KA640 CPU Module Technical Manual

Order Number EK-KA640-TM-001

digital equipment corporation
maynard, massachusetts

First Edition, September 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software, if any, described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license. No responsibility is assumed for
the use or reliability of software or equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX 3300 RT
DECmate MicroVAX 3400 ThinWire
DECUS MicroVAX 3500 UNIBUS
DECwriter PDP VAX
DIBOL P/OS VAXstation
LSI-11 Professional VMS
MASSBUS Q-bus VT
MicroPDP-11 Q22-bus VT100
MicroVAX Rainbow Work Processor
MicroVAX | RSTS

MicroVAX I RSX

dlilolitall

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio
frequency energy. The equipment has been type tested and found to comply with the limits
for a Class A computing device pursuant to Subpart] of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such radio frequency interference when
operated in a commercial environment. Operation of this equipment in a residential area
may cause interference, in which case the user at his own expense may be required to take
measures to correct the interference.

Contents

About This Manual xvii

1 Overview

1.1 Introduction 1
1.2 Central Processing Unit. 3
1.3 Floating Point Accelerator 4
14 CacheMemory, 5
1.5 Memory Controller 5
1.6 MS650-AA Memory Modules 5
17 DSSlInterface................oiiuuinuiunnn.... 5
1.8 EthernetInterface 6
19 Q22-businterface 7
1.10 MicroVAX System Support Functlons 7
111 Firmware 8
112 ClockFunctions. 8
2 Installation and Configuration

21 Imtroduction 9
22 Installingthe KA640 9
23 Configuringthe KA640 11
24 KA640Connectorsii.. .. 11
24.1 System Support Connector J1) 12
242 Memory/DSSI Connector (J2) 14
2.5 H3602-SACPU Cover Panel 15
2.6 Compatible System Enclosures 17

iv Contents

3 Architecture

31 CentralProcessor.ot
311 ProcessorState
3.1.1.1 General Purpose Registers
3.1.1.2 Processor Status Longword
3.1.13 Internal Processor Registers
312 DataTypescu.iuiniiiininunnnennn
313 InstructionSet
314 Memory Management
3.14.1 Translation Buffer
3.14.2 Memory Management Control Registers
3.1.5 ExceptionsandInterrupts.
3.1.5.1 Interrupts o L
3.1.5.2 Exceptions,
3.1.5.3 Information Saved On A Machine Check Exception . . .
3.15.4 System Control Block
3.1.5.5 Hardware Detected Errors
3.1.5.6 Hardware Halt Procedure
3.1.6 System Identification
317 CPUReferences.............oouuuieuienuennenn.
3.1.7.7 Instruction-Stream Read References
3.1.7.8 Data-Stream Read References
3.1.7.9 Write References.
3.2 Floating Point Accelerator
3.2.1 Floating Point Accelerator Instructions
3.2.2 Floating Point Accelerator Data Types
33 CacheMemory,
3.3.1 Cacheable References
332 Cache
33.21 Cache Organization
3.3.2.2 Cache Address Translation
3.3.23 Cache Data Block Allocation
3324 Cache Behavioron Writes
3.3.2.5 Cache Disable Register
3.3.2.6 Memory System Error Register
3.3.2.7 Cache Error Detection

18
19
19
20
21
25
25
26
26
27
28
28
30

39
41
42
44
45
45
46
46
46
47
47
47
47
48
48
49
50
51
51
54
55

Contents V

34 MainMemory System0 56
3.4.1 Main Memory Organization 59
342 Main Memory Addressing 59
3.4.3 Main Memory Behavior on Writes 60
344 Main Memory Error Status Register 60
3.4.5 Main Memory Control and Diagnostic Status Register . . . 64
34.6 Main Memory Error Detection and Correction 66
35 ConsoleSerialLine 68
351 ConsoleRegisters. 68
3.5.1.1 Console Receiver Control/Status Register. 68
3.5.1.2 Console Receiver Data Buffer 69
3.5.1.3 Console Transmitter Control/Status Register. 70
3.5.14 Console Transmitter Data Buffer 72
352 BreakResponse 72
353 BaudRate............... ...y 72
3.54 Console Interrupt Specifications 73
3.6 Time of Year Clockand Timers 73
36.1 TimeofYearClock............... 74
362 IntervalTimer, 74
3.6.3 Programmable Timers 75
3.6.3.1 Timer Control Registers 75
3.6.3.2 Timer Interval Registers 77
3.6.3.3 Timer Next Interval Registers 78
3.6.3.4 Timer Interrupt Vector Registers 78
3.7 Boot and Diagnostic Facility 79
3.7.1 Boot and Diagnostic Register 79
3.7.2 Diagnostic LED Register 81
373 ROMMEMOIYttt ittt iieeat et e 82
3.7.3.1 ROM Socketovuiiiunnnnnenenenn 82
3.7.3.2 ROM Address Spaceot 82
3.7.33 KA640 Resident Firmware Operation 83

3.74 Battery Backed-UpRAM 84

vi Contents

37.5 KA640 Initialization e
3.7.5.1 Power-Up Initialization.
3.7.5.2 Hardware Reset
3.7.5.3 I/O Bus Initialization
3.7.54 Processor Initialization
38 Q22-busInterface
3.8.1 Q22-bus to Main Memory Address Translation.
3.8.1.1 Q22-bus Map Registers
3.8.1.2 Accessing the Q22-bus Map Registers
3.8.1.3 Q22-busMapCache
3.8.2 CDAL Bus to Q22-bus Address Translation
3.8.3 Interprocessor Communication Register
3.84 Q22-busInterruptHandling
3.85 Configuringthe Q22-busMap
3.8.5.1 Q22-bus Map Base Address Register.
3.8.6 System Configuration Register
3.8.7 DMA System Error Register
3.8.8 Q22-bus Error Address Register
3.8.9 DMA Error Address Register
3.8.10 ErrorHandling............ ettt
39 NetworkInterface
3.9.1 EthernetOverview
3.9.2 Network Interface Station Address ROM.
393 LANCEChipOverview
3.94 Network Interface Register Address Port
3.9.5 Network Interface Register Data Port
3.9.6 Network Interface Control and Status Register 0.
3.9.7 Network Interface Control and Status Register 1.
3.9.8 Network Interface Control and Status Register 2.
3.9.9 Network Interface Control and Status Register 3
3.9.10 Network Interface Initialization Block
3.9.10.1 Network Interface Initialization Block Word 0
3.9.10.2 Network Interface Initialization Block Words 1-3
3.9.10.3 Network Interface Initialization Block Words 4-7
3.9.104 Network Interface Initialization Block Words 8,9
3.9.10.5 Network Interface Initialization Block Words 10,11

ERASTRRRER

89
90
91
92
93
94
94
95
96
98
99
100
101
102
103
104
105
106
107
112
112
113
114
115
118
118
120
121

Contents vii

3.9.11 Buffer Management 123
3.9.12 Network Interface Receive DescriptorRing 124
3.9.12.1 Receive Buffer Descriptors 124
3.9.13 ReceiveBuffers 128
3.9.14 Network Interface Transmit Descriptor Ring 129
3.9.14.1 Transmit Buffer Descriptors 130
3.9.15 TransmitBuffers 134
3.9.16 LANCEOperation 135
3.9.16.1 SwitchRoutine 136
3.9.16.2 Initialization Routine 136
3.9.16.3 Look-For-Work Routine 137
3.9.164 Receive PollRoutine 137
3.9.16.5 ReceiveRoutine 137
3.9.16.6 Receive DMARoutine 138
3.9.16.7 TransmitPollRoutine 138
3.9.16.8 TransmitRoutine 139
3.9.16.9 Transmit DMARoutine 139
3.9.16.10 Collision Detect Routine 139
3.9.17 LANCE Programming Notes 140
3.10 Mass Storage Interface 142
3.10.1 DSSIBusOverviewc.o0utvue.n. 143
3.10.2 TargetOperation i, 145
3.10.3 Initiator Operation 146
3.10.3.1 Transmit Data Segment Links 146
3.104 AddingToABufferList 148
3.10.5 MSICommand Block MSICB) 148
3.10.5.1 MSICommand Block Word 0 149
3.10.5.2 MSICommand BlockWord1 149
3.10.5.3 MSICommand Block Word2 151
3.10.5.4 MSI Command Block Words 3-5 152
3.10.6 MSIRegisters, 152
3.10.6.1 MSI Control and Status Registers 152
3.10.6.2 List Pointer Registers 162

3.10.6.3 Diagnostic and Test Registers 163

viii Contents

4 KA640 Firmware

4.1 KA640 Firmware Features
411 PowerUpProcessing
4.1.2 Mode Switch SettoTest
413 Mode Switch Set to Language Inquiry.
414 Mode Switch SettoNormal
415 KA640 ROM-Based Diagnostics
42 Halts i e e
4.2.1 ExternalHalts
4.2.2 Determination Of The Console Device
43 ConsoleEmulation.
4.3.1 Console Control Characters
432 ConsoleCommands
4321 Command Syntax
4.3.2.2 Address Specifiers 0.,
4323 Symbolic Addresses
4324 Console Command Qualifiers
4325 Console Command Keywords
4.3.2.6 Conventions for Tables 4-5and4-6
4327 References to Processor Registers and Memory
4.3.2.8 BOOT . . ottt e
4.3.2.9 CONFIGURE ittt ettt e e e e e
43210 CONTINUE.00ttt
43211 DEPOSIT ittt et ittt
43212 EXAMINE ittt e
43213 FIND ...ttt e
43214 HALT it et e e
43215 HELPt
43216 INITIALIZEttt tteiannen
43217 MOVE . .. ittt e e
43218 NEXT ...ttt et et e e e
43219 REPEATttt i iii i
43220 SEARCH.ttt e ee e e
43221 SET .. e e e
43222 SHOW .. ittt e e
43223 START ... i i e e e e e

171
173
173
174
174
177
180
180
181
181
181
183
183
183
184
187
188
189
192
193
195
196
197
199
201
202
203
205
206
208
209
210
213
216
219

Contents

43224 TEST e
43225 UNJAM
43226 X-BinaryloadandUnload
43227 !'-Commentttt
44 Bootstrapping oo
44.1 Preparing forthe Bootstrap
4411 BootDevicest
4412 BootFlags
4.4.2 Primary Bootstrap, VMB,
44.3 Device Dependent Bootstrap Procedures.
4431 Disk and Tape Bootstrap Procedure
4.4.3.2 PROM Bootstrap Procedure
4433 Network Bootstrap Procedure
4.5 Operating System Restart
451 LocatingtheRPB
4.6 Machine State WhenHalted.
4.6.1 Main Memory Layout and State
4.6.1.1 Reserved MainMemory
4.6.1.2 Scatter/GatherMap
4.6.1.3 Bitmapo
4.6.14 Contents of Main Memory
462 CacheMemory
4.6.3 Translation Lookaside Buffer
464 HaltProtectSpace
4.7 Public Data Structures and Entry Points
47.1 Firmware EPROMlayout......................
47.2 CallBackEntryPoints
4721 CP$SGETCHAR_ R4
4.7.2.2 CP$SMSG_OUT_NOLFR4....................
4723 CP$SREAD_WTH PRMPT R4
473 SSCRAMLayout...........................
474 PublicDatastructures
4.7.4.1 Console Program Mailbox (CPMBX)
4742 Firmware Stack
4743 DiagnosticState
4744 USERArea,

ix

220
223
224
226
226
227
228
229
230
232
232
233
234
237
238
238
238
239
239
239
240
240
240
241
241
241
242
242
243
244
245
245
245
247
247
247

X Contents

48 ErrorMessages i, 247
4.8.1 HaltMessagest .. 247
482 Console Error Messages 248
483 VMBErrorMessages......................... 249

A Specifications

A.1 Physical Specifications 251
A.2 Electrical Specifications 251
A.3 Environmental Specifications 252

B Address Assignments

B.1 General Local Address SpaceMap 253
B.2 Detailed Local Address SpaceMap 254
B3 ExtermalIPRs................ 257
B.4 Global Q22-bus Address SpaceMap 258

C Q22-bus Specification

C.1 General Description 260
C.1.1 Master/Slave Relationship 261
C.2 Q22-bus Signal Assignments 262
C3 DataTransferBusCycles. 265
C31 BusCycleProtocol 265
C3.2 DeviceAddressing 266
C.4 Direct Memory Accessccuvuuen... 276
C41 DMAProtocol 276
C42 BlockModeDMA 277
C4.21 DATBIBusCycle 282
C422 DATBOBusCycle 283
C43 DMAGuidelines 285
C5 Imterrupts............. i, 285
C51 DevicePriority 286
C.5.2 InterruptProtocol 286
C.5.3 Q22-bus 4-Level Interrupt Configurations 290

C.6 ControlFunctions 0 uuueumenn.. 292

Contents Xi

C.6.1 MemoryRefreshc0onn 292
C.6.2 Halt........ ... 292
C.6.3 Initialization 292
C.6.4 PowerStatusccovemenueennann.s 292
C.6.5 BDCOKHiiiiiinennnns 293
C66 BPOKH............. e e e e 293
C.6.7 Power-Up/Power-Down Protocol 293
C.7 Q22-bus Electrical Characteristics 294
C.7.1 Signal Level Specifications 294
C.7.2 Load Definition 294
C.7.3 120-0hm Q22-busottt 295
C74 BusDrivers............... .. 295
C.7.5 BusReceiverst 296
C.7.6 BusTermination............... ...t 296
C.7.7 Bus Interconnecting Wiring 297
C7.71 Backplane Wiring o 297
C.7.7.2 IntraBackplane Bus Wiring 298
C7.73 Powerand Ground 298
C.8 System Configurations 298
C.8.1 Power Supply Loading 300
C.9 Module Contact Finger Identification 301

D Acronyms

Examples
4-1 Language SelectionMenu 174
4-2 Sample Outputwith No Errors 175

4-3 Sample Outputwith Errors 175

xii Contents

Figures

1-1
1-2
1-3
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28

KA640 CPU Module . .
KA640 Block Diagram .

.........................

.........................

MS650-AA Memory Module
CPU and Memory Module Placement

Cable Connections . . .

.........................

KA640 Pin and LED Orientation
H3602-SA CPU CoverPanel
General Purpose Register Bit Map

PSLBitMap
Interrupt Registers . . .

.........................

.........................

Information Saved On A Machine Check Exception
System Control Block Base Register
System Identification Register

System Type Register .
Cache Organization . .
Cache Entry
Cache Tag Block
Cache Data Block

.........................

.........................

.........................

.........................

Cache Address Translation

Cache Disable Register

.........................

Memory System Error Register

Format for MEMCSR16
Format for MEMCSR17

.........................

.........................

Console Receiver Control/Status Register
Console Receiver DataBuffer.
Console Transmitter Control/Status Register
Console Transmitter Data Buffer

Time of Year Clock . .
Interval Timer
Timer Control Registers
Timer Interval Register

.........................

........................

.........................

Timer Next Interval Register
Timer Interrupt Vector Register
Boot and Diagnostic Register

Diagnostic LED Register

........................

10
10
11
16
19
20
30
33
39
44
45
48
48
49
49
50
51
54
60

69
69
71
72
74
74
76
77
78
78
79
81

Contents Xiii

3-29 (Q22-bus to Main Memory Address Translation 87
3-30 Q22-busMap Registers 88
3-31 Q22-busMap CacheEntry 91
3-32 The Interprocessor Communication Register 92
3-33 Q22-bus Map Base Address Register 94
3-34 System Configuration Register e e 95
3-35 DMA System Error Register 97
3-36 Q22-bus Error Address Register 99
3-37 DMA Error Address Register 100
3-38 Ethernet Data Packet Format 102
3-39 Network Interface Station Address ROM Format 104
3-40 Network Interface Register Address Port 105
3-41 Network Interface Control and Status Register 107
3-42 Network Interface Control and Status Register. 112
3-43 Network Interface Control and Status Register2 113
3-44 Network Interface Control and Status Register 3 113
3-45 Network Interface Initialization Block 115
3-46 Network Interface Initialization Block Word 0 115
3-47 Network Interface Initialization Block Words 1-3 118
3-48 Network Interface Initialization Block Words 4-7 119
3-49 Network Interface Initialization Block Word 8 120
3-50 Network Interface Initialization Block Word 9 120
3-51 Network Interface Initialization Block Word 10 121
3-52 Network Interface Initialization Block Word 11 122
3-53 Network Interface Receive Descriptor Ring 124
3-54 Receive Buffer Descriptors 125
3-55 Receive Buffer Descriptorn Word 0 125
3-56 Receive Buffer DescriptornWord1 126
3-57 Receive Buffer DescriptornWord 2 127
3-58 Receive Buffer DescriptornWord3 128
3-59 ReceiveBuffers 129
3-60 Network Interface Transmit Descriptor Ring 130
3-61 Transmit Buffer Descriptors 130
3-62 Transmit Buffer DescriptornWord 0. 131
3-63 Transmit Buffer DescriptornWord 1. 131

3-64 Transmit Buffer DescriptornWord 2 133

xiv Contents

3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
3-76
3-77
3-78
3-79
3-80
3-81
3-82
3-83
3-84
3-85
3-86
4-1
C-1
C-2
C-3
C-4
C-5
C-6
Cc-7
C-8
c-9
C-10
C-11
C-12
C-13

Transmit Buffer Descriptor n Word 3
Transmit Buffers
DSSI Bus Sequences
Target Operation
Transmit Data Segment Links
Initiator Operation
MSI Command Block
MSI Command Block Word 0
MSI Command Block Word 1
MSI Command Block Word 2
MSI Control/Status Register
MSI DSSI Control Register
MSI DSSI Connection Register
MSIID Register.
MSI DSSI Timeout Register
MSI Target List Pointer Register . . .
MSI Initiator List Pointer Register . .
MSI Diagnostic Control Register . . .
MSI Diagnostic Register 0
MSI Diagnostic Register 1
MSI Diagnostic Register 2
MSI Clock Control Register
Boot Block Format
DATIBusCycle.
DATI Bus Cycle Timing
DATO or DATOB Bus Cycle
DATO or DATOB Bus Cycle Timing
DATIO or DATIOB Bus Cycle

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

DATIO or DATIOB Bus Cycle Timing

DMA Protocol
DMA Request/Grant Timing
DATBI Bus Cycle Timing
DATBO Bus Cycle Timing

................

................

................

................

Interrupt Request/Acknowledge Sequence

Interrupt Protocol Timing
Position-Independent Configuration

................

................

133
135
144
145
146
147
148
149
149
151
152
154
156
160
161
162
163
164
165
167
169
170
233
268
270
271
273
274
275
278
279
280
281
287
289
291

C-14
C-15
C-16
C-17
C-18
C-19
C-20
C-21

Contents

Position-Dependent Configuration.
Power-Up/Power-Down Timing

Bus Line Terminations . . .

......................

Single-Backplane Configuration
Multiple-Backplane Configuration
Typical Pin Identification System
Quad-Height Module Contact Finger Identification
Typical Q22-bus Module Dimensions.

Tables

2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1
4-2
4-3
4-4
4-5
4-6

System Support Connector (J1) Pinouts
Memory/DSSI Connector (J2-Lower) Pinouts
DSSI Connector (J2-Upper) Pinouts
H3602-SA Features and Controls
KA640 Internal Processor Registers

VAX Standard IPRs
KA640 Unique IPRs
Interrupts
Exceptions

Unmaskable Interrupts That

......................
......................
......................

......................

Can CauseaHalt

Exceptions That Can Cause AHalt
CPU Read Reference Timing
CPU Write Reference Timing
Q22-bus Interface Read Reference Timing
Q22-bus Interface Write Reference Timing

Error Syndromes
Console Registers
Baud Rate Select
Q22-busMap
Actions Taken on a Halt . .

......................

......................

......................

......................

......................

Diagnostic Tests and LED Codes
Console Symbolic Addresses
Command, Parameter, and Qualifier Keywords
Console Command Summary

Console Qualifier Summary

......................

Xv

291
294
296
299
301
302
303
304

12
14
15
16
22
24
24
28
32
39
43
43
57
57
57
58
63
68
73
88
172
178
184
188
190
191

xvi

Contents

4-7 KAG640 Supported Boot Devices

4-8

VMB Boot Flags . .

............................

4-9 KA640 Network Maintenance Operations Summary
MOP/Ethernet Multicast Addresses and Protocols

4-10
4-11
4-12
4-13
4-14
4-15
4-16
B-1
B-2
B-3
B-4
B-5
B-6
B-7
C-1
C-2
C-3
C-4
C-5
C-6
Cc-7

NVRO

NVR2
Halt Messages . . .

............................

............................

............................

............................

Console Error Messages
VMB Error Messages
VAXMemory Space
VAX Input/Output Space
VAXMemory Spacey
VAX Input/Output Space

External IPRs. . ..

............................

Q22-bus Memory Space
Q22-bus 1/0 Space with BBS7 Asserted
Data and Address Signal Assignments
Control Signal Assignments e
Power and Ground Signal Assignments
Spare Signal Assignments L
Data Transfer Operations
Bus Signals for Data Transfers

Bus Pin Identifiers

............................

228
230
236
236
246
246
246
247
248
250
253
253
254
254
258
258
259
262
263
264
264
265
266
305

About This Manual

This KA640 CPU Module Technical Manual documents the functional, physical,
and environmental characteristics of the KA640 CPU module, and also
includes some information on the MS650 memory expansion modules. This
manual also covers the KA640-BA CPU module, designed for workstations
and VAXservers. The KA640-BA is functionally equivalent to the KA640-
AA, except that it does not support multiuser VMS and ULTRIX operating
system licenses.

This document is intended for a design engineer or applications
programmer who is familiar with Digital’s extended LSI-11 bus (Q22-bus)
and the VAX instruction set. This manual should be used along with the VAX
Architecture Reference Manual as a programmer’s reference to the module.

The manual is divided into four chapters and four appendices.

Chapter 1, Overview, introduces the KA640 MicroVAX CPU module and
MS650 memory modules, including module features and specifications.

Chapter 2, Configuration and Installation, describes the configuration and
installation of the KA640 and MS650 modules in Q22-bus backplanes and
system enclosures.

Chapter 3, Architecture, provides a description of KA640 registers,
instruction set and memory.

Chapter 4, KA640 Firmware, describes the entry/dispatch code, boot
diagnostics, device booting sequence, console program and console
commands.

Appendix A, KA640 Specifications, describes the physical, electrical, and
environmental specifications for the KA640 CPU module.

Appendix B, Address Assignments, provides a map of VAX memory space.

Appendix C, Q22-bus Specification, describes the low end member
of Digital’s bus family. All of Digital’'s microcomputers, such as the
MicroVAX I, MicroVAX II, MicroVAX 3300, MicroVAX 3400, MicroVAX
3500, MicroVAX 3600, and MicroPDP-11, use the Q22-bus.

Appendix D, Acronyms, provides a list of the acronyms used in this manual.

xvii

xviii About This Manual

CONVENTIONS
The following table lists the conventions used in this manual.

Convention Meaning

<xiy> Represents a bit field, a set of lines, or signals, ranging
from x through y. For example, R0 <7:4> indicates bits 7
through 4 in general purpose register R0.

[x:y] Represents a range of bytes, from y through x.

A label enclosed in a box represents a key (usually a control
or special character key) on the keyboard (in this case, the
carriage return key).

Note Contains general information.
Caution Contains information to prevent damage to equipment.
n Indicates variables.

RELATED DOCUMENTS

Manual Order Number
Microcomputer Interfaces Handbook EB-20175-20
Microcomputers and Memories Handbook EB-18451-20
VAX Architecture Handbook | EB-19580-20
VAX Architecture Reference Manual EY-3459E-DP
BA213 Enclosure Maintenance EK-189AA-MG
BA215 Enclosure Maintenance EK-191AA-MG

You can order these documents from:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008

Nashua, NH 03061

Attention: Documentation Products

1

Overview

This chapter provides a brief overview of the KA640 CPU module and
MS650 memory modules. ’

1.1 Introduction

The KA640, shown in Figure 1-1, is a quad-height VAX processor module
for the Q22-bus (extended LSI-11 bus) with built-in DSSI and Ethernet
controllers. It is designed for use in high speed, real-time applications and
for multiuser, multitasking environments. There are two variants, KA640-
AA and the KA640-BA. The KA640-AA runs multi-user software; the KA640-
BA runs single-user software.

The KA640 is used in two systems, the MicroVAX 3300 and the MicroVAX
3400. The MicroVAX 3300 is in a BA215 enclosure. The MicroVAX 3400
is in a BA213 enclosure. Refer to the BA215 Enclosure Maintenance and the
BA213 Enclosure Maintenance for a detailed description of each enclosure.

The KA640 CPU module and MS650 memory modules combine to form
a VAX CPU/memory subsystem that uses the Q22-bus, DSSI bus, and
Ethernet to communicate with mass storage and 1/0O devices. The KA640 and
MS650 modules mount in standard Q22-bus backplane slots that implement
the Q22-bus in the AB rows and the CD interconnect in the CD rows. A
single KA640 can support up to three MS650 modules, if enough Q22/CD
slots are available.

2 Overview

23-23m 2

111438 €70

Figure 1-1 KA640 CPU Module

The KA640 communicates with the console device via the H3602-S5A CPU
cover panel, which also contains configuration switches, an LED display,

and DESTA (Ethernet connector).

The major functional blocks of the KA640 CPU module are shown in
Figure 1-2, and are described in the following paragraphs.

Overview 3

ETHERNET

Dssi

ETHERNET
O SUBSYSTEM

DSSI 1/0
SUBSYSTEM

BOOT AND
DIAGNOSTIC

i D
<
SYSTEM SUPPORT
FUNCTIONS K > 5

ADDRESS LATCH
SUBSYSTEM

‘ ANV

cruanDFra AN ﬁ Q22.8Us

(%]
«
A w
SUBSYSTEM K CDAL <31:00 > H > gm;is?’;;\;i @ g
WITH CACHE NV - 2
MEMORY 5
MEMORY
CONTROLLER cLock
SUBSYSTEM SUBSYSTEM

4MBYTE
ECC MEMORY

J2CD FINGERS

Figure 1-2 KAG640 Block Diagram

1.2 Central Processing Unit

The central processing unit (CPU) is implemented by the CVAX chip.
The CVAX chip contains approximately 180,000 transistors in an 84-pin
CERQUAD surface mount package. It achieves a 100 ns microcycle and
a 200 ns bus cycle at an operating frequency of 20 MHz. The CVAX chip
supports full VAX memory management and a 4 Gigabyte virtual address
space.

4 Overview

The CVAX chip contains all VAX visible general purpose registers (GPRs),
several system registers (MSER, CADR, SCBB, etc.), the cache memory
(1 Kbyte), and all memory management hardware including a 28-entry
translation buffer.

The CVAX chip provides the following functions:

¢ Fetches all VAX instructions

* Executes 181 VAX instructions

® Assists in the execution of 21 additional instructions
* Passes 70 floating point instructions to the CFPA chip

The remaining 32 VAX instructions (including H-floating and octaword) must
be emulated in macrocode.

The CVAX chip provides the following subset of the VAX data types:

* Byte

* Word

* Longword
¢ Quadword

® Character string
® Variable length bit field

Support for the remaining VAX data types can be provided via macrocode
emulation.

1.3 Floating Point Accelerator

The floating point accelerator is implemented by the CFPA chip. The
CFPA chip contains approximately 60,000 transistors in a 68-pin CERQUAD
surface mount package. It executes 70 floating point instructions.

Overview 5

The CFPA chip receives opcode information from the CVAX chip, and
receives operands directly from memory or from the CVAX chip. The
floating point result is always returned to the CVAX chip.

1.4 Cache Memory

The KA640 module incorporates a cache memory within the CVAX chip to
maximize CPU performance. The cache is a 1 Kbyte, two-way associative,
write through cache memory, with a 100 ns cycle time.

1.5 Memory Controller

The main memory controller is implemented by a VLSI chip called the
CMCTL. The CMCTL contains approximately 25,000 transistors in a 132-
pin CERQUAD surface mount package. It supports up to 64 Mbytes of
ECC memory, of which only 52 MBytes can be used on a KA640, with a 400
ns cycle time for longword transfers and a 600 ns cycle time for quadword
transfers. This memory resides on the KA640 CPU module, and depending
on the system configuration, one to three MS650 memory modules.

1.6 MS650-AA Memory Modules

The MS650-AA memory modules are 8 Mbyte, 450 ns, 39-bit wide arrays
(32-bit data and 7-bit ECC) implemented with 256 Kb dynamic RAMs in
zig-zag in-line packages (ZIPs). MS650-AA memory modules are single,
quad-height, Q22-bus modules, as shown in Figure 1-3.

The MS650 modules communicate with the KA640 via the MS650 memory
interconnect, which utilizes the CD rows of backplane slots 2 through 4, and
a 50-pin ribbon cable. The KA640 memory subsystem supports a maximum
of 3 memory modules.

1.7 DSSI Interface

An on-board digital small storage interconnect (DSSI) bus interface is
implemented by the SII chip and four 32K by 8 static RAMs. The DSSI
interface allows the KA640 to transmit packets of data to, and receive
packets of data from up to seven other DSSI devices. The KA640 system
configurations contain one or more RF30 fixed disk devices, connected
through the DSSI bus.

6 Overview

P LT

=
E ...
E
=

Figure 1-3 MS650-AA Memory Module

1.8 Ethernet Interface

The KA640 CPU module features an on-board network interface that is
implemented via the LANCE chip and two 32K by 8 static RAMs. When
used in conjunction with the H3602-SA CPU cover panel, this interface
allows the KA640 to be connected to either a ThinWire or standard Ethernet
network.

The Ethernet interface includes registers for control and status reporting as
well as a DMA controller, a 24 word transmit silo and a 24 word receive
silo.

Overview 7

1.9 Q22-bus Interface

The Q22-bus interface is implemented by the CQBIC chip. The CQBIC chip
contains approximately 40,870 transistors in a 132-pin CERQUAD surface
mount package. It supports up to 16-word, block mode transfers between
a Q22-bus DMA device and main memory, and up to 2-word, block mode
transfers between the CPU and Q22-bus devices. The Q22-bus interface
contains the following:

e A 1l6-entry map cache for the 8,192-entry, main memory-resident
"scatter-gather” map, used for translating 22-bit Q22-bus addresses into
26-bit main memory addresses

¢ Interrupt arbitration logic that recognizes Q22-bus interrupt requests
BR7-BR4

e (Q22-bus termination (240 2)

1.10 MicroVAX System Support Functions

System support functions are implemented by the system support chip
(SSC). The SSC contains approximately 83,000 transistors in an 84-pin
CERQUAD surface mount package. The SSC provides console and boot
code support functions, operating system support functions, timers, and
many extra features, including the following:

* Word-wide ROM unpacking

¢ 1 Kbyte battery backed-up RAM

¢ Halt arbitration logic

¢ Console serial line

¢ Interval timer with 10 ms interrupts

¢ VAX standard time of year (TOY) clock with support for battery back-up
* IORESET register

¢ Programmable CDAL bus timeout

¢ Two programmable timers similar in function to the VAX standard
interval timer

¢ A register for controlling the dignostic LEDs

8 Overview

1.'11 Firmware

The firmware consists of 128 Kbytes of 16 bit-wide ROM, located on two
27512 EPROMs. The firmware gains control when the processor halts, and
contains programs that provide the following services:

Board initialization
Power-up self-testing of the KA640 and MS650 modules

Emulation of a subset of the VAX standard console (automatic/manual
bootstrap, automatic/manual restart, and a simple command language
for examining/altering the state of the processor)

Booting from supported Q22-bus devices
Multilingual capability
MOP support

1.12 Clock Functions

All clock functions are implemented by the CVAX clock chip. The
CVAX clock chip is a 44-pin CERQUAD surface mount chip that contains
approximately 350 transistors, and provides the following functions:

Generates two MOS clocks for the CPU, the floating point accelerator,
and the main memory controller

Generates three auxiliary clocks for other miscellaneous TTL logic

Synchronizes reset signal for the CPU, the floating point accelerator,
and the main memory controller

Synchronizes data ready and data error signals for the CPU, floating
point accelerator, and the main memory controller

2

Installation and Configuration

2.1 Introduction

This chapter contains information required to install the KA640 in a system.
The following topics are discussed:

* Installing the KA640

¢ Configuring the KA640

e KA640 connectors

e H3602-SA CPU cover panel

¢ Compatible system enclosures

2.2 Installing the KA640

The KA640 and MS650 modules must be installed in system enclosures
having Q22/CD slots. These modules are not compatible with Q/Q
backplane slots, and therefore should only be installed in Q22/CD backplane
slots.

The KA640 CPU module must be installed in slot 1 of the Q22/CD
backplane (Figure 2-1). MS650 memory modules must be installed in slots
immediately adjacent to the CPU module. Up to three MS650 modules
can be installed, occupying slots 2, 3, and 4 respectively. A 50-pin ribbon
cable is used to connect the KA640 CPU module and the MS650 memory
module(s), as shown in Figure 2-2.

10 Installation and Configuration

A 8 c D
| ! |

SLOT 1 Q22bus | e ONNECT

SLOT 2 i

SLOT3 I

sLOT 4 |

SLOTS |

SLOT6 i
|
|
I
|
|
|

— KAB40 CPU
MS650 NO. 1
lat—MS650 NO. 2
fas—MSE50 NO. 3

SLOT?
SLOT 8
SLOT9
SLOT 10
SLOT 11
SLOT 12

MA-1086-87A

Figure 2-1 CPU and Memory Module Placement

KA640
CPU MODULE

MS650
MEMORY
MODULES

MA-1085-87A

Figure 2-2 Cable Connections

Installation and Configuration

2.3 Configuring the KA640

The following parameters must be configured on the KA640:

These parameters are configured using the H3602-SA CPU cover panel.

Power-up mode

Break enable switch
Console serial line baud rate
DSSI node ID

Ethernet port connector selection

2.4 KA640 Connectors

The KA640 uses two connectors (J1 and J2) and four rows of module fingers

(A,B,C, and
the Q22-bus,
finger identification of the KA

11

D) to communicate with the console device, main memory,
the DSSI controller, and the Ethernet controller. The contact
640 module is described in Appendix C.

The orientation of connectors J1 and J2, and the LED indicators is shown in
Figure 2-3.

DSS! PORT

MEMORY CONNECTOR
MA-X0095-88

Figure 2-3 KA640 Pin and LED Orientation

12

Installation and Configuration

2.4.1 System Support Connector (J1)

The system support connector (J1) is a 40-pin connector used to provide
the connection to the Ethernet controller and the system console, and for
configuration and display purposes. Table 2-1 gives the pinouts for the

system support connector.

Table 2-1 System Support Connector (J1) Pinouts

Pin Mnemonic Meaning

01 XMIT- H Transmit - output to the LAN interface
02 XMIT+ H Transmit + output to the LAN interface
03 GND Ground

04 GND Ground

05 GND Ground

06 RCV-H Receive - input from the LAN interface
07 RCV+ H Receive + input from the LAN interface
08 GND Ground

09 GND Ground

10 GND Ground

11 COL-H Collision

12 COL+ H Collision

13 GND Ground

14 GND Ground

15 GND Ground

16 GND Ground

17 +12V Fused +12 Vdc

18 GND Ground

19 DTR H Data Terminal Ready.

20 GND Ground

21 TXD L Transmit Data.

22 SPIDO L Not used with H3602-SA.

23 SPID1L Not used with H3602-SA.

24 RXD L Receive Data.

25 RXD H Receive Data.

26 SPID2 L Not used with H3602-SA.

27 +5V Fused +5 Vdc

28 CONBITRATE2 L Console Bit Rate <02:00>. These three bits
29 CONBITRATE1 L determine the console baud rate. They are

Installation and Configuration 13

Table 2-1 (Cont.) System Support Connector (J1) Pinouts

Pin

Mnemonic

Meaning

30

31
32
33
34

35

37

39

CONBITRATEO L

LEDCODEO L
LEDCODE1 L
LEDCODE2 L
LEDCODE3 L

ENBHALT L

BDCODE1 L
BDCODEO L

VBAT H
CPUCODE1 L
CPUCODEO L

configured using the select switch on the inside of
the H3602-SA.

LED Code register bits <03:00>.
When asserted each of these four output signals
lights a corresponding LED on the module.

LEDCODE<03:00> are asserted (low) by power-up
and by the negation of DCOK when the processor
is halted. They are updated by boot and diagnostic
programs from the BDR.

Halt Enable. This input signal controls the response
to an external halt condition. If ENBHALT is
asserted (low), then the KA640 halts and enters
the console program if any of the following occur:

e The program executes a halt instruction in
kernel mode

¢ The console detects a break character
e The Q22-bus halt line is asserted

If ENBHALT is negated (high), then the halt line
and break character are ignored and the ROM
program responds to a halt instruction by restarting
or rebooting the system. ENBHALT is read by
software from the BDR.

Boot and Diagnostic code <01:00>. This 2-bit code

indicates power-up mode, and is read by software
from the BDR.

Battery Backup Voltage for the TOY clock.

CPU Code <01:00>. This 2-bit code

is read by software from the BDR.

The configuration for the CPU code is as follows:
00 Normal operation

01 Reserved

10 Reserved

11 Reserved

14 Installation and Configuration

2.4.2 Memory/DSSI Connector (J2)

J2 is a dual 50-pin connector (100 pins total) that provides two interfaces.
The lower 50 pins are used as the memory interface between the KA640
and the MS650 memory modules; the upper 50 pins are used for the DSSI
controller. The cables and connectors are keyed to prevent the memory
cable from being installed into the DSSI connector and/or the DSSI cable
from being installed into the memory connector.

Table 2-2 lists the pinouts for the memory portion of J2 (lower 50 pins).
Table 2-3 lists the pinouts for the DSSI portion of J2 (upper 50 pins).

Table 2-2 Memory/DSSI Connector (J2-Lower) Pinouts

Pin Mnemonic Pin Mnemonic
01 GND 26 D MD10 H
02 D MD9 H 27 GND

03 D MD8 H 28 D MD29 H
04 D MD7 H 29 D MD28 H
05 GND 30 D MD27 H
06 D MDé6 H 31 GND

07 D MD5 H 32 D MD26 H
08 D MD4 H 33 D MD25 H
09 D MD3 H 34 D MD24 H
10 GND 35 D MD23 H
11 D MD2 H 36 GND

12 D MD1 H 37 D MD22 H
13 D MDO H 38 D MD21 H
14 D MD19 H 39 D MD20 H
15 GND 40 D MD38 H
16 D MD18 H 41 GND

17 D MD17 H 42 D MD37 H
18 D MD16 H 43 D MD36 H
19 D MD15 H 44 D MD35 H
20 GND 45 D MD34 H
21 D MD14 H 46 GND

22 D MD13 H 47 D MD33 H
23 D MD12 H 48 D MD32 H
24 GND 49 D MD31 H

25 D MD11 H 50 D MD30 H

Installation and Configuration 15

Table 2-3 DSSI Connector (J2-Upper) Pinouts

Pin Mnemonic Pin Mnemonic
51 DSSIDATAO L 76 VTERM H
52 GND 77 VTERM H
53 DSSIDATA1 L 78 VTERMH
54 GND 79 GND

55 DSSIDATA2 L 80 Unused

56 GND 81 GND

57 DSSIDATA3 L 82 Unused

58 GND 83 GND

59 DSSIDATA4 L 84 Unused

60 GND 85 GND

61 DSSIDATAS L 86 DSSIBSY L
62 GND 87 GND

63 DSSIDATAG6 L 88 DSSIACK L
64 GND 89 GND

65 DSSIDATA7 L 90 DSSIRST L
66 GND 91 GND

67 DSSIPARITY L 92 Unused

68 GND 93 GND

69 Unused 94 DSSISEL L
70 GND 95 GND

71 Unused 96 DSSIC/D L
72 GND 97 GND

73 VTERM H 98 DSSIREQ L
74 VTERM H 99 GND

75 VTERM H 100 DSSII/O L

2.5 H3602-SA CPU Cover Panel

The H3602-SA CPU cover panel is a special I/O panel that is used in BA213
and BA215 enclosures. A one-piece ribbon cable on the H3602-SA plugs
into the system support connector (J1) on the KA640. The H3602-SA fits
over backplane slots 1 and 2, covering both the KA640 CPU module and
the first of three possible MS650 memory modules.

16 Installation and Configuration

The H3602-SA CPU cover panel (Figure 2-4) includes the features and
controls specified in Table 2-4.

Table 2-4 H3602-SA Features and Controls

Outside Inside

Modified modular jack (MM]) SLU Baud rate rotary switch

connector

Power-up mode switch Battery backup unit (BBU) for TOY clock
Hexadecimal LED display 40-pin cable connector

Break enable switch List of baud rate switch settings

Standard/ThinWire Ethernet
connectors

Standard/ThinWire Ethernet
selector

Indicator LEDs

@%

=

{
L— =

MA-X0787-88

Figure 2-4 H3602-SA CPU Cover Panel

Installation and Configuration 17

2.6 Compatible System Enclosures
The KA640 is compatible with the following Digital enclosures.
BA213

The BA213 contains a 4 row by 12 slot backplane, with the Q22-bus
implemented in the AB rows of slots 1 through 12. The CD interconnect is
implemented in the CD rows of slots 1 through 12, allowing up to 3 memory
modules to be used. The BA213 has mounting space for up to four 13.2 cm
(5.25 inch) mass storage devices. The BA213 is equipped with two modular
power supplies. Each power supply delivers 7.0 A (maximum) at +12 Vdc
and 33.0 A (maximum) at +5 Vdc. The combined maximum current at +12
Vdc and +5 Vdc must not exceed 230 watts of power for each supply.

BA215

The BA215 contains a 4 row by 6 slot backplane, with the Q22-bus
implemented in the AB rows of slots 1 through 6. The CD interconnect is
implemented in the CD rows of slots 1 through 6, allowing up to 3 memory
modules to be used. The BA215 has mounting space for up to 3 mass storage
devices (one full-height and two half-height). The BA215 is equipped with
one power supply that delivers 7.0 A (maximum) at +12 Vdc and 33.0 A
(maximum) at +5 Vdc. The maximum current at +12 Vdc and +5 Vdc must
not consume more than 230 watts of power.

3

Architecture

This chapter describes the KA640 registers, instruction set, and memory.
The chapter covers the following KA640 topics:

¢ Central processor

* Floating-point accelerator

¢ Cache memory

* Main memory system

¢ Console serial line

¢ Time of year clock and timers
¢ Boot and diagnostic facility

e (Q22-bus interface

* Mass storage interface

¢ Network interface

3.1 Central Processor

The central processor of the KA640 supports the MicroVAX chip subset
(plus six additional string instructions) of the VAX instruction set and data
types and full VAX memory management. It is implemented by a single
VLSI chip called the CVAX.

18

Architecture 19

3.1.1 Processor State

The processor state consists of that portion of the state of a process that is
stored in processor registers rather than in memory. The processor state is
composed of sixteen general purpose registers (GPRs), the processor status
longword (PSL), and the internal processor registers (IPRs).

Non-privileged software can access the GPRs and the processor status word
(bits <15:00> of the PSL). The IPRs and bits <31:16> of the PSL can only
be accessed by privileged software. The IPRs are explicitly accessible only
by the move to processor register (MTPR) and move from processor register
(MFPR) instructions that can be executed only while running in kernel mode.

3.1.1.1 General Purpose Registers

The KA640 implements 16 GPRs as specified in the VAX Architecture
Reference Manual. These registers are used for temporary storage, as
accumulators, and as base and index registers for addressing. These
registers are denoted RO - R15. The bits of a register are numbered from
the right <0> through <31> (Figure 3-1).

313029282726252423222120191817161514131211109 8 7 6 5 4 3210

INEEERRRRRRERNRNENRRRRRRERRAREEY

MA-1100.87

Figure 3-1 General Purpose Register Bit Map

Certain of these registers have been assigned special meaning by the VAX-
11 architecture:

e RI15 is the program counter (PC). The PC contains the address of the
next instruction byte of the program.

e R14 is the stack pointer (SP). The SP contains the address of the top of
the processor defined stack. -

e R13 is the frame pointer (FP). The VAX-11 procedure call convention
builds a data structure on the stack called a stack frame. The FP contains
the address of the base of this data structure.

e R12is the argument pointer (AP). The VAX-11 procedure call convention
uses a data structure called an argument list. The AP contains the address
of the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on the
operation and use of these registers.

20 Architecture

3.1.1.2 Processor Status Longword

The KA640 processor status longword (PSL) is implemented per the VAX
Architecture Reference Manual, which should be consulted for a detailed
description of the operation of this register. The PSL is saved on the stack
when an exception or interrupt occurs and is saved in the process control
block (PCB) on a process context switch. Bits <15:00> may be accessed
by non-privileged software, while bits <31:16> may only be accessed by
privileged software. Processor initialization sets the PSL to 041F 0000 1.
Figure 3-2 shows the processor status longword bit map.

313029282726252423222120 1615 876543210
IPL MBZ TINjz|viC
CM ‘ ‘ l—IV
TP FU
MBZ DV
FPD
s
CUR MOD
PRV MOD

MBZ

MR 15778
MA-1055-87

Figure 3-2 PSL Bit Map

Data Bit Definition

PSL <31> (CM) Compatibility mode. This bit always reads as zero;
loading a 1 into this bit is a NOP.

PSL <30> (TP) Trace pending

PSL <29:28> Unused, must be written as zero.

PSL <27> (FPD) First part done

PSL <26> (IS) Interrupt stack

PSL <25:24> (CUR) Current mode

PSL <23:22> (PRV) Previous mode
PSL <21> Unused, must be written as zero.

PSL <20:16> (IPL) Interrupt priority level

Architecture 21

Data Bit Definition
PSL <15:8> Unused, must be written as zero.
PSL <7> (DV) Decimal overflow trap enable. This read/write bit has no

effect on KA640 hardware; it can be used by macrocode which
emulates VAX decimal instructions.

PSL <6> (FU) Floating underflow fault enable
PSL <5> (IV) Integer overflow trap enable
PSL <4> (T) Trace trap enable

PSL <3> (N) Negative condition code

PSL <2> (Z) Zero condition code

PSL <1> (V) Overflow condition code

PSL <0> (C) Carry condition code

NOTE

VAX compatibility mode instructions can be emulated by macrocode, but
the emulation software runs in native mode, so the CM bit is never set.

3.1.1.3 Internal Processor Registers

The KA640 IPRs can be accessed by using the MFPR and MTPR privileged
instructions. Each IPR falls into one of the following seven categories:

1. Implemented by KA640 (in the CVAX chip) as specified in the VAX
Architecture Reference Manual

2. Implemented by KA640 (in the SSC) as specified in the VAX Architecture
Reference Manual

3. Implemented by KA640 (and all designs that use the CVAX chip)
uniquely

4. Implemented by KA640 (and all designs that use the SSC) uniquely

Not implemented, timed out by the CDAL bus timer (in the SSC) after
4 us. Read as zero, NOP on write.

Access not allowed; accesses result in a reserved operand fault

Accessible, but not fully implemented; accesses yield unpredictable
results

22 Architecture

Refer to Table 3-1 for a listing of each of the KA640 IPRs, along with its
mnemonic, its access type (read or write) and its category number.

Table 3-1 KA640 Internal Processor Registers

Decimal Hex Register Name Mnemonic Type Category
0 0 Kernel stack pointer - KSP RIW 1

1 1 Executive stack pointer ESP RIW 1

2 2 Supervisor stack pointer sSSP RW 1

3 3 User stack pointer usp RIW 1

4 4 Interrupt stack pointer ISP RW 1
7:5 7:5 Reserved 5

8 8 PO base register POBR RW 1

9 9 PO length register POLR RW 1
10 A P1 base register P1BR RW 1
11 B P1 length register P1LR RW 1
12 C System base register SBR RW 1
13 D System length register SLR RW 1
15:14 F:E Reserved 5
16 10 Process control block base PCBB RW 1
17 11 System control block base SCBB RW 1
18 12 Interrupt priority level IPL RW 11
19 13 AST level ASTLVL RW 11"
20 14 Software interrupt request SIRR w 1
21 15 Software interrupt summary SISR RW 11
23:22 17:16 Reserved 5
24 18 Interval clock control/status ICCS RW 31
25 19 Next interval count NICR W 5
26 1A Interval count ICR R 5
27 1B Time of year TODR RIW 2
28 1C Console storage receiver status CSRS RW 71
29 1D Console storage receiver data CSRD R 71
30 1E Console storage transmit status CSTS RW 71
31 1F Console storage transmit data CSTD W 71"
32 20 Console receiver control/status RXCS RW 41"
33 21 Console receiver data buffer RXDB R ar
34 22 Console transmit control/status ~ TXCS RW 4l
35 23 Console transmit data buffer TXDB w a1

*An I following the category number indicates that the register is initialized on power-up
and by the negation of DCOK when the processor is halted.

Architecture 23

Table 3-1 (Cont.) KAG640 Internal Processor Registers

Decimal Hex Register Name Mnemonic Type Category
36 24 Translation buffer disable TBDR RIW 5
37 25 Cache disable CADR RW 3T
38 26 Machine check error summary MCESR R/W 5
39 27 Memory system error ' MSER RW 31"
41:40 29:28 Reserved 5
42 2A Console saved PC SAVPC R 3
43 2B Console saved PSL SAVPSL R 3
47:44 2F:2C Reserved ’ 5
48 30 SBI fault/status SBIFS RIW 5
49 31 SBI silo SBIS R 5
50 32 SBI silo comparator SBISC RIW 5
51 33 SBI maintenance SBIMT RIW 5
52 34 SBI error register SBIER RIW 5
53 35 SBI timeout address register SBITA R 5
54 36 SBI quadword clear SBIQC w 5
55 37 1/O bus reset IORESET W 4
56 38 Memory management enable MAPEN R/W 1
57 39 TB invalidate all TBIA W 1
58 3A TB invalidate single TBIS w 1
59 3B TB data TBDATA R/W 5
60 3C Microprogram break MBRK RW 5
61 3D Performance monitor enable PMR RIW 5
62 3E System identification SID R 1
63 3F Translation buffer check TBCHK W 1
64:127 40:7F Reserved 6

*An I following the category number indicates that the register is initialized on power-up
and by the negation of DCOK when the processor is halted.

KA640 VAX Standard IPRs

The KA640 implements VAX standard IPRs as specified in the VAX
Architecture Reference Manual. The VAX Architecture Reference Manual should
be consulted for details on the operation and use of these registers.

The VAX standard IPRs listed in Table 3-2 are also referenced in other
sections of this manual.

24 Architecture

Table 3-2 VAX Standard IPRs

Number Register Name Mnemonic Section

12 System base register SBR Section 3.1.5.3
13 System length register SLR Section 3.1.5.3
16 Process control block base PCBB Section 3.1.5
17 System control block base SCBB Section 3.1.5.4
18 Interrupt priority level IPL Section 3.1.5.1
20 Software interrupt request SIRR Section 3.1.5.1
21 Software interrupt summary SISR Section 3.1.5.1
27 Time of year clock TODR Section 3.6.1
56 Memory management enable MAPEN Section 3.1.4.2
57 Translation buffer invalidate all TBIA Section 3.1.4.2
58 Translation buffer invalidate single = TBIS Section 3.1.4.2
62 System identification SID Section 3.1.6
63 Translation buffer check TBCHK Section 3.1.4.2

KA640 Unique IPRs

IPRs that are implemented uniquely on the KA640 (i.e., those that are not
contained in, or do not fully conform to the standards in the VAX Architecture
Reference Manual) are described in detail in this manual. Refer to the sections
listed in Table 3-3 for a description of these registers.

Table 3-3 KA640 Unique IPRs

Number Register Name Mnemonic Section

24 Interval clock control/status ICCS Section 3.6.2
32 Console receiver control/status RXCS Section 3.5.1.1
33 Console receiver data buffer RXDB Section 3.5.1.2
34 Console transmit control/status TXCS Section 3.5.1.3
35 Console transmit data buffer TXDB Section 3.5.1.4
37 Cache disable CADR Section 3.3.2.5
39 Memory system error MSER Section 3.3.2.6
42 Console saved PC SAVPC Section 3.1.5
43 Console saved PSL SAVPSL Section 3.1.5

55 1/0 bus reset IORESET Section 3.7.5.3

Architecture 25

3.1.2 Data Types
The KA640 CPU supports the following subset of the VAX data types:

e Byte

e Word

¢ Longword
¢ Quadword

¢ Character string
® ' Variable length bit field

Support for the remaining VAX data types can be provided via macrocode
emulation.

3.1.3 Instruction Set

The KA640 CPU implements the following subset of the VAX instruction
set types in microcode:

* Integer arithmetic and logical
e Address

® Variable length bit field

¢ Control

e Procedure call

¢ Miscellaneous

e Queue”

e Character string moves (MOVC3, MOVC5, CMPC3*, CMPC5",
LOCC*, SCANC*, SKPC", and SPANC")

¢ Operating system support

e F_floating
¢ G_floating
¢ D_floating

* These instructions were in the microcode assisted category on the KA630-AA
(MicroVAX II) and therefore had to be emulated.

26 Architecture

The KA640 CVAX chip provides special microcode assistance to aid the
macrocode emulation of the following instruction groups:

e Character string (except MOVC3, MOVC5, CMPC3”* CMPC5", LOCC",
SCANC”, SKPC”, and SPANC")

* Decimal string
e CRC
e EDITPC

The following instruction groups are not implemented, but may be emulated
by macrocode:

e Qctaword

¢ Compatibility mode instructions

3.1.4 Memory Management

The KA640 implements full VAX memory management as defined in the
VAX Architecture Reference Manual. System space addresses are virtually
mapped through single-level page tables, and process space addresses are
virtually mapped through two-level page tables. See the VAX Architecture
Reference Manual for descriptions of the virtual to physical address translation
process, and the format for VAX page table entries (PTEs).

3.1.4.1 Translation Buffer

To reduce the overhead associated with translating virtual addresses to
physical addresses, the KA640 employs a 28-entry, fully associative,
translation buffer for caching VAX PTEs in modified form. Each entry can
store a modified PTE for translating virtual addresses in either the VAX
process space, or VAX system space. The translation buffer is flushed
whenever memory management is enabled or disabled (i.e., by writes to
IPR 56), any page table base or length registers are modified (i.e., by writes
to IPRs 8 - 13) and by writing to IPR 57 (TBIA) or IPR 58 (TBIS).

Each entry is divided into two parts: a 23-bit tag register and a 31-bit PTE
register. The tag register is used to store the virtual page number (VPN)
of the virtual page that the corresponding PTE register maps. The PTE
register stores the 21-bit PFN field, the PTE.V bit, the PTE.M bit and an 8-
bit partially decoded representation of the 4-bit VAX PTE PROT field, from
the corresponding VAX PTE, as well as a translation buffer valid (TB.V) bit.

* These instructions were in the microcode assisted category on the KA630-AA
(MicroVAX 1I) and therefore had to be emulated. :

Architecture 27

During virtual to physical address translation, the contents of the 28 tag
registers are compared with the virtual page number field (bits < 31:9>) of
the virtual address of the reference. If there is a match with one of the tag
registers, then a translation buffer hit has occurred, and the contents of the
corresponding PTE register is used for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference, and the
PTE must be fetched from memory. Upon fetching the PTE, the translation
buffer is updated by replacing the entry that is selected by the replacement
pointer. Since this pointer is moved to the next sequential translation buffer
entry whenever it is pointing to an entry that is accessed, the replacement
algorithm is not last used (NLU).

3.1.4.2 Memory Management Control Registers

There are four IPRs that control the memory management unit (MMU): IPR
56 (MAPEN), IPR 57 (TBIA), IPR 58 (TBIS), and IPR 63 (TBCHK).

Memory management can be enabled/disabled via IPR 56 (MAPEN). Writing
a 0 to this register with a MTPR instruction disables memory management,
and writing a 1 to this register with a MTPR instruction enables memory
management. Writes to this register flush the translation buffer. To
determine whether or not memory management is enabled, IPR 56 is read
using the MFPR instruction. Translation buffer entries that map a particular
virtual address can be invalidated by writing the virtual address to IPR 58
(TBIS) using the MTPR instruction.

NOTE

Whenever software changes a valid PTE for the system or current process
region, or a system PTE that maps any part of the current process page table,
all process pages mapped by the PTE must be invalidated in the translation
buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57
(TBIA) using the MTPR instruction.

The translation buffer can be checked to see if it contains a valid translation
for a particular virtual page by writing a virtual address within that page
to IPR 63 (TBCHK) using the MTPR instruction. If the translation buffer
contains a valid translation for the page, the condition code V bit (bit <1>
of the PSL) is set.

NOTE

The TBIS, TBIA, and TBCHK IPRs are write only. The operation of a MFPR
instruction from any of these registers is undefined.

28 Architecture

3.1.5 Exceptions and Interrupts

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is caused by the execution of the current instruction
and is typically handled by the current process (e.g. an arithmetic overflow),
while an interrupt is caused by some activity outside the current process
and typically transfers control outside the process (e.g. an interrupt from
an external hardware device). '

3.1.5.1 Interrupts
Interrupts can be divided into two classes: non-maskable, and maskable.

Non-maskable interrupts cause a halt via the hardware halt procedure which
saves the PC, PSL, MAPEN < 0> and a halt code in IPRs, raises the processor
IPL to 1F and then passes control to the resident firmware. The firmware
dispatches the interrupt to the appropriate service routine based on the halt
code and hardware event indicators. Non-maskable interrupts cannot be
blocked by raising the processor IPL, but can be blocked by running out of
the halt protected address space (except those non-maskable interrupts that
generate a halt code of 3). Non-maskable interrupts with a halt code of 3
cannot be blocked since this halt code is generated after a hardware reset.

Maskable interrupts cause the PC and PSL to be saved, the processor IPL to
be raised to the priority level of the interrupt (except for Q22-bus interrupts
where the processor IPL is set to 17 independent of the level at which the
interrupt was received) and the interrupt to be dispatched to the appropriate
service routine through the system control block (SCB).

The various interrupt conditions for the KA640 are listed in Table 3-4 along
with their associated priority levels and SCB offsets.

Table 3-4 Interrupts
Priority Level Interrupt Condition SCB Offset

Non-maskable BDCOK and BPOK negated then asserted
on Q22-bus (Power up)
BDCOK negated then asserted while BPOK
asserted on Q22-bus (SCR<7> clear)

BDCOK negated then asserted while BPOK +
asserted on Q22-bus (SCR<7> set)

BHALT asserted on Q22-bus +
BREAK generated by the console device +

*These conditions generate a hardware halt procedure with a halt code of 3 (hardware
reset).
+These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

Table 3-4 (Cont.) Interrupts

Architecture 29

Priority Level Interrupt Condition SCB Offset
1F Unused
1E BPOK negated on Q22-bus oC
1D CDAL bus parity error 60
Q22-bus NXM on a write 60
CDAL bus timeout during DMA 60
Main memory NXM errors 60
Uncorrectable main memory errors 60
1C - 1B Unused
1A Correctable main memory errors 54
19-18 Unused
17 BR7 L asserted Q22-bus vector plus
200 16
16 Interval timer interrupt Co
BR6 L asserted Q22-bus vector plus
200 16
15 BR5 L asserted Q22-bus vector plus
200 16
14 Console terminal F8,F6 16
Programmable timers 78,7C
Mass storage interface C4
Network interface D4
BR4 L asserted Q22-bus vector plus
200 16
13-10 Unused
OF - 01 Software interrupt requests 84-BC
NOTE

Because the Q22-bus does not allow differentiation between the four bus
grant levels (i.e., a level 7 device could respond to a level 4 bus grant), the
KA640 CPU raises the IPL to 17 after responding to interrupts generated by
the assertion of either BR7 L, BR6 L, BR5 L, or BR4 L. The KA640 maintains
the IPL at the priority of the interrupt for all other interrupts.

The interrupt system is controlled by three IPRs: IPR 18, the interrupt
priority level register (IPL), IPR 20, the software interrupt request register
(SIRR), and IPR 21, the software interrupt summary register (SISR).

30 Architecture

The IPL is used for loading the processor priority field in the PSL (bits
<20:16>). The SIRR is used for creating software interrupt requests. The
SISR records pending software interrupt requests at levels 1 through 15.
The format of these registers is shown in Figure 3-3. Refer to the VAX
Architecture Reference Manual for more information on these registers.

31 - 5 4 0
IGNORED. RETURNS 0 PSL<20:16>] :IPL
31 43 0
IGNORED REQUEST| :SIRR
31 1615 0
PENDING SOFTWARE INTERRUPTS :SISR
FEDCBA98 7654321

MmBZ

MR18179
MA-1056-87

Figure 3-3 Interrupt Registers

3.1.5.2 Exceptions
Exceptions can be divided into three types:

e Trap
e Fault
e Abort

A trap is an exception that occurs at the end of the instruction that caused
the exception. After an instruction traps, the PC saved on the stack is the
address of the next instruction that would have normally been executed and
the instruction can be restarted.

