannot be performed
by that language. In the case of a systems program, the
MACRO subroutines would exist in a change-mode-to­
kernel dispatcher (described below). The subroutines can
be made short and modular, and if coded generically they
can be reused for other programs performing a similar
function.

Systems programs which are likely candidates for
high-level languages are programs which need to run in
kernel mode only briefly, during distinct phases such as
input or output, and most processing can be done in user
mode. An example of such a program is an Ancillary
Control Process (ACP). Systems programs which are poor
candidates for high-level languages are exemplified by
device drivers and other code loaded into system space,
programs which cannot be implemented as a standard
VMS process, or programs which must run in kernel mode
most of the time.

The change-mode-to-kernel dispatcher

A change-mode-to-kernel dispatcher is the VMS mecha­
nism by which a normal user-mode process can execute
privileged code. VMS system services are implemented
this way. The dispatcher can be considered a special
form of subroutine library. The subroutine definition
in the calling program is exactly the same as for any

294

other externally-defined subroutine (in Pascal, with the
"EXTERNAL" designator). As with ordinary entry points in
a shareable image, control is passed to a transfer vector
rather than the actual entry point of the subroutine.
For user mode routines, the transfer vector contains a
simple jump instruction to the actual subroutine address.
However, vectors for kernel mode routines instead is­
sue a change-mode-to-kernel instruction, specifying the
unique index number of the target subroutine. When
control is transferred to the subroutine, the instructions
are executed in kernel mode with all of the privileges
thereof. When the subroutine finishes processing, it issues
a normal return (RET) instruction. When control is
returned to the calling program, the process is once again
executing in user mode. The percentage of the time
the process spends in kernel mode is minimized; during
development, exception conditions crash only the process.
After the various routines in the dispatcher are debugged,
the system crashes may stop entirely, since these error-free
procedures can be reused by the next system program
developed and only the new user-mode code must be
debugged.

This paper does not discuss the implementation
of a change-mode-to-kernel dispatcher; this has been
covered in other presentations at various Symposia. For
examples of implementation, see the sample dispatcher in
SYS$EXAMPLES: USSDISP. MAR and the one supplied with
this paper, EXAMPSUBS. MAR.

The most important advantage to using home-grown
system services is that it minimizes the percentage of the
code executing in kernel mode. In a given program, some
operations can be performed only in kernel mode, but
many others can be performed equally well in user mode.
For instance, the sample program described below, which
does nothing more than dump the PCB of the current
process, must access the non-paged pool to get its input
data. This can only be done in kernel mode. However,
there is no reason for the actual formatting of the PCB
fields, which is done with ordinary Pascal write lines,
to execute in kernel mode. The kernel mode processing
is restricted to the few instructions necessary to get the
address of the PCB and copy its contents into normal
process memory space.

One drawback to systems programming in Pascal is
that the overhead of the change-mode-to-kernel dispatcher
is a factor in time-critical code. There is more overhead
for a user-written change-mode-to-kernel dispatcher than
for a simple procedure call (the amount of overhead is
exactly the same as that caused by system service calls,
since system services also utilize a dispatcher). If a
process is continuously switching between user mode and
kernel mode, this technique is not the optimum approach
and the all-MACRO version should probably be used.

The System Control Blocks

The system control blocks are defined in Pascal as
standard record types and are referenced with standard
Pascal pointer variables. There are two basic types of
system control blocks-structured and unstructured. In
a structured block, the definition of the first 11 bytes is
the same for all block types: the first two longwords are
forward and backward pointers, used to place the block
into a queue; .the word following the queue pointers (at
offset 8) contams the actual length of the block in bytes·
t~e byte following the length (at offset 10) contains ~
bmary code uniquely identifying the block type.

As an example of a structured block, the 1/0 Request
Packet (IRP) is defined in Pascal as:

irp_ptr= ~irp

irp = packed record
irp$l_ioqfl : irp_ptr
irp$l_ioqbl : irp_ptr
irp$w_size word
irp$b_type byte
irp$b_rmod byte

end

The unstructured system control blocks have no
header because they are never queued (they are referenced
by other means) and the length of block is fixed or stored
outside of the block. The best known example of an
unstructured block is the Process Header (PHD)-the
length is fixed, and the PHD address is contained in the
PCB.

The major disadvantage of systems programming in
Pascal is that code does not track changes to VMS
data structures automatically; creating the record layouts
for the system control blocks is a manual operation.
In MACRO, the definition of the system blocks is
provided with VMS, contained in the system macro
library SYS$LIBRARY: LIB. MLB. When a new version of
VMS is received, a new version of the library comes
with it, and recompiling and relinking is the only action
required to pick up any changes to the definitions of the
control blocks (provided there are no major functional
changes such as deletion of fields currently in use; in this
case, MACRO and high-level language programmers are
in the same boat). Pascal, since it is not expected to
need this type of information (this is impossible in Pascal,
remember?), has no corresponding definitions supplied
with the system. The record layout must be edited by
hand if a new version of VMS changes the system control
blocks. (To minimize this activity, it is wise to place the
record layouts in an environment or include file rather
than duplicating them in every source file.)

295

When creating the record layout, it is possible to
accelerate the process by dumping the macro definitions
co?~ained. in the macro library to a temporary file and
ed1tmg this file rather than starting from scratch. This
file can be created by entering:

$ library/macro/extract=$xyzdef -
/out=tempfile.dat
sys$1ibrary:lib

where XYZ is the name of the system definition desired,
such as PCB. The result of the above command is a file
containing lines such as:

$equ pcb$w_size 8
$equ pcb$b_type 10
$equ pcb$b_pri 11
$equ pcb$l_pid 96

$EQU is the name of the macro which defines a
symbol-it can be edited out. The middle column is the
symbol itself and the number on the right is the offset (in
bytes) of the field from the beginning of the record. The
$L, $W, and $8 within the name is the size of the field
(longword, word, and byte, respectively). After editing,
the above text should look like this:

pcb$w_size :
pcb$b_type :
pcb$b_pri
pcb$l_pid :

word;
byte;

byte;
integer;

A great deal of care must be taken ensuring that the
Pascal records match the system control blocks exactly.
For this reason, the PACKED designator must be used
on the record statements if fields identified as words or
bytes are present. If left unpacked, these fields, which
are defined as subranges (word = 0 •• 65535 ; byte =
0 .. 256), will be allocated space according to their base
type (integer, 32 bits). This will cause all following fields
to have incorrect offsets.

There are several places in the various VMS control
blocks where privilege masks are used, notably in the
PCB. A VMS privilege mask is an array of 64 bits, where
each bit set to one represents the ownership of a particular
privilege. The array is packed, so the mask is exactly a
quadword (8 bytes) in size. In Pascal, privilege masks can
be implemented either as a packed array of type boolean
or as a set. Either approach can be used as long as the
resultant variable is exactly a quadword in size.

A privilege mask defined using the boolean method
would be coded like this:

type privmask =packed array [0 .. 63]
of boolean ;

SCANPCB-a trivial sample program

The following program provides an example of accessing
the non-paged pool. Its sole function is to dump the
contents of the process control block (PCB), process
header (PHO), and Job Information Block (JIB) of the
current process to the standard output file. The fact
that most of this information can be more easily obtained
via $GETJPI is irrelevant, since this is only an example
of the technique of accessing system control blocks; most
of the other information in the system space cannot be
acquired by using system services provided by VMS. One
important concept illustrated in this example is block
chaining. Once we have the address of the PCB, we can
easily acquire the address of the other blocks from the
associated pointers in the PCB.

Declarations

There are three routines contained in the example change­
mode-to-kernel dispatcher:

• GET_MY_PCB, which simply returns the address of the
process control block (PCB) of the current process

• COPY _SYSTEM_CONTROL...BLOCK, copies one of the sys­
tem control blocks from the nonpaged-pool to process
memory space or vice versa using the lengths con­
tained within the control blocks themselves-used for
structured blocks

• COPl_NONPAGED...BUFF, which performs the same copy
operation as COPY_SYSTEM_CONTROL...BLOCK, except
that the lengths are explicitly specified-used for
unstructured blocks, which have no embedded length
field
To access the fields in the control blocks we define . ' tw? pomter variables, a local pointer and a non-paged-pool

pomter, for each of the three control blocks used by the
program (PCB, JIB, and PHO}. The local pointer contains
the address of the control block created in the process
virtual memory space, a standard Pascal record allocated
on the heap and accessed by normal Pascal references.
The nonpaged pointer cannot be used as a pointer in the
standard way; the block it points to is in the non-paged
pool and therefore inaccessible to a user mode program. If
it is used as a pointer, an access violation will result and
the program will abort. This variable is instead used to
simply store the non-paged address until it can be used as
one of the parameters to the COPY _SYSTEM _CQNTROL-8LOCK
procedure.

var

nonpaged_pcb_pointer,
local_pcb_pointer

pcb_ptr ;

The three procedures in the change-mode-to-kernel
dispatcher are defined as Pascal EXTERNAL procedures. It
is transparent to Pascal whether the procedures called

296

reside in an object library, a shareable image, or a change­
mode-to-kernel dispatcher. The calling mechanism is the
same-the only concern is ensuring that the parameter
definitions agree. Note that the copy-from and copy-to
block addresses for the two copy procedures (formal
variables f and t) are defined as integers, although they
are actually pointers. These parameters would normally
be defined as the pointer type for the block being copied.
However, these procedures are called using pointers to
three different block types (pcb __ ptr, jib_ptr, and phd_ptr).
In fact, since these procedures are intended for become
the nucleus of a general purpose dispatcher to support a
multitude of systems programs, the blocks to be copied
could be of any type. The problem is that the procedure
cannot specify multiple types on a formal parameter
definition (actually, there is a method to accomplish this
using variant records, but it can become very messy). The
solution is to define the parameter as a neutral type of the
same size as a pointer, such as an integer, and then using
the type cast operator (::), which allows a temporary
override of the rigid type checking of Pascal, when the
procedure is actually called.

function copy_system_control_block
(%immed f , t : integer)
integer ; extern ;

function copy_nonpaged_buff
(%immed flan, tlen: integer;
%immed f , t integer)

integer ; extern ;

function get_my_pcb
(var p : pcb_ptr)

integer ; extern

SCANPCB processing

The first action performed by the SCANPCB program is
~o get the pointer to the current PCB, which is located
m the nonpaged pool. At the same time a local PCB is
allocated in the normal process address 'space using the
Pascal NEW function. The contents of the local PCB are
initially undefined.

return_code := get_my_pcb
(nonpaged_pcb_pointer)

new(local_pcb_pointer) ;

After the two pointer variables are loaded the system
control block copy routine (the one used for structured
blocks} is used to copy the inaccessible real PCB to
the local duplicate. The type cast operator (::) is
used to temporarily redefine nonpaged_pcb_pointer and
locaLpcb_pointer from type pcb_ptr to integer, which
is the type specified on the formal parameters in the

procedure definition, without affecting these variables
elsewhere in the program.

return_code := copy_system_control_block
(nonpaged_pcb_pointer .. integer,
local_pcb_pointer •· integer) ;

Now that the local PCB is a mirror-image of the
one in the nonpaged pool, the fields within it can be
accessed via normal Pascal mechanisms. In this sample
program, we simply print the fields in decimal or hex on
the standard output device.

with local_pcb_pointer~ do
writeln ('pcb$l_pid' ,

'(process id) = '
hex (pcb$l_pid)) ;

The individual privileges in a privilege mask can
easily be accessed as boolean variables in the packed array
of bits.

with local_pcb_pointer~ do
if pcb$q_priv[prv$v_oper] then

writeln('this process has oper priv');

Since the field PCB$L_JIB contains the address of the
JIB in the non-paged pool, we can initialize the non-paged
pointer to it with a simple Pascal assignment statement.

nonpaged_jib_pointer :=
local_pcb_pointer~.pcb$l_jib

Now that we have the address of the JIB, we can
use COPY _SYSTEM_CQNTROL...BLOCK again to create a local
JIB and print its contents as we did for the PCB.
The procedure to dump the PHD is the same except
that COPY_NONPAGED...BUFF is used, since the PHD is an
unstructured block.

Procedures in the dispatcher

Within the change-mode-to-kernel dispatcher itself, the
following MACRO code returns the address of the Process
Control Block of the current process:

$ent
movl
movl
ret

get_my_pcb
r4,Cl4(ap)
#ss$_normal,r0

One of the key points illustrated by this subroutine is
its brevity, which is enhanced by the fact that the address
of the current PCB is preloaded into register 4 by the
dispatcher; however, the active PCB can also be found via
the absolute memory location sch$gLcurpcb.

297

The following code copies a system control block from
the process virtual address space to system space or vice
versa. ·The lengths of the blocks are contained within
them.

$ent
movl
movl
moves

movl
ret

copy_system_control_block
4(ap) ,r2
8(ap) ,r3
pcb$w_size(r2),(r2),#0, -

pcb$w_size(r3),(r3)
#ss$_normal,r0

This subroutine is almost as short as the first
one. It would be slightly longer in practice, since
for clarity this sample routine does not include any
validity checking of the input parameters, which would
be essential in a real routine. The other block-copy
routine, COPY..NONPAGED...BUFF, is not shown here because
it is virtually identical to COPY_SYSTEM_CONTROL_BLOCK;
the only difference is that the lengths of the two blocks
are passed as parameters instead of being retrieved from
the blocks themselves.

A Pascal ACP

A VMS device driver operates in a limited context. The
driver code does not execute as a normal process, and
therefore has no user memory space, no event flags, no
global sections, etc. It cannot issue system services, receive
AST's, hibernate, or wait for event flags. Sometimes the
functions being performed by a driver are complex enough
to require one of these forbidden operations. Or, one
1/0 operation may cause several lower-level operations to
occur, requiring the driver to issue 1/0 requests to itself
or another driver via the QIO mechanism. An example of
this type of operation would be a disk read of a virtual
block, which would be transformed to multiple logical and
physical operations (SEEK the physical block, READ the
physical block, etc.).

An Ancillary Control Process (ACP) is a standard
VMS mechanism to expand the capabilities of a device
driver. It can be considered an extension of the driver
to handle functions which cannot be performed easily by
the driver. Since the ACP is a full VMS process, it can
hibernate, issue system services, and do all of the other
things a driver cannot.

The ACP described here is used with a simulated ter­
minal driver, similar in function to the Decnet REMACP.
It allows remote login over a proprietary local area
network using non-VTlOO terminals.

The functions performed by the ACP include:
• Creating and initializing the ACP Queue Block

(AQB) and Volume Control Block (VCB) in the
non-paged pool.

• Reading the 1/0 Request Packets (IRPs)
• Posting the 1/0 complete

Declarations

In addition to the two block-copy routines listed above for
the example program, the following additional routines
are contained in the change-mode-to-kernel dispatcher for
the ACP:

• GET_IRP-FROM_QUEUE, which gets the next IRP for
processing

• POST_IQ_COMPLETION, which places an IRP which has
returned from the link into the 1/0 postprocessing
queue

• ALLOCATE-ACP_QUEUE..BLOCK, which is used during
process initialization

• CREATE_NEtLUCB and KILL-UCB, which are used to
create and delete virtual terminals

Initializing the AQB

This section of code allocates and initializes an ACP Queue
Block (AQB). The ALLOCATE ACP QUEUE..BLOCK procedure
is similar to the GET IRP FROM QUEUE procedure, in that
it returns the address of a block in the non-paged pool,
except that in this case, the block is actually created by
the procedure.

return_ code : =
allocate_acp_queue_block

(nonpaged_aqb_ptr);

All of the fields of the local block must be initialized,
since this block will be copied to the pool to become the
real AQB.

new(local_aqb_ptr);
with local_aqb_ptr~ do begin

aqb$w_size := aqb$c_length;
aqb$b_type := dyn$c_aqb;

As before, the COPY _SYSTEM_CONTROL...BLOCK proce­
dure is used. However, this time the local block is copied
to the non-paged pool.

return_code :=
copy_system_control_block

(local_aqb_ptr :: integer;
nonpaged_aqb_ptr :: integer);

298

The main program

The following code is the main processing loop of the ACP;
during each iteration, it either gets another IRP from
the ACP queue or another Remote Data Packet (RDP)
returning from the link. If either process_link_data or
process..request_packet is executed during an iteration,
the io_performed flag is set. If neither is executed, then
the process will hibernate until new data is received from
either side of the interface and a $WAKE is issued.

repeat
io_performed := false;
if link_data_present

then process_link_data;
if irp_present

then process_request_packet;
if not io_performed then

hibernate_until_new_input;
until dead;

Reading the IRPs

1/0 Request Packets (IRPs) are passed from the simulated
terminal driver to the ACP via a linked list (queue) in the
non-paged pool. Since the user-mode ACP cannot access
the pool directly, a subroutine in the dispatcher is used to
get the address of the next IRP in the queue.

get_irp_from_queue(nonpaged_aqb_ptr,
nonpaged_irp_ptr);

Using a technique similar to that of the PCB
processing described earlier, the ACP creates a lo­
cal IRP in the normal program space and uses the
COPY _SYSTEM-CONTROL...BLOCK procedure to copy the inac­
cessible real IRP to the local duplicate.

new(local_irp_ptr);

return_code :=
copy_system_control_block

(nonpaged_irp_ptr .. integer,
local_irp_ptr:: integer);

The 1/0 buffer associated with the IRP, which must
be transmitted across the link and is in the form of a
Remote Data Packet (RDP), must also be copied from the
non-paged pool to the process address space. Since the
RDP is not a structured block, the COPY _NONPAGED.J3UFF
procedure must be used and the actual length of the buffer
must be specified (the address and length are contained
in the IRP fields irp$Lsvapte and irp$w_boff).

with local_irp_ptrA do begin
from_ptr := irp$l_svapte;
to_ptr := local_io_buff_ptr;
return_code := copy_nonpaged_buff

(irpw_boff,irpw_boff,
from_ptr :: integer,
to_ptr .. integer);

Since multiple 1/0 operations may be in progress
simultaneously and they may not complete in the same
order they were initiated, we must save the IRP in a
local table, identified by sequence number (this number
is guaranteed by VMS to be unique). The RDP is then
transmitted to the remote system where the 1/0 will
actually be performed.

put_irp_on_local_queue(irp$l_seqnum);
send_rdp_across_link;

Posting the 1/0 complete

When the response RDP returns from the link, now in a
different format consisting of the completion code of the
1/0 and possibly containing data (in the case of a read
operation), the original QIO must be posted complete.
Using the sequence number, we locate the IRP associated
with this RDP. COPY_NONPAGED-BUFF is again used, this
time to overlay the original RDP in the system space with
the response RDP just received (the block was originally
allocated by the driver to be large enough for either form
of an RDP, so we do not have to worry about overwriting
system space).

Finally, we call a routine in the dispatcher to post
the 1/0 operation complete.

return_code :=
post_io_completion(nonpaged_irp_ptr,
nonpaged_ucb,
interrupt_routine_address);

Procedures in the dispatcher

The following code in the change-mode-to-kernel dis­
patcher for the ACP returns the address of the next IRP
in the ACP queue, if one is present; if the queue is empty,
a warning-level return code is issued.

$ent get_irp_from_queue
movl 4(ap),r6
remque «l(r6) ,«IS(ap)
bvc 10$
movl #queue_is_empty,rO
ret

10$: movl #ss$_normal,r0
ret

299

It cannot be over-emphasized that the process is only
in kernel mode for the amount of time needed to execute
these tiny procedures in the dispatcher. The time window
where the VAX is vulnerable to a full-system crash is very
small, and procedures this size are comparatively easy to
debug.

Conclusions

• Some classes of systems programs can be implemented
in a high-level language

• Systems programs can gain the benefits of structured
programming and can be made more readable

• Development time can be shortened
• System crashes can be reduced during development
• Kernel mode routines (in a change-mode-to-kernel

dispatcher) developed for one system program can be used
again for another

program scanpcb (output);

const

prv$v_cmkrnl = O;
prv$v_cmexec = 1;
prv$v_sysnam = 2;
prv$v_grpnam = 3;
prv$v_allspool = 4;
prv$v_detach = 5;
prv$v_diagnose = 6;
prv$v_log_io = 7;
prv$v_group = 8;
prv$v_acnt = 9;
prv$v_prmceb = 10;
prv$v_prmmbx = 11;
prv$v_pswapm = 12;
prv$v_altpri = 13;
prv$v_setpri = 13;
prv$v_setprv = 14;
prv$v_tmpmbx = 15;
prv$v_world = 16;
prv$v_mount = 17;
prv$v_oper = 18;
prv$v_exquota = 19;
prv$v_netmbx = 20;
prv$v_volpro = 21;
prv$v_phy_io = 22;
prv$v_bugchk = 23;
prv$v_prmgbl = 24;
prv$v_sysgbl = 25;
prv$v_pfnmap = 26;
prv$v_shmem = 27;
prv$v_sysprv = 28;
prv$v_bypass = 29;
prv$v_syslck = 30;
prv$v_share = 31;
prv$v_upgrade = 32;
prv$v_downgrade = 33;
prv$v_grpprv = 34;
prv$v_readall = 35;
prv$v_security = 38;

type

privmask =packed array [0 .. 63]
of boolean;

pack7 = packed array [1 .. 7] of char;
pack15 =packed array [1 .. 15] of char;
pack20 =packed array [1 .. 20] of char;
word= 0 .. 66635;
byte= 0 .. 255;

300

pcb_ptr = ~pcb;
phd_ptr = ~phd;
jib_ptr = ~jib;

phd = packed record
phd$q_privmsk : privmask;
phd$w_wslist word;
phd$w_wsauth : word;
phd$w_wslock : word;
phd$w_wsdyn : word;
phd$w_wsnext : word;
phd$w_wslast : word;
phd$w_wsauthext : word;
phd$w_wsextent : word;
phd$w_wsquota : word;
phd$w_dfwscnt : word;
phd$l_pagfil : integer;
phd$l_pstbasoff : integer;
phd$w_pstlast word;
phd$w_pstfree : word;
phd$l_frep0va : integer;
phd$l_freptecnt : integer;
phd$l_frep1va : integer;
phd$b_dfpfc : byte;
phd$b_pgtbpfc : byte;
phd$w_flags : word;
phd$l_cputim : integer;
phd$w_quant word;
phd$w_prclm : word;
phd$w_astlm : word;
phd$w_phvindex : word;
phd$l_bak : integer;
phd$l_pstbasmax : integer;
phd$l_pageflts : integer;
phd$w_wssize : word;
phd$w_swapsize : word;
phd$l_diocnt integer;
phd$l_biocnt : integer;
phd$l_cpulim : integer;
phd$b_cpumode byte;
phd$b_awsmode : byte;
phd$w_fill_30 : word;
phd$l_ptwslelck : integer;
phd$l_ptwsleval : integer;
phd$w_ptcntlck word;
phd$w_ptcntval word;
phd$w_ptcntact word;
phd$w_ptcntmax word;
phd$w_wsfluid : word;
phd$w_extdynws : word;
phd$l_ksp integer;
phd$l_esp integer;
phd$l_ssp integer;

phd$l_usp : integer;
phd$l_ro integer;
phd$l_r1 integer;
phd$l_r2 integer;
phd$l_r3 integer;
phd$l_r4 integer;
phd$l_r6 integer;
phd$l_r6 integer;
phd$l_r7 integer;
phd$l_r8 integer;
phd$l_r9 integer;
phd$l_r10 integer;
phd$l_r11 integer;
phd$l_r12 integer;
phd$l_r13 integer;
phd$l_pc : integer;
phd$l_psl : integer;
phd$l_p0br : integer;
phd$l_p0lrastl : integer;
phd$l_p1br : integer;
phd$l_p1lr : integer;
phd$w_emptpg : word;
phd$w_respgcnt : word;
phd$w_reqpgcnt : word;
phd$w_cwslx : word;
phd$q_authpriv : privmask;
phd$q_imagpriv : privmask;
phd$l_reslsth : integer;
phd$l_imgcnt : integer;
phd$l_pfltrate : integer;
phd$l_pflref : integer;
phd$l_timref : integer;
phd$l_mpinhibit : integer;
phd$l_pgfltio : integer;
phd$b_authpri : byte;
phd$b_fill1 : byte;
phd$w_fill2 : word;
phd$l_extracpu : integer;
end;

jib = packed record
jib$l_mtlfl : integer;
jib$l_mtlbl : integer;
jib$w_size : word;
jib$b_type : byte;
jib$b_daytypes : byte;
jib$t_username : pack20;
jib$l_bytcnt : integer;
jib$l_bytlm : integer;
jib$l_pbytcnt : integer;
jib$l_pbytlim : integer;
jib$w_filcnt : word;
jib$w_fillm : word;

301

jib$w_tqcnt : word;
jib$w_tqlm : word;
jib$l_pgflquota : integer;
jib$l_pgflcnt : integer;
jib$l_cpulim integer;
jib$w_prccnt : word;
jib$w_prclim : word;
jib$w_shrfcnt : word;
jib$w_shrflim : word;
jib$w_enqcnt : word;
jib$w_enqlm : word;
jib$w_maxjobs : word;
jib$w_maxdetach : word;
jib$l_mpid : integer;
jib$l_jlnamfl : integer;
jib$l_jlnambl : integer;
jib$l_pdayhours : integer;
jib$l_odayhours : integer;
jib$b_jobtype : byte;
jib$b_fill1 : byte;
jib$w_fill2 : word;
jib$l_org_bytlm : integer;
jib$l_org_pbytlm : integer;
end;

pcb = packed record
pcb$l_sqfl pcb_ptr;
pcb$l_sqbl pcb_ptr;
pcb$w_size word;
pcb$b_type byte;
pcb$b_pri : byte;
pcb$b_astact : byte;
pcb$b_asten : byte;
pcb$w_mtxcnt word;
pcb$l_astqfl integer;
pcb$l_astqbl integer;
pcb$l_phypcb integer;
pcb$l_owner : integer;
pcb$l_wsswp : integer;
pcb$l_sts : integer;
pcbb_prisav,pcbb_pribsav,

pcbb_dpc,pcbb_authpri
byte;

pcb$w_state : word;
pcb$b_wefc : byte;
pcb$b_prib : byte;
pcb$w_aptcnt : word;
pcb$w_tmbu : word;
pcb$w_gpgcnt word;
pcb$w_ppgcnt word;
pcb$w_astcnt word;
pcb$w_biocnt word;
pcb$w_biolm : word;

var

pcb$w_diocnt : word;
pcb$w_diolm : word;
pcb$w_prccnt : word;
pcb$t_termlen : byte;
pcb$t_terminal : pack7;
pcb$l_efwm integer;
pcb$l_efcs : integer;
pcb$l_efcu : integer;
pcb$l_efc2p : integer;
pcb$l_efc3p : integer;
pcb$l_pid : integer;
pcb$l_epid : integer;
pcb$l_eowner : integer;
pcb$l_phd : phd_ptr;
pcb$b_lnamelen : byte;
pcb$t_lname : pack15;
pcb$l_jib : jib_ptr;
pcb$q_priv : privmask;
pcb$l_arb : integer;
pcb$l_unknown1 : packed array (1 .. 11]

of integer;
pcbw_mem,pcbw_grp : word;
pcb$l_unknown2: packed array (1 .. 15]

of integer;
pcb$l_aclfl : integer;
pcb$l_aclbl : integer;
pcb$l_lockqfl integer;
pcb$l_lockqbl : integer;
pcb$l_dlckpri : integer;
pcb$l_ipast : integer;
pcb$l_defprot : integer;
pcb$l_waitime : integer;
pcb$l_pmb : integer;
end;

return_code : integer;
pcb_size : integer;
nonpaged_pcb_pointer,

local_pcb_pointer pcb_ptr;
jib_size : integer;
nonpaged_jib_pointer,

local_jib_pointer jib_ptr;
phd_size : integer;
nonpaged_phd_pointer,

local_phd_pointer : phd_ptr;
privnames :

array [prv$v_cmkrnl .. prv$v_security]
of varying (30] of char;

302

procedure sys$exit (%immed re
extern;

integer);

function copy_nonpaged_buff
(%immed fl,tl : integer;
%immed f,t : integer)
: integer; extern;

function copy_system_control_block
(%immed f,t : integer)
integer; extern;

function get_my_pcb (var p : pcb_ptr)
: integer; extern;

procedure print_privs (privmask privmask);

var

n : integer;

begin
for n := 0 to prv$v_security do

if privmask[n] then
writeln(privnames[n]);

end;

procedure print_pcb;

begin
with local_pcb_pointer~ do begin

writeln('pcb$l_sqfl = '
hex(pcb$l_sqfl));

writeln('pcb$l_sqbl = '
hex(pcb$l_sqbl));

writeln('pcb$w_size = ',pcb$w_size);
writeln('pcb$b_type = ',pcb$b_type);
writeln('pcb$b_pri = ',pcb$b_pri);
writeln('pcb$b_astact = ',pcb$b_astact);
writeln('pcb$b_asten = ',pcb$b_asten);
writeln('pcb$w_mtxcnt = ',pcb$w_mtxcnt);
writeln('pcb$l_astqfl = '

hex(pcb$l_astqfl));
writeln('pcb$l_astqbl = '

hex(pcb$l_astqbl));
writeln('pcb$l_phypcb = '

hex(pcb$l_phypcb));
writeln('pcb$l_owner = ',pcb$l_owner);
writeln('pcb$l_wsswp = ',

hex(pcb$l_wsswp));
writeln('pcb$l_sts = ',hex(pcb$l_sts));
writeln('pcb$b_prisav = ',pcb$b_prisav);

writeln('pcb$b_pribsav = ',
pcb$b_pribsav);

writeln('pcb$b_dpc = ',pcb$b_dpc);
writeln('pcb$b_authpri = '

pcb$b_authpri);
writeln('pcb$w_state = ',pcb$w_state);
writeln('pcb$b_wefc = '

hex(pcb$b_wefc));
writeln('pcb$b_prib = ',pcb$b_prib);
writeln('pcb$w_aptcnt = ',pcb$w_aptcnt);
writeln('pcb$w_tmbu = ',pcb$w_tmbu);
writeln('pcb$w_gpgcnt = ',pcb$w_gpgcnt);
writeln('pcb$w_ppgcnt = ',pcb$w_ppgcnt);
writeln('pcb$w_astcnt = ',pcb$w_astcnt);
writeln('pcb$w_biocnt = ',pcb$w_biocnt);
writeln('pcb$w_biolm = •,pcb$w_biolm);
writeln('pcb$w_diocnt = ',pcb$w_diocnt);
writeln('pcb$w_diolm = ',pcb$w_diolm);
writeln('pcb$w_prccnt = ',pcb$w_prccnt);
writeln('pcb$t_terminal (length) = '

pcb$t_termlen);
writeln('pcb$t_terminal = '

pcb$t_terminal);
writeln('pcb$l_efwm = '

hex(pcb$l_efwm));
writeln('pcb$l_efcs = '

hex(pcb$l_efcs));
writeln('pcb$l_efcu = '

hex(pcb$l_efcu));
writeln('pcb$l_efc2p = '

hex(pcb$l_efc2p));
writeln('pcb$l_efc3p = '

hex(pcb$l_efc3p));
writeln('pcb$1_pid = ',hex(pcb$l_pid));
writeln('pcb$l_epid = ',

hex(pcb$l_epid));
writeln('pcb$l_phd = ',hex(pcb$l_phd));
writeln('pcb$l_eowner = ',

hex(pcb$l_eowner));
writeln('pcb$t_lname = ',pcb$t_lname);
writeln('pcb$l_jib = ',hex(pcb$l_jib));
writeln('pcb$q_priv = ');
print_privs (pcb$q_priv);
writeln('pcb$l_arb = ',hex(pcb$l_arb));
writeln('pcb$w_mem = •,oct(pcb$w_mem));
writeln('pcb$w_grp = ',oct(pcb$w_grp));
writeln('pcb$l_aclfl = '

hex(pcb$l_aclfl));
writeln('pcb$l_aclbl = '

hex(pcb$l_aclbl));
writeln('pcb$l_lockqfl =

hex(pcb$l_lockqfl));
writeln('pcb$l_lockqbl = '

end;

hex(pcb$l_lockqbl));
writeln('pcb$l_dlckpri = '

pcb$l_dlckpri);
writeln('pcb$l_ipast = ',pcb$l_ipast);
writeln('pcb$l_defprot =

hex(pcb$l_defprot));
writeln('pcb$l_waitime = '

hex(pcb$l_waitime));
writeln('pcb$l_pmb = ',hex(pcb$l_pmb));
writeln;
writeln;
end;

procedure print_jib;

begin
with local_jib_pointer~ do begin

writeln('jib$l_mtlfl = '
hex(jib$l_mtlfl));

writeln('jib$l_mtlbl = '

303

hex(jib$l_mtlbl));
writeln('jib$w_size = ',jib$w_size);
writeln('jib$b_type = ',jib$b_type);
writeln('jib$b_daytypes = '

hex(jib$b_daytypes));
writeln('jib$T_username =

jib$t_username);
writeln('jib$l_bytcnt = ',jib$l_bytcnt);
writeln('jib$l_bytlm = ',jib$l_bytlm);
writeln('jib$l_pbytcnt = '

jib$l_pbytcnt);
writeln('jib$l_pbytlim = '

jib$l_pbytlim);
writeln('jib$w_filcnt = •,jib$w_filcnt);
writeln('jib$w_fillm = ',jib$w_fillm);
writeln('jib$w_tqcnt = ',jib$w_tqcnt);
writeln('jib$w_tqlm = ',jib$w_tqlm);
writeln('jib$l_pgflquota = ',

jib$l_pgflquota);
writeln('jib$l_pgflcnt = ',

jib$l_pgflcnt);
writeln('jib$l_cpulim = ',jib$l_cpulim);
writeln('jib$w_prccnt = ',jib$w_prccnt);
writeln('jib$w_prclim = •,jib$w_prclim);
writeln('jib$w_shrfcnt = '

jib$w_shrfcnt);
writeln('jib$w_shrflim = '

jib$w_shrflim);
writeln('jib$w_enqcnt = ',jib$w_enqcnt);

end;

writeln('jib$w_enqlm = ',jib$w_enqlm);
writeln('jib$w_maxjobs = '

jib$w_maxjobs);
writeln('jib$w_maxdetach = '

jib$w_maxdetach);
writeln('jib$1_mpid = '•

hex(jib$l_mpid));
writeln('jib$l_jlnamfl = '

hex(jib$l_jlnamfl));
writeln('jib$l_jlnambl = '

hex(jib$l_jlnambl));
writeln('jib$l_pdayhours = '

hex(jib$l_pdayhours));
writeln('jib$l_odayhours = '

hex(jib$l_odayhours));
writeln('jib$b_jobtype = ',

hex(jib$b_jobtype));
writeln('jib$l_org_bytlm = ',

jib$l_org_bytlm);
writeln('jib$1_org_pbytlm = '

jib$l_org_pbytlm);
writeln;
writeln;
end;

procedure print_phd;
begin
with local_phd_pointer- do begin

writeln('phd$q_privmsk = ');
print_privs (phd$q_privmsk);
writeln('phd$w_wslist = ',phd$w_wslist);
writeln('phd$w_wsauth = ',phd$w_wsauth);
writeln('phd$w_wslock = ',phd$w_wslock);
writeln('phd$w_wsdyn = ',phd$w_wsdyn);
writeln('phd$w_wsnext = ',phd$w_wsnext);
writeln('phd$w_wslast = ',phd$w_wslast);
writeln(1 phd$w_wsauthext = '•

phd$w_wsauthext);
writeln('phd$w_wsextent = ',

phd$w_wsextent);
writeln('phd$w_wsquota = '

phd$w_wsquota);
writeln('phd$w_dfwscnt = '

phd$w_dfwscnt);
writeln('phd$l_pagfil = ',

hex(phd$l_pagfil));
writeln('phd$l_pstbasoff = '

hex(phd$l_pstbasoff));
writeln('phd$w_pstlast = '

hex(phd$w_pstlast));
writeln('phd$w_pstfree = '

hex(phd$w_pstfree));
writeln('phd$l_frep0va = '

hex(phd$l_frep0va));
writeln(1 phd$l_freptecnt = '

hex(phd$l_freptecnt));
writeln('phd$l_frep1va = ',

hex(phd$l_frep1va));
writeln('phd$b_dfpfc = '

hex(phd$b_dfpfc));
writeln('phd$b_pgtbpfc = '

hex(phd$b_pgtbpfc));
writeln('phd$w_flags = ',

hex(phd$w_flags));
writeln('phd$l_cputim = ',phd$l_cputim);
writeln('phd$w_quant = '

hex(phd$w_quant));
writeln('phd$w_prclm = ',phd$w_prclm);
writeln('phd$w_astlm = ',phd$w_astlm);
writeln('phd$w_phvindex = ',

phd$w_phvindex);
writeln('phd$l_bak = ',hex(phd$l_bak));
writeln('phd$l_pstbasmax = ',

hex(phd$l_pstbasmax));
writeln('phd$1_pageflts = '

phd$l_pageflts);
writeln('phd$w_wssize = ',phd$w_wssize);
writeln('phd$w_swapsize = '

304

phd$w_swapsize);
writeln('phd$l_diocnt = 1 ,phd$l_diocnt);
writeln('phd$l_biocnt = ',phd$l_biocnt);
writeln('phd$l_cpulim = ',phd$l_cpulim);
writeln('phd$b_cpumode = '

phd$b_cpumode);
writeln('phd$b_awsmode = '

hex(phd$b_awsmode));
writeln('phd$w_fill_30 = 1

hex(phd$w_fill_30));
writeln('phd$l_ptwslelck = '

phd$l_ptwslelck);
writeln('phd$l_ptwsleval = '

phd$l_ptwsleval);
writeln('phd$w_ptcntlck = '

phd$w_ptcntlck);
writeln('phd$w_ptcntval = '

phd$w_ptcntval);
writeln('phd$w_ptcntact = '

phd$w_ptcntact);
writeln('phd$w_ptcntmax = '

phd$w_ptcntmax);
writeln('phd$w_wsfluid = ',

phd$w_wsfluid);
writeln('phd$w_extdynws = '

hex(phd$w_extdynws));

writeln('phd$l_ksp = ',hex(phd$l_ksp));
writeln('phd$l_esp = ',hex(phd$l_esp));
writeln('phd$l_ssp = ',hex(phd$l_ssp));
writeln('phd$l_usp = ',hex(phd$l_usp));
writeln('phd$l_r0 = ',hex(phd$l_r0));
writeln('phd$l_r1 = ',hex(phd$l_r1));
writeln('phd$l_r2 = ',hex(phd$l_r2));
writeln('phd$l_r3 = ',hex(phd$l_r3));
writeln('phd$l_r4 = ',hex(phd$l_r4));
writeln('phd$l_r6 = ',hex(phd$l_r6));
writeln('phd$l_r6 = ',hex(phd$l_r6));
writeln('phd$l_r7 = ',hex(phd$l_r7));
writeln('phd$l_r8 = ',hex(phd$l_r8));
writeln('phd$l_r9 = ',hex(phd$l_r9));
writeln('phd$l_r10 = ',hex(phd$l_r10));
writeln('phd$l_r11 = ',hex(phd$l_r11));
writeln('phd$l_r12 = ',hex(phd$l_r12));
writeln('phd$l_r13 = ',hex(phd$l_r13));
writeln('phd$l_pc = ',hex(phd$l_pc));
writeln('phd$l_psl = ',hex(phd$l_psl));
writeln('phd$l_p0br = ',

hex(phd$l_p0br));
writeln('phd$l_p0lrastl = '

hex(phd$l_p0lrastl));
writeln('phd$l_p1br = '

hex(phd$l_p1br));
writeln('phd$l_p1lr = '

hex(phd$l_p1lr));
writeln('phd$w_ernptpg = '

hex(phd$w_ernptpg));
writeln('phd$w_respgcnt = '

phd$w_respgcnt);
writeln('phd$w_reqpgcnt = '

phd$w_reqpgcnt);
writeln('phd$w_cwslx = ',

hex(phd$w_cwslx));
writeln('phd$q_authpriv = ');
print_privs (phd$q_authpriv);
writeln('phd$q_irnagpriv = ');
print_privs (phd$q_imagpriv);
writeln('phd$l_reslsth = ',

phd$l_reslsth);
writeln('phd$l_imgcnt = ',phd$l_imgcnt);
writeln('phd$l_pfltrate = '

phd$l_pfltrate);
writeln('phd$l_pflref = ',phd$l_pflref);
writeln('phd$l_timref = ',phd$l_timref);
writeln('phd$l_mpinhibit = ',

hex(phd$l_mpinhibit));
writeln('phd$l_pgfltio = '

phd$l_pgfltio);
writeln('phd$b_authpri = '

phd$b_authpri);

305

end;

writeln('phd$l_extracpu = '
phd$l_extracpu);

writeln;
writeln;
end;

procedure init_priv_names;

var

n : integer;

begin
privnames[prv$v_cmkrnl] := 'cmkrnl';
privnames[prv$v_cmexec] := 'cmexec';
privnames[prv$v_sysnam] := 'sysnam';
privnames[prv$v_grpnam] := 'grpnam';
privnames[prv$v_allspool] := 'allspool';
privnames[prv$v_detach] :='detach';
privnames[prv$v_diagnose] := 'diagnose';
privnames[prv$v_log_io] := 'log_io';
privnames[prv$v_group] := 'group';
privnames[prv$v_acnt] := 'acnt';
privnames[prv$v_prmceb] := 'prmceb';
privnames[prv$v_prmmbx] := 'prmrnbx';
privnames[prv$v_pswapm] := 'pswapm';
privnames[prv$v_altpri] := 'altpri';
privnames[prv$v_setpri] := 'setpri';
privnames[prv$v_setprv] := 'setprv';
privnames[prv$v_tmpmbx] := 'tmpmbx';
privnames[prv$v_world] := 'world';
privnames[prv$v_mount] := 'mount';
privnames[prv$v_oper] := 'oper';
privnames[prv$v_exquota] := 'exquota';
privnames[prv$v_netmbx] := 'netmbx';
privnames[prv$v_volpro] := 'volpro';
privnames[prv$v_phy_io] := 'phy_io';
privnames[prv$v_bugchk] := 'bugchk';
privnames[prv$v_prmgbl] := 'prmgbl';
privnames[prv$v_sysgbl] := 'sysgbl';
privnames[prv$v_pfnmap] := 'pfnmap';
privnames[prv$v_shmem] := 'shmem';
privnames[prv$v_sysprv] := 'sysprv';
privnames[prv$v_bypass] := 'bypass';
privnames[prv$v_syslck] := 'syslck';
privnames[prv$v_share] := 'share';
privnames[prv$v_upgrade] := •upgrade';
privnames[prv$v_downgrade] := 'downgrade';
privnames[prv$v_grpprv] := 'grpprv';

privnames[prv$v_readall] := 'readall';
privnames[prv$v_security] := 'security';

end;

begin
init_priv_names;
return_code := get_my_pcb

(nonpaged_pcb_pointer);
if not odd (return_code) then

sys$exit (return_code);

new (local_pcb_pointer);
pcb_size :=size (pcb);
local_pcb_pointerA.pcb$w_size := pcb_size;
writeln('local_pcb size= ',pcb_size);
writeln;
return_code := copy_system_control_block

(nonpaged_pcb_pointer :: integer,
local_pcb_pointer :: integer);

if not odd (return_code) then
sys$exit (return_code);

pcb_size := local_pcb_pointerA.pcb$w_size;
writeln('pcb size= ',pcb_size);
writeln('pcb at ',

hex(nonpaged_pcb_pointer));
writeln;
print_pcb;
writeln;
nonpaged_jib_pointer :=

local_pcb_pointerA.pcb$l_jib;
new (local_jib_pointer);
jib_size :=size (jib);
local_jib_pointerA.jib$w_size := jib_size;
writeln('local_jib size= ',jib_size);
writeln;
return_code := copy_system_control_block

(nonpaged_jib_pointer :: integer,
local_jib_pointer : : integer);

if not odd (return_code) then
sys$exit (return_code);

jib_size := local_jib_pointerA.jib$w_size;
writeln('jib size= ',jib_size);
writeln('jib at ',

hex(nonpaged_jib_pointer));
writeln;
print_jib;
writeln;

306

nonpaged_phd_pointer :=
local_pcb_pointerA.pcb$l_phd;

new (local_phd_pointer);
phd_size :=size (phd);
writeln('local_phd size= ',phd_size);
writeln;
return_code := copy_nonpaged_buff

(phd_size,phd_size,
nonpaged_phd_pointer :: integer,
local_phd_pointer :: integer);

if not odd (return_code) then
sys$exit (return_code);

writeln('phd at '•
hex(nonpaged_phd_pointer));

writeln;
print_phd;
writeln;

end .

.title exampsubs - test system service dispatcher

macro definitions

define service - a macro to make the appropriate entries in several
different psects required to define an exec or kernel
mode service. these include the transfer vector,
the case table for dispatching, and a table containing
the number of required arguments.

define_service name,number_of_arguments,mode

.macro define_service,name,narg=O,mode=kernel

.psect $$$transfer_vector,page,nowrt,exe,pic

.align quad align entry points for speed and style

.transfer name ; define name as universal symbol for entry

.mask name ; use entry mask defined in main routine
chm%extract(0,1,mode) #<%extract(0,1,mode)code_base+'mode'_counter>

change to mode and execute
ret
'mode'_counter='mode'_counter+1

return
advance counter

.psect

.byte

.psect

.word

.endm

'mode'_narg,byte,nowrt,exe,pic
narg ; define number of required arguments

sssacp_'mode'_disp1,byte,nowrt,exe,pic
2+name-%extract(0,1,mode)case_base

define_ service

make entry in mode case table

$ent - a macro to define an entry point

$ent entry_point regs

.macro

.entry

.endm

$ent ep r=<~m<r2,r3,r4,r5,r6,r7,r8,r9>>
ep,r
$ent

equated symbols

$pcbdef
$plvdef

define process control block offsets
define dispatcher vector symbols

initialize counters for change mode dispatching codes

kernel_counter=O
exec_counter=O

.psect
kernel_narg:

kernel code counter
exec code counter

kernel_narg,byte,nowrt,exe,pic
base of byte table containing the

number of required arguments.

307

.psect exec_narg,byte,nowrt,exe,pic
exec_narg: base of byte table containing the

number of required arguments.

define service get_my_pcb,1,kernel

define_service copy_nonpaged_buff,4,kernel

define_service copy_system_control_block,2,kernel

the base values used to generate the dispatching codes should be negative for
user services and must be chosen to avoid overlap with any other privileged
shareable images that will be used concurrently. their definition is
deferred to this point in the assembly to cause their use in the preceding
macro calls to be forward references that guarantee the size of the change
mode instructions to be four bytes. this satisfies an assumption that is
made by for services that have to wait and be retried. the pc for retrying
the change mode instruction that invokes the service is assumed to be 4 bytes
less than that saved in the change mode exception frame. of course, the particular
service routine determines whether this is possible.

kcode_base=-20202
ecode_base=-20202

.page

.sbttl

base chmk code value for these services
base chme code value for these services

change mode dispatcher vector block
;++

this vector is used by the image activator to connect the privileged shareable
image to the vms change mode dispatcher. the offsets in the vector are self­
relative to enable the construction of position independent images. the system
version number will be used by the image activator to verify that this shareable
image was linked with the symbol table for the current system.

change mode vector format

+--+
vector type code
(plv$c_typ_cmod)

+--+
system version number

(sys$k_version)
+--+

kernel mode dispatcher off set

+--+
exec mode entry offset

+--+
reserved

+--+

308

plv$l_type

plv$l_version

plv$l_kernel

plv$l_exec

;++

reserved

+--+
rms dispatcher off set plv$l_rms

+--+
address check plv$l_check

+--+

.psect

.long

.long

. long

.long

.long

. long

. long

.long

.page

.sbttl

sssacp_services,page,vec,pic,nowrt,exe

plv$c_typ_cmod
sys$k_version
kernel_dispatch- .
exec_dispatch-.
0
0

0
0

kernel mode dispatcher

set type of vector to change mode dispatcher
identify system version
offset to kernel mode dispatcher
offset to executive mode dispatcher
reserved .
reserved .
no rms dispatcher
address check - pie image

input parameters:

;--

(sp) - return address if bad change mode value

rO - change mode argument value.

r4 - current pcb address. (therefore r4 must be specified in all
register save masks for kernel routines.)

ap - argument pointer existing when the change
mode instruction was executed.

fp - address of minimal call frame to exit
the change mode dispatcher and return to
the original mode.

.psect sssacp_kernel_dispO,byte,nowrt,exe,pic
kaccvio:

movl
ret

kinsfarg:
movl
ret

knotme: rsb

#ss$_accvio,r0

#ss$_insfarg,r0

kernel access violation
set access violation status code

and return
kernel insufficient arguments.
set status code and
return

rsb to forward request

kernel_dispatch::
movab w~-kcode_base(r0),r1

blss knotme
cmpw r1,#kernel_counter

entry to dispatcher
normalize dispatch code value
branch if code value too low
check high limit

309

bgequ knotme ; branch if out of range

the dispatch code has now been verified as being handled by this dispatcher,
now the argument list will be probed and the required number of arguments
verified.

movzbl
mo val
if no rd
cmpb
blssu
casew

w~kernel_narg[r1] ,r1 get required argument count
~#4[r1] ,r1 compute byte count including arg count
r1,(ap),kaccvio branch if arglist not readable
(ap),w~<kernel_narg-kcode_base>[rO] ; check for required number
kinsfarg of arguments
rO,- case on change mode

argument value
#kcode_base,­
#<kernel_counter-1>

base value
limit value (number of entries)

kcase_base: case table base address for define_service

;++

case table entries are made in the psect sssacp_kernel_disp1 by
invocations of the define_service macro. the three psects,
sssacp_kernel_disp0,1,2 will be abutted in lexical order at link-time.

.psect
rsb

.page

.sbttl

sssacp_kernel_disp2,byte,nowrt,exe,pic
return to reject out of

; range value

executive mode dispatcher

input parameters:

;--

(sp) - return address if bad change mode value

rO - change mode argument value.

ap - argument pointer existing when the change
mode instruction was executed.

fp - address of minimal call frame to exit
the change mode dispatcher and return to
the original mode.

.psect sssacp_exec_dispO,byte,nowrt,exe,pic

exec_dispatch: : ; entry to dispatcher

Note: since there are no executive routines defined in this sample
program, the code for the executive dispatcher has been eliminated.
If a executive dispatcher were needed, the logic would be the same
as for the kernel dispatcher above.

enotme:
ecase_base:

rsb rsb to forward request
case table base address for def ine_service

case table entries are made in the psect sssacp_exec_disp1 by

310

invocations of the define_service macro. the three psects,
sssacp_exec_disp0,1,2 will be abutted in lexical order at link-time.

.psect
rsb

.page

sssacp_exec_disp2,byte,nowrt,exe,pic
return to reject out of
range value

.sbttl get_my_pcb - get address of current pcb

equated symbols:

pcbaddr = 4 ; address of pcb

$ent get_my_pcb
ifnowrt #4,~pcbaddr(ap),55$
movl r4,~pcbaddr(ap)

save registers
br if can't write
get own pcb address

and return as value

Note: the PCB address is provided by the kernel dispatcher preloaded in r4;
if needed, the current PCB address can also be found in ~#sch$gl_curpcb

55$:

movl
ret
brw

.page

#ss$_normal,r0 set normal completion status

kaccvio indicate access violation

.sbttl routine to copy buffer to or from nonpaged

calling sequence: re := copy_nonpaged_buff(Y.immed fromlen,tolen,from_ptr,to_ptr)

47$:

57$:

get address of from buffer
get address of to buffer
br if "to" buff er is in nonpaged pool
check "to" buffer for write access

br if from buffer is in nonpaged pool
check "from" buff er for read access

do the move
set normal completion status

55$: indicate access violation

.page

.sbttl routine to system control block with internal length

311

calling sequence: re := copy_system_control_block(Y.immed from_ptr,to_ptr)

47$:

67$:

66$:

$ant
movl
movl
bbs
ifnord
ifnowrt

copy_system_control_block
4(ap) ,r2
8(ap),r3
#31,r2,47$
#pcb$w_size+2,(r3),66$
pcb$w_size(r3),(r3),66$

bbs #31,r2,67$
ifnord #pcb$w_size+2,(r2),66$
ifnord pcb$w_size(r2),(r2),66$

get address of from buff er
get address of to buffer
br if "to" buff er is in nonpaged pool
make sure we can read length of "to" buf
check "to" buffer for write access

br if from buff er is in nonpaged pool
make sure we can read length of "from" buf
check "from" buff er for read access

moves
movl

pcb$w_size(r2),(r2),#0,pcb$w_size(r3),(r3); do the move
#as$_normal,r0 set normal completion status

rat
brw kaccvio indicate access violation

.end

312

CHOOSING A DOCUMENT-FORMATTING SYSTEM

Richard K. Wallace
Los Alamos National Laboratory

Los Alamos, NM

ABSTRACT

After surveying available tools for formatting large com­
puter code manuals, we chose the TeX system, to be initially
implemented on VAX 11/780 and 8600 computers. We also
recognized that a "What You See Is What You Get" word
processor offers sufficient capabilities for small (5 - 10
page) reports and manuals, and recommended that WordMARC be
considered for formatting in those situations.

BACKGROUND

Los Alamos National Laboratory is a federally funded
applied research laboratory managed by the
University of California for the U.S. Department of
Energy under contract W-7405-ENG- 36. The
Laboratory engages primarily in energy, national
defense, and accelerator/nuclear physics research.
It employs about 7800 people and is divided or­
ganizationally into 43 Divisions. This paper
discusses criteria used by the Aoplied Theoretical
Physics Division (X Division) to select a document
formatting system. X Division consists of about 260
employees, more than 200 of whom have doctorates in
physics-related disciplines and all of whom have ex­
tensive interactive computing experience.

The major Laboratory computing center, managed by c
Division, is the Central Computing Facility, which
contains 7 CraY, supercomputers, 8 large CDC com­
puters, and 10 DEC VAXs, with a total computing
capacity equivalent to 20 Cray-1 supercomputers. In
addition, nearly 100 Distributed Processors, all VAX
11/780, 785, or 8600s, are scattered over 43 square
miles, linked by DECNet and managed by the in­
dividual divisions. Owing to the defense work, the
computing resources are divided into classification
partitions, each completely separate (no communica­
tion channels) from all other partition:1.

PURPOSE

In August 1984, we formed a Committee to recommend a
replacement for the then-current computerized
documentation tools(TRIX/RED, REDPP), which wQuld be
unavailable after removal of the Laboratory's secure
CDC 7600. Recent turnover in the code user groups
emphasized the lack of current, comprehensive
documentation (user and physTC"B!iianuals) for the
major X-Division production codes. This lack of
documentation increases the training time required
for new users and code developers and hinders effi­
cient code use by them and by experienced users.
The existing code manuals must be continually
revised and expanded as the codes rapidly evolve.

Proceedings of the Digital Equipment Computer Users Society 313

We have therefore surveyed the field of document
production in search of a modern, efficient, long­
term document-formatting system that will satisfy
our need for producing thorough, clear, current
documentation as simply as possible. The system
development was coordinated with C Division to
reduce duplication of effort and prevent future
compatability problems.

SUMMARY

We recommended that TeX be used for formatting X­
D i vision code manuals. Although the Divisiorl
should not require the use of TeX, that tool should
be seriously considered for any major documentation
effort. We recognize that WordMARC may offer suf­
ficient formatting capabilities for small (5-10
page) reports and manuals and should be considered
for those applicat ons.

To obtain the full benefit of the TeX documentation
system, the following hardware was recommended:

• A high speed (at least 24 pages/min) laser
printer.

• An upgrade for one of our two VAX 11/780s to a
DEC 8600 to provide greater responsiveness,
larger CPU capacity, and improved availability of
full screen text editors. Even if TeX became
available on CTSS (the Cray operating system),
the local VAXs could be heavily used for text
entry and WordMARC applications.

• A low-cost (under $3000) laser printer that can
produce local (in office) output; possible can­
didates include the DEC LN03 and the HP LaserJet.

• Workstations with a preview capability for fre­
quent TeX users.

C Division was strongly encouraged to provide the
following software support:

• A CTSS (Cray) implementation of TeX; this is in
progress.

• Simple lineprinter/ASCII output from standard TeX
DVI files; rudimentary package is now in use.

• Central Computing Facility output capable of
producing 5000 formatted pages/day.

•A method to merge TeX text with graphics files
that are in the unique Los Alamos Common Graphics
System metafile format.

• Conversion programs for TROFF, TRIX/RED, and VMS
WordMARC.

• Classified consulting services on TeX.

• "Writer'~ Workbendh"-type software (such as a
spelling checker) for TeX files.

Justification - Requirements

The selection of TeX for the X-Division formatting
system was based on its satisfaction of the follow­
ing unique X-Division requirements. The system
should

1. be easily portable to new operating systems,
minimizing future translations such as must now
be done for the large number of LTSS (CDC 7600
operating system) TRIX/RED files. The system
should also be widely used outside of DOE to in­
crease the support for and knowledge about it,

2. be declarative (using predefined structures for
headers/footers, sections, paragraph indenta­
tions, examples, etc.) rather than procedural
(requiring the author to define page layout
during text-, or content-entry). This require­
ment allows a few experienced people to maintain
the detailed page layout macros, whereas casual
users simply enter text,

3. easily accept mathematical equations and format
them with as little user assistance as possible,

4. be capable of merging text with computer­
generated graphics,

5. have automatic Table of Contents generation,

6. have automatic Index generation,

7. provide for nested tables,

8. have a source file format that facilitates macro
construction to support detailed page layout ma­
cros, translation macros (from previous systems
and into future systems), and text unformatting
macros (to easily allow incorporation of ar­
bitrary machine-readable text),

9. allow text input from any ASCII terminal
(including Tektronix 4000 and 4100 series),

10. be accessible transparently from CTSS to
eliminate user investment in learning a dif­
ferent operating system or accessing special
hardware (most users work exclusively on the
Cray CTSS systems rather than on VAXs),

11. produce simple ASCII text output for online help
files from the same source file that produces
fully formatted documents,

314

12. allow comments in the source file,

13. facilitate page layout changes or even allow
determination of the layout after text entry,

14. symbolically reference equation, figure, sec­
tion,and page numbers, and

15. allow "interactive" execution to provide error
diagnostics and allow recovery from minor
source file errors.

COMPARISONS

The major software for code documentation that
begins to address the requirements listed above is
the following:

Interleaf

Advantages:

1. Interactive "What you see is what you get"
(WYSIWYG) system. This can be much easier and
faster to use than a batch formatter for small
files.

2. Instant feedback (screen shows all page layouts,
fonts, text sizes, pagination, etc.).

Disadvantages:

1. No symbolic equation entry. Equations must be
entered with a graphics package that draws each
individual symbol or character on the page.

2. No symbolic referencing of equation numbers,
sections, etc.

3. Operates only on SUN, APOLLO, and VAXStation II
workstations.

4. Cost is $12,000 per workstation node, which is
prohibitively expensive.

Interleaf was the most capable WYSIWYG formatting
system on the market. It would unquestionably be
the most productive system to have for a single
user. However, the lack of symbolic mathematical
entry and the unavailability for a timesharing sys­
tem are fatal flaws for our purposes. The $12,000
per node price, coupled with the price of providing
SUN-class workstations to everyone contributing
text, is prohibitive. In addition, no SUN-class
workstation has been approved for classified
processing.

WordMARC, Version 5 ("Composer")

Advantages:

1. WYSIWYG system that is much easier and faster to
use than a batch formatter for nonequation
typing of small files.

2. Instant feedback of text and general page
layout.

3. Preserves author's meaning (equations displayed
on first typing).

Disadvantages:

1. Procedural; no declarative format.

2. Cannot easily change existing document format.

3, No comments allowed in source file.

4. VTlOO emulation terminal required (for example,
no Tektronix 4014).

5, Response slows to unacceptable times with large
documents and many simultaneous users. Response
time is more critical for completely interactive
systems. The continuous formatting increases the
CPU load compared with that of a batch formatter.

6. Less involvement allowed to professional
editors/designers.

7, Limited (and in some cases insufficient) mathe­
matical capabilities.

8. No proportionally spaced laser printer output.

The disadvantages indicate that WordMARC may be
ideal for formatting memos and short reports but
would be inadequate for very large manuals.
Although WordMARC (from Marc Software) was specif i­
cally compared here, the disadvantages are similar
for other WYSIWYG systems, such as MASS-11. They
all generally require VT-100 emulation capability,
are generally procedural (requiring some author in­
volvement in page layout), are difficult to use for
changing page layout retroactively, and require in­
teractive computer response time. However, screen
editors in such WYSIWYG systems could be used to
prepare the ascii input files for a batch editor,
such as TeX or TROFF.

We found no WYSIWYG systems with all the
capabilities listed under "Requirements" above.
However, two batch formatting systems in common use
(TROFF and TeX) could satisfy nearly all of our re­
quirements, and their respective advantages are
listed below. C Division has decided to support
both TROFF and TeX as Laboratory document production
systems.

TROFF with EQN and TBL

May be easier to learn than standard TeX (but not
significantly easier than LaTeX).

Better table generation capability than standard
TeX.

Writer's Workbench editorial software available.

TeX

1. Arbitrary length command names (TROFF restricts
commands to less than 2 characters).

2. More portable than TROFF (TeX is available in
generic Pascal and C, whereas TROFF is tied in­
timately to the UNIX operating system).

3. Los Alamos Common Graphic System TeX interface
exists for QMS laser printers, so merging text
and graphics is a reality.

4. Slightly more control over output appearance.

315

5. More widely available screen preview systems
(including SUN, APOLLO, IBM AT, Apple Macintosh,
and Tektronix 4014).

6. TROFF requires the UNIX operating system, which
is currently unacceptable for classified
computing.

Points 2 and 6 above are sufficiently serious that
we consider TROFF an unacceptable solution. TeX is
therefore the most appropriate choice for an X­
Division formatter.

CONCLUSIONS

We chose TeX as our standard document formatting
system, largely because of its great portability
compared to TROFF. For small memos and reports,
many secretaries still use WordMARC. Since we
reached our decision, several other divisions at
the Laboratory have begun using TeX, and the the
official publication division (which uses an APS-5
phototypesetter for high-quality output) is com­
mitted to switching completely to TeX. The
Laboratory is moving to standardize on Postscript
(from Adobe Systems) as a common text/graphics
device independent file structure, and we are now
obtaining hardware and software to allow TeX output
through Postscript devices. In addition, the
Laboratory has just moved to support LaTeX (a TeX
macro package) as the standard version of TeX. We
currently use LaTeX on SUN, APOLLO, VAXStation II
workstations, IBM XT, AT, Apple Macintosh, VAX/VMS,
and VAX/UNIX, and have contracted for an implemen­
tation on CTSS.

FURTHER INFORMATION

• TeX: TeX Users Group, P.O. Box 594, Providence,
RI 02901.

• LaTeX: TeX macro package developed by Leslie
Lamport (now at DEC). For information, contact
the reference under "TeX".

• TeX on workstations, and output to Postscript
devices: Textset Inc., 4116 4th. St., P.O. Box
7993, Ann Arbor, MI 48107. (313) 996-3566.

•TeX on IBM XT/AT: PC TeX Inc., 20 Sunnyside,
Suite H, Mill Valley, CA 94941, (415) 388-8853,
or Micro\TeX, Addison-Wesley Publishing Co.,
Educational Media Systems Division, Reading, MA
01867. (617) 944-3700, ext. 2677.

• WordMARC: Marc Software International, 260
Sheridan Ave, Suite 200, Palo Alto, CA 94306.
(415) 326-1971.

• Interleaf: Interl eaf Inc., 1100 Massachusetts
Ave., Cambridge, MA 02138. (617) 497-5570.

• MASS-11: Microsystems Engineering Corp., 2040
Hassal Road, Hoffman Estates, IL 60195.

• TROFF: UNIX System manual, Bell Laboratories or
Computer Science Division, University of
California, Berkeley, CA 94720.

1 INTRODUCTION

Use of the DEC Test Manager in an
ANSI Standard Maintenance Test Strategy

Jim Tibbetts
Hughes Aircraft Company - Ground Systems Group

Fullerton, California

ABSTRACT: The ANSI committee has published
standards for test strategy development and
documentation. Although primarily designed for use
in new products, many of the precepts can be
retro-fitted into existing software with the
adoption of an aggressive testing policy. One of
the necessary functions of such a testing policy is
that of configuration control of the tests used;
that is, a tracking system for version-to-version
modifications and the specific tests used to
validate their updated functionality. The DEC Test
Manager provides a strong basis for this type of
configuration control, as well as providing an
ongoing baseline for product improvement. It is
also adaptable to test tracking for products which
require secondary analysis to validate their
functions; for example, a tool which produces
terminal-specific output and requires the
substitution of datafiles into the Test Manager
library. This paper describes some practical
testing applications which have been developed using
the DEC Test Manager.

2 HOW IS MAINTENANCE TESTING DIFFERENT?
Both the Institute of Electrical and
Electronic Engineers (IEEE) and the
Department of Defense (DoD) have recently
published standards for software testing
[1-4]. Although these standards are
primarily aimed at the new software
development market, many of the precepts
used can provide the basiE for an aggressive
maintenance testing program for existing
software which has a significant portion of
its expected life cycle still to come. In
particular, the definitions of test design,
procedure, and test case can serve as models
for the development of a strong maintenance
test strategy, and provide a clearly
documented rationale for verifying both test
coverage and test justification.
Additionally, the methodologies described by
both organizations are destined to become
further integrated into current and upcoming
software projects. The incorporation of
these models into maintenance testing will
insure a smooth and cohesive transition from
development to continuous system use and
upgrade.

Proceedings of the Digital Equipment Computer Users Society 317

Fundamentally, of course, testing is
testing, whether designed towards individual
program units, integration of large systems,
or post-development maintenance. However
maintenance testing can of ten provide th~
test writer with some unique and sometimes
perilous design situations. These come
about in part due to the fact that
maintenance testing is primarily a
specialized type of regression testing· that
is, the tests should be designed to ~emain
essentially the same throughout the testable
life of the software system. This is
consistent with the intuitive idea that the
correct functionality of a particular
software system should also remain unchanged
throughout its life cycle. Errors,
naturally, are to be corrected as they are
identified, and new tests should be added to
the test base to verify these corrections,
ra~h:r than continually modifying the
original tests, as is more frequently the
case during development testing. Extensive
regression testing usually results in large
test bases.

San Francisco, CA- 1986

One oi the most frequent problems which
iaces maintenance testing is the case where
no previous tests exist at all. This state
oi void can be caused by one or more oi a
number of factors. A iew oi the more common
excuses given are:

1. personnel changes: ior example,
five year veteran test lead
transferred and no one else really
what he did;

the
was

knew

2. company politics; as in the development
team which NEVER talks to the
maintenance team;

3. old age. This is perhaps the most
common; the system simply is so old that
no-one has any idea where the previous
tests would be located, if they existed
at all.

The usual result oi the 'no previous test'
situation is that each user has developed a
personal test suite, which verifies enough
oi the system capability to satisfy his own
needs, but probably does not test the system
completely or eiiectively. Oiten a good
starting point ior developing a maintenance
test strategy is to collect as many oi these
personal test suites as possible, evaluate
them, and blend them together to come up
with ~ 'iirst cut' test base. However, it
must always be remembered that this approach
will probably result in an incomplete set oi
tests, and that more test design work will
be necessary beiore a high level oi
confidence can be attained.

Almost as many problems can arise when a
previous test base DOES exist. With the
normal pressures oi managerial deadlines and
cost cutting, it can be a serious temptation
to use something which already exists
without any further investigation. This is
especially true with a group oi somewhat
cryptic tests, perhaps leit over irom the
original development team guru, if they are
purported to thoroughly exercise a
particular software system. They are oiten
passed on, like a mystical religious secret,
and heaven forbid that anyone should ever
question the accuracy or validity oi those
tests! Aggressive maintenance testing is,
therefore, by definition, a potentially
heretical position, and very possibly will
not make many friends. Nonetheless, test
sets must be carefully updated and expanded
to keep pace with the software system
changes.

318

Somewhat related to this latter case is the
situation where a severely patched system,
probably near the end of its useful life, is
turned over ior maintenance testing. Here
the testing problems are further compounded
by the lack oi anyone with significant
knowledge about the system, including its
original intent or condition. Any
documentation that can be located is
probably so iar obsolete as to be
essentially useless. There are no general
rules to be followed in cases such as this,
but a good starting point may be to
re-evaluate the need to start such an
aggressive testing policy so late in the
useful life cycle oi the particular system.

It may be a better use of resources to
concentrate on newer, less obsolete systems
and let whatever testing strategies exist
continue until the older software can be
phased out oi circulation entirely.
Experience and company policy will have to
dictate the path to follow.

A final general point about maintenance
testing which should be made is of a
somewhat philosophical nature. By the time
a software system has reached the point of
maintenance in its liie cycle, it will
generally be assumed that it 'works' and
that any problems to be located will either
be virtually insignificant in nature, or due
to such an extrordinary set of circumstances
that no normal user would ever be apt to
encounter them. While this is certainly the
goal of good software engineering, bitter
experience has proven that such an ideal
state is usually not attained ior several
maintenance iterations, ii, indeed, it is
ever reached. However, the myth continues,
and it oiten influences the test strategies
which are developed ior maintenance testing.
The subconscious pressure to prove that a
system works must be constantly tempered
with a conscious effort to test objectively
and completely.

3 A STRATEGY FOR AGGRESSIVE TESTING

In order to effectively use any testing
tool, there are a few basic concepts which
need to be considered. These points will
not be belabored, as they could easily
become the basis for an entire presentation
on software testing, but a quick review of
some of the more important ones which relate
directly to the use of the Test Manager is
appropriate.

The iirst of these is that the test writer
must have a thorough understanding of the
system being tested: its capabilities and
limitations, as well as the impact of any
recent changes made during the maintenance
phase. For example, it would be an obvious
misdirection of resources to test a
mathematical function, defined as being
accurate to four decimal places, with a

series of inputs which would generate
results differing only at six decimal
places. Unfortunately, much of the time the
test strategies are not as obvious as in
this example.

Once the system is thoroughly understood, a
hard line must be drawn at that
understanding, and each test case must be
compared back to this line. Does the
software perform as expected? Perhaps even
as documented? It is here that many test
design errors are made, especially if the
test writer is the same individual who has
been responsible for program maintenance.
It is far too easy to overlook a simple
item, perhaps a required input order, that
is not specifically documented anywhere. An
effective test would involve a change in the
order, but, since the test writer may KNOW
that the routine will work if the order is
reversed, no test is generated to
specifically check this case. The result
may be a tested piece of software that has a
'time bomb' bug in it. After all, it is a
well known fact that if something has been
foolproofed, some fool will come along and
find a way to break it.

The third concept is to have a test strategy
which allows for expansion. A software
system will seldom remain static during its
useful lifetime. Error correction and
enhancement create a constantly changing
mode of operation, requiring a constantly
changing set of tests to verify the
correctness of that operation. Concurrent
with this requirement is the need to verify
that correct functionality is not lost
during the maintenance cycle. This implies
that large portions of the test base should
remain intact, at least until it has been
made obsolete by software changes. Of
course, before any changes or additions can
be made to the test base, it is necessary to
know what was specifically tested
previously. A well thought out strategy for
testing can simplify the process of knowing
what is and is not being tested, and thus
can simplify the expansion process.

The final concept is one which is almost
universal in any software engineering field.
To develop an effective test strategy will
require creativity, experience, and a good

319

basic methodology. Creativity will provide
the insight to generat~ tests that are at
once specific and unique to the system being
tested. Experience will provide the
background to know the limitations of the
test system, and how they will impact the
test effort. The methodology will provide
the mechanism for designing the tests and
for tracking and reporting the results of
the test effort. It is here that the DEC
Test Manager shows its greatest strengths.

Already the basic requirements for an
effective and aggressive test strategy have
been hinted at. A good test writer must
know what is appropriate to measure, and
must know how to measure it, which is where
experience becomes an invaluable partner.
The Test Manager allows very specific test
cases to be written, each of which is
responsible for testing a single, unique
characteristic of the software system. Thus
the test criteria described by the test
documentation can be translated almost
directly into a functioning test base.

Additionally, the test writer must plan
ahead for further testing improvements.
This forward thinking can be as simple as
test case organization and indexing, or it
can be as complex as embedded cross
referencing of test results, requiring that
tests be performed in a certain order, or at
certain times. Use of the Test Manager will
ensure that current testing requirements of
this type are carefully documented and
controlled, so that future test expansion
will not inadvertently destroy large
portions of the test design.

What other benefits can be expected from all
of this test planning and writing effort?

Careful maintenance test management will
assist in catching 'old' glitches which have
been undone by current correction or
enhancement work. Similarly, it will help
identify any 'new' glitches that may have
been introduced by the current software
revision. As automated test management
becomes more and more integrated into the
testing strategy, rapid debugging will aid
in producing high-reliability software with
a minimum of maintenance turnaround time.

Review of the test strategy and test cases,
especially by ~hose not directly involved in
the maintenance programming effort itself,
will help to identify any testing
insufficiencies. By utilizing a
well-structured test management strategy,
the insight gained through periodic review
can often lead to the saving of many dollars
and staff hours of work by ensuring that all
current functionality has been verified, and
that many error trapping pathways have also
been exercised.

Often the major schism between end-user
satisfaction and expectation is a
misunderstanding of the accompanying
documentation. If the test writer insists
on designing tests based on that same
documentation, rather than on assumptions
made about the system, shortcomings in the
clarity of the documentation will become
obvious. With the Test Manager, notes
regarding sources of test rationale can be
included as comments directly in the test
case, ensuring that references to
documentation will not be lost.

One last benefit from having a well
structured and aggressive test strategy
should be mentioned, although it may well be
obvious. The test design and test results
may themselves suggest future software
development or test improvements. Since
these suggestions for improvement were
developed from the testing process itself,
specific test cases and expected results
have probably already been prepared, and can
be implemented quickly into the test base.

4 SOME TRICKS TO USE WITH DTM

As with any tool, investigating its limits
can often provide valuable insights for use
in future situations. Four of the more
valuable techniques which have been used are
described below, as well as an indication of
what conditions predicated their discovery.
The techniques are not restricted only to
the Test Manager; in fact, several of them
are based solely on characteristics of the
VAX/VMS system. Nonetheless, they have all
helped to solve some interesting problems of

320

maintenance testing.

4.1 DUMP Vs TYPE

Consider the case of ~ system which produces
a binary object file as its major output.
Many compilers fall into this category.
Although the Test Manager is quite capable
of directly comparing object files, since it
uses the VMS 'DIFFERENCE' operator, the
resulting information will be, at best,
difficult to interpret. Use of a VMS 'TYPE'
command to look at the file will result in a
rapid display of garbage, possibly resulting
in terminal lockup, with all of the ringing
bells and flashing lights that normally
occur when attempting to look at a binary
file. If this command were embedded in a
batch procedure, the entire process would
hang until stopped by the user, the system
operator, or some type of CPU time policing
routine (i.e., after 2 hours of CPU time,
the process is killed regardless of
completion status).

One of the methods which can be utilized to
verify the output of a routine such as this
is to use the VMS 'DUMP' command rather than
'TYPE'. This command produces a nicely
formatted display at the terminal, with the
object code translated into ASCII, decimal,
hexadecimal, or octal, according to
individual user preference. Although the
characters and numeric sequences may mean
very little to a human user, the resulting
display can be saved exactly as sent to the
terminal by redirecting the output to some
arbitrary file, using either the VMS
'DEFINE' or 'ASSIGN' operator for
SYS$0UTPUT. In effect, the object file is
translated from binary to an intermediate
text form, relying on the operating system's
capability for interpretations of this type.
When two files have been saved in this way,
they can be used for comparison by the Test
Manager just as with other file types, and
the differences between them, if any, will
be found and indicated by the 'UNSUCCESSFUL'
comparison status. Since 'DUMP', 'DEFINE',
and 'ASSIGN' are ordinary VMS commands, they
can also be invoked from inside a command
file running in a batch mode. If desired,
the batch log files themselves can be used

as the basis for comparison by the Test
Manager, although, due to the additional
output included in a log file, this will
generally result in comparisons which are
less clear than those obtained by
specifically redirecting the output for the
DUMPed files.

This method is very effective for locating
differences in an object file, although
actual use has identified one minor
inconvenience. The formatted display from
the DUMP command includes some additional
lines, listing the file identification,
current date, block number being read, and
similar information. This will be different
for each file that is DUMPed; therefore, if
two files which were saved as described
above are compared, the Test Manager will
always indicate that they are different at
these locations. Fortunately, a quick
visual scan of the resultant Test Manager
difference file will usually show if any
non-identification differences were found,
since the display format is easily
recognizable. As the Test Manager does
require an interactive review of the test
results, this additional s~anning step does
not usually represent a significant increase
in result analysis time. The difference
files must be reviewed anyway, and the
change in display format makes any relevant
differences that much more obvious. If
desired, of course, an editor could be
invoked to remove or mask these lines prior
to the comparison phase.

4.2 Artificial Ingredients

One technique which is widely used during
development testing is known as 'stubbing'.
This technique basically allows for testing
of an isolated code unit without requiring
all of its normal driving environment. In
fact, this is often the only way to test
some units during development. Maintenance
testing can use an analogous technique, but
the stubs must feed the external
environment, rather than bypassing it.

The Test Manager allows for this type of
testing. Since it uses a VMS command file
for control, any commands which could be

321

entered from the terminal keyboard can also
be embedded into the command file to be used
as input during batch processing. This
ensures that the desired input values remain
constant during test repetition, and that
comparisons between the current test results
and the previously benchmarked results are
valid. Additionally, the control file can
be liberally commented to document the
(usually) cryptic inputs being used.
However, no comments should appear on the
actual input lines themselves, because the
comments will also be interpreted as input
data, with the obvious unintentional and
disconcerting results.

4.3 Extraction Routines

Occasionally, portions of an output file are
going to be different no matter how they are
generated, while other portions will remain
essentially the same. An example of this
could be a tool designed to generate a Job
Control Language (JCL) input request for a
remote host. The JCL that is generated is
verified by submitting the job to the remote
host, and by analyzing the returned output
listing file. In t·his case, the returned
file will contain large portions of machine
specific output generated by the remote
host, and having relevance only to that
remote host. The output file is quite
lengthy and, in contrast to the 'DUMP' file
case mentioned above, a generated difference
file can be almost as large as the original
output file itself.

Further analysis of this case will help
rectify what appears to be an insurmountable
problem of data reduction. Recall that the
software being tested was stated to be a
tool which generates a JCL request.
According to this statement, the actual
domain of testing should be limited to the
JCL which is generated. Hopefully this
limitation was mentioned in the test plan or
test design. Since the JCL is all that
should be used far testing comparison, a way
of clarifying the test results is to
eliminate all but the actual JCL lines from
the returned file before any comparison is
done by the Test Manager.

File reduction of this type could be done
using an editor, but this can become a
seriously time and resource intensive
activity. However, all of the JCL lines
have a common characteristic: they all
start with a special character in the first
position of every line; in this case, a
forward slash. It is a relatively trivial
exercise to write a routine which will scan
through a file, locate all lines with a
slash in the first character position, and
copy them to a second file. This reduced
file can then be used as the result file to
be compared from run to run by the Test
Manager. Only the differences in the
generated JCL will be identified, rather
than all of the differences in the original
output file. Although not all data
extraction routines will be as simple as
this one in general, it should be possible
to identify some common characteristic of
the desired portions of a file. In this
way, machine specific data dumping will not
interfere with a clear understanding of the
result comparison criteria.

One final reminder: A careful review of the
test design may help suggest which portions
of an unwieldy output file should be used,
and which can be disregarded. If the test
documents do not specify these limits, it is
possible that they need to be rewritten to
clearly state what is and is not being
tested, or what is in the actual domain of
the test system's control. In the example
given above, the only portion of the output
file which could be VALIDLY analyzed was the
JCL, since the software being tested was a
tool designed to generate a JCL submission
file. The rest of the output was generated
by a remote system, over which the tool
itself had no control, and, therefore, could
take no responsibility. As mentioned
before, it is important to know what the
appropriate testing limits are for the
system in question!

4.4 Changing The Image

One other technique that can be used with
the Test Manager relies on the fact that the
Test Manager really doesn't know, nor does
it care, what results it is comparing. It

322

must assume that the test writer has set up
the tests in the correct manner, and that
anything i~ has stored as results will then
be used in the comparison phase. If a
'dummy' result file is overwritten before
comparison by another file which was
generated during the testing, the Test
Manager will make its analysis based on.the
new file. This provides the test writer
with a large amount of flexibility,
especially with respect to the use of
prologue and epilogue files.

Consider a software routine which generates,
as its target output, some code that must be
executed to be verified, but whose only
direct output is a log file describing the
generation process. An example of this type
of software might be a revision of an
operating system. The execution _is _a
separate step from the code generation; in
fact it is at least one step removed,
beca~se the system must be generated and
loaded, and a series of system validation
tests must then be run. One way of
utilizing the Test Manager for maintenance
testing of upgrades of this type is to
completely substitute the result file that
is generated with a file which has more
analytical validity.

The Test Manager would receive, as its
initial result file, the log; file which
verifies that the code was produced.
Although perhaps of some value initially,
especially during test writing and
debugging, this file gives no useful
information regarding the success or failure
of the software upgrade. During the
epilogue portion of the test execution,
however a routine could be invoked which
would g~nerate the new system, load it into
the test portion of memory, and execute the
validation tests. These validation tests
can be written in such a way that they
produce a result file of their own. This
result file can now be copied into the Test
Manager's test execution subdirectory for
this specific collection. This will
effectively overwrite the previous results
with a new file, and the comparison can be
performed in the usual manner. The final
product of all this prestidigitation is that
the Test Manager is actually analyzing a
totally different result file than it had

originally received, but which
function t-0wards meeting
requirements.

has a
the

real
test

Three specific maintenance testing
situations have resulted in some unusual but
necessary data acrobatics. In each case,
the versatility of the Test Manager has
proven to be an integral part of the
solution, and has provided for a strong,
ongoing support of the products involved.

5 TRAPPING CRT OUTPUT

System configuration can present unexpected
difficulties for maintenance testing. An
example of this was the use of an overlayed
operating system which was required for some
in-house utilities.

5.1 The Problem

A group of software tools, specifically
written to interface with a Remote Job Entry
(RJE) package, required the use of a
concurrent UNIX-type operating system.
Although this presented no problems for a
normal user, the system had one idiosyncracy
which presented itself to the maintenance
test team. Some of the output which was
being sent to the terminal was bypassing
both of the normal VMS routes SYSSOUTPUT and
SYSSERROR. The output did show up at the
terminal, but it was not possible to
redirect the output into a file for later
analysis. This also meant that no output
would be directed to a batch log file. The
only method which was found to be successful
in trapping the terminal output was to use a
VMS 'SET HOST /LOG' command. Unfortunately,
this command cannot be used from inside a
batch procedure, thus making it difficult to
design tests for use with the Test Manager.

5.2 The Solution

The first obstacles to overcome were how to
trap the desired output in a file, and
determining how this file could be used by

323

the Test Manager. Since a 'SET HOST /LOG'
command copies everything which is sent to
the terminal, the log file would have a
large amount of extraneous data in it, such
as login notices, as well as being a single,
large file. However, it would also include
the necessary test outputs. The concept was
that the Test Manager could utilize this log
file to simulate the test results which it
would otherwise expect from the terminal.
This design required that the log file be
generated prior to the initiation of the
Test Manager batch process.

A collection was specified for the Test
Manager, using dummy command files, and the
batch process was submitted with a
'/NOCOMPARE' qualifier. This produced a
series of result files in the subdirectory
identified by the global variable
DTM$COLLECTION NAME, which is defined by the
Test Manager -at batch submission time. No
comparisons would be performed at this
point, since the result files were to be
overwritten during the next phase of the
Test Manager processing.

The actual extraction routine was invoked
from an epilogue file. This routine used a
control file containing the same test
execution lines which generated the 'SET
HOST' output file. These lines serve as
markers to separate the log file into
individual test result files. A new file is
opened when a marker line is found, and the
log file is then copied into the new file
until the next marker line is located, The
process continues until all of the control
file has been processed. In this way, the
single file generated by the 'SET HOST'
command would be broken up into result files
corresponding to individual test cases, as
expected by the Test Manager.

Once the individual test result files were
generated, they were copied to the
appropriate subdirectory as the final step
of epilogue file processing. The batch
process completed, and the test analysis was
continued by invoking the Test Manager 'DTM
COMPARE' command prior to the interactive
'DTM REVIEW' phase. Results were then
generated in the same manner as during
normal Test Manager processing.

6 CONTROLLING EXTERNAL DEVICES

Many software systems rely on the use of
external devices, such as tape drives, to
obtain input from or to return output to
offline storage. Although it is possible to
request the use of system resources such as
tape drives from a batch process, unless the
job is monitored, a process can wait
essentially forever for the tape request to
be acknowledged, or for the proper disk to
be mounted. This problem involves the
necessary interface with an additional
individual, usually an operator, who
probably has little knowledge about the test
process which is going on. Nonetheless, a
truly automated test design must account for
this type of interface requirement.

6.1 The Problem

One set of tools ass~gned for maintenance
testing assisted in tape-to-disk and
disk-to-tape transfers between a VAX and a
non-VAX remote system. Specifically, the
tools read in an extremely foreign tape into
a VMS file format, and wrote VMS files onto
a very foreign tape format. It was not
feasible to leave a tape drive allocated and
mounted overnight, when the Test Manager
batch job would normally be processed, but
it was equally difficult to have the test
team stay on into the second shift during
the testing, and it was undesirable to have
the tests run during prime time. Therefore,
the problem became isolated at the
tape/batch job interface.

6.2 The Solution

One helpful factor was that an operator
would be available during the second shift
time span, and the Test Manager batch job
could be initiated during this time.
Although the operator would have no time to
logon and start a process, mounting and
dismounting tapes would be acceptable. This
reduced the problem to determining a way to
have the Test Manager alert the operator
that it required to have a tape mounted to
begin its processing. The apparent place

324

for such a control routine would be in a
prologue file, processed before any testing
began.

The first step was to allocate the tape
drive. It was a distinct possibility that
the desired tape drive would already be in
use, due to system load and cluster
configuration. For this reason, a status
testing loop was inserted into the prologue.
This loop would attempt to allocate the tape
drive and if not successful, wait a
desig~ated ~eriod of time before trying
again. Until the drive could be allocated,
no further processing would be done,
resulting in a minimal use of system
resources.

Next, a mail message was sent to the test
account, so that when the test team came in
the following day, there was also a record
that the tape drive was allocated for
testing, and when. This time stamp helped
to determine when the actual testing process
started.

With all of the other duties that a second
shift operator is assigned, it sometimes
happens that they miss or forget about a
tape request. To help avoid this problem, a
special operator request was sent, which
required that they reply to it. Experience
has shown that this method provides
inexpensive insurance that the tape 'MOUNT'
request which follows is observed and
performed expeditiously.

After the completion of the prologue file
execution, the actual testing of the tools
proceeds. The tests are arranged so that
files are first written to the tape, and
then read back from it. In this way, the
test procedures do not require that a
particular tape is mounted; any scratch tape
will serve the purpose.

An epilogue file essentially reverses the
procedure described in the prologue file.
First, the tape is dismounted and
deallocated. A mail message is sent to the
test account providing a time of completion
of the testing, and an extra message is sent
to the operator requesting that the tape be
returned to the scratch library. Note that
no status loop is required in the epilogue

file; if another user wishes to use the same
tape drive, it has been fully released by
the Test Manager at this point, even if the
operator doesn't reply to the message
immediately.

7 THE COMPILER CHALLENGE

It is a pleasant occurrence to develop a
process to handle a specific function, and
then find out that the same process can be
adapted to handle a second function with
only minor modification. Such versatility
became especially important during the
testing of a compiler which was undergoing
some extensive code revision.

7.1 The Problem

The source for this particular compiler was
kept on the VAX under configuration control.
However, the source was compiled against a
DoD supplied image running on a remote IBM
host, and the resulting executable was
targetted for yet a third machine, in this
case a proprietary embedded system. The
verification tests to be run were designed
to be compiled and executed on the embedded
system. This was to be done using several
small program units on the target, and
directing the output to temporary files,
which could be accessed later. Transfer
between the VAX and the IBM was done via an
RJE telecommunications link, and the
executable image was transferred to the
target system via tape. The temporary files
could also be dumped to tape.

7.2 The Solution

Since the VAX was by far the most friendly
of the three systems concerned, and since
the source was impounded there anyway, it
appeared to be an obvious choice to base the
maintenance testing effort, or at least the
majority of it, on that system.
Additionally, management had requested that
as much testing as possible be put under the

325

control of the Test Manager.

The solution was achieved by looking at the
sequence of events, starting with the end
product. Several files were going to be
generated on the target system. These files
could be dumped to tape and transferred to
the VAX, since the tools required to read
the tape had already been written, and
included the necessary file conversion
parameters. They were actually written at
the same time as the tools to write the
executable tape from the VAX to the target,
since what can be done can usually also be
undone. Therefore, the major obstacle was
solved: the result files could eventually
be accessed by the Test Manager.

The manipulations required for the Test
Manager to be able to use these files would
need to encompass several functions. First,
it would need to have a collection defined
which specified dummy command procedures to
create the psuedo-results for comparison.
These result files were to be overwritten
with the target result files when they
became available. No prologue file would be
needed, as all of the pre-Test Manager
functions would take place on different
machines. However, an epilogue command file
would be specified, because it would be
responsible for a majority of the file
manipulation that would need to occur.

Now the compiler source code would be
processed, and the executable image
transferred to the target machine, where the
tests would be run. Upon completion, the
temporary result files from these tests
would be dumped to tape.

The Test Manager collection would be
submitted to its job queue, specifying a
'/NOCOMPARE' in the submission line to
ensure that the necessary file manipulation
took place before processing and analysis
was complete. As usual, the collect~on's
subdirectory would be created and filled
with the pseudo-result files from the dummy
command procedures.

In the epilogue file, a request to mount a
tape would be issued, similar to the request
in the last example, but this time,
requiring a specific tape by name. This was

the signal to the test operator to load the
tape that had been produced on the target
system. The tape would be read, the files
converted as necessary, and then copied to
the Test Manager subdirectory specified by
DTMSCOLLECTION NAME. A dismount request
completed the epilogue processing.

The Test Manager would now complete the
batch job, and the operator can continue
with the comparison and analysis phase when
ready by issuing a 'DTM COMPARE'. The Test
Manager will proceed just as though the
entire testing process had been executed on
the VAX, rather than on three different
systems.

8 SUMMARY

Maintenance testing can be a constant
challenge to the test team. Individual and
unexpected problems can arise at almost
every opportunity, requiring all of the
resources that creativity and experience can
offer. Full and efficient utilization of
these resources requires an aggressive and
well-structured test strategy, ideally
modelled after the strategies described by
the IEEE and the DoD for use during software
development. Concurrently, effective use of
testing strategies of this nature need an
efficient and easy-to-use test methodology
to ensure that an appropriate and
functionally complete test base is
developed. Application experience has
demonstrated that the versatility of the DEC
Test Manager can help provide the basis for
reliable, high-quality software throughout
its maintained life.

9 REFERENCES

1. IEEE Standard for Software Test
Documentation, ANSI/IEEE STD 829-1983,
IEEE Computer Society Press, 1983.

2. IEEE Standard for Software Quality
Assurance Plans, ANSI/IEEE STD 730-1984,
IEEE Computer Society Press, 1984.

3. Military
Software
Department
1985.

Standard, Defense System
Development, DOD-STD-2167,

of Defense, Washington DC,

4. IEEE Standard for Software Unit Testing,
Draft of 5-March, Subcommittee on
Software Engineering Standards IEEE
1986. ' '

326

Guided Tour of an Emacs Extension: dired

Pete Kaiser
Digital Equipment Corporation

Marlboro. Massachusetts

Dired is an extension to the popular WYSIWYG editor
Emacs. It provides a good way of examining and pruning
directories of files. rapidly and easily.

1 What's Emacs?

This is not a tutorial on Emacs. However, in brief: Emacs is
an interactive. extensible. customizable. full-screen
character-cell editor invented by Richard M. Stallman. It
ex.ists in several different versions. the oldest of which is the
one for PDP-10s. written largely by Stallman: and the latest
of which is GNU Emacs. also written largely by Stallman.
Versions exist for computers ranging in size from mainframes
down to microcomputers: and under a large variety of
operating systems. from the generic to the proprietary. These
versions aren't identical to one another-they have different
sets of primitives. they relate somewhat differently to their
environments. and their extension languages differ-but they
all have in common a philosophy ("power to the user: 7
bazillion keybindings isn't too many: extension and
customizing are essential") and a high degree of malleability.
so you can use them all from a single cognitive standpoint.

2 What's an Emacs extension?

An "extension" (or "package") is software written in the
extension language-here a language called "Mlisp", for
"Mock Lisp". because it's nearly, but not quite, Lisp-that
uses Emacs's primitives to perform some function. The
function need not be editing: indeed. it may not even use the
screen (notwithstanding my calling it a "full-screen editor":
the version of Emacs I use most can run in batch mode. and
one of my extensions uses it that way). So in writing an
extension. or in thinking one up, you think in terms of writing
programs that use the services Emacs can provide. These are
services like the ones below: for the full list. see the
documentation of your favorite version of Emacs.

• full-screen WYSIWYG (What You See Is What You Get)
editing with intelligent screen management

• multiple windows

• multiple buffers

• the ability to run a subprocess with input from, and
output to. a buffer

• callability from other programs

Proceedings of the Digital Equipment Computer Users Society 327

• changeable keybindings

• file wildcarding

3 What does di red accomplish?

Dired is an ergonomically good way of pruning directories of
unwanted files: it helps solve the problem of how to examine
quickly many files from a list-without having to TYPE each
one-and get rid of the unwanted ones without having to
DELETE each one individually.

Dired presents the user with a screen showing a
directory listing. which may be any list of files you can find
with a single VAX/VMS DIRECTORY command. With the
cursor positioned at the left of a line containing the name of a
file, the user can, with a single keystroke. bring a file onto the
screen for viewing. mark it for deletion. or unmark it for
deletion. With the cursor positioned at the left of a line
containing only the name of a directory (e.g .. the first line of
the selection buffer) the user can use a single keystroke to
mark or unmark all the files within that directory for deletion.

When the user is done viewing and marking, another
single keystroke begins the actual cleanup. If any files are
marked for deletion. the user gets a new screen showing only
those files. and is asked for confirmation to delete them. At
that point the user can (once again. with a single keystroke)
get back to the directory screen: quit without deleting
anything; delete all the marked files and quit: or delete all the
marked files. displaying their names along the way, and quit.
Directories that are emptied of files along the way. and that
are marked for deletion (as files) are properly deleted-i.e ..
deletions are done from the bottom up. not from the top down.

There are different versions of dired. Why did I write
another? Because the version included with the Emacs I use
under VAX/VMS doesn't have the capabilities I want. in
particular. the ability to work on more than one directory's
worth of files at a time. For me that nearly crippled its
usefulness. I wanted to be able to scan whole trees of
directories at a time. I also wanted to be able to watch
deletions being made, and the distributed version couldn't do
that. So I wrote my own version.

San Francisco, CA - I 986

4 Invoking an extension

Here we plunge into details. From now on. you can assume
that I'm saying "in the version of Emacs I use on VAX/VMS"
in relation to all details.

One invokes a package by invoking Emacs with the
qualifier /PACKAGE=extension. In my login procedure I have a
line

$ DIRED == "EMACS /PACKAGE=DIRED"

to make it easy to invoke DIRED with the line

$ DIRED

When Emacs sees /PACKAGE=DIRED it coerces DIRED into
lower case and invokes an Emacs function named dired.mlp.
which it expects to find in a library or so.newhere along a
search path defined in the logical name EMACS$PATH which
you may define for yourself (there is a system default.
however). Then it invokes a function named dired-com which
is usually defined by dired.mlp. and dired-com then does
the real work. Here's dired.mlp from my system:

(defun (dired-com
(declare~global -oIRED-com)
(setq -oIRED-com 1)
(setq checkpoint-frequency 0)
(setq silently-kill-processes 1)
(execute-mlisp-file "dired")
(di red

))

(if (> (argc) 1) (argv 1) 1111)

)

To translate: define the function dired-com. Declare a
global variable -oIRED-com to show that dired is active. and
set it to show activity. Don't automatically checkpoint
buffers. On exit from Emacs. kill subprocesses without asking
for confirmation. Load a file named simply dired, which must
be found in a library or along the search path. Invoke function
dired. which that file defines, with an argument: if the user
provided one. use that. and otherwise use the null string.
Close all parentheses.

5 Key bindings

The ability to bind a single keystroke to a function that may
do something very complex is at the heart of the Emacs
philosophy. How is it done? First the function has to exist,
and every Emacs worthy of the name has a long list of
functions built in. and lots more available in libraries-like
dired: then the function has to be known to Emacs when the
key is bound to it. Furthermore. a keystroke can consist of
several characters-the VT200 function key F20, for instance.
transmits five characters at a single stroke. (How Emacs
recognizes such a sequence of characters as a single keystroke
is magic. and I'm not going to explain it here: just take it from
me that it works.) Finally. a key can be bound to a function
globally for all buffers, or locally within a single buffer. Dired

328

does everything with local bindings. and here's how one of
them looks:

(local-bind-to-key 11 -dired-help" '?')

To translate: "In the buffer we're in when this binding is
made, execute the function -dired-help when the user
presses the '?' key". In all other buffers, the "?" key will have
the usual effect: to insert a ''?" in the text in the buffer.

6 Dired's subfunctions

This version of dired (there are others) uses some seventeen
subfunctions:

-dired -dired-next
-dired-d -dired-previous
-dired-e -dired-q
-dired-e-help -dired-quit-delete
-dired-filename -dired-resume
-dired-format -dired-u
-dired-go-away -dired-un-e
-dired-help -dired-unlink
-dired-log-delete

6.1 -dired

Initialize global values for dired, give the user a polite
initialization message, and bind keys for the selection buffer.
Run a subprocess with the VAX/VMS DIRECTORY command
to get into a buffer the names of the files wanted.

Dired uses several buffers. The selection buffer,
named "DIRED selection". is the one that holds the directory
listing the user sees. and can be regarded as the principal
buffer. Another. named "DIRED view". holds the file being
viewed. when the user requests that service. "DIRED
confirmation" is the buffer where file names are displayed for
the user to confirm that those files to be deleted. and a hidden
buffer "DIRED deletion". which the user never sees. holds
those same filenames in another form for dired to manipulate
further. And the "Help" buffer is used to display help text.

6.2 -dired-d

In the selection buffer. mark a file for deletion. Remember
that this only marks the file, it doesn't delete it yet.

6.3 -dired-e

In the selection buffer. choose a file to examine. and get that
file up on the screen.

6.4 -dired-e-help

In the viewing buffer. display help text.

6.5 -dired-filename

In the selection buffer. build the file's full 11ame (absolute
pathname) for use by another function. This function is
internal. and isn't bound to a keystroke.

6.6 -dired-format

An internal function. not bound to a keystroke. It's invoked in
the buffer set up by -di red with the results of the VAX/VMS
DIRECTORY command. and reformats the buffer for dired's
use.

6.7 -dired-go-away

Done with dired; delete unwanted buffers and leave Emacs.

6.8 -dired-help

Invoked in the selection buffer, display help text.

6.9 -dired-log-delete

Invoked from the confirmation buffer, set up to show deletions
as they're done, then make that happen by invoking
-dired-quit-delete.

6.10 -dired-next

In the selection buffer. position the cursor at the beginning of
the next line with a filename.

6.11 -dired-previous

In the selection buffer. position the cursor at the beginning of
the previous line with a filename.

6.12 -dired-q

Invoked from the selection buffer, set up to confirm and
perform deletions.

6.13 -dired-quit-delete

In the confirmation buffer. the user has confirmed deletions.
Delete the files and quit Emacs. If a flag has been set by
-dired-log-delete, display the deletions as they're done.

6.14 -dired-resume

In the confirmation buffer. the user wants to return to the
selection buffer. Do so.

6.15 -dired-u

In the selection buffer. unmark a file for deletion. It's not an
error to unmark a file that was never marked.

6.16 -dired-un-e

In the examination buffer. return to the selection buffer.

6.17 -dired-unlink

An internal function that deletes a single file. optionally
displaying its name as it does so.

329

7 -dired-e in detail

Here we examine in some detail how one of dired's
subfunctions works.

(defun (-dired-e fn
(beginning-of-line)
(if (! (looking-at 11 [D] 11)) (error-message 1111))

(setq -dired-saved-dot (dot))
(setq fn c-dired-filename))
(switch-to-buffer "DIRED view")
(local-bind-to-key ..-dired-un-e" 11 \eOS")
(local-bind-to-key ..-dired-e-help" • \037 •)
(if (error-occurred (read-file fn))

(progn (switch-to-buffer "DIRED selection")
(goto-character -dired-saved-dot)
(error-message (concat "Can't get 11 fn)))

(message "(Use PF4 to return to di red)"))
(setq mode-line-format

(concat " DIRED examining file: " fn " 11)))

)

7.1 (defun c-dired-e fn

Define the function -dired-e, with a single local variable fn.

7 .2 (beginning-of - line)

Bulletproofing: put the cursor at the beginning of the line.
(Just in case the user has put it elsewhere on the line, which
is possible, although not usual.)

7.3 (if (! (looking-at " [D] 11))

(error-message ""))

More bulletproofing: if the line doesn't begin with a space
character or "D". it doesn't contain a filename the way dired
formats them. Quit the function with a beep to the user.

Note that, although it's not usually expected to
happen. a knowledgeable Emacs user can force things to
happen that are beyond dired's ability to recover. and that's
why there's bulletproofing. This has occasionally saved my
own hide.

7.4 (setq -dired-saved-dot (dot))

This looks like a legitimate line. at least a little bit. Set a
global variable to the value of the current position of the
cursor. so we can return here later.

7.5 (setq fn c-dired-filename))

Set the function's local variable to the full filename of this file.

7.6 (switch-to-buffer "DIRED view")

Switch to the examination buffer.

7.7 (local-bind-to-key 11 -dired-un-e"
"\eOS")

Locally bind to the PF4 key the function to return to the
selection buffer.

7.8 (local-bind-to-key "-dired-e-help"
'\037')

Locally bind to the key with octal value 37 (on a VT200
keyboard. control-/). the display of help text for the
examination buffer.

7.9 (if (error-occurred (read-file fn))

Try to read the chosen file into the buffer. and if that's not
possible (e.g .. if you haven't permission to read it) ...

7.10 (progn (switch-to-buffer "DIRED
selection")

return to the selection buffer and ...

7.11 (goto-character -dired-saved-dot)

... position the cursor where we started from

7.12 (error-message (concat "Can't get 11

fn)))

giving an error message to let the user know why we're
back here.

The progn above is needed because the if function
expects each clause:

(if (test) (success) (failure))

to be a single function. and the progn allows us to wrap
several actions inside a single envelope.

7.13 (message "(Use PF4 to return to
dired)"))

Give the user a message, in the message area (the line below
the mode line) saying how to get back to the selection buffer.

7.14 (setq mode-line-format

Set up the mode line ...

7.15 (concat " DIRED examining file: "
fn " ")))

to show where we are and display the full filename of the
file being examined.

330

8 Enhancements

It's not hard to imagine enhancements to the package. One
possible enhancement would be to make a file in the selection
buffer invisible to dired: in other words. to remove it from the
selection display and from all further consideration This could
be considered bulletproofing or uncluttering. It would work
this way: with the cursor positioned on a line containing a
filename. a single keystroke would cause that line to disappear.
If that line were the only one under its directory name. the line
containing the name of the directory would also disappear.

Another enhancement· with a single keystroke. mark a
file for printing.

And finally: let a single keystroke mean "NOW!". With
the cursor positioned on a line with a file marked for printing
or deletion. the NOW key would cause it to be printed
(deleted) immediately.

9 Fixing bugs

The package has some unwanted features. For instance, if
dired is invoked from a VAX/VMS command line. I'd like to
return to the CU level when it's done: but when it's invoked
from within Emacs. I'd like to return to the state Emacs was
in-still within Emacs-when dired is done. So far I just
haven't bothered to do this.

There are one or two others. but why embarrass
myself?

10 Acknowledgments

Richard Stallman deserves tremendous credit for coming up
with Emacs in the first place: Emacs's tremendous spread and
popularity show that his idea was an idea of genius. and his
GNU Emacs is a worthy successor in that tradition.

James Gosling wrote the first version of Emacs that
used Mlisp and showed the world that a real Emacs could exist
elsewhere than on DECsystem-10s and 20s. Until recently.
this version of Emacs was undoubtedly the most widespread
one: the version I use under VAX/VMS is based on it.

Bruce Dawson. Barry Scott. and Nick Emery are
largely responsible for the current incarnation I've written
about here. Barry and Nick continue to enhance it for use
under VAX/VMS.

I am. of course, fully responsible for any software I've
written. including the version of dired I've written about here.

USING THE CMS CALLABLE INTERFACE

Glen Del Merr.itt
Computer Sciences Corporation

Moorestown, New Jersey

ABSTRACT

A discussion on using the DEC/CMS callable interface routines.

INTRODUCTION

The DEC Code Management System (DEC/CMS, or just
CMS) allows programmers to maintain source code in a
controlled environment. Use of the CMS library
allows programmers to track the development of their
software and to retrieve previous generations of
source for reference or further work. It also
provides a "safe" place to store source files that
are not the focus of current development.

DEC provides two ways to create, manipulate, and
access files in a CMS library. The first, with
which most users are familiar, is the DCL interface.
Via DCL, you may enter commands at the VMS prompt,
e.g.:

$ CMS FETCH KYFILE.CLD ""

or you may enter a special submode, in which all
commands are assumed to be for CHS:

$ CHS
CMS> FETCH KYFILE.CLD ""

The former is the "original" interface and is still
particularly useful in DCL co1D11and procedures. The
latter is useful for purely interactive use. The
leading "CHS" is not required, and execution of
multiple commands is faster.

!he second interface is the CMS callable interface.
This interface allows programs written in any of the

VAX languages to call upon special entry points into
CMS's sharable image. The DCL interface and
programs written using the callable interface may
peacably exist together, since access to the library
is under complete control of CMS. The callable
interface is the focus of this article.

USES

Some of the potential uses of the callable interface
are,
o special source auditing tools to generate

reports
o maintaining additional tracking information in

library transactions
o security features that the DCL interface lacks,

like
- a "UAF" for a library to allow users

different accesses to CHS elements
- notifying a cognizant library manager of

changes to the library AS THEY HAPPEN

Proceedings of the Digital Equipment Computer Users Society 331

o generating an interface (and chucking DEC's)
more suitable to your needs

o providing input to compilers that are smart
enough to get information from the library.

Report generation can be useful whenever you are
asked to account for what you've done. Additional
tracking information can make bug fixing easier by
providing a cross reference to a list of previous
fixes.

