
NVAX Plus CPU Chip
Functional Specification

The NVAX Plus CPU Chip is a high-performance, single-chip implementation of the VAX Architecture for use
in low-end and mid-range syst49ms.

~3v~sionlUpdate tnformatton: This is Revision 0.3 of this specHication, the third external release

DIGITAL CONFIDENTIAL

This information shall not be disclO!I8d to persons other than DJGrTAL employees or generally distributed within
DIGITAL. Distribution is restricted tlo persons authorized and designated by the originating organization. This
document shall not be transmitted electronically, copied unless authorized by the. originating organization, or left
unattended. When not in use, this document shall be stored in a locked storage area. These restrictions are
snforced until this document is reclassHied by the originating organization.

Semiconductor Engineering Group
Digital Equipment Corporation, Hudson, Massachusetts

October 1991

The drawings and specifications in this document are the property of Digital Equipment Corporation and
shall not be reproduced or copied or used in whole or in part as the basis for the manufacture or sale of
items without written permission.

The information in thls document may be changed without notice and is not a commitment by Digital
Equipment Corporation. Digital Equipment Corporation is not responsible for any errors in this document.

This specification does not describe any program or product that is currently available from Digital
Equipment Corporation, nor is Digital Equipment Corporation committed to implement this specification
in any program or product. Digital Equipment Corporation makes no commitment that this document
accurately describes any product it might ever make.

Copyright <01991 by Digital Equipment Corporation
All Rights Reserved

Printed in U .SA

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX VAXstation
DECnet ULTRIX-32 VMS
DEeUS UNIBUS VT
MicroVAX VAX
MicroVMS VAXBI Idl ijgl i Itlal'l 1M PDP VAXcluster

Contents

CHAPTER 1 INTRODUCTION 1-1

1.1 SCOPE AND ORGANIZATION OF THIS SPECIFICATION 1-1

1.2 RELATED DOCUMENTS 1-1

1.3 TERMINOLOGY ANtI CONVENTIONS 1-2
1.3.1 Numberlrtg 1-2
1.3.2 UNPREDICTABLE and UNDEFINED 1-2
1.3.3 Ranges and Extents 1-2
1.3.4 Must be Zero (MBZ) 1-2
1.3.5 Should ble Zero (SBZ) 1-2
1.3.6 Register IFormat Notation 1-3
1.3.7 Timing Diagram Notation 1-5

1.4 REVISION HISTORY 1-6

CHAPTER 2 ARCHITECTURAL S.UMMARY 2-1

2.1 OVERVIEW '2_1

2.2 VISIBLE STATE 2-1
2..2.1 Virtual Acldress Space 2-1
2..2.2 Physical j~ddress Space 2-2

22.2.1 Physical Address Control Registers • 2-4
2..2.3 Registers 2-4

2.3 DATA TYPES 2-6

2.4 INSTRUCTION FORMATS AND ADDRESSING MODES 2-8
2.4.1 Opcode Formats 2-8
2.4.2 AddreSSing Modes 2-8
2.4.3 Branch Dilsplacements 2-11

2.5 INSTRUCTION SET 2-11

2.6 MEMORY MANAGEMENT 2-25
2.6.1 Memory Management Control Registers 2-25
2.6.2 System. Space Address Translation 2-26
2.6.3 Process Space Address Translation 2-27

.2.6.3.1 PO Region Address Translation • 2-27
2.6.3.2 P1 Region Address Translation • 2-28

2.6.4 Page Table Entry 2-30
2.6.5 Translation Buffer 2-31

2.7 EXCEPTIONS AND INTERRUPTS 2-32
2.7.1 Interrupts 2-32

2.7.1.1 Interrupt Control Registers • 2-33

DIGITAL CONFIDENTIAL III

Contents

2.7.2 Exceptions 2-34
2.7.2.1 Arithmetic Exceptions • 2-35
2.7.2.2 Memory Management Exceptions • 2-36
2.7.2.3 Emulated instruction Exceptions • 2-37
2.7.2.4 Machine Check Exceptions • 2-39
2.7.2.5 Console Halts • 2-39

2.8 SYSTEM CONTROL BLOCK 2-40
2.8.1 System Control Block Vectors 2-40
2.8.2 System Control Block layout 2-41

2.9 CPU IDENTIFICATION 2-43

2.10 SYSTEM IDENTIFICATION 2-43

2.'1 PROCESS STRUCTURE 2-46

2.12 MAIL.BOX STRUCTURE 2-48
2.12.1 Mailbox Operation 2-50

2.13 PROCESSOR REGISTERS 2-52

2.14 REVISION HISTORY 2-63

CHAPTER 3 EXTERNAL INTERFACE 3-1

3.1 OVERVIEW 3-1

3.2 SIGNALS 3-1
3.2.1 Clocks 3-4
3.2.2 DC_OK 'and Reset 3-4
3.2.3 Initialization and DiagnostiC Interface 3-5
3.2.4 Address Bus 3-6
3.2.5 Data Bus 3-6
3.2.6 External Cache Control 3-7

3.2.6.1 The TagAdr RAM • 3-8
3.2.6.2 The TagCtl RAM • 3-8
3.2.6.3 The Data RAM • 3-9
3.2.6.4 Backmaps • 3-1 0
3.2.6.5 External Cache Access • 3-1 0
3.2.6.5.1 HoldReq and HoldAck • 3-10
3.2.6.5.2 TagOk • 3-1'

3.2.7 External Cycle Control 3-12
3.2.8 Primary Cache. tnvalidate 3-15
3.2.9 Interrupts 3-16
3.2.10 Electrical L.evel Configuration 3-16
3..2.11 Testing 3-16

3.3 64-BIT MODE 3-16

3.4 TRANSACTIONS 3-16
3.4.1 Reset 3-16
3.4.2 Fast External Cache Read Hit 3-19
3.4.3 Fast External Cache Write Hit 3-19
3.4.4 Fast External Cache Byte/Word Write Hit 3-20
3.4.5 Transfer to SysClk for External tranactions 3-20

Iv DIGITAL CONFIDENTIAL

3.4~6 READ _BLOCK Transaction
3.4.7 Write Btc)ck
3.4.8 LDxL Tra:nnsaction
3.4.9 STxC Tnlnsactton
~.4.'O BARRIEF~ Transaction
3.4~11 FETCH Transaction
3.4.12 FETCHM Transaction

3.5 SUMMARY OF NVAX PLUS OPTIONS
3.5.1 System C:tock Dlvisors
3.5.2 Cache AI::cess
3.5.3 Flamingo 1/0 Address Mapping
3.5.4 Direct Mllpped Pcache
3.5.5 adr _h<3~t :32>
3.5.6 QW 1/0 VVRITESIMTPR MAILBOX
3.5.7 QW 1/0 F;rEADS
3.5.8 PV mode

3.6 REVISION HISTORY

CHAPTER 4 CHIP OVERVIEW

4.1

4.2

NVAX PLUS CPU CHIP BOX AND SECTION OVERVIEW
4.1.1 The Ibox
4.1.2 The Ebo)(and Microsequencer
4.1.3 The Fbo):
4.1.4
4.1.5
4.1.6

The Mbo:"
The Cbo)(
Major tnt,ernal Buses

REVISION HISTORY

CHAPTER 5 MACROINSTRUCTION AND MICROINST~UCTION PIPELINES

5.1

5.2

5.3

INTRODUCTION

PIPELtNE FUNDAME~NTALS
5.2.1
5.2.2
5.2.3

The Conc:ept of a Pipeline
Pipeline IFtow
Stalls and Exceptions in an tnstructlon Pipeline

NVAX PLUS CPU PII:tELINE OVERVIEW
5.3.1 Normal Macroinstruction Execution

5.3.1.1 The Ibox • 5-6
5.3.1.2 The Microsequencer • 5-8
5.3.1.3 The Ebox • 5-9
5.3.1.4 The Fbox • 5-10
5.3.1.5 The Mbox • 5-10
5.3.1.6 The Cbox • 5-"

DIGITAL CONFIDENTiAL

Contents

~21

~22

~23

~23

~24

~24

-~24

~25

~25

~25

~25

~25

~25

~26

3-26
3-26

3-27

4-1

4-1
4-2
4-3
4-3
4-4
4-4
4-4

4-5

v

Contents

5.3.2 Stalls in the Pipeline
5.3.2.1 SO Stalls • 5-12
5.3.2.2 S1 Stalls • 5-12
5.3.2.3 S2 Stalls • 5-13
5.3.2.4 S3 Stalls • 5-13
5.3.2.5 S4 Stalls • 5-14

5.3.3 Exception Handling 5-15
5.3.3.1 interrupts • 5-16
5.3.3.2 Integer Arithmetic Exceptions • 5-17
5.3.3.3 Floating Point Arithmetic Exceptions • 5-17
5.3.3.4 Memory Management Exceptions • 5-17
5.3.3.5 Translation Buffer Miss • 5-19
5.3.3.6 Reserved Addressing Mode Faults • 5-19
5.3.3.7 Reserved Operand Faults • 5-20
5.3.3.8 Exceptions Occurring as the Consequence OT an

5.4

5.3.3.9
5.3.3.10
5.3.3.11
5.3.3.12

REVISION HISTORY

Instruction • 5-20
Trace Fault • 5-20
Conc:t.itional Branch Mispredict • 5-20
First Part Done Handling • 5-21
Cache and Memory Hardware Errors • 5-21

CHAPTER 6· MICROINSTRUCTION FORMATS

6.1

6.2

6.3

EBOX MICROCODE
6.1.1
6.1.2

Data Path Control
Microsequencer Control

IBOX CSU MICROCODE

REVISION HISTORY

CHAPTER 7 THE IBOX

vi

7.1

7.2

7.3

7.4

7.5

7.S

OVERVIEW
7.1.1
7.1.2

Introduction
Functional Overview

VIC CONTROL AND ERROR REGISTERS

VIC PERFORMANCE MONITORING HARDWARE

IBOX IPR TRANSACTIONS
7.4.1 IPR Reads
7.4.2 IPR Writes

BRANCH PREDICTION IPR REGISTER

TESTABILITY
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.S

Overview
Internal Scan Register and Data Reducer
Parallel Port
Architectural Features
Metal 3 Nodes
Issues

5-22

&-1

&-1
6-1
6-3

6-4

6-5

7-1

7-1
7-1
7-2

7-4

7-6

7-7
7-7
7-7

7-8

7-9
7-9
7-9

7-10
7-10
7-10
7-10

DIGfTAL CONFIDENTIAL

7.7 PERFORMANCE MONITORING HARDWARE
7.7.1 Signals

7.8 REVISION HISTORY

CHAPTER 8 THE EBOX

8.1

8.2

8.3

CHAPTER OVERVIEW

INTRODUCTION

EBOX OVERVIEW
8.3.1

8.3.2
8.3.3

8..3.4
8..3.5
8.3.5
8.3.7
8..3.8
8.3.9
8.3.10
8..3.1'

8..3.12
8..3.13

8.3.14

Microwol'd Fields
8.3,1.' Microsequencer Control Fields • 8-6
The Register File
ALU and Shifter
8.3.3.' Sources of ALU and Shifter Operands • 8-6
8.3.3.2 ALU Functions • 8-6
8.3.3.3 Shifter Functions • 8-6
8.3.3.4 Destinatiol"ls of ALU and Shifter Results • ~7
Ibox .. Ebox Interface
Other Registers and States
Ebox Memory Access
CPU Control Functions
Ebox Pipeline
Pipeline Stalls
Microtraps, Exceptions, and Interrupts
EboxlPRs
8.3. , 1. , IPR 124, Patchable Control Store Control Register • ~ 12
8.3.11.2 IPR 125, Ebox Control Register· ~13
Inltiallzatuon
Testability
8.3.13.' Parallel Port Test Features • ~16
8.3.13.2 Observe Scan • ~17
8.3.13.3 E%WBUS<31:0> LFSR • ~17
Revision History

CHAPTER 9 THE MICROSEQUENCER

9.'
9.2

OVERVIEW

FUNCTIONAL DESCRIPTION
9.2.1 Introductoon
9.2.2 Control Store

9.2.2.1 Patchable Control Store • 9-2
9.2.2.2 Microsequencer Control Field of Microcode • 9-2
9.2.2.3 MIB Latches • 9-4

9.2.3 Next Address Logic
9.2.3.1 CAL and CAL INPUT BUS • 9-5
9.2.3.1.1 Microtest Bus • 9-5
9.2.3.2 Microtrap Logic • 9-7
9.2.3.3 Last Cycle Logic • 9-7
9.2.3.4 Microstack • 9-8

9.2.4 Stall Logie

DIG[TAL CONFIDENTIAL

Contents

7-10
7-10

7-11

8-1

8-1

8-1

8-4
8-4

8-6
8-6

8-7
8-8
8-9
8-9
8-9

8-10
8-1'
8-12

8-16
8-16

8-17

9-,

9-1

9-1
9-2
9-2

9-5

9-8

vII

Contents

9.3 INITIALIZATION 9-8

9.4 MICROCODE RESTRICTIONS 9-8

9.5 TESTABILITY 9-9
9.5.1 Test Address 9-9
9.5.2 MIS Scan Chain 9-10

9.6 REVISION HISTORY 9-10

CHAPTER 10 THE INTERRUPT SECTION 10-1

10.1 OVERVIEW 10-1

10 .. 2 INTERRUPT SUMMARY 10-1
10..2.1 External Interrupts 10-2

10.2.1.1 HALT _H Interrupt Received by Edge-Sensitive Logic • 10-2
10.2.1.2 Extemal Interrupt Requests Received by Level-Sensitive

Logic • 10-2
10..2.2 Internal Interrupt Requests 10-3
10.2.3 Special Considerations tor Interval Tlmer Interrupts 10-3
10.2.4 Priority of Interrupt Requests 10-4

10.3 INTERRUPT SECTION STRUCTURE 10-5
1003.1 Synchronization Logic 10-5
1003.2 Interrupt State Register 10-6
10.3.3 Interrupt Generation Logic 10-7

10.4 EBOX MICROCODE INTERFACE 10-8

10.5 PROCESSOR REGISTER INTERFACE 10-10

10.6 INTERRUPT SECTION INTERFACES 10-11
10.6.1 Ebox Interface 10-'1

10.6.1.1 Signats From Ebox • 10-11
10.6.1.2 Signals To Ebox • 10-11

10.6.2 Microsequencer tnterface 10-11
10.6.2.1 Signals trom Microsequencer • 10-11
10.6.2.2 Signals To Microsequencer • 10-11

10.6.3 Cbox Interface 10-11
10.6.3.1 Signals From Cbox • 10-11

10.6.4 Ibox Interface 10-1'
10.6.4.1 Signals From Ibox • 10-12

10.6.5 Mbox Interface 10-12
10.6.5.1 Signals From Mbox • 10-12

10.6.6 Pin Interface 10-12
10.6.6.1 Input Pins • 10-'2

10.7 REVISION HISTORY 10-12

vIII DIGITAL CONFIDENTIAL

Contents

CHAPTER 11 THE FBOX 1'-1

1'.1 . OVERVIEW 11-1

11.2 INTRODUCTION 11-1

1'.3 FBOX FUNCTIONAL. OVERVIEW 11-2
'1.3.1 Fbox Intlsrface 11-3
11.3.2 D.lvider 1'-4
11.3.3 Stage 1 1'-4
11.3.4 Stage 2 11-4
11.3.5 Stage 3 '1-4
11.3.6 Stage 4 '1-4
11.3.7 Fbox Instruction Set '1-4
'1.3.8 Revision History '1-7

CHAPTER 12 THE MBOX 12-1

12.1 INTRODUCTION 12-1

12.2 MBOX STRUCTURE 12-2
12.2.1 ~M_LATC::H 12-6
12.2.2 CBOX_Lj~TCH 12-6
12.2.3 TB 12-6
12.2.4 DMISS_L,ATCH and IMISS_LATCH 12-6
12.2.5 Peache 12-7

12.3 REFERENCE PROCESSING 12-7
12.3.1 REFERENCE DEFINmONS 12-7
12.3.2 Arbttraticm Algorithm 12-9

12.4 READS 12-9
12.4.1 Generic Read-hit and Read-mlss/Cache_fIllSequences 12-9

12.4.1.1 Returning Read Data • 12-10
12.4.2 O-stream Read Processing 12-10
12.4.3 1/0 SpaCE~ Reads 12-'1

12.5 WRfTES 12-'1
12.5.1 Writes to 1/0 Space 12-12

12.6 IPR PROCESSING 12-13
12.6.1 MBOX IPlRs 12-13

12.7 INVALIOATES 12-21
12.7.1 ABORTING REFERENCES 12-22

12.8 CONOmONS FOR ABORTING REFERENCES 12-22

12.9 READ _LOCKlWRITE._ UNLOCK 12-22

12.10 PCACHE REPLACEMENT ALGORITHM 12-23

12.11 PCACHE REDUNDANCY LOGIC 12-23

12.12 MEMORY MANAGEMENT 12-24
12.12.1 ACVITNV/M::O Fault Handling: 12-24

DIGrTAL CONFIDENTIAL Ix

Contents

12.12.2 ACV detection:
12.122.1 TNV detection • 12-25
12.12.2.2 M-O detection: • 12-25
12.122.3 Recording ACVrTNVIM.O Faults • 12-26

12.13 MBOX ERROR HANDLING

12.14

12.15

12.13.1

12.13.2

Recording Mbox errors
12.13.1.1 TBSTS and TBADR • 12-27
12.13.1 .2 peSTS and PCADR • 12-27
Mbox Error Processing
12.132.1 Processing Cbox errors on Mbox-initiated read-like

sequences • 12-28
12.132.1" Cbox-detected ECC errors • 12-28
12.132.1.2 Cbox-detected hard errors on requested fill data • 12-28
12.132.1.3 Cbox-detected hard errors on nonarequested fill

data • 12-29
12.1 32.2 Mbox Error Processing Matrix • 12-29

MBOX INTERFACES
12.14.1
12.14.2

Signals trom Cbox
Signals to Cbox

INITIALIZATION
12.15.1 lnttialization by Microcode and Software

12.15.1.1 Pcache Initialization • 12-33
12.15.1.2 Memory Management Initialization • .12-34

12.16 MBOX TESTABILrrY FEATURES
12.16.1
12.16.2
12.16.3

tnternal Scan Register and Data Reducers
Nodes on Paranel Port
Architectural teatures
12.16.3.1 Translation Buffer Testability • 12-36
12.16.3.2 Pcache Testability • 12-37

12.17 MBOX PERFORMANCE MONITOR HARDWARE

12.18 REVISION HISTORY

CHAPTER 13 NVAX PLUS CBOX

13.1 FUNCTIONAL OVERVIEW

13.2 CBOX REGISTERS
13.2.' BIU_ADDR
13.2.2 BIU_STAT
13.2.3 FllL_ADDR
13.2.4 BIU_CTl
13.2.5 DIAG_CTL
13.2.6 FIll_SYNDROME
13..2.7 BEDECC
13.2.8 BC_TAG
13.2.9 STxC_RESULT
13.2.10 SIO
13.2.1' SOE-IE
13.2.12 QW_PACK

12-24

12-27
12-27

12-28

12-32
12-32
12-32

12-33
12-33

12-34
12-34
12-35
12-36

12-37

12-38

13-1

13-1

13-2
13-2
13-2
13-5
13-6
13-9

13-10
13-1'
13-"
13-12
13-12
13-13
13-13

X' DIGITAL CONFIDENTIAL

Contents

13.2.13 CLR_IO_PACK 13-13
13.2.14 CONSOL,E HALT/CHALT 13-14
13.2.15 Time-ot-Day Register (TO DR) 13-14
13.2.16 Programmable Interval Clock 13-14
13.2.17 Interval Clock Control Register 13-15
13.2.18 Interval Count Register 13-16
13.2.19 Next Interval Count Register 13-16

13.3 CACHE ORGANIZAT10N 13-16

13.4 CACHE_SPEED ANt) SYS _ CLK 13-17

13.5 DATAPATH 13-17

13.6 MBOX INTERFACE 13-18
13.6.1 The IREA,D _LATCH and the DREAD _LATCH 13-19
13.6.2 WRrrE_p,~CKER and WRITE_QUEUE 13-20
13.6.3 1/0 Space Writes 13-23

13.6.3.1 NON-MASKED FLAMINGO 1/0 Writes • 13-23
13.6.3.2 MASKED FLAM INGO 110 Writes • 13-23

13.6.4 MASKED FLAMINGO 1/0 READS 13-24
13.6.5 CM_OUT •. LATCH 13-24
13.6.6 FILL_DATA_PIPE' and FIL.L_DATA_PIPE2 13-25
13.6.7 IREAD Aborts 13-27

13.7 ARBITERIBUS CONTROL 13-28
13.7.' Dispatch Controller 13-28
13.7.2 Fill Contrc)Uer 13-30
13.7.3 ARB PL.A INPUTS 13-30
13.7.4 ARB PLA OUTPUTS 13-30
13.7.5 IDLE 13-3'
13.7.6 DISPATCt-1 13-31

13.7.6.1 PACK_ WR fTE • 13-34
13.7.6.2 IPR_READ • 13-35
13.7.6.3 HIGH_LW_TEMP • 13-35
13.7.6.4 DREAD_LOCK • 13-35
13.7.6.5 WRITE • 13-35
13.7.6.6 BWR • 13-36
13.7.6.7 WRITE_ UNLOCK • 13-36

13.7.7 ORO 13-37
13.7.8 IRD 13-37
13.7.9 ROC 13-37
13.7.10 RON 13-39
13.7.11 FILL 13-39
13.7.12 SYS_RD 13-40

13.7.12.1 Read Errors • 13-40
13.7.13 WR_STALll. 13-41
13.7.14 WR_PROBE 13-41
13.7.15 WR_CMP 13-41
13.7.16 WR 13-42
13.7.17 BWR_STAJLL 13-43
13.7.18 BWR_PROBE 13-43
13.7.19 BWR_CMFI 13-43

DIGITAL CONFIDENTIAL xl

Contents

13.7.20 BWR_MERGE
13.7.21 BWR
13.7.22 BWR_SYS_RD
13.7.23 BWR_SYS_MERGE
13.7.24 SYS_WR

13.8 CBOX ERROR HAND1.ING SUMMARY

13.9 INVA1.IDATES

13.10 REVISION HISTORY

CHAPTER 14 ERROR HANDLING

14.1

14.2

14.3

14.4

14.5

TERMIN01.0GY

ERROR HAND1.ING INTRODUCTION ~ND SUMMARY

ERROR HAND1.ING AND RECOVERY
14.3.'
14.3.2
14.3.3

14.3.4

Error State Collection
Error Analysis
Error Recovery
14.3.3.1 Special Considerations ior Cache and Memory Errors • 14-6
14.3.3.'.1 Cache Coherence in Error Handling • 14-7
14.3.3.1.1.1 Cache Enable, Disable, and Flush Procedures • 14-7
14.3.3.1.1.1.1.Disabling the NVAX Plus Caches for Error Handling • 14-7
14.3.3.1.1.1.2 Enabling the NVAX Caches • 14-8
14.3.3.1.1.2 Extracting Data from the Bcache • 14-8
14.3.3.'.2 Cache and T8 Test Procedures • 14-8
Error Retry
14.3.4.1 General Multiple Error Handling Philosophy • 14-10

CONS01.E HA1.T AND HALT INTERRUPT

MACHINE CHECKS
14.5. ,
14.5.2

Machine Check Stack Frame
Events Reported Via Machine Check Exceptions
14.5.2.1 MCHK_UNKNOWN_MSTATUS • 14-18
14.5.2.2 MCHK_INT.ID_VALUE • 14-18
14.5.2.3 MCHK_CANT_GET_HERE • 14-19
14.5.2.4 MCHK_MOVC.5TATUS • 14-19
14.5.2.5 MCHK_ASYNC_ERROR • 14-19
14.5.2.5.' T8 Parity Errors· 14-19
14.5.2.52 Ebox 53 Stall Timeout Error • 14-20
14.5.2.6 MCHK_5YNC_ERROR • 14-20
14.5.2.6.1 VIC Parity Errors • 14-2'
14.5.2.6.2 FILL Uncorrectable ECC Errors • 14-22
14.5.2.6.3 FILUBIU write error • 14-22
14.5.2.6.4 Lost Fill Error • 14-22
14.5.2.6.5 BIU_HERR • 14-23
14.5.2.6.6 Lost Fill Error • 14-23
14.5.2.6.7 PTE read errors • 14-24
14.5.2.6.7.1 PTe Read Errors in Interruptable Instructions • 14-24
14.5.2.6.7.2 Uncorrectable ECC FILL Errors and on PTE Reads • 14-25
14.5.2.6.7..3 CACK_HERR on PTE Read • 14-26
14.5.2.7 . Inconsistent Status in Machine Check Cause Analysis • 14-26

13-44
13-44
13-45
13-45
13-46

13-46

13-48

13-48

14-1

14-1

14-1

14-2
14-3
14-5
14-6

14-9

14-11

14-13
14-13
14-15

xli DIGITAL CONFIDENTIAL

a • ,F~

14.6

14.7

HARD ERROR INTERRUPTS
14.6.1 Events Reported Via Hard Error Interrupts

14.6.1.1 Uncorrectable Errors During Write or Write-Unlock
Processing • 14-28

14.6.1.2 System Environment Hard Error Interrupts • 14-28
14.6.1.3 Inconsistent Status in Hard Error Interrupt Cause

Analysis· 14-29

SOFi ERROR INTEtRRUPTS
14.7.' . Events [Reported Via Soft Error Interrupts

14.7.1.1 VIC Parity Errors • 14-32
14.7.1.2 Pcache Parity Errors .. 14-33
14.7.1.3 FILL Uncorrectable ECC Errors on I-Stream or D-Stream

Reads • 1:4-33
14.7.1.3,.1 Multiple Errors Which interfere with Analysis of PTE Read

Error e 14-34

14.8 KERNEL STACK NC)T VALID EXCEPTION

14.9. ERROR RECOVERY COOING EXAMPLES

14.10 REVISION HISTORY

CHAPTER 15 CHIP INITIALIZA1'ION

15.'

15.2

15.3

15.4

15.5

OVERVIEW

HARDWARElMICRC)CODE INmALIZATION

CONSOLE INITIALr.ZATION

OTHER INITIALIZATION

REVISIQN HISTORY

CHAPTER 16 PERFORMANCE MONITORING FACILITY

16.'

16.2

16.3

16.4

OVERVIEW

SOFlWARE INTERI=ACE TO THE PERFORMANCE MONITORING FACILITY
16.2.1
16.2.2
16.2.3

16.2.4
16.2.5

Memory Data Structure
Memory Data Structure Updates
Configuring the Performance Monitoring Facility
16.2.3.1 Ibox Event Selection e. , ~
, 6.2.3.2 Ebox Event Selection • , S-4
, 6.2.3.3 Mbox Event Selection e '6-5
, 6.2.3.4 Cbox Event Selection e ,6-6
EnabUn" and Disabling the Performance Monitoring Facility

. Reading and Ciearing the Performance Monitoring Facility Counts

HARDWARE AND MICROCODE IMPLEMENTATION OF THE PERFORMANCE
MONITORING FACII_ITY
16.3.1
16.3.2

Hardware Implementation
Microcode Interaction with the Hardware

REVISION HISTORY

DIGrTAL CONFIDENTIAL

Contents

14-27
14-27

14-30
14-30

14-35

14-36

14-36

15-1

15-1

15-1

15-3

15-3

15-4

1 s.:-1

16-1

16-1
16-1
16-2
16-3

16-7
16-7

16-8
16-9

16-10

16-12

xIII

Contents

CHAPTER 17 TESTABILITY MICRO-ARCHrTECTURE 17-1

17.1 CHAPTER OVERVIEW 17-1

17.2 THE TESTABILITY STRATEGY 17-1

17.3 TEST MICRO-ARCHITECTURE OVERVIEW 17-1

17.4 PARALLEL TEST PORT 17-3
17.4.1 Parallel Port Operation 17-4

17.S TEST PADS 17-6

17.6 SYSTEM PORT 17-6

17.7 TRISTATE_L 17-7

17.8 CONT_L 17-7

17.9 REVISION HISTORY 17-8

CHAPTER 18 AC/DC CHARACTERISTICS 18-1

18.' INPUT CLOCKS 18-'

18.2 CPUCLKOUT_H 18-2

18.3 TEST CONFIGURATION 18-2

18.4 FAST CYCLES ON EXTERNAL CACHE 18-2
18.4.1 Fast Read Cycles 18-3
18.4.2 Fast Write Cycles 18-3
18.4.3 CEOE timing 18-4

18.S EXTERNAL CYCLES 18-4

1S.6 TAGEQ 18-S

1S.7 TAGOK 18-6

18.8 TESTER CONSIDERATIONS 18-6
18.S.1 Asynchronous Inputs 18-6
1S.8.2 Signals 11med from Cpu Clock 18-7

1S.9 DC CHARACTERISTICS 18-7
1S.9.1 Power Supply 18-7
18.9.2 Input Clocks 18-8
18.9.3 Signal pins 18-9

1S.10 TIMING OVERVIEW 18-10

18.1' SIGNALS 18-10

1S.12 REVISION HISTORY 18-1S

xiv DIGITAL CONFIDENTIAL

Contents

CHAPTER 19 NVAX PLUS PINOUT 19-1

19.1 OVERVIEW 19-1

19.2 NVAX PLUS PINOUT 19-2

19.3 NVAX PLUSlEV4 PINOUT DIFFERENCES 19-11

'9.4 REVISION HISTORY 19-12

FIGURES
1-1 Register Format Example 1-3

1-2 TIming Diagram .Notation 1-5

2-1 Virtual Address Spltce Layout 2-2

2-2 32·btt Physical Address Space Layout 2-3

2-3 30-blt Physical Address Space Layout 2-3

2-4 PAMODE Register 2-4

2-5 General Purpose Rngisters 2-4

2-6 Processor Status Longword Fields 2-5

2-7 Data Types 2-6

2-8 Opcode Formats 2-8

2-9 Addressing Modes 2-9

2-10 Branch Displacemelilts 2-"
2-11 MAPEN Register 2-25

2-12 TBtS Register 2-25

2-13 TBIA Register 2-25

2-14 System Base and L.~ngth Registers 2-26

2-15 System Space Tram~lation Algorithm 2-27

2-16 PO Base and Length Registers 2-28

2-17 PO Space Translation Algorithm 2-28

2-18 P1 Base a~d Length Registers 2-29

2-19 P1 Space Translation Algorithm 2-29

2-20 PTE Format (21-blt F)FN) 2-30

2-21 PTE Format (25-blt F)FN) 2-30

2-22 Minimum Exception Stack Frame 2-32

2-23 General Exception Stack Frame 2-32

2-24 Interrupt Priority Level Register 2-33

2-25 Software Interrupt Request Registers 2-34

2-26 Software Interrupt Summary Register 2-34

2-27 Arithmetic Exception Stack Frame 2-36

2-28 Memory Managemerllt Exception Stack Frame 2-37

2-29 Instruction Emulation Trap Stack Frame 2-38

2-30 Suspended Emulation Fault Stack Frame 2-39

2-31 Generic Machine Check Stack Frame 2-39

·2-32 Console Saved PC and Saved PSl 2-40

DIGrTAL CONFIDENTIAL xv

Contents

2-33 System Control Block Base Register 2-40
2-34 System Control Block Vector 2-¢1
2-35 CPU 10 Register 2-43
2-36 System Identification (SID) 2-44

2-37 System Type (SYS_ TYPE) 2-45
2-38 Process Control Block Base Register 2-46
2-39 Process Control Block 2-47
2-40 L.MBPR Register 2-48
2-41 Mailbox Data Structure 2-49
2-42 Mailbox Pointer 2-50

2-43 MAIL.BOXReglster 2-50
2-44 IPR Address Space Decoding 2-52
4-1 NVAX Plus CPU Block Diagram 4-2
5-1 Non-Pipelined Instruction Execution 5-2
5-2 Parlially-Pipelined lnstructlon Execution 5-2
5-3 Fully-PipeUned instruction Execution 5-3
5-4 Simple Three-Segment Pipeline 5-4

5-5 tnformation Flow Against the Pipeline 5-4

.5-6 StaUs Introduced by Backward Pipeline Flow 5-4

5-7 Butters Between Pipeline Segments 5-5

5-8 NVAX Plus CPU Pipeline 5-7

6-1 Ebox Data Path Control, Standard Format 6-1

6-2 Ebox Data Path Control, Speclal Format 6-2
6-3 Ebox Microsequencer Control, Jump Format 6-4

6-4 Ebox Microsequencer Control, Branch Format 6-4

6-5 Ibox CSU Format 6-5

7-1 Ibox Block Diagram 7-2
7-2 VMAR Register 7-4
7-3 VTAG Register 7-5
7-4. VDATA Register 7-5
7-5 ICSR Register 7-6

7-6 BPCR Register 7-8

8-1 Ebox Block Diagram 8-3

8-2 pes Control Register, PCSCR 8-12
8-3 Ebox Control Register, ECR 8-14
9-1 Microsequencer Block Diagram 9-3

9-2 Microcode Microsequencer Control Field Formats 9-4

9-3 Parallel Port Output Format 9-9

10-1 lnterrupt Section Block Diagram 10-5
10-2 INT.SYS Register Format 10-9

11-1 Fbox block diagram '1-2
11-2 Fbox Execute Cycle Diagram '1-3
12-1 Mbox Block Diagram 12-3

xvi DIGITAL CONFIDENT'AL

-----------------------------------__ 1_1 ,1

Contents

12-2 Barrel Shifter Func1tlon 12-12
12-3 MPOBR Register 12-14
12-4 MPOLR Register 12-14
12-5 MP1 BR Register 12-14
12-6 MP1 LR Register 12-14
12-7 MSBR Register 12-14
12-8 MSLR Register 12-15
12-9 MMAPEN Register 12-15
12-10 PAMODE Register 12-15
12-11 MMEADR Register 12-16
12-12 MMEPTE Register 12-16
12-13 MMESTS Register 12-16
12-14 TBADR Register 12-17
12-15 TBSTS Register 12-17
12-16 PCADR Register 12-18
12-17 PCSTS Register 12-19
12-18 PCCTL Register 12-19
12-19 PCTAG Register 12-20
12-20 PCDAP Register 12-21
13-1 BIU_ADDR 13-2
13-2 BIU_STAT 13-2
13-3 FILL_ADDR 13-5
13-4 BIU_CTL 13-6
13-5 DIAG_CTL 13-9
13-6 FILL_SYNDROME 13-10
13-7 BEDECC 13-11
13-8 BC_TAG 13-12
13-9 STxC_RESULT 13-12
13-10 SIO 13-12
13-11 SOE-IE 13-13
13-12 Time of Day Regist4Jr, TODR 13-14
13-13 ICCS 13-14
13-14 ICR 13-15
13-15 NICR 13-16
13-16 Mbox Interface 13-18
13-17 B%S6_DATA bypasis timing 13-26
13-18 M%ABORT _ CBOX_~RD Timing 13-27
13-19 DISPATCH timing 13-29
13-20 stalLreq timing 13-38
13-21 wr_stall timing 13-42
14-1 Console Saved PC 14-11
14-2 Console Saved PSL. 14-11
14-3 Machine Check Staj=k Frame 14-13

DIGfTAL CONFIDENTIAL xvII

Contents

14-4 Cause Parse Tree for Machine Check Exceptions 14-16

14-5 Hard Error Interrupt Stack Frame 14-27

14-6 Cause Parse Tree for Hard Error Interrupts 14-28

14-7 Soft Error Interrupt Stack Frame 14-30

14-8 Cause Parse Tree for Soft Error Interrupts 14-3'
14-9 Kernel Stack Not Valid Stack Frame 14-35

16-' Performance Monitoring Data Structure Base Address 16-2

16-2 Per-CPU Performance Monitoring Data Structure 16-2

16-3 PME Processor Register 16-7

16-4 PMFCNT Processor Register 16-7

16-5 Performance Monitoring Hardware Block Diagram 16-9

17-' Self Relative Timing In Observe M4B Mode 17-5

17-2 Internal Scan Register Operation Timing 17-5

TABLES
1-1 Register Field Description Example 1-3

1-2 Register Field Type Notation 1-3

1-3 Register Field Notation 1-4

1-4 Revision History 1-6

2-' 30-blt Mapping of Program Addresses to 32-blt Hardware Addresses 2-4

2-2 General Purpose Register Usage 2-5

2-3 Processor Status Longword 2-5

2-4 General Register Addressing Modes 2-10

2-5 PC-Relative Addressing Modes 2-11

2-6 NVAX Instruction Set 2-12

2-7 PTE Protection Code Access Matrix 2-31

2-8 Interrupt Priority Levels 2-33

2-9 Exception Classes 2-34

2-10 Arithmetic Exceptions 2-36

2-1' Memory Management Exceptions 2-36

2-12 Memory Management Exception Fault Parameter 2-37

2-13 Instruction Emulation Trap Stack Frame 2-38

2-14 System Control Block Vector 2-41

2-15 System Control Block Layout 2-41

2-16 SID Field Descriptions 2-45

2-17 LMBPR Description 2-48

2-18 Mailbox Data Structure Description 2-49

2-19 Mailbox Pointer Description 2-50

2-20 MAILBOX Register Description 2-5'
2-21 IPR Address Space Decoding 2-53

2-22 Processor Registers 2-54

2-23 Revision History 2-63

DIGITAL CONFIDENTIAL

Contents

3-1 NVAX_PlUS Signai:s 3-1
3-2 New_NVAX_PlUS Signals 3-3

3-3 EVAX Signals 3-3

3-4 System Clock Divisor 3-5
3-5 System Clock Delay 3-5
3-6 Tag Control Encodlngs 3-9

3-7 Cycle Types 3-12
3-8 Acknowledgment Types 3-14
3-9 Read Data Acknowledgment Types 3-14
3-10 Reset State 3-16

3-1' Revision History 3-27
4-1 Revision History 4-5
5-1 Revision History 5-22
6-1 EBOX Data Path Control Microword Fields, Standard Format 6-1
6-2 EBOX Data Path CClntrol Microword Fields, Special Format 6-2
6-3 Ebox Microsequenc!er Control Microword Fields, Jump Format 6-4

6-4 Ebox Microsequenc:er Control Microword Fields, Branch Format 6-4

6-5 Ibox CSU Microword Fields 6-5
6-6 Revision History 6-5

7-1 VMAR Register 7-4

7-2 VTAG Register 7-5
7-3 VDATA Register 7-5
7-4 ICSR Register 7-6

7-5 BPCR Register, 7-8
7-6 BPCR <8:6> 7-9
7-7 Ibox Scan Chain Fields 7-10
7-8 Revision History 7-11
8-1 Data Path Control Microword Fields B-4

8-2 PCSCR Field Descriptions 8-13

8-3 ECR Field Descrlptnons 8-15

8-4 Revision History 8-17
9-, Jump Format Contl'ol Field Definitions 9-4

9-2 Branch Format Cor.trol Field Definitions 9-4

9-3 Current Address SEtlection 9-5
9-4 Microtest Bus Sources 9-6

9-5 Microaddresses for last Cycle Interrupts or Exceptions 9-7
9-6 Parallel Port Output Format Field Definitions 9-9
9-7 Contents of MIS Sc:an Chain 9-10

9-8 Revision History 9-10

10-' Relative lnterrupt F'rlorlty 10-4
10-2 Summary of lnterrLlpts 10-7
10-3 INT.SYS Register Fields 10-10

10-4 Revision History 10-12

DIGITAl. CONFIDENTIAl. xix

Contents

11-1 Fbox Internal Execute Cycles 11-3

11-2 List of the Fbox Total Execute Cycles 11-3

11-3 Fbox Floating Point and tnteger Instructions 1'-5

1'-4 Revision History 11-7

12-1 Reference Definitions 12-7

12-2 Mbox IPRs 12-13

12-3 MMAPEN Definition 12-15

12-4 PAMODE Definition 12-15

12-5 MMESTS Register Definition 12-16

12-6 FAULT Encodings 12-17

12-7 LOCK Encodings 12-17

12-8 TBSTS Description 12-18

'12-9 SRC Encodings 12-18

12-10 PCSTS Description 12-19

12-11 PCCTL Definition 12-20

12-12 Pcache Tag IPR Format 12-21

12-13 Pcache Data Parity IPR Format 12-21

12-14 Mbox Error Handling Matrix 12-29

12-15 Mbox Performance Monitor Modes 12-37

13-1 BIU STAT 13-3

13-2 BIU Control Register 13-6

13-3 BC_SPD 13-8

13-4· BC_SIZE 13-9

13-5 Diagnostic Control Register 13-10

13-6 Fill Syndrome 13-11

13-7 BEDECC 13-11

13-8 Cbox Queues and Major Latches 13-17

13-9 Mbox-Cbox Commands 13-19

13-10 IREAD _LATCH Fields 13-20

13-11 DREAD_LATCH Fields 13-20

13-12 WRrTE_ QUEUE Fields 13-21

13-13 CM_ OUT _LATCH Fields 13-24

13-14 Cbox-Mbox Interface control signals 13-25

13-15 Cbox_Mbox commands and actions 13-25

13-16 Fields of FILL_DATA_PIPE1 and FILL_DATA_PIPE2 13-26

13-17 Cbox Action Upon Receiving M%ABORT_CBOX_IRD 13-27

13-18 NVAX Plus CBOX Error Handling 13-47

13-19 Revision History 13-48

14-1 Error Summary By Notification Entry Point 14-2

14-2 Console Halt Codes 14-11

14-3 CPU State lnltialized on Console Halt 14-12

14-4 Machine Check Stack Frame Fields 14-14

14-5 Machine Check Codes 14-15

xx DIGITAL CONFIDENTlAL

Contents

14-6 Revision History 14-36

15-1 Revision History 15-4

16-' Performance Monltc'ring Facility Box Selection 16-3

16-2 Ibox Event Selection 16-4

16-3 Ebox Event Selection 16-4

16-4 Mbox Event Selectie.n 16-5

16-5 Cbox PMCTRO Event Selection 16-6

16-6 Cbox PMCTR, Event Selection 16-6

16-7 Revision History 16-12

17-1 NVAX Plus Test Pim; 17-3

17-2 Parallel Port OperaUng Modes . 17-6

17-3 Revision History 17-8

18-' Input Clock Timing 18-2

.18-2 External Cycles 18-5

18-3 tagEq 18-5

18-4 Asynchronous Signals on 8 Tester 18-7

18-5 CMOS DC Charactel'istlcs 18-9

18-6 NVAX_PLUS Signal~. 18-10

18-7 Revi~ion History 18-15

1S-1 Revision History 1S-12

DIGITAL CONFIDENTIAL xxi

-------------,--,

NVAX Plus CPU Chip Functional Specification, Revision O.3~ October 1991

Chapter 1

Introduction

The NVAX PLUS CPU is a high-performance, single-chip implementation of the V.AX architecture.
It is partitioned into multiple sections which cooperate to execute the VAX base inistruction group.
The CPU chip includes the first levels of the memory subsystem hierarchy in an on-chip virtual
instruction cache and an on-chip physical instruction and data cache, as well as the controller
for a large second-level cache implemented in static RAMs on the CPU module.

The NVAX Plus chip is an NVAX core with an EVAX external interface. Microcode changes are
also required to support the EVAX interlocks and to input from serial ROM at startup. Most of
the CBOX-MBOX interface section is reused. The CBOX arbitration logic is redesigned to control
the EDAL interface. Cache fLlls and coherency transactions are controlled by EDAL system logic
with only a single CPU requelst active at a time.

1.1 Scope and Organization of this Specification

This specification describes the operation-of the NVAX PLUS chip. It contains an Architecturial
Summary, a description of the! interface to the chip, an overview of the operation of the instruction
pipeline, and extensive detail about the functional operation of the CBOX section of the chip.

The IBOX, EBOX, MBOX, FBOX, and Interrupt sections are taken from the NVAX CPU
Functional Specification. These sections retain the high level description of the section, the
description of the software visible IPRs, and specify the changes required by NVAX Plus to accom­
modate the EVAX interface and Vector option. Sections which aid in understanding the interface
between the NVAX Plus CBOX and N'VAX Core are also retained. For a detailed desription of
the IBOX, EBOX, MBOX, FBOX, and Interrupt sections refer to the NVAX CPU Chip Functional
Specification. .

In addition, the specification contains discussions of error handling, cbip initialization, and testa­
bility features.

1.2 Reiated Documents

The following documents are related to or were used in the preparation of this document:

• NVAX CPU Chip Functional Specification
• EV3 and EV4 Specification
• DEC Standard 032 VAX Architecture Standard.

DIGITAL CONFIDENTIAL Introduction 1-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• NVAX CPU Chip Design Methodology.

153 Terminology and Conventions

1.3.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base following the number in parentheses, e.g.,
FF (hex).

1,,3.2 UNPREDICTABLE and UNDEFINED

RESULTS specified as UNPREDICTABLE may vary from moment to moment, implementation
to implementation, and instruction to instruction within implementations. Software can never
depend on results specified as UNPREDICTABLE.

OPERATIONS specified as UNDEFINED may vary from moment to moment, implementation to
implementation, and instruction to instruction within implementations. The operation may vary
in effect from nothing, to stopping system operation. UNDEFINED operations must not cause
the processor to hang., i.e., reach a state from which there is no transition to a normal state in
which the machine executes instructions.

Note the distinction between result and operation. Non-privileged software can not invoke
UNDEFINED operations.

1.3.3 Ranges and Extents

Ranges are specified by a pair of numbers separated by-a " .. " and are inclusive, e.g., a range of
integers 0 . .4 includes the integers 0, 1,2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are inclusive,
e.g., bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

1 .. 3.4 Must be Zero (MBZ)

Fields specified as Must Be Zero CMBZ) must never oe filled by software with a non-zero value.
If the processor encounters a non-zero value in a field specified as MBZ, a Reserved Operand
exception occurs.

1.3.5 Should be Zero (SBZ)

Fields specified as Should Be Zero (SBZ) should be filled by software with a zero value. These
fields may be used at some future time. Non-zero values in SBZ fields produce UNPREDICTABLE
results.

1-2 introduction DIGfTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1.3.6 Reg ister Format Noultion

This specification contains a number of figures that show the format of various registers, followed
by a description of each field. In general, the fields on the register are labeled with either a name
or a mnemonic. The description of each field includes the name or mnemonic, the bit extent,
and the type. An example of a register is shown in Figure 1-1. Table 1-1 is an example of the
description of the fields in this register.

Figure 1-1: Register Format Example

31 30 2~ 2BI:7 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 OBI07 06 05 04103 02 01 00

Table 1-1:

Name

BUS_ERROR

INTERRUPT

TRAP

IE

FAULT_CMD

I

TRAP ---+ 1
INTERRUPT -+ 1
BUS_ERROR ----+

Register Field De~scrlption Example

Bit(s) Type

° WC,O

1 WC,O

2 WC,O

11 R'W, °
23:16 RO

Description

The BUS_ERROR bit is set when a bus error is detected.

The INTERRUPT bit is set when an error that is reported as an inter­
rupt is detected.

The TRAP bit is set when an error that is reported as a trap is detected.

The IE bit enables error reporting interrupts. When IE is 0, interrupts
are disabled. When IE is a 1, interrupts are enabled.

The FAULT_CMD neld latches the command that was in progress when
an elTor is detected.

The ''Type" column in the field description includes both the actual type of the field, and an
optional initialized value, separated from the type by a comma. The type denotes the functional
operation of the field, and may be one of the values shown in Table 1-2. If present, the initialized
value indicates that the field is initialized by hardware or microcode to the specified value at
powerup. If the initialized value is not present, the field is not initialized at powerup.

Table 1-2: Register Field Type Notation

Notation Descriptioll

RW A read-WritE! bit or neld. The value may be read and written by software, microcode,
or hardware.

RO

wo

A read-only bit or neld. The value may be read by software, microcode, or hardware.
It is written by hardware; software or microcode writes are ignored.

A write-only bit or field. The value may be written by software or microcode. It is read
by hardwarEl and reads by software or microcode return an UNPREDICTABLE result.

DIGITAL CONFIDENTIAL Introduction 1-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 1-2 (Cont.): Register Field Type Notation

Notation Description

WZ A write-only bit or field. The value may be written by software or microcode. It is read
by hardware and reads by software or microcode return a O.

WC A write-one-to-c1ear bit. The value may.be read by software or microcode. Software or
microcode writes of a 1 cause the bit to be cleared by hardware. Software or microcode
writes of a 0 do not modify the state of the bit.

RC A read-to-c1ear field. The value is written by hardware and remains unchanged until
read. The value may be read by software or microcode, at which point, hardware may
write a new value into the field.

In addition to named fields in registers, other bits of the register may be labeled with one of the
three symbols listed in Table 1-3. These symbols denote the type of the unnamed fields in the
register.

Table 1-3: Register Field Notation

Notation Description

o A "0" in a bit position denotes a register bit that is read as a 0 and ignored on write.

1 A "1" in a bit position denotes a register bit that is read as a 1 and ignored on write.

x An "r' in a bit position denotes a register bit that does not exist in hardware. The
value is UNPREDICTABLE when read, and ignored on write.

1 -4 Introduction DIGITAL CONFIDENTIAL

~ - --

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1.3.7 Timing Diagram Notation

This specification contains a number of timing diagrams that show the timing of various signals,
including NDAL signals. The notation used in these timing diagrams is shown in Figure 1-2.

Figure 1-2: Timing Diagram Notation

HIGH

LOW

INTERMEDIATE

VALID HIGH OR LOW - --
CHANGING

INVALID BUT NOT CHANGING

HIGH TO LOW

HIGH TO VALID

HIGH TO INVALID

INTERMEDIATE TO LOW

HIGH TO INTERMEDIATE

LOW TO HIGH

LOW TO VALID

LOW TO INVALID

LOW TO INTERMEDIATE

VALID TO INTERMEDIATE

DIGITAL CONFIDENTIAL

xxxxxxxxx
\SS\

\SSS

S\S'XXX
, s s ,

, s s ,

IZZI
IIII
111m

, ? 2 ;

I 2 Z ,

-..,j}'-oj}"">-­
xxx»>--
--««
--«(<XX

~ntroductlon 1-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

1.4 Revision History

Table 1-4: Revision History

Who

Mike'tThler

Mike'tThler

Gil Wolrich

1-6 Introduction

When

06-Mar-1989

15-Dec-1989

15-Nov-1990

Description of change

Release for external review.

Update for second.pass release.

NVAX PLUS release for external review.

DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 2

Architectural Summary

2.1 Overview

This chapter provides a summary of the VAX architectural features of the N'VAX Plus CPU Chip.
It is not intended as a complete reference but rather to give an overview of the user-visible
features. For a complete description of the architecture, consult the V.A.X Architecture Standard
(DEC. Standard 032).

2.2 Visible State

The visible state of the prOCt~ssor consists of memory, both virtual and physical, the general
registers, the processor status longword (PSL), and the privileged internal processor registers
(IPRs).

2.2.1 Virtual Address Spac~e

The virtual address space is four gigabytes (2**32), separated into three accessable regions (PO,
Pl, and SO) and one reserved region, as shown in Figure 2-1.

DIGITAL CONFIDENTIAL Architectural Summary 2-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-1: Virtual Addre$s Space Layout

00000000

3FFFFFFF

40000000

iFFFFFFF

80000000

FFFFFDFF

FFFFFEOO
FFFFFFFF

.-------------------------~
1 1 length of PC' Regior. ir,
1 1 pages (POLR)

1 PO ----------------1
1 Region 1 1

1 V i PO Region growth direction

+-------------------------+
1 Pl Regior. growth direction

1 1

! Pl ----------------1
! Region 1 length o! Pl Region ir;
1 1 pages (2··2l-Pl~R)

+-------------------------+
1 lengt.h of System Region
1 in pages (S~R)

System ---------------1
Region 1 1

1 System Region growth
d1rectior.

V

~-------------------------~
1 Reserved
1 Pa9E-

.-------------------------~

2.2.2 Physical Address Space

The l\TVAX Plus CPU naturally generates 32-bit physical addresses. This corresponds to a four
gigabyte physical address space as shown in Figure 2-2. Memory space occupies the first seven­
eighths (3.5GB) of the physical address space. 1/0 space occupies the last one-eighth (512MB)
of the physical address space .and can be distinguished from memory space by the fact that bits
<31:29> of the physical address are all ones.

2-2 Architectural Summary DIGITAL CONFIDENTIAL

--,------,------------------------------------,

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-2: 32-blt Physical Address Space Layout

00000000

DFFFFFFF

EOOOOOOO
FFFFFFFF

+-------------------~-----*

... - -+
Memory
Space

3.5 GB
... - -+

+- --t

+--------------------,-----+
I/O I 51: MB

Space I

+--------------------~----+

In addition to the natural 32-bit physical address, the CPU may be configured to generate 30-bit
physical addresses. In this mode, only 512MB of memory space can be referenced, as shown in
Figure 2-3. .

Figure 2-3: 30-blt Physical Address Space Layout

00000000
1FFFFFFF

20000000

DFF:FFFF

EOOOOOOO
FFFFFFFF

+-------------------_ ... _---+
Memory
Space

I 512 MB
I

+--------------..,----_ .. _---....

+-

+-

+-

lnaccessable
Region

-+

I
I
I

-+ 3.0 GB
I
I
I
I
I

-+

+-------------------------+
1/0

Space
I 512 ME
I

+-------------------------+

The translation from 30-bit addresses to 32-bit addresses is acc9mplished by sign-extending
PA<29> to PA<31:30>. In tIDB mode, the programmer sees a 1GB address space, split evenly
between memory and I/O spac~e, which is mapped to the actual 32-bit physical address space as
shown in Table 2-1. Unless explicitly stated otherwise, addresses that are given in the remainder

DIGITAL CONFIDENTIAL ArchltecturalSummary 2-3

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

of this specification are the full 32-bit addresses (which, of course, may have been generated from
a 30-bit program address via the mapping shown).

Table 2-1: 30-blt Mapping of Program Addresses to 32-blt Hardware Addresses

Program Address

OOOOOOOO .. lFFFFFFF

20000000 .. 3FFFFFFF

Hardware Address

OOOOOOOO .. lF'F'F'F'F'F'F

EOOOOOOO •. FFFFFFFF

2.2.2.1 Physical Address Control Registers

Durin'g powerup, microcode configures the CPU to generate 30-bit physical addresses. Console
firmware may then reconfigure the CPU to generate either 30-bit or 32-bit physical addresses by
writing to the MODE bit in the P.AM:ODE and VP.AM:ODE registers, respectively. The P.AM:ODE
register is shown in Figure 2-4.

Figure 2-4: PAMODE Register

31 30 2i 26127 26 25 241:3 :: 21 20119 16 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

i 0 C, (, (i (\ (; (1 0 C· t, 0 0 0 0 0 0 0 (I 0 0 0 0 0 0 0 0 0 0 0 0 0 i I: PAMODE

I
MODE --'

The VPAMODE register is identical in format to the PAMODE register.

The PAMODE register also determines how PTEs are to be interpreted. In 30-bit mode, PTEs
are interpreted in 21-bit PFN format. In 32-bit mode, PTEs are interpreted in 25-bit PFN for­
mat (although the two upper bits of the PFN field are ignored). The different PTE formats are
described in Section 2.6.4.

2.2.3 Reg isters

There are 16 32-bit General Purpose Registers (GPRs). The format is shown in Figure 2-5, and
the use of each GPR is shown in Table 2-2.

Figure 2-5: General Purpose Registers

31 3C 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

I :Rn

2-4 Architectural Summary DIGITAL CONFIDENTIAL

'--------------, ----------______ .. _I .. I ~ .. --I

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

-Tabte 2-2: General Purpose Register Usage

GPR Synonym Use

RO-Rll General Purpose

R12 AP Argument Pointer

R13 FP Frame Pointer

R14 SP Stack Pointer

R15 PC Program Counter

The Processor Status Longword (PSL) is a 32·bit register which contains processor state. The
PSL format is shown in Figure 2-6, and the fields of the PSL are shown in Table 2-3.

Figure 2-6: Processor Status Longword Fields

31 3G 2e 28127 26 25 2C12! :: 21 2011e 18 17 16115 1~ 13 12111 10 09 08107 06 OS 04103 02 0: 00
~ __ + __ ~ __ ~ _____ "" __ • __ "' __ ~ __ ~ __ ~ __ <i. __ "" __ ~ __ + __ + __ + __ ,,, __ + __ + __ + __ __ + __ + __ + __ ... __ + __ ~ __ • __ __ .. +-__ ... __ *

I IMBIF?I ! CUR ! PRV IMBI I I I
I CM I T? I VM I Zit- I IS: MOD I MOD I Z I IPl. MBZ IDVIFUIIVI TI NI ZI VI CI :PSl.

Tabte 2-3: Processor Status Longword

Name Bit(s) Description

CM 31 Oompatability Mode

TP 30 Trace Pending

VM 29 V:lrtual Machine Mode 1

FPD 27 F.lrst Part Done

IS 26 IntelTUpt Stack

GUR_MOD 25;24 CUlTent Mode

PRY_MOD 23;22 Previous Mode

IPL 20:16 IrltelTUpt Priority Level

DV 7 Decimal Overflow !rap Enable

FU 6 Floating Underflow Fault Enable

IV 5 Integer Overflow !rap Enable

T 4 Trace Trap Enable

N 3 Negati~e Condition Code

Z 2 Zero Condition Code

V 1 Overflow Condition Code

C 0 Carry Condition Code

1 MBZ unless v.irtual machine option is implemented

DIGITAL CONFIDENTIAL Architectural Summary 2-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.3 Data Types

The NVAX Plus CPU supports nine data types: byte, word, longword, quad word, character
string, variable length bit field, F _fioating, D_fioating, and G_fioating. These are summarized in
Figure 2-7.

Figure 2-7: Data Types

Oi 06 05 04103 0: 01 00

:A

Data Type: Byt~
Length: 6 bi~s
Use: Signec 0: unsignec integer

15 1~ 23 :2,1: 1C 09 0810i 06 05 04103 02 01 00

I :A

Data Type: Worc
Length: 16 bits
Use: Signec or unsignec integer

31 30 29 261:~ 2£ 25 24123 22 21 20119 16 1i 16115 14 13 12111 10 09 0810i 06 05 04103 02 01 00

:A

Data Type: Longword
Leng~h: 32 bits
Use: Signed or unsigned integer

31 30 29 2812~ 26 25 24123 22 21 20119 18 l' 1£115 14 13 12111 10 09 08!Oi O£ 05 04103 02 01 00

I :A

I :A+4

Data Type: Quadword
Length: 64 bits
Use: Signed integer

Figure 2-7 Cont'd. on next page

2-6 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CF'U Chip Functional Specification, Revision 0.3, October 1991

Figure 2-7 (Cont.): Data Types

07 06 05 04103 02 01 00

+--+--.--+--+--+--+--+--+
1 ·:A+1

+--+--~--+--+--+--+--+--+

:A+length-1

D8~~ Type: Charac~er String
. Length: 0-64K bytes

Use: Byte string

31 P+S P+S-1 P P-1 00

1IIIIIIIIillllllllllllili

Dat~ Type: Va=iable length bit field
Lengt.h: (1-32 bi ts
Use: Bit string

lS l' 13 12/11 10 09 08107 06 05 04103 02 01 00

:A

fract.ion :A+2

31 30 29 28127 26 25 24123 22 21 2011~ 18 17 16

Data Type: F_float.ing
Length: 32 bits
Use: Floating point

15.14 13 12/11 10 09 08107 06 05 04103 02 01 00

i 5; exponent fraction :A

traction :A+2

------.--~--~--+--~--~--+--+--+--+--+-----~--+--+
tract.ion :A+4

fraction :A+6
~-~+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

63 62 61 60159 58 57 56155 54 53 52/51 SO 49 48

pata Type: D_floating
Length: 64 bits
Use: Floating point

Figure 2-7 Cont'd on next page

DIGITAL CONFIDENTIAL Architectural Summary 2-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-7 (Cont.): Data Types

15 1~ 13 121ll 10 09 08107 06 05 04103 02 01 OC

I s I exponent I :fraction I :J..

fraction I :A+2

traction I :A+4

fraction I :A+6

63 62 6: 6015~ 58 57 56155 54 53 52151 50 4~ 48

Data Type: G floating
Length: 64 bits
Use: Floai1ng point

2.4 Instruction Formats and Addressing Modes

VAX instructions consist of a one- or two-byte opcode, followed by zero to six. operand specifiers.

2.4.1 Opcode Formats

An opcode may be either one or two contiguous bytes. The two-byte format begins with an FD
(hex) byte and is followed by a second opcode byte. The one-byte format is indicated by an opcode
byte whose value is anything other than FD (hex). The one- or two-byte opcode format is shown
in Figure 2-8.

Figure 2-8: Opcode Formats

07 06 05 04103 02 01 00

One-bytQ opc ode: opcode I :A

15 14 13 12111 10 09 08107 06 05 04103 02 01 00
.--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Two-byte ope ode:· opcode FD I :A

2.4.2 Addressing Modes

An operand specifier starts with a specifier byte and may be followed by a specifier extension.
Bits <3:0> of the specifier byte contain a GPR number and bits <7:4> of the specifier byte indi­
cate the addressing mode of the specifier. If the register number in the specifier byte does not
contain 15, the addressing mode is a general register addressing mode. If the register number
in the specifier byte does contain 15, the addressing mode is a PC-relative addressing mode. The

2-8 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip -Functional Specification, Revision 0.3, October 1991

different addressing modesa:re shown graphically in Figure 2-9. General register addressing
modes are listed in Table 2-4 and PC-relative addressing modes are listed in Table 2-5.

Figure 2-9: Addressing Modes

General register
addressing mode:

PC-relat.ive
addressing mode:

0; 06 05 04103 02 01 00
+--+--+--+--.j.--+--+-----+

mode I register I
+--~--+--+--.!----+--.--+-- ...

0; 06 05 04103 02 01 00

modw : 1 1 1 11
+--+--+--+--.. ~--+--+--'1""---+-

DIGITAL CONFIDENTIAL ArchltecturalSummary 2-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Tab~e 2-4: General Register Addressing Modes

Mode Name

0-3 literal

4 index

5 register

6 register deferred

7 auto decrement

B autoincrement

9 autoincrement deferred

A byte displacement

B byte displacement deferred

C word displacement

D word displacement deferred

E longword displacement

F longword displacement de-
ferred

Access Types

r = read
m = modify
w = write
a = address
v = variable bit field

Synta:r:

i = any indexable address mode
d = displacement
Rn = general register, n = 0 to 15
R:x = general register, n = 0 to 14

Results

y = yes, always valid address mode
f = reserved addressing mode fault
x = logically impossible
p = program counter addressing
u = unpredictable

Assembler

S"#literal

i[Rx]

Rn

(Rn)

-(Rn)

(Rn)+

@(Rn)+

B"d(Rn)

@B"d(Rn)

W"d(Rn)

@W"dCRn)

L"d(Rn)

@L"dCRn)

ud = unpredictable for destination of CALLG, CALLS, JMP and JSB
uq = unpredictable for quad, DIG_floating and field if pos+size > 32
u.x = unpredictable if index register • base register

2-1 0 Architectural Summary

Access

rmwav PC SP Indexable?

y ffff x :x. f

yyyyy u y f

y y y fy u uq f

yyyyy u y Y
yyyyy u y u:x:

yyyyy p y u:x

yyyyy p y u:x:

yyyyy p y Y

yyyyy p y y

yyyyy p y Y

yyyyy p y Y

yyyyy p y Y
yyyyy p y y

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 2-5: PC-Relative Address:lng Modes

Mode Name Assembler

8 immediate I "#constant

9 absolute @#address

A byte relative B"address

B byte relative deferred @B"address

C word relative W"address

D word relative deferred @W"address

E longword relative L"address

F longword relative deferrEld @L"address

For notation, refer to the key in Table 2-4

2.4.3 Branch Displacements

Access

rmwav

yuuyud

yyyyy

yyyyy

yyyyy

yyyyy

yyyyy

yyyyy

yyyyy

PC SP Indexable?

u

y

y

y

y

y

y

y

Branch instructions contain a lOne- or two-byte signed branch displacement after the final specifier
(if any). The branch displacenlent is shown in Figure 2-10.

Figure 2-10: Branch Displacements

Signed byte
displacement:

Signed word
displacement:

07 06 05 04103 02 01 00

displa<:ement
+--+--+--+---)0--+--... --+--+

15 l' 13 12111 10 09 OBI07 06 05 04103 02 01 00

displacement

2.5 Instruction Set

The NVAX Plus CPU supports the VAX Base Instru.ction Group as defined in DEC Standard 032
plus the optional VAX vector in.structions and the virtual machine instructions. These instructions
are listed in Table 2-6.

DIGrTAL CONFIDENTIAL Architectural Summary 2-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6: NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Integer, Arithmetic and Logical Instructions

58 ADAWI add.rw, sum.mw II< II< II< II< iov

80 ADDB2 add.rb, sum.mb II< II< II< II< iov

CO ADDL2 add.rl, sum.ml II< II< II< II< iov

AO ADD'W2 add.rw, sum.mw II< II< II< II< iov

81 ADDB3 add1.rb, add2.rb, sum.wb II< II< II: II< iov

C1 ADDL3 addl.rl, add2.rl, sum.wI II< II< II< II< iov

Al ADD"W3 add1.rw, add2.rw, sum. ww II< II< II< II< iov

D8 ADWC add.rl, sum.ml II< '" II: II< iov

78 ASHL cnt.rb, ere.rl, dst.wl II< II< II< 0 iov

79 ASHQ cnt.rb, ere.rq, dst.wq II< II< II< 0 iov

8A BICB2 mask.rb, dst.mb II< II< 0

CA BICL2 mask.rl, dst.ml II< II< 0

AA BIC\\72 mask.rw, dst.mw II< II< 0

8B BICB3 mask.rb, sre.rb, dat. wb II< II< 0

CB BICL3 mask.rl, sre.rl, dst. wI II< II< 0

AB BIC'W3 mask.rw, ere.rw, dst.ww II< II< 0

88 BISB2 mask.rh, d~mb II< II< 0

C8 BISL2 mask.rl, dat.ml II< II< 0

A8 BISW2 mask.TW, dst.mw II< II< 0

89 BISB3 mask.rh, ere.rb, dst.wb II< II< 0

C9 BISL3 mask.rl, ere.rl, dst.wl II< II< 0

A9 BISW3 mask.rw, ere.rw, dst. ww II< II< 0

93 BITB mask.rb, sre.rb II< II< 0

D3 BITL mask.rl, sre.rl II< II< 0

B3 BIT\V mask.rw, ere.rw II< II< 0

2-12 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX tnstruction Set

Opcode Instruction N Z V C Ex:ceptioDS

Integer, Ari~etic and Logical Instructions

94 CLRB dst.wb 0 1 0

D4 CLRLI=F} dst.wl 0 1 0

7C CLRQI=D=G} dst. wq 0 1 0

B4 CLRW dst.ww 0 1 0

91 CMPB srcl.rb, src2.rb II< II< 0 II<

Dl CMPL sre1.rl, src2.rl II< II< 0 II<

Bl CMPW sre1.TW, src2.rw II< II< 0 II<

98 CVTBL sre.rb, dst.wI II< II< 0 0

99 CVTBW sre.rb, dst.ww II< II< 0 0

F6 CVTLB sre.rl, dst. wb II< II< II< 0 iov

F7 CVTLW sre.rl, dst~ww II< '" II< 0 iov

33 CVTWB sre.TW, dst.wb II< '" II< 0 iov

32 CVTWL src.TW, dst. wI II< II< 0 0

97 DECB dif.mb II< II< II< II< iov

D7 DECL dif.m1 II< II< II< II< iov

B7 DEC'W dif.mw II< '" II< II< iov

86 DIVB2 divr.rb, quo.mb II< II< ... 0 iov, idvz

C6 DIVL2 divr.rl, quo.m1 ... II< '" 0 iov, idvz

A6 DIVW2 divr.TW, qUO.II1W II< 81: II< 0 iov, idvz

87 DIVB3 divr.rb, divd.rh, quo.wb II< II< ... 0 iov, idvz

C7 DIVL3 divr.rl, divd.rl, quo. wI '" '" ... 0 iov, idvz

A7 DIVW3 divr.TW, divd.rw, quo.ww II< '" '" 0 ioy, idvz

7B EDIV divr.rl, divd.rq, quo.wl, rem.wl II< '" ... 0 iov, idvz

'7A EMUL mulr.rl, muld.rl, adci.rl, prod.wq II< II< 0 0

96 INCB sum.mb II< II< II< ... ioy

D6 INCL sum.m1 II< ... II< II< iov

DIGfTAL CONFIDENTIAL Architectural Summary 2-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z· V C Exceptions

Integer, Arithmetic and Logical Instructions

B6 INCW sum.mw II< II< II< II< iov

92 MCOMB src.rb, dst.wb II< II< 0

D2 MOOML src.rl, dst.wl * II< 0

B2 MOO~7 src.'I"\IV, dst.ww II< II< 0

8E MNEGB src.rb, dst.wb II< II< II< * iov

CE MNEGL src.rl, dst.wl II< II< II< II< iov

.AE 1\1NEGVi7 srC.'I"\IV, dst. ww II< II< II< II< 10V

90 MOVB src.rb, dst. wb II< II< 0

DO MOVL src.rl, dst.wl * II< 0

7D MOVQ src.rq, dst.wq II< II< 0

BO MOVW src.rw, dst.ww II< * 0

9A MOVZBW src.rb, dst.wb 0 II< 0

9B MOVZBL src.rb, dst.wI 0 II< 0

30 MOVZWL src.rw, dst.wl 0 * 0

84 MULB2 mulr.rb, prod.mb II< II< * 0 iov

C4 MULL2 mulr.rI, prod.ml II< II< II< 0 iov

A4 MULViT2 mulr.rw, prod.mw II< II< II< 0 iov

85 MULE3 mulr.rb, muld.rb, prod.wb II< ... II< 0 iov

05 MULLS mulr.rl, muld.rI, prod.wI II< II< II< 0 10V

AS MULW3 mulr.'I"\IV, muld.rw, prod.ww II< II< II< 0 iov

DD PUSHL erc.rI, I-(SP). wI) II< ... 0

9C ROTL cnt.rb, src.rl, dst.wI ... II< 0

D9 SBWC sub.rl, dif.ml II< * II< * iov

82 SUBB2 sub.rb, dif.mb II< * '" * iov

2-14 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Integer, Arithmetic and LogicallJClStructions

C2 SUBL2 sub.rl, dif.m1 iov

A2 SUB'W2 SUb.TW, dif.mw * ... iov

83 SUBB3 sub.rb, min.rh~ dif.wb * ... * ... iov

C3 SUBL3 sub.rl, min.rl, wf.wI at< ... * ... iov

A3 SUBW3 SUb.TW, min.rw, dif.wW at< at< * at< iov

95 TSTB'sre.rb at< * 0 0

D5 TSTL src.rl * * 0 0

B5 TSTW srC.rw ... * 0 0

8C XORB2 mask.rb, dst.lnb ... * 0

CC XORL2 mask.rl, dst.Dll * '* 0

AC XORW2 mask.TW, dst,mw * * 0

8D XORB3 mask.rb, sre.rb, dst.wb * * o·
CD XORL3 mask.rl, sre.rI, dst.wl * * 0

AD XORW3 mask.TW, sre.rw, dst.ww * * 0

Address Instructions

9E MOVAB sre.ab, dst.wl ... at< 0

DE MOVAL{=F} sre.al, dst.wl * * 0

7E MOVAQ{=D=G} src.aq, dst.wl * * 0

3E MOVAW src.aw, dst. wI 0

9F PUSHAB src.ab, {-(SP).wl) * * 0

DF PUSHAL{=F} src.al, HSP).wl} * ... 0

7F PUSHAQ{=D=G} sre.ELq, {-(SP).wl) 0

3F PUSHAW src.aw, {-(SP).wl} * ... 0

Variable-Length Bit Field ,Instructions

EC C:MPV pos.rl, size.rb, base.vb, {field.TV}, src.rl ... * 0 ... rsv

ED CMPZV pos.rl, size.rb, base.vb, {field.TV}, sre.rl ... * 0 ... rsv

DIGITAL CONFIDENTIAL Architectural Summary 2-15

NVAX Plus CPU Chip Functional SpeclDcation, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Variable-Length Bit Field Instructions

EE EXTV pos.rl, size.rb, base.vb, {field.TV}, dst.wl '" II< 0 rsv

EF EX.TZV pos.rl, size.rb, base.vb, {field.rv}, dst.wl II< '" 0 rev

FO INSV src.rI, pos.rl, size.rb, base.vb, {field.wvl rsv

EB FFC startpos.rl, size.rb, base.vb, {field.TV}, nnd- 0 '" 0 0 rsv
pos.wl

EA FFS startpos.rI, size.rb, base.vb, {field.rv\, nnd.: 0 '" 0 0 rsv
pos.wl

Control Instructions

9D ACBB limit.rb, add.rb, indeLmb, displ.bw '" '" '" iov

Fl ACBL limit.rl, add.rl, indeLml, displ.bw II< II< II< iov

3D ACB'W limit.TW, add.TW, indeLmw, displ.bw II< II< II< iov

F3 AOBLEQ limit.rl, index-ml, displ.bb II< II< '" iov

F2 AOBLSS limit.rl, index.ml, displ.bb '" '" '" iov

IE BCC{=BGEQUI displ.bb

IF BCSI=BLSSUI displ.bb

13 BEQ.LI=BEQLUI displ.bb

18 BGEQ displ.bb

14 BGTR displ.bb

lA BGTRU dispI.bb

15 BLEQ displ.bb

IB BLEQU displ.bb

19 BLSS displ.bb

12 BNEQI=BNEQU} displ.bb

Ie BVC displ.bb

ID BVS displ.bb

El BBC pos.rI, base.vb, displ.bb, {neld.TV} rev

EO BBS pos.rl, base.vb, displ.bb, {field.TV} rsv

2-16 Architectural Summary DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Control Instructions

E5 BBCC pos.rl, base.vb, displ.bb, f:6.eld.mv} rsv

E3 BBCS pos.rl, base.vb, displ.bb, ffield.mv} rsv

E4 BBSC pos.rl, base.vb, displ.bb, ffield.mv} rsv

E2 BBSS pos.rl, base.vb, displ.bb, ffield.mv} rsv

E7 BBCCI pos.rl, base.vb, displ.bb, f:6.eld.mv} rsv

E6 BBSS! pos.rl, base.vb, clispl.bb, ffield.mv} rsv
-'-.

E9 BLBC src.rl, displ.bb

ES" BLBS src.rl, clispl.bb

11 BRB clispl.bb

31 BRW displ.bw

10 BSBB displ.bb, {-(SP).'wl)

30 BSBW displ.bw, {·(SP).wl)

SF CASEB selector.rb, ba.se.rb~ limit.rb, cli~pl.bw. * * 0 ...
list

OF CASEL selector.rl, bSLSe.rl, limit.rl, displ.bw. 0 *
list

AF CASEW selector.TW, bs;se.TW, limit.rw, displ.bw- 0 ...
list

17 JMP dst.ab

16 JSB dst.ab, 1·(SP).wl} -

05 RSB {(SP)+.rl)

F4 SOBGEQ index..ml, disp1.bb iov

F5 SOBGTR indeLmI, diapl.bb iov

DIGITAL CONFIDENTIAL Architectural Summary 2-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Procedure Call Instructions

FA CALLG arglist.ab, dst.ab, t-(SP).w*J 0 0 0 0 rsv

FE CALLS numarg.rI, dst.ab, 1-(SP).w*} 0 0 0 0 rsv

04 RET {(SP).+.r*) II: II: II: II: rsv

Miscellaneous Instructions

B9 BICPSV\7 mask.rw II: II: II: II: rsv

BB BISPSW mask.rw ~. II: * II: II: rsv

03 BPT I-CKSP).w*1 0 0 0 0

00 HALT !-CKSP).w*1 pTV

OA INDEX Bubscript.rl, low.rI, high.rl, size.rl, in- * II: 0 0 sub
dexin.rl, indexout. wI

DC MOVPSL dst.wl

01 NOP

BA POPR mask.rw, {(SP)+.r*1

BB PUSHR mask.rw, {-(SP).w*1

FC XFC lunspecifi.ed operands) 0 0 0 0

Queue Instructions

5C INSQID entry.ab, beader.aq 0 * 0 '" rs,7

5D INSQTI entry.ab, beader.aq 0 II: 0 II: rs,7

OE INSQUE entry.ab, pred.ab II: II: 0 '"

5E REMQHI beader.aq, addr. wI 0 31< II: II: rsv

5F REMQTI beader.aq, ad dr. wI 0 II: II: II: rsv

OF REMQUE entry.ab, addr.wl 31< II: II: '"

2-18 Architectural Summary . DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip"Functional Specification, Revision 0.8, October 1991

Table 2-6 (Cont.): NVAX Instru,ction Set

Opcode Instruction N Z V C Ex'ceptions

Operating System Support Instructions

BD CH:ME param.rw, 1-(ySP).wll<} 0 0 0 0

BC CHMK param.rw, 1-(ySP).w*} 0 0 0 0

BE CHMS param.TW, {-(ySP).w*) 0 0 0 0

BF CHMU param.rw, {-tvSP).w*} 0 0 0 0

06 LDPCTX {PCB.r*, -<KSP).w*} rsv, prv

DB :MFPR procreg.rl, dst"wl II< II< 0 rsv, p:n'

DA MTPR erc.rI, procreg.rl '" II< 0 rsv, prv

00 PROBER mode.rb, len.TW, base.ab 0 '" 0

OD PROBE\V mode.rb, len.TW, base.ab 0 II< 0

02 REI l(SP)+.r*} '" '" '" II< rsv

07 SVPCTX ((SP)+.r*, PCB.w*) prv

Character String InstructioDS

29 CMPC3 len.TW, srcladdr.ab, erc2addr.ab '" '" 0 '"

2D CMPCS srcllen.TW, src:laddr.ab, fill.rb,src2len.rw, II< II< 0 '"
src2addr.ab

3A LOOO char.rb, len.TW, addr.ab 0 '" 0 0

28 MOVC3len.TW, srcaddr.ab, dstaddr.ab, fR0-5.wl} 0 1 0 0

20 MOVCS srclen.rw, srca.ddr.ab, fill.rb, detlen.TW, '" II< 0 '"
dstaddr.ab,{R0-5.wl}

2A SOANC len.TW, addr.ab, tbladdr.ab, mask..rb 0 11< 0 0

3B SKPO char.rb, len.TW, uddr.ab 0 11< 0 0

2B SPANO len.TW, addr.ab, tbladdr.ab, mask..rb 0 '" 0 0

DIGITAL CONFIDENTIAL ~rchttectural Summary 2-19

NVAX Plus CPU Chip Functional Specificatio~ Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Floating Point Instructions

60 ADDD2 add.rd, sum.md II< ... 0 0 rsy, fov, fuv

40 ADDF2 add.rl, sum.mf '11< II< 0 0 rsv, fov, fuv

40FD ADDG2 add.rg, sum.mg II< .. 0 0 rsv, fov, fuv

61 ADDD3 addl.rd, add2.rd, sum. wd .. II< 0 0 rsv, foY, fuv

41 ADDF3 addl.rl, add2.rl, sum.wf 01< II< 0 0 rs", foY, fuv

41FD ADDG3 addl.rg, add2.rg, sum.wg II< .. 0 0 rsv, fov, fu,,·

71 CMPD srcl.rd, src2.rd 01< .. 0 0 rsv

51 CMPF srel.rl, sre2.rl II< II< 0 0 rsv

51FD CMPG srel.rg, src2.rg 01< * 0 0 rsv

6C CVTBD sre.rb, dst.wd II< II< 0 0

4C CVTBF src.rb, dst.wf * * 0 0

4CFD CVTBG sre.rb, dst.wg * * 0 0

68 CVTDB ere.rd, dst. wb * II< 01< 0 nv, io'v

76 CVTDF sre.rd, dst.wf * * 0 0 rs", fov

6A CVTDL STe.rd, dst. wI II< * * 0 rsv, iov

69 CVTD'W src.rd, dst. ww * II< * 0 ,rsY, iov

48 CVTFB src.n, dst. wb * * * 0 rsv, iov

56 CVTFD STe.n, dst. wd * II< 0 0 rsv

99FD CVTFG sre.rl, dst.wg * II< 0 0 rsv

4A CVTFL sre.n, dst. wI II< II< * 0 rsv, iov

49 CVTF\V sre.n, dst.ww II< .. II< 0 rsY, iov

48FD CVTGB STe.rg, dst.wb II< II< * 0 rsv, iov

33FD CVTGF sre.rg, dst.wf * * 0 0 rsv, fov, fuv

4AFD CVTGL sre.rg, dst.wl 01< II< * 0 rsY, iov

49FD CVTGW src.rg, dst.ww 01< 01< II< 0 rsY, iov

6E CVTLD sre.rl, dst.wd * .. 0 0

4E CVTLF src.rl, dst. wf 0 0

4EFD CVTLG STe.rl, dst.wg II< .. 0 0

6D CVTWD srC.TW, dst. wd 0 0

4D CVTWF sre.rw, dst.wf 01< 01< 0 0

4DFD CVTWG src.rw, dst.wg 01< ... 0 0

2-20 Architectural Summary DIGITAL CONFIDENTIAl.

-

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Floating Point Instructions

6B CVTRDL sre.rd, dst.,~1 II< II< II< 0 rev, iov

4B CVTRFL sre.rf, dst. wI II< II< II< 0 rev, iov

4BFD CVTRGL sre.rg, dst:w 1 II< II< II< 0 rev, iov

66 DIVD2 divr.rd, quo.D:td II< II< 0 0 rev, fov,fuv, fdvz

46 DIVF2 divr.rf, quo.mf II< II< 0 0 rev, fov, fu'v, fdvz

46FD DIVG2 divr.rg, quo.mg II< II< 0 0 rsv, fov, fuv, fdvz

67 DIVD3 divr.rd, divd.rd, quo.wd II< II< 0 0 rsv, fov, fuv, fdvz

47 DIVF3 divr.rf, divd.r.f, quo.wf II< II< 0 0 rev, fov, fuv, fdvz

47FD DIVG3 divr.rg, divd.rg, quo.wg II< II< 0 0 rsv, fov, fuv, fdvz

72 :MNEGD sre.rd, dst.wd II< II< 0 0 rsv

52 :MNEGF src.n, dst. wf II< II< 0 0 rsv

52FD MNEGG sre.rg, dst. wg II< II< 0 0 rev

70 MOVD sre.rd, dst.wd II< II< 0 rsv

50 MOVF sre.n, dst.wf II< II< 0 rsv

50FD MOVG src.rg, dst.wg II< II< 0 rsv

64 MULD2 mulr.rd, prod..md II< II< 0 0 rev, fov,fuv

44 MULF2 mulr.rf, prod.mf II< II< 0 0 re'v, fov, fuv

44FD MULG2 mulr.rg, prod.mg II< II< 0 0 rsv, fov,fuv

65 MOLD3 mulr.rd, muld.rd, prod.wd II< II< 0 0 rev, fov, fuv

45 MULF3 mulr.rf, muld.rf, prod. wf II< II< 0 0 rev, fov, fuv

45FD MULG3 mulr.rg, muld.rg, prod.wg II< II< 0 0 rsv, fov, fuv

62 SUBD2 sub.rd, dif.md II< II< 0 0 rsv, fov, fuv

42 SUBF2 8ub.n, dif.mf II< II< 0 0 rsv, fov, fuv

42FD SUBG2 8ub.rg, dif.mg II< II< 0 0 rev, fov, fuv

DIGITAL CONFIDENTIAL Architectural Summary 2-21

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

Opcode Instruction N Z V C Exceptions

Floating Point Instructions

63 SUBD3 sub.rd, min.rd, dif.wd II: II: 0 0 rav, fov, fuv

43 SUBF3 sub.n, min.n, dif.wi II: II: 0 0 rav, fov, fuv

43FD SUBG3 sub.rg, min.rg, dif.wg II: II: 0 0 rav, fov,fuv

73 TSTD src.rd II: II: 0 0 rav

53 TSTF sre.n II: II: 0 0 rav

53FD TSTG sre.rg II: II: 0 0 rav

Microcode-Assisted Emulated Instructions

20 ADDP4 addlen.l"W, addaddr.ab, sumlen.TW, II: II: * 0 rav, dov
sumaddr.ab

21 ADDP6 addllen.TW, addladdr.ab, add.21en.TW, II: II: II: 0 rav, dov
add2addr.ab, sumlen::rw, sumaddr.ab

F8 ASHP cnt.rb, srclen.TW, srcaddr.ab, round.rb, * * * 0 rav, dov
dstlen.TW, dstaddr.ab

35 C:MPP3 len.TW, srcladdr.ab, src2addr.ab II: II: 0 0

37 CMPP4 srellen.TW, sreladdr.ab, sre21en.rw, II: II: 0 0
src2addr.ab

OB CRe tbl.ab, inicrc.rl, strlen.rw, stream.ab II: II: 0 0

F9 CVTLP src.rl, dstlen.TW, dstaddr.ab * * * o· ray, dov

36 CVTPL srclen.rw, srcaddr.ab, dst. wI II: * * 0 rav, iov

08 CVTPS srelen.TW, srcaddr.ab, dstlen.rw, dstaddr.ab II: II: -II: 0 ray, dov

09 CVTSP srclen.TW, srcaddr.ab, dstlen.l"W, dstaddr.ab * * * 0 ray, do'v

24 CVTPT srclen.TW, srcaddr.ab, tbladdr.ab, dstlen.rw, *' II: II: 0 rav, dov
dstaddr.ab

26 CVTTP srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, *' *' II< 0 rav, dov
dstaddr.ab

27 DIVP divrlen.rw, divraddr.ab, divdlen.rw, dive II< if< II< 0 rav, dov, ddvz
daddr.ab, quolen.rw, quoaddr.ab

2-22 Architectural Summary DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Tabte 2-6 (Cont.): NVAX tnstruction Set

Opcode Instruction N Z V C Exceptions

Microcode-Assisted Emulated Instructions

38 ' EDITPC src1en.rw, srcaddr.ab, pattern..ab, '" '" '" '" rsv, dov
dstaddr.ab

39 MATCHC objlen.rw, (~bjaddr.ab, src1en.rw, sr· 0 '" 0 0
caddr.ab

34 MOVP len.rw, srcaddr.ab, dstaddr.ab '" '" 0 0

2E MOVTC src1en.TW, srcaddr.ab, fill.rb, tbladdr.ab, '" '" 0 . '"
dstlen.rw, dstaddr.ab

2F MO'VTUC srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, '" '" '" '"
dstlen.rw, dstaddr.ab

25 MULP mulrlen.rw, mulraddr. ab, muldlen.rw, '" • '" 0 rsv, dov
muldaddr.ab, prodleILrw, prodaddr.ab

22 SOOP4 sublen.TW, subaddr.ab, diften.rw, difaddr.ab • • • 0 rsv, dO,T

23 SOOP6 sublen.TW, subaddr.ab, minlen.rw, mi- • • • 0 rsv, dov
naddrab djfiep ny difaddrab

DIGITAL CONFIDENTIAL Architectural Summary 2-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-6 (Cont.): NVAX Instruction Set

The notation used fOT operand specifiers is <name>.<aC'.cess type><data type>. Implied operands (those locations that are
referenced by the instruction but not specified by an operand) are denoted by curly braces O.

Access Type

a :: address operand
b = branch displacement
m:: modified operand <both read and written)
T :: read only operand
v = if not "Rn", same as a, otherwise R[n+lJ'R[nJ
w = write only operand

Data Type

b :: byte
d :: D _floating
f :: F _floating
g = G_floating
1 :: longword
q:: quadword
-v :: field (used only in implied operands)
w:: word
'" :: multiple longwords (used only in implied operands)

Condition Codes Modiflcation

'" :: conditionally set/cleared
- = not affected
0:: cleared
1 :: set

:E%ceptions

rs-v = reserved operand fault
io~ = integer overflow trap
idvz :: integer divide by zero trap
fov = floating overflow fault
fuv = floating underflow fault
fdvz = floating divide by zero fault
dov == decimal overftow trap
ddvz = decimal divide by zero trap
sub = subscript range trap
P"' = privileged instruction fault
vee = vector unit disabled fault

2-24 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.6 Memory Management

The NVAX Plus CPU Chip supports a four gigabyte (2**32) virtual address space, divided into
two sections, system space and process space. Process space is further subdivided into the PO
region and the PI region.

2.6.1' Memory Management Control Registers

Memory management is controlled by three processor registers: Memory Management Enable
(MAPEN) , Translation Buffe:r Invalidate Single (TBIS), and Translation Buffe:r Invalidate All
(TElA).

Bit <0> of the MAPEN register enables memory management if written with a 1 and disables
memory management if written with a O. The MAPEN register is shown in Figure 2-11.

Figure 2-11: MAPEN .Register

3: 30 2~ 281:7 2£ 25 2'123 22 21 20119 18 l' 16115 14 1~ 12111 10 O~ 08J07 06 05 04103 02 01 00
~ ____ ~. __ • __ + __ + __ ~ __ + __ ~ __ +~_. __ ,+ __ + __ + __ + __ + __ + __ + __ + __ + __ ~ __ + __ + __ + __ + __ + __ + __ ~ __ + __ +_D. __ + __ ~

I 0 0 (l 0 0 0 0 (, 0 0 0 0 0 0 0 0 0 0 C' 0 0 0 0 0 0 c· 0 (, (i C' 0 I I: MAPEN
----.--~--~--+--+--~--+--+--+-- --,+--+--+--+--+--+--.;.--+--+--+--+--+--+--.,..--".---+---+--+--+--+--+--+

!'!ME --+

The TBIS register controls translation buffer invalidation. Writing a virtual address into TBIS in­
validates any entry which maps that virtUal address. The TBIS format is shown in Figure 2-12.

Figure 2-12: TBIS Register

31 30 29 28127 26 25 24123 22 2l 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 OC

Virtual Address i :TB!S

The TBIA register also controls translation buffer invalidation. Writing a zero into TBIA invali­
dates the entire translation buffer. The TBIA format is shown in Figure 2-13.

Figure 2-13: TBIA Register

31 30 29 28127 26 25 24123 22 2l 20119 18 17 16115 14 13 1211l 10 09 08107 06 05 04103 02 01 00
+--+--+--+--+--+--+--~--+--+--+--+--+-----+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--.+--+--~

I 0 I : TEIA
+--+-_.+-----+

DIGITAL CONFIDENTIAL Architectural Summary 2-25

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.6.2 System Space Address Translation

A virtual address with bits <Sl> = 1 is an address in the system virtual address space.

System virtual address space is mapped by the System Page Table (SPT), which is defined by
the System Base Register (SBR) and the System Length Register (SLR). The SBR contains the
page-aligned physical address of the System Page Table. The SLR contains the size of the SPT
in longwords, that is, the number of Page Table Entries. The Page Table Entry addressed by the
System Base Register maps the first page of system virtual address space, that is, virtual byte
address 80000000 (hex). These registers are shown in Figure 2-14.

With a 22-bit SLR 2**22-1 pages in system space may be addressed. AB a result, the last page
of system space (beginning at virtual address FFFFFEOO (hex)) is not addressable. As a result,
this page is reserved and a reference to any address in that page will result in a length violation.

NOTE

The extended SO space descibed above is implemented on the NVAX Plus chip.

NOTE

·\hlhen the CPU is configured to generate SO-bit physical addresses, SBR<Sl:30> are
ignored.

Figure 2-14: System Base and Length Registers

31 30 29 281:7 26 2~ 24123 Z2 21 2011~ lS 1i l6115 14 l3 121ll lO 09 0810i 06 05 04103 02 01 00

Physical Page Address o! SP! 1 0 0 0 0 0 0 0 0 0 1 : SBR

3: 30·29 28127 26 25 2~123 22 21 20119 l8 17 16115 14 l3 l21l1 lO 09 0810i 06 05 04103 02 01 00

! 0 0 0 0 0 0 0 0 0 01 Length of SP~ in Longwords 1 :SLR

The system space translation algorithm is shown grapbically in Figure 2-15.

2-26 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-15: System SpacE~ Translation Algorithm

system-spaCE
,·irtual address:

SBR:

SPTE:

physical address:

3 3
o o

+---+----_ _------------+-------
, 1 ,virtual pagE number' bytE'
+---+----_ ... _------------+-------+

1 ,\

, e:ctract VPN, 1 \
1 checr. length, 1 \

3 2 12 and add ,\ '
1 4,3 211 0 \ +--------.... ----_ .. _------------+---+ \

, physical addl~ess of SP! baSE , \
+--------------------------------+ 1

I sign-extend PJI<29> to P.A<3l:30>1 1
, if in 30-bit modE , ,
1 , 1

13 yields I'
'1 01 1 ... --------------_._-------,---------+ ,

physical acldress of SPT£ ,
... --------------_._----------------+ ,

fetch
322
1 o

+---------------,-----------------+ ,
pagE .framE numbe= 1

+--------------,-----------------+ ,
check access in current ,
mode, 1
sign-extend PT£<20> to ,
PT£<22:2l> if in 30-bit 1
m~E 1

mergE /
13 /
11 9, /B

\
\

\
\

\
\

\

/
/

o /
+-------------------------+-------+
1 - page frame number , byte

+-------------------------+-------+

2.6.3 Process Space Address Translation

,
,
,
1

,
1 ,
,
,
,
1 ,
,
,
,
,
,
1 ,
1

1

1

A virtual address with bit <31> = 0 is an address in the process virtual address space. Process
space is divided into two equal sized, separately mapped regions. If virtual address bit <30> = 0,
the address is in region PO. If virtual address bit <30> = 1, the address is in region Pl.

2.6.3.1 PO Region Address Translation

The PO region of the address space is mapped by the PO Page Table (POPT), which is defined by
the PO Base Register (POBR) and the PO Length Register (POLR). The POBR contains the system
page· aligned virtual address tof the PO Page Table. The POLR contains the size of the POPT in
longwords, that is, the numbe',r of Page Table Entries. The Page Table Entry addressed by the PO
Base Register maps the first :page of the PO region of the virtual address space, that is, virtual
byte address O. The PO base and length registers are shown in Figure 2-16.

DIGfTAL CONFIDENTIAL Architectural Summary 2-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The PO space translation algorithm is shown graphically in Figure 2-17.

Figure 2-16: PO Base and Length Registers

31 30 2~ 26127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 OSl07 06 05 04103 02 01 00

: 1 01 Syntml Virtual Pa9E! Address of POP'I' I 0 0 0 0 0 (I 0 0 01 : POBR

31 30 2~ 26127 26 25 24123 22 21 20119 IS 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

Figure 2-17: PO Space Translation Algorithm

process-spaCE!
vinual address:

POBP.:

3 :3 :2
: 0 9 c

.---.-------------------.-------~
1 0 Ivirtua: P89~ number 1 bJ~~ 1

+-------------------"----+--------.
1\

enract: VPN, 1 \
checr. length, 1 \

3 212 anc add \
312 211 0 \

+-------~-------------------.---~ \
I virtual address o! POP! bas~ \

+-------------------------------~ I
1 "I I
1 1 I

I yields 1 I
13 3 2 I I
1109 98 01 I

virtual address .---.---------------------------+ 1

o! POPTE.: Ivirtual pag~ number 1 byt:~ 1

+---+---------------------------~ I
fetch using system-spac. translation I
algoritl"m., including length check, I
but: without access checr. I

3 :: 2 I
1 3.: 0 I

+------+-------------------------+ I POP'I'E: page frame number I

+------+-------------------------+ I
1 check access in current I I
I mode, I I
I sign-extend PTE<20> to I I
I PTE<22: 21> if in 3D-bit I I
I mode I I
I merge I I
13 I /
11 91/B

\
\

\
\

\
\

\

/
/

o I

+-------------------------+-------+ physical address: page frame number I byte

+-------------------------+-------+

2.6.3.2 P1 Region Address Translation

I
I

I
I
I
I
I
I
I

I :POloR

The PI region of the address space is mapped by the PI Page Table (P1PT), which is defined
by the PI Base Register (PlBR) and the PI Length Register (P1LR). Because PI space grows
towards smaller addresses, and because a consistent hardware interpretation of the base and
length registers is desirable, P1BR and P1LR describe the portion of PI space that is NOT

2-28 Architectural Summary DIGITAL CONFIDENTIAL

'----------------------__ •• ________ M

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

accessible. Note that PlLR contains the number of nonexistent PTEs. P1BR contains the page­
aligned virtual address of what would be the PTE for the first page of P1, that is, virtual byte
address 40000000 (hex). The address in P1BR is not necessarily an address in system space,but
all the addresses of PrEs mu.st be in system space.

The PI space translation algorithm is shown graphically in Figure 2-19.