Architecture 31

A fault is an exception that occurs during an instruction, and that leaves the
registers and memory in a consistent state such that the elimination of the
fault condition and restarting the instruction will give correct results. After
an instruction faults, the PC saved on the stack points to the instruction that
faulted.

An abort is an exception that occurs during an instruction, leaving the value
of the registers and memory unpredictable, such that the instruction cannot
necessarily be correctly restarted, completed, simulated or undone. After
an instruction aborts, the PC saved on the stack points to the instruction
that was aborted (which may or may not be the instruction that caused the
abort) and the instruction may or may not be restarted depending on the
class of the exception and the contents of the parameters that were saved.

Exceptions are grouped into six classes:
® Arithmetic exceptions

* Memory management exceptions

* Operand reference exceptions

¢ Instruction execution exceptions

¢ Tracing exception

¢ System failure exceptions

A list of exceptions grouped by class is given in Table 3-5. Exceptions
save the PC and PSL and in some cases, one or more parameters, on the
stack. Most exceptions do not change the IPL of the processor (except the
exceptions in serious system failures class, which set the processor IPL to
1F) and cause the exception to be dispatched to the appropriate service
routine through the SCB (except for the interrupt stack not valid exception,
and exceptions that occur while an interrupt or another exception are being
serviced, which cause the exception to be dispatched to the appropriate
service routine by the resident firmware).

The exceptions listed in Table 3-5 (except machine check) are described in
greater detail in the VAX Architecture Reference Manual. The machine check
exception is described in greater detail in Section 3.1.5.3. Exceptions that

can occur while servicing an interrupt or another exception are listed in
Table 3-8 in Section 3.1.5.6.

32 Architecture

Table 3-5 Exceptions

Arithmetic Exceptions Type SCB Offset
Integer overflow Trap 34

Integer divide-by-zero Trap 34
Subscript range Trap 34
Floating overflow Fault 34

Floating divide-by-zero Fault 34

Floating underflow Fault 34
Memory Management Exceptions Type SCB Offset
Access control violation Fault 20
Translation not valid Fault 24
Operand Reference Exceptions Type SCB Offset
Reserved addressing mode Fault 1C
Reserved operand fault Abort 18
Instruction Execution Exceptions Type SCB Offset
Reserved/privileged instruction Fault 10
Emulated instruction Fault C8, CC
Change mode Trap 40-4C
Breakpoint Fault 2C
Tracing Exception Type SCB Offset
Trace Fault 28

System Failure Exceptions Type Offset
Interrupt stack not valid Abort *

Kernel stack not valid Abort 08

*Dispatched by resident firmware rather than through the SCB

Architecture 33

Table 3-5 (Cont.) Exceptions

System Failure Exceptions Type Offset
Machine check Abort 04
CDAL bus parity errors
Cache parity errors
Q22-bus NXM errors

Q22-bus device parity errors
Q22-bus NO GRANT errors

CDAL bus timeout errors

Main memory NXM errors

Main memory uncorrectable errors

3.1.5.3 Information Saved On A Machine Check Exception

In response to a machine check exception the PSL, PC, four parameters,
and a byte count are pushed onto the stack, as shown in Figure 3-4.

BYTE COUNT : SP

MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION 1

INTERNAL STATE INFORMATION 2

PC

PSL

MA-1121-87

Figure 3-4 Information Saved On A Machine Check Exception

The meaning of this information and how it effects the recovery procedure
is described in the following paragraphs.

Byte Count

<31:0> = 0000 0010 ¢, 16 1. This value indicates the number of bytes of
information that follow on the stack (not including the PC and PSL).

34 Architecture

Machine Check Code Parameter

Machine Check Code <31:0>—A code value that indicates the type of
machine check that occurred. A list of the possible machine check codes
(in hex) and their associated causes follows.

Floating Point Errors—These codes indicate that the floating point accelerator
(FPA) chip detected an error while communicating with the CVAX CPU chip
during the execution of a floating point instruction. The most likely cause(s)
of these types of machine checks are: a problem internal to the CVAX CPU
chip, a problem internal to the FPA, or a problem with the interconnect
between the two chips. Machine checks due to floating point errors may
be recoverable, depending on the state of the VAX CAN'T RESTART flag
(captured in Internal State Information 2 <15>) and the FIRST PART DONE
flag (captured in PSL <27>). If the FIRST PART DONE flag is set, the error
is recoverable. If the FIRST PART DONE flag is cleared, then the VAX
CAN'’T RESTART flag must also be cleared for the error to be recoverable.
Otherwise, the error is unrecoverable and depending on the current mode,
either the current process or the operating system should be terminated.
The information pushed onto the stack by this type of machine check is
from the instruction that caused the machine check.

Hex

Code Error Description

1 A protocol error was detected by the FPA chip while attempting to
execute a floating point instruction.

2 A reserved instruction was detected by the FPA while attempting to
execute a floating point instruction.

3 An illegal status code was returned by the FPA while attempting to
execute a floating point instruction. CPSTA<1:0> =10

4 An illegal status code was returned by the FPA while attempting to

execute a floating point instruction. CPSTA<1:0> =01

Memory Management Errors—These codes indicate that the microcode in
the CVAX CPU chip detected an impossible situation while performing
functions associated with memory management. The most likely cause
of this type of a machine check is a problem internal to the CVAX chip.
Machine checks due to memory management errors are non-recoverable.
Depending on the current mode, either the current process or the operating
system should be terminated. The state of the POBR, POLR, P1BR, PILR,
SBR, and SLR should be logged.

Architecture 35

Hex
Code Error Description

5 The calculated virtual address for a process PTE was in the PO space
instead of the system space when the CPU attempted to access a process
PTE after a translation buffer miss.

6 The calculated virtual address space for a process PTE was in the P1
space instead of the system space when the CPU attempted to access a
process PTE after a translation buffer miss.

7 The calculated virtual address for a process PTE was in the PO space
instead of the system space when the CPU attempted to access a
process PTE to change the PTE <M > bit before writing to a previously
unmodified page.

8 The calculated virtual address for a process PTE was in the P1 space
instead of the system space when the CPU attempted to access a
process PTE to change the PTE <M > bit before writing to a previously
unmodified page.

Interrupt Errors—This code indicates that the interrupt controller in the CVAX
CPU requested a hardware interrupt at an unused hardware IPL. The most
likely cause of this type of a machine check is a problem internal to the
CVAX chip. Machine checks due to unused IPL errors are non-recoverable.
A non-vectored interrupt generated by a serious error condition (memory
error, power fail, or processor halt) has probably been lost. The operating
system should be terminated.

Hex

Code Error Description

9 A hardware interrupt was requested at an unused Interrupt Priority
Level (IPL).

Microcode Errors—This code indicates that an impossible situation was
detected by the microcode during instruction execution. Note that
most erroneous branches in the CVAX CPU microcode cause random
microinstructions to be executed. The most likely cause of this type of
machine check is a problem internal to the CVAX chip. Machine checks due
to microcode errors are non-recoverable. Depending on the current mode,
either the current process or the operating system should be terminated.

36 Architecture

Hex
Code Error Description

A An impossible state was detected during a MOVC3 or MOVCS
instruction (not move forward, move backward, or fill).

Read Errors—These codes indicate that an error was detected while the
CVAX CPU was attempting to read from either the cache, main memory,
or the Q22-bus. The most likely cause of this type of machine check
must be determined from the state of the MSER, DSER, MEMCSR16,
QBEAR, DEAR, and CBTCR. Machine checks due to read errors may be
recoverable, depending on the state of the VAX CAN'T RESTART flag
(captured in Internal State Information 2 <15>) and the FIRST PART DONE
flag (captured in PSL <27>). If the FIRST PART DONE flag is set, the error
is recoverable. If the FIRST PART DONE flag is cleared, then the VAX
CAN'T RESTART flag must also be cleared for the error to be recoverable.
Otherwise, the error is unrecoverable and depending on the current mode,
either the current process or the operating system should be terminated.
The information pushed onto the stack by this type of machine check is
from the instruction that caused the machine check.

Hex

Code Error Description

80 An error occurred while reading an operand, a process PTE during
address translation, or on any read generated as part of an interlocked
instruction.

81 An error occurred while reading a system page table entry (SPTE),

during address translation, a process control block (PCB) entry during a
context switch, or a system control block (SCB) entry while processing
an interrupt.

Write Errors—These codes indicate that an error was detected while the
CVAX CPU was attempting to write to either the cache, main memory,
or the Q22-bus. The most likely cause of this type of machine check must
be determined from the state of the MSER, DSER, MEMCSR16, QBEAR,
DEAR, and CBTCR. Machine checks due to write errors are non-recoverable
because the CPU is capable of performing many read operations out of the
cache before a write operation completes. For this reason, the information
that is pushed onto the stack by this type of machine check cannot be
guaranteed to be from the instruction that caused the machine check.

Architecture 37

Hex

Code Error Description

82 An error occurred while writing an operand, or a process page table
entry (PPTE) to change the PTE <M> bit before writing a previously
unmodified page.

83 An error occurred while writing a_system page table entry (SPTE) to

change the PTE <M> bit before writing a previously unmodified page,
or a PCB entry during a context switch or during the execution of
instructions that modify any stack pointers stored in the PCB.

Most Recent Virtual Address Parameter

Most Recent Virtual Address <31:0>—This field captures the contents of
the virtual address pointer register at the time of the machine check. If a
machine check other than a machine check 81 occurred on a read operation,
this field represents the virtual address of the location that was being read
when the error occurred, plus four. If machine check 81 occurred, this field
represents the physical address of the location that was being read when
the error occurred, plus four.

If a machine check other than a machine check 83 occurred on a write
operation, this field represents the virtual address of a location that was
being referenced either when the error occurred, or sometime after the error
occurred, plus four. If a machine check 83 occurred, this field represents
the physical address of the location that was being referenced either when the
error occurred, or sometime after the error occurred, plus four. In other
words, if the machine check occurred on a write operation, the contents of
this field cannot be used for error recovery.

internal State Information 1 Parameter

Internal State Information 1 is divided into four fields. The contents of these
fields is described below.

<31:24 > —This field captures the opcode of the instruction that was being
read or executed at the time of the machine check.

<23:16>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. The four most significant bits are equal to
<1110> and the four least significant bits contain highest priority software
interrupt <3:0>.

<15:8>—This field captures the state of CADR <7:0> at the time of the
machine check. See Section 3.3.2.5 for an interpretation of the contents of
this register.

38 Architecture

<7:0>—This field captures the state of the MSER <7:0> at the time of the
machine check. See Section 3.3.2.6 for an interpretation of the contents of
this register.

Internal State Information 2 Parameter

Internal State Information 2 is divided into five fields. The contents of these
fields is described below.

<31:24>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. This field contains SC register <7:0>.

<23:16>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. The two most significant bits are equal to
11 (binary) and the six least significant bits contain state flags <5:0>.

<15>—This field captures the state of the VAX CAN'T RESTART flag at
the time of the machine check.

<14:8>—This field captures the internal state of the CVAX CPU chip at
the time of the machine check. The three most significant bits are equal
to <111> (binary) and the four least significant bits contain ALU condition
codes.

<7:0>—This field captures the offset between the virtual address of the
start of the instruction being executed at the time of the machine check
(saved PC) and the virtual address of the location being accessed (PC) at the
time of the machine check. :

PC

PC <31:0>—This field captures the virtual address of the start of the
instruction being executed at the time of the machine check.

PSL

PSL <31:0>—This field captures the contents of the PSL at the time of the
machine check.

Architecture 39

3.1.5.4 System Control Block

The system control block (SCB) consists of two pages in main memory that
contain the vectors by which interrupts and exceptions are dispatched to the
appropriate service routines. The SCB is pointed to by IPR 17, the system
control block base register (SCBB), represented in Figure 3-5. The SCB
format is presented in Table 3-6.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

MBZ PHYSICAL LONGWORD ADDRESS OF PCB mBZ :SCBB

MR.15782
MA-1081.87

Figure 3-5 System Control Block Base Register

Table 3-6 System Control Block Format

SCB
Offset Interrupt/Exception Type Parameter Notes
00 Unused IRQ passive release
on other VAXes
04 Machine check Abort 4 Parameters depend
on error type
08 Kernel stack not valid Abort 0 Must be serviced on
interrupt stack
0C Power fail Interrupt 0 IPL is raised to 1E
10 Reserved/privileged Fault 0
instruction
14 Customer reserved Fault 0 XFC instruction
instruction
18 Reserved operand Fault/Abort 0 Not always
recoverable
1C Reserved addressing Fault 0
mode
20 Access control violation Fault 2 Parameters are
virtual address,
status code
24 Translation not valid Fault 2 Parameters are
virtual address,
status code
28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0

40 Architecture

Table 3-6 (Cont.) System Control Block Format

SCB

Offset Interrupt/Exception Type Parameter Notes

30 Unused Compatibility mode
in other VAXes

34 Arithmetic Trap/Fault 1 Parameter is type
code

38:3C Unused

40 CHMK Trap 1 Parameter is sign-
extended operand
word

44 CHME Trap 1 Parameter is sign-
extended operand
word

48 CHMS Trap 1 Parameter is sign-
extended operand
word

4C CHMU Trap 1 Parameter is sign-
extended operand
word

50 Unused

54 Corrected read data Interrupt 0 IPLis1A(CRD L)

58:5C Unused

60 Memory error Interrupt 0 IPL is 1D
(MEMERR L)

64:6C Unused

78 Programmable timer 0 Interrupt 0 IPL is 14

7C Programmable timer 1 Interrupt 0 IPL is 14

80 Unused

84 Software level 1 Interrupt 0

88 Software level 2 Interrupt 0 Ordinarily used for
AST delivery

8C Software level 3 Interrupt 0 Ordinarily used for
process scheduling

90:BC Software levels 4-15 Interrupt 0

Co Interval timer Interrupt 0 IPL is 16 (INTTIM L)

C4 Mass storage interface Interrupt 0 IPL is 14

C8 Emulation start Fault 10 Same mode

exception, FPD=0;
parameters are
opcode, PC,
specifiers

Architecture 41

Table 3-6 (Cont.) System Control Block Format

SCB

Offset Interrupt/Exception Type Parameter Notes

CcC Emulation continue Fault 0 Same mode
exception, FPD=1:
no parameters

DO Unused

D4 Network interface Interrupt 0 IPL is 14

D8:DC Unused
EO:EC Reserved for customer

or CSS use

FO:F4 Unused Console storage
registers on 11/750
and 11/730

F8 Console receiver Interrupt 0 IPL is 14

FC Console transmitter Interrupt 0 IPLis 14

100:1FC Adapter vectors Interrupt 0 Not implemented by
the KA640

200:3FC Device vectors Interrupt 0 Correspond to Q22-
bus Vectors 000:1FC;
KA640 appends
the assertion of bit

v <9,0>

400:FFC Unused Interrupt 0

3.1.5.5 Hardware Detected Errors

The KA640 is capable of detecting eleven types of error conditions during
program execution.

1. CDAL bus parity errors indicated by MSER <6> (on a read) or
MEMCSR16 <7> (on a write) being set. :

Cache tag parity errors indicated by MSER <0> being set.
Cache data parity errors indicated by MSER <1> being set.
Q22-bus NXM errors indicated by DSER <7> being set.
Q22-bus NO SACK errors (no indicator).

Q22-bus NO GRANT errors indicated by DSER <2> being set.
Q22-bus device parity errors indicated by DSER <5> being set.

CDAL bus timeout errors indicated by DSER <4 > (only on DMA) being
set.

© N o U oe W N

42 Architecture

9. Main memory NXM errors indicated by DSER <0> (only on DMA)
being set.

10. Main memory correctable errors indicated by MEMCSR16 <29> being
set.

11. Main memory uncorrectable errors indicated by MEMCSR16 <31> and
DSER <4> (only on DMA) being set.

These errors will cause either a machine check exception, a memory error
interrupt, or a corrected read data interrupt, depending on the severity of
the error and the reference type that caused the error.

3.1.5.6 Hardware Halt Procedure

The hardware halt procedure is the mechanism by which the hardware
assists the firmware in emulating a processor halt. The hardware halt
procedure saves the current value of the PC in IPR 42 (SAVPC), and the
current value of the PSL, MAPEN < 0>, and a halt code in IPR 43 (SAVPSL).
The current stack pointer is saved in the appropriate internal register. The
PSL is set to 041F 0000 15 (IPL=1F, kernel mode, using the interrupt stack)
and the current stack pointer is loaded from the interrupt stack pointer.
Control is then passed to the resident firmware at physical address 2004
0000 1¢ with the state of the CPU as follows:

Register New Contents

SAVPC Saved PC

SAVPSL<31:16, 7:0> Saved PSL<31:16,7:0>

SAVPSL <15> Saved MAPEN < 0>

SAVPSL <14> Valid PSL flag (unknown for halt code of 3)
SAVPSL <13:8> Saved restart code

SP Current interrupt stack

PSL 041F 0000 46

PC 2004 0000 46

MAPEN 0

ICCS 0 (for a halt code of 3)

MSER 0 (for a halt code of 3)

CADR 0 (for a halt code of 3, cache is also flushed)
SISR 0 (for a halt code of 3)

ASTLVL 0 (for a halt code of 3)

All else Undefined

The firmware uses the halt code in combination with any hardware event
indicators to dispatch the execution or interrupt that caused the halt to the
appropriate firmware routine (either console emulation, power-up, reboot,

Architecture 43

or restart). Table 3-7 and Table 3-8 list the interrupts and exceptions
that can cause halts along with their corresponding halt codes and event
indicators.

Table 3-7 Unmaskable Interrupts That Can Cause a Halt

Halt Code Interrupt Condition Event Indicators
2 External Halt (CVAX HALTIN pin asserted)
BHALT asserted on the Q22-bus. DSER< 15>

BDCOK negated and asserted on the Q22- DSER <14>
bus while BPOK stays asserted (Q22-bus
REBOOT/RESTART) and SCR <7> is set.

BREAK generated by the console RXDB <11>

3 Hardware Reset (CVAX RESET pin negated)
BDCOK and BPOK negated then asserted -
on the Q22-bus (Power-up)

BDCOK negated and asserted on the Q22- -

bus while BPOK stays asserted (Q22-bus
REBOOT/RESTART) and SCR <7> is clear.

Table 3-8 Exceptions That Can Cause A Halt
Halt Code Exception Condition

6 HALT instruction executed in kernel mode

Exceptions While Servicing An Interrupt Or Exception

4 Interrupt stack not valid during exception

5 Machine check during normal exception

7 SCB vector bits <1:0> = 11

8 SCB vector bits <1:0> = 10

A CHMx executed while on interrupt stack

B CHMXx executed to the interrupt stack

10 ACV or TNV during machine check exception

11 ACV or TNV during kernel stack not valid exception
12 Machine check during machine check exception

13 Machine check during kernel stack not valid exception

19 PSL <26:24> = 101 during interrupt or exception

44 Architecture

Table 3-8 (Cont.) Exceptions That Can Cause A Halt
Halt Code Exception Condition

1A PSL <26:24> = 110 during interrupt or exception
1B PSL <26:24> = 111 during interrupt or exception
1D PSL <26:24> = 101 during REI
1E PSL <26:24> = 110 during REI
1F PSL <26:24> = 111 during REI

3.1.6 System ldentification

The system identification register (SID), IPR 62, is a read-only register
implemented in the CVAX chip, as specified in the VAX Architecture Reference
Manual. This 32-bit, read-only register is used to identify the processor type
and its microcode revision level (Figure 3-6).

31 2423 87 0
| TYPE I RESERVED I MICROCODE REVJ

MA-1101.87

Figure 3-6 System ldentification Register

Data Bit Definition

SID <31:24> (TYPE) Processor type. This field always reads as 10 1o,
indicating that the processor is implemented using the CVAX
chip.

SID <23:8> Reserved for future use.

SID <7:0> (MICROCODE REV.) Microcode revision. This field reflects

the microcode revision level of the CVAX chip.

In order to distinguish between different CPU implementations that use the
same CPU chip, the KA640, as must all VAX processors that use the CVAX
chip, implements a MicroVAX system type register (SYS_TYPE) at physical
address 2004 0004 ;4. This 32-bit read-only register is implemented in the
KA640 ROM. The format of this register is shown in Figure 3-7.

Architecture 45

3 2423 1615 8 7 o

l SYS_TYPE J REV LEVEL l SYS-SUB-TYPE T RESERVED J

MA-1102-87

Figure 3-7 System Type Register

Data Bit Definition

SYS_TYPE <31:24> (SYS_TYPE) System type code. This field reads as 01 ;6 for
all single-processor Q22-bus based systems.

SYS_TYPE <23:16> (REV LEVEL) Revision level. This field reflects the revision
level of the KA640 firmware.

SYS_TYPE <15:8> (SYS_SUB_TYPE) System sub-type code. This field reads as
10 ;6 for the KA640.

SYS_TYPE «<7:0> Reserved for Digital use.

3.1.7 CPU References

All references by the CPU can be classified into one of three groups:
¢ Request instruction-stream read references

¢ Demand data-stream read references

e Write references

3.1.7.7 Instruction-Stream Read References

The CPU has an instruction prefetcher with a 12-byte (3 longword)
instruction prefetch queue (IPQ) for prefetching program instructions from
either cache or main memory. Whenever there is an empty longword in
the IPQ, and the prefetcher is not halted due to an error, the instruction
prefetcher generates an aligned longword, request instruction-stream (I-
stream) read reference.

46 Architecture

3.1.7.8 Data-Stream Read References

Whenever data is immediately needed by the CPU to continue processing,
a demand data-stream (D-stream) read reference is generated. More
specifically, demand D-stream references are generated on operand, PTE,
SCB, and PCB references.

When interlocked instructions, such as branch on bit set and set interlock
(BBSSI) are executed, a demand D-stream read-lock reference is generated.
Since the CPU does not impose any restrictions on data alignment (other
than the aligned operands of the add aligned word interlocked (ADAWI) and
interlocked queue instructions) and since memory can only be accessed one
aligned longword at a time, all data read references are translated into an
appropriate combination of masked and unmasked, aligned longword read
references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, demand D-stream read reference
is generated. If the required data is a word that crosses a longword
boundary, or an unaligned longword, then two successive aligned longword
demand D-stream read references are generated. Data larger than a
longword is divided into a number of successive aligned longword demand
D-stream reads, with no optimization.

3.1.7.9 Write References

Whenever data is stored or moved, a write reference is generated. Since
the CPU does not impose any restrictions on data alignment (other than the
aligned operands of the ADAWI and interlocked queue instructions) and
since memory can only be accessed one aligned longword at a time, all data
write references are translated into an appropriate combination of masked
and unmasked aligned longword write references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, write reference is generated.
If the required data is a word that crosses a longword boundary, or an
unaligned longword, then two successive aligned longword write references
are generated. Data larger than a longword is divided into a number of
successive aligned longword writes.

3.2 Floating Point Accelerator

The KA640 floating point accelerator is implemented via a single VLSI chip
called the CFPA.

Architecture 47

3.2.1 Floating Point Accelerator Instructions

The KA640 floating point accelerator processes F_Floating, D_Floating, and
G_Floating format instructions and accelerates the execution of MULL,
DIVL, and EMUL integer instructions.

3.2.2 Floating Point Accelerator Data Types

The KA640 floating point accelerator supports byte, word, longword,
quadword, F_Floating, D_Floating, and G_Floating data types. The H_
Floating data type is not supported, but may be implemented by macrocode
emulation.

3.3 Cache Memory

To maximize CPU performance, the KA640 incorporates a cache memory,
implemented within the CVAX chip.

3.3.1 Cacheable References

Any reference that can be stored by the cache is called a cacheable reference.
The cache stores CPU read references to the VAX memory space (bit <29>
of the physical address equals 0) only. It does not store references to the
VAX I/O space, or DMA references by the Q22-bus interface. The type(s) of
CPU references that can be stored (either request I-stream read references,
or demand D-stream read references other than read-lock references) is
determined by the state of cache disable register (CADR) bits <5:4>. The
normal operating mode is for both I-stream and D-stream references to be
stored.

Whenever the CPU generates a non-cacheable reference, a single longword
reference of the same type is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference that is stored in the
cache, no reference is generated on the CDAL bus.

Whenever the CPU generates a cacheable reference that is not stored in
the cache, a quadword transfer is generated on the CDAL bus. If the CPU
reference was a request I-stream read, then the quadword transfer consists
of two indivisible longword transfers, the first being a request I-stream read
(prefetch), and the second being a request I-stream read (fill). If the CPU
reference was a demand D-stream read, then the quadword transfer consists
of two indivisible longword transfers, the first being a demand D-stream
read, and the second being a request D-stream read (fill).

48 Architecture

3.3.2 Cache

The KA640 includes a 1 KB, two-way associative, write through cache with a
100 ns cycle time. CPU read references access one longword at a time, while
CPU writes can access one byte at a time. A single parity bit is generated,
stored, and checked for each byte of data and each tag. The cache can be
enabled/disabled by setting/clearing the appropriate bits in the CADR. The
cache is flushed by any write to the CADR, as long as it is not in diagnostic
mode.

3.3.2.1 Cache Organization

The cache is divided into two independent storage arrays called set 1 and
set 2. Each set contains a 64 row x 22-bit tag array and a 64 row x 72-bit data
array. The two sets are organized as shown in Figure 3-8.

Set 1 Set2
64 by 22 64 by 72-BIT 64 by 22 64 by 72-BIT
64 ROWS BIT TAG DATA ARRAY BIT TAG DATA ARRAY
ARRAY ARRAY
jag- C.
93 72 N 0 93 72N [¢]

MA-1103-87

Figure 3-8 Cache Organization

A row within a set corresponds to a cache entry, so there are 64 entries in
each set and a total of 128 entries in the entire cache. Each entry contains
a 22-bit tag block and a 72-bit (eight-byte) data block. A cache entry is
organized as shown in Figure 3-9.

A tag block consists of a parity bit, a valid bit, and a 20-bit tag. A tag block
is organized as shown in Figure 3-10.

A data block consists of eight bytes of data, each with an associated parity
bit. The total data capacity of the cache is 128 eight-byte blocks, or 1024
bytes. A data block is organized as shown in Figure 3-11.

a3 72N 0o

I TAG BLOCK l DATA BLOCK I

MA-1104-87

Figure 3-9 Cache Entry

Architecture 49

19 0
[e]v] TAG |
PARITY BIT I
MA-1105-87
VALID BIT

Figure 3-10 Cache Tag Block
<—— DATABITS
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 (0]
|p| 87 [p| 86 |p| Bs]p[Ba]p] 83 l”l 82]pl 81 M 80 |
7 6 5 4

3 2 1 0

<—— PARITY BITS

MA-1110-87

Figure 3-11 Cache Data Block

3.3.2.2 Cache Address Translation

Whenever the CPU requires an instruction or data, the contents of the cache
is checked to determine if the referenced location is stored there. The cache
contents is checked by translating the physical address as described in the
following paragraphs.

On non-cacheable references, the reference is never stored in the cache, so
a cache miss occurs and a single longword reference is generated on the
CDAL bus.

On cacheable references, the physical address must be translated to
determine if the contents of the referenced location is resident in the cache.
The cache index field, bits <8:3> of the physical address, is used to select
one of the 64 rows of the cache, with each row containing a single entry
from each set. The cache tag field, bits <28:9> of the physical address, is
then compared to the tag block of the entry from both sets in the selected
row.

If a match occurs with the tag block of one of the set entries, and the
valid bit within the entry is set, the contents of the referenced location is
contained in the cache and a cache hit occurs. On a cache hit, the set
match signals generated by the compare operation select the data block
from the appropriate set. The cache displacement field, bits <2:0> of the
physical address, is used to select the byte(s) within the block. No CDAL
bus transfers are initiated on CPU references that hit the cache.

50 Architecture

If no match occurs, then the contents of the referenced location is not
contained in the cache and a cache miss occurs. In this case, the data must
be obtained from the main memory controller, so a quadword transfer is
initiated on the CDAL bus (Figure 3-12).

2928 98 32 0
I l CACHE TAG , I l J
L—uo SPACE CACHE INDE X —
CACHE DISPLACEMENT —
VALID BIT VALID BIT
l SET1 SET 2
20- | 64BIT 20- |s4BIT
BIT | DATA BLOCK BIT |DATA BLOCK
TAG TAG
SET | 1MATCH? SET | 2MATCH?
DATA

Figure 3-12 Cache Address Translation

3.3.2.3 Cache Data Block Allocation

Cacheable references that miss the cache, cause a quadword read to be
initiated on the CDAL bus. When the requested quadword is supplied by
the main memory controller, the requested longword is passed on to the
CPU, and a data block is allocated in the cache to store the entire quadword.

Due to the fact that the cache is two-way associative, there are only two data
blocks (one in each set) that can be allocated to a given quadword. These
two data blocks are determined by the cache index field of the address of
the quadword, which selects a unique row within the cache. Selection of

Architecture 51

a data block within the row (i.e., set selection) for storing the new entry is
random.

Since the KA640 supports 52MB (6.5M quadwords) of physical memory,
up to 104K quadwords share each row (two data blocks) of the cache.
Contiguous programs larger than 512 bytes or any non-contiguous programs
separated by 512 bytes have a 50% chance of over-writing themselves when
cache data blocks are allocated for the first time for data separated by 512
bytes (one page). After six allocations, there is a 97% probability both sets
in a row will be filled.

3.3.2.4 Cache Behavior on Writes

On CPU generated write references, the cache is write through. All CPU write
references that hit the cache cause the contents of the referenced location
in main memory to be updated as well as the copy in the cache.

On DMA wrrite references that hit the cache, the cache entry containing the
copy of the referenced location is invalidated. If the cache is configured to
store only I-stream references, then the entire cache is also flushed whenever
an REI instruction is executed. (The VAX Architecture requires that an
REI instruction be executed before executing instructions out of a page of
memory that has been updated.)

3.3.2.5 Cache Disable Register

The cache disable register (CADR), IPR 37, controls the cache, and is unique
to CPU designs that use the CVAX chip (Figure 3-13).

[; TITTHIT

MA.1107-87

Figure 3-13 Cache Disable Register

52 Architecture

Data Bit

Definition

CADR <«<31:8>
CADR <7>

CADR <6>

CADR <5>

CADR <4>

Unused. Always read as zeros. Writes have no effect.

(S2E) Read/Write. This bit is used to selectively enable or
disable set 2 within the cache. When set, set 2 of the cache is
enabled. When cleared, set 2 of the cache is disabled. Cleared
on power-up and by the negation of DCOK when the processor
is halted.

(S1E) Read/Write. This bit is used to selectively enable or
disable set 1 within the cache. When set, set 1 of the cache is

renabled. When cleared, set 1 of the cache is disabled. Cleared

on power-up and by the negation of DCOK when the processor
is halted.

(ISE) Read/Write. This bit is used to selectively enable or
disable storing I-stream references in the cache. When set,
I-stream, memory space references are stored in the cache, if it
is enabled. When cleared, I-stream memory references are not
stored in the cache. Cleared on power-up and by the negation
of DCOK when the processor is halted.

(DSE) Read/Write. This bit is used to selectively enable or
disable storing D-stream references in the cache. When set,
D-stream, memory space references are stored in the cache,
if it is enabled. When cleared, D-stream memory references
are not stored in the cache. Cleared on power-up and by the
negation of DCOK when the processor is halted.

NOTE

The cache can be disabled by either disabling both set
1 and set 2 (clearing CADR <7:6>), or by not storing

either I-stream or D-stream references (clearing CADR
<5:4>).

For maximum performance, the cache should be configured
to store both I- and D-stream references. I-stream only mode
suffers from a degradation in performance from what would
normally be expected relative to I- and D-stream mode and
D-stream only mode, due to the fact that invalidation of cache
entries due to writes to memory by a DMA device are handled
less efficiently.

Architecture 53

Data Bit

Definition

CADR <3:2>
CADR <1>

CADR <0>

In I-stream only mode, the entire cache is flushed whenever
an REI instruction is executed. (The VAX Architecture Reference
Manual states that an REI instruction must be executed before
executing instructions out of a page of memory that has been
updated.) Whereas in the other two modes of operation, cache
entries are invalidated on an individual basis, only if a DMA
write operation results in a cache hit.

Unused. Always read as 1s.

(WWP) Write wrong parity. Read/Write. When set, incorrect
parity is stored in the cache whenever it is written. When
cleared, correct parity is stored in the cache whenever the
cache is written. Cleared on power-up and by the negation of
DCOK when the processor is halted.

(DIA) Diagnostic mode. Read/Write. When cleared, the cache
is in normal operating mode and writes to the CADR will
cause the cache to be flushed, (all valid bits set to the invalid
state) and the cache is configured for write-through operation.
When set, the cache is in diagnostic mode and writes to

the CADR will not cause the cache to be flushed. CPU write
references with a longword destination (e.g., MOVL) will write
the data into main memory (if it exists) as well as invalidate
the corresponding cache entry regardless of whether or not a
cache hit occurred.

CPU write references with a quadword destination (e.g.
MOVQ) will write the data into main memory (if it exists)

as well as cause the SECOND longword of the quadword

to be written into the longword of the cache data array

that corresponds to the address of the FIRST longword of
the destination, regardless of whether or not a cache hit
occurred. The data in the longword of the cache data array
that corresponds to the address of the second longword of the
destination remains unaltered.

In addition, errors generated during write references, that
would normally cause a machine check, are ignored (they do
not cause a machine check trap to be generated, or prevent
data from being stored in the cache). Diagnostic mode is
intended to allow the cache tag store to be fully tested without
requiring 512 megabytes of main memory.

54 Architecture

Data Bit

Definition

This mode makes it possible for the tag block in a particular
cache entry to be written with any pattern by executing

a MOVQ instruction with bits <28:9> of the destination
address equal to the desired pattern. Two MOVQ instructions,
one with a quadword aligned destination address and one with
the next longword aligned destination address, are required

to write to both longwords in the data block of a cache entry.
Diagnostic mode does not affect read references. Cleared on
power-up and by the negation of DCOK when the processor is
halted.

NOTE

At least one read reference must occur between all write
references made in diagnostic mode.

Diagnostic mode should only be selected when one and
only one of the two sets are enabled. Operation of this
mode with both sets enabled or both sets disabled yields
unpredictable results.

3.3.2.6 Memory System Error Register

The memory system error register (MSER), IPR 39, records the occurrence of
cache hits, as well as parity errors on the CDAL bus and in the cache. This
register is unique to CPU designs that use the CVAX chip. MSER <6:4,1:0>
are sticky in the sense that they remain set until explicitly cleared. Each
bit is set on the first occurrence of the error it logs, and remains set for
subsequent occurrences of that error. The MSER is explicitly cleared via the
MTPR MSER instruction regardless of the write data (Figure 3-14).

31

876543210

L

: [[ele]]

£ |

HM
A
MCD

o
-

[

DAT
TAG

MA-1108-87

Figure 3-14 Memory System Error Register

Architecture 55

Data Bit

Definition

MSER <31:8>
MSER <7>

MSER <6>

MSER <5>

MSER <4>

MSER <3:2>
MSER <1>

MSER <0>

Unused. Always read as zeros. Writes have no effect.

(HM) Hit/Miss. Read only. Writes have no effect. Cleared on
all cacheable references that hit the cache. Set on all cacheable
references that miss the cache. Cleared on power-up and by
the negation of DCOK when the processor is halted.

(DAL) DAL parity error. Read/Write to clear. This bit is set
whenever a CDAL bus data store parity error is detected.
Cleared on power-up and by the negation of DCOK when the
processor is halted.

(MCD) Machine check - DAL parity error. Read/Write to clear.
This bit is set whenever a machine check is caused by a CDAL
bus data parity error. These errors will only generate machine
checks on demand D-stream read references. Cleared on
power-up and by the negation of DCOK when the processor is
halted.

(MCC) Machine check - cache parity error. Read/Write to
clear. This bit is set whenever a machine check is caused by

a cache parity error in the tag or data store. These errors

will only generate machine checks on demand D-stream read
references. Cleared on power-up and by the negation of DCOK
when the processor is halted.

Unused. Always read zero. Writes have no effect.

(DAT) Data parity error. Read/Write io clear. This bit is set
when a parity error is detected in the data store of the cache.
Cleared on power-up and by the negation of DCOK when the
processor is halted.

(TAG) Tag parity error. Read/Write to clear. This bit is set
when a parity error is detected in the tag store of the cache.
Cleared on power-up and by the negation of DCOK when the
processor is halted.

3.3.2.7 Cache Error Detection

Both the tag and data arrays in the cache are protected by parity. Each
8-bit byte of data and the 20-bit tag is stored with an associated parity bit.
The valid bit in the tag is not covered by parity. Odd data bytes are stored
with odd parity and even data bytes are stored with even parity. The tag is
stored with odd parity. The stored parity is valid only when the valid bit
associated with the cache entry is set. Tag and data parity (on the entire
longword) are checked on read references that hit the cache, while only tag
parity is checked on CPU and DMA write references that hit the cache.

56 Architecture

The action taken following the detection of a cache parity error depends on
the reference type:

During a demand D-stream read reference, the entire cache is flushed, the
CADR is cleared (which disables the cache). The cause of the error is logged
in MSER <4,3:0> and a machine check abort is initiated.

During a request I-stream read reference, the entire cache is flushed (unless
CADR <0> is set), the cause of the error is logged in MSER <1:0>, the
prefetch is halted, but no machine check abort occurs, and both caches
remain enabled.

During a masked or unmasked write reference, the entire cache is flushed
(unless CADR <0> is set), the cause of the error is logged in MSER <0>
(only tag parity is checked on CPU writes that hit the cache), there is no
effect on CPU execution, and both caches remain enabled.

During a DMA write reference the cause of the error is logged in MSER<0>
(only tag parity is checked on DMA writes that hit the cache), there is no
effect on CPU execution, both caches remain enabled, and no invalidate
operation occurs.

3.4 Main Memory System

The KA640 includes a main memory controller implemented via a single
VLSI chip called the CMCTL. The KA640 main memory controller
communicates with the MS650 memory boards over the MS650 memory
interconnect, which utilizes the CD interconnect for the address and control
lines and a 50-pin, ribbon cable for the data lines. It supports up to three
MS650 memory boards, for a maximum of 52MB of ECC memory.

The controller supports synchronous longword read references, and masked
or unmasked synchronous write references generated by the CPU as well
as synchronous quadword read references generated by cacheable CPU
references that miss the cache. Table 3-9 gives CPU read reference timing.
Table 3-10 gives CPU write reference timing.

Architecture 57

Table 3-9 CPU Read Reference Timing

Data Type Timing
Longword 400 ns
Quadword 600 ns

First longword 400 ns

Second longword 200 ns
Aborted reference 400 ns
Longword (locked) 900 ns minimum
Aborted reference 400 ns
Retry (locked) 500 ns

Table 3-10 CPU Write Reference Timing

Data Type Timing
Longword 200 ns
Longword (masked) 500 ns

The controller also supports asynchronous longword and quadword DMA
read references and masked and unmasked asynchronous longword,
quadword, hexword, and octaword DMA write references from the Q22-
bus interface. Table 3-11 gives Q22-bus interface read reference timing.
Table 3-12 gives Q22-bus interface write reference timing.

Table 3-11 Q22-bus Interface Read Reference Timing

Data Type Timing

Longword 500 ns

Quadword 800 ns
First longword 500 ns
Second longword 300 ns

Longword (locked) 600 ns

58 Architecture

Table 3-12 Q22-bus Interface Write Reference Timing

Data Type Timing
Longword 400 ns
Longword (masked) 600 ns
Quadword 700 ns
First longword 400 ns
Second longword 300 ns
Quadword (masked) 1100 ns
First longword 400 ns
Second longword 700 ns
Hexword 1000 ns
First longword 400 ns
Second longword 300 ns
Third longword 300 ns
Hexword (masked) 1400 ns
First longword 400 ns
Second longword 300 ns
Third longword 700 ns
Octaword 1300 ns
First longword 400 ns
Second longword 300 ns
Third longword 300 ns
Fourth longword 300 ns
Octaword (masked) 1700 ns
First longword 400 ns
Second longword 300 ns
Third longword 300 ns
Fourth longword 700 ns

The timing in Table 3-12 assumes no exception conditions are encountered
during the reference. Exception conditions will add the following amount
of time if they are encountered during a reference:

Architecture 59

Exception Condition Time Added
Correctable error 100 ns
Uncorrectable error 200 ns-read
Uncorrectable error 100 ns-write
CDAL parity error 100 ns-write.
Refresh collision 400 ns

The main memory controller contains eighteen registers. Sixteen registers
are used to configure each of the sixteen possible banks in main memory.
One register is used to control the operating mode of all memory banks and
one register captures state on main memory errors.

3.4.1 Main Memory Organization

Main memory is logically and physically divided into 4 boards that
correspond to the 3 possible MS650 memory expansion modules that can
be attached to a KA640, plus the 4 Mbytes of on-board memory. Each board
can contain zero (no memory module present), 1 (as on the KA640), or 2
(MS650-AA present) memory bank(s). Each bank contains 1,048,576 (1M)
aligned longwords. Each aligned longword is divided into 4 data bytes and
is stored with 7 ECC check bits, resulting in a memory array width of 39
bits.

3.4.2 Main Memory Addressing

The KA640 main memory controller is capable of controlling up to 13 banks
of RAM, each bank containing 4MB of storage. Each bank of main memory
has a programmable base address, determined by the state of bits <25:22>
of the main memory configuration register associated with each bank.

A 4MB bank is accessed when bit <29> of the physical address is equal
to 0, indicating a VAX memory space read/write reference, bits <28:26>
of the physical address are equal to zero, indicating a reference within
the range of the main memory controller, and the bank number of the
bank matches bits <25:22> of the physical address. The remainder of the
physical address (bits <21:2>) are used to determine the row and column
of the desired longword within the bank. The byte mask lines are ignored on
read operations, but are used to select the proper byte(s) within a longword
during masked longword write references.

60 Architecture

3.4.3 Main Memory Behavior on Writes

On unmasked CPU write references, the main memory controller operates
in dump and run mode, terminating the CDAL bus transaction after latching
the data, but before checking CDAL bus parity, calculating the ECC check
bits, and transferring the data to main memory.

On unmasked DMA write references by the ‘Q22-bus interface, the data is
latched, CDAL bus parity is NOT checked, the CDAL bus transaction is
terminated, the ECC check bits are calculated, and the data is transferred
to main memory.

On single masked CPU or DMA write references, CDAL bus parity is
checked (for CPU writes only), the referenced longword is read from main
memory, the ECC code checked, the check bits recalculated to account for
the new data byte(s), the CDAL transaction is terminated, and the longword
is rewritten.

On multiple transfer masked DMA writes, each longword write is
acknowledged, then the CDAL transaction is terminated.

3.4.4 Main Memory Error Status Register

The main memory status register (MEMCSR16), address 2008 0140 ¢, is
used to capture main memory error data. This register is unique to CPU
designs that use the CMCTL memory controller chip (Figure 3-15).

31302928 9876 0
l l l I PAGE ADDRESS OF ERROR l 1 l SYNDROME l
RDS ERROR DMA ERROR
RDS HIGH ERROR RATE CDAL BUS ERROR
CRD ERROR ECC ERROR SYNDROME

Ma-1112.87

Figure 3-15 Format for MEMCSR16

Architecture 61

Data Bit

Definition

MEMCSR16<31>

MEMCSR16<30>

MEMCSR16<29>

MEMCSR16<28:9>

RDS error. Read/Write to clear. When set, an
uncorrectable ECC error occurred during a memory read
or masked write reference. Cleared by writing a 1 to it.
Writing a 0 has no effect. Undefined if MEMCSR16<7 >
(CDAL bus error) is set. Cleared on power-up and the
negation of DCOK when the processor is halted.

RDS high error rate. Read/Write to clear. When set, an
uncorrectable ECC error occurred while the RDS error
log request bit was set, indicating multiple uncorrectable
memory errors. Cleared by writing a 1 to it. Writinga 0
has no effect. Undefined if MEMCSR16<7> (CDAL bus
error) is set. Cleared on power-up and the negation of
DCOK when the processor is halted.

CRD error. Read/Write to clear. When set, a correctable
(single bit) error occurred during a memory read or
masked write reference. Cleared by writing a 1 to it.
Writing a 0 has no effect. Undefined if MEMCSR16<7>
(CDAL bus error) is set. Cleared by writing a 1, on power-
up and the negation of DCOK when the processor is
halted.

Page address of error. Read only. This field identifies the
page (512 byte block, containing the location that caused
the memory error. In the event of multiple memory
errors, the types of errors are prioritized and the page
address of the error with the highest priority is captured.
Errors with equal priority do not overwrite previous
contents. Writes have no effect. Cleared on power-up and
the negation of DCOK when the processor is halted.

The types of error conditions follow in order of priority:

1. CDAL bus parity errors during a CPU write reference,
as logged by the CDAL bus error bit.

2. Uncorrectable ECC errors during a CPU or DMA read
or masked write reference, as logged by the RDS error
log bit.

3. Correctable ECC errors during a CPU or DMA read or
masked write reference, as logged by CRD error bit.

62 Architecture

Data Bit

Definition

MEMCSR16< 8>

MEMCSR16<7 >

MEMCSR16<6:0>

DMA error. Read/Write to clear. When set, an error
occurred during a DMA read or write reference. Cleared
by writing a 1 to it. Writing a 0 has no effect. Cleared on
power-up and the negation of DCOK when the processor
is halted.

CDAL bus error. Read/Write to clear. When set, a CDAL
bus parity error occurred on a CPU write reference.
Cleared by writing a 1 to it. Writing a 0 has no effect.
Cleared on power-up and the negation of DCOK when the
processor is halted.

Error syndrome. Read only. This field stores the error
syndrome. A non-zero syndrome indicates a detectable
error has occurred. A unique syndrome is generated for
each possible single bit (correctable) error. A list of these
syndromes and their associated single bit errors is given in
Table 3-13. Any non-zero syndrome that is not contained
in Table 3-13 indicates a multiple bit (uncorrectable)
error has occurred. This field handles multiple errors in
the same manner as MEMCSR16<28:9>. Cleared on
power-up and the negation of DCOK when the processor
is halted.

Architecture 63

Table 3-13 Error Syndromes

Syndrome

<6:0> Bit Position in Error

0000000 no error detected
Data Bits (0-32 decimal)

1011000 0 '

0011100 1

0011010 2

1011110 3

0011111 4

1011011 5

1011101 6

0011001 7

1101000 8

0101100 9

0101010 10

1101110 11

0101111 12

1101011 13

1101101 14

0101001 15

1110000 16

0110100 17

0110010 18

1110110 19

0110111 20

1110011 21

1110101 22

0110001 23

0111000 24

1111100 25

1111010 26

0111110 27

1111111 28

0111011 29

0111101 30

1111001 31

Check Bits (32-38 decimal)
0000001 32

64 Architecture

Table 3-13 (Cont.) Error Syndromes

Syndrome

<6:0> Bit Position in Error

0000010 33

0000100 34

0001000 35

0010000 36

0100000 37

1000000 38

0000111 Result of incorrect check bits written on detection of a CDAL
parity error.

All others Multi-bit errors

3.4.5 Main Memory Control and Diagnostic Status
Register

The main memory control and diagnostic status register (MEMCSR17),
address 2008 0144 14, is used to control the operating mode of the main
memory controller as well as to store diagnostic status information. This
register is unique to CPU designs that use the CMCTL memory controller
chip (Figure 3-16).

31 131211109 87 6543210

L1] pez] | |

CRD INTERRUPT ENABLE
FORCE REFRESH REQUEST
ERROR DETECT DISABLE

DIAGNOSTIC CHECK MODE
CHECK BITS

MA.1122.87

Figure 3-16 Format for MEMCSR17

Architecture 65

Data Bit

Definition

MEMCSR17<31:13>

MEMCSR17<12>

MEMCSR17 <11>

MEMCSR17 <10>

MEMCSR17 <9:8>

MEMCSR17 <7>

Unused. This field reads as zero and must be written as
zero.

CRD interrupt enable. Read/Write. When cleared, single-bit
errors are corrected by the ECC logic, but no interrupt is
generated. When set, single-bit errors are corrected by the
ECC logic and they cause an interrupt to be generated at
IPL 1A with a vector of 54 16. This bit has no effect on the
capturing of error information in MEMCSR16, or on the
reporting of uncorrectable errors. Cleared on power-up and
the negation of DCOK when the processor is halted.

Force refresh request. Read/Write. When cleared, the
refresh control logic operates in normal mode (refresh
every 11.3 us). When set, one memory refresh operation
occurs immediately after the MEMCSR write reference
that set this bit. Setting this bit provides a mechanism

for speeding up the testing of the refresh logic during
manufacturing test of the controller chip. This bit is cleared
by the memory controller upon completion of the refresh
operation. Cleared on power-up and the negation of DCOK
when the processor is halted.

Memory error detect disable. Read/Write. When set, error
detection and correction (ECC) is disabled, so all memory
errors go undetected. When cleared, error detection,
correction, state capture and reporting (via MEMCSR16)

is enabled. Cleared on power-up and the negation of DCOK
when the processor is halted.

Unused. This field reads as zero and must be written as
zero.

Diagnostic check mode. Read/Write. When set, the
contents of MEMCSR17 <6:0> are written into the 7 ECC
check bits of the location (even if a CDAL parity error is
detected) during a memory write reference. When cleared,
the 7 check bits calculated by the ECC generation logic are
loaded into the 7 ECC check bits of the location during a
write reference and a memory read reference will load the
state of the 7 ECC check bits of the location that was read
into MEMCSR17 <6:0>. Cleared on power-up and the
negation of DCOK when the processor is halted.

66 Architecture

Data Bit Definition

NOTE

Diagnostic check mode is restricted to unmasked
memory write references. No masked write
references are allowed when diagnostic check mode
is enabled.

MEMCSR17 <6:0> Check bits. Read/Write. When the diagnostic check mode
bit is set, these bits are substituted for the check bits that
are generated by the ECC generation logic during a write
reference. When the diagnostic check mode bit is cleared,
memory read references load the state of the 7 ECC check
bits of the location that was read into MEMCSR16 <6:0>.
Cleared on power-up and the negation of DCOK when the
processor is halted.

3.4.6 Main Memory Error Detection and Correction

The KA640 main memory controller generates CDAL bus parity on CPU
read references, and checks CDAL bus parity on CPU write references.

The actions taken following the detection of a CDAL bus parity error depend
on the type of write reference.

For unmasked CPU write references, incorrect check bits are written to main
memory (potentially masking an as yet undetected memory error) along with
the data and an interrupt is generated at IPL 1D through vector 60 14 on the
next cycle and MCSR16 <7> is set. The incorrect check bits are determined
by calculating the seven correct check bits, and complementing the three
least significant bits.

For masked CPU write references, incorrect check bits are written to main
memory (potentially masking an as yet undetected memory error) along
with the data, unless an uncorrectable error is detected during the read
portion, MEMCSR16 <7> is set, and a machine check abort is initiated. If
an uncorrectable error is detected on the read portion, no write operation
takes place. The incorrect check bits are determined by calculating the seven
correct check bits, and complementing the three least significant bits.

The memory controller protects main memory by using a 32-bit modified
Hamming code to encode the 32-bit data longword with seven check bits.
This allows the controller to detect and correct single-bit errors in the data
field and detect single bit errors in the check bit field and double-bit errors

Architecture 67

in the data field. The most likely causes of these errors are failures in either
the memory array or the 50-pin cable.

Upon detecting a correctable error on a read reference or the read portion
of a masked write reference, the data is corrected (if it is in the data field),
before placing it on the CDAL bus, or back in main memory, an interrupt
is generated at IPL 1A through vector 54 16, bit <29> of MEMCSR16 is
set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates which bit was in error. If the error
was detected on a DMA reference, MEMCSR16 <8> is also set.

NOTE

The corrected data is not rewritten to main memory, so the single bit error
will remain there until rewritten by software.

Upon detecting an uncorrectable error, the action depends on the type of
reference being performed.

On a demand read reference, the affected row of the cache is invalidated,
bit <31> of MEMCSR16 is set, bits <28:9> of MEMCSR16 are loaded with
the address of the page containing the location that caused the error, and
bits <6:0> are loaded with the error syndrome which indicates that the
error was uncorrectable and a machine check abort is initiated. If the read
was a local-miss, global- hit read, or a read of the Q22-bus map, MEMCSR16
<8> and DSER <4> are also set, and DEAR <12:0> are loaded with the
address of the page containing the location that caused the error.

On a request read reference, the prefetch or fill cycle is aborted, but no
machine check occurs, bit <31> of MEMCSR16 is set, bits <28:9> of
MEMCSR16 are loaded with the address of the page containing the location
that caused the error, and bits <6:0> are loaded with the error syndrome
which indicates that the error was uncorrectable.

On the read portion of masked write reference, bit <31> of MEMCSR16
is set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates that the error was uncorrectable
and a machine check abort is initiated.

On a DMA read reference, bit <31> and bit <8> of MEMCSR16 are
set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates that the error was uncorrectable,
DSER <4> is set, DEAR <12:0> are loaded with the address of the page
containing the location that caused the error, BDAL <17:16> are asserted
on the Q22-bus along with the data to notify the receiving device (unless it

68 Architecture

was a map read by the Q22-bus interface during translation), and an interrupt
is generated at IPL 1D through vector 60 1.

On a DMA masked write reference, bit <31> and bit <8> of MEMCSR16
are set, bits <28:9> of MEMCSR16 are loaded with the address of the page
containing the location that caused the error, and bits <6:0> are loaded
with the error syndrome which indicates that the error was uncorrectable,
DSER <4> is set, DEAR <12:0> are loaded with the address of the page
containing the location that caused the error, IPCR <15> is set to notify the
initiating device, and an interrupt is generated at IPL 1D through vector 60

16-

3.5 Console Serial Line

The console serial line provides the KA640 processor with a full duplex, RS-
423 EIA, serial line interface, which is also RS-232C compatible. The only
data format supported is 8-bit data with no parity and one stop bit. The
four IPRs that control the operation of the console serial line are a superset
of the VAX console serial line registers described in the VAX Architecture
Reference Manual.

3.5.1 Console Registers

There are four registers associated with the console serial line unit. They
are implemented in the SSC and are accessed as IPRs 32 1o through 35 1.
Refer to Table 3-14.

Table 3-14 Console Registers

IPR Number Register Name Mnemonic
32 Console receiver control/status RXCS
33 Console receiver data buffer RXDB
34 Console transmit control/status TXCS
35 Console transmit data buffer TXDB

3.5.1.1 Console Receiver Control/Status Register

The console receiver control/status register (RXCS), IPR 32, is used to
control and report the status of incoming data on the console serial line

(Figure 3-17).

Architecture 69

31 8765 0

1 UNUSED, RETURNS 0 l l |OIOIOIOIOM

RX DONE
RX IE

MA-1118.87

Figure 3-17 Console Receiver Control/Status Register

Data Bit Definition

RXCS <31:8> Unused. Read as zeros. Writes have no effect.

RXCS <7> (RX DONE) Receiver done. Read only. Writes have no effect.
This bit is set when an entire character has been received
and is ready to be read from the RXDB Register. This bit is
automatically cleared when RXDB is read. It is also cleared on
power-up and the negation of DCOK when the processor is
halted.

RXCS <6> (RX IE) Receiver interrupt enable. Read/Write. When set,
this bit causes an interrupt to be requested at IPL 14 with an
SCB offset of F8 if RX DONE is set. When cleared, interrupts
from the console receiver are disabled. This bit is cleared on
power-up and the negation of DCOK when the processor is
halted.

RXCS <5:0> Unused. Read as zeros. Writes have no effect.

3.5.1.2 Console Receiver Data Buffer

The console receiver data buffer (RXDB), IPR 33, is used to buffer incoming
data on the serial line and capture error information (Figure 3-18).

31 1615141312 1110 8 7 0
L ° L[] [o] Jo[e]e]]
ERR
OVR ERR
FRM ERR
RCVBRK |
RECEIVED DATA BITS

MA-1119-87

Figure 3-18 Console Receiver Data Buffer

70 Architecture

Data Bit Definition

RXDB <31:16> Unused. Always read as zero. Writes have no effect.

RXDB <15> (ERR) Error. Read only. Writes have no effect. This bit is set
if RBUF <14> or <13> is set. It is clear if these two bits are
clear. This bit cannot generate a program interrupt. Cleared
on power-up and the negation of DCOK when the processor is
halted.

RXDB <14> (OVR ERR) Overrun error. Read only. Writes have no effect.
This bit is set if a previously received character was not read
before being overwritten by the present character. Cleared by
reading the RXDB, on power-up and the negation of DCOK
when the processor is halted.

RXDB <13> (FRM ERR) Framing error. Read only. Writes have no effect.
This bit is set if the present character did not have a valid
stop bit. Cleared by reading the RXDB, on power-up and the
negation of DCOK when the processor is halted.

NOTE

Error conditions remain present until the next character
is received, at which point, the error bits are updated.

RXDB <12> Unused. This bit always reads as 0. Writes have no effect.

RXDB <11> (RCV BRK) Received break. Read only. Writes have no effect.
This bit is set at the end of a received character for which the
serial data input remained in the space condition for 20 bit
times. Cleared by reading the RXDB, on power-up and the
negation of DCOK when the processor is halted.

RXDB <10:8> Unused. These bits always read as 0. Writes have no effect.

RXDB «<7:0> Received data bits. Read only. Writes have no effect. These
bits contain the last received character.

3.5.1.3 Console Transmitter Control/Status Register

The console transmitter control/status register (TXCS), internal processor
register 34, is used to control and report the status of outgoing data on the
console serial line (Figure 3-19).

3

Architecture 71

8765 3210

UNUSED, RETURNS 0 l ! I0|0|0| IOI I

TX RDY
TXIE
MAINT
XMIT BRK

Ma.1120-87

Figure 3-19 Console Transmitter Control/Status Register

Data Bit

Definition

TXCS <31:8>
TXCS <7>

TXCS <6>

TXCS <5:3>
TXCS <2>

TXCS<1>
TXCS<0>

Unused. Read as zeros. Writes have no effect.

(TX RDY) Transmitter ready. Read only. Writes have no
effect. This bit is cleared when TXDB is loaded and set

when TXDB can receive another character. This bit is set

on power-up and the negation of DCOK when the processor is
halted.

(TX IE) Transmitter interrupt enable. Read/Write. When set,
this bit causes an interrupt to be requested at IPL 14 with an
SCB offset of FC if TX RDY is set. When cleared, interrupts
from the console receiver are disabled. This bit is cleared on
power-up and the negation of DCOK when the processor is
halted.

Unused. Read as zeros. Writes have no effect.

(MAINT) Maintenance. Read/Write. This bit is used to
facilitate a maintenance self-test. When MAINT is set, the
external serial input is set to MARK and the serial output is
used as the serial input. This bit is cleared on power-up and
the negation of DCOK when the processor is halted.

Unused. Read as zero. Writes have no effect.

(XMIT BRK) Transmit break. Read/Write. When this bit is
set, the serial output is forced to the space condition after the
character in TXB<7:0> is sent. While XMIT BRK is set, the
transmitter will operate normally, but the output line will
remain low. Thus, software can transmit dummy characters
to time the break. This bit is cleared on power-up and the
negation of DCOK when the processor is halted.

72 Architecture

3.5.1.4 Console Transmitter Data Buffer

The console transmitter data buffer (TXDB), internal processor register 35,
is used to buffer outgoing data on the serial line (Figure 3-20).

3N 876543210

| MBZ | J

TRANSMITTED DATA BITS I

MA-1123-87

Figure 3-20 Console Transmitter Data Buffer

Data Bit Definition

TXDB<31:8> Unused. Writes have no effect.

TXDB<7:0> Transmitted data bits. Write only. These bits are used to load
the character to be transmitted on the console serial line.

3.5.2 Break Response

The console serial line unit recognizes a break condition which consists of
20 consecutively received space bits. If the console detects a valid break
condition, the RCV BRK bit is set in the RXDB register. If the break was the
result of 20 consecutively received space bits, the FRM ERR bit is also set. If
halts are enabled (ENBHALT asserted on the 40-pin connector), the KA640
will halt and transfer program control to ROM location 2004 0000 when the
RCV BRK bit is set. RCV BRK is cleared by reading RXDB. Another mark
followed by 20 consecutive space bits must be received to set RCV BRK
again.

3.5.3 Baud Rate

The receive and transmit baud rates are always identical and are controlled
by the SSC configuration register bits <14:12>.

The user selects the desired baud rate through pins <30:28> on the
the 40-pin system support connector (CONBITRATE <02:00>), which are
configured using the select switch on the inside of the H3602-SA. The KA640
firmware reads this code from boot and diagnostic register bits <6:4> and
loads it into SSC configuration register bits <14:12>. Operating systems
will not cause the baud rate to be transferred. The baud rate is only set on
power up.

Architecture 73

Table 3-15 shows the baud rate select signal voltage levels (H or L), the
corresponding INVERTED code as read in the boot and diagnostic register
bits <6:4>, and the code that should be loaded into SSC configuration
register bits <14:12>.