DATA STRUCTURES

There are two special structures that you must use
when accessing your CMS library with the callable
interface. They are the library data block and the
fetch data block.

The library data block is fifty longwords in size
and is initialized by a call to CMS$SET LIBRARY. It
must be passed to most of the CHS routines. In
general, if the routine gets information about a
group, class, or element in the library, you must
pass a library data block. NEVER ALTER THE CONTENTS
OF THE LIBRARY DATA BLOCK, OR YOU KAY HARK THE
CONTENTS OF YOUR CMS LIBRARYlll See Figure 1 for an
example of creating a library data block in VAX
FORTRAN.

STRUCTURE /LIBRARY_DATA_BLOCK/
UIIOI

MAP
UTEGEh4

EID MAP
MAP

UTEGEh4
INTEGEh4
INTEQER•4

EID MAP
EID UIIOI

EID STRUCTURE

%FILL (1: 50)

LEIGTH, STATUS
DESCRIPTOR(1:2)
%FILL(&:&O)

Flaure 1 - the libr1r1 d1t1 bloc•

The fetch data block is five longwords in size and
must be passed to the special routines for fetching
an element line by line. It is used by
CMS$FETCH_OPEN, CMS$FETCH_GET, and CMS$FETCH_CLOSE.
See Figure 2 for an example of creating a fetch data
block in VAX FORTRAN.

STRUCTURE /FETCH_DATA_BLOCK/
INTEGER•4 %FILL(1:&)

EID STRUCTURE

Fisure 2 - t~e fetch data block

San Francisco. CA - 1986

THE ROUTINES

Since there is an entry point into the CMS sharable

image for each DCL-level command, most routines are
simply named after the DCL command (e.g.,
CMS$SHOW_GENERATION). The notable exception is the
RESERVE command. With the callable interface, an
element is RESERVE'd by setting a flag used by the
CMS$FETCH routine.

There are additional routines to:
- FETCH an element a line at a time
- translate strings returned from or given to CMS.

Figure 3 lists the routines currently available.

CMS$AlllOTATE
CMS$DIFFEREllCES
CMS$FETCH
CMS$FETCH_CLOSE
CMS$FETCH_GET
CMS$FETCH_OPEN
CMS$GET _STRlllG
CMS$111SERT_ELEMEllT
CMS$111SERT_GEllERATIOll
CMS$IllSERT_GROUP
CMS$MODIFY_CLASS
CMS$MODIFY_ELEMEllT
CMS$MODIFY _GROUP
CMS$MODIFY_LIBRARY
CMS$PUT _STRillG
CMS$REMARK

CMS$REMOVE_ELEMEllT
CMS$REMOVE_OEllERATIOll
CMS$REMOVE_GROUP
CMS$REPLACE
CMS$SET_LIBRARY
CMS$SHOW_CLASS
CMS$SHOW_ELEMENT
CMS$SHOW_GENERATION
CMS$SHOW_GROUP
CMS$SHOW_HISTORY
CMS$SHOW_LIBRARY
CMS$SHOW_RESERVATIOllS
CMS$SHOW_VERSIOll
CMS$UllRESERVE
CMS$VERIFY

Figure 3 - callable interface routines

The routines return statuses in the same manner as
the run time library routines and system services -
in RO. The status follows the standard rule that
having the low order bit set corresponds to success­
ful completion.

There is no $CMSDEF in FORSYSDEF (and probably not
in other languages' text libraries)J you must refer
to the status codes with the \LOC function in
FORTRAN (or its equivalent). There is no single
list of possible return status codes in the
documentation. Instead, the codes are listed as
appropriate after each routine's description. The
Figure 4 is a reasonably complete list.

CMS$_ABSTIM
CMS$_CREATED
CMS$_CREATES
CMS$_DELETED
CMS$_DELETIOllS
CMS$_DIFFERENT
CMS$_EOF
CMS$_ERRCREATES
CMS$_ERRDELETIOllS
CMS$_ERREPLACEMEllTS
CMS$_ERRESERVATIOllS
CMS$_ERRFETCHES
CMS$_ERRlllSERTIOllS
CMS$_ERRlllODIFIES
CMS$_ERRREMOVALS
CMS$_ERRUllRESERVES
CMS$_EXCLUDE
CMS$_FETCHED
CMS$_FETCHES
CMS$_GENCREATED
CMS$_GENINSERTED
CMS$_GENNOINSERT
CMS$_GENNOREMOVE
CMS$_GENNOTFOUND
CMS$_GENREMOVED
CMS$_HISTDEL
CMS$_1DEllTICAL
CMS$_1LLCLSllAM
CMS$_ILLELEXP
CMS$_ILLGEll
CMS$_ILLGRPllAM
CMS$_INSERTED
CMS$_IllSERTIOllS
CMS$_INVFETDB
CMS$_LIBSET
CMS$_MDDIFICATIOllS
CMS$_MDDIFIED
CMS$_NOCLS
CMS$_NOCREATE

Figure 4 - return

CMS$_110DELETE
CMS$_110ELE
CMS$_110FETCH
CMS$_110FILE
CMS$_11DGRP
CMS$_110HIS
CMS$_NOillSERT
CMS$_110MODIFY
CMS$_11DRECOVER
CMS$_NOREF
CMS$_NOREMARK
CMS$_NDREMOVAL
CMS$_110REPAIR
CMS$_110REPLACE
CMS$_110RMAL
CMS$_110SillCE
CMS$_110TFOUllD
CMS$_11DUllRESERVE
CMS$_110VERIFY
CMS$_0PEllill1
CMS$_0PEllill2
CMS$_0PEllOUT
CMS$_QUALCOllFLICT
CMS$_READill
CMS$_RECOVERED
CMS$_REMARK
CMS$_REMOVALS
CMS$_REMOVED
CMS$_REPAIRED
CMS$_REPLACEMEllTS
CMS$_RESERVED
CMS$_SEQUEllCED
ClllS$_STOPPEfi
CMS$_TIMEDRDER
CMS$_UllFOUT
CMS$_UllRESERVED
CMS$_UllRESERVES
CMS$_UNSUPFRMY
CMS$_USERERR
CMS$_VERIFIED

status codes

332

In addition to the return status codes, bit masks
are used when specifying options to certain
routines. Again, there is no one list of them, and
they must be referenced by \LOC or its equivalent.
The Figure 5 is a reasonably complete list.

CMS$M_CMD_CDPY
CMS$M_CMD_CREATE
CMS$M_CMD_DELETE
CMS$M_CMD_FETCH
CMS$M_CMD_IllSERT
CMS$M_CMD_MODIFY
CMS$M_CMD_REMARK
CMS$M_CMD_REMOVE
CMS$M_CMD_REPLACE
CMS$M_CMD_RESERVE
CMS$M_CMD_UllRESERVE
CMS$M_CMD_VERIFY
CMS$M_IGllORE_CASE
CMS$M~IQllORE_FORM
CMS$M_IOllORE_LEAD
CMS$M_IOllORE_SPACE
CMS$M_IOllORE_TRAIL

Figure 5 - bit masks

EXAMPLE: LIBED

LIBED is an example of using the callable interface
to provide functions that the DCL interface does not
have. LIBED is available on the L&T SIG tape.

LIBED is a simple CMS LIBrary EDitor. Along with
the CMS interface, it uses the SMG runtime routines
to format output and control the user interface.
LIBED currently provides two capabilities:
o ZOOM - Displays interesting information about an

element generation.
o VIEW - Types the element generation to the

screen.

LIBED will help to demonstrate:
CMS$SET_LIBRARY
CMS$SHOW_GENERATION
CMS$GET_STRING
CMS$FETCH OPEN
CMS$FETCH=GET
CMS$FETCH_CLOSE.

CMS$SET_LIBRARY - Prior calling most callable
interface routines, you must first call
CMS$SET_LIBRARY to initialize the library data
block. Figure 6 is a fragment from LIBED that loops
through a list of CMS element specifications to set
up the data blocks for each. The library data block
is LIBDB(NUK_WINDOWS), and the library name provided
from the command line is in
DISPLAY(NUK_WINDOWS).LIBRARY. MAKE_STRING trans­
lates the address of the descriptor in the library
data block to a character string that will be used
to lable the boarder of the windows that get
displayed.

A key point of this example is that you may SET
LIBRARY to as many libraries as you have allocated
data blocks. This is not possible with the DCL
interface. In addition, your program must use
CMS$SET_LIBRARY prior to accessing the library.
Using the DCL command CMS SET LIBRARY is not
sufficient, nor is a CMS$SET_LIBRARY used from a
previous run of the program.

CMS$SHOW_GENERATION - Once the library data
blocks are initialized, your program is free to
access the CMS library. LIBED uses
CMS$SHOW_GENERATION to obtain information about the

element(s) specified on the command line, and to set
up the SKG window(s). Figure 7 shows the use of
CMS$SHOW_GENERATION with a user specified callback
routine.

The arguments supplied are the library data block,
the user routine (ADD_ELEKENT_TO_DISPLAY), a
parameter to pass to that routine (in this case, an
array element DISPLAY(!)), the element specification
as specified on the command line
(DISPLAY(I).ELEMENT), and the generation expression
from the command line (DISPLAY(I).GENERATION). Note
that DISPLAY is an array of VAX FORTRAN RECORDS.
The remaining arguments' placeholders need not have
been supplied; they are inserted for clarity.

"CHKLEN" is an integer function that returns the
length of the string without its trailing blanks.
If an element's name were "FOO.BAR", then passing
CMS the element name "FOO.BAR " would result in
CMS's failure to find the element. The same
generally holds true for other strings passed to
CMS.

Figure 8 shows the format of the user supplied
callback routine ADD_ELEMENT_TO_DISPLAY, and the use
of CMS$GET_STRING. When CMS invokes the callback
routine on behalf of your program, it will supply a
predefined set of parameters to your routine. This
includes the user parameter if you have specified
one. Rather than pass the string descriptor of text
that is supplied, CMS provides a string "id".
CMS$GET_STRING is used to "decode" this string id
and makes it available to your program. Times are
passed as quadwords, and other flags are passed as
longwords.

Callback routines (and user supplied message
handlers) may do just about anything, as long as
they do NOT:

o unwind the stack past their point of invocation
o call other CMS routines (except CMS$GET_STRING

and CMS$PUT_STRING)

As a general rule, however, it is advised that
callback routines should "live" for their side
affects (like updating a screen, or modifying data
in a table) and should do as little else as
possible. There is no point in asking for trouble
when working with your CMS library.

Given the DCL command line

$ libed *.for/lib=[uxdsybd02.cms]

the display on the terminal might look like
Figure 9. The cursor would be positioned at the
element name in the top left corner (A8TODB.FOR).
Pressing "z" for ZOOM would result in a display like
that in Figure 10, which displays "interesting"
information about the particular generation of that
CMS element.

Line-by-line FETCH'ing - The VIEW feature of
LIBED is supported by the interface routines for
line-by-line FETCH'ing: CMS$FETCH_OPEN,
CMS$FETCH_GET, and CMS$FETCH_CLOSE. Figure 11 is a
fragment that shows the setup of the fetch data
block with CMS$FETCH_OPEN, accessing of the element
with CMS$FETCH_GET, and the clean-up done by
CMS$FETCH_CLOSE. As with the library data block,
you may be working with as many elements at a time
as you have allocated fetch data blocks.

333

Note that the library data block is not provided to
these routines. The CMS$FETCH OPEN call contains
the library name, the name of the-element and its
gene7ation specification. As such, these three
routines may be used independently of the other
callable interface routines. Note also that
CMS$FETCH_GET does not return the value CMS$ EOF as
documented. Rather, it returns RMS$ EOF after the
last line of the element has been returned.
The result of a VIEW on an element would appear as
in Figure 12.

CONCLUSIONS

There are many benefits of the interface as outlined
by some of the possibilities already mentioned:
o Accessing CMS is done in the high-level language

of your choice versus having DCL as the sole
interface

o Like the CMS> command submode, you can save on
image activations if you have a lot to do in the
library

o UNLIKE the DCL version, your program may access
AS MANY LIBRARIES AS YOU WISH (and have virtual
memory for •••)

o You may supply your own output routine to most
routines

o The interface can be integrated with all the
other tools VMS has to offer: SMG, RTL, SYS,
TPU, Scan, etc.

There are some weak spots, however:
o The interface is not itsm list oriented. Every

major function has its own specific call and
ways of working. Thus, for "FETCH" you have
CMS$FETCH; for "SHOW HISTORY", you have
CMS$SHOW_HISTORY; for "ANNOTATE", you have
CKS$ANNOTATE, etc. This can make reusing code
more difficult. The item list method may be
tedious at times, but it can provide a stable
hook into the interface

o Output/callback routine arguments differ for
each CMS$ routine

o Output passed to the user-supplied output
routine for CMS$ANNOTATE includes the page
headers you would see in a CMS produced .ANN
file

o Error handling can be difficult. While you may
provide a message handling routine which CMS
will call on your behalf, you still need to do
some digging to provide meaningful error
recovery. CMS should provide more information
when it reports errors to the user supplied
routine

o No support in FORSYSDEF
o You can't call CMS routines from callback

routines (except for CMS$GET_STRING and
CMS$PUT_STRING)

o The latest version of the Callable Interface
Manual is dated November 1984. There are a
number of inaccuracies sure to confuse the be­
ginning user: as noted earlier, return status
codes are not always as documented

And there are some bugs:
o The RESERVATIONS argument to the user supplied

output routine is never set

o When using an output routine, CMS$ANNOTATE FAILS
after reaching the end of the element with the
error:
\CXS-F-BUG, there is something wrong with CMS or something it calls
-CXS-F-BADIOBLENGTH, The passed iob has an invalid length

REFERENCES

VAX DEC/CMS Callable Interface Manual, AA-Z340A-TE,
November 1984.

num_wi ndows • o
do while (cli$1et_11lue('ELEMEIT', element))

num_windows • num_wlndows + 1
displa7(num_windows).elemeat • element

cc Gd the name of the libr1r1 to be looked at. (if not specified, it
cc wl I I be CMS$LIB.)

cli_st1hs = cli$9et_ulue('LIBRARY', dlspla7(num_wlndows).librar1>
cll_status • cli$1et_v11ue('GEIERATIOI',

+ displa7(num_wladows).9eneratlon>

CMS_STATUS • CMS$SET_LIBRARY(
+ LIBDB(IUM_WIIDOllS),
+ DISPLAY(IUM_WIIDOWS).LIBRARY.
+) I place holder for user mess11e ro1tlne.

call mau_strina< libdb(nam_wlndows).descriptor, librar1 >
dlspla7(num_wlndows).librar1 • libr1r1

enddo

Figure 6 - Usina CMS$SET_LIBRARY

do i • 1, num_windows

cc Call CMS with the element and seneration specification. (wlldcards
cc and sroup names ma7 result In more than one lnvoc1tion of the output
cc routine ADD_ELEMEIT_TO_OISPLAY)

CMS_STATUS • CMS$SHOW_GEllERATION(
+ LIBDB(I),
+ AOO_ELEMENT_TO_DISPLAY, DISPLAY(I),
+ DISPLAY(I).ELEMENTCl:CHKLEl(DISPLAY(I).ELEMEIT)),
+ DISPLAY(I).GEIERATIOl(l:CHKLEl(DISPLAY(I).GEIERATIOI)),
+ I place holder for from..1ener1tlon expression.
+ I • • • • ancestors flas.
+ I • decendants fl19.
+ I clus member I ist fl11.
+ I user messaae routine.

end do

Fisure 7 - uslna CMS$SHOW_GENERATIOI

INTEGER FUNCTION ADD_ELEMEIT_TO_OISPLAY(NEW_ELEMENT, LOB,
+ DISPLAY, I the user supplied parameter
+ ELEMENT_IO, GENERATION_ID, USER_IAME_IO,
+ TRANS_TIME, CREATE_TIME, REVISION_TIME, REMARK_ID,
+ CLASS_LIST_IO, FORMAT, ATTRIBUTES, REVISION_NUMBER,
+ RESERVATIONS)

CMS_STATus·- CMS$GET_STRING(ELEMENT_ID, ELEMENT_NAME

Fisure 8 - c11 I back routines ana CMS$GET_STRIIG

+-----------------------DISK$PG22:CUXDSYBD02.CMSJ,
1A8TOOB.FOR ACDATA.FOR ACOK.FOR
IASTOB.FOR BASTOI.FOR BILD.FOR
IBITOA.FOR BLDTCB.FOR &TOD.FOR
ICABORT.FOR CACHER.FOR CADARI.FOR
ICBLDEX.FOR CBLDHD.FOR CBLDRC.FOR
!CCDCAS.FOR CCLDBS.FOR CCOCAS.FOR
ICCSRCU.FOR CCSRCW.FOR CCTRAN.FOR
ICDDOUT.FOR CDIREC.FOR CDRIST.FOR
ICEOB.FOR CERROR.FOR CFLUDT.FOR
ICFNDCH.FOR CGENFN.FOR CGINFO.FOR
ICGNL.FOR CHECK_SUM.FOR CHKDEL.FOR
ICHSCLl.FOR CI.FOR CI IC.FOR
!CKAUTO.FOR CKSRCU.FOR CKSRCW.FOR
!CLINK.FOR CLINKl.FOR CL02UP.FOR
!CLZASS.FOR CLZINF.FOR CMDLOD.FOR
!CPROPT.FOR CRADIR.FOR CRDJCL.FOR
JCllWGEN.FOR COPASS.FOR CPAGES.FOR
ICRECPR.FOR CS.FOR CSBPRS.FOR
ICSEDIT.FOR CSETUP.FOR CSPCED.FOR
ICSREAD.FOR CSRTRV.FOR CSTGEN.FOR
ICTDRIV.FOR CTXIOC.FOR CUPDAT.FOR
JCUPPR.FOR CURSOR.FOR CUTD.FOR

1+------------------------+
ADDASS.FOR
BILDT.FOR
BUG.FOR
CADD.FOR
CBUG.FOR
CCODE.FOR
CD2A.FOR
CDSTAK.FOR
CFllDAC.FOR
COJLGll.FOR
CHKFLO.FOR
CITRAN. FOR
CLEAR.FOR
CLTOCF.FOR
CMDSAV. FOR
CREATE.FOR
CPARSE.FOR
CSECCK.FOR
CSPSEO.FOR
CSWRIT.FOR
CUPDIR.FOR
CUTDSN.FOR

Press f, PF2, or •HELP• for Help

Fiaure 9 - LIBED startup disp111

334

+-----------------------DISK$PG22:CUXDSYBD02.CMSJ, 1+------------------------+
IABTODB.FOR ACDATA.FOR ACOK.FOR ADDASS.FOR I
IASTOB.FOR BASTOI.FOR BILD.FOR BILDT.FOR I
IBITOA.FOR BLDTCB.FOR BYOD.FOR BUG.FOR I

1~:~g:~:~~~--------~~~~~~:~~~---ABTOD~~~~:~-~~~--------~~~~:~~~------+ I
ICCDCAS. jGeneration: 1 I
1ccsRcu.1cre1ted b7: u_sMITH 1
!CDDOUT.jPlaced in librar1: 1-0CT-1986 16:09:14.67 I
ICEDB.FDIFi le created: 26-AUG-1986 16:30:47.96 I
jCFNDCH.jRemark: CPPR 33923 I
ICGNL.FO+--+
I CHSCLN. FDR CI. FOR CINC. FDR CITRAN. FDR
ICKAUTD.FOR CKSRCU.FDR CKSRCW.FOR CLEAR.FOR
I CLINK.FOR CLINKl.FDR CL02UP.FOR CLTOCF.FOR
ICLZASS.FOR CLZINF.FOR CMDLOD.FOR CMDSAV.FOR
ICMDTRA.FOR CMSGP.FOR CNUMWD.FOR CNVERT.FOR
ICNWGEN.FOR COPASS.FDR CPAGES.FOR CPARSE.FOR
ICPRDPT.FDR CRADIR.FOR CRDJCL.FOR CREATE.FOR
jCRECPR.FDR CS.FOR CSBPRS.FDR CSECCK.FOR
ICSEDIT.FOR CSETUP.FOR CSPCED.FOR CSPSEG.FOR
ICSREAD.FOR CSRTRV.FOR CSTQEN.FDR CSWRIT.FOR
ICTDRIY.FDR CTXIDC.FDR CUPDAT.FDR CUPDIR.FOR
jCUPPR.FDR CURSOR.FOR CUTD.FOR CUTDSN.FDR
·--+ Press f, PF2, or "HELP" for Help

Fi91re 10 - ZOOM output

cc Open the element.
CMS_STAT • CMS$FETCH_OPEN(

+ FETDB,
+ DISPLAY.LIBRARY(l:CHKLEN(DISPLAY.LIBRARY)),
+ ELEMENT(l:CHKLEN(ELEMENT)),
+ DISPLAY.GENERATION(l:CHKLEN(DISPLAY.GENERATION)),
+ 1, I no bistor1.
+ 1, I no notes.
+ GENERATION,
+) I place bolder for user mess11e routine.

done • .not. cms_st1t
11are • • true.
count • o

cc Loop unti I EDF or unti I the user wants no more.
do while (.not. done)

cc FETCH a line of the element
CMS_STAT • CMS$FETCH~GET(FETDB, STRING)
count • count + 1

cc Check to see if we·ve reache EDF.
cc NOTE: CMS returns RMS$_EOF, not CMS$_EOF as documented.

DONE • CMS_STAT .Eq. RMS$_EOF

end do

cc Close the element.
CMS_STAT • CMS$FETCH_CLOSE(FETDB)

Fi9ure 11 - FETCH' i n1 I lle-b7-I i ne

--------------------------------A8TDDB.FOR, 1---------------------------------
SUBROUTINE A8TDDB(NAME, TYPE)

c •••
c
C Author: Randal I Smith
c
C Date of Last Update: 07109/86 (1)
c
C Revision Histor1: (1) Created for CPPR 33923
c
c Parameters: NAME CINI) - 8 char name to be stored
c TYPE (IN/) - DD for director1, DI for d1t1 pa9e/word
c
C Local D1t1: TEMP - Storable version of NAME
c
c Function: Takes an 8 char name and stores it into the next 2 words
c of either the director1 or data section of the SDB.
c c ••
c

IMPLICIT NONE

---M;;;;;--
Figure 12 - VIEW output

335

Developing a Message Bus for Integrating VMS High Speed Task to Task
Communications

Glen Macko
Digital Equipment Corporation

West Hartford, CT

Abstract

This paper reviews the requirements and design decisions considered during the
development of a general purpose facility for VMS task-to-task communications,
the PAMS Message BUS. High throughput, integration of ALL communications
paths, and ease of use were primary goals.

Introduction

The intent of a Message Bus is to provide application de­
signers and programmers an umbrella facility from which
they can standardise their interfaces for peer-to-peer com­
munications between programs. The umbrella can be very
small and only handle local messages within a CPU, or
the umbrella can be very large and encompass a wide va­
riety of local messages, remote messages, remote networks,
and miscellaneous events. Figure 1 attempts to show how
extensively a message bus could extend its integration of
messages and events to provide application programs with
a consistent interface.

In looking at the world of communications, one can
quickly become engulfed with an immense array of choices.
As pa.rt of trying to enhance efficiency it is desirable to
standardise on some type of communications. But when
choosing between DECnet, OSAK(OSI), MAP, TCP/IP,
X.400, and many others, there can be a large penalty to
pay if a wrong choice is made. A properly developed mes­
sage bus will present an environment that can migrate to
any particular message transport protocol WITHOUT re­
quiring conversion of application code.

A large number of software projects involve the build­
ing of applications using components that cooperate but
execute as separate processes or tasks. This is generally
known as a multi-task application. A detailed analysis of
the benefits of developing multi-task versus single-task ap­
plications is beyond the scope of this paper, but a brief list
of some the reasons for multi-tasking include the following:

• Modular Design to Parallel the Problem Being Solved

• Breaking Job into Workable Units for Parallel Pro­
gramming Development

• Prioritising Execution

• Context isolation to prevent one program bug from
stopping an entire application

Proceedings of the Digital Equipment Computer Users Society 339

• Geographically Distributed Users

• Distributing Computing Power to the User's Desk via
Workstation

• Parallel Computing over a Cluster or a Network

• Parallel Computing over a multiprocessor CPU such
as an VAX 8800

Once you have made the decision to build a multi-task
application, you must provide a communication mecha­
nism for these cooperating tasks. Choosing a communi­
cations mechanism can be time consuming and inherently
risky if a mechanism is chosen from which the industry
later moves away or the mechanism is limited in scope and
is unable to grow as the application gets more successful.
Even applications using DECnet task-to-task may choose
to migrate to the OSI call interfaces as Digital Equipment
Corporation moves toward its goal of merging the the DNA
architecture with the OSI protocols.

The primary purpose of a message bus is to provide a
communications mechanism that can integrate the USER
INTERFACE with all important communications mecha­
nisms required today and easily expand to accommodate
future mechanisms without application code changes.

Multi-task applications typically require the manage­
ment of individual logical links or sessions between tasks.
As more and more point-to-point sessions are established,
the management and control of the communications be­
comes difficult. Figure 2 demonstrates some sample com­
ponents of a multi-task application without a message bus.
By integrating with a message bus, the lines of control are
handled through a single path to the message bus as can
be seen in Figure 3. This style of integrating through a
single control path is conceptually similar to the CI and
Ethernet communications hardware.

The concept of a message bus is not new. Any
medium to large sized project usually assigns personnel to
be in charge of communications. In fact, this person(s) is

San Francisco, CA - 1986

USER CODE
PAMS MESSAGE BUS ...

Local Message DECnet Direct User VMS BASE- TOMS Direct
Message Simulator Ethernet Se table Mail WAY Asyn DMR
Global I/0 Timers box
Section - - - - - - - -

VAX PAMS VAX PAMS
RSX PAMS RSX PAJllS

(1) (1) (1) (1) (l) (2) (2)

USER CODE
PAMS MESSAGE BUS ...

Direct SMG$ •.• DECnet Direct TCP/ Direct NSI
TT Line Terminal Ethernet IP SCS/CI Hyper-
I/0 Read I/O I/O Channel

- - - - - - - -
DOS PAMS DOS PAJllS
ELN PAMS ELN PAJllS

RT PAMS
TOPS PAJllS

(2) (2) (3) (3) (3) (3) (3)

USER CODE
PAMS MESSAGE BUS

Message Lock OSAlt VOTS MAP TOP User User
Router Manager OSI OSI Device Device

Grants Level Level tl 12 - - - - 5 4
D!Cmail
All-in-1

mail
X.400

(3) (3) (3) (3) (3) (3) (3) (3)

(1) Primary PAMS Data Paths
(2) Integrated with PAJllS as of November 1986
(3) Potiential Paths for Future Integration

Read I/0

(2) (2)

SNA SNA
LU6.2 3270

Data
Stream

(3) (3)

Figure 1: Message Bus Umbrella over Messages and Events

Database
Server

Graphics
Display
Terminal

Application
Control

Terminal

Logging &
Alarming

Server

Special
Peripheral
Handler

Program

Figure 2: Multi-task Connectivity with Session Management

340

Database
Server

Graphics
Display
Terminal

Database
Update

Terminal

Application
Control

Terminal

Special
Peripheral

Handler

IBM
Interface
Program

Logging &
Alarming

Server

Figure S: Multi-task Connectivity with a Message Bus

often one of the best systems programmers since commu­
nications is considered one of the most difficult elements of
a project. In order to isolate the rest of the programming
staff from the intricacies of the communications, a callable
interface is often developed that will provide a friendly in­
terface to the world of communications. Such a callable
interface is referred to as a Message Bus in this paper.

The PAMS Message Bus was developed in such a man­
ner. The key difference between the PAMS Message Bus
and other project message buses is that the PAMS Message
Bus was also designed to be a generic implementation that
would easily operate in all or most application projects.

Requirements of a Generic Message Bus

As part of choosing or developing a Message Bus, it is im­
portant to evaluate the entire range of requirements that
might be important for messaging. During the design and
development of the PAMS Message Bus we identified the
requirements listed below. Unless otherwise noted, all the
requirements listed are satisfied by the P AMS Message
Bus.

• Easy to Use - The primary purpose of a message bus
is to provide an easy to use data path between tasks.
The application code wants the message bus to han­
dle all the communications problems of connectivity,
session management, and resource control. A mes­
sage bus should provide the capability for a program
to do a majority (or all) of its communications with
the three Calls listed below.

o CALL DECLARK.PROCESS(...) - This call
should declare the process to the message bus

341

and allow access to any other process that has
declared itself to the message bus.

o CALL RECEIVK.MESSAGE_WAIT(
This call is asking for the next message, unit-of­
work, or transaction to be received so that the
appropriate processing can occur. If a message
is not available, the task will wait for the next
message to arrive.

o CALL SEND.MESSAGE(...) - This call allows
the user to send a message to any target task
known by the message system. The target task
may be local, remote, a special hardware device,
or even a different message facility such as IBM
SNA LU6.2.

• Reliable / Bulletproof - Reliability is a goal for all
software, but is particularly critical for a message bus
since so many of the application components rely on
its correct operation. Too often, all phases of a project
are started at once and the message facility is not
ready until many months into the programming ef­
fort. This presents a large impediment to the rest of
the project staff as they are forced to develop code
that cannot be tested while it is still fresh in the pro­
grammer's mind. Or, the code must be tested with
custom "stub" software that must later be converted
to the final facility before integration can start.

• Integrated Message/Event Reception - By develop­
ing programs that are driven primarily through a sin­
gle integrated message interface, it becomes very easy
to build systems that operate in a transaction driven
fashion. This allows the program to request the next

"unit of work" by receiving a message and then dis­
patching to the appropriate action routines to com­
plete the work item. Transaction driven system lend
themselves to easily defined test cases and predictable
behavior.

H an integrated reception facility is NOT available,
more complex programming techniques are required
such as 1) polling 1/0 paths for completions, and 2)
multiple execution threads with Asynchronous Sys­
tem Traps (ASTs). ASTs can be particularly dan­
gerous due to frequent race conditions that can be
extremely difficult to reproduce and may only occur
during heavily loaded production conditions.

• Fast - The importance of delivery speed will vary be­
tween applications according to the volume of mes­
sages compared to the amount of data processing. It
is sufficient to say that it is important to application
design that the communication mechanism be per­
ceived as being fast. In that way, applications can
be designed in a fashion that is most conducive to the
natural flow of the data processing steps.

Too often, task-to-task communications is viewed as
having a high overhead and is avoided during system
design phases. Resulting implementations often over­
concentrate on processing speed which detracts from
application elegance and results in a system that is
hard to maintain and difficult to expand its function
and capacity. By having high speed communications,
the project team can build an elegant system that
maintains quick response times.

• Network Transparency - A message bus offers network
transparency by delivering messages both locally and
remotely with exactly the same code interface. This
allows program modules to be rearranged and redis­
persed to other nodes without coding changes.

• Priority Queuing - A message bus by definition is
a queued transaction system. Some applications
will routinely execute with very small queue depths.
Other applications may use the queues to absorb var­
ious load peaks that might occur. By having prior­
ity queuing in the message bus, time-critical messages
can be queued ahead of other less critical messages.

• Integrate with other message paths - The comput­
ing world is filled with approaches to data communi­
cations and message delivery. There will always be
requirements to integrate an extra message capabil­
ity that is not directly supportted by the "standard"
you have chosen. A message bus that provides tools
for custom integration of new message paths gives
you the power to maintain a consistent, integrated
approach to programming, testing, and maintaining
applications.

• Integration with other events - Most systems that
are designed to be message driven are in fact asyn­
chronous event driven systems. In order to service

342

the events in an orderly fashion, they are queued.
Other events besides true messages can be queued
as messages to provide an orderly transaction pro­
cessing. Examples of non-message events that can be
integrated with a message bus include: 1) terminal
input completion, 2) timer expiration, and S) special
hardware 1/0 completion. See Figure 1 for some of
the actual events that have been integrated with the
P AMS Message Bus.

• Selective Reception for Request/Response dialogues -
There are many cases where a program wishes to re­
ceive a message only from a specific program instead
of the next queued message. This requirement is im­
portant for request/response sequences with a server
process. It is also important when a program must
wait for an acknowledgment from a specific program
to ensure that a command has been completed and
does not want to be disturbed by messages queued
from other programs.

• Receive Timeout - Some programs may have special
duties that preclude long delays while waiting for mes­
sages to be received. For those needs, it is important
to have a timeout variable on the receive-with-wait
Call. This requirement seems so basic that it is quite
surprising to find that neither mailboxes nor DECnet
task-to-task support a timeout argument within their
QIO calls.

• Timer Event Delivery - H an application program
needs to set special "reminder" timers, it is impor­
tant to receive notification through the same mech­
anism as all other transactions are received, namely
the message path. In this way, the message mecha­
nism really becomes a mechanism for reception of all
events. The PAMS Message Bus has special Calls to
set timers and cancel timers. When a timer expires,
it is converted to a message and delivered to the user.
By definition, timers are time-critical and are always
delivered with the highest priority.

• Support all major languages - A message bus should
easily integrate with any programming language.
This feature is relatively easy to implement due to
the VMS calling convention. The PAMS message
bus directly supports the following languages with IN­
CL UDE files: Ada, Basic, C, Cobol, Fortran, Pascal,
and PL/1.

• Message Simulator - A message simulator is a very
powerful productivity tool. It allows a programmer
to quickly and easily build test messages that can be
used immediately for module testing long before other
programs are ready to send the messages. The pro­
grammer is therefore able to thoroughly test his code
the same day that it is written. With the P AMS Mes­
sage Bus, the message simulator is linked into your
program image so that message simulation occurs di-

rectly in you process WITHOUT having to run a de­
tached or spawned process.

• Message Tracing - Message tracing is also a program­
mer productivity tool. It allows the programmer to
view the messages as they are processed for both input
and output and quickly identify program How prob­
lems. The PAMS Message Bus translates the traced
message into ASCII text that can be viewed at the ex­
ecuting terminal and/or written to a log file. In fact,
the format is exactly the same as the Message Sim­
ulator format so that messages trapped in a log file
can be later used for message input with the message
simulator.

In order to further enhance the readability of the
traced messages, elements of the message header are
translated into the symbolic names that have been
previously chosen by the user for the source process
name, the target process name, the message type and
the message class. These symbolic names are the same
ones used within the program and available through
INCLUDE files.

• Handle large messages - H a message system does not
support large messages, it can be a significant pro­
gramming chore to break up a user data block and
ship it as multiple messages that are reattached by the
target process. The PAMS Message Bus relieves this
chore by supporting messages of up to S2,000 bytes.

• Multiple Message Delivery Modes - A large number
of rule sets can apply to how a message should be de­
livered and what to do if message delivery is blocked.
Some environments such as real-time test data ac­
quisition are tuned for high-speed, no-recovery envi­
ronments where it is more cost effective to rerun a
test in case of failure rather than build extensive re­
covery software and hardware. On the opposite ex­
treme are applications such as electronic funds trans­
fer where transaction completion must be absolutely
guaranteed. Many high availability systems can use
statistical analysis to project failure rates as small as
one/year, one/decade, or even one/century. As part
of supporting this wide variety of delivery needs, we
have identified the following four delivery modes:

o Data.gram - A data.gram delivery is the lowest
cost delivery where the message is delivered on a
"best try" basis. Loss of the target node, or in­
termediate links will result in loss of the message.
In this mode, the sender immediately passes on
the message and is never blocked from continu­
ing execution.

o Return to sender - Allows the sender to request
that a message be returned to itself in case the
message can not be delivered to the target pro­
cess. As with a datagram, the sender's execution
is never blocked. However, if the target node is

343

not available or the target process is not avail­
able, the message will be returned to the sending
process to allow the sender to take some recovery
action.

o Synchronized Queue to Target - This mode will
synchronize a program's execution with the suc­
cessful queuing of the message on the target pro­
cess queue. In other words, the sender will be
blocked until the message is on the target queue.
With thP. PAMS Message Bus, queuing to a local
process will happen immediately without con­
text switches since the local message system is
implemented with Global Sections. Remote mes­
sage delivery will cause the sending process to be
blocked until the message is successfully queued
to the target and an internal acknowledgment is
returned to the sender.

o Journaled Guaranteed Delivery - In order to
fully guarantee the delivery of the message, it
must be 1) journaled to a non-volatile medium
(e.g. magnetic disk), 2) delivered to the target
process (at a later time if target not currently
available), and 3) the user task must acknowl­
edge the completion of the handling of the mes­
sage via a "commit" operation similar to a Data
Base Commit. When using journaled delivery,
the user program must devise a scheme to han­
dle the potiential for a duplicate message. This
can occur if there is a CPU failure during the
small window between the time that the user
completes the servicing of the message and the
time that the Commit is completed. This level
of guaranteed delivery has not yet been imple­
mented within the P AMS Message Bus but is
now (11/01/86) under consideration for the next
major release of the P AMS Message Bus.

• Monitoring and management tools - Additional tools
should be available to monitor the state of the mes­
sage bus and to determine the state of programs de­
clared to the message bus. The P AMS Message Bus
provides this capability in two ways. One method is
by using an interactive program to display message
counts and buffer usage in a fashion similar to the
DECnet NCP program. A second capability within
P AMS is to programmably request information from
the message bus. The current programmable inter­
face allows a program to: 1) request a list of all other
programs known by the message bus and 2) be added
to a "automatic notify list" to be notified whenever
a program declares itself to the message bus or exits
from the message bus. This automatic notify feature
allows an application control program to immediately
be notified via a message that a fellow process has
exited and that a recovery action should be initiated.

PAMS Design Decisions

In designing the PAMS Message Bus, many decisions were
made on topics that must be considered for anyone build­
ing a communications facility or message bus. The follow­
ing section reviews these design decisions.

Local Message Transport Mechanism

There are various VMS tools available for implementing a
local CPU message transport mechanism. The list of tools
includes, but is not limited to: 1) Mailboxes, 2) DECnet
task-to-task, S) Global Sections, 4) Hibernate/Wake, 5)
Event flags, 6) Logical names, 7) Lock manager, 8) Disk
files (RMS/DBMS/RDB), and others.

Some of these mechanisms can quickly be dismissed
as being far too slow or inflexible. For these reasons, it is
easy to dismiss logical names and disk files.

Of the remaining facilities, only three have the ability
to pass data while the remaining can be used for process
synchronization. The three mechanisms of passing data
are mailboxes, DECnet task-to-task, and global sections.
Mailboxes and DECnet have built-in process synchroniza­
tion mechanisms, while global sections provide only a data
passing mechanism and must be implemented together
with a procen synchronization mechanism.

Since high throughput is a primary requirement of
the PAMS Message Bus, a timing study was done to
compare the raw throughput rates achievable from Mail­
boxes, DECnet, and Global Sections. Global sections
were matched with Hibernate/Wake system services to
provide process synchronization. The benchmark environ­
ment consisted of a VAX-11/780 with 8 Mbytes of main
memory, a floating point accelerator, VAX/VMS V4.2, and
DECnet-VAX. The test was run with message sizes of 20
bytes, 500 bytes and 10,000 bytes.

Two programs were built, a loop program and an echo
program. The loop program would initiate the message
transfers by sending one message and then executing a
"receive and wait" operation until a response would come
back. When the response arrived, the loop program would
then continue the cycle of sending a message and waiting
for the response.

The echo program would execute a receive-and-wait
operation for a message to arrive and would then "echo"
the message back to the loop program. Since the programs
are run within the single CPU, they saturate the CPU
with 0% NULL time and the message rates are calculated
by dividing elapsed wall time by the number of messages
deliverred. Each round trip loop is considerred 2 message
deliveries.

The results of this timing study are summarized in
the graph in Figure 4. Higher throughput rates could
have been achieved by looping multiple messages simulta­
neously. This would have reduced the number of context
switches and improved the cache hits. However, I do not
believe that the typical application environment would be
sending multiple menages in rapid order and therefore I

chose to use a worse case scenario. As can be seen from the
graph, Mailboxes had 1.8 times the throughput of DEC­
net for small messages and 3.6 times the throughput for
large messages. When comparing Global Sections to Mail­
boxes, Global Sections had S.8 times the throughput of
Mailboxes for small messages and a whopping 19.5 times
the throughput of Mailboxes for large messages.

344

Global Sections are able to maintain a constant
throughput independent of the message size since the
buffers are not copied from memory to memory-only buffer
pointers are passed between the programs.

Global sections were a clear winner in the area of
throughput. In addition, global sections provided some
additional benefits for easily implementing some monitor­
ing requirements such as tracking the number of messages
sent, received, and pending. Therefore, global sections
were chosen as the transport mechanism for local mes­
sages.

One drawback of dealing with global sections is the
fact that all processes map themselves to the shared mem­
ory and an errant process could destroy data buffers of
other users. To prevent this occurrence, the P AMS Mes­
sage Bus optionally protects its buffers by allowing only
EXEC mode access to the global sections. In this way,
only the PAMS code within the program image is able to
access the buffers and transfer the data from the global
section buffer to a private user buffer. All user code will
receive an "Access Violation" if it attempts to directly ad­
dress the global sections.

Remote Message Delivery Mechanisms

In evaluating the need for remote message delivery, it
quickly became evident that no single interface could han­
dle all environments. Therefore, rather than try to restrict
the capabilities, it was decided to develop an interface that
could accommodate any remote mechanism needed today
or possibly in the future.

The PAMS Message Bus therefore built its system
in a fashion that allowed the primary remote data paths
to fl.ow through DECnet links while data could optionally
fl.ow through any other message interface desired. Cur­
rently (November, 1986), PAMS has interface routines for
the message paths listed below. Virtually any other mes­
sage mechanism can also be integrated by using the tools
provided with PAMS.

• DECnet task-to-task

• Direct Ethernet I/ 0

• Direct DMR 1/0

• Direct Asynchronous Line 1/0

• Baseway Application Bus

TASK-TO-TASK TOOLS

LOCAL MESSAGE RATES

1500

1200
MS&/SEC

900

600

300

- DECnet-Local
IDDD M111lboxea
~ 66/Hib/Mak

1411

20 500
BYTES/MS&

2D

10,000

Figure 4: Throughput of Local Message Tools (VAX 780)

Enhancing Ethernet Beyond Level 2 (Data Link
Layer)

An interface for direct Ethernet 1/0 has been developed to
provide higher throughput than what is available through
the DECnet interface to Ethernet. This presented a num­
ber of problems since the Level 2 Ethernet protocol is
rather limited in its ability to send la.rge messages and
to guarantee delivery is completed.

As pa.rt of developing a protocol to overcome these de­
ficiencies, the following features were developed in support
of direct Ethernet 1/0:

• Chaining 1500 byte segments into 32,000 byte mes­
sages

• Multiplexing up to 100 Ethernet sessions from 1 set
of subroutines

• Automatic Connection Mechanism - The code will
continually attempt to establish a connection without
intervention by the user code.

• Link Loss Detection via Heartbeat Messages - A user
selectable rate of heartbeat messages can be sent so
that the loss of a partner can be quickly detected.

• Optional Message Acknowledgment - H desired, the
Ethernet interface will queue a message to the ta.r-

345

get process and wait for an internal acknowledgment
before returning from a send message operation.

• Partner Locating Service - During the connection
phase, the ta.rget Ethernet address does not have to be
known. Instead, both partners can enable themselves
for a multicast read until they find each other and
then switch to using the physical Ethernet address.

Comparison of PAMS to Other Message Busses

• VAXELN Message Services - The message services of
the VAXELN operating system a.re a very powerful
and elegant implementation of a message bus. One
can speculate that VAXELN designers built a very
nice messaging facility into VAXELN after recogniz­
ing the shortcomings of messaging with mailboxes in
VAX/VMS.

• BASEWAY Application Bus - Baseway is targeted for
the manufacturing ma.rket and not appropriate as a
generic message bus. The messaging portion of Base­
way provides no tools to integrate other message sys­
tems, does not support la.rge messages, and is substan­
tially slower than the PAMS Message Bus. Figure 5
displays a comparison of message rates between Base­
way and PAMS. The benchmark environment con-

sisted of a VAX-11/780 with 8 Mbytes of main mem­
ory, a floating point accelerator, and VAX/VMS V4.2.

• VAX DEC/MAP - As of this writing, VAX
DEC/MAP has just been announced by Digital
Equipment Corporation. Although a very powerful
message bus, VAX DEC/MAP is targeted for the fac­
tory automation market. VAX DEC/MAP Vl.O does
not integrate with other Networks-not even DECnet.
In addition, special hardware (KMSll, Concord Com­
munications Inc Translator, and a broadband cable
network) are required for its operation.

• Message Router for VMS - Message Router has 11.

primary focus for electronic mail store-and-forward
and is not oriented for the real-time messaging mar­
ket. It would be more appropriately titled the "Mail
Router".

• VAX ACMS Server Mechanism - ACMS has a power­
ful mechanism for developing distributed applications,
but ACMS is only appropriate 11.t sites that wish to
adopt the entire ACMS environment.

• UNIVAC MCB-1100 (Message Control Bank) - UNI­
VAC has its own messaging bus known as the MCB-
1100. This is an example of another industry imple­
mentation of 11. message bus, but unfortunately MCB-
1100 will not run on VAX/VMS.

• ITT's VCF (VAX Communication Facility) - A pre­
vious DECUS Symposium paper was submitted by
Howard Kilpatrick 11.t ITT titled "'A Fast Inter-Process
Communication Facility for VMS". Unfortunately, it
is not for sale to other companies.

• Hundreds or thousands of project-specific implemen­
tations - A large portion of the medium to large
VMS projects that require task-to-task communica­
tions have implemented some sort of callable interface
as 11. message bus to isolate the communications from
the application programmer. Unfortunately these fa­
cilities are usually customized to the project 11.nd NOT
suitable for the next project. In addition, few or none
have the rich set of features identified in this paper
11.nd available with the PAMS Message Bus.

Applications Using the PAMS Message Bus

• High speed data acquisition

• Defense industry real-time needs

• Network-wide transfer of Graphics/Pixel Images

• High volume access of database servers

• High volume Ethernet transfers

• Workstation access of VAXcluster databases

• Factory control 11.nd data collection

346

Future Directions

Although the features of the PAMS Message Bus are com­
prehensive, there are still areas for enhancements. Listed
here are the areas that are being evaluated as of this writ­
ing.

• Higher Throughput - We believe that the maximum
throughput of the PAMS Message Bus can be roughly
doubled from the current 300 msg/sec to 600 msg/sec
on a VAX-11/780 by a careful review of the code
and selective conversion of some code from PL/1 to
Macro-32. As noted in the timing study graph, the
theoretical throughput limit usi11g global sections is
1410 msg/sec.

• Selective Guaranteed Delivery - Many applications
require the capability to guarantee that messages will
get delivered and processed even if the target process
is not currently available or the target process aborts
before completing the operation. Since all messages
may not be critical, this feature would be selectable
at the time the message is sent.

• Connectivity to other Message Mechanisms - A wide
range of interfaces to remote message mechanisms
may become packaged with PAMS. A sample of those
areas being evaluated are listed below. Even without
packaged software to service these functions, 11.n inte­
grating message bus such as P AMS allows the users
to add their own features independent of message bus
engineering.

o Connectivity to MS/DOS via direct Ethernet
1/0 or DECnet-DOS,

o Connectivity to VAXELN, TOPS-10, TOPS-20,
and RT-11 via direct Ethernet 1/0,

o MAP,

o Direct SCS/CI 1/0,
o NSI Hyperchannel connection to IBM systems,

o SNA Gateway connection to IBM systems via
LU6.2 or 3270 data stream,

o TCP/IP,

o Electronic Mail via Message Router.

• Interfacing with a higher performance Ethernet
Driver - The current QIO interface to the Ethernet
Controllers is designed to operate strictly according
to the Ethernet Data Link Layer interface. As such,
large user messages must be broken up into segments
no larger than 1500 bytes 11.nd individually sent to
the device driver with a QIO. The QIO overhead can
become excessive in some applications. Rather than
require that a larger CPU be purchased, substantial
CPU cycles can be saved by sending 11. single QIO
with a message up to 32,000 bytes in it. A specialized
Ethernet driver could then cycle through the multi­
ple 1500 byte segments WITHOUT running back and
forth between the device driver and user code.

MESSAGE BUSES
LOCAL MESSAGE RATES

312 •

MS&/SEC

IDDD BASEWAY
f2m PAMS

300

200

100

0

.... NS • Not SUpported

20 500
BYTES/MSG

IS

10.000

Figure 5: Throughput of PAMS versus BASEWAY (VAX 780)

Conclusions

Peer-to-peer communications is becoming increasingly im­
portant as applications and databases become more com­
plex and more distributed. Through proper planning,
communications can be integrated to avoid a strangling
patchwork that might otherwise occur.

Software development costs are exploding and it is
important to both reduce these direct costs and to build
applications that have long life cycles with minimal main­
tanance effort. By developing applications based on an
integrating message bus, applications can be 1) completed
sooner, 2) migrated easily, and S) grow into new technolo­
gies without additional changes to user code.

Acknowledgements

There have been a wide range of Digital Equipment Cor­
poration employees and Digital Equipment customers that
have contributed to the concepts of a message bus and
the requirements of the PAMS Message Bus. The author
thanks all of them for their contributions. Specifically,
the author thanks Martin Michelsen, project leader of the
PAMS Message Bus, for his help in preparing the paper
and providing benchmark data. The author also thanks
Randy Skelding as a longterm user of PAMS who has con­
tinually pushed for more features within PAMS to make

347

the building of applications easier.

References

"VAX/VMS System Services Reference Manual",
Digital Equipment Corporation, April 1986

"VAX/VMS 1/0 User's Reference Manual", Digital
Equipment Corporation, April 1986

Kilpatrick, Howard, "A Fast Inter-Process Commu­
nication Facility for VMS", Proceedings of the Digital
Equipment Users Society, USA Fall 1984.

"VAX Realtime User's Guide", Digital Equipment
Corporation, October 1986

"VAXELN User's Guide", Digital Equipment Corpo­
ration, March 1985

"VAX PAMS User's Guide", Digital Equipment Cor­
poration, September 1986.

"VAX P AMS Operations Manual", Digital Equip­
ment Corporation, September 1986.

Network Print Servers

R.E. McGee
W.V. Dixon

General Electric Corporate Research and Development
Schenectady, New York

Abstract

The VMS print command has little support for network print jobs. Print features
improve in a cluster environment, but clusters have their own limitations. At
past symposia speakers have described DECnet applications to extend the basic
VMS print command. This paper describes the design and implementation of
the VAX portion of our network print server. The VAX portion of our print
server is based upon non-transparent task-to-task DECnet communications and
is implemented as multi-threaded code; it is the backbone of our print service.
We discuss the overall architecture and some of the implementation difficulties.
Security, resource utilization, and performance issues are considered. We also
describe the natural evolution of the work into a generic network server.

INTRODUCTION

This paper is not a general treatise on network print
servers. Rather, it is a description of a specific approach
taken at the General Electric Corporate Research and De­
velopment Center, (hereafter abbreviated CRD), to dis­
tribute printer access in a heterogeneous network comput­
ing environment. We refer to this distributed printer ac­
cess as the network print service and the thing that pro­
vides this capability as the Print Server, or Server. The
paper will be divided into four major sections. The first
section will briefly describe the computing environment at
CRD and the problem of printer access that this project
attempts to solve. The second section discusses the gen­
eral, technical approach taken in the development of the
Print Server. The third section will discuss some specific
technical issues that have been addressed thus far in its
development. The final section will summarize the results
and current status of the Print Server project.

1.0 BACKROUND

1.1 The Problem

Perhaps the best word to describe the computing envi­
ronment at CRD is "diverse". A wide variety of machines
populate our local area network (LAN) as depicted in Fig­
ure 1; the numbers in parentheses in this picture denote
the approximate number of each type of machine on CRD's
LAN. Some of these computers have associated printers,
some do not. Printers are either attached to a computer
that resides on the LAN (i.e. the printer "belongs" to
that computer), or the printer is attached directly to the

Proceedings ofthe Digital Equipment Computer Users Society 349

E
T
H
E
R
N
E
T

THE PROBLEM AT CRD
• Wide Variety of Printer Resources

• Lots of Different Host Systems

How Can Printers Be Shared Among Different
Host Systems?

~- IBM 3081 (1)
c~

~ VAX (26+) +MicroVAX (40+) =
~i IBMPC/XTIAT(25)

y'_ ...\, y M Sun Workstation (30+)

~ ...\, ~ - Mosaic Workstation {2)

B PDP· 11 Mini (2)

~ i Symbolics/LISP (25)

·°f';_ --~. doJ- Daisy Workstation (3+)

GE ISO PRINT SERVER Oct. 1986

Figure 1: A survey of host systems on the CRD LAN.

San Francisco, CA - I 986

LAN. With this configuration, printers aren't always read­
ily accessible due to the restrictions imposed by physical
connection. For example, users of a VAX/VMS system to­
day may not be able to get output from a printer attached
to another VMS system, because the user doesn't have an
account on that machine, or the machine is not part of a
common cluster. Thus, users may be constrained to use a
small number of printers which, because of their location
or print quality, may be inconvenient to use.

1.2 The Goal

The goal of the Print Server project is to make printers
accessible to users on different host machines regardless of
printer connectivity. Thus if a user is currently using ma­
chine "A" and the desired printer is attached to machine
"B", the Print Server provides the means to use it.

Distributing printer access to users across the network
has at least three advantages:

1. Money. If one or two printers can be shared among
several groups of people (each of which perhaps uses
a different computer on the network), then a network
print service would preclude the need to buy a printer
for each group.

2. Print jobs can be routed to printers best suited for the
job type. For example, a programmer wanting to get
a printout of a 100-page source listing could route the
job to a high-speed line printer instead of a default
slower printer that may be attached to the system.

3. People who use computers that are on a LAN tend
to view the network as "the system". By providing
transparent printing across the network this percep­
tion is made somewhat concrete.

2.0 GENERAL TECHNICAL APPROACH

2.1 Defining the Print Service

A Print Server can mean many things to many people.
In defining our Print Server, we've tried to take various
viewpoints.

From the developers' point of view, a Print Server is
software that is distributed across several nodes on the lo­
cal area network, and which provides users with the capa­
bility to access printers they normally could not use. Ad­
ditionally, the Print Server can be defined in terms of the
features it provides. Among these are that a user should be
able to print a second-party file to a third-party printer.
This means that if a user is using machine "A", he/she
should be able to print a file residing on machine "B" to a
printer attached to machine "C", where A, B, and C are
distinct computers. Since the Print Server is distributed
across a heterogeneous network (ie. lots of different typea
of host systems), it must support several different ma­
chines such as PCs, Suns, VAXes, and others. And like

350

any software project, the Print Server should be extensi­
ble in the sense that new features can be added as the need
arises.

From the user's point of view, the Print Server man­
ifests itself in the form of a new print command. This
new command should be syntactically similar to the print
command the user is already familiar with, and should pro­
vide the same capability. Response should be interactive,
providing for wildcard confirmation and immediate noti­
fication of error conditions, when possible. If interactive
response isn't possible, then the user should be notified
by mail of the error condition. Once the print request is
submitted, the user should be able to query the status of
the print request locally to determine when the print job
completes.

From the System Manager's point of view, the Print
Server should provide its service without degrading the
performance of the computer on which it is running. The
Print Server should also consistently and gracefully recover
from system shutdown or link failure. Print jobs should
have a limited lifespan, so that if they are unable to be
processed, (i.e. printer is down), they can be deleted.
And, since printers are in effect made openly accessible to
any user on the network, the System Manager should have
the means to restrict access to printers.

Each of these three points of view have contributed
to our understanding of what is expected of a network
print service, and accordingly infiuenced our development
approach.

2.2 Some Considerations

Before work even began on the Print Server, some ob­
servations were made that had a direct infiuence on the
approach taken to tackle this project. One consideration
is that the largest percentage of computer users at CRD
are VAX users. Not surprisingly, the printers most-often
used are those attached to the VAXes. Another consider­
ation is the VAX itself. With a large virtual address space
and disk capacity, it provides a good environment to do
substantial software development. Another plus is that
it supports other protocols (e.g. TCP), which is impor­
tant given that the service being developed must accomo­
date users on systems that don't use DECnet. Apart from
these considerations, the developers have more expertise
with VAX/VMS than with any other environment. All of
these factors contributed to our choice of the VAX as a
development machine, and in fact as an integral part of
the network print service architecture.

2.3 Development Approach

In order to provide network print service to users in
a timely fashion, we've decided to implement the Print
Server in a phased approach. Each phase will either in­
crease the user-base for the network print service, or will
increase the scope of printers made accessible by the print
service. In all, there are four development phases. The

first phase establishes a "communications backbone" upon
which the remaining three phases will be built. Comple­
tion of this phase will provide users with the ability to
print files transparently from a given VAX running the
Print Server to a printer attached to any VAX also run­
ning the Print Server software.

The second phase of the Print Server project estab­
lishes gateways to the IBM and Unix worlds in order that
users from the first phase (i.e. VAX/VMS users) can ac­
cess TCP /IP and IBM printers.

The third phase extends the user-base by providing
Unix and IBM users with the capability to access printers
from phases one and two. For example, at the comple­
tion of this phase, any Unix user would be able to send a
print job to any printer attached to any VAX/VMS system
running the Print Server.

The fourth and final phase brings Apple Macintosh
users in the user domain. Thus the completion of this
phase will give a Macintosh user the ability to print files
on any printer made accessible in the first three phases of
the project.

The development environment for the Print Server is
pictured in Figure 2. Note that this environment does

DEVELOPMENT ENVIRONMENT

MAC-2

GE ISO PRINT SER.VER Oct. 1986

Figure 2: Development Environment for Print Server.

not include all the types of machines that are available
on CRD's network from Figure 1 . However, this subset
of users, though not exhaustive, does comprise the major­
ity of users at CRD, and provides what we believe is a
reasonable environment for which to aim.

2., Phase I Solution

There are several approaches one could take to provide
transparent print capabilities across VAX/VMS systems
on a local area network.

One approach is to do a DECnet file copy from the
source node to the target node, (i.e. the VAX with the

351

printer), and then print the file. Unfortunately, this ap­
proach won't work if the target node is heavily loaded.
When a DECnet file copy is attempted, the target system
attempts to create a subprocess on behalf of the user re­
questing the copy. This sub-process then communicates
with the source node in order to complete the copy. If
the target node is heavily loaded, the sub-process creation
may not complete and the file copy will fail. This in fact
does happen on a regular basis at CRD, depending on the
source and target VAXes.

Another approach is to try to cluster several VAXes
together. This allows sharing the resources among the
VAXes in the cluster. This approach works quite well,
except there is an upper limit to the number of VAXes
that can belong to a cluster. Since this upper limit is
much smaller than the number of VAXes on CRD's local
area network, this approach is unsuitable.

The approach taken for this first phase is to provide
a single Print Server process on every VAX/VMS system
whose printers are to be made accessible by the network
print service. Collectively, each Print Server process coop­
erates with other Print Servers in order to provide the net­
work print service. This approach precludes the overhead
of process creation (the Server process is already there),
and there is no limit to the number of VAX/VMS systems
on the network that run the Server. However, there is an­
other reason for taking this approach. If the architecture
of the Server process is made sufficiently general, then it is
possible to implement several network services in addition
to the print service. This is discussed more in section 3.1.

The overall configuration for the first phase is pictured
in Figure 3. At the present time, this configuration repre-

je;;,I
~

THE OVERALL CONFIGURATION

r;;;;;;-i
~

Common t;rtworti

Lar;•
IBM
Ma1nlrame
C<Jmpul•r

••• r;:;;;-i
~

GE ISO PRINT SERVER Oct. 1986

Figure 8: Phase I configuration.

sents the extent of the network Print Service developed at
CRD. Phases two through four are future projects. Thus
the specifics referenced throughout the remainder of this
paper refer to issues addressed during the first phase of

development (transparent printing from VAX to VAX).

2.5 User-Interfaces

A user-interface is a program used as the bridge between
the user making the request and the Server, which provides
the service. The Phase I user-interfaces are manifested as
three new commands, two of which have DCL (DEC Com­
mand Language) counterparts. The new commands are
depicted in Figure 4. The net print command is analo-

SOME COMMANDS

• net print file -spec [, ••. J
Qua lifers:

/copies
/queue
/exclude
/confirm
/delete
/header
/flag

• net status [job-id]

• new directory [file-spec[, ...]]

/exclude

GE ISO PRINT SERVER Oct. 1986

Figure 4: Print Server commands.

gous to the DCL print command. The syntax is identical,
except that fewer command options are provided, due to
development time constraints. Those options that are pro­
vided are what we feel to be a very useful subset of the
DCL print options. Similarly, the net directory command
is nearly identical to the DCL directory command. The
third command, net status, allows a user to monitor the
print job once it has been submitted. Upon issuing a valid
net print command, a job identification number (a small
integer value) is returned to the user. The user may specify
that "job-id" in the net status command to find out about
the specific job. Alternatively, no job-id will give the user
information about all jobs in the server's job queue.

8.0 SPECIFIC TECHNICAL ISSUES

8.1 The Server Process

The overall notion for Phase I is to have several VAXes
(each using version 4.0 VMS or higher) on the LAN run­
ning the Print Server. Each such VAX is referred to as
a "Server-node". Each Server-node cooperates with other
Server-nodes in order to provide transparent printing be­
tween the Server-nodes. Note that there is always just one
Print Server process running on a Server-node. Thus sev­
eral users on a Server-node are serviced by a single Print
Server process.

Because the architecture of the Server process is suf­
ficiently general, the Server process can be viewed as a
"generic" server, within which several subservices may be
defined; the Print Service is just one of the possible sub­
services, as depicted in Figure 5.

THE SERVER PROCESS
On a Given VAX, Multiple Services are Provided by

One Server Process to Many User Processes

Network Copy
Service

Network
Print
Service

352

NAME
Service

GE ISO PRINT SEflVER Oct. 1986

Figure 5: The Server process.

Figure 5 illustrates the Server process as a spool of
thread. This represents the fact that several services can
be provided by the Server process, and that several users
can be serviced by that one process at the same time. The
ability to provide multiple services to multiple users via
one process is accomplished by setting the Server's process
quotas high enough (e.g. like that of a Symbiont), and
by using multi-threaded code. The multi-threaded code
is achieved via non-transparent communication and asyn­
chronous disk and network I/O. From the server's point
of view, this means that at any given instant, it may have
several different types of "jobs" (i.e. print job, copy job,
etc.) in its internal job queue for several different users.

The Server process resides on the Server-node as a
network known object. At startup, the Server allocates
data structures used for I/O, declares itself a network ob­
ject, and posts an asynchronous read on its permanent
mailbox. Incoming non-transparent connection requests
are placed in this mailbox, and the Server awakens from
its state of hibernation in order to process these incoming
connection requests.

Figure 6 represents a typical service request, in this
case, a print request.

In the first part of the picture, the user-interface
makes a connection request to the Server process. Note
that the user-interface runs in the context of a user's pro­
cess. Thus the user-interface and the server always run
as separate processes. In the second part of the picture,
with the connection request accepted by the Server, the
user-interface writes a service request to the Server. This
service request is just an integer that specifies some sub-

1)

2)

THE SERVER PROCESS SKELETON

User
Interface Connection

Request

Service
Request

GE ISO PRINT SERVER Oct. 1986

Figure 6: An example of a service request.

service (ie. print, copy, etc.). The Server then invokes the
sub-service, passing along the link information from the
original connection request. The user-interface and the
sub-service then communicate the information necessary
to complete the service request. Based on this informa­
tion, an internal job representation is created, placed in
the Server's job queue and is later processed.

3.2 Print Service Architecture

There are three logical operations that must be performed
as part of a print request. First, a directory search has to
be made to resolve all wildcard expansions. Second, the
file(s) to be printed must be copied to the target node (i.e.
the VAX with the printer). Files are "pulled" to the target
node, not pushed (i.e. the target node does the file copy­
ing). Finally, the file(s) are printed. Both the directory
search and the file copying are independent operations,
and in fact are independent sub-services. This idea is de­
picted in Figure 7, where the Print Service is layered on
top of the Directory Service and the Copy Service, as well
as the DECnet routines.

The DECnet Routines, written to abstract QIOs, are
used for network 1/0 and are pictured in Figure 8. There
are five principal DECnet routines. Netstartup must be
called once, before any of the other DECnet routines are
invoked. This in a sense establishes the "bandwidth" for
I/O. The "#Links" parameter specifies how many logical
links can be opened for network communications. The pa­
rameter "I/O per Link" specifies how many outstanding
1/0 requests can be placed on a given link at any one time.
"Object flag" specifies the object number used in specify­
ing the Server as a network object. Netopen is analogous
to a file open in C language, except this routine requests a
logical link instead of a file pointer. Netread and Netwrite
perform the I/O over the logical link, and Netclose closes
the logical link.

353

OTHER SERVICES IN SUPPORT OF PRINT

• Network Directory Service - Performs Wildcard Expansion
and Returns Information Useful for a File Copy.

•Network Copy Service - Performs File Transfer to the
Node at Which the Target Queue Resides.

•The Result is a very Layered Design Incorporating
Supporting Services and DECnet Routings.

PRINT SERVICE

Directory Service Copy Service Other

DECnet Routines

SYS QIO, SYSASSIGN

Other
System Calls

GE ISO PRINT SERVER Oct. 1986

Figure f: Services are layered on top of each other.

DECNET ROUTINES
•A Library of Routines That Makes Network

JI 0 Seem Easy

•Routine Interfaces Not Specific to DECnet

Netstartup (#Links, I/ 0 Per Link, Object Flag,
AST Address)

Netopen (Link, Buffer, Access String, Ast Address,
AST Parm, IOSB)

Netread (Link, Buffer, Length, AST Address, AST
Parm, (OSB)

Netwrite (Link, Buffer, Length, AST Address,
AST Parm, IOSB)

Netclose (Link)
•All Are Layered Over Calls to SYS$QIO,

SYS$ASSIGN, SYS$DASSGN.
GE ISO PRINT SERVER Oct. 1986

Figure 8: The DECnet routines.

The overall Print Server architecture is depicted m
Figure 9.

VAX·•

PRINT SERVER ARCHITECTURE

Syslem Print
Functions

Print
Server

Process
Wllh

DECnet

System Print
Functions

s~~~~~~g 1---1-----t---L_ __ ~

Authen·
tlcator

Autlien­
ticalor

GE ISO PRINT SERVER Oct. 1986

Figure 9: Symmetric Print Server architecture.

This picture is shows that the Print Server architec­
ture is symmetric from one Server-node to the next. The
Server-nodes are represented by the boxes such as the ones
labeled VAX-a, VAX-b. Within a given Server-node, there
are six boxes. The rectangles to the right in the box, la­
belled "User", "System Mgr", and "Remote PC", repre­
sent user-interfaces. The box labelled "System Print Func­
tions" constitutes the job controller and any system rou­
tines used in queue manipulation. The "Authenticator"
box is used to authenticate print requests to make sure
the person requesting the print in fact has access to the
files. The final box in the center represents the Server
process and all sub-services used in support of the Print
Service.

3.3 The Authenticator

When the Server starts up, one of the things it does is post
an asynchronous read on a permanent mailbox. DECnet
places connection request or termination messages in this
mailbox. When the Server gets a message in this mailbox,
it wakes up and basically checks to see if it is a connection
request or some type of termination notification. If it is
the latter, the Server deallocates some data structures and
closes the logical link. If it is the former, then some service
has been requested by someone on a Server-node. Early on
in development we found that the identifying information
in this mailbox connection request was scant, consisting
of only a source node-name and process name of the user
making the request. We felt that this wasn't enough to
ensure the integrity of file access, and thus developed the
Authenticator. A data fl.ow diagram for the Authenticator
is given in Figure 10.

To simplify things, assume that everything pictured
in Figure 10 is occurring on one Server-node (i.e. the print

354

AUTHENTICATOR'S
QUEUE

AUTHENTICATOR

VMS USER DAT A

Print Request (1

GE ISO PRINT SERVER Oct. 1986

Figure 10: Flow diagram for Authenticator usage.

is a local print). Three bubbles are pictured. Two of the
bubbles, the "Authenticator" and the "Print Server" are
actually part of the same process (ie. the Server process).
The third bubble, "User Process", is a separate process
and represents some user who has invoked the print service
user-interface via a print command. An explanation of the
interaction between these three bubbles follows. The num­
bers in parentheses indicate numbers next to the arrows
in the picture.

When the Server first starts up, it creates a perma­
nent mailbox (distinct from the one used for connection
requests) that is used by the Authenticator. An asyn­
chronous read is placed on this mailbox. When the print
service user-interface is invoked by the user, one of the
things it does is create a temporary mailbox. It then as­
signs a channel to the Authenticator's mailbox and writes
its own temporary mailbox unit number to the Authenti­
cator's mailbox (1). The mere act of writing this informa­
tion to the Authenticator causes it to wakeup and use the
completion I/O status block to get the user's process ID.
This process ID is used by the Authenticator in a call to
SYS$GETJPI to generate a record of information about
the user (2,3). It then generates a random number or "key"
and associates that number with the nser information (4).
A timer is set by the Authenticator so that the user infor­
mation will become invalid in a very short period of time.
Finally, the Authenticator writes this "key" back to the
user process (5). The user process (interface) uses this key
value in a print request (6,7). The Print Server receives
the request and queries the Authenticator about the user
by specifying the key (8). If user data is associated with
the key, it is sent to the Print Server (9). The Print Server
then uses this information to validate that the user who
made the print request in fact has access to the files.

The authentication information that the Print Server
makes most use of is the username and the uic (user iden-

tification code) of the user who submitted the request. In
order to determine if the user has access to the file(s), the
Print Server temporarily changes its uic to that of the user
and tries to access the file(s). Success or failure determines
whether or not the user can print the file(s).

This scenario is the one always followed for any print
request. The user-interface communicates directly with
the local Server only. If files need to be copied, it is han­
dled cooperatively by the Servers. This scenario works
well if the file resides locally, because the uic used by the
local Server to determine file access is local to the node. If
the file(s) to be accessed reside on some other VAX, things
don't work as nicely. This is due to the fact that if a user
has several accounts on different VAXes, it is likely that the
accounts won't have the same username and uic on all of
them. If the user is on VAX-A and the file(s} to be accessed
are on VAX-B, then the VAX-A Server sends the authen­
tication information it generated locally to VAX-B. The
VAX-B server ul'!es the username/uic to access the files.
In the event that access fails, the user would have to spec­
ify a username-password as part of the file specification. In
that case, the server would verify the username-password
from the system user authorization file. If correct, the uic
from that account is used to access the files.

4.0 RESULTS

4.1 Performance

When we started the Print Server project one goal we set
was that this new network print service should perform no
worse than twice as slow as the DCL copy-print (or direct
copy to a device). We found that an unloaded server per­
forms quite comparably to its DCL counterparts. Timings
were completed by summing the CPU time for each pro­
cess involved in a print. We believe the timings, though
somewhat crude, give a pretty good indication of the Print
Server performance. In all, two categories of printing were
compared: completely local printing, and remote printing.
There were three sizes of files printed: small (3 blocks},
medium (92 blocks), and large (249 blocks). The results
are described in the sections below. All timings were per­
formed on unloaded systems.

4.1.1 Local Printing

The timings for local printing for each category of file
(small , medium , and large) are specified below for
both the NET PRINT and DCL PRINT commands. The
timing for NET PRINT consisted of summing the CPU­
seconds for the Job Controller, Symbiont, NETACP, the
NET PRINT command, and the Print Server. Timing
for PRINT consisted of summing the CPU-seconds for the
Job Controller, Symbiont, and the PRINT command itself.
The values listed are approximate CPU-seconds. Though
NETPRINTwas slower than the DCL PRINT, it was no
worse than twice as slow, and thus satisfied our perfor­
mance goal

355

PROCESS SMALL MEDIUM LARGE
Job Controller 0.36 1.12 2.20
Symbiont 0.37 3.23 8.27
NETACP 0.21 1.23 2.21
NET PRINT 0.80 0.78 0.82
Print Server 0.82 0.64 0.87

I TOTALS 2.56 I 1.00 1 14.37

Figure 11: Timings for local NET PRINT, m
CPU-seconds.

PROCESS SMALL MEDIUM LARGE
Job Controller 0.32 0.57 0.77
Symbiont 0.41 3.36 8.42
PRINT 0.78 0.71 0.71

I TOTALS i.51 1 4.64 I 9.9o 1

Figure 12: Timings for local DCL PRINT, in
CPU-seconds.

4.1.2 Remote Printing

The timings for remote printing for each category of file
(small , medium , and large) are specified below for both
the NET PRINT and DCL PRINT commands. In each
case, the timings consisted of summing the CPU-seconds
for all processes involved in the print on both the source
and target nodes. In the tables, source node processes
are prefixed by "s-", whereas target node processes are
prefixed by "t-". For NET PRINT, the contributing pro­
cesses on the source node were the Print Server, NETACP
(Network Ancilliary Control Process), and the NET­
PRINT command. On the target node, the contributing
processes were the Job Controller, Symbiont, NETACP,
and the Print Server. For the DCL PRINT command, the
contributing processes on the source node were the DCL
COPY command, and NETACP. On the target node, the
contributing processes were F AL (File Access Listener) ,
NETACP, the DCL PRINTcommand, the Job Controller,
and the Symbiont. The values listed are approximate
CPU-seconds. As can be seen, NETPRINT was some­
what faster than the DCL PRINT for the medium and
larger files.

PROCESS SMALL MEDIUM LARGE
s-Print Server 0.88 0.72 0.83
s-NET PRINT 0.11 0.08 0.12
s-NETACP 0.37 0.34 0.41
t-NETACP 0.61 1.19 2.02
t-Job Controller 0.56 1.08 1.78

t-Symbiont 0.39 3.43 8.41
t-Print Server 0.69 0.69 0.83
TOTALS 3.61 7.53 14.40

Figure 13: Timings for remote NET PRINT, in
CPU-seconds.

PROCESS SMALL MEDIUM LARGE
s-COPY 0.02 1.57 2.85
s-NETACP 0.02 0.05 0.10
t-FAL 0.80 3.09 3.51
t-NETACP 0.16 0.15 1.60

t-PRINT 0.61 0.68 0.75
t-Job Controller 0.41 0.54 0.66
t-Symbiont 0.36 3.31 8.22
TOTALS 2.38 9.39 17.70

Figure 14: Timings for •remote" DCL PRINT, in
CPU-seconds.

4.2 Current Status

Currently, Phase I of the Print Server (transparent print­
ing from VAX to VAX) is in beta-release within CRD. It
is our hope to begin Phase II of the Print Server project
in the near future. The code for Phase I of the Print
Server will be made available at the DECUS '87 Sympo­
sium, pending permission by the General Electric Com­
pany.

ACKNOWLEDGEMENTS

The authors wish to thank the following people for their
involvement with this project: Carl Chalek, for his work on
the user-interfaces; Chris Jolly for helping to finish some
modules, and for proofreading this paper; Howard Eskin
for his comments throughout; Keith Decker for help in
formatting this paper, and Mary Beth Renze, for her help
in formatting and proofreading this paper.

356

Using the KXTll-CA as an Intelligent
Communications Controller

Arthur Hartwig
University of Queensland

St Lucia, Queensland

Abstract

The KXTll-CA is a PDPll based microcomputer which can act as a slave (or
peripheral) processor to a QBUS system. It is useful for offloading processing from a
QBUS master CPU such as a micro-VAX or PDPll/83. This paper will describe the
development of a stand-alone run time environment for the KXTl 1, some useful
debugging tools and debugging coding techniques. Examples of the techniques will
be taken from an HDLC package for the KXTll developed at the Prentice Computer
Centre. Though the paper specifically references the KXTl 1-CA many of the
principles discussed are equally applicable to the use of any general purpose
microprocessor in communications.

Description of KXTll-CA board

The KXTll-CA is a QBUS peripheral which includes a T-11
CPU (roughly the same processing power as the PDP-11/
23), 32kbytes RAM, an asynchronous serial line (for a
console terminal) two synchronous/asynchronous serial
lines, some counter/timers and 24 bits of parallel i/o. The
board includes sockets which can be used to add ROM (or
EPROM) or extra RAM. Contained in ROM on the KXTl 1
board are various self-test routines, ODT and KXTl 1 load
routines.

Development environment

An environment is required for maintenance of source code,
conversion from source code to executable code and the
loading of the executable code into the KXTll-CA.

Interactive system with PDP-11 assembler
At the Prentice Computer Centre TOPS-10 provided the
program development environment, but other environments
such as RSXll, RTll, VMS and UNIX could be used equally
effectively.

KXTll loader
Code was developed to load the KXTll by DMA transfer
from both a PDP-11 running under RT-11 and a micro-VAX
running under V AX/ELN.

Interactive debugger
The DECUS DDT package (e.g., DECUS 11-SP-6) can be
configured to operate in a stand alone mode suitable for
execution on the KXTl 1. This debugger is far superior to
ODT in that it offers symbolic debugging, symbolic
instruction type-out and type-in.

KXTll Dump Analyser
The dump analyser (DDTll) which ran on the DEC-10
allowed a KXTll memory dump to be analysed to determine
the cause of failure of the code. This proved to be very
useful in helping to track down a variety of bugs which
caused internal consistency errors within the KXTl 1 code.
Similar facilities would be available through a suitably
modified version of the DECUS DDT package.

Proceedings of the Digital Equipment Computer Users Society 357

Protocol analyser
A protocol analyser is a very useful tool for observing what
a protocol implementation does in response to a variety of
events and stimuli. Often such devices can themselves
engage in conversation with implementations and a log of
such conversations is helpful in development. The symbolic
decoding provided by many such devices is also useful in
understanding protocol exchanges.

Replacing the operating system

The KXTl 1 stand alone application runs without the support
of an underlying standard operating system so a variety of
services should be provided to replace standard operating
system functions such as:

Machine error handling (memory dumps)

It was decided early on that in the case of an unexpected
condition arising the KXTl 1 code should be dumped into a
file for later analysis. This is the familiar "crash dump"
action included in many operating systems. However for it
to be possible to create a crash dump the machine must
"fail" in a well defined way. Therefore interrupt vectors for
machine errors (such as illegal instruction) must all perform
a well defined action. A simple but effective approach is to
execute an EMT or TRAP or IOT instruction on such a
condition. Then code a handler for the EMT (or TRAP or
IOT) interrupt to save all registers on the stack and save the
stack pointer away.

However if the DDT package is being used certain vectors
must be preserved to the values set by DDT. Conditional
assembly can easily cope with this.

MACR0-11 code to initialise the interrupt vectors might be:
CLR R0 ;Start at vector at 0
MOV #CRSINT,R1 ;Load error interrupt

;handler
MOV #340,R2

.IF OF FT.DDT
MOV NXMVEC,·(SP)

; Disable further
;interrupts

;Save vectors set by
;DDT

San Francisco, CA- 1986

MOV NXMVEC+2,-(SP)
MOV ILSVEC,-(SP)
MOV ILSVEC+2,-(SP)
MOV BPTVEC.-(SP)
MOV BPTVEC+2,,(SP)

. ENDC;.IF OF FT.DDT
14$: MOV R1 ,(R0)+

MOV R2,(R0)+
INC R2
BIC #20,R2

CMP R0,#400
BLT 14$

.IF OF FT.DDT

;Set interrupt handler
;and its priority
;Adjust priority
; But don't let T bit get
;set
;Gone high enough?
; Branch if no

;Restore DDT's interrupt vectors
.ENDC;.IF OF FT.DDT

MOV #EMTINT,EMTVEC ;Initialise EMT vector

If FT.DDT is undefined the vectors at 0, 4, 10 etc will
specify a processor status word for the interrupt handler of
340, 341, 342 etc. An interrupt through one of these vectors
will execute at CRSINT where in the following code segment
the EMT will force the newly loaded processor status word
of 340 (or 341 or 342 etc) onto the stack followed by the PC
(CRSINT + 2). The EMT interrupt handler then corrects the
PC on the top of the stack to point to the executed EMT
and saves all registers on the stack and then saves the stack
pointer so that examination of the dump will show the
active stack frame at the time of the crash.

CRSINT: EMT

EMTINT: SUB #2,@SP
MOV R5,-(SP)

MOV R4,-(SP)

MOV SP,#0

Multiprocessing

;Easy way to deal with
;unexpected interrupts
;Point to offending EMT
;Save the registers
;on the stack

;Save stack pointer
;Dump KXT11 memory
;to QBUS host.

Considering a KXTl 1 application to be a number of
independent processes is a useful structuring tool. A
protocol implementation can often be described as a receive
process, a transmit process and a timer process. The
transmit process creates messages and starts the serial
interface chip transmission. The transmit interrupt handler
manages the transmit done interrupts from the serial
interface chip, supplying a new character on each interrupt
until the whole message has been transmitted then it disables
interrupts and schedules the transmit process which will
look to see if a new message can be transmitted. Similarly a
receive process can enable receive interrupts and allow the
receive interrupt handler to assemble a message. When a
message has been assembled by the receive interrupt handler
it schedules execution of the receive process which then
examines the newly received message and decides what
action to take based on the protocol specification. The
transmit and receive process can communicate through
shared variables and flags. For example a newly received
message may need to be acknowledged, so its sequence
number might be stored, a flag set for the transmit process
saying an acknowledgment must be sent and the transmit
process scheduled. The timer process is called periodically

358

by the clock interrupt code (usually the clock interrupt will
cause scheduling of the timer process rather than calling it
directly during interrupt processing) to force retransmissions
on time-out or force the transmission of a particular
message to probe the other end of the line to determine its
state .

The process scheduling can be very simple. Each process
may be allowed to use all machine registers and coded
simply as a subroutine. Then the scheduler needs only to
decide what subroutine to call. A bit mask will easily allow
up to 16 different processes to be scheduled. Scheduling can
easily be either strictly priority based, or round-robin. (This
scheme doesn't easily support pre-emptive scheduling, but is
very low overhead.)

A very simple scheduler might be as follows:

LOOP: MOV REQMSK,R0
BNE 10$
INC NULCNT

BR LOOP

10$: MOV #REQTAB,R1

MOV #1,R2
20$: ASA R0

BCC 40$
BIC R2,REQMSK
MOV @R1,#0

JSR PC,@(R1)+

CMP SP,#STACK

BEQ 30$
EMT

30$: CMP 0,#CRSINT
BEQ LOOP

EMT

40$: ASL R2

TST (R1)+

BNE 10$

BR LOOP

.MACRO DESPA T
X ARC
X BRC
X AXM
X BXM
X CLK
X HST

.ENDM
$$

.MACRO X A
RQ$'A = $$
$$ = $$*2
.WORD REQ'A

;Anything to do?
;Branch if yes
;Else count times
;through idle loop
;And look again

;Load addr of
;table of despatch
;addresses
;Mask for requests
;Shift out a possible bit
;Branch if not requested
;Clear the request
;Remember last
;despatched
;Go there - shorter than
;JSR PC,@(R1)
;Check he didn't smash
;stack
;Branch if OK
;Else doomers

;Smashed 0?
;Branch if ok, start
;again
;Else its doomers

;Shift mask along one
;place
;Advance to next word
;in despatch table
;See if had request for
;next entry
;At end, see if another
;to schedule

;Channel A receiver
;Channel B receiver
;Channel A transmitter
;Channel B transmitter
;Clock
;Host interface

;Highest priority

;Set request flag
;Step to next flag bit
;Set despatch address
;for process

.ENDM X

DESPAT
;Generate table

.WORD 0 ; Mark its end

Note the use of the EMT instruction to cause a KXTl I crash
if location zero no longer contains CRSINT when the
scheduled process suspen:ls itself (returns). Location zero
might be easily inadvertently modified if an index register or
buffer pointer becomes zero unexpectedly, either due to a
coding or logic error.

Deliberate corruption of location 0 is a convenient way to
generate a crash dump for the purpose of examining a
running system to try to determine why it is behaving the
way it is.

CPU use statistics

The scheduler described above can very easily test for
something to schedule. The mask is zero if there is nothing
to schedule. In this case a null time counter can be
incremented. On a clock interrupt the value of the null
counter gives a measure of idle time during the last clock
tick. An averaged null time value can be easily computed in
two instructions:

ADD NULCNT,NULAVG ;Up average of null time
ASR NULAVG
MOV NULCNT,NUL TIK ;Record null count over

;last tick
CLR NU LC NT ;Reset idle counter

In a steady state system NULA VG converges fairly rapidly to
the long term null time value.

The statistics from the idle loop counter can be used to gain
some idea of the performance of the system. When there are
no processes wanting to run the idle loop is executed about
1854 times per clock tick. With a single line operating at full
speed 19.2kbps full duplex merely transmitting and receiving
characters this value is reduced by 30C1Jo, with two lines at
19.2kbps and HDLC frame interpretation and 120 byte
information frames this value is reduced by 65 % .

Buffer management

Communications protocols commonly allow for variable
length messages to be exchanged between communicating
systems. In a system with "sufficient" memory it would be
possible to allocate a number of fixed length buffers each
capable of holding the longest message. Such buffers could
be very quickly added to or removed from a buffer free list.
However the KXTl I-CA board doesn't have "sufficient"
memory to allow the adoption of this technique. Therefore
variable length buffers are required to make optimum use of
available memory. However this can require fairly complex
buffer management routines (particularly to avoid excessive
fragmentation) and cause problems if buffers need to be
allocated during interrupt processing. (To maximise
throughput interrupt routines must be as short as possible.
Spending unpredictable lengths of time in buffer allocation
during interrupt processing is a very undesirable practice.)

359

In protocols such as SDLC, HDLC and Bisync the end of a
message is marked by a particular bit sequence and so
cannot be known before hand by the receiver. In contrast,
DDCMP includes a byte-count in a message header so there
is some scope (but not really very much due to the timing
constraints) for pre-allocating a buffer to hold all the
message.

A useful compromise between the conflicting requirements
of being able to process variable length messages, memory
efficiency and speed of buffer allocation and deallocation is
to provide a pool of fixed length buffer fragments and
chain these together (where necessary) to provide a variable
length buffer composed of a linked list of fragments. The
chain can use the first word of each fragment for the
linkage with a link of zero terminating the chain. The list of
free fragments can be maintained by pointers to the first
and last fragments on the list. Then the operations of
removing a buffer fragment from the free list and adding a
buffer fragment to the free list are both short and simple
operations.

Code to add a fragment (whose address is in RO) to the free
list might be:

CLR @R0 ;Clear link - this will be

MOV R0,@LSTFRE

MOV R0,LSTFRE

;end of chain
;Append this fragment
;to end of chain
;Point to new end of
;chain

Code to remove a fragment from the free list and place its
address in RO might be:

MOV FIRFRE,R0 ;Load pointer to first
;free fragment

MOV @R0,FIRFRE ;Make next on list the
;first free

CLR @R0 ;This is not yet linked
;to another

Of course if these code fragments are to be called by
interrupt handlers then the CPU must execute these code
segments at level 7 and the CPU bus request level must be
saved and restored around these code segments.

If the buffer fragment length is an integral power of two
(e.g., 32 decimal) and the fragments are all allocated so that
they begin on an address boundary which is an integral
multiple of the same power of two then the low order n bits
of a buffer fragment address are always 0 and this property
may be used to easily follow the fragment chains. Code for
following the chains might be:

MOVB (R0) + ,(R1) + ;Copy a byte from
;buffer

BIT #BUFSIZ-1,R0 ;Reached end of
;fragment?

BNE 10$;Branch if no
MOV -BUFSIZ(R0),R0 ;Yes, start at next

;fragment
TST (R0)+ ;Skip over its link wc.,rd

10$: I•••

It is also useful to maintain a count of fragments currently
free and the maximum number of free fragments. Such
counters enable checks to be made that demand for buffer
fragments doesn't exceed supply - that is the free count
doesn't drop to zero.

Maintaining a "low water mark" of the free buffer count
enables evaluation of the buffering strategy. Buffer
management could be a problem to a KXTl 1 application
because the host can supply messages to send far more
quickly than the KXTl 1 can send them. Therefore
indiscriminate copying to KXTll memory of messages for
transmission could cause a lockup situation due to buffer
exhaustion. If there are no buffers available there can be no
messages received so no messages which have been
transmitted can be acknowledged so none of the buffers
used for messages which have been transmitted can be
returned to the free pool so the no buffer condition
continues.

Coding to ease debugging

It is very easy to succumb to the temptation of optimism
and believe that an implementation will be correct on initial
coding. This rarely happens and even if it did problems can
arise due to different implementors making different
interpretations of the protocol specifications. Therefore it is
useful to build into the code mechanisms which will leave
tracks to help assist the discovery of why the
implementation behaves as it does.

Asynchronous entry to debugger
An asynchronous entry into the debugger is a very useful
tool for suspending the KXTl 1 application and allowing
variables to be examined or modified or the execution flow
to be changed. Debugger breakpoints are of no use if
execution does not reach the breakpoint. For example, there
may be no messages sent in response to incoming frames. If
the problem is that the transmit process is not scheduled
then having a breakpoint in the transmit process will not
assist the programmer to discover why no frames are being
sent.

Since the debugger is present there must be a console
terminal. A receive interrupt handler for the console
terminal might include a check for a special character (eg
control-C) and if it is seen execute a BPT (BreakPoint Trap)
instruction which will cause execution to enter DDT.

The asynchronous entry to the debugger can also be used to
deliberately corrupt location zero to generate a crash dump
for debugging purposes; for example, to see why
communication is not proceeding.

Counters and statistics
Especially in the early stages of development it has been
found to be useful to include instructions to maintain
counters of the number of times particular events have
occurred or particular code sequences have been executed.
Event counters may be incremented from a number of
places within the code whereas "code sequence counters"
are incremented only once each time the code sequence is
executed and so can indicate whether a particular code
sequence has been executed or not.
A example may help to make the distinction clear. A
counter for receiver overruns may be incremented from a
number of places in the code: on hardware receiver overrun,
on receiving end of frame when there isn't a buffer

360

available to allocate for reception of a new frame, or even
partway through receiving a frame if a fragment is full and
another one is not ready for storing the next character. The
receiver overrun counter may indicate there is a problem,
the other counters suggest the particular area that might
require a new strategy.

Counters of protocol events can help to identify problems
caused by the parties attempting to communicate using
incompatible configurations (e.g., in HDLC one is a DTE
and the other also a DTE or incompatible maximum frame
lengths). There is a story (believed true) of two laboratories
in different parts of the country implementing X.25 and
agreeing to use a default maximum packet length of 255
bytes. However was this 255 bytes of data or did the 255
include the X.25 header? The two laboratories adopted
different interpretations. The two networks based in the two
laboratories mostly communicated but occasionally the
machines in one of the laboratories crashed in turn.
Eventually it was found the cause was the other laboratory
sending a packet with 255 bytes of data. This packet
overflowed allocated buffers and corrupted buffer pointers
but the corruption didn't have any impact until after the
packet had been forwarded; then the machine forwarding
the 255 byte packet crashed. However the next machine to
receive the 255 byte packet again managed to successfully
forward the packet before crashing.

It is good practice to assume the party with whom you want
to communicate will use a strange dialect of the protocol,
and then to write code to guard against it. Of course in the
case just mentioned the particular implementation would
not have been very robust if two abutting two hundred byte
frames were transmitted and the intervening flag was
corrupted by line noise.

Code sequence counters are helpful also in producing
correctly functioning interface drivers. Documentation
accompanying interface chips often does not give much
detail on how the chip should be driven, especially in coping
with error situations. Documentation is often vague
concerning even straightforward things. For example is the
end of frame status returned before, during or after the
interface chip returns FCS bytes (if indeed the chip returns
the FCS bytes at all)?

It is likely that "permanent" counters will be required for
protocol events such as CRC errors. Other counters may be
required only during the debugging phase. Code to maintain
such counters may be produced by a MACRO then the
definition of the macro changed when the counters are no
longer required. The following MACRO maintains a counter
or maintains the value of a variable the last time the
MACRO code was executed depending on whether or not a
MACRO parameter was specified.

.MACRO TRACE$ ARG

.IF BARG
INC #0

.IFF
MOV ARG,#0

.ENDC

.ENDM

The code sequence generated by the MACRO maintains a
counter in only 4 bytes or maintains a value in no more
than 6 bytes; alternate means would be slower in execution
and require more space. However this technique is of no use
if code and data are mapped separately or code is stored in
read-only memory. In this case the MACRO should be
modified to cause updates of a block of read-write memory
and a symbol defined to remember how much such memory
should be allocated for the block.

Clock interrupt check for looping

The responsiveness of the KXT software depends on the
individual processes not taking "too long" (half a second?).
The clock interrupt handler can easily enforce this by
incrementing a counter every tick and requesting the
running of the timer process which clears the same counter.
If the clock interrupt handler increments this counter to too
high a value it executes an EMT forcing a dump. This is an
effective but brutal way of identifying the "looping"
process! The main scheduler keeps the start address of the
last scheduled process and the stack section preserved in the
dump will point to the erroneously looping code.

Frame gobbler
A useful check on the protocol implementation is to
simulate line errors by randomly discarding received frames.
By "mashing" together a few changing numbers using the
XOR instruction and checking that an appropriate
combination of bits is zero a "random" frame discard
mechanism can be devised. Changing numbers can be taken
from the count of clock ticks since loading, count of frames
received, count of idle loops since last clock tick and count
of frames discarded.

Use of hardware features for protection
Where they are available hardware features should be used
to help identify coding errors. For example if the micro­
processor supports memory management it might be
possible to map the code to a read-only section so that a
write into the code will cause a memory management
interrupt. The initialisation code might choose to initialise
all the vectors then map the low area of memory (including
location 0) in a read-only segment; again resulting in a
memory management interrupt if a write occurs.

The T-11 CPU chip used in the KXTl I-CA does not have
memory management facilities but other PDP-11 CPUs (e.g.
the J-11) do.

Buffer fragment checking
If the address of buffer fragments is always an exact
multiple of a power of 2 the fragment address passed to the
"free a fragment" routine can be checked for
"plausibility"; for example:

BIT #BUFSIZ-1,R<ll

BEO +4
EMT

;Address of fragment
;plausible?
;Branch if yes
;No, crash

Similar code can check a fragment address on removal of a
fragment from the free list and so act as a cautious guard
against wild code scribbling over the free list.

361

It is also easy to return a fragment to the free list when the
fragment is already on the free list - simply by forgetting
to clear a stale pointer. Such problems usually result in the
free list coming to an end while the count of free fragments
is non-zero. A useful technique for tracking down such
problems is to allocate an extension fragment immediately
following the active part of the fragment. The extension
contains a flag which is set when the fragment is added to
the free list and cleared on removal from the free list.
Registers and a stack section are stored in the extension
fragment following the flag. When a fragment is added to
the free list, if the flag is set an EMT is executed and the
dump examined to determine the two code segments which
attempted to add the same fragment to the free list. The
active stack section when the EMT was executed will identify
the code which erroneously freed the fragment and the stack
section stored in the extension fragment will identify the
code which first put the fragment on the free list.

This technique proved to be helpful in one case of double
buffer de-allocation. The routine called to start the
transmission of a new frame firstly returns to the free list
the buffer containing frames that have been acknowledged.
The receiver process cannot de-allocate these buffers
because the buffers may be in use for re-transmission of
frames which hadn't been acknowledged within the time-out
interval. Returning the buffers to the free-list disturbs the
links between buffer fragments since the fragment most
recently added to the free chain always has a zero link.
Therefore if a chain of fragments is returned to the free list
while the transmitter is sending from that chain the situation
may arise that the interrupt handler will come to the end of
a fragment knowing there are more fragments to send from
but be unable to find those fragments since the links are no
longer intact.

When the transmitter is looking for a new frame to send it
is known that frames are not being transmitted so it is safe
to disturb the link pointers. If the transmitter underruns an
abort is sent. The serial interface chip generates a transmit
buffer empty interrupt when the abort sequence completes
(if interrupts are still enabled).

Now if the following sequence of events occurs trouble is
encountered:

I. A fragment being transmitted is exhausted so the CPU
BR level is lowered to allow further serial line
interrupts while the next fragment is prepared for
transmission.

2. Other serial line interrupts are processed lengthening
the time required to prepare the next fragment for
transmission and a transmit underrun occurs.

3. An abort is transmitted and the transmitter process
queued.

4. The transmitter process looks for something to do and
frees frames from the sent and acknowledged list.

5. Before the stale pointers are updated a transmit buffer
empty interrupt occurs on completion of transmission
of the abort and since there is no buffer to send the
interrupt handler tries to get a new one and calls
the top level "get a new fragment to send" routine
which then looks for sent and acknowledged frames
and then proceeds to free frames which have already
been freed.

This particular problem could have been solved in a number
of ways but the way chosen was to disable transmit buffer
empty interrupts just before sending the abort. There was a
window of about three instructions during which this
sequence of events could happen yet another
manifestation of Murphy's Law: "If it can go wrong it will
go wrong."

Frame trace

In the absence of a suitable protocol analyser the receive
and transmit processes can be coded to write to the console
a textual description of frames and a decoding of protocol
variables specified in frames (for example, the send and
receive sequence numbers). This tends to place quite a load
on the CPU but is useful for at least checking operation at
lower speeds. If the implementation doesn't work at low
speed it is unlikely to work at higher speed unless the
problem was the specification of too short a timer for the
actual speed of operation.

Hand check interrupt routines often

Interrupt handlers must be very careful in how they modify
the environment. It is especially important to check that the
interrupt handler saves and restores all registers used.
Failure to obey this rule could well result in intermittent
errors which are very difficult to find. All paths should be
carefully checked. This is another reason why interrupt
routines should be as short as possible.

Coding for performance

As well as having a robust protocol implementation with
adequate debugging facilities included it is desirable to have
an implementation with good performance.

Short interrupt routines - check longest path!

For high throughput in communications applications it is
important to make interrupt routines run for as short a time
as possible while interrupts are disabled. The HDLC
software driving both lines at 19.2kbps full duplex takes just
under 60% of the CPU in character interrupt handling while
HDLC frame processing uses 4% to 5% of the CPU. It
would appear initially that there is scope for increasing line
speeds by about 50% yet this is not possible in practice
without code modifications. This is because the length of
the longest code sequence with interrupts disabled and the
device characteristics together determine the maximum
throughput.

For example the KXTll-CA uses the NEC 7201 dual line
USART. This device has a three character receive buffer, a
single character transmit buffer and receive interrupts have
a higher priority than transmit interrupts. With both lines
operating at 19.2 kbps full capacity the transmitters require
a new character about every 400 micro-seconds and new
characters arrive for the receivers about every 400 micro­
seconds. The longest receive interrupt processing happens at
end of frame and takes at least 42 instructions to calculate
the length of the frame and add the frame to the receive
list. In the worst case the transmit interrupt handler takes
about 30 instructions to supply a new character. If all worst
case conditions coincide then transmit underrun occurs. (In
fact this was observed about three times an hour under test
conditions of 120 byte frames - perhaps too infrequent to
be concerned about. Nonetheless recoding the transmit
interrupt handler to reduce the delay in supplying a
character to the transmitter to no more than 6 instructions
removed the occurrence of transmit underrun.)

362

It is strange the chip designers chose to give most buffering
and highest interrupt priority to the receivers. Assigning the
transmitters higher priority would have relaxed timing
constraints for full duplex operation. It is also a pity the
KXT 11-CA designers did not provide hardware to vector the
8 different 7201 interrupt conditions directly to the
appropriate handler. The shortest 7201 interrupt routines
which are also the ones executed at least 9 out of 10 times
take 13 instructions of which 6 are consumed in despatching
to the appropriate condition handler.

Provided care is taken an interrupt routine can itself be
made interruptible. This is particularly useful if the
interrupt routine must perform some "long" operation such
as allocating a new buffer fragment. Take care though that
the interrupt condition no longer applies when the CPU
priority is lowered (that is the character has been read from
the receive buffer or a new character has been written to the
transmit buffer).

For example a receive interrupt routine might perform the
following actions:

1. Store character into buffer.

2. Update buffer pointer and counter.

3. If still room in buffer dismiss interrupt.

4. Else get another buffer fragment and chain it to end
of current list.

5. Dismiss interrupt.

This handler has further interrupts disabled for as long as it
takes to store the character and ensure there is buffer space
for the next character. Hence the maximum throughput is
limited not by how long it takes to execute the half dozen or
so instructions it takes to put a character into the buffer but
by the hundred or so instructions it takes to get a new
buffer and update the lists.

An alternative scheme making use of a primary buffer into
which characters are initially stored and a secondary buffer
which is allocated before the receiver is started might look
like this:

I. Store character in primary buffer.

2. Update primary buffer pointer and counter.

3. If still room in primary buffer dismiss interrupt.

4. Else set primary buffer pointer and counter to
secondary buffer (which becomes the new primary
buffer) and chain it into list.

5. Enable further interrupts (lower CPU bus request level
etc).

6. Allocate a new secondary buffer.
7. Dismiss interrupt.

This scheme ensures that there is a buffer available to store
a received character while there is a possibility of a receive
interrupt.

Use ofDMA

Injudicious use of the DMA controller can also significantly
lengthen the elapsed time spent in interrupt routines as the
processor and DMA controller compete for KXTl 1 bus
cycles. The KXT-HDLC software sets up the DMA controller
to transfer a whole frame to the QBUS host using the chain
reload feature of the DMA controller, and tests for
completion by polling. In the first version of this code
which attempted to do the correct thing by specifying DMA
interleave on the KXTl 1 bus with the CPU, operation of the
serial lines at speeds greater than 9600 bps resulted in
frequent transmit underruns. A logic analyzer revealed that
the DMA controller was faithfully alternating KXTl 1 bus
cycles with the CPU thus significantly lengthening the
interrupt serv1cmg time. It was necessary to inhibit
interrupts during DMA and inhibit DMA during interrupts.
The interrupt handler could turn off DMA on entry and turn
on DMA again on exit but this was not an optimum solution
since bus interleaving would still take place during interrupt
despatch, it would be awkward to do it for every interrupt
cause and it would not be necessary on all interrupts
anyway.

However the DMA controller doesn't perform DMA
transfers while bit 0 of the master mode register is clear. So
the controller is initialised in KXTl 1 bus interleave mode
without bit 0 set. In this state DMA transfers can be started
or suspended by toggling bit 0. Then the following code is
executed:

MTPS #340
BIS #1,DMA.MM

SIC #1,DMA.MM
MTPS #0

;Disable interrupts
;Allow DMA while
;interrupts are suspended
;Suspend DMA
;Allow interrupts now

;Test for DMA
;completion. If not
;complete branch back
;to MTPS #340.

This code sequence effectively allows DMA actlVlty in 4
word bursts with no contention for the KXTl 1 bus between
the DMA controller and interrupt service routines. The
addition of a few NOP instructions between the bit set and
bit clear instructions will allow additional DMA cycles in the
burst.

Use of DMA on the serial line does not cause problems due
to the relative infrequency of the DMA requests.

Use of addressing modes

Absolute memory addressing (turned on by the MACR0-11
directive .ENABL AMA) is faster than PC relative
addressing. This can provide a small performance gain
especially in frequently executed pieces of code (e.g.,
interrupt handlers).

363

Development of a Packet Switch Exchange

Arthur Hartwig and Danny Smith
University of Queensland

St Lucia, Queensland

Abstract

With increasing availability of X.25 implementations a need has arisen to
interconnect campus systems using X.25 and also to provide access to public X.25
networks from a number of campus systems. This paper describes an X.25 packet
switch which runs on micro-VAX CPUs under the VAX/ELN run-time system. The
switch has extensive tailoring facilities and uses KXTlls to relieve the micro-VAX of
HDLC processing overhead. The KXTl 1 HDLC software will be briefly described as
well as the switch and its facilities.

The Need for the switch - Some history

The Prentice Computer Centre's first X.25 connection was a
gateway between AUSTPAC, the Australian public X.25
network and the University's DECsystemlO based ANF-10
network. The gateway was originally developed at the
University of York (United Kingdom) and provided facilities
for terminal access in both directions and process to process
communication in both directions. File and electronic mail
transfer facilities were built on the process to process
communication facility and the so-called "Coloured Book"
protocols (widely used in the academic and research
community in the United Kingdom) were implemented on
the DECsystemlO and the gateway. These protocols provide
for process to process communication, file transfer,
electronic mail and terminal access (both X.29 and TS29, an
X.29 like protocol which copes much better with
establishing connections through gateways than does X.29).
The gateway also includes per user accounting facilities for
both interactive and process to process calls.

AUSTPAC

---+ GA+AY
ANF-10

X.25

+
DECsystem IO

In 1985 a UNIX based coloured book implementation was
installed in the Computer Science department and a simple
X.25 switching facility within the gateway was enabled. The
switching facility allowed X.25 access from the Computer
Science machine to the public network and vice versa (but
bypassing the X.25 +-+ ANF-10 conversion) and
DECsystemlO access to both the public network and the
Computer Science machine (utilising the X.25 +-+ ANF-10
conversion function of the gateway).

Comp Sci J [AUSTP:~25
-f GATEWAY -+-

ANF-10

DECsystemlO

In late 1985 a MICOM X.25 PAD was installed in the
campus MICOM 600 circuit switch to allow one of our large
customers access to an IBM mainframe from the public data
network. The gateway switching function was configured to
allow X.25 access from both the public network and the
Computer Science machine to the MICOM PAD. The

Proceedings of the Digital Equipment Computer Users Society 365

MICOM PAD was configured to prevent it making X.25 calls
since such calls could not be properly accounted for.

MICOMPAD
Comp Sci AUSTPAC

X.25
GATEWAY

ANF-10

DECsystemlO

Now the single gateway installed to support protocol
conversion is potentially also performing a significant
switching function and handling considerably higher
character interrupt loads than it was ever intended to do.

It was expected that increasing use would be made of the
X.25 connection to the public network and the bandwidth
required on that link would also increase. It was also
expected that an increasing number of machines would
require access to the public network so some means of
offloading character interrupt processing from the gateway
was required. At the same time the life of the DECsystemlO
and the ANF-110 network was drawing to an end so it was
decided to move the switching function to a dedicated
machine and allow the gateway to return to providing just
the ANF-10/X.25 protocol conversion function.

VAX 8650
Comp Sci

---+

AUSTPAC

X.25 SWITCH

DECsystemlO

Micro-VAX
dev sys
MICOMPAD

+
X.25

ANF-10

It was decided in the absence of alternative DEC products to
use the KXTll-CA as an intelligent communication
processor and write an HDLC implementation for it. (At the
time the KMVl 1 HDLC software was not available and even
if it was the KXTll provided a much lower "per line" cost
as well as the possibility of supporting many more physical
lines on a fully configured switch than would be possible
using KMVlls. This is because the KXTll provides two lines
on a single quad width board for only a slight increase in
cost over the KMVll which provides a single line on a quad
width board.)

San Francisco, CA- 1986

The micro-VAX running under VAX/ELN was chosen for the
switch - mainly because of the good development tools
available but also because the VAX CPU offered a much
larger address space than the PDP 11 (the machine used for
the original ANF-10 gateway). The size of the address space
was an important consideration because the PDP 11 gateway
was becoming harder and harder to maintain because
adding new functionality increasingly required looking for
ways of fitting new code into an address space that was
already nearly full.

