
DECLIT
I;,;
CF\aSS
HD92A

AA-HD92A-TK

Technical
Reference Manual
Volume 1

LIBRARY

DIGITAL EQUIPMENT CORP.

swore

TM

mate
Technical
Reference Manual
Volume 1

First Printing, February 1987

© Digital Equipment Corporation 1987. All Rights Reserved.

The material in this document is for informational purposes and is subject to change
without notice; it should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Digital.

MS-DOS, MS-WINDOWS, and MS-NET are trademarks of Microsoft Corporation.
Topview is a trademark ofInternational Business Corporation.
Motorola is a registered trademark of Motorola, Inc.
IBM PC AT is a trademark of International Business Machines Corporation.

The following are trademarks of Digital Equipment Corporation.

mamaala lAS Professional
DEC MASSBUS Rainbow
DECmate MicroPDP RSTS
DEC net MicroVAX RSX
D ECsystem -10 MINC-II ThinWire
DECSYSTEM-20 OMNIBUS VAX
DECUS OS/8 VAXmate
DECwriter PDP VMS
DIBOL PDT VT
EduSystem P/OS Work Processor

Printed in U.S.A.

Preface

VOLUME 1

Chapter 1 V AXmate Workstation Overview.
Base System
Optional Components

Chapter 2 V AXmate Microprocessor.
Overview

Real Address Mode
Protected Virtual Address Mode.
Coprocessor.

Additional Sources of Information . .

Memory Map
Input/Output Address Map .
Interrupt Vector Map
Bus Timing and Structure. .
Expansion Box Technical Specifications
Expansion Box Operating Ranges .

Chapter 3 Interrupt Controllers
Overview
Additional Source of Information.

Read/Write Control

Contents

xxxiii

1-1

1-1

1-3

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-4

2-6

2-9

2-10

2-10

3-1
3-1
3-3

3-3

Contents iii

Initialization Command Words
Initialization Command Word 1
Initialization Command Word 2
Initialization Command Word 3

ICW3 (Master)•.........
ICW3 (Slave)

Initialization Command Word 4
Operation Command Words

Operation Command Word 1.
Operation Command Word 2.
Priority Rotation.
Operation Command Word 3 .
Interrupt Request and In-Service Registers

Interrupt Request Register . .
In-Service Register .

Poll Command
Poll Data Register .

Interrupt Sequence.
Programming Example

Constant Values and Data Structures. . . .
Initialization Data .
Initializing the Peripheral Interrupt Controller
Issuing an End-of-Interrupt Command
Masking Interrupts

Chapter 4 DMA Controller
Overview
Additional Source of Information.
Operation.

Idle Cycle
Active Cycle

Single Transfer Mode. .
Block Transfer Mode . .
Demand Transfer Mode
Cascade Mode

Data Transfers.
Auto-Initialize
Priority
Address Generation.

iv Contents

3-5
3-7
3-8
3-9
3-9
3-9

3-10
3-11
3-11
3-12
3-13
3-15
3-16
3-16
3-16
3-17
3-17
3-18

3-21
3-22
3-22
3-24
3-26
3-26

4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5

Registers.
Base and Current Address Register.
Base and Current Word Register
Command Register
Write Single Mask Bit.
Write All Mask Bits .
Mode Register . .
Request Register. . .
Status Register. . . .
Temporary Register .

Programming Example
Constant Values . . .
Data Structures ...
Initializing the DMA Controller
Opening a DMA Channel.
Preparing a Channel for Data Transfer .
Disabling a DMA Channel

Chapter 5 Real-Time Clock and CMOS RAM.
Overview
Additional Source of Information.
Battery-Backup Considerations. .
Addressing the Real-Time Clock.
Real-Time Clock Registers

Register A.
Register B.
Register C.
Register 0
Real-Time Clock Data Registers.

Alarms
Update Cycle
Interrupts

Update-Ended Interrupt
Alarm Interrupt ..

Programming Example
Constant Values . .
Data Structures ..
Reading the Registers and RAM.
Writing the Registers and RAM.
Calculating the Checksum . . .
Converting Binary-Coded Data.
Reading the Date.

4-7
4-7
4-8
4-9

4-11
4-11
4-12
4-13
4-14
4-14
4-15
4-15
4-17
4-18
4-19
4-20
4-22

5-1
5-1
5-2
5-2
5-2
5:3
5-4
5-6
5-8
5-9

5-10
5-12
5-13
5-14
5-14
5-14
5-15
5-16
5-18
5-20
5-21
5-22
5-23
5-24

Contents v

Reading the Time
Displaying the Date . . .
Displaying the Time. . .
Displaying the Diskette Drive Type .
Displaying the Hard Disk Type .
Handling the Clock Interrupts . .
Interpreting the RAM Contents .
Initializing the Real-Time Clock.
Restoring the Interrupt Vectors.
Real-Time Clock Example

Chapter 6 Three-Channel Counter and Speaker
Overview.
Additional Source of Information.
Block Diagram
Counter Description
Mode Definitions

Mode 0 (Interrupt on Terminal Count)
Initializing Mode 0
Mode 0 Cycle.

Mode 1 (Hardware Retriggerable One-Shot) . .
Initializing Mode 1 .
Mode 1 Cycle.

Mode 2 (Rate Generator)

5-25
5-26
5-27
5-28
5-29
5-30
5-32
5-34
5-35
5-36

6-1
6-1
6-1
6-2
6-2
6-3
6-4
6-4
6-4
6-4
6-4
6-4
6-5

Initializing Mode 2 . 6-5
Mode 2 Cycle. 6-5

. Mode 3 (Square Wave Mode). 6-5
Initializing Mode 3 6-6
Mode 3 Cycle. 6-6

Mode 4 (Software Triggered Strobe). 6-6
Initializing Mode 4 6-6
Mode 4 Cycle. 6-7

Mode 5 (Hardware Triggered Strobe). 6-7
Initializing Mode 5 6-7
Mode 5 Cycle. 6-7

Registers. 6-8
System Register • . . 6-9
Control Word Register . 6-11

Counter-Latch Command (Control Word Register). . 6-12
Read-Back Command (Control Word Register) . . 6-13
Status Response (Read-back Command) 6-14

vi Contents

Programming Example
Constant Values . .
Writing a Counter.
Making a Bell Sound
Counter and Speaker Example.

Chapter 7 Video Controller
Introduction.

Industry-Standard Text and Graphics Features.
Enhancements to Industry-Standard Features
Industry-Standard Features Not Available
Extra Features

Block Diagram
Additional Sources of Information .
Video Modes
Text Modes

Character Buffer Format
Character Position to Memory Location Mapping
Programmable Cursor
Programmable Character Generator (Font RAM) .

Graphics Mode
Mapping the Display to Address

Video Look-Up Table
Video System Registers

Special Purpose Register.
CRTC Registers . .

Index Register.
Data Register
Register RO
Register Rl
Register R2
Register R3
Register R4
Register R5
Register R6
Register R7
Register R8
Register R9
Register RIO
Register Rll
Register R12
Register R13

6-16
6-16
6-18
6-18
6-20

7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-4
7-5
7-6
7-6
7-7
7-8
7-9

7-10
7-10
7-18
7-22
7-23
7-25
7-25
7-25
7-28
7-28
7-29
7-29
7-30
7-30
7-31
7-31
7-32
7-33
7-33
7-34
7-34
7-34

Contents vii

Register R14
Register R15
Register R16
Register R17
Status Register A. .

Status Register B
Write Data Register. .
Color Select Register
Control Register A .
Control Register B. .

Monitor Interface
Monitor Specification Summary.

Programming Example

Chapter 8 Keyboard-Interface Controller and Keyboard.
Introduction
Keyboard-Interface Controller

Physical Interface to the CPU
Physical Interface to the Keyboard . .
Logical Interface.
Control Functions

Keyboard-Interface Controller Diagnostics.
Keyboard-Interface Controller Registers

Data Register. . . .
Command Register
Status Register ...
Command Register

Read Command Byte.
Write Command Byte.
Self-Test
Interface Test . . .
Disable Keyboard.
Enable Keyboard .
Read Port 1.
Read Port 1.
Read Port 2
Write Port 2
Read Test Inputs .
Write Status Register.
Pulse Output Port. . .

Keyboard-Interface Controller Error Handling ..

viii Contents

7-35
7-35
7-36
7-36
7-37
7-38
7-39
7-39
7-41
7-43
7-44
7-44
7-45

8-1
8-1
8-1
8-1
8-2
8-2
8-3

8-4
8-5
8-5
8-5
8-6
8-9

8-10
8-10
8-12
8-12
8-12
8-12
8-12
8-12
8-13
8-13
8-13
8-13
8-13
8-14

LK250 Keyboard. 8-16
Scan Codes . 8-15
LK250 Keyboard Command Codes 8-22

Invalid Commands . 8-23
Request Keyboard ID. 8-23
Enter DIGITAL Extended Scan Code Mode. 8-23
Exit DIGITAL Extended Scan Code Mode. 8-23
Set Keyboard LED. 8-23
Reset Keyboard LED. 8-24
Set Keyclick Volume. 8-24
Enable Autorepeat. 8-24
DisableAutorepeat . 8-24
Keyboard Mode Lock . 8-25
Keyboard Mode Unlock. 8-25
Reserved. 8-25
LEDs On/Off. 8-26
Echo. 8-26
Reserved. 8-26
Set Autorepeat Delay and Rate 8-27
Enable Key Scanning. 8-28
Disable Key Scanning and Restore to Defaults 8-28
Restore To Defaults. 8-28
Reserved . 8-29
Resend . 8-29
Reset. 8-29

LK250 Keyboard Responses . 8-30
Buffer overrun.
Self-test success. . .
ECHO
Release Prefix
Acknowledge lACK). . . .
Self-Test Failure
Resend

8-30
8-30
8-30
8-31
8-31
8-31
8-31

LK250 Keyboard Error Handling. 8-31
U.S. and Foreign Keyboards. 8-31

Programming Example . 8-46

Chapter 9 Serial Communications. 9-1
Overview. 9-1

Contents ix

Additional Sources of Information
Receive Buffer RegisterlTransmitter Holding Register. . .
Interrupt Enable Register.
Interrupt Identification Register.
Line Control Register
Modem Control Register

Diagnostic Loopback
Line Status Register.
Modem Status Register.
Divisor Latches.

Modem Control Programming Exceptions
Special Purpose Register

Communications Connector Signals . . .
Printer Connector Signals. .
Modem Connector Signals. .
Programming Example . . .

Program Description . .

Chapter 10 Mouse Information.
Introduction.
Communication Requirements . .
Additional Source of Information.
Mouse Commands

Prompt Mode Incremental Stream Mode. . .
Request Mouse Position.
Invoke Self-Test
Vendor Reserved Function . .

Mouse Reports
Position Report - Byte 1.
Position Report - Byte 2.
Position Report - Byte 3.
Self-Test Report - Byte 1 .
Self-Test Report - Byte 2 .
Self-Test Report - Byte 3
Self-Test Report - Byte 4

Serial Interface.
Transmit Holding Register and Receive Buffer
Status Register. . .
Mode Register 1 . .
Mode Register 2 . .
Command Register

Programming Example

x Contents

9-1
9-3
9-4
9-6
9-7
9-9

9-10
9-11
9-13
9-15
9-17
9-18
9-19
9-20
9-21
9-22
9-23

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-4
10-5
10-5
10-6
10-6
10-7
10-7
10-8
10-8
10-9

10-10
10-11
10-12
10-14

Chapter 11 Diskette Drive Controller
Introduction.
Diskette Drive Controller Registers .

Control Register
Main Status Register
Data Register.
Data Transfer Rate Register .
Change Register

Diskette Drive Controller Internal Registers.
Internal Register - Command.
Internal Register - Head/Unit Select
Internal Register - Status Register 0
Internal Register - Status Register 1
Internal Register - Status Register 2
Internal Register - Status Register 3
Internal Register - SRTIHUT
Internal Register - HLT/ND
Internal Register - C .
Internal Register - H.
Internal Register - R.
Internal Register - N
Internal Register - EOT.
Internal Register - GPL .
Internal Register <> DTL
Internal Register· SC ..
Internal Register - D. . .
Internal Register - STP .
Internal Register- PCN .
Internal Registers - NCN .

Diskette Drive Controller Programming
Command State
Execution State
Result State
Command and Result Register Sets.

Programming Example

Chapter 12 Hard Disk Drive Controller.
Introduction.

11-1

11-1

11-2
11-3
11-4
11-5
11-6
11-6

11-7
11-7
11-8
11-9

11-10
11-12
11-13
11-14
11-15
11-15
11-15
11-15
11-16
11-16
11-16
11-16
11-16
11-17
11-17
11-17
11-17

11-18
11-18
11-20
11-20
11-20

11-27

12-1

12-1

Contents xi

Hard Disk Controller Registers. .
Data Register.
Write Precompensation Register.
Error Register . . .' . . .
Sector Count Register.
Sector Number Register
Cylinder Number Low Register.
Cylinder Number High Register.
S D H Register.
Cpmmand Register . .

Restore Command
Seek Command . .
Read Sector Command.
Write Sector Command.
Format Track Command.
Read Verify Command ..
Diagnose Command. . . .
Set Parameters Command.

Status Register.
Alternate Status Register.
Hard Disk Register . .
Digital Input Register.

Programming Example . .

Chapter 13 Network Hardware Interface.
Introduction to the LANCE
Additional Source of Information.
Functional Description of the Network Hardware Interface

The Coax Transceiver Interface . . .
The Serial Interface Adapter.
The Local Area Network Controller.

Programming the LANCE
Initialization Block
Receive and Transmit Descriptor Rings
Data Buffers
Programming Sequence .
Register Description. . . .
Register Data Port (RDP)
Register Address Port (RAP)
Control And Status Register 0 .
Control And Status Register 1 .
Control And Status Register 2 .

xii Contents

12-1
12-3
12-4
12-5
12-7
12-7
12-8
12-8
12-9

12-10
12-11
12-12
12-13
12-15
12-17
12-19
12-21
12-22
12-23
12-25
12-25
12-26
12-27

13-1
13-1
13-2
13-2
13-2
13-2
13-2
13-3
13-4
13-4
13-4
13-4
13-5
13-6
13-7
13-8

13-13
13-14

Index

Control And Status Register 3 .
NI CSR
Initialization Block. . .
Mode Field
Physical Address Field
Logical Address Filter Field
Receive Descriptor Ring Pointer Field
Transmit Descriptor Ring Pointer Field
Buffer Management.
Descriptor Rings in Memory
Receive Descriptor Rings.
Receive Message Descriptor 0 (RMDO) .
Receive Message Descriptor 1 (RMD1) .
Receive Message Descriptor 2 (RMD2) .
Receive Message Descriptor 3 (RMD3) .
Transmit Descriptor Ring.
Transmit Message Descriptor 0 (TMDO) .
Transmit Message Descriptor 1 (TMDll .
Transmit Message Descriptor 2 (TMD2) .
Transmit Message Descriptor 3 (TMD3) . .
Network Interface External Interconnect .
Network Interface System Bus Interconnect.

VOLUME 2

Chapter 14 System Startup.
Overview
Powerup Test

Initialization
Real Mode Versus Virtual Protected Mode .

Extended Self-Test ...
Configuration List .

Soft Reset
Hard Reset
Hardware Jumper Configuration.

Chapter 15 ROM BIOS
Interrupt 02H: Nonmaskable Interrupt.
Interrupt 05H: Print Screen
Interrupt 08H: Clock Tick.
Interrupt 09H: Keyboard . .

Contents

13-15
13-17
13-18
13-19
13-22
13-22
13-23
13-25
13-27
13-28
13-29
13-29
13-30
13-32
13-33
13-34
13-34
13-35
13-37
13-38
13-40
13-40

14-1
14-1
14-1
14-9
14-9

14-10
14-11
14-12
14-13
14-14

15-1
15-3
15-4
15-5
15-5

xiii

Interrupt OBH: COM2 / Modem
Interrupt OCH: COMI / Serial .
Interrupt OEH: Floppy Disk. . .
Interrupt 10H: Video Input/Output

Function OOH: Set Video Mode.
Function 01H: Set Cursor Type .
Function 02H: Set Cursor Position
Function 03H: Read Cursor Position
Function 04H: Read Light-Pen Position
Function 05H: Set Page Function. . . .
Function 06H: Scroll Active Page Up ..
Function 07H: Scroll Active Page Down
Function 08H: Read Character and Attribute at Cursor
Position
Function 09H: Write Character and Attribute at Cursor
Position
Function OAH: Write Character at Cursor Position.
Function OBH: Set Color Palette
Function OCH: Write Pixel
Function ODH: Read Pixel
Function OEH: Write Character Using Terminal Emulation.
Function OFH: Read Current Video State
Function 13H: TTY Write String
Function DOH: Enable/Disable 256 Character Graphic Font.
Function DIH: Font RAM and Color Map Support ..

Font RAM Functions
Color Map Functions

Interrupt llH: Read Configuration .
Interrupt 12H: Return Memory Size.
Interrupt 13H: Disk Input/Output {I/O) .

Hard Disk Functions
Hard Disk Errors
Hard Disk Parameter Tables ...

Function OOH: Initialize Entire Disk Subsystem.
Function 01H: Return Status Code of Last 110 Request.
Function 02H: Read One or More Disk Sectors .
Function 03H: Write One Or More Disk Sectors
Function 04H: Verify One or More Disk Sectors
Function 05H: Format a Track
Function 08H: Return Current Drive Parameters.
Function 09H: Initialize Drive Characteristics.
Function OAH: Read Long

xiv Contents

15-6
15-6
15-7
15-8

15-10
15-12
15-13
15-14
15-15
15-16
15-17
15-17

15-19

15-20
15-21
15-22
15-23
15-24
15-25
15-27
15-28
15-30
15-31
15-31
15-32
15-35
15-37
15-38
15-40
15-40
15-41
15-42
15-43
15-44
15-45
15-46
15-47
15-48
15-49
15-50

Function OBH: Write Long
Function OCH: Seek to Specific Cylinder.
Function ODH: Hard Disk Reset.
Function 10H: Test Drive Ready
Function llH: Recalibrate Drive
Function 14H: Execute Controller Internal Diagnostics
Function 15H: Return Drive Type
Function DOH: Read Long 256 Byte Sector
Diskette Functions.

Diskette Errors
Diskette Parameter Tables.

Function OOH: Initialize Diskette Subsystem
Function 01H: Return Status Code of Last I/O Request.
Function 02H: Read One or More Track Sectors .
Function 03H: Write One or More Track Sectors.
Function 04H: Verify One or More Track Sectors.
Function 05H: Format a Track
Function 15H: Return Drive Type
Function 16H: Return Change Line Status
Function 17H: Set Drive and Media Type for Format

Interrupt 14H: Asynchronous Communications.
Function OOH: Initialize Asynchronous Port.
Function 01H: Transmit Character.

Buffer Mode Enabled
Function 02H: Receive Character . .

Buffer Mode Enabled
Function 03H: Return Asynchronous Port Status.

Buffer Mode Enabled.
Function DOH: Extended Mode

Buffering Enabled. . .
Notification Enabled ..
Error Codes Returned .

Function DIH: Send Break.
Function D2H: Set Modem Control.
Function D3H: Retry on Timeout Error
Function D4H: Set Baud Rate ...