Figure 2-18: P1 Base and L.ength Regtsters

31 30 29 28127 26 2S 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04102 02 01 00
+--+--+--+--.... ---!---.p.--+--~-- ... --+-.~+--+--.--+-- --+--+--+--+--+--... --+--+--+--+--+--+--.... --+_ .. _+-_ --+

Virtual PagE Address of P1P'l' I 0 0 0 0 0 0 0 0 01 : P1BR

31 30 29 28127 26 25 24123 :2 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00
+ ... _+--+--+--... --+--+--+--+--+--+--,+--... --+--+--+--.... --+--+--,+--+--~--+--+--+--+--~--+--+--+-... --..,..---+-
1 0 0 0 0 0 0 0 0 0 01 (2 ~. 21) - Lengtr. of P1P'l' in Longwords I :P1I.P.

Figure 2-19: P1 Space Translation Algorithm

process-space .
virtual address:

P1BR:

virtual address
0: P1PTE:

P1PTE:

:. (: 9 o
+---... -------------------+-------~ I 0 Ivirtual page number I byte I

+---~-------------------+-------+
1\

extraet VPI;, I \
eheck length, 1 \

3 2 I 2 and add I \
312 211 0 \

+-------+-------------------+---+ \
I virtual address 0: P1P'l' base \
+-------------------------------+ I
1 I I
I 1 I

I yields 1 1

13 3 2 1 1
11 0 9 9 8 01 1

+---+---------------------------+ 1

Ivirtual page number I byte I
+---+----------.-----------------+ I

fetch using syst.am-space translation 1

algorithm, inclu.:iing length check, I
but without acce$S eheck I

3 2 2 1
1 3:2 0 1

+------+-------------------------+ I
page frame number I

+------+--------,-----------------+ I
check a.::eess in current 1

mode, I
sign-QX~end PTE<20> to I
PTE<22:21> if in 30-bit I
mode I

merge /
13 1 /
11 91/8

\
\

\
\

\
\

\

/
/

o / +-------_._----------------+-------+
physical address: I page frame number I byte

+--------,-----------------+-------+

DIGITAL CONFIDENTIAL

I
1

1

I
I
I
1

I
I
I
I
1

I
I
I
I
1

1

I
I
I
1

Architectural Summary 2-29

1-

NVAX Plus CPU Chip Functional Specification, Revision O.3~ October 1991

2.6.4 Page Table Entry

If the CPU is configured to generate 30-bit physical addresses, it interprets PTEs in the 21-
bit PFN format shown in Figure 2-20. Conversely, if the CPU is configured to generate 32-bit
physical addresses, it interprets PTEs in the 25-bit PFN format shown in Figure 2-21. Note that
bits <24~3> of the 25-bit PFN format are ignored by the NVAX Plus CPU chip, which implements
only 32-bit physical addresses. The PTE formats shown below are described in DEC Standard
032.

Figure 2-20: PTE Format (21-blt PFN)

3~ 30 29 2812~ 26 25 24123 2~ 21 20119 16 1i 1611: 1~ 13 12111 10 09 08107 06 05 04103 0: 01 00

I VI PRO: I MI ZI OWN J SI 51 Pag_ Frame Number I :PTt

Figure 2-21 : PTE Format (25-bH PFN)

3: 30 29 281: i 26 :5 241:3 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

I Vi PROT I M! 51 sa: I Page Frame Number I :PT:E

2-30 Architectural Summary DIGITAL CONFIDENTIAL

I _______ ~il

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-7: PTE Protection Code Access Matrix

Code Current Mode

Decim.al Binary MDemonic K E S U Comment

0 0000 NA no access

1 ·0001 unpredictable reserved

2 0010 KW RW

3 0011 KR R

4· 0100 UW R'W R'W RW RW all access

5 0101 EW RW RW
....... ~ ._4 ~". ~;::""." " to:

6 . 0110 ERKW RW R

7 0111 ER R R

8 1000 SV\7 RW RW RW

9 1001 SREV\7 RW RW R

10 1010 SRKV\7 RW R R

11 1011 SR R R R

12 1100 URSV\7 RW RV\7 RW R

13 1101 UREV\7 RV\7 RW R R

14 1110 URKW RW R R R

15 1111 UR R R R R

Access Modes

K = Kernel
E = Executive
S = Supervisor
U = User

Access Types

R = Read
W = Write
- = No access

2.6.5 Translation Buffer

In order to save actual memory references when repeatedly referencing pages, the NVAX Plus
CPU Chip uses a translation buffer to remember successful virtual address translations and page
status. The translation buffE~r contains 96 fully associative entries. Both system and process
references share these entries.

TI'anslation buffer entries are replaced using a not-last-used (NLU) algorithm. This algorithm
gtl.B.rantees that the replacement pointer is not pointing at the last translation buffer entry to be
used. This is accomplished by rotating the replacement pointer to the next sequential translation
bl.mer entry if it is pointing to an entry that has just been accessed. Both D-stream and I-stream
references can cause the NLU to cycle. "When the translation buffer does not contain a reference's
virtual address and page sta.tus, the machine updates the translation buffer by replacing the
entry that is sel~cted by the replacement pointer.

DIGITAL CONFIDENTIAL Architectural Summary 2-31

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.7 Exceptions and Interrupts

At certain times during the operation of a system, events within the system require the execution
of software routines outside the explicit flow of control of instruction execution. An exception is
an event that is relevant primarily to the currently executing process and normally invokes a
software routine in the context of the current process. An intelTUpt is an event which is usually
due to some activity outside the current process and invokes a software routine outside the context
of the current process.

Exceptions and interrupts are reported by constructing a frame on the stack and then dispatching
to the service routine through an event-specific vector in the System Control Block (SCB). The
minimum stack frame for any interrupt or exception is a PCIPSL pair as shown in Figure 2-22.

Figure 2-22: Minimum Exception Stack Frame

3: 30 29 281:' 26 25 24123 :2 21 20119 16 17 16115 l' 13 12!11 10 09 08107 06 05 04103 02 01 00

PC I : (SP)

PSl.,

This minimum stack frame is used for all interrupts. Certain exceptions expand the stack. frame
by pushing additional parameters on the stack above the PC/PSL pair as shown in Figure 2-23.

Figure 2-23: General Exception Stack Frame

31 30 29 28127 26 25 24123 ~2 21 20119 16 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

Parame't.er n I : (SP)

Parameter 1

PC

PSl.,
+--~--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

'What parameters, if any, are pushed on the stack above the PC/PSL pair is a function of the
specific exception being reported.

2.7.1 Interrupts

DEC Standard 032 defines 31 interru.pt priority levels, a subset of which is implemented by the
NVAX Plus CPU. When an interrupt request is generated, the hardware compares the request
with the cu.rrent IPL of the CPU. lfthe new request is of higher priority an internal request is gen­
erated. At the completion of the current instruction (or at selected points during the execution of
interruptible instructions), a microcode interrupt handler is invoked to process the request. With
hardware assistance, the microcode handler determines the highest priority interrupt, updates

2-32 Architectural Summary DIGITAL CONFIDENTIAL

~.IIIIIIIEI_~ ___ ' _______ _

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

the IPL, pushes a PCtPSL pair on the stack, and dispatches to a macrocode interrupt handler
through the appropriate location in the SCB.

Of the 31 interrupt priority lev'els defined by DEC Standard 032, the :N'VAX Plus CPU makes use
of 23 of them, as shown in Table 2-8. .

Table 2-8: Interrupt Priority lLevels

lPL (hex)

IF
IE
ID
1C

IE
1A

18-19

17

16

15

14

10-13

01-OF

IPL (deciDuu)

31

30

29

28

27

26

24-25

23

22

21

20

16-19

01-15

2.7.1.1 Interrupt Control Registers

Interrupt Condition

BALT_B asserted (non maskable)

Unused

ERR..B asserted (or internal hard error detected)

Unused

Performance Monitoring Interrupt(internally handled by microcode)

Internal soft error detected

Unused

mQ..B<3> asserted

~Q..B<2> or interval timer (IBQ..B<2> takes priority)

mQ..B<l> asserted

JltQ..B<O> asserted

Unused

. Software inteITUpt asserted

The inteITUpt system is controlled by three processor registers: the Interrupt Priority Level
Register (IPL), the Software Interrupt Request Register (SIRR), and the Software Interrupt
Swnmary Register (SISR).

A new interrupt priority level may be loaded into PSL<20:16> by writing the new value to
IPL<4:0>. The IPL register is shown in Figure 2-24.

Figure 2-24: Interrupt Priority LE~vel Register

3l 30 29 28127 26 25 24123 22 2l 20119 l8 17 l6115 l4 13 12111 lO 09 08107 06 05 04103 02 01 00

i 0 0 0 0 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I PSL<20: l6> I : IPl..
+--+--+-'-+--+--+--+--~--+---r--+--+--+-"'+--+--+--+--.--+--+--+--,+--+--+--+--~--+--+--~--+--+--+--+

DIGfTAL CONFIDENTIAL Architectural Summary . 2-33

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

A software interrupt may be requested by writing the desired level to SIRR<3:0>. The SIRR
register is shown in Figure 2-25.

Figure 2-25: Software Interrupt Request Registers

3: 30 29 28127 26 25 24123 22 2~ 201l~ l8 17 16115 l4 l3 l21ll lO O~ 08107 06 05 04103 02 01 00

+--+--+--~--~--.--+--+--+--+--+--+--+--+--.--+--+--+.-+--.--+--+--+--+--+--+--+--+--.--+--.--+--~
I c) 0 (J 0 0 0 0 0 0 0 0 0 (I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OIRequest IPi I :SIRR

The SISR register records pending software interrupt requests at levels 01 through OF (hex). The
SISR register is shown in Figure 2-26.

Figure 2-26: Software Interrupt Summary Register

3: 30 2i 28127 26 2~ 24123 :: 21 201l~ 18 17 16115 l4 l3 12111 10 O~ 08107 06 05 04103 02 01 00

I 0 0 C 0 (I G C (I (I oDe 0 0 0 O!

2.7.2 Exceptions

I
IPL 15 reques~ --'

IPL l' reques~ --'
IPL 2 reques~ --'

IPL 1 reques~ --'

I 0 I :SISR

The VAX architecture recognizes six classes of exceptions. Table 2-9 lists instances of exceptions
in each class.

Table 2-9: exception Classes

Exception Class

Arithmetic trapslfaults

Memory management exceptions

Operand reference exceptions

2-34 Architectural Summary

Instances

Integer overflow trap
Integer divide-by-zero trap
Subscript range trap
Floating overflow fault
Floating divide-by-zero fault
Floating underflow fault

Access control violation fault
Tnmslation not valid fault

. M=O fault

ReserVed addressing mode fault
Reserved operand fault or abort

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-9 (Cont.): Exception Classes

Exception. Class

Instruction execution exceptions

Tracing exceptions

System failure exceptions

Instances

Reserved/privileged instruction fault
Emulated instruction faults.
XFC fault
Change-mode trap
Breakpoint fault
Vector disabled fault

'!race fault

Kernel-stack~not-valid abort
Interrupt-stack-not-valid halt
Console en-or halt
Machine check abort

A trap is an exception that occurs at the end of the instruction that caused the exception.
Therefore, the PC saved on the stack is the address, of the next instruction that would normally
have been executed.

A fault is an exception that occurs during an instruction and that leaves the registers and memory
in a consistent state such that elimination of the fault condition and restarting the instruction
will give correct results. Afte~r the instruction faults, the PC saved on the stack points to the
instruction that faulted .

.An abort is an exception that occurs during an instruction. An abort leaves the: value of regis­
ters and memory UNPREDICTABLE such that the instruction cannot necessarily be correctly
restarted, completed, simulated, or undone. In most instances, the NVAX Plus microcode at­
tempts to convert an abort into a fault by restoring the state that was present at the start of the
instruction which caused the abort.

The following sections describe only those exceptions which are unique to the NVAX Plus CPU,
or where DEC Standard 032 is not clear about the implementation.

2.7.2.1 Arithmetic Exceptions

Arithmetic exceptions are det1ected during the execution of instructions that perform integer or
fioating point arithmetic manipulations. Whether the exception is reported as a: trap or a fault
is a function of the specific ev'ent. In any case, the exception is reported through SCB vector 34
(hex) with the stack frame shown in" Figure. 2-27. Table 2-10 lists the exceptions reported by
this mechanism.

DIGITAL CONFIDENTIAL Architectural Summary 2-35

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Figure 2-27: Arithmetic Exception Stack Frame

31 30 2~ 281:7 26 25 241:3 22 21 2011~ 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

Type Code I : (SP)

PC

PSl.

Table 2-10: Arithmetic Exceptions

Type Code

Decimal Hex Type Exception

1 1 '!Tap Integer overfiow

2 2 '!Tap Integer divide-by-zero

7 7 '!Tap Subscript range

8 8 Fault Floating oveI"fiow

9 9 Fault Floating cbvide-by-zero

10 A Fault Floating underfiow

2.7.2.2 Memory Management Exceptions

Memory management exceptions are detected during a memory reference and are always reported
as faults. The five memory management exceptions are listed in Table 2-11. All four exceptions
push the same frame on the stack, as shown in Figure 2-28. The top longword of the stack frame
contains a fault parameter whose bits are described in Table 2-12.

Table 2-11: Memory Management Exceptions

SCB Vector Exception

20 (hex) Access control violation

24 (hex) Translation not valid

3C (hex) Modify fault

2-36 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Figure 2-28: Memory Management Exception Stack Frame

3l 30 29 28127 26 25 2~12! 2: 21 2011~ 18 17 16115 14 1312111 10 O~ 08107 06 05 04103 02 01 00

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (I 0 0 0 (; 0 (J 0 0 I 01 01 M \ F 1 1.1 : (SF)

Some Vi~ual Address in the Faulting Page

PC

PSI.
-+--+-- ... --+--+--+--.--.--+--+--... --... --+--.... --+--+--+--~--+--+--+--~--+--+-- ... --.--+--.--.--+--... --+--+

Table 2-12: Memory Management Exception Fault Parameter

Bit Mnemonic Mela.niDg

0 L Len.gth violation

1 p PTlC reference

2 M Modify or write intent

2.7.2.3 Emulated Instructlon Ex(~ptions

The NVAX Plus CPU implements the VAX base instruction group. For certain instructions outside
that group, the NVAX Plus microcode provides support for the macrocode emulation of instruc·
tions. There are two types of c3mulation exceptions, depending on whether PSL<FPD> is set at
the beginning of the instructio:n.

If PSL<FPD>=O at the beginning of the instruction, the exception is reported through SeB vector
C8 (hex) as a trap with the stack frame shown in Figure 2-29. The longwords in the stack frame
are described in Table 2-13.

DIGITAL CONFIDENTIAL Architectural Summary 2-37

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-29: Instruction Emulation Trap Stack Frame

31 30 29 2812: 26 2S 24123 22 21 20119 18 17 16115 14 13 12111 lei 09 08107 06 OS 04103 02 01 00

Opcod4i! I : (SP)

Old PC

Specifier fl

Specifier f 2

Specifier f 3

specifier ~ 4

specifier if 5

Specifier .6

Spec,ifier >Ii

SpecHier .a
PC

PSI.

Table 2-13: Instruction Emulation Trap Stack Frame

Location Use

Opcode Zero-extended opcode of the emulated instruction

Old PC PC of the opcode of the emulated instruction

Specifiers Address of the specified operand for specifiers of access type write (.wx) or address
(.ax). Operand value for specifiers of access type read (.n). For read-type operands
whose size is smaller than a longword, the remaining bits are UNPREDICTABLE.
For those instructions that don't have 8 specifiers, the remaining specifier longwords
contain UNPREDICTABLE values

New PC PC of the instruction following the emulated instruction

PSL PSL saved at the time of the trap

IfPSL<FPD>=l at the beginning of the instruction, the exception is reported through 8CB vector
CC (hex) as a fault with the stack frame shown in Figure ~O. In this case, PC is that of the
opcode of the emulated instruction.

2-38 Architectural Summary DIGITAL CONFIDENTIAL

-

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-30: Suspended Emulation Fault Stack Frame

31 30 2~ 28127 26 25 24123 22 21 20119 18 17 16115 14 1Z 12111 10 09 08107 06 05 04103 02 01 00

PC i : (SP)

PSI,

2.7.2.4 Machine Check Exceptions

A machine check exception is: reported through SCB vector 04 (hex) when the NVAX Plus CPU
detects an error condition. The frame pushed on the stack for a machine check indicates the type
of error and provides internal state information that may help identify the cause of the error.
The generic machine check stack frame is shown in Figure 2-31.

Fig~re 2-31 : Generic Machine Check Stack Frame

3l 30 29 281:7 26 25 24123 :: 2l 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 0:' 0: 00

Byt~ Coun~ of Parameters, Excluding This I,ongword i : (SP)

PC

PSI,

2.7.2.5 Console Halts

In certain microcode flows, the NVAX Plus microcode may detect an inconsistency in internal
state, a kernel-mode HALT, or a system reset. In these instances, the microcode initiates a
ha.rdware restart sequence which passes control to the console program.

***"When a hardware restart sequence is initiated, the NVAX Plus microcode sa:ves the current
CPU state, partially initializes the CPU, and passes control to the console program at the physical
address contained in the COJ:\rSOLE_REG register. ***

During a hardware restart sequence, the stack pointer is saved in the appropriate stack pointer
IPR (0 through 4), the current PC is saved in IPR 42 (SAVPC), and the current PSL, halt code,
and validity flag are saved in IPR 43 (SAVPSL). The format of SAVPC and SAVPSL are shown
in Figure 2-32.

DIGrTAL CONFIDENTIAL ArchItectural Summary 2-39

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-32: Console Saved PC and Saved PSL

3: 30 2~ 28::~ 2f 25 24123 22 21 2011~ 18 17 16115 14 13 12111 10 09 08107 06 05 0410! 02 01 00

Saved PC

31 30 2~ 281:7 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

PSL<31:16>

MAPEN<O> --'
Invalic SAVPSL it 1 --'

.2.8 System Control Block

Halt Code PSL<7:0>

I :SAVPC

I :SAVPSL

The System Control Block (SCB) is a page containing the vectors for servicing interrupts and
exceptions. The SCB is pointed to by the System Control Block Base Register (SCBB), whose
format is shown in Figure 2-33. For best performance, SCBB should contain a page-aligned
address. Microcode forces a longword-aligned SCBB by clearing bits <1:0> of the new value
before loading the register.

NOTE

"When the CPU is configured to generate 30-bit physical addresses, SCBB<31:30> are
ignored.

Figure 2-33: System Control Block Base Register

3: 30 2~ 281=~ 26 25 24123 2: :1 20119 18 17 16115 14 13 l21l1 10 09 0810i 06 05 04103 02 01 00

Physical Pa9~ Address of SC~ SBZ I 0 0 I :SCBB

2.8.1 System Control Block Vectors

An SCB vector is an aligned longword in the SCB through which the NVAX Plus microcode
dispatches interrupts and exceptions. Each SCB vector has the format shown in Figure 2-34.
The fields of the vector are described in Table 2-14.

2-40 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-34: System Control Block Vector

31 30 2i 28127 26 25 24123 22 21 20119 l8 17 16115 14 13 l2111 10 09 08107 06 05 04103 02 Ol 00

longword Ilddr&ss of s&rvic~ routin~ Icoci~ I

Table -2-14: System Control Block Vector

Bits Contents

31:2 Virtual address of the service routine for the interrupt or exception. The routine must be
longword aligned, as 1~he microcode forces the lower two bits of the address to 00

1:0 Code, interpreted as follows:

Value

00

01

10

11

Meaning

The event is to be serviced on the· kernel stack unless the CPU is already on the
interrupt stack, in which case the event is serviced on the interrupt stack

The event is to be serviced on the interrupt stack. If the event is an exception, the
IPL is rallsed to IF (hex)

Unimplemented, results in a console error halt

Unimplemented, results in a console error halt

2 .. 8.2 System Control Block Layout

The System Control Block layout is shown in Table 2-15.

Table 2-15: System Control Block Layout

Vector Name Type Param Notes

00 unused **NVAX passiverelease**

04 machine check abort 6 parameters reflect machine state;
must be serviced on interrupt stack

08 kernel stack not valid abort 0 must be serviced on interrupt stack

oc unused **NVAX power fail**

10 reserved/privileged instruction fault 0

14 customer reserved instruction fault 0 XFC instruction

18 reserved operand fault/abort 0 not always recoverable

lC reserved addressing mode fault 0

20 access control violation/vector fault 2 parameters are virtual address,
alignment fault status code

24 translation not valid fault 2 parameters are virtual address,
status code

DIGrTAL CONFIDENTIAL Architectural Summary 2-41

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-15 (Cont.): System Control Block Layout

Vector Name Type Param Notes

28 trace pending fault 0

2C breakpoint instruction fault 0

-ao unused compatibility mode in other VAXes

34 arithmetic trap/fault trap/fault 1 parameter is type code

38-3C unused

40 CHMK trap 1 parameter is sign-extended operand
word

44 CHME trap 1 par~meter is sign-extended operand
word

48 CHMS trap 1 parameter is sign-extended operand
word

4C CHMlJ trap 1 parameter is sign-extended operand
word

50 unused

54 soft error notification interrupt 0 IPL is 1A (hex)

58 Performance monitoring counter interrupt See Chapter 18 for details
overfi.ow

59-5C unused

60 hard error notification interrupt 0 IPL is lD (hex)

64 unused

68 vector unit disabled fault 0 vector instructions

6C-80 unused **80 was NVAXinterprocessorin.
terrupt**

84 software level 1 interrupt 0

88 software level 2 interrupt 0 ordinarily used for AST delivery

8C software level 3 interrupt 0 ordinarily used for process schedul·
. ing

90-BC software levels 4-15 interrupt 0

CO interval timer interrupt 0 IPL is 16 (hex)

C4 unused .:..

C8 emulation start fault 10 same mode exception, FPD=O; pa~
rameters are opcode, PC, speci~
fien

CC emulation continue fault 0 same mode exception, FPD:l; no
parameters

DO device vector interrupt 0 IPL is 14 (hex)

D4 device vector interrupt 0 IPL is 15 (hex), includes console
interrupts

2-42 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPT] Chip Functional Specification, Revision 0.3, October 1991

Table 2-15 (Cont.): System Con~rol Block Layout

Vector Name Param Notes

DB device vector interrupt o IPL is 16 (hex)!, includes inter­
processor interrupts

DC

EO-F4

F8-FC

device vector

unused

unused

interrupt o IPL is 17 (hex)

**FB was NVAX console receiver­
FC was console transmitter -IPL
15**

100-FFFC unused

2.9 CPU Identification

**was NVAX Device interrupt vec­
tors**

Software may quickly determine on which CPU it is executing in a multi-processor system by
reading the CPUID.processor register. The format of this register is shown in Figure 2-35.

Figure 2-35: CPU 10 Register

31 30 29 2812i 26 25 24123 22 21 20119 16 17 16115 14 13 12111 10 09 08107 06 OS 04103 02 ~l 00
.--+--+~-+-~+--+--+--+--+--~--+--+--+--~--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--~

I 0 0 0 0 0 (I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (I 0 I CPU ldem:.ifica'tion I :CPuID

The CPUID processor register is implemented internally as an 8-bit read-write! register. The
source of the CPU ID informa.tion is system-specific, and it is the responsibility of the console
firmware at powerup to determine the CPU ID from the system-specific source, and write the
CPU ID register to the correct value.

2.10 SYSTEM IDENTIFICA1'ION

The System Identification Register, IPR 62 (SID), is, a read-only register implemented per DEC
Standard 032 in the NVAX Plus CPU. This 32-bit register is used to identify the processor type
and its microcode revision level.

DIGITAL CONFIDENTIAL Architectural Summary 2-43

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-36: System Identification (SID)

31 30 2~ 26 27 26 25 24 23 22 :1 20 19 18 17 16 1~ 14 13 12 11 10 8 7 5 " :: 2 o

RC I 0 0 0 0 0 0 0 01 RO IRO! RO I :SIt.

~--> Microcode revision

~--------------> NS
~-------------------------> Patch Revision

~--> CPU t~

2-44 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3" October 1991

Table 2-16: SID Field Descriptions

Name Extent

Microcode Revision 7:0

NS 8

Patch Revision 13:9

CPU Type 31:24

RO

RO,O

RO,O

RO

Description

This field contains the microcode
(chip) revision number. This num­
ber is incremented for each pass of
the chip.

If this bit is a zero, there is ei­
ther no microcode patch loaded, ot
the patch is a standard patch. If
this bit is a one, a non-standard
microcode patch is loaded. A non­
standard patch is one which goes
beyond the formally released patches,
such as a patch used for perfor­
mance analysis. This bit is cleared
on chip reset.

If this field is zero, no inicrocode
patch is loaded. If this field is non­
zero, a microcode patch is loaded
and this field indicates the patch
number. This field is cleared on
chip reset.

This field contains, 23 (decimal), in­
dicating that this is an NVAX Plus
CPU.

In order to distinguish between different CPU implementations that use the same CPU chip, the
LNP, along with all VAX prOCE~ssors which use the NVAX Plus chip, implements a System Type
Register (SYS_TY'PE). SYS_TYPE resides at the physical address pointed to by the CONSOLE_
REG -I- 4. This 32-bit read-only register is implemented in the LNP console image. The format
of this register is shown in Figure 2-37.

Figure 2-37: System Type (S;YS_TYPE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 0
+--.

RO RO RO RO 1 : SYS _ T:G>£
+--+

I.
+-> Architeetural ID

+-------------------------> system Variant
+--------------~----------------------------------> Revision level

+---.---------------------> System type

The fields in this register are as follows:

DIGrTAL CONFIDENTIAL Architectural Summary 2-45

NVAX Plus CPU Chip Functional Specification, Revision. 0.3, October 1991

Architectural ID: This field contains licensing bits which distinguish timesharing systems from
workstations. Because the LNP module is included in a timesharing system, this field contains
01 (hex).

System Variant: This field distinguishes variants of similar systems. Because this is the first
LNP variant, this field contains 01 (hex).

Revision level: This field contains the revision number of the LNP console software. The first
LNP console revision will be 01 (hex).

System type: This field indicates the type of system. Because this is a Laser system, this field
contains TBD (hex).

SID and SYS_TYPE are accessible only to the CPU on the LNP module. Other devices on the
LSB determine the type of node by reading its Laser Device Registers (LDEV).

2.11 Process Structure

A process is a single thread of execution. The context of the current process is contained in the
Process Control Block (PCB). The PCB is pointed to by the Process Control Block Base register
(PCBB), which is shown in Figure 2-38. The format of the process control block is shown in
Figure 2-39. Microcode forces a longword-aligned PCBB by clearing bits <1:0> of the new value
before loading the register.

NOTE

When the CPU is configured to generate SO-bit physical addresses, PCBB<Sl:30> are
ignored.

Figure 2-38: Process Control Block Base Register

3: 30 29 2812' 2(25 241~3 22 21 20119 18 17 16115 14 13 1211110 Oi 08107 O(05 04103 02 01 00

Physical Lon9word Aodress of the PCB 1 0 0: :PCBE

2-46 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 2-39: Process Co ntr'o I Block

31 30 29 281=' 26 25 24123 22 :1 20119 18 17 16115 14 13 l2111 10 09 08107 06 OS 04103 02 01 00

KSF :PC~

ESP

SSF +8
+-.~+--+

USP +l2
+-~+--+

RO

P.1 +20
+-.. +--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+~-+--+--+--+--+--+--+--+--+--+

R2 +24
+-.. +--+--+--~--+--+--+--+--+--+--,+--+

R3 +28
~- .. +--+--+-----+--+--+--+--+--+--,+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-----+--+--+--+--+--+

R4 +32

R5 +36
+-... +--+--+--.. --~--+--+-- --+---+--.;.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--.... --+--+--+

R6 +40
... --.+--.,.--... --... --.,.--+--... --+--~-- --.+---+--+--+--+--+-~+--+--+--+--+--+--+--+--+--+--.--.-- --+--+--~

R7
~- +--+--.--'"'"'--+--+--.... --+--.--+--.... --+--+--+--... --+--.--+--+--+--.,.--+--... --+--+--""'--+--+--.--'~--+--+

R8
+--,+--+--+--+--+--+--+--+--+-----.~--+--+--+--+--+--+-- ... --+--+--+--+--+-----+--+--+--+--+--+--+--+

R9 +52

lUO +56
+--,+--+--+-----+--+--+--+--+--+--.~--+--+--+--+--~--+--+--+---+--+--+--+--+--+--+--+--+--+--+--+

Rll +60

AP (R12)

FP (Rl3) +68
+--+--+--+-----+--+--+--+--+--+--+--+--+--+-----+--+--+-----+-----+--+--+--+--+--+--+~---+--+--+

PC,
+--+--+--+--... --+--+--+--+--+--... --~.--+--+--+--+--+--+--+--+--+--+--+--+.--+--+--+--+--+--+--+--+--+

PSI. +76
---+--+--+--+--+.--+--+--+--+--... --~.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-----+--+--+--+

POBP", +80

I 0 0 0 0 01 ASTLVL I 0 01 P0LR +84
---+--+--------+-- ... --+--+--+--+---+._-+--+--+--+--+--+--.--+--+--.--.--+--+--+--+--+--+--... --.~-- ... -.. ~

PlBR +86
+--+--+--+--,,--+--+--+--+--+--+--~,--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--.~--+--+

: 0 0 0 0 0 0 0 0 0 I PUR +92
+--.+--+--+--+--+--... --+--+--+--.. --~.--+--+--+--+--+--+ .. -+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

31 30 29 2812i 26 25 24123 22 21 20119 18 17 16115 14 13 l21l1 10 09 08107 06 05 04103 02 01 00

DIGITAL CONFIDENTIAL' Architectural Summary 2-47

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.12 Mailbox Structure

**For NVAX Plus LASERJ(COBRA) Bus systems CSRs exist on external 110 busses which are ac­
cessed via mailbox structures that exist in main memory. Read requests are posted in mailboxes,
and data is returned in memory with status in the following quadword. Mailboxes are allocated
and managed by operating system software (successive operations must not overwrite data which
is still in use).

The 110 module will service mailbox requests via four mailbox pointer CSRs (LM:BPR) located in
the 110 modules nodespace. There is one LM:BPR for each CPU node. The software sees only one
LMBPR address~ but the CPU module replaces the least significant two bits of the address (i.e.
D<2:1» with the least significant 2 bits of the node ID (i.e. NIOD<l:O».· If a given LMBPR is
in use when it is written to, the 110 module will not acknowledge it, CNF will not be asserted.
Processors use the lack of CNF assertion on writes to the LMBPR to indicate a busy status and
the write is replayed at a later point in time under software control.

The mailbox pointer CSR has the following format:

Figure 2-40: LMBPR Register

7
:: 3
2 1 o

~-------+--------------------------+-------~~
lunused I I MBZ

.-------.--------------------------.--------*

Table 2-17: LMBPR Description

Name Bit(s) Type Description

MBX 26 WO This field contains the 64-byte-aligned physical address of the mail­
box data structure in memory where the lIO module can find infor­
mation to complete the required operation.

The least significant 6 bits of the mailbox address are always 0, to force 64-byte_alignment. The
upper six bits are unused in NVAX Plus systems since NVAX Plus only has a 32 bit wide physical
address. The 110 module does however implement these bits. The NVAX Plus chip will always
drive 0'5 on the upper data lines on 110 space writes such that these bits will be written with O's.

LMBPR points to a naturally aligned 64 byte data structure in memory that is constructed by
software as follows:

2-48 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CJ?U Chip Functional Specification, Revision 0.3, October 1991

Figure 2-41: Mailbox t?ata :Structure

ov: 0

6 6 55 5
:: 0 96 7

4': .<I:l
B i (I II

:: 332
:2 lOS'

2 :.>
.: 3

1 1
6 5 B i o

+----+--+----------+----+ .. ------+---+----~------~-~--------+--------~
BUS IMBZ I MAS? I CM!)

+----+--+----------+----+ .. _-----+---.----*--------+--------+--------+ ow ~ RBADR<63:0>

+----+--+----------+-----.. _-----+---+-------------------------------+ OW :.> WOATA<63:0>

+-----------------------_ .. _---+
+-----------------------_ .. _---+

OW .<I RDATA<63:0>

+----------------------_._._-------------------------------------+-+-+
or;' 5 STATUS

IEIDI
IRIOI
IRINI

+------------------------.. _-------------------------------------+-+-+ ow 6 UNPREDICTABLE

+------------------------_._-----------------------'----~- ... -----------....
OW i UNPP.ED!CTABLE

+------------------------_._---....

Table 2-18: Mailbox Data Structure Description

Name Bit(s) Type Description

CMD 32 Rv~r This field contains the command. The 110 module supports read and
write commands.

MASK 8 RV7 This field contains the byte mask. The 110 module does not use this
field.

BUS 24 RVl This field contains the BUS field, which is used to determine which
remote bus this command is meant for.

RBADR 64 RW This field contains the address to be broadcast on the remote bus.

WDATA 64 R~r This field contains the write data to be broadcast on the remote bus.

RDATA 64 R'W This field contains read data returned from the remote bus.

DON 1 R~T This field contains a status bit which is set by thE~ 110 module once
a mailbox operation is complete.

ERR i R~r This field contains a status bit which indicates that a mailbox oper-
ation failed..

For a more complete description of the Laser system mailbox protocol refer to the lOP and LAMB
module specifications.

DIGITAL CONFIDENTIAL Architectural Summary 2-49

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.12.1 Mailbox Operation

To perform an 1/0 read or write on one the remote 110 busses software must create a maibox data
structure in memory. The command, bus, and address fields must be filled in and the status bits
must be cleared. For a write command the write data field must also filled in. At this point the
physical address of the maibox data structure must be written to the LMBPR register to initiate
the 110 operation. A simple 110 space write, such as with a MOVL, could be used to start the
remote 110 operation. However, since writes to LMBPR may be rejected by the 110 module, and no
state is preserved across a macro instruction boundry to notify software of this, another method
must be used. Microcode implements an IPR register which can used to perform the LMBPR
write and return status to software via the condition code bits.

In order for microcode to perform the LMBPR it must know the address of the LMBPR register
and the address of the mailbox data structure. Another memory data structure must be created
to pass this information to microcode. This structure is called the Mailbox Pointer and consists
of 2 longwords which begin at a quadword aligned address.

Figure 2-42: Mailbox Pointer

650

+-----------------------------------~

+--------------------------~-------*

+--------------------------+--------*

Table 2-19: Mailbox Pointer Description

Name Bit(s) Type Description

32

32

wo
wo

This field contains the virtual address of the LMBPR register.

This field contains the physical address of the mailbox data struc­
ture. Since the mailbox data structure must be aligned on a 64 byte
boundry, bits<5:0> of MB_ADDR must be zero.

Once software creates the mailbox data structure and the mailbox pointer structure it may now
start the 1/0 operation. An MTPR to the MAILBOX IPR will initiate the 110 operation. The
MAILBOX IPR has the following format:

Figure 2-43: MAILBOX Register

o
+-----------------------------------+

MBXREG

+-----------------------------------~

2-50 Architectural Summary DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-20: MAILBOX Register Description

Name Bit(s) Type Description

MBXREG 32 WO This field contains the address of the mailbox pointer structure.

Microcode will read the M:B_ADDR field out of the mailbox pointer structure and then write this
value to the LMBPR using the address of the LMBPR provided in the mailbox pointer structure.

NOTE

Note:Non QW aligned addresses for the L:MBPR_ADDR results in Undefined Operation.

An EDAL store conditional command is used to perform the write. Microcode will then check
a status bit in the CBOX to determine if the write passed or failed. If the write passed, the
PSL<Z> bit will be set, othenqise PSL<Z> will be cleared. Software can loop on the MTPR to the
MAILBOX Register until the write passes.

After the 1/0 module has accepted the write to LMBPR it will perform the 110 operation. Software
can now poll the status bits in the mailbox data structure until the I/O operation is complete.
One the 1/0 operation is complete the DON bit will be set, if an error occured te ERR bit will also
be set. If this was an I/O write operation no further action is needed. If this was an 110 read
operation, software can now fetch the returned data from the RDATA field in the mailbox data
structure.

DIGrTAL CONFIDENTIAL Architectural Summary 2-51

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2.13 Processor Registers

The processor registers that are implemented by the NVAX Plus CPU chip are logically divided
into three groups, as follows:

• Normal-Those IPRs that address individual registers in the NVAX CPU chip or system
environment.

• Pcache tag IPRs-The read-write block of IPRs that allow direct access to the Pcache tags.
• Pcache data parity IPRs-The read-write block of IPRs that allow direct access to the Pcache

data parity bits.

Each group of IPRs is distinguished by a particular pattern of bits in the IPR address, as shown
in Figure 2-44.

Figure 2-44: IPR Address Space Decoding

Normal !PR Address

31 30 29 281:7 2(25 24:Z3 Z: 21 20119 18 17 16115 l' 13 12111 10 09 0810i 06 05 04103 02 01 00

SB:' 1 O! SB: !PR Number

Pcache Tag IPR Address

31 30 29 281:, 26 25 241:3 22 21 20119 18 1i 16115 l' 13 l21l1 10 09 0810i 06 05 04103 02 Ol 00

SBZ I 11 II 0 I SBZ

Pcacne Set Select (O-left, l-right) -+

Pcacne Data Pari~y IPR Address

I Pcach. Tag Incie~: SBZ

31 30 29 2812i 26 25 24123 22 21 20119 18 1i 16115 14 13 12111 10 09 0810i 06 05 04103 02 01 00

SBZ I II 11 II SB: I Pcach. Tag Index SBZ

Pcacne Set Select (O-left, l-right) -+ Subblocy. select +

The numeric range for each of the four groups is shown in Table 2-21.

2-52 Architectural Summary DIGITAL CONFIDENTIAL

$

NVAX Plus CPU Chip Functional Specification, Revision 0.3;, October 1991

Table 2-21: IPR Address SpacE~ Decoding

IPR Address Range
IPR Group Mnemonic2 (hex) Contents

Normal

Pcache Tag

Pcache Data Parity

PCTAG

PCDAP

OOOOOOOO .. OOOOOOFF1 . 256 individual IPRs.

01800000 .. 01801FE01
-256 Pcache tag IPRs, 128 for each Pcache set,
each separated by 20(hex) from the previous
one.

OlCOOOOO .. OIC01FFS1 1024 Pcache data parity IPRs, 512 for each
Pcache set, each separated by 8(hex) from the
previous one.

1 Unused fields in the IPR addresses for these groups should be zero~ Neither hardware nor microcode d~tects and faults on
an add:ress in which these bits are non-ZE!TO. Although non-contiguous address ranges are shown for these groups, the entire
IPR address space maps into one of the these groups. If these fields are non-zero, the opf!!ration of the CPU is UNDEFINED.

2Tbe mnemonic is for the first IPR in the block

NOTE

The address ranges shown above are those used by the programmer. When processing
normal IPRs, the microcode shifts the IPR number left by 2 bits for use as an IPR com­
mand address. This positions the IPR number to bits <9:2> ~nd modifies the address
range as seen by the hardware to 0 .. 3FC, with bits <1:0>=00. No shifting is performed
for the other groups of IPR addresses. .

Because of the sparse addressing used for IPRs in groups other than the normal group, valid IPR
addresses are not separated by one. Rather, valid IPR addresses are separated by either 8 or
20(hex). For example, the IPJR address for the first subblock of Pcache data parity is 01COOOOO
(hex), and the IPR address fOT the second subblock of Pcache data parity is 01C00008 (hex). -

The NVAX Plus chip does not support the Bcache Tag or Bcache Deallocate IPRs. IPR addresses
which do not correspond to chip IPRs are NOT converted to- I/O space addresses, with IPR reads
retunring UNPREDICTABLE data, and IPR writes not completed.

The processor registers imple:mented by the NVAX CPU are are shown in Table :2-22.

NOTE

Many of the processor registers listed in Table 2-22 are used internally by the mi­
crocode during normal operation of the CPU, and are not intended to be referenced by
software except during tE~st or diagnosis of the system. These registers are flagged with
the notation "Testability and diagnostic use only; not for software use in normal oper­
ation". References by software to these registers during normal operation can cause
UNDEFINED behavior of the CPU.

DIGITAL CONFIDENTIAL Architectural ISummary 2-53

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

Table 2-22: Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

Kernel Stack Pointer KEP 0 0 R'W 1·1

Executive Stack Pointer ESP 1 1 RW 1·1

Supervisor Stack Pointer SSP 2 2 RW 1·1

User Stack Pointer USP 3 3 RW 1·1

lnterrupt Stack Pointer ISP 4 4 RW 1·1

Reserved 5 5

Reserved 6 6

Reserved 7 7

PO Base Register POBR 8 8 RW 1·2

PO Length Register POLR 9 9 RW 1·2

P1 Base Register PIBR 10 A RW 1·2

P1 Length Register P1LR 11 B R~7 1-2

System Base Register SBR 12 C RW 1-2

System Length Register SLR 13 D RW 1·2

CPU Identification 1 CPUID 14 E RW 2-1

Reserved 15 F
Process Control Block Base PCBB 16 10 RW 1-1

System Control Block Base SCBB 17 11 RW 1-1

Interrupt Priority Levell IPL 18 12 RW 1-1

AST Levell ASTLVL 19 13 RW 1-1

Software Interrupt Request Register SIRR 20 14 ~T 1-1

Software Interrupt Summary Registerl SISR 21 15 RW 1-1

Reserved 22 16

Reserved 23 17

Interval Counter Control/Status 1.2 lCCS 24- 18 RW 1-3

N ext Interval Count NIOR 25 19 W 1-3

Interval Count lOR 26 lA R 1-3

Time of Year Register TODR 27 IB RW 1-3

Reserved 28 1C

Reserved 29 ID
Reserved 30 IE

Reserved 31 IF
Reserved 32 20

1 Initialized on reset

2NVAX Plus implements the full Interval Timer functionality on chip

2-54 Architectural Summary DIGITAL CONFIDENTIAL

------------___ '-____ .. __ 1_1 _________________________ -*'I

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor IRegisters

Number

Register Name Mnemonic: (Dec) (Hex) Type Cat

Reserved 33 21

.Reserved S4 22

Reserved 35 23

Reserved 36 24

Reserved 37 25

Machine Check ElTor Register. MCESR 38 26 W 2-1

Reserved 39 27

Reserved 40 28

Reserved 41 29

Console Saved PC SAVPC 42 2A R 2-1

Console Saved PSL SAVPSL 43 2B R 2-1

Reserved 44 2C

Reserved 45 2D

Reserved 46 2E

Reserved 47 2F

Reserved 48 30

Reserved 49 31

Reserved 50 32

Reserved 51 33

Reserved 52 34

Reserved 53 35

Reserved 54 36

Reserved 55 37

Memory Management Enable l MAPEN 56 38 RW 1-2

Translation Buffer Invalidate All TBIA 57 39 Vl 1-1

Translation Buffer Invalidate Single TBIS 58 3A W 1-1

Reserved 59 3B

Reserved 60 3C

Perlonnance Monitor Enable 1 PME 61 3D R'W !~-1

System Identification SID 62 SE R 1-1

Translation Buffer Check TBCHK 63 SF W 1-1

1 Initialized on reset

DIGITAL CONFIDENTIAL Architectural Summary 2-55

l'1VAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

Reserved 64 40

Reserved 65 41

Reserved 66 42

Reserved 67 43

Reserved 68 44

Reserved 69 45

Reserved 70 46

Reserved 71 47

Reserved 72 48

Reserved 73 49~

Reserved 74 4A

Reserved 75 4B

Reserved 76 4C

Reserved 77 4D

Reserved 78 4E

Reserved 79 4F

Reserved 80 50

Reserved 81 51

Reserved 82 52

Reserved 83 53

Reserved 84 54

Reserved 85 55

Reserved 86 56

Reserved 87 57

Reserved 88 58

Reserved 89 59

Reserved 90 5A

Reserved 91 5B

Reserved 92 5C

Reserved 93 5D

Reserved 94 5E

Reserved 95 5F

2-56 Architectural Summary DIGITAL. CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor lilegtsters

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

Reserved 96 60

Reserved 97 61

Reserved 98 62

Reserved 99 63

Reserved for VM 100 64

Reserved for VM 101 65

Reserved for VM 102 66

Reserved 103 67

Reserved 104 68

Reserved 105 69

Reserved 106 6A

Reserved 107 6B

Reserved 108 6C

Reserved 109 SD

Reserved 110 SE

Reserved 111 SF

Reserved 112 70

Reserved 113 71

Reserved 114 72

Reserved 115 73

Reserved 116 7.4

Reserved 117 75

Reserved 118 76

Reserved 119 77

Reserved for Ebox 120 78 !~-4

LASER MAILBOX LMBOX 121 79 W 2-1

Interrupt System Status Registers INTSYS 122 7A RW !~-1

Performance Monitoring Facility Count PMFCNT 123 7B 'RW 2-1

Patchable Control Store Control RegisterS POSCR 124 7C RW 2-1

Ebox Control Register ECR 125 7D RW 2-1

Mbox TB Tag Fills MTBTAG 126 7E W 2-1

Mbox TB PTE Fills MTBPTE 127 7F W !~-1

sTestability and diagnostic use only; not for software use in normal operation

DIGITAL CONFIDENTIAL Architectural Summary 2-57

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

Reserved 128 80 2-4
Reserved 129 81 2-4
Reserved 130 82 2-4

Reserved 131 83 2-4
Reserved 132 84 2-4
Reserved 133 85 2-4
Reserved 134- 86 2-4

Reserved 135 87 2-4
Reserved 136 88 2-4
Reserved 137 89 2-4

Reserved 138 8A 2-4

Reserved 139 8B 2-4

Reserved 140 8C 2-4

Reserved 141 8D 2-4

Reserved 142 8E 2-4

Reserved . 143 8F 2-4
Reserved 144 90 2-4

Reserved 145 91 2-4

Reserved 146 . 92 2-4

Reserved 147 93 2-4

Reserved 148 94 2-4

Reserved 149 95 2-4

Reserved 150 96 2-4

Reserved 151 97 2-4

Reserved 152 98 2-4

Reserved 153 99 2-4

Reserved 1M 9A 2-4

Reserved 155 9B '2-4

Reserved 156 9C 2-4

Reserved 157 9D 2-4

Reserved 158 9E 2-4

Reserved 159 9F 2-4

2-58 Architectural Summary DIGITAL CONFIDENTIAL

~-.- ,----------------------,

NVAX Plus CPU Chip Functional Specification, Revision 0.3" October 1991

Table 2-22 (Cont.): Processor Flegisters

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

BID Control Register BIU_CTL 160 AO W 2-3

Diagnostic Control RegisteT DIAG_CTL 161 A1 W 2-3

Bcache En-or Tag BC_TAG 162 A2 R 2-3

Reserved fOT Cbox 163 A3 2-4

BID Status BIU_STAT 164 A4 W1C 2-3

Reserved fOT Cbox 165 AD 2-4

BID Address BIU_ADDR 166 A6 R 2-3

Reserved for Cbox 167 A7 2-4

Fill Syndrome FILL_SYN 168 A8 R 2-3

Reserved fOT Cbox 169 A9 2-4

Fill Address FILL_ADDR170 AA R 2-3

Reserved for Cbox 171 AB 2-4

STxC Pass FaillCEFSTS IPR_STR_ 172 AC RW 2-3
COND

Reserved for ·Cbox 173 AD 2-4

Software ECC BCDECC 174 AE W 2-3

Reserved fOT Cbox 175 AF 2-4

CONSOLE REG CHALT 176 BO RW 2-3

Reserved fOT Cbox 177 B1 2-4

Seri~ll!O SIO 178 B2 RW 2-3

Reserved fOT Cbox 179 B3 2-4

SROM._oelSROM_fast SOE-IE 180 B4 RW 2-3

Reserved fOT Cbox 181 B5 2-4

Reserved for Cbox 182 B6 2-4

Reserved fOT Cbox 183 B7 2-4

Pack 10 to QW QW_PACK 184 B8 W 2-3

Clear QW 10 Pack CLR_IO_ 185 B9 W 2-3
PACK

Reserved fOT Cbox 186 BA :2-4

Reserved fOT Cbox 187 BB 2-4

Reserved fOT Cbox 188 BC 2-4

Reserved fOT Cbox 189 BD ~2-4

Reserved fOT Cbox 190 BE 2-4

Reserved fOT Cbox 191 BF :i-4

DIGITAL CONFIDENTIAL Architectural Summary 2-59

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Ta ble 2-22 (Co nt.): Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

Reserved 192 CO

Reserved 193 C1

Reserved 194 C2

Reserved 195 C3

Reserved 196 C4

Reserved 197 C5

Reserved 19B C6

Reserved 199 C7

Reserved 200 OB

Reserved 201 09

Reserved 202 CA

Reserved 203 CB

Reserved 204 CC

Reserved 205 CD

Reserved 206 CE

Reserved 207 CF

VIC Memory Address Register VMAR 20B DO RW 2-3

VIC Tag Register VTAG 209 D1 RW 2-3

VIC Data Register VDATA 210 D2 RW 2-3

!box Control and Status Register ICSR 211 D3 RW 2-3

!box Branch Prediction Control Registe~ BPCR 212 D4 RW 2-3

Reserved for !box 213 D5 2-4

Ibox Backup PC' BPC 214 D6 R 2-3

!box Backup PC with RLOG Unwind" BPCUNW 215 D7 R 2-3

Reserved for Ibox 216 DB 2-4

Reserved for Ibox 217 D9 2-4

Reserved for Ibox 21B DA 2-4

Reserved for !box 219 DB 2-4

Reserved. for !box 220 DC 2-4

Reserved for Ibox 221 DD 2-4

Reserved. for Ibox 222 DE 2-4

Reserved. for Ibox 223 DF 2-4

3Testability and diagnostic use only; not for software use in normal operation

'Chip test use only; not for software use

2-60 Architectural Summary DIGJTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 2-22 (Cont.): Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Cat

Mhox PO Base RegisterS MPOBR 224 EO RW 2;-3
Mhox PO Length RegisterS MPOLR 225 El RW 2i-3

Mhox PI Base RegisterS MPIBR 226 E2 RW 2-3
Mbox PI Length Registers MPlLR 227 E3 RW 2,-3
Mhox System Base RegisterS MSBR 228 E4 RW 2~-3

Mbox System Length RegisterS MSLR 229 E5 RW 2-3
Mbox Memory Management Enables MMAPEN 230 E6 RW 2,-3
Mbox Physical Address Mode PAMODE 231 E7 RW 2-3
Mhox:MM:E Address' MMEADR 232 E8 R 2-3
Mhox :MM:E PTE Address MMEPI'E 233 E9 R 2-3
Mbox :MME Status MMESTS 234 EA R 2-3
Reserved for Mbox 235 EB 2-4
Mhox TB Parity Address TBADR 236 EC R ~~-3

Mhox TB Parity Status TBSTS 237 ED RW 2-3
Reserved for Mbox 238 EE 2-4
Reserved for Mbox 239 EF ~~-4

Reserved for Mbox 240 FO 2-4
Reserved for Mbox 241 F1 ~~-4

Mbox Pcache Parity Address PCADR 242 F2 R 2-3
Reserved for Mbox 243 F3 2-4
Mhox Pcache Status POSTS 244 F4 RW ~~-3

Reserved for Mbox 245 F5 ~~-4

Reserved for Mbox 246 F6 !~-4

Reserved for Mbox 247 F7 !~-4

Mbox Pcache Control PCCTL 248 F8 RW !~-3

Reserved for Mbox 249 F9 2-4

Reserved for Mbox 250 FA' !~-4

Reserved for Mbox 251 FB 2-4
Reserved for Mbox 252 FC !~-4

Reserved for Mbox 253 FD 2-4

Reserved for Mbox 254 FE 2-4
Reserved for Mbox 255 FF 2-4

sTestability and diagnostic use only; not f()r software use in normal operation

DIGITAL CONFIDENTIAL Architectural Summary 2-61

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 2-22 (Cont.): Processor Registers

Register Name

Unimplemented

See Table 2-21

Type:

R = Read-only register
RW = Read-write register
iN = Write-only register
W1C = Write 1 Clear

Cat(egory), class-subclass, where:
class is one of:

1 = Implemented as per DEC standard 032

Number

Mnemonic (Dec) (Hex) 1YPe

100-

017FFFFF

01800000-

FFFFFFFF

Cat

2

2 = NVAX Plus specific implementation which is unique or different from the DEC standard 032 implementation

subclass is one of:

1 = Processed as appropriatel:?Y Ebox microcode
2 = Converted to Mhox IPR number and proce88ed via internal IPR command
3 = Processed by internal IPR command
4 = May be block decoded; reference causes UNDEFINED behavior

2-62 Architectural Summary

--------,---,

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

2.14 Revision History

Table 2-23: Revision History

'Who

Mike Uhler

Mike Uhler

Mike Uhler

:Mike Callander/Gil
Wolrich

Gil Wolrich

'When

06·Mar·1989

15·Dec·1989

2O-Jul·1990

15·Nov·19~W

15·M.AR·1991

DIGITAL CONFIDENTIAL

Description of change

Release for external review.

Update for second·pass release.

Update to reflect implementation.

NVAX Plus release for external review.

Reverse mailbox pointer operands, add clr_io_pack ipr.

Architectural Summary 2-63

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 3

External Interface

3.1 Overview

NVAX Plus can share system platforms which use EV chips in 128 bit mode. The CPU_CLK
runs at a cycle time as fast as IOns, and SYS_CLK can be set to 2,3,01' 4, times the CPU cycle
time. NVAX Plus usable in a wide range of systems: workstations, small deskside servers and
timesharing machines, and midrange multiprocessor servers and timesharing machines.

3.2 Signals

The following table lists all of the 291 signals on the NVAX_PLUS chip. In the "type" column, an
til" means a pin is an input, an. "0" means the pin is an output, a tIT" means the pin is a tristate
output, and a "B" means the pin is tristate and bidirectional.

Table 3-1: NVAX PLUS Signals

Signal Name Count Type Function

clkln_h, _1 2 I Clock input-

testClkln_h, _1 2 I Clock input for testing

cpuClkOut_h 1 0 CPU clock output

sysClkOutl_h, _1 2 0 System clock output, delayed

sysClkOut2_h, _1 2 0 System clock output, delayed

icMode_h[l] 1 I Enables pp_cmd_h<2:0> for test mode

clk_rst_h 1 I Put cpu and sys_clk timing gen. to known state

pp_data_h[ll] 1 B Parallel Test Port Data, MAE clock

pp_data_h[7 .. 6] 2 B Parallel port [7:6] if enabled, EV tagAdr_h[33 .. 32]

pp_data_h[5 .. 0] 6 B Dedicated Parallel Test Port Data

osc16m_h 1 I Interval timer 16l\mz oscillator mput

dcOk_h 1 I Power and clocks ok

DIGITAL CONFIDENTIAL External Interface 3-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-1 (Cont.): NVAX_PLUS Signals

Signal Name Count Type Function

reset_l 1 I Reset

sRomOE_l 1 0 Serial ROM output enable

sRomD_h 1 I Serial ROM datalRx data

sRomClk_h 1 0 Serial ROM clockl'Tx data

icMode[0)/pp_cmd[2] 1 I Serial ROM fast fill, sRomFast_h1used as pp_
cm.d[2] in test mode

adr_h[33 .. 32] 2 T Address bus 33,32

adr_h[31..17] 15 B Address bus tag section

adr_h[16 .. 5] 12 T Address bus index section

tagEq,J 1 0 . Tag compare output

data_h[127 .. 0] 128 B Data bus

check_h[27 .. 0] 28 B Check bit bus

dOE_l 1 I Data bus output enable

pp_cmd[1:0] 2 I EV dWSel_h[l .. O] used to select port function in
test mode

dRAck_h[2] 1 bus read acknowledge, load data

dRAck_h[1] 1 I ~~h[l] cache/no_cache

dRAck_h[O] 1 I bus read acknowledge, check ece/parity

tagCEOE_h 1 0 tagCtl and tagAdr CEIOE

tagCtl'WE_h 1 0 tagCtl WE

tagCtlV_h 1 B Tag valid

tagCtlS_h 1 B Tag shared

tagCtlD_h 1 B Tag dirty

tagCtlP_h 1 B Tag V ISfD parity

tagAdr _h[31..20] 12 I Tag address [31..20]

tagAdr_h[19] 1 B Tag address [19J, Parallel Port [10] if enabled

tagAdr_h[18] 1 B Tag address [18J, Parallel Port[9] if enabled

tagAdr_h[17] 1 B Tag address [17J, Parallel Port[8] if enabled

tagAdrP_h 1 I Tag address parity

tagOk_h, _1 2 I Tag access from CPU is ok

dataCEOE_h[3 .. 0] 4 0 data CElOE, longword

data WE_h[3 .. 0] 4 0 data WE, longword

dataA_h[4] 1 0 data A[4]

dataA_h[3] 1 0 data A(3)

holdReq_h 1 I Hold :request

holdAck_h 1 0 Hold acknowledge

3-2 External Interface DIGITAL CONFIDENTIAL

=

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-1 (Cont.): NVAX_PLUS Signals

Signal Name Count Type Function

cReq_h[2 .. 0J 3 0 Cycle request

c·WMask_h[7 .. 0J 8 0 Cycle write mask

cA.ck_h[2 .. 0J 3 I Cycle acknowledge

iAdr _h[12 .. 5J 8 I Invalidate address

plnvReq_h[l .. OJ 2 I Invalidate request, Pcache

pMapWE_h[l..O] 2 0 Backmap WE, Pcache

err _hfirG-h[5J 1 I External en-or inteITUpt

halt_hlirq_h[4J 1 I Halt inteITUpt

irq_h[3 .. 0J 4 I Interrupt requests

• vref 1 I Input reference/not used by NVAX Plus

tristate_l 1 I Tristate for testing

cont_l 1 I Continuity for testing

test_mode_h 1 I Enables pull-downs on check_h bits, was eclOut_
h

The following table lists· all of the signals that were not on EVAX which are being implemented
on the NVAX_PLUS chip. In the "type" column, an "I" means a pin is an input, an "0" means
the pin is an output, and a "Bt' means the pin is tristate and bidirectional.

Signal Name Count Type Function

test_mode_h 1 I Enables check_h pull downs

osc16m_h 1 I Interval timer 16MRz oscillator input

pp_data_h[6 .. 0J 7 B Parallel Test Port Data

plnvReG-h[l..O] 2 I Invalidate request, Pcache

pMapWE_h[l .. O] 2 0 Backmap WE, Pcache

The following table lists all of the signals that were on EVAX which are not being implemented
on the NVAX_PLUS chip. In the "type" column, an ''1'' means a pin is an input, an "0" means
the pin is an output, and a "B" means the pin is tristate and bidirectional.

Table 3-3: EVAX Signals

Signal Name Count Type Function

dlnvReq_h 1 I Invalidate request, Dcache

dMapWE_h 1 0 Backmap WE, Dcache

perf_h[S .. O] 4 0 Performance monitor outputs

DIGITAL CONFIDENTIAL External Interface 3-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-3 (Cont.): EVAX Signals

Signal Name Count Type Function

4 ? Scan

3.2.1 Clocks

External logic supplies NVAX Plus with a differential clock at the desired frequency of the internal
phases via the clkln_h and clkln_l pins. The NVAX Plus Clock Generator circuit produces the
required four single phase clocks, four inverted single phase clocks, and four dual phases clocks
required for internal operation.

l\TVAX Plus dlvides the input clock by **two** to generate the cpuClkOut_h. The false-to-true
transitiop of cpuClkOut_h is the "CPU clock" used in the timing specification for the tag Ok_l
signal.

The CPU clock is dlvided by a programmable value of 4,6,or 8 (2,3 or 4 cpu cycles) to generate a
system clock, which is supplied to the external interlace via the sysClkOutl_h and sysClkOutl_l
pins. The system clock is delayed by a programmable number of CPU clocks between 0 and 3 to
generate a delayed system clock, which is supplied to the external interface via the sysClkOut2_h
and sysClkOut2_1 pins.

The clock generator runs, generating cpuClkOut.h, and the (correctly timed and positioned) any
time an input clock is supplied. In particular, it runs during reset, so that systems can phase-lock
the clocks of several chips together before any of them are released from reset.

**The sysClkOut value of 6 times the cpuClkOut, results in an asymmetric clock, asserted for 4
cpuClkOut periods, then deasserted for 2 cpuClkOut periods. **

The false-to-true transition of sysClkOutl_h is the "system clock" used as a timing reference
throughout this specification.

Almost all transactions on the external interlace run synchronously to the CPU clock and phase
aligned to the system clock, so the external interface appears to be running synchronously to the
system clock (most setup and hold times are referenced to the system clock). The exceptions to
this are the fast, NVAX Plus controlled tranactions on the external caches and the sample of the
tagOk_l input, which are synchronous to the CPU clock., but independent of the system clock.

3.2.2 DC_OK and Reset

NVAX Plus contains a ring oscillator which is switched into service during power up to provide an
internal chip clock.. The dcOk_h signal switches clock sources between the on-chip ring oscillator
and the external clock oscillator. If dcOk_h is false then the on-chip ring oscillator feeds the
clock generator, and NVAX Plus is held in reset, independent of the state of the reset_l signal. If
dcOk_h is true then the external clock oscillator feeds the clock generator, (NVAX. Plus does not
use the vRefinput) and NVAX Plus is held in reset by reset_I.

Note if the dcOk_h signal is generated by an RC delay, there is no check that the input clocks
are really running. This means that if a board is powered up in manufacturing with a missing,
defective, or mis-soldered clock oscillator then NVAX Plus will enter a possibly destructive high­
current state. Furthermore, if a clock oscillator fails in stage 1 burn-in then NVAX Plus may also

3-4 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Ftmctional Specification, Revision 0.3, October 1991

enter this state. The frequency and duration of such events need to be understood by the module
designer to decide if this is really a problem.

The reset_l signal forces the CPU into a known state.The reset_l signal is asynchronous, and
must be asserted for at least tbd CPU cycles after the assertion of dcOk_h to guarantee that the
CPU is reset. This should always be .the case, since it also has to be held true for long enough to
guarantee that the serial ROM has reset its address counters (which takes about lOOns).

The NVAX Plus CPU chip useB a 3.3V power supply. This 3.3V supply must be stable before any
input goes above 4V.

'While it is reset, NVAX Plus reads sysClkOut and external bus configuration information off the
irq_h pins. External logic should drive the configUration information onto the ir'l-h pins any time
reset_l is true.

NOTE

NOTE: The irq_h pins are latched with the deasserting edge of reset_I.

The irq_h[2 .. 1J bits' encode the value of the divisor used to generate the system clock from the
CPU clock.

Table 3-4: System Clock Divisor

ircL-h[2] inL,h[l] Ratio

F F 2

F T 2

T F 3 asymmetric

T T 4

The irq_h[4 .. 3J bits encode the delay, in CPU clock cycles, from the "system clock" teo sysClkOut2.

Table 3-5: System Clock Delay

ircL.h[4] inL-h[3] Delay

F F 0

F T 1

T F 2

T T 3

3.2.3 Initialization and Diagnostic Interiace

After the reset_l signal is deBlsserted, but before NVAX Plus executes its first instruction, the
Pcache is written with bits Ollt of a serial ROM (such as an AMD Am1736). The serial ROM
contains enough VAX code to complete the configuration of the external interface, e.g. setting the
tinting on the external cache :R.AM:s and diagnose the path between the CPU chip and the real
ROM.

. DIGITAL CONFIDENTIAL External Interface 3-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Three signals are used to interface to the serial ROM. The sRomOE_l output signal supplies the
output enable to the ROM, serving both as an output enable and as a reset (refer to the serial
ROM specifications for details). The sRomCIk_h output signal supplies the clock to the ROM that
causes it to advance to the next bit. The ROM data is read by NVAX Plus via the sRomD_h input
signal. The format of the bits in the serial ROM is tbd , however driving sRomD_h false clears
the Pcache.

Once the data in the serial ROM has been loaded into the Pcache, sRomD_h can be used for a
serial input line, and sRomClk_h can be used as a serial output line.

It is possible to override the loading of the entire Pcache by driving the icMode_h<O> signal true
when reset is asserted. If icMode_h<O> (sRomFast) is asserted the SROM is not copied to Pcache
and the first instruction is fetched from address E0040000(16), the console start address. This
f~ture is also used for test purposes to minimize chip tester time.

3.2.4 Address Bus

The tristate, bidirectional adr_h pins provide a path for addresses to flow between NVAX Plus
and the rest of the system. The adr_h pins are connected to the buffers that drive the address
pins of the external cache RAMs, and to the transceivers that are located between CPU local
address bus and the CPU module address bus.

The address bus is normally driven by NVAX Plus. NVAX Plus stops driving the address bus
during reset and during external cache hold. In these states the address bus acts like an input,
and the tagEq_l output is the result of an equality compare between adr_h and tagAdr_h. Only
bits that are part of the cache tag, as specified by the Be_SIZE field of the BIU_CTL IPR,
participate in the compare.

The NVAX Plus tagEq_l determination does not include tagAdr parity.

3.2.5 Data Bus

The tristate, bidirectional data_h pins provide a path for data to flow between NVAX Plus and
the rest of the system. The data_h pins connect directly to the I/O pins of the external cache data
RAMs and to the transceivers that are located between !\TVAX Plus local data bus and the CPU
module data bus.

The tristate, bidirectional check_h pins provide a path for check bits to flow between the CPU
and the rest of the system. The check_h pins connect directly to the I/O pins of the external
cache data RAMs and to the transceivers that are located between the CPU local check bus and
the CPU module check bus. In "P\T" mode the check_h pins do not drive when the data_h pins
are driving write data, allowing the PV byte parity generation logic to drive the check_h lines for
byte parity. The check_h lines not used for parity are contain receivers and should be pulled up.
The check_h are not connected at wafer probe due to contraints in the number of signal which
can be probed. If the test_mode_h pin is asserted internal pull ups for check[27 .. 0] are enabled.

The data bus is driven by NVAX Plus when it is running a fast write cycle on the external caches,
and when some type ·of write cycle has been presented to the external interface and external logic
has enabled the data bus drivers (via dOE_I).

3-6 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If NVAX Plus is in ECC mode then the check_h pins carry 7 check bits for each longword on
the data bus. Bits check_h[G .. OJ are the check bits for data_h[3l..0). Bits check_,h[13 .. 7) are the
check bits for data_h[63 .. 32). Bits check_h[20 .. 14J are the check bits for data_h[9S .. 64J. Bits
check_h[17 .. 21J are the check bits for data_h[127 .. 96).

The following ECC code is used. This code is the same one used by the IDT49C460 and
AMD29C660 32-bit ECC gene~rator/checker chips.

dddddddddddddddddddddddddddddddd
332:::::2::2ll111111110000000000
109876543:1098765432109676543210

c: 6 XOP, x,,:x,j:x,j:Y,j; Y..xl:x,j:X7.z

c5 XOR XXJO:YJ.XJ: xxxxy.x:c:
c4 XOP, x,,; :lo:X7.xxx x,,; xxxx:r.x
c:3 XNOR x."O; XY.Y. xx xv. '::lo".Y. Xl:
c,~ XNOR ,; x Xl; ,; xx xx x xx x xx x
c:l XOR ,: j: x x j: xxx :Yo x ,; x ,; :lo:x,j:

cO XOR j; j~; j; j; X7.z x x XXXl; x x

By arranging the data and check bits correctly, it is possible to arrange that any number of errors
restricted to a 4-bi t group can be detected. One such arrangement is as follows:

cJ f 00), d f OlJ , d f 03], d 125J
0·10:), d f 04 J, df06J, e [06J
d [05J, d[07], d(12), e[03J
o [08), df09J, dIll], 0[14J
d.[10j, d[13], d[15), d 119]
d. [16), d[17], d [2:], dl2SJ
0[18], d[:3), d[30), c [05]
d(20), d [27], e [04), c [00)
o[:lJ, d[:6J, c [0: J, e [01)
d(24), d (29), d[31J

If NVAX PI us is in PARITY m()de then 4 of the check_h pins carry EVEN parity for each longword
on. the data bus, and the rest of the bits are unused. Bit check_h[OJ is the parity bit for data_
h[3l..0). Bit check_h[7) is the parity bit for data_h[63 .. 32]. Bit check_h[14) is the parity bit for
data_h[95 .. 64]. Bit check_h[21) is the parity bit for data_h[127 .. 96].

IfNVAX Plus is in "PV" mode then check_h[3 .. 0J are the byte parity bits for data_h[3l..0], check_
h[10 .. 7) are the byte parity bits for data_h[63 .. 32], check_h[l7 .. 14J are the byte parity bits for
data_h[9S .. 64), check_h[24 .. 2l) are the byte parity bits for data_h[127 .. 9G). The four byte parity
bits for each longword are 'xo:red' to produce a single longword parity bit.

The ECC bit in the BIU_CTL IPR determines ifNVAX Plus is in ECC mode or in, PARITY mode.

3.2.6 External Cache Control"

The external cache is a direct-mapped., write-back cache. NVAX Plus always views the external
cache as having a tag for each 32-byte block <the same as the NVAX Plus Pcache).

The external cache tag RAMs are located between NVAX Plus' local address bus and NVAX Plus'
tag inputs. The external cache data RAMs are located between the CPU's local address bus and
the CPU's local data bus. NVAX Plus reads the external cache tag RAMs to determine if it can
complete a cycle without any module level action, and NVAX Plus reads or writes the external
cache data RAMs if, in fact, this is the case.

DIGrTA~L CONFIDENTIAL Externallntertace 3-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

A cycle requires no module level action ifit is a non-LDxL read hit to a valid block, or a non-STxC
write hit to a valid but not shared block when not in "PV' mode. All other cycles require module
level action. All cycles require module level action if the external cache is disabled (the Be_EN
bit in the BIU_CTL IPR is cleared).

All NVAX Plus controlled cycles on the external cache have fixed timing, described in terms of
NVAX Plus's internal clock. The actual timing of the cycle is programmable allowing for flexibility
in the choice of CPU clock frequencies and cache RAM speeds.

The external cache RAMs can be partitioned into three sections; the tagAdr RAM, the tagCtl RAM,
and the data RAM. Sections do not straddle physical RAM chips in non "PV' mode systems.

NOTE

For "PV' mode systems since NVAX Plus only reads from the tagAdr RAM and tagCtl
RAM these sections can be implemented in the same RAM chips.

3.2.6.1 The TagAdr RAM

The tagAdr RAM contains the high order address bits associated with the external cache block.,
along with a parity bit. The contents of the tagAdr RAM is fed to the on-chip address comparator
and parity checker via the tagAdr_h and tagAdrP _h inputs.

NVAX Plus verifies that tagAdrP _h is an E'VEN parity bit over tagAdr_h when it reads the tagAdr
RAM. NVAX Plus asserts c%cbox_hard_error if the parity is wrong and stops the reference.

The number of bits of tagAdr_h that participate in the address compare and the parity check is
controlled by the BC_SIZE field in the BIU_CTL IPR. The tagAdr_h signals go all the way down
to address bit 17, allowing for a 128Kbyte cache built out of RAMs that are 8K deep.

The chip enable or output enable for the tagAdr RAM is normally driven by a two input NOR gate
(such as the 74AS805B). One input of the two input NOR gate-is driven by tagCEOE_h, and the
other input is driven by external logic. NVAX Plus drives tagCEOE_h false during reset, during
external cache hold, and during any external cycle. The OE bit in the BIU_CTL IPR determines
if tagCEOE_h has chip enable timing or output enable timing.

3.2.6.2 The TagCtI RAM

The tagCtl RAM contains control bits associated with the external cache block, along with a
parity bit. NVAX Plus reads the tagCtl RAM via the three tagCtl signals to determine the state
of the block. NVAX Plus writes the tagCtl RAM-via the three tagCtl signals to make blocks dirty.

N'VAX Plus verifies that tagCtlP _h is an E'VEN parity bit over tagCtlV _h, tagCtlS_h, and tagCtlD_
h when it reads the tagCtl RAM. NVAX Plus asserts c%cbox_hard_err if the parity is wrong and
stops the reference. NVAX Plus computes E'VEN parity across the tagCtlV _h, tagCtlS_h, and
tagCtlD_h bits, and drives the result onto the tagCtlP _h pin, when it writes the tagCtl RAM.

The following combinations of the tagCtl RAM- bits are allowed. Note that the bias toward
conditional write-through coherence is really only in name; the tagCtlS_h bit can be viewed
simply as a write protect bit.

3-8 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-6: Tag Control Encc)dlngs

tagCtlV_h tagCtlS_h tagCtlD_h Meaning

F X X Invalid

T F F Valid, private

T F T Valid, private, dirty

T T F Valid, shared

T T T Valid, shared, dirty

NVAX Plus can satisfy a read probe if the tagCtl bits indicate the entry is valid (tagCtlV _h = T).
NVAX Plus can satisfy a writE~ probe if the tagCtl bits indicate the entry is valid and not shared
(tagCtlV_h = T, tagCtlS_h = F).

The chip enable or output enable for the tagCtl RAM is normally driven by a two input NOR gate
(such as the 74AS805B). One input of the two input NOR gate is driven by tagCEOE_h, and the
other input is driven by .extenlallogic. NYAX Plus drives tagCEOE_h false during reset, during
external cache hold, and during any external cycle. The OE bit in the BIU_CTL IPR determines
if tagCEOE_h has chip enable timing or output enable timing.

The write enable for the tagCtl RAM is normally driven by a two input NOR gate (such as the
74AS805B). One input of the 1;wo input NOR gate is driven by tagCtlWE_h. and the other input
is driven by external logic. NVAX Plus drives tagCtlWE_h false during reset, during external
cache hold, and during any external cycle.

3.2.6.3 The Data RAM

The data RAM contains the ac:tual cache data, along with any ECC or parity bits.

The most significant bits of the data RAM address are driven, via buffers, from the address bus.
The least significant bit of thE~ data RAM address is driven by a two input NOR gate (such as
the 74AS805B). One of the inputs of the two input NOR gate is driven by dataA_h[4), and the
other input is driven by extenlal logic. NVAX Plus drives dataA_h[4J false during reset, during
extenlal cache hold, and during any extenlal cycle.

The chip enables or output enables for the data RAM are driven by a two input NOR gate (such
as the 74AS805B). One input of the two input NOR gate is driven by dataCEOE_h[3 .. 0), and
the other input is driven by E~xternal logic. NVAX Plus drives dataCEOE_h[3 .. 0J false during
reset, during external cache hold, and during external cycles. (NVAX Plus sometimes drives
dataCEOE_h[3 .. 0J true during extenlal write cycles, to simplify merging old cache data with new
write data). The OE bit in the BIU_CTL IPR determines if dataCEOE_h[3 .. 0J has chip enable
timing or output enable timing.

The write enables for the data RAM are normally driven by a two input NOR gaite (such as the
74AS805B). One input of the two input NOR gate is driven by data WE_h[3 .. 0), and the other
input is driven by external logic. NVAX Plus drives data WE_h[3 .. 0J false during reset, during
external cache hold, and durin.g any extenlal cycle.

DIGrTAL CONFIDENTIAL External Interface 3-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.2.6.4 Backmaps

Some systems may wish to maintain backmaps of the contents of the Pcache to improve the
quality of their invalidate filtering. NVAX Plus must maintain the backmaps for external cache
read hits, since external cache read hits are controlled totally by NVAX Plus. External logic
maintains the backmaps for external cycles (read misses, invalidates, and so on).

The backmaps are only consulted by external logic, so that their format, or, for that matter, their
existence, is of no' concern to NVAX Plus. All NVAX Plus does is generate backmap write pulses
at the right time. Simple systems will not bother to maintain backmaps, will not connect the
backmap write pulses to anything, and will generate extra invalidates.

The NVAX Plus Pcache is 8kB and can be configured as either a single set of 256 indexes, or two
sets of 128 indexes each. If NVAX Plus is allocating Pcache as two way s-et associative NVAX
Plus drives pMapWE_h[O] or pMapWE_h[l] depending on the Pcache set which is to be allocated
whenever it fills the Pcache from the external cache, and systems must assert the corresponding
plnvReq_h[l:O] to invalidate an entry in Pcache.

If NVAX Plus is allocating Pcache as direct mapped pMap'WE_h[O] is driven and systems assert
plnvReq_h[OJ to invalidate an entry in" Pcache.

The pMap'WE_h[l..OJ signals assert two .cpuClkOut cycles into the second (ast) data read cycle
and negate at the end of that cycle.

3.2.6.5 External Cache Access

The external caches are normally controlled by NVAX Plus. Two methods exist for gaining access
to the external cache RAMs.

3.2.6.5.1 HoldReq and HoldAck

The simple method for external logic to access the external caches is to assert the holdReq_h
signal.

A holdReq_hlholdAck_h sequence can happen at any time, even in the middle of an external cycle.
All of the acknowledge-like signals (dOE_I, dRAck_h, cAck_h) work normally. The system logic
can use this functionality to maintain cache coherency operations while a system read/write is in
progress.

If the NVAX Plus ARB sequencer is 'IDLE' and a HoldReq is received, the HoldAck signal is
asserted. with the next rising edge of SysClkOut. NVAX Plus discontinues cache cycles if the
HolReq signal is recognized before the tag compare is completed. The NVAX Plus ARB sequencer
enters a 'stall' state in which HoldAck is asserted. If a read or write sequence is in progress
and has advanced beyond the tag compare cycle, the operation is completed. For read hits the
second octaword of data is read and the hold is acknowlegded as the block is being filled to
the Pcache. For read misses the CREQ of read_block or LD_LK is driven to the system. The
hold is then acknowledged, allowing the system to access the Bcache. For write hits the write
completes and the hold is acknowledged in the next ARB cycle, which is an 'IDLE' before the next
operation can be dispatched. For write misses (or writes which do not probe Bcache), the CREQ
of write_block or STxC is driven to the system . .As for system reads, the hold is acknowledged
allowing the system access to the Bcache before completing the NVAX Plus write operation. 'When
HoldAck is asserted, NVAX Plus tri-states adr_h, tagCtlV _h, tagCtlS_h, tagCtlD_h, and tagCtlP _
h, drives tagCEOE_h, tagCtl'WE_h, data CE OE_h, data'WE_h, and dataA_h false, (the cReq_h

3-1 0 External Interface DIGITAL CONFIDENTIAL

NVAX Plus Cl?U Chip Functional Specification, Revision 0.:-1, October 1991

and cWMask_h signals are not modified in any way). Note data_h (and check_h if not "PV') are
driven only if dOE_l is assertes during a write_block or STxC cycle; dOE_l needs to be deasserted
to tristate data_hUcheck_h) during system write operations. When external logie is finished with
the external caches it negates holdReq_h. :NVAX. Plus detects the negation of holdReq_h, negates
holdAck_h, and re-enables its outputs. If the hold is acknowledged after a CREQ has been issued
the system must then complete the operation and respond with the appropriate cAck. When
HoldReq_h is received the address bus begins driving in 1 1/2 cpu cycles at internal phase 3
prior to the deassertion of HoldAck_h, and dataOEOE_h<3:0> and tagCEOE_h reassert at phase
2 after the next drive_first cpu cycle (2 114 cpu'cycles for drv_clk = 2 cpu cycles, and sys_clk = 2
cpu cycles) if the hold sequence occurred during an idle NVAX Plus cycle. tagCEOE_h reasserts
at phase 2 after the next drive_first cpu cycle if NVAX Plus is stalled in a write probe sequence.

NOTE'

NoTE:tagCEOE_h and dataCEOE_h may deassert one-phase after the assertion of
holdack_h whereas the other signal affected by holdack_h are either deasserted or
tri-stated at the assertion of holdack_h .

.. ** Systems which use tagOK to obtain access to the cache can assert HoldReq with tag OK
deasserted in order to have NVAX Plus tri-state adr_h, data_h, check_h, tagCtlV _h, tagCtlS_
h" tagCtID_h, and tagCtlP _h, drives tagCEOE_h, tagCt]~1E_h, dataCEOE_h, dataWE_h, and
dataA_h false, and asserts holdAck_h. This allows system which do not use external muxing
access to the tag store. ** .
The holdReq_h signal is synchronous, and external logic must guarantee setup and hoid require­
ments with respect to the system clock. The holdAck_h signal is synchronous to the CPU clock
but phase aligned to the syst.em clock, so it can be used as an input to state machines running
off the system clock.

The delay from holdReq_h assertion to holdAck_h assertion depends on the programming of
the external cache interface, and exactly how the system clock is aligned with a pending external
cache cycle. In the best case the external cache is idle or just about to begin a cycle, and holdAck_
h asserts at the same system clock edge that samples the holdRe~h assertion. The worst case
latency for holdAck_h is three cache access cycles.

3.2.6.5.2 TagOk

The fastest way for external logic to gain access to the external caches is to use the tag Ok_l
signal. TagOk_l is an :NVAX Plus bus interface control signal that allows extemallogic to stall
a CPU cycle on the external c~ache RAMs at the last possible instant. All tradeoffs S'!JlTOunding
the tagOk_l signal have been made in favor of high-performance systems making tagOk_l next
t'o impossible to use in low-en.d systems.

The tagOk_1 signal is synchronous, external logic must guarantee setup and hold requirements
with respect to the CPU clock. This implies very fast logic, since the CPU clock can run at 200
MHz for the binned parts.

The :NVAX Plus ARB sequencer enters a stall state if the deassertion of tagOK_l is detected pre­
venting the completion of a read or write which is in progress. 'When tagOK_L asserts indicating
the Bcache is again controlled by NVAX. Plus any read or write sequence which was previously
stalled returns to the first bus cycle of the sequence. For cache reads if either pMap WE<1:0>
asserts that read is completed. :NVAX. Plus does not tri-state the busses that run between NVAX

DIGITAL CONFIDENTIAL External Interface 3-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Plus and the external cache RAMsC unless HoldReq is asserted). External logic must supply the
necessary multiplexing functions in the address and data path. .

If the tagOk_l signal is true at the falling edge of the CPU_CLK prior to a cache cycle, the
el..'ternal logic is guaranteeing that the tagCtl and tagAdr RAMs were owned by NVAX Plus in
the previous cache_speed cycles, that the tagCtl RAMs win be owned by NVAX Plus in the next
cache_speed cycles, that the data RAMs were owned by NVAX Plus in the previous cache_speed
cycles, and that the data RAMs will be owned by NVAX Plus in the next two cache_speed cycles.

J\TVAX Plus samples the tagOk_1 signal at the very end of the tag read of an external cache cycle.
If tagOk_1 is true then NVAX Plus knows that no conflict is possible between external logic and
its cycle. If tagOk_1 is false NVAX Plus stalls. NVAX Plus knows that there is some kind of
conflict (it may have already happened, or it may be going to happen before NVAX Plus can finish
its cycle). In this case NVAX Plus stalls until tag Ok_l is true (at which time all of the above
assertions are true, which means, in particular, that any address NVAX Plus has been holding on
the address bus all this time has made it through the external cache RAMs), and then it retries
any stalled cache references.

3.2.7 External Cycle Control

NVAX Plus requests an external cycle when it determines that the cycle it wants to run requires
module level action .

.An external cycle begins when NVAX Plus puts a cycle type onto the cReCl-h outputs. Some cycles
put an address on the adr_h outputs, and additional information Oow-order address bits, IID
stream indication, write masks) on the c~TMask_h outputs. All of these outputs are synchronous,
and NVAX Plus meets setup and hold requirements with respect to the system clock.

The cycle types are as follows.

Table 3-7: Cycle Types

cRe~h[2] cRe~h[l] cR.e<t-h[0] Type

F F F IDLE
F F T not generated-BARRIER

F T F not generated-FETCH
F T T not generated-FETCHM
T F F READ_BLOCK

T F T WRITE_BLOCK
T T F LDxL
T T T STxe

The BARRIER, FETCH and FETCHM cycles are functions generated by EV instructions and are
not generated in NVAX Plus systems.

The READ_BLOCK cycle is generated on read misses. External logic reads the addressed block
from memory and supplies it, 128 bits at a time, to NVAX Plus via the data bus. External logic
may also write the data into the external cache, after writing a victim if necessary.

3-12 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The 'VRITE_BLOCK cycle is generated on write misses, and on writes to shared blocks. External
logic pulls the 128 bits of write data from NVAX Plus via the data bus, and writes the valid
longwords to memory. The c"WMask_h[7 .. 0J signals for NVAX Plus has either c'WMask[7 . .4] =
0000, or c'WMask[3 .. 0] = 0000 during WRITE_BLOCK cycles. If external logic sequences the
dWSel[lJ, l\TVAX Plus drives the same octaword with each dOE_l, and the cWMask bus indicates
which longwords are valid. E:d,ernal logic may also write the data into the external cache, after
writing a victim if necessary.

The LDxL cycle is generated READ_LOCK microinstruction or for writing byte/word data. The
cycle works just like a READ •. BLOCK although the external cache has not been probed (so the
external logic needs to check for hits), ·and the address has to be latched into a locked address
register.

The STxC cycle is generated by the WRITE_UNLOCK microinstruction and for writes of merged
byte/word data. The cycle works just like a WRITE_BLOCK, although the external cache has not
been probed (so .that external logic needs to check for hits), and the cycle can be acknowledged
with a failure status.

On WRITE_BLOCK and STxC cycles the cWMask_h pins supply longword write masks to the
external logic, indicating which longwords in the 3Z-byte block are, in fact, valid. The cWMask_
h[7 .. 0] signals for NVAX Plus has either cWMask[7 .. 4] = 0000, or c'WMask[3 .. 0J = 0000 during
WRITE_BLOCK and STxC cyc:les as NVAX Plus writes at most one octaword per WRITE_BLOCK
or STxC cycle. A cWMask_h bit is true if the longword is valid .. 'WRITE_BLOCK commands can
have any combination of mask bits set.

NOTE: For NVAX PLus STxC I=ycles can have all the mask bits set for the octaword being written,
where STxC cycles for EV can only have combinations that colTespond to· a single longword or
quadword.

On READ_BLOCK and LDxL cycles the cWMask_h pins have additional information about the
miss overloaded onto them. The cWMask_h[l..O] pins contain miss address bits [4 .. 3J (indicating
the address of the quadword that actually missed), which is needed to implement quad word
read granularity to I/O devices. The cWMask_h[2] pin is true if the address is not I/O space
and will be filled to Pcache. Thus c'WMask_h[2] looks like an EV D-stream reference to enable
system logic to backmap the NVAX Plus mixed lID stream Pcache with the D-Map backmap. The
cV\'M.ask_h[3] pin is false for references that are targeted to bank 0 of the on· chip Pcache, and
tnle for references that are ta.rgeted to bank 1 of the on-chip Pcache. The cw:Mask_h[4] pin is
true for I-stream references for use by system logic, i.e. possible I-Stream prefetch to memory.
The cWMask_h[5] pin contains address bit [2], providing longword information for "PV" mode I/O
space reads.

The cycle holds on the external interface until external logic acknowledges it, by placing an
acknowledgment type on the cAck_h pins. The cAck_h inputs are synchronous, and external
logic must guarantee setup and hold requirements with respect to the system clock.

The acknowledgment types are as follows.

DIGITAL CONFIDENTIAL External Interface 3-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 3-8: Acknowledgment Types

cAck_h[2) cAck_h[l] cAck_h[O] Type

F F F IDLE

F F T HARD_ERROR

F T F SOFT~ERROR

F T T STxC_FAIL

T F F OK

The HARD_ERROR type indicates that the cycle has failed in some catastrophic manner. NVAX
Plus latches sufficient state to determine the cause of the error, and machine checks or initiates
the hard error interrupt.

The SOFT_ERROR type indicates that a failure occurred during the cycle, but the failure was
corrected. NVAX Plus latches sufficient state to determine the cause of the error, and initiates a
soft error interrupt.

The STxC_FAIL type indicates that a STxC cycle has failed. It is UNDEFINED what happens if
this type is used on anything but an STxC cycle.

The OK type indicates success.

The dRAck_h pins inform NVAX Plus that read data is valid on the data bus, and ifECC checking
and correction or parity checking should be attempted. NVAX Plus loads Pcache based for non I/O
space READ_BLOCK and LDxL transactions based on dRAck_h[l). I/O space references' do not
use dRAck_h[l) and are not allocated to the Pcache. The dRA.ck_h inputs are synchronous, and
external logic must guarantee setup and hold requirements with respect to the system clock. If
dRAck_h is sampled IDLE at a system clock then the data bus is ignored. If dRAck_h is sampled
non IDLE at a system clock then the data bus is latched at that system clock, and external logic
must guarantee that the data meets setup and hold with respect to the system clock.

The acknowledgment types are as follows.

Table 3-9: Read Data Acknowledgment Types

F F F
T F F
T

T

T

F

T

T

T

F

T

IDLE

OK_NCACHE_NCHK

OK_NCACHE

OK_NCHK

OK

The first non IDLE sample of dRAck_h tells NVAX Plus to sample data bytes [15 .. 0), and the
second non IDLE sample of dRAck_h tells NVAX Plus to sample data bytes [31..16]. Normally
el...~mal logic will drive the second dRAck_h and the cA.ck_h during the same system clock
READ_BLOCK and LDxL transactions may be terminated with HARD_ERROR status before all
expected dRAck_h cycles are received.

It is UNDEFINED what happens if dRAck_h is asserted in a non-read cycle.

3-14 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0 .. 3, October 1991

NVAX Plus checks dRAc~h[OJ (the bit that determines if the block is ECC/parity checked) during
both halves of the 32-byte block. It is legal, but probably not useful, to check only one half of the
block.

NVAX Plus checks dRAck_h[l](the bit that determines if a memory reference is to be cached
or not) during the second half of the 32-byte block. dRack_h[lJ is not necessary for 10 space
references. 10 references are not allocated to Pcache for NVAX Plus.

For 110 reads two dRack assertions are expected, however systems (PV) may return a single
octaword if a c.Ack is asserted at the same sysClkOut_h edge as the single dRack.

The dOE_I inputs tells NVAX Plus if it should drive the data bus. It is a synchronous input,
so external logic must guarantee setup and hold with respect to the system clock. If dOE_l is
sampled true at a system clock then NVAX Plus drives the data bus at the system clock if it has
a WRITE_BLOCK or STxC r'equest pending (the request may already be on the cReq pins, or it
may appear on the cReq pins at the same system clock edge as the data appears). ·If dOE_l is
sampled false at the system cloc,k then NVAX Plus tri-states the data bus on the next system
clock cycle. The cycle type is factored into the enable so that systems can leave dOE_l asserted
unless it is necessary to write a victim.

The dWSel_h inputs of EV a're not needed as NVAX Plus only presents 1 octaword to the data
bus.

3.2.8 Primary Cache Invalidate

E:rternallogic needs to be able to invalidate primary cache blocks to maintain coherence. NVAX
Plus provides a mechanism to perform the necessary invalidates, but enforces no policy as to
when invalidates are needed. Simple systems may choose to invalidate more or less blindly, and
complex systems may choose to implement elaborate invalidate filters.

There are two situations where entries in the on-chip Pcache may need to be invalidated.

The first situation is the obvious one. Any time an external agent updates a block in memory (for
example, an 110 device does a DMA transfer into memory), and that block has been loaded into
the external cache, then the E!xternal cache block must be either invalidated or updated. If that
external cache block has been loaded into a block resident in the Pcache then that Pcache entry
must be invalidated.

External logic invalidates an entry in bank 0 of the Pcache by asserting the plnvReq_h[OJ signal.
NVAX Plus samples pInvReq_h[OJ at every system cloCk. 'When NVAX Plus detects plnvReq_h[O]
asserted, it invalidates the block in bank 0 of the Pcache whose index is on the iAdr_h pins.

External logic invalidates an E~ntry in bank 1 of the Pcache by asserting the plnvReq_h[lJ signal.
NVAX Plus samples plnvReq_h[lJ at every system clock. When NVAX Plus detects plnvReq_h[lJ
asserted, it invalidates the block in bank 1 of the Pcache whose index is on the iAdr_h pins.

If the Pcache is set to direct map allocation only PinvReq[OJ is asserted, iAdr[12J selects the
section of Pcache to be invalidated.

It is legal to both plnvReqJrl[l..OJ in the same cyele.

NVAX Plus can accept an invalidate at every system clock.

DIGITAL CONFIDENTIAL E.xternal Interface 3-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The plnvReq_h[l..O] inputs are synchronous, and external logic must guarantee setup and hold
with respect to the system clock. The iAdr_h inputs are also synchronous, and external logic
must guarantee setup and hold with respect to the system clock in any cycle in which any of
plnvReq_h[l..O] are true. .

3.2.9 Interrupts

External interrupts are fed to NVAX PI us via the irq_h bus. The 6 interrupts are wired to
IRQ<3;O>, halt, and error. The timer interrupt is internal to NVAX Plus. The interrupts are
asynchronous, and level sensitive.

3.2.10 Electrical Level Configuration

NVAX Plus drives and receives CMOS levels.

The input circuits do not use the vRef input.

3.2.11 Testing

The tristate_l signal, if asserted, calJ,Bes NVAX Plus to fioat all of its pins, with the exception of
the clocks.

The cont_l signal, if asserted, causes NVAX Plus to connect all of its pins to VSS, wit~ the
exception of the clocks, vref, dcOk_h, tristate_I, reseCl and cont_I.

3.3 64-Bit Mode

NVAX Plus does not support the EV 64-bit external mode.

3.4 Transactions

3.4.1 Reset

External logic resets NVAX Plus by asserting reset_I. When NVAX Plus detects the assertion of
reset_l it terminates all external activity, and places the output signals on the external interface
into the following state. Note that all of the control signals have been placed in the state that
allows external access to the external cache.

Table 3-10: Reset State

Pin State

sRomOE_l F
sRomClk_h T

adr_h Z

data_b Z

check_b Z

3-16 External Interlace DIGITAL CONFIDENTIAL'

NVAX Plus CPU Chip Functional Specification, Revision 0.3" October 1991

Table 3-10 (Cont.): Reset S~ate

Pin

tagCEOE_h

tagCtlWE_h

tagCtlV_h

tagCtlS_h

tagCtlD_h

tagCtlP_h

dataCEOE_h

dataWE_h

dataA_h

holdAck_h

cRe~h

c'WMask_h

State

F

F
-z
Z

Z

Z
F

F

F

F

FFF

FFFFFFFF

After asserting reset_l for long enough to reset the serial ROM (100 ns), external logic negates
reset_I.

When NVAX Plus detects reset_l negate, it begins internal initialization. When this initialization
is completed NVAX Plus microcode asserts sRomOE_l, enabling the output of the serial ROM
onto sRomD_h, and then determines if the SROM is to be read by reading the SOE-IE'IPR which
contains the state of icMode<O>(sRomFast) at the deassertion of reset. If sRomfast NVAX Plus
deasserts sRomOE_l and fetches an instruction from address E0040000. If not sRomfast NVAX
Plus begins clocking bits out of the serial ROM and placing them into the Pcache. The timing is
the following (assuming NVAX Plus only read 3 bits from the serial ROM).

reset_l --------1
sRomOE_l
sRomCli: h
Sample sRomD_h

1-------------------1
---- 1 1----- 1 1----- I 1--

Each half-tick of the sRomClk_h signal is 27 CPU cycles long, which guarantees the minimum
260ns clock high and clock low specifications and the 520ns clock to data specification of the serial
ROM with IOns CPU cycles.

The format for NVAX Plus sROM data is 8 Kbytes of continous data, with the first bit being the
least significant bit of the first byte of the data.

At the deassertion of reset, sRomOE_l is not asserted. The high to low transition of of sRomOE_l
is generated when microcode writes the SOE-IE IPR. This maintains compatability with EVand
allows sRomOE_l to indicate a reset to sROM bit counters if required. The LNP implementatiqn
of the sRom is a parallel ROM and discrete shift registers, using reset_l to initialize the bit
counters.

After asserting sRomOE_I n:ucrocode writes the Pcache TAG IPR Address for pache index
addr<11:5> = 0000000 specifying the left bank (address<12>=O) with a tag<3l:12>=OOOOO(hex)
and thus validating the 32 byte block of Pcache. Microcode then reads the 32 bits of the sROM
shifting the bits into a temporary register until a longword is completed. The bits shifted so

DIGITAL CONFIDENTIAL External tnterface 3-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

that the first bit input is the least significant. SIO<serial_line_out> is hardware cleared at re­
se(There is an inversion from SIO<serial_line_out> to the sRomClk_h pin, thus the state of
sRomClk_h at reset is high. Microcode reads each bit of the sROM by

1. writing SIO<serial_line_out> with 0 to set sRomClk_h to a high
2. waiting 27 CPU cycles to insure sRomClk_h is high "for 260ns for a IOns part

3. writing SIO<serial_line_out> with 1 to set sRomClk_h to a low
4. waiting 27 CPU cycles to insure sRomClk_h is low for 260ns for a IOns part
5. reading the IPR for SIO<serial_line_in>

The sROM uses the high to low transition of sRomClk_h to load it's output register and the low
to high transition of sRomClk_h to shift to the next bit. Initializing sRomClk_h to a high results
in the first edge of sRomClk_h being high to low, thus loading the initial ROM outputs to the
output shift register. Since the low to high transition of sRomClk_h is an input to a shift register,
the processor loads the the output register and then inputs the first bit before the first shift clock
edge is driven.