Overview of X.25

X.25 is an international standard (CCITT) protocol for
connecting a computer (or packet mode terminal) to a
public packet switch network. In the literature a pa:ket
mode terminal is often called a DTE (for Data Termmal
Equipment) and the network DCE (for Data Circuit
terminating Equipment). The protocol can be considered to
consist of two parts: a frame level protocol (HDLC for
High-level Data Link Control) for ensuring the correct
transfer of information between the network and the packet
mode terminal and a packet level protocol for setting up,
maintaining and closing down a number of circuits between
packet mode terminals connected to the network. The term
X.25 is sometimes (incorrectly) used to refer to the packet
level protocol.

Frame level protocol handling

KXTll-CA boards (with HDLC software written at the
Prentice Computer Centre) are used to implement the frame
level protocol of X.25. The KXTll HDLC code transfers
correctly received information frames to micro-VAX
memory and transfers buffers from micro-VAX memory to
KXTl l internal memory for transmission as information
frames. All HDLC processing is done within the KXTl 1.
Additionally the KXTl l HDLC software informs the QBUS
host of HDLC events such as "HDLC started", "HDLC
failed" and "HDLC reset".

The KXTl I HDLC code resides in a file in a named volume
on the micro-VAX. The code is loaded into the KXTll by a
two stage process. The file is read and a KXTI I memory
image created in micro-VAX memory, then the KXTll
memory image is DMA transferred into the KXT 11 memory.

If the KXT 11 HDLC code detects an unrecoverable or
unexpected error condition it sets a status bit and interrupts
the micro-VAX to request a memory dump. The micro-VAX
writes a dump file which can be subsequently analysed to
determine the cause of the crash.

HDLC has a number of configurable parameters: window
size (maximum number of sent but unacknowledged
information frames), retransmission timer, maximum frame
size and maximum number of times a frame may be
retransmitted. In addition a HDLC implementation behaves
slightly differently depending on whether it plays the role of
DTE (Data Terminal Equipment that is a packet mode
terminal) or DCE (Data Circuit terminating Equipment or
network). All HDLC parameters and DTE/DCE behaviour
can be individually configured for each KXTI I line by
command from the micro-VAX. Though HDLC has two
frame structures; one supporting a maximum window size
of seven and the other a maximum window size of 127 only
the variant supporting the window size up to seven is
currently implemented.

The current version of the KXTl I HDLC software supports
two lines operating at 19.2kbps with some processor
capacity to spare.

Packet level protocol

x.25 provides Permanent Virtual Circuits (PVCs) and
Switched Virtual Circuits (SCVs or virtual calls). Both
classes of virtual circuits provide bidirectional full duplex i/
o channels. SVCs differ from PVCs in that SVCs are created
as requested on the transmission of a CALL REQUEST
packet from the packet mode terminal to the network. PVCs
are created when the network is configured and are
permanent in that they are always setup.

Each valid X.25 packet consists of a three byte header
possibly followed by additional data. The form of the
packet header is illustrated in the following diagram.

8 bits

GFI T LCGN

LCN

PTI

The four bit GFI (General Format Identifier) is a field which
identifies whether the packet structure follows the rules for
the modulo-seven sequencing form of the packet protocol or
the modulo-127 sequencing form. The "Q" (Qualifier) and
"D" (Delivery confirmation) bits also reside in the GFI field
but they are of no significance to the switch.

The four bit LCGN (Logical Channel Group Number) field
and the eight bit LCN (Logical Channel Number) field
together form a 12 bit logical channel identifier which is
used by both the packet mode terminal and the network to
identify a particular virtual circuit. This number is purely
local to the interface between the packet mode terminal and
the network. (This is different from DECnet in which each
logical link is identified by a separate link address for each
end of the link. In DECnet the two link addresses will
normally be different though they may be the same.)

The eight bit PTI (Packet Type Identifier) is encoded in a
variety of ways but in all cases examination of this field is
sufficient to determine the type of the packet.

PACKET LEVEL STARTUP

The packet level protocol is initialised by the network and
the packet mode terminal exchanging RESTART REQUEST
(or RESTART INDICATION) and RESTART CONFIRMATION
packets. (The RESTART REQUEST and RESTART
INDICATION packets have the same format. REST ART
REQUEST is the name given to the packet sent from packet
mode terminal to network and RESTART INDICATION is the
name given to the packet sent from network to packet mode
terminal.) In the event of a collision (e.g., the packet mode
terminal receives a RESTART INDICATION packet in
response to a RESTART REQUEST packet) the initialisation
procedure is considered to have completed.

I

N"wmk I

RSTA REQ--->

DTE <-- RSTA CONF

ESTABLISHING CALLS

A packet mode terminal will subscribe to a certain number
of logical channels of each type and this will determine the

366

range of logical channel numbers that it may use. The
packet mode terminal when establishing a SVC will use the
highest allocated logical channel which is not in use. When
the packet mode terminal sends a CALL REQUEST packet
the network will pass to the called packet mode terminal an
INCOMING CALL packet with the logical channel being the
lowest allocated logical channel which is not currently in
use. In case of a collision the packet mode terminal wins in
that it ignores the INCOMING CALL packet and waits for a
response to its CALL REQUEST packet.

For more specialised applications many networks allow a
packet mode terminal to subscribe to "incoming-only"
logical channels (the packet mode terminal is not allowed to
make outgoing calls on these channels) and "outgoing­
only" logical channels (the network will not send to the
packet mode terminal any calls using those channels). Use
of incoming-only or outgoing-only logical channels may
reduce or eliminate the_ possibility of call collision.

The following diagram illustrates what might happen when
a particular packet mode terminal sends a CALL REQUEST
packet to the network. Suppose both packet mode terminals
have subscribed to logical channels 256 to 264 for switched
calls and no logical channels are in use. The packet mode
terminal issuing the call chooses its highest subscribed
logical channel which is not in use (264). The network in
sending the corresponding INCOMING CALL packet chooses
the lowest free subscribed logical channel (256).

Calling CALL REQ->

DTE LCI = 264

[Network J

Called <- INCOMING CALL

DTE LCI = 256
I

Note that the CALL REQUEST packet and the INCOMING
CALL packet have the same format though the INCOMING
CALL packet may not be an exact copy of the
corresponding CALL REQUEST packet. CALL REQUEST is
the name given to the packet sent from the packet mode
terminal to the network while INCOMING CALL is the name
given to the packet sent from the network to the packet
mode terminal. A packet mode terminal can reply to an
INCOMING CALL packet with a CALL ACCEPTED packet if
it is willing to accept the call (in this case the calling packet
mode terminal receives a corresponding CALL CONNECTED
packet) or a CLEAR REQUEST packet if it is not willing to
accept the call (in which case the calling packet mode
terminal receives a CLEAR INDICATION packet).

I_,
CALL N
REQ e INC

D CALL D
T w T
E 0 <- CALL E

+-- CALL ACC
CONN k

367

CLEARING CALLS

Virtual calls are destroyed by either party (or by the
network in an "emergency") sending a CLEAR REQUEST
packet and the other party responding with a CLEAR
CONFIRMATION packet.

CLR -> N
REQ e CLR

D IND D
T w T
E 0 CLR E

CLR CONF
CONF k

The CALL and CLEAR packets may contain additional
information such as a request for reverse charging (CALL
packets) or call statistics (CLEAR CONFIRMATION packet)
but the presence or absence of this information doesn't
change the basic action of the switch.

FLOW CONTROL

Once a call is set up flow control is maintained by a
"rotating window" mechanism with the receiver sending a
RECEIVER READY packet to advance the window.

Identifying packet mode terminals

Packet mode terminals are allocated an address of up to 12
digits. The CCITT standard X.121 defines the address
format. Additionally at least two digits are available for
subaddressing within a particular packet mode terminal.
Some networks may require the specification of an escape
prefix digit (such as for calls to another network or another
country) so an address may be up to 15 digits long.

Action of the switch

Startup

The switch is down-line loaded over Ethernet from a
DECnet host supporting this function. Alternatively in a
non-DECnet environment the switch code may be loaded
from floppy disk.

All KXTl ls which are installed in the switch and for which
the switch has been configured are loaded with the HDLC
code and execution of that code commenced. The switch
configuration file is read and HDLC parameters set for each
physical line defined in the switch configuration file. Then
when the KXTl 1 notifies the switch that HDLC has started
on a particular line a RESTART REQUEST or RESTART
INDICATION packet (as appropriate) is sent over that line.
On completion of the packet protocol restart procedure the
line is marked as being in a state in which virtual calls may
be established.

Post initialisation
The switch must take significant action on a CALL
REQUEST packet and again on a CLEAR CONFIRMATION
packet. The address in the CALL REQUEST packet is
compared with each entry in a switch table to determine the
line along which the call is to be redirected. Then the logical
channel table for the target line is examined to find a free
logical channel for the next leg of the call. The logical
channel tables for both lines are then updated so that each
table specifies the logical channel identifier and line for the
other call hop and both line tables point to a block used for
keeping statistics on the call.

Thereafter packets arriving at the switch are examined to

find the logical channel number and then the line logical
channel table consulted to determine the line to which the
packet should be redirected and the new logical channel
number it should be assigned. If the packet is a data or
interrupt packet the call statistics block is updated to keep
count of (possibly) chargeable segments sent and received.

On a CLEAR CONFIRMATION packet arriving at the switch
the call statistics block is updated with the call clearing
time, the statistics written to a log file and the cross line and
logical channel linkages cleared.

The call statistics block contains the call start and call finish
time, calling line number, called line number, called
address, calling address and segments sent and received by
the calling packet mode terminal. The call statistics blocks
are written to a file which can be subsequently processed to
generate bills for departmental computers.

Switch configuration file

The details of the action of the switch are defined by the
configuration file which is stored on floppy disk. The
configuration file is an ASCII text file which sets HDLC
parameters for each each communications line to be used,
defines parameters for the packet level operation of each
line and defines the switch tables to be used for determining
where call requests are to be routed. The configuration file
also specifies where the KXTI I HDLC code is to be loaded
from and where KXTll crash dumps are to be written.

Switch Tables

The switch tables are defined in the switch configuration file
and specify the call routing used. For incoming calls from
public networks the switch table can be defined so that calls
are routed according to the sub address specified in the
INCOMING CALL packet so that calls specifying a particular
sub address or even class of sub-addresses are routed to a
particular line. For calls from campus X.25 nodes switched
out to the public network the switch table can specify how
the calling address in the CALL REQUEST packet is to be
modified by the switch in order that the called packet mode
terminal can return the call if it wishes to do so.

Use of VAX/ELN in the switch

The v AX/ELN runtime kernel provides a very good
environment for running the switch code. The extended
PASCAL is certainly far easier to use for this sort of
application than MACRO-I I. The main problems
encountered have really been learning ELN PASCAL and
working out the most appropriate way to achieve our aim.
One of us had written some simple ELN applications
previously and read a few of the device drivers while it was
the first exposure to ELN for the other.

The switch consists of a single program with a KXTI I load/
dump process which is common for all configured KXTlls
and a KXTI I device driver process which is capable of
handling up to four KXTlls. (The limit of four KXTlls is
because V AX/ELN allowed a process to wait for at most
four events.) Additional KXTI ls can be handled by creating
at run-time additional processes as needed to handle the
additional KXTI ls. The call switching is handled by
subroutine calls from the driver process and providing
driver entry points for the switch code to call to request
transmission of packets. It was thought that this method

368

would allow higher throughput than would be possible using
a somewhat more conventional approach of a separate
driver program for each device and message passing between
driver and application. On a micro-VAX I each message
passing operation takes about 3 milli-seconds for a single
page and two such operations would be required for each
packet if this "conventional" approach were used.
Therefore the switch would have a throughput of less than
160 packets per second. The approach adopted should
achieve significantly better figures than that but as yet no
measurements have been done on actual throughput.

From past experience with this sort of stand alone
application it seems the only serious lack of V AX/ELN is the
ability to take a crash dump and subsequently analyse the
dump to determine what the system was doing when the
dump was taken. There are problems that arise due to
careless use of dynamic memory, as well as subtle timing
problems which are not easily solved with an interactive
debugger.

Planned future enhancements

The switch currently provides the basic set of functions
which will meet the current needs of the Prentice Computer
Centre. Nevertheless some enhancements are planned for
implementation after a stabilisation period and after some
experience has shown what additional features would be
both useful and desirable.

New features for KXTI 1 HDLC code

The KXTI 1 performs all HDLC communication in character
interrupt mode. There is a DMA controller on the board
which could be used with one of the two communications
lines. By adapting the software to work in this way it is
hoped to be able to support operation of one line at speeds
of 48kbps and more with the other line still operating in
character interrupt mode at speeds of at least 19.2kbps.

Support for the modulo-127 frame sequencing variant of
HDLC would not be a major change but due to the limited
buffering available on the KXTI 1 board is not likely to be a
very useful change, especially since the current software
supports frame lengths up to 4100 bytes.

It is also proposed to adapt the software to allow use of a
clock on the KXTll board to provide an external clock and
remove the need for a synchronous null modem on short
haul lines. Use of this feature will be optional and due to
the hardware design of the KXTI 1 will be able to be used on
only one of the two lines.

New features for switch
Changes to provide support for permanent virtual circuits,
incoming only switched virtual circuits and outgoing only
switched virtual circuits would not be major, and these
features could be useful in certain specialised applications.

Network management facilities currently provided are quite
basic and this area will need considerable enhancement,
particularly in the area of error reporting and statistics.
Currently the switch assumes a DECnet environment for
generation of the configuration file, and perhaps the
network management facilities could include some method
of doing this through X.25.

DMI TUTORIAL AND
DESIGN APPROACHES FOR A VAX-DMI FRONT END

Roger Russ
Advanced Computer Communications

720 Santa Barbara Street
Santa Barbara, California 93101

INTRODUCTION
This paper discusses the Digital Multiplexed Interface
(DMI) specification, its background and its relationship
to other similar specifications. It covers all major
topics of the specification and gives examples of DMI
in a network. Finally, it discusses a design approach to
a V AX-DMI front end.

DMIBACKGROUND

DMI, Digital Multiplexed Interface, is an AT&T
specification that defines an interface between a Private
Branch Exchange (PBX) and a host computer. It is
intended as an interim specification while a standard is
developed for integrated voice and data services over
telephone equipment. This standard, Integrated
Services Data Network (ISDN), is being defined by two
international standards bodies: CCITT, the
International Consultative Committee for Telephone
and Telegraph, and ECMA, the European Computer
Manufacturers Association. A competing interim
specification, the Computer to PBX Interface (CPI), is
supported by Northern Telecom. Both AT&T and
Northern Telecom are committed to making their
specifications compatible with ISDN's evolving
standards.

There is interest in DMI for several reasons. First,
since it is sponsored by AT&T, DMI compatible
equipment will be common. There is already some
UNIBUS equipment that is DMI compatible, and more
will be available soon. Second, DMI presents an
interesting alternative to more commonly known
network configurations. Finally, DMI answers that
technical oddity: Why is the Tl rate 1.544 megabits
per second?

MAJOR DMI FEATURES

The DMI specification addresses three major topics.
These are framing, how data is presented; signaling,
how control information is passed; and data modes,
four operational modes that support the migration from
existing equipment to ISDN equipment. These topics

Proceedings of the Digital Equipment Computer Users Society 369

are summarized in Figure 1 and discussed in the
following sections.

Major DMI Features
Framing

• 04 Framing - Mandatory

• ESF Framing - Optional

Signaling

• Bit Oriented

• Message Oriented

Data Modes

• Mode O 64 Kbps transmission

• Mode 1 56 Kbps transmission

• Mode 2 Asynchronous/Synchronous terminal
transmission

• Mode 3 Virtual circuit service

Framing

Figure 2 shows the basic DMI frame. It is a serial
stream consisting of 24 channels and one frame bit.
Each channel contains one byte, so there are 193 bits in
a frame. Frames are transmitted every 125
microseconds, an 8k frames/second rate. So, each
channel has a 64k bits/second capability. This explains
the Tl rate: With 193 bits/frame, 8k frames/second
yields 1.544 bits/second. Channels 1 through 23 are
data channels and are called "bearer" channels or B
channels. Channel 24 is a special channel. It is the
signaling channel, called the "dialing" or D channel.
As a result, DMI is sometimes referred to as 23B + D.

San Francisco, CA- 1986

The final framing parameter is the superframe. A
superframe is simply a group of either 12 or 24 frames.
DMI has two options for framing, D4 or ESF. D4 and
ESF use the framing bit differently.

DMI Framing
i+----------1 Frame--------~

~~-~-----1_25~~~-~--~--~--
F Channel Channel Channel Channel

1 2 3 22
Channel

23
Channel

24 ..._..._ _ _._ __ ..__ _ __._~ -~-~ __ ..__ _ ___.

I -e bils- Channels = 24
Bils/Frame = 193

1 bil Bil Rale = 1.544 Mbps

First, let's discuss D4 framing. In D4, there are twelve
frames to a superframe. Figure 3 shows the 12 frames
and the bit position of every framing bit within the
superframe. The framing bit supplies either channel
framing or signal framing. Channel framing identifies
the start of the first channel and has a repetitive pattern
of 101010. Signal framing identifies the "A" and "B"
signaling bits. These bits are discussed in the section
"DMI Signaling" below. The sequence of the framing
bit in signal framing is 001110.

D4 Framing

Frame Bit FBit
Number Number ~ ~

1 0 - 1
2 193 0 -
3 386 - 0
4 579 0 -
5 772 - 1
6 965 1 -
7 1158 - 0
8 1351 1 -
9 1544 - 1
10 1737 1 -
11 1930 - 0
12 2123 0 -

ESF is short for Extended Superframe. Figure 4 shows
the framing bit in ESF. In contrast to D4 framing, ESF
has 24 frames per superframe and has three functions.
FPS is the Framing Pattern Sequence, 001011. It
identifies the start of a superframe and is used for frame
synchronization. FDL is the Facility Data Link. These
bits provide a 4k bits/second message facility that is
reserved for network use. The last column in Figure 4
is a 6 bit cyclic redundancy check (CRC) for each
superframe.

370

Extended Superframe (ESF)

ESF ESF F-Bit
Frame Bit Assignment

Number Number FPS FOL CRC

1 0 - m -
2 193 - - CB1
3 386 - m -
4 579 0 - -
5 772 - m -
6 96!:: - - CB2
7 1158 - m -
8 1351 0 - -
9 1544 - m -

10 1737 - - CB3
11 1930 - m -
12 2123 1 -
13 2316 - m -
14 2509 - - CB4
15 2702 - m -
16 2895 0 -
17 3088 - m
18 3281 - - CB5
19 3474 - m -
20 3667 1 -
21 3860 - m -
22 4053 - - CB6
23 4246 - m
24 4439 1 -

DMI SIGNALING

There are two types of signaling in DMI. The simplest
is Bit Oriented Signaling (BOS). The other, Message
Oriented Signaling (MOS), provides more
functionality.

In BOS, ones and zeroes correspond to a telephone's on
hook and off hook condition. These conditions perform
all signaling in BOS. For example, the pulsing of on
hook and off hook accomplishes dialing. As specified
in the basic frame, this signaling information is sent in
channel 24. The signaling bits for the 23 data channels
are multiplexed into channel 24 as shown in Figure 5.
Figure 5 shows the frame number in the left column
and the channel 24 bit number across the top. It shows
the contents of channel 24 through the entire
superframe. Bits 1 and 2 are the "A" signal bits,
ordered according to the channel number. Bit 3 is the
"B" signal bit. In DMI the A bit is always equal to the
B bit. And for BOS, these bits indicate either an on
hook or off hook condition. At the DMI transmission
rate, BOS provides a 1.5 millisecond update rate for
each channel. Bit 7 is a one in every frame except
frame 24. This bit is also used for frame alignment. All
remaining bits are unused and are always zero. The
bottom of Figure 5 shows that frame 24 is unique. It
contains a specified pattern in bits 2 through 8 that is
used for frame synchronization and frame alignment.
Bit 6 in frame 24 is an alarm indicator.

Bit Oriented Signaling

Frame Bit Use in Channel 24
Number 1 2 3 4 5 6 7 8

1 A13 A1 B1 x x x 1 x
2 A14 A2 B2 x x x 1 x
3 A15 A3 B3 x x x 1 x
4 A16 A4 B4 x x x 1 x
5 A17 A5 B5 x x x 1 x
6 A18 A6 B6 x x x 1 x
7 A19 A7 B7 x x x 1 x
8 A20 A8 B8 x x x 1 x
9 A21 A9 B9 x x x 1 x
10 A22 A10 B10 x x x 1 x
11 A23 A11 B11 x x x 1 x
12 1 A12 B12 x x x 1 x
13 A1 A13 B13 x x x 1 x
14 A2 A14 B14 x x x 1 x
15 A3 A15 B15 x x x 1 x
16 A4 A16 B16 x x x 1 x
17 A5 A17 B17 x x x 1 x
18 A6 A18 B18 x x x 1 x
19 A7 A19 B19 x x x 1 x
20 A8 A20 B20 x x x 1 x
21 A9 A21 B21 x x x 1 x
22 A10 A22 B22 x x x 1 x
23 A11 A23 B23 x x x 1 x
24 A12 1 1 1 0 y 0 1

This may seem complex, but, fortunately, frame
detection and signal bit identification are implemented
in available VLSI devices. These devices considerably
simplify a BOS format implementation.

MOS provides an X.25 link on channel 24. The DMI
specification defines a set of MOS messages that
provide much more capability than BOS. MOS
provides more sophisticated call setup and teardown
procedures. It also specifies enhanced maintenance
capabilities. The definition of these messages is
beyond the scope of this paper. As with BOS, all
signaling messages are sent in channel 24.

DMI Data Modes
Figure 6 is a summary of the DMI data modes. There
are four modes which range from the most simple,
mode 0, to the most complex, mode 3. Mode 0 is a 64k
bits/second facility. The electrical characteristics of the
transmitted data stream, called DS 1, has a zeroes
density requirement. No more than seven consecutive
ones may be transmitted. Mode 0 has no support for
maintaining this density requirement, so a mode 0 user
must supply the zeroes density. This mode is circuit
switched only. This means that connections are made
by physical circuits only; there is no virtual circuit
support. Mode 1 supports 56k bits/second. The eighth
bit in mode 1 is a status bit. This format provides
compatibility with existing switching equipment. As
with mode 0, mode 1 is circuit switched only. Mode 2
is intended for terminal traffic. It provides a 19 .2k
bits/second synchronous or asynchronous transmission

371

rate. Frame level High-level Data Link Control
(HDLC) is supported. Since HDLC has a ones density
requirement, the DS 1 zeroes density is satisfied by
inverting HDLC data. As in the previous modes, mode
2 is circuit switched only. Mode 3 is a 64k bits/second
service. It supports X.25 Link Access Procedure, D
channel (LAPD) which provides virtual circuit support.

ModeO 64Kbps Requires BSZS coding
Circuit switched only

Mode1 56Kbps 8th bit used for status
Circuit switched only

Mode2 19.2 Kbps HDLC (frame level)
synchronous Circuit switched only
& asynchronous

Mode3 64Kbps LAPD
synchronous Virtual circuit support

DMI NETWORK CONFIGURATIONS

The previous section gave a low level view of DMI.
This view loses sight of the utility of this service.
Figure 7 gives an example of a minimum DMI
configuration. It consists of a terminal, a PBX, and a
host computer. The connection between the PBX and
the front end is a DMI link. The terminal is connected
to the PBX through a terminal adapter which puts the
terminal data onto a DMI-like 2B + D transmission
circuit. This 2B + D circuit uses existing telephone
wiring, and the second data channel may be connected
to a telephone. The PBX is also connected to a local
telephone switching station. This local configuration

Local DMI Network

PBX

VAX

Terminal

To
Networks

can be easily expanded to include up to 23 terminals for
a single DMI line. DMI compatible terminals are
becoming available, as are DMI PBXs that may support
more than a single DMI line. Figure 8 shows an
expanded local DMI network that supports multiple
local hosts, multiple terminals, and voice.