Interrupt 15H: Cassette Input/Output.
Function 80H: Open Device
Function 81H: Close Device
Function 82H: Termination.
Function 83H: Set a Wait Interval.
Function 84H: Joystick Support ..

15-51
15-52
15-53
15-54
15-55
15-56
15-57
15-58
15-59
15-59
15-59
15-61
15-62
15-63
15-64
15-65
15-66
15-67
15-68
15-69
15-70
15-72
15-73
15-73
15-74
15-74
15-75
15-76
15-77
15-80
15-81
15-83
15-84
15-85
15-86
15-87
15-88
15-89
15-89
15-90
15-90
15-91

Contents xv

Function 85H: Service System Request Key ..
Function 86H: Wait {No Return to User)
Function 87H: Move a Block of Memory
Function 88H: Return Memory Size Above One Megabyte
Function 89H: Begin Virtual Mode
Function 90H: Device Is Busy
Function 91H: Interrupt Completion Handler
Function DOH: Return DIGITAL Configuration Word.

Interrupt 16H: Keyboard Input
Table of Returned Scan Codes . .
Combination Keys

System Reset
System Request Key {Sys Req)
Extended Self-test. .
Break
Pause
Print Screen

Automatic LED Control.
Function OOH: Keyboard Input. .
Function 01H: Keyboard Status.
Function 02H: Keyboard State. .
Function DOH: Key Notification.

Key Stroke Notification Enabled
Key Buffering Notification Enabled.

Function DIH: Character Count
Function D2H: Keyboard Buffer
Function D3H: Extended Codes And Functions
Function D4H: Request Keyboard ID.
Function D5H: Send to Keyboard
Function D6H: Keyboard Table Pointers

Keyboard Translation Table Formats And Usage.
Interrupt 17H: Printer Output

Function OOH: Transmit Character . .
Function 01H: Initialize Printer
Function 02H: Return Printer Status
Function DOH: Redirect Parallel Printer . .
Function DIH: Printer Type
Function D2H: Parallel Port Retry

Interrupt 18H: Basic
Interrupt 19H: Bootstrap

DIGITAL Hard Disk Boot Block

xvi Contents

15-91
15-92
15-93
15-95
15-96
15-98
15-98
15-99

15-101
15-102
15-107
15-107
15-107
15-108
15-108
15-108
15-108
15-108
15-109
15-109
15-110
15-111
15-112
15-113
15-114
15-115
15-116
15-118
15-119
15-120
15-121
15-123
15-124
15-125
15-126
15-127
15-129
15-131
15-132
15-133
15-134

Interrupt lAH: Time-of-day
Function OOH: Read System Clock
Function 01H: Set System Clock.
Function 02H: Read Real-Time Clock.
Function 03H: Set Real-Time Clock.
Function 04H: Return RTC Date
Function 05H: Set RTC Date
Function 06H: Set Alarm
Function 07H: Cancel Alarm .. .
Function DOH: Return Days-Since-Read Counter.

Interrupt IBH: Keyboard Break .
Interrupt 1CH: Timer Tick
Interrupt IDH: Video Parameters
Interrupt lEH: Diskette Parameter Tables.
Interrupt 1 FH: Graphics Character Table Pointer.
Interrupt 40H: Revector of Interrupt 13H
Interrupt 41H and 46H: Hard Disk Parameter Tables
Interrupt 4AH: RTC Alarm.
Interrupt 70H: Real-Time Clock
Interrupt 71H: Redirect to Interrupt OAH
Interrupt 72H: Local Area Network Controller (LANCE).
Interrupt 73H: Serial Printer Port.
Interrupt 74H: Mouse Port.
Interrupt 75H: 80287 Error
Interrupt 76H: Hard Disk
Interrupt 77H: Available (IRQI5)

15-135
15-136
15-136
15-137
15-138
15-138
15-139
15-139
15-140
15-140
15-141
15-141
15-142
15-143
15-145
15-145
15-146
15-148
15-148
15-148
15-149
15-150
15-150
15-151
15-151
15-151

Chapter 16 Programming the V AXmate Under MS-DOS

Overview
MS-DOS Operating System Versions.

Loading MS-DOS Operating System .. .
MS-DOS Memory Map

MS-DOS Interrupt 21H Digital Specific Functions
Function 30H Get MS-DOS OEM Number
Function 38H Get/Set Country Code .

Loadable MS-DOS Device Drivers.
ANSI.SYS
Installing ANSI.SYS .. .
Cursor Control Functions.
Erase Functions
Set Graphics Rendition . .

16-1
16-1
16-2
16-2
16-2
16-3
16-3
16-3
16-5
16-5
16-5
16-5
16-7
16-8

Contents xvii

Set Mode Function
Reset Mode Function
Keyboard Key Reassignment Function .

Mouse Driver
Detecting the Mouse Driver
Video Support
Function OOOOH: Mouse Initialization
Function 0001H: Show Cursor
Function 0002H: Hide Cursor
Function 0003H: Get Mouse Position and Button Status
Function 0004H: Set Mouse Cursor Position ...
Function 0005H: Get Button Press Information
Function 0006H: Get Button Release Information
Function 0007H: Set Minimum and Maximum X-Axis
Position
Function 0008H: Set Minimum and Maximum Y-Axis
Position
Function 0009H: Define Graphics Cursor
Function OOOAH: Define Text Cusor
Function OOOBH: Read Mouse Motion Counters
Function OOOCH: Define Event Handler
Function OOODH: Enable Light-Pen Emulation.
Function OOOEH: Disable Light-Pen Emulation.
Function OOOFH: Set Mouse Motion/Pixel Ratio
Function 0010H: Conditional Hide Cursor.
Function 0013H: Set Speed Threshold.
Function 001CH: Get Driver Version.
Function 0024H: Get Configuration ..
Function 0025H: Set Configuration ..
Enhanced Graphics Adapter (EGA} Functions

Function FOH: Read EGA Register
Function FIH: Write EGA Register
Function F2H: Read EGA Register Group
Function F3H: Write EGA Register Group
Function F4H: Read EGA Register List.
Function F5H: Write EGA Register List
Function F AH: EGA Functions Installed

MS-DOS Media ID Tables
Disk Parameters .

xviii Contents

16-10
16-11
16-12
16-13
16-14
16-14
16-16
16-17
16-17
16-18
16-19
16-20
16-21

16-22

16-23
16-24
16-26
16-27
16-28
16-30
16-30
16-31
16-31
16-32
16-32
16-33
16-33
16-34
16-35
16-35
16-36
16-36
16-37
16-38
16-38
16-39
16-40

MS-DOS International Support 16-41
FONT and GRAFTABL. . 16-41
FONT. COM. 16-41
GRAFTABL.COM. 16-42
Description of Fonts. 16-42
How FONT.COM Affects KEYB.COM and SORT.EXE . 16-42
Font File Structures. . 16-42
Loading Font Files. . . 16-45

KEYB 16-45
Keyboard Remapping. 16-45
Creating Keyboard Map Tables for International Countries . 16-47
How Compose Sequences Are Recognized. 16-49
How Dead Diacritical Keys Are Recognized. 16-49
Format and Use of the Compose Sequence Pointer Table 16-49
Format and Use of the Compose Sequence Translation
Table. 16-50
Changing to STDUS.KEY and Back Again 16-50
Keyboard Map File Structure 16-50

LCOUNTRY 16-52
Country File Structure . 16-52
Case Conversion Tables. 16-54

SORT. 16-55
Format for Sorting Order. 16-55
Creating Sort Tables for Character Sets. . 16-55

Chapter 17 MS-Windows on the VAXmate 17-1
Introduction. 17-1

Overview 17-1
Keyboard Driver for the LK250 Keyboard 17-2

Numeric and Edit Keypads. 17-3
Keyboard LEDs for the VAXmate LK250 . 17-4
V AXmate Compose Handling 17-4
Reserved Keys Under MS-Windows. 17-5
DIGITAL MS-Windows Keyboard Extensions. 17-5
DecSetLockState (lock) . 17-6
DecSetKClickVol (vol). 17-7
DecSetAutorep (repeat). 17-7
DecGetKbdCountry () : Result. . 17-8
DecSetComposeState (compose_mode) . 17-9
DecSetNumlockMode (numlock _mode) . 17 -10

Contents xix

Windows Keyboard Processing Anomalies
Repeating Key Allowed to Change Focus.
Illogical Set of Keyboard Messages

Key Mappings for VAXmate's LK250.
AnsiToOem, OemToAnsi .

ANSI to OEM Table
OEM to ANSI Table

Mouse

17-11
17-11
17-12
17-13
17-55
17-55
17-58
17-61

Communications 17-61
LAT Support Through the Windows Asynchronous Serial
Communications Interface. 17-62

OpenComm 17-63
WriteComm 17-63
TransmitCommChar 17-64
ReadComm. . . 17-64
CloseComm . . 17-64
SetCommState 17-65
GetCommState 17-65
EscapeCommFunction . 17-65
SetCommBreak 17-65
ClearCommBreak . . .
SetCommEventMask
GetCommEventMask
FlushComm
GetCommError

Custom LA T Application Interface Under Windows .
OpenLat (lpServiceName, IpNodeName, IpPortNamel :
Latid
CloseLat (Latidl : Result . . .
ReadLat (Latidl : Result
WriteLat (Latid, chI: Result .
GetLatStatus (Latidl : Result
SendLatBreak (Latidl : Result . . .
InquireLatServices (I : LResult
GetLatService (lpServiceNamel : Result ...

Display on the V AXmate
Standard Applications Support

Keyboard Handling
Keyboard Handling Inside an MS-Windows Window.
Keyboard Handling Outside an MS-Windows Window.

ANSI Support Inside an MS-Windows Window

xx Contents

17-65
17-65
17-65
17-65
17-66
17-66

17-67
17-68
17-68
17-69
17-69
17-70
17-70
17-71
17-73
17-74
17-75
17-75
17-78
17-79

Video Modes Handled Inside an MS-Windows Window.
Interrupt llh Support
Interrupt 12h Support
Interrupt 15h Support
Unique Icons ..

Printers
DECWIN.H File Listing.

Chapter 18 V AXmate Network Software.
Introduction.

Documentation List
Datalink

Common Definition Formats.
Multicast Address Format
Software Capabilities .
Datalink Functions
Datalink Return Codes . .

Function OOH: Initialization Idll_init) .
Function 01H: Open a Datalink Portalldll_ open).
Function 02H: Close a Datalink Portalldll_ close).
Function 03H: Enable Multicast Addresses
Idll_enable_mul)
Function 04H: Disable Multicast Addresses
(dll_ disable _ mul).
Function 05H: Transmit Idll_ transmit)
Function 06H: Request Transmit Buffer Function
(dllJequest_xmit)
Function 07H: Deallocate Buffer (dll_deallocate) ..
Function 08H: Read Channel Status (dllJead _chan).
Function 09H: Read the Portal List (dll_read _plist)
Functions OAH: Read the Portal Status
IdllJead _portal)
Function OBH: Read the Datalink Counters
(dllJead _count)
Function OCH: Network Boot Request
(dll_ network_boot)
Function ODH: Enabling a Channel Function
(ddl_ enable_chan)
Function OEH: Disabling a Channel (dll_disable _chan).
Function llH: Read Decparm String Address
(dll_readecparm)

17-79
17-82
17-82
17-83
17-83
1 '7-83
17-85

18-1
18-1
18-4
18-5
18-6
18-7
18-8

18-11
18-13
18-16
18-18
18-21

18-22

18-24
18-25

18-27
18-28
18-29
18-31

18-32

18-34

18-38

18-39
18-40

18-41

Contents xxi

Function 12H: Set Decparm String Address
(dll_ setdecparm)
Function 13H: External Loopback (dll_ ext_loopback)

Maintenance Operation Functions.
Data Link Interface to the MOP Process '.'

Function OFH: Mop Start and Send System 10
(dll_start_mop)
Function 10H: Mop Stop (dll_mop_stop).

Sample Datalink Session .
Local Area Transport . . .

LAT Services.
LAT Command Line
Data Structures
LAT Functions.

Function 03H: LAT Get Status ..
Function DOH: Open Session ...
Function DOH: Close LAT Session.
Function 02H Read Data.
Function 01H: Send Data
Function D5H: Get Next LAT Service Name.
Function D6H: LAT Service Table Reset
Function D1H: Send Break Signal

Sample Terminal Program .
Session

Software Capabilities
MS-Network Session Control Block.
DIGITAL-Specific Session Control Block ..
Synchronous Requests
Asynchronous Requests.
Asynchronous Notification Routine ...
Network Addressing.
Session Level Services
MS-Network Compatible Session Level Services
MS-Network Session Level Return Codes

Function OOH and Function B800H: Check for Presence
of MS-Network Session
Function 35H: Cancel (synchronous) ..
Function 32H: Reset (synchronous). .
Function 33H: Status (synchronous) ..
Function B3H: Status (asynchronous) .
Function 30H: Add Name (synchronous).
Function BOH: Add Name (asynchronous).

xxii Contents

18-42
18-43
18-44
18-47

18-47
18-47
18-48
18-56
18-57
18-57
18-60
18-66
18-67
18-68
18-69
18-70
18-71
18-72
18-73
18-74
18-75
18-84
18-86
18-86
18-89
18-90
18-90
18-91
18-91
18-92
18-93
18-94

18-97
18-98
18-99

18-100
18-100
18-103
18-103

Function 31H: Delete Name (synchronous) .
Function B1H: Delete Name (asynchronous)
Function 34H: Name Status (synchronous) .
Function B4H: Name Status (asynchronous)
Function 10H: Call (synchronous) ..
Function 90H: Call (asynchronous) ..
Function 11H: Listen (synchronous) .
Function 91H: Listen (asynchronous).
Function 12H: Hangup (synchronous)
Function 92H: Hangup (asynchronous).
Function 14H: Send (synchronous) ...
Function 94H: Send (asynchronous) ..
Function 17H: Send Double (synchronous).
Function 97H: Send Double (asynchronous) .
Function 15H: Receive (synchronous)
Function 95H: Receive (asynchronous)
Function 16H: Receive Any (synchronous) ..
Function 96H: Receive Any (asynchronous) .

Datagram Commands
Function 20H: Send Datagram (synchronous) .
Function AOH: Send Datagram (asynchronous) .
Function 21H: Receive Datagram (synchronous)
Function A1H: Receive Datagram (asynchronous)
Function 22H: Send Broadcast (synchronous) ..
Function A2H: Send Broadcast (asynchronous) ..
Function 23H: Receive Broadcast (synchronous) .
Function A3H: Receive Broadcast (asynchronous)

DIGITAL-Specific Session Level Services ...
Function OOH: DIGITAL Function Check
(decfunccheck)
Function 01H: Add a Node (decfuncadd) ..
Function 02H: Delete Entry Given the Node Number
(decfuncdelnum) .
Function 03H: Delete Entry Given Node Name
(decfuncdelname)
Function 04H: Read Node Entry Given Node Number
(decfuncreadnum) .
Function 05H: Read Node Entry Given Node Name
(decfuncreadname).
Function 06H: Read Node Entry Given Index
(decfuncreadindex).
Function 07H: Delete All Node Entries (decfuncdelall).

18-104
18-104
18-105
18-105
18-107
18-107
18-109
18-109
18-110
18-110
18-111
18-111
18-112
18-112
18-113
18-113
18-114
18-114
18-115
18-116
18-116
18-117
18-117
18-118
18-118
18-119
18-119
18-120

18-121
18-122

18-123

18-124

18-125

18-126

18-127
18-128

Contents xxiii

Server Message Block (SMB) Protocol
Extended Function DOH: Get Current Date and Time ,

Appendix A Support Code for Examples ..
File: SUPPORT.ASM '.
File: EXAMPLE.H .
File: KYB.H
File: RB.H
File: VECTORS.C
File: RB.C .. .
File: DEMO.C .. .

18-129
18-130

A-I
A-I
A-9

A-I0
A-ll
A-12
A-16
A-18

Appendix B 80286 Instruction Set B-1

Appendix C VT220 and VT240 Terminal Emulators. C-l
VT220 Emulator and VT220 Terminal Differences C-2

Saving and Restoring Set-Up Selections. . C-2
Video Differences C-2

Scrolling C-2
Blinking Characters Remapped . . C-2
No Control Representation Mode. C-2
Font Selection C-2

Communications Differences. C-3
LAT Protocol Support (Network Terminal Services) . C-3
No Split Baud Rate. . . C-3
Session Logging. C-3
Autotyping Characters . C-3

Keyboard Differences . . . C-4
Keyboard LEDs C-4
Alternate Characters . C-4
Keyclick. C-4
Autorepeat Selection C-4

Character Sets C-5
DEC MCS to ISO Latin-l 8-bit Transition C-5
Language Selection C-5
Compose Sequences. C-5

Additional VT220 Emulator Escape Sequences C-6
Assign User-Preference Supplemental Character Set
(DECAUPSS) . C-6
Request User-Preference Supplemental Character Set
(DECRQUPSS) . C-6
Select User-Preference Supplemental Coded Character
Set (SCS). C-6

xxiv Contents

Select DEC Supplemental Coded Character Set .(SCS) . C-7
Select ISO Latin-l Supplemental Coded Character Set
(SCS) C-7
Primary Device Attribute (DA) C-S
Secondary Device Attribute (DA) C-S
Announcing ANSI Conformance Levels C-S

Printing C-9
Printer Options . C-9
Print Terminator C-9
Print Size. C-9

VT240 Emulator and VT240 Terminal Differences ColO
Saving and Restoring Set-Up Selections. ColO
Video Differences C-IO

Video Modes C-IO
Automatic Video Mode Switching. C-IO
Scrolling C-IO
No Control Representation Mode. ColO
Underlined Characters. C-lI
Line Attributes C-lI
Double Width Lines for Fast Text Only C-II
Double Height/Double Width Lines for Fast Text Only C-II

Communications Differences. C-12
LAT Protocol Support (Network Terminal Services) . C-12
Session Logging. C-12
Autotyping Characters. C-12

Keyboard Differences . . . C-12
Keyboard LEDs C-12
Alternate Characters. . C-12

No "Printer to Host" Mode. C-12
Character Sets C-13

DEC MCS to ISO Latin-l S-bit Transition C-13
Compose Sequences. C-13

Additional VT240 Emulator Escape Sequences C-13
User-Preference Supplemental Character Set
(DECAUPSS) C-13
Request User-Preference Supplemental Character Set
(DECRQUPSS) . C-14
Select User-Preference Supplemental Coded Character
Set (SCS). C-14
Select DEC Supplemental Coded Character Set (SCS) . C-15
Select ISO Latin-l Supplemental Coded Character Set
(SCS) . C-15

Contents xxv

Primary Device Attribute (DA)
Secondary Device Attribute (DA)
Announcing ANSI Conformance Levels

Bibliography

Index

Tables
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 4-2
Table 4-3
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10
Table 7-11
Table 7 .. 12
Table 8-1
Table 8-2
Table 8-3
Table 8-4

Physical Memory Map. . . .
Input/Output Address Map .
Interrupt Vector Map
8-Bit Expansion Bus Transfer Times
Expansion Slot Power Ratings . .
Interrupt Request Lines
Master and Slave 110 Addresses . . .
Accessing the Interrupt Controller Registers.
DMA Request Line Assignments.
DMA Controller States
DMA Controller and Page Register Address Map.
Real-Time Clock Address Map
Rate Selection Bits.
RTC Data Register Ranges . .
RTC Automatic Alarm Cycles.
Counter Signals.
Modes Used by the Three Counters
8254 and System Register Addresses.
Available Video Modes.
Attribute Byte Bit Definitions
Text Mode Display Pages (ROM BIOS) .
Default VLT Contents
VLT Contents' for Video Modes DIH and D2H.
Video Processor 1/0 Registers.
CRTC Internal Registers
CRTC Register Values
Color Select Register Bit Assignments

Color Palettes Selected by CPS and SIC.
Selecting Video Modes . .
Monitor Interface Signals

Port 1 Bit Definitions . . .
Port 2 Bit Definitions . . .
Keyboard-Interface Controller Commands
Command Byte Bit Definitions.

xxvi Contents

C-15

C-16

2-3
2-4
2-7

2-10
2-10

3-2
3-3
3-4
4-2
4-2
4-6
5-3
5-5

5-11
5-12
6-3
6-3
6-8
7-5
7-6
7-8

7-20
7-21
7-22
7-26
7-27
7-40
7-40
7-42
7-44

8-3
8-4
8-9

8-10

Table 8·5 LK250 Scan Codes and Industry·standard
Equivalent Values
Table 8·6 Scan Codes Translated But Not Used.
Table 8·7 LK250 Keyboard Command Codes.
Table 8·8 LK250 Keyboard Responses ...
Table 9·1 8250 UART Register Addresses
Table 9·2 Interrupt Identification
Table 9·3 Baud Rate Table

Communications Connector Signals .
Printer Connector Signals.
Modem Telephone Line Connector Signals .
Handset Connector Signals . .