Table 3-15 Baud Rate Select

CONBITRATE
Baud Rate <2:0> BDR <6:4> SSC <14:12>
300 HHH 000 000
600 HHL 001 001
1200 HLH 010 010
2400 HLL 011 011
4800 LHH 100 100
9600 LHL 101 101
19200 LLH 110 110
38400 LLL 111 111

3.5.4 Console Interrupt Specifications

The console serial line receiver and transmitter both generate interrupts at
IPL 14. The receiver interrupts with a vector of F8 16, while the transmitter
interrupts with a vector of FC 4.

3.6 Time of Year Clock and Timers

The KA640 clocks include time of year clock (TODR) as defined in the
VAX Architecture Reference Manual, a subset interval clock (subset ICCS),
as defined in the VAX Architecture Reference Manual, and two additional
programmable timers modeied after the VAX standard interval clock.

74 Architecture

3.6.1 Time of Year Clock

The KA640 time of year clock (TODR), internal processor register 27, forms
an unsigned 32-bit binary counter that is driven from a 100Hz oscillator,
so that the least significant bit of the clock represents a resolution of 10
milliseconds, with less than .0025% error. The register counts only when
it contains a non-zero value. This register is implemented in the SSC
(Figure 3-21). :

3 0

I TIME OF YEAR SINCE SETTING J

MA-1124.87

Figure 3-21 Time of Year Clock

The time of year clock is maintained during power failure by battery backup
circuitry which interfaces, via the external connector, to a set of batteries
which are mounted on the H3602-SA. The (TODR) will remain valid for
greater than 162 hours when using the NiCad battery pack (three batteries
in series).

The SSC configuration register contains a battery low (BLO) bit which, if
set after initialization, the TODR is cleared, and will remain at zero until
software writes a non-zero value into it.

NOTE

After writing a non-zero value into the TODR, software should clear the
BLO bit by writing a 1 to it.

3.6.2 Interval Timer

The KA640 interval timer (ICCS), internal processor register 24, is
implemented according to the VAX Architecture Reference Manual for subset
processors. The interval clock control/status register (ICCS) is implemented
as the standard subset of the standard VAX ICCS in the CVAX CPU chip,
while NICR and ICR are not implemented (Figure 3-22).

3 765 o]
r MBZ |RE[MBZ J
MA=X) 644—87

Figure 3-22 Interval Timer

Architecture 75

Data Bit Definition
ICCS<31:7> Unused. Read as zeros, must be written as zeros.
ICCS<6> (IE) Interrupt enable. Read/Write. This bit enables and

disables the interval timer interrupts. When the bit is set,

an interval timer interrupt is requested every 10 msec with an
error of less than .01%. When the bit is clear, interval timer
interrupts are disabled. This bit is cleared on power-up and
the negation of DCOK when the processor is halted.

ICCS<5:0> Unused. Read as zeros, must be written as zeros.

Interval timer requests are posted at IPL 16 with a vector of C0: the interval
timer is the highest priority device at this IPL.

3.6.3 Programmable Timers

The KA640 features two programmable timers. Although they are modeled
after the VAX standard interval clock, they are accessed as 1/O space
registers (rather than as internal processor registers) and a control bit has
been added which stops the timer upon overflow. If so enabled, the -
timers will interrupt at IPL 14 upon overflow. The interrupt vectors are
programmable and are set to 78 and 7C by the firmware.

Each timer is composed of four registers: a timer n control register, a timer
n interval register, a timer n next interval register, and a timer n interrupt
vector register, where n represents the timer number (0 or 1).

3.6.3.1 Timer Control Registers
The KA640 has two timer control registers, one for controlling timer 0
(TCRO0), and one for controlling timer 1 (TCR1). TCRO is accessible at

address 2014 0100 46, and TCR1 is accessible at 2014 0110 14. These registers
are implemented in the SSC (Figure 3-23).

76 Architecture

876654 0

I

MBZ

MA-1125-87

Figure 3-23 Timer Control Registers

Data Bit

Definition

TCRn<31>

TCRn<30:8>
TCRn<7>

TCRn< 6>

TCRn<5>

TCRn<4>

(ERR) Error. Read/Write to clear. This bit is set whenever
the timer interval register overflows and INT is already set.
Thus, the ERR indicates a missed overflow. Writing a 1 to this
bit clears it. Cleared on power-up and the negation of DCOK
when the processor is halted.

Unused. Read as zeros, must be written as zeros.

(INT) Read/Write to clear. This bit is set whenever the timer
interval register overflows. If IE is set when INT is set, an
interrupt is posted at IPL 14. Writing a 1 to this bit clears it.
Cleared on power-up and the negation of DCOK when the
processor is halted.

(IE) Read/Write. When this bit is set, the timer will interrupt
at IPL 14 when the INT bit is set. Cleared on power-up and
the negation of DCOK when the processor is halted.

(SGL) Read/Write. Setting this bit causes the timer interval
register to be incremented by 1 if the RUN bit is cleared. If the
RUN bit is set, then writes to the SGL bit are ignored. This bit
always reads as 0. Cleared on power-up and the negation of
DCOK when the processor is halted.

(XFR) Read/Write. Setting this bit causes the timer next
interval register to be copied into the timer interval register.
This bit is always read as 0. Cleared on power-up and the
negation of DCOK when the processor is halted.

Architecture 77

Data Bit Definition
TCRn<3> Unused. Read as zeros, must be written as zeros.
TCRn<2> (STP) Read/Write. This bit determines whether the timer stops

after an overflow when the RUN bit is set. If the STP bit is
set at overflow, the RUN bit is cleared by the hardware at
overflow and counting stops. Cleared on power-up and the
negation of DCOK when the processor is halted.

TCRn<1> Unused. Read as zeros, must be written as zeros.

TCRn<0> (RUN) Read/Write. When set, the timer interval register is
incremented once every microsecond. The INT bit is set when
the timer overflows. If the STP bit is set at overflow, the
RUN bit is cleared by the hardware at overflow and counting
stops. When the RUN bit is clear, the timer interval register is
not incremented automatically. Cleared on power-up and the
negation of DCOK when the processor is halted.

3.6.3.2 Timer Interval Registers

The KA640 has two timer interval registers, one for timer 0 (TIR0), and one
for timer 1 (TIR1). TIRO is accessible at address 2014 0104 14, and TIR1 is
accessible at 2014 0114 ¢.

The timer interval register is a read only register containing the interval
count. When the run bit is 0, writing a 1 increments the register. When
the RUN bit is 1, the register is incremented once every microsecond.
When the counter overflows, the INT bit is set, and an interrupt is posted
at IPL 14 if the IE bit is set. Then, if the RUN and STP bits are both
set, the RUN bit is cleared and counting stops. Otherwise, the counter is
reloaded. The maximum delay that can be specified is approximately 1.2
hours. This register is cleared on power-up and the negatlon of DCOK when
the processor is halted (Figure 3-24).

3N 0

I TIMER INTERVAL REGISTER J

MA-X1445-87

Figure 3-24 Timer Interval Register

78 Architecture

3.6.3.3 Timer Next Interval Registers

The KA640 has two timer next interval registers, one for timer 0 (TNIRO),
and one for timer 1 (TNIR1). TNIRO is accessible at address 2014 0108 ¢,
and TNIR1 is accessible at 2014 0118 1¢. These registers are implemented
in the SSC.

This read/write register contains the value which is written into the timer
interval register after overflow, or in response to a 1 written to the XFR bit.
This register is cleared on power-up and the negation of DCOK when the
processor is halted (Figure 3-25).

3 0

| TIMER NEXT INTERVAL REGISTER J

MA-X1446~87

Figure 3-25 Timer Next Interval Register

3.6.3.4 Timer Interrupt Vector Registers

The KA640 has two timer interrupt vector registers, one for timer 0 (TIVRO),
and one for timer 1 (TIVR1). TIVRO is accessible at address 2014 010C 46,
and TIVR1 is accessible at 2014 011C 4. These registers are implemented
in the SSC and are set to 78 and 7C respectively by the resident firmware.

This read/write register contains the timer’s interrupt vector. Bits <31:10>
and <1:0> are read as 0 and must be written as 0. When TCRn<6>
(IE) and TCRn<7> (INT) transition to 1, an interrupt is posted at IPL 14.
When a timer’s interrupt is acknowledged, the content of the interrupt vector
register is passed to the CPU, and the INT bit is cleared. Interrupt requests
can also be cleared by clearing either the IE or the INT bit. This register
is cleared on power-up and the negation of DCOK when the processor is
halted (Figure 3-26).

31 109 210

I MBZ IINTERHUPT VECTORJMEI

MA-1128-87

Figure 3-26 Timer Interrupt Vector Register

NOTE

Note that both timers interrupt at the same IPL (IPL 14) as the console serial
line unit. When multiple interrupts are pending, the console serial line has
priority over the timers, and timer 0 has priority over timer 1.

Architecture 79

3.7 Boot and Diagnostic Facility

The KA640 boot and diagnostic facility features two registers, two 28-pin
ROM sockets containing 128K bytes of EPROM, and 1KB of battery backed
up RAM. The ROM and battery backed up RAM may be accessed via
longword, word or byte references.

The KA640 CPU module populates the ROM sockets with 64K bytes of 16-
bit ROM (or EPROM). This ROM contains the KA640 resident firmware. If
this ROM is replaced for special applications, the new ROM must initialize
and configure the board, provide halt and console emulation, as well as
provide boot diagnostic functionality.

3.7.1 Boot and Diagnostic Register

The boot and diagnostic register (BDR) is a byte-wide register located in the
VAX 1/O page at physical address 2008 4004 1¢. It is implemented uniquely
on the KA640. It can be accessed by KA640 software, but not by external
Q22-bus devices. The BDR allows the boot and diagnostic ROM programs
to read various KA640 configuration bits. Only the low byte of the BDR
should be accessed, bits <31:8> are undefined (Figure 3-27).

3

87 6 43210

| 1]

[UNDEFINED

HLT ENB
BRS CD
CcPU CD
BD0G CD

MA=X1441-87

Figure 3-27 Boot and Diagnostic Register

80 Architecture

Data Bit

Definition

BDR<31:8>
BDR<7>

BDR<6:4>

BDR<3:2>

Undefined. Should not be read or written.

(ENBHALT) Halt enable. Read only. Writes have no effect.
This bit reflects the state of pin 35 (ENBHALT L) of the 40-pin
connector. The assertion of this signal enables the halting of
the CPU upon detection of a console break condition. On a
power-up, the KA640 resident firmware reads the ENBHALT
bit to decide whether to enter the console emulation program
(ENBHALT set) or to boot the operating system (ENBHALT clear).
On the execution of a HALT instruction while in kernel mode,
the KA640 resident firmware reads the ENBHALT bit to decide
whether to enter the console emulation program (ENBHALT set)
or to restart the operating system (ENBHALT clear).

(CONBITRATE) Console bit rate <02:00>. Read only. Writes
have no effect. These three bits originate from pins <30:28> of
the 40-pin connector. They reflect the setting of the baud rate
select switch on the H3602-SA. These bits are read only on power

up.

BDR<6:4> Baud Rate

000 300
001 600
010 1200
011 2400
100 4800
101 9600
110 19200
111 38400

(CPUCODE) CPU code <01:00>. Read only. Writes have no
effect. These two bits originate from pins <40:39> of the 40-pin
connector.

Architecture 81

Data Bit Definition
CPUCODE
<01:00> Configuration
00 Normal operation
01 Reserved
10 Reserved
11 Reserved

BDR<1:0> (BDCODE) Boot and diagnostic code <01:00>. Read only. Writes
have no effect. This 2-bit code reflects the status of system
support connector (J1) pins <37:36>. The KA640 ROM programs
use BDCODE <01:00> to determine the power up mode as
defined in the following:

BDCODE <01:00> Power Up Mode

00 Run

01 Language inquiry
10 Test

11 Manufacturing

3.7.2 Diagnostic LED Register

The diagnostic LED register (DLEDR), address 2014 0030 4, is implemented
in the SSC and contains four read/write bits that control the external LED
display. A 0 in a bit lights the corresponding LED; all four bits are cleared
on power-up and the negation of DCOK when the processor is halted to
provide a power-up lamp test (Figure 3-28).

3N 43210
I MBZ DSPLJ

MA-X1447-87

Figure 3-28 Diagnostic LED Register

82 Architecture

Data Bit Definition

DLEDR<31:4> Unused. Read as zeros, must be written as zeros.

DLEDR<3:0> (DSPL) Display <3:0>. Read/Write. These four bits update
an external LED display. Writing a 0 to a bit lights the
corresponding LED. Writing a 1 to a bit turns its LED off.
The display bits are cleared (all LEDs are lit) on power-up and
the negation of DCOK when the processor is halted.

3.7.3 ROM Memory

The KA640 supports up to 128KB of ROM memory for storing code for
board initialization, VAX standard console emulation, board self-tests, and
boot code. ROM memory may be accessed via byte, word and longword
references. ROM accesses take 1300 ns. ROM is organized as a 64K x 8-bit
array for one 64KB ROM, as a 32K by 16-bit array for two 32KB ROMs, and
as a 64K by 16-bit array for two 64KB ROMs (ship configuration). CDAL
bus parity is neither checked nor generated on ROM references.

3.7.3.1 ROM Socket
The KA640 provides two ROM sockets which contain two 64K by 8 EPROMs.

3.7.3.2 ROM Address Space

The entire 128KB boot and diagnostic ROM may be read from either the
128KB halt mode ROM space (hex addresses: 2004 0000 - 2005 FFFF), or
the 128KB run mode ROM space (hex addresses: 2006 0000 - 2007 FFFF).
Note that the run mode ROM space reads exactly the same ROM code as
the halt mode ROM space.

Writes to either of these address spaces will result in a machine check.

Any I-stream read from the halt mode ROM space places the KA640 in halt
mode. The Q22-bus SRUN signal is deasserted causing the front panel RUN
light to extinguish and the CPU is protected from further halts.

Any I-stream read which does not access the halt mode ROM space,
including reads from the run mode ROM space, places the KA640 in run
mode. The Q22-bus SRUN signal is toggled causing the front panel RUN
light to be lit and the CPU can be halted by asserting the Q22-bus BHALT
line or by generating a break condition on the console serial line if BDR<7 >
(halt enable) is set.

Writes and D-stream reads to any address space have no effect on run
mode/halt mode status.

Architecture 83

3.7.3.3 KA640 Resident Firmware Operation

The KA640 CPU module populates the ROM socket with 128K bytes of
16-bit ROM (or EPROM). This ROM contains the KA640 resident firmware
which can be entered by transferring program control to location 2004 0000

16-
Section 3.1.5 lists the various halt conditions which cause the CVAX CPU
to transfer program control to location 2004 0000 1¢.

When running, the KA640 resident firmware provides the services expected
of a VAX-11 console system. In particular, the following services are
available:

* Automatic restart or bootstrap following processor halts or initial power
up

* Aninteractive command language allowing the user to examine and alter
the state of the processor

¢ Diagnostic tests executed on power up that check out the CPU, the
memory system and the Q22-bus map

* Support of video or hardcopy terminals as the console terminal

Power Up Modes

The boot and diagnostic ROM programs use bits <1:0> of the BDR
(Section 3.7.1) to determine the power up modes as follows:

Code Mode

00 Run (factory setting). If the console terminal supports the multi-national
character set (MCS), the user will be prompted for language only if the
time-of-year clock battery backup has failed. Full startup diagnostics are
run.

01 Language inquiry. If the console terminal supports MCS, the user will
be prompted for language on every power up and restart. Full startup
diagnostics are run.

10 Test. ROM programs run wrap-around serial line unit (SLU) tests.

11 Manufacturing. To provide for rapid startup during certain
manufacturing test procedures, the ROM programs omit the power up
memory diagnostics and set up the memory bit map on the assumption
that all available memory is functional.

84 Architecture

3.7.4 Battery Backed-Up RAM

The KA640 contains 1KB of battery backed-up static RAM, for use as a
console scratchpad. The +12 Vdc power (fused) for the RAM is provided via
pin 17 on the 40-pin system support connector (J1).

This RAM supports byte, word and longword references. Read operations
take 700 ns to complete while write operations require 600 ns.

The RAM is organized as a 256 X 32-bit (one longword) array. The array
appears in a 1KB block of the VAX I/O page at addresses 2014 0400 - 2014
07FF.

This array is not protected by parity, and CDAL bus parity is neither checked
nor generated on reads or writes to this RAM.

3.7.5 KA640 Initialization

The VAX Architecture defines three kinds of hardware initialization:
1. Power-up initialization

2. Processor initialization

3. I/O bus initialization

3.7.5.1 Power-Up Initialization

Power-up initialization is the result of the restoration of power and includes a
hardware reset, a processor initialization, an I/O bus initialization, as well as
the initialization of several registers defined in the VAX Architecture Reference
Manual.

3.7.5.2 Hardware Reset

A KA640 hardware reset occurs on power-up and the negation of DCOK
when the processor is halted. A hardware reset causes the hardware halt
procedure (Section 3.1.5.6) to be initiated with a halt code of 03. It also
initializes some IPRs and most I/O page registers to a known state. Those
IPRs that are affected by a module reset are noted in Section 3.1.1.3. The
effect a hardware reset has on I/O space registers is documented in the
description of the register.

Architecture 85

3.7.5.3 1/0 Bus Initialization

An I/O bus initialization occurs on power-up, the negation of DCOK when
the processor is halted, or as the result of a MTPR to IPR 55 (IORESET) or
console UNJAM command.

I/0 Bus Reset Register

The 1/O bus reset register (IORESET), internal processor register 55, is
implemented in the SSC. A MTPR of any value to IORESET causes an I/O
bus initialization.

3.7.5.4 Processor Initialization

A processor initialization occurs on power-up, the negation of DCOK when
the processor is halted, as the result of a console INITIALIZE command,
and after a halt caused by an error condition.

In addition to initializing those registers defined in the VAX Architecture
Reference Manual, the KA640 firmware also configures main memory, the
local I/O page, and the Q22-bus map during a processor initialization.

3.8 Q22-bus Interface

The KA640 includes a Q22-bus interface implemented via a single VLSI
chip called the CQBIC. It contains a CDAL bus to Q22-bus interface that
supports the following functions:

* A programmable mapping function (scatter-gather map) for translating
22-bit, Q22-bus addresses into 29-bit CDAL bus addresses that allows
any page in the Q22-bus memory space to be mapped to any page in
main memory.

* A direct mapping function for translating 29-bit CDAL addresses in the
local Q22-bus address space and local Q22-bus I/O page into 22-bit,
Q22-bus addresses.

* Masked and unmasked longword reads and writes from the CPU to the
Q22-bus memory and I/O space and the Q22-bus interface registers.
Longword reads and writes of the local Q22-bus memory space are
buffered and translated into two-word, block mode, transfers on the
Q22-bus. Longword reads and writes of the local Q22-bus /O space are
buffered and translated into two, single-word transfers on the Q22-bus.

¢ Up to sixteen-word, block mode, writes from the Q22-bus to main
memory. These words are buffered then transferred to main memory
using two asynchronous DMA octaword transfers. For block mode
writes of less than sixteen words, the words are buffered and transferred
to main memory using the most efficient combination of octaword,

86 Architecture

quadword, and longword asynchronous DMA transfers. The maximum
write bandwidth for block mode references is 3.3 MB per second. Block
mode reads of main memory from the Q22-bus cause the Q22-bus
interface to perform an asynchronous DMA quadword read of main
memory and buffer all four words, so that on block mode reads, the
next three words of the block mode read can be delivered without any
additional CDAL bus cycles. The maximum read bandwidth for Q22-
bus block mode references is 2.4 MB per second. Q22-bus burst mode
DMA transfers result in single-word reads and writes of main memory.

e Transfers from the CPU to the local Q22-bus memory space, that result
in the Q22-bus map translating the address back into main memory
(local-miss, global-hit transactions).

The Q22-bus interface contains several registers for Q22-bus control and
configuration, and error reporting.

The interface also contains Q22-bus interrupt arbitration logic that
recognizes Q22-bus interrupt requests BR7-BR4 and translates them into
CPU interrupts at levels 17-14.

The Q22-bus interface detects Q22-bus no sack timeouts, Q22-bus interrupt
acknowledge timeouts, Q22-bus non-existent memory timeouts, main
memory errors on DMA accesses from the Q22-bus and Q22-bus parity
errors.

3.8.1 Q22-bus to Main Memory Address Translation

On DMA references to main memory, the 22-bit, Q22-bus address must be
translated into a 29-bit main memory address. This translation process is
performed by the Q22-bus interface by using the Q22-bus map. This map
contains 8192 mapping registers, (one for each page in the Q22-bus memory
space), each of which can map a page (512 bytes) of the Q22-bus memory
address space into any of the 128K pages in main memory. Since local I/O
space addresses cannot be mapped to Q22-bus pages, the local I/O page is
inaccessible to devices on the Q22-bus.

Q22-bus addresses are translated to main memory addresses as shown in
Figure 3-29.

Architecture 87

3 9 8 0
[Q22-bus ADDRESS
|
EXTRACT TO SELECT | i |
MAP REGISTER
=== —=—= === - | |
| . | |
| |
| | |
[31 0
|
L——sly] MAPPING REGISTER |
119 ¢} |
|
| | |
| | |
| |
| ! |
28 98 0

PHYSICAL ADDRESS OF MAIN MEMORY

MA-1145-87

Figure 3-29 Q22-bus to Main Memory Address Translation

At power up time, the Q22-bus map registers, including the valid bits, are
undefined. External access to main memory is disabled as long as the
interprocessor communication register LM EAE bit is cleared. The Q22-
bus interface monitors each Q22-bus cycle and responds if the following
three conditions are met:

1. The interprocessor communication register LM EAE bit is set.
2. The valid bit of the selected mapping register is set.

3. During read operations, the mapping register must map into existent
main memory, or a Q22-bus timeout occurs. (During write operations,
the Q22-bus interface returns Q22-bus BRPLY before checking for
existent local memory; the response depends only on conditions 1 and
2 above.)

NOTE
In the case of local-miss, global-hit, the state of the LM EAE bit is ignored.
If the map cache does not contain the needed Q22-bus map register, then

the Q22-bus interface will perform an asychronous DMA read of the Q22-
bus map register before proceeding with the Q22-bus DMA transfer.

88 Architecture

3.8.1.1 Q22-bus Map Registers

The Q22-bus map contains 8192 registers (QMRs) that control the mapping
of Q22-bus addresses into main memory. Each register maps a page of
the Q22-bus memory space into a page of main memory (Table 3-16).
These registers are implemented in a 32KB block of main memory, but
are accessed through the CQBIC chip via a block of addresses in the 1/O
page. :

The local 1/O space address of each register was chosen so that register

address bits <14:2> are identical to Q22-bus address bits <21:9> of the
Q22-bus page which the register maps.

The Q22-bus map registers (QMRs) have the format shown in Figure 3-30.

31 30 20 19 0

M MBZ | A28 — A9 J

MA=X1450—-87

Figure 3-30 Q22-bus Map Registers

Table 3-16 Q22-bus Map

Register Q22-bus Addresses Mapped Q22-bus Addresses Mapped
Address (Hex) (Octal)

2008 8000 00 0000 - 00 01FF 00 000 000 - 00 000 777
2008 8004 00 0200 - 00 03FF 00 001 000 - 00 001 777
2008 8008 00 0400 - 00 OSFF 00 002 000 - 00 002 777
2008 800C 00 0600 - 00 O7FF 00 003 000 - 00 003 777
2008 8010 00 0800 - 00 09FF 00 004 000 - 00 004 777
2008 8014 00 0A00 - 00 OBFF 00 005 000 - 00 005 777
2008 8018 00 0C00 - 00 ODFF 00 006 000 - 00 006 777
2008 801C 00 OEOO - 00 OFFF 00 007 000 - 00 007 777
2008 FFFO 3F F800 - 3F FIFF 17 774 000 - 17 774 777
2008 FFF4 3F FAQO - 3F FBFF 17 775 000 - 17 775 777
2008 FFF8 3F FCO00 - 3F FDFF 17 776 000 - 17 776 777
2008 FFFC 3F FEQO - 3F FFFF 17 776 000 - 17 777 777

Architecture 89

Data Bit Definition

OMR< 31> (V) Valid. Read/Write. When a Q22-bus map register is
selected by bits <21:9> of the Q22-bus address, the valid
bit determines whether mapping is enabled for that Q22-
bus page. If the valid bit is set, the mapping is enabled,
and Q22-bus addresses within the page controlled by the
register are mapped into the main memory page determined
by bits <28:9>. If the valid bit is clear, the mapping register
is disabled, and the Q22-bus interface does not respond to
addresses within that page. This bit is undefined on power-up
and the negation of DCOK when the processor is halted.

OMR<30:20> Unused. These bits always read as zero and must be written
as zero.
OMR<19:0> (A28-A9) Address bits <28:9>. Read/Write. When a Q22-bus

map register is selected by a Q22-bus address, and if that
register’s valid bit is set, then these 20 bits are used as main
memory address bits <28:9>. Q22-bus address bits <8:0>
are used as main memory address bits <8:0>. These bits are
undefined on power-up and the negation of DCOK when the
processor is halted.

3.8.1.2 Accessing the Q22-bus Map Registers

Although the CPU accesses the Q22-bus map registers via aligned, masked
longword references to the local I/O page (addresses 2008 8000 15 through
2008 FFFC 4¢), the map actually resides in a 32KB block of main memory.
The starting address of this block is controlled by the contents of the Q22-
bus map base register. The Q22-bus interface also contains a 16-entry, fully
associative, Q22-bus map cache to reduce the number of main memory
accesses required for address translation.

NOTE

The system software must protect the pages of memory that contain the Q22-
bus map from direct accesses that will corrupt the map or cause the entries
in the Q22-bus map cache to become stale. Either of these conditions will
result in the incorrect operation of the mapping function.

When the CPU accesses the Q22-bus map through the local I/O page
addresses, the Q22-bus interface reads or writes the map in main memory.
The Q22-bus interface does not have to gain Q22-bus mastership when
accessing the Q22-bus map. Since these addresses are in the local 1/0
space, they are not accessible from the Q22-bus.

90 Architecture

On a Q22-bus map read by the CPU, the Q22-bus interface decodes the
local 1/O space address (2008 8000 - 2008 FFFC). If the register is in the Q22-
bus map cache, the Q22-bus interface will internally resolve any conflicts
between CPU and Q22-bus transactions (if both are attempting to access the
Q22-bus map cache entries at the same time), then return the data. If the
map register is not in the map cache, the Q22-bus interface will force the
CPU to retry, acquire the CDAL bus, perform an asynchronous DMA read
of the map register. On completion of the read, the CPU is provided with
the data when its read operation is retried. A map read by the CPU does
not cause the register that was read to be stored in the map cache.

On a Q22-bus map write by the CPU, the Q22-bus interface latches the
data, then on the completion of the CPU write, acquires the CDAL bus
and performs an asynchronous DMA write to the map register. If the map
register is in the Q22-bus map cache, then the Cam Valid bit for that entry
will be cleared to prevent the entry from becoming stale. A Q22-bus map
write by the CPU does not update any cached copies of the Q22-bus map
register.

3.8.1.3 Q22-bus Map Cache

To speed up the process of translating Q22-bus address to main memory
addresses, the Q22-bus interface utilizes a fully associative, sixteen entry,
Q22-bus map cache, which is implemented in the CQBIC chip.

If a DMA transfer ends on a page boundary, the Q22-bus interface will
prefetch the mapping register required to translate the next page and load
it into the cache, before starting a new DMA transfer. This allows Q22-bus
block mode DMA transfers that cross page boundaries to proceed without
delay. The replacement algorithm for updating the Q22-bus map cache is
FIFO.

The cached copy of the Q22-bus map register is used for the address
translation process. If the required map entry for a Q22-bus address (as
determined by bits <21:9> of the Q22-bus address) is not in the map cache,
then the Q22-bus interface uses the contents of the map base register to
access main memory and retrieve the required entry. After obtaining the
entry from main memory, the valid bit is checked. If it is set, the entry is
. stored in the cache and the Q22-bus cycle continues.

The format of a Q22-bus map cache entry is as shown in Figure 3-31.

33 32

Architecture 91

20 19 0

g

Q22-bus ADR<21:9> A28 - AS J

MA-X1481-87

Figure 3-31 Q22-bus Map Cache Entry

Data Bit

Definition

COMR<33>

CQOMR<32:20>

CQOMR<19:0>

(Cam Valid). When a mapping register is selected by a Q22-bus
address, the Cam Valid bit determines whether the cached
copy of the mapping register for that address is valid. If the
Cam Valid bit is set, the mapping register is enabled, and
addresses within that page can be mapped. If the Cam Valid
bit is clear, the Q22-bus interface must read the map in local
memory to determine if the mapping register is enabled. This
bit is cleared on power-up, the negation of DCOK when the
processor is halted, by setting the QMCIA (Q22-bus map cache
invalidate all) bit in the interprocessor communication register,
on writes to IPR 55 (IORESET), by a write to the Q22-bus map
base register, or by writing to the QMR that is being cached.

(QBUS ADR). These bits contain the Q22-bus address bits
<21:9> of the page that this entry maps. This is the content
addressable field of the 16 entry cache for determining if the
map register for a particular Q22-bus address is in the map
cache. These bits are undefined on power-up.

(Address bits A28-A9). When a mapping register is selected by
a Q22-bus address, and if that register’'s Cam Valid bit is set,
then these 20 bits are used as main memory address bits 28
through 9. Q22-bus address bits 8 through 0 are used as local
memory address bits 8 through 0. These bits are undefined on
power-up.

3.8.2 CDAL Bus to Q22-bus Address Translation

CDAL bus addresses within the local Q22-bus I/O space, addresses 2000
0000 - 2000 1FFF 44, are translated into Q22-bus I/O space addresses by
using bits <12:0> of the CDAL address as bits <12:0> of the Q22-bus
address and asserting BBS7. Q22-bus address bits <21:13> are driven as

Zeros.

92 Architecture

CDAL bus addresses within the local Q22-bus memory space, addresses
3000 0000 - 303F FFFF 14, are translated into Q22-bus memory space
addresses by using bits <21:0> of the CDAL address as bits <21:0> of
the Q22-bus address.

3.8.3 Interprocessor Communication Register

The interprocessor communication register (IPCR), address 2000 1F40 .4,
is a 16-bit register which resides in the Q22-bus 1/0 page address space
and can be accessed by any device which can become Q22-bus master
(including the KA640 itself). The IPCR, implemented in the CQBIC chip, is
byte accessible, meaning that a write byte instruction can write to either the
low or high byte without affecting the other byte.

The IPCR also appears at Q22-bus address 17 777 500 (Figure 3-32).

151413 9876654 10

[[] e LI]1] wr]

DMA QME I
QMCIA
RESERVED i
MBZ
RESERVED
LM EAE
RESERVED

MA-X1452-87

Figure 3-32 The Interprocessor Communication Register

Architecture 93

Data Bit

Definition

IPCR<15>

IPCR<14>

IPCR<13:9>
IPCR<8>
IPCR<7>
IPCR<6>
IPCR<5>

IPCR<4:1>
IPCR<0>

(DMA QME) DMA Q22-bus address space memory error.
Read/Write to clear. This bit indicates that an error occurred
when a Q22-bus device was attempting to read main memory.
It is set if DMA system error register bit DSER<4> (main
memory error) is set, or the CDAL bus timer expires. The main
memory error bit indicates that an uncorrectable error occurred
when an external device (or CPU) was accessing the KA640
local memory. The CDAL bus timer expiring indicates that the
memory controller did not respond when the Q22-bus interface
initiated a DMA transfer. This bit is cleared by writing a 1 to it,
on power-up, by the negation of DCOK when the processor is
halted, by writes to IPR 55 (IORESET), and whenever DSER<4>
is cleared.

(QMCIA) Q22-bus invalidate all. Write only. Writing a 1 to this
bit clears the Cam Valid bits in the cached copy of the map. This
bit always reads as zero. Writing a 0 has no effect.

(Unused) Read as zeros. Must be written as zeros.
Reserved for Digital use.

Unused. Read as zero. Must be written as zero.
Reserved for Digital use.

(LM EAE) Local memory external access enable. Read/Write when
the KA640 is Q22-bus master. Read only when another device

is Q22-bus master. When set, this bit enables external access to
local memory (via the Q22-bus map). Cleared on power-up and
by the negation of DCOK when the processor is halted.

Unused. Read as zeros. Must be written as zeros.

Reserved for Digital use.

3.8.4 Q22-bus Interrupt Handling

The KA640 responds to interrupt requests BR7-4 with the standard Q22-
bus interrupt acknowledge protocol (DIN followed by IAK). The console
serial line unit, the programmable timers, and the interprocessor doorbell
request interrupts at IPL 14 and have priority over all Q22-bus BR4 interrupt
requests. After responding to any interrupt request BR7-4, the CPU sets
the processor priority to IPL 17. All BR7-4 interrupt requests are disabled
unless software lowers the interrupt priority level.

94 Architecture

Interrupt requests from the KA640 interval timer are handled directly by
the CPU. Interval timer interrupt requests have a higher priority than BR6
interrupt requests. After responding to an interval timer interrupt request,
the CPU sets the processor priority to IPL 16. Thus, BR7 interrupt requests
remain enabled.

3.8.5 Configuring the Q22-bus Map

The KA640 implements the Q22-bus map in an 8K longword (32KB) block of
main memory. This map must be configured by the KA640 firmware during
a processor initialization by writing the base address of the uppermost 32KB
block of good main memory into the Q22-bus map base register. The base
of this map must be located on a 32KB boundary.

NOTE
This 32KB block of main memory must be protected by the system software.

The only access to the map should be through local 1/0 page addresses 2008
8000 - 2008 FFFC ¢.

3.8.5.1 Q22-bus Map Base Address Register

The Q22-bus map base address register (QBMBR), address 2008 0010 1,
controls the main memory location in of the 32KB block of Q22-bus map
registers.

This read/write register is accessible by the CPU on a longword boundary
only. Bits <31:29,14:0> are unused and should be written as zero and will
return zero when read.

A write to the map base register will flush the Q22-bus map cache by clearing
the Cam Valid bits in all the entries.

The contents of this register are undefined on power up and the negation of
DCOK when the processor is halted, and are not affected by BINIT being
asserted on the Q22-bus (Figure 3-33).

31 29 28 15 14 o

[0 | MAP BASE l MBZ I

Figure 3-33 Q22-bus Map Base Address Register

Architecture 95

3.8.6 System Configuration Register

The system configuration register (SCR), address 2008 0000 1, contains a
BHALT enable bit and a power OK flag.

The system configuration register (SCR) is longword, word, and byte
accessible. Programmable option fields are cleared on power-up and by
the negation of DCOK when the processor is halted. The format of the
SCR register is shown in Figure 3-34.

31 1514131211109 8 7 6 5 4 3 2 1 0

= T[l=l=fl=T T

POK

BHALT ENB

RESERVED

ACTION ON DCOK NEGATION
RESERVED

MUST BE ZERO

MA-X1454—87

Figure 3-34 System Configuration Register

Data Bit Definition

SCR<31:16> Unused. Read as zero. Must be written as zero.

SCR<15> (POK) Power OK. Read only. Writes have no effect. This bit
is set if the Q22-bus BPOK signal is asserted and clear if it is
negated. This bit is cleared on power-up and by the negation of
DCOK when the processor is halted.

SCR<14> (BHALT EN) BHALT enable. Read/Write. This bit controls the
effect the Q22-bus BHALT signal has on the CPU. When set,
asserting the Q22-bus BHALT signal will halt the CPU and assert
DSER<15>. When cleared, the Q22-bus BHALT signal will have
no effect. This bit is cleared on power-up and by the negation of
DCOK when the processor is halted.

SCR<13:11> Unused. Read as zero. Must be written as zero.
SCR<10> Reserved for Digital use.

SCR<9:8> Unused. Read as zero. Must be written as zero.

96 Architecture

Data Bit Definition

SCR<7> (ACTION ON DCOK NEGATION) Read/Write. When cleared,
the Q22-bus interface asserts SYSRESET (causing a hardware reset
of the board and control to be passed to the resident firmware via
the hardware halt procedure with a halt code of 3) when DCOK is
negated on the Q22-bus. When set, the Q22-bus interface asserts
HALTIN (causing control to be passed to the resident firmware
via the hardware halt procedure with a halt code of 2) when
DCOK is negated on the Q22-bus. Cleared on power-up and the
negation of DCOK when the processor is halted.

SCR<6:4> Unused. Read as zero. Must be written as zero.
SCR<3:1> Reserved for Digital use.
SCR<0> Unused. Read as 0. Must be written as 0.

3.8.7 DMA System Error Register

The DMA system error register (DSER), address 2008 0004 ¢, is one of three
registers associated with Q22-bus Interface error reporting. These registers
are located in the local VAX I/O address space and can only be accessed by
the local processor.

The DMA system error register is implemented in the CQBIC chip, and logs
main memory errors on DMA transfers, Q22-bus parity errors, Q22-bus non-
existent memory errors, and Q22-bus no-grant errors. The Q22-bus error
address register contains the address of the page in Q22-bus space which
caused a parity error during an access by the local processor. The DMA
error address register contains the address of the page in local memory
which caused a memory error during an access by an external device or the
processor during a local miss global hit transaction. An access by the local
processor which the Q22-bus interface maps into main memory will provide
error status to the processor when the processor does a RETRY for a READ
local miss-global hit, or by an interrupt in the case of a local-miss global-hit
write.

The DSER is a longword, word, or byte accessable read/write register
available to the local processor. The bits in this register are cleared to 0
on power-up, by the negation of DCOK when the processor is halted, and
by writes to IPR 55 (IORESET). All bits are set to 1 to record the occurrence
of an event. They are cleared by writing a 1, writing zeros has no effect

(Figure 3-35).

Architecture 97

1514131211108 8 7 6 5 4 3 2 1 0

-

o 1] = TL[IT1E])

Q22-bus BHALT DETECTED]

Q22-bus DCOK NEGATION DETECTED
Q22—-bus NXM

MUST BE ZERO

Q22-bus PE

MAIN MEMORY ERROR
LOST ERROR BIT

NO GRANT

MUST BE ZERO

DMA NXM

MA-X1455—87

Figure 3-35 DMA System Error Register

Data Bit

Definition

DSER<31:16>
DSER<15>

DSER< 14>

DSER<13:8>
DSER<7>

DSER< 6>

Unused. Read as 0. Must be written as 0.

Q22-bus BHALT detected. Read/Write to clear. Set when the
Q22-bus interface detects that the Q22-bus BHALT line was
asserted and SCR<14> (BHALT ENABLE) is set. Cleared by
writing a 1, writes to IPR 55 (IORESET), on power-up and the
negation of DCOK when the processor is halted.

Q22-bus DCOK negation detected. Read/Write to clear. Set when
the Q22-bus interface detects the negation of DCOK on the Q22-
bus and SCR<7> (action on DCOK negation) is set. Cleared by
writing a 1, writes to IPR 55 (IORESET), on power-up and the
negation of DCOK when the processor is halted.

Unused. Read as zero. Must be written as zero.

Master DMA NXM. Read/Write to clear. This bit is set when the
CPU performs a demand Q22-bus read cycle or write cycle that
does not reply after 10 us. During interrupt acknowledge cycles,
or request read cycles, this bit is not set. It is cleared by writing a
1, on power-up, by the negation of DCOK when the processor is
halted and by writes to IPR 55 (IORESET).

Unused. Read as zero. Must be written as zero.

98 Architecture

Data Bit Definition

DSER<5> Q22-bus parity error. Read/Write to clear. This bit is set when
the CPU performs a Q22-bus demand read cycle which returns
a parity error. During interrupt acknowledge cycles or request
read cycles, this bit is not set. It is cleared by writing a 1, on
power-up, by the negation of DCOK when the processor is halted
and by writes to IPR 55 (IORESET).

DSER<4> Main memory error. Read/Write to clear. This bit is set if an
external Q22-bus device or local miss global hit receives a memory
error while reading local memory. The IPCR<15> reports the
memory error to the external Q22-bus device. It is cleared by
writing a 1, on power-up, by the negation of DCOK when the
processor is halted and by writes to IPR 55 (IORESET).

DSER< 3> Lost error. Read/Write to clear. This bit indicates that an error
address has been lost because of DSER<7,5,4,0> having been
previously set and a subsequent error of either type occurs
which would have normally captured an address and set either
DSER<7,5,4,0> flag. It is cleared by writing a 1, on power-up,
by the negation of DCOK when the processor is halted and by
writes to IPR 55 (IORESET).

DSER<2> No grant timeout. Read/Write to clear. This bit is set if the Q22-
bus does not return a bus grant within 10ms of the bus request
from a CPU demand read cycle, or write cycle. During interrupt
acknowledge or request read cycles this bit is not set. It is cleared
by writing a 1, on power-up, by the negation of DCOK when the
processor is halted and by writes to IPR 55 (IORESET).

DSER<1> Unused. Read as zero. Must be written as zero.

DSER<0> DMA NXM. Read/Write to clear. This bit is set on a DMA
transfer to a non-existent main memory location. This includes
local-miss global-hit cycles and map accesses to non-existent
memory. It is cleared by writing a 1, on power-up, by the
negation of DCOK when the processor is halted and by writes
to IPR 55 (IORESET).

3.8.8 Q22-bus Error Address Register

The Q22-bus error address register (QBEAR), address 2008 0008 1, is a read
only, longword accessible register which is implemented in the CQBIC chip.
Its contents are valid only if DSER <5> (Q22-bus parity error) is set or if
DSER< 7> (Q22-bus timeout) is set.

Architecture 99

Reading this register when DSER<5> and DSER<7> are clear will return
undefined results. Additional Q22-bus parity errors that could have set
DSER<5> or Q22-bus timeout errors that could have caused DSER<7>
to set, will cause DSER<3> to set.

The QBEAR contains the address of the page in Q22-bus space which caused
a parity error during an access by the on-board CPU which set DSER< 5>
or a master timeout which set DSER<7>.

Q22-bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR
bits <31:13> always read as zeros (Figure 3-36).

31 13 12 0

[MBZ ' Q22-bus ADDRESS BITS <21:9> j

MA-X1456-87

Figure 3-36 Q22-bus Error Address Register

NOTE

This is a read only register, if a write is attempted a machine check will be
generated.

3.8.9 DMA Error Address Register

The DMA error address register (DEAR), address 2008 000C 16 1s a read
only, longword accessible register which is implemented in the CQBIC chip.
It contains valid information only when DSER<4> (main memory error) is
set or when DSER<0> (DMA NXM) is set. Reading this register when
DSER<4> and DSER<0> are clear will return undefined data.

The DEAR contains the map translated address of the page in local memory
which caused a memory error or non existent memory error during an access
by an external device or the Q22-bus interface for the CPU during a local-
miss global-hit transaction or Q22-bus map access.

The contents of this register are latched when DSER<4> or DSER<0> is
set. Additional main memory errors or non-existent memory errors have no
effect on the DEAR until software clears DSER<4> and DSER<0>.

Mapped Q22-bus address bits <28:9> are loaded into DEAR bits <19:0>.
DEAR bits <31:20> always read as zeros (Figure 3-37).

100 Architecture

N 2019 (o]

[MB82 IMAPFED Q22-bus ADDRESS BITS <28:9>

MA-X1487-87

Figure 3-37 DMA Error Address Register

NOTE
This is a read only register, if a write is attempted a machine check will be
generated.

3.8.10 Error Handling
The Q22-bus interface does not generate or check CDAL bus parity.

The Q22-bus interface checks all CPU references to Q22-bus memory and
I/O spaces to insure that nothing but masked and unmasked longword
accesses are attempted. Any other type of reference will cause a machine
check abort to be initiated.

The Q22-bus interface maintains several timers to prevent incomplete
accesses from hanging the system indefinitely. These include a 10 zs non-
existent memory timer for accesses to the Q22-bus memory and I/O spaces,
a 10 us no sack timer for acknowledgement of Q22-bus DMA grants, and a
10 ms no grant timer for acquiring the Q22-bus.

If there is a non-existent memory (NXM) error (10 us timeout) while
accessing the Q22-bus on a demand read reference, the associated row in
the cache is invalidated, DSER <7 > is set, the address of the Q22-bus page
being accessed is captured in QBEAR<12:0>, and a machine check abort
is initiated.

If there is a NXM error on a prefetch read, or an interrupt acknowledge
vector read, then the prefetch or interrupt acknowledge reference is aborted
but no information is captured and no machine check occurs.

If there is a NXM error on a masked write reference, then DSER<7>
is set, the address of the Q22-bus page being accessed is captured in
QBEAR<12:0>, and an interrupt is generated at IPL 1D through vector
60 16-)

If the Q22-bus interface does not receive an acknowledgement within 10 us
after it has granted the Q22-bus, then the grant is withdrawn, no errors are
reported, and the Q22-bus interface waits 500 ns to clear the Q22-bus grant
daisy chain before beginning arbitration again.

Architecture 101

If the Q22-bus interface tries to obtain Q22-bus mastership on a CPU
demand read reference and does not obtain it within 10 ms, then the
associated row in the cache is invalidated, DSER <2 > is set, and a machine
check abort is initiated.

The Q22-bus interface also monitors Q22-bus signals BDAL<17:16> while
reading information over the Q22-bus so that parity errors detected by the
device being read from are recognized.

If a parity error is detected by another Q22-bus device on a CPU demand
read reference to Q22-bus memory or I/O space, then the associated row in
the cache is invalidated, DSER <5 > is set, the address of the Q22-bus page
being accessed is captured in QBEAR<12:0>, and a machine check abort
is initiated.

If a parity error is detected by another Q22-bus device on a prefetch request
read by the CPU, the prefetch is aborted, the associated row in the cache
is invalidated, DSER<5> is set, the address of the Q22-bus page being
accessed is captured in QBEAR < 12:0>, but no machine check is generated.

The Q22-bus interface also monitors the backplane BPOK signal to detect
power failures. If BPOK is negated on the Q22-bus, a power fail trap is
generated, and the CPU traps through vector 0C 4. The state of the Q22-bus
BPOK signal can be read from SCR<15>. The Q22-bus interface continues
to operate after generating the powerfail trap, until DCOK is negated.

3.9 Network Interface

The KA640 includes a network interface that is implemented via the LANCE
chip, a 32 by 8 bit ROM and two 32K x 8 static RAMs. When used
in conjunction with the H3602-SA, this interface allows the KA640 to be
connected to either a thinwire or standard Ethernet network. It supports the
Ethernet data link layer.

The network interface includes a word-wide 64KB NI buffer (the two 32 x 8
static RAMs) as well as four registers for control and status reporting, a DMA
controller, a 24 word transmit silo and a 24 word receive silo (all resident
in the LANCE chip). The DMA controller reads control information and
writes status information from/to the 64 KB NI buffer as well as transfers
data between the NI buffer and either the transmit or receive silo. The DMA
controller can perform bursts of up to eight longword references.

Each reference (between the LANCE and the NI buffer) takes 600 ns and
contains either a byte or word of data, resulting in a maximum burst duration
of 4.8 us. The minimum time between bus requests is 8 us.

The CPU moves data between main memory and the NI buffer via
programmed transfers.

102 Architecture

3.9.1 Ethernet Overview

Ethernet is a serial bus that can support up to 1,024 nodes with a maximum
separation of 2.8 kilometers (1.7 miles). Data is passed over the Ethernet
in Manchester encoded format at a rate of 10 million bits per second in
variable-length packets. Each packet has the format shown in Figure 3-38.

6 BYTES DESTINATION ADDRESS
6 BYTES SOURCE ADDRESS
e —_—
TYPE

46 to 1500 BYTES

DATA
s

P) NP
.
N [N
H
4 BYTES CRC CHECK CODE
MA-X0043-88

Figure 3-38 Ethernet Data Packet Format

The minimum size of a packet is 64 bytes, which implies a minimum data
length of 46 bytes. Packets shorter than this are called runt packets and are
treated as erroneous when received by the network controller.

All nodes on the Ethernet have equal priority. The technique used to control
access to the bus is carrier sense, multiple access, with collision detection
(CSMAICD). To access the bus, devices must first wait for the bus to clear
(no carrier sensed). Once the bus is clear, all devices that want to access
the bus have equal priority (multi-access), so they all attempt to transmit.
After starting transmission, devices must monitor the bus for collisions
(collision detection). If no collision is detected, the device may continue
with transmission. If a collision is detected, then the device waits for a
random amount of time and repeats the access sequence.

Architecture 103

Ethernet allows point to point communication between two devices, as well
as simultaneous communication between multiple devices. To support
these two modes of communication, there are two types of network
addresses, physical and multicast. These two types of addresses are both
48 bits (6 bytes) long and are described below.

A Physical address is the unique address associated with a particular station
on the Ethernet, which should be distinct from the physical address of any
other station on any other Ethernet.

A Multicast address is a multi-destination address associated with one or
more stations on a given Ethernet (sometimes called a logical address).

Further, there are two kinds of multicast addresses, the Multicast-group
address and the Broadcast address.

The Multicast-group address is an address associated by higher-level
convention with a group of logically related stations.

The Broadcast address is a predefined multicast address which denotes the
set of all the stations on the Ethernet.

Bit 0 (the least significant bit of the first byte) of an address denotes the
type: it is 0 for physical addresses and 1 for multicast addresses. In either
case the remaining 47 bits form the address value. A value of 48 ones is
always treated as the broadcast address.

The hardware address of the KA640 module is determined at the time of
manufacture and is stored in the network interface station address (NISA)
ROM. Since every device that is intended to connect to an Ethernet network
must have a unique physical address, the bit pattern blasted into the NISA
ROM must be unique for each KA640. The multicast addresses to which
the KA640 will respond are determined by the multicast address filter mask
in the network interface initialization block.

3.9.2 Network Interface Station Address ROM

The network interface includes a byte-wide, 32-byte, socketed ROM called
the network interface station address ROM (NISA ROM). One byte of this
ROM appears in the low-order byte of each of 32 consecutive longwords in
the address range 2008 4200 - 2008 427C 1¢. Bytes two and three of each
longword are undefined. The low-order byte of the first six longwords contain
the 48-bit network physical address (NPA) of the KA640. The low-order byte
in the remaining 26 longwords are unused. This address range is read only.
Writes to this address range will resultin a CDAL bus timeout and a machine
check 83. The format for the NISA ROM is shown in Figure 3-39.

104 Architecture

31302928272625242322212019181716151413121110 98 76 5 4 3 21 0

NIBAER < 7:0 > UNDEFINED NPA < 7:0 >
NIBAER < 7:0 > UNDEFINED NPA < 15:8 >
NIBAER < 7:0 > UNDEFINED NPA < 23:16 >
NIBAER < 7:0 > UNDEFINED NPA < 31:17 >
NIBAER < 7:0 > UNDEFINED NPA < 39:32 >
NIBAER < 7:0 > UNDEFINED NPA < 47:40 >
NIBAER < 7:0 > UNDEFINED UNUSED

~ ~— ~— -

~— ~ ~ N~
NIBAER < 7:0 >| UNDEFINED I UNUSED

MA-X0046-88

Figure 3-39 Network Interface Station Address ROM Format

3.9.3 LANCE Chip Overview

The LANCE chip is a microprogrammed controller which can conduct
extensive operations independently of the central processor. There are
four control and status registers (CSRs) within the LANCE chip which are
programmed by the central processor (i.e. the MicroVAX CPU chip) to
initialize the LANCE chip and start its independent operation. Once started,
the LANCE uses its built-in DMA controller to directly access NI buffer RAM
to get additional operating parameters and to manage the buffers it uses to
transfer packets to and from the Ethernet. The LANCE uses three structures
in the NI buffer:

1.

Network Interface Initialization Block—24 bytes of contiguous memory
starting on a word boundary. The initialization block is set up by the
central processor and is read by the LANCE when the processor starts
the LANCE's initialization process. The initialization block contains
the system’s network address and pointers to the receive and transmit
descriptor rings.

Descriptor Rings—two logically circular rings of buffer descriptors, one
ring used by the chip receiver for incoming data (the network interface
receive descriptor ring) and one ring used by the chip transmitter for
outgoing data (the network interface transmit descriptor ring). Each
buffer descriptor in a ring is 8 bytes long and starts on a quadword
boundary. It points to a data buffer elsewhere in memory, contains

Architecture 105

the size of that buffer, and holds various status information about the
buffer’s contents.

3. Data Buffers—contiguous portions of memory to buffer incoming
packets (Receive Data Buffers) or outgoing packets (transmit data
buffers). Data buffers must be at least 64 bytes long (100 bytes for
the first buffer of a packet to be transmitted) and may begin on any byte
boundary. ’

When the system is ready to begin network operation, the central processor
sets up the network interface initialization block, the network interface
receive descriptor ring, the network interface transmit descriptor ring, and
their data buffers in the NI buffer RAM, and then starts the LANCE by
writing to its CSRs. The LANCE performs its initialization process and then
enters its polling loop. In this loop, it listens to the network for packets
whose destination addresses are of interest and it scans the network interface
‘transmit descriptor ring for descriptors which have been marked by the
central processor to indicate that they contain outgoing data packets.

When the LANCE detects a network packet of interest, it receives and
stores that packet in one or more receive buffers and marks their descriptors
accordingly. When the LANCE finds a packet to be transmitted, it transmits
the packet to the network and marks its descriptor when transmission
is complete. =~ Whenever the LANCE chip completes a reception or
transmission (or encounters an error condition), it sets flags in NICSRO
to signal the central processor (usually by an interrupt) that it has done
something of interest.

3.9.4 Network Interface Register Address Port

The network interface register address port (NIRAP), address 2008 4404
16, is a word-wide register that is implemented on all designs that use the
LANCE chip. It is used to select which of the four CSRs is accessed via the
network interface register data port. The format for the NIRAP is shown in
Figure 3-40.

31302928272625242322212019181716151413121110 98 76 54 3 21 0

I UNDEFINED RESERVED I I J

CSR __l ‘
SEL

NA-X0047-88

Figure 3-40 Network Interface Register Address Port

106 Architecture

Data Bit Definition

NIRAP <31:16> Undefined. Should not be read or written.
NIRAP <15:2> Reserved. Ignored on write; read as zeros.

NIRAP <1:0> (CSRSEL) CSR select <1:0>. Read/Write. These bits select
which of the four control and status registers (NICSRO-
NICSR3) is accessible via the register data port. Cleared on
power-up, by writing NICSR0O <2>, and by the negation of
DCOK when SCR <7> is clear. Values are as follows:

Bits 1:0 Register
00 NICSRO
01 NICSR1
10 NICSR2
11 NICSR3

3.9.5 Network Interface Register Data Port

The network interface register data port (NIRDP), address 2008 4400 44, is a
word-wide register that is implemented on all designs that use the LANCE
chip. It is used as a 16-bit window through which the CPU can read and
write the control and status register (NICSR0-NICSR3) designated by the
NIRAP.

Note that registers NICSR1, NICSR2, and NICSR3 are accessible only while
NICSR0 <2>(STOP) is set. If NICSR0 <2 > is clear (i.e., the LANCE chip
is active), attempts to read from those registers will return undefined data
and attempts to write to them will be ignored. Accesses to a command and
status register via the NIRDP do not alter the contents of the NIRAP. In
normal operation only NICSRO can be accessed, so the NIRAP should be
configured so that NICSRO is accessible through the NIRDP and left that
way.

Architecture 107

3.9.6 Network Interface Control and Status Register 0

The network interface control and status register 0 (NICSRO0), address 2008
4600 ;4 when NIRAP <1:0> are set to 00, is a word-wide register that is
implemented on all designs that use the LANCE chip. This register is used
to start and stop the operation of the LANCE chip and to monitor its status.
All of its bits can be read at any time and none of its bits are affected
by reading the register. The effects of a write operation are described
individually for each bit. When power is applied to the system, all the
bits in this register are cleared except the STOP bit which is set. The format
for NICSRO is shown in Figure 3-41.

31302928272625242322212019181716151413121110 98 76 5§ 4 3 21 0

[EINRRERRNRERENEE

ERR
BABL
CERR
MISS
MERR
RINT
TINT
IDON
INTR
INEA
RXON
TXON
TOMD
STOP
SNRT
INIT

MA-X0048-88

Figure 3-41 Network Interface Control and Status Register

108 Architecture

Data Bit Definition
NICSRO Undefined. Should not be read or written.
<31:16>

NICSRO <15>

NICSRO <14>

NICSRO <13>

NICSR0O <12>

(ERR) Error summary. Read only. Writes have no effect.
This bit is set whenever NICSRO <14> (BABL), NICSR0
<13>(CERR), NICSR0O <12> (MISS), or NICSR0 <11>
(MERR) are set. Cleared by clearing BABL, CERR, MISS
and MERR, by setting NICSR0 <2>, on power-up and the
negation of DCOK when SCR <7> is clear.

(BABL) Transmitter timeout error. Read/Write to clear. This
bit is set when the transmitter has been on the channel longer
than the time required to send the maximum length packet.

It will be set after 1519 data bytes have been transmitted

(the LANCE will continue to transmit until the whole packet
is transmitted or there is a failure). When this bit is set,
NICSR0 <15> (ERR) and NICSRO <7> (INTR) will also be
set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSR0O <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(CERR) Collision error. Read/Write to clear. This bit is set
when the collision input to the LANCE chip failed to activate
within 2 microseconds after a LANCE initiated transmission is
completed. This collision after transmission is a transceiver test
feature. This function is also known as heartbeat or signal
quality error test (SQE). When this bit is set, NICSR0 <15> is
also set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSRO <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(MISS) Missed packet. Read/Write to clear. This bit is set
when the receiver loses a packet because it does not own a
receive buffer. The MISS bit is not valid in internal loopback
mode. When this bit is set, NICSRO <15> and NICSR0 <7>
bits are also set. Writing a 0 has no effect. Cleared by writing
a 1, by setting NICSRO <2>, on power-up and the negation of
DCOK when SCR <7> is clear.

Architecture 109

Data Bit

Definition

NICSR0 <11>

NICSR0O <10>

NICSRO <9>

NICSRO <8>

NICSRO <7>

(MERR) Memory error. Read/Write to clear. This bit is set
when the LANCE chip attempts a DMA transfer and does not
receive a ready response from the network interface buffer
RAM within 25.6 microseconds after beginning the memory
cycle. When MERR is set, the receiver and transmitter are
turned off (NICSRO <5:4> cleared). When this bit is set,
NICSRO <15> and NICSR0 <7> bits are also set. Writinga 0
has no effect. Cleared by writing a 1, by setting NICSR0 <2>,
on power-up and the negation of DCOK when SCR <7> is
clear.

(RINT) Receive interrupt. Read/Write to clear. This bit is

set when the LANCE chip updates an entry in the receive
descriptor ring for the last buffer received or when reception is
stopped due to a failure. When this bit is set, NICSR0 <7> is
also set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSR0O <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(TINT) Transmitter interrupt. Read/Write to clear. This bit is
set when the LANCE chip updates an entry in the transmit
descriptor ring for the last buffer sent or when transmission is
stopped due to a failure. When this bit is set, NICSR0 <7> is
also set. Writing a 0 has no effect. Cleared by writing a 1, by
setting NICSRO <2>, on power-up and the negation of DCOK
when SCR <7> is clear.

(IDON) Initialization done. Read/Write to clear. This bit is
set when the LANCE chip completes the initialization process
which was started by setting NICSRO <0> (INIT). When
IDON is set, the LANCE chip has read the initialization block
from memory and stored the new parameters. When this bit
is set, NICSRO <7> is also set. Writing a 0 has no effect.
Cleared by writing a 1, by setting NICSR0 <2>, on power-up
and the negation of DCOK when SCR <7> is clear.

(INTR) Interrupt request. Read only. This bit is set whenever
any of the bits NICSR0 <14> (BABL), NICSR0 <12> (MISS),
NICSR0O <11> (MERR), NICSR0 <10> (RINT), NICSR0 <9>
(TINT), or NICSRO <8> (IDON) are set. When both this

bit and NICSR0O <6> (INEA) are set, an interrupt request is
posted at IPL 14 with vector offset of D4 s. Writing to this bit
has no effect. Cleared by clearing BABL, MISS, MERR, RINT,
TINT, and IDON, by setting NICSR0 <2>, on power-up and
the negation of DCOK when SCR <75 is clear.

110 Architecture

Data Bit

Definition

NICSRO <6>

NICSR0O <5>

NICSRO <4>

NICSRO <3>

(INEA) Interrupt enable. Read/Write. This bit controls
whether the setting of the NICSRO <7> (INTR) bit generates
an interrupt request. When both this bit and NICSR0 <6>
(INEA) are set, an interrupt request is posted at IPL 14 with
vector offset of D4 5. Cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear.

(RXON) Receiver on. Read only. When set, this bit indicates
that the receiver is enabled. This bit is set when initialization
is completed (i.e., when IDON is set, unless the DRX bit of the
initialization block mode register was one) and then NICSR0
<1> (STRT) is set. Writing to this bit has no effect. Cleared
by setting NICSRO <2> or NICSRO <11>, on power-up and
the negation of DCOK when SCR <7> is clear.