Local DMI Network

lrnrrmial DMI Terminal

JIL Jit
Terrrnnal I /W

• ~\-=-
I /6

~~~~~~-i 

VAX 

Temmml 

~ 
L:J 

To 
Networks 

It may seem that this arrangement offers no advantages 
over other Local Area Network (LAN) technology. 
However, remembering that both data and voice 
applications share the same DMI equipment, some 
benefits become more apparent. For example, most 
offices already have a PBX, so a PBX in a configuration 
like that in Figure 8 could replace an existing device. 
The 2B + D lines use existing telephone wiring. This 
saves not only the cost of terminal cables, but the cost 
and problems of installation. Finally, the DMI link 
between the PBX and host reduces host cables by as 
much as 23 to 1. 

Figure 9 shows DMI in a wide area network. The 
network is achieved through existing Tl lines and 

Wide Area DMI Network 

Host 

DMI FE ...._~_. 
DMI 

PBX 

Network 

372 

telephone switching equipment. A remote terminal, 
which would be attached through the terminal adapter 
(TA) at the bottom of the figure, simply places a call to 
the appropriate number. The connection is established, 
and the user logs on. The PBX and telephone switching 
circuits handle the routing. As in the local example, 
this configuration is easily expandable. Figure 10 
shows an expanded network. Local site expansion 
happens by attaching additional equipment to the PBX. 
A new site results by adding another DMI PBX. 

Wide Area DMI Network 

Hos I 

Network 

Hos I 

V AX-DMI FRONT END PROCESSORS 

The section discusses VAX-DMI front-end design. 
The most influential design consideration is the 
availability of DMI support parts. Three groups of 
parts will be reviewed here. They are AT&T' s DS 1 
parts, Rockwell's R8071, and AT&T's Spyder. 

The DS 1 parts provide the electrical interface to the 
DMI lines. In addition to the electrical interface, these 
parts provide frame synchronization and extract 
signaling bits, and they provide parallel data on the 
internal side. Depending on the internal interface, this 
part set may consist of up to six VLSI devices, two 
transformers, and a timing generator. The minimum 
interface would probably use three VLSI devices, two 
transformers, and a timing generator. 

The R8071 provides additional internal support for the 
DMI channels. It provides DMA for the parallel data, 
additional frame processing, and HDLC framing. This 
part is compatible with the DS 1 set. The R8071 can 
support either 24 or 32 channels, so only one part is 
necessary for a DMI application. This part is currently 
in development, with samples expected in the first 
quarter of 1987. 



The Spyder provides very similar functionality. As 
with the R8071, the Spyder provides DMA, additional 
DMJ frame processing, and HDLC framing. It is also 
compatible with the DS 1 set. The Spyder supports 
eight channels, so three parts are necessary for a DMI 
application. This part is currently available in sample 
quantities. 

Since the Spyder is available, let's consider a design 
using the DS 1 set with the Spyder. Figure 11 shows a 
simplified front end architecture. The DS 1 set is on the 
left of the figure. It consists of a transmitter, receiver, 
and framer. The framer performs some DMI frame 
functions. The three Spyder parts are to the right. 

DMI 
---------- !1an~1nil .-- -
Trai1s1111t 

VAX DMI Front End 

U) 

' 

•--• Jnlerrupl •-• ~ 
A•b•lm •--~u 

11i !Jua! 

·--i~· ,'::::1\ ·~~ 
'j 

!JM/\ 
A11J1IU! 

They attach to the DSl transmit and receive parts on 
one side and to a local bus on the other side. This bus 
time multiplexes address and data. An essential feature 
of this design is the dual port RAM. One side of this 
RAM interfaces to the Spyders, and the other attaches 
to a microprocessor bus. The microprocessor section 
can include a variety of parts for microprocessor 
program support. The last essential element is the host 
interface to the VAX. 

SUMMARY 

This paper has introduced DMI, and has given a 
summary of the DMI specification and some examples 
of its use. DMI is to be understood as a current 
implementation of the emerging ISDN standard. It 
offers advantages for users in streamlining redundant 
equipment and cabling as well as providing an 
interesting alternative to local and wide area networks. 
DMI hardware is becoming available now, with more 
pieces available in 1987. 

373 





TransLAN Technical Product Overview 

And Network Configurntion Guidelines 
Michael R. Coker 

Vitalink Communications Corporation 
1350 Charleston Road 

Mountain View, CA 94043 

ABSTRACT 

An overview of Wide Area Network problems, implemen­
tation strategies, and planning concerns. Solutions 
based on Ethernet-LAN Architecture as defined by 
Digital's XLII Bridge Specification are presented. 
An overview of Digital's LAN Bridge 100 and Vita­
link's TransLAN are included with detailed explan­
ations of technology, user applications, and network 
design guidelines. 

TransLAN Product Background and Overview 

Today there is a strong movement within the communica­
tions industry to standardize, that is. create a stan­
dard set of rules for all computers and communications 
devices to follow when interchanging information. These 
rules, or "protocols" will allow for the easy exchange 
of information between systems regardless of manufact­
urer, thus creating what is being termed as an "open 
systems environment." 

The open systems environment is defined by a seven layer 
model called the International Standards Organization's 
Model for Open Systems Interconnect (ISO-OSI). Using 
this model, the IEEE has defined several committees to 
set these standards. They have had particular success 
in defining the standards for Local Area Networks (LANs) 
which accounts for much of the success of the LAN market 
in the last few years. Through the standards these com­
mittees have defined, commercial implementations, most 
notably Ethernet, IBM's Token Ring. and GM/Boeing's 
Token Bus have gained wide industry acceptance. To 
date, Ethernet is the most prevalent LAN implementation 
and should continue to grow; however, the new token 
technologies promise to expand the market even larger. 
The Yankee group estimates that by 1988 the value of the 
LAN market will be nearly $4 billion. According to 
Strategic, Inc. that represents about 125 ,000 Local Area 
Networks. 

Standardizing a Local Area Network requires defining two 
of the seven layers of protocols as defined by the ISO 
model, specifically the Physical Layer and the Data Link 
Layer. The Physical Layer is the lowest layer of proto­
col in a network and defines the rules of communicating 
across the actual transmission media. Transmission me­
dia may be a cable, a phone circuit, a microwave system, 
a fiber optics path, a satellite link, or even a twisted 
pair of wires. Defining a Physical Layer Protocol means 
describing rules for physical characteristics such as 
the shape of the connector and the level and sequence of 
the electrical signals. The Physical Layer rules are 
not concerned with information content, only electrical 
and physical specifications. 

Proceedings of the Digital Equipment Computer Users Society 375 

In IEEE 802 Committees· terms, the "Data Link Layer" de­
fines what is termed as a "datagram". A Datagram is a 
packet of information that needs to be passed through 
the network. Here the rules apply to the format of the 
information that will pass through the physical media. 
It is analagous to defining the shape of a parcel or en­
velope for the First Class Mail "network." An example 
of a link layer protocol for First Class mail would be 
an envelope which must not be larger than so long, so 
wide, and so deep and it must not weigh more than so 
much. The "mail protocol" must also specify where the 
destination and source of the mail will be noted on the 
envelope (destination in the middle -- source in th~ up­
per left comer) in order to properly forward the mfor­
mation through the mail network. Data Link Layer Pro­
tocols define the size and characteristics of the envel­
ope of information, in data communications this is cal­
led a "Datagram." and it also defines the format of the 
envelope so that it can accurately interpret the source 
and destination addresses for routing through the data 
network. 

By defining the physical media protocols and the link 
layer protocols, Local Area Networks such as Ethernet 
and Token Ring are created. All the rules necessary to 
carry the information across a common physical ~edia ~re 
determined: the physical connection, the electncal sig­
nals, and the format of the information package. By ad­
hering to these rules. any manufacturer can develop and 
market devices which will communicate over the Local 
Area Network. Thus the communications consumer can cre­
ate a common data highway for connecting the various 
computers and communications equipment he i~ manag.ing. 
In Local Area Networks, typically the data highway ts a 
coaxial or fiber optics cable. 

This technology. Local Area Networks, has eff~cti~ely 
addressed many of the problems faced by commumcat1ons 
managers today. It has provided a high performance, low 
cost solution to moving infom1ation between users when 
they are geographically local. LANs have been installed 
in data centers. manufacturing facilities, engineering 

San Francisco, CA- 1986 



shops and departmental offices. Where installed, LANs 
proved to be efficient communications networks, easily 
managed and useful for almost all the local communica­
tions requirements. Vendor interfaces to LANs are rap­
idly available once the LAN is standardized. LANs pro­
vide high performance and offer many enhancements over 
traditional serial line networks. The result is best 
shown in the success of the LAN market to date. 

Vitalink Communications Corporation recognized the im­
pact of the LAN technology in two areas. First, as more 
and more LANs are installed, a need was generated to in­
terconnect them so that information could flow from one 
local environment to another with the same ease and rel­
ative performance offered to users locally. Vitalink 
recognized the need to extend the local applications and 
resources over a wide area. Secondly, it was determined 
that the design of networks based on this new Link Layer 
technology may potentially displace traditional solu­
tions in many areas of the communications marketplace 
other than LAN-to-LAN communications. 

In 1985, the options available to the data communica­
tions manager were limited. The traditional solution 
for interconnecting devices was to use what was termed a 
router. A router is a protocol specific communications 
processor that connected stations to a wide area network 
of serial communications circuits. A router is a ISO 
Network Layer device. the third level of protocol in a 
data network and above the Physical and Data Link Lay­
ers. Using a router to connect LANs allowed for any 
device connected on one LAN to communicate using a 
certain protocol (or language) with other similar de­
vices on other LANs. The problem was that almost every 
vendor has its own Network Layer protocol. Digital 
Equipment uses DECnet; Xerox has a protocol called XNS; 
and the government standardized on a protocol called 
TCP/IP. Since a LAN is defined by protocols below the 
Network Layer. it was capable of supporting the multiple 
protocols of the various vendors. The routers between 
the LANs, however, were limited to a subset of the 
stations that may exist on a LAN. 

The better solution seen by Vitalink was what is defined 
by the ISO as a Data Link Layer Bridge. A Data Link 
Layer Bridge is a communications processor that operates 
only with the two lowest layers of protocols: the Phys­
ical and Data Link Layers, the two protocols which de­
fine a LAN. A "bridge" logically extends the LAN and 
thus can extend all of the vendor dependent networks 
that normally coexist on a LAN. A bridge allows any LAN 
station. irrespective of vendor or protocol, to communi­
cate with other like stations anywhere in the bridged 
network. In short, a bridge offers another level of 
connect1V1ty beyond the traditional router, one that 
matches the connectivity of a LAN. 

Other inherent features of a bridge were identified. 
Because a bridge extends the LAN using only LAN proto­
cols. all stations in all bridged LANs appear to be 
local, that is. the users and protocols perceive all 
stations as if they were connected to the same physical 
cable (except in terms of delay where slower speed, wide 
area circuits must be used for connection and may slow 
response time). This transparency makes the user inter­
face to the network simple and allows for the easy man-

376 

agement architecture of LANs to be preserved. Without 
the overhead of processing the Network Layer protocols 
it services, a bridge has inherently more pe1formance 
than a router. A bridge is a relatively simple device, 
but extremely fast. It routes data based on Link Layer 
addresses which, for 802 protocols. are in flat address 
spaces. An address space is flat if all devices that 
exist in that address space have a unique address. 
Ethernet and 802 standard address spaces are controlled 
such that all devices that interface to the "standard" 
LAN have a unique hardware address. Taking advantage of 
the defined, flat address space in 802 LANs. bridges can 
use adaptive learning as a basis for routing decisions 
and simplify network operations. With adaptive learn­
ing. bridges need not be told where stations are phys­
ically located. Instead, the bridge dynamically learns 
the network stations· locations and the necessary infor­
mation to deliver datagrams to them by remembering from 
which direction the bridge heard that station transmit. 
Listening to all traffic from all connected networks. 
bridges build tables of source addresses noting the 
receive port. When the source address is seen again as 
a destination, bridges forward the datagram. if neces­
sary. to the appropriate network. This adaptive lear­
ning algorithm, patented by Digital Equipment Corpora­
tion, greatly simplifies network management; gives re­
sponsiveness to network change; and can drastically 
decrease overall network life cycle costs. 

To meet the LAN interconnct marketplace and implement 
this powerful new technology, Vitalink and Digital 
Equipment Corporation collaborated to define the first 
commercial Data Link Layer Bridge. Using this defini­
tion as a basis for a co-marketing relationship, Vita­
link designed and built TransLAN!RI. TransLAN is the 
first true Data Link Layer Bridge. TransLAN was first 
exhibited at DECWorld 85 in December, 1984 and Vitalink 
began delivery in January of 1985. 

Since then, the TransLAN Data Link Layer Bridge has be­
come the premier internet processor for connecting IEEE 
802.3 and Ethernet LANs. TransLAN offers a new solution 
to the traditional problems of connecting remote users, 
file transfer, and office automation. With TransLAN. a 
high performance, protocol insensitive Wide Area Network 
can be built on an international standard architecture. 
TransLAN extends IEEE network standards into the wide 
area networking environment. 

TransLAN is a field tested, established product. Cur­
rently TransLAN is installed at over 300 locations 
world-wide supporting remote user populations through 
te1minal servers, high performance file transfer traffic 
in distributed data processing environments, supercom­
puter and CAD/CAM applications. and geographically dis­
persed office automation and time-sharing applications. 

Simply stated. TransLAN interconnects two or more IEEE 
802.3 or Ethernet LANs with high speed synchronous cir­
cuits. The connection is protocol insensitive to the 
Network Layer Protocols which attach to these LANs (such 
as DECnet, LAT, XNS, or TCP/IP) allowing all attached 
stations to communicate over the same wide area circuit. 
TransLAN will supp011 any protocol that adheres to IEEE 
802.3 or Ethernet Version I and 2 Standards. For LAN-to-



LAN communications, TransLAN has become the "universal 
router." 

TransLAN requires no system generation to make its rout­
ing decision. Through a proprietary learning algorithm, 
TransLAN dynamically learns the necessary information 
required to deliver LAN datagrams to their proper desti­
nation station. Additionally. TransLAN offers unsurpas­
sed perfo1mance specified at over 1500 datagrams per 
second forwarding compared to the 150-300 datagrams per 
second rate of most internet routers or traditional 
packet switches. 

Management of Wide Area Networks is a primary focus of 
Vitalink's Network Products strategy. TransLAN, as the 
foundation of our product line, capitalizes on its Link 
Layer architecture to supply a comprehensive, network­
wide management system that offers network managers and 
planners new and powerful tools necessary to optimize 
their network resources. Through an integrated manage­
ment system, TransLAN supplies Link Layer statistics on 
traffic levels, errors. and congestion for all connected 
LANs while remaining transparent to and co-residing with 
existing LAN management schemes and services. TransLAN 
management can be either centralized or regionalized, 
providing visibility and reporting for all or part of 
the Wide Area network. The design of Vitalink Manage­
ment Services insures that as network management ser­
vices become standard, it can easily integrate standard 
interfaces into its already standard bridge architec­
ture. 

Today, TransLAN III represents the third implementation 
of this new Data Link Layer technology. Using its uni­
que experience in the marketplace, Vitalink has given 
TransLAN III a new hardware base that is faster, smal­
ler, and less expensive than its predecessors and prom­
isess to maintain TransLAN's lead in this new, explosive 
marketplace. With new software features, TransLAN III 
introduces capabilities that allow greater network flex­
ibility, performance, and reliability. TransLAN III can 
support multiple circuits between LANs with load balan­
cing or operator specified routing. In its latest ver­
sion, TransLAN III supports AT&T's ACCUNET Switched 56 
services for dial-up network requirements. 

In addressing other potential applications, Vitalink has 
begun developing network design parameters and companion 
products for consolidation of SNA, LAN, HDLC, and X.25 
traffic into an integrated Wide Area Network solution. 
Two additional Vitalink link layer servers, TransLINK 
and TransSDLC, provide IEEE 802 Link Layer interface to 
bit synchronous circuits and IBM 3270 devices. These 
devices, based on TransLAN technology, provide a trans­
parent. software-defined network using an 802 standard 
backbone. This allows SNA. X.25, HDLC. and IEEE 802 
LANs to share a single. high performance Wide Area Net­
work. TransSDLC adds the enhancement of local polling 
emulation to eliminate polling from the wide area cir­
cuits thus improving response time and bandwidth util­
ization in IBM-based 3270 networks. 

In supporting the emerging LAN technologies, TransLAN is 
targeted for all three major Link Layer technologies: 
802.3 CSMA/CD, 802.4 Token Bus (MAP/TOP), and 802.5 

377 

Token Ring (IBM). An interesting feature of bridges 
such as TransLAN is the commonality of Link Layer packet 
formats throughout the 802 standards. Because TransLAN 
works only on the Link Layer, it is possible to use the 
bridging technology not only in all three markets, but 
also to interconnect the different architectures. We 
have product plans for 802.4 to 802.4 version, and 802.5 
to 802.5 version, as well as bridges to interconnect the 
three different standards, as market requirements de­
velop. 

In summary, Trans LAN is a new kind of Wide Area Network­
ing Processor, a Data Link Layer Bridge based on IEEE 
802 protocols. It has found applications ranging from 
interconnecting Local Area Networks (instead of tradi­
tional routers and gateways), supporting remote user 
access (instead of switching multiplexers and port sel­
ectors), packet switch applications (instead of X.25 
switches), and multi-protocol Wide Area Networking. We 
have penetrated these markets due to high perfo1mance, 
protocol insensitivity, and manageability at a price­
/performance unsurpassed in the industry. Add to this 
the security of building a Wide Area Network based on 
standardized interfaces, TransLAN offers a unique sol­
ution to many of the problems confronted by today's 
communications managers, many of whom are now faced with 
the problem of integrating their corporate networks. 

TransLAN's initial hardware base, the Network Processor 
I (NP I). was the world's first true bridge. It was 
often called the VB/ 1 for the Vitalink Bridge I. Its 
application, TransLAN I, was introduced in January, 1985 
and was capable of inte1facing to Ethernet and IEEE 
802.3 LANs. It supported RS232, RS422/449, and V.35 
se1ial interfaces at speeds up to 224 Kbps. It was 
based on multi-68000 microprocessors and had up to 256 
kilobytes of shared memory. The NP I was upgraded with 
new hardware called the Network Processor II (NP II) and 
new software features (TransLAN II) in May, 1985. Up­
grades from NP I hardware to NP II hardware are avail­
able from Vitalink. TransLAN I is compatible with 
TransLAN II and can co-exist in the same network as 
TransLAN Ill. 

Using faster microprocessors (12.5 MHz 68000's). and a 
new Ethernet lnteiface, the NP II can support serial in­
terfaces up to 448 Kbps. The upgraded hardware has 
expanded program and shared memory to support additional 
software features. It provides an improved packet fil­
tering rate with the implementation of high speed cache 
memory. TransLAN II is cmTently being shipped by Vita­
link and supports up to 8 serial circuit connections (at 
speeds up to 56 Kbps each). TransLAN II can be directly 
link attached to TransLAN I or communicate directly with 
TransLAN III with Software Release 3. 7 or later. 

TransLAN's latest hardware base, Vitalink's Network Pro­
cessor III (NP III), is a high performance general pur­
pose communications processor based on multiple Motorola 
680 IO microprocessors. The hardware is implemented with 
I megabyte user memory (shared buffer) and 640 kilobytes 
program memory. all parity protected. The bus that in­
terconnects TransLAN's hardware core to the serial link 
and LAN interfaces is also parity protected to insure 
absolute data integrity. The NP III acts as a hardware 



host to all Vitalink Network Products: TransLAN, Trans­
LINK, and TransSDLC. 

The Network Processor III was designed using our unique 
expertise and experience in Data Link Layer devices. 
The NP III can process over 15,000 frames-per-second 
(filtering) and forward over 1500 frames-per-second 
steady state. Peak forwarding rate exceeds over 2400 
frames-per-second. Using multi-ported memory and fast 
OMA channels, the NP III is one of the fastest packet 
switches available today. The NP III is designed to be 
modular in architecture, allowing easy expansion and 
change as network requirements evolve. Software and 
firmware is loaded via twin 3 I 14" floppy drives on 
power-up or by operator request. In-band, downline load 
options will be available in the near future. 

Currently the NP III supports a proprietary Ethernet­
/IEEE 802.3 interface that meets the high speed (10 
Mbps) requirement of interfacing to an Ethernet or IEEE 
802.3 LAN. The LAN interface runs in either a selective 
or promiscuous mode. In the promiscuous mode, all 
frames transmitted on the LAN are received and caotured 
by the interface for a forwarding decision. If the 
frame was destined for a local resource on the LAN, the 
frame is discarded. If the frame was destined for a 
resource on a remotely connected LAN, the frame is 
queued to the appropriate serial port for transmission. 
The LAN interface card was designed to allow capturing 
of the entire LAN frame including the originally trans­
mitted CRC (cyclic redundancy check) characters. This 
allows the unique feature of forwarding the complete 
frame (including original CRC) to the destination sta­
tion, insuring the validity of the data. 

The NP III initially supports a single V.35 clear chan­
nel Customer Interface Card (CIC). A V.35 CIC has four 
physical CCITT V.35 ports. The board is capable of sup­
porting a single T-1 circuit or multiple slower cir­
cuits. CIC throughput when supporting multiple circuits 
is limited to 2 Mbps aggregate. Each port can act as 
DCE or DTE, providing or taking clock as the requirement 
demands. The CIC transmits frames intact, that is, it 
transmits the LAN frames in their native format using an 
ISO 3309 protocol (a subset of the HDLC specification). 
The CIC adds only an additional CRC for transmission 
over the serial link. The CIC detects all Link Layer 
errors and reports error conditions to management soft­
ware. 

Support of other serial physical interfaces such as 
RS232 and RS422/449 are future options of the Network 
Processor III. Requirements which demand these inter­
faces are supported with Vitalink's Network Processor 
II. The NP II supports RS232, RS422/449 and V.35 at 
speeds up to 448 Kbps. OSI interfaces are not currently 
suppo1ted for T-1 circuits. See section on T-1 Config­
uration Considerations for details. 

TransLAN Network Design Considerations 

Hardware 

Hardware configuration for TransLAN is relatively 
straight forward. The following is a summary of config-

uration options. It should be pointed out that TransLAN 
is generally a factory configured system. Vitalink pro­
vides a configuration worksheet with every order for the 
purpose of defining the specific configuration options 
required. It is essential that this worksheet is com­
pleted prior to ordering TransLAN. 

TransLAN II 

TransLAN II can support up to eight ports with a total 
aggregate throughput of up to 996 Kbps. Each serial 
port option (SIO board) can be RS232, RS422/449, or V.35 
and has two physical interfaces which can operate as 
either DCE and DTE. The system comes standard with one 
serial port option (two ports). 

An SIO board can support up to 224 Kbps of throughput 
with both ports. This allows support of two 56 Kbps 
circuits per board (56 Kbps simplex times two for duplex 
operation, times two ports equals 224 Kbps of through­
put). Speeds lower than 56 Kbps are supported on both 
ports as well. For circuit speeds greater than 56 Kbps, 
two SIO boards are used, one for transmit and one for 
receive. A Y-cable is required from Vitalink to marry 
the two simplex connections into a duplex port. Using 
these specifications, the following guidelines for 
TransLAN II circuit support: 

One SIO board can support up to two 56 Kbps circuits. 

Circuit speeds greater than 56Kbps require two SIO 
boards. 

A single TransLAN II system supports up to 4 SIO 
boards. 

Maximum circuit support for a single TransLAN II is 
eight. 

Eight circuits up to 56 Kbps each can be supported 
using 4 SIO options. 

Two circuits up to 224 Kbps each can be supported 
using 4 SIO options. 

A special configuration of TransLAN II called Fast 110 
allows a TransLAN II system to operate over circuits of 
up to 448 Kbps in a point-to-point configuration. This 
configuration includes two SIO boards and a Y-cable. No 
other connections are available. TransLAN II Fast I/O 
supports only one serial circuit, thus one remotely con­
nected LAN. An upgrade from Trans LAN II to TransLAN II 
Fast 1/0 is available from Vitalink. This configuration 
is recommended only for upgrades to existing TransLAN II 
systems. TransLAN III is now recommended for support of 
448 Kbps and above. 

Expansion of TransLAN networks beyond the discrete cir­
cuit support of a single system is simple and direct. 
Multiple TransLAN systems can attach to the same LAN 
with circuits connecting diverse LANs at different 
speeds. For example, one TransLAN II system may connect 
to another at 448 Kbps, utilizing all the available 
throughput of the system. The connection to additional 
LANs is facilitated through additional TransLAN systems. 
A second TransLAN II could be added to support a 224 

378 



Kbps circuit to a third remote LAN. and up to four 56 
Kbps circuits to additional remotes. TransLAN systems 
and interfaces can be modularily added for any network 
expansion requirement. 

TransLAN IJI 

TransLAN III is currently sold in only one configura­
tion: an Ethernet Version 2/IEEE 802.3 inteiface and a 
single SIO board (called a customer interface card--CIC) 
with four physical V.35 connections. Each port is cap­
able of supporting a clear channel circuit of speeds up 
to 2.048 Mbps duplex. The CIC board is capable of sup­
porting up to 4.096 Mbps of throughput (or one T-1 link: 
either 1.544 Mbps or 2.048 Mbps full-duplex). Attaching 
one T-1 circuit nullifies the use of the other three 
physical ports. When using multiple circuits slower 
than T-1. all four ports may be used as long as the ag­
gregate throughput of the circuits does not exceed 2 
Mbps. For instance. four 56 Kbps circuits could be sup­
ported. or four 224 Kbps circuits. All variations of 
circuit configurations are not yet tested. so cases 
where circuit throughput is close to the specification 
or questionable should be coordinated with Vitalink 
Technical Support prior to configuration. 

Special Considerations for T-1 Circuits 

T-1 circuits generally come in three varieties: Clear 
channel circuits. intra-LATA circuits and inter-LATA 
circuits. A clear channel circuit is a private circuit 
that does not require special formatting for network 
operations. Examples of clear channel circuits are 
satellite circuits. private microwave circuits, and 
private fiber optics circuits. In all clear channel 
cases, a public switching network like those of the Bell 
Operating Companies and AT&T ACCUNET are not used. The 
end-to-end clear channel circuit must be totally 
private. 

Intra-LATA T-1 circuits require a mm1mum formatting for 
switching within the Bell system. The Bell system typ­
ically requires that the physical interface be OS I and 
that every I 93rd bit be a framing bit (called 04 fram­
ing) and creating the basic T-1 frame. This uses 8 Kbps 
of the I .544 Mbps for framing overhead leaving an effec­
tive 1.536 Mbps for data. 

Inter-LATA T-1 circuits typically use AT&T's Accunet 
services or similar service from another long distance 
vendor. In these cases, a T- I circuit must have a OS I 
physical interface, 04 framing must be implemented, and 
"ones density" must be maintained. Ones density re­
quires one in every eight bits to be a one (this is due 
to the nature of data to have many consecutive zeros and 
the need of the switching system to see a bit transition 
pe1iodically to maintain phase and clock). 

For clear channel systems. TransLAN's V.35 interface may 
be directly connected to the fiber, microwave, or satel­
lite modem. When intra-LATA circuits are used, TransLAN 
requires the addition of a V.35 to OS I inte1face conver­
ter and 04 framing. This functionality is available 
with several CSU's commercially available. Avanti and 
Verilink have product offerings that have been tested 

with Trans LAN. 

For inter-LATA circuits. a conversion from V.35 to OSI 
is required as well as framing and ones density. This 
functionality is provided through various devices com­
mercially available either through Vitalink or other 
communication equipment vendors. Avanti's Accupac and 
Verilink's Clear Channel Unit (VCC) have been certified 
for use with TransLAN III. Caution is recommended when­
ever implementing T-1 networks. The T-1 market is young 
and several factors should be considered in network 
planning. 

T-1 Standards Stability 

It can be very confusing trying to dete1mine the speci­
fic requirements for interfacing to T-1 circuits. There 
are two basic reasons. First, the various vendors and 
suppliers have yet to agree on exactly what formatting 
and features should be supplied. AT&T has its own 
thoughts, standards organizations another, and vendors 
yet another. Each is still going its own way designing 
the future which leaves the consumer the the task of de­
termining how they interact. Services from multiple 
sources (i.e. local loop from the BOC, fiber connection 
from another source, and another local loop from yet 
another BOC) should be examined for all combined re­
quirements. There are several methods, for instance, 
for insuring ones density (ZBTSI or B8ZS are two) and 
switches in the T-1 network may require a specific 
method. Using the wrong method or combining incompat­
ible methods may significantly degrade the T-1 circuits 
performance or it may fail to operate at all. Vitalink 
has found that some CSU "s invert the input signals over 
the T-1 link. In doing so, they functionally assure 
that ones density will always be maintained in TransLAN 
networks. TransLAN uses an ISO 3309 protocol in which 
HOLC flags are continuously transmitted when the link is 
idle and during transmission data bit stuffing occurs to 
prevent the occurance of flags within the data stream. 
The HOLC flag is six consecutive one bits followed by a 
zero. No more than six one bits in a row are allowed, 
therefore when inverted, no more than six zero's are 
transmitted before the ISO protocol automatically 
"stuffs" in a one. This eliminates the requirement of 
the CSU or the network switches to ever compensate for 
ones density. This eliminates most concerns for ones 
density compatability. 

Secondly, T-1 standards are still evolving and new fea­
tures are said to be "just around the corner." The 
superframe fo1mat is one example. A superframe is cur­
rently used by many vendors. A superframe consists of 
12 T-1 frames of 193 bits each. The framing bits are 
transmitted in a ce11ain pattern and can be checked for 
proper sequence. Framing errors can therefore more 
easily be detected. AT&T is said to be close to imple-
menting an extended superframe specification within 
ACCUNET, however. one cannot expect all switches to be 
converted overnight. An extended supe1frame consists of 
24 standard T-1 frames of 193 bits. The use of these 
bits is still not cast in ink. however it is likely that 
six bits of the 24 will be sync bits. six bits will be a 
CRC. and 12 bits will be used for BX.25 in-line control 
and test purposes. This divides the 8 Kbps of overhead 

379 



into 2 Kbps of sync, 2 Kbps of CRC, and 4 Kbps for sig­
naling and testing. The BX.25 protocol is said to be 
favored for this purpose and will allow AT&T to signal 
changes to network devices in-band, acquire status and 
operating parameters without interupting service, and 
even run some testing without taking the link out of 
service. It may also define some of the internal chan­
nels as control channels. yet formats and specifications 
are still not published and finalized. One should con­
sider the impact of future changes in services before 
implementing T-l circuits. Obviously. extended super­
frame features may greatly enhance the T-1 circuit's 
reliability, but who knows when all devices in your cir­
cuit will support it. 

Circuit Functionality Considerations 

Determining the functionality of synchronous circuits is 
not necessarily a straightforward operation. In our ex­
perience with synchronous circuits, we have found tradi­
tional Bit Error Rate Testing (BERT) is not an accurate 
evaluation of a circuit's ability to transfer synchro­
nous HDLC data. In one instance, a BERT test ran per­
fectly for over four hours, but the line would not 
transfer HDLC data effectively. In troubleshooting the 
problem. two cables, a CSU, and an internal DDS switch 
were found bad, in spite of the glowing success of the 
BERT test. Vitalink recommends the use of a protocol 
analyzer where possible to ensure that the link is oper­
ational and meets specifications. BERT test success 
should not be taken as an indication of a circuit's 
ability to actually move synchronous data. As an ad­
ditional tool, Vitalink also recommends using our man­
agement system statistics to verify proper operation of 
the link. If it reports significant abort eITors, cloc­
king and synchronization errors should be suspected. If 
CTS errors are reported, the CSU/DSU should be suspect. 
Vitalink's management statistics have proven to be a ex­
cellent measurement system to determine the quality of a 
given circuit. Its link layer window into a network 
offers a true look at any given circuit's performance in 
actually sending data. 

Connecting TransLAN to Various LANs 

TransLAN supports any Ethernet or IEEE 802.3 connection. 
It is important, however, to realize the implications of 
the vaiious versions of the "standard" that exist. 
Ethernet, the most prominent commercial implementation 
of IEEE 802.3, comes in basically three versions: Ver­
sion I. Version 2. and Cheapernet (or thin-wire Ether­
net). All devices are compatible at the link layer. 
that is. they all conform to the same packet format. 
There is some concern in the physical connection of each 
device to the LAN. A connection to a LAN consists of 
three components: the cable. a transceiver. and a LAN 
controller. The controller must match the transceiver. 
the transceiver must match the cable. For instance, a 
Version I controller must use a Version I transceiver, 
however it can communicate with any other station on the 
LAN ... Version I or Version 2. Likewise, a Version 2 
controller must use a Version 2 transceiver and can com­
municate with any other device on the Ethernet, irres­
pective of version. If the LAN uses a thin cable 
(Cheapernet), the transceiver must be a thin-wire model 

and be the proper version (I or 2) of Ethernet. Brid­
ging thin-wire and standard Ethernet is possible as 
well. but the physical interconnect must also match in 
Version. 

IEEE 802.3 is slightly different than Ethernet at both 
the Physical and Link Layers. IEEE 802.3 stations can­
not generally communicate directly with Ethernet sta­
tions. (For instance. in Ethernet. bytes 13 and 14 of 
the Ethernet frame are reserved for packet type which is 
generally an indication of protocol. In IEEE 802.3, 
bytes 13 and 14 are reserved for Logical Link Control. a 
sublayer IEEE defined within the Link Layer. At the 
physical layer. there are differences in LAN topology. 
for instance. Ethernet prohibits more than two repeaters 
between any two stations. IEEE 802.3 allows up to 
four.) Both Ethernet and IEEE 802.3 stations can. how­
ever, share the same cable. Although there are very few 
true IEEE 802.3 stations currently available. many are 
being forecast as product offerings in the near future. 
As new "standard" products become available. it is ex­
pected that many may move to the new products. For 
these products, a IEEE 802.3 standard transceiver is 
required. 

TransLAN is designed to bridge both sets of protocols: 
Ethernet and IEEE 802.3. Both may simultaneously use 
TransLAN 's services. Because the first 12 bytes of the 
standard frames are always destination an<l source ad­
dresses. TransLAN can route either type of frame. Vita­
link has implemented several features that are applic­
able only to Ethernet. Packet Type deflection for pro­
tocol routing is one example. Because there is no pack­
et type field for IEEE 802.3. TransLAN cannot implement 
that feature in IEEE 802.3 LANs. 

Connecting TransLAN to the LAN is relatively simple. 
TransLAN II supports any Ethernet or IEEE 802.3 trans­
ceiver. Connection to the transceiver is with any stan­
dard transceiver cable. however. the DEC transceiver 
cable does not mate securely with TransLAN ll's Ethernet 
Controller and should not be used. TransLAN III can use 
any Version 2 or IEEE 802.3 transceiver today and will 
support Version l transceivers (through a software set­
able option) in the near future. Once again, any trans­
ceiver cable can be used but caution is advised when 
using the DEC standard cable. To insure compatibility 
and reliability. Vitalink recommends that you purchase 
the transceiver cable and transceiver for the TransLAN 
connection from Vitalink. Vitalink carries two kinds of 
transceivers: a standard transceiver and a high-reliab­
ility transceiver. The standard transceiver is manufac­
tured by TCL and is Ethernet Version 2 compatible. The 
high-reliability transceiver is DEC's H4000 I H4005 
transceiver and is designed with built-in redundancy. 
Additionally. Vitalink offers Digital"s DELNI. The 
DELNI is an Ethernet star coupler. It can be an exten­
sion of an Ethernet cable or stand-alone as an "Ethernet 
in a box." The DELNI offers eight po11s for connecting 
eight Ethernet Version 2 controllers via standard Ether­
net transceiver cables. Switch selectable, the DELNI 
can act as a stand-alone Ethernet or connect to a Ether­
net cable with a H4000/H4005 transceiver. The DELNI 
offers an inexpensive way to connect locai devices to­
gether and/or interconnect them with other devices con­
nected to an Ethernet. 

380 



TransLAN Architecture and Software Features 

Overview 

The following is a discussion of what TransLAN is, how 
it works, where it can be used. and the implications and 
concerns that should be evaluated when extended LANs are 
designed with TransLAN. The final section lists a set 
of guidelines that should be followed when installing 
Trans LAN. These guidelines are meant to be general 
rules, and although there are always exceptions to 
rules, any deviation should be thoroughly evaluated 
against the information provided in this document. 

Data Link Layer Bridges: Filtering, Forwarding, and 
Learning 

TransLAN is functionally a Data Link Layer bridge. 
TransLAN acts as a store and forward packet switch for 
Ethernet and IEEE 802.3 packets. As a LAN biidge. it is 
a device that interconnects LANs allowing stations con­
nected to different LANs to communicate as if both sta­
tions were on the same LAN. A collection of LANs and 
biidges is referred to as an extended LAN. 

TransLAN has two primary operations: filtering and for­
warding. TransLAN is designed to rapidly make decisions 
as to the destination of a datagram. TransLAN will 
either discard the packet or forward it to one of its 
attached networks. 

TransLAN networks require no routing or internet infor­
mation to be supplied by the sending station. Bridges 
make use of the Data Link Layer addresses to make for­
warding decisions. They have no knowledge of any other 
address space. such as network or internet address 
space. Because of this characteristic. TransLAN is rel­
atively insensitive to the higher layer protocols used 
by the communicating stations. 

Bridges do not relay all packets like a repeater. Brid­
ges isolate LANs from traffic which does not need to 
traverse that LAN. The bridge forwards frames based on 
information it has learned from the network. By obser­
ving the frames on its data links. the bridge builds a 
station list, called a "Forward Data Store." of all end 
stations that have transmitted. An entry in this list 
comprises a Data Link Layer address and the correspon­
ding network it was received on, and the age of the 
"Forwarding Data Store Entry (FDSE)." 

The decision of whether or not to fmward a frame is de­
termined by this "learned" station list. For each frame 
received the bridge compares the Data Link Layer desti­
nation address against this list. If the destination is 
local (i.e. it was previously seen as a source address 
on the same data link). the frame is discarded. or "fil­
tered"). If the destination is known to be remote (i.e. 
it was previously seen as a source address on a differ­
ent data link). it is forwarded to the network indicated 
by the station list. If the destination is unknown. the 
frame is broadcast to all remote data links. 

To insure the pe1formance of the bridge algoiithm. the 
topology of the extended LAN must be a spanning tree (in 
terrestrial networks). that is. loop free. A spanning 

tree algorithm has been developed and is documented in 
Digital Equipment Corporation's XLII Bridge Architec­
tural Specification and has been approved by the IEEE. 
This algorithm is used to detect and break deliberate or 
inadvertent loops and maintain the integrity of the 
extended LAN. 

In summary, this bridge architecture allows for the 
transparent interconnection of LANs. The routing per­
fo1med by the bridges does not require direct paiiicipa­
tion . of the end stations. Two stations on separate 
~hys1cal ~ANs can communicate through bridges (irrespec­
tive of mternet protocols) as if both were attached to 
the same physical LAN. The topology of the extended LAN 
must be a spanning tree (i.e. loop free). 

Types of Biidges 

Bridges can be classified into two categories: Local 
Bridges and Remote Bridges. 

Local Bridges 

Local biidges are inherently limited by distance and 
typically connect to LANs at, or near. the native LAN 
speed; in the case of Ethernet, at 10 Mbps. Typically. 
connection is over coaxial or fiber optic cables and is 
geographical.ly limited t? locations which can be easily 
connected via these media. These would include multiple 
LANs within the same building or campus environments 
where LAN locations are within 2000 meters of each 
other. An example of this technology is Digital Equip­
ment Corporation's LAN Bridge 100. 

Since local bridges interconnect LANs at their native 
speed, they typical~y do not inte1ject noticeable delay 
nor network congest10n. However, local bridges are lim­
ited to those applications where coaxial cable or fiber 
optic cable_ can physically interconnect the LANs. They 
are ~ot smtable for extended LAN applications of great­
er distances or where commercially supplied communica­
tions facilities must be procured for the internet cir­
cuit. (A 10 Mbps circuit would be cost prohibitive). 

Remote Bridges 

Remote bridges are not limited by distance and connect 
LANs via synchronous communications circuits of speeds 
from 9.6 Kbps to 2.048 Mbps (or greater). Remote brid­
ges are designed to extend the LAN beyond the distance 
limitation of 2800 meters (for Ethernet). Applications 
include connecting multiple offices or facilities too 
far apart for local bridges yet where synchronous com­
munications facilities are available. Remote bridges 
can utilize telephone circuits for the LAN-to-LAN con­
nections. 

Vitalink's TransLAN is a remote bridge. 

Remote bridges operate much as local bridges. The pri­
mary difference is the interconnect circuit speed. They 
are generally compatible and may share in the same ex­
tended LAN. Remotely bridged networks. however, have 
the potential of congestion and delay due to the lower 
speeds of the wide area internet circuits. This could 
potentially affect the communicating internet protocols 

381 



as well as overall network perfonnance. When using re­
mote bridges, it is necessary to carefully analyze and 
plan the extended LAN. 

Although so far this document has generically referenced 
bridges, both local and remote, the remainder of this 
document will focus on remote bridges. and specifically, 
TransLAN. 

Comparing TransLAN to Other Fo1ms of Communications 
Devices 

Remote bridges are a new type of network building block. 
Although all their applications have not been fully dis­
covered, TransLAN can replace, and has replaced, tra­
ditional communications products due to its special fea­
tures and benefits. Some of these products are: 

* Multiplexers, Port Selectors, and Data Switches 
TransLAN supports remote user populations via ter­
minal servers and Ethernet. The traditional solution 
would have implemented a non-Ethernet solution based 
on a system of statistical multiplexers and port sel­
ectors (or data switches). In distributed data pro­
cessing applications where multiple hosts may be con­
nected via a set of multiplexed point-to-point cir­
cuits, TransLAN can alternatively interconnect the 
hosts through Ethernet connections at each site. 
Network potential points of failure are reduced, cost 
is lowered, performance is often enhanced, and the 
network architecture is structured for easier manage­
ment and growth. 

* Routers and Gateways - Routers and gateways are pro­
tocol dependent. The DEC router, for instance, sup­
ports only DECnet to DECnet connections. Bridge Com­
munication's SNA Gateway supp011s only XNS to 3270 
protocol connections. In contrast, TransLAN will 
allow multiple protocols to communicate across the 
extended LAN. TransLAN suppo11s DECnet, TCP/IP, LAT, 
XNS, Chaosnet and all other internet protocols which 
operate on Ethernet or IEEE 802.3 LANs. With Trans­
LAN, any two devices which can communicate over a 
local LAN connection, can communicate through the ex­
tended LAN. In environments where multiple LAN pro­
tocols must communicate with remote resources, the 
alternative would be multiple routers or gateways, 
and. therefore. multiple internets. In applications 
requiring high speed circuits and high performance in 
the internet such as CAD/CAM, scientific computing. 
and distributed data processing, TransLAN generally 
can provide higher network performance than using 
routers or gateways. This results in a greater in­
ternet throughput as well as more efficient utiliz­
ation of communications resources such as modems. 
multiplexers, transmission circuits, and operational 
staff. 

TransLAN and Transmission Media 

TransLAN attaches to synchronous serial communications 
circuits through several standardized communications 
inte1faces: 
* RS-232 for speeds up to 19.2 Kbps 
* V. 35 for speeds greater than 19 .2 Kbps 
* RS-422 for speeds greater than 19.2 Kbps 

Circuit speeds are supported for 4.8 Kbps to 2.048 Mbps, 
typically externally clocked. Telephone circuits (dedi­
cated or switched), microwave circuits. fiber optic 
links, broadband circuits. and satellite circuits are 
supported. TransLAN typically connects to a modem. a 
Digital Se1vice Unit (for AT&T Digital Services). or a 
time division multiplexer (providing a channel on a T-1 
circuit). 

382 

TransLAN Software Features 

The basic algorithm for a Data Link Layer bridge is fil­
tering, forwarding, listening and learning. TransLAN 
can complete its basic function of routing datagrams 
with just those operations; however. Vitalink has imp­
lemented a series of special features to make TransLAN a 
versatile, general purpose communications processor. 
With these features. a network manager has extensive 
control and visibility throughout his network. 

Security and Protected Networks 

Generally, TransLAN filters traffic based on the des­
tination address of a datagram. When TransLAN receives 
a packet from the LAN, it checks its FDSE tables against 
the Link Layer destination address and determines the 
location of the destination station. If the destination 
is on the local LAN, the packet is discarded. Using 
this filtering capability, Vitalink has made it possible 
to implement added security in a TransLAN extended LAN. 
Using Vitalink Management Se1vices, a network manager 
can designate specific devices as "local only resour­
ces." This action consists of telling the local Trans­
LAN system to discard all datagrams to/from a certain 
device by entering that device's Ethernet address in a 
configuration menu. This results in TransLAN implemen­
ting a source address filter for that specific device. 
effectively preventing any remote session. 

Source address filtering prevents access to sensitive 
resources from remote stations in extended LAN environ­
ments. It places a network wall between secured devices 
and any attempt from off the local LAN for access. 
Using this feature, a network which interconnects var­
ious departments of a company can be configured so that 
each department shares only the desired resources with 
remote sites. 

Protected network configurations are another way to add 
security and limit access to devices on an extended LAN. 
A protected network is one that is protected against all 
traffic from unknown destinations. A TransLAN bridge on 
a protected network will discard all traffic destined 
for any device which is not listed in its FDSE routing 
tables. 

Protected networks are implemented by turning off the 
self-learning feature and manually entering. through 
management menus, the addresses of devices which can 
legally be accessed from remote stations. A network can 
be protected on a link-by-link basis, that is a TransLAN 
bridge can be configured such that all local devices can 
be accessed from one remote site (unprotected) and only 
a subset of the local resources are available to another 
(protected). 



Protected networks can be used to control additions and 
changes to the extended LAN created with TransLAN. A 
network can be implemented without any protection, learn 
all existing stations, and then through management sys­
tem entries, be protected from all "new" stations by 
turning off the learning algorithm and declaring all 
links protected. Any subsequent stations added remotely 
would be "unknown" and therefore their traffic would be 
discarded by TransLAN. Management procedures could be 
implemented to force new stations to register their 
access requirements before TransLAN allows wide area 
access. 

Multicast Filtering 

LAN protocols typically use multicast traffic exten­
sively for network management and control activities. 
Through multicast messages, Transport protocols learn 
the location of other stations and their availability, 
learn of server load requirements, and pass around 
routing information. Multicast messages are often "keep 
alive" messages declaring a station's availability to 
the network, and sent when a station is idle. On a LAN 
where there is a significant amount of bandwidth avail­
able ( 10 Mbps), multicast overhead is relatively insig­
nificant. For wide area environments, Vitalink has 
added special features to control and limit the impact 
of multicast traffic in the extended LAN. 

Under normal operating conditions, TransLAN forwards all 
multicast messages received out all transmit networks 
except the one associated with the receive network the 
frame originated on. As long as no congestion exists, 
multicasts are treated as broadcast messages. When the 
extended LAN becomes congested, TransLAN implements a 
congestion algorithm that discards multicast packets in 
order to handle known single destination traffic. It 
should be noted that the level of multicast traffic typ­
ically decreases as the level of single destination i:nes­
sages increases. Most stations do not send multicast 
traffic while actively communicating with other sta­
tions. 

To further improve network performance, Vitalink has in­
corporated within TransLAN a multicast filtering capa­
bility on a link-by-link basis. The prim~ry use for 
this feature is to limit unnecessary multicast traffic 
from the wide area circuits. Implementation is through 
management system menus for each circuit. An operator 
may declare that a certain multicast value should not be 
forwarded out a specific circuit. This might be used to 
prevent remote program loads from occurring when they 
could be handled locally, or to isolate a specific pro­
tocol's multicast from a network where that protocol 
does not operate. 

Parallel Circuits and Redundancy 

The correct choice of internet circuit speeds is essen­
tial for proper extended LAN operation. The ~nternet 
circuit must be sized to support the total mternet 
traffic between LANs. In most situations, bandwidth is 
available in increments of 9600 bps, 19.2 Kbps, 56 Kbps, 
or T-1 (1.544 Mbps) commercially available circ?it 
speeds from the public telephone systems: Terrestnal 
TransLAN networks typically are connected with some com-

383 

bination of these services. TransLAN supports multiple 
circuits between two TransLAN systems which allows up to 
eight circuits between any two networks. This support 
is limited to circuits between two discrete TransLAN 
systems. The spanning tree topology prohibits multiple 
TransLAN systems interconnected and active between any 
two LANs. Using our loop detection algorithm, TransLAN 
will break any redundant path outside of the parallel 
circuit trunk and use it only upon failure of the pri­
mary set of circuits. See figures below. 

Parallel Circuit Configuration 

LAN A 
-------~~!! _______ _ 

---------.--------- ---------,---------
1 I 

I I 
------~------- ------~-------r------------1 r------------1 

I ACTIVE l I 
TrHoLAN ~-----------, TraHLAll I 

~-----------~ I I I I 
I I I 
I I I 
I I I 

I :!~!!~!!:..:.!~!!~ I L------------J L------------~ 

Redundant Configuration 

_______________ .!,.Af!_~-------------
·-------------!:.~~-~----------------------r--------r--------------- ·---------------r----------------

• ______ .J_______ ------~------
: r------------, ,.------------, 

I I Tran•LAN ~:::::::::::~~!~~~:=::::::.d TranoLAN I 
I I I I : 
I I I I I 

I I I I ! 
l I I PARALLEL . LINKS l 1 : L ____________ .r----------------------··-----t ____________ J 
: -------------- -------------· 

___ l__________ ----------·---
r------------1 r------------1 
I I I I 

I TranaLAN I INACTIVE I TranaLAN ! I ~-----------Fiei:iuiiii.\Nr-i:liii:Ui:r------------1 ! 
I I I I 
I I I I 
I I I I 
L------------J L------------.J 

Within the parallel circuit trunk, back-up is automatic. 
Should any of the parallel paths break (checked contin­
uously by our network verification protocol), an alarm 
is issued and traffic is redistributed over the remain­
ing operational circuits. 

Routing through a parallel circuit trunk is by default 
on a load balancing basis. Traffic is automatically 
distributed between all circuits through load levelling. 
As an option, a network designer can allocate individual 
parallel circuits to a specific set of devices or proto­
cols. A parallel link can be "protected," that is, it 
can be configured such that load levelling does not take 
place over that circuit. Instead, an operator can des­
ignate a set of packet types or a set of de~ices w~ich 
can use the "protected link. " Packet type is specified 
in bytes 13 and 14 of the Ethernet frame and usu~ly 
specifies the internet protocol of the P.acket. U~mg 
this configuration option, a network designer can iso­
late types of traffic to individual circuits. For ex~­
ple, interactive terminal traffic can be routed to its 
own circuit(s) while all other traffic is load balanced 
over the remainder of the parallel circuit trunk. Or, 



as another example, a circuit could be reserved for file 
transfer between a certain set of systems. Using these 
options, network managers can configure networks des­
igned to give priority and guaranteed service to groups 
of users and applications. Defining a "virtual" protec­
ted parallel link which does not physically exist allows 
for effective filtering of traffic either by protocol or 
destination address. 

Back-up within protected parallel links is also imp­
lemented. If a protected parallel link fails, its traf­
fic is redistributed over all other similarly protected 
links (if available). If none are available and simi­
larly protected, the traffic is redistributed over all 
other non-protected circuits. If all other circuits are 
protected, traffic is redirected over operational "pro­
tected" circuits. In all cases of parallel circuit re­
covery, FIFO (first in, first out) is protected, network 
alarms are generated to inform the network manager of 
the automatic reconfiguration, and the network is auto­
matically restored to its initial configuration once the 
failure has been cleared. 

Switched Circuits 

TransLAN supports switched services within parallel cir­
cuit trunks or as stand-alone paths to remote sites. 
Currently, autodial support is implemented for AT&T's 
Switched 56 services. Switched circuits can be used to 
back-up production circuits, add bandwidth during peak 
traffic periods, or supply switched access to limited 
use remote sites. 

Configuration of switched circuits is through management 
system menus. A switched circuit can be configured to 
be autodialed either by manual request, at a specific 
time or day, or on demand. Manual initiation of auto­
dial actions require that the proper phone number be 
previously supplied to TransLAN. An operator may sched­
ule a switched service by defining the dial time, phone 
number, and duration of the call. Or, TransLAN can be 
configured to automatically dial a remote location on 
demand when a certain destination address (known to be 
out the switched circuit) is presented for forwarding. 
This allows for a local host to initiate the autodial by 
attempting to connect to the switched remote resource. 

Vitalink Management Services and the Network 
Management Station 

Functional Overview 

Vitalink Management Services (VMS) is a subprocessing 
system resident in Vitalink Network Products such as 
TransLAN, TransSDLC, and TransLINK. VMS provides to the 
user a menu driven, interactive interface into link ser­
vices that provide statistical and diagnostic functions 
for network management and control. Additionally, VMS 
allows for the dynamic configuration or reconfiguration 
of network variables and features. 

Vitalink's Network Management Station is a member of the 
family of Vitalink Network Products that allows global 
access into VMS. The Network Management Station attach­
es to any network as a terminal server on an Ethernet. 

384 

An operator using a terminal on the Network Management 
Station can connect to any local or remote VMS system 
located in any network processor. Through the Network 
Management Station, the operator can activate and moni­
tor all of the VMS functions. The Network Management 
Station includes a p1inter for the hardcopy logging of 
network monitors, statistics, and alarms. Also included 
is a dial-in modem for off-site access to VMS services. 
The dial-in modem is particularly useful when remote 
diagnostic support is required. 

Vitalink Management Services 

VMS offers multiple services to the network planner, 
network manager, and technical control personnel. 
Through VMS, one is able to: 

Dynamically monitor network activity at any network 
TransLAN location 

Access statistics on Ethernet performance 

Access statistics on internet communications links 

Monitor and tune TransLAN Bridge performance 

Configure or adjust network operating parameters 

Detect and measure network bottlenecks and congestion 

Isolate and correct network communications problems 

VMS is both a dynamic troubleshooting tool as well as a 
network planning and measurement system. It is integ­
rated into all Vitalink Network Products and provides 
much of the same information as independent diagnostic 
and monitoring systems costing tens of thousands of dol­
lars by themselves. VMS is also the mechanism used for 
custom network configuration and implementation of 
special communications features such as security, swit­
ched circuit setup, protected networks, and parallel 
circuit trunks. 

VMS is implemented with two basic modes: command/moni­
toring mode and a network management/configuration mode. 
Command monitoring mode features include: 

A general network traffic monitor that displays net­
work traffic statistics and performance 

A multicast monitor that details specific multicast 
address communicating on the network 

Commands to determine basic network configuration and 
status 

Capability to test operational bridges and network 
management printers 

Options to display bridge memory contents and network 
device addresses 

An on-line help facility to aid network operations 
personnel 

The network management/configuration mode is a menu 



driven system that allows the user to: 

Detail specific network configurations 

Reconfigure network options and tuning variables 

Monitor communications links and Ethernet performance 

Initiate the rebooting of remote network bridges 

Gather statistical information for effective network 
planning and control 

Implement the special communications features avail­
able with Vitalink Network Products. 

Direct the output of VMS network monitors and stat­
istics to printer(s) or serial devices attached to 
the network management stations 

VMS menus detail link level statistics providing a uni­
que view into a communications network. Applications of 
VMS span network management activities to dynamic net­
work troubleshooting. These performance statistics in­
clude: 

Traffic counts at both the byte and frame level 

Communications link error counts such as: 

CRC errors (Errored Transmission) 
Abort errors (Synchronization errors) 
DCD/CTS errors (Modem/CSU errors) 
Receive overruns 
Transmit underruns 
Congestion statistics 

Ethernet error statistics for conditions such as: 

Collisions and multi-collisions 
Too long or too short packets 
Alignment errors 
CRC errors 

Special communications features of Vitalink Network 
Products are invoked through VMS in its network manage­
ment/configuration mode. Some of the features currently 
available include: 

Securing a local station from remote access 

Creating closed, secure networks 

Defining parallel circuit trunks and defining their 
use 

Defining and setting up switched services 

Controlling redundancy in the network configuration 

Implementing specialized filters to: 

Enhance/tune network performance 

Restrict specific vendor equipment/protocols to a 
local environment 

385 

Control broadcast and multicast inter-network 
traffic 

Define and configure network alarm paths and log­
ging devices 

Implement password control for network management 
security 

As with all VMS functions, the network management prin­
ter can be accessed for hard copy retention of statis­
tical/configuration information. 

Additionally, as a background function of VMS, a diag­
nostic subsystem continuously monitors many critical 
network parameters and reports any pertinent network 
alarms or warnings. The alarms can be selectively dir­
ected to Network Management CRT(s) or Network Management 
printers at desired network management stations through­
out the network. These alarms include notification of 
any TransLAN failures, link failures, and network status 
information. 

Network Management Station 

Vitalink's Network Management Station is a hardware and 
software system that acts as a central access point for 
VMS funtions throughout TransLAN, TransLINK and Trans­
SDLC networks. A single Network Management Station can 
access and control an entire network of Vitalink Network 
Products from a single location. Multiple Network Man­
agement Stations can be added to create true network­
wide distributed control. 

The Network Management Station consists of the following 
components: 

A four port Ethernet terminal server, Network Manage­
ment Station Software, and required cables 

A CRT terminal and keyboard for interactive access 

A serial port line printer for hardcopy records 

A dial-up 1200 baud asynchronous modem for remote 
access 

In TransLINK, TransSDLC, and other applications not nec­
essarily requiring an Ethernet, the LAN attachment is to 
facilitate network management applications and for cas­
cading multiple systems. For these applications, a Net­
work Management attacment feature is available from 
Vitalink. 

The Network Management Station is IEEE 802.3/Ethernet 
Version 2 compatible and can attach to any Ethernet in a 
Vitalink network using standard transceivers or Ethernet 
star couplers such as Digital Equipment Corporation's 
DELNI. Once installed, the management station logically 
11connects 11 through the production data channel to Trans­
LAN bridges and VMS subsystems using an XNS network man­
agement protocol. The connection can be to the local 
bridge, that is, the bridge attached to the same Ether­
net LAN, or to remote bridges across the internet commu­
nications link. A session can be switched as easily as 
a single kevstroke. The mnltinle connection capability 



allows technical control personnel to monitor both sides 
of a suspect communications link or logically trace net­
work activity through the network. Once connected to a 
bridge using the Network Management Station, all the 
features of VMS are available to the user. 

An important feature of the Network Management Station 
is its ability to accept dial-in access. Through the 
supplied dial-in modem and a customer supplied telco 
circuit, customer personnel or Vitalink support person­
nel can provide direct remote support in network diag­
nostic and troubleshooting environments. It is this 
feature of the Network Management Station that allows 
Vitalink to provide high quality network management 
support rapidly, even in remote areas. 

TransLAN Network Design Considerations 

Overview 

Designing a communications network always has a unique 
set of issues which must be evaluated if the resultant 
network is to perform as expected. Bridges, including 
TransLAN, offer no exception to this rule. Although 
bridges are relatively easy to install, planning for in­
stallation is essential. The overall topology of the 
planned network must be evaluated. Concerns for traffic 
patterns and loads, potential congestion, and effects of 
delays on the various Transport protocols should be 
analyzed for both current requirements and projected 
future growth. Bridged networks appear to be as easy to 
change as the discrete LANs, so growth can occur rapid­
ly, even uncontrollably. It is therefore essential to 
understand the applications, user populations, and traf­
fic loads in order to plan the extended LAN environment 
prior to implementation. 

TransLAN and Other LAN Devices such as Hosts and Routers 

TransLAN is a component of a network. Along with hosts, 
routers, gateways, and servers, bridges are one of the 
building blocks that will make up the networks of the 
future. As one pieces together a data network, differ­
ent devices affect the use and functionality of other 
components. Bridges create extended LANs, that is, to 
Transport Protocols such as DECnet, TCP/IP, XNS and LAT, 
all stations appear to be "local" and do not require in­
ternet routing attention. Because of this, TransLAN can 
eliminate the need for internet routing within the ex­
tended LAN. It is therefore possible to designate 
DECnet hosts as end nodes, instead of routing nodes, 
where they were being used for routing traffic between 
the bridged LANs. This may result in additional host 
cycles for application processing that were previously 
used to routing activity. 

Routers between bridged LANs are also affected by creat­
ing extended LANs with bridges. Since extended LANs 
appear as a single LAN to protocol sensitive routers and 
hosts, routing circuits between bridged LANs may not be 
active. The learning algorithms used by the Transport 
Protocols may determine that the least cost route to the 
destination is directly through the extended LAN and may 
not direct traffic to the internet router circuit. It 
is possible for a network manager to force the traffic 

386 

flow through the router by adjusting network parameters 
(such as circuit cost), but this requires an action 
changing default internet protocol parameters. A limit­
ation may exist in the number of routers that can exist 
in an extended LAN environment, as with DECnet, or the 
resultant extended LAN may need a change in the overall 
addressing scheme, as with XNS. XNS assigns cable num­
bers (or "network numbers") to each Ethernet cable and 
XNS routers get confused when they appear on multiple 
cables simultaneously (a router sysgen can solve the 
problem). With TCP/IP, subnet addresses might be im­
plemented to differentiate between the connected LANs 
and simplify connection to other intemetworks such as 
the ARPANET. 

This is not to say that routers and bridges should not 
be used together in wide area networks. Routers can be 
used to interconnect extended LANs, act as an alternate 
path for traffic normally passing through bridges, or as 
a dedicated path for traffic that may interfere with 
nominal extended LAN performance. For example, a net­
work manager may chose to implement a TransLAN parallel 
link or a router to isolate DECnet file transfer and 
prevent the potential surge in network traffic from af­
fecting interactive users using TransLAN. Routers may 
also be used to connect remote resources not connected 
to the extended LAN or act as Network Layer barriers be­
tween extended LANs. 

Since bridges such as TransLAN create a single, logical 
LAN, all protocol restrictions for a single LAN apply. 
For instance, DECnet requires that no single LAN have 
more than one designated router. This would apply to 
the extended LAN as well. Address conflict is also a 
potential issue. All devices must have a unique Network 
Layer address (DECnet Area and Node Number; TCP/IP net­
work, subnet, and node; etc.) as well as a unique log­
ical name (as in XNS Clearing House names). For ins­
tance, two hosts called VAX 1 would cause a problem in an 
extended LAN, since both would be logically local to 
each other and users. 

fransLAN and Users 

Users may expect that an extended LAN will operate ex­
actly like a single Ethernet. All devices appear local 
and as if they were operating at the Ethernet rate of I 0 
Mbps. This offers both transparency as well as disguise 
to the users. For example, a LAT or DECnet user may 
connect directly to the desired host within the extended 
LAN rather than using the SET HOST command and DECnet 
routing through a local host. All the stations in the 
extended LAN appear to be local and can be handled as 
local resources. therefore the user interface is trans­
parent to the location of the communicating stations. 
However, the interconnect link speed may affect response 
time and performance such that is may not match that of 
physically local devices. Although the users interface 
to all resources in the LAN is the same, performance to 
various resources may vary. Expectations must be appro­
priately set in order to insure user satisfaction. 

_:rransLAN and Network Topology 

An extended LAN does not allow the creation of active 
loops in the network topology. This means that there is 



a single active path between any two stations as reflec­
ted in a spanning tree topology. Bridges do not support 
an active alternate path. The following figure repre­
sents the possible topologies of b1idged networks in 
terrestial environments. 

Network Topologies Supported in Extended LANs 

o. p 
\ I 

\ I 
\ I 
\ I 

O------b~-----·O 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
0 0 

Star Topology 

o, ,0 ,o 
\ I I 

\ I / 

\/ / 
o------d.-----------<t------o 

/ \ \ 
/ \ \ 

/ \ ' 
0 0 0 

Multi-Hubbed Star Topology 

In order to prevent loops, algorithms have been develop­
ed to break a loop and place the alternate path into a 
standby mode which will be automatically re-activated 
upon failure of an active link in the loop. See the 
following figure. 

Routing in Extended LANs 

LAN A :::::::::::::::::~::::::::::::::::: 
I 
I 
I 

TransLAN 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

TransLAN-------TransLAN 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

LAN C ::::::::::::::::::::~::::LAN B 

In this configuration. one the links will be marked 
standby and inactive as determined by the loop detection 
algorithm. For TransLAN. it will be the lowest port on 
the last bridge activated. This implies, assuming the B 
to C link is inactive, that the traffic from stations on 
B to stations on C will route through A. Due to topol­
ogy limitations of bridges, it is important to determine 
traffic patterns and direct connect sites to the resour­
ces most often accessed. thus eliminating as much pass­
thru traffic as possible. 

TransLAN and the DEC LAN Bridge I 00 currently use dif­
ferent loop detection algorithms which means that it is 
possible today for loops to be automatically broken at 
improper places. Specifically. it is possible for a L~N 
Bridge I 00 to detect a loop formed with TransLAN Clt"­
cuits and shut down its I 0 Mbps local path rather than 
having TransLAN shut down its slower synchrono~s c~r­
cuit. Using the guidelines presented later. this sit­
uation can be prevented. Vitalink is currently develop­
ing Digital 's loop detection algorithm in TransLAN as a 
future option. 

TransLAN and Congestion 

Synchronous circuit bridges such as TransLAN manage .a 
bottleneck between two high speed LANs. Due to thelt" 
use in remote environments using synchronous communica-

tions circuits, it is generally costly and impractical 
to interconnect the LANs at 10 Mbps. TransLAN is 
designed to manage the imposed bottleneck. TransLAN 
filters all local traffic, forwarding only internet 
traffic. Additional filters may be implemented to fur-
ther reduce internet traffic. Congestion algorithms 
apply priority schemes to further enhance network per­
formance. However. the potential for congestion exists. 
and the LAN-to-LAN internet circuit bandwidth should be 
sized large enough to handle all inter-LAN traffic in 
order to minimize internet congestion. 

With most LAN protocols, sending stations learn of er­
rors by timeouts on outstanding messages. As the level 
of timeouts increase. the Transport protocol adjusts its 
sending rate in response to the perceived congestion 
(indicated by the timeouts). It is therefore proper to 
characterize network congestion as temporary as long as 
the internet circuit(s) is sized too small for the traf­
fic load or when the internet circuit is faulty. network 
performance can be dramatically affected. When building 
extended LANs using btidges. as with any network, care 
must be exercised in understanding network loads and 
s1zmg internet circuit data rates to insure optimum 
network performance. 

TransLAN and Transport Protocols 

Although generally insensitive to protocol activity 
above the Data Link Layer. TransLAN can have some impact 
on internet and transpo11 protocols. These protocols 
generally implement capabilities designed specifically 
for wide area network environments. These capabilities 
include: 

* Congestion Reaction 
* Software Checksums 
* Large Sequence Number Space 
* Error Control 
* Selective Reject 
* Pipelining 
* Caching Out of Order Packets 

Although DECnet. TCP/IP, XNS. and some other wide area 
Transport protocols for the most part implement these 
features, some protocols such as Digital's LAT were 
specifically designed for LAN Transport and does not 
support the above functions. An extended network con­
structed of TransLAN may exhibit congestion. delay, and 
loss of packets due to inherent transmission errors in 
serial circuits (Ethernet LANs have transmission errors, 
but are generally much cleaner than serial communica­
tions circuits such as phone lines and microwave). Be­
cause LAT does not implement the above features. the 
resulting performance of the extended LAN using proto­
cols such as LAT may potentially be sub-optimal. 

TransLAN is currently installed in many networks using 
LAT protocols and meets or exceeds the expected level of 
service to their users. These installed networks pro­
vide customers with a workable, cost-effective solution. 
In order to assure reliability in terminal server net­
works which use these "local" Transport protocols (such 
as LAT). Vitalink has placed special emphasis on imple­
menting features for these environments. TransLAN III 
guarantees FIFO on all transmissions. limiting the pos-

387 



sibility of out of sequence packets. TransLAN Ill sup­
ports end-to-end CRC preservation to insure data integ­
rity without software checksums. Selective routing 
through the use of parallel circuit trunks can insure 
that terminal server traffic is not impacted by other 
pipelining file transfer protocols. Using TransLAN and 
terminal servers for remote user access offers customers 
an elegantnt solution that is cost-effective, manage­
able, reliable. and architected to easily accommodate 
future expansion and growth. With proper planning. any 
remote terminal server network is possible and is an 
effective network design alternative. 

Appendix A includes user support information on pure LAT 
environments through TransLAN. The key to the model is 
understanding the user transaction profile. A trans­
action can be described as a two way operation: an input 
to the host and a response. measured in characters. over 
a given time. For example. the basic model describes 
the number of users supported if all users are 100 % 
active inputting 25 characters and receiving I 000 char­
acters every 20 seconds. The LAT Stat Gain factor given 
assumes the LAT server will send an average of I .2 char­
acters per packet (an assumption untested). The right 
hand side of the model indicates the various circuit 
speeds and the maximum number of users supported (both 
with and without LAT gain). 

Vatiations of the model are included to indicate the 
effect of changing the various parameters. The model is 
most sensitive to user inputs as there is a potential 63 
character overhead (minimum Ethernet packet size is 64 
bytes) per byte of input for each direction of echoplex 
operations. For example, shortening the input from 25 
to IO characters almost doubles the potential user sup­
port whereas increasing it to 50 characters divides the 
user suppoti by almost half. Changing the length of the 
transaction of the user loading (percent of the time 
users are actually active) affects the maximum number of 
supported users in a linear fashion. 

The model examples are provided for general guidelines 
and to suggest an approach to network design. This em­
phasizes the importance of analyzing the extended LAN 
traffic profiles and user populations as foundational 
parameters in choosing the proper size internet circuit. 
Copies of this model. which runs on LOTUS 123. are 
available upon request. 

It should be noted that terminal server networks are one 
possible solution to giving connectJV1ty to remote 
users. Traditional solutions would call for a series of 
multiplexers. port selectors. and modems. Functionally 
an effective solution, terminal server networks bridged 
into data centers with TransLAN offer significant fea­
tures and benefits. Using 802 standard technology al­
lows the entire network to be managed under one set of 
tools and procedures. The self-learning feature of 
TransLAN and the Ethernet backbone allows for easy and 
quick network growth and change. The tools for managing 
the local area network are extended to the terminal 
server port. in the remote location. giving centralized 
visibility of the entire network. Less cables and EIA 
connections mean less potential points of failure 
(especially since these faults call for local. manual 

diagnosis and correction). Ethernet is generally a more 
efficient inte1face to a host requ1rmg less computer 
cycles for communications. And. finally, TransLAN and 
terminal servers can be less expensive than multiplexer 
networks. 

Generally. Transpoti Layer protocols designed for wide 
area networks, such as DECnet. are relatively unaffected 
by TransLAN. Most protocols run efficiently in existing 
TransLAN networks-- in most cases out-performing routers 
and gateways for internet communications. This does not 
mean that there are not concerns with the disguised wide 
area network that TransLAN hides with its extended LAN 
transparency. Retransmission rates are higher than on 
the LAN clue to the bit error rates on the interconnect 
circuits. and transmission timeouts may need to be ad­
justed to accommodate the longer delays. Node names 
must be unique and the limitations of a single LAN net­
work must be applied to the extended LAN. Once again. 
the emphasis is on proper network planning. 

388 

TransLAN and Communications Circuits 

TransLAN utilizes synchronous communications circuits as 
paths between LANs. These circuits can be phone lines. 
microwave channels. fiber optic paths. broadband cir­
cuits. or satellite channels. All of these mediums ha\'e 
a higher bit error rate (between l 0 E-05 to I 0 E-09) 
than the LANs which they interconnect through TransLAN. 
therefore they are the "weak link" in the station-to­
station path. These bit error rates translate into 
about one errorecl packet per thousand transmitted. al­
though actual measurement in existing networks indicates 
closer to one in five thousand. When designing extended 
LANs using TransLAN. impact of these potentially error 
prone circuits should be taken into account .. 

Communications circuits are costly resources and should 
be used efficiently. In some respects. TransLAN can be 
inefficient in bandwidth utilization but in other areas 
TransLAN optimizes bandwidth in ways unavailable from 
alternative solutions. As described before. TransLAN 
uses passive backward learning: defaulting to broadcast­
ing an unknown destination to all data links except the 
source of the frame. This results in some traffic need­
lessly propagated to LANs other than the true destina­
tion. Actual measurements in user networks have shown 
that TransLAN learns rapidly and that the unkown broad­
cast traffic represents less than .00 I% of the total 
traffic load. Alternatively. routers use bandwidth 
extensively to learn the network topology and discover 
network changes. However. in the case of routers. rout­
ing traffic can be a significant component of overall 
network traffic. 

TransLAN also propagates all broadcast and multicast 
traffic to all remotes. This can be a significant com­
ponent in total network traffic. TransLAN implements 
features designed to limit the impact of multicast and 
broadcast traffic. During congestion. TransLAN discards 
multicast traffic over single destination frames. effec­
tively g1vmg priority to point-to-point traffic when 
necessary. An additional set of features allow select­
ive filtering of multicast frames on a port-by-port 
basis. This allows the filtering of unnecessary multi-



cast traffic from the internet. Use of these features 
can include filtering load requests and routing informa­
tion when unnecessary. or isolating specific protocol 
multicast messages when the protocol is not supp011ecl on 
the remote network. Using these filters. non-essential 
multicast traffic can be controlled. and when coupled 
with TransLAN's congestion algo1ithm. multicast traffic 
impact can be minimized. In over 300 installed sites. 
Vitalink has not experienced a problem due to multicast 
loads where 9.6 Kbps circuits or greater have been used. 

Due to its relatively high packet processing rate. 
TransLAN does optimize high speed circuit utilization. 
The typical router processing about 150 frames per sec­
ond with an average frame size of I 00 bytes has a max­
imum throughput of 120 Kbps (both inbound and outbound, 
therefore less than the bandwidth available from a 56 
Kbps full duplex circuit). If the available or desired 
bandwidth exceeds 120 Kbps, the excess bandwidth is un­
used. In contrast. TransLAN can process about 1500 
frames per second. which can efficiently utilize high 
speed circuits. 

In multi-protocol networks. TransLAN logically multi­
plexes all internet traffic into a single circuit or 
parallel circuit trunk. In comparison. to utilizing 
discrete networks for each protocol. TransLAN provides 
enhanced bandwidth utilization for these environments. 
With TransLAN. a single circuit or group of circuits can 
be sized for all internet traffic. Since circuit size 
selection is limited and various traffic loads change 
dynamically. the multiplexing of all traffic into a sin­
gle circuit or trunk offers a more cost-efficient sol­
ution than separate internetworks. 

The most important part of network planning for bridged 
networks. as with most networks. is proper allocation of 
bandwidth. It is important to note that bridges inter­
connect networks of users and thus require adequate 
bandwidth to meet all the users expectations. The many 
features and options available with parallel circuit 
support. switched circuits. and priority/protocol rout­
ing make TransLAN a versatile and efficient solution in 
meeting this need; however. pre-planning is essential if 
expectations are to be met. It is our experience that 
consistency of service is critically important to the 
user's perception of the value of the network. A net­
work planner should evaluate his current and future 
requirements with special consideration lo the applica­
tion supported and the users expectations of perfor­
mance. The planning is complicated by the following: 

* One rarely knows how much bandwidth is required. 
The tools simply are not available to precisely 
predict internet traffic loads until after Trans­
LAN is installed and the network manager has ac­
cess to the statistics a Data Link Layer briuge 
provides. 

* TransLAN networks tend to open a new host of ap­
plications and functionality lo a large number of 
users. Once the new functionality and connectiv­
ity is created. more users will want to use the 
remote access thus increasing internet traffic 
loads. 

389 

* Bandwidth availability and pncmg tends to rro­
mote over-engineering. DDS circuits of 56 Kbps 
and T-1 are aggressively priced and often are the 
most cost efficient solution. For example. if the 
internet traffic requirements are estimated at 30 
Kbps. the implementers most cost effective option 
is a 56 Kbps circuit. a 40 % excess of the expected 
demand and a relatively safe network design de­
c1s1on. The real point is that you will always 
need more than you think you will unless you de­
liberately over engineer. 

Fortunately. the versatility of TransLAN networks allows 
for relatively easy reconfiguration. As in most cases. 
the best medicine is rrevention- evaluate the user/ap­
plication requirements and plan parallel links or swit­
ched services in advance. 

TransLAN and Transmission Delay 

TransLAN buffers all traffic and retransmits the frame. 
if necessary, out a synchronous circuit at the circuit 
speed. This injects a delay in delivery of some time 
inversely proportional to circuit speed. Assuming no 
queuing delay. this translates to about 15 ms. delay 
transmitting a I 00 byte packet al 56 Kbps. Queuing adds 
additional delay as TransLAN may have se\'eral messages 
queued for transmission on the same data link simul­
taneously. II is therefore important to consider the 
delay implications on protocols using TransLAN for in­
ternet transport. In existing networks using terrest­
rial circuits, no change of protocol parameters have 
been required to compensate for delay. However. some 
transport protocols expect very little delay on a LAN 
(they do not see the extended LAN) and may require 
adjustment for optimum pe1formance. The concern is 
compounded when multiple bridges must act as an inter­
mediate relay for a message between communicating sta­
tions. Care must be taken to connect remote LANs dir­
ectly to the most often used resources and limit multi­
ple bridge paths to applications infrequently used (or 
for redundancy). With proper analysis and design of 
network topology. these concerns can generally be accom­
modated. 

TransLAN and Loop Detection Schemes 

As noted before. TransLAN utilizes a different loop de­
tection algorithm from the DEC LAN Bridge I 00. Although 
the algorithms are compatible in most configurations. 
the guidelines suggested later in this document should 
be followed for networks incorporating both bridge types 
if proper network topology is to be maintained. 

TransLAN and Network Management 

TransLAN's management system. Vitalink Management Ser­
vices. offers a unique link layer window into network 
performance and status. Based on DECs original bridge 
management specification. it is designed to readily 
adapt to management standards as they become available. 
In the absence of standards. Vitalink has structured an 
effective tool for network planning and operation. The 
other true bridge. DECs LAN Bridge 100 uses RBMS. a 
VAX-based bridge management system. Both systems pro-



v1cte separate and extensive network pe1formance statis­
tics that are useful tools for network management and 
planning in the absence of a standardized management 
protocol. But the different tools are separate and 
discrete systems, each requiring its own set of pro­
cedures and training. Recognizing this as a potential 
problem when LAN Bridge IOOs and TransLANs co-exist in 
the same network, Vitalink has committed to suppmiing 
RBMS in the near future. Until such time, the two man­
agement systems offer no more than an operational com­
plication when both types of bridges exist in the ex­
tended LAN environment. 

TransLAN and Data Integrity 

TransLAN HI preserves the original Ethernet CRC throu­
ghout the transmission from LAN station to LAN station. 
The CRC is checked by TransLAN when the packet is rec­
eived and stored with the frame. A new CRC is regener­
ated when transmitted to another data link calculated to 
include the original CRC. When received from another 
Trans LAN. the second CRC is checked and discarded and 
the entire frame. including the original CRC is forwar­
ded to the destination LAN. For protocols which use 
software checksums such as DECnet. TCP/IP. and XNS, any 
problem resulting from not forwarding the original CRC 
would have been detected at the Transport Layer. How­
ever for local area transport protocols such as LAT 
which do not implement software checksums, this feature 
protects against all possibilities of data corruption. 
TransLAN II hardware cannot capture the original CRC, 
just check it, therefore the potential exists for un­
detected data corruption. Our experience in over 300 
installations has not presented this problem; however, 
critical communications requirements should consider the 
potential and the solution offered by TransLAN III. 

Design Guidelines for TransLAN Networks 

The following guidelines are recommended for instal­
lation of TransLAN networks. The guidelines are desig­
ned to be conservative and to be applicable to most 
environments. Va1iations from the guidelines should 
only be implemented after extensive network analysis and 
coordination with Vitalink. 

The Use of TransLAN Should Be Accompanied by Careful 
Network Planning 

Use of TransLAN should always be accompanied by careful 
network planning and analysis. This document should be 
read and understood before attempting to design or in­
stall a TransLAN network. Vitalink is available to work 
with its customers to design working, reliable networks 
that meet their expectations and requirements. 

Use Local Bridges where Possible 

Use local bridges such as the LAN Bridge 100 for remotes 
less than 1.5 Km whenever possible. The LAN Bridge I 00 
offers a transparent connection and should be used when­
ever a I 0 Mbps circuit is available (Fiber Optics or 
Coaxial cable). 

Careful Planning Should Insure that Adequate Link Speed 
is Provided for the Internet Circuit(s) 

Typically, extended LANs with TransLAN will require a 
minimum of 56 Kbps for the internet circuits. A com­
plete analysis of the internet traffic requirements 
should be completed prior to implementation. In some 
situations. slower speed links supporting, for instance, 
a single remote LAT server and a limited number of 
users, may be applicable. However, use of any internet 
circuit below 56 Kbps should be properly considered in 
light of the concerns detailed in this paper. As a gen­
eral rule, over allocating bandwidth will insure that 
the network meets today's and tomorrow's requirements. 

Minimize Multiple Bridge Paths 

Each TransLAN in a station-to-station path adds delay 
and therefore increases the potential for affecting 
transport protocols in the extended LAN. As a guide­
line, TransLAN networks should be designed such that 
there are no more than two synchronous circuits between 
any two stations that require regular communications. 
Extending the LAN beyond two serial links should be the 
exception and should be carefully evaluated for delay 
considerations. 

It is impo11ant to note, that this requirement applies 
specifically to a single extended LAN. Once a router is 
used as an interconnect, the extended LAN is logically 
terminated. This allows extensive interconnecting of 
multiple extended LANs via routers or gateways. 

A single point of entry is required between TransLAN 
extended LANs and the LAN Bridge 100 extended LANs 

This results from the two different spanning tree algor­
ithms being used. A single point of entry allows Trans­
LAN to perform its loop detection without assumptions 
regarding the LAN Bridge 100 and vice versa. If multi­
ple points of entry do exist. the topology of the exten­
ded LAN becomes indeterministic. 

Do NOT filter the multicast messages which are used by 
Digital's Spanning Tree Algorithm or Vitalink's Loop 
Detect Algorithm 

The multicast messages are required for correct oper­
ation, regardless of which algorithm is used. For ex­
tended networks comprised of TransLAN and DEC LAN Bridge 
I 00s. undetected loops can occur if the multicasts are 
filtered. It is understood that a single point of entry 
will prevent undetected loops from occurring, however a 
second level of security against undetected loops can be 
achieved by not filtering spanning tree multicast traf­
fic. 

Evaluate the applications and demands that will be 
placed on the extended LAN 

In particular, analyze the impact of sharing the same 
synchronous circuit for both file transfer and terminal 
server interactive traffic. Over a 56 Kbps circuit. a 
relatively light file transfer load of maximum size pac­
kets can have a detrimental impact on the response time 

390 



for terminal server traffic. This could cause user dis­
satisfaction from the varying delay times on keyboard 
echos. Proper planning could include protected parallel 
links or switched services during peak periods of traf­
fic. 

Do not implement terminal server echoplex protocols 
directly over satellite circuits 

TransLAN has a special configuration to support broad­
cast satellite circuits. When using satellite circuits, 
certain considerations need to be examined. There is a 
one-half second delay in echoing traffic through satel­
lite circuits. This delay imposes an unacceptable user 
perception of the network. The use of more sophistica­
ted protocols over satellite is acceptable. For ins­
tance, in DEC terminal server networks based on LAT pro­
tocols, using the SET HOST command allows CTERM to 
create a DECnet connection over the satellite link and 
thus manage the delay effectively. This requires a 
local host such as a MicroVAX to establish the connec­
tion and precludes remote terminal server only environ­
ments in satellite networks at this time. 

Consider switched services in advance for back-up and 
peak period bandwidth 

This powerful feature cannot only offer improved reli­
ability to a production network but allows for misplan­
ning in network bandwidth allocation. 

Plan for verifying circuit performance 

Sending synchronous data over a circuit is totally dif­
ferent than having a vendor-blessed "operational cir­
cuit." As pointed out previously, BERT testing and 
other traditional test sets are often useless in deter­
mining how a circuit performs when sending real data 
instead of bit patterns. A protocol analyzer is ex­
tremely useful for this purpose. The higher the line 
speed, the more likely that traditional test equipment 
will not be able to isolate the problem. 

Have a dial telco line available during installation. 

TransLAN support is based on TransLAN's capability to be 
remotely accessed via a dial link. Through standard 
telco ciruits, Vitalink can access installed TransLANs 
throughout the customer network and effective!~ di~gno~e 
and correct most problems. Without the dial ctrcuit, 
Vitalink support is blind. As in most networks, support 
is most critical and frequent during installation. Pro­
per preparation can eliminate many of the problems. 

Guidelines for T-1 Circuit Connection 

As discussed previously, terminating a T-1 circuit can 
be confusing. The following are suggested guidelines 
for ordering the correct equipment: 

* Order a local line driver such as the Avanti 2300 
if all of the following are true: 

1) The total circuit is less than 2 miles 
2) The circuit is end-to-end shielded metallic 

pair 

391 

3) The circuit has end-to-end DC continuity 

* Order a full feature T-1 clear channel unit or mul­
tiplexer if any of the above conditions are not 
true. The Avanti Accupac or Verilink VCC is rec­
ommended. The Avanti equipment can be purchased 
through Vitalink. 

Miscellaneous Information 

Complex TransLAN Networks 

TransLAN is one type of network building block. It is 
useful in interconnecting LANs in various applications, 
however, it is not the solution to all networking prob­
lems. TransLAN can co-exist with repeaters, local brid­
ges, routers, and gateways. Ultimately, large networks 
may be made up of LANs, extended LANs, and routing in­
temetworks. Where multiple protocols are involved; 
performance is critical; routers are unavailable for the 
required protocol; or where various LANs serve closely 
related functions, TransLAN may be the best answer to 
the internet problem. However, extremely large, complex 
extended LANs are untested at this time. The management 
tools are not yet available nor are the Transport Layer 
Protocols written with bridges in mind. For the pres­
ent, extended LANs should be designed according to the 
previous guidelines limiting the number bridge relays 
and setting a minimum circuit speed at 56 Kbps. Other 
configurations should be coordinated with Vitalink tech­
nical support before implementation. One should note 
that the guidelines do not limit the number of TransLAN 
bridges in a network. It is perfectly acceptable to 
connect hundreds of sites into a central hub or swit­
ching center. This simply uses a star topology and 
there is never more than two serial circuits between any 
two stations. A complex network might have many hubs 
and many redundant paths (loops) and should be designed 
in conjunction with Vitalink expertise. 

Satellite Connections 

Vita1ink's primary business is data communications net­
working and two of their product lines offer satellite 
communications equipment. TransLAN, as well as support­
ing terrestrial applications, was designed with satel­
lites in mind. Satellites are like an Ethernet in the 
sky-- a broadcast medium-- and what is broadcast to the 
satellite can be heard by anyone listening. TransLAN 
utilizes this medium by allowing full mesh networks to 
be created easily. An earth station transmitting a 
TransLAN output can be heard by many stations, where the 
loca1 TransLAN listens to all traffic and filters out 
traffic not destined for its loca1 LAN. The coupling of 
these two technologies, Link Layer bridges and satellite 
communications, offers users in geographically dispersed 
locations a cost effective communications alternative. 
Additionally, the filtering capabilities of TransLAN 
allows Vitalink to listen to all of its stations for 
diagnostic and station status information from its cen­
tral Network Management Center in California. This man­
agement architecture provides a powerful, inline, and 
dynamic management system for centralized control of 
wide area networks. Where the distances between LANs 
exceed about 400 miles and the application is not exten-



sively delay sensitive, this kind of solution should be 
considered. 

The Architecture Extended 

Vitalink offers two companion products to TransLAN. 
TransLINK is a synchronous communications server which 
accepts bit synchronous (X.25, SDLC, HDLC) links as in­
puts. TransLINK buffers frames as they are input on the 
communications link, packetizes the frames into Ethernet 
frames, and forwards the frame to a software defined 
destination (another TransLINK port on a remote Ether­
net). TransLINK is attached to the Ethernet and Trans­
LAN captures the frame and forwards it to the proper 
remote LAN. The frame is then de-capsulated and re­
transmitted out the proper synchronous port on the des­
tination TransLINK system. Thus, TransLINK is a soft­
ware defined networking product that adds the capability 
of routing bit-synchronous point-to-point traffic 
through the same internet as Ethernet LAN-to-LAN 
traffic. 

A second product is called TransSDLC. TransSDLC pro­
vides the same function for IBM 3270 devices as Trans­
LINK does for X.25, HDLC, and SNA Host-to-Host traffic. 
TransSDLC packages 3270 SDLC PIUs into Ethernet frames 
and forwards them-- through TransLAN-- to a software 
defined destination. In addition, TransSDLC offloads 
polling from the wide area network by accepting host 
polls locally and locally polling the remote 3270 clus­
ter. This results in improved use of bandwidth (polling 
is a heavy overhead), less delay in polling response 
(especially in satellite networks), and further integ­
rates 3270 traffic into an extended LAN internet which 
may already be transporting LAN protocols, X.25 cir­
cuits, HDLC circuits, and SNA Host-to-Host traffic. All 
ports on both TransLINK and TransSDLC are software de­
fined dynamically through Vitalink's Network Management 
System for both characteristics as well as circuit 
destination. 

Bibliography 

Vitalink Communications Corporation, "TransLAN 
Installation and Reference Manual," Manual No. 005752, 
October 25, 1985. 

Vitalink Communications Corporation, "TransLAN User's 
Guide," Manual No. 005744, March: 28, 1985. 

Vitalink Communications Corporation, "TransLAN 5.1, 
Installation and Reference Manual," Manual No. 011107P, 
April 25, 1986. 

John H. Hart, "Bridges' Smooth Troubled Waters for 
Wide-Area Networking," DATA COMMUNICATIONS, 
March, 1985. 

Digital Equipment Corporation, Intel Corporation, XEROX 
Corporation, "The Ethernet, Version 2.0," November, 
1982. 

M. Soha, Digital Equipment Corporation, Architecture­
/Advanced Development, Distributed Systems; "Guidelines 
for TransLAN Bridges;" May 21, 1986. 

392 

B. Stewart and B. Hawe, "Local Area Network Applica­
tions;" TELECOMMUNICATIONS, Vol. 18, No. 9, September, 
1984. 

B. Hawe, et al., "Transparent Interconnection of Local 
Area Networks with Bridges;" Journal of Telecommuni­
cations, Vol. 3, No. 2, Summer, 1984. 

B. Hawe, et al., "Local Area Network Connections," 
TELECOMMUNICATIONS, Vol. 18, No. 4, April, 1984. 

B. Hawe and George Varghese, "Extended Local Area Net­
work Management Principles," Digital Equipment Corpora­
tion, Technical Submission to IEEE 802 LAN Standards 
Committee, San Diego, CA, October 29, 1984. 

B. Hawe, et al. "An Architecture for Transparently 
Interconnecting IEEE 802 LAN Networks," Digital Equip­
ment Corporation, Technical Submission to IEEE 802 LAN 
Standards Committee, San Diego, CA, October 29, 1984. 

R. Perlman, "Incorporation of Multiaccess Links into a 
Routing Protocol," Eighth Data Communications Symposium, 
MA, October, 1983. 

R. Perlman, "Fault-Tolerant Broadcast of Routing Infor­
mation," Computer Networks, Vol. 7, 1983. 

R. Perlman, "An Algorithm for Distributed Computation of 
a Spanning Tree in an Extended LAN," Digital Equipment 
Corporation, Technical Submission to IEEE 802 LAN Stan­
dards Committee, San Diego, CA, October 29, 1984. 

Digital Equipment Corporation, "XLII Bridge Architecural 
Specification," Version 1.8, March 1984. 

Digital Equipment Corporation, "DNA Routing Layer Func­
tional Specification," Version 2.0.0, Order No. 
AA-X435A-TK. 

Digital Equipment Corporation, "LAN Bridge 100 Instal­
lation Guide," Order No. EK-DEBET-UG-001, December, 
1985. 

XEROX Corporation, Internet Transport Protocols, XSIS 
028112, December, 1981. 

Y. Dalal, Robert Printis, XEROX Corporation, 48-Bit 
Absolute Internet and Ethernet Host Numbers, OPD-T8 IO I, 
July, 1981. 

Institute of Electical and Electronic Engineers, Inc., 
IEEE Standards for Local Area Networks: ANSI/IEEE Std. 
802.3, .Carrier Sense Multiple Access, _1984. 

Institute of Electical and Electronic Engineers, Inc., 
IEEE Standards for Local Area Networks: ANSI/IEEE Std. 
802.2, Logical Link Control. 1984. 



MAP/OSI PROTOCOL PACKAGE 
FOR VAX COMPUTERS 

Stan Froyd 
Advanced Computer Communications 

Santa Barbara, California 

ABSTRACT 
The Manufacturing Automation Protocol (MAP) environment 
imposes a substantial communications traffic burden upon 
VAX computers acting as hosts within the manufacturing enter­
prise. The MAP environment and application demands are 
explored, and a high-performance, front-end architecture to 
meet these demands is described. 

INTRODUCTION 

Efficient operation of a manufacturing enterprise 
involves timely processing of vast amounts of varied 
data. To date, this processing has been hindered by the 
inability of the computers and factory-floor control sys­
tems to exchange their local information with each 
other, due to a dearth of accepted standards permitting 
this communication. Recently, the combined efforts of 
manufacturing leadership companies, automation 
equipment vendors, and computer suppliers has led to a 
specification known as Manufacturing Automation Pro­
tocol (MAP). The widely hoped-for (and ambitious) 
goals of MAP are to permit information to be readily 
transferred between computers, people, and equipment; 
to be able to procure off-shelf equipment that "plugs in" 
to factory networks, and to readily port factory automa­
tion software application programs between dissimilar 
computers. 

THE MAP ENVIRONMENT 

The MAP specification developers did not set out to 
write a new set of communications standards. Rather, 
the objective was to select from among existing stan­
dards a set of protocols that would be most appropriate 
to the manufacturing environment. The resulting 
specification adheres to the networking protocol struc­
ture defined by the International Standards Organiza­
tion (ISO). This model for Open Systems Interconnect 
(OSI) is supported by most of the active national and 
international standards organizations. Within this 
model, it was necessary for the MAP specification to 
select from among various options provided. Where 
standards were not available for specific services (as in 
manufacturing messaging) new standards were created. 

Proceedings of the Digital Equipment Computer Users Society 393 

MAP User Functionality 

It must be noted that MAP is a communications proto­
col specification; it does NOT provide any operational 
functionality to the user. The user is required to 
develop (or otherwise procure) application software to 
actually operate his factory, using the application layer 
services defined at the upper layer of MAP. The current 
MAP specification supports a set of generalized ser­
vices known as the Common Application Service Ele­
ments (CASE), and two specific application services, 
Manufacturing Messaging Service (MMS), and File 
Transfer, Access, and Management service (FT AM). 
MMS provides services to communicate with (and 
between) factory floor automation devices, while 
FT AM provides a mechanism for distributed file access 
among systems. As MAP continues to mature and 
evolve in response to automation demands, more appli­
cation layer services (such as Virtual Terminal) will be 
added, and the functionality of today's services will be 
expanded. 

MAP Applications 

The applications of MAP in the factory are limited only 
by the imagination of factory automation technologists. 
MAP is an enabling technology allowing computers to 
have instant access to the information and/or status of 
factory floor equipment, material handling systems, 
inventory and scheduling systems, etc. Armed with this 
information, computer systems are able to provide 
real-time control information, download part programs 
or control programs, coordinate dispatch of tooling and 
materials on a just-in-time basis, calculate and effect 
optimal production scheduling, and on and on ..... 

Among the immediate applications most frequently 
cited for MAP are data collection, production planning 

San Francisco, CA - 1986 



and control, program upload/download, real-time con­
trol, distributed database management, quality control, 
and distributed numerical control. These applications 
are basically electronic implementations of current 
manual procedures. With a MAP system in place, the 
various functional organizations within a manufactur­
ing enterprise will innovate programs and procedures 
which can multiply their effectiveness and permit the 
company to recognize bottom-line benefit. 

Although this paper is emphasizing MAP, it must be 
noted that this is but a single set of applications atop the 
ISO protocol stack. Other non-manufacturing indus­
tries (e.g., banking) have similar objectives in terms of 
high-performance communications stressing vendor­
independent interoperability and application portability. 
These objectives may well be realized by an appropri­
ate set of different application services above the same 
ISO stack. One example of this is in the Technical 
Office Protocol (TOP) activity, where the services ger­
mane to an engineering office, such as electronic mail, 
document generation, and virtual terminal, are imple­
mented using the same ISO model, but with different 
application and physical layers. 

MAP Physical Network 

The physical implementation of MAP was chosen to be 
amenable to the manufacturing floor, where extreme 
atmospheric conditions, including temperature, humi­
dity, and contamination co-reside with a high electrical 
noise environment. A factory is generally spread over 
a fairly significant floor space, and relocation of equip­
ment is common. The chosen topology is that of a 
branching tree, with the root of the tree at a "head-end 
remodulator", (one required per MAP network -- usu­
ally in the computer room) and main trunks distributed 
through the factory, with drops at various computers, 
work centers, or subnetworks. Logically, of course, the 
various nodes on the network appear to have direct 
point-to-point connections with each other. 

The signals are carried in RF over a broadband physical 
network built of CA TV system components; these com­
ponents are mature in production, can withstand harsh 
environments, and utilize cable rugged enough to be 
pulled through cableways. A MAP channel utilizes less 
than 10% of the usable bandwidth within the cable, 
with the remaining bandwidth available for other ser­
vices such as surveillance, HV AC, etc. 

MAP NODE PERFORMANCE 

There are three measures of performance relative to a 
MAP node: application layer functionality, data 

throughput, and the number of connections that can be 
supported. In the case of a general-purpose computer 
such as the DEC VAX, the application layer functional­
ity is whatever programs the user implements atop 
MAP. Thus the overall effectiveness of the computer 
in the factory may be a strong function of the MAP 
communications throughput. 

Realizing that the real underlying motivation of MAP is 
to acheive factory automation for the purposes of 
reducing economic order quantities, work in process, 
touch labor, and lead times, one must be aware that a 
VAX is very likely to be in the middle of quite a lot of 
factory data traffic related to individual parts, machines, 
tools, and events, all of which must be assimilated, 
coordinated, and responded to, while still providing 
necessary support to personnel and the needs of other 
nodes on the network. 

As an example of the sort of data traffic that might be 
encountered in a MAP network, consider machine sys­
tems that consume (or generate) significant quantities 
of three-dimensional data related to the contours of a 
physical part, such as an airframe component, or auto­
motive body die, or a shoe mold. Such apparatus has a 
steady appetite for data at around 500 characters per 
second per machine. 

A simple gray-scale image transmitted to a VAX from 
a factory-floor camera for recognition of a part, or for 
determining its orientation, requires about a megabyte 
of data for a lk-by-lk resolution picture. A graphic 
image sent to a graphic screen for operator instruction 
has similar size at the pixel level. 

A screen-full of simple alphanumeric characters 
represents over 2 kilobytes of data. 

394 

In addition, there is likely to be a steady stream of 
smaller manufacturing messages reporting machine 
activity, tooling events, quality data, component inven­
tory changes, etc. 

And, of course, all of this is happening at the same 
time. In many cases, connections are left open to 
reduce the overhead (and traffic) of opening and clos­
ing connections for frequent exchanges of data. 

MAP IMPLEMENTATION FOR VAX 

The current MAP specification provides (in Appendix 
3) for an "Interim Network Interface Unit", permitting 
use of an existing, 9ff-the-shelf modem to be used to 
connect a host computer to a MAP network using an 
RS-449 serial connection between the host computer 



and the modem. This technique has been used in the 
public demonstrations thusfar, and has enabled initial 
implementations to proceed. For demanding applica­
tions, however, this approach limits performance in two 
ways: first, the host computer is burdened with protocol 
processing; and second, there is a data-rate bottleneck 
at the intermediate serial point between the host and the 
modem. Furthermore, the modem is an external device. 

A VAX in a MAP environment can be utilized more 
effectively by being aumented with a communcations 
"front end" which processes part of the protocol stack, 
thus unburdening the host, while at the same time elim­
inating the serial bottleneck, raising the data throughput 
substantially. In addition, it is possible to implement 
such an approach so that the connection resides entirely 
in the VAX backplane, occupying only two slots. 

A block diagram of such an architecture is shown in 
figure 1. The two boards are the front-end processor 
board and the modem board. These two boards imple­
ment the lower four layers of the ISO protocol stack, 
where the most CPU-intensive activities take place, 
while the upper layers (application, presentation, and 
session) remain in the VAX. Offloading the lower 
layers from the host returns processing time to the host, 
thus permitting the VAX to support more traffic or 
applications. 

Figure 1. System Block Diagram 

HOST 
SOFTWARE 

TOKEN BUS 
INTERFACE 
ANO RF MODEM 
BOARO 

Ta Broadband 
Cab/8 

RF Modem Board 

The modem board serves to translate digital data to and 
from the Duo-binary AM-PSK radio-frequency signals 
utilized by the broadband network. It accomodates a 10 

395 

Mbps data rate within a 12 MHz bandwidth, transmit­
ting in a band representing two standard television 
channels, and receiving in another pair of channels 
192.25 MHz higher in frequency. All nodes transmit at 
the lower frequency, sending the signals up to the 
head-end remodulator at the root of the tree. The remo­
dulator up-shifts the information to the higher fre­
quency, and retransmits it down the tree to all of the 
nodes. 

Of course, only one modem is permitted to be transmit­
ting at a given time. Transmission time-slots are allo­
cated to individual devices on the network by a token­
passing protocol. The MAP specification specifies use 
of the IEEE 802.4 token-passing protocol, as it permits 
a very high utilization of the channel bandwidth, as 
well as deterministic availability for each node. The 
token bus logic is contained on the front-end processor, 
to be described momentarily. 

The modem board includes scrambling and descram­
bling logic, for distributing the energy of the signal 
across the available bandwidth, and detection and 
correction of errors. It also includes a "jabber timeout", 
which causes it to disconnect from the network if any 
of its transmissions exceed 0.5 seconds. Such an 
extended transmission would indicate a failure within 
the transmitting node. 

Front-End Processor 

Maximizing data throughput on the front-end processor 
requires an optimized architecture. In data communica­
tions applications where simultaneous connections are 
carrying traffic, it is clear that a parallel processing 
architecture can perform much more effectively than a 
serial, sequential one. The architecture of a "typical" 
microprocessor-based front-end is shown in figure 2. 
In this structure, processing is constrained to execute in 
a sequential manner, as the incoming data, outgoing 

To 
Host 

Figure 2. 'Jj;pical Front-end Processor 

Microprocessor 

RAM EPROM 

Counter- DMA 
Timer --~µBUS---icontroller 

Host 
Interface 

Network __ ...,.Interface To 
Network 



data, and instruction and data fetches of the micropro­
cessor all require possession of the microprocessor bus 
nearly exclusively to maintain a high throughput. As 
the microprocessor bus is clearly a singular resource, it 
is clear that there can be effectively no parallel process­
ing of data. 

A design that effectively eliminates this "bus 
bottleneck" problem is shown in figure 3. This archi­
tecture is the basis of the ACP 6000 series of communi­
cation front-end processors. Its central feature is a 
four-port RAM; each port is accessed by a separate seg­
ment of the 68000 bus. The segments, named the 
CBUS, DBUS, PBUS and UBUS, attach or detach in 
accord with the activity taking place. 

Figure 3. High-peiformance Architecture 

UNIBUS 
Control 

UNIBUS 

By supporting separate bus segments for the incoming 
data, outgoing data, and microprocessor data access, 
each segment is granted full bus bandwidth indepen­
dent of the others. It is thus possible for each of the data 
paths to be running at a high bus bandwidth, and paral­
lel processing can occur. In this configuration, it would 
appear that since the common RAM is a shared 
resource, we would again encounter resource conten­
tion. This is indeed the case, but as RAM arbitration 
can be executed substantially faster than bus arbitration, 
it permits each bus to operate at essentially full rate. To 
optimize the architecture still further, the "cache" 
memory can serve as both instruction and temporary 
memory for the microprocessor, so that shared RAM 
fetches need only be made to operate on protocol data. 

To validate the approach, data has been recorded for a 
processor board utilizing this architecture, though with 
a serial communications chip used, rather than the 
token-bus controller chip used on the MAP board. This 
data provides insight into the performance of the four­
way bus architecture. Table 1 reports the results of this 
testing. The front-end processor (ACP 6000) was 

396 

doing complete HDLC protocol processing, while the 
host (VAX-785) was creating data to be transferred, 
requesting transfer by the ACP 6000, receiving and 
checking returned data, and logging a running total of 
(correct) received data. Rates are aggregate; both out­
going and incoming data are counted. 

Packet Packet Data CPU 
Size Rate Rate Load 

(Bytes) (PIS) (kB/S) (%) 

256 195 50 38 

1024 195 200 40 

2048 128 260 30 

4096 67 275 20 

The product for which the data was recorded is able to 
support X.25 communications at line rates up to Tl 
(l.544 Mb/s). Reference [1] reports additional data for 
different line rates and CPUs. 

The MAP front-end processor board will carry a larger 
protocol processing burden than the board for which 
these tests were run. As this processing is software­
intensive, the burden will fall on the microprocessor, so 
that it is essential that parallel processing capability 
available in the four-bus architecture is be available. 

The MAP front-end processor incorporates a 12 MHz 
68000 microprocessor and a 1 MB DRAM to permit a 
large number of open connections. The Network, Tran­
sport, and Data-Link layers of the ISO protocols are 
handled by this microprocessor, so that the front-end 
performs packetizing and packet re-assembly, check­
summing, and routing; in the event of faulty transmis­
sions, detection and retransmission is all performed on 
the front-end, providing the host with guaranteed reli­
able data. 

Also on the front-end processor is a VLSI component, a 
Token Bus Controller chip which performs the logical 
functions of the token bus system used in MAP. The 
token bus has no centralized controller node, thus 
requiring fully distributed logic. Each node must con­
tain the logic for entering and reconfiguring the ring, 
detecting and reacting to network faults, and perform­
ing the token passing functions. This logic is per­
formed in the token bus controller chip. 

In the Technical Office Protocol (TOP) environment 
mentioned earlier, an 802.3 (Ethernet-like) physical 



transmission protocol is used, rather than the 802.4 
token-bus protocol. For these applications, the VLSI 
Token Bus Controller chip can be replaced with a 
Local-Area Network Controller-Ethernet (LANCE) 
chip, and the same performance benefits can be realized 
in those applications. This configuration obviously 
requires no modem board. 

Host Functions 

The upper ISO layers are in the host VAX. These 
include the Session layer for managing individual ses­
sions, the Presentation layer for translating from host­
specific information representation to network standard 
representation (currently implemented as a null layer, 
requiring implementation agreements as to representa­
tion), and the application layer services visible to the 
programmers and maintainers of the system. 

CONCLUSIONS 

Examination of the roles taken by VAX computers in 
MAP factory automation networks reveals a substantial 
communications burden potential which can reduce the 
computer's effectiveness. More processing power can 
be returned to the VAX by the addition of a front-end 
communications processor; substantial additional 
throughput improvement can be acheived through a 
front-end processor architecture incorporating concepts 
which permit protocol processing to occur concurrently 
with data transfer. 

REFERENCES 

[1] Russ, Roger, "VAX Communications Controllers" 
Proceedings DECUS USA, 
pp 423-423 (Fall, 1985). 

[2] Manufacturing Automation Protocol, (MAP) 
Specification Version 2.1; General Motors Corp., War­
ren, MI (1986). 

[3] Technical and Office Protocols (TOP) Specification 
Version 1.0; The Boeing Co., Seattle, WA (1985). 

397 





UTILIZING THE VAXCLUSTER AS A NETWORK HUB 

John Dennis 
Texas Instruments, Incorporated 

Dallas, Texas 

ABSTRACT 

VLSI (Very L-nge Scale Integration) circuit design research and devel­
opment requir('~ .i11dicious selection of general purpose and highly spP­
cialized computn~. Proprietary interface systems as well as availability 
constraints must be considered when a data communication net.work is 
implemented to link the multi-vendor environment.. Existing corporate 
IBM processing facilities also represents a major asset to the laboratory 
and efficient inter-computer access to this system is mandatory. 

For Texas Instruments flagship circuit design research group, Semi­
conductor Process and Design Center's VLSI Design Laboratory (VDL), 
the goal was to create an environment capable of supporting circuit de­
sign, characterization, and testing, as well as developing advanced design 
automation techniques. To realize this concept, a series of diversified 
hardware centered around a VAXCluster was collected which reflected 
the flexibility and strengths required to accomplish engineering mile­
stones. Four ethernet protocols (Calmanf't. CHAOSnet, DECnet, and 
TCP /IP), an SNA Gateway, and variom- ~erial interfaces all connected 
to a VAX Cluster-centered computing <'ll'" ir.,nm<'nt is described with em­
phasis on the operational ease of each nd\\ "rki11g product. 

Computer Aided Design (CAD) for VLSI 

Texas Instruments circuit design flow incorporates a diverse 
collection of st ate-of-the-art CAD programs and hardware, 
each performing an integral part of our advanced VLSI de­
sign research. .\Iassive amounts of CPU (Central Process­
ing Unit) eye !es are required in these VLSI design efforts 
for various types of modeling and simulation, from the very 
high-level abstract behavioral (functional) down to the ex­
tremely detailed transistor-level electrical descriptions. VLSI 
is generally defined to be the incorporation of between IOOK 
and IM devices on a single chip. Various stages of concep­
tualization must be integrated into dependable procedures 
facilitating top-down or bottom-up architectural expansion. 
Simulation, or dynamic design verification, is the process of 
evaluating the behavior of a circuit within the constraints de­
fined by the engineer. The objective of simulation is to ensure 
the performance and proper funrt ionality of a design before 
entering the costly fabrication cycle. Ear h type of simulation 
and analysis is critical to assure t hP 5U<"<"Pss of a design on 
the first pass, succeeding passes are prohihit ively expensive 
and time inefficient. 

Hardware Selection 

Unfortunately, no one computer or single-,·e11dor system ade­
quately satisfies each specialized requirerrn'nt for every stage 
of VLSI circuit design. Optimal performance for each phase 
is achieved by a different mix of resources: terminal I/O, 
disk I/O, CPL printing, plotting, etc. Our solution, there­
fore, was to ,p]prt several different systems, each capable of 
efficiently }1H11,Jii11g <ntain aspects of design flow. 

VAXCluster 

The hub of our computing resource environment is a 
VAX Cluster consisting of four DEC [l] VAX superminirnm­
puters; one VAX-11/750, two VAX-11/780s, and one YAX-
11/785. The VAXCluster was chosen for its maturity as 
an engineering and CAD tool throughout the 111d1htr: and 
academia, the ease of expandibility, as well as the flexible, 
user-friendly VMS operating system. Many of our ,raff had 
<'XtensiYe prior experience on VAX systems and are romfort­
abl<' utilizing its features. Another powerful adYantage of 
configuring a homogeneous VAXCluster is that all batch and 
printers queues are available from all the cluster nodes. The 
VAX-11/750 has the maximum 8 MegaBytes of main mem­
ory, the YAX-11/780 systems have 12 MegaBytes each. and 
the VAX-11/785 has 16 MegaBytes. Every VAX has its own 
9-track tape driYe for backup, archival. or transfer of data as 
a fail-safe method if the networks become inopernt in~ Hard­
copy output is provided for th<' clustered mar hines from a 
DEC Ll'\01 la~er printer, a Talaris [2] 1200 laser printer. two 
600 LPM Printrcmix line printers. and a Versatec [3] ECP-42 
color plotter. ~lost specialized design hardware and softwar<' 
can be directly accessed from our VAX system~. 

V AXStation II 

Three VAXStation II systems were purchased for their su­
perior price/performance ratio. The VAXStation II systems 
are based on the Micro VAX II computer, have high-resolution 
monochrome graphics multiwindowing monitor and software, 
three RD53 71 MegaByt.e disk drives, an RK50 95 MegaByt.l' 
streaming tape drive. 9 MegaBytes of main memory, LA50 
graphics printNs. and DECnet ethernet [4] for a stable com­

399 San Francisco, CA - 1986 



munication envirmunent. One VAXStation II is being uti­
lized for graphics application programming and software re­
lease testing. Another is used for EBEAM testing control and 
analysis, and the last one for device physics and character­
ization research. Small to medium SPICE jobs, parametric 
device yield estimation programs, VDL's office automation 
(e.g., local and worldwidf' electronic mail, corporate elec­
tronic news interface, desk calculator programs, word and 
text processing, mef'ting schf'duler, notification and calendar 
functions, spreadsheet, ~u I, project and personnel admin­
istration, staff attendance data collection and reporting, as 
well as a host of other organizational and design related tasks 
are executed locally on the VAXC!uster and VAXStation II 
machines. 

CAD Workstations 

Engineering workstations provide the designf'r intnface 
for schematic capture, subcircuit compilation, logic diagram­
ming, functional modeling, as well as some small SPICE sim­
ulation. A variety of small minicomputers and software pack­
ages were selected to facilitate the workstation concept. The 
TI designed and manufactured Designer Terminal (DT) is a 
hybrid built from a standard Tl990 computer and a custom 
High Speed Display Processor subsystem. Our laboratory 
utilizes three DTs as well as an Engineering Production Sys­
tem (EPS), another Tl990 with extra disk space and two 
9-track tape drives, for a design concentrator and manipula­
tion machine. From the EPS, designs can be translated from 
Tl's proprietary database to Calma's GDSII stream format 
and placed on tape for transfer. The EPS and DT systems 
are connected to each other by XNS ethernet and to corpo­
rate IBM [5] mainframes by a proprietary 56Kbps network. 
TIPCs can also access the DTs and EPS system via XNS 
ethernet. 

Currently, our lab utilizes nine Apollos [6], four DN600s 
and five DN660s, along with DSP80 and DSP160 server pro­
cessor nodes. A typical Apollo node has 4 MegaBytes of 
main memory, a high resolution color monitor, 167 Mega.Byte 
Winchester disk drive, and an 8-plane color graphics pro­
cessing system. Extra disk storage is provided by two 300 
MegaByte removable disk drives connected to the DSP80, 
three 500 Megabyte Winchester disk drives connected to the 
DSP160. Tape archival is available through a 6250 bpi and 
two 1600 bpi 9-track tapf' drives. Hardcopy output is pro­
vided by an Imagen [7] Imprint-10 laser printer, a Versatec 
V-80 11 inch electrostatic printer/plotter, and a Versatec 
ECP-42 42 inch electrostatic color plotter. The Apollos are 
connected to each other by the Domain Ring network, to 
corporate IBM complex by a 56Kbps BDT, and to the VAX­
Cluster via TCP /IP Ethernet. An alternate RS232 interface 
to the VAXCluster exists for redundancy. 

Augmenting our advanced design automation project as 
well as our circuit design efforts, five Symbolics 3600-class 
LISP machines are also being used in VDL. They, along with 
seven TI Explorers. have been used to develop software em­
ulators for circuits and wilr play an ever increasing role in 
future design 1envirOJ n1Pnt;. with their AI capability. The 
Symbolics and Tl Explorers use both TCP /IP and CHAOS­
net ethernet for int.erfac<> to each other and other computers. 
Future personal compntn / workstations will need to have the 
powerful usf'r iufrrfan that is standard on these machines. 

400 

After each subcir ·111t design has been completed, it must 
be verified, combined with other subcircuits previously de· 
fined, and plotted. To ensure this large global interconnect 
handling capability, provide local design rule Vf'rification and 
fast electrostatic color plotting, a Calma S-280 CAD system 
was chosen. The system has two 300 Mega.Byte removable 
disk drives, two color workstations with a 300 LPM Print­
ronix printer-plotter attached, ancf two 9-track 800/1600 bpi 
tape drives. It provides a high-speed interactive graphics pro­
cessor, physical layout graphics editor, symbolic layout edi­
tor, local Design Rule Checking, and host rasterization for 
the Versatec ECP-42 color plotter. The system is generally 
fed with GDSII stream data translated from the Apollo or 
DT output format. Calma developed a proprietary network­
ing scheme known as CalmaNet that interfaces the Ca.Ima to 
the VAX and Apollo computers. 

VLSI Tester 

The extremely large pin count of our parts necessitated 
the purchase of a state-of-the-art tester capable of support­
ing scores of independent drivers and 256 pin devices. High 
speed dynamic test and error capture as well as other detailed 
criteria went into defining the specification of a qualified 
VLSI tester. Selection of the UNIX 4.2 bsd based Mega Test 
MegaOne tester was made. MegaOne uses TCP /IP ether­
net for networking between our Apollo nodes, VAXClust.er, 
Symbolics, TI Explorers, and TIPCs. 

The Networks 

Proprietary interface systems as well as availability con­
straints must be considered when a data communication net­
work was implemented to link our the multi-vendor environ­
ment. Many systems had only their own proprietary network 
available and others had several suppliers that could provide 
a networking solution Since we were relying on the VAX­
Cluster as a hub of the computing environment, all systems 
had to interface to the cluster in a reliable fashion and have 
reasonable vendor support available. 

Computer Interconnect (CI) 

All of the VAXC!uster systems are connected to each 
other and to two central disk interface controllers (HSC50) 
via DEC's CI network. The HSC50s currently control fifteen 
RA81 456 MegaByte disk drives that can be accessed by all 
of the C'I connected VAXes. The CI is a 70 Megabit per sec­
ond clock network that can be used as a computer interface 
to disk and tape drives as well as carry DECnet traffic. All 
our VAXC!uster nodes are interfaced with DECnet ethernet 
for user traffic, allowing the CI to be used exclusively for 
disk and tape 1/0 only, thus further increasing their overall 
performance. 

DECnet Ethernet 

DECnet ethernet is the most heavily used protocol in 
our laboratory. It features high data transfer rates with 
all utilities normally associated with DECnet. DECnet has 
a powerful managment facility, Network Control Program 
(NCP), that allows troubleshooting and monitoring capabil­
ities. DECnet utilities include virtual terminal access via 
the VMS command "SET HOST", transparent file transfer 



via the VMS command COPY, and Digital Command Lan­
guage (DCL) object execution (remote VMS node execution 
of DCL command files.) Invoking DECnet ethernet via com­
monly used VMS commands adds significantly to the ease 
with which users are able access this ethernet network. 

DECnet/SNA Gateway 

56Kbps DECnet/SNA Gateway connection provides re­
mote batch job entry (RJE), interactive IMS and TSO ses­
sion, and application program interface access to Texas In­
struments worldwide IBM complex. The IBM systems are 
locally used for large SPICE circuit simulation batch jobs, 
executing large-><cale device characterization and physics pro­
grams, its puwnfol electronic mail system, creating circuit 
pattern generation tapes for reticles, as well as various other 
design and administrative functions. The gateway has a 
PDP-11/24 based DECSA networking system downloaded 
and managed from the VAXC!uster via DECnet ethernet. 
The SNA Gateway is connected to the IBM complex by 
an IBM-3725 via a Tl multiplexer Jinked to an 18 GHz 
microwave system. Invoking the RJE application on SNA 
Gateway is easily accomplished via the VMS SUBMIT/SNA 
command. IMS and TSO are accessed by entering a SET 
HOST /SN A command. Again, DEC has integrated this net­
working tool seemlessly with VMS and communicating across 
the vendor barrier has become much less painful. 

TCP /IP Ethernet 

TCP /IP ethernet is supported either by the manufacturer 
or a third party vendor for most computer systems. Each 
implementation of TCP /IP can provide different utility sup­
port, however, most have bi-directional ASCII and binary 
file transfer capabilities (File Transfer Protocol - FTP I and 
bi-directional TELNET virtual terminal access. 

• Currently, we are using the Wollongong [8] TCP /IP eth­
ernet shared-DEUNA package on the VAXCluster. A 
strong advantage of the Wollongong package is that it 
uses DEC's DEUNA or DEQNA ethernet interface card 
already resident in the DECnet ethernet VAX system 
rather than requiring an additional card slot. 

• Apollo supports their own TCP /IP package. 

• The Texas Instruments Explorer [9] LISP machine has 
TCP /IP supported by Texas Instruments. 

• MegaTesr·,. MegaOne [10] tester has a UNIX 4.2 bsd op­
erating system that supports the TCP /IP ethernet pack­
age. 

• Symbolics [11] Incorporated supports TCP /IP on their 
LISP machines. 

• The Texas Instruments Professional Computer (TIPC) 
has the Fusion [12] MS-DOS uni-directional FTP and 
TELNET TCP /IP capability. 

Calmanet 

Calmanet [13] is another ethernet protocol on the VAX­
Cluster for interface to the Calma and Apollo machines. 
Calma Company sells and supports Calmanet on the Calma 

401 

interactive color graphics workstations, VAXen, and Apollo 
workstations. Calmanet requires an additional card be in­
stalled in each system the software resides, on the VAX this 
takes one Unibus slot and 7.5 Amps of 5 Volt power. There 
are several Calmanet management utilities as well as the ma­
jor file transfer utility, NFMOVE. There is currently no vir­
tual terminal capability. 

CHAOSnet 

CHAOSnet is an ethernet protocol sold by Symbolics In­
corporated for use from their stand alone LISP machines. 
CHAOSnet is also supported by Symbolics on the VAXClus­
ter and by Texas Instruments for the TI Explorer. TEL­
NET virtual terminal access and CFTP file transfer utilities 
are available under CHAOSnet. CHAOSnet can also use the 
shared-DEUNA approach that lowers the Unibus card count 
necessary in the VAX. 

Strategic Support Considerations 

VDL Computer Operations must make the most efficient use 
of our small staff to ensure timely implementation of cru­
cial capabilities. Implementation and integration of indus­
try standard programs and utilities is preferred to internal 
development efforts whenever possible. When off-the-shelf 
solutions are not available, however, as in the case of trans­
lating Apollo generated design data to GDSII stream format 
and visa-versa, we maintain the software expertise to quickly 
respond in these areas. VDL Computer Operations person­
nel work shifts are staggered to provide the highest degree of 
immediate software and hardware support possible. 

Extensive backup methods and procedures have been 
established to provide minor and major disaster recovery. 
When network failures occur, 9-track tape drives, attached 
to most of the critical design engines, are capable of trans­
ferring data to other machines. In some cases, such as the 
multiple IBM interfaces, redundant links capable of provid­
ing effectively the same function are available. Redundancy 
for every large block in the design path is nearing reality and 
will decrease the possibility of a single point failure. 

Dealing with multiple suppliers necessitated development 
of several steps to assure capitalization of the resources each 
has to offer. With VCO's diverse installed base of hardware 
and software, a monumental effort would be required to col­
lect field service experts and an inventory sufficient to keep 
all systems functioning properly. Ours has become a man­
agement and coordination function with the major manpower 
being provided by the vendors themselves. Full service main­
tenance contracts are purchased to ensure the maximum ma­
chine availability. Figures indicate an average system avail­
ability in the high 90 percent range for the worst case month 
with several :systems obtaining 100 percent uptime. 

Meetings are held regularly with vendor representatives 
to discuss trends, new product information, failure issues and 
avenues for their resolution. A partnership atmosphere is fos­
tered with to enhance our understanding of the product mar­
ket and to increase our ability to judiciously plan equipment 
additions as our needs expand. Key national conferences, 
seminars, vendor sponsored classes, and trade ~hows are at-



tended for quality current awareness. 

Expansion and Future Trends 

Major concerns, seen as bottlenecks in our operation, are for 
extended local processing power and increased transparency 
in the networking strategy. In the minicomputer price range, 
the market has been slow to produce single processors with 
large increases in performance. The general gain in single 
processor scalar machines has only been about 1.7 to 6 times 
that of a VAX-11/780. Latest trends in computing machin­
ery have gone in five major directions. First, the parallel 
processor route which will allow multiple CPUs to be hung 
on a high-speed bus. Second, small vector machine devel­
opment. Third, a loosely or tightly coupled multiple CPU 
clustering approach. The major difference between the two 
types of clusters is that the tightly coupled systems boot 
and fail together, loosely coupled systems generally boot and 
fail separately. Fourth, attached specialized array processors 
that generally run FORTRAN. And fifth, the multiple dis­
tributed processor or workstation strategy. There are advan­
tages and disadvantages to each of these methods of gaining 
local processing power. 

Currently, the most transparent networking scheme we 
have available revolves around DECnet. This is not likely to 
change in the near future due to the powerful management 
and integration tools DECnet possesses. Several vendors, 
such as Symbolics, are now adding DECnet to their systems. 
This network enhancement increases the multi-vendor com­
puting synergism enormously and allows major productivity 
advantages. 

To keep our operation world-class in its capability, a dy­
namic machine type and count adjustment will always be 
necessary. Certainly, there is room in our laboratory's com­
puting environnwnt for all of the five major directions. The 
maximum gain will most likely be felt as high pu'h'Pred (true 
VAX-11 /780 performance) workstations with an AI flavor be­
come affordable and available for every engineer. Application 
servers, residing as an ethernet host, may need to be devel­
oped that are tuned specifically for an application such as a 
multiple CPU SPICE engine, or for single language execu­
ti9n. This type of environment would allow computationally 
complex jobs to be transparently farmed out to these appli­
cation servers and the designer's workstation will be free to 
handle general interactive interface as necessary. This strat­
egy also lends itself to purchasing stand-alone, small, afford­
able vector machines that can be networked as servers. 

Having centralized computing resources avails itself to 
support coordination, management of large data storage, 
backup and archival, and shared large expense items, such as 
tape drives. Advantages of increasing the VAX node count in 
a cluster include establishing a growth pattern that utilizes 
a stable system architecture, an improved price/performance 
ratio per node with such machines as the VAX 8800, compat­
ibility with existing mass storage, and increased redundancy. 

Credits and Disclaimer 

Mention of any company name or product in this paper 
does not in any way constitute an endorsement of that com­
pany or product by Texas Instruments, Incorporated or the 
author and is made entirely for informational purposes. The 
opinions expressed herein are those of the author and, al­
though reasonable verification has been attempted, are not 
guaranteed to be factual. 

[1] Digital Equipment Corporation, Maynard, Massachusetts. 
CI, DCL, DEC, DECnet, DECnet/SN A Gateway, DECSA, 
DEUNA, DEQNA, HSC50, LASO, LNOl, MicroVAX 
II, NCP, RA81, RD53, RK50, Unibus, VAX, VAX-
11/780, VAX-11/785, VAX-11/750, VAX 8800, VAX­
Cluster, VAXStation II. and VMS are registered trade­
marks of Digital Equipment Corporation. 

[2] Talaris Systems Incorporated, 7840 Herschel Avenue, La 
Jolla, California 92038 (619) 454-3363 Talaris is a regis­
tered trademark of Talans Systems Incorporated. 

[3] Versatec, a Xerox Company, 2710 Walsh Avenue, Santa 
Clara, California 95051 (408) 988-2800. Versatec V-80 
and ECP-42 are registered trademarks of Veratec. 

[4] Ethernet is a registered trademark of Xerox Corporation. 

[5] International Business Machines Corporation, Pough­
keepsie, NY, 12602. IBM, IBM-3780, IBM-3271, IBM-
3277, IBM-3725, IMS, RJE, SNA and TSO are trade­
marks of International Business Machines Corporation. 

[6] Apollo Computer Incorporated, 330 Billerica Road, Chelms­
ford, Massachusetts 01824 (617) 256-6600. Apollo and 

VACCESS are registered trademarks of Apollo Cumputer 
Incorporated. 

[7] Imagen Corporation, 2660 Marine Way, Mountain \'iew. 
California 94043 (415) 496-2100. Imagen and Imprint-IO 
are registered trademarks of Imagen Corporation. 

[8] The Wollongong Group, Incorporated. 1129 San Antonio 
Road, Palo Alto, California 94303. (415) 962-7100. 

[9] Texas Instruments, Incorporated. Dallas, Texas. Ex­
plorer, TIPC, and TI Professional Computer are regis­
tered trademarks of Texas Instruments, Incorporated. 

[10] MegaTest Corporation, 1321 Ridder Park Drive, San 

[11] 

[12] 

11'1 

Jose, ( 'alifornia 95131 (408) 971-8378. MegaOne is a reg­
istere•l trademark of Megatest Corporation. 

Symbolirs Incorporated, Four Cambridge Center, Cam­
bridge, Massachusetts 02142 (617) 576-2600. Symbolics 
and CHAOSnet are registered trademarks of Symbolics 
Incorporated. 

Fusion is a trademark of the Network Research Corpora­
tion, 2380 North Rose Avenue, Oxnard, California 93030, 
(805)485-2700. 

Calma Company, 11022 Winners Circle, Los Alamitos, 
California 90720 (213) 594-8681. Calmanet is a trade-
mark of Calma Company. 

402 







DEVELOPMENT OF AN 
IN-HOUSE TRAINING PROGRAM 

Jennifer L. Rieck 
USAA 

San Antonio, Texas 

ABSTRACT 

Working with electronic office systems requires new attitudes and skills. Training 
employees to accept the changes and to handle the new technologies is not easily 
accomplished. Resistance to technology, under-utilization and mishandling of office 
systems can prevent their full potential from being realized. In a large company, 
relying on the vendor to provide all the training is usually not cost effective. So, the 
development of a quality, in-house training program, tailored to meet the company's 
special needs, may be the answer. 

In September of 1983, USAA formed it's own in-house training 
program for Office Automation. Two instructors were hired to 
determine training needs, develop a curriculum, and deliver training to 
a user population of nearly 1,000. 

After hardware and software needs were determined, training at each 
location was provided. A complete O.A. network now exists among 
USAA's Home Office building and it's four Regional Service offices. 

It took one year to train all users on the basic operation of their 
computers. Additional classes were then developed and offered which 
were more advanced in nature. Refresher courses, housecalls, and self­
study programs were also added to the O.A. curriculum. 

Office Automation soon became a way of life at the USAA Home 
Office building. It wasn't long before there was a need for us to be 
able to communicate electronically with our Regional Service offices 
which are located in: 

Colorado Springs, Colorado 
Sacramento, California 
Tampa, Florida 
Fairfax, Virginia 

Proceedings of the Digital Equipment Computer Users Society 405 

Since our inception, the number of users we serve and the number of 
classes we teach has grown considerably. With hardware and software 
constantly changing, the need for course revision and new course 
development is always present. 

USAA is very proud of the high quality in-house training program 
we've developed. We've learned many lessons along the way and will, 
no doubt, learn many more as we try to keep up with the rapidly 
changing world of Office Automation. 

San Francisco. CA - 1986 





From User Documentation to 
Sharing Information: Problems and 
Solutions in User Communications 

Daniel Barrett 
Digital Equipment Corporation 

Nashua, New Hampshire 

Abstract 

This paper discusses some of the problems associated 
with traditional, hardcopy documentation in the office 
marketplace. Because of the conflicting and sometimes 
unrealistic expectations that people have about docu­
mentation, there is no perfect solution, but rather a va­
riety of possible solutions. One point, however, is clear: 
the less that a computer system depends on documen­
tation to explain its workings, the better. In other 
words, th~ best computer system is one that has an 
intuitive and transparent human interface-something 

writers can and should help to design. 

Proceedings of the Digital Equipment Computer Users Society 407 San Francisco, CA - 1986 



Introduction 

Conventional documentation sets are something 
like the public school system in the United States: 
a great deal is expected of them, far more than 
they can possibly deliver. This may sound like 
heresy, but customers and other users have so 
many different demands to make of documenta­
tion that it is impossible to satisfy them all. 

Instead of finding ways to write better books, we 
need to think more about sharing information, 
using a variety of ways to instruct people how to 
use a particular system. Since one of the best 
forms of learning is self-instruction, people should 
be encouraged to explore and discover a system 
for themselves, guided mostly by on-line informa­
tion and using "documentation" only when 
necessary. 

Before discussing solutions, let's review the prob­
lems that seem to be leading traditional documen­
tation to a dead end. 

The Insider's View 
These are the expectations on the "inside" -what 
writers hear from engineering groups as software 
is being developed and the documentation is be­
ing written. 

Documentation as Functional 
Specification 

According to this line of thinking, the main pur­
pose of documentation is to provide a detailed 
description of every facet of a computer system. 
For example, if a programmer has mapped five 
different keys so they perform the same function, 
all five keys should be documented more or less 
equally. If there are certain restrictions, no matter 
how obscure, that apply to a particular function, 
those restrictions must be recorded. In other' 
words, documentation should state every single 
fact about a computer system, regardless of 
whether that information is of any practical value 
to the user. 

In this way, computer documentation resembles 
the specs written for sophisticated types of ma­
chinery, everything from a 2-cycle engine to the 
space shuttle. And in a company that is heavily 

408 

oriented toward engineering, where a great deal 
of this type of documentation is written, it's not 
surprising that this expectation exists. 

However, "documentation as functional specifica­
tion" misses the primary audience-people who 
want to use software quickly and efficiently, with­
out needing or wanting to know every fact about 
the product. The situation Is similar to the old 
joke about the boy who asked his father if he 
knew anything about Morocco. The father said, 
"Why don't you ask your teacher?" and the boy 
replied, "I don't want to know that much." 
Customers generally don't want to know that 
much either, just enough to get their work done 
as soon as possible. 

The purpose of documentation is to make a sys­
tem usable. But to include every fact about a 
computer system would make a typical doc set 
about twice as long and half as useful as it is 
now-and doc sets are already long enough. 
Completeness and thoroughness are noble goals, 
but only when qualified by reasonable expecta­
tions of the readers' needs. Eventually the law of 
diminishing returns sets in, and the reader is 
faced with information overload. The same rule 
should apply to both documentation and nutrition: 
Less Is More. Or as a friend put it: Enough is 
Enough! 

Documentation as Safety Net 
Here's a typical scenario. Someone rushes into a 
writer's office and asks whether an obscure print­
ing restriction is documented somewhere. We 
both look through the appropriate chapter, and 
maybe we find the relevant information, maybe we 
don't. Either way, as someone put it recently, 
"It's nice to be able to tell our customers that it 
was in the book; they just didn't look hard 
enough." 

In my opinion, whether or not we're "covered," 
the documentation has failed. Assuming that the 
necessary information is there at all, it's worthless 
to a customer if we make it practically impossible 
to find. From the customer's perspective, the re­
sult is the same: delays, confusion, and 
frustration. 

Along with the task of choosing what information 
should be documented, the writer also needs to 
consider where that information can be accessed 



most logically and easily. Part of the answer is to 
use a greater variety of means to share that 
information-"solution messages," on-line Help, 
CBls. But an even better answer is to design 
"documentation-free" systems which don't require 
time-consuming searches through weighty man­
uals. 

Documentation as a Selling Tool 

Writers sometimes hear that "documentation sells 
products." I've never really understood what this 
means. When I use a computer, the last thing I 
want to do is start reading the instructions. I want 
to get some work done and discover this system 
for myself. And from what I've seen of customers, 
I think many people operate the same way. 

The only example I've seen of marketing really 
using documentation to sell products is the well­
known Macintosh TV commercial, in which a large 
set of binders is stacked up against the slender 
and far less intimidating user's guide for the Mac. 

Whether or not documentation sells anything, 
there's a valuable lesson here: "The less docu­
mentation you offer, the more appealing it looks." 

Nobody Uses Documentation Anyway 

This is a line that developers are particularly fond 
of using, and like most outrageous things they 
say, there's an element of truth lurking there. 
Namely, people don't willingly use documentation. 
It is usually a last resort, and often undertaken 
with no great hope of success. 

Another factor is that most people are not particu­
larly good readers. Many studies have shown that 
although an increasingly high percentage of peo­
ple use computers in their daily work (as high as 
70%, according to one report), many of these 
people have poor reading skills at best, and are 
illiterate at worst. In fact, we seem to have be­
come largely a nation of viewers rather than a na­
tion of readers. So people may be unable as well 
as unwilling to read the instructions we write. 

The sooner that writers acknowledge the situation, 
the better chance we have of reaching our target 
audience and sharing information with them. 

409 

The Customer's View 
The problems I've just discussed with the present 
state of documentation-there's too much of it, 
the information is hard to find, users can't or 
won't read what we write-are reflected in the re­
marks of customers as well. Here are some com­
ments I've heard: 

• "Who has the time to read? We've got 
work to do here." 

• "I just need to learn a few things to get go­
ing, and you've given me five binders." 

• "I'm already an experienced word-
processing user. Can't you just tell me the 
differences between your system and the 
one I'm familiar with?" 

• "I'm 90% sure I won't find what I need, 
even before I start looking." 

As convenient as it might be for writers to ignore 
these criticisms, we have to start being more cre­
ative in our solutions. And before we can evaluate 
the best methods for moving from hardcopy docu­
mentation to sharing information, we need to first 
consider how the systems themselves are de­
signed, and how to ease the load that documen­
tation must now bear. 

The Ultimate Goal: Zero 
Documentation 

The most obvious solution to the problem is what 
I call "Zero Documentation" -similar to zero pop­
ulation growth, and with about as much chance of 
succeeding. The goal here is to produce systems 
that are so "transparent," so carefully designed 
and intuitive, that the user can perform most 
tasks without recourse to documentation. 

This means a radical change in the way systems 
are typically designed, and a greater role for writ­
ers in designing the system, so in fact they be­
come "support engineers," a term suggested in a 
recent article entitled "The New Wave of User 
Documentation." The author of this article, 
Edmond Weiss, makes the point that writers are 
among the most qualified people in designing a 
human interface, because they constantly deal 



with the question of how best to convey informa­
tion. This doesn't necessarily mean that they sup­
plant programmers in developing the user 
interface, but that they work with them to build a 
truly user-friendly system. 

Theoretically, this sounds highly desirable. At a 
practical level, we're finding that this is a difficult 
proposition that involves a great deal of give and 
take, since programmers, writers, and other inter­
ested parties all see the interface world quite dif­
ferently. From the writer's viewpoint, one rule 
should be sacred: that system is best that re­
quires the least external documentation. The sys­
tem should be so well designed that users are 
able, and even encouraged, to learn it intuitively, 
without having an open book next to them. 

Toward Zero Documentation: 
Some Intermediate Goals 

Zero documentation may be more of an ideal 
than a real possibility. But as we move toward de­
veloping more self-supportive systems, we can 
also improve the ways we share our information. 
Here are a few modest proposals about the ways 
traditional user documentation might be revised 
and supplemented. 

Getting Started 

Probably every doc set needs some sort of 
primer, since there are still a lot of new computer 
users out there. Theoretically, the Getting Started 
guide should be full of practical lessons that intro­
duce the user to components of the system, one 
by one. Practically, I wonder how many users ac­
tually have the time to go through these lessons 
before they get started with their own work, which 
is their main goal. So that we don't make the mis­
take of writing a very good book but missing our 
target audience, I recommend one of two 
solutions: 

• Produce a book that can be read in an 
hour or less. Assume if it's longer than that, 
the user won't get back to it or maybe read 
it at all. 

410 

• Write a training manual, something that can 
actually be used in a classroom session for 
a group of people who are learning the new 
system. We know that sometimes a com­
pany will buy our documentation, then use 
it to compose a training manual for com­
pany personnel. Ideally, this shouldn't be 
necessary. By recognizing that many com­
panies train people In classroom situations 
rather than individually, we can produce a 
document that would work well in this 
environment. 

Getting Started for Experienced Users 

Since many people learning a new system are al­
ready experienced computer users, I propose a 
book that assumes a certain amount of knowl­
edge, and proceeds from there. 

The tricky part is that "certain amount of knowl­
edge." Where do you draw the line? For PC ALL­
IN-1, I think a useful book might have been a 
Getting Started for ALL-IN-1 Users, since many PC 
ALL-IN-1 users are also using ALL-IN-1 systems 
and want to know what the differences are, as 
well as what new features PC ALL-IN-1 offers. 
We've received exactly that request from custom­
ers, so we have to realize that Getting Started 
guides are not only for novice users. 

Applications 

One common complaint about doc sets is, "You 
tell us how the system works, but not what we 
can do with it." Translated, I believe this means 
that people want to know how different parts of 
the system can be used together to get tasks ac­
complished most easily and efficiently. 

Documentation tends to treat each part sepa­
rately. Printing, filing, command procedures, 
editing-all tend to get their own chapters, with 
little crossover between them. An Applications 
book would demonstrate how to coordinate differ­
ent parts of the system to solve typical but com­
plex office problems. 



No Applications book could be exhaustive, of 
course, but it could at least give users ideas that 
they could adapt to their own situations. Ideally, 
this book would be written "in shorthand," ad­
dressed to users already familiar with the system, 
to save both space and the reader's time. 

User's Guide 

It would be nice to say that the dense ring bind­
ers will be a thing of the past, but the time when 
all documentation will be on-line still seems to lie 
in the future. On the one hand, the goal should 
be to document everything in the User's Guide 
that's worth documenting about the system. The 
other goal should be to leave the User's Guide on 
the shelf as much as possible (again, the best 
system is one that doesn't require constant refer­
ence to the doc set). 

Since this is the sort of documentation that we've 
traditionally written, the only thing that bears re­
peating is the requirement for comprehensive and 
accurate indexes and tables of contents. Once 
readers have made the commitment to use the 
hardcopy documentation, our job is to get them in 
and out of the book as quickly and painlessly as 
possible, with the needed information in hand. 

How Can On-Line Assistance 
Help? 

While we are trying to improve our hardcopy re­
sources, writers can also do more toward provid­
ing better on-line assistance, so users can find 
necessary information without taking their eyes off 
the screen. Here is a survey of the possibilities 
and problems with current on-line facilities. 

Help 

Anyone who has used VMS Help knows what a 
godsend this kind of on-line assistance can be. 
Help can give many people all they need to know 
about a menu option, key location, or form field, 
and can serve as both instruction to the novice 
and a reminder to the experienced. 

411 

Since it saves a user the fatigue and disappoint­
ment of searching through one binder after an­
other, I am obviously an advocate of "the more 
Help, the better." Unfortunately, engineering 
groups don't see it that way, and are quick to 
point out that Help requires disk and memory re­
sources that some systems don't have, especially 
PC-based systems. In those cases, Help tends to 
be cut to the bone, so it offers users only the 
most basic (and usually inadequate) information. 

Perhaps as disk and memory restrictions continue 