Mouse Command Summary.
Serial Interface Registers . .
Baud Rate Table.
Diskette Drive Controller Registers
Diskette Drive Controller Commands
Register Sets for Read Data Command

Table 9·4
Table 9·5
Table 9·6
Table 9·7
Table 10·1
Table 10·2
Table 10·3
Table 11·1
Table 11·2
Table 11·3
Table 11·4
Table 11·5
Table 11·6
Table 11·7
Table 11·8
Table 11·9
Table 11·10
Table 11·11
Table 11·12
Table 11·13
Table 11·14

Register Sets for Write Data Command.
Register Sets for Read Deleted Data Command
Register Sets for Write Deleted Data Command.
Register Sets for Read Track Command. .
Register Sets for Read ID Command. . . .
Register Sets for Format Track Command

Register Sets for Scan Equal Command .
Register Sets for Scan Low or Equal Command.
Register Sets for Scan High or Equal Command
Register Sets for Recalibrate Command . .
Register Sets for Sense Interrupt Status

Command
Table 11·15 Register Sets for Specify Command
Table 11·16 Register Sets for Sense Drive Status Command
Table 11·17 Register Sets for Seek Command.
Table 12·1 Hard Disk Controller Registers
Table 12·2 Hard Disk Controller Diagnostic Result Codes.
Table 12·3 Memory Image of a Sector Interleave Table ...
Table 12·4 Hard Disk Controller Diagnostic Result Codes.
Table 13·1 Network Interface Registers
Table 13·2 LANCE CSR3 Required Values for the VAXmate
Workstation
Table 14·1 VAXmate Powerup and Self·Test Error Codes
Table 14·2 V AXmate Processor Board Jumpers

Contents

8·17
8·21
8·22
8·30

9·2
9·6

9·16
9·19
9·20
9·21
9·21
10·2
10·8

10·11
11·2

11·19
11·21
11·21
11·22
11·22
11·23
11·23
11·24
11·24
11·25
11·25
11·26

11·26
11·26
11·27
11·27

12·2
12·6

12·18
12·21

13·5

13·16
14·8

14·14

xxvii

Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 15-6
Table 15-7
Table 15-8
Table 15-9
Table 15-10
Table 15-11
Description
Table 15-12
Table 15-13
BIOS
Table 15-14
Table 15-15
Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 16-6
Table 16-7

ROM BIOS Interrupt Vectors
Interrupt lOH: Video 110 Functions
Video Modes
Mode Dependent Values for Set CursQr Type .
Default Color Map. ,
Color Map for Video Modes D1H and D2H .
Hard Disk Error Codes. " . . .
Hard Disk Parameter Table Descri~tion .
Diskette Error Codes. • . . .

Diskette Parameter Table Desgription .
Communications Control B1,~k (CCB)

CCB Buffer Structure Descrip,tt<m . . .
Keyboard Scan Codes Return~ by The ROM

Diskette Parameter Table D~~ription . . .
Hard Disk Parameter Tabl~ Description . ,

Cursor Control Functions . " . . .
Erase Function
Set Graphics Rendition Function. .
Set Mode Function
Reset Mode Function.
Keyboard Key Reassignment Function.
Standard Mouse Drive Functions.

Table 16-8 Extended Mouse Driver Ftmctions
Table 16-9 Video Sytems and Modes Supported by
MOUSE.SYS
Table 16-10
Table 16-11
Table 16-12
Table 16-13
Table 16-14

Extens~~ms to Interrupt 10H EGA Functions.
EGA ~ister Groups and Associated Registers
Hard Disk Types.
BIOS Parameter Block Data.
.FNT File Structure ..

15-1
15-9

15-10
15-12
15-33
15-34
15-40
15-41
15-59
15-60

15-78
15-80

15-104
15-143
15-147

16-6
16-7
16-8

16-10
16-11
16-12
16-13
16-14

16-15
16-34
16-34
16-39
16-40
16-43

Table 16-15 .GRF File Structure. 16-15
Table 16-16 Keyboard Tables. 16-16
Table 16-17 Keyboard Map File Structure 16-50
Table 16-18 Characters Causing Problems for
COMMAND. COM 16-54
Table 16-19 Sort Order for Industry-Standard Character Set
(S1'D). 16-56
Table 16-20 Sort Order for DIGITAL Multinational Character
Set (MCS) . 16-57

xxviii Contents

Table 16-21 Sort Order for International Standards
Organization Character Set (ISO) 16-58
Table 16-22 Sort Order for French 7-Bit National
Replacement Character Set (FR7) 16-59
Table 16-23 Sort Order for German 7-Bit National
Replacement Character Set (GR7) 16-60
Table 17-1 Keyboard Messages Transmitted by MS-Windows . 17-12
Table 17-2 US to ASCII Translation Table. . . 17-15
Table 17-3 Danish to ASCII Translation Table. 17-21
Table 17-4 Finnish to ASCII Translation Table 17-23
Table 17-5 French to ASCII Translation Table. 17-27
Table 17-6 French Canadian and Bilingual Canadian to ASCII
Translation Table. 17-30
Table 17-7 German to ASCII Translation Table. . 17-33
Table 17-8 Italian to ASCII Translation Table ...
Table 17-9 Norwegian to ASCII Translation Table.
Table 17-10 Spanish to ASCII Translation Table .
Table 17-11 Swedish to ASCII Translation Table .
Table 17-12 Swiss French to ASCII Translation Table.
Table 17-13 Swiss German to ASCII Translation Table.
Table 17-14 Translation of ANSI Set to OEM Set.
Table 17-15 Translation of OEM Set to ANSI Set.
Table 17-16 INT 10H Functions
Table 17-17 Supported Video Modes.
Table 17-17 Character Sets Supported by Each Printer.
Table 18-1 Interrupt 6D: Datalink Functions.
Table 18-2 Datalink Return Codes
Table 18-3 Recommended Values for Datalink Parameters ..
Table 18-4 LAT Call Back Routine
Table 18-5 Interrupt 6A: LAT Functions
Table 18-6 Session Control Block Fields
Table 18-7 DIGITAL Session Control Block Fields ..
Table 18-8 Interrupt 2A: MS-Network Compatible Services ...
Table 18-9 Interrupt 2A: DIGITAL Specific Session Extensions
Table 18-10 Error Codes Returned by Session .. .
Table 18-11 Session Status Buffer
Table C-1 DEC MCS - ASCII Graphics Set (0-7) ..
Table C-2 DEC MCS - Supplemental Graphics Set
Table C-3 ISO Latin-1 Character Set (0-7)
Table C-4 ISO Latin-1 Character Set (8-15)
Table C-5 DEC Special Graphics Character Set.

Contents

17-36
17-39
17-42
17-45
17-48
17-51
17-55
17-58
17-80
17-82
17-84
18-12
18-13
18-17
18-62
18-66
18-87
18-89
18-92
18-92
18-94

18-100
C-18
C-19
C-20
C-21
C-22

xxix

Figures
Figure 1-1 Base Configuration Workstation 1-2
Figure 1-2 Workstation With Installed Expansion Box. 1-3
Figure 1-3 Optional 80287 Coprocessor. 1-4
Figure 1-4 Optional Two Megabyte DRAM Module. . . 1-4
Figure 1-5 Optional Modem Module. 1-4
Figure 1-6 Block Diagram of Workstation Components. 1-5
Figure 2-1 8-Bit And 16-Bit Bus Connectors. 2-11
Figure 3-1 Priority Before Rotation 3-14
Figure 3-2 Priority After Rotation. 3-14
Figure 3-3 Interrupt Sequence 3-20
Figure 6-1 Three Channel Counter/Timer Block Diagram 6-2
Figure 7-1 Block Diagram of the VAXmate Video Controller. 7-3
Figure 7-2 Character Buffer Format. 7-6
Figure 7-3 Memory Organization for 320 x 200 4-Color Mode. 7-11
Figure 7-4 Pixel to Bit-Field Map for 4-Color Mode. 7-11
Figure 7-5 Memory Organization for 320 x 200 16-Color
Mode. 7-12
Figure 7-6 Pixel to Bit-Field Map for 16-Color Mode 7-12
Figure 7-7 Memory Organization for 640 x 200 2-Color Mode. 7-13
Figure 7-8 Pixel to Bit-Field Map for 2-Color (Monochrome)
Mode. 7-13
Figure 7-9
Figure 7-10
Figure 7-11
Mode
Figure 7-12
Figure 7-13
Mode
Figure 7-14
Figure 7-15
Mode
Figure 7-16
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

xxx Contents

Memory Organization for 640 x 200 4-Color Mode .
Pixel to Bit-Field Map for 4-Color Mode
Memory Organization for 640 x 400 2-Color

Pixel to Bit-Field Mapfor 2-Color Mode
Memory Organization for 640 x 400 4-Color

Pixel to Bit-Field Map for 4-Color Mode
Memory Organization for 800 x 252 4-Color

Pixel to Bit-Field Map for 4-Color Mode
Keyboard Position Labels .. .
U .S.lU.K. Keyboard
Canadian/English Keyboard .
Danish Keyboard
Finnish Keyboard
French/Canadian Keyboard
French Keyboard
German/Austrian Keyboard
Hebrew Keyboard

7-14
7-14

7-15
7-15

7-16
7-16

7-17
7-17
8-16
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39

Figure 8-10 Italian Keyboard . . .
Figure 8-11 Norwegian Keyboard
Figure 8-12 Spanish Keyboard ..
Figure 8-13 Swedish Keyboard ..
Figure 8-14 Swiss/French Keyboard.
Figure 8-15 Swiss/German Keyboard
Figure 10-1 VAXmate Mouse (Part Number VSXXX)
Figure 13-1 Descriptor Rings
Figure 14-1 Test Sequence - Processor Board
Figure 14-2 Test Sequence - 110 Board
Figure 14-3 Test Sequence - Options
Figure 14-4 Test Sequence - Initialization and Bootstrap.
Figure 14-5 V AXmate Configuration Screen
Figure 14-6 V AXmate Processor Board Jumper Configuration
Figure 15-1 LK250 Keyboard Layout
Figure 16-1 MS-DOS Date and Time Structure
Figure 17-1 Keyboard Position Labels. . . .
Figure 18-1 VAXmate Network Components ..
Figure 18-2 Multicast Address Format
Figure 18-3 Session Interface Implementation.

Contents

8-40
8-41
8-42
8-43
8-44
8-45
10-1

13-28
14-2
14-4
14-5
14-6

14-12
14-14

15-103
16-4

17-14
18-2
18-7

18-85

xxxi

Preface

Audience
This manual provides reference material about the V AXmate workstation. It
covers all programmable components, the firmware, and several MS-DOS re­
lated environments. The material and its presentation are directed to expe­
rienced programmers or software designers.

Manual Organization
This manual is divided into four parts and appendixes:

• Chapter 1 provides an overview of the V AXmate workstation and optional
equipment.

• Chapters 2 through 13 introduce the V AXmate workstation
programmable hardware devices. Each chapter discusses a single hard­
ware programming task, such as video input/output (1101, external inter­
rupt processing, or serial communications and includes the following
information:

A brief device description
A list of additional references
A description of the programmable hardware registers
A programming example
A discussion of the example

The examples are written in the C programming language to reduce the
size of the examples and focus on the task rather than the detail required
by the language.

• Chapter 14 describes the power-up diagnostics and system startup.

• Chapter 15 describes the read-only memory basic input/output system
(ROM BlOSl.

• The appendixes contain additional information, including a bibliography of
other useful publications.

Preface xxxiii

Terminology
The following terms are used throughout this manual and are defined as
follows:

Term

Industry-standard

Reserved
Available
Unassigned

xxxiv Preface

Definition

The computer industry recognizes two open architectures
as industry standards, the IBM PC AT bus structure and
the Microsoft disk operating system (MS-DOS}. Moreover,
supporting MS-DOS requires a defined set of ROM BIOS
services. The term industry-standard refers to compatibil­
ity with these architectures.

To avoid confusion and incompatibility, the use of certain
items such as memory space, 110 space, interrupt vectors,
and ROM BIOS parameters or return values must be
clearly defined. These three categories define those items
that do not have a specific use.

Reserved

Available

Unassigned

In future hardware or software releases,
DIGITAL may define a specific use for this
item. Hardware or software applications
that use this item may not work with
future releases.

Hardware or software applications can use
this item. DIGITAL has defined the spe­
cific use of this item as available for
applications.

Hardware or software applications can use
this item. However, there remains some
risk that DIGITAL may define a specific
use for this item.

Federal Communications Commission
Radio Frequency Interference

Class A Computing Devices
This equipment generates, uses, and may emit radio frequency energy. The
equipment has been tested and found to comply with the limits for a Class A
computing device pursuant to Sub-part J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such radio frequency interfer­
ence when operated in a commercial environment. Operation of this equipment
in a residential area may cause interference in which case the user at his own
expense may be required to take measures to correct the interference.

If this equipment does cause interference to radio or television reception, which
can be determined by turning the equipment off and on, the user is encouraged
to try to correct the interference by one or more of the following methods:

• re-orient the receiving antenna

• relocate the computer with respect to the receiver

• move the computer away from the receiver

• plug the computer into a different outlet so that computer and receiver
are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio
and television technician for additional suggestions. The user may find the
booklet, How to Identify and Resolve RadiolFV Interference Problems,
prepared by the Federal Communications Commission helpful. This booklet is
available from the U.S. Government Printing Office, Washington, DC 20402,
Stock No. 004-000-00398-5.

NOTE
Shielded cables are provided for use with this device. Should any
cables be replaced or added for any reason, these cables should
be the same as, or with higher shielding capabilities, than those
provided by Digital Equipment Corporation.

Preface xxxv

Chapter 1
V AXmate Workstation Overview

This chapter describes the V AXmate workstations physical appearance, base
configuration, optional components, and the logical relationship of the
components.

The V AXmate workstation is a high-performance, standalone, desktop personal
computer that executes industry-standard software. The integral Ethernet inter­
face allows the V AXmate workstation to communicate on a network. The hard
disk storage, provided in the optional expansion box, allows the V AXmate
workstation to be a server on a network.

Base System
In the base configuration, the V AXmate workstation has three units:

• System unit
• Keyboard
• Mouse

Figure 1-1 shows a base configuration workstation.

VAXOlate Workstation Overview 1- 1

Figure I-I Base Configuration Workstation

In the base configuration, the system unit contains the following major
components:

• 80286 microprocessor
• One megabyte of dynamic random-access memory (DRAM)
• Video monitor and controller
• Diskette drive and controller
• Ethernet controller
• Keyboard interface controller
• Event timer
• Real time clock and calendar
• Serial communications port
• Serial printer port
• Serial mouse port
• Speaker
• Power supply

1- 2 V AXmate Workstation Overview

Optional Components
The workstation provides for the following optional components:

• An expansion box, part number RCD31-EA, that attaches to the bottom
of the system unit. Figure 1-2 shows the system unit with the expansion
box attached. The expansion box contains an additional power supply, a
battery, a 20 megabyte hard disk drive and controller, and two industry"
standard expansion slots.

• An 80287 coprocessor, part number FP287, that installs in the system
unit. Figure 1-3 shows the 80287 coprocessor.

• A two megabyte DRAM module, part number PC50X-AA, that installs in
the system unit. Figure 1-4 shows the two megabyte DRAM module.

• A modem module, part number PC50X-MA, that installs in the system
unit. Figure 1-5 shows the modem module.

Figure 1-2 Workstation With Installed Expansion Box

VAXmate Workstation Overview 1- 3

Figure 1-3 Optional 80287 Coprocessor

C]oC]oC]oC]
==C]OC]OC]OC]

C]OC]OC]OC]
==C]OC]OC]OC]

=OC]OC]OC]OC]
C]OC]OC]OC]

o =C]OC]OC]OC]
C]OC]OC]OC]

o OC]OC]OC]OC]

0= = = = =

Do c:JOCJ 0

o

o 0

Figure 1-4 Optional Two Megabyte DRAM Module

=== === = =

Figure 1-5 Optional Modem Module

1- 4 VAXmate Workstation Overview

LJ-0725

Figure 1-6 shows the relationship of the workstation components. The battery
is present only when an expansion box is installed.

SPEAKER

AC --.-~t---t

'-ir--tr-- SER!Al PRINTER

t---t-----it-- SERIAL COMM

t--t-t-I--TE LEPHQNE

--------,
HARD DISK CONTROLLER I

/~.... I
I
I
I

I SLOT II I
#2 BATTERY BACK·UP I L FOR REAL TIME CLOCK "::'

-----------------~

Figure 1-6 Block Diagram of Workstation Components

V AXmate Workstation Overview 1- 5

Chapter 2
V AXmate Microprocessor

Overview
The V AXmate microprocessor is an Intel 80286 central processing unit (CPU).
The CPU is a high-performance, 8 MHz microprocessor with a 16-bit external
data path and a 24-bit address path. The CPU provides two modes of opera­
tion, real address mode and protected virtual address mode.

Real Address Mode
On powerup, the CPU operates in real address mode. In real address mode, the
80286 CPU behaves as though it is a fast 8086 CPU. It is limited to the 1
Mbyte address range of the 8086 CPU. In real address mode, the ROM is ac­
cessed in the address range OFOOOOH-OFFFFFH.

Protected Virtual Address Mode
In protected virtual address mode, the 80286 CPU can access 16 Mbytes of
physical memory and 1 gigabyte of virtual memory.

The ROM is redundantly mapped to two physical address ranges, OFOOOOH­
OFFFFFH and FFOOOOH-FFFFFFH. Therefore, in protected virtual address
mode, the 80286 CPU can access the ROM at either physical address range.
However, the majority of the ROM BIOS code is not valid in protected virtual
address mode.

The CPU uses the keyboard interface controller or a double exception fault to
reset to real address mode from protected virtual address mode. The keyboard
interface controller is discussed in Chapter 8.