After the first 32 bits are read, microcode writes the longword to addr<31:0>=000000000(hex),
The write hits in the Pcache and the first longword is written to the Pcache data section. The
write data is also written through the CBOX. This write will be packed with the next longword
and be put into the Write Queue. External Write Commands are removed from the Write Queue
by the Arb Sequencer when sRomOE_I is asserted but are not written to memory, preventing the
writing of the sROM data. .

The next 32 bits are read. The second longword is then written to addr<31:0>=00000004. The
next 32 bits are read, the third longword is written to addr<31:0>=00000008. Longwords 4,5,6,7,
and 8 are written to address C, 10, 14, 18, and lC. After the first 8 longwords are written,
microcode writes the Pcache TAG IPR Address for pache index addr<11:5> = 0000001 specify:i.D:g
the left bank (address<12>=O) with a tag<31:12>=00000(hex) and thus validating the second 32
byte block of Pcache. Again 8 longwords are read from the sROM and wriiten to the Pcache block
with the address being incremented by 4 bytes after each write. After the first 4 kbytes of data
has been written to the PCache, microcode writes the Pcache TAG IPR Address for pache index
addr<11:5> = 0000000 specifying the right bank (address<12>=l) with a tag<31:12>=00001(hex)
and thus validating the first 32 byte block of Pcache for that bank. The next 4 kbytes are then
loaded to the right bank with a tag<31:12>=00001(hex). Thus the sROM data is places into NVAX
Plus Pcache as

1. Write Pcache TAG IPR. tag<31:12>=00000(hex), bank=O, index=OOOOO
2. set up initial addr<3l:0>=00000000(hex)
3. read longword from sROM

4. write longword to addr<31:0>
5. add 4(hex) to addr<31:0>
6. if addr<4:2> not 000 repeat step 3
7. after 8 longword writes addr<4:2>=000, 32 byte block completed, increment index

8. if index not 000000, bank is not completed, write TAG IPR of next index, go to step 3
9. if index=OOOOOO and bank=O, set bank= 1 for second 4 kbyte bank, write TAG IPR, go to step

3
10. ifindex=OOOOOO and bank=l, sROM load is done

3-18 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3'1 October 1991

After completion of the sROM load, microcode initiates a macrocode fetch of the first instruction
from addr<31;O>=OOOOOOOO.

3.4.2 Fast External Cache Read Hit

'A fast external cache read consists of a probe read (overlapped with the first data read), followed
by a compare cycle and then a second data read. If the probe hits and tagOK_l is asserted and
HoldReq is deasserted (i.e. no stall) the pMapWE_h of the allocated PCache set is driven.

The following diagram aSSUDles that the external· cache is using 4X cache_speed timing, chip
enable control (OE_HlCE_L =: L).

CPU CYCLE
c:pu_clk
phas~

ad:- h
clat.aA h[4j
't~agcEoE_h
tagCt.1WE h
t.agAdr_t:­
t.agCt.l h
pMapWE-h
dat.aCEOE h
ciat.aWE_h­
c1at.a_i:
c:hecy._h

10 11 12 13 14 15 16
10 11 12 13 14 15 16 Ii 18 19 110 III I

2 ~ 1 2 3 4 1 2 3 4 1 : 3 4 1 2 3 4 1 2 3 4 1 234
1-------------··------------------------------------I

1-------------------1
1------------_··_--- I

-J:am-I
-ram-I

1-------1

1--1
-=arn-O-I -ram-l-I
-rarll-O-I -ram-1-1

If the probe misses then pMap~TE_h does not assert, and the sequence aborts at the end of CPU
CYCLE 2.

The address is driven from phase 3 prior to CPU CYCLE 0 and the data is latched at phase 4
of CPU CYCLE 1, providing:9 phases for external access at cache_speed = 4 times the cpu_clk
(2CPU CYCLES).

3.4.3 Fast External Cache Write Hit

A fast external cache write C'.onsists of a probe read, followed by a compare cycle, and then a
single data write.

The following diagram assunles that the external cache is using 2X system clock timing, chip
enable control (OE_HlCE_L = L), and a 1 cycle write pulse starting from cpu clock falling edge.

CPU CYCLE
cpu elY.
pha"i.
sar h/aat.a.f.. h [4j
t.agCEOE h -
t.agCtnlE_h
t.agAdr_h
t.agCt.l h
dat.aCEOE_h
dat.aWE_h
dat.a h
chec}:_h

10 11 12 13 14 15 16
lOll 12 13 14 15 16 17 18 I 9 110 III I

3 4 1 2 3 4 1 2 3 ~ 123 4 1 Z 3 4 1 Z 3 4 1 2 3 4
I -------------•• --- I 1-------------··_---1 I ------- I ,,-------1

-J:am-I
-l:am-I

1------------------1
I-cpu-----------I

1-.------1
1-------1

I-cpu------.:----I
I-cpu-----------I

If the probe misses then the cycle aborts at the end of cpu clock cycle 3.

DIGITAL CONFIDENTIAL External Intertace 3-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.4 Fast External Cache Byte/Word Write Hit

A fast external cache byte/word write consists of a probe read, followed by a compare cycle, a
data merge cycle, and then a single data write.

The following .diagram assumes that the external cache is using 2X system clock timing, chip
enable control (OE_HlCE_L = L), and a 1 cycle write pulse starting from cpu clock falling edge.

lnternal Clock

phase
ad::_h/dztaA_h [4j

tagCEOE h
taaCtlwE h
tagAdr_h­
tagC-:'l_h
datsCEOE_h
d2lt2lWE_h
datc_h
checy._h

10 11 12 13 14 15 16 Ii 18
10 11 12 13 I' 15 16 Ii Ie 19 110 III 112 113 114 115 I

3 , 1 : ~ .:: 1 : 3 4 1 2 3 .:: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 123 4
1--1
1-----------------1 1-------1

-rani-I
-ram-I

1-----------------1

-ram-i
-ram-I

1-------1

I-cpu-----------I
1-------1
1-------1

I-cpu-----------I
I-cpu-----------I

If the probe misses then the cycle aborts at the end of cpu clock cycle 3. If a correctable ECC
error occurs on the read data the write is executed delayed from cpu cycles 6 and 7, to cpu cyles
8 and 9.

3.4.5 Transfer to SysClk. for External tranactions

The r~mainder of the transactions described in this chapter, READ_BLOCK, 'WRITE BLOCK,
LDxL, and STxC, involve the external system logic, and are described with respect to sysClkOutl.
This section describes the delay from the internal cpu cycle which initiates a tranction requiring
external system logic, and SYS_ CLK cycle 0, where cReq_h is driven with the command request.
adr_h and c""Mask are valid prior to the start of SYS_CLK cycle 0.

The :NVAX Plus I/O sequencer runs once every CACHE_SPEED cycles .. If the output of the I/O
sequencer initiates a transaction requiring external logic, the cReq_h command is asserted with
the next rising edge of sysClkOutl_h. For systems with the CACHE_SPEED and sysClkOut both
programmed for 2 CPU cycles, the start of the SYS_ CLK cycle is always one CPU cycle after the
I/O sequencer initiated the tranaction.

CPt' CYCLE I 0 11 I 2 13 I .Q I 5 I 6 I i I B
I/O SEQUENCER CYCLE 10 11 12 13 I
cpu_clk 10 11 12 13 14 15 16 Ii 18 19 110 III 112 113114 Il5 I
phaSE 3 .Q 1 2 3 4 1 2 3 .Q 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 .Q 1 2 3 .Q 1 2 3 4

SYS CLK Cycle
(2~-sysc1kOut) -----1

1 0 I 1 I 2
1-------1 1-------1 1---... ---1

+---------< cReq asserts, SYS_CLK Cycle 0

I
1-------

+-----------------< I/O sequencez initiates READ_BLOCK, WRITE BLOCK
LDxl., STxC.

If CACHE_SPEED and sysClkOut are not programmed to the same multiple of cpu_elk, the delay
to the rising edge of sysClkOutl_h and the assertion of cReq_h may be a full SYS_ CLK cycle.

3-20 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.6 READ_BLOCK TranSiaction

A READ_BLOCK transaction appears at the external interface for reads which miss in the Pcache
for external cache read misses, either because ithe read really was a miss, or because the external
cache has not been enabled.

SYS_CI.R Cycle
sysClkOutl_h
adr_h
dat.6_h
checy._h
cReC;_h
cWMasy._h
ciRAck_h
CAcy._h

1 0 1 I': 1 :3 1 4 . 1 5 1
1--- 1 1--- 1 1--- 1 1--- 1 1--- 1 1--- 1 1-1---------------·.-----------------------.... ------1

i-O-----I 1-1-----1
1-0-----1 1-1-----1 1--------------_··_----------------------I 1--------------_·_-----------------------I
1-------1 1-------1

1-------1

O. The READ_BLOCK cycle begins. NVAX Plus places the address qf the block containing
the miss on adr_h. NVAX Plus places the quadword-within-block and the IID indication on
c'WMask_h. NVAX Plus places a READ_BLOCK command code on cReq_h. The external logic
detects the com~and at the end of this cycle.

1. The external logic obtains the first 16 bytes of data. Although a single stall cycle has been
shown here, there could b~~ no stall cycles, or many stall cycles.

2. The external logic has the :first 16 bytes of data. It places it on the data_h and check_h busses.
It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid. NVAX
Plus detects dRAck_h at the end of this cycle, and reads in the first 16 bytes of data at the
same time.

3. Th-e external logic obtains the second 16 bytes of data. Although a single staU cycle has been
shown here, there could be no stall cycles, or many stall cycles.

4. The external logic has thE~ second 16 bytes of data. It places it on the data_h and check_h
busses. It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid.
NVAX Plus detects dRAck .• h at the end of this cycle, and reads in the second 16 bytes of data
at the same time. In addition, the external logic places an acknowledge code on cAck_h to tell
NVAX Plus that the READ_BLOCK cycle is completed. NVAX Plus detects the acknowledge
at the end of this cycle. The address remains in the cycles after cAck as NVAX Plus fills
Pcache.

5. Everything is idle on the l~D.AL. NVAX Plus moves fill data to MBOX. A new external cache
cycle does not start until the fill is completed. dataceoe are asserted 1 cpu cycle after cAck is
recognized. by the ARB sequencer.

Note that this picture did not mention the external caches. NVAX Plus drove all of the external
cache control signals false when it placed the READ_BLOCK command on the cReq_h outputs.
The external logic controls thE~ updating of cache.

NVAX Plus performs EOC chl~cking and correction (or parity checking) on the data supplied to
it 'via the data and check bUSHes if so requested by the acknowledge code. It is not necessary to
place data into the external cache to get checking and correction.

. DIGrTAL CONFIDENTIAL E.xtemal lnterface 3-21

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.7 Write Block

A ~TR.ITE_BLOCK transaction appears at the external interface on external cache write misses
(either because it really was a miss, or because the external cache has not been enabled (or the
system is "PV'), or on external cache write hits to shared blocks.

SYS_Cl.F~ CYClE
sysClkOu-:. h
adr_h -
data h
chec-;'-_h(no-: PV)
cReo_n
cWMasi: h
dOE_l -
cAcy._h

1 0 ~ : ~ 4 5 I

1--- I 1--- i 1--- I I --- I 1--- I 1--- I 1-
1---1 1-0-----1 1-0-----1-0-----1

1-0-----1 1-0-----1-0-----1
1---------------------------------------1
1---------------------------------------1 i-------I 1-------1-------1

Innnnnnni 1-------1
O. The WRITE_BLOCKcyc1e begins. NVAX. Plus places the address of the block on adr_h. NVAX.

Plus places the longword valid masks on c~"Mask_h. NVAX Plus only write a single octaword
at a time, thus c"W:Mask[7:4] = '0000 if adr_h[4] = '0 or c\VMask[3:0] = '0000 if adr_h[4] =
'1. The dWsel_h from EV are. not needed as NVAX. Plus drives the same octaword at the
assertion of dOE_I.

1. NVAX. Plus places the ~TR.lTE_BLOCK command code on cReq_h. The external logic detects
the command at the end of this cycle.

2. The external logic detects the command, and asserts dOE_l to tell NVAX. Plus to drive the 16
bytes of data of the block onto the data bus. Since NVAX Plus only writes a single octaword
the write_block .can be cAck in the same cycle in which is driven. Systems which choose
to handle v.'l"ite_blocks the same for EVAX. and NVAX. Plus will continue the sequence with
NVAX. Plus driving out the same octaword of data. 1\TVAX Plus continues to drive the data in
the system cycle following cack (if dOE_I) providing data hold time. Although a single stall
cycle has been shown here, there could be no stall cycles, or many stall cycles.

3. If the external logic asserts dOE_l a second time to tell NVAX Plus to drive a second 16 bytes
of data onto the data bus the same octaword is driven.

4. The external logic places an acknowledge code on cAck_h to tell NVAX Plus that the 'WRlTE_
BLOCK cycle is completed. NVAX. Plus detects the acknowledge at the end oftrus cycle. NVAX
Plus holds the address till the cAck is recognized by the ARB sequencer and a subsequent
bus operation is dispatched.

5. Everything is idle.

Note that this picture did not mention the external caches. NVAX Plus drove all of the external
cache control signals false when it placed the WRITE_BLOCK command on the cReq_h outputs.
The external logic controls the updating of cache.

NVAX Plus performs ECC generation (or parity generation) on data it drives onto the data bus.
The check_h lines remain tristated for ttpv' systems.

3-22 Exterhal Interface DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

3.4.8 LDxL Transaction

An LDxL transaction appear8 at the external interlace as a result of a READ_LOCK micro­
instruction or byte/word write which misses in the BCache being executed. The external cache
is not probed.

Sj~S_CLK Cycl~

svsClkOut h
Bctr_h -
dst.!._h
c:hec:k_h
cF<eCZ_h
cv/Masy._h
dRAcy._h
CAck_h

1 123
1--- I 1--- I 1--- " 1--- I I --- I 1--- 1 1-1---------------··-------------------------------I

1-0-----1 1-1-----1
1-0-----1 I-l----~I 1--------------_··_----------------------1

I-----------~---------------------------I 1-------1 1-------1
1-------1

O. The LDxL cycle begins. NVAX Plus places the address of the block containing the data on
adr_h. NVAX Plus places the quadword-within~block and the ltD indication on cWMask_h.
LDxL cycles for byte/word writes indicate I so that system logic does not enter the block into
the backmap. 1\TVAX Plus places a LDxL command code on cReCl-h. The external logic detects
the command at the end of this cycle.

1. The external logic obtains the first 16 bytes of data. Although a single stall cycle has been
shown here, there could be no stall cycles, or many stall cycles.

2. The external logic has the first 16 bytes of data. It places it on the data_h and check_h busses.
It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid. NVAX
Plus detects dRAck_h at the end of this cycle, and read in the first 16 bytes of data at the
same time.

3. The external logic obtains the second 16 bytes of data. Although a single stall cycle has been
shown here, t}:lere could be D:o stall cycles, or many stall cycles.

4. The external logic has the: second 16 bytes of data. It places it on the data_h and check_h
busses. It asserts dRAck_h to tell NVAX Plus that the data and check bit busses are valid.
NVAX Plus detects dRAck._h at the end of this cycle, and read in the second 16 bytes of data
at the same time. In addition, the external logic places an acknowledge code on cAck_h to
tell NVAX Plus that the LDxL cycle is completed. NVAX Plus detects the acknowledge at the
end of this cycle, the address holds while the data is either being loaded to Poache or merged
for a STxC to complete the byte/word write sequence.

5. Everything is idle.

Note that with the exception of the command code output on the cReq pins, the LDxL cycle is the
same as a READ_BLOCK cycle.

3.4.9 STxC Transaction

An STxC transaction appears at the external interface as a result of a WRITE_UNLOCK micro_
instruction or byte/word write in which the initial read probe missed in the BCache. The external
cache is not probed.

DIGITAL CONFIDENTIAL External Interface 3-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

SYS_CLK Cycle
svsClkOut h
ad!" h -
dats_h
checy._h(not PVi
cReo __ h
cWMasy. h
dOE_l -
c:ACk_h

I 0 I 2 I 3 I I S I
1--- I 1--- I I --- I I --- 1 I --- I I --- I 1-
1---1

1-0-----1 1-0-----1-0-----1
1-0-----1 1-0-----1-0-----1

i---------------------------------------I
1---------------------------------------1 1-------1 1-------1-------1

Innnnnnni 1-------1

O. The STxC cycle begins. NVAX Plus places the address of the block on adr_h. NVAX Plus
places the longword valid masks on c WMask_h. NVAX Plus places an STxC command code
on cReq_h. The external logic detects the command at the end of this cycle.

1. The external logic detects the command, and asserts dOE_l to tell NVAX Plus to drive the 16
bytes of the block onto the data bus.

2. NVAX Plus drives 16 bytes of write data onto the data_h and check_h busses, and the external
logic writes it into the destination. Since NVAX Plus only writes a single octaword the write_
block can be cA.ck in the same cycle in which is driven. Systems which choose to handle
write_blocks the same for EVAX and NVAX Plus will continue the sequence with NVAX Plus
driving out the same octaword of data. NVAX Plus continues to drive the data in the system
cycle following cack (if dOE_I) providing data hold time. Although a single stall cycle has
been shown here, there could be no stall cycles, or many stall cycles.

3. The external logic asserts dOE_l and dWSel_h to tell NVAX Plus to drive the second 16 b~s
of data onto the data bus. NVAX continues to drive the same octaword of data. The cWMask_
h output indicates which octaword contains the write data.

4. NVAX Plus drives the same octaword of write data onto the data_h and check_h busses, and
the external logic writes it into the destination. Although a single stall cycle has been shown
here, there could be no stall cycles, or many stall cycles. In addition, the external logic places
an acknowledge code on cA.ck_h to tell NVAX Plus that the STxC cycle is completed. NVAX
Plus detects the acknowledge at the end of this cycle. NVAX Plus holds the address till the
cA.ck is recognized by the ARB sequencer and a subsequent bus operation is dispatched.

5. Everything is idle.

Note that with the exception of the code output on the cReq pins, and the fact that external logic
has the option of making the cycle fail by using a cA.ck code of STxC_FAIL, the STxC cycle is the
same as the WRITE_BLOCK cycle.

3.4.10 BARRIER Transaction

NVAX Plus does not generate the BARRIER transaction.

3.4.11 FETCH Transaction

NVAX Plus does not generate the FETCH transaction.

3.4.12 FETCHM Transaction

NVAX Plus does not generate the FETCHM transaction.

3-24 External Interface DIGITAL CONFIDENTIAL

NVAX Plus C:PU Chip Functional Specification, Revision 0.3, October 1991

3.5 Summary of NVAX Plus options

The l\TVAX Plus chip can be used in system platforms intended for the EV processor chip (LASER,
COBRA., Flamingo). In addition NVAX Plus has an optional mode "PV" for use in systems in which
NVAX Plus is a replacement for the Mariah CPU. This section summarizes the key features which
are implemented by the NVAX Plus chip pertaining to system eonfiguration.

3.5.1 System Clock Divisors

The sysClkOut period, the number of CPU cycles per sysCl~Out cycle, is determined from IRQ
fines at reset.

• 2X
• 3X ASYMMETRIC (COBRA)

• 4X SThfMETRIC CLOCK >40NS PERIOD FOR FLAMINGO

3 .. 5.2 Cache Access

. The Cache access time can be set to 2,3, OR 4 CPU cycles, from BIU_CTL<BC_SPD>.

3.5.3 Flamingo 1/0 Addres:s Mapping

1/0 space addresses can be mapped to Flamingo 'sparse' and 'dense' space by setting BIU_
CTL[WS_I 0 J.

3.5.4 Direct Mapped Pcache

The NVAX Plus chip can support a two-way set associative or direct-mapped Pcache as selected
from BIU_CTL<PCACHE_MODE>. This allows systems to backmap the Pcache exactly as the
Dcache for EV by selecting the direct-mapped option. When the direct-mapped option is selected
allocate to a Pcache bank are based on address<12> instead of allocate bit. To support the direct­
mapped option the MBOX allocates fills to the bank Pcache bank selected by the Miss latch
latch for two-way associative operation and address<12> for direct-mapped oper,ation. In direct·
mapped mode the CBOX sends an invalidate request to the MBOX for bank 0 if iAdr<12> = 0,
and sends an invalidate request to the MBOX for bank 1 if iAdr<12> = 1.

ad.r<33:32> for I/O space refE~rences is selected from BIU_CTL<14:13>. I/O space for LASER
systems requires adr_h<33:32>=11, for COBRA systems adr_h<33:32>=10, and for Flamingo sys­
tems adr_h<33:32>=Ol. The BIU_CTL register field allows for 10 space mapping of different
systems.

DIGfTAL CONFIDENTIAL External lnterface 3-25

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

3.5.6 OW I/O WRITES/MTPR MAILBOX

Writes to the LMBPR require more than 32 bits, i.e. bits <39:32> = 00000000. In order to pack
more than a longword to an I/O space a "pack_even_for_1I0" function can be enabled by writing
to IPR B8. This function can be disabled by a subsequent write to IPR B9. For the MTPR
:MAILBOX instruction, the write to the LMBPR is done under microcode control. iPR B8 is
written to enable to I/O space quadword packing. Two longwords which make up the ME_AD DR
(address of mailbox data structure) are then written. IPR B9 is written to clear the 110 packing
function.

The 110 pack function can be enabled with a MTPR B8 and can be disabled with a MTPR B9. For
writes to 110 space other than to the LMBPR where a quadword write is required (e.g. COBRA
systems) use the following macrocode sequence while in kernel mode.

• MFPR #PR$_IPL,-(SP)

• MTPR #31,#PR$_IPL

• MTPR #O,enable_io_pack

• MOVQ R,y
• MTPR #O.disable_io_pack

• MTPR (SP)+,#PR$_IPL

The followi;ng restrictions need to be met to write quadword 10.

1. The source mode for the MOVQ to 10 space transaction must be register
2. The MOVQ and MTPR B9 must be aligned to a 32-byte block

3. The MOVQ destination must be quadword aligned
4. The page where the quadword I/O is to be written cannot encounter an AC'V or TNV memory

management exception. (A TB miss is allowed)

3.5.7 OW I/O READS

For systems which contain quadword CSRs (Control Status Register) in I/O space (COBRA), a single
quadword read is necessary in order to obtain consistent data for the CSR. When **BIU_CTL<QW_
IO_RD> = 1** ,

1. a the high_LW register is loaded with data<63:32> of any I/O read
2. 110 reads with address<2> = '1 (not QW aligned) are converted to an IPR_RD of the high_LW

register and data returns on dat<31:0>

3.5.8 PV mode

PV mode supports write-through caching and byte writes.

Write-through caching is supported by having writes not write Bcache directly.

• the ARB sequencer dispatches directly to 'SYS_ WR' if "PV' mode
• check_h<27:0> output drivers remain tristated for writes, parity/ecc not needed on "PV'

writes; PV system logic must generate byte parity.

3-26 External Interface DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0 .. 3, October 1991

PV mode supports byte writes, c'WMask_h drives the byte mask instead of a longword mask.

• dataA_h<3> indicates for which QW the cWlv.task_h lines are the byte mask
• data \VE<1:0> contain byte mask informatiom for the QW not addressed by dataA_h<3>

Other features of PV mode

• on reads combine byte p.arity on check bits into LW parity, by providing xor tree for 4 check
bits for each LW being input, for conversion into single LW parity bit

• address<2> ->c'WMask<S>; needed to specify 10 space read addresses to the LW
• dataA_h[4J tristates on read_blockILD_LK enabling PV system to control octaword address

for Bcache fills.
• PV systems can respond to 110 space reads with a single dRack provided cAck is also sent at

the same sysClkOut

• supports byte/word write to I/O space within same LW address

3.6 Revision History

Table 3-11: Revision Htstolry

'Who

Gil Wolrich

Gil Wolrich

Gil Wolrich

Gil Wolrich

When

15-Nov-1990

15-Jan-1991

S-Apr-1991

l-Aug-1991

DIGITAL CONFIDENTIAL

Description of change

NVAX PLUS release for external review.

Remove Vector references/update.

Include PV options/update.

update.

External Intertace 3-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 4

. Chip Overview

4.1 NVAX Plus CPU Chip E~ox and Section Overview

The NVAX Plus CPU Chip is a single-chip CMOS-4 macropipelined implementation of the base
instruction group, and the optional vector instruction group of the VAX architecture. Included in
the chip are:

• CPU: Instruction fetch and decode, microsequencer, and execution unit
• Control Store:· 1600, 61··bit microwords
• Primary Cache: 8 KB, :z..way set associative, physicallyaaddressed, write through, mixed

instruction and data strealIl
• Instruction Cache: 2 KJ8, clirectamapped, virtUally addressed, instruction stream only

• Translation Buffer: 96 .~ntries, fully associative
• Floating Point: 4 stage, pipelin~, integrated floating point unit
• .EDAL Interface: Support for six cache sizes (4MB, 2MB, 1MB, 512KB, 256KB, 128KB),

and four RAM speeds.

The NVAX chip is designed in CMOS-4 with a typical cycle time of 14 ns, and with the option of
running chips at a slower or faster cycle time. The chip can be incorporated into many different
system environments, ranging from the desktop to the midrange, and from single processor to
multiprocessor systems.

The: NVAX is a macropipelineci design.: it pipelines macroinstruction decode and o-perand fetch
with macroinstruction execution. Pipeline efficiency is increased by queuing up instruction infor­
mation and operand values for later use by the execution unit. Thus, when the macropipeline is
running smoothly, the Ibox (instruction parser/operand fetcher) is running several macroinstruc­
tions ahead of the Ebox (execut.ion unit). Outstanding writes to registers or memory locations are
kept in a scoreboard to ensure that data is not read before it has been written. See Chapter 5
for a more in-depth discussion of the macropipeline.

This chapter gives an overview of the different sections, or "boxes", that comprise the NVAX Plus
CPU. For more information on any of the boxes, please see the appropriate chapters within this
specification. Figure 4-1 is a block diagram of the boxes, and the major buses that run between
them.

DIGfTAL CONFIDENTIAL Chip C)verview 4-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 4-1: NVAX Plus CPU Btock Diagram

IBOX

E%IBOX 1,1.. BUS
I%IBOX IW BUS H. E%80 ~TI'F!E' R
1°;'OPEF\;\ND:eus~ E°;.OO:FlETlFlE·,)1

~%MD_BUS_H

"---- USEO

"........-l"--l,
~ MBOX J

EO""ABUS HL_--r~....J-1
E%BBUS_"J.<

FBOX IBOX

CBOX 1 __ _

I

NDAL. __ --.1. __ _

4.1.1 The Ibox

The Ibox decodes VAX.. instructions and parses operand specifiers. Instruction control, such as
the control store dispatch address, is then placed in the instruction queue for later use by the
Microsequencer and Ebox. The Ibox processes the operand specifiers at a rate of one specifier per
cycle and, as necessary, initiates specifier memory read operations. All the information needed
to access the specifiers is queued in the source queue and destination queue in the Ebox.

The !box prefetches instruction stream data. into the prefetch queue (PFQ) , which can hold 16
bytes. The !box has a dedicated instruction· stream-only cache, called the virtual instruction cache
(VIC). The VIC is a 2 KB, with a block and fill size of 32 bytes.

The !box has both read and write ports to the GPR and MD portions of the Ebox register file
which are used to process the operand specifiers. The !box maintains a scoreboard to ensure that
reads and writes to the register file are always performed in synchronization with the Ebox.. The
Ibox stops processing instructions and operands upon issuing certain complex instructions (for
example, CALL, RET, and character string instructions). This is done to maintain read/write
ordering when the Ebox will be altering large amounts of VAX.. state.

4-2 . Chip Overview DIGITAL CONFIDENTIAL

NVAX Plus C:PU Chip Functional Specification, Revision 0.8, October 1991

Since the Ibox is often parsing several macroinstructions ahead of the Ebox, the correct value
for the PSL condition codes is not known at the time the Ibox executes a conditional branch
instruction. Rather than emptying the pipe, the Ibox predicts which direction the branch will
take, and passes this infOrIIlation on to the Ebox via the branch queue. The Ebox later signals
if there was a misprediction., and the hardware backs out of the· path. The branch prediction
algorithm utilizes a 512-entry RAM, which caches four bits of branch history per entry.

4.1.2 The Ebox and Micrc)sequencer

l'be Ebox and MicrosequenCE!r work together to perform the actual "work" of the VAX instructions.
Together they implement a four stage micropipelined unit, which has the ability to stall and to
microtrap. The Ebox and Microsequencer dequeue instruction and operand information provided
by the Ibox via the instruction queue, the source queue, and the destination queue. For literal type
operands, the source queue Icontains the actual operand value. In the case of register, memory,
a.nd immediate type operands, th~ source queue holds a pointer to the data in t.he Ebox register
file. The contents of memory operands are provided by the Mbox based on earlier requests from
the Ibox. GPR results are written directly back to the register file. Memory results are sent to
the Mbox, where the data will be matched with the appropriate specifier address previously sent
by the Ibox. At times, the Ebox initiates its own memory reads and writes using E%VA_BUS and
E%WBUS.

The Microsequencer determines the next microword to be fetched from the control store. It
then provides this cycle-by-cycle control to the Ebox. The Microsequencer allows for eight-way
microbranches, and for microsubroutines to a depth of six.

'Ihe Ebox'contains a five-port register file, which holds the VAX GPRs, six Memory Data Registers
(MDs), six microcode working registers, and ten miscellaneous CPU state registers. It also con­
tains an ALU, a shifter, and the VAX PSL. The Ebox uses the RMux, controlled by the retire
queue, to order the completion of Ebox and Fbox instructions. As the Ebox and the Fbox are
distinct hardware resources, there is some amount of execution overlap allowed between the two
units.

The Ebox implements specia.lized hardware features in order to speed the execution of certain
VAX instructions: the population counter (CALLx, PUS Em, POPR), and the mask processing unit
(CALLx., RET, FFx, PUSHR, POPR). The Ebox also has logic to gather hardware and software
interrupt requests, and to notify the Microsequencer of pending interrupts.

4.1.3 The Fbox

The Fbox implements a four staged pipelined execution unit for the floating point and integer
multiply instructions. Operands are supplied by the Ebox up to 64 bits per cycle on E%ABUS and
E%BBUS. Results are returned to the Ebox 32 bits per cycle on F%RESULT. The Ebox is responsible
for storing the Fbox result in memory or the GPRs.

DIGfTAL CONFIDENTIAL Chl'p Overview 4-3

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

4.1.4 The Mbox

The Mbox receives read requests from the Ibox (both instruction stream and data stream) and
from the Ebox (data stream only). It receives write/store requests from the Ebox; Also, the Cbox
sends the Mbox fill data and invalidates for the Pcache. The Mbox arbitrates between these
requesters, and queues requests whlch cannot currently be handled. Once a request is started,
the Mbox performs address translation and cache lookup in two cycles, assuming there are no
misses or other delays. The two-cycle Mbox operation is pipelined..

The Mbox uses the translation buffer (96 fully associative entries) to map virtual to physical
addresses. In the case of a TB miss, the memory management hardware in the Mbox will read
the page table entry and fill the TE. The Mbox is also responsible for all access checks, TNV
checks, M-bit checks, and quadword unaligned data processing.

The Mbox houses the Primary Cache (Pcache). The Pcache is aKB, writethrough, with a block
and fill size of 32 bytes.

The Pcache can be configured at reset to be either direct mapped or 2-way set associative.

The Pcache state is maintained as a subset of the Backup Cache. System logic, possibly using
backmaps, is responsible for insuring the Pcache is maintained as a subset of the Backup Cache.

The Mbox ensures that Ibox specifier reads are ordered con-ectly with respect to Ebox specifier
stores. This memory "scoreboarding" is accomplished by using the PA queue, a small list of
physical addresses which have a pending Ebox store.

4.1 .. 5 The Cbox

The Cbox initiates access to the second level cache (the Backup Cache, or Bcache), and issues
memory requests. Both the tags and data for the Bcache are stored in off-chip RAMs. The size and
access time pf the Bcache R.Alv.1s can be configured as needed by different system enVironments.
The Bcache sizes supported are 4 ME, 2 ME, 1 ME, 512 KB, 256 KB, and 128 KB. System logic
is responsible for BCache tills and coherency functions. The Cbox packs sequential writes to the
same octaword in order to minimize Bcache write accesses. Multiple write commands are held
in the eight-entry 'VRITE_QUEUE.

4.1.6 Major Internal Buses

This is a list of the major interbox buses:

• Bo/d36_DATA:
This bidirectional bus between the Cbox and MBox is used to transfer write data to the backup
cache, to to transfer fill data to the primary cache.

• C%CBOx..ADDR:
This bus is used to transfer the physical address of a Pcache invalidate from the Cbox to the
MBox.

• Eo/cABUS, E%BBUS:
These two 32-bit buses contain the A- and B-port operands for the Ebox, and are also used
to transfer operand data to the Fbox.

• E%mOX_IA...BuS:·
This bus is used by the Ibo~ to read the Ebox Register File in order to perform. an operand
access . .An example is to read a register's contents for a register deferred type specifier.

4-4 Chip Overview DIGITAL CONFIDENTIAL

4.2

•

•

•

•

•

e'

•

•

•

•

•

•

•

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

E%DQ..,RETIRE*:

This collection of related buses transfers information from the Ebox to the Ibox when a des­
tination queue entry is retired.
E%SQ..,RETIRE*:

This collection of related buses transfers information from the Ebox to the Ibox when a source
queue entry is retired.
E%V~BUS:

This bus transfers an addr~~ss from the Ebox to the MBOx.

E%WBUS:
This 32-bit bus transfers wcite data from the RMUX to the register file and the Mbox.
E_USQ..,CSMo/clMIB:

This bus carries Control Store data from the Microsequencer to the Ebox.
E_BUS%UTEST:

This 3-:bit bus transfers mic:robranch conditions from the Ebox to the microsequencer.
F%RESULT:
This bus is used to transfer results from the Fbox to the Ebox.
I%mOX":ADDR:
This bus transmits the virtual addres~ of an Ibox memory reference to the Mbox-. The address
may be for instruction prefE~tch or an operand access.
I%IQ..,BUS:

This bus carries instruction information from the Ibox to the Instruction Queue in the
Microsequencer.
I%mOX_IW _BUS:

This bus is used by the Ibox to write t~e Ebox Register File for autoincrement/decrement type
specifiers and to deliver imlnediate operands to the Register File.
IO/oOPERAND_BUS:

This bus transfers information from the Ibox to the source and destination queues in the
Ebox.
M%MD_BUS:

The bus returns right-justified memory read data from the Mbox to either the Ibox (64 bits)
or the Ebox (32 bits).
M%S6_PA:

This bus transfers the addr.~ss for a backup cache reference from the MBox to the Cbox.

Revision History

Table 4-1: ReviSion History

Who

Debra Bernstein

Mike Uhler

Gil Wolrich

When

06-Mar-1989

18-Dec-1989

15-Nov-1990

Description of change

Release for external review.

Update for second-pass release.

Update for NVAX Plus external release.

DIGITAL CONFIDENTIAL Chip Overview 4-5

NVAX Plus C:PU Chip Functional Specification, Revision 0.3, October 1991

Chapter 5

Macroinstruction and Microinstruction Pipelines

5.1 Introduction

This chapter discusses the a.rchitecture of the NVAX Plus CPU macroinstruction and microin­
struction pipeline. It includes a section of general pipeline fundamentals to set the stage for the
specific NVAX Plus CPU implementation of the pipeline. This is followed by an. overview of the
NVAX Plus CPU pipeline, an examination of macroinstruction execution, and a mscussion of stall
and exception handling from the viewpoint of the Ebox.

5.2 Pipeline Fundamentals

This section discusses the fundamentals of instruction pipelining in a general manner that is
independent of the NVAX Plus CPU implementation. It is intended as a primer for those readers
who do not understand the concept and implications of instruction pipelining. Readers familiar
with this material are encouI'~ged to skip (or at most skim). this section.

5.2.1 The Concept of a Pilpeline

The execution of a VAX mac:roinstruction involves a sequence of steps which are carried out
in order to complete the macroinstruction operation. Among these steps are: instruction fetch,
instruction decode, specifier evaluation and operand fetch, instruction execution, and result store.
On the simplest machines, these steps are carried out sequentially, with no overlap of the steps,
as shown in Figure 5-1.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-1

NVAX Plus CPU Chip Functional Specificatio~ Revision 0.3, October 1991

Figure 5-1: Non-Pipellned instruction Execution

--------------- Time --------------->
~--------------------.

Ins~ruction 1 IS015115:IS31S41551S61

+--------------------+
+--------------------+

Ins~ruction : IS01511S21531S41S51S61

+--------------------~
~--------------------4 Inst.ruction 3 IS01511521531S41551S61

.--------------------~

In this diagram, "SO", "82", ... , "86" denote particular steps in th~ execution of an instruction.
For this simple scheme, all of the steps for one instruction are performed, and the instruction is
completed, before any of the steps for the next instruction are started.

In more complex machines, one or more steps of the execution process are carried out in parallel
with other steps. For example, consider Figure 5-2.

Figure 5-2: Partlalty·PlpeUned Instruction execution

--------------. Time ------------~-->

+--------------------+
Innruc..ion 1 I SO I 51 1 S2 1531 S4 1551561

Inst.ruction :2

Instruction :;

+--------------------+ +--------------------.
ISOlSl1S2lS31S41551S61

+--------------------+
+--------------------+
ISOl511521S31541551S61

+--------------------~

In this example, step 86 of each instruction is overlapped in time (or executed in parallel) with
step 80 of the next instruction. In doing so, the number of instructions executed per unit time
(instruction throughput) goes up because an instruction appears to take less time to complete.

In the most complex machines, most-(or all) of the steps are executed in parallel as indicated in
Figure 5-3.

5-2 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

:NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

Figure 5-3: Fully-Pipellned Instruction Execution

--------------- Ti,rne --------------->
..,.-----------------,----+

Instruction 1 1 SO I 51152 1531 541 s:~, 1561

Instruetion :2

Instruct-ion 3

Ins'Crue-:ion "

Instruct.ion 5

+-----------------,---of.
.--------------------+
ISOl511521531S41551S61

+---------------------+
+---------------------+ ISOIS1lS21S31541S51561'

+---------------------+ +--------------------+
1501511521531S41551561

+---------------------+
+--------------------~
1501511521531S41551561

+---------------------+

In this example every step of instruction execution is performed in parallel with every other step.
This means that a new instruction is started as soon as step SO is completed for the previous
instruction. If each step, SO .. SE), took the same amount of time, the apparent instnlction through·
put would be seven times greal ter than that of Figure 5-1 above, even though each instruction
takes the same amount of time to execute in both cases. .

Figures 5-2 and 5-3 are exa:mples of the concept of instruction pipelining, in which one or
more steps necessary to execu.te an instruction are performed in parallel with steps for other
instructions.

5.2.2 Pipeline Flow

A real-world form of a pipeline is an automobile assembly line. At each station of the assembly
line (called segments of the pipeline in our case), a task is performed 'on the parti,ally completed
automobile and the result is passed on to the next station. At the end of the assembly line, the
automobile is complete.

In an instruction pipeline, as i:n an assembly line, each segment is responsible for performing a
task and passing the completed result to the next segment. The exact task to be performed in
each pipeline segment is a fum::tion of the degree of pipelining implemented and the complexity
of the instruction set.

One attribute of an automobile assembly line is equally important to an instruction pipeline:
smooth and continuous flow. An automobile assembly line works well because the tasks to be
performed at each station take about the same amount of time. This keeps the line moving at a
constant pace, with no starts and stops which would reduce the number of completed automobiles
per unit time.

An analogous situation exists in an instruction pipeline. In order to achieve real efficiency in
an instruction pipeline, inform.ation must flow smoothly and continuously from the start of the
pipeline to the end. If a pipeline segment somewhere in the middle is not able to supply results
to the next segment of the pipeline, the entire pipeline after the offending segment must stop, or
stall, until the segment can supply a result.

In the general case, a pipeline stall results when a pipeline segment can not supply a result to
the next segment, or when it can not accept a new result from a previous segment.

DIGfTAL CONFIDENTIAL Macroinstruetlon and Microinstruction Pipelines 5-3'

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

This is a fundamental problem with most instruction pipelines because they occasionally (or not
so occasionally) stall. Stalls result in decreased instruction throughput because the smooth flow
of the pipeline is broken.

A typical example of a pipeline stall involves memory reads. A simple three-segment pipeline
might fetch operands in segment 1, use the operands to compute results in segment 2, and make
memory references or store results in segment 3, as shown in Figure 5-4.

Figure 5-4: Simple Three-Segment Pipeline

.-----------~ .-----------~ +-----------+
1 Operand 1-> 1 Computation 1->1 Memory
1 Access 1 1 1 1 Read

+-----------. .-----------~ ------------~

Figure 5-5 illustrates what happens when the pipeline control wants to use the result of the
memory read as an operand.

Figure~: tnformation Ftow Against the Pipeline

~-----------* ~-----------~ .-----------+
!1 ! Operand 1-> 1 Computation 1->1 Memor:y 1----..

1 Access 1 1 1 1 Read 1 1

+-----------~ +-----------* ~--~--------~ I

.-------------------------------------~
1 +-----------.. ------------.. +-----------+

!2 +---->1 Operand 1-> 1 computation 1->1 Result
1 Access! 1 1 Store
~-----------~ ... -----------... .,.------------+.

In this case, the operand access segment. of 12 can not supply an 'operand to the computation
segment because the memory read done by 11 has not yet completed. As a result, the pipeline
must stall until the memory read has completed. This is shown in Figure 5-6.

Figure 5-6: Stalls Introduced by Backward Pipeline Flow

+-----------* ~-----------~ +----~------+
Il 1 Operand 1->IComputationl->1 Memory 1----..

1 Access 1 1 1 1 Read 1 1

.-----------.. +-----------+ +-----------+ 1

+-------------------------------------~
+-----------~ +-----------~ +-----------*

12 +---->1 Stall 1->1 S~all 1->1 Stall
1 1 1 1 1

1 +-----------+ +-----------.. +-----------..
1 +-----------.. +-----------.. +-----------.. 12 +------------------->1 Stall 1->1 Stall 1->1 Stall
1 1 1 1 1 I
1 +-----------+ +-----------.. +-----------+
1 +-----------.. +-----------+ +-----------+

!2 +----------------------.------------> 1 Operand 1-> I Computation 1-> 1 Result.
1 Access 1 1 1 1 Store
+-----------+ +-----------+ +-----------+

5-4 Macrolnstructio'n and Microinstruction Pipelines DIGITAL CONFIDENTIAL

,

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

In this diagram, the memory read data from II is not available until the read request passes
through segment 3 of the pipeline. But the operand access segment for 12 wants the data im­
mediately. The result is that the operand access segment of 12 has to stall twice: waiting for the
memory read data to becomE~ available. This, in turn, stalls the rest of the pipeline segments
after the operand access segnlent.

This situation is an excellent example of an age-old problem with instruction pipelining. The
natural and desired direction of information :flow in a pipeline is from left to right in the above
diagrams. In this case, information must flow from the output of the memory read segment into
the operand access segment. This requires a right-to-left movement of information from a later
pipeline segment to an earlier one. In general, any information transfer which goes against the
normal flow of the pipeline has the potential for causing pipeline stalls.

5.2 .. 3 Stalls and Exceptions in an Instruction Pipeline

Even the best pipeline design must be prepared to deal with stalls and exceptions created in the
pipeline. As mentioned above, a stall is a condition in which a pipeline segment can not accept
a new result from a previous segment, or can not send a result to a new segment. An exception
occurs when a pipeline segmemt detects an abnormal condition which must stop, and then drain
the pipeline. Examples of exceptions are: memory management faults, reserved operand faults,
and arithmetic overflows. One of the inherent costs of a pipelined implementation is the extra
logic necessary to deal with stalls and exceptions.

There are two primary considerations concerning stalls: what action to take when one occurs,
and how to minimize them in the first place. The design of most instruction pipelines assumes
that the pipeline will not stall, and handles the stall condition as a special case, rather than
the other way around. This Ineans that each segment of the pipeline performs its function and
produces a result each cycle. If a stall occurs just before the end of the cycle, the segment must
block global state updates .and repeat the same operation during the next cycle. The design of
the pipeline control must tak,e this into account and be prepared to handle the condition.

A common stall condition occ:urs when each pipeline segment has the same average speed, but
different peak speeds. For el~mple, a pipeline segment whose task is to perform both memory
references and register result stores may take longer to perform memory references than result
stores. This can cause earlier segments of the pipeline to stall because the segment can not
ta.ke new inputs as fast if it is doing a memory reference rather than a result store. A common
technique to minimize this p:roblem is to place buffers between pipeline segments, as shown in
Figure 5-7.

Figure 5-7: Butters Between Pipeline Segments

+------------t- +------0+ .,.----.. ------0+ +------0+ +------------t-
1 Operand 1-> 1 Esuffer 1-> 1 Comp\1tation 1-> 1 Esuffer 1-> 1 MeInory
1 Access 1 1 1 1 1 1 1 1 Read

+-----------+ +------+ +----.,------+ +------0+ +-----------+

By placing a buffer of sufficient depth between each segment of the pipeline, segments of differing
peak speeds can avoid stalls caused if the next segment is unable to accept a new result. Instead,
the result goes into the intet'-segment buffer and the next segment removes it from the buffer
when it needs it. Unfortunately, adding such buffers means that additional logic must also be
added to handle the buffer ful1/buffer empty conditions.

DIGITAL CONFIDENTIAL Macroinstruction and 'Microinstruction Pipelines 5-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The performance advantage of an instruction pipeline comes from the parallelism built into the
pipeline. If the parallelism is defeated by, for example, a stall, the advantage starts to drop. One
problem associated with pipelines is that they can provide '~umpy" performance. That is, two
similar programs may experience radically different performance if one causes many more stalls
(which defeat the parallelism of the pipeline) than the other.

Pipeline exceptions are different from stalls in that exceptions cause the pipeline to empty or
drain. Usually, everything that entered the pipeline before the point of error is allowed to com­
plete. Everything that entered the pipeline after the point of error is prevented from completing.
This can add considerable complexity to the pipeline control.

A larger problem occurs when the designer wants exceptions to be recoverable. Consider an
exception caused by a memory management fault. On the VAX., this condition can occur because
of a TB miss. The correct response to this fault is to read a PTE from memory, refill the TB, and
restart the request that caused the fault. This can add considerable complexity to the design.

5.3 NVAX Plus CPU Pipeline Overview

The remainder of this chapter discusses the NVAX Plus CPU pipeline, which is shown as a block
diagram in Figure 5-8. This is a high-level view of the CPU and abstracts many of the details.
For a more detailed view of the pipeline, users are encouraged to refer to the individual box
chapters in this specification.

The pipeline is divided into seven segments denoted as "SO" through "S6". In FigUre 5-8, the
components of each section of the CPU are shown in the segment of the pipeline in which they
operate.

The NVAX Plus CPU is fully pipelined and, as such, is most similar to the abstract example
shown in Figure 5-3. In addition to the overall macroinstruction pipeline, in which multiple
macroinstructions are processed in the various segments of the pipeline, most of the sections also
micro pipeline operations. That is, if more than one operation is required to process a macroin­
struction, the multiple operations are also pipelined within a section.

5.3.1 Normal Macroinstruction Execution

Execution of macroinstructions in the NVAX pipeline is decomposed into many smaller steps
which are the distributed responsibility of the various sections of the chip. Because the NVAX
Plus CPU implements a macroinstruction pipeline, each section is relatively autonomous, with
queues inserted between the sections to normalize the processing rates of each section.

5.3.1.1 The Ibox

The Ibox is responsible for fetching instruction stream data for the next instruction, decomposing
the data into opcode and specifiers, and evaluating the specifiers with the goal of prefetching
operands to support Ebox execution of the instruction.

5-6 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 5-8: NVAX Plus CPU Pipeline

DIGrTAL CONFIDENTIAL

M
Cf)

('II

Cf)

Cf)

Q
Cf)

-....----.,.....-~
~

Macroinstruction and Microinstruction Pipelines 5-7

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

The Ibox is distributed across segments SO through 83 of the pipeline, with most of the work
being done in 81. In SO, instruction stream data is fetched from the virtual instruction cache
MC) using the address contained in the virtual instruction buffer address register MBA). The
data is written into the prefetch queue (PFQ) and VIBA is incremented to the next location.

In segment 81, the PFQ is read and the burst unit uses internal state and the contents of
the IROM to select the next instruction stream component-either an opcode or specifier. This
decoding processing is known as bursting. Some instruction components take multiple cycles to
burst. For example, FD opcodes require two burst cycles: one for the FD byte, and one for the
second opcode byte. Similarly, indexed specifiers require at least two burst cycles: one for the
index byte, and one or more for the base specifier.

When an opcode is decoded, the information is passed to the issue unit, which consults the IROM
for the initial Ebox control store address of the routine which will process the instruction. The
issue unit sends the address and other instruction-related information to the instruction queue
where it is held until the Ebox reaches the instruction.

When a specifier is decoded, the information is passed to the source and destination queue allo­
cation logic and, potentially, to the complex specifier pipeline. The source and destination queue
allocation logic allocates the appropriate number of entries for the specifier in the source and
destination queues in the Ebox. These queues contain pointers to operands and results, and are
discussed in more detail below.

If the specifier is not a short literal or register specifier, which are collectively known as simple­
specifiers, it is considered to be a complex specifier and is processed by the small microcode­
controlled complex specifier unit (eSU), which is distributed in segments 81 (control store access),
82 (operand access, including register file read), and 83 (ALU operation, Mbox request, GPR
write) of the pipeline. The esu pipeline computes all specifier memory addresses, and makes
the appropriate request to the Mbox for the specifier type. To avoid reading or writing a GPR
which is interlocked by a pending Ebox reference, the esu pipeline includes a register scoreboard
which detects data dependencies. The esu pipeline also provides additional help to the Ebox by
supplying operand information that is not an explicit part of the instruction stream. For example,
the PC is supplied as an implicit operand for instructions that require it (such as BSBB).

The branch prediction unit (BPU) watches each opcode that is decoded looking for conditional
and unconditional branches. For unconditional branches, the BPU calculates the target PC and
redirects PC and VIBA to the new path. For conditional branches, the BPU predicts whether
the instruction will branch or not based on previous history. If the prediction indicates that the
branch will be taken, PC and VIBA are redirected to the new path. The BPU writes the conditional
branch prediction flag into the branch queue in the Ebox, to be used by the Ebox in the execution
of the instruction. The BPU maintains enough state to reStore the correct instruction PC if the
prediction turns out to be incorrect.

5.3.1.2 The Mlcrosequencer

The microsequencer operates in segment 82 of the pipeline and is responsible for supplying to
the Ebox the next microinstruction to execute. If a macroinstruction requires the execution of
more than one microinstruction, the microsequencer supplies each microinstruction in sequence
based on directives included in the previous microinstruction.

5-B Macroinstruction and Microinstruction Pipellnes DIGITAL CONFIDENTlAL

II

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

At macroinstruction boundaries, the microsequencer removes the next entry from the instruc­
tion queue, which includes the initial microinstruction address for the macroinstruction. If the
instruction queue is empty, the microsequencer supplies the address of a special no-op microin­
struction.

The microsequencer is also reisponsible for evaluating all exception requests, and for providing
a pipeline flush control signal to the Ebox. For certain exceptions and interrupts, the micros~
quencer injects the address of a special microinstruction handler that is used to respond to the
event.

5.3.1.3 The Ebox

The Ebox is responsible for executing all of the non-floating point instructions, for delivery of
operands to and receipt of results from the Fbox, and for handling non-instruction events such as
interrupts and exceptions. Th~= Ebox is distributed through segments 83 (operand access, includ­
ing register file read), S4 (ALU and shifter operation, Rmux request), and 85 (Rniux completion,
register write, completion of l\Irbox request) of the pipeline.

For the most part, instruction operands are prefetched by the Ibox, and addressed indirectly
through the source queue. The source queue contains the operand itself for short literal specifiers,
and a pointer to an entry in the register file for other operand types.

An entry in the field queue is n:lade when a field-type specifier entry is made into the source queue.
The field queue provides microbranch conditions that allow the Ebox microcode to determine if
a field-type specifier addressels either a GPR or memory. A microbranch on a valid field queue
entry retires the entry from the queue.

The register file is divided into four parts: the GPRs, memory data (MD) registers, working
registers, and CPU state registers. For register-mode specifiers, the source queue points to the
appropriate GPR in the registeir file. For other non-short literal specifier modes, the source queue
points to an MD register. The MD register is either written directly by the Ibox, or by the Mbox
as the result of a memory read generated by the Ibox.

The 83 segment of the Ebox pipeline is responsible for selecting the appropriate operands for the
Ebox and Fbox execution of instructions. Operands are selected onto Eo/oABUS and EO/oBBUS for
use in both the Ebox and Fbox.. In most instances, these operands come from the register file,
although there are other data path sources of non-instruction operands (such as the P8L).

Ebox computation is done by the ALU and the shifter in the S4 segment of the pipeline on
operands supplied by the 83 sE~gment. Control for these units is supplied by the microinstruction
which was originally supplied to the 83 segment by the microsequencer, and then subsequently
moved forward in the pipeline.

The 84 segment also contains the RMUX, whose responsibility is to select results from either
the Ebox or Fbox and perform the appropriate register or memory operation. The RMUX inputs
come from the ALU, shifter, an.d F%RESULT at the end of the cycle. The RMUX actually spans the
S41S5 boundary such that its C)utputs are valid at the beginning of the 85 segment. The RMUX
is controlled by the retire queue, which specifies the source (either Ebox or Fbox) of the result
to be processed (or retired) neJct. Non-selected RMUX sources are delayed until the retire queue
indicates that they should be processed.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-9

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

As the source queue points to instruction operands, so the destination queue points to the des­
tination for instruction results. If the result is to be stored in a GPR, the destination queue
contains a pointer to the appropriate GPR. If the result is to be stored in memory, the destination
queue indicates that a request is to be made to the Mbox, which contains the physical address of
the result in the PA queue (which is described below). This information is supplied as a control
input to the RMUX logic.

Once the RMlJX selects the appropriate source of result information, it either requests Mbox
service, or sends the result onto E%WBUS to be written back to the register file or to other data
path registers in the 85 segment of the pipeline. The interface between the Ebox and Mbox for
all memory requests is the EM_LATCH, which contains control information and may contain an
address, data, or both, depending on the type of request. In addition to operands and results that
are prefetched by the Ibox, the Ebox can also make explicit memory requests to the Mbox to read
or write data.

5.3.1.4 The Fbox

The Fbox is responsible for executing all of the floating point instructions in the VAX. base in­
struction group, as well as the longword-length integer multiply instructions.

For each instruction that the Fbox is to execute, it receives from the microsequencer the opcode
and other instruction-related information. The Fbox receives operand data from the Ebox on
Eo/aABUS and E%BBUS.

Execution of instructions is performed in a dedicated Fbox pipeline that appears in segment S4
of Figure 5-8, but is actually a minimum of three cycles in length. Certain instructions, such
as integer multiply, may require multiple passes through some segments of the Fbox pipeline.
Other instructions, such as divide, are not pipelined at all.

Fbox results and status are returned via F%RESULT to t'.tle RMUX in the Ebox for retirement.
When the instruction is next to retire, the RMUX hardware, as directed by the destination
queue, sends the results to either the GPRs for register destinations, or to the Mbox for memory
destinations.

5.3.1.5 The Mbox

The Mbox operates in the 85 and 86 segments of the pipeline, and is responsible for all memory
references initiated by the other sections of the chip. Mbox requests can come from the Ibox
(for VIC fills and for specifier references), the Ebox or Fbox via the RMUX and the EM_LATCH
(for instruction result stores and for explicit Ebox memory requests), from the Mbox itself (for
translation buffer fills and PTE reads), and from the Obox (for invalidates and cache fills).

All virtual references are translated to a physical address by the translation buffer (TB), which
operates in the 85 segment of the pipeline. For instruction result references generated by the
Ibox, the translated address is stored in the physical address queue (PA queue). These addresses
are later matched with data from the Ebox or Fbox, when the result is calculated.

For memory references, the physical address from either the TB or the PA queue is used to
address the primary cache (Pcache) starting in the 85 segment of the pipeline and continuing
into the 86 segment. Read data is available in the middle of the 86 segment, right-justified and
returned to the requester on M%MD_BUS by the end of the cycle. Writes are also completed by
the end of the cycle. Although the Pcache access spans the 85 and 86 segments of the pipeline,

. a new ac.cess can be started each cycle in the absence of a TB or cache miss.

5-10 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5.3.1.6 The Cbox

The Cbox is responsible for acc:essing the backup cache (Bcache), and for memory requests. The
Cbox receives input from the ~[box in the S6 segment of the pipeline, and usually takes multiple
cycles to complete a request. For this reason, the Cbox is not shown in specific pipeline segments.

If a memory read misses in the Pcache, the request is sent to the Cbox for processing. The Cbox
first looks for the data in the Bcache and fills the Pcache from the Bcache if the data is present.
If the data is not present in the Bcache, the Cbox requests a cache fill from the system:. When
the system returns the data, it is written to the Pcache (and potentially to the VIC). Although
Pcache fills are done by makin.g a request to the Mbox pipeline, data is returned to the original
requester as quickly as possible by driving data directly onto B%S6_DATA, and from there onto
M%MD_BUS as soon as the bus is free.

Because the Pcache operates a!s a write-through cache, all memory writes are passed to the Cbox.
To avoid multiple writes to the same Bcache block, the Cbox contains a write buffer in which
multiple writes to the same quadwords are packed. If possible two quadwords (an octaword) are
assembled together before the Bcache is actually written.

5.3.2 Stalls in the Pipeline

Despite our best attempts at keeping the pipeline fiowing smoothly, there are conditions which
cause segments of the pipeline to stall. Conceptually, each segment of the pipeline can be consid­
ered as a black box which performs three steps every cycle:

1. The task appropriate to the pipeline segment is performed, using control and inputs from the
previous pipeline segment. The segment then updates local state (within the; segment), but
not global state (outside of the segment).

2. Just before the end of the cycle, all segments send stall conditions to the appropriate state
sequencer for that segment, which evaluates the conditions and determines which, if any,
pipeline segments must stall.

3. If no stall conditions exist for a pipeline segment, the state sequencer allows it to pass results
to the next segment and accept results from the; previous segment. This is accomplished by
updating global state.

This sequence of steps maximizes throughput by allowing each pipeline segment to assume that
a stall will not occur (which should be the common case). If a stall does occur at the end of
the cycle, global state updates are blocked, and the stalled segment repeats the same task (with
potentially different inputs) in the next cycle (and the next, and the next) until the stall condition
is removed.

This description isover-simpli:fied in some cases because some globa1 state must be updated by a
segment before the stall condition is known. Also, some tasks must be performed by a segment
once and only once. These are treated specially on a case-by-case basis in each segment.

Within a particular section of the chip, a stall in one pipeline segment also causes stalls in all
upstream segments (those that occur earlier in the pipeline) of the pipeline. Unlike Rigel, stalls
in one segment of the pipeline do not cause stalls in downstream segments of the pipeline. For
example, a memory data stall in Rigel also caused a stall of the downstream ALU segment. In
NVAX Plus, a memory data stall does not stall the ALU segment (a no-op is inserted into the S4
segment when S4 advances to 85).

DIGITAL CONFIDENTlAL Macroinstruction and Microinstruction Pipelines 5-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

There are a number of stall conditions in the chip which result in a pipeline stall. Each is
discussed briefly below and in much more detail in the appropriate chapter of this specification.

5.3.2.1 SO Stalls

Stalls that occur in the SO segment of the pipeline are as follows:

Thox:

• PFQ full: In normal operation, the 'VIC is accessed using the address in VIBA, the data is
sent to the prefetch queue, and VIBA is incremented. If the PFQ is full, the increment of
VIBA is blocked, and the data is re-referenced in the VIC until there is room for it in the
PFQ. At that point, prefetch resumes.

5.3.2.2 S1 StaUs

Stalls 'that occur in the 81 segment of the pipelin~ are as follows:

Thox:

• Insufficient PFQ data: The burst unit attempts to decode the next instruction component
each cycle. If there are insufficient PFQ bytes valid to decode the entire component, the burst
unit stalls until the required bytes are delivered from the VIC.

• Source queue or destination queue full: During specifier decoding, the source and destination
queue allocation logic must allocate enough entries in each queue to satisfy the requirements
of the specifier being parsed. To guarantee that there will be sufficient resources available,
there must be .at least 2 free source queue entries and 2 free destination queue entries to
complete the burst of the specifier. If there are insufficient free entries in either queue,the
burst urrit stalls until free entries become available.

• MD file full: When a complex specifier is decoded, the source queue allocation logic must
allocate enough memory data registers in the register file to satisfy the requirements of the
specifier being parsed. To guarantee that there will be sufficient resources available~ there
must be at least 2 free memory data registers available to complete the burst of the specifier.
If there are insufficient free registers, the burst unit stalls until enough memory data registers
becomes available.

• Second conditional branch decoded: The branch prediction unit predicts the path that each
conditional branch will take and redirects the instruction stream based on that prediction. It
retains sufficient state to restore the alternate path if the prediction was wrong. If a second
conditional branch is decoded before the first is resolved by the Ebox, the branch prediction
unit has nowhere to store the state, so the burst unit stalls until the Ebox resolves the actual
direction of the first branch.

• Instruction queue full: When a new opcode is decoded by the burst unit, the issue unit
attempts to add an entry for the instruction to the instruction queue. If there are no free
entries in the instruction queue, the burst urrit stalls until a free entry becomes available,
which occurs when an instruction is retired through the RMlJX.

• Complex specifier unit busy: If the burst unit decodes an instruction component that must
be processed by the e8U pipeline, it makes a request for service by the esu through an Sl
request latch. If this latch is still valid from a previous request for service (either due to a
multi-cycle flow or a esu stall), the burst unit stalls until the valid bit in the request latch
is cleared.

5-12 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• Immediate data length not available: The length of the specifier extension for immediate
specifiers is dependent on the data length of the specifier for that specific instruction. The
data length information COInes from one of the Ibox instruction PLAs which is accessed based
on the opcode of the instruction. If the PLA aCGess is not complete before an immediate
specifier is decoded (which would have to be the first specifier of the instruction), the burst
unit stalls for one cycle.

5.3.2.3 S2 Stalls

Stalls that occur in the S2 seglnent of the pipeline are as follows:

!box:

• Outstanding Ebox or Fbo::s: GPR write: In order to calculate certain specifier memory ad­
dresses, the CSU must read the contents of a GPR from the register file. If there is a pending
Ebox or Fbox write to the register, the Ibox GPR scoreboard prevents the GPR read by stalling
the S2 segment of the CSU pipeline. The stall continues until the GPR write completes.

• Memory data not valid: For certain operations, the Ibox makes an Mbox request to return
data which is used to complete the operation (e.g., the read done for the indirect address of a
displacement deferred specifier). The Ibox MD register contains a valid bit which is cleared
when a request is made, and set when data returns in response to the request. If the Ibox
references the Ibox MD register when the valid bit is off, the S2 segment of the CSU pipeline
stalls until the data is retulTIled by the Mbox.

Microsequencer:

• Instruction queue empty: ~rhe final microinstruction of a macroinstruction e~ecution flow in
the Ebox is indicated when a SEQ.MUXlLAST.CYCLE* microinstruction is decoded by the mi­
crosequencer. In response t..o this event, the Ebox expects to receive the first microinstruction
of the next macroinstruction flow based on the initial address in the instruction queue. If the
instruction queue is empty, the Microsequencer supplies the instruction queue stall nricroin­
struction in place of the nE~ macroinstruction flow: In effect, this stalls the micro sequencer
for one cycle.

5.3.2.4 S3 Stalls

Stalls that occur in the 83 segment of the pipeline are as follows:

!box:

• Outstanding Ebox GPR read: In order to complete the processing for auto-increment, auto­
decrement, and auto-incre:ment deferred specifiers, the CSU must update the GPR with the
new value. If there is a pending Ebox read to the register through the source queue, the Ibox
scoreboard prevents the Gl?R write by stalling the 83 segment of the CSU pipeline. The stall
continues until the Ebox reads the GPR.

• Specifier queue full: For most complex specifiers, the CSU makes a request for Mbox service
for the memory request required by the specifier. If there are no free entries in the specifier
queue, the 83 segment of the CSU pipeline stalls until a free entry becomes available.

DIGITAL CONFIDENTIAL Macroinstruction and MlcrolnstructionPlpeUnes 5-13

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

• RLOG full: Autoaincrement, autoaciecrement, and auto-increment deferred specifiers require
a free RLOG entry in which to log the change to the GPR. If there are no free RLOG entries
when such a specifier is decoded, the 83 segment of the esu pipeline stalls until a free entry
becomes available.

Ebox:

• Memory read data not valid: In some instances, the Ebox may make an explicit read request
to the Mbox to return data in one of the 6 Ebox working registers in the register file. When
the request is made, the valid bit on the register is cleared. When the data is written to the
register, the valid bit is set. If the Ebox references the working register when the valid bit is
clear, the 83 segment of the Ebox pipeline stalls until the entry becomes valid.

• Field queue not valid: For each macroinstruction that includes a field-type specifier, the
microcode microbranches on the first entry in the field queue to determine whether the field
specifier addresses a GPR or memory. If the field queue is empty (indicating that the Ibox
has not yet parsed the field specifier), the result of the next address calculation repeats the
nllCT\Qbranch the next cycle. Although this is not a true stall, the effects are the same in that
a microinstruction is repeated until the field queue becomes valid.

• Outstanding Fbox GPR write: Because the Fbox computation pipeline is multiple cycles long,
the Ebox .may start to process subsequent instructions before the Fbox completes the first.
If the Fbox instruction result is destined for a GPR that is referenced by a subsequent Ebox
microword, the 83 segment of the Ebox pipeline stalls until the Fbox GPR write occurs.

• Fbox instruction queue full: V\r:hen an instruction is issued to the Fbox., an entry is added to
the Fbox instruction queue. If there are no free entries in the queue, the 83 segment of the
Ebox pipeline stalls until a free entry becomes available.

EboxlFbox:

• Source queue empty: Most instruction operands are prefetched by the Ibox, which writes
a pointer to the operand value into the source queue. The Ebox then references up to two
operands per cycle indirectly through the source queue for delivery to the Ebox or Fbox. If
either of the source queue entries referenced is not valid, the 83 segment of the Ebox pipeline
stalls until the entry becomes valid.

• Memory operand not valid: Memory operands are prefetched by the Ibox, and the data is
written by the either the Mbox or Ibox into the memory data registers in the register file. If
a referenced source queue entry points to a memory data register which is not valid, the 83
segment of the Ebox pipeline stalls until the entry becomes valid.

5.3.2.5 S4 Stalls

Stalls that occur in the 54 segment of the pipeline are as follows:

Ebox:

• Branch queue empty: When a conditional or unconditional branch is decoded by the Ibox, an
entry is added to the branch queue. For conditional branch instructions, the entry indicates
the Ibox prediction of the branch direction. The branch queue is referenced by the Ebox to
verify that the branch displacement was valid, and to compare the actual branch direction
with the prediction. If the branch queue entry has not yet been made by the Ibox, the 84
segment of the Ebox pipeline stalls until the entry is made.

5-14 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

•

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Fbox GPR operand scoreboard full: The Ebox implements a register scoreboard to prevent
the Ebox from reading a GPR to which there is an outstanding write by the Fbox. For each
Fbox instruction which will write a GPR result, the Ebox adds an entry to the Fbox GPR
scoreboard. If the scoreboard is full when the Ebox attempts to add an entry, the 54 segment
of the Ebox pipeline stalls tmtil a free entry becomes available.

Fhox:

• Fbox operand not valid: Instructions are issued to the Fbox when the opcode is removed
from the instruction queue by the microsequencer. Operands for the instruction may not
arrive until some time later. If the Fbox attempts to start the instruction execution when the
operands are not yet valid, the Fbox pipeline stalls until the operands become valid.

EboxlFbox:

•

•

•

•

5.3.3

Destination queue empty: lDestination specifiers for. instructions are processed by the Ibox,
which writes a pointer to the destination (either GPR or memory) into the destination queue.
The destination queue is rE~ferenced in two cases: when the Ebox or Fbox store instruction
results via the RMlJX, and when the Ebox tries to add the destination of Fbox instructions to
the Ebox GPR scoreboard. If the destination queue entry is not valid (as would be the case if
the Ibox has not completed processing the destination specifier), a stall occurs until the entry
becomes valid.
PA queue empty: For memory destination specifiers, the Ibox sends the virtual address of the
destination to the Mbox, which translates it and adds the physical address to the PA queue.
If the destination queue indicates that an instruction result is in memory, a store request is
made to the Mbox which supplies the data for the result. The Mbox matches the data with
the first address in the PA queue and performs the write. If the PA queue is not valid when
the Ebox or Fbox has a meInory result ready, the R.M1JX stalls until the entry becomes valid.
As a result, the source of the R.M1JX input (Ebox or Fbox) also stalls.
EM_LATCH full: All implicit and explicit memory requests made by the Ebox or Fbox pass
through the EM_LATCH to the Mbox. If the Mbox is still processing the previous request
when a new request is made, the RMUX staUs until the previous request is completed. As a
result, the source of the ruvrux input (Ebox or Fbox) also stalls.

R.M1JX selected to other sou.rce: Macroinstructions must be completed in the order in which
they appear in the instruction stream. The Ebox retire queue determines whether the next
instruction to complete comes from the Ebox or the Fbox. If the next instruction should come
from one source and the other makes an R.M1JX request, the other source stalls until the
retire queue indicates that the next instruction should come from that source.

Exception Handling

A pipeline exception occurs whl~n a segment of the pipeline detects an event which requires that
the normal flow of the pipeline be stopped in favor of another flow. There are two fundamental
types of pipeline exceptions: those that resume the original pipeline flow once the exception is
con'ected, and those that require the intervention of the operating system. A TB miss on a
memory reference is an example of the first type, and an access control violation is an example
of the second type. M=O faults are handled specially, as described below.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Restartable exceptions are handled entirely within the confines of the section that detected the
event. Other exceptions must be reported to the Ebox for processing. Because the NVAX Plus
CPU is macropipelined, exceptions can be detected by sections of the pipeline long before the
instruction which caused the exception is actually executed by the Ebox or Fbox. However, the
reporting of the exception is deferred until the instruction is executed by the Ebox or Fbox. At
that point, an Ebox handler is invoked to process the event.

Because the Ebox and Fbox are micropipelined, the point at which an exception handler is in­
voked must be carefully controlled. For example, three macroinstructions may be in execution in
segments 83,84, and 85 of the Ebox pipeline. If an exception is reported for the macroinstruction
in the 83 segment, the two macroinstructions that are in the S4 and 85 segments must be allowed
to complete before the exception handler is invoked.

To accomplish this, the S41S5 boundary in the Ebox is defined to be the commit point for a
microinstruction. Architectural state is not modified before the 85 segment of the pipeline, unless
there is some mechanism for restoring the original state if an exception is detected (the Ibox RLOG
is an example of such a mechanism). Exception reporting is deferred until the microinstruction
to which the event belongs attempts to cross the S41S5 boundary. At that point, the exception
is reported and an exception handler is invoked. By deferring exception reporting to this point,
the previous microinstruction (which may belong to the previous macroinstruction) is allowed to
complete.

Most exceptions are reported by requesting a micro trap from the Microsequencer. When the
Microsequencer receives a microtrap request, it causes the Ebox to break all its stalls, aborts the
Ebox pipeline (by asserting E_USQ%PE_ABORT), and injects the address of a handler for the event
into the control store address latch. This starts an Ebox microcode routine which will process the
exception as appropriate. Certain other kinds of exceptions are reported by simply injecting the
appropriate handler address into the control store at the appropriate point.

The VAX architecture categorizes exceptions into two types: faults and traps. For both types, the
microcode handler for the exception causes the Ibox to back out all GPR modifications that are
in the RLOG, and retrieves the PC from the PC queue. For faults, the PC returned is the PC of
the opcode of the instruction which caused the exception. For traps, the PC returned is the PC
of the opcode of the next instruction to execute. The microcode then constructs the appropriate
exception frame on the stack, and dispatches to the operating system through the appropriate
SCB vector. '

There are a number of exceptions detected by the NVAX Plus CPU pipeline, each of which is
discussed briefly below, and in much more detail in the appropriate chapter of this specification.

5.3.3.1 lnterrupts

The CPU services interrupt requests from various sources between macroinstructions, and at
selected points within the string instructions. Interrupt requests are received by the interrupt
section and compared with the CUlTent IPL in the PSL. If the interrupt request is for an IPL
that is higher 'than the current value in the PSL, a request is posted to the microsequencer. At
the next macroinstruction boundary, the microsequencer substitutes the address of the microcode
interrupt service routine for the instruction execution flow.

The microcode handler then determines if there is actually an interrupt pending. If there is, it
is dispatched to the operating system through the appropriate SCB vector.

5-16 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5.3.3.2 Integer Arithmetic Exceptions

There are three integer arithrnletic exceptions detected by the CPU, all of which are categorized
as traps by the VAX. architecture. This is significant because the event is not reported until after
the commit point of the instruc:tion, which allows that instruction to complete.

Integer Overflow Trap
An integer overflow is detected by the- RMliX at the end of the S4 segment of the Ebox
pipeline. If P8L<IV> is set and overflow traps are enabled by the microcode, the event is
reported in segment 85 of the pipeline via a microtrap request.

Integer Divide-By-Zero Trap
An integer divide-by-zero is detected by the Ebox microcode routine for the instro.ction. It
is reported by explicitly retiring the instruction and then jumping directly to the microcode
handler for the event.

Subscript Range Trap
A subscript range trap is detected by the Ebox microcode routine for the INDEX instruction.
It is reported by explicitly retiring the instruction and then jumping directly to the microcode
handler for the event.

5.3.3.3 Floating Point Arithmetic: Exceptions

All :Boating point arithmetic ex.ceptions are detected by the Fbox pipeline during the execution of
the instruction. The event is rE~ported by the RMUX when it selects the Fbox as the source of the
next instruction to process. At that point, a microtrap is requested.

5.3.3.4 Memory Management Exceptions

Memory management exceptio'ns are detected by the Mbox when it processes a virtual read or
write. This section covers actual memory management exceptions such as access control violation,
translation not valid, and M=O faults. Translation buffer misses are discussed separately in the
next section. Because the reporting of memory management exceptions is specific to the operation
that caused the exception, each case is discussed separately.

• I-Stream Faults
While the Ibox is decoding instructions, it may access a page which is not accessible due
to a memory management exception. This may occur on the opcode, a specifier or specifier
extension, or on a branch displacement. Should this occur, the Ibox sets a global :MM:E
fault :Bag and stops. Mem,ory management exceptions detected on intermediate operations
during specifier evaluation (such as a read for the indirect address of a displacement deferred
specifier) are converted by the Ibox into source or destination faults, as described below.
If the Ebox reaches the instruction which caused the exception (which may not happen due to,
for example, intelTUpt, exception, or branch), it will reference one of the queues, which does
not have a valid entry be~luse the Ibox stopped when the error was detected. The particular
queue depends on the instruction component on which the error was detected. If the Ibox
global MME :Bag is set whEm an empty queue entry is referenced, the error is reported in one
of four ways.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipeline$ 5-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If the Ibox global M:ME flag is set when the microsequencer references an invalid instruction
queue entry, it inserts the instruction queue stall into the pipeline and the Ebox qualifies it
with the fault flag. 'When this flag reaches the 84 segment of the pipeline and is selected by
the RMUX, a microtrap is requested.
If the Ibox global MME flag is set when the Ebox references an invalid source queue entry,
a fault flag is injected into either the Ebox or Fhox pipelines, depending on the type of in­
struction. To avoid a deadlock, 83 stalls do not prevent forward prgress of the flag in the
pipeline. When the flag reaches the S4 segment of the pipeline and is selected by the RMtJX,
a lnicrotrap is requested.
If the Ibox global M:ME flag is set when the Ebox microcode microbranches on an invalid field
queue entry, a fault flag is injected into the Ebox pipeline. When the flag reaches the 84
segment of the pipeline and is selected by the RMUX, a microtrap is requested.
If the Ibox global MME flag is set when the Ebox references an invalid branch queue entry,
and the RMUX selects the Ebox, a microtrap is requested.
If the !box global M:ME flag is set when the RMUX references an invalid destination queue
entry for a store request, a microtrap is requested.

• Source Operand Faults
If the Mbox detects a memory management exception during the translation for a source
specifier, it qualifies the data returned to the MD file with a fault flag which is written into
the MD file. When this entry is referenced by the Ebox, a fault flag is injected into the
pipeline. To avoid a deadlock, 83 stalls do not prevent forward prgress of the flag in the
pipeline. ~'ben the flag reaches the S4 segment of the pipeline and is selected by the RMUX,
a microtrap is requested.

5-18 Macroinstruction and Microinstruction Pipelines DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• . Destination Address Faults

•

If the Mbox detects a memory management exception during the translation for a destination
specifier, it sets a fault flag in the PA queue entry for the address. "When this entry is
referenced by the RMtJX, a microtrap is requested,.

Faults on Explicit Ebox]Memory Requests

Explicit Ebox reads and writes are, by definition, performed in the context of the instruction
which the Ebox is currently executing. If the Mbox detects a memory management exception
that was the result of an eJcplicit Ebox read or write, it requests an immediate microtrap to
the memory management fault handler.

• M.O faults
M=O faults occur when the Mbox finds the M-bit clear in the PTE which is used to translate
write-type references. The event is reported to the Ebox in one of the three ways described
above: via the MD file or PA queue fault flags, or via an immediate micro trap for explicit
Ebox writes.

Unlike other memory management exceptions, which are dispatched to the operating system,
M=O faults are completely processed by the Ebox microcode handler. For normal instructions,
the handler causes the Ibox to back out all GPR modifications. that are in the RLOG and
retrieve's the PC from the PC queue. For string instructions, any RLOG entries that belong
to the string instructions are not processed, and PSL<FPD> is set. Using the PrE address
supplied by the Mbox, the Ebox microcode reads the PTE, sets the M-bit, 'and writes the
PTE back to memory. The instruction stream is then restarted at the interrupted instruction
(which may result in specisJ FPD handling, as described below).

5.3.3.5 Translation Buffer Miss

Transla tion buffer misses are handled by the Mbox transparently to the rest of the CPU. "When
a reference misses in the translation buffer, the Mbox aborts the CUITent reference and invokes
the services of the memory management exception sequencer in the Mbox, whkh fetches the
appropriate PTE from memory and loads it into the translation buffer. The original reference is
then restarted.

5.3.3.6 Reserved Addressing MOlde Faults

Reserved addressing mode faults are detected by the Ibox for certain illegal combinations of
specifier addressing modes and registers. "When one of these combinations is detected, the Ibox
sets a' global addressing mode fault flag that indicates that the condition was detected and stops.

If the Ibox global addressing Dlode fault flag is set when the Ebox references an invalid source
queue entry, a fault flag is injeeted into either the Ebox or Fbox pipelines, depending on the type
of instruction. To avoid a deadlock, S3 stalls do not prevent forward prgress of the flag in the
pipeline. The fault flag is carried along the Ebox or Fbox pipeline and passed to the RMtJX,
which reports the event by requesting a microtrap when that source is selected.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If the Ibox global addressing mode fault flag is set when the Ebox microcode microbranches on
an invalid field queue entry, a fault flag is injected into the Ebox pipeline. When the flag reaches
the S4 segment of the pipeline and is selected by the RMUX., a microtrap is requested.

Similarly, if the Ibox global addressing mode fault flag is set when the RMUX, in response to
a request by the Ebox or Fbox., references an invalid destination queue entry, a microtrap is
requested. -

5.3.3.7 Reserved Operand Faults

Reserved operand faults for floating point operands are detected by the Fbox., and reported in the
same manner as the floating point arithmetic exceptions described above.

Other reserved operand faults are detected by Ebox microcode as part of macroinstruction exe­
cution flows and are reported by jumping directly to the fault handler.

5.3.3.8 Exceptions Occurring as the Consequence of an Instruction

Opcode-specific exceptions such as reserved instruction faults, breakpoint faults, etc., ar.e dis­
patched directly to handlers by placing the address of the handler in the instruction PLA for each
instruction.

Other instruction-related faults, such as privileged instruction faults, are detected in execution
flows by the Ebox microcode and are reported by jumping directly to the fault handler.

For testability, the Fbox may be disabled. If this is the case, integer multiply instructions are exe­
cuted by the Ebox microcode and floating point instructions are converted into reserved instruction
faults for emulation by software. When the first Ebox microinstruction of an Fbox operand flow
for a floating point macroinstruction reaches the S4 segment of the pipeline, a microtrap is re­
quested. The handler for this microtrap then jumps directly to the reserved instruction fault
handler.

5.3.3.9 Trace Fault

Trace faults are detected by the microsequencer with some help from the Ebox. The microse­
quencer maintains a duplicate copy of PSL<TP>, which it updates as required to track the state
of the PSL copy as it would exist when the instruction is executed by the Ebox. At the end of a
macroinstruction, the microsequencer logically ORs its local copy of the TP bit with PSL<TP>. If
either is set, the micro sequencer substitutes the address of the microcode trace fault handler for
the address of the next macroinstruction.

5.3.3.10 Conditional Branch Mispredlct

'When the Ibox deCodes a conditiona'l -branch, it predicts the path that the branch will take and
places its prediction into the branch queue. When the Ebox reaches the instruction, it evaluates
the actual path that the branch took and compares it in the 85 segment of the Ebox pipeline with
the Ibox prediction. If the two are different, the Ibox is notified that the branch was mispredicted
and a microtrap request is made to abort the Ebox and Fbox pipelines. The Ibox flushes itself,
backs out any GPR modifications that are in the RLOG, and redirects the instruction stream to
the alternate path. The Ebox microcode handler for this event cleans up certain machine state
and waits for the first instruction from the alternate path.

5-20 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5.3.3.1'1 First Part Done Handlin!g

During the execution of one of the 8 string instructions that are implemented by the CPU, an
exc:eption or an interrupt may be detected. In that event, the Ebox microcode saves all state
necessary to resume the instruction in the GPRs, backs up PC to point to the opcode of the string
instruction, sets PSL<FPD> in the saved PSL, and dispatches to the handler for the interrupt or
exc:eption.

When the interrupt or exception is resolved, the software handler terminates with an REI back to
the instruction. When the Ibox decodes an instruction with PSL<FPD> set, it stops parsing the
instruction immediately after the opcode. In particular, it does not parse the specifiers. When the
microsequencer finds PSL<FPD> set at a macroinstruction boundary, it substitut.es the address
of a special FPD handler for the instruction execution flow.

The FPD handler determines which instruction is being resumed from the opcode, unpacks the
state saved in the GPRs, clears PSL<FPD>, advances PC to the end of the string instruction (by
adding the opcode PC to the length of the instruction, which was part of the saved state), and
jumps back to the middle of the interrupted instruction.

5.3.3,12 Cache and Memory Hardware Errors

Cache and memory hardware errors are detected by the Mbox or Cbox, depending on the type
of error. If the error is recoverable (e.g., a Pcache tag parity error on a write simply disables
the Pca'che), it is reponed via a soft error interrupt request a.nd is dispatched to the operating
system.

In some instances, write errors that 'are not recoverable by hardware are reported via a hard
error interrupt request, which results in the invocation of the operating system.

Read errors that are not recov'erable by hardware are reported via the assertion of a soft error
interrupt, and also in a manner that is similar to t~t used for memory managem;ent exceptions,
as described above". In fact, the~ MD file, PA queue, and the Ibox all contain a hardware error :Rag
in parallel with the memory management fault :Rag. With the exception ofTB parity errors, which
calIse an immediate microtrap request, the event is reported to the Ebox in exactly the same way
as the equivalent memory management exception would be, but the microcode exception handler
is different. For example, an wlIecoverable error on a specifier read would set the hardware error
flag in the MD file. 'When the fiag is referenced, the error flag is injected into the pipeline. 'When
the flag advances to the S4 segment and is selected by the RMtJX, it causes a microtrap request
which invokes a hardware error handler rather than a memory management handler.

Note that certain other errors are reported in the same way. For example, if thei memory man­
agement sequencer in the Mbox receives an unrecoverable error trying to read a PTE necessary
to translate a destination specifier, it sets the hardware error flag in the PA queue for the entry
corresponding to the specifier. This results in a microtrap to the hardware error handler when
the entry is referenced. PTE 'read errors for read references are also reported ,ria the original
reference.

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction IPipelines 5-21

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5.4 Revision History

Table 5-:1: Revision History

Who

Mike Uhler

Gil Wolrich

When

06-Mar-1989

15·Nov·1990

Description of change

Release for external review.

Update for NVAX Plus external release.

5-22 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 6

Microinstruction Formats

6.1 Ebox Microcode

The NVAX Plus microword conl;ists of61 bits divided into two major sections. Bits <:60:15> control
the Ebox Data Path and are encoded into two formats. Bits <14:0> control the Microsequencer
and are also encoded into two formats.

6.1.1 Data Path Control

The Data Path Control Microword specifies all the information needed to control the Ebox Data
Path. The two formats, Stanclard and Special, are selected by bit <60>, the FORMAT bit. In
addition, bit <45>, the LIT bit., selects the constant generation form~t of the microword, which
may be either an 8-bit constant or a 10-bit constant, depending on a decode in the MISe field.
Pictures of the microword fonnats are in Figure 6-1. and Figure 6-2. A brief description of each
field is given in Table 6-1 and Table 6-2.

Figure 6-1: Ebox Data Path Control, Standard Format

61555 515 5 5 515 5 4 414 4 4 414 4 4 413 3 3 313 3 3 313 3 2 212 2 2 212 2 2 211 1 1 111
019 e i 615 ~ 3 211 0 ~ 81i 6 5 413 2 1 Ol~ e i 615 4 3 211 0 9 eli 6 5 413 2 1 019 8 i 615

+-~---------~---------+-~-----+-+---------+---------+-+-+-+-----------+-----------+---------+
1.01 ALO MRQ IQ! SHF 101 VAL B ILIWIVI OST A I MIse

~-+ .. ------~-+---------+-+-----+-+---------+---------+-+-+-+-----------+-----------+---------+
111POSI CONST I MIse not equal CONST.10

+-+-,--+---------------+
III CONST.10 I MISe equal CONST.10

+-+-------------------+

Table 6-1: EBOX Data Path Con1trol Microword Fields, Standard Format

Bit Position

60

59:55

Microword Field

FORMAT

ALU

DIGITAL CONFIDENTIAL

Microword
Format Description

Microword format-Standard or Special

Both ALU function select

Microinstruction Formats 6-1

NVAX Plus CPU Chip Functional Speci1ication, Revision 0.3; October 1991

Table 6-1 (Cont.): EBOX Data Path Control Microword Fields, Standard Format

Microword
Bit. Position Microword Field Format Description

54:50 MRQ Both Mbox request select

49 Q Standard Q register load control

48:46 SHF Standard Shifter function select

45 LIT Both ALU/sbi'fter B port control-register or literal

44:40 VAL Standard 1 Constant shift amount

39:35 B Both 1 ALU/shifter B port select

44:43 pas Both2 Constant position

42:35 CaNST Both2 S-bit constant value

44:35 CaNST. 10 BothS lO·bit constant value

34 L Both Length control

33 'W Both 'Wbus driver control

32 V Both VA write enable

31;26 DST Both WEUS destination select

25;20 A Both ALU/shifter A port select

19:15 MISe Both Miscellaneious function select, group 0

1 NOT Constant generation microword variant

2S-Bit Constant generation microword variant, when MISe :field not equal CONST.IO

810-Bit Constant generation microword variant, when MISe :field equal CONST.IO

Figure 6-2: Ebox Data Path Control, Special Format

615 5 5 515 5 5 515 5 4 414 4 4 414 4 4 413 3 3 313 3 3 313 3 2 212 2 2 212 2 2 211 1 1 111
Ol~ e i 615 4 3 211 0 9 ~Ii 6 5 413 2 1 019 6 i 615 4 3 211 0 9 81i 6 5 413 2 1 019 e i 615

~-~---------~---------+-------+-~-------+-+---------+-+-+-+-----------+-----------+---------+
III ALU MRQ I MISCl 101 MISC2 IDI ILIWIVI DS'!' I MIse

11IPOSI CONS'!' I MIse not equal CONS'I'.lO

+-+---+---------------+
III CONST.10 I MISe equal CONS'I'.lO

+-+-------------------+

Table 6-2: EBOX Data Path Control Microword Fields, Special Format

Microword
Bit Position Microword Field Format Description

60 FORMAT Microword format-Standard or Special

6-2 Microinstruction Formats DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table ~2 (Cont.): EBOX Data P,ath Control Microword Fields, Special Format

Microword
Bit Position Microword Field Format Description

59:55 ALU Both ALU function select

.54:50 MRQ Both Mbox request select

49:46 MISCl Special Miscellaneous function select, group 1

45 LIT Both ALU/shifter B port control-register or literal

44:41 MISC2 Special 1 Miscellaneous function select, group 2

40 DISABLE.RETIRE Specia]1 Instruction retire disable

39:35 B Both1 ALU/shifter B port select

44:43 P~S Both2 Constant position

42:35 CONST Both2 8-bit constant value

44:35 CONST.10 BothS 10-bit constant value ..
34 L Both Length control

33 W Both Wbus driver control

32 V Both VA write enable

31;26 DST Both WBUS destination select

25;20 A Both ALU/shifter A port select

19:15 MISC Both Miscellaneious function select, group 0

lNOT Constant generation microwordovanant

2S·Bit Constant generation microword var.lant, when MISe £leld not equal CONST.IO

SlO-Bit Constant generation microword variant, when MISe £leld equal CONST.IO

6.1 a2 Microsequencer Control

The Microsequencer Control Microword suppbes the information necessary for the l\.ficrosequencer
to calculate the address of the next microinstruction. The basic computation done by the
Microsequencer involves selecting a base address from one of several sources, and then optionally
modifying three bits of the baE;e address to get the final next address.

Bit <14>, SEQ.FMT, selects between Jump and Branch formats. Figure 6-3 and Figure 6-4 show
the two formats. Table 6-3 and Table 6-4 describe each of the fields.

DIGITAL CONFIDENTIAL Microinstruction Formats 6-3

NVAX Plus CPU Chip .Functional Specification, Revision 0.3, October 1991

Figure 6-3: Ebox Mlcrosequencer Control, Jump Format

l ~ III l 1 1
~ 3 :1: 0 ~ 617 6 5 413 2 1 0

--.-+---~---~-----------------~
IOISIMUXI J

~+-+---~---------------------~

Table 6-3: Ebox Microsequencer Control Microword Fields, Jump Format

Microword
Bit Position Microword Field Format Description

14 SEQ.FMT Microsequencer format-Jump or Branch

13 SEQ. CALL Both Subroutine call

12:11 SEQ.MUX Jump Next address select

10:0 J Jump Next address

Figure 6-4: Ebox Microsequencer Control, Branch Format

1 1 :11 1 1 1
, 3 211 C ~ s:' 6 5 413 2 1 0

.-~-+-------------------------~
IlISISEQ.COND ! BR.OFF

~---~---------~---------------+

Table 6-4: Ebox Mlcrosequencer Control Microword Fields, Branch Format

Microword
Bit Position Microword Field Format Description

14 SEQ.FMT Microsequencer format-Jump or Branch

13 SEQ.CALL Both Subroutine call

12:8 SEQ.COND Branch Microbranch condition select

7:0 BR.OFF Branch Page offset of next address

6.2 Ibox CSU Microcode

The Ibox complex specifier unit is controlled by a 29-bit microword, as shown in Figure 6-5. A
brief description of each field is given in Table 6-5.

6-4 Microinstruction Formats DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 6-5: Ibox CSU Format

281=7 26 25 241:3 22 21 20119 18 17 16115 14 13 1211~ 10 09 08107 06 05 04103 02 01 00
---+--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

I .ALU IDLI A I DS! I MIse I MREQ IMUX I

Table ~: Ibox CSU Microword Fields

Bit Position Microword Field

28~26 ALU

25 DL

24;22 A

21:19 B

18~16 DST
15:13 MISe
12:9 MREQ
8:7 MUX_CNT

6:0 NXT

6 .. 3 Revision History

Table 6-6: Revision History

Who

Debra Bernstein

Mike Uhler

When

06-Mar-1989

13-Dec-1989

DIGITAL CONFIDENTIAL·

Description

ALU function select

Data length control

ALU A port select

ALU B port select

Wbus destination

Miscellaneous function select

Mbox request select

Next address mux select

Next address

Description of .change

Release for external review.

Update for second-pass release.

NX!

Microinstruction Formats 6-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 7

Thelbox

7.1 IOverview

The NVAX Plus IBOX chapter includes the overview description, IPR specifications, and description
of IBOX testabilty features from the NVAX CPU Chip Specification. For detailed and complete IBOX
specification refer to the NVAX CPU Chip Specification.
7.1.1 Introduction

This chapter describes the Ibox section of the NVAX Plus CPU chip. The 4-stagre Ibox pipeline
(SO .. S3) runs semi-autonomously to the rest of the NVAX Plus CPU and supports the following
functions:

• Instruction Stream Prefetching
The Ibox attempts to maintain sufficient instruction stream data to decode the next instruc­
tion or operand specifier.

• Instruction Parsing
The- Ibox identifies the instruction opcodes and operand specifiers, and extracts the informa­
tion necessary for further processing.

• Operand Specifier Proc~essing
The Ibox processes the operand specifiers, initiates the required memory references, and
provides the Ebox with thE~ information necessary to access the instruction's operands.

• Branch Prediction
Upon identification of a brsmch opcode, the Ibox hardware predicts the direction of the branch
<taken vs. not taken). For branch taken predictions, the Ibox redirects the instruction
prefetching and parsing logic to the branch destination, where instruction processing resumes.

Figure 7-1 is a top level block diagram of the Iboxshowing the major Ibox sub-sections and their
inter-connections.

This chapter presents a -high-I,evel description of the Ibox functions, then provides details of the
Ibox sub-sections which support each function.

DIGITAL CONFIDENTIAL The Ibox 7-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 7-1: Ibox Block Diagram

VIC r---

It
c
C
0< ,
0
11/
a: ,
I.l
;:

r PFO r--

~
NEW.PC

III
0<

~
< >

< 0<
C , '" ~ ... : t-

III

BRAHCM STA~~ ~

~ BPU IBU OPCOOE II U 8F! DISP
OPCODE ISSUE STAll

SPEC eTFH

0
VS Il.

1
:;)

'PEC eTR ENABU· !

1 - SBU
OOU Uti INDEX CSU COUNTEAS

PC QUEUE DATA

It'

'" '" i 11/ It
:;)

QI ~
III

C
!' z Q <I)

< a: < , , :;)
a:

0' >C >C a:I

~ 0 ,
~

0 a:I 0
0 a:I }i ~ ~ it -,

7.1.2 Functional Overview

The Ibox fetches, parses, and processes the instruction stream, attempting to maintain a constant
supply of parsed VAX .. instructions available to the Ebox for execution. The pipelined nature of the
NVAX Plus CPU allows for multiple macroinstructions to reside within the CPU at various stages
of execution. The Ibox, running semi-autonomously to the Ebox, parses the macroinstructions
following the instruction that is cUITently in Ebox execution. Performance gains are realized
when the time required for instruction parsing in the Ibox is hidden during the Ebox execution of

7-2 Thelbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O~3, October 1991

an earlier instruction. The Ibox places the information generated while parsing ahead into Ebox
queues.

The Instruction Queue contains instruction specific information which includes the instruction
opcode, a floating point instruction fiag,and an entry point for the Ebox microcode.

The Source Queue contains information about the source operands for the instructions in the
instruction queue. Source queue entries contain either the actual operand (as in a short literal),
or a pointer to the -location of the operand.

The Destination Queue contains information required for the Ebox to select the location for
execution results storage. The two possible locations are the VAX General Purpose Registers
(GPRs) and memory.

These queues allow the Ibox to work in parallel with the Ebox.. As the Ebox consumes the entries
in the queues, the Ibox pars€:s ahead adding more. In the ideal case, the Ibox would stay far
enough ahead of the Ebox su.ch that the Ebox would never have to stall ~ecause of an empty
queue.

The Ibox needs access to memory for instruction and operand data. Instruction and operand data
requests are made through a common port to the Mbox. All data for both the Ibox and the Ebox
is returned on a shared Mo/oMD_BUS<63:0>

The Ibox port feeds Mbox queues to smooth memory request traffic over time, The Specifier
Request Latch holds Ibox requests for operand data. The Instruction Request Latch holds Ibox
requests for instruction strea1111 data. These 2 latches allow the Ibox to issue memory requests
for both instruction and operalIld data even though the Mbox may be processing other requests.

