NVAX Plus CPU Chip
Functional Specification

The NVAX Pius CPU Chip is a high-performance, single-chip implementation of the VAX Architecture for use
in low-end and mid-range systems.

Ravision/Update Information: This is Revision 0.3 of this specification, the third external release

DIGITAL CONFIDENTIAL

This information shall not be disclosed to persons other than DIGITAL employees or generally distributed within
DIGITAL. Distribution is restricted to persons authorized and designated by the originating organization. This
document shall not be transmitted electronically, copied uniess authorized by the originating organization, or left
unattended. When not in use, this document shall be stored in a locked storage area. These restrictions are
enforced until this document is reclassified by the originating organization.

Semiconductor Engineering Group
Digital Equipment Corporation, Hudson, Massachusetts

October 1991

The drawings and specifications in this document are the property of Digital Equipment Corporation and
shall not be reproduced or copied or used in whole or in part as the basis for the manufacture or sale of
items without written permission.

The information in this document may be changed without notice and is not a commitment by Digital
Equipment Corporation. Digital Equipment Corporation is not responsible for any errors in this document.

This specification does not describe any program or product that is currently available from Digital
Equipment Corporation, nor is Digital Equipment Corporation committed to implement this specification
in any program or product. Digital Equipment Corporation makes no commitment that this document
accurately describes any product it might ever make.

Copyright ©1991 by Digital Equipment Corporation
All Rights Reserved
Printed in U.SA

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX VAXstation

DECnet ULTRIX-32 VMS

DECUS UNIBUS vT

MicroVAX VAX ™
MiecroVMS VAXBI . =

PDP VAXduster dijg|itiall

Contents

CHAPTER 1 INTRODUCTION 1-1
1.1 SCOPE AND ORGANIZATION OF THIS SPECIFICATION 1-1
1.2 RELATED DOCUMENTS ‘ ‘ 1=1
1.3 TERMINOLOGY AND} CONVENTIONS _ . 1=-2

1.3.1 Numbering 1=2
1.3.2 UNPREDICTABLE and UNDEFINED 1=2
1.3.3 Ranges and Extents 1-2
1.3.4 Must be Zero (MBZ) 1-2
1.3.5 Should be Zero (SBZ) 1-2
1.3.6 Register Format Notation 1=3
1.3.7 Timing Diagram Notation 1-5
1.4 REVISION HISTORY 1-6

CHAPTER 2 ARCHITECTURAL SUMMARY 2-1
2.1 OVERVIEW . ‘2~1
2.2 VISIBLE STATE 2-1

2.2.1 Virtual Acidress Space 2-1
222 Physical Address Space 2-2
2.2.2.1 Physical Address Control Registers « 2—4
223 Registers 2-4
2.3 DATA TYPES 2-6
2.4 INSTRUCTION FORMATS AND ADDRESSING MODES ‘ - 2-8
2.4.1 Opcode Formats) 2-8
24.2 Addressing Modes 2-8
24.3 Branch Displacements 2-11
2.5 INSTRUCTION SET 2-11
2.6 MEMORY MANAGEMENT 2-25
2.6.1 Memory Management Control Registers 2-25
26.2 System Space Address Translation 2-26
263 Process Sipace Address Transiation 2-27

.2.6.3.1 PO Region Address Translation « 2-27
2.6.3.2 P1 Region Address Translation + 2-28

26.4 Page Table Entry 2-30
2.6.5 Transiation Buffer 2=-31
2.7 EXCEPTIONS AND INTERRUPTS 2-32
2.7.1 interrupts 2-32

2.7.1.1 interrupt Control Registers « 2-33

DIGITAL CONFIDENTIAL il

Contents

2.8

2.9

2.10
2.1
2.12

2.13
2.14

272

Exceptions

2.7.2.1 Arithmetic Exceptions » 2-35

27.22 Memory Management Exceptions « 2-36
27.2.3 Emulated instruction Exceptions « 2-37
2724 Machine Check Exceptions « 2-39
2.7.25 Console Halts + 2-39

SYSTEM CONTROL BLOCK

2.8.1
2.8.2

System Control Block Vectors
System Control Block Layout

CPU IDENTIFICATION
SYSTEM IDENTIFICATION
PROCESS STRUCTURE
MAILBOX STRUCTURE

2.12.1

Mailbox Operation

PROCESSOR REGISTERS
REVISION HISTORY

CHAPTER 3 EXTERNAL INTERFACE

3.1
3.2

3.3
3.4

OVERVIEW
SIGNALS
3.2.1 Clocks
3.2.2 DC_OK and Reset
3.2.3 Initialization and Diagnostic interface
3.2.4 Address Bus
325 Data Bus
3.2.6 External Cache Control
3.2.6.1 The TagAdr RAM « 3-8
3.2.6.2 The TagCtl RAM « 3-8
3.2.6.3 The Data RAM « 3-9
32.64 Backmaps ¢+ 3-10
3.2.6.5 External Cache Access * 3-10
3.2.6.5.1 HoldReq and HoldAck + 310
3.2.8.52 TagOk * 3-11
3.2.7 External Cycle Control
3.2.8 Primary Cache Invalidate
3.2.8 Interrupts
3.2.10 Electrical Level Configuration
3.2.1 Testing
64-BIT MODE
TRANSACTIONS
3.4.1 Reset
3.4.2 Fast External Cache Read Hit
3.43 Fast External Cache Write Hit
3.4.4 Fast External Cache Byte/Word Write Hit
3.4.5 Transfer to SysClk for External tranactions

2-34

2-40
2-40
2-41

2-43
2-43
2-46

2-48
2-50

2-52
2-63
3-1
3-1

9SG

3-6
3-7

312
3-15
3-16
3-16
3-16

3-16

3-16
3-16
3-19
3-18
3-20

DIGITAL CONFIDENTIAL

.

3.6

3.4.6 READ_BLOCK Transaction
34.7 Write Block

3.4.8 LDxL Transaction

349 STxC Transaction

3.4.10 BARRIER Transaction
34.1 FETCH Transaction
3.4.12 FETCHM Transaction

SUMMARY OF NVAX PLUS OPTIONS

3.5.1 System Clock Divisors

3.5.2 Cache Access

3.5.3 Flamingo I/O Address Mapping
3.5.4 Direct Mapped Pcache

3.5.5 adr_h<33:32>

3.5.6 QW 1O WRITES/MTPR MAILBOX
3.5.7 QW 1/O READS

3.5.8 PV mode

REVISION HISTORY

CHAPTER 4 CHIP OVERVIEW

4.1

4.2

NVAX PLUS CPU CHIP BOX AND SECTION OVERVIEW
4.1.1 The Ibox '

4.1.2 The Ebox and Microsequencer
4.1.3 The Fboy

414 The Mbox

4,15 The Cbox

4.1.6 Major internal Buses

REVISION HISTORY

CHAPTER § MACROINSTRUCTION AND MICROINSTRUCTION PIPELINES

5.1
5.2

5.3

INTRODUCTION

PIPELINE FUNDAMENTALS

5§.2.1 The Concept of a Pipeline

5§.2.2 Pipeline Flow

523 Stalis and Exceptions in an Instruction Pipeline
NVAX PLUS CPU PIPELINE OVERVIEW

5.3.1 Normal Macroinstruction Execution

5.3.1.1 The lbox « 56

8.3.1.2 The Microsequencer + 5-8
53.1.3 The Ebox « 59

5.3.1.4 The Fbox * 5-10

5.3.1.5 The Mbox » 5-10

£.3.1.6 The Cbox » 5-11

DIGITAL CONFIDENTIAL

Contents

3-21
3-22
3-23
3-23
324
3-24

3-25

3-25

Contents

5.4

532

533

Stalls in the Pipeline

5.3.2.1 S0 Stalls « 5-12

5.3.2.2 S1 Stalls « 5-12

5.3.2.3 S2 Stalls « 5-13

5.3.24 S3 Stalis « 513

5.3.2.5 S4 Stalis « 514

Exception Handling

£.3.3.1 Interrupts « 5-16

5.3.3.2 integer Arithmetic Exceptions « 517
5.3.3.3 Floating Point Arithmetic Exceptions * 5-17
£.3.34 Memory Management Exceptions « 517
5.3.3.5 Translation Buffer Miss + 5-19

5.3.3.6 Reserved Addressing Mode Faults + 5-19
5.3.3.7 Reserved Operand Faults « 5-20

5-11

5-15

5.3.3.8 Exceptions Occurring as the Consequence of an

Instruction « 520
5.3.3.9 Trace Fault « 520
£.3.3.10 Condjtional Branch Mispredict « 5~20
5.3.3.11 First Part Done Handling - 5-21
5.3.3.12 Cache and Memory Hardware Errors « 521

REVISION HISTORY

CHAPTER 6 MICROINSTRUCTION FORMATS
EBOX MICROCODE

CHAPTER 7 THE IBOX

vi

6.1

6.2
6.3

7.1

7.2
7.3
7.4

7.5
7.6

6.1.1
6.1.2

Data Path Control
Microsequencer Control

IBOX CSU MICROCODE
REVISION HISTORY

OVERVIEW
7.1.1 introduction
7.1.2 Functional Overview

VIC CONTROL AND ERROR REGISTERS
VIC PERFORMANCE MONITORING HARDWARE
IBOX IPR TRANSACTIONS

7.4.1
742

IPR Reads
IPR Writes

BRANCH PREDICTION IPR REGISTER

TESTABILITY

7.6.1 Overview

7.6.2 Internal Scan Register and Data Reducer
7.6.3 Parallel Port

7.6.4 Architectural Features

7.6.5 Metal 3 Nodes

7.6.6 Issues

5-22

7=7
7=7
7=7

7-8

7-8
7-9
7-9
7-10
7-10
7-10
7-10

DIGITAL CONFIDENTIAL

Contents

7.7 PERFORMANCE MONITORING HARDWARE 7-10

7.7.1 Signals 7-10

7.8 . REVISION BISTORY 7-11
CHAPTER 8 THE EBOX 8-1
8.1 CHAPTER OVERVIEW 8-1

8.2 INTRODUCTION 81

8.3 EBOX OVERVIEW 84

8.3.1 - Microword Fields 84

8.3.1.1 Microsequencer Control Fields « 8—6
8.3.2 The Register File 86
8.3.3 ALU and Shifter 8-6

8.3.3.1 Sources of ALU and Shifter Operands » 8-6
- 8.3.32 ALU Functions +» 8-6
8.3.3.3 Shifter Functions » 8~6
8.3.3.4 Destinatiohs of ALU and Shifter Results « 8-7

8.3.4 Ibox-Ebox Interface 8-7
8.3.5 Other Registers and States 8-8
8.3.6 Ebox Memory Access 8-8
8.3.7 CPU Control Functions 8-9
8.3.8 Ebox Pipeline]
8.3.9 Pipeiine Stalls 8-10
8.3.10 - Microtraps, Exceptions, and interrupts . 8-11
83.11 Ebox IPRs 812

8.3.11.1 IPR 124, Patchable Control Store Control Register « 8-12
8.3.11.2 IPR 125, Ebox Control Register » 8-13
8.3.12 Initialization 816

8.3.13 Testabillity : 8-16
. 8.3.13.1 Paralle! Port Test Features » 8-16
8.3.13.2 Observe Scan * 817

8.3.13.3 E%WBUS<31:0> LFSR » 8~17
8.3.14 Revision History 817
CHAPTER 9 THE MICROSEQUENCER -1
8.1 = OVERVIEW 8-1
9.2 FUNCTIONAL DESCRIPTION ' 81
8.2.1 introduction 8-2
0.2.2 Control Store 9-2

9.2.2.1 Patchable Control Store « 8-2
9.2.2.2 Microsequencer Control Field of Microcode + 9-2
82.2.3 MIB Latches « 94
8.23 Next Address Logic -5
9.2.3.1 CAL and CAL INPUT BUS -« 9-5
9.2.3.1.1 Microtest Bus » -5
9.2.3.2 Microtrap Logic « 8—7
0.2.3.3 Last Cycle Logic « 9-7
9.2.3.4 Microstack « 9-8
8.2.4 Stall Logic . 9-8

DIGITAL CONFIDENTIAL ‘ vii

Contents

8.3 INITIALIZATION 9-8

9.4 MICROCODE RESTRICTIONS (]

8.5 TESTABILITY 9-9

8.5.1 Test Address -9

9.5.2 MIB Scan Chain 810

0.6 REVISION HISTORY 8-10

CHAPTER 10 THE INTERRUPT SECTION 10-1

10.1 OVERVIEW) 10-—1
10.2 INTERRUPT SUMMARY 10-1 °

10.2.1 External interrupts 10-2

10.2.1.1 HALT_H Interrupt Received by Edge-Sensitive Logic * 10-2 :
10.2.1.2 External interrupt Reguests Received by Level-Sensitive
Logic » 10-2

10.2.2 Internal Interrupt Requests = 10-3

10.2.3 Special Considerations for interval Timer Interrupts 10-3

10.2.4 Priority of Interrupt Requests 104

10.3 INTERRUPT SECTION STRUCTURE 10-5

10.3.1 Synchronization Logic 10-5

10.3.2 interrupt State Register 10-6

10.3.3 Interrupt Generatlon Logic 10-7

10.4 EBOX MICROCODE INTERFACE 10-8

10.5 PROCESSOR REGISTER INTERFACE 10-10

10.6 INTERRUPT SECTION INTERFACES 10-11

10.6.1 Ebox Interface 10-11

10.6.1.1 Signals From Ebox « 10-11
10.6.1.2 Signals To Ebox « 1011
10.6.2 Microsequencer Interface 10-11
10.6.2.1 Signals from Microsequencer « 10-11
10.6.2.2 Signais To Microsequencer * 10—11

10.6.3 Cbox Interface 10-11
10.8.3.1 Signais From Cbox « 10-11 :

10.6.4 lbox Interface 10-11
10.6.4.1 Signals From Ibox » 10-12

10.6.5 Mbox Interface 10-12
10.6.58.1 Signals From Mbox « 10-12

10.6.6 Pin intertace 10-12
10.6.6.1 Input Pins » 10-12

10.7 - REVISION HISTORY 10-12

viil DIGITAL CONFIDENTIAL

CHAPTER 11
11.1
1.2
113

CHAPTER 12
12.1
12.2

12.3

12.4

12.5

12.6

12.7

12.8
12.8
12.10
12.11
12.12

THE FBOX

"OVERVIEW

INTRODUCTION

FBOX FUNCTIONAL. OVERVIEW
11.3.1 Fbox iInterface

11.3.2 Divider

11.3.3 Stage 1

11.34 Stage 2

11.3.5 Stage 3

11.3.6 Stage 4

11.37 Fbox instruction Set
11.3.8 Revision History

THE MBOX
INTRODUCTION

MBOX STRUCTURE

12.2.1 EM_LATCH

12.2.2 CBOX_LATCH

1223 TB _

12.2.4 DMISS_LATCH and IMISS_LATCH
12.2.5 Pcache

REFERENCE PROCESSING
12.3.1 REFERENCE DEFINITIONS
12.3.2 Arbitration Algorithm

READS : »
12.4.1 Generic Read-hlt and Read-miss/Cache_fill Sequences
12.4.1.1 Returning Read Data + 12-10

12.4.2 D-stream Read Processing
12.4.3 I/O Space Reads
WRITES

12.5.1 Writes to 1/0 Space

IPR PROCESSING
12.6.1 MBOX IPRs

INVALIDATES
12.7.1 ABORTING REFERENCES

CONDITIONS FOR ABORTING REFERENCES
READ_LOCK/WRITE_UNLOCK

PCACHE REPLACEMENT ALGORITHM
PCACHE REDUNDANCY LOGIC

MEMORY MANAGEMENT
12.12.1 ACV/TNV/NM=0 Fault Handling:

DIGITAL CONFIDENTIAL

Contents

11-1
11-1
11-1

11-2
11-3
19=4
11t
114
114
11-4
114
11=7

12-1
12-1

12-2
12-6
12-6
12-6
12-6
12-7

12~7
12-7
12-8

12-8
12-9
12-10
12-11

12-11
12-12

12-13
12-13

12-21
12-22

12-22
12-22
12-23
12-23

12-24
12-24

Contents

12.13

12.14

12.15

12.16

12.17
12.18

CHAPTER 13
13.1
13.2

12.12.2 ACYV detection:
12.12.2.1 TNV detection + 12-25
12.12.2.2 Ma=0 detection: « 12-25
12.122.3 Recording ACV/TNV/M=0 Faults + 12-26

MBOX ERROR HANDLING
12.13.1 Recording Mbox errors
12.13.1.1 TBSTS and TBADR « 12-27
12.13.1.2 PCSTS and PCADR « 12-27
12.13.2 Mbox Error Processing

12-24

12-27
12-27

12-28

12.13.2.1 Processing Cbox errors on Mbox-initiated read-like

sequences * 12-28
12.13.2.1.1 Cbox-detected ECC errors » 12-28

12.13.2.1.2 Cbox-detected hard errors on reguested fill data + 12-28
12.132.1.3 Cbox-detected hard errors on non-requested fill

data + 12-29
12.13.2.2 Mbox Error Processing Matrix « 12-29

MBOX INTERFACES
12.14.1 Signals from Cbox
12.14.2 Signals to Cbox

INITIALIZATION _
12,151 initialization by Microcode and Software
12.15.1.1 Pcache Initialization « 12-33
12.15.1.2 Memory Management Initialization +.12-34

MBOX TESTABILITY FEATURES
12.16.1 Interna! Scan Register and Data Reducers
12.16.2 Nodes on Paraliel Port
12.16.3 Architectural features
12.16.3.1 Translation Buiffer Testability + 12-36
12.16.3.2 Pcache Testability « 12-37

MBOX PERFORMANCE MONITOR HARDWARE
REVISION HISTORY

NVAX PLUS CBOX
FUNCTIONAL OVERVIEW

CBOX REGISTERS

1321 BIU_ADDR
1322 BIU_STAT
1323 FILL_ADDR
1324 BIU_CTL
1325 DIAG_CTL
1326 FILL_SYNDROME
1327 BEDECC
1328 BC_TAG

1329 STXC_RESULT
13210 SIO

13211 SOE-E

132,12 QW_PACK

12-32
12-32
12-32

12-33
12-33

12-34
12-34
12-38
12-36

12-37
12-38

131
13-1
13-2
13-2
13-2
13-5
13-6
13-9
13-10
13-11
13-11
13-12
13-12
13-13
13-13

DIGITAL CONFIDENTIAL

13.3
13.4
13.5
13.6

13.7

13.2.13 CLR_IO_PACK

13.2.14 CONSOLE HALT/CHALT
13.2.18 Time-of-Day Register (TODR)
13.2.16 Programmabie Interval Clock
13.2.17 Interval Clock Control Register
13.2.18 Interval Count Register

13.2.18 Next interval Count Register -

CACHE ORGANIZATION
CACHE_SPEED AND SYS_CLK
DATAPATH

MBOX INTERFACE

13.6.1 The IREAD_LATCH and the DREAD_LATCH
13.6.2 WRITE_PACKER and WRITE_QUEUE
13.6.3 1O Space Writes

13.6.3.1 NON-MASKED FLAMINGO /O Writes « 13-23
13.6.8.2 MASKED FLAMINGO /O Writes » 13-23

1364 MASKED FLAMINGO 1/O READS

1365 CM_OUT_LATCH

13.6.6 FILL_DATA_PIPE1 and FILL_DATA_PIPE2
13.67 IREAD Aborts

ARBITER/BUS CONTROL
13.7.1 Dispatch Controlier
13.7.2 Fill Controller
13.7.3 ARB PLA INPUTS
18.7.4 ARB PLA OUTPUTS
13.7.5 IDLE

13.7.6 DISPATCH

13.7.6.1 PACK_WRITE + 13-34
13.7.62 IPR_READ + 13-35
13.7.6.3 HIGH_LW_TEMP « 13-35
13.7.64 DREAD_LOCK + 13-35
13.7.6.5 WRITE + 13-35
13.7.6.6 . BWR » 13-36
13.7.6.7 WRITE_UNLOCK + 13-36
1377 DRD

13.7.8 IRD

13.7.9 RDC
13.7.10 RDN
13.7.11 FILL

13.7.12 SYS_RD
13.7.12.1 Read Errors » 13—40
13.7.13 WR_STALL
18.7.14 WR_PROBE
13.7.18 WR_CMP
13.7.16 WR
13.7.17 BWR_STALL
13.7.18 BWR_PROBE
13.7.1¢ BWR_CMP

DIGITAL CONFIDENTIAL

Contents

13-13
13-14
13-14
13-14
13-15
13-16
13-16

13-16
13-17
13-17

13-18
13-18
13-20
13-23

13-24
13-24
13-25
1827

13-28
13-28
13-30
13-30
13-30
13-31
13-31

13-37
1337
13-37
13-38
13-39
13-40

13-41
13-41
13-41
1342
1343
1343
1343

xi

Contents

13.7.20 BWR_MERGE 1344

13.7.21 BWR 1344

13.7.22 BWR_SYS_RD . 13-45
13.7.23 BWR_SYS_MERGE 1345

13.7.24 SYS_WR 1346

13.8 CBOX ERROR HANDLING SUMMARY 13-46
13.9 INVALIDATES 1348
13.10 REVISION HISTORY 13-48
CHAPTER 14 ERROR HANDLING 14-1
14.1 TERMINOLOGY 14-1
14.2 ERROR HANDLING INTRODUCTION AND SUMMARY 14-1
14.3 ERROR HANDLING AND RECOVERY 14-2
14.3.1 Error State Collection 14-3

14.3.2 Error Analysis 14-5

14.3.3 Error Recovery : 146

14.3.3.1 Special Considerations for Cache and Memory Errors + 14—6
14.3.3.1.1 Cache Coherence in Error Handiing * 14~7

14.3.3.1.1.1 Cache Enable, Disabie, and Flush Procedures « 14~7
14.3.3.1.1.1.1 Disabling the NVAX Pius Caches for Error Handling « 14~7
14.3.3.1.1.1.2 Enabling the NVAX Caches * 14-8

14.3.3.1.1.2 Extracting Data from the Bcache + 14-8

14.3.3.1.2 Cache and TB Test Procedures + 14-8

14.3.4 Error Retry 14-8

' 14.3.4.1 General Multiple Error Handling Philosophy ¢ 14-10
14.4 CONSOLE HALT AND HALT INTERRUPT 14-11
14.5 MACHINE CHECKS 14-13
14.5.1 Machine Check Stack Frame 14-13
14.5.2 Events Reported Vie Machine Check Exceptions 14-15

14.5.2.1 MCHK_UNKNOWN_MSTATUS « 14-18

14.5.2.2 MCHK_INT.ID_VALUE - 14-18

14.5.2.3 MCHK_CANT_GET_HERE -+ 14-19

14.5.24 MCHK_MOVC.STATUS « 14-19

14.5.25 MCHK_ASYNC_ERROR ¢ 14-19

14.5.2.5.1 TB Parity Errors » 14-18

14.5.2.5.2 Ebox S3 Stall Timeout Error « 14-20

14.5.2.6 MCHK_SYNC_ERROR - 14-20

14.5.2.6.1 VIC Parity Errors » 14-21

14.5.2.6.2 FiLL Uncorrectable ECC Errors » 14-22

14.5.2.6.3 FILL/BIU write error » 14=22

145.2.6.4 Lost Fill Error « 1422

14.5.2.6.5 BIU_HERR -« 14-23

14.5.2.6.6 Lost Fill Error « 14-23

14.5.2.6.7 PTE read errors « 14-24

14.5.2.6.7.1 PTE Read Errors in Interruptable Instructions » 1424
14.5.2.6.7.2 Uncorrectable ECC FILL Errors and on PTE Reads + 14-25
14.5.2.6.7.3 CACK_HERR on PTE Read » 14-26

14.5.2.7 - Inconsistent Status in Machine Check Cause Analysis + 14—26

xli ' “ ~ DIGITAL CONFIDENTIAL

14.6

14.7

14.8
14.9 .
14.10

CHAPTER 15
15.1
15.2
15.3
15.4
15.5

CHAPTER 16
16.1
16.2

16.3

16.4

HARD ERROR INTERRUPTS
14.6.1 Events Reported Vie Hard Error Interrupts
14.6.1.1 Uncorrectable Errors During Write or Write-Unlock
Processing + 1428
14.6.1.2 System Environment Hard Error Interrupts « 14-28
14.6.1.3 Inconsistent Status in Hard Error Interrupt Cause
Analysis * 14-28

SOFT ERROR INTERRUPTS
14.7.1 ‘Events Reported Via Soft Error interrupts
14.7.1.1 VIC Parity Errors « 14-32
14.7.1.2 Pcache Parity Errors » 14-33
14.7.1.3 FILL Uncorrectable ECC Errors on I-Stream or D-Stream
Reads + 14-33
14.7.1.3.1 Multiple Errors Which interfere with Analysis of PTE Read
Error » 14-34

KERNEL STACK NOT VALID EXCEPTION
ERROR RECOVERY CODING EXAMPLES
REVISION HISTORY

CHIP INITIALIZATION

OVERVIEW

HARDWARE/MICROCODE INITIALIZATION
CONSOLE INITIALIZATION

OTHER INITIALIZATION

REVISION HISTORY

PERFORMANCE MONITORING FACILITY
OVERVIEW

SOFTWARE INTERFFACE TO THE PERFORMANCE MONITORING FACILITY
16.2.1 Memory Data Structure
16.2.2 Memory Data Structure Updates
16.2.3 Configuring the Performance Monitoring Facllity

16.2.3.1 Ibox Event Selection » 164

16.2.3.2 Ebox Event Selection » 16—4

16.2.3.3 Mbox Event Selection « 16-5

16.2.3.4 Cbox Event Selection » 16—6
16.24 Enabling and Disabling the Performance Monitoring Facllity
16.2.5 - Reading and Clearing the Performance Monitoring Facility Counts

HARDWARE AND MICROCODE IMPLEMENTATION OF THE PERFORMANCE
MONITORING FACILITY

16.3.1 Hardware Implementation
16.3.2 Microcode Interaction with the Hardware

REVISION HISTORY

DIGITAL CONFIDENTIAL

Cbntents

14-27
1427

14-30
1430

14-35
14-38
1436

15-1

15-1
15-3
16-3
154

16-1

16-1
16-1
16-2
16-3

16-7
16-7

16-8
16-8
16-10

16-12

xlii

Contents

CHAPTER 17

CHAPTER 18

Xiv

1741
17.2
17.3
17.4

17.5
17.6
177
17.8
17.9

18.1
18.2
18.3
18.4

18.5
18.6
18.7
18.8

18.9

18.10
18.11
18.12

TESTABILITY MICRO-ARCHITECTURE
CHAPTER OVERVIEW

THE TESTABILITY STRATEGY

TEST MICRO-ARCHITECTURE OVERVIEW

PARALLEL TEST PORT
17.4.1 Paraliel Port Operation

TEST PADS
SYSTEM PORT
TRISTATE_L
CONT_L

REVISION HISTORY

AC/DC CHARACTERISTICS
INPUT CLOCKS
CPUCLKOUT_H

TEST CONFIGURATION

FAST CYCLES ON EXTERNAL CACHE
18.4.1 Fast Read Cycles

18.4.2 Fast Write Cycles

18.4.3 CEOE timing

EXTERNAL CYCLES

TAGEQ

TAGOK

TESTER CONSIDERATIONS
18.8.1 Asynchronous Inputs

18.8.2 Signals Timed from Cpu Clock

DC CHARACTERISTICS
18.9.1 Power Supply
18.9.2 Input Clocks
18.8.3 Signal pins

TIMING OVERVIEW
SIGNALS
REVISION HISTORY

17-1
17-1
17-1
17-1

173
17-4

17-6
17-6
17-7
17-7
17-8

18-1
18-1

18-2

18-2
18-3
18-3
184

184
18~-5
18-6

18-6
18-6
18-7

187
18-7

18-8
18-8

18-10
18-10
18-15

DIGITAL CONFIDENTIAL

CHAPTER 19 NVAX PLUS PINOUT

- 18.1
18.2
19.3
19.4

FIGURES
1=1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
214
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31

2-32

OVERVIEW
NVAX PLUS PINOUT

NVAX PLUS/EV4 PINOUT DIFFERENCES

REVISION HISTORY

Register Format Example

Timing Diagram Notation

Virtual Address Space Layout

32-bit Physical Address Space Layout
30-bit Physical Address Space Layout
PAMODE Register

General Purpose Registers
Processor Status Longword Fields
Data Types

Opcode Formats

Addressing Modes

Branch Displacements

MAPEN Register

TBIS Register

TBIA Register

System Base and Length Registers
System Space Translation Algorithm
PO Base and Length Registers

PO Space Transiation Aigorithm

P1 Base and Length Registers

P1 Space Translation Algorithm

PTE Format (21-blt PFN)

PTE Format (25-bit PFN)

Minimum Exception Stack Frame
General Exception Stack Frame
Interrupt Priority Level Register
Software Interrupt Request Registers
Software Interrupt Summary Register
Arithmetic Exception Stack Frame

Memory Management Exception Stack Frame
instruction Emulation Trap Stack Frame
Suspended Emulation Fault Stack Frame

Generic Machine Check Stack Frame
Console Saved PC and Saved PSL

DIGITAL CONFIDENTIAL

Contents

1=3
1-8
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-8
2-9
2-11
2-25
2-25
2-25
2-26
2-27
2-28
2-28
2-29
2-29
2-30
2-30
2-32
2-32
2-33

Contents

2-33
2-34
2-35
2-36
2-37
2-38
2-39
240
241
242
2-43

7-5

xXvi

System Control Block Base Register
System Control Block Vector

CPU ID Register

System ldentification (SID)

System Type (SYS_TYPE)

Process Control Biock Base Register
Process Control Block

LMBPR Register

Malibox Data Structure

Mailbox Pointer

MAILBOX Register

IPR Address Space Decoding

NVAX Plus CPU Block Diagram
Non-Pipelined instruction Execution
Partially-Pipelined instruction Execution
Fully-Pipelined Instruction Execution
Simple Three-Segment Pipeline
information Flow Against the Pipeline

Stalls Introduced by Backward Pipeline Flow

Buffers Between Pipeline Segments
NVAX Plus CPU Pipeline

'Ebox Data Path Control, Standard Format

Ebox Data Path Control, Special Format
Ebox Microsequencer Control, Jump Format
Ebox Microsequencer Control, Branch Format
Ibox CSU Format

lbox Block Diagram

VMAR Register

VTAG Register

VDATA Register

ICSR Register

BPCR Reglster

Ebox Block Diagram

PCS Control Register, PCSCR

Ebox Control Register, ECR

Microsequencer Block Diagram

Microcode Microsequencer Control Field Formats
Paraliel Port Output Format

Interrupt Section Block Diagram

INT.SYS Register Format

Fbox block diagram

Fbox Execute Cycle Diagram

Mbox Block Diagram

2-40
2-41
2-43
2-44
2-45
2-4¢6
2-47
2-48
2-49
2-50
2-50
2-52

4-2

5-2

5-2

LITLr

57
6-1

TILX

7-2
74
7-5
7-5
7-6
7-8

8-12
8-14

8-3

o4

8-9
10-5
10-9
11-2
11=3
12-3

DIGITAL CONFIDENTIAL

Contents

12-2 Barrel Shifter Function 12-12
12-3 MPOBR Register 12-14
12-4 MPOLR Register 12-14
12-5 MP1BR Register _ 12-14
12-6 MP1LR Register 12-14
12-7 MSBR Register ' 12-14
12-8 MSLR Register . 12-15
12-¢ MMAPEN Register 12-15
12-10 PAMODE Register 12-15
12-11 MMEADR Register 12-16
12-12 MMEPTE Register 12-16
12-13 MMESTS Register 12-16
12-14 TBADR Register . 12-17
12-15 TBSTS Register 12-17
12-16 PCADR Register 12-18
12-17 PCSTS Register 12-18
12-18 PCCTL Register _ ' 12-19
12-19 PCTAG Register 12-20
12-20 PCDAP Register . 12-21
13-1 BIU_ADDR 13-2
13-2 BIU_STAT . 13-2
13-3 FILL_ADDR 13-5
13-4 BIU_CTL ‘ 13-6
135 DIAG_CTL . . 13-9
13-6 FILL_SYNDROME : 13-10
13-7 BEDECC _ 13-11
13-8 BC_TAG 13-12
13-9 STxC_RESULT 13-12
13-10 SIO ' 13-12
13-11 SOE-IE 13-13
13-12 Time of Day Register, TODR 13-14
13-13 ICCS 13-14
13-14 ICR 13-15
13-15 NICR 13-16
13-1€ Mbox Interface 13-18
13-17 B%S6_DATA bypass timing : 13-26
13-18 M%ABORT_CBOX_IRD Timing 13-27
13-19 DISPATCH timing 13-29
13-20 stall_req timing 13-38
13-21 wr_stall timing 1342
14-1 Consoie Saved PC 14-11
14-2 Console Saved PSL . 14-11
14-3 Machine Check Stack Frame 14-13

DIGITAL CONFIDENTIAL . xvii

Contents

16-5
17-1
17-2

TABLES
1=1
1-2
1-3
1-4
2-1
2-2
2-3

24

2-5

2-6

2-7

2-8

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23

xviil

Cause Parse Tree for Machine Check Exceptions
Hard Error Interrupt Stack Frame

Cause Parse Tree for Hard Error Interrupts

Soft Error Interrupt Stack Frame

Cause Parse Tree for Soft Error Interrupts

Kernel Stack Not Valid Stack Frame

Performance Monitoring Data Structure Base Address
Per-CPU Performance Monitoring Data Structure
PME Processor Register

PMFCNT Processor Register

Periormance Monitoring Hardware Block Diagram
Self Relative Timing in Observe MAB Mode
interna! Scan Register Operation Timing

Register Field Description Example
Register Field Type Notation

Register Field Notation

Revision History '

30-bit Mapping of Program Addresses to 32-blt Hardware Addresses
General Purpose Register Usage
Processor Status Longword

General Register Addressing Modes
PC-Relative Addressing Modes

NVAX Instruction Set

PTE Protection Code Access Matrix
interrupt Priority Levels

Exception Classes

Arithmetic Exceptions

Memory Management Exceptions
Memory Management Exception Fault Parameter
instruction Emulation Trap Stack Frame
System Control Block Vector

System Control Block Layout

SID Field Descriptions

LMBPR Description

Mallbox Data Structure Description
Mallbox Pointer Description

MAILBOX Register Description

IPR Address Space Decoding
Processor Registers

Revision History

14-16
14-27

1=3
1-3
1=4
1=6
2-4
2-5
2-5
2-10
2-11
2-12
2-31
2-33
2-34
2-36
2-36
2-37

2-41
2-41
2-45
2-48
2-49
2-50
2-51
2-53
2-54
2-63

DIGITAL CONFIDENTIAL

3-1
3-2
3-3
34
3-5
3-8

3-7
3-8
3-9
3-10
311
41
5-1
61

6-2
=3
64
65
6-5

7-1
7-2
7-3
74
7-5
76
77
7.8
81

8-2
8-3
84
o1

8-2
8-3
94
8-5
9-6
8-7
-8
10-1
10-2
103
104

NVAX_PLUS Signals

New_NVAX_PLUS Signals

EVAX Signals

System Clock Divisor

System Clock Delay

Tag Control Encodings

Cycie Types

Acknowiedgment Types

Read Data Acknowledgment Types

Reset State

Revision History

Revision History

Revision History

EBOX Data Path Control Microword Fields, Standard Format
EBOX Data Path Control Microword Fieids, Special Format
Ebox Microsequencer Control Microword Fields, Jump Format
Ebox Microsequencer Control Microword Fields, Branch Format
Ibox CSU Microword Fields

Revision History

VMAR Register

VTAG Register

VDATA Register

ICSR Register

BPCR Register

BPCR <8:6>

Ibox Scan Chain Fields

Revision History

Data Path Control Microword Fields

PCSCR Field Descriptions

ECR Field Descriptions

Revision History

Jump Format Control Field Definitions

Branch Format Control Field Definitions

Current Address Selection

Microtest Bus Sources

Microaddresses for Last Cycle Interrupts or Exceptions
Paraliel Port Output Format Field Definitions

Contents of MIB Scan Chain

Revision History

Relative Interrupt Priority

Summary of Interrupts

INT.SYS Register Fields

Revision History

DIGITAL CONFIDENTIAL

Contents

31
3-3
-3
35
35
39
312
3-14

3-14
3-16

4-5
522
61

LRLILT

7-5
7-5
7-6
7-8
7-8
7-10
7-11

8-13
8-15
8-17

o5

-7
9-9
8-10
9-10
10-4
10-7
10-10
10-12

xix

Contents

XX

Fbox Internal Execute Cycles

" List of the Fbox Total Execute Cycles

Fbox Fioating Point and integer Instructions
Revision History

Reference Definltions

Mbox IPRs

MMAPEN Definition

PAMODE Definition

MMESTS Register Definition
FAULT Encodings

LOCK Encodings

TBSTS Description

SRC Encodings

PCSTS Description

PCCTL Definition

Pcache Tag IPR Format A
Pcache Data Parity IPR Format
Mbox Error Handling Matrix

Mbox Performance Monitor Modes
BIU STAT

BIU Control Register

BC_SPD

BC_SIZE

Diagnostic Control Register

Fill Syndrome

BEDECC

Cbox Queues and Major Latches
Mbox-Cbox Commands
IREAD_LATCH Fields
DREAD_LATCH Fieids
WRITE_QUEUE Fields
CM_OUT_LATCH Fields
Cbox-Mbox Interface control signals
Cbox_Mbox commands and actions

Fields of FILL_DATA_PIPE1 and FILL_DATA_PIPE2
Cbox Action Upon Receiving M%ABORT_CBOX_IRD

NVAX Plus CBOX Error Handling

Revision History

Error Summary By Notification Entry Point
Console Halt Codes

CPU State Initialized on Console Halt
Machine Check Stack Frame Fields
Machine Check Codes

113
11=3
115
117
12-7
12-13
12-15
12-15
12-16
12-17
12-17
12-18
12-18
12-19
12-20
12-21
12-21
12-29
12-37
13-3
13-6
13-8

13-10
13-11
13-11
13-17
13-18
13-20
1320
13-21
13-24
13-25
13-25
13-26
13-27
13-47
13-48

14-2
14-11
14-12
14-14
14-15

DIGITAL CONFIDENTIAL

Contents

14-6 Revision History 14-36
15~1 Revision History 15—4
16—1 Performance Monitoring Facllity Box Selection 16-3
16-2 Ibox Event Selection 164
16-3 Ebox Event Selection ‘ 164
16—4 Mbox Event Selection 16-5
.16-5 Cbox PMCTRO Event Selection 166
16—6 Cbox PMCTR1 Event Selection 166
16—7 Revision History : 16-12
17-1 NVAX Plus Test Pins) 17=3
17-2 Paraliel Port Operating Modes - 17-6
17-=3 Revision History ’ 17-8
18-1 Input Clock Timing 18-2
-18-2 External Cycles : 18-5
18-3 tagEq 18-5
18-4 Asynchronous Signals on a Tester 18-7
18-5 CMOS DC Characteristics 18-9
18-6 NVAX_PLUS Signals 18-10
18~7 Revision History : 18-15
19-1 Revision History 18-12

DIGITAL CONFIDENTIAL _ _ xxi

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 1

introduction

The NVAX PLUS CPU is a high-performance, single-chip implementation of the VAX architecture.
It is partitioned into multiple sections which cooperate to execute the VAX base instruction group.
The CPU chip includes the first levels of the memory subsystem hierarchy in an on-chip virtual
instruction cache and an on-chip physical instruction and data cache, as well as the controller
for a large second-level cache implemented in static RAMs on the CPU module.

The NVAX Plus chip is an NVAX core with an EVAX external interface. Microcode changes are
also required to support the EVAX interlocks and to input from serial ROM at startup. Most of
the CBOX-MBOX interface section is reused. The CBOX arbitration logic is redesigned to control
the EDAL interface. Cache fills and coherency transactions are controlled by EDAL system logic
with only a single CPU request active at a time.

1.1 Scope and Organization of this Specification

This specification describes the operation of the NVAX PLUS chip. It contains an Architecturial
Summary, a description of the interface to the chip, an overview of the operation of the instruction
pipeline, and extensive detail about the functional operation of the CBOX section of the chip.

The IBOX, EBOX, MBOX, FBOX, and Interrupt sections are taken from the NVAX CPU
Functional Specification. These sections retain the high level description of the section, the
description of the software visible IPRs, and specify the changes required by NVAX Plus to accom-
modate the EVAX interface and Vector option. Sections which aid in understanding the interface
between the NVAX Plus CBOX and NVAX Core are also retained. For a detailed desription of
the IBOX, EBOX, MBOX, FBOX, and Interrupt sections refer to the NVAX CPU Chip Functional
Specification. ’

In addition, the specification contains discussions of error handling, chip initialization, and testa-
bility features.

1.2 Related Documents

The following documents are related to or were used in the preparation of this document:
¢ NVAX CPU Chip Functional Specification

*» EV3 and EV4 Specification

¢ DEC Standard 032 VAX Architecture Standard.

DIGITAL CONFIDENTIAL introduction 1-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

* NVAX CPU Chip Design Methodology.

1.3 Terminology and Conventions

1.3.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base following the number in parentheses, e.g.,

FF (hex).

1.3.2 UNPREDICTABLE and UNDEFINED

RESULTS specified as UNPREDICTABLE may vary from moment to moment, implementation
to implementation, and instruction to instruction within implementations. Software can never
depend on results specified as UNPREDICTABLE.

OPERATIONS specified as UNDEFINED may vary from moment to moment, implementation to
implementation, and instruction to instruction within implementations. The operation may vary
in effect from nothing, to stopping system operation. UNDEFINED operations must not cause
the processor to hang., i.e., reach a state from which there is no transition to a normal state in
which the machine executes instructions.

Note the distinction between result and operation. Non-privileged software can not invoke
UNDEFINED operations.)

1.3.3 Ranges and Extents

Ranges are specified by a pair of numbers separated by a “..” and are inclusive, e.g., a range of
integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are inclusive,
e.g., bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

1.3.4 Must be Zero (MB2Z)
Fields specified as Must Be Zero (MBZ) must never be filled by software with a non-zero value.

If the processor encounters a non-zero value in a field specified as MBZ, a Reserved Operand
exception occurs.

1.3.5 Should be Zero (SBZ)
Fields specified as Should Be Zero (SBZ) should be filled by software with a zero value. These

fields may be used at some future time. Non-zero values in SBZ fields produce UNPREDICTABLE
results.

1=-2 Introduction DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1.3.6 Register Format Notation

This specification contains a number of figures that show the format of various registers, followed
by a description of each field. In general, the fields on the register are labeled with either a name
or a mnemonic. The description of each field includes the name or mnemonic, the bit extent,
and the type. An example of a register is shown in Figure 1-1. Table 1—1 is an example of the
description of the fields in this register. :

Figure 1—1: Register Format Example

31 30 2¢ 2827 26 25 24123 22 21 20119 1% 17 16]15 14 12 12111 10 02 08|07 06 05 04103 02 01 00

o o oo o o e am of o o oo + + - Bt St o o o 2 o e o

/12 0 0 0 0 0 0 0} FAULT_CMD Il = x xJIElO0O 0 0 0 O O 0 Of 1 | |

-+ - Stk g Bamtads datnd Ddl -+ -+ o+ + -+ + -+ o o e o o o e e

[I
TRAP ===+ | |
INTERRUPT =+ |
BUS_ERROR ====+

Table 1-1: Register Field Description Example

Name Bit(s) Type Description

BUS_ERROR 0 WC,0 The BUS_ERROR bit is set when a bus error is detected.

INTERRUPT 1 WC,0 The INTERRUPT bit is set when an error that is reported as an inter-
rupt is detected.

TRAP 2 WC,0 The TRAP bit is set when an error that is reported as a trap is detected.

IE 11 RW,0 The IE bit enables error reporting interrupts. When IE is 0, interrupts

are disabled. When IE is a 1, interrupts are enabled.

FAULT_CMD 23:16 RO The FAULT_CMD field latches the command that was in progress when
an error is detected.

The “Type” column in the field description includes both the actual type of the field, and an
optional initialized value, separated from the type by a comma. The type denotes the functional
operation of the field, and may be one of the values shown in Table 1-2. If present, the initialized
value indicates that the field is initialized by hardware or microcode to the specified value at
powerup. If the initialized value is not present, the field is not initialized at powerup.

Table 1-2: Register Field Type Notation
Notation Description

RW A read-write bit or field. The value may be read and written by software, microcode,
or hardware.

RO A read-only bit or field. The value may be read by software, microcode, or hardware.
It is written by hardware; software or microcode writes are ignored.

\e} A write-only bit or field. The value may be written by software or microcode. It is read
by hardware and reads by software or microcode return an UNPREDICTABLE result.

DIGITAL CONFIDENTIAL . introduction 1-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 1-2 (Cont.):

Register Field Type Notation

Notation

Description

Wz

wC

RC

A write-only bit or field. The value may be written by software or microcode. It is read
by hardware and reads by software or microcode return a 0.

A write-one-to-clear bit. The value may be read by software or microcode. Software or
microcode writes of a 1 cause the bit to be cleared by hardware. Software or microcode
writes of 2 0 do not modify the state of the bit.

A read-to-clear field. The value is written by hardware and remains unchanged until
read. The value may be read by software or microcode, at which point, hardware may
write a new value into the field.

In addition to named fields in registers, other bits of the register may be labeled with one of the
three symbols listed in Table 1-3. These symbols denote the type of the unnamed fields in the
register.

Table 1-3: Register Field Notation

Description

A “0" in a bit position denotes a register bit that is read as a 0 and ignored on write.
A “1” in a bit position denotes a register bit that is read as 2 1 and ignored on write.
An “x” in = bit position denotes a register bit that does not exist in hardware. The

value is UNPREDICTABLE when read, and ignored on write.

1-4

Introduction

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1.3.7 Timing Diagram Notation

This specification contains a number of timing diagrams that show the timing of various signals,
including NDAL signals. The notation used in these timing diagrams is shown in Figure 1-2.

Figure 1-2: Timing Diagram Notation

HIGH
LoW
INTERMEDIATE
VALID_EIGH_OR_LOW
CHANGING
INVALID_BUT_NOT_CHANGING
EIGH_TO_LOW
HBIGE_TO_VALID
BIGE_TO_INVALID

 INTERMEDIATE_TO_LOW
HIGH_TO_INTERMEDIATE
LOW_TO_HIGH
LOW_TO_VALID
LOW_TO_INVALID
INTERMEDIATE_TO_KEIGH
LOW_TO_INTERMEDIATE
VALID_TO_INTERMEDIATE
INVALID_TO_INTERMEDIATE

INTERMEDIATE_TO_VALID

CIRLEFOE N

INTERMEDIATE_TO_INVALID

DIGITAL CONFIDENTIAL Introduction 1-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1.4 Revision History

Table 1—4: Revision History

Who When Description of change
Mike Uhler 06-Mar-1989 Release for external review.
Mike Uhler 15-Dec-1989 Update for second-pass release.

Gil Wolrich 15-Nov-1990 NVAX PLUS release for external review.

1=-6 Introduction DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 2

Architectural Summary

2.1 Overview

This chapter provides a summary of the VAX architectural features of the NVAX Plus CPU Chip.
It is not intended as a compiete reference but rather to give an overview of the user-visible
features. For a complete description of the architecture, consult the VAX Architecture Standard
(DEC Standard 032).

2.2 Visible State

The visible state of the processor consists of memory, both virtual and physical, the general
registers, the processor status longword (PSL), and the privileged internal processor registers
(IPRs).

2.2.1 Virtual Address Space

The virtual address space is four gigabytes (2**32), separated into three accessable regions (P0,
P1, and S0) and one reserved region, as shown in Figure 2-1.

DIGITAL CONFIDENTIAL Architectural Summary 2-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-1: Virtual Address Space Layout

00000000 | |
| |
| PO eeeeemcccccesce-]
| kegien |

3FFFFFFF 1 v i

40000000 | ~ |
| ! I
| Pl eeececcccccencocne |
I kegion

TFFEFFFF 1 i

80000000 | |
! |
| Syst@m eeccrccacccccme |
| kegion | |
| | |
| | !
| | I
| ! !
! ! |

FFFFFDEF | v |

FFFFFEOQC | keserved

FFEFFFFEF | Page |

length of PO Kegion in
pages (POLK)

PO Ragion growth direction
Pl Region growth direction
length of Pl keglon in
pages (2**21=-PlLR)

length of System Region

in pages (SLR;

System Region growth
direction

2.2.2 Physical Address Space

The NVAX Plus CPU naturally generates 32-bit physical addresses. This corresponds to a four
gigabyte physical address space as shown in Figure 2-2. Memory space occupies the first seven-
eighths (3.5GB) of the physical address space. I/O space occupies the last one-eighth (512MB)
of the physical address space and can be distinguished from memory space by the fact that bits
<31:29> of the physical address are all ones.

2-2 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-2: 32-bit Physical Address Space Layout

00000000 | |
! |
| |
| !
| |
- ~
| Memory |
! Space |
| !
| |
| 1 2.5 GE
+= -
! |
| |
| |
! |
| |
+- -
| |

DFFFFFEF | !

E0000000 | /0 1 512 ME

TFFFFFFF . | Space |

In addition to the natural 32-bit physical address, the CPU may be configured to generate 30-bit
physical addresses. In this mode, only 512MB of memory space can be referenced, as shown in
Figure 2-3.

Figure 2-3: 30-bit Physical Address Space Layout

00000000 ! Memory | 512 MB
. 1IFFFFEFF | Space |
20000000 | |

| f

- -

| |

| !

| |

|]

| |

+- Inaccessable -+ 3.0 GB

| Region |

| |

| |

| |

| }

= -

|)
DFFFFEFF | |
E0000000 | I/0 | 512 MB
FEFFEFET | Space |

The ‘translation from 30-bit addresses to 32-bit addresses is accomplished by sign-extending
PA<29> to PA<31:30>. In this mode, the programmer sees a 1GB address space, split evenly
between memory and I/O space, which is mapped to the actual 32-bit physical address space as
shown in Table 2-1. Unless explicitly stated otherwise, addresses that are given in the remainder

DIGITAL CONFIDENTIAL « Architectural Summary 2-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

of this specification are the full 32-bit addresses (which, of course, may have been generated from
a 30-bit program address via the mapping shown).

Table 2-1: 30-bit Mapping of Program Addresses to 32-bit Hardware Addresses

Program Address Hardware Address
00000000.. 1IFFFFFFF 00000000..1FFFFFFF
20000000..3FFFFFFF E0000000..FFFFFFFF

2.2.2.1 Physical Address Contro! Registers

During powerup, microcode configures the CPU to generate 30-bit physical addresses. Console
firmware may then reconfigure the CPU to generate either 30-bit or 32-bit physical addresses by
writing to the MODE bit in the PAMODE and VPAMODE registers, respectively. The PAMODE
register is shown in Figure 2—4.

Figure 2-4: PAMODE Register

31 30 2¢ 28127 2€ 2% 24123 20 21 2011¢ 18 17 16(1%5 14 12 12111 10 09 0Bj07 06 05 04103 02 01 OC

-+ +* 2 + g -+ - g o - +

¢ ¢ ¢ ¢ ¢ ¢ 0 0 ¢ ¢ 0o 0 0 0 ¢ 0 ¢ 0 0 ¢ ¢ 0 0 06 0 ¢ 0 0 0 0 0j | :PAMODE

- - " . ‘.
Ll g + o o o v -+ + >

The VPAMODE register is identical in format to the PAMODE register.

The PAMODE register also determines how PTEs are to be interpreted. In 30-bit mode, PTEs
are interpreted in 21-bit PFN format. In 32-bit mode, PTEs are interpreted in 25-bit PFN for-
mat (although the two upper bits of the PFN field are ignored). The different PTE formats are
described in Section 2.6.4.

2.2.3 Registers

There are 16 32-bit General Purpose Registers (GPRs). The format is shown in Figure 2--5, and
the use of each GPR is shown in Table 2--2.

Figure 2-5: General Purpose Registers

31 3C 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12(1) 10 0% 0OBj07 06 05 04103 02 01 00
| | :Rn

- o e e o o o o e o o o o o e o ot e o o o o e o o o o e -

2—4 Archltectural Summary ‘ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

‘Table 2-2: General Purpose Register Usage

GPR Synonym Use

RO-R11 _ General Purpose
R12 AP Argument Pointer
R13 FP _— Frame Pointer
R14 SP Stack Pointer
R15 PC Program Counter

The Processor Status Longword (PSL) is a 32-bit register which contains processor state. The
PSL format is shown in Figure 2-6, and the fields of the PSL are shown in Table 2-3.

Figure 2-6: Processor Status Longword Fields

31 3C 2¢ 2827 26 2% 2412% 22 21 20(1¢ 18 17 16|15 14 12 12)11 10 0¢ 08107 0€ OS5 04103 02 01 0O

- .
+ -+ -+ *
i

| | IMEIFP) | CUR | PRV [MB| | [N A
ICMITP IVMIZ |ID |IS! MOD | MOD 12 | IPL ! MBZ IDVIFU|IV] T| N| 2} V| C| :PSL

Lkl s Ll - - + -

Table 2-3: Processor Status Longword

Name Bit(s) Description

CM 31 Compatability Mode

TP 30 Trace Pending

VM 29 Virtual Machine Mode®

FPD 27 First Part Done

IS 26 Interrupt Stack

CUR_MOD 25:24 Current Mode

PRV_MOD 23:22 Previous Mode

IPL 20:16 Interrupt Priority Level

DV 7 Decimal Overflow Trap Enable
FU 6 Floating Underfiow Fault Enable
v 5 Integer Overfiow Trap Enable
T 4 Trace Trap Enable

N 3 Negative Condition Code

Z 2 Zero Condition Code

v 1 Overfiow Condition Code

C 0 Carry Condition Code

IMBZ unless virtual machine option is implemented

DIGITAL CONFIDENTIAL Architectural Summary 2-5

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

2.3 Data Types

The NVAX Plus CPU supports nine data types:A byte, word, longword, quadword, character
string, variable length bit field, F_floating, D_floating, and G_floating. These are summarized in

Figure 2-7.

Figure 2-7: Data Types

07 06 05 04103 02 01 00

-* o+

| | s&

Data Type: Evte

length: & bits

Use: Signec or unsigned integer

15 14 13 22712 1C 09 08107 0€ 0 04103

-+ -

Data Type: Wozxd
length: 16 pits

Use: Signecd or unsigned intaeger

31 30 22 28127 26 25 24122 22 21 20§18

! Y 3
Datz Type: longword
Length: 32 bits
Use: Signed or unsigned integer

31 30 29 28027 26 2F 24123 22 21 20119 18 17 16115 14 13 12(11 10 0% 0B107 0€ 05 04102 G2 01 00
- o o ————— - + +m— o e o e e e e e e o o e o
A
| 1A+4

Data Type: Quadword
Length: 64 bits
Use: Signed integer

Figure 2-7 Cont’d on hext page

2—-6 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-7 (Cont.): Data Types

07 06 05 04103 02 01 00

A

- - -+ o

-2+l

4
+— + —

:A+length-1

+— &

Datz Type: Character String

Length: 0=64K bvtes
Use: Eyte string

32 P+E P+&-1

o+

P P=-1

o e o o

(/71117117771711107111117

-+

- o oo o oo g -+

Data Type: Variable length bit field
Length: 0=-32 bits
Use: Bit string

1% 14 13 12111 10 0¢& 08107 06 05 04103 02 01 00

exponent !

|
1
o o= o - * oo o

fraction

| fraction

4+ — & — 3

31 30 2¢ 28127 26 25 24123 22 21
Data Type: F_floating

length: 32 bits
Use: Floating point

2011¢ 18 17 16

15 14 12 22|11 10 O0¢ 0B107 06 05 04103 02 01 00

= -+ -+ o+ + - e

I si axponent t

fraction

-

-+ Ll el -+ o

! fraction

+

+

| . fraction

+
1

oo o o -+ +

| fraction

o -+

+ - +— +— 4+ 2

o o o

€3 62 61 60159 58 57 56|55 54 53 52151 50 4¢ 46

Data Type: D_floating
length: 64 bits
Use: Floating point

tA+2

tA+2

tA+4

tA+6

Figure 2-7 Cont'd on next page

DIGITAL CONFIDENTIAL

Architectural Summary 2-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-7 (Cont.): Data Types

15 14 12 120111 10 092 08107 06 05 04103 02 01 OC

i fraction

63 62 €. 60(5¢ 58 57 5655 54 53 52151 50 4¢ 46

| st - aexponent | f£raction ; A

T) o £racti§n) r ; LA+2

i S ;raction .) ; tA+4
) o ; th+6

Data Type: G_floating
length: 64 bits
Use: Floating point

2.4 Instruction Formats and Addressing Modes

VAX instructions consist of a one- or two-byte opcode, followed by zero to six. operand specifiers.

2.4.1 Opcode Formats

An opcode may be either one or two contiguous bytes. The two-byte format begins with an FD
(hex) byte and is followed by a second opcode byte. The one-byte format is indicated by an opcode
byte whose value is anything other than FD (hex). The one- or two-byte opcode format is shown
in Figure 2-8.

Figure 2-8: Opcode Formats

07 0€ 05 04103 02 01 0C

One-byte opcode: | opcode

A

+ — 4

15 14 13 32111 10 0% 08|07 06 05 04103 02 01 00

Two=byte opcode:] opcode | FD | 3A

- - - -+

2.4.2 Addressing Modes

An operand specifier starts with a specifier byte and may be followed by a specifier extension.
Bits <3:0> of the specifier byte contain a GPR number and bits <7:4> of the specifier byte indi-
cate the addressing mode of the specifier. If the register number in the specifier byte does not
contain 15, the addressing mode is a general register addressing mode. If the register number
in the specifier byte does contain 15, the addressing mode is a PC-relative addressing mode. The

2-8 Architectural Summary ~ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

different addressing modes are shown graphically in Figure 2-9. General register addressing
modes are listed in Table 2—4 and PC-relative addressing modes are listed in Table 2-5.

Figure 2-8: Addressing Modes

07 06 05 0403 02 01 00
General register et + +
addressing mode: | mode | register |

07 06 C5 04]03 02 01 00

PC-relative
addressing mode:

+— 4

mode 111 1 11

-+ -+

DIGITAL CONFIDENTIAL Architectural Summary 2-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2—4: General Register Addressing Modes

Access
Mode Name Assembler rmwav PC SP Indexable?
0-3 literal S~ #literal yffff x f
4 index ilRx) YYVYY u y f
5 register Rn yyyfy u uq f
6 register deferred (Rn) yyyyy u y ¥
7 autodecrement -(Rn) yyyyy u y ux
8 autoincrement (Rn)}+ yYyyy P y ux
9 autoincrement deferred @[Rn}+ yYyyyy P y ux
A byte displacement BAd(Rn) Yyyyy P y y
B byte displacement deferred =~ @B~d(Rn) yyYYYY p y y
C word displacement WAd(Rn) yYyyvy P y y
D word displacement deferred = @W/d(Rn) Yyyyy P y y
E longword displacement I~d(Rn) yyyyy P y y
F longword displacement de- @L~d(Rn) yYyyyy P y y
ferred

Access Types

r = read

m = modify

w = write

a = address

v = variable bit field
Syntax

i = any indexable address mode
d = displacement

Rn = general register, n = 0 to 15
Rx = general register, n = 0 to 14

Results

¥ = yes, always valid address mode
f = reserved addressing mode fault
x = logically impossible

p = program counter addressing

u = unpredictable

ud = unpredictable for destination of CALLG, CALLS, JMP and JSB
ugq = unpredictable for quad, D/G_fioating and field if pos+size > 32

ux = unpredictable if index register = base register

2-10 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-5: PC-Relative Addressing Modes

Access

Mode Name Assembler rmwav PC sp Indexable?
8 immediate I~#constant yuuyud u

9 absolute @#address yyyyy y

A byte relative Braddress yYyYyYy y

B byte relative deferred @B”address YYyYyy y

C word relative WAhaddress yYyYyYy y

D word relative deferred @WAraddress yYYVYyYYy y

E longword relative L address YYYYyYy

F longword relative deferred @L address yyYyyy y

For notation, refer to the key in Table 24

2.4.3 Branch Displacements

2.5

Branch instructions contain a one- or two-byte signed branch displacement after the final specifier
(if any). The branch displacement is shown in Figure 2-10.