V AXmate Microprocessor 2 - 1

Coprocessor
The optional coprocessor for the V AXmate workstation is an Intel 80287 proc­
essor extension chip. It is a high-performance, numeric processor that extends
the CPU data types to include floating-point, extended-integer, and binary­
coded decimal (BCDI.

Additional Sources of Information
The following Intel Corporation documents provide additional information on
the CPU and coprocessor:

• Introduction to the iAPX 286 (Publication Number 2103081
• iAPX 286 Hardware Reference Manual (Publication Number 210760}
• iAPX 286 Programmer's Reference Manual (Publication Number 2104981
• Microsystem Components Handbook (Publication Number 2308431

2 - 2 VAXmate Microprocessor

Memory Map
The base configuration workstation has 1 Mbyte of RAM and 64 Kbytes of
ROM. An optional memory module can be added without an expansion box.

Table 2-1 describes the VAXmate workstation's physical memory map. The 1
Mbyte of RAM is divided into three, noncontiguous blocks. In Table 2-1, these
blocks are labeled BLOCK1, BLOCK2, and BLOCK3.

Table 2-1 Physical Memory Map

From To Size
(Bytes)

OOOOOOH 09FFFFH 640K

OAOOOOH OAFFFFH 64K

OBOOOOH OBFFFFH 64K

OCOOOOH OCFFFFH 64K

ODOOOOH OEFFFFH 128K

OFOOOOH OFFFFFH 64K

100000H EFFFFFH 14336K

FOOOOOH FIFFFFH 128K

F20000H F5FFFFH 256K

F60000H F7FFFFH 128K

F80000H FEFFFFH 448K

FFOOOOH FFFFFFH 64K

Description

System RAM (BLOCK1)

Reserved

Video RAM

During video mode setup, the video
RAM is dynamically mapped. Only
the video RAM required by the cur­
rent video mode is accessible.

Available for options with expansion
ROM

DIGITAL private RAM (BLOCK2)

System ROM

Optional RAM space

Reserved RAM space

DIGITAL private RAM (BLOCK3)

Reserved RAM space

Reserved ROM space

System ROM (redundantly mapped
from OFOOOOH)

V AXmate Microprocessor 2 - 3

Input/Output Address Map
Table 2-2 describes the VAXmate workstation's 110 address map. Many of the
110 ports have an industry-standard assignment. Recognition of that assign-
ment does not indicate that the device is present in the workstation.

Table 2-2 Input/Output Address Map

From To Device Description

OOOOH 001FH 8237A-5 DMA controller

0020H 003FH 8259A Interrupt controller #1

0040H 005FH 8254-2 Timer

0060H 006FH 8042 Keyboard interface controller

0070H Bit 7 controls the NMI mask register

0070H 0077H MC146818 Real-time clock and CMOS RAM

0078H 007FH Reserved

0080H 009FH 74LS670 DMA page registers

OOAOH OOBFH 8259A Interrupt controller #2

OOCOH OODFH Reserved

OOEOH OOEFH Unassigned

OOFOH Clear math coprocessor busy

OOFIH Reset math coprocessor

OOF2H 00F7H Unassigned

00F8H OOFFH 80287 Math coprocessor

0100H 01EFH Unassigned

OlFOH 01F8H WD2010 Hard disk controller

01F9H OlFFH Unassigned

0200H 0207H Game port 110

0208H 0277H Unassigned

0278H 027FH Parallel printer port #2

0280H 02F7H Unassigned

02F8H 02FFH 8250 Serial port #2 Untegral modem option'

2- 4 V AXmate Microprocessor

Table 2-2 Input/Output Address Map (cont.)

From To Device Description

0300H 031FH Reserved

0320H 035FH Unassigned

0360H 036FH Reserved

0370H 0377H Unassigned

0378H 037FH Parallel printer port 111

0380H 038FH Reserved

0390H 039FH Unassigned

03AOH 03AFH Reserved

03BOH 03BFH Reserved

03COH 03CFH Reserved

03DOH 03DFH 6845 Graphics video controller

03EOH 03EFH Unassigned

03FOH 03F5H PD765A Diskette controller

03F6H 03F7H Hard disk and diskette controllers

03F8H 03FFH 8250 Serial port 111

0400H OBFFH Unassigned *

OCOOH OC1FH System CSR 1

OC20H OC3FH Ethernet ROM

OC40H OC5FH 2661 Universal Asynchronous Receiver/
Transmitter (UART) for mouse port

OC60H OC7FH Network Controller and Interface

OC80H Special purpose register

OC81H OC9FH Reserved

OCAOH OCA7H 8250 Integral serial printer port

OCA8H ODFFH Reserved

OEOOH FFFFH Unassigned *

* Industry-standard, processor-board, 110 ports in the address range OOOOH-
OOFFH respond to these 110 addresses. Therefore, 110 to the expansion
box in this address range is undefined.

V AXmate Microprocessor 2- 5

Interrupt Vector Map
Table 2-3 shows the VAXmate workstation's interrupts. The four columns in
Table 2-3 provide the following information:

• The interrupt column identifies the interrupt number in hexadecimal.

• The type column is interpreted as follows:

The letter E indicates a processor exception interrupt.

The letter H indicates a hardware interrupt.

The letter S indicates a software interrupt.

The letter P indicates that the interrupt vector space contains a
pointer to a parameter table or an application routine.

The letter N indicates that the vector has no assignment.

• The description column identifies the specific assignment of the interrupt
vector.

• The service column indicates whether or not the ROM BIOS services the
interrupt. During system startup, interrupt vectors that are not serviced
by the ROM BIOS are initialized to point to an interrupt return URET)
instruction, indicated by IRET. For information on ROM BIOS-serviced
software interrupts, see Chapter 15.

2 - 6 V AXmate Microprocessor

Table 2-3 Interrupt Vector Map

Interrupt Type Description Service

OOH E Divide by zero IRET

01H E Single step IRET

02H H NMI ROM BIOS

03H S Breakpoint (Used by DEBUG) IRET

04H E Overflow IRET

05H S Print Screen function ROM BIOS

06H-07H N Reserved IRET

08H H Timer interrupt service (lRQO) ROM BIOS

09H H Keyboard interrupt service (IRQl) ROM BIOS

OAH H Reserved (lRQ2 interrupt from controller #2) IRET

OBH H Serial port #2 (Asynchronous) (modem IRET
option) (IRQ3)

OCH H Serial port #1 (Asynchronous) (lRQ4) ROM BIOS

ODH H Unassigned (lRQ5) IRET

OEH H Diskette interrupt service (lRQ6) ROM BIOS

OFH H Parallel printer port #1 (lRQ7) IRET

10H S Video I/O ROM BIOS

llH S Return configuration ROM BIOS

12H S Return memory size ROM BIOS

13H S Diskette and hard disk 110 ROM BIOS

14H S Asynchronous communications 110 ROM BIOS

15H S Extended ROM BIOS functions ROM BIOS

16H S Keyboard 110 ROM BIOS

17H S Printer Output ROM BIOS

18H S Invoke network boot/Maintenance Operation ROM BIOS
Protocol (MOP)

19H S Bootstrap ROM BIOS

V AXmate Microprocessor 2 - 7

Table 2·3 Interrupt Vector Map (cont.)

Interrupt Type Description Service

1AH S Time of day ROM BIOS

1BH P Keyboard BREAK vector IRET

1CH P Timer tick vector IRET

1DH P Video parameter table ROM BIOS

1EH P Diskette parameter table ROM BIOS

1FH P Graphics character table (Character codes ROM BIOS
80H-FFH)

20H-3FH S Reserved for MS-DOS IRET

40H P INT 13H redirect when hard disk in use ROM BIOS

41H P Parameter table pointer for hard disk 0 ROM BIOS

42H-45H N Reserved IRET

46H P Parameter table pointer for hard disk 1 ROM BIOS

47H-5FH N Reserved IRET

60H-67H N Available for application or user program IRET
interrupts

68H-6FH N Reserved for DECnet software IRET

70H H Real time clock interrupt (lRQ8) ROM BIOS

71H H Redirect to interrupt OAH - Old IRQ2 IRET
(IRQ9)

72H H Ethernet controller (IRQ10) ROM BIOS

73H H Serial printer port (IRQll) ROM BIOS

74H H Mouse port (lRQ12) IRET

75H H 80287 error (lRQ13) ROM BIOS

76H H Hard disk controller (IRQ14) ROM BIOS

77H H Unassigned (IRQ15) IRET

78H-7FH N Unassigned IRET

80H-FOH N Reserved IRET

F1H-FFH N Unassigned

2- 8 VAXmate Microprocessor

Bus Timing and Structure
The 8 MHz clock rate results in a 125 ns processor cycle. Normal operation of
the 80286 CPU requires two processor cycles. With zero wait states, a read or
write cycle requires 250 ns.

There are three data bus structures:

• A 16-bit local bus
• An 8-bit expansion bus
• A 16-bit expansion bus

I6·Bit Local Bus
The local bus connects the CPU to on-board memory and on-board peripherals.
One wait state is added to local bus memory transfers, resulting in a 375 ns
bus cycle. Two wait states are added to local bus input/output (110) transfers,
resulting in a 500 ns bus cycle.

The RAM access time is 150 ns. The ROM access time is 250 ns.

NOTE
In assembly language programming, directing two or more con­
tiguous 110 instructions at the same device may not provide
enough time for the device to respond. This is possible because
peripheral devices respond more slowly than the 80286 proces­
sor executes. A jump instruction consumes processor cycles and
clears the processor pre-fetch queue. Thus, jumps to successive
110 instructions provide the required response time. The C lan­
guage I/O functions, commonly named inO and outO or illPO and
outsO, provide enough response time because they contain suf­
ficient overhead in the calling sequence.

I6·Bit Expansion Bus
The 16-bit expansion bus supports word transfers to memory and I/O. One wait
state is automatically added, resulting in a 375 ns bus cycle.

8· Bit Expansion Bus
The 8-bit expansion bus supports byte and word transfers to memory and I/O.
Word transfers are controlled by hardware, which issues two sequential byte
transfers (low byte first and high byte second). Table 2-4 describes the bus
cycle times for all transfer types on the 8-bit expansion bus.

V AXmate Microprocessor 2 - 9

Table 2-4 8-Bit Expansion Bus Transfer Times

Type Size Time Wait States

Memory Byte 750 ns 4

Memory Word (two, 8-bit transfers) 1500 ns 8

110 Byte 1125 ns 7

110 Word (two, 8-bit transfers) 2250 ns 14

Expansion Box Technical Specifications
The VAXmate expansion box provides two expansion module slots. Each slot
accommodates a single expansion module. If a mother-daughter board is used
in one of the slots, then both slot areas will be used and it will not be possible
to add a second module. Table 2-5 shows the amperage (current) and wattage
values available for each slot. Each slot has an 8-bit and a 16-bit bus connector.
Figure 2-1 shows the pin numbers and signal names for the 8-bit and 16-bit
bus connector.

Table 2-5 Expansion Slot Power Ratings

Slot

OPT-1
OPT-2

+5.1V

1.300
1.300

+ 12.1 V -12.0V

0.100 0.100
0.100 0.100

-5.0V

0.100
0.100

Expansion Box Operating Ranges
Ambient Operating Temperature: 15 C (59 F) to 32 C (90 F)

Relative Humidity: 8% to 80%

2- 10 Vi\Xnlate ~icroprocessor

Watts

9.540
9.540

8-Bit Bus Connector 16-Bit Bus Connector

GROUND Bl
RESET H IB2
+SV B3
IRQ9 H B4
-SV BS
DRQ2 H B6
-12V B7
OYS L B8
+12V B9
GROUND IBlO
HEKV L IB11
HEHR L B12
lOY L IB13
lOR L B14
DACK3 L BlS
DRQ3 H B16
DACKI L B17
DRQ1 H B18
REFRESH L B19
CLOCK H B20
IRQ7 H B21
IRQ6 H B22
IRQS H B23
IRQ4 H B24
IRQ3 H B2S
DACK2 L B26
TIC H B27
ALE H B28
+SV B29
OSC H B30
GROUND B31

Al I/O CHK L
A2 SD7 H
A3 SD6 H
A4 SDS H
AS SD4 H
A6 SD3 H
A7 SD2 H
A8 SDI H

A9 I SDO H
A10 I/O RDY H
All AEN H
A12 SA19 H
A13 SA18 H
A14 SA17 H
A1S SA16 H
A16 SA1S H
A17 SA14 H
A18 SA13 H
A19 SA12 H
A20 SAll H
A2l SAlO H
A22 SA9 H
A23 SA8 H
A24 SA7 H
A2S SA6 H
A26 SAS H
A27 SA4 H
A28 SA3 H
A29 SA2 H
A30 SAl H
A3l SAO H

HEH16 L
I/016 L
IRQlO H
IRQll H
IRQ12 H
IRQlS H
IRQ14 H
DACKO L
DRQO H
DACKS L **
DRQS H **
DACK6 L **
DRQ6 H **
DACK7 L **
DRQ7 H **
+SV
KASTER L
GROUND

01
D2
D3
D4
DS
D6
D7
D8
D9
DlO
Dll
D12
D13
D14
DIS
016
D17
018

C1
C2
C3
C4
CS
C6
C7
C8
C9
ClO
Cll
C12
C13
C14
CIS
C16
C17
C18

SBHE L
UA23 H
UA22 H
UA2l H
UA20 H
UA19 H
UA18 H
UA17 H
EHEHR L
EHEKV L
SD08 H
SD09 H
SDlO H
SDll H
SD12 H
SD13 H
SD14 H
SD15 H

** Not Implemented

Figure 2-1 8-Bit and 16-Bit Bus Connectors

V AXmate Microprocessor 2 - 11

Overview

Chapter 3
Interrupt Controllers

The VAXmate 80286 central processing unit (CPU) has two interrupt input
lines, the Non-Maskable Interrupt (NMI) and the Interrupt Request (lNTRI.
When these hardware inputs are active, the CPU suspends execution of the
current program and begins execution of an interrupt handler. An interrupt
handler is a program or program segment that responds to a specific event.
This allows an immediate response to asynchronous external events and the
segregation of program responsibility for handling those events.

The interrupt input lines are assigned to different classes of events. The NMI
is dedicated to two catastrophic events, memory parity errors and 110 bus
errors. The INTR is assigned all other external interrupt sources, such as
diskette and hard disk controllers, serial and parallel ports, and clocks. The
reason for this division is the way the CPU implements the two interrupts:

• The NMI has a higher priority than the INTR.

• The CPU has no way to disable the NMI input.

• The CPU provides handshaking protocol during INTR processing, but not
during NMI processing.

• The NMI generates only one interrupt vector, which is fixed.

Because the CPU does not provide handshaking during NMI processing, the
CPU cannot communicate with an interrupt controller. Therefore, the NMI
sources are connected directly to the NMI input. To determine the source of
the interrupt, the NMI interrupt handler must read the status output of the
sources.

Interrupt Controllers - Hardware Description 3 - 1

The INTR input is buffered by two, 8259A interrupt controllers. The interrupt
controllers reduce the CPU interrupt processing overhead in the following
ways:

• They resolve the priority of simultaneous or overlapping interrupts.
• They concentrate multiple interrupts into one source.
• They provide the vector number of the interrupt handler.

Each interrupt controller is capable of handling eight interrupt requests. The
16 inputs are labeled IRQO-IRQI5. Controller 1 buffers IRQO-IRQ7 and control­
ler 2 buffers IRQ8-IRQI5. Although they are physically identical, the interrupt
controllers have a master/slave relationship. The output of controller 2 Ithe
slave) is connected to the IRQ2 input of controller 1 (the master). The output
of the master is connected to the INTR input of the CPU. Table 3-1 shows all
of the IRQ inputs.

Table 3-1 Interrupt Request Lines

Priority Controller Controller Source
#l MASTER #2 SLAVE

1 IRQO Event timer output 0

2 IRQl Keyboard controller

3 IRQ2 Slave interrupt controller

3.1 IRQ8 Real-time clock

3.2 IRQ9 Software redirection to IRQ2

3.3 IRQIO LANCE (Ethernet)

3.4 IRQl1 Serial printer port

3.5 IRQI2 Mouse port

3.6 IRQI3 Coprocessor error

3.7 IRQI4 Hard disk drive controller

3.8 IRQI5 Available, I6-bit bus

4 IRQ3 Reserved, integral modem option

5 IRQ4 Asynchronous communications port

6 IRQ5 Available, 8-bit bus

7 IRQ6 Diskette drive controller

8 IRQ7 Available, 8-bit bus

3- 2 Interrupt Controllers - Hardware Description

Additional Source of Information
The following Intel Corporation document provides additional information:

• Microsystem Components Handbook (Publication Number 230843)

Read/Write Control
The 8259A interrupt controller has the following registers:

Initialization Command Words (lCW) - There are four initialization com­
mand words (lCW1-ICW4). They establish the operating conditions of the
interrupt controller and are written only during system initialization.

Operation Command Words (OCW) - There are three operational command
words (OCW1-OCW3). These registers select access to internal controller
registers and control the run-time aspects of the interrupt controller.

Interrupt Mask Register (IMR) - The IMR selectively enables and disables
the interrupt controller's interrupt input lines. In this manual, IMR refers to
the physical register and OCWl refers to the command to read or write the
interrupt mask register.

Interrupt Request Register (IRR) - Following a CPU interrupt acknowledge,
each bit in the IRR reflects the state of the corresponding interrupt input.

In-Service Register (lSR) - The ISR register indicates the interrupt input
lines that the CPU is currently servicing.

Poll data - The poll data indicates whether any enabled interrupt inputs are
active. If any enabled interrupt inputs are active, it also contains the inter­
rupt input number of the highest priority input requesting service.

Although the 8259A interrupt controller has many registers, it has only two
input/output (110) ports. Table 3-2 shows the master and slave 110 port ad­
dresses. Table 3-3 shows the registers and the requirements to access them.

Table 3-2 Master and Slave 110 Addresses

Port

o
1

Master

0020H

0021H

Slave

OOAOH

00A1H

Interrupt Controllers - Hardware Description 3 - 3

Table 3-3 Accessing the Interrupt Controller Registers

Register R/W Port Access Method

ICW1 W 0 When bit 4 of the value written to port 0 equals 1,
ICW1 is selected.

ICW2 W 1 Must be the next byte written after ICW1.

ICW3 W 1 The interrupt controller expects ICW3 only if ICW1,
bit 1 equals 1. If written. ICW3 must be the next
byte written after ICW2.

ICW4 W 1 The interrupt controller expects ICW4 only if ICW1.
bit 0 equals 1. If ICW 4 is written and ICW3 is not.
ICW4 must be the next byte written after ICW2. If
ICW3 and ICW4 are written, ICW4 must be the
next byte written after ICW3.

OCW1 R/W 1 Reading or writing OCW1 requires only that the in-
itialization process be complete. Reading or writing
OCW1 accesses the interrupt mask register.

OCW2 W 0 Writing OCW2 requires that the initialization proc-
ess be complete and OCW2 bits 4-3 are equal to O.

OCW3 W 0 Writing OCW3 requires that the initialization proc-
ess be complete, OCW3 bit 4 equals 0, and OCW3
bit 3 equals 1.