The Ibox supports 4 main functions:

1. Instruction Stream Prefetching
2. Instruction Parsing

3. Operand Specifier Processing
4. Branch Prediction

Instruction Stream Prefetching works to provides a steady source of instruction stream data for
instruction parsing. ·While thE~ instruction parsing logic works on one instruction, the instruction
prefetching logic fetches several instructions ahead.

The Instruction Parsing logic parses the incoming instruction stream, identifying and pre­
processing each of the instruction's components. The instruction opcodes and associated informa­
tion are passed directly into the Ebox instruction queue. Operand specifier information is passed
on to the operand specifier p~ocessing logic.

The Operand Specifier ProceBsing logic locates the operands in registers, in memory, or in the
In.struction Stream. This logic places operand information in the Ebox source and destination
queues, and makes the required operand memory requests.

The Ibox does not have prior knowledge of branch direction for brnaches which rely on Ebox
condition codes. The Branch prediction logic makes a prediction on which way the branch will
go and forces the Ibox to tak~~ that path. This logic saves the program counter of the alternate
branch path, so that in the 'event that Ebox branch execution shows that the prediction was
wrong, the Ibox can be redirected to the correct branch direction.

DIGITAL CONFIDENTIAL The Ibox 7-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

7.2 VIC Control and Error Registers

The VIC contains 4 intenlal processor registers (IPRs) which provide VIC control and read/write
access to the arrays.

MACROCODE RESTRICTION

VIC_ENABLE must be cleared before writing to the VIC IPRs: VMAR, VDATA, or VTAG.
VIC_ENABLE must be cleared before reading from VIC IPRs: VDATA, VTAG. In functional
operation, an REI must preceed the MTPR which enables the VIC.

See Section 7.4 for details of the IPR mechanism.

Figure 7-2: VMAR Register

31 30 2~ 261:7 26 25 24123 22 21 20119 16 17 16115 14 13 12111 10 ~ 81 7 6 5 41 3 2 1 0

ADD?

Table 7-1: VMAR Register

Name Bit(s) Type

LW 2 WO

SUB_BLOCK 4:3 RW

ROW_INDEX 10:5 R'W

ADDR 31:11 RO

I O! 0 I :VMAR

ROW_INDO; ---.,.
StrB_BLOC:K ---...

LW ---+

Descriptioll:

Longword select bit. Selects longword of sub-block for access to cache
array

Sub-block select. Selects data sub-block for access to cache array,
also latches VllIA<4:3> on VIC parity errors

Row select. Row index for read and write access to cache array, also
latches VlBA<10:5> on VIC parity errors

Error address field. Latches tag portion of VIBA on VIC parity errors

When the VIC is disabled, the VIC Memory Address Register (VMAR) may be used as an index
for direct IPR access to the cache arrays. VMAR<lO:5> supply the cache row index, VMAR<4:3>
supply the cache sub-block., and VMAR<2> indicates the longword within a quadword address.

VMAR also latches and holds the vmA<31:3> on VIC array parity errors.

7-4 Thelbox DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 7-3: VTAG Register

31 30 29 281:7 26 25 2412! 22 21 20119 16 17 16115 14 13 12111 10 9 81 7 6 5 41 3 2 1 0
.--.,.--+--~--+--+--+--+--+--+--+--+,--+--+--+--+--*--+-. +--+._+--+--+--.... --+--+--+--+--t+--+--+'--+--+

TAG ! 11 l'ITP 1 DF v 1 :VTAG
+--+--+--+--+--.+--+--+--+--+--... ----+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+----+--+--...

Table 7-2:

Name

V

DP

TP

TAG

VTAG Register

Bit(s) Type

3:0 RW

7:4- RW

8 R'W

31:11 RW

Description

Data valid bits. Supply data valid bits on array read/writes

Data parity bits. Supply data parity on array read/writes

Tag parity bit. Supplies tag parity on tag array read/writes

Tag. Supplies tag on tag array read/writes

The VTAG IPR provides read and write access to the cache tag array. An IPR wri:te to VTAG will
write the contents of the Mo/dlrID_BUS to the tag, parity, and valid bits fOT the row indexed by
VMAR<10:5>. VTAG<31:11> arE~ written to the cache tag. VTAG<8> is written to the associated tag
parity bit. VTAG<7:4> are used to write the fOUT data parity bits associated with the indexed cache
row. Similarly VTAG<3:0>'write the four data valid bits associated with the cache row. DP<3:0>
and v<3:0> are the data parity and data valid bits, respectively, fOT the 4 quadw'ords of data in
the same row. DP<O> and V <0> correspond to the quadword of data addressed when address bits
4:3 :::- 00, DP<l> and v<l> cor.respond to the quadword of data addressed when address bits 4:3
= 01, etc.

Figure 7-4: VDATA Register

31 30 2~ 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 81 7 6 5 41 3 2 1 0

DATA 1 :VDATA

Table 7-3: VDATA Register

Name Bit(s) TyJ)e Description

DATA 31:0 RW' Data for data array reads and writes

The VDATA lPR provides read ,and write access to the cache data alTay. When VDATA is written,
the cache data array entry indexed by VMAR is written with the lPR data. Since· the IPR data is
a longword, two accesses to Vl)ATA are required to read or write a' quadword cache sub-block.

Writes to VDATA with VMAR<2> = 0 simply accumulate the IPR data destined for the low longword
of a sub-block in FILL_DATA<3l:0>. A subsequent write to VDATA with VMAR<2> = 1 directs the
the IPR data to FILL_D.ATA<63;,32>, and triggers a cache write sequence to the sub-block indexed
byVMAR.

DIGITAL CONFIDENTIAL The Ibox 7-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Reads to VDATA with VMAR<2> = 0 trigger a cache read sequence to the sub-block indexed by
VMAR. The low longword of the a sub-block is returned as IPR read data. A read of VDATA with
VMAR<2> = 1 returns the high longword of the sub·block as IPR data.

Figure 7-5: ICSR Register

31 30 29 2812' 26 25 24123 :2 2l 20119 18 l' l6115 l~ 13 1211l lO 9 81' 6 5 41 3 2 1 0

o i (I i I :!CSf,

... -.--.--..... -----.... --.... --+--+-----~--+--+-----~-----~-- --~--+--+----- ... ---+--.... --+--+--...... -.--+--..... -----....

Table 7-4: ICSR Register

Name Bit(s) Type

ENABLE 0 RViT, 0

LOCK 2 WC

DPERR 3 RO

TPERR 4 RO

Description

TPERR ---*
DPEJU=>, ---+

LOCY. ---+
ENABLE ---..

Enable Bit. When set, allows cache access to the VIC. Initializes to
o on JlESET.

Lock Bit. When set, validates and prevents further modification of
the error status bits in the ICSR and the error address in the VMAR
register. When clear, indicates no VIC parity error has been recorded
and allows ICSR and VMAR to be updated.

Data Error Bit. When set, indicates data parity error occurred in
data array if Lock Bit also set.

Tag Error Bit. When set, indicates tag parity error occurred in tag
array if Lock Bit also set.

The ICSR IPR provides control and status functions for the Ibox.. VIC tag and data parity errors
are latched in the read·only ICSR<4:3>, respectively. ICSR<2> is set when a tag or data parity
error occurs and keeps the'error status bits and the VMAR register from being modified further.
Writing a logic one to ICSR<2> clears the LOaR bit and allows the error status to be updated.
When ICSR<2> is clear, the values in ICSR<4:3> are meaningless. When ICSR<2> is set, a VIC

parity error has OCCUlTed, and either ICSR<4> or ICSR<3> will be set indicating that the parity
error was either a tag parity error or a data parity error, repectively. ICSR<4:3> cannot be cleared
from software. ICSR<O> provides IPR control of the VIC enable. It is cleared on RESET .

. 7.3 VIC Performance Monitoring Hardware

Hardware exists in the Ibox VIC to support the NVAX Performance Monitoring Facility. See
Chapter 16 for a global description of this facility.

The VIC hardware generates two signals I%PMUXO and I%PMUXl. which are driven to the central
performance monitoring hardware residing in the Ebox.. These two signals are used to supply
VIC hit rate data to the performance monitoring counters.

7-6 Thelbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

I%PMUXO is asserted the cycle when a VIC read reference is first attempted while the prefetch
queue is not full. I%PMUXl signals the hit status for this event in the same cycle.

The data is captured only on the first read reference that could be used by the PFQ, to avoid skewed
hit ratios caused by multiple hits or misses to the same reference while the prefetch queue is full
or the VIC is waiting for a cache fill.

7.4 Ibox IPR Transactions;

The Ebox microcode commwricates with the Ibox in part through internal processor registers
(IPRs). The IPR reads are handled by CSU microcode. The lPRwrite control is distributed, however
the description is included here for completeness.

Ebox microcode conventions guarantee that the Ibox is idle before initiating Ibox IPR transactions.
This is accomplished either by the knowledge that the current Ebox microcode flow takes place in
a macroinstruction with an drain Ibox assist or by asserting an explicit E%STOP _IBOX command.
The only exception involve the issuing of an IPR transaction when the CSU is involved in an RLOG
W1wind operation. In this cas'e the unwind finishes in the csu, then the CSU processes the latched
IPR command. If the RLOG is: empty when the microcode initiates an unwind, 0 will be added to
whatever GPR is pointed to by the read pointers.

MICROCODE RESTRICTION

7'.4.1 IPR Reads

The Ebox signifies an lPR read by asserting the E%IBOx..IPR_READ strobe, the E%IBOx..IPR_NUM,

and the E%IBOX_IPR_INDEX. 'I'his information is latched in the 81 logic stage, and an IPR request
£lag is posted. The 81 next ad.dress logic responds by creating an IPR dispatch to an IPR microad­
dress in the utility page of microcode, and by clearing the lPR request flag. All Ibox logic blocks
associated with IPR reads examine the E%IBOx..IPR_NUM. If the IPR source is within a section,
that section prepares to drivE~ the IPR read data onto the VIC_RE'LADDR. The microcode at the
common IPR routine reads the VIC_RE'LADDR, passes the value through the ALU, and writes the
data to an Ebox working register located at the E%IBOX_IPR_INDEX offset in the register array.
The VIC_RE'LADDR is used fo:r IPR read data source simply because it is a convenient 32-bit bus
that nms through the entire I;ection.

7.4.2 IPR Writes

The Ebox signifies an IPR wri 1:.e by asserting the E%IBOx..IPR_ WRITE strobe and the E%IBOX_IPR_
NOM. All Ibox logic blocks aSlsociated with IPR writes examine the E%IBOX_IPR_Nt.lM. If the IPR
destination is within a section, that section prepares to accept the IPR write data from the M%MD_
BUS. The Mbox drives the M%MD_BUS with IPR data and asserts Mo/oIBOX_IPR_WR to complete the
transaction.

DIGITAL CONFIDENTIAL The Ibox 7-7

NVAX Plus CPU Chip F1;Ulctional Specification, Revision O.3 t October 1991

7.5 Branch Prediction IPR Register

The BPCR IPR provides control for the BPU and read/write access to the history array. The
write-only BPCR bit causes a BPU branch history table flush. The flush is identical to the con­
te~i, switch flush, which resets all branch table entries to a neutral value: history bits = 0100.
The write-only BPCR<FLUSH_CTR> bit causes the BRANCH_TABLE_COUNTER<8:0> to be cleared.
The BRANCH_TABLE_cot.T.N'rER provides an address into the branch table for IPR read and write
accesses. Each IPR read from the BPCR or write to the BPCR with BPCR<LOAD_HISTORY> =
1 increments the counter. This allows IPR branch table reads and writes to step through the
branch table array. BPCR<LOAD_IDSTORY> enables writes to the branch history table. A write
to the BPCR<H1STORY> field with BPCR<LOAD_HISTORY> = 1 causes a BPU branch history

. table write. The history bits for the entry indexed by the counter is written with the IPR data.
BPCR reads supply the history bits in BPCR<EnSTORY> for the entry indexed by the counter.
BPCR<MISPREDICT> will return a "1" if the last conditional branch mispredicted. BPCR<3l:16>
contain the branch prediction algorithm. Any IPR write to the BPCR will update the algorithm.
An IPR read will return the value of the current algorithm. For example, a "0" in BPCR<16>
means that the next branch encountered will not be taken if the history is "0000". A "I" in
BPCR<2l> means that the next branch encountered when the prior history is "0101" will be
taken.

Figure 7-6: BPCR Reglster

- 31 30 29 281:7 26 2! 24123 22 21 20119 18 17 16115 l' 13 12111 10 9 81 7 6 5 41 3 2 1 0

.-----+--+--~-----~--.--.--+--+--~--+--+--~--.--+--+--.--~-+--.--+--+--+--+--+--+--+--+--~--+--+ o I 0 I hiS'tory I : BPCP,

LOAD HISTORY ---+ I
- FLOSH_CTR ---+

FLUSH_BH'!' ---+
MISPREDIC'I ---+

HISTORY ---+

Th. mic:!"oc:oc:i~ \dll writ.. t.h. followin9 bit patt.ern as part of the powerup sequence:

31 30 29 281:7 26 25 24123 22 21 20119 18 17 16115 14.13 12111 10 9 81 i 6 5 41 3 2 1 0
~--.--.--~--~--*--~--+--+--.--.--+--+--+--+--+--+--+--.--+--+--+--+--+--+--+--+--+--+--+--+--+--+
I 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 01 All 0' s

Table 7-5: BPCR Register

Name Bit(s) Type Description

HISTORY

MISPREDICT

3:0

5

RW

RO

Branch history table entry history bits.

Indicates if last conditional branch mispredicted.

7-8 The Ibox DIGITAL CONFIDENTIAL

-

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 7-5 (Cont.): BPCR Register

Name Bit(s) 'IYF1e Description

FLUSH_BHT 6 WO Write of a 1 resets all history table entries to a neutral value, hard-
ware clears bit.

FLUSH_CTR 7 WO Write of a 1 resets BPCR address counter to 0, hardware clears bit.

LOAD_IDSTORY 8 WO Write history array addressed by BPCR address counter.

BPU_ALGORITHM 31:16 RW Controls direction of branch for given history.

Bits 8,7,6 are defined in Table 7-6 for IPR writes to the BPCR. NOTE: The predietion algorithm
will be updated on every IPR ,lVrite to the BPCR.

Table 7-6: BPCR <8:6>

BIT BIT BIT l~rite Action

8 7 6

0 0 0 Do nothing, except update algorithm

0 0 1 Flush branch table. History not written

0 1 0 Address counter reset to o. History not written

0 1 1 Flush branch table, reset address counter, history not written

1 0 0 '\iV-rite history to table, counter automatically increments

1 0 .1 Undefined: Branch table flushed, new history written, coUllter incremented

1 1 0 Undefined: Write history to old counter value, counter reset to 0

1 1 1 Undefined: Branch table fiushed., write history to old counter value, counter·
reset to 0

7.6 Testability

7.6.1 Overview

Ibox testability is enhanced by architectural features, and connection to the internal scan register
and the pf!lrallel port.

7.6.2 Internal Scan RegistE~r and Data Reducer

Ibox hardware state may be latched and shifted off-chip through the global internal scan register.
See Chapter 17 for the implelnentation details of the internal scan register. State included on
the internal scan register for chip debug is TBD.

An. Ibox linear feedback shift register (LFSR) is part. of the internal scan chain. The register is
an observation only structure which can be loaded in parallel or loaded in parallel with feedback,
acting like a data reducer. 'Ihe contents may be shifted out serial through the internal scan
register. Table 7-7 lists the signals that are contained in the Ibox LFSR.

DIGrTAL CONFIDENTIAL The Ibox 7-9

:NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 7-7: Ibox Scan Chain Fields

Field Name , bits Description

Stop parser and status £ags

spec_ctrl bits <21:13> and <11:0>

STOP .PARSER

SPEC.CTRL

E.DL

2

21

2 Data length for instruction (DL of last operand)

7.6.3 Parallel Port

The csu microcode address is routed to the chip parallel port. The microcode address can be
monitered on a cycle by cycle basis during chip debug by selecting the Ibox as source to the
parallel port. "When selected, a buffered version of the ~ontrol store address, MUX..B<6:0>, appears
on PP_DATA<6:0>. See Chapter 17 for the implementation details of the parallel port.

7.6.4 Architectural Features

Internal processor registers are included as architectural features to aid in testability. IPR access
to VIC tags and data is available throught the VTAG and VDATA registers. See Section 7.2 for
the implementation details of the these registers. IPR access to the branch history table and .
branch status is available throught the BPCR register. See Section 7.5 for the implementation
details of the BPCR.

7.6.5 Metal 3 Nodes

Various Ibox nodes are brought up to ririnimum size CMOS-4, metal-3 test pads for chip debug.
State included on the internal scan register for chip debug is TBD.

7.6.6 Issues

Internal scan register states in the Ibox for chip debug are TBD.

Nodes eleva ted to metal-3 test pads in the Ibox for chip debug are TBD.

7.7 Performance Monitoring Hardware

7.7.1 Signals

The Ibox provides two signals for penormance monitoring: IO/oPM_ VIC_ACC_B and I%PAC VIC_BIT.
These signals enable the Ebox performance monitoring hardware to gather statistics on VIC hits
versus VIC accesses.

7-10 Thelbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

7 .. 8 Revision History

Table 7-8: Revision History

'Who "When

ShaWn Persels 06-0ct..1988

John F. Brown 19-Dec-1988

John F. Brown, 06-Mar-1989
Pa.ul Gronowski,
Jeanne McKinley

John F. Brown, 12-Jan-1990
Ruben Castelino,

Mary Field,
Paul Gronowski,
Jeanne Meyer

Gil Wolrich 15-Nov-1990

~IGITAL CONFIDENTIAL

Description of change

Initial release.

Partial Update.

Release for external review.

Intermediate .release.

Retain Overview, IBOX !PRs, and Testability sections for NVAX Plus
external release.

The Ibox 7-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 8

The Ebox

8.1 Chapter Overview

The l\'1'\TAX Plus EBOX chapter includes the overview description, IPR specifications, and descrip­
tion of EBOX testabilty features from the NVAX CPU Chip Specification.

For detailed and complete EBOX specification refer to the NVAX CPU Chip Specification.

8.2 Introduction

The Ebox is the instruction e:x:ecution unit in the NVAX CPU chip. It is a 3 stage pipeline (83 .. 85)
which runs semi-autonomously to the rest of the NVAX Plus chip and supports the following
functions:

• Instruction Execution
The Ebox is respOnsible for can-ying out the execution portion of each VAX instruction under
control of a microfiow whose initial address is provided by the Ibox issue unit.

• Instruction Coordinatictn
The Ebox is a major source of control to coordinate instruction processing in the Ibox., Mbox.,
and Fbox. It ensures that Ebox and Fbox macroinstructions retire in the proper order, and
it provides controls to the Mbox and Ibox which help manage certain inter-macroinstruction
dependencies. The Ebox cooperates with the Ibox in handling mispredicted branches.

• Trap, Fault and Excepoion Handling
The Ebox coordinates trap, fault, and interrupt handling. It delays the condition until all pre­
ceding macroinstructions eomplete properly. It then collects information about the condition
and ensures that the correct architectural state is reached.

• CPU Control
Most CPU control is provided by the Ebox. Ebox control functions include CPU initialization,
controlling Ibox, !ibox, and Mbox activities, and setting control bits during major CPU state
changes (e.g. taking an interrupt or executing a change mode instruction).

The Ebox accomplishes many of the above functions by executing the NVAX Ebox microcode. This
chapter views the Ebox as the interpreter of microcode. Describing how microcode functions are
used to correctly emulate the VAX architecture or the architectural motivation for Ebox hardware
functions is generally outside the scope of this discussion.

DIGITAL CONFIDENTiAL The Ebox 8-,

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 8-1 at the end of this section is a top level block diagram of the Ebox showing all the
major Ebox function units, their interconnections, and their place in the pipeline. The pipeline
segments are shown in the diagram (82, 83, 84, and 85). The sections following the diagram
describe the function elements depicted and the Ebox pipeline.

8-2 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3" October 1991

Figure 8-1: Ebox Block Dlagrarn

82

S2 INSTF!.
CONTEXT L.ATOH

DIGITAL CONFIDENTIAL

83

S3 M Ie 1.ATCH

----- ,.." ~ILI AINK*Ig, ___ D&'" ANO ~
__ .' ____ ••• ODNDlTtOlill OODU

F'IIoAsaULT.F'IIoCC
. (FAO'" FIOX)

S4 Mle DECODE L.ATOH

85

• __ • __ . _1. __ I!'IIoWIIUS

I (WRITE DATA:
TO ...:JX AND:
IH~ ai i ~

i

UG

S! Mle DEOODE L.ATCH!

The Ebox 8-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.3 Ebox Overview

8.3.1 Microword Fields

The Ebox is controlled by the data path control portion of the microword, which is either standard
or special format. The other portion of the control word, the microsequencer control portion,
controls the microsequencer which determines which microword is fetched in every cycle. The
fields of the data path control portion of the microword and their effect within the Ebox are shown
in Table 8-1. For more information on microword formats and field widths see Chapter 6.

NOTATION

The notation FIELDIFUNCTION is used throughout this chapter to mean that microword
field FIELD specifies FUNCTION.

Table 8-1: Data Path Control Microword Fields

Microword
Field

FORMAT

LIT

ALU

MRQ

SHF

VAL

A

B

POS

Microword
Format

Both

Both

Both

Both

Standard

Standard 1

Both

Both l

Deacription

This one-bit field determines whether the microword is in the special format.
If it is 1, the MISC1, MISC2, and D fields exist. If it is 0, the Q, SHF, and
VAL fields exist instead.

This one-bit field determines whether the microword is the constant generation
variant (format). If it is 1, the POS and CONST fields exist. !fit is 0, the VAL
and B fields exist instead in standard format, and the MISC2, D, and B :fields
exist instead :in special format.

Sets the ALU function, including typical ALU operations, and others.

Controls initiation of Ebox memory accesses,VECTOR MEMORY ACCESSES,
and other Mbox control functions. The Ebox decodes the field and sends the
corresponding request to the Mho%..

Sets the shifter function. The W and Q :fields control how the shifter output
is used. Some settings of this field specify a pass operation instead of a shift.

Speci:6.es the shift amount (1 to 31) or, if VAL = 0, specifies to shift the amount
in the se register.

Speci:6.es the source of E_BUSlW.Bus<31:0> for this microword. The A field
can select any element in the register :file or one of several of Ebox sources.
E_BtlScw..BUs<31:0> is one of the two sources for the ALl! and the shifter.

When the source of E-BtJ8%BBUs<31:0> is a register this :field speci:6.es the
SOUTce of E_BUSCJaBBUS<31:0>. The B field can select from some of the ele­
ments in the register :file or from a small number of other Ebox sources. E_
BUSCJaBBUS<::31:0> is one of the two sources for the ALU and the shift.er.

When the source of E_BUS%BBUS<31:0> is from the constant generator this
field speci:6.es which byte the constant value is in.. Bytes 0 through 3 may be
speci:fied.. The other bytes are forced to o.

lNot constant generation microword variant.

2.Constant generation microword variant.

8-4 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-1 (Con1.): Data Path Control Microword Fields

:Microword Microword
Field Format

CONST Both 2

CONST.lOS Both2

DST Both

Q Standard

W Both

L Both

v Both

MISC Both

MISCI Special

MISC2 Special 1

. DISABLE.RETIRE Special 1

Description

This field contains the literal byte value which is sourced to one of the bytes of
E_BUB%BBUs<3l:0> as specifled by the P~S field. (The other E_BUS%BBUS<31:0>
bytes are forced to 0.)

This field contains the literallO-bit value which is sourced to E_BUSUBUS<9:0>.
(E_BOKBBUs<3l:1O> are forced to 0.)

This field specifies the destination OfE%WBUS<31:0>. '!be possible destinations
include a subset of the register file and a number of other Ebox destinations.

Controls whether or not the Q register is loaded with the shifter output for
this microword.

Selects the driver of E'JDWBus<31:0>. Either the ALU or the shift.er output is
driven on E%WBus<31:0>.

This field controls whether the Ebox operations are done wiith a data leDgth of
lODgWord or the length specified in the DL register. The Ebox operations af­
fected are condition code calculation, size of memory operations, zero extending
of E%WBUS data, and bytes affected by register file writes.

Controls updating of the VA register. Either the VA register is updated with
the value from the ALU, or it is not changed from its previous value.

This field has many uses. Only one use can be selected at a time. 'Ibis field
can control PSL condition code alterations, set the DL register, set or clear state
flags, or invoke a box coordination or control function.

This field can specify one of a few Ibox or Fbox coordination or control func­
tions, and can be used to set or clear state flags.

One Mbox contro1 function and one to add an Fbox destination scoreboard
entry .

This field is used to disable retire of macroinstructions and retire queue entries

lNot constant generation microword 'V'ariant.

2Constant generation microword vannnt.

sThe CONST.lO field is actually the POS field bitwise concatenated with the CONST field, with the P~S field in the
more significant position. It is simply a way of treating these two microword fields as one. CONST.lO is only used when
MISC/CONST.IO.BIT is specifled..

When a microword field is not present in all formats, it defaults to NOP (no operation) when a
microword format without that field occurs. More specifically, standard format microwords effec­
tively specify MISClINOP, MISC2/NOP, and DISABLE.RETIREINO by default. Special format microwords
effectively specify QJHOLD.Q, SHFINOP, and VAl/O. When the microword is the constant generation
variant of the standard format microword, VAL'O is effectively specified, and the B field is ignored
since this microword variant sources a constant onto E_BUS%BBUS<31:0>. In the constant gener­
ation variant of the special' format microword, MISC2INOP and DISABLE.RETIREINO are effectively
specified, and the B field is ignored because this microword variant also sources a constant onto
E_BUS%BBUS<31:0>.

DIGITAL CONFIDENTIAL The Ebox 8-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.3.1.1 Microsequencer Control Fields

In addition to decoding the datapath control portion of the microword, the Ebox decodes a part
of the Microsequencer control POrtiOD of the microword. Specifically, it detects when the SEQ.FMT
and SEQ.Ml.T.X fields (see Chapter 9 and Chapter 6) specify LAST. CYCLE or LAST.CYCLE.OVERFLOW.
The Ebox fault detection logic and the RMUX control logic use these decodes.

8.3.2 The Register File

The register file contains four kinds of registers: MD (memory data), GPR, Wn (working), and
CPUSTATE registers. The MD registers receive data from memory reads initiated by the Ibox,
and from direct writes from the Ibox. The Wn registers hold microcode temporary data. They
can receive data from memory reads initiated by the Ebox and receive result data from ALU,
shifter, or Fbox operations, and from the Ibox in the case of Ibox IPR reads. The GPRs are the VAX
architecture general-purpose registers (though R15 is not in the file) and can receive data from
Ebox initiated memory reads, from the ALU or smfter, or from the Ibox. The CPUSTATE registers
hold semipermanent architectural state (e.g. KSP, SCBB). They can only be written by the Ebox.

8 .. 3.3 ALU and Shifter

Each microword specifies source operands for the ALU or shifter (A, B, POS, and CONST fields),
operations for these function units to perform (ALU, SHF, and VAL fields), and a destination (or
possibly two destinations if Q or VA is updated) for the result(s) (DST, Q, w, and V fields). Note
that in special format microwords no shifter operation can be specified and the Q register can't be
altered. In the course of executing the microword, the Ebox will fetch the source operands onto
E_BUSo/aABUS<31:0> and E_BUSO/oBBUS<31:0>, carry out the specified ALU and shifter functions,
and store the result in the specified locations (if any).

8.3.3.1 Sources of ALU and Shifter Operands

In general the sources of E_BUS%ABus<31:0> and E_BUS%BBUS<31:0> (the inputs to the ALU and
shifter) are either a constant, a register from the register file, an Ebox register (e.g. PSL, Q, or
VA), an Ebox source value calculated by a special function unit, a hardware status provided via
a special path from outside the Ebox (e.g., interrupt status), or an entry from the source queue.

·E_BUS%BBUS<31:0> sources are limited to a subset of the register file, certain Ebox registers, and
a.n entry from the source queue. The source queue is introduced in Section 8.3.4.

8.3.3.2 ALU Functions

The ALU is capable of standard operations on byte, word, and longword size operands. It can pass
either input to the output and is capable of a number of arithmetic and logical operations on one
or two operands, producing condition codes based on data length and operation.

8.3.3.3 Shifter Functions

The shifter does longword and quadword shift operations and certain pass-thru operations, always
producing a longword output. The shifter treats the two sources as a single quadword, with
E_BUSo/aABus<31:0> as the more significant longword. The longword output is this quadword
shifted right 0 to 32 bits and t~cated to longword length. The shifter produces condition codes
based the longword output data.

8-6 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

8.3.3.4 Destinations of ALU and Shifter Results

The output of the shifter and the output of the ALU can drive E%WBus<31:0>. The: shifter output
is also directly connected to the Q register so that the Q register can be loaded Vlr.ith the shifter
output regardless of the source of E%WBus<31:0>. In the same way, the ALU output is directly'
connected to the VA register. E%WBUS<31:0> data is the input to one of the write ports on the
register file and can be used to update any register file entry except an MD register. Certain other
Ebox registers (e.g. SC, PSL) ca.n be loaded from E%WBUS<31:0>.

The destination of E%WBUS<31.:0> can be specified by the current destination queue entry, when
the microword so specifies. The destination queue is introduced in the following section.

8.3.4 Ibox-Ebox Interface

The Ibox-Ebox interface is made up of a number of FIFO queues. The purpose of these queues is to
allow the Ibox to fetch and decode new instructions before the Ebox is ready to execute them. The
Ibox adds entries as it decodes instructions, and the Ebox removes them from the other end as it
executes them. For each opcode, there is a predetermined number of entries added to the various
queues by the Ibox. Ebox execution microflows remove exactly the right number of entries from
each queue.

The queues which interface the Ibox to the Ebox directly are the source queue, the destination
queue, the branch queue, and the field queue. The instruction queue, the PA queue, and the
retire queue are introduced he:re for completeness.

The source queue holds source operand information. Entries are added by the Ibox as it decodes
the source type operand specifiers of each instruction. The entry is either a pointer into the

. register file or the data from a literal mod~ operand specifier. The Ebox accesses and removes
an entry each time a microword specifies a source queue access in either the A or B fields. If the
entry is literal data, it is used as an ALU andlor a shifter operand. Otherwise thE~ register file is
accessed using the pointer in the entry.

The destination queue holds T1esult destination information. Entries are added by the Ibox as it .
decodes the destination type operand specifiers of each instruction. A destination queue entry
is either a pointer to a GPR in the register file or a flag indicating that the result destination is
memory. The Ebox accesses and removes an entry each time a microword specifies a destination
queue access in the DST field or the Fbox supplies a result which specifies a destination queue
access. If the entry is a pointer to a GPR, the Ebox writes the ALU, shifter, or Fbox data into the
register file. Otherwise the data is stored in memory at the address found in the PA queue.

The PA queue is in the MbOx.. Each time the Ibox adds an entry indicating a memory destination
to the destination queue it also sends the Mbox a virtual address to be transla!ted. "When the
Mbox has translated the address it puts it in the PA queue. If the current destination queue
entry indicates a memory destination, the Ebox sends the result data to the Mbox to be written
to the physical address found in the PA queue. The Mbox removes the PA queue entry as it uses
it. .

The branch queue holds status bits for each branch instruction processed by the Ibox. The Ibox
adds an entry to the branch queue each time it finishes processing a conditional or unconditional
branch. The Ebox referencesi and removes the current branch queue entry in the execution
microfiow for the branch. This allows the Ebox to synchronize with the Ibox so that the branch
does not finish executing until the Ibox has successfully fetched the branch displacement specifier.
It also allows the Ebox to che(~k for an incorrect branch prediction by the Ibox.

DIGITAL CONFIDENTIAL The Ebox 8-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Each time the Ibox decodes a branch it calculates the branch address. For unconditional branches
it simply begins fetching from the new instruction stream immediately. For conditional branches
the Ibox predicts whether the branch will be taken or not. The branch queue entry added by
the Ibox indicates the branch prediction. When the Ebox executes an unconditional branch, it
references the branch queue simply to ensure that the Ibox was able to fetch the displacement
specifier without a fault or etTor. For conditional branches the Ebox also checks that the branch
prediction was COITect and initiates a microtrap if it wasn't. If the branch wasn't correct, the
Ebox notifies the Ibox, which uses the alternate path PC (which it had kept) to begin fetching
along the correct path.

The retire queue holds status for each macroinstruction currently being executed in the Ebox
or the Fbox. The status indicates which unit will execute the instruction, the Ebox or the Fbox.
The Ebox adds an entry each time the Microsequencer dispatches to a macroinstruction execution
microflow. The Ebox references the retire queue when the macroinstruction execution is complete
in order to ensure that instructions finish executing in the proper order. A certain amount of
concurrent execution in the Fbox and Ebox is possible. The retire queue is used to prevent one
box from altering any architecturally visible state before the other box's execution for preceding
macroinstructions finishes. The Ebox references and removes a retire queue entry each time an
Fbox or Ebox instruction is retired.

The field queue holds a one-bit type status for variable-length bit field base address operands
processed in the Ibox. (Note that some operands are treated as variable-length bit field base
address operands internally by the NVAX CPU even though the operand is not really the base
address of a variable-length bit field. These operands, including the true bit field base address
operands, are collectively referred to as field operands.) The field queue entry indicates whether
the field operand was register mode. The Ibox adds an entry when it processes operands which
it knows by context require an entry. The Ebox retires an entry after it has used the information
in a microcode conditional branch. Very different execution microfiows are required for some
instru.ctions, particularly bit field instructions, depending on whether a particular operand is
register mode or specifies a memory address. In the latter case the information sent by the Ibox
is a memory address, while in the first case the source and destination queue entries point to the
register in the register file.

The instru.ction queue is part of the Ibox-Microsequencer interface. It holds information derived
from the VAX instruction opcode. The Ibox adds an entry as it decodes each instru.ction. An
entry contains the opcode, data length, the microcode dispatch address for execution, and a flag
indicating whether the macroinstruction is for the Fbox. The Microsequencer references and
removes an entry at the start of execution of each VAX instruction. It uses the dispatch address to
fetch the first microword of the macroinstruction execution microflow. At the same time it passes
the opcode, data length, and the Fbox execution flag to the Ebox. The Ebox adds an entry to
the retire queue at that time. That entry is simply the Fbox execution flag (except if the Fbox is
disabled.

8.3.5 Other Registers and States

The Ebox contains several special purpose registers, the SC, VA, and Q registers, and the PSL.

The Sc register holds a shift count for use in some shift operations.

The VA register can hold a virtual address or a microcode temporary value. The VA register is
directly readable by the Mbox and is the address source for all Ebox initiated memory operations.
The VA register is loaded directly from the ALU output.

8-8 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The PSL is the VAX architecture program status langword register. It is loaded from JID%WBUS<31:0>
and can be used as a source operand by the ALU or shifter. Its bits are used in many places in
the Ebox and elsewhere in the CPU where required by the VAX architecture.

The Q register is loaded from the output of the shifter. It holds shifter results for later use.

8.3 .. 6 Ebox Memory Access

Through the mechanism of the source queue and the destination queue, the Ibox initiates most
memory accesses. for the Ebol:. In certain cases the Ebox must carry out memory accesses on
its own. The MRQfield of the microword specifies the Mbox operation. The virtual or physical
address is provided from the VA register. If the VA is being updated in this microword, the address
is bypassed directly from the output of the ALU. For writes, the data is taken from E%WBUS<31:0>,
so it can be the output of the shifter or the ALU. For reads, the DST field of the microword specifies
the register file entry which is to receive the data. This register must be a GPR or a working
register.

8 .. 3 .. 7 CPU Control Functions

Most control functions are in'voked through one of the MIse fields, but some of the MRQ field
functions are Mbox control flmctions or miscellaneous control functions rather' than memory
access commands. The control functions generally act to reset a function unit (Fbox, Ibox, or
Mbox) , synchronize Ebox operation with a function unit, or restart semiautonomous operation of
the Mbox or Ibox when either of them has stopped for some reason.

8 .. 3.8- Ebox Pipeline

Ex.ecution of microwords in the Ebox is pipelined with three. pipe stages (S3 .. S5). These stages
are shown in Figure 8-1. In the first stage (83), the E_BUSo/oABUS<31:0> and E_BOS%BBUS<31:0>
sources are fetched or preparE~d. In the second (84) the ALU and shifter operate on the data. In
the third (S5) the result is written into the register file or to some other destination. Stages
83 and 84 can stall for variolls reasons. 8tage 85 cannot stall. Once a particular microword's
execution has advanced into 85, it is going to complete. Various stalls occur in 84 in order to
ensure that a particular microword's effects do not change any architectually visible state (e.g.,
GPRs, PSL) before proper completion without memory management faults is guaranteed.

The Microsequencer fetches the microword and delivers it to the Ebox in 83. If the Ebox's 83
stage is stalled, the Microsequ.encer's S2 activity is stalled as well. See Chapter 9 for more detail.

Even though the operand fetch, function execution, and result store take place in different cycles,
the microword specifies the operation as if it all took place in one cycle. The Ebox has bypass
paths which allow a microword to use a register as a source even it it is updated by one of the two
preceding microwords. For ex:ample, if the immediately preceding microword updates Wl in the
register file and the current lnicroword specifies Wl as a source to the ALU, the Ebox hardware
detects the condition and muxes the data into the staging latch before the ALU at the same time
as it forwards the data to the latch which sources E%WBUS<31:0> in stage 85.

DIGITAL CONFIDENTIAL The Ebox 8-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Bypass paths are only implemented where performance considerations warrant. Also bypass­
ing isn't the solution to every problem pipelining introduces. For example, after the PSL is
updated the microcode allows 2 cycles before a microword specifying SEQ.MUXlLAST.CYCLE or
SEQ.MUX!LAST.CYCLE.OVERFLOW because the PSL is not actually updated until 85. The
Microsequencer uses the FPD, T, and TP bits in the PSL to determine the proper new microfiow
dispatch. It would make the decision based on old PSL information if the microcode didn't allow
the 2 cycles.

One place where the effect of pipelining is particularly apparent is in microcode conditional
branches. For example, a microcode branch based on E_BUS%BBUS<31:0> data must immediately
follow the microword which sources the relevant data onto E_BUS%BBUs<31:0>. 8imilarly, a
microcode branch based on the ALU condition codes must be the second microword after the one
which specified the ALU operation. See Chapter 9 for more detail on microcode branches.

8.3.9 Pipeline Stalls

The Ebox pipeline is controlled by the stall and fault logic. This function unit supplies stall
signals which are used to gate clocking of control and data latches in each stage. It also controls
insertion of effective no-ops into S4 when 83 is stalled and into 85 when S4 is stalled.

The Ebox pipeline stalls in 83 when it is accessing a source operand in the register file or the
source queue which is not valid. Many register file entries have a valid bit associated with them.
A register file entry is not valid, and its valid bit is not set, if a memory read has been iriitiated
for that entry and hasn't yet completed. A source queue entry is not valid if the Ibox hasn't added
that entry yet.

The Ebox stalls .in 84 if the current destination queue entry is not valid and the microword in
S4 references a destination queue entry. A destination queue entry is not valid if the Ibox hasn't
added that entry yet.

The Ebox stalls in S4 if the current destination queue entry is valid but specifies a memory
destination for the data and the current PA queue entry is not valid. A PA queue entry is not
valid if the Mbox hasn't added that entry yet.

The Ebox stalls in S4 if the microword in S4 requests a memory operation and the Mbox is
already working on an Ebox initiated memory operation (that is, the previous request is still in
the EM_LATCH).

The Ebox stalls in S4 if the microword in 84 synchronizes with the branch queue and the branch
queue entry is not valid. A branch queue entry is not valid if the Ibox hasn't added that entry
yet ..

The Ebox stalls in 84 if the current retire queue entry specifies that an Fbox instruction must
retire before the instruction associated with the microword in S4 and the Ebox is r~questing the
use of the RMUX to store result data. (The Ebox requests the use of the RMUX if the microword in
84 specifies anything other than NONE in the DST field.)

If the Ebox stalls in 83, the S4 and 85 stages of the pipeline can continue execution. If 84 doesn't
stall when 83 does, then an effective no-op is inserted into S4 after the current 84 operation
advances into 85. The no-op is necessary so that the stalled 83 microword isn't advanced to 84
and 85 w bile an 83 stall is in effect.

8-10 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If the Ebox stalls in S4 then 88 stalls as well. <Microwords can't pass each other in the pipeline.)
During S4 stalls, an effective no-op is inserted into 85 after the operation in 85 completes. This
is necessary so that the operation in 84 isn't advanced into 85 while an 84 stall is in effect.

In any cycle that the Ibox has not made a microstore dispatch address· available to the
Microsequencer and a dispatch is needed (i.e., during the last cycle of any microflow), the mi­
crosequencer fetches the STALL microword. This microword specifies no Ebox operation and can't
cause a stall anywhere in the pipeline (although it does specify SEQ~MUX!LAST.CYCLE). This allows
the microwords already in the pipeline to continue even when the Ibox is temporarily unable to
supply new instruction execution dispatches. See Chapter 9 for more detail.

A microcode loop which repeat.edly accesses the field queue until the current field queue entry
becomes valid is also very muc:h like a stall, though the staUlogic is not actually involved. This
condition is referred to as a field queue stall. In this situation, the Ebox pipeline advances in
each cycle (unless the microword in S4 is stalled also). However, the same microword is fetched
out of the control store in evel"Y cycle. In typical microcode usage of the field queue conditional
branch, this microword will not alter any state in 84 or S5.

8.3.10 Microtraps, Exceptic)ns, and Interrupts

The Ebox and MicrosequenceT togethe:r coordinate the handling of exceptions and interrupts.
Most interrupts and some exCE~ptions are handled by·Microsequencer dispatching to a microcode
exception handler routine at the end of the current VAX instruction. These dispatches do not affect
the execution of microwords already in the pipeline. Other exceptions cause a microtrap. In a
microtrap the Microsequencer signals the Ebox to cause stages 83,84, and 85 of the Ebox control
pipeline to be flushed. It also signals the Ebox to flush the retire queue. (Flushing of the other
Ibox-to-Ebox queues, the Fbox pipeline, and the specifier queue in the Mbox is done by microcode,
except in the case of a branch lnisprediction.) At the same time the Microsequencer fetches a new
microword from a special dispa.tch address in the control store based on the particular microtrap
condition. This microfiow handles any other necessary state flushing. Because amicrotrap affects
microwords already in the pipeline, the Ebox delays handling most traps until the microword
which incurred the fault has reached 84. The microtrap is taken at the time that microword
would normally have entered 85. In certain cases, Ebox stalls delay a microtrap until the stall
is ended. The purpose of thil; is to ensure that operations which are part of a preceding VAX
instruction are allowed to com.plete properly.

Most of the microtraps which the Ebox delays until 54 are due to Ibox-initiated memory operations
which had an access or translation fault. Faults due to Ibox-initiated reads are detected by the
Ebox when it accesses a valid MD register from the register file, and the fault bit associated with
that MD is set. Each MD register has a fault bit which is set by the Ibox or the Mbox when a fault
occurs in the memory reads necessary to fetch the source data. When the Eboxaccesses an MD
register with its fault bit set in 83, it carries that fault status down the pipeline into 84.

All faults detected in 83 are piped to 84 before they cause a microtrap. Faults detected in 54 or
piped to 84 will cause a microtrap only if the Ebox is next to retire a macroinstruction. Otherwise
they are delayed until the Fbox retires an instruction and the retire queue entry indicates the
Ebox.

Fault status signals are sent by the Ibox for entriesin the instruction queue, source queue, field
queue, destination queue, and branch queue. Entries in the PA queue have fault bits. The Ebox
detects a fault when it accesses a PA queue entry with its fault bit set or when it finds the
instruction queue, source que1le, field queue, destination queue, or branch queue empty and one

DIGITAL CONFIDENTIAL The Ebox 8-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

of the fault status signals from the Ibox asserted. In the case of the instruction queue, the fault is
detected in 82 and earned into 83 only when there is no S3 stall. In the case of the source queue
and field queue, the faults are detected in 83. Instruction queue, source queue, and field queue
related faults are carried down the pipeline until they reach 84, where they cause a microtrap
once the Ebox is next to retire a macroinstruction.

Faults encountered in Ebox-initiated memory operations cause the Microsequencer to trap im­
mediately. Ebox memory accesses begin in 85 so these traps cannot affect microwords from
preceding VAX instructions. It is up to microcode to make sure that the last Ebox memory access
has completed properly before the Microsequencer dispatches to another VAX. instruction execution
microfiow.

Hardware en-ors are essentially handled in the same way as faults.

8 .. 3.11 Ebox IPRs

The CPUSTATE registers contained in the Register File are used by the microcode to hold e]·
ements of architectural state. They are read and written only by the EBOX. There are 10
CPUSTATE registers: KSP, ESP, SSP, USP, ISP, ASTLVL, SCBB, PCBB, SAVEPC, and SAVEPSL.
Also the Ebox ~mplements two IPRs. They are IPRs 124-125 (decimal), PCSCR and ECR.

ECR is a possible source of E_BUSo/cABUS<31:0>, accessed by specifYing ECR in the A field of the
microword. ECR and PCSCR are also possible destinations ofE%WBUS<31:0>, written by specifying
PCSCR or ECR in the DST field of the microword. On writes, the entire register is written, regardless
of the CUlTent DL value.

8.3.1'.1 IPR 124, Patch able Control Store Control Register

The PCSCR is used to load control store patches. Chapter 9 describes, the patchable control store
function in detail. Figure 8-2 and Table 8-2 show the bit fields and give descriptions.

Figure 8-2: PCS Control Register, PCSCR

31 30 2~ 281=7 26 25 24123 22 21 2011~ 18 11 l6115 l4 13 1211l 10 09 08107 O£ 05 04103 02 Ol 00
+--+--.--+--~--+--+--+--+--+

I 0 I 01 0 I I O! 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I :PCSCR
+--+--+--+--+--+-----+

8-12 The Ebox

I
--- NONSTANDARD_PATCH

+-- PATCH_REV

,----,---,

I I I
:DATA --0+ I I

RWL_SHIFT --+ I I ,
pcs WP~TE --0+ I

- peS_ENE --+ I
PAP~PORT_DIS --+

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-2: PCSCR Field Descriptions

Name Bit(s) TYPe Description

8

9

10

11

DATA 12

NONSTANDARD_PATCH 23

WO,O Writing a 1 disables control by the testability parallel port of
the section of the internal scan used in loading the control
store CAM (content addressable memory) and RAM. This is
necessary when using this register to load 'the control store
CAM and RAM.

WO,O Enables the control store CAM and RAM so that patches are
fetched and supersede the control store ROM.

WO The eve~t of writing a 1 to this bit causes the PCS.scan chain
contents to be written into the control store CAM and RAM.
The control signal which enables the write returns to the in­
active state automatically; there is no need for software to
write a 0 to· this bit after writing a 1.

WO The event of writing a 1 to this bit causes the PCS scan chain
to shift by one. The control signal which enables the shift
returns to the inactive state automatically; there is no need
for software to write a 0 to this bit after writing a 1.

WO This bit holds the data which is shifted into the PCS scan
chain when a 1 is written to RWL_SmFT. By repeatedly 8e~
ting DATA and writing a 1 to RWL_SHIFT, software can shift
any data pattern into the PCS scan chain.

RW

RW

This bit is set by software after loading a microcode patch. If
it is I, it indicates a non-standard microcode patch has been
loaded. This bit is retUTI)ed as bit<8> in a read from the SID
processor register, except that 0 is substituted for this bit in
microcode for a SID read if PCSCR<.PCS_ENB> is o.
This bit is set by software after loading a microcode patch.It
indicates the revision of the standard microcode patch which
has been loaded. This 'field is returned as bits <13:9> in a read
from the SID processor register, except that 0 is substituted
for this bit in microcode for a SID read if PCSCR<PCS_ENB>
is o.

8.3.11.2 IPR 125, Ebox Control Register

The ECR is used to configure ct~rtain Ebox functions. Figure 8-3 and Table 8-3 show the bit fields
and give descriptions.

DIGfTAL CONFIDENTIAL The Ebox 8-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 8-3: Ebox Control Register, ECR

31 30 29 2812' 26 25 24123 :: 21 20119 1B 17 16115 14 13 l2111 10 09 OBI07 06 OS 04103 02 01 00

I 01 01 01 01 01 01 01 01 1010110101010101

PM:_CLEAR

1

I
I

I I
I I

PM: LFSR --~ I
- PM:_EMUX --~ 1

PMF PMOX --~
PMr ENABLE --~

FBOX_TEST_ENABLE --+

'ICC! EX'!' --~
TIMEOUT CLOer. --+

~IMEOU!_TEST --+
'1'IMEOtr.r_OCCURRED --+ i

I
FBOX SN BYPASE ENABLE --+ I

- - TIMEOUT EXT --+ I
FBOX_ENABLE --+

VECTOF __ PP.ESEnT --+

: ECP.

8-14 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-3: ECR Field Descriptions

Name Bit(s) Type Description

VECTOR_PRESENT 0 RW,O This bit is for vector unit support in a future version of this
chip.

FBOX_ENABLE 1 RW,O This bit is set by configuration code to enable the Fbox.

TIMEOUT_EXT 2 RW,O This bit is set by configuration code to select an external time--
base for the S3 stall timeout timer. Since the }rVP,J[Plus
input clock requirements are for the test clock inputs to be
dasserted in system operation, selecting an external time base
results in the disabling of S3 timeouts.

FBOX_ST4_BYPASS_ 3 RW,O This bit is set by configuration code to enable Fbox Stage 4
ENABLE bypass.

TIMEOUT_OCCURRED 4 WC This bit indicates that an S3 stall timeout occurred. Writing
it with 1 clears it.

TIMEOUT_TEST 5 R'W,O If this bit is a 1, the S3 timeout circuit count.s cycles instead
of cycles in which E%TIMEOV'!'.ENABLE.B is asserted. In this test
mode the S3 stall timeout time is roughly 50 microseconds
instead of roughly 3 seconds.

TIMEOUT_CLOCK 6 RO This bit is most signiftcant bit of the timeout base counter. It
is used as an indication that E'*>TIMEOV'!'.ENABLE,_B is functioning
(though some logic is not covered by this test). It should be 1
half of the time and 0 the -other half' of the time. The period
of oscillation is 65536 times the cycle time of the chip or of
the waveform on ~SC.TCl.B, depending on ECR<TIMEOUT_
EXT>. For ECR<TIMEOUT_EX'r> set to 0 and a 14 nsee cycle
time, this is a period ,of roughly 900 microseconds.

ICeS_EXT 7 RW This bit is not used for NVAX Plus. }rVAX Plus supports
the full interval timer support with ICCS, NICR, and ICR
processor registers implemented in the NVAX Plus CBOX.

FBOX_TEST_ENABLE 13 R'W,O When this bit is set to a 1, HFBOx..TEST.ENB.B is asserted. This
puts the Fbox in a test mode in which data: is passed from
stage to stage unaltered.

P~!F _ENABLE 16 RW,O This bit is the internal implementation of the PME processor
register.

PMF_:MUX 18:17 RW,O This field selects the source of events counted by the perfor-
mance monitoring facility, when enabled, tel be Ibox., Ebox.,
Mbox, or Cbox.

PMF_EMUX 21:19 RW,O This field selects the EBOX events counted by the perfor-
mance monitoring facilityt when the performan:ce monitoring
facility is configured to count Ebox events.

PMF_LFSR 22 RWtO This bit enables :KWBos_B<31:0> LFSR ainear feedback shift.
register) accumulator. This is a testability feature.

DIGITAL CONFIDENTIAL The Ebox 8-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 8-3 (Cont.): ECR Field Descriptions

Name Bit(s) Type Description

PMF_CLEAR 31 WO Wri.ting a 1 to this bit clears the performance monitoring fa­
cility counters (which are also then.WBus_B<31:0> LFSR ac­
cumulator). It is not implemented in hardware. Microcode
handles this function.

NOTE

THE SUBSET INTERVAL TIMER FUNCTIONALITY IS REMOVED FROM NVAX
Plus.

8.3.12 Initialization

The main mechanism for Ebox initialization is the power-up microtrap, and the MISCIRESET.CPU
which occurs in the first microword of this microtrap fiow. When this trap occurs, the Microsequencer
will assert E_USQ%PE_ABORT, aborting the Ebox pipeline as it does for any microtrap. None of
the registers in the register file or elsewhere in the Ebox are cleared on initialization, except that
IPR bits are cleared where indicated by the bit type (see $ection 8.3.11). The state fiags are also
cleared by reset. .

The Ebox asserts Eo/DSTOP _mox., E%FLUSB_EBOx., E%FLUSB_MBOx., and E%FLUSB_FBOX during
reset. This is the same effect as·MISCIRESET.CPU. See the sections on initializatiqD for each of the
boxes for more detail.

8.3.13 Testability

This section describes the testability features in the Ebox.

8.3.13.1 Parallel Port Test Features

The following signals can be observed on the parallel test port.

• Eo/cS3_STALL

• Eo/0S4_STALL

• E%RMUX..S4_STALL

• Ebox retire queue output

• E_USQ%PE~ORT

The following control functions are available on the parallel test port.

• Force source queue stall
Forces a source queue stall in any microword which accesses the source queue regardless of
the actual number of entries in the queue.

• Force destination queue stall
Forces a destination queue stall in any microword which accesses the destination queue
regardless of the actual number of entries in the queue.

~16 The Ebox DIGITAL CONFIDENTIAL

NVAX Plus CPlJ Chip Functional Specification, Revision 0.3, October 1991

• Force branch queue stall
Forces a branch queue stall in any microword which accesses the branch queue regardless of
the actual number of entries in the queue.

8.3.13.2 Observe Scan

A number of signals in the Ebox are readable using the internal scan chain. Most of these are
control signals.

This is a list of the signals on the scan chain. They all are connected for observe only_

• E%WBUS<31:0> LFSR.

• The EM bus outputs.
• The significant stall result signals and enough of the precursors to allow determination of

which stall is in effect.

• The significant fault results and E_USQ%PE_ABORT.

• The bus E_USQ%UTEST.

8.3.13.3 E%WBUS<31 :0> LFSR

E%WBUS<31:0> has an LFSR (linear feedback shift register) accumulator. Its output can be scanned
out via the observe scan chain. It can be reset to zero by TBS control.

ISSUE

The control to clear E%WBUS<31:0> LFSR will be specified when the testability strategy
is settled.

8.3.14 Revision History

Table 8-4: Revision History

"Who When

John Edmondson SO~NOV-1988

John Edmondson 19-DEC-1988

John Edmondson 06-MAR-1989

John Edmondson 29-NOV-1989

John Edmondson 18-DEC~1989

John Edmondson Sl-JrAN-1990

John Edmondson 4-MAY-1990

Gil Wolrich 15-Nov-1990

DIGITAL CONFIDENTIAL

Description of change

Initial Rele.ase..

0one.ctions and Updates.

Release for external review.

Updates after external review and modeling complete.

Further updates, particularly adding real signal names.

Updates re£iecting minor implementation motivated changes
- rev 0.5.

Updates reflecting minor implementation motivated changes
- post rev 0.5.

EBOX chapter for NVAX Plus external release

The Ebox 8-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 9

The Microsequencer

9.1 Overview

This chapter includes the microsE~quencer block diagram and descriptions of major hardware com­
ponents including the Control Store, Patchable Control Store, and Microtest Bus, and the mi­
crosequencer testability features.' The Microsequencer chapter of the NVAX CPU Chip Functional
Specification should be referred to for complete description of the Microsequencer.

The microsequencer is a microprogrammed finite state machine that controls the three Ebox
sections of the NVAX Plus pipeline: S3, 84, and S5. The microsequencer itself resides in the 82
section of the pipeline. It accesses microcode contained in an on-chip control ROM, and microcode
patches contained in an on-chip 8RAM.. Each microword is made up of fields that control all three
pipeline stages. A complete microword is issued to 83 each cycle, and the appropriate microword
decodes are pipelined forward to 84 and S5 under Ebox control.

Each microword contains a zp.icrosequencer control field that specifies the next microinstruction
in the microfiow. This field may specify an explicit address contained in the microword or direct
the micro sequencer to accept an address from another source. It also allows the microcode to
conditionally branch on various NVAX states.

Frequently used microcode can be made into microsubroutines. \\7hen a microsubroutine is called,
the return address is pushed onto the microstack. Up to six levels of subroutine nesting are
possible.

Stalls, which are transparent to the microcoder, occur when an NVAX resource is unavailable,
such as when the ALU requir'es an operand that has not yet been provided by "the Mbox. The
microsequencer stalls when S~~ of the Ebox is stalled.

Microtraps allow the microcoder to deal with abnormal events that require immediate service.
For example, a microtrap is requested on a branch mispredict, when the Ebox branch calculation
is different from that predicted by the Ibox for a conditional branch instruction. When a microtrap
occurs, the microcode control is transferred to a service microroutine.

9 .. 2 Functional Description

DIGITAL CONFIDENTIAL The Microsequencer 9-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

9.2.1 Introduction

The NVAX microsequencer consists of several functional units of logic that are explained in the
following sections and illustrated in the block diagram, Figure 9-1.

9.2.2 Control Store

The control store is an on-chip ROM which contains the microcode used to execute macroinstruc­
tions and microtraps. It is made up of up to 1600 microwords. These are arranged as 200 entries,
each entry consisting of B microwords. Each microword is 61 bits long, with bits <14:0> being
used to control the micro seq uencer. The remainder of the microword, bits <60:15>, is used by the
Ebox to control S3 through S5. The Ebox also receives bits <14,12:11>, enabling it to recognize
the last cycle of a microfiow and the validity of the microtest bus select lines.

The control store access is performed during 4>34 of 82 and 4>1 of S3 of the NVAX pipeline. The
output of the Current Address Latch~ E_USQ...CAL%CAL_B<10:0>, is used to address the control
store. Bits <10:4,0> are used to select one of the 200 entries. The eight microwords in the selected
entry then enter an eight-way multiplexer, where E_USQ...CALo/cCAL_B<3:1> select the final control
store output. This structure is used because E_USQ...CAL%CAL_H<3:1> are valid later than bits
<10:4,0>, since E_USQ...CAL%CAL_B<3:1> must be OR'd with the microtest bus for a BRANCH
format microinstruction.

9.2.2.1 Patchable Control Store

The patchable control store is an on-chip SRAM which contains microcode patches. It consists of
up to 20 microwords. It operates in parallel with the control store. The microaddress fromthe
CAL is the input to its CAM (Content Addressable Memory). If the address hits in the C.A1v.1, the
output of the patchable control store is selected as the new microword, rather than the output of
the regular control store. -

The patchable control store and CAM are pre charged in 4>3 and evaluate in 4>41. The CAL output,
E_US<L,CAL%CAL_H<10:0>, is used in its entirety as the lookup address in the C.A1v.1, as opposed
to the 1-of-200 selection followed by the l-of-B selection used in the ROM control store.

Entries in the Patchable Control Store and its CAM are written under software control from
registers in the Ebox. The CAM is disabled during this operation.

9.2.2.2 Microsequencer Control Field of Microcode

The microsequencer control field of the NVAX microword is used to help select the next microword
address. The next address source is explicitly coded in the current microword; there is no concept
of sequential next address.
The SEQ.FMT field, bit <14> of the microsequencer control field, selects between the following
two formats:

9-2 The Microsequeneer DIGITAL CONFIDENTIAL

c
G)

~ r
o o
Z
'"Y1
6
m
~
~ r

-I
:T
~

3: o·
~
CD
.a
c
CD
::J
()
CD .,

i

T%CS_TEST .. .!

~-i~~:iTnl~ft~n-~------~
... "1. T9 PEFm TRA~P~l~-;;;;~;;:;!I E Fl f"-IOVR. L -
E--PSL ""BRANe"

Fnl;~vf~~~, ... Tr::R=-=l=:::::ja E-n T'YoMME ERR .n

MICROTRAP

lOGIC

E_9US".UTEST _L<:! :0>

CUR.
"ENT

ADDR

lAT

~1~~~R~~1f~~-~~nr~--~ E_USO".PE_ADORT_l

E::'Fl T%FlO.oING_l!AUl T:::H

E%IItIT REO H

~-~~ti::r~<1='pb~> :1
la OUT<OI~PATCH SElECT_IO

U"'I8<SEO.FMT,SEO.MUX>

1%10 BUS H

.... __ .
10_8US<VAlIO>

INSTR

QUEUE

! : .• _ ...• _ ••.• , ... __ •... 0" _, ••

" ?
o

~I~ IlATI ,
t­
:J ..
Z -,
~
0(

o
t!­
Il)

::>
at ,
o
II)

=> , ..

PHil

MICAO

STACK

PHI~

STAll

PHil
STAll

<3:0

10:4>

L-______ US':i~Jt~~s~~~~lJx>

UMIB<J ; 10 OUT<VAlIO>
iSElECT_IO

STAll 10 OUT<OPC,Ol.Fi>

PHI .. ' IPHII

E%FOPCOOE_H (TO F80XI E_USO%ICTX_H (TO S3)

.PHI:!

PHI4
STAll
SELECT 10

PHil
STAll

PHI:!3

E_USO"".UTSEl<4:0> (TO S3)

1: ,
~
0(

o

< 10:4.0>

~~ 0,1 PHil
o
II)

=>,
III

10:0>

PCS_HIT

PH"

PHI:!
STAll

E_USO".PE_A90RT _l

CONTROl

STOAE

PATCHA9lE

CONTROL

UUI8

MID

E_USO'l'.MI9 (TO S 31

l!
(Q
c:
q;

1: ..
s:

~ 0 .,
0

= ~ .a
~ c:

(I)
:::J

fJ 0
(I) .,

d OJ
(") 0" e: 0

'" to
0 ~ m- e (Q ..,

() m
tt. 3 g
~
00

~
()
t:b
()

'" Et-
0
P

~
:l.
~.
g
0

¥
0
()

~
~
....
q)
co

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 9-2: Microcode Microsequencer Control Field Formats

l' 13 ::111 10 09 06107 06 O~ 04103 02 01 00

JUMP 1 0 I

I I
I I ---- SEQ.MID:
I +--- SEQ.CAl.l.
+~-- SEQ.FM'.I'

l' 13 12111 10 Og 0810i 06 05 04103 02 01 00

BRANCE I 11 SEQ.conn BRANCH. OFFSET

i

I +--- SEQ.CALL
+--- SEQ.FMT

Table 9-1: Jump Format Control Field Definitions

Name Bit(s) Description

14 0 for JUMP SEQ.FMT

SEQ.CALL

SEQ.MUX

J

13 Controls whether return address is pushed on microstack

12:11 Selects 8ourc'e of next :cricroaddress

10:0 JUMP target address

Table 9-2: Branch Format Control Field Definitions

Name

SEQ.FMT

SEQ.CALL

SEQ.COND

BRANCH.OFFSET

9.2.2.3 MIB Latches

Bit(s) Description

14 1 for BRANCH

13 Controls whether return address is pushed on microstack

12:8 Selects source of Microtest Bus

7:0 Page offset of next :cricroinstruction

The microword output from the Control Store 8-to-1 multiplexer is latched in 4)1 into the Control
Store Microsequencer Microinstruction Buffer (CS_MIB) latch. The microword output from the
Patchable Control Store is also latched in 4)1, into the PCS_MIB latch. The outputs of the CS_
MIB and PCS_MIB latches drive a multiplexer, which selects the PCS_MIB output if the CAL hit
in the Patchable Control Store; otherwise, the multiplexer selects the CS_MIB output.

Bits <14:0> of the multiplexer output (the Microsequencer Microinstruction, E_USQ...CSM%UMIB_
B<14:0» are driven back to the microsequencer; bits <60:14,12:11> are driven to the Microinstruction
Buffer (MIB) latch. The MIB latch operates in 4)2, driving its outputs (E_USQo/cMm_H) to 83 of
the Ebox.. "When a microtrap is detected, the contents of this latch are forced to NOP. The MIB
latch is stalled on a microsequencer stall.

9-4 The Microsequencer DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

9.2.3 Next Address Logic

The remainder of the microsequencer is devoted to determining the next control store lookup
address. There are five next address sources:

1. JUMPIBRANCH. OFFSET field of Microword
2. Microtrap Logic
3. Last Cycle Logic

4. Microstack
5. Test Address Generator

9.2.3.1 CAL and CAL INPUT BUS

The CAL, or Current Address Latch, is a static latch which holds the 11 bit address used to access
the control store. It operates iln {Pa, and is stalled ona microsequencer stall. Bits ..:::10:8> are also
"stalled" when forming a branch address.

The input to the CAL is the CAL INPUT BUS. The CAL INPUT BUS is a dynainic bus, pre charged in
{P2. The selected next address source drives this bus in {Pa. Bits <14,12:11> of the microsequencer
control field are used in selecting three of the next address sources: E_USQ...CSM%UMIB_H<lO:O>
(for a BRANCH or JUMP address), the output of the last cycle logic, and the microstack out·
put. The fourth CAL INPUT BUS source is the microtrap address; if a microtrap is detected, this
input is selected regardless of the value of E_USQ...CSM%UMIB_B<14,12:11>. The fifth source is a
test address, driven from the Test Address Generator. This input has the highest priority. In
summary:

Table 9-3: Current Address Selection

TEST TRAP SEQ.FMT SEQ.MUX NEXT ADDRESS

ADDR DETECTED <14> <12:11> SOURCE REMARKS

0 0 0 00 J JUMP/CALL microin·
structions

0 0 1 XX Branch Address BRANCH/CONDITIONAL
CALL microinstructions

0 0 0 01 Microstack RETURN microinstruc·
tion

0 0 0 lX Last Cycle Logic Start new microfiow

0 1 :X :xx Microtra p Logic Microtrap

1 X :x :xx Test Address Generae&!st. address

9.2.3.1.1 Microtest Bus

The microtest bus allows conditional branches and conditional calls based on Ebox information,
such as condition codes. The SEQ.COND field of the BRANCH format is driven on the microtest
select lines, E_USQ%UTSEL_B<4:0>, in {P2a. These lines are decoded by all conditional informa­
tion sources the Ebox., and the selected source drives its information on the microtest bUSt E_
BUS%UTEST_H<.2:0>, in NOT gil' E_BUS%UTEST_H must be valid in time to be OR'd with value on
the CAL INPUT BUS and latched in the CAL in 4'>3.

DIGITAL CONFIDENTIAL The Microsequencer 9-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The sources for the microtest bus are as follows:

Table 9-4: Microtest Bus Sources

UTSEL<4:0> Select

00 No source

01 ALU.NW

02 ALU.NZC2

OS B.2-01

04 B.5-S1

05 A. 7-51

06 A.15-121

07 ASl.BQA.Bl\TZ11

08 MPU.O-62

09 MPU.7-1S2

OA STATE.2-02

OB STATE.5-32

OC OPCODE.2-01

OD PSL.26-24l!

OE PSL.29.23-22s

OF SHF.NZ2,INT

10 VECTOR,TEST

11 FBOX

12 FQ.VR1

13-IF Not Used

1Data is taken from 83.

2Data is taken from 84.

3Data is taken from 86.

UTEST<2:0>

000

ALU_ CC.N ,ALU_CC.z,ALU _CC.V

ALU_CC.N,ALU_CC.z,ALU_CC.C

EB_BUS<2:0>

EB_BUS<5:3>

EA_BUS<7:5>

EA_BUS<15:14>, EA_BUS<13> OR EA_BUB<12>

EA_BU8<31>, EB_BUS<2:0> = 0, EB_BUS<15:8> NEQ °
MPUO_6<2:0>

MPU7 _13<2:0>

STATE<2:0>

STATE<5:3>

OPCODE<2:0>

PSL<26:24>

PSL<29>,PSL<23~2>

SHF_CC.N, SHF_CC.z, INTERRUPT_REQUEST

ECR<VECTOR_UNIT_PRESENT>s, TEST DATA, TEST STROBE

Encoded fault<l:O>, ECR<FBOX.ENABLED> = OS

0, FIELD_QUEUE_NOT_VALID, FIELD_QUEUE_RMODE

The microtest select lines are always driven with bits <12:8> of the CAL regardless of the mi­
croinstruction fOrp.1at. The microtest bus is only OR'd with the CAL INPUT BUS if the BRANCH
source is selected to drive that bus.

Two of the microtest sources, the Field Queue (FQ) and the Mask Processing Unit (MPU), perform
some function based on the value of the microtest select lines. These functions must check
SEQ.FMT, E_USQo/cMIB_B<14>, for validity of the microtest select lines.

The microtest select lines are precharged to a value of zero during ~l; no microtest source is
selected for this value.

9-6 The Microsequencer DIGITAL CONFIDENTIAL

~-- -----~--------------- - ---

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

9.2.3.2 Microtrap Logic·

Microtraps allow the microcoder to deal with abnormal events that require immediate ser­
vice. Vlhen a microtrap occurs, the microcode control is transferred to a service microroutine.
'Operations further behind in the pipe than the one which caused the microtrap al,"e aborted.

Microtraps are generated by the Ebox., Mbox., or Ibox.. Those Ebox microtrap requests considered
faults are asserted in S4 of the microinstruction in which they occurred. Those that are considered
traps are asserted in S5 of the microinstruction in which they occurred.

Microtraps have higher priOIity than all other next address sources except the Test Address
Generator. Microtraps are detected in q; 4. The microtrap signals are OR'd together in <PI to form
E_USQ%PE_ABORT_H. The trap signals are prioritized and address lookup is done to select the
appropriate microtrap handler address, which is driven on the CAL INPUT BUS in ~3.

9.2.3.3 Last Cycle Logic

The last cycle logic examines several conditions used to determine which new microfiow is to be
taken when LAST.CYCLE or ItAST.CYCLE.OVERFLOW is detected on E_US'L,CSM%UMIB_H, no
microtraps are detected, and no test address is driven. There are five possible new microfiows,
listed in order of priority:

1. Interrupt Request HandlE~r

2. Trace Fault Handler
3 .. First Part Done Handler
4. Instruction Queue Stall
5. The macroinstruction microcode indicated by the top entry in the instruction queue.

The last cycle logic prioritizes these sources and performs address lookup. In addition, the signal
E_USQ..LSTo/~ELECT_I'L,H is derived. This signal is asserted when an entry is taken from the
in.struction queue.

Table 9-5: Microaddresses for Last Cycle Interrupts or Exceptions

Priority

1

2

3

4

lntelT'Upt c)r Exception

Interrupt rElquest

Trace fault

First part done

Instruction Queue Stall

Dispatch Address (Hex)

24

28

2C
30

The priorities in the last cycl'e logic are assigned using the following dependencies:

1. Interrupts and trace faults must be handled between instructions. (Interrupts may also be
serviced at defined points during long instructions such as string instructions; this servicing
is handled by microcode.)

2. By definition, an interrupt that is permitted to request service has a higher priority level
(IPL) than any exception that occurs in the process to be interrupted, or any instruction to
be executed by that proC€tss.

3. When tracing is enabled (PSL<TP> is set), a trace fault must be taken before the execution
of each instruction.

DIGITAL CONFIDENTIAL The Mierosequeneer 9-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

4. If an instruction begins execution with PSL<FPD> set, the first part done handler must be
entered rather than the normal entry point for the instruction.

5. PSL<TP> -and PSL<FPD> cannot both be set when an instruction begins execution. In order
for PSL<FPD> to be set, the instruction must have been interrupted previously; the interrupt
handler always clears PSL<TP> before saving the PSL when interrupting an instruction.
(Note that the interrupt handler does not clear PSL<TP> when the interrupt is taken between
instructions.) .

6. The Instruction Queue Stall microword is executed if an opcode is requested from the
Instruction Queue but the queue is empty.

9.2.3.4 Microstack

Frequently used microcode can be made into microsubroutines. When a micro subroutine is called,
the return address is pushed onto the microstack. The output of the microstack is' driven on the
CAL INPUT BUS when a RETURN is decoded from the E_USQ...CSM%UMIB_H, no microtraps are
detected, and no test address is driven.

The microstack is 6 entries deep. It is a circular stack, with the write pointer always one entry
ahead of the read pointer. Each entry is an Il-bit control store address. The addresses stored in
the microst~ck incorporate any modification done by the microtest bus.

9.2.4 Stall Logic

The microsequencer is stalled whenever 83 is stalled. The Ebox derives the 'signal E_STL%USEQ..
STALL_H which is used to stall the microsequencer. The microsequencer creates delayed versions
of this signal as needed to stall various latches. The signals E_USQ%PE--ABORT_B (asserted on
initiation of a microtrap) and E_USQ...TST%FORCE_TEST_ADDR_B (asserted on detection of the Test
Address Generator driving a control store microaddress, see Section 9.5) break a microsequencer
stall by clearing the delayed versions of E_STL%USEQ...STALL_B. .

9.3 Initialization

9.4

A reset (assertion of K_E%RESET_L) causes the microsequencer to initialize in the following state:

• A powerup microtrap is initiated.

• The microstack pointer is reset to zero.

• The instruction queue is flushed and its pointers are reset by E_MSC%FLUSB_EBOX-,H.

Microcode Restrictions

1. Every microtrap except Branch Mispredict must contain a RESET. CPU in order to reset the
Instruction Queue. (The Ebox is flushed automatically, clearing the queues, on detection
of branch mispredict.) RESET.CPU must not be issued within the 3 microwords preceding
LAST. CYCLE in order to allow time for the Instruction Queue to be cleared (if RESET. CPU
is present in microword N, LAST. CYCLE cannot be present until microword N+4).

2. For correct operation of Trace Fault and First Part Done in the Last Cycle Logic, PSL<T,TP,FPD>
must not be changed within the 2 microwords preceeding LAST.CYCLE (if any of these PSL
bits are changed in microword N, LAST.CYCLE cannot be present until microword N+3).

9-8 The Microsequeneer DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, ReviSion 0.3, October 1991

3. No Ebox-initiated memory requests can be made in the last cycle of a microfiow, other than
writes with the translation already known to be valid.

4: No Ebox-initiated memory requests can be outstanding when the microcode references an
operand (queue entry or register file location).

5. The instruction queue sUlll microword must indica~ LAST.CYCLE.

9.5 Testability

9 .. 5.1 Test Address

The control store microaddrel;s is both controllable and observable. A microcode address can be
driven to the microsequencer from the Test Address Generator. The Test Address: Generator is an
II-bit counter which is initialized to a value of zero on assertion of K_E%RESET_L. It increments
its address counter once on e:ach deassertion of T%CS_TEST_H, thus cycling through all possible
control store addresses.

This microaddress source takes priority over all others. To ensure immediate control store lookup
using this microaddress, ass(ertion of T%CS_TEST_B sets an SIR latch whose output is E_USQ,..
TST%FORCE_TEST_ADDR_H. Assertion of this signal breaks any stall on !P2, !P3, aDd !P4 latches in
the microseq'uencer. This allows the control store to operate, driving the selected: microword into
the MIB scan chain (see Section 9.5.2). The Ebox stall(s), if any, are.unaffected, along with stalls
on !Pl latches in the microsec!,uencer.

E_USQ...TST%FORCE_TEST_ADDR_B is deasserted when the Test Address Generator has completed
generation of all possible addlresses.

The microaddress driven from the CAL can be be observed on the Parallel Test Port data pins,
along with the microsequencelr stall signal, under control of the Parallel Test Port command pil)..S.
The microsequencer drives to the Parallel Test Port in !P2.

Figure 9-3: Parallel Port Output Format

1: 10 O~ 0810i 06 05 04103 02 01 00
~--~--+--'1'"-----+---+--+--+--+--+--'+--+

CAL OUTPUT
.... --+--+--+--+--.--st"--+--+--+--+--,,..-_-+-

OSEQ_ STALL-'--+

Table 9-6: Parallel Port Outl)ut Format Field Oeflnltlons

Name Bit(fi) Del8cription

11:1 Mic:roaddress driven from CAL CAL OUTPUT

USEQ...STALL o Mic:rosequencer stall, E_VSQ,.STlllWERY_LA.TE_VSQ..STALL..E

DIGITAL CONFIDENTIAL The Mierosequeneer 9-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

9.5.2 MIS Scan Chain

A 91-bit scan chain is present at the input to the MIB, allowing the complete microword to be
latched and scanned out of the chip.

In addition, microcode patches are written into the patchable con~rol store via the MIB scan
chain.

Tabte 9-7: Contents of MIS Scan Chain

Extent

<90:83>

<82:61>

<60:50>

<49:20>

<19:0>

Description

E.U~_B<7:0>

E.USQCJitM[B.B<60;38>

CAM READ ADDRESs<10:0>

E.USQIQIIB.B<37 :8>

CAM WRITE ADDREss<19:0>

9.6 Revision History

Table 9-8: Revision History

Rev Who

0.0 Elizabeth M. Cooper

0.1 Elizabeth M. Cooper

0.5 Elizabeth M. Cooper

O.SA Elizabeth M. Cooper

0.5E Elizabeth M. Cooper

Plus 0.1 Gil Wolrich

9-10 The Microsequencer

When Description of change

06-Mar-1989 Release for external review.

14-Sep-1989 Post,..modelling update.

1()..Dec-1989 Updates for Rev 0.5 spec release.

5.Jan-1990 . Remove vector microtrap and V bit
from IQ.

20-Jun-1990 Accumulated updates.

15-Nov-1990 Changes for NVAX Plus, retain block
diagram and test features.

DIGITAL CONFIDENTIAL

:NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 10

The Interrupt Section

10.1 Overview

NVAX Plus inputs six external interrupt signals as IR'LH<3:0>, HALT_H, and ERR~H. These
signals are hardwired, IR'LH<3:0> and ERR~H are level sensitive, and the HALT_H is edge
sensitive. The interrupts are non-vectored with the SCB Vector for each being predetermined.
It is the responsibility of the interrupt software to determine the interrupt source and reset the
interrupt. An explicit power fail interrupt is not implemented.

Internal interrupts include llIT_TIM_H, H_ERR_H, S_ERR_H, PERFORJ\.1ANCE MONITOR
FACILITY, and the architecturally defined Software Interrupt Requests. The full Interval Timer

- Implementation is present in the NVAX. Plus chip, and thus no special considerations for the
subset are necessary.

The interrupt section receives interrupt requests from both internal and external sources, and
compares the IPL associated with the interrupt l'Iequest to the current interrupt level in the PSL. If
the interrupt request is for an IPL that is higher than the current PSL IPL, the interrupt section
signals an interrupt request to the microsequencer which will initiate a microcode interrupt
handler at the next macroinstruction boundary.

'When an interrupt is serviced by the Ebox microcode, the interrupt section provides an encoded
interrupt ID on E_BUSl1aABUS, which allows the microcode to determine the highest priority in­
terrupt request that is pending. Interrupt requests are cleared in one of two ways, depending on
the, type of request.

Software interrupt requests are supported via a 15-bit SISR register, which is read and written
by the microcode, and which Inakes requests to the interrupt generation logic.

10.2 Interrupt Summary

Interrupt requests received from external logic are synchronized to internal clocks. In addition,
there are several internal sourl~es of interrupt requests which are received by edge-sensitive logic.

DIGITAL CONFIDENTIAL The tnterrupt Section 10-'

NVAX Plus CPU Chip Functional Specification., Revision 0.3, October 1991

1 a .2.1 External Interrupts

HALT_H. ERR_H, and four external device interrupts are inpout to NVAX Plus.

Interrupt Request IPL SCB Vector

Request (Hex) (Dec) (Hex)

BALT_B 1F 31 CONSOLE
ERR_B 1D 29 60

IruLB<3> 17 23 DC

IruLB<2> 16 22 DB
IruLB<l> 15 21 D4

IruLB<O> 14 20 DO

10.2.1.1 HALT _ H Interrupt Received by Edge-Sensitive Logic

The low to high transition of HALT_B causes the CPU to enter the console code, through the
address stored in the CHALT ipr register, at IPL IF (hex) at the next macroinstruction boundary.
This interrupt is not gated by the current IPL, and always results in console entry, even if the
IPL is already IF (hex). Note that the implementation of this event is different from a Il:ormal
interrupt in which a PCIPSL pair are pushed on the interrupt stack.. For this event, the current
PC, PSL, and halt code are stored in the SAVPC and SAVPSL processor registers. Microcode
clears the SR latch when the HALT interrupt is recognized by writing to the appropriate bit in
the ISR.

10.2.1.2 External Interrupt Requests Received by Level·Sensltlve Logic

Five external interrupt requests are received by level-sensitive logic and synchronized to internal
clocks. These signals request general-purpose interrupts at the following IPLs.

• ERR_R: The assertion of B_ERR_H indicates that a error has been detected in the system
environment. This results in the dispatch of the interrupt to the operating system at IPL ID
(hex) through SCB vector 60 (hex).

• mQ...B<3:0>: Device interrupts resulting in dispatch of the interrupt to the operating system
at IPL 14-17 (hex) through SCB vector DO,D4,D8, or DC (hex).

Each signal must be driven IDGH and remain HIGH to assert the interrupt request. Interrupt
routines at the specified SCB acknowledge the interrupt.

NOTE

HALT_H is the EV IRQ...H<4> pin, and ERR_H is the EV IRQ...H<5> pin.

10-2 The Interrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

10.2.2 lnternal Interrupt Rf~uests

The Cbox, Ibox, and Mbox report en-or conditions by asserting internal interrupt request signals.
The H_err signal is ORed with ERR_H, while S_err inputs directly. H_err causes an interrupt to
SCB 60(HEX), S_err causes alO interrupt to SCB 54(HEX).

The performance monitoring facility requests an interrupt at IPL 1B (hex) when the perlormance
counters.become half full. This request is serviced entirely by microcode, and clelared by writing
to the appropriate bit in the ISR.

The assertion of lliTT_TIM_H indicates that the interval timer period has expired and ICCS<6>
is set. The interrupt is dispatched to the operating system at IPL 16 (hex) through SCB vector
CO (hex).

Architecturally defined software interrupt requests are implemented through an internal register
in the interrupt section. Under control of the SISR and SIRR processor registers which are
described in Chapter 2, the Ebox microcode sets the appropriate bit in this register, which then
results in the dispatch of the interrupt to the operating system at an IPL and through the SCB
vector implied by the interrupt request. The association between the interrupt request, requested
IPL, and SCB vector for these requests is shown in the following table.

Request IPL SOB Vector

SISR bit (Hex) (])ec) (Hex)

SISR<15 > OF I'· .:> Be

SISR<14> OE l·i BB
SISR<13> OD 1:3 B4

SISR<12> OC 12 BO

SISR<ll> OB 11 AC

SISR<10> OA 10 AB
SISR<09> 09 O!~ A4

SISR<08> OB 08 AO

SISR<07> 07 0'7 9C

SISR<06> 06 013 9B
SISR<05> 05 0'· .) 94

SISR<04> 04 04 90

SISR<03> 03 08 BC
SISR<02> 02 O!~ BB
SISR 01 01 84

Ebox microcode explicitly clears the interrupt request when the interrupt is serviced.

10.2.3 Special ConsideraUons for Interval Timer Interrupts

NVAX Plus does not implement the subset Interval Timer and does not require a copy of ICCS<6>
at the Interrupt Section.

DIGfTAL CONFIDENTIAL The Interrupt Section 10-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.2.4 Priority of Interrupt Requests

When multiple interrupt requests are pending, the interrupt section prioritizes the requests.
Table 10-1 shows the relative priority (from highest to lowest) of all interrupt requests. For
reference, this table also includes the IPL at which the interrupt is taken, and the SeB vector
through which the in~rrupt is dispatched.

Table 10-1: Relative Interrupt Priority

Interrupt Request IPL SCB Vector

Request (Hex) (Dec) (Hex)

BALT_E IF 31 Nonel Highest priority

ERR_Jt ID 29 60

Performance MonitorlB 27 5B8

Facility

S_ERR_L2 1A 26 54

JruLB<3> 17 23 DC

JruLB<2> 16 22 DB

INT_TIM_L 16 22 CO

JruLB<1> 15 21 D4

JruLB<Q> 14 20 DO

SISR<15> OF 15 BC

SISR<14> OE 14 B8

SISR<13> OD 13 B4

SISR<12> OC 12 BO

SISR<11> OB 11 AC

SISR<10> OA 10 A8

SISR<09> 09 09 A4

SISR<08> 08 08 AO

SISR<07> 07 07 9C

SISR<06> 06 06 98

SISR<05> 05 05 94

SISR<04> 04 04 90

SISR<03> 03 03 8e

SISR<02> 02 02 88

SISR<01> 01 01 84 Lowest priority

lDirect dispatch to console; PC, PSL placed in SAVPC, SAVPSL processor registers

2lncludes Cbox, Ibox, and Mbox intemaliy generated. requests

3lnterrupt processed entirely by microcode

The mQ...B<2> request takes priority over the INT_TIM_L request, both of which are at IPL 16
(hex).

1 0-4 The Interrupt Section DIGITAL CONFIDENTIAL

UIIIIIII

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.3 Interrupt Section Structure

The interrupt section consists IOf three basic components: the synchroniation logic, the interrupt
state register (ISR), and the interrupt generation logic. A block diagram of the interrupt section
is shown in Figure 10-1.

Figure 10-1: tnterrupt Section Block Diagram

I
nNOHRONIZlRS

I
__ O"OIOX.H.RIIII.H

r-~::::O~.:::::::
"_IMIX.'.IMOII.H ~ ?~i~~i----------~

! r~I~+-~I--~4-~,--'---;~~~w~!~·L

lllllllll ill 1 1111111111l11l1

I
"'\I01ll1'1'V

INCOO!II ~ 'U.O""UTU'

~ TT. '1'.0"""'1'1. 0. f"'i. ' .. u uT~n .0.

j 'PL _' _____________ -I-_ ... I_v __ ~~ ... 'll..N~;...~II~O..: ... =__ _ _+_-
OOM""IIITOII :-

1.,IN"'.0 "' ... IOO'.'.L

E.lln.O"'""DclO,''' "'D. H E.IN'" _D"''''IDI_~.' I,,.
! lIu "MuS

10.3.1 Synchronization Logic

The pads for the SIX external interrupt request signals contain synchronizers to allow the use
of asynchronous signals for interrupt requests. The synchronized signals are then passed to the
ISR.

DIGITAL CONFIDENTIAL The tnterrupt Section 10-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.3.2 Interrupt State Register

The interrupt state register is a composite register that implements the 15-bit architecturally
defined SISR register, the interrupt latch for the performance monitoring facility interrupt, in­
ternal S_err, and the interrupt request latches for the six external inteITUpts. The ISR contains
two kinds of elements: SR flops for the internal interrupt requests, and latches for the external
and software request interrupts. The following table lists the types and positions of all elements
in the ISR.

ISR bit

31

29

28

27

26-

25

24

. 23

22

15:1

State Element

SR-SR flop
L-Latch

State

Element

SR

L

SR

SR

L

L

SR

L

L

L

Description

Interrupt request for BALT_B intelTUpt

Interrupt request for ER.R_B and internal C%CBOX_H_ERR from BTIJ_
STAT

Interrupt request for performance monitoring facility in~rrupt

Interrupt request for S_ERR_L lintemal soft error interrupts

Interrupt request for Dt'l.B<3> interrupt

Interrupt request for DtQ..B<2> intelTUpt

Interrupt request for INT_TIM_L intelTUpt

Interrupt request for IRQ..B<l> inte1TUpt

Interrupt request for IRQ..B<O> intelTUpt

SISR<15:1> latches and requests for software intelTUpts

P>The HALT_HinteITUpt request is loaded into the request flop in ISR<31>. The request is cleared
by under Ebox microcode control when written with a 1 from E%WBUS.

Internal requests from the Cbox, !box, and Mbox cause the assertion of one of these signals causes
the appropriate request flop to be set in ISR<27,24>. These request flops are cleared under Ebox
microcode control.when written with .a 1 from E%WBUS.

The performance monitoring faciltiy interrupt request is loaded into the request flop in ISR<28>.
The request is cleared by under Ebox microcode control when written with a 1 from E%WBUS.

SISR<15:1> is implemented via ISR<15:1>~ and is loaded from bits <15:1> of E%WBUS under Ebox
microcode control. These request latches are cleared under Ebox microcode control when a new
value is loaded from E%WBUS.

The interval timer request from ISR<24> is not gated with ISR<O> as only a single version of
ICCS<6> exits for NVAX Plus. NVAX Plus does not implement ISR<O>. (ISR<31:22,15:1» go to
the interrupt generation logic. ISR<15:1> may also be read onto E_BUSo/~US for return to the
Ebox.

1 G-6 The Interrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

10.3.3 Interrupt Generation Logic

The interrupt generation logic priority encodes all interrupt requests from the interrupt state
register to determine the highElst priority request. The output of the encoder is the request IPL
and the interrupt ID of the highest priority request. If any request is pending, the request IPL is
compared against E%psL<20:16> from the Ebox.. If the request IPL is higher than the PSL IPL,
or if the request is for RALT_B (RALT_H is not gated by the IPL), E%IN'T_REQ is asserted to the
micro sequencer.

The assertion of Eo/oINT_REQ causes the microsequencer to initiate a microcode interrupt handler
at the next macroinstruction boundary. The same signal is available on the microtest bus as a
microbranch condition, which is checked by the Ebox microcode during long instnlctions.

Along with the request IPL, thE~ intelTupt generation logic provides an encoded interrupt ID that
identifies the highest priority interrupt. The interrupt ID is read onto E_BUSo/aABUS along with
ISR<15:1> when microcode references the AIINT.SYS source. For each interrupt, the interrupt
ID encoding, request IPL, ISR bit number, method for clearing the interrupt, and SeB vector is
shown in Table 10-2.

Table 10-2: Summary of Interrupts

Interrupt IntIDI Request IPL ISR Bit Reset SCBVector

Request (Hex) (Dec) (Hex) (Dee) (Dee) Method (Hex)

BALT_B IF 3,1 IF 31 31 Write 1 to ISR bit Console Halt

ERR •. H
I ID 2:9 1D 29 29 BY H_ERR HANDLER 60

E_PMN%PMON_L 1B 2:7 lB 27 282 Write 1 to ISR bit 58 Handled
by microcode

S_ERR_Ll 1A 26 1A 26 272 . Write 1 to ISR bit 54

IRQ..B<3> 17 23 17 23 26 BY INTERRUPT RTN DC

IRQ..B<2> 16 22 16 22 25 BY INTERRUPT RTN D8

INT_TIM_L lCa 28 16 22 242 Write 1 to ISR bit CO

IRQ..B<l> 15 21 15 21 23 BY INTERRUPT RTN D4

IRQ..B<O> 14 20 14 20 22 BY INTERRUPT RTN DO

SISR<15> OF 15 OF 15 15 Write 0 to ISR bit BC

SISR<14> OE 14 OE 14 14 Write 0 to ISR bit B8

SISR<13> OD 13 OD 13 13 Write 0 to ISR bit B4

SISR<12> OC 12 OC 12 12 Write 0 to ISR bit BO

SISR<ll> OB 11 OB 11 11 Write 0 to ISR bit AC

SISR<10> OA 10 OA 10 10 Write 0 to ISR bit A8

SISR<:09> 09 09 09 09 09 Write 0 to ISR bit A4

1 Includes Cbox, !box, and M'box interIlL8liy generated requests

2Wri~1·to-clear ISR bit is different than IPL and interrupt ill

3 Interrupt ID is different than IPL

DIGITAL CONFIDENTIAL The Interrupt Section 10-7

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 10-2 (Cont.): Summary of Interrupts

Interrupt Int ID RequestIPL ISR Bit Reset SCBVector

Request (Hex) (Dec) (Hex) (Dec) (Dec) Method (Hex)

SISR<OS> OS OS OS OS OS Write 0 to ISR bit AO
SISR<07> 07 07 07 07 07 Write 0 to ISR bit 9C

SISR<06> 06 06 06 06 06 Write 0 to ISR bit 98

SISR<05> 05 05 05 05 05 Write 0 to ISR bit 94

SI SR<04 > 04 04 04 04 04 Write 0 to ISR bit 90

SISR<03> 03 03 03 03 03 Write 0 to ISR bit 8C

SISR<02> 02 02 02 02 02 Write 0 to ISR bit 88

SISR 01 01 01 01 01 Write 0 to ISR bit 84

No Interrupt 00 00 Di&nriss interrupt

The interrupt ID is the same as the request IPL for all interrupt requests except for the interval
timer request.

DESIGN CONSTRAINT

A value of zero for the interrupt ID must be return.ed if an interrupt is no longer
present, or if the highest priority interrupt request is no longer higher than the PSL
IPL. Normally, once an interrupt request is made, it remains until it is cleared by the
microcode. However, the level-sensitive interrupt requests may be deasserted after the
interrupt is dispatched, but before the microcode reads the interrupt ID. Therefore, it is
possible that the highest remaining interrupt has a request IPL lower than the current
PSL IPL. If zero is not returned for the interrupt ID in this instance, the processor will
not function correctly.

10.4 Ebox Microcode Interface

The Ebox microcode interfaces with the interrupt section primarily through reads (via E_
BUSO/aABUS) and writes (via E%WBUS) of the ISR accomplished through the AIINT.SYS and
DSTIINT.SYS decodes. These decodes provide access to the so-called INT.SYS register, which
is shown in Figure 10-2. The fields of the register are listed in Table 10-3.

1o..:.s The tnterrupt Section DIGfTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 10-2: INT.'SYS Register Format

3l 30 2~ 28i:~ 26 25 24123 :: 21 20119 18 17 16115 14 13 12111 10 Oi 08107 06 05 O'IO~ 02 01 00
.... -,-... --~--.-- --... --+--+--... --~--+-..• --.... --.-----.--+--+--+--+---r-----.--+-- -----+--.---+-- ... -,-+--.---I-

I 0 I 0 I I 0 I 0 I I 0 I 0 I () I

I
I

IN''X.ID

I
I
I
I

+-- Ir>''X_TULRESET

I +--S_ERF,_RESET
I
--- PMOK_RESET

HA:.T_P..ESE'X

DIGITAL CONFIDENTIAL

SISR<15:1>

The Interrupt Section 10-9

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 10-3: INT.SYS Register Fields

Name Bit(s) Type Description

SISR 15:1 R'W~O This field contains the 15 architecturally-defined software interrupt
request bits. It is set to 0 by microcode at powerup.

!NT.ID 20:16 RO This field contains the encoding of the highest priority interrupt
request as listed in Table 10-2. Writes to this field are ignored.

INT_TIM_RESET 24 we,o Writing a 1 to this field clears the lNT_TIM...L interrupt request.
Writing a 0 has no effect on the request. The field is read as a 0
and the interrupt request is cleared by microcode at powerup.

S_ERR_RESET 27 we,o Writing a 1 to this field clears the S_ERR_L interrupt request. Writing
a 0 has no effect on the request. The 'field is read as a 0 and the
inteITUpt request is cleared by microcode at powerup.

PMON_RESET 28 we,o Writing a 1 to this field clears the E_PMN%PMON_L interrupt request.
Writing a 0 has no effect on the request. The field is read as a 0 and
the interrupt request is cleared by microcode at powerup.

HALT_RESET 31 we,o Writing a 1 to this field clears the BALT_E inteITUpt request. Writing
a 0 has no effect on the request. The field is read as a 0 and the
inteITUpt request is cleared by microcode at powerup.

DESIGN CONSTRAINT

When read onto E_BUSo/aABUS, ThTT.SYS<31,28,27,24> must be zero. Microcode updates
the internal copy of SISR<15:1> by reading the ThTT.SYS register,modifying the appro­
priate bits, and writing the updated value back. The write-one-to-clear bits must be
read as zero because the microcode does not mask them out before writing them back.

MICROCODE RESTRICTION

The INT.SYS register is not bypassed. A write to INT.SYS in microinstruction n must
not be followed by a read of INT.SYS sooner than microinstruction n+4.

MICROCODE RESTRICTION

Changes to machine state that affect the generation of interrupts (PSL<IPL>, or
SISR<15:1» done by microinstruction n must not be followed by a LAST CYCLE mi­
croinstruction sooner than microinstruction n+4 if the change is to be observed by the
next macroinstruction.

10.5 Processor Register Interface

Software can interact with the interrupt section hardware and microcode via references to pro­
cessor registers, as follows:

• SISR, SIRR: References to the architecturally-defined SISR and SIRR processor registers
allow access to SISR<15:1>, which are implemented in INT.SYS<15:1>.

1 0-1 0 The lnterrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• INTSYS: References to the INTSYS processor register allow diagnostic and test software
direct access to the INT.SYS register. Reads of the INTSYS processor register return the
format shown in Figure 10-2. V\Trites of the Il\TTSYS processor register are internally masked
by microcode such that only the left half write-to--clear bits are written. Other bits remain
unchanged. Writes to the INTSYS processor during normal system operation can result in
UNDEFINED behavior.