to rise, this will become less of a problem. 
Whatever the situation, documentation groups 
need to be willing to fight for more Help screens, 
not because it makes our jobs easier (it doesn't, 
necessarily), but because it makes the user's job 
easier. 

Computer-Based Instructions 

CBls are a particularly good teaching tool, since 
they let the person learn by "hands-on" exper­
ience. Whether they are a valid alternative to doc­
umentation remains to be seen. My guess Is that 
most people use CBls as an introduction to the 
system (or certain features of it). But once they 
have gained a basic familiarity, they rarely go 
back to the CBls, which take time to navigate 
through. 

CBls also share a similar problem with Help: they 
require substantial disk space, so they tend to be 
cut by Engineering even more readily than the 
Help screens. This is unfortunate, for it would be 
hard to improve on CBls in their ability to help the 
user overcome that initial intimidation we all feel 
when we face a new computer system for the first 
time. 

On-Line Documentation 

By this time, you can tell what I'm going to say: 
like Help and CBls, on-line documentation takes 
up A LOT of disk space, and until this problem is 
overcome, it won't be a feasible alternative to the 
hardcopy doc set. 



ALL-IN-1 has tried the experiment of customized 
documentation-not only putting the documenta­
tion on-line, but allowing customers to modify it 
and make it more suitable to their circumstances 
and requirements. As far as I know, the verdict is 
still out, but this seems to be a promising direc­
tion for the future. How far in the future remains 
to be seen. 

Error Messages 

This is one of the most useful but neglected 
areas for making systems more self-supportive. 
The term itself ("error message") needs to be 
rethought. Most error messages are too defensive 
and so intent on telling users that they have in­
deed made an error that they forget to help the 
user around it. 

What we need are "solution messages." Instead 
of informing users that they have made an 
11 Invalid entry, 11 why not display a list of the valid 
entries? When users press the wrong key to stop 
a print job, the message should indicate the right 
key. No matter how user-friendly a system is, peo­
ple are going to make a lot of mistakes. But good 
solution messages can keep them going without 
the long but far from refreshing pause that a doc­
umentation search entails. 

Summary 
A few conclusions and recommendations: 

• Documentation is no answer to a poorly de­
signed system. The more difficult a system 

412 

• 

• 

• 

• 

is to use, the more documentation it re­
quires; and the more it requires, the less 
chance the user will find the information he 
or she needs. 

The reverse is also true: if a system is well 
designed and "explains itself," the docu­
mentation can also be more streamlined 
and efficient, with fewer restrictions, cave­
ats, and warnings. 

As we design a system, the goal should be 
to rely on documentation as little as possi­
ble. The more that people can learn and 
use our products without having to open a 
book, the happier they will be. 

Computer systems should invite people to 
explore them. Besides being more tolerant 
of user mistakes, they should direct users 
with clear and precise Help screens, CBls, 
and solution messages. 

Writers should take a greater part in the 
design of human interface. They are (or 
should be) experts on communication, on 
what goes on between that computer 
screen and the user's eye and mind. No 
one is better qualified to write those Help 
screens and solution messages that are so 
crucial to a user-friendly, self-supporting 
system. 

By working closely with software developers, we 
can perhaps move inch by inch toward systems 
that are ever more independent of documentation. 
Although we will probably never reach the "paper­
less office" (Zero Documentation) we can cer­
tainly advocate "less paper, more information" in 
the way we present computer systems to our 
customers. 







Remote Operation of the DEC Rainbow Using MS-DOS 

Larry D. Scott 
New Mexico DEC PC LUG 
Albuquerque, New Mexico 

Abstract 

In this short article, I will explain one way in which you can set up the DEC 
RAINBOW lOOB so that it can be operated as a "dial-up HOST computer." 
(No I have not tested this on the lOOA yet). The remote terminal, connected 
via the telephone line, can have full (with some reservations) control of all the 
RAINBOW capabilities, as if, the remote operator was sitting at the console 
keyboard. Another familiar form of remote access is that of a Bulletin Board 
System running a program like FIDO. I will not be discussing that mode of 
operation. 

You may ask, "Why would you want to operate the 
RAINBOW in a dial-up host mode?" I have found it use­
ful, for example, in cases where I want to have secure re­
mote access to my computer at the office. I want to do 
more than just look at a data file. I may want to actually 
run a program to do a calculation, write a letter or manip­
ulate a data base. To do this, you must have access to at 
least a modem and terminal for your remote system. I pre­
fer a DEC VT-100 or VT-220 terminal, but these models 
or their emulators are not absolutely necessary. 

to set proper power-on defaults) 

To accomplish remote operation of your RAINBOW 
you must have attached to it, an auto-answer modem like 
the Hayes SmartModem 1200 or 2400 or the US Robotics 
Courier 2400. In addition, you need some specialized soft­
ware to switch the computer to remote mode, condition 
the auxiliary port, place the modem in the proper auto­
answer mode, and protect your system from unauthorized 
or accidental access with a password program. 

All of this is currently accomplished on my lOOB run­
ning MS-DOS 2.11 by using the US Robotics or Hayes 
modems and initially setting up the modems and the 
RAINBOW AUX port as indicated in tables 1 and 2 fol­
lowed by running a batch file called HOST. 

Table 1: MODEM Preliminary Set-ups 

A. Hayes 1200 baud Modem Switch Settings: 

# 1 2 3 4 6 6 7 8 
up 0 0 0 0 0 
down 0 0 0 

B. Hayes 2400 baud Modem Setup Commands: 
(command sequence be processed once 

1 Larry D. Scott is with Sandia National Laboratories, Albu· 
querque, NM 87185 

Proceedings of the Digital Equipment Computer Users Society 415 

ATlrF ;reset to factory default 
settings 

;auto-answer 
;low speaker volume 
;DTR response mode 

ATS0=1 
ATL1 
ATlrD2 
ATlrW ;write above into EPROM as 

power up default• 

C. US Robotics Courier 2400 Switch Settings: 

# 1 2 3 4 6 6 7 8 g 10 
off 0 0 0 0 0 0 
OD 0 0 0 0 

Table 2: RAINBOW •set-up• Configurations 

Screen #2: 

AUTO XON/XOF 
set for 0 = OFF 

MODEM STOP BITS 
set for 0 = 1 

CHAR CODES 
set for 0 = DEC-8 

Screen #3: 

SN = DATA B/P 
1200 or 2400 = XNT BAUD 
1200 or 2400 = RCV BAUD 
FDXA = PROTOCOL 
(speed depends on your modems; 
normally rev and xmt are the same) 

The HOST batch file contains the commands shown 

San Francisco, CA- 1986 



in table 3. 

Table 3: HOST.BAT: 

AUXRES 

DTR_ON 

restore AUX port to 
'Set-Up' configuration 
in Non Volatile Memory 

set dtr on so MODEM.SET 
will be sent to HAYES t 
HAYES will answer phone 

TYPE E:MODEM.SET > AUX: 
tells modem not to echo t 
not to send result codes 
( For Hayes 1200 or 
Courier 2400 this file 
contains: 

ATEO,Q1 
for the Hayes 2400 it 
contains: 

AT EO S0=1 Q1 tD2) 

CTTY AUX DOS command to transfer 
control to AUX 

PASS invokes password program 
(This is an 8 chr password 
program written is MASM with 
no sign-on or echo) 

DDOG ON (optional) 
invokes watch dog program 
to cause re-boot is phone 
line is dropped prematurely 

Remote operation involves calling the HOST phone 
and when the two modems have acquired each other's 
tones, you would type in the 8 character password pre­
scribed by PASS. The way PASS has been written, you 
will see absolutely no response from your host system, un­
til you have successfully entered the password. 

When the you want to log out, before you hang up, 
a batch file called BYE is run. After that, the host will 
hang up the phone on it's end and reconfigure for the next 
call. If you want to permanently return local control to 
your host system, then a batch file called LOCAL is run. 
These batch files are shown in tables 4 and 5 below: 

Table 4: BYE.BAT: 

DDOG OFF (optional) 
turn off DDOG 

ECHO OFF don't echo commands 

DTR_OFF hang up the phone 

DTR_ON enable modem for answer 

416 

PASS 

DDOG ON 

Table 5: 

DDOG OFF 

DTR_OFF 

CTTY CON 

run password program 

(optional) 
turn on DDOG after 
password is honored 

LOCAL.BAT: 

(optional) 
turn off DDOG 

hang up phone 

transfer control back to 
console 

Operation of your RAINBOW while in the host mode 
is essentially the same as sitting at the local console with 
a few exceptions. You will have problems, if you try to 
run a program or utility that directly accesses the video 
RAM to place information on the video monitor screen. 
Such programs will cause response to your remote inputs 
to appear on the local monitor, which of course you are 
unable to see. In extreme cases, you will completely lose 
control of and access to your system. At that point all you 
can do is hangup and hope your system will re-boot if you 
are using the optional DDOG program or manually do it 
when you get back to the office. It should be noted, that 
the system is very likely just as unaccessible to anyone 
else. 

Below is a list of a few programs that have been tested 
for remote access: 

• Programs that Do Not Run- SUPERCALC III, 
DBASE3, DED, FV, AME86 the CPM-86 EMULA­
TOR, SETPORT or any program the accesses the 
video RAM directly 

• Programs that Do Run - WORDSTAR, dBASE 
II, REDT, MICROSOFT FORTRAN, EDLIN or any 
program that limits it's I/O to standard DOS calls 

If you are accessing your RAINBOW host from an­
other RAINBOW, you can transfer any files, ASCII or 
binary, with error checking by using KERMIT and the 
following procedures: 

• First have LCTERM or better yet, KERMIT running 
in the terminal mode (use CONNECT) at the remote 
site (your home). 

• Next run KERMIT at the HOST site (your office). 

• Then set the HOST KERMIT to SERVER mode and 
your local KERMIT to command mode by entering 
ctrl -JC. File transfers can then be accomplished with 
the following commands: 

>GET FILE.EXT 
or 



>SEND FILE.EXT 

Note: Wild cards may be used! 

• When you are finished with the file transfers, type 
FINISH to shut down the HOST server, then CON­
NECT to put you back into the terminal mode and 
finally EXIT to return to DOS on the HOST. 

• At this point you can type BYE to terminate the ses­
sion. 

• H you are not familiar with the KERMIT commands 
you will have to study the KERMIT .DOC file. 

Finally, we need to consider the remote terminal con­
figurations for optimum operation of your dial-up system. 
Table 6 illustrates two such terminal configurations that 
have been found satisfactory. 

Table 15: REMOTE TERMINAL SETUPS 

DEC VT220 SETUP 

Display Set-Up 
Jump Scroll 

Communications Set-Up --­
Transmit=1200• Receive=Transmit 
Ro XOFF 8 bits, no parity 
1 stop bit No Local Echo 
EIA Port, Data Leads Only 
Disconnect, 2 s Delay 
Limited Transmit 

Lear Siegler ADM-3A 

auto new line off 
1200• baud 
8 bit. 
no parity 
1 stop bit 

* Note: The baud rates must be consistent 
with the capability of your modem and 
that established in your PC-100 Set-Up. 

H you are using another RAINBOW for the remote 
terminal, then the AUX port setting should be set the 
same as for the HOST RAINBOW settings. 

H you feel you need additional security, you can use 
the optional program shown above as part of the batch files 
HOST, BYE and LOCAL called DDOG by Dan Pleasant, 
Lower Falls Software to secure the host system in the event 
you lose the phone line and someone else dials in before you 
can re-establish the connection and secure it with BYE. 
DDOG provides complete protection, but at the inconve­
nience of having your system re-boot as if setup- ctrl-setup 

417 

was invoked. For the PC-lOOB, one could set the system 
to auto-boot from the hard or :floppy disks and have the 
autoexec. bat file do everything as usual, except that it in­
vokes HOST without setting the date and time. The date 
and time could be set at the next time you called in. H 
you are not going to use DDOG, then be sure it doesn't 
appear in any of the batch files mentioned above. 

In conclusion, I have been using this relatively simple 
system for about a year now and am not aware of any bugs 
at this time. I wrote the password program in assembly 
language and it is very easy to change the password by 
editing the source code and reassembling it with MASM 
and using LINK to produce the PASS.COM file invoked 
by the HOST batch file. You will note that the password 
program does not provide a sign-on screen when you dial 
into the system. This is done to enhance security by not 
providing any information to the caller. 

Future enhancements might be to provide a program 
that would incorporate AUXRES and DTR-ON to setup 
the auxiliary port configuration that is now done inter­
actively by the operator in 'Set-Up' Mode or perhaps it 
would be nice to have an auto-baud rate sensing program 
similar to LOGIN by Jay Jervey, Fountain Valley CA, to 
accommodate multiple baud rates for the remote caller. 



AUXRES.ASM 

title auxres 
;*** macro definitions ****************************************** 
; 
dir_console_input 

; 
display 

; 
get_time 

; 
ms dos 

; 
convert 

table 
start: 

macro 
mov 
int 
endm 

macro 
push 
push 
mov 
mov 
int 
pop 
pop 
endm 

macro 
push 
mov 
int 
pop 
endm 

macro 
mov 
int 
endm 

macro 
local 
push 
push 
push 
jmp 
db 
mov 
xor 
xor 
div 
mov 
mov 
mov 
mov 
mov 

ah, 07h 
21h 

string 
ax 
dx 
dx,offset string 
ah,09h 
21h 
dx 
ax 

ax 
ah,2Ch 
21h 
ax 

call number 
ah,call number 
21h -

value, base, destination 
table, start 
ax 
bx 
ex 
start 
"0123456789ABCDEF" 
al,value 
ah, ah 
bx, bx 
base 
bl,al 
al,cs:table[bx] 
destination, al 
bl,ah 
al,cs:table[bx] 

418 



; 

mov 
pop 
pop 
pop 
endm 

destination[l],al 
ex 
bx 
ax 

;*** equates **************************************************** 
;equates 
; 
er 
lf 
io control 
dos return 
; 

equ 
equ 
equ 
equ 

ODh 
OAh 
44H 
4CH 

;*** data segment 
data 

*********************************************** 

aux fun 
time 
ten 
message_l 

data 
; 
;*** stack segment 
stack 

stack top 
stack-
; 
•*** ' code 

code segment 

start: 

; 
auxres: 

; 

code 

segment 
(?) 
"00:00:00 
10 

", er, 1 f, "$" 
db 
db 
db 
db 
db 

"RESTORING NVM AUX PORT VALUES!", 
er, lf, "$" 

ends 

********************************************** 
segment stack 
dw 128 dup(?) 
label word 
ends 

*********************************************** 
segment 
assume cs:code, ds:data,ss:stack 
mov ax, data 
mov ds,ax 
mov ax, stack 
mov sp,offset stack_top 
display message_l 

push 
mov 
mov 
mov 
mov 
ms dos 
pop 

get time 

bp 
al,2 ;IOCTL fancy stuff 
auxfun,1 ;function code (reset to NVM) 
bx,3 ;AUX device handle 
dx,offset auxfun;addr of IOCTL packet 
io control ;do it 
bp-

convert ch,ten,time 
convert cl,ten,time[3] 
convert dh,ten,time[6] 
display time 
ms dos dos return 
ends 
end start 

•**************************************************************** ' ;last line of code 

419 



DTR ON.ASM 
title dtr on/off 
;*** macro definitions ****************************************** 
; 
outb 

; 
ms dos 

, 
·*** , 
; 

equates 

dos return 
ccport 
dtron 

macro 
push 
push 
mov 
mov 
out 
pop 
pop 
endm 

macro 
mov 
int 
endm 

out_port,out_byte 
ax 
dx 
al,out byte 
dx,out-port 
dx,al -
dx 
ax 

call number 
ah,call number 
21h -

**************************************************** 

equ 
equ 
equ 

4Ch 
02h ;DEC Corrununication Control Port 
lllllOllb ;bit pattern to turn on DTR 

, 
·*** , data segment *********************************************** 
data 
data 

segment 
ends 

; 
·*** , stack segment ********************************************** 
stack 

stack top 
stack-
; 
•*** , 
code 

; 

code segment 

start: 

; 

code 

segment stack 
dw 128 dup(?) 
label word 
ends 

*********************************************** 
segment 
assume cs:code, ds:data,ss:stack 

outb ccport,dtron 

ms dos dos return 
ends 
end start 

420 



; 
;*** notes ****************************************************** 
; set DTR, RTS high on DEC lOOb RS232 aux port Bits for DTR 
; DEC Communications Control Port --------- on off 
; bit 0: Speed Select line, O= low 1 1 
; bit 1: Sec Request To Send line, O= asserted 1 1 
; bit 2: Data Terminal Ready Line, 11 11 O 1 
; bit 3: Request To Send Line, " 11 1 1 
; bit 4: 0 will light LED 1 1 
i bit 5: II II 1 1 
i bit 6: n II 1 1 
; bit 7: " " 1 1 
•**************************************************************** , 
;last line 

421 



DTR OFF.ASM 
title dtr on/off 
;*** macro definitions ****************************************** 
; 
outb 

; 
ms dos 

macro 
push 
push 
mov 
mov 
out 
pop 
pop 
endm 

macro 
mov 
int 
endm 

out_port,out_byte 
ax 
dx 
al,out byte 
dx,out_port 
dx,al 
dx 
ax 

call number 
ah,call number 
2lh -

; 
·*** , equates **************************************************** 
; 
dos return 
ccport 
dtroff 

equ 
equ 
equ 

4Ch 
02h 
llllllllb 

;DEC Communication Control Port 
;bit pattern to turn off DTR 

; 
·*** , data segment *********************************************** 
data 
data 
; 
;*** stack segment 
stack 

stack top 
stack-
; 
·*** , 
code 

; 

code segment 

start: 

; 

code 

segment 
ends 

********************************************** 
segment stack 
dw 128 dup(?) 
label word 
ends 

*********************************************** 
segment 
assume cs:code, ds:data,ss:stack 

outb ccport,dtroff 

ms dos dos return 
ends 
end start 

;**************************************************************** 
;last line ---

422 



PASS.ASM 

title pass 
;*** macro definitions ****************************************** 
; 
dir_console_input macro 

; 
display 

; 
get_time 

; 
ms dos 

; 
convert 

table 
start: 

mov ah,07h 
int 21h 
endm 

macro 
push 
push 
mov 
mov 
int 
pop 
pop 
endm 

macro 
push 
mov 
int 
pop 
endm 

macro 
mov 
int 
endm 

macro 
local 
push 
push 
push 
jmp 
db 
mov 
xor 
xor 
div 
mov 
mov 
mov 
mov 
mov 
mov 

string 
ax 
dx 
dx,offset string 
ah,09h 
21h 
dx 
ax 

ax 
ah,2Ch 
21h 
ax 

ah,4Ch 
21h 

value, base, destination 
table, start 
ax 
bx 
ex 
start 
"0123456789ABCDEF" 
al,value 
ah, ah 
bx, bx 
base 
bl,al 
al,cs:table[bx] 
destination, al 
bl, ah 
al,cs:table[bx] 
destination[l],al 

pop ex 
pop bx 
pop ax 
endm 

423 



; *'Ir* equates 
;equates 

**************************************************** 

; 
er 
lf 
code 1 -code 2 -code 3 
code-4 -code 5 -code 6 -
code 7 -code 8 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

ODh 
OAh 
"a" 
"b" 
"c" 
"d" 
"e" 
"f" 
"g" 
"h" 

;first element of password 
;you can use any character 
;here for your password 
;case is important! 
; 
; 
; 
;last element of password 

; 
·*** ' data segment *********************************************** 
data 
time 
ten 
message_l 

message_2 

data 

' ;*** stack segment 
stack 

stack top 
stack-
; 
•*** ' code 

code segment 

start: 

; 
test: 

segment 
db 
db 

"00:00:00 
10 

" , er, 1 f, "$" 

db 
db 

"PASSWORD INSTALLED, PLEASE DISCONNECT!", 
er, lf, "$" 

db "PLEASE INVOKE BYE WHEN FINISHED.", 
db cr,lf,"The time is ","$" 
ends 

********************************************** 
segment stack 
dw 128 dup(?) 
label word 
ends 

*********************************************** 
segment 
assume cs:code, ds:data,ss:stack 
mov ax, data 
mov ds,ax 
mov ax, stack 
mov sp,offset stack_top 
display message_l 

dir console input 
cmp- al,code 1 
jne test -
dir console input 
cmp- al,code 2 
jne test -
dir console input 
cmp- al,code 3 
jne test -
dir console input 
cmp- al,code 4 
jne test -

424 



code 

dir console input 
cmp- al,code 5 
jne test -
dir console input 
cmp- al,code 6 
jne test -
dir console input 
cmp- al,code 7 
jne test -
dir console input 
cmp- al, code_ a 
jne test 

display message 2 
get time 
convert ch,ten,time 
convert cl,ten,time[3] 
convert dh,ten,time[6] 
display time 
ms dos 
ends 
end start 

·**************************************************************** ' ;last line of code 

425 





ADVANCED PRO TOOLKIT 

ROBERT ULESKI 
BAKER INS'IRUMENTS CORroRATION 

P.O. Box 2168, Allentown, PA 18001 

ABS'IRACT 

All of the examples herein are provided as a means to 
accanplish a certain task; there may be more efficient ways 
to accanplish your particular task. 

'Ihis document is based on the current versions of P/OS 
and PRO/Tool Kit as of October 3, 1986. Please note that all 
references to unsupported procedures may not be available with 
future versions of the PRO/Tool Kit or the P/OS operating 
systan. 

Special thanks to Diane LoGuidice of the Atlanta Support 
Center and Steve Ducharma for providing me with this material. 

1.0 V2.0 SPECIFIC INFORMATION: 

1.1 ICL's use of Logical Names 

- During rcL startup the following logicals 
'lre created: APPL$DIR: equates to re.L's appli­
cation directory. 'Ihis directory contains all of 
the rcL utility tasks. When the "$" character is 
specified in the RUN and INSTALL coomands this is 
the device and directory which is used to locate 
the task images. 

'Ihe user could supercede the logical name 
APPL$DIR to change the systan directory for IXL. 

IND$COv!MANDLIBRARY: equated to "IB: [1,2 ]" 
'Ihis logical is used as the default device and 
directory by the Indirect Carmand file processor 
when no device or directory is specified in the 
cannand file specification. This logical can be 
used to change the library device/directory to 
another value. 

1.2 Task Naming Conventions: 

All IXL coomands are processed by utility 
tasks which nrust be installed in the Systan Task 
Directory. For example, if the DIRECTORY cannand 
is issued rcL invokes the PIP utility task in­
stalled in the Systan Task Directory (S'ID) as 
" ... PIP" and it runs with a task name of PIPTn 
where n is the terminal number. 'Ihis is also true 
when the SPAWN carmand is used to start a coomand 
executing in the background. 'lb abort the back­
ground operation you would specify ABJRT XXX to 
abort the ccmmnd where XXX is the three character 
name of the utility. For example if the SPAWN 
MACRO ccmnand is used and you decide to abort the 
assanbly issue the carrnand ABJRT PMA. 'lb determine 
what utility would be invoked for a specific 
ccmmnd issue the following rcL cannand: SET DEBUG/ 
FUIL/EXECOTE. When coomands are entered now, the 
first three cha~acters of taskname will be listed 
along with the MCR carmand line to be passed to 
the utility. 

Proceedings of the Digital Equipment Computer Users Society 427 

Example: 

$ SET DEBUG/FUI.L/EXECOTE 
$ DIRECTORY 
Sl09 
PIP /LI 
Directory DWl: [USERFILESJ 
" " 
$ SET NODEBUG 

When the RUN coomand of the taskname entered is 
6 characters or less rcL will attanpt to invoke 
a task with the installed taskname as entered. If 
no task is installed with this name AND the task­
name entered is 3 characters or less (1->3 chars) 
the rcL will attanpt to invoke a task name of 
". . . XXX" where XXX is the taskname entered. If 
this fails then rcL will attanpt to perform an 
INSTALL/RIJN/REllDVE using the taskname entered as 
the filename to install. 'Ihe task is run with 
an installed task name of TI'n where n is the 
terminal number. If this fails an error message 
of INSTALL -- File not found. will be displayed. 

2.0 V3.0 SPECIFIC INFORMATION: 

3.0 PACKAGING 

Carmand Language IXL and the PRO/Tool Kit rcL 
task are now the same image. 

HEI.P is optional now for both Carmand Language 
and the Tool Kit. 

All application task images are now placed 
into the directory IB: [ZZP.Ra:lCLJ instead of the 
application directory. 'Ihis means that if you 
are running the Carmand Language application that 
all of the Tool Kit utilities are accessable to 
you. For example you could invo~e the MACRO-ll 
assanbler by entering the coomand line RUN $PMA, 
or you could use the rcL MACRO coomand if you 
first install MACR0-11 via the rcL coomand INSTALL 
$PMA. Additionally, this means that if both 
Ccmnand Language and the Tool Kit are installed 

San Francisco. CA- 1986 



you could PURGE the directory IB: [ZZPRODCLJ and 
recover disk space. REmanber, before doing the 
purge to re-boot your system, perfonn the purge 
operation, and then re-boot again. If your system 
is a P/OS Server, rffilOve the DECnet board so that 
no P/OS Workstations are using the Conrnand Language 
or the Tool Kit application. 

'Ille application directory now only contains 
the application script file (INB file) and the 
per-user startup and exit carrnand files. 'Illis 
allows each user to custanize DCL for their own 
needs instead of effecting the application· for 
all users. 

'Ille Tool Kit and the Conmand Language are shareable 
applications. 'Illis means that the components of 
the application are shared amoung all users of the 
application. ('Ille per-user startup and exit carrnand 
files and the INB files are exceptions) 'Ille PRO/ 
Tool Kit must be copied to the Public Library and 
then user's must perfonn an ''Install fran Library'' 
to use the application. 

4.0 NEW FUNCTIONALI'IY 

4.1 Logical Name Support 

Support is now included to create and main­
tain logicals in the USER, SESSION and SYSTEM 
logical name tables. When you create a logical 
it is placed by default in the SESSION logical 
name table. 'Illis is so that the logical will not 
be deleted when you exit the application. 'lb 
specify a different logical name table use the 
qualifiers /USER or /SESSION. 

Support is also included to create a concealed 
logical name. Concealed logical names allow you 
to access rooted areas on a hard disk. An example 
of a concealed logical is the logical FROOl:. 'lb 
display this logical, just type SHOW l.CGICAL FROOl:. 
'Ille concealed equivalence will also be displayed. 
If a concealed logical name is created in the 
SYSTEM logical name table on a P/OS Workstation 
then access through the logical name to the root 
device is through the System Channel. 'Illis means 
that the protection UIC applied to file access 
will be [377,xxxJ where xxx is a unique number 
per-workstation. 

Support is now included to create logical 
names which include quoted strings and lower case 
characters. 'Illis allows the ability to create 
logical names that include a DECnet nodename and 
access string as the number of aliases is limited. 
Also you can now delete a logical name created by 
an application that is lower case. 

5. 0 1llE PECKING ORDER ". . . II 

'Illere are two cases to consider when talking 
about the pecking order when translating logical 
names. 

File access: If you pass a logical name to 
one of the file systens (either FCS or RMS) the 
USER logical name table is searched, if not found 
the SESSION logical name table is scanned, and 
lastly the SYSTEM table is scanned. In all three 
cases, all modifiers are allowable. 

428 

Using TLCG$ directive or the higher-level 
language PROI.CG call: You can limit the search for 
a logical name either by table and/or by modifier. 
In other words I could limit the scan for a logical 
name to the USER logical name table and only those 
with a modifier of 2 (which is a I.CGIN logical name). 

(SEE FIGURE 1) 

Logical names can now include all portions of 
a file specification. Both RMS and FCS will process 
logicals which contain all portions of a file 
specification. If your application is to backward 
canpatible you must first translate a logical name 
which contains more than a device specification 
before it is passed to RMS or FCS. 

6.0 NEW AND MODIFIED CDMMANDS AND QUALIFIERS 

- AB:>RT carrnand has been replaced and now 
functions like the RSX AB:>RT conrnand. 'Illis allows 
you to abort SPAWNed conruands by their conruand name 
instead of trying to remanber what task performs 
what DCL conmands. 

- CLEAR the clear carrnand now only clears the 
screen w/o perfonning a reset-to-initial state. 
In previous versions it perfonned a reset-to­
initial-state also. 'Illis is now accanplished with 
the /RESET qualifier. 'Illis was changed to preserve 
any user defined keys used through the corrmunications 
package. 

-DEBUG allows the ability to set the T bit in 
an executing task to aid in debugging. 'Ille speci­
fied task must have a debugging aid linked in. 

- FIX allows the ability to load and lock a 
task into it's partition. 

- FORMAT allows the ability to FORMAT a volume. 
(On hard disks a BAD Bl(XJ( scan is automatically 
when the FORMAT carrnand is used.) 

- INITIALIZE allows the ability to initialize 
a volume and optionally specify a check point file 
size for the volume. 

- lDAD allows developers to lDAD a device 
driver. 

- UNlDAD allows developers to UNlDAD the code 
portion of a device driver, the data base ranains 
in the systffi1. Reboot the system to rffilOve the 
data base. 

- PHONE if the DECnet PHONE utility is in­
stalled on the system then the PHONE conruand will 
start up the PHONE utility. 

- SET PRarECTION allows the ability to specify 
the default file protection to be specified on any 
files created during the current logged on session. 

- SHOW PRarECTION displays the current default 
file protection to be applied to all files created 
during the current logged on session. 

- CREATE/DIRECIDRY allows the ability to 
specify the owner UIC of the directory file. 



- DELE'IE/DIRECIORY allows the ability to delete 
an €!!1pty directory. 

- MCR allows the ability to execute tasks fran 
Indirect and pass carrnands directly to the task CA2. 
If the MCR carrnand verb is 3 characters or less, 
rx::L will attenpt to first pass the carrnand line to 
a task installed as the verb (XXX). If there is no 
task installed with this name then rx::L will attenpt 
to first pass the carrnand line to the task " ... XXX." 
If this fails, the carrnand line is passed to the 
task CA2. 

If the MCR carrnand is 6 characters rx::L will 
attenpt to use the task installed as XJroOOC, if 
this fails the carrnand is passed to the task CA2. 

Example: $ MCR SET /VTlOOTI : 

- MJUNT allows the ability to MOUNT a volume 
FILES-ll or FDREIGN. Optionally the volume name 
can be displayed (using the /SHOW qualifier). 

- DISMOUNT allows the ability to DISMOUNT a 
mounted volume fran rx::L. 

- PRINT File(s) can now be submitted to the 
default print. A default print queue must be 
defined before this conmand will canplete success­
fully. (Use Print Services to define a default 
print queue. ) 

6.1 New Qualifiers to the File Corrn]lllds 

/SHARE allows others to view a file while you 
are accessing it. 

/LNJJNEWVERSION enables control over creation 
of new file versions. 

/[NOJPRESERVEDA'IE allows ability to control 
the creation date when copy files (PRESERVEDA'IE is 
the default) . 

/[NOJWANINJS disables the "NO such file" error 
if the input file(s) don't exist. 

/AILOCATION:n allows the ability to specify 
the size in disk blocks for the file. 

/OVERLAY specifies that input file overwrite 
whatever is currently in the file. The old file 
ID is preserved. 

/OWN specifies that the output file contains 
the same file owner as the directory it is entered 
in. 

Help files and documenation now include in­
formation on the DECnet qualifiers. 

New Control Keys in the rx::L single line 
editor (these are not documented). 

- E brings the cursor to the end of a corrrnand 
line - H brings the cursor to the front of the 
carrnand line. 

New features in the Indirect Ccmnand File 
Processor. 

429 

- The symbol <NE'INOD> now returns the DECnet 
node name of the systen. 

- The symbol <ACXDUN> now returns information 
available about the current logged on user. (Note 
that accounting is not available on P/OS hence there 
is no accounting information returned in <ACXDUN>). 

- The symbol <PRIVII> now returns whether or 
not the terminal is privileged. 

- The symbols <LCXIDEV> and <LCXJUIC'.> return 
the current default device and UIC when Indirect 
was invoked. 

The symbol <uIC> is assigned the current 
UIC. 

- The symbol <sYSID> returns the current P/OS 
baselevel. 

- The symbol <TISPED> returns the same values 
as on RSX. If the symbol is used while running on 
TTl: then the value is 0. 

- The .'IESTSYS'IEM directive includes support 
to return the values of new systen feature symbols. 
These include HF$WS and HF$FS to determine if the 
systen is a P/OS Workstation or P/OS Server. 

Object Module Patch Utility is now provided. 
(PAT) PAT allows you to update, or patch, code in 
a relocatable binary object module. 

Convert utility is now provided (CVT). CVT 
evaluates an arithmetic expression, converts that 
expression into the following formats, and then 
displays all the formats on your terminal. 

- decimal 
- hexidecimal 
- octal 
- RAD50 
- ASCII 
- 'l\vo Byte 

identified by a period(.) 
identified by the dollar sign ($) 
identified by the expression 000000 

identified by the percent sign (%) 
identified by quotation marks (") 
decimal in the form XXX. , YYY. 
The maximum value is 255., 255. 
octal in the form XXX, YYY 
The maximum value is 377,377 

Tool Kits now include tools to develop Synergy 
Application. 

- A seperate diskette is included with the 
Tool Kits so that the tools necessary to develop 
Synergy Applications which can be optionally 
installed. 

New manuals in the Tool Kit documentation 
include: 

- IAS/RSX-11 Systen Library Routines Reference 
Manual 

- Positional Device Interface Progranmer's 
Manual 

- PRO/ReGis Manual 

PRO/Document VDM Manual 



6.2 PID/OCL ('lbolkit and Camland Language) logicals 

OCL's Use of logical Names 

- D.lring OCL startup it creates the following 
logical names: .IXI.APPL$DIR: - equates to the value 
of APPL$DIR when OCL was invoked. '!his logical is 
useful to edit the per-user application startup 
and exit ocmnand files (start.cnxl and exit.cnxl) 
(created in the USER logical name table). 

APPL$DIR: - equated to IB: [ZZPRrnCLJ 

APPL$DIR (created in the SESSION logical name 
table as a liXJIN logical) Contrary to V2.0 if the 
logical APPL$DIR is created OCL will still use the 
login logical for APPL$DIR. 

'!he APPL$DIR logical w/o the colon is present 
for compatibility with existing cannand files which 
perform a 'IRANSLATE indirect directive. 

IND$cn.1MANDLIBRARY: 

- equated to "IB: [1,2]" '!his logical is used 
as the default device and directory by the Indirect 
Camland file processor when no device or directory 
is specified in the cannand file name. '!his logical 
can be used to change the library device/directory 
to another value. 

DCL$EDITOR - equated to "EDT''. '!his logical 
determines your default editor. It can be one of 
two values. Either "PROSE" or "EIJI"'. If the 
logical doesn't exist then the default editor be­
canes PROSE. If the equivalence is not PROSE or 
EDT then the default editor also beccmes PROSE. 

PIDIID$MSG - equated to "l". '!his logical is 
used to control the display of error messages when 
using the !DAD and UNI.DAD cannanc:ls . If this logical 
is deleted only numeric values will be displayed on 
the terminal if an error is encountered during exe­
cution of the LOAD and UNI.DAD cannanc:ls. 

I'CL$DISABLE$EXIT - '!his logical is used to 
disable the OCL EXIT camiand on specified terminals. 
For example if the equivalence was set to ''Tl 11 then 
you could not exit OCL on terminal TTl: If you want 
to disable the exit camRnd on nultiple terminals 
use a canna "," to seperate the entries. '!he 
equivalence "Tl, T3" disables the exit cannand in 
OCL when OCL is running on the terminals TTl: and 
TT3:. 

6.3 Task Naming Conventions: 

All DCL cannanc:ls are processed by utility tasks 
which must be installed in the System Task Directory. 
For example, if the DIRECIORY cannand is issued OCL 
invokes the PIP utility task installed in the 
System Task Directory (S'ID) as " ... PIP" and it 
runs with a task name of DIRTn where n is the term­
inal number. 

Note that this is different fran V2.0. '!his 
is so that if the SPAWN cannand is used for example 
to start an assenble with the MACRO cannand in the 
background you can abort the cannand w/o knowing 
what utility is processing the cannand. 

430 

'!he RUN c.oommd processing has not changed in 
P/OS V3.0 except that if an INSTALL/RUN/REMOVE is 
required it is performed in one operation through 
a call to the PIDTSK system service. In V2.0 a 
sepera te INSTALL, RUN, and REMOVE coomanc:ls were 
generated to process the un-installed task. 

6.4 CUstanization: 

- Modifying the installation cannand file 
(!NB file) 

- 'lhe !NB file could be rood.ified to install 
tasks that you normally use during your DCL session. 

- '!he length of time to enter the PRO/'lbol 
Kit can be decreased by rood.ifying the installation 
cannand file. 'lb decrease the azrount of time it 
takes to enter the application you could delete 
the FILE and MJUNT lines. Additionally, the 
/NJREMJVE qualifier could be placed on the INSTALL 
lines which currently do not contain the /N::>REMJVE 
qualifier. '!his would eliminate the necessity to 
re-install the application tasks the second time 
it is chosen fran the menu systan as the tasks are 
already installed. '!he Task Control Blocks needed 
for these installed tasks are placed into secondary 
pool because they are prototype tasks. If second­
ary pool beccmes depleted you could tune it's 
size by using the method described in the Systan 
Release Notes. '!he tasks that are not often (or 
never) used could be coomented out and executed 
on as needed basis by using the RUN $ utility 
ccmnand. For example, the Source Language Processor 
(SLP) is installed for the EDIT/SIP cannand. If 
you do not use this cannand you could carment out 
the corresponding INSTALL line for SLP. 

Whatever changes you make to the !NB file, 
the original should be preserved and restored in 
the event that you want to REMOVE the application. 

'!he !NB file could be rood.ified for all users 
of the DCL application or on a per-user basis. 

1) '!he copy of the !NB file that is copied 
to the DCL application directory for all users 
who perform an "Install" of the PID/'lbol Kit fran 
the Application Library can be found in the device 
and directory accessable by the logical APL$NEI'l\DRK: 
When you are in the PRO/'lbol Kit application. 

'!he Systan Manager or anyone with a privileged 
account may rood.ify the installation script file 
in APL$NEI'l\DRK: 

If you rood.ify this !NB file, then any user 
who performs an "Install" fran Environment Services 
will obtain this mxlified INB file. 

2) '!he copy of the !NB file that is processed 
when a user invokes the PID/'lbol Kit application 
can be found in the device and directory represented 
by the logical DCLAPPL$DIR: Each user may custanize 
this !NB file affecting on his DCL application. 

- Startup and Exit ccmnand files: When DCL 
is invoked two startup cannand files are processed. 
Similarly, when you exit the application, two exit 
cannand files are executed. 



- per-systan: When the PRO/Tool Kit applic­
ation is chosen fran the menu systan the file IB: 
[ZZPRODCLJSTART. CMD is processed by the Indirect 
Cctnnand fiel processor. This comnand file 
also invokes the per-user startup comnand file. 
When the PRO/Tool Kit is installed this file contains 
only carmands that should not be deleted or modified. 
If an optional language (such as BASIC-PWS-2) or 
the DECnet or Synergy developnent tools are in­
stalled the layered product may include statanents 
to install components. These INSTALL statanents 
could be placed into the installation script file 
to decrease the amount of application startup time. 
If this is done, the INSTALL lines should be placed 
in the order in which they are listed in the 
carmand file and after the current last INSTALL 
line to decrease the amount of time it takes to 
perform the directory look-up on the task images. 

The Systan Manager or anyone with a privileged 
account may modify the startup or exit comnand 
files in IB: [ZZPRODCLJ. 

- per-user: When the PRO/Tool Kit or O::mnand 
Language application is installed onto a user's 
menu a copy of the installation script file and 
the START and EXIT comnand files are placed into 
the application directory (referenced hy the 
logical DCLAPPL$DIR: ) . Each user may custcmize 
their START and EXIT ccmmand files. 

6.5 Enabling rx:;L Fallthrough 

You can enable DCL fallthrough of unrecognized 
ccmmands by performing a simple ZAP on the DCL 
task image. With fallthrough enabled unrecognized 
carmands will be processed in the same manner as 
the DCL MCR carmand. That is, if the MCR ccmmand 
verb is 3 characters or less DCL will attanpt to 
first pass the carmand line to a task installed 
as the verb (XXX). If there is no task installed 
with this name then DCL will attanpt to pass the 
ccmmand line to the task ". . . XXX." If this fails 
the comnand line is passed to the task CA2. 

If the MCR conmand is 6 characters DCL will attanpt 
to use the task installed as XXXXXX, if this fails 
the conmand is passed to the task CA2. 

Example with fallthrough enabled: 
$DEV TI: 
will display the current information for the 
device TI: on the terminal which was processed 
the task installed as " ... CA2" (assuming 
that there is no task installed in the systan 
named DEV or ''. . . DEV''). 

'lb enable fallthrough perform the following: 

$ R1JN $ZAP 
ZAP>IB: [ZZPRODCLJ PRODCL.TSK 
Z:30062/ 000000 
1 
x 
$ 
The exit the application and invoke it 
again. Fall through should now be enable. 

- Uses of DCL Fallthrough: 

With DCL fallthrough enabled, you could write 
a catchall task an install with a task name of 

431 

" . . CAZ". The task that is now installed as 
" .. CAZ" (IB: [ZZPRODCLJ CAZ.TSK) should be 
installed with sane other name such as ". . . CA. " 
DCL would pass any unrecognized carmand to your 
catchall task (assuming that there was not a task 
installed as xxx or '' ... xxx'' where xxx is the 
recognized comnand verb). If your catchall task 
does not understand the carmand verb, the carmand 
line should be passed to the task CAZ.TSK with the 
new installed task name you used. 

If this is done your catchall task should 
either catch out-of-band control-C's (described 
in the systan reference manual in the terminal 
driver) or catch abort attanpts and abort the 
CA2 task when either of the two cases occur. 

Note: There is one restriction. If an 
unrecognized ccmmand is entered which is greater 
than 6 characters the ccmmand is passed to the 
task CA2. Additionally, if the carmand verb is 
greater than 3 but less than or equal to 6 
characters then only a scan for the task name of 
xxxxxx will be performed. For example, if I had 
a utility task installed as ". . . SEA" and I 
entered the ccmnand "SEAR.GI" then the carmand 
would be passed to the task CA2 instead of 
" ... SEA." This will be corrected in a future 
release. 'lb work around this,enter "SEA" as the 
ccmmand verb. 

6.6 Restrictions 

P/00 V3.0 now supports virtual terminals. 
The DCL task cannot be started on the virtual 
terminal as DCL will enter an infinite loop while 
trying to receive ccmmand lines frcm the virtual 
terminal. This is because the single line editor 
does not check to see if the functions necessary 
are supported on the current terminal. This will 
be corrected in a future release. 



FIGURE 1 

Logical Name Tables presented as an axray: 

Table Modifier j ---- roodifiers O and 1 are equivalent 
--- LCX3:IN logical name J ~ --- specifies a concealed logical name 

USER 0 & 1 I 2 3 4-> 128. reserved by DEC I 129. ->256. appl use I 
~-------~------------------------------------------------------------------------------
' SESSION 0 & 1 I 2 3 4-> 128. reserved by DEC I 129. ->256. appl use I 
--~----------------------------------------------------------------~-------------------
' SYSTEM 0 & 1 I 2 3 4->128. reserved by DEC I 129.->256. appl use I 

432 







Lotus Blossoms Under RSX-llM+ 
or 

How to cultivate a blooming nightmare 

Art Hurst 
3M Company Magnetic Media Division 

Camarillo CA 93010 

You are the proud system manager on a shiny new 
Micro PDP-11/73 running RSX-UM+ and supporting all 
the nifty utilities and support software including Data­
trieve, DecNet, EDT, Runoff, PolyForth, Kermit, and all 
of the many other goodies supplied by enthusiastic DEC­
cies. Your 4 Mb of main memory sports a blindingly fast 
virtual disk in its upper regions, and RMD's broad ex­
panse gives you the feeling of having a universe at your 
command. A few of your TT: ports are dedicated to ab­
sorbing data from the ubiquitous "Tester with RS-232 out­
put" to TESTER.DAT. You proudly display the equip­
ment and pronounce the wonders of your magnificent sys­
tem to your users. You explain how they may grab a 
copy of their tester input file, pass it through an analysis 
program, DataTrieve it for management reports, and do 
all this with the aid of the batch and indirect processors 
so that they have more time for coffee breaks. As you 
prepare for a thunderous applause of awe and respect for 
such a powerful and dynamic system that can save them 
from their daily drudgery, they respond with "That's neat! 
Looks like my IBM PC /XT set on end. Does it run MS­
DOS or Lotus? By the way, how can I get a printout of 
that tester data file so I can key the data into my IBM PC 
Lotus spreadsheet." 

After stuffing your wounded ego into your back pocket 
you respond with "Just say 'Print TESTER.DAT', then go 
to the printer and pick up your printout, but be sure to 
put the printer offiine and do a local form-feed first and 
don't forget to put it back online afterwards". As you 
trudge back to your desk you mutter "Why would anyone 
want to go to all the trouble of copying a printout into 
a spreadsheet?" The answer of course is that the "User" 
is finally and at long last unchained from that damned 
Data. Processing Department. The one that wants every 
request in triplicate, with cost justification before it can 
be scheduled into the FINO queue (First In Never Out). 
It is a. New Dawn for the user. Through the kind gen­
erosity of Big Blue, Mr. User can now be his own DP 
department and schedule those jobs for this morning or 
afternoon whichever is more convenient. All he needs is a 
PC. But DP must authorize such purchases, DP "knows 
about a.11 the PC's on site because purchasing reports all 
PC purchases" . 

He quickly submits several requisitions covering his 
newly required "tester" to purchasing for various "test 
cards", "power supplies", "chassis", "tester instructions", 

Proceedings of the Digital Equipment Computer Users Society 435 

"tester color monitor", "tester hard disk", and "tester key­
board" which magically assemble into what most people 
recognize as an IBM PC/XT with all the bells and whis­
tles. After loading his "tester instructions" and executing 
"LOTUS", he is off on the wondrous road to ultimate free­
dom and power. He is now courteous to you in order to be 
assured that you will diligently keep the paper supply in 
the system printer full so that he will never miss his morn­
ing printout, and of course you will keep a fresh ribbon 
installed so as to never cause him eye strain during Lotus 
keypunching. 

Before you buy a cup, a gross of pencils and scan for a 
busy street corner, take heart! As the saying goes "When 
your basket runneth over with lemons, sell lemonade!". 
Examine the opposite side of the coin and you will see that 
your users a.re training themselves to help you! The reason 
you had an infinite queue is that you were spending all your 
time writing specs for an application and interviewing the 
user, and while all this was going on, the application was 
constantly changing. You could NEVER catch up! Now 
the user and analyst come in the same wrapper. He is 
writing and debugging the program for you, all you have 
to do is find a way to take his WICKET.WK! and run it 
on your system. 

But what's his advantage in this? He doesn't want 
to get locked in again after all those frustrating years of 
subservience to the DP masters. How about "Automatic 
Lotus", How about "Totally Automatic Lotus"?? Try that 
on your PC!! How about being able to install your user's 
debugged and working spreadsheet program into your sys­
tem, have it access the TESTER.DAT file each day at 1:05 
AM, process the data, and queue the Lotus printout for 
printing at 7:00AM. Now your user picks up a finished 
product from your system printer, AND, if he wishes to 
have program changes, he does it, not you! The changes 
a.re to the WICKET.WK! file for which he has the re­
sponsibility. Suddenly you are able to support many more 
users than ever before. 

"But" you say "how do I stuff an IBM PC on my 
bus??" Elementary my dear Watson! There is a company 
in Nashua NH that is dying to supply you with one. For­
tunatly I had the foresight to spec one of these beauties 
into the original system before the Big Blue Bug had in­
fected most of our technical troops. The onslaught was 
inevitable! The basic problem was to provide more than 
"just another PC". A time shared PC to a. user who al-

San Francisco, CA - 1986 



ready has his very own is no incentive. Therein lies the 
tale of "A Lotus Blossoms Under RSX-HM+". 

How does one get 11. Lotus to blossom under RSX­
llM+? First you clear a.wa.y some Q-Bus rea.l estate, a. 
dual-wide slot to be exact. Next you pla.nt your QCP-
11 + card, and distribute supplied software carefully a.s di­
rected. Then via your A: disk drive you a.dd your Lotus 
software and voila you ca.n be Lotusing with or without 
floppy disks, from a.ny terminal anywhere. It's no rea.l 
trick to get tha.t far, but now you have to start scheming! 

Do you allow all users to access the sa.me "disk C:" 
with the possibility of an unknown user deleting ~COM­
MAND.COM" accidentally? No, so you set C: to Rea.d 
Only, and then one of your software pa.cka.ges refuses to 
work because it must write to temporary files, a.nd you 
can't redirect it. Do you feel surrounded by impossible 
choices Bunky? Suddenly bugles sound, hoofbea.ts are 
heard in the distance. It's Indirect to the rescue! 

Imagine tha.t you could lock up C: as Rea.d Only a.nd 
limit it's use to system functions, then create a. shared 
scratch disk D: with Rea.d/Write access. DOSFLX which 
acts like our old friend FLX lets RSX magically create the 
disk of your choice, for instance DISKD.DOS with all the 
fancy file support you're used to. Calm reigns a.s your 
users busily play with EDLIN and other such trivia on 
the lowly public disk. But of course a.fter three hours of 
satisfied complacency, your first call for 11. private disk will 
arrive. Now what? Not to worry. Now you start the 
fancy footwork, you create MYDISK.DOS in the user's 
account and via indirect in [3,54] you create IBM.CMD 
which examines the account requesting access to the PC, 
determines if he has his very own disk MYDISK.DOS and 
links him to it as D:. IT he isn't sufficiently aggressive 
enough to badger you into allocating disk space to him, 
he gets the public scratch disk DISKD.DOS. Want to see 
[3,54]IBM.CMD? 

.enable quiet 

.enable substitution 

.enable global symbol 

.testfile '<uic>'mydisk.dos 

.if <filerr> eq 1 .goto 20 

.goto 10 

.20: 
CRD IBNPC.LST =[7,46]diskc/R, 

'<uic>'mydisk/I/B/M:77./N:O./V:7462. 
.goto exit 
.10: 
CRD IBNPC.LST =[7,46]diskc/R, 

[7,47]diskd/I/B/M:77./N:O./V:7462. 
.exit: 

Let's now look at AUTOEXEC.BAT on DISKC.DOS. 

echo off 
els 
path c:\;d:\;e:\;f :\ 
prompt $p$g 
if not exist d:init.bat goto end 

d: 
init 
end: 

This little jewel will keep everyone's pa.ws off of C: by 
switching them to D:. As an a.dded plus, IT D: happens 
to be an applications disk such as LOTUS.DOS, you can 
be more careful and install a.n !NIT.BAT tha.t will protect 
things. First, let's see how we would bring up Lotus. The 
following is [7,47]LOTUS20.CMD 

.enable quiet 

.enable substitution 

.enable global symbol 

.testfile '<uic>'mydisk.dos 

.if <filerr> eq 1 .goto 20 

.goto 10 

.20: 
CRD IBNPC.LST =[7,46]diskc/R, 

[7,47]lotus20/R,'<uic>'mydisk/I/B/V:7462. 
.goto exit 
.10: 
CRD IBNPC.LST =[7,46]diskc/R, 

[7,47]lotus20/R,diskd/I/B/V:7462. 
.exit: 

As you ca.n see, this expands on our IBM.CMD by 
bringing up Lotus pointing to either a. personal disk or the 
public scratch disk depending on the user's account with 
Lotus Read Only for protection. Additionally you will note 
that only DISKD.DOS or MYDISK.DOS are accessible for 
Write thus protecting you from having a corrupted LO­
TUS.DOS. Of interest as well would be !NIT.BAT which 
will be executed from AUTOEXEC.BAT. 

cd\123 
crd123v2 >nul 
123 
cd\ 
bye 

Now that we are able to use Lotus, what shall we do 
with it? Funny you should ask. As you remember earlier, 
we were sucking up gobs of data from the Wicket Tester 
MK II via. the "Standard RS-232" link into TT5: and ul­
timately into TESTER.DAT. Now suppose for a moment 
that the da.ta coming in represents five readings each from 
seven Wickets, and further let's examine what we'd see if 
we executed the following: 

PIP ANALDATA.PRN=TESTER.DAT 
TYPE ANALDATA.PRN 

1 200 206 210 300 310 
2 1200 1210 1196 1182 1206 
3 9000 9060 8960 9100 9200 
4 200 300 160 120 100 
6 120 121 130 131 160 
6 119 207 300 600 600 
7 260 300 496 600 760 

436 



What we'd like however is to see the mean values and 
the standard deviation for each unit 1 thru 7. Aha we say 
- Lotus is the way. So now we must create a spreadsheet. 
@LOTUS20 will get things under way nicely and a.non we 
are merrily creating the worksheet. Essentially this con­
sists of a Title "Wicket Data Analysis" with the Date to 
be printed, and various column headings as needed etc. As 
they say in the more academic journals, "the generation 
of the spreadsheet is left as an exercise for the student". I 
include here copies of both the blank spreadsheet and the 
cell-formulas. The sheet covers Al..J20. This will allow 
up to 20 units to be calculated and printed. Notice what 
the Macro starting at 15 dictates. /wgzycauses all zeros 
to be replaced by blanks. Next, /finanaldataia.uses im­
portation of ANALDATA.PRN as numbers with the left 
top corner of ANALDATA.PRN entering the cell at which 
the pointer was located the la.st time a File Save Replace 
was executed. One must either be cautious or precede this 
import macro by a gotoA2 macro to be sure that the file 
imports into the right location. Now comes /ppral..h20gq 
which prints to the printer (IBMPC.LST) range a.1..h20 
followed by a quit. We can now Name this macro and 
execution of it will bring in the data file and output the 
results. When you Quit Yes, and return to RSX land and 
PRINT IBMPC.LST, you will have your final product. 

But wait! our file ANALDATA.PRN is sitting in RSX 
land and we're in MSDOS land. Not to fear. Before we can 
successfully execute this macro, we must go back to RSX 
and use our friend DOSFLX (cleverly installed as DFX) to 
pop a copy to the Lotus disk. One must take care to set up 
the Worksheet Global Default Directory to point to where 
ANALDATA.PRN will be placed and of course be certain 
to save the worksheet with that pointer. While we're at 
it, let's save this whole mess as TESTANAL. WKl. 

The following is a printout of the worksheet showing 
only the first seven rows. The rest through row 20 is all 
the same, so no need to bore you with endless repetition. 
The Macro of interest is within this range and is included. 

(A Printout of A1 .. J7 
11 CELL-FDRMULAS 11 • • info 
through J20 is the same) 

Wicket Data Analysis 
02-Dct-86 

A1: AUnit # 
B1: ATest #1 
C1: ATest #2 
D1: ATest #3 
E1: ATest #4 
F1: ATest #6 
G1: (F3) AAvg Val 
H1: (F3) AStd Dev 
J1: (T) • 

A2: (FO) 0 
B2: (F2) 0 

437 

C2: (F2) 0 
D2: (F2) 0 
E2: (F2) 0 
F2: (F2) 0 
G2: (F3) GAVG(B2 .. F2) 
H2: (F3) GSTD(B2 .. F2) 

A3: (FO) 0 
B3: (F2) 0 
C3: (F2) 0 
D3: (F2) 0 
E3: (F2) 0 
F3: (F2) 0 
G3: (F3) GAVG(B3 .. F3) 
H3: (F3) GSTD(B3 .. F3) 

A4: (FO) 0 
B4: (F2) 0 
C4: (F2) 0 
04: (F2) 0 
E4: (F2) 0 
F4: (F2) 0 
G4: (F3) GAVG(B4 .. F4) 
H4: (F3) GSTD(B4 .. F4) 

A6: (FO) 0 
B6: (F2) 0 
C6: (F2) 0 
D6: (F2) 0 
E6: (F2) 0 
F6: (F2) 0 
G6: (F3) GAVG(B6 .. F6) 
H6: (F3) GSTD(B6 .. F6) 
16: • /wgzy-

A6: (FO) 0 
B6: (F2) 0 
C6: (F2) 0 
D6: (F2) 0 
E6: (F2) 0 
F6: (F2) 0 
G6: (F3) GAVG(B6 .. F6) 
H6: (F3) GSTD(B6 .. F6) 
16: '/finanaldata-

A7: (FO) 0 
B7: (F2) 0 
C7: (F2) 0 
D7: (F2) 0 
E7: (F2) 0 
F7: (F2) 0 
G7: (F3) GAVG(B7 .. F7) 
H7: (F3) GSTD(B7 .. F7) 
17: '/ppra1 .. h20-gq 

( A Printout of A1 .. J7 
"AS-DISPLAYED" .. info through 
J20 is the same) 



Unit Test #1 Test #2 Test #3 Test #4 

0 0.00 0.00 0.00 0.00 

0 0.00 0.00 0.00 0.00 
0 0.00 0.00 0.00 0.00 
0 0.00 0.00 0.00 0.00 
0 0.00 0.00 0.00 0.00 
0 0.00 0.00 0.00 0.00 

/wgzy-
/finanaldata-
/ppra1. .h20-gq 

So now we are able to move data files about with 
wanton abandon and create and execute spreadsheets with 
macros. All is well and good. "But" you say, "I thought 
you were talking about 'hands-off Lotus'?". To be sure I 
was. So how do we get to that point? Have you forgot­
ten your Batch processor. Let's think about what must 
happen now. We must first move a copy of our ANAL­
DATA.PRN to its proper MSDOS disk, then we must ex­
ecute the @LOTUS20 right? Wrong! There's more to be 
done now. We need a smarter !NIT.BAT, we also need to 
have TESTANAL.WKl loaded automatically, and lastly 
we have to execute our macro automatically and sign out! 
Now what?? 

Well, how about the following for starters: 

• Go back to your TESTANAL.WKl and modify the 
macro by adding in 18 / qy . Then Na.me the macro 
15 .. 18 
0 which is THE "auto-macro" which executes upon 
loading the spreadsheet. File Save all of this as TES­
TANAL.AUT. DO NOT Replace or you're DEAD! 

• Create an INIT.AUT which is a modified copy of 
your original Lotus !NIT.BAT except now, just 
before executing 123, copy TESTANAL.AUT to 
AUT0123.WK1. What this subtle operation does is 
cause your automatic version of TEST AN AL. WKl to 
be loaded upon execution of 123, and of course your 
0 macro then executes - which does all your work 
then signs off. Next, add to INIT.AUT a deletion 
of AUT0123.WK1 so as to eliminate any automatic 
shenanigans the next time you want access to Lotus. 
This must be done before INIT.AUT says BYE. 

• Now we're ready to roll. We will now create an RSX 
batch job file to employ DFX to move our ANAL­
DATA.PRN and INIT.AUT to their proper locations, 
execute a command string to cause the CRD software 
to execute, BUT this time we subtly add another op­
tion to our CRD command string. That is the /D 
which causes direct connection to the serial port on 
the QCP-11+ for terminal 1/0. There is nothing con­
nected to it, so all the information we would have 
seen, and which would have locked up the VT: driver 
is conveniently dumped into the bit bucket. 

Attached is the piece de resistance, a printout of the 
LOTUS.LOG file u the result of the command SUB /NO-

PRINT=LOTUS.BAT. It details every move of a fully au­
tomated hands-off execution of Lotus under RSX-HM+. 
It demonstrates completely that you can provide your 
users with a new service that they can't have with their 
PC's clones or whatever. You can link this all by the clock. 
We can even have a program run daily by resubmitting it­
self or on a particular day by testing for the day's name, 
or any other deviant variant that your warped mind can 
create. 

438 

I considered deleting all the repetitious DOSFLX 
chatter, but this would have messed up the output page 
numbering and formatting of the LOTUS.LOG file. As a. 
result, I have included an untouched copy of all that tran­
spired. Because of the way DOSFLX operates, I couldn't 
include comments within the batch file as they occurred 
and consequently had to group them prior to executing 
DFX, so you will have to review the groups of comments 
and trace their actions independently. As you can see, 
if DOSFLX were smarter and allowed parameter passing, 
this file could be about one tenth it's size. Interaction 
with DOSFLX quickly becomes boring because of all the 
waiting for menu printout. 

I would like to take this opportunity to bless the many 
DECUS contributors who have been kind enough to share 
their knowledge, help, and software thus ma.king this job 
actually possible if not altogether pleasurable. Without 
EDT and RUNOFF, this would have been a real bear! 

As you can see, this work is recent. In fa.ct it is still 
going on. There are many problems I haven't stumbled 
across yet. One that I know of in particular is that if you 
are planning a. print queue for your Lotus output, you will 
have to rebuild the LPP driver according to the System 
Management Guide section 7 regarding /FORMS:n. You 
will probably need to set a.side a printer for these users 
since they will inevitably set the page width to the max 
allowable since they are using Epsons. I haven't had time 
to get this far yet, but will. I was going to include a 
section on batch files submitting batch files which we a.re 
using regularly and even resubmitting on schedule. 

Unfortunately, one cannot as yet share a DOSFLX 
disk via DecNetDOS although I have linked them in prior 
rev levels of DOSFLX. The results are unpredictable. This 
would have interesting possibilities. With all fairness, 
DOSFLX predates DecNetDOS and would therefore not 
necessarily be expected to be compatible. I did once read 
a file on DISKC.DOS which was accessed as D: on a re­
mote PC/XT via DecNetDOS' NDU facility. These are 
indeed exciting times! 



08:13:56 

08:13:58 
08:13:58 
08:13:58 
08:13:58 
08:13:58 
08:13:59 
08:13:59 
08:13:59 
08:13:59 
08:13:59 
08:13:59 
08:13:59 

08:14:00 

08:14:01 

$JOB/TI:ME:5 LOTUSDEMO 

==================================== 
User Job - LOTUSD Terminal VTl: 

UIC = [7,67] 
==================================== 

TERM 

TERM 

TERM 

TERM 

RSX-llM-PLUS V2.1 BL15E [1,54] System DRPSRC 

Welcome to the Solvent Recovery Micro PDP-11/73 System 

Please be sure to logout when you will be gone from yo~ 
terminal for more than a few minutes. Remember that others want 
the system and we are limited in the number of available ports. 
co-operation is necessary to provide the most service to the la 
number of people. 

Art Hurst X4170 or mail to A HURST or SYSTEM 
$ ! 
$ ! 
$ ! 

Set bomb-out evacuation path to nearest Exit 

$ON ERROR THEN GOTO EXIT 
$DCL SET DEFAULT DUO: [7,67] 
$ 
$ 
$ 

Let's look at the two files we have in [7,67] for 
!NIT that will be passed to [7,47]LOTUS2G.DOS 

$ 
$ 

as well as the ANALDATA.PRN that we PIPped from 
TESTER.DAT 

$ 
$TYPE !NIT.BAT 
cd\123 
crd123v2 >nul 
123 
cd\ 
bye 
> 
$TYPE INIT.AUT 
cd\123 
copy testanal.aut auto123.wkl 
crd123v2 >nul 
123 
del auto123.wkl 
cd\ 
bye 
> 
$TYPE 
1 
2 
3 
4 
5 
6 

ANALDATA. PRN 
200 206 
1200 1210 
9000 9050 
200 300 
120 121 
119 207 

439 

210 
1195 
8950 
150 
130 
300 

300 
1182 
9100 
120 
131 
500 

310 
1205 
9200 
100 
150 
600 



08:14:03 
08:14:03 
08:14:03 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:04 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:05 
08:14:06 
08:14:06 
08:14:06 
08:14:06 

TERM 

TERM 

7 
> 
$ ! 
$ ! 
$ ! 
$ ! 
$ ! 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

250 300 495 600 750 

Now let's strip for action and bring DOSFLX into the 
fray to move between RSX-land and MSDOS-land 
First, we'll see what [7,67]DISKC1.DOS's AUTOEXEC.BAT 
file looks like .. 

Then while we're in DOSFLX, let's switch to [7,47]LOTUS 
and examine the current INIT.BAT that would normally 
execute .. 

Next we'll pull a switcheroo and put our cleverly 
modified INIT.AUT in place of the normal INIT.BAT 
First we'll replace the INIT.BAT .. 

Then we'll see the new INIT.BAT that will execute 
on Boot up 

Next let's switch directories on [7,47]LOTUS20.DOS 
and see what's in that directory 

Notice that you don't have an ANALDATA.PRN because 
we haven't put one there yet. So let's proceed 
to put a copy there for our Import command to find. 

And just to be sure it got there OK, let's type it. 
$ 
$DFX 
DOSFLX -- MSDOS <> RSX file transfer utility 

Copyright (c) 1986 by Logicraft, Inc. 
V2.02 

[C]reate 
[D] irectory 
[E] xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
(R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> o 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys center 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter RSX filename specification: [7,67]diskcl 

(C]reate 
(D]irectory 
(E] xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys center 
Make a sub-directory 
Open an existing logical disk 

440 



TERM [P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> t 

Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter DOS filename specification: autoexec.bat 
echo off 
els 
path c:\;d:\;e:\;f:\ 
prompt $p$g 
if not exist d:init.bat goto end 
d: 
init 
end: 

[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> o 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys center. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter RSX filename specification: [7,47]lotus20 

[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> t 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys center. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter DOS filename specification: init.bat 
cd\123 
crdl23v2 >nul 
123 
cd\ 
bye 

[C]reate 
[D]irectory 

Create a new DOS logical disk 
Directory of the currently open logical 

441 



TERM [E]xit 
[F] ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> f 

Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Direction of transfer [I]nput to/[O]utput of MSDOS disk: [I] i 
Mode of transfer [T]ext/[B]inary: [T] t 

Enter RSX filename specification: init.aut 

Enter DOS filename specification: [INIT .AUT] init.bat 

[C]reate 
[D]irectory 
[E] xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> t 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter DOS filename specification: init.bat 
cd\123 
copy testanal.aut auto123.wkl 
crd123v2 >nul 
123 
del auto123.wkl 
cd\ 
bye 

[C]reate 
[D] irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P]urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> s 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter DOS filename specification: 123 

442 



TERM 
[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> d 

LOTUS 
INSTALL 
INSTALL 
INSTALL 
TRANS 

.COM 

.EXE 

.SCR 

.DVC 

.COM 
DIF .XLT 
DBF2 .XLT 
DBF3 .XLT 
JZZLOTUS.XLT 
VCWRK .XLT 
WRlWRK .XLT 
WRKWRl .XLT 
WRlWKS .XLT 
UTIL .SET 
PGRAPH .EXE 
PGRAPH .CNF 
PGRAPH .HLP 
LOTUS .FNT 
BLOCKl .FNT 
BLOCK2 .FNT 
BOLD .FNT 
FORUM .FNT 
ITALICl .FNT 
ITALIC2 .FNT 
ROMANl .FNT 
ROMAN2 .FNT 
SCRIPTl .FNT 
SCRIPT2 .FNT 
123 .DYN 
123 . SET 
COPYON .BAT 
COPYOFF .BAT 
COPYONl .BAT 
COPYOFFl.BAT 
Sl230N .COM 
Sl230FF .COM 
COPYHARD.COM 
INSTALL .LBR 
123 . CMP 
123 .COM 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys center. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

0 
0 

5817 
55152 
43728 

4470 
35026 
26496 
35792 
41664 
11936 
18640 
19792 

1024 
29840 
10048 
66336 

384 
6997 
8679 
5737 
9300 
8624 
9727 
8949 

11857 
6863 

11847 
8132 

10367 
10913 
32966 

1699 
1389 

117 
116 

1818 
233 

40112 
266562 
133848 

2048 

443 

<dir> 
<dir> 



TERM 123 .HLP 
123 .CNF 
VDF0203 .VDF 
CML0203 .FCL 
CRD123Vl.EXE 
CRD123V2.EXE 
123V2Xl .DTl 
123V2X2 .DTl 
123V2Xl .DT2 
123V2X2 .DT2 
TESTANAL.WKl 
TEST .PIC 
TESTANAL.AUT 

114366 
265 

2192 
13136 

1865 
1812 
8192 
8191 
2560 
2559 
4153 

805 
4196 

Directory statistics for current DOS volume: 

Free directory entries 
Free data blocks 

9 
651 

0 
0 

Number of bad blocks 
Number of reserved blocks: 

[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[SJ et-directory 
[T]ype 

DOSFLX >> f 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Direction of transfer [I]nput to/[O]utput of MSDOS disk: [I] 1 

Mode of transfer [T]ext/[B]inary: [T] t 

Enter RSX filename specification: analdata.prn 

Enter DOS filename specification: [ANALDATA.PRN] 

[C]reate 
(D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> t 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

444 



08:14:36 
08:14:36 
08:14:36 
08:14:36 
08:14:36 
08:14:36 
08:14:36 
08:14:36 
08:14:37 
08:14:37 
08:14:37 

08:14:38 
08:14:38 
08:14:38 

08:14:38 
08:14:38 
08:14:38 
08:14:38 
08:14:38 
08:14:38 
08:14:39 
08:14:39 
08:14:39 
08:14:39 

08:15:08 
08:15:08 
08:15:08 

TERM 

TERM 

Enter 
1 

DOS filename specification: analdata.prn 
200 206 210 300 310 

2 
3 
4 
5 
6 
7 

1200 1210 1195 1182 1205 
9000 9050 8950 9100 9200 
200 300 150 120 100 
120 121 130 131 150 
119 207 300 500 600 
250 300 495 600 750 

[C]reate 
[D] irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

DOSFLX >> e 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

All finished, now we can go back to RSX land 

Let's set up a new error pointer because I'm 
going to ask for a non existent file just to 
prove that none exists prior to doing the 
CRD trick! 

$ON ERROR THEN GOTO CRD 
$DIR ANALDATA.LST 
PIP -- No such file(s) 

> 
$ ! 
$ ! 
$ ! 

See -- No file yet. This will be the PC output file. 

'ERROR' exit status returned - enabling action in "ON" conunand 

TERM 

$CRD: 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$CRD 
CRD 
$ ! 
$ ! 
$ ! 

And now ladies and gentlemen, as you can see 
my sleeves are rolled up to a discreet length 
and I have no visible support. I will invoke the 
magic "CRD" and smoke will rise as my slave slowly 
comes to life in a virtual mode pouring much valuable 
data into the infinite bit bucket. 

ANALDATA.LST=[7,67]DISKC1, [7,47]LOTUS20/I/B/D/V:7452. 
CARDWARE Configuration Error -- received conunand 21 

Wait! it stirs, did anything happen?? 

445 



08:15:08 
08:15:09 
08:15:09 
08:15:09 
08:15:09 
08:15:09 
08:15:09 
08:15:09 
08:15:09 
08:15:09 

08:15:11 
08:15:11 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:12 
08:15:13 
08:15:13 
08:15:13 
08:15:13 
08:15:13 
08:15:13 
08:15:13 

TERM 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$TYPE 

> 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

(you must ignore the nasty "configuration error" 
message-- I've been so busy that I haven't been 
able to upgrade my CRD software. Please ignore 
this warning) 

But -- did we finally get our card output file 
ANALDATA.LST?? The suspense is unbearable .. Let's 
take a look .. 

ANALDATA.LST 

Wicket Data Analysis 

Unit t Test f 1 Test f2 Test f 3 Test f 4 Test ts Avg 
1 200.00 206.00 210.00 300.00 310.00 245. 
2 1200.00 1210.00 1195.00 1182.00 1205.00 1198. 
3 9000.00 9050.00 8950.00 9100.00 9200.00 9060. 
4 200.00 300.00 150.00 120.00 100.00 
5 120.00 121. 00 130.00 131. 00 150.00 
6 119.00 207.00 300.00 500.00 600.00 
7 250.00 300.00 495.00 600.00 750.00 

Lo and behold -- it lives and breaths. Living proof 
that you can provide total hands-off Lotus via 
batch mode. Now you can provide more services than 
your users ever dreamed of. Of course you won't be 
any the richer for it, but your newfound smugness 
is richly deserved all will agree. 

Before we leave, we had better undo some of the 
things that we modified to perform this wizardry. 
Namely, we had better restore !NIT.BAT, or the 
next poor jerk that executes Lotus will find 
it coming and going automatically, and we wouldn't 
want that! 

And while we're at it, we should also Purge 
ANALDATA.PRN. 

446 

174. 
130. 
345. 
479. 



08:15:14 
TERM 

$DFX 
DOSFLX -- MSDOS <> RSX file transfer utility 

Copyright (c) 1986 by Logicraft, Inc. 
V2.02 

[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[SJ et-directory 
[T]ype 

DOSFLX >> o 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys canter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter RSX filename specification: [7,47]lotus20 

[C]reate 
[D] irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[S]et-directory 
[T]ype 

DOSFLX >> f 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys canter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Direction of transfer [I]nput to/[O]utput of MSDOS disk: [I] i 

Mode of transfer [T]ext/[B]inary: [T] t 

Enter RSX filename specification: init.bat 

Enter DOS filename specification: [INIT .BAT] 

[C] reate 
[D] irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O)pen 
[P]urge 
[R]mdir 
[SJ et-directory 
[T]ype 

DOSFLX >> s 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter DOS filename specification: 123 

447 



08:15:25 
08:15:25 

TERM 

TERM 

[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[SJ et-directory 
[T]ype 

DOSFLX >> p 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

Enter DOS filename specification: analdata.prn 

[C]reate 
[D]irectory 
[E]xit 
[F]ile-transfer 
[I]nitialize 
[M]kdir 
[O]pen 
[P] urge 
[R]mdir 
[SJ et-directory 
[T]ype 

DOSFLX >> e 
$EXIT: 
$EOJ 
Connect time: 1 
CPU time used: 31 
Task total: 20 

Create a new DOS logical disk 
Directory of the currently open logical 
Exit from DOSFLX 
File transfer: DOS -> RSX or RSX -> DOS 
Initialize Logical disk (destroys conter. 
Make a sub-directory 
Open an existing logical disk 
Purge a file from the current directory 
Remove an empty sub-directory 
Set default directory 
Type an MSDOS TEXT file 

minutes 
seconds 

448 



HOW TO GET THAT UPGRADE 

Denny Walthers 
2723 Pampas 

Orange, California 92665 
(714) 974-2486 

ABSTRACT 

Upgrading systems is a continuous function. The process 
for obtaining funds to accomplish this can be very frustrating. 
This paper provides some approaches that have been used 
successfully by the author. It is intended to provide the 
reader with a brief understanding of the external environment 
that can have a dramatic effect obtaining funding. If upgrades 
are planned at any time in the future, concepts dealt with 
here should make obtaining the necessary funding easier. 

"We need to upgrade ••• , 11 ever hea,rd that before? 
In my own personal experience (22 years worth), 
I have yet to see a year go by that an upgrade of 
some kind was not required to keep the business 
going. The most frustrating part is educating 
'management' so they understand the need. Hopefully 
this article will address some of the techniques 
for overcoming that dilemma. 

One of the leading problems with those of us who are 
computer techies is we control almost everything in 
the world; processes, manufacturing, quality, 
inventory, distribution, payroll, payables and 
receivables, et cetera. We control everything 
except the one thing that really matters. We don't 
control MONEY. 

Thus, we are faced with the challenge of always 
having to ask for money to accomplish the things 
we were hired to do. Ever find it odd that you 
were actually hired to do some specific thing and 
'after' you got on board learned that you could not 
possibly do it? It isn't because of your lack of 
technical skills, but rather the lack of under­
standing from 'up top' as to what is really required. 

Let us examine some of the techniques to obtain 
funds for upgrades, total new systems or whatever. 
Some basic things that must be dealt with are: 

Understanding your company 

Understanding your management 

Understanding your need 

Understanding your financial organization 

UNDERSTANDING YOUR COMPANY 

Most of us tend to concentrate on the things that we 
are familiar with and directly affect us. We can 
easily get lost daily in the trivial things that 
seem to require our immediate attention. Few of us 
(myself included) ever take the time or find the 
time to learn about the rest of our company. What 
does the company do? What is important to the 
company? Does it sell a product or services? 

Proceedings of the Digital Equipment Computer Users Society 449 

One thing is certain about companies in general. 
You must 'sell' to them internally in order for 
them to achieve their own business goals. It's all 
a game. When you realize it is a game and you 
learn the rules, you might actually enjoy playing it 
because the challenge is to beat others using their 
own rules. Learn the rules, play to win, and reap 
the benefits. Externally, sales people of various 
types call on the purchasing department and manage­
ment in order to 'sell' them products. Internally, 
each department does exactly the same thing but the 
item being sold is generally an idea, not a product. 

What are the things that are important for you to 
know about your company? I believe that there are 
four essential items. 

Know Your Enemy 

What do I mean 'enemy'? Aren't we all working for 
the same company and for the same goals? If you 
believe that, you really are a candidate for buying 
the Brooklyn Bridge. Every person in every company 
has at least some self-serving needs that must be 
met. These are the things that make us achievers. 
Sometimes that gets in our way. We will tend to 
look disfavorably on things that are of no direct 
benefit to us individually. So much for the 
'enemies' qualifier. 

What kind of enemies? Not physical but rather those 
who either conflict with your ideas or those who 
want the credit for them. You can be sure you are 
competing for the same funds another department is 
seeking. There may be a decision that has to be 
made between your upgrade and adding a salesman or 
two. There may also be the person that you 
embarrassed months ago who is now in a position to 
delay your efforts. View anyone who will not support 
your requests vigorously as an enemy to your success. 

Learn who can delay or stop your efforts altogether, 
and the reasons why, if you do not already know 
them. Approach the individual and work the problem 
out. Find some common ground that you both agree 
on and get them on your side. This is usually 
possible and often leads to a better working relation­
ship for the future. 

San Francisco, CA - 1986 



Finally, there is the MBA. Recent books and 
business periodicals have discovered this insidious 
threat! It doesn't matter whether they are from 
Harvard or from some university across the street. 
Their philosophy since the mid-sixties has been the 
same. Increase the short term profits of the 
company, even at it's own expense. Never mind long 
range goals and profits. Look only for the 'short 
term' and ignore the future (they are seeing to it 
that you don't have one). Unfortunately these 
people have successfully attained powerful positions 
in all facets of companies. They don't want you to 
upgrade anything or spend any money at all. Their 
attitude is that you are not working hard enough or 
you would not need the upgrade. Short term profits 
are all that they are interested in. These people 
exist and you must be prepared to do battle with 
them on their terms. They understand numbers only 
and I address numbers later in this paper. 

Know Your Allies 

These are your assets, use them wisely. Don't ever 
jeopardize your relationship with these people. 
Keep them informed and keep them on your side. Take 
the time to solicit support from those who are well 
thought of in your company. Some may have been there 
a long time and some may be relatively new but have 
excellent ideas. 

Discuss your thoughs and needs with them, get their 
ideas. Ask them how they would approach the problem, 
You will find that most people are willing to provide 
help of this type because it builds a positive work­
ing relationship, They will know that they can 
count on you when they need assistance. 

Poll your user community and get them to solidly 
support you. One of the things that will work in 
your favor is the support of your user community. 
If they are promoting the same thing that you are, 
when it gets to top management, and all parties 
agree, bingo, you win and the company does too. 

Know Who Makes the Decisions 

You can do all of the right things, talk to all of 
the right people and still fail. Why? Because you 
forgot or worse, you never knew who it was that was 
making the decisions. You may work with a vendor 
for months, sell all of management on them and your 
need, get the money and then ••• FAIL. Why? Perhaps 
the purchasing department forces the issue of 
requiring at least three bids. Some other vendor 
bids less and you lose because you get the wrong 
equipment and it doesn't work. Many people think 
that Vice-Presidents, Controllers or CFO's make the 
decisions. That is usually wrong. There are 
numerous financial analysts, users et cetera who 
will shoot you down long before your proposal gets 
to a Vice-President. If your proposal gets to a 
Vice-President, chances are that you are going to 
get what you want. 

Find out who makes the decisions and be sure they 
are always involved. Obtain their support, and the 
rest is simply formality. 

What are the Current Hot Buttons 

If there are current things that are going on in your 
company, you may be able to capitalize on these. Is 
your upgrade going to do anything toward these items? 

450 

If it is, even in a minor way, exploit that fact. 
Hot buttons generally get attention immediately 
because they usually have a lot of general manage­
ment support. Avoid those that are risky and con­
troversial. It may cost you your upgrade and that 
is certainly not what you want. 

UNDERSTAND YOUR MANAGEMENT 

What is the orientation of your management: sales, 
engineering, manufacturing, finance, distribution? 
It is imperative that you know. This knowledge 
provides you with the ability to tailor the des­
cription of your requirements to your audience. Try 
to keep the narrative simple and perhaps relate some 
example from their area of expertise supports your 
position. 

Know the strengths and weaknesses of your management. 
Remember, you are playing a business game in which 
you want to win, If you can make both you and your 
management winners no one will turn you down. 
Exploit weaknesses but do not embarrass anyone who 
could become an adversary. Exploit strengths as 
well, involve them and make them look good. It 
pays off! Especially for future requests that you 
may have. 

Most management focuses on business goals. Does 
your upgrade support and assist in the achievement 
of these business goals? If so, management will 
support your efforts, If not, you are already in 
trouble and need to develop that type of relation­
ship. 

UNDERSTAND YOUR NEED 

It is remarkable how many times I have been asked 
to help support an effort and the people leading 
it have had no clear, concise understanding of 
exactly what it is they are trying to achieve. "We 
are trying to get an upgrade because we need it." 
That is commendable, but WHY do you need it. 

Give reasons and approaches, not emotional appeals. 
Capacity is a reason, State-of-the-art tools is a 
reason. 'We need it,' is not a reason, YOU know 
you need it, THEY don't. The burden of proof is on 
you the requester. In order to communicate that 
need you must present the facts in language that 
the 'decision makers' can understand. 

Planning helps too. While it is important to deal 
with the short term it is equally important to deal 
with the future. Examine your company's growth 
patterns. Will the upgrade that you seek be 
sufficient for five years? Show you have done your 
homework and long range planning. Provide for con­
tingencies. What happens if you do less of an 
upgrade now and more later. Address the business 
goals and support them with your PLANS. 

What are the alternatives? There are no alter­
natives? There are no alternatives you say? 
WRONG! There are always alternatives. The best 
argument for that is the alternative of DOING 
NOTHING. Yes, that is a realistic alternative, 
doing nothing. How often have you noticed that 
this alternative is the preferred approach!! You 
would be amazed how much ground you can get out of 
that when you are writing up a request for money. 



Explore alternatives and explain each. People know 
that you have thoroughly explored the problem that 
way. 

Is this a requirement from a governmental agency? 
Many agencies like the Air Quality Management 
District (AQMD), Food & Drug Administration (FDA), 
Environmental Protection Agency (EPA) et cetera have 
requirements that you can use to your advantage. 
Check it out. If it is there, use it. Be sure 
however that you do not use it unwisely. There is 
nothing so degrading as citing some government 
requirement, that is not a real requirement when 
investigated. 

KNOW YOUR FINANCIAL ORGANIZATION 

The biggest delays occur within the financial area. 
Finance has the responsibility of protecting the 
company's money and assets. It is their job to 
investigate and examine all requests, including yours. 
Imagine someone who had your checkbook and the 
authority to write checks. Uncontrolled, they could 
do you in quickly. Finance is there to do their 
job. That can work to your advantage or disadvantage 
depending largely on you. 

Finance is interested in the fiscal aspects of your 
need. Was this upgrade budgeted, was it planned, 
is there money available? These are some of the 
questions they are concerned with. Knowing this and 
knowing the answers up front can save you a lot of 
time and delays in getting your upgrade, They are 
interested in knowing exactly when money will be 
needed and spent. Finance deals a lot with cash 
flow and none of us knows enough about cash flow. 

Who is the individual in the financial organization 
that does the evaluation of requests for money? 
Find out. Go to that person and determine what 
formats they like. Find out what they are looking 
for. They should be happy to tell you. After all 
it's their job and they should be willing to give 
you the information_ 

Was finance aware of the upgrade early in the planning 
stage, or did it come as a surprise? If you involve 
them in the beginning and use them to help plan the 
financial arrangements, it cai. lessen the impact 
and shorten the time to obtain approval. 

REQUEST FOR CAPITAL INVESTMENT 

We use a standard format for obtaining funds for all 
capital projects. It consists almost entirely of 
narrative and can either make or break your project. 
Let us examine each section and see how they affect 
the overall request effort. Note that no matter 
what your company's format, all of these items must 
be addressed. 

Background 

This is a narrative section which should discuss 
sufficient background information to explain how we 
arrived at this point. It is not necessary to cover 
the entire history. Things such as runaway growth 
due to division expansion, unknown or new requirements 
et cetera. Remember, most of the people reading this 
have no idea how it came about. Treat this setting 
as if you are in a court of law where all that 
counts are the facts that you present. 

451 

Proposal 

What are you proposing? Equipment, software, 
change in direction, maintaining service levels, 
just what is it. This section must be as explicit 
as possible without placing unrealistic constraints 
on what you need. Identify the fact that you are 
upgrading, or adding a new item and establish the 
credibility that you know what you are talking 
about. 

Discussion 

This is where you provide some narrative about how 
things are being done currently. If capacity is 
your problem, discuss it. Not just that you are 
out of capacity but things such as increased 
response time, more frequent removal of active 
data from overloaded disks et cetera. Provide the 
reader with what you would say to them if you were 
speaking to them. 

Applications 

Define explicitly the initial applications pro­
vided by the upgrade. If you are vague in this 
area, there will be a sense of concern on the part 
of the reader that you are somehow trying to obtain 
money to be used for something other than what is 
being defined. You don't want this at all. It can 
establish barriers for many years to come when your 
name appears on requests for money. 

Costs 

This is financial information so make sure it is 
accurate. You should be sure to include costs for 
equipment, installation, additional monthly main­
tenance costs, tax, shipping, insurance etc. 
Many small items are overlooked when preparing this 
type of request. How many of us order things 
from someone and unwittingly forget the tax and 
shipping charges. Then when we get the item and 
the invoice comes, ZAP!!, additional money that we 
did not anticipate is required. In most instances 
it is not necessary to list each item individually 
or even the model numbers. Simply list the type 
equipment you plan to buy (i.e., 2 disk drives not 
2 RM05 disk drives 256Mbytes each). 

Alternatives 

This is the worst area of all. Invariably people 
will say, 'there are no alternatives'. That state­
ment will cause the longest delay possible. The 
financial organization has just been given a free 
reign to investigate your claims on their own. You 
are now in trouble! 

In every instance there is at least one alternative 
do nothing. Yes, that is a realistic alter­

native. Probably not an acceptable one for you, 
but acceptable for others (remember the MBA?). 
Another alternative may be to increase disk capacity 
over a two or three year period. Write the request 
to cover the entire period. Spread it out over 
time and identify when each piece of equipment will 
be purchased. Once approved, the money is put into 
your pocket and you add the equipment when necessary 
even if you elect to bring it in earlier. 



In your discussion of alternatives, number each one 
and discuss it individually. Also discuss the 
possibility that the item you are requesting may be 
leased rather than purchased. This allows for up­
grading later to newer and more current equipment. 
Financial organizations prefer to lease rather than 
purchase whenever possible as the tax benefits are 
usually better. 

Recommendation 

This is your final shot. You are the recognized 
expert, if you have done your work properly. Your 
recommendations weigh heavily in the decision pro­
cess and that fact should not be overlooked. If you 
have not requested money for anything before, be 
sure from the beginning that you establish your 
credibility as an expert. Make sure that the money 
you request, when approved, you spend. Do not ask 
for significantly more or less than you need. 
Establish the costs to the best of your knowledge. 
As time progresses and you write more of these, you 
will be looked on favorably as an expert who does 
things well. 

OTHER NOTEWORTHY THINGS 

If at all possible, learn something about the way 
that finance views the expenditure of capital 
money. One element that is of primary importance 
is Return On Investment or ROI. Most of us would 
never provide $100,000 to anyone without knowing up 
front how we were going to benefit from it. 

Remember, the financial organization is the watchdog 
of :·our company, It is their responsibility to get 
the best bang for the buck when spending. Appeal 
to their emotional needs and get them to walk you 
through how ROI is calculated for your company. 
Put that on your system or into a spreadsheet and 
never lose it, You have now just wiped out their 
primary objection route. You have begun to learn 
the game and are now playing it well, 

Provide statistics that no one can argue with 
because a computer generated them. How many 
people do you know that understand computers, 
operating systems or the like? You have a wealth of 
statistics that you can provide and that NO ONE can 
argue with. You are the expert, not them. 

Let me give you an example. I was recently asked to 
make a presentation to our parent company. The IBM 
operations folks are always proud of the number of 
jobs that they run through their gigantic machine 
(around 200 per day). 

I siezed the opportunity and uploaded a copy of RMD 
and the RMD statistics page to our slide generation 
PC. Bingo, since my presentation was before theirs, 
I showed that in 30 hours since th2 machine had 
been booted we had executed over 12000 jobs and had 
over 500 logons, Now, was that really fair? No, I 
was comparing a Mercedes to a Duesenberg but I got 
my point across, I was the expert and there was no 
one present who could argue my numbers because I had 
taken them in 'real-time' from the system statistics 
display. 

Sometimes it is necessary to spread one request over 
a period of time, Let us hypothesize that you need 
terminals and that you cannot purchase them without 

452 

getting money through formal channels. You invest­
igate and find that you can 'rent' anything with a 
simple purchase order if it costs less than $150 per 
month. 

First find a terminal rental company, rent one 
terminal for $125 per month. Then each week have 
the rental company add two or three more to the 
invoice. Get the terminals that you need and pay 
for them on rental. Now for the good part, In 
three years, write a request for money to replace 
these terribly expensive terminals that you have on 
rental with some new spiffy state-of-the-art 
terminals that cost less, There will be no question 
as to the justification, You are considered 
extremely sharp individual because you are actually 
cutting expenses. Wow, what a great deal. No one 
will ever question whether or not the original 
terminal were justified. After all, they have been 
there for three years or more, 

REQUEST FOR CAPITAL INVESTMENT (RCI) 

Outline and Content 

Background - This section should provide a brief 
history of the current situation. 

Proposal - This should identify what is actually 
being proposed for the solution. 

Discussion - This should define the current position 
and methods. 

Applications - This should define the applications 
which will benefit from the upgrade. 

Equipment Cost - Although it may be self-explanatory 
detail the equipment type and costs. If at all 
possible, DO NOT itemize specific model nubmers or 
brand names. 

Alternatives - What else could be done? Nothing? 
Something less? Something over time? Examine 
just what alternatives there really are and discuss. 

Recommendation - Select one of the above alterna­
tives and mildly defend your position. Remember, 
here YOU are the expert. Use that to your advan­
tage. 



OCEANOGRAPHIC DATA QUALITY CONTROL AND DISTRIBUTION SYSTEM 

LCDR Lloyd K. Thomas 
National Oceanic and Atmospheric Administration 

National Ocean Service 
Ocean Observations Division 

6001 Executive Boulevard, Room 103 
Rockville, Maryland 20852 

ABSTRACT 

Timely and accurate meteorological and oceanographic 
data, collected over the vast oceans, are essential 
for accurate weather forecasts. NOAA's National 
Ocean Service (NOS) is responsible for implementing, 
monitoring, quality controlling, a.nd distributing 
these data. NOS, in cooperation with the National 
Weather Service (NWS) and the National Environmental 
Satellite, Data, and Information Service (NESDIS), 
has developed the capability of delivering both 
marine meteorological and subsurface temperature 
data (taken by expendable bathythermographic [XBT] 
probes) accurately and quickly using a Shipboard 
Environmental [Data] Acquisition System (SEAS) unit 
and the Geostationary Operational Environmental 
Satellite (GOES) satellite system. The quality 
control and distribution system consists of two 
MicroPDP 11/23+'s operating under MicroRSX. 

INTRODUCTION SYSTEM CONFIGURATION 

The SEAS program has been developed in 
order to deliver data from ships at sea 
accurately and quickly. The method of 
data delivery utilizes the GOES satellite 
system composed of spacecraft in synchro­
nous equatorial earth orbit. SEAS current­
ly delivers standard shipboard meteorologi­
cal observations, subsurface temperature 
data (XBT), and subsurface salinity. The 
data which are entered into the SEAS units, 
either manually or automatically, are then 
automatically transmitted via GOES. The 
data are then received at Wallops Island, 
Virginia, and passed to the NESDIS head­
quarters in Suitland, Maryland. The data 
are used by the National Meteorological 
Center (NMC) synoptic forecast file for 
meteorological data and SST analysis file 
for subsurface (XBT) data. The Ocean 
Observations Division (OOD) monitors the 
data from both the NESDIS headquarters in 
suitland, Maryland, and from NMC. 

Proceedings of the Digital Equipment Computer Users Sucie1y 453 

After reception by NESDIS, data from remote 
ocean areas are acquired over the switched 
telephone network by the data acquisition 
MicroPDP 11/23+. The data are also trans­
ferred to NMC by NESDIS, processed, and 
placed in the NMC database. The data 
acquisition MicroPDP 11/23+ also acquires 
these processed data over the switched 
telephone network for comparison with the 
raw data as received by NESDIS. Both of 
these data sets are processed by the data 
acquisition MicroPDP 11/23+, and selected 
products are transferred to the database 
P. C. and the second MicroPDP 11/2 3+. The 
second MicroPDP 11/23+ will do the non-real 
·-time processing and comparisons with data 
received from HP-85 tape cartridges and 
IBM-PC.-format floppy disks from ocean 
going ships. 

San Francisco, CA - 1986 



OCEAN OBSERVATIONS DIVISION HARDWARE FUNCTIONS 
(DATA MONITORING) 

Will transfer data recorded by SEAS 
operators on floppy disks and cartridge 
tapes, to the PDP 11 for storage on 
9 track, 1/2 inch tape. 

Will be used to monitor the type 
of messages received, number and 
and types of transmission errors, 
and location of field systems. 

1;~~;~~~~:~~~;~;~1~~~~~~~~~~~~~--i[~;~~;~~~:;;~~~;1 
Will process and compare the transmitted 
data with data. from the floppy disks and 
tapes. The complex plots needed for data 
quality control will be created using 
this system. Also the 9-track, 1/2-inch 
tape for the National Oceanographic Data 
Center will be generated on this system. 

SYSTEM SOFTWARE 

Data are acquired in three separate 
phases. First the temperature/salinity 
data are obtained directly from NESDIS in 
the same format as transmitted by the 
field. The temperature/salinity records 
are separated and placed in a 96-hour 
rotating file for access by our data 
quality monitoring programs and other 
interested users via dial-up lines. The 
second set of data acquired is the 
meteorological or MET data. These data 
are also placed in a 96-hour rotating 
file. The final data set that is acquired 
and moni tared is the bathymetric 
temperature/depth file from NMC. This 
file contains observations for 15 days and 
is monitored for completeness and the 
presence of any processing errors 
introduced at NMC. All programming was 
done using MicroRSX Fortran 77. The 
initial programming was done on MicroRSX 
Vl.l, with MicroRSX V3.l currently used. 

454 

Will be used to acquire data from 
NMC, DCS, and other data sources 
as needed. The raw data base is 
maintained on this system. All 
initial plots and processing take 
place on this system. Most dial­
in users of near real-time data 
call this system. 

The LOGDCS, LOGMET, and LOGON taskb utilize 
the QIO function extensively. Multiple 
QIO's are queued. This ensures that no 
data will be lost during reception. The 
PROMET, PRODCS, and PROPLET programs use 
the rotating data files and build a single 
file with selected data records from the 
raw rotating files. The "PRO" processing 
tasks use only standard Fortran statements 
with no MicroRSX executive calls. The 
final products are created using the QCDCS, 
PARSEDCS, and QCXBT. Additional work is 
still needed to create the necessary 
software for comparison of products for 
completeness and for ingest of the IBM-PC 
format floppy disks and the HP-85 tape 
cartridges. 



ENVIRONMENTAL DATA MONITORING SOFTWARE 

PLOTS OF TRANSll ITT ED MESSAGES 
---->I PROPLi !--------->I GCDCS j--> LOCATION PLOT Of DROPS 
I I ______________ _I I ______________ _I ERROR TABLES 
I CREATES A FILE FOR iHE MONITORS DCS XBT DATA 
I PREVIOUS DAY USING THE 
I NMC FORMAT 

I 
--------------- I 
I LOGDCS I I I 
I XBT FROM DCS 1---------> I PRODCS j------------------
1 ______________ _I I ______________ _I I 

WILL CALL DCS AND LOGON CREATES A FILE FOR THE i 
ACQUIRES THE XBT DAIA PREVIOUS nAY FOR ALL I 
APPEN[IS THE DATA TO THE SEAS UN ITS IN SEQUENCE ______ _I ______ _ 

% HOUR ROTATING tILE i I LISTS MESSAGE TYPE RECEIVED FROM DCS 
I PARSEDCS \-->NUMBER AND TYPE OF MESSAGES EOR EACH SEAS UNIT 
j ______________ _I CREATES THE NECESSARY DATA FILES FOR iHE DATA BASE 

I 
I 

--------------- --------------- I 
LOGMET I I 

i MET FROM DCS !--------->I PROliET !------------------
I _______________ I I _______________ I 
WILL CALL DCS AND LOGOH CREATES A FILE FOR THE 
ACQUIRES THE MET DATA PREVIOUS DAY FOR ALL 
APPENDS '!HE DATA TO THE SEAS UN ITS IN SEQUENCE 

% HOUR ROTATING £ILE 

I LOGON I I ! PLOTS OF TRMSM ITTED MESSAGES 
I XBT FROM NMC !--------------------------------------------------------------->I QCDXBT 1--> WITH ERRORS, LOCATION OF 
I ______________ _! I _______________ i DROPS AND ERROR TABLES 
UILL CALL THE NMC SYSTEMS MONITRORS THE XBT DATA 
US !Nil TSO AND ACGU lRE THE RECEIVED BY NMC. 
15 DAY XBT DATA FILE EACH 
DAY. 

EXPERIENCE GAINED 

Several unique problems were encountered 
during the software development. A 
disturbing problem was that the system at 
NMC could not accept a continuous data 
stream. A subroutine that blocked out one 
character at a time was developed with a 
delay of several milliseconds between 
chc>.racters. A second and much more 
serious problem was encountered when the 
upgrade was finished from MicroRSX Vl.l to 
MicroRSX V 3.0. The QIO function 
terminated by a special terminator, as 
specified in the documentation provided, 
caused the system to crash. When an 
additional dummy variable was added 
following the explicit declaration of the 
array size and name, the subroutine would 
run and not crash the system. A final 
problem was encountered which is common 
for all real-time and near real-time 
systems. The time needed to be set when 
the system went down due to power 
failures. A Hayes Chronograph was 
attached to each system to supply time. 

455 

SUMMARY 

Other than the above mentioned problems the 
systems have worked very well and have been 
extremely reliable. Only one service call 
was placed in over a year of operation in 
an office environment. The total cost of 
this system is less than the cost of a 
MicroVAX, a very good cost effective system 
for this project. This system has 
excellent growth potential within the PDP 
11 family including upgrades to the PDP 
11/83, and if a VAX is needed an upgrade to 
a MicroVAX II is also possible. The 
selection of the MicroPDP 11/23+ has proved 
a very good choice. 





ARCHIVING SYSTEM FOR RSX 

James B. Jackson 
Burroughs Wellcome Co. 

Research Triangle Park, NC 27709 

ABSTRACT 

An archiving system has been developed for RSX-11M-PLUS which 
produces two magnetic tape copies of user specified files for 
long term storage. Users may "mark" files for archiving at 
any time, explicitly or with wildcards. Optionally, files may 
be marked for automatic deletion after archiving. A batch 
program is run periodically which copies the marked files to a 
separate disk and spawns BRU to make the tape copies. It also 
prepares a directory entry for each archived file, and writes 
it into an RMS indexed file. A report program prepares 
printed sorted lists of files archived and error messages for 
files which were marked for archiving, but which were not ar­
chived for any reason. A "user friendly" directory search 
program locates files for recovery. The batch archiving pro­
cess is controlled by an Indirect command file designed for 
use by a naive operator. 

INTRODUCTION 

The Wellcome Research Laboratories are served by a 
custom designed local area network of laboratory mi­
crocomputers. The network is controlled by a 
PDP-11/70 running RSX-11M-PLUS. The major function 
of the microcomputers is acquisition of data from 
laboratory instruments, and analysis of the acquired 
data. The 11/70 acts as a file server for the mi­
crocomputers. In order to provide safe long term 
data storage, and assure compliance with federal re­
gulatory guidelines, an archiving system was imple­
mented for RSX. 

The most desirable scheme would provide "instant ar­
chiving" of files under user control. The simple 
way to do this would require a disk drive dedicated 
to archiving. At the time of system design, this 
was not available. Consequently, the system was de­
signed so that the actual copying of files from the 
users' directories is done periodically in a batch 
process. 

DESIGN GOALS 

We wanted the users to be able to specify which of 
their files were to be archived, so an interactive 
user interface was needed. In order to provide ade­
quate security, it was decided that two magnetic 
tape copies of the archives should be produced (for 
storage in separate buildings). A time stamped au­
dit trail of the batch archiving process was wanted, 
partly for compliance with Good Laboratory Practice, 
but also as a reference in case of questions from 
users about archived files. 

An indexed on-line directory of all archived files 
must be maintained. This was provided so that ar­
chived files could be easily retrieved. The direc­
tory entries include the date of archiving which in 
turn identifies the appropriate archive tape (or at 
most two tapes). We wanted the directory search 

Proceedings of the Digital Equipment Computer Users Society 457 

program to be accessible to naive users, so that the 
users could do their own searches. This reduces de­
mands on our time, and allows the users to "browse" 
through their archives. 

The archiving process is summarized in Figure 1. 

The WRL Archival Storage System consists of the fol­
lowing main parts: 

1. The MACR0-11 program ARC, which provides the ar­
chiving system's user interface for the 11/70's di­
rect acount users. 

2. The user interface for microcomputer users, which 
is part of a microcomputer utility program called 
LOSM. 

3. The MACR0-11 archiving programs, ARCHIV and 
ARCREPORT, which are run by the archiving indirect 
command program, ARCHIVER. These are batch process 
programs, run weekly after full disk backups. 
ARCHIV searches the users' directories for the files 
which the users have marked for archiving (by use of 
one of the user interface programs). ARCHIV makes 
one complete pass through all of the lists of files 
to archive before any file copying takes place. 
This is needed in order to determine whether the 
diskpack will be filled during the current batch ar­
chiving, and if so, which is the last UFD whose 
files will fit on the diskpack (see Figure 2). The 
program creates a 32 byte record for each user file 
which has been marked for archiving. These records 
serve as the on-line directory's entries for files 
which are successfully archived. These entries con­
tain the file specification (ascii), the archiving 
date and UFD (binary), device and unit number (as­
cii), creation date (ascii), and a "warning code" 
byte. The warning code byte can have bits set to 
indicate that the file was marked for deletion fol­
lowing archiving, that the file had been revised or 
re-created after being marked for archiving, etc. 

San Francisco, CA - 1986 



PROCESS SUMMARY 

------------- Interactive Process -------------

USER 
INTERFACE 

PROGRAM 

LISTS 
OF FILES 

TO ARCHIVE 

Batch Process ------------

tape copies 
(BRU spawn) 

update 
directory 

ARC --------------) 
(From MCR) 

l __ I 

----~----

~ A 
I 

A 
I 

I 

I 
I 

I 

----------> 
PROGRAM PROGRAM 

ARCHIV -----------) ARCREPORT 

PROGRAM 
LOSM --------------) ~ 

I v 
(From microcomputers) ----.;>----

audit 
trail 

user reports 
printed 

Figure 1 

ARCHIV copies the users' files to the archive disk­
pack (preserving file attributes including creation 
and revision dates), and spawns BRU in order to make 
tape copies of the files for permanent storage. 
ARCHIV writes an archiving audit trail, with time 
stamps for file transfers and other critical events. 
The program also updates the file ARCHELPER, which 
contains a list of all the UFD's which have ever 
been sources of files which were archived. 
ARCHELPER also contains the cumulative block count 
for the current (unfilled) tape. ARCHIV outputs a 
sequential file of the 32 byte directory entries. 
The entries for files which could not be archived 
begin with a -1 (where the archiving date would nor­
mally appear) • 

4. The RMS indexed file ARCHIVDIR is the on-line di­
rectory file of all files archived. It is written 
and read by ARCREPORT, as mentioned above. In addi­
tion, a third MACR0-11 program, DIRSRCH, reads 
ARCHIVDIR. DIRSRCH provides the on-line directory 
search facility, which is needed to locate and re­
cover archived files. DIRSRCH can also produce at 
any time a complete or partial printed directory of 
all files archived, sorted according to any of its 
four keys of reference. The four keys are (batch) 
archiving date, file creation date, file name (the 
nine or fewer characters part of the file specif ica­
tion), and file type (the three or fewer characters 
part of the file specification). 

5. Program ARCREPORT writes the new entries to the 
directory file, ARCHIVDIR. The program writes the 
entries for files which could not be archived into a 
temporary file of "bad" entries. After all the new 
entries have been written to the directory or to the 
temporary file of "bad" entries, the report genera­
tion begins. ARCREPORT obtains a name and address 
for each active UFD from an EDT file. The name and 
address is printed at the beginning of each user re­
port. This is followed by a list of any files which 
were specified for archiving from the UFD of the 
current report, but which could not be archived (and 
the appropriate error message). These file names 

458 

are obtained by sequentially searching the list of 
"bad" directory entries for any belonging to the UFD 
of the current user report. The list of files which 
were successfully archived from the current UFD is 
then printed in alphanumerical order by filename. 
This is accomplished by reading the directory file 
sequentially on the filename key. 

6. The MACR0-11 program LATREPORT can produce (or 
reproduce) user reports of archiving activity after 
a batch archiving is completed. LATREPORT is useful 
in case of printer failure, or a system crash which 
occurred during the printing of user reports. 

7. Indirect command program ARCHIVER is responsible 
for running the batch archiving process. ARCHIVER 
performs the following functions: 

o Checks that the terminal is logged in to the ap­
propriate account. 
o Checks that the last batch archiving completed sa­
tisfactorily. 
o Checks that the archive disk drive and tape drive 
are dismounted. 
o The archive diskpack is mounted by its label to 
insure that it is the correct diskpack. The disk 
drive containing the archive diskpack is mounted un­
locked (UNL) so that the index file can be modified 
by program ARCHIV in order to preserve the original 
file attributes with the copies. 
o The tape drive is mounted foreign (for BRU). 
o A one line test file is sent to the printer to 
test the printer. The operator is asked to confirm 
that the line was printed before ARCHIVER continues. 
o The operator is asked to confirm that the first 
tape is loaded and that the tape drive is on-line. 
o The BRU utility (which makes the tape copies) is 
installed. 
o The disk drive is set for writechecking to insure 
integrity of file copies. 
o ARCHIVER invokes PIP to delete the lists of files 
to archive from the last running of the batch ar­
chiving process. PIP also deletes the temporary 
file containing names of files which could not be 



BATCH PROCESS - Indirect Command File ARCHIVER.CMD 

PROGRAM ARCHIV 

CAP AND 

READ LISTS 
OF FILES WILL NO COPY FILES TO DISK 

GATHER FILE 
ATTRIBUTES 

DISKPACK ---------------
BE FILLED? 

WITH ORIGINAL --------------­
ATTRIBUTES 

BRU/VER 

I 
I 
I YES 
I 
v 

SUSPEND 
COPYING AT A ---­
UFD BOUNDARY 

BRU/VER 
(TWICE} ----

RE-IN IT 
DISK ----

RESUME 
FILE COPY BRU/VER 

PREPARE DIRECTORY ENTRIES 

WRITE AUDIT TRAIL FILE 

PROGRAM ARCREPORT 

WRITE 
NEW ENTRIES 

TO DIRECTIORY 

PRINT 
SORTED USER 

REPORTS 

BACKUP 
UPDATED DIRECTORY 

(RMSBCK} 

Figure 2 

archived at the last running of ARCHIVER. 
o All temporary files from the last running of 
ARCHIVER are deleted. These files are used to pro­
vide "expandable buffer space" in program ARCHIV. 
o RMS-11 utility RMSCNV is invoked to make a sequen­
tial backup file from the directory file ARCHIVDIR. 
o Program ARCHIV is executed. 
o The exit status from ARCHIV is checked. If a ser­
ious error occurred during execution of ARCHIV, an 
error message is displayed, and the indirect command 
program terminates. 
o If ARCHIV completed normally, then the audit trail 
file is queued for the line printer. 
o When RMSCNV has completed, Program ARCREPORT is 
executed. 
o The exit status of program ARCREPORT is checked. 
If a serious error occurred, an error message is 
displayed, and the indirect commmand program termi­
nates. 
o When the final BRU spawned by program ARCHIV has 
completed, the newly revised directory file is 
backed-up to tape by the RMS-11 utility RMSBCK. 
o The BRU utility is removed. 
o The disk drive is set for no writechecking. and 
the disk drive containing the archive diskpack are 
dismounted. 

OSER IHTERFACE 

Program ARC provides the user interface which allows 
users to specify which of their files are to be ar­
chived. It can also display names of files awaiting 
the batch archiving process, and it allows users to 
delete names from this list. ARC is a privileged 

459 

task (level 0) because it must be able to open files 
on a non-default UFD. It must be installed because 
non-privileged users cannot install priveleged 
tasks. ARC is an I and D space task, which enables 
it to read a whole directory in, up to 30 512 byte 
blocks. Larger directories are read in pieces. A 
large buffer is provided for the list of files to 
archive, which is maintained by ARC. 

The ARC commands are: 

o ARCH - Adds names to the list of files to archive, 
allows selection of automatic deletion of files from 
the user's directory during the batch archiving pro­
cess. 
o ARCDEL Removes names from the list of files 
awaiting archiving. 
o LIST - List names of files awaiting archiving, 
with date and time of selection for each file. 
o HLIST - Send the list of files to a printable 
file. 
o EX - Exit from the program. 

PIP style wildcards (*,%) may be used in file 
specifications. Help files are displayed whenever 
"?" is entered as input. 

PROGRAM DIRSRCH 

The directory search program can search the direc­
tory on any of its 4 keys ARCHIVING DATE, 
FILENAME, FILETYPE, and FILE CREATION DATE. The 
program is designed to search for entries belonging 
to a specified User File Directory. The user then 



selects a key and a range of that key's values 
within which to search. Then the program requests a 
target filespecification, which may include PIP 
style wildcards. This scheme offers great flexibil­
ity in searching for particular files. DIRSRCH per­
forms sequential gets on the search key, comparing 
each retrieved record to the desired filespecifica­
tion. Matching records are counted and put into a 
buffer. If a large number of matching records is 
found (i.e. the buffer is filled), then matching 
records are written to a temporary file. When the 
search is completed, DIRSRCH displays the number of 
matching records, and inquires if the matching re­
cords are to be displayed on the screen or sent to a 
printer. The records include the archiving date, 
full file specification, file creation date, and any 
associated messages or warnings (such as "file 
marked delete-on-copy", etc.). DIRSRCH displays an 
appropriate help file whenever 11 ? 11 is entered at a 
prompt. 

RECOVERY OF Fil.ES FROM THE ARCHIVES 

Full file specification(s) and corresponding archiv­
ing date(s) are obtained by use of the directory 
search program DIRSRCH. The archiving date speci­
fies which archive tape will contain a file. Either 
of the two tape copies is located and mounted. BRU 
is then used to restore the file(s) from tape to the 
user's directory. 

SYSTEM RESOURCES NEEDED 

Because programs ARCHIV and ARC are I/D space pro­
grams, and because supervisor mode libraries are 
used, the system needs RSX-11M-PLUS, and hardware to 
support these features. RMS-11 is used for the di­
rectory file, which was created by use of the RMSDES 
utility. One dedicated disk volume (fixed or remov­
able) is required. We use a diskpack for an RM03. 
Obviously, a tape drive is needed, preferably one 
which can operate at 6250 bpi. In its current con­
figuration, the system consumes a maximum of about 
140 Kbytes of memory. At least 50K additional 
blocks of disk space are needed, mainly for the in­
dexed directory file. 

460 

SYSTEM UTil.IZATION 

Since the introduction of the system, over 137,000 
files have been archived. We average about 1600 
files per week, although more than 4000 files have 
been archived in one day. 

ACDCM.EDGEMENTS 

The author thanks Jerry P. Koontz for numerous help­
ful suggestions during the design and implementation 
of the system. Judy Hinderliter-Smith wrote the mi­
crocomputer user interface. 







Organizing, Maintaining, and Distributing Software Products 

Peter Heinicke, Tom Nicinski, 
Penelope Constanta-Fanourakis, Donald Petravick, 

Ruth Pordes, David Ritchie, Vicky White 
Fermi National Accelerator Laboratory 

Batavia, IL 

Abstract 

The Computing Department at Fermilab develops and maintains software used 
at more than 30 different sites. A general methodology has been devised to keep 
track of and distribute the software at these different sites. Experience over the 
past year has proven the usefulness and efficacy of the method. 

Introduction 

The Fermi National Accelerator Laboratory (Fermilab) is 
a facility dedicated to basic research in the field of high 
energy physics. This research takes the form of "experi­
ments", which are conducted by groups of physicists. The 
experiments are highly computerized; there are usually one 
or more minicomputers devoted to the tasks of data acqui­
sition and analysis of the experimental data. 

Most experiments have at least one VAX or Micro Vax 
computer, as well as one or more PDP-11 computers, and 
possibly various programmable microprocessors. There 
are many different experiments either actively taking data 
or preparing to do so at any one time. 

The Data Acquisition Software Group of the Fermi­
lab Computing Department provides software support for 
the experiments. The Data Acquisition Software Group's 
role is to develop a wide range of useful software for data 
acquisition and analysis. Experimenters use the software 
to perform the required online data acquisition and anal­
ysis for their experiment. In some cases, the software is 
used in a turnkey manner; more often, however, it is used 
as the basis for more elaborate and experiment-specific 
software. In the latter case, the experimenters obtain the 
basic package and then do their own software development 
to customize it to their particular needs. 

Software is targetted for PDP-11 or VAX computers; 
the target operating system environment is RT-11/RSX­
llM or VMS. Other targets are microprocessors, such 
as 68020's, etc. These target computers are located at 
approximately 30 different sites scattered over the 6800 
acres of Fermilab. The VAX's and Micro VAX's at these 
sites are connected to one another via DECnet. These 
VAX's (or the Central Facility VAX Cluster) are used by 
the experimenters for software development in enhancing 
the supplied software as well as for online data acquisition 
and analysis. Software is transfered to these machines via 
DECnet from the Data Acquisition Software Group's De-

Proceedings of the Digital Equipment Compuler L'sers S'ociety 463 

velopment VAX. It is also transfered via magnetic media 
to the computers not connected via DECnet. These in­
clude the PDP-ll's (not connected mainly due to memory 
limitations) and the microprocessors. 

Additionally the software may be transfered to the 
collaborating universities and research institutions which 
participate in Fermilab experiments. This transfer occurs 
so that the experimenter may continue software develop­
ment activities for a Fermilab experiment while residing 
at the home institution or so that the experimenter may 
test apparatus under construction with components of the 
software intended for the experiment. 

With so many sites and so much software in use at 
these sites, we quickly realized that some systemization of 
the task of organizing, maintaining, and distributing the 
software was mandatory. Keeping track of the software at 
the various sites, although a formidable job, is nevertheless 
a necessary one-we must be able to offer assistance with 
the current version of the software at hand. 

A requirement on the systemization was that it must 
support having different versions of the same software at 
different sites or even at the same site. 

While it might be possible in principle to arrange the 
same version of the software at all sites, in practice it does 
not occur. One of the most important reasons is that an 
ongoing experiment does not necessarily want to avail it­
self of the latest enhanced version of a piece of software; 
bugs or side effects may be introduced which might compli­
cate the primary task of monitoring the experiment. Even 
when an experiment decides that the new features out­
weigh any risks of complication, it is extremely important 
that the experiment be able to switch back to the previous 
version as quickly as possible. The motivation may be to 
retreat from a software enhancement because it itself was 
found to have problems or because one wishes to rule out 
software changes as a cause of changes in the data being 
monitored. When the latter occurs, one then wishes to go 
forward again to the latest version. 

San Francisco, CA - 1986 



This paper describes how we have organized our soft­
ware development and support efforts to satisfy these con­
siderations. In what follows, we describe the organization 
of our software into Products, how these Products are 
created, maintained and versioned, and how this Prod­
uct organization is used in the distribution of software to 
the target VAX computers, and from there to other target 
computers when necessary. 

What is a Product? 

A Product is an arbitrary group of logically connected di­
rectories and files (stored on a VAX/VMS system) and 
referred to by a Product name and optionally by quali­
fying names, such as the Version number, target operat­
ing system, or hardware interface. The Product name is a 
printable ASCII string describing the group in a mnemonic 
way. For each Product name there is a single development 
version of the product and/or one or more distribution ver­
sions. It is not necessary that a Product be developed by 
the Computing Department to participate in this scheme. 
However, the Product (the directories and files which com­
prise it) must be organized in a prescribed way. The con­
straints are relatively minor because we wanted the ability 
to include all kinds of software as products-not just those 
developed at Fermilab. 

An example of a non-Fermi Product is KERMIT, a 
communications package. KERMIT_VMS is the Product 
name for the VMS version of KERMIT. 

When the source code contained in the development 
version of a Product is updated, either for maintenance 
or enhancement re11.Sons, a new Version of the Product is 
generated. This may occur even if the source code of the 
Product is unchanged. For example, if a Product is rebuilt 
using new "versions" of code on which it depends (such as 
an object library), but which is not a pa.rt of the Product 
itself, a new version of the Product is still generated. A 
Product version is used to inform the user, developer, and 
Product maintainer of not only which level of source code 
of the product it contains but also the entire state of the 
Product, its dependencies on other software Products, etc. 

As a simple example of a Product with different Prod­
uct versions, consider the KERMIT product for RT-11, 
where each version reflects the update level and the lan­
guage. 

Version Vl.O of the KERMIT..RT Product refers to 
the first Pascal version of RT-11 KERMIT. When the 
MACR0-11 version became available, the users needed to 
decide whether to keep supporting the Pascal version. If 
they had, they could have renamed it to be the KER­
MIT _p ASCAL product (and call the other version the 
KERMIT.MACRO.RT product Vl.O). Otherwise, they 
could have chosen to supersede it with Vl.1 of KER­
MIT _RT. 

Products come in two flavors: simple and com­
pound. A simple Product consists of a collection of soft­
ware which is expected to be used, upgraded to a new 
version, and distributed to target sites independent of the 

464 

state of other software Products. The decision to organize 
a product as a simple one is basically that of the devel­
oper; it is a statement that this Product is somehow basic 
and not further made up of Products. 

This does not necessarily mean that the Product was 
not dependent upon other software external to the Product 
when it was "built" (compiled, linked, etc.). Nor does 
it necessarily mean that the Product requires no other 
software Product in order to function. 

For example, many of our Products are written in 
FORTRAN. These a.re definitely dependent upon the 
FORTRAN compiler and the FORTRAN Run Time 
Library-both of which a.re external to the product and 
which (in the case of the Run Time Library, at least) are 
required in order for the Product to function. 

A compound Product is a collection of different "com­
ponent" Products (either simple or compound), frequently 
used together. These Products do not necessarily have to 
be dependent upon ea.ch other although in many cases they 
are. They may be grouped together only for ease of distri­
bution of many small Products which change infrequently. 
Alternatively, they may be grouped together because of 
dependencies on each other; hence, a change in a compo­
nent Product would indicate that a new version of one or 
more of the other components is either necessary or desir­
able. DEC's ALL-IN-1 system is an example of something 
that is structurally similar to a compound Product. 

Goals 

The Data Acquisition Group is primarily responsible for 
designing, developing, and maintaining software as well as 
supporting the end users of the software. The distribu­
tion and installation of the software is only a peripheral 
activity. To permit us to spend more time on software de­
velopment, we have devised a Product Specification and 
specialised procedures, whose goals a.re: 

• Provide a Uniform Product Specification 

The Product specification is meant to provide system 
management tools and the user with a uniform in­
terface to the software we are responsible for. The 
specification includes 

o the directory structure of the files in a Product 
(defined to be a tree structure), 

o a list of required and optional files, 

o the naming conventions for these files and direc­
tories, 

o how logical names should be used. 

• Keeping Track of Product Versions on a Sys­
tem. 

Different sites use different versions of a Product cre­
ating a need to maintain a database of which Products 
and versions reside on a particular system. This func­
tionality is provided by a system management tool we 
call SITE_FRODUCTS. 



• Simplification of Product Distribution 

We need to automate the distribution of versions of 
Products to remote sites (making use of DECnet) and 
the installation of the Products on the target site. 
Such automated procedures are needed both for effi­
cient use of our time and to minimise the risk of errors 
or om1ss1ons. 

• Transportability to External Sites 

Although restrictions are placed on a Products struc­
ture and interaction with users (how the Product is 
distributed and how the system manager treats it), it 
is still necessary to permit the Product to be easily 
installed and used on systems which do not follow our 
methodology. 

• Permit Switching Between Product Versions 

In order to maintain and improve existing Products, 
and have the new releases accepted by experimenters, 
there is a need to allow the use of the latest version 
of a Product, but also to instantly and transparently 
"switch" to using a previous version residing on the 
same system. 

The ability to switch between versions on the same 
system is also important for Product developers and 
maintainers. A user may discover a bug at a previous 
release of the Product - and the Product maintainer 
is then able to check for the bug in that release just by 
switching to it. This capability is provided by PROD­
UCT _SETUP and the database of Products and their 
versions (maintained by SITE_PRODUCTS). 

• Permit the Composition of a Product to be 
Known Precisely 

We make extensive use of DEC CMS (Code Manage­
ment System) and MMS (Module Management Sys­
tem) to control the source code release level of a Prod­
uct and to automate the construction of that product 
from its sources and any other libraries etc. it may be 
dependent on. However in situations where a Product 
may be dependent on libraries in other Products - the 
specific version of the library-related Products used 
must be both controllable and forever known. The 
time-stamps of the individual files as used by MMS 
are not sufficient to control such inter-dependencies. 

The procedures which we call BUILD permit the de­
pendencies of one Product on another, either as a part 
of a compound Product, or just as a required but sep­
arate piece of software, which must be present in order 
to build the Product, to be expressed in a formal way. 
From this formal specification the order of creation of 
the component parts can be determined and the busi­
ness of creating a very large software Product can be 
automated in a foolproof way. 

465 

The Results 

All the management tools we have developed are written 
as DCL command procedures. DCL command procedures 
were chosen because of speed of implementation, and be­
cause we underestimated the full extent of the project we 
were undertaking. 

The remainder of this paper will discuss the concepts 
a.nd management tools introduced above which together 
allow us to achieve the goals outlined in the previous 
section. These include: Specification of a Product, use 
of the BUILD procedures, the SITE_FRODUCTS, DIS­
TRIBUTE and PRODUCT..SETUP procedures. 

Specification of a Product 

The Product Specification provides system management 
tools and the user with a uniform interface to the soft­
ware. We have written a 50-page specification of a Product 
including the mandatory and recommended requirements 
thereon. The Product Specification addresses three areas: 

• Directory tree structure and the files in a Product. 

• Logical names to be defined (associated with the 
Product). 

• Required and optional command procedures and how 
they are used. (definition of parameters). 

Directory Tree Structures 

Products reside under rooted directories. Actually, two 
rooted directories are associated with a particular Prod­
uct. The Version Root is the rooted directory for a par­
ticular version of a Product. This is the rooted directory 
that a user will see when using a Product. Version Rooted 
directories reside under an Umbrella Rooted directory. 
The Umbrella Rooted directory contains all the versions 
of a Product. However, more than one Product and its 
versions can reside under the same Umbrella Root. For 
example: 

[KERMIT] 
I 

+------+----------+ 
I 

[KERMIT_VMS] 
I 

[KERNIT_PDP] 
I 

+-------------+---+--------+ 
I I I 

[KERMIT_RSTS] [KERMIT_RT] [KERMIT_RSX] 

The leaves are products, while [KERMIT] is the Um­
brella Root. The Version Roots for the Products are 
[KERMIT_VMS], [KERMIT_RSTS], [KERMIT_RT], and 
[KERMIT_RSX]. The directory [KERMIT_FDP] is an in­
termediate directory, which could also represent a Prod­
uct, or an Umbrella Root (the interpretation is up to the 
Product developer). 



For each Product version, there is a set of required 
and optional directories: 

[Product] 
I 

+------------+-------------+ 
I 

[COM] 
I 

[MA INT] 
I 

[SYSTEM] 

The [PRODUCT] directory is the Version Rooted di­
rectory, while [COM] and [SYSTEM] are required, and 
[MAINT] is an optional directory. Beyond these directo­
ries, the developer can use any tree structure (under the 
Product's version rooted directory). 

Logical Names 

Required Files 

The Product specification requires that each product pro­
vide two command files, of defined names, to be implicitly 
invoked at system bootstrap time and when a user wants 
to use the Product. All products must provide these files 
in a particular directory for the Product version. The spec­
ification also recommends a Help file to be provided with 
each Product; this is automatically included in the general 
Product Help library when the Product is entered into the 
SITE_pRODUCTS database. 

COM SETUP.COM is used to define logical names and sym­
bols on a per process basis. That is, the user invokes 
SETUP.COM (normally at login time) if there is a 
need to use the Product. 

To keep Products site-independent, logical names are useJlYSTEM 
to point to different files. All logical names should be 

PRSTARTUP.COM is used during system boot time 
(Product startup) to define shareable logical names 
in the logical name table generated for the Product, 
and to perform any other operations which affect the 
Product system wide (such as INSTALLing files, load­
ing device drivers, starting a queue, etc.) and other 
privileged initialization functions. 

defined in terms of one logical name: 

'product'$ROOT 

which is the rooted logical name pointing to 
the PRODUCT's Version Root. By changing 'prod­
uct'$ROOT's definition (with PRODUCT-8ETUP), a 
user can easily "switch" between different versions of a 
Product. In the example given above, the rooted logical 
name for HORSE is 

$ SHOW LOGICAL KERMIT_RT$ROOT 
11 KERMIT_RT$ROOT" = 
"disk:[KERMIT.KERMIT_PDP.KERMIT_RT]" 

Logical Name Tables 

Some Products require a large number of logical names to 
be defined. Ideally, users should only see logical names 
that they require, which implies that they should be pro­
cess logical names. But, defining many logicals can be 
quite time consuming. The solution to make the logical 
names system wide was rejected for aesthetic and per­
formance reasons, in that the system logical name table 
(LNM$SYSTEM_TABLE) would become cluttered as the 
number of Products grew. 

Instead, shareable (system wide) logical name tables 
are created for each Product. When a Product is started 
up, it defines its logical names in the table created for it. 
This makes the logical name tables (and the logical names) 
invisible unless they are required. 

Keeping a Product's logical names within its own log­
ical name table keeps the system clean and allows for easy 
switching between logical names defined for different ver­
sions of a Product. It also helps when looking for all the 
logicals associated with a particular Product when you are 
on a large system with many logicals defined. 

To use a Product, a user invokes PRODUCT -8ETUP 
(described later) to "link" the logical name table into 
his/her logical name table search list. 

466 

BUILD and Developing the Products 

The BUILD procedure is used to construct a Product 
based upon its dependencies on other Products. BUILD 
takes into account that a Product may: 

• Depend on other Products. 

• Depend on specific versions of other Products. 

• Incorporate other Products totally within it. 

The construction of a Product consists of compiling 
and linking the software comprising the Product. 

A Product developer uses a Product Maintenance 
Language (PML) file to describe how a product is depen­
dent upon other products. Only the immediate dependen­
cies need to be described, since BUILD recursively uses the 
dependent Product's PML files to generate a final list (a 
Product Maintenance Output (PMO) file) which sequen­
tially describes the order in which Products should be built 
(to satisfy all dependencies). 

For example, the product KERMIT_VMS is to be 
built: 

• KERMIT_VMS is dependent upon an another prod­
uct called GET_pORT 

• KERMJT_pDP is dependent upon KERMIT_RT, 
KERMIT_RSX, and KERMIT_RSTS. 

BUILD would determine that the Products would 
need to be built in the following order: 



GET_PORT 
KERMIT_ VMS 
IERKIT_RT 
IERKIT_RSX 
IERKIT_RSTS 
IERKIT_PDP 

BUILD then will construct the Products in the appro­
priate order to generate the final Product. To save time, 
BUILD will not construct a Product if the required version 
already exists. 

The actual details of construction of each of the com­
ponent pieces are left up to the component piece of soft­
ware. We normally use DEC CMS and MMS wherever 
possible. This is especially useful in conjunction with our 
methodology of one development version of a Product and 
multiple distribution versions. By having a single CMS 
library in the development version of each Product and 
creating classes for each source release level we avoid the 
need to keep the sources with or for each version of the 
Product. We can always recreate any version at any time. 
This saves disk space and also provides a centralized record 
of who changed the software and when. 

SITE_PRODUCTS - System Management of 
Products 

SITE_PRODUCTS was developed to keep track of which 
versions of which Products reside on a system. It not only 
maintains a database of Products and their versions, but 
it schedules the starting up of Products at system boot 
time (or any other time) and the shutting down of Prod­
ucts. SITKPRODUCTS avoids the need for the system 
manager to change the system specific startup command 
procedure (SYSTARTUP) every time a Product or a ver­
sion of a Product is added, modified, or removed. 

Products are made "known" to SITK.PRODUCTS 
(this should not be confused with the known files of the 
VAX/VMS INSTALL Utility). The Known Product 
List file, maintains this information. 

For each known product, SITE_pRQDUCTS main­
tains a Product Version List file which resides under 
the product Umbrella directory. The Product developer is 
able to add, modify, and remove Product versions without 
requiring privileges (only access to the particular Prod­
uct's area is required). 

The SITE_pRQDUCTS procedures point to the 
Known Product List using a logical name. Users can use 
SITE_PRODUCTS to maintain their own Known Product 
List, and Product Version Lists. This can be extended for 
use on a VAX Cluster system, where a common Known 
Product List is used to startup (shutdown) all Products 
common to all nodes in the Cluster. Then, by redefin­
ing the logical name, a node-specific Known Product List 
can be used to manipulate software Products licensed (or 
useable) only for that particular machine. 

SITK.PRODUCTS allows the addition, modification, 
and removal of Products and Versions. These operations 

467 

only modify the Known Product List and Product Version 
Lists, not the actual files of the Products. When a Product 
version is declared to be the default version on a system, 
its Help file is included in a general Product Help library 
(if one exists) and also a Bulletin is posted on the system 
(if the Bulletin Product is available). 

For each Product, the Known Product List main­
tains the Product's name, the specification of the Umbrella 
Root, and other miscellaneous information. Associated 
with each Product version in the Product Version List is 
a directory path from the Umbrella Root to the rooted 
directory for the Product version. 

When a Product is started up by SITE_pRQDUCTS, 
a shareable (system wide) logical name table is created 
to contain logical names defined by the Product. Then 
the Product specific startup command procedure is in­
voked. This procedure usually defines logical names, de­
vice drivers, starts up queues, installs privileged images, 
etc. 

The final stage of any Product is its use. PROD­
UCT _SETUP is used to "setup" a product for use by a 
user. It also allows a user to choose which version of a 
product to setup. Setting up a Product involves the defi­
nition of logical names and symbols required for using the 
Product. 

A symbol by the name of SETUP is used on all sys­
tems to invoke PRODUCT-8ETUP. Users of a software 
Product such as our example KERMIT_VMS simply type 

SETUP KERMIT_VMS 

to use the default version of the Product and all its 
component sub-Products. 

The ability to switch transparently between Product 
versions is provided by the logical name tables created 
for the Product. When switching between Product ver­
sions, PRODUCT-8ETUP creates a new logical name ta­
ble (which overrides the old table) and defines the logi­
cal names for that particular version. Therefore, different 
Product versions are not required to use the same logical 
names. 

DISTRIBUTE - Distributing the Products 

DISTRIBUTE provides a system manager on a remote 
machine the ability to copy Products, from an "Archive 
machine", and install them. Most of the time, DIS­
TRIBUTE is used over DECnet, but it also provides a 
tape mode, which permits Products to be distributed and 
installed at external sites using Magnetic tape as a transfer 
medium. 

DISTRIBUTE interactively queries the user for the 
information it needs. The questions are self explanatory, 
so that no documentation is normally required in order to 
obtain a Product. Besides the Product name and version, 
DISTRIBUTE asks where the Product should be placed 
(the disk and Umbrella Root), and whether the Product 
and its version should be declared to SITE_pRQDUCTS. 



When a Product is selected by the user, DIS­
TRIBUTE uses that Product's Product Maintenance Out­
put (PMO) file (generated during a BUILD) to determine 
which Component Products need to be copied over as part 
of the chosen Product. This provides all sites with a com­
plete and consistent view of a Product. Products which 
are not constructed with BUILD and therefore have no 
PMO file can also be distributed - all files in the directory 
tree stemming from the Product version rooted directory 
will be taken to comprise the Product version. 

DISTRIBUTE uses BACKUP save sets compatible 
with the VMSINSTAL utility (part of VAX/VMS). Be­
cause the Product conforms to the Product Specification, 
only one KITINSTAL file (used by VMSINSTAL) needs 
to be written for all Products. This frees the Product de­
veloper from writing code used strictly for the purpose of 
installing a product. 

A complete log of software distributed, date, version 
and to where is maintained on the Archive machine. 

Conclusions 

The organisation of products and the procedures described 
in this paper have been in use for more than a year now. 
Hundreds of Products have been distributed to target 
sites. The sacrosanct nature of a Product version once 
built has enforced a strict discipline on program develop­
ment and aided immensely in tracking down complicated 
problems where any one of a number of hardware and soft­
ware variables could have been at the root of the problem. 
The procedures described were first developed for software 
to be executed on a VAX(VMS). We have found them such 
a useful aid for distribution, maintenance and archiving 
that we extended the concepts to cover software for other 
operating systems in use. 

We have found the Standard Product specification to 
be extremely useful. Not only has it enabled us to write 
the management tools described but it has also helped 
enormously in the ease of understanding, maintaining and 
supporting our software. New members of the group and 
new users new to Fermilab can very quickly produce soft­
ware to conform to the general specifications and obtain 
and use software that is available. It is much easier for 
any member of the group, regardless of particular area of 
expertise to be able to distribute, demonstrate, find bugs 
in, create a new version of any Product. New software 
Products produced elsewhere at Fermilab or at other in­
stitutions or vendors can be quickly added to the set of 
available software and made available in the same uniform 
way to all the users on site (via the same SETUP com­
mand). We package all software according to our mini­
mum standards - give it a Product name, a version, keep 
all versions under a single Umbrella directory and define 
all logicals relative to a single root logical name pointing 
to the specific Product version. Following softwar1~ Prod­
uct "standards" has saved manpower also in enabling us 
to write general procedures. For example, the arrival of 
Microva.xes with lim ited disc space created a need to trim 

468 

Products. A general procedure which omitted all list, map 
and documentation files from a distribution version could 
be written because of the standards imposed, thus solving 
the problem in general for all software which we maintain 
or distribute. 

This entire program of work was undertaken without 
a proper realization of the size of it - really as a non-serious 
sideline, which people did a little work on when the need 
arose. If we were doing it again we would better under­
stand the benefits and scope of the project and would take 
it further than we have today. The database maintained 
by SITE_PRODUCTS would be made extensible and eas­
ily accessible as a database. Some of the system manage­
ment procedures would have been written in a high level 
language instead of DCL, thus increasing both their speed 
and extensibility. 

Acknowledgements 

Contributions to the ideas, definitions and procedures have 
been made at various times by all members of the Data Ac­
quisition Software and DEC Systems Group in the Com­
puting Department at Fermilab - which consist of the au­
thors, David Berg, Eileen Berman, Andy Cohen, Terry 
Dorries, Arkady Lubinsky, Carmenita Moore, Liz Quigg, 
Dave Ritchie, Chip Kaliher, Nancy Hughart and Steve 
Kalisz. We also acknowledge helpful feedback from various 
users of the system (DISTRIBUTE in particular) ranging 
from on-site local system managers to experiment partici­
pants distributing software over DECnet from Italy. 

References 

[1] Aurbach, Richard, Using VMSINSTAL with User­
written Applications, Fermilab Programming Note 262. 

[2] Constanta-Fanourakis, Penelope, BUILD Procedure 
for Product Distribution, Fermilab Internal Note. 

[3] Heinicke, Peter, Backup / Distribute Procedure for 
Product Distribution, Fermilab Programming Note 261. 

[4] Nicinski, Tom, SITE-PRODUCTS / Maintaining 
Known Products, Fermilab Internal Note 140. 

[5] Nicinski, Tom, BULLETIN/ Maintaining an Elec­
tronic Bulletin Board, Fermilab Internal Note 141. 

[6] Nicinski, Tom, PRODUCT SETUP User's Guide/ Set­
ting Up Products, Fermilab Programming Note 269. 

[7] Pordes, Ruth (ed.), Data Acquisition Software Group 
Product Specifications, Fermilab Internal Note 157. 



Developing a Computer Training Program 
for a DEC /IBM Environment at Dupont 

Marlys Denison 
E. I. Dupont de Nemours, Inc. 

Introduction 

When I was given the task of developing a training pro­
gram for the VAX 8600 I was afraid that training issues 
would get about the same priority as the annual employee 
picnic. Generally this is no longer true at Dupont. At our 
plant a certain number of hours of training are suggested 
for various types of employees and the training choice is 
left up to the employee and his immediate management. 
Therefore we began by interviewing several potential stu­
dents to get an understanding of the need. 

I noticed that the IBM-PC users thought that the 
people with DEC terminals were at great disadvantage 
and the people with DEC terminals felt the IBM-PC was 
somewhat unprofessional. The 3270 users didn't seem to 
acknowledge that any other terminal existed. These biases 
were almost religious in nature. 

When I asked a young DEC programmer what he 
thought of the IBM equipment he said, "The best thing 
to do with an IBM mini or mainframe is to sell it. I don't 
like the way they work. Menu driven software is too slow, 
it gets in the way of a programmer." 

When I asked an older IBM-PC "power" user why he 
liked his computer better than a terminal, he said, "The 
software is so much better and less expensive, the effect on 
the economy is the same as that of the Ford company when 
they stuted mass producing cars. There are many more 
people writing programs for the IBM-PC than any other 
computer. For the same reason that a larger University 
can field a better football team, the software for the IBM­
PC is easier to use, and less expensive for the function 
than any other computer." 

A young IBM systems programmer said, "I don't even 
consider the VAX to be a mainframe in the sense of the 
IBM mainframes." 

One of the men whom I work with feels that the fact 
that, most of the end-user equipment on our plant is of 
these three types, didn't just happen. "At the time that 
we were changing from tabulating equipment to an IBM 
mainframe, IBM seemed to offer the best business envi­
ronment. At the time that we were beginning to moni­
tor the processes with computers, IBM had discontinued 
their 1800 equipment in that area and DEC was the best 
equipment for this use. Both were good choices and have 
benefited the company." 

The bottom-line is that we have made the best deci­
sion at any point in time. We have millions of dollars in­
vested in each kind of computer hardware and more than 

Proceedings of the Digital /-'.:quipmenl Computer lJsers Society 469 

that invested in training to use the computers. 

Purposes of Training 

Just plugging in the equipment is not enough. It takes 
years to learn how to use it most effectively. The cost of 
computing is high but the cost of not computing is even 
higher and time is a factor. 

Gilbert/Commonwealth conducted studies to deter­
mine productivity gains among its engineers. The com­
pany found 50 to 70 percent reduction in the time needed 
for certain tasks. They found that the machines assigned 
to support and non-engineering areas a.re less profitable 
but still make back the investment before the equipment 
is fully depreciated. (PC World, August, 1986). 

Allied Stores installed a computer system and saw no 
improvement in productivity for three months but after 
three years the productivity had doubled. 

At the Federal Kemper Life Assurance Co., a large 
insurance company, productivity increased by five times. 
This required a change in procedures to best use the equip­
ment. 

According to Raymond E. Cairns, Jr., head of the In­
formation Systems Department at Dupont, the computer 
can increase the span of control and enable elimination of 
layers of management. (Fortune, May 26, 1986). 

Besides the productivity improvements, the employee 
will recognize the training as evidence that the company is 
serious about its commitment to individual development. 
This can result in well-motivated employees rather than 
semi-conscious dead wood that couldn't get a job anywhere 
else. 

Purpose of the Center 

The purpose of this center is to develop the computing 
skills of technical employees and their support group so 
that they can use the computer to think, compose, con­
trol and communicate. The minds of these people are the 
company's most valuable resource. 

Competence depends on training and education. 
Training equips someone to do a job, it is task oriented. 
Education, however, strives to improve our ability to un­
derstand, discover and relate our tasks to our long term 
goals. We try to both train and educate in our training 
center. 

If you have only a hammer, everything looks like a 
nail. Likewise, could it be that if you have a personal 

San Francisco, CA - 1986 



computer, everything looks like a personal computer ap­
plication and if you have a terminal to the VAX everything 
looks like a VAX application? To some extent this is true, 
therefore by merging the training for these two types of 
equipment in the same facility, we are able to better de­
termine the relative merits of ea.ch piece of equipment in 
an educated way. 

We are also more likely to develop communication fa­
cilities and procedures between the types of equipment and 
software. This leads to standardization 

We constantly complain of lack of standardization. 
Large national and international committees work to bring 
standards to the world of computing. 

Only months ago the DEC and IBM equipment on 
our plant could not communicate. Now they can all com­
municate at some level, some better than others. What is 
true today will not be true tomorrow. 

I applaud the effort to standardize but complete stan­
dardization stagnates progress. 

H we had only IBM equipment or only DEC equip­
ment over the past 20 years we would not have made nearly 
the progress technically that we have. One current exam­
ple of this is the sudden technical advances made at the 
end of the breakup of the telephone companies. Now we 
have many more communication and end user choices at 
the expense of what sometimes seems to be total confusion. 

Facility Design 

Few of us are given unlimited budgets and freedom to de­
sign a training facility. In our case the facility was to be 
designed within a large room with one fixed pole in the 
center of the long way of the room and about four feet 
from one side. The pole had to be considered a challenge. 
We decided to face the students towards the side of the 
room without the pole. This gave the shortest maximum 
line of sight and avoided the pole. 

First we visited four training sites in the company. 
Ea.ch one had different ideas. This created some valuable 
contacts which I used later when I needed help with finding 
instructors or documentation. From all the information 
that they gave us we decided what would be right for us 
within our budget. 

Lighting is an important consideration. To have light 
low enough for projection while also bright enough to see 
notes is nearly impossible. Egg crate diffusers on the lights 
help point the light down and not on the projection screen. 

A raised floor would have been nice but could not 
be included in the budget, so we settleq for flat electrical 
wire and carpet squares. This has the added advantage 
of looking nice and damping the noise level in the room. 
Wires go directly down to plugs in the floor. The excess 
is held up under the edge of the table with special holders 
which affix to the side of the table. 

The classroom has board writing area which is glare 
free and two paper tablet writing areas. Projections are 
visible from all parts of the room. 

470 

A printer need not be provided with each terminal or 
PC if the ma.chines can be networked. A laser printer for 
printing course material was available. 

Storage space is needed both in the classroom for ma­
terials to be used and in a library for the materials used 
in the programs. This needs to be secure but accessible 
by the users. We have two oak credenzas in the classroom 
which match the oak top tables and oak visual board. Next 
to my office there are more shelves for storage space. We 
could use much more storage space but space is always at 
a premium. 

Usually we have classes of ten so we have ten chairs 
with adjustable height, back and arms. We also ·have ten 
matching spring type stacking chairs for the times when 
we have classes two to a computer or for the student who 
likes a :wider chair. A sloping-front edge which does not 
interfere with circulation is necessary and a five-star base 
with casters makes the chairs stable. 

The work tables in our center are sixty inches wide 
which allows an IBM-PC and a DEC terminal per table. 
This saves any moving of terminals in and out for differ­
ent classes. Often students studying the same software sit 
side by side in the same class using different types of equip­
ment. There are ten tables with two pieces of equipment 
on each table. There is room to spread a work book out on 
each side of the computer. Since the chairs are adjustable 
in height, the height of the tables are one standard height. 
This was designed to teach either ten IBM-PC users or ten 
DEC terminal users per class but, as mentioned, we found 
that in some classes we have both types of equipment be­
ing u11ed at the same time. A few students are familiar 
with both types of equipment and will use whichever one 
is convenient. 

Providing Different Types of Training 

We are continually trying to provide the best classroom 
training available for our employees. 

There is the argument that people who are always 
in training never contribute any real work. Not every­
one wants or needs classroom training. One possibility is 
self training. Most people with initiative are continuously 
learning on their own. This requires references or mate­
rials. While self study is important it is not efficient in 
providing a complete background. Programs to help the 
student uncover what is relevant and use the experience of 
others is useful. There is not time enough to invent every 
wheel yourself. 

Some students find the convenience of working on 
computer-based instruction when they find time is the best 
way for them to learn. Others like to check out Video-tapes 
to watch at work or at home. The more people who be­
come trained in an area the more one-on-one networking 
type instruction takes place. 



Quality of Training 

In-house training can provide the most cost effective 
method of training. Quality of materials and teachers are 
perhaps the most important part of the training effort. 
Whether an instructor costs $3,000 per day or $500 is of 
little importance. The most important question is how ef­
fective is the instructor. The student's time used for the 
class represents more than $4,000 per day in the average 
class. H each day is not effective the cost of wasted stu­
dent time is added to the cost of the instructor. There is 
the concern of the interruptions on site, but the ability to 
address emergency needs, answer electronic messages dur­
ing breaks, and generally keep the onslaught of piled up 
work from engulfing you while in training outweighs the 
problems. Many times we offer a series of half day classes 
for this purpose. 

At our facility, we don't have a teaching staff. This 
is a problem in some ways but a blessing in others. Any 
one person can only be proficient in a limited number of 
software packages. We have the choice of the very best 
teachers of any software package. 

Finding the best is mostly a matter of trial and error 
but there are some very good teachers in every area. I've 
found the best teachers are also users and the cost per 
day does not measure their worth as teachers. Talking to 
former students, looking at class materials, and talking to 
the teacher about what you expect are helpful in locating 
good teachers. 

Some of our teachers come from other training orga­
nizations within the company. They are usually of very 
high quality and have the added benefit of the company 
perspective. 

A few teachers are users from our site. These people 
usually do not have time to take from their regular job to 
either teach or prepare to teach. They work out best for 
short courses on site specific communication or areas in 
which they are especially knowledgeable. 

My worst experiences have been in hiring the relatives 
of co-workers or from companies where the trainers only 
train and don't use the software, or the first class when 
developing my own course. 

Applications 

Word processing is probably the most used application 
anywhere. To many of us, memos, reports and personal 
notes have taken on a whole new dimension with the use 
of the computer. Mistakes can be corrected instanta­
neously, ideas can be rearranged in more logical order with 
a few strokes. Formatting can be done automatically and 
changed automatically. We have MASSll on the VAX 
8600 and on many of the secretaries PC's. The idea is to 
make it easier to pass information from the technical per­
son to the secretary. We have not insisted on the MASSll 
software, and in fact would be willing to train on Display­
write or Word Perfect if requested. One secretary learned 
four word processors in four years but it became easier 

471 

each time because of the similarities. Standards will occur 
as the need develops. 

Electronic mail is the best thing since bottled beer. 
Not only is communication speeded up but it is improved. 
The receiver does not need to be there when the message is 
sent. He can receive the message at his own convenience. 
It is more accurate than speech and leaves an audit trail to 
help you remember what you need to do. It has the added 
benefit that you can pass on some of your work as quick 
as a wink and keep a record of that as well. The training 
for this is included in a three half day introductory course 
covering also the editor and some simple VMS commands 
and utilities. 

Database is used more than most people realize. 
There are the large corporate databases which follow the 
cost of manufacturing etc. There are also personnel data 
bases on the corporate level. Production build a large 
databases which the Engineers use to improve the prod­
uct. These are in large custom applications. The very 
small databases on the other hand usually reside in Lotus 
or Dbase on personal computers. There are new easier 
to use database application programs now on the market 
and these old standbys are making improvements regu­
larly. DEC of course has several types of database pro­
grams. We are currently training on Lotus, Dbase, Data­
trieve, 20/20, RSl and the custom programs. 

Spreadsheets are really a special kind of database. Lo­
tus and 20/20 are the favorites with some people using 
DECalc and RSl. Lotus and 20/20 have a much shorter 
learning curve than the more sophisticated RSl. 

Statistical packages are used in many areas. This 
function is found in Minitab and RSl on our plant. 
Minitab is taught in a class on Data Analysis which covers 
the subject and uses the package only as a tool. 

Expert Systems are the new interest at our plant. 
There are two personal computer packages which are so 
easy to use that the only instruction takes place in a two 
day Artificial Intelligence class that also covers the use of 
RSl as an engine. 

Chemical Modeling is taught by an expert from our 
corporate office. He uses several packages such as CPES6, 
PROCESS, UPPS, and ASPen. 

We currently have an Integraph System for drafting. 
It is centralized but it can now be accessed from the field. 
Robotics in the production line is an area that will be 
developing in the near future. 

Documentation 

Documentation is no good unless it is used. It is not used 
unless it is easily referenced. Finding the right documen­
tation to meet the student's needs difficult. Better doc­
umentation can be produced than is available the cost is 
usually prohibitive. Some documentation needs to be pro­
duced for those things that are site or corporation specific. 

A newsletter or bulletin board on the computer is 
helpful for distributing new items concerning training 
classes or tips about using the various pieces of software. 



The schedule should be published both in hard copy for 
those who are just beginning to use computers and on the 
bulletin board. 

Even though good emulators are available for personal 
computers, good documentation to translate from the keys 
of the VAX to the keys of the IBM PC is not available. In 
the beginning VMS/Mail/EDT classes it is necessary to 
produce documentation to make the transition easier for 
the student. Overlays can be helpful to remember what the 
function keys will do but they are not generally available 
for the IBM-PC. 

Conclusion 

We have found that by combining the training for the two 
types of equipment in one facility has helped to standardize 
the plant on the equipment that is best for the job. 

Competition between the two types of users helps us 
determine the best way to do a job rather than forcing us 
to do the job with the hammer at hand. 

We can consider in a rather dispassionate way the 
relative merits of having backups done on the VAX ver­
sus always having a standalone capability and complete 
security of information. 

We can determine if a person has the ability and in­
terest to use a personal computer's special advantages or 
if that person only wants the easiest possible way to com­
municate. 

We can offer the capability of large capacity on the 
VAX or the ease of use of the application programs on the 
IBM-PC. 

Every day the picture changes. When I was learning 
to program, many hours were spent writing a program that 
would take as little memory as possible. Today usually 
only systems programmers are concerned about space in 
memory. 

What is true today is not true tomorrow. 
Today the PC user is responsible for backups, tomor­

row it may become very automatic. 
White collar workers account for about three-fourths 

of total business payroll costs in the U.S. Only about 103 
of business computers are used in manufacturing. 

We still have many problems to solve. The IBM main­
frame is accessed fairly easily by the DEC terminal users 
on our plant but we are only beginning to develop methods 
to access the VAX equipment with the IBM 3278 termi­
nals. 

When the terminal setting on the desk is best for 
ninety percent of a person's work and is adequate for the 
other ten percent we feel he or she has the best piece of 
equipment. 

A maintenance worker may need a 3270 for most work 
order or personnel type work but he needs to be able to 
access the communication system in the VAX and perhaps 
the drawings system in the VAX. 