IRR R 0 Reading the IRR is a two-step process. First, issue
the read IRR command (write OCW3 with OCW3
bit 1 equals 1 and OCW3 bit 0 equals 01. Then, read
the IRR through port O. Until another command is
written to OCW3. subsequent reads of port 0 return
the IRR.

ISR R 0 Reading the ISR is a two-step process. First. issue
the read ISR command (write OCW3 with OCW3
bit 1 equals 1 and OCW3 bit 0 equals 11. Then. read
the ISR through port O. Until another command is
written to OCW3. subsequent reads of port 0 return
the ISR.

Poll Data R 0 Reading the poll data is a two-step process. First,
issue the read poll data command (write OCW3 with
OCW3 bit 2 equals 11. Then. read the poll data
through port O. The OCW3 poll command must
always be written prior to reading the poll data.

3 - 4 Interrupt Controllers - Hardware Description

Initialization Command Words
The 8259A interrupt controllers do not have a hardware reset. After power is
applied to the system and until they are initialized, the interrupt controllers are
in an undefined state. The V AXmate startup code initializes the interrupt
controllers.

Initializing the 8259A interrupt controller requires from two to four initializa­
tion command words written in sequence.

The interrupt controller recognizes ICW1 as the start of an initialization se­
quence. An ICW1 resets the interrupt controller as follows:

1. The trigger mode is cleared to edge-triggered mode and the edge sense
circuit is reset. After initialization, an interrupt request input must make
a low-to-high transition to generate an interrupt.

2. All bits in the IMR are cleared (enabled). Because the initialization se­
quence enables interrupt inputs, on completion of the initialization se­
quence, the interrupt controllers can immediately issue interrupt
requests. Therefore, the interrupt vectors and handlers should be in­
itialized prior to initializing the interrupt controllers.

3. The IRQ7 input is assigned priority 7.

4. The slave mode address is set to 7.

5. If ICW1 bit 0 equals 0, all bits in ICW 4 are cleared (0).

6. In the OCW3 register, the special mask mode is cleared (disabled) and
status read bits are set to read the IRR.

7. The interrupt controller enters fully nested mode. All other modes of op­
eration are variations of this mode. In fully nested mode, the interrupt
inputs have a fixed order of decreasing priority and the priority of an
input corresponds to its input number 0 (highest) - 7 (lowest). While the
CPU is servicing an interrupt (until the interrupt controller receives an
end-of-interrupt command), the controller inhibits interrupts of equal or
lower priority. However, the current interrupt service can be nested in
favor of a higher priority interrupt as follows:

The higher priority interrupt input must be unmasked (enabled).
The CPU INTR input must be enabled (STI instruction).

NOTE
The 8259A interrupt controller is compatible with two
microprocessor families, 8080/8085 and 8088/8086/80286.
Because the V AXmate CPU is an 80286. this manual describes
only the 80286 application. Those bits dedicated to the 8080/
8085 family are unused and described only as belonging to the
8080/8085 family.

Interrupt Controllers - Hardware Description 3 - 5

The 8259A interrupt controller has the following mutually exclusive methods of
indicating whether an interrupt controller is a master or a slave:

• The initialization sequence selects non buffered mode in
ICW4. In nonbuffered mode, a hardware connection to the
SP/EN pin determines whether the controller is a master
or a slave. In this mode, a high level at the SP/EN pin
indicates a master and a low level at the SP/EN pin indi­
cates a slave. The V AXmate workstation uses this method.

• The initialization sequence selects a buffered master or a
buffered slave in ICW4.

3 - 6 Interrupt Controllers - Hardware Description

Initialization Command Word 1 (OO20H/OOAOH)
7

0

Bit RIW

7-5 W

4 W

3 W

2 W

1 W

0 W

6 5 4 3 2 1 o

TRIGGER SINGLEI ICV4
HODE CASCADE REQUEST

0 0 1 0

Description

Always 0 (These bits are used only by the 8080/8085 CPU family.)

Always 1
For values written to port 0, this bit distinguishes an leWl from
operational command words 2 and 3. For additional information,
see Table 3-3.

TRIGGER MODE
0= Edge-triggered mode
1 = Level-triggered mode

For either trigger mode, a low-to-high transition at an interrupt
input generates an interrupt request. In edge-triggered mode, to
generate another interrupt request at the same input, the input
must change from high to low and back to high. In level-triggered
mode, while that interrupt input remains high, the controller can
generate additional interrupt requests for that input. The
V AXmate startup code initializes the interrupt controllers to edge-
triggered mode.

Always 0 (This bit is used only by the 8080/8085 CPU family.)

SINGLE/CASCADE
0= Cascade mode
1 = Single mode

Single mode indicates that this is the only interrupt controller in
the system. Therefore, it is neither a master nor a slave and ICW3
is not written,' Cascade mode indicates that there is more than one
interrupt controller in the system. Therefore, it is either a master
or a slave and ICW3 is required. The V AXmate workstation uses
cascade mode.

ICW 4 REQUEST
0= ICW4 is not required
1 = ICW4 is required

This bit indicates whether ICW 4 is required in the initialization se­
quence. The VAXmate workstation requires ICW 4.

For the master ICWl and the slave ICWl, use llH.

Interrupt Controllers - Hardware Description 3 - 7

Initialization Command Word 2 (002 1 H/OOAl H)
7 6 5 4 3 2 1 o

I 17 I T6 I T5 I T4 I T3 I 0 I 0 I 0 I
Bit RIW Description

7-3 W

2-0 W

Bits 7-3 of the interrupt number for interrupt input O.

This value corresponds to the address of the interrupt vector di­
vided by four. The interrupt controller generates a sequential inter­
rupt number for each of the interrupt inputs by ORing the
interrupt input number and ICW2. Because the interrupt input
number is OBed to the value in ICW2, there is no carry involved.
Therefore, the value in ICW2 must be evenly divisible by 8
Imodulo 8).

Always 0

For the master ICW2, use 08H. For the slave ICW2, use 70H.

3 - 8 Interrupt Controllers - Hardware Description

Initialization Command Word 3 (002 1 H/OOAl H)
When there are two or more interrupt controllers in the system, an ICW3 is
used in the initialization sequence. The V AXmate workstation has two interrupt
controllers and requires ICW3. The meaning and use of ICW3 depends on
whether the interrupt controller is a master or a slave.

ICW3 (Master)

7 6 5 4 3 2 1 o

I 57 I S6 I 55 I S4 I 53 I 52 I 51 I SO I
Bit RIW Description

7-0 W For each master interrupt input that is connected to a slave, the
corresponding ICW3 bit is set (1). The master interrupt controller
can then determine which interrupt inputs require a slave identifi­
cation on the cascade lines. For the master ICW3, use 04H.

ICW3 (Slave)

7 6 5 4 3 2 1 o

Bit R/W Description

7-3 W

2-0 W

Always 0

SLAVE ID - Slave Identification

The slave identification is the master interrupt input (7-0) to which
the slave is connected. During the CPU interrupt acknowledge se­
quence, the slave compares its cascade input to these bits. If they
are equal, the slave places the interrupt vector number on the 110
data bus. For the slave ICW3, use 02H.

Interrupt Controllers - Hardware Description 3 - 9

Initialization Command Word 4 (0021H/OOA1H)
7 6 5 4 3 2 1 o

SPECIAL
FULLY BUFFER MASTERI EOI CPU
NESTED MODE SLAVE MODE MODE

0 0 0 MODE

Bit RIW Description

7-5 W Always 0

4 W SPECIAL-FULLY-NESTED MODE *
o = Disable special-fully-nested mode
1 = Enable special-fully-nested mode

3-2 W BUFFERED MODE and MASTERISLAVE
OX = Nonbuffered mode - In nonbuffered mode, a hardware con­

nection to the SP/EN pin determines whether the control­
ler is a master or a slave and bit 2, the master/slave
selection, has no effect. In this mode, a high level at the
SP/EN pin indicates a master and a low level at the SP/
EN pin indicates a slave. The V AXmate workstation uses
this mode.

10 = Buffered mode slave - The VAXmate workstation is incapa­
ble of operating in this mode.

11 = Buffered mode master - The V AXmate workstation is inca­
pable of operating in this mode.

1 W EOI MODE - End-of-interrupt Mode
o = Normal EOI - In this mode, the CPU must write an EOI

command to the interrupt controller. The V AXmate startup
code initializes the interrupt controller to normal EOI mode.
The EOI command is explained in the operation command
word 2 description.

1 = Automatic EOI - In automatic EOI mode, the interrupt con­
troller generates its own EOI on the second acknowledge
pulse.

o W CPU MODE

*

3- 10

o = 8080/8085 microprocessor family
1 = 8088/8086/80286 microprocessor family

The V AXmate workstation uses the 80286 CPU mode.

Special-fully-nested mode is for master interrupt controllers. For the
master interrupt controller, each slave controller is a single interrupt
input. Thus, the master controller cannot resolve the priority of the slave
controller interrupt inputs. If a slave controller has an active, low prior­
ity interrupt that is nested in favor of a higher priority interrupt, the
master inhibits the new slave interrupt request. This effectively disables

Interrupt Controllers - Hardware Description

nesting of slave interrupts. In special-fully-nested mode, the master inter­
rupt controller acts on all slave interrupt requests, which allows the slave
to nest interrupts. The V AXmate workstation startup code disables the
special-fully-nested mode.

For the master ICW4 and the slave ICW4, use OlH.

Operation Command Words
The interrupt controller provides three operation command words (1-31 that are
programmed after the initialization sequence is complete. The operation com­
mand words select various modes or operations as follows:

• Read or write the interrupt mask register
• Accept specific or nonspecific end-of-interrupt commands
• Enable or disable various automatic priority rotation schemes
• Set a specific priority level
• Set or reset the special mask
• Read poll data
• Read the interrupt request register
• Read the in-service register

Operation Command Word 1 (002 1 H/OOAl H)
7 6 5 4 3 2 1 o

I : : : : : : I
Bit R/W Description

7-0 R/W Interrupt mask register bits
o = Corresponding interrupt inputs are unmasked (enabledl
1 = Corresponding interrupt inputs are masked {disabled I

OCWI reads or writes the interrupt mask register {IMRI. Each bit in the IMR
enables or disables the corresponding interrupt input.

Interrupt Controllers - Hardware Description 3- 11

Operation Command Word 2 (0020H/OOAOH)
7 6 5 4 3 2 1 o

'ROTATE' SL , EO! , 0 , 0 , ~uPT ~L ,

Bit R/W Description

7-5 W

4 W

3 W

2-0 W

ROT ATE/SLlEOI
000 = Disable rotation in automatic EOI mode
001 = Nonspecific end-of-interrupt (EOI)
010 = No operation
011 = Specific end-of-interrupt
100 = Enable priority rotation in automatic EOI mode
101 = Rotate priority on nonspecific EOI
110 = Rotate priority to specific interrupt input
111 = Rotate priority on specific EOI

Always 0
For values written to port O. this bit distinguishes operational com­
mand words 2 and 3 from an lew!. See Table 3-3.

Always 0
This bit distinguishes OeW2 from OeW3. See Table 3-3.

INTERRUPT LEVEL
For interrupt-specific operations, these bits contain the interrupt
input number (0-7) to act on. For nonspecific operations, these bits
are ignored.

oeW2 issues an end-of-interrupt command or sets a priority rotation mode.
Some OeW2 operations are nonspecific. (They act on the interrupt input that
has the highest priority, whichever one that may be.) Non-specific commands
do not use INTERRUPT LEVEL (OeW2 bits 2-0). Specific OeW2 operations
require the interrupt input number (0-7) in INTERRUPT LEVEL.

For the master OeW2 and the slave OeW2, use 20H (nonspecific EOI
command).

3- 12 Interrupt Controllers - Hardware Description

Priority Rotation
In nonspecific or automatic EOI mode, priority rotation has the effect of
assigning equal priorities to all interrupt inputs. On receipt of an EOI com­
mand, the interrupt controller assumes that the active interrupt input with the
highest priority is the interrupt just completed. The priority bits are rotated
until the just completed interrupt has the lowest priority (7). If that interrupt
input requires further service, it must wait until it is again the highest priority
interrupt or until all interrupts of higher priority are inactive.

In Figure 3-1, interrupt inputs 2, 5, and 6 are requesting service and interrupt
input 2 has a higher priority than interrupt inputs 5 and 6. After interrupt
input 2 is serviced, the interrupt controller rotates the priority as shown in
Figure 3-2. In Figure 3-2, interrupt input 3 has the highest priority, but it is
inactive. Because interrupt input 5 has the highest priority of the active inter­
rupts, it is the next interrupt input serviced.

Rotating priorities to a specific interrupt input is another method of priority
rotation. In this method, the lowest priority is set, thereby fixing all other
priorities. For example, if interrupt input 2 is programmed as the lowest prior­
ity, then interrupt input 3 becomes the highest. OCW2 bits 2-0 define the in­
terrupt input number that is assigned the lowest priority. This method is not
used in the V AXmate workstation startup code.

Interrupt Controllers - Hardware Description 3- 13

In-Service Bits

7 6 5 4 3 2 1 o

101111 101011 10 I 0 I
Priority Status

7 6 5 4 3 2 1 o

I 7 I 6 I 5 I 4 I 3 I 2 I 1 101
Figure 3-1 Priority Before Rotation

In-Service Bits

7 6 5 4 3 2 1 o

10111 1 I 0 I 0 I 0 101 0 I
Priority Status

7 6 5 4 3 2 1 o

Figure 3-2 Priority After Rotation

3 - 14 Interrupt Controllers - Hardware Description

Operation Command Word 3 (OO20H/OOAOH)
7 6 5 4 3 2 1 o

ENABLE SPECIAL
SPECIAL MASK POLL READ READ
MASK HODE IR REG IS REG

0 HODE 0 1

Bit R/W Description

7 W

6-5 W

4 W

3 W

2-0 W

Always 0

ENABLE SPECIAL MASK MODE/SPECIAL MASK MODE
00 = No action
01 = No action
10 = Disable special mask mode
11 = Enable special mask mode

Some operations require that an interrupt service routine dynami­
cally change the priority structure. Masking an interrupt input in
the special mask inhibits that priority level and enables all other
priority levels (lower and higher I that are unmasked. After enabling
special mask mode, the special mask is read or written to the
IMR.

Always 0
For values written to port 0, this bit distinguishes operational com­
mand words 2 and 3 from an ICWl. See Table 3-3.

Always 1
This bit distinguishes OCW3 from OCW2. See Table 3-;,.

POLL/READ IR REG/READ IS REG
000 = No action
001 = No action
010 = Read the IRR. *
011 = Read the ISR. *
100 = Read the poll data. **
101 = Read the poll data. **
110 = Read the poll data. **
111 = Read the poll data. * *

*
**

See Table 3-3 and the IRRIISR description.
See Table 3-3 and the poll command description.

For standard operation of the V AXmate workstation, neither the master nor
the slave use OCW3.

Interrupt Controllers - Hardware Description 3- 15

Interrupt Request and In-Service Registers

Interrupt Request Register

7 6 5 4 3 2

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2

In-Service Register

7 6 5 4 3 2

1 o

IRQl IRQO

1 o

I IS7 I IS6 I ISS I IS4 I IS3 I IS2 I IS! I ISO I
The Interrupt Request Register (lRR) and the In-Service Register (lSR) main­
tain the state of the interrupt controller. During the first interrupt acknowledge
of the CPU interrupt acknowledge sequence, the IRR latches the state of the
interrupt input lines. The internal output of the Interrupt Mask Register (lMR)
gates the output of the IRR to the priority encoder. Assuming that one or
more IRR bits are set (active) and unmasked (enabled), the priority encoder de­
termines which one has the highest priority. During the second interrupt ac­
knowledge, that IRR bit is strobed into the corresponding ISR bit, the edge
sense circuitry for that interrupt input is reset, and the interrupt vector
number is placed on the I/O data bus.

Because the interrupt controller can nest interrupts, the ISR can contain one,
two, or more bits that are set. This shows that another interrupt was acknowl­
edged before other interrupt processing was completed. A specific end-of­
interrupt (EOI) clears the indicated ISR bit. A nonspecific EOI clears the
highest-priority ISR bit.

If an IRR bit is set (active) and masked (disabled), unmasking (enabling) that
active IRR bit creates an interrupt.

3- 16 Interrupt Controllers - Hardware Description

Poll Command
When issued, the poll command performs steps similar to those described in
the IRR/ISR description. The poll command replaces the function of the CPU
interrupt acknowledge sequence. Instead of placing the interrupt vector number
on the I/O data bus, the poll command connects the output of the poll data
register to the port 0 output buffer. The polling interrupt handler then reads
the poll data to determine if an interrupt input is active and, if so, which one.
To complete the interrupt sequence, the polling interrupt handler must issue an
EOI.

Poll Data Register

7 6 5 4 3 2 1 o

Bit Description

7 R

6-3 R

2-0 R

INT ACTIVE FLAG - Interrupt active flag
o = No active interrupt inputs
1 = At least one interrupt input is active

Always 0

INTERRUPT INPUT NUMBER

If bit 7 equals 1, these bits contain the interrupt input number (0-
7) of the highest priority interrupt input that is active. If bit 7
equals 0, these bits have no meaning.

Interrupt Controllers - Hardware Description 3- 17

Interrupt Sequence
The following list describes interrupt processing. Each item in the list describes
a system state or event. After a discussion of the state or event, the descrip­
tion indicates the next state or event. For the following interrupt processing
description, it is assumed that the interrupt controllers are initialized as pre­
viously described. Later, Figure 3-3 shows the same logic in the form of a flow
chart.

1. Until one or more interrupt controller input lines become active, the con­
troller is idle. If one or more inputs are active, go to 2.

2. If any of the newly active inputs are unmasked (enabled), go to 4.
Otherwise, go to 3.

3. If other interrupt inputs are pending, go to 5. Otherwise, go to 1.

4. If no other interrupt inputs are pending, go to 7. Otherwise, go to 6.

5. If the controller is waiting for an end-of-interrupt command, go to 6.
Otherwise, go to 7.

6. If any interrupt has a priority higher than the one being processed by
the CPU, nest the interrupts and go to 7. Otherwise, go to 8.

7. The controller activates its interrupt output line and waits for an ac­
knowledge signal from the CPU.

If the interrupt controller input is a slave input. then the slave interrupt
output line activates the master interrupt controller IRQ2 interrupt
input. The master interrupt process starts at step 2. Eventually, the
master IRQ2 input becomes the highest priority master interrupt that is
active and the master controller arrives at this step. At that time, both
controllers are waiting for the CPU acknowledge signal.

In either case, the master interrupt controller activates its interrupt
output line, which triggers an external latch. The external latch drives
the CPU INTR input.

NOTE
This external latch, between the master interrupt controller in­
terrupt output and the CPU INTR input, was incorporated due
to an advisory on an 80286 CPU design flaw.

Disabling the CPU INTR input before disabling an interrupt
controller input or initializing the interrupt controllers can leave
the latch set. On reenabling the CPU INTR input. the latch
could indicate an interrupt request when none exists.

To avoid this situation, disable the interrupt controller input or
write the first master interrupt controller initialization command
before disabling the CPU INTR input.

3- 18 Interrupt Controllers - Hardware Description

If the CPU INTR input is disabled, the interrupt controller continues to
wait. If other interrupt controller inputs become active during this waiting
period, go to 2. When the CPU INTR input is enabled, the CPU recog­
nizes the interrupt request and responds with an acknowledge signal.