(TXON) Transmitter on. Read only. When set, this bit
indicates that the transmitter is enabled. This bit is set when
initialization is completed (i.e., when IDON is set, unless
the DTX bit of the initialization block mode register was one)
and then NICSRO <1> (STRT) is set. Writing to this bit has
no effect. Cleared by setting NICSRO <2>, NICSRO <11>,
NITMD2 <31> (UFLO), NITMD2 <30> (BUFF), or NITMD2
<26> (RTRY), on power-up and the negation of DCOK when
SCR <7> is clear.

(TDMD) Transmit demand. Read/Write. Setting this bit
signals the LANCE chip to access the transmit descriptor ring
without waiting for the polltime interval to elapse. This bit
need not be set to transmit a packet; setting it merely hastens
the chip’s response to the insertion of a transmit descriptor
ring entry by the host program. This bit is cleared by the
LANCE chip when it recognizes the bit has been set (the bit
may read as one for a short time after it is set, depending upon
the level of activity in the LANCE chip). Writing a zero has
no effect. This bit is also cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear.

Architecture 111

Data Bit

Definition

NICSRO <2>

NICSRO <1>

NICSR0 <0>

(STOP) Stop external activity. Read/Write. Setting this bit
stops all external activity and clears the internal logic of the
LANCE chip; this has the same effect on the LANCE chip as

a hardware reset does. When set, the LANCE chip remains
inactive until NICSRO <1> (STRT) or NICSR0 <0> (INIT)
are set. Setting STOP clears all the other bits in this register.
After STOP has been set, the other three command and status
registers (NICSR1, NICSR2, and NICSR3) must be reloaded
before setting INIT or STRT (note that NICSR1, NICSR2,

and NICSR3 may be accessed only while STOP is set). If the
processor attempts to set STOP, INIT, and STRT at the same
time, STOP takes precedence and neither STRT nor INIT is
set. Writing zero has no effect. This bit is set on power-up and
the negation of DCOK when SCR <7> is clear. It is cleared
by setting either INIT or STRT.

(STRT) Start operation. Read/Write. Setting this bit enables
the LANCE chip to send and receive packets, perform DMA
and manage its buffers. The STOP bit must be set prior

to setting the STRT bit (setting STRT then clears STOP).
Writing a 0 has no effect. Cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear.

(INIT) Initialize. Read/Write. Setting this bit causes the
LANCE chip to perform its initialization process, which reads
the initialization block from the area in the network interface
buffer RAM addressed by the contents of NICSR1 and NICSR2
via DMA. The STOP bit must be set prior to setting the INIT
bit (setting INIT then clears STOP). Writing a zero has no
effect. Cleared by setting NICSR0 <2>, on power-up and the
negation of DCOK when SCR <7> is clear.

NOTE

The INIT and STRT bits must not be set at the same time. The proper
initialization procedure is as follows:

e Set STOP in NICSRO

e Set up the initialization block in memory
¢ Load NICSR1 and NICSR2 with the starting address of the initialization

block

e Set INIT in NICSRO
o Wait for IDON in NICSRO to become set
e Set STRT in NICSRO to begin operation

112 Architecture

3.9.7 Network Interface Control and Status Register 1

The network interface control and status register 1 (NICSR1), address 2008
4604 1, when NIRAP <1:0> are set to 01, is a word-wide register that is
implemented on all designs that use the LANCE chip. This register is used
in conjunction with NICSR2 to supply the network interface buffer RAM
address of the initialization block which the chip reads when it performs
its initialization process. This register is accessible only if the STOP bit in
NICSRO is set. Bits <31:16> are undefined and bits <15:0> are read/write.
On power-up, all the bits in this register are undefined.

The format NICSR1 is shown in Figure 3-42.

3130292827 2625242322212019181716151413121110 98 7 6 54 3 21 0

‘ UNDEFINED l JADR 15:0 J

MA-X0049-88

Figure 3-42 Network Interface Control and Status Register

Data Bit Definition
NICSR1 Undefined. Should not be read or written.
<31:16>

NICSR1 <15:0> (IADR15:0) Initialization block address bits <15:0>.
Read/Write. These are the low-order sixteen bits of the
network interface buffer RAM address of the first byte of
the initialization block. Note that since the block must be
aligned on a word boundary bit <0> must be zero.

3.9.8 Network Interface Control and Status Register 2

The network interface control and status register 2 (NICSR2), address 2008
4608 15 when NIRAP <1:0> are set to 10, is a word-wide register that is
implemented on all designs that use the LANCE chip. This register is used
in conjunction with NICSR1 to supply the network interface buffer RAM
address of the initialization block which the chip reads when it performs
its initialization process. This register is accessible only if the STOP bit in
NICSRO is set. Bits <31:16> are undefined bits <15:8> are reserved and
bits <15:0> are read/write. On power-up, all the bits in this register are
undefined. '

Architecture 113

The format for NICSR?2 is shown in Figure 3-43.

31302028272625242322212019181716151413121110 98 7 6 54 3 21 0

r UNDEFINED I RESERVED I IADR 23:16 J

NA-X0050-88

Figure 3-43 Network Interface Control and Status Register 2

Data Bit Definition
NICSR2 Undefined. Should not be read or written.
<31:16>

NICSR2 <15:8> Reserved. Should not be read or written.

NICSR2 <7:0> (IADR23:16) Initialization block address bits <23:16>.
Read/Write. These are bits 23:16 of the network interface
buffer RAM address of the first byte of the initialization block.

3.9.9 Network Interface Control and Status Register 3

The network interface control and status register 3 (NICSR3), address 2008
460C 14 when NIRAP <1:0> are set to 11, is a word-wide register that
is implemented on all designs that use the LANCE chip. This register
controls certain aspects of the electrical interface between the LANCE chip
and the system. It must be set by the on-board firmware as indicated for
each bit. This register is accessible only if the STOP bit in NICSRO is set.
Bits <31:16> are undefined, bits <15:3> are reserved and bits <3:0> are
read/write.

The format for NICSR3 is shown in Figure 3-44.

313029282726 25242322212019181716151413121110 98 76 54 3 21 0

l UNDEFINED I RESERVED I I | I
BSWP ___l
ACON
BCON
MA-X0051-88

Figure 3-44 Network Interface Control and Status Register 3

114 Architecture

Data Bit

Definition

NICSR3
<31:16>

NICSR3 <15:3>
NICSR3 <2>

NICSR3 <1>

NICSR3 <0>

Undefined. Should not be read or written.

Reserved. Read as zeros. Writes have no effect.

(BSWP) Byte swap. Read/Write. When this bit is set, the
LANCE chip will swap the high and low bytes for DMA data
transfers between the silo and the network interface buffer
RAM in order to accomodate processors which consider address
bits <15:08> to be the least significant byte of data. Cleared
by setting NICSR0 <2>, on power-up and the negation of
DCOK when SCR <7> is clear. This bit must be set to 0 by
the on-board firmware.

(ACON) ALE control. Read/Write. This bit controls the
polarity of the signal emitted on the LANCE chip’s ALE/AS pin
during DMA operation. Cleared by setting NICSR0 <2>, on
power-up and the negation of DCOK when SCR <7> is clear.
This bit must be set to 0 by the on-board firmware.

(BCON) Byte control. Read/Write. This bit controls the
configuration of the byte mask and hold signals on the LANCE
chip’s pins during DMA operation. Cleared by setting NICSRO
<2>, on power-up and the negation of DCOK when SCR
<7> is clear. This bit must be set to 0 by the on-board
firmware.

3.9.10 Network Interface Initialization Block

When the LANCE chip is initialized (by setting the INIT bit in NICSR0),
it reads a 24-byte block of data called the network interface initialization
block (NIIB) from the network interface buffer RAM using DMA accesses.
The base address of the initialization block is formed by concatenating the
conterits of the NICSR1 and NICSR2. Since the NIIB must start on a word
boundary, the low-order bit of the address must be zero. The initialization
block is made up of twelve 16-bit words, (NIIBW0-NIIBW11), arranged as
shown in Figure 3-45.

Architecture 115

151413121110 98 76 5 4 321 0

NIIBWO MODE :BASE
NIBW1 :BASE + 2
NETWORK —
NIBW2 PHYSICAL :BASE + 4
I ADDRESS -]
NIIBW3 :BASE + 6
NiIBW4 :BASE + 8
NIBWS :g;:g;: T ‘ :BASE + 10
— FILTER - .
NIIBWE MASK :BASE + 12
NiBw? :BASE + 14
NIIBWB RECEIVE :BASE + 16
| e DESCRIPTOR RING =1
NIBWY POINTER :BASE + 18
NIBWIO TRANMIT :BASE + 20
— DESCRIPTOR RING s
NiBw11 POINTER :BASE + 22
MA-X0053-88

Figure 3-45 Network Interface Initialization Block

3.9.10.1 Network Interface Initialization Block Word 0

Word 0 of the network interface initialization block (NIIBWO0), also referred
to as the mode word, resides in the network interface buffer RAM at the
base address of the initialization block. The mode word of the initialization
block allows alteration of the LANCE chip’s normal operation for testing
and special applications. For normal operation the mode word is entirely
zero.

The format for NIIBWO is shown in Figure 3-46.

151413121110 98 76 54 3 21 0

L LLTTTLT)

PROM) INTL
DRTY
cow — |
OTCR
oop |

oTX
DRX

MA-X0054-88

Figure 3-46 Network Interface Initialization Block Word 0

116 Architecture

Data Bit

Definition

NIIBW0<15>

NIIBW0<14:7>
NIIBWO< 6>

NIIBW0<5>

NIIBW0< 4>

NIIBW0<3>

(PROM) Promiscuous mode. When set, all incoming
packets are accepted regardless of their destination
addresses. When cleared, only incoming packets with
a destination address that matches the KA640’s address
are accepted (normal operating mode).

Reserved. Should be written with zeros.

(INTL) Internal loopback. This bit is used in conjunction
with the NIIBW0<2> (LOOP) to control loopback
operation. See the description of the LOOP bit, below.

(DRTY) Disable retry. When set, the LANCE chip will

attempt only one transmission of a packet. If there is a
collision on the first transmission attempt, a retry error
(RTE) will be reported in the transmit buffer descriptor.

(COLL) Force collision. When set, the collision logic can
be tested. The LANCE chip must be in internal loopback
mode for COLL to be used. When COLL is set to one, a
collision will be forced during the subsequent transmission
attempt. This will result in 16 transmission attempts and
a retry error (RTE) being reported in the transmit buffer
descriptor.

(DTCR) Disable transmit CRC. When cleared, the
transmitter will generate and append a 4-byte CRC to
each transmitted packet (normal operation). When DTCR
is one the CRC logic is allocated instead to the receiver
and no CRC is sent with a transmitted packet.

During loopback, setting DTCR to zero will cause a CRC
to be generated and sent with the transmitted packet, but
no CRC check can be done by the receiver since the CRC
logic is shared and cannot both generate and check a CRC
at the same time. The CRC transmitted with the packet
will be received and written into memory following the
data where it can be checked by software.

If DTCR is set to one during loopback, the driving software
must compute and append a CRC value to the data to be
transmitted. The receiver will check this CRC upon
reception and report any error.

Architecture 117

Data Bit

Definition

NIIBW0O <2>

(LOOP) Loopback control. This bit is used in conjunction
with NIIBW0 <6> to perform internal loopback tests

on the LANCE chip. During loopback the LANCE chip
operates in full duplex mode. The maximum packet size is
limited to 32 data bytes (in addition to which 4 CRC bytes
may be appended). During loopback, the runt packet filter
is disabled because the maximum packet is forced to be
smaller than the minimum size Ethernet packet (64 bytes).

Setting LOOP to one allows simultaneous transmission
and reception for a packet constrained to fit within the
silo. The chip waits until the entire packet is in the silo
before beginning serial transmission. The incoming data
stream fills the silo from behind as it is being emptied.
Moving the received packet out of the silo into memory
does not begin until reception has ceased.

In loopback mode, transmit data chaining is not possible.
Receive data chaining is allowed regardless of the receive
buffer length. (In normal operation, the receive buffers
must be 64 bytes long, to allow time for buffer lookahead.)

Valid loopback bit settings are:

LOOP INTL Operation

0 X Normal on-line operation
1 0 External loopback
1 1 Internal loopback

Internal loopback allows the LANCE chip to receive its
own transmitted packet without disturbing the network.
The LANCE chip will not receive any packets from the
network while it is in internal loopback mode.

External loopback allows the LANCE chip to transmit a
packet through the transceiver out to the network cable
to check the operability of all circuits and connections
between the LANCE chip and the network cable.
Multicast addressing in external loopback is valid only
when DTCR is one (user needs to append the 4 CRC
bytes). In external loopback, the LANCE chip also receives
packets from other nodes.

118 Architecture

Data Bit Definition

NIIBBW0<1> (DTX) Disable transmitter. When set, the LANCE chip
will not set the TXON bit in NICSRO at the completion
of initialization. This will prevent the LANCE chip from
attempting to access the transmit descriptor ring, hence
no transmissions will be attempted.

NIIBW0<0> (DRX) Disable receiver. When set, the LANCE chip will
not set the RXON bit in NICSRO at the completion of
initialization. This will cause the LANCE chip to reject all
incoming packets and to not attempt to access the receive
descriptor ring.

3.9.10.2 Network Interface Initialization Block Words 1-3

Words 1-3 of the network interface initialization block (NIIBW1-3), reside in
the network interface buffer RAM at the base address of the NIIB plus 2, 4,
and 6 respectively. These three words contain the 48-bit NPA of the KA640
and are loaded by the resident firmware from the NISA ROM.

This address identifies the KA640 to the Ethernet network and must be
unique within the domain of the network. The low-order bit (bit 0) of
this address must be zero to indicate it is a physical rather than multicast
address.

The format for network interface initialization block words 1 through 3 is
shown in Figure 3-47.

151413121110 98 76 5 4 3 21 0

NIIBW1 INETWORK PHYSICAL ADDRESS < 15:0 >| :BASE + 2

NIBW2 |NETWORK PHYSICAL ADDRESS < 31:16>| :BASE + 4

NIIBW3 |NETWORK PHYSICAL ADDRESS < 47:17>| :BASE + 6

HA-X0055-88

Figure 3-47 Network Interface Initialization Block Words 1-3

3.9.10.3 Network Interface Initialization Block Words 4-7

Words 4-7 of the network interface initialization block (NIIBW4-7), reside in
network interface buffer RAM at the base address of the NIIB plus 8, 10, 12,
and 14 respectively. These four words contain the 64-bit multicast address
filter mask.

Architecture 119

The format for network interface initialization block words 4 through 7 is
shown in Figure 3-48.

151413121110 98 76 54 3 21 0

NIIBW4 | MULTICAST ADD FILTER < 15:0 > : BASE + 8

NIIBWS | MULTICAST ADD FILTER MSK <31:16> | : BASE + 10

NIBW6E | MULTICAST ADD FILTER MSK <47:17> | : BASE + 12

NIIBW7 | MULTICAST ADD FILTER MSK <48:18> | : BASE + 14

MA-X0056-88

Figure 3-48 Network Interface Initialization Block Words 4-7

Multicast Ethernet addresses are distinguished from physical network
addresses by the presence of a one in bit 0 of the 48-bit address field.
If an incoming packet contains a physical destination address (bit 0 is zero),
then its entire 48 bits are compared with the network physical address and
the packet is ignored if they are not equal. If the packet contains a multicast
destination address which is all ones (the broadcast address), it is always
accepted and stored regardless of the contents of the multicast address filter
mask. :

All other multicast addresses are processed through the multicast address
filter to determine whether the incoming packet will be stored in a receive
buffer. This filtering is performed by passing the multicast address field
through the CRC generator. The high-order 6 bits of the resulting 32-bit
CRC are used to select one of the 64 bits of the multicast address filter
mask. (These high-order six bits represent in binary the number of the bit
in the multicast address filter mask.) If the bit selected from the multicast
address filter mask is one, the packet is stored in a receive buffer; otherwise
it is ignored. This mechanism effectively splits the entire domain of 2**47
multicast addresses into 64 parts, and multicast addresses falling into each
part will be accepted or ignored according to the value of the corresponding
bit in the multicast address filter mask. The driver program must examine
the addresses of the packets accepted by this partial filtering to complete
the filtering task.

120 Architecture

3.9.10.4 Network Interface Initialization Block Words 8,9

Words 8 and 9 of the network interface initialization block (NIIBWS,9), also
referred to as the receive descriptor ring pointer, reside in network interface
buffer RAM at the base address of the NIIB plus 16 and 18 respectively.
These two words contain the starting address and the number of descriptors
in the receive descriptor ring.

The format for NIIBW8 is shown in Figure 3-49.

151413121110 98 76 54 3 21 0

NIBWS [RDRA < 15:0 > l :BASE + 16

MA-X0057-88

Figure 3-49 Network Interface Initialization Block Word 8

Data Bit Definition

NIIBW8 <15:0> (RDRA <15:0>) Receive descriptor ring address <15:0>. This
field contains bits <15:0> of the base address of the receive
descriptor ring. Since the receive descriptor ring must start on
a a quadword boundary, bits <2:0> of this field must be zero.

The format for NIIBW9 is shown in Figure 3-50.

151413121110 98 76 5 4 3 21 0

NIIBWY [NRBD lRESERVED l RDRA < 23:16 >] :BASE + 18

MA-X0058-88

Figure 3-50 Network Interface Initialization Block Word 9

Architecture 121

Data Bit

Definition

NIIBW9<15:13>

NIIBW9<12:8>
NIIBW9<7:0>

(NRBD) Number of receive buffer descriptors. This field
gives the number of receive buffer descriptors in the receive
descriptor ring, expressed as a power of two:

Value Number of Desériptors

000 1
001 2
010 4
011 8
100 16
101 32
110 64
111 128

Reserved; should be zeros.

(RDRA <23:16>) Receive descriptor
ring address <23:16>. This field contains bits <23:16> of the
base address of the receive descriptor ring.

3.9.10.5 Network Interface Initialization Block Words 10,11

Words 10 and 11 of the network interface initialization block (NIIBW10,11),
also referred to as the transmit descriptor ring pointer, reside in network
interface buffer RAM at the base address of the NIIB plus 20 and 22
respectively. These two words contain the starting address and the number
of transmit buffer descriptors in the transmit descriptor ring.

The format for NIIBW10 is shown in Figure 3-51.

151413121110 98 76 S 4 3 21 0

NIBW10 [TORA < 15:0 > l :BASE + 20

MA-X0039-08

Figure 3-51 Network Interface Initialization Block Word 10

122 Architecture

Data Bit

Definition

NIIBW10<15:0>

(TDRA <15:0>) Transmit descriptor ring address <15:0>.
This field contains bits <15:0> of the base address of the
transmit descriptor ring. Since the transmit descriptor ring
must start on a a quadword boundary, bits <2:0> of this field
must be zero.

The format for NIIBW11 is shown in Figure 3-52.

151413121110 98 76 54 3 21 0

NiBwi1 [NTBD l RESERVED I TORA < 23:16 > | :BASE + 22

MA-X0060-88

Figure 3-52 Network Interface Initialization Block Word 11

Data Bit

Definition

NIIBW11<15:13>

NIIBW11
<12:8>

NIBW11 <7:0>

(NTBD) Number of transmit buffer descriptors. This field
gives the number of transmit buffer descriptors in the transmit
descriptor ring, expressed as a power of two:

Value Number of Descriptors

000 1
001 2
010 4
(U 8
100 16
101 32
110 64
111 128

Reserved; should be zeros.

(TDRA <23:16>) Transmit descriptor ring address <23:16>.
This field contains bits <23:16> of the base address of the
transmit descriptor ring.

Architecture 123

3.9.11 Buffer Management

The LANCE chip manages its data buffers by using two rings of buffer
descriptors which are stored in the network interface buffer RAM: the
network interface receive descriptor ring and the network interface transmit
descriptor ring. Each buffer descriptor points to a data buffer elsewhere
in the network interface buffer RAM, contains the size of that buffer, and
contains status information about that buffer’s contents.

The starting location in the network interface buffer RAM of each ring and
the number of descriptors in it are given to the LANCE chip via the NIIB
during the chip initialization process. Each descriptor is 8 bytes long and
must be aligned on a quadword boundary (the three low-order bits of its
address must be zero). The descriptors in a ring are physically contiguous
in the network interface buffer RAM and the number of descriptors must be
a power of two. The LANCE keeps an internal index to its current position
in each ring which it increments modulo the number of descriptors in the
ring as it advances around each ring.

Once started, the LANCE chip polls each ring to find descriptors for
buffers in which to receive incoming packets and from which to transmit
outgoing packets, and revises the status information in buffer descriptors
as it processes their associated buffers. When polling, the LANCE chip is
limited to looking only one ahead of the descriptor with which it is currently
working. The high speed of the data stream requires that each buffer be at
least 64 bytes long to allow time to chain buffers for packets which are larger
than one buffer. (The first buffer of a packet to be transmitted should be at
least 100 bytes to avoid problems in case a late collision is detected.)

Each descriptor in a ring is "owned” either by the LANCE chip or by the
host processor; this status is indicated by the OWN bit in each descriptor.
Mutual exclusion is accomplished by the rule that each device can only
relinquish ownership of a descriptor to the other device, it can never take
ownership; and that each device cannot change any field in a descriptor
or its associated buffer after it has relinquished ownership. When the host
processor sets up the rings of descriptors before starting the LANCE chip, it
sets the OWN bits such that the LANCE chip will own all the descriptors in
the network interface receive descriptor ring (to be used by the LANCE to
receive packets from the network) and the host will own all the descriptors
in the network interface transmit descriptor ring (to be used by the host to
set up packets to be transmitted to the network).

124 Architecture

3.9.12 Network Interface Receive Descriptor Ring

The network interface receive descriptor ring (NIRDR) contains a receive
buffer descriptor for each receive buffer (Figure 3-53). It is located in a
contiguous block of the network interface buffer RAM whose base address
is formed by concatenating the contents of NIIBW8 and NIIBW9 <7:0>
(RDRA <23:0). Since the NIRDR must start on a quadword boundary, bits
<2:0> of this address must be zero. The size of the network interface
receive descriptor ring can vary between 8 and 1024 bytes depending on
the number of 8-byte descriptors it contains (Figure 3-53). The number of
descriptors must be a power of two between one and 128 and is determined
by NIIBW9 <15:13> (NRBD).

151413121110 98 76 5 4 3 21 0

:BASE
‘ RECEIVE
—_ BUFFER]
DESCRIPTOR 0
:BASE + 8
= RecEwt —
] BUFFER
DESCRIPTOR 1 I
Pre— . ——
L]
= * =
.
S . S
:BA
I RECEIVE | BASE+ N
BUFFER
_ DESCRIPTOR N e
RA-X0061-88

Figure 3-53 Network Interface Receive Descriptor Ring

3.9.12.1 Receive Buffer Descriptors

Receive buffer descriptor n contains the base address and size of a receive
buffer as well as status and error information. It is four words (eight bytes)
in length and is located in the receive descriptor ring at base + 8n.

Architecture 125

A representation of a typical receive buffer descriptor (RBD) is shown in
Figure 3-54.

151413121110 98 76 5 4 3 21 0

RBDNWO
— RECEIVER —
RBDnW BUFFER

DESCRIPTOR n

RBDnW2

RBDNW3

MA-X0062-868

Figure 3-54 Receive Buffer Descriptors

3.9.12.1.1 Receive Buffer Descriptor n Word 0

Word 0 of RBD n (RBDnWO0) resides in the network interface buffer RAM at
the base address of the NIIRDR +8n. This word contains a portion of the
base address of the associated receive buffer.

The format for receive buffer descriptor n word 0 is shown in Figure 3-55.

151413121110 98 76 543 21 0

RBDnWO I BADR < 15:0 >] :BASE + 8n

MA-X0063-88

Figure 3-55 Receive Buffer Descriptor n Word 0

Data Bit Definition

RBDnWO0 (BADR) Buffer address. This field contains bits <15:0> of the

<15:0> 24-bit network address buffer RAM address of the start of the
buffer associated with this descriptor. Written by the host;
unchanged by the LANCE.

3.9.12.1.2 Receive Buffer Descriptor n Word 1

Word 1 of RBD n (RBDnW1) resides in the network interface buffer RAM at
the base address of the NIIRDR +8n+2. This word contains a portion of
the base address of the associated receive buffer as well as status and error
information.

126 Architecture

The format for receive buffer descriptor n word 1 is shown in Figure 3-56.

151413121110 98 76 5 4 3 21 0

RBDnW1 r] I l I l l]] BADR(ZJ:IS)] :BASE + 8n + 2
ENP
STP
BUE
CHE
OFE
FRE
ERR
OWN
HA-X0064-86

Figure 3-56 Receive Buffer Descriptor n Word 1

Data Bit Definition

RBDnW1 <15> (OWN) Owned flag. This bit indicates whether the descriptor

is owned by the host (OWN = 0) or by the LANCE chip
(OWN = 1). The LANCE clears OWN after filling the buffer
associated with the descriptor with an incoming packet. The
host sets OWN after emptying the buffer. In each case, this
must be the last bit changed by the current owner, since
changing OWN passes ownership to the other party and the
relinquishing party must not thereafter alter anything in the
descriptor or its buffer.

RBDnW1 <14> (ERR) Error summary. This is the logical OR of the FRE, OFE,
CHE and BUE bits in this word. Set by the LANCE chip and
cleared by the host.

RBDnW1 <13> (FRE) Framing error. This bit is set by the LANCE chip to
indicate that the incoming packet stored in the buffer had both
a non-integral multiple of 8 bits and a checksum error (CHE).
It is cleared by the host.

RBDnW1 <12> (OFE) Overflow error. This bit is set by the LANCE chip to
indicate that the receiver has lost part or all of an incoming
packet because it could not store it in the buffer before the
chip’s silo overflowed. Cleared by the host.

RBDnW1 <11> (CHE) Checksum error. This bit is set by the LANCE chip to
indicate that the received packet has an invalid CRC checksum.
Cleared by the host.

Architecture 127

Data Bit Definition

RBDnW1 <10> (BUE) Buffer error. This bit is set by the LANCE chip when
it has used all its owned receive descriptors or when it could
not get the next descriptor in time while attempting to chain
to a new buffer in the midst of a packet. When a buffer error
occurs, an overflow error (bit OFLO) also occurs because the
LANCE continues to attempt to get the next buffer until its silo
overflows. BUE is cleared by the host.

RBDnW1 <9> (STP) Start of packet. This bit is set by the LANCE chip
to indicate that this is the first buffer used for this packet.
Cleared by the host.

RBDnW1 <8> (ENP) End of packet. This bit is set by the LANCE chip to
indicate that this is the last buffer used for this packet. When
both STP and ENP are set in a descriptor, its buffer contains
an entire packet; otherwise two or more buffers have been
chained together to hold the packet. ENP is cleared by the
host.

RBDnW1 <7:0> (BADR <23:16>) Buffer address <23:16>. This field contains
bits <23:16> of the 24-bit the NI buffer RAM address of the
start of the buffer asscciated with this descriptor. Written by
the host; unchanged by the LANCE.

3.9.12.1.3 Receive Buffer Descriptor n Word 2

Word 2 of RBD n (RBDnW?2) resides in the network interface buffer RAM
at the base address of the NIIRDR +8n+4. This word contains the size of
the associated receive buffer.

The format for receive buffer descriptor n word 2 is shown in Figure 3-57.

151413121110 98 76 54 3 21 0

RBDnW2 [1!1'1’1[BSZ < 11:0 > J :BASE + 8n + 4

MA-X0065-88

Figure 3-57 Receive Buffer Descriptor n Word 2

128 Architecture

Data Bit Definition

RBDnW2<15:12> These bits must be set by the host to ones. Unchanged by
the LANCE chip.

RBDnW2<11:0> (BSZ <11:0>) Buffer size. This field contains the size (in

bytes) of the associated receive buffer in two’s complement
form. Note that the minimum buffer size is 64 bytes (to
allow enough time for chaining buffers) and the maximum
buffer size is 1518 bytes (the largest legal Ethernet packet).
Written by the host; unchanged by the LANCE chip.

3.9.12.1.4 Receive Buffer Descriptor n Word 3

Word 3 of RBD n (RBDnW3) resides in the network interface buffer RAM
at the base address of the NIIRDR +8n+6. This word contains the size of
the packet that was received.

The format for receive buffer descriptor n word 3 is shown in Figure 3-58.

151413121110 98 76 54 3 21 0

RBOnW3 IOIOIOIDI PSZ < 11:0 >] :BASE + 8n + 6

HA-X0066-88

Figure 3-58 Receive Buffer Descriptor n Word 3

Data Bit Definition

RBDnW3<15:12> These bits are reserved. They should be set to zeros by the
host when it constructs the descriptor.

RBDnW3<11:0> (PSZ <11:0>) Packet size. This field contains the size (in

bytes) of the received packet. This field is valid only in

a descriptor in which ENP is set (last buffer) and ERR is
clear (no error). Set by the LANCE chip and cleared by
the host.

3.9.13 Receive Buffers

Receive buffers are set up by the host by adding a receive buffer descriptor
to the network interface receive buffer descriptor ring. These buffers are
used for storing incoming Ethernet packets. An Ethernet packet may span
multiple buffers, but a buffer cannot contain more than one Ethernet packet.
The base address of a receive buffer is formed by concatenating the contents
of RBDnWO0 and RBDnW1 <7:0> (BADR). The size of a receive buffer is
determined by RBDnW2 <11:0>.

Architecture 129

Receive buffers are structured as shown in Figure 3-59.

151413121110 98 76 54 3 21 0

:BASE
—— RECEME —
BUFFER

M (641518 BYTES)

Y Y

MA-X0067-88

Figure 3-59 Receive Buffers

3.9.14 Network Interface Transmit Descriptor Ring

The network interface transmit descriptor ring (NITDR) contains a transmit
buffer descriptor for each transmit buffer (Figure 3-60). It is located in a
contiguous block of the network interface buffer RAM whose base address is
formed by concatenating the contents of the NIIBW10 and NIIBW11 <7:0>
(TDRA<23:0>). Since the NITDR must start on a quadword boundary,
bits <2:0> of this address must be zero. The size of the network interface
transmit descriptor ring can vary between 8 and 1024 bytes depending on the
number of 8-byte descriptors it contains. The number of descriptors must
be a power of two between one and 128 and is determined by NIIBW11
<15:13> (NTBD).

130 Architecture

151413121110 98 76 5 4 3 21 0

TRANSMIT
BUFFER
DESCRIPTOR O

TRANSMIT
BUFFER
DESCRIPTOR 1

D).
«

© 000000

B

|

TRANSMIT
BUFFER
DESCRIPTOR n

:BASE

:BASE + 8

:BASE + 8n

:BASE + 8n

Figure 3-60 Network Interface Transmit Descriptor Ring

3.9.14.1 Transmit Buffer Descriptors
Transmit buffer descriptor n contains the base address, size, of a transmit
buffer as well as status and error information. It is four words (eight bytes)
in length and is located in the transmit descriptor ring at base + 8n.

A representation of a typical transmit buffer descriptor (TBD) is shown in

Figure 3-61.

TBDNWO
TBDnW1
TBDnW2

TBOnW3

151413121110 98 76 5 4 321 0

TRANSMIT
BUFFER
DESCRIPTOR n

:BASE + 8n

Figure 3-61 Transmit Buffer Descriptors

Architecture 131

3.9.14.1.1 Transmit Buffer Descriptor n Word 0

Word 0 of TBD n (TBDnWO0) resides in the network interface buffer RAM at
the base address of the NIIRDR +8n. This word contains a portion of the
base address of the associated transmit buffer.

The format for transmit buffer descriptor n word 0 is shown in Figure 3-62.

151413121110 98 76 54 3 21 0

TBONWO l BADR < 15:0 >] :BASE + 8n

MA-X0070~868

Figure 3-62 Transmit Buffer Descriptor n Word 0

Data Bit Definition

TBDnW0<15:0> (BADR) Buffer address. This field contains bits <15:0> of the
24-bit network interface buffer RAM address of the start of
the buffer associated with this descriptor. Written by the host;
unchanged by the LANCE chip.

3.9.14.1.2 Transmit Buffer Descriptor n Word 1

Word 1 of TBD n (TBDnW1) resides in the network interface buffer RAM
at the base address of the NIIRDR +8n+2. This word contains a portion
of the base address of the associated transmit buffer as well as status and
error information.

The format for transmit buffer descriptor n word 1 is shown in Figure 3-63.

1514131211098 76 54 3 21 0

TBOnWI ” I [I I]] I sAoR<23:1s>l :BASE + Bn + 2
owN
ERR
RSV
MRE
ORE
DEF
TP
ENP
MA-X0071-88

Figure 3-63 Transmit Buffer Descriptor n Word 1

132 Architecture

Data Bit

Definition

TBDnW1 <15>

TBDnW1 <14>

TBDnW1 <13>
TBDnW1 <12>

TBDnW1 <11>

TBDnW1 <10>

TBDnW1 <9>

TBDnW1 <8>

TBDnW1 <7:0>

(OWN) Owned flag. This bit indicates whether the descriptor
is owned by the host (OWN = 0) or by the LANCE chip
(OWN = 1). The LANCE clears OWN after filling the buffer
associated with the descriptor with an incoming packet. The
host sets OWN after emptying the buffer. In each case, this
must be the last bit changed by the current owner, since
changing OWN passes ownership to the other party and the
relinquishing party must not thereafter alter anything in the
descriptor or its buffer.

(ERR) Error summary. This bit is the logical OR of the COE,
CAE, UFE and RTE bits in this descriptor. Set by the LANCE
chip and cleared by the host.

(RSV) Reserved. The LANCE chip will write a zero in this bit.

(MRE) More retries. The LANCE chip sets this bit when more
than one retry was required to transmit the packet. Cleared
by the host.

(ORE) One retry. The LANCE chip sets this bit when exactly
one retry was required to transmit the packet. Cleared by the
host.

(DEF) Deferred. The LANCE chip sets this bit when it had to
defer while trying to transmit the packet. This occurs when
the network is busy when the LANCE is ready to transmit.
Cleared by the host.

(STP) Start of packet. This bit is set by the host to indicate
that this is the first buffer used for this packet. STP is not
changed by the LANCE chip.

(ENP) End of packet. This bit is set by the host to indicate
that this is the last buffer used for this packet. When both STP
and ENP are set in a descriptor, its buffer contains an entire
packet; otherwise two or more buffers have been chained
together to hold the packet. ENP is not changed by the LANCE
chip.

(BADR <23:16>) Buffer address <23:16>. This field
contains bits <23:16> of the 24-bit network interface buffer
RAM address of the start of the buffer associated with this
descriptor. Written by the host; unchanged by the LANCE
chip.

Architecture 133

3.9.14.1.3 Transmit Buffer Descriptor n Word 2

Word 2 of TBD n (TBDnW?2) resides in the network interface buffer RAM at
the base address of the NIITDR +8n+4. This word contains the size of the
associated transmit buffer.

The format for transmit buffer descriptor n word 2 is shown in Figure 3-64.

151413121110 98 76 S 4 3 21 0

TBDOnW2 Lll1l‘l[1| I :BASE + 8n + 4

WA-X0072-88

Figure 3-64 Transmit Buffer Descriptor n Word 2

Data Bit Definition

TBDnW2<15:12> These bits must be set by the host to ones. Unchanged by the
LANCE chip.

TBDnW2 (BSZ <11:0>) Buffer size. This field contains the size (in

<11:0> bytes) of the associated transmit buffer in two’s complement

form. Note that the minimum buffer size is 64 bytes (to allow
enough time for chaining buffers) and the maximum buffer
size is 1518 bytes (the largest legal Ethernet packet). Written
by the host; unchanged by the LANCE chip.

3.9.14.1.4 Transmit Buffer Descriptor n Word 3

Word 3 of TBD n (TBDnW3) resides in the network interface buffer RAM
at the base address of the NIITDR +8n+6. This word contains error
information and a time domain reflectometer. The contents of this word
are valid only when the ERR bit in TBDnW2 has been set by the LANCE
chip.

The format for transmit buffer descriptor n word 3 is shown in Figure 3-65.

151413121110 98 76 5 4 3 21 0

TBOnW3 Ll]llll TOR < 9:0 > I :BASE + 8n + 6
BUE
UFE
RSV
COE
CAE
RTE
MA-X0073-88

Figure 3-65 Transmit Buffer Descriptor n Word 3

134 Architecture

Data Bit

Definition

TBDnW3 <15>

TBDnW3 <14>

TBDnW3 <13>
TBDnW3 <12>

TBDnW3 <11>

TBDnW3 <10>

TBDnW3 <9:0>

(BUE) Buffer error. This bit is set by the LANCE chip during
transmission when it does not find the ENP bit set in the
current descriptor and it does not own the next descriptor.
When BUE is set, the UFE bit (below) is also set because

the LANCE chip continues to transmit until its silo becomes
empty. BUE is cleared by the host. '

(UFE) Underflow error. This bit is set by the LANCE chip

when it truncates a packet being transmitted because it has
drained its silo before it was able to obtain additional data

from a buffer in memory. UFE is cleared by the host.

(RSV) Reserved. The LANCE chip will write a zero in this bit.

(COE) Late collision error. This bit is set by the LANCE chip
to indicate that a collision has occurred after the slot time of
the network channel has elapsed. The LANCE chip does not
retry after a late collision. COE is cleared by the host.

(CAE) Loss of carrier error. This bit is set by the LANCE
chip when the carrier present input to the chip becomes false
during a transmission initiated by the LANCE. The LANCE
chip does not retry after such a failure. CAE is cleared by the
host.

(RTE) Retries exhausted. This bit is set by the LANCE chip
after 16 attempts to transmit a packet have failed due to
repeated collisions on the network. (If the DRTY bit of
network interface initialization block word 0 (mode word) is
set, RTE will instead be set after only one failed transmission
attempt.) RTE is cleared by the host.

(TDR) Time domain reflectometer. These bits are the value
of an internal counter which is set by the LANCE chip to
count system clocks from the start of a transmission to the
occurrence of a collision. This value is useful in determing the
approximate distance to a cable fault; it is valid only when the
RTE bit in this word is set.

3.9.15 Transmit Buffers

Transmit buffers are set up by the host by adding a transmit buffer descriptor
to the network interface transmit buffer descriptor ring. These buffers
are used for storing incoming Ethernet packets. An Ethernet packet may
span multiple buffers, but a buffer cannot contain more than one Ethernet
packet. The base address of a transmit buffer is formed by concatenating
the contents of the TBDnW0 and TBDnW1 <7:0> (BADR). The size of a
transmit buffer is determined by TBDnW2 <11:0>.

Architecture 135

Transmit buffers are structured as shown in Figure 3-66.

151413121110 98 76 5 4 3 21 0

:BASE

— TRANSMIT —
BUFFER

— (64-1518 BYTES) —

3Q o &

D))

Figure 3-66 Transmit Buffers

3.9.16 LANCE Operation

The LANCE chip operates independently of the host under control of its
own internal microprogram. This section is a simplified description of the
operation of the LANCE in terms of its principal microcode routines (these
should not be confused with device driver programming in the host, which
is not a part of this specification). These microcode routines make use of
numerous temporary storage cells within the LANCE chip; most of these
are not accessible from outside the chip but they are mentioned here when
necessary to clarify the operation of the microcode.

Two such (conceptual) internal variables are of central importance: the
pointers to the “current” entry in the receive descriptor ring and in the
transmit descriptor ring, which are referred to below as TXP and RXP. Each
of these designates the descriptor which the LANCE will use for the next
operation of that type. If the descriptor designated by one of these pointers
is not owned by the LANCE (the OWN bit is 0), then the LANCE can neither
perform activity of that type nor advance the pointer.

For the transmit ring, the LANCE will do nothing until the host sets up a
packet in the buffer and sets the OWN bit in the descriptor designated by
the LANCE’s TXP. (The host must keep track of the position of the TXP,
since setting up a packet in some other descriptor will not be detected by the
LANCE.) For the receive ring, if the LANCE does not own the descriptor
designated by RXP, it cannot receive a packet. In both rings, when the
LANCE finishes with a descriptor and relinquishes it to the host by clearing
OWN, it then advances the ring pointer (modulo the number of entries in
the ring).

136 Architecture

When the LANCE begins activity using the current descriptor (i.e., begins
receiving or transmitting a packet), it may look ahead at the next descriptor
and attempt to read its first three words in advance so it can chain to the
next buffer in mid-packet without losing data. However, it does not actually
advance its RXP or TXP until it has cleared the OWN bit in the current
descriptor.

The LANCE is a very complex chip and this specification does not attempt
to cover all the details of its operation. The chip purchase specification
and the chip vendor’s literature should also be consulted for more detailed
information.

3.9.16.1 Switch Routine

Upon power on, the STOP bit is set and the INIT and STRT bits are cleared
in NICSRO. The LANCE microprogram begins execution in the switch
routine, which tests the INIT, STRT, and STOP bits. When the host sets
either INIT or STRT, STOP is cleared. While STOP is set, if the host writes
to NICSR1 and NICSR2, that data is stored for use by the initialization
routine.

When the microprogram sees STOP cleared, it tests first the INIT bit and
then the STRT bit. If INIT is set, it performs the initialization routine. Then
if STRT is set, it begins active chip operation by jumping to the look-for-
work routine. Control returns to the switch routine whenever the host again
sets the STOP bit (which also clears the INIT and STRT bits). Note that the
ring pointers RXP and TXP are not altered by the setting of either STOP or
START; they are reset to the start of their rings only when INIT is set.

3.9.16.2 Initialization Routine

The initialization routine is called from the switch routine when the latter
finds the INIT bit set. It reads the initialization block from the memory
addressed by NICSR1 and NICSR2 and stores its data within the LANCE
chip. This routine also sets the ring pointers RXP and TXP to the start of
their rings (i.e., to point to the descriptor at the lowest memory address in
the ring).

Architecture 137

3.9.16.3 Look-For-Work Routine

The look-for-work routine is executed while the LANCE is active and looking
for work. It is entered from the switch routine when the STRT bit is set,
and is returned to from the receive and transmit routines after they have
received or transmitted a packet.

This routine begins by testing whether the receiver is enabled (bit RXON of
NICSRO is set). If so, it tries to have a receive buffer available for immediate
use when a packet addressed to this system arrives. It tests its internal
registers to see whether it has already found a receive descriptor owned by
the LANCE and, if not, calls the receive poll routine to attempt to get a
receive buffer.

Next the routine tests whether the transmitter is enabled (bit TXON of
NICSRO is set). If so, it calls the transmit poll routine to see whether there
is a packet to be transmitted and to transmit it.

If there was no transmission and the TDMD bit of NICSRO0 is not set, the
microprogram delays 1.6 milliseconds and then goes to check the receive
descriptor status again. If a packet was transmitted or the host has set
TDMD, the delay is omitted so that multiple packets will be transmitted as
quickly as possible.

If at any point in this routine the receiver detects an incoming packet whose
destination address matches the station’s physical address, is the broadcast
address, or passes the multicast address filter (or if the PROM bit of NIIBW0
is set), the receive routine is called. -

3.9.16.4 Receive Poll Routine

The receive poll routine is called whenever the receiver is enabled and the
LANCE needs a free buffer from the receive descriptor ring. The routine
reads the second word of the descriptor designated by RXP and, if the OWN
bit in it is set, reads the first and third words also.

3.9.16.5 Receive Routine

The receive routine is called when the receiver is enabled and an incoming
packet’s destination address field matches one of the criteria described
above. The routine has three sections: initialization, lookahead, and
descriptor update.

In initialization, the routine checks whether a receive ring descriptor has
already been acquired by the receive poll routine. If not, it makes one
attempt to get the descriptor designated by RXP (if OWN is not set in it,
MISS and ERR are set in NICSRO and the packet is lost). The buffer thus
acquired is used by the receive DMA routine to empty the silo.

138 Architecture

In lookahead, the routine reads the second word of the next descriptor in
the receive ring and, if the OWN bit is set, reads the rest of the descriptor
and holds it in readiness for possible data chaining.

The descriptor update section is performed when either the current buffer
is filled or the packet ends. If the packet ends but its total length is less
than 64 bytes, it is an erroneous "runt packet” and is ignored: no status is
posted in the descriptor, RXP is not moved, and the buffer will be reused
for the next incoming packet (this is why a receive buffer must be at least
64 bytes long; otherwise the runt might be detected after advancing RXP).

If the packet ends (with or without error), the routine writes the packet length
into MCNT, sets ENP and other appropriate status bits and clears OWN in
the current descriptor, and sets RINT in NICSRO to signal the host that a
complete packet has been received. Then it advances RXP and returns to
the look-for-work routine.

If the buffer is full and the packet has not ended, chaining is required. The
routine releases the current buffer by writing status bits into its descriptor
(clearing OWN and ENP, in particular), makes current the next descriptor
data acquired in the lookahead section, advances RXP, and goes to the
lookahead section to prepare for possible additional chaining. Note that
RINT is not set in NICSRO, although the host would find OWN cleared if
it looked at the descriptor, and it could begin work on that section of the
packet, since the mutual exclusion rule prevents the LANCE from going
back and altering it.

3.9.16.6 Receive DMA Routine

The receive DMA routine is invoked asynchronously by the chip hardware
during execution of the receive routine whenever the silo contains 16 or
more bytes of incoming data or when the packet ends and the silo is not
empty. It executes DMA cycles to drain data from the silo into the buffer
designated by the current descriptor.

3.9.16.7 Transmit Poll Routine

The transmit poll routine is called by the look-for-work routine to see
whether a packet is ready for transmission. It reads the second word of
the descriptor designated by TXP and tests the OWN bit. If OWN is zero,
the LANCE does not own the buffer and this routine returns to its caller. If
OWN is set, the routine tests the STP bit, which should be set to indicate the
start of a packet. If STP is clear, this is an invalid packet; the LANCE sets
its OWN bit to return it to the host, sets TINT in NICSRO0 to notify the host,
and advances TXP to the next transmit descriptor. If both OWN and STP
are set, this is the beginning of a packet, so the transmit poll routine reads
the rest of the descriptor and then calls the transmit routine to transmit the

Architecture 139

packet. During this time the chip is still watching for incoming packets from
the network and it will abort the transmit operation if one arrives.

3.9.16.8 Transmit Routine

The transmit routine is called from the transmit poll routine when the latter
finds the start of a packet to be transmitted. This routine has three sections:
initialization, lookahead, and descriptor update. :

In initialization, the routine sets the chip’s internal buffer address and
byte count from the transmit descriptor, enables the transmit DMA engine,
and starts transmission of the packet preamble. It then waits until the
transmitter is actually sending the bit stream (including possible backoff-
and-retry actions in case of collisions).

In lookahead, the transmit routine test the current descriptor to see whether
it is the last in the packet (the ENP bit is set). If so, no additional buffer is
required so the routine waits until all the bytes from the current packet have
been transmitted. If not, the routine attempts to get the next descriptor and
hold it in readiness for data chaining, and then waits until all the bytes from
the current buffer have been transmitted.

Descriptor update is entered when all the bytes from a buffer have been
transmitted or an error has occurred. If there is no error and the buffer was
not the last of the packet, the pre-fetched descriptor for the next buffer is
made current for use by the transmit DMA routine. The routine writes the
appropriate status bits and clears the OWN bits in the current descriptor
and advances TXP. If this was the last buffer in the packet, the routine sets
the TINT bit in NICSRO to notify the host and returns to the look-for-work
routine. Otherwise it goes back to the lookahead section in this routine.

3.9.16.9 Transmit DMA Routine

The transmit DMA routine is invoked asynchronously by the chip hardware
during execution of the transmit routine whenever the silo has 16 or more
empty bytes. It executes DMA cycles to fill the silo with data from the buffer
designated by the current descriptor.

3.9.16.10 Collision Detect Routine

This routine is invoked asynchronously by the chip hardware during
execution of the transmit routine when a collision is detected on the network.
It ensures that the jam sequence is transmitted, then backs up the chip’s
internal buffer address and byte count registers, waits for a pseudo-random
backoff time, and then attempts the transmission again. If 15 retransmission
attempts fail (a total of 16 attempts), it sends the microcode to the descriptor
update routine to report an error in the current transmit descriptor (bits
RTRY and ERR are set).

140 Architecture

3.9.17 LANCE Programming Notes
The following are LANCE programming notes:

1.

The interrupt signal is simply the OR of the interrupt-causing conditions.
If another such condition occurs while the interrupt signal is already
asserted, there will not be another active transition of the interrupt signal
and another interrupt will not be generated. An interrupt service routine
should use logic similar to the following to avoid losing interrupts:

a. Read NICSRO and save the results in a register, say R0.
b. Clear the interrupt enable bit INEA in the saved data in RO0.

c. Write NICSR0 with the saved data in R0. This will make the interrupt
signal false because INEA is clear and will clear all the write-one-to-
reset bits such as RINT, TINT and the error bits; it will not alter the

STRT, INIT or STOP bits nor any interrupt-cause bits which came
true after NICSRO was read.

d. Write NICSRO with only INEA to enable interrupts again.

Service all the interrupt and error conditions indicated by the flags
in the data in RO.

f. Exit from the interrupt service routine.

Be sure to access NICSRO only with instructions which do a single
access, such as MOVE. Instructions such as BIS which do a read-modify-
write operation can have unintended side effects.

An interrupt is signalled to the host only when the last buffer of a
multibuffer (chained) packet is received or transmitted. However, the
OWN bit in each descriptor is cleared as soon as the LANCE has
finished with that portion of the packet, and the mutual exclusion rule
makes it safe for the host to process such a descriptor and its buffer.

When a transmitter underflow occurs (UFE is set in a transmit descriptor
because the silo is not filled fast enough), the LANCE will turn off its
transmitter and the LANCE must be restarted to turn the transmitter
back on again. This can be done by setting STOP in NICSRO and
then setting STRT in NICSRO (DTX will still be clear in the chip’s
internal copy of NIIBWO). It is not necessary to set INIT to reread the
initialization block.

Architecture 141

Note that setting STOP will immediately terminate any reception which
is in progress. If the status of a receive descriptor has been updated and
its OWN bit is now clear, then the contents of its buffer are valid. If the
incoming packet was chained into more than one buffer, however, the
packet is only valid if its last buffer has been completed (the one with
the ENP bit set).

The network controller hardware requires up to five seconds after power
on to become stable. Self-test routines must delay at least this time
before attempting to use the controller for either internal or external
testing.

The CAE bit (loss of carrier) may be set in the transmit descriptor when a
packet is sent in internal loopback mode. When the LANCE is operating
in internal loopback mode and a transmission is attempted with a non-
matching address, the LANCE will correctly reject that packet. If the
next operation is an internal loopback transmission without first resetting
the LANCE, the packet will not be sent and LCAR will be set in the
transmit descriptor for that packet. The receive descriptor will still be
owned by the LANCE. To avoid this problem, the LANCE should be
reinitialized after each internal loopback packet.

The ONE flag is occasionally set in a transmit descriptor after a late
collision. The LANCE does not attempt a retransmission even though
ONE may be set. The host should disregard ONE if the COE flag is also
set.

The chip’s internal copy of NICSR1 may become invalid when the chip
is stopped. The NICSR1 and NICSR2 registers should always be loaded
prior to setting INIT to initialize the LANCE chip.

Attempting an external loopback test on a busy network can cause a
silo pointer misalignment if a transmit abort occurs while the chip was
preparing to transmit the loopback packet. The resulting retransmission
may cause the transmitter enable circuit to hang, and the resulting
illegal length transmission must be terminated by the jabber timer in the
transceiver. It is unlikely that there will be a corrupted receive buffer
because the reception that caused the transmit abort will usually not
pass address recognition.

Since external loopback is a controlled situation it is possible to
implement a software procedure to detect a silo pointer misalignment
problem and prevent continuous transmissions. Since the test is being
done in loopback the exact length and contents of the receive packet are
known; thus the software can determine whether the data in the receive
buffer has been corrupted.

142 Architecture

On transmission the diagnostic software should allow up to 32 retries
before a hard error is flagged. This is not to say that 32 errors are allowed
for each condition; the sum of all errors encountered in the test should
not exceed 32. The diagnostic software should expect to get a transmit
done interrupt with 1 millisecond of passing the transmit packet to the
LANCE. If this does not occur, it should reset the LANCE and retry the
test. This prevents a continuous transmission (babble) longer than the
longest legal packet in case the LANCE has become hung.

10. When the chip is in internal loopback mode and a CRC error is forced, a
framing error will also be indicated along with the CRC error. In external
loopback, when a CRC error is forced only that error is indicated; a
framing error is indicated only if the LANCE actually receives extra bits.

11. When transmit data chaining, a buffer error will be set in the current
transmit descriptor if a late collision or retry error occurred while the
LANCE was still transmitting data from the previous buffer. The BUE
error in this case is an invalid error indication and should be ignored.
BUE is valid only when UFE is also set.

12. When the host program sets up a packet for transmission in chained
buffers, it should set the OWN bits in all the transmit buffers except the
first one (i.e., the one containing the STP bit), and then as its last act
set the OWN bit in the first descriptor. Once that bit is set, the LANCE
will start packet transmission and may encounter an underflow error if
the subsequent descriptors for the packet are not available.

13. Do not set INIT and STRT in NICSRO at the same time. After stopping
the chip, first set INIT and wait for IDON, then set STRT. If both are set
at once, corrupt transmit or receive packets can be generated if RENA
becomes true during the initialization process.

3.10 Mass Storage Interface

The KA640 contains a DSSI bus interface which is implemented via the
SII chip and four 32K x 8 static RAMs. The interface allows the KA640 to
transmit packets of data to, and receive packets of data from, up to seven
other DSSI devices (typically RF type disk drives and TF type streaming
tape drives). The KA640 also provides for the DSSI bus termination with
removable resistors.

This interface contains 27 registers (of which only 16 are used) and 128K
bytes of 32 bit wide RAM (MSI buffer RAM). The SII chip transfers data
between the DSSI bus and the MSI buffer RAM, and the processor transfers
data between the MSI buffer RAM and main memory (typically using MOVC
instructions).

Architecture 143

3.10.1 DSSI Bus Overview

Some of the major characteristics of the DSSI bus are:

Eight bit data path
Eight devices supported
Parity checking
Distributed arbitration
Synchronous operation

Maximum bandwidth of 4M bytes/sec

Communication on the DSSI bus is limited to two devices at a time. Each
device has an unique ID assigned to it.

When two devices communicate on the DSSI bus, one acts as the initiator,
the other as the target. The initiator is the device that starts a DSSI bus
transaction. The target device controls the remainder of the DSSI bus
transaction. The direction of data flow is from the initiator to the target

A DSSI bus transaction consists of six phases:

1.
2.

WAIT—During this phase the initiator waits for the bus to become free.

ARBITRATION—During this phase control of the bus is taken by the
initiator with the highest ID.

SELECTION—During this phase the initiator tries to make a logical
connection with the target.

COMMAND OUT—During this phase the initiator sends the six bytes
of command information specified in the command block to the target
(Section 3.10.5).

DATA OUT—During this phase the initiator sends from one to 4K bytes
of data to the target.

STATUS IN—During this phase the target sends one byte of status
information on the transaction to the initiator. The initiator writes this
byte to the status word in the command block.

A block diagram of DSSI bus sequences, showing these six phases, is given
in Figure 3-67.

144 Architecture

BUS FREE

!

ARBITRATION

Q)

I

SELECTION

(2)

!

(4)

COMMAND OUT

(3)

;

DATA OUT

(5)

:

STATUS IN

(6)

Figure 3-67 DSSI Bus Sequences

The normal path follows vertically downward. Exception paths are listed

below:

The initiator arbitrates and loses.

2. The target failed to respond or responded with an unexpected bus

phase.

3. The operation was timed out or the target responded with unexpected

phase.

4. The target detected a parity error or information mismatch in the
command, or the target did not have any buffer space available.

5. The operation was timed out or the target responded with an unexpected

phase.

MA-X0075-88

Architecture 145

3.10.2 Target Operation

When the KA640 is functioning as a target device, the SII chip expects
receive buffers to be established in the 128KB MSI buffer RAM (addresses
2010 0000 14 through 201F FFFF q4). Receive buffers must be set up by the
processor and start on quadword boundaries. These buffers consist of a
command block (Section 3.10.5) and a receive data block. These buffers are
linked together by the first word in the command block, and the MSI_TLP
register is used to point to the first buffer in the list (Figure 3-68).

MSL_TLP RECEIVE
BUFFER #1
: BASE
: BASE +2
I COMMAND |
BLOCK : BASE +4
: BASE +6
: BASE +8
: BASE +10
RECEIVE : BASE +12
— DATA —]
BLOCK : BASE +14
-]
L : BASE +16
T (ekevres) | :BASE«+s110
: BASE +4112
RECEIVE
BUFFER NO.2
A . -
- ° {

ETC.
MA-X0076-88

Figure 3-68 Target Operation

During target operation, the SII chip uses the MSI_TLP register to determine
the address of the next free receive buffer to be used for this DSSI bus
transaction. As the SII chip fills the buffer, it will reload the MSI_TLP for
the next target transaction with the buffer’s thread word (the first word in
the command block). The target then places the DSSI bus in the status in

146 Architecture

phase, sends a status byte to the initiator and updates the status byte in its
buffer’s command block.

3.10.3 Initiator Operation

When the KA640 is functioning as a initiator device, the SII chip expects
transmit buffers to be established in the 128K Byte MSI BUFFER RAM
(addresses 2010 0000 44 through 201F FFFF 44). These buffers must be set up
by the processor and start on quadword boundaries. These buffers consist of
a command block (Section 3.10.5) and a transmit data block. These buffers
are linked together by the first word in the command block, and the MSI_
ILP register is used to point to the first buffer in the list.

3.10.3.1 Transmit Data Segment Links

The transmit data block is broken into one or more segments. These
segments need not reside in contiguous locations in the MSI buffer RAM and
are connected together by the link. Pictorially, the link appears as shown in
Figure 3-69.

15 14 [}

MSILWO: | Nk LENGTH OF NEXT SEGMENT

MSILW1: ADDRESS OF NEXT SEGMENT (ADDRESS BITS <17:02>)

Figure 3-69 Transmit Data Segment Links

3.10.3.1.1 MSI Link Word 0
A definition of the bit fields of MSI link word 0 (MSILWO) is given below.

Data Bit Definition

MSILWO <15> LNK. When set, this bit indicates that there is a data segment
following the next one. When clear the next data segment is
the last in this data block.

MSILWO Length of next segment. This field contains the number of
<14:0> bytes in the next data segment.

3.10.3.1.2 MSI Link Word 1
A definition of the bit field of MSI link word 1 (MSILW1) is given below.

Architecture 147

Data Bit Definition
MSILW1 Address of next segment. This field contains bits <17:2> of
<15:0> the next quadword aligned data segment.

Each segment of data must be preceded by the above described link. The
number of linked segments is only limited by the maximum size of the data
block (4K bytes) (Figure 3-70).

MSI_IPL TRANSMIT
BUFFER #1
: BASE
: BASE +2
| COMMAND ™ |
| BLOCK e BASE +4
: BASE +6
: BASE +8
: BASE +10
j : BASE +12
LINK —
\-— : BASE +14
DATA SEG _]
] L
—~ . T
0
_l LINK 1 TRANSMIT
I._ DATA BLOCK
L DATA SEG ‘J'

NEXT TRANSMIT

BUFFER
MA-X0078-88

Figure 3-70 Initiator Operation

When the KA640 is the initiator, the SII chip uses the MSI_IPL register
to determine the address of the transmit buffer to be used for this DSSI

148 Architecture

transaction. As the SII chip is processing a transmit buffer, it loads an
internal register with the second word of the link word as long as the LNK is
enabled. This chaining continues until a LNK value of zero is encountered.
The SII will then transfer the next segment and deposit the status of the
entire transfer in the status area of the command block. The MSI_IPL register
is then loaded with the buffer’s thread word (the first word in the command
block) for the next initiator operation. If an error of any kind occurs during
the processing of a transmit buffer, the SII will stop the transmit operation
by clearing the output enable bit MSI_DSCTRL <14>.

3.10.4 Adding To A Buffer List

The fol]bwing enumerates the method required to dynamically add new
buffers to the MSI_TLP and MSI_IPL lists:

1. Fill in the new buffer command block and ensure that the MSB of the
status word is zero.

Make the thread word of the new buffer zero.

Replace the thread word of the last item on either the MSI_IPL or MSI_
TLP list with the new thread word, pointing to the new buffer.

4. 1If the MSI_IPL or MSI_TLP is zero, load it with the address of the new
buffer.

3.10.5 MSI Command Block (MSICB)

The MSI command block is a 12 byte data structure that the processor has to
build at the start of all transmit and receive buffers in the MSI buffer RAM.

The format for the MSI command block is shown in Figure 3-71.