Figure 2-10: Branch Dispilacements

07 06 05 0403 02 01 00
Signed byte —— o o om s o
displacement: | displacement |

15 14 13 12111 10 0¢ 0807 06 05 04103 02 01 0O
Signed werd - + o oo o o e ot e G i e oot o o o
displacement:] displacement

-+ a - - - -+ o o o e e e o o

instruction Set

The NVAX Plus CPU supports the VAX Base Instruction Group as defined in DEC Standard 032
plus the optional VAX vector instructions and the virtual machine instructions. These instructions
are listed in Table 2—6. :

DIGITAL CONFIDENTIAL . ' Architectural Summary 2-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6: NVAX Instruction Set

Opcode

Instruction

C Exceptions

Integer, Arithmetic and Logical Instructions

58

80
Co
A0

81
C1
Al

D8

78
79

8A
CA
AA

8B
CB
AB

88
Cc8
A8

89
Co

A9

93
D3
B3

ADAW] add.rw, sum.mw

ADDB2 add.rb, sum.mb
ADDL?2 add.rl, sum.ml
ADDW2 add.rw, sum.mw

ADDBS3 addl.rb, add2.rb, sum.wb
ADDLS3 addl.rl, add2.r], sum.wl
ADDW3 addl.rw, add2.rw, sum.ww

ADWC add.rl, sum.ml

ASHL ent.rb, src.rl], dst.wl
ASHQ cnt.rb, sre.rg, dst.wq

BICB2 mask.rb, dst.mb
BICL2 mask.r], dst.ml
BICW2 mask.rw, dst.mw

BICB3 mask.rb, src.rb, dst.wb
BICL3 mask.r], src.rl, dst.wl
BICW3 mask.rw, src.rw, dst.ww

BISB2 mask.rh, dst.mb
BISL2 mask.1], dst.ml
BISW2 mask.rw, dst.mw

BISB3 mask.rb, src.rb, dst.wb
BISL3 mask.r], src.r], dst.wl
BISW3 mask.rw, src.rw, dst.ww

BITB mask.rb, src.rb
BITL mask.rl, src.rl
BITW mask.rw, srcrw

2-12 Archltectural Summary

* iov
* iov
* iov
* iov
* jov
* iov
* iov

o
* iov
0 iov
0 iov

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Tabile 26 (Cont.): NVAX Instruction Set

DIGITAL CONFIDENTIAL

Opcode Instruction VA v C Exceptions
Integer, Arithmetic and Logical Instructions
94 CLRB dst.wb o 1 o0 -
D4 CLRL{=F) dst.wl 0 1 0 -
7C CLRQ{=D=G} dst.wq 0 1 0 -
B4 CLRW dst.ww 0 1 0 -
91 CMPB srcl.rb, src2.rb * * 0 *
D1 CMPL srecl.rl, sre2.xl * * 0 *
Bl CMPW egrcl.rw, src2.rw * * 0 *
98 CVTBL srec.rb, dst.wl * * 0 0 -
09 CVTBW sre.rb, dst.ww * * 0 0
" F6 CVTLB sre.rl, dst.wb * * * 0 iov
77 CVTLW srec.rl, dst.ww * * * 0 iov
33 CVTWB src.rw, dst.wb * * * 0 iov
32 CVTWL src.rw, dst.wl * * 0 0
87 DECB dif.mb * * * * iov
D7 DECL dif.ml * * * * iov
B7 DECW dif.mw * * * * jov
86 DIVB2 divr.rb, quo.mb * * * 0 jov, idvz
Cé " DIVL? divr.al, quo.ml * * * iov, idvz
A6 DIVW2 divr.rw, quo.mw * * * 0 jov, idvz
87 DIVBS divr.rb, divd.rb, quo.wb * * * 0 jov, idvz
C7 DIVL3 divrryl, divd.rl, quo.wl * * * 0 iov, idvz
A7 DIVW3 divr.rw, divd.rw, quo.ww * * * 0 iov, idvz
7B EDIV divr.rl, divd.rq, quo;wl, rem.wl * * * 0 iov, idvz
TA EMUL mulr.rl, muld.rl, add.r], prod.wq * * 0 0
96 INCB sum.mb * * * * iov
D& INCL sum.ml * * * * iov

Architectural Summary 2-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX instruction Set

- 90

Opcode Instruction v C Exceptions

Integer, Arithmetic and Logxcal Instructions

Bé INCW sum.mw * * iov

92 MCOMB srec.rb, dst.wb 0 -

D2 MCOML sre.xl, dst.wl 0 -

B2 MCOMW srec.rw, dst.ww 0 -

8E MNEGB src.rb, dst.wb * * iov

CE MNEGL src.rl, dst.wl * * iov

AE MNEGW src.rw, dst.ww * * iov .
MOYVB src.rb, dst.wb 0 -

DO MOVL sre.rl], dst.wl 0 -

7D MOVQ src.rqg, dst.wq 0 -

B0 MOVW sre.rw, dst.ww 0 -

8A MOVZBW sgrc.rb, dst.wb 0 -

9B MOVZBL src.rb, dst.wl 0 -

3C MOVZWL src.rw, dst.wl 0 -

84 MULBZ2 muir.rb, prod.mb * iov

C4 MULL2 muir.rl, prod.ml * iov

Ad MULW2 mulr.rw, prod.mw * 0 iov

85 MULB3 mulr.rb, muld.rb, prod.wb * 0 iov

C5 MULLS3 muir.x], muld.rl, prod.wl * 0 iov

A5 MULWS3 mulr.rw, muld.rw, prod.ww * 0 iov

DD PUSHL sre.r], {~(SP).wl} 0 -

aC ROTL ent.rb, src.rl, dst.wl 0 -

D¢ SBWC sub.rl, dif.ml * * jov

82 SUBB2 sub.rb, dif.mb * * jov

2—-14 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction

A% C Exceptions

Integer, Arithmetic and Logical Instructions

c2 SUBL2 sub.rl, dif.m]

A2 SUBW2 sub.rw, dif. mw

83 SUBBS3 sub.rb, min.rb, dif.wb
C3 SUBLS3 sub.r], min.r], dif.wl
A8 SUBWS3 sub.rw, min.rw, dif.ww
95 TSTB sre.rb

D5 TSTL sre.rl

B5 TSTW srearw -
8C XORB2 mask.rb, dst.mb

CC XORL2 mask.r], dst.ml

AC XORW2 mask.rw, dst.mw

8D XORB3 mask.rb, src.rb, dst.wb
CD XORLS3 mask.rl, src.r], dst.wl
AD XORW3 mask.rw, src.rw, dst.ww

Address Instructions

oF MOVAB src.ab, dst.w]

DE MOVAL{=F} src.al, dst.wl

7E MOVAQ{=D=G} src.aq, dst.wl

3E MOVAW src.aw, dst.wl

oF PUSHARB src.ab, {(SP).wl}

DF PUSHAL{=F} src.al, {-(SP).wl}

7F PUSHAQI=D=G} src.aq, {-(SP).wl}
3F PUSHAW src.aw, {-(SP).wl}

o O ©O o

o O © O

Variable-Length Bit Field Instructions

EC CMPV pos.1l, size.rb, base.vb, {field.rv}, src.rl

ED CMPZV pos.1l, size.rb, base.vb, {field.rv}, sre.rl

DIGITAL CONFIDENTIAL

* iov
* iov
* jov
* iov
* iov
0

0

0

% 8V
* v

Architectural Summary 2-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX instruction Set

Opcode

Instruction

C Exceptions

Variable-Length Bit Field Instructions

EE

EF

FO

EB

EXTV pos.rl, size.rb, base.vb, {field.rv}, dst.wl
EXTZV pos.1l, size.rb, base.vb, {field.rv}, dst.wl
INSV sre.rl, pos.ri, size.rb, base.vb, {field.wv}

FFC startpos.rl, size.rb, base.vb, {field.rv}, find-
pos.w!l

FFS startpos.rl, size.rb, base.vb, {field.rv}, find.
pos.wl

Control Instructions

9D
F1
3D

3
F2

1E
1F
13
18
14
1A
15
1B
19
12
1C
1D

E1l
EO0

ACBB limit.rb, add.rb, index.mb, displ.bw
ACBL limit.rl, add.rl, index.ml, displ.bw
ACBW limit.rw, add.rw, index.mw, displ.bw

AOBLEQ limit.r], index.ml, displ.bb
AOBLSS limit.r], index.ml, displ.bb

BCC{=BGEQU] displ.bb
BCS{=BLSSU} displ.bb
BEQL{=BEQLU]} displ.bb
BGEQ displ.bb

BGTR displ.bb

BGTRU disepl.bb

BLEQ displ.bb

BLEQU displ.bb

BLSS displ.bb
BNEQ{=BNEQU)] displ.bb
BVC displ.bb

BVS displ.bb

BBC pos.rl, base.vb, displ.bb, {field.rv}
BBS pos.rl, base.vb, displ.bb, {field.rv}

2-16 Architectural Summary

- ov
- iov

- iov

- iov

- iov

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX instruction Set

Opcode

_ Imstruction

C Exceptions

Control Instructions

Es
E3

E2

E7

E6

E9

E8”

11
31

10
30

8F

CF

17

16

05

F4
F5

BBCC pos.z_'l, base.vb, displ.bb, {field.mv}
BBCS pos.r], base.vb, displ.bb, {field.mv)

‘BBSC pos.rl, base.vb, diepl.bb, {field.mv}

BBSS pos.r], base.vb, displ.bb, {field.mv}

BBCCI pos.rl, base.vb, displ.bb, {field.mv}
BBSSI pos.r], base.vb, displ.bb, {field.mv]}

BLBC sre.rl, displ.bb
BLBS src.r], displ.bb

BRB displ.bb
BRW displ.bw

BSBB displ.bb, {-(SP).wl}
BSBW displ.bw, {-(SP).w]}

CASEB selector.rb, base.rb; limit.rb, displ.bw-

list :

CASEL selector.rl, base.r], limit.rl, displ.bw-
list

CASEW selector.rw, base.rw, limit.rw, displ.bw-
list

JMP dst.ab

JSB dst.ab, {-(SP).wl}

RSB {(SP)+.1l}

SOBGEQ index.ml, displ.bb
SOBGTR index.ml, displ.bb

DIGITAL CONFIDENTIAL

- iov

- iov

Architectural Summary 2-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N C Exceptions

Procedure Call Instructions

FA CALLG arglist.ab, dst.ab, {-(SP).w*} 0 0 TSV

FB CALLS numarg.rl, dst.ab, {-(SP).w*) 0 0 T8V

04 RET {(SP)+.r*} * * TSV

Miscellaneous Instructions

B9 BICPSW mask.rw * * SV

B8 BISPSW mask.rw < * * TEV

03 BPT {-(KSP).w*} 0 0

00 HALT {-(KSP).w*} - - prv

0A INDEX subscript.rl, low.rl, high.rl, size.r], in- * 0 sub
dexin.r], indexout.wl

DC MOVPSL dst.wl - -

01 NOP - -

BA POPR mask.rw, {(SP)+.r*} - -

BB PUSHR mask.rw, {-(SP).w*} - -

FC XFC {unspecified operands} 0 0

Queue Instructions

5C INSQHI entry.ab, header.aq * 8V

5D INSQTI entry.ab, header.ag * rev

OE INSQUE entry.ab, pred.ab *

5E REMQHI header.aq, addr.w] 0 * TSV

5F REMQTI header.aq, addr.wl 0 * 8V

OF REMQUE entry.ab, addr.wl] * *

2-18 Architectural Summary -

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 2-6 (Cont.): NVAX instruction Set

Opcode Instruction N z A% C Exceptions
Operating System Support Instructions
BD CHME param.rw, {-(ySP).w*) 6 0 0 o
BC CHMK param.rw, {-(ySP).w*} 0 0 0 0
BE CHMS param.rw, {-(ySP).w*} 0 0 0 0
BF CHMU param.rw, {-(ySP).w*) 0 0 0 0
06 LDPCTX {PCB.r*, -(KSP).w*} - - - - TEV, prv
DB ~ MFPR procreg.rl, dst.wl * * 0 - TSV, prv
DA MTPR srec.xl, procreg.rl * * 0 - TSV, prVv
oC PROBER mode.rb, len.rw, base.ab . 0 * 0 -
oD PROBEW mode.rb, len.rw, base.ab 0 * 0 -
02 REI ((SPM.r*} * * * * TSV
07 SVPCTX {(SP)+.r*, PCB.w*} - - - - prv
Character String Instructions
29 CMPCS len.rw, srcladdr.ab, src2addr.ab . * * 0 *
2D . CMPC5 srcllen.rw, srecladdr.ab, fill.rb,sre2len.rw, * * 0 *
src2addr.ab
3A LOCC char.rb, len.rw, addr.ab 0 * 0 0
28 MOVC3 len.rw, srcaddr.ab, dstaddr.ab, {RO-5.wl} 0 1 0 0
2C MOVCS srclen.rw, srcaddr.ab, fill.rb, dstlen.rw, * * 0 *

dstaddr.ab,{R0-5.wl)

2A SCANC len.rw, addr.ab, tbladdr.ab, mask.rb 0 * 0 0
3B SKPC char.rb, len.rw, addr.ab 0 * 0 0
2B SPANC len.rw, addr.ab, tbladdr.ab, mask.rb 0 * 0 0

DIGITAL CONFIDENTIAL . ' Architectural Summary 2-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX instruction Set

Opcode Instruction V C Exceptions
Floating Point Instructions

60 ADDD2 add.rd, sum.md 0 rsv, fov, fuv
40 ADDF2 add.rf, sum.mf 0 0 rsv, fov, fuv
40FD ADDG? add.rg, sum.mg 0 0 rsv, fov, fuv
61 ADDD3 addl.rd, add2.rd, sum.wd 0 0 rev, fov, fuv
41 ADDFS3 addl.rf, add2.rf, sum.wf 0 rev, fov, fuv
41FD ADDGS3 addl.rg, add2.rg, sum.wg 0 0 v, fov, fuv
71 CMPD srcl.rd, src2.rd 0 0 BV

51 CMPF srcl.of, src2.xf 0 BV

51FD CMPG srcl.rg, src2.rg 0 0 TSV

86C CVTBD sre.rb, dst.wd 0 0

4C CVTBEF srerb, dst.wf 0 0

4CFD CVTBG src.rb, dst.wg 0 0

68 CVTDB src.rd, dst.wb * 0 T8Y, iov

76 CVTDF sre.rd, dst.wf 0 0 rsv, fov

6A CVTDL sre.rd, dst.wl * 0 T8V, iov

€9 CVTDW gre.rd, dst.ww * 0 _TSY, 10V

48 CVTFB sre.rf, dst.wb * 0 Tsv, iov

56 CVTFD sre.xf, dst.wd 0 0 TSV

99FD CVTFG sre.xf, dst.wg 0 0 TSV

44 CVTFL srec.ri, dst.wl * 0 TSV, 10V

49 CVTFW sgre.rf, dst.ww * 0 TEV, 10V
48FD CVTGB src.rg, dst.wb * 0 T8V, iov
33FD CVTGF egrc.rg, dst.wf 0 0 rsv, fov, fuv
4AFD CVTGL sre.rg, dst.wl * 0 T8V, iov
49FD CVTGW egrc.rg, dst.ww * 0 T8Y, 10V

6E CVTLD sre.x], dst.wd 0 0

4E CVTLF srec.xl, dst.wf 0 0

4EFD CVTLG sre.x], dst.wg 0 0

6D CVTWD sre.rw, dst.wd 0 0

4D CVTWF grc.rw, dst.wf 0 0

4DFD CVIWG sre.rw, dst.wg 0 0

2-20 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z Vv C Exceptions
Floating Point Instructions

6B CVTRDL src.rd, dst.wl * * * 0 TSV, 10V

4B CVTRFL sre.rf, dst.wl oo * * 0 1sv,iov

4BFD CVTRGL sre.rg, dst.wl * * * 0 TSV, 10V

66 DIVD2 divr.rd, quo.md * * 0 0 rsv, fov, fuv, fdvz
46 DIVF2 divr.rf, quo.mf * * 0 0 rsv, fov, fuv, fdvz
46FD DIVG2 divr.rg, quo.mg * * 0 0 rsv, fov, fuv, fdvz
67 - DIVD3 divr.rd, divd.rd, quo.wd * * 0 0 rsv, fov, fuv, fdvz
47 DIVF3 divr.xrf, divd.rf, quo.wf * * 0 0 rsv, fov, fuv, fdvz
47FD DIVGS divr.rg, divd.rg, quo.wg * * 0 rsv, fov, fuv, fdvz
72 MNEGD sre.rd, dst.wd * * 0 0 TSV

62 MNEGF sre.xf, dst.wi * * 0 0 TSV

52FD MNEGG src.rg, dst.wg * * 0 0 T8V

70 MOVD sre.rd, dst.wd * * 0 - TEV

50 MOVF sre.xf, dst.wf . * * 0 . rsv

50FD MOVG sre.rg, dst.wg * * 0 - T8V

64 MULD2 mulr.rd, prod.md * * O rav, fov, fuv

44 MULF2 mulr.rf, prod.mf * * 0 0 rsv, fov, fuv
44FD MULG2 mulr.rg, prod.mg * * 0 0 rsv, fov, fuv

65 MULD3 mulr.rd, muld.rd, prod.wd x % 0 0 rsv,fov,fuv

45 MULF3 mulr.rf, muld.rf, prod.wf * * 0 0 rsv, fov, fuv
45FD MULGS mulr.rg, muld.rg, prod.wg o * 0 0 rsv, fov, fuv

62 SUBD2 sub.rd, dif.md * * 0 0 rsv, fov, fuv

42 SUBF2 sub.rf, dif.mf * * 0 0 rsv, fov, fuv
42FD SUBG2 sub.rg, dif.mg * * 0 0 rsv, fov, fuv

DIGITAL CONFIDENTIAL : Architectural Summary 2-21

NVAX Plus CPU Chip Functional Speciﬁcation, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX instruction Set

Opcode Instruction N Exceptions

Floating Point Instructions

63 SUBDS sub.rd, min.rd, dif.wd * rsv, fov, fuv

43 SUBF3 sub.rf, min.rf, dif.wf * rsv, fov, fuv

43FD SUBGS sub.rg, min.rg, dif.wg * rsv, fov, fuv

73 TSTD src.rd * TSV

53 TSTF src.xf * 8V

53FD TSTG srcrg * TEV

M.icmqode—Assisted Emulated Instructions

20 ADDP4 addlen.rw, adciaddr.ab, sumlen.rw, * rsv, dov
sumaddr.ab

21 ADDP6 addllen.rw, addladdr.ab, add2len.rw, * T8V, dov
add2addr.ab, sumlen.rw, sumaddr.ab

F8 ASHP cnt.rb, srclen.rw, srcaddr.ab, round.rb, * rev, dov
dstlen.rw, dstaddr.ab

35 CMPP3 len.rw, srcladdr.ab, src2addr.ab *

37 CMPP4 srcllen.rw, srcladdr.ab, src2len.rw, *
src2addr.ab

0B CRC tbl.ab, iniere.r], strlen.rw, stream.ab *

Fo CVTLP sre.rl, dstlen.rw, dstaddr.ab * rsv, dov

36 CVTPL srclen.rw, srcaddr.ab, dst.wl * TEY, i0V

08 CVTPS srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab * T8V, dov

09 CVTSP srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab * rev, dov

24 CVTPT srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, * Tsv, dov
dstaddr.ab

26 CVTTP srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, * rev, dov
dstaddr.ab

27 DIVP divrien.rw, divraddr.ab, divdlen.rw, div- * rsv, dov, ddvz

daddr.ab, quolen.rw, quoaddr.ab

2-22 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2—6 (Cont.): NVAX Instruction Set

Opcode

Instruction N

C Exceptions

Microcode-Assisted Emulated Instructions

38

39

34

2E

2F

25

22
23

EDITPC srclen.rw, srcaddr.ab, pattern.ab, *
dstaddr.ab

MATCHC objlen.rw, objaddr.ab, srclen.rw, sr- 0
caddr.ab

MOVP len.rw, srcaddr.ab, dstaddr.ab *

MOVTC srclen.rw, srcaddr.ab, ﬁll:rb, tbladdr.ab, *
dstlen.rw, dstaddr.ab

MOVTUC srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, *
dstlen.rw, dstaddr.ab

MULP mulrlen.rw, mulraddr.ab, muldien.rw, *
muldaddr.ab, prodlen.rw, prodaddr.ab

SUBP4 sublen.rw, subaddr.ab, difien.rw, difaddr.ab *
SUBP6 sublen.rw, subaddr.ab, minlen.rw, mi- *

* rsv, dov
0
0
*
*
0 rsv, dov

0 rsv, dov
0 rsv, dov

naddr.ab, difienrw difaddrab

DIGITAL CONFIDENTIAL

Architectural Summary 2-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2—6 (Cont.): NVAX Instruction Set

The notation used for operand specifiers is <name>.<access type><data type>. Implied operands (those locations that are

referenced by the instruction but not specified by an operand) are denoted by curly braces {}.
Access Type

a = address operand

b = branch displacement

m = modified operand (both read and written)

r = read only operand

v = if not "Rn", same as a, otherwise R{n+1JR[n)
w = write only operand

Data Type

b = byte

d = D_fioating

f = F_floating

g = G_floating

1 = longword

q = quadword

v = field (used only in implied operands)

w = word

* = multiple longwords (used only in implied operands)

Condition Codes Modification

* = conditionally set/cleared
-~ = not affected

0 = cleared

1 = set

Exceptions

rsv = reserved operand fault

iov = integer overflow trap

idvz = integer divide by zero trap
fov = floating overflow fault

fuv = floating underfiow fault

fdvz = floating divide by zero fault
dov = decimal overfiow trap

ddvz = decimal divide by zero trap
sub = subscript range trap

prv = privileged instruction fault
vec = vector unit disabled fault

2-24 Archltectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.6 Memory Management

The NVAX Plus CPU Chip supports a four gigabyte (2**32) virtual address space, divided into
two sections, system space and process space. Process space is further subdivided into the PO
region and the Pl region.

2.6.1 Memory Management Control Registers

Memory management is controlled by three processor registers: Memory Management Enable
(MAPEN), Translation Buffer Invalidate Single (TBIS), and Translation Buffer Invalidate All
(TBIA). .

Bit <0> of the MAPEN register enables memory management if written with a 1 and disables
memory management if written with a 0. The MAPEN register is shown in Figure 2-11.

Figure 2-11: MAPEN Register

31 30 2¢ 28127 2€ 25 24123 22 21 20]1¢9 1€ 17 16115 14 1Z 12]11 10 0¢ 08l07 06 05 04103 02 C1 0O

- - -

- - k- -+ + oot -~ o -

| ¢ 0 00 0 06 ¢6 6 0 ¢ 0 0 0 0 0 0 ¢ ¢ 0 0 0 0 0 0 ¢ 0 0 G ¢ 0f | :MAPEN

- - - e e o e -t
- + o o - o om e + o o o o o v o - o o -t

|
MME ==+

The TBIS register controls translation buffer invalidation. Writing a virtual address into TBIS in-
validates any entry which maps that virtual address. The TBIS format is shown in Figure 2—-12.

Figure 2-12: TBIS Register

21 30 29 28|27 26 25 24123 22 21 20)1¢ 1€ 17 16115 14 13 12111 10 0¢ OB|07 06 05 04]03 02 01 0C

i Virtual Address i $TBIS

————— o e e e o o o o e o o o o e o s o o o i o oo o ——— + ot

The TBIA register also controls translation buffer invalidation. Writing a zero into TBIA invali-
dates the entire translation buffer. The TBIA format is shown in Figure 2-13.

Figure 2-13: TBIA Register

31 30 29 28127 26 25 24123 22 21 20/1¢ 18 17 16|15 14 13 12111 10 0O¢ 08507 06 05 04|03 02 01 00

- - - - o e O i o - -+ - - ——

- + o e

4
1
1
r
E

jo ¢ 0 0 6 0 0 0 006 060 0 00 ¢ 0O 0 00O OO0 O0C 0 0 0 0 0 0 0 0| :TBIA

- JP—— - - - - " I o+ - Jrp—
L - - bbbt o -+ + + - - o o ket il -+ + -+

DIGITAL CONFIDENTIAL Architectural Summary 2-25

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.6.2 System Space Address Translation

A virtual address with bits <31> = 1 is an address in the system virtual address space.

System virtual address space is mapped by the System Page Table (SPT), which is defined by
the System Base Register (SBR) and the System Length Register (SLR). The SBR contains the
page-aligned physical address of the System Page Table. The SLR contains the size of the SPT
in longwords, that is, the number of Page Table Entries. The Page Table Entry addressed by the
System Base Register maps the first page of system virtual address space, that is, virtual byte
address 80000000 (hex). These registers are shown in Figure 2-14.

With a 22-bit SLR 2**22-1 pages in system space may be addressed. As a result, the last page
of system space (beginning at virtual address FFFFFEOQ (hex)) is not addressable. As a result,
this page is reserved and a reference to any address in that page will result in a length violation.

NOTE
The extended SO space descibed above is implemented on the NVAX Plus chip.

NOTE

When the CPU is configured to generate 30-bit physical addresses, SBR<31:30> are
ignored.

Figure 2-14: System Base and Length Registers

31 30 2¢ 28127 26 25 24123 22 21 20119 1le 17 16]1%5 14

13 12111 10 0¢ 08107 06 05 04103 02 01 00

Physical Page Address of SPT : 10 0 0 0 0 0 0 0 0} :SBR

- + - - + +=— + -t

31 30°2¢ 28127 26 25 24122 22 21 2011¢ 18 17 16{15 14 13 12111 10 0% 08|07 06 05 0403 02 01 00

- L gald -* - - - -

- = o -+

{0 0 ¢ G 0 0 0 0 O 0} length of SPT in Llongwords | $SLR

- - o+ - o+ +
- -+ -+ - oo o o o +* - Caah aded b -+ = o+ +

The system space translation algorithm is shown graphically in Figure 2-15.

2-26 Archltectlural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Figure 2-15: System Space Translation Algorithm

3 3
1 0 ¢ 8 0
system=space + + +
tvirtual address: | 1 jvirtual page number| byte |
| [\
| extract VPN, A \
| check length, | \ . \
3 212 and add | \ \
1 413 211 0\ \
<+ + \ \
SBR: | physical address of SPT base | \ A\

| sign=extend PA<28> to PA<31:30>| !
| 4f in 30~bit mode |
| !
13 yields |
11 0]

| physical address of SPTIE | |

|
|
fetch |
i
|

w
[N N

[N)
o

SPIE: i | page frame number

1
check access in current |
mode, I
sign=extend PTE<20> to |
PTE<22:21> if in 30=-bit |
mode . [

merge |
|
|
|

- W
o~
~

+ <+ +

physical address: |- page frame number

2.6.3 Process Space Address Translation

A virtual address with bit <31> = 0 is an address in the process virtual address space. Process
space is divided into two equal sized, separately mapped regions. If virtual address bit <30> = 0,
the address is in region P0. If virtual address bit <30> = 1, the address is in region P1.

2,6.3.1 PO Region Address Translation

The PO region of the address space is mapped by the PO Page Table (POPT), which is defined by
the PO Base Register (POBR) and the PO Length Register (POLR). The POBR contains the system
page-aligned virtual address of the PO Page Table. The POLR contains the size of the POPT in
longwords, that is, the number of Page Table Entries. The Page Table Entry addressed by the P0
Base Register maps the first page of the PO region of the virtual address space, that is, virtual
byte address 0. The P0 base and length registers are shown in Figure 2-16.

DIGITAL CONFIDENTIAL : Architectural Summary 2-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The PO space translation algorithm is shown graphically in Figure 2-17.

Figure 2-16: PO Base and Length Registers

32 30 2% 28127 26 25 24123 22 21 2011¢ 18 17 16i15 14 12 12111 10 0% 08|07 06 05 04102 02 01 OC

s + - o e +

| System Virtual Page Address of POPT 10 0 ¢ 0 0 ¢ O O 0| : POBK

+ + - + + + - . + ot

31 30 2¢ 28127 26 25 24123 22 21 20119 1€ 17 16|15 14 12 12111 10 O¢ 0B|O7 06 05 04103 C2 01 00C
-+ - o
¢ ¢ ¢ ¢ 0 0 0 0 ¢ 0! Length of POPT in longwords | sPOLR

- ot + - + B o oom o e o ek

Figure 2-17: PO Space Translation Algorithm

3

o W
w

¢ 8 ¢

process-space
virtual address: O (virtua. page number!| byte |

|
- .

! [N \
¢ extract VPN, I\ \
| check length, | \ \
2 212 anc ads ! \ \
1 312 211 0\ \
- A\ \
POBR: | virtual address of POPT pase | \ \
* |
1 A |
| ! |
| yields | |
1322 | !
- 120 ¢ 4 8 0l |
virtual address -+
of POPTE: | |virtual page number| byte |

|
|
o —— |
fetch using system-space translation |
algorithm, including length check, |
but without access check |
2 |

2 0 |

W

Wt

POPTE: |

page frame number |
|

|
| |
+ l
| check mccass in current |
| mods, | I
| sign-extend PTE<20> to | |
| PTE<22:21> if in 30-bit | 1
| mode |
|
}
|
I

/ /
/ /
8

merge

|

!

|
e/

- W

physical address: page frame number byte |

|

2.6.3.2 P1 Region Address Translation

The P1 region of the address space is mapped by the P1 Page Table (P1PT), which is defined
by the P1 Base Register (P1BR) and the P1 Length Register (P1LR). Because P1 space grows
towards smaller addresses, and because a consistent hardware interpretation of the base and
length registers is desirable, P1IBR and P1LR describe the portion of P1 space that is NOT

2-28 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

accessible. Note that PILR contains the number of nonexistent PTEs. P1BR contains the page-
aligned virtual address of what would be the PTE for the first page of P1, that is, virtual byte
address 40000000 (hex). The address in P1BR is not necessarily an address in system space,but
all the addresses of PTEs must be in system space.

The P1 space translation algorithm is shown graphically in Figure 2-19.

Figure 2-18: P1 Base and Length Registers

~

Lt + + 0 oo e o o ot ot o

| Virtual Page Address of PlPT

+ <+ - * oo o afe e e e o o o e e o * *

31 30 2¢ 28127 26 25 24123 22 21 20]1¢ 18 17 16125 14 13 12111 10 0% 08107 06 05 04102 02 01 OC

-+ + +

0o 0 0 ¢ 0 0 0 0 0| : PIBR

+ -+ - -+ +

+ — +

31 30 22 28127 26 2% 24|23 22 21 2071¢ 18 17 16(1% 14 13 12(11 1CG 0O¢ 08107 06 05 04|02 02 01 00
e + + - + o oo ok ook e e e o oo o o ek o oot
o 0 0 0 0 0 0 0 0 0} (2 ** 21) - Lengtk of PIPT in longwords | :P1LK
Figure 2-19: P1 Space Translation Algorithm
3z2 L
108 o8 d
procaess-space o ——— + +
virtual address: | 0 tvirtual page number| byte |
! I\ \
| extract VPK, I\ \
| check length, 1 \ \
3 2]z and add | \ \
1 32 211 0\ \
+ + + \ \
P1BR: | virtual address of P1PT base | \ \
+ + | |
| | | |
| | | |
| yields | | |
13 3 2 I | !
120 ¢ ¢ 8 0| | |
virtual address o + | |
of P1PTE: | |virtual page number| byte | | t
+ + | |
fetch using system-space translation | |
algorithm, including length check, | |
but without access check |) -
3 22 | !
1 32 0 | |
- + | |
P1PTE: | | page frame number | | |
- - + | |
| check access in current | | }
| mode, | | !
| sign-extend PTE<20> to | { |
| PTE<22:21> if in 30=-bit | ! |
| mode o ! |
1 merge [—‘ /
12 i/ /
11 9|/8 o/
physical address: | page frame number | byte |

DIGITAL CONFIDENTIAL _ Architectural Summary 2--29

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.6.4 Page Table Entry

If the CPU is configured to generate 30-bit physical addresses, it interprets PTEs in the 21-
bit PFN format shown in Figure 2-20. Conversely, if the CPU is configured to generate 32-bit
physical addresses, it interprets PTEs in the 25-bit PFN format shown in Figure 2-21. Note that
bits <24:23> of the 25-bit PFN format are ignored by the NVAX Plus CPU chip, which implements
only 32-bit physical addresses. The PTE formats shown below are described in DEC Standard
032.

Figure 2-20: PTE Format (21-blt PFN)

32 30 29 28127 26 25 24123 22 22 2011¢ 16 17 1611% 14 13 12111 10 0¢ 08107 06 05 04102 02 01 00

1 Vi PROT | Ml 2| OWN | S| S| Page Frame Number | :PTE

Figure 2-21: PTE Format (25-blt PFN)

32 30 2% 2BI27 26 25 24122 22 22 20119 18 17 16115 14 13 12112 1C 0% 0807 0€ 05 04103 02 01 00

] Vi PROT I Mi 8| SBZ | Page Frame Number | $PTE

2-30 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-7: PTE Protection Code Access Matrix

Code Current Mode

Decimal Binary Mnemonic K E) U Comment
0 0000 NA - - - - no access
1 -0001 - : unpredictable reserved
2 0010 KwW RW - - -
3 0011 KR R - - -
4 0100 UwW RW RW RW RW all access
5 0101 EwW RW RW - ==
6 0110 ERKW Rw TRT LT oo
7 0111 ER R R - -
8 1000 SW RW RW RW -
9 1001 SREW RW RW R -
10 1010 SRKW RW R R -
11 1011 SR R R R -
12 1100 URSW RW RW RW R
13 1101 UREW RW RW R R
14 1110 URKW RW R R R
15 1111 UR R R R R
Access Modes

K = Kernel

E = Executive
" 8 = Supervisor

U = User
Access Types

R = Read

W = Write

- = No access

2.6.5 Translation Buffer

In order to save actual memory references when repeatedly referencing pages, the NVAX Plus
CPU Chip uses a translation buffer to remember successful virtual address translations and page
status. The translation buffer contains 96 fully associative entries. Both system and process
references share these entries.

Translation buffer entries are replaced using a not-last-used (NLU) algorithm. This algorithm
guarantees that the replacement pointer is not pointing at the last translation buffer entry to be
used. This is accomplished by rotating the replacement pointer to the next sequential translation
buffer entry if it is pointing to an entry that has just been accessed. Both D-stream and I-stream
references can cause the NLU to cycle. When the translation buffer does not contain a reference’s
virtual address and page status, the machine updates the translation buffer by replacing the
entry that is selected by the replacement pointer.

DIGITAL CONFIDENTIAL Archltectural Summary 2-31

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.7 Exceptions and Interrupts

At certain times during the operation of a system, events within the system require the execution
of software routines outside the explicit fiow of control of instruction execution. An exception is
an event that is relevant primarily to the currently executing process and normally invokes a
software routine in the context of the current process. An interrupt is an event which is usually
due to some activity outside the current process and invokes a software routine outside the context
of the current process.

Exceptions and interrupts are reported by constructing a frame on the stack and then dispatching
--- to the service routine through an event-specific vector in the System Control Block (SCB). The
minimum stack frame for any interrupt or exception is a PC/PSL pair as shown in Figure 2-22.

Figure 2-22: Minimum Exception Stack Frame

32 30 2¢ 2BJ27 26 25 24|23 22 21 20119 18 17 16115 14 12 12111 10 0¢ 08107 06 0 04(03 €2 01 0C

e + - + o+ -+

! PC - |0 1 (SP)

[PSL |

This minimum stack frame is used for all interrupts. Certain exceptions expand the stack frame
by pushing additional parameters on the stack above the PC/PSL pair as shown in Figure 2-23.

Figure 2-23: General Exception Stack Frame

31 30 29 28127 26 2% 24122

| Parameter n | :(SP)

ot - -+ + -t —pm— - e o - -

22 21 20419 1€ 17 16|15 14 12 12j11 10 0% 0B|O07 06 05 04{03 02 01 0C

- <+ e oo e e o + bl Lot <+ Lt s 4 +

- - - - S——— -

| Parameter 1

| PC |

+

| PSL

- e e o

+
1
+
4
9
r

What parameters, if any, are pushed on the stack above the PC/PSL pair is a function of the
specific exception being reported.

2.7.1 Interrupts

DEC Standard 032 defines 31 interrupt priority levels, a subset of which is implemented by the
NVAX Plus CPU. When an interrupt request is generated, the hardware compares the request
with the curtent IPL of the CPU. If the new request is of higher priority an internal request is gen-
erated. At the completion of the current instruction (or at selected points during the execution of
interruptible instructions), a microcode interrupt handler is invoked to process the request. With
hardware assistance, the microcode handler determines the highest priority interrupt, updates

2-32 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

the IPL, pushes a PC/PSL pair on the stack, and dispatches to a macrocode interrupt handler
through the appropriate location in the SCB.

Of the 31 interrupt priority levels defined by DEC Standard 032, the NVAX Plus CPU makes use
of 23 of them, as shown in Table 2-8. ’

Table 2-8: Interrupt Priority Levels -

TPL (hex) IPL (decimal) Interrupt Condition

1F 31 - HALT.E asserted (non maskable)

1E 30 Unused

1D 29 ERR_H asserted (or internal hard error detected)

1C 28 Unused

1B 27 Performance Monitoring Interrupt(internally handled by microcode)
1A 26 Internal soft error detected

18-19 24-25 Unused

17 : 23 ' IRQ _B<3> asserted

16 22 IRQ B<2> or interval timer (mq B<2> takes priority)
15 21 IRQ_H<1> asserted

14 20 mq B<0> asserted

10-13 16-19 Unused

01-0F : 01-15 " Software interrupt asserted

2.7.1.1 Interrupt Contro! Registers

The interrupt system is controlled by three procéssor registers: the Interrupt Priority Level
Register (IPL), the Software Interrupt Request Register (SIRR), and the Software Interrupt
Summary Register (SISR).

A new interrupt priority level may be loaded into PSL<«20:16> by writing the new value to
IPL<4:0>. The IPL register is shown in Figure 2-24.

Figure 2-24: Interrupt Priotity Level Register

31 30 29 28]27 26 25 24123 22 21 20|1% 18 17 16|15 14 13 12111 10 0% 08/07 06 05 04103 02 Q1 00

- + e ke o i o o o e i s e e e S

jo ¢ 0o 0 0 0 0 0 0 0 0 0 0 0 ¢ 0 0 0 ¢ 0 0 0 0 0 0 0 O0|PSL<20:16>| :IPL

-+ " - - - I
- -t - +: + + + o ot e o + Ladad s Clalnd Dbl s - +* + + + -+

DIGITAL CONFIDENTIAL Architectural Summary 2-33

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

A software interrupt may be requested by writing the desired level to SIRR<3:0>. The SIRR
register is shown in Figure 2-25.

Figure 2-25: Software Interrupt Request Registers

31 30 2¢ 28127 26 25 24123 22 22 20(1¢ 18 17 16|15 14 13 12111 10 O¢ 0B{07 06 05 04103 02 01 0C

/¢ 0 ¢ 0 0 0 0 0 ¢ 0 0 OlReguest IPL| :SIRK

- -+ ik bl -+ - b e e o + -+ +

o
(=]
o
o
o
o
<
o
o
o
o
(=]
<o
o
(=]
fe]

The SISR register records pending software interrupt requests at levels 01 through OF (hex). The
SISR register is shown in Figure 2-26.

Figure 2-26: Software Interrupt Summary Register

31 3C 2¢ 28127 26 2F 24122 22 21 20]1¢ 18 17 16115 14 12 12111 10 0% 08107 06 CE 04103 02 01 0OC

(¢ ¢ ¢ 0 ¢ ¢ ¢ ¢ 0 0 0o ¢ 0 0 0o O ¢ & b v &yt 4t 11 10| :SISK
[[
IPL 1% reguaest =--' | - e . IPL 2 reguest =-' |
IPL 14 request --' IPL 1 request =--'

2.7.2 Exceptions

The VAX architecture recognizes six classes of exceptions. Table 2-9 lists instances of exceptions
in each class.

Table 2-8: Exception Classes
Ezxception Class Instances

Arithmetic traps/faults Integer overfiow trap
Integer divide-by-zero trap
Subscript range trap
Floating overfiow fault
Floating divide-by-zero fault

Floating underfiow fault
Memory management exceptions Access control violation fault
Translation not valid fault
- M=0 fault
Operand reference exceptions Reserved addressing mode fault

Reserved operand fault or abort

2-34 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-8 (Cont.): Exception Classes
Exception Class Instances

Instruction execution exceptions Reserved/privileged instruction fault
Emulated instruction faults.
XFC fault _
Change-mode trap
Breakpoint fault
Vector disabled fault

Tracing exceptions Trace fault

System failure exceptions Kernel-stack-not-valid abort
Interrupt-stack-not-valid halt
Console error halt
Machine check abort

A trap is an exception that occurs at the end of the instruction that caused the exception.
Therefore, the PC saved on the stack is the address of the next instruction that would normally
have been executed.

A fault is an exception that occurs during an instruction and that leaves the registers and memory
in a consistent state such that elimination of the fault condition and restarting the instruction
will give correct results. After the instruction faults, the PC saved on the stack points to the
instruction that faulted.

An abort is an exception that occurs during an instruction. An abort leaves the value of regis-
ters and memory UNPREDICTABLE such that the instruction cannot necessarily be correctly
restarted, completed, simulated, or undone. In most instances, the NVAX Plus microcode at-
tempts to convert an abort into a fault by restoring the state that was present at the start of the
instruction which caused the abort.

The following sections describe only those exceptions which are unique to the NVAX Plus CPU,
or where DEC Standard 032 is not clear about the implementation.

2,7.2.1 Arithmetic Exceptions

Arithmetic exceptions are detected during the execution of instructions that perform integer or
floating point arithmetic manipulations. Whether the exception is reported as a trap or a fault
is a function of the specific event. In any case, the exception is reported through SCB vector 34
(hex) with the stack frame shown in Figure 2-27. Table 2—10 lists the exceptions reported by
this mechanism.

DIGITAL CONFIDENTIAL Archlitectural Summary 2-35

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-27: Arithmetic Exception Stack Frame

31 30 2¢ 28127 26 2% 24123 22 21

2011¢ 18 17 16|15 14 13 12111 10 02 08107 06 C5 04102 02 01 00

-+ + - - "o o - o -+ +

| Type Code I :(SP)
| o) i T Pc S T) . '
] o om o o o e o e + -y + - - + S s i

Table 2-10: Arithmetic Exceptions

Type Code)

Decimal Hex Type Exception

1 1 Trap Integer overfiow

2 2 Trap Integer divide-by-zero

7 7 Trap Subscript range

8 8 Fault Floating overflow

9 9 Fault Floating divide-by-zero

10, A Fault Floating underfiow

2.7.2.2 Memory Management Exceptions

Memory management exceptions are detected during a memory reference and are always reported
as faults. The five memory management exceptions are listed in Table 2-11. All four exceptions
push the same frame on the stack, as shown in Figure 2-28. The top longword of the stack frame
contains a fault parameter whose bits are described in Table 2-12. :

Table 2-11: Memory Management Exceptions

SCB Vector Exception

20 (hex) Access control violation
24 (hex) Translation not valid
3C (hex) Modify fault

2-36 Archhectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-28: Memory Management Exception Stack Frame

32 30 2¢ 28127 26 25 24123

22 21 201(12¢ 18 17 16]15 14 12 12111 10 O¢ 0B|07 06 05 04103 02 01 0C

j¢ 06 0 0 ¢ 0 06 0 060 00 0 006G 0 O0CO0 O0CO0O0 0 6 0 00

Ol O O} MI P| 1| :(SP)

- b -

et

o o o e e + Lk 2 + o oo * ot

Some Virtual Address in the Faulting Page |

o -+

-+ -+ o o o e 0 o o e oo e o e e o s 4 o+ *+ e g o o

PC [

o e =

* -+ o+ + g o o e e o + -+ g <+ - -+ - o o o

PSL |

-+ o o

- b p o o B + - - b oot

Table 2-12: Memory Management Exception Fault Parameter
Bit Mnemonic Meaning

0 L Length violation

1 P PTE reference

2 M Modify or write inten.t

2.7.2.3 Emulated Instruction Exceptions

The NVAX Plus CPU implements the VAX base instruction group. For certain instructions outside
that group, the NVAX Plus microcode provides support for the macrocode emulation of instruc-
tions. There are two types of emulation exceptions, depending on whether PSL<FPD> is set at
the beginning of the instruction.

If PSL<FPD>=0 at the beginning of the instruction, the _excebtion is reported through SCB vector
C8 (hex) as a trap with the stack frame shown in Figure 2-29. The longwords in the stack frame
are described in Table 2-13. 4

DIGITAL CONFIDENTIAL Architectural Summary 2-37

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-29: Instruction Emulation Trap Stack Frame

21 30 22 28127 26 25 24123 22 21 20)1¢ 18 17 16115 14 12 12111 1C 0¢ OBIO7 06 05 04103 02 01 00

Opcode | :(SP)
- : - - L e T - + o 2 o o o -

0id PC i

-+

- o -+ b -+ -

Specifier #1 I

-+ - - Ldal Ll g

— F — - 3

+—— -+ -+ - o -+ o - 3 -

i Specifier 42 . |

o+ - o o

| Specifier 423 |

+ L et ol Ll -+

| Specifier #4¢ I

-+ -+ - + -+ Ll - + - -t -+

| Specifier #5

| Specifier #6

; B — + bt - do b I — e
| Specifier #7 !

| T) ‘Specifier #5) . T o)

v . i T re o o A :
IR I
Table 2-13: Instruction Emulation Trap Stack Frame

Location Use

Opcode Zero-extended opcode of the emulated instruction

0ld PC PC of the opcode of the emulated instruction

Specifiers Address of the specified operand for specifiers of access type write (.wx) or address

(.ax). Operand value for specifiers of access type read (.rx). For read-type operands
whose size is smaller than a longword, the remaining bits are UNPREDICTABLE.
For those instructions that don't have 8 specifiers, the remaining specifier longwords
contain UNPREDICTABLE values

New PC PC of the instruction following the emulated instruction

PSL PSL saved at the time of the trap

If PSL<FPD>=1 at the beginning of the instruction, the exception is reported through SCB vector
CC (hex) as a fault with the stack frame shown in Figure 2-30. In this case, PC is that of the
opcode of the emulated instruction.

2-38 Architectural Summary _ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-30: Suspended Emulation Fault Stack Frame

31 30 2¢ 28(27 26 25 24123 22 21 20)1¢ 18 17 16115 14 12 12111 10 0% 08107 06 05 04103 02 01 00

b

- o o o ot -+ + C bl g + o+ + - -

| pPC I :(SP)
!

+ =+ + g -+ 3 o = o * -+ -+

oo o o o o e e o e o

2.7.2.4 Machine Check Exceptions

A machine check exception is reported through SCB vector 04 (hex) when the NVAX Plus CPU
detects an error condition. The frame pushed on the stack for a2 machine check indicates the type
of error and provides internal state information that may help identify the cause of the error.
The generic machine check stack frame is shown in Figure 2-31.

Figure 2-31: Generic Machine Check Stack Frame

31 30 2% 28127 26 285 24122 22 21 20)1¢ 18 17 16115 14 1% 12111 10 0¢ OBIO07 06 05 04103 02 O 00

-

- * - Lt o ot o e o o o oy om0 o o

+
F
1
3

| Byte Count of Parameters, Excluding This Longword i 1 (SP)

. . -
-+ - L Sl - o o+ o

+ + e + +

+ -+ bkt 4 * + -+ - + * - oo o

! PC |

+ —— e .

oo S B - o+ o o o
| PSL |
. oo o o o e o o e e e - -+ o o e e e e e o e e s e o ok

2.7.2.5 Console Halts

In certain microcode fiows, the NVAX Plus microcode may detect an inconsistency in internal
state, a kernel-mode HALT, or a system reset. In these instances, the microcode initiates a
hardware restart sequence which passes control to the console program.

***When a hardware restart sequence is initiated, the NVAX Plus microcode saves the current

CPU state, partially initializes the CPU, and passes control to the console program at the physical
address contained in the CONSOLE_REG register. ***

During a hardware restart sequence, the stack pointer is saved in the appropriate stack pointer
IPR (0 through 4), the current PC is saved in IPR 42 (SAVPC), and the current PSL, halt code,

and validity flag are saved in IPR 43 (SAVPSL). The format of SAVPC and SAVPSL are shown
in Figure 2-32.

DIGITAL CONFIDENTIAL " Architectural Summary 2-39

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-32: Console Saved PC and Saved PSL

32 30 2¢ 28)27 2€ 25 24123 22 2] 201(1¢ 18 17 16115 14 13 12111 10 0% 0B{07 06 0% 04102 0z 01 00

-* + - - - -+ op o -

| Saved PC | $SAVPC

+ + * - + - - o - + + ' - -+ -+

(21 30 2% 28127 26 25 24122 22 21 2011¢ 1B 17 16115 14 13 12111 10 0¢ 0B|07 06 05 04103 02 01 00

- - - +

+ -+ -+ + + - + -

| PSL<31:16> [| Halt Code ! PS1<7:0> | :SAVPSL

P
MAPEN<O> ==" |
Invalié SAVPSL if 1 --'

2.8 System Control Block

. The System Control Block (SCB) is a page containing the vectors for servicing interrupts and
exceptions. The SCB is pointed to by the System Control Block Base Register (SCBB), whose
format is shown in Figure 2-33. For best performance, SCBB should contain a page-aligned
address. Microcode forces a longword-aligned SCBB by clearing bits <1:0> of the new value
before loading the register.

NOTE

When the CPU is configured to generate 30-bit physical addresses, SCBB<31:30> are
ignored.

Figure 2-33: System Control Block Base Register

31 30 2¢ 28127 26 25 24123 20 21 2001¢ 18 17 16115 14 12 12|11 10 0% OB|07 06 05 04|03 02 01 00

- o

- o+
e o e Lt - -+ - + Lk sl L 4 o o - <+

| Physical Page Address of SCE | SBZ I 0 O :5CBB

+ + - - - - o o o Lttt St

2.8.1 System Control Block Vectors

An SCB vector is an aligned longword in the SCB through which the NVAX Plus microcode
dispatches interrupts and exceptions. Each SCB vector has the format shown in Figure 2-34.
The fields of the vector are described in Table 2-14. .

2-40 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-34: System Control Block Vector

31 3¢ 9

-

28127 26 25 24123 22 21 20j1¢ 18 17 16|15 14 13 12|11 10 0¢ 08)07 06 05 04)02 02 0 OC

-+

ot -t o +

longword address cf service routine

jcoae |

-+ - bttt bl S

-+ L

-+ - -+

Table 2-14: System Control Block Vector

Bits Contents

31:2 Virtual address of the service routine for the interrupt or exception. The routine must be
longword aligned, as the microcode forces the lower two bits of the address to 00

1:0 Code, interpreted as follows:

Value Meaning

00 The event is to be serviced on the kernel stack unless the CPU is already on the
interrupt stack, in which case the event is serviced on the interrupt stack

01 The event is to be serviced on the mterrupt stack. If the event is an exception, the
IPL is raised to 1F (hex)

10 - Unimplemented, results in a console error halt

11 Unimplemented, results in a console error halt

2.8.2 System Control Block Layout

The System Control Block layout is shown in Table 2-15.

Table 2-15: System Control Biock Layout

Vector Name Type Param Notes

00 unused - - **NVAX passive release**

04 machine check abort 6 parameters reflect machine state;
must be serviced on interrupt stack

08 kernel stack not valid abort 0 must be serviced on interrupt stack

0oC unused - - **NVAX power fail**

10 reserved/privileged instruction fault 0

14 customer reserved instruction fault 0 XFC instruction

18 reserved operand fault/abort 0 not always recoverable

1C reserved addressing mode fault 0

20 access control violation/vector fault 2 parameters are virtual address,

alignment fault status code
24 translation not valid fault 2 parameters are virtual address,

DIGITAL CONFIDENTIAL

status code

Architectural Summary 2-41

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-15 (Cont.): System Control Biock Layout

Vector Name Type Param Notes

28 trace pending fault 0

2C breakpoint instruction fault 0

30 unused - - compatibility mode in other VAXes

34 arithmetic trap/fault trap/fault 1 parameter is type code

38-3C unused - - -

40 CHMK trap 1 parameter is sign-extended operand
word

44 CHME trap 1 parameter is sign-extended operand
word

48 CHMS trap 1 parameter is sign-extended operand
word .

4C CHMU trap 1 parameter is sign-extended operand
word

50 unused - - -

54 soft error notification interrupt 0 IPL is 1A (hex)

58 Performance monitoring counter interrupt - See Chapter 18 for details

overfiow

59-5C unused - - -

60 hard error notification interrupt 0 IPL is 1D (hex)

64 unused - - -

68 vector unit disabled fault 0 vector instructions

6C-80 unused - - **80 was NVAX interprocessor in-
terrupt**

84 software leve] 1 interrupt 0

88 software leve] 2 interrupt 0 ordinarily used for AST delivery

8C software leve] 3 interrupt 0 ordinarily used for process schedul-

 ing

90-BC software levels 4~15 interrupt 0

Co interval timer ‘interrupt 0 IPL is 16 (hex)

C4 unused - - -

C8 emulation start fault 10 same mode exception, FPD=0; pa-
rameters are opcode, PC, speci-
fiers

CcC emulation continue fault 0 same mode exception, FPD=1; no
parameters

DO device vector interrupt 0 IPL is 14 (hex)

D4 device vector interrupt 0 IPL is 15 (hex), includes console

2-42 Architectural Summary

interrupts

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-15 (Cont.): System Control Block Layout

Vector Name Type Param Notes

D8 device vector interrupt - 0 IPL is 16 (hex), includes inter-
processor interrupts

DC device vector interrupt 0 . . IPL is 17 (hex)

EO-F4 ° unused - o -

F8-FC unused - - **F'8 was NVAX conesole receiver-
FC was console transmitter -IPL
15**

100-FFFC unused - - **was NVAX Device interrupt vec-
tOTS**

2.9 CPU ldentification

Software may quickly determine on which CPU it is executing in a multi-processor system by
reading the CPUID processor register. The format of this register is shown in Figure 2-35.

Figure 2-35: CPU ID Register

31 30 2¢ 28127 26 25 24(23 22 21 20(1¢ 18 17 16115 14 13 12|11 10 0O¢ 08|07 06 05 04103 02 02 00

- o o e o -+

-+ o o e e af -+ - -+ -+ + + < -+ - L aatad s Lkt d

{0 ¢ ¢ 0 0 0 0 0 06 OO 0 0 00 0 0 0 0 0 0 0 0 0f CPU ldentification

o+ o - -+ -+ oo o 3 - + \ L el e -+

:CPUID

The CPUID processor register is implemented internally as an 8-bit read-write register. The
source of the CPU ID information is system-specific, and it is the responsibility of the console
firmware at powerup to determine the CPU ID from the system-specific source, and write the
CPU ID register to the correct value.

2.10 SYSTEM IDENTIFICATION

The System Identification Register, IPR 62 (SID), is a read-only register implemented per DEC
Standard 032 in the NVAX Plus CPU. This 32-bit register is used to identify the processor type
and its microcode revision level.

DIGITAL CONFIDENTIAL Architectural Summary 2-43

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-36: System identification (SID)

21 3C 2¢ 28 27 26 25 24 22 22 21 20 2¢ 18 17 16 1T 14 13 2211 1C ¢ & 7 6 5 4 2 2

¢ 1 ¢
e : t————— - ——— + U
i RC /I ¢ 6 0 0 0 0 ¢ 0} RO |RO! RO | 3:SID
| | | |
| | o !
J | | +==> Microcode revision
! ‘ | temmme—recmam—- > NE
| Lo ==-> Patch kevision

> CPU type

2—44 Archltectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Funcﬁoﬁal Specification, Revision 0.3, October 1991

Table 2-16: SID Field Descriptions

Name Extent

Type Description

Microcode Revision 7:0

NS 8

Patch Revision 13:9

CPU Type 31:24

This field contains the microcode
{chip) revision number. This num-
ber is incremented for each pass of
the chip. '

RO,0 If this bit is a zero, there is ei-

ther no microcode patch loaded, ot
the patch is a standard patch. If
this bit is a one, a2 non-standard
microcode patch is loaded. A non-
standard patch is one which goes
beyond the formally released patches,
such as a patch used for perfor-
mance analysis. This bit is cleared
on chip reset.

RO,0 If this field is zero, no microcode

patch is loaded. If this field is non-
zero, a microcode patch is loaded
and this field indicates the patch
number. This field is cleared on
chip reset.

This field contains 23 (decimal), in-

dicating that this is an NVAX Plus
CPU.

In order to distinguish between different CPU implementations that use the same CPU chip, the
LNP, along with all VAX processors which use the NVAX Plus chip, implements a System Type
Register (SYS_TYPE). SYS_TYPE resides at the physical address pointed to by the CONSOLE_
REG + 4. This 32-bit read-only register is implemented in the LNP console image. The format

of this register is shown in Figure 2-37.

Figure 2-37: System Type (SYS_TYPE)

31 30 2¢ 28

27 26 25 24 23 22 21 20 1% 1817 16 151413121110 ¢ 8 7 6 5 4 3 2 1 O

ot -+ + + o o o oo + o+ +

RO RO

+— 4

+ — 4

RO | RO | :EYS_TYPE

+ -’ - n -+
+ b oo o o o +

-+ - .
o o e o e oo e o e 0 o o} - -+

| 3)
! +=> Architectural ID
+ > System Variant

| |
[|
r !
| +

> Revision level

> System type

The fields in this register are as follows:

DIGITAL CONFIDENTIAL

Archltectural Summary 2-45

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Architectural ID: This field contains licensing bits which distinguish timesharing systems from
workstations. Because the LNP module is included in a timesharing system, this field contains
01 (hex).

System Variant: This field distinguishes variants of 51m11ar systems. Because this is the first
LNP variant, this field contains 01 (hex).

Revision level: This field contains the revision number of the LNP console software. The first
LNP console revision will be 01 (hex).

System type: This field indicates the type of system. Because this is a Laser system, this field
contains TBD (hex).

SID and SYS_TYPE are accessible only to the CPU on the LNP module. Other devices on the
LSB determine the type of node by reading its Laser Device Registers (LDEV).

2.11 Process Structure

A process is a single thread of execution. The context of the current process is contained in the
Process Control Block (PCB). The PCB is pointed to by the Process Control Block Base register
(PCBB), which is shown in Figure 2-38. The format of the process control block is shown in
Figure 2-39. Microcode forces a longword- ahgned PCBB by clearing b1ts <1:0> of the new value
before loading the register.

NOTE

When the CPU is configured to generate 30-bit physical addresses, PCBB<31:30> are
ignored.

Figure 2-38: Process Control Block Base Register

31 3C 292 28|27 26 25 24[”3 22 23 2011¢ 18 17 16115 14 13 12|1‘ 10 o¢ 09|07 06 05 04103 02 01 00
|

! Pnysical Loncworc Addrass of the PCE 0 0} :PCBE

- - + - - - -+ -+ -+ o oo o+

2-46 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-39: Process Control Biock

31 3¢ 2¢

28127 26 25 241223 22 21 20(1¢ 18 17 1615 14 13 12/11 10 0% OB(07 06 05 04102 Cz 01 00O

I) o T s R) | :PCE
I o AR C ESP S S) | +4
- e o B e et St T - B o b e o e oo e e + tmmtm— -

! ssp | +8
L S R Cuse i R S 11 412
ot el tl St TR L o b + + o e o e s o o b——

; RO | +1€
I o) o) R i) 420
D o) S R o) S | +24
. R o Y r S N I | +28
I i ; . T TRy T T) N | 432
C o . N RS) o o | 436
|)) T o Re o i o o : +40
| i R) T o Lo+d4
o Re) I T
| S T o R; i f)) i i |. +52
| i R) R o s o | +5¢
rm v m m wmohe + B T T e o o o o e e oo o e e L

| Rl1 | +60
P) R o AP (R12) o S 1Y +64
| i ‘ i o)) FP (R13) o o) i | +68
T)) o C pe. i S i 17 +72
T T) T i R o | +76
L) A T pomk S S o C | +8BO
| ¢ 0 0 o oT ASTIVI | 0 O i o POLR o o |T +84
! s ' I) Tplgz i S o) | +88
fc 6 0 0 o 0o 0 o o; R PlLR) T |T +82

21 30 2¢

28127 26 25 24123 22 21

20112 16 17 16115 14 22 12]11 10 0¢

08(07 06 05 04102 02 01 00

DIGITAL CONFIDENTIAL

Architectural Summary 2-47

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.12 Mailbox Structure

**For NVAX Plus LASER/(COBRA) Bus systems CSRs exist on external I/O busses which are ac-
cessed via mailbox structures that exist in main memory. Read requests are posted in mailbozes,
and data is returned in memory with status in the following quadword. Mailboxes are allocated
and managed by operating system software (successive operations must not overwrite data which
is still in use).