On receiving the acknowledge, the interrupt controller sets the highest
priority bit in the in-service register and resets the corresponding bit in
the interrupt request register. This allows the controller to recognize an­
other interrupt request at that interrupt controller input.

The CPU issues a second acknowledge signal. When the master interrupt
controller recognizes the second acknowledge signal, it determines
whether the interrupt input source is a slave interrupt controller. If the
interrupt input source is not a slave, the master controller places a
preprogrammed 8-bit interrupt vector on the input/output (I/O~ data bus.
If the interrupt input source is a slave, the master controller places the
slave address (master interrupt input number 0-7~ on the cascade lines.
When enabled by the slave address on the cascade lines, the slave places
the preprogrammed 8-bit interrupt vector on the input/output (I/O) data
bus. In either case, the CPU reads the 8-bit interrupt vector, stacks the
current state and begins executing the interrupt handler that is pointed
to by the contents of the interrupt vector.

8. The interrupt controller(s) are waiting for an end-of-interrupt (EOl) com­
mand. When a slave interrupt is processed, an EOI command is required
by both the slave and the master.

If an interrupt occurs during this waiting period, go to step 2. When the
CPU writes the end-of-interrupt command, go to step 1.

Interrupt Controllers - Hardware Description 3- 19

3- 20

INTERRUPT
r----l~ CONTROLLER

IS IDLE

NEST
INTERRUPTS

SET ISR
RESETIRR

NO

NO

NO

ACTIVATE
INTERRUPT
OUTPUT

NO

NO

ISR&IRR

ICW3

SLAVE
RESPONDS

>-------~ TO CASCADE

ICW3

ADDRESS

ISR & ICW2

SLAVE PUTS
8-BIT VECTOR
ON I/O BUS

SLAVE IS
WAITING
FOR EOI

Figure 3·3 Interrupt Sequence

Interrupt Controllers· Hardware Description

LJ-1309

Programming Example
The following programming examples demonstrate:

• Initializing a master or slave 8259A peripheral interrupt controller (PIC)
• Programming the PIC interrupt mask register
• Issuing end-of-interrupt commands to a master or slave PIC

The example provides routines as described in the following:

pic_init

imask

Initializes the master and slave PICs.

Masks or unmasks the specified bit in the interrupt mask
register.

eoi Issues an end-of-interrupt command to the appropriate PICs.

CAUTION
Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Interrupt Controllers - Programming Example 3- 21

Constant Values and Data Structures
The constant value NPIC defines the number of peripheral interrupt controllers
in the V AXmate workstation.

The constant value EOI defines the bit value that must be issued to OCW2 to
establish an end-of-interrupt condition.

The structure type PIC defines the input/output ports of the 8259A peripheral
interrupt controller (PIC). These two ports access the PIC registers. The bit
values written to registers and the read or write sequence determine the ac­
cessed register.

The structure type PIC DAT defines the type of data required to initialize a
PIC. -

Initialization Data
The array of structures all pies provides the actual data for initializing the
master and slave PIes. Later, references to the PIC number refer to the posi­
tion of an element in the array all pies.

3- 22 Interrupt Controllers - Programming Example

1***1
1* define constants and structures used in 8259 PIC example *1
1***1

#define NPIC 2
#define EOI Ox20

typedef struct
{

unsigned char portO;
unsigned char port1;

} PIC;

typedef struct
{

PIC *base;
char icw2;
char icw3;
char icw4;

} PIC_OAT;

1* number of pics in system *1
1* bit value of EOI cOlllllland *1

1* define pic liD structure *1

1* when address line AO • o *1
1* when address line AO ... 1 *1

1* base liD address of pic *1
1* modulo 8 base int vector *1

1* ir has a slave or slave id *1
1* icw4 mode data *1

1***1
1* define pic initialization data *1
1***1

PIC_OAT allpics[NPIC] = 1* device data tables *1
{

{ (PIC *)OxOO20, Ox08, Ox04, Ox01 }, 1* pic 0 is the master *1
{ (PIC *)OxOOaO, Ox70, Ox02, Ox01 }, 1* pic 1 is the slave *1

};

Interrupt Controllers - Programming Example 3- 23

Initializing the Peripheral Interrupt Controller
The function pic init initializes the master and slave PICs. Because the ROM
BIOS startup sequence initializes the peripheral interrupt controllers (PICI, in­
itialization of the PICs is not normally required.

Because the initialization sequence clears the interrupt mask register, the CPU
interrupt flag is cleared after the initialization is started and before the initiali­
zation is complete. Thus, no interrupts are pending when the initialization is
started an~ the CPU will not respond to any interrupts that become active
during the initialization sequence.

The first two instructions write a value to port 0 of the indicated PIC. The
value of bit 4 is key to this operation. Writing a value to port 0, with bit 4 set,
selects the ICWI register and indicates a reset sequence. The PIC stores the
remaining ICWI bits in the ICWI register, which starts the initialization
sequence.

• Bit 0 is set, indicating that the initialization sequence includes ICW 4.

• Bit 1 is clear, indicating that the addressed PIC is involved in a cascade
(master/slave 1 arrangement and that ICW3 must be written during the in­
itialization sequence. That is, the PIC is not operating in a standalone
environment.

• Bit 3 is clear, indicating that the PIC is operating in edge-triggered mode.

• All other ICWI bits apply to the 8085 mode of operation and are not
used.

Because two PICs must be initialized. the rest of the initialization sequence is
performed within a for loop as follows:

1. The first instruction initializes a pointer to the required data.

2. The second instruction initializes a pointer to the port 0 I/O address.

3. The third instruction writes the base interrupt vector to port 1. Because
this is the second value written in the sequence, the PIC routes the
value to ICW2.

This base interrupt vector refers to the interrupt vector for interrupt
input zero. To generate a unique interrupt vector number for each inter­
rupt input, the PIC ORs the interrupt input number (0-71 and the base
interrupt vector number. Therefore, the base interrupt vector must be
modulo 8.

4. The fourth instruction is dependent upon whether the PIC is a master or
a slave. Because this is the third value written in the sequence and
ICWI indicated a cascade mode, the PIC routes the value to ICW3.

3 - 24 Interrupt Controllers - Programming Example

• If the PIC is a master, each bit set in the value indicates that the
corresponding interrupt input is connected to a slave PIC. For the
V AXmate, only bit 2 is set.

• If the PIC is a slave, the value is the slave identification. The slave
identification is a value between 0 and 7 inclusive, and corresponds to
the master interrupt input to which it is connected.

/***/
/* pic_init() - initialize master and slave pics */
/***/

void pic_ini to
{

/* initialize all pics */

int i; /* variable for loop control */
/* to hold CPU IF state */
/* pointer to PIC data */

/* pointer PIC I/O structure */

int intr31g;
register PIC_OAT *ppd;
register PIC *pps;

}

outp(allpics[O] .base, Oxll);
outp(allpics[l].base,Oxll);
intr_flg = int_off();

/* write master ICWl is cascade */
/* write slave ICWl is cascade */

/* turn CPU interrupts off */
for(i = 0; i < NPIC; i++)
{

}

ppd = lallpics[i];
pps = ppd->base;
outp(lpps->portl, ppd->icw2);
outp (lpps->port 1 , ppd->icw3);
outp (lpps->port 1 , ppd->icw4);
outp (lpps->port 1 , Oxff);

/* assign pointer to PIC data */
/* assign pointer to I/O ports */

/* write ICW2 */
/* write ICW3 */
/* write ICW4 */

/* mask all interrupts */

/* turn CPU interrupts on */

5. The fifth instruction writes the ICW 4 value to port 1.

• Bit 0 determines the microprocessor family. In this case, it is set and
indicates the 8086/80286 mode.

• Bit 1 is clear, indicating that the interrupt handling routine issues an
end-of-interrupt command after the interrupt is processed.

• Bits 2 and 3 are clear, indicating the nonbuffered mode of operation.
For the V AXmate, a permanent hardware connection determines the
master/slave relationship.

• Bit 4 is clear, indicating that the PIC is not in special-fully-nested
mode.

• All other bits are not used and are clear.

Interrupt Controllers - Programming Example 3- 25

6. The sixth instruction masks fdisables) all interrupts. The interrupt inputs
must be unmasked before the PIC can generate an interrupt to the CPU.

To complete the initialization, the last instruction enables CPU interrupts.
Because the PIC interrupt mask is cleared during initialization, it is possible
that the PIC will recognize an active interrupt input between instructions 5 and
6. Before a PIC interrupt input is unmasked, an interrupt handler must be
available and the appropriate interrupt vector initialized.

A PIC interrupt input that is not active long enough to be latched is considered
a glitch. If a glitch occurs, the PIC generates an interrupt for IRQ7 fmaster) or
IRQ15 fslave). To determine whether an interrupt for IRQ7 or IRQ15 is a
glitch, test ISR bit 7 of the appropriate controller. If the ISR bit 7 is set, the
interrupt is a valid interrupt. If the ISR bit 7 is clear, the interrupt is a glitch.

Issuing an End-of-Interrupt Command
In fully nested mode (default mode), the PIC processes the highest priority in­
terrupt that is pending. When the PIC receives a nonspecific end-of-interrupt
(EOI), it clears the highest priority bit that is set in the in-service register.
Until no interrupts are pending, the PIC continues by processing the highest
priority interrupt that is pending.

To allow the PIC to process the same interrupt or an interrupt of lower prior­
ity, the eoi function is called at the end of an interrupt handling sequence. The
calling parameter indicates which PIC issued the interrupt. If an interrupt is
issued by the slave PIC, an EOI must be issued to the slave and then to the
master.

During interrupt processing, it is possible for a higher priority interrupt to
become active. If this happens, the PIC attempts nesting the interrupts. For
the PIC to nest interrupts, the CPU interrupt request input must be enabled.
Otherwise, the CPU will not issue the required acknowledge sequence. During
the interrupt processing. the CPU automatically stacks its current state and
clears the interrupt enable flag. Because none of the interrupt handlers, in
these examples, enable the CPU interrupt request input, nesting of interrupts
is effectively disabled.

Masking Interrupts
The function imask masks or unmasks a bit in the interrupt mask register
(OCWl). The calling parameters indicate the PIC number, the bit number (0-7),
and whether the bit should be masked or unmasked.

3- 26 Interrupt Controllers - Programming Example

/***/
/* eoi() - establish End-Of-Interrupt for pic(s) */
/***/

void eoi(pic) /* send nonspecific E01 */

int pic; /* which pic handled interrupt */

{

outp(l(allpics[pic] .base)->portO. EOI);
if (pic)

/* write eoi as indicated */
/* was it the slave pic 1 */

/* write eoi to master */ outp(l(allpics[O] .base)->portO. EOI);
}

/***/
/* imask() - mask or unmask desired bit in pic mask register */
/***/

void imask(pic. bitno. enable)

int pic;
int bitno;
int enable;

{

unsigned char current;
unsigned char mask;
register PIC *pps;

}

pps = allpics[pic] .base;
current = inp(lpps->portl);
mask = 1 « bitno;
if(enable) current l= -mask;
else current 1= mask;
outp(lpps->portl. current);

/* set or clear bit in mask */
/* register of desired pic */

/* which pic 1 */
/* which bit ? */

/* enable or disable ? */

/* current contents of MR */
/* the mask to write */

/* pointer PIC I/O structure */

/* assign pointer to I/O ports */
/* read current mask */

/* set up correct bit */
/* clear the bit */

/* or set it */
/* write the resulting mask */

Interrupt Controllers - Programming Example 3- 27

Overview

Chapter 4
DMA Controller

The direct-memory-access (DMA) controller is an Intel 8237A-5, programmable,
DMA controller operating at 4 MHz. The DMA controller allows the direct
transfer of 8-bit data between DMA-capable, input/output (I/O) devices and
memory. The DMA controller has four, independent DMA channels. Table 4-1
lists the assignment of the four DMA request lines. Each channel has 16 ad­
dress lines and an external 8-bit page register. Thus, each channel can transfer
a maximum of 64 Kbytes anywhere in the 16 Mbyte address range.

The following list shows the operational modes and restrictions of the DMA
controller.

Single transfer This is the suggested mode of operation.

Block transfer To prevent interference with DRAM refresh cycles,
limit block transfers to 8 transfers per block.

Demand transfer To prevent interference with the DRAM refresh
cycle, limit demand transfers to 8 transfers per
demand.

Cascade As bus master, the slave DMA controller should re­
lease the bus after 10 ps.

Compressed timing Compressed timing is not supported by the processor
board hardware.

Memory to memory Memory-to-memory transfers are not supported by
the processor hardware.

Extended write cycle The extended-write cycle does not provide sufficient
data setup time. Use the normal DMA write cycle.

DMA Controller - Hardware Description 4- 1

Table 4-1 DMA Request Line Assignments

Channei Request Line

o Available
1 Available
2 Diskette Controller
3 Available

Additional Source of Information
The following Intel Corporation document provides additional information:

• Microsystem Components Handbook (Publication Number 230843)

Operation
When the DMA controller receives a DMA request from a peripheral device,
the DMA controller sends a hold request signal to the CPU. When the CPU
responds with a hold acknowledge signal, the DMA controller takes control of
the 110 data bus, the system address bus, and the control bus. The controller
then generates a 16-bit memory address and activates the corresponding OMA
acknowledge line, the 110 read or write line, and the memory read or write line.
On seeing the DMA acknowledge, the OMA-capable 110 device transfers (reads
or writes) the data on the data bus. Thus, the data is transferred directly be­
tween the I/O device and memory.

The DMA controller operates in two major cycles, idle and active. Each DMA
cycle can assume seven, separate states. Each state is composed of one full,
clock period. Table 4-2 describes the various controller states.

Table 4-2

State

SI

SO

SI-S4

SW

DMA Controller States

Description

This is the inactive state. No valid DMA requests are pending and the
CPU can program the DMA controller.

This is the first active state of DMA service. The controller has re­
quested a CPU hold, but the CPU has not acknowledged a hold.
Programming of the DMA controller can continue until the acknowl­
edge is received.

These are the DMA working states.

When more time is required to complete a transfer, wait states are
inserted between S2 and S3, or S3 and S4.

4- 2 DMA Controller - Hardware Description

Idle Cycle
When none of the I/O channels is requesting DMA service, the DMA controller
enters the idle cycle and performs SI states. At each clock cycle in the idle
cycle, the DMA controller samples the DMA request lines and the chip select
line.

If a DMA request line becomes active, the DMA controller goes to the active
state. Otherwise, if CPU has selected the DMA controller and the CPU has
control of the bus, the CPU can read or write the DMA controller internal
registers.

Active Cycle
When the DMA controller is in the idle cycle and a nonmasked channel
requests DMA service, the controller issues a hold request to the CPU and
enters the active cycle. The DMA service will then occur in one of the four
following modes.

Single Transfer Mode
The DMA controller is programmed to perform only one transfer in this . mode.
After the transfer, the word count is decremented and the address is either
decremented or incremented. When the word count goes from OOOOH to
FFFFH, a terminal count (Tel signal is generated, and will auto~initialize the
channel to its original condition if it had been programmed to do so.

The ROM BIOS uses this mode for data transfers between the diskette control­
ler and memory.

Block Transfer Mode
In this mode, the DMA controller is activated by a DMA request to continue
making transfers until a TC (word count has reached FFFFH) or an external
end-of-process (EOP) signal occurs. If the channel has been programmed for
auto-initialization, the auto-initialization occurs at TC or EOP. This mode
should be limited to eight transfers (assuming no additional wait states) to pre­
vent interference with refresh cycles.

Demand Transfer Mode
The DMA controller performs transfers until a TC or external EOP occurs, or
until there is no DMA request. Transfers may continue until the I/O device has
exhausted its data capacity. Once the I/O device has caught up, DMA service is
reestablished by means of a DMA request. The intermediate values of address
and word count are stored in DMA controller internal registers between serv­
ices while the CPU is running. At the end of the service, only an EOP can
cause auto-initialization to occur. This mode should be limited to eight transfers
per demand to prevent interference with refresh cycles.

DMA Controller - Hardware. Description 4 - 3

Cascade Mode
This mode is used when DMA controllers are cascaded for system expansion.
In this configuration, the initial controller determines the priority of the addi­
tional controllers. Each of the additional controllers establish priority within
themselves and make the DMA request to the initial controller. The initial con­
troller does not output any address or control signals, since they could conflict
with the outputs of the added controller.

Data Transfers
The DMA controller can perform read, write, or verify operations in each
transfer mode. Read transfers move data from memory to an I/O device; write
transfers move data from an I/O device to memory; and verify transfers are
pseudo data transfers. In verify mode, the controller operates as if in read or
write mode, however the memory and 1/0 control lines are not active.

Memory-to-memory transfers are a special case of DMA transfer. Channel 0 is
the source and channel 1 is the target. In memory-to-memory transfers, chan­
nel 0 uses one cycle to read the data byte and store it in the temporary regis­
ter. On the following cycle, channel 1 writes the value in the temporary
register to the target location.

Auto-Initialize
Restores the DMA channel to its original condition following an EOP. Auto­
initialization is accomplished by restoring the original values of the Current
Address and Current Word Count registers from the Base Address and Base
Word Count registers. The CPU loads the current registers and base registers
which do not change during the DMA service. When the channel is in auto­
initialize mode, the mask bit is not set. After auto-initialization and a receipt of
a DMA request, the channel can perform DMA service without CPU
intervention.

4- 4 DMA Controller - Hardware Description

Priority
The two types of priority, fixed and rotating, are defined as follows:

Fixed Priority In fixed priority, the channels are placed in order based
on the descending value of their assigned number. The
assigned number range is from zero to three (0-3), with
zero as the highest priority.

Rotating Priority The channel being serviced is assigned lowest priority
value, and all others rotate to the next higher value.

Address Generation
The eight, high-order address bits (15-8) are multiplexed on the I/O data lines.
At the Sl state, the high-order 8-bits are output to an external latch and
placed on the system address bus. The low-order bits are output directly from
the DMA controller to the system address bus. For multiple transfers, such as
block and demand transfers, the addresses are generated sequentially. The data
in the external latch (high-order byte) can remain the same for many transfers,
and have to be changed only when a borrow or carry takes place in the normal
sequence of addresses. The controller executes Sl states only when updating of
the high-order byte is required.

DMA Controller - Hardware Description 4 - 5

Table 4-3 DMA Controller and Page Register Address Map

Port RIW Channel Register

OOOOH W 0 Base and Current address
R 0 Current address

OOOlH W 0 Base and Current word count
R 0 Current word count

0OO2H W 1 Base and Current address
R 1 Current address

0OO3H W 1 Base and Current word count
R 1 Current word count

0OO4H W 2 Base and Current address
R 2 Current address

0OO5H W 2 Base and Current word count
R 2 Current word count

0OO6H W 3 Base and Current address
R 3 Current address

0OO7H W 3 Base and Current word count
R 3 Current word count

0OO8H W Command
R Status

0OO9H W Request

OOOAH W Write single mask register bit

OOOBH W Mode register

OOOCH W Clear byte pointer flip/flop
R Temporary

OOODH W Master clear

OOOEH W Clear mask register

OOOFH W Write all mask register bits

0080H W 1 Channel 1 page register

0081H W 2 Channel 2 page register

0082H W 3 Channel 3 page register

0083H W 0 Channel 0 page register

4 - 6 DMA Controller - Hardware Description

Registers
The DMA controller has 16 110 ports to access 26 internal registers.
Additionally, the DMA circuitry has four 110 ports to access four page regis­
ters. Table 4-3 lists the 110 ports and the registers accessed.