15 o
MSICBWO THREAD WORD , : BASE +0
MSICBW1 STATUS WORD : BASE +2
MSICBW2 COMMAND WORD : BASE +4
MSICBW3 : BASE +6
MSICBW4 B COMMAND BYTES T : BASE +8
MSICBWS B o : BASE +10

MA-X0079-88

Figure 3-71 MSI Command Block

Architecture 149

3.10.5.1 MSI Command Block Word 0

Word 0 of the MSI command block (MSICBWO), also referred to as the
thread word, resides in the MSI buffer RAM at the base address of the MSI
command block. The thread word contains bits <17:2> of the base address
of the next buffer. Bit 0 of this field must always be set to 0, since buffers
must start on a quadword boundary. A thread word of zero indicates that
there are no more buffers.

The format for MSICBWO is shown in Figure 3-72.

15 0

MSICBWO | NEXT BUFFER ADDRESS < 17:2 > :BASE +0

MA-X0085-88

Figure 3-72 MSI Command Block Word 0

3.10.5.2 MSI Command Block Word 1

Word 1 of the MSI command block (MSICBW1), also referred to as the
status word, resides in the MSI buffer RAM at the base + 2 address of each
MSI command block. This word indicates the status of the current DSSI
transaction and is used by the processor to find out which buffers the SII
chip has finished processing.

The format for MSICBW1 is shown in Figure 3-73.

15 14 876543210

MSICBW1 l I UNUSED I ‘] l l l l | |:BASE¢2

RST
TMO
XSM
BPH
STT
PHS
DSA
PAR

DNE

MA-X0080-88

Figure 3-73 MSI Command Block Word 1
The bit fields in MSICBW1 represent the following:

150 Architecture

Data Bit

Definition

MSICBW1<15>

MSICBW1<14:8>
MSICBW1<7>

MSICBW1<6>

MSICBW1<5>

MSICBW1<4>

MSICBW1<3>

MSICBW1<2>

MSICBW1<1>

(DNE) Done. When set, this indicates that the SII chip has
used this buffer (either successfully or not). When clear the SlI
chip has not used this buffer. Note, if this bit is set when the
SII chip begins processing a buffer, the buffer is not used.

Unused.

(RST). Reset. When set, a DSSI device reset the DSSI bus
during this buffer’s transaction.

NOTE

If a DSSI bus reset occurred before the SII chip reached
status in phase, the SII chip will clear MSI_DSCTRL
<7> (output enable bit) and interrupt the processor
without writing any status.

(TMO) Timeout. When set, one of the MSI_DSTMO timers
has expired.

NOTE

If the timeout occurred before the SII chip reached
status in phase, the SII chip will clear MSI_
DSCTRL<7> (output enable bit) and interrupt the
processor without writing any status.

(XSM) Checksum. When set, the received checksum does not
agree with that computed by the SII chip. Note the XSM bit is
only valid when the KA640 is a target.

(BPH). Bad phase. When set, an illegal DSSI phase was
entered by the target. Note the BPH bit is only valid when
the KA640 is the initiator.

(STT) Status. When set, ACK was not returned by the target.
Note the STT bit is only valid when the KA640 is the initiator.

(PHS) Phase. When set, the DSSI bus phase changed before
the initiator expected. Note the PHS bit is only valid when the
KA640 is the initiator.

(DSA). DSSI. When set, the target detected an error in the
command bytes. Note the DSA bit is only valid when the
KA640 is the target.

Architecture 151

Data Bit Definition

MSICBW1<0> (PAR). Parity. When set, a parity error on the DSSI bus was
detected.

Please note that the following cases will not cause status to be written in
memory:

* DSSI bus reset occurs before status in phase is reached.

* Initiator selects a non-existent device (initiator timeout will cause a DSSI
bus reset).

* Target disconnects from the DSSI bus before status in phase is reached.

3.10.5.3 MSI Command Block Word 2

Word 2 of the MSI command block (MSICBW2), also referred to as the
command word, resides in the MSI buffer RAM at the base +4 address of
each MSI command block. This word contains information regarding the
transfer.

The format for MSICBW2 is shown in Figure 3-74.

15 14 3210
1
MSICBW2 LL UNUSED [1 : BASE+4
1E J DEST

D
MA-X0081-88

Figure 3-74 MSI Command Block Word 2

The bit fields in this memory word represent the following:

Data Bit Definition

MSICBW2<15> (IE). Interrupt enable. When set, the SII chip will interrupt
the KA640 upon the completion (successful or not) of this
transaction. When clear the SII chip will not generate an
interrupt. Interrupts are posted at IPL14 with a vector offset of
C4 16

MSICBW2<14:3> Unused.

MSICBW2<2:0> (DEST ID). Destination ID. The ID of the target to be selected.
This field is only used when the KA640 is the initiator.

152 Architecture

3.10.5.4 MSI Command Block Words 3-5

Words 3-5 of the MSI command block (MSICBW3-5), also referred to as
command bytes, reside in the MSI buffer RAM at the base+6 through
base + 10 address of each MSI command block. These 6 bytes are sent out
during the command out phase by the initiator. Some of the information
contained in these bytes are:

* The target and initiator IDs

e The number of data bytes which will be transferred by the initiator in
the data out phase

¢ The DSSI opcode.

3.10.6 MSI Registers

The SII chip is very powerful and diverse. The KA640 does not use all its
functionality. As a result of this the KA640 does not use all of the SII's
twenty-seven processor visible registers. The following is a description of
the 16 registers needed to control the SII chip during DSSI bus operations.

NOTE

The other 11 registers are not used during DSSI operations and should not
be accessed.

3.10.6.1 MSI Control and Status Registers
These five registers are used to configure, control and monitor the SII chip.

3.10.6.1.1 MSI Control/Status Register

The mass storage interface control/status register (MSI_CSR), address 2008
460C 14, contains control and status information about the general operation
of the SII chip in regard to the DSSI bus, including various enable bits. The
format of the mass storage control/status register is shown in Figure 3-75.

31 543210

110
wo— |

SLE
PCE
1E

I UNUSED

MA-X0082-88

Figure 3-75 MSI Control/Status Register

Architecture 153

Data Bit

Definition

MSI_CSR <31:5>
MSI_CSR <4>
MSI_CSR <3>

MSI_CSR <2>

MSI_CSR <1>

MSI_CSR <0>

Unused. Reads return undefined results, writes have no
effect.

(MBQ) Must be one. Read/Write. These bits must read as
zero and be written as one.

(MBZ) Must be zero. Read/Write. These bits must read as
zero and be written as zero.

(SLE) Selections. Read/Write. When set, the SII chip will
respond to selections. When clear the SII chip will not
respond to an initiator trying to select it. Cleared on power-
up, the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

(PCE) Parity check. Read/Write. When set, the SII chip
reports parity errors. When clear the SlI chip will continue
to check parity but will not report any errors during the
status in phase. Cleared on power-up, the negation

of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

(IE) Interrupt enable. Read/Write. When set, interrupts
are enabled. The SlI chip posts interrupts when an error
occurs or at the end of a transaction (successful or not).
Interrupts are posted at IPL14 with an offset of C4 1. When
clear interrupts are disabled. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

3.10.6.1.2 MSI DSSI Control Register

The mass storage interface DSSI control register (MSI_DSCTRL), address
2008 4644 14, contains information to control the SII chip. The format of the
mass storage interface DSSI control register is shown in Figure 3-76.

154 Architecture

a1 151413 876543210
UNUSED IHUNUSEDJHHHH
ose — oH7 —
out CHS

"CH§
CH4
CH3
CH2
CH1
CHO

MA-X0083-88

Figure 3-76 MSI DSSI Control Register

Data Bit

Definition

MSI_DSCTRL <31:16>

MSI_DSCTRL <15>

MSI_DSCTRL <14>

MSI_DSCTRL <13:8>

MSI_DSCTRL <7>

Unused. Reads return undefined results. Writes have
no effect.

(DSE) DSSI Enable. Read/Write. This bit must be set
to one by the processor for the SII chip to work on a
DSSI bus. This bit is cleared by the SII chip if: the SII
chip selects or is selected by a non-DSSI device, the SII
chip is selected with Attention. It is also cleared on
power-up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

(OUT) Output enable. Read/Write. When set, the SlI
chip is enabled to send transmit buffers. This bit is
cleared by the SII chip if: the MSI_IPL becomes zero,
the initiator timer MSI_DSTMO <3:0> expires, or a
transmit buffer is not terminated with ACK. It is also
cleared on power-up, the negation of DCOK when SCR
< 7> is clear or writes to IPR55 (IORESET).

Unused. Reads return undefined results, writes have
no effect.

(CH7) Channel 7. Read/Write. This bit is used to
determine if device 7 is an DSSI device. This bit must
be set to one by the processor. Cleared on power-up,
the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

Architecture 155

Data Bit

Definition

MSI_DSCTRL <6>

MSI_DSCTRL <5>

MSI_DSCTRL <4>

MSI_DSCTRL <3>

MSI_DSCTRL <2>

MSI_DSCTRL <1>

MSI_DSCTRL <0>

(CH6) Channel 6. Read/Write. This bit is used to
determine if device 6 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH5) Channel 5. Read/Write. This bit is used to
determine if device 5 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH4) Channel 4. Read/Write. This bit is used to
determine if device 4 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH3) Channel 3. Read/Write. This bit is used to
determine if device 3 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH2) Channel 2. Read/Write. This bit is used to
determine if device 2 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CH1) Channel 1. Read/Write. This bit is used to
determine if device 1 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(CHO) Channel 0. Read/Write. This bit is used to
determine if device 0 is a DSSI device. This bit must be
set to one by the processor. Cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

156 Architecture

3.10.6.1.3 MSI DSSI Connection Register

The mass storage interface DSSI connection register (MSI_CSTAT), address
2008 4648 14, contains interrupt status related to SII chip connections. The
format of the mass storage interface DSSI connection register is shown in
Figure 3-77.

31 161514131211109 8 7 6 5 4 3 2 1 0

l woseo | [JITITIITITTT)

UNU
RST
BER
0BC
TZ
BUF
LON
SCH
CON
DST
TGT
SWA
SiP
LST
MBZ

T_

MA-X0084-88

Figure 3-77 MSI DSSI Connection Register

Architecture 157

Data Bit Definition
MSI_CSTAT Unused. Reads return undefined results, writes have no
<31:16> - effect.

MSI_CSTAT <15>

MSI_CSTAT <14>

MSI_CSTAT <13>

MSI_CSTAT <12>

(CI) Composite interrupt. Read only. This bit is the
composite error bit of the MSI_CSTAT register. It is the
logical OR of bits MSI_CSTAT <13:11> and MSI_CSTAT
<9:7>. When set, the processor will be interrupted at
IPL14 with an offset of C4 4 if interrupts are enabled.
Cleared on power-up, the negation of DCOK when SCR
< 7> is clear or writes to IPR55 (IORESET).

(UNU) Unused. Reads return undefined results, writes
have no effect.

(RST) Reset asserted. Read/Write one to clear. When set,
the DSSI bus was reset by one of the eight DSSI devices.
The SlI chip will automatically disconnect itself from the
bus and interrupt the processor at IPL14 with an offset of
C4 4+. This bit is write one to clear and is also cleared on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET).

(BER) Bus error. Read/Write one to clear. This bit is set to
one on any of the following conditions:

e Buffer overflow
* Req/Ack offset exceeded
e lllegal phase change

While this bit is asserted, the SII chip will not receive or
transmit data. This bit is write one to clear and is also

cleared on power-up, the negation of DCOK when SCR
< 7> is clear or writes to IPR55 (IORESET).

158 Architecture

Data Bit

Definition

MSI_CSTAT <11>

MSI_CSTAT <10>

MSI_CSTAT <9>

MSI_CSTAT <8>

MSI_CSTAT <7>

(OBC) OUT_EN Bit cleared. Read/Write one to clear. This
bit is set to one on any of the following conditions:

¢ The SII chip has received RSTIN. (The DSSI bus has
been reset).

¢ The MSI_.DSTMO (MSI_.DSTMO <3:0> or MSI_
DSTMO <7:4>) has expired.

* As an initiator, the attached target disconnects
unexpectedly.

This bit is write one to clear and is also cleared on power-
up, the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

(TZ) Target pointer zero. Read only. When set, the MSI_
TLP register contains a value of zero. This bit is set on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET).

(BUF) Buffer service. Read/Write one to clear. When

set, the SlI chip has begun processing a transmit buffer
destined for non-DSSI device. Note, this bit should always
be zero since all devices must be DSSI. This bit is write
one to clear and is also cleared on pawer-up, the negation
of DCOK when SCR <7> ijs clear or writes to IPR55
(IORESET).

(LDN) List element done. Read/Write one to clear. When
interrupts are enabled, this bit is set if the SII chip has
completed a buffer, successfully or not. This bit is write
one to clear and is also cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

(SCH) State change. Read/Write one to clear. Set if MSL_
DSCTRL <15> is cleared causing the SII chip to leave
DSSI mode. This bit is write one to clear and is also
cleared on power-up, the negation of DCOK when SCR
<7> is clear or writes to IPR55 (IORESET).

Architecture 159

Data Bit

Definition

MSI_CSTAT <6>

MSI_CSTAT <5>

MSI_CSTAT <4>

MSI_CSTAT <3>

MSI_CSTAT <2>

MSI_CSTAT <1>

MSI_CSTAT <0>

(CON) Connected. Read only. When set, the SII is
connected to another device on the DSSI bus. Clear while
the SII chip is not connected to another device on the
DSSI bus. This bit is cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET). ‘

(DST) Destination. Read only. When set, the SII is the
destination of the current transaction. In other words,
this bit is set if the SII chip was selected by another device
on the DSSI bus. This bit is cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to
IPR55 (IORESET).

(TGT) Target. Read only. When set, the SII chip is
operating as a target during the current transaction.
This bit is cleared on power-up, the negation of DCOK
when SCR <7> is clear or writes to IPR55 (JORESET).

(SWA) Selected with attention. Read only. When set,
the SII chip was selected with attention. This bit is write
one to clear and is also cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

(SIP) Selection in progress. Read only. When set, the SII
chip is currently in a selection process. This is useful in

determining if the desired target is unavailable. This bit

is write one to clear and is also cleared on power-up, the
negation of DCOK when SCR <7> is clear or writes to

IPR55 (IORESET).

(LST) Lost. Read only. When set, the SII lost arbitration.
It is cleared by the SII chip when it begins a selection
process and on power-up the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(MBZ) Must be zero. Read Only. This bit will be read as
zero.

3.10.6.1.4 MSI ID Register
The mass storage interface ID register (MSI_ID), address 2008 4610 i¢,
contains the three bit ID number of the KA640 on the DSSI bus. This

value is placed on the DSSI bus during the selection phase so the target
knows who selected it.

160 Architecture

The format of the mass storage interface ID register is shown in Figure 3-78.

31 161514 3210

I UNUSED ’ [UNUSED \ I

I/O—‘ ' KA640 BUS ID I

MA-X0086-88

Figure 3-78 MSI ID Register

Data Bit Definition
MSI_ID Unused. Reads return undefined results, writes have no effect.
<31:16>

MSLID <15> (I/0) Input/Output. Read/Write. When set, the KA640's ID
is determined by MSI_ID <2:0>. When clear the KA640’s ID
is determined by on board jumpers and MSI_ID <2:0> will
reflect the one’s complement of the KA640’s DSSI ID. Cleared
on power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET). Note that if this bit is cleared,
writing to this register has no effect.

MSLID <14:3> Unused. Reads return undefined results, writes have no effect.

MSLID <2:0> KA640 Bus ID. Read/Write. When MSIL_ID <31> is clear (the
normal operation configuration), this field contains the DSSI
ID of the KA640, as determined by the on board jumpers.
When MSLID <31> is set, any DSSI ID value may be input
(used, for example, to temporarily override the on board
jumpers for test or diagnostic purposes). Indeterminate on
power-up, the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

3.10.6.1.5 MSI DSSI Timeout Register

The mass storage interface DSSI timeout register (MSI_DSTMO), address
2008 461C 14, contains the timeout values of the SII chip for both the initiator
and target roles. Also contained in this register is a single enable bit that
governs both timers.

The format of the mass storage interface DSSI timeout register is shown in
Figure 3-79.

Architecture 161

16 1514 876543210

o Towsee | []

_J TARGET_I 'N"_l
ENA TIMEOUT—TIMEOUT
VALUE VALUE
MA-X0087-88

Figure 3-79 MSI DSSI Timeout Register

Data Bit

Definition

MSI_DSTMO <31:16>

MSI_DSTMO <15>

MSI_DSTMO <14:8>

MSI_DSTMO <7:4>

MSI_DSTMO <3:0>

Unused. Reads return undefined results, writes have
no effect.

(ENA) Enable. Read/Write. When set, both the DSSI
target and DSSI initiator timers are enabled. When
clear, both the DSSI target and DSSI initiator timer are
disabled. Cleared on power up, the negation of DCOK
when SCR < 7> is clear or writes to IPR55 (IORESET).

Unused. Reads return undefined results, writes have
no effect.

Target timeout value. Read/Write. This field contains
the number of 200 microsecond intervals which may
elapse while the KA640 is the target. The timer starts
from the point when the KA640 was selected ends at
the next observed bus free phase. Cleared on power_
up, the negation of DCOK when SCR <7> is clear or
writes to IPR55 (IORESET).

Initiator timeout value. Read/Write. This field contains
the number of 200 microsecond intervals which may
elapse, from the last observed bus free phase, until the
next observed bus free phase, while the KA640 is in
the initiator role; or the number of 200 microsecond
intervals which may elapse before the KA640, acting as
a potential initiator, detects a bus free phase. Should
the timer expire under either of these two conditions
the SII chip will assert a DSSI bus reset. Cleared on
power_up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

162 Architecture

3.10.6.2 List Pointer Registers

These are the two registers used as address pointers for next incoming and
outgoing data buffers.

3.10.6.2.1 MSI Target List Pointer Register

The mass storage interface target list pointer register (MSI_TLP), address
2008 463C 1¢, contains the address to which the SII chip will write the next
free receive buffer. The SII chip will automatically reload the register with
the receive buffer’s thread word upon completion of the current transaction.
Note this register must contain bits <17:2> of a quadword aligned address,
therefore bit 0 will always be zero. The SII chip will interpret an address of
0000 14 as the end of a linked list.

The format of the mass storage interface target list pointer register is shown
in Figure 3-80.

31 16 15 10

ADDRESS OF NEXT FREE
| UNUSED I RECEIVE BUFFER LJ

ez —)

MA-X0088-88

Figure 3-80 MSI Target List Pointer Register

Data Bit Definition

MSLTLP <31:16> Unused. Reads return undefined results, writes have no
effect.

MSILTLP <15:1> Address of next incoming buffer. Read/Write. This field

contains bits 17:3 of the quadword aligned address to
where the SII chip will find the next free receive buffer.
Cleared on powerup, the negation of DCOK when SCR
< 7> is clear or writes to IPR55 (IORESET).

MSI_TLP <0> (MBZ) Must be zero. Read/Write. This bit is read as zero
and must be written as zero.

NOTE

This register can only be written by the processor when the register is zero
or MSI_DSCTRL <15> (DSE) is clear; all other attempts to write to this
register have no effect.

Architecture 163

3.10.6.2.2 MSI Initiator List Pointer Register

The mass storage interface initiator list pointer register (MSI_IPL), address
2008 4640 14, contains the address from which the SII chip will find the next
transmit buffer. The SII chip will automatically reload this register with the
transmit buffer’s thread word upon completion of the current transaction.
Note this register must contain bits <17:2> of a quadword aligned address,
therefore bit 0 must always be zero. The SII chip will interpret an address of
0000 4¢ as the end of a linked list. The format of the mass storage interface
initiator list pointer register is shown in Figure 3-81.

31 1615 10

N ADDRESS OF NEXT
l UNUSED l TRANSMIT BUFFER l I

woz_]

MA-X0089-88

Figure 3-81 MSI Initiator List Pointer Register

Data Bit Definition

MSI_IPL <31:16> Unused. Reads return undefined results, writes have no
effect.

MSLIPL <15:1> Address of next outgoing buffer. Read/Write. This field

contains bits 17:3 of the quadword aligned address of
where the SII chip will find the next transmit buffer.
Cleared on power_up, the negation of DCOK when SCR
< 7> is clear or writes to IPR55 (IORESET).

MSLTLP <0> (MBZ) Must be zero. Read/Write. This bit will read as
zero and must be written as zero.

NOTE

This register can only be written to by the processor when the register is
zero or MSI_DSCTRL <15> (DSE) is clear; all other attempts to write to
this register have no effect.

3.10.6.3 Diagnostic and Test Registers

This group of registers is used for test and diagnostic purposes only. They
should never be used during normal operation.

164 Architecture

3.10.6.3.1 MSI Diagnostic Control Register

The mass storage interface diagnostic control register (MSI_DICTRL), at
address 2008 4654 14, allows the SII chip to be placed in one of three
diagnostic test modes. The format of the mass storage interface diagnostic
control register is shown in Figure 3-82.

31

43210

[

TTTT]

I™
PRE
ELM
TST

[

MA-X0090-88

Figure 3-82 MSI Diagnostic Control Register

Data Bit

Definition

MSI_DICTRL<31:4>

MSI_DICTRL<3>

MSI_DICTRL<2>

Unused. Reads return undefined results. Writes have no
effect.

(ITM) Internal test mode. Read/Write. When set, the
values written to MSI_DR0O, MSI_DR1 and MSI_DR2 are
to be looped back into the chip. This will enable the
processor to insert test vectors into the chip during power-
up diagnostics. Note that the MSI_DICTRL<1> (ELM)
must be deasserted for this test to be meaningful. This
bit is cleared on power-up, the negation of DCOK when
SCR< 7> is clear or writes to IPR55 (IORESET).

(PRE) Port enable. Read/Write. When set, the off-chip
drivers to the DSSI port are enabled. After a reset, the
KA640 will be disconnected from the bus (this bit will
be zero). The primary purpose of this bit is to allow SlII
chip diagnostics to run without affecting the rest of the
DSSI bus (PRE=0). This bit is cleared on power-up, the
negation of DCOK when SCR<7> is clear or writes to
IPR55 (IORESET).

Architecture 165

Data Bit

Definition

MSI_DICTRL<1>

MSI_DICTRL<0>

(ELM) External loopback mode. Read/Write. When set, the
SII chip is in external loopback mode. In this mode, MSI_
DRO, MSI_DR1 and MSI_DR?2 are used to directly control
the DSSI data and control lines, as well as the external bus
transceiver. Note an external loopback connector must be
in place when using this test mode. This bit is cleared

on power-up, then negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

(TST) Test mode. Read/Write. When set, to one (1), the
SII chip is in test mode. This enables the user to replace
the 20 MHz clock. The new clock is pulsed each time the
MSI_CLOCK register is written. This bit is cleared on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET).

3.10.6.3.2 MSI Diagnostic Register 0

The mass storage interface diagnostic register 0 (MSI_DRO0), address 2008
4600 4 is used during internal and external loopback diagnostic tests. The
fields in this register are used to emulate the data lines of the DSSI.

The format of mass storage interface diagnostic register 0 is shown in

Figure 3-83.

31

987]

UNUSED I ‘ DATA <7:0 >

PTY —J

MA-X0091-88

Figure 3-83 MSI Diagnostic Register 0

166 Architecture

Data Bit Definition

MSI_DRO <31:9> Unused. Reads return undefined results, writes have no
effect.

MSI_DRO <8> (PTY) Parity. Read/Write. This bit contains the parity

bit for the data byte MSI_DR0O <7:0>. Indeterminate on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET). Note, parity checking is
only enabled if MSI_CSR <1> PCE is set to 1. The Sl
chip chip uses odd parity checking.

MSI_DRO <7:0> (DATA) Read/Write. This field contains the current byte
on the data bus. Indeterminate on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

NOTE
This register should NOT be used during normal operation.

3.10.6.3.3 MSI Diagnostic Register 1

The mass storage interface diagnostic register 1 (MSI_DR1), address 2008
4604 ¢ is used during internal and external loopback tests. In external
loopback mode an external loopback connector in place allows values
written into MSI_DRO to be read back in MSI_DR1 and values written
into MSI_DR1 to be read back in MSI_DRO. In internal loopback mode
it acts as the DSSI bus emulating some of the DSSI control lines. Note
that all the control lines are asserted high in internal loopback test
mode. For more information on the SII chip modes see the description
of the mass storage interface diagnostic control register (MSI_DICTRL)
Section 3.10.6.3.1. The format of mass storage interface diagnostic register
1 is shown in Figure 3-84.

31

Architecture 167

9876543210

UNUSED i

vssv_j

SEL
RST
ACK
REQ
ATN
MSG
Cc/D
170

MA-X0092-88

Figure 3-84 MSI Diagnostic Register 1

Data Bit

Definition

MSI_DR1 <31:9>

MSI_DR1 <8>

MSI_DR1 <7>

MSI_DR1 <6>

Unused. Reads return undefined results, writes have no
effect.

(BSY) Busy. Read/Write. In internal loopback test mode,
MSI_DICTRL <3> set, this bit emulates the DSSI BSY
bus signal. In external loopback mode this bit is linked to
MSI_DRO <8> (PTY) for driver testing. Indeterminate on
power-up, the negation of DCOK when SCR <7> is clear
or writes to IPR55 (IORESET).

(SEL) Select. Read/Write. In internal loopback test mode,
MSI_DICTRL <3> set, this bit emulates the DSSI SEL bus
signal. In external loopback mode this bit is linked to MSI_
DRO <7> (DATA <7>) for driver testing. Indeterminate
on power-up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

(RST) Reset. Read/Write. In internal loopback test mode,
MSI_DICTRL <3> set, this bit emulates the DSSI RST bus
signal. In external loopback mode this bit is linked to MSI_
DRO <6> (DATA <6>) for driver testing. Indeterminate
on power-up, the negation of DCOK when SCR <7> is
clear or writes to IPR55 (IORESET).

168 Architecture

Data Bit

Definition

MSI_DR1 <5>

MSI_DR1 <4>

MSI_DR1 <3>

MSI_DR1 «<2>

MSI_DR1 <1>

MSI_DR1 <0>

(ACK) Acknowledge. Read/Write. In internal loopback
test mode, MSI_DICTRL <3> set, this bit emulates the
DSSI ACK bus signal. In external loopback mode this bit is
linked to MSI_DR0O <5> (DATA <5>) for driver testing,.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(REQ) Request. Read/Write. In internal loopback test
mode, MSI_DICTRL <3> set, this bit emulates the DSSI
REQ bus signal. In external loopback mode this bit is
linked to MSI_DRO <4> (DATA <4>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(ATN) Attention. Read/Write. In internal loopback test
mode, MSI_DICTRL <3 > set, this bit emulates the DSSI
ATN bus signal. In external loopback mode this bit is
linked to MSI_DRO <3> (DATA <3>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(MSG) Message. Read/Write. In internal loopback test
mode, MSI_DICTRL <3> set, this bit emulates the DSSI
MSG bus signal. In external loopback mode this bit is
linked to MSI_DR0O <2> (DATA <2>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR < 7> is clear or writes to IPR55 (IORESET).

(C/D) Control/Data. Read/Write. In internal loopback
test mode, MSI_DICTRL <3> set, this bit emulates the
DSSI C/D bus signal. In external loopback mode this bit is
linked to MSI_DRO <1> (DATA <1>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

(1/0) Input/Qutput. Read/Write. In internal loopback
test mode, MSI_DICTRL <3> set, this bit emulates the
DSSI 1/0O bus signal. In external loopback mode this bit is
linked to MSI_DR0O <0> (DATA <0>) for driver testing.
Indeterminate on power-up, the negation of DCOK when
SCR <7> is clear or writes to IPR55 (IORESET).

NOTE

The data written to this register in internal test mode may differ from that
read back from it, since only certain bits are driven when configured as
a target or initiator. See the register description of MSI_DR2 for more
information on the internal test mode.

Architecture 169

3.10.6.3.4 MSI Diagnostic Register 2

The mass storage interface diagnostic register 2 (MSI_DR2), address 2008
4608 14 is used by diagnostics to directly control the DC563 transceiver chip.
The format of the mass storage interface diagnostic register 2 is shown in

Figure 3-85.

31

43210

UNUSED l l | l l

IGS
TGS
ARB

|

MA-X0093-88

Figure 3-85 MSI Diagnostic Register 2

Data Bit

Definition

MSI_DR2 <31:4>

MSI_DR2 <3>

MSI_ DR2 <2>

MSI_DR2 <1>

MSI_DR2 <0>

Unused. Reads return undefined results. Writes have no
effect.

(IGS) Read/Write. This bit enables the DSSI bus drivers
for ACK and ATN, placing the Sll chip in the initiator
role. Cleared on power-up, the negation of DCOK when
SCR < 7> is clear or writes to IPR55 (IORESET).

(TGS) Read/Write. When set, this bit enables the DSSI
bus drivers for /O, C/D, MSG and ATN, placing the SII
chip in the target role. Cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

(ARB) Arbitrate. Read/Write. This bit enables the
decoding of 1D0..1D2, putting the SII chip in the
arbitration phase. Cleared on power-up, the negation
of DCOK when SCR <7> is clear or writes to IPR55
(IORESET).

(SBE) Read/Write. When set, the DC563 transceiver drives
the DSSI data bus and parity lines. Cleared on power-up,
the negation of DCOK when SCR <7> is clear or writes
to IPR55 (IORESET).

170 Architecture

NOTE

Special care should be taken when writing to this register to avoid
disturbing the DSSI bus during power-up diagnostics. This register should
only be used when an external loopback connector is in place and not during
normal operation.

3.10.6.3.5 MSI Clock Control Register (MSI_CLOCK)

Writing to the mass storage interface clock control register, address 2008
4658 16, generates a pulse which, in test mode (MSI_DICTRL <0> set to
one), replaces the 20 MHz clock input. This can be used to allow the CVAX
CPU to observe and sequence the various state machines inside the SII chip.
The format of the mass storage interface clock control register is shown in
Figure 3-86.

31 o

l UNUSED l

MA-X0094-88

Figure 3-86 MSI Clock Control Register

Data Bit Definition

MSI_CLOCK <31:0> Unused. Write only. Writing to this register generates a
pulse which, in test mode (MSI_DICTRL <0> set to one),
replaces the 20 MHz clock input.

3.10.6.3.6 MSI Internal State Registers (0-3)

These registers, at addresses 2008 465C 1, 2008 4660 15, 2008 4664 14, and
2008 4668 1¢, reflect the status of the SII chip’s internal state machine when
used in test mode. (I.LE. MSI_DICTRL <0> set to one.)

4

KA640 Firmware

This chapter describes the functional operation of the KA640 firmware.
The KA640 firmware gains control of the processor whenever the KA640
performs a processor restart (also called a processor halt). A halt means
only that the control is transferred to the firmware. It does not mean that
the processor actually stops executing instructions.

4.1 KA640 Firmware Features

The firmware is located in two 64-Kbyte EPROMS on the KA640. The
firmware image is duplicated in the local I/O space of the KA640 from 2004
0000 to 2007 FFFF inclusive. The firmware displays diagnostic progress and
error reports on the KA640 LEDs and on the console terminal. It provides
the following features:

e Automatic/manual operating system restart or bootstrap of customer
application images at power-up, on reset, or conditionally after
processor halts. (Restart in this context is not the same as restarting
or resetting the hardware.)

e Automatic/manual bootstrap of an operating system on power-up.

¢ An interactive command language that allows the user to examine and
alter the state of the processor.

e Diagnostic tests that test all components on the board and verify that
the module is working correctly.

e Support of various terminals and devices as the system console.

e Multilingual support. The firmware can be configured to issue its
messages in one of several languages.

In order for the console program to operate, the processor must be
functioning at a level able to execute instructions from the console program
ROM.

171

172 KA640 Firmware

The firmware consists of four major parts:
1. Entry/dispatch code

2. Diagnostics

3. Console emulation

4. Virtual memory bootstrap (VMB)

The entry/dispatch code, located at physical address 2004 0000, is entered
whenever a halt occurs. The processor can halt for a variety of reasons,
including power-up. The reason for the halt is found in <13:08> of internal
processor register (IPR) 43 (decimal) which is the SAVPSL. IPR 42 (decimal),
which is the SAVPC, also contains the value in the program counter (PC)
when the processor was halted. On power-up, the contents of SAVPC are
undefined.

After a halt, the firmware saves the current LED code, then writes an “E”
to the LED. This operation occurs within several instructions upon entry
into entry/dispatch code. It indicates that at least several instructions have
been successfully executed, although if the CPU is functioning properly, this
occurs too quickly to be seen.

The entry code determines what action is to be taken based on the state
of SAVPSL <13:08>, the halt enable bit, and the processor halt action
(CPMBX <01:00>). ;

Table 4-1 lists the actions taken on a halt.

Table 4-1 Actions Taken on a Halt

Halt Enable Power-up Halt? Halt Action Action

T T X Diagnostics, Halt

T F 0 Halt

F T X Diagnostics, Bootstrap, Halt
F F 0 Restart, Bootstrap, Halt

X F 1 Restart, Halt

X F 2 Bootstrap, Halt

X F 3 Halt

*T = condition is true,-F = condition is false, X = doesn’t matter

Multiple actions mean the next action is taken if and only if the previous
action fails. Diagnostics are an exception; if diagnostics fail, then the
processor enters console emulation.

KAB40 Firmware 173

Because the KA640 does not support battery backed-up main memory, a
restart operation is not attempted on power-up. Restart in this context
means the continuation of the operating system. Operating systems provide
a mechanism for continuing operation after a halt condition.

The halt action is a 2-bit field (CPMBX <01:00>) used by operating systems
to force the firmware to enter console emulation, or to restart or reboot
following a halt, regardless of the setting of the halt enable switch.

4.1.1 Power Up Processing

On power-up, the firmware performs several unique actions. It runs initial
power-up tests (IPT), locates and identifies the console device, performs a
language query, and runs the remaining diagnostics.

Power-up actions differ, depending on the state of the mode switch on the
H3602-SA (Figure 2-4), which has three settings: test, query, and normal.
The differences are described in Sections 4.1.2 through 4.1.4.

The purpose of the IPT is to verify that the console private nonvolatile RAM
(NVRAM,) is valid (battery is charged). If it is invalid (battery is discharged),
then the IPT tests and initializes the NVRAM. Prior to checking the NVRAM,
the IPT waits for power to stabilize by monitoring SCR<5>(POK). Once
power is stable, the IPT tests to see if the backup batteries failed by checking
SSCCR<31>(BLO). If the batteries failed, then the IPT initializes certain
nonvolatile data (such as the default boot device) to a known state. It then
initializes other data structures and performs a processor initialization.

Table 4-2 lists the tests that correspond to the LED display.

4.1.2 Mode Switch Set to Test

The purpose of the test position on the H3602-SA is to verify that the
connection between the KA640 and the console terminal is intact.

The firmware toggles between two states, active and passive. During the
active state (3 seconds) the LED is set to 6. The firmware reads the baud
rate and mode switch, then transmits and receives a character sequence.

During the passive state (7 seconds), the LED is set to 3.

If at any time the firmware detects an error (parity, framing, overflow or
no characters), the display hangs at 6. If the configuration switch is moved
from the test position, the firmware continues as if on a normal power-up.

174 KAB40 Firmware

4.1.3 Mode Switch Set to Language Inquiry

If the H3602-SA mode switch is set to language inquiry, or the firmware
detects that the contents of NVRAM are invalid, the firmware queries the
user for the language to be used for displaying critical system messages.

The language inquiry menu is shown in Example 4-1. If no response
is received within 30 seconds, the firmware uses English as the console

language. '

1) Dansk

2) Deutsch (Deutschland/Osterreich)
3) Deutsch (Schweiz)

4) English (United Kingdom)

5) English (United States/Canada)
6) Espanol

7) Francais (Canada)

8) Francais (France/Belgique)

9) Francais (Suisse)
10) Italiano
11) Nederlands
12) Norsk
13) Portugues
14) Suomi
15) Svenska

(1..15):

Example 4-1 Language Selection Menu

After the language inquiry, the firmware proceeds as if the mode switch
were set to normal.

4.1.4 Mode Switch Set to Normal

If the mode switch on the H3602-SA is set to normal, and the firmware
detects that the contents of NVRAM are invalid then the language query
menu is displayed, regardless of the setting of the mode switch.

If the mode switch is set to normal and the contents of NVRAM are valid,
then the saved console language is used.

The firmware then prints out the banner message (first line of Example 4-2).
The letter in the firmware revision number indicates whether the firmware
is pre-field test (X), field test (T), or an official release (V).

KA640 Firmware 175

KA640-A V4.1, VMB 2.4
Performing Normal System Tests

41..40..39..38..37..36..35..34..33..32..31..30..29..28..27..26..
25..24..23..22..21..20..19..18..17..16..15..14..13..12..11..10..
09..08..07..06..05..04..03..

Tests Completed
>>>

Example 4-2 Sample Output with No Errors

The first line contains the firmware revision (V4.1 in this example) and the
virtual memory bootstrap (VMB) revision (V2.4 in this example).

Before a console is established, the only error reporting is via the KA640
diagnostic LEDs (and any LEDs on other boards). Once a console has been
established, all errors detected by the diagnostics are also reported by the
console. When possible, the diagnostics issue an error summary on the
console. For example, diagnostic test failures, if specified in the firmware
script, produce an error display in the format shown in Example 4-3.

Performing normal system tests.
38..37..36..35..34..33..32..31..

234 2 08 FF 00 0000

P1=00000000 P2=00000003 P3=00000031 P4=00000011 P5=00002000
P6=FFFFFFFF P7=00000000 P8=00000000 P9=00000000 P10=2005438F
r0=00114B98 rl=FFFFFFFF r2=2005D2F0 r3=55555555 r4=AAAAAAAA
r5=00000000 r6=AAAAAAAA r7=00000000 r8=00000000 ERF=80000180
30..29..28..27..26..25..24..23..
22..21..20..19..18..17..16..15..14..13..12..11..10..09..08..07..
06..05..04..03..

Normal operation not possible.

Example 4-3 Sample Output with Errors
Errors are printed according to the following syntax:

Test Severity Error De_error Vector Count

P1 P2 P3 P4 P5
P6 P7 P8 P9 P10
RO R1 R2 R3 R4

R5 R6 R7 R8 hardware_register_summary

176 KA640 Firmware

The fields have the following meaning:

Test identifies the diagnostic test.

Severity is the severity level of a test failure, as dictated by the script.
Failure of a severity level 2 test causes the display of this five-line error
printout, and halts an autoboot to console I/O mode. An error of severity
level 1 displays the first line of the error printout, but does not interrupt
an autoboot. Most tests have a severity level of 2.

Error is two hex digits identifying, within 10 instructions, where in the
diagnostic the error occurred. This field is also called the subtestlog.

De_error is a code with which the diagnostic executive signals the
diagnostic’s state and any illegal behavior. This field indicates a
condition that the diagnostic expects on detecting a failure. FE or EF in
this field means that an unexpected exception or interrupt was detected.
FF indicates an error as a result of normal testing, such as a miscompare.
The possible codes are:

FF - Normal error exit from diagnostic
FE - Unanticipated interrupt

FD - Interrupt in cleanup routine

FC - Interrupt in interrupt handler

FB - Script requirements not met

FA - No such diagnostic

EF - Unanticipated exception in executive

Vector identifies the SCB vector (10 in the example above) through which
the unexpected exception or interrupt trapped, when the de_error field
detects an unexpected exception or interrupt (FE or EF).

Count is four hex digits. It shows the number of previous errors that
have occurred.

Lines 2 and 3 of the error printout are parameters 1 through 10. An exception
to this format is when an unexpected exception or machine check occurs
during the executive. In that case, the stack is saved in the parameters.

Lines 4 and 5 of the error printout are general registers R0 through R8 and
the hardware error summary register.

KA640 Firmware 177

4.1.5 KA640 ROM-Based Diagnostics

The ROM-based diagnostics are the primary tools for troubleshooting and
testing of the CPU, memory, Ethernet and DSSI subsystems.

The diagnostics run automatically on power-up. While the diagnostics are
running, the LEDs on the H3602-SA display a hexadecimal countdown of
the tests from F to 3 before booting -the- operating system, and 2 to 0
while booting the operating system. A different countdown appears on
the console terminal. Table 4-2 lists the LED codes at power-up.

The ROM-based diagnostics are a collection of individual tests with user
selectable parameters. A data structure called a script points to the tests.

A program called the diagnostic executive determines which of the available
scripts to invoke, depending on the environment of the KA640 CPU
(manufacturing or non-manufacturing). The diagnostic executive interprets
the script to determine what tests to run, the right order to run the tests,
and the right parameters to use for each test.

The diagnostic executive also controls tests so that errors can be detected
and reported. It also ensures that when the tests are run, the machine is
left in a consistent and well-defined state.

Table 4-2 shows a list of the ROM-based tests and their parameters. To get
a similar listing, enter T 9E (T is the abbreviation of TEST) at the console
prompt.

Each test accepts up to ten parameters. The asterisks (*) represent
parameters that are used by the tests but that you cannot specify
individually. These parameters are encoded in ROM and are provided by
the diagnostic executive.

Parameters that you can specify are written out, as shown in the following
examples:

54 2004E557 Virtual mode Tk kkk
30 20053Cé6D MEM_bitmap *** Mark_hard_SBEs *****x

The virtual mode test on the first line above contains several parameters,
but you cannot specify any of them. To run this test individually, enter:

>>>T 54

178 KA640 Firmware

The MEM_bitmap test on the second line above accepts ten parameters, but
the fourth one (Mark_hard_SBEs) is the only one that you can specify. To
mark pages bad in the bitmap for single or multiple bit errors, enter a 1 in
the fourth parameter field as shown:

>>>T 59 00 0 1

You must enter a value of either 0 or 1 for the first three parameters (0 is
used in this example). The values have no effect on the test; they are simply
place holders for the first three parameters. You do not have to specify a
value for parameters that follow the user-defined parameter.

When running tests interactively on an individual basis, users should be
aware that certain tests may be dependent on some state set up from a
previous test. In general, tests should not be run out of order.

Table 4-2 Diagnostic Tests and LED Codes

LED
Test
Number Code Test Name Parameters
C1 C SSC RAM *
C2 C SSC RAM ALL *
C5 C SSC regs *
C6 C SSC_powerup etk ok
Cc7 C CBTCR timeout wrx
34 B ROM logic test *
33 A CMCTL_ *

powerup

32 A CMCTL regs MEMCSRO_addr *#*#**vw**
91 9 CQBIC powerup **
90 9 CQOBIC regs *
80 8 CQBIC-memory = ***~~www*
60 6 Console serial Start_baud end_baud ******
61 6 Console QVSS Mark_not_present ***
62 6 Console QDSS Mark_not_present selftest_r0 selftest_rl
63 6 QDSS self-test Input_csr selftest_r0 selftest_rl »=»»++
51 5 CFPA waww
52 5 Prog timer Which_timer wait_ time_us ***
53 5 TOY clock Repeat_count_250ms_ea ****
54 5 Virtual mode ol

KA640 Firmware 179

Table 4-2 (Cont.) Diagnostic Tests and LED Codes

LED
Test
Number Code Test Name Parameters
55 5 Interval timer *
56 5 SII_ext_loopbck A
5C 5 Sll_initiatior balaebed
5D 5 SII target EEE A
5A 5 VAX CMCTL Dont_report_memory_bad repeat_count
CDAL *
57 5 SII_memory Incr test_pattern ***+**
5B 5 SII_registers bbbl
5E 5 NI_memory Incr data_pattern **+*
5F 5 NI_Test Do_ext] ****w**
41 4 Board Reset *x
44 4 Cache_memory Addr_incr **w**x**«
45 4 Cache_mem_ Start_addr end_addr addr_incr ****
cqgbic
46 4 Cachel diag md Addr_incr *******+*
31 A MEM_SetupL o e de e v e e e
CSRs
30 A MEM_Bitmap *** Mark_Hard_SBEs ******
4F 4 MEM_Data Start_add end_add add_incr cont_on_
err hhhwh
4E 4 MEM_Byte Start_add end_add add_incr cont_on_
err dhdhdhh
4D 4 MEM_Address Start_add end_add add_incr cont_on_
err L2 2222
4C 4 MEM _ECC _Error Start_add end_add add_incr cont_on_
err ek
4B 4 MEM_Maskd_ Start_add end_add add_incr cont_on_
El'l'S OIT *Whwnw
4A 4 MEM_Correction Start_add end_add add_incr cont_on_
err et de e e h
49 4 MEM_FDM _Logic *** Cont_on_err ******
48 4 MEM_Addr_shrts Start_add end_add * cont_on_err patl
pat2 Yk
47 4 MEM_Refresh Start end incr cont_on_err time_
SECOI'\dS LT 2
40 4 MEM_Count_ First_board Last_board ***++*+ Soft_
Errs errs_allowed

180 KAB640 Firmware

4.2 Halts

The H3602-SA, which contains the console baud rate, console serial line
connector and language inquiry switches, is read by the firmware only when
the processor halts. For this reason, changing the baud rate or any other
switch on the panel will not take effect until the next power up. This is
different from the KA630, in which the switches are hardwired into the
hardware. '

Note that a powerup is a halt condition, so that on powerup, the panel
settings will correctly configure the hardware. The firmware may poll these
switches at more frequent intervals, but the connection is guaranteed to be
made only on a halt.

Once the firmware gives control to the operating system, the connection
between the panel’s switches and the hardware is lost, and changing the
switches has no effect. Current Digital operating systems do not read the
switches on the panel.

4.2.1 External Halts

Several conditions can trigger an external halt (SAVPSL<13:8>(HALT_
CODE) = 2), and different actions are taken depending on the condition.
An external halt can be caused by:

1. The halt enable switch is set to enable, and you press [Break] on the

system console terminal. The firmware identifies a console [Break]
condition by checking the RXDB <BRK > bit in the SSC.

2. Assertion of the BHALT line on the Q-bus. The halt is delivered to the
processor if the BHALT ENB bit in the CQBIC is set.

3. Negation of DCOK. A halt is delivered if the processor is not running
out of halt protected space, and the BHALT ENB bit is set. The
system restart switch negates DCOK. DCOK may also be negated by
the DELQA sanity timer, or any other Q22-bus module that chooses to
implement the QBUS restart/reboot protocol.

When in console I/O mode, the KA640 cannot detect the negation of DCOK,
so no action is taken. More importantly, however, the negation of DCOK
destroys system state without notifying the firmware.

CAUTION
Do not press the restart button while in console I/O mode. Doing so will
destroy system state without notifying the firmware.

The action taken by the firmware on a console or Q22-bus BHALT is
the same: the firmware enters console I/O mode if halts are enabled.

KA640 Firmware 181

The firmware, which runs in halt protected space after it is halted,
distinguishes between the negation of DCOK and BHALT by assuming that
BHALT must be asserted for at least 10 msec, and that DCOK is negated for
at most 9 usec. To determine if the BHALT line is asserted, the firmware
steps out into halt unprotected space after 9 msec. If the processor halts
again, the firmware concludes that the halt was caused by the BHALT and
not the negation of DCOK. The firmware keeps a halt in progress flag to tell
if it is halting due to the stepping out into halt unprotected space. This flag
is cleared on power-up.

4.2.2 Determination Of The Console Device

After the battery check, the firmware tries to find out where and what the
system console is. Normally, the system console is whatever terminal is
attached to the console serial line.

4.3 Console Emulation

The system is by definition halted when the firmware is in control of the
KA640. When halted, the KA640 provides most of the services of a standard
VAX console.

4.3.1 Console Control Characters
In console I/O mode several characters have special meaning:

o [Return]—Also <CR>. The carriage return ends a command line. No
action is taken on a command until after it is terminated by a carriage
return. A null line terminated by a carriage return is treated as a valid,
null command. No action is taken, and the console re-prompts for input.
Carriage return is echoed as carriage return, line feed.

o [Ruboutl-When you type rubout, the console deletes the previously
- typed character. What appears on the console terminal depends on
whether it is a video or a hardcopy terminal.

For hard copy terminals, the console echoes with a backslash (\),
followed by the character being deleted. If you type additional rubouts,
the additional deleted characters are echoed. If you type a non-
rubout character, the console echoes another backslash, followed by
the character typed. The result is to echo the characters deleted,
surrounding them with backslashes. For example:

EXAMLE NE<CR>
The console echoes: EXAMLE\E;\NE<CR >
The console sees the command line: EXAMINE<CR >

182 KA640 Firmware

For video terminals, the previous character is erased from the screen
and the cursor is restored to its previous position.

The console does not delete characters past the beginning of a command
line. If you type more rubouts than there are characters on the line, the
extra rubouts are ignored. If a rubout is typed on a blank line, it is
ignored.

e [Ctrl] [U}—the console echoes “"U<CR>, and deletes the entire line. If

Ctrl|[U] is typed on an empty line, it is echoed, and otherwise ignored.
The console prompts for another command.

o [cu][s]- stops output to the console terminal until [Ct][Qlis typed. [C]

% and [Q] are not echoed. [Ctr][C][Ctrl][Oland [Ct][P] also clear [Ctri]
S|.

e [Cu]lQl resumes output to the console terminal. Additional [Q)s
are ignored. [Ctri] [S] and [Ctrl] [Q] are not echoed.

o [Ctrl][O]—causes the console to throw away transmissions to the console

terminal until the next [Ctri] (O] is entered. [Ctrl]|O] is echoed as "O<CR >
when it disables output, but is not echoed when it reenables output.
Output is reenabled if the console prints an error message, or prompts
for a command from the terminal. Displaying a REPEAT command does
not reenable output. When output is reenabled for reading a command,
the console prompt is displayed. Output is also enabled by entering

program I/O mode, by [P]and by (] (O] clears [Sk.

o [Rl—causes the console to echo <CR><LF> followed by the
current command line. This function can be used to improve the
readability of a command line that has been heavily edited.

. [Cl—causes the console to echo "C and to abort processing of a
command. clears @ and reenables output stopped by
[0]. When [Ctri][C]is typed as part of a command line, the console deletes
the line as it does with [Ctrl] [U]

. [P]—if in console I/O mode, causes the console to echo P and to
abort processing of a command. If the console is in program /O mode

and halt is disabled, [Ctrl] [P]is passed to the operating system.

KA640 Firmware 183

4.3.2 Console Commands

This section describes the console /O mode commands. Enter the
commands at the console /O mode prompt >>>.
4.3.2.1 Command Syntax

The console accepts commands up to 80 characters long. Longer commands
produce error messages. The character count does not include rubouts,

rubbed-out characters, or the at the end of the command.

You can abbreviate a command by dropping characters from the end of
its keyword. Most commands can be recognized from their first character
(Table 4-4).

The console treats two or more consecutive spaces and tabs as a single
space. Leading and trailing spaces and tabs are ignored. You can place
command qualifiers after the command keyword, or after any symbol or
number in the command.

All numbers (addresses, data, counts) are hexadecimal, but symbolic
register names number the registers in decimal. The hexadecimal digits
are 0 through 9, and A through F. You can use uppercase and lowercase
letters in hexadecimal numbers (A through F) and commands.

NOTE

The following conventions are used to describe command syntax:
[] indicates an optional command element

{ } indicates a command element

.. indicates a list of command elements

4.3.2.2 Address Specifiers

Several commands take an address or addresses as arguments. In the
context of the console, an address has two components: the address space,
and the offset into that space. The console supports six address spaces:

* Physical memory (/P qualifier)

¢ Virtual memory (/V qualifier)

¢ General purpose registers (/G qualifier)
¢ Internal processor registers (/I qualifier)
* Protected memory (/U qualifier)

e The PSL (/M qualifier).

184 KA640 Firmware

The address space that the console references is inherited from the previous
console reference, unless explicitly specified. The initial address space is
physical memory.

4.3.2.3 Symbolic Addresses

The console supports symbolic references to addresses. A symbolic
reference simultaneously defines the address space, and the offset into
that space. Table 4-3 lists symbolic references supported by the console,
grouped according to address space.

Table 4-3 Console Symbolic Addresses
Symbol Address Symbol Address

General Purpose Registers

RO 0 R1 1
R2 2 R3 3
R4 4 R5 5
Ré6 6 R7 7
R8 8 R9 9
R10 0A R11 0B
R12 0C R13 0D
R14 OE R15 OF
AP 0C FP 0D
SP 0D PC OE
PSL - - -

Internal Processor Registers

PR$_KSP 00 PR$_ESP 01
PR$_SSP 02 PR$_USP 03
PR$_ISP 04 PR$_POBR 08
PR$_POLR 09 PR$_P1BR 0A
PR$_PILR 0B PR$_SBR oC
PR$_SLR 0D PR$_PCBB 10
PR$_SCBB 11 PR$_IPL 12
PR$_ASTLV 13 PR$_SIRR 14
PR$_SISR 15 PR$_ICCR 18
PR$_NICR 19 PR$_ICR 1A
PR$_TODR 1B PR$_RXCS 20

PR$_RXDB 21 PR$_TXCS 22

KA640 Firmware 185

Table 4-3 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address
Internal Processor Registers

PR$_TXDB 23 PR$_TBDR 24
PR$_CADR 25 PR$_MCESR 26
PR$_MSER 27 PR$_SAVPC 2A
PR$_SAVPSL 2B PR$_IORESET 37
PR$_MAPEN 38 PR$_TBIA 39
PR$_TBIS 3A PR$_SID 3E
PR$-TBCHK 3F .

Physical (VAX I/O Space)

QBIO 2000 0000 QBMEM 3000 0000
QBMBR 2008 0010

ROM 2004 0000

CACR 2008 4000 BDR 2008 4004
DSCR 2008 0000 DSER 2008 0004
DMEAR 2008 0008 DSEAR 2008 000C
IPCRO 2000 1F40 IPCR1 2000 1F42
IPCR2 2000 1F44 IPCR3 2000 1F46
SSC_RAM 2014 0400 SSC_CR 2014 0010
SSC_CDAL 2014 0020 SSC_DLEDR 2014 0030
SSC_ 2014 0130 SSC_ 2014 0134
ADOMAT ADOMSK

SSC_ 2014 0140 SSC_ 2014 0144
ADIMAT ADIMSK

SSC_TCRO 2014 0100 SSC_TIRO 2014 0104
SSC_TNIR0 2014 0108 SSC_TIVRO 2014 010C
SSC_TCR1 2014 0110 SSC_TIR1 2014 0114
SSC_TNIR1 2014 0118 SSC_TIVR1 2014 011C
MEMCSR0 2008 0100 MEMCSR1 2008 0104
MEMCSR2 2008 0108 MEMCSR3 2008 010C
MEMCSR4 2008 0110 MEMCSR5 2008 0114
MEMCSR6 2008 0118 MEMCSR? 2008 011C
MEMCSRS 2008 0120 MEMCSR9 2008 0124
MEMCSR10 2008 0128 MEMCSR11 2008 012C
MEMCSR12 2008 0130 MEMCSR13 2008 0134
MEMCSR14 2008 0138 MEMCSR15 2008 013C

186 KA640 Firmware

Table 4-3 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address

Physical (VAX I/O Space)

MEMCSR16 2008 0140 MEMCSR17 2008 0144

NISAROM 2008 4200 NIRDP . 2008 4400

NIRAP 2008 4404 NIBUF 2012 0000

MSI_SBB 2008 4600 MSI_SC1 2008 4604

MSI_SC2 2008 4608 MSI_CSR 2008 460C

MSLID 2008 4610 MSI_SLCSR 2008 4614

MSI_ DESTAT 2008 4618 MSI DSTMO 2008 461C

MSI_DATA 2008 4620 MSI_ 2008 4624
DMCTRL

MSL_ 2008 4628 MSI_ 2008 462C

CMLOTC DMADDRL

MSI_ 2008 4630 MSL 2008 4634

DMADDRH DMABYTE

MSI_STLP 2008 4638 MSI_LTLP 2008 463C

MSLILP 2008 4640 MSI_ DSCTRF 2008 4644

MSI_CSTAT 2008 4648 MSI_DSTAT 2008 464C

MSI_COMM 2008 4650 MSI DICTRL 2008 4654

MSI_CLOCK 2008 4658 MSI_BHDIAG 2008 465C

MSI SIDIAG 2008 4660 MSL 2008 4664
DMDIAG

MSI_ 2008 4668 MSI_RAM 2010 0000

MCDIAG

Any Address Space

* The location last referenced in an examine or deposit command.

+ The location immediately following the last location referenced

in an examine or deposit command. For references to physical
or virtual memory spaces, the location referenced is the last
address, plus the size of the last reference (1 for byte, 2 for word,
4 for longword). For other address spaces, the address is the last
address referenced plus one.

KA640 Firmware 187

Table 4-3 (Cont.) Console Symbolic Addresses
Any Address Space

- The location immediately preceding the last location referenced
in an examine or deposit command. For references to physical
or virtual memory spaces, the location referenced is the last
address minus the size of this reference (1 for byte, 2 for word,
4 for longword). For other address spaces, the address is the last
addressed referenced minus one.

@ The location addressed by the last location referenced in an
examine or deposit command.

4.3.2.4 Console Command Qualifiers

All qualifers in the console command syntax are global, that is, they may
appear in any order on the command line after the command keyword.

All qualifiers have unique meanings throughout the console regardless of
the command. For example, the /B qualifier always means byte.

The following qualifers are recognized by the console:

® hooox — xox an unsigned hexadecimal integer that is evaluated into a
longword. An error message of VALUE TOO BIG occurs if the number
overflows 32 bits. This qualifier is only used on the bootstrap command
to specify the value that is to be put into R5.

® /N:ioox —x0ox an unsigned hexadecimal integer that is evaluated into
a longword. An error message occurs if the number overflows 32 bits.
This qualifier determines the number of additional operations that are to
take place on EXAMINE, DEPOSIT, MOVE and SEARCH commands.

* /R5:00x—Functionally equivalent to /xo0cx.

* /WRONG-—Used to override or set error bits when referencing main
memory.

® ISTEP:xox — The step qualifier overrides the default incrementing of
the console current reference. Commands that manipulate memory,
such as the examine, deposit, move and search commands normally
increment the console current reference by the size of the data being
used.

* /B — The data size is byte.
¢ [W—The data size word.

188 KA640 Firmware

IL—The data size is longword.

IQ—The data size is quadword.

IG—The address space the general register space.
[I—The address space is the IPR space.

IV—The address space is virtual memory.
[P—The address space is physical memory
IM—The address space is the PSL space.

IRPB—Used as a qualfier on the FIND command to search for a restart
parameter block (RPB).

IU—Access memory locations that are normally protected from access.
IMEM— On the FIND command, search for a good memory block.

INOT— invert the sense of the match on the search command.

4.3.2.5 Console Command Keywords

Table 4-4 lists command, parameter and qualifier keywords. Table 4-5 is a
summary of the console commands. Table 4-6 is a summary of the console
qualifiers.

Table 4-4 Command, Parameter, and Qualifier Keywords

Command Keywords

Processor Control Data Transfer Console Control
B*OO0T E*XAMINE CONF*IGURE
C*ONTINUE D+*EPOSIT F*IND

H*ALT M+*QOVE R*EPEAT
I*NITIALIZE SEA*RCH SET

N+*EXT X SH*OW
S*TART T+EST

U*NJAM 1

KA640 Firmware 189

Table 4-4 (Cont:) Command, Parameter, and Qualifier Keywords
SET & SHOW Parameter Keywords

BO+*OT BF*LAG DE*VICE

DS*SI E*THERNET H+*OST

L*ANGUAGE M+*EMORY Q*BUS

U*QSSP V*ERSION R*LV12

Qualifier Keywords

Address Space

Data Control Control Command Specific

/B G /IIN*STRUCTION

IW n INO+*T

IL IP IR5: or/

Q v IRP*B or IME*M

IN: M IF*ULL

IS*TEP: u /DS*SI xor /U*QSSP

IWR*ONG /DI*SK xor /T*APE
IDU*P xor IMA*INTENANCE
ISE*RVICE

* Indicates the minimum number of characters required to uniquely identify the keyword.

4.3.2.6 Conventions for Tables 4-5 and 4-6
The following is a list of conventions used in Tables 4-5 and 4-6.

¢ UPPERCASE denotes the command or qualifier keyword.

¢ {} denotes a mandatory item which must be syntactically correct.

¢ [] denotes an optional item.

¢ ! denotes an or condition.

* bitmap, count, size, address, & parameters denote hex longword values.
® device_string denotes a legal boot device string.

® csr denotes a Q22-bus I/O page CSR address.

* node denotes a DSSI node name upto 8 characters or number from 0 to
7.

e controller_number denotes a controller number from 0 to 255.

190 KAB640 Firmware

e task denotes a DUP or MAINTENANCE task.
e language_type denotes the language value, 1..15.

e command denotes a console command other than REPEAT.

® data, pattern, & mask denote hex values of the current size.

e major denotes hex byte test number.