The I/0 module will service mailbox requests via four mailbox pointer CSRs (LMBPR) located in
the I/O modules nodespace. There is one LMBPR for each CPU node. The software sees only one
LMBPR address, but the CPU module replaces the least significant two bits of the address (i.e.
D<2:15) with the least significant 2 bits of the node ID (i.e. NIOD<1:0>). If a given LMBPR is
in use when it is written to, the I/O module will not acknowledge it, CNF will not be asserted.
Processors use the lack of CNF assertion on writes to the LMBPR to indicate a busy status and
the write is replayed at a later point in time under software control.

The mailbox pointer CSR has the following format:

Figure 2-40: LMBPR Register

N W
=W

-

junused | . MBX | MBZ t

Table 2-17: LMBPR Description
Name Bit(s) Type Description

MBX 26 WO This field contains the 64-byte-aligned physical address of the mail-
box data structure in memory where the /O module can find infor-
mation to complete the required operation.

The least significant 6 bits of the mailbox address are always 0, to force 64-byte_alignment. The
upper six bits are unused in NVAX Plus systems since NVAX Plus only has a 32 bit wide physical
address. The I/O module does however implement these bits. The NVAX Plus chip will always
drive 0’s on the upper data lines on I/O space writes such that these bits will be written with 0’s.

LMBPR points to a naturally aligned 64 byte data structure in memory that is constructed by
software as follows:

2-48 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2—41: Mailbox Data Structure
6 55 5 4 4 3 2 332 22 11

2 0 %8 7 8 [2 10¢ 4 3 (2] 8 7 (4}
ow 0 | BUS IMBZ | MASK | CMD |
oW1 | ' READR<63 : 0> |
ow 2 | WDATA<63:0> {
oW 3 | MBZ |
ow 4 | RDATA<63:0> |

| |IEID|
ow 5 | STATUS IRI1O|

| IRIN|

+ -t
oW € | UNPREDICTARLE |
ow 7 | UNPREDICTABLE |

Table 2-18: Mallbox Data Structure Description '

Name Bit(s) Type Description

CMD ‘ 32 RW This field contains the command. The IO module supports read and
write commands.

MASK 8 RW This field contains the byte mask. The /O module does not use this
field.

BUS 24 RW This field contains the BUS field, which is used to determine which
remote bus this command is meant for.

RBADR 64 RW This field contains the address to be broadcast on the remote bus.

WDATA 64 RW This field contains the write data to be broadcast on the remote bus.

RDATA 64 RW This field contains read data returned from the remote bus.

DON 1 RW This field contains a status bit which is set by the I/O module once
a mailbox operation is complete.

ERR 1 RW This field contains a status bit which indicates that a mailbox oper-

ation failed.

For a more complete description of the Laser system mailbox protocol refer to the IOP and LAMB

module specifications.

DIGITAL CONFIDENTIAL

Architectural Summary 2-49

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.12.1 Mailbox Operation

To perform an I/0 read or write on one the remote I/O busses software must create a maibox data
structure in memory. The command, bus, and address fields must be filled in and the status bits
must be cleared. For a write command the write data field must also filled in. At this point the
physical address of the maibox data structure must be written to the LMBPR register to initiate
the I/O operation. A simple I/O space write, such as with a MOVL, could be used to start the
remote /O operation. However, since writes to LMBPR may be rejected by the I/O module, and no
state is preserved across a macro instruction boundry to notify software of this, another method
must be used. Microcode implements an IPR register which can used to perform the LMBPR
write and return status to software via the condition code bits.

In order for microcode to perform the LMBPR it must know the address of the LMBPR register
and the address of the mailbox data structure. Another memory data structure must be created
to pass this information to microcode. This structure is called the Mailbox Pointer and consists
of 2 longwords which begin at a quadword aligned address.

Figure 2-42: Mallbox Pointer

<

LMBPR_ADDE:

ME_ADDF. | MBZ

- 4 — 4
1
+— 4+ — 3

Table 2-18: Mallbox Pointer Description

Name Bit(s) Typé Description
LMBPR_ADDR 32 WO This field contains the virtual address of the LMBPR register.
MB_ADDR 32 WO This field contains the physical address of the mailbox data struc-

ture. Since the mailbox date structure must be aligned on a 64 byte
boundry, bite<5:0> of MB_ADDR must be zero.

Once software creates the mailbox data structure and the mailbox pointer structure it may now
start the I/O operation. An MTPR to the MATLBOX IPR will initiate the I/O operation. The
MAILBOX IPR has the following format:

Figure 2-43: MAILBOX Register

MBXREG |

+ — + 2w
o

2-50 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-20: MAILBOX Register Description
Name Bit(s) Type Description

MBXREG 32 WO This field contains the address of the mailbox pointer structure.

Microcode will read the MB_ADDR field out of the mailbox pointer structure and then write this
value to the LMBPR using the address of the LMBPR provided in the mailbox pointer structure.

NOTE
Note:Non QW aligned addresses for the LMBPR_ADDR results in Undefined Operation.

An EDAL store conditional command is used to perform the write. Microcode will then check
a status bit in the CBOX to determine if the write passed or failed. If the write passed, the
PSL<Z> bit will be set, otherwise PSL<Z> will be cleared. Software can loop on the MTPR to the
MAILBOX Register until the write passes.

After the I/0 module has accepted the write to LMBPR it will perform the I/O operation. Software
can now poll the status bits in the mailbox data structure until the I/O operation is complete.
One the 1/0 operation is complete the DON bit will be set, if an error occured te ERR bit will also
be set. If this was an I/O write operation no further action is needed. If this was an I/O read
operation, software can now fetch the returned data from the RDATA field in the mailbox data
structure.

DIGITAL CONFIDENTIAL ’ Architectural Summary 2-51

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1291

2.13 Processor Registers

The processor registers that are implemented by the NVAX Plus CPU chip are logically divided
into three groups, as follows:

¢ Normal—Those IPRs that address individual registers in the NVAX CPU chip or system
environment.
* Pcache tag IPRs—The read-write block of IPRs that allow direct access to the Pcache tags.

* Pcache data parity IPRs—The read-write block of IPRs that allow direct access to the Pcache
data parity bits.

Each group of IPRs is distinguished by a particular pattern of bits in the IPR address, as shown
in Figure 2—44.

Figure 2-44: IPR Address Space Decoding

Normal IPR Address

31 30 2¢ 28i27 2€ 25 24122 22 21 2011# 18 17 16115 14 12 12111 1C 0¢ OB|O7 06 05 04102 0z 01 00

| SBZ i 0l SBZ | IPK Number |

————

- > o - o - o+ - L bk sl + -+ -t -t

-+ . - o oy o -+ - - o o T

Pcache Tag IPK Address
31 30 2¢ 28BI27 26 25 24423 22 21 201192 18 17 1615 14 12 12111 10 02 08|07 06 05 04103 02 01 00

- e - -+ o o o o o -+ + -+ o - o -p o o o o o o o}

SBZ .l | Pcache Ta¢ Incex | SBZ |

. - o+
+ - -Gy - o e e o o o - R anded dal el - t

1
Pcacne Set Select (O=left, lwright) =+

| SBZ 131 21 0f

Pcache Data Parity IPR Address
31 30 2¢ 28127 26 25 24122 22 21 20]1% 18 17 16115 14 12 12]11 10 0% 08107 06 05 04102 02 01 00

o - P

+ - <+ + -+ - - o~ -t ‘-

| SBZ 110 11 11 EBZ i | Pcache Tag Index | i SBZ i
- - b tomtmmtretand - dom et - — - R S et

1 |

Pcache Set Select (O=leftr, l=xight) =+ Subblock seiect +

The numeric range for each of the four groups is shown in Table 2-21.

2-52 Architectural Summary - DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

- Table 2-21: IPR Address Space Decoding

IPR Address Range

IPR Group Mnemonic? (hex) Contents

Normal 00000000..000000FF? - 256 i.ndividual IPRs.

Pcache Tag PCTAG 01800000..01801FEQ' ‘256 Pcache tag IPRs, 128 for each Pcache set,
each separated by 20(hex) from the previous
one.

Pcache Data Parity PCDAP 01C00000..01CO1FF8! 1024 Pcache date parity IPRs, 512 for each

Pcache set, each separated by 8(hex) from the
previous one.

1Unused fields in the IPR addresses for these groups should be zero. Neither hardware nor microcode detects and faults on
an address in which these bits are non-zerc. Although non-contiguous address ranges are shown for these groups, the entire
IPR address space maps into one of the these groups. If these fields are non-zero, the operation of the CPU is UNDEFINED.

2The mnemonic is for the first IPR in the block

NOTE

. The address ranges shown above are those used by the programmer. When processing
normal IPRs, the microcode shifts the IPR number left by 2 bits for use as an IPR com-
mand address. This positions the IPR number to bits <9:2> and modifies the address
range as seen by the hardware to 0..3FC, with bits <1:0>=00. No shifting is performed
for the other groups of IPR addresses.

Because of the sparse addressing used for IPRs in groups other than the normal group, valid IPR
addresses are not separated by one. Rather, valid IPR addresses are separated by either 8 or
20(hex). For example, the IPR address for the first subblock of Pcache data parity is 01C00000
(hex), and the IPR address for the second subblock of Pcache data parity is 01C00008 (hex). -

The NVAX Plus chip does not support the Beache Tag or Beache Deallocate IPRs. IPR addresses
which do not correspond to chip IPRs are NOT converted to I/0 space addresses, with IPR reads
returning UNPREDICTABLE data, and IPR writes not completed.

The processor registers implemented by the NVAX CPU are are shown in Table 2-22.

NOTE

Many of the processor registers listed in Table 2-22 are used internally by the mi-
crocode during normal operation of the CPU, and are not intended to be referenced by
software except during test or diagnosis of the system. These registers are flagged with
the notation “Testability and diagnostic use only; not for software use in normal oper-
ation”. References by software to these registers during normal operation can cause
UNDEFINED behavior of the CPU.

DIGITAL CONFIDENTIAL . Architectural Summary 2-53

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22: Processor Registers

Number
Register Name Mnemonic (Dec) (Hex) Type - Cat
Kernel Stack Pointer KSp 0 0 RW 1-1
Executive Stack Pointer ESP 1 1 RW 1-1
Supervisor Stack Pointer SSp 2 2 RW 1-1
User Stack Pointer Usp 3 3 RW 1-1
Interrupt Stack Pointer ISP 4 4 RW 1-1
Reserved 5 5 '
Reserved 6 6
Reserved 7 7
PO Base Register POBR 8 8 RW 1-2
PO Length Register POLR 9 9 RW 1-2
P1 Base Register PIBR 10 A RW 1.2
P1 Length Register PiLR 11 B RW 1.2
System Base Register ’ SBR 12 C RW 1-2
System Length Register SLR 13 D RW 1-2
CPU Identification’ CPUID 14 E RW 2-1
Reserved 15 F
Process Control Block Base PCBB 16 10 RW 1-1
System Control Block Base SCBB 17 11 RW 1-1
Interrupt Priority Level IPL 18 12 ~ RW 1-1
AST Level’ ASTLVL 19 13 RW 1.1
Software Interrupt Request Register SIRR 20 14 w . 1-1
Software Interrupt Summary Register’ SISR 21 15 RW 1-1
Reserved 22 16
Reserved 23 17)
Interval Counter Control/Status™? I1CCs 24 18 RW 1.3
Next Interval Count NICR 25 19 w 1.3
Interval Count ICR 26 1A R 1.3
Time of Year Register TODR 27 1B RwW 1-3
Reserved 28 1C
Reserved 29 1D
Reserved 30 1E
Reserved 31 1IF
Reserved 32 20
Initialized on reset
2NVAX Plus implements the full Interval Timer functionality on chip
2-54 Architectural Summary ' DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name N Mpemonic (Dec) (Hex) Type Cat
Reserved 33 21
Reserved 34 22
Reserved 35 23
Reserved 36 24
Reserved 37 25
Machine Check Error Register. MCESR 38 26 w 2-1
Reserved 39 27
Reserved 40 28
Reserved 41 29
Console Saved PC ’ . SAVPC 42 2A R 2-1
Console Saved PSL SAVPSL 43 2B R 2-1
Reserved 44 2C
Reserved 45 2D
Reserved 46 2E
Reserved 47 2F
Reserved 48 30
Reserved - 49 31
Reserved 50 32
Reserved 51 33
Reserved 52 34
Reserved 53 35
Reserved 54 36
Reserved 55 37
Memory Management Enable’ MAPEN 56 38 RW 1-2
Translation Buffer Invalidate All TBIA 57 39 w 1-1
Translation Buffer Invalidate Single TBIS 58 3A w 1-1
Reserved 59 3B
Reserved 80 3C
Performance Monitor Enable’ PME 61 3D RW 2-1
System Identification SID 62 3E R 11
Translation Buffer Check TBCHK 63 3F w 1-1

1nitialized on reset

DIGITAL CONFIDENTIAL

Archltectural Summary 2-55

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name Mnemonic (Dec) (Hex) Type Cat
Reserved 64 40
Reserved 65 41
Reserved 66 42
Reserved 67 43
Reserved 68 44
Reserved 69 45
Reserved 70 46
Reserved 71 47
Reserved 72 48
Reserved 73 49.
Reserved 74 4A
Reserved 75 4B
Reserved 76 4C
Reserved 77 4D
Reserved 78 4E
Reserved 79 4F
Reserved 80 50
Reserved 81 51
Reserved 82 52
Reserved 83 53
Reserved 84 54
Reserved 85 55
Reserved 86 56
Reserved 87 57
Reserved 88 58
Reserved 89 59
Reserved 90 5A
Reserved 91 5B
Reserved 92 5C
Reserved 93 5D
Reserved 94 5E
Reserved 95 5F

2-56 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

_ Number
Register Name Mnemonic (Dec) (Hex) Type Cat
Reserved 96 60
Reserved ' - ‘ 97 61
Reserved N 28 62
Reserved ' 99 63
Reserved for VM 100 64
Reserved for VM 101 65
Reserved for VM 102 66
Reserved 108 67
Reserved 104 68
Reserved 105 69
Reserved 106 6A
Reserved 107 6B
Reserved ’ 108 6C
Reserved 109 6D
Reserved 110 6E
Reserved 111 6F
Reserved 112 70
Reserved 113 71
Reserved . 114 72
Reserved . : 115 73
Reserved 116 74
Reserved 117 75
Reserved 118 76
Reserved 119 77
Reserved for Ebox 120 78 2-4
LASER MAILBOX ILMBOX 121 79 w 2-1
Interrupt System Status Register® INTSYS 122 7A RW 2-1
Performance Monitoring Facility Count PMFCNT 123 7B RW 2-1
Patchable Control Store Control Register® PCSCR 124 7C RW 2-1
Ebox Control Register ECR 125 7D RW 2-1
Mbox TB Tag Fill® MTBTAG 126 7E w 2-1
Mbox TB PTE Filt® MTBPTE 127 7F W 2-1

STestability and diagnostic use only; not for software use in normal operation

DIGITAL CONFIDENTIAL _ Architectural Summary 2-57

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name Mnemonic (Dec) (Hex) Type Cat
Reserved 128 80 2-4
Reserved 128 81 24
Reserved 130 82 2-4
Reserved 131 88 2-4
Reserved 132 84 2-4
Reserved 138 85 24
Reserved 134 86 2-4
Reserved 135 87 2-4
Reserved 136 88 2-4
Reserved 137 89 24
Reserved 138 8A 2-4
Reserved 139 8B 2-4
Reserved 140 8C 24
Reserved 141 8D 24
Reserved 142 8E 2-4
Reserved . 143 8F 2-4
Reserved 144 90 24
Reserved 145 91 2-4
Reserved 146 92 2-4
Reserved 147 93 24
Reserved 148 94 24
Reserved 149 95 2-4
Reserved 150 96 2-4
Reserved 151 97 2-4
Reserved 152 98 2-4
Reserved 153 99 2-4
Reserved 154 9A 2-4
Reserved 155 9B 24
Reserved 156 9C 24
Reserved 157 9D 2-4
Reserved 158 9E 24
Reserved 159 9F 2-4

2-58 Architectural Summary

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name Mnemonic (Dec) (Hex) Type Cat
BIU Control Register BIU.CTL 160 A0 W 23
Diagnostic Control Register ‘DIAG_CTL 161 Al w 2-3
Beache Error Tag BC_TAG 162 A2 R 2-3
Reserved for Cbox 163 A3 24
BIU Status BIU_STAT 164 A4 wic 2-3
Reserved for Cbox 165 A5 2-4
BIU Address BIU_ADDR 166 A6 R 2-3
Reserved for Chbox 187 A7 2-4
Fill Syndrome FILL_SYN 168 A8 R 2-3
Reserved for Cbox 169 A9 2-4
Fill Address FILL_ADDR170 AA R 2-3
Reserved for Chox 171 AB , 24
STxC Pass Fail/CEFSTS IPR_STR_ 172 AC RW 2-3
COND
Reserved for Chox 173 AD 2-4
Software ECC BCDECC 174 AE w 2-3
Reserved for Cbox 175 AF 2-4
CONSOLE REG CHALT 176 B0 RW 23
Reserved for Cbox 177 Bl 24
Serial VO sI0 178 B2 RW 2-3
Reserved for Cbox 179 B3 2-4
SROM_0e/SROM_fast SOEIE 180 B4 RW 28
Reserved for Cbox 181 B5 24
Reserved for Cbox 182 B6 24
Reserved for Cbox 183 B7 24
Pack IO to QW QW_PACK 184 B8 w 2-3
Clear QW IO Pack CLR_IO_ 185 B9 w 2-3
PACK
Reserved for Cbox 186 BA 2-4
Reserved for Chox 187 BB 24
Reserved for Chox 188 BC 2-4
Reserved for Cbox 189 BD 2-4
Reserved for Cbox 190 BE 2-4
Reserved for Cbox 191 BF 2-4

DIGITAL CONFIDENTIAL

Architectural Summary 2-59

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name Mpemonic (Dec) (Hex) Type Cat
Reserved 192 Co
Reserved ' 193 C1
Reserved 194 C2
Reserved 185 C3
Reserved 196 C4
Reserved 197 C5
Reserved 198 C6
Reserved 199 c7
Reserved 200 c8
Reserved 201 Cs
Reserved 202 CA)
Rese}'ved 203 CB
Reserved 204 CC
Reserved . 206 CD
Reserved 206 CE
Reserved - 207 CF
VIC Memory Address Register VMAR 208 Do RW 2-3
VIC Tag Register VIAG =~ 209 D1 RW 2-3
VIC Data Register VDATA 210 D2 RW 2-3
Tbox Control and Status Register ICSR 211 D3 RW 28
Ibox Branch Prediction Control Register® BPCR 212 D4 RW 2-3
Reserved for Ibox 213 D5 2-4
Ibox Backup PC* BPC 214 Dé R 2-3
Ibox Backup PC with RLOG Unwind* BPCUNW 215 D7 R 2-8
Reserved for Ibox 216 D8 2-4
Reserved for Ibox 217 D9 2-4
Reserved for Ibox 218 DA 2-4
Reserved for Ibox 219 DB 24
Reserved for Ibox 220 DC 2-4
Reserved for Ibox 221 DD 2-4
Reserved for Ibox 222 DE 24
Reserved for Ibox 223 DF 2-4

3Testability and diagnostic use only; not for software use in normal operation
4Chip test use only; not for software use

2-60 Archltectural Summary ~ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name Mnemonic (Dec) (Hex) Type Cat
Mbox PO Base Register® MPOBR 224 Eo0 RW 2-3
Mbox PO Length Register® MPOLR 225 E1 RW 2-3
Mbox P1 Base Register® o MP1BR 226 E2 RW 2-3
Mbox P1 Length Register® MP1LR 227 Es3 RW 2-3
Mbox System Base Register® MSBR 228 E4 RW 2-3
Mbox System Length Register® MSLR 229 E5 RW 2-3
Mbox Memory Management Enable® MMAPEN 230 E6 RW 2-3
Mbox Physical Address Mode PAMODE 231 E7 RW 2-3
Mbox MME Address MMEADR 232 E8 R 2-3
Mbox MME PTE Address MMEPTE 233 E9 R 2.3
Mbox MME Status MMESTS 234 EA R 2-3
Reserved for Mbox 235 EB 2.4
Mbox TB Parity Addrese TBADR 236 EC R 2-3
Mbox TB Parity Status TBSTS 237 ED RW © 23
Reserved for Mbox 238 EE 24
Reserved for Mbox 238 EF 2-4
Reserved for Mbox ' 240 FO : 24
Reserved for Mbox ' 241 F1 24
Mbox Pcache Parity Address PCADR 242 F2 R 2-3
Reserved for Mbox , 243 F3 T 24
Mbox Pcache Status PCSTS 244 P4 RW 2-3
Reserved for Mbox 245 F5 24
Reserved for Mbox 246 Fe6 24
Reserved for Mbox 247 F7) 2-4
Mbox Pcache Control PCCTL 248 F8 RW 2-3
Reserved for Mbox ' 249 F9 2-4
Reserved for Mbox 250 FA- 2-4
Reserved for Mbox 251 FB 24
Reserved for Mbox 252 FC 2-4
Reserved for Mbox 253 FD 2-4
Reserved for Mbox 254 FE 2-4
Reserved for Mbox 255 FF 2-4

3Testability and diagnostic use only; not for software use in pormal operation

DIGITAL CONFIDENTIAL : Architectural Summary 2-61

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number
Register Name Mnemonic (Dec) (Hex) Type Cat
Unimplemented 100-
' 017FFFFF
See Table 2-21 01800000~ 2
FFFFFEFFF

Type:

R = Read-only register
RW = Read-write register
W = Write-only register
W1C = Write 1 Clear

Cat(egory), class-subclass, where:
class is one of:

1 = Implemented as per DEC standard 032
2 = NVAX Plus specific implementation which is unique or different from the DEC standard 032 implementation

subclass is one of:

1 = Processed as appropriate by Ebox microcode

2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command :
4 = May be block decoded; reference causes UNDEFINED behavior

2—-62 Archiltectural Summary ' DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.14 Revision History

Table 2-23: Revision History

Who When Description of change

Mike Uhler 06-Mar-1989 Release for external review.

Mike Uhler 15-Dec-1989 Update for second-pass release.

Mike Uhler 20-Jul-1990 Update to reflect implementation.

Mike Callander/Gil 15-Nov-1990 NVAX Plus release for external review.

Wolrich

Gil Wolrich 15-MAR-1991 Reverse mailbox pointer operands, add clr_io_pack ipr.

DIGITAL CONFIDENTIAL Architectural Summary 2-63

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 3

External Interface

3.1 Overview

NVAX Plus can share system platforms which use EV chips in 128 bit mode. The CPU_CLK
runs at a cycle time as fast as 10ns, and SYS_CLK can be set to 2,3,or 4, times the CPU cycle
time. NVAX Plus usable in a wide range of systems: workstations, small deskside servers and
timesharing machines, and midrange multiprocessor servers and timesharing machines.

3.2 Signals

The following table lists all of the 291 signals on the NVAX_PLUS chip. In the "type" column, an
"I" means a pin is an input, an "QO" means the pin is an output, a "T" means the pin is a tristate
output, and a "B" means the pin is tristate and bidirectional.

Table 3-1: NVAX_PLUS Signais

Signal Name Jount Type Function

clkIn_h, _] 2 I Clock input

testClkIn_h, _1 2 I Clock input for testing

epuClkOut_h 1 0 CPU clock output

sysClkOutl_h, _] 2 O System clock output, delayed

sysClkOut2_h, _1 2 O System clock output, delayed

icMode_h[1] 1 I Enables pp_cmd_h<2:0> for test mode

clk_rst_h 1 1 Put cpu and sys_clk timing gen. to known state
pp_data_h[11] 1 B Parallel Test Port Data, MAB clock
pp_data_h[7..6] 2 B Parallel port [7:6] if enabled, EV tagAdr_h{33..32]
pp_data_h[5..0] 6 B Dedicated Paraliel Test Port Data

osclém_h 1 I Interval timer 16 MHz oscillator input

deOk_h 1 I Power and clocks ok

DIGITAL. CONFIDENTIAL

External interface 3-—1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-1 (Cont.): NVAX_PLUS Signals

Signal Name Count Type Function

reset_l 1 1 Reset

sRomOE_] 1 0 Serial ROM output enable

sRomD_h 1 I Serial ROM data/Rx date

sRomClk_h 1 (0] Serial ROM clock/Tx data

icMode[0)/pp_emd[2] 1 I Serial ROM fast fill, sRomFast_h/used as pp_
cmd[2] in test mode

adr_h[33..32] 2 T Address bus 33,32

adr_h[31..17] 15 B Address bus tag section

adr_h[16..5] 12 T Address bus index section

tagEq] 1 0 + Tag compare output

data_h[127..0] 128 B Data bus

check_h[27..0] 28 B Check bit bus

dOE_l 1 I Data bus output enable .

pp_cmd{1:0] 2 1 EV dWSel_h[1..0] used to select port function in
test mode

dRAck_h[2] 1 1 bus read acknowledge, load data

dRAck_h[1] 1 1 dRAck_h[1] cache/no_cache

dRAck_h[0] 1 I bus read acknowledge, check ecc/parity

tagCEOE_h 1 0 tagCtl and tagAdr CE/OE

tagCtIWE_h 1 O tagCtl WE

tagCtlV_h 1 B Tag valid

tagCtlS_h 1 B Tag ghared

tagCtlD_h 1 B Tag dirty

tagCtlP_h 1 B Tag V/S/D parity

tagAdr_h[31..20] 12 1 Tag address [31..20]

tagAdr_h[19] 1 B Tag address [19], Parallel Port [10] if enabled

tagAdr_h[18] 1 B Tag address [18], Parallel Port[9] if enabled

tagAdr_h{17] 1 B Tag address [17], Parallel Port[8] if enabled

tagAdrP_h 1 I Tag address parity

tagOk_h, _1 2 I Tag access from CPU is ok

dataCEOE_h[3..0] 4 (0] data CE/OE, longword

dataWE_h[3..0] 4 0] data WE, longword

dataA_h4] 1 0 data Al4]

dataA_h[3] 1 (0] data A[3]

holdReq_h 1 1 Hold request

holdAck_h 1 e} Hold acknowledge

3-2 External Interface

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3—1 (Cont.): NVAX_PLUS Signals

Signal Name Count Type Function
cReg_h{2..0] 3 o} Cycle request
cWMask_h[7..0] 8 e} Cycle write mask
cAck_h[2..0] 3 I Cycle acknowledge
iAdr_h[12..5] 8 I Invalidate address
plnvReq_h[1..0] 2 I Invalidate request, Pcache
pMapWE_h[1..0] 2 o Backmap WE, Pcache
err_h/firq_h[5] 1 I External error interrupt
halt_hAirqg_hl4] 1 I Halt interrupt
irg_h[3..0] 4 I Interrupt requests
. vref 1 I Input reference/not used by NVAX Plus
tristate_l 1 I Tristate for testing
cont_l 1 1 Continuity for testing
test_mode_h 1 I Enables pull-downs on check_h bits, was eclOut_

h .

The following table lists all of the signals that were not on EVAX which are being implemented
on the NVAX_PLUS chip. In the "type" column, an "I" means a pin is an input, an "O" means
the pin is an output, and a "B" means the pin is tristate and bidirectional.

Table 3-2: -New_NVAX_PLUS Signals

Signal Name Count Type " Function _

test_mode_h 1 I Enables check_h pull downs
osclém_h 1 I Interval timer 16MHz oscillator input
pp_data_h[6..0] 7 B Parallel Test Port Data
pinvReq_h[1..0] 2 I Invalidate request, Pcache
pMapWE_h[1..0] 2 e} Backmap WE, Peache

The following table lists all of the signals that were on EVAX which are not being implemented
on the NVAX_PLUS chip. In the "type" column, an "I" means a pin is an input, an "O" means
the pin is an output, and a "B" means the pin is tristate and bidirectional.

Table 3-3: EVAX Signais

Signal Name Count Type Function

dinvReq_h 1 I Invalidate request, Dcache
dMapWE_h 1 o} Backmap WE, Dcache
perf_h[3..0] 4 o} Performance monitor outputs

DIGITAL CONFIDENTIAL : : External Interface 3-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-3 (Cont.): EVAX Signals
Signal Name Count Type Function

scan_h[3..0] 4 ? Scan

3.2.1 Clocks

External logic supplies NVAX Plus with a differential clock at the desired frequency of the internal
phases via the clkIn_h and clkin_] pins. The NVAX Plus Clock Generator circuit produces the
required four single phase clocks, four inverted single phase clocks, and four dual phases clocks
required for internal operation.

NVAX Plus divides the input clock by **two** to generate the cpuClkOut_h. The false-to-true
transition of cpuClkQOut_h is the "CPU clock” used in the timing specification for the tagOk_l
signal.

The CPU clock is divided by a programmable value of 4,6,0r 8 (2,3 or 4 cpu cycles) to generate a
system clock, which is supplied to the external interface via the sysClkOutl_h and sysClkOutl_l
pins. The system clock is delayed by a programmmable number of CPU clocks between 0 and 3 to
generate a delayed system clock, which is supplied to the external interface via the sysClkOut2_h
and sysClkOut2_] pins.

The clock generator runs, generating cr-JuClkOut_h, and the (correctly timed and positioned) any
time an input clock is supplied. In particular, it runs during reset, so that systems can phase-lock
the clocks of several chips together before any of them are released from reset.

**The sysClkOut value of 6 times the cpuClkOut, results in an asymmetric clock, asserted for 4
cpuClkOut periods, then deasserted for 2 cpuClkOut periods.**

The false-to-true transition of sysClkOutl_h"is the "system clock” used as a timing reference
throughout this specification. '

Almost all transactions on the external interface run synchronously to the CPU clock and phase
aligned to the system clock, so the external interface appears to be running synchronously to the
system clock (most setup and hold times are referenced to the system clock). The exceptions to
this are the fast, NVAX Plus controlled tranactions on the external caches and the sample of the
tagOk_l input, which are synchronous to the CPU clock, but independent of the system clock.

3.2.2 DC_OK and Reset

NVAX Plus contains a ring oscillator which is switched into service during power up to provide an
internal chip clock. The deOk_h signal switches clock sources between the on-chip ring oscillator
and the external clock oscillator. If deOk_h is false then the on-chip ring oscillator feeds the
clock generator, and NVAX Plus is held in reset, independent of the state of the reset_l signal. If
deOk_h is true then the external clock oscillator feeds the clock generator, (NVAX Plus does not
use the vRef input) and NVAX Plus is held in reset by reset_l.

Note if the deOk_h signal is generated by an RC delay, there is no check that the input clocks
are really running. This means that if a board is powered up in manufacturing with a missing,
defective, or mis-soldered clock oscillator then NVAX Plus will enter a possibly destructive high-
current state. Furthermore, if a clock oscillator fails in stage 1 burn-in then NVAX Plus may also

3—-4 External interface i DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

enter this state. The frequency and duration of such events need to be understood by the module
designer to decide if this is really a problem.

The reset_] signal forces the CPU into a known state.The reset_l signal is asynchronous, and
must be asserted for at least tbhd CPU cycles after the assertion of dcOk_h to guarantee that the
CPU is reset. This should always be the case, since it also has to be held true for long enough to
guarantee that the serial ROM has reset its address counters (which takes about 100ns).

The NVAX Plus CPU chip uses a 3.3V power supply. This 3.3V supply must be stable before any
input goes above 4V.

While it is reset, NVAX Plus reads sysClkOut and external bus configuration information off the
irg_h pins. External logic should drive the configuration information onto the irq_h pins any time
reset_l is true.

NOTE
NOTE: The irq_h pins are latched with the deasserting edge of reset_l.

The irg_h[2..1] bits encode the value of the divisor used to generate the system clock from the
CPU clock.

Table 3—4: System Ciock Divisor

irq_h{2] irq h[1] Ratio
F F ‘ 2
F T 2
T F 3 asymmetric
T T 4

The irqg_h[4..3] bits encode the delay, in CPU clock cycles, from the "system clock” to sysClkOﬁtZ.

Table 3-5: System Clock Delay

irq hl[4] irq h(3] Delay
F F 0
F T 1
T F 2
T T 3

3.2.3 Initialization and Diagnostic Interface

After the reset_] signal is deasserted, but before NVAX Plus executes its first instruction, the
Pcache is written with bits out of a serial ROM (such as an AMD Am1736). The serial ROM
contains enough VAX code to complete the configuration of the external interface, e.g. setting the
timing on the external cache RAMs and diagnose the path between the CPU chip and the real
ROM. : 4

DIGITAL CONFIDENTIAL External interface 3-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Three signals are used to interface to the serial ROM. The sRomOE_] output signal supplies the
output enable to the ROM, serving both as an output enable and as a reset (refer to the serial
ROM specifications for details). The sRomClk_h output signal supplies the clock to the ROM that
causes it to advance to the next bit. The ROM data is read by NVAX Plus via the sRomD_h input
signal. The format of the bits in the serial ROM is tbd , however driving sRomD_h false clears
the Pcache.

Once the data in the serial ROM has been loaded into the Pcache, sRomD_h can be used for a
serial input line, and sRomClk_h can be used as a serial output line.

It is possible to override the loading of the entire Pcache by driving the icMode_h<0> signal true
when reset is asserted. If icMode_h<0> (sRomFast) is asserted the SROM is not copied to Pcache
and the first instruction is fetched from address E0040000(16), the console start address. This
feature is also used for test purposes to minimize chip tester time.

3.2.4 Address Bus

The tristate, bidirectional adr_h pins provide a path for addresses to flow between NVAX Plus
and the rest of the system. The adr_h pins are connected to the buffers that drive the address
pins of the external cache RAMs, and to the transceivers that are located between CPU local
address bus and the CPU module address bus.

The address bus is normally driven by NVAX Plus. NVAX Plus stops driving the address bus
during reset and during external cache hold. In these states the address bus acts like an input,
and the tagEq_l output is the result of an equality compare between adr_h and tagAdr_h. Only
bits that are part of the cache tag, as specified by the BC_SIZE field of the BIU_CTL IPR,
participate in the compare.

The NVAX Plus tagEq_l determination does not include tagAdr parity.

3.2.5 Data Bus

The tristate, bidirectional data_h pins provide a path for data to flow between NVAX Plus and
the rest of the system. The data_h pins connect directly to the I/O pins of the external cache data
RAMSs and to the transceivers that are located between NVAX Plus local data bus and the CPU
module data bus.

The tristate, bidirectional check_h pins provide a path for check bits to flow between the CPU
and the rest of the system. The check_h pins connect directly to the I/O pins of the external
cache data RAMs and to the transceivers that are located between the CPU local check bus and
the CPU module check bus. In "PV" mode the check_h pins do not drive when the data_h pins
are driving write data, allowing the PV byte parity generation logic to drive the check_h lines for
byte parity. The check_h lines not used for parity are contain receivers and should be pulled up.
The check_h are not connected at wafer probe due to contraints in the number of signal which
can be probed. If the test_mode_h pin is asserted internal pullups for check[27..0] are enabled.

The data bus is driven by NVAX Plus when it is running a fast write cycle on the external caches,
and when some type of write cycle has been presented to the external interface and external logic
has enabled the data bus drivers (via dOE_]).

3-6 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If NVAX Plus is in ECC mode then the check_h pins carry 7 check bits for each longword on
the data bus. Bits check_h[6..0] are the check bits for data_h[31..0]. Bits check_h[183..7] are the
check bits for data_h[63..32]). Bits check_h[20..14] are the check bits for data_h[95..64]. Bits
check_h[17..21] are the check bits for data_h[127..96].

The following ECC code is used. This code is the same one used by the IDT49C460 and
AMD29C660 32-bit ECC generator/checker chips.

dddddddddddddddddddadddddddddddad
33222222222211111111110000000000
. 10887654321098765422109676543210
c€ XOFK xuxmxyxs ARNXRNRRIE
€5 XOR xxxemmxs RRXXRRRLI
¢4 XOR xx HARZRK XX ARRNKEX
¢3 XNOR XX b3+ XX XX proad XY
c2 XNOR % X X% 2 ZX XX % X 2 XX X
¢l XOR XN R X X XXX XXX XN oxxx
¢0 XOR x xx x NOXER X X ZxxMoXx %

By arranging the data and check bits correctly, it is possible to arrange that any number of errors
restricted to a 4-bit group can be detected. One such arrangement is as follows:

él00), 4101), 4103), 425

d[02), A[04), &|06), c[06)

alo5), d[07), 4jizl, c[03]

aroe), 4a1o¢j, dlil), <ri4)

dafio), 4&li13j), 4[i1s}, 4ailie)

ariey, a&[17), a2y, arzs)

d[is), &f[23), 41301, ¢(05)

a0}, &i{273, c[04), ¢l00)

d[21]), df26), clo2), <[0l1)

df24), 428}, 4l31)

If NVAX Plus is in PARITY mode then 4 of the check_h pins carry EVEN parity for each longword
on the data bus, and the rest of the bits are unused. Bit check_h[0] is the parity bit for data_
h[31..0]. Bit check_h[7] is the parity bit for data_h[63..32]. Bit check_h[14] is the parity bit for
data_h[95..64]. Bit check_h[21] is the parity bit for data_h[127..96].

If NVAX Plus is in "PV" mode then check_h[3..0] are the byte parity bits for data_h[31..0], check_
h[10..7] are the byte parity bits for data_h[63..32], check_h[17..14] are the byte parity bits for

data_h[95..64], check_h[24..21] are the byte parity bits for data_h[127..96). The four byte parity
bits for each longword are 'zored’ to produce a single longword parity bit.

The ECC bit in the BIU_CTL IPR determines if NVAX Plus is in ECC mode or in PARITY mode.

3.2.6 External Cache Control

The external cache is a direct-mapped, write-back cache. NVAX Plus always views the external
cache as having a tag for each 32-byte block (the same as the NVAX Plus Pcache).

The external cache tag RAMs are located between NVAX Plus’ local address bus and NVAX Plus’
tag inputs. The external cache data RAMs are located between the CPU’s local address bus and
the CPU’s local data bus. NVAX Plus reads the external cache tag RAMs to determine if it can
complete a cycle without any module level action, and NVAX Plus reads or writes the external
cache data RAMs if, in fact, this is the case.

DIGITAL CONFIDENTIAL External interface 3—7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

A cycle requires no module level action if it is a non-LDxL read hit to a valid block, or a non-STxC
write hit to a valid but not shared block when not in "PV" mode. All other cycles require module
level action. All cycles require module level action if the external cache is disabled (the BC_EN
bit in the BIU_CTL IPR is cleared).

~ All NVAX Plus controlled cycles on the external cache have fixed timing, described in terms of
NVAX Plus's internal clock. The actual timing of the cycle is programmable allowing for flexibility
in the choice of CPU clock frequencies and cache RAM speeds.

The external cache RAMs can be partitioned into three sections; the tagAdr RAM, the tagCtl RAM,
and the data RAM. Sections do not straddle physical RAM chips in non "PV" mode systems.

NOTE

For "PV" mode systems since NVAX Plus only reads from the tagAdr RAM and tagCtl
RAM these sections can be implemented in the same RAM chips.

3.2.6.1 The TagAdr RAM

The tagAdr RAM contains the high order address bits associated with the external cache block,
along with a parity bit. The contents of the tagAdr RAM is fed to the on-chip address comparator
and parity checker via the tagAdr_h and tagAdrP_h inputs.

NVAX Plus verifies that tagAdrP_h is an EVEN parity bit over tagAdr_h when it reads the tagAdr
RAM. NVAX Plus asserts c%cbox_hard_error if the parity is wrong and stops the reference.

The number of bits of tagAdr_h that participate in the address compare and the parity check is
controlled by the BC_SIZE field in the BIU_CTL IPR. The tagAdr_h signals go all the way down
to address bit 17, allowing for a 128Kbyte cache built out of RAMs that are 8K deep.

The chip enable or output enable for the tagAdr RAM is normally driven by a two input NOR gate
(such as the 74AS805B). One input of the two input NOR gate'is driven by tagCEOE_h, and the
other input is driven by external logic. NVAX Plus drives tagCEOE_h false during reset, during
external cache hold, and during any external cycle. The OE bit in the BIU_CTL IPR determines
if tagCEOE_h has chip enable timing or output enable timing.

3.2.6.2 The TagCtl RAM

The tagCtl RAM contains control bits associated with the external cache block, along with a
parity bit. NVAX Plus reads the tagCtl RAM via the three tagCtl signals to determine the state
of the block. NVAX Plus writes the tagCtl RAM-via the three tagCtl signals to make blocks dirty.

NVAX Plus verifies that tagCtIP_h is an EVEN parity bit over tagCtIV_h, tagCtlS_h, and tagCtlD_
h when it reads the tagCtl RAM. NVAX Plus asserts c%cbox_hard_err if the parity is wrong and
stops the reference. NVAX Plus computes EVEN parity across the tagCtlV_h, tagCtlS_h, and
tagCtlD_h bits, and drives the result onto the tagCtlP_h pin, when it writes the tagCtl RAM.

The following combinations of the tagCtl RAM- bits are allowed. Note that the bias toward
conditional write-through coherence is really only in name; the tagCtlS_h bit can be viewed
simply as a write protect bit.

3-8 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3—6: Tag Control Encodings

tagCtlV_h tagCtlS_h tagCtlD_h Meaning
F X X Invalid
T F F Valid, private
T F T Valid, private, dirty
T . T F Valid, shared
T T T Valid, shared, dirty

NVAX Plus can satisfy a read probe if the tagCtl bits indicate the entry is valid (tagCtIV_h = T).
NVAX Plus can satisfy a write probe if the tagCtl bits indicate the entry is valid and not shared
(tagCtl’V_h = T, tagCtlS_h =F).

The chip enable or output enable for the tagCtl RAM is normally driven by a two input NOR gate
(such as the 74AS805B). One input of the two input NOR gate is driven by tagCEQE_h, and the
other input is driven by external logic. NVAX Plus drives tagCEOE_h false during reset, during
external cache hold, and during any external cycle. The OE bit in the BIU_CTL IPR determines
if tagCEOE_h has chip enable timing or output enable timing.

The write enable for the tagCtl RAM is normally driven by a two input NOR gate (such as the
74AS8B05B). One input of the two input NOR gate is driven by tagCtIWE_h, and the other input
is driven by external logic. NVAX Plus drives tagCtIWE_h false during reset, during external
cache hold, and during any external cycle.

3.2.6.3 The Data RAM
The data RAM contains the actual cache data, along with any ECC or parity bits.

The most significant bits of the data RAM address are driven, via buffers, from the address bus.
The least significant bit of the data RAM address is driven by a two input NOR gate (such as
the 74AS805B). One of the inputs of the two input NOR gate is driven by dataA_h[4], and the
other input is driven by external logic. NVAX Plus drives dataA_h[4] false during reset, during
external cache hold, and during any external cycle.

The chip enables or output enables for the data RAM are driven by a two input NOR gate (such
as the 74AS805B). One input of the two input NOR gate is driven by dataCEOE_h[3..0], and
the other input is driven by external logic. NVAX Plus drives dataCEOE_h[3..0] false during
reset, during external cache hold, and during external cycles. (NVAX Plus sometimes drives
dataCEOE_h[3..0] true during external write cycles, to simplify merging old cache data with new
write data). The OE bit in the BIU_CTL IPR determines if dataCEOE_h[3..0] has chip enable
timing or output enable timing.

The write enables for the data RAM are normally driven by a two input NOR gate (such as the
74AS805B). One input of the two input NOR gate is driven by dataWE_h[3..0], and the other
input is driven by external logic. NVAX Plus drives dataWE_h[8..0] false during reset, during
external cache hold, and during any external cycle.

DIGITAL CONFIDENTIAL External Interface 3-9

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

3.2.6.4 Backmaps

Some systems may wish to maintain backmaps of the contents of the Pcache to improve the
quality of their invalidate filtering. NVAX Plus must maintain the backmaps for external cache
read hits, since external cache read hits are controlled totally by NVAX Plus. External logic
maintains the backmaps for external cycles (read misses, invalidates, and so on).

"The backmaps are only consulted by external logic, so that their format, or, for that matter, their
existence, is of no concern to NVAX Plus. All NVAX Plus does is generate backmap write pulses
at the right time. Simple systems will not bother to maintain backmaps, will not connect the
backmap write pulses to anything, and will generate extra invalidates.

The NVAX Plus Pcache is 8kB and can be configured as either a single set of 256 indexes, or two
sets of 128 indexes each. If NVAX Plus is allocating Pcache as two way set associative NVAX
Plus drives pMapWE_h[0] or pMapWE_h[1] depending on the Pcache set which is to be allocated
whenever it fills the Pcache from the external cache, and systems must assert the corresponding
plnvReq_h[1:0] to invalidate an entry in Pcache.

If NVAX Plus is allocating Pcache as direct mapped pMapWE_h[0] is driven and systems assert
pInvReg_h[0] to invalidate an entry in Pcache.

The pMapWE_h[1..0] signals assert two cpuClkOut cycles into the second (ast) data read cycle
and negate at the end of that cycle.

3.2.6.5 External Cache Access

The external caches are normally controlled by NVAX Plus. Two methods exist for gaining access
to the external cache RAMs.

3.2.6.5.1 HoldReq and HoldAck

The simple method for external logic to access the external caches is to assert the holdReq_h
signal.

A holdReq_h/holdAck_h sequence can happen at any time, even in the middle of an external cycle.
All of the acknowledge-like signals (A0E_l, dRAck_h, cAck_h) work normally. The system logic

can use this functionality to maintain cache coherency operations while a system read/write is in
progress.

If the NVAX Plus ARB sequencer is TDLE’ and a HoldReq is received, the HoldAck signal is
asserted. with the next rising edge of SysClkOut. NVAX Plus discontinues cache cycles if the
HolReq signal is recognized before the tag compare is completed. The NVAX Plus ARB sequencer
enters a 'stall’ state in which HoldAck is asserted. If a read or write sequence is in progress
and has advanced beyond the tag compare cycle, the operation is completed. For read hits the
second octaword of data is read and the hold is acknowlegded as the block is being filled to
the Pcache. For read misses the CREQ of read_block or LD_LK is driven to the system. The
hold is then acknowledged, allowing the system to access the Becache. For write hits the write
completes and the hold is acknowledged in the next ARB cycle, which is an TDLE’ before the next
operation can be dispatched. For write misses (or writes which do not probe Beache), the CREQ
of write_block or STxC is driven to the system. As for system reads, the hold is acknowledged
allowing the system access to the Beache before completing the NVAX Plus write operation. When
HoldAck is asserted, NVAX Plus tri-states adr_h, tagCtIV_h, tagCtlS_h, tagCtID_h, and tagCtlP_
h, drives tagCEOE_h, tagCtIWE_h, dataCEOE_h, dataWE_h, and dataA_h false, (the cReg_h

3-10 External interface _ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

and ¢cWMask_h signals are not modified in any way). Note data_h (and check_L if not "PV") are
driven only if dOE_] is assertes during a write_block or STxC cycle; dOE_] needs to be deasserted
to tristate data_h(/check_h) during system write operations. When externa!l logic is finished with
the external caches it negates holdReg_h. NVAX Plus detects the negation of holdReg_h, negates
holdAck_h, and re-enables its outputs. If the hold is acknowledged after a CREQ has been issued
- the system must then complete the operation and respond with the appropriate cAck. When
HoldReg_h is received the address bus begins driving in 1 1/2 cpu cycles at internal phase 3
prior to the deassertion of HoldAck_h, and dataCEOE_h<3:0> and tagCEOE_h reassert at phase
2 after the next drive_first cpu cycle (2 1/4 cpu cycles for drv_clk = 2 cpu cycles, and sys_clk = 2
cpu cycles) if the hold sequence occurred during an idle NVAX Plus cycle. tagCEOE_h reasserts
at phase 2 after the next drive_first cpu cycle if NVAX Plus is stalled in a write probe sequence.

NOTE

NOTE:tagCEQE_h and dataCEQE_h may deassert one-phase after the assertion of
holdack_h whereas the other signal affected by holdack_h are either deasserted or
tri-stated at the assertion of holdack_h.

** Systems which use tagOK to obtain access to the cache can assert HoldReq with tagOK
deasserted in order to have NVAX Plus tri-state adr_h, data_h, check_h, tagCtlV_h, tagCtlS_
h, tagCtlD_h, and tagCtlP_h, drives tagCEOE_h, tagCtIWE_h, dataCEQE_h, dataWE_h, and
dataA_h false, and asserts holdAck_h. This allows system which do not use external muxing
access to the tag store. ** '

The holdReq_h signal is synchronous, and external logic must guarantee setup and hoid require-
ments with respect to the system clock. The holdAck_h signal is synchronous to the CPU clock
but phase aligned to the system clock, so it can be used as an input to state machines running
off the system clock.

The delay from holdReq_h assertion to holdAck_h assertion depends on the programming of
the external cache interface, and exactly how the system clock is aligned with a pending external
cache cycle. In the best case the external cache is idle or just about to begin a cycle, and holdAck_
h asserts at the same system clock edge that sampies the holdReq_h assertion. The worst case
latency for holdAck_h is three cache access cycles.

3.2.6.5.2 TagOk

The fastest way for external logic to gain access to the external caches is to use the tagOk_I
signal. TagOk_l is an NVAX Plus bus interface control signal that allows external logic to stall
a CPU cycle on the external cache RAMs at the last possible instant. All tradeoffs surrounding
the tagOk_l signal have been made in favor of high-performance systems making tagOk_l next
to impossible to use in low-end systems.

The tagOk_l signal is synchronous, external logic must guarantee setup and hold requirements
with respect to the CPU clock. This implies very fast logic, since the CPU clock can run at 200
MH?z for the binned parts.

The NVAX Plus ARB sequencer enters a stall state if the deassertion of tagOK_] is detected pre-
venting the completion of a read or write which is in progress. When tagOK_L asserts indicating
the Beache is again controlled by NVAX Plus any read or write sequence which was previously
stalled returns to the first bus cycle of the sequence. For cache reads if either pMapWE<1:0>
asserts that read is completed. NVAX Plus does not tri-state the busses that run between NVAX

DIGITAL CONFIDENTIAL ‘ External Interface 3-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Plus and the external cache RAMs(unless HoldReq is asserted). External logic must supply the
necessary multiplexing functions in the address and data path.

If the tagOk_] signal is true at the falling edge of the CPU_CLK prior to a cache cycle, the
external logic is guaranteeing that the tagCtl and tagAdr RAMs were owned by NVAX Plus in
the previous cache_speed cycles, that the tagCtl RAMs will be owned by NVAX Plus in the next
cache_speed cycles, that the data RAMs were owned by NVAX Plus in the previous cache_speed
cycles, and that the data RAMs will be owned by NVAX Plus in the next two cache_speed cycles.

NVAX Plus samples the tagOk_l signal at the very end of the tag read of an external cache cycle.
If tagOk_l is true then NVAX Plus knows that no conflict is possible between external logic and
its cycle. If tagOk_] is false NVAX Plus stalls. NVAX Plus knows that there is some kind of
conflict (it may have already happened, or it may be going to happen before NVAX Plus can finish
its cycle). In this case NVAX Plus stalls until tagOk_l is true (at which time all of the above
assertions are true, which means, in particular, that any address NVAX Plus has been holding on
the address bus all this time has made it through the external cache RAMs), and then it retries
any stalled cache references.

3.2.7 External Cycle Control

NVAX Plus requests an external cycle when it determines that the cycle it wants to run requires
module level action.

An external cycle begins when NVAX Plus puts a cycle type onto the cReq_h outputs. Some cycles
put an address on the adr_h outputs, and additional information (low-order address bits, I/D
stream indication, write masks) on the cWMask_h outputs. All of these outputs are synchronous,
and NVAX Plus meets setup and hold requirements with respect to the system clock.

The cycle types are as follows.

Table 3-7: Cycle Types

cReq_h{2] cReq_h[1] cReq_h[0] Type
F F F IDLE
F F T not generated-BARRIER
F T F not generated-FETCH
F T T not generated-FETCHM
T F F READ_BLOCK
T F T WRITE_BLOCK
T T F LDxL
T T T ST=xC

The BARRIER, FETCH and FETCHM cycles are functions generated by EV instructions and are
not generated in NVAX Plus systems.

The READ_BLOCK cycle is generated on read misses. External logic reads the addressed block
from memory and supplies it, 128 bits at a time, to NVAX Plus via the data bus. External logic
may also write the data into the external cache, after writing a victim if necessary.

3—-12 External interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The WRITE_BLOCK cycle is generated on write misses, and on writes to shared blocks. External
logic pulls the 128 bits of write data from NVAX Plus via the data bus, and writes the valid
longwords to memory. The ¢cWMask_h[7..0] signals for NVAX Plus has either cWMask[7.4] =
0000, or cWMask[3..0] = 0000 during WRITE_BLOCK cycles. If external logic sequences the
dWSel[1], NVAX Plus drives the same octaword with each dOE_], and the cWMask bus indicates
which longwords are valid. E:'temal log1c may also wnte the data into the extemal cache, after
writing a victim if necessary.

The LDxzL cycle is generated READ_LOCK microinstruction or for writing byte/word data. The
cycle works just like a READ_BLOCK although the external cache has not been probed (so the
external logic needs to check for hits), and the address has to be latched into a locked address
register.

The STxC cycle is generated by the WRITE_UNLOCK microinstruction and for writes of merged
byte/word data. The cycle works just like a WRITE_BLOCK, although the external cache has not
been probed (so that external logic needs to check for hits), and the cycle can be acknowledged
with a failure status.

On WRITE_BLOCK and STxC cycles the cWMask_h pins supply longword write masks to the
exsternal logic, indicating which longwords in the 32-byte block are, in fact, valid. The cWMask_
h[7..0] signals for NVAX Plus has either cWMask[7..4] = 0000, or ¢cWMask([3..0] = 0000 during
WRITE_BLOCK and STxC cycles as NVAX Plus writes at most one octaword per WRITE_BLOCK
or STxC cycle. A c¢WMask_h bit is true if the longword is valid. WRITE_BLOCK commands can
have any combination of mask bits set.

NOTE: For NVAX PLus STxC cycles can have all the mask bits set for the octaword being written,
where STxC cycles for EV can only have combinations that correspond to a single longword or
guadword.

On READ_BLOCK and LDxL cycles the cWMask_h pins have additional information about the
miss overloaded onto them. The cWMask_h[1..0] pins contain miss address bits [4..3] (indicating
the address of the quadword that actually missed), which is needed to implement quadword
read granularity to /O devices. The ¢WMask_h[2] pin is true if the address is not /O space
and will be filled to Pcache. Thus ¢cWMask_h[2] looks like an EV D-stream reference to enable
system logic to backmap the NVAX Plus mixed I/D stream Pcache with the D-Map backmap. The
cWMask_h[3] pin is false for references that are targeted te bank 0 of the on-chip Pcache, and
true for references that are targeted to bank 1 of the on-chip Pcache. The ¢WMask_h[4] pin is
true for I-stream references for use by system logic, i.e. possible I-Stream prefetch to memory.
The cWMask_h[5] pin contains address bit [2], providing longword information for "PV" mode I/0
space reads.

The cycle holds on the external interface until external logic acknowledges it, by placing an
acknowledgment type on the cAck_h pins. The cAck_h inputs are synchronous, and external
logic must guarantee setup and hold requirements with respect to the system clock.

The acknowledgment types are as follows.

DIGITAL CONFIDENTIAL External Interface 3-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-8: Acknowledgment Types :
cAck_h{2] cAck_hl1]} cAck_h[0] Type

F F F IDLE

F F T HARD_ERROR
F T F SOFT_ERROR
F T T ST¥C_FAIL

T F F OK

The HARD_ERROR type indicates that the cycle has failed in some catastrophic manner. NVAX
Plus latches sufficient state to determine the cause of the error, and machine checks or initiates
the hard error interrupt.

The SOFT_ERROR type indicates that a failure occurred during the cycle, but the failure was
corrected. NVAX Plus latches sufficient state to determine the cause of the error, and initiates a
soft error interrupt.

The STxC_FAIL type indicates that a STxC cycle has failed. It is UNDEFINED what happens if
this type is used on anything but an STxC cycle.

The OK type indicates success.

The dRAck_h pins inform NVAX Plus that read data is valid on the data bus, and if ECC checking
and correction or parity checking should be attempted. NVAX Plus loads Pcache based for non I/O
space READ_BLOCK and LDzL transactions based on dRAck_h[1]. I/O space references do not
use dRAck_h[1] and are not allocated to the Pcache. The dRAck_h inputs are synchronous, and
external logic must guarantee setup and hold requirements with respect to the system clock. If
dRAck_h is sampled IDLE at a system clock then the data bus is ignored. If dRAck_h is sampled
non IDLE at a system clock then the data bus is latched at that system clock, and external logic
must guarantee that the data meets setup and hold with respect to the system clock.

The acknowledgment types are as follows.

Table 3-8: Read Data Acknowledgment Types

dRAck_h[2] dRAck_h[1] dRAck_h[0] Type
F F F IDLE
T F F OK_NCACHE_NCHK
T F T OK_NCACHE
T T F OK_NCHK
T T T OK

The first non IDLE sample of dRAck_h tells NVAX Plus to sample data bytes [15..0], and the
second non IDLE sample of dRAck_h tells NVAX Plus to sample data bytes [31..16]. Normally
external logic will drive the second dRAck_h and the cAck_h during the same system clock.
READ_BLOCK and LDxL transactions may be terminated with HARD_ERROR status before all
expected dRAck_h cycles are received.

It is UNDEFINED what happens if dRAck_h is asserted in a non-read cycle.

3—14 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

NVAX Plus checks dRAck_h[0] (the bit that determines if the block is ECC/parity checked) during
both halves of the 32-byte block. It is legal, but probably not useful, to check only one half of the
block.

NVAX Plus checks dRAck_h[1)(the bit that determines if a memory reference is to be cached
or not) during the second half of the 32-byte block. dRack_h[1] iz not necessary for 10 space
references. 1O references are not allocated to Pcache for NVAX Plus.

For 1/0 reads two dRack assertions are expectéd, however systems (PV) may return a single
octaword if a cAck is asserted at the same sysClkOut_h edge as the single dRack.

The dOE_] inputs tells NVAX Plus if it should drive the data bus. It is a synchronous input,
so external logic must guarantee setup and hold with respect to the system clock. If dOE_] is
sampled true at a system clock then NVAX Plus drives the data bus at the system clock if it has
a WRITE_BLOCK or STxC request pending (the request may already be on the cReq pins, or it
may appear on the cReq pins at the same system clock edge as the data appears). If dOE_] is
sampled false at the system clock then NVAX Plus tri-states the data bus on the next system
clock cycle. The cycle type is factored into the enable so that systems can leave dOE_] asserted
unless it is necessary to write a victim.

The dWSel_h inputs of EV are not needed as NVAX Plus only presents 1 octaword to the data
bus. ~

3.2.8 Primary Cache Invalidate

External logic needs to be able to invalidate primary cache blocks to maintain coherence. NVAX
Plus provides a mechanism to perform the necessary invalidates, but enforces no policy as to
when invalidates are needed. Simple systems may choose to invalidate more or less blindly, and
complex systems may choose to implement elaborate invalidate filters.

~ There are two situations where entries in the on-chip Pcache may need to be invalidated.