The production worker needs the ability to monitor 
and control the process which the smaller Digital systems 

472 

offer but also needs the communication on the VAX and 
portions of the business computer. 

The Engineer needs the technical software available 
on the VAX but also needs the data from the process 
computers, the ability to change drawings on the VAX, 
communication on the VAX and the ability to write work 
orders on the business computers. 

A new use for computers is the development of expert 
systems. The expert needs to be able to develop the expert 
system on a VAX or on a PC and the worker needs to be 
able to access the expert system. 

People are different and different kinds of equipment 
suit different people. Therefore Viva La Difference! 



COMPUTER ROOM DESIGN AND CONSTRUCTION: A CASE HISTORY 

Brent Teeter, P. E. 
Naval Weapons Center 
China Lake, CA. 93555 

ABSTRACT 

Once a computer system has been purchased, the 
anxious optimism of waiting for it to arrive will 
fade into the realization of where to put it when it 
arrives. By considering the computer system site 
early in the procurement process, headaches can be 
reduced for system startup, system operation, 
maintenance, and expansion. 

INTRODUCTION 

Good computer room design practice 
entails addressing six concerns: setting up 
the design team, physical requirements, 
electrical requirements, cooling require­
ments, security, and contractor interac­
tions. With proper attention to these 
needs, a well designed computer room will 
provide a reliable environment for the 
computer and will improve work performance 
of the people that use it. 

GETTING STARTED 

There are a number of concerns that 
should be addressed before the design gets 
underway. The first concern is setting up 
the design team. People who have a vested 
interest in the results should be used to 
assist in the design and review. An example 
of such a person is the system manager. He 
will have to live with the computer room 
that results from the design. Other good 
sources of people are those who have shown 
an interest in the project, who have good 
memories, and who have the time to pay 
attention to the construction. A third 
source of help is DEC Field Service. Field 
Service can provide specifications and 
requirements for much of the computer room. 

Once the design team is established, team 
members should keep a historical record of 
all interactions with contractors and 
consultants. This record may be useful in 
the future if performance problems occur. 

When the computer room design is finish­
ed, it should be reviewed by at least two 
knowledgeable people outside of the design 
team. This review is necessary because 
people who are intimately involved in 
construction designs sometimes miss 
details. Finally, due to the high time 
demands placed on design team members, it 
may be advantageous to hire a consultant. 
However, consultants do not have the vested 
interest that employees have. 

Proceedings of the Digital Equipment Computer Users Society 473 

PHYSICAL REQUIREMENTS 

The first task in designing a computer 
room is to determine the size and weight of 
each cabinet and peripheral that will be 
placed in the room. Adequate room for 
growth should be allowed as well as clear­
ance to allow rear doors of cabinets to be 
opened. 

The easiest method of determining 
equipment placement is to make a floor plan 
using a convenient scale (ie. 1/4 inch 
equals 1 foot), cut out each peripheral and 
cabinet floor footprint to the same scale, 
and place them in the floor plan until all 
specifications have been met. While laying 
out equipment locations, it is important to 
consider workflow. Workflow considerations 
make users of the computer room more 
efficient. An example of workflow is to 
group console terminals of multiple machines 
together so that the system manager can use 
them with a minimum of movement and effort. 

An important benefit of using a floor 
plan is that when the computer room con­
struction is completed, the plan can be used 
to accurately locate equipment in the room. 
Each cabinet can be located by taping out 
the location of it. 

If the amount of 
computer room justifies 
should be considered. 
several benefits, among 

equipment in the 
it, a raised floor 
Raised floors have 
them being: 

* The floor acts as an air conditioning 
plenum. 

* The floor aids in the natural flow of 
convective cooling air. 

* It protects data and power cables from 
damage. 

* Raised floors are cleaner than non­
raised floors. 

San Francisco, CA - 1986 



However, raised floors have concerns that 
must be addressed: 

* How do heavy cabinets/peripherals enter 
and exit the room? 

* Air distribution can be 
having too many pipes and cables 
floor 

blocked by 
under the 

* The locations of cables that exit and 
enter the floor in relation to other 
equipment must be determined so that they 
will not be blocked. 

* All concrete and drywall must be sealed 
with concrete sealer to prevent blistering. 

Another physical computer room require­
ment is that the room be treated as an 
environmental entity. The walls of the 
computer room should go from the floor to 
the roof of the building, effectively 
separating the computer room from the 
building. 

Since computer room noise control is an 
important consideration, effective steps to 
reduce noise are necessary. These include 
using static free carpets, sound absorbing 
materials on the walls and separating the 
computer room into noise zones. Equipment 
that is noisy is grouped in one zone and 
quiet equipment is grouped in another zone. 

ELECTRICAL REQUIREMENTS 

In order to determine the electrical 
requirements for the computer room, these 
specifications for each cabinet and peri­
pheral are needed as well as their toler-
ances: 

* Volts 

* Current 

* Phase 

* Plug type 

* Peak Power (Peak Current) 

The final specifications should also 
allow for growth since once the wiring is in 
place it can be expensive to increase 
capacity. 

All power receptacles for computer 
equipment should be isolated ground type 
sockets with grounding occurring at a 
central point. This central point grounding 
minimizes ground loops which can induce 
noise into the system. The local electrical 
code should however be examined about 
regulations concerning isolated ground 
sockets - some municipalities will not allow 
them. 

All power lines feeding the computer 
should be dedicated to the computer. There 
should be no other electrical equipment on 
the line. The main feed line for the 
computer room should be checked completely 

474 

from the distribution transformer of the 
building to the computer room for other 
noise producing equipment that might affect 
computer operations. If there is any doubt 
about the quality of the power, a power line 
monitor can be used (rented or purchased) to 
check for disturbances. This monitor should 
be allowed to run for as long as possible 
since some power line disturbances are 
season dependant. A good example is the 
summer thunderstorms that occur in some 
areas of the country. 

If a power line monitor reveals noise and 
power problems on the electrical system, the 
following solutions can be tried in order of 
increasing severity: 

* Filters - low cost and easy 

* Constant Voltage transformers 

* Motor - Generator Sets 

* Uninterruptable Power Supplies - High 
cost and difficult 

In any computer room electrical system, it 
is very helpful to use a Power Distribution 
System (PDS). These systems provide some 
filtering but mostly provide isolation. 
Newer PDS systems, called Power Conditioning 
Systems (PCS), provide substantial filter­
ing. PDS/PCS systems are useful because 
they modularize the electrical distribution 
and installation process. There is only one 
connection that a licensed electrician must 
make, thus speeding up the installation. 
When purchasing a PDS it is best to pick the 
one with the highest input voltage avail­
able. This provides greater noise reduction 
than using lower input voltage PDS units. 

In addition to receptacles for computer 
cabinets and peripherals, convenience 
outlets should be included in the design. 
These are the electrical outlets that will 
be used for vacuum cleaners and other noise 
(electrical) producing equipment. Because 
of this noise, these receptacles should be 
placed on a different feeder line than the 
PDS. 

Closely related to electrical require­
ments are lighting requirements. Generally, 
it is very desirable to use light dimmers in 
the computer room. These can decrease the 
heat load placed on the air conditioners. 
However, some dimmers are Radio Frequency 
Interference (RFI) sources. For this 
reason, the particular brand of dimmer 
should be carefully examined for RF! before 
it is installed. 

ENVIRONMENTAL REQUIREMENTS 

In order to determine the environmental 
requirements for the room, the BTUs of heat 
for each peripheral must be determined. The 
total heat load produced by all electrical 
equipment including lights must be capable 
of being cooled by the air conditioning 
equipment. As always, the environmental 
specifications should allow for growth. 



The temperature limits for each peri­
pheral must also be known. All peripherals 
have two types of limits: static and 
dynamic. Static limits establish the 
overall range in which the equipment can 
operate. Dynamic limits specify how fast 
the temperature can change per unit time 
(usually in degrees per hour). Generally 
disk drives have the most critical dynamic 
limits because read/write head alignment 
depends upon uniform temperature throughout 
the drive. 

The air flow direction for each peri­
pheral and cabinet should also be known. 
This information will determine where to 
place raised floor vents (if used) and 
determine whether certain peripherals and 
cabinets are compatible. The usual flow 
direction is front to back and bottom to 
top. The raised floor vents can then be 
located in order to assist this natural flow 
of air. 

When specifying the air conditioning 
units, it is usually better to specify two 
small units rather than one large unit. 
Thus, if one unit fails, the computer 
facility can still operate in a degraded 
mode. Likewise, the larger the computer 
room is in volume, the more time there is to 
shut down the system when the air condi­
tioners fail. 

In order to minimize contamination, there 
should be a source of air that will maintain 
a positive pressure in the computer room. 
This positive pressure will tend to push 
dirt and dust out of the room. If a raised 
floor is used, the concrete slab and drywall 
underneath it should be sealed with concrete 
sealer to reduce the number of particles 
that are produced as the concrete ages. 

SECURITY REQUIREMENTS 

In choosing the location of the computer 
room, careful attention must be paid to 
physical security. Security involves room 
location, fire suppression, electrical 
noise, and protection instrumentation. If 
possible, pick an interior room. Interior 
rooms are more temperature stable than 
exterior rooms. They are also less suscep­
tible to external electromagnetic interfer­
ence (EMI). However, if self contained air 
conditioners are planned for the room, a 
room with an external wall(s) becomes 
necessary. 

Due to the high value equipment in 
computer rooms, all computer rooms should be 
protected from a potential fire. Smoke 
detectors should be installed in the room­
generally under the raised floor. However 
if a raised floor is not used then they can 
be installed on the wall. 

Handheld fire extinguishers should be 
placed near the computer room exits. Thus, 
if a fire occurs, people looking for fire 
extinguishers will already be near an exit 
should they change their mind about fighting 
a fire. These extinguishers should be 

475 

filled with Halon 1211 or 1301. Halon 1301 
is less toxic to humans than 1211 but both 
halons are excellent fire suppression 
agents. For large computer rooms, under 
floor self contained halon systems are 
available. 

Ceiling sprinklers are another method of 
fire suppression. However, since most 
damage in a fire occurs from water damage 
and since there is a high electrical shock 
hazard in a computer room, ceiling sprink­
lers should be used as a backup to Halon 
systems. Also, ~prinklers should be used 
that can turn themselves off when the 
computer room temperature decreases to a set 
value so that flooding does not occur. 
Except for ceiling sprinkler pipes, water 
lines in the ceiling should be avoided. At 
minimum, they should be kept away from 
equipment. 

Another security concern is electromag­
netic interference (EMI). EMI can occur 
from many sources including welders, motors, 
heavy industrial equipment and even other 
computers. The solution to EMI is usually 
to tie all equipment to a common ground, 
move equipment away from the source (since 
EMI strength is proportional to the square 
of the distance), and surround the computer 
with copper screen. 

Once the security issues have been 
addressed, different types of detectors can 
then be interfaced to the computer room 
Power Distribution System (PDS). These 
sensors connect to the PDS through the 
Building Interface Alarm box (BIA). Some of 
the detectors that can be used are: smoke, 
fire, water, over/under temperature sensors 
and over/under voltage sensors. If any of 
these sensors detects an out of bounds 
condition, it will trigger a power shutdown 
of the PDS. 

A last concern for computer room security 
is environmental data gathering. Instru­
ments such as temperature and humidity 
recorders provide a record of the stability 
of the environment. Other instruments can 
provide data on other desired data such as 
voltage levels. 

CONTRACTOR INTERACTIONS 

In order to protect the company and the 
computer room design team, all interactions 
with the contractor should be conducted 
through one specific contact. There should 
also be an alternate contact to serve as a 
backup should the primary contact be 
unavailable. Both contacts should be aware 
of what they legally can and cannot do 
regarding the construction contract. Other 
people in the company, while not designated 
as contacts, can serve very usefully as eyes 
and ears during the construction process. 
In this manner, they can keep the construc­
tion contacts appraised of information they 
might not normally know. 

In the 
should be 

construction 
penalties for 

contract, there 
late completion of 



the work. If there are not penalties, 
construction may drag on for an excessive 
time. 

Finally, during construction of the 
computer room, disruptions to normal 
business can be minimized by scheduling the 
contractor to work at times convenient to 
the company. 

SUMMARY 

Computer room construction requires 
attention to a very large number of details. 
If motivated people are used on the design 
team, and these people have access to the 
proper information, then a successful 
computer room design will result. 

REFERENCES 

1. Digital Equipment Corporation, Power 
Distribution System Technical Guide, 1982. 

2. Digital Equipment Corporation, The Power 
Distribution System Configuration and 
Ordering Guide, 1981. 

476 







Effective use of VAX/VMS Autogen 

Dennis L. W. Thury 
Texas Instruments 
McKinney, Texas 

Abstract 

The functions of AUTOGEN, and the inter-relationships of the major SYSGEN 
parameters are presented. The resulting suggestions for the structure of MOD­
PARAMS.DAT will maintain consistent VMS performance 11.S system memory 
and peripheral devices are modified. 

Introduction 

AUTOGEN is a VAX/VMS utility which attempts to 
maintain a well tuned VMS system. The default cri­
teria for determining necessary parameters is the cur­
rent hardware inventory (i.e. physical memory, terminal 
ports, disks/tapes and their servers, and communication 
devices). 

When actual system behavior differs from the DEC 
expected "norm", the system manager can "tune" the sys­
tem parameters to improve system performance. DEC rec­
ommends and encourages that this tuning be done with the 
AUTOGEN utility. 

This paper will briefly review the functions and oper­
ations of AUTOGEN, discuss why and when to use AU­
TOGEN, and provide specific recommendations on how 
to effectively use the AUTOGEN utility. This paper will 
NOT discuss system tuning or the system parameters. 

What is AUTOGEN 

AUTOGEN is a DIGITAL (VMS) supplied command pro­
cedure found in SYS$UPDATE. It is first used during 
the initial VMS installation, and during major VMS up­
dates, to establish default system (SYSGEN) parame­
ters. AUTOGEN will also set the size of the primary 
pagefile, swapfile, and dump file. AUTOGEN also pro­
vides a mechanism for the system manager to affect 
the resultant calculations of SYSGEN parameters, via 
SYS$SYSTEM:MODPARAMS.DAT. 

AUTOGEN functions 

AUTOGEN performs several functions, depending upon 
how it is invoked. These functions include: 

1. Evaluates the current hardware configuration. This 
includes the amount of physical memory, number of 
terminal ports, disk drives and controllers, bus devices 
(i.e. CI, NI, and UDA), and communication devices 

Proceedings of the Digital Equipment Computer Users Society 479 

(e.g. Ethernet, DMR, DUP, etc.). This information 
is included in determining minimum and default pa­
rameter values. 

2. Evaluates current SYSGEN parameters. The values 
of a select set of SYSGEN parameters are read and 
saved, forming a "baseline". This baseline is used in 
subsequent calls to AUTOGEN, providing minimum 
or default values. 

3. Calculates new values for significant SYSGEN param­
eters. 

The data collected from the hardware configura­
tion, previous SYSGEN parameter values, and input 
from the system manager (via the SYS$SYSTEM file 
MODPARAMS.DAT) is used to compute new values 
for significant SYSGEN parameters (see Table 1 for 
the list of these significant parameters). 

4. Calculates new sizes for the system PAGE, SWAP & 
DUMP files. A value for the size of the Page and 
Swap files are calculated based on: 

• the amount of physical memory 

• the size of the system disk, and 

• the values of MAXPROCESSCNT & VIRTUAL­
PAGECNT 

The size of the DUMP file is based on the amount of 
physical memory. 

5. Resets system parameters and files sizes. 

The computed values described in the previous func­
tions are saved in a file, which you are able to preview. 
This file is used as the input to SYSGEN to make the 
actual changes, which will be effective at the next sys­
tem reboot. 

6. Optionally shutdown and reboot the system. 

San Francisco, CA - 1986 



Bow does AUTOGEN work 

To ensure that you have the required privileges, AUTO­
GEN should be invoked ONLY from the System Manager's 
account. The format is: 

ISYS$UPDATE:AUTOGER -
[•tart-pha••l [end-phase] [exec-t7pe] 

You can enter up to 3 parameters to designate the 
AUTOGEN function you desire. All parameters are op­
tional; however, any missing or leading parameters must 
be replaced with null arguments, according to DCL pa­
rameter passing standards. The end-phase defaults to the 
same value as the start-phase; GENPARAMS is the de­
fault start-phase. 

As of VMS 4.4, there are seven phases of AUTO­
GEN. These phases have a definite sequence; the start­
phase MUST either precede or be equal to the end-phase 
according to the sequence in Table 2. 

AUTOGEN data flies 

The phases of AUTOGEN pass information among each 
other through data files. Each phase uses a set of files for 
input, and a set of files for output. Table 4 associates the 
various phases with their corresponding input/output file 
sets. Of the list offiles shown, ONLYMODPARAMS.DAT 
should be modified, all the remaining are considered read­
only to the System Manager, and their modification could 
interfere with AUTOGEN operations. 

The OLDSITE* .DAT files contain the "baseline" val­
ues for select parameters. These baseline values define the 
default and/or minimum value for that parameter. 

PARAMS.DAT is simply the concatenation of the 
physical configuration, OLDSITE* .DAT, and MOD­
PARAMS.DAT. 

SETPARAMS.DAT is a SYSGEN input file, contain­
ing a collection of commands setting the calculated param­
eter values. 

When to use AUTOGEN 

There basically two times to run AUTOGEN. 

• Whenever ANY hardware modification is made (i.e. 
addition or deletion of memory, controllers, or de­
vices). 

• Whenever you need to modify certain system param­
eters. 

Why use AUTOGEN 

The VMS system parameters effecting system performance 
have very complex inter-relationships among themselves 
AND system hardware configuration. Parameters "out-of­
balance" with each other, and with system configuration, 

480 

can and will have an adverse impact on performance that 
can be very difficult to isolate or identify. 

The most important benefit of AUTOGEN is that it 
understands this complexity and is therefore able to pro­
vide a consistent set of parameters. This consistency is 
maintained as you adjust the system parameters during 
tuning activities and/or software installations AND when 
you alter your hardware configuration. Table 5 demon­
strates some of the inter-dependencies of the major system 
parameters. 

Another benefit is that any/ all changes you make to 
your system are documented in MODPARAMS.DAT. This 
documentation is very important when system manage­
ment responsibility is transferred to another person, when 
sufficient time elapses that you've forgotten what/why 
you've made some alteration, and when you remove an 
optional software product (i.e. GBLPAGES) 

Relationships among major SYSGEN parameters 

Table 5 defines, in a very general manner, some of the 
inter-relationships among some of the major system pa­
rameters. The format of the table is: 

PARAJI = f (param_1,param_2, ... param_n) 

which indicates that PARAM is a function ofparam_l 
thru param..n. 

old...xxx refers to parameter :xxx from one of the OLD­
SITE* .DAT files. 

add...xxx refers to an increase in parameter xxx as 
specified in MODPARAMS.DAT. 

Bow to use AUTOGEN effectively 

Now to the meat of this discussion. How does one effec­
tively use A UTOG EN? 

• The MOST important rule is: All input to SYSGEN is 
made through the file MODPARAMS.DATwith your 
favorite editor. The format of MODPARAMS.DAT 
will be discussed a little later. SYSGEN should not 
be run to modify a system parameter, without a cor­
responding change to MODPARAMS.DAT. This will 
provide the necessary documentation of system pa­
rameters. 

• Invoke AUTOGEN with the DCL command 

ISYS$UPDATE:AUTOGER GETDATA GENPARAJIS 

This command will cause AUTOGEN to read the 
OLDSITE*.DAT files, your MODPARAMS.DAT, 
and gather the system hardware configuration data, 
placing all this data in PARAMS.DAT (GETDATA). 
It will then use this data to calculate new system pa­
rameters values (GENPARAMS). 



ACP DIRCACHE 
ACP MULTIPLE 
ACP-SYSACC 
FREE GOAL 
GBLPAGFIL 
I RP COUNT 
LOCKIDTBL MAX 
MAXPROCESSCNT 
MPW WAITLIMIT 
PAGEDYN 
RESHASHTBL 
SRPCOUNT 
VAXCLUSTER 
WS OPAO 

ACP HDRCACHE 
ACP QUOCACHE 
BALSETCNT 
FREELIM 
GBLSECTIONS 
IRPCOUNTV 
LRPCOUNT 
MPW HILIMIT 
NPAGEDYN 
PFCDEFAULT 
SCSCONNCNT 
SRPCOUNTV 
VIRTUALPAGECNT 

ACP MAPCACHE 
ACP SWAPFLAGS 
BORROWLIM 
GBLPAGES 
GROWL IM 
LOCKIDTBL 
LRPCOUNTV 
MPW LOLIMIT 
NPAGEVIR 
PFRATL 
SPTREQ 
SYSMWCNT 
WSMAX 

Table 1 - System Parameters Affected By Autogen 

PHASE 

SAVPARAMS 

GETDATA 

GENPARAMS 
TESTFILES 

GENFILES 

SETPARAMS 
SHUTDOWN 
REBOOT 

FUNCTION 

Save significant "old" parameters 
for propagation and update (baseline) . 

Collects all data, including configuration, 
old data & site-specific items. 

Computes new system parameters. 
Displays computed page, swap & dump files. 

cannot be specified as a start phase. 
Creates new page, swap & dump files, if required. 

cannot be specified as a start phase. 
Runs SYSGEN to set new parameters. 
Shuts down the system. 
Automatically reboots the system. 

Table 2 - AUTOGEN Phase Parameters 

481 



TYPE Meaning 

------------------------------------------------------------
INITIAL 

V4UPGRADE 

V3UPGRADE 

AUTOGEN is being run as part of an initial 
install. SAVPARAMS is never executed. 

AUTOGEN is being run as part of an upgrade 
from a Version 4.n system, or that 
interactive tuning is being performed. 
This is the DEFAULT execution type. 

AUTOGEN is being run as part of an upgrade 
from Version 3.n to Version 4.n 

------------------------------------------------------------

Phase 

SAVPARAMS 

GETDATA 

GENPARAMS 

TESTFILES 

GENFILES 

SETPARAMS 

SHUTDOWN 

REBOOT 

Figure 3: Table 3 - Execution Types 

Input Files 

None 

OLDSITEl.DAT 
OLDSITE2.DAT 
OLDSITE3.DAT 
OLDSITE4.DAT 
MODPARAMS.DAT 

PARAMS.DAT 

PARAMS.DAT 

PARAMS.DAT 

SETPARAMS.DAT 

None 

None 

Output Files 

OLDSITEl.DAT 
OLDSITE2.DAT 
OLDSITE3.DAT 
OLDSITE4.DAT 

PARAMS.DAT 

SETPARAMS.DAT 
VMSIMAGES.DAT 

SYS$0UTPUT 

PAGEFILE.SYS 
SWAPFILE.SYS 
SYSDUMP.DMP 

VAXVMSSYS.PAR 
AUTOGEN.PAR 

None 

None 

Figure 4: Table 4 - AUTOGEN Data Files 

482 



GBLPAGFIL = f (old~gblpagfil,add~gblpagfil) 

GBLPAGES = f (old gblpages,add gblpages,gblpagfil, 
VMS installed images (from VMSIMAGES.DAT)) 

GBLSECTIONS = f (old gblsections,add gblsections, 
VMS installed~images (from VMSIMAGES.DAT)) 

SRPCOUNT = f (maxprocesscnt,number~of~devices,add~srpcount) 

IRPCOUNT = f (maxprocesscnt,num~rnscp~servers,add~irpcount) 

LRPCOUNT = f (number comm devices,num mscp servers,num~ci, 
memory~size,add~lrpcount) 

NPAGEDYN = f (device drivers loaded,num devices,maxprocesscnt, 
rnemory~size:-add~npagedyn) 

PAGEDYN = f (npagedyn,balsetcnt,acp__parameters,add~pagedyn) 

SYSMWCNT = f (gblpages,sptreq,pagedyn,rnemory~size,add~sysmwcnt) 

LOCKIDTBL = f (maxprocesscnt,acp~parameters,cluster,add~lockidtbl) 

RESHASHTBL = f (lockidtbl, add~reshashtbl) 

Figure 5: Table 5 - Relationships Among Major SYSGEN Parameters 

483 



ACP DINDXCACHE 
ACP-MAPCACHE 
ACP-SWAPFLAGS 
BORROWLIM 

ACP DIRCACHE 
ACF-MULTIPLE 
ACP-SYSACC 
CTLPAGES 
GBLPAGES FREEL IM 

GBLSECTIONS 
IRPCOUNTV 
LOCKIDTBL 
LRPCOUNTV 
MAXBUFF 
MPW LOLIMIT 
NPAGEVIR 
PFRATL 

GROWL IM 
IRPSIZE 
LOCKIDTBL MAX 
LRPMIN 
MAXPROCESSCNT 
MPW WAITLIMIT 
PAGEDYN 

ACP HDRCACHE 
ACP-QUOCACHE 
BALSETCNT 
FREE GOAL 
GBLPAGFIL 
IRPCOUNT 
KFILSTCNT 
LRPCOUNT 
LRPSIZE 
MPW HILIMIT 
NPAGEDYN 
PFCDEFAULT 
PHYSICALPAGES 
SCSCONNCNT 
SRPCOUNTV 
VAXCLUSTER 
WS OPAO 

PIXSCAN 
SPTREQ 
SRPSIZE 
VIRTUALPAGECNT 

PFRATL 
RESHASHTBL 
SRPCOUNT 
SYSMWCNT 
WSMAX 

Figure 6: Table 6 - Parameters Adjustable with ADD_prefix 

• The VMS System Manager's Reference Manual 
suggests that at this point you should read 
PARAMS.DAT. I find the information in this file gen­
erally useless. It simply gives back to me what I 
already know! I'm usually most interested in what 
NEW values have been calculated for certain pa­
rameters. This information can be found in SET­
PARAMS.DAT. This file should be examined. 

Never edit SETPARAMS.DAT. If you examine 
it with an editor, use the /READONLY switch with 
the editor. 

If you don't like some of the computed values, based 
on your experience, edit MODPARAMS.DAT again 
to make the appropriate adjustment. 

• If you ARE satisfied with AUTOGEN's calculated 
values, then you have to cause these new values to 
take effect. This is done with the DCL command 

CSYS$UPDATE:AUTOGER SETPARAMS [reboot I shutdown] 

The single parameter ofSETPARAMS will cause AU­
TOGEN to invoke SYSGEN, setting the parameters 
as defined in SETPARAMS.DAT. If only the single 
parameter is specified, the new parameter values will 
be loaded into the system, ready to take effect at the 
next system reboot. 

If you want/need the new parameter values to take 
place immediately, add the REBOOT phase, which 

484 

will cause a system shutdown and an immediate re­
boot. The SHUTDOWN phase will simply cause AU­
TOGEN to shutdown your system, and wait for you 
to manually reboot the system. 

When AUTOGEN initiates a shutdown, it uses the 
system shutdown procedure in SYS$SYSTEM, and 
specifies a time of 0 minutes before shutdown (i.e. 
NO warning to your users). You can specify the shut­
down time for AUTOGEN to use by assigning the 
logical name AGEN$SHUTDOWN_TIME to your de­
sired time delay for shutdown or reboot. 

SYS$SYSTEM:MODPARAMS.DAT is the system 
manager's input to AUTOGEN. VMS V4 introduced 
a new syntax to MODPARAMS.DAT, the ADD_prefix, 
to increment the values of certain SYSGEN parameters 
(see Table 6) during the GENPARAMS phase. The 
ADD_parameter value can be negative to decrement AU­
TOGEN's calculated value. This new syntax makes the 
VMS 4 AUTOGEN a useful tool for system tuning. 

You, as the system manager, should develop a for­
mat for MODPARAMS.DAT and stick to it! The format 
should document "WHO made WHAT changes WHEN 
and WHY!". Some specific recommendations are: 

• Never hard-code MAJOR SYSGEN parameters (use 
the ADD..xxx syntax). 

• The ADD..xxx is valid ONLY for affected parameters 
(Table 6). Note that rumor has it that VMS 4.5 will 



allow the ADD_ prefix for ALL numeric sysgen param­
eters. An ADD_xxx entry can appear ONLY once for 
a given parameter. The "last" entry will prevail if 
multiple entries occur. 

• Define a value for SWAPFILE and PAGEFILE. 

o A value of 0 tells AUTOGEN to leave the current 
files alone. 

o An explicit value for each, equal to the desired 
size. 

• You can do simple symbolic (DCL, integer) arith­
metic. However, any parameter used in the right-hand 
side of the equation MUST appear earlier in the file. 

Appendix A is an example of a bad MOD­
PARAMS.DAT, containing NO documentation; you do 
not know when or, more importantly, why these parame­
ters are set that way. Also major SYSGEN parameters 
are hard-coded, preventing AUTOGEN from adjusting 
them according to their inter-dependencies and/or hard­
ware configuration changes. This was about all that could 
be done before VMS V4, and is part of AUTOGEN's low 
regard among many users. 

Appendix B contains a good MODPARAMS.DAT, in­
corporating some documentation, You get an idea of why 
some of the parameters defined, and in some cases who 
changed them (via initials) and when. The major SYS­
GEN parameters are modified with the ADD_xxx syntax. 
This allows AUTOGEN to include site-specific require­
ments in its calculations. 

The EXCELLENT example (Appendix C) demon­
strates improved documentation. The step-wise refine­
ment is demonstrated (either as a correlated sum of num­
bers, see ADD_GBLPAGES, or each contribution is item­
ized, see ADD_GBLSECTIONS and ADD-1RPCOUNT). 
The PAGE and SWAP files are explicitly set, and 
BALSETCNT is a function of MAXPROCESSCNT. 

Migrating to an "EXCELLENT" 
MODPARAMS.DAT 

If your system's MODPARAMS.DATis anything like mine 
was before I started, it looks like the BAD example in 
appendix A. If you would like to upgrade your "BAD" 
MODPARAMS.DATto the "EXCELLENT" category, fol­
low the these simple steps: 

• This procedure assumes that you are basically happy 
with the current performance of your system, and 
you ONLY wish to alter the format of MOD­
PARAMS.DAT. 

• Obtain a listing of your current SYSGEN parameters. 
This can be done by entering the SYSGEN utility and 
executing the following commands: 

SYSGEN> SET/OUTPUT=<aome-file> 

485 

SYSGEN> USE CURRENT 
SYSGEN> SHOW/ALL 
SYSGEN> EXIT 

• Rename your current MODPARAMS.DAT (to some­
thing like MODPARAMS.OLD). This is important! 
You need to disable reading your "defective" MOD­
PARAMS.DAT. 

• Run AUTOGEN using: 

GSYS$UPDATE:AUTOGEN GETDATA GENPARAMS INITIAL 

• Compare the calculated/initial SYSGEN parameters 
with your current values recorded in step 1. 

• If there are any differences, which there most likely 
will be, create a new MODPARAMS.DAT to compen­
sate for these differences. Here's where you migrate 
to the "excellent" format. Go back to the third step, 
to make new calculations. 

Conclusion 

The VAX/VMS AUTOGEN Utility can be a very power­
ful tool to maintain a well tuned computer system. The 
effectiveness of this tool, as with all tools, is how well it is 
used. If you use AUTOGEN in the manner just described, 
and with the recommended frequency, you too should be 
able to run a well tuned VAX system. 

References 

[1] "VAX/VMS System Manager's Reference Manual," 
V4.4, Chapter 11, April 1986, Order Number AA­
Y507B-TE, Digital Equipment Corporation 

[2] VAX/VMS V4.4 Micro-fiche, Sheet 285, Page J14, 
Digital Equipment Corporation 



APPENDIX A 
A "BAD" MODPARAMS.DAT 

VAXCLUSTER=2 
QUORUM=2 
DISK QUORUM=" $1 $DUA8" 
SCSSYSTEMID = 8 -
SCSNODE= "MYNODE" 
VIRTUALPAGECNT=40000 
MAXPROCESSCNT=60 
BALSETCNT=50 
GBLSECTIONS=345 
GBLPAGES=4570 
LOCKIDTBL=3500 
SRPCOUNT=4106 
NPAGEDYN=400000 
IRPCOUNT=546 
SYSMWCNT=670 

486 



APPENDIX B 
A "GOOD" MODPARAMS.DAT 

NODE "customizations" 
CLUSTER STUFF 

VAXCLUSTER=2 
QUORUM=2 
DISK QUORUM=" $1 $DUA8" 
SCSSYSTEMID = S 
SCSNODE = "MYNODE" 
VIRTUALPAGECNT=40000 
MAXPROCESSCNT=60 
BALSETCNT=SO 
SWAPFILE = 0 
PAGEFILE = 0 
ADD GBLSECTIONS=45 
ADD~GBLPAGES=2570 
ADD~LOCKIDTBL=lSOO 
ADD~SRPCOUNT=l206 
ADD~NPAGEDYN=40000 
ADD~IRPCOUNT=556 
ADD~SYSMWCNT=70 

Always join cluster 
with NODEA. 

use NODEA's system disk as a quorum disk 

Added to support crash dump analysis. 

Leave Swap _& Page files alone 

Added for RDB,CMS,FORTRAN,SD 
Added for RDB,CMS,FORTRAN,SD 
Added for RDB 
Added for RDB 
Adjust for observed usage + PRODUCTA (dlc) 
TNG's tuning suggestion (RAP). 
Added to reduce system page faults 1/7/86 

487 



APPENDIX C 
AN "EXCELLENT" MODPARAMS.DAT 

NODE "customizations" 
CLUSTER STUFF 

VAXCLUSTER=2 
QUORUM=2 
DISK QUORUM=" $1 $DUA8" 
SCSSYSTEMID = S 
SCSNODE = "MYNODE" 

VIRTUALPAGECNT=40000 
MAXPROCESSCNT=60 
BALSETCNT=MAXPROCESSCNT-5 

ADD GBLSECTIONS=l8 
ADD~GBLPAGES=854+123+341+45 
ADD~LOCKIDTBL=1500 
ADD~SRPCOUNT=l000+206 
ADD~NPAGEDYN=35000+4000 

ADD IRPCOUNT=500+56 

ADD SYSMWCNT=50+(BALSETCNT/5) 
SWAPFILE=30000 
PAGEFILE=40000 

Always join cluster 
with NODEA. 

use NODEA's system disk as a quorum disk 

Added to support crash dump analysis. 

Added for RDB(10),CMS(5),FORTRAN(2),SD(l) 
Added for RDB,CMS,FORTRAN,SD 
Added for RDB 
Added for RDB,observed requirements 
Adjust PRODUCTA (dlc) 

& obs'd reqmt, up from 3000 JRM 05/20/86 
TNG's tuning suggestion (RAP). 
(+43) Observed requirement. JRM 05/15/86 
(+13) Observed requirement. JRM 05/19/86 

Demonstrate computational capability 
Leave Page and Swapfiles 

alone! 

488 



Heterogeneous VAXClusters 

Frank J. Nagy 
Fermi National Accelerator Laboratory1 

Batavia, IL, 60510 

Abstract 

The vast majority of VAXClusters are homogeneous, so just what is a heteroge­
neous VAXCluster? The definition and uses of a heterogeneous cluster and the 
concept of an unbalanced cluster are discussed. The development of an unbal­
anced, heterogeneous VAXCluster in the Fermilab Accelerator Control System 
is described. 

The introduction by Digital of the VAXCluster has 
had an enormous impact on VAX users and managers. 
Several thousand clusters have been installed and are in 
operation today. More clusters are being installed daily 
and existing clusters are growing larger and more complex. 
Existing VAX Clusters are beginning to rival mainframe 
computers in aggregate compute power and disk resources. 
Clusters are also beginning to mutate into different forms 
to fi.11 specialized niches. This paper defines some of these 
mutations and their uses. 

Definitions 

What constitutes a VAXCluster? The minimal cluster is 
two or more VAX systems interconnected by a high-speed 
communications channel (currently the CI bus). A cluster 
is usually typified as having a single, shared file system. 
This file system can be spread across disks connected to the 
cluster directly via Hierarchical Storage Controllers (HSC) 
or via local disks connected to VAX processors and made 
available to the cluster with the MSCP Server. The vast 
majority of clusters in use today are homogeneous clusters. 
A homogeneous cluster can be characterized as having a 
single system image for its users by virtue of there being 
a single User Authorization File (UAF) for all the nodes 
of the cluster. On the other hand, a homogeneous cluster 
may have different VAX models as nodes or may have mul­
tiple system disks (usually for performance reasons) and 
still be considered a homogeneous cluster if it has a single 
UAF. 

A VAXCluster might be termed a semi-homogeneous 
cluster when it contains unique hardware or software 
nodes but still supports a single UAF. By having a sin­
gle UAF, any user can use the cluster from any node of 
the cluster and still access the cluster-wide resources such 
as the file system and print and batch queues. In the 

1 Fermilab is operated under contract to the US Department of 
Energy. 

Proceedings of the Digital Equipment Computer Users Society 

semi-homogeneous cluster, the users sometimes need to 
be aware that certain resources are available only from 
specific nodes of the cluster and not from other nodes. 
This most commonly manifests itself in nodes with non­
shareable hardware resources such as tape drives, non­
served disk drives or high performance graphics or CAD 
stations connected to a single cluster node. Note that 
printers are often connected to the cluster via a single 
node but are considered as cluster-wide resources since the 
queues which feed the printers are available to all nodes of 
the cluster. 

Going from a single UAF to multiple UAF files, with 
different UAF files used by the various nodes in the clus­
ter, results in a heterogeneous VAXCluster. Such a sys­
tem will almost surely have unique nodes with specialized 
hardware or software. In a sense, a heterogeneous clus­
ter is very much like independent systems connected in a 
network. However, the heterogeneous cluster does provide 
some advantages over networked systems: 

489 

• The heterogeneous cluster provides a common file sys­
tem which can be simulated to some degree with net­
worked systems by use of proxy logins and logical 
names but does not provide the easy and rapid file 
access available on the cluster. A heterogeneous clus­
ter common file system is most easily realized and 
managed if the separate UAFs of the cluster consti­
tute a master UAF with subset UAFs for particular 
nodes. 

• The heterogeneous cluster permits the sharing of re­
sources that networked systems do not. Such re­
sources include: 

o Disk and tape drives 

o Printers and print queues 

o CPU time (batch jobs) 

The heterogeneous cluster can provide a significant 
cost savings using HSCs to support either a common 

San Franciscq CA- 1986 



file system or a segregated file system but on cluster­
wide disk and tape hardware. 

• Experience seems to indicate that a heterogeneous 
cluster is somewhat easier to manage than indepen­
dent networked systems. This may primarily be an 
attribute of a. common file system. 

A Site History 

The Fermilab Accelerator Division VAXCluster began as 
two independent VAX-11/780s using RM03 and RM80 
Massbus disk drives. At about the time a major disk stor­
age capacity upgrade was required, Digital announced the 
VAXCluster program with the CI and HSC hardware. A 
decision was made to expand the system in just that direc­
tion. Accordingly, a complete CI system with dual HSC50s 
and several RABI and RA60 disk drives was installed and 
brought into operation under VMS V3.5. By the time 
VMS V3.7 was installed, a third VAX-11/785 was added 
(the other two VAXes were now also 785s) a.long with addi­
tional RABI disk drives. While running under VMS V3.7, 
the disk farm was partitioned into multiple, independent 
file systems. The DCL command 

SET DEVICE /NOAVAILABLE 

was used to prevent users on one system from mounting 
another system's disk (of course a disk was only mounted 
on a single system at any time). 

Two of the three VAXes in this system are used for 
software development for the ACNET accelerator control 
system and for accelerator physics calculations used in the 
design and understanding of accelerators. The third VAX 
was an active part of the accelerator control system; the 
only interactive use of this system, other than by system 
managers, was by users working on the control system 
database via limited, captive accounts. One of the two 
development VAXes constituted a hot backup for the op­
erational system. When VMS V 4.0 became available, the 
plans were made for forming the two development systems 
into a single homogeneous cluster and running the opera­
tional VAX as an independent system much as was then 
being done under VMS V3.7. This configuration was cho­
sen to integrate the two development systems into a single 
cluster and yet have minimal impact on the operational 
VAX while providing a test bed to gain experience in op­
era.ting a cluster and evaluate the effects of integrating the 
operational VAX into the cluster. 

The systems were cutover to VMS V4.2 in just this 
mode of a two-node homogeneous cluster and an indepen­
dent VAX system sharing the CI and disk farm but with 
segregated file systems. The techniques used under VMS 
VS. 7 to prevent direct access to the disks of the other sys­
tems were carried over and used successfully under VMS 
V 4.x. However, a more :flexible scheme was needed to 
manage access to the shared peripherals, a "spare" RA60 
disk drive and the TA78 tape drives. A program called 

490 

ALLOCWATCH2 was written to use DECnet to make the 
allocation state of these shared peripherals carry across the 
boundary between the independent VAX and the cluster 
sharing the CI system. This system functioned satisfac­
torily until needs forced the planning for a second opera­
tional VAX node. 

Two possibilities existed for integrating the fourth 
VAX. This could be another independent VAX system like 
the existing operational VAX with its own system disk and 
file system separate from the existing operational VAX and 
development VAXCluster file systems. Alternatively, the 
existing systems could be merged into a single cluster in 
which case the fourth VAX would just be an additional 
node for this cluster. By the time this decision had to be 
made, just after VMS V4.4 was installed, sufficient expe­
rience with the operation of the cluster had been accumu­
lated to sway the decision toward the four-node heteroge­
neous cluster configuration. 

Thus, in the Spring of 19B6, the existing homogeneous 
cluster was migrated into a three-node heterogeneousclus­
ter. The original cluster used a. common system disk based 
on an RABI which contained the additional layered prod­
ucts (compilers, libraries, etc.) and third party software 
('!EX, laser printer fonts, etc.) used by the software devel­
opment users. The original system disk of the independent 
operational VAX on an RA60 was converted into a. second 
common system disk to be used for the active control sys­
tem nodes of the cluster. Ea.ch system disk had its own 
UAF; the accounts in the UAFs had already been scanned 
to insure that those common to both UAFs were inten­
tional and had identical User Identification Codes (UICs). 
The file 11ystems were "merged" by mounting all the vol­
umes cluster-wide. File usage was still segregated in the 
sense that the operational control system files were on 
RA60 disks and the development files on RABI disks. 

Experience has demonstrated that managing the re­
sulting heterogeneous cluster is somewhat easier than 
managing independent systems. DECnet is still used fre­
quently for interactive access via. SET HOST, but most 
DECnet file transfers have been replaced by direct access 
to the disks. Plans to merge the separate queue managers 
(one for the operational system and one for the develop­
ment systems) into a. single cluster-wide system of queues 
have not yet been implemented. The plans had called for 
the batch queues on the operational systems to not be fed 
by the cluster-wide generic batch queues but to remain 
separate due to the separate UAF. The primary result of 
merging the queue management will be to permit the op­
erational systems to have direct access to the printers con­
nected to the development nodes and to be able to queue 
print jobs even when the development nodes are down. 

3ALLOCWATCH appears on the Fall 1986 VAX SIG tape in the 
[.FERMILAB] directory tree. 



Unbalanced VAXClusters 

The effort to merge the Fermilab Accelerator Division 
VAXes into a single cluster was dominated by the prob­
lem of maintaining an operating cluster with only the sin­
gle operational VAX node. The accelerator control system 
is active around the clock; it can tolerate occasional out­
ages of a few minutes to a few tens of minutes but longer 
periods cause severe problems. Thus the cluster had to 
be configured in such a manner that the operational node 
could remain alive while either or both of the development 
nodes were down. This requirement was solved by creating 
an "unbalanced" VAXCluster in which the distribution of 
votes is not uniform across the nodes of the cluster. 

A VAXCluster maintains system integrity with the 
concepts of votes and quorum. Each active member of the 
cluster contributes one or more votes and a target value for 
the quorum (the SYSGEN parameters VOTES and QUO­
RUM). As long as the sum of all the votes in the cluster 
exceeds the current quorum value, then the nodes of the 
cluster will operate normally. When a cluster state tran­
sition results in the sum of the votes dropping below the 
current quorum value, then all the nodes will hang await­
ing a new cluster state transition. This scheme is used to 
prevent the cluster from partitioning into two which could 
then proceed to modify the file system without the neces­
sary synchronization required to maintain the file system 
integrity. The new quorum value ( Qnew) of a state transi­
tion is calculated as the maximum of current quorum value 
(Qcurrent), the quorum values contributed by the individ­
ual nodes (q1 , ••• , qn) and the value v ~2 where V is just 
the sum of the votes from the individual nodes: 

n 

V=:L>• 
i=l 

Qnew = max(Qcurrent• qi, ... , qn, V) 

where v.; is the value of the SYSGEN parameter VOTES 
and q, is the value of the QUORUM parameter for the ith 
system. 

For the Accelerator VAXCluster, the goal was to keep 
node OPER (central server for the control system) operat­
ing when either or both of the development nodes (DEVL 
and ADCALC) were down. Table 1 shows the values of 
the VOTES and QUORUM SYSGEN parameters used by 
the Accelerator cluster nodes to achieve stable operation 
of an unbalanced cluster. Table 2 shows how these SYS-

Node V.; q.; 
OPER 4 3 
DEVL 1 3 
ADCALC 1 3 

Table 1: Parameters for 3 nodes 

GEN parameters interact to insure stable operation of the 
unbalanced cluster without allowing partitioning. As seen 

491 

in Table 2, V is always greater than or equal to Q as long 
as OPER is a member of the cluster. Without OPER, the 

Nodes ... v, v (V+2)/2 Q 

OPER alone 4 4 3 3 
OPER+ 4 

DEVL 1 5 3 3 
DEVL+ 1 

ADCALC 1 2 2 3 > v 
OPER+ 4 

DEVL+ 1 
ADCALC 1 6 4 4 

Table 2: A 3-node unbalanced cluster 

cluster will either not form or the DEVL and ADCALC 
nodes will hang (if OPER has dropped out of an operating 
cluster). Similarly, if all three nodes are in operation as 
cluster members, the loss of either or both of the DEVL 
and ADCALC nodes will not cause V to drop below Q so 
that OPER can always operate as a single-node VAXClus­
ter. In fact, a bit of study of Table 2 results in the general 
configuration rules for a N-way cluster in which all nodes 
are "equal" but for a single special node (call it node A): 

• The N - 1 unimportant nodes have VOTES set to 1. 

• The QUORUM parameter of all the nodes is set to 
N. 

• The VOTES parameter of the important node A is set 
by 

VA= 2N- 2 

which, for three nodes, results in Table 1. 
Tables 1 and 2 illustrate the case of a three node 

unbalanced VAXCluster in which a single node is all­
important. Tables 3 and 4 illustrate a four node un­
balanced cluster in which two nodes (OPER and CDBS) 
form the important core of the cluster. These tables come 
from the planning for the near-term upgrade of Accel­
erator VAXCluster to go from a single operational con­
trol system node (OPER) to two such nodes (OPER and 
CDBS) while still retaining the two development nodes 
DEVL and ADCALC. In this four-way cluster configu-

Node v, q.; 
OPER 3 5 
CDBS 3 5 
DEVL 1 5 
ADCALC 1 5 

Table S: Parameters for 4 nodes 

ration, nodes OPER and CDBS are the important nodes 
which must always be operating. As Table 4 shows, the 



Nodes ... Vi v (V+2)/2 Q 

OPER alone s s 2 5 > v 
OPER+ s 

DEVL 1 4 s 5 > v 
OPER+ s 

CDBS s 6 4 5 
OPER+ s 

CDBS + s 
DEVL 1 1 4 5 

OPER+ 4 
CDBS + s 

DEVL+ 1 
ADCALC 1 8 5 5 

Table 4: A 4-node unbalanced cluster 

cluster will not operate unless both are up and running. 
Either of the nodes, OPER or CDBS, alone or in concert 
with DEVL and ADCALC cannot form a cluster. How­
ever, both OPER and CDBS together form a cluster with­
out needing to have either DEVL or ADCALC online. 

Summary 

The effort to derive a general set of configuration rules 
for an unbalanced VAXCluster has not been undertaken 
since the approach illustrated in Tables 1 and 2 for a 
three-node cluster and then again in Tables S and 4 for a 
four-node cluster can be used to solve other specific cases. 
This scheme has worked well for configuring the existing 
Fermilab Accelerator VAXCluster and for planning for its 
near-term expansion as an unbalanced cluster serving the 
dual missions of operating the Fermilab accelerator com­
plex and hosting software development for the control sys­
tem and accelerator design calculations. 

References 

Digital Equipment Corporation. Guide to VAXC/ua­
tera, Version 4.0, September 1984. Order number AA­
Y513A-TE. 

Digital Equipment Corporation. VAX/VMS Syatem 
Generation Utilitr1 Reference Manual, Version 4.0, Septem­
ber 1984. Order number AA-Z43SA-TE. 

492 



Primarily Ultrix and a Little VMS on MicroVaxes 

Wendy Rannenberg 
Sanders Associates 

Nashua, NH 03061-2034 

Abstract 

What began as an effort to evaluate Ultrix on a Micro Vax II quickly turned into 
a review of Sanders use of VMS based Micro V axes as well. The intent of this 
paper is to describe Sanders computing environment and how an Ultrix based 
Micro Vax fits in as well as to report the results of benchmarking efforts. 

Sanders, being an engineering firm, requires a large amount of fiexibility in 
its computing environment. Performance of systems, both throughput and plain 
old cpu horse power, is critical to many programs. Benchmark results for an 
Ultrix 1.1 based Micro Vax and other Unix systems are presented in an effort to 
address this area. Although many of the benchmarking programs used for the 
evaluation are widely distributed throughout the Unix user community many 
signal processing applications, developed at Sanders, were also used. 

Included in the evaluation is a brief review of the Ultrix documentation and 
installation procedures. 

Computing Environment 

The intent of this section is to provide readers with an 
overview of the computing environment into which Ultrix 
based MicroVaxes would be placed. 

Physical Description 

Sanders computing facilities have undergone major 
changes over the past three years. Originally a few 
PDPU's running RSX and Version 7 Unix facilities now 
include a VMS/DECnet based engineering network of at 
least one hundred systems complemented by a TCP /IP 
network of forty Unix based systems and Lisp machines as 
well as an IBM/SNA network. These networks, providing 
support for software development, program management, 
office automation, CAD and internal research programs, 
are interconnected by gateway systems as shown in Figure 
1. 

Access to external networks, uucp and usenet, a.re pro­
vided through a single Ultrix system so utilization can 
be monitored. Long range plans for these networks in­
clude adhering to ISO standards while providing for a more 
tightly integrated computing environment. 

MicroVa.x computers account for most of the cpu's 
available to engineers. They a.re primarily used for CAD 
applications but several host small project development ac­
tivities. Project based MicroVa.xes tend to be VMS based 
systems stripped of utilities, such as mail and MMS, and 
tuned for optimal compiler performance. Tools have been 
eliminated as a result of limited disk space on most sys-

Proceedings of the Digital Equipment Computer Users Society 493 

terns. 

Software Development 

As previously mentioned, Sanders computing facilities 
support a broad range of engineering applications. Soft­
ware development environments and activities fall into 
three broad categories: 

• VMS based development - Work in this environment 
includes development of high performance systems 
using Fortran such as real time training systems, 
database design, and graphics system design. 

• VAXELN based development - Real time signal acqui­
sition systems with development done in both Pa.seal 
and C. 

• Unix based development - Air traffic control systems, 
research and development, signal processing applica­
tions, and prototyping work in f77, C, Pascal , and 
Modula 2. 

Typical program development needs a.re no different 
from those found in other organizations. For example 
there is a need for production quality development tools 
(e.g. compilers, editors, debuggers, etc.), high perfor­
mance networking, high performance graphics, and pro­
totyping capabilities. The latter is being driven by DoD 
requirements to provide prototype systems prior to system 
development contract award. 

San Francisco, CA - 1986 



VAX 
VMS 

TCP/IP VAX 
Ultrix 

SNA Gateway 

VAX 
Ultrix 

IBM 
SNA 

TCP/IP 

Figure 1: Sanders Internal Computer Network Structure 

Evaluation Activities 

Technical evaluation of the Micro Vax II/Ultrix combina­
tion focused on use as a one to three user system rather 
than one that would be expected to support a large com­
plement of engineers. Originally the system was to be 
evaluated for potential use by at least eight software devel­
opers. The selected range was based on experiences with 
VMS and VAXELN software development on MicroVaxes 
although it is possible to support more users depending 
on the application. Of most interest was the potential use 
of the system for signal processing and other cpu intense 
applications such as AI development and text formatting. 
Since so many benchmark results have been published on 
MicroVaxes the processor speed was not critical to the 
evaluation and price performance issues were considered 
beyond the scope. 

Microvax/Ultrix benchmarks were completed in Jan­
uary of 1986 while others described herein were completed 
prior to that date. Since that time new releases of soft­
ware and hardware have been announced by all vendors 
mentioned in this report. 

Evaluation System Configuration 

The MicroVax II used for this evaluation was loaned to 
Sanders by DEC for six weeks. The system was config­
ured as shown below and a hardwired uucp connection was 
made to a 4.2bsd Vax 11/750 for file transfer purposes. 

• 3 MegaBytes of physical memory 

• 1 DHV-11 eight line serial multiplexor 

• Floating point hardware (standard) 

494 

• Q22 bus 

• 2 RD52 (71 MegaByte) disk drives 

• 1 TK50 (95 Mega.Byte) cartridge tape drive 

• Ultrix 32m Vl.1 operating system 

Benchmark Results 

The following systems were used during this evaluation 
to provide for comparative analysis. The latter two are 
Masscomp systems, one of which was on loan to Sanders. 

The reader is cautioned in making conclusions based 
on the following results. Many factors influence the results, 
particularly hardware and software configurations of the 
systems. Vax 11/780 and MC 5600 results were obtained 
from systems in multiuser mode. It is always best to run 
benchmarks in single user mode so that the exact state 
of the system is known at any given point in time and to 
have more accurate timing information. 

The following sections provide analysis of both syn­
thetic and application specific benchmarks. Unless other­
wise noted reported times are given in seconds. 

Whetstone Benchmark Results 

The whetstone benchmark, used extensively throughout 
Sanders as well as industry, provides a measure of float­
ing point arithmetic performance of a cpu. Developed in 
1970[CURN70] as a "compromise between requirements 
for simplicity and complexity", this benchmark is possi­
bly becoming obsolete as compiler technology advances 



Processor Floating Point Memory Disks o.s. T 
Micro Vax II Yes 3Mb 2 RD52 Ultrix 32m Vl.1 
Vax 11]750 No 3Mb 3 RM05 4.2bsd, Sys-

tern V, Ultrix 32 
Vl.2 

Vax 11/780 Yes 8Mb 1 RP07 /2 RM05 Ultrix 32 Vl.1 

MC 500 (68010) No 2Mb 1 Fujitzu ( 80Mb) RTU2.2A 
MC 5600 (68020) Yes 8Mb 1 EagleJ380Mb) RTU 3.0A 

Micro Vax II Yes 3Mb 2 Rd51 Micro VMS V 4.1 
VAX 11/780 Yes 8Mb 3 RA81 VMS V4.0 

Table 1: System Configurations 

'1 
I Whetstone IPS r 

I 
Processor o.s Single Precision Double Precision 

Micro Vax II/fpp Ultrix 383k 354k 
Vax 11/750/nofpp 4.2bsd 126 105 
Vax 11/750/nofpp System V 138 114 

Vax 11/750/fpp Ultrix 304 266 
Vax 11/780/fpp Ultrix 480 415 

MC500/nofpp RTU 43 17 
MC500/fpp RTU 549 296 

MC5600/fpp RTU 978 850 

Micro Vax II/fpp VMS 895 666 
Vax 11/780/fpp VMS 1311 838 

Table 2: Whetstone Benchmark Results 

495 



and languages that use record and pointer data types (e.g. 
Ada1 ) become more common. 

These results show dramatic differences between com­
pilers and machine architectures. Results were obtained 
without specifically invoking optimizers, although some 
systems have significant optimization embedded in the 
compiler. Most Unix systems, and all those tested, con­
vert all single precision calculations to double precision 
and back. VMS results are provided to show just how 
much of an impact this conversion can have. Note the 
Unix results are not that different between single and dou­
ble precision while the VMS results vary by close to 300k 
whetstone instructions per second. The latest release of 
Berkeley Unix, 4.Sbsd, has compilers and libraries that 
support single precision arithmetic. Several vendors spe­
cialize in development of optimizing compilers for Unix 
systems. Masscomp's MC 5600 performance reflects this 
trend. DEC now provides the Vax/VMS Fortran com­
piler as an option for Ultrix. This has created a flurry of 
excitement within the Unix community at large as it is 
considered one of the better compilers available, although 
it was not available on the test system. Whetstone perfor­
mance for particular machines is improving with advances 
in compiler technology as well as hardware architecture. 

Dhrystone Results 

The dhrystone[WEIC84] benchmark is designed to more 
closely represent the performance of a typical application 
program that is not numerically based. In addition to 
computing the number of dhrystone instructions per sec­
ond that these systems run, the number of lines of code 
per minute (LCPM) for the C and Pascal compilers was 
determined. As shown in table S the lower number of dhry­
stones represents better performance of the given com­
piler/ o.s/processor combination. 

I/O and Other Assorted Results 

The following results represent a subset of those typically 
run by systems engineers within Sanders who are faced 
with the task of system specification. In addition to these 
more application specific benchmarks are also used, an ex­
ample of one such benchmark is presented later. 

Although the individual disks are shown in table 4 
reality is that the controller exerts a large influence on 
the 1/0 performance. The controllers used were those 
distributed by each vendor with that particular configu­
ration. Many controllers for drives, like the eagle and fu­
jitzu, are available. At the time of the evaluation DEC 
had announced a new controller providing a 20% increase 
in performance. Although such a configuration was not 
available to us at the time of the initial evaluation some 
tests have since been run on an Ultrix Vl.2 Microvax with 
RD53 disks and the new controller. Indeed results indi­
cate a 42% increase in performance for sequential and ran-

1 Ada is a trademark of the DoD 

496 

1i 
I I lMil. Function Calls I 

I 
Processor o.s Real User System 

Micro Vax II Ultrix 23.9 23.7 0.0 

Vax 11/750 4.2bsd 42.3 41.5 0.6 

Vax 11/780 Ultrix 34.8 26.0 1.0 

MC500 RTU 24.4 23.4 0.1 

MC5600 RTU 8.5 8.4 0.0 

Table 5: Function Call Performance 

dom read/writes access. Read and write measurements are 
based on 512 byte blocks. This can be somewhat mislead­
ing as many Unix systems now support 1024 byte block 
sizes for file systems. 512 byte blocks correspond to a sin­
gle page on the Vax systems. The increased block size for 
file systems leads to an overall increase in system through­
put as testing on the Ultrix Vl.2 Micro Vax, previously 
mentioned, shows. Increasing the buffer size in the bench­
mark software to 1024 bytes resulted in a 14% increase 
showing a high incr-ease in system throughput. 

Random and sequential read test results shown for the 
Masscomps were not expected and remain unexplained at 
this time. 

Remaining benchmark results are given with three 
times, real, user, and system. Real time is not the most 
important of these results as it tends to reflect delays be­
yond control, such as writing termination notices to the 
terminal. In the case of systems tested in multiuser mode 
the real time results were impacted the most. User and 
system time are reflective of actual processing time. It is 
recommended that any comparisons made use these as a 
basis. 

Results shown in table 5 were obtained by executing 
one million calls to a null function. It is indicative of func­
tion call overhead rates. 

Pipes are a unique concept originating in the Unix 
environment. There are many uses for pipes, from net­
working to filter connections. Piping is a way to connect 
the output from one program to the input of another. Any 
program that can read from standard input, usually the 
terminal can read from a pipe and likewise for writing to 
pipes. Such programs are called filters. Consider the fol­
lowing example: 

$ who I sort 

In this example the vertical bar implies the use of a pipe. 
The output of the who program becomes the input for the 
sort utility. This concept eliminates the need to create 
temporary data files and is very useful in prototyping ap­
plications. Read and write performance of pipelines has a 
large impact on all users of the system. 

As with any system, users are going to have an inter­
est in the overhead encountered when using system calls. 
The getuid system call reads the system password file and 



Processor o.s Compiler LCPM Dhrystones 
Micro Vax II Ultrix c 1834 720 
Micro Vax II Ultrix Pascal ? 860 

Vax 11/750 4.2bsd c 2017 1356 
Vax 11/750 4.2bsd Pascal 1110 1539 

Vax 11/780 Ultrix c 2478 695 
Vax 11/780 Ultrix Pascal 1967 777 

MC500 RTU c 1266 896 
MC500 RTU Pascal 1 Not Available 1 

MC5600 RTU c 3300 306 
MC5600 RTU Pascal ] Not Available J 

Vax 11/780 VMS c 3400 ? 
Vax 11/780 VMS Pascal 3180 946 

Table 3: Dhrystone Benchmark Results 

Processor o.s Disk Writes Reads Random Reads 
Micro Vax II Ultrix Rd52 5.9 4.1 2.0 
Vax 11/750 4.2bsd RM05 5.5 2.8 2.1 
VAX 11780 Ultrix RP07 3.9 1.6 1.1 

MC500 RTU Fujitzu 4.0 3.2 4.1 
MC5600 RTU Eagle 1.7 1.3 3.7 

Table 4: 1000 Write/Reads to Disk 

1 T 5000 Read/Writes 1 
I I 

Processor o.s. Real User System 
Micro Vax II Ultrix 19.8 o.s 9.2 
Vax 11/750 4.2bsd 41.4 1.1 20.5 
Vax 11/780 Ultrix 26.4 1.0 10.7 

MC500 I RTU 116.0 I 0.0 I 
7.7 
6.8 

MC5600 RTU 8.9 0.1 

Table 6: Pipe Performance 

retrieves the user identification number for a particular 
user. The associated call overhead does not necessarily re­
flect the overhead rates for all other system calls, it is a 
call used by many programs. Test results for the system 
call benchmark are shown in table 7. The Vax 11/750, 
with 11 users, executes between 40 and 300 system calls 
per second. This was determined by running several 30 
second samples using a system utility that computes the 
system call rate. Such use reflects what can be considered 
typical use at Sanders, not a heavy system load (although 
not everyone would agree to that!) and is therefore rep­
resentative of loading to be expected on an Ultrix based 
Micro Vax II. There is a significant increase in performance 
of some utilities that can be made by reducing the number 
of system calls they make. This is an area DEC has been 

497 

11 l l 50,000 System Calls 1 
I I 

Processor o.s. Real User System 
Microvax II Ultrix 9.8 o.s 9.2 
Vax 11/750 4.2bsd 16.4 2.2 14.0 
Vax 11/780 Ultrix 9.0 0.4 5.2 

MC500 I RTU , 10.8 I 0.4 I 
4.1 

10.1 
MC5600 RTU 6.4 0.2 

Table 7: System Call Performance 

concerned with and results of their activities can be seen 
in more recent versions of Ultrix than the one reported on 
herein. 

Sorting is indicative of general file manipulation ca­
pabilities of a system. Results shown in table 8 are based 
on alphabetic sorting of 5000 words, each word on a line 
by itself in the input file. 

Timing information for edit sessions and nroff docu­
ment processing are not included in the above tables for 
several reasons. Benchmarks intended to reflect editor per­
formance are based on the programmable line editors avail­
able with all Unix systems. The results are in no way re­
flective of the screen oriented editors, emacs and vi, that 
are used by many Unix users throughout Sanders. Full 



I I Sort 5000 Words I 
I I 

Processor o.s. Real User System 
Micro Vax II Ultrix 7.3 6.2 0.3 
Vax 11/750 4.2bsd 10.2 8.8 0.8 
Vax 11/780 Ultrix 6.3 5.2 0.4 

MC500 RTU 10.3 9.0 0.6 
MC5600 RTU 4.0 3.1 0.3 

Table 8: Sort Performance 

screen editors have memory requirement and cpu utiliza­
tion rates many times that of the line editor. Experience 
on the Ultrix based Vax 11/750 shows that these editors 
use as much as 35% of available memory and 25% of the 
cpu. The Vax 11/750 supports up to 10 users depending 
on specific applications being run. 

Signal Processing Results 

Signal processing applications, including radar, speech, 
and image processing, tend to be the most cpu intense 
programs run and are true hogs. They also tend to be 
representative of the work done on Sanders Unix based 
systems. A large spreadsheet type application, developed 
for internal use at Sanders, that provides access to several 
hundred algorithms has also become a useful benchmark­
ing tool. Called SPPEED,2 this tool is used for both design 
of signal processing systems and algorithms as well as for 
signal analysis. A subset of this application, used for radar 
simulations, was used during the MicroVax II evaluation 
with results from two small data sets shown in tables 9 and 
10. This subset program has used as much as 14 hours of 
cpu time collected over a period of days on the Vax 11/750. 
Estimates for use with larger, but not atypical, data sets 
have reached two weeks of real time processing on the Vax 
11/750. 

Two cases are represented below; the first is a small 
set of data using fast fourier transforms (FFTs) while 
the second includes more complex signal to noise ratio 
(SNR) sampling. These results, shown only for Ultrix 
based systems, provide insight into the downfall of syn­
thetic benchmarks. Whetstone results for the Micro Vax 
and Vax 11/780 show a more significant difference in per­
formance than that found when executing a true applica­
tion. 

Command Set and Networking 

Oft criticized for lack of a complete command set it was 
found that Vl.1 of Ultrix 32m was satisfactory for most po­
tential applications. Franz Lisp was not included with the 
distribution and just how to get it was not clear although 
many DEC support specialists seemed to think it was pos-

:I Signal Processing Package for Engineering Design 

498 

l T Case 1 1 
I I 

Processor Real User System 
MicroVAX 23 21.1 1.0 

VAX 11/750 30 26.7 2.3 
VAX 11/780 27 22.6 3.1 

Tabl~ 9: FFT Performance 

r I Case 2 l 
I I 

Processor Real User System 
MicroVAX 1:04:39 3868.2 4.7 

VAX 11/750 1:41:02 5097.8 191.8 
VAX 11/780 1:04:36 3774.1 55.2 

Table 10: Signal to Noise Ratio Performance 

sible. This made evaluation for use with AI development a 
bit difficult since Common Lisp was not available to us for 
the evaluation period either. La.ck of commands such as 
finger was not considered to be a major catastrophe, just 
an inconvenience. 

Neither TCP /IP nor DECnet were tested due to limi­
tations of the hardware configuration of the Micro Vax used 
for the evaluation. 

Documentation and Installation Procedures 

The documentation provided with the evaluation system 
was for Ultrix 32, not 32m, and it was found to be satisfac­
tory. Additional examples of how to use particular tools 
and concise installation procedures were of particular ben­
efit to some of the evaluation staff. 

Conclusions 

There are many conclusions that can be made regarding 
the Micro Vax II, the primary one being that it makes no 
real difference what operating system is runing. The rela­
tive performance is the same as that of a Vax 11/780 and 
in many cases better. The following list highlights those 
areas that were important to this evaluation: 

• The Micro Vax II/Ultrix combination provides a qual­
ity, production use environment for software develop­
ment 

• Ultrix, and other Unix based systems, a.re no longer 
too re1earch11 

• It is not the best combination for use in signal ac­
quisition/processing environment, VAXELN is a bit 
quicker! 



• The minimum recommended system configuration for 
any MicroVa.x based system should be SMbytes of 
memory, 2 RD5S disks and a DEQNA for network­
ing. 

References 

[CURN70] H.J Curnow and B.A. Wickman. A Syn­
thetie Benehmark Computer Journal, Vol. 19, No. 1, 1970 

[WEIC84] R.P. Weicker. Dhryatone: A Synthetic Sya­
tema Programming Benchmark Communications of ACM, 
Oct. 1984, Vol. 27, No. 10, pp lOlS-lOSO 

499 





XDELTA/DELTA command strings 

B.C. Leahy 
Magic One 

1971 Mt Pleasant Rd 
San Jose, CA 

Command Strings in XDELTA/DELTA are useful 
tools for displaying information that would be other­
wise hard to obtain. What the "Command String" com­
mands allow you to do is to display register and loca­
tion contents, plus ASCII text, and then continue excu­
tion if desired. In a sense, they allow you to tailor the 
DELTA/XDELTA debugger to your needs. Two com­
mands in XDELTA/DELTAallow you this capability, they 
are: ; E and the Complex Breakpoint option of ; B. 

The directions for how to use the ; E command are 
somewhat misleading in the manual. The key point that 
the VMS 4.4, and previous manuals, fails to make is that 
you must close the location before you begin to execute 
the commands you have stored. The XDELTA/DELTA 
command that is used to close a location is carriage return. 
Below is an example of a command string that prints out 
the contents of RO. 

7FFE1600/00000000 '<CR>RO/' 
./00000000 

Note, jCR;. stands for carriage return. The location 
7FFE1600 was chosen because it contains all zeros, the 
name of this location is CTL$A_COMMON. The stored 
command must be followed by a zero byte as specified in 
the manual, (See VMS Device Driver Manual chapter 15, 
or Manual on XDELTA/DELTA). Once the command has 
been stored in the memory location, you can execute the 
commands stored in that location by typing the address 
followed by ; E. For example: 

7ffe1600;E 

The above examples are very simplistic in their content 
but they show a necessary fact and provide the founda­
tion for further development. Command strings can be 
written so that they print out the necessary information 
and continue executing, just by tacking on the ; P com­
mand. For example, the command below will print out 
RO followed by Rl, R2, and then continue execution from 
that point on. 

7ffe1600/00000000 '<CR>RO/<LF><LF>;P' 

Each linefeed command, denoted by jLF ;., prints out 
the contents of the next location, in this case Rl followed 
by R2. By putting this command string in a complex 
breakpoint, the user has the ability to view the contents of 
memory locations and registers every time the code reaches 
this breakpoint. The syntax for the complex breakpoint 
command is: 

Proceedings of the Digital Equipment Computer Users Society 501 

bkpnt loc,bkpnt #,mem loc,atrng addr;B 

An example: 

234,2,r0,7ffe1600;B 

Although the above examples are useful to display 
memory contents, they lack the textual information pro­
vided by the english language. English text can be built 
into these examples by making some parsing strings. The 
XDELTA/DELTA commands typically used for parsing 
strings are: ", [L, [W, ., +, Q. These commands control 
the setting of various modes and incrementing, or decre­
menting of current memory location. 

Let's see how the parsing works by starting with a 
simple string in a very simple macro program in Program 
1. 

Program 1 will print out the word HI when the ad­
dress of the parser string is typed in followed by a ; E. The 
parser string starts at address 204 for this program. How 
the parser works is as follows: first a carriage return is 
issued to close out the location. Then the Q defines the 
current address. Four is subtracted from the current ad­
dress to set the location to CRLF. Next the output mode 
is set to longword, and the double quote command is used 
to output ASCII. The ASCII longword output consists of 
a carriage return, linefeed, and the two letters HI. Try it 
out. 

Note, that in order to use XDELTA/DELTA, the user 
must have either booted the system with XDELTA, or used 
a logical variable name assignment for DELTA. Below is 
an example of the program SIMPLE run with DELTA. 

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA 
$ MAC/DEBUG/LIS SIMPLE 
$ LINK/DEBUG SIMPLE 
$ RUN/DEBUG SIMPLE 
DELTA Version X2.2 

0000020D/CLRL R6 
00000204 
HI 

204;E 

Again, the example above is rather simple. See Pro­
gram 2 for an example of more complexity. Notice in the 
STRING that all of the words appear run together. When 
the words are output they will not be run together be­
cause XDELTA/DELTA inserts a space between the out­
put commands. This fact created a problem for outputting 

San Francisco, CA- 1986 



words longer than four letter. To overcome this problem 
a back space was inserted in the ascii text string. 

502 



CR = "015 
LF = "012 

CRLF: .BYTE CR,LF 
STRING: .ASCII "HI" 

PARSER: .BYTE CR 
.ASCII "Q-4[L"" 

.BYTE 0 

.TITLE SIMPLE 

Program 1 

; CARRIAGE RETURN 
; LINEFEED 

; OUTPUT CR,LF 
;SIMPLE TEXT 

; MUST CLOSE LOCATION BEFORE COMMAND STRING 
; OUTPUT A CR,LF, THEN THE TEXT. 
; Set Q to Parser address, subtract 4 to 
; obtain the address of CRLF. Set output 
; to longword mode, and display in ASCII 
; a carriage return, linefeed, and HI 
; Terminate string with a zero byte 

.ENTRY SIMPLE, "M<> 

CLRL 

RET 
.END 

R6 

SIMPLE 

; DO ONLY ONE COMMAND SO THAT THE DEBBUGER 
;STOPS 

503 



CR = "015 
LF = "012 
BS = "010 

Program 2 

.BYTE CR,LF ; carriage return, line feed 
STRING: .ASCII " Hi,MynameisBarb"<BS>"ara " ; ascii string to be printed 

PARSER: .BYTE CR ; carriage return to close location 
trial: .ASCII "Q-17[W".+2[L".+4[W".+2[L".+4[W".+2[L".+4"" 

.BYTE 0 ; terminate with a zero 

.entry barb,"m<> 

clrl r6 ;dummy command in order to get into debugger 

ret 

.end barb 

504 



Trojan Horses, Worms, Viruses, and Robin 

Steven Szep 
Chase Manhattan Bank 

New York, New York 

Abstract 

This pa.per describes ideas and techniques which have been found to be useful 
in designing a software-based risk assessment module for enhanced computer 
security. We present background material on the current state of computer 
security 11.8 well 11.8 preliminary results. 

Introduction 

Are we - the designers and builders of systems, the man­
agers of installations - at fault for not providing adequate 
security? 

It is our responsibility to protect the right of individ­
uals 11.nd corporations to have private thoughts, restricted 
domains, confidential information, personal property, and 
reliable operation. 

Security is a "hot" topic because of DP's ongoing evo­
lution... Rapid proliferation of computing power occurs 
without addressing security concerns. Methods of perpe­
trating fraud keep pace with each technological advance 
in their prevention. Connecting internal systems with the 
outside world increases their vulnerability. Total depen­
dence on corporate systems offer little chance for survival 
after extended downtime or disruption of service. 

The fundamental objectives of a security management 
project must include: 

• data integrity; 

• confidentia.lit.y of information; 

• continuity of services. 

The case of the 414's brought to national attention 
the sorry state of computer security in the U.S.A. At la.st, 
breaking into someone else's computer was no longer cat­
egorized as a harmless "prank". 

Communications networks and information systems 
can no longer be considered safe from criminals. Tech­
nological safeguards and law enforcement must now come 
together to keep them out of our systems. 

General security 

To be trusted, your system must reliably enforce a precise 
policy for accessing the data it possesses, while it accom­
plishes the functions for which it was actually built. We 
must investigate: 

Proceedings of the Digital Equipment Computer Users Society sos 

• the user interfaces; 

• operations which ca.use information to fl.ow into, or 
out of, the system; 

• places where the classification of information could be 
changed. 

Quickly, we realize that "sensitive applications" 
should reside on stand-a.lone computers in sea.led rooms. 

To watch for abnormal usage patterns, historical data 
become a necessity. 

Some control must be established over the types of 
information retained and their classification. Also, rules 
for destroying information must be developed. 

Common sense says that backups are vital. 
Ea.ch site should be responsible for developing its own 

system manager. 
Every user should read and sign a form which defines 

computer abuse and lists its possible penalties. Ea.ch in­
dividual should then be allowed to hold ultimate control 
over his own personal information. 

The major draw back of using passwords is that people 
do not protect their own. Password generation is seldom 
used. Password compromise is hardly ever investigated. 
And, systems cannot differentiate between 11. legitimate 
user and an impostor who has logged on with someone 
else's password. 

Hardcopy is the wrong way to disseminate confidential 
information in your organization. 

There must be procedures for keeping information se­
cret. Such procedures include: 

• "sectioning off" departments where secrets might be 
exposed; 

• ma.king these areas "off-limits" to all but qualified per­
sonnel. 

Finally, improperly trained people can be the ca.use 
of a disaster in a computer center. 

San Francisco, CA - 1986 



Criticality of information processing demands that we 
index the impact of the several types of risk/ exposure and 
match our security measures against them: 

• necessary to maintain daily business (major annoy­
ance, minor loss); 

• necessary to maintain statutory requirements (major 
disruption); 

• necessary to maintain the business (severe disruption, 
disaster); 

• not primary to business (minor annoyance). 

Encryption has a way of instilling confidence in oth­
erwise clever persons that files and programs are secure 
from intruders. Hopefully, the recent Lotus 1-2-S episode 
will do for these people what the 414 case did for others. 

Encryption overhead, if softwve-managed, is quite in­
tolerable. Sharing data means sharing keys: overexposure 
of both is a result. Lost and destroyed keys lead to incon­
venience, if not lost files. 

Finally, since encrypted data must first be converted 
into plaintext before normal processing can occur, sensi­
tive data becomes vulnerable to compromise. 

Access controls 

The intruder who impersonates a valid user must be 
stopped from altering data or data flows within the sys­
tem. 

The insider who attempts abuse or sabotage must be 
caught in the act. Containment of the damage is our pri­
mary concern. 

Which parts of your system demand protection from 
intruders? Employ secondary passwords, access control 
lists (ACL's), and alarms. 

Finally, maintain useful audit trails. Determine the 
effectiveness of your security measures and review fre­
quently. 

The maintenance of appropriate audit trails, partic­
ularly for online transaction processing, is highly recom­
mended as the "baseline" requirement for applications se­
curity and control. 

Also of high priority are: 

• monitoring authorization and access-control compli­
ance; 

• designing/maintaining a disaster recovery plan; 

• continually testing your systems' security. 

Your computer system will probably operate in sev­
eral "modes" with respect to file security. 

Common categories include: 

• Convenience mode (User-friendly/shared) 

• Confidential mode (Personal files) 

506 

• Restricted mode (Need-to-know) 

• Proprietary mode (Technical/strategic) 

• Secret mode (Compromise seriously damages the 
firm). 

Security concerns demand a two-pronged examination 
of your network: 

• evaluate the basic "rules"; 

• consider the user-visible behavior. 

Access controls must not block current operational ef­
ficiency nor adaptability to changing needs. We must iso­
late the several components from each other. The "trick" 
is to balance sufficient security against cost, functionality, 
and performance. 

Password checking and automatic disconnect are min­
imal requirements. Disallowing the further use of accounts 
which are the targets of attacks is a prime example of a 
security measure which applies to both standalone and 
networked computer systems. 

Hopefully, the network log files will play an improtant 
role in Robin's evolution. 

Access control must provide the following features: 

• verification of usernames/passwords 

• restriction of access to data and resources (levels) 

• protection of data and resources (domains, levels) 

• monitoring the usage of all defined resources (audits, 
logs) 

• immediately reporting security violations (alarms, re­
ports). 

Not to be forgotten are these management concerns: 

• ease of installation 

• administrative controls 

• maintainability 

• documentation 

• flexibility . 

Two common "holes" in many security plans are: 

• lapses in auditing ongoing software development; 

• neglectful treatment of departing personnel. 

Fraud involving ongoing software projects necessitates 
numerous controls: 

• library control of code and documentation; 

• authorization of program changes; 



• separation of duties between development 11.nd pro­
duction arell.8. 

Trapdoors 11.nd Trojan horses have been planted dur­
ing the development ph11.Se of the software life-cycle. 

Code bombs are 11. real problem. Deal only with 
reputable software vendors 11.nd consultants. Review 11.ll 
sources before committing your firm in critical applica­
tions. And, of course, retain 11.n "escrow" copy in case the 
authors go bankrupt. 

Before he leaves, get the departing individual to train 
his replacement. Later, be sure to remove 11.ll traces of his 
daily activities - command procedures, personal directo­
ries, and so forth - from your system. 

User profiles 

Robin will be capable of using pre-recorded, stored charac­
teristics to authenticate the identity of an individual who 
h11.S logged onto the computer system using a valid user­
n11.me/p11.Ssword combination. Also, Robin will verify a 
user's capabilities to perform tasks on the system. 

A "real world" problem is that we may reject legiti­
mate users - if our confidence level is quite low. 

Fundamentally, Robin is responsible for 

• 11.dding objects to 11. user's space; 

• deleting objects from the user's space; 

• preventing objects from one user's space from being 
re-used, 11.8 is, in 11.nother user's space; 

• accounting/ auditing; 

• 11.larms. 

The VAX Accounting Utility is useful 11.8 11. system 
management tool for learning more about how your sys­
tem is used, how it performs, 11.nd how your users use it. 
Its primary area of concern is environment manage- ment. 
Routinely-collected audit trails must be carefully scruti­
nized. 

Accounting records are generated by various events: 

• process or image termination 

• system initialization 

• login failures 

• batch 11.nd print jobs. 

An accounting record consists of 11. header and 11. num­
ber of information packets - depending on the type of in­
formation being recorded. 

An identification packet contains: PID, owner PID, 
UIC, privileges, priority, usern11.me, account name, node 
name, terminal ID, job name, job ID, queue name, node 
address, 11.nd remote ID. 

507 

A resource packet contains: process/image start time, 
final status, image count, total CPU time, volume count, 
and working set, paging, and I/O information. 

An image packet only contains the image name. 
A print packet contains: job status, queue time, begin 

time, symbiont CPU time, printed page count, and QIO 
and GET counts. 

A filename packet contains only a filename. 
User data packets contain user information, in ASCII 

format, sent to the accounting manager via the $SNDACC 
system service. 

Capability scripts 

We wish to create "files" which contain operations per­
formed, as per the user's profile. 

Obviously, this requires a system-wide, common user 
interface. Those of us who have experience with the lat­
est micros and workstations would probably opt for a 
graphics-oriented, mouse-driven solution. 

The VAX Authorize Utility is the system management 
tool for controlling access to your system and allocating 
resources to your users. 

We must consider 

• what kind(s) of data processing the individual user 
will perform; 

• what level(s) of authority apply to these activities. 

VMS currently permits us to narrowly define a user's 
potential activities via captive accounts: 

• automatic-login accounts; 

• user-specific LOGIN.COM files; 

• network proxy logins. 

VAX SPM is more than a performance monitor. Its 
statistics- gathering capabilities make it an ideal source of 
information for a resource controller program. 

The data collected by SPM is of several types: 

• processor usage per process 

• processor usage by IPL 

• processor usage by IPL for one process 

• processor usage by IPL for interrupt stack 

• system module usage. 

Resource controller 

Our fundamental objectives 11.gain are: 

• data integrity; 

• confidentiality of information; 

• continuity of services. 



We must identify a (small) set of operations on a set 
of data objects upon which all conceivable security can be 
based. These "primitive operations" need to know the ac­
tual (implementation) structure of our data objects. (Nat­
urally, handling error conditions is extremely important.) 

We require the (complete) specification of all the re­
lationships among the various data objects and whatever 
security functions we wish to perform. 

We shall attempt to follow a typical project scenario ... 
We shall extract the central ideas (data types + data 
structures). We will focus on methods and algorithms 
amenable to computer solution: namely, frames, scripts, 
value lists, etc. Finally, we will combine these components 
(objects and procedures) together into an efficient and ro­
bust whole. 

Object-oriented programming 

A STRUCTURE gathers together many pieces of informa­
tion into a fixed "pattern". H we think of a STRUCTURE 
as a box with many "pigeon holes" , then each hole (called 
a SLOT) may contain information written on pieces of pa­
per. 

Each SLOT is labelled according to the type of infor­
mation it contains. These labels are called ATTRIBUTES. 
The pieces of information placed inside the SLOTs are 
VALUEs. When VALUEs are placed into the SLOTs, an 
actual OBJECT comes into being. 

Thus, a STRUCTURE defines ATTRIBUTES impor­
tant in doing something, while an OBJECT is a specific 
INSTANCE of that STRUCTURE. We can think of a 
STRUCTURE as a PLAN for constructing an OBJECT. 

The following objects are under consideration: 

• User profile object (UPO) 

• User daily history object (UDHO) 

• Periodic action object (PAO) 

• Alarm object (AO) 

• User summary object (USO) 

• Action daily history object (ADHO) 

• User biography object (UBO) . 

Once we understand what objects are and how to use 
them in programming, we must adapt them to our current 
needs: a rule-based, decision-making system. Basically, we 
must design the structure RESOURCE..ALLOCATION: it 
will define those things which must be considered in order 
to decide whether to grant "security clearance" to a user 
or whether to transmit an AO. 

Our knowledge base (KB) consists of all objects rele­
vant to the user and the system - that is, UPO, UDHO, 
PAO, USO, UBO, and ADHO. This KB can be thought 
of as a decision tree to be operated upon by our program. 

Although some of our rules will be have "yes-no" re­
sponses, experience has taught us that we may not always 

508 

be certain that a particular "IF ... , THEN ... " rule is cor­
rect. Neither can we be certain that the values provided 
when instantiating a variable are 100% correct. These 
complications lead us to employ certainty factors and con­
fidence levels. 

When a certain slot is filled, this will cause a proce­
dure to be performed. This procedure will be responsible 
for generating alarms. Or, depending upon how we wish 
to escalate the risk manager's response, even shutdown the 
computer system. The level of response could be config­
urable by site management. · 

Status Report 

We have identified our problem domain: risk management. 
And, we have formulated specifications for the three basic 
software modules: 

• BP: biography prober 

• RE: risk evaluator 

• RA: resource allocator 

There is now a prototype of BP available. Most of the 
current work is being done in the area of RE. Once RA is 
also completed, our risk manager will be ready for testing. 

Our short-term goal is to have a working program for 
a single CPU. This version of Robin is called "Morisot". 

The network, and final, version of Robin will come 
later. 

Glossary 

Here is a glossary of some frequently used terms in the 
area of system security and access control. 

Abuse - Misuse of a system's resources. 
Access control - Oversight and management of the 

ability to use system resources. 
Action - Performance of a particular task. 
Agent - The user who gains access to this resource 

on the system. (The user requested the allocation of a 
specific resource, and our program fulfilled this request.) 
For example, a programmer typing at his terminal. 

Alarm - A warning notice. 
Allocation - Distribution of one or more system re­

sources to a user. 
Attribute - A property of an object, stored in slots 

inside structures. 
Authentication - Establishing the trustworthiness 

of a user, via the "prober" module. 
Audit - Formal examination and review of a log file. 
Browsing - Obtaining information left in some part 

of the computer system after execution of a legitimate job. 
Capability - The capacity for the appropriate use of 

a (requested) resource. 
Certainty factor - Numerical weight indicating the 

degree of certainty :that a rule or a fact is valid. 
Classification - Categorization of tasks or goals. 



Confidence level - See certainty factor. 
Confidential - Containing information whose unau­

thorized disclosure would be prejudicial to its owner's in­
terest. 

Containment- Preventing the expansion of a hostile 
user's power over a system. 

Domain - A topical area of knowledge. 
Encryption - The encoding of data to help prevent 

theft. 
Exposure - Risk. 
Frame - Knowledge representation of an object's str­

cuture. 
Fraud - Using system resources for one's personal 

gain. 
History - Chronological record of significant events. 
Impersonation - Using another person's authoriza­

tion codes to achieve unauthorized access. 
Inheritance - Process by which characteristics of one 

object are assumed to be characteristics of another. 
Instantiation - Specification of particular values. 
Integrity - Accuracy and consistency of the informa­

tion in the system. 
Knowledge base - The rules, facts, and strategies 

pertinent to a particular domain. 
Location - The source of the trigger. For example, a 

terminal port. 
Log - The record of all actions which have occurred 

in the system since the latest reboot. 
Logic bomb - Leaving a set of instructions in an oth­

erwise innocuous program which when set off do damage 
to your system. 

Monitor - Software which oversees risk management. 
Object - A conceptual entity with multiple at-

tributes. 
Password - The weakest link in the security chain. 
Profile - A concise historical sketch of a user. 
Resource - A specific component of the computer 

system requested by 11. user. For example, a CRT. 
Saboteur - An insider who destroys his employer's 

property: files, data, etc. 
Secret - Information meant to be shared by a select 

few. 
Script - A strategy based on pre-defined, stereotyped 

situations. 
Slot - Storage area in a structure associated with an 

object's attributes. 
Spoof - Misleading the system into performing an 

operation which appears normal, but actually results in 
unauthorized access. 

Structure - The knowledge representation of an ob­
ject. 

Summary - Historical abstract of a user's activity, 
extracted from the system's log. 

Time - The occurrence of a trigger marked by system 
time. 

Trapdoor - Allowing 11. user program to perform 11. 

normally privileged system function. 

509 

Trigger - An activity which causes the "security han­
dler" to be invoked. For example, the use of the DCL 
command $SUBMIT. 

Trojan horse - Tricking programs with legitimate 
access into doing things they ordinarily would not do. 

User - Human person who performs some activity on 
the computer system. 

Value - Information placed within slots inside frames. 
Verification - Establishing the ability of a user to 

perform a specific task, via the "resource-allocator" mod­
ule. 

Virus - Internally taking control of a computer sys­
tem via latent zapping. 

Wiretap - Intercepting communications with the in­
tention of obtaining authorization or other confidential 
data. 

Worm - Achieving free-ranging access and the con­
sumption of resources by one illicit program across a net­
work. 

Zap - Violating established access controls in order 
to modify, destroy, or obtain protected data. 

References 

[1] Foiling the System Breakers: Computer Security and 
Access Control, J. Lobel (McGraw-Hill, 1986). 

[2] Technocrimes, A. Bequai (Lexington, 1987). 

[3] How Secure is Your Ethernet LAN?, G.B. Williamson, 
in Pageswapper Vol. 8 No. 1 (August, 1986). 

[4] Desperately Seeking Access: Identifiers, ACL's, and 
Alarms, S. Szep, in DECUS Proceedings U.S.A. (Fall, 
1985). 

[5] Security Considerations for Network Access, S. Szep, 
in VAX SIG Session Notes U.S.A. (Spring, 1986). 





A VMS RESPONSE LOGGER· WHAT THE USERS THINK OF RESPONSE TIME 

Robert B. Goldstein, Daniel P.B. Smith, Rivkah Stabiner 
Eye Research Institute of Retina Foundation 

20 Staniford St 
Boston, MA 02114 

ABSTRACT 

A program has been written that queries the user, upon logout, for 
his judgment of the quality of the system response. The results of the 
responses are analyzed to provide an objective measure of these 
subjective impressions. 

The user is asked by the program to give the system a letter grade 
of A,B, C, D or F. A record is then written to a log file containing the 
grade and other information such as number of users, time of day, and 
user category. 

Often users will grade the system based on overall satisfaction, 
and not solely upon system response time. Therefore, by periodic 
scanning of the response file for low scores, we can determine if any 
users are having trouble with the software or procedures. 

The program has been used on three systems at two different sites. 
The results generated by the program have proven extremely useful for 
judging the effect of tuning efforts, evaluating the impact of adding new 
applications, helping to decide if additional resources are necessary, 
and determining the system load versus time of day. 

INTRODUCTION 

The Response Logger is a program that, at logout time, 
queries a user regarding his opinion of the response of the 
system during the session. The results are collected, 
analyzed and plotted, thus giving an objective measure of 
users' subjective impressions. 

One reason the program was written was to assist 
in tuning efforts. The overall average response as 
determined by this method gives a long-term measure by 
which to judge tuning effectiveness. Using an overall 
average of this type is appropriate since it is impossible to 
reproduce identical workloads in a variable timesharing 
environment. 

Also, when tuning many statistics are obtained from 
SPM and MONITOR, but these statistics tell you nothing 
about how your changes effect USER perceptions. 

Response Scores: 

Overall : 3.54 (SEM • 
Progammers : 3.57 (SEM • 
ORACLE users: 3. 72 (SEM • 
Wordll users: 3.35 (SEM • 

Response Scores: 

Overall 3.81 (SEM = 
RS/l users 3.84 (SEM = 

.02, 1647 sessions) 

.04, 293 sessions) 

.03, 545 sessions) 

.04, 470 sessions) 

.03, 339 sessions) 

.03, 167 sessions) 

WHAT THE USER AND SYSTEM MANAGER SEES Figure 2. Monthly Report of System Response 

Figure 1 shows the dialogue that occurs when a user types 
'logout'. If he does not answer the query, the system gives 
him two more tries before proceeding with the rest of the 
logout process. If he types a '?', the explanation of the 
meaning of the grades is presented. These meanings are 
defined in reference to response time; however, a user would 
occasionally give an 'F' grade due to problems with data or 
programs. 

Periodically (typically once/month) the system 
manager can generate a report as shown in Figure 2. This 
report gives the overall grade for the month as well as the 
average grade given by different categories of users. 

Proceedings of the Digital Equipment Computer Users Society 511 

Figure 3 shows response scores as a function of 
number of users. This plot is the only one showing error bars. 
On other plots the error bars are within the symbol. Note that 
a 4.0 grade is not obtained even with only 1 user on the 
system. 

Figure 4 shows the response as a function of hour 
of day. This plot illustrates that the program is sensitive 
enough to show the 'lunch time' bump. 

Figure 5 shows results over a long period of time. 
Various events are labeled on the plot, and their effect on 
overall system response can easily be seen. Figure 6 is the 
same type of plot but for several other categories of users. 

San Francisco, CA - I 986 



$ lo 
How good was system response? Type question mark or A, B, C, D, F: 

How good was system response? Type question mark or A, B, C, D, F: 
? 

During this session, how fast did the system respond to your commands? 
Please give a letter grade: 

A Good 
B Satisfactory, but slower than usual 
C Slow enough to be a problem at times 
D Interfered with getting my work done 
F Logging off because system is unusable 

How good was system response? Type question mark or A, B, C, D, F: 
A 
00:02:06 connect 0.11 units 00:00:12 CPU 0.14 units 

2-AUG-1986 11:36:10.59 GOLDSTEIN logged out at 

s 
c 
0 4 
r 
e 

3 

Figure 1. Logout Dialogue 

Response vs. Number of Users 

4 8 12 16 

Number of Users 

Figure 3. System Response by Number of Users 

512 

0.25 total units 

20 



4.0 By Hour 

15 
s u 
c s 
0 e 
r 3. 5 1or 
e s 

3.o+-----+------+----+-----+------+------1 

4.0 

s 3.0 
c 
0 

r 
e 

2.0 

0 

Mar-85 

4 8 12 16 20 24 

Hour of Day 

Figure 4. System Response by Hour of Day 

Memory 
Installed 

Response Scores 

RS/1 moved 
to its 
own VAX 

Jun-85 Sep-85 Oec-85 

Month 

Feb-86 May-86 

Figure 5. 18 Month Log of System Response 

513 

--0-- Score 
-ti.- Users 

---0- overall 
-tr-- AS1 



s 
c 
0 

r 
e 

4 

3 

Response Scores 

-er- Word-11 
-t;.- Oracle 
--0--- Programmers 

Mar-85 Jun-85 Sep-85 Dec-85 Feb-86 May-86 

Month 

Figure 6. System Response for Various Categories of Users 

4.) 

4.2 

4.0 

s j3-

c 3.8 I 0 

r 

I e 3 6 

3.4 

3.2 

3.0 ~~~-.-~~~~~~~~1~~~-

26-DEC-85 05-APR-86 14-JUL-86 

Month 

Figure 7. Response Scores for Node SCI 

514 



USE ON OTHER SYSTEMS 

The program was used to assist in tuning the Tufts Image 
Analysis Facility VAX750. Before tuning, overall score was 
3.30 ±0.08. After tuning, the score was 3.73 ±0.04. These 
were averages taken during the month before and the month 
after tuning. 

Figure 7 shows the response scores on our 
MicroVAX that is dedicated to running RS/1. They are 
generally much higher than the 780 scores since this 
machine is more lightly loaded than the 780. 

TECHNICAL DETAILS 

We have defined user categories as shown in Figure 8. Other 
sites may define their own categories. The definition of each 
user's category must be inserted into their login.com file. 

1 -GENERAL 
2-WORD11 
3 - RS1 
4- ORACLE 
5-PROGRAMMER 

Figure 8. User Categories 

A section of the response log file is shown in Figure 9. 

l-JUL-1986 15:32:48.01 13u 8•3 FRADELLA WORDll 
l-JUL-1986 IS:34:59.88 12u A•4 SUTTON ORACLE 
l-JUL-1986 15:48:20.39 !Ou C•2 CROISETU GENERAL 
l-JUL-1986 IS:S2:49.70 !Ou C•2 KESSLER Pll.OGRAMMEll 
l-JUL-1986 15:S3:S6.00 12u 1•3 TAUSEVICH GENEIAL 
l-JUL-1986 IS:55:55.76 llu A•4 SYSTEM UND!P111ED 
l-JUL-1986 16:00:52.01 l lu A•4 SYSTEM UllD!FINID 
l-JUL-1986 16:11:55,86 12u C•2 LITCHMAN GENERAL 
l-JUL-1986 16:14:33.81 llu 1•3 MAIUCHI GENERAL 
l-JUL-1986 16: 14:49.21 l 2u --- SUTTON ORACLE 
l-JUL-1986 16:39:28.12 12u 1•3 PRADELLA WOIDll 
l-JUL-1986 16:52:33.93 !Ou A•4 TAUSEVICH Gl!llERAL 
l-JUL-1986 17:00:45.19 !Ou A•4 SCOTT OlACLI 
l-JUL-1986 17:05:40,74 9u 1•3 GLENN PIOGIAMMEl 
l-JUL-1986 17:14:55.18 9u 1•3 RICHARD GENERAL 
l-JUL-1986 17:23:34.69 7u A•4 SYSTEM UNDEFINED 
l-JUL-1986 17:26: 19.57 6u A•4 SUTTON 011.ACLE 
l-JUL-1986 17:35:36.21 4u c-2 KESSLER PROGRAMMER 
l-JUL-1986 17:48:23.49 3u A•4 STUCKER WORD! I 

Figure 9. A Section of the file RESPONSE.LOG 

The username, date, time, number of users, grade 
and user category is given on each line. If a user fails to give 
a grade, "---" is written in the grade field. If a user category 
has not been defined, "UNDEFINED" is written in this field. 

Since the response log file is ASCII, any 
programmer can easily, in any language, write a program that 
reads the file and produces a report. The program we wrote, 
RESPREPT, produces the statistics illustrated in all of the 
previous figures. However, it is important that the program 

515 

not operate directly on sys$response:response.log, since a 
user might be logging out at the time RESPREPT is run. This 
would cause a file access conflict and the user's logout 
would fail. Instead, a copy is made of response.log, and 
RESPREPT reads the copy. 

CONCLUSION 

This program has been put onto the DECUS SIG tape. We 
think that this technique is a simple, easy, visible way to get 
a measure of response time. It shows the USER that you 
value his opinion and that alone makes for a better 
environment. 





M~BIUS: NEW DIRECTIONS IN MICRO AND HOST INTEGRATION 
(Controlling Your PC from a VAX) 

E. William Merriam, President 
FEL Computing 

10 Main Street - PO Box 72 
Williamsvillek VT 05362 

(802) 340-7171 

ABSTRACT 

Mobius is a system for integrating micro computers and DEC 
host machines (VAX, TOPS-20, TOPS-10) which has recently 
been enhanced to include several advanced features. From 
the viewpoint of the micro user, Mobius has always allowed 
the host to be a true extension of the micro, where host 
resources (files, devices, printers) a~e accessed ex?ctly as 
if those resources were physically resident on the micro. 
The recent enhancements support the viewpoint of the host 
user where the micro becomes a sophisticated peripheral 
devibe under total control of the host. To the end user, 
whether principally oriented toward the micro or host, the 
connection between the two machines is completely 
transparent. 

Mobius is a micro/host integration system that 
has recently been extended to allow full access 
to and control over the resources of a personal 
computer from within host programs. Mobius 
previously provided full transparent access to 
host resources, such as disk files, printers, 
and programs, thus creating a friendly 
environment from the microcomputer user's 
point-of-view. With the new extensions, that 
point of view is reversed so that the 
microcomputer becomes a peripheral device to the 
host, thus creating a similar environment from 
the host computer user's point of view. Since 
the new features have been added without 
sacrificing the old ones, the two environments 
can be freely intermixed, so that the micro and 
host machines become powerful co-processing 
partners. 

This paper shows how VAX programs interact with 
Mobius to provide a symbiotic micro/host 
environment to the user. This paper will also 
briefly describe the new Mobius Task-To-Task 
Communication facility. Finally, the high-level 
Task-Force task description language that is now 
a part of the Mobius system will be discussed, 
including its user-defined menu package. 

BACKGROUND AND UPDATE 

A paper published in the DECUS Proceedings for 
Dallas, Texas, 1986 entitled "Using Mo bi us to 
Extend 1022 and 1032 Capabilities to Personal 
Computers" described how the capabilities of the 
1022 and 1032 data base management systems could 
be provided to microcomputer users with Mobius. 
Briefly, that paper showed how the 1022/1032 
systems can be activated, data extracted from 
the data base and made available to a 
microcomputer program (such as Lotus 1-2-3) all 
by typing a si~~le microcomputer command. It 
was shown how is was accomplished through a 
Mobius feature that allows a pro~ram on the 
micro (in this case, 1-2-3) to directly access a 
file on the host (in this case, the data 
extracted from the data base). 

Also discussed was a feature of Mobius that 
allows a host device, such as a printer, to be 
accessed directly from micro programs (e.g., 
with the Lotus 1-2-3 "/PRINT" command). Other 
issues addressed include how Mobius supports the 
host user with convenient mechanisms for 
activating a built-in VT-100 terminal emulator 
and for configuring the micro/host environment; 
how the programmer is supported through a 
micro-based Advanced Programmer's Interface; and 
how the Information Manager is supported through 
a variety of host system and Mobius access 
mechanisms that allow micro users to be managed 
identically to terminal users. 

Proceedings of the Digital Equipment Computer Users Society 517 

Since that paper was written, many enhancements 
have been added to the Mobius system. Those 
that relate to the previous paper are: 

Micro-User Transparency: 
All 26 drives (A: - Z:) may be defined to 
be any combination of directories~ files, 
DECnet modes, etc. on the host. up to 
three microcomputer printers (PRN:, LPT1 -
LPT3) may be defined to be host devices. 

System configuration and management: 
The host system manager may specify 
system-wide parameters and configuration 
information that apply to all Mobius 
users. 

Programmer: 
The Advanced Programmer's Interface has 
been expanded to allow a program to 
perform virtually any operation that a 
user can perform by typing at the 
keyboard. 

The enhancements that relate to the current 
paper include: 

- The ability to control a personal computer 
from the host (either from the host system 
prompt or from within a program such as a 
data base management system). 

- The ability to control the Mobius 
micro/host environment itself from the 
host or the PC (again, either from the 
system prompts or from within programs). 

- Full task-to-task communication, where a 
program running on one machine can send 
and receive data directly to or from a 
program running on the other machine. 

- The ability to set the micra's clock from 
the host computer's and thus to 
synchronize all of the computer clocks 
within an organization. 

- A high level task description language 
called "Task-Force" which allows 
non-technical users to quickly develop 
applications which tie together all of the 
facilities of the host and microcomputer, 
as well as the Mobius system itself. 

- Auto-dial/auto-login 

There are many other enhancements that are 
beyond the scope of this paper. Even those that 
are within the scope will be discussed only so 
far as they relate to the examples presented. 
More complete information may be obtained by 
contacting the author. 

San Francisn,\ CA - 1986 



NEW THINGS TO DO FROM THE VAX 

This section will illustrate the capabilities of 
the integrated micro/Mobius/VAX environment as 
it appears to a data base management system 
user. We use System 1032 to illustrate the 
concepts but they apply equally well to only 
DBMS 1 Ali-In-One, financial anallsis, graphics, 
or ocher VAX-based systems. It s assumed thac 
the user has logged into the VAX and that the 
Mobius/1032 environment is active. Later, we 
will show how these functions can be performed 
automatically, if required. 

The new capabilities are illustrated by using 
the 1032 "USE" command. This command can be 
issued from anywhere that normal 1032 commands 
can be issued. It simply causes a text file 
containing 1032 commands (called a "DMC" file) 
to be executed. These are standard 1032 
commands and the only difference is that Mobius 
is operating behind-the-scenes to invisibly 
cause actions to occur on the microcomputer. 

USE MOBIUS 

The "USE MOBIUS" command causes the DMC file 
named 11MOBIUS" to be run. The purpose of the 
program is to allow the 1032 user to define the 
micro/host environment. It prompts the user by 
disolaying the message "Enter Mobius Command 
-->l•. Once the command is entered, 1032 calls 
upon Mobius to perform the desired function. 
For example, if the user enters 

DEFINE V: HOST I. I 

then from this point on, whenever a 
microcomputer program references disk drive 
11 V:", it will actually be ref~rencing the files 
contained on the user's VAX directory. 

Similarly, 

DEFINED: HOST •.:Jl.IC,[.DATA]*.:Jl.IC 

would cause the microcomputer's drive 11D: 11 to 
reference all of the DMC files in the user's 
current VAX directory and ".DATA" sub-directory. 

Pre-defined micro/host environments can also be 
set up so that it is not necessary for the user 
to create them each time an application is run. 

USE STATUS 

Displays the status of the integrated micro/host 
environment, including the current definitions 
of the host-based disk drives (referred to as 
11 M5bius Disks" or "Mobius Drives" in the 
remainder of this paper). 

USE PC 

Prompts with the message "Enter PC command -->". 
When the command is entered, it is sent through 
Mobius to the microcomputer where it is 
processed. For example, if the command is: 

DIR A: 

then the floppy drive "A:" is activated on the 
micro and the directory information describing 
those files is displayed on the screen. When 
done, the user is returned to 1032. 

Likewise, if the command is 

WS B:MANUAL. DOC 

then the WordStar (WS) text editor would be 
started and it would edit the MANUAL.DOC file 
contained on the user's disk drive "B:". In 
this case, the user would interact with the 
WordStar program, editing the file completely on 
the microcomputer. When the WordStar program is 
exited, the user is again returned to 1032. 

Notice that ~gr microcomputer command can be 
executed in s manner. For example, the 
command 

518 

D: 

would cause drive 11 D:" on the micro to become 
the currently logged drive. 

Notice further that the VAX.files refere~ced as 
a Mobius Disk are fully available to a micro 
program started through the 1032 DMC file. For 
example, the command 

WS FILMS.DMC 

would cause WordStar running on the micro to 
edit the FILMS.DMC file on the VAX. 

USE 123, mE DBASE, mE ws 
Starts Lotus 1-2-3, dBASE, or WordStar on the 
microcomputer. These DMC files operate 
similarly to the PC DMC file described above, 
except they are tailored to run the specified 
program without requiring the user to enter the 
specific command. 

We have used three popular microcomputer 
programs as examples here, but any microcomputer 
program can be run in this manner. 

USE PRINT 

Asks for the data to be printed and directs that 
data to the microcomputer printer. Thus, VAX 
users can take advantage of printers, plotters, 
or other special devices connected to their 
microcomputers. 

USE ENTRY 

ENTRY causes the dBASE data base management 
system to be started on the microcomputer and to 
display a screen form for entering data into the 
VAX data base system. This screen form is 
entirely constructed using the features of 
dBASE1 including all editing and range-checking 
operacions. Thus, all of this high-overhead 
processing is off-loaded from the VAX. Since 
dBASE is used, the flexibility of a 
general-purpose data entry system is retained. 
In addition, if more complex data operations are 
required, they can be easily handled using the 
features that dBASE provides. 

As each data base record is created it is 
written to a file on the VAX through a Mobius 
Drive. When the data entry session is complete, 
the dBASE program terminates and the new records 
are merged into the VAX data base. 

Since dBASE is so familiar to microcomputer 
users, we chose that system for this 
application. However, any microcomputer program 
that allows data entry~ including one written by 
a user, could be used ror this purpose. 

USE GRAm 

GRAFH causes data to be extracted from the VAX 
data base and to be written to a VAX file. 
Then, it causes the Lotus 1-2-3 spreadsheet 
program to be started on the microcomputer. 
Using a special feature of Mobius Task-To-Task 
Communication, commands are entered into 1-2-3 
just as if they had been typed by the user at 
the keyboard. Thus, the VAX data base 
management system can not only start any micro 
program desired, but through Mobius it can also 
tell it what to do. 

The commands sent by 1032 in this case cause 
1-2-3 to read the data that was extracted from 
the data base into a 1-2-3 spreadsheet and then 
to activate the features of 1-2-3 for graphing 
the data. The user is then presented with a 
1-2-3 menu which allows the selection of the 
type of graph desired. As before, when the 
micro program is finished, the user is returned 
to 1032. 

Notice that in this example, the VAX performed 
none of the time-consuming graphic calculations 
or screen-handling operations. All of that was 
performed by 1-2-3 on the microcomputer using 
its already-existing facilities. 



AND MORE ••• 

The above examples illustrate only a few of the 
things that can be accomplished with Mobius and 
a VAX program working together. In general, a 
VAX program can activate, control, send and 
receive data to and from any program on the 
microcomputer. Of particular importance is that 
micro programs can be used that alreadr exist at 
a site and that users are already fami iar with. 
These programs can be used for data entry1 
extraction or output o~erations and can oe 
custom-tailored to specific applications to form 
friendly and flexible front-.ends or output 
processors. Thus, the functionality of the VAX 
program is extended to take full advantage of 
the microcomputer and the VAX system is 
simultaneously offloaded. 

HOW IT WORKS 

The examples above are imolemented through two 
new features of Mobius: ''Task-To-Task 
Communication" and 11 PC Control". While a 
complete description of these facilities is 
beyond the scope of this paper, an overview of 
them is provided here: 

TASK-TO-TASK COMMUNICATION 

Mobius Task-To-Task Communication allows a 
program (task) on the host computer (in this 
case, 1032) to send and receive data to or from 
a program (task) running on the microcomputer. 
This data is sent over the communication channel 
using a protocol that ensures that it reaches 
the other task without errors. 

The host task (1032) communicates with the micro 
task by using VMS "mailboxes". Mailboxes are 
referenced as if they are files, except that the 
information in them is passed to another host 
task, in this case the Mobius program itself. 
The host Mobius program communicates with the 
micro Mobius program, which in turn passes the 
information to and from the microcomputer task. 
This information is usually passed to the 
program through calls to the Mobius Advanced 
Programmer's Interface (API). Since API calls 
appear as normal MS-DOS system calls, virtually 
any microcomputer program that can make MS-DOS 
calls can access the API. 

With Mobius Task-To-Task Communication, data is 
directed from one process to another by means of 
"User Messages". The most common form of User 
Message allows a program running on the host to 
communicate directly with a program running on 
the micro. Other User Messages are defined by 
the Mobius system to have special meaning. By 
using a combination of these User Messages, 
virtually any micro/host application can be 
created. 

PC CONTROL 

Mobius "PC Control" allows the microcomputer to 
be completely controlled from the host machine. 
This is accomplished through a set of programs 
supplied with the Mobius system. These programs 
implement a special set of User Messages that 
cause specific functions to be performed on the 
microcomputer. For example, the "PC" program 
allows microcomputer commands to be issued from 
the VMS "$" prompt, in a similar manner as the 
1032 "USE PC" command mentioned above. For 
example, the command 

PC DIR B: 

typed at the "$" prompt would cause the 
microcomputer to display a directory of the 
files on its "B" disk drive. 

Likewise, programs called "123", "DEASE", "WS", 
etc. can be quickly created so that when they 
are run at the VMS "$" prompt (or in a DCL 
command procedure, or from another program, 
etc.) the desired program is run on the 
microcomputer. 

519 

While the 1032 DMC files discussed earlier and 
the pro~rams supplied with the Mobius system are 
quite different from one.another, they us~ the 
exact same Mobius mechanisms.for controlling the 
microcomputer. These mechanisms are 
general-purpose and can be implemented in any 
2rogram that can access VMS mailboxes. 
Therefore, it is possible to develop a 
system-wide set of useful microcomputer 
functions that can be accessed from within 
virtually any host program or from VMS itself. 

One of the particularly interesting features of 
PC Control is the ability of Mobius to cause 
data to be entered into a microcomputer program 
as if that data had been typed at the keyboard. 
The data can be provided to Mobius on the 
microcomputer through a special Task-To-Task . 
Communication User Message from the host machine 
or directly from a microcomputer program through 
the Advanced Programmer's Interface. By having 
both methods of keyboard data entry available, 
many applications become easy to implement that 
would otherwise be impossible (e.g., the 1032 
"USE GRAPH" example given earlier). 

TilNG IT AIL TOGETHER: TASK-FORCE 

The features described so far represent powerful 
elements of the Mobius micro-and-host 
inte$ration system, which allow countless 
applications to be performed which could never 
before even be considered. Coupled with the 
other features of Mobius itself, the VMS system, 
1032 and the multitude of other VAX and 
microcomputer programs, a bewildering array of 
interactions can take place. To help develop 
applications which utilize all of these 
capabilities, a new language called "Task-Force" 
was created and is an integral part of the 
Mobius system. 

Task-Force is specifically designed to allow 
applications to be easily created where thos~ 
applications involve the interaction of multiple 
programs on different machines. In addition 1 a 
Task-Force program, instead of controlling other 
processes, may itself be the primary 
microcomputer program in an application. It may 
function as a front-end using its user-definable 
menu package. It may also function as a full 
participant in a micro/host Task-To-Task 
Communication application, since it contains 
complete facilities for sending 1 receiving, and 
acting upon all of the various types of user 
messages. 

An overview of the facilities provided by the 
Task-Force language can be obtained by 
considering the following menu which is typical 
of what might be presented to a microcomputer 
user: 

A. Setup 
B. Dial 
C. Login 
D. VAX/VMS 
E. Mobius 
F. Mail 
G. VAX DBMS 
H. 123 
I. dBASE 
J. PC-DOS 
K. Lo$out 
L. Exit Menu 

Task-Force allows this menu to be created (with 
optional titles and an attractive border) 
through a menu package that is delivered with 
the Mobius system. This package allows a menu 
such as this to be created in only a few 
minutes. More importantly, it can be modified 
just as easily, saving considerable program 
maintenance time and money. 

When the "Setup" option is selected, the Mobius 
"MSETUP" program is run which is itself composed 
of a variety of menus. It is used to set 
various parameters such as communication channel 
speed, tab settings, colors for the terminal 



emulator, etc. It is a normal microcomputer 
program which, like selections H and I, was 
developed with no knowledge that it would be 
accessed from another program. However, through 
Task-Force 1 all such programs integrate easily 
into a uniried environment. When the MSETUP 
program terminates, the menu is again displayed. 

The "Dial" and "Login" menu items activate 
functions which are themselves Task-Force 
programs that are delivered with the Mobius 
system. They perform the functions of dialing 
an auto-dial modem and automatically logging 
into a host system, respectively. As with 
MSETUP, they were developed independently of 
this menu application, but integrate into it 
nicely. 

The "VAX/VMS" item enters the Mobius terminal 
emulator and either presents the VMS "$" prompt 
or, if the user has not already logged in, 
allows the user to log in manually. :Notice that 
the terminal emulator has been entered under 
¥rogram control. This means that the program 
tseif (the one that dis~lays the menu) is 

temporarily suspended while the microcomputer 
operates as a terminal to the VAX. However, 
when the terminal emulator is exited, the 
program will resume and the menu will again be 
displayed. 

Item E, "Mobius", is provided so that the user 
can interact directly with the Mobius system to 
set up the micro/host environment. If Mobius is 
not running on the host system, it will be 
started automatically. This is an example of 
how Task-Force can detect the status of the 
interacting programs and perform the appropriate 
action. This relieves the user of the burden of 
performing the actions or even of knowing that 
they must be done. 

Another example of this occurs completely hidden 
from the user. That is, the Task-Force program 
that implements this menu determines if the 
micro's clock has been set. If it has not been 
set, as soon as Mobius is activated on the host, 
the program causes the micro's clock to be 
synchronized with the host's clock. 

When the "Mail" item is selected 1 the VMS MAIL 
program is run on the host compu~er and the 
Mobius terminal emulator is entered. The user 
then interacts with the MAIL program as normal. 
When the program is exited, the menu is 
re-displayed. Any host program can be run in 
this manner through Task-Force. 

The "VAX DBMS" item is similar to "Mail" in that 
the VAX "S 103211 program is run. Unlike MAIL 
however, 1032 uses some of the Task-To-Task 
Communication and PC Control facilities of 
Mobius through the 1032 DMC files described in 
Section 1.0 of this paper. Because these 
facilities are so widely useful, they are 
automatically available whenever Task-Force 
programs (as well as others) are being run. 
Therefore, absolutely no programming whatever is 
required on the microcomputer in order to 
implement the capabilities previously discussed, 
other than to simply run the S1032 program. 

Item J, "PC-DOS" activates the microcomputer 
commana processor. This is really another 
example of running a micro program from a 
Task-Force program and illustrates the 
flexibility of the concept. 

The "Logout" and "Exit Menu" options both 
provide additional menus that allow the user to 
select various actions that should or should not 
occur at this time. Thus, the Task-Force menu 
package allows multiple menus to be defined and 
referenced. 

THE INTEGRATED PC/OOST ENVIRONMENT 

The examples of the 1032 DMC files and of the 
Task-Force menu system show two ways in which an 
integrated micro/host environment can be 
structured. Further, when running programs from 

520 

the menu, these two structures merge into a 
symbiotic co-processing relationship. Such a 
relationship provides an unusually powerful 
system for the VAX user who also utilizes a 
microcomputer • 



VMS FILE I/0 VIA QIO TO AN ACP 

Al Tyrrill 
Digital Consulting 

Garden Grove, California 

ABSTRACT 

I/O to file structured devices is usually done through VAX 
Record Management Services (RMS). However, QIOs can be 
issued directly to such devices through the associated 
Ancillary Control Process (ACP) or extended QIO processor 
(XQP). Doing so avoids the overhead of RMS and provides 
special operations not otherwise possible. The disadvantage 
is that the services of RMS are not available. This paper 
describes the capabilities of file structured I/O via direct 
QIO through ACPs, with high level language examples (Fortran 
and Ada). 

INTRODUCTION 

The control flow of an I/O operation issued by a high 
level language program is illustrated in figure 1. 
The program issues calls to routines in the 
language's runtime system CRTS) which in turn issues 
calls to VAX Record Management Services (RMS). RMS 
in turn issues QIO system service calls to an 
Ancillary Control Process (ACP). An ACP issues QIO 
services to the driver for the file structured 
device, which in turn controls the device hardware. 

Program 

Figure 1) File I/O Control Flow 

In VMS version 4.0 and later for ODS-2 structured 
disks (VMS native mode), the ACP is replaced by the 
extended QIO processor, which is kernel mode code 
running in the context of the calling process. 

The language RTS is reponsible for the formatting of 
individual fields within a record. RMS creates and 
maintains the record structure of a file. The ACP or 
XQP maintains the file structure on the device. The 
device driver translates a generic logical structure 
to an actual physical device, which in the case of a 
disk will have a particular sector, track and 
cylinder arrangement. 

It is possible to bypass the I/O features of the 
language RTS. This has several advantages. It 
eliminates the language RTS overhead, which in a 
language like Fortran can be significant. It makes 
the full functionality of RMS available to the 
application program, which is generally not available 
through the language I/O. The RMS interface is fully 
supported. 

Proceedings of the Digital Equipment Computer Users Society 521 

Disadvantages are that the language I/O functionality 
is lost (record formatting must be done by the 
application) and that RMS can be imposing to learn. 

It is also possible to bypass RMS and issue QIOs from 
the application program directly to the ACP/XQP, as 
illustrated in figure 2. Advantages of doing so are 
that the overhead of RMS is eliminated. The QIO/ACP 
interface is supported and not hard to learn, 
although novices may need guidance. 

Program ~--------

Language 
RTS 

Figure 2) Direct Interface to ACP/XQP 

Disadvantages are that the functionality of RMS is 
lost. In practical terms, files must be collections 
of fixed length, 512 byte directly accessed records. 
The documentation could be better (see reference 1) 
and users should prototype before incorporating this 
facility in application programs. 

ISSUING QIO FROM FORTRAN 

Whenever VMS system services are to be issued from a 
Fortran program, files should be included in the 
program as shown. 

INCLUDE 1 ($SYSSRVNAM) 1 

INCLUDE 1 ($IODEF)' 
INCLUDE 1 ($SSDEF) 1 

INCLUDE I ($FIBDEF) I 

INCLUDE 1 ($FIDDEF) 1 

INCLUDE I ($A TR DEF) I 

system service names 
I/0 function codes 
system status codes 

control block 
structure definitions 
with codes 

San Francisco, CA- 1986 



These files are in the library FORSYSDEF. $SYSSRVNAM 
contains INTEGER and EXTERNAL statements for each 
system service and commentary describing the required 
parameters. It is a large file and compilations will 
be speeded by extracting the needed parts into a 
separate file, once the services to be used have been 
identified. $IODEF defines symbolic names for the 
IIO function codes, $SSDEF does the same for the 
system service status (return) codes. $FIBDEF, 
$FIDDEF and $ATRDEF contain STRUCTURE statements 
defining the data structures required by the QIO/ACP 
interface. 

A Fortran program that is to use the QIO system 
service must first assign a channel to the device or 
logical unit, as shown. 

INTEGER*4 CHANNEL, RETURN CODE 
CHARACTER*20 DEVICE NAME 

RETURN CODE = SYS$ASSIGN (DEVICE NAME, CHANNEL, 
1 [ acmode], [mbxnam]) 
IF (RETURN CODE .NE. SS$ NORMAL) THEN 

{take-corrective action} 
ELSE 

{continue processing} 
END IF 

CHANNEi. receives the channel number returned from the 
ASSIGN system service. RETURN CODE receives the 
status code specifying the outcome of the system 
service. DEVICE NAME contains a physical device or 
logical name that-translates to a physical device. A 
logical name that includes a directory path may be 
used, but the path information will not be useable by 
the ACP. 

It is important that the system service status code 
always be checked, otherwise a failed operation will 
have the appearance of a no-op. The parameters 
acmode (access mode of the channel) and mbxnam 
(logical name of the mailbox associated with the 
channel) are optional and not generally used in this 
application. Note that trailing optional parameters 
cannot be omitted. A system service with N 
parameters must have N-1 commas in the parameter 
list. 

Use of QIO from Fortran programs will 
the form illustrated. Computation is 
IIO, as will usually be the case when 
is used. 

generally take 
overlapped with 
this facility 

INTEGER CHANNEL, RETURN CODE, EVENT_FLAG/1/ 
INTEGER*2 STATUS_CODE(4} 

RETURN CODE = 
2 SYS$QIO 
3 

($VAL(EVENT FLAG), %VAL(CHANNEL), 
$VAL(function), STATUS CODE, 
[astadr], [astprm], -4 

5 
IF 

P1, P2, P3, P4, P5, P6) 
(RETURN CODE .NE. SS$ NORMAL) THEN 

{take-corrective action} 
ELSE 

{processing to overlap I/O} 

RETURN CODE =SYS$ WAITFR ($VA1(EVENT FLAG)) 
IF (STATUS CODE(1)-.NE. SS$ NORMAL) THEN 

{take-appropriate action} 

522 

ENDIF 

El SE 
{continue processing} 

ENDIF 

CHANNEL is the value provided by the ASSIGN system 
service. RETURN CODE receives the code describing 
the correctness of the call to the QIO service. It 
would indicate, for example, that a parameter was out 
of range. The value is available immediately after 
execution of the QIO call. STATUS CODE receives the 
code describing the result of the o'Peration requested 
by the QIO service. It would indicate, for example, 
that a specified file did not exist. Its value might 
not be available until some time after control 
returns from the QIO call. 

EVENT FLAG is the number of the VMS event flag used 
to synchronize the operation of QIO with the calling 
program. The flag (not the variable EVENT_FlAG) is 
cleared at the call to SYS$QIO and set when the 
requested operation is complete. SYS$WAITFR checks 
if the specified event flag is set, and if not, 
suspends execution until it becomes set. It is 
important that both the status codes are checked, 
otherwise failure will have the appearance of a 
no---op. 

"function" specifies the operation to be performed by 
the QIO. "astadr" specifies the address of a routine 
that it to receive control when the requested 
operation completes. "astprm" is an optional 
parameter for the AST routine. 

There are six function/device dependent parameters, 
called P1 P6. For QIOs directed to an ACP, these 
always take a particular form, to be described 
subsequent! y. 

If overlap of processing and I/0 is not necessary, 
then the SYS$QIOW system service can be used and 
reference to an event flag and SYS$WAITFR can be 
omitted. 

When I/O operations are complete, the channel should 
be de-assigned. 

RETURN CODE = SYS$DASSGN (CHANNEL) 

De-assignment will occur automatically during image 
rundown, so it is usually sufficient just to exit the 
program. 

ACP/XQP INTRODUCTION 

The file structure on Files-11 devices is maintained 
by an ACP, except in the case of ODS-2 (VMS native 
mode) disks in VMS version 4.0 and later, where the 
extended QIO processor (XQP), kernel mode code that 
runs in the context of the calling process, performs 
the same function. Since the flow of control in an 
ACP is single threaded, concurrent accesses to the 
same file by multiple processes are serialized, at 
least on the same CPU. ODS-1 (RSX compatibility 
mode) disks cannot be accessed by more than one 
processor in a VAX cluster. 

The control flow in the XQP is multithreaded and 
serialization of cuncurrent accesses by multiple 
processes, on the same or different CPUs, is 
implemented via the distributed lock manager. 



The interface seen by application programs is the 
same for either an ACP or XQP and henceforth in this 
paper the term ACP will be used to refer to both 
facilities. 

QIOs to an ACP are used to create, delete, open and 
close files and modify their allocation. QIOs to the 
device driver are used to read and write the file's 
data. Disk ACPs support seven major functions, as 
follows. 

IO$_ CREATE 
IO$ ACCESS 
roCDEACCESS 
IO$ MODIFY 
IO()EIETE 
IO$ MOUNT 
ro(::ACPCONTROL 

create directory entry/file 
look up file in directory, open 
close file, write attributes 
modify attributes, allocation 
delete directory entry/file 
tell ACP volume mounted 
miscellaneous control functions 

Each of these symbols is equated to a code in $IODEF 
which can be used as the function argument in the QIO 
system service. 

Four function modifiers are provided. Each symbol is 
equated to a mask in $IODEF which can be ORed with 
the QIO function argument to modify it effect. 

IO$M ACCESS 
IO$M-CREATE 
I0$M-DELETE 
I0$l{)MOUNT 

open file 
create file 
mark file for deletion 
dismount volume 

The modifiers have different implications for the 
different major functions and can sometimes be 
confusing. Note these modifiers are (in all but one 
case) different from the ACP subfunctions, which will 
be described subsequently. 

The function/device dependent parameters P1 P6 
have the same format for disk ACPs, as shown. 

P1 
P2 
P3 
P4 
P5 
P6 

File Information Block 
Input filename 
Output filename length 
Output filename 
Attribute list 
-- unused --

Parameters P1, P2 and P4 are passed by descriptor, P3 
and P5 are passed by reference. For P1 and P2, the 
Fortran programmer must build his own descriptors. 
In the case of P1, VAX Fortran rejects the %DESCR 
qualifier on RECORD types. With P2, it is usually 
necessary to set the length field of the descriptor, 
as will be described below. 

The File Information Block (FIB), parameter P1, is 
the primary interface between the calling program and 
an ACP. It contains the following information. 

field 

FIB$L ACCTL 
FIB$B=WSIZE 
FIB$W FID 
FIB$W=DID 
FIB$L wee 
FIB$W-NMCTL 
FIB$W-EXCTL 
FIB$L-EXSIZ 
FIB$L -EXVBN 
FIB$B-ALOPTS 
FIB$B_ALALIGN 

bytes contents 

3 access control flags 
1 mapping window size 
6 target file ID 
6 directory file ID 
4 wildcard position context 
2 wild card flags 
2 extend control flags 
4 ex tend size 
4 r~o~ to truooa~ to 

allocation option flags 
interp. of FIB$W_ALLOC 

523 

FIB$W ALLOC 10 
FIB$W-VERLIMIT 2 
FIB$B~)GENT_MODE 1 
FIB$1. ACLCTX 4 
FIB$L=ACL_STATUS 4 
FIB$L STATUS 4 
FIB$L=ALT_ACCESS 4 

For any given function, 

allocation location 
version limit 
access protection mode 
ACL context 
ACL operation status 
alternate access control 
alternate access mask 

values do not need to 
supplied for some or most of the fields, as will 

be 
be 

described in the section on specific operations, 
which follows. Some of the fields have additional 
uses different than described above. 

Disk ACPs support five subfunctions which can usually 
be invoked by several of the ACP major functions. 

Sub function 

Directory lookup 
Access (open) file 
Extend file 
Truncate file 
Read/write attributes 

Invocation 

FIB$W_DID nonzero 
I0$M ACCESS modifier set 
Extend in FIB$W EXCTL set 
Truncate in FIB$W_EXCTL set 
P5 present 

They will be described in more detail in the section 
on specific operations. 

FIIE SYSTEM INTRODUCTION 

All files on a Files-11 disk are uniquely identified 
by a three word record called a File ID, whose 
structure is shown in figure 3. 

15 0 

File number (16 lsb) 

sequence number 

File number l Relative 
(B msb) volume number 

Figure 3) Format of File ID 

Each file has a unique file number, a 24 bit value 
split into two fields. The sequence number is 
incremented each time a file number is reused, due to 
deletion and creation of a new file. The relative 
volume number is nonzero only for multidisk volume 
sets. 

All DEC disks are organized as collections of 512 
byte blocks, but each model has its own number of 
sectors/track, tracks/cylinder and total cylinders. 
Physical blocks of a disk are described in terms of 
sector, track and cylinder. Disks are viewed 
logically as a collection of blocks, numbered from 0 
to the count of blocks on the disk. Each model has 
an algorithm for converting from physical to logical 
block number. In latest technology disks, this is 
implemented in hardware. Previously it was done by 
the device driver. Viewed in terms of logical 
blocks, all disks look the same except for total 
size. 

Virtual block number refers to the relative position 
of a block within a file, starting from 1 to the 
file's block count. Mapping of file virtual blocks 
to disk logical blocks is done from information 
contained in the file's header, described below. 



A disk's index file, named INDEXF.SYS;l, is the file 
through which all other files are located. The 
header of every file on a disk, including the index 
file itself, is a block in INDEXF.SYS. A file's file 
number, plus an offset determined when the disk is 
initialized, is the virtual block numberofthat 
file's header in the index file. The index file is 
created when the disk is initialized and always has 
file ID = (1,1,0), which means file number 1, 
sequence number 1, relative volume O. 

Occasionally a file will need more than 512 bytes to 
contain all its header information. In this case, 
one or more extension headers will exist in the index 
file to hold the header information. 

The information contained in the file header is 
summarized below. 

Header area 
Offsets to other areas 
File ID 
Extension header pointer, if any 

Identification area 
File name, type, version 
Creation, revision, expiration, backup dates 

RMS record area 
Record type, size and attributes 
File organization 
Location of end of data 

Map area 
Retrieval pointers (LBN and size) 

Access control area 
Access control list (ACL) in binary 

Each retrieval pointer in the map area contains the 
logical block number and block count of a contiguous 
set of blocks belonging to that file. The file 
system uses the retrieval pointers to map file 
virtual block numbers to disk logical blocks. 

To keep track of whether a disk block is allocated to 
a file or available for allocation, a bit map of all 
the disk blocks is maintained. Each bit represents 
one cluster of blocks. The cluster is the basic unit 
of allocation on a disk, cluster sizes of 1, 2 and 3 
blocks are typically used. The file BITMAP.SYS holds 
the allocation bit map, this file is also created 
when the disk is initialized and has ID= (2,2,0). 

Directories are sequential files with variable length 
records, with format illustrated in figure 4, 
Directories point to other directories and files via 
their file IDs. 

15 

version limit 

name length 

name 
and 
type 

version 

t-- file 
t-- ID 

0 

---I _ __, } 

one for 
each 
version 

Figure 4) Directory Record Structure 

The file system always maintains directories in 
alphabetical order so that optimized search 
algorithms may be used. The version limit is the 
maximum number of versions of a file the file system 
will allow to exist. It will delete the oldest 
version to keep the limit from being exceeded. 

The master file directory is the top level 
of a volume. It is created when the 
initialized and has file ID= (4,4,0). 

directory 
disk is 

The bad blocks on a disk are isolated and recorded by 
allocating them to a file named BADBLK. SYS. This 
file is also created when the disk is initialized and 
has file ID= (3,3,0). In latest technology disks, 
the bad block function has been moved to hardware, 
but BADBLK. SYS is still created and blocks can be 
allocated to it. 

COMMON ACP OPERATIONS 

This section describes 12 common operations that 
applications typically will perform via an ACP. 

Look up file in directory 
Look up filename with wildcards 
Look up file by file ID 
Look up file and access (open) 
Create directory entry and file, open 
Look up file, create if not present, open 
Extend file 
Enter synonym in directory 
Read/write file attributes 
Read/write file data 
Deaccess (close) file with truncation 
Delete file and directory entry 

Readers may refe.r to reference 1 for operations not 
described here. 

524 

look Up File In Directory 

To look up a file in a directory, the IO$_ ACCESS 
function (without modifier) is used. The directory 
ID is stored in FIB$W DID and the filename is passed 
via the P2 parameter. It must have the form 
name.type;ve.r or name.type.ver. Trailing blanks, if 
present, should be removed because the filename 
parser, after it finds the semicolon, returns an 
error if more than six characters remain in the 
parameter. 

The semicolon or period version delimeter must be 
present, but the version number can be defaulted. 
Zero or no version means the latest. 

The filename cannot contain a directory 
specification. If the file ID of the directory is 
not known, it must be requested via a call of this 
type. If there is a long directory pathname, 
successive "look up file in directory" calls must be 
made, starting with the master file directory, ID= 
( 4, 4, O). This is illustrated in the Ada ex ample at 
the end of this paper. 

If all that is known about the file is a partial 
directory path and a logical name (which contains the 
rest of the path), the "translate logical name" 
system service must be used to obtain the full 
pathname. 



The ACP returns the file ID of the target file in 
FIB$W FID and the filename and length in Pl!, P3. The 
actual version number will be returned if zero or no 
version was input. 

look.!:!£. Filename With Wildcards 

If a filename with the wildcard characters* and % is 
presented to the AeP, it will return all the 
filenames that match the specification. The 
IO$ ACCESS function is used, the directory ID is 
stored in FIB$W DID and the filename with wildcards 
is passed in P2. The wildcard context field 
FIB$L wee must be set to zero and FIB$M WII D in the 
name control field FIB$W_NMeTL must be set. 

QIOs are repetitively issued, with each one another 
name and length matching the specification is 
returned in Pl!, P3. When a QIO status other than 
SS$_NORMAL is returned, the name in Pl! is not valid 
and no more QIOs should be issued. Ignoring the bad 
status will cause the entire list to be returned 
again. 

To cause all names, types and/or 
the given specification, one 
FIB$M AI.LNAM, FIB$M ALLTYP, 
FIB$W=NMCTL can be set: 

versions to match 
or more of the flags 

FIB$M_ALLVER in 

To look up a file in a directory when its ID is known 
but its name is not, use IO$ ACCESS function, enter 
the directory ID in FIB$W DID,-the target file ID in 
FIB$W FID and set FIB$M FINDFID in FIB$W NMCTL. The 
target filename and length will be returned in Pl!, 
P3. 

If multiple synonyms exist in the directory (entries 
with different names pointing at the same file) only 
the first will be found. They can be deleted with 
the IO$ DELETE function, however. Lookup by file ID 
is slower than by name because it involves a linear 
search through the directory while lookup by name 
takes advantage of the alphabetization. 

To open a file after locating it in a directory, add 
the I0$M ACCESS modifier to the IO$ ACCESS function. 
Enter the -directory ID in FIB$W DID and the filename 
in P2. Set various flags in the access control field 
FIB$L_ACCTL to specify desired access. 

Set FIB$M_WRITE if data is to be written to the file, 
clear it to read. Set FIB$M NOWRITE to deny access 
to other processes wanting to "Write to the file. Set 
FIB$M_NOREAD to deny access to other readers. 
FIB$M NOTRUNC will prevent others from truncating the 
file, FIB$M DLOCK will cause the file to be locked 
if the program exits without closing the file or 
closes it improperly, Programs in higher modes than 
"user" can set FIB$M EXECUTE to use the "execute" 
protection bit rather than the "read" bit to 
determine access. 

FIB$W_SIZE is used to specify the size of the buffer 
used to hold retrieval pointers in memory. The 
larger the buffer, the fewer times the ACP will need 
to reread the file header to fetch pointers not in 

525 

the buffer. A value of zero requests the volume 
default, -1 makes the buffer large enough to hold all 
the pointers (subject to the BYTEUM quota). 

Create Directory Entry and File, Open 

To create a new directory entry and file and open the 
file, the IO$_CREATE + IO$M_CREATE + IO$M_ACCESS 
function is used. The directory ID and filename are 
entered in FIB$W_DID and P2, respectively. 

Flags in the name control field FIB$W NMeTL control 
version handling. If FIB$M_NEWVER- is set, the 
version number is incremented if the specified 
version already exists. Setting FIB$M SUPERCEDE 
causes the old file to be deleted if the -specified 
vesion exists. The ACP sets FIB$M_HIGHVER or 
FIB$M LCMVER if a higher or lower numbered version, 
respectively, already exists. 

A version limit for the directory entry (max number 
of versions allowed to exist at a time) should be 
entered in FIB$W VERLIMIT. Access control 
information (see above) should be provided in 
FIB$W_ACCTL. 

The ACP returns the filename (possibly with a 
different version number) and length in Pl!, P3, and 
the file ID in FIB$W_FID. 

To create a scratch file, use the IO$M DELETE 
modifier in addition to the others. Thus the 
function is IO$ CREATE + IO$M CREATE + I0$M ACCESS + 
IO$M_DELETE. The file will be marked for deletion 
when created and will actually be deleted when 
deaccessed or if the program exits without doing so. 

Look.!:!£. File, Create If Not Present, ~ 

To create a file only if one with the same name, type 
and version does not already exist, the IO$ ACCESS + 
IO$M_ACCESS + I0$M_CREATE function is used. -Note the 
difference from the previous function code. 

The filename and directory ID are entered in P2 and 
FIB$W DID, respectively. Version and access control 
information are provided in FIB$W _NMCTL and 
FIB$L_ACCTL, as above. 

The filename and length are returned in Pl!, P3, and 
the file ID is returned in FIB$W_FID. 

Extend File 

In the previous paragraphs, when a file was created, 
only the file header and no space for data was 
actually allocated. To allocate data space, the 
extend function must be used, either when the file is 
created (with the IO$ CREATE function) or later (with 
the IO$ MODIFY function). In either case extension 
is enablE!d by setting FIB$M EXTEND in the extend 
control field FIB$W_EXCTL. -

Extend control options are enabled by flags in 
FIB$W EXCTL. If FIB$M NOHDREXT is set, the ACP will 
not create extension file headers, but will return an 
error if the operation requires an extension header. 

FIB$M_ALCON forces contiguous allocation, with an 
error return if that is not possible. FIB$M_AlCONB 



forces as close to contiguous allocation as possible 
(fewest number of pieces). Both FIB$M_ALCON and 
FIB$M_ALCONB being set causes the largest contiguous 
region that is not larger than the requested number 
of blocks to be allocated. 

If FIB$M_FILCON is set, the file is marked 
contiguous. This can only be done on an initial 
contiguous allocation. The number of blocks to be 
allocated is specified in FIB$L EXSZ. The ACP 
returns the number of blocks actually allocated in 
FIB$L_EXVBN. This may be larger than the number 
requested due to cluster roundup or smaller if both 
FIB$M_ALCON and FIB$M_ALCONB are set. 

Options for specifying the location of the blocks to 
be allocated are available. Setting FIB$M EXACT in 
FIB$B_ALOPTS forces allocation to the exact logical 
block specified, with an error return if not 
possible. FIB$M_ONCYL forces the entire allocation 
to be within one cylinder. 

It is possible to specify allocation be as close as 
possible to a specified block of a related file. The 
file ID of that file is specified in FIB$W LOC FID 
and the block number in FIB$L_LOC_ADDR. -See 
reference 1 for more details. 

Synonym Directory Entry 

Multiple directory entries for the same file are 
called synonyms. To create a synonym for a file that 
already has at least one directory entry, the 
IO$_CREATE function is used with no modifiers. 

The directory ID and target file ID are entered in 
FIB$W DID and FIB$W FID, respectively. The filename 
is provided in P2 and version control information is 
passed in FIB$W NMCTL. The ACP returns the file name 
and length in P4, P3. 

Read/Write Attributes 

Attributes are the information contained in the file 
header and certain information on open files 
maintained in internal buffers by the ACP. Some of 
the information that can be accessed and updated is 
as follows. 

File name/type/version/revision count 

Creation/revision/expiration/backup dates 

UIC, protection masks, file characteristics 

Record attributes area 
File organization, record type and size 
Highest allocated and end-of-file VBN 
Bucket size, VFC control size 

Access control list (ACL) 
Add/find/modify/delete entries 

Statistics block 
Star ting LBN and size 
Access and lock counts 
Writer and truncate lock counts 
Number of reads and writes 

Attributes are read or written if an attribute 
control list is present at P5. The attribute control 

526 

list is a sequence of entries with format shown in 
figure 5. A longword of 0 terminates the list. 

31 

attribute code ~ attribute size 

buffer address 

Figure 5) Attribute Control List Entry 

The code specifies the attribute to be referenced. 
The size and address specify a buffer where the 
information is to be stored or originate. Any size 
from 1 byte up to a maximum defined for the 
particular attribute may be specified. 

If the major function is IO$_ACCESS, the attribute 
information is read from the file header. If it is 
IO$_CREATE, I0$_MODIFY or IO$_DEACCESS, the 
information is written. 

Read/Write Data 

To read or write a file's data, the file is first 
opened with a IO$ CR EA TE + IO $M ACCESS or IO$ ACCESS 
+ IO$M ACCESS function. Q!Os are issued on the open 
channel using the function codes IO$ READVBLK and 
IO$_WRITEVBLK. The function/device specific 
parameters are those for disk I/O drivers, as 
follows. 

P 1 - address of data buffer 
P2 - number of bytes to transfer 
P3 - virtual block number in file 

The byte count does not need to be a multiple of 512, 
but all transfers begin at the first byte of a data 
block, so record sizes other than a multiple of 512 
are inconvenient. If the file is to be sequentially 
accessed, the application is responsible for 
incrementing the VBN. 

The only involvement of the ACP is to convert the VBN 
to an LBN for the disk, then the QIO request is 
passed on to the disk driver. If the VBN does not 
map, for example if it is greater than the number of 
blocks allocated to the file, an end-of-file error 
indication is returned. This can occur either 
reading or writing. 

Deaccess With Truncation 

Deaccess means to close the file, truncate means to 
return allocated but unused space at the end of the 
file to the disk's free pool. The IO$ DEACCESS 
function is used. FIB$W FID must contain the correct 
file ID of the target file or 0 (even though the ACP 
already has this information). 

Truncation is enabled by setting FIB$M_TRUNC in 
FI8$W EXCTL. The truncated blocks go to the volume's 
free pool unless FIB$M MARKBAD in FIB$W EXCTL is set, 
then they are allocated to the bad block file (SYSPRV 
is required). The ACP does have logic to perform 
further testing on blocks on which I/O errors 
occurred and to move those with hard errors to the 
bad block file. 



FIB$L_EXVBN is used to pass the VBN of the first 
block to truncate to the ACP. It returns the VBN of 
the actual first block in the same location. This 
may be different due to cluster roundup. If 
truncation to the bad block file is specified, the 
truncation VBN is rounded downward. 

The actual number 
FIB$L EXSZ. This 

of blocks truncated is returned in 
field must be 0 prior to issuing 

the Qfo. 

Delete File and Directory Entry 

To delete a file and its directory entry, the 
IO$_DELETE + IO$M DELETE function is used. The 
directory ID and target file ID are entered in 
FIB$W DID and FIB$W FID, respectively. The filename 
must be provided in P2 for directory entry deletion. 

To delete the directory entry only (because there are 
other synonyms) use the IO$_DELETE function without 
the IO$M_DELETE modifier. 

Things To Remember 

Allocation is separate from data transfer. The ACP 
will not allocate more space because the existing 
space is full. The ACP does not keep track of where 
data, if any, has been read or written. It returns 
an end-of-file indication any time a block specified 
by an IO$ READVBLK or IO$ WRITEVBLK cannot be mapped 
to an LBN. - -

When coding in Fortran, descriptors for P1 and 
need to be built with application code. 
trailing blanks in the input filename in P2. 

P2 may 
Watch 

When extending a file, more blocks than specified may 
be allocated due to cluster roundup. When 
truncating, cluster roundup may cause less blocks to 
be truncated. 

The ACP does not keep track of the location of 
end-of-data in a file nor does it update the 
end-of-file pointers in the RMS record area. The 
application must do this using the read/write 
attributes function. 

If the directory ID field FIB$W DID is nonzero, a 
directory lookup for the file-is performed even if 
the operation doesn't require it. This can cause 
unnecessary disk accesses. FIB$W_DID should be set 
to zero unless the operation requires a directory 
lookup. 

Normally, a QIO status other than SS$_NORMAL 
indicates an error and the ACP performs no operation 
other than to indicate the error. When SS$ BADPARAM 
is returned, the parts of the requested operation not 
involving the bad parameter may be completed anyway. 
This was observed with more than one major function. 

Access control list operations performed by the 
read/write attributes function return binary data and 
are thus inconvenient to work with. They are 
intended for use in conjunction with the AC!.. editor 
and the ACL translation features of DCL. 
Applications could use them to do things like copy 
the entire ACL of one file to another, however. 

527 

Pay attention to fields in the File Information Block 
that must be O when a QIO to the ACP is issued. Some 
are not obvious, like FIB$L_EXSZ when truncating. 

FORTRAN EXAMPLE 

The following example illustrates file I/O via the 
ACP from a Fortran program. Subroutine 
WRITE TEMP Fii E creates a temporary file, writes data 
to it, then closes the file. READ TEMP FILE then 
opens the file created by WRITE TEMP FILE, reads the 
data and closes and deletes the-file-:-

Each call to WRITE_TEMP_FilE passes a 512 byte data 
block. A flag is set on the last call. The routine 
creates the file with an initial allocation, then 
when the file fills an extension allocation adds more 
space. When the routine closes the file, it writes 
the end-of-file position in the file header. 

READ TEMP FILE returns a data block each time it is 
called. When it reads the last block from the file 
(which it knows by examining the end-of-file position 
in the file header) it deletes the file and returns a 
flag to indicate data end. 

URITE A TEMPORARY FILE OF 512 BYTE FIXED LENGTH RECORDS. 
FILE 16 GIVEN AN ARBITRARY NAME AND NO DIRECTORY ENTRY 19 CREATED. 
CHANNEL NUMBER IS SAVED FOR USE BY READ_TEHP _FILE. 

INPUTS~ 
DATA - 512 BYTE INPUT BUFFER 
LAST - FLAG TO INDICATE LAST BLOCK OF DATA 

SUBROUTINE WRITE_ TEMP _FILE <DATA, LAST> 
IMPLICIT NONE 

INTEGER•4 DATA( 128) 
LOGICAL LAST 

INCLUDE 'CSSYSSRVNAH> r 
INCLUDE • < t.IODEF)' 
INCLUDE ' ( $SSDEF) ' 
INCLUDE ' (•FI BDEF> ' 
INCLUDE '<tFIDOEF>' 
INCLUDE ' < tATRDEF>' 

INPUT £1UFFER 
• TRUE. ON LAST BLOCK 

LOGICAL FIRST _CALL/. TRUE./ 
CHARACTER•12 [1EVICE NAME/ 'SYStDISKa 'I 
INTEGER CHANNEL, RElURN_CODE 1 OIO PARAMETERS 
INTEGER ACP _FUNC, OIO_FUNC l OIO FUNCTION CODES 
INTEOER•2 6TATUS_CODE<4> l IO STATUS CODE FROH OIO 

RECORD /Fl[fDEF I FIB 
RECORD /ATRDEF/ ATR(2) 

STRUCTURE /DESCR/ 
INTEGER•2 COUNT, %FILL 
INTEGER•'1 ADDR 

END STRUCTURE 

CHARACTER•BO FILENAME IN 
RECORD /DESCR/ NAHE_IN_DESCR 
INTEGER IILOCK_NUH£1ER 
INTEGER BLOCKS_ALLOC 

FILE INFORHATIOH BLOCK 
ATTRI9UTE LIST 

1 NAHE OF TEHP FILE 

NEXT BLOCK TO IJRITE IN 
BLOCKS ALLOCATED BO FAR 

COMHON/URITE_ TEMP/CHANNEL, FIB, FILENAME_IN, NAHE_IN_DESCR 
1 , BLOCK_NUHBER, DLOCKS_ALLDC 

RECORD /DESCR/ FIB_DESCR 
lNTEGER•4 BUFFER 
1NTEOER•4 VIRTADDR 
INTEGER•2 FAT ( 16) 

BUFFER ADDRESS 
VIRTUAL FLOCK NUMBER IN FILE 
FILE ATTRIEIUTES AREA 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

c 

IF CFIRST_CALU THEN 
FIRST _CALL • .FALSE. 1 SUBSEQ CALLS IJON'T OD THRU HERE 

c--------------------------------------------------------------------------
c ASSIGN CHANNEL 
c--------------------------------------------------------------------------
c 

RETURN_ CODE "" 6YS$ASSIGN <DEVICE_NAME, CHANNEL,,) 

IF <RETURN_CODE .NE. sst_NORMAL> THEN 
URITE <5, 910> RETURN_CODE 
CALL EXIT 

END IF 

FIB.FIB$L ACCTL • FIUM URITE l ACCESS FOR URITINO 
FIB.FlB$U=EXCTL • FI9$H=EXTEND1 EXTEND FILE ON CREATION 
FIB.FIBSL_EXSZ "" 10 l NUMBER BLOCKS TO ALLOC 
ACP _FUNC • IOt_CREATE + IOtH_CREATE + IOSH_ACCESS 

I CREATE AND OPEN FILE 
FILENAHE_IN .. 'INTERMEDIATE.DATA;' 
NAHE_IN_DESCR.COUNT • 18 l NUMBER CHAR IN FILENAME 
NAHE_IN_DESCR.ADDR "" ZLOC<FILENAHE_IN> 

I ADDRESS OF DATA 
ATR< 1>. ATR$1,.1 SIZE • ATRSS RECATTR 1 DESCRIPTOR FOR RECORD ATTRUUTES 
ATRC 1) .ATR$\..1-TYPE .. ATR$C-RECATTR 1 OF FILE 
ATRCU.ATR$L=ADDR., %LOC<fAT> 

FIB_DESCR.COUNT • 64 
FIB_DESCR.ADDR • %LOC<FIB> 

l FULL Fl9 



c c-------------------------------------------------------------------------
c CREATE AND OPEN FILE, NO DIRECTORY ENTRY c-------------------------------------------------------------------------
c 

c 

RETURN_ CODE • SYSIQIOU C, %VAL< CHANNEL), %VAL<ACP _FUNC>, 
BTATUS_CODE,,, FIB_DESCR, 
NAHE_IN_DESCR,,, ATR, > 

IF <RETURN_CODE .NE. SSl_NORHAL) THEN 
URITE <5, 920) RETURN_CODE 
CALL EXIT 

ELSE IF CSTATUS_COD£(1) .NE. BSl_NORHAL> THEN 
URITE <5, 930) BTATUB_CODE 
CALL EXIT 

END IF 

8LOCKS_ALLOC • FIB.FIHL_EXSZ ACTUAL NUHBER OF BLOCl(S ALLOC 
BLOCK_NUHBER • 1 FIRST BLOCK TO URITE 

ELSE I NOT FIRST CALL 
IF <EILOCK_NUHBER .OT. BLOCKB_ALLOC> THEN 

FIB.FIBtL_EXVBN • 0 
ACP _FUNC • IO•_HDDIFY 
FIB.FIBSL_EXSZ • 10 

I HUST ALLOCATE HORE BLOCKS 
I HUST INITIALLY 8£ 0 

I NUHBER BLOCKS TO ADD TO FILE 

c------------------------------------------------------------------------
c ALLOCATE ADDITIONAL BLOCKS FOR FILE c------------------------------------------------------------------------
c 

c 

RETURN_ CODE • SYSSQIOU C, %VALCCHANNEL>, JVALCACP _FUNC>, 
STATUS_ CODE,,, FIB_DESCR,,,,,) 

IF <RETURN_CODE .NE. sst_NORHAU THEN 
URITE CS, 920) RETURN_CODE 
CALL EXIT 

ELSE IF CSTATUS_CODE ( 1) .NE. ss•_NORHAU THEN 
URITE CS, 930) STATUS_CODE 
CALL EXIT 

END IF 

9LOCKS ALLOC • BLOCKS ALLOC + I ACTUAL NUHBER OF BLOCKS ALLOC 

END IF 
END IF 

FIB.FIBtL_EXSZ -

lHO FUNC • IDS URITEVBLK 1 CODE FDR URITE VIRTUAL BLOCK 
VIRiADDR • BLOCK_NUHBER 1 BLOCK IN FILE TO URITE 

c--------------------------------------------------------------------------
c URITE NEXT BLOCK TO FILE 
c--------------------------------------------------------------------------
c 

c 

RETURN_ CODE • SYSSQIOU (, %VAL< CHANNEL>, JVAL((HO_FUNC), 
2 STATUS_ CODE,,, DATA, 
3 %VALC512), XVALCVIRTADDR>,,, > 

IF (RETURN_CODE .NE. sst_NORHAU THEN 
URITE CS, 922> RETURN_CODE 
CALL EXIT 

ELSE IF CSTATUS_CODE(1) .NE. sss_NORHAL> THEN 
URITE CS, 933> BTATUS_CODE 
CALL EXIT 

END IF 

BLOCK_NUHBER • BLOCK_NUHBER + 1 

IF <LAST> THEN I IF LAST BLOCK TO BE URITTEN 
I CLOSE FILE UITH TRUNCATION 

ACP _FUNC .. xos_DEACCESS I CLOSE FILE CODE 
FIB.FIBS.U_EXCTL • FIBS.H_TRUNC I ENABLE TRUNCATION 
FIB.FIBS.L_EXVBN "' BLOCK_NUHBERI FIRST BLOCK TO TRUNCATE 
FIB.FIB$L_EXSZ • 0 1 HUST BE 0 OR FILE SYS COHPLAINS 

FAT<l) • 1 
FAT<2) • 512 
FAH4) • BLOCK_NUHBER 
FAT<6> • BLOCK_NUMBER 
FAT<9> • 512 

FATSB RTYPEa SEDUENTIAL 
FAT$U-RSIZE1 RECORD SIZE 
FATSL=HIBLK C16 LSB) 
FAT9L_EFBLK <16 LSB> CENb OF FILE) 
FATSU_HAXREC 

c------------------------------------------------------------------------
c CLOSE AND TRUNCATE FILE 
c------------------------------------------------------------------------
c 

c 

RETURN_COOE • SYSSQIOU (, XVALCCHANNEL), %VALCACP _FUNC>, 
STATUB_CODE,,, FIB_DESCR,,,, ATR, > 

IF <RETURN_CODE .NE. sss_NORHAU THEN 
URITE (5, 920) RETURN_CODE 
CALL EXIT 

ELSE IF <STATUS_Cot1£(1) .NE. sss_NORHAL) THEN 
URITE <5, 930) STATUS_CODE 
CALL EXIT 

ENDIF 
ENDIF 

RETURN 

910 FORMAT (' ASSIGN RETURN CODE • ', ZB.B) 
9.20 FORHAT (' ACP QIOU RETURN CODE• ', ZB.8) 
922 FORMAT <' URTVBLK OIOU RETURN CODE • ', Z8.8) 
930 FORMAT C' ACP STATUS CODE• ', 4Z5.4) 
933 FORMAT <' I/O STATUS CODE • ', 4Z5.4> 

END 

C READ A TEMPORARY FILE OF 512 BYTE FIXED LENGTH RECORDS, THEN DELETE IT. 
C URITE_TEHP_FILE HAS ALLOCATED CHANNEL AND SET UP FIB., 
c 
c 
c 
c 
c 

OUTPUTS~ 
DATA - 512 BYTE OUTPUT BUFFER 
LAST - FLAG TO INDICATE LAST BLOCK OF DATA 

SUBROUTINE READ_TEHP _FILE <DATA, LAST> 
IMPLICIT NONE 

INTEOER•4 DATAC12B> 
LOGICAL LAST 

INCLUDE 'C'tSYSSRVNAH)' 
INCLUDE 'CtIODEFl' 
INCLUDE ' ( $SSDEF >' 
INCLUDE 'UFIBDEFl' 
JNCLUDE 'UF IDDEF> ' 
INCLUDE 'CSATRDEF>' 

I • TRUE. ON LAST BLOCK 

528 

LOGICAL FIRST _CALL/. TRUE./ 
INTEGER CHANNEL, RETURN_ CODE 
INTEGER ACP _FUHC, OIO_FUHC 
INTEGER•2 STATUS_CODE<4> 

RECORD /FIBDEF I FIB 
RECORD /ATRDEF/ ATRC2) 

STRUCTURE /DESCR/ 
INTEGER•2 COUNT, IFILL 
I NTEGER•4 ADDR 

END STRUCTURE 

CHARACTER•80 FILENAHE_IN 
RECORD /DEBCR/ NAHE_IN_DESCR 
INTEGER BLOCK NUHBER 
INTEGER BLOCK9_ALLOC 

QIO FUNCTION CODES 
IO STATUS 

FILE INFORHATION BLOCK 
ATTRIBUTE LIST 

NOT USED HERE 
NOT USED HERE 
NEXT BLOCK TO URITE IN 
BLOCKS ALLOCATED SO FAR <NOT USED> 

COHHON/URITE_TEHP/CHANNEL, FIB, FILENAHE_IN, NAHE_IN_DESCR 
1 , 9LOCK_NUHBER, BLOCKS_ALLOC 

RECORD /DESCR/ FIB_DESCR 
INTEGER*4 BUFFER 
INTEGER•4 VIRTAD[tR 
INTEGER•2 FAT<16) 

BUFFER ADDRESS 
VIRTUAL BLOCK NUHBER IN FILE 
FILE ATTRIBUTES AREA 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

c 

IF CFIRST_CALL> THEN 
FIRST_CALL • .FALSE. 

FIB.FIBSL_ACCTL • 0 
FIB.FIBS.U_EXCTL • 0 
FU.FIB$L EXSZ • 0 
FIB.FIB$\,(NMCTL • 0 
FIB.FIBSL EXVBN • 0 

I SUBSEO CALLS UON'T 00 THRU HERE 

I FILE BYSTEH 
I REQUIRES THESE 
I ALL 
I BE 
1 ZERO 

ACP _FUNC ;;; IDS _ACCESS + IOtH_ACCESS 
1 ACCESS AND OPEN FILE 

ATR< 1 >. ATRSLI SIZE • ATRtS RECATTR I DESCRIPTOR FOR 
ATRCI> .ATRSU=TYPE • ATRtC=RECATTR I RECORD ATTRIBUTES 
ATRCl>.ATRSL_ADDR • ZLOC<FAT> 1 OF FILE 

FIB DESCR.COUNT • 64 
FIB=DESCR.ADDR • ZLOC<FIB> 

I FULL FIB 

c------------------------------------------------------------------
c OPEN FILE FOR READING 
c------------------------------------------------------------------
c 

c 

c 

RETURN_ CODE • SYSSQIOU <, %VAL< CHANNEL>, JVAL CACP _FUNC>, 
STATUS_CODE,,, FIB_DESCR,,,, ATR,) 

IF <RETURN_CODE .NE. sst_NORHAU THEN 
URITE CS, 920) RETURN_CODE 
CALL EXIT 

ELSE IF <STATUS_CODE< 1) .NE. sst_NDRHAU THEN 
URITE <5, 930) 9TATUS_CODE 
CALL EXIT 

END IF 

BLOCK_NUHBER • 1 I FIRST BLOCK TD URITE 
ENDIF 

OIO_FUNC • IOt_READlJBLK CODE FOR READ RITE VIRTUAL BLOCK 
VIRTADDR • BLOCK_NUHBER BLOCK IN FILE TO READ 

c------------------------------------------------------------------
c READ NEXT DATA BLOCK 
c------------------------------------------------------------------
c 

c 

RETURN_CODE • SYSSQIOU (, JVALCCHANNEU, %VAL<OIO_FUNC>, 
2 STATUS_CODE,,, DATA, 
3 %VAL<512>, XlJAL<VIRTADDR>,,,) 

IF <RETURN_CODE .NE. ss•_NORMAU THEN 
URITE <S, 922> RETURN_CODE 
CALL EXIT 

ELSE IF <STATUS_CODE<l> .NE. sst_NORHAL> THEN 
URITE (5 1 933) STATUS,.CODE 
CALL EXIT 

ENDIF 

BLOCK_NUHBER • BLOCK_NUHBER + 1 
JF CBLOCK_NUHBER .GE. FAT(6)) THEN 1 FAT<6> IS 16 LSB OF END-OF-FILE 

ACP FUNC ,. IOt DELETE + 
- IOtH_DELETE 

I BLOCK, FAUL_EFBLK 
I CLOSE AND DELETE FILE CODE 

c--------------------------------------------------------------------
c CLOSE AND DELETE FILE 
c------,...-------------------------------------------------------------
c 

c 

RETURN_CODE • SYSSOIOU (, XVAL(CHANNEL>, %VALCACP _FUNC>, 
2 STATUS_CODE,,, FIB_DESCR,,,,,> 

IF <RETURN_COl•E .NE. SSt_NORHAL> THEN 