10.6 Interrupt Section Interfaces

10.6.·1 Ebox Interface

10.6.1.1 Signals From Ebox

• E%PSL<.20:16>: IPL field ilrom the CUlTent PSL.
• E%WBUS: Write data bus, Irom which SISR<15~1> are loaded, and from which the write-one­

to--clear interrupt latches are cleared.

• E_PMN%PMON_L: Performance monitoring facihty interrupt request.

10.6.1.2 Signals To Ebox

• E_BUSo/oABUS: A-port operand bus, on which SISR<15:1> and the interrupt ID are returned.

10.6.2 Microsequencer IntE~rface

10.6.2.1 Signals from Microseql.llencer

• E_USCLCSM%UTSEL: Microtest bus select code.

10.6.2.2 Signals To Mlcrosequencer

• E%IN'l'_REQ: Interrupt pending.

• E_BUS%UTEST: Microtest bllS.

10.6.3 Cbox Interface

10.6.3.1 Signals From Cbox

• C%CBOX_H_ERR: Hard error interrupt request.
• C%CBOx..S_ERR: Soft error interrupt request.
• INT_TIM_L: Interval timer interrupt signal.

10.6.4 Ibox Interface

DIGITAL CONFIDENTIAL The Interrupt Section 1 0-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

10.6.4.1 Signals From Ibox

• I%ffiOX_S_ERR: Soft error interrupt request.

10.6.5 Mbox Interface

10.6.5.1 Signals From Mbox

• MO/clMBOX_S_ERROR: Soft error interrupt request.

10.6.6 Pin Interface

10.6.6.1 Input Pins

• BALT_H: Halt interrupt signal
• ERR_H: Error interrupt signal
• m(LB<3:0>: General-purpose interrupt signals

1 0.7 Revision History

Table 10-4: Revision History

Who When

Mike Uhler 06-Mar~1989

Mike Uhler 14-Dec-1989

Ron Preston 09-Jan-1990

Description of change

Release for external review.

Update for second.pass release.

Changes to simplify implementation.

Mike Uhler 20-Jul-1990 Update for change to performance monitoring interrupt request and
reflect implementation.

Gil Wolrich 15-Nov-1990 NVAX Plus modifications

Gil Wolrich l-Aug-1991 update

10-12 The Interrupt Section DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O.3~ October 1991

Chapter 11

The Fbox

11.1 Overview

This chapter provides a high level description of the floating point unit of the NVAX Plus
CPU chip. For complete spe:cification of the FBOX . refer to the NVAX CPU Chip Functional
Specification.

11 D2 Introduction

The Fbox is the floating point unit in the NVAX Plus CPU chip. The Fbox is a 4 stage pipelined
floating point processor, with an additional stage devoted to assisting division. It interacts with
three different segments of the main CPU pipeline, these are the micro-sequencer in 82 and the
Ebox in 83 and 84. The Fbox runs semi-autonomously to the rest of the CPU chip and supports
the following operations:

• VAX Floating Point Inslt;ructions and Data Types
The Fbox provides .instruction and data support for VAX floating point instructions. VAX F-,
D-, and G-floating point data types are supported.

• VAX Integer Instructions
The Fbox implements longword integer multiply instructions.

• Pipelined Operation
Except for all the divide instructions, DIV{F,D,G}, the Fbox can start a new single precision
floating point instruction every cycle and a double precision floating point or an integer mul­
tiply instruction every two cycles. The Ebox can supply two 32-bit operands or one 64-bit
operand to the Fbox every cycle on two 32 bit input operand buses. The Fbox drives the
result operand to the Ebox on a 32-bit result bus.

• Conditional "Mini-Round" Operation
Result latency is conditionally reduced by one cycle for the most frequently us~ instructions.
Stage 3 can perform a "mini-round" operation on the LSB's of the fraction for all ADD, SUB,
and MUL floating instruct:ions. If the "mini_round'! operation does not fail, then stage 3 drives
the result directly to the output, bypassing stage 4 and saving a cycle of latency.

• Fault and Exception HI:LDdling
The Ebox coordinates the fault and exception handling with the Fbox. Any fault or exception
condition received from the Ebox is retired in the proper order. If the Fhox receives or
generates any fault or ex.ception condition, it does not change the flow of instructions in
progress within the Fbox pipe.

DIGITAL CONFIDENTIAL The Fbox 11-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 11-1 is a top level block diagram of the Fbox showing the six major functional blocks
within the Fbox and their interconnections.

Figure 11-1: Fbox block diagram

: Frac~ion Da~a

E Exponen~ Da~a

S Sigr. Data
C Com:.rc·l

Control Da~a Bus

I I I I
I I I I
\ I \ I

----------------------------------~
Inter!ace - Input Section

.---------------------------------~
IFI
.. i

lEI
\ I

lSI
\. I

----------------------------------~
Divider

----------------------------------~
IFI
\ /

IE i
\ !

IS I
'. /

I '"'; ... ,
\ ,I

----------------------------------~

+---------------------------------~
IFI
\ /

lEI
\ I

151
\ /

IC!
\ !

----------------------------------~ StagEr 2

~---------------------------------+
IFI
\ I

IE I
\ /

I C'·
.1

\ I
ICI
\ /

Stage:; . I

T---------------------------------~
1:1 I I lEI I I lSI I I ICI I I
\/1 !\/II\/II\/ll

+---------------------------------~
Stage 4

.---------------------------------~
IFI
\ I

lEI
\ /

IS I
\ I

lei
\ /

.---------------------------------~
Interface - OUtput Section

.---------------------------------+
I I I I
I I I I
\ I - \ I

Control Data Bus

11.3 Fbox Functional Overview

The Fbox is the floating point accelerator for the NVAX CPU. Its instruction repertoire includes
all V.AX base group floating point instructions. The data types that are supported are F, D, and
G. Additional integer instructions that are supported are MULL2, and MULL3.

The number of internal execution cycles and the total number of cycles to complete an instruction
within the Fbox is measured as follows in Figure 11-2

11-2 The Fbox DIGITAL CONFIDENTIAL

-- -------_._. __ ._._--------------

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 11-2: Fbox Execute Cycle Diagram

For Land F Data Types

1 4 5 i

�----------�--------�--------�----'----�--------�--------I-----~--I I 1 FSl ! FS:: 1 FS3 1 FS4 1
I<-opcode-> 1

cycle
1-<--> I <----Fbo:.: internal execute eycle&--><-> I
I operand re5ult
I cycle to Ebox

For D and G Data Types

5 i 8

1----------1--------1--------1----·'---1--------1--------1--------1--------1--------1
1 I I 1 I FSl I FS:: I FS3 1 FS4 I
I <-opcode->I I<-~>I I<-->I<----Fbox internal execute cycles->I<->I <->1

cycle operandl opernnd2 result result
cyc16 cycl~, to Ebox to Ebox

LLW ULW

.
The internal execution time for all instructions except MUL{D,G,L} and DIV{F,D,G} is four cycles!
The internal execution tim~ of the various Fbox operations is given in the following Table 11-1.

Table 11-1: Fbox Internal EX4~cute Cycles

INSTRUCTION F D G L

MUL 4- 5 5 5

DIV 14- 25 24

ALL OTHER 4- 4- 4- 4-

The total number of cycles tak,en by the Fbox to complete an instruction is given in Table 11-2.
Note that this includes the cycles taken for opcode and operand transfer, in particular, the dead
cycle between the opcode and the first operand is counted.

Table 11-2: List of the Fbox'Total Execute' Cycles

INSTRUCTION F D

MUL

DIV

ALL OTHER

7

17

7

11.3.1 Fbox Interface

10

30

9

G

10

29

9

L

8

This section is responsible for overseeing the protocol with the Ebox. This includes the sequence
of receiving the opcode, operands, exceptions, and other control information, and also outputing
the result with its accompanying status. The opcode and operands are transferred from the input

DIGITAL CONFIDENTIAL The Fbox 11-3

NVAX Plus CPU Chip Functional Specification, Revisio:n 0.3, October 1991

interface to stage 1 in all operations except division. The result is conditionally received from
either stage 3 or stage 4.

11.3.2 Divider

The divider receiyes its inputs from the interface and drives its outputs to stage 1. It is used
only to assist the divide operation, for which it computes the quotient and the remainder in a
redundant format.

11.3.3 Stage 1

Stage 1 receives its inputs from either the interface or the divider section and drives its outputs
to stage 2. It is primarily used for determining the difference between the exponents of the two
operands, subtracting the fraction fields, performing the recoding of the multiplier and forming
three times the multiplicand, and selecting the inputs to the first two rows of the multiplier array.

11.3.4 Stage 2

Stage 2 receives its inputs from stage 1 and drives its outputs to stage 3. Its prittlary uses are:
right shifting (alignment), multiplying the fraction fields of the operands, and zero and leading
one detection of the intermediate fraction results.

11.3.5 Stage 3

Stage 3 receives most of its inputs from stage 2 and drives its outputs to stage 4 or, conditionally,
to the output. Its primary uses are: left shifting (normalization), and adding the fraction fields
for the aligned operands or the redundant multiply array outputs. This stage can also perform a
"mini-round" operation on the LSB's of the fraction for ADD, SUB, and MUL floating instructions.
If the "mini-round" does not overflow, and if there are no possible exceptions, then stage 3 drives
the result directly to the output, bypassing stage 4 and saving a cycle of latency.

11.3.6 Stage 4

Stage 4 receives its inputs from stage 3 and drives its outputs to the interface section. It is used
for performing the terminal operations of the instruction such as rounding, exception detection
(overflow, underflow, etc.), and determining the condition codes.

11.3.7 Fbox Instruction Set

The instructions listed in Table 11-3 constitute the VAX integer and floating point instructions
supported by the Fbox datapath.

11-4 TheFbox DIGfTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 11-3: Fbox Floating Point and Integer. Instructions

CC
FboxOpc Instruction NZVC MAP DL Exceptions

04C CVTBF sre.rb, dst. wf **00 10 10

06C C'VTBD sre.rb, dst.wd **00 10 11

14C CVTBG src.rb, dst.wg **00 10 11

04D CVTWF src.rw, dst. wf **00 10 10

06D CVTWD src.rw, dst.wd **00 10 11

14D C'VTWG sre.rw, dst. wg **00 10 11

04E CVTLF sre.rI, dst.wf **00 10 10

06E CVTLD sre.rI, dst.wd **00 10 11

14E C'VTLG src.rI, dst.wg **00 10 11

048 CVTFB sre.n, dst.wb ***0 11 00 nv, iov

049 C'VTFW sre.n, dst. ww ***0 11 01 nv, iov

04A CVTFL sre.n, dst.wl ***0 11 10 ny, iov

068 CVTDB sre.rd, dst.wb ***0 11 00 nv, iov

069 CVTDW sre.rd, dst.ww ***0 11 01 nv, iov

06A CVTDL src.rd, dst.wl ***0 11 10 nv, iov

148 CVTGB sre.rg, dst.wb ***0 11 00 nv, iov

·149 CVTG'W sre.rg, dst.ww ***0 11 01 nv, iov

14A CvrGL sre.rg, dst.wl ***0 11 10 rev, iov

04B CVTRFL sre~n, dst. wI ***0 11 10 nv, iov

06B CVTRDL sre.rd, dst. wI ***0 11 10 rsv, iov

14B C'VTRGL src.rg, dst.wl ***0 11 10 rsv, iov

056 C'VTFD src.rf, dst.wd **00 10 11 nv

199 C'VTFG sre.rf, dst. wg **00 10 11 nv

076 C'VTDF sre.rd, dst.wf **00 10 10 nv, fov

133 CvrGF sre.rg, dst.wf **00 10 10 rsv, fov, fuv

040 ADDF2 add.rf, sum.mf **00 10 10 rev, fov, fuv

041 ADDF3 add1.n, add2.rf, sum.wf **00 10 10 rsv, fov, fuv

060 ADDD2 add.rd, sum.md **00 10 11 rev, fov, ft.1V

061 ADDD3 add1.rd, add2.rd, sum.wd **00 10 11 nv, fov, nlv

140 ADDG2 add.rg, sum.mg **00 10 11 rev, fov, fuv

141 ADDG3 add1.rg, add2.rg, sum. wg **00 10 11 rev, fov, fuv

DIGITAL CONFIDENTIAL The Fbox '11-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 11-3 (Cont.): Fbox Floating Point and Integer Instructions

CC
Fbox Ope Instruction NZVC MAP DL Exceptions

042 SUBF2 sub.n, dif.mf **00 10 10 rsv, fov, fuv

043 SUBF3 sub.n. min.n! dif.wf **00 10 10 rsv, fov, fuv

062 SUBD2 sub.rd, dif.md **00 10 11 rsv, fov, fuv

063 SUBD3 sub.rd, min.rd, dif.wd **00 10 11 rsv, fov, fuv

142 SUBG2 sub.rg, dif.mg **00 10 11 rsv, fov, fuv

143 SUBG3 sub.rg, min.rg, dif.wg **00 10 11 rsv, fov, fuv

OC4 MULL2 mulr.rl, prod.ml ***0 11 10 iov

Oe5 MULL3 mulr.rl, muld.rl, prod.wl ***0 11 10 iO'\T

044 MULF2 mulr.rf, prod.mf **00 10 10 rsv, fov, fuv

045 MULF3 mulr.rf, muld.rf, prod.wf **00 10 10 rsv, fov, fuv

064 MULD2 mulr.rd, prod.md **00 10 11 rsv, fov, fuv

065 MULD3 mulr.rd, muld.rd, prod.wd **00 10 11 rsv, fov, fuv

144 MULG2 mulr.rg, prod.mg **00 10 11 rsv, fov, fuv

145 MULG3 mulr.rg, muld.rg, prod.wg **00 10 11 rsv, foy, fuv

046 DIVF2 divr.rf, quo.mf **00 10 10 rsv, fov, ftn', fdvz

047 DIVF3 divr.rf, divd.n, quo.wf **00 10 10 rsv, fo'v, fu,', fdvz

066 DIVD2 divr.rd, quo.md **00 10 11 rsv, fov, fuv, fdvz

067 DIVD3 divr.rd, divd.rd, quo.wd **00 10 11 rsv, fov, fuv, fdvz

146 DIVG2 divr.rg, quo.mg **00 10 11 rsv, fo", fuv, fdvz

147 DIVG3 divr.rg, divd.rg, quo.wg **00 10 11 rs~ fov, fuv, fdvz

050 MOVF sre.n, dst.wf **0- 01 10 rsv

070 MOVD erc.rd, dst. wd **0- 01 11 rsv

150 MOVG src.rg, dst. wg **0- 01 11 rev

052 MNEGF sre.rf, dst. wf **00 10 10 rsv

072 MNEGD src.rd, dst. wd **00 10 11 rev

152 MNEGG src.rg, dst.wg **00 10 11 rsv

051 CMPF srcl.n, src2.rf **00 10 xx rsv

11-6 The Fbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specmcationt Revision 0.3, October 1991

Table 11-3 (Cont.): Fbox Floating Point and lnteger Instructions

FboxOpc Instruction

071 CMPD srel.rd, sre2.rd

151 CMPG srcl.rg, sre2.rg

053 TSTF sre.rf

073 TSTD sre.rd

153 TSTG src.rg

CC_MAP: Condition Code Map

60 = No Update
01 = MOV Floating
10 = All Other Floating
11 = Integer

DL: Result Data Length

00 = Byte
01 = Word
10 = Long
11 = Quad

11.3.8 Revision History

Table 11-4: Revision History

Who

Anil Jain

Anil Jain

Gil Wolrieh

When

17-Mar-1989

18-Dec-1989

15-Nov-1990

DIGITAL CONFIDENTIAL

CC
NZVC MAP DL Exceptions

**00 10 xx rsv

**00 10 xx rsv

**00 10 xx rsv

**00 10 xx rs,\r

**00 10 xx rsv

Description of change

Initial Release

Updated to reflect the Fbox implementation

Retain FBOX overview for NVAX Plus Spec

The Fbox 11-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 12

The Mbox

12.1 INTRODUCTION

This chapter contains the high level description of the NVAX Plu.s MBOX, and specifies the
changes with respect to PCache Invalidates and external map support. It also includes EBOX
and CBOX interface descriptions, IPR specifications, and testability features from the NVAX CPU
Chip Functional Specification. Refer to NVAX CPU Chip Functional Specification for the detailed
decription of the MBOX.

The Mbox performs three priIl1ary functions:

• VAX memory management: The Mbox, in conjunction' with the operating system memory
management software, is responsible for the allocation and use of physical memory. The
Mbox performs the hardware functions neoessary to implement VAX memory management.
It performs translations of virtual addresses to physical addresses, access violation checks
on all memory references, ,and initiates the invocation of software memory management code
when necessary.

• Reference processing: DUE~ to the macropipeline structure of NVAX Plus, and the coupling
between NVAX Plus and its memory subsystem, the Mbox can receive memory references
from the Ibox, Ebox and CboxCinvalidates) simultaneously. Thus, the Mbol>: is responsible
for prioritizing, sequencing, and processing all references in an efficient and logically correct
fashion and for transferring references and their corresponding data to/from the Ibox, Ebox,
Pcache, and Cbox.

• Primary Cache Control: The Mbox maintains an 8KB physical a:ddress cache of I·stream and
D·stream data. This cache, called the Pcache (Primary Cache), exists in order to provide a
two cycle pipeline latency for most I·stream and D·stream data requests. It is the fastest
D·stream storage medium for NVAX Plus and represents the first level of D-stream memory
hierarchy and the second level of I-stream memory hierarchy for the NVAX Plus scalar data.
The Mbox is responsible for controlling Pcache operation.

DIGITAL CONFIDENTIAL The Mbox 12-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.2 MBOX STRUCTURE

This section presents a block diagram of the Mbox and defines the function of the basic Mbox
components.

The following block diagram illustrates the basic components of the MbOx.

12-2 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3,. October 1991

Figure 12-1: Mbox Block DI,agram

FROtoI IIOX FRI>IoI ,.ox TO I.OX/EIIOX

l"IIIOX."'DOR~31 ,0. W.USd1'O.
E .. Y IIUS '''0.

..'II.MO •• Ur. ... 3:O.

l (,M.LATCH

a
... R.,TRATION

LOGIC

~ I
I I I I

~l
YA".LATCH ""E. LATCH

t J ' ~

H IREF .L ... TCH OTHER ~£. ""'CKET.INFO
MEMORY

~
M.OUE .. S£.OAT ... d1 :0. MAIU\G&MENT

SPEC.OUEUE CROSS P ... GE
liXCEPTION ,

S5 UNALIGNEO
OA"AP ... TH

CBOX.LATCH ~N:> DETECT -- ... BORT ' E.OA TAPA TH)

~
LOGIC LOGIC

RTY.O .. ,SS.L ... T

~
1

M OUE .. S£ Y 31:0. I
I
I

C CliO 0 R~ 1 ••• atl :0 r MME p .. M OX. ILL OW"~;"
PHYSICAL T ... G PTE.O"'T'"

I I I
... ODRESS
~UEUE

H (PA.OUEUE)
.. + H ++

l PIPE LATCHJ I PIPE.LATCHJ TRANSLATION
... CVfTNV'M.O

10MISS LATCH IIIMISS LATCH I BUF~R DETECT -
t t III. oue ... s,. PAd :0> LOGIC

BYTE
(TIl)

MASK

1
GENERATOR

PFN PTE INFO

M.o:ue ... s£ P dUe. I
PRIMARY 101.01 e .. S6 PA<3110.
CACHE

(PCACHE) a. PIPE aTAGE

- - -~-I- - - - -- - -- - Ch ~,.! t:'A'Pe_I- -
SI PIPE STAGE

1K8 OF

0/1 STREAM ROTATOR ..
O ... TA MO.BUS

DRiveR

OTHS R.S6.PACKET.INFC

t 5'." ... TAcla:O'

~
PARITY

"%56 PA.,1,O.
GENERATOR

!- .. CHECKER

FROtoI C.OX TO (DiOX

DIGITAL CONFIDENTIAL The Mbox 12-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The Mbox is implemented as a two-stage pipeline located in the fifth and sixth segments of the
:NVAX Plus macropipeline (85 and 86). References processed by the Mbox are first executed in
85. Upon successful completion in S5, the reference is transferred into 86. At this point, the
reference has either completed or is transferred to the Ibox, Ebox, or Cbox.

During any cycle, the fundamental state of the S5 and 86 stages can be defined by the particular
references which currently reside in these two stages. For the purposes of describing the Mbox,
all references can be viewed as a packet of information which is transferred on the 85 and S6
buses. The 85 reference packet, and the corresponding S5 buses are defined as:

• ADDRESS: The M_QUE%S5_VA<31:0> bus transfers all virtual addresses and some physical
addresses into the 85 pipe. The M_QUEo/0S5_PA<31:0> bus transfers some physical addresses
into the 85 pipe and transfers all addresses out of the 85 pipe.

• DATA: M_QUEo/0S5_DATA<31:0> transfers data originating from the Ebox, through the 85 pipe.
• CO:MMAND: M_QUE%S5_CMD<4:0> transfers the type of reference through the 85 pipe. This

command field is defined in Section 12.3.l.

• TAG: The M_QUEo/0S5_TAG<4:0> transfers the Ebox register file destination address corre­
sponding to the reference through the 85 pipe.

• DEST_BOX: M_QUEo/oS5_DEST<1:O> transfers the reference destination information through
the S5 pipe. This field is defined as follows:

M_ QUE%S5_DEST Definition

00: the reference requests data destined for the Mbox.

01: the reference requests data destined for the Ibox..

10: the reference requests data destined for the Ebox..

11: the reference requests data destined for the Ebox and Thox..

• AT: The M_QUEo/0S5_AT<1:0> transfers the access type of the reference. This field is defined as
follows:

M_ QUE%S5_AT Definition

00: tb passive query access (See PROBE command)

01: read access

10: write access

11: modify access (read with write check for future write to same addr)

• DL: The M_QUE%S5_DL<1:0> transfers the data length of the reference. This field is defined
as follows:

00: byte

01: word

10: longword

12-4 The Mbox DIGITAL CONFIDENTIAL

•

•

NVAX Plus CPU Chip Functional Specification, Revision O.3~ October 1991

11: quadword

Bl'TE_MASK: The M_QU.Eo/~5_BM<7:0> transfers the byte mask information out of the 85
pipe.
REF_QUAL: The M_QUEo/eS5_QUAL<6:0> transfers information which further qualifies the ref­
erence for the purpose of .Mbox processing. This field is defined as follows:

M_QUE%S5_QUAL bit

M_Qt.T.E%S6_QVAL<6>

M_QUE%S5_QvAL<5 >

M_QVE%S5_QVAL<4>

M_QVE%S5_QVAL<3 >

M_QVE%S5_QvAL<2>

M_QVE%S5_QVAL< 1>

M_QUE%S5_QVAL<0>

Definition

address of reference is cUlTently a virtual address.

reference has been tested for cross-page condition.

reference is first part of an unaligned reference.

reference is second part of an unaligned reference.

enable ACV and M=O checks.

reference has or is forced to have a hard error.

reference has or is forced to have a memory management fault (ACVITNVIM=O).

The 86 reference packet, and the corresponding 86 b~es are defined as:

• ADDRESS: The MO/0S6_PA<31:0> bus transfers a physical address through the 86 pipe.

• DATA: B%S6_DATA<63:0> transfers data through the 86 pipe.
• CO:MMAND: Mo/cS6_Cl\ID<·4:0> transfers the type of reference through the 86 pipe. This com­

mand field is defined in Section 12.3.1.
• TAG: The M_Qu:Eo/0S6_TAG<4:0> transfers the Ebox register file destination address corre­

sponding to the reference through the 86 pipe.
• DEST_BOX: M_QUEo/0S6_DtEST<l:O> transfers the reference destination inforrmation through

the 86 pipe. This field is defined as follows:

M_ QUE%S6_DEST Definition

00: the reference requests data destined for the Mhox.

01: the refE~rence requests data. destined for the Ibox.

10: the reference requests data. destined for the Ebox.

11: the reference requests data. destined for the Ebox and Thox.

• 86_BYTE_MASK: Mo/0S6_BYTE_MABK<7 :0> transfers the byte mask information through the
86 pipe. The byte mask field is used to indicate which bytes of a longword or quadword write
should actually be written to a cache or memory.

• REF_QUAL: M_QUEo/0S6_'~UAL<3:0> transfers information which further qualifies the refer­
ence for the purpose of Mbox processing. This field is defined as follows:

DIGrTAL CONFIDENTIAL The Mbox 12-5

.NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

M_QUE%S6_QUAL bit

M_QUE'*.s6_QUAL<3 >

M_QUE%S6.QUAL<2>

M_QUE'*.s6_QUAL< 1>

M_QUE'*.s6_QUAL<O>

12.2.1 EM_LATCH

Definition

reference is first part of an unaligned reference.

reference is second part. of an unaligned reference.

reference has or is forced to have a hard error.

reference has or is forced to have a memory management fault (ACVtTNV!.M=O).

The EM_LATCH latches and stores all commands originating from the Ebox. Each reference is
stored until the following two conditions are satisfied: 1) the "complete logical reference" (i.e.
the pair of aligned references required if the EM_LATCH reference is unaligned) clear memory
management access checks, and 2) the EM_LATCH reference successfully completes in 85.

A 4-way byte barrel shifter is connected to the data portion of the EM_LATCH. This enables the
write data to be byte-rotated into longword alignment. The EM_LATCH output can be tristated.

12.2.2 CBOX_LATCH

The CBOX_LATCH stores references originating from the Cbox. These references are I·stream
Pcache fills, D-stream Pcache fills, or Pcache hexaword invalidates. Each reference is stored until
the reference successfully completes in S5.

Note that no data field is present in this latch even though this latch services cache fill commands.

Cache fill data will be supplied to the Pcache on the Bo/oSG_DAXA Bus by the Cbox during the
appropriate 86 cache fill cycle. The. C9DCBOX_ADDR bus is driven by the Cbox during invalidate
commands. During cache fill commands. all but two bits of the C%CBOX_ADDR bus are driven by
the DMI8S_LATCH or IMISS_LATCH. The Cbox will drive Co/aMBOX_FILL_QW<4:3> during cache
fill commands in order to supply the quadword alignment of the fill data within the hexaword
block. The CBOX_LATCH output can be tristated.

12.2.3 TB

The TB (translation buffer) is the mechanism by which the Mbox performs quick virtual·to­
physical address translations. It is a 96-entry fully associative cache of PTEs (Page Table Entries).
Bits 31 through 9 of all S5 virtual addresses act as the TB tag. The replacement algorithm
implemented is Not-Last·Used.

'12.2.4 DMISS_LATCH and IMISS_LATCH

The DMISS_LATCH stores the currently outstanding D·stream read. That is, a D-stream read,
which missed in the Pcache, is stored in the DMISS_LATCH until the con-sponding Pcache block
fill operation completes. The DMISS_LATCH also stores IPR ... RDs to be processed by the Cbox
until the Cbox supplies the data. I-stream reads are handled analogously by the IMISS_LATCH
except that IPR_RDs are never handled by the IMISS_LATCH.

12-6 The Mbox DIGrTAL CONFIDENTIAL

-----------_.,---_.

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

These two latches have comparators built in in order to detect the following concBtions:

• For NVAX If the hexaword address of an invalidate matches the hexaword address stored in
either MISS_LATCH, the (:orresponding MISS_LATCH sets a bit to indicate that the corre­
sponding fill operation is no longer cacheable in the Pcache. **l\TVAX Plus invalidates only
specify index<12:5 >, and the PCache set to be invalidated. If the index and MISS_LATCH
allocation bit match an invalidate the the corresponding MISS_LATCH sets a bit to indicate
that the corresponding fill operation is no longer cacheable in the Pcache. **

• Address<11:5> addresses a particular Pcache index (corresponding to two Pcache blocks). If
address<8:5> of the DMISS_LATCH matches the corresponding bits of the physical address
of an S5 I-stream read, the S5 I-stream read is stalled until the entire D-stream fill operation
completes. This prevents the possibility of causing a D-stream fill sequence to a given Pcache
block from simultaneously happening with an I-stream fill sequence to the same Pcache block.

• By the same argument, address<8:5> of the OOSS_LATCH is compared against S5 D-stream
reads to prevent another simultaneous I-streamJD-stream fill sequence to the same Pcache
block..

• Address<8:5> of both miss_latches is compared against any 85 memory write .operation. This
is necessary to prevent the write from interfering with the cache fill sequence ..

12.2.5 Pcache

The Pcache is a two-way set associative, read allocate, no-write allocate, write through, physical
address cache of I-stream and D-stream data. Some systems may force the Pcache to allocate
such that if address[12]=O set 0 is loaded, and if address[12]=l set 1 is loaded, using the Pcache
as if it were direct mapped so that the Pcache can be backmapped exactly as the EV4 Dcache.
The Pcache stores 8192 bytes (BK) of data and 256 tags corresponding to 256 hexaword 'blocks
(1 hexaword = 32 bytes). Each tag is 20 bits wide corresponding to bits <31:12> of the physical
address. There are four quadword subblocks per block with a valid bit associated with each
subblock. The access size for both Pcache reads and writes is one quadword. Byte parity is
maintained for each byte of da.ta (32 bits per block), One bit .of parity is maintained for every
tag. The Pcache has a one cycl1e access and a one cycle repetition rate for both reads and writes
(note however, that the entire l\fuox latency is two cycles due to the two stage Mbox pipeline).

12.3 REFERENCE PROCESSING

This section discusses how refe~rences are processed by the Mbo&, and how the Mbox f1.Ulctional
components interact to carry out reference processing.

12.3.1 REFERENCE DEFINI'TIONS

The following table describes all types of references processed by the Mbox:

Table 12-1: Referenoe Definitions

Name Value (he:z:) Reference Source Description

IREAD OE Ibox Aligned quadword I-stream read

DIGrTAl. CONFIDENTIAL The Mbox 12-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 12-1 (Cont.): Reference Definitions

Name Value (hex) Reference Source Description

DREAD lC Ibox, Ebox, Mbox Variable length D-stream read

DREAD_MODIFY lD Ibox Variable length D-stream read with
modify intent as a result of IOOx-
decoded modify specifiers

DREAD_LOCK IF EOOx _ Variable length D-stream read with
atomic memory lock

WRITE_UNLOCK LA EOOx Variable length write with atomic
memory unlock

WRITE lB EOOx Variable length write

DEST_ADDR lD Ibox Supplies address of a write-only
destination specifier

STORE 19 EOOx Supplies write data corresponding
to a previously translated destina-
tion specifier address.

IPR_'WR 06 EOOx Internal Processor Register Write

IPR_RD 07 EOOx Internal Processor Register Read

IPR_DATA 04 Mbox Transfers Mbox IPR data to Ebox

LOAD_PC 05 EOOx Transfers a PC value to Ibex via
M%MD_Bt:JS<31:0>

PROBE 09 EOOx Mbox returns ACVtTNVIM=O sta-
tus of specified address to Ebox..

MME_CHK OB Ebox, Mbox Performs ACVtTNVIM=O check on
specified address and invokes the
appropriate memory management
exception

TB_TAG_FILL oc Ebox, Mhox Writes a TB tag into a TB entry.

TB_PI'E_FILL 14 Ebox., Mhox Writes PrE data into a TB entry.

TBIS 10 Ebox Invalidates a. specific PTE entry in
the TB.

TBIA IB Ebox,Mbox Invalidates all entries in TB.

TBIP 11 Ebox Invalidates all PTE entries in TB
corresponding to process-space trans-
lations.

D_CF 03 Cbox D-stream quad word Pcache fill

I_CF 02 Cbox - I-stream quadword Pcache fill

12-8 The Mbox DIGITAL CONFIDENTiAL

-----~------~--------,

NVAX Plus CJPU Chip Functional Specification, Revision 0.8, October 1991

Table 12-1 (Cont.): Reference Definitions

Name Value (hex)

INVAL 01

OF

NOP 00

12.3 .. 2 Arbitration Algorithm

Reference Source

Chox

!box

Description

Hexaword invalidate of a Pcache
entry

Stops processing of specifier refer­
ences.

No operation

Since Cbox references always want to be processed immediately, a validated CBOX_LATCH al­
ways causes the Cbox reference to be driven before: all other pending references.

A validated RTY_DMI8S_LATCH, MME_LATCH, and VAP _LATCH have priority over the EM_
LATCH.

12.4 READS

12.4.1 Generic Read-hit and Read-miss/Cache_flll Sequences

In order to orient the reader as to how memory reads are processed by the Mbox., this section will
describe the "vanilla" read sequence. It does not discuss reads which TB_MI8S, or otherwi~e are
stalled for a variety of different reasons. .

The byte mask generator generates the corresponding byte mask by looking at M_QUEo/tS5_ VA<2:0>
and M_QUEo/cS5_DL<1:0> and then drives the byte mask onto M_QUE%S5_BM<7:0>. Byte mask data
is generated on a read operation in order to supply the byte alignment information to the Obox
on an 110 space read.

When a read reference is initiated in the 85 pipe, the address is translated by the TB (assuming
the address was virtual) to a physical address during the first half of the 85 cycle. The Pcache
initiates a cache lookup sequence using this physical address during the second half of the 85
cycle. This cache access sequence overlaps into the following 86 cycle. During phase four of the
86 cycle, the Pcache determines whether the read reference is present in its array.

If the Pcache determined that the requested data is present, a "cache hit" or "read hit" condition
occurs. In this event, the Pca:che drives the requested data onto Bo/0S6_DATA<63;O>. The signal,
M%CBOX_REF _ENABLE, is de-asserted to inform the Cbox that it should supply the data from the
Pcache. .

If the Pcache determined that the requested data is not present, a "cache miss" or "read miss"
condition occurs. In this event, the read reference is loaded into the IMISS_LATOH or DMISS_
LATCH (depending on whethe~r the read was I-stream or D-stream) and the Cbox is instructed to
continue processing the read by the Mbox assertion ofM%CBOX_REF_ENABLE. At some point later,
the Cbox obtains the requested data. The Cbox will then send four quadwords of data using the
I_CF (I-stream cache fill) or D._CF (D-stream cache fill) commands. The four cache fill commands

DIGITAL CONFIDENTIAL The Mbox 12-9

NVAX Plus· CPU ~hip Functional Specification, Revision 0.3, October 1991

together are used to fill the entire Pcache block corresponding to the hexaword read address.
In the case of D-stream fills, one of the four cache fill command win be qualified with C%RECL,
DQW indicating that this quadword fill contains the requested D-stream data. corresponding to
the quadword address of the read. V\7b.en this fin is encountered, it will be used to supply the
requested read data. to the Mbox, Ibox and/or Ebox.

If the requested is returned to the CBOX with a dRAck response indicating the data. is not to be
placed in Pcache, the CBOX windows the fill commands with C%DRACK_NOCACHE_H causing the
read block not to be allocatted.

If, however, the physical address corresponding to the I_CF or D_CF command falls into 110
space, only one quad word fill is returned and the data. is not cached in the Pcache. Only memory
data. is cached in the Pcache.

Each cache fill command sent to the Mbox is latched in the CBOX_LATCH. Note that neither
the entire cache fill address nor the fill data are loaded into the CBOX_LATCH. The address in
the !MISS_LATCH or DMISS_LATCH, together with two quad word alignment bits latched in the
CBOX_LATCH are used to create the quadword cache fill address when the cache fill command
is executed in S5. V\7'hen the fin operation propagates into S6, the Cbox drives the corresponding
cache fill data. onto Bo/c.S6_DATA<63:0> in order for the Pcache to perform the fill.

12.4.1.1 Returning Read Data

Data resulting from a read operation is driven on Bo/eS6_DATA by the Pcache (in the cache hit case)
or by the Cbox (in the cache miss case). This data is then driven on Mo/QMD_BUS<63:0> by the
MD_BUS_ROTATOR in right-justified form. The signals M%VIC_DATA., Mo/oIBOx.,DATA, M%mox.,

IPR_WR, M%EBOx.,DATA., M%MBOX_DATA, are conditionally asserted with the data to indicate the
destination(s) of the data.

In order to return the requested read data to the Ibox and/or Ebox -as soon as possible, the Cbox
implements a Pcache Data Bypass mechanism. When this mechanism is invoked, the requested
read data can be returned one cycle earlier than when the data is driven for the 86 cache fill
operation. The bypass mechanism works by having the Mbox inform the Cbox that the next 86
cycle will be idle, and thus the B%S6_DAXA bus will be available to the Cbox. When the Cbox is
informed of the 86 idle cycle, it drives the B%S6_DAXA bus with the requested read data if read
data is currently available (if no read data is available during a bypass cycle, the Cbox drives
some indeterminent data and no valid data is bypassed). The read data is then formatted by
the MD_BUS_ROTATOR and transferred onto the Mo/'QMD_BUS to be returned to the Ibox andlor
Ebox, qualified by M%VIC_DATA., M%mOX_DATA, andlor M%EBOX_DATA.

12.4.2 D-stream Read Processing

A DREAD_LOCK command always forces a Pcache read miss sequence regardless of whether
the referenced data was actually stored in the Pcache. This is necessary in order that the read
propaga te out to the Cbox so that the memory lock/unlock protocols can be properly processed.

12-10 The Mbox DIGITAL CONFIDENTlAL

'-------------------_________ I .. I ______ ~ .. ~ --

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.4.3 1/0 Space Reads

1/0 space reads are defined as reads w~ch address 110 space. Therefore, a read is an 1/0 read
when the physical address bits, addr<3L29>, are set. I/O space reads are treated by the Mbox
in exactly the same way as any other read, except for the following differences:

• 1/0 space data is never cac:hed in the Pcache. Therefore, an I/O space read always generates
a read-miss sequence and causes the Cbox to process the reference.

• Unlike, a memory space nuss sequence, which returns a hexaword of data via four I_CF or
D_CF commands, an 1/0 space read returns only one piece of data via one I_CF or D_CF
command. Thus the Cbox always asserts C%LAST_FILL on the first and only I_CF or D_CF
110 space operation. If the 1/0 space reaa is D-stream, the returned D_ CF data is always less
than or equal to a longword in length.

• 1/0 space D-stream reads are never prefetched ahead of Ebox execution. An 110 space D­
stream read issued from the Ibox is only processed when the Ebox is known to be stalling on
that particular 110 space read.

NVAX RESTRICTION

I-stream 110 space reads must return a quadword of data. Execution of an I-stream
110 space read which does not return a quadword of data is unpredicatable.

12.5 WRITES

All writes are initiated by thE~ Mbox on behalf of the Ebox. The Ebox microcode is capable of
generating write references w:ith data lengths of byte, word, longword, or quadword. With the
exception of cross-page check8, the Mbox treats quadword write references as longword write
references because the Ebox data path only supplies a longword of data per cycle. Ebox writes
can be unaligned.

The Mbox performs the following functions during a write reference:

• Memory Management checks: The Mbox checks to be sure the page or pages referenced have
the appropriate write acceiSS and that the valid virtual address translations. are available.
(See Section 12.12)

• The supplied data is properly rotated to the memory aligned longword boundary.
• Byte Mask Generation: The Mbox generates the byte mask of the write reference by exam­

ining the write address and the data length of the reference.
• Pcache writes: The Pcache is a write-through cache. Therefore, writes are only written into

the Pcache if the write address matches a validated Pcache tag entry.
The one exception to this rule is when the Pcache is configured in force D-stream hit mode.
In this mode, the data is always written to the Pcache regardless of whether the tag matches
or mismatches.

• All write references which pass memory management checks are transferred to the Cbox
via Bo/cS6_DATA<63:0>. ThE~ Cbox is responsible for processing writes in the Bcache and for
controlling the protocols related to the write-back memory subsystem.

DIG[TAL CONFIDENTIAL The Mbox 12-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

When write data is latched in the EM_LATCH, the 4-way byte barrel shifter associated with the
EM_LATCH rotates the EM_LATCH data into proper alignment based on the lower two bits of
the corresponding address. The diagram below illustrates the balTel shifter function:

Figure 12-2: Barrel Shifter Function

origina~ .-----+-----+-----*-----+
" t-~e s c·f : 4 I 3 I :: ! l I

Ebox data +-----.-----+-----+-.---~

barrel shifter ~-----+-----*-----+-----+
output when I 3 I 2 III ..: I
~_QUE~S~_VA<l:O> - Ol +-----+-----------------+
barrel shifter +-----+-----------+-----+
ou':.put when : : I 1 ; , I 3 I

M_QUE%S=_VA<l:O> • 10 +-----+-----------+-----+
barrel shifter ------+-----------+-----+
ou':.pu't when ill -4 3 121

.-----~-----------+-----~

The result of this data rotation is that all bytes of data are now in the correct byte positions
relative to memory longword boundaries.

When write data is driven from the EM_LATCH, M_QUE%S5_DATA<31:0> is driven by the output
of the balTel shifter so that data will always be properly aligned to memory longword addresses.

Note that, while the Mo/aM_QUEo/oS5_DATA bus is a longword wide, the Bo/0S6_DATA bus is a quadword
wide. Bo/0S6_DATA is a quadword wide due to the quadword Pcache access size. The quadword ac­
cess size facilitates Pcache and VIC fills. However for all writes, at most half of B%S6_DATA<63:0>
is ever used to write the Pcache since all write commands modify a longword or less of data. When
a write reference propagates from 85 to 86, the longword aligned data on M_QUEo/oS5_DATA<31:0>
is transferred onto both the upper and lower halves of B%S6_DATA<63:0> to guarantee that the
data is also quadword aligned to the Pcache and Cbox. The byte mask corresponding to the
reference will control which bytes of Bo/0S6_D.ATA<63:0> actually get written into the Pcache or
Bcache.

Write references are formed through two distinct mechanisms described below.

12.5.1 Writes to 1/0 Space

I/O space writes are defined as a write command which addresses 110 space. Therefore, a write
is an 110 space write when the physical address bits t addr<31:29>, are set. lIO space writes
are treated by the Mbox in exactly the same way as any other write, except for the following
differences:

• 110 space data is never cached in the Pcache; therefore, an I/O space write always misses in
the Pcache.

12-12 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus C]~U Chip Functional Specification, Revision 0.8, October 1991

12.6 IPR PROCESSING

12.6.1 MBOX IPRs

The Mbox maintains the folliowing internal processor registers:

Table 12-2: Mbox IPRs

Register Name

MPOBR (Mbox PO Base Register)l

M:POLR (Mbox PO Length Regis1~r)1

M:P1BR (Mbox PI Base Register)l

MP1LR (Mbox PI Length Register)l

MSBR (Mbox System Base Register)l

MSLR (Mbox System Length REigister)l

MMAPEN (Map Enable Bit)l

PAMODE (Address Mode)

MMEADR CMME Faulting Address Registe!)l

NIMEPTE (PTE Address RegistE~r)l

:MMESTS (status of memory ma.nagement exceptioDi

TBADR (address of reference causing TB parity elTor)

TBSTS (status ofTB parity error)

PCADR (address of reference causing Pcache parity error)

PCSTS (status of Pcache parity error and PTE hard errors)

PCCTL (control state of Pcache loperation)

PCTAG

PCDAP

lTestability and diagnostic use only; Dot for software use in DOrmal operation.

IPRAddress
(in hex)

EO

El
E2

E3

E4

E5

E6

E7

E'B

E:9

EA
EO

ED

F,2

F4
FB
01800000 .. 0I80lFEO

01COOOOO .. 01C01FF8

The first thirteen IPRs listed above (memory management IPRs) are stored in the 85 pipe in
the register file of the MME._DATAPATH. All other IPRs are stored in the 86 pipe. Note that
when an Mbox IPR, other th~LD a Pcache tag, is addressed, the actual IPR address is received on
M_QUEo/D85_VA<9;2> (the tablE! above is written such that all addresses start at bit<O».

The following is the format description of each Mbox IPR.

DIGrTAL CONFIDENTIAL The Mbox 12-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-3: MPOBR Register

31 30 29 :81:~ 26 25 2~1=3 :: :1 20119 18 :7 16115 1~ 1~ 12111 10 09 08107 06 05 0~103 02 01 00

I 11 01 systenl virtual page adc1ress of PO page 'table I 01 0 I 0 I 0 I 01 0 I 0 I 01 0 I :MPOBF,

Figure 12-4: MPOL.R Reg1ster

31 30 29 28i2~ 26 25 2~123 22 21 20119 18 17 16115 1~ 13 12111 10 09 08107 06 05 0~103 02 01 00

1 01 OJ 01 O! 01 01 01 01 01 01 length of PO page table in longworas 1 :MPOl.F,

Figure 12-5: MP1 BR Register

31 30 29 2812i 26 25 24123 22 21 20119 18 1~ 16115 1~ 13 12111 10 09 08107 06 05 04103 02 01 00

! 1! 0: syste:r, virtua:' page address of Pl page t.able 1 01 01 01 01 01 01 01 01 01:MP1BR

Figure 12-6: MP1 L.R Register

31 30 29 2812; 26 25 24123 22 21 20119 18 17 16115 1~ 13 12111 10 09 08107 06 05 0~103 02 01 00

1 0: 01 0: 0, O' 01 O! 01 01 01 length of (2 9 *21) - P: page 'table in longworas 1 :M?ll.R

Figure 12-7: MSBR Register

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 1~ 13 12111 10 09 08107 06 05 04103 02 01 00
+--+--+--~--+

physical page address of system pag_ table 1 01 01 01 01 01 01 01 01 OI:MSBR
+--~--+--+--+--+--+--+

12-14 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-8: MSLR Register

31 30 29 281=7 26 2! 24123 :2 :1 20119 18 1~ 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00

.--~--~--~--.--.--~--~--~--~-.. ~--~--~--+--~--~--+--+--~--+--~--~--~--.--~--~--+--+--.--+--.--+--.
I 01 01 01 01 01 01 01 01 01 01 length of system page table in longwords 1 :l".sLf.

Figure 12-9: MMA PEN Register

31 30 29 28127 26 25 24123 2: 21 20119 18 17 16115 14 13 12111 10 O~ 08107 06 05 04103 02 01 00

1 0: 01 01 0: 01 01 01 01 01 (i 1 01 0 I 01 O! 01 01 01 01 01 0 I 01 01 (i 1 01 01 01 01 01 (J 1 01 01 M 1 :W..APEl\

Table 12-3: MMAPEN Definition

Name Bit(s) Typc~

M ° RW,O

, Figure 12-10: PAMODE Regls;ter

Description

When 0, disables Mbox memory management. When 1, enables
:Mbox memory management.

31 30 29 28127 26 25 24123 :2 21 20119 18 17 16115 14 13 12111 10 O~ 08107 06 05 0410~ 02 01 00

+--+--.--+-----+--,+--+--+--+
1 01 I:PAMODE

---+--+--+--+--.--+--.--+--+--+

Table 12-4: PAMODE Deflnlti()n

Name Bit(s)

MODE ° RW,O

DIGITAL. CONFIDENTIAL

MODE------.;.

Description

'When 0, maps addresses from a 30-bit physical address space. When
1, maps addresses from a 32-bit physical address space.

The Mbox 12-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 12-11: MMEAOR Register

31 30 2~ 281:, 26 25 24123 22 2: 2011~ 18 :i 16115 14 13 12111 10 O~ 0810i 06 05 04103 02 01 00

address associa~ed wi~h recorded MME !aul~ I :MMEADF,

Figure 12-12: MMEPTE Register

31 30 2~ 28127 26 2~ 24123 ~: ~1 2011~ 18 1i 16115 14 13 l21l1 lO 09 0810i 06 05 04103 02 Ol 00

PTE ad:i.ress associated wit.h an address corresponding te· a modi£~' !ault I :MMEPTE

Figure 12-13: MMESTS Register

31 30 29 281:, 26 25 24123 :2 21 20119 l8 1i 16115 14 l3 l21l1 lO 09 0810i 06 05 04103 02 Ol 00

SRC I 01 01 01 01 01 01 01 01 01 o I FAULT 1 01 01 01 01 01 01 01 01 01 01 01 MI ILVI :MMESTS

Table 12-5: MMESTS Register Definition

Name Bit(s) Type Description
-------------------------------------- --

M

FAULT

SRC

LOCK

12-16 The Mbox

0

1

2

15:14

28~26

31:29

RO,O

RO

RO

RO

RO

RO

Indicates ACV fault occurred due to length violation.

Indicates ACVfrNV fault occUlTed on PrE reference corresponding
to MMEADR.

Indicates corresponding reference had write or modify intent.

Indicates nature of memory management fault. See Fault bit encod­
ings below

Complemented shadow copy of LOCK bits. However, the SRC bits
do not get reset when the LOCK bits are cleared.

Indicates the lock status of MMESTS. See LOCK encodings below.
This field is cleared on n,FLtJSB..MBOX.

DIGfTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O.St October 1991

Table 12-6: FAULT Encodings

Defined FAULT values (bi.
nary) Definition

01 ACV Fault. This is the highest priority fault in the presence of multiple
simultaneous faults.

10 TNV Fault. This is the next highest priority fault.

11 M=O Fault. This is the lowest priority fault.

Table 12-7: LOCK Encodtn!~s

D,efined LOCK values (bi·
nary) Definition

000 MMESTS, MMEADR and M:MEPTE are unlocked.

001 v~Llid IREAD fault is stored (no o,ther IREAD fault can overwrite MMESTS,
M:MEADR, or MMEPTE).

011 v~llid Ibox specifier fault is stored (only an Ebox reference fault can overwrite
M:MESTS, MMEADR, or MMEPTE).

11.1 v~Llid Ebox fault is stored (MMESTS, MMEADR, and MMEPTE are com­
pletely locked).

Note that the encodings for the .SRC bits are the complemented version of the the LOCK bits.
Thus, for example, a fully locked SRC encoding is 000.

Figure 12-14: TBADR Regl~;ter

31 30 29 26127 26 25 24123 22 21 20119 1B 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00
~--+--+--.--+--+--+--+--+--C;'--+--+--+--+--+--+--"'--+'--+_ca+--+--+--+--+--+--+--~--+--"or--+--+--+--""

vir'Cua1 address assoeia'Ced with th. recorded TEl parity error 1 :TEADR

Figure 12-15: TBSTS Register

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00
+--+--+--+--+--+--+--+--+--~.--+--+--+--+--+--+--+--+--+--+ •• +--+--+--+--+--+--+--+--+--+--+--+--+
1 SRC 1 0 1 0 1 0 I 0 I 0 I 0 1 0 1 0 I 0 I 0 1 0 1 0 1 0 I 0 I 0 I 0 I 0 I 0 1 0 1 0 I CMD 1 : TESTS
+--+--+--+--+--+--+--+--+--~.--+

DIGrTAL CONFIDENTIAL

I
EM_VAL---------~
'I'PERR-------------+ DPERR----------------+
LOCK--------------------~

The Mbox 12-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 12-8: TBSTS Description

Name

LOCK

DPERR

TPERR

EM_VAL

CMI>

SRC

Bit(s) Type

o WC,O

1 RO

2 RO

3 RO

8:4 RO

31~29 RO

Table 12-9: SRC Encodlngs

Defined SRC values

Description

Lock Bit. 'When set, validates TBSTS contents and prevents any
other field from further modification. When clear, indicates that no
TB parity error has been recorded and allows TBSTS and TBADR
to be updated.

Data Error Bit. 'When set, indicates a TB data parity error.

Tag Error Bit. When set, indicates a TB tag parity error.

EM_LATCH valid bit. Indicates if EM_LATCH was valid at the time
of the error TB parity error detection. This helps the software error
handler detennine if a write operation may have been lost due to
the TB parity error.

S5 command corresponding to TB parity error.

Indicates the original source of the reference causing TB parity error.

Definition

111

110

100

000

valid :Mhox. reference error is stored

valid !READ error is stored

valid ThOx. spec#ier reference error is stored

valid Ebox. reference error is stored

Figure 12-16: PCADR Register

3~ 30 2~ 2812; 26 25 24123 22 21 201l~ 18 17 16115 l4 l3 121ll 10 09 08107 06 05 04103 02 01 00

quadword physica:i. ad.cireu BsaociBted with th~ record.ed Peach. parity error I 0 I 0 I 0 I :PCADR
+--+--+--+--+--+--+-----+--+--+--+--+--+--+--.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ •

12-18 The Mbox DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, IDctober 1991

Figure 12-17: PCSTS Reglste!r

31 30 29 28127 26 25 24123 :2 21 20119 18 l7 l61l5 14 l3 l21ll lO 09 08101 06 05 04103 02 01 00
~--+--~--+--+--~--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--~--+--+--~--+--~--+--+--~--~

I II II II II II II II II II 11 II II II II II II II 1 J II II II CM!) 1 :PCSTS
+--~--+--+--+--+--+--+--+--+--+--~--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Table 12-10: PCSTS Description

Name Bit(s) ~~

LOCK 0 WC,O

DPERR 1 RO

RIGHT_BANK 2 RO

LEFT_BANK 3 RO

eM]) 8:4 RO

PTE_ER_WR 9 WC,O

PTE_ER 10 WC,O

Description

1

PTE ER---------+ 1
PTE-ER WR---------+ I
LEFT_BANK---------------------------+
PJGHT_BANK-----------------------------+
DPERR-------------------------------------+
LOCK---+

Lock Bit. 'When set, validates PCSTS<8:1> contents and prevents
modification of these fields. 'When clear, invalidates PCSTS<8:1>
and allows these fields and PCADR to be updated.

Data Error Bit. When set, indicates a Pcache data parity error.

Right Bank Tag Error Bit. 'When set, indicates a Paache tag parity
error on the right bank.

Left Bank Tag Error Bit. When set, indicates a Poache tag parity
error on the left bank.

S6 command corresponding to Pcache parity error.

Indicates a hard error on a PTE DREAD which resulted from a TB
miss on a WRITE or WRITE_UNLOCK.

Indicates a hard error on a PTE DREAD.

Note that the state of PCSTS<al:ll> are "don't cares" during an IPR write operation.

Figure 12-18: PCCTl Reglste~r

3l 30 29 28121 26 25 24123 22 2l 20119 18 l7 l6115 l4 13 12111 10 09 08107 06 05 04103 02 01 00
~-----+--+--~--+--+-~+--+
I 1 I 1 I 1 III 1 I 1 I II 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I II 1 I 11 1 I 11 1 I 1 1 I PMl-~ I I : pCC~
+--+--~--+--~--+-.;+--+--+-- ... --,+--+--+--+--+--+--+--+--,+--+--+--+--~--+--+--+--+--+--+-.-+--+--+--+

DIGITAL CONFIDENTIAL

I I 1

RED_ENABLE---+ 1 1

ELEC DISABLE----+ 1 1
P_ENAaLE--------------------+ I

BANK_SEL-----------------------D I FORCE HIT-------------------------+. I

I ENABLE ----------------------------+ I D:ENABLE -------------------------------+

The Mbox 12-19

NVAX Plus CPU Chip Functional Specification, Revision ().3, October 1991

Table 12-11: PCCTL Definition

Name Bit(s) Type Description

D_ENABLE 0 RW,O When set, enables Pcache "for all INVAL operations and for all
D-stream readlwrite/fill operations, qualified by other control bits.
When clear, forces a Pcache miss on all Pcache D-stream readlwritel£.ll
operations. Note, however, that an ACVnNVlM=O condition over­
rides a desasserted D _ENABLE in that it will force a Pcache hit
condition with D_ENABLE=O.

I_ENABLE 1 RW,O When set, enables Pcache processing of INVAL, IREAD and I_CF
commands. 'When clear, forces a Pcache miss on IREAD operations
and prevents state modification due to an I_ CF operation.

FORCE_IDT 2 RW,O When set, forces a Pcache hit on all reads and writes when Pcache
is enabled for I or D-stream operation.

BANICSEL 3 RW,O When set with FORCE_HIT=l, selects the "right bank" of the ad­
dressed Pcache index. When clear with FORCE_HIT=l, selects the
'1eft bank" of the addressed Pcache index. BANICSEL is a don't
care when FORCE_HIT=O. NOTE: BANK_SEL never affects bank
selection during IPR reads and IPR writes to the Pcache tags or
Pcache data parity bits; bank selection for these commands is always

"determined by the specified IPR address.

P _ENABLE 4 RW,O When set, enables detection of Pcache tag and data parity errors.
When deasserted, disables Pcache parity error detection.

F:MM 7:5 RW,O Specifies Mbox performance monitor mode (see Section 12.17). Note
that this field does not control or affect the operation of the Pcache
in any way. PMM is placed in PCCTL for the convenience of the
hardware implementation.

ELEC_DISABLE 8 RW,O When set, the Pcache is disabled electrically to reduce power dis­
sipation. NOTE: This bit should only be set when the Pcache is
functionally turned off by the deassertion of both I_ENABLE and
D_ENABLE. UNPREDICTABLE operation will result when this bit
is set when either I_ENABLE or D_ENABLE is also set. Also note
that Pcache tag or parity IPRs will not function properly when this
bit is unconditionally set.

RED_ENABLE 9 RO When set, indicates that one or more Pcache redundancy elements
are enabled (see Section 12.11 for more information),

Note that the state of PCCTL<31:10> are "don't cares" during an IPR write operation.

Figure 12-19: PCTAG Register

31 30 2~ 28127 26 25 24123 22 21 2011~ 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00
+-----+--+--.--+--+--+--+--+--+--+--+

tag I 11 11 11 11 11 11 PI valid bitsl AI:PCTAG

12-20 The Mbox DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 12-12: Pcache Tag IPIA Format

Name Bit(s) Type Description

A o R~r Allocation Bit cOlTesponding to index of this tag.

valid bits 4:1 RW Valid Bits corresponding to the four data subblocks.. PCTACk4> cor­
responds to uppermost quadword in block. PCTACk1> con-esponds
to lowermost quadword in block.

p

tag

5 RW

31:12 RW

Even Tag Parity

Tag Data

Note that the state of PCTAG<11:6> are "don't cares" during an IPR write operation.

Figure 12-2Q: PCDAP Register .

31 30 29 28127 26 25 24123 22 21 20119 16 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00
~---f---""--"'--*--+-----"'--.--+".-+--+--+--+-":~--+-"""--+--+--+--+--+--+--+--ar--+---+--+-- !_-... --+--.. --+
i 11 11 11 11 11 11 II 1 I 11 11 11 II II 1 I II iiI! 11 II 11 11 11 11 II ' DATJ.,_PAP.!'!'Y I :PCDAP

Table 12-13: Pcache Data PiElrlty IPR Format

Name Bit(s) TyJ)e Description

7:0 RW' Even byte parity corresponding to addressed quadword of data. Bit
n represents parity for byte n of addressed quadword.

Note that the state of PCDAP<31:8> are "don't cares" during an IPR write operation,

12.7 INVALIDATES

**The Cbox initiates an invalidate by PASSING iAdr<12:5> and InvReq<l:O> RECEIVED FROM
SYSTEM LOGIC qualified by 1;he'INVAL command. The INVAL command is latched by the Mbox
in the CBOX_LATCH. The set and index specified are unconditionally invalidated. **
Execution of an INVAL command guarantees that data corresponding to the specified hexaword
address will not be valid in the Pcache. THE SYSTEM LOGIC IS RESPONSIBLE FOR PRIMARY
CACHE COHERENCY IN NVll Plus. The block valid bit and the fom corresponding subblock
valid bits are cleared to guarantee that any subsequent Pcache accesses of this, hexaword will
miss until this hexaword is re-validated by a subsequent Pcache fill sequence. If a cache fill
sequence to the same INDEX AND SET is in progress when the INVAL is executed, a bit in
the corresponding MISS_LATCH is set to inhibit any further cache fills from }:oading data or
vaJidating data for this cache block.

Also note that an assertion of Co/cCBO~HARD_ERR during a cache fill command causes the cache
fill operation to be processed a.s if it were an INVAL. operation.

DIGrTAL CONFIDENTIAL The Mbox 12-21

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

12.7.1 ABORTING REFERENCES

The Mbox abort operation is used to cancel the current 85 operation. When an abort is executed,
the 85 state, which would normally be updated due to execution of the current 85 reference, is not
updated. The aborted 85 reference is not propagated into 86. Instead, a NOP is introduced into
the 86 pipe. In effect, an aborted 85 reference is equivalent to a NOP command being executed
in 85.

Note that the abort operation should be viewed as only cancelling the current execution of a refer­
ence. In most cases, aborting an operation does not invalidate the exis·tence of the corresponding
reference, which will still be stored in one of the reference sources and retried at a later point.

The abort operation is executed when ABORT is asserted. The following changes to Mbox state
are inhibited during the cycle in which ABORT is asserted:

• The reference source which drove the aborted command into 85 does not invalidate the cor­
responding command. Thus, the reference' still exists to be retried during a subsequent
cycle.

NOTE

There are two exceptions to this -rule. The CBOX_LATCH is always invalidated
after it drives a command into 85. The EM_LATCH will be invalidated if the Ebox
has explicitly requested it to be (via the E%EM_ABORT signal).

• Loading the PA_QUEUE with a DEST_ADDR or DREAD_MODIFY command is inhibited.
Emptying the PA_QUEUE when a STORE command is driven in 85 is inhibited.

• If the unaligned detection logic detected an unaligned reference during the aborted cycle, the
VAP _LATCH is not validated to contain the second portion of the unaligned sequ~nce.

12.8 Conditions for Aborting References

In general, references are aborted for five reasons:

• The reference is aborted to prevent a reference order restriction from occurring.
• The reference is aborted because insufficient hardware resources are available to complete

processing of the current command.
• The reference is aborted because a memory management operation must be performed prior

to execution of the current reference.
• The reference is aborted in order to avoid a deadlock condition related to unaligned references.

• The reference is aborted due to an external flush condition.

-12.9 READ_LOCKlWRITE_UNLOCK

Once a READ_LOCK command has been passed to the Cbox., the Cbox can not process any
subsequent I-stream read references, and should not receive any D-stream references besides the
IPR read of STxC pass/fail or a retry of the read_lock, until a STxC pass signal is received from
the CBOX.

12-22 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, ReVision 0.3, October 1991

This is accomplished by the arbitration logic by di~abling IREF _LATCH selection once a DREAD_
LOCK command has successfully been retired from the 85 pipe. Thus, no IREAD TB_MIS8 can
occur between the READ_LOCK and STxC pass, thus avoiding D-Stream references not part of
the interlock sequence.

The arbitration logic will re-enable lREF _LATCH selection on either of the following two condi­
tions:

1. The STxC IPR is read and the condition indicates pass. This will cause the Cbox to resume
I-stream read processing.

2. E%FLUSH_MBOX is asserted by the Ebox due to a hard error. This condition should occur much
more infrequently than the above condition because a WRITE_UNLOCK must normally be
issued after a READ_LOCK .. However, if an error occurred sometime between the READ_
LOCK and STxC Pass, a hard error microtrap will result preventing a WRITE_UNLOCK
from being issued. The microtrap will generate E%FLUSB_MBOX which re-enables IREF_
LATCH selection because no WRITE_UNLOCK will follow.
**Note that the Cbox state, which prevents subsequent I-stream reads from being processed
before the WRITE_UNLOCK., will be cleared by an IPR_ WRITE during the err;or handler. **

Note that Ibox processing will have been halted prior to the READ_LOCKlWRlTE_UNLOCK
sequence. The Ebox microcodte ·will never issue a D-stream read in the middle of a READ_
LOCKlWRITE_ UNLOCK seque~nce.

12.10 Pcache Repiacement Algorithm

Each line of Pcache contains an. allocation bit which is used to indicate which bank Geft or right)
should be used for the next fill f;equence of that index~ This results in a tlnot last used" allocation
to the Pcache sets.

When an invalidate clears the ,,,alid bits of a particular tag within an index, it only makes sense
to set the allocation bit to point to the bank select used during the invalidate regardless of which
bank was last allocated. By d.oing so, we guarantee that the next allocated block within the
index will not displace any valid tag because the allocation bit points to the tag that was just
invalidated.

For systems that require the Pcache to function as direct mapped, the allocate bit during a fill
sequence. is ignored, and the fill follows address[12].

12.11 Pcache Redundancy Logic

Due to the extreme density of the Pcache array, the· Pcache has a high susceptibility to manu­
facturing defects. As a result, redundancy logic was designed in order to provide a mechanism
which would allow the Pcache to function correctly in the presence of a small number of man­
ufacturing defects. Refer to NVAX CPU Chip Functional Specification for the description of the
PCache Redundancy feature.

DIGITAL CONFIDENTIAL The· Mbox 12-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.12 MEMORY MANAGEMENT

The Mbox, the Ebox microcode, and the VMS memory management software implement VAX.
memory management. The Mbox performs the hardware memory management functions neca
essary to process most references in a quick efficient manner. The operating system software
performs all other functions. For a description of the hardware end of VAX memory management,
the reader is referred to the Memory Management chapter of the 'VAX Architecture Standard"
(DEC STD 032). For a complete description of the software end of VAXlV.MS memory manage­
ment, the reader is referred to the Memory Management chapters of "VAXlV.MS Internals and
Data Structures".

The Mbox is responsible for the following memory management functions: .

• Performing virtual-to-physical address translations.

• Maintaining a cache of PTEs to perform the quick translations .
• " Performing access mode checks on memory references.
• Performing TNV checks on memory references.

• Performing M=O checks on memory references.
• Directly or indirectly invoking a software memory management exception handler due to ACV

(Access Violation) or TNV (Translation not Valid) or M=O faults.

• Detecting cross-page conditions and performing the corresponding access mode checks.

12.12.1 ACVrTNV/M=O Fault Handling:

In order for an ACV, TNv, or M=O fault to be processed, the following steps must occur:

1. The Mbox must detect the ACVtrNVfM=O condition.

2. The Ebox microcode must be invoked to start processing the condition.
3. The Ebox microcode must probe Mbox state in order to determine which fault occurred and

how it should be processed.
4. The Ebox microcode must service the fault condition directly, or it must invoke an operating

system memory management service routine to service the fault.
5. If the memory mapagement fault was not fatal to the process, normal instruction execution

resumes by restarting the instruction corresponding to the memory management fault after
servicing the fault.

12.12.2 ACV detection:

The protection field of a PTE indicates the authorized access rights for each execution mode.
\¥hen a reference causes the TB to access a PTE, the protection field of the PrE corresponding
to the reference is driven out of the TB. The ACV (Access Violation) detection logic uses the PTE
protection field, M_QUEo/t:S5_AT<1:0>, and the appropriate CPU execution mode from the Ebox (i.e.
user, supervisor, executive, kernel) to detect access violations. If, for example, the protection
field indicates a "read-only" access in user mode, the CPU execution mode specifies user mode,
and M_QUE%S5_AT<1:0> indicates write access, then an ACV condition is flagged since a write
reference is not allowed to this page in user mode.

- 12-24 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CI)U Chip Functional Specification, Revision 0.3, October 1991

A 2:1 MUX controls the source of the CPU execution mode. The CPU execution mode information
is normally taken directly £r'om the current mode field of the PSL (PsL<25:24». On PROBE
references, however, the CPU execution mode is driven from M:MGT_MODE<1:0> in order to check
for ACV conditions for an eXE~cution mode which the CPU is not currently in.

An ACV condition is also generated when a PTE reference fails to satisfy the page length check
corresponding to the virtual space of the reference or when the virtual reference falls into Sl
space. A virtual address in Sl space is reported as an ACV length violation.

An ACV check is also perforDled on the protection field of all PTEs which have just been sent to
the Mbox due to an earlier Mhox DREAD issued during the TB_MISS sequence.

ACV protection and length ch,ecks are performed on all Ibox and Ebox references and on all MME_
CRKs. ACV page length checks are perfonned on all PTE addresses. However, ACV protection
checks are never performed on PTE read references generated by the Mbox.

Note that the ACV protectiOll condition is disabled from occurring during any cycle where the
reference is aborted.

~"hen an ACV condition occurs, the MME_SEQ is invoked to execute the ACVITNVIM=O sequence.
ACV checks only occur on virtual addresses when memory management is enabled and when the
reference indicates that memory management checks should be done (i.e. M_QUE%S5_QUAL<2> =
1).

12.12 .. 2.1 TNV detection

Wben the PTE valid bit is dear, it indicates that the corresponding PTE page frame address
translation is not valid. This is called a 'Iranslation Not Valid Fault (TNV). TNV detection only
occurs during the TB_MISS sequence when the Mbox receives PrE data from the Pcache or
Cbox such that the PTE valid bit (PrE<31» is clear. When a TNV fault is detected, the MME_
SEQ interrupts the TB_MISS sequence and invokes the AC'SlrrNVfM=O sequence. By doing so,
the invalid PTE is never cached in the TB and a memory management fault is recorded (See
Section 12.12.2.3 on recording memory management faults). .

12.12.2.2 M=O detection:

When a virtual reference causes the TB to access a PTE, the modify bit of the PTE is read out
of the TB. A cleared modify bit indicates that the corresponding page has not been written to. If
the valid bit of the PTE is set~ and the modify bit is clear and the access type of the 85 reference
indicates an intention to modify the page (e.g. write or modify OR VSTR access type), then the
Mbox must initiate the proper sequence of events to process this "M=O" condition. The M=O check
is performed when memory mlanagement is enabled and a virtual reference hits in the TB.

Note that the M=O condit jon :is disabled from occurring ~uring any cycle where the reference is
aborted.

DIGITAL CONFIDENTIAL TITle Mbox 12-25

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.12.2.3 Recording ACVITNV/M=O Faults

In order for the microcode to determine the nature of the memory management fault detected
by the Mbox, the Mbox must record the necessary fault information. The fault information is
recorded in Mbox IPRs which can be read by Ebox microcode. The fault information is stored in
three of the registers in the MME register file which are accessible to microcode by IPR reads
and writes:

• The MMEADR register stores the virtual address associated with the ACV, TNV or M=O fault.
AE per SRM requirements, if the ACVn:NV fault occurred by referencing a PTE during a TB
miss sequence, the MMEADR stores the original address and not the PTE address.

• The MMEPTE register stores the virtual or physical address of the Page Table Entry corre­
sponding to a virtual reference upon which an M=O condition has been detected.

• The MMESTS register stores state which indicates to the microcode the context and type of
fault corresponding to the ACVn:NVI.M=O condition. The format ofMMESTS is shown below:

Due to the macro pipeline design, the :MMEADR, :MMEPTE and MMESTS registers must be
conditionally loaded in a prioritized fashion. These registers are loaded depending on the relative
states of their current contents and on the context of the current fault. If the M:MESTS register
is e~pty, the current fault state is always loaded. If the MMESTS register contains a valid
fault condition, the MMEADR, MMEPTE and MMESTS are only loaded if the current fault is
associated with a pipe stage further along in the pipe than the stage corresponding to "the stored
MMESTS state. This loading priority is necessary because these memory management faults
must be reported within the context of the execution of the instruction they are associated with.
A fault detected on an Ebox reference is loaded provided that another Ebox reference fault is
not already loaded. Faults detected on Ibox specifier references are only loaded if no Ebox or
Ibox specifier reference fault is currently stored. Faults on Ibox I-stream references are only
loaded if the MMESTS register is empty. In effect, the MMESTS register captures the first
memory management exception that will be associated with Ebox execution. Stated differently,
it captures the fault which occurs farthest along in the macropipeline.

The LOCK field of MMESTS specifies the source of the faulting reference currently stored in
:MMESTS. Thus, the decision to load another faulting reference into MMESTS is made by exam­
ining the bits of the LOCK field.

The FAULT field is set in a prioritized manner. That is, an ACV fault takes precedence over
a TNV or M=O fault. A TNV fault takes precedence over an M=O fault. Therefore, if multiple
pending fault conditions are true, only the fault condition with the highest priority is reported in
the MMESTS register.

When the Ebox starts the memory management. exception microfiow, it issues an IPR_RD to the
MMESTS to determine the nature of the memory management fault. The MMESTS register is
automatically unlocked by resetting the LOCK field when the E%FLUSB':'MBOX signal is asserted
by the Ebox..

12-26 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.13 MBOX ERROR HANDLING

Mbox plays a role in the processing of the following types of errors:

• TB tag parity errors.
•
•
•

TB data parity errors.
Pcache tag parity errors.
Pcache data parity errors.

• Errors encountered by the Cbox while processing a memory read, I/O space read, or IPR_RD
which were transferred frOln the Mbox to the Cbox-. Note that these errors could originate
from the Bcache, or memory subsystem.

All other possible errors are handled without Mbox involvement.

12.13:1 Recording Mbox erl"ors

The Mbox contains four error registers. Two are used to record TB parity errors and the other
two· are used to record Pcache parity elTors.

12.13.1.1 TBSTS and TBADR

When a TB parity error is detected with LOCK=O, TBADR is loaded with the virtual address
which caused the TB parity error, and all fields of TBSTS are updated to record the nature of
the TB parity error. Note that both the TPERR and DPERR bits can be set at the same time if
these two error conditions occurred during the same cycle. When a TB parity error is recorded,
the LOCK bit is set to validate the contents of both TBSTS and TBADR registers. When LOCK
is set, all bits of both registers are frozen and cannot be changed until the LOCK bit is cleared.
Th\..1S, any subsequent error is llot recorded if LOCK=l.

'When the operating system error handler is invoked, TBSTS and TBADR will be read through an
IPR_RD command in order to determine if any TB parity errors were recorded. If the state of the
LOCK bit was read to be a zero, then no error has occurred and the remaining state information
in these tw·o registers is invalid. If the LOCK bit was found to be set, then the remaining error
state of these two registers characterizes the nature of the recorded error.

Once the error handler has read these registers, it re-enables TBSTS to record any new errors by
clearing the LOCK bit. Clearing the LOCK bit is accomplished by writing a "1" to LOCK through
an IPR_ WR operation.

12.13.1 ~2 PCSTS and PCADR

The PCSTS and PCADR record Pcache tag and data parity errors. The function and operation
of these registers is identical to the TBSTS and TBADR registers except that the PCADR stores
physical quadword addresses Y'ather than virtual byte addresses, and it also records PTE hard
elTor events. The definitions of these registers are shown in Figure 12-16 and Figure 12-17. Note
however, that when PCSTS<O> is set, Pcache memory reads, writes and invalidates are disabled.

DIGITAL CONFIDENTIAL The Mbox 12-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12.13.2 Mbox Error Processing

12.13.2.1 Processing Cbox errors on Mbox·lnltlated read·llke sequences

The Cbox. detects errors that occur in the Bcache, or memory subsystem. When the Cbox detects
one of these errors, and it is associated with an ¥box-initiated reference that requires data to
be returned (e.g. memory read, 1/0 space read, or IPR read), the :M'box must transfer the error
status of the reference back to the destination corresponding to the reference. The Mbox never

. records a Cbox-detected error in MbOx. error registers ·because the error is logged in Cbox error
registers.

12.13.2.1.1 Cbox-detected ECC errors

The Cbox. returns requested data through a I_CF or D_CF command to the Mbox while simulta­
neously checking the error-correction code to check for a possible Bcache error. If an ECC error
is found, the Cbox. asserts Co/cCBOX_ECC_ERR.. This causes the Mbox to latch a NOP in the CBOX_
LATCH rather than the cache fill. As a result, the :M'box does not perform any Pcache state up­
dates resulting from the bad data nor does it assert M%VIC_DATA, M%IBO~DATA, M%EBOX_DATA,
or Mo/ciMBOX_DATA to indicate the presence of valid data.

Co/cCBOX_ECC_ERR IS ~SO USED BY THE CBOX LOGIC AS A LATE ABORT FOR FILL DATA
DUE TO A MISS OR CACHE TAG COMPARE NOT VALID DUE TO SYSTEM LOGIC OWNING
THE CACHE DURING THE READIPROBE CYCLE.

During subsequent cycles, the Cbox will determine if the ECC error is correctable or not. If it
is, the data will be corrected and returned. If the data is not correctable, a Cbox-detected hard
error has occurred and win be dealt with as described below.

12.13.2.1.2 Cbox-detected hard errors on requested fill data

If the Cbox. has determined that the requested data cannot be returned for some reason, the
Cbox drives a cache fill command qualified by C%cBOX_RARD_ERR. When this happens, the MbOx.
performs the following actions:

l. The assertion of C%CBO~RARD_ERR indicates to the Mbox that the cache fill data is invalid.
Thus, the :M'box returns the invalid data on the Mo/ciMD_BUS in the same manner that all data
is returned except that the data is further qualified by M%HARD_ERR.. Mo/oHARD_ERR informs
the receiver that the data is invalid and that the requested data cannot be returned due to a
hard error.

2. Once the Cbox detects a hard error on the requested data, the Cbox immediately terminates
the pending fill sequence by the assertion of Co/cLAST_FILL. Thus, no further data correspond­
ing to the same fill sequence will be returned and the Mbox fill sequence corresponding to
the error is terminated by invalidating the corresponding MISS_LATCH.

3. An I_CF or D_CF command which is qualified by C%cBOX_HARD_ERR is interpreted by the
Pcache as an INVAL command. Thus the invalid data is not filled in the Pcache.

12-28 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O.St Oc~ber 1991

12.13 .. 2.1.3 Cbox-detected hard errors on non~requested fill data

The Cbox performs the same .actions as described above to indicate the presence of a hard error
regardless of whether the data is the requested data or just one of the other three pieces of fill
data for the corresponding PCBlche block. If the data is non-requested fill data, the Mbox performs
the following actions:

1. Once the Cbox detects a hard error on the non-requested data, the Cbox immediately termi­
nates the pending fill sequ.ence by the assertion of Co/cLAST_Fn..L. Thus, no further data corre­
sponding to the same fill s·equence will be returned and the Mbox fill sequence corresponding
to the error is terminated by invalidating the corresponding MISS_LATCH.

2. An I_CF or D_CF command which is qualified by C%CBOx.,BARD_ERR is interpreted by the
Pcache as an INVAL command. Thus the invalid fill data is not filled in t.he Pcache and
all previous fills to the same block are invalidated. This is necessary in order to maintain
coherencY between the Pcalche and Bcache because a Bcache data block will only be validated
if all the data within the block is error-free.

12.13.2.2 Mbox Error Processing Matrix

The following table summarie:s all Mbox error handling. A blank entry in the table means that
the corresponding error can~ot occur for the given reference.

Table 12-14: Mbox Error Hal1dling Matrix

TB tag J)ar- TBdatapar- Pcache tag par- Pcache data Cbo% hard er-
Command ity error ity error ity error parity error ror

Ibox references

IRF.AD A A B D F

DREAD A A B D F

DREAD_MODIFY A A B D F

DEST_ADDR A A

STOP_SPEC_Q

Ehox references

DREAD A A B D F

DREAD_LOCK A A B F

STORE C

WRITE A A C

v\7RITE_UNLOCK A A C

IPR_RD (to Pcache)

IPR_RD (non-Mbox) . F

DIGfTAL CONFIDENTIAL The Mbox 12-29

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 12-14 (Cont.): Mbox Error Handling Matrlx

Command

IPR_ WR (to Pcache)

IPR_ WR (non·Mbox)

TB tag par­
ity error

PROBE A

MME_CHK A

TB_TAG_FILL

TB_PTE_FILL

TBIS

TBIP

TBlA

LOAD_PC

:Mbox references

PTE DREAD

TB_ TAG_FILL

TB_PTE_FILL

IPR_DATA

MME_CHK

Cbox references

LEGEND:

A.

A

A

A

TBdatapar­
ity error

A

A

A

A

Pcache tag par- Pcache data
ity error parity error

B D

E

Cbox hard er­
ror

G

H

H

•
•

Mbox microtraps Ebox by assertion ofM%TB_PERR_TRAP during cycle error was detected.

The faulting reference and all pending Ibox and Ebox references are blown away.

•
•

E.

•

TEIA command is issued to invalidate entire TB.
TESTS and TBADR are updated appropriately.

A Pcache miss condition is forced to occur on this read reference causing the assertion of
M%CBOX-REF_ENABLE. This instructs the Cbox to continue processing the read reference.

12-30 The Mbox DIGITAL CONFIDENTIAL

C.

D.

E.

F.

G.

•
•

•

•
•

•

•
•

•

•
•

•

•

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Mo/cMBOX_S_ERR is asserted to post a soft error intelTUpt.

PCSTS and PCADR are updated appropriately (a side effect of this operation tum.s off
the Pcache).

The Cbox continues to process the write reference, as is done on all write operations
regardless of a Pcache parity error.

Mo/cMBOx..S_ERR is asserted to post a soft error interrupt.

PCSTS and PCADR are updated appropriately (a side effect of this operation tum.s off
the Pcache).

M%CBOX_LATE_EN is aSI;erted to instruct the Cbox -to continue processing the reference
which caused the Pcache parity error.

M%MBOX_S_ERR is asserted to post a soft error interrupt.

PCSTS and PCADR are updated appropriately (a side effect of this operation tum.s off
the Pcache).

The invalidate operation takes place in spite of the tag parity error because the invalidate
is only a function of mat.ching all tag bits.

Mo/cMBOX_S_ERR is asserted to post a soft error interrupt.

PCSTS and PCADR arE~ updated appropriately (a side effect of this operation tum.s off
the Pcache).

The Cbox indicated a hard error for a non·PTE read or IPR_RD operation by the assertion
of Co/cCBOX_HARD_ERR and C%LAST_FILL.

If the hard error corresponded to the -data explicitly requested by the Mbox reference,
M%HARD_ERR qualifies M%MD_BUS data indicating to the Mo/clMD_BUS receiver that a hard
error occurred while accessing the requested data.

• The fill sequence is imlnediately terminated by the assertion of Co/cLAST_FILL. and the
entire Pcache block corresponding to the fill is invalidated.

• The hard error detected by the Cbox on this Mbox-issued PTE DREAD is recorded in
PCSTS. The tb miss sequence is immediately terminated.

IF the error resulted from an Ibox reference, the error is tagged back to the appropriate
Ibox reference latch. The error is then signaled via M%RARD_ERR when the requested
data is retum.ed on Mo/ciMD_BUS, or is reported through PA_Q...STATUS<2> (for DEST_ADDR
commands).

If the original reference came from the Ebox, MO/cMME_TRAP is asserted (in all cases except
for PROBE references). This will invoke the memory management fault handler in order
to try to report the hard error within the context of the execution of the instruction.

• The fill sequence is imlnediately terminated by the assertion of Co/cLAST_FILL. and the
entire Pcache block corresponding to the :fill is invalidated.

DIGITAL CONFIDENTIAL The Mbox 12-31

NVAX Plus CPU Chip Fulictional Specification, Revision 0.3, October 1991

H. Co/£BOX_HARD_ERR was asserted by the Cbox during an I_CF or D_CF command. This is the
mechanism by which the Cbox informs the Mbox of a hard error during a read or IPR_RD
operation where the Cbox must return data. Thus, see the error responses specified by F and
G for the error response within context of the original read operation.

12.14 MBOX INTERFACES

The Mbox passes data andlor control information to foUr other sections of the NVAX chip. These
sections are: 1) Ibox, 2) Ebox, 3) Useq and 4) Cbox. The Cbox interface has additional signals for
NVAX Plus and is described in this section. Refer to the NVAX CPU Chip Functional Specification
for MBOX interface signal definitions to the IBOX, EBOX, and Useq.

12.14.1 Signals from Cbox

• C%CBOX_CMD<1:0>: Command field of Cbox reference sent to Mbox.
• Co/oCBOX_ADDR<12:5>: Invalidate addi-ess of Cbox reference sent to MbOx.
• Co/ciMBOX_FILL_Qw<4:3>: Indicates the aligned quadword within the aligned hexaword.

• CO/ORE~DQW<>: Qualifies the current D_CFto indicate that this is the requested data.
• B%S6_DATA<63 :0>: Data of Mbox reference seen by Cbox.
• C%S6_DP<7:0>: Even data parity corresponding to B%S6_DATA<63:0> during cache fill refer­

ences .

•
• Co/oLAST_Fn..L: When asserted, indicates that this is the last fill sent for the current sequence.
• C%CBOx..HARD_ERR: When asserted when Cbox is driving data onto the B%S6_DATA Bus, it

indicates that data on Mo/cl\ID_BUS is associated with a non-recoverable. hard error.
• Co/oCBOX_ECC_ERR: Indicates that an ECC error is associated with the Cbox data being re­

turned.
• C%WR_BUF _BACK_PRES: Indicates that Cbox cannot accept any more entries in its write buffer.
• C%DRACK_NOCACHE_H: Indicates present fill block should not be placed in Pcache.

12.14.2 Sig nals to Cbox

• M%S6_SET_NUM_R: PCACHE ALLOCATION BIT, ALLOWS CBOX TO BROADCAST TO
SYSTEM BACKMAPS

• M%S6_CMD<4:0>: Command field ofMbox reference seen by Cbox.
• M%S6_PA<31:3>: Quadword physical address of Mbox reference seen by Cbox.
• M%C_S6_PA<2:0>: Address within addressed quadword of Mbox reference seen by Cbox.
• Bo/cS6_DATA<63:0>: Data of Mbox reference seen by Cbox.
• Mo/cS6_BYTE_MABK<7:0>: Byte mask field ofMbox reference seen by Cbox.
• Mo/oCBOX_REF _ENABLE: Indicates that current 86 read reference packet should be latched and

processed by the Cbox. This signal is a don't care on write operations.

12-32 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• M%CBOX_LATE_EN: AssertE~d at the end of a cycle to indicate that a Pcache parity error was
detected. As a result, the Cbox must continue to process this reference regardless of what
M%CBOX_REF _ENABLE indicated.

• Mo/oABORT_CBOX_IRD: Indic:ates that any IREAD which the Cbox ~ay be processing should be
immedia tely terminated. .

• M%CBOX_BYPASS_ENABLE: Indicates that the Cbox may drive Bo/cS6_DATA<63:0> during the
following cycle in order to attempt a data bypass.

12.15 INITIALIZATION

12815.1 Initialization by Microcode and Software

It is the responsibility of the power-up microcode· to perform an IPR_ WRITE operation to clear
MAPEN before any virtual memory references are issued to the Mbox from either the Ebox or
Ibox. Failure to clear MAPEN could result in UNDEFINED behavior prior to complete memory
management state initialization.

PAMODE is also cleared by the power-up microcode via an IPR_ WRITE command. If the system
configuration requires a 32 bit program-visible physical address space, setting the PAMODE value
via an IPR_ WRITE must be done under very controlled conditions because writes to the PAMODE
processor register affect both physical address "generation and interpretation of PTEs. With the
possible exception of certain diagnostic code, writes to the PAMODE processor register should
not be performed while memory management is enabled. With memory management disabled,
writes to the PAMODE procensor register should not be performed unless the PC of the MTPR
instruction which writes to the register is in one of the following (hex) address ranges:

OOOOOOOO .. lFFFFFFF
EOOOOOOO .. FFFFFFFF

By restricting PC to one of thc~se address ranges, changes to the PAMODE register do not cause
the generated physical address to change in going from 3D-bit mode to 32-bit modre, or vice versa.

The console code should be e:tecuting in the specified range in order to write to the PAMODE
processor register, and it is expected that this is the place where the PAMODE p~ocessor register
will be initialized.

In uncontrolled conditions, w.rites to the PAMODE· processor register can cause UNDEFINED
results.

12.15.1.1 Pcache Initialization

The Pcache is disabled by thE~ power-up initialization sequence. In order to enable the Pcache,
the following sequential actions must be performed:

1. Pcache IPR 'WRITE operations must be performed to each Pcache tag to write the tag field
to a known state, set the tag parity bit to the corresponding value, and clear the subblock
valid bits.

DIGITAL CONFIDENTIAL The Mbox 12-33

NVAX Plus CPU Chip Functional SPecification, Revision 0.3, October 1991

2. An IPR~ WRITE to the PCCTL must be done to enable the Pcache in the desired operation
mode.

Note that the data array need not be initialized because correct parity will be written into the data
array whenever fill data is validated, and data parity is only checked on validated sub-blocks.

If the sRom is read the Pcache tags are initialized by microcode as the serial data is written to
the Pcache.

12.15.1.2 Memory Management Initialization

Memory management is disabled by MAPEN being cleared by the power-up microcode. Before
memory management can be turned on, the following actions must be performed:

• The Ebox must issue a TBIA command to invalidate the TB and reset the NLU pointer to a
known state. This is done as part of the microcode processing of an MTPR to MAPEN.

• The Ebox must write the appropriate values into the six memory base and length registers
via IPR_ WRITE commands.

Once this is done, the Ebox may turn on memory management by setting MAPEN through an IPR_
WRITE command.

12.16 Mbox Testability Features

This section describes what testability features are made use of for Mbox testability, and what
Mbox signals are used for each testability function. For a global understanding of NVAX testa­

. bility, and for a detailed description of each testability strategy and hardware mechanism, the
reader is referred· to Chapter 17.

12.16.1 Internal Scan Reg ister and Data Reducers

The following Mbox signals exist in the scan chain:
S5_PA<31:0»

S5_TAG<5:0>

S5_DL<1:O>

SS_.AT<1:0>

S5_DEST<1:O>

ss_QuAL<6:0>

PA..'LSTATUS<2:0>

MO/cMME_TRAP

lREF _LATCH valid bit
SPEC_ QUEUE valid bits (2)
EM_LATCH valid bit
VAP _LATCH valid_bit
:MME_LATCH valid_bit
RTY _DMISS_LATCH valid_bit

12-34 The Mbox DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

CBOX_LATCH valid_bit
Mo/cCBOX_BYP.ASS_ENABLE

M%CBOX_REF _ENABLE

M%EM_LAl'_FULL

Note that only S5_PA<31:0> contains a data reducer. Implementing a data reducer on 'this bus should
provide coverage for the Mbox 85 pipe as well as coverage for the Thox, Ebox and Cbox logic which
issue references to the Mbox. .

12.16.2 Nodes on Parallel 'Port

The following signals are observable via the Parallel Port:

S5_CMD<4:0>

Current Reference Source (3 encoded bits). The encoclings are as follows:

Reference Source

NOP or PA_QUEUE (when cmd = STORE)

IREF_LATCH

SPEC_QUEUE

EM_LATCH (when cmd 11.= STORE)

VAP _LATCH (when cmd 11.= BTORE)

MME_LATCH

RTY _DMISS_LATCH

CBOX_LATCH

Mo/aABORT

M%TB_MISS

M%PCACHE_MISS

000

001

010

011

100

101

110

111

Encoding

M:ME state machine state bits (4 encoded hits). The encodings are as follows:

State Name Encoding

home 0000

tb_miss_1 0001

tb_miss_2 0010

tb_miss_3 0011

tb_miss_' 0100

tb_miss_5 0101

doub_tb_miss_1 0110

doub_tb_miss_2 0111

doub_tb_miss_3 1000

DIGITAL CONFIDENTIAL The Mbox 12-35

NVAX Plus CPO Chip Functional Specification, Revision 0.3, October 1991

State Name Encodirag

doub_tb_miss_ 4 1001

mme_1 1010

mme_2 1011

ipr_rd_1_tb_per_2 1100

xpage_1 1101

tb_per_1 1110

undefined 1111

MD_BUS Qualifiers (3 encoded bits). The encodings are as follows:

Event

undefined

Ibox data

Ebox data

Ibox and Ebox data

VIC data

!box IPR data

undefined

Mbox data

M%MME_FAULT

12.16.3 Architectural features

000

001

010

011

100

101

110

111

Encodirag

All MBOX IPRs can be invoked through the use of MTPR or MFPR macroinstructions. See
the Architectural Summary Chapter for a list of all Mbox IPR addresses. Note that Mbox IPR
addresses referenced through the MxPR instruction are translated by the Ebox microcode into
IPR_RD, IPR_ WR, TBIS, TBIA, or PROBE operations before being issued to the Mbox.

12.16.3,1 Translation Buffer Testability "

The diagnostic user can invalidate the entire TB array by executing an MTPR instruction which
addresses the TBLA IPR. This operation will also reset the NLU pointer. The user can invalidate
any virtual page address which may cached in the TB by executing a MTPR addressing the TBIS
IPR.

The diagnostic user can explicitly query the TB to determine if a given tag is validated and
stored in the TB. This is accomplished by addressing the Translation Buffer Check IPR through
the MTPR instruction.

Every TB entry can be explicitly filled and validated "by the diagnostic user through the use of the
TB_TAG_FILL and TB_PTE_FILL commands. The entry on which these two commands operate
at any given time is addressed by the NLU pointer. The NLU pointer is a round robin pointer
which increments when a TB_PTE_FILL is executed or when a tag match is detected on the entry

'2-36 The Mbox DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

which the NLU pointer is currently pointing to. The NLU pointer is reset to point to the Oth
entry whenever a TBlA command is executed.

12.16.3.2 Pcache Testability

Every bit in the Pcache can be read and written by the user through DREAD, 'WRITE, IPR_RD
and IPR_ W'R operations. Pcache is accessed by DREADs and 'WRITEs. All other bits (tag, valid
bits and parity bits)are accessed through Mbox IPRs.

The operational mode of the Pcache can be changed to accomodate testing the array. The mode
is controlled by the Pcache Control Register (PCCTL) which can be read and written as an Mbox
IPR. The PCCTL allows the U8er to: .

1. Enable/disable D~stream and/or I-stream operations to the Pcache.
2. Allow the Pcache to operate in a direct mapped force hit mode.
3. Enable/disable Pcache parity checks.

12.17 Mbox Performance Monitor Hardware

Hardware exists in the Mbmi: to support the NVAX Performance Monitoring Facility. See
Chapter 16 for a global description of this facility.

The Mbox hardware generates two signals, M%PMUXO and M%PMUX1, which are driven to the
central performance monitorin.g hardware residing in the Ebox. These two signals are used to
supply Mbox performance data for the purpose of recording performance statistics. Seven Mbox
performance monitoring functions exist. The function to be executed is specified by the PMlv.t
field of the PCCTL register.

Table 12-15: Mbox Performance Monitor Modes

PCCTL<7:5>

000

001

010

011

100

101

110

111

12.18 Revision History

DIGITA.L CONFIDENTIAL

Performance Monitor'Mode

TB hit rate for POlPl Space I-stream Reads

TB hit rate for POlPl Space D-stream Reads

TB hit rate for SO Space I-stream Reads

TB hit rate for SO Space D-stream Reads

Pcache hit rate for I-stream Reads

Pcache hit rate for D-stream Reads

illegal mode-Results are UNPREDICTABLE

ratio of unaligned virtual reads and virtual writes to total virtual reads
and virtual writes

The Mbox 12-37

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Who When Description of change

Bill Wheeler 8-May-1990 Other tweaks

Bill Wheeler 27·Feb-1990 Add perf monitor hardware. Other tweaks

Bill Wheeler lS.Jan-1990 Signal name change

Bill Wheeler 20-Nov-1989 Final Changes prior to· review for Rev 1.0 Release

Bill Wheeler 23-Aug-1989 More Updates

Bill Wheeler 31.Jul-1989 Spec Update

Bill Wheeler 06-Mar-1989 For External Release

Bill Wheeler 30-Nov-1988 Initial Release

Gil Wolrich lS-Nov-1990 NVAX Plus External Release

Gil Wolrich l-Aug-1991 update

12-38 The Mbox DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3" October 1991

Chapter 13

NVAX Plus CBOX

13.1 Functional Overview

The NVAX Plus and NVAX processors contain common IBOX, EBOx., FBOX, and MBOX internal
functionality. The NVAX external interface is to a backup cache and I/O NDAL bus, while the
NVAX Plus external interface is a common cache/memory bus used by EV processors. \Vhile the
MBOX interface section of the CBOX is similar for NVAX and NVAX Plus, the EDAL bus interface
sections of NVAX Plus replace the TAG, DATA, and NDALIBIU sections of the NVAX CBOX.

The NVAX Plus CBOX receivE~s read, and write requests from the MBOX. The CBOX initiates
bus cycles and sends fill data to the MBOX. Invalidates are initiated by extemallogic and sent
to the MBOX under CBOX control.

For reads the tag and data stores are read together. If the tag matches and the valid bit is set the
associated data is returned to ,the MBOX. If the read misses a READ_BLOCK request is sent to
the system logic. NVAX Plus 'waits for the system to update the cache and deliver the requested
data to a 32 byte Input Buffer.

If NVAX Plus is not in ttpV" mode writes require a probe cycle in which the tag and state bits are
read. If the probe indicates a tag match for a valid block which is not shared, then NVAX PLUS
writes the data store. If the write probe indicates a miss or the block is shared, NVAX Plus sends
a 'WRITE_BLOCK command to the system logic. The 'WRITE_BLOCK command has an eight bit
longword mask associated with it indicating the longwords which are to be upda'ted. The write
data is placed in a 32 byte Out.put Buffer. The write is completed under external control.