The first situation is the obvicus one. Any time an external agent updates a block in memory (for
example, an I/O device does 2 DMA transfer into memory), and that block has been loaded into
the external cache, then the external cache block must be either invalidated or updated. If that
external cache block has been loaded into a block resident in the Pcache then that Pcache entry
must be invalidated.

External logic invalidates an entry in bank 0 of the Pcache by asserting the pInvReq_h[0] signal.
NVAX Plus samples pInvReq_h[0] at every system clock. When NVAX Plus detects pInvReq_h[0]
asserted, it invalidates the block in bank 0 of the Pcache whose index is on the iAdr_h pins.

External logic invalidates an entry in bank 1 of the Pcache by asserting the pInvReq_h[1] signal.
NVAX Plus samples pInvReq_h[1] at every system clock. When NVAX Plus detects pInvReq_h[1]
asserted, it invalidates the block in bank 1 of the Pcache whose index is on the iAdr_h pins.

If the Pcache is set to direct map allocation only PinvReq[0] is asserted, iAdr[12] selects the
section of Pcache to be invalidated.

t is legal to both pInvReq_h[1..0] in the same cycle.
NVAX Plus can accept an invalidate at every system clock.

DIGITAL CONFIDENTIAL External interface 3-15

NVAX Plus CPU Chip Functional Speciﬁcétion, Revision 0.3, October 1991

The pInvReg_h[1..0] inputs are synchronous, and external logic must guarantee setup and hold
with respect to the system clock. The iAdr_h inputs are also synchronous, and external logic
must guarantee setup and hold with respect to the system clock in any cycle in which any of
pinvReg_h[1..0] are true.

3.2.9 Interrupts

External interrupts are fed to NVAX Plus via the irg_h bus. The 6 interrupts are wired to
IRQ<3:0>, halt, and error. The timer interrupt is internal to NVAX Plus. The interrupts are
asynchronous, and level sensitive.

3.2.10 Electrical Level Configuration
NVAX Plus drives and receives CMOS levels.

The input circuits do not use the vRef input.

3.2.11 Testing

The tristate_l signal, if asserted, causes NVAX Plus to float all of its pins, with the éxception of
the clocks.

The cont_] signal, if asserted, causes NVAX Plus to connect all of its pins to VSS, with the
exception of the clocks, vref, deOk_h, tristate_l, reset_] and cont_l.

3.3 64-Bit Mode

NVAX Plus does not support the EV 64-bit external mode.
3.4 Transactions

3.4.1 Reset

External logic resets NVAX Plus by asserting reset_l. When NVAX Plus detects the assertion of
reset_l it terminates all external activity, and places the output signals on the external interface
into the following state. Note that all of the control signals have been placed in the state that
allows external access to the external cache.

Table 3—-10: Reset State
Pin] State

sRomOE_l

- sRomClk_h
adr_h
data_h
check_h

NN N3 Y

3-16 External Interface DIGITAL CONFIDENTIAL -

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-10 (Cont.): Reset State

Pin State
tagCEOE_h P
tagCtIWE_h F
tagCtlV_h Z
tagCtlS_h z
tagCtlD_h Z
tagCtlP_h Z
dataCEOE_h F
dataWE_h F
dataA_h F
holdAck_h F
cReq_h FFF
cWMask_h FFFFFFFF

After asserting reset_l for long enough to reset the serial ROM (100 ns), external logic negates
reset_l.

When NVAX Plus detects reset_| negate, it begins internal initialization. When this initialization
is completed NVAX Plus microcode asserts sRomOE_l, enabling the output of the serial ROM
onto sRomD_h, and then determines if the SROM is to be read by reading the SOE-IE IPR which
contains the state of icMode<0>(sRomFast) at the deassertion of reset. If sRomfast NVAX Plus
deasserts sRomOE_] and fetches an instruction from address E0040000. If not sRomfast NVAX
Plus begins clocking bits out of the serial ROM and placing them into the Pcache. The timing is
the following (assuming NVAX Plus only read 3 bits from the serial ROM).

reset_1 = s-e=-e-- -

sRomOE_ 1 | |
sRomClk_h o | |eemes| |eemes] |e-
Sample sRomD_bh ~ -~ ~

Each half-tick of the sRomClk_h signal is 27 CPU cycles long, which guarantees the minimum
260ns clock high and clock low specifications and the 520ns clock to data specification of the serial
ROM with 10ns CPU cycles.

The format for NVAX Plus sROM data is 8 Kbytes of continous data, with the first bit being the
least significant bit of the first byte of the data.

At the deassertion of reset, sSRomOE_l is not asserted. The high to low transition of of sSRomOE_]
is generated when microcode writes the SOE-IE IPR. This maintains compatability with EV and
allows sRomOE_l to indicate a reset to SROM bit counters if required. The LNP implementation
of the sRom is a parallel ROM and discrete shift registers, using reset_l to initialize the bit
counters. .

After asserting sRomOE_]l microcode writes the Pcache TAG IPR Address for pache index
addr<11:5> = 0000000 specifying the left bank (address<12>=0) with a tag<31:12>=00000(hex)
and thus validating the 32 byte block of Pcache. Microcode then reads the 32 bits of the sSROM
shifting the bits into a temporary register until a longword is completed. The bits shifted so

DIGITAL CONFIDENTIAL ’ External intertace 3-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

that the first bit input is the least significant. SIO<serial_line_out> is hardware cleared at re-
set. There is an inversion from SIO<serial_line_out> to the sRomClk_h pin, thus the state of
sRomClk_h at reset is high. Microcode reads each bit of the sROM by

1. writing SIO<serial_line_out> with 0 to set sRomClk_h to a high

waiting 27 CPU cycles to insure sRomClk_h is high for 260ns for a 10ns part

writing SIO<serial_line_out> with 1 to set sRomClk_h to a low

waiting 27 CPU cycles to insure sRomClk_h is low for 260ns for a 10ns part

reading the IPR for SIO«serial_line_in>

Al I

The sROM uses the high to low transition of sRomClk_h to load it’s output register and the low
to high transition of sRomClk_h to shift to the next bit. Initializing sRomClk_h to a high results
in the first edge of sRomClk_h being high to low, thus loading the initial ROM outputs to the
output shift register. Since the low to high transition of sRomClk_h is an input to a shift register,
the processor loads the the output register and then inputs the first bit before the first shift clock
edge is driven.

After the first 32 bits are read, microcode writes the longword to addr<31:0>=000000000(hex).
The write hits in the Pcache and the first longword is written to the Pcache data section. The
write data is also written through the CBOX. This write will be packed with the next longword
and be put into the Write Queue. External Write Commands are removed from the Write Queue
by the Arb Sequencer when sRomOE_l is asserted but are not written to memory, preventing the -
writing of the sSROM data.

The next 32 bits are read. The second longword is then written to addr<31:0>=00000004. The
next 32 bits are read, the third longword is written to addr<31:0>=00000008. Longwords 4,5,6,7,
and 8 are written to address C, 10, 14, 18, and 1C. After the first 8 longwords are written,
microcode writes the Pcache TAG IPR Address for pache index addr<11:5> = 0000001 specifying
the left bank (address<12>=0) with a tag<31:12>=00000(hex) and thus validating the second 32
byte block of Pcache. Again 8 longwords are read from the sSROM and wriiten to the Pcache block
with the address being incremented by 4 bytes after each write. After the first 4 kbytes of data
has been written to the PCache, microcode writes the Pcache TAG IPR Address for pache index
addr<11:5> = 0000000 specifying the right bank (address<12>=1) with a tag<31:12>=00001(hex)
and thus validating the first 32 byte block of Pcache for that bank. The next 4 kbytes are then
loaded to the right bank with a tag<31:12>=00001(hex). Thus the sSROM data is places into NVAX
Plus Pcache as

1. Write Pcache TAG IPR. tag<31:125>=00000(hex), bank=0, index=00000

set up initial addr<31:0>=00000000(hex)

read longword from sROM

write longword to addr<31:0>

add 4(hex) to addr<31:0>

if addr<4:2> not 000 repeat step 3

after 8 longword writes addr<4:2>=000, 32 byte block completed, increment index

if index not 000000, bank is not completed, write TAG IPR of next index, go to step 3
if index=000000 and bank=0, set bank=1 for second 4 kbyte bank, write TAG IPR, go to step
3 .

10. if index=000000 and bank=1, sROM load is done

N e ok N

©

3-18 External Interface ' DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

After completion of the sSROM load, microcode initiates a macrocode fetch of the first instruction
from addr<31:0>=00000000. ‘

3.4.2 Fast External Cache Read Hit

‘A fast external cache read consists of a probe read (overlapped with the first data read), followed
by a compare cycle and then a second data read. If the probe hits and tagOK_]l is asserted and
HoldReq is deasserted (i.e. no stall) the pMapWE_h of the allocated PCache set is driven.

The following diagram assumes that the external cache is using 4X cache_speed timing, chip
enable control (OE_H/CE_L = L).

CPU CYCLE 10 11 12 13 14 15 16
cpu_clk 10 12 2 12 14 5 16 17 |8 12 110 {11 |
phase 2412341234122342234122411234
adr_bh i !
ctatak_hl4) I !
©agCEOE_h | !

tagCtlWE_h

taghdr_ b -ram=|

tagCtli_h ~ram= | i

pMepwe b |eee=ee-

GataCECE_h I f

dataWe_h

data_h- =ram=0=| -ram-l-|

check_h ~ram=0=-|) ~ram-1=|
If the probe misses then pMapWE_h does not assert, and the sequence aborts at the end of CPU
CYCLE 2.

The address is driven from phase 3 prior to CPU CYCLE 0 and the data is latched at phase 4
of CPU CYCLE 1, providing 9 phases for external access at cache_speed = 4 times the cpu_clk
(2CPU CYCLES).

3.4.3 Fast External Cache Write Hit

A fast external cache write consists of a probe read, followed by a compare cycle, and then a
single data write.

The following diagram assumes that the external cache is using 2X system clock timing, chip
enable control (OE_H/CE_L = L}, and a 1 cycle write pulse starting from cpu clock falling edge.

CPU CYCLE 10 11 12 13 14 |5 3
cpu_clk f0 13 12 12 14 t5 16 17 |18 1& (10 |11 |
phase 24122 4123412341223422341122234
adr_h/catak_hl4) |

tagCEOE_h i i | m——— |
tagCtlWE_h |mm—ne—- |
tagadr_h =ram- |

tagCti_h “ram=-| | ~Cpummsecennnne
dataCEQOE_h | | |- i
dataWE_h |m————— 1
data_h j=Cpuse—mm—e———— |
check_h |~Cpummmmm—ane—- |

If the probe misses then the cycle aborts at the end of cpu clock cycle 3.

DIGITAL CONFIDENTIAL Externa! Interface 3-19 -

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.4 Fast External Cache Byte/Word Write Hit

A fast external cache byte/word write consists of a probe read, followed by a compare cycle, a
data merge cycle, and then a single data write.

The following diagram assumes that the external cache is using 2X system clock timing, chip
enable control (OE_H/CE_L = L), and a 1 cycle write pulse starting from cpu clock falling edge.

Internal Clock 10 121 12 13 14 15 16 17 18
cpu_clk 10 12 42 13 14 (5 16 17 & 1¢ 110 [11 112 112 (14 {15
phase 341232 4122412241223 422342223422241224
adr_h/datak_h[4])

tagCEOQE_b (e ——————— | | cm———— |
tagCtlWE_h | ee———— |
tagadr_bh ~ram=|

tagCti_h eram= | |=Cpusrec—enceee
dataCEOE_h | o e e i ! |moe———— |
dataWE_bh |we-—— |
datez_h -ram- | j=Cpummermemcn=- |
check_h -ram-| R |

If the probe misses then the cycle aborts at the end of cpu clock cycle 3. If a correctable ECC

error occurs on the read data the write is executed delayed from cpu cycles 6 and 7, to cpu cyles
8 and 9.

3.4.5 Transfer to SysClk for External tranactions

The remainder of the transactions described in this chapter, READ_BLOCK, WRITE BLOCK,
LDxL, and STxC, involve the external system logic, and are described with respect to sysClkOutl.
This section describes the delay from the internal cpu cycle which initiates a tranction requiring
external system logic, and SYS_CLK cycle 0, where cReq_h is driven with the command request.
adr_h and cWMask are valid prior to the start of SYS_CLK cycle 0.

The NVAX Plus I/O sequencer runs once every CACHE_SPEED cycles. If the output of the I/O
sequencer initiates a transaction requiring external logic, the cReq_h command is asserted with
the next rising edge of sysClkOutl_h. For systems with the CACHE_SPEED and sysClkOut both
programmed for 2 CPU cycles, the start of the SYS_CLXK cycle is always one CPU cycle after the
I/0 sequencer initiated the tranaction.

CPU CYCLE 10 F 12 13 14 I5 16 i7 N
1/0 SEQUENCER CYCLE |0 11 12 i3 |
cpu_elk (0 11 12 13 14 |5 16 17 (8 [¢ |10 |11 112 |13 |14 |15 |
phase 2412241234123412341234123412341234
SYE_CLK Cycle | 0 | 1 | 2 i
(22 sysclkOut) =e===- | O | fom————— [jmmm—re— | fommeem-

| |

| [

| ————— < cReq asserts, SYS_CLK Cycle 0

|

I/0 sequencer initiates READ_BLOCK, WRITE BLOCK
LDxL, ETxC

If CACHE_SPEED and sysClkOut are not programmed to the same multiple of cpu_clk, the delay
to the rising edge of sysClkOutl_h and the assertion of cReq_h may be a full SYS_CLK cycle.

3-20 External interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.6 READ_BLOCK Transaction

A READ_BLOCK transaction appears at the external interface for reads which miss in the Pcache
for external cache read misses, either because ithe read really was a miss, or because the external
cache has not been enabled.

SYE_CLK Cycle 1 4] 1 1 1 2] 3 1 I 5 |
sysClkOutl_h f=== === o= -] o= (Rt =
adr_h ! |
date_h |=(mmm—- | | =)l m———|

checr_h |=Omme—= | jmlm—— |

ckeg_h } |

cWMask_h | i

dRack_h je———— | |m——— |

cack_h |=ocnmee |

0. The READ_BLOCK cycle begins. NVAX Plus places the address of the block containing
the miss on adr_h. NVAX Plus places the quadword-within-block and the I/D indication on
c¢WMask_h. NVAX Plus places a READ_BLOCK command code on cReq_h. The external logic
detects the command at the end of this cycle.

1. The external logic obtains the first 16 bytes of data. Although a single stall cycle has been
shown here, there could be no stall cycles, or many stall cycles.

2. The external logic has the first 16 bytes of data. It places it on the data_h and check_h busses.
It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid. NVAX
Plus detects dRAck_h at the end of this cycle, and reads in the first 16 bytes of data at the
same time. :

3. The external logic obtains the second 16 bytes of data. Although a single stall cycle has been
shown here, there could be no stall cycles, or many stall cycles.

4. The external logic has the second 16 bytes of data. It places it on the data_h and check_h
busses. It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid.
NVAX Plus detects dRAck _h at the end of this cycle, and reads in the second 16 bytes of data
at the same time. In addition, the external logic places an acknowledge code on cAck_h to tell
NVAX Plus that the READ_BLOCK cycle is completed. NVAX Plus detects the acknowledge
at the end of this cycle. The address remains in the cycles after cAck as NVAX Plus fills
Pcache.

5. Everything is idle on the EDAL. NVAX Plus moves fill data to MBOX. A new external cache
cycle does not start until the fill is completed. dataceoe are asserted 1 cpu cycle after cAck is
recognized by the ARB sequencer.

Note that this picture did not mention the external caches. NVAX Plus drove all of the external
cache control signals false when it placed the READ_BLOCK command on the ¢cReg_h outputs.
The external logic controls the updating of cache.

NVAX Plus performs ECC checking and correction (or parity checking) on the data supplied to
it via the data and check busses if so requested by the acknowledge code. It is not necessary to
place data into the external cache to get checking and correction.

- DIGITAL CONFIDENTIAL External Interface 3-21

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.7 Write Block

A WRITE_BLOCK transaction appears at the external interface on external cache write misses
(either because it really was a miss, or because the external cache has not been enabled (or the
system is "PV™), or on external cache write hits to shared blocks.

EYs_CLK Cycle 1 Y | 1 | 2 | 2 | 4 Al 5 !

sysClkOut_h fe== === |=e=] =] | === === I=
adr_b I |

data_h |m(m——— | |=(mmewe e Q-

check_h(not PV) |e(mmman | |s(memne o (mmnn |

cReg_h | |

cWMasi:_h ! |

doE_) [eeee——- I |me———— |m—— I

cAck_h innnnnnn | | mm—— |

0. The WRITE_BLOCK cycle begins. NVAX Plus places the address of the block on adr_h. NVAX
Plus places the longword valid masks on cWMask_h. NVAX Plus only write a2 single octaword
at a time, thus cWMask([7:4] = 0000 if adr_h[4] = 0 or cWMask([3:0] = 0000 if adr_h[4] =
1. The dWsel_h from EV are not needed as NVAX Plus drives the same octaword at the
assertion of dOE_l

1. NVAX Plus places the WRITE_BLOCK command code on cReq_h. The external logic detects
the command at the end of this cycle.

2. The external logic detects the command, and asserts dOE_] to tell NVAX Plus to drive the 16
bytes of data of the block onto the data bus. Since NVAX Plus only writes a single octaword
the write_block can be cAck in the same cycle in which is driven. Systems which choose
to handle write_blocks the same for EVAX and NVAX Plus will continue the sequence with
NVAX Plus driving out the same octaword of data. NVAX Plus continues to drive the data in
the system cycle following cack (if dOE_l) providing data hold time. Although a single stall
cycle has been shown here, there could be no stall cycles, or many stall cycles.

3. If the external logic asserts dOE_] a second time to tell NVAX Plus to drive a second 16 bytes
of data onto the data bus the same octaword is driven.

4. The external logic places an acknowledge code on cAck_h to tell NVAX Plus that the WRITE_
BLOCK cycle is completed. NVAX Plus detects the acknowledge at the end of this cycle. NVAX
Plus holds the address till the cAck is recognized by the ARB sequencer and a subseguent
bus operation is dispatched.

5. Everything is idle.

Note that this picture did not mention the external caches. NVAX Plus drove all of the external
cache control signals false when it placed the WRITE_BLOCK command on the cReq_h outputs.
The external logic controls the updating of cache.

NVAX Plus performs ECC generation (or parity generation) on data it drives onto the data bus.
The check_h lines remain tristated for "PV" systems.

3-22 Exterhal intertace DIGITAL CONFIDENTIAL

NVAX Plus CPUJ Chip Functional Specification, Revision 0.3, October 1991

3.4.8 LDxL Transaction

An LDxL transaction appears at the external interface as a result of a READ_LOCK micro-
instruction or byte/word write which misses in the BCache being executed. The external cache
is not probed.

sYs ClK Cvele | O | 1 } 2 | 3 | 4 | 5 |

sysClkout_h I e B e B e D R E T

adr_h | |

data_h |=Omm e | [=lmme=- |

check_h |=Ommees| (mimmmes|

ckeg_h ! |

cWMask_h t ; I

dRAck_h | ——— | ———— |
chck_h | ——— |

0. The LDxzL cycle begins. NVAX Plus places the address of the block containing the data on
adr_h. NVAX Plus places the quadword-within-block and the I/D indication on cWMask_h.
LDxL cycles for byte/word writes indicate I so that system logic does not enter the block into

the backmap. NVAX Plus places a LDzL command code on ¢cReq_h. The external logic detects
the command at the end of this cycle.

1. The external logic obtains the first 16 bytes of data. Although a single stall cycle has been
shown here, there could be no stall cycles, or many stall cycles.

2. The external logic has the first 16 bytes of data. It places it on the data_h and check_h busses.
It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid. NVAX
Plus detects dRAck_h at the end of this cycle, and read in the first 16 bytes of data at the
same time.

3. The external logic obtains the second 16 bytes of data. Although a single stall cycle has been
shown here, there could be no stall cycles, or many stall cycles.

4. The external logic has the second 16 bytes of data. It places it on the data_h and check_h
busses. It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid.
NVAX Plus detects dRAck_h at the end of this cycle, and read in the second 16 bytes of data
at the same time. In addition, the external logic places an acknowledge code on cAck_h to
tell NVAX Plus that the LDxL cycle is completed. NVAX Plus detects the acknowledge at the
end of this cycle, the address holds while the data is either being loaded to Pcache or merged
for a STxC to complete the byte/word write sequence.

5. Everything is idle.

Note that with the exception of the command code output on the cReq pins, the LDxL cycle is the
same as a READ_BLOCK cycle.

3.4.9 STxC Transaction
An STxC transaction appears at the external interface as a result of a WRITE_UNLOCK micro_

instruction or byte/word write in which the initial read probe missed in the BCache. The external
cache is not probed.

DIGITAL CONFIDENTIAL External interface 3—23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

EY¥s_CLX Cycle i 0 | 1 | 2 I 3 | 4 | S |

sysClkout_h S N T N L e B Tt B
adr_h } l

data_h jmlmm——- | [=Ommmmn o pmmmen |

check._h(not PV) |e(m——— | |mOmm——- = (mn——|

ckeg_h i |

cWMask_h | !

doE_1 | e————— | |eccmnee |m——— |

cAck_h |nnnnnnn | |mm———— |

5.

The STxC cycle begins. NVAX Plus places the address of the block on adr_h. NVAX Plus
places the longword valid masks on c¢WMask_h. NVAX Plus places an STxC command code
on cReq_h. The external logic detects the command at the end of this cycle.

The external logic detects the command, and asserts dOE_] to tell NVAX Plus to drive the 16
bytes of the block onto the data bus.

NVAX Plus drives 16 bytes of write data onto the data_h and check_h busses, and the external
logic writes it into the destination. Since NVAX Plus only writes a single octaword the write_
block can be cAck in the same cycle in which is driven. Systems which choose to handie
write_blocks the same for EVAX and NVAX Plus will continue the sequence with NVAX Plus
driving out the same octaword of data. NVAX Plus continues to drive the data in the system
cycle following cack (if dOE_l) providing data hold time. Although a single stall cycle has
been shown here, there could be no stall cycles, or many stall cycles.

The external logic asserts dOE_l and dWSel_h to tell NVAX Plus to drive the second 16 bytes

of data onto the data bus. NVAX continues to drive the same octaword of data. The cWMask_
h output indicates which octaword contains the write data.

NVAX Plus drives the same octaword of write data onto the data_h and check_h busses, and
the external logic writes it into the destination. Although a single stall cycle has been shown
here, there could be no stall cycles, or many stall cycles. In addition, the external logic places
an acknowledge code on cAck_h to tell NVAX Plus that the STxC cycle is completed. NVAX
Plus detects the acknowledge at the end of this cycle. NVAX Plus holds the address till the
cAck is recognized by the ARB sequencer and a subsequent bus operation is dispatched.

Everything is idle.

Note that with the exception of the code output on the cReq pins, and the fact that external logic
has the option of making the cycle fail by using a cAck code of STxC_FAIL, the STxC cycle is the
same as the WRITE_BLOCK cycle.

3.4.10 BARRIER Transaction
NVAX Plus does not generate the BARRIER transaction.

3.4.11

FETCH Transaction

NVAX Plus does not generate the FETCH transaction.

3.4.12 FETCHM Transaction
NVAX Plus does not generate the FETCHM transaction.

3-24

External interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.5 Summary of NVAX Plus options

The NVAX Plus chip can be used in system platforms intended for the EV processor chip (LASER,
COBRA, Flamingo). In addition NVAX Plus has an optional mode "PV" for use in systems in which
NVAX Plus is a replacement for the Mariah CPU. This section summarizes the key features which
are implemented by the NVAX Plus chip pertaining to system configuration.

3.5.1 System Clock Divisors

The sysClkOut period, the number of CPU cycles pef sysClkOut cycle, is determined from IRQ
lines at reset.

e 2X
* 3X ASYMMETRIC (COBRA)
* 4X SYMMETRIC CLOCK. >40NS PERIOD FOR FLAMINGO

°

3.5.2 Cache Access
“ The Cache access time can be set to 2,3, OR 4 CPU cycles, from BIU_'CTL<BC_SPD>.

3.5.3 Flamingo I/O Address Mapping

I/0 space addresses can be mapped to Flamingo ’sparse’ and ’dense’ space by setting BIU_
CTL[WS_IO].

3.5.4 Direct Mapped Pcache

The NVAX Plus chip can support a two-way set associative or direct-mapped Pcache as selected
from BIU_CTL<PCACHE_MODE>. This allows systems to backmap the Pcache exactly as the
Dcache for EV by selecting the direct-mapped option. When the direct-mapped option is selected
allocate to a Pcache bank are based on address<12> instead of allocate bit. To support the direct-
mapped option the MBOX allocates fills to the bank Pcache bank selected by the Miss latch
lateh for two-way associative operation and address<12> for direct-mapped operation. In direct-
mapped mode the CBOX sends an invalidate request to the MBOX for bank 0 if iAdr<12> = 0,
and sends an invalidate request to the MBOX for bank 1 if iAdr<12> = 1.

3.5.5 adr_h«33:32>

adr<33:32> for I/O space references is selected from BIU_CTL<14:13>. L/O space for LASER
systems requires adr_h<33:32>=11, for COBRA systems adr_h<33:32>=10, and for Flamingo sys-
tems adr_h<33:32>=01. The BIU_CTL register field allows for IO space mapping of different
systems.

DIGITAL CONFIDENTIAL : External Interface 3-25

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.5.6 QW I/O WRITES/MTPR MAILBOX

Writes to the LMBPR require more than 32 bits, i.e. bits <39:32> = 00000000. In order to pack
more than a longword to an I/0 space a "pack_even_for_I/O" functioén can be enabled by writing
to IPR B8. This function can be disabled by a subsequent write to IPR B9. For the MTPR
MAILBOX instruction, the write to the LMBPR is done under microcode control. IPR B8 is
written to enable to I/0 space quadword packing. Two longwords which make up the MB_ADDR
(address of mailbox data structure) are then written. IPR B9 is written to clear the I/O packing
function.

The 1/0 pack function can be enabled with a MTPR B8 and can be disabled with a MTPR B9. For
writes to I/0 space other than to the LMBPR where a quadword write is required (e.g. COBRA
systems) use the following macrocode sequence while in kernel mode.

* MFPR #PR$_IPL,-(SP)

* MTPR #31,#PR$_IPL

¢ MTPR #0,enable_io_pack

¢ MOVQR,y

* MTPR #0,disable_io_pack

* MTPR (SP)+#PR$_IPL

The following restrictions need to be met to write quadword 10.

1. The source mode for the MOVQ to IO space transaction must be register
2. The MOVQ and MTPR B9 must be aligned to a 32-byte block '
3. The MOVQ destination must be quadword aligned
4

The page where the quadword 1/0 is to be written cannot encounter an ACV or TNV memory
management exception. (A TB miss is allowed)

3.5.7 QW I/O READS

For systems which contain quadword CSRs (Control Status Register) in I/0O space (COBRA), a single
guadword read is necessary in order to obtain consistent data for the CSR. When **BIU_CTL<QW_
IO_RD> = 1** |

1. a the high LW register is loaded with data<63:32> of any I/O read

2. I/O reads with address<2> =1 (not QW aligned) are converted to an IPR_RD of the high_ LW
register and data returns on dat<31:0>

3.5.8 PV mode

PV mode supports write-through caching and byte writes.
Write-through caching is supported by having writes not write Beache directly.
* the ARB sequencer dispatches directly to 'SYS_WR’ if "PV" mode

* check_h<27:0> output drivers remain tristated for writes, parity/ecc not needed on "PV"
writes; PV system logic must generate byte parity.

3-26 External Interface | DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PV mode supports byte writes, cWMask_h drives the byte mask instead of a longword mask.

* dataA_h<3> indicates for which QW the cWMask_h lines are the byte mask
*« dataWE<1:0> contain byte mask informatiom for the QW not addressed by dataA_h<3>

Other features of PV mode

* on reads combine byte paﬁty on check bits into LW parity, by providing xor tree for 4 check
bits for each LW being input, for conversion into single LW parity bit .

* address<2> ->cWMask<£>; needed to specify IO space read addresses to the LW
* dataA_h[4] tristates on read_block/LD_LK enabling PV system to control octaword address

for Beache fills

* PV systems can respond to I/O space reads with a single dRack provided cAck is also sent at

the same sysClkOut

* supports byte/word write to I/O space within same LW address

3.6 Revision History

Table 3-11: Revision History

Who When Description of change

Gil Wolrich 15-Nov-1990 NVAX PLUS release for external review.
Gil Wolrich 15-Jan-1991 Remove Vector references/update.

Gil Wolrich 3-Apr-1991 Include PV options/update.

@Gil Wolrich 1-Aug-1991 update.

DIGITAL CONFIDENTIAL

External Interface 3-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 4

Chip Overview

4.1 NVAX Plus CPU Chip Box and Section Overview

The NVAX Plus CPU Chip is a single-chip CMOS-4 macropipelined implementation of the base
instruction group, and the optional vector instruction group of the VAX architecture. Inciuded in
the chip are:

¢ CPU: Instruction fetch and decode, microsequencer, and execution unit
* Control Store: 1600, 61-bit microwords

¢ Primary Cache: 8 KB, 2-way set associative, physically-addressed, write through, mixed
instruction and data stream -

* Instruction Cache: 2 KB, direct-mapped, virtually addressed, instruction stream only
¢ Translation Buffer: 96 entries, fully associative
* Floating Point: 4 stage, pipelined, integrated floating point unit

¢ EDAL Interface: Support for six cache sizes (4MB, 2MB, 1MB, 512KB, 256KB, 128KB),
and four RAM speeds. '

The NVAX chip is designed in CMOS-4 with a typical cycle time of 14 ns, and with the option of
running chips at a slower or faster cycle time. The chip can be incorporated into many different
system environments, ranging from the desktop to the midrange, and from single processor to
multiprocessor systems.

The NVAX is a macropipelined design: it pipelines macroinstruction decode and operand fetch
with macroinstruction execution. Pipeline efficiency is increased by queuing up instruction infor-
mation and operand values for later use by the execution unit. Thus, when the macropipeline is
running smoothly, the Ibox (instruction parser/operand fetcher) is running several macroinstruc-
tions ahead of the Ebox (execution unit). Qutstanding writes to registers or memory locations are
kept in a scoreboard to ensure that data is not read before it has been written. See Chapter 5
for a more in-depth discussion of the macropipeline.

This chapter gives an overview of the different sections, or "boxes”, that comprise the NVAX Plus
CPU. For more information on any of the boxes, please see the appropriate chapters within this
specification. Figure 4-1 is a block diagram of the bozes, and the major buses that run between
them.

DIGITAL CONFIDENTIAL Chip Overview 4—1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 4~1: NVAX Plus CPU Block Diagram

1%IBOX_ADDR_H

1%10_BUS_H
1IBOX
E%IBOX_I4 BUS
1%IBOX_IW_BUS_H, E%80_RETME'_A
1%OPERAND_BUS E%DO_RETIRE""H
m M%MD_BUS_H
USEQ MBOX
E_BUS%UTEST_L
B%S56_DATA_H
E%ABUS_H|
E%BBUS "W C%CBOX_ADDR_H
FBOX EBOX

E%VA_BUS_L. E%WBUS_K

FFBOX_RESULT_H
M%SE_PA_M

DATA : CBOX
RA ;

FILE: CPU_BLOCK_DIAGRAM.DOC NOAL Y

4.1.1 The Ibox

The Ibox decodes VAX instructions and parses operand specifiers. Instruction control, such as
the control store dispatch address, is then placed in the instruction queue for later use by the
Microsequencer and Ebox. The Ibox processes the operand specifiers at a rate of one specifier per
cycle and, as necessary, initiates specifier memory read operations. All the information needed
to access the specifiers is queued in the source queue and destination queue in the Ebox.

The Ibox prefeiches instruction stream data into the prefetch queue (PFQ), which can hold 16
bytes. The Ibox has a dedicated instruction-stream-only cache, called the virtual instruction cache
(VIC). The VIC is a 2 KB, with a block and fill size of 32 bytes.

The Ibox has both read and write ports to the GPR and MD portions of the Ebox register file
which are used to process the operand specifiers. The Ibox maintains a scoreboard to ensure that
reads and writes to the register file are always performed in synchronization with the Ebox. The
Ibox stops processing instructions and operands upon issuing certain complex instructions (for
example, CALL, RET, and character string instructions). This is done to maintain read/write
ordering when the Ebox will be altering large amounts of VAX state.

4-2 Chip Overview - DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Since the Ibox is often parsing several macroinstructions ahead of the Ebox, the correct value
for the PSL condition codes is not known at the time the Ibox executes a conditional branch
instruction. Rather than emptying the pipe, the Ibox predicts which direction the branch will
take, and passes this information on to the Ebox via the branch queue. The Ebox later signals
if there was a misprediction, and the hardware backs out of the path. The branch prediction
algorithm utilizes a §12-entry RAM, which caches four bits of branch history per entry.

4.1.2 The Ebox and Microsequencer

The Ebox and Microseguencer work together to perform the actual "work" of the VAX instructions.
Together they implement a four stage micropipelined unit, which has the ability to stall and to
microtrap. The Ebox and Microsequencer dequeue instruction and operand information provided
by the Ibox via the instruction queue, the source queue, and the destination queue. For literal type
operands, the source queue contains the actual operand value. In the case of register, memory,
and immediate type operands, the source queue holds a pointer to the data in the Ebox register
file. The contents of memory operands are provided by the Mbox based on earlier requests from
the Ibox. GPR results are written directly back to the register file. Memory results are sent to
the Mbox, where the data will be matched with the appropriate specifier address previously sent
by the Ibox. At times, the Ebox initiates its own memory reads and writes using E%VA_BUS and
E%WBUS,

The Microsequencer determines the next microword to be fetched from the eontrol store. It
then provides this cycle-by-cycle control to the Ebox. The Microsequencer allows for e1ght-way
microbranches, and for microsubroutines to a depth of six. ,

The Ebox contains a five-port register file, which holds the VAX GPRs, six Memory Data Registers
(MDs), six microcode working registers, and ten miscellaneous CPU state registers. It also con-
tains an ALU, a shifter, and the VAX PSL. The Ebox uses the RMUX, controlled by the retire
gueue, to order the completion of Ebox and Fbox instructions. As the Ebox and the Fbox are

" distinet hardware resources, there is some amount of execution overlap allowed between the two
units.

The Ebox implements specialized hardware features in order to speed the execution of certain
VAX instructions: the population counter (CALLx, PUSHR, POPR), and the mask processing unit
(CALLx, RET, FFx, PUSHR, POPR). The Ebox also has logic to gather hardware and software
interrupt requests, and to notify the Microsequencer of pending interrupts.

4.1.3 The Fbox

The Fbox implements a four staged pipelined execution unit for the floating point and integer
multiply instructions. Operands are supplied by the Ebox up to 64 bits per cycle on E%ABUS and
E%BBUS. Results are returned to the Ebox 32 bits per cycle on F&RESULT. The Ebox is responsible
for storing the Fbox result in memory or the GPRs.

DIGITAL CONFIDENTIAL ' ’ Chip Overview 4-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

4.1.4 The Mbox

The Mbox receives read requests from the Ibox (both instruction stream and data stream) and
from the Ebox (data stream only). It receives write/store requests from the Ebox: Also, the Cboz
sends the Mbox fill data and invalidates for the Pcache. The Mbox arbitrates between these
requesters, and queues requests which cannot currently be handled. Once a request is started,
the Mbox performs address translation and cache lookup in two cycles, assuming there are no
misses or other delays. The two-cycle Mbox operation is pipelined.

The Mbox uses the translation buffer (96 fully associative entries) to map virtual to physical
addresses. In the case of a TB miss, the memory management hardware in the Mbox will read
the page table entry and fill the TB. The Mbox is also responsible for all access checks, TNV
checks, M-bit checks, and quadword unaligned data processing.

The Mbox houses the Primary Cache (Pcache). The Pcache is 8KB, writethrough, with a block
and fill size of 32 bytes.

The Pcache can be configured at reset to be either direct mapped or 2-way set associative.

The Pcache state is maintained as a subset of the Backup Cache. System logic, possibly using
backmaps, is responsible for insuring the Pcache is maintained as a subset of the Backup Cache.

The Mboz ensures that Ibox specifier reads are ordered correctly with respect to Ebox specifier
stores. This memory "scoreboarding” is accomplished by using the PA queue, a small list of
physical addresses which have a pending Ebox store.

4.1.5 The Cbox

The Cbox initiates access to the second level cache (the Backup Cache, or Beache), and issues
memory requests. Both the tags and data for the Beache are stored in off-chip RAMs. The size and
access time of the Bcache RAMs can be configured as needed by different system environments.
The Beache sizes supported are 4 MB, 2 MB, 1 MB, 512 KB, 256 KB, and 128 KB. System logic
is responsible for BCache fills and coherency functions. The Cbox packs sequential writes to the

same octaword in order to minimize Becache write accesses. Multiple write commands are held
in the eight-entry WRITE_QUEUE.

4.1.6 Major Internal Buses

This is a list of the major interbox buses:

¢ B%S6_DATA:
This bidirectional bus between the Cboz and MBox is used to transfer write data to the backup
cache, to to transfer fill data to the primary cache.

* C%CBOX_ADDR:
This bus is used to transfer the physical address of a Pcache invalidate from the Cbox to the
MBox.

¢ E%ABUS, E%BBUS:
These two 32-bit buses contain the A- and B-port operands for the Ebox, and are also used
to transfer operand data to the Fbox.

* E%IBOX_IA_BUS:
This bus is used by the Ibox to read the Ebox Register File in order to perform an operand
access. An example is to read a register’s contents for a register deferred type specifier.

4-4 Chip Overview : DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

* E%DQ _RETIRE*:
This collection of related buses transfers information from the Ebox to the Ibox when a des-
tination queue entry is retired.

¢ E%SQ _RETIRE*:
This collection of related buses transfers information from the Ebox to the Ibox when a source
queue entry is retired.

¢ E%VA_BUS:

This bus transfers an address from the Ebox to the MBox.
¢ E%WBUS:

This 32-bit bus transfers write data from the RMUX to the register file and the Mbox.

¢ E_USQ CSM%MIB:
This bus carries Control Store data from the Microsequencer to the Ebox.

* E_BUS%UTEST:
This 3-bit bus transfers microbranch conditions from the Ebox to the microsequencer.

¢ F%RESULT:
This bus is used to transfer results from the Fbox to the Ebox.

* I1%IBOX_ADDR:
This bus transmits the virtual address of an Ibox memory reference to the Mbox. The address
may be for instruction prefetch or an operand access.

* I%IQ_BUS: -
This bus carries instruction information from the Ibox to the Instruction Queue in the
Microsequence:.

* I%IBOX_IW_BUS:
This bus is used by the Ibox to write the Ebox Register File for autoincrement/decrement type
specifiers and to deliver immediate operands to the Register File.

* 1%0PERAND_BUS:
This bus transfers information from the Ibox to the source and destination gueues in the
Ebox. '

* M%MD_BUS:
The bus returns right-justified memory read data from the Mbox to either the Ibox (64 bits)
or the Ebox (32 bits).

¢ M%S6_PA:
This bus transfers the address for a backup cache reference from the MBox to the Chox.

4.2 Revision History

Table 4-1: Revision History

Who When : Description of change

Debra Bernstein 06-Mar-1989 Release for external review.

Mike Uhler 18-Dec-1989 Update for second-pass release.

Gil Wolrich 15-Nov-1990 Update for NVAX Plus external release.

DIGITAL CONFIDENTIAL . - Chip Overview 4—5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 5

Macroinstruction and Microinstruction Pipelines

5.1 Introduction

This chapter discusses the architecture of the NVAX Plus CPU macroinstruction and microin-
struction pipeline. It includes a section of general pipeline fundamentals to set the stage for the
specific NVAX Plus CPU implementation of the pipeline. This is followed by an overview of the
NVAX Plus CPU pipeline, an examination of macroinstruction execution, and a discussion of stall
and exception handling from the viewpoint of the Ebox.

5.2 Pipeline Fundamentals

This section discusses the fundamentals of instruction pipelining in a general manner that is

" independent of the NVAX Plus CPU implementation. It is intended as a primer for those readers
who do not understand the concept and implications of instruction pipelining. Readers familiar
with this material are encouraged to skip (or at most skim). this section.

5.2.1 The Concept of a Pipeline

The execution of a VAX macroinstruction involves a sequence of steps which are carried out
in order to complete the macroinstruction operation. Among these steps are: instruction fetch,
instruction decode, specifier evaluation and operand fetch, instruction execution, and result store.
On the simplest machines, these steps are carried out sequentially, with no overlap of the steps,
as shown in Figure 5-1.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-—1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 5~1: Non-Pipelined Instruction Execution

Time >

t +
Instruction 1 1SOIS11S21E3184185/856|

+ -
Instruction 2 IS01811821831541E51561|

Instruction 3 1SO0181182183185415(18¢61

In this diagram, “S0”, “S2%, ..., “S6” denote particular steps in the execution of an instruction.
For this simple scheme, all of the steps for one instruction are performed, and the instruction is
completed, before any of the steps for the next instruction are started.

In more complex machines, one or more steps of the execution process are carried out in parallel
with other steps. For ezxample, consider Figure 5-2.

Figure 5-2: Partially-Pipelined Instruction Execution

Time -——>

- -
Instruction 1 1S0{S11S21E3154{55186}
-+ +

-+

Instruction 2 1S0181182183154|85156]

|SOIS1{S2 1583184185186/

+*

(X

instruction

In this example, step S6 of each instruction is overlapped in time (or executed in parallel) with
step SO of the next instruction. In doing so, the number of instructions executed per unit time
(instruction throughput) goes up because an instruction appears to take less time to complete.

In the most complez machines, most (or all) of the steps are executed in parallel as indicated in
Figure 5-3.

5-2 Macroinstruction and Microinstruction Pipslines ‘ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 5-3: Fully-Pipelined Instruction Execution

--------------- Time e=—=—cecccccocca)
- +
Instruction 1 1SO|E11S21831541E51861|
Instruction 2 1S01811821E531541£5186]
Instruction 3 1S0I511821531541E5(186]
Instruction 4 IS01E118218318541851856]
Instruction § ISOIS1|E2183184(851561

In this example every step of instruction execution is performed in parallel with every other step.
This means that a new instruction is started as soon as step SO is completed for the previous
instruction. If each step, S0..86, took the same amount of time, the apparent instruction through-
put would be seven times greater than that of Figure 5~1 above, even though each instruction
takes the same amount of time to execute in both cases. '

Figures 5-2 and 5-3 are examples of the concept of instruction pipelining, in which one or
more steps necessary to execute an instruction are performed in parallel with steps for other
instructions. 4

5.2.2 Pipeline Flow

A real-world form of a pipeline is an automobile assembly line. At each station of the assembly
line (called segments of the pipeline in our case), a task is performed on the partially completed
automobile and the result is passed on to the next station. At the end of the assembly line, the
automobile is complete. :

In an instruction pipeline, as in an assembly line, each segment is responsible for performing a
task and passing the completed result to the next segment. The exact task to be performed in
each pipeline segment is a function of the degree of pipelining implemented and the complexity
of the instruction set.

One attribute of an automobile assembly line is equally important to an instruction pipeline:
smooth and continuous flow. An automobile assembly line works well because the tasks to be
performed at each station take about the same amount of time. This keeps the line moving at a
constant pace, with no starts and stops which would reduce the number of completed automobiles
per unit time.

An analogous situation exists in an instruction pipeline. In order to achieve real efficiency in
an instruction pipeline, information must flow smoothly and continuously from the start of the
pipeline to the end. If a pipeline segment somewhere in the middle is not able to supply results
to the next segment of the pipeline, the entire pipeline after the offending segment must stop, or
stall, until the segment can supply a result.

In the general case, a pipeline stall results when a pipeline segment can not supply a result to
the next segment, or when it can not accept a new result from a previous segment.

DIGITAL. CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-3 °

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

This is a fundamental problem with most instruction pipelines because they occasionally (or not
so occasionally) stall. Stalls result in decreased instruction throughput because the smooth fiow
of the pipeline is broken.

A typical example of a pipeline stall involves memory reads. A simple three-segment pipeline
might fetch operands in segment 1, use the operands to compute results in segment 2, and make
memory references or store results in segment 3, as shown in Figure 5—4.

Figure 5-4: ' Simple Three-Segment Pipeline

| Operand |=>|Computation|->| Memory
| Access | | [Reac

+ — — 4

-+

Figure 5-5 illustrates what happens when the pipeline control wants to use the result of the
memory read as an operand.

Figure 5-5: Information Flow Against the Pipeline

+ <+

I3 | Operand |=->(Computation|=>| Memory |e———
| Access | | [Raad | |
- + - + + |
——
| + + o
I2 +===e>| Operané |=>|Computation|i=>| Result
1

A+ — — 4

! [Store

- -+ -

| Access

In this case, the operand access segment of I2 can not supply an operand to the computation
segment because the memory read done by I1 has not yet completed. As a result, the pipeline
must stall until the memory read has completed. This is shown in Figure 5-6.

Figure 5-6: Stalls introduced by Backward Pipeline Flow

e P L + + o« - +
11 | Operand (=>|Computationi->| Memery | wm———
| Access | | [Read | |
- + o+ + o+ + |
| + + o+ + -
12 4====>] Stall {~>| sStall |=>| Stall |
| ! [[!
] + + o+ + o+ o+
| + + + o+ +
I2 + >| Stall {=>| Stall |=>| Stall |
1 | [bt |
| + + - - +
i + + + - +
I2 + >| Opearand |->|Computation|->| Result |
| Access | | [Store |
5-4 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

In this diagram, the memory read data from Il is not available until the read request passes
through segment 3 of the pipeline. But the operand access segment for 12 wants the data im-
mediately. The result is that the operand access segment of 12 has to stall twice waiting for the
memory read data to become available. This, in turn, stalls the rest of the pipeline segments
after the operand access segment.

This situation is an excellent example of an age-old problem with instruction pipelining. The
natural and desired direction of information flow in a pipeline is from left to right in the above
diagrams. In this case, information must fiow from the output of the memory read segment into
the operand access segment. This requires a right-to-left movement of information from a later
pipeline segment to an earlier one. In general, any information transfer which goes against the
normal flow of the pipeline has the potential for causing pipeline stalls.

5.2.3 Stalls and Exceptions in an Instruction Pipeline

Even the best pipeline design must be prepared to deal with stalls and exceptions created in the
pipeline. As mentioned above, a stall is a condition in which a pipeline segment can not accept
a new result from a previous segment, or can not send a result to a new segment. An exception
occurs when a pipeline segment detects an abnormal condition which must stop, and then drain
the pipeline. Examples of éxceptions are: memory management faults, reserved operand faults,
and arithmetic overflows. One of the inherent costs of a pipelined implementation is the extra
logic necessary to deal with stalls and exceptions.

There are two primary considerations concerning stalls: what action to take when one occurs,
and how to minimize them in the first place. The design of most instruction pipelines assumes
that the pipeline will not stall, and handles the stall condition as a special case, rather than
the other way around. This means that each segment of the pipeline performs its function and
produces a result each cycle. If a stall occurs just before the end of the cycle, the segment must
block global state updates.and repeat the same operation during the next cycle. The design of
the pipeline control must take this into account and be prepared to handle the condition.

A common stall condition occurs when each pipeline segment has the same average speed, but
different peak speeds. For example, a pipeline segment whose task is to perform both memory
references and register result stores may take longer to perform memory references than result
stores. This can cause earlier segments of the pipeline to stall because the segment can not
take new inputs as fast if it is doing a memory reference rather than a result store. A common
technique to minimize this problem is to place buffers between pipeline segments, as shown in
Figure 5-7. '

Figure 5-7: Buffers Between Pipeline Segments

-+ - n
-+ -+ + o+ -+ -+ -+

| Operand |~>|Buffer|->|Computation|=->|Buffer|~>| Memory |
| Access | | [b [Read |

- -+ - - - " +
-+ -+ + + o+ + + +

By placing a buffer of sufficient depth between each segment of the pipeline, segments of differing
peak speeds can avoid stalls caused if the next segment is unable to accept 2 new result. Instead,
the result goes into the inter-segment buffer and the next segment removes it from the buffer
when it needs it. Unfortunately, adding such buffers means that additional logic must also be
added to handle the buffer full/buffer empty conditions.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The performance advantage of an instruction pipeline comes from the parallelism built into the
pipeline. If the parallelism is defeated by, for example, a stall, the advantage starts to drop. One
problem associated with pipelines is that they can provide “lumpy” performance. That is, two
similar programs may experience radically different performance if one causes many more stalls
(which defeat the parallelism of the pipeline) than the other.

Pipeline exceptions are different from stalls in that exceptions cause the pipeline to empty or
drain. Usually, everything that entered the pipeline before the point of error is allowed to com-
plete. Everything that entered the pipeline after the point of error is prevented from completing.
This can add considerable complexity to the pipeline control.

A larger problem occurs when the designer wants exceptions to be recoverable. Consider an
exception caused by a memory management fault. On the VAX, this condition can occur because
of a TB miss. The correct response to this fault is to read a PTE from memory, refill the TB, and
restart the request that caused the fault. This can add considerable complexity to the design.

5.3 NVAX Plus CPU Pipeline Overview

The remainder of this chapter discusses the NVAX Plus CPU pipeline, which is shown as a block
diagram in Figure 5-8. This is a high-level view of the CPU and abstracts many of the details.
For a more detailed view of the pipeline, users are encouraged to refer to the individual box
chapters in this specification.

The pipeline is divided into seven segments denoted as “S0” through “S6”. In Figure 5-8, the
components of each section of the CPU are shown in the segment of the pipeline in which they
operate.

The NVAX Plus CPU is fully pipelined and, as such, is most similar to the abstract example
shown in Figure 5-3. In addition to the overall macroinstruction pipeline, in which multiple
macroinstructions are processed in the various segments of the pipeline, most of the sections also
micropipeline operations. That is, if more than one operation is required to process a macroin-
struction, the multiple operations are also pipelined within a section.

5.3.1 Normal Macroinstruction Execution

Execution of macroinstructions in the NVAX pipeline is decomposed intc many smaller steps
which are the distributed responsibility of the various sections of the chip. Because the NVAX
Plus CPU implements a macroinstruction pipeline, each section is relatively autonomous, with
gqueues inserted between the sections to normalize the processing rates of each section.

5.3.1.1 The Ibox

The Ibox is responsible for fetching instruction stream data for the next instruction, decomposing
the data into opcode and specifiers, and evaluating the specifiers with the goal of prefetching
operands to support Ebox execution of the instruction.

5—-6 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 5-8: NVAX Plus CPU Pipeline

Vv

ovi

HUVY
100 N

=

H HUOY]

Xoarxi

N3N0
HOLLIAGLSN J= o

LNy
i 30884

1 xoad

HIONINOISOUOIN

1%IBOX_IW_8US_H

B

Xodgi

124V xo83
avan H
-4 warame b1 s
R I LS VYT] A
l& ~Fanaind) 17 8ne VI x08I%3 | .
l— 1 40310%60H 3
|
B o8 a13id
‘Viva eune ‘~ #3613 0a%3
. - ..«.w::w..lo»*u_
0LV oY N . j% X
ﬁww_““_ W end aNva3a0%T | A.uhmmmu
L H
z.ob..nn:xs."
9s s vs £s 2s iS 08

0LQ 24147042 32

Macroinstruction and Microlnstruction Pipelines 5-7

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The Ibox is distributed across segments SO through S3 of the pipeline, with most of the work
being done in S1. In SO0, instruction stream data is fetched from the virtual instruction cache
(VIC) using the address contained in the virtual instruction buffer address register (VIBA). The
data is written into the prefetch queue (PFQ) and VIBA is incremented to the next location.

In segment S1, the PFQ is read and the burst unit uses internal state and the contents of
the IROM to select the next instruction stream component—either an opcode or specifier. This
decoding processing is known as bursting. Some instruction components take multiple cycles to
burst. For example, FD opcodes require two burst cycles: one for the FD byte, and one for the
second opcode byte. Similarly, indexed specifiers require at least two burst cycles: one for the
index byte, and one or more for the base specifier. ‘

When an opcode is decoded, the information is passed to the issue unit, which consults the IROM
for the initial Ebox control store address of the routine which will process the instruction. The
issue unit sends the address and other instruction-related information to the instruction queue
where it is held until the Ebox reaches the instruction.

When a specifier is decoded, the information is passed to the source and destination queue allo-
cation logic and, potentially, to the complex specifier pipeline. The source and destination queue
allocation logic allocates the appropriate number of entries for the specifier in the source and
destination queues in the Ebox. These queues contain pointers to operands and results, and are
discussed in more detail below.

If the specifier is not a short literal or register specifier, which are collectively known as simple
specifiers, it is considered to be a complex specifier and is processed by the small microcode-
controlled complex specifier unit (CSU), which is distributed in segments S1 (control store access),
S2 (operand access, including register file read), and S3 (ALU operation, Mbox request, GPR
write) of the pipeline. The CSU pipeline computes all specifier memory addresses, and makes
the appropriate request to the Mbox for the specifier type. To avoid reading or writing a GPR
which is interlocked by a pending Ebox reference, the CSU pipeline includes a register scoreboard
which detects data dependencies. The CSU pipeline also provides additional help to the Ebox by
supplying operand information that is not an explicit part of the instruction stream. For example,
the PC is supplied as an implicit operand for instructions that require it (such as BSBB).

The branch prediction unit (BPU) watches each opcode that is decoded looking for conditional
and unconditional branches. For unconditional branches, the BPU calculates the target PC and
redirects PC and VIBA to the new path. For conditional branches, the BPU predicts whether
the instruction will branch or not based on previous history. If the prediction indicates that the
branch will be taken, PC and VIBA are redirected to the new path. The BPU writes the conditional
branch prediction flag into the branch queue in the Eboz, to be used by the Ebox in the execution
of the instruction. The BPU maintains enough state to restore the correct instruction PC if the
prediction turns out to be incorrect.

5.3.1.2 The Microsequencer

The microsequencer operates in segment S2 of the pipeline and is responsible for supplying to
the Ebox the next microinstruction to execute. If a macroinstruction requires the execution of
more than one microinstruction, the microsequencer supplies each microinstruction in sequence
based on directives included in the previous microinstruction.

5-8 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

At macroinstruction boundaries, the microsequencer removes the next entry from the instruec-
tion queue, which includes the initial microinstruction address for the macroinstruction. If the
instruction queue is empty, the microsequencer supplies the address of 2 special no-op microin-
struction.

The microsequencer is also responsible for evaluating all exception requests, and for providing
a pipeline flush control signal to the Ebox. For certain exceptions and interrupts, the microse-
guencer injects the address of a special microinstruction handler that is used to respond to the
event.

5.3.1.3 The Ebox

The Ebox is responsible for executing all of the non-floating point instructions, for delivery of
operands to and receipt of results from the Fbox, and for handling non-instruction events such as
interrupts and exceptions. The Ebox is distributed through segments S3 (operand access, includ-
ing register file read), S84 (ALU and shifter operation, Rmux request), and S5 (Rmux completion,
register write, completion of Mbox request) of the pipeline.

For the most part, instruction operands are prefetched by the Ibox, and addressed indirectly
through the source queue. The source queue contains the operand itself for short literal specifiers,
and a pointer to an entry in the register file for other operand types.

An entry in the field queue is made when a field-type specifier entry is made into the source queue.
The field queue provides microbranch conditions that allow the Ebox microcode to determine if
a field-type specifier addresses either a GPR or memory. A microbranch on a valid field queue
entry retires the entry from the queue.

The register file is divided into four parts: the GPRs, memory data (MD) registers, working
registers, and CPU state registers. For register-mode specifiers, the source queue points to the
appropriate GPR in the register file. For other non-short literal specifier modes, the source queue
points to an MD register. The MD register is either written directly by the Ibox, or by the Mbox
as the result of a memory read generated by the Ibox.

The S3 segment of the Ebox pipeline is responsible for selecting the appropriate operands for the
Ebox and Fbox execution of instructions. Operands are selected onto E%ABUS and E%BBUS for
use in both the Ebox and Fbox. In most instances, these operands come from the register file,
although there are other data path sources of non-instruction operands (such as the PSL).

Ebox computation is done by the ALU and the shifter in the S4 segment of the pipeline on
operands supplied by the S3 segment. Control for these units is supplied by the microinstruction
which was originally supplied to the S3 segment by the microsequencer, and then subsequently
moved forward in the pipeline.

The S4 segment also contains the RMUX, whose responsibility is to select results from either
the Ebox or Fbox and perform the appropriate register or memory operation. The RMUX inputs
come from the ALU, shifter, and F%RESULT at the end of the cycle. The RMUX actually spans the
S4/S5 boundary such that its outputs are valid at the beginning of the S5 segment. The RMUX
is controlled by the retire queue, which specifies the source (either Ebox or Fbox) of the result
to be processed (or retired) next. Non-selected RMUX sources are delayed until the retire queue
indicates that they should be processed.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

As the source queue points to instruction operands, so the destination queue points to the des-
tination for instruction results. If the result is to be stored in a GPR, the destination gueue
contains a pointer to the appropriate GPR. If the result is to be stored in memory, the destination
queue indicates that a request is to be made to the Mbox, which contains the physical address of
the result in the PA queue (which is described below). This information is supplied as a control
input to the RMUX logic.

Once the RMUX selects the appropriate source of result information, it either requests Mbox
service, or sends the result onto E%WBUS to be written back to the register file or to other data
path registers in the S5 segment of the pipeline. The interface between the Ebox and Mbox for
all memory requests is the EM_LATCH, which contains control information and may contain an
address, data, or both, depending on the type of request. In addition to operands and results that
are prefetched by the Ibox, the Ebox can also make explicit memory requests to the Mbox to read
or write data.

5.3.1.4 The Fbox

The Fbox is responsible for executing all of the floating point instructions in the VAX base in-
struction group, as well as the longword-length integer multiply instructions.

For each instruction that the Fbox is to execute, it receives from the microsequencer the opcode
and other instruction-related information. The Fbox receives operand data from the Ebox on
E%ABUS and E%BBUS.

Execution of instructions is performed in a dedicated Fboxz pipeline that appears in segment S4
of Figure 5-8, but is actually a minimum of three cycles in length. Certain instructions, such
as integer multiply, may require multiple passes through some segments of the Fbox pipeline.
Other instructions, such as divide, are not pipelined at all.

Fbox results and status are returned via F%RESULT to the RMUX in the Ebox for retirement.
When the instruction is next to retire, the RMUX hardware, as directed by the destination
queue, sends the results to either the GPRs for register destinations, or to the Mbox for memory
destinations.

5.3.1.5 The Mbox

The Mbox operates in the S5 and S6 segments of the pipeline, and is responsible for all memory
references initiated by the other sections of the chip. Mbox requests can come from the Ibox
(for VIC fills and for specifier references), the Ebox or Fbox via the RMUX and the EM_LATCH
(for instruction result stores and for explicit Ebox memory requests), from the Mbox itself (for
translation buffer fills and PTE reads), and from the Cbox (for invalidates and cache fills).

All virtual references are translated to a physical address by the translation buffer (TB), which
operates in the S5 segment of the pipeline. For instruction result references generated by the
Ibox, the translated address is stored in the physical address queue (PA queue). These addresses
are later matched with data from the Ebox or Fbox, when the result is calculated.

For memory references, the physical address from either the TB or the PA queue is used to
address the primary cache (Peache) starting in the S5 segment of the pipeline and continuing
into the S6 segment. Read data is available in the middle of the S6 segment, right-justified and
returned to the requester on MZMD_BUS by the end of the cycle. Writes are also completed by
the end of the cycle. Although the Pcache access spans the S5 and S6 segments of the pipeline,
‘a new access can be started each cycle in the absence of a TB or cache miss.

5-10 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.3.1.6 The Cbox

The Chox is responsible for accessing the backup cache (Beache), and for memory requests. The
Chox receives input from the Mbox in the S6 segment of the pipeline, and usually takes multiple
cycles to complete a request. For this reason, the Cbox is not shown in specific pipeline segments.

If a memory read misses in the Pcache, the request is sent to the Cbox for processing. The Cbox
first looks for the data in the Beache and fills the Pcache from the Beache if the data is present.
If the data is not present in the Beache, the Cbox requests a cache fill from the systemn. When
the system returns the data, it is written to the Pcache (and potentially to the VIC). Although
Pcache fills are done by making a request to the Mbox pipeline, data is returned to the original
requester as quickly as possible by driving data directly onto B#%S6_DATA, and from there onto
M%MD_BUS as soon as the bus is free.