~~~[EE~~i- 920) RETURN_CODE 

ELSE IF CSTATUS CODE<l> .NE. BSt NORHAU THEN
\JRITE CS, 930) STATUS_CODE -
CALL EXIT

END IF

LAST • ~TRUE.
ELSE

LAST • .FALSE.
ENO IF

RETURN

INDIC END OF DATA
HORE DATA TO READ
INDICATE THAT FACT

920 FORHAT (. ACF' OIOU RETURN CODE • , , ze.e>
922 FORMAT (' URTVl'ILk OIOU RETURN CODE • ', ZB.B>
930 FORMAT (' ACP STATUS CODE • ', 4Z5.4)
933 FORMAT <' IIO STATUS CODE • ', 4Z5.4>

END

CAIL.ING SYSTEM SERVICES FROM ADA --- ---
Three packages are provided with VAX Ada to
facilitate interfacing with VMS system services and
VAX-unique features. Package STARLET contains
control block structure definitions, I/0 and system
service status code definitions and system service
interface specifications. Package SYSTEM contains
VAX-specific data type definitions. Package
CONDITION HANDLING contains several functions for
conveniently testing system service status codes.

The control block structure definitions in STARLET
are in the form of Ada record type definitions and
constant definitions (for initial values). The code
definitions are Ada constants.

The system service interface specifications consist
of three parts. For each system service, there is
one or more Ada procedure specifications which define
the parameters, there is a pragma INTERFACE which
declares the procedure to be non-Ada and one or more
pragma IMPORT VALUED PROCEDURE. The purpose of
IMPORT VALUED PROCEDURE is to declare the external
name of the-system service, e.g. SYS$QIOW for QIOW
and to declare the type and passing mechanism of each
parameter.

Multiple procedure specifications and pragma
IMPORT VALUED PROCEDURE are necessary to overload the
system - service name when parameters of different
types are permitted.

ADA EXAMPLE

The procedures GET_FIRST_FILE and GET NEXT FILE in
package GET FILE NAMES accept a VMS file
specification with wildcards and return a list of
files that satisfy the specification.

GET FIRST FILE parses the file spec into device name,
directory path and file name. It assigns the device
to a channel, then starting with the master file
directory, determines the file ID of each directory
in the path. Finally, it does a directory lookup on
the filename with wildcards and returns the first
file in the 1 ist.

GET NEXT FILE returns an additional file each time it
is called, indicating the end of the list with a flag
that goes false.

-- ABSTRACT 1
These procedures par•• o VHS filespec t.hot include• wildcords in
the f'ihno111e, t'IP• and version and return a list of' the f'ilene1N••
sotbf11im~ the spec. The followin9 rules oppl'I•

Net.work nod• no.111et1 not recognized. Device noMe 1111ust be o phvsicol
device or a 109ico.l no111e that translates ta o phtJsicol device,
cannot. include port of o directorv tt'ee.

Full direct.orlJ pothno.111e 11tust be 9iven, default director" cannot be
ossu111ed. Na special choroct.ers like - or ••• con be in pothn(Hte.
File spec ll'Ulit be •vntocticolllJ correct.

-- AUTHOR1
Al Tvrrill, 9/B6

package GET _FILE_NAHEB i•

CHANNEL_ ERROR 1 exception'
DIRECTORY _ERROR I exc•pt.ionf
IHOU_ERROR1 except.ion,

-- COULD NOT ABSION CHANNEL TO DEVICE
-- COULD NOT FIND DIRECTORY FILE
-- DIRECTIVE ERROR ISSUINO OIOU

-- PARSE FILE SPEC AND RETURN FIRST FILE NAHE ON LIST IF THERE IS ONE.

p'l'ocedure BET _FIRST _FILE
<FILE_SPEC 1 in BTRIN01
SUCCESSFUL 1 out BOOLEAN'
FILE_NAHE 1 out. STRING) I

529

-- RETURN NEXT FILE NAHE ON LIST, UNLESS LIST EXHAUSTED.

procedure GET _NEXT _FILE
(SUCCESSFUL I out IOOLEANf
FILE_NAHE 1 out STRING> f

end OET_FILE_NAHESf

with STARLET 1
with SYSTEHJ

-- VAX/VHS INTERFACE DECLARATIONS

wit.I\ UNCHECKED_CONVERSION1
wit.I\ CONDITION_HANDLIHOJ

packaqe bodlJ GET _FILE_NAHEB i•

-- VAX HARDUARE TYPES

function FlD_TO_DID i• n•w UNCHECKED_CDNVERSION
(SOURCE •> STARLET .FIB_FID_TYPE,
TARBET •> STARLET .FIB_DID_ TYPE> f

CHANNELi STARLET .CHANNEL_TYPEf

type DESCRIPTOR i• record
SIZE 1 BYSTEH.UNSIONED_UORDf
FILL 1 SYSTEH.UNSIONED_UDRDJ
ADDR 1 SYSTEH.ADDRESS1

end record1

FlLE_NAHE_lN 1 STRING (1 •• B6) f
NAHE_IN 1 DESCRIPTOR 1•

<SIZE •> O, FILL •> o,
ADDR •> FILE_NAHE_lN'ADDRESB) f

FILE INF BLK 1 STARLET.FIB_TYPEf
FIBj)EecR I DESCRIPTOR ••

<SIZE •> 64, -- ADA UOULDN'T ALLOU SYHBOLIC DE
FILL •> O,
ADDR •> FILE_INF _BLl<'ADDREBS> f

-- PARSE FILE SPEC AND RETURN FIRST FILE NAME OF LIST IF THERE 19 ONE.
-- SUCCESSFUL INDICATES FILE NAHE RETURNED.

procedure OET_FIRST _FILE
CFILE_Sf'EC 1 in STRING1
SUCCESSFUL 1 out 8DOLEAN1
FILE_NAHE 1 out. STRING) i•

INDEX1 NATURAL 1• FILE_SPEC'FIRSTJ

DEVICE_NAHE1 STARLET.DEVICE_NAHE_TYPE (1 •• 20)f
BYB_BERV _BTATUS = CONOITION_HANDLINB.CDND_ VALUE_ TYPE J
ID_STATUS1 STARLET. 1058_ TYPEJ

FILE_NAHE_DUT1 STRING Cl •• 86) f
NAHE_OUT1 DESCRIPTOR 1•

<SIZE •> FILE_NAHE_OUT'LENGTH,
FILL •> o,
ADPR •> FILE_NAHE_OUT'ADDRESS) 1

NAHE_INDEXt NATURAL1
NAHE_OUT _LENOTH1 BYBTEH.UNSIGNED_UDRDI

BEGIN

-- EXTRACT DEVICE NAHE AND ASSIGN CHANNEL TO DEVICE.

DEVICE_HAHE 1= • • J
SCAN_DEVICE_NAHE1 loop

DEVICE_NAHE (INDEX-FILE_BPEC' FIRST+l)
FILE_Sf'EC CINDEX> 1

INDEX 1= INDEX + 1,
exit when FILE_SPEC <INDEX-1) • '•'J

end loop SCAN_DEVICE_NAHEf

STARLET .ASSIGN
<STATUS •> SYS_SERV_STATUB,
DEVNAH •> DEVICE_NAHE,
CHAN •> CHANNEL) J

if not. CONDITIDN_HANDLING.SUCCEBS <BYB_SERV_STATUS) t.hen
raise CHANNEL_ERROR1

end ilJ

FILE_INF _OLK.DID 1• CDID_NUH •> 4,
DID_SEQ •> 4,
DID_RVN •> CO, O» J

-- FILE
-- ID

OF HFD

-- PARSE DIRECTORY PATH NAHE STRING.

if FILE_SPEC (INDEX) • '[' then

SCAN_DIRECTORY _STRING 1
while FILE_ SPEC (INDEX) /• ']' loop

NAHE_INDEX 1• lf
INDEX 1a INDEX + 11

6CAN_DIRECTORY _NAHE1
whUa FILE_SPEC C INDEX> /• '. r

and FILE_BPEC <INDEX> /• 'l' loop

FILE_NAHE_IN CNAHE_INDEX) 1• FILE_BPEC <INDEX>r
INDEX 1• INDEX + 1,
NAHE_lNDEX 1• NAHE_INDEX + if

end loop SCAN_ DIRECTORY _NAHE I

FILE_NAHE_IN <NAHE_INDEX •• NAHE_INDEX+4) 1• • .DIR1•1
NAHE_IN.SIZE 1• SYSTEH.UNSIONED_YORD lNAHE_INDEX + 4)f

-- GET FILE ID OF NEXT DIRECTORY LEVEL.

STARLET .OIOU
<STATUS •> SYB_SERV_STATUS,
CHAN •> CHANNEL,
FUNC •> STARLET. ID_ACCESS,
IOSB •> IO_STATUS,
Pl •> SYSTEM. TD_UNSIDNED_LONGUORD (flB_DEBCR'ADDRESS>,
P2 •> SYSTEM. TO_UNSIGNED_LONGUORD (NAHE_IN'ADDREBS>) 1

it not. CDNDITION_HANDLING.SUCCESS (BYS_SERV_STATUB> then
r(litiie QIOU_ERROR1

ehif not. CONDITION_HANDLINO.SUCCEBS <IO_BTATUS.BTATUB> then
ro.i•• DIRECTORY _ERRORJ

~nd if'I

FILE_INF _BLl<.DID 1• FID_TO_DID <FILE_INF _BLK.FID> f

end loop SCAN_DIRECTORY _BTRINO f

IN[IEX c • INDEX + 1 J
end ifJ

-- EXTRACT F"ILE SPEC AND GET FIRST FILE NAHE OF LIST

FILE NAHE IN (1 •• FILE 6PEC'LAST-INDEX+1> 1•

- F!LE_SF'EC <INliEX •• FILE_SPEC'LAST>J
NAHE_IN.SIZE I"" BY8TEH.UNSI0NED_UORD <FILE_SPEC'LABT-INDEX+1) J

FILE_INF _BLK.NHCTL.UILD 1• TRUEJ
FILE_INF _BLK.UCC 1• 01

STARLET .1.nou
<STATUS •> SYS_SERV_STATUS,
CHAN "") CHANNEL,
FUNC ,,.> STARLET. IO_ACCESS,
lOSB •> IO_STATUS,
Pi .,,> SYSTEH. TO_UNSIGNED_LDNGUORD CFJB_DESCR'ADDRESS),
P2 •> SYSTEH. TO_UNSIGNED_LONGUORD <NAHE_IN'ADDRESS >,
PJ => SYSTEM. TO UNSJGNED LONOUORD <NAHE_OUT _LENOTH'ADDRESS>,
P4 ·> SYSTEM. ro:uNSIONED:LaNOUORD <NAHE_OUT'ADDRESS))'

if not CONDITION HANDLING.SUCCESS <SYS SERV STATUS> th•n
raise IHOU_ERRORJ - -

elsif not CDNDITION_HANDLING.SUCCESS (IO_STATUB.STATUS) then
FILE_NAHE <1 •• 0> 1• ""J

els!!
SUCCESSFUL 1• FALSEJ

FILE_NAHE { 1. .NATURAL<NAHE_OUT _LENGTH)) I'"
FILE_NAME_OUT < 1 •• NATURAL< NAME_ OUT _LENGTH>> I

SUCCESSFUL I"" TRUE F
end ifJ

end OET_FIRST_FILEJ

-- GET NEXT FILE NAHE OF LIST IF ONE EXISTS. SUCCESSFUL INDICATES PRESENCE
-- OF FILE NAtiE.

procedure GET _NEXT _FILE
<SUCCESSFUL 1 out BOOLEANJ
FILE_NAtiE 1 out STRINO> h

SYS_SERV _STATUS s CONDITION_HANDLING. COND _VALUE_ TYPEJ
IO_STATUS1 STARLET. IOSB_ TYPEJ

FILE_NAHE_OUT: STRING <1 •• 96)J
NAHE_OUT 1 DESCRIPTOR = •

<SIZE •> FILE_NAHE_OUT'LENGTH,
FILL •> O,
ADJIR => FILE_NAHE_OUT'ADDRESS> J

NAHE_OUT _LENGTH: SYSTEH.UNSIGNED_UORD J

begin

STARLET .DIOU
<STATUS => SYS_SERV_STATUS,
CHAN •> CHANNEL,
FUNC "'> STARLET .IO_ACCESS,
IOSB •> IO_STATUS,
P1 c> SYSTEM. TO_UNSIONED_LONGUORO <FIB_DESCR' ADDRESS),
P2 "') SYSTEM. TO_UNSIONED_LONGUORD (NAME_IN'ADDRESB),
P3 "'> SYSTEM. TO_UNSIGNED_LONGUORD (NAHE_OUT _LENGTH'ADDRESS),
P4 ..:) SYSTEM. TO_UNSIONED_LONGUORD (NAHE_OUT'ADDRESB> > f

if not. CDNDITION_HANDLINO.SUCCESB (SYS_SERV_STATUS> th.en
rohe DIOU_ERROR J

elsif not CONDITION HANDLING.SUCCESS <IO_STATUS.BTATUS) th•n
FILE_NAHE (1 •• 0) 1• ••1

else
SUCCESSFUL 1• FALSEJ

FILE_ NAME (1 •• NATURAL<NAHE_OUT _LENOTH>) 1•

FILE_NAHE_DUT < 1 •• NATURAL<NAHE_OUT_LENGTH> > J
SUCCESSFUL 1 • TRUE J

end if;

itnd GET _NEXT _FILE,

e-nd GET _FILE_NAHESJ

REFERENCES

1. VAX/VMS I/O User's Manual: Part I, AA-Z600C-TE,
Digital Equipment Corp., April 1986.

2.

3.

VAX Fortran User's Guide, AA-D035D-TE,
Equipment Corp., September 1984.

VAX Ada Programmer's Run-Time Reference
AA-EF88A-TE, Digital Equipment Corp.,
1985.

Digital

Manual,
February

530

THE OVERSEER
AN ACTIVITY BASED RESOURCE MANAGEMENT SYSTEM

FOR VAX/VMS

Steven G. Duff and Joseph W. Fiedeldey

Ergodic Systems, Inc.
3900 Birch, Suite 105

Newport Beach, California 92660
(714) 752-2972

ABSTRACT

The OVERSEER, a new VMS resource management and chargeback
system uses a "real-time" philosophy similar to that found
in traditional mainframe systems. By incorporating its own
authorization database, monitoring processes, activity logs,
embedded languages, and reporting system, the Overseer
operates independent of VMS Accounting. The real-time
nature of the system supports not only the capture of
resource and billing information but makes possible many
authorization, activity monitoring, and control functions as
well.

INTRODUCTION

This paper describes some of the problems
associated with using VMS Accounting for resource
management, and the architecture and underlying
design of a new type of resource management system,
The Overseer.

PROBLEMS WITH VMS ACCOUNTING

Relative to mainframe systems, VMS has
traditionally been weak in the area of accounting
for system activity. Both Digital and a number of
independent vendors have attempted to fill this gap
with add-on products. These products usually base
themselves on VMS Accounting log data, sometimes
augmented with user-written records.

One serious problem with using VMS Accounting data
is that it is essentially "point-in-time"
information, that is post-processed to produce
activity summaries. Systems that rely on
information that VMS Accounting captures are thus
limited in the quantity, accuracy, and timeliness
of their base data. This prevents such systems from
operating "live".

Products such as Digital's SPM, which recognize the
inadequacies of VMS Accounting, collect and keep
their own data. These systems, however, are
designed for performance management and tuning, not
activity control, authorization, monitoring and
charge back.

Another major area where VMS is inadequate is
activity management. VMS has a "one-dimensional"
authorization mechanism the VMS username. VMS
does not address the problem of managing system
activities independently of usernames. Most sites
either give different usernames to the same person
for different activities, or attempt a partial

Proceedings of the Digital Equipment Computer Users Society 531

solution to the problem with complicated ACL
schemes that damage performance, and a system
manager's sanity. Giving one user different
usernames does help track activities (one can use
either part of the username as a key, or the SYSUAF
ACCOUNT field to consolidate), but the scheme
compounds system management problems manyfold,
makes the system difficult to use (which username
do you send MAIL to, for example), and opens the
door to security problems.

ACLs can control access, but do little to account
for activity, and provide nothing in the way of an
activity record that can be used for management and
chargeback.

THE OVERSEER

The Overseer is a complete resource management
system for VMS version 4. The system takes
advantage of many VMS version 4 features. It
operates on the full range of Digital's VAX
processors from the microVAX to VAX 8800, and was
developed in a VAXcluster environment.

A major design goal was to produce a system that is
truely integrated, with simple data paths, few
files, and rigorous, documented protocols. Figure 1
is a diagram of the basic Overseer components and
their interrelationship. The sections that follow
describe each of them.

San Francisco, CA - 1986

+-------+
I CUP I
fUtilityf
+-------+

+-------+
I LOG I
fUtilityf
+-------+

v

<----->
<--+

<- -+- -
<---+

+-------+
f Authorizationl ---> fRoyaltyf
I Database I - -+ I Image I

+-------+
v

+-------+
fTransactionf I ACNTG I
I Logs I IUtilityf

+-------+
I

+--------+ I v
OSL I

I
I

I Procedures I A
f Print I I
fSymbiontf v

v

fReports/f
I Displays I

+--------+

+-------+
fSCANNERI <-+

+---> f Processf <-------+-----+
+-------+

(Fig. 1)
Overseer System

Architecture

Authorization Database
The authorization database provides the basic
information needed to track system activities at
various levels. It was decided early on in the
design to adopt a scheme whereby the system manager
could administer both "Customers" and activities
("Projects"), designated project managers could
administer "Subprojects" and users within their
project, and users themselves could designate
"Task-ids" in order that activity could be
authorized, tracked and consolidated at any level.

This approach necessitated the development of an
authorization database composed of interrelated
indexed files that contain information about
Customers, Projects, Subprojects, Users, and
Royalty images. This database does not replace the
normal VMS SYSUAF file, the Overseer system only
comes into play once a user has signed onto the
system. The database contains authorization,
reporting and usage information, as well as a
"charge summary matrix" for every entity in the
database.

This charge summary shows, for every category of
charge, the charge-to-date, current period charges,
prior period charges and forecast charges. Since
the Overseer system tracks charges in real-time (as
they are made), this charge summary is updated in
such a way that it is always up-to-date. The
charge summaries provide a means to implement
optional budget, forecasting, and allocation
checking, as well as imediate summary display.

CUP Utility
CUP maintains the authorization database. This
utility provides controlled access to the database
for system mangers, project managers, and other
users, and does the extensive consistency checks
needed to preserve the integrity of the database.
With a single CUP command the system manager can
seed the authorization database from the SYSUAF
file

Command Line Interface CUP, like all of the
Overseer utililties supports full command line
recall, define/key, and symbol substitution. A
command line user interface was chosen because this
type of interface is typically the most flexible

Proceedings of the Digital Equipment Computer Users Society 532

and efficient. It is also one familiar to systems
managers. Command line interfaces also integrate
easily into menu systems such as All-Jn-1.

System Documentation All Overseer documentation is
written in a formatting language especially
designed for the project. It allows the same
documentation source to be produced in both manual
and on-line help format.

ACNTG Utility
ACNTG communicates requests to the Scanner process,
using a mailbox message protocol, on behalf of a
user or manager. Through ACTNG the system manager
controls the tracking and billing of system
resources, and users specify which activities they
wish to charge.

One of the main functions of ACNTG is to change
session accounting. This is a complex activity.
Several of the main steps in this process
outlined below.

o Authorization Checks - The authorization
database is checked to verify that the
request is allowed. Then default
information (UIC, default directory,
privileges etc.) for the new session is
retrieved, and optionally the user is
prompted for a project password.

o ACL Setup
placed on
log file,

Access control lists are
the job logical name table and

giving the new UIC access.

o Process Switch - The new UIC is
in the JIB and the subproject
account field of the PCB.

placed
in the

o Scanner Notified
instructed to start

The Scanner is
tracking resource

usage for the new session.

o DCL Restarted New executive mode job
logical names are assigned and DCL is
restarted. If specified, up to four
command files are executed.

are

ACNTG also has the ability to send direct charge
requests to the Scanner, specifying the detail
items, and amounts and counts for each detail item.
The Scanner records these charges directly in the
transaction log. This provides a means of making
extraordinary charges, refunds, or charging for
resources not tracked by the Scanner directly.

The Scanner Process
The Scanner is at the heart of the Overseer system.
It is a hibernating detached process which tracks
system resource usage for sessions, devices, and
images.

The Scanner has a number of AST-driven interval
timers and events that cause it to perform its
update scans. Most of these timers can be adjusted
by the system manager.

For example, every few seconds, the Scanner updates
its internal tables that record the state of every
process it is tracking. In order that this impose
no noticeable overhead on the system GETJPI is not
used, instead the Scanner goes directly to the

San Francisco. CA - 1986

system control blocks and extracts the needed
information. Other cycles are less frequent. A
device allocation scan is done once a minute to
update usage counts for devices it is tracking. A
charge update cycle occurs at intervals, defined by
the system manager, which calls the OSL billing
procedures to update the session charges. A disk
billing subprocess is started automatically by the
Scanner at intervals according to the disk billing
requests logged through ACNTG.

Checkpoint-Restart The Scanner also declares an
interrupt every few minutes that causes it to save
its internal state, and commit transactions to the
active log. This gives the Scanner a restart
mechanism, whereby it can recover session activity,
and resource and billing information after a system
crash.

Session Billing The Overseer system defines a
session as a main process, and all subprocesses.
The Scanner tracks a session as a unit, unlike VMS,
which records process and subprocess activity
separately. A process is free to change to a new
activity at any time, unless authorizations prevent
it.

Disk Billing When the Scanner starts a disk
billing process, it allocation-locks the disk and
scans the index file (INDEXF.SYS) to find the UICs
to be charged. Disk performance information, such
as average extents per file, can be displayed as
the disk is scanned. Disks can be billed
individually or in bulk. Since the process uses a
high speed scan of the volume index, not the quota
file, it is not necessary to enable quotas to
account for disk space usage.

Network & Batch Job Billing For non-interactive
sessions the Overseer will optionally search for
the originating session to get authorization
parameters such as project, subproject, and
task-ids. For network jobs this is accomplished by
a network server function within the Scanner
process.

Print Symbiont
To track print jobs in real-time, the Overseer
provides a special print symbiont. This symbiont
communicates with the Scanner at the conclusion of
a print job, and (optionally) displays the charge
detail and job statistics on a trailer page.

This design permits the Overseer to record
information about the print job that is often
important for chargeback purposes, and that is
missing from VMS Accounting logs. For instance,
the Overseer print symbiont records the form name
and submission queue name. The OSL billing
procedures can examine these values, and base their
charges on them.

For sites that cannot run a special symbiont, the
system has the capability of reading VMS Accounting
print job records off-line, and using them as a
basis for billing.

Royalty Image
An important requirement for resource accounting is
the ability to track royalty program execution.
The nature of such programs usually precludes
however, changes to the source code. Instead, to
do this, the program is linked with a protected,
loadable system service shared image provided with

533

the Overseer. This causes the program to call
routines in this image when it starts and via an
executive-mode image rundown vector, at program
completion. These routines check the image against
an image authorization database, and extract
authorization data based on the image name. The
Scanner is notified of the image execution, and the
image begins execution. At the end, the program
goes back into the privileged image, which notifies
the Scanner again. The Scanner returns the
computed charges to the waiting image, where they
can be displayed to the user.

This scheme allows the Overseer to perform
authorization checks before an image is run. For
example, the image authorization record has an
expiration date after which the image cannot be
run. More robust checks can be performed by the
OSL rate procedures, which can inspect the
authorization information, and choose to disallow
execution if, for example, the individual is not
allowed to use the program, or usage is not allowed
during certain hours of the day.

A significant side benefit of this scheme is that
if a user attempts to run a private copy of the
image from his own account, it will not work, since
the authorization check will fail.

As with print jobs, if it is impossible to link the
image with the special shared image, the ACNTG
utility has the ability to read VMS Accounting
image records, and use them as a basis for billing.
Of course, when this method is employed, the
authorization functions, as well as a considerable
amount of additional resource data normally given
to the Scanner, is not available.

OSL Rate Procedures
The Overseer incorporates an embedded procedural
language called the Overseer Specification Language
(OSL). When the Scanner needs to charge for system
resources, an OSL procedure is compiled and
presented with information about the authorization
context, and resource usage. The OSL procedure is
executed to do any calculations, and record charges
in the transaction log.

OSL is also used by the LOG utility to
adjustments, discounts, surcharges,
correction to existing accounting records.

calculate
and make

OSL compilation involves a recursive decent parse
of the source procedure to produce a threaded code
stream. This code stream is interpreted during
successive rate table evaluations. Once a table is
compiled in memory, requests for that table
continue to use the compiled version. The Scanner,
however, can be instructed to load a new version of
the table at any time. This is accomplished
through the use of reference counts and deferred
deallocation.

The language incorporates integer, real, string and
associative arrays (tables) datatypes, with
automatic type conversion. It supports the
familiar IF-THEN-ELSE, DO WHILE, GOTO and GOSUB
language constructs, as well as an assortment of
special functions. The language is highly
extensible with a simple interface for defining
site coded OSL functions.

Charge Del~il What the Overseer charges for is
determined by the site manager. A major design
goal was to avoid any fixed charge structures,
categories or billing structures. The system
manager defines what items to bill for, what they
are called, their cost, their associated resource
(if any) and how they are displayed and summarized.
These definitions are loaded into special logical
name tables, and so can be changed at any time.

Transaction Log File
The design of the Overseer log file format was
undertaken with great care. The result is a design
that minimizes the risk of corruption, is efficient
to process, and above all does not unreasonably
consume space. As any site who has ever enabled
system-wide image accounting knows, VMS log files
can consume large amounts of disk space.

The "skeletal" structure of Overseer log files is
very similar to VMS Accounting's. This primarily
means that the records are packetized, and contain
certain header information. The internal
organization of the packet data is quite different
however, since a more space efficient structure was
desired.

The first thing one notices about VMS Accounting
records is that there is a three byte overhead for
every string field. Although this design permits
immediate access to any string in the packet, this
is of little value, since packets are usually
packed and unpacked as a unit. The Overseer stores
strings sequentially in the packet, with a length
byte, but no offset word. This saves two bytes for
every string. This savings is considerable since
typically over a dozen string values are stored in
each accounting record.

Secondly, the quadword date-time standard is, for
accounting purposes, excessive. After
experimentation, it was discovered that masking out
the most and least significant bits leaves a 32-bit
value that is accurate to less than 1/2 second.
See figure 2. (For this reason, these compressed
time values have been named "semi-seconds".) For
absolute times, the date range for semi-seconds
extends from about 1973 to well past the year 2000.
Delta times subject to this compression have the
same resolution (about 0.4 second), with a range of
9999+ days. This allows a savings of 4 bytes for
every time value stored. The conversion to and from
semi-seconds requires only 4 machine instructions.

(Absolute time)

xxxxxxxx xxoooooo 00000000 00000000 :0
00000000 lOXXXXXX XXXXXXXX XXXXXXXX :4

(Delta time)

XXXXXXXX XXllllll 11111111 11111111 :0
11111111 llXXXXXX XXXXXXXX XXXXXXXX :4

(Fig. 2)
Bit masks and shift values

to convert to/from semi-seconds

In addition, most of the binary values in Overseer
log files are zero-trimmed with bit-stuffed length
marks. This too is a very fast and simple
commpression technique.

534

LOG Utility
The LOG utility is used to manipulate the
transaction logs. It has the capability to report,
summarize and dump Overseer accounting logs, with
extensive sort and select options. Log files can
be consolidated, dispersed, and corrected or
adjusted with a single command. Through the LOG
utility users can run a collection of standard
reports, including graphic reports. All standard
reports, though fixed in format, are highly user
modifiable.

Callable LOG Standard Overseer reports and site
coded custom reporting are implemented through the
callable LOG interface. Callable LOG handles all
the sorting, selecting, packing and unpacking of
log records, and report summarization logic. Using
the interface, producing new reports involves
little more than writing the line summarization and
formatting logic for the report. Source code for
standard reports is provided to assist in the
development of custom reports.

OML Formatting To aid with report formatting,
Overseer incorporates OML Overseer Macro
Language, which provides macro evaluation of a.
string under user control. Essentially, a source
string is passed to this package and a series of
"result" strings are passed to a designated routine
which is usually a display or print routine. OML
supports many primitive macros for such things as
centering a string, overlaying one string on
another, formatting a date or amount, conditional
evaluation, etc. Like OSL, OML is extensible.

SUMMARY

The approach taken in the design of the Overseer
circumvents many of the difficulties that have
traditionally plagued the implementation of VMS
resource management and chargeback systems.
Avoidance of VMS Accounting, and implementation of
separate monitoring and authorization components
permits the extension of the Overseer to realize
capabilities not presently available on VMS. These
capabilities will be explored further in later
releases of the system.

As an example, Overseer OSL programs presently can
send messages to users and/or terminals. It is
possible to expand such abilities to allow, for
example, OSL programs to suspend processes which
exceed a certain CPU usage, or even kill them
outright. Another example is an OSL procedure that
could monitor the state of disks, and issue alarms
when they reach some defined percentage of their
capacity. The issues of resource management,
chargeback, activity management, and system
monitoring are intimately tied together. The
Overseer is a unique product that actually makes
that happen.

Ins and Outs of VMS Shareable Images

Ted A. Marshall
Britton Lee, Inc.

Los Gatos, California

ABSTRACT

The VAX/VMS system provides a mechanism for program segment
sharing known as the "shareable image." This allows a set of subrou­
tines to be used by many different programs without having to include
this actual code in each program executable file, thus saving disk
space. Also, the physical main memory containing this shared code
can be used by multiple processes at once, thus saving system memory.
Examples of shareable images include the VMS Run Time Library pro­
vided by DEC and the extended C run time library included in my
company's product. DEC provided shareable images (such as the RTL)
are almost always invoked by user written programs. However, few
programmers understand the operation of shareable images or know
how to write one. This paper will begin with a general explanation of
what is a shareable image and how a programmer uses one in his pro­
gram. Then it will proceed to writing code for and building a shareable
image. Special emphasis will be placed on issues not well documented
by DEC, including coding shareable images in high-level languages
sharing writable data between processes, and transfer vectors. '

1. Introduction

Many companies, including mine, need to release software products in
the form of a set of subroutines to be linked with both programs pro­
vided with the package and user written programs. The way this is fre­
quently done is to provide either a set of object files or an object
library containing the routines. However, this method poses three
major disadvantages:

(1) As these routines are linked into a large number of programs, a
large amount of disk space is required to hold all of the execut­
able images, each containing a copy of the routines.

(2) As several users run copies of programs using this library of rou­
tines, each will have his or her own copy of the routines in vir­
tual memory, thus impacting system performance.

(3) Finally, if a bug is found and fixed in one of the routines or the
code is just somehow improved, each and every program using
that routine must be re-linked to bring in the change.

However, there is an alternative method of packaging this code library
so as to overcome these disadvantages. That is the VMS shareable
image.

The VMS shareable image is a mechanism by which one or more
object modules of an executable program may be placed in separate
image files. These separate, non-executable image files are loaded with
the main image by the VMS image activator when the program is run.
This provides an answer to all three of the problems previously stated:

(1) A singe shareable image can be used by many different programs,
thus saving disk space for the image files.

(2) The system manager can install the shareable image to allow the
main memory for it to be shared, even when included by
different user written programs that are not themselves sharable.

(3) If properly written, a shareable image can be replaced with a
newer version without even relinking the programs that use it.

Proceedings of the Digital Equipment Computer Users Society 535

Examples of shareable images provided by DEC as part of the stan­
dard VMS distribution include the VMS run-time library and run-time
libraries for languages such as C and FORTRAN. My company pro­
vides a shareable image for a run-time library that provides access to
our Intelligent Database Machines. DEC's shareable images are mostly
coded in MACR0-32 and BLISS-32 and our IDM shareable image is
coded in VAX C. However, any DEC supplied language processor pro­
ducing VAX native mode code can be used.

This paper will explain how shareable images work and how to write
and use them. Several areas that are not well documented by DEC
will be covered, including writing upward compatible shareable images,
using a shareable image to share read/write data between processes
and coding in high level languages.

2. How it works

To understand how shareable images work, one must first understand
another concept that I believe many VMS programmers do not. That is
the program section or PSECT. A PSECT is a group of code or data
that has some common attributes that is described below. Each
PSECT is assigned a name. A PSECT is one of the fundamental units
processed by the linker and the contents of a PSECT will always be
assigned consecutive virtual memory addresses when t,he program is
loaded into memory. When a compiler or assembler on VMS produces
an object file, the code and data contained in it are divided into one or
more PSECTs. When coding in MACR0-32, the programmer has
complete control over the division of the PSECTs. In high level
languages, the compilers generally automatically divide the module
into PSECTs, generally one for the generated code (usually named
something like "$CODE") and one for each global data structure (i.e.
C global variable or FORTRAN COMMON block), named the same as
the data structure.

The attributes that are of interest here are RD or NORD, WRT or
NOWRT, EXE or NOEXE, CON or OVR, SHR or NOSHR, and PIC

San Francisco, CA - 1986

or NOPIC. The RD/NORD, WRT/NOWRT and EXE/NOEXE con­
trol whether the code or data contained will be accessible for reading,
writing and execution respectively when it is finally loaded into virtual
memory for execution. CON/OVR controls how the linker will com­
bine PSECTs with the same name from different modules. PSECTs
containing code use CON meaning to concatenate the PSECTs so that
each module's code will be loaded at different virtual addresses.
PSECTs for global data structures use OVR to overlay the PSECTs to
start at the same virtual address so that, for example, the variables in
a FORTRAN COMMON in two modules will be the same. If the
PSECT ends up in a shareable image that has been installed sharable,
the SHR/NOSHR attribute controls whether a process shares the vir­
tual memory with other processes or if each process get its own copy.
Finally, the PIC/NOPIC attribute informs the linker whether the
PSECT contains only position independent code. That is, code that
can be placed at any virtual address without requiring any changes to
the generated instructions.

When the linker combines object modules and libraries to produce a
self-contained executable image file, it combines PSECTs with the
same name according to the CON/OVR attribute and then concaten­
ates PSECTs with the same RD/NORD, WRT/NOWRT,
EXE/NOEXE and SHR/NOSHR attributes into a single "image sec­
tion" in the executable image. When the image is run, the image
activator loads each image section into a set of consecutive virtual
addresses, sets the protection information on those locations, and
finally starts the program. All cross module references have already
been resolved at link time.

When a shareable image is linked, the same basic operations occur.
However, the linker also stores some symbol table type information in
the shareable image. Specifically, for each PSECT, its name, attributes
and offset from the beginning of the shareable image are saved. Also,
for each global symbol (i.e. routine entry) that is declared to be acces­
sible from outside the shareable image, the name and offset are saved.
These symbols are called "universal symbols".

When the executable image is linked against the shareable image, the
shareable image's symbol table is examined. The universal symbols are
used to resolved undefined external references. In addition, references
to PSECTs (with the OVR attribute) that also exist in the shareable
image are changed to references to the shareable image. This
effectively overlays the PSECT, just as if the two modules had been
directly linked together. The value recorded in the referencing image
for the reference into the shareable image is the offset from the base of
the shareable image.

Finally, when the executable image is to be run in a process, the Image
Activator loads it into virtual memory as before. The Image activator
then also loads each referenced shareable image into virtual memory.
As it loads each one, it selects the virtual address range that the share­
able image will occupy for the process and finalizes each reference to
the shareable image by adding the base address to each offset recorded
by the linker in the referencing image.

Because the final fixing of the references into the shareable image is
deferred to program startup, the contents of the shareable image can
be placed at any location within virtual memory. This allows other
shareable images that have already been loaded to be different sizes
then when they were originally linked. On the other hand, because the
linker only puts into the referencing image the offset into the shareable
image for the reference, the position of an externally referenced symbol
must not change relative to the base of the shareable image.

3. Coding a shareable image in MACR0-32

Coding a set of routines in MACR0-32 to be included in a shareable
image requires care in two areas: position independence and PSECT
declarations. Because the shareable image may end up positioned at
just about any virtual address in the process running the user program,
the code in it must be position independent. This basically requires
three things: avoiding use of the absolute addressing mode
("@#address"), replacing .LONG directives referring to addresses
within the shareable image with .ADDRESS directives and including
the PIC attribute on the PSECT declaration.

The .ADDRESS directive defers final resolution of the contents to the
VMS Image Activator when the program is actually run. In the long­
word generated by .ADDRESS, the linker records the offset from the
base of the shareable image. Then, when the program is loaded by the
image activator and the actual base address is established, that is
added to each of these values so that they now contain the full virtual
address.

For PSECT declarations, executable code and read-only data that is to
be shared must have the RD, NOWRT, EXE, PIC and SHR attributes.
This allows the memory to be shared between processes. Read/write
data must be in a PSECT with the RD, WRT, NOEXE and NOSHR
attributes. This guarantees that each process will get its own copy of
this section.

The following is an example of a routine coded to be included within a
shareable image:

.TITLE

.PSECT
DISPAT for XXXLIB
$CODE,RD,NOWRT,EXE,SHR,CON

.ENTRY DISPAT,M' <R2,R3>
; Routine passes its two arguments to one of
; several routines based on value in variable
; TYPE.

MOVL
MOVL

CAL LG
RET

L'TYPE,R2
TABLE[R2] ,R3

AP,(R3)

; Get dispatch value.
; Get routine address
; from dispatch table.
; Call routine.

.PSECT DISPATDATA,RD,WRT,NOEXE,NOSHR,OVR

TYPE:: .BLKL 1

TABLE: .ADDRESS ROUTINE!
.ADDRESS ROUTINE2
.ADDRESS ROUTINE3

.END

; Dispatch value written
; by our caller.

; Dispatch table.

Note the PSECT declarations and the use of .ADDRESS directives in
the dispatch table. Because the longwords created by the .ADDRESS
directives are modified in each invocation by the Image Activator, the
table is in the read/write, non-shareable PSECT.

The following example LINK command produces the shareable image:

$ LINK/MAP/SHAREABLE=XXXLIB DISPAT,-
<other object files>,X.OPT/OPTIONS

where the file X.OPT contains the following

UNIVERSAL=DISPAT
UNIVERSAL=TYPE
<similar universal commands for other "external" symbols>

This creates the shareable image file XXXLIB.EXE. Note that there
must be a UNIVERSAL command in the options file for each global
symbol within the shareable image that is to be known to the referenc­
ing program.

4. Calling a shareable image from MACR0-32

Just as a shareable image can be coded in MACR0-32 with very little
special work, it may be called from a very ordinary MACR0-32 pro­
gram. The only major restriction is in the way the referencing image
accesses locations in the shareable image. MACR0-32 includes two
special constructs for addressing shareable images, among other uses.
These are general mode addressing ("G·symbol") and the .ADDRESS
directive. If symbols in the shareable image are addressed otherwise,
for example with normal relative mode addressing or with the .LONG
directive, the linker is forced to finalize the references to the shareable
image. This is known as "basing" the image. In this case, each share­
able image is assigned a specific virtual address at link time when used
with this executable image. Therefore, if one of the shareable images is
replaced with newer version which is larger, even if it is otherwise

536

upward compatible, the executable image may have to be relinked to
allow the enlarged image to fit.

However, if only general mode addressing and .ADDRESS are used, the
linker only fixes the offset of the symbol from the base of the shareable
image. Later, when the program is run, the image activator assigns
virtual addresses for the shareable images and fixes up the references.
.ADDRESS references are fixed by adding the base of the shareable
image to the offset recorded by the linker. General mode references are
translated by the linker to indirect references into a "fixup vector"
added into the executable image. Each longword of the fixup vector is
equivalent to a .ADDRESS entry, one for each location referenced.
These are then fixed up the same way.

The following code fragment gives an example of calling the routine in
the example shareable image:

MOVL
CAL LG

#1,G.TYPE
<args>,G.DISPAT

The first instruction write a value to a read/write location within the
shareable image and the second calls the routine. Note that both of
these references are as general mode references.

The following LINK command shows linking the program, including
the reference to the shareable image:

$LINK/MAP program,X.OPT/OPTION

where the file X.OPT contains

XXXLIB/SHAREABLE

Note that the reference to the shareable image must be within a linker
options file. LINK will not accept a reference to a shareable image on
the main command line.

The executable image can then be invoked as normally, using the DCL
RUN command or the $CREPRC system service, for example. The
image activator will load the shareable image along with the execut­
able image. One note here is that the image activator by default loads
all shareable images from the disk directory specified by the logical
name SYS$SHARE, which is normally defined to be the same as
SYS$LIBRARY. The easiest way to have a specific shareable image
loaded from another location is to define a logical name that is the
same name as the shareable image. For Example:

$DEFINE XXXLIB DRA6:[TED]XXXLIB.EXE

5. Making Upward Compatable Shareable Images

One of the advantages to using shareable images is that under proper
conditions, you can modify and recreate the shareable image without
having to even re-link the executable images that reference it. The key
to doing this is to make sure that each referenced location (universal
symbol and overlayed data PSECT) is at the exact same offset from
the base of the shareable image as before. This is required because the
linker records only this offset for references into the shareable image.
Thus if a routine entry moves 7 bytes forward because of additions to
the previous routine, the call to that routine will go to the wrong loca­
tion.

DEC has provided a mechanism in MACR0-32 and the linker to make
it easy to have immobile code entry points. This is known as transfer
vectors. This is done generally in a separate module linked to be at the
base of the shareable image. To create the transfer vectors, you need
a MACR0-32 module that contains the following statements for each
universal symbol called by a CALL instruction (this includes most rou­
tines coded in or called by high level languages):

.TRANSFER

.MASK
JMP

FOO
FOO
L·Foo+2

where FOO is the universal's name. These statements do the following:

(1) The .TRANSFER directive instructs the linker to make FOO a
universal symbol and to point all references from outside the
shareable image to FOO to this location instead of the actual

537

FOO entry point. Note that internal references (including this
JMP instruction) still refer to the actual FOO entry point.

(2) The .MASK directive instructs the linker to copy the value. at
the actual location FOO (that is, the routine's entry mask) to the
word allocated at this location.

(3) Finally, the JMP instruction transfers control to the first instruc­
tion of the actual routine FOO which is located just after the ori­
ginal entry mask.

Thus the above example generates the following code:

<label FOO for use by external references>::
WORD <contents of entry mask for FOO>
JMP <first instruction of actual FOO>

The transfer vectors should be in a single MACR0-32 module. Because
these vectors must not move relative to the base, the order of the
transfer vectors must never change; new entries must be added at the
end. The entire module must be in a unique PSECT name. Com­
mands must be added to force the linker to place the transfer vectors
at the beginning of the shareable image. Without my going into
details here, you can place these two commands in the link options file
to do this:

CLUSTER=<psect-name>
COLLECT= <psect-name >, <psect-name >

These lines must be located before any other CLUSTER or COLLECT
options.

Also, the GSMATCH option must be used when linking the shareable
image to allow the image activator to bring in a different version of the
shareable image. This option specifies a major and minor version of the
shareable image and a matching option. For our upward compatible
shareable image, we can include the following line in the link option
file:

GSMATCH=LEQUAL,1,1000

This specifies that the shareable image has a major version of 1 and a
minor version of 1000. When a referencing image is linked against the
shareable image, these version numbers are saved in the referencing
image. The LEQUAL tells the image activator to load the shareable
image only if the minor version in the referencing image is less than or
equal to that in the shareable image (and the major versions are the
same). Thus, if the referencing image was linked with XXXLIB ver­
sion 1,1000, it will load with XXXLIB version 1,1001 or 1,1002, etc.
The next time we modify and relink the shareable image, the minor
version should be changed to 1001. If in the future, we completely
change XXXLIB so that it is no longer downward compatible, we can
change the major version to 2 to force all referencing images to be
relinked.

Finally, if the routine is entered by a JSB or BSB instruction, the
transfer vector should instead look like this:

.TRANSFER
JMP
.BLKB

FOO
L·Foo
2

At the end of this paper is a template MACR0-32 module for creating
transfer vectors.

Unfortunately, there is no easy way to set up transfer vectors for data
references. For upward compatible shareable images, I would suggest
that, if at all possible, the referencing image not directly access data
within the shareable image. Instead, include routines within the share­
able image to return the data or a pointer to it.

6. Sharing Read/Write Data Between Processes

One interesting application of shareable images is implementing very
efficient interprocess communications. This is done by including a
PSECT within the shareable image with the RD, WRT and SHR attri­
butes. This way, multiple processes loading the shareable image will
share memory for this writable section. Thus, reads and writes to
those locations by one of the processes will immediately be reflected in
all of the other processes. One process could write a large block of

information into this memory and then signal the other by some
mechanism (for instance, mailboxes). The other process then can exam­
ine the information within its own memory. This saves the overhead of
transferring all of the data through the VMS mailbox driver.

The major disadvantage of this method is that the shareable image
must be installed by the INSTALL utility with the /SHARED and
/WRITEABLE options. The image activator will not load a shareable
image containing writable, shareable image sections unless it has been
installed this way. Since installing images requires special privileges
and costs some system resources (specifically global pages and sec­
tions), this may not be practical for the general programmer.

Also, you must be sure that only the variables that you intend to be
shared are in shareable PSECTs. Otherwise, you will end up with a
program that works erratically as one process modifies variables used
by the other.

Finally, it should be noted that when a shared writable location is
modified, VMS will eventually write the page containing it back to the
shareable image file. Thus, using this technique will add somewhat to
disk I/O overhead on the system.

7. High Level Languages

It is fairly easy to code and access shareable images in high level
languages. The DEC provided compilers take care of most of the spe­
cial requirements that MACR0-32 programmers must deal with. They
produce position independent code and make general mode references
to external symbols. The transfer vectors, if used, still have to be
coded in MACR0-32, but this is mainly filling in a standard template
and really does not require knowledge of MACR0-32.

There is, however, one problem that must be watched out for. Several
of the DEC compilers by default put global data in writable shareable
PSECTs. These include global variables in C and COMMON blocks in
FORTRAN. In C, this can be overridden by including the non-portable
keyword noshare in the variable declaration. Note that this must be
jncluded in the declaration of the variable in all modules that access it,
otherwise, the linker will give a warning that PSECTs with the same
name have conflicting attributes.

A general solution is the PSECT_ATTR option in the linker option
file. For each C global variable or FORTRAN COMMON block,
include the following line in the options file:

PSECT_ATTR= <name> ,NOSHR

where <name> is the C variable or FORTRAN COMMON block
name. This will override the SHR or NOSHR attributes generated by
the compiler and set those PSECTs to be non-shareable.

Also, be careful of non-DEC provided compilers. I have seen an older
version of one third-party C compiler that did not always generate
general mode references when needed.

8. Acknowledgements

I want to thank my colleagues Jon Forrest and Jeff Gorris for their
assistance in preparing this paper.

g. References

(1)

(2)

(3)

(4)

VAX/VMS Linker Reference Manual, Digital Equipment Cor­
poration, order number: AA-Z420A-TE, September, 1984.

VAX/VMS Install Utility Reference Manual, Digital Equipment
Corporation, order number: AA-Z417A-TE, September, 1984.

VAX MACRO and Instruction Set Reference Manual, Digital
Equipment Corporation, order number: AA-Z700A-TE, Sep­
tember, 1984.

Programming in VAX C, Digital Equipment Corporation, order
number: AA-L370B-TE, April, 1985.

(5) VAX/VMS Internals and Data Structures by Lawrence Kenah
and Simon Bate, Digital Press, 1984.

538

.TITLE TRVEC - Transfer vectors for a shareable image (prototype)

.IDENT /1.0.0/

Author: Ted Marshall, Britton Lee, Inc.
14600 Winchester Blvd, Los Gatos, CA 95030

This program may be copied and used without restriction.

This file has been set up to allow the creator of a shareable image to
easily set up transfer vectors for it. This will do most of the work
required to make the shareable image upward compatable.

INSTRUCTIONS:

For each externally accessable symbol (universal symbol) within the
shareable image that corresponds to a code entry point, add a line
to the section below as indicated. If the routine is to be called by
the MACR0-32 CALLx instruction or most high level lenguage routine calls,
add a line of the form:

PROCVEC <symbol-name>
If the routine is called by the MACR0-32 JSB or BSBx instructions, add a
line of the following form:

SUBVEC <symbol-name>
For example, if you had two procedures (CALLx/high-level) named FOO and
BAR and one subroutine (JSB) named XYZZY, you would add the following lines:

PROCVEC FOO
PROCVEC BAR
SUBVEC XYZZY

Note that the semi-colons at the beginnings of the lines are not included.

Note: the order of the lines must be maintained between versions. Always
add new entries at the end of the list.

Use the following DCL command to assemble this file:
$ MACRO/NOLIST TVPROTO

When you link the shareable image, add the following two lines at the
beginning of the link options file (excluding the semi-colons):

CLUSTER = $$$TRVEC
COLLECT = $$$TRVEC,$$$TRVEC

This will guarantee that the transfer vectors go at the absolute beginning
of the shareable image.

Macro definitions: PROCVEC produces a transfer vector for a procedure (called
by CALLx) and SUBVEC produces a transfer vector for a subroutine (called by
JSB or BSBx) .

. MACRO PROCVEC entryname

.TRANSFER entryname

.MASK entryname
JSB L~entryname+2
.ENDM

.MACRO SUBVEC entryname

.TRANSFER entryname
JSB L~entryname
.BLKB 2
.ENDM

Define a separate program section for the transfer vectors .

. PSECT $$$TRVEC,RD,NOWRT,EXE,SHR,CON,PIC

Add your PROCVEC and SUBVEC statements here. Always add new entries at the
end.

Always add new entries just before this line!

.END

539

A NEW TE(}INIQUE FOR
"SYSTEM PERFORMANCE EVALUATION"

Schumann Rafizadeh
MBA Systems Automation

Columoos, Ohio

ABSTRACT

'!he traditional methods of the systems performance evaluation
rely on periodic sampling of the statistics collected by the
operating systems to be stored and later graphed or reported.

'!he sampling routines for these methods must operate at a
high priority in order to collect all the samples. Now, it
is more efficient and relevant to use IDRE method for col­
lecting performance statistics whcih are very reliable and

meaningful to the users at a very low priority. 1his method
also poses no contentions with user applications for valuable
system resources nor requires knowledge of monitor internals

to understand the results.

OVERVIEW

1here is a need to study the requirements anddevelop
all the necessary tools to measure the performance
of a system and all its related resources based on a
set of variables defined below. Part of this paper
will deal with providing a tool to measure the re­
sponse factors for users in a manner which they can
relate to their applications and be able to verify
independently based on the major system resources.

In the past, this issue has been addressed on
most operating systems based on the CPU stretch factor
and a constant interval sampling scheme. 1his simple
approach can provide numbers which are valid for the
parameters concerned and, given knowledge of the op­
erating systems internals and some guess work, can be
interpreted to demonstrate a relative performance
measure.

For the future, we not only need the same capability
(in a more comprehensive form) rut also the capabi­
lities to:

1)

2)

3)

4)

Performance threshold limit calculations foreach
resource to develop "Base Performance Levels"
(BPL), measurement units and to define the
"acceptable Performance Level" (APL).

Forecast system performance under new criteria
and load by measuring the level of free(or used)
resources.

Continuous and on demand measurement
system utilization parameters (for
applications, etc.) and comparison
figure to the APL and BPL.

of valid
resources,
of this

Reporting and presentation of the information in
a comprehensive and conclusive manner (graphic
and relative) both to the users and system
managers.

5) Forecast system performance under new c1·iteria
and to determine the optimum load mix for dir­
f erent computers and configurations.

6) Configuration Performance Threshold (CPT) limits

Proceedings of the Digital Equipment Computer Users Society

for each system and specific configurations to
determine the effects of additional resources and
loads on the system as a whole. 1his will be
used as a basis for determining the APL, and APL
may be a multiple of this limit.

It is also desirable to be able to measure applica­
tion loads to better forecast system responses, per­
form load balancing in the network and identify un­
reasonably inefficient (or efficient!) programs.

PERFORMANCE

Performance can generally be defined as: the amount
of useful work done per unit of time (this should be
true for anything that works!) 1he perforrnance of
computer resources can be measured regardless of
their brand names for the same types of application
processing.

Response time then can be defined as the time inter­
val between successful sul:xnission of a request or
response to the system until the next prompt or com­
pletion result (or error message!) is returned.

Under timesharing environment, the requests will be
honored and carried out depending on the scheduling
system and priority of each user. Depending on the
demand for the resources, the request will be
queued and in this fashion it is possible to have
requests queued faster than they can be dequeued by
the proper service module. '!his will result in de­
lays of responses and in turn reduce the number of
requests until the system can catch up.

1he most efficient use of the machine can be a­
cheived at a point where the maximum amount of work
can be carried out per unit of time and this requires
tuning of all the components involved in a delicate
balance of supply and demand. 1hese components are
hardware, system software, and user applications.

It is important to know the performance threshold of
the major components of each system and overall
available resources for each machine. Based on these
values and expected return on each machine, it
is possible to define Acceptable Performance Limit

541 San Francisco, CA- 1986

(APL) for each system. These limits will provide
users with the necessary information about our re­
sources to allow for budgeting of their usage and
balancing of their workloads.

Operations usually commit to provide an X per­
centage of the time the response time which is bet­
ter than APL. It is possible to identify this per­
formance level to the user and using the tools de­
scribed here ensure monitoring this commitment to
maintain:=thighl:evel of confidence in operations by
documenting the percentage of the time operations
were able to raeet their goals between the hours of
interest to the users. This also means that the new
systems will be turned over to the operations only
if they meet their specified performance require­
ments.

SYSTEM A PERFORMANCE (period)

M
p M M M
E M M M
R M M M M
F M M M M
0 M M M AAF
R AAF AAF xx MF
M XXF AAF xx AAF
A XXF XXF xx AAF
N XXF XXF XXF XXF
c XXF XXF XXF XXF
E XXF XXF XXF XXF

XXF XXF XXF XXF

CPU MEM DSK COM

FOR 'IHE MON'IH OF JUNE 1986

WHERE,

M is the resource BPL
xx is the resource APL
F is the average Free
period is a given time period

The above figure is a sample performance chart for a
System A. 'Ihe M level denotes the available Base
Level Performance. The acceptable performance level
is the lowest level of free resources that can de­
liver acceptable performance to the users. 'Ihe av­
erage of these APL's (normallized) will be APL for
the system or System Performance Level (SPL).

'Ihe same charts can be obtained for each major ap­
plication function. This can be used for proper
load distribution on the systems and the continual
monitoring, tuning and load balancing will allow op­
erations to achieve the optimum performance levels
and to prove that the system is not the cause of
poor response time, where appropriate.

Using this method to determine the resource require­
ments for each function will allow the development
group to build the required performance level into
each application system as it is designed and de­
veloped or to take necessary precautions not to raise
the user expectations unreasonably at initial instal­
lation before full utilization of the system (see
System Usability).

STRETCH FACTOR COMPONENTS

It is not sufficient to measure the stretch factor

542

based on the CPU availablility alone. Because, it
is possible for a user to experience very high
stretch factors based on a bottlenecked resource such
as disk or memory without ever being recognized by
looking at the CPU stretch factors. This is like
measuring the demand for a resource while users are
in a waiting queue for another resource. ('Ihestretch
factor for a user waiting for a report to be printed
on a device which has other files queued before his
cannot be measured by looking at the CPU usage or any
other resource but the printer's speed and the size
of the files to be printed yet and the throughput
of the printer over the period necessary to print a
line or a character.)