Table 4-5 Console Command Summary

Other(s)

Command Qualifiers Argument
BOOT IR5: {bitmap} /{bitmap} [device_string] -
CONTINUE — — -
DEPOSIT IBIWILIQ {address} {data}
IGITIVIPIMIU [data]
IN:{count} /STEP:{size}
IWRONG
EXAMINE IBIWILIQ [address] -
IGINIVIPIMIU
IN:{count} /STEP: {size}
IWRONG
/INSTRUCTION
FIND /MEM /RPB — —
HALT - — -
HELP — — -
INITIALIZE - - -
MOVE /IB/WILIQ {src_address} {dest_
IVIPIU address)
IN:{count} /STEP:{size}
IWRONG
NEXT - [count] -
REPEAT — {command} -
SEARCH IBIWILIQ {start_address} {pattern}
IV IP U [mask]
IN:{count} /STEP: {size}
IWRONG
INOT
SET BFLAG — {bitmap} -
SET BOOT - {device_string} —
SET HOST /DUP {/DSSI ! /UQSSP} {node} ! [task]
{/DISK ! /ITAPE ! csr} {controller_
IMAINTENANCE /UQSSP number}

{/SERVICE ! csr}

KA640 Firmware 191

Table 4-5 (Cont.) Console Command Summary

Command Qualifiers Argument Other(s)

SET — {language_ —
LANGUAGE type}

SHOW BFLAG = — — -
SHOW BOOT — : - -
SHOW DSSI - - -

SHOW - — —
ETHERNET

SHOW - - —
LANGUAGE

SHOW IFULL - -
MEMORY

SHOW QBUS — - -
SHOW RLV12 — - -
SHOW UQSSP — _ _

SHOW - - -
VERSION

START - {address) -

TEST - {major} [parameters]
UNJAM - - -

X - {address} {count}

Table 4-6 Console Qualifier Summary

Data Control

/B Byte, legal for memory references only.

W Word, legal for memory references only.

/L Longword, the default for GPR and IPR references.

Q Quadword, legal for memory references only.

IN:{count} Specify number of additional operations.

ISTEP: {size} Override the default step incrementing size with the value
specified for the current reference.

IWRONG Use 1's complement of the ECC bits on writes to main

memory. Ignore ECC errors on reads of main memory.

192 KA640 Firmware

Table 4-6 (Cont.) Console Qualifier Summary

Address Space Control

G General Purpose Registers

n Internal Processor Registers

v Virtual memory

IP Physical memory, both VAX memory and 1/0 spaces

A8 Protected memory (ROMs, SSC RAM, PFN bitmap, etc.)
M Machine state (PSL)

Commiand Specific

/INSTRUCTION EXAMINE command only. Disassemble the instruction at the

specified address.

INOT SEARCH command only. Invert the sense of the match.

IR5: {bitmap}, BOOT command only. Specify a function bitmap to pass to

/{bitmap} VMB through R5. Refer to the BOOT command listing for a bit
description of R5. Either form of the command is acceptable.

IRPB, IMEM FIND command only. Search for valid RPB or good block of
memory.

IDUP, /DSSI, SET HOST command only. Refer to command description for

/UQssp, usage.

IDISK, /TAPE,

IMAINTENANCE,

ISERVICE

4.3.2.7 References to Processor Registers and Memory

The KA640 console is implemented by macrocode executing from EPROM.
Actual processor registers can not be modified by the console command
interpreter. When the console is entered, the console saves the processor
registers in console memory. All command references to the processor
registers are directed to the corresponding saved values, not to the registers
themselves.

When the console reenters program mode, the saved registers are restored
and any changes become operative only then. References to processor
memory are handled normally. The binary load and unload command can
not reference the console memory pages

The following registers are saved by the console. Any direct reference to
these registers is intercepted by the console and redirected to the saved
copies:

* RO0-R15, the general purpose registers

KA640 Firmware 193

¢ PR$_IPL, the interrupt priority level register

e PR$_SCBB, the system control block base register

e PRS$_ISP, the interrupt stack pointer

e PR$SMAPEN, the memory management enable register

The following registers are also saved, yet can be accessed directly through
console commands. Writing values to these registers may make the console
inoperative.

¢ PR$_SAVPC, the halt PC

e PR$_SAVPSL, the halt PSL

e ADxMCH/ADxMSK, the SSC address decode and match registers
® SSCCR, the SSC configuration register

e DLEDR, the SSC diagnostic LED register

4.3.2.8 BOOT
Format :

BOOT [qualifier-list] [{device_name}]
Description :

The console initializes the processor and transfers execution to VMB. VMB
attempts to boot the operating system from the specified device or the
default boot device if none is specified. The console qualifies the bootstrap
operation by passing a boot flags bitmap to VMB in R5.

If either the qualifier or the device name is absent, then the default value is
used. Explicitly stating the boot flags or the boot device overrides but does
not reset the corresponding default value.

The default boot device and and boot flags are set in three ways:

1. The operating system can write a default boot device and flags into the
appropriate locations in NVRAM.

2. You can set the default boot device and boot flags explicitly with the
console SET BOOT and SET BFLAG commands respectively.

3. The console prompts you for the default boot device under any of the
following conditions:

* The power-up mode switch is set to query mode.

194 KA640 Firmware

¢ The console detects that there is a dead battery, and therefore the
contents of NVRAM are no longer valid.

¢ The console detects that you have not explicitly set the default boot
device within 30 seconds (causing a device timeout) or neither (1)
nor (2) has been performed.

The console prompts the user for a default boot device on every
powerup, until the request has been satisfied.

If no default boot device is specified on power-up, the console issues a list
of bootable devices. The devices may or may not contain bootable images.
The console then prompts you for a device name.

If you do not enter a device name within 30 seconds, the console times
out and a default device name of ESAQ is used, although not stored in the
NVRAM.

Qualifiers :

* /R5:{bitmap}—Bitmap is a 32 bit hex value that is passed to VMB in R5.
The console does not interpret this value. You can specifiy a default boot
flags longword by using the SET BFLAG command. You can display
the longword with the SHOW BFLAG command. Table 4-8 lists the
supported R5 boot flags.)

e /{bitmap}—Same as /R5:{bitmap})

¢ [{device_name}]—The device name can be any character string up to 39
characters long. Longer strings cause a VAL TOO BIG error message.
Apart from length, the console makes no attempt to interpret or validate
the device name. The console converts the string to upper case,
then passes VMB a string descriptor to this device name in R0. The
default boot device can be specified using the SET BOOT command
and displayed with the SHOW BOOT command. The factory default
device is the onboard Ethernet port, ESAQ.)

Examples :

>>>show boot

ESA0Q

>>>show bflag

0

>>> b ! Boot using default boot flags and device.
(BOOT/R5:0 ESAQ)

2..
-ESA0Q

>>>b xqga0
(BOOT/R5:0 XQAO)

2..
-XQA0

>>> b/10

(BOOT/R5:10 ESAO0)

2..
~ESAO

>>> boot /r5:220 xqgal

(BOOT/R5:220 XQAO)

2..
~XQA0

4.3.2.9 CONFIGURE
Format :

CONFIGURE

Description :

KA640 Firmware 195

Boot from XQAO using default boot flags.

Boot using supplied boot flags
and default device.

Boot using supplied boot
flags and device.

The CONFIGURE command invokes an interactive mode that permits you
to enter Q22-bus device names, then generates a table of Q22-bus I/O page
device CSR addresses and interrupt vectors. This feature simplifies field
configuration by providing information that is typically available only with

a running operating system.

CONFIGURE is similar to the VMS SYSGEN CONFIG utility.

Qualifiers :
None.
Arguments :
None.

Examples :

196 KA640 Firmware

>>>config
Enter device configuration, HELP, or EXIT
Device,Number? help

Devices:

LPV11 KXJ11 DLV11J DZQ11 DzvV11 DFAO01
RLV21 TSVOS RXV21 DRV11w DRV11B DPV11
DMV11 DELQA DEQNA RQDX3 KDAS50 RRD50
RQC25 TQK50 TQK70 TUSB1E RV20

KMV11 IEQ11 DHQ11 DHV11 CXalé

CXB16 CXYo8 VCBO1 QVSS LNV11 LNV21
QPSS DSV11 ADV11C AAV11C AXV11cC Kwv11C
ADV11D AAV11D VCB02 QDSS DRV11J DRQ3B
Vvsv21l IBQO1 IDV11A IDV11B IDV11C IDV11D
IAV11A IAV11B MIRA

Numbers:

1 to 255, default is 1
Device,Number? rqdx3,2
Device,Number? dhvll
Device,Number? qdss
Device,Number? tgk50
Device,Number? tqk70
Device,Number? exit

Address/Vector Assignments
-772150/154 RQDX3
-760334/300 RQDX3
-774500/260 TQK50
-760444/304 TQK70
-760500/310 DHV11
-777400/320 QDSS

>>>

4.3.2.10 CONTINUE
Format :

CONTINUE

Description :

The processor begins instruction execution at the address currently
contained in the program counter. Processor initialization is not performed.
The console enters program I/O mode.

Qualifiers :
None.

Arguments :

KA640 Firmware 197

None.

Examples :

>>> continue

4.3.2.11 DEPOSIT
Format :

DEPOSIT [qualifier_list] {address} {data} [{data}...]

Description :

Deposits data into the address specified. If no address space or data size
qualifiers are specified, the defaults are the last address space and data
size used in a DEPOSIT, EXAMINE, MOVE or SEARCH command. After
processor initialization, the default address space is physical memory, the
default data size is a longword and the default address is zero. If conflicting
address space or data sizes are specified, the console ignores the command
and issues an error message.

Qualifiers :

/B —The data size is byte.

IW —The data size is word.

IL —The data size is longword.
IQ —The data size is quadword.

/G —The address space is the general purpose register set, R0 through
R15. The data size is always long.

/I —The address space is internal processor registers (IPRs). These are
the registers only accessible by the MTPR and MFPR instructions. The
data size is always long.

IM —The address space is the PSL space.
IP —The address space is physical memory.

IV —The address space is virtual memory. All access and protection
checking occur. If access to a program running with the current PSL
is not allowed, the console issues an error message. Virtual space
DEPOSITs cause the PTE<M> bit to be set. If memory mapping is
not enabled, virtual addresses are equal to physical addresses.

198 KA640 Firmware

/U —Access to console private memory is allowed. This qualifier also
disables virtual address protection checks. On virtual address writes,
the PTE<M> bit will not be set if the /U qualifier is present. This
qualifier is not inherited, and must be respecified on each command.

e IN:{count} —The address is the first of a range. The console deposits to
the first address, then to the specified number of succeeding addresses.
Even if the address is the symbolic address, the succeeding addresses
are at larger addresses. The symbolic address specifies only the starting
address, not the direction of succession. For repeated references to
preceding addresses, use REPEAT DEPOSIT - <DATA>.

e |STEP:{size} —The number to add to the current address. Normally
this defaults to the data size, but the /STEP qualifier overrides this
default. This qualifier is not inherited.

e [WRONG —The data error correction bits will be written with the one’s
complement of the correct check bits.

Arguments :

e {address} —A longword address that specifies the first location into
which data is deposited. The address can be an actual address or a
symbolic address.

e {data} —The data to be deposited. If the specified data is larger than
the deposit data size, the firmware ignores the command and issues an
error response. If the specified data is smaller than the deposit data
size, it is extended on the left with zeros.

e [{data}] —Additional data to be deposited (as many as can fit on the
command line).

Examples :

>>> D/P/B/N:1FF 0 0 ! Clear first 512 bytes of physical
memory.

>>> D/V/L/N:3 1234 5 Deposit 5 into four longwords
starting at virtual memory
address 1234.

Loads GPRs RO through R8 with -1.

-t e =

>>> D/N:8 RO FFFFFFFF
>>> D/N:200 - O

-

Starting at previous address,
1 clear 513 bytes.

>>> D/L/P/N:10/S:200 0 8 ! Deposit 8 in the first longword of
! the first 17 pages in physical memory.

KA640 Firmware 199

4.3.2.12 EXAMINE
Format :

EXAMINE [qualifier_list] [{address}]
Description :

Examines the contents of the memory location or register specified by the
address. If no address is specified, + is assumed. The display line consists
of a single character address specifier, the hexadecimal physical address to
be examined, and the examined data, also in hexadecimal.

EXAMINE uses the same qualifiers as DEPOSIT. However, the /WRONG
qualifier causes examines to ignore ECC errors on reads from physical
memory. The EXAMINE command also supports an /INSTRUCTION
qualifier, which will disassemble the instructions at the current address.

Qualifiers :

e /B —The data size is byte.

* /W —The data size is word.

¢ /L —The data size is longword.
¢ /Q —The data size is quadword.

* |G —The address space is the general purpose register set, RO through
R15. The data size is always long.

® /I —The address space is internal processor registers (IPRs). These are
the registers only accessible by the MTPR and MFPR instructions. The
data size is always long.

e /P —The address space is physical memory. Note that when virtual
memory is examined, the address space and address in the response
are the translated physical address.

¢ |V —The address space is virtual memory. All access and protection
checking occur. If the access would not be allowed to a program
running with the current PSL, the console issues an error message. If
memory mapping is not enabled, virtual addresses are equal to physical
addresses.

® /M —The address space and display are the PSL. The data size is always
long.

® /U —Access to console private memory is allowed. This qualifier also
disables virtual address protection checks. This qualifier is not inherited,
and must be respecified on each command.

200 KA640 Firmware

IN:{count} —The address is the first of a range. The console deposits to
the first address, then to the specified number of succeeding addresses.
Even if the address is the symbolic address -, the succeeding addresses
are at larger addresses. The symbolic address specifies only the starting
address, not the direction of succession.

* ISTEP:{size} —The number to add to the current address. Normally
this defaults to the data size, but the /STEP qualifier overrides this
default. This qualifier is not inherited.

* I/WRONG —ECC errors on this read access to main memory are
ignored.

/INSTRUCTION —Disassemble and display the VAX Macro-32
instruction at the specified address.

Arguments :

* [{address}] —A longword address that specifies the first location to be
examined. The address can be an actual address or a symbolic address.
If no address is specified, + is assumed.

KAB640 Firmware 201

Examples :
>>>ex pc ! Examine the PC.
G 0000000F FFFFFFFC
>>>ex sp ! Examine the SP.
G 0000000E 00000200
>>>ex psl ! Examine the PSL.
M 00000000 041F0000
>>>e/m ! Examine PSL another way.
M 00000000 041F0000
>>>e r4/n:5 ! Examine R4 through R9.

G 00000004 00000000

G 00000005 00000000
G 00000006 00000000
G 00000007 00000000
G 00000008 00000000
G 00000009 801D9000

>>>ex pr$_scbb ! Examine the SCBB, IPR 17.
I 00000011 2004A000

>>>e/p 0 ! Examine local memory O.
P 00000000 00000000

>>>ex /ins 20040000 | Examine 1st byte if ROM.
P 20040000 11 BRB 20040019

>>>ex /ins/n:5 20040019 ! Disassemble from branch.
P 20040019 DO MOVL I1~420140000,@#20140000
P 20040024 D2 MCOML @#20140030,@4#20140502
P 2004002F D2 MCOML S~40E,@#20140030
P 20040036 7D MOVQ RO, @#201404B2
P 2004003D DO MOVL 174201404B2,R1
P 20040044 DB MFPR S~42A,B~44(R1)

>>>e/ins ! Look at next instruction.
P 20040048 DB MFPR S~#2B,B~48(R1)

>>>

4.3.2.13 FIND
Format :

FIND [qualifier-list]
Description :

The console searches main memory starting at address zero for a page-
aligned 128 Kbyte segment of good memory, or a restart parameter block
(RPB). If the segment or block is found, its address plus 512 is left in SP
(R14). If the segment or block is not found, an error message is issued,
and the contents of SP are preserved. If no qualifier is specified, /RPB is
assumed.

202 KA640 Firmware

Qualifiers :

* IMEMORY —Search memory for a page aligned block of good memory,
128 Kbytes in length. The search looks only at memory that is deemed
usable by the bitmap. This command leaves the contents of memory
unchanged.

* /RPB —Search all of physical memory for an RPB. The search does not
use the bitmap to qualifiy which pages are looked at. The command
leaves the contents of memory unchanged.

Arguments :
None.
Examples :
>>>ex sp ! Check the SP.
G 0000000E 00000000
>>>find /mem ! Look for a valid 128 Kb.
>>>ex sp ! Note where it was found.
G 0000000E 00000200
>>>find /rpb ! Check for valid RPB.
?2C FND ERR 00C00004 ! None to be found here.
>>>

4.3.2.14 HALT
Format :

HALT
Description :

This command has no effect. It is included for compatability with other
consoles.

Qual;'ﬁers :
None.
Arguments :
None.
Examples :

>>> halt ! Pretend to halt.
>>>

KA640 Firmware 203

4.3.2.15 HELP
Format :

HELP
Description :

This command has been included to help the console operator answer
simple questions about command syntax and usage.

Qualifiers :
None.
Arguments :
None.

Examples :

>>>help
Following is a brief summary of all the commands
supported by the console:

UPPERCASE denotes a keyword that you must type in

| denotes an OR condition

[] denotes optional parameters

<> denotes a field that must be filled in
with a syntactically correct value

Valid qualifiers:
/B /W /L /Q /INSTRUCTION
/G /I /V /P /M
/STEP: /N: /NOT
/WRONG /U

204 KA640 Firmware

Valid commands:
DEPOSIT [<qualifiers>] <address> [<datum>
[<datum>]]
EXAMINE [<qualifiers>] [<address>)
MOVE [<qualifiers>] <address> <address>
SEARCH [<qualifiers>] <address> <pattern>
[<mask>]
SET BFLAG <boot_flags>
SET BOOT <boot_device>
SET HOST/DUP/DSSI <node_number> [<task>]
SET HOST/DUP/UQSSP </DISK | /TAPE> <controller_number> [<task>]
SET HOST/DUP/UQSSP <physical_CSR_address> [<task>]
SET HOST/MAINTENANCE/UQSSP/SERVICE <controller number> [<task>]
SET HOST/MAINTENANCE/UQSSP <physical_CSR_address> [<task>]
SET LANGUAGE <language_number>
SHOW BFLAG
SHOW BOOT
SHOW DEVICE
SHOW DSSI
SHOW ETHERNET
SHOW LANGUAGE
SHOW MEMORY [/FULL])
SHOW QBUS
SHOW RLV12
SHOW UQSSP
SHOW VERSION
HALT
INITIALIZE
UNJAM
CONTINUE
START <address>
REPEAT <command>
X <address> <count>
FIND [/MEMORY | /RPB}
TEST [<test_code> [<parameters>]]
BOOT [/R5:<boot_flags> | /<boot_flags>] [<boot_device>]
NEXT [count]
CONFIGURE
HELP
>>>

4.3.2.16 INITIALIZE

Format :
INITIALIZE

Description :

A processor initialization is performed.

KA640 Firmware 205

The following registers are

initialized:

Register Initialized Value

PSL 041F 0000

IPL 1F

ASTLVL 4

SISR 0

ICCS Bits <6> and <0> are clear, the rest are unpredictable
RXCS 0

TXCS 80

MAPEN 0

Cache memory Disabled, all entries invalid
Instruction buffer Unaffected

Console previous Longword, physical, address 0
reference

TODR Unaffected

Main memory Unaffected

General registers Unaffected

Halt code Unaffected

Bootstrap in progress Unaffected

flag

Internal restart in Unaffected

progress flag

206 KA640 Firmware

The firmware performs the following additional initialization:
e The CDAL bus timer is initialized.

e The address decode and match registers are initialized.

¢ The programmable timer interrupt vectors are initialized.

¢ The BDR registers are read to determine the baud rate, and then the
SSCCR is configured accordingly.

e All error status bits are cleared.
Qualifiers :

None.

Arguments :

None.

Examples :

>>>init
>>>

4.3.2.17 MOVE
Format :

MOVE [qualifier-list] {src_address} {dest_address}
Description :

The console copies the block of memory starting at the source address to
a block beginning at the destination address. Typically, this command has
a IN qualifier so that more than one data is transferred. The destination
correctly reflects the contents of the source, regardless of the overlap
between the source and the data.

The MOVE command actually performs byte, word, longword, and
quadword reads and writes as needed in the process of moving the data.
Moves are only supported for the PHYSICAL and VIRTUAL address spaces.

Qualifiers :
e /B —The data size is byte.
e /W —The data size is word.

e /L —The data size is longword.

KA640 Firmware 207

1Q —The data size is quadword.
IP —The address space is physical memory.

IV —The address space is virtual memory. All access and protection
checking occur. If the access would not be allowed to a program running
with the current PSL, the console issues an error message. Virtual space
MOVEs cause the PTE<M> bit to be set. If memory mapping is not
enabled, virtual addresses are equal to physical addresses.

/U —Access to console private memory is allowed. This qualifier also

disables virtual address protection checks. On virtual address writes,
the PTE<M> bit will not be set if the /U qualifier is present. This
qualifier is not inherited, and must be respecified on each command.

IN:{count} —The address is the first of a range. The console deposits to
the first address, then to the specified number of succeeding addresses.
Even if the address is the symbolic address -, the succeeding addresses
are at larger addresses. The symbolic address specifies only the starting
address, not the direction of succession.

ISTEP:{size} —The number to add to the current address. Normally
this defaults to the data size, but the /STEP qualifier overrides this
default. This qualifier is not inherited.

IWRONG —The data written will be written with the ECC check bits
cc. If no check bits are specified, the one’s complement of the correct
check bits will be written. ECC errors on read accesses to main memory
are ignored.

Arguments :

{src_address} —A longword address that specifies the first location of
the source data to be copied.

{dest_address} —A longword address that specifies the destination of
the first byte of data. These addresses may be an actual address or a
symbolic address. If no address is specified, + is assumed.

Examples :

>>>ex /n:4 0 ! Observe destination.

P 00000000 00000000
P 00000004 00000000
P 00000008 00000000
P 0000000C 00000000
P 00000010 00000000

208 KA640 Firmware

>>>ex/n:4 200 | Observe source data.
P 00000200 58DD0520
P 00000204 585E04C1
P 00000208 OOFF8FBB
P 0000020C 5208A8D0
P 00000210 540CAB8DE
>>>mov/n:4 200 0 ! Move the data.
>>>ex /n:4 0 ' ! Voila. ?!
P 00000000 58DD0520
P 00000004 585E04C1
P 00000008 OOFFBFBB
P 0000000C 5208A8D0
P 00000010 540CA8DE
>>>

4.3.2.18 NEXT
Format :

NEXT {count}
Description :

The console causes the processor to execute the specified number of macro
instructions. If no count is specified, 1 is assumed.

After the the last macro instruction is executed, the console does enters
console I/O mode again.

The console uses the trace bit and trace pending in the PSL, and the trace
trap in the SCB to implement the NEXT function. This creates the following
restrictions:

e If memory management is enabled, the NEXT command works if and
only if the first page in SSC RAM is mapped somewhere in S0 (system)
space.

e The NEXT command does not work where time critical code is being
executed due to the instructions executed in implementation.

e The NEXT command elevates the IPL to 31 for long periods of time
(milliseconds) while single stepping over several commands.

¢ Unpredictable results occur if the macro instruction being stepped over
modifies the SCBB, or the trace trap entry. This means that the NEXT
command can not be used in conjunction with other debuggers.

Qualifiers :

None.

KA640 Firmware 209

Arguments :

¢ {count} —A value representing the number of macro instructions to
execute.

Examples :

>>>
>>>mov /n:100 rom 0 ! Copy a few instructions from
! EPROM.
>>>ex /ins 0 ! Verify the first instruction.
P 00000000 11 BRB 00000019
>>>
>>>dep pr$_scbb 200 ! Setup a user SCB.
>>>ex pr$_scbb
I 00000011 00000200
>>>
>>>dep pc 0 ! Set the start PC.
>>>ex pc
G 0000000F 00000000
>>> ! Single (or multiple) step.
>>>next .
P 00000019 DO MOVL 1~420140000,@#20140000
>>>next 3
P 00000024 D2 MCOML @#20140030,@4#20140502
P 0000002F D2 MCOML S~#0E,@#20140030
P 00000036 7D MOVQ RO, @#201404B2
>>>n
P 0000003D DO MOVL 1~4201404B2,R1
>>>
>>>1 Warning..the state of the console may be
! corrupted with this example.
>>>

4.3.2.19 REPEAT
Format :

REPEAT {command}
Description :

The console repeatedly displays and executes the specified command. The

repeating is stopped by the operator pressing [cw] [C]. Any valid console
command can be specified for the command with the exception of the
REPEAT command.

Qualifiers :

None.

210 KA640 Firmware

Arguments :
¢ {command} —A valid console command other than REPEAT.
Exampiles :

>>>repeat ex pr$_todr ! Watch the clock.
I 0000001B S5AFE78CE -

0000001B 5AFE78D1

0000001B S5AFE78FD

0000001B 5AFE7900

0000001B 5AFE7903

0000001B SAFE7907

0000001B 5AFE790A

0000001B 5AFE790D

0000001B 5AFE7910

0000001B 5AFE793C

0000001B 5AFE793F

0000001B 5AFE7942

0000001B 5AFE7946

0000001B 5AFE7949

0000001B S5AFE794C

0000001B 5AFE794F

0000001B 5~C

Vot b b b b b b b b b b b e e

v
A

4.3.2.20 SEARCH
Format :

SEARCH [qualifier_list] {address} {pattern} [{mask}]
Description :

The search command finds all occurences of a pattern, and reports the
addresses where the pattern was found. If the INOT qualifier is present, all
addresses where the pattern didn’t match are reported.

The command accepts an optional mask that indicates bits to be ignored
(“’don’t care’’ bits). For example, to ignore bit 0 in the comparison, specify
a mask of 1. The mask, if not present, defaults to 0.

A match occurs if pattern and not mask equals data and not mask, where:

pattern is the target data
mask is the optional don't care bitmask (which defaults to 0)
data is the data (byte, word, longword , quadword) at the current address

KA640 Firmware 211

The command reports the address under the following conditions:

INOT qualifier Match condition Action

Absent True Report address
Absent False No report
Present True No report
Present False Report address

The address is advanced by the size of the pattern (byte, word, longword
or quadword), unless overriden by the /STEP qualifier.

Qualifiers :

/B —The data size is byte.

IW —The data size is word.

IL —The data size is longword.
1Q —The data size is quadword.

IP —The address space is physical memory. Note that when virtual
memory is examined, the address space and address in the response
are the translated physical address.

IV —The address space is virtual memory. All access and protection
checking occur. If the access would not be allowed to a program
running with the current PSL, the console issues an error message. If
memory mapping is not enabled, virtual addresses are equal to physical
addresses.

/U —Access to console private memory is allowed. This qualifier also
disables virtual address protection checks. This qualifier is not inherited,
and must be respecified on each command.

IN:{count} —The address is the first of a range. The first access is to
the address specified, then subsequent accesses are made to succeeding
addresses. Even if the address is the symbolic address -, the succeeding
addresses are at larger addresses. The symbolic address specifies only
the starting address, not the direction of succession.

ISTEP:{size} —The number to add to the current address. Normally
this defaults to the data size, but is overriden by the presence of this
qualifier. This qualifier is not inherited.

IWRONG —ECC errors on read accesses to main memory are ignored.

212 KA640 Firmware

¢ INOT —Inverts the sense of the match.
Arguments :

® {start_address} —A longword address that specifies the first location
subject to the search. This address can be an actual address or a
symbolic address. If no address is specified, + is assumed.

* {pattern} —The target data.
* [{mask}] —A value specifying bits to be masked out.
Examples :

>>>gearch/p/b/not/
n:ffff 0 0 ! Find all nonzero bytes in the first
! 64 Kbytes of physical memory.

>>>search/v/w/n: ff££/
step:1 0 fell Find all two byte sequences that
could be interpreted as a
"branch to self" (10$: brb 108)

(brb assembles to FE11)

>>>search/1/p/n:ffff
0 1 FFFFFFFE Find all odd numbers in the first
64 Kbytes of physical memory.
Masks all bits except bit 0,
compares to pattern of 1, displays

match with 1.

- b b= G

>>>gearch/1/p/not/n: ffff
0 O FFFFFFFE Find all odd numbers in the first

64 Kbytes of physical memory.

Same as previous example, using /not
qualifier. Masks all bits except bit
0, compares to pattern of 0, displays
NOT match with 0.

e te b G te tee

KA640 Firmware 213

4.3.2.21 SET
Format : ’

SET {parameter} {value}

Description :

Sets the indicated console parameter to the indicated value. The following
are console parameters and their acceptable values:

Parameters :

- BFLAG —Set the default R5 boot flags. The value must be a

hexadecimal number of up to 8 hex digits.

BOOT —Set the default boot device. The value must be a valid device
name as specified in Section 4.3.2.8 on the BOOT command.

HOST —Invoke the DUP or MAINTENANCE driver on the selected
node. Only SET HOST /DUP accepts a value parameter.

NOTE

The hierarchy of the SET HOST qualifiers listed below suggests the
appropriate usage. Each qualifier only supports the additional qualifiers
at levels below it.

/DUP —Use the DUP protocol to examine/modify parameters of a
device on either the DSSI bus or the Q22-bus. The optional value for
SET HOST is a task name for the selected driver to execute.

/DSSI node —Select the DSSI node, where node is a number from
Oto 7.

ITUQSSP —Select the Q22-bus device using one of the following
three methods:

IDISK n —Specify the disk controller number, where n is from
0 to 255. (The resulting fixed address for n=0 is 20001468 and
the floating rank for n>0 is 26.)

ITAPE n —Specify the tape controller number, where n is from
0 to 255. (The resulting fixed address for n=0 is 20001940 and
the floating rank for n>0 is 30.)

csr_address —Specify the Q22-bus I/O page CSR address for
the device.

IMAINTENANCE —Use the MAINTENANCE protocol to
examine/modify configuration parameters. Note that SET HOST
IMAINTENANCE does not accept a task value.

214 KA640 Firmware

IUQSSP —

ISERVICE n -
csr_address —

e LANGUAGE —Set console language and keyboard type. If the current
console terminal does not support the Digital Multinational Character
Set (MCS), then this command has no effect and the console remains

in English. Acceptable values are 1 through 15:

1) Dansk .

2) Deutsch (Deutschland/Osterreich)
3) Deutsch (Schweiz)

4) English (United Kingdom)

5) English (United States/Canada)
6) Espatiol

7) Frangais (Canada)

8) Francais (France/Belgique)

9) Francgais (Suisse)

10) Italiano

11) Nederlands
12) Norsk
13) Portugués
14) Suomi
15) Svenska
Qualifiers :
On a per parameter basis.
Arguments :
None.
Examples :

>>>get bflag 220
>>>set boot xgal
>>>set language 2
>>>get host /dup/dssi 0
Starting DUP server...

DSSI Node 0 (SUSAN)

DRVEXR V1.0 D 25-APR-1988 10:01:35

DRVTST V1.0 D 25-APR-1988 10:01:35

HISTRY V1.0 D 25-APR-1988 10:01:35

ERASE V1.0 D 25-APR-1988 10:01:35

PARAMS V1.0 D 25-APR-1988 10:01:35

DIRECT V1.0 D 25-APR-1988 10:01:35

Copyright © 1988 Digital Equipment Corporation

Task Name? params

KAB640 Firmware 215

Copyright © 1988 Digital Equipment Corporation

PARAMS> stat path

ID Path Block Remote Node DGS_S DGS_R
0 PB FF811ECS8 Internal Path 0 0
5 pB FF8120D0 BETTY RFX T31l 0 0
4 PB FF8121D4 WILMA RFX T311 0 0
3 PB FFB8122D8 DSSI2 VMS V5.0 0 0
2 pB FF8123DC 2 VMB BOOT 0 0
1 PB FF8125E4 KAREN RFX T311 0 0

PARAMS> exit
Exiting...

Task Name?

Stopping DUP server...

>>>get host /dup/dssi 0 params

Starting DUP server...

DSSI Node 0O (SUSAN)

Copyright © 1988 Digital Equipment Corporation

PARAMS> show node

Parameter Current

NODENAME SUSAN
PARAMS> show allclass

Parameter Current

ALLCLASS 1

PARAMS> exit
Exiting...

Stopping DUP server...

>>>

Default

Type Radix
String Ascii
Type Radix
Byte Dec

0 0
0 0
0 0
816 3045
50 52
0 0

216 KA640 Firmware

4.3.2.22 SHOW
Format :

SHOW {parameter}

Description :

Displays the console parameter indicated.

Parameters :

BFLAG —Show the default R5 boot flags.
BOOT —Show the default boot device.
DEVICE —Show a list of all devices in the system.

DSSI —Show the status of all nodes that can be found on the DSSI bus.
For each node on the DSSI bus, the firmware displays the node number,
the node name, and the boot name and type of the device, if available.
The command does not indicate the bootability of the device.

The node that issues the command reports a node name of * .

The device information is obtained from the media type field of the
MSCP command GET UNIT STATUS. In the case where the node is
not running, or is not capable of running, an MSCP server, then no
device information is displayed.

ETHERNET —Show hardware Ethernet address for all Ethernet adapters
that can be found, both on board and the Q22-bus. Displays as blank if
no Ethernet adapter is present.

LANGUAGE —Show console language and keyboard type. Refer to the
corresponding SET LANGUAGE command for the meaning.

MEMORY —Show main memory configuration on a board by board
basis. Also report the addresses of bad pages, as defined by the
bitmap.

[FULL Additionally show the normally inaccessible areas of
memory, such as, the PFN bitmap pages, the console scratch
memory pages, and the Q22-bus scatter/gather map pages.

QBUS —Show all Q22-bus I/O addresses that respond to an aligned
word read. For each address, the console displays the address in the
VAX /O space in hex, the address as it would appear in the Q22-bus
I/O space in octal, and the word data that was read in hex.

KAB40 Firmware 217

This command may take several minutes to complete, so the user may
want to issue a CONTROL-C to terminate the command. The command
disables the scatter/gather map for the duration of the command.

RLV12 —Show all RL01 and RLO02 disks which appear on the Q22-bus.

UQSSP —Show the status of all disks and tapes that can be found on
the Q22-bus which support the UQSSP protocol. For each such disk
or tape on the Q22-bus, the firmware displays the controller number,
the controller CSR address, and the boot name and type of each
device connected to the controller. The command does not indicate
the bootability of the device.

The device information is obtained from the media type field of the
MSCP command GET UNIT STATUS. In the case where the node is
not running, or is not capable of running, an MSCP server, then no
device information is displayed.

VERSION —Show the current firmware version.

Qualifiers :

On a per parameter basis.

Arguments :

None.

Exampiles :

>>>show bflag
00000220

>>>show boot

XQA0

>>>show device
DSSI Node 0 (SUSAN)
-DIAO (RF30)

DSSI Node 1 (KAREN)
-DIA1l (RF30)

DSSI Node 2 (*)

DSSI Node 4 (WILMA)
-DIA4 (RF30)

DSSI Node 5 (BETTY)
-DIA5 (RF30)

218 KA640 Firmware

UQSSP Disk Controller 0 (772150)
-DUA4 (RD53)
-DUA5 (RX50)
~DUA6 (RX50)

UQSSP Tape Controller O (774500)
~MUAO (TK50)

Ethernet Adapter

-ESA0 (AA-00-03-01-2E-3F)
>>>show dssi

DSSI Node 0 (SUSAN)

-DIAO (RF30)

DSSI Node 1 (KAREN)
-DIA1l (RF30)

DSSI Node 2 (*)

DSSI Node 4 (WILMA)
-DIA4 (RF30)

DSSI Node 5 (BETTY)

-DIAS (RF30)

>>>show ether

Ethernet Adapter

-ESA0 (AA-00-03-01-2E-3F)
>>>show lang

English (United States/Canada)
>>>show memory

Memory 0: 00000000 to OO3FFFFF,
Memory 1: 00400000 to OOBFFFFF,
Memory 2: 00C00000 to O013FFFFF,

Total of 20MB, 0 bad pages, 106
>>>ghow memory/full

Memory 0: 00000000 to OO3FFFFF,
Memory 1: 00400000 to OOBFFFFF,
Memory 2: 00C00000 to O13FFFFF,

Total of 20MB, 0 bad pages, 106

Memory Bitmap
-013F2C00 to O013F3FFF, 10 pages

Console Scratch Area
-013F4000 to 013F7FFF, 32 pages

Qbus Map
-013F8000 to 013FFFFF, 64 pages

4MB, 0 bad pages
8MB, 0 bad pages
8MB, 0 bad pages

reserved pages
4MB, 0 bad pages

8MB, 0 bad pages
8MB, 0 bad pages

reserved pages

KA640 Firmware 219

Scan of Bad Pages

>>>show gbus

Scan of Qbus I/0 Space

-20001468 (772150) 4000 (154) RQDX3/KDA50/RRD50/RQC25

-2000146A (772152) = 0B40O
-20001940 (774500) = 0000 (260) TQK50/TQK70/TUS1E/RV20
-20001942 (774502) = 0BCO

-20001F40 (777500) = 0020 (004) IPCR

Scan of Qbus Memory Space
>>>show ugssp

UQSSP Disk Controller 0 (772150)
-DUA4 (RD53)

-DUA5 (RX50)

-DUA6 (RX50)

UQSSP Tape Controller 0 (774500)
-MUAO (TK50)
>>>show version

KA640-A X2.8-13, VMB 2.2
>>>

4.3.2.23 START
Format :

START [{address}]
Description :

The console starts instruction execution at the specified address. If no
address is given, the current PC is used. If memory mapping is enabled,
macro instructions are executed from virtual memory, and the address
is treated as a virtual address. The START command is equivalent to a
DEPOSIT to PC, followed by a CONTINUE. No INITIALIZE is performed.

Qualifiers :
None.
Arguments :

e [{address}] —The address at which to begin execution and is loaded in
the user’s PC.

Examples :

>>>start 1000

220 KA640 Firmware

4.3.2.24 TEST
Format :

TEST [{test_number} [{test_arguments}]]
Description :

The console invokes a diagnostic test program specified by the test number.
If a test number of 0 is specified, the power-up scri}at is executed. The
console accepts an optional list of up to five additional hexadecimal
arguments.

Qualifiers :
None.
Arguments :

* {test_number} —A two digit hexadecimal number specifying the test to
be executed.

o {test_arguments} —Up to five additional test arguments. These
arguments are accepted but no meaning is attached to them by the
console. For the interpretation of these arguments, consult the test
specification for each inidividual test.

Examples :

>>>

>>> ! Execute the power-up diagnostic script

>>> ! Warning...this has the same affect as a power-up!
>>>

>>>test 0
41..40..39..38..37..36..35..34..33..32..31..30..29..28..27..26..
25..24..23..22..21..20..19..18..17..16..15..14..13..12..11..10..
09..08..07..06..05..04..03..

>>>

>>> ! List all of the diagnostic tests.

>>>

>>>t 9e

KA640 Firmware

221

cont_on_err
cont_on_err

cont_on_err

Test

Address Name Parameters

Cl 2004D987 SSC RAM *

C2 2004DB4E SSC RAM ALL *

C5 2004DCBE SSC regs *

C6 2004DDB8 SSC_powerup LA AR A A

C7 2004DE7C CBTCR timeout *kk

34 2004DF38 ROM logic test *

33 2004E000 CMCTL_powerup *

32 2004E048 CMCTL regs MEMCSRO_addr **x****%x

91 2004E16C CQBIC_powerup *%

90 2004E1FE CQBIC regs *

80 2004E257 CQBIC-memory ok kokokok ok ok k&

60 2004E739 Console serial start_baud end baud ******

61 2004EA95 Console QVSS mark_not_present ***

62 2004EB44 console QDSS mark_not_present selftest_r0 self
test_rl **x**%

63 2004EDD8 QDSS self-test input_csr selftest_r0 selftest_rl
*kkkkk

51 2004EF3F CFPA *xkkk

52 2004F12B Prog timer which_timer wait_time_us ***

53 2004F3F8 TOY clock repeat_test_250ms_ea Tolerance
khkkkkkkk

54 2004F663 Virtual mode Hkk Kk k

55 2004F990 Interval timer *

56 2004FAO0C SII_ext_loopbck ***

5C 2004FD11 SII_initiatior **xx*

5D 200509E6 SII target *odkedoddodk ok

58 200521A6 DSSI reset port_no time_secs *

5A 20052590 VAX CMCTL CDAL dont_report_memory_bad repeat_count *

57 200526A8 SII_memory incr test_pattern *****

5B 20052A60 SII_registers *hkKk

5E 20052BA8 NI_memory incr data_pattern ***

5F 20052CF8 NI_Test do_extl where ****%xx

41 20053874 Board Reset * ko

42 20053A02 Check_for_intrs ***

44 20053A44 Cache_memory addr_incr *x**kkksx

45 20053D98 cache_mem _cgbic start_addr end addr addr_incr ****

46 2005407C Cachel_diag _md addr_incr ****xxx**

31 200546C8 MEM_Setup_CSRs *****kkkik

30 20054DC9 MEM_Bitmap *+** mark_Hard_SBEs *****%

4F 20054EC5 MEM_Data start_add end_add add_incr
hhkkkhkk

4E 2005508A MEM_Byte start_add end_add add_incr
*dkkkkk

4D 200551AC MEM_Address start_add end_add add_incr
% %k Kk k

4C 20055355 MEM_ECC_Error start_add end_add add_incr

* Kk ok ok k

cont_on_err

222 KA640 Firmware .

4B 200556F1 MEM_Maskd_Errs start_add end_add add_incr cont_on_err
% % % &k k

4A 200558D5 MEM_Correction start_add end_add add_incr cont_on_err
dkkkkk

49 20055AF1 MEM_FDM_Logic *** cont_on_err ***x*

48 2005612A MEM_Addr_shrts start_add end_add * cont_on_err patl
patz *kkk

47 20056566 MEM_Refresh start end incr cont_on_err time_seconds
*kkkk

40 20056708 MEM_Count_Errs First_board Last_board Soft errs_allowed

9C 20056919 List CPU regs *

9D 20057128 Utilities Expnd_err_msg get_mode init_LEDs
clr_ps_cnt
9E 200571FC List diags *

9F 20057222 Create script * ko kk
81 20057940 MSCP-QBUS test IP_cSr **xxxx

82 20057B07 DELQA device_num_addr ****
>>>

>>> ! Show the diagnostic state.

>>>

>>>t fe

bitmap=00BF3400, length=0C00, checksum=007E
busmap=00BF8000
return_stack=201406A4
subtest_pc=2004EBBO
timeout=00000001, error=00, de_error=00
de_error_vector=00, .severity_ code-02 total_error_count=0000
previous_error=00000000, 00000000, 00000000 00000000, 00000000
last_exception_pc=2004EBDA
flags=21FFFD7F, test_flags=20
highest_severity=00
led_display=06
console_display=00
save_mchk_code=80, save_err_flags=000000
parameter_1=00000000 2=00000000 3=00000000
4=00000000 5=00000000

parameter_6=00000001 7=00000000 8=2004EBEO
9=00000000 10=20056056

KA640 Firmware 223

>>>

>>> ! Display the CPU registers.

>>>

>>>t 9c

TOY =76BA1D75 1ICCS =00000000

TCRO =00000000 TIRO =00000000 TNIRO=00000000 TIVRO=00000078

TCR1 =00000001 TIR1 =02BD7971 TNIR1=0000000F TIVR1=0000007C

RXCS =00000000 RXDB =0000000D TXCS =00000000 TXDB =00000030

MSER =00000000 CADR =0000000C

BDR =FFFFFFDO DLEDR=0000000C SSCCR=00D45033 CBTCR=C0000004

SCR =0000C000 DSER =00000080 QBEAR=0000000F DEAR =00000000
QBMBR=00000000 IPCRn=0020

MEM_FRU 1 MEMCSR_0=80000015 1=00000015 2=00000015 3=00000015
MEM_FRU 2 MEMCSR_4=80400016 5=80800016 6=00000016 7=00000016
MEM_FRU 3 MEMCSR_8=00000000 9=00000000 10=00000000 11=00000000
MEM_FRU 4 MEMCSR12=00000000 13=00000000 14=00000000 15=00000000

MEMCSR16=00000044 17=0000203C

Ethernet SA = 08-00-2B-0B-25-65 NICSR0=0004

SII MSIDRO =01FF MSIDR1 =0002 MSIDR2 =0000 MSICSR =0010
MSIIDR =8007 MSITR =0000 MSITLP =0000 MSIILP =0000
MSIDSCR=80FF MSIDSSR=8500 MSIDCR =0008

>>>

>>>

>>>

4.3.2.25 UNJAM
Format :

UNJAM
Description :

An 1/O bus reset is performed. This is implemented by writing a 1 to IPR
55 (decimal).

Qualifiers :
None.
Arguments :

None.

224 KA640 Firmware

Examples :

>>>
>>>
>>>unjam
>>>
>>>

4.3.2.26 X - Binary Load and Unload
Format :

X {address} {count} <CR> {line_checksum}
{data} {data_checksum}

Description :

The X command is for use by automatic systems communicating with the
console. It is not intended for use by operators.

The console loads or unloads (that is, writes to memory, or reads from
memory) the specified number of data bytes, starting at the specified
address through the console serial line, regardless of which device is serving
as the system console.

If bit 31 of the count is clear, data is to be received by the firmware, and
deposited into memory. If bit 31 of the count is set, data is to be read from
memory and sent by the firmware. The remaining bits in the count are a
positive number indicating the number of bytes to load or unload.

The firmware accepts the command upon receiving the carriage return.
The next byte the firmware receives is the command checksum, which is
not echoed. The command checksum is verified by adding all command
characters, including the checksum and separating space, (but not including
the terminating carriage return, rubouts or characters deleted by rubout),
into an 8-bit register initially set to zero. If no errors occur, the result is
zero. If the command checksum is correct, the console responds with the
input prompt and either sends data to the requester or prepares to receive
data. If the command checksum is in error, the console responds with an
error message. The intent is to prevent inadvertent operator entry into a
mode where the console is accepting characters from the keyboard as data,
with no escape mechanism possible.

If the command is a load (bit 31 of the count is clear), the firmware responds
with the input prompt, then accepts the specified number of bytes of data for
depositing to memory, and an additional byte of received data checksum.
The data is verified by adding all data characters and the checksum character
into an 8-bit register initially set to zero. If the final content of the register

KAB640 Firmware 225

is non-zero, the data or checksum are in error, and the firmware responds
with an error message.

If the command is a binary unload (bit 31 of the count is set), the firmware
responds with the input prompt, followed by the specified number of bytes
of binary data. As each byte is sent, it is added to a checksum register
initially set to zero. At the end of the transmission, the two’s complement
of the low byte of the register is sent.

If the data checksum is incorrect on a load, or if memory errors or line errors
occur during the transmission of data, the entire transmission is completed,
then the console issues an error message. If an error occurs during loading,
the contents of the memory being loaded are unpredictable.

Echo is suppressed during the receiving of the data string and checksums.

To avoid treating flow control characters from the terminal as valid
command line checksums, all flow control is terminated at the reception
of the carriage return terminating the command line.

You can use control characters (Ctr] [C], [Ctri] [S], [Ctri] [O], etc.) to control the
console serial line during a binary unload. It is not possible during a binary
load, since all received characters are valid binary data.

The firmware must receive data being loaded with a binary load command
at a rate of at least one byte every 60 seconds. It must receive the command
checksum that precedes the data within 60 seconds of the carriage return
that terminates the command line. It must receive the data checksum within
60 seconds of the last data byte. If any of these timing requirements are not
met, then the firmware aborts the transmission by issuing an error message
and returning to the console prompt.

The entire command, including the checksum, can be sent to the firmware
as a single burst of characters at the console serial lines’s specified character
rate. The firmware is able to receive at least 4 Kbytes of data in a single X
command.

Qualifiers :
None.
Arguments :
None.
Examples :

None.

226 KA640 Firmware

4.3.2.27 | - Comment
Format :

!
Description :

The comment command is used to document command sequences. The
comment character can appear anywhere on the command line. All
characters following the comment character are ignored.

Qualifiers :
None.
Arguments:
None.
Examples :

>>>1 The console ignores this line.
>>>

4.4 Bootstrapping

Bootstrapping is the process of loading and transferring control to an
operating system. The KA640 supports bootstrap of the following operating
systems: VAX/VMS, Ultrix-32, and VAXELN. Additionally, the KA640 will
boot MDM diagnostics and any user application image which conforms to
the boot formats described herein.

On the KA640, a bootstrap occurs whenever a BOOT command is issued at
the console or whenever the processor halts and the conditions specified in
the Table 4-1 for automatic bootstrap are satisfied.

KA640 Firmware 227

4.4.1 Preparing for the Bootstrap

Prior to dispatching to the primary bootstrap (VMB), the firmware initializes
the system to a known state. The initialization sequence follows:

1.
2.

Check CPMBX<2>(BIP). If it is set, bootstrap fails.

If this is an automatic bootstrap, print the message "Loading system
software” on the console terminal. :

Validate the boot device name. If none exists, supply a list of available
devices and prompt user for a device. If no device is entered within 30
seconds, use ESAQ.

Write a form of this BOOT request including the active boot flags and
boot device on the console, for example "(BOOT/R5:0 ESA0)".

Set CPMBX <2 > (BIP).

Initialize the Q22-bus Scatter/Gather map.
a. Clear IPCR<5>(LMEAE).

b. Perform an UNJAM.

c. Map all vacant Q22-bus pages to the corresponding page in local
memory and validate each entry if that page is good.

d. Perform an INIT.
e. Set IPCR<5>(LMEAE).
Validate the PFN bitmap. If invalid, rebuild it.

Search for a 128Kb contiguous block of good memory as defined by the
PFN bitmap. If 128Kb cannot be found, the bootstrap fails.

Initialize the general purpose registers.

RO = address of descriptor of the boot device name or 0 if none
specified

R2 = length of PFN bitmap in bytes

R3 = address of PFN bitmap

R4 = time of day from PR$_TODR at power-up

R5 = boot flags

R10 = halt PC value

R11 = halt PSL value (without halt code and map enable)
AP = halt code

SP = base of 128Kb good memory block + 512

PC = base of 128Kb good memory block + 512

R1, R6, R7, R8, R9, FP = 0

228 KA640 Firmware

10. Copy the VMB image from EPROM to local memory beginning at the
base of the 128Kb good memory block + 512.

11. Exit from the firmware to memory resident VMB.

On entry to VMB the processor is running at IPL 31 on the interrupt stack
with memory management disabled.

4.4.1.1 Boot Devices

The KA640 firmware passes the address of a descriptor of the boot device
name to VMB through R0. This device name used for the bootstrap
operation is either

* ESAQ, if no default boot device has been specified, or

* The default boot device specified at initial power-up or via a SET BOOT
command, or

* The boot device name explicitly specified in a BOOT command line.

The device name may be any arbitrary character string, with a maximum
length of 17 characters. Longer strings cause a "VAL TOO BIG” error
message to be issued from the console. Otherwise the console makes
no attempt at interpreting or validating the device name. The console
converts the string to all upper case, and passes VMB the address of a
string descriptor for the device name in RO0.

Table 4-7 correlates the boot device names expected in a BOOT command
with the corresponding supported devices.

Table 4-7 KAG640 Supported Boot Devices
Boot Name" Controller Type Device Type(s)

Disk:
[node$]DIAn . On-board DSSI RF30,
DUcn RQDX3 MSCP RD52, RD53, RD54, RX33, RX50
KDA50 MSCP RA70, RA80, RA81, RAS82,
KLESI RC25
DLcn RLV12 RLO1, RLO2

* Boot device names consist of minimally a two letter device code, followed by a single
character controller letter (A...Z), and terminating in a device unit number (0...65535).
DSS1 device names may optionally include a node prefix, consisting of either a node
number (0...7) or a node name (a string of up to 8 characters), terminating in a "$".

KA640 Firmware 229

Table 4-7 (Cont.) KA640 Supported Boot Devices
Boot Name” Controller Type Device Type(s)

Tape:
[node$]MIAN On-board DSSI —_
MUcn TQK50 MSCP " TK50
TQK70 MSCP TK70
KLESI TUSLE
Network:
ESAQ On-board Enet —_—
XQcn DEQNA —_
DELQA J—
PROM:
PRAO MRV11 —

* Boot device names consist of minimally a two letter device code, followed by a single
character controller letter (A...Z), and terminating in a device unit number (0...65535).
DSSI device names may optionally include a node prefix, consisting of either a node
number (0...7) or a node name (a string of up to 8 characters), terminating in a "$".

NOTE
Table 4-7 presents a definitive list of boot devices which the KA640

supports. However, the KA640 will likely boot other devices which adhere
to the MSCP standards.

4.4.1.2 Boot Flags

The action of VMB is qualified by the value passed to it in R5. R5 contains
boot flags that specify conditions of the bootstrap. The firmware passes to
VMB either the R5 value specified in the BOOT command or the default
boot flag value specified with a SET BFLAG command.

Table 4-8 describes the boot flags used by VMB in the boot flag longword.

230 KA640 Firmware

Table 4-8 VMB Boot Flags

Field Name Description
3 RPB$V_ Secondary bootstrap from bootblock. When this bit is
BBLOCK set, VMB reads logical block number 0 of the boot device

and tests it for conformance with the bootblock format.
If in conformance, the block is executed to continue the
bootstrap. No attempt to perform a Files-11 bootstrap is
made.

4 RPB$V_DIAG Diagnostic bootstrap. When this bit is set,
the load image requested over the network is
[SYS0.SYSMAINT]DIAGBOOT.EXE.

5 RPBS$V_ Bootstrap breakpoint. If this flag is set, a breakpoint
BOOBPT instruction is executed in VMB and control is transferred
to XDELTA prior to boot.
6 RPB$V_ Image header. If this bit is set, VMB transfers control to
HEADER the address specified by the file’s image header. If this

bit is not set, VMB transfers control to the first location
of the load image.

8 RPB$V_ File name solicit. When this bit is set, VMB prompts the
SOLICT operator for the name of the application image file. A
maximum of a 39 character file specification is permitted.
9 RPB$V_HALT Halt before transfer. When this bit is set, VMB halts
before transferring control to the application image.
31:28 RPB$V_ This field can be any value from 0 through F. This flag
TOPSYS changes the top level directory name for the system

disks with multiple operating systems. For example, if
TOPSYS is 1, the top level directory name is [SYS1...].

4.4.2 Primary Bootstrap, VMB

Virtual memory boot (VMB) is the primary bootstrap for booting VAX
processors. On the KA640, VMB is resident in the firmware and is copied
into main memory before control is transferred to it. VMB then loads the
secondary bootstrap image and transfers control to it.

NOTE

In certain cases, such as VAXELN, VMB actually loads the operating system
directly. However, for the purpose of this discussion "secondary bootstrap”
refers to any VMB loadable image.

VMB inherits a well defined environment and is responsible for further
initialization. The following summarizes the operation of VMB:

1. Initialize a two page SCB on the first page boundary above VMB.

KA640 Firmware 231

Allocate a three page stack above the SCB.
Initialize the restart parameter block (RPB).
Initialize the secondary bootstrap argument list.

If not a PROM boot, locate a minimum of three consecutive valid QMRs.

SR T

Write "2” to the diagnostic LEDs and display "2..” on the console to
indicate that VMB is searching for the device.

Optionally, solicit from the console a "Bootfile: " name.

Write the name of the boot device from which VMB will attempt to boot
on the console, for example, "-ESAQ".

9. Copy the secondary bootstrap from the boot device into local memory
above the stack. If this fails, the bootstrap fails.

10. Write "1” to the diagnostic LEDs and display "1..” on the console to
indicate that VMB has found the secondary bootstrap image on the boot
device and has loaded the image into local memory.

11. Clear CPMBX <2 > (BIP) and CPMBX <3 > (RIP).

12. Write "0” to the diagnostic LEDs and display "0..” on the console to
indicate that VMB is now transferring control to the loaded image.

13. Transfer control to the loaded image with the following register usage.

R5 = transfer address in secondary bootstrap image
R10 = base address of secondary bootstrap memory
R11 = base address of RPB

AP = base address of secondary boot parameter block
SP = current stack pointer

If the bootstrap operation fails, VMB relinquishes control to the console by
halting with a HALT instruction.

NOTE

VMB makes no assumptions about the location of Q22-bus memory.
However, VMB searches through the Q22-bus map registers (QMRs) for the
first QMR marked "valid.” VMB requires minimally 3 and maximally 129
contiguous "valid” maps to complete a bootstrap operation. If the search
exhausts all map registers or there are fewer than the required number of
"valid” maps, a bootstrap cannot be performed. It is recommended that a
suitable block of Q22-bus memory address space be available (unmapped
to other devices) for proper operation.

232 KAB40 Firmware

The following is a sample console display of a successful automatic
bootstrap:

Loading system software.
(BOOT/R5:0 DUAO)

2..
-DUAO
1..0..

After a successful bootstrap operation, control is passed to the secondary
bootstrap image. In the event that an operating system has an extraordinarily
large secondary bootstrap which overflows the 128Kb of "good” memory,
VMB loads the remainder of the image in memory above the "good” block.
However, if there are not enough contiguous "good” pages above the block
to load the remainder of the image, the bootstrap fails.

4.4.3 Device Dependent Bootstrap Procedures

As mentioned earlier the KA640 supports bootstrapping from a variety of
boot devices. The following sections describe the various device dependent
boot procedures.

4.4.3.1 Disk and Tape Bootstrap Procedure

The disk and tape bootstrap supports Files-11 lookup (supporting only the
ODS level 2 file structure) or the boot block mechanism (used in PROM
boot also). Of the standard DEC operating systems VMS and ELN use the
Files-11 bootstrap procedure and Ultrix-32 uses the boot block mechanism.

VMB first attempts a Files-11 lookup, unless the RPB$V_BBLOCK boot
flag is set. If VMB determines that the designated boot disk is a Files-11
volume, it searches the volume for the designated boot program, usually
[SYS0.SYSEXE]SYSBOOT.EXE. However, VMB can request a diagnostic
image or prompt the user for an alternate file specification (Section 4.4.1.2).
If the boot image cannot be found, VMB fails.

If the volume is not a Files-11 volume or the RPB$V_BBLOCK boot flag was
set, the boot block mechanism proceeds as follows:

1. Read logical block 0 of the selected boot device (this is the boot block).

2. Validate that the contents of the boot block conform to the boot block
format (Figure 4-1).

Use the boot block to find and read in the secondary bootstrap.

Transfer control to the secondary bootstrap image, just as for a Files-11
boot.

KA640 Firmware 233

The format of the boot block must conform to that shown in Figure 4-1,
where 18 (hex) indicates this is a VAX instruction set and 18 (hex) + k =
the one’s complement of "CHK".

1 I N | ANY VALUE
BB+0
LOW LBN HIGH LBN
<
CHK I K l 18 (HEX)
BB +(2°n) +0 ANY VALUE, MOST LIKELY 0
BB +(2°n) +8 SIZE IN BLOCKS OF THE IMAGE USED FOR BOTH
7~ THE BOOT BLOCK
BB + (2°n) + 12 LOAD OFFSET AND THE ROM SYSTEM
BB + (2°n) + 16 OFFSET INTO IMAGE TO START
BB +(2*n) +20 SUM OF THE PREVIOUS THREE LWs
-

MA-1128-87

Figure 4-1 Boot Block Format

4.4.3.2 PROM Bootstrap Procedure

The PROM bootstrap uses a variant of the boot block mechanism. VMB
searches through Q22-bus memory on 16Kb boundaries for a valid PROM
signature block, the second segment of the boot block defined in Figure 4-1.

At each boundary, VMB :
® Validates the readibility of that Q22-bus memory page.
* If readable, checks to see if it contains a valid PROM signature block.

If verification passes, the PROM image will be copied into main memory
and VMB will transfer control to that image at the offset specified in the
PROM bootblock. If not, the next page will be tested.

NOTE

It is not necessary that the boot image actually reside in PROM. Any boot

image in Q22-bus memory space with a valid signature block on a 16KB
boundary is a candidate.

The PROM image is copied into main memory in 127 page chunks until the
entire PROM is moved. All destination pages beyond the primary 128Kb
block are verified to make sure they are marked good in the PFN bitmap.
The PROM must be copied contiguously and if all required pages cannot fit

into the memory immediately following the VMB image, the boot fails. '

234 KA640 Firmware

4.4.3.3 Network Bootstrap Procedure

Whenever a network bootstrap is selected on a KA640, VMB makes
continuous attempts to boot from the network. VMB uses the DNA
maintenance operations protocol (MOP) as the transport protocol for
network bootstraps and other network operations. Once a network boot
has been invoked, VMB turns on the designated network link and retries
MOP load attempts every 8 to 12 minutes, until either a successful boot
occurs or it is halted from the operator console.

The KA640 supports the load of a standard operating system, a diagnostic
image, or a user designated program via network bootstraps. The default
image is the a standard operating system, however, a user may select an
alternate image by setting either the RPB$V_DIAG bit or in the RPB$V_
SOLICT bit in the boot flag longword R5. Note, that the RPB$V_SOLICT
bit has precedence over the RPB$V_DIAG bit. Hence, if both bits are set,
then the solicited file is requested.

NOTE

VMB accepts a maximum of a 39 character file specification for solicited
boots. If the network server is running VMS the following defaults apply
to the file specification: the directory MOMSLOAD:, and an extention
.SYS. Therefore, the 39 character file specification need only consist of
the filename if the default directory and extension attributes are used.