Because the Pcache operates as a write-through cache, all memory writes are passed to the Cbox.
To avoid multiple writes to the same Bcache block, the Cbox contains a write buffer in which
multiple writes to the same quadwords are packed. If possible two quadwords (an octaword) are
assembled together before the Bcache is actually written.

5.3.2 Stalls in the Pipeline

Despite our best attempts at keeping the pipeline flowing smoothly, there are conditions which
cause segments of the pipeline to stall. Conceptually; each segment of the pipeline can be consid-
ered as a black box which performs three steps every cycle:

1. The task appropriate to the pipeline segment is performed, using control and inputs from the
previous pipeline segment. The segment then updates local state (within the segment), but
not global state (outside of the segment).

2. Just before the end of the cycle, all segments send stall conditions to the appropriate state
sequencer for that segment, which evaluates the conditions and determines which, if any,
pipeline segments must stall.

3. If no stall conditions exist for a pipeline segment, the state sequencer allows it to pass results
to the next segment and accept results from the previous segment. This is accomplished by
updating global state.

This sequence of steps maximizes throughput by allowing each pipeline segment to assume that
a stall will not occur (which should be the common case). If a stall does occur at the end of
the cycle, global state updates are blocked, and the stalled segment repeats the same task (with
potentially different inputs) in the next cycle (and the next, and the next) until the stall condition
is removed.

This description is over-simplified in some cases because some global state must be updated by a
segment before the stall condition is known. Also, some tasks must be performed by a segment
once and only once. These are treated specially on a case-by-case basis in each segment.

Within a particular section of the chip, a stall in one pipeline segment also causes stalls in all
upstream segments (those that occur earlier in the pipeline) of the pipeline. Unlike Rigel, stalls
in one segment of the pipeline do not cause stalls in downstream segments of the pipeline. For
example, a memory data stall in Rigel also caused a stall of the downstream ALU segment. In
NVAX Plus, a memory data stall does not stall the ALU segment (a no-op is inserted into the S4
segment when S4 advances to S5).

- DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

There are a number of stall conditions in the chip which result in a pipeline stall. Each is
discussed briefly below and in much more detail in the appropriate chapter of this specification.

5.3.2.1

S0 Stalls

Stalls that occur in the S0 segment of the pipeline are as follows:
Ibox: V

PFQ full: In normal operation, the VIC is accessed using the address in VIBA, the data is
sent to the prefetch queue, and VIBA is incremented. If the PFQ is full, the increment of
VIBA is blocked, and the data is re-referenced in the VIC until there is room for it in the
PFQ. At that point, prefetch resumes.

5.3.2.2 S1 Stalis
Stalls that occur in the S1 segment of the pipeline are as follows:
Ibox:

5-12

Insufficient PFQ data: The burst unit attempts to decode the next instruction component
each cycle. If there are insufficient PFQ bytes valid to decode the entire component, the burst
unit stalls until the required bytes are delivered from the VIC.

Source queue or destination queue full: During specifier decoding, the source and destination
queue allocation logic must allocate enough entries in each queue to satisfy the requirements
of the specifier being parsed. To guarantee that there will be sufficient resources available,
there must be at least 2 free source queue entries and 2 free destination queue entries to
complete the burst of the specifier. If there are insufficient free entries in either queue,the
burst unit stalls until free entries become available.

MD file full: When a complex specifier is decoded, the source queue allocation logic must
allocate enough memory data registers in the register file to satisfy the requirements of the
specifier being parsed. To guarantee that there will be sufficient resources available, there
must be at least 2 free memory data registers available to complete the burst of the specifier.
If there are insufficient free registers, the burst unit stalls until enough memory data registers
becomes available.

Second conditional branch decoded: The branch prediction unit predicts the path that each
conditional branch will take and redirects the instruction stream based on that prediction. It
retains sufficient state to restore the alternate path if the prediction was wrong. If a second
conditional branch is decoded before the first is resolved by the Ebox, the branch prediction
unit has nowhere to store the state, so the burst unit stalls until the Ebox resolves the actual
direction of the first branch.

Instruction queue full: When a new opcode is decoded by the burst unit, the issue unit
attempts to add an entry for the instruction to the instruction queue. If there are no free
entries in the instruction queue, the burst unit stalls until a free entry becomes available,
which occurs when an instruction is retired through the RMUX.

Complex specifier unit busy: If the burst unit decodes an instruction component that must
be processed by the CSU pipeline, it makes a request for service by the CSU through an S1
request latch. If this latch is still valid from a previous request for service (either due to a
multi-cycle low or a CSU stall), the burst unit stalls until the valid bit in the request latch
is cleared.

Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Immediate data length not available: The length of the specifier extension for immediate
specifiers is dependent on the data length of the specifier for that specific instruction. The
data length information comes from one of the Ibox instruction PLAs which is accessed based
on the opcode of the instruction. If the PLA access is not complete before an immediate
specifier is decoded (which would have to be the first specifier of the instruction), the burst
unit stalls for one cycle.

5.3.2.3 S2 Stalls
Stalls that occur in the S2 segment of the pipeline are as follows:
Ibox:

[]

Qutstanding Ebox or Fbox GPR write: In order to calculate certain specifier memory ad-
dresses, the CSU must read the contents of a GPR from the register file. If there is a pending
Ebox or Fbox write to the register, the Ibox GPR scoreboard prevents the GPR read by stalling
the S2 segment of the CSU pipeline. The stall continues until the GPR write completes.

Memory data not valid: For certain operations, the Ibox makes an Mbox request to return
data which is used to complete the operation (e.g., the read done for the indirect address of a
displacement deferred specifier). The Ibox MD register contains a valid bit which is cleared
when a request is made, and set when data returns in response to the request. If the Ibox
references the Ibox MD register when the valid bit is off, the S2 segment of the CSU pipeline
stalls until the data is returned by the Mbox.

Microsequencer:

Instruction queue empty: The final microinstruction of a macroinstruction execution flow in
the Ebox is indicated when a SEQ MUX/LAST.CYCLE* microinstruction is decoded by the mi-

crosequencer. In response to this event, the Ebox expects to receive the first microinstruction

of the next macroinstruction flow based on the initial address in the instruction queue. If the
instruction queue is empty, the Microsequencer supplies the instruction queue stall microin-
struction in place of the next macroinstruction fiow. In effect, this stalls the microsequencer
for one cycle.

5.3.2.4 S3 Stalls
Stalls that occur in the S3 segment of the pipeline are as follows:
Ibox:

QOutstanding Ebox GPR read: In order to complete the processing for auto-increment, auto-
decrement, and auto-increment deferred specifiers, the CSU must update the GPR with the
new value. If there is a pending Ebox read to the register through the source queue, the Ibox
scoreboard prevents the GPR write by stalling the S3 segment of the CSU pipeline. The stall
continues until the Ebox reads the GPR.

Specifier queue full: For most complex specifiers, the CSU makes & request for Mbox service
for the memory request required by the specifier. If there are no free entries in the specifier
queue, the S3 segment of the CSU pipeline stalls until a free entry becomes available.

DIGITAL CONFIDENTIAL : Macroinstruction and Microinstruction Pipelines 5-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

RLOG full: Auto-increment, auto-decrement, and auto-increment deferred specifiers require
a free RLOG entry in which to log the change to the GPR. If there are no free RLOG entries
when such a specifier is decoded, the S3 segment of the CSU pipeline stalls until a free entry
becomes available.

Ebox:

Memory read data not valid: In some instances, the Ebox may make an explicit read request
to the Mbox to return data in one of the 6 Ebox working registers in the register file. When
the request is made, the valid bit on the register is cleared. When the data is written to the
register, the valid bit is set. If the Ebox references the working register when the valid bit is
clear, the S3 segment of the Ebox pipeline stalls until the entry becomes valid.

Field queue not valid: For each macroinstruction that includes a field-type specifier, the
microcode microbranches on the first entry in the field queue to determine whether the field
specifier addresses a GPR or memory. If the field queue is empty (indicating that the Ibox
has not yet parsed the field specifier), the result of the next address calculation repeats the
microbranch the next cycle. Although this is not a true stall, the effects are the same in that
a microinstruction is repeated until the field queue becomes valid.

Outstanding Fbox GPR write: Because the Fbox computation pipeline is multiple cycles long,
the Ebox may start to process subsequent instructions before the Fbox completes the first.
If the Fbox instruction result is destined for a GPR that is referenced by a subsequent Ebox
microword, the S8 segment of the Ebox pipeline stalls until the Fbox GPR write occurs.

Fbox instruction queue full: When an instruction is issued to the Fboz, an entry is added to
the Fbox instruction queue. If there are no free entries in the queue, the S3 segment of the
Ebox pipeline stalls until a free entry becomes available.

Ebox/Fbox:

Source queue empty: Most instruction operands are prefetched by the Ibox, which writes
a pointer to the operand value into the source queue. The Ebox then references up to two
operands per cycle indirectly through the source queue for delivery to the Ebox or Fbox. If
either of the source queue entries referenced is not valid, the S3 segment of the Ebox pipeline
stalls until the entry becomes valid.

Memory operand not valid: Memory operands are prefetched by the Ibox, and the data is
written by the either the Mbox or Ibox into the memory data registers in the register file. If
a referenced source queue entry points to a memory data register which is not valid, the S3
segment of the Ebox pipeline stalls until the entry becomes valid.

5.3.2.5 5S4 Stalis
Stalls that occur in the 5S4 segment of the pipeline are as follows:
Ebox:

.

5-14

Branch queue empty: When a conditional or unconditional branch is decoded by the Ibox, an
entry is added to the branch queue. For conditional branch instructions, the entry indicates
the Ibox prediction of the branch direction. The branch queue is referenced by the Ebox to
verify that the branch displacement was valid, and to compare the actual branch direction
with the prediction. If the branch queue entry has not yet been made by the Ibox, the S4
segment of the Ebox pipeline stalls until the entry is made.

Macroinstruction and Microinstruetion Pipslines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

* Fbox GPR operand scoreboard full: The Ebox implements a register scoreboard to prevent
the Ebox from reading a GPR to which there is an outstanding write by the Fbox. For each
Fbox instruction which will write a GPR result, the Ebox adds an entry to the Fbox GPR
scoreboard. If the scoreboard is full when the Ebox attempts to add an entry, the S4 segment
of the Ebox pipeline stalls until a free entry becomes available.

Fbox:

* Fbox operand not valid: Instructions are issued to the Fbox when the opcode is removed
from the instruction queue by the microsequencer. Operands for the instruction may not
arrive until some time later. If the Fbox attempts to start the instruction execution when the
operands are not yet valid, the Fbox pipeline stalls until the operands become valid.

Ebox/Fbox:

* Destination queue empty: Destination specifiers for instructions are processed by the Ibox,
which writes a pointer to the destination (either GPR or memory) into the destination queue.
The destination queue is referenced in two cases: when the Ebox or Fbox store instruction
results via the RMUX, and when the Ebox tries to add the destination of Fbox instructions to
the Ebox GPR scoreboard. If the destination queue entry is not valid (as would be the case if
the Ibox has not completed processing the destination specifier), a stall occurs until the entry
becomes valid. ’

* PA queue empty: For memory destination specifiers, the Ibox sends the virtual address of the
destination to the Mbox, which translates it and adds the physical address to the PA queue.
If the destination queue indicates that an instruction result is in memory, a store request is
made to the Mbox which supplies the data for the result. The Mboz matches the data with
the first address in the PA gueue and performs the write. If the PA queue is not valid when
the Ebox or Fbox has a mermory result ready, the RMUX stalls until the entry becomes valid.
As a result, the source of the RMUX input (Ebox or Fbox) also stalls.

¢ EM_LATCH full: All implicit and explicit memory requests made by the Ebox or Fbox pass
through the EM_LATCH to the Mbox. If the Mbox is still processing the previous request
when a new request is made, the RMUX stalls until the previous request is compieted. As a
result, the source of the RMUX input (Ebaox or Fbox) also stalls.

* RMUX selected to other source: Macroinstructions must be completed in the order in which
they appear in the instruction stream. The Ebox retire queue determines whether the next
instruction to complete comes from the Ebox or the Fbox. If the next instruction should come
from one source and the other makes an RMUX request, the other source stalls until the
retire queue indicates that the next instruction should come from that source.

5.3.3 Exception Handling

A pipeline exception occurs when a segment of the pipeline detects an event which requires that
the normal flow of the pipeline be stopped in favor of another flow. There are two fundamental
types of pipeline exceptions: those that resume the original pipeline flow once the exception is
corrected, and those that require the intervention of the operating system. A TB miss on a
memory reference is an example of the first type, and an access control violation is an example
of the second type. M=0 faults are handled specially, as described below.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Restartable exceptions are handled entirely within the confines of the section that detected the
event. Other exceptions must be reported to the Ebox for processing. Because the NVAX Plus
CPU is macropipelined, exceptions can be detected by sections of the pipeline long before the
instruction which caused the exception is actually executed by the Eboz or Fbox. However, the
reporting of the exception is deferred until the instruction is executed by the Ebox or Fbox. At
that point, an Ebox handler is invoked to process the event.

Because the Ebox and Fbox are micropipelined, the point at which an exception handler is in-
voked must be carefully controlled. For example, three macroinstructions may be in execution in
segments S3, $4, and S5 of the Ebox pipeline. If an exception is reported for the macroinstruction
in the S3 segment, the two macroinstructions that are in the S4 and S5 segments must be allowed
to complete before the exception handler is invoked.

To accomplish this, the S4/S5 boundary in the Ebox is defined to be the commit point for a
microinstruction. Architectural state is not modified before the S5 segment of the pipeline, unless
there is some mechanism for restoring the original state if an exception is detected (the Ibox RLOG
is an example of such a mechanism). Exception reporting is deferred until the microinstruction
to which the event belongs attempts to cross the S4/S5 boundary. At that point, the exception
is reported and an exception handler is invoked. By deferring exception reporting to this point,
the previous microinstruction (which may belong to the previous macroinstruction) is allowed to
complete. ’

Most exceptions are reported by requesting a microtrap from the Microsequencer. When the
Microsequencer receives a microtrap request, it causes the Ebox to break all its stalls, aborts the
Ebozx pipeline (by asserting E_USQ%PE_ABORT), and injects the address of a handler for the event
into the control store address latch. This starts an Ebox microcode routine which will process the
exception as appropriate. Certain other kinds of exceptions are reported by simply injecting the
appropriate handler address into the control store at the appropriate point.

The VAX architecture categorizes exceptions into two types: faults and traps. For both types, the
microcode handler for the exception causes the Ibox to back out all GPR modifications that are
in the RLOG, and retrieves the PC from the PC queue. For faults, the PC returned is the PC of
the opcode of the instruction which caused the exception. For traps, the PC returned is the PC
of the opcode of the next instruction to execute. The microcode then constructs the appropriate
exception frame on the stack, and dispatches to the operating system through the appropriate
SCB vector. '

There are a number of exceptions detected by the NVAX Plus CPU pipeline, each of which is
discussed briefly below, and in much more detail in the appropriate chapter of this specification.

5.3.3.1 Interrupts

The CPU services interrupt requests from various sources between macroinstructions, and at
selected points within the string instructions. Interrupt requests are received by the interrupt
section and compared with the current IPL in the PSL. If the interrupt request is for an IPL
that is higher than the current value in the PSL, a request is posted to the microsequencer. At
the next macroinstruction boundary, the microsequencer substitutes the address of the microcode
interrupt service routine for the instruction execution flow.

The microcode handler then determines if there is actually an interrupt pending. If there is, it
is dispatched to the operating system through the appropriate SCB vector.

5-16 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

5.3.3.2

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

integer Arithmetic Exceptions -

There are three integer arithmetic exceptions detected by the CPU, all of which are categorized
as traps by the VAX architecture. This is significant because the event is not reported until after
the commit point of the instruction, which allows that instruction to complete.

Integer Overfiow Trap

An integer overflow is detected by the- RMUX at the end of the S4 segment of the Ebox
pipeline. If PSL<IV> is set and overflow traps are enabled by the microcode, the event is
reported in segment S5 of the pipeline via a microtrap request.

Integer Divide-By-Zero Trap

An integer divide-by-zero is detected by the Ebox microcode routine for the instruction. It
is reported by explicitly retiring the instruction and then jumping directly to the microcode
handler for the event.

Subscript Range Trap

A subscript range trap is detected by the Ebox microcode routine for the INDEX instruction.
It is reported by explicitly retiring the instruction and then jumping directly to the microcode
handler for the event.

5.3.3.3 Fioating Point Arithmetic Exceptions

All fioating point arithmetic exceptions are detected by the Fbox pipeline during the execution of
the instruction. The event is reported by the RMUX when it selects the Fbox as the source of the
next instruction to process. At that point, a microtrap is requested.

5.3.3.4 Memory Management Exceptions

Memory management exceptions are detected by the Mbox when it processes a virtual read or
write. This section covers actual memory management exceptions such as access control violation,
translation not valid, and M=0 faults. Translation buffer misses are discussed separately in the
next section. Because the reporting of memory management exceptions is specific to the operation
that caused the exception, each case is discussed separately.

I-Stream Faults

While the Ibox is decoding instructions, it may access a page which is not accessible due
to a memory management exception. This may occur on the opcode, a specifier or specifier
extension, or on a branch displacement. Should this occur, the Ibox sets a global MME
fault flag and stops. Memory management exceptions detected on intermediate operations
during specifier evaluation (such as a read for the indirect address of a displacement deferred
specifier) are converted by the Ibox into source or destination faults, as described below.

If the Ebox reaches the instruction which caused the exception (which may not happen due to,
for example, interrupt, exception, or branch), it will reference one of the queues, which does
not have a valid entry because the Ibox stopped when the error was detected. The particular
queue depends on the instruction component on which the error was detected. If the Ibox
global MME flag is set when an empty queue entry is referenced, the error is reported in one
of four ways.

DIGITAL CONFIDENTIAL _ Macroinstruction and Microinstruction Pipelines 5-17

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

If the Ibox global MME flag is set when the microsequencer references an invalid instruction
queue entry, it inserts the instruction queue stall into the pipeline and the Ebox qualifies it
with the fault flag. When this flag reaches the S4 segment of the pipeline and is selected by
the RMUX, a microtrap is requested.

If the Ibox global MME flag is set when the Ebox references an invalid source queue entry,
a fault flag is injected into either the Ebox or Fbox pipelines, depending on the type of in-
struction. To avoid a deadlock, S3 stalls do not prevent forward prgress of the flag in the
pipeline. When the flag reaches the S4 segment of the pipeline and is selected by the RMUX,
a microtrap is requested.

If the Ibox global MME flag is set when the Ebox microcode microbranches on an invalid field
queue entry, a fault flag is injected into the Ebox pipeline. When the flag reaches the $4
segment of the pipeline and is selected by the RMUX, a microtrap is requested.

If the Ibox global MME flag is set when the Ebox references an invalid branch queue entry,
and the RMUX selects the Ebox, a microtrap is requested.

If the Ibox global MME flag is set when the RMUX references an invalid destination queue
entry for a store request, a microtrap is requested.

* Source Operand Faults

If the Mbox detects a memory management exception during the translation for a source
specifier, it qualifies the data returned to the MD file with a fault flag which is written into
the MD file. When this entry is referenced by the Ebox, a fault flag is injected into the
pipeline. Tv avoid a deadlock, S3 stalls do not prevent forward prgress of the flag in the
pipeline. When the flag reaches the S4 segment of the pipeline and is selected by the RMUX,
a microtrap is requested.

5-18 Macroinstruction and Microinstruction Pipelines 'DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Funqtional Specification, Revision 0.3, October 1991

* . Destination Address Faults

If the Mbox detects a memory management exception during the translation for a destination
specifier, it sets a fault flag in the PA queue entry for the address. When this entry is
referenced by the RMUX, a microtrap is requested,.

¢ Faults on Explicit Ebox Memory quuests

Explicit Ebox reads and writes are, by definition, performed in the context of the instruction
which the Ebox is currently executing. If the Mbaox detects 2 memory management exception
that was the result of an explicit Ebox read or write, it requests an immediate microtrap to
the memory management fault handler.

¢ M=0 faults

M=0 faults occur when the Mbox finds the M-bit clear in the PTE which is used to translate
write-type references. The event is reported to the Ebox in one of the three ways described
above: via the MD file or PA queue fault flags, or via an immediate microtrap for explicit
Ebox writes. '

Unlike other memory management exceptions, which are dispatched to the operating system,
M=0 faults are completely processed by the Ebox microcode handler. For normal instructions,
the handler causes the Ibox to back out all GPR modifications. that are in the RL.OG and
retrieves the PC from the PC queue. For string instructions, any RLOG entries that belong
to the string instructions are not processed, and PSL<FPD> is set. Using the PTE address
supplied by the Mbox, the Ebox microcode reads the PTE, sets the M-bit, ‘and writes the
PTE back to memory. The instruction stream is then restarted at the interrupted instruction
(which may result in special FPD handling, as described below).

5.3.3.5 Translation Buffer Miss

Translation buffer misses are handled by the Mbox transparently to the rest of the CPU. When
a reference misses in the translation buffer, the Mboxz aborts the current reference and invokes
the services of the memory management exception sequencer in the Mbox, which fetches the
appropriate PTE from memory and loads it into the translation buffer. The original reference is
then restarted.

5.3.3.6 Reserved Addressing Mode Faults

Reserved addressing mode faults are detected by the Ibox for certain illegal combinations of
specifier addressing modes and registers. When one of these combinations is detected, the Ibox
sets a global addressing mode fault flag that indicates that the condition was detected and stops.

If the Ibox global addressing mode fault flag is set when the Ebox references an invalid source
queue entry, a fault flag is injected into either the Ebox or Fbox pipelines, depending on the type
of instruction. To avoid a deadlock, S3 stalls do not prevent forward prgress of the flag in the
pipeline. The fault flag is carried along the Ebox or Fbox pipeline and passed to the RMUX,
which reports the event by requesting a microtrap when that source is selected.

DIGITAL CONFIDENTIAL Macroinstruction and Microiﬁstruction Pipeiines 5-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If the Ibox global addressing mode fault flag is set when the Ebox microcode microbranches on
an invalid field queue entry, a fault flag is injected into the Ebox pipeline. When the flag reaches
the S4 segment of the pipeline and is selected by the RMUX, a microtrap is requested.

Similarly, if the Ibox global addressing mode fault flag is set when the RMUX, in response to
a request by the Ebox or Fbox, references an invalid destination queue entry, a microtrap is
requested. ’

5.3.3.7 Reserved Operand Faults

Reserved operand faults for floating point operands are detected by the Fboz, and reported in the
same manner as the floating point arithmetic exceptions described above.

Other reserved operand faults are detected by Ebox microcode as part of macroinstruction exe-
cution flows and are reported by jumping directly to the fault handler.

5.3.3.8 Exceptions Occurring as the Consequence of an instruction

Opcode-specific exceptions such as reserved instruction faults, breakpoint faults, etc., are dis-
patched directly to handlers by placing the address of the handler in the instruction PLA for each
instruction.

Other instruction-related faults, such as privileged instruction faults, are detected in execution
flows by the Ebox microcode and are reported by jumping directly to the fault handler.

For testability, the Fbox may be disabled. If this is the case, integer multiply instructions are exe-
cuted by the Ebox microcode and floating point instructions are converted into reserved instruction
faults for emulation by software. When the first Ebox microinstruction of an Fbox operand flow
for a floating point macroinstruction reaches the S4 segment of the pipeline, a microtrap is re-
quested. The handler for this microtrap then jumps directly to the reserved instruction fault
handler.

5.3.3.9 Trace Fault

Trace faults are detected by the microsequencer with some help from the Ebox. The microse-
guencer maintains a duplicate copy of PSL<TP>, which it updates as required to track the state
of the PSL copy as it would exist when the instruction is executed by the Ebox. At the end of a
macroinstruction, the microsequencer logically ORs its local copy of the TP bit with PSL<TP>. If
either is set, the microsequencer substitutes the address of the microcode trace fault handler for
the address of the next macroinstruction.

5.3.3.10 Conditional Branch Mispredict

When the Ibox decodes a conditional branch, it predicts the path that the branch will take and
places its prediction into the branch queue. When the Ebox reaches the instruction, it evaluates
the actual path that the branch took and compares it in the S5 segment of the Ebox pipeline with
the Ibox prediction. If the two are different, the Ibox is notified that the branch was mispredicted
and a microtrap request is made to abort the Ebox and Fbox pipelines. The Ibox fiushes itself,
backs out any GPR modifications that are in the RLOG, and redirects the instruction stream to
the alternate path. The Ebox microcode handler for this event cleans up certain machine state
and waits for the first instruction from the alternate path.

5-20 Macroinstruction and Microinstruction Pipelines n DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5.3.3.11 First Part Done Handling

During the execution of one of the 8 string instructions that are implemented by the CPU, an
exception or an interrupt may be detected. In that event, the Ebox microcode saves all state
necessary to resume the instruction in the GPRs, backs up PC to point to the opcode of the string
instruction, sets PSL<FPD> in the saved PSL, and dispatches to the handler for the interrupt or
exception.

When the interrupt or exception is resolved, the software handler terminates with an REI back to
the instruction. When the Ibox decodes an instruction with PSL<FPD> set, it stops parsing the
instruction immediately after the opcode. In particular, it does not parse the specifiers. When the
microsequencer finds PSL<FPD> set at a macroinstruction boundary, it substitutes the address
of a special FPD handler for the instruction execution flow.

The FPD handler determines which instruction is being resumed from the opcode, unpacks the
state saved in the GPRs, clears PSL<FPD>, advances PC to the end of the string instruction (by
adding the opcode PC to the length of the instruction, which was part of the saved state), and
jumps back to the middle of the interrupted instruction.

5.3.3.12 Cache and Memory Hardware Errors

Cache and memory hardware errors are detected by the Mbox or Cbox, depending on the type
of error. If the error is recoverable (e.g., a Pcache tag parity error on a write simply disables
the Pcache), it is reported via a soft error interrupt request and is dispatched to the operating
system.

In some instances, write errors that are not recoverable by hardware are reported via a hard
error interrupt request, which results in the invocation of the operating system.

Read errors that are not recoverable by hardware are reported via the assertion of a soft error
interrupt, and also in a manner that is similar to that used for memory management exceptions,
as described above. In fact, the MD file, PA queue, and the Ibox all contain a hardware error flag
in parallel with the memory management fault flag. With the exception of TB parity errors, which
cause an immediate microtrap request, the event is reported to the Ebox in exactly the same way
as the equivalent memory management exception would be, but the microcode exception handler
is different. For example, an unrecoverable error on a specifier read would set the hardware error
flag in the MD file. When the flag is referenced, the error flag is injected into the pipeline. When
the flag advances to the S4 segment and is selected by the RMUX, it causes a microtrap request
which invokes a hardware error handler rather than a memory management handler.

Note that certain other errors are reported in the same way. For example, if the memory man-
agement sequencer in the Mbox receives an unrecoverable error trying to read a PTE necessary
to translate a destination specifier, it sets the hardware error flag in the PA queue for the entry
corresponding to the specifier. This results in a microtrap to the hardware error handler when
the entry is referenced. PTE read errors for read references are also reported via the original
reference. '

DIGITAL CONFIDENTIAL) Macroinstruction and Microinstruction Pipelines 521

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5.4 Revision History

Table 5=1: Revision History

Who When Description of change
Mike Uhler 06-Mar-1989 Release for external review.
Gil Wolrich 15-Nov-1990 Update for NVAX Plus external release.

5-22 Macroinstruction and Microinstruction Pipelines ’ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 6

Microinstruction Formats

6.1 Ebox Microcode

The NVAX Plus microword consists of 61 bits divided into two major sections. Bits «60:15> control
the Ebox Data Path and are encoded into two formats. Bits <14:0> control the Microsequencer
and are also encoded into two formats.

6.1.1 Data Path Control

The Data Path Control Microword specifies all the information needed to control the Ebox Data
Path. The two formats, Standard and Special, are selected by bit <60>, the FORMAT bit. In
addition, bit <455, the LIT bit, selects the constant generation format of the microword, which
may be either an 8-bit constant or a 10-bit constant, depending on a decode in the MISC field.
Pictures of the microword formats are in Figure 6~1 and Figure 6—2. A brief description of each
field is given in Table 6~1 and Table 6-2.

Figure 6-1: Ebox Data Path Control, Standard Format

61555 5(5555/554 4444414444132 3313333/3322(222212222(111111

019 €7 615 4 3211 0 ¢ BI7654[32101¢876(5432(10¢068|7654i32101¢87 615

TZT. ALU 1T MRO IQ! SHE Tojn var | B $LTw|4vT peT ; A | Msc IA

r o |1|'POS| C;NST T ;I:Cgrnot egual CC;NST.IO) —

TII " CoNST.10 T MISC egual CONST.10 -
Table 6-1: EBOX Data Path Contro! Microword Fields, Standard Format
Microword

Bit Position = Microword Field Format Description
60 FORMAT —_ Microword format-Standard or Special
59:55 ALU Both ALU function select

DIGITAL CONFIDENTIAL Microinstruction Formats 6-1

NVAX Pilus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 6-1 (Cont.): EBOX Data Path Control Microword Fields, Standard Format

Microword
Bit Position Microword Field Format Description
54:50 MRQ Both Mbozx request select
49 Q Standard Q register load control
48:46 SHF Standard Shifter function select
45 Lr Both ALU/shifter B port control-register or literal
44:40 VAL Standard’ Constant shift amount
39:35 B Both! ALUishifter B port select
44:43 POS Both® Constant position
42:35 CONST Both? 8-bit constant value
44:35 CONST.10 Both® 10-bit constant value
34 L Both Length control
33 w Both Whbus driver control
32 A Both VA write enable
31:26 DST Both WBUS destination select
25:20 A Both ALU/shifter A port select
19:15 MISC Both Miscellaneious function select, group 0

INOT Constant generation microword variant
28.Bit Constant generation microword variant, when MISC field not equal CONST.10
810-Bit Constant generation microword variant, when MISC field equal CONST.10

Figure 6—2: Ebox Data Path Control, Special Format

615 55 5|55 5 5|5 54 414 44 41444 4133331333333 22l2222/2222i21111

0!9676l5432ll()98‘l765413210]987615432|1098[7654l3210|9876|5

121 ALU I MRO IT MISCl —IFOT MIsC2 ID! B IL;WIYV;— DST IT A F MISC ;

‘)) IlfPOSI CONET r);ISCTnot egual CC;NST.IO)
1Il-;— - CONET.10 | MISC equal CONST.10

Table 6-2: EBOX Data Path Contro! Microword Fields, Special Format

Bit Position

Microword

Microword Field Format

Description

60

6—2 Microinstruction Formats

FORMAT

Microword format-Standard or Special

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 6—2 (Cont.): EBOX Data Path Control Microword Fields, Special Format

Microword
Bit Position = Microword Field Format Description
59:55 ALU Both ALU function select
54:50 MRQ Both Mbozx request select
49:46 MISC1 Special Miscellaneous function select, group 1
45 LIT Both ALU/shifter B port control-register or literal
44:41 MISC2 - Special Miscellaneous function select, group 2
40 DISABLE.RETIRE Special® Instruction retire disable
39:35 B Both! ALU/ghifter B port select
4443 POS Both? Constant position
42:35 CONST Both? 8-bit constant value
44:35 CONST.10 Both® 10-bit constant value
34 L Both Length control
33 w Both Whbus driver control
32 v Both VA write enable
31:26 DST Both WBUS destination select
25:20 A Both ALU/shifter A port select
19:15 MISC Both Miscellaneious function select, group 0

INOT Constant generation microword-variant
28-Bit Constant generation microword variant, when MISC field not equal CONST.10
$10-Bit Constant generation microword variant, when MISC field equal CONST.10

6.1.2 Microsequencer Control

The Microsequencer Control Microword supplies the information necessary for the Microsequencer
to calculate the address of the next microinstruction. The basic computation done by the
Microsequencer involves selecting a base address from one of several sources, and then optionally
modifying three bits of the base address to get the final next address.

Bit <14>, SEQ.FMT, selects between Jump and Branch formats. Figure 6-3 and Figure 6—4 show
the two formats. Table 6—3 and Table 64 describe each of the fields.

DIGITAL CONFIDENTIAL Microinstruction Formats 6—3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 6-3: Ebox Micresequencer Control, Jump Format

1 |
0 ¢ BI7 65413210

1018 MUX! J |

Table 6-3: Ebox Microsequencer Control Microword Fields, Jump Format

Microword
Bit Position = Microword Field Format Description
14 SEQ.FMT —_ Microsequencer format—Jump or Branch
13 SEQ.CALL Both Subroutine call
12:11 SEQ.MUX Jump Next address select .
10:0 J Jump Next address

Figure 6-4: Ebox Microsequencer Control, Branch Format

¢ BI7T €5 412210

-

1|8|SEQ.COND | BR.OFF |

Table 6—4: Ebox Microsequencer Control Microword Fields, Branch Format

Microword
Bit Position = Microword Field Format Description
14 SEQ.FMT —_ Microsequencer format—Jump or Branch
13 SEQ.CALL Both Subroutine call
12:8 SEQ.COND Branch - Microbranch condition select
7:0 BR.OFF Branch Page offset of next address

6.2 Ibox CSU Microcode

The Ibox complex specifier unit is controlled by a 29-bit microword, as shown in Figure 6-5. A
brief description of each field is given in Table 6-5.

64 Microinstruction Formats ‘ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 6-5: Ibox CSU Format

28127 26 25 24123 22 21 2011¢ 18 17 16115 14 13 12|11k 10 09 08|07 06 05 04{02 02 031 0OC

JF——, o+ - -+

- -+ -+ Ltk dd sl Sl + -+ o o

ST | MIsC | MREQ IMUX | NXT !

- O +

+ + - - R e e it e e

| ALU IDL| A I B |

Table 6-5: Ibox CSU Microword Fields

Bit Position =~ Microword Field Description)

28:26 ALU ALU function select

25 DL Data length control

24:22 A ALU A port select

21:19 B ALU B port select

18:16 DST Whbus destination R
15:13 MISC Miscellaneous function select

12:9 MREQ Mbozx request select

8:7 MUX_CNT Next address mux select

6:0 NXT ' Next address

6.3 Revision History

Table 6-6: Revision History
Who) When Description of change

Debra Bernstein 06-Mar-1989 Release for external review.
Mike Uhler 18-Dec-1989 Update for second-pass release.

DIGITAL CONFIDENTIAL: Microinstruction Formats 6-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 7

The Ibox

7.1 Overview .

The NVAX Plus IBOX chapter includes the overview description, IPR specifications, and description
of IBOX testabilty features from the NVAX CPU Chip Specification. For detailed and complete IBOX
specification refer to the NVAX CPU Chip Specification.

7.1.1 Introduction

This chapter describes the Ibox section of the NVAX Plus CPU chip. The 4-stage Ibox pipeline
(80..83) runs semi-autonomously to the rest of the NVAX Plus CPU and supports the following
functions:

* Instruction Stream Prefetching
The Ibox attempts to maintain sufficient instruction stream data to decode the next instruc-
tion or operand specifier.

* Imstruction Parsing ;
The Ibox identifies the instruction opcodes and operand specifiers, and extracts the informa-
tion necessary for further processing.

* Operand Specifier Processing
The Ibox processes the operand specifiers, initiates the required memory references, and
provides the Ebox with the information necessary to access the instruction’s operands.

* Branch Prediction
Upon identification of a branch opcode, the Ibox hardware predicts the direction of the branch
(taken vs. not taken). For branch taken predictions, the Ibox redirects the instruction
prefetching and parsing logic to the branch destination, where instruction processing resumes.

Figure 7-1 is a top level block diagram of the Ibox showing the major Ibox sub-sections and their
inter-connections.

This chapter presents a high-level description of the Ibox functions, then provides details of the
Tbox sub-sections which support each function.

DIGITAL CONFIDENTIAL The Ibox 7-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 7-1: Ibox Block Diagram

VIC

PFO_FULL
VIG_DATA

VIC_REQ_ADDR

PFQ
NEW_PC !-‘

BAANCH STAEH
> BPU 8P _DISP iBU SRE00E RS

e e—
«OPCODE ISSUE STALL

BYTES_AVAILABLE ,

PFQ_DATA

_SPEC CTAL

18U_ro

E%BCOND_RE TIRE
I-
i
o
2]
n
z
>

1%BAANCH BUS

M%MO_BUS

sBU

‘ oQuU MD_INDEX csu COUNTERS

PC_QUEUVE _DATA
—

ROPERAND_BUS
E%XDO_RETINE
1%1BOX_ADDR
1%I180X_tw_sus
EXIBOX_IA_BUS
i%la_Bus
EXREVIRE_INSTR

-

-<

<
<

7.1.2 Functional Overview

The Ibox fetches, parses, and processes the instruction stream, attempting to maintain a constant
supply of parsed VAX instructions available to the Ebox for ezecution. The pipelined nature of the
NVAX Plus CPU allows for multiple macroinstructions to reside within the CPU at various stages
of execution. The Ibox, running semi-autonomously to the Ebox, parses the macroinstructions
following the instruction that is currently in Ebox execution. Performance gains are realized
when the time required for instruction parsing in the Ibox is hidden during the Ebox execution of

7-2 The lbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

an earlier instruction. The Ibox places the information generated while parsing ahead into Ebox
queues.

The Instruction Queue contains instruction specific information which includes the instruction
opcode, a floating point instruction flag, and an entry point for the Ebox microcode.

The Source Queue contains information about the source operands for the instructions in the
instruction queue. Source queue entries contain either the actual operand (as in a short literal),
or a pointer to the location of the operand.

- The Destination Queue contains information required for the Ebox to select the location for
execution results storage. The two possible locations are the VAX General Purpose Registers
(GPRs) and memory.

These queues allow the Ibox to work in parallel with the Ebox. As the Ebox consumes the entries
in the queues, the Ibox parses ahead adding more. In the ideal case, the Ibox would stay far
enough ahead of the Ebox such that the Ebox would never have to stall because of an empty
queue.

The Ibox needs access to memory for instruction and operand data. Instruction and operand data
requests are made through a common port to the Mbox. All data for both the Ibox and the Ebox
is returned on a shared M%MD_BUS<63:0>

The Ibox port feeds Mbox queues to smooth memory request traffic over time. The Specifier
Request Latch holds Ibox requests for operand data. The Instruction Request Latch holds Ibox
reguests for instruction stream data. These 2 latches allow the Ibox to issue memory requests
for both instruction and operand data even though the Mbox may be processing other requests.

The Ibox supports 4 main functions:

1. Instruction Stream Prefetching
2. Instruction Parsing A
3. Operand Specifier Processing
4. Branch Prediction

Instruction Stream Prefetching works to provides a steady source of instruction stream data for
instruction parsing. While the instruction parsing logic works on one instruction, the instruction
prefetching logic fetches several instructions ahead.

The Instruction Parsing logic parses the incoming instruction stream, identifying and pre-
processing each of the instruction’s components. The instruction opcodes and associated informa-
tion are passed directly into the Ebox instruction queue. Operand specifier information is passed
on to the operand specifier processing logic.

The Operand Specifier Processing logic locates the operands in registers, in memory, or in the
Instruction Stream. This logic places operand information in the Ebox source and destination
queues, and makes the required operand memory requests.

The Ibox does not have prior knowledge of branch direction for brnaches which rely on Ebox
condition codes. The Branch prediction logic makes a prediction on which way the branch will
go and forces the Ibox to take that path. This logic saves the program counter of the alternate
branch path, so that in the event that Ebox branch execution shows that the prediction was
wrong, the Ibox can be redirected to the correct branch direction.

DIGITAL CONFIDENTIAL . ' The lbox 7-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

7.2 VIC Control and Error Registers

The VIC contains 4 internal processor registers (IPRs) which provide VIC control and read/write
access to the arrays.

MACROCODE RESTRICTION

VIC_ENABLE must be cleared before writing to the VIC IPRs: VMAR, VDATA, or VTAG.
VIC_ENABLE must be cleared before reading from VIC IPRs: VDATA, VTAG. In functional
operation, an REI must preceed the MTPR which enables the VIC.

See Section 7.4 for details of the IPR mechanism.

Figure 7-2: VMAR Register

31 3G 2¢ 28127 26 25 24122 22 21 20)1¢ 16 17 16115 14 12 12|11 10 ¢ 8] 7 6 5 4] 2 2 1 O

ADDP | | I | 0t 0} :VMAR

. - - - -+ B L s J

+ -+ - - -+ b baiad o

|
!

ROV_INDEX ===v I

: SUE_BLOCK ===+

- -
|
|

|
|
|
|
IW ===

Table 7-1: VMAR Register

Name Bit(s) Type Description

LW : 2 WO Longword select bit. Selects longword of sub-block for access to cache
array

SUB_BLOCK 4:3 RW Sub-block select. Selects data sub-block for access to cache array,
also latches viBa<4:3> on vic parity errors

ROW_INDEX 10:5 RW Row select. Row index for read and write access to cache array, also
latches viBa<10:5> on vic parity errors

ADDR 31:11 RO Error address field. Latches tag portion of viea on vic parity errors

When the VIC is disabled, the VIC Memory Address Register (VMAR) may be used as an index
for direct IPR access to the cache arrays. VMAR<10:5> supply the cache row index, VMAR<4:3>
supply the cache sub-block, and VMAR<2> indicates the longword within a quadword address.

VMAR also latches and holds the VIBA<31:3> on VIC array parity errors.

7-4 The Ibox ' DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 7-3: VTAG Register

31 30 22 28127 26 25 24122 22 21 201% 18 17 1611% 14 13 12111 10 ¢ 8| 7 € 5 41 3 2 1 ©

- -

o + - - + - o o o o o e o oo o o + - -

+— 4

. . . TAG o ! 11 21Te|

Table 7-2: VTAG Register

Name Bit(s) Type Description

AY 3:0 RW Data valid bits. Supply data valid bits on array read/writes
DP 74 RW Data parity bits. Supply data parity on array read/writes
TP 8 RW Tag parity bit. Supplies tag parity on tag array read/writes
TAG 31:11 RW Tag. Supplies tag on tag array read/writes

The VTAG IPR provides read and write access to the cache tag array. An IPR write to VTAG will
write the contents of the M%MD_BUS to the tag, parity, and valid bits for the row indexed by
VMAR<10:5>. VTAG<31:11> are written to the cache tag. VTAG<8> is written to the associated tag
parity bit. VTAG<T:4> are used to write the four data parity bits associated with the indexed cache

~ row. Similarly VLAG<3:0> write the four data valid bits associated with the cache row. DP<3:0>
and V<3:0> are the data parity and data valid bits, respectively, for the 4 quadwords of data in
the same row. DP<0> and V<0> correspond to the quadword of data addressed when address bits
4:3 = 00, DP<1> and V<1> correspond to the quadword of data addressed when address bits 4:3
= 01, etc.

Figure 7=4: VDATA Register

31 30 2¢ 2827 26 25 24123 22 21 20]11% 18 17 16115 14 13 12111 10 ¢ &1 7 6 5 413 2 1 0

- PR

-+ - -+ o+ + -+ Rabateal bl - -t + + + o+

| DATA | <VDATA

Table 7-3: VDATA Register
Name Bit(s) Type Description
DATA 31:0 RW Data for date array reads and writes

The VDATA IPR provides read and write access to the cache data array. When VDATA is written,
the cache data array entry indexed by VMAR is written with the IPR data. Since the IPR data is
a longword, two accesses to VDATA are required to read or write a quadword cache sub-block.

Writes to VDATA with VMAR<2> = 0 simply accumulate the IPR data destined for the low longword
of a sub-block in FILL_DATA<31:0>. A subsequent write to VDATA with VMAR<2> = 1 directs the
the IPR data to FILL_DATA<63:32>, and triggers a cache write sequence to the sub-block indexed
by VMAR.

DIGITAL CONFIDENTIAL - (The lbox 7-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Reads to VDATA with VMAR<2> = 0 trigger a cache read sequence to the sub-block indexed by
VMAR. The low longword of the a sub-block is returned as IPR read data. A read of VDATA with
VMAR<2> = 1 returns the high longword of the sub-block as IPR data.

Figure 7-5: ICSR Register

31 30 2¢ 2827 26 25 24(23 22 21 2011¢ 18 17 16115 14 12 12111 10 & 81 7 €6 5 413 2 1 O

-+ - - -+ + + + -+ -+ -+ -

l ¢ [t & 1 0 | :ICSK

I
Lo
I
TPERR ===+ |

DPERF. ===+

LOCY. ===+
ENABLE ===«

! |
| |
| |
|]
| |
|

Table 7-4: ICSR Register

Name Bit(s) Type Description

ENABLE 0 RW,0 Enable Bit. When set, allows cache access to the VIC. Initializes to
) ’ O on RESET.

LOCK 2 wC Lock Bit. When set, validates and prevents further modification of

the error status bits in the ICSR and the error address in the VMAR
register. When clear, indicates no VIC parity error has been recorded
and allows ICSR and VMAR to be updated.

DPERR 3 RO Date Error Bit. When set, indicates data panty error occurred in
_ data array if Lock Bit also set.
TPERR 4 RO Tag Error Bit. When set, indicates tag parity error occurred in tag

array if Lock Bit also set.

The ICSR IPR provides control and status functions for the Ibox. VIC tag and data parity errors
are latched in the read-only ICSR<4:3>, respectively. ICSR<2> is set when a tag or data parity
error occurs and keeps the error status bits and the VMAR register from being modified further.
Writing a logic one to ICSR<2> clears the LOCK bit and allows the error status to be updated.
When ICSR<2> is clear, the values in ICSR<4:3> are meaningless. When ICSR<2> is set, a VIC
parity error has occurred, and either ICSR<4> or ICSR<3> will be set indicating that the parity
error was either a tag parity error or a data parity error, repectively. ICSR<4:3> cannot be cleared
from software. ICSR<(0> provides IPR control of the VIC enable. It is cleared on RESET.

7.3 VIC Performance Monitoring Hardware
Hardware exists in the Ibox VIC to support the NVAX Performance Monitoring Facility. See
Chapter 16 for a global description of this facility.

The VIC hardware generates two signals I%PMUX0 and I%PMUX1 which are driven to the central
performance monitoring hardware residing in the Ebox. These two signals are used to supply
VIC hit rate data to the performance monitoring counters.

7—6 The Ibox ' ' ‘ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

I7PMUXO0 is asserted the cycle when a VIC read reference is first attempted while the prefetch
gueue is not full. 1%PMUX1 signals the hit status for this event in the same cycle.

The data is captured only on the first read reference that could be used by the PFQ to avoid skewed
hit ratios caused by multiple hits or misses to the same reference while the prefetch queue is full
or the VIC is waiting for a cache fill.

7.4 Ibox IPR Transactions

The Ebox microcode communicates with the Ibox in part through internal processor registers
(IPRs). The IPR reads are handled by CSU microcode. The IPR write control is distributed, however
the description is included here for completeness.

Ebox microcode conventions guarantee that the Ibox is idle before initiating Ibox IPR transactions.
This is accomplished either by the knowledge that the current Ebox microcode flow takes place in
a macroinstruction with an drain Ibox assist or by asserting an explicit E%STOP_IBOX command.
The only exception involve the issuing of an IPR transaction when the CSU is involved in an RLOG
unwind operation. In this case the unwind finishes in the CSU, then the CSU processes the latched
IPR command. If the RLOG i¢ empty when the microcode initiates an unwind, 0 will be added to
whatever GPR is pointed to by the read pointers.

MICROCODE RESTRICTION
E%IBOX_LOAD_PC and E%IBOX_IPR_WRITE must not occur in the same cycle.

7.41 IPR Reads

The Ebox signifies an IPR read by asserting the E%IBOX_IPR_READ strobe, the EXIBOX_IPR_NUM,
and the E%IBOX_IPR_INDEX. This information is latched in the S1 logic stage, and an IPR request
flag is posted. The S1 next address logic responds by creating an IPR dispatch to an IPR microad-
dress in the utility page of microcode, and by clearing the IPR request flag. All Ibox logic blocks
associated with IPR reads examine the E%IBOX_IPR_NUM. If the IPR source is within a section,
that section prepares to drive the IPR read data onto the VIC_REQ_ADDR. The microcode at the
common IPR routine reads the VIC_LREQ_ADDR, passes the value through the ALU, and writes the
data to an Ebox working register located at the E%IBOX_IPR_INDEX offset in the register array.
The VIC_REQ _ADDR is used for IPR read data source simply because it is a convenient 32-bit bus
that runs through the entire section.

7.4.2 IPR Writes

The Ebox signifies an IPR write by asserting the E%IBOX_IPR_WRITE strobe and the E%IBOX_IPR_
NUM. All Ibox logic blocks associated with IPR writes examine the E%IBOX_IPR_NUM. If the IPR
destination is within a section, that section prepares to accept the IPR write data from the M%MD_
BUS. The Mbox drives the Ma%MD_BUS with IPR data and asserts M%IBOX_IPR_WR to complete the
transaction. '

" DIGITAL CONFIDENTIAL The lbox 7-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

7.5 Branch Prediction IPR Register

The BPCR IPR provides control for the BPU and read/write access to the history array. The
write-only BPCR bit causes a BPU branch history table fiush. The flush is identical to the con-
text switch flush, which resets all branch table entries to a neutral value: history bits = 0100.
The write-only BPCR<FLUSH_CTR> bit causes the BRANCH_TABLE_COUNTER<8:0> to be cleared.
The BRANCH_TABLE_COUNTER provides an address into the branch table for IPR read and write
accesses. Each IPR read from the BPCR or write to the BPCR with BPCR<LOAD_HISTORY> =
1 increments the counter. This allows IPR branch table reads and writes to step through the
branch table array. BPCR<LOAD_HISTORY> enables writes to the branch history table. A write
to the BPCR<HISTORY> field with BPCR<LOAD_HISTORY> = 1 causes a BPU branch history

- table write. The history bits for the entry indexed by the counter is written with the IPR data.

BPCR reads supply the history bits in BPCR<HISTORY> for the entry indexed by the counter.
BPCR<MISPREDICT> will return a "1" if the last conditional branch mispredicted. BPCR<31:16>
contain the branch prediction algorithm. Any IPR write to the BPCR will update the algorithm.
An IPR read will return the valu€ of the current algorithm. For example, a "0" in BPCR<16>
means that the next branch encountered will not be taken if the history is "0000". A "1" in
BPCR<21> means that the next branch encountered when the prior history is "0101" will be
taken.

Figure 7-6: BPCR Register

T 31 30 29 28(27 26 2F 24122

22 21 20112 18 17 16115 14 12 12121 20 ¢ 81 7 6 5 41 3 2 1 ©

| BPU_ALGORITHM | o [1 | | |0} history | :BPCR
Lo I
LOAD_HISTORY ===+ | | | [
FLUSH_CTR ===+ | | |
FLUSH_BHT ===+ | I
MISPREDICT ==m+ !
HISTORY =--+

The microcode will write the following bit pattern as part of the powerup segquence:

31 30 29 28)27 26 25 24123 22 21 20119 18 17 16)15 14 12 12111 10 ¢ 8] 7 6 5 4} 3 2 1 ©

i1

- + bt Sl + o+ - -+ + - =+ + o o o ~p <+

113111 3 0 21 0 C 1 0 1 o0f All O's |

B e e e et o o e e o 0 e e e e o o e o + oo e o e o e o e o

Table 7-5: BPCR Register

Name Bit(s) Type Description
HISTORY 3:0 RW Branch history table entry history bits.
MISPREDICT 5 RO Indicates if last conditional branch mispredicted.
7-8 The lbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 7-5 (Cont.): BPCR Register

Name Bit(s) Type Description

FLUSH_BHT 6 WO Write of a 1 resets all history table entries to a neutral value, hard-
ware clears bit.

FLUSH_CTR 7 WO Write of a 1 resets BPCR address counter to 0, hardware clears bit.

LOAD_HISTORY 8 WO Write history array addressed by BPCR address counter.

BPU_ALGORITHM 31:16 RW Controls direction of branch for given history.

Bits 8,7,6 are defined in Table 7—6 for IPR writes to the BPCR. NOTE: The prediction algorithm
will be updated on every IPR write to the BPCR.

Table 7-6: BPCR «<8:6>

o
=
w
|
5

Write Action

Do nothing, except update algorithm

Flush branch table. History not written

Address counter reset to 0. History not written

Flush branch table, reset address counter, history not written

Write history to table, counter automatically increments

Undefined: Branch table flushed, new history written, counter incremented
Undefined: Write history to old counter value, counter reset to 0

Undefined: Branch table flushed, write history to old counter value, counter.
reset to 0

= o - O O O O]
= o= O O 1 2O O
= O H+ O B OC = Ol®

7.6 Testability

7.6.1 Overview

Ibox testability is enhanced by architectural features, and connection to the internal scan register
and the parallel port.

7.6.2 Internal Scan Register and Data Reducer

Ibox hardware state may be latched and shifted off-chip through the global internal scan register.
See Chapter 17 for the implementation details of the internal scan register. State included on
the internal scan register for chip debug is TBD.

An Ibox linear feedback shift register (LFSR) is part of the internal scan chain. The register is
an observation only structure which can be loaded in parallel or loaded in parallel with feedback,
acting like a data reducer. The contents may be shifted out serial through the internal scan
register. Table 7=7 lists the signals that are contained in the Ibax LFSR.

DIGITAL CONFIDENTIAL ' The lbox 7-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 7-7: Ibox Scan Chain Fields

Field Name # bits Description

STOP_PARSER 2 Stop parser and status flags

SPEC_CTRL 21 spec_ctr] bits <21:13> and <11:0>

E.DL 2 Data length for instruction (DL of last operand)

7.6.3 Paraliel Port
The CSU microcode address is routed to the chip parallel port. The microcode address can be
monitered on a cycle by cycle basis during chip debug by selecting the Ibox as source to the

parallel port. When selected, a buffered version of the control store address, MUX_H<6:0>, appears
on PP_DATA<6:0>. See Chapter 17 for the implementation details of the parallel port.

7.6.4 Architectural Features
Internal processor registers are included as architectural features to aid in testability. IPR access
to VIC tags and data is available throught the VTAG and VDATA registers. See Section 7.2 for
the implementation details of the these registers. IPR access to the branch history table and

branch status is available throught the BPCR register. See Section 7.5 for the implementation
details of the BPCR.

7.6.5 Metal 3 Nodes

Various Ibox nodes are brought up to minimum size CMOS-4, metal-3 test pads for chip debug.
State included on the internal scan register for chip debug is TBD.

7.6.6 Issues

Internal scan register states in the Thos for chip debug are TBD.
Nodes elevated to metal-3 test pads in the Ibox for chip debug are TBD.

7.7 Performance Moﬁitoring Hardware

7.7.1 Signals

The Ibox provides two signals for performance monitoring: I1%PM_VIC_ACC_H and I%PM_VIC_EIT.
These signals enable the Ebox performance monitoring hardware to gather statistics on VIC hits
versus VIC accesses.

7-10 The Ibox : DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

7.8 Revision History

Table 7-8: Revision History

Who . When Description of change
Shawn Persels 06-Oct-1988 Initial release.

John F. Brown 19-Dec-1988 Partial Update.

John F. Brown, 06-Mar-1989 Release for external review.
Paul Gronowski,

Jeanne McKinley

John F. Brown, 12-Jan-1990 Intermediate release.
Ruben Castelino,

Mary Field,

Paul Gronowski, °

Jeanne Meyer

Gil Wolrich 15-Nov-1990 Retain Overview, IBOX IPRs, and Testability sections for NVAX Plus

external release.

DIGITAL CONFIDENTIAL The lbox 7-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 8

The Ebox

8.1

Chapter Overview

The NVAX Plus EBOX chapter includes the overview description, IPR specifications, and descrip-
tion of EBOX testabilty features from the NVAX CPU Chip Specification.

For detailed and complete EBOX specification refer to the NVAX CPU Chip Specification.

8.2 kntroductiqn

The Ebox is the instruction execution unit in the NVAX CPU chip. It is a 3 stage pipeline (S3..S5)
which runs semi-autonomously to the rest of the NVAX Plus chip and supports the following
functions: :

Instruction Execution

The Ebox is responsible for carrying out the execution portion of each VAX instruction under
control of a microfiow whose initial address is provided by the Ibox issue unit.

Instruction Coordination

The Ebox is 2 major source of control to coordinate instruction processing in the Ibox, Mboz,
and Fbox. It ensures that Ebox and Fbox macroinstructions retire in the proper order, and
it provides controls to the Mbox and Ibox which help manage certain inter-macroinstruction
dependencies. The Ebox cooperates with the Ibox in handling mispredicted branches.

Trap, Fault and Exception Handling

The Ebox coordinates trap, fault, and interrupt handling. It delays the condition until all pre-
ceding macroinstructions complete properly. It then collects information about the condition
and ensures that the correct architectural state is reached.

CPU Control

Most CPU control is provided by the Ebox. Ebox control functions include CPU initialization,
controlling Ibox, Fbox, and Mbox activities, and setting control bits during major CPU state
changes (e.g. taking an interrupt or executing a change mode instruction).

The Ebox accomplishes many of the above functions by executing the NVAX Ebox microcode. This
chapter views the Ebox as the interpreter of microcode. Describing how microcode functions are
used to correctly emulate the VAX architecture or the architectural motivation for Ebox hardware
functions is generally outside the scope of this discussion.

DIGITAL CONFIDENTIAL ' The Ebox 8-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 8-1 at the end of this section is a top level block diagram of the Ebox showing all the
major Ebox function units, their interconnections, and their place in the pipeline. The pipeline
segments are shown in the diagram (S2, S3, S4, and S5). The sections following the diagram
describe the function elements depicted and the Ebox pipeline.

8-2 The Ebox DIGITAL CONFIDENTIAL

Figure 8-1:

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Ebox Block Diagram

mesaemess NEGIFTER BILL ADDRRSS
ND DONTROL

e, DATA A

[R— »nhmn ©o0Rs

i FRRESULT FRCC H H

; (FROM FBDX; :]

S2 5 S3 e, (- S4 . S5 |

[Min Tac waiTe_agpaees ; :

H FROM M : g H

Ty |w ACDR 2 ; '

| (FRow Mo! ::;:-—-"ﬁ b : :

i twsox un"l‘tn’oﬁ i i 1

§ W-llcx u lus [: ! i

: " - cceiztoo | oo Ewwsys | !

: REGISTER[RAT WAS : 7t TWRITE DATA &

H WA2 B i

' FILE ' i TO MBGX AND |

i aon H \ INT.BYS) !

HNIBOX_IW_BUB<31:0 i L i

'u-ucm ucn()__< 102w p— RMUX : T H

RD1 H PATAPATH) ! !

| Mban_ Byessiio : :

' (FROM ™ i .

gl |]| ; |

vel] ; b H

: wo gz | : | Exva_sus :

H RAZ t - :

{-m_a A | I : i (ADDRESS 70 nuo:q

| - : ERWBUE ;

B P ; |

| 2 | i |

! CONST__ . i |

|«sN M e L : :

e — H |

CONST "—l L == X ; i

@EN | (FROW WTERRUPT LNIT) : :

S —— : j

: R —, m: e ‘: H !

SOURCE oL : | H

%OPERAND_BI [+ i ! |

! wngﬂ"l:éﬂ QUEUE I" : ' :

- : : ;

H BRANCHmrepieTIbN : : ;

' PRBRANCH_BUS | O] ; . H

ot] Gl [et | B e |

(FROM 1BOX ; E - { :,) i i

S2 INSTR. | §3 INSTR. : IMOPERAND_BUS | : : %EBOX QD :
CONTEXT LATCH i CONTEXT LATOH | (FROM 1505 (B £E§ = :
" : e . 86 VIRT ADDA!