Base and Current Address Register
(OOOOH/OOO2H/OOO4H/OOO6H)

7 6 5 4 3 2 1 0

I : :
~v B~ ~F _!S READ OR VRI'ITEN FIRST

: :
15 14 13 12 11 10 9 8

I : :
8r~ B~~OF ~ss READ OR VRI'ITEN SECOND

: :
Each DMA channel has a I6-bit base address register and a I6-bit current ad­
dress register. The base address register contains the initial value. Writing a
value to the base address register initializes the current address register to the
same value. The current address register is incremented or decremented after
each transfer. When the required number of transfers have occurred and if
auto-initialize (see the mode register) is enabled, the current register is in­
itialized from the base register.

Before performing a I6-bit read or write, clear the byte pointer flip/flop.
To write a base register, write two, 8-bit bytes in succession to the same port.
To read a current register, read two, 8-bit bytes in succession to the same port.
In either case, the low byte is accessed first and then the high byte.

DMA Controller - Hardware Description 4 - 7

I

I

Base and Current Word Register
(OOOlH/0003H/0005H/0007H)

7 6 5 4 3 2

I : :
wv ~~ OF :~~WM READ OR VRITl'EN FIRST

15 14 13 12 11 10

I : :
8IGB:B~ OF:CURRENT:VORD READ OR VRITl'EN SECOND

1 o

: :
9 8

: :
Each DMA channel has a I6-bit base word count register and a I6-bit current
word count register. The value written to this register determines the number
of transfers performed. The number of transfers is the programmed value plus
one. The current word count is decremented after each transfer. When the cur­
rent word count is decremented below zero (FFFFHl, a terminal count is gener­
ated. When the required number of transfers have occurred and if auto-initialize
(see the mode register) is enabled, the current register is initialized from the
base register.

Before performing a I6-bit read or write. clear the byte pointer flip/flop.
To write a base register, write two, 8-bit bytes in succession to the same port.
To read a current register, read two, 8-bit bytes in succession to the same port.
In either case, the low byte is accessed first and then the high byte.

4- 8 DMA Controller - Hardware Description

I

I

Command Register (0008H)
7 6 5 4 3 2 1 o

CHANNEL MEMORY
DACK DREQ VRITE PR TIMING CE 0 TO
SENSE SENSE SELECT ADDRESS MEMORY

BOLD

Bit R/W Description

7 W DACK SENSE - DMA Acknowledge Sense
o = DACK sense active low

"1 = DACK sense active high

6 W DREQ SENSE - DMA Request Sense
o = DREQ sense active high
1 = DREQ sense active low

5 W WRITE SELECT
o = Late write selected
1 = Extended write selected

For the V AXmate workstation, the extended write mode does not
provide an adequate write cycle. Use only the late write mode.

If bit 3 equals 1 (compressed mode), bit 5 is a don't care value.
However, the VAXmate workstation is not capable of using com­
pressed mode.

4 W PR - Priority
o = Fixed priority 0 (highest), 1, 2, and 3 (lowest)
1 = Rotating priority

Initially, the priority is the same order as in fixed priority. In the
rotating priority scheme. the currently serviced DMA channel be­
comes the lowest priority channel. However, the channels always
maintain their priority in numeric order. That is, the priority de­
creases as the channel number increases and wraps between chan­
nels 3 and O.

DMA Controller - Hardware Description 4 - 9

Bit RIW Description (Command Register - cont.)

3 w

2 w

1 w

o w

TIMING
o = Normal read/write timing - A read/write cycle requires a

minimum of three clock cycles and is subject to wait states.
The V AXmate workstation uses this mode.

1 = Compressed read/write timing - A read/write cycle occurs in
two clock cycles. The V AXmate workstation is not capable of
using compressed mode.

If bit 0 equals 1 (memory-to-memory enabled), bit 3 (timing) is a
don't care value.

CE - Controller Enable
o = Controller disabled
1 = Controller enabled

CHANNEL 0 ADDRESS HOLD
o = Disable channel 0 address hold
1 = Enable channel 0 address hold

Channel 0 address hold causes the DMA controller to copy a single
byte to the specified number of destination bytes.

If bit 0 equals 0 (memory-to-meniory disabled), bit 1 (channel 0 ad­
dress hold) is a don't care value.

MEMORY-TO-MEMORY
o = Memory-to-memory transfers disabled
1 = Memory-to-memory transfers enabled

The V AXmate workstation does not support memory-to-memory
transfers.

This 8-bit register controls the operation of the DMA controller. It is cleared by
a hardware reset or a master clear instruction.

4- 10 DMA Controller - Hardware Description

Write Single Mask Bit (OOOAH)
7 6 5 4 3

Bit R/W Description

7-3 W

2 W

1-0 W

DON'T CARE (any value 1

MASK BIT
o = Enable the selected channel
1 = Disable the selected channel

CHANNEL SELECT
00 = Select channel 0 mask bit
01 = Select channel 1 mask bit
10 = Select channel 2 mask bit
11 = Select channel 3 mask bit

2 1 o

Each channel has a mask bit, which can be set to disable the incoming DMA
request. These bits are ~et if their associated channel produces an EOP and
auto-initialize is not enabled.

Write All Mask Bits (OOOFH)
7 6 5 4 3 2 1 0

I I I I I I

DON'T CARE MASK BITS
CHANNEL CHANNEL CHANNEL CHANNEL

3 2
I I I I I

Bit R/W Description

7-4 W DON'T CARE (any valuel

3-0 W MASK BITS
o = Enable the indicated channel (CHANNEL 3-01
1 = Disable the indicated channel (CHANNEL 3-01

1 0
I

DMA Controller - Hardware Description 4 - 11

Mode Register (OOOBH)
7 6 5 4 3 2 1 o

I I I

OPERATION INCR/ AUTO TRANSFER TYPE CHANNEL SELECT
MODE DECR INIT

SELECT
I

Bit R/W Description

7-6 W OPERATION MODE
00 = Demand mode
01 = Single mode
10 = Block mode
11 = Cascade mode

I

5 W INCR/DECR SELECT - IncrementlDecrement selection
o = Increment selected
1 = Decrement selected

4 W AUTO INIT - Auto-initialization enable
o = Disable auto-initialization
1 = Enable auto-initialization

3-2 W TRANSFER TYPE
00 = Verify
01 = Write
10 = Read
11 = Invalid value

I

A read transfer moves data from memory to the I/O device. A
write transfer moves data from the I/O device to memory. That is,
the orientation is from the 110 device, not the CPU.

If bits 7-6 equal 11, then the transfer type is a don't care value.

1-0 W CHANNEL SELECT

4- 12

00 = Channel 0 selected
01 = Channel 1 selected
10 = Channel 2 selected
11 = Channel 3 selected

Each DMA channel has a 6-bit mode register. Register selection is
determined by bits 1 and O.

DMA Controller - Hardware Description

Request Register (0009H)
7 6 5 4 3

Bit RIW Description

7-3 W DON'T CARE (any value I

2 W REQUEST BIT
o = Reset the indicated request bit
1 = Set the indicated request bit

1-0 W CHANNEL SELECT
00 = Channel 0
01 = Channel 1
10 = Channel 2
11 = Channel 3

2 1 o

The DMA controller responds to requests for DMA service from both software
and the DMA request signal. Each channel has a request bit that can be set or
reset as determined by the Request register. These bits are not maskable and
are subject to prioritization.

DMA Controller - Hardware Description 4 - 13

Status Register (0008H)
7 6 5 4 3 2 1 o

I I I I I I

DHA REQUEST PENDING TERMINAL COUNT REACHED
CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL

3 J 2 I 1 I 0 3 I 2 I 1 I 0

Bit R/W Description

7-4 R

3-0 R

DMA REQUEST PENDING
o = Indicated channel does not have a request pending

{CHANNEL 3-01
1 = Indicated channel has a request pending {CHANNEL 3-01

TERMINAL COUNT REACHED
o = Indicated channel has not reached the terminal count

{CHANNEL 3-01
1 = Indicated channel has reached the terminal count or external

EOP applied {CHANNEL 3-01

Temporary Register (OOOCH)
7 6 5 4 3 2 1 o

Bit R/W Description

7-0 R Last data byte transferred in a memory-to-memory transfer

Between the read and write cycles of a memory-to-memory transfer, the DMA
controller stores the source byte in this register. This register is cleared by a
hardware reset or a master clear.

4- 14 DMA Controller· Hardware Description

Programming Example
The following programming example demonstrates:

• Initializing the 8237A DMA controller
• Enabling and disabling a channel
• Preparing a channel for data transfer

The example provides routines as described in the following list:

dma init

dma_open

dma transfer

dma close

CAUTION

Resets the DMA controller.

Enables the indicated DMA channel.

Prepares the indicated channel for data transfer.

Disables the indicated channel.

Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Constant Values
The constant values DMA PAGEO through DMA PAGE3 define the 110 ad­
dress of the indicated page-register. The values CHANNELO through
CHANNELl define the channel select bit values for the mode, mask, and
request registers. The values MTM ENA through BIT SET define the bit
values for various conditions of the command, status, mode, and request
registers.

1***1
1* define constants used in 8237 DMA example *1
1***1

#define DMA_PAGEO Ox83 1* DMA page register 0 I/O address *1
#define DMA_PAGEl Ox80 1* DMA page register 1 liD address *1
#define DMA_PAGE2 Ox8l 1* DMA page register 2 liD address *1
#define DMA_PAGE3 Ox82 1* DMA page register 3 liD address *1

#define CHANNELO OxOO 1* select channel Obit value *1
#define CHANNELl OxOl 1* select channel 1 bit value *1
#define CHANNEL2 Ox02 1* select channel 2 bit value *1
#define CHANNEL3 Ox03 1* select channel 3 bit value *1

DMA Controller· Programming Example 4- 16

/* command register bit definitions */
#define MTM_ENA OxOi /* Memory-to-memory enable */
#define HOLD_ENA Ox02 /* channel 0 hold address enable */
#define DMA_DIS Ox04 /* dma controller disable */
#define C_TIME Ox08 /* compressed timing */
#define ROT_PRI Oxi0 /* rotating priority */
#define EXTD_WR Ox20 /* extended write */
#define DREQ_LO Ox40 /* DREQ active when low */
#define DACK_HI Ox80 /* DACK active when high */

/* status register bit definitions */
#define CHO_TC OxOi /* channel 0 bas reached terminal count */
#define CHCTC Ox02 /* channel 2 has reached terminal count */
#define CH2_TC Ox04 /* channel 3 has reached terminal count */
#define CH3_TC Ox08 /* channel 4 has reached terminal count */
#define CHO_REQ Oxi0 /* channel 0 requesting service */
#define CHCREQ Ox20 /* channel 1 requesting service */
#define CH2_REQ Ox40 /* channel 2 requesting service */
#define CH3_REQ Ox80 /* channel 3 requesting service */

/* mode register bit definitions */
#define TRAN_VR OxOO /* verify transfer */
#define TRAN_WR Ox04 /* write transfer */
#define TRAN_RD Ox08 /* read transfer */
#define AUTO_IE Oxi0 /* auto-initialize enable */
#define ADR_DEC Ox20 /* address decrement */
#define MODE_DM OxOO /* demand mode */
#define MODE_SI Ox40 /* single mode */
#define MODE_BK Ox80 /* block mode */
#define MODE_CS OxCO /* cascade mode */

/* request register bits */
#define BIT_SET Ox04 /* set selected mask bit */

4- 16 DMA Controller· Programming Example

Data Structures
The structure DMA CHANNEL resembles the 110 space of the address and
word count registers-for a channel. Multiple instances of this structure are used
in the declaration of the DMA CONTROLLER structure. The
DMA CONTROLLER structure defines the 110 space of DMA controller inter­
nal registers. The value DMA BASE defines the base address for referencing
the structure DMA CONTROLLER.

/***/
/* declare structures used in 8237 DMA example */
/***/

typedef struct
{

unsigned char bc_addr;
unsigned char bc_word;

} DMA_CHANNEL;

typedef struct
{

DMA_CHANNEL chO;
DMA_CHANNEL chi;
DMA_CHANNEL ch2;
DMA_CHANNEL ch3;
unsigned char csr;
unsigned char req;
unsigned char wsmb;
unsigned char mode;

/* define dma channel I/O structure */

/* write base address, read current address */
/* write base word, read current word */

/* define dma controller I/O structure */

unsigned char temp;/* write clears byte
unsigned char master_clr;

/* channel zero registers */
/* channel one registers */
/* channel two registers */

/* channel three registers */
/* write control, read status */

/* write request register */
/* write single mask bit */

/* write mode register */
pointer flip-flop, read temp */
/* write master clear/reset */

/* clear all mask bits */
/* write all mask bits */

unsigned char clr_mask;
unsigned char wr_mask;

} DMA_CONTROLLER;

#define DMA_BASE (DMA_CONTROLLER *)OxOOOO /* base address */

DMA Controller - Programming Example 4- 17

Initializing the DMA Controller
The DMA controller is initialized by issuing a MASTER CLEAR instruction.
This clears all bits in the command register and effectively disables the control­
ler. The second instruction, which explicitly clears the control register, ensures
that the controller is disabled.

/***/
/* dma_init() - initialize the 8237 DMA controller */
/***/

dma_initO
{
DMA_CONTROLLER *pdc = DMA_BASE;

}

outp(lpdc->master_clr, 0);
outp(lpdc->csr, 0);

/* point to DMA controller */

/* reset DMA controller */
/* all command register bits to 0 */

4- 18 DMA Controller - Programming Example

Opening a DMA Channel
The dma open function assumes that the channel is currently disabled. It
writes valid values to th~ registers that control the indicated channel.

For this C compiler, offset 0 in the data segment is used only for monitoring
NULL pointers. With a zero word count, an inadvertent data transfer can move
only one byte before expiring.

The last instruction enables the indicated channel.

/***/
/* dma_open() - open a DMA channel */
/***/

dma_open(channel)

int channel;

{

DMA_CONTROLLER *pdc
DMA_CHANNEL *pch;
int i;

/* which DMA channel to open */

/* point to DMA controller */
/* pointer to a channel structure */

/* loop control */

for(i = channel, pch = &pdc->chO; i; i--) /* discover which channel */
/* point to next channel */

/* clear mode register for this channel */
/* clear channel request for this channel */

/* clear first/last flip-flop */
/* write 0 to low byte */

/* write 0 to high byte */
/* clear first/last flip-flop */

/* write 0 to low byte */
/* write 0 to high byte */

/* clear mask bit for this channel */
}

pch++;
outp(&pdc->mode, channel);
outp(&pdc->req, channel);
outp(&pdc->temp, 0);
outp(&pch->bc_addr, 0);
outp(&pch->bc_addr, 0);
outp(&pdc->temp, 0);
outp(&pch->bc_word, 0);
outp(&pch->bc_word, 0);
outp(&pdc->wsmb, channel);

DMA Controller . Programming Example 4- 19

Preparing a Channel for Data Transfer
The dma transfer function prepares a channel for~data transfer. Next, the func­
tion disabies the channel. It then initializes the page, address, word count, and
mode registers.

NOTE
Before writing a I6-bit register, the byte pointer flip/flop must
be cleared. This sequence loads the two sequential bytes in the
correct locations. Because interrupt processing could disrupt the
process, the dma transfer function disables CPU interrupts
before clearing the byte pointer flip/flop. Interrupts are not
enabled until after the I6-bit registers have been written.

/***/
/* dma_transfer() - set parameters for a DMA transfer */
/***/

dma_transfer(channel. page_val. addr. count. ttype)

int channel;
int page_val;
unsigned char *addr;
unsigned int count;
int ttype;

{

/* transfer on which DMA channel 7 */
/* page register contents */

/* transfer address */
/* count to transfer */

/* transfer type */

DMA_CONTROLLER *pdc = DMA_BASE;
DMA_CHANNEL *pch;

/* point
/* pointer to a

to DMA controller */
channel structure */

unsigned int page_reg;
int ch_mode;
int .intr3lag;

switch(channel)
{

case 0:
pch = &pdc->chO;
page_reg = DMA_PAGEO;
ch_mode = 0;
break;

/* which page register to write */
/* channels mode */

/* to hold CPU IF state */

/* which channel 7 */

/* channel 0 ? */
/* point to channel 0 registers */

/* set page register address */
/* auto-initialize & increment/decrement */

4- 20 DMA Controller - Programming Example

}

}

case 1:
pch = otpdc->ch1;
page_reg = DMA_PAGE1;
ch_mode = 0;
break;

case 2:
pch = otpdc->ch2;
page_reg = DMA_PAGE2;
ch_mode = MODE_SI;
break;

case 3:
pch = otpdc->ch3;
page_reg = DMA_PAGE3;
ch_mode = 0;
break;

/* channel 1 ? */
/* point to channel 1 registers */

/* set page register address */
/* auto-initialize ok increment/decrement */

/* channel 2 ? */
/* point to channel 2 registers */

/* set page register address */
/* auto-initialize ot increment/decrement */

/* channel 3 ? */
/* point to channel 3 registers */

/* set page register address */
/* auto-initialize ok increment/decrement */

outp(okpdc->wsmb. BIT_SET I channel);/* set mask bit for this channel */
outp(otpdc->req. channel); /* clear channel request for this channel */
outp(okpdc->mode. ttype I ch_mode I channel); /* set mode register */
intr_flag = int_off(); /* no interrupts please */
outp(otpdc->temp. 0); /* clear first/last flip-flop */
outp(otpch->bc_addr. (unsigned int)addr ok Oxff); /* write low byte */
outp(otpch->bc_addr. (unsigned int)addr » 8); /* write high byte */
outp(otpch->bc_word. count ok Oxff); /* write low byte */
outp(otpch->bc_word. count » 8); /* write high byte */
int_on(intr_flag); /* allow interrupts */
outp(page_reg. page_val); /* write the page register */
outp(otpdc->wsmb. channel); /* clear mask bit for this channel */

DMA Controller - Programming Example 4- 21

Disabling a DMA Channel
The dma close function closes the channel by masking (disabling~ that chan­
nel's request input line.

/***/
/* dma_close() - close a DNA channel */
/***/

dma_close(channel)

unsigned char channel; /* which DNA channel to close */

{

DNA_CONTROLLER *pdc - DMA_BASE; /* point to DMA controller */

outp(lpdc->wsmb, BIT_SET I channel):/* set maak bit for this channel */
}

4- 22 DMA Controller· Programming Example

Overview

Chapter 5
Real-Time Clock

and CMOS RAM

The VAXmate processor board contains an MC146818 real-time clock. The real­
time clock has the following features:

• Time-of-day clock with alarm and 100-year calendar

• Counts seconds, minutes, and hours of the day

• Counts days of the week, days of the month, month, and year with auto­
matic end-of-month and leap year recognition

• Binary or binary-coded-decimal (BCD) representation of date, time, and
alarm (the ROM BIOS and MS-DOS use BCD).