The KA640 VMB uses the MOP program load sequence for bootstrapping
the module and the MOP "dumpl/load” protocol type for load related
message exchanges. The MOP message types used in the exchange are
listed in Table 4-9.

VMB, the requester, starts by sending a REQ_PROGRAM message to the
MOP "dump/load” multicast address (Table 4-10). It then waits for a
response in the form of a VOLUNTEER message from another node on the
network, the MOP server. If a response is received, then the destination
address is changed from the multicast address to the node address of the
server and the same REQ_PROGRAM message is retransmitted to the server
as an acknowledge.

Next, VMB begins sending REQ_MEM_LOAD messages to the server. The
server responds with either:

e MEM_LOAD message, while there is still more to load.
e MEM_LOAD_w_XFER, if it is the end of the image.

KA640 Firmware 235

¢ PARAM_LOAD_w_XFER, if it is the end of the image and operating
system parameters are required.

The "load number” field in the load messages is used to synchronize the
load sequence. At the beginning of the exchange, both the requester and
server inijtialize the load number. The requester only increments the load
number if a load packet has been successfully received and loaded. This
forms the acknowledge to each exchange. The server will resend a packet
with a specific load number, until it sees the load number incremented. The
final acknowledge is sent by the requester and has a load number equivalent
to the load number of the appropriate LOAD_w_XFER message + 1.

During a network boot sequence, transmit messages are sent a maximum of
four times when there is no response to the message. If there is no response
after the four transmit attempts, then the mode is reset to multicast address
mode (regardless of the current mode) and the boot sequence is repeated
up to three times. This gives any node ample opportunity to respond to
one of these requests.

A timeout on a receive request is considered "No Response” to the transmit
request. Timeouts on receives take 15 seconds, therefore, each retransmit
attempt is made at 15 second intervals. Since there are three boot sequence
attempts consisting of four transmit attempts, a maximum of three minutes
can elapse during a single bootstrap attempt.

4.4.3.3.1 Network Listening

While VMB is waiting for a load volunteer, it listens on the network for other
maintenance messages directed to the node and periodically identifies itself
at the end of each 8 to 12 minute interval prior to a bootstrap retry. In
particular, this listener supplements the MOP functions of the VMB load
requester typically found in bootstrap firmware and supports:

* A remote console server that generates unsolicited SYSTEM_ID
messages every 8 to 12 minutes and solicited SYSTEM_ID messages
in response to REQUEST_ID messages.

¢ A loopback server that responds to LOOP_DATA messages by echoing
the LOOPED_DATA to the requester.

The KA640 remains in the listener mode until a volunteer is found and a
load sequence is initiated. This mode is also reentered, whenever a boot
sequence fails.

The MOP functions and message types which are supported by the KA640
are summarized in Table 4-9. During network operation VMB listens only
to MOP "Load/Dump,” MOP "Remote Console,” and Ethernet "Loopback
Assistance” message protocols (listed in Table 4-10). All other Ethernet
protocols are filtered by the network device driver.

236 KA640 Firmware

Table 4-9 KAG640 Network Maintenance Operations Summary

MOP/Ethernet Messages

Function Role Transmit Receive

Dump Requester —- —

Server — ' —_
Load Requester REQ_ to solicit VOLUNTEER
PROGRAM"
REQ_MEM_ to solicit MEM_LOAD
LOAD
or MEM_LOAD_w_
XFER
or PARAM_LOAD_
w_XFER
Server —_— —_
Console Requester — —_
Server SYSTEM_ID+ in response to REQUEST_ID
Loopback Requester — —
Server LOOPED_ in response to LOOP_DATA
DATA% -

*The initial REQ_PROGRAM message is sent to the dumpload multicast address. If an
assistance VOLUNTEER message is received, then the responder’s address is used as the
destination to repeat the REQ_PROGRAM message and for all subsequent REQ_MEM_
LOAD messages.

+SYSTEM_ID messages are sent out every 8 to 12 minutes to the remote console multicast
address and on receipt of a REQUEST_ID message they are sent to the initiator.
$LOOPED_DATA messages are sent out in response to LOOP_DATA messages. These
messages are actually in Ethernet LOOP TEST format, not in MOP format, and are sent
without the additional length field (padding is disabled).

Table 4-10 MOP/Ethernet Multicast Addresses and Protocols

Function Address Protocol Owner
Dump/Load AB-00-00-01-00-00 60-01 Digital
Remote Console AB-00-00-02-00-00 60-02 Digital

Loopback Assistance CF-00-00-00-00-00 90-00 Cross Company

KAB40 Firmware 237

4.5 Operating System Restart

An operating system restart is the process of bringing up the operating
system from a known initialization state following a processor halt. This
procedure is often called restart or warmstart, and should not be confused
with a CVAX processor restart which results in firmware entry.

On the KA640, a restart occurs if the conditions specified in Table 4-1 are
satisfied.

To restart a halted operating system, the firmware searches system memory
for the Restart Parameter Block (RPB), a data structure constructed for this
purpose by VMB. If a valid RPB is found, the firmware passes control to the
operating system at an address specified in the RPB.

The firmware keeps a restart in progress (RIP) flag in the CPMBX which it
uses to avoid repeated attempts to restart a failing operating system. An
additional RIP flag is maintained by the operating system in the RPB.

The firmware uses the following algorithm to restart the operating system:
1. Check CPMBX<3>(RIP). If it is set, restart fails.

Print the message "Restarting system software” on the console terminal.
Set CPMBX <3 > (RIP).

Search fér a valid RPB. If none is found, restart fails.

Check the operating system RPBSL_RSTRTFLG<0>(RIP) flag. If it is
set, restart fails.

Write "0” on the diagnostic LEDs.

Dispatch to the restart address, RPBSL_RESTART, with:

SP = the physical address of the RPB plus 512
AP = the halt code

PSL = 041F0000

PR$_MAPEN = 0.

If the restart is successful, the operating system must clear
CPMBX<3>(RIP).

If restart fails, the firmware prints "Failure” on the system console.

GoR W N

238 KA640 Firmware

4.5.1 Locating the RPB

The RPB is a page aligned data structure created by the bootstrap. The
firmware uses the following algorithm to find a valid RPB:

1. Search for a page of memory that contains its address in the first
longword. If none is found, the search for a valid RPB has failed.

2. Read the second longword in the page (the physical address of the restart
routine). If it is not a valid physical address, or if it is zero, return to
step 1. The check for zero is necessary to ensure that a page of zeros
does not pass the test for a valid RPB.

3. Calculate the 32 bit twos-complement sum (ignoring overflows) of the
first 31 longwords of the restart routine. If the sum does not match the
third longword of the RPB, return to step 1.

4. A valid RPB has been found.

4.6 Machine State When Halted
This section describes the state of the KA640 after a power-up halt.

The descriptions in this section assume a machine with no errors, that the
machine has just been turned on and that only the power-up diagnostics
have been run. The state of the machine is not defined if individual
diagnostics are run or during any other halts other than a power-up halt
(SAVPSL<14:8>(HALT_CODE) = 3).

The following sections describe data structures that are guaranteed to be
constant over future versions of the KA640 firmware. Placement and/or
existance of any other structure(s) is not implied.

4.6.1 Main Memory Layout and State

Main memory is tested and initialized by the firmware on power-up.

KAB640 Firmware 239

4.6.1.1 Reserved Main Memory

In order to build the scatter/gather map and the bitmap, the firmware
attempts to find a physically contiguous 64 K Bytes section of memory at the
highest possible address that has no multiple bit errors. Single bit errors
are tolerated in this section.

This algorithm has the side effect of leaving possibly good memory above
the bitmap. This memory, due to the placement algorithm, will not have
any contiguous section larger than 64K Bytes-1 bytes long. There may also
be bad memory above this section.

While the full 64 K Bytes is used by the diagnostics on power-up, on
machines with less than 64MB of main memory, the lower 32 K Bytes that
is not used by the bitmap is rolled into the remainder of main memory.

4.6.1.2 Scatter/Gather Map

On power-up, the scatter/gather map is set by the firmware to map to the
first 4 M Bytes of main memory. Main memory pages will not be mapped if
there is a corresponding page in Q22-bus memory, or if the page is flagged
bad by the bitmap.

On a processor halt other than power-up, the contents of the scatter/gather
map is undefined, and is dependant on the individual operating systems.

Operating systems should not move the location of the scatter/gather map,
and should access the map only on aligned longwords through the local 1/0
space of 2008 8000 - 2008 FFFC inclusive.

The Q22-bus map base register (QMBR) is set up by the firmware to point
to this area and should not be changed by software.

4.6.1.3 Bitmap

The bitmap is a data structure that indicates which pages in memory
are deemed useable by operating systems. The bitmap is built by the
diagnostics as a side effect of the memory tests on power-up.

Each bit in the bitmap corresponds to a page in main memory. There is a
one to one correspondance between a page frame number (origin 0) and a
bit index in the bitmap. A one in the bitmap indicates that the page may be
used, with a zero indicating that the page has an error(s). The bitmap does
not map itself or the scatter/gather map. There may be memory above the
bitmap which has both good and bad pages.

By default, a page is flagged as bad if there are multiple bit errors in the
page. Single bit errors, regardless of frequency, do not flag the pageas bad.
Via the SET command, users may change the semantics of how the bitmap
is built so that any and all errors will flag the page being tested as being

240 KA640 Firmware

bad. Users should be aware that the later techinique may unduly reduce
availability of memory to the system.

The bitmap is protected by a checksum stored in the SSC RAM. The
checksum is a simple byte wide, two’s complement checksum. The sum
of all bytes in the bitmap, and the bitmap checksum, should have the lower
8 bits zero. Operating systems that map out pages are encouraged to use
this bitmap to facilitate diagnosis by service personnel.

The bitmap always starts on a page boundary and is typically found just
below the scatter/gather map, although future versions of the firmware will
not guarantee this. The bitmap takes up 2 K Bytes for every 8 M Bytes of
main memory, so a 64 M Bytes machine will have a 16 K Bytes of bitmap
and an 8 M Bytes will have a 2 K Bytes bitmap. The location of the bitmap
can be found by invoking test 9E.

4.6.1.4 Contents of Main Memory

The contents of main memory are undefined after the diagnostics have run.
Typically, non zero test patterns will be left in memory.

The diagnostics will scrub all of main memory so that no power-up induced
errors remain in the memory system. On the KA640 memory subsystem,
the state of the ECC bits and the data bits are undefined on initial power-
up. This can result in single and multiple bit errors if the locations are
read before written because the ECC bits are not in agreement with their
correspsonding data bits. An aligned longword write to every location (done
by diagnostics) eliminates all power-up induced errors.

4.6.2 Cache Memory

The cache is tested during the power-up diagnostics, flushed and then
turned off. The cache is again turned on by the BOOT and by the INIT
command. Otherwise, the state of the cache is not touched.

4.6.3 Translation Lookaside Buffer

The translation lookaside buffer (TLB) is tested by diagnostics on power-up,
but not used otherwise as the firmware runs in physical mode. The TLB is
invalidated via IPR 57 prior to the exit from a halt.

KA640 Firmware 241

4.6.4 Halt Protect Space

Halt protect space is from 2004 0000 - 2005 FFFF inclusive. The halt
unprotected space is from 2006 0000 - 2008 FFFF inclusive for the 128 K
Bytes of firmware code that is currently on the KA640.

The firmware always runs in halt protect space. When passing control to
the bootstrap, the firmware exits the halt protected space, so if halts are
enabled, and the halt line is asserted, the processor will then halt before
booting.

The address decode space that the SSC is set to twice the size of the ROMs
in actual use. This then allows the ROMs to appear twice in the assigned
address space. The halt protect space is then set to the size of the ROMs,
thus setting up the SSC to recognize the lower half of the addressable space
as halt protected, and the upper half as halt unprotected.

4.7 Public Data Structures and Entry Points

This section describes data structures and subroutine entry points that are
public and are guaranteed to be compatible over future versions of the
KA640 firmware.

4.7.1 Firmware EPROM Layout

The KA640 uses two 64KB EPROM s for a total of 128Kb of EPROM memory.
Of this, approximately 120KB is used for code, with the remaining reserved
for future expansion and customer usage. There are two copies of the
firmware, one in halt protected space, and one in halt unprotected space.
Both copies are identical. o

The first instruction executed on halts is a branch around the system ID
extension (SIE) and the callback entry points. This allows these public data
structures to reside in fixed locations in the EPROM.

The callback area entry points provide a simple interface to the currently
defined console for VMB and secondary bootstraps (Section 4.7.2).

The EPROM checksum is a longword checksum from 2004 0000 to the
checksum inclusive. The diagnostics use this to determine that the EPROMs
can correctly be read.

The memory between the checksum and the four page user area at the end
of the EPROMs is reserved by Digital for future expansion of the KA640
firmware. The contents of this area is set to FF.

242 KA640 Firmware

The four pages reserved for customer use are at the top of the EPROMs,
and start at address 2005 F800 (halt protected space) or 2007 F800 (halt
unprotected space). These areas are not burned and may be reburned by
OEMs or end users. The area is not tested by the KA640 firmware and is
not included in the checksum.

4.7.2 Call Back Entry Points

The KA640 firmware provides several entry points that facilitate /O to the
designated console device. Users of these entry points do not need to be
aware of the console device type, be it a video terminal or workstation.

The primary intent of these routines is to provide a simple console device
to VMB and secondary bootstraps before operating systems load their own
terminal drivers.

These are JSB (subroutine as opposed to procedure) entry points located in
fixed locations in the firmware. These locations branch to code that in turn
calls the appropriate routines.

All of the entry points are designed to run at IPL 31 on the interrupt stack
in physcial mode. Virtual mode is not supported. Due to internal firmware
archifectural restrictions, users are encouraged to only call into the halt
protected entry points. These entry points are listed below.

Entry Point Address
CP$GET_CHAR _R4 2004 0008
CP$MSG_OUT_NOLF_ 2004 000C
R4

CP$READ_WTH_ 2004 0010
PRMPT_R4

4.7.2.1 CP$GETCHAR_R4

This routine returns the next character entered by the operator in R0. A
timeout interval can be specified. If the timeout interval is zero, no timeout
is generated. If a timeout is specified and if timeout occurs, a value of 18
(CAN) is returned instead of normal input.

Registers R0, R1, R2, R3 and R4 are modified by this routine, all others are
preserved.

KAB40 Firmware 243

Usage with timeout:

movl #timeout_in_tenths_of_second, r0
jsb @#CPSGET_CHAR_R4

cmpb r0,#~x18

beql timeout_handler

; Input is in RO.

Specify timeout.
Call routine.
Check for timeout.
Branch if timeout.

Ne Se “e S~

Usage without timeout:

clrl r0
jsb @#CPSGET_CHAR_R4
; Input is in RO.

Specify no timeout.
Call routine.

~e ~e

4.7.2.2 CP$SMSG_OUT_NOLF_R4

This routine outputs a message to the console. The message is specified
either by a message code or a string descriptor. The routine distinguishes
between message codes and descriptors by requiring that any descriptor be
located outside of the first page of memory. Hence, message codes are
restricted to values between 0 and 511.

Registers RO, R1, R2, R3 and R4 are modified by this routine, all others are
preserved.

H
; Usage with message code:

movzbl #console_message_code,r0 ; Specify message code.
jsb @#CP$MSG_OUT_NOLF_R4 ; Call routine.

.
’
.
’

Usage with a message descriptor (position dependent).

movaq 5$,r0 ; Specify address of desc.
jsb @#CPSMSG_OUT_NOLF_R4 ; Call routine.

58: .ascid /This is a message/ ; Message with descriptor.

H
; Usage with a message descriptor (position independent).

244 KA640 Firmware

pushab 5§ ; Generate message desc.
pushl #10-5 ; on stack.

movl sp,r0 ; Pass desc. addr. in RO.
jsb @#CP$MSG_OUT_NOLF_R4 ; Call routine.

clrg (sp)+ ; Purge desc. from stack.
58 .ascii /This is a message/ ; Message.

10s: H

4.7.2.3 CPSREAD_WTH_PRMPT_R4

This routine outputs a prompt message and then inputs a character string
from the console. When the input is accepted, DELETE, CONTROL-U and
CONTROL-R functions are supported.

As with CP$MSG_OUT_NOLF_R4, either a message code or the address of

a string descriptor is passed in R0 to specify the prompt string. A value of
zero results in no prompt.

A descriptor of the input string is returned in RO and R1. R0 contains the
length of the string and R1 contains the address. This routine inputs the
string into the console program string buffer and therefore the caller need
not provide an input buffer. Successive calls however destroy the previous
contents of the input buffer.

Registers RO, R1, R2, R3 and R4 are modified by this routine, all others are
preserved.

H
i Usage with a message descriptor (position independent).

pushab 10$; Generate prompt desc.
pushl #10-5 ; on stack.

movl sp,r0 ; Pass desc. addr. in RO.
jsb @#CPSREAD_WTH_PRMPT_R4 ; Call routine.

clrq (sp)+ ; Purge prompt desc.

. ; Input desc in RO and R1.
5$: .ascii /Prompt> / ; Prompt string.

10$:

4

KA640 Firmware 245

4.7.3 SSC RAM Layout

The KA640 firmware uses the 1KB of NVRAM on the SSC for storage
of firmware specific data structures and other information that must be
preserved across power cycles. This NVRAM resides in the SSC starting
at address 2014 0400. The NVRAM should not be used by the operating
systems except as described in the following sections. This NVRAM is not
reflected in the bitmap built by the firmware.

4.7.4 Public Data structures

Following is a template of the data structures used in the public area of S5C
NVRAM, which starts at physical address 2014 0400.

Fields that are designated as reserved and/or internal use should not be
written to. Note that not all fields may be written to.

4.7.4.1 Console Program Mailbox (CPMBX)

The console program mailbox (CPMBX) is a software data structure located
at the beginning of the SSC battery backed-up RAM (2014 0800). The
CPMBX is used to pass information between the KA640 firmware and
diagnostics, VMB, or an operating system. It consists of three bytes referred
to here as NVR0, NVR1, and NVR2. NVRO resides at address 2014 0800;
NVR1 resides at address 2014 0801; NVR2 resides at address 2014 0802.
The bit fields of NVR0, NVR1, and NVR2 are described in Tables 4-11,
4-12, and 4-13 respectively.

246 KAB640 Firmware

Table 4-11 NVRO
Field Acronym Description

7:4 LANGUAGE This field specifies the current selected language for
displaying halt and error messages on terminals which

support MCS.

3 RIP If set, a restart attempt is in progress. This flag must be
cleared by the operating system if the restart succeeds.

2 BIP If set, a bootstrap attempt is in progress. This flag must be
cleared by the operating system if the bootstrap succeeds.

1:0 HLT_ACT Processor halt action - this field in conjunction with

the conditions specified in Table 4-1 is used to control
the automatic restart/bootstrap procedure. HLT_ACT is
normally written by the operating system.

0 : Restart; if that fails, reboot; if that fails,

halt.
1 : Restart; if that fails, halt.
2 : Reboot; if that fails, halt.
3 : Halt.

Table 4-12 NVR1
Field Acronym Description

2 MCS If set, indicates that the attached terminal supports
multinational character set (MCS). If clear, MCS is not
supported.

1 CRT If set, indicates that the attached terminal is a CRT. If clear,

indicates that the terminal is hardcopy.

Table 4-13 NVR2
Field Acronym Description

7:0 KEYBOARD This field indicates the national keyboard type in use.

KA640 Firmware 247

4.7.4.2 Firmware Stack

This section contains the stack that is used by all of the firmware, with the
exception of VMB, which has its own built in stack.

4.7.4.3 Diagnostic State

This area is used by the firmware resident diagnostics. This section is not
documented here. ' '

4.7.4.4 USER Area
The KA640 console reserves the last longword (address 2014 07FC) of the

NVRAM for customer use. This location is not tested by the console
firmware. Its value is undefined.

4.8 Error Messages

The error messages issued by the KA640 firmware fall into three categories:
halt messages, console error messages, and VMB error messages.

4.8.1 Halt Messages

Table 4-14 lists messages that may appear on the console terminal when a
system error occurs.

Table 4-14 Halt Messages

Code Message Explanation

202 EXT HLT External halt, caused by either console BREAK
condition, or Q22-bus BHALT _L.

204 ISP ERR Caused by attempt to push interrupt or exception state

onto the interrupt stack when the interrupt stack was
mapped NO ACCESS or NOT VALID.

205 DBL ERR A second machine check occurred while the processor
was attempting to service a normal exception.

206 HLT INST The processor executed a HALT instruction in kernel
mode.

207 SCB ERR3 The vector had bits <1:0> = 3.

708 SCB ERR2 The vector had bits <1:0> = 2.

?0A CHM FRISTK A change mode instruction was executed when

PSL<IS> was set.
?0B CHM TO ISTK The SCB vector for a changemode had bit <0> set.

?70C SCB RD ERR A hard memory error occurred during a processor read
of an exception or interrupt vector.

248 KA640 Firmware

Table 4-14 (Cont.) Halt Messages

Code Message Explanation

?10 MCHK AV An access violation or an invalid translation occurred
during machine check exception processing.

711 KSP AV An access violation or an invalid translation occurred
during invalid kernel stack pointer exception
processing.

712 DBL ERR2 Double machine check error. A machine check
occurred while trying to service a machine check.

713 DBL ERR3 Double machine check error. A machine check
. occurred while trying to service a kernel stack not
valid exception.

719 PSL EXC5 PSL <26:24> = 5 on interrupt or exception.
1A PSL EXCé6 PSL <26:24> = 6 on interrupt or exception.
?1B PSL EXC5 PSL <26:24> = 7 on interrupt or exception.
?1D PSL EXC5 PSL <26:24> = 5 on rei instruction.
?1E PSL EXC5 PSL <26:24> = 6 on rei instruction.
?1F PSL EXC5 PSL <26:24> = 7 on rei instruction.

4.8.2 Console Error Messages

Table 4-15 lists messages issued in response to a console command that
has errors.

Table 4-15 Console Error Messages

Code Message Explanation

720 CORRPTN The console data base was corrupted. The console
simulates a power-up sequence and rebuilds its
data base.

721 ILL REF The requested reference would violate virtual

memory protection, address is not mapped, or is
invalid in the specified address space, or value is
invalid in the specified destination.

722 ILLCMD The command string cannot be parsed.
723 INVDGT A number has an invalid digit.
724 LTL The command was too large for the console to

buffer. The message is sent only after the console

receives the |R9tum| at the end of the command.
725 ILL ADR The specified address is not in the address space.
726 VAL TOO LRG The specified value does not fit in the destination.

KA640 Firmware 249

Table 4-15 (Cont.) Console Error Messages

Code Message Explanation

727 SW CONF Switch conflict. For example, an EXAMINE
command specifies two different data sizes.

728 UNK SW The switch is not recognized.

729 UNK SYM The EXAMINE or DEPOSIT symbolic address is not
recognized.

?72A CHKSM An X command has an incorrect command or data
checksum. If the data checksum is incorrect, this
message is issued, and is not abbreviated to ‘‘lllegal
command.’’

?2B HLTED The operator entered a HALT command.

72C FND ERR A FIND command failed either to find the RPB or
64 Kbytes of good memory.

72D TMOUT Data failed to arrive in the expected time during an
X command.

?2E MEM ERR Memory error.

?2F UNXINT An unexpected interrupt or exception occurred.

730 UNIMPLEMENTED Unimplemented function.

731 QUAL NOVAL Qualifier does not take a value.

732 QUAL AMBG Ambiguous qualifier.

733 QUAL REQ VAL Qualifier requires a value.

?3¢ QUAL OVERF Too many qualifiers.

735 ARG OVERF Too many arguments.

736 AMBG CMD Ambiguous command.

737 INSUF ARG Insufficient arguments.

4.8.3 VMB Error Messages

If VMB is unable to boot, it returns an error message to the console.
Table 4-16 lists the error messages and their descriptions.

250 KA640 Firmware -

Table 4-16 VMB Error Messages

Message

Number Mnemonic Interpretation

740 NOSUCHDEV No bootable devices found

741 DEVASSIGN Device is not present

742 NOSUCHFILE Program image not found

743 FILESTRUCT Invalid boot device file structure

744 BADCHKSUM Bad checksum on header file

745 BADFILEHDR Bad file header

746 BADDIRECTORY Bad directory file

747 FILNOTCNTG Invalid program image format

748 ENDOFFILE Premature end of file encountered

749 BADFILENAME Bad file name given

74A BUFFEROVF Program image does not fit in available memory

?4B CTRLERR Boot device 1/O error

?4C DEVINACT Failed to initialize boot device

74D DEVOFFLINE Device is offline

?4E MEMERR Memory initialization error

?4F SCBINT Unexpected SCB exception or machine check

750 SCB2NDINT Unexpected exception after starting program
image

751 NOROM No valid ROM image found

752 NOSUCHNODE No response from load server

753 INSFMAPREG Invalid memory configuration

754 RETRY No devices bootable, retrying

A

Specifications

This appendix contains the physical, electrical and environmental
specifications for the KA640 CPU module.

A.1 Physical Specifications

The KA640 and MS650-AA are quad-height modules with the following
dimensions:

Dimension Measurement

Height 10.457 (+0.015/-0.020) inches

Length 8.430 (+0.010/-0.010) inches

Width 0.375 inches maximum (nonconductive)

0.343 inches maximum (conductive)

NOTE

Width, as defined for Digital modules, is the height of components above
the surface of the module.

A.2 Electrical Specifications

The power requirements for the KA640 CPU module are as follows:

+5V +5% +12V +5%
6.0 A maximum 0.14 A maximum

Typical currents are 10% less than the specified maximum.
The bus loads for the KA640 CPU module are as follows:
e 3.5 ac loads

¢ 1.0 dc loads

251

252 Specifications

A.3 Environmental Specifications

The environmental specifications for the KA640 CPU module are as follows:

Operating Conditions

Temperature

Humidity

Altitude

5 °C (41 °F) to 60 °C (140 °F) with a rate of change no
greater than 20 +2 °C (36 +4 °F) per hour at sea level.
Derate maximum temperature by 1.8 °C for each 1000

meters (1 °F for each 1000 ft) of altitude above sea level.

0% to 95% noncondensing, with a maximum wet bulb
temperature of 32 °C (90 °F) and a minimum dew point
temperature of 2 °C (36 °F).

Up to 2,400 meters (8,000 feet) with a rate of change no
greater than 300 meters per minute (1000 feet per minute).

Nonoperating Conditions Less than 60 Days

Temperature

Humidity
Altitude

-40 °C to +66 °C (-40 °F to +151 °F) with a rate of change
no greater than 11 +2 °C (20 +4 °F) per hour at sea level.
Derate the maximum temperature by 1.8 °C for each 1000
meters (1 °F for each 1000 ft) of altitude above sea level.

Up to 95% noncondensing.

Up to 4,900 meters (16,000 feet) with a rate of change no
greater than 600 meters per minute (2000 feet per minute).

Nonoperating Conditions Greater Than 60 Days

Temperature

Humidity

Altitude

+5°C to +60 °C (+40 °F to +140 °F) with a rate of
change no greater than 20 +2 °C (36 +4 °F) per hour at
sea level. Derate the maximum temperature by 1.8 °C for
each 1000 meters (1 °F for each 1000 ft) of altitude above
sea level.

10% to 95% noncondensing, with a maximum wet bulb
temperature of 32 °C (90 °F) and a minimum dew point
temperature of 2 °C (36 °F).

Up to 2,400 meters (8,000 feet) with a rate of change no
greater than 300 meters per minute (1000 feet per minute).

B

Address Assignments

B.1 General Local Address Space Map
Table B-1 lists the VAX memory space.

Table B-1 VAX Memory Space

Address Range Contents
0000 0000 - 033F FFFF Local memory space (52 Mbytes)
0340 0000 - 1FFF FFFF Reserved memory space (460 Mbytes)

Table B-2 lists the VAX input/output memory space.

Table B-2 VAX Input/Output Space

Address Range Contents

2000 0000 - 2000 1FFF Local Q22-bus I/O space (8 Kbytes)

2000 2000 - 2003 FFFF Reserved local 1/O space (248 Kbytes)

2004 0000 - 2005 FFFF Local ROM space - halt protected space (128 Kbytes)

2006 0000 - 2007 FFFF Local ROM space - halt unprotected space (128
Kbytes)

2008 0000 - 201F FFFF Local register 1/O space (1.5 Mbytes)

2020 0000 - 23FF FFFF Reserved local 1/0 space (62.5 Mbytes)

2400 0000 - 27FF FFFF Reserved local 1/O space (64 Mbytes)

2800 0000 - 2BFF FFFF Reserved local 1/O space (64 Mbytes)

2C08 0000 - 2FFF FFFF Reserved local 1/0 space (64 Mbytes)

3000 0000 - 303F FFFF Local Q22-bus memory space (4 Mbytes)

3040 0000 - 33FF FFFF Reserved local 1/0 space (60 Mbytes)

3400 0000 - 37FF FFFF Reserved local 1/O space (64 Mbytes)

253

254 Address Assignments

Table B-2 (Cont.) VAX Input/Output Space

Address Range Contents
3800 0000 - 3BFF FFFF Reserved local 1/0 space (64 Mbytes)
3C00 0000 - 3FFF FFFF Reserved local 1/O space (64 Mbytes)

B.2 Detailed Local Address Space Map

Table B-3 describes the contents of the VAX memory space.

Table B-3 VAX Memory Space

Contents Address Range

Local memory space (up to 52 Mbytes) 0000 0000 - 033F FFFF
Q22-bus map - top 32 Kbytes of main memory

Reserved memory space 0340 0000 - 1FFF FFFF

Table B-4 describes the contents of the VAX input/output memory space.

Table B-4 VAX Input/Output Space

Contents Address Range

Local Q22-bus I/O Space 2000 0000 - 2000 1FFF
Reserved Q22-bus 1/0 space 2000 0000 - 2000 0007
Q22-bus floating address space 2000 0008 - 2000 07FF
User reserved Q22-bus 1/0 space 2000 0800 - 2000 OFFF
Reserved Q22-bus 1/0 space 2000 1000 - 2000 1F3F
Interprocessor communication regisier (normal 2000 1F40

operation)

Interprocessor communication register (reserved) 2000 1F42
Interprocessor communication register (reserved) 2000 1F44
Interprocessor communication register (reserved) 2000 1F46
Reserved Q22-bus 1/O space 2000 1F48 - 2000 1FFF

Reserved Local 1/0 Space
2000 2000 - 2003 FFFF

Table B-4 (Cont.) VAX Input/Output Space

Address Assignments 255

Contents

Address Range

Local ROM Space

Local ROM protected space

MicroVAX system type register (in ROM)
Local ROM unprotected space

Local Register 1/O Space

DMA system configuration register

DMA system error register

Q22-bus error address register

DMA error address register

Q22-bus map base register

Reserved local register 1/0O space

Main memory error status register

Main memory control/diagnostic status register
Reserved local register 1/O space

Reserved (1 copy of BDR)
Boot and diagnostic register
Reserved (126 copies of BDR)

NI station address ROM
Reserved (4 copies of NISA ROM)
NI register data port

NI register address port

64 copies of NIRDP, NIRAP

MSI diagnostic register 0
MSI diagnostic register 1
MSI diagnostic register 2
MSI control and status register
MSI ID register
Reserved MSI register
Reserved MSI register
MSI timeout register
Reserved MSI register
Reserved MSI register
Reserved MSI register

2004 0000 - 2007 FFFF
2004 0000 - 2005 FFFF
2004 0004

2006 0000 - 2007 FFFF

2008 0000 - 201F FFFF
2008 0000
2008 0004
2008 0008
2008 000C
2008 0010
2008 0014 - 2008 013C
2008 0140
2008 0144
2008 0018 - 2008 3FFF

2008 4000
2008 4004
2008 4008 - 2008 41FF

2008 4200 - 2008 427C
2008 4280 - 2008 43FF
2008 4400
2008 4404
2008 4408 - 2008 45FF

2008 4600
2008 4604
2008 4608
2008 460C
2008 4610
2008 4614
2008 4618
2008 461C
2008 4620
2008 4624
2008 4628

256 Address Assignments

Table B-4 (Cont.) VAX Input/Output Space

Contents

Address Range

Reserved MSI register
Reserved MSI register
Reserved MSI register
Reserved MSI register

MSI long target list pointer
MSI initiator list pointer
MSI DSSI control register
MSI DSSI status register
Reserved MSI register
Reserved MSI register

MSI diagnostic control register
MSI clock control register
MSI internal state register 0
MSI internal state register 1
MSI internal state register 2
MSI internal state register 3
Reserved MSI register
Reserved MSI register
Reserved MSI register
Reserved MSI register
Reserved MSI register
Reserved (4 copies of MSI reg block)

NI buffer address extension register
Reserved (127 copies of NIBAER)
Reserved local register 1/O space

Q22-bus map registers
Reserved local register I/O space
MSI buffer RAM

Reserved local Register 1/0 space

Diagnostic LED register
Reserved local register 1/O space

Diagnostic registers

2008 462C
2008 4630
2008 4634
2008 4638
2008 463C
2008 4640
2008 4644
2008 4648
2008 464C
2008 4650
2008 4654
2008 4658
2008 465C
2008 4660
2008 4664
2008 4668
2008 466C
2008 4670
2008 4674
2008 4678
2008 467C
2008 4680 - 2008 47FF

2008 4800
2008 4804 - 2008 49FF
2008 4A00 - 2008 7FFF

2008 8000 - 2008 FFFF
2009 0000 - 200F FFFF
2010 0000 - 2011 FFFF
2012 0000 - 2014 0020

2014 0030
2014 0034 - 2014 0068

2014 006C - 2014 OOFF

Address Assignments 257

Table B-4 (Cont.) VAX Input/Output Space

Contents Address Range

Local Register /0 Space (Continued)

Timer 0 control register 2014 0100

Timer 0 interval register 2014 0104

Timer 0 next interval register ' 2014 0108

Timer 0 interrupt vector 2014 010C

Timer 1 control register 2014 0110

Timer 1 interval register 2014 0114

Timer 1 next interval register 2014 0118

Timer 1 interrupt vector 2014 011C

Reserved local register 1/O space 2014 0120 - 2014 O3FF
Battery backed-up RAM 2014 0400 - 2014 O07FF
Reserved local register 1/0 space 2014 0800 - 201F FFFF
Reserved local 1/O space 2020 0000 - 2FFF FFFF
Local Q22-bus memory space 3000 0000 - 303F FFFF
Reserved local register 1/0 space 3040 0000 - 3FFF FFFF

B.3 External IPRs

Several of the internal processor registers (IPRs) on the KA640 are
implemented in the SSC rather than in the CVAX chip. These registers
are referred to as external IPRs, and are listed in Table B-5.

258 Address Assignments

Table B-5 External IPRs

IPR Number Register Name Abbreviation
27 Time of year register TOY

28 Console storage receiver status CSRSZ
29 Console storage receiver data CSRD
30 Console storage transmitter status CSTS .
31 Console storage transmitter data CSDB

32 Console receiver control/status RXCS

33 Console receiver data buffer RXDB

34 Console transmitter control/status TXCS

35 Console transmitter data buffer TXDB

55 1/0 system reset register IORESET

*These registers are not fully implemented. Accesses yield unpredictable results.

B.4 Global Q22-bus Address Space Map

The addresses and memory contents of the Q22-bus memory space is listed

in Table B-6.

Table B-6 Q22-bus Memory Space

Contents

Address

Q22-bus memory space (octal)

0000 0000 - 1777 7777

The contents and addresses of the Q22-bus 1/O space with BBS7 asserted is
listed Table B-7.

Address Assignments 259

Table B-7 Q22-bus I/0 Space with BBS7 Asserted

Contents Address

Q22-bus 1/O space (Octal) 1776 0000 - 1777 7777
Reserved Q22-bus I/O space 1776 0000

Q22-bus floating address space , 1776 0010 - 1776 3777
User reserved Q22-bus 1/O space 1776 4000 - 1776 7777
Reserved Q22-bus I/O space 1777 0000 - 1777 7477
Interprocessor communication register (normal 1777 7500

operation)

Interprocessor communication register (reserved) 1777 7502
Interprocessor communication register (reserved) 1777 7504
Interprocessor communication register (reserved) 1777 7506
Reserved Q22-bus 1/O space 1777 7510 - 1777 7777

C

Q22-bus Specification

C.1 General Description

The Q22-bus, also known as the extended LSI-11 bus, is the low-end
member of Digital’s bus family. All of Digital’s microcomputers, such as the
MicroVAX 1, MicroVAX II, MicroVAX 3500, MicroVAX 3600, and MicroPDP-
11 use the Q22-bus.

The Q22-bus consists of 42 bidirectional and 2 unidirectional signal lines.
These form the lines along which the processor, memory, and 1/O devices
communicate with each other.

Addresses, data, and control information are sent along these signal lines,
some of which contain time-multiplexed information. The lines are divided
as follows:

* Sixteen multiplexed data/address lines—BDAL <15:00>
¢ Two multiplexed address/parity lines—BDAL<17:16>
* Four extended address lines—BDAL<21:18>

e Six data transfer control lines—BBS7, BDIN, BDOUT, BRPLY, BSYNC,
BWTBT

* Six system control lines—BHALT, BREF, BEVNT, BINIT, BDCOK,
BPOK

¢ Ten interrupt control and direct memory access control lines—BIAKO,
BIAKI, BIRQ4, BIRQS5, BIRQ6, BIRQ7, BDMGO, BDMR, BSACK,
BDMGI

In addition, a number of power, ground, and space lines are defined for the
bus. Refer to Table C-1 for a detailed description of these lines.

The discussion in this appendix applies to the general 22-bit physical
address capability. All modules used with the KA640 CPU module must
use 22-bit addressing.

260

Q22-bus Specification 261

Most Q22-bus signals are bidirectional and use terminations for a negated
(high) signal level. Devices connect to these lines by way of a high-
impedance bus receivers and open collector drivers. The asserted state
is produced when a bus driver asserts the line low.

Although bidirectional lines are electrically bidirectional (any point along the
line can be driven or received), certain lines are functionally unidirectional.
These lines communicate to or from a bus master (or signal source), but
not both. Interrupt acknowledge (BIAK) and direct memory access grant
(BDMGQG,) signals are physically unidirectional in a daisy-chain fashion. These
signals originate at the processor output signal pins. Each is received on
device input pins (BIAKI or BDMGI) and is conditionally retransmitted via
device output pins (BIAKO or BDMGO). These signals are received from
higher-priority devices and are retransmitted to lower-priority devices along
the bus, establishing the position-dependent priority scheme.

C.1.1 Master/Slave Relationship

Communication between devices on the bus is asynchronous. A
master/slave relationship exists throughout each bus transaction. Only one
device has control of the bus at any one time. This controlling device is
termed the bus master, or arbiter. The master device controls the bus when
communicating with another device on the bus, termed the slave.

The bus master (typically the processor or a DMA device) initiates a bus
transaction. The slave device responds by acknowledging the transaction in
progress and by receiving data from, or transmitting data to, the bus master.
Q22-bus control signals transmitted or received by the bus master or bus
slave device must complete the sequence according to bus protocol.

The processor controls bus arbitration, that is, which device becomes bus
master at any given time. A typical example of this relationship is a disk
drive, as master, transferring data to memory as slave. Communication
on the Q22-bus is interlocked so that, for certain control signals issued by
the master device, there must be a response from the slave in order to
complete the transfer. It is the master/slave signal protocol that makes the
Q22-bus asynchronous. The asynchronous operation precludes the need for
synchronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response from the
slave device, each bus master must include a timeout error circuit that aborts
the bus cycle if the slave does not respond to the bus transaction within 10
us. The actual time before a timeout error occurs must be longer than the
reply time of the slowest peripheral or memory device on the bus.

262 Q22-bus Specification

C.2 Q22-bus Signal Assignments

Table C-1 lists the data and address signal assignments. Table C-2 lists
the control signal assignments. Table C-3 lists the power and ground signal
assignments. Table C-4 lists the spare signal assignments.

Table C-1 Data and Address Signal Assignments

Data and Address Signal Pin Assignment
BDALO AU2
BDAL1 AV2
BDAL2" BE2
BDAL3 BF2
BDAL4 BH2
BDALS BJ2
BDAL6 BK2
BDAL7 BL2
BDALS BM2
BDAL9 BN2
BDAL10 BP2
BDAL11 BR2
BDAL12 BS2
BDAL13 BT2
BDAL14 BU2
BDAL15 BV2
BDAL16 AC1
BDAL17 AD1
BDAL18 BC1
BDAL19 BD1
BDAL20 BE1

BDAL21 BF1

Q22-bus Specification 263

Table C-2 Control Signal Assignments

Control Signal Pin Assignment

Data Control

BDOUT AE2
BRPLY AF2
BDIN AH2
BSYNC AJ2
BWTBT . AK2
BBS7 AP2

Interrupt Control

BIRQ7 BP1
BIRQ6 AB1
BIRQ5 AA1
BIRQ4 AL2
BIAKO AN2
BIAKI AM2

DMA Control

BDMR AN1
BSACK BN1
BDMGO AS2
BDMGI AR2

System Control

BHALT AP1
BREF AR1
BEVNT BR1
BINIT AT2
BDCOK BA1

BPOK BB1

264 Q22-bus Specification

Table C-3 Power and Ground Signal Assignments

Power and Ground Pin Assignment
+5 B (battery) or AS1
+12 B (battery)

+12 B BS1
+5B AV1
+5 AA2
+5 BA2
+5 BV1
+12 AD2
+12 BD2
+12 AB2
-12 AB2
-12 BB2
GND AC2
GND Al
GND AM1
GND AT1
GND BC2
GND BJ1
GND BM1
GND BT1

Table C-4 Spare Signal Assignments

Spares Pin Assignment
SSparel AE1

SSpare3 AH1

SSpare8 BH1

SSpare?2 AF1

MSpareA AK1

MSpareB AL1

MSpareB BK1

MSpareB BL1

PSparel AUl

ASpare2 BU1

Q22-bus Specification 265

C.3 Data Transfer Bus Cycles

Data transfer bus cycles, executed by bus master devices, transfer 32-bit
words or 8-bit bytes to or from slave devices. In block mode, multiple words
can be transferred to sequential word addresses, starting from a single bus
address. Data transfer bus cycles are listed and defined in Table C-5.

The bus signals listed in Table C-6 are used in the data transfer operations
described in Table C-5.

Table C-5 Data Transfer Operations

Function (with respect

Bus Cycle Mnemonic Description to the bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write-byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte output Read-modify-write
byte

DATBI Data block input Read block

DATBO Data block output Write block

Data transfer bus cycles can be reduced to five basic types: DATI, DATO(B),
DATIO(B), DATBI, and DATBO. These transactions occur between the bus
master and one slave device selected during the addressing part of the bus
cycle.

C.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have been
completed (BSYNC L negated) and the device must become bus master.
The bus cycle can be divided into two parts: addressing and data transfer.
During addressing, the bus master outputs the address for the desired slave
device, memory location, or device register. The selected slave device
responds by latching the address bits and holding this condition for the
duration of the bus cycle until BSYNC L becomes negated. During data
transfer the actual data transfer occurs.

266 Q22-bus Specification

Table C-6 Bus Signals for Data Transfers

Mnemonic Description Function

BDAL<21:00> L 22 Data/address lines BDAL<15:00> L are
: used for word and byte

transfers. BDAL<17:16>
L are used for extended
addressing, memory
parity error (16), and
memory parity error
enable (17), functions.
BDAL<21:18> L are used
for extended addressing

beyond 256 Kbytes.

BSYNC L Bus cycle control Indicates bus transaction
in progress.

BDIN L Data input indicator Strobe signals.

BDOUT L Data output indicator Strobe signals.

BRPLY L Slave’s acknowledge of bus cycle Strobe signals.

BWTBT L Write/byte control Control signals.

BBS7 1/O device select Indicates address is in the
1/0 page.

C.3.2 Device Addressing

Device addressing of a data transfer bus cycle comprises an address setup
and deskew time, and an address hold and deskew time. During address
setup and deskew time, the bus master does the following operations:

e Asserts BDAL<21:00> L with the desired slave device address bits.
e Asserts BBS7 L if a device in the I/O page is being addressed.
e Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus cycle.

During this time, the address, BBS7 L, and BWTBT L signals are asserted at
the slave bus receiver for at least 75 ns before BSYNC goes active. Devices
in the I/O page ignore the nine high-order address bits BDAL<21:13>, and
instead, decode BBS7 L along with the 13 low-order address bits. An active
BWTBT L signal during address setup time indicates that a DATO(B) or
DATBO operation follows, while an inactive BWTBT L indicates a DATI,
DATBI, or DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

Q22-bus Specification 267

The slave device uses the active BSYNC L bus received output to
clock BDAL address bits, BBS7 L, and BWTBT L into its internal logic.
BDAL<21:00> L, BBS7 L, and BWTBT L remain active for 25 ns minimum
after the BSYNC L bus receiver goes active. BSYNC L remains active for
the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the
way the slave device responds to BBS7 L. Addressed peripheral devices
must not decode address bits on BDAL<21:13> L. Addressed peripheral
device can respond to a bus cycle when BBS7 L is asserted (low) during the
addressing of the cycle. When asserted, BBS7 L indicates that the device
address resides in the 1/0 page (the upper 4 Kbytes address space). Memory
devices generally do not respond to addresses in the 1/O page; however,
some system applications may permit memory to reside in the 1/O page for
use as DMA buffers, read-only memory bootstraps, and diagnostics.

DATI

The DATI bus cycle, shown in Figure C-1, is a read operation. During
DATI, data is input to the bus master. Data consists of 16-bit word transfers
over the bus. During data transfer of the DATI bus cycle, the bus master
asserts BDIN L 100 ns minimum after BSYNC L is asserted. The slave
device responds to BDIN L active as follows:

e Asserts BRPLY L 0 ns minimum (8 ns maximum to avoid bus timeout)
after receiving BDIN L, and 125 ns maximum before BDAL bus driver
data bits are valid.

e Asserts BDAL<21:00> L with the addressed data and error information
0 ns (minimum) after receiving BDIN, and 125 ns (maximum) after
assertion of BRPLY.

268 Q22-bus Specification

BUS MASTER
PROCESSOR OR DEVICE

ADDRESS DEVICE OR MEMORY
ASSERT BDAL <21:00> L WITH
ADDRESS AND
ASSERT BBS7 IF THE ADDRESS
IS IN THE 1/0 PAGE
ASSERT BSYNC L

SLAVE
MEMORY OR DEVICE

\
—_—
DECODE ADDRESS
STORE DEVICE SELECTED -
OPERATION
/ -
-
REQUEST DATA -—
REMOVE THE ADDRESS FROM
BDAL <21:00> L AND
NEGATE BBS7 L
ASSERT BDIN L
— —
_
INPUT DATA
PLACE DATA ON BDAL < 15:00> L
" ASSERT BRPLY L
/
- -
TERMINATE INPUT TRANSFER
ACCEPT DATA AND RESPOND
BY NEGATING BDIN L —_—
—_—
T—
TERMINATE BUS CYCLE OPERATION COMPLETED
NEGATE BSYNC L -— e e

NEGATE BRPLY L

MR-6028
MA-1074-87

Figure C-1 DATI Bus Cycle

Q22-bus Specification 269

When the bus master receives BRPLY L, it does the following:

* Waits at least 200 ns deskew time and then accepts input data at
BDAL<17:00> L bus receivers. BDAL <17:16> L are used for
transmitting parity errors to the master.

* Negates BDIN L 200 ns minimum to 2 us maximum after BRPLY L goes
active.

The slave device responds to BDIN L negation by negating BRPLY L and
removing read data from BDAL bus drivers. BRPLY L must be negated 100
ns maximum prior to removal of read data. The bus master responds to the
negated BRPLY L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows:
® BSYNC L must remain negated for 200 ns minimum.

* BSYNC L must not become asserted within 300 ns of previous BRPLY
L negation.

Figure C-2 shows DATI bus cycle timing.

NOTE

Continuous assertion of BSYNC L retains control of the bus by the bus
master, and the previously addressed slave device remains selected. This
is done for DATIO(B) bus cycles where DATO or DATOB follows a DATI
without BSYNC L negation and a second device addressing operation. Also,
a slow slave device can hold off data transfers to itself by keeping BRPLY
L asserted, which causes the master to keep BSYNC L asserted.

DATOB

DATO(B), shown in Figure C-3, is a write operation. Data is transferred
in 32-bit words (DATO) or 8-bit bytes (DATOB) from the bus master to
the slave device. The data transfer output can occur after the addressing
portion of a bus cycle when BWTBT L has been asserted by the bus master,
or immediately following an input transfer part of a DATIO(B) bus cycle.

270 Q22-bus Specification

T/R DAL 14) x T ADDR 4) R DATA x {4)

100 ns

200 ns
150 ns] MINIMUM[*— MAXIMUM
TSYNC MINIMUM fe—————— 200 ns MINIMUM —————]

100 NS MINIMUM —af
8 uS MAXIMUM

CLOCK DATA
pe—— 200 ns MINIMUM 200 ns
*— MINIMUM —&

300 ns MINIMUM ———e——gp{

T DIN

T

R RPLY

150 ns
"l MINIMUM ol * '-— 100 ns MINIMUM

T8S7 (] 1 (4)
TWTBT 4)\
TIMING AT MASTER DEVICE

R/T DAL 4) R ADDRX @) 1 T DATA x 4)

4

f<

25ns 100 ns MAXIMUM
—* L_MlNlMuM —*] 125 ns MAXIMUM —~ef l" 0 s MINIMUM
RSYNC 4 Ons \ /
MINIMUM
loe— 75ns [e——200 ns MINIMUM: 150 ns
MINIMUM MIMIMUM]
RDIN N\
\ 300 ns MINIMUM ———s{
TRPLY
—.] fo— 75 ns MINIMUM
RBS? (4 K % (a
> 25 ns MINIMUM
RWTBT 4 K (4)
TIMING AT SLAVE DEVICE
NOTES
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3.8US DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR.0037
MA.1083.97

Figure C-2 DATI Bus Cycle Timing

Q22-bus Specification 271

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) ' (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
ASSERT BDAL <21:00> L WITH
ADDRESS AND
ASSERT BBS7 L IF ADDRESS IS
IN THE 1/0 PAGE
ASSERT BWTBT L (WRITE
CYCLE)

ASSERT BSYNC L

—_—
—_—
—_
—_—
—
DECODE ADDRESS
TOR E SE
__— STORE DEVICE SELECTED
- OPERATION
/
—
- -
OUTPUT DATA
REMOVE THE ADDRESS FROM
BDAL <21:00> L AND NEGATE BBS7 L
NEGATE BWTBT L UNLESS DATOB
PLACE DATA ON BDAL < 15:00> L
ASSERT BDOUT L —_—
—_—
_—
TAKE DATA
RECEIVE DATA FROM BDAL
LINES
___— ASSERTBRPLYL
/ /
—_—
TERMINATE OUTPUT TRANSFER
NEGATE BDOUT L (AND BWTBT L
IF IN A DATOB BUS CYCLE)
REMOVE DATA FROM BDAL <16:00> L____
—_—
—_—
OPERATION COMPLETED
NEGATE BRPLY L
/ -
/ /
/
TERMINATE BUS CYCLE -~

NEGATE BSYNC L

MR.6029
MA.1081-87

Figure C-3 DATO or DATOB Bus Cycle

272 Q22-bus Specification

The data transfer portion of a DATO(B) bus cycle comprises a data setup
and deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the data
on BDAL<15:00> L at least 100 ns after BSYNC L assertion. BWTBT L
remains negated for the length of the bus cycle. If the transfer is a byte
transfer, BWTBT L remains asserted. If it is the output of a DATIOB, BWTBT
L becomes asserted and lasts the duration of the bus cycle.

During a byte transfer, BDAL<00> L selects the high or low byte. This
occurs in the addressing part of the cycle. If asserted, the high byte
(BDAL<15:08> L) is selected; otherwise, the low byte (BDAL<07:00> L)
is selected. An asserted BDAL 16 L at this time forces a parity error to be
written into memory if the memory is a parity-type memory.” BDAL 17 L
is not used for write operations. The bus master asserts BDOUT L at least
100 ns after BDAL and BDWTBT L bus drivers are stable. The slave device
responds by asserting BRPLY L within 10 us to avoid bus timeout. This
completes the data setup and deskew time.

During the data hold and deskew time, the bus master receives BRPLY L and
negates BDOUT L, which must remain asserted for at least 150 ns from the
receipt of BRPLY L before being negated by the bus master. BDAL<17:00>
L bus drivers remain asserted for at least 100 ns after BDOUT L negation.
The bus master then negates BDAL inputs.

During this time, the slave device senses BDOUT L negation. The data is
accepted and the slave device negates BRPLY L. The bus master responds
by negating BSYNC L. However, the processor does not negate BSYNC L
for at least 175 ns after negating BDOUT L. This completes the DATO(B)
bus cycle. Before the next cycle, BSYNC L must remain unasserted for at
least 200 ns. Figure C-4 shows DATO(B) bus cycle timing.

DATIOB

The protocol for a DATIO(B) bus cycle is identical to the addressing and
data transfer portions of the DATI and DATO(B) bus cycles, and is shown
in Figure C-5. After addressing the device, a DATI cycle is performed as
explained earlier; however, BSYNC L is not negated. BSYNC L remains
active for an output word or byte transfer (DATO(B)). The bus master
maintains at least 200 ns between BRPLY L negation during the DATI
cycle and BDOUT L assertion. The cycle is terminated when the bus
master negates BSYNC L, as described for DATO(B). Figure C-6 illustrates
DATIO(B) bus cycle timing.

Q22-bus Specification 273

r— 0 ns MINIMUM

T DAL (4) X T ADDR X TDATA xL— (4)

150 ns
|'_M|mMUM 100 ns MINIMUM —
T SYNC
Siiaxi 178 ns 200 ns MINIMUM——e
MAXIMUM MINIMUM
T /._—
eane MMM ‘ 300 ns MINIMUM ———e
R RPLY

- I._ 100 ns MINIMUM

T BS7 (4)_.IX X (@

je— 150 ns MINIMUM

T WTBT 4) ASSERTION = BYTE X @)

\
150ns | L—‘lOOnleNIMUM —] 100m L—

MINIMUM MINIMUM
TIMING AT MASTER DEVICE

R DAL) X R ADDR X R DATA y 14)

— 25 ns MINIMUM — L— 25 ns MINIMUM

]]

150 ns MINIMUM -
75ns

MINIMUM

25 ns MINIMUM

R DOUT \

N

ho— r— 300 ns MINIMUM ———o

TRPLY [MINIMUM

—‘I MI:JE:I::JM r—
R BS7 (4) X x {4)
25 ns MINIMUM — r— 25 ns MINIMUM
: X

RWTBT) ASSERTION = BYTE 4)

7505 o
MINIMUM

25 ns MINIMUM

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A ““B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON’T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR1179
MaA.108087

Figure C-4 DATO or DATOB Bus Cycle Timing

274 Q22-bus Specification

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
ASSERT BDAL <21:00> L WITH
ADDRESS
ASSERT BBS7 L IF THE
ADDRESS IS IN THE 1/0 PAGE
ASSERT BSYNC L

=™ DECODE ADDRESS
STORE DEVICE SELECTED

- OPERATION
- -
REQUEST DATA
REMOVE THE ADDRESS FROM
BDAL <21:00> L
ASSERT BDIN L —_————
T 7" INPUT DATA
PLACE DATA ON BDAL <15:00> L
_ ASSERT BRPLY L
-
TERMINATE INPUT TRANSFER
ACCEPT DATA AND RESPOND BY
TERMINATING BDIN L
— — —_—
-—
COMPLETE INPUT TRANSFER
REMOVE DATA
_ NEGATE BRPLY L
- - -
OUTPUT DATA -~
PLACE OUTPUT DATA ON BDAL < 15:00 > L
(ASSERT BWTBT L IF AN OUTPUT
BYTE TRANSFER)
ASSERT BDOUT L -
\\ §‘
TAKE DATA
RECEIVE DATA FROM BDAL LINES
ASSERT BRPLY L
-
- -
TERMINATE OUTPUT TRANSFER
REMOVE DATA FROM BDAL LINES
NEGATE BDOUT L -
—_
OPERATION COMPLETED
NEGATE BRPLY L
- —
— - - -

TERMINATE BUS CYCLE
NEGATE BSYNC L
(AND BWTBT L IF IN
A DATIOB BUS CYCLE)

MR 6030
MA-1082-87

Figure C-5 DATIO or DATIOB Bus Cycle

Q22-bus Specification 275

_.‘ r.. 150 ns MINIMUM —oI '-— 0 ns MINIMUM
R/TDAL (4 xTADDR>((4 X R DATA X (4 l T DATA X @

T -
MI‘N%OM'SM — - 200 ns MAXIMUM 1 — L— 100 ns MINIMUM
TSYNC _J
150ns | 175 ns
‘m"’:'_""';;';“m CRMNMUT MmNIMUM
T oouT MINIMUM 9 MINIMUM ==
ko 200 ns
MINIMUM "
TOIN /
300 ns
MiNiMum]
RRPLY
150 ns b
MINIMUM
TBs? K
—e| e~ 100ns MINIMUM 100 ns MINIMUM—SY r—
TWTBT (4>\| (a) X ASSERTION = BYTE X (@
_.] le— 150 ns MINIMUM

TIMING AT MASTER DEVICE

RT/DAL (4} X R ADDR x (4) X T DATA x 4 X R DATA X 4

- I.Mllﬁ?tzlsJM l | I — L—zs ns MINIMUM
RSYNC 4 o - 1000
MAXIMUM 100 ms
ke— 75 ns MINIMUM 25 ns MINIMUM o " miNmMum
-{ 125ns 150 ns e
R bouT MAXIMUM / NN MINIMUM
bo- 150 ns MINIMUM ~
RDIN \“
— 150 ns 300 ns
*= minimum [MINIMUM
TRPLY
—‘1 fe— 75 ns MINIMUM
R BS7 X y
!
—-l le— 75 ns MINIMUM al le— 25 nsMINIMUM — r— 25 ns MINIMUM
RWTBT (4>\ (4 X ASSERTION = BYTE X (a)
— 25 ns MINIMUM
TIMING AT SLAVE DEVICE
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE 3.BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS SIGNAL NAMES INCLUDE A “B" PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT
mn 6036
MA-1080-87

Figure C-6 DATIO or DATIOB Bus Cycle Timing

276 Q22-bus Specification

C.4 Direct Memory Access

The direct memory access (DMA) capability allows direct data transfer
between 1/O devices and memory. This is useful when using mass storage
devices (for example, disks) that move large blocks of data to and from
memory. A DMA device needs to know only the starting address in
memory, the starting address in mass storage, the length of the transfer, and
whether the operation is read or write. When this information is available,
the DMA device can transfer data directly to or from memory. Since most
DMA devices must perform data transfers in rapid succession or lose data,
DMA devices are given the highest priority.

DMA is accomplished after the processor (normally bus master) has passed
bus mastership to the highest-priority DMA device that is requesting the
bus. The processor arbitrates all requests and grants the bus to the DMA
device electrically closest to it. A DMA device remains bus master until it
relinquishes its mastership. The following control signals are used during
bus arbitration:

e BDMGI L DMA grant input

¢ BDMGO L DMA grant output

¢ BDMR L DMA request line

* BSACK L bus grant acknowledge

C.4.1 DMA Protocol

A DMA transaction can be divided into three phases.
* Bus mastership acquisition phase

® Data transfer phase

® Bus mastership relinquishment phase

During the bus mastership acquisition phase, a DMA device requests the
bus by asserting BDMR L. The processor arbitrates the request and initiates
the transfer of bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion is
DMA latency. This time is processor-dependent. BDMGO L/BDMGI L is
one signal that is daisy-chained through each module in the backplane. It
is driven out of the processor on the BDMGO L pin, enters each module
on the BDMGI L pin, and exits on the BDMGO L pin. This signal passes
through the modules in descending order of priority until it is stopped by
the requesting device. The requesting device blocks the output of BMDGO
L and asserts BSACK L. If BDMR L is continuously asserted, the bus hangs.

Q22-bus Specification 277

During the data transfer phase, the DMA device continues asserting BSACK
L. The actual data transfer is performed as described earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns minimum
after it received BDMGI L and its BSYNC L bus receiver becomes negated.

During the bus mastership relinquishment phase, the DMA device gives up
the bus by negating BSACK L. This occurs after completing (or aborting)
the last data transfer cycle (BRPLY L negated). BSACK L can be negated up
to a maximum of 300 ns before negating BSYNC L.

NOTE

If multiple data transfers are performed during this phase, consideration
must be given to the use of the bus for other system functions, such as
memory refresh (if required).

Figure C-7 shows the DMA protocol, and Figure C-8 shows DMA
request/grant timing.

C.4.2 Block Mode DMA

For increased throughput, block mode DMA can be implemented on a
device for use with memories that support this type of transfer. In a block
mode transaction, the starting memory address is asserted, followed by data
for that address, and data for consecutive addresses.

By eliminating the assertion of the address for each data word, the transfer
rate is almost doubled.