Therefore, the stretch factor must be measured for
the particular application and/or system based on the
resources required to perform that application or the
application load and the current demand on those re­
sources. For this reason, to measure the performance
or the stretch factor, one will need to know the per­
formance threshold (maximum available throughput) for
each individual resource and for that resource in
conjunction with other resources and their availabi­
lity. Furthermore, these performance thresholds
should be standardized in form of the units tocom­
pare and measure the response delays based ondiffer­
ent demand levels.

Even though the availability of every component in­
volved in the system to perform a request should be
included for proper performance measurement (and
there are many of them), we shall concentrate on Pri­
mary Factors (PF) for now.

Following is a list of resources which are to be in­
cluded as resources (Primary Factors) of the Perform­
ance Evaluation utilities:

1) Processor (CPU)
2) Main Memory (MEM)
3) Disk Subsystem (DSK)
4) Communication (COMM)

Then the Stretch Factor (SF) for a load should be
calculated as:

SF (ALL)
SF(CPU)+SF(MEM)+SF(DSK)+SF(COMM)

On.computers ?esigned under PMS (Processor, Memory,
Switch) notation, such as VAX the first 3factors are
considered critical factors. The overall system per­
formance is dependent on efficient inter-play of all
of its components. Also, the relative cost of the
first three components are significantly higher than
the last component in majority of distributed envir­
onments.

PERFORMANCE MEASUREMENTS

'Ihe three commonly used methods for performance mea­
surements are

1) Benchmarking
2) Statistics Collection
3) Simulation

Benchmarking is a common method for performance eva­
luation. In this method a benchmark set is run and
performance measures are taken based on the elapsed
time and the demand placed on the resources under

test. This technique is good for comparative analy­
sis and is repeatable for static environments. It is
usable for timesharing environment but not by itself.

Statistic Collection is the most common method. This
method is usually built into the operating system and
can be optionally enabled to collect and report vital
information about the performance related parameters
on the system. The draw back of this method is that
it totally relies on the expertise of a very know­
ledgeable system specialist to remedy the ineffici­
encies or to perform tuning.

Simulation is a valuable performance measurement tool
for conditions where the prototype or a model is to
be used to simulate the environment or the load and
thus may not be exact. This method is the best v;ay
of forecasting the performance. The forecasted in­
formation can be used to tune the performancewithout
requiring the specialist.

A sys tern can be developed to use benchmarking upon
installation to measure the Base Performance Level
(BPL) of the resources and the system. This system
can also use the periodic benchmarking at the lowest
priority to measure the percentage of the free(avai­
lable) resources based on previously measured BPL's.
This eliminates the need for high priority process of
sampling monitor collected statistics. Then use sim­
ulation to measure the impact of adding users which
take known percentage of the resources for fore­
casting purposes. Finally, this system can use a
graphing routine to present the results for daily,
weekly and monthly review by the systern manager.

Benchmarking and simulation testing of the applica­
tion systems will ensure that the application is cap­
able of providing the expected response time andalso
establish the impact the application has on the com­
puter when running at different load levels and also
might point out hardware solutions and limitations.
The application profiles produced in this manner can
be extremely useful in finding the optimal applica­
tion mixture on a computer and predicting results.

NOTES

1. Statistical method used by SPM which relies on
M:lNI'IDR sampled statistics of VMS counter is a val­
uable tool to measure the relative performance of
different versions of VMS. For example, a given
fixed load which requires a set of I/O and computa­
tions may require different amount of machine re­
sources to complete under different versions of the
VMS. However, this method cannot generate reliable
results on heavily utilized machines or resources
since the statistics gathering method itself demands a
high amount of resources which it robs from the
users it is trying to monitor!

2. The current chargeback systems based on the sys­
tems collected statistics are also invalid, because
parameters such as connect time are inversely related
to system performance. This means a user pays a
higher amount for the same functions when the system
response is worse.

LORE METHODOLOGY

This method is based on measuring the BPL of all the
resources on the machine for a given configuration

543

with no other user load using a fixed set of func­
tions. Then on an on-going basis it tries to per­
form the same measurement routine at lowest priority,
without contending with users, and collecting these
statistics. The amount of Left Over Resources Eval­
uated (LORE) subtracted from the BPL will determine
the user loading for resources and the machine. The
left-over resources as a percentage of the total re­
sources (10(}.~LORE/BPL) determines the percentage of
free resources. The level of the resources on a ma­
chine that can still deliver Acceptable Performance
to all of its users is then defined as APL.

REPORTING AND PRESENTATION

Once the Base (Threshold) Performance Limits (BPL)
have been established, acceptable responses can
be measured in terms of BPL units (or percentage).
This means that system response for a request then
can be represented in terms of a percentage of this
acceptable limit. For example,

"SYSTEM RESPONSE WAS ACCEPTABLE 95 PERCENT OF THE
TIME FOR DEVELOPMENT"

or,

"5 PERCENT OF THE TIME SYSTEM RESPONSE WAS NOT
ACCEPTABLE DURING THE LAST PERIOD."

or,

"SYSTEM RESPONSE IS WELL WITHIN ACCEPTABLE LIMIT 95
PERCENT OF THE TIME' I

The graphic displays of the system performance are
much more understandable. The presentation part of
the utility programs involved in this project must be
developed modularly to allow incorporation of plot­
ting routines and support for a variety of display
devices.

Another desired feature will be estimating load and
stretch factors for given application systems and
their impact on a host. This can be used for dyna­
mic balancing of application systems on the hosts
during host and node failures.

SUMMARY

This paper presents a new approach for performance
evaluation and capacity planning, especially in a
mixed vendor environment. This approach emphasizes
and justifies the views and perceptions of the users
about the system performance and availability of its
subsystems. While all the traditional methods of
performance evaluation measure what system the (es­
pecially the given operating systern) feels about the
user applications and basic components of their tasks
such as the page faulting rates.

PROGRAMMING WITH THE VAX/VMS SCREEN MANAGEMENT ROUTINES

Michael D. Orosz
E M C Engineers, Inc.

Denver, Colorado

ABSTRACT

As the computer is increasingly called upon to perform a
variety of tasks, computer programs designed to accomplish
these tasks must exhibit a high degree of user
friendliness. Since the majority of computer users are not
data processing professionals, a well-planned and well­
written package is essential in order for these users to
effectively work with the system. Such features as
function keys and attractive video displays can go a long
ways toward making an application package user friendly.
To include these features in a program, the programmer
usually researches the various control codes and sequences
for the desired video terminals. This procedure typically
involves a considerable amount of time and is usually
terminal dependent. To help reduce this time constraint
and develop a program without concern for the type of
terminal being used, a set of VAX/VMS utility routines can
be used. These utilities, collectively called the Screen
Management Facility, enables a programmer to utilize
function keys and create sophisticated video displays with
a minimum of programming effort.

INTRODUCTION

With the introduction of VAX/VMS V4.x, a set of
routines designed for managing the terminal screen
have been added to the VAX/VMS Run-Time Library
[1]. These routines, collectively called the
Screen Management Facility or Screen Management
Guidelines (SMG), will enable a programmer to
develop sophisticated I/0 (input/output) techniques
without concern for the type of device being
addressed. This paper will discuss the screen
management concept, why the routines should be
used, and cover various programming techniques
which utilize the SMG routines.

SCREEN MANAGEMENT CONCEPT

The Screen Management Facility utilizes internal
data structures to represent a physical device.
These structures are addressed by an application
program when I/0 operations are performed. SMG is
responsible for the transactions between the
internal data structures and the physical device
that is mapped to them. This design eliminates the
need for a programmer to research the escape and
control code sequences required for sophisticated
terminal interaction.

Proceedings of the Digital Equipment Computer Users Society 545

Although SMG is designed for video terminals,
hardcopy terminals and other devices can also be
addressed. Care should be taken when using these
nonvideo devices since different I/0 techniques are
usually employed when addressing them. For
example, an application that relies on cursor
positioning will not work on a hardcopy terminal.
Since video terminals are typically found in most
installations, they will be the focus of this
paper.

Three data structures are used by SMG to represent
a video terminal; the pasteboard, the virtual
display, and the virtual keyboard. These
structures are addressed by the application program
when performing I/0 operations.

Pasteboards

A pasteboard is a two dimensional data structure
that SMG uses to represent a video screen. Images
are displayed on the pasteboard and SMG converts
these images into instructions and sends them to
the terminal screen. Since the application program
never performs any physical operation with the
screen, terminal independence is achieved.

In theory, the pasteboard is as large as memory
will allow. However, the portion of the pasteboard
that is visible to the user is the rectangular
region that maps directly to the physical screen.

San Francisco, CA - 1986

The upper left-hand corner of the pasteboard maps
to the upper left-hand corner of the video screen.
The size of the visible rectangle depends on the
number of rows and columns available in the video
screen (Figure 1).

SCREEN

,. ,.

---+---1----.. ,./
,. ,.

,/ ,.

Figure 1

PASTEBOARD

Since only a small portion of the pasteboard is
visible to the user, it is important that images
be placed within this visible region. If images
extrude beyond the visible boundaries, then part or
all of the image will be invisible to the user
(Figure 2).

,--------ENERGY ANALYSIS--------.

Give TRY Weathet" File N.a1e:

GOLO/H - HELP

Do you want to ciuit (l

Figure 2

Virtual Displays

Virtual displays are two dimensional areas on the
pasteboard in which an application program's output
is concentrated. In addition to output operations.
these displays, along with a virtual keyboard (see
below). can also be used for data entry operations.

546

By utilizing multiple virtual displays, each one
designed for a specific task, the application
program can control where on the pasteboard
(screen) I/0 is to take place. This control of the
screen can be used to provide a user friendly
interface to a program (Figure 3).

,-------INPUT-------, I "·· ,
.----RESUL. TS--~

~--ERROR----,

Figure 3

Virtual Keyboards

In addition to pasteboards and virtual displays,
SMG utilizes a data structure called a virtual
keyboard to represent a physical input device. SMG
collects the data from the physical device and
stores the information in this data structure. The
application program reads the data from the virtual
keyboard; therefore, eliminating any direct contact
with the physical input device.

WHY USE SMG?

Since visual aids typically provide informative and
interesting results to a user, considerable effort
should be ex~ended on developing them. In
addition, time should be spent on developing
sophisticated data entry techniques in order to
reduce user fatigue and error. SMG can be employed
to help achieve these results with a minimum of
programming effort.

SMG can also address special events such as
broadcast message trapping (VAX/VMS MAIL messages
for example [2]) or control/key interrupts [3].
These events typically interfere with normal
program execution and therefore require special
attention. By using SMG to control these events,
the QIO and related system service routines can be
avoided [4].

When using SMG for program I/0, less source code is
required in program development. The Screen
Management Facility is responsible for the data
structures and related logic required for
sophisticated I/0 operations. In developing an
application, the only I/0 related instructions
required are the calls to the appropriate SMG
routines.

Finally, as indicated in previous paragraphs,
terminal independence is achieved when using SMG to
perform I/0 operations. The transfer of data is
conducted with internal data structures instead of
the physical device. This design saves
considerable development time since escape and
control code sequences for each terminal do not
have to be research.

PROGRAMMING TECHNIQUES

The following discussion is intended to demonstrate
some of the I/0 techniques that can be developed by
incorporating the SMG routines. This discussion
does not exhaust all the possible methods or
techniques that exist in creating user friendly
programs, rather, it is intended to provide the
user with some insight on how SMG can be utilized.

Pasteboards

As indicated, a pasteboard must be defined in order
to use SMG in performing 1/0 operations. The
routine SMG$CREATE PASTEBOARD is used to create a
pasteboard and map-it to a video screen.
SMG$CREATE PASTEBOARD returns to the calling
program an-identification number (ID) that
identifies the pasteboard. Care should be taken to
assure that this number is not altered. If the ID
number is modified, then SMG will not be able to
locate the pasteboard in internal memory. In
addition, this value should be passed to all
subprogram modules (via an argument list or common
storage technique) that will be using SMG to
perform 1/0 operations. By passing the ID number,
considerable overhead is reduced since the
subprogram module will not have to call
SMG$CREATE PASTEBOARD in order to obtain the ID
number (Figure 4).

IMPLICIT INTEGER*4 (A-Z)

INCLUDE '(SSMGOEF)'

COMMON/10/PBIO, VIO

!Declare data types

! Include system definitions.

!Store SMG IO nlJ'llbers in memory

C Create pasteboard and virtual display. Virtual display have 10 rows
C and 60 columns (and a border).

STATUS=SMGSCREATE PASTEBOARD(PB IO,,,,)
STATUS=SMG!CREATCV !RTUAL_O!SPLAY (l 0 ,60, VI 0, SMGIM_BOROER,,)

C Call routine to paste virtual display (make visible) to pasteboard.

CALL OUTPUT

C Done - Delete pasteboard and erase screen.

STATUS=SMG!OELETE_PASTEBOARO (PBIO)

STOP
ENO

SUBROUTINE OUTPUT

IMPLICIT INTEGER*4 (A-Z)

COMMON/IO/PB IO, VIO

!Routine used to paste virtual display.

!Common memory holds SMG ID nwbers.

c Paste virtual display on pasteboard with upper left-hand corner at row 5.
C column 5.

STA TUS=SMGSPASTE_V IRTUAL_O I SPLAY(V IO, PB I 0, 5, 5)

RETURN
ENO

Figure 4

547

SMG$CREATE PASTEBOARD also returns (as an option)
the number-of rows and columns the physical screen
contains (Figure 5). These values define the
visible region of the pasteboard and can be used to
assure that images are placed within this visible
area.

$CREATE TEST.FOR

IMPLICIT INTEGER*4 (A-Z)

STATUS=SMGSCREATE_PASTEBOARO(PB IO, , ROW, COLUMN,)

WR !TE(• ,IO)ROW,COLl~N
10 FORMAT(lX,'Number of Rows on screen: ',I3./,

STOP
ENO

$FORTRAN TEST
SLINK TEST
SRUN TEST

lX,'Nllllber of Colunns on screen: ',13)

Number of Rows on screen: 24
Number of Columns on screen: 80
FORTRAN STOP
s

Figure 5

Virtual Displays

To display information on a pasteboard, a virtual
display is required. The routine
SMG$CREATE VIRTUAL DISPLAY is used to define a
virtual display. The number of rows and columns
the display will encompass on the pasteboard is
passed to SMG$CREATE VIRTUAL DISPLAY via the
argument list. It is important that the dimensions
of the virtual display do not exceed the dimensions
of the visible region. If the display's dimensions
exceed the boundaries of the pasteboard's visible
region, then each dimension should be adjusted
accordingly (Figure 6).

IMPLICIT INTEGER*4 (A-Z)

DISPLAY ROW=15
OISPLAY=COL•87

!Deel are data types.

!Virtual Display's
!Di mens i ans.

C Create pasteboard.

STA TUS•SMGSCREATE_PASTEBOARO(PB IO,, ROW, COLUMN,)

!F(OISPLAY ROW.GT.ROW)THEN
OISPLAY_ROW=ROW

ENO!F
!F(OISPLAY COL.GT.COLUMN)THEN

OISPLAY_COL=COL UMN
ENO!F

!Adjust Dimension.

C Create virtual display.

STATUS=SMGSCREATE_ VIRTUAL_OISPLAY (O I SPLAY_ROW, 0 !SPLAY _COL, V IO, , ,)

C Make display visible to user (paste upper left-hand corner to row 5,
C column 5 on pasteboard).

C Done.

STATUS•SMG$PASTE_VIRTUAL_O !SPLAY (VI 0, PB IO, 5, 5)

STATUS=SMGIOELETE_PASTEBOARO(PB IO)

STOP
ENO

Figure 6

SMG$CREATE VIRTUAL DISPLAY returns an unique
identification (ID} number used to identify the
display in internal memory. As with pasteboards,
this number should not be altered. This
requirement is important since an application

program can have many virtual displays defined and
the ID number is used to uniquely identify a
particular display. Unfortunately, once a virtual
display has been created, there is no method for
determining the ID number. Therefore, the
display's ID number needs to be passed (via an
argument list or common storage) to subprogram
modules that will be using the display for I/0
operations (Figure 7).

IMPLICIT INTEGER*4 (A-Z)

INCLUDE ' (ISMGDEF)'

COMMON/I 0/PB ID, VI 01, VI 02

!Deel are data types

!System Definitions.

!Common storage for
!SMG ID numbers.

C Create pastboard, and two virtual displays (each one with a border).

C Done.

STA TUS=SMGICREATE PASTEBDARO(PB ID)
STATUS=SMGICREATEV!RTUAL D !SPLAY (8, 60, V!D l, SMGIM BORDER,,)
STATUS=SMGICREATE=V !RTUAL=DlSPLAY(8, 60, Vl 02, SMGIM=BORDER, ,)

CALL OUTPUT !OUTPUT is used to paste displays.

STA TUS=SMGIDELETE_PASTEBOARD(PB ID)

STOP
END

SUBROUTINE OUTPUT

!MPLIC!T 1NTEGER*4 (A-Z)

COMMON/! 0/PB ID, V!Dl, VI 02 !Common Storage.

C Paste displays.

STATUS=SMG$PASTE V !RTUAL D !SPLAY (V 101, PB I 0, 2, 10)
STA TUS=SMGIPASTE=V !RTUAL=DI SPLAY (VID2, PB ID ,12, 10)

RETURN
END

Figure 7

Finally, a border can be specified for the virtual
display. This border surrounds the display when it
is pasted (made visible) to the pasteboard. By
specifying a border, the display can be
distinguished from surrounding images on the screen
(Figure 8).

.------MAIN MENU------.

------'l'-HHP-------,

r--------aROAOCASTs-------.

Figure 8

Reading

SMG provides several routines for collecting data
from the virtual keyboard. The routine
SMG$READ STRING however, is unique since most
features-of the terminal driver can be utilized by
the programmer. Escape sequence detection, purging

548

the type-ahead buffer [5], and converting input to
upper case characters are some of the features
available. By utilizing SMG$READ STRING, the
programmer is able to use these features and avoid
using the complicated QIO system service.

To use SMG$READ STRING, a virtual keyboard
identification (ID) number needs to be specified.
This ID number is returned by
SMG$CREATE VIRTUAL KEYBOARD and is used to uniquely
identify tne virtudl keyboard in memory. As with
pasteboards and virtual displays, this value should
not be altered and needs to be passed to subprogram
modules that will be performing data entry
operations.

To utilize the terminal driver's features, a mask
is defined and passed to SMG$READ STRING via the
argument list. Based on the bits-set in the mask,
the appropriate feature will be enabled.
Fortunately, SMG provides a set of symbols (defined
by the $TRMDEF macro/module in the DIGITAL supplied
system libraries) that can be used to set the
desired bits. The following FORTRAN instruction
illustrates how to set the bits so that escape
character detection and the purging of the type­
ahead buffer are enabled:

MASK=TRM$M_TM_ESCAPE.OR.TRM$M_TM_PURGE

A terminator is used to end user's input from the
virtual keyboard. Such terminators include
carriage returns and function key escape sequences
(assuming that TRM$M TM ESCAPE was specified when
defining the terminal driver bit mask). This
terminator value is returned by SMG$READ STRING via
the argument list and is in symbolic form. The
symbols used to represent terminators are defined
by the $SMGDEF macro/module (part of the DIGITAL
supplied system libraries). This feature is useful
in applications that utilize function key data
entry (see below).

To assure that the read operation is performed in
conjunction with the appropriate virtual display,
the display's ID number is passed to
SMG$READ STRING. If the ID number is omitted from
the argument list, then the read operation will
take place as though no virtual display or
pasteboard exists. If this should occur, the read
operation will begin in column 1 of the screen
instead of column 1 of the virtual display
(Figure 9).

,...,------INPUT-------,

Give Ans111e,..:

I
Figure 9

Special Events

SMG is useful for controlling special events such
as broadcast messages and control/key interrupts.
These events usually disrupt images on the screen
or effect program execution. By utilizing the SMG
routines to control these events, the complicated
QIO and related system services can be avoided.

The routine SMG$SET BROADCAST TRAPPING is used to
trap broadcast messages before they are sent to the
video screen. When a message is trapped, program
execution halts and an AST routine is called (the
AST routine is specified as an argument in
SMG$SET BROADCAST TRAPPING). This AST routine can
then collect the message by using
SMG$GET BROADCAST MESSAGE. Once the AST routine
has obtained the message, a virtual display can be
used to inform the user. The AST routine pastes
(makes visible) the display to the pasteboard and
writes the captured message to the display (Figure
10). Care should be taken to assure that the
display does not occlude or interfere with images
currently pasted (visible) on the pasteboard. The
key here is to inform rather then confuse the user.

IMPLICIT INTEGER*4 (A-Z)

INCLUDE '($SMGDEF)'

COMMON/ ID/PB ID, BROAD VD

EXTERNAL BROADCAST

!Declare data types.

!System Definitions.

!Common Storage for
!storing SMG IO numbers.

!Declaring AST routine used
! by SMG$SET_BROAOCAST_TRAPPING

C Create pasteboard and broadcast display (label broadcast display).

ST ATUS=SMG$CREATE PASTEBOARD (PB IO)
STATUS=SMG$CREATCV!RTUAL 0 !SPLAY (5, 78 ,BROADV D, SMG$M BORDER)
STATUS=SMG$LABELJOROER(B~OADVO, 'BROADCASTS') -

C Set broadcast message trapping.

C Done.

STA TUS=SMG$SET_BROADCAST_ TRAPP ING(PB ID, BROADCAST,)

S TATUS=SMGIDE L ETE _PASTEBDARO (PB ID)

STOP
ENO

!Main Body of Program.

The SMG routine SMG$SET OF BAND ASTS will trap
control/key events and,-ir-spec1fied in the
argument list, call the appropriate AST routine.
This AST routine can then be designed to handle the
control/key event in a user friendly manner.
A mask is used to specify which control/key events
will be trapped. This mask is defined by setting
the bit that corresponds to the desired control/key
character [6]. If no bits are set then no
control/key event will be trapped. Care should be
taken that only those control/key events desired
are specified in the mask. For example, if CTRL/M
is set in the mask, then a carriage return
(typically used to terminate input) will stop
program execution and call the specified AST
routine instead of terminating user input (Figure
11).

IMPLICIT INTEGER*4 (A-Z)
INTEGER*2 TERMINATOR
CHARACTER ANS*S

COMMON/I 0/FLAG, PB I 0, VD ID, Kl D

INCLUDE '(ISMGDEF)'
INCLUDE '($TRMOEF)'
INCLUDE '($SSOEF)'

EXTERNAL ASTSUB

FLAG=.FALSE.

!Declare data types.

! ID numbers for ASTSU8.

!System definitions.

! Declare routine used
!by SMG$SET_OUT __ OF _BAND_ASTS

MODIFIER=TRM$M TM PURGE.OR. TRM$M TM ESCAPE.OR. TRM$M TM CVTLOW
MAINSTATUS=. TRUE.- - - - -

MASK=O !Set up mask.

C Very important that CTRL/M is enabled if CR is used to terminate input.

MASK=JIBSET(MASK, i3)
MASK"'J NOT (MASK) !Sets Most Control/key trapping

! (c:ompl iment)

C Create pasteboard, display and keyboard. Declare out of band asts.

STA TUS=SMG$CREATE PASTEBOARD (PB IO)
STATUS=SMG$CREATCV IRTUAL DISPLAY (10, 60, VOID, SMGlM BORDER)
STATUS=SMG$LABEL BOROER(VDID, 'MAIN DISPLAY',, ,SMG!M BOLO)
STATUS=SMG$CREATf VIRTUAL KEYBOARD(KIO) -
STATUS=SMGIPASTE VIRTUAL DISPLAY(VDIO,P8!D,3,3)
STATUS =SMG$SET _OUT _OF _BAND _ASTS (PB I 0 ,MASK,ASTSUB, LIST)

C Get user input.

OD WHILE(MAINSTATUS)
STATUS=SMG$SET CURSOR ABS(VOI0,3,1)
STATUS=SMGIREAD STRING(Kl 0,ANS, 'PROMPT>

TERM! NA TOR, VO IO)
',5,MODIFIER,, ,LEN,

If (STATUS .NE. SS$_ABORT)THEN J If abort then READ STRING

IF (FLAG) THEN
FLAG=.FALSE.

!cancel led. -

STATUS=SMG$DELETE CHARS(VDID,25,B,!)
STATUS •SMG$0ELETE::CHARS (VD ID, 25, 9, I)

SUBROUTINE BROADCAST

IMPLICIT INTEGER*4 (A-Z)
INTEGER*2 LEN

!Declare data types. ENOIF

CHARACTER MESSAGE*80

COMMON/ IO/PB I 0, BR DAD VO

C Get broadcast message and display to user.

STATUS=SMGIGET BROADCAST MESSAGE (PB ID ,MESSAGE ,LEN)
S TATUS=SMG!PASTE V !RTUACO I SPLAY (BROAOVO, PB I 0, 18, 2)
STATUS=SMG!PUT_CHARS(BROAOVO ,MESSAGE (1: LEN), 3, l)

RETURN
ENO

Figure 10

In addition to broadcast trapping, control/key
sequences can also be addressed by SMG. Such
events as CTRL/Y and CTRL/C (pressing the control
key and then the Y or C keys simultaneously)
usually serve as a means of prematurely ending
program execution. Unfortunately data files and
other resources currently being used by the program
may be altered or destroyed due to these events.

549

If (ANS(!: 4) .EQ. 'EXIT')THEN
MA I NSTATUS= .FALSE.

ENO IF
STATUS,.SMG$PUT CHARS(VDID, 'User response: ',6,1)
STATUS •SMG$PUT::CHARS (VD! 0,ANS (1: LEN) • 6' I B)

END IF
END DO

STA TUS=SMG$0ELETE_PASTEBOARD(PB ID)

STOP
ENO

SUBROUTINE ASTSUB(LIST)

IMPLICIT INTEGER*4 (A-Z)
CHARACTER TEMP*4
COMMON/ I 0/FLAG, PB I 0, VD! D, KID

INCLUDE '(ISMGOEF)'

STA TUS=SMG$CANCEL_I NPUT (KIO)

!Done with program.

!Deel are important data types.

!Common contains values from calling
!routine.

!System definitions.

!Cancel outstanding read operation.

FLAG=.TRUE. !Notify user.
STATUS=SMG$PUT _CHARS (VD ID, 'Contra l /Key pressed' , 8, 1, , SMG$M_BOLD)

RETURN
ENO

! Done.

Figure 11

Scrolling

SMG allows for the scrolling of text within a
virtual display. Unlike hardware scrolling, where
the whole width of the screen in involved, SMG
scrolls only lines within the virtual display. In
applications that scroll one line at a time, SMG
erases and then repaints the display for each line
scrolled. Unfortunately, this technique requires
considerable processing time and the resulting
sluggish performance will often frustrate the user.

A solution to this problem involves a technique
called jump scrolling. Instead of erasing and
repainting the display for each line scrolled, jump
scrolling erases and then repaints the display with
the next N lines, where N is the number of lines in
the display. In Figure 12, two sequences of
displays are present. The displays under column A
illustrate scrolling line by line. The displays
under column B illustrate jump scrolling.

,....-----HELP------,
Lin• l

2

Line

.------HELP-----.
Line Z

3

Line

..------HELP-----,
Line 3

Line l 0

.------HELP-----,
Line 4

5

9
10

Line 11

..------HELP-----.
Line 1

Line

2
3

.------HELP-----.
Line 9

10
11
12
13
14
15

line 16

..------HELP-----.
line 17 ..

19
20
21
22
23

Lin• Z4

,....-----HELP-----,
Line 2:5

26
27
28
29
30
31

Line 32

Figure 12

To include jump scrolling in an application, design
the program logic to erase (SMG$ERASE DISPLAY) and
then repaint (SMG$PUT LINES) the dispTay with the
next N lines when a serolling operation is required
(Figure 13) •

550

DISPLAY_LINE•l !Marks location cursor is at
!in display.

LINE•! !Used to mark location in text
!buffer.

DO WHILE(MAINSTATUS)
STATUS•SMGSSET CURSOR ABS(V!D,DJSPLAY LINE,!)
STATUS•SMG$REAli" STRJNG(KID,ANSWER, ,2,MASK,,,, TERMINATOR,

VIO)

C Check to see if display should be scrolled.

IF(TERMINATDR.EQ.SMG$K TRM OOWN.AND.DISPLAY LINE,EQ.8)THEN
STATUS•SMG$BASE _DISPLAY (VI D, PBJO)

C Repaint display with next 8 lines of text.

lD

ELSE

END!F

ENO DD

Function Keys

DD ID l•l,B
LJNE•LINE+l
STATUS•SMG$PUT LINE(V!D,BUFFER(LINE))

CONTINUE -
DISPLAY_LINE•!

DISPLAY LINE•DISPLAY LINE+!
LINE•LINE+l -

Figure 13

To minimize user input error and fatigue, function
keys can be utilized. These keys are located on
the keyboard and when pressed by the user, a
special escape sequence is passed to the
application program. Based on the key pressed, the
appropriate program function is activated. The
routine SMG$READ STRING returns to the calling
program (via the-terminator argument) the function
key entered by the user. As indicated earlier, SMG
assigns an unique symbolic name (defined by the
$SMGDEF macro/module in the DIGITAL supplied system
libraries) to the escape sequence. The program
logic then checks the terminator argument to
determine which key was pressed by the user.
Terminal independence is achieved since symbols are
used instead of escape sequences for function key
detection.

An unique approach to using function keys is to
incorporate the GOLD/key terminology in the
program. GOLD/key involves pressing the PFl key
(located on the auxiliary keypad} and then pressing
a key on the keyboard/keypad. The application
program is designed so that when the PFl key is
pressed (the symbol SMG$K TRM PFl is returned by
SMG$READ STRING}, the program-logic automatically
issues a-second read operation to the user (Figure
14). This second read operation is then used to
collect the second input of the GOLD/key operation.
Based on the key entered, the appropriate program
function is called. Most of today's applications
(such as word processing packages or the EDT
editor) use the GOLD/key technique for user data
entry. By incorporating this terminology in
program development, start-up time is reduced since
it is likely the user is already familiar with this
technique.

In addition, by designing programs that use
familiar names or letters for accessing program
modules, less training time is required in order to
get the new program running. Features such as
GOLD/H (for accessing on-line help) and GOLDIE (for
exiting a program) are logical methods of accessing
subprogram modules and do not have to be remembered
by the user. This technique provides a convenient
user friendly interface to a program (Figure 14).

IMPLICIT INTEGER•4 (A-Z)
INTEGER•2 TERMINATOR.LEN
CHARACTER ANSWER•5 ,PROMPT•! 3

INCLUDE '($SMGDEF)'
INCLUDE '($TRMDEF)'

!Declare data types.

!System Definitions

C Create pasteboard, virtual display, and virtual keyboard.

STATUS•SMG$CREATE PASTEBOARD(PBID)
STATUS=SMG$CREATEVIRTUAL DISPLAY(l0,60, VIO,SMG$M BORDER,,)
STATUS•SMG$CREATEVIRTUACKEYBOARO (KIO) -
STATUS=SMGSPASTE_YIRTUAL_DISPLAY(V IO,PB ID, 5, 5)

C Create terminal driver mask for READ_STRING

MASK•TRH$M TM ESCAPE.OR. TRM$M TM PURGE.OR. TRM$M TM CVTLOW
PROMPT=' GiYe Answer: ' - - - -

C Get user input.

HAINSTATUS•. TRUE.
DO WHILE(MAINSTATUS)

STATUS=SMG$SET CURSOR ABS(VID,3,5)
STATUS=SHG$READ STRING(KI O,ANSWER ,PROMPT, 5,MASK,,,

LtN, TERMINATOR, VIC)

C Check user 1nputa

C Done.

Menus

ENOOO

IF(TERMINATOR.EQ.SMG$K TRM PFl)THEN !GOLD key.
STATUS•SMG$SET-CURSOR ABS(VI0,3,18)
STATUS=SMG$READ STRING(KIO,ANSWER(l: I), ,I,

M:&:SK.OR. TRM$H TM NOECHO)
If(ANSWER(l:l).EQ.'H')THEN- -

CALL HELP !Help
ELSE IF(ANSWER(l:l).EQ. S')THEN

STATUS•LIB$SPAWN() ! Spawn
ELSE IF(ANSWER(l:l).EQ.'E')THEN

MAINSTATUS•.FALSE. !Done.
ENDIF

ENO!F

STATUS=SHG$DELETE_ CHARS(VI D, 5, 3, I B)

STA TUS•SMG$0ELETE _P ASTEBOARO(PB ID)

STOP
ENO

Figure 14

Menus are a convenient method of informing the user
of the options and functions available in a
program. By using several menus, each one
displaying only the information necessary for
program execution, the user is not overwhelmed by a
single congested menu. In addition, using several
menus will allow the programmer to establish
logical paths to the various functions and features
available in the program.

A virtual display is created for each menu. When
creating the display, a border is recommended.
This border will distinguish the menu from
additional displays and images currently visible on
the pasteboard. When a particular menu is desired,
the application program pastes (makes visible) the

551

display on the pasteboard. As a user moves through
the program accessing the various menus, displays
are pasted to the pasteboard. The key here is to
offset each menu from the previous menu (Figure
15). This cascading technique is helpful since it
allows the user to quickly determine where he or
she is currently located in the program logic.

---------MAIN MENU'-----------,
GOLO/H - HELP

1 - Updat• d•t•base
2 - Report on d•t•b•s•
3 - Exit th• ••nu

---------'llUN MENU----------.1 GOLD/H - HELP
---------UPDATE MENU--------.....

GOLD/H - HELP

1 - Add a n•• record
2 - Update a record
3 - Re•ov• • record
4 - Update data file d•finition
5 - Exit the ••nu

.----------MAIN MENU----------.1 GOLD/H - HELP
---------UPDATE MENU--------......,1 GDLD/H - HELP
--------ADD NEW RECORD-------......_,

GDLD/H - HELP

1 - Add ne• record
2 - Exit th• ••n

.----------MAIN MENU----------.1 GOLO/H - HELP
,---------UPDATE MENU--------.._,l

GOLO/H - HELP
.---------ADD NEW REtDRD-------........ 1 GDLD.IH - HELP
---------ADD NEW Joa--------......,

GOLD/H - HELP

Give Job Nu•ber: _

Figure 15

Function keys can be included in a menu driven
package. Help for a particular menu can be
accessed by entering GOLD/H. GOLD/S can be
employed to allow the user to gain access to the
system level (DCL level). GOLD/Eis useful for
allowing the user to quickly exit the program. To
utilize these techniques, displays are created and
when the the particular function is activated,

pasted to the pasteboard. For example, if GOLD/H
is entered, a help display is pasted to the
pasteboard (Figure 16}. When help is no longer
required by the user, the display is unpasted and
resides in memory until needed again.

--------HAIN ~ENU---------,
GOLO/H - HELP

1 - Update databaise
2 - Report on d•tabase
3 - Exit menu

.-----------HELP------"'-----
This menu •ill ii1llo111 you access to the databi!lse. Th• first
option 111111 plaea you in the update illenu. Here you will be
iilble to updoate th• database based on the desired operation.

-----1 Such tasks as adding and u;:>datino records or modifying
various data file definitions can be accomplisl'led by
selecting tl"lis option. The second 00>tion mill allow you 1.o
cre:ata various repol"ts using the data stored in the
database. The final option alloais you to exit the menu

Press Return to continue:

Figure 16

SPECIAL CONSIDERATIONS

Since SMG maintains an internal representation of
all images on the video screen, routines or
subprogram modules that perform non-SMG output
should be avoided. The images placed on the video
screen by a non-SMG routine will not be included in
SMG's internal screen representation. This
situation can confuse the user since these non-SMG
images are placed on a screen without concern for
the SMG output currently visible. In addition,
when the non-SMG routine is finished processing and
control is passed to a routine that is using SMG,
updating or modifications to the pasteboard will
not reflect the output from the non-SMG routine.

552

To eliminate this problem, the following technique
is recommended. Before calling the non-SMG
routine, save the pasteboard contents to internal
memory and erase the screen by using the routine
SMG$SAVE PHYSICAL SCREEN. Call the non-SMG routine
and allow it to run to completion. Finally, call
SMG$RESTORE PHYSICAL SCREEN to erase and then
repaint the-screen. -This technique will help
reduce some of the user confusion that may occur.

CONCLUSION

The Screen Management Facility is a set of VAX/VMS
routines that will allow a programmer to develop
applications that utilize device independent I/0
techniques. These routines reduce the amount of
source code required and therefore reduce program
development costs. Due to the ease of use and
abundant features, program developers should
consider these routines whenever developing
applications.

REFERENCES

(1) VAX/VMS Run-Time Library Routines Reference
Manual

(2) VAX/VMS Mail Utility Reference Manual
(3) VAX/VMS I/0 User's Reference Manual Part I,

Section 8. 2 .1. 2
(4) VAX/VMS System Services Reference Manual
(5) VAX/VMS I/0 User's Reference Manual Part I,

Section 8.2.1.5
(6) VAX/VMS I/0 User's Reference Manual Part I,

Section 8.4.3.5

A VMS Facility for Data Encryption
to the Data Encryption Standard.

Dr John Yardley
JPY Associates Limited

138 High Street
New Malden, Surrey

ENGLAND KT3 4EP

ABSTRACT

This paper discusses data encryption, the Data
Encryption Standard (DES) and DATA-LOCK, a
VAX/VMS facility for DES encryption. The
DATA-LOCK facility was written originally for
the European PDP-11 market, mainly in response
to export restrictions placed on LIS
implementations of the DES by the NBS. The
paper describes the subsequent native-mode
VAX/VMS version which, it is believed, is the
fastest known software implementation of the DES
algorithm. The paper also covers the use of
DATA-LOCK, in particular the way it has been
designed to operate transparently with VMS
facilities and applications using a novel
psuedo-device driver. This driver permits
regular FILES-11 files to be treated as
psuedo-device units in their own right.

1. Data Encryption
because the passwords themselves do not actually
protect or do anything to the data, they simply
tell the operating system whether the user may
access it. Hence, it may even be possible to take
data on a removable disk from an "unfriendly" site
to a "friendly" one.

Traditionally, large computer systems have been
protected by a system of user passwords, whereby
individual users are given selective access to only
certain parts of the system database. The
allocation of passwords and privilege is usually in
the hands of the System Manager - someone is chosen
on his technical merit rather than his corporate
importance and who is rarely the "owner" of system
data. Such password protection is designed to
manage the allocation of resources (such as disk
space, CPU time, etc.) and the protection of the
"system" rather than the privacy of data.

Systems such as VAX/VMS which are password
protected in this way are open to three main
abuses:

1.

2.

The user who "breaks" the protection system
and may discover how to allocate himself more
privilege than he is entitled to.

The user who discovers the System Manager's
password - either deliberately or by
accident.

The corrupt System Manager. Nothing is ever
secret from the System Manager.

While, VAX/VMS handles password protection very
securely, users who achieve System Manager status
obtain global access to all files on the system so
can indeed be a great threat to security. This is

Proceedings of the Digital Equipment Computer Users Society 553

The way to prevent these possible abuses is to
retain password protection for the allocation of
resources - administered by the System Manager -
but to allow each individual user to protect
his/her files as required. This may be
accomplished by ENCRYPTING (or scrambling) the
actual data in the file in some way known only to
the owner. It then does not matter where the data
resides, or who can access it, providing its
contents are meaningful to only the owner. This is
the principle by which DATA-LOCK works.

2. The DES Algorittn

Essentially, there are two methods to encrypt data
so as to render it secret; the first is to perform
some secret transformation on it - the opponent
must then discover the secret transformation to
DECRYPT (or unscramble) the data. The second is to
make the transformation public, but use some KEY
which controls the way it takes place.

The advantage with the public algorithm method for
computer-based systems is that there need be no
effort in maintaining the secrecy of the
encipherment program itself - only the key should

San Francisco, CA- 1986

remain private. 1bere is no point in disassembling
a published encryption algorithm. Furthennore, if
the algorithm remains constant, there is very
little information required to unlock the data, and
the same caq:>uter program can be run on any
canputer site.

In 1973, recognising the need to adopt a standard
algorithm for the encryption of computer data, the
US National Bureau of Standards solicited proposals
for:

"Cryptographic algorithms for the
protection of computer data during
transmission and donnant storage."

The requirements that NBS imposed for acceptable
encryption algorithms included the following:

1. They must be completely specified and
unambiguous.

2. They must provide a known level of
protection, normally expressed in length of
time or number of operations required to
recover the key in terms of perceived threat.

3. They must have methods of protection based
only on the secrecy of the keys.

4. They must not discriminate against any user
or supplier.

Subsequent to this, an algorithm submitted by the
International Business Machines Corporation (IBM)
was selected, to become known as the Data
Encryption Standard. The DES algorithm is used by
DATA-LOCK.

The Data Encryption Standard defines the encryption
of an input block of 64-bits, called the PLAINTEXT
into an output block of 64-bits, called the '
CIPHERTEXT. This encryption is a function of a
64-bit KEY, of which 56-bits are significant.
There are, for any given block of plaintext, 2 to
the power 56, or 10,ooo,ooo,ooo,ooo,000 different
ways to encrypt it.

Segments of plaintext greater than 64-bits, may be
broken into blocks of 64-bits and enciphered block
by block. Any residual bits, in so-called SHORT
blocks, may be padded out with random filler bits
to form a complete block.

Given any ciphertext block, the only way to
discover the original plaintext is to try every
possible key in turn. With so many keys this is
in most cases, an impractical proposition. The DES
then, is both an extremely strong and well-designed
cipher algorithm. This is illustrated by the
particularly interesting quality of interdependence
of input and output bits - only one bit in the
input block need be changed to yield, on average,
32 bits changed in the output block. Or another
way, every output bit is a function of every input
bit.

554

3. 1be DF.S in software

The DES is, by definition, a hardware standard and
so the algorithm is very much geared towards
execution in hardware. This means that certain
operations which are trivial in hardware yet
complex to execute in software result in most
software implementations being considerably slower
than dedicated DES devices. For example, the
initial permutation performed on input plaintext
~this a one-one transfonnation) can be implemented
in hardware by "hardwiring" bits between input and
input-permuted blocks. The execution of this
permutation takes place in the time it takes a
signal to travel down a wire - a very short time
indeed. In software, this is a much more difficult
and time-consuming exercise.

While other methods exist for data encryption that
are more amen~ble to software implementation, none
has the security or general acceptance of the DES.
So that despite the technical difficulty of the DES
in so~ware, its benefits make it worthwhile.

The reason that the DES is defined for hardware
execution is not, however, for speed
considerations. What is important is that the
algorithm be hardwired and hence impossible to
alter by an opponent. Software cannot offer the
same degree of inviolability. However, in systems
adopting hardware DES devices, it is not uncommon
for the management of keys to be handled by a
computer. Since the key management algorithm may
be subject to the same abuse as a DES encryption
algorithm, the overall system can only ever be a
secure as the software.

ll. The development of DATA-LOCK

In England, and indeed most of Europe, the DES is
regarded as the de-facto standard by most banks and
major companies. However, hardware for DES
encryption is scarce due to the requirement of the
US National Bureau of Standards that any product
incorporating a US implementation of the DES needs
an individual export licence. Since all the'
commercially available DES chips are of US
manufacture, relatively little hardware has been
made or used outside the USA. DATA-LOCK was
developed in response to the need for DES
encryption facilities - at least for DEC users who
would not be "compromised11 by a software
implementation.

The initial product, developed in 1984, was written
for the PDP-11. Before development, there was no
real idea of how fast the algorithm could be made
to operate, and it seemed quicker to implement it
than estimate its speed of operation. The aim was
to.be able to encrypt at 9600 bit/sec on an 11/23.
This speed was eventually exceeded.

DATA-LOCK for the PDP-11 comprised a Transfer
Utility, a Key Manager and a CIPHER procedure.

The Transfer Utility operated much like PIP (or
COPY), but performed simultaneous encryption or
decryption. There were a variety of switches to
control the deletion of input files; conversion to

HEXADECIMAL; the passing of keys from the Key
Manager; and the choice of encryption mode
(cipher-feedback, block-mode, etc).

The Key Manager performed regular database-type
operations on user keys. Facilities were included
for generation of random keys with user-friendly
aliases. These could be passed to the encryption
utility in internal mailboxes.

The CIPHER procedure formed the basic building
block for DATA-LOCK. It was modelled on the
procedure definition proposed by Maytas and Mayer
(1) and took the form:

where:

PLNTXT
CFRTXT
KEY
LENGTH
FNC
rev
CHAIN
ocv
SHORT

IPMODE

CALL CIPHER(PLNTXT,­
CFRTXT,­
KEY,­
LENGTH,­
FNC,­
ICV ,­
CHAIN,­
OCV ,­
SHORT,­
IPMODE)

= Address of plaintext array
= Address of cyphertext array
= Address of key array (8 bytes)
= Length of plaintext/cyphertext array
= Function (O=encipher 1=decipher)
= Address of initial chain value (8 bytes)
= Encryption mode (O=block 1=chain)
= Address of output chain value (8 bytes)
= Short block handling mode (O=pad

1=stream)
= Initial permutation mode (O=execute

1=suppress)

DATA-LOCK was originally implemented under RT-11
(and TSX-Plus). The CIPHER procedure was written in
MACRO and all other components in Pascal. As a
result, DATA-LOCK was relatively easy to convert
for use under RSX-11 and RSTS.

The original VMS version of DATA-LOCK ran under the
VMS RSX/AME in PDP-11 compatability mode and
therefore was suitable only for use on the
730/750/780 series of VAXes. In this mode on the
750 it operated at about the same speed as the
LSI-11/73 version.

5. Data-Lock and the VAX

It was clear that it would be necessary to develop
a native mode version of DATA-LOCK for the VAX.
This was because machines such as the MicroVAX 2
did not support compatibility mode and, more
importantly, the VAX instruction set was far more
amenable to the DES algorithm than the PDP-11
instruction set. Many of the operations in the DES
algorithm involve 32-bit and 64-bit manipulations,
some of which can be executed in a single VAX
instruction.

As a result, a VAX version of the Algorithm was

555

produced at the end of 1985. The CIPHER procedure
was completely written from scratch in MACR0-32
rather than converting PDP-11 code into equivalent
VAX instructions. The native mode procedure is
able to operate at a minimum speed of
80,000-bits/sec on the MicroVAX 2 giving
theoretical file transfer rates of some 20
blocks/sec.

The DATA-LOCK DCL interface was made compatible
with DEC's VMS Encryption version 1.0 to permit
keys to be passed via logical name assignments.
The facility to pass keys explicitly or via mail
boxes was retained.

A drawback of the encrypting utility approach was
that files had to be encrypted and decrypted by
issuing a special command. If this was forgotten,
un-encrypted files could be left lying around the
disk. The solution to this was to somehow
intercept reads and writes to disc and encrypt data
on write and decrypted on read. This was
accomplished by developing a special purpose device
driver. Such a driver was designed make DATA-LOCK
totally transparent to the user.

6. The VHS Virtual Volune Driver (VV) and BIND
program

The virtual volume driver operated rather like a
logical disk handler under RT-11, whereby users
could treat a standard disk file as though it were
a device in its own right. The user began by
creating a file of specified length on a physical
disk, then a virtual volume unit was "bound" to the
file using a special program. The virtual volume
unit thus had it's own directories, user accounts
and files and was completely independent of the
real disk on which it resided.

The user made use of the VV driver by invoking a
program called BIND. With this, he/she could
"bind" to a newly created virtual volume file or to
an existing one. This could be done using a DCL
command thus:

BIND VVAO: VVF.DSK

to BIND to an existing file, or:

BIND VVAO: VVF.DSK/CREATE/ALLOCATE=200

to BIND to a newly created file of, say, 200
blocks.

7. The VHS Encryption Driver

A logical extension of the VV driver was to
undertake any processing required on read/write
operations to the virtual volume file. In the case
of DATA-LOCK, the processing was naturally DES
encryption/ decryption. The key and indeed any
other user-specific information could be passed to
the driver as an extension to the BIND program. For
example, the command:

BIND/ENCRYPT/KEY=SECRET VVAO: VVF.DSK

could be used specify DES encryption with the key
stored in the logical name "SECRET".

Since all the contents (including volume header) of
a newlyinitialised virtual volume file were
encrypted with the same key, it would be impossible
to MJUNT the same file, following a later BIND
operation, with a different key. The user was thus
prevented from mixing keys on the same virtual
volume file.

With the resulting implementation, it was intended
that each user should be allocated one virtual
volume unit for his/her exclusive use. In
principle however, there was no reason why several
users should not have shared access to global file
- provided they all knew the correct key.

8. Slmllary

Work done on DATA-LOCK has shown that data
encryption to the DES can be performed on most VAX
processors at acceptable speeds and in a way that
is almost totally transparent to the user.
DATA-LOCK can be integrated with almost any o':.ner
VMS facility to provide extremely high file
security.

The specially developed virtual volume handler, has
a number of possible applications aside from data
encryption. Future efforts at JPY Associates are
concentrated on yet faster implementations of the
DES and exploitation of these other applications
the VV driver.

Reference

(1) Carl H. Meyer and Stephen M. Matyas,
"Cryptography", Wiley-Interscience, 1982.

556

VAX NETWORK BACKUPS

D.G. Darkangelo

General Electric Company
Corporate Research and Development
Schenectady, New York 12345

This report is aimed at VAX computer owners and managers. It is
based on two premises: (1) person hours are more expensive than a rea­
sonable investment in hardware (because of the direct and overhead costs),
and (2) backups on a routine basis are necessary on all computers. This re­
port will show how a reasonable investment in disk space for backup files
can save money in doing routine backups in a reliable manner.

1. INTRODUCTION
This report is aimed at VAX computer owners and

managers. It is based on two premises: (1) person
hours are more expensive than a reasonable invest­
ment in hardware (because of the direct and overhead
costs), and (2) backups on a routine basis are neces­
sary on all computers. This report will show how a
reasonable investment in disk space for backup files
can save money in doing routine backups in a reliable
manner.

Note that the method set forth does not use disk
shadowing. This is because disk shadowing is not
available yet in VMS. In addition disk shadowing,
when available, will support only cluster backups, not
network backups. Sometime in the future, disk sha­
dowing may be incorporated as part of the cluster
backup, but it will not completely replace the method
described here.

For clarity the network backup procedures have
been broken down into four parts. The first part deals
with incremental daily backups across the network
from all V AXs to one central VAX. The second part
shows procedures for copying the network incremen­
tal backups from the central VAX disk to tape so that
the structure of the backup save sets remains intact.
The third part covers a procedure for doing periodic
full backups from any VAX across the network to one
central VAX. The fourth part covers the copying of
the full backups to tape and listing the save sets. Note:
none of the procedures here will replace the need for
periodic system disk image backups. Again disk sha­
dowing, when available, may replace system disk im­
age backups on the cluster.

The following procedures have been used for the
last year and a half or so for a VAX cluster [with two
VAX 8600s, two 11/785s, two l 1/750s with thirteen

Proceedings of the Digital Equipment Computer Users Society 557

RA8 l disks (500 MB each)]. One of these computers
was selected to be the recipient of backup data for each
individual operation. This is referred to as the
SER VER node. Several machines can be SER VER
nodes if many backups are being done. Non-clustered
machines include two 11/750s, one 11/730, one
11/725, eight MicroVAX Ils, and thirteen MicroVAX
Workstations. All machines are, of course, connected
via DecNet/Ethernet.

2. INCREMENT AL NETWORK BACKUPS
The period for doing incremental backups may

vary from computer to computer, hut it has been our
policy to do daily incremental backups with the
/MODIFIED/SINCE=BACKUP qualifiers. This
picks up all files modified since the last backup with
the /RECORD qualifier. We do NOT use the
/RECORD qualifier in any incremental backup com­
mands. We reserve this qualifier only for full disk
backups to minimize the amount of time to restore a
disk if there is a hardware problem.

For our network incremental backups we have
dedicated two of the cluster RA81 disks. One disk will
store all the networked incrementals, and the second
will store all the cluster users and system disk incre­
mentals. The amount of disk space needed will
depend on the number and size of the disks being
backed up. These disks should have a directory struc­
ture to keep all the backup save sets organized. The
directories should be owned by a nonprivileged ac­
count. The directory structure that we chose was one
main directory on each backup disk, [REMOTEBAC],
with subdirectories under it for each VAX node name
(i.e., [REMOTEBAC.WSCADl]) where its save sets
could be stored. The common VAX backup account
should be a new one with its default login to be the

San Francisco, CA- 1986

main directory of the network backup disk (i.e., [RE­
MOTEBAC]).

A backup account must be set up on each of the
V AXs to be backed up. This account should have
BYPASS privilege. It also must be proxied into the
VAX backup account on the SER VER node or nodes.
This proxy is done in the authorize file of the
SER VER VAX. A command file, as shown in
Figure 1 a (modified for each specific system), would
be submitted to one batch queue on each VAX to be
backed up from the backup account, ·except the
SER VER VAX. The SER VER VAX would have a file
such as that shown in Figure 1 b run as part of its night­
ly cleanup from the system account (necessary if the
backup account is nonprivileged). Note that Figure 1 b
uses the second incremental backup disk because our
SER VER VAX is on the VAX cluster and backs up all
the cluster disks (many RA81 s).

Once these procedures are set up, incremental
backups will automatically be performed across the
network onto a common disk. This is important since
the save sets on the common disk can be archived with
no impact on users. Further, this procedure, once set
up, requires no person hours to make incremental
backups to save sets on disk. Part 2 will show a pro­
cedure to archive these backup save sets to tape.

3.COPYINGINCREMENTALBACKUPSAVE
SETS TO TAPE
Since we do not want our backup disks filling up

with incremental backup save sets, we copy them to
tape for storage. The policy that we use is that incre­
mental backups will be stored on 20 rotating tape sets.
This means a tape is written over only every 20 work­
ing days. This schedule is adequate since we do a full
backup on each major disk on a four-week schedule
(more on this in the network full backup section).

We do all of our backup copies to tape from a
privileged captive account on a cluster VAX. This al­
lows a less experienced person to do the actual work
and maintains a degree of consistency. The captive ac­
count runs a simple command file as its default
login.com as specified in the authorize file using the
LGICMD parameter. The command file is shown in
Figure 2a. This file will contain all the specific com­
mand options necessary to do all the tape and cleanup
work for our backup files (most of this work is shown
in Figure 2). This file can be modified easily as needs
change.

This command file calls subordinate command
files for each option which requires more than a few
lines of code. This method is used to keep the struc­
ture simple. Most of the command files are relatively
self-explanatory. The logout (lo at the end of each
section is to ensure that the account is logged out after
each procedure in case the operator steps away. In the
copy subcommand files notice that the

558

MOUNT/BLOCK_SIZE=xxxx option is used when
the tape is mounted. This option is necessary for the
tape copies to look like original save sets. The xxxx
number is taken from the Record Format of the save
set on the disk (a constant).

The REPLY subcommand is used when the copy­
ing of a save set spans more than one tape. When the
operator is asked to mount a second tape, he does so,
and then logs into the captive account again from the
systems console and uses the REPLY subcommand
with the number specified in the mount request re­
ceived. Note that the actual REPLY command the
VAX sees has the /BLANK_TAPE option on it. This
option is needed for a proper save set continuation to
take place.

This completes the network incremental backups.
The person hours needed to accomplish this task will
vary according to the number of backups that need to
be written to tape. This procedure on our mix of com­
puters takes about 3/4 person hour per day. This is a
savings of almost a full person day in terms of comput­
er logistics and the difference in media speed available
on each VAX.

4. PERIODIC NETWORK FULL BACKUPS
As with incremental backups, the period for doing

full backups may vary from computer to computer,
but they should be coordinated with the incremental
backup procedures. Our policy on full backups is to do
each user and system disk on four-week intervals.
This coincides with the rotation of 20 working days of
incremental tape sets. The MicroV AXs and VAX sta­
tions at our site do NOT have network full backups
done on them, because most have only a single disk
functioning as both system and user, and the system
disk must have a minimum system with DecNet
software running to do the restore operation.

The disk used on the SER VER node to receive a
network full backup should have enough space to ac­
commodate the largest disk being backed up. We have
dedicated one cluster RA81 (500 MB) disk because
the largest disk backed up is an RA8 l. This allows for
one network full backup per night. This disk is set up
with the same upper level directory structure as the in­
cremental disks and is owned by the remote backup
account. This backup account must be proxied into
the remote backup account on each client node to
have a network full backup done on it.

On the SER VER node a data file such as that in
Figure 3 must be set up. This has the date for a back­
up to take place, the disk name to be backed up, and
the network node name of the computer to be backed
up. The command file which drives the backup is
dependent upon the syntax of this file. On the
SER VER node a command file such as the one in Fig­
ure 4 must be submitted to a batch queue from the re­
mote backup account. This command file is largely

self-explanatory. The procedure first modifies the text
file to reflect a new backup date of four weeks out for
every backup it does, except that it needs to be
modified for leap year. It writes two command files to
the remote node, the first to actually do the backup,
and the second to submit the first one to the batch
queue on the remote node. The backup in the first file
uses a /RECORD option. The second command file is
deleted after it is executed.

Once these network full backup procedures are set
up, no further person hours are required to create full
backups to save sets on disk. The next procedure will
discuss archiving these save sets to tape.

5. COPYING NETWORK FULL BACKUPS TO
TAPE
To copy the full backups to tape we use a subcom­

mand file of the captive account described in Part 2.
This subcommand file is shown in Figure 2e. The
block size for the tape mount is used for the same rea­
sons as in the incremental copy section. The backup
file is deleted from the disk after copying it to tape to
make room for the next full backup. Most full back­
ups will require more than one tape for the copy. The
procedure for the reply is the same as in the incremen­
tal copy section.

There is no listing file generated for the full back­
ups because of the possible lack of room on the back­
up disk. Therefore, one more step is necessary to
finish the full backup procedure, a listing of the full
backup tapes. This procedure is performed by using
the captive account subcommand FBLIST (see
Figure 2f). This file does only a listing of the backup
save set tapes and saves it in the directory defined as
SYS$BACKUP for future reference. In addition,
reading through the tape ensures that the copy is
error-free.

The entire network full backup procedure is now
complete. The procedure for a mostly full large disk
such as an RA8 l (500 MB) will require about one and
a half person hours for both the copy and the list pro­
cedures. This represents a substantial savings over the
non-network method, and minimizes the impact on
users since their files are accessible during our prime­
time ordinary activity.

6. SUMMARY
The above procedures have been set up for DEC

VAX computers and have worked very well for us. At
some time in the future we plan to expand this method
to some other types of computers in our organization.

The exact command files used and the site-specific
elements within the files are not the important things
to note. Modify them as you wish. All systems and
environments are different. The important idea is that
a network procedure for backups can and has been de­
veloped and it does save expensive person hours.

559

$1
$1 REMOTE!NC.COM
$1
=~ to be submitted on each remote node to be incrementally backed up

$ set verify
$ set noon

" $1 get local node name

" $ node = F$GETSYI ("NODENAME")
$1
$1
$1

" $1

this file ls to do incremental backups of all fl les
modi fled or created since the last image backup
written 10-22-84 by d.darkangelo

$1 resubmit itself tomorro for scheduled time (3:15am)
$I - needed 1 f many network backups are going - only
$! about 4 or 5 can go at the same time to the same vax

" : 1 submi t/que=sys$batch/a fter="tomorro..,+03; 15: 00" sys$manager: remote inc. com

: : clean up the disks to be backed up (only one disk on this system)

$ purge duao: (000000 •••]
$!
: : duaO: backup to directory on ASLVAX (common backup node)

$ backup/1gnore=1nterlock/llst=aslvax:: [.'node) 'node. log­
/modified/since=backup duaO: (000000, ••]'.*:*/EXCLUDE=(*. SYS) -
aslvax:: [.'node] 'node.bck/save_set

" $1

"
clean up the specific directory on the common backup disk

$ purge aslvax;: [.'node)

" $1 NOn!ING TO DO Wini BACKUP
$I this ls just a convenent place for this function

" $I get the lastest network data base from the master network node
$I neede decnet 4. 2 for this
$1
$ ncp = "$ncp"
: 1ncp copy known nodes from aslvax:: using volatile to both

$!
$! NIGHTBACK.COM
$I

Fl1ure la.

$! submitted on a cluster vax from the system account
$1 to do incremental backups
$1
$1 written by D.DARKANCELO
$I
$ assign nl: sys$print
$ set proc/pr lo=S
$1
$ set noon

" $! set file ownership to the remotebackup account
$1
$ set uic (333, 2]
$1
$1 keep 20 copies for the log files to correspond to the 20
$1 rotating backup tapes

" $ purge/keep=20 sys$disk8: [remotebac .cluster]•. log
$!
$1
$I Reassign sys$output so the list of saved files goes to a log file
$!
$ assign sys$dlsk8: [remotebac.cluster]temp. log sysOoutput

" $ set noon

" $I User disk tl
$1

:Y~=~~~C{! 0?. ~.]/modi fled/since=backup -
sys$disk8: fremotebac .cluster] userdiskl .bck/save
$1
$! User disk 12

" O backup/log -
sys$dlsk2: (* •••) /modifled/since=backup -
sys$d1sk8: [remotebac.cluster)userdisk2 .bck/save

" $1 fl 11 in all the other user disks on the cluster
$1 mine have been omitted for space reasons in this example
$1
$1
$1 System dlsk - excluding •.SYS files
$1
$ backup/log -
sys$sysdevlce ~ [• •••]/modi fied/slnce=backup­
/exclude= ([• •.•]""'.sys. f""'.syscommon •••]•.•;•) -
sys$d1sk8: (remotebac. ciuster] sysdlsk ,bck/save

" $1 All done - close up shop
$1
e deassign sys$output
O rename sys$d1sk8: [remotebac .cluster] temp. log -
;ys$dlsk8: (remotebac. cluster] cluster. log

$ exit

Fl11ure lb.

" " ALLBAC!CUPS • Cal

" :: cae;~~~e~c~~ug~ g.:i~~~and flle

" $ set noon
$ set prot=v:re/default
$ vrlte sys$output ""
$ vrlte sys$output "Good morning"
$ vrite sys$output ""
$ Yrlte sys$output "Available conunands:
$write sys$output "CLUSTER_LIST. REPLY, SMALL_COPY." : :i~: =~=:~~i~~~ : .. cTSVAX_COPY, CLUSTER_COPY, FULLBA.CK_COPY"

" $1 command loop
$1
$GET_ COMMAND:
$ inquire command "Command" : ~ ~ ~~==~~ : :4:: =~~~~i¥,Rt~!~T;0~~e~E~~io CLUSTER_LIST
$ if command .eqs. "SMALL_COPY" then goto SMALL_COPY
$ if command .eqs. "CTSVAX_COPY" then goto CTSVAX_COPY
$ lf command .eqs. "CLUSTER_COPY" then goto CLUSTER_COPY
$ if corranand .eqs. "FULLBACK_COPY" then goto FULLBACK_COPY
$ goto GET_COMMAND

" $1 used to make a listing file of a fullbackup of a cluster disk

" $CLUSTER_L!ST:
$ define/user sys$input sys$command
$ @sys$backup: fbllst
$ lo

" $I used when a continuation tape is needed
$I
$REPLY:
$ write sys$output ""
$ vrite sys$output " You must be logged into the system console to use this "
$ vrite sys$output ""
$ define/user sys$input sys$command
$ inquire num "Request number replying to "
$ replyjblank_tape= 1 num
$ lo
$I
$1 all small disk backups are saved on the same dally tape
SI - 20 days worth of tapes on a rotational basis

" $SMALL_COPY:
$ define/user sys$input sys$command
$ @sys$backup: smal lcopy
$ lo

" $! used to copy the CTSVAX backups to tape (1600bpi) for use on their
$! computer system. the LIST process is done on the CTSVAX.
$1
$CTSVAJ{_COPY:
$ define/user sys$input sys$command
$ @sys $backup: CTSV AX COP
$ lo
$1
$I used to copy the cluster backups to tape (6250bpl)
$1
$CLUSTER_ COPY:

: ~::!~~'~k~~:~L~~i2bPi sys$command
$ lo

" $1 used to copy all fullbackups from disk to tape
$I
$FULLBACK_COPY:
$ define/user sys$input sys$command
$ ®sys$backup:FULLCOPY
$ lo

"
Figure la.

$!
$! CLUSTCOPY . COM
$!
$! written by D. DARKANGELO
$!
$!
$!

1 f there ls any errors in this procedure exit

$ on error then exit
$!
$!
$!
$!
$!

set all backup logs to world read. execute
so that non privileged users can see what files
may be recovered

$set prot=w:re sys$disk8: [remotebac ...]*.log;*
$ set prot=w: re sys$disk6: [remotebac ...] *.log; *
$!
$!
$I

to copy save sets to tape for the cluster

$ write sys$output " CLUSTER COPY ROUTINE "
$ write sys$output ""
$1
$1
$!
$1

this ls !or the weekday holidays which will generate multiple
versions of the incremental backups

: ~~t~: =~:=~~~~~~ :: ;~u t~~~~ ~=e~~~ ~~~~e o~~ ~~~!l~~a~f o~~e t~~~~ f pe "
$!
$I

"
set default to the directory from which the backup files are to be copied

$ set def sysi$dlsk8: (remotebac.cluster]
$I
$! give the user a directory list from which to answer questions

" $START:
$ dir/size/date * .bck
$1
$! get tape transport number which ls being used
$1
$GET_TAPENUM:
$ lnquire tapenum "What tape transport are you uslng (MFAO or MFAl) "
$ if tapenum .eqs. "" then goto get_tapenum
$!
$1 can only wrlte to tape if a write ring is ln place
$1
$ lnqulre ans " Is a tape with wrlte ring hung "
$ if ans . eqs. "YES" then goto nextl
$ exit
$NEXT!:
$ inquire version "Lowest verslon of .bck files. (exit]

: t~l ~e~~!~~n~:~~ jd:~s ~~;~6~~~ t backup

560

" $! the block size is important to have the tape look like the
$! true backup saves sets
$I
$ mount 'tapenum 1 :jblock=32256/denslty=6250 backup
$1
$1 write a directory file
$!
$ assign/user test.out sys$output
$ dlr/size * .bck
$ open/read input_ fl.le test .out
$ lines = 0
$!
$I skip over the header information

" $HEADER:
$ read lnput_flle scan
$ lines = lines + 1
$ if lines .eq. 3 then goto WORK
$ goto HEADER

:: flnd a backup flle of the version number specified
$1
$WORK:
$ read/error=close_up lnput_flle input
' lengt = [$locate(" ".input)
$ file_ version = !$extract (lengt-1, l. lnput)
o if file_verslon .nes. version then goto work

" $1 get backup file name and copy it to tape

" O file = f$extract (O, lengt. lnput)
$ copy/prot=(g.w)/log 'file 'tapenUm':*

" $1 delete backup file after complete copy

" $ del/log •file

" $! continue until all of the specified version ls done

" $ goto WORK

" $1 clean up directory

" $CLOSE_UP:
$ write sys$output "ALL DONE"
$ close lnput_f1le
$delete test.out;*
$ dismount 'tapenum':
$ write sys$output ""
$ write sys$output "To continue this procedure !or a new version"
:g~~~t~T;A;$output " a new tape must be hung.

Fl11ure lb.

" $ I SMALLCOPY • Cal

" $I vr 1 tten by D. OARKANCELO

" $1 to copy save sets to tape for all small disks
$! to one tape set

" $I get tape transport number

" : Y~~u1:~e~~~!num "What tape transport are you using (MFAO or MFAl) "
: 11 f tapenum . eqs. " 11 then goto get_ tapenum

$ inquire ans " Is a tape with write ring hung
$ if ans .eqs. "YES" then goto nextl
$ exit
$NEXT!: :! inlt 1 tapenum' :/denslty=6250 backup

: : block size is important for the copies to look like backup save sets

: 1 mount 'tapenum' : /block=32256/densi ty=6250 backup

:: set default to directory from which the backup files are to be copied

$ set def sys$dlsk6: (remotebac.lmsvax]
: 1copy/prot=(g,w) *·* 'tapenum' :•

: ~~~y'~:o~~{~~!}k~: {r7:~=~~;;~;pvax]

" $1 and so on for all the small disks
$ 1 program shortened for this artlcal

" $ dismount 'tapenum' :

Figure le.

$
$ CTSV AX COP • COM
$
$ wr 1 tten by D. DARKANCELO
$
$ on error then exit
$!
$! to copy save sets to tape for
$! CTSVAX DRAl, DRA2, DRAO
$!
$ write sys$output " CTSVAX COPY ROUTINE
$ lir 1 te sys$output ,.,,
$I
01 this can be caused by a weekday holiday
$!
$ write sys$output " If there is more than one version of the .bck file "
$ write sys$output " you will need to write to more than one tape. "
$!
:: set default to the directory from which the backups files are to be copied

$ set def sys$dlsk6: [remotebac .ctsvax]
$1
$1 give the user a directory list from which to answer questions
$1
$START<
$ dir/slze/date • .bck
$!
$! get tape transport number which ls being used
$1
$ get_ ta pen um:
$ inquire tapenum "What tape transport are you using (MFAO or MFAl) "
$ 1 f ta pen um • eqs, "" then goto get_ ta pen um
$!
$! can't write to a tape without a wrlte ring ln place
$!
$ inquire ans " Is a tape with write ring hung "
$ if ans .eqs. "YES" then goto nextl
$ exit
$I
$I get speci fie backup files version to be copied
$!
$NEXT1:
$ inquire version "Lowest version of .bck files. (exit]

: i~i ~e~~!~~n~:9~ id;~si~;~1~~6 tbackup
$!
$! block size ls very important to have copy tapes look like
$! backup save set tapes
$!
$ mount 'tapenum' :jblock=32256/denslty=1600 backup

" $! write a directory file
$1
$ assign/user test .out sys$output
$ dlr/slze * .bck
$ open/read input_flle test.out
$ lines = 0
$!
$! skip over the header info
$!
$HEADER<
$ read input_ fl le scan
$ lines = lines + 1
$ if lines .eq. 3 then goto work
$ goto HEADER
$1
$! get a backup file name for the specified version
$!
$WORK<
$ read/error=close_up input_file input
$ lengt = !$locate(" ",input)
$ flle_verslon = !$extract (lengt-1.1, input)
$ if file_version .nes. version then goto work
$ flle = !$extract (0, lengt, input)
$I
$1 copy save set to tape
$!
$ copy/prot=(g,w)/log 'file 'tapenum':*
$I
$! delete save set after complete copy
$!
$ del/log 'file
$ goto WORK
$1
$ t clean up directory
$!
$CLOSE_UP:
$ write sys$output "ALL OONE"
$ close input_file
$delete test.out;*
$ dismount 'tapenum':
$ write sys$output ""
$ write sys$output "To continue this procedure for a new version of backups,"
$ write sys$output " a new tape must be hung. "
$goto START

Figure 2d.

561

$
$ FULLCOPY . COM
$
$ written by D. DARKANGELO
$
$ on any error exit this procedure
$
$ on error then exit
$!
$I to copy save sets to tape for
$! ful 1 disk save sets
$I
$ wr 1 te sys$output " FULLBACK COPY ROUTINE "
$ w-rlte sys$output ""
$I
$! set default to directory from which the fullbackup file ls to be copied
$I
$ set def sys$disk7: (remotebac)
$!
$! glve the user a directory to answer questions from
$!
$START<
$ dir/size/date * .bck
$!
$! get tape transport number
$!
$ get_ tapenum:
$ inquire tapenum " What tape transport are you using (MFAO or MFAl) "
$ if ta pen um . eqs. "" then goto get_ ta pen um
$1
$1 can't write to a tape without a backup write ring in place
$1
$ inquire ans " Is a tape with write ring hung "
$ if ans . eqs. "YES" then goto nextl
$ exit
$1
$! get specific fullbackup version number to copy
$!
$NEXT1'
$ inquire FILE "FULL file name of .bck file including version. [exit) "
$ if FILE .eqs. "" then exit
$!
$! ask what tape dens! ty to use
$!
$ inquire dens "Is this for a 1600BPI tape yes or no [6250) "
$ if dens .eqs. "YES" then goto lnlt1600
$ ini t 'tapenum' :/densi ty=6250 backup
$I
$! block size is important for the copied files to look like
$! backup save sets
$1
$ mount 'tapenum' :jblock=32256/denslty=6250 backup
$ goto jumpl
UNIT1600:
$!nit 'tapenum' :/density=1600 backup
$!
$! block size is important for the copied fl les to look like
$! backup save sets
$!
$ mount 'tapenum' :jblock=32256/density=1600 backup
$!
$! copy the ful !backup files
$!
$JUMP1'
$ copy/prot=(g,w}/log 'file 'tapenum':*
$ del/log 1 file
$I
$I clean up
$!
$CLOSE_UP:
$ write sys$output "ALL OONE"
$ dismount 'tapenum' :
$ wrlte sys$output ""
$ write sys$output "To continue this procedure, a new tape must be hung. "
$goto START

Figure 2e,

$I
$I FBLIST .COM
$!
$1 Performs listing on full magtape backup
$!
$! Ask user which disk backup is to be listed
$!
$ save_verify = 'f$verlfy("NO")'
$1
$ get_dlsknum:
$inquire dlsknum "Enter disk number to be listed (0,1.2.3,4,5)"
$ if dlsknum .gt. 5 .or. dlsknum .It. 0 then goto get_dlsknum
$!
$I get tape transport number which is being used
$I

: f~~Ui~~e~~~!num "What tape transport are you using (MFAO or MFA!) "
$ if tapenum . eqs. "" then goto get_ tapenum
$!
$! Make sure the tape ls ready to go
$!
$ inquire rdy "Physically hang first tape, put on-line and hit RETURN"
$!
$I Determine log fl lename (standard for my sl te
$I
$ log_file := SYS$BACKUP:FULLUSER'dlsknum 1 .LOG
$ if d!sknum .eq. 0 then log_file := SYS$BACKUP:SYSTEM.LOG
$ container _file := FULLUSER 'dlsknum' .BCK
$if disknum .eq. O then contalner_flle := SYSTEM.BCK
$!
$! Mount the tape
$!
$ mount 'tapenum' :/foreign
$!
$! Perform listing of full backup tape
$!
$ set noon
$ backup/list=' log_ fl le' 'tapenum' : 'container _flle'
$!
$! All done - close up shop
$!
$ dismount 'tapenum' :
$I
$ if save_verlfy then set verify

Figure 2f.

$!

31-MAR-1986 SYS$DISK1 ASLVAX
17-MAR-1986 SYS$DISK2 ASLVAX
24-MAR-1986 SYS$D!SK3 ASLVAX
27-MAR-1986 SYS$DISK4 ASLVAX
10-MAR-1986 SYS$DISK5 ASLVAX

6-MAR-1986 SYS$DISK1 CTSVAX
13-MAR-1986 SYS$DISK2 CTSVAX

5-MAR-1986 SPS$DISK1 ASLVAX

Figure 3.

$1 BFULLBACK.COM
$1
$t••••••••tttt1tt1111ttt•••••11•••••••*················-···············•********
$1
$1
$1
$1
$1
$I

This file ls used to automate the full backup procedures
on the cluster. It will be run in batch each night.

Written by John M. Spaeth (26-Jun-1985)

$!*•***"*****************••••••••ttll1ttt•*****"******•*****•***********••a
$I
$ ASSIGN NL: SYS$PRINT
$ SET PROC/PRI0=5
$I
$1 Resubmit itself for tomorrow early

" $ submlt/nopr int/que=SYS$BATCH/after="tomorrow+OO :01: 00" -
S¥S$DISK6: [remotebac)bfullback. com
$1
$1
$1
$
$

' ' $ LOOP:

' ' " " f I

Main routine to do find the disk and do the backup (if any)

OPEN/READ !NPUT_FILE SYS$DISK6: [remotebac]FULLBACKS. TXT
OPEN/WR I TE OUTPUT _FI LE SYS $DI SK6 : [remotebac) FULLBACKS • TMP
~i~~T =="~$EXTRACT (0 .11. F$TIME ())

READ/ERROR=OONE INPUT_FILE INPUT
SUBDATE = F$EXTRACT(0.11.INPUT)

Rewrite text data flle for disks not needing to be backed up

$ OUT= F$EXTRACT(12.10.INPUT)
$ DSKNUM = F$EXTRACT (20. 1. INPUTl
$ VAXNAM = F$EXTRACT (23,6, INPUT
$ IF F$CVTIME(.. "DATE") .EQS. F$CVTIME(SlJBDATE .. "DATE")
n!EN GOTO HERE_WE_GO
$I

' ' $1

" $1

" '1

WRITE OtITPUT_FILE ... 'SUBDATE I

GOTO LOOP
I 'OUT'

Add 28 days to get ne\rl backup date

"VAXNAM'"

Re rite text data file for disks needing to be backed up and
set up symbols used to do the backup

$ HERE_WE_GO:
$ SUBDATEl = F$CVTIME ("•28-", "ABSOLUTE", "DATE")

" $1 ADD LEADING BLANK TO DATE FOR PROPER DATA FILE FORMAT
$I

' ' ' ' ' $

' $1

CKIT = F$LOCATE("-" ,SUBDATEl)
IF CKIT .EQ. 1 n!EN SUBDATEl =
WRITE OUTPUT_FILE "' 'SUBDATEl'
DISK = OUT
DSKOUT = DSKNUM
VAXOUT = VAXNAM
GOTO LOOP

" "+SUBDATEl
''OUT I • 'VAXNAM' ..

$1
$!

Close all opened flles and cleanup ne ly created files

$ DONE:

' '
CLOSE OUTPUT_FILE
CLOSE INPUT_FILE

' RENAME SYS$DISK6: [remotebac] FULLBACKS. TMP SYS$0ISK6: [remotebac] •. TXT
$ PURGE SYS$DISK61 [remotebac]FULLBACKS.TXT
$!
$! If there ls a backup to do, go off and do it
$1
$ IF DISK .EQS. "" n!EN EXIT
$1
$! Write net ork file to do the remote fullbackuj:>
$1
$ open/\rlrlte data 'vaxout': :netfulbac.com
$ write data "$ set verify"
$ write data ,.$ set proc/prlo=S"
$write data"$ backup/record ''dlsk'[• .•• J*·" -"
$ write data "aslvax: :SYS$DISK7: [remotebac fulluser' 'dskout' .bck/save"
$ write data "$!"
$ close data
$1
$1 Write network file to submit NETFULBAC.COM to remote computer queue
$! The /AFTER ls to delay the backup for its scheduled time
$1
$ open/write data2 'vaxout': :netfulcon.com : =~ i ~= ~:~:~ : : ~~;~~~~~:~s~;=~~~~h/~e~~~!/:i~er=04: 00: 00 net fulbac. com"
$ close data2
$1
$1 Execute NETFULCON .COM across the network and delete lt
$!
$ type 'vaxout':: "task=netfulcon"
$ delete 'vaxout': :netfulcon.com;
$ EXIT

Figure 4.

562

Creating Common Spooled Resources in a VAX-Cluster

Bob Rasmussen and Bob Nestor
Teledyne-Geotech
Garland, Texas

ABSTRACT

This paper describes a technique for creating and managing
spooled output queues that are transparently available,
cluster-wide, to all user in a cluster. The technique does not
rely on DECnet for remote access to a spooled device residing
on another node in the Cluster, and eliminates the need for
having the VAX to which the output device is connected
operational within the Cluster. No custom software or hardware
is required; all is accomplished using the standard VMS Queue
Manager and spooler software.

In March of 1979 we replaced our out-dated second
generation CDC mainframe with a new state-of-the-art
VAX-11/780, one of the first to be delivered by DEC
in the Southwest. 1'.t the time it was an impressive
configuration; two 67-Megabyte RM03's, two
dual-density TE16's and two megabytes of main
memory. This over-configuration was deemed necessary
since the system was to support all Company
computing activities including Accounting,
Inventory, On-line shop floor control, Engineering
and R&D efforts. Since Fortran was the only
native-mode software offered in 1979, most of our
users were supported with compatabili ty mode
software running either under the RSX AME or the
RSTS/E l'.ME (ROSS/V).

Over the intervening years we have added to the
system both in terms of hardware and user load. In
March of 1986 we made our latest configuration
change by adding a second VAX-11/780 CPU and forming
o VAX-Cluster. Our current Computer Center
configuration includes two 780's, an HSC-50 with an
RASO conunon system disk and three RA81 user disks in
a Volume Set, and approximately 120 user terminals,
printers and plotters scattered throughout our
complex.

We have, unfortunately, not blazed any new ground in
developing upward-compatible, configuration
independent, transportable software in our shop.
Most of our user developed software is tied to
various system configurations which have existed in
the past. And reguardless of the availability of
native-mode VAX software today, most of our users
continue to run the out-dated, compatibility mode
software we started with 7 years ago. The most
glaring example of this is our On-line shop floor
control package written in Basic-Plus which crawls
run RSTS/E emulation. In addition, despite numerious
warnings to the contrary, many users have imbedded
physical device names into their programs and
command files. This occurs most frequently with our
spooled output devices which includes a mixture of
line printers, plotters, and hard-copy devices such
as LAlOOs and LA120s. With the introduction of the
VAX-Cluster, device names are node-specific not

Proceeding~- of the D1~;;i1a/ Equipmenl Compuu-r Users ._\oncty 565

cluster-wide, i.e. the terminal port TTA6 may exist
on all cluster nodes, but only one is physically
connected to the target output device. Our challenge
then was to construct a VAX-Cluster that would have
minimum impact on existing user software and
procedures.

First, we decided to put all RSTS/E and COBOL
accounting functions on a single processor. That
left all Engineering and R&D activities for the
second processor where we hung all of the special
devices including spooled terminals. The special
devices include an Array Processor, various plotters
and the DECnet interconnect to a PDP-11/24 which is
dedicated to Word Processing and A/D conversion
activities.

We also decided to run both systems from a Common
System Disk. Neither system has any dedicated disk
drives, only dedicated tape units primarily due to
the inability of the HSCSO to support the older
technology drives. In going to the Common System
disk we eliminated the need to maintain two copies
of the VMS Software which is quite large. After
examining the proposed structure of a Common System
Disk, we determined that a single RA80 would provide
sufficient room for all VMS components for both
systems. Since this runs off the HSC-50, we
eliminated all of the older RH Massbus interfaces to
disks.

In addition to running the Common System Disk, we
chose to continue running the RA81 user volumes as a
Volume Set. This gives us the freedom to add new
user disk storage with no user impact in the future.
(Apparently we are one of the few VAX sites to
actually use Volume Sets since we continue to find
"glitches" in various VAX components that all relate
back to Volume Sets.)

Most user terminals are connected through a Gandalf
Switch which we have had in-place now for a number
of years. This gives users an opportunity to select
the processor they want to connect to during the
LOGIN procedure, and gives us the ability to switch
all users to either one of the processors in the

San Francisco. CA - 1986

event of a processor failure or scheduled down-time.

Our only remaining problem was that of the spooled
output devices. Any user on either system had to
have access to any of the spooled output devices.
Also, in the event of a processor failure, we needed
to insure that user programs and procedures would
run correctly from either processor with respect to
the use of output devices. The most obvious place to
start solving this problem was with a Cluster-Wide
Queue Manager which makes all print and batch queues
available to all users reguardless of the node they
are currently running on.

By defining Logical Queue Names in the Queue Manager
and associating them with physical output devices in
the Cluster we thought we had the problem solved.
Unfortunately, this solution was only effective for
users who queued their output to the device via the
PRINT DCL command. Programs that tried to use
transparent spooling to the devices would get RMS
OPEN or CLOSE errors since VMS does not allow output
to be directed to a Queue; it must be directed to a
device which is in turn spooled by the Queue
Manager.

on subsequent reading of the VMS documentation
describing the Queue Manager, it appeared that our
problems would be solved by defined a Generic Queue
of the same name as our Logical Queue Names and
defining a Phyisical Terminal or Printer Queue for
each actual spooled device. The generic queue would
be de-spooled through the appropiate physical queue.
Unfortunately these definitions were still not
Cluster-wide. The Queues themselves were available
cluster-wide, but spooled device names were still
node specific. Since we needed cluster-wide access
to spooled devices, we investigated DECnet.

Cluster-wide spooled device access seemed to be
solved with DECnet and Proxy LOGINS on both nodes in
the Cluster. This permits a user to remotely access,
via DECnet, a device on any other Cluster node. With
Proxy LOGIN the user was not required to enter any
access information to get to the remote device. And,
since we ran a Common System Disk with a single User
Authorization File, all users have accounts on both
systems. However, our experience with DECnet in the
Cluster brought out the following problems:

o DECnet introduced another user session on
the remote node whenever a remote device
was being accessed. Typically this is the
FAL process run on behalf of the local
user.

o Most output requests were in the form of
PRINT commands which typically involve
queuing a disk file for printing to a
particular device or queue. With the
Cluster-wide Queue Manager this is no
problem. But, user programs and procedures
which take advantage of VMS transparent
device spooling and output directly to the
device can only run on the processor which
"owns" the device unless the device name
is fully qualified with a DECnet node
name. For native-mode programs and command
procedures this was not a major problem.
Compatibility mode programs, some layered
DEC software and some third party software
would not operate in this mode.

566

o Using DECnet to access the device remotely
requires that DECnet be operational. Since
this is only true if the target processor
is also operational, we could only use the
DECnet technique if both processors in the
Cluster were on-line. If either were in a
failure mode, most spooled output <levees
were unavailable and most user programs
could not be executed on the remaining
node without modifications. This seemed to
be in direct conflict with the
justifications for use of a VAX-Cluster.

one possible solution was to dedicate a given number
of terminal ports to output spooling functions. Both
processors in the Cluster would have to reserve the
same terminal ports even though only one processor
would actually service the device. This was
necessary to maintain a Cluster-wide naming
convention on spooled devices. This idea was quickly
rejected since it would dedicate ports on one
processor that would never be used, a waste of
important resources in this case DZll' s. Also, the
concept would leave no room for future expansion
unless we dedicated more ports that we actually
needed today.

Finally, it
non-existant
could serve
queues could

occured to us that we could create
terminal ports on both systems that
as pseudo-queues. These pseudo-device
be mapped to real devices on either of

the processors with the "/ON" qualifier in the Queue
Manager. A common set of pseudo-devices would be
created on each processor in the Cluster and each
would be spooled to the actual output device by the
Cluster-wide Queue Manager. These devices and queues
would exist even if one of the processors was in a
failure mode, however the processor to which the
device were physically connected must be operational
for the output to occur. User programs and
procedures would continue to run but their output
would be collected in the appropiate device queues
for later printing when the processor is brought
back on-line.

Terminal pseudo-devices were selected rather than
pseudo line printers since both nodes already
contained the terminal driver but only one contained
the line printer driver. In practice the line
printer turned out to be a special case since it is
already known to the system, and user, under many
different names (LP, LPO, LPAO, SYS$PRINT, etc).

The only problem we have experienced with our queue
setup is with programs which conditionalize their
output format on the outut device characteristics.
For the most part this programming practice has been
eliminated from DEC VMS software; the DEFINE FORMS
facility is used to define output layouts. This
solved the problem some users experienced where
their line printer output was sized according to the
form style in the printer at the time the output was
generated rather than being formatted by the form
style to which the output was to be printed on.
Unfortunately, some third-party software, namely
ROSS/V, still intergoates the output device for
formatting information. Since the pseudo-terminal
devices "TTQn" are not really present in the system,
VMS shows them to be off-line and will therefore not
allow you to set any characteristics for them. The
actual device characteristics that will be returned
to a user program are the default terminal

characteristics defined in SYSGEN. To fake ROSS/V
into seeing 132 column printers, we set the default
terminal characteristics to be those of an LA120.

Basically the technique requires the use of a
Cluster-wide Queue Manager with a common definition
of individual queue attributes. Since we run a
Common System Disk this part of the Queue startup is
contained in a file SYS$COMMON:[SYSMGR)STARTQUE.COM
which is invoked by each processor from the
SYSTARTUP.COM file on boot. This part of the queue
startup:

1) Starts the Cluster-wide Queue Manager for
the invoking processor and points to the
the Cluster-wide Queue File.

2) Creates all pseudo-terminals that will be
mapped to actual spooled devices. These
definitions occur on both processors in
the Cluster. We chose to name the devices
"TTQO" through "TTQ6" Con our system).
There is lots of room for additional
definitions for future spooled devices.

3) Each pseduo-terminal is set spooled to
itself, i.e.

"SET DEVICE/SPOOLED=TTQO: TTQO:"
This was done so that users may use the
"TTQ" device names in their programs for
transparent output spooling.

4) Each TTQ Queue is tested to see if it
exists. If not, it is initialized (but
not started) with appropiate attributes
such as /FORM, /DEFAULT etc. This is also
the point at which we define the actual
terminal or printer in the cluster that
will process the output requests through
the use of the /ON qualifier.

5) Other queue attributes are also set such
as queue scheduling.

6) A system-wide logical name is created and
assigned to the TTQ pseudo-terminal. We
are still trying to encourage our users
to use logical names for the output
devices rather than physical names, but
we must support both.

7) Finally, we also define the batch queues
that will be required in the Cluster.
This common command procedure then
invokes the node specific queue startup
procedure which is kept in
SYS$SYSROOT:[SYSMGR]QUESTART.COM.

The node specific Queue startup is responsible for
setting up the actual physical device
characteristics and starting the Queue for that
device. This may involve as much as:

1) Loading any custom device drivers for
special spooled devices. We have one, a
Versatec printer/plotter.

2) Setting terminal characteristics for
physical terminal ports that will handle
a sr,ooled output device. This includes
Euch things as terminal speed, format
cr,ntrol (~'AB, FORM, WRAP, WIDTH, etc) •

567

3) Setting the physical device spooled to
the corresponding pseudo-termi~l device.
This is not really required but it
intercepts those user requests for output
the the "real" physical device.

4) Starting the Queue Manager to process
output requests on the pseudo-terminal.
This begins the de-queue operation.

5) Starting the node-specific batch queues.
On our Cluster we run a SYS$BATCH on both
nodes, so a system-wide logical is
assigned to the appropiate batch queue at
this point.

6) On the system that does not have a line
printer we also assign system-wide
logicals for SYS$PRINT, LP LPO, and LPAO
to point the the appropiate TTQ
pseudo-terminal. This intercepts all line
printer output on the system and
re-directs it to the proper line printer
queue.

All of this may seem to be a long way to go just to
get output on a printer, but our technique does have
certain advantages.
First, users are assured that the device names
"TTQn" are fixed in our configuration. We will not
re-define these in the future, but may add
additional ones as needed. Those users that write
programs to use VMS transparent spooled may continue
to do so. This also solves the problem of not being
able to open and output file on a Queue, which
allows Datatrieve users to output results "directly"
to the spooled device. Second, since our logical
names for the pseudo-terminals in fact point the the
pseudo-terminals themselves, the /DEV and /QUE
qualifiers in the PRINT command are identical (as
they were in earlier VMS releases). Third, User
programs are independent of the processor they run
on and may continue to run creating output for
physical devices that are currently not available in
the Cluster. Their output will be intercepted by the
VMS Queue Manager for later printing when the device
is available. Finally, we no longer run background
DECnet processes just to get output to a physical
device. DECnet is rarely used between the Cluster
nodes.

One last set of changes was required in ROSS/V V3.4
(RSTS/E-VAX) to permit Basic-Plus program access to
all spooled devices. This was done during the ROSS/V
Sysgen where we defined fixed keyboards for each of
the TTQ devices in the VMS system. The line printer
was assigned the VMS name of TTQO to create a
version of ROSS/V that was node independent, i.e.
could be run from either node without change.
Basic-Plus programmers can now access the spooled
devices as RSTS/E devices "LPO:" and "KBl:" through
"KB6:" • All other RSTS/E keyboards are left to
"float" in the system; we allow ROSS to assign names
to the devices as user enter the ROSS emulator from
their VMS terminal.

$!

-- File SYS$CnHJN: [SY9'Gl.]S'I21R'IQUE.001 -
('!his file is camcin to all nodes in the Cluster.)

$ I Initialize cluster-wide queues
$!
$ SET NCnl
$ S'.12\RT/QtEJE~ SYS$CDM)N: [SYSEXE]JBCSY9;1UE.DAT
$!
$ I Set up pseudo tenninals for cluster print devices
$!
$ RUN SYS$SYSTEM:SYOOE2l

am TIQO~ 1 I.PAO on BEll'AX: :I.PAO:
am 'I'IQl~ 1 PWl'l'ER en AI.FAX: :Tl2\6:
am 'I'IQ2~ 1 Ll\100 on AIFAX: :TrBO:
am 'I'IQ3/00rul!IPI' 1 Ll\120 on AI.FAX: :'l'JE3:
am T'lQ4/NOAD!IPl' ! GEXJPRlNT on AIFAX: :Tl'E4 ~

AI.FAX: :TIE5: am 'I'IQ5,/00ll!ll\Pr 1 moos on
am TIQ6/00rul!IPI' 1 VERSATOC en Alm\X: :LWAO:
EKIT

$!
$! Set and spool pseudo print devices, assign systen-"wide
$ I logical names, and initialize the cluster-wide queue
$! if it doesn't exist
$! Define the f0Ill6 types available to users an the Cluster
$!

$
$
$
$
$
$
$
$
$
$
$

DEF.INE/.FCDI DEFAULT O;'W\RGIN=(OO'ITCM=2) ,/llUml.Nc~
DEFlNE/FURM CNE l/M!IRGIN=(OOITCM=2)
DEFINE;F<:Rol 'Ml 2/W\RGIN=(001TCM=2)

DEFINE/RD! 'l.llREE 3/M!IRGIN=(OOl'l'CM=2)
DEFINE/F'(»1 FOOR 4/MARil:N=(B:l'l'ltM=2)
DEFlNE/roRM FIVE 5/M!IRGIN=(OO'ITCM=2)
DEF.INE/.FCDI SlX 6;'W\RGIN=(OO'ITCM=2)

DEFINE/Fm1 SE.vEN 7/I.EIGIH=42/M!IRGIN=(OOITCM=O)
DEFINE/F'(»1 EIGHT 8;'W\RGIN=(OO'ITCM=2)

DEFlNE/ro™ NINE 9/M!IRGIN=(OOITCM=2)
DEF.INE/.FCDI CXlolPRESS 11/MAR!=(OOT=2)/WID=220~ -

;'DE9:}="cx:MPRE:SSED PRINl'INT (!ii 'l'rA3: II
$ DEF.INE/.FCDI TEST 99/[lE9:}="TEST PRlNl' c;µ.:•
$!
$ I Cluster-wide systan line printer (catpiter-rocm)
$!

$
$
$

$

$
$!

SET DEVICE/SPOCUD=(TIQO: ,OOAl.:)

ASSIGN/'UEER NLl\O: SYS$CUrP!Jl':
em c;µ.: TIQO:

TlQO:

IF .NCll' $STA'IUS 'ffiEN INIT/QtEJE;l:>EFAIJL'l=FfX..­

/ON=BE:l2\X: :I.PAO: TIQO:
SET QUEUE/SOl=R:6IZE TIQO:

$! HP-Plotter (catplter-rocm)
$!

$
$
$
$

$
$
$!

SET DE\IICE/SPCCUD=('l'IQl: ,OOAl.:)
ASSIGN/USER NIAO: SYS$CUrP!Jl':
SHCM QUE 'I'IQl :

'l'IQ1:

IF .NCll' $STA'lUS INIT/~_GNERIC­
/DEE2\ULT=(NOFLl'G,R:FEED) /'IER+-
/~: :'l"m6: 'I'IQl:

DEFINE/SYS':lfM/00!00 PWI'l'ER: 'l'IQ1:
SET QUE/SCH=msIZE 'I'IQl:

$! Ll\100 (across fran CCllplter-rocm)
$!

$
$
$
$

$
$
$!

SET DEVICE/SPCCUD=(T'lQ2: ,OOAl.:)
ASSIGN/USER NLllO: SYS$CUrP!Jl':
em c;µ.: 'I'IQ2:

T'!Q2:

IF .NCll' $S'IM'US INIT/~_G!HlUC­
~/BIDCK_LIM=200~-
/CliFALF2\X: : TlBO: T'lQ2 :

DEFINE/SYS'l:'EM/'OOWG LAl.00: T'!Q2:
SET QUE/SCE=tmIZE T'!Q2:

$! L!\J.20 (user tenni.na1 roan)
$!

568

$
$
$
$

$
$
$!

SET DEIJICE/SPCCUD=(T'lQ3: ,OOAl.:)

ASSIGN/USER NIAO: SYS$00l'PlJI':
SIDI c;µ.: T'lQ3:

T'lQ3:

IF .NCll' $S'fil.'IUS INIT/QUEllElromlBLE_G!HlUC­
;l:>EFAIJL'l'=KFLl'.G/'IEI*­

/CN=i\LFAX: :'l'JE3:
DEFINE/SYS'l»l/mWG L!\J.20:
SET QUE/SCE=tmIZE T'lQ3:

T'lQ3:

T'lQ3:

$! Geqilysical systan printer
$!
$
$
$
$

$
$
$!

SET DEVICE/SFCXLED=(T'lQ4: ,OOAl:)

ASSIGN/USER NLAO: SYS$CUrP!Jl':
SHCM c;µ_: T'lQ4:

'1'1Q4:

IF .NCll' $S'fil.'lUS INIT/~_G!Hm:C­

/DEE2\UL'l'=NOmt.G~
/CN=i\LFAX: :Tm4:

DEFINE/SYS'l:'EM/'OOWG GEXJPRlNT:
SET c;µ.:/S<ll=tmIZE T'lQ4:

Tl'Q4:
T'lQ4:

$ I Industrial controls printer
$!

$ SET DEVICE/SPCXllD=(T'lQS: ,OOAl.:) T'lQS:
$ ASSIGN/USER NLAO: SYS$00l'PlJI':
$ SHCM QUE T'1Q5:

$ IF .NCll' $S'IMUS INIT/~_Gl!NERIC-

/'lEIMINAir-
/CN=i\LFAX: :TIE5: 'I'IQ5:

$ DEFINE/SYS'l»l/mWG BLIX25: T'1Q5:
$ SET QUE/sar=tmIZE T'1Q5:
$!
$! VERSATEX: Printer/plotter in GEqtlysical systans area
$!

$
$
$
$

$
$
$!

SET DEVICE/SPCCUD=(TIQ6: ,OOAl.:)

ASSIGN/USER NIAO: SYS$00l'PlJI':
Sim QUE TIQ6:

TIQ6:

IF .NCll' $S'fil.'lUS INIT/~_GIHlUC­
/DEE2\ULT--=(NCffm ,NCFIAG) /mOCESSCR=VRSam-
/CN=i\LFAX: :LWAO: TIQ6:

DEFINE/SYS'l»l/mWG VERSATEX:: TIQ6:
SET QUE/SCll=NCEIZE T1Q6:

$! Define Cluster-wide batch queues
$!

$
$
$

$
$
$

$
$
$

$
$
$

$!

ASSIGN/USER NLl\O: SYS$00l'PlJI':
SHCM QUE/BM'Cll ALFAX __Bi\.'IOI

IF .NCll' $S'IM'US INIT/QUElJE/BM'Cll/START/JCB _ LIM=3-

/!WlE _PRI=4,/WroEFAIJLT=256/WSQOOl'A=512 -

~750/CN=ALFAX:: ALP71X_BATCH
ASSIGN/USER NIAO: SYS$CUrP!Jl':
SHCM QUE/llATCH mGlATQf

IF .NCll' $STA'IUS INIT/QUEUE/BM'Cll/START/JCB_LIM=l­

/!WlE_PRI=4/m)EFAULT=256~12 -

/WSEX'lml'=750/~AX:: EH>l!i\.'OCH
ASSIGN/USER NU\O: SYS$CUrP!Jl':
SHCM QIB/BA'IOI BEI'AX_BA'IOI

IF .NCll' $S'fil.'lUS INIT/QUElJE/BM'Cll/START/JCB LIM=3-

/!WlE _PRI=4/WIDEE2Wllr=l50~250 -

~350/00=BEll'AX:: BEll'AX BATCH
ASSIGN/USER NLAO: SYS$00l'PlJI': -
SHCM QUE/llATCH GLBl'.T<li

IF .NCll' $STA'lUS INIT/QtEJE/BATCii/START/JCB LIM=l­

/!WlE _PRI=4/'m)EFAULT=l50~250 -

/WSEX'lml'=350/rn=BEll'AX:: GLBM'Cll

$! Invoke node specific queue startup
$!
$ @SYS$MANl'GER:c;µ.:START
$ SET 00\TERIFY

- File SYS$SYSR001': [SY9rn]~.CD! c:n node A -

$ I
$! start queues on ALFAX (VAX-A)

$!
$ SET NJCtl

$!
$ I I.Dad driver for the~ Printer/plotter
$!

$ RUN SYS$SYSTEM:SYSGFN
REWllD LmuvER/bRIVER=SY$SY'STm:Lw:iRIVER.EXE
~ LWAO~~/CSR=%0777354/00!Vm=llim.VER

EXIT
$!
$ I Set and spool local node printers
$!

$ SET ~SPEED=4800/NCBRCM/OOANSI/N'.Hm­
/OOllDIT/ll'.B~~/!UDIT/m)EX;/FOOM-

/!UXllO/l>A9IHRU 'l'l2'.6:
$ SET ~IA100/SPEED=2400/NCBR(M/PAGE=E6-

/WIDIH=220 TlBO:
$ SET ~IA120/SPEED=l200/NCBR(M/FOOM-

/PAGE=66/tUrAB 'l'l'E3:
$ SET ~IAl.20/~1200/NCBRCM/Plal=66-

/tUrAB/i'lID=l32/FOOM T'ffi4:
$ SET ~IA36/WIDIH=l32/PllGE=66/SPEED=2400-

/tUrAB~/NOOET_SPEFD/rnFILL"'9-
/ll'FllL=9 Tl'E5:

$ I
$ SET DEVICE/SPOOLED=('l'lQl: ,DUlll:) 'l'TJl.6:
$ SET DEVICE/SPOOLED=(T1Q2 : ,OOAl:) T'lllO:
$ SET DEVICE/Sl'OOLED=(TIQ3: ,DUlll:) 'l'l'E3:
$ SET DEVICE/Sl?OOlED=(orm4: ,DUl\l:) Tl'E4:
$ SET DEVICE/SPOOLED=(TIQ5:,00Al:) TTES:
$ SET DEVICE/Sl'OOLED=('.l'lQ6: ,DUAl:) LWAO:
$!
$! start local printer queues
$!

SYS$PRINT
I..PAO

LFO
LP

TIQO:
TIQO:

TIQO:
TIQO:

$
$
$
$
$
$
$
$
$
$

DEFI.NE/SYS'.l'EM/Kl[ro
DEFINE/SYS'.l'EM/Kl[ro
DEFINE/SYS'.l'EM/Kl[ro

DEFINE/SYS'.l'EM/KlUX>
START/QUEXJE TIQl:
START/QUEXJE TIQ2:
START/QUEXJE TIQ3 :
START/\µXJE orm4:

!ALFAX: :Tl2\6:
! AI.FAX: : '1'100:
!ALFAX: :TIE3:
!AI.FAX: :Tl'E4:

START/QUEXJE 'l'IQ5:

START/QUEXJE '1'1Q6:
$!
$! start the batch queues
$!

IALFAX: :Tl'E5:
!At.FAX: :LWAO:

$ DEFINE/SYS'lD1/HJI.OO SYS$BATCH ALFAX _ BATCll:

$ START/QUEXJE/BATCli ALFAX_BA'l'Cl-1:
$ START/QUEXJE/BM'CH nGlA'IOI:

569

- File SYS$SYSR001': [SYEM;R]~.CD! on node B -

$ I

$ I start queues cm BElI1\X (VAX-ii)

$ I
$ SET NJCtl

$!
$! Set and spool local node printers
$!
$ SET DEVICE/SPOOLED=(TIQO: ,DUlll:) LPAO:
$ DEFINE/SYS'l.'EM,/WOOG SYS$PRINT: LPAO:
$!
$! start local printer queues
$!
$ START/QUEXJE LPAO: IBlm'iX: :LPAO:
$!
$! start batch queues
$!
$ DEFINE/SYSTEM SYS$BATCH BErAX _ BATOI:
$ START/QUEXJE/BA.TCH BETAX _ B!'l.TCH:
$ START/\µXIE/BATOI GLBATCB:

AUTHORS INDEX

AUTHORS PAGE

Albert, J- N .. 225
Baisley, Wayne E 275
Baker, June 281
Barrett, Daniel 407
Borger, Frank R 249, 257
Buford W. L Jr 213
Carey, Robert . 39
Coker, Michael R 375
Cossey, David V 181
Darkangelo, D. G. 557
Davis, Ray . 29
Denison, Marlays. 469
Dennis, John. 399
Dixon W. V. 349
Draughn, Mark 165
Duff Steven G. 531
Feldner, Pat 161
Fiedeldey, Joseph W. 531
Froyd Stan 393
GabrieL Richard P. 1
Goldstein, Robert B 209, 511
Hartwig; Arthur 357, 365
Heinicke. Peter 463
Hohmann, Edward C 195
Huf(Al. .. 187
Hughes, Steven. 7
Hurst Art .. 435
Jackson, James B 457
Janik Charles 219
Kaiser, Peter 327
Kane, Thomas . 35
Leahy, R C 501
Lederman, Bart Z 129, 139
Macko, Glen 339
MarshalL Ted A 531
McGee. Robert E 349
McGuigan, David. 39
Merriam, E. William 517
Merritt, Glen Del. 331
Mistretta, Paul. 21
Molinar~ John. 47
Myers. L M. 213
Nagy, Frank J 489
Nestor, Bob 565
Nicinsk~ Tom 463
Orosz. Michael D 545
Peh Eli ... 209

AUTHORS PAGE

Peterson, Ray 165
Racine, Phil . 21
Rasmussen, Bob 565
Rafizadeh, Schumann 541
Rannenberg; Wendy 493
Rieck JenniferL. 405
Robinson, Ann 207
Rotunn~ Lisa M. 195
Rounds, James A 195
Rousseaux, M. 225
Russ, Roger 369
Saxe David H . 83
Scott, Larry D. 415
SewelL E. W. 293
Sheh~ Don .. 1 75
Sherwood Bruce A 179
Slavich, A L. 287
Smith, Daniel P.R 511
Smith, Danny 365
Smith, Ted .. 261
Somes, Richard K. 51
Stabiner, Rivkah 511
Stefanek George 161, 165
Straub, E. J .. 287
Szep, Steven 505
Teeter, Brent 473
Tellis, Winston 149
Thomas, Lloyd K 453
Thomas, J. D. 191
Thompson, D. E. 213
Thury, Dennis L W. 479
Tibbetts, James 317
Turano, Thomas 103
Tyndale, Clyde L 229
TyrrilL Al ... 521
Ulesk~ Robert 427
Valentine Pamela A 113
Vibert, J- F . 95, 225
Wallace. Richard K 313
Walthers. Denny 449
Waltz, Richard R 229
Watson, Claude M. 167
Winter, C ... 287
Wise. Rebecca . 13
Wooledge, Karl 209
Yardley, John 553
Yoder, James R 123