' { MEMl %NO_MRIE_CHECK

' IﬁE‘l TRE - DCD M 1o meOX) H

Pl — OuEUE |- | :

. | i

, Pt : ‘ i ’

| T . H 85 INSTR. :

E H N § RLATCH : : NTEXT LATCH :
H RAP f i H i
ADDR : : :

H D | B :

cs : H H H

C_BUS I ' ’
{FRGM 1BOX) i ROM H ! i H ; ! ;
! . S Ty ; . ; :

| DECODE ' | 1

I ‘ » | 1

INSTRUCTION | ©6 ADDR $3 MIB LATCH ! &4 MIB DECODE LATCH {85 MIB DECODE LATGH|
[—— 1 : :

DIGITAL CONFIDENTIAL

The Ebox 8-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.3 Ebox Overview

8.3.1 Microword Fields

The Ebox is controlled by the data path control portion of the microword, which is either standard
or special format. The other portion of the control word, the microsequencer control portion,
controls the microsequencer which determines which microword is fetched in every cycle. The
fields of the data path control portion of the microword and their effect within the Ebox are shown
in Table 8~1. For more information on microword formats and field widths see Chapter 6.

NOTATION

The notation FIELD/FUNCTION is used throughout this chapter to mean that microword
field FIELD specifies FUNCTION.

Table 8-1: Data Path Contro! Microword Fields

Microword Microword
Field Format Description
FORMAT Both This one-bit field determines whether the microword is in the special format.

If it is 1, the MISC1, MISC2, and D fields exist. If it is 0, the Q, SHF, and
VAL fields exist instead.

LIT Both Thie one-bit field determines whetber the microword is the constant generation
variant (format). If it is 1, the POS and CONST fields exist. If it is 0, the VAL
and B fields exist instead in standard format, and the MISC2, D, and B fields
exist instead in special format.

ALU Both Sets the ALU function, including typical ALU operations, and others.

MRQ Both Controls initiation of Ebox memory accesses, VECTOR MEMORY ACCESSES,
and other Mbox control functions. The Ebox decodes the field and sends the
corresponding request to the Mbox.

SHF Standard Sets the shifter function. The W and Q fields control how the shifter output
is used. Some settings of this field specify a pass operation instead of a shift.
VAL Standard? Specifies the shift amount (1 to 31) or, if VAL = 0, specifies to shift the amount

in the SC register.

A Both Specifies the source of E_BUS®ABUS<31:0> for this microword. The A field
can select any element in the register file or one of several of Ebox sources.
E_BUB%ABUS<31:0> is one of the two sources for the ALU and the shifter.

B Both! When the source of E_BUS%BBUS<31:0> is a register this field specifies the
source of E_BUS%BBUS<31:0>. The B field can select from some of the ele-
ments in the register file or from a small number of other Ebox sources. E_
BUB%BBUS<31:0> is one of the two sources for the ALU and the shifter.

POS Both? When the source of E_BUS%BBUS<31:0> is fromn the constant generator this
field specifies which byte the constant value is in. Bytes 0 through 3 may be
epecified. The other bytes are forced to 0.

1Not constant generation microword variant.

2Constant generation microword variant.

8-4 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-1 (Cont.): Data Path Control Microword Fields

Microword Microword

Field Format Description

CONST Both? This field contains the literal byte value which is sourced to-one of the bytes of
E_BUB%BBUS<31:0> as specified by the POS field. (The other k_BUS%BBUs<31:0>
bytes are forced to 0.)

CONST.10% Both? This field contains the literal 10-bit value which is sourced to E_BUS%BBUS<9:0>.
(E_BUS%BBUS<31:10> are forced to 0.)

DST Both This field specifies the destination of E%WBUs<31:0>. The possible destinations
include a subset of the register file and a number of other Ebox destinations.

Q Standard Controls whether or not the Q register is loaded with the shifter output for
this microword.

w Both Selects the driver of E%wWBUS<31:0>. Either the ALU or the shifter output is
driven on E%WBUS<31:0>.

L Both This field controls whether the Ebox operations are done with a data length of
longword or the length specified in the DL register. The Ebox operations af-
fected are condition code calculation, size of memory operations, zero extending
of E%WBUS data, and bytes affected by register file writes.

A% Both Controls updating of the VA register. Either the VA register is updated with
the value from the ALU, or it is not changed from its previous value.

MISC Both This field has many uses. Only one use can be selected at a time. This field
can control PSL condition code alterations, set the DL register, set or clear state
flags, or invoke a box coordination or control function.

MISC1 Special This field can specify one of a few Ibox or Fhox coordination or control func-
tions, and can be used to set or clear state fiags.

MISC2 Speciall One Mbox contro]l function and one to add an Fbox destination scoreboard
entry.

‘DISABLE.RETIRE Special! This field is used to disable retire of macroinstructions and retire queue entries

INot constant generation microword variant.
2Constant generation microword variant.

3The CONST.10 field is actually the POS field bitwise concatenated with the CONST field, with the POS field in the
more significant position. It is simply a way of treating these two microword fields as one. CONST.10 is only used when
MISC/CONST.10.BIT is specified.

When a microword field is not present in all formats, it defaults to NOP (no operation) when a
microword format without that field occurs. More specifically, standard format microwords effec-
tively specify MISC1/NOP, MISC2/NOP, and DISABLE.RETIRE/NO by default. Special format microwords
effectively specify Q/HOLD.Q, SHF/NOP, and VAL/0. When the microword is the constant generation
variant of the standard format microword, VALW is effectively specified, and the B field is ignored
since this microword variant sources a constant onto E_BUS%BBUS<31:0>. In the constant gener-
ation variant of the special format microword, MISC2/NOP and DISABLE.RETIRE/NO are effectively
specified, and the B field is ignored because this microword variant also sources a constant onto
E_BUS%BBUS<31:0>.

DIGITAL CONFIDENTIAL The Ebox 8-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.3.1.1 Microsequencer Control Fields

In addition to decoding the datapath control portion of the microword, the Ebox decodes a part
of the Microsequencer control portion of the microword. Specifically, it detects when the SEQ.FMT
and SEQ.MUX fields (see Chapter 9 and Chapter 6) specify LAST.CYCLE or LAST.CYCLE.OVERFLOW.
The Ebox fault detection logic and the RMUX control logic use these decodes.

8.3.2 The Register File

The register file contains four kinds of registers: MD (memory data), GPR, Wn (working), and
CPUSTATE registers. The MD registers receive data from memory reads initiated by the Ibox,
and from direct writes from the Ibox. The Wn registers hold microcode temporary data. They
can receive data from memory reads initiated by the Ebox and receive result data from ALU,
shifter, or Fbox operations, and from the Ibox in the case of Ibox IPR reads. The GPRs are the VAX
architecture general-purpose registers (though R15 is not in the file) and can receive data from
Ebox initiated memory reads, from the ALU or shifter, or from the Ibox. The CPUSTATE registers
hold semipermanent architectural state (e.g. KSP, SCBB). They can only be written by the Ebox.

8.3.3 ALU and Shifter

Each microword specifies source operands for the ALU or shifter (A, B, POS, and CONST fields),
operations for these function units to perform (ALU, SHF, and VAL fields), and a destination (or
possibly two destinations if Q or VA is updated) for the result(s) (DST, Q, W, and V fields). Note
that in special format microwords no shifter operation can be specified and the Q register can’t be
altered. In the course of executing the microword, the Ebox will fetch the source operands onto
E_BUS%ABUS<31:0> and E_BUS%BBUS<31:0>, carry out the specified ALU and shifter functions,
and store the result in the specified locations (if any). '

8.3.3.1 Sources of ALU and Shifter Operands

In general the sources of E_BUS%ABUS<31:0> and E_BUS%BBUS<31:0> (the inputs to the ALU and
shifter) are either a constant, a register from the register file, an Ebox register (e.g. PSL, Q, or
va), an Ebox source value calculated by a special function unit, a hardware status provided via
a special path from outside the Ebox (e.g., interrupt status), or an entry from the source gqueue.
E_BUS%BBUS<31:0> sources are limited to a subset of the register file, certain Ebox registers, and
an entry from the source queue. The source queue is introduced in Section 8.3.4.

8.3.3.2 ALU Functions

The ALU is capable of standard operations on byte, word, and longword size operands. It can pass
either input to the output and is capable of a number of arithmetic and logical operations on one
or two operands, producing condition codes based on data length and operation.

8.3.3.3 Shifter Functions

The shifter does longword and quadword shift operations and certain pass-thru operations, always
producing a longword output. The shifter treats the two sources as a single quadword, with
E_BUS%ABUS<31:0> as the more significant longword. The longword output is this quadword
shifted right 0 to 32 bits and truncated to longword length. The shifter produces condition codes
based the longword output data. .

86 The Ebox _ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

8.3.3.4 Destinations of ALU and Shitter Results

The output of the shifter and the output of the ALU can drive E%#WBUS<31:0>. The shifter output
is also directly connected to the Q register so that the Q register can be lcaded with the shifter
output regardless of the source of E%WBUS<31:0>. In the same way, the ALU output is directly
connected to the VA register. E%WBUS<31:0> data is the input to one of the write ports on the
register file and can be used to update any register file entry except an MD register. Certain other
Ebox registers (e.g. SC, PSL) can be loaded from E%WBUS<31:0>.

The destination of E%#WBUS<31:0> can be specified by the current destination queue entry, when
the microword so specifies. The destination queue is introduced in the following section.

8.3.4 Ibox-Ebox Interface

The Ibox-Ebox interface is made up of a number of FIFO queues. The purpose of these queues is to
allow the Ibox to fetch and decode new instructions before the Ebox is ready to execute them. The
Ibox adds entries as it decodes instructions, and the Ebox removes them from the other end as it
executes them. For each opcode, there is a predetermined number of entries added to the various
queues by the Ibox. Ebox execution microflows remove exactly the right number of entries from
each queue.

The queues which interface the Ibox to the Ebox directly are the source queue, the destination
queue, the branch queue, and the field queue. The instruction queue, the PA queue, and the
retire queue are introduced here for completeness.

The source queue holds source operand information. Entries are added by the Ibox as it decodes
the source type operand specifiers of each instruction. The entry is either a pointer into the
.register file or the data from a literal mode operand specifier. The Ebox accesses and removes
an entry each time a microword specifies a source queue access in either the A or B fields. If the
entry is literal data, it is used as an ALU and/or a shifter operand. Otherwise the register file is
accessed using the pointer in the entry.

The destination queue holds result destination information. Entries are added by the Ibox as it -
decodes the destination type operand specifiers of each instruction. A destination queue entry
is either a pointer to a GPR in the register file or a flag indicating that the result destination is
memory. The Ebox accesses and removes an entry each time a microword specifies a destination
queue access in the DST field or the Fbox supplies a result which specifies a destination gqueue
access. If the entry is a pointer to a GPR, the Ebox writes the ALU, shifter, or Fbox data into the
register file. Otherwise the data is stored in memiory at the address found in the PA queue.

The PA queue is in the Mbox. Each time the Ibox adds an entry indicating a memory destination
to the destination queue it also sends the Mbox a virtual address to be translated. When the
Mbox has translated the address it puts it in the PA queue. If the current destination queue
entry indicates a memory destination, the Ebox sends the result data to the Mbox to be written
to the physical address found in the PA queue. The Mbox removes the PA queue entry as it uses
it.

The branch queue holds status bits for each branch instruction processed by the Ibox. The Ibox
adds an entry to the branch queue each time it finishes processing a conditional or unconditional
branch. The Ebox references and removes the current branch queue entry in the execution
microfiow for the branch. This allows the Ebox to synchronize with the Ibox so that the branch
does not finish executing until the Ibox has successfully fetched the branch displacement specifier.
It also allows the Ebox to check for an incorrect branch prediction by the Ibox.

DIGITAL CONFIDENTIAL : The Ebox 8-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Each time the Ibox decodes a branch it calculates the branch address. For unconditional branches
it simply begins fetching from the new instruction stream immediately. For conditional branches
the Ibox predicts whether the branch will be taken or not. The branch queue entry added by
the Ibox indicates the branch prediction. When the Ebox executes an unconditional branch, it
references the branch queue simply to ensure that the Ibox was able to fetch the displacement
specifier without a fault or error. For conditional branches the Ebox also checks that the branch
prediction was correct and initiates a microtrap if it wasn’t. If the branch wasn’t correct, the
Ebox notifies the Ibox, which uses the alternate path PC (which it had kept) to begin fetching
along the correct path.

The retire queue holds status for each macroinstruction currently being executed in the Ebox
or the Fbox. The status indicates which unit will execute the instruction, the Ebox or the Fboxz.
The Ebox adds an entry each time the Microsequencer dispatches to a macroinstruction execution
microflow. The Ebox references the retire queue when the macroinstruction execution is complete
in order to ensure that instructions finish ezecuting in the proper order. A certain amount of
concurrent execution in the Fbox and Ebox is possible. The retire queue is used to prevent one
box from altering any architecturally visible state before the other box’s execution for preceding
macroinstructions finishes. The Ebox references and removes a retire queue entry each time an
Fbox or Ebox instruction is retired.

The field queue holds a one-bit type status for variable-length bit field base address operands
processed in the Ibox. (Note that some operands are treated as variable-length bit field base

- address operands internally by the NVAX CPU even though the operand is not really the base
address of a variable-length bit field. These operands, including the true bit field base address
operands, are collectively referred to as field operands.) The field queue entry indicates whether
the field operand was register mode. The Ibox adds an entry when it processes operands which
it knows by context require an entry. The Ebox retires an entry after it has used the information
in a microcode conditional branch. Very different execution microflows are required for some
instructions, particularly bit field instructions, depending on whether a particular operand is
register mode or specifies a memory address. In the latter case the information sent by the Ibox
is a memory address, while in the first case the source and destination queue entries point to the
register in the register file.

The instruction gueue is part of the Ibox-Microsequencer interface. It holds information derived
from the VAX instruction opcode. The Ibox adds an entry as it decodes each instruction. An
entry contains the opcode, data length, the microcode dispatch address for execution, and a flag
indicating whether the macroinstruction is for the Fbox. The Microsequencer references and
removes an entry at the start of execution of each VAX instruction. It uses the dispatch address to
fetch the first microword of the macroinstruction execution microflow. At the same time it passes
the opcode, data length, and the Fbox execution flag to the Eboz. The Ebox adds an entry to
the retire queue at that time. That entry is simply the Fbox execution flag (except if the Fbozx is
disabled.

8.3.5 Other Registers and States

The Ebox contains several special purpose registers, the SC, VA, and Q registers, and the PSL.
The SC register holds a shift count for use in some shift operations.

The VA register can hold a virtual address or a microcode temporary value. The VA register is
directly readable by the Mbox and is the address source for all Ebox initiated memory operations.
The VA register is loaded directly from the ALU output.

8-8 The Ebox ‘ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The PSL is the VAX architecture program status longword register. It is loaded from E%WBUS<31:0>
and can be used as a source operand by the ALU or shifter. Its bits are used in many places in
the Ebox and elsewhere in the CPU where required by the VAX architecture.

The Q register is loaded from the output of the shifter. It holds shifter results for later use.

8.3.6 Ebox Memory Access

Through the mechanism of the source queue and the destination queue, the Ibox initiates most
memory accesses for the Ebox. In certain cases the Ebox must carry out memory accesses on
its own. The MRQ field of the microword specifies the Mbox operation. The virtual or physical
address is provided from the VA register. If the VA is being updated in this microword, the address
is bypassed directly from the output of the ALU. For writes, the data is taken from E%WBUS<31:0>,
so it can be the output of the shifter or the ALU. For reads, the DST field of the microword specifies
the register file entry which is to receive the data. This register must be a GPR or a working
register.

8.3.7 CPU Control Functions

Most control functions are invoked through one of the MISC fields, but some of the MRQ field
functions are Mbox control functions or miscellaneous control functions rather than memory
access commands. The control functions generally act to reset a function unit (Fbox, Ibox, or
Mbox), synchronize Ebox operation with a function unit, or restart semiautonomous operation of
the Mbox or Ibox when either of them has stopped for some reason.

8.3.8- Ebox Pipeline

Ezecution of microwords in the Ebox is pipelined with three pipe stages (S3..85). These stages
are shown in Figure 8-1. In the first stage (S3), the E_BUS%ABUS<31:0> and E_BUS%BBUS<31:0>
sources are fetched or prepared. In the second (S4) the ALU and shifter operate on the data. In
the third (S5) the result is written into the register file or to some other destination. Stages
S3 and S4 can stall for various reasons. Stage S5 cannot stall. Once a particular microword’s
execution has advanced into 85, it is going to complete. Various stalls occur in S4 in order to
ensure that a particular microword’s effects do not change any architectually visible state (e.g.,
GPRs, PSL) before proper completion without memory management faults is guaranteed.

The Microsequencer fetches the microword and delivers it to the Ebox in S3. If the Ebox’s S3
stage is stalled, the Microsequencer’s S2 activity is stalled as well. See Chapter 9 for more detail.

Even though the operand fetch, function execution, and result store take place in different cycles,
the microword specifies the operation as if it all took place in one cycle. The Ebox has bypass
paths which allow a microword to use a register as a source even it it is updated by one of the two
preceding microwords. For example, if the immediately preceding microword updates Wi in the
register file and the current microword specifies W1 as a source to the ALU, the Ebox hardware
detects the condition and muxes the data into the staging latch before the ALU at the same time
as it forwards the data to the latch which sources E#WBUS<31:0> in stage S5.

DIGITAL CONFIDENTIAL ' The Ebox 8-8

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Bypass paths are only implemented where performance considerations warrant. Also bypass-
ing isn’t the solution to every problem pipelining introduces. For example, after the PSL is
updated the microcode allows 2 cycles before a microword specifying SEQ.MUX/LAST.CYCLE or
SEQ.MUX/LAST.CYCLE.OVERFLOW because the PSL is not actually updated until S5. The
Microsequencer uses the FPD, T, and TP bits in the PSL to determine the proper new microflow
dispatch. It would make the decision based on old PSL information if the microcode didn’t allow
the 2 cycles.

One place where the effect of pipelining is particularly apparent is in microcode conditional
branches. For example, a microcode branch based on E_BUS%BBUS<31:0> data must immediately
follow the microword which sources the relevant data onto E_BUS%BBUS<31:0>. Similarly, a
microcode branch based on the ALU condition codes must be the second microword after the one
which specified the ALU operation. See Chapter 9 for more detail on microcode branches.

8.3.9 Pipeline Stalls

The Ebox pipeline is controlled by the stall and fault logic. This function unit supplies stall
signals which are used to gate clocking of control and data latches in each stage. It also controls
insertion of effective no-ops into S4 when S3 is stalled and into S5 when $4 is stalled.

The Ebox pipeline stalls in S3 when it is accessing a source operand in the register file or the
source queue which is not valid. Many register file entries have a valid bit associated with them.
A register file entry is not valid, and its valid bit is not set, if a memory read has been initiated
for that entry and hasn't yet completed. A source queue entry is not valid if the Ibox hasn’t added
that entry yet.

The Ebox stalls in S4 if the current destination queue entry is not valid and the microword in
S4 references a destination queue entry. A destination queue entry is not valid if the Ibox hasn’t
added that entry yet.

The Ebox stalls in S4 if the current destination queue entry is valid but specifies a memory
destination for the data and the current PA queue entry is not valid. A PA queue entry is not
valid if the Mbox hasn’t added that entry vet.

The Ebox stalls in S4 if the microword in S4 requests a memory operation and the Mbox is
already working on an Ebox initiated memory operation (that is, the previous request is still in
the EM_LATCH).

The Ebox stalls in $4 if the microword in S4 synchronizes with the branch queue and the branch
queue entry is not valid. A branch queue entry is not valid if the Ibox hasn’t added that entry
yet. . .

The Ebox stalls in S84 if the current retire queue entry specifies that an Fbox instruction must
retire before the instruction associated with the microword in S4 and the Ebox is requesting the
use of the RMUX to store result data. (The Ebox requests the use of the RMUX if the microword in
S4 specifies anything other than NONE in the DST field.)

If the Ebox stalls in S8, the S4 and S5 stages of the pipeline can continue execution. If S4 doesn’t
stall when S3 does, then an effective no-op is inserted into S4 after the current S4 operation
advances into S5. The no-op is necessary so that the stalled S3 microword isn’t advanced to S4
and S5 while an S3 stall is in effect.

8-10 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If the Ebox stalls in S4 then S3 stalls as well. (Microwords can’t pass each other in the pipeline.)
During S4 stalls, an effective no-op is inserted into S5 after the operation in S5 completes. This
is necessary so that the operation in 54 isn’t advanced into S5 while an S4 stall is in effect.

In any cycle that the Ibox has not made a microstore dispatch address available to the
Microsequencer and a dispatch is needed (i.e., during the last cycle of any microfiow), the mi-
crosequencer fetches the STALL microword. This microword specifies no Ebox operation and can’t
cause a stall anywhere in the pipeline (although it does specify SEQMUX/LAST.CYCLE). This allows
the microwords already in the pipeline to continue even when the Ibox is temporarily unable to
supply new instruction execution dispatches. See Chapter 9 for more detail.

A microcode loop which repeatedly accesses the field queue until the current field queue entry
becomes valid is also very much like a stall, though the stall logic is not actually involved. This
condition is referred to as a field queue stall. In this situation, the Ebox pipeline advances in
each cycle (unless the microword in S4 is stalled also). However, the same microword is fetched
out of the control store in every cycle. In typical microcode usage of the field queue conditional
branch, this microword will nct alter any state in S4 or S5.

8.3.10 Microtraps, Exceptions, and Interrupts

The Ebox and Microsequencer together coordinate the handling of exceptions and interrupts.
Most interrupts and some exceptions are handled by-Microsequencer dispatching to a microcode
exception handler routine at the end of the current VaX instruction. These dispatches do not affect
the execution of microwords already in the pipeline. Other exceptions cause a microtrap. In a
microtrap the Microsequencer signals the Ebox to cause stages S3, S4, and S5 of the Ebox control
pipeline to be flushed. It also signals the Ebox to flush the retire queue. (Flushing of the other
Ibox-to-Ebox queues, the Fbox pipeline, and the specifier queue in the Mbox is done by microcode,
except in the case of a branch misprediction.) At the same time the Microsequencer fetches a new
microword from a special dispatch address in the control store based on the particular microtrap
condition. This microfiow handles any other necessary state filushing. Because a microtrap affects
microwords already in the pipeline, the Ebox delays handling most traps until the microword
which incurred the fault has reached S4. The microtrap is taken at the time that microword
would normally have entered S5. In certain cases, Ebox stalls delay a microtrap until the stall
is ended. The purpose of this is to ensure that operations which are part of a preceding VAX
instruction are allowed to complete properly.

Most of the microtraps which the Ebox delays until S4 are due to Ibox-initiated memory operations
which had an access or translation fault. Faults due to Ibox-initiated reads are detected by the
Ebox when it accesses a valid MD register from the register file, and the fault bit associated with
that MD is set. Each MD register has a fault bit which is set by the Ibox or the Mbox when a fault
occurs in the memory reads necessary to fetch the source data. When the Ebox accesses an MD
register with its fault bit set in S3, it carries that fault status down the pipeline into S4.

All faults detected in S3 are piped to S4 before they cause a microtrap. Faults detected in S$4 or
piped to S4 will cause a microtrap only if the Ebox is next to retire a macroinstruction. Otherwise

they are delayed until the Fbox retires an instruction and the retire queue entry indicates the
Ebox. v

Fault status signals are sent by the Ibox for entries in the instruction queue, source queue, field
queue, destination queue, and branch queue. Entries in the PA queue have fault bits. The Ebox
detects a fault when it accesses a PA queue entry with its fault bit set or when it finds the
instruction queue, source queue, field queue, destination queue, or branch queue empty and one

DIGITAL CONFIDENTIAL ‘ The Ebox 8&—11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

of the fault status signals from the Ibox asserted. In the case of the instruction queue, the fault is
detected in S2 and carried into S3 only when there is no S3 stall. In the case of the source queue
and field queue, the faults are detected in S3. Instruction queue, source queue, and field queue
related faults are carried down the pipeline until they reach S4, where they cause a microtrap
once the Ebox is next to retire a macroinstruction.

Faults encountered in Ebox-initiated memory operations cause the Microsequencer to trap im-
mediately. Ebox memory accesses begin in S5 so these traps cannot affect microwords from
preceding VAX instructions. It is up to microcode to make sure that the last Ebox memory access
has completed properly before the Microsequencer dispatches to another VAX instruction execution
microflow.

Hardware errors are essentially handled in the same way as faults.

8.3.11 Ebox IPRs

The CPUSTATE registers contained in the Register File are used by the microcode to hold el-
ements of architectural state. They are read and written only by the EBOX. There are 10
CPUSTATE registers: KSP, ESP, SSP, USP, ISP, ASTLVL, SCBB, PCBB, SAVEPC, and SAVEPSL.
Also the Ebox implements two IPRs. They are IPRs 124-125 (decimal), PCSCR and ECR.

ECR is a possible source of E_BUS%ABUS<31:05>, accessed by specifying ECR in the A field of the
microword. ECR and PCSCR are also possible destinations of E%#WBUS<31:0>, written by specifying
PCSCR or ECR in the DST field of the microword. On writes, the entire register is written, regardless
of the current DL value.

8.3.11.1 IPR 124, Patchable Control Store Control Register

The PCSCR is used to load control store patches. Chapter 9 describes the patchable control store
function in detail. Figure 8-2 and Table 8-2 show the bit fields and give descriptions.

Figure 8-2: PCS Control Register, PCSCR

31 30 2% 28127 26 25 24123 22 21 2019 18 17 16115 14 313 12111 10 02 08|07 0€ 05 04103 02 02 00

. - - . -

| 0l 0] 0] I 101 01 0] 0f 0} O 01 0) 01 Ol + 1 | | |0l 050 OOl 0l 0f 0] :PCSCR
i i [
| ~-- NONSTANDARD_PATCH DATA ==+ | | |
+== PATCH_REV RWL_SHIFT ==+ | |
|

I
i
I
PCE_WRITE ==+ |
PCS_ENE ==+ |
o+

8—-12 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPVJ Chip Functional Specification, Revision 0.3, October 1991

Table 8-2: PCSCR Field Descriptions

Type

Description

Name Bit(s)
PAR_PORT_DIS 8
PCS_ENB 9
PCS_WRITE 10
RWL_SHIFT 11
DATA 12

NONSTANDARD_PATCH 23

PATCH_REV 28:24

WO0,0

WO,0

WO

WO

Wwo

RW

RW

Writing & 1 disables control by the testability parallel port of
the section of the internal scan used in loading the control .
store CAM (content addressable memory) and RAM. This is
necessary when using this register to load the control store
CAM and RAM. :

Enables the control store CAM and RAM so that patches are
fetched and supersede the control store ROM.

The event of writing a 1 to this bit causes the PCS scan chain
contents to be written into the control store CAM and RAM.
The control signal which enables the write returns to the in-
active state automatically; there is no need for software to
write a 0 to this bit after writing a 1.

The event of writing & 1 to this bit causes the PCS scan chain
to shift by one. The control signal which enables the shift
returns to the inactive state automatically; there is no need
for software to write a 0 to this bit after writing & 1.

This bit holds the date which is shifted into the PCS scan
chain when a 1 is written to RWL_SHIFT. By repeatedly set-
ting DATA and writing a 1 to RWL_SHIFT, software can shift
any data pattern into the PCS scan chain.

This bit is set by software after loading a microcode patch. If
it is 1, it indicates & non-standard microcode patch has been
loaded. This bit is returned as bit<8> in a read from the SID

' processor register, except that O is substituted for this bit in

microcode for a SID read if PCSCR<PCS_ENB> is 0.

This bit is set by software after loading a microcode patch.It
indicates the revision of the standard microcode patch which
has been loaded. This field is returned as bits <13:9> in a read
from the SID processor register, except that O is substituted
for this bit in microcode for a SID read if PCSCR<PCS_ENB>
is 0.

8.3.11.2 PR 125, Ebox Control Register

The ECR is used to configure certain Ebox functions. Figure 8-3 and Table 8-3 show the bit fields

and give descriptions.

DIGITAL CONFIDENTIAL

The Ebox 8-13

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Figure 8-3: Ebox Control Register, ECR

31 30 22 28|27 26 25 24123 22 21 2011% 18 17 16(15 14 13 12111 10 0% 0B|O07 0€ 05 04103 02 01 00

- + o -
+ - Ll L L Ll - -

o+ o

PMF_PMUX —=+
PMF_ENABLE ==+
FBOX_TEST_ENABLE ~=

TIMEOUT_EXT ==+ |
FBOY_ENABLE ==+
VECTOR_PRESENT -~

[101 01 0] 0 OI O O O | [[1010l 107010000 [| | 1 | | | 1 :ECR
e o o e o o b e o -k B s e s - o s o o e -
| | I bl [N
i I 1 o | TCCE_EXT ==+ 1 | | 1 | 1 |
| | | Lo | TIMEOUT CLOCK ==+ | | | | | |
[| | P | TIMEOUT TEST ==+ | | 1 1 |
«=-- PMF_CLEAR | I Lo | TIMEOUT_OCCURRED ==+ | | | |
PMF_LFSK -=-+ | I | I
PMF_EMUX ==+ [| FBOX_ST4_BYPASS_ENABLE ==+ | | |
! I 1
[|
+ +

8-14 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-3: ECR Field Descriptions

Name

Bit(s)

Type

Description:

VECTOR_PRESENT

FBOX_ENABLE
TIMEOUT_EXT

FBOX_ST4_BYPASS_
ENABLE

TIMEOUT_OCCURRED

TIMEOUT_TEST

TIMEOUT_CLOCK

ICCS_EXT
FBOX_TEST_ENABLE

PMF_ENABLE

PMF_MUX
.PMF_EMUX

PMF_LFSR

DIGITAL CONFIDENTIAL

0

13

16

18:17

21:19

22

. RW,0

RW,0

RW,0

RW,0
wC

RW,0

RO

RW

RW,

RW,0

RW,0

RW,0

RW,0

This bit is for vector unit support in a future version of this
chip. :

This bit is set by configuration code to enable the Fbox.

This bit is set by configuration code to select an external time-
base for the S3 stall timeout timer. Since the NVAX Plus
input clock requirements are for the test clock inputs to be
dasserted in system operation, selecting an external time base
results in the disabling of S3 timeouts.

This bit is set by configuration code to enable Fbox Stage 4
bypass.

This bit indicates that an S3 stall timeout occurred. Writing
it with 1 clears it.

If this bit is a 1, the S3 timeout circuit counts cycles instead
of eycles in which E%TIMEOUT_ENABLE_H is asserted. In this test
mode the S3 stall timeout time is roughly 50 microseconds
instead of roughly 3 seconds.

This bit is most significant bit of the timeout base counter. It
is used as an indication that F#TIMEOUT_ENABLE E is functioning
(though some logic is not covered by this test). It should be 1
half of the time and O the other half of the time. The period
of oscillation: is 85536 times the cycle time of the chip or of
the waveform on p%osc_rc1_g, depending on ECR<TIMEOUT_
EXT>. For ECR<TIMEOUT_EXTS set to 0 and a 14 nsec cycle
time, this is a period of roughly 900 microseconds.

This bit is not used for NVAX Plus. NVAX Plus supports

the full interval timer support with ICCS, NICR, and ICR
processor registers implemented in the NVAX Plus CBOX.
‘When this bit is set to a 1, E*FBOX_TEST_ENB_E is asserted. This
puts the Fbox in a test mode in which data is passed from
stage to stage unaltered.

This bit is the internal implementation of the PME processor
register.

This field selects the source of events counted by the perfor-
mance monitoring facility, when enabled, to be Ibox, Ebox,
Mbox, or Cbox.

This field selects the EBOX events counted by the perfor-
mance monitoring facility, when the performance monitoring
facility is configured to count Ebox events. _

This bit enables exwBUs_B<31:0> LFSR (linear feedback shift
register) accumulator. This is a testability feature.

" The Ebox 8-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-3 (Cont.): ECR Field Descriptions
Name Bit(s) Type Description

PMF_CLEAR 31 WO Writing a 1 to this bit clears the performance monitoring fa-
cility counters (which are also therswsus_B<31:0> LFSR ac-
cumulator). It is not implemented in hardware. Microcode
handles this function.

NOTE

THE SUBSET INTERVAL TIMER FUNCTIONALITY IS REMOVED FROM NVAX
Plus.

8.3.12 Initialization

The main mechanism for Ebox initialization is the power-up microtrap, and the MISC/RESET.CPU
which occurs in the first microword of this microtrap flow. When this trap occurs, the Microsequencer
will assert E_USQ#PE_ABORT, aborting the Ebox pipeline as it does for any microtrap. None of
the registers in the register file or elsewhere in the Ebox are cleared on initialization, except that
IPR bits are cleared where indicated by the bit type (see Section 8.3.11). The state flags are also
cleared by reset.

The Ebox asserts E%STOP_IBOX, E%FLUSH_EBOX, E%FLUSH_MBOX, and E%FLUSH_FBOX during
reset. This is the same effect as ' MISC/RESET.CPU. See the sections on initialization for each of the
boxes for more detail.

8.3.13 Testability

This section describes the testability features in the Ebox.

8.3.13.1 Parallel Port Test Features
The following signals can be observed on the parallel test port.
* E%S3_STALL
* E%S4_STALL
¢ E%RMUX_S4_STALL
* Ebox retire queue output
¢ E_USQ%PE_ABORT

The following control functions are available on the parallel test port.

* Force source queue stall
Forces a source queue stall in any microword which accesses the source queue regardless of
the actual number of entries in the queue.

¢ Force destination queue stall
Forces a destination queue stall in any microword which accesses the destination gqueue
regardless of the actual number of entries in the queue.

816 The Ebox ' DIGITAL CONFIDENTIAL

NVAX Plus CPlJ Chip Functional Specification, Revision 0.3, October 1991

Force branch queue stall
Forces a branch queue stall in any m:croword which accesses the branch queue regardiess of
the actual number of entries in the queue.

8.3.13.2 Observe Scan

A number of signals in the Ebox are readable using the internal scan chain. Most of these are
control signals.

This is a list of the signals on the scan chain. They all are connected for observe only.

E%WBUS<31:0> LFSR.
The EM bus outputs.

The significant stall result signals and enough of the precursors to allow determination of
which stall is in effect.

The significant fault results and E_USQ%PE_ABORT.
The bus E_USQ%UTEST.

8.3.13.3 E%WBUS<31:0> LFSR

E%WBUS<31:0> has an LFSR (linear feedback shift register) accumulator. Its output can be scanned
out via the observe scan chain. It can be reset to zero by TBS control.

ISSUE

The control to clear E%WBUS<31:0> LFSR will be specified when the testability strategy
is settled.

8.3.14 Revision History

Table 8-4: Revision History

Who When Description of change

John Edmondson 30-NOV-1988 Initial Release.

John Edmondson 19-DEC-1988 Corrections and Updates.

John Edmondson 06-MAR-1989 Release for external review.

John Edmondson 29-NOV-1989 Updates after external review and modeling complete.

John Edmondson 18-DEC-1989 Further updates, particularly adding real signal names.

John Edmondson 31-JAN-1990 Updates reflecting minor implementation motivated changes
- rev 0.5.

John Edmondson 4-MAY-1990 Updates reflecting minor implementation motivated changes
- post rev 0.5.

Gil Wolrich 15-Nov-1990 EBOX chapter for NVAX Plus external release

DIGITAL CONFIDENTIAL The Ebox 8-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 9

The Microsequencer

8.1 Overview

This chapter includes the microsequencer block diagram and descriptions of major hardware com-
ponents including the Control Store, Patchable Control Store, and Microtest Bus, and the mi-
crosequencer testability features.” The Microsequencer chapter of the NVAX CPU Chip Functional
Specification should be referred to for complete description of the Microsequencer.
The microsequencer is a microprogrammed finite state machine that controls the three Ebox
sections of the NVAX Plus pipeline: S3, $4, and S5. The microsequencer itself resides in the S2
section of the pipeline. It accesses microcode contained in an on-chip control ROM, and microcode
patches contained in an on-chip SRAM. Each microword is made up of fields that control all three
pipeline stages. A complete microword is issued to S3 each cycle, and the appropnate microword
decodes are pipelined forward to S4 and S5 under Ebox control.

Each microword contains a microsequencer control field that specifies the next microinstruction
in the microfiow. This field may specify an explicit address contained in the microword or direct
the microsequencer to accept an address from another source. It also allows the microcode to
conditionally branch on various NVAX states.

Frequently used microcode can be made into microsubroutines. When a microsubroutine is called,
the return address is pushed onto the microstack. Up to six levels of subroutine nesting are
possible.

Stalls, which are transparent to the microcoder, occur when an NVAX resource is unavailable,
such as when the ALU requires an operand that has not yet been provided by the Mbox. The
microsequencer stalls when S3 of the Ebox is stalled.

Microtraps allow the microcoder to deal with abnormal events that require immediate service.
For example, a microtrap is requested on a branch mispredict, when the Ebox branch calculation
is different from that predicted by the Ibox for a conditional branch instruction. When a microtrap
occurs, the microcode control is transferred to a service microroutine.

9.2 Functional Description

DIGITAL CONFIDENTIAL The Microsequencer 9—1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

9.2.1 Introduction

The NVAX microsequencer consists of several functional units of logic that are explained in the
following sections and illustrated in the block diagram, Figure 9-1.

9.2.2 Control Store

The control store is an on-chip ROM which contains the microcode used to execute macroinstruc-
tions and microtraps. It is made up of up to 1600 microwords. These are arranged as 200 entries,
each entry consisting of 8 microwords. Each microword is 61 bits long, with bits <14:0> being
used to control the microsequencer. The remainder of the microword, bits <60:15>, is used by the
Ebox to control S3 through S5. The Ebox also receives bits <14,12:11>, enabling it to recognize
the last cycle of a microfiow and the validity of the microtest bus select lines.

The control store access is performed during @34 of S2 and $; of S3 of the NVAX pipeline. The
output of the Current Address Latch, E_USQ CAL%CAL_H<10:0>, is used to address the control
store. Bits <10:4,0> are used to select one of the 200 entries. The eight microwords in the selected
entry then enter an eight-way multiplexer, where E_USQ_CAL%CAIL_H<3:1> select the final control
store output. This structure is used because E_USQ CAL%CAL H<3:1> are valid later than bits
<10:4,0>, since E_USQ _CAL%CAL_H<3:1> must be OR’d with the microtest bus for a BRANCH
format microinstruction.

8.2.2.1 Patchable Control Store

The patchable control store is an on-chip SRAM which contains microcode patches. It consists of
up to 20 microwords. It operates in parallel with the control store. The microaddress from the
CAL is the input to its CAM (Content Addressable Memory). If the address hits in the CAM, the
output of the patchable control store is selected as the new microword, rather than the output of
the regular control store. '

The patchable control store and CAM are precharged in ¢35 and evaluate in ¢4;. The CAL output,
E_USQ CAL%CAL_B<10:0>, is used in its entirety as the lookup address in the CAM, as opposed
to the 1-0f-200 selection followed by the 1-of-8 selection used in the ROM control store.

Entries in the Patchable Control Store and its CAM are written under software control from
registers in the Ebox. The CAM is disabled during this operation.

8.2.2.2 Microsequencer Control Field of Microcode

The microsequencer control field of the NVAX microword is used to help select the next microword
address. The next address source is explicitly coded in the current microword; there is no concept
of sequential next address.

The SEQ.FMT field, bit <14> of the microsequencer control field, selects between the following
two formats:

9-2 The Microsequencer DIGITAL CONFIDENTIAL

TTVILNZQIINOD TVLIOIa

Jagusnbesoloiy syL

£6

T%CS_TEST M . TEST
>l ADDRESS
E_BUS%UTEST L<2:0>
E-Siss T 10:4,0 cun. eonTReL
< :4,0>
M%TB PERR TRAP L — nenT <10:4,0> Rl
E_FLT%IOVFL L ADOR B
£ EHERR oo wenoTar
EFLT%HW EAR H ‘ LAY
E_FLTXRMME Enn_n—'——‘—’____, Losic
N R s A > E_USO%PE_ABORT L T,
E”| Fn%rl.onme _FAULT _H_3] 3
' ey | ! IEENENRE!
STALL Q'——;w *
EINT REQ_ M 9, Puit— cs_mis
E PSLYPS CHITTPE 31 LAST a
E_PSL%PSL ‘H<Fﬁo CYCLE @
G OUT<DISPATCH.VALIOZ] (odic > SELECT_IO :|
UMIB<SEQ.FMT.SEQ.MUX>__T
.
] <3:0
o
2 mMiIcRO :
N LAT i
\ STACK :
i:-. <10:4> <10:0> i
-3 {PATCHABLE
%0 BUS W ¥ TR | i CoNTROL
H s usp pcs_HIT | i STORE
i INSTR S '
: e 2 | usp cTL :
i l
H o PHIT PHII—] T PCS_MIB
: 2 STALL
! - UMIB <sEO CALL
H FMT.SEC.MUX>
¥
i warre PCS_HIT g
: —\ /
k3
. HEN
10_BUS <VALIDS 10_OUT<VALIDS | JUMF/BRANCH UMIBds
IsELECT_ IO AD . UMIB
STALL 10_OUT<OPC, DL Fi> | e
P4 PHIT
| INSTRUCTION cwvei,*—"“"
. UMIB<SEQ.COND>
. STALL pHI2
INSTRUCTION CONTEXT
[4EESELE"—'° piza _ | mcrotesT £ USO%PE AB%L‘.‘,“,-_Ea mis I
1 SELECT - - -
1

E%FOPCODE_H (TO FBOX)

E_USO%ICTX_H (TO §3)

PH
I INSTRUCTION CONTEXTY I: STALL

E_USO%UTSEL<4:0> (TO S$3)

E_USO%MIB (TO §3)

T

16 a4nBiy

welbeiq Noog Jesusnbasosoy

1661 19q032Q ‘g") TOISASY ‘woyedgroedg [puonounyg diq) 14D snid XVAN

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 8-2: Microcode Microsequencer Control Field Formats

14 12 22121 10 0% 08107 0€ OF 04102 02 01 00

o + + - -+

Jor L 0] | ! <

+* - - Ll

[

|| ==== SEQ.MUX
| === SEQ.CALL
$o== SEQ.FMT

- — 4

14 13 12111 10 0¢ 0B10O? 06 05 04103 G2 01 00

BRANCE | 1 i SEQ.CORD | BRANCH.QOFFSET [
I
| === SEQ.CALL
+=== SEQ.FMT

Table 8—1: Jump Format Control Field Definltions

Name Bit(s) Desecription

SEQ.FMT . 14 0 for JUMP

SEQ.CALL 13 Controls whether return address is pushed on microstack
SEQ.MUX 12:11 Selects source of next microaddress

J 10:0 JUMP target address

Table 9-2: Branch Format Control Field Definitions

Name Bit(s) Description

SEQ.FMT 14 1 for BRANCH

SEQ.CALL 13 Controls whether return address is pushed on microstack
SEQ.COND 12:8 Selects source of Microtest Bus

BRANCH.OFFSET 7:0 Page offset of next microinstruction

9.2.2.3 MIB Latches

The microword output from the Control Store 8-to-1 multiplexer is latched in ¢; into the Control
Store Microsequencer Microinstruction Buffer (CS_MIB) latch. The microword output from the
Patchable Control Store is also latched in &, into the PCS_MIB latch. The outputs of the CS_
MIB and PCS_MIB latches drive a multiplexer, which selects the PCS_MIB output if the CAL hit
in the Patchable Control Store; otherwise, the multiplexer selects the CS_MIB output.

Bits <14:0> of the multiplexer output (the Microsequencer Microinstruction, E_USQ_CSM%UMIB_
H<14:0>) are driven back to the microsequencer; bits <60:14,12:11> are driven to the Microinstruction
Buffer (MIB) latch. The MIB latch operates in &5, driving its outputs (E_USQ%MIB_H) to S3 of
the Ebox. When a microtrap is detected, the contents of this latch are forced to NOP. The MIB
latch is stalled on a microsequencer stall.

8—4 The Microsequencer ' : DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

9.2.3 Next Address Logic

The remainder of the microsequencer is devoted to determining the next control store lookup
address. There are five next address sources:

JUMP/BRANCH.OFFSET field of Microword
Microtrap Logic

Last Cycle Logic

Microstack

Test Address Generator

o N

9.2.3.1 CAL and CAL INPUT BUS

The CAL, or Current Address Latch, is a static latch which holds the 11 bit address used to access
the control store. It operates in @3, and is stalled on.a microsequencer stall. Bits <10:8> are also
"stalled" when forming a branch address.

The input to the CAL is the CAL INPUT BUS. The CAL INPUT BUS is a dynainic bus, precharged in
@9. The selected next address source drives this bus in $3. Bits <14,12:11> of the microsequencer
control field are used in selecting three of the next address sources: E_USQ CSM%UMIB_B<10:0>
(for a BRANCH or JUMP address), the output of the last cycle logic, and the microstack out-
put. The fourth CAL INPUT BUS source is the microtrap address; if a microtrap is detected, this
input is selected regardless of the value of E_USQ_CSM%UMIB_H<14,12:11>. The fifth source is a
test address, driven from the Test Address Generator. This input has the highest priority. In
summary:

Table 8~-3: Current Address Selection

TEST TRAP SEQ.FMT SEQ.MUX NEXT ADDRESS
ADDR DETECTED <14> <12:11> SOURCE REMARKS
0 0 0 00 J JUMP/CALL microin-
structions
0 0 1 XX Branch Address BRANCH/CONDITIONAL
CALL microinstructions
0 0 0 01 Microstack RETURN microinstruc-
tion
0 0 IX Last Cycle Logic Start new microfiow
1 XX Microtrap Logic Microtrap
X X XX Test Address Generatbest address

98.2.3.1.1 Microtest Bus

The microtest bus allows conditional branches and conditional calls based on Ebox information,
such as condition codes. The SEQ.COND field of the BRANCH format is driven on the microtest
select lines, E_USQ%UTSEL_H<4:0>, in $3. These lines are decoded by all conditional informa-
tion sources the Ebox, and the selected source drives its information on the microtest bus, E_
BUS%UTEST_H<2:0>, in NOT ¢4. E_BUS%UTEST_H must be valid in time to be OR'd with value on
the CAL INPUT BUS and latched in the CAL in &3.

DIGITAL CONFIDENTIAL The Microsequencer 8-5

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

The sources for the microtest bus are as follows:

Table 9-4: Microtest Bus Sources

UTSEL<4:0> Select UTEST<2:0>

00 No source 000

01 ALU.NZV? ALU_CC.N,ALU_CC.ZALU_CCV

02 ALU.NZC? ALU_CC.N,ALU_CC.Z,ALU_CC.C

03 B.2-0? EB_BUS<2:0>

04 B.5-3! EB_BUS<5:3>

05 A7-5! EA_BUS<7:5>

06 A15-12! EA_BUS<15:14>, EA_BUS<13> OR EA_BUS<«12>

07 A31.BQA.BNZ1} EA_BUS<31>, EB_BUS<2:0> = 0, EB_BUS<15:8> NEQ 0
08 MPU.0-62 MPUO_6<2:0> -
09 MPU.7-13% MPU7_18<2:0>

0A STATE.2-0* STATE<2:0>

0B STATE.5-3% STATE<5:3>

ocC OPCODE.2-0! OPCODE<2:0>

oD PSL.26-24° PSL«26:24>

OE PSL.29.23-22° PSL<29>, PSL<23:22>

OF SHF.NZ?,INT SHF_CC.N, SHF_CC.Z, INTERRUPT_REQUEST

10 VECTOR,TEST ECR<VECTOR_UNIT_PRESENT>?, TEST DATA, TEST STROBE
11 FBOX Encoded fault<1:0>, ECR<FBOX.ENABLED> = 0°

12 FQ.VR? 0, FIELD_QUEUE_NOT_VALID, FIELD_QUEUE_RMODE
13-1F Not Used '

1Data is taken from S3.
2Data is taken from S4.
3Data is teken from S6.

The microtest select lines are always driven with bits <12:8> of the CAL regardless of the mi-
croinstruction format. The microtest bus is only OR'd with the CAL INPUT BUS if the BRANCH
source is selected to drive that bus.

Two of the microtest sources, the Field Queue (FQ) and the Mask Processing Unit (MPU), perform
some function based on the value of the microtest select lines. These functions must check
SEQ.FMT, E_USQ%MIB_H<14>, for validity of the microtest select lines.

The microtest select lines are precharged to a value of zero during #1; no microtest source is
selected for this value.

9—6 The Microsequencer DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.2.3.2 Microtrap Logic

Microtraps allow the microcoder to deal with abnormal events that require immediate ser-
vice. When a microtrap occurs, the microcode control is transferred to a service microroutine.
‘Operations further behind in the pipe than the one which caused the microtrap are aborted.

Microtraps are generated by the Ebox, Mbox, or Ibox. Those Ebox microtrap requests considered
faults are asserted in $4 of the microinstruction in which they occurred. Those that are considered
~ traps are asserted in S5 of the microinstruction in which they occurred.

Microtraps have higher priority than all other next address sources except the Test Address
Generator. Microtraps are detected in ¢4. The microtrap signals are OR'd together in ¢; to form
E_USQ%PE_ABORT_H. The trap signals are prioritized and address lookup is done to select the
appropriate microtrap handler address, which is driven on the CAL INPUT BUS in &3.

9.2.3.3 Last Cycle Logic

The last cycle logic examines several conditions used to determine which new microfiow is to be
taken when LAST.CYCLE or LAST.CYCLE.OVERFLOW is detected on E_USQ_CSM%UMIB_H, no
microtraps are detected, and no test address is driven. There are five possible new microflows,
listed in order of priority:

1. Interrupt Request Handler

2. Trace Fault Handler

3. First Part Done Handler

4. Instruction Queue Stall ,

5. The macroinstruction microcode indicated by the top entry in the instruction queue.

The last cycle logic prioritizes these sources and performs address lookup. In addition, the signal
E_USQ_LST%SELECT_IQ H is derived. This signal is asserted when an entry is taken from the
instruction queue. :

Table 8-5: Microaddresses for Last Cycle Interrupts or Exceptions

Priority Interrupt or Exception Dispatch Address (Hex)
1 Interrupt request 24
2 Trace fault 28
3 First part done 2C
4 Instruction Queue Stall 30

The priorities in the last cycle logic are assigned using the following dependencies:

1. Interrupts and trace faults must be handled between instructions. (Interrupts may also be
serviced at defined points during long instructions such as string instructions; this servicing
is handled by microcode.)

2. By definition, an interrupt that is permitted to request service has a higher priority level
(IPL) than any exception that occurs in the process to be interrupted, or any instruction to
be executed by that process.

3. When tracing is enabled (PSL<TP> is set), a trace fault must be taken before the execution
of each instruction.

DIGITAL CONFIDENTIAL ' The Microsequencer S—7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

4. If an instruction begins execution with PSL<FPD> set, the first part done handler must be
entered rather than the normal entry point for the instruction.

5. PSL<TP> and PSL<FPD> cannot both be set when an instruction begins execution. In order
for PSL<FPD> to be set, the instruction must have been interrupted previously; the interrupt
handler always clears PSL<TP> before saving the PSL when interrupting an instruction.
(Note that the interrupt handler does not clear PSL<TP> when the interrupt is taken between
instructions.) '

6. The Instruction Queue Stall microword is executed if an opcode is requested from the
Instruction Queue but the queue is empty.

9.2.3.4 Microstack

Frequently used microcode can be made into microsubroutines. When a microsubroutine is called,
the return address is pushed onto the microstack. The output of the microstack is driven on the
CAL INPUT BUS when a RETURN is decoded from the E_USQ CSM%UMIB_H, no microtraps are
detected, and no test address is driven.

N

The microstack is 6 entries deep. It is a circular stack, with the write pointer always one entry
ahead of the read pointer. Each entry is an 11-bit control store address. The addresses stored in
the microstack incorporate any modification done by the microtest bus.

8.2.4 Stall Logic

The microsequencer is stalled whenever S3 is stalled. The Ebox derives the ‘signal E_STL%USEQ_
STALL_H which is used to stall the microsequencer. The microsequencer creates delayed versions
of this signal as needed to stall various latches. The signals E_USQ%PE_ABORT_H (asserted on
initiation of a microtrap) and E_USQ_TST%FORCE_TEST ADDR_H (asserted on detection of the Test
Address Generator driving a control store microaddress, see Section 9.5) break a microsequencer
stall by clearing the delayed versions of E_STL%USEQ_STALL_H. '

Initialization

A reset (assertion of K_E%RESET_L) causes the microsequencer to initialize in the following state:
* A powerup microtrap is initiated.

* The microstack pointer is reset to zero.

s The instruction queue is flushed and its pointers are reset by E_MSC%FLUSH_EBOX_H.

9.4 Microcode Restrictions

1. Every microtrap except Branch Mispredict must contain a RESET.CPU in order to reset the
Instruction Queue. (The Ebox is flushed automatically, clearing the queues, on detection
of branch mispredict.) RESET.CPU must not be issued within the 3 microwords preceding
LAST.CYCLE in order to allow time for the Instruction Queue to be cleared (if RESET.CPU
is present in microword N, LAST.CYCLE cannot be present until microword N+4).

2. For correct operation of Trace Fault and First Part Done in the Last Cycle Logic, PSL<T,TP,FPD>

must not be changed within the 2 microwords preceeding LAST.CYCLE (@if any of these PSL
bits are changed in microword N, LAST.CYCLE cannot be present until microword N+3).

9-8 The Microsequencer " DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3. No Ebox-initiated memory requests can be made in the last cycle of a microfiow, other than
- writes with the translation already known to be valid.

4. No Ebox-initiated memory requests can be outstanding when the microcode references an
operand (queue entry or register file location).

5. The instruction queue stall microword must indicate LAST.CYCLE.

9.5 Testability

8.5.1 Test Address

The control store microaddress is both controllable and observable. A microcode address can be
driven to the microsequencer from the Test Address Generator. The Test Address Generator is an
11-bit counter which is initialized to a value of zero on assertion of E_E%RESET. L. It increments
its address counter once on each deassertion of T%CS_TEST_H, thus cycling through all possible
control store addresses.

This microaddress source takes priority over all others. To ensure immediate control store lookup
using this microaddress, assertion of T%CS_TEST_H sets an S/R latch whose output is E_USQ_
TST%FORCE_TEST_ADDR_H. Assertion of this signal breaks any stall on @5, &3, and &, latches in
the microsequencer. This allows the control store to operate, driving the selected microword into
the MIB scan chain (see Section 9.5.2). The Ebox stall(s), if any, are unaffected, along with stalls
on &, latches in the microsequencer.

E_USQ _TST%FORCE_TEST_ADDR_H is deasserted when the Test Address Generator has completed
generation of all possible addresses.

The microaddress driven from the CAL can be be observed on the Parallel Test Port data pins,
along with the microsequencer stall signal, under control of the Parallel Test Port command pins.
The microsequencer drives to the Parallel Test Port in &;.

Figure 8-3: Paralie! Port Output Format

1% 1C Q¢ 08107 0€ 05 04)03 02 01 00

- -

Daadad T Lt d g oo o + +

| CAL OUTPUT [

N " . o+ - o+
o - - o oo o o o o * +

|
USEQ_STALL=w=+

Table 8-6: Parallel Port Output Format Field Definitions

Name Bit(s) Description)
CAL OUTPUT 11:1 Microaddress driven from caL
USEQ_STALL 0 Microsequencer stall, E_USQ STL%VERY_LATE_USQ_STALL_E

DIGITAL CONFIDENTIAL A "The Microsequencer 9—9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.5.2 MIB Scan Chain

A 91-bit scan chain is present at the input to the MIB, allowing the complete microword to be
latched and scanned out of the chip.

In addition, microcode patches are written into the patchable control store via the MIB scan

chain.

Table 8-7: Contents of MIB Scan Chaln

Extent

Description

<90:83>
<82:61>
<60:50>
<49:20>
<19:0>

E.USQ®%MIB_H<7:0>
E_UusewMIB_B<60:38>

CAM READ ADDRESS<10:0>
E_USQ%MIB_B<37:8>

CAM WRITE ADDRESS<19:0>

8.6 Revision History

Tabie 9-8: Revision History

Rev Who When Description of change

0.0 Elizabeth M. Cooper 06-Mar-1989 Release for external review.

0.1 Elizabeth M. Cooper 14-Sep-1989 Post-modelling update.

0.5 Elizabeth M. Coaper 10-Dec-1989 Updates for Rev 0.5 spec release.

0.5A Elizabeth M. Cooper 5-Jan-1990 . Remove vector microtrap and V bit
from 1Q.

0.5B Elizabeth M. Cooper 20-Jun-1990 Accumulated updates.

Plus 0.1 Gil Wolrich 15-Nov-1990 Changes for NVAX Plus, retain block

diagram and test features.

8-10 The Microsequencer

DIGITAL CONFIDENTIA[.

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 10

The Interrupt Section

10.17 Overview

NVAX Plus inputs six external interrupt signals as IRQ_H<3:0>, HALT H, and ERR_H. These
signals are hardwired, IRQ_H<3:0> and ERR_H are level sensitive, and the HALT H is edge
sensitive. The interrupts are non-vectored with the SCB Vector for each being predetermined.
It is the responsibility of the interrupt software to determine the interrupt source and reset the
interrupt. An explicit power fail interrupt is not implemented.

Internal interrupts include INT_TIM_H, H_ERR_H, S_ERR_H, PERFORMANCE MONITOR
FACILITY, and the architecturally defined Software Interrupt Requests. The full Interval Timer

" Implementation is present in the NVAX Plus chip, and thus no special considerations for the
subset are necessary.

The interrupt section receives interrupt requests from both internal and external sources, and
compares the IPL associated with the interrupt request to the current interrupt level in the PSL. If
the interrupt request is for an IPL that is higher than the current PSL IPL, the interrupt section
signals an interrupt request to the microsequencer which will initiate a microcode interrupt
handler at the next macroinstruction boundary.

When an interrupt is serviced by the Ebox microcode, the interrupt section provides an encoded
interrupt ID on E_BUS%ABUS, which allows the microcode to determine the highest priority in-
terrupt request that is pending. Interrupt requests are cleared in one of two ways, depending on
the type of request.

Software interrupt requests are supported via a 15-bit SISR register, which is read and written
by the microcode, and which makes requests to the interrupt generation logic.

10.2 Interrupt Summary

Interrupt requests received from external logic are synchronized to internal clocks. In addition,
there are several internal sources of interrupt requests which are received by edge-sensitive logic.

DIGITAL CONFIDENTIAL -_ : The Interrupt Section 10-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.2.1 External Interrupts

HALT_H, ERR_H, and four external device interrupts are inpout to NVAX Plus.

Interrupt Request IPL SCB Vector
Request (Hex) (Dec) (Hex)
HALT_H 1F 31 CONSOLE
ERR_H 1D 29 60

IRQ_H<3> 17 23 DC
RQ_H<2> 16 22 D8

IRQ_H<1> 15 21 D4

me B<0> 14 20 DO

10.2.1.1 HALT_H Interrupt Received by Edge-Sensitive Logic

The low to high transition of HALT H causes the CPU to enter the console code, through the
address stored in the CHALT ipr register, at IPL 1F (hex) at the next macroinstruction boundary.
This interrupt is not gated by the current IPL, and always results in console entry, even if the
IPL is already 1F (hex). Note that the implementation of this event is different from a normal
interrupt in which 2 PC/PSL pair are pushed on the interrupt stack. For this event, the current
PC, PSL, and halt code are stored in the SAVPC and SAVPSL processor registers. Microcode
clears the SR latch when the HALT interrupt is recognized by writing to the appropriate bit in
the ISR.

10.2.1.2 External Interrupt Requests Recelved by Level-Sensitive Logic

Five external interrupt requests are received by level-sensitive logic and synchronized to internal
clocks. These signals request general-purpose interrupts at the following IPLs.

* ERR_H: The assertion of H_.ERR_H indicates that a error has been detected in the system
environment. This results in the dispatch of the interrupt to the operating system at IPL 1D
(hex) through SCB vector 60 (hex).

¢ IRQ H<3:0>: Device interrupts resulting in dispatch of the interrupt to the operating system
at IPL 14-17 (hex) through SCB vector D0,D4,D8, or DC (hex).

Each signal must be driven HIGH and remain HIGH to assert the interrupt request. Interrupt
routines at the specified SCB acknowledge the interrupt.

NOTE
HALT_H is the EV IRQ_H<4> pin, and ERR_H is the EV IRQ_H<5> pin.