If N'VAX Plus is in "PV" mode a WRITE_BLOCK command is initiated and the Bcache is
not ·probed. The c~1Mask_h lines contain byte mask rather than longword mask information.
data W'E<l:O>, and dataA_h<3> also supply additional information in order to construct 16 byte
enables. <endmask>

For a NVAX Plus EDAL bus system;

• Only one miss can be issued, the cache can not be used till the miss completes

• The externallogl.c is responsible for writebacks
• The external logic must maintain cache coherence for both backup and primary caches

DIGITAL CONFIDENTIAL NVAX PlulS CBOX 13-1

mrAX Plus CPU Chip Functional Specification, Revision 0 .. 3, October 1991

A Valid, Dirty, and Shared bit are associated with each tag in the external backup cache. The
Valid and Shared bits are written by external system logic only. When not in "PV' mode the
Dirty hit is written by NVAX Plus on write hits to a non-shared block and indicates the data in
cache is no longer the same as main memory. For Writes to Shared blocks NVAX Plus can not
write directly into the cache, and must issue a WRITE_BLOCK command to enable the external
system logic to broadcast the shared write to all caches in the system.

13.2 CBOX REGISTERS

13.2.1 BIU_ADDR"

This read-only register contains bits [31..5] of the physical address associated with any errors
reported in BIU_STAT[7 .. 0]. The BIU_ADDR is locked against further updates, until the error
bits of BIU_STAT are cleared. .

Figure 13-1: BIU_ADDR

31 30 29 26 27 26 :5 2' 23 :2 :1 20 19 18 17 16 15 l4 13 1: 11 10 9 6 i 6 5 4 3 2 1 0 --.. --.... --.--... --.--.;---.--~--+--.--.--+--+--+--+--+--+--+--+-_ ... --.... _-+--+--+-.-+--+--+ .. -*--+--+-.. +---!-
I X X X X XI

13.2.2 BIU_STAT

The BIU_STAT is a WRITE-ONE·TO CLEAR W1C IPR. When one of BIU_HERR, BIU_SERR,
BC_TPERR or BC_TCPERR is set, BIU_STAT[6 .. 0] are locked against further updates, and
the address associated with the "error is latched and locked in the BIU_ADDR register. BIU_
STAT[7 .. 0] and BIU_ADDR are unlocked when the BIU_STAT[7,3:0] are written with 1's.

When FILL_ECC or BIU_DPERR is set, BIU_STAT[13 .. 8] are locked against further updates,
and the address associated with the error is latched and locked in the FILL_ADDR register.
BIU_STAT[14 .. 8] and FILL_ADDR are unlocked when BIU_STAT[14,11:8] are written with l's.

This register is not unlocked or cleared by reset and needs to be explicitly cleared by Microcode.

Figure 13-2: BIU_STAT

Figure 13-2 Cont'd on next page

13-2 NVAX Plus CBOX DIGITAL CONFIDENTiAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

F~gure 13-2 (Cont.): BIU_STAT

31 30 2~ 28 :7 26 2S 2~ 23 22 2~ 20 19 16 17 16 15 14 13 12 11 10 9 8 , 6 5 4 3 2 1 0
+--+--+--,"",,--+--~---4---+--+-- --+-... .,.--+--+--+--+--.... --+--+--+--+--.... --+--+--+--+--+--+--+-- --+_,..
1 1 1 1 1
1 RO 1 RO 1 0 0 0 0 0 0 OlW11
1 1 1 1

RO
1 1 1
1 OlW11 RO
1 1 1

1 1 1 1 1 1
IRO'IW1IW1IWlIW11
1 1 1 I I 1

1 1

RO IW1 trllli.'llW11
1 1 1 1 I

1 I 1 +-> BIU_HEP~
Iii .----> BID_SERf-
1 1 : .'------- > BO: TPEP..?
1 1 1 +----------> BC:TCPEP~
I I 1 +----------------> BID_DSP_CMD
1 1 +----------------------> BIU SEO
I +-------------------------> FILL_ECC
1 +----------------------------> FlU eRn

I +--------------,-----------------> FILL - DPERf.
+----------------------------------> FII.l:IP~

1 +---------------------------------------> FILL QW

~------------::~ ~;~:~~~ eM:

~---> LOS~:WF.!TE
.---> BID ADDRi33:32]

.---,-------> FILL_ADDRI33:32

Table 13-1: BIU STAT

Name Bit(s)

BTU_HERR 0

BfU_SERR 1

BC_TPERR 2

BC_TCPERR 3

BID_DSP _CMI> 6:4

7

8

DIGrTAL CONFIDENTIAL

Type

WIC

WIC

'VIC

WIC

RO

WIC

WlC

Description

This bit, when set, ind;icates that an external cycle was terminated
with the cAck_h pins indicating HARD _ERROR.

This bit, when set, indicates that an external cycle was terminated
with the cAck_h pins indicating SOFT_ERROR.

This bit, when set" indicates that a external cache tag probe encoun­
tered bad parity in the tag address RAM.

This bit, when set, indicates that a external cache tag probe encoun­
tered bad parity in the tag control RAM.

This :field latches DSP _CMD[3 .. 1] /dispatch command bits [3 ... lV,
inverting bit (1) if the command is write_unlock., when a Brn_HERR,
BTU_SERR, BC_TPERR, or BC_TCPERR en-or OCC1U"S, and locks till
BTU _STAT[7,3 :0] are cleared.

This bit, when setf indicates that an external cycle was terminated
with the cAck..h pins indicating HARD_ERROR or that a an external
cache tag probe encountered bad parity in the tag address R.A.M:
or the tag control RAM while one of BIU_HERR, BTU_SERR, BC_
TPERR, or BC_TCPERR was already set.

ECO en-or. This bit, when set, indicates that primary cache :fill data
received from outside the CPU chip contained an ECC en-or.

NVAX PllJls CBOX 13-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 13-1 (Cont.): BIU STAT

Name Bit(s) Type Description

9

10

11

13:!2

FILL_SEO 14

FILL_DSP _CMD 19:16

LOST _"TRITE 20

BIU_ADDR[33:32] 29:28

FILL_ADDR[33:32] 31:30

W1C

W1C

RO

RO

,,71C .

RO

W1C

RO

RO

Corrected read. This bit is only meaningful when FILL_ECC is also
set. FTI.,L_ CRD is set to indicate that the ECC error was correctable
and clear to indicate that the error was not correctable.

BIU Parity Error. This bit when set, indicates that the BIU received
data with a parity error from outside the CPU chip while performing
either a Dcache or lcache fill. FILL_DPERR is only meaningful when
the CPU chip is in parity mode, as opposed to ECC mode.

This bit is only meaningful when either FILL_ECC or FILL_DPERR
is set. FILL_IRD is Bet to indicate that the error which caused FILL_
ECC or FILL_DPERR to set occurred during an lcache fill and clear
to indicate that the error occurred during a Dcache fill and locks till
BIU_STAT[14,10:8] are cleared.

This :field is only meaningful when either FILL_ECC or FILL_
DPERR is set. FILL_ Q'W identifies the quadword within the hexa­
word primary cache fill block which caused the error. It can be used
together with FILL_ADDR[33 .. 5] to get the complete physical ad­
dress of the bad quadword. FILL_QW locks till BIU_STAT[14,10:8]
are cleared.

This bit, when set, indicates that a primary cache fill operation re­
sulted in either an uncorrectable ECC error or in a parity error while
~ .. ECC or FILL_DPERR was already Bet.

This field latches the DSP _CMD Idispatch command! which resulted
in the BIU error and locks till BIU_STAT[14,10:8] are cleared.

An second error, and command is a write.

Bits 33,32 of the BIU_ADDR register, should be set only for I/O .
space address. The field is locked against further updates when
Bl1J _ADDR[31..5] is locked.

Bits 33,32 of the FILL_ADDR register, should be set only for I/O
space address. The field is locked against further updates when
FILL_ADDR[31..5J is locked.

F!LL_DSP_CMD<3:0> BIU_DSP -CMD<2:0>
----------------- ----------------

DREAD 100X 100
DP..!.AD_IO 1010 101
DREAr' LOCK 1100 110
DREAD: LOCY,-IO 1101 110

IREAD 0010 001
IPLAD_IO 0011 001

WRITE ONLOCK 0111 011
WP.ITt- OllO 010
Ie_WRITE 0101 010
WRITE_UNLOCK_ IO 0001 000

13-4 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip FUD~tional Specification, Revision 0.3, October 1991

13.2,,3 FILL_ADDR

This read-only register contains bits [31..5] of the physical address associated with any er­
rors reported in BIU _STAT[14 .. 8]. FILL_ADDR is locked against further updates, till BIU_
STAT[14,lO:8] are cleared. .

Figure 13-3: FILL_ADDR

31 30 29 26 :7 26 25 2' 23 22 21 20 1i 16 17 16 15 14 13 12 11 10 9 E 7 6 5 , 3 2 1 0
~--.--+--+--.-.-+--+--.-----~--+--.+--+--+--+--+--~--+--~-----+--"--......--+-... +--.--+--+--~--+-.. +--+--....

F!l.l._ADDP. [31 •• 5 J I X X X Yo XI

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-5

NVAX Plus CPU Chip Functional Specification, RevisiQD 0 .. 3, October 1991

13.2.4 BIU_CTL

BIU_CTL is cleared by power-up microcode, except for the "W' bit which is set to 1 by the
power-up microcde.

NOTE

NOTE: NVAX Plus exits reset microcode with "PV' = 1, in PV mode.

NOTE

NOTE: The BIU_CTL (and DLAG_CTL) registers read inverted values.

I
I
I
I
I
I
I
I
I
1

I
I
I
1

i X X X X X X X 0 0 0 0 0 XI
I I

I): Xi
I I

I

I
I X XI
I I

I
I +-> ~C_tNJ>.

I +----> tce -------> OE
.----------> BC~FHIT

_--------------> ~C_SPD
I +-------------------------> PCACHE MODE
+----------------------------> Ol_I/O:RD

+-------------------------------> "PV"

+--------------------.---------------------> IO_MAP

+--------------------------------------.---> ~c SIZE
~---> WS:IO

X bits read values from DIAG_CTL

Table 13-2: BIU Control Register

Name Bit(s) Type

o RW

ECC 1 RW

OE 2 RW

13-6 NVAX Plus OBOX

Description

External cache enable. When clear, this bit disables the external
cache. When the external cache is disabled the BIU does not probe
the external cache tag store for read and write references; it launches
a request on cReCl-h immediately.

When this bit is set NVAX Plus generates/expects ECC on the check_
h pins. When this bit is clear NVAX Plus generates/expects parity
on four of the check_h pins.

When this bit is set NVAX Plus does not assert its chip enable pins
during RAM write cycles, thus enabling these pins to be connected
to the output enable pins of the cache RAMs.

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 13-2 (Cont.): BIU Co:ntrol Register

Name Bit(s) Type Description

3 RW

5:4

RW

RVv

RV7

"PV" 10 R'W

External cache force hit. When this bit is set and BC_EN is also
set, all pin bus READ_BLOCK and WRITE_BLOCK transactions
are forced to hit in the external cache. Tag and tag control parity
are ignored when the BTU operates in this mode. BO_EN takes
precedence OVer BC_FHIT. When BC_EN is cleat, and BC_FHIT is
set no tag probes occur and external requests are directed to the
cReq_h pins.

External cache speed. This field indicates to the BIU the read and
write access time of the RAMs used to implement the off-chip ex­
ternal cache, measured in CPU cycles. BCache speeds of 2,3, or 4:
times the CPU_clk are available. The cache speed field is hardware
reset to the 2X cpu cycle setting.

NVAX Plus replaced BC._RD_SPD and BC_ 'WR_SPD with BC_SPD.
NVAX Plus uses ,the BC_SPD field to program the read and write
cache access time. EVAX allows the read and write cache access
times to be programmed separately. BC_SPD is imitialized on reset
to the 2X cpu cycle setting.

External cache write enable control. This field is used to control the
timing of the write enable and chip enable pins during writes into

. the data and tag control RAMs. This field wili be set to a fixed value
for NVAX PI,us. This field is programmable on EVAX..

When this bit is dear the Pcache is allocated as a two way set asso­
ciative, and when set the P.cache allocates as direct mapped.

When this bit is set 10_SPACE DREADs which are not quad­
word aligned return data from an internal register which contains
bits<63:32> of the previous quadword aligned read.

Set for low cost workstations. Byte parity on reads, cWMask[5] is
addr[2] on reads, check bits remain tristated on writes, all writes
are done as if the Bcache is disabled, cWMask[17 .. 0), dataA_h[3],
data WE_h[1 .. 0] contain byte mask info for writes. The "PV" field is
hardware set to "PV" mode at reset. System other than ''PV'' must
clear BTIJ_CTL<"PV"> from SROM code before executing external
reads or writes.

14;13 R~r These hits are driven to Adr_hl33:32] on 10 references, allowing
different systems to select the range for 10 mapping.

30;28 RW This field is used to indicate the size of the external cache. BC_
SIZE is not initialized on reset and must be explicitly written before
enabling the external cache. See Table 13-4 for the encodings.

31

DIGITAL CONFIDENTIAL

This field
hae:been
removed
onNVAX
PluB.

RW' This bit, when sett indicates that IO-space is mapped for "FLAMINGO"
work stations.

NVAX Plus CBOX 13-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

"P,\T" systems maintain a write-through cache with byte parity. The cache is not written by
NVAX Plus, all writes and byte/word writes issue a "TRITE BLOCK to the system. The LW
parity generated be mr~ Plus is not used for "PV' writes.

If BIU_CTL<"PV"> = '1, check_h<27:0> output drivers remain tristated at all times, allowing the
system parity generator logic to drive parity into the Bcache during write_block and STxC cycles.
check_h[27:25, 20:18, 13:11, 6:4] are not used and need to be driven.

System logic constructs a byte enable for each of the 16 possible bytes from cWMask<7:0>,
dataA<3> , and dataWE_h<1:0>, and generates byte parity. Fast external reads are executed
for read hits, with byte parity driven to the check bits.

For BIU_CTL<"PV'> = '1, writes do not probe Bcache. Writes go directly to 'WRITE_BLOCK,
and output byte mask on c'WMask<7:0>. dataA<3> identifies the QW to which the c'W'M.ask lines
apply, and data WE_h<1:0> output byte mask information for, the other QW of data.

dat.aA_ h<3> dat.aWE_h<l:O> bytemasl:<lS": B> bytemul:<;: 0>
---------- ------------- -------------- -------------
(J 0(. 0000000(1 cWMask<;:O>
(J 01 00001111 cWMasy,<i : 0>
0 10 11110000 cWMask<i : 0>
0 11 11111111 eWMask<i:O>

1 00 eWMasr.<i : 0> 00000000
01 eWMasl:<":O> OOOOllll
10 eWMask<i:O> 1111'0000
11 eWMask<i:O> 11111111

1 11 eWMask<i:O> 11111111

Reads probe the Bcache, byte parity is input as

" checl:_h I 0) for dat.a [i: 0), ehecy._hl1) for dat.aI1S:S), checy._hI2) for dat.aI23
checy._h l7] for dat.a 13~:32), eheCy._hIB) for data 14 i I 40 J , eheck_h (9) for dat.aISS
checy._hIH) for dat.a(71:64)(ehecy._hI1S) for dat.a ['7~:;2), checy._hIH) for data lSi
checy._h[21J for dataI103:~6), checl:_h[::2) for data[111:104), check_h(23) for data III

where checy. hI3:0) ar. xored ~o produc6 ~h. LW pari~y bit for dataI3l:0),
ehecr.-h[lO:i]j are xored to produee the LW parity bi~ for dat.a[63:Z2),
check-hlli:l4) are xorec to produce th. LW parity bit for dat.aI95:64j,
checr.:hI24:21J ar. xored t.o produce th. L~ parity bit for data[12i:96j

The dataWE lines are only used for mask information in "PV' mode.

00 2X cpu cycle

01 3X cpu cycle

10 4X cpu cycle

16) , ehecy._hI3) for dat.a[31
4S; , eheer._h 110) for.datal63
BO), cheey._h 11 i) for dat.a [~5
:112) , ehecr. _h(24) for dat.all:

13-8 NVAX Plus c;BOX DIGITAL CONFIDENTIAL

24
se
SE
: l

NVAX Plus CPU Chip Functional Specification, Revision 0.3, ·October 1991

Table 13-4: BC SIZE

Be_SIZE Size

000 128 Kbytes

001 256 Kbytes

010 512 Kbytes

o 11 1 Mbytes

100 2 Mbytes

101 4 Mbytes

110 8 Mbytes

13.2 .. 5 DIAG_CTL

DIAG_CTL is cleared by pOWel"-Up microcode, except for the DISABLE_ECC_ERROR bit which
is set to 1 by the power-up mic:rocde.

NOTE

NOTE: NVAX Plus exits reset microcode with DISABLE_ECC_ERR = 1. System soft­
ware must clear DIAG_C~rL<DISABLE_ECC_ERR> to enable ECC/parity checking.

NOTE

NOTE: The BIU_CTL (and DIAG_CTL) registers read inverted values.

Figure 13-5: DIAG_CTL

3l 30 2~ 28 27 26 25 24 23 22 2l :20 19 18 17 16 15 14 13 12 11 10 ~ 8 7 6 5 4 3 2 1 0

I I
I :x :x j: XI

I

I
I
I
I
I
I
I
I
I
I
I
I

I I
I 0 0 0 0 01
I I

I
I
I
I
I
I
I

I I
I X XI
I I

I I
I j: X XI
I I

I

I I
I X X X X X XI
I I

I +-----------> 'rODR 'I'EST
+--------------> TODR:INC

+--------------------------> :I?ACK DISABLE
+-----------------------------> :~_EN

+--------------------------------------> DISABLE_ECC_ERF.

+----.------------------------.. -.. ---.. ------------------------> PM HI'! TYPE
+-------------,---> PM:ACcESS_'I'YPE

+-------------------,---> SW_ECC
X bits read values from BIU_C'I'L

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-9

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

Table 13-5: Diagnostic Control Register

Name Bit(s) Type Description

TODR_TEST 6 RW

TO DR_INC 7 RW

PACK_DISABLE 11 RW

MAB_EN 12 R"W,O

DISABLE_ECO_ 15 RW,l
ERR

PM_HIT_TYPE 23:21 RW

27 RW

Enables TODR test mode.

Increment TODR for test purposes.

Diagnostic feature to disable write packing, except for QW packing
directed by microcode.

Diagnostic feature to allow tagAdr[33:32] to output MAB[7:6] and
tagAdr[17,18,19) to output MAB[10:8) depending on Bcache size.
This bit is cleared at reset to insure tagAdr[33:32) and tagAdr[17 ,18~19)
are not driven unless enabled by software.

The reporting of ECCIData Parity errors is disabled when set.

Selects Bcache tag compare type for Performance Monitor selection
of C%PMUXl. -

Selects, Bcache tag compare type for Performance Monitor selection
ofC%PMUXO.

This bit, when set, enables the use of ECO check bits from IPR_
BEDECC as given by software for write data. If DlAG_ CTL[l] =
'0, i.e. parity mode if SW_ECC is set BEDECC[O] is the parity bit
generated for data[31:0} and BEDECC[7] is the parity bit generated
for data[63:32).

NOTE

NOTE: NVAXPlus does not support BAD_TeP, the write bad tag control parity function
which is implemented by EV4.

13.2.6 FILL_SYNDROME

The FILL_S'YNDROME register is a 14-bit read-only register. If the chip is in ECC mode and
an ECC error is recogriized during a primary cache fill operation, the syndrome hits associated
with the bad quadword are locked in the FILL_SYNDROME register. The FILL_SYNDROME
register is locked against further updates, till BIU_STAT[14,lO:8] are cleared.

Figure 13-6: FILL_SYNDROME

31 30 2~ 28 27 26 25 24 23 2: 21 20 1~ 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+
I I
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01
I 1

13-10 NVAX Plus OBOX

HI [6 •• OJ 1.0[6 •• 0)

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

Table 13-6: Fill Syndrome

Name Bit(s) TyJ:~e Description

LO

HI

6:0 RO The LO field latches the ECC syndrome bits for the low longword.

13.2.7 BEDECC

13:7 ROThe
HI field
latches
theECC
syndrome
bits for
the high
longword.

The BEDECC register is a 14··bit writeaonly register. If BIU_CTLLSW _ECC] = '1 the check bits
for write data are sourced froIn BEDECC instead of the normal check bit generation logic.

Figure 13-7: BeOeCC

3: 30 29 28 27 26 25 24 23 :2 21 26 19 18 1~ 16 15 14 13 12 11 10 9 e , 6 ! 4 3 2 1 0

HI [6 •• 0) LO[6 •• 0)

Table 13-7: BeOECC

Name Bit(s) TyJ:~e Description

6:0 WO The LO field for check bits of data[31:0). LO

HI 13:7 WO The HI field for check bits of data[63:32).

The BC_TAG is a read-only IPR. Unless locked, the BC_TAG register is loaded with the results
of every backup cache tag probe. When a tag or tag control parity error or primary fill data
error (parity or ECC) occurs this register is locked against further updates. Software may read
this register by using the MFJPR instruction. The BC_TAG register is unlocked when the BIU_
STAT[7,3:2] are cleared.

The BC_TAG register for NV.AX Plus stores the tag error information in different bit positions
then EV4, maintaining the alignment of the tag in the address data path. BC_TAG<17:22>
are used depending upon the BIU_CTL<BC_SIZE> field specifying the Bcache size. BC<TAG_
MATCH> indicates the address and TAG fields for the BC~SIZE were equal.

OIGITAL CONFloeNTIAL NVAX Plus CBOX 13-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 13-8: Be_TAG

31 30 1~ 28 27 26 ~5 24 23 22 11 20 1~ 18 17 16 15 14 13 12 11 10 9 8 7 6 5 , 3 2 1 0

TAG [31. .17)

13.2.9 STxC_RESULT

1 1 1 1 1 1 1 1
1 RO 1 P.O 1 RO 1 RO 1 RO 1 RO 1 0 (I (I (I 0 0 (I (I (> (I 0 1
1 1 1 1 1 1 1

1 1

1 +---> TAG MATCH
1 +------> TAGCT:L_V
+---------> TAGCT:L D

... ------------> TAGCT:L:S
+---------------> TAGCT:L_P

+------------------> TAG_P

Bit 2 of STxC_RESULT, STxC PIF is read only. **Vi1hen a write is issued to this IPR address
AC(hex) the IREAD latch lockout as a result of a failed READ LOCK is cleared.** Bit 2 is set if
the last store conditional failed, and is reset if the last store conditional did not resUlt in a STxC
FAIL. This register is read by microcode following write_unlocks to determine if the write was
successful Bits [1:0J must be read as zero.

Figure 13-9: STxC_RESULT

31 30 19 28 27 26 15 2' 13 :: 11 20 19 18 17 16 15 14 13 :: II 10 9 S i 6 5 , .3 : 1 0

1 0 0 0 0 0 C (I 0 0 0 0 (I 0 0 0 0 0 0 (I 0 0 0 0 (I (I 0 0 0 (lIROI 01 01

... --+--... --+--+--+--~--.--+--+-.+-- ... --+--+--+--... --+--+--+--+--+--+--... --+--+--+--~--+--+-----+--+--+

13.2.10 SIO

! 1 +-read as zero
1 +----read as zero
1

+--- STxC P/F

Bit 0 is read-only. The level of the serial line/SROM INPUT data input pin is read. Bit 1 is
write_only and drives to the serial line output/SROM CLOCK output pin. The level driven to the
pin is inverted from that written to the S10 register.

Figure 13-10: SIO

Figure 13-10 Cont'd on next page

13-12 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 13-10 (Cont.): SIO

31 30 29 28 27 26 25 24 23 2: 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
~--+--+--+--+-~+--~--+--+--+--+--~.--+--.--+--+--+--+.-+--+--+--+-~+--+--+--+--+--+--+--+--+--~-+
1 01 _--+--+--+_-+-_+--+ __ + __ • __ + __ + __ ~. __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ + __ 0 _____ +

13.2.11 SOE-IE

1 1
1 +- serial line in
+---- serial line ou~

Bit 0 is write only and drives the SROM_ OE pin. Bit 1 is read only and receives the icMode_h<O>
(SROM_FAST) pin latched at the trailing edge of reset_l which determines if a SROM is to be
read. Bits 22 to 20 are read on'ly and are coded with the wafer column position. Bits 26 to 23 are
read only and are coded with the wafer row position. Bits 31 to 27 are read only and are coded
with a Wafer ID number.

Figure 13-1': SOE-IE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 S , 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

I

1 +- SROl'~_ OE
+---- SROl':_FAST

.----------------~.-- WAFER/ROW/C01_ID

This is a write only ipr used by microcode to inform the WRITE_PACKER to pack the next two
LV\7 writes even if the address is: in io space or the command is a WRITE_UNLOCK. The IPR_ WR
takes place during a MTPR MAILBOX instruction and a MTPR QW _PACK(B8) instruction to
produce QW writes to 10 space ..

This is a write only ipr used by microcode to inform the WRITE_PACKER to clear the quadword
pack state. The IPR_ WR takes place during a MTPR MAILBOX instruction and a. MTPR CLR_
IO_PACK(B9) instruction.

DIGITAL CONFIDENTIAL NVAX Plus OBOX 13-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

13.2.14 CONSOLE HALT/CHALT

This ~7 register contains the start address for the console. It is written by system software,
and used to determine the'console start physical address in response to a HALT interrupt.

NOTE

NOTE: If the console code resides in 10 space, a full quadword of data must be received
for each READ_BLOCK.

13.2.15 Time-of-Day Register ,(TODR)

The Time-of-Day Register forms an unsigned 32-bit binary counter that is driven from a 100Hz
oscillator, so that the least significant bit of the clock represents a resolution of 10 milliseconds.
The ~7 register counts only when it contains a nOD-zero value.

Figure 13-12: Time of Day Register, TODR

31 30 2~ 28 21 26 :5 24 23 22 21 20 19 l8 li l6 15 l4 l3 l2 11 lO ~ 8 7 6 5 , 3 : 1 0

ini~ial valu~ plus number of lO-millisecono uni~s since s.~~ing I :TODR

13.2.16 Programmable Interval Clock

The interval clock provides an interrupt at IPL 16 (hex) at programmed intervals. The counter is
incremented at 1 microsecond intervals, with at least .01% accuracy. The interval clock consists
of three registers in the privileged register space.

1. Interval Count Register.(ICR) - The interval count register is a read only register incremented
every microsecond. Upon a carry out (overflow) from bit 31, it is automatically loaded from
NICR and an interrupt is generated if the interrupt is enabled. That is, the value of ICR on
successive microseconds will be FFFFFFFD (hex), FFFFFFFE, FFFFFFFF, <value ofNICR>.

2. Next Interval Count Register (NlCR)·· This reload register is a write only register that holds
the value to be loaded into ICR when ICR overflows. The value is retained when ICR is
loaded.

3. Interval Clock Control Status Register (ICCS) - The ICCS register contains control and status
information for the interval clock.

The interval clock consists of 3 .Internal Processor Registers configured as follows:

Figure 13-13: ICCS

Figure 13-13 Cont'd on next page

13-14 NVAX Plus CBOX DIGITAL CONFIDENTIAL

:NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 13-13 (Cont.): ICCS

31 30 2~ 26 27 26 25 24 23 22 21 20 19 16 17 16 15 14 13 12 11 10 9 e 7 € 5 , 3 : 1 0
--".+--+--~--",,--+--*--~--.,..--+--+--.p.--*--+-- ... --at---+--+ .. -+--... --+--+--+--+--~-- ... --~--+--+-- ... --.--.--+
i I I I I I I I I
lwei 0 OIWCIRWIWOIWOI 0 0 DIRWI
I I I I I I I I I
+--.+--+--+--+--+--+--+--+--+--+--.~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+--+--+--+

i

- RUN

I +------------- XFR
----------------- SGL

+------------------- It
+---------------------- Itr.

~,_---------------------_---_-_-.. -----------------c...----.. ,--------------------------------'------- ERR

13.2.17 Interval Clock Control Register

When hit <0>, the RUN hit, is a 1, the Interval COlUlt Register is incremented once per microsec­
ond. When clear, ICR does not increment automatically. RUN is cleared during reset.

Bits <3:1>, Must be zero.

Writing a 1 to bit <4> (XFR) generates a pulse which causes the Next Interval Count Register
to be copied to the Interval COtmt Register. XFR does not require clearing; Multiple XFRs will
produce multiple transfers. XI~R is always read as O.

When RUN is a 0, writing alt.o bit <5> (SGL) generates a pulse which causes the Interval Cotmt
Register to be incremented by 1. If SGL is written and RUN is a 1, or XFR is written at the same
time, the the result 'is tmpredktable. SGL does not require clearing; Multiple SGLs will produce
multiple increments. SGL is always read as O.

When Bit <6> IE is set, an int.errupt request is generated every time ICR overflows (every time
Interrupt is set). When clear, no interrupt is requested. Similarly, if Interrupt is already set and
the software sets Interrupt Enable, an interrupt is generated. That is, an interrupt is generated
whenever the function [Interrupt Enable AND Interrupt] changes from 0 to 1. Interrupt Enable
is cleared by reset.

Whenever the Interval COtmt Register overflows, bit <7> (!NT) is set. If IE is set when !NT is
set, an interrupt is posted. For the case in which the NICR contains a value of FFFFFFFF and
the lCR overflows, consecutive intelTUpts are not posted.

'Whenever the Interval Count Register overfiowsand INT is already set, ERR (bit <31» is set.
Thus, ERR indicates a missed overflow. .

Reset clears lCCS <6> and <0>, and leaves the rest of ICCS unpredictable.

Figure 13-14: ICR

Figure 13-14 Cont'd on next page

DIGrTAL CONFIDENTIAL NVAX Plus OBex 13-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 13-14 (Cont.): ICR

31 30 29 26 :7 26 :5 24 :3 22 :1 20 1~ 16 17 16 15 14 13 12 11 10 9 6 7 6 5 , 3 2 1 0

Interval Count Registe= Read Only

13.2.18 Interval Count Register

This read-only register contains the interval count. When the RUN bit is a zero, writing a 1 to
SGL increments the register. When RUN is a 1, the register is incremented once per microsecond.
When the counter overflows, the !NT bit is set, and an interrupt is posted if IE is set. The register
is then loaded from the Next Interval Count Register and continues incrementing. The maximum
delay that can be specified is approximately 1.2 hours.

Figure 13-15: NICR

31 30 29 26 :7 26 25 24 :3":: :1 20 1~ 16 17 16 lS 14 13 12 11 10 9 e 7 6 5 , 3 2 1 0

NEX'!' INTERVAl. COUl~,!,

Next lnterval Registe= Write Only

13.2.19 Next Interval Count Register

This contains the value which is loaded into the Interval Count Register after an overflow, or in
response to a 1 written to XFR.

The Interval Count Register is cleared by reset.

To use the Interval Clock, load the negative (2's complement) of the desired interval into the Next
Interval Count Register. Then, writing 51 (hex) to the ICCS will enable interrupts, load the Next
Interval into the Interval Count Register, and set the RUN bit. An interrupt will then occm
every "interval count" microseconds. The interrupt routine should write C1 (hex) toothe ICCS to
clear the interrupt. If Interrupt has not been cleared (the interrupt has not been handled) by the
time of the next ICR overflow, Error will be set.

IfNICR is written while the clock is running, the clock may lose or add a few ticks. If the interval
clock interrupt is enabled, this may cause the loss of an interrupt.

13.3 Cache Organization

Pins for tagAdr_h<31:17> are allocated allowing the cache size to be as small as 128 Kh. The BC_
SIZE field of the BIU_CTL register determines which bits of tagAdr_h<22:17> are to be includes
in the match comparison.

13-16 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

NVAX Plus cache cycle are 2,a, or 4 times the internal cpu_clk cycle time. ISSUE: SET BY IRQ
AT RESET OR IN BIU_CTL.

13.4 Cache_Speed and SYS_CLK

NVAX Plus cache accesses are 2,3, or 4 times the CPU_eLK period.

Transactions requiring system logic intervention are referenced to SYS_CLK which is separately
programable, also at 2,3, or 4 times the CPU_CLK period. For systems in which cache_speed
and SYS_ CLK are both 2 times the CPU Cycle, SYS_ CLK lags the cache access by one CPU cycle
allowing the fastest transfer of commands to the system.

13 .. 5 DataPath

Table 13-a: Cbox Queues and Major Latches

QueuelLatch

CM_OUT_LATCH

FllL_DATA_PIPEs

DREAD_LATCH

WRITE_QUEUE

INVADR_LATCH

INPUT_LATCH

OurPUT_LATCH

DIGfTAL CONFIDENTIAL

E:ntries AddressIData Function

1

2

1

1

1

8

1

2

1

Addr<31:3>,data<63:0> Holds fill data or an invalidate address

Data<63:0>

Addr<33:3>

Addr<33:3>

being sent to the Mbox.

Pipeline data destined for the MbOx.

Holds' a data-stream read request from
the Mbox.

Holds an instruction-stream read request
from the Mbox.

Addr<33:3>,data<63:0> Compresses sequential memory writes to
the same quadword.

Addr<33:3>,data:<63:0> Queues write requests friom the Mbox.

iAddr<12:5> Holds address for PcachE! invalidates.

Data<127:0> Holds input data from the ED_DATA bus.

Data<127:0> Holds output data to be driven onto the
BD_DATA bus.

NVAX Plus CBOX 13-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

13.6 Mbox Interface

All NVAX Plus CPU chip transactions for the Cbox arrive through the Cbox-Mbox interface.
Reads come from the Mbox to the Cbox through the read latches. Writes arrive through the
"WRITE_PACKER and the WRITE_QUEUE. All fills returning from the Cbox to the Mbox go
through the CM_OUT_LATCH.

A block diagram of the Mbox interface is shown in Figure 13-16.

Figure 13-16: Mbox tntertace

,,, '1'
M%SS . PA .H<3,:3> . M%C.SS . PA . H<2:0>

C%CBOX.ADDR.H<3' :5>

(IN''.L$) /['.

1/ W -.J/ ,V_

C"I.MBOX.FIL .QW.H<4:3>

FI LL_DATA_ PIP .. I I DAEAD_LATCH I I IAEAD_LATCH I (I'I LL $) '" WRITE_PACKER

'1"

,1/ ,,1/

FlLL_nATA_PIPE,1

"'T' WRITE_QUEUE

~--------- .- -------------------- ----------~
e ENTRIES

i ICM_ADDA_LATCHI CM_DATA_LATCH I i
: r', CM OUT LATCH rl' :

~----------------:----=----------- ----------~

c _ BUS"I. DB us. H<S3:0> J
C.ADC%ABUS.Hc3' :0> v 11/

When the Mbox has a command for the Cbox, the command appears on M%S6_CMD<4:0>.
M%CBOX_REF _ENABLE or M%CBOX_LATE_EN_H is asserted for all reads, IPR ... RDs, and
IPR_WRs. M%CBOX_LATE_EN_H is only used for transactions which may hit in the Pcache
(DREADs, IREADs, and READ MODIFYs). Neither M%CBOX_REF _ENABLE or M%CBOX_
LATE_EN_H are asserted for writes since the Cbox accepts all writes from the MbOx.. The Cbox
loads the address from Mo/cS6_PA<31:3> into either the IREAD_LATCH, the DREAD_LATCH, or
the WRITE_PACKER. If the command is a write, the Cbox loads the data from B%S6_DATA and
the byte enable from M%S6_BYTE_MASK into the 'WRITE_PACKER.

Table 13-9 shows the commands which pass between the Mbox and the Cbox..

13-18 NVAX Plus CBOX DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision o.at October 1991

Table 13-9: Mbox-Cbox COl1llmands

Command Description Cho% datapath· element involved

MbO% to Cbox commands driven on M%S6_ CMD<4:O>

IREADl Instructi~m stream read mEAD_LATCH

DREAD 1 Data stream read DREAD_LATCH

DREAD_MODIFYl Data stream read with modify DREAD_LATCH
intent

DREAD_LOCKl Interlock,ed data stream read DREAD_LATCH

WRITE_UNLOCK Write which releases lock WRITE_PACKER, WRITE_QUEUE

WRITE Normal write WRITE_PACKER, WRITE_QUEUE

IPR_RDl Read of an internal or exter- DREAD_LATCH
nal processor register

IPR_'WR1 Write of Ian internal or exter- WRITE_PACKER, WRITE_QUEUE
nal processor register

Cbo% to MbO% commands driven on Co/cCBOX_ CMD<l:O>

Data stream cache fill

Instructi()n stream cache fill

Hexaworci invalidate

No operation.

CM_OUT_LATCH

CM_OUT_LATCH

OM_OUT_LATCH

13.6.1 The IREAD_LATCH ,and the DREAD_LATCH

V\7hen the Mbox has a read command for the Cbox, the Cbox loads the address from M %86_
PA<31:3·> into either the depending on the command. IfM%86_PA<31:29> = '111 lJREAD_LATCH
or DREAD_LATCH bits<33:3~:> are set to '11, else they are set to '00. Only IREADs are loaded
into the IREAD_LATCH. The DREAD_LATCH is used for DREAD, DREAD_MODIFY, DREAD_
LOCK, and IPR_READ.

The Mbox only has one outstanding IREAD and one outstanding DREAD at a time, so no back­
pressure for the latches is needed. 'When the DREAD_LATCH is valid, the Mbox does not start
the next DREAD-type transaction until all fill data from the previous command is returned to the
Mbox. When the IREAD_LATCH is valid, the Mbox does not start the next IREAD transaction
until either the IREAD has belen aborted or all fill data from the IREAD is returned to the Mbox.

Table 13-10 and Table 13-11 show the fields which are contained in the two read latches.

DIGITAL CONFIDENTIAL NVAX Plus CBex 13-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 13-10: IREAD LATCH Fields

Field

ADDRESS<31:0>

CMIk4:0>

SET_NUMBER

Purpose

Physical address of the read request.

Specific command being done aREAD).

Set to which this fill is to be allocated in Pcache.

Table 13-11: DREAD LATCH Fields

Field Purpose

Physical address of the read request. ADDRESS<31:0>

CMIk4:0> Specific command being done (DREAD, DREAD_MODIFY, DREAD_LOCK,
IPR_READ).

Set to which this fill is to be allocated in Pcache.

When the Mbox asserts M%.ABORT_CBOX_IRD, the Cbox clears the IREAD~LATCH entry if
the reference has not yet started.' If the CBOX starts the IREAD sequence before MQox asserts .
M%.ABORT_CBOX_IRD the sequence is continued but data is not sent to the MBOX.

13.6.2 WRITE_PACKER and WRITE_QUEUE

Writes from the Mbox go through the WRITE_PACKER and into the WRITE_QUEUE. The
WRITE_PACKER holds a quadword of data; the "WRITE_QUEUE consists of 8 entries, each
of which contains a quadword of data. The purpose of the WRITE_PACKER is to accumulate
Writes to the same quadword which arrive sequentially, so that only one write has to be done into
the cache.

A WRITE command with an non I/O space address or a WRITE or WRITE_UNLOCK to an
110 space address preceeded by an IPR_ WR to the QW _PACK ipr are packed. The IPR Writes
which set and clear Q~7_PACK are not put into the WRITE_QUEUE. If the WRITE is to the same
octaword as the quadword which is presently being packed, the quadword in the WRITE_PACKER
is placed into the WRITE_QUEUE and the S.AM:E_OCTAWORD bit set in the CMD field. The new
write reference is loaded into the "WRITE_PACKER. If the WRITE is not to the same octaword as
the quadword which is presently being packed, the quadword in the WRITE_PACKER is placed
into the 'WRITE_QUEUE and the SAME_OCTAWORD bit not set in the CMD field. The new
write reference is loaded into the WRITE_PACKER. Other writes pass immediately from the
WRITE_PACKER into the WRITE_QUEUE. The WRITE_PACKER is flushed at the following
times:

• When a memory-space WRITE to a different quadword arrives. The new. quadword then
remains in the write packer until a write packer flush condition is met.

• When a WRITE_UNLOCK arrives. The WRITE_UNLOCK is then passed immediately from
the WRITE_PACKER to the WRITE_QUEUE.

• **When an 110 space write arrives. If Q~7_PACK the next two longwords are packed into
a QW entry. QW _PACK is set by an IPR_ WR issued by microcode to inform the "WRITE_
PACKER to pack the next two LW writes even if the address is in io space or the command is
a WRITE_UNLOCK. The IPR_ WR takes place during the MOVQ instruction and the MTPR

13-20 NV AX Plus CBex DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O.St October 1991

MAILBOX instruction to produce QW writes to 10 space. The Q~7_PACK clears once the QW
is loaded into the "WRITE_'~UEUE. 'Thus MOVQ to a Q~7 aligned address results in a single
QW write, and MB_ADDR is written with a high LW of zeroes.** Otherwise the 1I0.space
write is passed immediately from the ·WR.ITE_PACKER to the "WRITE_QUEUE.

• 'When an IPR_ "WRITE arrives. The IPR_ WRITE is then passed immediately from the WRITE_
PACKER to the v\'RITE_QUEUE. IPR_WRITEs to VLDST are not placed in the WRITE_
QUEUE.

• If an IREAD or a DREAD ~L1"rives to the same hexaword as that of the entry in the WRITE_
PACKER.

• 'Whenever the conditions for flushing the write queue are met.
• If the DISABLE_PACK bit in the CCTL IPR is set. In this case, every write passes directly

through the "WRITE_PACK~R without delay unless the QW _PACK IPR is set.

THREE-CYCLE LATENCY THROUGH THE WRITE_QUEUE

If the ~TR.ITE_ QUEUE and the WRITE_PACKER are empty, the latency of any write
through them is 3 cycles. The implication of this is that if any reads which flush
the WRITE_QUEUE are done alternately with writes, their execution will be greatly
slowed. This applies to IPR reads and writes and may be an issue in testing the chip.

Table 13-12 describes the fields in the WRITE_QUEUE.

Table 13-12: WRrTE_QUEUE Fields

Field

CMD<:2>

CMD<:l:O>

ADDRESS<:31:0>

BYTE_EN<7:0>

0 DATA<:63:0>

Purpose

Indicates that the entry contains valid information.

Indicates that this write con:fiicts with a DREAD, giving the WRITE_QUEUE
priority. Check is done using hexaword address.

Indicates that this write confiicts with an mEAD, giving the WRITE_QUEUE
priority. Check is done using hexaword address.

Same octaword or io_ write_unlock.

Speci:fic command being done.

Physical address of the write.

Byte ,enable for the write.

Data to be written.

The CMD field of the "WRITE_ C~UEUE is encoded as,

• ipr_write = 00

• io_ write = 01
• mem_ write = 10

• unlock_write = 11
• io_unlock_write = 11 and same_ow (cmd<2>=l)

When a quadword of data is moved into the VVRITE_ QUEUE, it is serviced by the Cbox arbiter
as the lowest·priority task., unless special conditions exist.

. DIGITAL CONFIDENTIAL NVAX Plus, CBOX 13-21

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Servicing writes separately from reads allows reads" to take higher priority and gets read data
back to the CPU faster. However, a read which follows a write to the same hexaword must
not be allowed to complete before the write completes. To prevent this there are conflict bits,
DWR~CONFLICT<8:0> and rwR ... CONFLICT<8:0>, implemented in the WRITE_QUEUE and
'WRITE_PACKER, one for each entry. The conflict bits ensure correct ordering between writes
and a DREAD or an IREAD to the same hexaword.

When a DREAD atrives, the hexaword address is checked against all entries in the 'WRITE_
QUEUE and 'WRITE_PACKER. Any entry with a matching hexaword address has its correspond­
ing D"WFCCONFLICT bit set. The DWR~CONFLICT bit is also set if the WRITE_QUEUE entry
is an IPR_ WRITE, a WRITE_UNLOCK, or an I/O space write. If any D'WR_CONFLICT bit is
set, the "WRITE_QUEUE takes priority over DREADs, allowing the writes to complete first.

V\"hen an IREAD atrives, the hexaword address is checked against all entries in the 'WRITE_
QUEUE and 'WRITE_PACKER. Any entry with a matching hexaword address has its correspond­
ing I"WR_CONFLICT bit set. The IV\TR_CONFLICT bit is also set if the WRITE_QUEUE entry
is an" IPR ... v\TRITE! a WRITE_UNLOCK, or an I/O space write. If any I'WR_CONFLICT bit is set,
the V\TRITE_QUEUE takes priority over IREADs, allowing the writes to complete first.

As each write is done, the conftict bits and valid bit of the entry are cleared. When the
last WRITE_QUEUE entry which conflicts with a DREAD finishes, there are no more DV\TR_
CONFLICT bits set, and the DREAD takes priority again, even if other WRITE_QUEUE entries
arrived after" the DREAD. In this way a DREAD which conflicts with previous Writes is not done
until those writes are done, but once those write"s are done, the DREAD proceeds.

The analogous statement is true for an IREAD which has a conflict. IfIWR_CONFLICT is set and
the IRSAD is aborted before the conflicting write queue entry is processed, the WRITE_QUEUE
continues to take precedence over the IREAD _LATCH until the conflicting entry is retired.

If both a DREAD and an IREAD have a conflict in the V\TRlTE_QUEUE, writes take priority until
one of the reads no longer has a conflict. If the DREAD no longer has a confiict, the DREAD is
then done. Then the WRITE_QUEUE continues to have priority over the IREAD_LATCH since
the IREAD has a conflict, and when the confticting writes are done, the IREAD may proceed. If
another DREAD arrives in the meantime, it may be allowed to bypass both the writes and the
IREAD if it has no conflicts,

This mechanism is used for other cases to enforce read/write ordering. Cases where the WRITE_
QUEUE (and the WRITE_PACKER) must be flushed before proceeding are listed below:

1. DREAD_LOCK and WRITE_UNLOCK.
2. All IPR_READs and IPR_ WRITEs (includes Clear Write Buffer).

3, All I/O space reads and I/O space writes.
4. Dread or Iread conflict with a write (checked to hexaword granularity, on address bits <31:5».

When a DREAD_LOCK arrives from the MBOX, DWR_CONFLICT bits for all valid writes in
the WRITE_QUEUE and WRITE_PACKER are set so that all writes (WRITE_QUEUE entries)
preceding the DREAD_LOCK are done before the DREAD_LOCK is done.

V\"hen any IPR_READ arrives, all D'W'R_CONFLICT bits for valid entries in the WRITE_QUEUE
and WRITE_PACKER are set, forcing the writes to complete before the IPR_READ completes.
This ensures that IPR reads and writes are executed in order.

V\"hen any D-stream I/O space read arrives, all D'WR_CONFLICT bits for valid entries in the
'WRITE_QUEUE and WRITE_PACKER are set, so that previous writes complete first.

13-22 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

'When any I-stream 1/0 space read arrives, all IWR ... CONFLICT bits for valid entries in the
WRITE_QUEUE and "WRITE_PACKER are set, so that previous writes complete first.

Note that when a 'WRITE_UNLOCK arrives, the WRITE_QUEUE is always empty as it was
previously flushed before the READ_LOCK was serviced.

'When a new entry for the DREAD_LATCH arrives, it is checked for conflicts with the WRITE_
QUEUE. At this time the DWICCONFLICT bit is set on any "WRITE_QUEUE entry which is
an I/O space write, an IPR_ "WJRITE, or a· WRITE_UNLOCK. Similarly, when a ·new entry for
the IREAD_LATCH arrives, it is checked for conflicts with the WRITE_QUEUE. At this time
the IWR_CONFLICT bit is set on any WRITE_QUEUE entry which is an 1/0 space write, an
IPR_ "WRITE, or a 'WRITE_UNLOCK.

Thu:s, all transactions from the Mbox except memory space reads and writes unconditionally
force the flushing of the WRITE:_ QUEUE. Memory space reads cause a flush if they conflict with
a previous write.

13.6.3 1/0 Space Writes

For "WRITE commands with M%S6_PA<31:29> not '111, ADDRESS<33:32> = '00.

For 'WRITE commands with M%S6_PA<31:29> = 'Ill, ADDRESS<33:32> = BIU_CTL<14:13>.
The IO_:MAP field of the BIU_C'rL is set to 01 for FLAMINGO systems, to 10 for COBRA systems,
and 11 for LASER systems. .

If the QW_PACK ipr is written, the next two longwords are packed to the WRITE_QUEUE,
otherwise the write is loaded directly.· .

13.6.3.1 NON-MASKED FLAMINGiO 1/0 Writes

Flamingo workstations require I/O space writes to be mapped to channel addresses. For full LW
writes (non-masked) then if th.e WS_IO bit of BIU_CTL is .set with M%S6_PA<31:29> = '111 if
either BM<3:0> = '1111 or BM<:7:4> = '1111 the operation is a NON-MASKED I/O WRITE

• ADDRESS<31:29> = M%S6_PA<28:26>
• ADDRESS<28> = '0 if either BM<3:0> = '1111 or BM<7:4> = '1111 ; NON~MASKED I/O

"WRITE

• ADDRESS<27> = '0 for I/O
• ADDRESS<26:5> = '0 I M%S6_PA<25:5>
• ADDRESS<4:3> = M.%S6_F!A<4:3>
• Write_Queue data<63:0> = S6_DATA<63:0>
• Write_Queue_BM<7:0> = BM<7:0>, sets single LW_MASK bit, longword aligned write

13.6.3.2 MASKED FLAMINGO 1/0 Writes

If the WS_IO bit of BIU_CTL is; set with M%S6_PA<31:29> = '111 if either BM<3:0> not '1111 or
BM<7:4> not '1111, a byte or word write to I/O space is required then, the operation is a :MASKED
I/O "WRITE. Note that I/O byte/word writes to the upper LW in FLAMINGO systems (i.e. address
not quadword aligned) are UNPREDICTABLE.

• ADDRESS<31:29> = M%S6_PA<28:26>

DIGfTAL CONFIDENTIAL NVAX Plus CBOX 13-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• ADDRESS<28> ='1 if NOT (BM<3:0> = '1111 or BM<7:4> = '1111); MASKED 110 WRITE

• ADDRESS<27> = '0 for 110
• ADDRESS<26:5> = M%S6_PA<25:5> I '0
• ADDRESS<4:3> = M%S6_PA<4:3>
• Write_Queue data<35:32> = BM<3:0>
• Write_Queue data<31:0> = S6_DATA<31:0>
• Write_Queue_BM<7:0> = '1111 1111, sets pair of LW_MASK bits, from M%S6_PA<4:3>

Thus a QW is written where bit

bi~ 32 is th. byte mas;' for data<i:O>, bit 33 is the byt. masT. for data<15:8>,
bi~ 3' is th. byt_ mask for.data<32:16>, bit 35 is the byte mas;' for aata<31:24>

13.6.4 MASKED FLAMINGO 1/0 READS

If the WS_IO bit of BIU_CTL is set reads to 110 space are mapped in the same manner as
MASKED I/O Writes. All 110 space reads for FLAMINGO systems are longword reads which
map to SPARSE 10 space.

The CM_OUT_LATCH holds fill data and invalidate addresses which are destined for the Mbox.
The Mbox never backpressures the Cbox (it can always receive a command from the Cbox) so a
queue is not needed. The latch has an address portion and a data portion. The fields are shown
in Table 13-13.

Field

CMD<l:O>

ADDR<12:5>

InvReq<l:O>

FILL_QW<4:3>

DATA<63:0>

Purpose

Specific command being done.

PCache Index of the invalidate. This field is not used for £lIs.

PCache Set of the invalidate. This field is not used for fills.

Quadword alignment of the fill. This field is not used for invalidates.

Fill data.

The CM_OUT_LATCH is loaded with an invalidate when plnvReq<1:0> is set by system logic.

The CM_OUT_LATCH is loaded. with fill data when DREAD or .!READ data is obtained by either
a Fast External Cache Hit or READ_BLOCK..

The command from the CM_OUT_LATCH is driven on C%CBOX_CMD<1:0>. If the command
is an invalidate, the address is driven on C%CBOX_ADDR<11:5>, and no data is driven to the
Mbox. If the command is a fill, the quadword alignment is driven on C%MBOX_FILL_QW<4:3>.
(The Mbox has the hexaword address during these cycles.) Fill data is piped through the FILL_
DATA_PIPEs and driven on B%S6_DATA<63:0>. The Cbox calculates byte parity on the fill data
and drives it on B%S6_DP<7:0>.

13-24 NVAX Plus OBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If an IREAD is in progress in the Cbox and the MBOX asserts M%ABORT_ CBOX_IRD, the Cbox
prevents any further command, address, or data for that Iread from being driven to the Mbox,
as described in Section 13.6.7.

Table 13-14: Cbox-Mbox Intf~rface control signals;

Field

C%CBOX_CMD<1:0>

C%REQ...DQW

C%LAST_FILL

C%CBOX_HARD_ERR

Pu.rpose

Specific command being done: either D_CF, CCF, INVAL, or NOP.

Indic:ates that the quadword offill data being returned was the,requested quad­
word of data: the quadword to which the original address corresponded. It is
also lasserted ifC%CBOX_HARD_ERR is asserted and the requested quadword
has not yet been returned; the Mbox then notifies the Ibox and/or Ebox that
the requested data has been returned 80 that the machine does not hang.

Indicates that this is the last data being sent for the read request.

Indicates that an unrecoverable elTor is associated with the data.. This bit
.. only qualifies fills, not invalidates. When C%CBOX_HARD_ERR is asserted.,
the Cbox also asserts C%LAST_FILL as no more fills follow. C%CBOX_HARD_
ERR may be asserted as the result of an uncolTectable error in the Bcache or
as the result of RDE on the NDAL.
Indicates that a cOlTectable backup cache ECC error is associated with the cur­
rent :6.11 data and the data should be ignored. Valid for fills only, not invalidates.
Com~cted data will follow.

If an error happens while fill data is being retrieved, the Cbox notifies the Mbox using C%CBOX_
HARD_ERR. or C%CBOX_EOC_ERR. Table 13.-15 shows how both normal cases and elTor cases
are handled by the Mbox.

Table 13-15: Cbox_Mbox commands and actions

CO/OCBOX_ Cl\ID<l :0>

NOP

I_OF

D_CF

CCF orD_CF

I_CF or D_CF

INVAL

INVAL to outstanding fill

Qualifiers asserted

C%CBOX_HARD_ERR,
C%L~_FILL

C%CBOX..ECC_ERR

MboxAction

Take no action.

Accept :fill data for outstanding IREAD.

Accept :fill data for outstanding D:READ.

Perform invalidate, expect no more fi.lls for this
read.

Ignore this :fill data, expect fill later.

Perform invalidate.

Perform invalidate, expect :fill data.. Do not vali­
date the data in the Pcache when it returns.

The FILL_DATA_PIPEs are used to pipeline the fill data for two cycles so that the Obox drives
B%S6_DATA coincidentally with the write-enable of the Pcache. If there is a free cycle on B%S6_
DATA, the Cbox may bypass the fill data from the FILL_DATA_PIPE1 (to achieve a one-cycle
bypass). This allows the Mbox to return data to the Ibox or the Ebox one cycle early. The cache

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-25

NVAX Plus CPU Chip Functional Specification, Revision O.St October 1991

fill to the Pcache is done in the normal cycle, driven from FILL_DATA_PIPE2, even if Ebox or
Ibox data was bypassed in an earlier cycle. The timing relationships for one cache fill are shown
in Figure 13-17.

Figure 13-17: BO/oS6_DATA bypass timing

one-cycle data bypass data written to Pcache

cycle 1 1 cycle 2 1 cycle 3 cycle 4 i
!~++++I+++++I+++++I+++++I+++++I+++++I+++++I+++++I+++++I+++++1+++++1+++++1+++++1+++++1+++++1+++++1

1 " 1 ,. 1 1 1
1

1

1

1

1

1

I
1

I B%S6 DATA valid
1 (for-Peache fill)
1 B%S6 DATA valid (to MD_BUS)

M%CBOX_SYFASS_ENABLE
C%CBOX CMD
C%MBOX:FILL_QW<4:3>

In this example, a fill is just arriving in cycle 1, so the Cbox drives C%CBOX_ CMD and C%MBOX_
FILL_QW<4;3>.

The Mbox drives M%CBOX_B'YPASS_ENABLE to the Cbox in cycle 2 to indicate that B%S6_
DATA is free during the CWTent cycle. This causes the Cbox to bypass data from FILL_DATA_
PIPEI to B%S6_DATA to achieve a onepcycle bypass. .

In cycle 3 the Cbox drives the data from FILL_DATA_PIPE2 to the Pcache for the write. It does
this even though the bypass was done previously, because the Pcache is always written in the
third cycle after C%CBOX_CMD is driven with the fill command.

The rules for the Cbox driving data on B%S6_DATA are as follows:

1. IF FILL_DATA_PIPE2 contains valid data, drive B%S6_DATA from FILL_DATA_PIPE2
2. ELSE IF M%CBOX_B'YPASS_ENJ\BLE is asserted and FILL_DATA_PIPE1 contains valid

data, drive from FILL_DATA_PIPE1 to achieve a one-cycle bypass.

The Mbox keeps enough state to know what the Cbox will be bypassing in any given cycle.

When the Cbox drives B%S6_DATA, it also generates byte parity and drives B%S6_DP with the
same timing.

The fields of the FILL_DATA..PIPEs are shown in Table 13-16.

Field

!READ

DATA<63:0>

13-26 NVAX Plus CBOX

Purpose

Indicates that fill data is for an IREAD.

Fill data.

DIGfTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The IREAD field is necessary in case of an IREAD abort, as described in Section 13.6.7. If
M%,ABORT_CBOX_IRD is asserted and the data in either FILL_DATA_PIPEl or FILL_DATA_
PIPE2 is for an IREAD, that FILL_DATA_PIPE must be cleared so that data is not driven back
to the Mbox.

13.6.7 IREAD Aborts

The Mbox asserts the signal M%,ABORT_CBOX_lRD to notify the Cbox to abort any lREAD which
it is currently processing. This may happen because of a branch mispredict where the Istream
has been prefetching from one branch and has to change over to the other. The Mbox then aborts
all outstanding IREADs so that a new IREAD can begin.

When the Cbox receives the abort signal, the read in question may be anywhere in the Cbox read
sequence. The exact action tak,en depends on where the read is, as shown in Table 13--17.

Table 13-17: Cbox Action Upon Receiving MO/oABORT_CBOX IRD

State of the mEAD Acti(].n Taken by the Cbo%

No action taken. No IREAD outstanding

IREAD_LATCH valid but
not started

Clear the IREAD_LATCH so the request will not be started.

IREAD in progress Clear the TO_MBOX bit. When the fill data returns, don't send the data to
the Mbo:x..

IREAD fill data in CM_ Clear the entry containing IREAD data so that the data is not returned to the
OUT_LATCH or FILL_DATA.Nbox.
PIPEs

Figure 13--18 shows an example of timing for the Cbox abort response. In cycle 1, M%ABORT_
CBOX_IRD is asserted during phase 2. The Cbox is ready to drive the I_CF command and B%S6_
DATA during phase 4. The assertion of M%ABORT_CBOX_IRD prevents both of those actions.

The next IREAD may appear two cycles after the abort.

1 cycl~ 1 cycl~ 2 1
I+++++I+~+++I~++++I+++++I+++++I+++~+I+++++I+++++I+++++1+++++1+++++1+++++1

1 I 1 1
" "

1 1

1 Mbox may send nero. lREAD
1 B%S6_0ATA for l_CF not driven due to abort
1 C~=BOX CMO-l CF not driven due to abort

M%ABORT_CBOX_IRD - -

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

IfM%ABORT_CBOX_IRD is received after the system backmaps have been instructed to map the
reference either by pMap'WE for cache hits or by a READ_BLOCK for a miss, the Pcache index
to which the IREAD was to be done must be invalidated to avoid the Pcache from maintaining
a block which is not backmapped. If !ABORT is taken after the ARB sequencer has advanced
to 'RDN' (read second octaword), 'SYS_READ' (read block), or 'FILL' (wait for data to be loaded
to Pcache), an invalidate of the location to which the block was to be allocated is driven to the
CM_OUT_LATCH.

13 .. 7 Arbiter/Bus Control

The ArbitrationlBus Control Sequencer selects the highest priority command from the DREAD_
LATCH, IREAD_LATCH, or Write Queue.

The following sequences are executed;

1. DREAD
2. READ LOCK

3. IPR READ

4. lREAD
5. WRITE
6. WRITE B'YTEIWORD

7. WRITE UNLOCK
8. IPR_WR

13.7.1 Dispatch Controller

The ARBlBus Control Sequencer controls two satellite machines, the DISPATCH and FILL con­
trollers. The DISPATCH controller selects the next command, controls the WRITE_QUEUE
pointers, and drives the required address to the pads. When the Arb Machine is ready to pro­
cess a new read or write request the DISPATCH controller is enabled. In the first cpu cycle of
dispatching a read or write command, the DISPATCH controller determines which command is
highest priority and asserts the command code to the ARB Sequencer. The Dispatch commands
are,

1. DREAD: DREAD_LATCH valid with DREAD CMD not io_space address and no DreadIWrite
Conflict bits are set

2. DREAD_10: DREAD_LATCH valid with DREAD CMD io_space address and no Dread/Write
Conflict bits are set

3. DREAD_LOCK: DREAD_LATCH valid with READ_LOCK CMD and no Dread/Write Conflict
bits are set

4. IPR_READ: DREAD_LATCH valid with IPR~READ CMD and no DreadlWrite Conflict bits
are set

5. IREAD: the DREAD_LATCH is empty or DreadIWrite Conflict bits are set in the Write Queue
and lREAD_LATCH valid not io_space address and no IreadIWrite Conflict bits are set

6. IREAD_IO: the DREAD_LATCH is empty or Dread/Write Conflict bits are set in the Write
Queue and IREAD_LATCH valid, io_space address and no IreadIWrite Conflict bits are set

13-28 NVAX Plus OBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

7. WRITE_UNLOCK: the DRgAD_LATCH is not valid or DreadIWrite Confict, and the IREAD_
LATCH is not valid or IresldIWrite Confict, and the Write Queue CMD = Write_Unlock and
not io_space address

8. WRITE: the DREAD_LATCH is not valid or DreadIWrite COMet, and the IREi\D_LATCH is
not valid or IreadIWrite COlrrfict, and the Write Queue CMD = Write and not io_space address

9. 10_ WRITE: the DREAD_LA.TCH is not valid· or DreadlWrite Confict, and the IREAD_LATCH
is not valid or IreadlWrite COMet, and the Write' Queue CMD = Write and io_space address

10. WRITE_UNLOCK_IO: the DREAD_LATCH is not valid or DreadlWrite Confict, and the
IREAD_LATCH is not valid' or Iread/~lrite COMet, and the Write Queue CMD = Write_
Unlock and io_space addrel3s

11. IPR_ WRITE: the DREAD_LATCH is not valid or DreadlWrite COMet, and the IREAD_
LATCH is not valid or IreadlWrite COMet, and the Write Queue CMD = IPR_WRITE

12. NOP:the DREAD_LATCH is not valid or DreadlWrite Confict, and the IREAD_LATCH is not
valid or Ireadl'Write Confict, and the Write Queue is empty

NOTE: READ_LOCK to lIO space is not implemented.

By the phase 1 of the second cpu cycle of a dispatch request the selected address from either the
DREAD latch, !READ latch, o:r WRITE QUEUE. is driven onto the internal address bus to the
paels. By the next phase 3 the e;elected address starts to be driven externally. The ARB controller
changes state once per cache_speed (i.e. 2,3, or 4)cpu cycles, with the ARB 'AND~ array enabled
at phase 3, and the ARB 'OR' array selecting during phase 4.

Figure 13-19: DISPATCH tim~ng

dipatch t.iming ,for cache_spe,ac a 2 cpu cycles

dispatch cycl~ 1 cachE: cycle 1

cpu cycle 1 I cpu cycle 2 cpu cycle 3 cpu cycle'
I~~··~+I+++~~I~++~~I+·~++I+++~+I+++~+I+++++I+++++I+++++I+++~+I+++++I+++++I~+~++I+++++I+~+·+I+·~++I

I AND OR I I AND OR I

ADDRESS TO PADS
CMD TC ARB

I
I
I
I

ADDRESS DRIVES
AP.E PLA

I
I
I

LATCH TAG
LATCH DATA

ARB PLA

The DREAD latch or tREAD latch can receIve a new request as late as phase 2 of cpu cycle 1 of the
dispatch. The Dispatch command a,nd address source are determined in phase 3 and the address is
driven to the pads in phase 4 of cpu cycle 1 allowing 3 phases to drive the address to the pad drivers.
The D and 1 conflict bits for a newly received READ request are not determined until phase 1 of cpu
cycle 2. The I and D conflict bits BLTe sent with the dispatch command to the ARB Controller. If the
dispatch command is DREAD) DREAD_IO) DREAD_LOCK, or IPR_READ and a D conflict exists,

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-29

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

or the dispatch command is IREAD, or IREAD_IO and an I conflict exists the dispatch_in signal is
cleared and the ARB state remains 'IDLE' for the next SYS_CLK cycle.

13.7 .. 2 Fill Controller

The FILL controller checks ECC or parity, corrects single bit ECC errors, sets BIU_STAT on
errors, moves input data to the eM_OUT_LATCH, merges write data and generates check bits
when enabled by the ARB sequencer. The FILL controller is started by FILL_ CMDs from the
ARB sequence.

1. FILL_IDLE· wait for command
2. FILL_RD_1· fill first octaword of cache read
3. FILL_RD _2 • fill second octaword of cache read
4. FILL_SYS· fill block from READ_BLOCK or LDxL, or QW if 10_SPACE
5. FILL_Bv\1M_SYS· merge write data with LDxL data from system, generate ECC
6. FILL_EG - generate ECC on write data
7. FILL_BWM_DIR· merge write data with cache read data, generate ECC

The fill ra~ is limited to one quadword every two cpu cycles.

13.7.3 ARB PLA INPUTS

The following signals are inputs to the ARB PLA "AND ARRAY" and are used in determining the
next output and state transition of the ARB Sequencer.

cisF'_cmd<3:0>
art_state<4:0>
cack<2:0>
dispatch_in
beaenE_en
not Deacne en or "PV"
held in -
he1c:req
err_in
stall_req

stall wr
ire abort
sarM;_octaword
bvtio word write
b~r cha1n-
fill done
reacChit
write_hit

- Dispatch·Commands
- ARE< STATE
- IDLE, HARD ERROR, SOFT ERROR, STxC FAlL, OK
- dispatch command present -
- BIO CTL<O> - '1
- BIO-CTL<O> -'0 or BIU CTL<PV> - '1
- hOld_req and dispatch-and not (WP.IT£, WP.:TE_UNLOCK, or WRlTE_IO)
- ho1dKeo_h pin is asserted
- error detection enabled (err flag) and an error is detected
- tagOY._l and ho1dReo_h ario checked at phase 4

(synchronized from last phase ~ of cache probe cycle)
- not tagOR_l or hold request at phase 4 ef last cpu cycle of ARB state
- lABOR!
- from WP.ITE QUEUE, pack QW unless OUT BUF not empty
- WPJTE QUEUE BM<7:4 or 3:0> not 'llll-or '0000
- byte/word write in progress
- Fill Sequencer operation completed
- match, valid, eOrrect tag and ctr1 parity
- match, valid, not shared, correct tag and ctrl parity

13.7.4 ARB PLA OUTPUTS

The ARB PLA outputs next state, enable, and data path control signals.

13-30 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

arl:, stat ..
. dispatcr._!lag
held en
er:-_!la9
tagoy._stall
ireao chain set
pcread chain set
ie chain se":.­
bw7-_chain_set.
alJ. chains clr
FIU CMD<~ -: 0>
dat.a:write_re9_ld_en
ip!:_ro_en
iP=_"·I_er.
rl retire en
pMapWE en-
h' mask calc en
ne~~aOdr"_ld­
ce_.en
tce_en
tag probe reg
tce-dis -
dat'.8ceoe dis
in __ data_Iat_en
WI am en
sY';_dF-:ctrl_er.
cree lat er.
CP.EQ<2 :0>

13.7.5 IDLE

- next AFtB STATE
- enable dispatch_in next access
- enable held
- enable error logic/input.
- blocr. fill done latch
- set. ir,.ao in progress
- set. Pcnch ... read in progress
- set IO in progress
- set bWJ~ in progress
- clear ull in progress s'tate
- IDLE, !U) 1, PI, :, SYS, BWM SYS, EG, BWloLDIR
- load OtJ'l':BUF with ow being-packed
- re'turn ipr read dat.a
- WRITE IJUEUE data te, ipr
- cleaI-:r or D read latch v$lid flag
- enable map write strobe
- set LWHasy.<i:O> !ron, addr~ss<4:3> and WRITE_QUEUE byte masr. bit,s
- toggle dataA<4> at phase S of last cpu cycle of next ARB cycle
- assert. dataCEOE<3:0> and tagCEOE
- assert tagCEOE
- enable tag compare
- deasse:1:"t taaCEOE at. end of neXt. SYS CloY. cvcle

deasse:1:"t aats chip enables d.ataCEO£<3: 0> ~t end of next SYS_ CLK
- latch (:;ache input at end of next SYS CLK cvcle
- causes the dataWE_h<3:0> signals te ~ na~dn
- datI!! pi!th control to fill sequencer
- latch ne .. ' CREQ
- ID:"E, l?I:AD_BLOCY., WRITE BLOCK, :"DxL, STxC

'IDLE'is the next state upon the completion of all ARB sequences. Dispatch_flag is not asserted
when entering 'IDLE', therefore a one SYS_ eLK nop cycle exists between ARB requests. The
'IDLE' term enables dispatch_flag allowing the next request to processed. **Wben the Serial
Rom is being read by microcode, the SROM is output enabled (SOE .. IE[SROM_OEJ = '1), the
dispatch_in signal is seen as dteasserted by the ARB PLA if the dispatch command is WRITE.
This allows microcode to write data to Pcache, with the corresponding write through data going

. to the Write_Queue. The exter:nal WRITE request from the queue is "dropped" while the SROM
data is transferred to Pcache. **

13.7.6 DISPATCH

This section describes the dispa.tch fork; the outputs enabled in response to the dispatch selection,
and the neA't ARB state selectitOn~
1. NOP and not hold_in: 'IDLE'

dispatch_flag
hold_en

- re'try dispatch
- enable hold

2. DREAD and Bcache enablE~d and not hold_in: 'DRD', start fast external cache read sequence

peread chair. set
FILL p,D 1 -
tce dis­
tagJrObe_req
in_data_lat._en

DIGITAL CONFIDENTIAL

- set Pcache read in progress
- fill of first oct award begins at end of next SYS_CLK cycle
- deassert tag chip enable at end of next SYS_CLK cycle
- start tag compare 'at end of next SYS_CLK cycle
- latch cache input at end of next SYS_CLK cycle

NVAX Plus CBOX 13-31

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

3. DREAD and Bcache not enabled and not hold_in: tSYS_RD', no Bcache direct to system read

err flag
pcread chain set
FI:"l. SYS -
sys 'df ctrl en
cre'i.lat_en -
CREQ

- enable err_in (cack - hard error)
- set Pcache read in progress
- fill block when CACK • OK or SOFT
- data pat.h control to fill sequencer
- lat.ch new CREQ
- READ_BLOCK

4. DREAD_IO and not hold_in: 'SYS_RD', 1/0 Space direct to system read

err flag
FILl: SYS
svs d}:' ctrl en
c~ec,.jat_en -
CPLQ
ic:-chain_set

- enable err in (cack • hard error)
- fill t.araet O~ (no~ pcread chair. set) when CACK • Or. or SOFT
- data path control to fill sequencer
- latch new CREQ
- READ BLOCK
- set IO in progress

5. DREAD_LOCK and not hold_in: 'SYS_RD', read_lock, MUST LOCK OUT lREADS TILL
STxC pass or IPR_ 'WR

err_flag
pereac chain set
FILL SYS -
sys dJ:.' etrl en
crec_lat_en­
·CP.!X

- enable err in (cack • hard error)
- set Peaeh.-reac in progress
- fill block when CACK • Or. or SOFT
- data patr. control to fill sequencer
- later: ne ... · CRECt

LDxl.

6. IREAD and Bcache enabled and not !ABORT and not hold_in: 'IRD', start fast external cache
read sequence. .

pcreao chain set
irea':: chain set
FI:"l._W_l -
te. dis
tag:probw_req
in_data_la't_en

.et read in progress
- set iread in progress
- fill of first oct award begins at end of next SYS CLK cycle'
- deassert tag chi}: enable at end of next SYS_CLf. cycle
- st.art tag compare at end of next SYS_CLK cycle
- latch cache input at end of next SYS_CLK cycle

7. IREAD and not Bcache enabled and not lABORT and not hold_in: 'SYS_RD', no Bcache direct
to systeni read, set iread

err_flag
pereao chain set
ireao_chain_set
FIl.L SYS
sys dy ctrl en
crec_lst_en -
CREQ

- enable err in (cacr. - hard error)
- set Peaehe-read in progress
- set iread in progress
- fill block when CACK - OK or SOFT
- data path control to fill sequencer
- latch new CPLQ
- READ_BLOCK

8. IREAD_IO and not !ABORT and not hold_in: 'SYS_RD', 1/0 Space direct to system read~ set
iread and lOin progress

err_flag
ireaa chain .et
FIl.::" SYS -
sys dF c:trl en
creo_lst_en -
CREQ
io_ehain_set

- enable err in (cack • hard error)
- set iread in progress
- fill block when CACY. - or. or SOFT
- data path control to fill sequencer
- latch new CREQ
- READ BLOCK
- set IO in progress

9. lREAD or IREAD_IO and IABORT and not hold_in: 'IDLE', IABORT before iread starts

dispatch flag
holo_en -

- retry dispatch
- enable hold

10. IPR_READ and not hold_in: 'IDLE' , ipr_rd_en, rCretire_en
11. IPR_ WRITE and not hold_in: 'IDLE' , ipr_ WT_en

13-32 NVAX Plus CBOX DIGITAL CONFIDENTIAL

•• 1 --

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

12. WRITE and byte_word and not "W' and Bcache enabled and not hold request: 'BWR_
PROBE', start cache read for RMW

bwr chain set
h,"_Inasy._cilc_en
FILL BWM DIR
tc. dis -
dateceoe dis
tagJrObe_req
in_data_lat_en

- set bwr in progress
- set LWMasy.<7:0> !rom address<4:3> and WP.ITE QUEUE bvt. masy. bits
- merge target Qrl from cachQ at end of next sis CI..Y. cycle
- d_assert tag chip enable at end of next SYS_CLK cycle
- d.assert data chip enables at end of next SYS CLY.
- start tag compare at end of next SYS_CLK cycle
- latch cache input at end. 0: next SYS_CLK cycle

13. WRITE and byte_word and not "PV" and Bcache enabled and hold request: 'BVlR ... STALL',
wait for holdreq to deassert

bwr chain set
hold_en -
c40_en

- set bwr in progress
- enable hold
- assert dataCEOE<3:0>

14. 'VilRITE and byte_word and not ttPV' and not Bcache enabled: 'BVlR_SYS_RD', byte_word
write, no cache, not "W'

err flag
FILl BWM SYS
sys_dF_c~rl_en
crec_lat_en
CP.EC
bwr chain set
l""_masi:_calc_en

~ enable err in (cack - ha·rd error)
- merge target Qr; when CACl~ - OK or SOF'I
- data path control to fill sequencer
- latch new CREQ
- LDxL
- set bwr in progress
- set LWMasy.<7:0> !rom adciress<4:3> and WRITE_QUEUE byte mBSy. bits

15. WRITE and not byte_word and same_octaword: 'IDLE', enable PACK~"W'RITE to OUT_BUF

holo en - enable hold
FILl.-EG - genera1~e ECe on write data
dsta:write_reg_en - load OUT_BUF with QW being packed
1w_masy._calc_en - set LWMasy.<7:0> from address<4:3> and WRITE_QUEUE b}~e masy. bits

16. WRITE and not byte_word and not "PV" and not same_octaword and Bcache enabled and not
hold request: ~TR ... PROBE', start fast external tag read

1w mas!': calc en - set LWMasr:<7: 0> frpn, addXess<4 :3> ano ~ITE_QUEUE byt(O m-asy. bits
FILL EG- --genera~e Ece on write data
data-write reg en - load OU: BUF with QW being packed
tce_dis - - - deassert-tag chip enable at end of neXt SYS_CLK cycle
tag-probe_reg - start tag compare at end of next SYS_CLK cycle

17. WRITE and not byte_word and not "W' and not same_octaword and Bcache enabled and
hold request: 'WE_STALL', wait for holdreq to deassert

lw mask calc en - set LWMasy.<7:0> from ad~ress<4:3> and ~ITE_QUEUE byte mask bits
FILL EG- .-genera'te Ece on write data
data:write_reg_en - load OUT_BUF with QW being packed
hole en - enable hold
cw_eri - assert dataCEOE<3:0>

18. WRITE and (not byte_word or "PV') and not same_octaword and (not Bcache enabled or "PV"):
'SYS_WR', no cache or "PV", start system write

err_flag - enable err in (cack - hard error)
sys_dF,-ctrl_en - data path control to fill sequencer
lw masy. calc en - set LWMesk<7:0> from address<4:3> and ~!TE QUEUE byte mask bits
FILL EG --generate ECe on write dat.a -
dat2:write_reg_en - load OUT_BUF with QW being packed
crec~lat_en • latCh new CREQ
CREQ • SYS_WR

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-33

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

19. 10_ 'V\'RITE: 'SYS_ WR', 10 space write direct to WRITE_BLOCK

err flag - enablQ err in (cack - hard error)
sys:dP_ctrl_en - date path ";ontrol tc- fill sequencer
h' mask calc en - set LWMask<i: 0> frore, address<4: 3> and WRITE QUEUE byte mask bits
FILL EG- --qenerat5 ECC on write data -
data:writ5_re9_en - load OUT_BUF with QW being packed
creo_lat_en - latch new CPLQ
CREQ - SYS WR
ic,-chain_set - set-IO in progress

20. WRITE_UNLOCK: 'BWR~SYSMERGE', assume all write_unlocks to byte_word type, get data
from IN_BUF

h' mask calc en - set LWMuk<i:O> front address<4:3> and WF.ITE QUEUE byte mask bits
FIIL_BWM_DIR- - merge target QW from cache at end of ne~ sis_CLY. cycle

21. WRITE_ UNLOCK_I 0: 'SYS_ 'WR" 10 space write direct to STxC

err_flag - enable err in (cack - hard error)
sys_dp_ctr.l_en - data path ";ontrol to fill sequencer
1\01 masY. calc en - set I.WMask<:: 0> frore: address<4 :3> and WRITE QUEUE byte mask bits
FI::L_EG- --generate ECC on write dat.e -
datc_write_reg_en - load OUT_BUF with QW being packed
cre~lat_en - latch new CPLQ
CREe- - STxC

- set IO in progress

22. hold_in: hold request and hold_en and not dispatch of (WRITE or WRITE_IO or WRlTE_
UNLOCK): 'STALL', keep hold_en

13.7.6,1 PACK_WRITE

The Write_packer asserts the same_octaword bit in a Write_queue entry when a new write request
is to the alternate QW of the octaword which is presently in the Write_Packer, and the Write_
Packer byte mask bits indicate o~ly full Longwords.

'V\7"hen a write command is received by the ARB Controller from the Write_queue with same_
octaword, it is known the next entry will be to the same octaword, so entry of 1 or 2 LWs is
moved to the OUT_BUF, and the write bus cycle is deffered till the next Write command. **If the
same_octaword bit is set in Write_Queue and the OUT_BUF is not empty, the write address is
returning to the quadword already packed in the o UT_B UF. Since this write may not be to same
LW as the previous one, packing at this point can not proceed. The ARB pIa for same_octaword
is deasserted and the write bus cycle proceeds. **

The quadword of data with ECC check bits (or parity) is moved to OUT_BUF<63:0> if Address<3>
= '0, and to OUT_BUF<127:64>' if Address<3> = '1. The LW _MASK register is set from the byte
mask bits BM<7:0> as

• if address<4:3> = '00 LW _MASK<O> = '1 if BM<3:0> is not '0000

• if address<4:3> = '00 LW _MASK<l> = '1 if BM<7:4> is not '0000

• if address<4:3> = '01 LW _MASK<2> = '1 if BM<3:0> is not '0000

• if address<4:3> = '01 LW_MASK<3> ='1 if BM<7:4> is not '0000

• if address<4:3> = '10 L'V\7 _MASK<4> = '1 if BM<3:0> is not '0000

• if address<4:3>·= '10 LW _MASK<5> = '1 if BM<7:4> is not '0000

• if address<4:3> = '11 LW_MASK<6> ='1 if BM<3:0> is not '0000

• if address<4:3> = '11 LW _MASK<7> = '1 if BM<7:4> is not '0000

13-34 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPt] Chip Functional Specification, Revision 0.3, October 1991

"Then same_octaword indicates the present WRITE_QUEUE QW is to be packed at the OUT_
BUF, the valid longwords are Elet as

• XO = '1 if BM <3 :0> is not '()OOO

• Xl = '1 if BM<7:4> is not '()OOO

and are used to indicate the byte masks for the packed QW in "PV' writes.

13.7.6.2 IPR_READ

The Arb Control State machine~ executes an IPR_RD if an IPR_RD is in the DREAD_LATCH and
no Drea~rite Conflict bits are set (i.e. the "Trite Queue has emptied).

The IPR address is decoded and the data is driven to the CM_OUT_LATCH and the DREAD_
LATCH clears. The next state is 'IDLE', dispatch is not enable.

13.7.6.3 HIGH_LW_TEMP

When a. quadword aligned read of 110 space is performed the high L"r of data is latched in this
register. 'When a non quadword aligned read to 110 space is dispatched and BIU_CTL<QW _110_
RD> = '1 then the data from HIGH_LW_TEMP is returned as if an IPR_READ. The bus cycle is
not done.

13.7.6.4 DREAD_LOCK

The Arb Control State Machine: sequences directly to the 'sYS_RD' state if a DRE.A.D_LOCK is in
the DREAD_LATCH and no Drea~rite Conflict bits are set (i.e. the Write Queue has emptied),
and tagOK_l and holdReq_h are deasserted.

DREAD_LOCK is issued by microcode for interlock instructions. No further I stream references
are tried Until the data read via the DREAD_LOCK is modified and successfully writen back to
memory using a STxC bus cyde that is CommandACKnowledged OK. After modifYing the read_
lock data microcode issues a vmte_unlock which results in a STxC. Microcode then reads the
STxC_IPR to see if the data was written successfully. If the STxC indicates fail, the interlock
could not be completed, and microcode retries the sequence from the DREAD_LOCK.

If a DREAD_LOck results in a hard error, the error handler executes an IPR_ WR to CEFSTS to
restart I stream processing.

**The DREAD_LOCK dispatch sets a £lop inhibiting IREADS until STxe is executed successfully
or an IPR_ WR (CEFSTS @ AC(hex)) is received at the CBOX.**

13.7.6.5 WRITE

A n.on byte write is the highest. priority bus request when,

the DREAD LATCH is not valid or Dr.ad/Write Confiet
the lREAD-LATCH is not valid or lr.ad/Write Confiet
the Write-Queue CMD - Wri~e
BM<7:4> - '1111 or '0000 or npv~
BM<3:0> - 'llll or '0000 or npv~

DIGITAL CONFIDENTIAL NVAX Plus; CBOX 13-35

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The ~TRlTE_QUEUE address is moved to the pads and the data is latched ECC/parity generate
section, and the ~TRITE_QUEUE head is advanced for a dispatch with CMD = Write. The possible
ARB breakouts are,

• 'PACK_"W"RITE' if SAME_OCTAWORD and the OUT_BUF is empty CLW_MASK<7:0> =
'00000000)

• 'WRITE_WAIT if not SAME_OCTAWORD or the OUT_BUF is not empty and hold_req
• 'WRITE_PROBE' if not SAME_OCTAWORD or the OUT_BUF is not empty and not hold_req

and Cbcache_en and not "P'V'tt)

• 'SYS_ ~TRITE' if not SAME_OCTAWORD or the OUT_BUF is not empty and not hold_req and
Cbcache_ en or "P'V")

The Write Queue data with ECC check bits is moved to OUT_BUF<63:0> if Address<3> = '0, and
to OUT_BUF<127:64> if Address<3> = '1, and the appropriate LW_MASK bits are set as in the
PACK_WRITE dispatch.

13.7.6.6 BWR

If a byte write is the highest priority bus req'uest,

th~ DREAD ~ATCH is not valid or Dread/Write Con!ict
tn~ IREAD:LATCH is not valid or Iread/Write Confict
tne Writ~ Queue CMD - Write
not: "PV" mode
either BM<7:4> is not ('1111 or '0000)

Or BM<3:0> is not ('1111 or '0000)

the 'B"\Vlt.PROBE' state is entered if not stall_request else 'BWR_STALL'.

Byte and word writes for "PV" mode go directly to 'SYS_ WRITE'.

13.7.6.7 WRITE_UNLOCK

If a Write_Unlock is the highest priority bus request,

the DP.EJ..t· LATCH is not valid or Dread/Write Confict
tne IP.EAD-~TCH is not va~id or Iread/Write Confict
the Write-Queue CMD - Write_Unlocy.

the 'SYS_ WR' state is entered. cReq_h<2:0> is driven with STxC, and c 'WMask<7 :0> is driven
from LW_MASK<7:0> if "PV" , else from BM>7:0>. The ARB state remains 'SYS_WR' until cAck
is not idle.

if cAcY. is ID~E, ARE state remains 'SYS WR'
i! cAc¥. is HAP~_ERROR the error is logged,

c~cbox h err is asserted, microcode is signalled STxC PASS so as not to retry
if cAck is SOFT_ERROR ~h; error is logged,

e.cbox_s_err is asserted, proceed as OK
if cAcy. is STxC FAI~, the STxC IPR bit 2 is .et to '1.
if cAcr. is OK,the STxC IPR bit 2 is .et to '0.
i! cAck is OK or STxC_FAI~, the next state 'IDLE'

An IPR read of the STxC register follows the Write_Unlock. Microcode repeats the interlock loop
(i.e. read_locklwrite_unlock) if the STxC register indicates fail. **An IPR_RD of STxC with bit
2 = '0, renables CBOX IREAD processing and renables the MBOX IREF latch.** If the READ_
LOCK reults an a hard error microtrap, microcode executes an IPR_W'R (CEFSTS @ AC(hex)) to
renable the CBOX IREAD processing and the MBOX IREF latch.**

13-36 NVAX Plus CBOX DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional SpecmcatioD-t Revision 0.3, October 1991

13.7.7 ORO

The DREAD address began driving at phase 3 of the second cpu cycle of the Dispatch Cycle. The
'DREAD' state is 2,3, or 4 cpu cycles in duration as programmed from cache_speed. At the phase
4 of the last cpu cycle of'DRD'

• tagAdr_h<31:17>, tagAdrP_h, tagCtlV_h, tagCtlD_h, tagCtlS_h, and tagCtlP_h are latched
• data_h<127:0> and check_,h<27:0> are latched in the INPUT_BUF<dataA_h<4».
• the enable for tagCEOE is deasserted, tagceoe is deasserted at pins at next phase 2

The next state is 'RDC'.

- enable err_in (tag or ctl parity) err_flag
ne",'_addr4_ld
prnapwe_en

- toggle dataA<4> at phase 3 of last cpu cycle of next ARB cycle
- asse.rt prnapwe i:!' cache data fills Peach"

13.7.8 IRD

The IREAD address Degan driving at phase 3 of the second cpu cycle of the Dispatch Cycle. The
1READ' state is 2,3, or 4 cpu cycles in duration as programmed from cache_speed. At the phase
4 of the last cpu cycle of 1RD'

• tagAdr_h<31:17>, tagAdrP_h, tagCtlV _h, tagCtlD_h, tagCtlS_h, and tagCtlP _h are latched
• data_h<127:0> and check_,h<27:0> are latched in the rNPVT_BUF<dataA_h<4».
• the enable for tagCEOE is deasserted, tagceoe is deasserted at pins at next phase 2

1. If !ABORT, the next state is 'IDLE'.

dispatch_flag - enable dispatch_innaxt access
hold_en - enable hole
dataceoe dis - deassert data chi~ enables at end of next SYS CLK
all_chains_clr - clear 2.11 in progress st'ate -

If ABORT_CBOX_IRD is asserted the loading of the CM_OUT_LATCH is inhibited so that
data is not returned to the~ MBOX. ABORT_CBOX_IRD inhibits errors from the lREAD.
IABORT is inhibited when pcread_chain and not iread_chain.

2. If not !ABORT, the next state is 'RDC', pIa outputs same as 'DRD'.

- enable err_in (tag or ctl parity) err_flag
new_addr4_1e
pmapwe_en

- toggle dataA<4> at phase 3 of last cpu cycle of next ARB cycle
- assert pmapwe if caohe data fills Pcaohe

13.7.9 ROC

In the first cpu cycle of 'RDC'

• The target quadword is moved from the data pads to the ECC, ECC check begins at phase 3
• The target quadword is loaded into CM_OUT_LATCH at phase 4 and C_PIPE_%REQ...DQW

is set to tag the selected quadword of datao

• Address<31:21/17> is compared to tagAdr_h<31:21117> as specified by cache_size, tagCtlV_h
is checked, and tag and control parity are checked.

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-37

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 199~

Figure 13-20: stall_req timing

, DPJ)' or ' IRD' 'RDC'

i cpu cycle l cpu cycl. 2 cpu cycle 3 1 cpu cycle 4
1+++++1+++++1+++++1+++++1+++++1+++++1+++++1+++++1+++++1+++++I+++++I+++++I+++++I+++++I~++++I+++++I

1 i AND OR 1 I AND OR I

async 1 QXt
sam]:, 1 sync
tag_ok 1 ft

1

I
I
1ST
l6byt.es

int
sync
t.a9_ok I

I
I
I
1ST
OW

ecc Qrr
U-

stall_req I
or 1

read_miss I
I
An PIJ..

;, TAG I to CM_OUT_LATCH
\

\
v

stall_req - in~ sync not tag_ok 0= holc_rec_h
at phaSE! "

• tagOK_l and holdReq_h are checked at phase 4 (synchronized from last phase 3 of cache probe
cycle)

read_bit is determined as

tagAdr<31:Z2/!i> matches adr_h<31:22/17>
tagC~lV_h is true
tag~lP_h and tagAdrP_h are correct
0:' tore. hit

stall request is not tagOK_L or hold request at phase 4 of first cpu cycle of ARB state.

In the second cpu cycle of 'RDC'

• At phase 1 both read hit, and no ECC error are valid
• At phase 2 if not read bit, or ECC error, or stall request, then C%CBOX_ECC_ERR is asserted

causing the MBOX to ignore the data in CM_OUT_LATCH
• At phase 2 if read hit and not stall request the proper pMapWE signal is enable (asserts at

phi 3 at pins) to support system backmaps of Pcache

In the last cpu cycle of'RDC'

• At phase 3 dataA_h<4> toggles to begin access of second octaword
• At phase 3 the ARB sequencer determines the next state

If cache_speed is 3 or 4 cpu cycles the FILL machine loads the second quadword of the block
during cpu cycle 3 of the 'RDC' state if ECC was good for the target QW.

1. If not lABORT and stall request, the next state is 'STALL', wait for stall request to end
(returning the cache resource to the NVAX Plus chip)

tagok_stall - block fill done latch
hold_en - enable hold
all_chains_clr - clear all in progress state

13-38 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

2. If not !ABORT and not stall request and read_hit, the next state is 'RDN.

- fill OWs 3 and 4
- enable error logic/input

FILl. RD 2
err_flag
dataceo," dis
in data lat: en
rl:retire_en

- deassert data chip enables at: end of next EYE eLy.
- latch cache input: at end of next SYE CLY. cycl;
- clear I or D read latch valid flag -

3. If not lABORT and not stall request and not read_hit, the next state is 'SYS_RD'.

FILl. EYE
cree-lat en
CREQ- -

- fill block when dRack
- latch new CREQ
- READ LOCY.
- enable e=ror logic/input e=r flag

datice~_ciis
sys_dp_ctrl_en

- deassert data chip enables at end of next EYE CLY.
- data path control to fill sequencer -

4. If lABORT, the next state is 'IDLE', the IREAD:-.LATCH valid bit is cleared, need to remove
index in Pcache which sye;tem backmap replaced!!

5. If tagOk_l and either tagCtlP _h and tagAdrP _h are not correct, the fill is stopped, the error
is logged, c%cbox_s_err is asserted, and the ARB state returns to 'IDLE'.

13.7.10 RON

The address for the second oc:taword began driving the previous phase 3. For cache_speed = 2
timing the second quadword is moved to the eM_OUT_LATCH duri~g this state. At phase 2
of the first cpu cycle of 'RDN the enable for selected pMap'WE is deasserted (pMap WE_h<1:0>
deasserts at phase 3 in the pins). At phase 4 of the last cpu cycle of'RDN the second quadword
is latched. at the data pads, and the fill sequencer is notified that the second octaword is present.

1. If not !ABORT, the next state is 'FILL', enable err_flag.
2. If !ABORT, the next state is 'IDLE'. The IREAD_LATCH valid bit is cleared, need to remove

index in Pcache which system backmap replaced!!

13.7:11 FILL

The ARB machine stays in FJ[LL until the fill_done signal is received from the FILL sequencer
indicating the read is complete, or an error or lABORT is detected.

1. If not fill_done and not er.ror and not lABORT, remain at 'FILL'.

e=r flag
hold_en

- enable error logic/input
- enable hold

2. If fill_done and not error and not !ABORT, return to 'IDLE'.

dispatch_flag - enable dispatch in next access
hole en - enable holo -
all_chains_clr - clear all in progress stat6

The fill is complete, C_PIPE_ %LAST_FILL is set by the FILL sequencer to tag the last
quadword of data.
If address<31:29> is '111 "Return_lIO_Datat

• is driven to the FILL sequencer. The INPUT_
BUF quadword addressed by adclress<4:3> is driven to the ECC check latch. C_PIPE_ %REQ....
DQW and C_PIPE_%LAS'r_FILL are set to indicate selected and only return data.

3. If !ABORT and not error, the next state is 'IDLE', the lREAD_LATCH valid bit is cleared. If
'FILL' from SYS_READ n.eed to remove index in Pcache which system backmap replaced!!

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-39

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

4. If error, the next state is 'IDLE', and the error is logged.

The 'SYS_RD' state is entered from

1. DISPATCH for DREAD no Bcache, DREAD_I 0, lREAD no Bcache, or IREAD_IO, cReCJ­
h<2:0> is READ_BLOCK

2. DISPATCH FOR DREAD_LOCK cReq_h<2:0> is LDxL.
3. 'RDC' for DREAD miss, cReq_h<2:0> is READ_BLOCK

The c'WMask lines are as

• c"W:Mask.[l:O} are address[4:3l
• c V\7J\1ask.[2] is '1 if not lIO space, Pcache allocate(EV D·stream)
• c"'W:Mask.[3] indicates Pcache set being allocated, for systems which support a backmap for

each set
• cV\7J\1ask[4] indicates I·stream

The cReq_h lines become valid with the first sysClkOutl_h rising edge after the first cpu cycle of
'SYS_RD'. The 'SYS_RD' state repeats until cAck_h<2:0> returns error or OK.

1. If CACK_IDLE, remain at 'SYS_RD'.

err_flag
sys_cp_ctrl_en
hold_en

- enable error logic/input
- cata path control to fill sequencer
- enable hold

2. If CACK_ OK and not !ABORT, the next state is 'FILL'.

err flag
rl_retire_en

- enable error -logic/input
- clear ! or D read latch valid flag

3. If not CACK_IDLE and !ABORT, the next state is 'IDLE', need to remove index in Pcache
which system backmap replaced!!

4. If error, the next state is 'IDLE', and the error is logged.

13.7.12.1 Read Errors

• bad tagCtlP_h -> c%cbox_s_err; c%cbox_hard_err; (machine check)
• bad tagAdrP _h -> c%cbox_s_err; co/oebox_hard_err; (machine check)
• single bit ECC errors -> c%cbox_s_err
• double bit ECC -> c%cbox_s_err; c%cbox_hard_err; (machine check)

• cAck_h = SOFT_ERROR -> co/oebox_s_err
• cAck_h = HARD_ERROR -> c%cbox_s_err; c%cbox_hard_err; (machine check)

13-40 NVAX Plus OBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

13.7.13 WR_STALL

When a non_byte_ word 'WRITE with the Bcache enabled and not "W' is dispatched the address,
data and mask logic is set, and the entry is removed from the 'WRITE_QUEUE.

write_stall is not tagOK_l or hold request at phase 4 of last cpu cycle of ARB state.

Ifwri~_stall occurs before the lloD_byte_word write sequence (WR_PROBE/probe, 'WE_CMP/compare,
WRlwrite) can be completed or during the DISPATCH of the non_byte_ word WRITE, the ARB
state machine loops in 'WR S'l'ALL' till the write_stall deasserts

t.agoy._st.all
hold_en
cE_en

- block fill done lat.ch
- enabl.e hold
- assel~ dat.aCEOE<3:0>

and then advances to 'WR_PROBE:',

t.agJrobe_req - start~ tag comparE at end of ne,:t SYS_CLK cycle
t.cE_dis - deas~lert. t.ag chip enable at end of next SYS_CLK cycle,

restarting the non_byte_ word write sequence with address, data, and mask already at the pins from
the DISPATCH.