There are two types of block mode transfers, DATBI (input) and DATBO
(output). The DATBI bus cycle is described in Section C.4.2.1 and illustrated
in Figure C-9.

278 Q22-bus Specification

KA640 PROCESSOR
MEMORY IS SLAVE

GRANT BUS CONTROL
NEAR THE END OF THE -
CURRENT BUS CYCLE
(BRPLY L IS NEGATED).
ASSERT BDMGO L AND —
INHIBIT NEW PROCESSOR
GENERATED BSYNC L FOR
THE DURATION OF THE
DMA OPERATION

TERMINATE GRANT
SEQUENCE
NEGATE BDMGO L AND
WAIT FOR DMA OPERATION ™
TO BE COMPLETED
MONITOR TRANSACTION TO

INVALIDATE CACHE IF
CACHE HIT

-~

RESUME PROCESSOR —
o~

OPERATION

~ ENABLE PROCESSOR-
GENERATED BSYNC L
(PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L 1S ASSERTED

Figure C-7 DMA Protocol

BUS MASTER
CONTROLLER

REQUEST BUS
— ~ ASSERT BOMR L

—

ACKNOWLEDGE BUS
~—a MASTERSHIP
RECEIVE BDMG
—— _ WAIT FOR NEGATION OF
- BSYNC L AND BRPLY L
ASSERT BSACK L
NEGATE BDMR L

~~ —a EXECUTE A DMA DATA
TRANSFER
ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI. OR DATO BUS
CYCLES
-~ RELEASE THE BUS BY

-~ TERMINATING BSACK L

(NO SOONER THAN
NEGATION OF LAST BRPLY L)
AND BSYNC L

WAIT 4 uS OR UNTIL
ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN.

MR.6031
MA-1075-87A

Q22-bus Specification 279

SECOND
REQUEST
—-.I le— DMA LATENCY

_____._\,_,_7_./_,_.7.7.7.7.,_,_,.7 -
TDMR A A A A A

L L L L y/ L L L
—-1 L—UMMINIMUM

[————

R DMG

T SACK \.

250 ns MINIMUM—1 r— —e je— 300 ns MAXIMUM
250 ns MINIMU Ons MmIMuM—-I fo—

R/T SYNC \ \ \
L“‘ " 300 ns MINIMUM:
S WA /N

F Ons MINIMUM — r—mo ns MAXIMUM
0ns MINIMUM
TDAL £ ADDR X DATA \
(ALSO BS7.
WTBT, REF)
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

n-3090
MA-1078-87

Figure C-8 DMA Request/Grant Timing

280 Q22-bus Specification

R DMG

[

T SACK Ons

' min
/8 DAL R DATA)(\\\\\)(R DATA \
/T 150 ns}-—-i-—’j 100 ns min
min
34 150 ns \
NC “——_A ja 100 ns — . i‘—

min me — Fﬁo ns

T DIN / 200ns \d—/ =
in

\

R REF] L_SOnsmaX — I—SOnsmax
TBS7 J \

A ARAA LA 7 AL LR RARARRARRRRRRRRNAY

TIMING AT MASTER DEVICE
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

R ADDR T DAUD&\\\\\X T DATA \
R/T DAL
— 125 ns max —] 100 ns max r'—
R svnc____f

R DIN

[

T RPLY

T e N

R BS7 —————/ \
R wrsr A2\ AATUNNE NN NN NN A AN ANANWA

TIMING AT SLAVE DEVICE :

T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MA-1088-87

Figure C-9 DATBI Bus Cycle Timing

Q22-bus Specification 281

The DATBO bus cycle is described in Section C.4.2.2 and illustrated in
Figure C-10.

Ons

T DMR —fmin |

R DMG

TSACK _J : "s\——

min fe—

T ADDR x T DATA T DATA

T DAL
150 ns [100 ns|
r—-kaoo ns
| 100 ns ‘ 100 max

A N\ L
100

T DOUT 150 ns
min I

R RPLY J—___/—__
R REF J

/ UNDEFINED
T8S7 '

T WTBT ! \

IMING AT MASTER DEVICE

BUSDRIVER INPUT

T
T
R = BUS RECEIVER OUTPUT

oL L RADDR X R DATA)Y RoDATA DN

R SYNC J — 0 ns min \—_

R DOUT

T RPLY

T REF \——
- / UNDEFINED \

R WTBT ——/—_—\

TIMING AT SLAVE DEVICE

= BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MA-1087-87

Figure C-10 DATBO Bus Cycle Timing

282 Q22-bus Specification

C.4.2.1 DATBI Bus Cycle

Before a DATBI block mode transfer can occur, the DMA bus master device
must request control of the bus. This occurs under conventional Q22-bus
protocol.

A block mode DATBI transfer is executed as follows:

Address Device Memory—The address is asserted by the bus master
on TADDR<21:00> along with the negation of TWTBT. The bus master
asserts TSYNC 150 ns minimum after gating the address onto the bus.

Decode Address—The appropriate memory device recognizes that it
must respond to the address on the bus.

Request Data—The address is removed by the bus master from
TADDR<21:00> 100 ns minimum after the assertion of TSYNC. The
bus master asserts the first TDIN 100 ns minimum after asserting
TSYNC. The bus master asserts TBS7 50 ns maximum after asserting
TDIN for the first time. TBS7 remains asserted until 50 ns maximum
after the assertion of TDIN for the last time. In each case, TBS7 can
be asserted or negated as soon as the conditions for asserting TDIN
are met. The assertion of TBS7 indicates the bus master is requesting
another read cycle after the current read cycle.

Send Data—The bus slave asserts TRPLY 0 ns minimum (8000 ns
maximum to avoid a bus timeout) after receiving RDIN. The bus slave
asserts TREF concurrent with TRPLY if, and only if, it is a block mode
device which can support another RDIN after the current RDIN. The bus
slave gates TDATA <15:00> onto the bus 0 ns minimum after receiving
RDIN and 125 ns maximum after the assertion of TRPLY.

NOTE
Block mode transfers must not cross 16 word boundaries.

Terminate Input Transfer—The bus master receives
stable RDATA<15:00> from 200 ns maximum after receiving RRPLY
until 20 ns minimum after the negation of RDIN. (The 20 ns minimum
represents total minimum receiver delays for RDIN at the slave and
RDATA<15:00> at the master.) The bus master negates TDIN 200 ns
minimum after receiving RRPLY.

Operation Completed—The bus slave negates TRPLY 0 ns minimum
after receiving the negation of RDIN. If RBS7 and TREF are both asserted
when TRPLY negates, the bus slave prepares for another DIN cycle.
RBS7 is stable from 125 ns after RDIN is received until 150 ns after
TRPLY negates. If TBS7 and RREF were both asserted when TDIN
negated, the bus master asserts TDIN 150 ns minimum after receiving
the negation of RRPLY and continues with timing relationship Send

Q22-bus Specification 283

Data above. RREF is stable from 75 ns after RRPLY asserts until 20
ns minimum after TDIN negates. (The 0 ns minimum represents total
minimum receiver delays for RDIN at the slave and RREF at the master.)

NOTE

The bus master must limit itself to not more than eight transfers unless
it monitors RDMR. If it monitors RDMR, it may perform up to 16
transfers as long as RDMR is not asserted at the end of the seventh
transfer.

Terminate Bus Cycle—If RBS7 and TREF were not both asserted when

- TRPLY negated, the bus slave removes TDATA<15:00> from the bus

0 ns minimum and 100 ns maximum after negating TRPLY. If TBS7
and RREF were not both asserted when TDIN negated, the bus master
negates TSYNC 250 ns minimum after receiving the last assertion of
RRPLY and 0 ns minimum after the negation of that RRPLY.

Release The Bus—The DMA bus master negates TSACK 0 ns after
negation of the last RRPLY. The DMA bus master negates TSYNC 300 ns
maximum after it negates TSACK. The DMA bus master must remove
RDATA<15:00>, TBS7, and TWTBT from the bus 100 ns maximum
after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration
logic in the CPU enables processor-generated TSYNC or issues another bus
grant (TDMGO) if RDMR is asserted.

C.4.2.2 DATBO Bus Cycle

Before a block mode transfer can occur, the DMA bus master device
must request control of the bus. This occurs under conventional Q22-bus
protocol.

A block mode DATBO transfer is executed as follows:

Address Device Memory—The address is asserted by the bus master on
TADDR<21:00> along with the aasertion of TWTBT. The bus master
asserts TSYNC 150 ns minimum after gating the address onto the bus.

Decode Address—The appropriate memory device recognizes that it
must respond to the address on the bus.

Send Data—The bus master gates TDATA <15:00> along with TWTBT
100 ns minimum after the assertion of TSYNC. TWTBT is negated.
The bus master asserts the first TDOUT 100 ns minimum after gating
TDATA<15:00>.

284 Q22-bus Specification

NOTE
During DATBO cycles, TBS7 is undefined.

® Receive Data—The bus slave receives stable data on RDATA <15:00>
from 25 ns minimum before receiving RDOUT until 25 ns minimum
after receiving the negation of RDOUT. The bus slave asserts TRPLY
0 ns minimum after receiving RDOUT. The bus slave asserts TREF
concurrent with TRPLY if, and only if, it is a block mode device which
can support another RDOUT after the current RDOUT.

NOTE
Block mode transfers must not cross 16 word boundaries.

* Terminate Output Transfer—The bus master negates TDOUT 150 ns
minimum after receiving RRPLY.

* Operation Completed—The bus slave negates TRPLY 0 ns minimum
after receiving the negation of RDOUT. If RREF was asserted when
TDOUT negated and if the bus master wants to transfer another word,
the bus master gates the new data on TDATA <15:00> 100 ns minimum
after negating TDOUT. RREF is stable from 75 ns maximum after RRPLY
asserts until 20 ns minimum after RDOUT negates. (The 20 ns minimum
represents minimum receiver delays for RDOUT at the slave and RREF
at the master). The bus master asserts TDOUT 100 ns minimum
after gating new data on TDATA<15:00> and 150 ns minimum after
receiving the negation of RRPLY. The cycle continues with the timing
relationship in Receive Data above.

NOTE

The bus master must limit itself to not more than eight transfers unless
it monitors RDMR. If it monitors RDMR, it may perform up to 16
transfers as long as RDMR is not asserted at the end of the seventh
transfer.

* Terminate Bus Cycle—If RREF was not asserted when RRPLY negated
or if the bus master has no additional data to transfer, the bus master
removes data on TDATA <15:00> from the bus 100 ns minimum after
negating TDOUT. If RREF was not asserted when TDOUT negated, the
bus master negates TSYNC 275 ns minimum after receiving the last
RRPLY and 0 ns minimum after the negation of the last RRPLY.

* Release The Bus—The DMA bus master negates TSACK 0 ns after
negation of the last RRPLY. The DMA bus master negates TSYNC 300 ns
maximum after it negates TSACK. The DMA bus master must remove
TDATA, TBS7, and TWTBT from the bus 100 ns maximum after clearing
TSYNC. :

Q22-bus Specification 285

At this point the block mode transfer is complete, and the bus arbitration
logic in the CPU enables processor-generated TSYNC or issues another bus
grant (TDMGO) if RDMR is asserted.

C.4.3 DMA Guidelines
The following are DMA guidelines:

* Systems with memory refresh over the bus must not include devices
that perform more than one transfer per acquisition.

* Bus masters that do not use block mode are limited to four DATI, four
DATO, or two DATIO transfers per acquisition.

* Block mode bus masters that do not monitor BDMR are limited to eight
transfers per acquisition.

* If BDMR is not asserted after the seventh transfer, block mode bus
masters that do monitor BDMR may continue making transfers until the
bus slave fails to assert BREF, or until they reach the total maximum of
16 transfers. Otherwise, they stop after eight transfers.

C.5 Interrupts

The interrupt capability of the Q22-bus allows an I/O device to temporarily
suspend (interrupt) current program execution and divert processor
operation to service the requesting device. The processor inputs a vector
from the device to start the service routine (handler). Like the device register
address, hardware fixes the device vector at locations within a designated
range below location 001000. The vector indicates the first of a pair of
addresses. The processor reads the contents of the first address, the starting
address of the interrupt handler. The contents of the second address is a
new processor status word (PS).

The new PS can raise the interrupt priority level, thereby preventing lower-
level interrupts from breaking into the current interrupt service routine.
Control is returned to the interrupted program when the interrupt handler is
ended. The original interrupted program’s address (PC) and its associated
PS are stored on a stack. The original PC and PS are restored by a return
from interrupt (RTI or RTT) instruction at the end of the handler. The use
of the stack and the Q22-bus interrupt scheme can allow interrupts to occur
within interrupts (nested interrupts), depending on the PS.

Interrupts can be caused by Q22-bus options or the MicroVAX CPU. Those
interrupts that originate from within the processor are called traps. Traps
are caused by programming errors, hardware errors, special instructions,
and maintenance features.

286 Q22-bus Specification

The following Q22-bus signals are used in interrupt transactions:

BIRQ4 L Interrupt request priority level 4
BIRQ5 L Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIRQ7 L Interrupt request priority level 7
BIAKI L Interrupt acknowledge input
BIAKO L Interrupt acknowledge output
BDAL<21:00> Data/address lines

BDIN L Data input strobe

BRPLY L Reply

C.5.1 Device Priority
The Q22-bus supports the following two methods of device priority:

* Distributed Arbitration—priority levels are implemented on the
hardware. When devices of equal priority level request an interrupt,
priority is given to the device electrically closest to the processor.

¢ Position-Defined Arbitration—priority is determined solely by electrical
position on the bus. The closer a device is to the processor, the higher
its priority is.

C.5.2 Interrupt Protocol

Interrupt protocol on the Q22-bus has three phases.
¢ Interrupt request

¢ Interrupt acknowledge and priority arbitration

¢ Interrupt vector transfer phase

The interrupt request phase begins when a device meets its specific
conditions for interrupt requests. For example, the device is ready, done,
or an error has occurred. The interrupt enable bit in a device status
register must be set. The device then initiates the interrupt by asserting the
interrupt request line(s). BIRQ4 L is the lowest hardware priority level and
is asserted for all interrupt requests for compatibility with previous Q22-bus
processors. The level at which a device is configured must also be asserted.
A special case exists for level 7 devices that must also assert level 6. For
an explanation, refer to the discussion on arbitration involving the 4-level
scheme.

Q22-bus Specification 287

Interrupt Level Lines Asserted by Device
4 BIRQ4 L

5 BIRQ4 L, BIRQ5 L

6 BIRQ4 L, BIRQ6 L

7

BIRQ4 L, BIRQ6 L, BIRQ7 L

Figure C-11 shows the interrupt request/acknowledge sequence.

PROCESSOR DEVICE

INITIATE REQUEST
— ASSERTBIRQ L

STROBE INTERRUPTS -
ASSERT BDIN L —_

—
| RECEIVE BDIN L
STORE “INTERRUPT SENDING"
L IN DEVICE

GRANT REQUEST
PAUSE AND ASSERT BIAKO L ~—_

—
—_— —_ —_
~—~
RECEIVE BIAKI L
RECEIVE BIAKI L AND INHIBIT
BIAKO L
PLACE VECTOR ON BDAL <15:00> L
ASSERT BRPLY L
- NEGATE BIRQ L
—_— -
—_— -
-
RECEIVE VECTOR AND i
TERMINATE REQUEST
INPUT VECTOR ADDRESS
NEGATE BDIN L AND BIAKO L
— —_
—_— _—
—~a
COMPLETE VECTOR TRANSFER
REMOVE VECTOR FROM BDAL BUS
- o NEGATE BRPLY L
—_— -
-—
PROCESS THE INTERRUPT
SAVE INTERRUPTED PROGRAM
PC AND PS ON STACK
LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION
EXECUTE INTERRUPT SERVICE w182
ROUTINE FOR THE DEVICE MA-1065-87

Figure C-11 Interrupt Request/Acknowledge Sequence

288 Q22-bus Specification

The interrupt request line remains asserted until the request is
acknowledged.

During the interrupt acknowledge and priority arbitration phase, the
processor acknowledges interrupts under the following conditions:

* The device interrupt priority is higher than the current PS<7:5>.

* The processor has completed instruction execution and no additional
bus cycles are pending.

The processor acknowledges the interrupt request by asserting BDIN L, and
150 ns minimum later asserting BIAKO L. The device electrically closest to
the processor receives the acknowledge on its BIAKI L bus receiver.

At this point, the two types of arbitration must be discussed separately. If
the device that receives the acknowledge uses the 4-level interrupt scheme,
it reacts as follows:

* If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

* Ifthe device is requesting an interrupt, it must check that no higher-level
device is currently requesting an interrupt. This is done by monitoring
higher-level request lines. The table below lists the lines that need to
be monitored by devices at each priority level.

In addition to asserting levels 7 and 4, level 7 devices must drive level 6.
This is done to simplify the monitoring and arbitration by level 4 and 5
devices. In this protocol, level 4 and 5 devices need not monitor level 7
because level 7 devices assert level 6. Level 4 and 5 devices become aware
of a level 7 request because they monitor the level 6 request. This protocol
has been optimized for level 4, 5, and 6 devices, since level 7 devices are
very seldom necessary.

Device Priority Level Line(s) Monitored

4 BIRQS5, BIRQ6
5 BIRQ6
6 BIRQ?7
7

Q22-bus Specification 289

e If no higher-level device is requesting an interrupt, the acknowledge is
blocked by the device. (BIAKO L is not asserted.) Arbitration logic
within the device uses the leading edge of BDIN L to clock a flip-flop
that blocks BIAKO L. Arbitration is won, and the interrupt vector transfer
phase begins.

e If a higher-level request line is active, the device disqualifies itself and
asserts BIAKO L to propagate the acknowledge to the next device along
the bus.

Signal timing must be considered carefully when implementing 4-level
interrupts (Figure C-12).

INTERRUPT LATENCY
MINUS SERVICE TIME

TIRQ

150 ns MINIMUM—.I

-/
s
R 1AKI W

TRPLY _J\

125 ns MAXIMUM —] f— je-100 ns MAXIMUM
T DAL (4 X VECTOR X]

RSYNC (UNASSERTED)
R BS7 (UNASSERTED)
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B* PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T = BUS DRIVER INPUT
R = BUS RECEIVER QUTPUT

MR.1183
MA.1076.87

Figure C-12 Interrupt Protocol Timing

290 Q22-bus Specification

If a single-level interrupt device receives the acknowledge, it reacts as
follows:

* If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

* If the device was requesting an interrupt, the acknowledge is blocked
using the leading edge of BDIN L, and arbitration is won. The interrupt
vector transfer phase begins.

The interrupt vector transfer phase is enabled by BDIN L and BIAKI L. The
device responds by asserting BRPLY L and its BDAL<15:00> L bus driver
inputs with the vector address bits. The BDAL bus driver inputs must be
stable within 125 ns maximum after BRPLY L is asserted. The processor
then inputs the vector address and negates BDIN L and BIAKO L. The
device then negates BRPLY L and 100 ns maximum later removes the vector
address bits. The processor then enters the device’s service routine.

NOTES

Propagation delay from BIAKI L to BIAKO L must not be greater than 500
ns per Q22-bus slot.

The device must assert BRPLY L within 10 us maximum after the processor
asserts BIAKI L.

C.5.3 Q22-bus 4-Level Interrupt Configurations

If you have high-speed peripherals and desire better software performance,
you can use the 4-level interrupt scheme. Both position-independent and
position-dependent configurations can be used with the 4-level interrupt
scheme.

Figure C-13 shows the position-independent configuration. This allows
peripheral devices that use the 4-level interrupt scheme to be placed in
the backplane in any order. These devices must send out interrupt requests
and monitor higher-level request lines as described. The level 4 request
is always asserted from a requesting device regardless of priority. If two
or more devices of equally high priority request an interrupt, the device
physically closest to the processor wins arbitration. Devices that use the
single-level interrupt scheme must be modified, or placed at the end of the
bus, for arbitration to function properly.

KA640

Q22-bus Specification 291

BIAK (INTERRUPT ACKNOWLEDGE)

LEVEL 4

BIAK

DEVICE

LEVEL 6
DEVICE

BIAK

LEVELS
DEVICE

BIAK

LEVEL7?
DEVICE

L BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) l

:

:

)

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure C-13 Position-Independent Configuration

MR.2888
MA-1086-87A

Figure C-14 shows the position-dependent configuration. This configuration
is simpler to implement. A constraint is that peripheral devices must be
inserted with the highest-priority device located closest to the processor,
and the remaining devices placed in the backplane in decreasing order of
priority (with the lowest-priority devices farthest from the processor). With
this configuration, each device has to assert only its own level and level 4.
Monitoring higher-level request lines is unnecessary. Arbitration is achieved
through the physical positioning of each device on the bus. Single-level
interrupt devices on level 4 should be positioned last on the bus.

KAB640

BIAK (INTERRUPT ACKNOWLEDGE)

LEVEL7

BIAK

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

DEVICE

LEVEL 6
DEVICE

BIAK

LEVELS
DEVICE

BIAK

LEVEL 4
DEVICE

:

i

!

;

BIRQS (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure C-14 Position-Dependent Configuration

MR.2889
MA-1067-87A

292 Q22-bus Specification

C.6 Control Functions

The following Q22-bus signals provide control functions:

BREF L Memory refresh (also block mode DMA)
BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H DC power OK

C.6.1 Memory Refresh

If BREF is asserted during the address part of a bus data transfer cycle, it
causes all dynamic MOS memories to be addressed simultaneously. The
sequence of addresses required for refreshing the memories is determined
by the specific requirements for each memory. The complete memory
refresh cycle consists of a series of refresh bus transactions. A new address
is used for each transaction. A complete memory refresh cycle must be
completed within 1 or 2 ms. Multiple data transfers by DMA devices must
be avoided since they could delay memory refresh cycles. This type of
refresh is done only for memories that do not perform on-board refresh.

C.6.2 Halt

Assertion of BHALT L for at least 25 ns interrupts the processor, which stops
program execution and forces the processor unconditionally into console I/O
mode.

C.6.3 Initialization

Devices along the bus are initialized when BINIT L is asserted. The
processor can assert BINIT L as a result of executing a reset instruction
as part of a power-up or power-down sequence. BINIT L is asserted for
approximately 10 us when reset is executed.

C.6.4 Power Status

Power status protocol is controlled by two signals, BPOK H and BDCOK H.
These signals are driven by an external device (usually the power supply).

Q22-bus Specification 293

C.6.5 BDCOKH

When asserted, this control indicates that dc power has been stable for at
least 3 ms. Once asserted, this line remains asserted until the power fails.
It indicates that only 5 us of dc power reserve remains.

C.6.6 BPOKH

When asserted, this control indicates there is at least an 8 ms reserve of
dc power, and that BDCOK H has been asserted for at least 70 ms. Once
BPOK has been asserted, it must remain asserted for at least 3 ms. The
negation of this line, the first event in the power-fail sequence, indicates
that power is failing and that only 4 ms of dc power reserve remains.

C.6.7 Power-Up/Power-Down Protocol

Power-up protocol begins when the power supply applies power with
BDCOK H negated. This forces the processor to assert BINIT L. When the
dc voltages are stable, the power supply or other external device asserts
BDCOK H. The processor responds by clearing the PS, floating point
status register (FP’S), and floating point exception register (FEC). BINIT L is
asserted for 12.6 us, and then negated for 110 us. The processor continues
to test for BPOK H until it is asserted. The power supply asserts BPIK H
70 ms minimum after BDCOK H is asserted. The processor then performs
its power-up sequence. Normal power must be maintained at least 3.0 ms
before a power-down sequence can begin.

A power-down sequence begins when the power supply negates BPOK H.
When the current instruction is completed, the processor traps to a power-
down routine at location 24. The end of the routine is terminated with a
halt instruction to avoid any possible memory corruption as the dc voltages
decay.

When the processor executes the halt instruction, it tests the BPOK H signal.
If BPOK H is negated, the processor enters the power-up sequence. It
clears internal registers, generates BINIT L, and continues to check for the
assertion of BPOK H. If it is asserted and dc voltages are still stable, the
processor performs the rest of the power-up sequence. Figure C-15 shows
power-up/power-down timing.

294 Q22-bus Specification

a

—] fo—0 ns MiNIMUM _‘1 r_ 8-20u8
‘ |
BINIT L \ J t , t ,
3ms
ho—— —{ 3ms -] 1uS
MINIMUM MAXIMUM MAXIMUM
BPOK H 1 [
70ms ams 70ms
1 minmum [+ M MiNIMUM | MINIMUM o
BDCOK H)
—e le— 3 ms MINIMUM — 5 uS
| MINIMUM r‘
scromen_|f W
POWER-UP NORMAL POWER-DOWN POWER-UP NORMAL_|
SEQUENCE POWER SEQUENCE SEQUENCE POWER

NOTE:

ONCE A POWER-DOWN SEQUENCE IS STARTED,
T MUST BE COMPLETED BEFORE A POWER-UP
SEQUENCE IS STARTED.

MR.6032
MA-1077.87

Figure C-15 Power-Up/Power-Down Timing

C.7 Q22-bus Electrical Characteristics

The input and output logic levels for Q22-bus signals are given in
Section C.7.1.

C.7.1 Signal Level Specifications
The signal level specifications for the Q22-bus are as follows:

Input Logic Level

TTL logical low

0.8 Vdc maximum
TTL logical high 2.0

Vdc minimum

Output Logic Level
TTL logical low

: . 0.4 Vdc maximum
TTL logical high 2.4 Vdc minimum

C.7.2 Load Definition

AC loads make up the maximum capacitance allowed per signal line to
ground. A unit load is defined as 9.35 pF of capacitance. DC loads are
defined as maximum current allowed with a signal line driver asserted or
unasserted. A unit load is defined as 210 yA in the unasserted state.

Q22-bus Specification 295

C.7.3 120-Ohm Q22-bus

The electrical conductors interconnecting the bus device slots are treated
as transmission lines. A uniform transmission line, terminated in its
characteristic impedance, propagates an electrical signal without reflections.
Since bus drivers, receivers, and wiring connected to the bus have finite
resistance and nonzero reactance, the transmission line impedance is not
uniform, and introduces distortions into pulses propagated along it. Passive
components of the Q22-bus (such as wiring, cabling, and etched signal
conductors) are designed to have a nominal characteristic impedance of
120 ohms.

The maximum length of interconnecting cable, excluding wiring within the
backplane, is limited to 4.88 m (16 feet).

C.7.4 Bus Drivers

Devices driving the 120-ohm Q22-bus must have open collector outputs and
meet the following specifications:

DC Specifications
¢ Output low voltage when sinking 70 mA of current is 0.7 V maximum.

¢ Output high leakage current when connected to 3.8 Vdc is 25 uA (even
if no power is applied, except for BDCOK H and BPOK H).

* These conditions must be met at worst-case supply temperature, and
input signal levels.

AC Specifications
* Bus driver output pin capacitance load should not exceed 10 pF.
* Propagation delay should not exceed 35 ns.

e Skew (difference in propagation time between slowest and fastest gate)
should not exceed 25 ns.

¢ Transition time (from 10% to 90% for positive transition—rise time, from
90% to 10% for negative transition—fall time) must be no faster than 10
ns.

296 Q22-bus Specification

C.7.5 Bus Receivers

Devices that receive signals from the 120-ohm Q22-bus must meet the
following requirements:

DC Specifications
¢ Input low voltage maximum is 1.3 V.
¢ Input high voltage minimum is 1.7 V.

e Maximum input current when connected to 3.8 Vdc is 80 uA (even if no
power is applied).

These specifications must be met at worst-case supply voltage, temperature,
and output signal conditions.

AC Specifications

e Bus receiver input pin capacitance load should not exceed 10 pF.

e Propagation delay should not exceed 35 ns.

e Skew (difference in propagation time between slowest and fastest gate)
should not exceed 25 ns.

C.7.6 Bus Termination

The 120-ohm Q22-bus must be terminated at each end by an appropriate
terminator, as shown in Figure C-16. This is to be done as a voltage divider
with its Thevenin equivalent equal to 120 ohms and 3.4 V (nominal). This
type of termination is provided by an REV11-A refresh/boot/terminator,
BDV11-AA, KPV11-B, TEV1l, or by certain backplanes and expansion
cards. '

+5V BV
178 @ 3300
120 2 250 Q
BUS LINE BUS LINE
TERMINATION TERMINATION
383 680 Q2

1%

‘MR-6033
MA-1071.87

Figure C-16 Bus Line Terminations

Q22-bus Specification 297

Each of the several Q22-bus lines (all signals whose mnemonics start with the
letter B) must see an equivalent network with the following characteristics
at each end of the bus.

Input impedance 120 ohm +5%, -15%
(with respect to ground)

Open circuit voltage 3.4 Vdc +5%
Capacitance load ‘Not to exceed 30 pF
NOTE

The resistive termination can be provided by the combination of two
modules. (The processor module supplies 220 ohms to ground. This, in
parallel with another 220-ohm card, provides 120 ohms.) Both terminators
must reside physically within the same backplane.

C.7.7 Bus Interconnecting Wiring

This section gives specific information about bus interconnecting wiring.

C.7.7.1 Backplane Wiring

The wiring that connects all device interface slots on the Q22-bus must meet
the following specifications:

¢ The conductors must be arranged so that each line exhibits a
characteristic impedance of 120 ohms (measured with respect to the
bus common return).

® Crosstalk between any two lines must be no greater than 5%. Note that
worst-case crosstalk is manifested by simultaneously driving all but one
signal line and measuring the effect on the undriven line.

* DC resistance of the signal path, as measured between the near-end
terminator and the far-end terminator module (including all intervening
connectors, cables, backplane wiring, and connector-module etch) must
not exceed 20 ohms.

* DC resistance of the common return path, as measured between the
near-end terminator and the far-end terminator module (including all
intervening connectors, cables, backplane wiring, connector-module
etch, etc.) must not exceed an equivalent of 2 ohms per signal path.
Thus, the composite signal return path dc resistance must not exceed 2
ohms divided by 40 bus lines, or 50 milliohms. Note that although this
common return path is nominally at ground potential, the conductance
must be part of the bus wiring. The specified low impedance return path
must be provided by the bus wiring as distinguished from the common
system or power ground path.

298 Q22-bus Specification

C.7.7.2 IntraBackplane Bus Wiring

The wiring that connects the bus connector slots within one contiguous
backplane is part of the overall bus transmission line. =~ Owing to
implementation constraints, the nominal characteristic impedance of 120
ohms may not be achievable. Distributed wiring capacitance in excess of
the amount required to achieve the nominal 120-ohm impedance may not
exceed 60 pF per signal line per backplane.

C.7.7.3 Power and Ground

Each bus interface slot has connector pins assigned for the following dc
voltages. The maximum allowable current per pin is 1.5 A. +5 Vdc must
be regulated to 5% with a maximum ripple of 100 mV pp. +12 Vdc must
be regulated to 3% with a maximum ripple of 200 mV pp.

e +5 Vdc—three pins (4.5 A maximum per bus device slot)
* +12 Vdc—two pins (3.0 A maximum per bus device slot)
* Ground—eight pins (shared by power return and signal return)

NOTE
Power is not bussed between backplanes on any interconnecting bus cables.

C.8 System Configurations
Q22-bus systems can be divided into two types.
e Systems containing one backplane

e Systems containing multiple backplanes

Before configuring any system, three characteristics for each module in the
system must be identified.

e Power consumption—+5 Vdc and +12 Vdc are the current
requirements.

e AC bus loading—The amount of capacitance a module presents to a bus
signal line. AC loading is expressed in terms of ac loads, where one ac
load equals 9.35 pF of capacitance.

¢ DC bus loading—The amount of dc leakage current a module presents
to a bus signal when the line is high (undriven). DC loading is expressed
in terms of dc loads, where one dc load equals 210 uA (nominal).

Q22-bus Specification 299

Power consumption, ac loading, and dc loading specifications for each
module are included in the Microcomputer Interfaces Handbook.

NOTE

The ac and dc loads and the power consumption of the processor module,
terminator module, and backplane must be included in determining the
total loading of a backplane.

Rules for configuring single-backplane systems are as follows:

* When using a processor with 220-ohm termination, the bus can
accommodate modules that have up to 20 ac loads before additional
termination is required (Figure C-17). If more than 20 ac loads are
included, the other end of the bus must be terminated with 120 ohms,
and then up to 35 ac loads may be present.

* With 120-ohm processor termination, up to 35 ac loads can be used
without additional termination. If 120-ohm bus termination is added,
up to 45 ac loads can be configured in the backplane.

* The bus can accommodate modules up to 20 dc loads (total).

¢ The bus signal lines on the backplane can be up to 35.6 cm (14 inches)
long.

. BACKPLANE WIRE __-l
35.6 CM (14 IN) MAXIMUM

] |

| ONE ONE ONE L OPTIONAL
S 200 UNIT UNIT UNIT $ 1200

S LOAD LOAD LOAD <

+ +

34v . v) 34V

- 35 AC LOADS -

< 20 DC LOADS =
PROCESSOR TERM

MR-6034
MA-1072.87

Figure C-17 Single-Backplane Configuration
Rules for configuring multiple-backplane systems are as follows:
¢ Figure C-18 shows that up to three backplanes can make up the system.

* The signal lines on each backplane can be up to 25.4 ¢cm (10 inches)
long.

300 Q22-bus Specification

e Each backplane can accommodate modules that have up to 22 ac loads.
Unused ac loads from one backplane may not be added to another
backplane if the second backplane loading exceeds 22 ac loads. It is
desirable to load backplanes equally, or with the highest ac loads in the
first and second backplanes.

e DC loading of all modules in all backplanes cannot exceed 20 loads.

e Both ends of the bus must be terminated with 120 ohms. This means
the first and last backplanes must have an impedance of 120 ohms.
To achieve this, each backplane can be lumped together as a single
point. The resistive termination can be provided by a combination of
two modules in the backplane with the processor providing 220 ohms to
ground in parallel with an expansion paddle card providing 250 ohms
to give the needed 120-ohm termination.

Alternately, a processor with 120-ohm termination would need no
additional termination on the paddle card to attain 120 ohms in the
first box. The 120-ohm termination in the last box can be provided in
two ways: the termination resistors may reside either on the expansion
paddle card, or on a bus termination card (such as the BDV11).

e The cable(s) connecting the first two backplanes is 61 cm (2 feet) or more
in length.

e The cable(s) connecting the second backplane to the third backplane is
122 cm (4 feet) longer or shorter than the cable(s) connecting the first
and second backplanes.

e The combined length of both cables cannot exceed 4.88 m (16 feet).

e The cables used must have a characteristic impedance of 120 ohms.

C.8.1 Power Supply Loading

Total power requirements for each backplane can be determined by
obtaining the total power requirements for each module in the backplane.
Obtain separate totals for +5 V and +12 V power. Power requirements for
each module are specified in the Microcomputer Interfaces Handbook.

When distributing power in multiple-backplane systems, do not attempt
to distribute power via the Q22-bus cables. Provide separate, appropriate
power wiring from each power supply to each backplane. Each power
supply should be capable of asserting BPOK H and BDCOK H signals
according to bus protocol; this is required if automatic power-fail/restart
programs are implemented, or if specific peripherals require an orderly
power-down halt sequence. The proper use of BPOK H and BDCOK H
signals is strongly recommended.

Q22-bus Specification 301

fe—————— BACKPLANE WIRE {

35.6 CM (14in.) MAX

t -
l Ly T CABLE
ONE ONE
250 Q uNIT UNIT
LOAD LOAD
+
34V N ,
- Y
L 20 AC LOADS MAX
PROCESSOR
BACKPLANE WIRE
*‘ 25.4 CM (10 IN) MAX "]
]
ONE ONE
UNIT UNIT
LOAD LOAD
CABLE v _ CABLE
ADDITIONAL 20 AC LOADS MAX

CABLES AND

BACKPLANE BACKPLANE WIRE
I 25.4 CM (10 IN) MAX "
]

ONE ONE
1209 UNIT UNIT
34V LOAD LOAD
CABLE/ ,
TERM v
20 AC LOADS MAX
NOTES:
1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)
TOTAL LENGTH.

2.20 DC LOADS TOTAL (MAX).
MA-6035
MA-1073.87

Figure C-18 Multiple-Backplane Configuration

C.9 Module Contact Finger Identification

Digital’s plug-in modules all use the same contact finger (pin) identification
system. A typical pin is shown in Figure C-19.

302 Q22-bus Specification

BE2

MODULE SIDE
SLOT (ROW) IDENTIFIER IDENTIFIER
“SLOT B . “SIDE 2" (SOLDER
SIDE)
PIN IDENTIFIER
“PIN E”

MR.16553
MA-1054.87

Figure C-19 Typical Pin Identification System

The Q22-bus is based on the use of quad-height modules that plug into
a 2-slot bus connector. Each slot contains 36 lines (18 lines on both the
component side and the solder side of the circuit board).

Slots, row A, and row B include a numeric identifier for the side of the
module. The component side is designated side 1, the solder side is
designated side 2, as shown in Figure C-20.

Letters ranging from A through V (excluding G, I, O, and Q) identify a
particular pin on a side of a slot. Table C-7 lists and identifies the bus pins
of the quad-height module. A bus pin identifier ending with a 1 is found
on the component side of the board, while a bus pin identifier ending with
a 2 is found on the solder side of the board.

The positioning notch between the two rows of pins mates with a protrusion
on the connector block for correct module positioning.

The dimensions for a typical Q22-bus module are represented in
Figure C-21.

Q22-bus Specification 303

SOLDER SIDE

¥ i) i),

mﬂ%

r\F\

COMPONENT SIDE

SIDE 1

wnsse

atwner

ight Module Contact Finger Identification

Figure C-20 Quad-He

304 Q22-bus Specification

NOTES
P 10457 033 DIMENSIONS GIVEN IN INCHES
os 5 187 2 a0 —=1 (QUAD HGT) DIMENSIONS DENOTED BY * ARE FOR
2437 DOUBLE HGT
ersiNGLE Hary™]) MAX USEABLE CIRCUIT AREA
e 8 000 UNLESS OTHERWISE SPECIFIED ALL
219 ~ 275 128 02) 00 HANDLE HOLES OMENSIONS ARE £ 005 in
2 00— 2
TP N7 N
e |t ESES 4|+ <+ 4
2010 180 TYP F
430% 010 BOTTOM OF FINGERS
EXT LGTH) : TO TOP OF HANDLE
7438 8942 00 EXT L GTH)
. 550 0% LGTH
(smgiéznen EXT LGTH) e ,
AN ~1 - K T < B
hY —{| 5062
063° DOUBLE HGT) 10312°
* (QUAD HGT).
3938°
(STD. LGTH)
25 l 625 TYP 125 TYP
007 2 007
i 125 Tvp * | DOUBLE WIDTH
& lln COMPONENT LIMIT
<] he-CONDUCTIVE - 834
Tk w0to0 e 080 " ‘ ‘0 rw —f—r— o NONCONDUCTIVE - 875
SINGLE WIDTH
le—2 850 mc__l 063—e! SINGLE WIDH
sw rvw COMPONENT LIMIT
58t M—e Ty o2 200% L:&‘é’;gg;ég‘&m 1 }-CONDUCTIVE - 343 m
8097% Tve LEADS NONCONDUCTIVE - 375 1n
2125 TYP
(17 EQUAL SPACES)

MA-1091-87

Figure C-21 Typical Q22-bus Module Dimensions

Q22-bus Specification 305

Table C-7 Bus Pin Identifiers

Bus Pin Mnemonic(s) Description

AAl BIRQ5 L Interrupt request priority level 5.

AB1 BIRQ6 L Interrupt request priority level 6.

AC1 BDAL16 L Extended address bit during addressing

protocol; memory error data line during data
transfer protocol.

AD1 BDAL17 L Extended address bit during addressing
protocol; memory error logic enable during
data transfer protocol.

AE1 SSPARE1 Special spare—not assigned or bussed in
(alternate +5B) Digital’s cable or backplane assemblies;

available for user connection. Optionally,
this pin can be used for +5 V battery (+5 B)
back-up power to keep critical circuits alive
during power failures. A jumper is required
on Q22-bus options to open (disconnect) the
+5 B circuit in systems that use this line as
SSPAREL.

AF1 SSPARE2 Special spare—not assigned or bussed in
Digital’s cable or backplane assemblies;
available for user interconnection. In the
highest-priority device slot, the processor can
use this pin for a signal to indicate its RUN

state. o
AH1 SSPARE3 Special spare—not assigned or bussed
SRUN simultaneously in Digital’s cable or backplane

assemblies; available for user interconnection.
An alternate SRUN signal can be connected in
the highest-priority set.

AJl GND Ground—system signal ground and dc return.

AK1 MSPAREA Maintenance spare—normally connected
together on the backplane at each option
location (not a bussed connection).

ALl MSPAREB Maintenance spare—normally connected
together on the backplane at each option
location (not a bussed connection).

AM1 GND Ground—system signal ground and dc return.

306 Q22-bus Specification

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin

Mnemonic(s)

Description

AN1

APr1

AS1

BDMR L

BHALT L

BREF L

+12Bor +5B

Direct memory access (DMA) request—a device
asserts this signal to request bus mastership.
The processor arbitrates bus mastership
between itself and all DMA devices on the
bus. If the processor is not bus master (it

has completed a bus cycle and BSYNC L is
not being asserted by the processor), it grants
bus mastership to the requesting device by
asserting BDMGO L. The device responds by
negating BDMR L and asserting BSACK L.

Processor halt—when BHALT L is asserted

for at least 25 us, the processor services the
halt interrupt and responds by halting normal
program execution. External interrupts are
ignored but memory refresh interrupts in Q22-
bus operations are enabled if W4 on the M7264
and M7264-YA processor modules is removed
and DMA request/grant sequences are enabled.
The processor executes the ODT microcode,
and the console device operation is invoked.

Memory refresh—asserted by a DMA device.
This signal forces all dynamic MOS memory
units requiring bus refresh signals to be
activated for each BSYNC L/BDIN L bus
transaction. It is also used as a control signal
for block mode DMA.

CAUTION

The user must avoid multiple DMA data
transfers (burst or hot mode) that could
delay refresh operation if using DMA
refresh. Complete refresh cycles must
occur once every 1.6 ms if required.

+12 Vdc or +5 V battery back-up power

to keep critical circuits alive during power
failures. This signal is not bussed to BS1 in all
of Digital’s backplanes. A jumper is required
on all Q22-bus options to open (disconnect) the
backup circuit from the bus in systems that use
this line at the alternate voltage.

Q22-bus Specification 307

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Mnemonic(s) Description

AT1 GND Ground—system signal ground and dc return.

AUl PSPARE 1 Spare—not assigned; customer usage not
recommended. Prevents damage when
modules are inserted upside down.

AVl +5B +5 V battery power—secondary +5 V power
connection. Battery power can be used with
certain devices.

BA1l BDCOK H DC power OK—a power supply generated
signal that is asserted when the available dc
voltage is sufficient to sustain reliable system
operation.

BB1 BPOK H Power OK—asserted by the power supply 70
ms after BDCOK is negated when ac power
drops below the value required to sustain
power (approximately 75% of nominal). When
negated during processor operation, a power-
fail trap sequence is initiated.

BC1 SSPARE4 Special spare in the Q22-bus—not assigned.

BDAL18 L Bussed in 22-bit cable and backplane
(22-bit only) assemblies; available for user interconnection.
BD1 SSPARES
BDAL19 L
(22-bit only) CAUTION
These pins may be used by manufacturing
as test points in some options.

BE1 SSPARE6 In the Q22-bus, these bussed address lines are

BDAL20 L address lines <21:18>; currently not used
during data time.

BF1 SSPARE7 In the Q22-bus, these bussed address lines are

BDAL21 L address lines <21:18>; currently not used
during data time.

BH1 SSPARES Special spare—not assigned or bussed in
Digital’s cable and backplane assemblies;
available for user interconnection.

BJ1 GND Ground—system signal ground and dc return.

308 Q22-bus Specification

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Mnemonic(s) Description

BK1 MSPAREB Maintenance spare—normally connected

BL1 MSPAREB together on the backplane at each option
location (not a bussed connection).

BM1 GND Ground—system signal ground and dc return.

BN1 BSACK L This signal is asserted by a DMA device in

response to the processor’'s BDMGO L signal,
indicating that the DMA device is bus master.

BP1 BIRQ7 L Interrupt request priority level 7.

BR1 BEVNT L External event interrupt request—when
asserted, the processor responds by entering
a service routine via vector address 1008. A
typical use of this signal is as a line time clock
(LTC) interrupt.

BS1 +12B +12 Vdc battery back-up power (not bussed to
AS1 in all of Digital’s backplanes).

BT1 GND Ground—system signal ground and dc return.

BU1 PSPARE2 Power spare 2—not assigned a function; not

recommended for use. If a module is using
<12V (on pin AB2), and if the module is
accidentally inserted upside down in the
backplane, -12 Vdc appears on pin BU1.

BV1 +5 +5 V power—normal +5 Vdc system power.
AA2 +5 +5 V power—normal +5 Vdc system power.
AB2 -12 -12 V power—-12 Vdc power for (optional)

devices requiring this voltage.

NOTE

Each Q22-bus module that requires
negative voltages contains an inverter
circuit that generates the required
voltage(s). Therefore, -12 V power is
not required with Digital’s options.

AC2 GND Ground—system signal ground and dc return.

Q22-bus Specification 309

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin

Mnemonic(s)

Description

AD2
AE2

AJ2

+12
BDOUT L

BRPLY L

BDIN L

BSYNCL

+12 V power— +12 Vdc system power.

Data output—when asserted, BDOUT implies
that valid data is available on BDAL<0:15>

L and that an output transfer, with respect to
the bus master device, is taking place. BDOUT
L is deskewed with respect to data on the bus.
The slave device responding to the BDOUT L
signal must assert BRPLY L to complete the
transfer.

Reply—BRPLY L is asserted in response

to BDIN L or BDOUT L and during IAK
transactions. It is generated by a slave device
to indicate that it has placed its data on the
BDAL bus or that it has accepted output data
from the bus.

Data input—BDIN L is used for two types of
bus operations.

¢ When asserted during BSYNC L time,
BDIN L implies an input transfer with
respect to the current bus master, and
requires a response (BRPLY L). BDIN L is
asserted when the master device is ready
to accept data from the slave device.

e When asserted without BSYNC L, it
indicates that an interrupt operation is
occurring. The master device must deskew
input data from BRPLY L.

Synchronize—BSYNC L is asserted by the bus
master device to indicate that it has placed an
address on BDAL<0:17> L. The transfer is in
process until BSYNC L is negated.

310 Q22-bus Specification

Table C-7 (Cont.) Bus Pin Identifiers
Bus Pin Mnemonic(s) Description

AK2 BWTBT L Write/byte—BWTBT L is used in two ways to
control a bus cycle.

* Itisasserted at the leading edge of BSYNC
L to indicate that an output sequence
(DATO or DATOB), rather than an input
sequence, is to follow.

* It is asserted during BDOUT L, in a
DATOB bus cycle, for byte addressing.

AL2 BIRQ4 L Interrupt request priority level 4—a level 4
device asserts this signai when its interrupt
enable and interrupt request flip-flops are
set. If the PS word bit 7 is 0, the processor
responds by acknowledging the request by
asserting BDIN L and BIAKO L.

AM2 BIAKI L Interrupt acknowledge—in accordance with

AN2 BIAKO L interrupt protocol, the processor asserts BIAKO
L to acknowledge receipt of an interrupt. The
bus transmits this to BIAKI L of the device
electrically closest to the processor. This device
accepts the interrupt acknowledge under two
conditions.

* The device requested the bus by asserting
BIRQn L (where n= 4, 5, 6 or 7)

® The device has the highest-priority
interrupt request on the bus at that time.

If these conditions are not met, the device
asserts BIAKO L to the next device on the bus.
This process continues in a daisy-chain fashion
until the device with the highest-interrupt
priority receives the interrupt acknowledge
signal.

AP2 BBS7 L Bank 7 select—the bus master asserts this signal
to reference the I/O page (including that part
of the page reserved for nonexistent memory).
The address in BDAL<0:12> L when BBS7 L
is asserted is the address within the /0 page.

Q22-bus Specification 311

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin

Mnemonic(s)

Description

AR2
AS2

AT2

AU2
AV2

BA2
BB2

BC2
BD2

BDMGI L
BDMGO L

BINIT L

BDALO L
BDAL1 L

+5

GND
+12

Direct memory access grant— the bus
arbitrator asserts this signal to grant bus
mastership to a requesting device, according
to bus mastership protocol. The signal is
passed in a daisy-chain from the arbitrator (as
BDMGO L) through the bus to BDMGI L of
the next priority device (the device electrically
closest on the bus). This device accepts the
grant only if it requested to be the bus master
(by a BDMR L). If not, the device passes the
grant (asserts BDMGO L) to the next device
on the bus. This process continues until the
requesting device acknowledged the grant.

CAUTION
DMA device transfers must not interfere
with the memory refresh cycle.

Initialize—this signal is used for system reset.
All devices on the bus are to return to a
known, initial state; that is, registers are
reset to zero, and logic is reset to state 0.
Exceptions should be completely documented
in programming and engineering specifications
for the device.

Data/address lines—these two lines are

part of the 16-line data/address bus over
which address and data information are
communicated. Address information is first
placed on the bus by the bus master device.
The same device then either receives input
data from, or outputs data to, the addressed
slave device or memory over the same bus
lines.

+5 V power—normal +5 Vdc system power.
-12 V power (voltage not supplied)—-12 Vdc
power for (optional) devices requiring this
voltage.

Ground—system signal ground and dc return.

+12 V power—+12 V system power.

312 Q22-bus Specification

Table C-7 (Cont.) Bus Pin Identifiers

Bus Pin Mnemonic(s) Description

Dataladdress lines— these 14 lines are part of
the 16-line data/address bus.

BE2 BDAL2 L
BF2 BDAL3 L
BH2 BDAL4 L
BJ2 BDALS5 L
BK2 BDALS6 L
BL2 BDAL7 L
BM2 BDALS L
BN2 BDALI L
BP2 BDALIO L
BR2 BDAL11L
BS2 BDALI2 L
BT2 BDAL13 L
BU2 BDAL14 L

BV2 BDAL15 L

D

Acronyms

This appendix lists and defines the acronyms that are most frequently used

in this manual.

ACRONYM DEFINITION

ACV Access control violation

AIE Alarm interrupt enable

ANSI American National Standards Institute
AP Argument pointer

ASTLVL Asynchronous system trap level
BBU Battery back-up unit

BCD Binary coded decimal

BDR Boot and diagnostic register
BM Byte mask

BRS Baud rate select signals

CADR Cache disable register

CMCTL CVAX memory controller chip
CPMBX Console program mailbox
CQBIC CVAX Q22-bus interface chip
CRC Cycdlic redundancy check

CSR Control and status register
CSTD Console storage transmit data
CSTS Console storage transmit status
DEAR DMA Error address register
DIP Dual in-line package

DM Data mode

DMA Direct memory access

DSE Daylight saving enable

DSSI Digital small storage interconnect

313

314 Acronyms

ACRONYM DEFINITION

EDITPC EDIT packed to character string

EIA Electronic Industries Association
EPROM Erasable programmable read-only memory
ERR Error signal

ESP Executive stack pointer

FP Frame pointer

FPA Floating-point accelerator

FPU Floating point unit

GPR General purpose register

ICCS Interval clock control and status register
ICR Interval count register

IORESET I/O bus reset register

IPCR Interprocessor communication register
IPL Interrupt priority level

IPR Internal processor register

ISP Interrupt stack pointer

KSP Kernel stack pointer

LSI Large scale integration

MAPEN Memory management mapping enable register
MBRK Microprogram break register

MBZ Must be zero

MCESR Machine check error summary register
MCS Multinational character set

MFPR Move from process register

MMU Memory management unit

MOP Maintenance operation protocol

MOS Metal oxide semiconductor

MSER Memory system error register

MSI Mass Storage Interface

MTPR Move to process register

NI Network interface

NICR Next interval count register

NPA Network physical address

NXM Nonexistent memory

POBR PO base register

P1BR P1 base register

PC Program counter

PCB Process control block

Acronyms

315

ACRONYM DEFINITION

PCBB Process control block base

PIE Periodic interrupt enable

POLR PO length register

P1LR P1 length register

PMR Performance monitor enable register
POPT PO page table

P1PT P1 page table

PROM Programmable read only memory
PSL Processor status longword

PSwW Processor status word

PTE Page table entry

QBEAR Q22-bus error address register

RAM Random-access memory

RBD Receive Buffer Descriptor

RPB Restart parameter block

RXCS Console receiver control/status register
RXDB Console receiver data buffer

SAVPC Console saved PC register

SAVPSL Console saved PSL register

SBR System base register

SCA System communications architecture
SCB System control block

SCBB System control block base

SID System identification register

SIE System identification extension
SIRR Software interrupt request register
SISR Software interrupt summary register
SLR System length register

SLU Serial line unit

SP Stack pointer

SPT System page table

SQWE Square-wave enable

SSC System support chip

SSP Supervisor stack pointer

TBCHK Translation buffer check register
TBD Transmit Buffer Descriptor
TBDATA Translation buffer data

TBDR Translation buffer disable register

316 Acronyms

ACRONYM DEFINITION

TBIA Translation buffer invalidate all
TBIS Translation buffer invalidate single
TNV Translation not valid

TODR Time of year register

TOY Time-of-year

TXCS Console transmit control/status register
TXDB Console transmit data buffer

UIE Update interrupt enable

uip Update in progress bit

uspP User stack pointer

VLSI Very large scale integration

VPN Virtual page number

VRT Valid RAM and time bit

VMB Virtual memory bootstrap

XFC Extended Function Call

ZIp Zig-zag in-line package

Index

A

Abort, 31
Accessing the Q22-bus map registers,
89

Adding to a buffer list, 148

Backplane wiring, 297
Battery backed-up RAM, 84
Baud rate, 72
BDCOK H, 293
Block mode DMA, 277
Boot and diagnostic facility, 79
Boot and diagnostic register, 79
Boot block format, 233
Boot devices
names, 228
supported, 228
Boot flags, 194,229
Bootstrap
conditions, 226
disk and tape, 232
initialization, 227
MOP listening, 235
network, 234

PROM, 233

sample output, 232
Bootstrap

device names, 194
BPOK H, 293

Break response, 72

Buffer management, 123

Bus cycle protocol, 265

Bus drivers, 295

Bus interconnecting wiring, 297
Bus receivers, 296 '

Bus termination, 296

C

Cache, 48

Cacheable references, 47

Cache address translation, 49

Cache behavior on writes, 51

Cache data block allocation, 50

Cache disable register, 51

Cache error detection, 55

Cache memory, 5,47

Cache organization, 48

CDAL bus to Q22-bus address
translation, 91

Central processing unit, 3

Central processor, 18

Clock functions, 8

Collision detect routine, 139

Compatible system enclosures, 17

Configuring the KA640, 11

Configuring the Q22-bus map, 94

Console commands, 183

Console control characters, 181

Console emulation, 181

Console error messages, 248

Console 1/0 mode, 183

Console interrupt specifications, 73

Console receiver control/status
register, 68

Console receiver data buffer, 69

Console registers, 68

Console serial line, 68

Console transmitter control/status
register, 70

Console transmitter data buffer, 72

Control functions, 292

CPU references, 45

Index 317

318 Index

D

Data-stream read references, 46

Data transfer bus cycles, 265

Data types, 25

DATBI bus cycle, 282

DATBO bus cycle, 283

Detailed local address space map,
254

Determination of the console device,
181

Device addressing, 266

Device priority, 286

Diagnostic and test registers, 163

Diagnostic executive, 177

Diagnostic LED register, 81

Direct memory access, 276

DMA error address register, 99

DMA guidelines, 285

DMA protocol, 276

DMA system error register, 96

DSSI bus, 143

E

Electrical specifications, 251
Entry/dispatch code, 172
Environmental specifications, 252
Error displays, 175

Error handling, 100

Error message, 175,247
Ethernet, 102

Exceptions, 30

Exceptions and interrupts, 28
External halts, 180

External IPRs, 257

F

Fault, 31

Firmware, 8

Floating point accelerator, 4, 46

Floating point accelerator data types,
47

Floating point accelerator
instructions, 47
Floating point errors, 34

G

General local address space map, 253

General purpose registers, 19

Global Q22-bus address space map,
258

H

H3602-SA CPU cover panel, 15
Halt, 180,292

Halt messages, 247

Hardware detected errors, 41
Hardware halt procedure, 42
Hardware reset, 84

1/0 bus initialization, 85

Information saved on a machine
check, 33

Initialization, 292

Initialization routine, 136

Initiator operation, 146

Instruction set, 25

Instruction-stream read refercnces,
45

Internal processor registers, 21

Interprocessor communication
register, 92

Interrupt errors, 35 - -

Interrupt protocol, 286

Interrupts, 28, 285

Interval timer, 74

IntraBackplane bus wiring, 298

K

KA640 connectors, 11

KA640 firmware, 171

KAG640 initialization, 84

I<A64083 resident firmware operation,

L

LANCE chip, 104
LANCE operation, 135

LANCE programming notes, 140
List pointer registers, 162

Load definition, 294
Look-for-work routine, 137

Main memory addressing, 59
Main memory behavior on writes,

Main memory control and diagnostic
status register, 64

Main memory error detection and
correction, 66

Main memory error status register,

Main memory organization, 59

Main memory system, 56

Mass storage interface, 142

Memory controller, 5

Memory management, 26

Memory management control
registers, 27

Memory management errors, 34

Memory refresh, 292

Memory system error register, 54

Microcode errors, 35

MicroVAX system support functions,
7

Modu;ebcontact finger identification,
1

MOP functions, 235

MS650 memory modules, 5

MSI clock control register, 170

MSI command block, 148

MSI command block word 0, 149
MSI command block word 1, 149
MSI command block word 2, 151
MSI command block words 3-5, 152
MSI control/status register, 152
MSI diagnostic control register, 164
MSI diagnostic register 0, 165

MSI diagnostic register 1, 166

MSI diagnostic register 2, 169

MSI DSSI connection register, 156

Index 319

MSI DSSI control register, 153

MSI DSSI timeout register, 160

MSI ID register, 159

MSI initiator list pointer register,
163

MSI internal state registers, 170

MSI link word 0, 146

MSI link word 1, 146

MSI registers, 152

MSI target list pointer register, 162

Network interface, 101

Network interface control and status
register, 107

Network interface control and status
register 1, 112

Network interface control and status
register 2, 112

Network interface control and status
register 3, 113

Network interface initialization block
word 0, 115

Network interface initialization block
words 10,11, 121

Network interface initialization block
words 1-3, 118 '

Network interface initialization block
words 4-7, 118

Network interface receive descriptor
ring, 124

Network interface register address
port, 105

Network interface register data port,
106

Network interface transmit
descriptor ring, 129

NI initialization block, 114

NI initialization block words 8,9, 120

NISA ROM, 103

Nonoperating conditions greater
than 60 days, 252

Nonoperating conditions less than 60
days, 252

320 Index

o

120-Ohm Q22-bus, 295
Operating conditions, 252

P

Physical specifications, 251

Power status, 292

Power supply loading, 300
Power-up/power-down protocol, 293
Power-up initialization, 84
Power-up processing, 173

Processor initialization, 85
Processor state, 19

Processor status longword, 20
Programmable timers, 75

Q

Q22-bus 4-Level interrupt
configurations, 290

Q22-bus electrical characteristics, 294

Q22-bus error address register, 98

Q22-bus interface, 85

Q22-bus interface, 7

Q22-bus interrupt handling, 93

Q22-bus map base address register,
94

Q22-bus map cache, 90

Q22-bus map registers, 88

Q22-bus signal assignments, 262

Q22-bus to main memory address
translation, 86

R

Read errors, 36

Receive buffer descriptor n word 0,
125

Receive buffer descriptor n word 1,
125

Receive buffer descriptor n word 2,
127

Receive buffer descriptor n word 3,
128

Receive buffer descriptors, 124

Receive buffers, 128

Receive DMA routine, 138
Receive poll routine, 137
Receive routine, 137

ROM address space, 82
ROM-based diagnostics, 177
ROM memory, 82

ROM socket, 82

S

Scripts, 177

Signal level specifications, 294
Switch routine, 136

System configuration register, 95
System configurations, 298
System control block, 39

System identification, 44

T

Target operation, 145

Time of year clock, 74

Time of year clock and timers, 73
Timer control registers, 75

Timer interrupt vector registers, 78
Timer interval registers, 77

Timer next interval registers, 78
Translation buffer, 26

Transmit buffer descriptor n word 0,
131

Transmit buffer descriptor n word 1,
131

Transmit buffer descriptor n word 2,
133

Transmit buffer descriptor n word 3,
133

Transmit buffer descriptors, 130

Transmit buffers, 134

Transmit data segment links, 146

Transmit DMA routine, 139

Transmit poll routine, 138

Transmit routine, 139

Trap, 30

\/
VMB

Index 321

VMB (cont’'d.)
boot flags, 194
description, 230
procedure, 230

VMB error messages, 249

w

Write errors, 36
Write references, 46

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00026
	00027
	00028
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321