10-2 The Interrupt Section - DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.2.2 Internal Interrupt Requests

The Cbox, Ibox, and Mboxz report error conditions by asserting internal interrupt request signals.
The H_err signal is ORed with ERR_H, while S_err inputs directly. H_err causes an interrupt to
SCB 60(HEX), S_err causes an interrupt to SCB 54(HEX).

The performance monitoring facility requests an interrupt at IPL 1B (hex) when the performance
counters become half full. This request is serviced entirely by microcode, and cleared by writing
to the appropriate bit in the ISR.

The assertion of INT_TIM_H indicates that the interval timer period has expired and ICCS<6>
is set. The interrupt is dispatched to the operating system at IPL 16 (hex) through SCB vector
CO (hex).

Architecturally defined software interrupt requests are implemented through an internal register
in the interrupt section. Under control of the SISR and SIRR processor registers which are

~ described in Chapter 2, the Ebox microcode sets the appropriate bit in this register, which then
results in the dispatch of the interrupt to the operating system at an IPL and through the SCB
vector implied by the interrupt request. The association between the interrupt request, requested
IPL, and SCB vector for these requests is shown in the following table.

Request IPL SCB Vector

SISR bit (Hex) (Dec) (Hex)
SISR<15> OoF 15 BC
SISR<14> OE 14 B8
SISR<«13> 0D 13 B4
SISR<12> e 12 BO
SISR<1l> 0B 11 AC
SISR<10> 0A 10 A8
SISR<09> 09 09 Ad
SISR<08> 08 08 A0
SISR<07> 07 07 oC
SISR<06> 06 08 98
SISR<05> - 05 05 94
SISR<04> 04 04 90
SISR<03> 03 03 8C
SISR<02> 02 02 88
SISR<01> 01 0l 84

Ebox microcode explicitly clears the interrupt request when the interrupt is serviced.

10.2.3 Special Considerations for Interval Timer Interrupts

NVAX Plus does not implement the subset Interval Timer and does not require a copy of ICCS<6>
at the Interrupt Section.

DIGITAL CONFIDENTIAL The Interrupt Section 10-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.2.4 Priority of interrupt Requests

When multiple interrupt requests are pending, the interrupt section prioritizes the requests.
Table 10-1 shows the relative priority (from highest to lowest) of all interrupt requests. For
reference, this table also includes the IPL at which the interrupt is taken, and the SCB vector
through which the interrupt is dispatched.

Table 10-1: Relative Interrupt Priority

Interrupt Request IPL SCB Vector
Request (Hex) (Dec) (Hex)

BALT H 1F 31 None! Highest priority
ERR_E* : 1D 29 60
Performance MonitorlB 27 58°

Facility

S ERR_L? 1A 26 54

IRQ H<3> 17 23 DC

IRQ H<2> 16 22 D8
INT_TIM_L 16 22 Cco

mq B<1> 15 21 D4

RQ_H<O> 14 20 Do
SISR<15> OF 15 BC
SISR<14> OE 14 B8
SISR«13> oD 13 B4
SISR<12> oC 12 Bo
SISR<11> 0B 11 AC
SISR<10> 0A 10 A8
SISR<09> 09 09 Ad
SISR<08> 08 08 AQ
SISR<07> 07 07 oC
SISR<06> . 06 06 98
SISR<05> 05 05 94
SISR<04> 04 04 90
SISR<03> 03 03 8C
SISR<02> 02 02 88
SISR<01> 01 01 84 Lowest priority

1Direct dispatch to console; PC, PSL placed in SAVPC, SAVPSL processor registers
2Includes Cbox, Ibox, and Mbox internally generated requests
3Interrupt processed entirely by microcode

The IRQ_H<2> request takes priority over the INT_TIM_L request, both of which are at IPL 16
(hex).

10—4 The Interrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.3 Interrupt Section Structure

The interrupt section consists of three basic components: the synchroniation logic, the interrupt
state register (ISR), and the interrupt generation logic. A block diagram of the interrupt section
1s shown in Figure 10-1.

Figure 10-1: interrupt Section Block Diagrafn

#%IR0_Le0s >
PRIRD, L<h» [T
%R0 _Le2» T]
PRInG_Lads

PRINT_Tib_L
PRE_ERA_L

FILE: INTERRUPT_SECTION.DOC
Pur_ERR_L
PUOWREL_L
PRHALT_L

°
NOTE: PWMALT L 15 v
GATED BY 1PL

SYNONRONIZERS

H ! OMCBOX_H_ERR_M
j i C%CBOX_8_ERR_H
. { |] L _B_ERR_
’ + : f IIBOX_S_ERR_L
EBUELWRUS Les1 2l aanam1C WW FLOPS KU K‘j& | ' 0 MRMBOX_S_ERROR_H
LR A et T A v " . . E_PuSPUON_L
EZBUSNWEUS La0»uiCCbet > [i | .
IR RN EEERERERNENy
A)
hclhk °‘§9>ﬁ.’ TW L INTERRUPY
AEOUES™ FROT sn | onisa |oR | SR} L | L|emiL |0 STATE [IS R (R I R O (R RN IO R A S S S O
1BRezds WiTh . REGISTER .
ICCBebn FMOM
188D
a1{so|2e| ae| 27) 26| 25 2¢| 20| 22 16 {14 10] 12 17| 10] os] oo} o7} 0e} 06| 04| 03} 02] 01| 0O
INTERRUPT IRLINTAD BIT . . -
ML A e 3h T ; :
s Y E | LI LTI ENEEEENNRENEEE
P BRR™, 10 0 " 2% 3 X X X X X L.
ot S I
PXIRO, LT4> 17 17 2¢ EPELNPE, tg20:16
BXINGTLazr LT 11 PRIORITY
PRINTITIV, L 36 1]
BT L wwoven — : -
BI8RACTEr of of 3 DEGODE
T LPg o o1 o1 ;
- ToTRT_DPINIPL |eatts B RUEWUTEST 4g0p
[NO———
138 !
EWINT RRO W
COMPARITOR
USKABUS_Lc53:2) pad E_INT_DPIRICOS 6 _L
LRI N I A AT TS - -
EoBUBNABUS LeiE:s B BRIBI ELINT DP2% HDC2O 1V 6% ID_H E_INT_DPINBIDR_Lel61Ns
TBUBNABUS LaOrmiliCBuab> N o s

10.3.1 Synchronization Logic
The pads for the SIX external interrupt request signals contain synchronizers to allow the use

of asynchronous signals for interrupt requests. The synchronized signals are then passed to the
ISR.

DIGITAL CONFIDENTIAL) The Interrupt Section 10-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.3.2 Interrupt State Register

The interrupt state register is a composite register that implements the 15-bit architecturally
defined SISR register, the interrupt latch for the performance monitoring facility interrupt, in-
ternal S_err, and the interrupt request latches for the six external interrupts. The ISR contains
two kinds of elements: SR flops for the internal interrupt requests, and latches for the external
and software request interrupts. The following table lists the types and positions of all elements
in the ISR.

State
ISR bit Element Description
31 SR Interrupt request for BALTH interrupt
29 L Interrupt request for Err_E and internal C%CBOX_H_ERR from BIU_
STAT ’
28 SR Interrupt request for performance monitoring facility interrupt
7 SR Interrupt request for S_ERR_L /internal soft error interrupts
26 L Interrupt request for mq B<3> interrupt
25 L Interrupt request for mq B<2> interrupt
24 SR Interrupt request for INT_TIM_L interrupt
123 L Interrupt request for mq B<1> interrupt
22 L Interrupt request for rq B<0> interrupt
15:1 L SISR<15:1> latches and requests for software interrupts

State Element

'SR—SR flop
L—Latch

P>The HALT_Hinterrupt request is loaded into the request flop in ISR<31>. The request is cleared
by under Ebox microcode control when written with a 1 from E%WBUS.

Internal requests from the Cbox, Ibox, and Mbox cause the assertion of one of these signals causes
the appropriate request flop to be set in ISR<27,24>. These request flops are cleared under Ebox
microcode control.when written with a 1 from E%WBUS.

The performance monitoring faciltiy interrupt request is loaded into the request flop in ISR<28>.
The request is cleared by under Eboz microcode control when written with a 1 from E%WBUS.

SISR<15:1> is implemented via ISR<15:1>, and is loaded from bits <15:1> of E%#WBUS under Ebox
microcode control. These request latches are cleared under Ebox microcode control when a new
value is loaded from E%WBUS.

The interval timer request from ISR<24> is not gated with ISR<0> as only a single version of
ICCS<6> exits for NVAX Plus. NVAX Plus does not implement ISR<0>. (ISR<31:22,15:1>) go to
the interrupt generation logic. ISR<15:1> may also be read onto E_BUS%ABUS for return to the
Ebox.

10-6 The Interrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.3.3 Interrupt Generation Logic

The interrupt generation logic priority encodes all interrupt requests from the interrupt state
register to determine the highest priority request. The output of the encoder is the request IPL
and the interrupt ID of the highest priority request. If any request is pending, the request IPL is
compared against E%PSL<20:16> from the Ebox. If the request IPL is higher than the PSL IPL,
or if the request is for HALT H (HALT_H is not gated by the IPL), E%INT_REQ is asserted to the
microsequencer. '

The assertion of EZXINT_REQ causes the microsequencer to initiate a microcode interrupt handler
at the next macroinstruction boundary. The same signal is available on the microtest bus as a
microbranch condition, which is checked by the Ebox microcode during long instructions.

Along with the request IPL, the interrupt generation logic provides an encoded interrupt ID that
identifies the highest priority interrupt. The interrupt ID is read onto E_BUS%ABUS along with
ISR<15:1> when microcode references the A/INT.SYS source. For each interrupt, the interrupt
ID encoding, request IPL, ISR bit number, method for clearing the interrupt, and SCB vector is
shown in Table 10-2.

Table 10-2: Summary of Interrupts

Interrupt Int ID Request IPL ISR Bit Reset SCB Vector
Request (Hex) (Dec) (Hex) (Dec) (Dec) Method (Hex)
HALT.H 1F 31 1F 31 31 Write 1 to ISR bit Console Halt
ERR_E! 1D 29 1D 29 29 BYH_ERR BANDLER 60
E_PMN%PMON_L 1B 27 1B 27 28* Write 1 to ISR bit 58 Handled
: by microcode
S_ERR_L* 1A 26 1A 26 27%. Write 1 to ISR bit 54
IRQ_H<3> 17 23 17 23 26 BYINTERRUPTRTN DC
IRQ_B<2> : 16 22 16 22 25 BYINTERRUPTRTN D8
INT_TIM_L 1c* 28 16 22 24° Write 1 to ISR bit co
mQ_B<1> 15 21 15 21 23 BYINTERRUPTRTN D4
me B<0> 14 20 14 20 22 BYINTERRUPTRTN DO
SISR<15> "~ OF 15 OF 15 15 Write 0 to ISR bit BC
SISR<«14> OE 14 OE 14 14 Write 0 to ISR bit B8
SISR<13> 0D 13 0D 13 13 Write 0 to ISR bit B4
SISR<12> oC 12 0C 12 12 Write O to ISR bit BO
SISR<11> 0B 11 0B 11 11 Write 0 to ISR bit AC
SISR<10> 0A 10 0A 10 10 - Write 0 to ISR bit A8
SISR<09> 09 09 09 09 09 Write 0 to ISR bit Ad

lincludes Cbox, Ibox, and Mbox internally generated requests
2Write-1-to-clear ISR bit is different than IPL and interrupt ID
SInterrupt ID is different than IPL

DIGITAL CONFIDENTIAL The Interrupt Section 10-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 10-2 (Cont.): Summary of interrupts

Interrupt Int ID Request IPL ISR Bit Reset SCB Vector
Request (Hex) (Dec) (Hex) (Dec) (Dec) Method (Hex)
SISR<08> 08 08 08 08 08 Write O to ISR bit A0
SISR<07> 07 07 07 07 07 Write 0 to ISR bit oC
SISR<06> 06 08 06 06 06 Write 0 to ISR bit 98
SISR<05> 05 05 05 05 05 Write 0 to ISR bit 94
SISR<04> 04 04 04 04 04 Write 0 to ISR bit 90
SISR<03> 03 03 03 03 03 Write 0 to ISR bit 8C
SISR<02> 02 02 02 02 02 Write 0 to ISR bit 88
SISR<01> 01 01 . 01 01 01 Write 0 to ISR bit 84

No Interrupt 00 00 —_ —_ —_ Dismiss interrupt —_—

The interrupt ID is the same as the request IPL for all interrupt requests except for the interval
timer request.

DESIGN CONSTRAINT

A value of zero for the interrupt ID must be returned if an interrupt is no longer
present, or if the highest priority interrupt request is no longer higher than the PSL
IPL. Normally, once an interrupt request is made, it remains until it is cleared by the
microcode. However, the level-sensitive interrupt requests may be deasserted after the
interrupt is dispatched, but before the microcode reads the interrupt ID. Therefore, it is
possible that the highest remaining interrupt has a request IPL lower than the current
PSL IPL. If zero is not returned for the interrupt ID in this instance, the processor will
not function correctly.

10.4 Ebox Microcode interface

The Ebox microcode interfaces with the interrupt section primarily through reads (via E_
BUS%ABUS) and writes (via E%WBUS) of the ISR accomplished through the A/INT.SYS and
DST/INT.SYS decodes. These decodes provide access to the so-called INT.SYS register, which
is shown in Figure 10-2. The fields of the register are listed in Table 10-3.

10-8 The interrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Figure 10-2: INT.SYS Register Format

31 30 2¢ 2B|I7 26 25 24123 22 21 20112 18 17 16115 14 13 12111 10 0¢ 0B|07 06 05 04102 02 01 00

I 1oL 01 1 |0t O | 010 0O INT.ID | SISK<15:1> b

o o oo o e o i e o o oo o e

| I
|
+== INT_TIM_RESET

|
r
I
|
+=-=%_ERK_RESET

|
|
!
|
|
| ~-- PMOK_RESET
[

+=- HALT_RESET

DIGITAL CONFIDENTIAL ' The Interrupt Section 10-9

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Tabie 10-3: INT.SYS Register Fields

Description

Name Bit(s) Type
SISR 15:1 RW,0
INT.ID 20:16 RO

INT_TIM_RESET 24 WC,0

S ERR_RESET 27 WC.0
PMON_RESET 28 WC,0

HALT RESET 31 WC,0

This field contains the 15 architecturally-defined software interrupt
request bits. It is set to O by microcode at powerup.

This field containe the encoding of the highest priority interrupt
request as listed in Table 10-2. Writes to this field are ignored.

Writing a 1 to this field clears the mNT_TIM L interrupt request.
Writing a 0 has no effect on the request. The field is read as a 0
and the interrupt request is cleared by microcode at powerup.

Writing a 1 to this field clears the s_Err_L interrupt request. Writing
a 0 has no effect on the request. The field is read as a 0 and the
interrupt request is cleared by microcode at powerup.

Writing a 1 to this field clears the x_PmnaPMON_L interrupt request.
Writing a 0 has no effect on the request. The field is read as 2 0 and
the interrupt request it cleared by microcode at powerup.

Writing a 1 to this field clears the BALT_E interrupt request. Writing
a 0 has no effect on the request. The field is read as a 0 and the
interrupt request is cleared by microcode at powerup.

DESIGN CONSTRAINT

10.5

Software can interact with the interrupt section hardware and microcode via references to pro-

When read onto E_BUS%ABUS, INT.SYS«31,28,27,24> must be zero. Microcode updates
the internal copy of SISR<15:1> by reading the INT.SYS register,modifying the appro-
priate bits, and writing the updated value back. The write-one-to-clear bits must be
read as zero because the microcode does not mask them out before writing them back.

MICROCODE RESTRICTION

The INT.SYS register is not bypassed. A write to INT.SYS in microinstruction n must
not be followed by a read of INT.SYS sooner than microinstruction n+4.

MICROCODE RESTRICTION

Changes to machine state that affect the generation of interrupts (PSL<IPL>, or
SISR<15:1>) done by microinstruction n must not be followed by a LAST CYCLE mi-
croinstruction sooner than microinstruction n+4 if the change is to be observed by the
next macroinstruction.

Processor Register Interface

cessor registers, as follows:

10-10 The Interrupt Section

SISR, SIRR: References to the architecturally-defined SISR and SIRR processor registers

allow access to SISR<15:1>, which are implemented in INT.SYS<15:1>.

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

* INTSYS: References to the INTSYS processor register allow diagnostic and test software
direct access to the INT.SYS register. Reads of the INTSYS processor register return the
format shown in Figure 10-2. Writes of the INTSYS processor register are internally masked
by microcode such that only the left half write-to-clear bits are written. Other bits remain
unchanged. Writes to the INTSYS processor during normal system operation can result in

UNDEFINED behavior.

10.6 Interrupt Section Interfaces

10.6.1 Ebox Interface
10.6.1.1 Signals From Ebox
* E%PSL<20:16>: IPL field from the current PSL.

* E%WBUS: Write data bus, from which SISR<15:1> are loaded, and from Whnch the write-one-

to-clear interrupt latches are cleared.

* E_PMN%PMON_L: Performance monitoring facility interrupt request.

10.6.1.2 Signals To Ebox

* E_BUS%ABUS: A-port operand bus, on which SISR<15:1> and the interrupt ID are returned.

10.6.2 Microsequencer Interface
10.6.2.1 Signals from Microsequencer

* E_USQ CSM%UTSEL: Microtest bus select code.

10.6.2.2 Signals To Microsequencer
* EINT_REQ: Interrupt pending.
* E_BUS%UTEST: Microtest bus.

10.6.3 Cbox Interface

10.6.3.1 Signals From Cbox

* C®CBOX_H_ERR: Hard error interrupt request.
* C%CBOX_S_ERR: Soft error interrupt request.
e INT_TIM_L: Interval timer interrupt signal.

10.6.4 Ibox Interface

DIGITAL CONFIDENTIAL

The Interrupt Section 10-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.6.4.1 Signals From lbox

* I%IBOX_S_ERR: Soft error interrupt request.

10.6.5 Mbox Interface
10.6.5.1 Signals From Mbox

* M9%MBOX_S_ERROR: Soft error interrupt request.

10.6.6 Pin Interface
10.6.6.1 Input Pins

* HALT H: Halt interrupt signal
* ERR_H: Error interrupt signal
* IRQ H<3:0>: General-purpose interrupt signals

10.7 Revision History

Table 10-4: Revislon History

Who When Description of change

Mike Uhler 06-Mar-1989 Release for external review.

Mike Uhler 14-Dec-1989 Update for second-pass release.

Ron Preston 09-Jan-1990 Changes to simplify implementation.

Mike Uhler 20-Jul-1990 Update for change to performance monitoring interrupt request and
reflect implementation.

Gil Wolrich 15-Nov-1990 NVAX Plus modifications

Gil Wolrich 1-Aug-1991 update

10-12 The Interrupt Section

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 11

The Fbox

11.1 Overview

This chapter provides a high level description of the floating point unit of the NVAX Plus
CPU chip. For complete specification of the FBOX refer to the NVAX CPU Chip Functional
Specification.

11.2 Introduction

The Fbox is the floating point unit in the NVAX Plus CPU chip. The Fboz is a 4 stage pipelined
floating point processor, with an additional stage devoted to assisting division. It interacts with
three different segments of the main CPU pipeline, these are the micro-sequencer in S2 and the
Ebox in S3 and S4. The Fbox runs semi-autonomously to the rest of the CPU chip and supports
the following operations:

* VAX Floating Point Instructions and Data Types
The Fbox provides instruction and data support for VAX floating point instructions. VAX F-,
D-, and G-fleating point data types are supported.

* VAX Integer Instructions
The Fbox implements longword integer multiply instructions.

¢ Pipelined Operation
Except for all the divide instructions, DIV{F,D,G}, the Fbox can start a new single precision
floating point instruction every cycle and a double precision floating point or an integer mul-
tiply instruction every two cycles. The Ebox can supply two 32-bit operands or one 64-bit
operand to the Fbox every cycle on two 32 bit input operand buses. The Fbox drives the
result operand to the Ebox on a 32-bit result bus.

¢ Conditional "Mini-Round" Operation
Result latency is conditionally reduced by one cycle for the most frequently used instructions.
Stage 3 can perform a "mini-round” operation on the LSB’s of the fraction for all ADD, SUB,
and MUL floating instructions. If the "mini-round” operation does not fail, then stage 3 drives
the result directly to the output, bypassing stage 4 and saving a cycle of latency.

¢ Fault and Exception Handling
The Ebox coordinates the fault and exception handling with the Fbox. Any fault or exception
condition received from the Ebox is retired in the proper order. If the Fbox receives or
generates any fault or exception condition, it does not change the flow of instructions in
progress within the Fbox pipe.

DIGITAL CONFIDENTIAL ' The Fbox 11—1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 11-1 is a top level block diagram of the Fbox showing the six major functional blocks
within the Fbox and their interconnections.

Figure 11-1: Fbox block diagram

Fraction Data
Exponent Data
Sigr Data
Contrel

O 0

Control Data bus

[[
[[
N/ N/

1 Interiace - Input Section

{F| IE| 181
N/ N/ N/

1C:
A

! Divider

11.3 Fbox Functional Overview

The Fbox is the floating point accelerator for the NVAX CPU. Its instruction repertoire includes
all VAX base group floating point instructions. The data types that are supported are F, D, and
G. Additional integer instructions that are supported are MULL2, and MULLS3.

The number of interna) execution cycles and the total number of cycles to complete an instruction
within the Fbox is measured as follows in Figure 11-2

11-2 The Fbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 11-2: Fbox Execute Cycle Diagram

For 1 and F Data Types

1 2 3 4 5 [7
1 I ! ! I ! ! . |
[| FS1 |+ Fs2 | FS3 ! FS4 |
|<=opcode=>| j<e=> |<==eeFboli internal execute cycles==><=>|
cycle | operand result
feycle . to Ebox

For D and G Data Types

1 2 3 4 5 6 ? 8 .
| | t [! ! | | | |
| | | | | FS1 | FE&2 i FE3 | Fs4 |
|<=opcode~>| | <me>| |<==>}<====Fbox internal execute cycles~->|<=>| <=>]
cycle operandl operand2 result result
cycle cycle te Ebox to Ebeox
v oW

The internal execution ti.me for all instructions except MUL{D,G,L} and DIV{F,D,G] is four cycles.
The internal execution time of the various Fbox operations is given in the following Table 11-1.

Table 11-1: Fbox Internal Execute Cycles

INSTRUCTION F D G L
MUL 4 5 5 5
DIV 14 25 24 .

ALL OTHER 4 4 4 4

The total number of cycles taken by the Fbox to complete an instruction is given in Table 11-2.
Note that this includes the cycles taken for opcode and operand transfer, in particular, the dead
cycle between the opcode and the first operand is counted.

Table 11-2: List of the Fbox Total Execute’ Cycles

INSTRUCTION F D G L
MUL 7 10 10 8
Drv 17 30 29 -
ALL OTHER 7 9] -

11.3.1 Fbox Interface

This section is responsible for overseeing the protocol with the Ebox. This includes the sequence
of receiving the opcode, operands, exceptions, and other control information, and also outputing
the result with its accompanying status. The opcode and operands are transferred from the input

DIGITAL CONFIDENTIAL ‘ The Fbox 11-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

interface to stage 1 in all operations except division. The result is conditionally received from
either stage 3 or stage 4.

11.3.2 Divider

The divider receives its inputs from the interface and drives its outputs to stage 1. It is used
only to assist the divide operation, for which it computes the quotient and the remainder in a
redundant format.

11.3.3 Stage 1

Stage 1 receives its inputs from either the interface or the divider section and drives its outputs
to stage 2. It is primarily used for determining the difference between the exponents of the two
operands, subtracting the fraction fields, performing the recoding of the multiplier and forming
three times the multiplicand, and selecting the inputs to the first two rows of the multiplier array.

11.3.4 Stage 2

Stage 2 receives its inputs from stage 1 and drives its outputs to stage 3. Its primary uses are:
right shifting (alignment), multiplying the fraction fields of the operands, and zero and leading
one detection of the intermediate fraction results.

11.3.5 Stage 3

Stage 3 receives most of its inputs from stage 2 and drives its outputs to stage 4 or, conditionally,
to the output. Its primary uses are: left shifting (normalization), and adding the fraction fields
for the aligned operands or the redundant multiply array outputs. This stage can also perform a
"mini-round"” operation on the LSB’s of the fraction for ADD, SUB, and MUL floating instructions.
If the "mini-round” does not overfiow, and if there are no possible exceptions, then stage 3 drives
the result directly to the output, bypassing stage 4 and saving a cycle of latency.

11.3.6 Stage 4
Stage 4 receives its inputs from stage 3 and drives its outputs to the interface section. It is used

for performing the terminal operations of the instruction such as rounding, exception detectlon
(overfiow, underfiow, etc.), and determining the condition codes.

11.3.7 Fbox Instruction Set

The instructions listed in Table 11-3 constitute the VAX integer and floating point instructions
supported by the Fbox datapath.

11—4 The Fbox . DIGITAL CONFIDENTIAL

Table 11-3: Fbox Floating Point and Integer Instructions

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

DIGITAL CONFIDENTIAL

Fbox Opc Imstruction NzZvC](\:iiP DL Exceptions
04C CVTBF src.rb, dst.wf **00 10 10

08C CVTBD sre.rb, dst.wd **00 10 11

14C CVTBG srec.rb, dst.wg **0)0 10 11

04D CVTWF sre.rw, dst.wf **00 10 10

06D CVTWD src.rw, dst.wd *%00 10 11

14D CVTWG sre.rw, dst.wg **00 10 11

04E CVTLF sre.rl, dst.wf **00 10 10

06E CVTLD sre.rl, dst.wd **00 10 11

14E CVTLG sre.rl, dst.wg **00 10 11

048 CVTFB sre.rf, dst.wb HHK() 11 00 T8V, iov

049 CVTFW src.xf, dst.ww *Kk() 11 01 rev, iov
04A CVTFL grc.rf, dst.wl HAEKQ 11 10 TEY, i0V

068 CVTDB src.rd, dst.wb *HKQ) 11 00 TSV, iov
069 CVTDW sre.rd, dst.ww *xkQ) 11 01 T8V, iov
06A CVTDL sre.rd, dst.wl wRk(Q) 11 10 rsv, iov

148 CVTGB srec.rg, dst.wb Ak 11 00 sV, iov
149 CVTGW src.rg, dst.ww HHK() 11 01 TSV, iov
14A CVTGL src.rg, dst.wl k() 11 10 TEV, iov
04B CVTRFL src.rf, dst.wl Hrn() 11 10 TSY, oV
06B CVTRDL sre.rd, dst.wl RHRQ 11 10 v, iov
14B CVTRGL sre.rg, dst.wl *kQ 11 10 TEY, i0V

056 CVTFD src.xf, dst.wd *%00 10 11 TSV

199 CVTFG sre.xf, dst.wg **00 10 11 T8V

076 CVTDF sre.rd, dst.wf **00 10 10 rsv, fov

133 CVTGF sre.rg, dst.wf **00 10 10 rsv, fov, fuv
040 ADDF2 add.rf, sum.mf **00 10 10 rev, fov, fuv
041 ADDF3 addl.rf, add2.rf, sum.wf **00 10 10 rsv, fov, fuv
080 ADDD2 add.rd, sum.md **00 10 11 rsv, fov, fuv
081 ADDDS3 addl.rd, add2.rd, sum.wd **00 10 11 rev, fov, fuv
140 ADDG?2 add.rg, sum.mg **00 10 11 rsv, fov, fuv
141 ADDGS3 addl.rg, add2.rg, sum.wg **00 10 11 rev, fov, fuv

The Fbox 11-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 11-3 (Cont.):

Fbox Floating Point and Integer Instructions

Fbox Ope Instruction NzvC I?IiP DL Exceptions

042 SUBF2 sub.rf, dif.mf **00 10 10 rsv, fov, fuv

043 SUBF3 sub.rf. min.rf, dif.wf **00 10 10 rsv, fov, fuv

062 SUBD2 sub.rd, dif.md **00 10 11 Tsv, fov, fuv

083 SUBDS3 sub.rd, min.rd, dif.wd **00 10 11 rsv, fov, fuv

142 SUBG2? sub.rg, dif.mg i **00 10 11 rev, fov, fuv

143 SUBGS sub.rg, min.rg, dif.wg **00 10 11 rsv, fov, fuv

0C4 MULL2 mulr.rl, prod.ml Q) 11 10 iov

0C5 MULL3 mulr.r], muld.rl, prod.wl *RE() 11 10 iov

044 MULF2 mulr.rf, prod.mf *%00 10 10 rsv, fov, fuv

045 MULF3 mulr.rf, muld.rf, prod.wf **00 10 10 rsv, fov, fuv

064 MULD2 mulrrd, prod.md **00 10 11 rsv, fov, fuv

085 MULD3 mulr.rd, muld.rd, prod.wd **00 10 11 rsv, fov, fuv

144 MULG2 mulr.rg, prod.mg **00 10 11 r8v, fov, fuv

145 MULG3 mulr.rg, muld.rg, prod.wg **00 10 11 rsv, fov, fuv

046 DIVF2 divr.rf, quo.mf **00 10 10 rsv, fov, fuv, fdvz
047 DIVEF3 divr.xrf, divd.rf, quo.wf **00 10 10 rsv, fov, fuv, fdvz
066 DIVD2 divr.rd, quo.md **00 10 11 rsv, fov, fuv, fdvz
087 DIVDS divr.rd, divd.rd, quo.wd **00 10 11 rsv, fov, fuv, fdvz
146 DIVG2 divr.rg, quo.mg **00 10 11 rsv, fov, fuv, fdvz
147 DIVGS divr.rg, divd.rg, quo.wg **00 10 11 rsv, fov, fuv, fdvz
050 MOVF gre.xf, dst.wf w%(). 01 10 TSV

070 MOVD gre.rd, dst.wd **0. 01 11 TSV

150 MOVG sre.rg, dst.wg **0. 01 11 T8V

052 MNEGF sre.rf, dst.wf **00 10 10 sV

072 MNEGD sre.rd, dst.wd **00 10 11 sV

152 MNEGG sre.rg, dst.wg *%00 10 11 rev

051 CMPF srcl.rf, src2.rf **00 10 XX TSV

11—6 The Fbox

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 11-3 (Cont.): Fbox Floating Point and Integer Instructions

CC
Fbox Opc Imstruction NzZvC MAP DL Exceptions
071 CMPD srcl.rd, src2.rd **00 10 x=x TSV
151 CMPG srcl.rg, src2.rg **00 10 xx T8V
053 TSTF src.xf **00 10 Xz sV
073 TSTD src.rd **00 10 xx T8V
158 TSTG sre.rg **00 10 b4 TEV
CC_MAF: Condition Code Map
00 = No Update
01 = MOV Floating
10 = All Other Floating
11 = Integer
DL: Result Data Length
00 = Byte
01 = Word
10 = Long
11 = Quad
11.3.8 Revision History
Table 11—4: Revision History
Who When Description of change
Anil Jain 17-Mar-1989 Initial Release |
Anil Jain 18-Dec-1989 Updated to reflect the Fbox implementation
Gil Wolrich 15-Nov-1990 Retain FBOX overview for NVAX Plus Spec

DIGITAL CONFIDENTIAL

The Fbox 117

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 12

The Mbox

12.1 INTRODUCTION

This chapter contains the high level description of the NVAX Plus MBOX, and specifies the
changes with respect to PCache Invalidates and external map support. It also includes EBOX
and CBOX interface descriptions, IPR specifications, and testability features from the NVAX CPU
Chip Functional Specification. Refer to NVAX CPU Chip Functional Specification for the detailed
decription of the MBOX.

The Mbox performs three primary functions:

* VAX memory management: The Mbox, in conjunction’ with the operating system memory
management software, is responsible for the allocation and use of physical memory. The
Mbox performs the hardware functions necessary to implement VAX memory management.
It performs translations of virtual addresses to physical addresses, access violation checks
on all memory references, and initiates the invocation of software memory management code
when necessary.

* Reference processing: Due to the macropipeline structure of NVAX Plus, and the coupling
between NVAX Plus and its memory subsystem, the Mbox can receive memory references
from the Ibox, Ebox and Cbox(invalidates) simultaneously. Thus, the Mbox is responsible
for prioritizing, sequencing, and processing all references in an efficient and logically correct
fashion and for transferring references and their corresponding data to/from the Ibox, Ebox,
Pcache, and Cbox.

* Primary Cache Control: The Mbox maintains an' 8KB physical address cache of I-stream and
D-stream data. This cache, called the Pcache (Primary Cache), exists in order to provide a
two cycle pipeline latency for most I-stream and D-stream data requests. It is the fastest
D-stream storage medium for NVAX Plus and represents the first level of D-stream memory
hierarchy and the second level of I-stream memory hierarchy for the NVAX Plus scalar data.
The Mbox is responsible for controlling Pcache operation.

DIGITAL CONFIDENTIAL The Mbox 12-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.2 MBOX STRUCTURE

This section presents a block diagram of the Mbox and defines the function of the basic Mbox
components.

The following block diagram illustrates the basic components of the Mbozx.

12-2 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-1: Mbox Block Diagram

FROM 1BOX FROM EBOX TO IBOX/EBOX

E%WBUS<1:0> M%MD_BUG«83:0>

1%180X_ADDR=x31:0>
E%VA_BUSES1:0»>

-
[— EM_LATCH

ROTATOR

ARBITRATION

Loaic E
VAP_LATCH ’ MME_LATCH

OTHER J55_PACKET_INFO
1° - MEMORY
M_OUE%SS_DATAC3 1305 MARAAEMENT

»
——l SPEC_OUEUE 'P"—— OROSS PAGE EXCEPTION
&
DATAPATH

'__——-__’——— 13 UNALIGNED
CBOX_LATCH
| Rl peTecT

T ABORY (MME_DATAPATH)

4 LoGICc Loaic
RTY_DMISS_LAT

IREF_LATCH

M _OUE%RSE VA«31:0>
|
c4c80}_ADBR<] 16> 7 |«s:05 Y
P %MEOX_§iLL) OWed:a: . b
i - R BHYSICAL TAG PTE_DATA
ADDRESS
OUEUE
T (PA_OUEUE)
i k!
PIPE_LATCH | | PIPE_LATCH N
L 1| eipE_LATOH | TRANSLATIO ACYATHYIMeD
[DMmiss LATOH | [IMiSs LATGH] ! BURFER DETECT -
W_OUE%SE_PAcd{:0 LOGIC
(T8)
BYTE
MD_BUS<83:0>
MABK
GENERATOR
PEN PTE_INFO
-
M_OUE%SS nthm,
PRIMARY M_OUE%SE] PA<I1:05
GACHE -
| J (PGAGHE) 86 PIPE STAGE
JRR (5 R ,--..-.._.,_..b,,,,,,_.‘-,e.._.._-........----__-..--___----_-----------..__-
F . 86 PIPE STAGE
8KE OF |
D/ STREAM “°T:7°"
DATA MD_BUS
DRIVER
OTHER_56_PACKET_INFO
{ B%S6_DATA<S3:0>
et PARITY
GENERATOR
WM%ES_Phc31:0> s

FROM CBOX Yo ©BOX

" DIGITAL CONFIDENTIAL The Mbox 12-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The Mbox is implemented as a two-stage pipeline located in the fifth and sixth segments of the
NVAX Plus macropipeline (S5 and S6). References processed by the Mbox are first executed in
S5. Upon successful completion in S5, the reference is transferred into S6. At this point, the
reference has either completed or is transferred to the Ibox, Ebox, or Cbox.

During any cycle, the fundamental state of the S5 and S6 stages can be defined by the particular
references which currently reside in these two stages. For the purposes of describing the Mbox,
all references can be viewed as a packet of information which is transferred on the S5 and S6
buses. The S5 reference packet, and the corresponding S5 buses are defined as:

ADDRESS: The M_QUE%S5_VA<31:0> bus transfers all virtual addresses and some physical
addresses into the S5 pipe. The M_QUE%S5_PA<31:0> bus transfers some physical addresses
into the S5 pipe and transfers all addresses out of the S5 pipe.

DATA: M_QUE%S5_DATA<31:0> transfers data originating from the Ebox, through the S5 pipe.
COMMAND: M_QUE%S5_CMD<4:0> transfers the type of reference through the S5 pipe. This
command field is defined in Section 12.3.1.

TAG: The M_QUE%S5_TAG<4:0> transfers the Ebox register file destmatmn address corre-
sponding to the reference through the S5 pipe.

DEST_BOX: M_QUE%S5_DEST<1:0> transfers the reference destination information through
the S5 pipe. This field is defined as follows:

M_QUE%S5_DEST Definition

00: the reference requests data destined for the Mbox.

01: the reference requests data destined for the Ibox.

10: the reference requests data destined for the Ebox.

11: the reference requests data destined for the Ebox and Ibox.

AT: The M_QUE%S5_ AT<1 0> transfers the access type of the reference. This field is defined as
follows:

M_QUE%S5_AT Definition

00: tb passive query access (See PROBE command)

01: read access

10: write access

11: modify access (read with write check for future write to same addr)

DL: The M_QUE%S5_DL<1:0> transfers the data length of the reference. This field is defined
as follows:

M_QUE®%S5_DL Definition

00: byte
01: word
10: longword
12-4 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1891

M_QUE%S5_DL Definition

11: quadword

* BYTE_MASK: The M_QUE%S5_BM<7:0> transfers the byte mask information out of the S5
pipe. . ‘

* REF_QUAL: The M_QUE%S5_QUAL<6:0> transfers information which further qualifies the ref-
erence for the purpose of Mbox processing. This field is defined as follows:

M_QUE%S5_QUAL bit Definition

M_QUE%SE_QUAL<6> address of reference is currently a virtual address.

M_QUE%S5_QUAL<5> ' reference has been tested for cross-page condition.

M_QUE%S5_QUAL<4 > reference is first part of an unaligned reference.

M_QUE%SE_QUAL<3> reference is second part of an unaligned reference.

M_QUE%S6_QUAL<2> enable ACV and M=0 checks.

M_QUE%S5_QUAL<1> reference has or is forced to have a hard error.

M_QUE%S6_QUAL<0> reference has or is forced to have a memory management fault (ACV/TNV/M=0).

The S6 reference packet, and the corresponding S6 buses are defined as:

* ADDRESS: The M%S6_PA<31:0> bus transfers a physical address through the S6 pipe.
* DATA: B%S6_DATA<63:0> transfers data through the S6 pipe.

* COMMAND: M%S6_CMD<4:0> transfers the type of reference through the S6 pipe. This com-
mand field is defined in Section 12.3.1.

* TAG: The M_QUE%S6_TAG<4:0> transfers the Ebox register file destination address corre-
sponding to the reference through the S6 pipe.)

e DEST_BOX: M_QUE%S6_DEST<1:0> transfers the reference destination information through
the S6 pipe. This field is defined as follows:

M_QUE%S6_DEST Definition

00: the reference requests data destined for the Mbox.

01: the reference requests data destined for the Ibox.

10: the reference requests data destined for the Ebox.

11: the reference requests data destined for the Ebox and Ibox.

* S6_BYTE_MASK: M%S6_BYTE_MASE<7:0> transfers the byte mask information through the
S6 pipe. The byte mask field is used to indicate which bytes of a longword or quadword write
should actually be written to a cache or memory.

¢ REF_QUAL: M_QUE%S6_QUAL<3:0> transfers information which further qualifies the refer-
ence for the purpose of Mbox processing. This field is defined as follows:

DIGITAL CONFIDENTIAL " The Mbox 12-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

M_QUE%S6_QUAL bit Definition

M_QUE%S6_QUAL<3> reference is first part of an unaligned reference.

M_QUE%S6_QUAL<2> reference is second part of an unaligned reference.

M_QUE%S6_QUAL<1> reference has or is forced to have a hard error.

M_QUE%56_QUAL<(> reference has or is forced to have a memory management fault (ACV/TNV/M=0).

12.2.1 EM_LATCH

The EM_LATCH latches and stores all commands originating from the Ebox. Each reference is
stored until the following two conditions are satisfied: 1) the "complete logical reference” (i.e.
the pair of aligned references required if the EM_LATCH reference is unaligned) clear memory
management access checks, and 2) the EM_LATCH reference successfully completes in S5.

A 4-way byte barrel shifter is connected to the data portion of the EM_LATCH. This enables the
write data to be byte-rotated into longword alignment. The EM_LATCH output can be tristated.

12.2.2 CBOX_LATCH

The CBOX_LATCH stores references originating from the Cbox. These references are I-stream
Pcache fills, D-stream Pcache fills, or Pcache hexaword invalidates. Each reference is stored until
the reference successfully completes in S5.

Note that no data field is present in this latch even though this latch services cache fill commands.

Cache fill data will be supplied to the Pcache on the B%S6_DATA Bus by the Cbox during the
appropriate S6 cache fill cycle. The C%CBOX_ADDR bus is driven by the Cbox during invalidate
commands. During cache fill commands, all but two bits of the C%CBOX_ADDR bus are driven by
the DMISS_LATCH or IMISS_LATCH. The Cbox will drive C%MBOX_FILL_QW<4:3> during cache
fill commands in order to supply the quadword alignment of the fill data within the hexaword
block. The CBOX_LATCH output can be tristated.

1223 TB

The TB (translation buffer) is the mechanism by which the Mbox performs quick virtual-to-
physical address translations. It is a 96-entry fully associative cache of PTEs (Page Table Entries).
Bits 31 through 9 of all 85 virtual addresses act as the TB tag. The replacement algorithm
implemented is Not-Last-Used.

12.2.4 DMISS_LATCH and IMISS_LATCH

The DMISS_LATCH stores the currently outstanding D-stream read. That is, 2 D-stream read,
which missed in the Pcache, is stored in the DMISS_LATCH until the corrsponding Pcache block
fill operation completes. The DMISS_LATCH also stores IPR_RDs to be processed by the Cbox
until the Cbox supplies the data. I-stream reads are handled analogously by the IMISS_LATCH
except that IPR_RDs are never handied by the IMISS_LATCH.

12-6 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

These two latches have comparators built in in order to detect the following conditions:

* For NVAX If the hexaword address of an invalidate matches the hexaword address stored in
either MISS_LATCH, the corresponding MISS_LATCH sets a bit to indicate that the corre-
sponding fill operation is no longer cacheable in the Pcache. **NVAX Plus invalidates only
specify index<12:5>, and the PCache set to be invalidated. If the index and MISS_LATCH
allocation bit match an invalidate the the corresponding MISS_LATCH sets a bit to indicate
that the corresponding fill operation is no longer cacheable in the Pcache **

* Address<11:5> addresses a particular Pcache index (corresponding to two Pcache blocks). If
address<8:5> of the DMISS_LATCH matches the corresponding bits of the physical address
of an S5 I-stream read, the S5 I-stream read is stalled until the entire D-stream fill operation
completes. This prevents the possibility of causing a D-stream fill sequence to a given Pcache
block from simultaneously happening with an I-stream fill sequence to the same Pcache block.

* By the same argument, address<8:5> of the IMISS_LATCH is compared against S5 D-stream
reads to prevent another simultaneous I-stream/D-stream fill sequence to the same Pcache
block.

* Address<8:5> of both miss_latches is compared against any S5 memory write operation. This
is necessary to prevent the write from interfering with the cache fill sequence.

12.2.5 Pcache

The Pcache is a two-way set associative, read allocate, no-write allocate, write through, physical
address cache of I-stream and D-stream data. Some systems may force the Pcache to allocate
such that if address[12]=0 set 0 is loaded, and if address[12]=1 set 1 is loaded, using the Pcache
as if it were direct mapped so that the Pcache can be backmapped exactly as the EV4 Dcache.
The Pcache stores 8192 bytes (8K) of data and 256 tags corresponding to 256 hexaword ‘blocks
(1 hexaword = 32 bytes). Each tag is 20 bits wide corresponding to bits <31:12> of the physical
address. There are four quadword subblocks per block with a valid bit associated with each
subblock. The access size for both Pcache reads and writes is one quadword. Byte parity is
maintained for each byte of data (32 bits per block). One bit of parity is maintained for every
tag. The Pcache has a one cycle access and a one cycle repetition rate for both reads and writes
(note however, that the entire Mbox latency is two cycles due to the two stage Mbox pipeline).

12.3 REFERENCE PROCESSING

This section discusses how references are processed by the Mbox, and how the Mboz functional
components interact to carry out reference processing.

12.3.1 REFERENCE DEFINITIONS
The following table describes all types of references processed by the Mbox:
Table 12-1: Reference Definitions

Name Value (hex) Reference Source Description

IREAD OE Ibox Aligned quadword I-stream read

DIGITAL. CONFIDENTIAL : The Mbox 12-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1291

Table 12-1 (Cont.):

Reference Definitions

Name Value (hex) Reference Source Description

DREAD 1C Ibox, Ebox, Mbox Variable length D-stream read

DREAD_MODIFY 1D Ibox Variable length D-stream read with
modify intent as a result of Ibox-
decoded modify specifiers

DREAD_LOCK 1F Ebox _ Variable length D-stream read with
atomic memory lock

WRITE_UNLOCK 1A Ebox Variable length write with atomic
memory unlock

WRITE 1B Ebox Variable length write

DEST_ADDR 1D Ibox Supplies address of a write-only
destination specifier

STORE 19 Ebox Supplies write data corresponding
to a previously translated destina-
tion specifier address.

IPR_WR 08 Ebox Internal Processor Register Write

IPR_RD 07 Ebox Internal Processor Register Read

IPR_DATA 04 Mbox Transfers Mbox IPR data to Ebox

LOAD_PC 05 Ebox Transfers a PC value to Ibox via
M%MD_BUB<31:0>

PROBE 09 Ebox Mbox returns ACV/TNV/M=0 sta-
tus of specified address to Ebox.

MME_CHK 08 Eboxz, Mbox Performs ACV/TNV/M=0 check on
specified address and invokes the
appropriate memory management
exception

TB_TAG_FILL oC Ebox, Mbox Writes a TB tag into a TB entry.

TB_PTE_FILL 14 Ebox, Mbox Writes PTE data into a TB entry.

TBIS 10 Ebox Invalidates a specific PTE entry in
the TB.

TBIA 18 Ebox,Mbox Invalidates all entries in TB.

TBIP 11 Ebox Invalidates all PTE entries in TB
corresponding to process-space trans-
lations.

D_CF 03 Cbox D-stream quadword Pcache fill

I_CF 02 Cbox " I-stream quadword Pcache fill

12-8 The Mbox

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 12-1 (Cont.): Reference Definitions

Name Value (hex) Reference Source Description
INVAL 01 Cbox Hexaword invalidate of a Pcache
. entry
STOP_SPEC_Q OF Thox / Stops processing of specifier refer-
ences.
NOP 00 Ibox, Ebox, Mbox No operation

12.3.2 Arbitration Algorithm

Since Chox references always want to be processed immediately, a validated CBOX_LATCH al-
ways causes the Cbox reference to be driven before all other pending references.

A validated RTY_DMISS_LATCH, MME_LATCH, and VAP_LATCH have priority over the EM_
LATCH. . '

12.4 READS

12.4.1 Generic Read-hit and Read-miss/Cache_fill Sequences

In order to orient the reader as to how memory reads are processed by the Mboz, this section will
describe the "vanilla" read sequence. It does not discuss reads which TB_MISS, or otherwise are
stalled for a variety of different reasons.

The byte mask generator generates the corresponding byte mask by looking at M_QUE%S5_VA<2:0>
and M_QUE%S5_DL<1:0> and then drives the byte mask onto M_QUE%S5_BM<7:0>. Byte mask data
is generated on a read operation in order to supply the byte alignment information to the Cbox
on an I/O space read.

When a read reference is initiated in the S5 pipe, the address is translated by the TB (assuming
the address was virtual) to a physical address during the first half of the S5 cycle. The Pcache
initiates a cache lookup sequence using this physical address during the second half of the S5
cycle. This cache access sequence overlaps into the following S6 cycle. During phase four of the
S6 cycle, the Pcache determines whether the read reference is present in its array.

If the Pcache determined that the requested data is present, a "cache hit" or "read hit" condition
occurs. In this event, the Pcache drives the requested data onto B%S6_DATA<63:0>. The signal,
M%CBOX_REF_ENABLE, is de-asserted to inform the Cbox that it should supply the data from the
Pcache. ’

If the Pcache determined that the requested data is not present, a "cache miss” or "read miss”
condition occurs. In this event, the read reference is loaded into the IMISS_LATCH or DMISS_
LATCH (depending on whether the read was I-stream or D-stream) and the Cbox is instructed to
continue processing the read by the Mbox assertion of M%CBOX_REF_ENABLE. At some point later,
the Cbox obtains the requested data. The Cbox will then send four quadwords of data using the
I_CF (I-stream cache fill) or D_CF (D-stream cache fill) commands. The four cache fill commands

DIGITAL CONFIDENTIAL ’ The Mbox 12-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

together are used to fill the entire Pcache block corresponding to the hexaword read address.
In the case of D-stream fills, one of the four cache fill command will be qualified with C%ZREQ_
DQW indicating that this quadword fill contains the requested D-stream data corresponding to
the quadword address of the read. When this fill is encountered, it will be used to supply the
requested read data to the Mbox, Ibox and/or Ebox.

If the requested is returned to the CBOX with a dRAck response indicating the data is not to be
placed in Pcache, the CBOX windows the fill commands with CZDRACE_NOCACHE_H causing the
read block not to be allocatted.

If, however, the physical address corresponding to the I_CF or D_CF command falls into 1/0
space, only one quadword fill is returned and the data is not cached in the Pcache. Only memory
data is cached in the Pcache.

Each cache fill command sent to the Mbox is latched in the CBOX_LATCH. Note that neither
the entire cache fill address nor the fill data are loaded into the CBOX_LATCH. The address in
the IMISS_LATCH or DMISS_LATCH, together with two quadword alignment bits latched in the
CBOX_LATCH are used to create the quadword cache fill address when the cache fill command
is executed in S5. When the fill operation propagates into S6, the Cbox drives the corresponding
cache fill data onto B%S6_DATA<63:0> in order for the Pcache to perform the fill.

12.4.1.1 Returning Read Data

Data resulting from a read operation is driven on B%S6_DATA by the Pcache (in the cache hit case)
or by the Cbox (in the cache miss case). This data is then driven on M%MD_BUS<63:0> by the
MD_BUS_ROTATOR in right-justified form. The signals M%VIC_DATA, M%IBOX_DATA, M%IBOX_
IPR_WR, M%EBOX_DATA, M&MBOX_DATA, are conditionally asserted with the data to indicate the
destination(s) of the data.

In order to return the requested read data to the Ibox and/or Ebox as soon as possible, the Cbox
implements a Pcache Data Bypass mechanism. When this mechanism is invoked, the requested
read data can be returned one cycle earlier than when the data is driven for the S6 cache fill
operation. The bypass mechanism works by having the Mbox inform the Cbox that the next S6
cycle will be idle, and thus the B%S6_DATA bus will be available to the Cbox. When the Cbox is
informed of the S6 idle cycle, it drives the B%S6_DATA bus with the requested read data if read
data is currently available (if no read data is available during a bypass cycle, the Cbox drives
some indeterminent data and no valid data is bypassed). The read data is then formatted by
the MD_BUS_ROTATOR and transferred onto the M%MD_BUS to be returned to the Ibox and/or
Ebox, qualified by M%VIC_DATA, M%IBOX_DATA, and/or MZEBOX_DATA.

12.4.2 D-stream Read Processing
A DREAD_LOCK command always forces a Pcache read miss sequence regardless of whether

the referenced data was actually stored in the Pcache. This is necessary in order that the read
propagate out to the Cbox so that the memory lock/unlock protocols can be properly processed.

12-10 The Mbox » A DIGITAL CONFIDENTIAL

12.4.3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

I/0 Space Reads

I/0 space reads are defined as reads which address I/O space. Therefore, a read is an /O read
when the physical address bits, addr<31:29>, are set. I/O space reads are treated by the Mbox
in exactly the same way as any other read, except for the following differences:

[]

12.5

I/0 space data is never cached in the Pcache. Therefore, an 1/O space read always generates
a read-miss sequence and causes the Cbox to process the reference.

Unlike, 2 memory space miss sequence, which returns a hexaword of data via four I_CF or
D_CF commands, an I/O space read returns only one piece of data via one I_CF or D_CF
command. Thus the Cbox always asserts C%LAST FILL on the first and only I_CF or D_CF
I/O space operation. If the I/O space read is D-stream, the returned D_CF data is always less
than or equal to a longword in length.

1/0 space D-stream reads are never prefetched ahead of Ebox execution. An I/O space D-
stream read issued from the Ibox is only prooessed when the Ebox is known to be stalling on
that particular I/O space read.

NVAX RESTRICTION -

I-stream I/O space reads must return a quadword of data. Execution of an I-stream
I/0 space read which does not return a quadword of data is unpredicatable.

WRITES

All writes are initiated by the Mbox on behalf of the Ebox. The Ebox microcode is capable of -
generating write references with data lengths of byte, word, longword, or quadword. With the
exception of cross-page checks, the Mbox treats quadword write references as longword write
references because the Ebox datapath only supplies a longword of data per cycle. Ebox writes
can be unaligned.

The Mbox performs the following functions during a write reference:

[

Memory Management checks: The Mbox checks to be sure the page or pages referenced have
the appropriate write access and that the valid virtual address translations are available.
(See Section 12.12)

The supplied data is properly rotated to the memory aligned longword boundary.
Byte Mask Generation: The Mbox generates the byte mask of the write reference by exam-
ining the write address and the data length of the reference.

Pcache writes: The Pcache is a write-through cache. Therefore, writes are only wntten into
the Pcache if the write address matches a validated Peache tag entry.

The one exception to this rule is when the Pcache is configured in force D-stream hit mode.
In this mode, the data is always written to the Pcache regardless of whether the tag matches
or mismatches.

All write references which pass memory management checks are transferred to the Cbox
via B%S6_DATA<63:0>. The Cbox is responsible for processing writes in the Bcache and for
controlling the protocols related to the write-back memory subsystem.

DIGITAL CONFIDENTIAL The Mbox 12-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

When write data is latched in the EM_LATCH, the 4-way byte barrel shifter associated with the
EM_LATCH rotates the EM_LATCH data into proper alignment based on the lower two bits of
the corresponding address. The diagram below illustrates the barrel shifter function:

Figure 12-2: Barrel Shifter Function

original -
4 bytes of Yo& 13
Epox date - -

L3]
[

barrel shifter - + +
output when |
M_QUE%SE_VA<1:0> = 01 + +

w
-
.
.

£ —

barrel shifter +
output whern a1 43
M _QUESES_VA<1: 0> = 10 ; -

+— +

barrel shifter - - - -
output when i :
M_QUE%SE_VA<1:0> = 11 + - + +

.J
.
w
.

The result of this data rotation is that all bytes of data are now in the correct byte positions
relative to memory longword boundaries.

When write data is driven from the EM_LATCH, M_QUE%S5_DATA<31:0> is driven by the output
of the barrel shifter so that data will always be properly aligned to memory longword addresses.

Note that, while the MoM_QUE%S5_DATA bus is a longword wide, the B%S6_DATA bus is a quadword
wide. B%S6_DATA is a quadword wide due to the quadword Pcache access size. The quadword ac-
cess size facilitates Pcache and VIC fills. However for all writes, at most half of B%S6_DATA<63:0>
is ever used to write the Pcache since all write commands modify a longword or less of data. When
a write reference propagates from S5 to S6, the longword aligned data on M_QUE%S5_DATA<31:0>
is transferred onto both the upper and lower halves of B%S6_DATA<63:0> to guarantee that the
data is also quadword aligned to the Pcache and Cbox. The byte mask corresponding to the
reference will control which bytes of B%S6_DATA<63:0> actually get written into the Pcache or
Bceache.

Write references are formed through two distinct mechanisms described below.

12.5.1 Writes to I/O Space

I/0 space writes are defined as a write command which addresses I/0 space. Therefore, a write
is an I/O space write when the physical address bits, addr<31:29>, are set. /O space writes
are treated by the Mbox in exactly the same way as any other write, except for the following
differences: '

* T/O space data is never cached in the Pcache; therefore, an I/O space write always misses in
the Pcache.

12-12 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.6 IPR PROCESSING

12.6.1 MBOXIPRs

The Mbox maintains the following internal processor registers:

Table 12-2: Mbox IPRs

. IPR Address

Register Name : (in hex)
MPOBR (Mbox PO Base Register)’ E0

MPOLR (Mbox PO Length Register)! El

MP1BR (Mbox P1 Base Register)’ E2

MP1LR (Mbox P1 Length Register)’ E3

MSBR (Mbox System Base Register)! E4

MSLR (Mbox System Length Register)! ' E5

MMAPEN (Map Enable Bit)" E6

PAMODE (Address Mode) E7

MMEADR (MME Faulting Address Register)' : E8

MMEPTE (PTE Address Register)’ E9

NMMESTS (status of memory management exception)! EA

TBADR (address of reference causing TB parity error) EC

TBSTS (status of TB parity error) ED

PCADR (address of reference causing Pcache parity error) k2

PCSTS (status of Pcache parity error and PTE hard errors) ' P4

PCCTL (control state of Pcache operation) F8

PCTAG 01800000..01801FE0
PCDAP 01C00000..01CO1FF8

1Testability and disgnostic use only; not for software use in normal operation.

The first thirteen IPRs listed above (memory management IPRs) are stored in the S5 pipe in
the register file of the MME_DATAPATH. All other IPRs are stored in the S6 pipe. Note that
when an Mbox IPR, other than a Pcache tag, is addressed, the actual IPR address is received on
M_QUE%S5_VA<9:2> (the table above is written such that all addresses start at bit<0>).

The following is the format description of each Mbox IPR.

DIGITAL CONFIDENTIAL The Mbox 12-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-3: MPOBR Register

21 30 2% 28127 26 25 24123 22 21 20419 18 17 16|15 14 13 12111 10 02 08|07 06 05 04102 02 01 00
+ e e St S temde e -+ + et L G e e -t
I 11 0} system virtval page address of PO page table | 0 Of Of O O} Of O} O} 0):MPOBR

Figure 12-4: MPOLR Register

31 30 29 28127 26 25 24123 22 21 20/1¢ 18& 17 16115 14 13 12411 10 0% 08|07 06 05 041032 02 0L 00
I 0l 0f Of ! O Of O Of 01 O} length ¢f PO page teble in longwerds | tMPOLFK

Figure 12-5: MP1BR Register

31 30 2% 28|27 26 25 24123 22 21 20119 1B 17 16115 14 i.3 12111 10 0¢ 08107 06 05 04102 02 01 00
|1t 0l

em virtual page address c¢f Pl page table 1 01 O O Of 01 O} O 0! Of:MP1BK

-+ oo o

-+ o+

b

Figure 12-6: MP1LR Register

21 30 292 28127 2€ 25 24123 22 21 20119 18 17 16115 14 13 12111 10 02 08|07 06 05 04103 02 01 00
[0; 0t 0f O; O O} 01 O} Of O} langth of (27*21) - P. pagée table in longwords | tMP1LK
ho b o o o o o b e e o e m . e . e o e e o e h e o o o

-

Figure 12-7: MSBR Register

+ -y

21 30 29 28i27 2€ 25 24123 22 21 20|19 18 17 16415 14 13 12|11 10 09 08107 06 05 04103 02 01 00
|

oo - -

physical page address ¢f system page table I 0] O 0f 0] O} O O O] Of:MSBR

o e o o - o

- Ll s Lol DLl gt Gkl 4 Lt o o o

o o}

+ + -

12-14 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-8: MSLR Register

31 30 2¢ 2BJ27 26 2T 24123 22 21 20]1¢ 18 17 16(15 14 13 12111 10 0¢ 0B{07 06 05 04103 02 01 0O

+ oo - o o et oo e e o e o e o e - -

| 01 0] Of OF Of OJ Ol O} O OI length of system page table in longwords | :MSLE
— —————— -

- - e " -
o - -+ o om e e o 4 o e oo e < o o o o 0 e e of a - o o cp e o e oh o

Figure 12-9: MMAPEN Register

+ - - -

31 30 2¢ 28127 26 25 24123 22 21 20]1¢ 18 17 16(15 14 13 12111 10 0% 08|07 06 05 04102 02 01 00
t—hemn e o om0 o2 oo oo e 5 e o o e o it s +

I 0F O OF 0: O O] Of O O GF O OF O Of O Of O Of Ol Of 01 O} O} O] O] O] O] Ol Of Of 0| M|:MMAPEN
———r o~ o oo o o @ e oo O e oo e o o o e e e e 0 o ot o o T bt

Table 12-3: MMAPEN Definition
Name Bit(s) Type Description

M 0 RW,0 When 0, disables Mbox memory management. When 1, enables
Mbox memory management.