If "V\7'R_PROBE' is entered froIn DISPATCH, the address from the Write Queue began driving at
phase 3 of the second cpu cycll~ of the Dispatch Cycle. '

The 'WR_PROBE' state is 2,3, or 4 cpu cycles in duration as programmed from cache_speed. At
the phase 4 of the last cpu cycle of 'WR_PROBE'

• tagAdr_h<31:17>, tagAdrP_h, tagCtlV _h, tagCtlD_h, tagCtlS_h, and tagCtlP _h are latched
• the enable for tagCEOE is deasserted, tag-ceoe is deasserted at pins at next phase 2

The next state is 'WE_CMP', WT_arm_en causes the dataWE_h<3:0> signals are "readied" from
LV\7_MASK<3:0> if address<4> = '0, and from LW_MASK<7:4> if address<4> = ~l. tagCtlWE_h
is I-I armed".

Write hit is determined, where write_hit equals

• tagAdr<31:22/17> matches adr_h<31:22117>
• tagCtlV _h is true
• tagCtlS_h is false
• tagCtlP _h and tagAdrP _h are correct

• or force hit

The next state is

1. If write_hit and not write __ stal1 and not ta~error, the next state is 'WR'.

DIGITAL CONFIDENTIAL NVAX Ptus CBOX 13-41

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

2. If not write_hit and not write_stall and not ta~error, the next state is 'SYS_ WR', and
tagCtlWE and dataWE<3:0> are "disabled".

err !lag
sys::::dp_ctrl_en
creo_lat_en
CREQ

- .nabl~ er:.in (cack • hard error)
- date path control tc fill sequencer
- latch new CPXQ
- WP.ITE ELDer.

3. If write_stall, the next state is "WR_STALL', and tagCtlWE and dataWE<3:0> are "disabled".
4. If not write_stall and ta~error (either tagCtlP _h and tagAdrP _h are not correct), tagCtlWE

and data'~lE<3:0> are t'disabled",the error is logged, c%cbox_s_err is asserted, and the ARB
state returns to 'IDLE'.

Figure 13-21: wr _stall timing

''WR_CMP' 'WR'

cpu cycl. 1 cpu cycl,":2 cpu eycl~:3 cpu cycle 4
'+++++I+++++I++~++I+++++I+++++I+++++I+++++I+++++I+++++I+++++1+++++1+++++1+++++1+++++1+++++1+++++1

1 1 AND OF: 1 1 AND OR I

arm asyne
writ~ sam}:-
en tag_ok

13.7.16 WR

ext.
sync
if

int
sync

tag_or.

block assert we
writ. if not wr stall
en if -
wr_stall
1

1

deasset ARB PLA
Wi< next determined by

wr_stall

w=_stall • not int sync tag_ok or hold_reg at phase 1

data_h<127:0> and check<27:0> are driven onto the EDAL from the OUT_BUF. The tagCtllines
are driven as

• tagCtlD_h is DIRTY
• tagCtlV _h is not changed

• tagCtlS_h is not changed
• tagCtlP _h is toggled if tagCtl_h was previously CLEAN

Ifwrite_stall sampled at the previous phase 4 is true tagCtlWE and dataWE<3:0> are "disabled",
and the write sequence is retried after the write_stall is completed.

If write_stall sampled at the previous phase 4 is not asserted, tagCtlv\TE and the selected
dataWE<3:0> signals are driven from phase 2 of the first cpu cycle through phase 2 of the last
cpu cycle of 'WR', the LW _MASK register is cleared.

1. If not write_stall, the write has completed successfully, the next state is 'IDLE'.

13-42 NVAX Plus CBOX DIGITAL CONFIDENTIAL

..... : ... ----------------------------......... ----.... ----------------------~.

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

dispatch_flag - enat,le dispatch_in nezt access
hold en - enable hold
all_chains_clr - clear all in progress state

2. If write_stall, the write enable were blocked, the next state is 'WR_STALL'.

13.7:17 BWR_STALL

"When a byte_word WRITE with the Bcache enabled and not "PV" is dispatched the address, data
and mask logic is set, and the entry is removed from the WRITE_QUEUE.

write_stall is not tagOK.J or hold request at phase 4 of last cpu cycle of ARB state.

Ifwrite_stall occurs before the byte_word write sequence (BWlt.PROBE/probe,BWR-.CMP/compare,
BWR_MERGE/merge, Vi'RIwrite) can be completed or during the DISPATCH of the byte_word
WRITE, the ARB state machine loops in 'BWR-.STALL' till the write_stall deasserts

tagoy._stall
hold_en
ce_er.

- block fill done latch
- enab:Le hold
- assel~ dataCEOE<3: 0>

and then advances to 'B'WR-.PROBE',

err flag
FII.L Swy, DIP.
ir. date Iat en
t.ag_pro'be_req
tce_dis

- enable error logic/input
- InQrg€, target Qv; trorr, cache at end o! nezt SYS_CI.y' cycle
- latcb cache input at end 0:: nezt SYS CI.? cvcle
- start tag comp~re at end of nQ):t SYS-CI.K cycle
- ~eas~len tag chip enable at end c-:f next SYS_CI.R cycle

restarting the byte_word write slequence with address, and mask already at the pins from the
DISPATCH, and the WRITE_QUEUE already at the Merge register.

The READ_BYTEIWORD addrless began driving at phase 3 of the second cpu cycle tOfthe Dispatch
Cycle. The 'READ_BYTEIWORD' state is 2,3, or 4 cpu cycles in duration as programmed from
cache_speed. At the phase 4 of the last cpu cycle of'READ_BYTEI\VORD'

• tagAdr_h<31:17>, tagAdrP,_h, tagCtIV_h, tagCtlD_h, tagCtlS_h, and tagCtlP _h are latched

• data_h<127:0> and checkJl<27:0> are latched in the INPUT_BUF<dataA_h<4».
• the enable for tagCEOE is deasserted, tagceoe is deasserted at pins at next phase 2

The data from the WRITE..:QU,EUE is loaded into the MERGE register. The next state is 'B"WR_
CMP'.

13.7.19 BWR_CMP

The quadword of data from the INPUT_BUF pointed to address <4:3> is driven to the "ECCI.MERGE"
logi,c. ECC is checked, single bit errors are corrected.

• single bit ECC errors -> c%cbox_s_err
• double bit ECC on target q'Ll8.dword aborts "byte/word write"; -> c%cbox.-h_err

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-43

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The data is merged and loaded at the output drivers as in ARB state 'BWR_MERGE'. Write hit
is determined. The next state is

1. If write_hit _and not write_stall and not (tag..error or fill_error), the next state is 'BWR_
MERGE'. WI"_arm_en causes the datav\TE_h<3:0> signals to be "armed" from LV\7_MASK<3:0>
if address<4> = '0, and from LV\7_MASK<7:4> if address<4> = '1. WI'_arm_en causes
tagCtlWE_h to -be "armed". If a single bit ECC error is corrected for the read data the
error is logged and c%cbox_s_err is set.

2. If not write_hit and not write_stall and not tag..error, the next state is 'BWR_SYS_RD'. cReq_
h<2:0> is driven with LDxL.

- enable err in (cacy. - hard error) err flag
FIl.l:_BWl-LDIF.
sys_dp_ct.rl_en
cree lat. en

- merge t.arg;t. O~ from cach., at. end of next SYS_Cl.y' cycle
- dat.a path cont.rol t.o till sequencer

CREe -
- lat.ch new CPZQ
- I.Dxl.

3. If write_stall, the next state is 'BWR_STALL'.
4. If not write_stall and tag..error (either tagCtlP _h and tagAdrP _h are not correct), the error

is logged, c%cbox_s_err is asserted, and the .ARB state returns to 'IDLE'.
5. If not write_stall and fill_error (uncorrectable ECC), the error is logged, c%cbox_h_err is

asserted, and the ARB state returns to 'IDLE'.

13.7.20 BWR_MERGE

The data is merged and loaded at the output drivers.

if BM<O>- '1 dat.a<Oi:OO> - Writ.e Oueue<Oi:OO>: if BM<O>- '0 dat.a<Oi;OO>-· ~RGE_regist.er<Oi:OO>
if BM<l>- '1 dat.a<15:0B> - Writ.e-oueue<15:08>: if BM<O>- '0 dat.a<15:08> • ~RG£ regist.er<15:08>
if BM<2>- '1 dat.a<23:16> - Writ.,,-oueue<23:16>: if BM<O>- '0 dat.a<23:16> - MtRG£-regist.er<23:16>
if BM<3>- '1 dat.a<31:24> • writ.e-Oueue<31:24>: if BM<O>- '0 dat.a<31:24> - MtRG£-register<31:24>
if BM<4>- '1 dat.a<3~:32> • Writ."-Queue<39:32>: if BM<O>- '0 dat.a<3~:32> - MERGE-regist.er<39:32>
if BM<S>- '1 dat.a<4i:40> • Writ."-Queue<4i:40>: if BM<O>- '0 data<4i:40> • MERG£-regist.er<4i:40>
if BM<6>- 'l data<55:48> - Writ.e-Queue<55:48>: if BM<O>- '0 det.a<55:48> • MtRGE-regist.er<S5:48>
i! BM<i>- '1 dat.a<63:56> - Writ..:Queue<63:5~>: if BM<O>- '0 deta<63:56> - MERGE:regist.er<63:56>

ECC check bits are generated for data<63:0> which is loaded into the OUT_BUF.

1. If fill_done and not write_stall, the next state is 'BWR_ WR'.
2. If not fill_done and not write_stall, the state remains 'BWR_MERGE', dataWE_h<3:0> and

tagCtlWE_h are fiRE-armed".

3. If write_stall, the next state is 'BWR-.STALL'.

13.7.21 BWR

data_h<127:0> and check<27:0> are driven onto the EDAL from the OUT_BUF. The tagCtllines
are driven as

• tagCtlD_h is DIRTY
• tagCtlV _h is not changed
• tagCtlS_h is not changed
• tagCtlP _h is toggled if tagCtl_h was previously CLEAN

If write_stall sampled at the previous-phase 4 is true tagCtlWE and dataWE<3:0> are "disabled",
and the byte_word write sequence is retried after the write_stall is completed.

13-44 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

If write_stall sampled at th~~ previous phase 4 is not asserted, tagCtI'WE and the selected
data V:lE<3 :0> signals are driven from phase 2 of the first cpu cycle through phase 2 of the last
cpu cycle of 'BWR', the L~7_MASK register is cleared.

1. If not write_stall, the writ.e has completed successfully, the next state is 'IDLE'.
2. If write_stall, the write enable were blocked, the next state is 'BWR_STALL'.

The ARB state remains 'B'WR~SYS_RD' until the system completes the LDxL command.
1. If CACK:: idle, wait in'B'WR_SYS_RD'.

err_flag
sys_dF,-c':.rl_en
hold_en

--enable error logic/input
- data path control to !ill sequencer
- enable hold

2. If CACK:: OK or ·soft errr the next state is 'B~_SYS_MERGE', and err_flag is enabled for
the ECC check. If soft error the error is logged, c%cbox_s_err is asserted.

3. If CACK :: hard error, thE~ next state is 'IDLE', the error is logged in BIU_STAT and BIU_
ADDR, the c%cbox_h_err. is asserted and the "byte/word write" sequence is aborted.

13.7 .. 23 BWR_SYS_MERGE~

The quadword of data from the INPUT_BUF pointed to address <4:3> is driven to the "ECCI.MERGE"
logic. ECC is checked, single hit errors are con-ected.

• single bit ECC errors -> c%cbox_s_err
• double bit ECC on target quadword aborts "byte/word write"; -> c%cbox_h_err

The data is merged and loaded at the output drivers as in ARB state 'BWR~MERGE'. ECC check
bits are generated for data<68:0> which is loaded into the OUT_BUF.

1. If not fill_done and not hard_error, the state remains 'BWR~SYS_MERGE', keep err_flag
enabled for ECC check.

2. If fill_done and not hard __ error, the next state is 'SYS_ WR'. If a single bit ECC error is
corrected for the read dat.a the error is logged and c%cbox_s_err is set. cReq_h<2:0> is
driven with STxC, and c1NMask<7:0> is driven from LW_:MASK<7:0>. LW_:MASK is set
from BM<7:0> and address<3:0> as in the 'PACK_WRITE' state. Bits of LW_MASK<7:0>
previously set in the 'PACK_WRITE' state remain set. The address buffer is not loaded and
remains the same.

err flag
sys:::dp_ctrl_en
ereo __ lat_ en
CPLQ

- enable error logic/input
- data path control to fill sequencer
~ latch new CP~Q
- STxC

3. If hard_error,the next state is 'IDLE', the error is logged in BIU_STAT and BIU_ADDR, the
c%cbox_h_err is asserted amd the "byte/word write II sequence is aborted.

DIGITAL CONFIDENTIAL NV AX Plus CBOX 13-45

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

At the first SYS_ CLK rising edge on entry to 'SYS_ "WR' cReq_h<2:0> is driven with

• WRITE_BLOCK if entered from DISPATCH or 'WR_ CMP'

• STxC if entered from 'BWR_SYS_MERGE'.

Also at SYS_CLK, c'WMask<7:0> is driven from

• LW _MASK<7 :0> if not "W'
• "WRITE_QUEUE BM<7:0> if "PV"

If the write is for a "W' system

• Addr<3> indicates which QW in the OUT_BUF is to be written from the byte mask driven to
c 'WMask<7 :0>

• dataWE_h<O> = XO <-'1 if LW_MASK 0,2,4,6 was set previously at 'PACK_WRITE'

• dataWE_h<l> = Xl <-'1 if LW_MAEK 1,3,5,7 was set previously at 'PACK_WRITE'

1. If CACK = idle and not error, wait in 'SYS_ 'WR'.

err_flag - enable error l09ic/inpu~
svs d.~ ctrl en
h;ld_~n -

- date path control to fill sequencer
- enable hold

2. If CACK = OK, or STxC_FAlL and not bwr_chain, the next state is 'IDLE'.

dispatch flag - enable dispatch_in ne%t access
holo_en - - enable hold
all_ch~ins_clr - clear all in progress state

If CACK = STxC_FAIL and not bwr_chain, set bit of STxC_RESULT register to indicate
write_unlock faillire to microcode. .

3. If CACK = STxC_FAlL and bwr_chain, the next state is 'B'WR_SYS_RD', retry RMW with
LDxL.

err_flag
F!!.l. BWM DIR
svs dp ctrl en
c~.o_lit_.n -
CPZQ

- enable err in (cack • haro error)
- mer9~ target QW from cach~ a't end of nex't SYS_CLK cycl~
- data path control to fill sequencer
- latch new CREQ
- IJ).xJ.,

,.-~ ."'-
~'~"';~'''"'''''.-; "~"\-:-~'i: . wo:: _ .. :.-'-:. :.--.~. _.-.. •• ', ". ,,"~."'.:. a • 4'."'" __

4. If ~rror(GAGK,.notidle, OK., or STxC.:,.FAIL), the next state'js 'ERR'. IfCACK = soft error, the
error is logged, c%cbox_s_err is asserted. If CACK = hard error, the error is logged, c%cbox_
h_err is asserted.

13.8 CBOX Error Handling Summary

The Error Handling logic asserts two signals to the MBOX (C%CBOX-,ECC_ERR, C%CBOX_
HARD_ERR) and two signals to the Interrupt Section (C%CBOX_S_ERR, C%CBOX_H_ERR).
C%CBOX_ECC_ERR is set when a fill command sent to the MBOX is to be ignored. C%CBOX_
ECC_ERR is set when an ECC or parity error with fill data is detected. C%CBOX_ECC_ERR
is also used for the non error purpose of cancelling a fill for a cache miss or stall. C%CBOX_
HARD_ERR causes the MBOX to end an I_MISS or D_MISS fill sequence. C%CBOX_S_ERR and
C%CBOX_H_ERR are asserted as a result of loading the error bits in the BID_STAT register.
C%CBOX_S_ERR is edge sensitive(a pulse is asserted) and C%CBOX_H_ERR is level sensitive

13-46 NVAX Plus CBOX DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

and remains asserted until tht~ error bits in the BIU_STAT are cleared. A summary of the NVAX
Plus CBOX error logic is shown in Table 13-18.

Table 13-18: NVAX Plus CBOX Error Handling

ProblE~m Situation ERR_ CTL

Tag Parity Error DREAD, IREAD
or Tag Control

Assert C%CBOX_S_ERR, Send I_CF or D_CFto MBOXAborts due
Command ARB to go to and abort.. Latch appro- to MISS

Parity Error

mem WRITE

ERRROR state, Ge:nerate priate BID_STAT bits
C%CBOX_HARD_ERR when
ARB send I_CF or·D_CF

Assert C%CBOX_H_ERR, ARB Aborts. Latch ap-
Command ARB to Abort propriate BIU_STAT bits

Aborts on
aBYTEIWORD
WRITE,not
involved yet
otherwise.

Correctable ECO Any Read, including Assert C%CBO}LS_ERR Latch appropriate BIU_ AssertC%CBOX_
error I/O read STAT bits. V\7ait for :Fill ECO_ERR,

BYTEIWORD WRITE, Assert. C%CBOX_S_ERR
WRITE_UNLOCK., WRITE

to complete.

Latch appropriate BIU_
STAT bits. Wait for Fill
to complete the MERGE.

send cor­
rected data
toMBOx..

Continue the
MERGE with
corrected data.

Uncorrectable ECCAny Read, including Assert C%CBOX_S_ERR Latch appropriate BIU_
STAT bits. Wait for Fill
to complete.

Assert C%CBO}C
ECC_ERR, error or Parity VO read

Error send C%CBOX_
HARD_ERR
along with
CCForD_
CF.

BYTEIWORD WRITE, Assert C%CBO}LH_ERR Latch appropriate B[U_ Abort. Merge,
WRITE_UNLOCE~ WRITE STAT bits. Wait for Fill restart ARB.

....-..a ... ,. ~, . ..-. _ ... to signal complete .

cAck Hard Error Any READ, DREAD, Assert C%CBOX_S_ERR, Send 1_ CF or D_ CF to MBOX Aborts due
DREAD_IO, DREAD_ Command ARB to go to and abort.. Latch appro- to cAckhard
LOC~ IREAD, IREAD_ERRROR state, Generate priate BID_STAT bits error.
10 C%CBOX_HARD_ERRwhen

ARB send CCF or D_CF

Any Write, WRITE_ Command ARB to, Abort, Latch appropriate B'ID_ Aborts due
UNLOC~ WRITE, 10_ Assert C%CBOX..H_ERR STAT bits. ARB aborts. to cAck hard
W'R_ UNLOCK error.

DIGfTAL CONFIDENTIAL NVAX Plus CBOX 13-47

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 13-,.8 (Cont.): NVAX Plus CBOX Error Handling

Problem Situation ERR_ CTL

cAck Soft Error luly READ, inc1ud- Assert C%CBOX_S_ERR
ing 110 read

luly WRITE, WRITE_ Assert C%CBOX..S_ERR
UNLOCK., WRITE, 10_
WR_UNLOCK

13.9 Invalidates

FILL

Latch appropriate BIU_ Complete
STAT bits. Wait for Fill the FILL.
to complete.

Latch appropriate BIU _ Continue the
STAT bits. Wait for Fill MERGE with
to complete the MERGE. corrected data.

The extenlal system logic is responsible for keeping the primary cache coherent. If the Pcache is
being all 0 catted as two way associative NVAX Plus asserts pMapWE_h<O> when filling Pcache set
o and pMap WE_h<l> when filling Pcache set 1 to support systems with backmaps. If the Pcache
is being allocatted as direct mapped NVAX Plus asserts pMap WE_h<O> when filling Pcache.

For two way. associative operation pInvReq<O> indicates an entry in Pcache set 0 is to be invali­
dated, while plnvReq<1> indicates an entry in Pcache set 1 is to be invalidated, where iAdr<11:5>
determines the index to be invalidated.

In direct map mode pInvReq<O> and iAdr<12:5> indicate the entry to be invalidated. If iAdr<12>
= to set 0 is invalidated at index = iAdr<11:5>, and if iAdr<12> = '1 set 1 is invalidated at index
= iAdr<11:5>.

Systems using two way associative allocation which do not backmap the Pcache issue invalidates
to both sets of the Pcache when a block is displaced from the Bcache. The index to be invalidated
is driven to iAdr<11:5> and pInvReq<1:0> are both asserted. The MBOX modification for NVAX
Plus allows invalidates the address in CM_OUT_LATCH<12:5>, for set a single Pcache set as
specified by CM_OUT_LATCH[lnvReq). The CBOX sequences invalidates to set 0 in the first
cpu_elk cycle of a system cycle, and to set 1 in the second cpu_clk cycle of a system cycle.

The CBOX sources an invalidate when an !ABORT is received and the ARB sequencer has already
issued a pMapWE or read to the system which updates the Pcache backmap. Since the present
entry in the Pcache may not be removed if an lABORT is detected in ARB states 'RDC', 'RDN',
'SYS_RD', or 'FILL' it is necessary to invalidate the index which was to be allocated, since the
backmap no longer contains this address.

Systems which do not backmap that allocate the Pcache as two-way associative and therefore
assert both plnnvReq<1:0> can not request invalidates in consecutive sys_elk cycles.

13.10 Revision History

Table 13-19: Revision History

Who When Description of change

Gil Woirich 15-Nov-1990 NVAX PLUS release for external review.

'3-48 NVAX Plus CBOX DIGrTAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 13-19 (Cont.): Revision History

'Who 'When Description of change

Gil Wolrich 30-Jan-1991 remove vectors features.

Gil Wolrich Ol~Aug-1991 update

Gil Wolrich 21-0ct-1991 update pMapWE timing

DIGITAL CONFIDENTIAL NVAX Plus CBOX 13-49

,1.1 .. 1111.' ____________________________ _

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Chapter 14

Error Handling

This chapter describes the NVA..'X Plus error exceptions and interrupts as seen from the macrocoder's
point of view. It is organized 'with respect to the 8CB vectors through which the event is dis­
patched. The 8CB layout and 8CB vector format are described in the Architecture Summary
chapter of the NVAX Plus chip specification.

14.1 Terminology

Ter.m

Fill

Dirty

Flush

Mean;ng

Any quadword of data returned to the NVAX Plus chip in response to read-type
operation. The quadword containing the requested data is a :611.

In the BCllche, a bit is stored with each hexaword called the dirt'S bit. When set
this bit indicates that memory does not have the updated data for this block.

Causing ~ictim writebacks to memory of sJl dirty blocks in Bcache ..

14.2 Error handling Introduction and Summary

This chapter discusses all levels of hardware and microcode-detected errors. Errors notification
occurs through one of the following events, listed in order of decreasing severity.

• Console error halt-A halt to console mode is caused by one of several errors such as Interrupt
Stack Not Valid. For certain halt conditions, the console prompts for a command and waits
for operator input. For other halt conditions, the console may attempt a system restart or a
system bootstrap as defined by DEC Standard 0·32. The actual algorithms used are outside
of the scope of this document.

• Machine check-A hardwa.re error occurred synchronously with respect to the execution of
instructions. Instruction-Ie:vel recovery and retry may be possible.

• Hard error interrupt-A h:ardware error occurred asynchronously with respect to the execu­
tion of instructions. Usually, data is lost or state is corrupted, and instruction-level recovery
may not be possible.

• Soft error interrupt-A hardware error occurred asynchronously with respect to the execution
of instructions. The error is not fatal to the execution of instructions, and instruction-level
recovery is usually possibl~~.

DIGITAL CONFIDENTIAL Error Handl ing 14-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• Kernel stack not valid-During exception processing, a memory management exception oc-
curred while trying to push information on the kernel stack..

This chapter explains in detail several of the SCB entry points. The purpose is to help the
operating system progTammer determine exactly what error occurred and to recommend an error
recovery method. ..

The following information is given in this chapter for each SCB entry point:

• What parameters are pushed on the stack.

• "That failure codes are defined.
• What additional information exists and should be collected for analysis.
• How to determine what error(s) actually occurred.
• How to restore the state of the machine, and what level of recovery is possible.

Table i4-1 shows the general error categories associated with each of these error notifications.

Table 14-1: Error Summary By Notification Entry Point

Entry Point

Console Halt

Machine Check

Soft Error
Interrupt

Hard Error
Interrupt

SCB Index
(hex)

N/A

04

54

60

General Error Categories

Interrupt Stack riot valid, kernel-mode halt,
double error, illegal SCB vector

Memory management, interrupt, microcode detected CPU errors,
CPU stall timeout,
TB parity errors, VIC tag or data parity errors,
Uncorrectable data read errors,
CACK_HERR on read

VIC tag or data parity errors,
Pcache tag or data parity errors,
Bcache tag parity error on read,
Uncorrectable data read errors
Correctable data errors

Uncorrectable data errors on write operations,

Bcache tag parity error on writes,
CACK_HERR on writes

14.3 Error Handling and Recovery

All errors (except those resulting in console halt) go through SCB vector entry points and are han­
dled by service routines provided by the operating system. A console halt transfers control to the
address of the CONSOLE_HALT register. Software driven recovery or retry is not recommended
for errors resulting in console halt.

Software error handling (by oper~ting system routines) can be logically divided into the following
steps:

• State collection.

• Analysis.

14-2 Error Handling DIGITAL CONFIDENTIAL

,' •• _,IIiII. ___ _

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

• Recovery.

• Retry.

These steps are discussed in gE~neral in the next four sections. After that, details B.re supplied on
analysis, recovery and retry for each etTor event which results in an exception or intenupt. This
information is organized by SeB entry point.

14.3.1 Error State Collection

Before etTor analysis can begin, all relevant state must be collected. The stack frame provides
the PCIPSL pair for all exceptions and intenupts. For machine checks, the stack frame also
provides details about the etTor.

In addition to the stack frame, machine checks and hard and soft etTor intenupts usually require
analysis of other registers. It is strongly recommended that all the state listed below be read
and saved in these cases. State is saved prior to analysis so that analysis is not complicated by
changes in state in the registe:rs as the analys~s progresses, and so that etTors incurred during­
analysis and recovery can be processed with that context.

Ibox
lCSR: Ibox (VIC) control and statUs register.
'Vl\1.AR: VI C memory addrE~ss register.

Ebox
ECR: Ebox control and status register.

Mbox
TBSTS: TB status register.
TBADR: TB address register.
PCSTS: Pcache status register.
PCADR: Pcache address register.

Cbox
BIU_STAT: Bus or Fill etTor status.
BC_TAG: Contains tag of ta~parity, control_parity, or fill error.
BIU_ADDR: Address associated with cache probe or bus error. (BIU_HERR, BID_SERR, BC_
TPERR,BC_TCPERR)
FILL_ADDR: Address associated with fill'etTor, FILL_ECC or FILL_DPERR.
FILL_S'YNDROME: Syndrome bits associated with FILL_ADDR.

NOTE

The ERROR interrupt is, level sensitive requiring the clearing of the external ERR_
H signal if the intetTupt source is external to NVAX Plus, and the clearing of the
BIU_STAT indication resulting in the internal H_ERR signal to clear the interrupt.
The error bits in the BIU_STAT register are. W1C, and therfore should be cleared
after BID_STAT is read, so that errors incUtTed during analysis and recovery can be
processed with that contA~xt.

DIGITAL CONFIDENTIAL Error Handl tng 14-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

For the purposes of the rest of this chapter, it is assumed that each of these states is saved in a
variable whose name is constructed by prepending "8_" to the register name. For example, the
I CSR would be saved in the variable 8_1 CSR.

The following example shows allocation of memory storage for the error state.

ERROR STATE COLLECTION DATA STORAGE

;IBOX
S ICS?: .LONG 0

" VMAf'.: • LONG 0
; IBO:>: VIC CONTROL AlqD STATUS REGISTER
; IBO:>: VIC ERROR ADDRESS PLGISTER

s_ ECR:

s_ TBSTS:
S TBADP.: -
S PCSTE: -S PCADP.: -

S - :SIt'_ STAT:
S BC TA,,: -S :sIt' ADDR: -
S - :IL:.._ADDP.:
S n:..L SYNDROME: -

.LONG 0

• LONG 0
.l.ONG 0
.l.ONG 0
.l.ONG 0

.LONG 0

.LONG 0

.LONG 0

.LONG c

.l.ONG (I

;EBO):

; £BOX CONTROL AND STATUS REGISTER

:MBOX
T= STATUS REGISTER

; n EP.ROF. ADDP.ESS REGISTER
; PCACHE STATUS REGISTER
; PCA=HE ERROr. ADDPLSS REGISTER

;CBOX
Bus 0: Fill erro: s~atus
Contains taQ 0: tag_pari~y, control_parity, or fill error
Address associated witr. BID HEP.?, BIt) SERR., BC TPER.?, BC TCPER?
Address associated with !ill error, F!l.l. ECC oi FIL: DPERP.
SyndromE bits associated with FIl.L_ADDR - -

The following example shows collection of error state'which would normally be done early in the
error handling routine. If a second bus or fill error is detected the SE~ second error hit is set,
but the error address and status are lost.

;SAVE ALl.. ERROR STATE UPON ENTRY TO ERROR HANDLING ROUTINE

;CBO:X
MFPR fPR19$ BIO STA~,S BIt' STAT
MFPR .PR19~:BIO:ADDR,S:BIU:ADDR
MFPR fPR19$ FIl.L ADDR,S FILl. ADDR
MFPR fPR19$-FI~L-SYNDROME,S FIl.L SYNDROME
MFPR fPR19$:BC_TAG,S_BC_TAG- -

;IBO:X
MFPR fPR19S ICSR,S ICSR
MFPR fPR19$:VMAR,S:VMAR

;EBOX

;MBOX
MFPR fPR19$ TBSTS,S TBSTE
MFPR • PR19 $-TBADP., S - TBADR
MFPR fPR19S-PCSTS,S-PCSTS
MFPR fPR19S:PCADR,S:PCADR

;SYSTEM ENVIRONMENT
COLLECTION OF SYSTEM ENVIRONMENT ERROR P.EGISTEP$ GOES HERE

Additional state collection is recommended while/after flushing the Bcache because certain errors
may occur as a result of the flush operation.

For the purposes of the rest of this chapter, it is assumed that each of these states is saved in a
variable whose name is constructed by prepending ·'SS_" to the register name. For example, the
BID_STAT register would be saved in the variable SS_BIV_STAT.

14-4 Error Handling DIGlTAL .cONFIDENTIAL

illilllll .. ,IIiII ________________________ , ____________________ -----------

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.3.2 Error Analysis

With the error state obtained during the collection process, the error condition can be analyzed.
The purpose is to determine what error event caused the particular notification being handled (to
the extent possible), and what other errors may also have occurred. Analysis of machine checks.
and hard and soft error interru.pts should be guided by the parse trees given in the appropriate
sections below.

NOTE

Errors detected in or by one of the caches usually result in the cache automatically
being disabled. However, to minimize the possibility of nested errors, it is suggested
that error analysis and reeovery for memory or cache-related errors be performed with
the Pcache disabled and the Bcache disabled (i.e. BIU_CTL<BC_ENA> = ,0).

NOTE

Disabling the Bcache means clearing BIU_CTL<BC_ENA>. This only stops the NVAX
Plus chip from probing enernal cache. System logic continues to allocate and writeback
blocks for READ_BLOCK and 'WRITE_BLOCK command requests.

In some cases, a notification for a single error occurs in two ways. For example, an uncorrectable
error in the Bcache data RAMs will cause a soft error interrupt and may also cause a machine
check. **Software should handle cases where a machine check handler clears error bits and then
the soft error handler is entered with no error bits set. **
In general an error reporting rlegister can report events which lead to machine check, soft error,
or hard error. A given .error event can result in machine check an~ soft error interrupt, or in
just one or the other. Events which lead to hard error interrupts generally can not also cause
machine check or soft error interrupt. However, if a hard error occurs from a write operation, a
subsequent read error can resUilt in a machine check with a SEO bit set.

Multiple simultaneous errors Dlay make useful recovery impossible. However, in cases where no
conflict exists in the reporting of the multiple errors (i.e., separate Pcache and Bcache errors),
and recovery from each error is possible, then recovery from the set of errors is accomplished by
recovering from both of them. For example, recovery from a Pcache tag parity error and FILL
correctable data error being reported together is possible by following the recovery procedures for
each error in sequence.

The error cause determination parse tree for machine check exception is directed at causes or
possible causes of machine checks. It ignores errors which lead to hard or soft error interrupts
but not to machine checks. Similarly, the hard error' interrupt cause determination ignores
errors which lead to machine check ·or soft error interrupt, and the soft error interrupt cause
determination ignores errors which lead to machine check or ha:rd error interrupt.

There is a natural order between machine check, hard error interrupt, and soft error interrupt
because the IPL for hard error interrupts is higher than that of soft error interrupts and the IPL
in the machine check exceptio:n is higher than either of the error interrupts. This hierarchy is
important because knowledge of which notification event occurred is used to discriminate between
cert.ain error events (e.g., an error on the initial fill quadword for a read-lock is distinguished from
a fill error on a subsequent quadword by the fact of machine check notification).

DIGITAL CONFIDENTIAL Error Handling 14-5

:NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

14.3.3 Error Recovery

Recovery from errors consists of clearing any latched error state, repairing damaged state (if
necessary and possible), and restoring the system to normal operation. There are special consid­
erations involved in analysis and recovery from cache or memory errors, which are covered in the
next sections.

Recovery from multiple error scenarios is possible when there is no conflict in the error regis­
ters which report the errors and there is no conflict in the recovery procedures for the errors.
However all recovery procedures in this chapter assume that only one error is present. None of
the procedures are valid in multiple error scenarios without further analysis.

In some instances, it may be desirable to stop using the hardware which is the source of a large
number of errors. For example, if a cache reports a large number of errors, it may be better to
disable it. It is suggested that software maintain error counts which should be compared against
error thresholds on every error report. If the count (per unit time) exceeds the threshold, the
hardware should be disabled.

14.3.3.1 Special ConSiderations for Cache and Memory Errors

Cache and memory error recovery requires special considerations:

• Cache and memory error recovery should always be done with the Pcache and VIC off.
• Bcache flush should be always be done one block at a time, recapturing the relevant error

registers between each block flush.

• Cache coherence requires a specifi~ procedure for re-enabling the caches. See Se~tion 14.3.3.1.1,
Cache Coherence in Error Handling.

• Error recovery should be performed starting with the most distant component and working
toward the CPU and Ebox. System environment memory errors should be processed first,
Bcache tag store and data RAM errors, Pcache errors, TB errors, and, finally, VIC errors.

• BIU and FILL errors are cleared by writing the write-one-to-clear bits in BID_STAT.
• Pcache tag and data store errors are cleared by writing the write-one-to-clear bits in PCSTS.

The suggested way to do this is to write a one to the specific error bit. Pcache flush is necessary
after Pcache tag store parity errors. See Section 14.3.3.1.1.1, Cache Enable, Disable, and
Flush Procedures.

• TB errors are· cleared by writing the write-one-to-clear bits in TBSTS. The suggested way to
do this is to write a one to the specific error bit.

• PTE read errors are cleared by writing the PTE error write-one-to-clear bits in PCSTS. The
suggested way to do this is to write a one to the specific error hit.

• VIC errors are cleared by writing the write-one-to-clear bits in ICSR. The suggested way
to do this is to write a one to the specific error hit. VIC flush and re-enable is necessary
after VIC tag store parity errors. See Section 14.3.3.1.1.1, Cache Enable, Disable, and Flush
Procedures.

14-6 Error Handling DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.3.3.1.1 Cache Coherence in Error Handling

Certain procedures must be followed in order to maintain cache coherence while enabling NVAX
caches. Since many errors cause caches to be disabled, and since cache and memory error recovery
is normally done with the Pcac:he and VIC off, the complete cache enable procedure is done as
part of recovery from all cache and memory errors.

The VIC (virtual instruction cache) is not automatically kept coherent with memory. It is flushed
as a side effect of the REI instruction (as required by the VAX architecture). Normally in error
recovery, there is no definite need to flush the VIC. For consistency and for the sake of beginning
error retry in a known state, flushing the VIC during error recovery is recommended. However,
in the event of VIC tag parity errors, the complete VIC flush procedure described in the next
section must be done.

The~ TB is not automatically kept coherent with memory. Software uses the TlBIS and TBIA
functions to maintain coherenc:e, and the LDPCTX instruction clears -the process PTEs in the
TB. Normally in error recoveT'lj, there is no definite need to flush the TE. For consistency and
for the sake of beginning error retry in a known state, flushing the TB during error recovery is
recommended. When a TB parity error occurs,Mbox hardware flushes the TB by itself (via an
internally generated TBIA), but it would be appropriate for software to test the TB after a parity
error. This is discussed in Section 14.3.3.1.2.

14.3.3.1.1.1 Cache Enable, Disable, and Flush Procedures

To enable the N'VAX Plus caches, the caches are flushed and enabled in a specific order. The
ordering is necessary for coherE~nce between the Bcache, Pcache, and memory. For simplicity, one
procedure is given for enabling the NVAX Plus caches, even though variations on the procedure
may also produce correct results. Disabling the caches can be done in any order, though one
procedure is given here.

In error-handling, the VIC and Peache are disabled.

14.3.3.1.1.1.1 Disabling the NVAX Plus Caches for Error Handling

This is the procedure for disabling the N'VAX Plus caches:

NOTE

These procedures will be t;upplied with MACRO coding examples.

• Disable the VI-C:

TBS (MTPR to ICSR)

• Disable the Pcache:

TBS (MTPR to PCCTL)

• Disable the Bcache:

DIGITAL CONFIDENTIAL Error Handling 14-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.3.3.1.1.1.2 Enabling the NVAX Caches

The procedure for enabling the NVAX caches after an error is the same as is used to initialize the
caches after power-up. This procedure ensures that error retry/restart occurs with the caches in
a known state. The procedure is outlined below.

• The caches must all be disabled and the Bcache must be disabled.

• Flush the Bcache.
• Enable the Bcache (MTPR to BIU_CTL).
• Flush the Pcache (Loop on MTPR to PCTAG IPRs).
• Enable the Pcache (MTPR to PCCTL).

• Flush the TB:

• Flush the VIC (Loop on MTPRs to VMAR and ''TAG, writing different initial values into the
left and right banks).

• Enable the VIC (MTPR to ICSR).

14.3.3.1.1.2 Extracting Data from the Bcache

To extract data from the Bcache, the Bcache is placed in FORCE_IDT mode.

After the Bcache is flushed, set the Bcache in FORCE_fiT mode and extract the data. Note that
the code which executes this procedure and its local data must be in 10 space. The TB entries
(PrEs) which map this code and local data must be :fixed in the TE. (This is most easily done
by flushing the TB via an MTPR to TBIA and then accessing all the relevant pages in pages in
sequence.) Otherwise Bcache FORCE_HIT will interfere with instruction fetch, operand access,
and PTE fetches in TB miss sequences.

The following instruction places the Bcache in FORCE_HIT mode:

V\7ith the Bcache in FORCE_tnT mode, a read in memory space of any address whose index portion
matches the index of the cache data will return the data (provided there is no uncorrectable data
RAM error). This is most easily accomplished by reading from the true address of the data.

NOTE

In FORCE_HIT mode, Fill ECC errors are detected. **(unless a DIAG_CTL<DISABLE_
ERRORS> function is enabled)** Software should prepare for an ECC error (BIU_STAT
<FILL_ECC>).

14.3.3.1.2 Cache and TB Test Procedures

TBS

OUTLINE OF TO-BE-SPECIFIED TEST PROCEDURES

Testing is generally done using the force hit mode of a cache. The code and data of
the test procedure must reside in 10 space. Assuming memory management is enabled
during this procedure, the needed PTEs m.ust be in the TB before entering force hit
mode in the Pcache or Bcache. For the B cache , testing should be done with errors

14-8 Error Handling DIGITAL CONFIDENT~AL

• ___ 0-______________________________________ ,

NVAX Plus CPU Chip Function8.I Specification, Revision 0.3, October 1991

disabled. **(DIAG_ CTL<:DISABLE_ERRORS> enabled)** The ECC logic should be
tested thoroughly on one location by forcing various check bit patterns and examining
the syndrome latched on the read (**FILL_SYNDROME** is loaded on every read in

. Bcache disable-errors mode). Presently FILL_SYNDROME is valid if an error occurs
and the syndrome bits for the last fill can not be recovered with an IPR_RD of this
register ohterwise. Pcache and VIC parity checking should be tested by writing bad
parity into the arrays. T.B testing may be accomplished by writing to MTBTAG and
MTBPTE (with care to not change any TB entry necessary for the test code and data
and not to cause two TB entries to exist for one address). PROBER and PROBEW
(setting PSL<PRV _MOD» are then used to verify the protection bits. Testing the
modify bit would be difficult, though approaches exist.

14.3.4 Error Retry

Error retry is a function of the error notification (machine check or error interrupt), error type,
and error state. The sections below specify the conditions under which the instruction stream
may be restarted.

If retry is to be attempted, the stack must be trimmed of all parameters except the PCIPSL pair.
This is necessary only for machine checks, because error interrupts do not provide any additional
parameters on the stack~ An REI will then restart the instruction stream and retry the error.
Some form of software loop control should be provided to limit the possibility of an error loop.
Note that pending elTor intelTlllpts may be taken before the retry occurs, depending on the IPL
of the interrupted or machine c:hecked code.

Strictly speaking, an REI from a hard or soft error interrupt handler is not a retry since these
interrupts are recognized between macroinstructions. A machine check exception is,an instruction
abort, and an REI from the handler will cause the failing instruction to be retried ~provided retry
is indicated by analysis). What these cases all have in common is that the interrupted instruction
stream is restarted. This is only done when the result of error analysis and recovery is such that
all damaged state has been repaired and there is no reason to suspect that incorrect results will
be produced if the image is restarted and another error does not occur.

If complete recovery from one or more errors .is not possible (i.e., some state :is lost or it is
impossible to determine what state is lost), possibly the entire system will have to be crashed, a
single process will have to be deleted, or some other action will have to be taken. Software must
determine if the error is fatal to the current process, to the processor, or to the entire system,
and take the appropriate action.

It is expected that software handles machine checks, soft error interrupts, and hard error inter­
rupts independently. For example, after handling a machine check from which retry is to occur,
software does not check for errors which might cause a pending hard or soft error interrupt. Since
the HARD ERROR interrupt is level sensitive the machine check code must not clear BIU_STAT
if the interrupt is to be taken. 'The machine check handler is exited via REI (after trimming the
machine check information off the sta~k). If the IPL of the machine checked instlUction stream
is low enough, any pending hard or soft error interrupt is taken before the retry occurs. However,
if the interrupted instruction stream was running at high IPL, then it will continue oblivious of
rem.aining errors.

DIGrTAl. CONFIDENTIAL Error Handling 14-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.3.4.1 General Multiple Error Handling Philosophy

Multiple errors may be reported at the same time. In some cases the NVAX Plus pipeline will
contain multiple operand prefetches to the same memory block.. This can cause multiple errors
from a single non-transient failure. It could also occur that two separate errors occur at nearly
the same time and are thus reported simultaneously.

Multiple elTor scenarios may be grouped into the following three classes:

1. Multiple distinct errors for which no error report interferes with the analysis of any other
(e.g., no lost error bits set).

2. Multiple errors which could have been caused by the NVAX Plus pipeline issuing more than
one reference to a given block before the elTor interrupt or machine check forced a pipeline
flush.

3. Multiple errors for which analysis is complicated because the reports interfere with each
other.

It is the intent of this chapter to recover from class 1 (above) by simply treating the elTors as
separate and recovering from each in turn. Retry or restart evaluation is based on the cumulative
result of the recovery and repair procedures for each elTor.

For class 2, specific cases are identified in which lost errors are tolerated. These cases are selected
because the NVAX Plus pipeline can easily cause them (given one error), and because sufficient
safeguards exist to ensure that correct operation is maintained.

NOTE

Note: If BIU_STAT<lost_write_err> is clear and BIU_STAT<FILL_SEO> is set with
ARB_CMD being a read, then write data has not been lost, the system can be retried
~fter the cache is fiushed.

Class 3 scenarios are generally not considered recoverable. The system is simply crashed in those
cases.

14-10 Error Handling DIGITAL CONFIDENTIAL

NVAX Plus CI-U Chip Functional Specification, Revision 0.3, October 1991

14.4 Console Halt and Halt Interrupt .

A console halt is not an exception, but rather a transfer of control by the NV.AX Plus microcode
directly into console macrocode at the the address: of the Console_Halt IPR. Console halts are.
initiated at powerup, by certain microcode-detected double error conditions, and by the assertion
of the external halt interrupt pin, HALT_H.

There is no exception stack frslme associated with a console halt. Instead, the SAVPC and SAVPSL
processor registers provide the necessary information. The format of SAVPC (lPR 42) is shown
in Figure 14-1.

Figure 14-1: Console Saved PC

31 30 29 281:7 26 25 24123 :2 21 2011~ 18 l' 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00
.;.--ofo---.;.--ofo---ojo--ofo------ofo---+--..---ojo-----+--ojo--.;.--ojo--ojo--ojo--ofo--"ojo--';'--';'--';'--';'--+--ojo--ojo--+--+--+--+--+--+

Saved PC I :SAVPC

~--~-- ---t---+--+--""--.--.--""--.--.--""'''-+--~--+--'''--+--+-... +--.,.. ... -+--.... --.,..--'"I"--+--+--+--'""--... -... --~--+

The PSL, halt code, MAPEN<:O>, and a validity bit are saved in SAVPSL (IPR 43). The format
of SAVPSL is shown in Figure 14-2. The halt codes are shown in Table 14-2.

Figure 14-2: Console Saved PS;L

I

3: 30 29 28127 26 25 24123 :2 21 20119 18 l' 16115 14 1~ 12111 10 09 OSl07 06 05 04103 02 01 00

PSL<31:16> Halt CodE? PSL<7: 0> ! :SAVPSL

1 I
. MAPEN<O> --+ I

Invalid SAVPSL if 1 --+

The possible halt codes that Dlay appear in SAVPSL<13:8> are listed in Table 14-2.

Table 14-2:

Mnemonic

ERR_HLTPIN

ERR_PWRUP

ERR_INTSTK

ERR_DOUBLE

ERR_HLTINS

ERR_ILLVEC

ERR_WCSVEC

ERR_CHMFI

ERR_lEO

ERR_IEl

Console Halt Codes

Code (Hex)

02

03

04

05

06

07

08

OA
10

11

Meanjng

HALT_H pin asserted

Initial power up

Interrupt stack not valid

Machine check during exception processing

HALT instruction in kernel mode

megal SOB vector (bits <1:0> :: 11)

WCS SCB vector (bits <1:0> = 10)

CHMx on interrupt stack

ACVITNV during machine check processing

ACVITNV during kemel-stack·not-valid processing

DIGfTAL CONFIDENTIAL Error Handling 14-11

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 14-2 (Cont.): Console Halt Codes

Mnemonic Code (Hex)

ERR_IE2 12

ERR_IE3 13

ERR_IE_PSL_26_24_101 19

ERR_IE_PSL_26_24_110 1A

ERR_IE_PSL_26_24_111 1B

ERR_REI_PSL_26_24_101 lD

ERR_REI_PSL_26_24_110 1E

ERR_REI_PSL_26_24_111 1F
ERR_StLFTEST_FAILED 3F

Meaning

machine check during machine check processing

machine check during kemel-stack-no~valid process-
ing

PSL<:26:24> = 101 during interrupt or exception

PSL<:26:24> = 110 during interrupt or exception

PSL<:26~24> = 111 during interrupt or exception

PSL<:26~24> = 101 during REI

PSL<:26:24> = 110 during REI

PSL<:26~> = 111 during REI

Microcoded powerup selftest failed

At the time of the halt, the current stack pointer is saved in the appropriate IPR (0 to 4),
and SAVPSL<31:16,7:0> are loaded from PSL<31:16,7:0>. SAVPSL<15> is set to MAPEN<O>.
SAVPSL<14> is set to 0 if the PSL is valid and to 1 if it is not (SAVPSL<14> is undefined after
a halt due to a system reset). SAVPSL<13:8> is set to the console halt code.

To complete the hardware restart sequence and thereby pass control to the console macrocode,
the state shown in Table 14-3 is initialized.

Table 14-3:· CPU State tnltiallzed on Console Halt

State

SP

PSL

PC

MAPEN

ICCS

SISR

ASTLVL

.PAMODE

BPCR<31:16>

CPUID

all else

14-12 Error Handling

Initialized Value

IPR 4 (IS)

041FOOOO (hex)

from CONSOLE_HALT IPR

o
o (after reset, code=3, only)

o (after reset, code=3, only)

4 (after reset, code=3, only)

o (after reset, codec3, only)

FECA(hex) (after reset, code=3, only)

o (after reset, code=3, only)

undefined

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.5' Machine Checks

The machine check exception indicates a serious system error. Under certain conditions, the error
may be recoverable by restarting the instruction. The recoverability is a function of the machine
check code, the V.A.X Restart bit (VR) in the machine check stack frame, the opcode, the state of
PSL<FPD>, the state of certain second-error bits in internal error registers, and most probably,
the external error state.

A machine check results from an internally detected consistency error (e.g., the microcode reaches
an "'impossible" state), or a hardware detected error (e.g., an uncorrectable FILL_ECC error on a
data read).

A machine check is technically a macro instruction abort. The NVAX Plus microcode attempts to
convert the condition to a fault by unwinding the current instruction, but there is no guarantee
tha t the instruction can be properly restarted. As much diagnostic information as possible is
pushed on the stack and provided in other error registers. The rest of the error parsing is then
left to the operating system.

When the software machine chE~ck handler receives control, it must explicitly acknowledge receipt
. of the machine check with the following instruction:

14.5.1 Machine Check Stack Frame

The machine check stack franle is shown in Figure 14-3. The fields of the stack frame are
described in Table 14-4, and the possible machine check codes are listed in Table 14-5. The
contents of all fields not explicitly defined in Table 14-4 are UNDEFINED.

Figure 14-3: Machine Check Stack Frame

31 30 2~ 28127 26 25 24123 22 21 2011g 18 17 16115 14 13 12111 10 Oi 08107 06 05 04103 02 01 00
---+--+--or--"'--+--+--.,.--+--+--+--or··-+--"'"--+--+--+--+--+--+--or--+--+--+--+--+--+--+--+--"'--+--+--+

2' (byt~ count of parameters, not including this longword) I : (SP)
+--.--or--+-----+--+--+--+--+--+--+··-+--+--+--+--+--+-~+--+--+--+--+--+--+--+--+--+--+-- ... --+--+--+
I ASTLV!. I~: x l; x x I Machin .. Check Code I x x x x x x x oX I CPOIIl

... --~.--"I"--+-- ... --+--+--+--+--+--+--+ •• -+--+--+--+-- ... --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
!NT.SYS register

... --.-- ... --+--... --+--+--+--+--+--+--+ •. -+--+--~--+--+--+-.... --+--+--+--+--+--+--+--+--+--+--+--+--+--+
SAVEPC register

+--+--... --+--+--+--+--+--+--+--+--+ •• _+--+
VA register

"'--+--+--+--+--+-_·--+--+--+--+--+··-+--+--or--+--+--"'--+--+--+--+--+--.--+--+--+--+--+--+--+--+--+
Q regist.er

+--.--+--+--+--... --... --+--+--+--+--"1"""-+--+
c>pcoae I x x l: x l: x oX x IVR I x x x x x x oX I

... --~.-- ... --+--+--+--+--+--+.:-+--+--+ •• -+--+--+--+--+--+--+--+--'+--+--+--+--+--+--+--+--+--+--+--+--+
PC

... --+--+--+--+--+--+--+--+--+--+--+ •• _+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--... --+--+--+
PSI..

+--+--+--+--+--+--+--... --+--+--+--+ •• _+--+--+--+--+--+-~+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
31 30 29 28127 26 25 24123 22 21 20119 18 17 l6115 14 13 l2111 lO 09 08107 06 05 04103 02 01 00

DIGITAL CONFIDENTIAL Error Handling 14-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 14-4: Machine Check Stack Frame Fields

Longword Bits

(SP)+O 31:0

(SP)+4 31:29

Contents

Byte count--This longword contains the size of the stack frame in bytes, not
including the PC, PSL, or the byte count longword. Stack frame PC and PSL
values should always be referenced using this count as an offset from the stack
pointer.

ASTLVI.-This :field contains the current value of the VAX. ASTLVL register.

23:16 Machine check code-This longword contains the reason for the machine check,
as listed in Table 14-5.

7:0 CPUID-This field contains the current value of the VAX. CPUID register.

(SP)+8

(SP)+12

(SP)+16

(SP)+20

(SP)+24

31:0

31:0

31:0

31:0

31:28

25:24

23:16

7

14-14 Error Handling

Il\TT.SYS register-This longword contains the value of the INT.SYS register
and read onto the Abus by the microcode. The :fields in this register are de­
scribed in the Interrupt Section chapter of the NVAX. Plus chip specification
Chapter 10 of the NVAX. Plus chip speci:fication.

SAVEPC-This :field contains the SAVEPC register which is loaded by microcode
with the PC value in certain circumstances. It is used in error handling for PrE
read elTOrs with PSLcFPD> set in this stack frame.

VA register-This longword contains the contents of the Ebox VA register, which
may be loaded from the output of the ALU.

Q register-This longword contains the contents of the Ebox Q register, which
may be loaded from the output of the shifter.

Rn-This field contains the value of the Rn register, which is used to obtain the
register number for the CVTPL and EDIV instructions. In general, the value
of this :field is UNPREDICTABLE.

Mode-This :field contains a copy of PSLcCUR_MOD>.

Opcode-This field contains bits <7:0> of the instruction opcode. The FD bit is
not included.

VR-This field contains the VAX. Restart bit, which is used to communicate
restart. information between the microcode and the operating system. If this
bit is set, no architectural state .has been changed by the instruction wmch was
executing when the error was detected. If this bit is not set, architectural state
was modi:fied by the instruction.

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 14-5: Machine Check Codes

Mnemonic Code (Hex)

MCHK_UNKNOWN_MSTATUS 01

MCHK_INT.ID_ VALUE ·02

MCHK_CANT_GET_HERE 03

MCHK_MOVC.STATUS 04

MC~ASYNC_ERROR 05

MCHK_SYNC_ERROR 06

Meaning

Unknown memory management fault parameter re­
turned by the Mbox (see Section 14.5.2.1)

nlegal interrupt ID value returned in INT.SYS (see
Section 14.5.2.2)

illegal microcode dispatch occurred (see Section 14.5.2.3)

nlegal combination of state bits deteeted during string
instruction (see Section 14.5.2.4)

Asynchronous hardware error OCCUlTed (see Section 14.5.2.5)

Synchronous hardware error occurred (see Section 14.5.2.6)

14.5.2 Events Reported Via Machine Check Exceptions

This section describes all the errors which can cause: a machine check exception. A parse tree is
given which shows how to detE~rmine the cause of a given machine check. After that, there is a
description of each error. For each error, the recovery procedure is given. Where appropriate, the
conditions for retry are given. See Section 14.3.3 and Section 14.3.4 for more on error recovery
and error retry.

Figure 14-4 is a parse tree which should be used to analyze the cause of a machine check excep­
tion. The errors shown in the parse tree are described in detail in the sections following the figure.
The section is indicated in parE~nthesis with each error. Note that it is assumed that the state be­
ing analyzed is the saved state, as described in Section 14.3.1. Otherwise the state could change
dw."ing the analysis procedure, leading to possibly incorrect conclusions. (See Section 14.3.2 for
general information about error analysis.)

DIGITAL CONFIDENTIAL Error Handling 14-15

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 14-4: Cause Parse Tree for Machine Check Exceptions

MACHINE CHECr.
----+ (selec~ on~)

MCHr. UNKNOWN MSTATOS
·------=-------=---------------------------------->-Ony~own memory mana9ement status error (Section14.5.2.:)
I
I MCHf._INT.ID_VALOE
.---> 111e9al interrupt It error (Section 1'.5.2.2)

MCHr._CAN'T_GE'I_HERE
+---> Presumec impossibl~ microcod~ address reached

(Sect.ion H. 5.2.3)
MCHK_MOVC.STATOS

+---> MOVCx status encoding error (Se.ction 14. :' .• 2.")

MCHK ASYNC ERROR
+----+ (select all, at least one)

S_TBSTS<LOCK> .----+ iselec~ all)

S_TBSTS<DPERP.>
--> TB PTE data parity error (Section 14.5.:.5.1)

S_TBSTS<TPERR>
+---------------------------------------> TB tag parity error (Section 1'.5.2.5.1)

none of th~ abov~
~---------------------------------------> Inconsistent status (no TBSTS error bits set)

(Section 14.5.2.7)

.--> 53 stall timeout error (Section 14.5.2.5.2)

non~ of the above
.--> Inconsistent status (no asynchronous machine check error bit

set) (SQction 14.5.2.7)
MCHl: SYNC ERRO?,

.----+ (selQct all, at lQast one)

S_ICSR<LOCK>
~----+ (select all, at 1Qast one)

v v
1 2

S_ICSR<DPERRO>
~---------------------------------------> VIC (virtual instruction cache) data parity error in bank 0

(SQc':.ion H.5.2.('1)

+---------------------------------------> VIC tag parity Qrror in bank 0 (Section 14.5.2.6.1)
I
I 5_ICSR<DPERP.1>
+---------------------------------------> VIC data parity Qrror in bank 1 (Section 14.5.2.6.1)

S_ICSR<TPERP.1>
+---------------------------------------> VIC tag parity Qrror in bank 1 (Section 14.5.2.6.1)

non. of the above
+---------------------------------------> InconsistQnt status (no ICSR error bits set)

(SQction H. 5.2. 7)

Figure 14-4 Cont'd on next page

14-16 Error Handling DIGITAL CONFIDENTIAL

:J •• _i .. ' ____________________________ ,

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 14-4 (Cont.): Cause Parse Tree for Machine Check Exceptions

1 :2
v "-'

S ~IU STAT<FILL ECC> AND
not S-BIU STAT<FILL CP..tl> ANt)
NOT S-PCSTS<PTE ER>-

+----+ (s~l~ot onel

+----+

S_BIU_STAT<ARf._CMD>-READ
+------------------_.---------------> unoorreotable ECC error on read

(Section 14.5.:2.6.:2)

+ ___________________ •. _____________ 0> logged error is from previous wri~e

S BID STAT<FILL ERP~ AlID
not S-BIU STAT<CP.D> AND
S PCSTS<PTE ER>l

~---~+ (select-one)

+----+ (selec~ one)

S_BIV_STA1<ARf._CMD>-READ

(Section:l'.5.:2.6.3)

+-------------------.---------------> Uncorrectable ECC error on PTE read
(Section 14.5.2.6.7.2)

+-------------------._--------------> logged error ,is from previous write
(Section 14.5.2.6.3)

S_BIU_STAT<FI~L_SEO> AND
+-----------------------------,---------------> Lost Fill error on PTE Read

S ~IV STAT<BIU HERP. or 'l'PERR or TPCERR>
NOT S~PCSTS<PT£-ER>

... ----+. (seleo~ one)

S_BIU_STAT<AP$_C~> - READ

(Section 14.5.;:.6.4)

+-----------------------------> read error (cAok Po ERR or Tag/CTL parity)
I (Section 14.5.2.6.5)
I
I S_~IU_STAT<AP~_CMD> - not READ
+-----------------------------> logged error is from previous write

(Section 14.5.::2. 6.3)

S_BIU_STAT<BIU_HERR or TPE~R or TPCERR>
NO'.::' S_PCSTS<PTE_ER>

+----+ (select one)

S_BIU_STAT<ARf._CMD> • READ
+------------------------,-----> read error ~cAck H ERR or Tag/CTL parity)
I (Section 14.5.:2.6.5)
I
I S_~ID_STAT<AP~_CMD> - not READ
+------------------------,-----> logged error is from previous write

(Seotion 14.5.2.6.3)

S_BIV_STAT<BID_SEO> AND ... ----------------------------.. --------------~> Lost BIU error
(Seotion 14.5.2.6.6)

none of the above

Figure 14-4 Cont'd on next page

DIGITAL CONFIDENTIAL Error Handling' 14-17

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 14-4 (Cont.): Cause Parse Tree for Machine Check Exceptions

~--> !nconsis~en~ status (nc caus~ founc fo= synchronous machin~ checy.;
(Se ct 1 or, H.:'.;:. 7)

otherwise

+---> Inconsis~ent status (unknown machine checr. code)
(Sectior, H. 5.2.7)

Notation:
(soQlect one) - Exac~ly one case must bw trUE:. !f zoQro or more than onE: is

true, the status is inconsistent.
(soQlect all) - More than one case may bw true.
(soQloQct all, a~ least one) - All thoQ cases are possible causes of a particular machine check.

More than onE: may be tru~. At least one must be tru~ or th~ status
is inconsistent. A case is not considered true if it evaluates to
"Not a machine cheer. cause".

otherwise - .fall-through ease .for (select one) if nco othoQ= case is true.
none of th~ above - .fall-through caSE: .for (soQlect all) or (selec~ all, at least one)

i: no othe= case is true.

14.5.2.1 MC~K_UNKNOWN_MSTATUS

Description: An unknown memory management status was returned from the Mbox in response
to a microcode memory management probe. This is probably due to an internal error in the Mbox,
Ebox, or microsequencer.

Recovery procedures: No explicit error recovery is required in response to this error.

Retry condition: This error can only happen in microcode processing of memory management
faults for a virtual memory reference. Retry if:

CVR = 1) OR (PSL<FPD> = 1).

14.5.2.2 MCHK_INT.lD_VAlUE

1

Description: An illegal interrupt ID was returned in INT.SYS during interrupt processing in
microcode. This is probably due to an internal error in the interrupt hardware, Ebox, or microse­
quencer.

Recovery procedures: No explicit error recovery is required in response to this error,

Retry condition: This error can only happen in microcode processing of interrupts which occurs
between instructions or the middle of interruptable instructions. Retry if:

CVR = 1) OR (PSL<FPD> = 1).

At least one potential PTE cause must be found or the status is inconsistent (see
Section 14.5.2.7).
Some of the outcomes indicate a
potential synchronous machine check cause which is not a potential PTE read error cause. These errors should be' treated
separately.

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 14.5.2.7). Some of the outcomes
indicate a potential synchronous machine check cause which is not a potential PTE read error cause. These errors should
be treated separately.

14-18 Error Handling DIGrTAl.CONFIDENTIAl

i_I_.II!I _________________________ '

NVAX Plus CPU Chip Functio~al Specification, Revision 0.3, 0ctober 1991

14.5.2.3 MCHK_CANT _GET_HERE

Description: Microcode execution reached a presumably impossible address. This is probably
due to a microcode bug or an in.ternal error in the Ebox or microsequencer.

Recovery procedures: No explicit error recovery is required in response to this error.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1).

14.5.2.4 MCHK_MOVC.STATUS

Description: During the execution of MOVCx, the two state bits that encode the state of the
move (forward, backward, fill) were found set to the fourth (illegal) combination. This is probably
due to an internal error in the :Ebox or microsequencer.

Re(~overy procedures: No explicit error recovery is required in response to this error.

Retry condition: Because the state bits encode the operation, the instruction can not be
restarted in the middle of the MOVCx. If software can determine that no specifiers have been
over-written (MOVCx destroys RO-R5 and memory ~ue to string writes), the instruction may be
restarted from the beginning by clearing PSL<FPD>. This should be done only if the source and
destination strings do not overlap and if:

(PSL<FPD:> = 1).

14.5.2.5 MCHK_ASYNC _ERROR

This machine check code repolts serious errors which interrupt the nricrocode at an arbitrary
point. Many internal machinE~ states (e.g., bits in the PSL, the PC or SP) are questionable.
Recovery is typically not possible.

14.5.2.5.1 TB Parity Errors

Description: Parity errors in tags and PrE data in the TB cause an asynchronous machine
check by directly forcing a microtrap in the microsequencer. The reference being processed by
the Mbox may be for an explicit Ebox reference, an operand prefetch or DEST_ADDR reference
from the specifier queue, or an instruction prefetch from the IREF latch. Also the reference could
be a read generated by the Mbox within a TB miss for a process space virtual address since
process page tables are stored in virtual memory (system space).

Description (TB PTE Data JParity Error): A parity error'in the PrE data portion of a TB
entry which hit had a parity error.

Description (TB Tag Parity :Error): A parity error in the tag portion of a TB entry which hit
had a parity error. .

Recovery procedures: To recover, clear TBSTS<LOCK>.

Retry condition: Since the Ibox is nearly always able to issue instruction prefetches, TB parity
errors could occur at practically any time. This makes it impossible to determine what machine
state is incorrect. There is no guarantee that aU writes with a different PSL<CUR_MOD> com­
pleted successfully. Therefore even the stack frame PSL<CUR_MOD> can't be used to determine
whether system data is unco1T1:lpted.

DIGITAL CONFIDENTIAL Error HandUng 14-19

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

So retry is not possible. Crash the system.

NOTE

At this time, a change is being considered in REI (for reasons unrelated to TB parity
errors) which might guarantee that the stack frame PSL<CUR_MOD> value is correct
for TB parity errors. This would mean that if a given TB parity error occurs in user
mode, for example, that writes from higher privilege modes must have completed suc·
cessfully. In other words, in the event of a 'TB parity error, it would be known that
all pages protected from writes at the stack frame privilege mode were uncorrupted.
Software could kill all jobs which had access to the potentially corrupted pages instead
of crashing the system. (This might be most feasible for processes incurring TB parity
errors in USER mode.)

14.5.2.5.2 Ebox S3 Stall Timeout Error

Description: 83 stall timeout error~ occur when the Ebox microcode is stalled waiting for some
result or action which will probably never occur. S4 stalls in the Ebox cause 83 stalls and therefore
can lead to S3 stall timeout. Additionally, field queue stall and instruction queue stall can cause
this timeout. (These last two situations are not Ebox pipeline stalls, but they are similar in

'effect.) The timeout can occur in any microfiow for a number of reasons. Machine state may be
corrupted. This timeout is probably due to an internal error in :NVAX Plus such that one box is
waiting for another to do something which' it isn't going to do. An example would be if the Ebox
microcode expected one more source specifier than the Ibox delivered. The Ebox will stall until
the timeout occurs waiting for the Ibox to deliver one more source operand via the source queue.

83 timeout errors can be caused by failures of various pipeline control circuits in the Ebox. Also
a deadlock within a box or across niultiple boxes can cause this error.

Recovery procedures: To recover, clear the S3_STALL_ TIMEOUT bit in ECR.

Retry condition: Because this error can occur at any time, it is not possible to determine what
machine state is incorrect. Also, this error should never happen and indicates either a serious
failure in the chip. So retry is not possible. Crash the system.

14.5.2.6 MCHK_SYNC_ERROR

This machine check code reports errors which occur in memory or 10 space instruction fetches or
data reads. Except in the case of PTE read errors, core machine state should be consistent since
microcode has to explicitly access an operand or instruction in order incur this error. Microcode
does not access memory results or dispatch for a new instruction execution with core machine
state in an inconsistent state.

PTE read errors on write transactions can cause a microtrap at an arbitrary time, and so core
machine state may be inconsistent.

Many of the error events described below for synchronous machine check are possible causes. If
more than one is present, there is no way to determine which actually caused the machine check.
If exactly one possible cause is discovered, then the machine check may be attributed to that cause.
The reason multiple causes may be present is that the :NVAX Plus chip prefetches instructions
and data. If the CPU branches or takes an exception before using data it has requested, then
the pending machine check is taken as a soft error interrupt (though it might not be recoverable
in the final analysis).

14-20 Error HandHng DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3,. October 1991

If multiple errors occur, recovery and retry may be 'possible. It is recommended that retry from
multiple errors be done only if one error report does not interlere with analysis of, and recovery
from, another error.

If two errors are entirely separate, neither interfering with the analysis and recovery of the
other, then it is acceptable to r'etry from these errors provided all the error analyses and recovery
procedures result in a retry indication.

In several cases, lost errors Slre tolerated. In each case, the strong tendency to prefetch data
exhibited by the NVAX PLUS pipeline makes the particular lost error likely, given that one error
of that kind occurred. Also, in each case, if data is lost in the lost error, a hard error interrupt
is posted. So these errors are tolerated as long as they do not cause a hard error interrupt. The
BIU_STAT<lost.write_err> bit. is maintained to report errors on write operations have occurred
which are not recorded. If BIU_STAT<::lost_write_err> is set the H_ERR interrupt is asserted.

Errors in opcode or operand specifier fetching are always detected before architecturally visible
state within the CPU is modified. This means the VR bit £ro~ the machine check stack frame
should be 1. This error handling analysis attempts to recover from multiple errors, so the retry
condition for each error is made as general as possible. If the machine check handler finds only ~
en'ors of the kind listed here, then VR should be 1 and it is an inconsistent report if it is not (see
Section 14:5.2.7).

• VI C parity errors.

• uncorrectable ECC FILL en-ors in I-stream reads.

• CACK H_ERR in I-stream reads.

14.5.2.6.1 VIC Parity Errors

Description: A parity error was detected in "the VIC tag or data store in the Ibox. VIC parity
" errors cause a machine check when the Ebox microcode requests dispatch to a new instruction

execution microfiow or attempts to access an operand within an in.struction execution microfiow.

VIC Data Parity Errors: A parity error occurred in data bank 0 (DPERRO) or data bank 1
(DPERR1) of the VIC.

VIC Tag Parity Errors: A parity error occurred in tag bank 0 (TPERRO) or tag bank 1 (TPERR1)
of the VIC.

In all cases, the quadword virtual address of the error is in VMAR.

Pending InteITUpts: A soft error interrupt should be pending.

Recovery procedures: To rel::over, disable and flush the VIC by re-writing all the tags (using
the procedure in Section 14.3.3.1.1.1). Also, clear .ICSR<LOCK>.

Re,try condition: Retry if:

(VR = 1) OR (PSL<FPD> = 1).

DIGrTAL CONFIDENTIAL Error Handltng 14-21

:NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

14.5.2.6.2 FILL Uncorrectable ECC Errors

Description (un correctable ECC errors): An uncorrectable data error was detected by the
Cbox in an I-stream or D-stream read fill. Uncorrectable data errors are the result of a multiple
bit error in the data read from the Bcache or supplied by the system on a READ_BLOCK..

Description (all cases): S_FILL-AODR contains the address of the error, and S_FILL_
SYNDROME contains the syndrome calculated by the ECC loglc.

Pending Interrupts: A soft error interrupt should be pending.

Recovery procedures (uncorrectable ECC errors): To recover, clear BIU_ST~T<FILL_
ECC>.

Recovery procedures: Flush the Bcache.

Retry condition: If no writeback error occurs in the Bcache flush, retry if:

(VB = 1) OR (PSL<FPD> = 1).

If a writeback error occurs in the Bcache flush, then the data is presumed to be unrecoverable.
Given that the address is available (no error in the tag store), software should determine if the
error is fatal to one process or the whole system and take appropriate action. Otherwise, crash
the system.

14.5.2.6.3 FILUBIU write error

The error reported in BIU _STAT was not on a bus read cycle and is not the cause of the machine
check. Fill_seo or biu_seo should be set, and this error may be the machine check cause. Refer
to (Section 14.5.2.6.4) for Lost Fill errors and to (Section 14.5.2,6.6) for Lost BIU errors.

14.5.2.6.4 Lost Fill Error

Description: Some fill errors were not latched because a previous fill error waS reported in the
BIU _STAT. If the reported error is not a read, a fill error while merging write data from a write
has been logged. The logged error is not the cause of the machine check., but the fill_seo might
be. A hard error should be pending if the reported error was not correctable. If the reported error
is a read or a correctable fill error and lost_write is not set, the error causing fill_sea to set may
be the cause of the machine check, and can be retried unless the aborted instruction has altered
essential state.

If S_PCSTS<PTE_ER> is set refer to (Section 14.5.2.6.7) on PTE read errors.

Lost fill errors may be caused by more than one operand prefetch to the same cache block.

Recovery for lost fill errors depends on whether the pending interrupt is a hard or soft error inter­
rupt. The machine check error handling software should defer recovery until the expected hard or
soft error interrupt occurs. Once the interrupt is taken, the error recovery and restart instructions
found in the hard error interrupt and soft error interrupt sections should be referenced.

Software should employ some mechanism to record that an interrupt for a lost fill error is pending.
This mechanism should allow detection of a case in which an expected interrupt does not occur
(once IPL is lowered). If the expected interrupt does not occur when IPL is lowered, then a serious
inconsistency exists and the system should be crashed.

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both.

14-22 Error Handling DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Recovery procedures: No specific recovery action is required. Note that BIU_STAT<FILL_
SEO> is not cleared. It will be cleared by the hard or soft error interrupt handler.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = 1).

14.5~2.6.5 BIU_HERR

Description: An I-stream or D-stream read returned CACK_HERR the system environment or
did not complete due to a tag Oir tag control parity error.

I-stream errors cause a machine check when the Ebox microcode requests dispatch to a new
instruction execution microfiow or attempts to access an operand within an instruction execution
microfiow.

D-stream read errors cause a machine check when the Ebox microcode accesses prefetched
operand data or when the Mbox: returns data tagged with an error indication to the Ebox register
file.

D-stream ownership read errors cause a machine check when the Ebox microcode accesses
prefetched operand data.

PelJlding Interrupts (all easels): A soft error interrupt should be pending.

Recovery procedures (all cases): Clear BIU_STAT<BIU_HERR>.

Retry condition: Retry if:

(VR = 1) OR (PSL<FPD> :: 1).

14.5.2.6.6 Lost Fill Error

Description: Some fill errors were not latched because a previous BIU error was reported in
the BIU_STAT. If the reported error is not a read, a, fill error while merging write data from a
write has been logged. The logged error is not the cause of the machine check, burt the BIU_seo
might be. A hard error should be pending. If the reported error is a read and lost_write is not
set, the error causing biu_seo to set may be the cause of the machine check, and can be retried
unless the aborted instruction has altered essential state.

'If S_PCSTS<PTE_ER> is set rE!fer to (Section 14.5.2.6.7) on PTE read errors.

Lost biu errors may be caused by more than one operand prefetcb to the same cache block.

Recovery for lost biu errors depE!nds on whether the pending interrupt is a hard or soft error inter­
rupt. The machine check error handling software should defer recovery until the expected hard or
soft error interrupt occurs. Onct~ the interrupt is taken, the error recovery and restart instructions
found in the hard error interrupt and soft error interrupt sections should be referenced.

Software should employ some mechanism to record that an interrupt for a lost biu error is pending.
This mechanism should allow detection of a case in which an expected interrupt does not occur
(once IPL is lowered). If the expected interrupt does not occur when IPL is lowered, then a serious
inconsistency exists and the sYI;tem .should be crashed.

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both.

DIGITAL CONFIDENTIAL Error Handling 14-23

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Recovery procedures: No specific recovery action is required. Note that BIV_STAT<FILL_
SED> is not cleared. It will be cleared by the hard or soft error interrupt handler.

Retry condition: Retry only if:

(VR = 1) OR (PSL<FPD> = I),

14.5.2.6.7 PTE read errors

The following sections describe error handling for PTE read errors. PrE read errors are read
errors which happen in reads issued by the Mbox in handling a TB miss. Handling of these errors
is different from handling the same underlying error (BIV_HERR, BC_TPERR, BC_TCPERR,
FILL_ECC) when PTE read isn't the cause.

If S_PCSTS<PTE_ER> is set, then a PrE read issued by the Mbox in processing a TB miss had
an unrecoverable error. The TB miss sequence was aborted because of the error. The original
reference can be any I-stream or D-stream read or write. If the original reference was issued by
the Ebox, then the PTE read which incurred the error will have been retried once (because of a
special hardware/microcode mechanism for handling PTE read errors on Ebox references).

PTE read errors are difficult to analyze, partly because the read error report in the Cbox 'does
not directly indicate that the failing read was a PrE read. Because of this and because PTE read
errors should be rare (a very small percentage of the reads issued by the Mbox are PrE reads),
multiple errors which interfere with the analysis of the PTE error are not considered recoverable.

The mechanism for reporting PTE read errors on Ebox references involves the Mbox forcing the
Ebox (via a microtrap) into the microcode routine which normally handles memory management
faults. This routine probes the address of the original reference, effectively retrying the failing
PTE read. Assuming the error is not transient, the probe by microcode will cause a machine check.
If the error does not occur on the probe, microcode restarts the currep.t instruction stream. So
machine checks caused by PTE read errors can easily occur with the particular PTE read error
having occurred twice (with a lost error bit set in the relevant Cbox error register). The analysis
here tolerates these particular multiple error reports and allows retry in those cases, provided
the remainder of the error analysis indicates retry is appropriate. (Note that there is no way to
tell from the information available to the machine check handler whether the original reference
was an Ebox or Ibox reference.)

If the reference which incurs the PTE read error is a write, S_PCSTS<PTE_ER_ WR> will be set.
In this case the- origi.i1al write is lost. No retry is possible partly because the instruction which
took the machine check may be subsequent to the one which issued the failing write. Also, PTE
read errors on write transactions can cause a machine check at an practically arbitrary time in
a microcode flow, and core machine state may not be consistent.

14.5.2.6.7.1 PTE Read Errors In Interruptable Instructions

Another special case associated with PTE read errors exists for interruptable instructions (specifi­
cally CMPC3, CMPC5, LOCe, MOVC3, MOVC5, SCANC, SKPC, and SPANC). For these instruc­
tions, if the PTE read error occurred for an Ebox reference, the PC in the machine check stack
frame points to the instruction following the interrupted instruction. In this case, the SAVEPC
element in the machine check stack frame is the PC of the interrupted instruction. However in
all other cases, SAVEPC is UNPREDICTABLE. This case is not considered recoverable because
analysis of the error information can not unambiguously conclude that this case is present. To
tell that this case might be present, the error handler examines the FPD bit in the PSL in the

14-24 Error Handling DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

machine check stack frame. If FPD is set in the stack frame (in the case of a PTE read error)
then one of the following is tnle:

• One of the intelTUptable instructions listed above incurred the PTE read error. In this case,
SAVEPC from the machine check stack frame points to the interrupted instruction, and PC
in the stack frame points t,o the next instruction.

• An REI instruction loaded a PSL with FPD set and a certain PC. The Ibox inCUlTed the PTE
read error in fetching the opcode pointed to by that PC. In this case, the PC in the stack
frame poin"ts to the instruc:tion which was the target of the REI and SAVEPGfrom the stack
frame is unpredictable.

It is not possible to determine with certainty which of the two above cases is the cause of a machine
check with S_PCSTS<PTE_ER> set and stack frame PSL<FPD> set. Retry is not possible since
software can not tell which PC to restart with. However, software may wish to pr0be the location
pointed to by the PC in the stack frame, expecting a possible machine check as a result. If
a machine check does occur, that is information indicating that the second case occurred (not
totally unambiguously, of cow~se). A very good guess may be mane by a person examining the
en'or report if the machine check stack frame and the result of this probe is aivailable in the
report.

14.5.2.6.7.2 Uncorrectabie ECC FILL Errors and on PTE Reads

If

Description (uncorrectable ECC errors): A FILL lIDcorrectable data error was detected by
the Cbox in a PTE read. Un correctable data errors are the result of a multiple bit error in the
data read from the Bcache, ofFILL from the system on a READ_BLOCK or LDxL.

Description (all eases): S_]?ILL~ADDR contains the cache address of the error, and FILL_
SYNDROME contains the syndrome calculated by" the ECC logic. (If the physical address is
found to be in 10 space, it is an inconsistent statUs. See Section 14.5.2.7.)

S_:BrU_STAT<FILL_SEO> may be set. This elTor is probably due to the same PTE:error occurring
more than once. This is an acceptable assumption unless a ham error interrupt occurs after
handling this error.

Pending Interrupts: A soft E~lTOr interrupt should· be pending.

Recovery procedures (uncorrectable ECC errors): To recover, clear BIU_STAT<FILL_
ECC>.

Recovery procedures (both eases): Flush the Bcache. Clear PCSTS<PTE_ER>.

Retry condition: If no writeback error occurs in the Bcache flush, retry if:

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE_ER_WR> = (»).

(PSL<FPD> = 1) OR (S_PCSTS<PTE_ER_'WR> = 1),
crash the system. If a writebac:k eITor occms in the Bcache flush, then the data is presumed to be
unrecoverable. Software must determine if the error is fatal to one process or the whole system
and take appropriate action.

DIGITAL CONFIDENTIAL Error Handling 14-25

mTAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.5.2.6.7.3 CACK_HERR on PTE Read

Description: A PTE read returned CACK.-HERR.

S_BIU_STAT<BIU_SEO> may be set. This error is probably due to the same PTE error occurring
more than once. This is an acceptable assumption unless a hard error interrupt occurs after
handling this error.

Pending Interrupts: A soft error interrupt should be pending.

Recovery procedures: Clear BIU_STAT<CACK_HERR>. Clear PCSTS<PTE_ER>.

Retry condition: Retry if:

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE_ER_WR> = 0).

Otherwise, crash the system.

Post Retry Recovery: If the same fill error recurs on retry, then the block is probably "lost".
In this case the more general sense of "lost" is implied. Software must determine if the error is
fatal to one process or the whole system and take appropriate action. co

NOtE

It may be appropriate in this case to first cause each CPU in the system to fiush its
B cache , and then retry once more.

14.5.2.7 Inconsistent Status In Machine Check Cause Analysis

Description: A presumed impossible error report was found in the error registers. This could
be due to a hardware failure or bug, or to incomplete analysis in this spec.

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both.

Recovery procedures: No specific recovery action is called for.

Retry condition: No retry is possible. The integrity of the entire system is questionable. Crash
the system.

14-26 Error Handling DIGITAL CONFIDENTIAL

NVAX Plus CFtU Chip Functional Specification, Revision 0.8, October 1991

14.6 Hard Error Interrupts

Hard error'interrupts are requested to report an error that was detected asynchronously with
respect to instruction execution, This results in an intetTUpt at IPL 1D (hex) to be dispatched
through SGB" vector 60 (hex). Typically, these error indicate that machine state has been corrupted
and that retry is not possible,

The stack frame for a hard error interrupt is shown in Figure 14-5.

F;gure 14-5: Hard Error IntE!rrupt Stack Frame

3l 30 29 28127 26 25 241:3 22 21 20119 18 1i 16115 14 13 12111 10 O~ 0810i 06 05 04103 02 01 00

+-,.~-----~--+--+--+--+--~--+--+--+--~--~--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--~--+--+
PC I : (SP)

.--~--~--~--+--+--~--+--+--.--+--.~--+--+--~--+--~--+--+--+-----+--+--~--*--+--+--~--+--+~-+--~-+
PSI,

~ .. ~--+-- -- --+--+--~--.--+--_+_--.+_-- ... --+--O+--.. --+--at_--+_ ... +-- --+--+--+--.--+--+--.--+--+-_._-+--+

14.6."' Events Reported Vita Hard Error Interrupts

This section describes all the E~rrors which can cause a hard error interrupt.

DIGITAL CONFIDENTIAL Error Handling 14-27

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure ,4-6: Cause Parse Tree for Hard Error Interrupts

HARD ERROR InTERRUPT
(sele=t all, a~ least one) .

(st&~US cons~stent with hard error interrupt
~n systQIr: environment error regis't.ers)

+---> Hard error interrupt from system environmen~ .
I (Section H.6.102)
I
I BID STAT<lost write err>
... -----::---------::-----::--------------------------- > Uncorrectable Eee error on e w:i't.e ! ron! MPOj:
I (Section H. 6.1.1)
I
I BI~_STAT<Blu_HEP~> and BIU_STAT<Bro_CMD> - WRITE
+---> System failure (timeout) on a write from Mbo~

(Section 14.6 .lol)

EID STAT<BC TPEP~> ano BID STAT<BID CMD> - WFJT£
+-----:-------:---------------:--------:-----------> Beache tag parity error or. ~ wr~te from Mbo~
I (Section H. 6.1.1)
I
I BIt STAT<BC TCPERR> and BID STAT<BIU C~~ - WP.IT£
+-----::-------::---------------:--------:----------> Bcache tat; contro: parity error on ;: 'ri't.e fron. MDOj~
I (SectionH.Ll.l)
I
I ~ID STAT<:ILL Eee> and no~ BID STAT<CRD>
I - ane BIt' STAT<An eM:» : WR.J:'l'£
+-----------------::--------::----------------------> Uncorrectable Eee error on e write from Mbo~
I (S6ction 14.6.1.1)
I
I otherwis6
+---> Inconsistent status (Section 14.6.1.3)

Notation:
(select all, at least one) - All the cases are possible causes o! a hard error interrupt.

Mor .. thar. one may be true. At least one must be true or the status
is inconsistent.

, 4.6.1.1 Ulicorrectable Errors During Write or Write-Unlock Processing

Description: In processing a write or write-unlock, the Cbox detected a GACK = HERR from
the system, a tag parity error, a control parity error, or an uncorrectable EGG error on the data
read which is to be merged Data from the write is lost.

Uncorrectable ECC errors indicate that two or more bits of the stored data quadword have
changed and the error correcting code can not correct the data. The write merge sequence is
aborted.

Recovery procedures: The data in this block is lost.

Restart condition: If the address of the data is available and no unexpected writeback errors
occurred during the Bcache flush, software must determine if the lost data is fatal to one process
or the whole system and take the appropriate action.

, 4.6.1.2 System Environment Hard Error Interrupts

TBS.

'4-28 Error Handling

-

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.6.1.3 InconSistent Status in Hard Error Interrupt Cause Analysis

Description: A presumed impossible error report was found in the error registers. This could
be due to a hardware failure or bug.

Re:covery procedures: No specific recovery action is called for.

Restart condition: No retry is possible. The integrity of the entire system ilS questionable.
Crash the system.

DIGITAL CONFIDENTIAL Error Handltng 14-29

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.7 Soft Error Interrupts

Soft error interrupts are requested to report errors which were detected, but did not affect in­
struction execution. This results in an interrupt at IPL LA (hex) to be dispatched through SCB
vector 54 (hex).

The stack frame for a soft error interrupt is shown in Figure 14-7.

Figure 14-7: Soft Error Interrupt Stack Frame

31 30 2~ 26127 26 25 24123 22 21 20119 l6 17 l6115 l4 l3 l21l1 lO 09 08107 06 05 04103 02 01 00

PC 1 : (SP)

PSl..

14.7.1 Events Reported Via Soft Error Interrupts

This section describes the errors which can cause a soft error interrupt.

Note that many errors which cause a soft error interrupt may also lead to a machine check
exception. For this reason, a soft error interrupt with no apparent cause is not an inconsistent
state unless the CPU has executed an instruction while IPL was lower than 1A (hex) since the
most recent machine check exception.

"When a soft error interrupt is the only notification for any memory read error which could cause
a machine check, the error didn't cause a machine check for one of the following reasons.

• The error did not occur on the quadword the Ebox or Ibox requested (Pcache fill error).
• The Ebox took an interrupt before accessing an instruction or operand which was prefetched

by the Ibox. (It could be this soft error interrupt.)

• A prefetched instruction or operand belonged to an instruction following a mispredicted
branch, so the Ebox never executed the instruction (and it was flushed from the pipeline
when the branch mispredict was recognized).

• The Ebox took an exception for a different reason before attempting to use an instruction
execution dispatch or access an operand prefetched by the Ibox. (The pipeline was flushed
because of the exception.)

14-30 Error Handling DIGITAL CONFIDENTIAL

' _---------------------;

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 14-8: Cause Parse Tree 'for Soft Error Interrupts

SOFT ERROR INTERRUPT
(s~lect all, at least one)

S_ICSR<LOCl~>

+----+ (select all, at least one)

v

S_ICSR<DPERRO> + ___________________________ c. ________________ > VIC (virtual instruction cache) data parity error ir. bany. C'

(Section14.i.1.1)

+---------------------------_.----------------> VIC tag parity error in bank 0 (Sectioll 14.7.1.1)

S_ICSR<DPERR1>
'!-----------------------------.----------------> VIC Qata parity error in bank 1 (Sect.ion 14.7.1.1)
I
I S_ICSR<TPERP.l>
+----------------------------.----------------> VIC tag parity error in bank 1 (Sect.ion 14.7.1.1)

none of the above
+----------------------------.----------------> Inconsistent st.atus (no I:SR error bits set)

oS _PCSTS<LOcr.>
(select all, at least one)

S_PCSTS<DPERR>
+--> Pcache data parity error (Section 14.7.1.2)

S _PCSTS<IUGHT _BANl~>
+--> Pcache' tag parity error in right bank

(Section H.i.l.2)
S_PCSTS<LEFT_BANK>

+--> Pcache tag parity error in left. bank
(Section 14.7.1.2)

otherwise
+--> Inconsist.ent status (no PCSTS error bits set)

Figure 14-8 Cont'd on next page

DIGrTAL CONFIDENTIAL Error Handling 14-31

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 14-8 (Cont.): Cause Parse Tree for Soft Error Interrupts

v

B!U_STAT<lost_write_er:>
+---> ~ write error occurred after the S_ERR

S_PCSTS<PTE_ER_WP>
+---> hard error on a PTE DREAD for WR!TE or ~TE_UNLOCY.

(Section H.6.:L.l)

no~ S_PCSTS<PTE_EP~WR>
+---_.1.

I B!~_STAT<E!U_HERR> and B!U_STAT~!U_CMD> - READ
.--> hare error from system on read

, B!~_STAT<S!D_SEP~.>
---> soft error fron: systul

(LASER/PVN do no~ issue cack S_ERRJ

B!D_STAT<SC_TPERP.> ane SIU_STAT<EIU_CMD> • READ
---> tag parity error on read
I
I

---> tag control parity error on read
I
i'

---> correctable ECC error on fill or write merge

BID_STAT<!'!!.l._ECC> and not BIU_STAT<CP.D> and BIU STA'I'<ARE- CMD> - REA!>
+--> uncorrectabl; ECC error on fill

(Section H. i .1.3)

none of the above
--> Inconsistent status

Notation:
(select one) - Exactly one case must be true. If zero or more than one is

true, the status is inconsistent.
(select all) - More than one case may be true.
(select all, at least one) - All the cases are possible causes of a soft error interrupt.

More than one may be true. At least one must be true or the status
is inconsistent. ~ case is not considered true if it evaluates to
ftNot e soft error interrupt cause ft

•

otherwise - fall-throu9h case for (select one) if no other case is true.
none of the above - fall-tnrou9h case for (select all) or (select all, at least one)

if no other case is true.

14.7.1.1 VIC Parity Errors

Description: A parity error was detected in the VIC tag or data store in the Ibox.

VIC Data Parity ElTors: A parity elTor occurred in data bank 0 (DPERRO) or data bank 1
(DPERR1) of the VIC.

'4-32 Error Handling DIGITAL CONFIDENTIAL

£_1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

VIC Tag Parity Errors: A parity error occurred in tag bank 0 (TPERRO) or tag bank 1 (TPERR1)
of the VIC.

In all cases, the quadword virtual address of the error is in S_ VMAR.

Recovery procedures: To recover, disable and flush the VIC by re-writing all the tags (using
the procedure in Section 14.3 .. 3.1.1.1). Also, clear ICSR<LOCK>.

14.7.1.2 Pea che Parity Errors

Description: A parity error was detected in the Pcache. Either a tag parity error or a data
parity error is reported, though tag parity errors in both the left and right banks may be reported
silnultaneously. The referencE~, whether it was a read or write, was passed to the Cbox as if the
Pcache had missed. No data is lost. The Pcache is disabled because PCSTS<LOCK> is set.

S_PCADR contains the physical address of operation incurring the error. The address should not
be in 10 space. If it is, it is an inconsistent status.

Recovery procedures: Clear PCSTS<LOCK>. Flush the Pcache and initialize the Pcache tag
store.

14.7.1.3 FILL Uncorreetable ECC Errors on I·Stream or D .. Stream Reads

Description (uncorrectable ECC error): A Fill uncorrectable ECC error was, detected by the
Cbox in an I-stream or D-strenm read. Uncorrectable data errors are the result of a multiple bit
en·ors in the data read.

Description : S_FILL_ADDRESS contains the address of the error, and S_FILL_S'YNDROME
contains the syndrome calculated by the ECC logic. (If the physical address is found to be in 10
space, it is an inconsistent status.

Recovery procedures: To re,cover, clear BIU..:STAT<FILL_ECC>.

Flush the Bcache. **(BC_Tl!~G CAN BE USED TO DETERMINE IF THE FILL IS FROM
BCACHE)** If the data is DIRTY in the Bcache and if the error repeats itself (is not transient),
then a writeback error will result from the flush procedure.

Restart Conditions: If a writeback error occurs in the Bcache flush, then the data is presumed
to be unrecoverable. Software must determine if the error is fatal to one process or the whole
system and take appropriate action.

If the address of the error in the flush is not the same as that of the original error, this is a
multiple error case in the data RAMs and is a serious failure. Crash the system.

PTE read errors are difficult to analyze, partly because the read error report in the Cbox does
not directly indicate that the failing read was a PrE read. Because of this and because PTE read
errors should be rare (a very s'mall percentage of the reads issued by the Mbox are PTE reads),
multiple errors which interfere with the analysis of the PTE error are not considered recoverable.

If the reference which incurs the PTE read error is a write, S_PCSTS<PTE_ER-. WR> will be set.
In this case the original write is lost. No retry is possible partly because the instruction which
took the machine check may be subsequent to the one which issued the failing write. Also, PTE
read errors on write transactions can cause a machine check at an practically arbitrary time in
a microcode flow, and core machine state may not be: consistent.

DIGJTAL CONFIDENTIAL Error Handling 14-33

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Restart condition: If no writeback error occurs in the Bcache flush, restart if:

(S_PCSTS<PTE_ER_ WR> = 0).

If

crash the system.

If a writeback error occurs in the Bcache flush, then the data is presumed to be unrecover­
able. (software must determine if the error is fatal to one process or the whole system and take
appropriate action). Clear PCSTS<PTE_ER>.

Restart condition: Restart if:

Otherwise, crash the system.

14.7.1.3.1 Multiple Errors Which interfere with Analysts of PTE Read Error

Because PTE read errors lead to several unusual cases, restart is not recommended in the event
that other errors cloud the analysis of the PTE read error. .

:pending Interrupts: A hard or soft error interrupt should be pending, or possibly both.

Recovery procedures: No specific recovery action is called for.

Restart condition: No restart is possible. Crash the system.

14-34 Error Handling DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14 .. 8 Kernel Stack Not Validl Exception

A Kernel Stack Not Valid ExcE~ption occurs when a memory management exception is detected
while attempting to push information on the kernel stack during microcode processing of another
exception. Note that a cOnSOlE! halt with an en-or code of ERR_INTSTK is taken if a memory
management exception is encOltmtered while attempting to push information on the interrupt
staek.

ThE~ Kernel Stack Not Valid eXt::eption is dispatched through SOB vector 08 (hex) with the stack
fralne shown in Figure 14-9.

Figure 14-9: Kernel Stack Nc.t Valid Stack Frame

31 30 29 281:' 26 25 2'123 :2 21 20119 16 17 16115 14 13 12111 10 09 0810' 06 05 04103 02 01 00 .. --~.-----~-- --~--.,..--+--+--.--+--+ ... -+--.... --+--+--+--~-.. +--+--+--+--+--.... --+--+--+--.--~ __ +-_+' ... _+ __ -+
PC i : (SP; .. --~.--~--+-- -----... --+--..,..---__ + __ .II._~ __ +--+--+--+--..,.-.. + __ ~ __ .,. __ +:.._+ __ ~ __ -!-__ + __ + _____ • _____ -+-, __ + __ +

PSl.
---.... --+--+--.--... --+--+--+-----+--~ .. -.,.--+--+--+--+--~--+---t---+--+--------.---t---+--+--+--+--<:oj.,--.,.--+

DIGrTAL CONFIDENTIAL Error Handling 14-35

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

14.9 Error Recovery Coding Examples

To be supplied.

14.10 Revision History

Table 14-6: Revision History

Who

Mike Uhler

John Edmondson

Gil Wolrich

Gil Wolricb

14-36 Error Handling

When

I9-Dec-1989

30-Jun-1990

20-Feb-1991

OI-Aug-1991

Description of change

Update for second-pass release.

Update further after internal review and resolution of many issues.

Modify for NVAX Plus.

. update

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 15

Chip Initialization

15.1 Overview

This chapter describes the hardware initialization process for the NVAX Plus chip. The hardware
and microcode start the initiali:t:ation, and then if not SROM_FAST, the BK bytes of data are read
from the Serial Rom and loadf~d into the Pcacne. If SROM_FAST microcode passes control to
macrocode at address E0040000. .