. Figure 12-10: PAMODE Register

31 30 2¢ 28|27 26 25 24123 22 21 20|1¢ 18 17 16J15 14 13 12{11 10 0% Q8107 06 05 04102 02 01 00

-+

{ 0] 0} Oy O Of O O Of Of Ol Of O] Of O] Of O] O] Of O G} G| O] O] | : PAMODE
- - e T T e

| OF 0] O O 01 O O] ©

+ et o o oo o am o o -+

' MODE===m==- +

Table 12-4: PAMODE Definition
Name Bit(s) Type Description

MODE 0 RW,0 When 0, maps addresses from a 30-bit physical address space. When
‘ 1, maps addresses from a 32-bit physical address space.

DIGITAL CONFIDENTIAL The Mbox 12-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-11: MMEADR Reglster

31 3C 2¢ 28127 26 25 24123 22 21 20(1¢ 18 17 16(15 14 13 12|11 10 O¢ 0B|07 06 05 04|02 02 01 00

+ o e o o o o o o - S s + .- o o o e e e e

| address associated with recorded MME fault t e MMEADF

ot ot - “+ - + b

Figure 12-12: MMEPTE Register

21 30 2¢ 28127 26 25 24123 22 21 20011¢ 18 17 1611% 14 13 12]11 10 O¢ 0B|07 06 05 04j03 02 01 00

B e —— - - ————— o o o

| PTE address associated with an address corresponding te a modify fault | :MMEPTE

et ————— N et + - -+ - o e et o o o

Figure 12-13: MMESTS Register

31 30 29 28J27 26 25 24123 22 21 20119 18 17 16115 14 13 12(11 10 0% OB|07 06 05 04103 02 01 00

-+ -+ - ‘- - e

1 I SRC | 0f 01 Of O O] Ol O} O O OIFAULT| O| O} Of O} O} O] O] O Ol Ol O} M| |{LV|:MMEETS

-+ +: o e o o+ o e o o e 0 o e 2 o o o oo pom o op Dol

(mmedmam->)
b o
“-=== LOCE PTE_REF--+

Table 12-5: MMESTS Register Definition

Name Bit(s) Type Description

v 0 RO,0 Indicates ACV fault occurred due to length violation.

PTE_REF 1 RO Indicates ACV/TNV fault occurred on PTE reference corresponding
to MMEADR.

M 2 RO Indicates corresponding reference had write or modify intent.

FAULT 15:14 RO Indicates nature of memory management fault. See Fault bit encod-
ings below

SRC 28:26 RO Complemented shadow copy of LOCK bits. However, the SRC bits

: do not get reset when the LOCK bits are cleared.
LOCK 31:28 RO Indicates the lock status of MMESTS. See LOCK encodings below.

This field is cleared on EP%FLUSE_MBOZX.

12-16 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 12-6: FAULT Encodings

Defined FAULT values (bi-

nary) Definition

01 ACV Fault. This is the highest priority fault in the presence of muiltiple
simultaneous faults.

10 TNV Fault. This is the next highest priority fault.

11 M=0 Fault. This is the lowest priority fault.

Table 12-7: LOCK Encodings

Defined LOCK values (bi- »

nary) Definition

000 MMESTS, MMEADR and MMEPTE are unlocked.

001 valid IREAD fault is stored (no ofther IREAD fault can overwrite MMESTS,
MMEADR, or MMEPTE).

011 valid Ibox specifier fault is stored (only an Ebox reference fault can overwrite
MMESTS, MMEADR, or MMEPTE).

111 valid Ebox fault is stored (MMESTS, MMEADR, and MMEPTE are com-

v pletely locked).

Note that the encodings for the SRC bits are the complemented version of the the LOCK bits.
Thus, for example, a fully locked SRC encoding is 000.

Figure 12-14: TBADR Register

31 30 292 28127 26 25 24123 22 21 20/1% 16 17 16115 14 13 12411 10 02 0B]07 06 05 04103 02 01 00

b ——— B s —— B e b b e e

i virtual address associated with the recorded TF parity error | : TBADR

- * + t u -+ b <+ * + et Sl kol S bty -+ *+ + oo ot

Figure 12-15: TBSTS Register

31 30 29 28127 26 25 24123 22 21 20|1¢-18 17 16{15 14 13 12111 10 0% 0B|07 06 05 04402 €2 01 00

- - R . + - . - o+ o+ - -+

- " - . "
Lt o o oo o o o n o} + -+ + o - o+ - + o o o e of- 0 e e o e o + -+ + +

SRC 0} 0] O] O] O O} O] O O Of OFf O] Of O} Of O] O}f Of O} Of CMD 'L b 1 [:TBETS

b sty ol st Stk bt o oo o e o oo o b + + + o e o o e e o e Ll - * +

+ —

DIGITAL CONFIDENTIAL ’ The Mbox 12-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 12-8: TBSTS Description
Name Bit(s) Type Description

LOCK 0 WC,0 Lock Bit. When set, validates TBSTS contents and prevents any
: other field from further modification. When clear, indicates that no
TB parity error has been recorded and allows TBSTS and TBADR

to be updated. .
DPERR 1 RO Data Error Bit. When set, indicates a TB data parity error.
TPERR 2 RO Tag Error Bit. When set, indicates 2 TB tag parity error.

EM_VAL 3 RO EM_LATCH valid bit. Indicates if EM_LATCH was valid at the time
. of the error TB parity error detection. This helps the software error
handler determine if a write operation may have been lost due to
the TB parity error.
CMD 8:4 RO S5 command corresponding to TB parity error.

SRC 31:29 RO Indicates the original source of the reference causing TB parity error.

Table 12-8: SRC Encodings

Defined SRC values Definition
111 valid Mbozx reference error is stored

110 valid IREAD error is stored

100 valid Ibox specifier reference error is stored
000 valid Ebox reference error is stored

Figure 12-16: PCADR Register

31 30 2¢ 28127 26 25 24123 22 21 20]1¢ 18 17 16|15 14 12 12111 10 0¢ 0B{07 06 05 04103 02 01 00

| quadword physical address associated with the recorded Pcache parity error | 0| 0| 0|:PCADR

- - - - "
-+ - + + o - o -+ o o o oo € e oo e o -+ o s oo o oo + ot o o o L balal kg + + .

12-18 The Mbox ' DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-17: PCSTS Register

31 30 29 28127 26 25 24122 22 21 20419 18 17 16[15 14 12 12!11 10 02 08107 06 05 04102 02 01 00

+

1 ll 1I1I1]1|1|1I1{l|111|1!1[1I1|1|111|1|1I [CMD I 1 | 1:PCSTS

[
ok men o o o e o am o e o e T + ok e oo o o o o e o o 0 o +

9

(]

%
L

Table 12-10: PCSTS Description
Name Bit(s) Type Description

LOCK 0 WC,0 Lock Bit. When set, validates PCSTS«8:1> contents and prevents
modification of these fields. When clear, invalidates PCSTS<8:1>
and allows these fields and PCADR to be updated.

DPERR 1 RO Data Error Bit. When set, indicates 2 Pcache data parity error.

RIGHT_BANK 2 RO Right Bank Tag Error Bit. When set, indicates 2 Pcache tag parity
» error on the right bank.

LEFT_BANK 3 RO Left Bank Tag Error Bit. When set, indicates a Pcache tag parity
error on the left bank.

CMD 84 RO S6 command corresponding to Pcache parity error.

PTE_ER_WR 9 WC,0 Indicates a hard error on a PTE DREAD which resulted from a TB
miss on a WRITE or WRITE_UNLOCK.

PTE_ER 10 WC,0 Indicates a hard error on a PTE DREAD.

Note that the state of PCSTS«31:11> are "don’t cares” during an IPR write operation.

Figure 12-18: PCCTL Register

31 30 29 28127 26 25 24123 22 21 20/19 18 17 16115 14 13 12]11 10 02 08107 06 0% 04|0$ 02 01 00

s R O " - . TR —. -
- o oo e o o} o - o+ + +

lli‘lllllllll 10 31 21 21 3 lllllllll(llllllllllll |

o * Lt Dl o+ + + o e oo e B o e 2 e o e e e O o o 4 o} p o uabads o

Lo |
RED_ENABLE-==+ | |
ELEC_DISABLE---=+ .
P_ENABLE +
BANK_SEL
FORCE_HIT
I_ENABLE
D_ENABLE

:PCCTL

b — — ———

o e — —

 — —— —

DIGITAL CONFIDENTIAL The Mbox 12-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 12-11: PCCTL Definition

Name

Bit(s)

Type

Description

D_ENABLE

J_ENABLE

FORCE_HIT

BANK_SEL

P_ENABLE

PMM

ELEC_DISABLE

RED_ENABLE

0

7:5

8

RW,0

RW,0

RW,0

RW,0

RW,0

RW,0

RW,0

RO

When set, enables Pcache for all INVAL operations and for all
D-stream read/write/fill operations, qualified by other control bits.
When clear, forces a Pcache miss on all Pcache D-stream read/write/fill
operations. Note, however, that an ACV/TNV/M=0 condition over-
rides a desasserted D_ENABLE in that it will force a Pcache hit
condition with D_ENABLE=0.

When set, enables Pcache processing of INVAL, IREAD and I_CF
commands. When clear, forces a Pcache miss on IREAD operations
and prevents state modification due to an I_CF operation.

When set, forces a Pcache hit on all reads and writes when Pcache
is enabied for I or D-stream operation.

When set with FORCE_HIT=1, selects the "right bank" of the ad-
dressed Pcache index. When clear with FORCE_HIT=1, selects the
"left bank" of the addressed Pcache index. BANK_SEL is a don't
care when FORCE_HIT=0. NOTE: BANK_SEL never affects bank
selection during IPR reads and IPR writes to the Pcache tags or
Pcache data parity bits; bank selection for these commands is always

_determined by the specified IPR address.

When set, enables detection of Pcache tag and data parity errors.
When deasserted, disables Pcache parity error detection.

Specifies Mbox performance monitor mode (see Section 12.17). Note
that this field does not control or affect the operation of the Pcache
in any way. PMM is placed in PCCTL for the convenience of the
hardware implementation.

When set, the Pcache is disabled electrically to reduce power dis-
sipation. NOTE: This bit should only be set when the Pcache is
functionally turned off by the deassertion of both I_ENABLE and
D_ENABLE. UNPREDICTABLE operation will result when this bit
is set when either I ENABLE or D_ENABLE is also set. Also note
that Pcache tag or parity IPRs will not function properly when this
bit is unconditionally set.

When set, indicates that one or more Pcache redundancy elements
are enabled (see Section 12.11 for more information).

Note that the state of PCCTL«<31:10> are "don’t cares” during an IPR write operation.

Figure 12-19: PCTAG Register

31 30 2¢ 28127 26 25 24123 22 21 20]19 18 17 16115 14 13 124211 10 0 08|07 06 05 04103 02 01 00

|

+

tag

+ o o9 i o e 0 o - b bt oo

! 1 ll 11 ll ll lI P| Valid bitsl Al PCTAG

12-20 The Mbox

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 12-12: Pcache Tag IPR Format

Name Bit(s) Type Description
A 0 RW Allocation Bit corresponding to index of this tag.
valid bits 4:1 RW Valid Bits corresponding to the four data subblocks. PCTAG<4> cor-

responds to uppermost quadword in block. PCTAG<1> corresponds
to lowermost quadword in block.

P 5 RW Even Tag Parity
tag 31:12 RW Tag Data

Note that the state of PCTAG<11:6> are "don’t cares” during an IPR write operation.

Figure 12-20: PCDAP Register

31 3¢ 2% 28127 26 25 241223 22 21 20)11¢ 18 17 16115 14 13 12111 10 0% 0B|C7 06 05 04103 02 01 OC
o —————— - + + - oo o e e e o o e o o +

Pl 2010 303 20 182 3030 24 2 2 102 3p 1y 1) 2 114 3y 2111+ - DATA_PARITY

o 3 -+ + + - + + oo oo o oo o o e o + utadde o -t » - o -

| : PCDAF

Table 12-13: Pcache Data Parity IPR Format
Name Bit(s) Type Description

DATA_PARITY 7:0 RW Even byte parity corresponding to addressed quadword of data. Bit
n represents parity for byte n of addressed quadword.

Note that the state of PCDAP<31:8> are "don’t cares” during an IPR write operation.

12.7 INVALIDATES

**The Cbox initiates an invalidate by PASSING iAdr<12:5> and InvReg<1:0> RECEIVED FROM
SYSTEM LOGIC qualified by the INVAL command. The INVAL command is latched by the Mbox
in the CBOX_LATCH. The set and index specified are unconditionally invalidated.**

Execution of an INVAL command guarantees that data corresponding to the specified hexaword
address will not be valid in the Pcache. THE SYSTEM LOGIC IS RESPONSIBLE FOR PRIMARY
CACHE COHERENCY IN NVAX Plus. The block valid bit and the four corresponding subblock
valid bits are cleared to guarantee that any subsequent Pcache accesses of this hexaword will
miss until this hexaword is re-validated by a subsequent Pcache fill sequence. If a cache fill
sequence to the same INDEX AND SET is in progress when the INVAL is executed, a bit in
the corresponding MISS_LATCH is set to inhibit any further cache fills from loading data or
validating data for this cache block.

Also note that an assertion of C%CBOX_HARD_ERR during a cache fill command causes the cache
fill operation to be processed as if it were an INVAL operation.

DIGITAL CONFIDENTIAL The Mbox 12-21

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.7.1 ABORTING REFERENCES

The Mbox abort operation is used to cancel the current S5 operation. When an abort is executed,
the S5 state, which would normally be updated due to execution of the current S5 reference, is not
updated. The aborted S5 reference is not propagated into S6. Instead, a NOP is introduced into
the S6 pipe. In effect, an aborted S5 reference is equivalent to a NOP command being executed
in 85.

Note that the abort operation should be viewed as only cancelling the current execution of a refer-
ence. In most cases, aborting an operation does not invalidate the existence of the corresponding
reference, which will still be stored in one of the reference sources and retried at a later point.

The abort operation is executed when ABORT is asserted. The following changes to Mbox state
are inhibited during the cycle in which ABORT is asserted:

* The reference source which drove the aborted command into S5 does not invalidate the cor-
responding command. Thus, the reference still exists to be retried during a subsequent
cycle.

NOTE

There are two exceptions to this rule. The CBOX_LATCH is always invalidated
after it drives a command into S5. The EM_LATCH will be invalidated if the Ebox
has explicitly requested it to be (via the EXEM_ABORT signal).

* Loading the PA_QUEUE with a DEST_ADDR or DREAD_MODIFY command is inhibited.
Emptying the PA_QUEUE when a STORE command is driven in S5 is inhibited.)

* If the unaligned detection logic detected an unaligned reference during the aborted cycle, the
VAP_LATCH is not validated to contain the second portion of the unaligned sequence.

12.8 Conditions for Aborting References

In general, references are aborted for five reasons:

* The reference is aborted to prevent a reference order restriction from occurring.

¢ The reference is aborted because insufficient hardware resources are available to complete
processing of the current command.

* The reference is aborted because a2 memory management operation must be performed prior
to execution of the current reference.

* The reference is aborted in order to avoid a deadlock condition related to unaligned references.
s The reference is aborted due to an external flush condition.

12.9 READ_LOCK/WRITE_UNLOCK

Once a READ_LOCK command has been passed to the Cbox, the Cbox can not process any
subsequent I-stream read references, and should not receive any D-stream references besides the
IPR read of STxC passf/fail or a retry of the read_lock, until a STxC pass signal is received from
the CBOX.

12-22 The Mbox ' DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

This is accomplished by the arbitration logic by disabling IREF_LATCH selection once a DREAD_
LOCK command has successfully been retired from the S5 pipe. Thus, no IREAD TB_MISS can
occur between the READ_LOCK and STxC pass, thus avoiding D-Stream references not part of
the interlock sequence.)

The arbitration logic will re-enable IREF_LATCH selection on either of the following two condi-

tions:

1. The STxC IPR is read and the condition indicates pass. This will cause the Cbox to resume
I-stream read processing.

2. E®FLUSH_MBOXis asserted by the Ebox due to a hard error. This condition should occur much
more infrequently than the above condition because a WRITE_UNLOCK must normally be
issued after a READ_LOCK. However, if an error occurred sometime between the READ_
LOCK and STxC Pass, a hard error microtrap will result preventing a WRITE_UNLOCK
from being issued. The microtrap will generate E%FLUSH_MBOX which re-enables IREF_
LATCH selection because no WRITE_UNLOCK will follow.

**Note that the Cbox state, which prevents subsequent I-stream reads from being processed
before the WRITE_UNLOCK, will be cleared by an IPR_WRITE during the error handier. **

Note that Ibox processing will have been halted prior to the READ_LOCK/WRITE_UNLOCK
sequence. The Ebox microcode will never issue a D-stream read in the middle of a READ_
LOCK/WRITE_UNLOCK sequence.

1210 Pcache Replacement Algorithm

Each line of Pcache contains an allocation bit which is used to indicate which bank (left or right)
should be used for the next fill sequence of that index: This results in a "not last used" allocation
to the Pcache sets.

When an invalidate clears the valid bits of a particular tag within an index, it only makes sense
to set the allocation bit to point to the bank select used during the invalidate regardless of which -
bank was last allocated. By doing so, we guarantee that the next allocated block within the
index will not displace any valid tag because the allocation bit points to the tag that was just
invalidated.

For systems that require the Pcache to function as direct mapped, the allocate bit during a fill
sequence, is ignored, and the fill follows address[12].

12.11 Pcache Redundancy Logic

Due to the extreme density of the Pcache array, the Pcache has a high susceptibility to manu-
facturing defects. As a result, redundancy logic was designed in order to provide a mechanism
which would allow the Pcache to function correctly in the presence of a small number of man-
ufacturing defects. Refer to NVAX CPU Chip Functional Specification for the description of the
PCache Redundancy feature.

DIGITAL CONFIDENTIAL ' The Mbox 12-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1212 MEMORY MANAGEMENT

The Mbox, the Ebox microcode, and the VMS memory management software implement VAX
memory management. The Mbox performs the hardware memory management functions nec-
essary to process most references in a quick efficient manner. The operating system software
performs all other functions. For a description of the hardware end of VAX memory management,
the reader is referred to the Memory Management chapter of the "VAX Architecture Standard"
(DEC STD 032). For a complete description of the software end of VAX/VMS memory manage-
ment, the reader is referred to the Memory Management chapters of "VAX/VMS Internals and
Data Structures”.

The Mbox is responsible for the following memory management functions:

¢ Performing virtual-to-physical address translations.

* Maintaining a cache of PTEs to perform the quick translations.
*. Performing access mode checks on memory references.

* Performing TNV checks on memory references.

* Performing M=0 checks on memory references.

* Directly or indirectly invoking a software memory management exception handler due to ACV
(Access Violation) or TNV (Translation not Valid) or M=0 faults.

* Detecting cross-page conditions and performing the corresponding access mode checks.

12.12.1 ACV/TNV/M=0 Fault Handling:

In order for an ACV, TNV, or M=0 fault to be processed, the following steps must occur:

1. The Mbox must dete¢t the ACV/TNV/M=0 condition.
2. The Eboxz microcode must be invoked to start processing the condition.

3. The Ebox microcode must probe Mboz state in order to determine which fault occurred and
how it should be processed.

4. The Ebox microcode must service the fault condition directly, or it must invoke an operating
system memory management service routine to service the fault.

5. If the memory management fault was not fatal to the process, normal instruction execution
resumes by restarting the instruction corresponding to the memory management fault after
servicing the fault.

12.12.2 ACV detection:

The protection field of a PTE indicates the authorized access rights for each execution mode.
When a reference causes the TB to access a PTE, the protection field of the PTE corresponding
to the reference is driven out of the TB. The ACV (Access Violation) detection logic uses the PTE
protection field, M_QUE%S5_AT<1:0>, and the appropriate CPU execution mode from the Ebox (i.e.
user, supervisor, executive, kernel) to detect access violations. If, for example, the protection
field indicates a "read-only" access in user mode, the CPU execution mode specifies user mode,
and M_QUE%S5_AT<1:0> indicates write access, then an ACV condition is flagged since a write
reference is not allowed to this page in user mode.

12-24 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

A 2:1 MUX controls the source of the CPU execution mode. The CPU execution mode information
is normally taken directly from the current mode field of the PSL (PSL<25:24>). On PROBE
references, however, the CPU execution mode is driven from MMGT MODE<1:0> in order to check
for ACV conditions for an execution mode which the CPU is not currently in.

An ACV condition is also generated when a PTE reference fails to satisfy the page length check
corresponding to the virtual space of the reference or when the virtual reference falls into S1
space. A virtual address in S1 space is reported as an ACV length violation.

An ACV check is also performed on the protection field of all PTEs which have just been sent to
the Mbox due to an earlier Mbox DREAD issued during the TB_MISS sequence.

ACV protection and length checks are performed on all Ibox and Ebox references and on all MME_
CHKs. ACV page length checks are performed on all PTE addresses. However, ACV protection
checks are never performed on PTE read references generated by the Mboz.

Note that the ACV protection condition is disabled from occurring during any cycle where the
reference is aborted.

When an ACV condition occurs, the MME_SEQ is invoked to execute the ACV/TNV/M=0 sequence.
ACV checks only occur on virtual addresses when memory management is enabled and when the
reference indicates that memory management checks should be done (i.e. M_QUE%S5_QUAL<2> =
1).

12.12.2.1 TNV detection

When the PTE valid bit is clear, it indicates that the corresponding PTE page frame address
translation is not valid. This is called a Translation Not Valid Fault (TNV). TNV detection only
occurs during the TB_MISS sequence when the Mbox receives PTE data from the Pcache or
Cbox such that the PTE valid bit (PTE<31>) is clear. When a TNV fault is detected, the MME_
SEQ interrupts the TB_MISS sequence and invokes the ACV/TNV/M=0 sequence. By doing so,
the invalid PTE is never cached in the TB and a memory management fault is recorded (See
Section 12.12.2.3 on recording memory management faults).

12.12.2.2 M=0 detection:

When a virtual reference causes the TB to access a PTE, the modify bit of the PTE is read out
of the TB. A cleared modify bit indicates that the corresponding page has not been written to. If
the valid bit of the PTE is set, and the modify bit is clear and the access type of the S5 reference
indicates an intention to modify the page (e.g. write or modify OR VSTR access type), then the
Mbox must initiate the proper sequence of events to process this "M=0" condition. The M=0 check
is performed when memory management is enabled and a virtual reference hits in the TB.

Note that the M=0 condition is disabled from occurring during any cycle where the reference is
aborted.

DIGITAL CONFIDENTIAL A : The Mbox 12-25

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12,12.2.3 Recording ACV/TNV/M=0 Faults

In order for the microcode to determine the nature of the memory management fault detected
by the Mbox, the Mbox must record the necessary fault information. The fault information is
recorded in Mbox IPRs which can be read by Ebox microcode. The fault information is stored in
three of the registers in the MME register file which are accessible to microcode by IPR reads
and writes:

* The MMEADR register stores the virtual address associated with the ACV, TNV or M=0 fault.
As per SRM requirements, if the ACV/TNV fault occurred by referencing a PTE during a TB
miss sequence, the MMEADR stores the original address and not the PTE address.

* The MMEPTE register stores the virtual or physical address of the Page Table Entry corre-
sponding to a virtual reference upon which an M=0 condition has been detected.

¢ The MMESTS register stores state which indicates to the microcode the context and type of
fault corresponding to the ACV/TNV/M=0 condition. The format of MMESTS is shown below:

Due to the macropipeline design, the MMEADR, MMEPTE and MMESTS registers must be
conditionally loaded in a prioritized fashion. These registers are loaded depending on the relative
states of their current contents and on the context of the current fault. If the MMESTS register
is empty, the current fault state is always loaded. If the MMESTS register contains a valid
fault condition, the MMEADR, MMEPTE and MMESTS are only loaded if the current fault is
associated with a pipe stage further along in the pipe than the stage corresponding to the stored
MMESTS state. This loading priority is necessary because these memory management faults
must be reported within the context of the execution of the instruction they are associated with.
A fault detected on an Ebox reference is loaded provided that another Ebox reference fault is
not already loaded. Faults detected on Ibox specifier references are only loaded if no Ebox or
Ibox specifier reference fault is currently stored. Faults on Ibox I-stream references are only
loaded if the MMESTS register is empty. In effect, the MMESTS register captures the first
memory management exception that will be associated with Eboxz execution. Stated differently,
it captures the fault which occurs farthest along in the macropipeline.

The LOCK field of MMESTS specifies the source of the faulting reference currently stored in
MMESTS. Thus, the decision to load another faulting reference into MMESTS is made by exam-
ining the bits of the LOCK field.

The FAULT field is set in a prioritized manner. That is, an ACV fault takes precedence over
a TNV or M=0 fault. A TNV fault takes precedence over an M=0 fault. Therefore, if multiple
pending fault conditions are true, only the fault condition with the highest priority is reported in
the MMESTS register.

When the Ebox starts the memory management exception microfiow, it issues an IPR_RD to the
MMESTS to determine the nature of the memory management fault. The MMESTS register is
automatically unlocked by resettmg the LOCK field when the E%ZFLUSH_MBOX signal is asserted
by the Ebox.

12-26 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.13 MBOX ERROR HANDLING

Mbox plays a role in the processing of the following types of errors:

* TB tag parity errors.

* TB data parity errors.

¢ Pcache tag parity errors.
* Pcache data parity errors.

* Errors encountered by the Cbox while pr&cessing a memory read, 1/0 space read, or IPR_RD
which were transferred from the Mbox to the Cbox. Note that these errors could originate
from the Bcache, or memory subsystem.

All other possible errors are handled without Mbox involvement.

12.13.1 Recording Mbox errors

The Mbox contains four error registers. Two are used to record TB parity errors and the other
two are used to record Pcache parity errors.

12,13.1.1 TBéTS and TBADR

When a TB parity error is detected with LOCK=0, TBADR is loaded with the virtual address
which caused the TB parity error, and all fields of TBSTS are updated to record the nature of
the TB parity error. Note that both the TPERR and DPERR bits can be set at the same time if
these two error conditions occurred during the same cycle. When a TB parity error is recorded,
the LOCK bit is set to validate the contents of both TBSTS and TBADR registers. When LOCK
is set, all bits of both registers are frozen and cannot be changed until the LOCK bit is cleared.
Thus, any subsequent error is not recorded if LOCK=1.

When the operating system error handler is invoked, TBSTS and TBADR will be read through an
IPR_RD command in order to determine if any TB parity errors were recorded. If the state of the
LOCK bit was read to be a zero, then no error has occurred and the remaining state information
in these two registers is invalid. If the LOCK bit was found to be set, then the remaining error
state of these two registers characterizes the nature of the recorded error.

Once the error handler has read these registers, it re-enables TBSTS to record any new errors by
clearing the LOCK bit. Clearing the LOCK bit is accomplished by writing a "1" to LOCK through
an [PR_WR operation.

12.13.1.2 PCSTS and PCADR

The PCSTS and PCADR record Pcache tag and data parity errors. The function and operation
of these registers is identical to the TBSTS and TBADR registers except that the PCADR stores
physical quadword addresses rather than virtual byte addresses, and it also records PTE hard
error events. The definitions of these registers are shown in Figure 12-16 and Figure 12-17. Note
however, that when PCSTS<0> is set, Pcache memory reads, writes and invalidates are disabled.

DIGITAL CONFIDENTIAL ' The Mbox 12-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.13.2 Mbox Error Processing

12.13.2.1 Processing Cbox errors on Mbox-initiated read-like sequences

The Cbox detects errors that occur in the Becache, or memory subsystem. When the Cbox detects
one of these errors, and it is associated with an Mbozx-initiated reference that requires data to
be returned (e.g. memory read, I/0 space read, or IPR read), the Mbox must transfer the error
status of the reference back to the destination corresponding to the reference. The Mbox never
.records a Cbox-detected error in Mbox error registers because the error is logged in Cbox error
registers.

12.13.2.1.1 Cbox-detected ECC errors

The Cbox returns requested data through a I_CF or D_CF command to the Mbox while simulta-
neously checking the error-correction code to check for a possible Beache error. If an ECC error
is found, the Cbox asserts C%CBOX_ECC_ERR. This causes the Mbox to latch a NOP in the CBOX__
LATCH rather than the cache fill. As a result, the Mbox does not perform any Pcache state up-
dates resulting from the bad data nor does it assert M%VIC_DATA, M%IBOX_DATA, M%EBOX_DATA,
or MZMBOX_DATA to indicate the presence of valid data.

C%CBOX_ECC_ERR IS ALSO USED BY THE CBOX LOGIC AS A LATE ABORT FOR FILL DATA
DUE TO A MISS OR CACHE TAG COMPARE NOT VALID DUE TO SYSTEM LOGIC OWNING
THE CACHE DURING THE READ/PROBE CYCLE.

During subsequent cycles, the Cbox will determine if the ECC error is cozrecﬁable or not. If it
is, the data will be corrected and returned. If the data is not correctable, a Cbox-detected hard
error has occurred and will be dealt with as described below.

12.13.2.1.2 Cbox-detected hard errors on requested fill data

If the Cbox has determined that the requested data cannot be returned for some reason, the
Cbox drives a cache fill command qualified by C%CBOX_HARD_ERR. When this happens, the Mbox
performs the following actions:

1. The assertion of C%CBOX_HARD_ERR indicates to the Mbox that the cache fill data is invalid.
Thus, the Mbox returns the invalid data on the M%MD_BUS in the same manner that all data
is returned except that the data is further qualified by M%HARD_ERR. M%HARD_ERR informs
the receiver that the data is invalid and that the requested data cannot be returned due to a
hard error.

2. Once the Cbox detects a hard error on the requested data, the Cbox immediately terminates
the pending fill sequence by the assertion of C%LAST_FILL. Thus, no further data correspond-
ing to the same fill sequence will be returned and the Mbox fill sequence corresponding to
the error is terminated by invalidating the corresponding MISS_LATCH.

3. An I_CF or D_CF command which is qualified by C%CBOX_HARD_ERR is interpreted by the
Pcache as an INVAL command. Thus the invalid data is not filled in the Pcache.

12-28 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.13.2.1.3 Cbox-detected hard errors on non-requested fill data

The Cbox performs the same actions as described above to indicate the presence of a hard error
regardless of whether the data is the requested data or just one of the other three pieces of fill
data for the corresponding Pcache block. If the data is non-requested fill data, the Mbox performs
the following actions:

1. Once the Cbox detects a hard error on the non-requested data, the Cboz immediately termi-
nates the pending fill sequence by the assertion of C%LAST_FILL. Thus, no further data corre-
sponding to the same fill sequence will be returned and the Mbox fill sequence corresponding
to the error is terminated by invalidating the corresponding MISS_LATCH.

2. An I_CF or D_CF command which is qualified by C%CBOX_HARD_ERR is interpreted by the
Pcache as an INVAL command. Thus the invalid fill data is not filled in the Pcache and
all previous fills to the same block are invalidated. This is necessary in order to maintain
coherency between the Pcache and Beache because a Beache data block will only be validated
if all the data within the block is error-free.

12,13.2.2 Mbox Error Processing Matrix

The following table summaries all Mbox error handling. A blank entry in the table means that
the corresponding error cannot occur for the given reference.

Table 12-14: Mbox Error Handling Matrix

TB tag par- TBdatapar- Pcachetagpar-Pcachedata Cboxharder-
Command ity error ity error ity error parity error ror

- Ibox references

IREAD A A B D F
DREAD A A B D F
DREAD_MODIFY A A B D F
DEST_ADDR A A

STOP_SPEC_Q

Ebox references

DREAD A A B D F
DREAD_LOCK A A B F
STORE Cc

WRITE A A C

WRITE_UNLOCK A A Cc

IPR_RD (to Pcache)

IPR_RD (non-Mbox) - F

DIGITAL CONFIDENTIAL . ' The Mbox 12-28

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 12-14 (Cont.): Mbox Error Handling Matrix

TB tag par- TB data par- Pcache tag par- Pcache data Cbox hard er-
Command ity error ity error ity error parity error ror

IPR_WR (to Pcache)
IPR_WR (non-Mbox)
PROBE A A
MME_CHK A A
TB_TAG_FILL
TB_PTE_FILL
TBIS
TBIP
TBla
. LOAD_PC

Mbozx references

PTE DREAD A A B D G
TB_TAG_FILL

TB_PTE_FILL A

IPR_DATA

MME_CHK A A

Cbox references

INVAL E

D_CF . H

ICF H
LEGEND:

A,

* Mbox microtraps Ebox by assertion of M%TB_PERR_TRAP during cycle error was detected.
* The faulting reference and all pending Ibox and Ebox references are blown away.

* TBIA command is issued to invalidate entire TB.

* TBSTS and TBADR are updated appropriately.

* A Pcache miss condition is forced to occur on this read reference causing the assertion of
M%CBOX_REF_ENABLE. This instructs the Cbox to continue processing the read reference.

12-30 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

* M%MBOX_S_ERR is asserted to post a soft error interrupt.
* PCSTS and PCADR are updated appropriately (a side effect of this operation turns off

the Pcache).
C. _

* The Cbox continues to process the write reference, as is done on all write operations
regardless of a Pcache parity error.

* M%MBOX_S_ERR is asserted to post a soft error interrupt.

* PCSTS and PCADR are updated appropriately (a side effect of this operation turns off
the Pcache).

D.

* M%CBOX_LATE_EN is asserted to instruct the Cboz to continue processing the reference
which caused the Pcache parity error. '

* M9%MBOX_S_ERR is asserted to post a soft error interrupt.'

* PCSTS and PCADR are updated appropriately (a side effect of this operation turns off
the Pcache).

E.

* The invalidate operation takes place in spite of the tag parity error because the invalidate
is only a function of matching all tag bits.

* M%MBOX_S_ERR is asserted to post a soft error interrupt.

* PCSTS and PCADR are updated appropriately (a side effect of this operation turns off
the Pcache). .

F.

* The Cbox indicated a hard error for a non-PTE read or IPR_RD operation by the assertion
of C%CBOX_BARD_ERR and C%LAST_FILL.

* If the hard error corresponded to the data explicitly requested by the Mbox reference,
M%HARD_ERR qualifies M%MD_BUS data indicating to the M%MD_BUS receiver that a hard
error occurred while accessing the requested data.

* The fill sequence is immediately terminated by the assertion of CZLAST_FILL. and the
entire Pcache block corresponding to the fill is invalidated.

G.

* The hard error detected by the Cbox on this Mbox-issued PTE DREAD is recorded in
PCSTS. The tb miss sequence is immediately terminated.

IF the error resulted from an Ibox reference, the error is tagged back to the appropriate
Ibox reference latch. The error is then signaled via M%HARD_ERR when the requested
data is returned on M%MD_BUS, or is reported through PA_Q _STATUS<2> (for DEST_ADDR
commands). ’

If the original reference came from the Ebox, MZMME_TRAP is asserted (in all cases except
for PROBE references). This will invoke the memory management fault handler in order
to try to report the hard error within the context of the execution of the instruction.

e The fill sequence is immediately terminated by the assertion of C%LAST FILL. and the
entire Pcache block corresponding to the fill is invalidated.

DIGITAL CONFIDENTIAL The Mbox 12-31

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

H. C%CBOX_HARD_ERR was asserted by the Cbox during an I_CF or D_CF command. This is the

mechanism by which the Cbox informs the Mbox of a hard error during a read or IPR_RD
operation where the Cbox must return data. Thus, see the error responses specified by F and
G for the error response within context of the original read operation.

12.14 MBOX INTERFACES

The Mbox passes data and/or control information to four other sections of the NVAX chip. These
sections are: 1) Ibox, 2) Ebox, 3) Useq and 4) Cbox. The Cbox interface has additional signals for
NVAX Plus and is described in this section. Refer to the NVAX CPU Chip Functional Specification
for MBOX interface signal definitions to the IBOX, EBOX, and Useq.

12.14.1 Signals from Cbox

C%CBOX_CMD<1:0>: Command field of Cbox reference sent to Mbox.
C%CBOX_ADDR<12:5>: Invalidate address of Cbox reference sent to Mbox.
C%MBOX_FILL_QW<4:3>: Indicates the aligned quadword within the aligned hexaword.
C%REQ _DQW<>: Qualifies the current D_CF to indicate that this is the requested data.
B%S6_DATA<63:0>: Data of Mbox reference seen by Cbox.

C%S6_DP<7:0>: Even data parity corresponding to B%S6_DATA<63:0> during cache fill refer-
ences. »

C%LAST_FILL: When asserted, indicates that this is the last fill sent for the current sequence.

C%CBOX_HARD_ERR: When asserted when Cbox is driving data onto the B%S6_DATA Bus, it
indicates that data on M%MD_BUS is associated with a non-recoverable hard error.

C%CBOX_ECC_ERR: Indicates that an ECC error is associated with the Cbox data being re-
turned.

C%WR_BUF_BACK_PRES: Indicates that Cbox cannot accept any more entries in its write buffer.
C%DRACK_NOCACHE_H: Indicates present fill block should not be placed in Pcache.

12.14.2 Signals to Cbox

M%S6_SET_NUM_H: PCACHE ALLOCATION BIT, ALLOWS CBOX TO BROADCAST TO
SYSTEM BACKMAPS

M%S6_CMD<4:0>: Command field of Mbox reference seen by Cbox.

M%S6_PA<31:3>: Quadword physical address of Mbox reference seen by Chox.
M%C_S6_PA<2:0>: Address within addressed quadword of Mbox reference seen by Cbox.
B%S6_DATA<63:0>: Data of Mbox reference seen by Cbox.

M%S6_BYTE_MASE<7:0>: Byte mask field of Mbox reference seen by Cbox.

M%CBOX_REF_ENABLE: Indicates that current S6 read reference packet should be latched and
processed by the Cbox. This signal is a don’t care on write operations.

12-32 The Mbox ' DIGITAL CONFIDENTIAL

NVAX_Plus CPU Chip Functional Specification, Revision 0.3, October 1991

* M%CBOX_LATE_EN: Asserted at the end of a cycle to indicate that a Pcache parity error was
detected. As a result, the Cbox must continue to process this reference regardiess of what
M%CBOX_REF_ENABLE indicated.

* M%ABORT_CBOX_IRD: Indicates that any IREAD which the Cbox may be processing should be

‘immediately terminated. .

* M%CBOX_BYPASS_ENABLE: Indicates that the Cbox may drive B%S6_DATA<63:0> during the

following cycle in order to attempt a data bypass.

12.15 INITIALIZATION

12.15.1 Initialization by Microcode and Software

It is the responsibility of the power-up microcode to perform an IPR_WRITE operation to clear
MAPEN before any virtual memory references are issued to the Mbox from either the Eboz or
Ibox. Failure to clear MAPEN could result in UNDEFINED behavior prior to complete memory
management state initialization.

PAMODE is also cleared by the power-up microcode via an IPR_WRITE command. If the system
configuration requires a 32 bit program-visible physical address space, setting the PAMODE value
via an IPR_WRITE must be done under very controlled conditions because writes to the PAMODE
processor register affect both physical address generation and interpretation of PTEs. With the
possible exception of certain diagnostic code, writes to the PAMODE processor register should
not be performed while memory management is enabled. With memory management disabled,
writes to the PAMODE processor register should not be performed unless the PC of the MTPR
instruction which writes to the register is in one of the following (hex) address ranges:

00000000..1FFFFFFF
E0000000. FFFFFFFF

By restricting PC to one of these address ranges, changes to the PAMODE register do not cause
the generated physical address to change in going from 30-bit mode to 32-bit mode, or vice versa.

The console code should be executing in the specified range in order to write to the PAMODE

processor register, and it is expected that this is the place where the PAMODE processor register
~ will be initialized. ’

In uncontrolled conditions, writes to the PAMODE processor register can cause UNDEFINED

results.

12.15.1.1 Pcache Initialization

The Peache is disabled by the power-up initialization sequence. In order to enable the Pcache,
the following sequential actions must be performed:

1. Pcache IPR_WRITE operations must be performed to each Pcache tag to write the tag field
to a known state, set the tag parity bit to the corresponding value, and clear the subblock
valid bits.

DIGITAL CONFIDENTIAL , The Mbox 12-33

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2. An IPR_WRITE to fhe PCCTL must be done to enable the Peache in the desired operation

mode.

Note that the data array need not be initialized because correct parity will be written into the data
array whenever fill data is validated, and data parity is only checked on validated sub-blocks.

If the sRom is read the Pcache tags are initialized by microcode as the serial data is written to
the Pcache.

12.15.1.2 Memory Management Initialization

Memory management is disabled by MAPEN being cleared by the power-up microcode. Before
memory management can be turned on, the following actions must be performed:

The Ebox must issue a TBIA command to invalidate the TB and reset the NLU pointer to a
known state. This is done as part of the microcode processing of an MTPR to MAPEN.

The Ebox must write the appropriate values into the six memory base and length registers

via IPR_WRITE commands.

Once this is done, the Ebox may turn on memory management by setting MAPEN through an IPR_
WRITE command.

1216 Mbox Testability Features

This section describes what testability features are made use of for Mbox testability, and what
Mbox signals are used for each testability function. For a global understanding of NVAX testa-
. bility, and for a detailed description of each testability strategy and hardware mechanism, the
reader is referred-to Chapter 17.

12.16.1

The following Mbox signals exist in the scan chain:

S5_PA<31:0>>

S5_TAG<5:0>

85_DL<1:0>

S5_AT<1:0>

S5_DEST<1:0>

S5_QUAL<6:0>

PA_Q STATUS<2:0>
M%MME_TRAP
IREF_LATCH wvalid bit
SPEC_QUEUE valid bits (2)
EM_LATCH valid bit
VAP_LATCH valid_bit
MME_LATCH valid_bit
RTY_DMISS_LATCH valid_bit

12-34 The Mbox

internal Scan Register and Data Reducers

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

— CBOX_LATCH valid_bit
— M%CBOX_BYPASS_ENABLE
— M%CBOX_REF_ENABLE
— M%EM_LAT _FULL
Note that only S5_PA<31:0> contains a data reducer. Implementing a data reducer on this bus should

provide coverage for the Mbox S5 pipe as well as coverage for the Ibox, Ebox and Chox logi¢ which
issue references to the Mbox.

12.16.2 Nodes on Parallel Port

The following signals are observable via the Parallel Port:

— S5_CMD<4:0>
— Current Reference Source (3 encoded bits). The encodings are as follows:

Reference Source Encoding
NOP or PA_QUEUE (when cmd = STORE) 000
IREF_LATCH 001
SPEC_QUEUE 010
EM_LATCH (when cmd A= STORE) 011
VAP_LATCH (when cmd *= STORE) 100
MME_LATCH 101
RTY_DMISS_LATCH 110
CBOX_LATCH : 111

— M%ABORT

— M%TB_MISS

— M%PCACHE_MISS
— MME state machine state bits (4 encoded bits). The encodings are as follows:

State Name Encoding
home . 0000 ‘

th_miss_1 0001

tb_miss_2 0010

tb_miss_3 : 0011

tb_miss_4 0100

tb_miss_5 0101

doub_tb_miss_1 0110

doub_tb_miss_2 0111

doub_tb_miss_fi 1000

DIGITAL CONFIDENTIAL The Mbox 12-35

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

State Name Encoding
doub_tb_miss_4 1001
mme_1 1010
mme_2 1011
ipr_rd_1_tb_per_2 1100
xpage_1 1101
th_per_1 ’ 1110
undefined 1111

— MD_BUS Qualifiers (3 encoded bits). The encodings are as follows:

Event Encoding
undefined 000
Ibox data 001
Ebox data . 010
Ibox and Ebox data 011
VIC data 100
Ibox IPR data 101
undefined . 110
Mbox data 111

— M%MME_FAULT

12.16.3 Architectural features

All MBOX IPRs can be invoked through the use of MTPR or MFPR macroinstructions. See
the Architectural Summary Chapter for a list of all Mbox IPR addresses. Note that Mbox IPR

addresses referenced through the MxPR instruction are translated by the Ebox microcode into
IPR_RD, IPR_WR, TBIS, TBIA, or PROBE operations before being issued to the Mbox.

12.16.3.1 Translation Buffer Testabllity

The diagnostic user can invalidate the entire TB array by executing an MTPR instruction which
addresses the TBIA IPR. This operation will also reset the NLU pointer. The user can invalidate
any virtual page address which may cached in the TB by executing 8 MTPR addressing the TBIS
IPR. ,

The diagnostic user can explicitly query the TB to determine if a given tag is validated and
stored in the TB. This is accomplished by addressing the Translation Buffer Check IPR through
the MTPR instruction.

Every TB entry can be explicitly filled and validated by the diagnostic user through the use of the
TB_TAG_FILL and TB_PTE_FILL commands. The entry on which these two commands operate
at any given time is addressed by the NLU pointer. The NLU pointer is a round robin pointer
which increments when a TB_PTE_FILL is executed or when a tag match is detected on the entry

12-36 The Mbox ‘ DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

which the NLU pointer is currently pointing to. The NLU pointer is reset to point to the Oth
entry whenever a TBIA command is executed.

12.16.3.2 Pcache Testabllity

Every bit in the Pcache can be read and written by the user through DREAD, WRITE, IPR_RD
and IPR_WR operations. Pcache is accessed by DREADs and WRITEs. All other bits (tag, valid
bits and parity bits) are accessed through Mbox IPRs.

The operational mode of the Pcache can be changed to accomodate testing the array. The mode
is controlled by the Pcache Control Register (PCCTL) which can be read and written as an Mbox
IPR. The PCCTL allows the user to:

1. Enable/disable D-stream and/or I-stream operations to the Peache.

2. Allow the Pcache to operate in a direct mapped force hit mode.
3. Enable/disable Pcache parity checks.

12.17 Mbox Performance Monitor Hardware

‘Hardware exists in the Mbox to support the NVAX Performance Monitoring Facility. See
Chapter 16 for a global description of this facility.

The Mbox hardware generates two signals, MZPMUX0 and M%PMUZX1, which are driven to the
central performance monitoring hardware residing in the Ebox. These two signals are used to
supply Mbox performance datz for the purpose of recording performance statistics. Seven Mbox
performance monitoring functions exist. The function to be executed is specified by the PMM
field of the PCCTL register.

Table 12-15: Mbox Performance Monitor Modes

PCCTL<7:5> Performance Monitor Mode

000 TB hit rate for PO/P1 Space I-stream Reads

001 TB hit rate for PO/P1 Space D-stream Reads

010 TB hit rate for SO Space I-stream Reads

011 TB hit rate for S0 Space D-stream Reads

100 Pcache hit rate for I-stream Reads

101 Pcache hit rate for D-stream Reads

110 illegal mode—Results are UNPREDICTABLE

111 ratio of unaligned virtual reads and virtual writes to total virtual reads

and virtual writes

12.18 Revision History

DIGITAL CONFIDENTIAL ' : The Mbox 12-37

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Who When Description of change

Bill Wheeler 8-May-1990 Other tweaks

Bill Wheeler 27-Feb-1990 Add perf monitor hardware. Other tweaks
Bill Wheeler 15-Jan-1990 Signal name change

Bill Wheeler 20-Nov-1989 Final Changes prior to review for Rev 1.0 Release
Bill Wheeler 23-Aug-1989 More Updates '

Bill Wheeler 31-Jul-1989 Spec Update

Bill Wheeler 06-Mar-1989 For External Release

Bill Wheeler 30-Nov-1988 Initial Release

Gil Wolrich 15-Nov-1990 NVAX Plus External Release

Gil Wolrich 1-Aug-1991 update

12-38 The Mbox

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 13

NVAX Plus CBOX

13.1 Functional Overview

The NVAX Plus and NVAX processors contain common IBOX, EBOX, FBOX, and MBOX internal
functionality. The NVAX external interface is to a backup cache and I/O NDAL bus, while the
NVAX Plus external interface is a common cache/memory bus used by EV processors. While the
MBOX interface section of the CBOX is similar for NVAX and NVAX Plus, the EDAL bus interface
sections of NVAX Plus replace the TAG, DATA, and NDAL/BIU sections of the NVAX CBOX.

The NVAX Plus CBOX receives read, and write requests from the MBOX. The CBOX initiates
bus cycles and sends fill data to the MBOX. Invalidates are initiated by external logic and sent
to the MBOX under CBOX control.

For reads the tag and data stores are read together. If the tag matches and the valid bit is set the
associated data is returned to the MBOX. If the read misses a READ_BLOCK request is sent to
the system logic. NVAX Plus waits for the system to update the cache and deliver the requested
data to a 32 byte Input Buffer. .

If NVAX Plus is not in "PV" mode writes require a probe cycle in which the tag and state bits are
read. If the probe indicates a tag match for a valid block which is not shared, then NVAX PLUS
writes the data store. If the write probe indicates a miss or the block is shared, NVAX Plus sends
a WRITE_BLOCK command to the system logic. The WRITE_BLOCK command has an eight bit
longword mask associated with it indicating the longwords which are to be updated. The write
data is placed in a 32 byte Output Buffer. The write is completed under external control.

If NVAX Plus is in "PV" mode a WRITE_BLOCK command is initiated and the Bcache is
not probed. The ¢cWMask_h lines contain byte mask rather than longword mask information.
dataWE<1:0>, and dataA_h<3: also supply additional information in order to construct 16 byte
enables. <endmask>

For a NVAX Plus EDAL bus system,;

* Only one miss can be issued, the cache can not be used till thevmiss completes
* The external logic is responsible for writebacks
* The external logic must maintain cache coherence for both backup and primary caches

DIGITAL CONFIDENTIAL NVAX Pilus CBOX 13-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

A Valid, Dirty, and Shared bit are agsociated with each tag in the external backup cache. The
Valid and Shared bits are written by external system logic only. When not in "PV" mode the
Dirty bit is written by NVAX Plus on write hits to a non-shared block and indicates the data in
cache is no longer the same as main memory. For Writes to Shared blocks NVAX Plus can not
write directly into the cache, and must issue a WRITE_BLOCK command to enable the external
system logic to broadcast the shared write to all caches in the system.

13.2 CBOX REGISTERS
13.2.1 BIU_ADDR-

This read-only register contains bits [31..5] of the physical address associated with any errors
reported in BIU_STATY7..0]. The BIU_ADDR is locked against further updates, until the error
bits of BIU_STAT are cleared.

Figure 13—1: BIU_ADDR -

31 30 2¢ 2B 27 26 28 24 22 2221 20 1¢ 18 17 16 1% 1422121210 ¢ & 7 6 5 4 3 2 1 0

- - o+ -+ -+ o e e oon e o e e o

| BIU_ADDR[31..5) I X X X X X

- n -+ PRr——Y
Ly - o~ - o -+ - 2 bt o e o o 0 e o e o o -

13.2.2 BIU_STAT

The BIU_STAT is a WRITE-ONE-TO CLEAR W1C IPR. When one of BIU_HERR, BIU_SERR,
BC_TPERR or BC_TCPERR is set, BIU_STAT[6..0] are locked against further updates, and
the address associated with the error is latched and locked in the BIU_ADDR register. BIU_
STAT[7..0] and BIU_ADDR are unlocked when the BIU_STAT{7,3:0] are written with 1’s.

When FILL_ECC or BIU_DPERR is set, BIU_STAT[13..8] are locked against further updates,
and the address associated with the error is latched and locked in the FILL_ADDR register.
BIU_STAT[14..8] and FILL_ADDR are unlocked when BIU_STAT[14,11:8] are written with 1’s.

This register is not uniocked or cleared by reset and needs to be explicitly cleared by Microcode.

Figure 13-2: BIU_STAT

Figure 13-2 Cont’d on next page

13-2 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional ‘Speci'ﬁcation, Revision 0.3, October 1991

Figure 13-2 (Cont.): BIU_STAT

31 30 2¢ 28 27 26 25 24 23 22 23 20 19 16 17 16 15 14 1212 1110 ¢ 8 7 6 5 4 3 2 1 G
B e bom oo + man o o o o o - B T T s +
(| [Lo Lo (I O R T I N B
[RO RO IO O O 0 G O OIWl] RO] OIWll RO |ROJWLIWLIW|Wll RO |WlIWL|WlIWl|
1 ! | 1o o I N [B
[I R oo
! | lool I N ! | 1 | +-> BIU_EERR
! ! [[I N R I I | | <+===-> BIU_SERK
| | o I R R | | emmm———— > BC_TPERR
| [P [b 1 A —m———— > BC_TCPERK
I ! ool o Lt tememem e ———ne. > BIU_DSP_CMD
! ! Lo [Pl > BIU_SEC
I I b I o > FILL_ECC
| I Lo [oo > FILI_CRD
I ! o I [> FILL_ DPERK
I I b I - > FILi_IRD
I | o T > FILL_OW
| I I -> FILL_SEO
I | P > FILL_DSP_CMC
| ! - > LOST_WRITE
| |
| > BIU_ADDR|22:32)
> FIIT ADDR{32:32.
Table 13-1: BIU STAT
Name Bit(s) Type Description
BIU_HERR 0 WiC This bit, when set, indicates that an external cycle was terminated
with the cAck_h pins indicating HARD_ERROR.
BIU_SERR . 1 WwWicC This bit, when set, indicates that an external cycle was terminated
} with the cAck_h pins indicating SOFT_ERROR. :
BC_TPERR 2 WicC This bit, when set, indicates that a external cache tag probe encoun-
‘ tered bad parity in the tag address RAM.
BC_TCPERR 3 wicC This bit, when set, indicates that a external cache tag probe encoun-

tered bad parity in the tag control RAM.

BIU_DSP_CMD 6:4 RO This field latches DSP_CMDI3..1] /dispatch command bits [3...1Y,
inverting bit [1] if the command is write_unlock, when a BIU_HERR,
BIU_SERR, BC_TPERR, or BC_TCPERR error occurs, and locks till
BIU_STAT[7,3:0] are cleared.

BIU_SEO 7 Wwic This bit, when set; indicates that an external cycle was terminated
with the cAck_h pins indicating HARD_ERROR or that a an external
cache tag probe encountered bad parity in the tag address RAM
or the tag control RAM while one of BIU_HERR, BIU_SERR, BC_
TPERR, or BC_TCPERR was already set.

FILL_ECC 8 W1C ECC error. This bit, when set, indicates that primary cache fill data
received from outside the CPU chip contained an ECC error.

DIGITAL CONFIDENTIAL : ‘ NVAX Plus CBOX 13-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Description

Table 13-1 (Cont.): BIU STAT
Name Bit(s) Type
FILL_CRD 9 wic
FILL_DPERR 10 wic
FILL_IRD 11 RO
FEHL_QW 13:12 RO
FILL_SEO 14 wic -

FILL_DSP_.CMD 1¢:16 RO

LOST_WRITE 20

W1C

BIU_ADDR([33:32] 29:28 RO

FILL_ADDRI[33:32] 31:30 RO

Corrected read. This bit is only meaningful when FILL_ECC is also
set. FILL_CRD is set to indicate that the ECC error was correctable
and clear to mdica’t.e that the error was not correctable.

BIU Parity Error. This bit when set, indicates that the BIU received
data with a parity error from outside the CPU chip while performing
either a Deache or Icache fill. FILL_DPERR is only meaningful when
the CPU chip is in parity mode, as opposed to ECC mode.

This bit is only meaningful when either FILL_ECC or FILL_DPERR
is set. FILL_IRD is set to indicate that the error which caused FILL_
ECC or FILL_DPERR to set occurred during an Icache fill and clear
to indicate that the error occurred during a Dcache fill and locks till
BIU_STATY{14,10:8] are cleared.

This field is only meaningful when either FILL_ECC or FILL_
DPERR is set. FILL_QW identifies the quadword within the hexa-
word primary cache fill block which caused the error. It can be used
together with FILL.ADDR[33..5] to get the complete physical ad-
dress of the bad quadword. FILL_QW locks till BITU_STAT[14,10:8]
are cleared.

This bit, when set, indicates that a primary cache fill operation re-
sulted in either an uncorrectable ECC error or in a parity error while
FILL _ECC or FILL_DPERR was already set.

This field latches the DSP_CMD /dispatch command/ which resulted
in the BIU error and locks till BIU_STAT{14,10:8] are cleared.

An second error, and command is & write.

Bits 33,32 of the BIU_ADDR register, should be set only for /O
space address. The field is locked against further updates when
BIU_ADDR[31..5] is locked.

Bits 33,32 of the FILL_ADDR register, should be set only for I/O
space address. The field is locked against further updates when
FILL_ADDR[31..5] is locked.

DREAD
DRERD_IO
DREAD_LOCK
DREAD_LOCK_IO

IREAD
IPEAD 10

WRITE_UNLOCK
WRITE

IC_WRITE
WRITE_UNLOCK_IO

13—4 NVAX Plus CBOX

FILL DSP_CMD<2:0> BIU_DSP_CMD<2:0>

100X
1010
1100
1101

0010
00121

0111
0110
0101
0001

100
101
110
110

001
001

011
010
010
000

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

13.2.3 FILL_ADDR

This read-only register contains bits [31..5] ofthe physical address associated with any er-
rors reported in BIU_STAT(14..8]. FILL_ADDR is locked against further updates, till BIU_
STAT[14,10:8] are cleared. :

Figure 13-3: FILL_ADDR

31 30 2¢ 28 27 26 25 24 22 22 21 20 1¢ 16 17 16 15 14 12 121110 ¢ & 7 6 3 4 3 2 1 0

FILL ADDR[31..5)

- o+ . + - . - - - - -+ -
o om e + Ltk el -+ -+ -+ -t -+ o

DIGITAL CONFIDENTIAL i ' NVAX Plus CBOX 13-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

13.2.4 BIU_CTL

BIU_CTL is cleared by power-up microcode, except for the "PV" bit which is set to 1 by the
power-up microcde. '

NOTE
NOTE: NVAX Plus exits reset microcode with "PV” = 1, in PV mode.

NOTE
NOTE: The BIU_CTL (and DIAG_CTL) registers read inverted values.

Figure 13-4: BIU_CTL

31 30 2¢ 28 27 26 25 24 22 22 21 20 12 1B 37 16 15 14 12 121110 ¢ 8 7 € 5 4 2 2 1 O

F— — — 4

i { | |
| Y X X X X X X 0 0 0 0 0 X | % X!
| | |

[

i1 | +=> BC_ENA
I | ====> ECC

| Seereeee > OE
reommmeeee=> BC FHIT

tmmmemeem—ece——. > BC_SPD

> PCACHE_MODE
> QW_I/O_RD
> "pyn

o — o —— — —

Y

G e e — — — — -

> IC_MAP

> BC_SIZE
> Ws_I0

Y bits read values from DIAG_CTL

Table 13-2: BIU Control Register
Name Bit(s) Type Description

BC_ENA 0 RW External cache enable. When clear, this bit disables the external
cache. When the external cache is disabled the BIU does not probe
the external cache tag store for read and write references; it launches
a request on cReq_h immediately.

ECC 1 RW When this bit is set NVAX Plus generates/expects ECC on the check_
h pine. When this bit is clear NVAX Plus generates/expects parity

. on four of the check_h pins.
OE 2 RW When this bit is set NVAX Plus does not assert its chip enable pins

during RAM write cycles, thus enabling these pins to be connected
to the output enable pins of the cache RAMs.

136 NVAX Plus CBOX - DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Speé‘iﬁcation, Revision 0.3, October 1991

Table 13-2 (Cont.): BIU Control Register
Name Bit(s) Type Description

BC_FHIT - 3 RW External cache force hit. When this bit is set and BC_EN is also
set, all pin bus READ_BLOCK and WRITE_BLOCK transactions
are forced to hit in the external cache. Tag and tag control parity
are ignored when the BIU operates in this mode. BC_EN takes
precedence over BC_FHIT. When BC_EN is clear and BC_FHIT is
set no tag probes occur and external requests are directed to the
cReq_h pins.

BC_SPD 54 RW,0 External cache speed. This field indicates to the BIU the read and
write access time of the RAMs used to implement the off-chip ex-
tern