Much of the job of initialization involves setting the NVAX internal processor registers (IPRs)
to a known state, or using J\TVAX IPRs to perform functions such as cache initialization. See
Chapter 2 for a list of the NVAX IPRs. Also, see the individual box chapters for a more in depth
definition of many of the IPRs.

15.2 Hardware/Microcode initialization

The NVAX Plus Chip hardware initializes to the following state on powerup or the assertion of
. chip reset:

1. The VIC, Pcache, and Bcache are disabled.
2. The RLOG is cleared.
3. The Fbox is disabled.

4. The microstack is cleared.
5. The Mbox and Cbox are reset, and all previous operations are flushed.
6. The Fbox is reset.
7. The Ibox is stopped, waiting for a LOAD PC.

B. All instruction and operand queues are flushed.
9. All MD valid bits are c1earE~d, and all Wn valid bits are set.
10. A powerup microtrap is initiated which starts the Ebox at the label IE.POWEJRUP ..

The NVAX Plus Chip microcode at IE.POWERUP then does the following:

1. Hardware interrupt requests are cleared.

2. BIU_STAT is cleared.
3. BIU_CTL is cleared. PV mode is the default.

4. ICeS is cleared.

DIGITAL CONFIDENTIAL Chip Initialization 1 ~ 1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

5. SISR<15:1> is set to O.
6. ASTLVL is set to 4.
7. The Mbox PAMODE IPR is set to 30-bit physical address mode.
B. CPUID is set to O.
9. The BPCR branch history algorithm is reset to the default value.
10. Backup PC is retrieved from the !box and saved in SAVPC.
11. PME is cleared. The performance monitoring counters are cleared.

l2. The current PSL, halt code, and value ofMAPEN are saved in SAVPSL.
13. MAPEN is cleared (memory management is disabled).
14. All state fiags are cleared.
15. PSL is loaded with 041FOOOO.

16. PCSTS is cleared.
17. If not SROM FAST load Pcache from the Serial Rom
lB. If SROM FAST the PC is loaded with E0040000

The powerup microcode. provides a means for loading start-up code from the serial ROM. This
microcode could also be used for loading the burn-in and life-test programs. The P-cache is loaded
with bjt-serial instruction stream data.

c Enable serial ROM this will also tell C-box we are reading
the serial ROM.

c' Cheer. SROM FAS'I bit, i! aet go to serial ROM fast eode.
c Degin normil aerial ROM read and P-eaeh. loao, ena~le P-caehe

loop: c, Assert aerial line out high for a minimum c! 200ns
o Assert serial line out low tor a minimum of 200ns
c Read oata from serial line in and append value onto I-stream data.
c' Ii I-streaTl'l data. 32 bits, then write int.c P-eaehe, VA - VA + 4.
o I: every 8th Longword written ther. writ. ne~ tag data

for the next P-eaehe tag.
o It I-stream data. 32f. bits, then switch P-eaehe banks.
o It I-streaTl'I data - 64K bits, then g" to exit:
c Go tc loop:

exit: 0 Writ.e address of power uF code to console halt reg.
c' disa~le SROM, jcin console code to load PC.

o P: is loadeo witi': beginning address oi SROM code that was loaded into
t.he P-cache.

NOTE:

The serial ROM fast code does nothing except load the
console halt register with what would be the start-up address of
the SROM cod. and joins the console halt ~low tc load the value
ir:. that regist..r as the next PC and jump tc it. The P-caehe is
disabled.
On normal serial ROM loadin;, the P-caehe is enabled for I-stream,
D-stream, and parity error detection. All tags have been initialized
and force hit in not enabled. A9ain the console halt register is
loaded with E0040000, which is the beginning o! where the SROM code was
loaded. This value is used for the start PC.

15-2 -Chip lnltialization DIGITAL CONFIDENTIAL

'iti

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

15.3 Console initialization

The console macrocode has the: job of filling the .gap between the initialized state described above
and the initial state needed £or the operating system. To that end, the console code does the
fonowing:

1. Set CPUID to the correct value from the system environment.
2. Set ECR (Ebox Control Register) as follows:

1. Set FBOX_ENABLE to enable the Fbox.
2. Set S3_TIMEOUT_EXT as required by the system environment.

3. Set FBOX_ST4_BY'PASS_ENABLE to enable Fbox stage 4 bypass.
4. Write one to S3_STALL_TIME01JT to clear any error.

3. Set I CSR (Ibox Control Sta.tus Register) as follows:
1. Clear ENABLE to leav(2 the VIC disabled.

2. Write one to LOeK to dear any error.
4. Set the PAMODE register JMODE bit as required: by the system.
5. Set up BIU_CTL (Bcache/System Control) as required by the system.

15.4 Other initialization

Either the console code or the operating system will do the following final initialization steps
(code examples are given):

1. Initialize the VIC

'IlIC MAX INDEX :- 3EO (hex)
'IlIC:INDEX_STEP :- 20 (hex;
'IlIC_TAG_INIT :- 0

FOR INDEX :.. 0 TO 'IlIC MAX IND:e:x BY '\lIC INDEX STEP DO
BEGIN - - --

MrPR INDEX, VMAR
MTPF, VIC_TAG_INIl', VTAG

END;

2. Enable the VIC

MTPR ENAELE, ICSR

3. Initialize the Pcache, Enablie the Pcache. The Pcache is initialized by microcode if not SROM
FAST.

4. Initialize the Bcache
5. Enabl.e the Bcache, set BIU._CTL[O]

DIGITAL CONFIDENTIAL Chip InltlaUzation 15-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

15.5 Revision History

Table 15-1: Revision History

Who

Debra Bernstein

Jim Ellis/Gil Wolrich

15-4 Chip Initialization

'When

9-May-1990

15·JAN-1991

Description of chaDge

Initial edit

NVAX Plus release for external review

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 16

Performance Monitorins~ Facility

16.1 Overview
.

The NVAX CPU chip contains a facility by which privileged software may obtain performance in-
formation about the dynamic behavior of t~e CPU. The facility is implemented with a combination
of hardware and microcode, and controlled by software using privileged instructions.

Two 64-bit performance counters called PMCTRO and PMCTRl are maintained in memory for
each CPU in the system. The lower 16 bits of each counter are implemented in hardware in the
CPU, and at specified points, lnicrocode updates the; quadwords in memory with the contents of
the hardware counters.

The performance monitoring facility may be configured by privileged software to count a number
of events in the system, from ,which performance analysis data such as cache and TB hit rates,
cycles-per-instruction, and stall frequencies may be calculated.

16.2 Software Interface to the Performance Monitoring Facility

The performance monitoring facility makes use of a data structure in memory, and must be
configured and enabled via a location in the System Control Block, processor register references,
and the LDPCTX instruction.

'16.2.1 Memory Data Structure

The two 64-bit performance counters for each CPU are maintained in a data structure in memory.
This data structure consists of a pair of quadwords for every CPU in the system., The physical
address of the base of the data structure is obtained, from offset 58 (hex) in the System Control
Block. The format of this location is shown in Figure~ 16-1.

DIGITAL. CONFIDENTIAL Performance MonttortngFaclltty 16-1

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Figure 16-1: Pertormance Monitoring Data Structure Base Address

31 30 2~ 2SI:7 26 :5 241:3 :: 21 2011e IB 17 161:5 14 13 12111 10 De OSI07 06 OS 04103 02 01 00

Physical AddrQss o! PQrformanCe Monitorin~ Date Structure ISBZ v ~ 11 :SC&+5B(hex)

NOTE

.An quadword-aligned physical base address is constructed by clearing the lower 3 bits
of the longword fetched from offset 58 (hex) in the SCB. Microcode win not update
the block in memory unless bits <2:0> of this longword contain 011 (binary). If these
bits are found to contain another value, a machine check with code MCHK_PMF_
CONFIG is performed to notify software that the performance monitoring facility was
incorrectly configured. If is strongly suggested that the physical address be at least
octaword aligned, and preferably page aligned. .

The address of the pair of quadwords for an individual CPU is computed by shifting the CPUID
value left 4 bits and adding this value to the base address. This calculation is shown in equation
form, below (all numbers in these equations are hex).

phys_base_addr = SGB \58] AND FFFFFFFO;

The format of the pair of quadwords for each CPU is shown in Figure 16-2.

Figure 16-2: Per-CPU Pertormance Monitoring Data Structure

31 30 2~ 2S:27 26 25 2'123 :2 :1 2011e 18 Ii 16115 14 13 12111 10 oe OBI07 06 OS 04103 02 01 00

PM~TRO, low longworc I :+00

63 6: 61 6015e 56 57 56155 5' 53 52151 50 4e 46147 46 45 44143 42 41 40139 36 37 36135 34 33 32

31 30 29 26127 26 25 24123 22 21 20119 16 17 16115 14 13 12111 10 09 06107 06 05 04103 02 01 00
+--+--+--+-----+--+--.--+

PMCTRl, low longword I :+OS
+-----+--+--+--+--+--+--+--+--+--+--+--+--+--+-,-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

PMCTP.l, high longword I :+12

6~ 62 6: 60159 56 57 56155 54 53 52151 50 49 46147 46 4S 44143 42 41 40139 36 37 36\35 34 33 32

16.2.2 Memory Data Structure Updates

V\7ben the performance monitoring facility is enabled, the memory data structure is updated from
the hardware counters if the one of the counters is more than half full and the current processor
IPL is below 1B (hex), if a LDPCTX instruction is executed and the PME bit in the new PCB is
off, or if the performance monitoring facility is disabled via a write to the PME processor register.
The PME bit is internally implemented as ECR<PMF _ENABLE>, with conversion handled by
microcode.

16-2 Performance Monitoring Facility DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

'~lhen one of the counters reaches half full, an interru.pt at IPL IB (hex) is requested. This inter­
rupt request is serviced like any other interru.pt if the IPL of the processor is below that of the
interru.pt request IPL. Like any other inten-upt, it is serviced between instructions (or in the mid­
dle of the interru.ptable string instructions). Unlike other inten-upts, the performance monitoring
interrupt is serviced entirely by microcode, with no software interru.pt handler required.

When a performance monitoring inten-upt occurs, microcode temporarily disables the facility,
reads and clears the hardware counters, then updates the memory data structure with the hard­
ware counts. The facility is then re-enabled, the intelTupt is dismissed, and the interru.pted
instructi on stream is restarted.

NOTE

Although the performance monitoring facility is disabled during the memory update
process, it is re-enabled fo:r the restart of the interrupted instruction stream. Therefore,
depending on what events were selected, the facility may count events that are part of
the restart process.

At the maximum rate (one increment every 14n8 CPU cycle), an interru.pt is requested every 459
microseconds.

If a LDPCTX is executed and the PME bit in the new PCB i~ off, or if the performance monitoring
facility is disabled via a write to the PME processor register, the microcode disables the perfor­
mance monitoring facility, reads and clears the hardware counters, and updates the memory data
stnlcture for the CPU with the hardware counts.

NOTE

The hardware counters are not cleared, and the memory data structures are not
updated when the performance monitoring facility is disabled via a direct write to
ECR.<PMF _ENABLE>.

16.2.3 Configuring the Performance Monitoring Facility

Before the performance monitoring facility is enabled, software must select the sounce of the event
to be counted. This is accomplif~hed first by selecting the box that reports the event, and then by
selecting the event that is to be: counted. The box section is made by writing to the PMF _PMUX
field in the ECR. processor regi~;ter, as indicated by Table 16-1.

Table 16-1-: Performance Monitoring Facility Box Selection

ECR<PMF _PMUX>
(binary) Source of Information

00

01

10

11

Ibox

Ebox

Mbox

Cbox

The event selection within the box is made by writing to a processor register within the box, as
described in subsequent sections, and in the box chapters elsewhere in this specification.

DIGrTAL. CONFIDENTIAL Performance Monitoring Facility 16-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The hardware used to implement the I6-bit counters is constructed such that the PMCTRl
counter increments only if both its selected event, and the PMCTRO selected event are true
simultaneously . .As such, PMCTRI is a strict subset ofPMCTRO . .As a result, some combinations
of event selections will not cause PMCTRI to be incremented. In some boxes, the event selection
is specified in such a way that compatible events are automatically selected. In other boxes, the
user must specify compatible events. Where they are required, compatible events are described
in the sections below. .

16.2.3.1 Ibox Event Selection

The Ibox reports only one event, so if the Ibox is selected, that event is also selected. The Ibox
inputs to the PMCTRO and PMCTRI hardware counters are shown in Table 16-2

Table 16-2: Ibox Event Selection

PMCTRO Input PMCTRl Input Description; Use

VIC Access VIC Hit VIC ruts compared to total VIC accesses; ,TIC hit ratio.

16.2.3.2 Ebox Event Selection

The Ebox reports several events, as selected by the PMF _EMUX field in the ECR processor
register. The Ebox inputs to the PMCTRO and PMCTRI counters are shown in Table 16-3.

Table 16-3: Ebox Event Selection

ECR<PMF_
EM1JX>
(binary) PMCTRO Input PMCTRl Input

000 Cycles 838tall

001 Cycles EM+PA queue Stall

010 Cycles Instruction Retire

011 Cycles Total stall

100 Total stall S3 Stall

101 Total stall EM+PA queue Stall

, 6-4 Performance Monitoring Facility

Description; Use

83 stalls (source queue, MD, Wn, Fbox scoreboard
hit, Fbox input) compared to total cycles; S3 stalls
per unit time.

EM latch and PA queue stalls compared to total cy­
cles; EM+PA queue stalls per unit time.

Ebox and Fbox instructions retired compared to total,
cycles; CPl.

Total Ebox stalls compared to total cycles; Stalls per
unit time.

S3 stalls compared to total stalls; S3 stalls as a per­
centage of all stalls.

EM latch and PA queue stalls compared to total
stalls; EM and PA queue stalls as a percentage of
all stalls.

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 16-3 (Cont.): Ebox Event Selecti.on

ECR<PMF_
EMUX>
(blinary) PMCTRo Input PMCmlInput Description; Use

111 S5 Microword event S5 Microword event Number of times a microinstruction whose MISC field

16.2.3.3 Mbox Event Selection

contained INCR.PERF.COUNT reached S5. By us­
ing the patchable control store, one may count mi­
crocode events by setting the MISe field of selected
microwords to this value. If this e.vent is selected,
writing to the PMFCNT processor register will incre­
ment the counters via the :MISe field decode.

The Mbox reports several events, as selected by the P:M:M field in the PCCTL processor register.
The Mbox inputs to the PMCTRO and PMCTR1 counters are shown in Table 16-4.

Table 16-4: Mpox Event SelE~ctlon

PCCTL<PM:M>
(binary) PMCmo Input PMCml Input

000 POlPl I-stream TB
access

JPOIPI I-stream TB
hit

Description; Use

TB hits for PO and PI I-stream references compared
to total TB accesses for PO and Pl. I-stream refer­
ences; POlFl I-stream TB hit ratio.

001 POIPI D-stream TB JPOIPI D-stream TB TB hits for PO and Pl D-stream references compared

010

011

100

101

III

access hit to total TB accesses for PO and P1 I-stream refer­
ences; POIPI D-stream TB hit ratio.

SO I-stream TB
access

So D-stream TB
access

I-stream Pcache
access

D-stream Pcache
access

Unaligned reads
and writes

SO I-stream TB
hit

80 D-stream TB
hit

I-stream Pcache
hit

l)mstream Pcache
hit

~~ta1 reads and
writes

TB hits for SO I-stream references compared to total
TB accesses for SO I-stream references; SO I-stream
TB hit ratio.

TB hits for SO D-stream references compared to total
TB accesses for SO D-stream referenees; SO D-stream
TB hit ratio.

Pcache hits for I-stream references compared to total
Pcache accesses I-stream references; I-stream Pcache
hit ratio.

Pcache hits for D-stream references compared to ta­
tal Pcache accesses D-stream references; D-stream
Pcache hit ratio.

Unaligned virtual reads and writes compared to total
virtual reads and writes; Unaligned. references as a
percentage of all references.

DIGrTAL CONFIDENTIAL Performance Monitoring Facility 16-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

16.2.3.4 Cbox Event Selection

The Cbox reports several events, as selected by the PM_ACCESS_TYPE and PM_mT_TYPE
fields in the DIAG_CTL processor register. The Cbox inputs to the PMCTRO counter are shown
in Table 1~5 and the Cbox inputs to the PMCTRl counter are shown in Table 16-6.

Table 16-5: Cbox PMCTRO Event Selection

DlAG_CTL<PM_
ACCESS_TYPE>
(binary) PMCTRO Input

000

001

010

011

100

101

110

110

Bcache access. PMCTRO increments when the Bcache processes any reference from
the CPU.

Bcache IREAD access. PMCTRO increments when the Bcache processes ,an instruction­
~ream read request.

Bcache DREAD access. PMCTRO increments when the Bcache processes a data-stream
read.

Full LW Write access. PMCTRO increments when the Bcache processes a LW write
request.

BytelWord Write access. PMCTRO increments when the Bcache processes a byte or
word write, or write unlock.

Any Write access. PMCTRO increments when the Bcache processes any write, or write
unlock.

Pcache Invalidate. PMCTRO increments when a plnvReq is received.

Stall cycles. PMCTRO increments when hold_r~q or not tagOk is asserted at SYS_CLK
leading edge.

Table 16-6: Cbox PMCTR1 Event Selection

DlAG_CTL<PM_
mT_TYPE> (bi·
nary) PMCTRI Input

000

001

010

011

100

101

Bcache hit. PMCTRl increments when a Bcache access results in any hit.

Bcache hit dirty. PMCTRl increments when a Bcache access results in a dirty hit.

Bcache hit clean. PMCTRl increments when a Bcache access results in a hit and the
block is not dirty.

Bcache miss dirty. PMCTR1 increments when a Bcache access results in a miss in
which both the valid and dirty bits were set.

Bcache hit shared. PMCTRl increments when a Bcache access results in a hit in which
both the valid and shared bits were set.

Stall Requests. PMCTR1 increments at SYS_ CLK leading edge if a new hold_req or
not tagOk is asserted.

16-6 Performance Monitoring Facility DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, Octol?er 1991

16.2.4 Enabling and Disabling .the Performance Monitoring Facility

The perlormance monitoring facility is enabled or disabled by setting or clearing the Performance
Monitor Enable (PME) bit in the CPU. This bit may be written in one of three ways: with a write
to the PME processor register:, by loading a new value with a LDPCTX instruction from the PME
bit in the new PCB, or by a direct write of the ECR.<PMF_ENABLE> bit. .

The format of the PME proce£Jsor register is shown in Figure 16-S.

Figure 16-3: PME Processor Register

3J. 30 29 281:7 26 25 24123 22 :l 20119 l8 li l6115 l4 13 1211l 10 09 08107 06 05 04103 02 Ol 00
.--+--~--+--+--+--.--+--+--+--~--."--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+--+--+

SBZ 1 :PME
+--,+--+--+--.--+--+--+--+--+--+--~.--+--+--+--+-- ... --+--+--+--+--+--+--+--+--+--... -----... --+--+--+--+

ENABLE --+

If PME<O> is written with a 1, the performance monitoring facility is enabled. If PME<O> is
written with a 0, the performance monitoring facility is disabled. Direct writes to ECR<PMF_
ENABLE> are similar to writes to PME.<O>, with the exception that the hardware counters are
not automatically cleared, and the memory counters are not updated on an explicit write to
ECR<PMF _ENABLE>.

The CPU PME bit is also 10adE~d by the LDPCTX instruction from PCB+92<Sl>.

CAUTION

The longword at offset 58 (hex) from the 8CB and the correct unique CPUID value for
each CPU must be initialized before the performance monitoring facility is enabled.
FailUre to do so will result in UNDEFINED behavior of the system.

ThE~ CPU PME bit is cleared, and the performance monitoring facility is disabled, at powerup.

16.2.5 Reading and Clearin!g the Periormance Monitoring Facility Counts

In normal operation, microcode automatically updates the memory counters by reading the cur­
rent value of the hardware counters, adding these values to the memory counters, and clearing
the hardware counters. This is the preferred mode of operation.

However, there may be some situations in which software wishes to directly read or clear the
hardware counters. The current value of the haroware counters may be read from the PMFCNT
processor register, whose format is shown in Figure 16-4.

Figure 16-4: PMFCNT Proces:sor Register

31 30 29 28127 26 25 24123 :2 21 20119 18 l7 16115 14 13 l211l 10 09 08107 06 05 04103 02 01 00
+--+-,-+--+--+--+--+--+--+--+--+--+-.• +--+

Current Hardware PMCl'Rl Vnlue Cu.rrent Hardware PMCl'RO Value 1 :PMFCNT
+--+-,-+--+--+--+--+--+--+--+--+--+_ .. +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--"'"--+--+--+--+

The current value of the 16-bit hardware PMCTRI counter is returned in PMFCNT<Sl:16> and
the current value of the I6-bit hardware PMCTRO counter is returned in PMFCN1~<15:0>.

DIGrTAL CONFIDENTIAL Performance Monitoring Facility 16-7

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

The two 16-bit hardware counters may be explicitly cleared by software by writing a 1 to
ECR<PMF _CLEAR>. If the counters are explicitly cleared, any outstanding interrupt request
is also cleared. It is strongly suggested that the hardware counters not be cleared while the
performance monitoring facility is enabled.

If the performance model is configured to select the Ebox microword event (ECR<PMF _PMUX>=Ibox,
ECR<PMF _EMUX>=85 microword event, ECR<PMF _ENABLE>=l), a write of any value to the
PMFCNT processor register will increment both hardware counters.

NOTE

If the I6-bit hardware counters are explicitly cleared by writing a 1 to ECR<PMF_
CLEAR>, any count in these registers is lost and will not be included in the memory
counters.

TEST NOTE

The performance monitoring facility hardware incrementers may be tested by clearing
them via ECR<PMF _CLEAR>, selecting the Ebox 85 microword event, and enabling
the facility. Each Write to the PMFCNT processor register will then increment both
hardware counters, and the result may be observ:ed by reading the PMFCNT register.
The interrupt request may be tested by incrementing the PMCTRO hardware counter
into bit<15>, which will cause an interrupt to be requested.

16.3 Hardware and Microcode Implementation of the Performance Monitoring
. Facility

The performance monitoring facility is implemented via both CPU chip hardware and microcode.
A block diagram of the performance monitoring hardware is shown in Figure 16-5.

The lower 16 bits of the PMCTRO and PMCTRl performance counters are implemented as two
16-bit incrementers in the Ebox. Both incrementers have a common clear line which is driven
from MISC/CLR.PERF.COUNT, and each has an increment input. The 32-bit concatenated value
from the incrementers can be read onto Eo/cABUS, and the upper bit ofPMCTRO is used to generate
E_PMNO/OPMON, the performance monitoring facility interrupt request.

The PMCTRO and PMCTR1 increment inputs are supplied by PMUXO and PMUX1, through two
AND gates. The PMCTRO increment is gated by the master performance monitoring facility
enable. If the facility is not enabled, PMCTRO does not increment. The PMCTRl increment is
gated by the PMCTRO increment, and is therefore a strict subset of PMCTRO.

The top-level selection of events is determined by ECR<PMF _PMUX>, which selects the source to
PMUXO and PMUX1. This selects the source (Ibox, Ebox, Mbox., Cbox:) of the increment events.
Distributed in the appropriate boxes are second-level muxes which are selected to provide the
actual source of the increment events for PMCTRO and PMCTRl.

16-8 Performance Monitoring Facility DIGITAL CONFIDENTIAL

$

NVAX Plus CPU Chip Functional. Specification, Revision 0.3, October 1991

Figure 16-5: Periormance Monitoring Hardware Block Diagram

BUf>e3,:,.\> ABUf> .. 16:DO> WBUf>c16,DO>

l... .. "'" PMCTR1 PMCTRO

DRIVE ABU~ ___________ ""..IoI.Iii"-WW.!i....II""-C~~~~'

CLEA"'""' _______ ...&'""""'~:¥Ii_...a::;."':':O~~..:;.Ii.:;:.w¥¥l~
LFSFI MOD-;.-_______ ,...-______ ...It.I==.....:.

CLOCK

DRIVE ABU!ii-_____ -!
CLEA"I--_____ -I

RRY OLrT

bITe'6,
i '6-BIT INCReWENTER/LFSFI

f9BsPUF PHUXt

VIC HIT_...Io=~:.....ro:..J

VIC ACCES~_QI.I;.IIUo/,j~::""'-+-+_+-______________ --J

ECRcPMF .EMUX>

EBOX S3 STALL

EBOl: IM .. PAO STALL

S:6 INSTRUCTION RETIRE

EBO): STALL

1S6 MISCIINCR.PERF.COUNT

EBO): STALL

S5 MISC/INCR.PERF.COUNT

ECRcPMF .EMUX.

PCCTLcPMt.b

TEl HIT

PCACH! HIT

UNALIONED REFERENCE •

T8 PD/P, tReAD ACCESS

TIl PO/P', DREAD ACCESS

TEl SO tREAD ACCES£

TEl SO DRIlAD ACCESS

PCACHE tREAD ACCESS

PCACHE DREAD ADDRESS

Nle

ANY REFERENCE

PCCTL"PMM>

, H

16.3:1 Hardware Implementation

CC'TL«PIoI.HIT. TVPE>

BOACHE HIT

BeACHE HIT OWNED
BeACHE HIT VALID

BOAcHE MISS OMED

BeIlCHE OOHERENCY AOCeS'

• BOIICHE COHERENCY READ ACCESS

BeIlCHE OOHERENCY OREAD ACCESS

BOliCH! OPU ACCESS

• BOIICHE OPU tREAD AOCESS

BOACHE CPU DREAD ACOESS

•• BeIlCHE OPU OREAD AOCESS

CC'l'LcPIoI.AOCESS. TYPE>

The two I6-bit hardare countE!rs are implemented as side-by-side incrementers in the Ebox data­
path (this hardware also implements the Wbus LFSR reducer that is described in the testability
section of Chapter 8). The increment signals for each of the counters are driven from two 4-to~1
muxes that are selected by ECR<PMF _PMUX>, and: which select the appropriate !source of inputs
to the incrementers.

DIGITAL CONFIDENTIAL Performance Monitoring Facility 16-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Logic in the Ibox., Mbox, and Cbox select the appropriate values to drive the two increment signals
based on processor register fields in the box. The Ebox increment signals are selected locally and
provide the fourth input to the muxes. The PMCTRl increment signal is forced to be a subset of
the PMCTRO increment signal by ANDing the raw PMCTRl increment signal with the PMCTRO
increment signal to produce the final PMCTRl increment signal.

Because the PMCTRI increment is a strict subset of the PMCTRO increment, the ultimate source
of the two increment signals align them such that they are valid in the same cycle. For ex.ample,
if the selcted conditions are IREAD PCACHE ACCESS and PCACHE HIT, these two signals are
valid in the same cycle, and they refer to the same reference. Therefore the assertion of IREAD
PCACHE ACCESS is delayed until the cycle in which PCACHE HIT is valid. In addition to
this, the source of the increment signal guarantees that any events that may be retried are only
recorded once. For example, a particular Pcache access causes only one increment, even if it is
retried multiple times.

"When the IS-bit PMCTRO counter increments into the high-order bit, an interrupt is requested
by asserting the E_PMN%PMON_L signal to the interrupt section. This signal is sampled by edge­
sensitive logic, so the interrupt request is maintained until it is cleared by writing a 1 to the
appropriate bit in the INT.SYS register, even if the perfonnance monitoring facility hardware
counters are subsequently cleared.

"When the IS-bit PMCTRO incrementer reaches its maximum value, subsequent increments of
either incrementer aTe inhibited. In normal operation, this should not occur, but the counter may
overflow if the interrupt request isn't serviced within several hundred microseconds, as would be
the case if software spent an extended period of time a high IPL with the performance monitoring
facility enabled.

The 32-bit concatenated value of the two I6-bit hardware incrementers can be read onto Eo/c.A.BUS
when selected by AlPERF.COUNT. This is the mechanisim by which microcode retrieves the
current values of the two incrementers.

16.3.2 Microcode Interaction with the Hardware

There are several points at which the microcode interacts with the performance monitoring facility
hardware. At powerup, microcode clears both of the IS-bit hardware incrementers and any
potential interrupt request.

MICROCODE RESTRICTION

If the performance monitoring facility hardware incrementers are cleared in cycle In' via
MISC/CLR.PERF.COUNT, INT.SYS<28> must be written with a 1 no earlier than cycle
'n+3' to guarantee that the interrupt request is cleared. This delay is due to latency
introduced between the performance monitoring factility hardware and the interrupt
section.

Microcode reads the current value of the hardware incrementers via AlPERF.COUNT as a byprod­
uct of a read of the PMFCNT processor register, and as part of the process of updating the memory
counters.

Microcode clears the hardware incrementers via MISC/CLR.PERF.COUNT when
ECR<PMF _CLEAR> is written with a 1. Microcode also clears the incrementers after reading
and updating the memory counters.

16-10 Performance Monitoring Facility DIGITAL CONFIDENTiAL

T I

NVAX Plus CPU Chip Functional Specification, Revision O.3t October 1991

Microcode uses the CPUID processor register value; to find the pair of quadwords that contain
the performance counter valuf~s for this CPU. This value must be correctly initialized by either
console firmware or software hefore the performance monitoring facility is enabled. The operation
of the processor is UNDEFIN1~D if CPUID is not correctly initialized.

The memory counters are updated under three circumstances: when a performance monitoring
facility interrupt is serviced, when the facility is disabled via a write to the PME processor register,
and when the facility is disabled by loading a new value ofPME is LDPCTX. The memory updates
are done in a common subroutine by disabling the facility by clearing ECR<PMF _ENABLE>,
reading the current value of the hardware inc~ementers and then clearing them" and updating
each quad word in memory with the appropriate I6-bit hardware value.

DIGITAL CONFIDENTIAL Performance Monitoring Facility 16-11

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

16.4 Revision History

Table 16-7: Revision History

Who

Mike Uhler

Mike Uhler

Gil Wolrich

When

12-Jan·1990

02-Jul·1990

01-Feb·1991

16-12 Performance Monttorl ng Facility

Description of change

Initial release

Update to reflect implementation

detail NVAX Plus Cbox inputs

DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 17

Testability Mjcro·ArchitE~cture

17.1 Chapter Overview

This chapter describes the NVAX PLUS chip Testability Micro-Architecture.

17.2 The Testability Strate!~y

The NVAX PLUS chip testability strategy addresses the broad issue of providing cost-effective
and thorough testing during Illany life cycle testing phases. The strategy specifically implements
test features to support

• chip debug
• high fault coverage test at wafer probe and packaged chip test

• support "reduced probe contact" wafer probe test
• support for effective chip burn-in test .

The strategy uses a variety of testability techniques and approaches that are best suited to
address the specific functional elements in the chip. The cost-effective implementation is realized
by the appropriate consideration of global issues, by unifying the test objectives, by sharing test
resources and by exploiting features inherent in the chip. The strategy also relies on leveraging off
the design verification patterns in developing production test patterns to meet the fault coverage
goals.

The test features are implemented such that they have no effect on the targeted performance of
thE~ chip. .

17.3 Test Micro-Architectulre Overview

The NVAX Plus Test Micro-Architecture consists of two principal elements: Test Interface Unit
and the Testability Features.

Test Interiace Unit

The Test Interface Unit (TIU) implements a comprehensive test access strategy for NVAX Plus.
It permits an efficient access t,O testability features implemented on the chip.

DIGITAL CONFIDENTIAL Testability Micro-Architecture 17-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

The Parallel Test port is used for accessing internal scan registers and test features which benefit
from parallel access (for example, microaddress bus).

For NVAX Plus, the parallel test port consists of the icMode_h[l] pin, data pins PP_DATAl7:O] and
PP_DATA[lll, 3 tagAdr pins (TAGADR_H[19,18,17]) which multiplex PP_DAl'A[lO:8] signals, and three
input pins, ICMODE_H[O] and PP _CMD_H[l:Ol, which receive the parallel port command.

The parallel port must be enabled in order for test data to be driven to the parallel port pins.
The port may be enabled and operated in two configurations: STANDARD and OVERRIDE.

In STANDARD configuration, ICMODE_H[l) must be deasserted and the default parallel port mode
is OBSERVE MAE (observe the uricrocode address bus). The parallel port may be enabled by
writing a 1 to DIAG_ CTL[MAB_ENJ. When enabled in STANDARD configuration, MAE data will
be output to dedicated parallel port pins PP_DATAl7:O] and PP _D.ATA[ll] as described in Table 17-2.
The remaining bits of the MAE will be conditionally output to multiplexed pins TAGADR[19:17]
based on system configuration as determined from BIU_CTL[BC_SIZE). If BIU_CTL[BC_SIZE]
specifies that a tagAdr pin is NOT included in the tag comparison, then the pin will function as
a parallel port data pin:

• TAGADR_H[l7] is included in the tag comparison only if BIU_CTL[BC_SIZE] is '000 (Bcache
size is 128 Khytes)

• TAGADR_H[18] is included in the tag -comparison only if BIU_CTL[BC_SIZE] is '000 or '001
(Bcache size is 128 Kbytes or 256 Khytes)

• TAGADR_H[19) is included in the comparison only ifBIU_CTL[BC_SIZE] is '000 or '001 or '010
(Bcache size less than 1 Mbyte). .

In OVERRIDE configuration, ICMODE_B[l] must be asserted and the ICMODE_B[O] and PP _CMD[l:O]
pins determine the paranel port mode as shown in Table 17-2. Assertion of ICMODE_B[l] immedi­
ately enables the parallel port, overriding the state of DIAG_CTL[MAB_ENJ and BIU_CTL[BC_
SIZE]. ALL parallel port output pins (including tagAdr multiplexed pins) will drive parallel port
data regardless of the state of DIAG_CTLLMAB_EN] or BIU_CTL[BC_SIZE].

DIAG_CTL[MAB_EN] is cleared with the reset signal, not by microcode, and causes parallel port
output pins to be tristated in STANDARD configuration. This bit must be set by software to
drive the parallel port data to the pins. OVERRIDE configuration ignores the state of this bit, of
course.

:NVAX Plus supplies a feature for reducing the number of probes required for wafer probe. Since
a tester may not supply enough probes for every pin on the chip, certain pins can be completely
omitted from wafer probe (with a small associated reduction in test coverage). The pins which
can be omitted were selected for their low amount of critical functionality, and are:

Pin Names Direction Number

check_h[27 :0] B 28

adr_hl12:5] T 8

vref I 1

NVAX Plus has 291 signal pins. This feature removes 39 pins from probe requirements, and
allows a tester with only 254 signal pins to be used for wafer probe. Assertion of TEST_MODE_H
pulls input-only and bidirectional signals internally to a logic 0 level, to insure valid logic levels
are maintained during testing. TEST_MODE_H should not be asserted under any conditions where

17-2 Testability Micro-Architecture DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

designated input or bidirectional pins are driven from an external source. Note also that test
software must handle the logic 0 levels which are driven on the check bits whenin this mode (i.e.
tests should run with ECC checking disabled).

The Test Pads primarily facilitates micro-probing during chip debug. These pads are located at
strategic nodes throughout the chip.

NVAX. Plus uses the port for the Serial Rom consisting of SROMD_H,SROMCLIl.H, SROMOE_L, and
ICMODE_H[O] which determineg whether to input from the sROM at reset_l allowing the PCache
to be loaded serially at reset for diagnostics. This feature also provides support for cODvenient
self-test operation during the chip burn-in test.

In addition to these test ports, :NVAX Plus also uses the normal system port (pins) for test access.
This access consists of using the VAX instructions to manipulate a testability feature or to perform
the actual tests on the chip's logic.

Table 17-1 summarizes the dedicated test pins for NVAX.

Table 17-1: NVAX Plus Test IPlns

Pin Name

JCMODE.H(l]

ICMODE.HIOl

PP .cMD.B<l:O>

PP.DA~B<ll>

PP .DATA.B<7 :0>

TAGADR.B<19:17>

TIUS'rATE.L

SROMD.B

SROMCLX..B

SROMOE.L

TEST.MODE.B

17.4 Parallel Test Port

:r
I

I
IT

'T

:B

I

I

:r
10

10

I

Pin Function

Selects parallel port OVERRIDE configuration

NVAX PP_CMD_H[2], Read SROM at reset

Parallel.Port: NVAX PP .CMD.B<l:O> if enabled

Parallel Port: NVAX pp.DAU.B<lil> if enabled

Parallel Port: NVAX PP .DAU.B<7:0> if enabled

Parallel Port:NVAX pp.DA~B<lO:8> if enabled

Disables (tri-state) all output drivers

Continuity for testing

Seria1.Data In

eLK or serial data out

SROM output enable

Selects Reduced-Wafer-Probe Mode

This port allows the critical chip nodes to be either controlled or monitored in parallel. ICMODE<l>
enables the parallel port select pins ICMODE_H<O>&PP _CMD_H<1:0> as parallel port command
inputs. Note ICMODE<O> is ust~d as sRomFast at reset. If ICMODE<l> is asserted at reset then
ICMODE<O> is used as PP _eM]) and sRomFast simultaneously. The port consists of 16 test pins
as follows:

ICMODE_H[l]: selects OVERRIDE con:fi.guration for parallel port.
PP_DATA_B<11>: same function as NVAX PP_DA'fA..H<ll> in OVERRRIDE, outputs internal
phi_2 if in STANDARD configuration and BIU_CTL[MAB_ENJ is set.

DIGITAL CONFIDENTIAL Testability Micro-Architecture 17-3

NVAX Plus CPU Chip ·Functional Specification, Revision 0.3, October 1991

PP _DATA..B<5:0>: same function as NVAX PP _DA~B<5:0> in OVERRIDE, outputs MAB<5:0>
if in ST.AJ\iDARD configuration and BIU_CTL[MAB_EN] is set.
PP_DATA_B<7:6>: same function as NVAX PP_DATA_B<7:6> in OVERRIDE, outputsMAB<7:6>
if in STANDARD configuration and BIU_CTL[MAB_EN] is set.

TAGADR_B<17>: same function as NVAX PP_DATA..B<8> in OVERRIDE, outputsMAB<8> if
in STANDARD configuration and BIU_CTL[MAB_EN] is set and Bcache size is greater than
128 Kbytes.

TAGADR_B<18>: same function as NVAX PP_DATA,..B<9> in OVERRIDE, outputsMAB<9> if
in STANDARD configuration and BIU_CTL[MAB_EN] is set and Bcache size is greater than
256 Kbytes. .

TAGADR_B<19>: same fWlction as NVAX PP _DATA_B<10> in OVERRIDE, outputsMAB<10> if
in STANDARD configuration and BIU_CTL[MAB_EN] is set and Bcache size is greater than
512 Kbytes.

ICMODE_B<O>: same function as NVAX PP _CMD_B<2> in OVERRIDE.
PP_CMD_B<1:0>: same function as NVAX PP_CMD_B<1:0> in OVERRIDE.

17.4.1 Parallel· Port Operation

Internal Scan Register

When shifting, the ISR bits are serial to parallel converted. They change every third cycle on
internal pru_ 4. This gives usable time with respect to sysCLKoutl_h. The parallel port commands
are. captured synchronously with respect to sysCLKoutl_h, at the falling edge~ In order to give
full flexibility in capturing a given internal cycle, a mechanism is provided to delay the capture­
and-start-shifting event by 0, 1, or 2 cycles. This delay is determined by the state of the parallel
port bits (pp_cmd_h<1:0» immediately before entering the Shift ISR mode. ('00' corresponds to
zero delay, '01' corresponds to 1 cycle delay and '10' corresp-onds to two cycle delays.)

See the timing diagrams in Figure 17-2

Note that the initial packets of ISR data contain data from before the load event from the last
bit on the chain. After one or two samples, this data is all valid sampled data.

MAS Access

For full speed MAE observation, an internal clock is provided which will allow synchonouscapture
by a DAS in any debug environment. Figure 17-1 shows the the self-relative timing during
Observe MAE mode. .

The following modes of the parallel port can be selected from ICMODE_B<O>lDwSEL_B<l:O> in
test mode.

17-4 Testability Micro-Architecture DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Figure 17-1: Self Relative T'tming in Observe MAB Mode

.1 NVAX cycle

PI' DATA<lO:O>
r=. . . =-1 _. __ ~ ___ . I .
XC X>OOO(IV\AN\ >OOOOC:::

PP DATA<ll>
(NV.AX PBI_2)

I . . . I I . I .
LZZI\~\~\\ ____ ~ ___ /Z~Z~7\~\~\~\ ____ ~ __ /_Z~ZZ\~S~S~\ ____ ~ __ r-. . .

Figure 17-2: Internal Scan Fleglster Operation Timing

ND~_PH!:H

NDk'L_PHHl

ND1.l. pha.el!
NVAX interna.l
cycles

IEJrc.. btW cAst

PF'_0ID<:2:0>

n·_DA'1'A<ll :0>

lVVA>: Cycle oaptured
in pr,_'

0Nr bt!.A~ CASE

PF'_CW<:?:O>

PF _ :O;.'1'A<ll : 0>

NV~ Cyole oaptured
in ph_'

'ffiObttAl cDt

n_CMD<:?:O>

PF' _ I>~'1'A<ll : 0>

NVA>: Cyole oaptured
in pb_4

1 J '-______ / ,~ ______ ~/ '~ ______ ~/~------~\~ ______ ~

~, ' J ,"-_____ .-1/ ,"-___ ..J/ ~ ! _ _ '~ ____ ..J I

, " ... ' --..... , I , / , I~~---..;.
! , ,I 1 I·, 1
~\/'I'~
I 1 • • .---r

1 :2 3," 1 :2 3 .Q 1 :2 :9 .Q 1 :2 :9 .Q

1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1
1.:2 :9 l :2 :9 1 :2 3.1 :2 3

I--!--!--I--!-!--I--!--!--I--!--!--I
i~~: __ ~I __ ~ __ ~ __ ~I __ ~ __ ~ ___ I __ ~ __ ~ __ ~I
i . -. ---~I-----.----.--,-----!~----.----------~'--------------~I
~~--------~--------~

" I ~ I I

'~_. --~~----------------------------~--------~--~
I ~~-----..... ~--....... --J

I IE •. I I
I . .
.~'----~------------~--------------~--------------

1 • • I • • 1 • _----- I • ------..J ~~ XX>OOOOOOO<X ____ -''''''

I I j4.. I I

DIGITAL CONFIDENTIAL Testability Micro-Architecture 17-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 17-2: Parallel Port Operating Modes

Command Pins.

lCMODE<O>/PP _CMD_
B<1:0> ••

111

110

101

100

011
010
001

000

17.5 Test Pads

. Port Mode

Observe MAB (Default)

Observe M·BOX

Observer C·BoXI'M-Box

Observe I-Box

Enable LFSR Mode
Undefined
Shift ISRs

Force MAS

Data Pins

pp ..DATA...B<11>/TAGADR_
B<19:17>/pp ..DATA_B<7:0>

• •
pp ..DATA...B<11:0>

pp_DATJJI<ll>

pp_DATA...B<10:0>
PP _DATA...B<11:9>

PP_D~B<8:4>

pp ..DArA..B<3 >

PP ..DArA..B<2>

PP _DATA,.B< 1>

PP_D~B<O>

PP_DATA,.B<11:7>

PP _DA'tA-B<6 :4>

pp ..DA'tA-B<3 :0>
PP ..DATA_B< 11>

PP ..DArA..B<10:7>

pP ..DA'tA-B<6:0>
PP _DArA..B<11:0>
pp ..DArA..B<11:0>
pp_DArA..B<11~3>

PP ..DArA..B<2:0>
pp _DA'tA-B< 11 :0>

Signals controlled/Observed

Internal PBI_2

E-Box MAB
S5 Reference Source

S5 command

S5 Abort

S5 TB Miss

S5 PCache Hit
C-box ARB_sTAT.E<4:0>

M-box MD Destination

M-box MME State
Internal PBl.2

Undefined

I-MoAB
Undefined
Undefined
ISRI (Control Store data)

ISR2 (Other internal scan data)
Undefined

This port consists of strategic internal nodes brought out to top level of metal in the form of
3x3 micron test pads. These pads will be accessed by probes during chip debug and wafer probe
manufacturing tests. The access may primarily provide observability of these nodes, however, con­
trollability may also be provided where appropriate. See the testability sections in box chapters
for the list of nodes brought out on the top metal layer.

17.6 System Port

This is simply the normal system 1/0 of the chip. It is identified as a test access port for two
reasons:

• It is used to provide the read/write access to testability features via the V.AX. architecture's
MFPR and MTPR instructions.

• It provides the natural resource for testing the chip via the macro-code based tests.

See the.individual box chapters for the list of specific architectural features provided.

17-6 Testablltty Micro-Architecture DIGITAL CONFIDENTIAL

a

NVAX Plus CPU Chip Functional Specification, Revision 003, October 1991

It is difficult to achieve high test coverage in the the burn-in and life-test environments due to
limited test pattern bandwidth and the difficulty in synchronizing test equipment to the NVAX
Plus chip. Using this serial port, burn-in and life-test programs can load the real "test program"
into Pcache, where the chip can perform a self-test.

This scheme minimizes test pattern bandwidth, allows for asynchronous transmission of the serial
data, provides a means to stinn.ulate multiple chips under test which are running asynchronously,
and supplies a means to achieve high test coverage~

17.7 tristate_I

NVAX Plus chip has a dedicated pin TRISTATE_L. When asserted low, the CPU chip tn-states
ou.tput drivers on all output-only and bidirectional pins, except the following:

• CPUCLKOUT_H

• SYSCLKOUTl_H

• SYSCLKOUTl_L

• SYSCLKOUT2_H

• SYSCLKOUT2_L

The single pin tristate functionality is used only during testing.

NVAX Plus chip has a dedicated pin CONT_L. When asserted low, NVAX Plus connects all of its
pins to VSS, with the exception of these pins:

• CLKIN_H

• CLKIN_L

• CONT_L

• CPUCLKOUT_H

• DCOK_H

• RESET_L

• SYSCLKOUTl_H

• SYSCLKOUTl_L

• SYSCLKOUT2_H

• SYSCLKOUT2_L

• TESTCLKIN_H

• TESTCLKIN_L

• TRISTATE_L

CONT_L should only be used at test in conjunction with TRISTATE_L.

DIGrTAL. CONFIDENTIAL Testability Micro-Architecture 17-7

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

17.9 Revision History

Table 17-3: Revision History

Who When Description of change

Gil Wolrich 15-Nov_1990 Release for external review.

Gil Wolrich 01-Aug-1991 update

Tim Fischer 29-Aug-1991 Pass 1 Implementation Update

17-8 . Testability Micro-Architecture DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Chapter 18

AC/DC Characteristics

This chapter contains the AC a.nd DC specifications for NVAX Plus. Timing param:eters are given
for the nominal speed binned (14ns) parts. Variations for binned parts are tbd.

18.1 Input Clocks

The input clocks clkIn_h,_1 and testcIkIn_h_l are received differentially, then XORed to provide
the time-base for NVAX Plus when dcOk_h is asserted. We expect testclkln_h,_l to be used orily
by testers unable to drive clkIn._h,_1 at full speed. The terminations on these signals are designed
to be compatible with system oe;cillators of arbitrary DC bias. Schematically, they look as follows:

+-----+ +-----+
1 PIN 1----+----; PAD- !------,.----+------------> (to dif!~amp)
+-----+ J +-----+ 1

1 1
1 1 500hms Hi;...Z

cpkg +----RRRP,----+----RRRP,----+
1 1

1

----. 40pF 1
Vbias - (Vdd-Vss) /2 1 1 + _________________ a. _________________ + ____________ +

This is designed to approximate a 500hm termination for the purpose of impedance matching
for those systems (if any) which drive input clocks across long traces. Furthermore, the high
impedance bias driver allows a dock source of arbitrary DC bias to be AC coupled to NVAX Plus.
The peak-to-peak amplitude of the clock source must be between O.6V and 3.0V as seen by NVAX
Plus. Either a "square-wave" or' a sinusoidal source may be used. Note that full-rail clocks may
be driven by testers.

The following table lists the input clock cycle times for the various NVAX Plus bin speeds. Note
tha t the these periods equal one-quarter the corresponding cpu cycle times.

DIGITAL CONFIDENTIAL ACIDC Characteristics 18-1

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 18-1: Input Clock Timing

Name Fast Bin Nominal Bin Slow Bin Unit

elkIn period min 2.5 3.5 3.5 nS

elkIn period max tbd tbd tbd nS

elkIn symmetry 50%+/~10% 500/0+/-10~ 500/0+/-10% percent

18.2 cpuClkOut_h

The cpuClkOut_h signal is expected to be used only by an ECL synchronizer in systems using
the tagOk protocol. In order to accommodate ECL levels, the driver consists of only a PMOS
pullup device. ECL lOOK levels may be constructed with a 500hm board resistor in series with
the driver and a lOOohm board resistor between the load and (Vdd - 2V). CMOS Vdd must equal

, ECL Vce in·this scheme. Note that the trace must be short to insure good signal integrity if, as
expected, the board impedance is not in the vicinity of lOOohm.

18.3 Test Configuration

All outputs and bidirectional signals including clocks but excluding cpuClkOut_h are specified
with respect to a standard 40pF load as shown below. All timing is specified with respect to the
crossing of standard TTL input levels at O.8V and 2.0V.

NVAX Plus !------------*
PIN !

40pf

-... -
GNO

18.4 Fast Cycles on External Cache

From a system standpoint, fast cycles on the external cache are completely unclocked. The two
cases of read and write cycles require separate treatment.

18-2 ACfDC Characteristics D~GITAL CONFIDENTIAL

; ;

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

18.4.1 Fast Read Cycles

El..i.ernallogic must meet the maximum flow-through delay, as defined with respect to the circuits
below.

Addres.s
NVAX Plus 1-------------01-

PIN I Control 1
I

GND

1 Address +----------oj.
NVA>: Plus 1------------- I

PIN 1 Control 1
40pf 1 1 External

1

1 l.ogic
I Dat.a 1

NVA}: Plus 1-------------1
PIN 1 +----------oj.

1

"Address" refers to adr_h and dataA_h. "Control" refers to dataCEOE_h and tagCEOE_h. ttData"
refers to data_h, check_h, tagAdr_h, and tagCtl_h. Assume that address/contro:! is driven from
the same NVAX Plus internal clock edge in the two cases above. External flow-through delay
is defined as the delay between address/control valid to the 40pF standard load in the left-hand
case and data valid to NVAX Plus in the right-hand case.

The external flow_through dHlay may not exceed CACHE_SPEED (i.e. 2,3,or.4 cpu_cycles as
set in the BIU_CTL register) plus 1 additional clock phase. Thus if CACHE_SPEED is set to 2
cpu cycles the flow through d1elay must not exceed 9 times the elkIn period, if CACHE_SPEED
is set to 3 cpu cycles the flow through delay must not exceed 13 times the elkIn period, and if
CACHE_SPEED is set to 4 cpu cycles the flow through delay must not exceed 17 times the elkIn
period. One phase (a single clkIn period is reserved to allow NVAX Plus setup time for latching
the Data. The Tag Compare flIDction is defeITed to the next internal cycle and does not subtract
form the time avB.ilable. to the flow through path. NVAX Plus guarantees that its address drivers
are enabled at least one cpu cycle prior to a fast cache access, such that adr _h need never be
pulled down from 5V during the cycle.

NOTE

NOTE:The NVAX Plus Address Driver is designed for point to point, or daisy chain
loading with N'VAX Plus driving from one endpoint of the etch.

18.4.2 Fast Write Cycles

External logic must guarantee that fast writes complete for the following N'VAX Plus timing. The
write pulse width is 4 times ,~he elkIn period if CACHE SPEED is set to 2 cpu cycles, and 8
times the elkIn period if CACHE SPEED is set to 3 cpu cycles, and 12 times the elkIn period if
CACHE SPEED is set to 4 cpu cycles. The data is driven 1 elkIn period before the dataWE_h
and tagCtl'WE_h assert and is held for 3 clkIn periods after data WE_h and tagCtlWE_h deassert
for all selections of CACHE SPEED. The address becomes valid during the write probe cycle, and
holds for 5 elkIn periods after the data 'WE_h and tagCtlWE_h deassert.

DIGITAL CONFIDENTIAL AC/DC Characteristics 18-3

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

DRV CYG.E 1 PROBE COMPARE WRITE

DRV Cl.K

CPU eLK 1 1 __ 1 1 __ 1 1 __ 1 __ 1--1 __ 1

PHASES 11 1:; I 3 1 4 11 I 2 1 3 I' 11 12 1 3 1 4 1 1 1 :; 1 3 1" 11 1 2 1 3 I' 11 I :; I 3 I 4 11 I:; 1 3 1 4

J..DD?.ESS XXXXXXXiO: _________________________ XXXXX

DATA XXX _________ XXY.

The timing of pMap'WE_h[l..OJ during dcache read hits has the same pulse width, and address
setup and hold as dataWE_h and tagCtl~TE_h.

18.4.3 CEDE timing

The rising edge of sysClkOutl_h is always with internal clock phase 1. The chip enable/output
enable signals tagCEOE and dataCEOE have internal phase 2 timing. As a result these signal
may deassert 1 elkln period after Hold_ack is asserted and 1 clkIn period after the CREQ lines
assert.

18.5 External Cycles

All external cycle timing is referenced to the rising edge of sysClkOutl_h. Input setup and hold
times and output delay and enable times are referenced to the point at which sysClkOutl_h
crosses O.sv. (Output enable time is defined as output delay time from a tri-stated state. It
may differ from the nominal d~lay because it may entail pulling down from a 5V level.) Output
hold times are referenced to the point at which sysClkOutl_h crosses 2.0V. They denote the times
beyond sysClkOutl_h for which outputs hold their valid values from the previous cycle. Note that
these times are negative, meaning that data may lose validity BEFORE sysClkOutl_h becomes
valid high. (This is possible because there is no cause-effect relationship between the system
dock outputs and data. In fact, the system clock outputs are nothing more than data pins which
happen to switch in a fixed pattern.) Address enable timing is relevant only for systems using the
holdReq protocol with two cpu cycles per system cycle. All bidirectional lines may be considered
enable or disabled simultaneously with the rising edge of sysClkOutl_h ..

18-4 AC!OC Characteristics DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Tabte 18-2: External Cycles

Name

Enable, sysClkOutl_h to

adT_h, data_h, check_h

Ol.ltput Delay, sysClkOutl_h ttl)

attr_h~ data_h, check_h, cRe~h, c'WMask_h, holdAck_
h

OllLtput hold., sysClkOutl_h to

adr_h, data_h, check_h, cReq_h, c~WMask_h, holdAck_ -1.5
h

Input Setup relative to sysClkOutl_h

cAck_h~ dRAck_h, dV\TSel_h~ dOE.J

holdRe~h

clInvReq_h, iAdr_h

data_h, check_h

Input Bold relative to sysClkOutl_h

cAck_h, dRAck_h, dWSel_h, dOE_l

data_h, check_h

holdReq..h, dlnvReq_h, iAdr_h

18.6 tagEq

9.3

4.8

4.5

3.5

o
o
o

2.9

1.5

Units

nS

nS

nS

nS
nS
nS
nS

nS
nS
nS

When active during external c:ache hold, the timing of tagEq_l is specified from when its inputs
become valid at tbe NVAX PI\]$ pins.

Tabte 18-3: tagEq

Name

Delay, adr_h -> tagEq_l

Delay, tagAdr_h -> tagEq_l

DIGITAL CONFIDENTIAL

17.0

17.0

Units

nS
nS

AC/OC Characteristics 18-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

18.7 tagOk

The tagOk_h,_1 signals are expected to be driven to NVAX Plus directly from the final stage of
an ECL synchronizer clocked by cpuClkOut_h. As in the case of fast external cache cycles, the
system must meet a maximum flow-through delay. This delay is defined with respect to the
circuits below.

1 cpuClkOut h
NVAX Plus I----RRRR---=+------.

PIl~ 1 500hms 1 : lOpF
1 1

1

Vdd-:.OV 1
O----RRRP.----+ V

lOOohms

1 cpuClkOut_h +----------+
NVAX flus 1---------------1 1

PIN I 1 1
1 External 1

1
1 Logic

1 tagOy._h, _1 "I
NVAY. flus 1---------------1

PIN +----------+

Assume that cpuCIkOut_h is driven from the same NVAX Plus internal clock edge in the two cases
above. External flow-through delay is defined as the delay between cpuClkOut_h valid to the lOpF
ECL "standard" load in the left-hand case and tagOlCh,_l valid to NVAX Plus in the right-hand
case. It may not exceed the nominal cpu cycle time less 3.9ns. Note that board resistors must be
part of "externallogie" in the circuit on the right. For purposes of this specification, cpuCIkOut_h
is considered valid when it crosses the ECL threshold t'Vbb" (equal to roughly Vce - 1.3V) and
tagOk is considered valid when the differential lines cross each other.

"18.8 Tester Considerations

18.8.1 Asynchronous Inputs

The signals "reset_I, irq_h, and sRomD_h (in serial port mode) are asynchronous during normal
system operation. However, for. test purposes they should be driven synchronously with sysClk­
Outl_h with the timing given below. Note once again that these parameters are given with
respect to the time at which the rising edge of sysCIkOutl_h crosses O.8V.

18-6 AC/DC Characteristics DIGITAL CONFIDENTIAL

, __ n

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

Table 18-4: Asynchronous Signals on a Tester

Name Min

Setup, reset_l -> sysClkOutl_h

Setup, ir'1-h -> sysClkOutl_h

Hold, irq_h -> sysClkOutl_h

Setup, sRomD_h -> sysClkOutl_h

Hold, sRomD_h -> sysClkOutl_h

18.8.2 Signals Timed from Cpu Clock

5.0

5.0

o
5.0

o

Units

nS
nS

nS
nS
nS

Due to the speed of NVAX Plus, it is expected that at-speed testing will be done with tester cycle
equal to system cycle (i.e. sysCllkOutl_h). However, fast external cache operation and serial ROM
operation are timed as a function of the CACHE_SPEED field of the BIU_CTL register. Therefore,

. input sampling and output enlabling and switching may occur at differ.ent time points within a
tester cycle from one cycle to the next. IfsysClkOut and BIU_CTL<CACHE_SPEED> are selected
as the same multiple of cpu cycle the timing is completely deterministic. For sysClkOut <- 2,
and CACHE_SPEED <- 2 all cache cycle start with respect to the' falling edge of sysClkOutl_h.
For sysClkOut <- 3 and CACHE_SPEED <- 2 (as in COBRA) the timing of cache related signals
relative to sysClkOut can slip to any one of three positions within the sysClkOut cycle.

The serial ROM outputs sRomOE_I and sRomClk_h may be strobed with the same timing as the
dat.a_h pins when driven by NVAX Plus. The serial ROM input sRomD_h may be switched with
the same timing used in serial port mode.

18.9 DC Characteristics

l\TVAX Plus are capable of running in a CMOStrTL environment.

18.9.1 Power Supply

In CMOS mode the VSS pins are connected to O.Ov, and the VDD pins are connected to 3.3V, +1-
5%.

To prevent damage to NVAX Plus, it is important that the 3.3V power supply be stable before any
of NVAX Plus's input or bidirec:tional pins be aHowed to rise above 4.0V. System designers should
note that this is exa~tly opposite to the rule used by 5.0V inputs in CMOS-3, so care should be
taken when "borrowing" power supplies from CMOS-3 systems.

To help in meeting this requirement, the assertion levels of NVAX Plus's input pins have been
arranged so that their default :state is the electrical low state. This makes them active high, with
the exception of tagOk_1 and dOE_I, which are true ,by default.

DIGITAL .CONFIDENTIAL AC/DC Characteristics 18-7

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

18.9.2 Input Clocks

elkIn is expected to be differential signals generated from an EeL oscillator circuit. It should be
AC coupled.with a nominal DC bias ofVDD/2 set by a resistive network. Details are tbd.

. 18-8 AC/DC Characteristics DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

18.9~3 Signal pins

Input pins are ordinary CMOS inputs with standard TIL levels, see Table 18-5. Once power has
been applied, the majority of input pins can be driven by 5.0V signals without harming NVAX
Plus. There are some signals that are sampled before vRef is stable, and these signals can not
be driven above the power supply. These signals are:

• dcOk_h

• tristate_l

• cont_l

• eclOut_h

Output pins are ordinary 3.3V CMOS outputs. Although output signals are rail-to-rail, timing is
specified to standard TTL levels, see Table 18-5.

Bidirectional pins are ordinary 3.3V CMOS bidirectional. On input, they act like input pins. On
output, they drive like output pins.

Once power has been applied, bidirectional pins can be driven to 5.0V without harming NVAX
Ph:lS (it is not necessary to ~e static RAMS with 3.3V outputs).

Table 18-5: CMOS DC Character'istics

Parameter Requirements

Symbol Description Min

TIL Inputs/Outputs

Vih High level input voltage 2.0

ViI Low level input voltage-

Voh High level output voltage 2.4

Vol Low level output voltage

Power/Leakage

Icin

Iil

101

1dd

Clock input Leakage

Input leakage current 10

Output leakage current (three- -10
state)

Active supply current

DIGITAL CONFIDENTIAL

Max

0.8

0.4

50

10

-10

14.5?

16.0?

14.5?

Units

V

V

V

V

uA

uA

uA

A

A

A

Test Conditions

loh = -100uA

101 = 3.2mA

.0.5<Vm<5.5V

O<Vin<Vdd V

NVAX Plus @ 14.0ns cycle

NVAX Plus @ 10.0ns cycle

NVAX Plus @ 14.0ns cycle

Tj=O C, V dd=3.SV

ACIOC Characteristics 18-9

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

18.10 Timing Overview

NVAX Plus cpu cycles consist of four phase(phil,phi2,phi3,phi4). In system operation the period
of each phase is equal to the clkIn_h_l period. In the tester environment the input clock is derived
from an 'XOR' of clkIn_h,_l and testClkIn_h_l. This produce a 2X input frequency of that which
can be driven to the clock inputs from tester input signals. The system clock sysClkOutl_h,_l
can be programmed to be 2,3, or 4 times the cpu cycle period. The LASER and PVN systems
both program sysClkOutl_h_l for 2X the cpu cycle. Most testing of NVAX Plus will be done with
sysClkOutl_h,_l set for 2X. the cpu cycle.

200mhz elkln_h 1-1_1 1_1-1_1 I_I 1_1-1_1 I_I 1_

200mhz testelkln I 1_ I_I I_I I_I 1 _ I_I

I_! 1_

S:--sys tirst.
Dl,,-dri vw_las't

____ I ____ I

____ I ____ I 1 __ _

____ I I 1 _

____ I I I

I_I I_I 1_ 1- 1_11_

SF 51..

The CPU_CLK runs at a cycle time as fast as 10ns, and SYS_CLK can be set to 2,3,or 4, times the
CPU cycle time.

18.11 Signals

The following table lists all of the 291 signals on the NVAX_PLUS chip. In the "type t
• column, an

"I" means a pin is an input, an "0" means the pin is an output, a "T" means the pin is a tristate
output, and a "B" means the pin is tristate and bidirectional. In the "timing" column "SF" means
sysClkOutl first cpu cycle,"SL" means sysClkOut1 last cpu cycle, "DL" means drive_clock last
cpu cycle, which is sys_first when sysclock and cache speed are bot 2X the cpu cycle. For inputs
the phase column indicates the phase at which the input signals change. For outputs, the phase
column indicates the reference from which timing is specified in the function column.

Table 18-6: NVAX_PLUS Signals

Signal Name Count Type Phase Function

elkln_h •. J 2 I 1,2 Clock input

testClkIn_h,_l 2 I 2,3 Clock input for testing

18-10 ACIDC Characteristics DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table '18-6 (Cont.): NVAX PLUS Signals

Signal Name Count Ty:pe Phase Function

clk_rst_.h 1 1 Put cpu and Bys_clk timing gen. to known state,
elkIn & testClkIn stopped

cpuClkOut_h 1 0 1,3 CPU clock output, phase 1 & 3 every cpu cycle

sysClkOutl_h •• J 2 () 1 System clock output

sysClkOut2_h>-l 2 0 lor3 System clock output, delayed

adr_h[33 .. 32] 2 'I' DLS Address bus 33,32

adr_h[31..l7] 15 B DLS Address bus tag section

adr_h[IG .. 5] 12 T DL3 Address bus index section

dataA_b.[4] 1 T DL3 data A[4]

dataA_h[3] 1 0 DLS data A[3]

data_h[127-.. 0] 128 B 1 Data bus, dfl for write_hit, sn for write_block or
STxC

data_hll27 .. 0] 128 B 4 Data bus, d14 for cache_hit, s14 for read_block or
LDxL

check_hL27 .. 0J 28 B 1,4 Check bit bus, same timing as data_h

dOE_l 1 I SFl Data bus output enable, 9.3/6.0 before phi_l

dRAck_h[2 .. 0] 3 I SFl read acknowledge, 9.3/6.5 before phi_l

tagAdr_h[31..20] 12 I DLS Tag address [31 .. 20], setup by drive • .1ast phi 4

tagAdr_h[19] 1 B Tag address [19] inputs DU, Parallel Port [10] if
enabled

tagAdr_h[lBJ 1 B Tag address [lBJ inputs DL3, Parallel Port[9] if en-
abled

tagAdr _h(17] 1 B Tag address [17] inputs DL3, Parallel Port[B] if en-
abled

tagEq.J 1 0 Tag compare output, valid l7ns after tagAdr_h &
adr_h

tagCEOE._h 1 0 2 tagCtl and tagAdr CEIOE

tagCtlWE_h 1 0 2 tagCtl WE

tagCtlV_h 1 B DL3,1 Tag valid, inputs drive_last phi_3, outputs drive_
first phi_l

tagCtlS_h 1 B DL3,1 Tag shared, inputs drive_last pw_3, outputs drive_
first phi_l

tagCtlD_h 1 B DU,l Tag dirty, inputs drive_last phi_3, outputs drive_
first phi_l

tagCtlP_h 1 B DU,l Tag V/SfD parity, inputs drive_last phi_3, outputs
driveJjirst pru._l

tagAdrP_h 1 I DU Tag address parity, inputs drive_last pm_ 4

tagOk_h>-l 2 I 2,4 Tag access from CPU is ok, phi2 read. tagok, phi 4
write,tagok

DIGrTAL CONFIDENTIAL ACIDC Characteristics 18-11

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

Table 18-6 (Cont.): NVAX_PLUS Signals

Sig:Dal Name Count Type Phase Function

dataCEOE_h[3 .. 0] 4 0 2 data CElOE, longword

data '-'TE_h[3 .. 0] 4: 0 2 data WE, longword

holdReCi-h 1 I SFl Hold request, 4.8 before pru_l

holdAck_h 1 0 SFl Hold acknowledge

cReq_h[2 .. 0] 3 0 SFl Cycle request 1.5/3.5 aft.er sysclkoutl(phCl) if cack
setup=9.3/5

cWMask_h[7 .. 0] 8 0 SFl Cycle write mask, 1.5 after sysclkoutl(phi_l)

cAck_h[2 .. 0J 3 I SFl Cycle acknowledge, 9.3/5 before pru_l of sysClk·
Outl

iAdr_h[l2 .. 5J 8 I SFl Invalidate address, 4.5 before pru_l of sysClkOutl

pInvReq_h[l .. OJ "2 I SFl Invalidate request for Pcache, 4.5 before pru_l of
sysClkOutl

pMap\VE_h[l .. O] 2 0 3 Baclonap 'WE, Pcache

err _hlirq..h[5] 1 I SFl External error interrupt, synchronized with pru_ 4
and sys_:6.rst

halt_blirq_h[4] 1 I SFl Halt intetTUpt, synchronized with phl_ 4: and sys_
first

irq_h[S .. O] 4: I SFl Interrupt requests, synchronized with pru_ 4: and
sys_first

tagAdr_hl3S .. S2] 2 0 4: Parallel port [7 :6] if enabled

pp_data_h[ll] 1 B 4,2 Parallel Test Port Data, :MAB clock, driver at pm_ 4,
send pru_2 in MAE

pp_data_hl5 .. 0] 6 B 4: Dedicated Parallel Test Port Data

osc16m_h 1 I SFl Interval timer 16MHz oscillator input

sRomOE_l 1 0 SFl Serial ROM output enable

sRomClk_b 1 0 SFl Serial ROM clock!I'x data

sRomD_h 1 I SFl Serial ROM datalRx data

icMode_h[l] 1 I SFl Enables pp_cmd_h<2:0> for test mode

icMode[OJ/pp_cmd[2] 1 I SFl Serial ROM fast fill, sRomFast_hlusedas pp_cmd[2]
in test mode

pp_cmd[l:O] 2 I SFl EV dWSel_h[l .. O] used to select port function in test
mode

dcOk_h 1 I SFl Power and clocks ok

reset_l 1 I SFl Reset

tristate_l 1 I SFl Tristate for testing

cont_l 1 I SFl Continuity for testing

test_mode_h 1 I SFl Enables pull-downs on check_h bits, was ec10ut_h

vref 1 I Input reference/not used by NVAX Plus

18-12 AC/DC Characteristics DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

CACHE READ HI! TIMlNG

DRD/IRD p,!)c RDN FILL FIl.L IDLE

1 ___ 1 1 ___ 1 ___ I ___ I ___ I ___ _

3 • 1 2 3 4 I 2 3 4 1 2 3 4 123 4 1 2 3 4 I ; 3 4 1 2 3 , 1 : 3 4 1 2 3 4 I : 3 4 1 2 3 4 1 : 3 ,

acr<31:S> X~ ___ __

dat;c_A<4> X. ________________________________ X __ ___

\~--/~-
tagad: XXXXXXXi~XXXXXXX _____ ~·---
ct J v. d. s _1='

dat.aceoe

:i:Xj:>:XXXXXXXX:;:XXXX
1

DIGITAL CONFIDENTIAL

_______ xr~:;::;:XXXXXXXXXi: _______________ ~---------------~----__ --
1

+-- 2nd octaword valie
+-- tag • 1st octaword valid

AClDe Characteristics 18-13

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

CACHE WRlTE HIT TIMING

PROBE COMPARE WRITE IDl.E

- 1 __ - ___ _ __ I ' ___ I ___ I __ _

3 4 1 : 3 , 1 : 3 , 1 2 3 , 1 ; 3 , 1 2 341 : 3 4 1 ~ 3 4 1 : 3 , 1 2 3 4 1 2 ~ 4 1 2 3 4 1 2 3 4

adr<3l:5> X ___ ___

taqceoiO \----------+-----+---------
tagad:

XXXXXXXXXXXXXXXXX >---------------+-------+-----------------
c:t.l c.. s . pXiOO .. iOCXXX>OO:xxxiO:_>-------------------------

tagWE ------------------_/---_------
XXXXXXXXX"JDOO".xxXXXXXXXXXXXl: write tagok - oj.: past COMPARE

dat.aceoe + ___ + __________ _
da tc _ h Xi:XX:;::XXXXXXXX>---------------------------------

c:iat.av~ /----- ______ _

+-- data hold 3 phases

+-- WE trailing ec:ige

+-- t.ag valid

18-14 AC/OC Characteristics DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

CACHE BYTE/WORD WRITE HIT TIMING

MERGE BWR IDl.E

_I ___ _ __ I ___ _ __ I 1 ___ 1 __ _

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 123 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ~ 2 3 4 1 2 3 4

ad,r<31:5> y. ________________________________ _

tagceoe + ___ + _____ _

tagadr XXXXXXXXXXXXXXXXX __ ~------------------·-------------+-------+---------------g-

c~ 1 'I.' • d. s • pXXXXXXXXX-JCXXXXXXX_>------------------------... -----------------

tagWE ----~-----------------------/---\-----------
xxxxxxxxxXX>OCXXXX>DOOOO::XXXXX writ~ tagoy. - oy. past MEP.Gt

dataceoe \-------------+---+-----_.
xxxxxxxxxxxxxxxxy. ___ >-·--

dat.aWE
____________________________ /---\ ______ __

+-- tag ~ merge data valid

18.12 Revision History

Table 18-7: Revision History

'Who

Gil Wolrich

Gil Wolrich

'When

15-Apr·1991

01..Jul-1991

DIGITAL CONFIDENTIAL

Description of change

:first edit from EV 4 characteristics.

update and timing diagrams.

dat.a hold 3 phases

+-- WE trailing eqg~

AC/DC Characteristics 18-15

NVAX Plus Cl)U Chip Functional Specification, Revision 0.8, October 1991

NVAX Plus Pinout

~ 19.1 Overview

TIlls chapter contains the en.tire NVAX Plus pinout ordered by PGA location. In addition, it
contains a list of differences between the NVAX. Plus pinout and the EV4 pinout.

DIGITAL CONFIDENTIAL NVAX Plus Pinout 19-1

:NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

19.2 NVAX Plus Pinout

PGAPADPIN
LOC. No. No. TYPE NAME
Al 009 001 ~ date h<33>

.----Jt.. .. .: ... --'O'~~--da~;n<.9:J>.
~ 00' OO~ ~ date h<98>
A' '26 00"' Eo· daU-h<lOO>
A5 421 005 B date h<38>
A6 418 006 B cheek h<2i>
Ai 412 007 B data_h<104>
AS 407 008 B data h<42>
A9 403 009 B data:h<44>
AlO 398 010 B data h<109>
~l 391 011 ~ data-h<47>
A12 387 012 B data:h<49>
h:3 ~86 013 E< data_h<113>
hl' 379 014 B data h<S2>
A15 373 015 Eo check h<12>
AlE 36i 016 B data_h<55>
Ali 36"' Oli r data h<120>
J..lB 358 018 Eo -data-h<lZ2>
A19 355 019 B cneek h<i>
A2(J 345' 020 B data h<60>
A:l 34i 021 B data:h<61>
A2, 343 0:: B data h<62>
A23 340 023 B data:h<12i>
AZ' 337 024 B check_h<9>

El
B2
B3
B4
195
196
E7
198
E!9
E10
E~'

E12
:513
BH
E15
E16
Eli
E18
B19
E20
E21

014 025
046 026
003 027
039 028
424 O?Q

05' 030
413 031
047 032
404 033
062 034
394 035
055 036
383 037
070 038
372 039
063 040
363 041
Oi8 042
354 043
Oil 044
346' 045
086 046
079 047
335 048

E check h<15>
P Vl?D plane
B data h<35>
P. VSS plane
E! date h<lOl>
f WD plane
B data_h<40>
P VSS plane
B data h<10i>
P VDD plane
B data h<110>
P VSS plane
r data h<50>
P VDD plane
B checr. h<26>
P vss plane
B date h<57>
P VDD. plane
19 check h<21>
P vss plane
B data h<125>
f VDD plane
P VSS plane
B checy._h<8>

19-2 NVAX Plus Pinout DIGITAL CONFIDENTlAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGAPADPIN
LOC. No. No. TYPE NAME

Cl 016 049 B checr. h<16>
c: 119 050 P vss plane
C3 010 051 B data h<96>
C": 002 052 B data:h<99>
C5 ":25 053 B data h<37>

------------- ----C6-----.l.:-~0'_5_4-__B- ched: h<-i~? ---- - --
Ci 41..: 055 B datajl<103>
C6 ":10 056 B data h<105>
C9 405 057 B data-h<43>
C10 399 058 B data-h<45>
Cll 395 059 B data-h<46>
C1.2 388 060 B data:h<112>
C13 38: 061 B data h<1l4>
CH 378 062 B data-h<116>
C15 371 063 B data-h<S4>
C16 366 06": B data - h<1l9>
C17 362 065 B data:h<121>
C16 357 066 B cheer. h<ll>
CH 351 067 B dataj;<59>
C20 348 068 B data h<124>
C21 342 069 B data-h<126>
C2.2 336 070 B check_h<23>
C"" - 330 on dRAcy. h<O>
C24 331 072 ! plnvR;c_h<l>

D:l 022 073 B data h<94>
02 017 074 B check h<2>
03 015 075 B checr.-h<l>
D": 005 076 B data h<34>
D5 4.27 077 B data:h<36>
D6 420 078 B data h<102>
D7 415 079 B data-h<39>
D8 4.11 080 B data-h<41>
D9 406 081 B data-h<106>
D10 402 OS2 B data:h<108>
D11 3!16 OS3 B checr. h<24>
012 389 084 B data h<48>
D13 381 085 B data-h<51>
D1..: 375 086 B daU:h<53>
D15 370 087 B data h<118>
D16 365 088 B data-h<S6>
III 7 359 089 B data-h<58>
D18 356 090 B cheek h<25>
D19 350 091 B date h<123>
D20 3..:1 092 B data-h<63>
D21 334 093 B cheek h<22>
D22 328 094 ! dRAck-h<2>
D23 152 095 P VOD plane
D24 325 096 ! dOE_l

DIGITAL CONFIDENTIAL NVAx Plus Pinout 19-3

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGAPADPIN
LOC. No. No. TYPE NAME

E1 023 097 B an.a h<30>
E2 l26 098 P vtlO plan.
E3 021 099 B aata h<31>
E" 011 100 B aaU:h<32>
E5 :26 101 p vtlO }:olene

-------£6--~_S5___1. ()z--P---VS5~1~lIe

E7 234 103 P vtlO plene
E8 243 104 P VSS plene
E9 242 105 P vtlO plene
E10 255 106 P VSS plane
Ell 397 107 B eheer._h<lO>
E12 390 108 B dat.a h<lll>
E13 380 109 B aata-h<llS>
E14 374 110 B aate -h<1l7>
E15 266 111 P VOO plane
E16 279 ll2 P VSS }:olane
E17 :78 ll3 p vtlD plane
E18 291 114 P VSS }:olane
E19 290 115 P vtlD plane
E20 303 116 P vss plane
E21 329 117 ! ciRAcy. h<l>
E-'''' 324 118 ! .pp_c:rrtd_h<O>
E23 323 119 ! pp_cmc_h<l>
E24 3"'0:- 120 ! eAer._h<O>

Fl 028 121 B aata h<92>
F: 027 122 B aata-h<29>
F3 026 123 B aet.e-h<93>
F4 020 124 B aete-h<9S>
F5 231 l25 P vss plane
F6 230 l26 P VOD plane
F7 239 127 P VSS plene
F8 238 l28 P vtlD plene
F9 249 l29 P VSS }:olen.
FlO 246 130 P VOD plane
Fll 261 131 P VSS plene
Fl2 254 132 P VOD plene
Fl3 267 133 P VSS plane
Fl4 260 l34 P vtlD plane
Fl5 273 135 P VSS plane
Fl6 272 l36 P vtlD plane
Fl7 285 137 P VSS plane
Fl8 284 138 P VOt, plane
Fl9 297 139 P VSS plane
F20 296 140 P vtlD plane
F21 319 141 ! cAe): h<l>
F22 318 142 ! eAe):-h<2>
F.n 155 143 P VSS plane
F24 317 144 ! hold!<.e~h

19-4 NVAX Plus Pinout DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision O.3~ October 1991

PGAPADPIN
LOC. No. No. TYPE NAME

Gl 033' 145 B data h<27>
<::2 111 146 P VSS plane
G3 032 147 13 data h<U>
G4 029 148 13 data-h<28>
G:5 360 149 P VDD plane
G6~~-9--!-5€t--P--VS-S-pi-ane

G19 133 151 P VDD plane
G:20 N/A 152 P vss plane
G:21 316 153 0 holdhck_h
G:2 313 154 0 dataCEOE h<O>
G23 312 155 0 dataCEOE-h<l>
<:::4 S11 156 0 dataCEOE:b<:>

Hl 03'7 157 B check h<4>
H:? 036 158 B chftcy. - h<lSI>
HS 03S 159 B check:h<O>
H", 034 160 B check h<H>
HS 361 161 P vss plane
H6 352 162 P VDD plane
HlP N/A 163 F VSS plane
H2O '26 164 P VDD plane
H21 SlO 165 0 dataCEOE h<S>
HZ2 SO'7 166 0 tagCtlWE)'1
H23 H2 Hi P VDD plane
H24 306 16B 0 cWM,asy._h<O>

~"l 042 169 B data h<89>
J':2 11B 170 P VDD plane
J'S 041 171 B data h<26>
J' 040 172 B data-h<90~.
J5 344 li3 P VDD plane
J6 353 174 P VSS plane
J19 ':22 175 P VDD plane
J20 N/A 176 P VSS plane
.;: 1 305 177 0 cWMask h<J,> -J:2 30"' 176 0 cWMask h<2>
J':3 SOl 179 0 cWMur. h<:!>
J24 300 180 0 cWMask:h<4>

1'" 048 181 13 data h<B7>
y~ 045 1B2 13 data:h<24>
1':3 044 183 B data h<B8>
1':4 043 184 E data -h<2S;'
1':S S45 18S P vss plane
K6 338 lB6 P VDD plane
F~19 423 18'7 P VSS plane
K20 416 lBB P VDD plane
K21 299 189 0 cWMask h<!»
K22 29B 190 0 cWMask -h<IS>
K"'-:O H'7 19l P VSS plane
K24 295 192 0 cWMask_h<7>

OIG(TAL CONFIDENTlAL NVAX Plus Pinout 19-5

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGAPAD PIN
LOC. No. No. TYPE NAME

L1 052 lSI 3 B checr. h<19>
!.2 103 194 P vss plane
1.3 051 195 B data h<22>
L4 050 196 B data:h<86>
1.5 049 197 B data h<:3>

-------- ----------L-f---5S-£>-11l£-P---VS'S-pi-ane
:"'H 408 lSI 9 P WD plane
1.20 294 200 0 dataWE h<O>
1.21 293 201 0 datam-h<l>
1.:2 292 202 0 dataWE-h<2>
l."'" 289 203 0 dataWE-h<3>
1.24 288 204 0 pMapWE:h<O>

M1 059 205 B data h<20>
1"''':; 058 206 B da-:.a:h<84>
M3 057 207 B data_h<:l>
M4 056 208 B data h<85>
M~ 053 209 B check h<S>
ME 332 210 P WD plane
M19 417 211 P VSS plane
M20 287 :l: 0 cRec h<O>
1"''':;l 286 a3 C cRe<Lh<l>
M~" 283 214 C cReo h<2>
Y":3 140 215 P WD plane
1"'..24 282 216 C pMapWE_h<l>

m 060 217 B data h<83>
1\: llO 218 P WD plane
N3 061 219 B data h<l9>
N" 064 220 B data-h<82>
N5 065 221 B data-h<18>
N6 333 222 P VSS plane
N19 400 ':2~ P WD plane
N20 275 224 1 tagOy._l
N'" 276 225 tagOy._h
1\:2 277 226 C dataA h<4>
1\"':1 280 227 0 da'taA-h<3>
N24 28l 228 0 tagCEOE_h

P:' 066 :29 B data_h<81>
P: 067 230 E- data h<l'>
P3 068 23l B data-h<80>
P4 069 232 B date:h<16>
P5 072 233 B data h<79>
P6 326 234 P WO plane
PH 409 .235 P vss plane
P20 269 236 B tagCtlS_h
P21 270 237 B tagCtlD_h
r:2 271 238 B tagCtlP_h
?23 145 239 P VSS plane
P24 214 240 C tagEc_l

19-6 NVAX Plus Pinout DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

PGAPADPIN
LOC. No. No. Tl'PE NAM1~

Rl 073 241 15 data h<15>
R:- 095 242 P vss plane
R3 074 243 15 deta h<78>
R4 075 2H E deta-h<14>
R!5 320 245 P VDD ~lanE.

·---------------R6---S:: ~r--z.4'6___p___vsS__pr.me_
R19 3°"> 247 P VDD planE
R20 401 246 P VSS plane
R:' 263 249 E tagadr_h<19>/pp_data_h<10>
P.:2 264 250 E tegadr_h<18>/pp_deta_h<~>

R:''" 265 251 E tegadr_h<17>/pp_deta_h<S>
R24 268 252 E tagCtlV_h

T:t 076 253 E checr. h<17>
l'2 Oi7 254 E check-h<3>
l'3 080 255 15 data h<77> -Tt. 081 256 B- data h<13>
T5 321 257 ? VES planE.
T6 314 258 P VDD plane
T19 393 259 P VSS plane
T20 380C 260 P VDD }:>lanE
T=:l 258 261 ! taoadr h<2:2>
'!'~:2 259 262 ! ta~adr-h<21>
='::3 138 263 P VDD planE.
l'24 262 264 I tagadr_h<20>

V1 082 265 E data h<76>
V:- 102 266 P VDD plane
V3 083 267 15 data.h<12>
U4 080C 268 E data -h<75>
V5 308 26f! P VDD plane
Uf, 315 270 P VES planE
VB 376 271 P VDD plane
V20 385 272 P VSS plane
V"" 252 273 taoadr h<26>
V">" 253 274 I tagacir:h<2~»
V:3 256 275 tagacir_h<2~>

U20C 257 276 I tag acir _ h<2 ~I >

V1 085 277 E ciata h<ll>
V2 088 278 E data-h<74>
V3 08f! 27f! B data:h<lO>
V4 090 28(, E date h<73>
V5 309 281 P VSS plane
V6 302 28:- p VDD plane
VB 377 283 P VSS plane
V20 368 284 P VDD plane
V21 247 285 I tagacir_h<29>
V22 250 286 I tagacir_h<28>
\°23 143 287 P vss plane
V24 251 288 ! tagacir_h<27>

DIGITAL. CONFIDENTIAL NVAX Plus Pinout 19-7'

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGAPADPIN
LOC. No. No. TYPE NAME

Wl 0S'1 28S' B data h<9>
W2 067 290 P VSS planE
W3 092 291 B data_h<72> w, OS'S" 292 B check h<6>
W5 15' 293 P VOl) plane
i~6---j:i5-e---2-i1~~SS-pi-an ..
Wi 166 295 P VOl) planE
we 175 296 P VSS plane
W~ 13~ 291 1 tes'tClkln_h
y,'lO 141 298 1 'tes'tClkln 1 -Wll 180 29~ P VOO plane
W12 l67 30C; 1 clkln_h
Wl3 169 301 1 elkIn 1
Wl!; 199 302 P vss plane
W15 196 303 P VOl) plane
~6 211 304 P VSS plane
v,-1 i 210 305 P VOt' plane
v,"l6 219 306 P vr:.r: plane
WH :216 30i P VOl) plane
r::ZO 2:7 30e p VSS plane
V\'21 240 309 1 t.aoadrF h
W:2 244 no '! pp':'dat.a:h<6>
W"'''' 245 3" taoad: h<31>
V\'24 246 312 tagadr:h<30>

Yl OS'3 313 :f data h<8>
Y2 096 3loe = da'ta-h<71>
Y3 091 315 :s data:h<7>
Y4 106 316 :s data_h<68>
Y5 161 317 P vss plane
Y6 166 ns p voo plane
Y7 165 319 P vss plane
:fS 170 320 P VOO plane
Y9 181 321 P VSS plane
YlO 174 ~ ~ "" P VOO plane
Yl1 167 323 F VSS plane
Yl2 186 324 P VOO plane
Yl3 193 325 P VSS plane
Yl4 192 326 F VOl) plane
Y1S 205 327 P vss plane
Y16 204 328 P VOO plane
Yl7 :15 329 P vr:.r: plane
Y18 214 330 P VOO plane
Yl9 223 331 P VSS plane
Y20 222 332 P VOO plane
Y:21 23:2 333 0 aclr h<8>
Y22 237 334 0 aclr-h<S>
Y23 132 335 P VOO-plane
Y24 241 336 T pp_daU_h<7>

19-8 NVAX Plus Pinout DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGAPAD PIN
LOC. No. No. TYPE N.ANrE

AA1 096 337 B check h<20>
AJ.2 094 338 P VDD plan,e
AA3 105 339 B data h<5>
AA4 112 340 B data-h<66>
AA5 11i 341 13 date-h<O>

-------.Ak6---i-2-j--S4z---;--i-Aet~:-
AAi l~;: 343 iAdr-h<lO>
AA8 136 344 I vRef-
AA9 lH 345 0 sysClkOU1~2 h
AA10 146 346 0 sySClkOut~2:1
AAll 15'7 34'7 T pp data 1'1<1>
AA12 162 348 0 SY';ClkOUt.l_h
AA13 164 349 0 sysClkOut.l_l
AA14 171 350 I cont 1
~15 182 351 I err hi (iz'o h<5»
.~l6 188 352 T pj:> 'data h<ll>
,hJ;.17 191 353 B adr h<31>
AA16 197 354 B adr-h<2i>
Ak19 202 355 B edr-h<24>
AA20 :13 356 B adr-h<l'7>
AA21 217 357 0 adr:h<15>
AA22 225 358 0 ad: h<ll>
Ah23 233 359 0 adr-h<7>
Ah24 236 360 0 adr:h<6>

B data_h<70:>
B data h<:69:>
B data:h<:67:>
B data h<:2>
B data-h<64:>

iAdr-h<: '7 >
I iAdr-h<12:'
I reset 1
I sRomD-h
o sRomOE_l
o epuClkOut h
I deOk h _.

I triState 1
I ieMode h<O>

------------------------------------_._- .. -

}~l

}~2

AS3
AB4
AB5
AB6
AB7
AB8
AH
AB10
ABll
AB12
AB13
ABH
A'S15
ASl6
lIEli
AE18
AE19
.AE20
AB21
AB22

100 361
104 362
108 363
113 364
116 365
122 366
129 36'7
13'7 368
148 369
149 3'70
153 371
159 372
160 373
172 374
li9 375
185 376
190 377
196 378
201 379

I halt h7 (iz'o h<4>)
T pp data h<3>

AB23
AE24

207 380
212 381
220 382
127 383
229 384

B adr h<32>
B adr-h<:28>
B adr:h<:25>
B adr h<21>
13 ad: -h<18>
o a dr-h <1 4>
P VSS-plane
o a dr_h<: 9 >

DIGITAl. CONFIDENTIAL NVAX Plus Pinout 19-9

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGAPADPIN
LOC. No. No. TYPE NAME

AC1 101 385 = cia't.a h<6>
AC2 001 386 P VSS plan~
AC3 006 38i P VDD plan~
AC4 114 388 E> ciate_h<6S>
ACS OOi 389 P VSS plane
AC~--12~---S-9Ct---!----±A(i~t!'>

ACi 01: 391 P VDD.plan~
AC8 128 392 1 iAcir h<ll>
AC9 013 393 P VSS plane
AC10 150 394 0 aRomClk h
AC11 018 395 P VDD Flane
AC12 158 396 1 oae16M H
AC13 019 39i P VSS plan~
AC14 1i'7 398 1 irc_h<2>
AC15 024 399 P VDD plane
AC16 184 400 T pF'_ciate_h<4>
ACli ns 401 p VSS planQ
AC18 19S 402 E> acir h<29>
ACH 030 403 P VDD-plane
AC20 206 404 E> aci:- h<::>
;.=21 031 40S P VSs-planw
AC;'Z 216 406 (- acir h<16>
A,...., .. 038 40i P VDt:-planQ
AC24 22S 408 0 a cir_h <1 0>

1>I:i2 10i 409 = cia't.a h<4>
AD3 109 410 E- cia't.a-h<3>
AD4 115 411 E- ciata-h<l>
ADS 120 U2 1 iAdr-h<S>
.AD 6 l24 413 1 iAcir:h<9>
1>I:ii 131 414 1 elY. rn h .
AD8 l35 U5 I test moCiw h
AD9 130 416 I PlnvReCLh<O>
J.D10 134 4li : pp _ ciata_h<O>
ADl1 151 .nS T pF-,-ciata_h<2>
AD 12 156 U9 I ieMoci. h<l>
AD13 1i3 420 .1 irCLh<O>
AD14 176 421 I irc_h<l>
AD15 liS 422 irCLh<3>
ADH 183 423 T pp_ciau_h<5>
1i.:)li 189 42.(; = acir h<33>
.AD 1 8 194 ,.,'" ,"w B acir-h<30>
ADH 200 426 B aci:r-h<26>
AD20 203 ':21 = acir:h<23>
AD21 208 428 B ecir h<20>
AD22 209 429 B acir-h<19>
AD23 221 430 0 ecir-h<13>
AD24 224 431 0 acir:h<12>

19-10 NV AX Plus Pinout DIGITAL CONFIDENTIAL

NVAX Plus CPU Chip Functional Specification, Revision 0.8, October 1991

19.3 NVAX Pius/EV4 Pinout Differences

The following table shows the differences between theEV4 chip pinout and the NVAX Plus chip
pinout.

--PGA-PAD SIGEV-4--NVAX-pllus-
LOC. No. No. TYPE NAME TYPE NAME
.,...,.,
"""' ..
E23
En

L24
ADS!

M24
AD7
AD10
C24
ADll

AA1::"
AD 16
AA16

AEl6
AC16

AD6

Y24

324 ll8 I
323 ll9 I
329 lli I

286 204 0
130 416 I

282 216 N
131 '14 N
13~ 417 N
331 072 N
151 41S N
158 396 N
15i 3,7 N
183 423 N
186 352 N

185 376
18' 400

135 415

265 251
264 250
263 249
244 310
24:' 336

:r
!

I

I
I
I

dW5e: h<O>
dW5el-h<1>
dRAcr.:h<l>

dMapWE h
dlnvReo_h

spare<O>
spare<l>
s~re<2>

spare<3>
spare<4>
spare<5>
spare<6>
spare<7>
spare<8>

I pp cmd h<O>
I pp-cmd-h<l>
I dRaCy._h<l> -NOTE(l)-

o pMapWE h<O>
plnvRe~h<O>

o pMa pWE_h< 1 >
I cly. rst. h
o pp_daU:h<O>
I plnvRe~h<l>
o pp_oat2_h<2>

osc16M_E
o PF'-.daU_h<l>
o pp_dat8_h<5>
o PF~dat.8_h<1l>

perf_cnt_h<O> 0
per!_cnt_h<l> 0

pp_daU_h<3>
pp_dat8_h<4>

eclOUt_h

t.aaadr h<17> B
uaac:ir-h<18> B
U9ac:ir:h<19> B
taaac:ir h<32> 0
tagadr:h<33> 0

t.agac:ir h<17>
t.agac:ir-h<18>

't.a.gac:ir:h<19>
pp_c:iat.a_h<6>
pp_ oaU_h<7>

YZ2 237 334 B ac:ir_h<5> 0 ac:ir h<5>
AA24 236 360 B adr h<6> 0 ac:ir-h<6>
AA23 233 359 B ac:lr-h<7> 0 ac:ir-h<7>
Y21 232 333 B ac:lr-h<8> 0 ac:ir-h<8>
AB24 229 384 B adr:h<9> 0 ac:ir-h<9>
AC24 228 408 B adr h<10> 0 a~h<10>
AA22 225 358 B ac:lr-h<ll> 0 a c:ir-h <1 1>
AD2~ 224 431 B adr-h<12> 0 ac:ir-h<12>
AD23 221 430 B aa::h<13> 0 adr-h<13>
AE2: 220 382 B ac:ir_h<14> 0 ac:ir-h<14>
AA21 217 357 B adr h<15> 0 a c:ir-h <1 5>
AC22 216 406 B ,ac:ir:h<16> 0 ac:ir:h<16>

--NO'I'E(l} : PGA LOC.' E2l, is specified in version 2.0 of t.hli! EV specificat.ion as
c:iRack h<l> for EV, and pp ernci h<Z> for NVAX Plus. This has been changec
version 2.0 of the EV specificat.ion was publishec:i. PGA LOC. E21 is now
dRack h<l> for both t.hE; EV4 and NVA); Plus chips'. The NVAX Plus chip
now u~es PGA LOC. AE14, ieModE;_h<O> as bot.h sROMfast and pp_ernd_h<2>.

DIGITAL CONFIDENTlAL NVAX Plus Pinout 19-1'

NVAX Plus CPU Chip Functional Specification, Revision 0.3, October 1991

PGA PAD SIG EV4 NVAX Plus
LOC. No. No. TYPE NAME TYPE NAME

AD13 173 '20 ire h<O> I ir~h<O> ;interrupt at IPL20 only NVAX Plus
AD14 176 '21 ! irO::h<l> I ir~h<l> ;interrupt at IPL21 only NVAX Plus
A:14 177 396 = irq_h<2> I ir~h<2> ;interrupt at IPL22 only NVAX Plus
AD15 178 ':2 :r ire h<3> I i rO __ h <3 > ;int.errupt at IPL:23 only NVA); Plus
-ABl5-:'7-~-375---t--ir;rh<4>-----"-1-h'ilt--E----;rialtinterrupt-Tc;:-wA:i.-Pl.us--.-
AAJ.:. 182 351 ir<L:h<5> :r err_h ;harc erro!' int.errupt for WAX Plus

In addit.ion t.o th~ signals list.ed in the EV4 specification, the EV
i~h<5:0> interrupt pins are noted because of the difference in
functionality between :tV4 and WA); Plus for thea. pins.

19.4 Revision History

Table 1 9-1 : Revision History

Who When Description of change

Gil Wolrich 21-0CT-1991 Add pinouts ot NVAX Plus spec.

19-12 NV AX Plus Pinout DIGrTAL CONFIDENTIAL