• 24-hour clock or 12-hour clock with a.m./p.m. indication

• Daylight savings time option

• Internal time base and oscillator

• External time base 32.768 KHz crystal

• 64 byte, low-power, static RAM (14 bytes of registers and 50 bytes of
general purpose RAM)

• Square wave generator

• Programmable interrupts

Time-of-day alarm, once-per-second to once-per-day
Periodic interrupt rates from 30.5 flS to 500 ms
End-of-update interrupt

Real-time Clock and CMOS RAM - Hardware Description 5 - 1

Additional Source of Information
The following Motorola Inc. document provides additional information on pro­
gramming the real-time clock.

• 8·Bit Microprocessor & Peripheral Data

Battery-Backup Considerations
To keep time and maintain RAM when system power is off, the real-time clock
requires a battery-backup source. The two lithium batteries in the V AXmate
expansion box provide the only battery power source.

NOTE
The lithium battery used in the V AXmate expansion box has an
operational life expectancy of 6 years and a shelf life of 10
years.

Addressing the Real-Time Clock
The real-time clock (RTC) is addressed by the contents of an 8-bit latch at I/O
port 0070H and the RTC data is read or written through I/O port 0071H.

NOTE
The RTC address latch is write only. Bit 7 of the RTC address
latch (I/O port 0070H) is the nonmaskable interrupt (NMI) mask
register. If bit 7 equals zero, the NMI is enabled. Otherwise, the
NMI is disabled. For more information about the nonmaskable
interrupt, see Chapters 3 and 15.

The RTC dedicates the first 14 bytes of RAM (OOH through OOH) as registers
for the real-time clock functions. The remaining 50 bytes of RAM (OEH
through 3FH) are not dedicated to the RTC. Table 5-1 describes the RTC ad­
dress map.

5 - 2 Real-time Clock and CMOS RAM . Hardware Description

Table 5-1 Real-Time Clock Address Map

Latch Value

OOH
OlH
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH-3FH

R/W

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

Location Accessed

Seconds register
Seconds alarm register
Minutes register
Minutes alarm register
Hours register
Hours alarm
Day-of-week register
Day-of-month register
Month register
Year register
Register A
Register B
Register C
Register 0
Remaining 50 bytes of RTC RAM *

* See the definition of the structure RTC in the programming example.

Real-Time Clock Registers
The real-time clock (RTC) has two types of registers:

• Data (locations OOH through 09H)
• Control and status (locations OAH through ODH)

Data registers are valid only when the RTC is not updating. During clock up­
dates, the RTC disconnects the data registers from the RTC bus. The specifics
of data register processing are discussed later.

The control and status registers are available at all times.

Real-time Clock and CMOS RAM - Hardware Description 5 - 3

Register A
Addressing - Write OAH to address latch at 0070H.
Data - Read or write data at address 0071H.

7 6 5 4 3 2 1 o
I I I I

DIVIDER SELECTION BITS RATE SELECTION BITS
UIP

DS2 I DSl I DSO RS3 I RS2 I RSl I RSO

Bit R/W Description

7 R/W UIP - Update In Progress
o = For all time bases, at least 244 ps remain before the update

cycle begins. The data registers are available for reading.
1 = Update cycle is in progress or begins in less then 244 ps.

The UIP bit is a read-only bit. For the 32.768 KHz time base, the
update cycle time is 1984 ps. Writing a 1 to the Register B SET
bit inhibits the update cycle and clears the UIP status bit. A hard­
ware reset does not modify the UIP bit.

6-4 R/W DIVIDER SELECTION BITS

These bits identify the time base to use. Writing 111 to these bits
resets the divider. One second after removing the divider reset, the
first update cycle begins. For the V AXmate workstation time base
of 32.768 KHz, set these bits to 010. A hardware reset does not
modify the DIVIDER SELECTION bits.

3-0 R/W RATE SELECTION BITS

These bits select one of 15 taps on a 22-stage divider or disable
the divider. Table 5-2 shows the bit values for the possible inter­
rupt rates. A hardware reset does not modify the RATE
SELECTION bits. On powerup, the ROM BIOS sets these bits to
O.

5 - 4 Real-time Clock and CMOS RAM - Hardware Description

Table 5-2 Rate Selection Bits

RS3 RS2 RSI RSO Periodic Interrupt Rate

0 0 0 0 None (divider disabled)

0 0 0 1 3.90625 J,lS

0 0 1 0 7.8125 J,lS

0 0 1 1 122.070 J,lS

0 1 0 0 244.141 J,lS

0 1 0 1 488.281 J,lS

0 1 1 0 976.562 J,lS

0 1 1 1 1.953125 IDS

1 0 0 0 3.90625 IDS

1 0 0 1 7.8125 IDS

1 0 1 0 15.625 IDS

1 0 1 1 31.250 IDS

1 1 0 0 62.5 IDS

1 1 0 1 125.0 IDS

1 1 1 0 250.0 IDS

1 1 1 1 500.0 IDS

Real-time Clock and CMOS RAM - Hardware Description 5 - I)

Register B
Addressing - Write OBH to address latch at 0070H.
Data - Read or write data at address 0071H.

7 6 5 4 3 2 1 o

I SET I PIE I AlE I lITE I SQVE lOKI 8M I DSE I

Bit R/W Description

7 R/W SET
o = Allow update cycles to occur once per second
1 = Abort any update cycle in progress and inhibit update cycles

until cleared. (This allows initialization of the date, time, and
alarm registers.)

A hardware reset does not modify the SET bit.

6 R/W PIE - Periodic Interrupt Enable
o = Disable periodic interrupts (default value)
1 = Enable periodic interrupts at the rate specified by RS3-RSO

in Register A

A hardware reset clears the PIE bit to O.

5 R/W AlE - Alarm Interrupt Enable
o = Disable alarm interrupts (default value)
1 = Enable alarm interrupts. (The interrupt frequency depends on

the contents of the alarm registers.)

A hardware reset clears the AlE bit to O.

4 R/W UIE - Update-ended Interrupt Enable
o = Disable the update-ended interrupt (default value)
1 = Enable the update-ended interrupt

A hardware reset or setting the register B SET bit clears the UIE
bit to O.

3 R/W SQWE - Square Wave Enable
o = Disable the square-wave output (default value)
1 = Enable the square-wave output

The square-wave output is not connected to anything, so the
SQWE bit should always be written as O. A hardware reset clears
the SQWE bit to O.

5 - 6 Real-time Clock and CMOS RAM - Hardware Description

Bit RIW Description (Register B - cont.)

2 RJW DM - Data Mode
o = Binary-coded-decimal (BCD) data format used for date, time,

and alarm registers
1 = Binary data format used for date, time, and alarm registers

A hardware reset does not modify the DM bit. However, the ROM
BIOS clears DM to O.

1 R/W HM - Hour Mode
o = Hours register and hours alarm register use a 12-hour clock

with a.m. or p.m. indication
1 = Hours register and hours alarm register use a 24-hour clock

A hardware reset does not modify the HM bit. However, the ROM
BIOS sets HM equal to 1.

o R/W DSE - Daylight Savings Enable
o = Disable daylight savings
1 = Enable daylight savings. Daylight savings changes occur at 2

a.m. on the last Sunday in April and the last Sunday in
October.

A hardware reset does not modify the DSE bit. However, the
ROM BIOS clears DSE to O.

Real-time Clock and CMOS RAM - Hardware Description 5 - 7

Register C
Addressing - Write OCH to address latch at 0070H.
Data· Read or write data at address 0071H.

7 6 5 4 3 2 1 o

Bit RJW Description

7 RJW IRQF - Interrupt Request Flag

When one or more of the following conditions are true, the RTC
sets the IRQF bit to 1:

PIF = PIE = 1
AIF = AlE = 1
UIF = UIE = 1

6 RJW PIF - Periodic Interrupt Flag

When register B, bit PIE equals 1, the PIF bit indicates the state
of the periodic interrupt. If PIF equals 1, the RTC sets IRQF.
Register A bits RS3-RSO establish the rate of this interrupt.

5 RJW AIF - Alarm Interrupt Flag

When register B, bit AlE equals 1, the AIF indicates the state of
the alarm interrupt. When AIF equals 1, the current time matches
the alarm time and the RTC sets IRQF.

4 RJW UIF· Update-ended Interrupt Flag

When register B, bit AlE equals 1, the UIF bit indicates the state
of the update-ended interrupt. At the end of each update cycle, the
RTC sets this bit to 1 and sets IRQF.

3-0 RJW Always 0

Resetting hardware or reading register C clears all bits in register C. Writing
to Register B does not modify the bits in Register C.

5 - 8 Real-time Clock and CMOS RAM - Hardware Description

Register D
Addressing - Write ODH to address latch at 0070H.
Data - Read or write data at address 0071H.

7 6 5 4 3 2 1 o

'WIT' 0' 0' 0' 0' 0' 0' 0 I
Bit RIW Description

7 R/W VRT - Valid RAM and Time
o = Since the last time this register was read, the power-sense

circuitry detected a loss of power to the RTC. The RTC reg­
isters and RAM contain invalid data.

1 = Since the last time this register was read, power to the RTC
has remained stable.

Reading this register sets the VRT bit. It is the only way to set
the VRT bit. After setting the date, time, or alarm, read this regis­
ter so that the VRT bit indicates that the registers are valid.

A hardware reset does not modify the VRT bit.

6-0 R/W Always 0

Real-time Clock and CMOS RAM - Hardware Description 5 - 9

Real-Time Clock Data Registers
The real-time clock (RTC) formats the date and time in either binary or binary­
coded-decimal {BCD). All data registersJOOH through 09H) must use the same
format. If the data format is changed, the data registers must be initialized in
the new format. The ROM BIOS uses the BCD data format. Bit 2 of register
B controls the format.

The HOUR MODE bit in Register B controls the range of the hour and hour
alarm registers. When the HOUR MODE bit is set U), the hour and hour
alarm registers have the range 0-23. When the HOUR MODE bit is clear {OJ,
the hour and hour alarm registers have the ranges 1-12 (a.m.) and 129-140
(p.m.).

The hours, minutes., and seconds alarm registers have an additional range of
COH-FFH. This is an alarm register don't care code. For more information, see
the alarm description. Table 5-3 shows the format and ranges of the data
registers.

5- 10 Real-time Clock and CMOS RAM - Hardware Description

Table 1)-3 RTC Data Register Ranges

Latch Register Function Binary Range BCD Range
Value

OOH Seconds All modes 0-59 00H-59H

01H Seconds Specific time 0-59 00H-59H
Alarm

Each second 192-255 COH-FFH

02H Minutes All modes 0-59 00H-59H

03H Minutes Specific time 0-59 00H-59H
Alarm

Each minute 192-255 COH-FFH

04H Hours 24-hour mode 0-23 00H-23H

12-hour mode a.m. 1-12 01H-12H

12-hour mode p.m. 129-140 81H-92H

05H Hours Alarm Specific time 0-23 00H-23H
(24-hour mode)

Specific time (12-hour 1-12 01H-12H
mode a.m.)

Specific time (12-hour 129-140 81H-92H
mode p.m.)

Each hour (all modes) 192-255 COH-FFH

06H Day-of-Week 1-7 01H-07H

07H Day-of-Month 1-31 01H-31H

08H Month 1-12 01H-12H

09H Year 0-99 00H-99H

Real-time Clock and CMOS RAM - Hardware Description I) - 11

Alarms
During each real-time clock (RTC) update cycle, the RTC compares the hour,
minute, and second registers to the corresponding alarm registers. If all of the
time registers match all of the alarm registers, the RTC sets the register C
AIF. If, when this occurs, the register B alarm interrupt enable (AlE) bit is
enabled, the alarm interrupt triggers IRQ8.

An alarm register value in the range COH-FFH is a don't care code. When an
alarm register contains a don't care code, that alarm register matches any
value in the corresponding time register.

Table 5-4 shows the eight different types of automatic alarm cycles provided by
the real-time clock (RTC).

Table 5-4 RTC Automatic Alarm Cycles

Cycle Description Hour Alarm Minute Alarm Second
Alarm

Once per second every second COH-FFH COH-FFH COH-FFH

Once per second for a COH-FFH Specified COH-FFH
one-minute span every hour

Once per second for a one- Specified Specified COH-FFH
minute span every 24 hours

Once per second for a one-hour Specified COH-FFH COH-FFH
span every 24 hours

Once per minute every minute COH-FFH COH-FFH Specified

Once per minute for a one-hour Specified COH-FFH Specified
span every 24 hours

Once per hour every hour COH-FFH Specified Specified

Once every 24 hours Specified Specified Specified

Also, there is a nonautomatic way to use the alarm function. To use this
method, set a specific alarm time. At each subsequent alarm interrupt, set the
next specific alarm time.

5- 12 Real-time Clock and CMOS RAM - Hardware Description

Update Cycle
Once per second. the real-time clock (RTC) performs an update cycle. With a
32.768 KHz time base, the update cycle requires 1948 IlS. The update cycle
comprises the following steps:

• The RTC sets (1) the register A UIP bit.

• After 244 IlS, the RTC disconnects the data registers from the external
bus and connects them to the internal bus.

• The RTC increments the seconds register.

• The RTC checks for an overflow condition. If no overflow condition exists,
the RTC goes to the next step. Otherwise, the RTC zeros the register
and increments the next register in the series.

• The RTC compares the hour, minute, and seconds registers to the cor­
responding alarm registers. If a match occurs for all three registers, the
RTC sets (1) the register C alarm flag (AIF).

• The RTC disconnects the data registers from the internal bus and con­
nects them to the external bus.

• The RTC clears (0) the register A UIP bit.

• The RTC sets (1) the register C update-ended interrupt flag (UIF)

During an update cycle, the data registers are disconnected from the external
bus. Therefore, while an update is in progress, reading or writing a data regis­
ter produces invalid results. Use one of the following methods to avoid update
cycles:

• Monitor the register A update-in-progress (UIP) bit. The update cycle
begins 244 IlS after the RTC sets the UIP bit. Thus, if the UIP bit is
clear, the data registers will remain valid for at least 244 IlS.

• Enable the update-ended interrupt. This interrupt occurs after every
update cycle. The date and time registers remain valid for over 999 ms
after the RTC sets the UIF. If the processor must handle an excessive
amount of interrupts, the interrupt handler for the RTC should also moni­
tor the UIP bit.

• Monitor the register C periodic interrupt flag (PIF). The periodic interrupt
is synchronized with the update cycle. For any given periodic interrupt,
there is a time after the interrupt when the data registers are valid. For a
32.768 KHz time base, use only the rates between 3.90625 ms and 500
ms. Use the following formula to calculate the valid time span:

Time Span = 244 IlS + (RATE I 2)

Real-time Clock and CMOS RAM - Hardware Description 5- 13

Interrupts
Periodic Interrupt

If the PIE bit is set (1), the periodic interrupt triggers IRQ8 at the rate speci­
fied by the RATE SELECT bits in register A.

Update-Ended Interrupt
If the UIE bit is set (1), the update-ended interrupt triggers IRQ8 once per
second. The next RTC update cycle starts 1000 ms after the update-ended
interrupt.

Alarm Interrupt
During each RTC update cycle, the RTC compares the hour, minute, and
second registers to the corresponding alarm register. If the time and alarm reg­
isters match and if the AlE bit is set (1), the alarm interrupt triggers IRQ8.

5- 14 Real-time Clock and CMOS RAM - Hardware Description

Programming Example
The real-time clock (RTC) programming example demonstrates:

• Reading and writing the RTC registers and RAM
• Handling RTC interrupts
• Interpreting the data stored in the RTC RAM
• Calculating the checksum that ensures data integrity

The next programming example provides the following routines:

rd rtc

wr rtc

rtc cksum

btb

bed

rd date

rd time

shw date

shw time

shw_ddtyp

shw_hdtyp

rtc int hand

shw hdw

rtc init

rtc rest

rtc

Reads the indicated RTC register or RAM location

Writes the indicated RTC register or RAM location

Returns the calculated RTC RAM checksum

Returns the binary equivalent of a binary-coded decimal
(BCD) value

Returns the binary-coded decimal (BCD) equivalent of a
binary value

Reads the date-related registers and stores the results in
the indicated structure

Reads the time-related registers and stores the results in
the indicated structure

Displays the current date at location 0,0

Displays the current time at location 0,72

Displays the diskette drive types

Displays the hard disk drive types

Handles hardware interrupts from the RTC

Displays the hardware setup from RTC RAM

Initializes the RTC interrupt vector (70H) and the RTC
alarm registers

Restores the RTC interrupt vector (70H) and disables clock
interrupts

Provides menu selection of the examples and executes the
examples

Real-time Clock and CMOS RAM - Programming Example 5- 15

CAUTION
Improper programming or improper operation of this device can
cause the VAXmateworkstation to malfunction. The scope of
the next programming exa~ple is limited to the context pro­
vided in this manual. No other use is intended.

Constant Values
The file (kyb.h) that is inc1uqed defines constant values for function keys. See
Chapter 8 for information about keyboard programming.

The file (example.h) that is included defines the structure type MESSAGE that
is used to display the menu.

The constant valuesCKSUM START and CKSUM END define the start and
end offsets of the RTC RAM that is under checksum control. If any value in
this rang~ is changed, a new checksum must be written to reflect this change.

The constant values UJP. thtough VRT define bit values for registers A through
D. The value DIVIDE;_SEL defines the divider that divides the base input fre­
quenCY for the internal RTC operation. This value is related to the V AXmate
hardware design and· should be com~.idered a fixed value.

5~ 16 Real-time Clock and CMOS RA1d - Programming Example

#include "kyb.h"
#include "example.h"

/* reference function key constants */
/* reference menu structure */

/***.*************************/
/* define constants used in RTC example */
/***/

#define CKSUM_START Ox10 /* offset of start of checksum area */
#define CKSUM_END Ox20 /* offset of en4 of checksum area */

/* define register A bit values */

#define UIP Ox80 /* update in progress bit */
#define DIVIDE_SEL Ox20 /* FIXED VALUE - Hardware related */
#define RATE_SEL OxOd /* Programmer defined interrupt rate */

/* define register B bit values */

#define SET_UPD Ox80 /* disable updating ,of date ok time */
#define PIE Ox40 /* Periodic Interrupt Enable */
#define AlE Ox20 /* Alarm Interrupt Enable */
#define UIE Ox10 /* Update-Ended Interrupt Enable */
#define SQWE Ox08 /* Square Wave Enable */
#define OAT_MOD Ox04 /* Data mode (BCD = 0, Binary = 1) */
#define CLK24 Ox02 /* 12-hour clock = p, 24 hour = 1 */
#define DSE Ox01 /* Daylight Savings Enable */

/* define register C bit values */

#define IRQF Ox80 /* InterrllP~Request Flag */
#define PIF Ox40 /* Periodic Interrupt Flag */
#define AIF Ox20 /* Alarm :Interrupt Flag */
#define UIF Ox10 /* Upda,te-Ended Flag */

/* define register o 'bit values */

#define VRT Ox80 /* Valid Ram ok Time bit */

Real-time Clock and CMOS RAM - Programming Example 5- 17

])ata Structures
The structure type RTC defines the 1/0 space that accesses the real-time clock.
The offset within the real-time clock WOH-3FH) is written to an 8-bit latch that
addresses the real-time clock. This latch is located at 110 address 0070H. Data
is read or written through 1/0 address 0071H.

The structure type CMOS defines how each RAM location is used within the
real- time clock. The real-time clock dedicates the first 14 locations as regis­
ters. The remaining 50 bytes of RAM are defined according to industry­
standard usage.

The structure type DATIM provides a consistent format for moving date and
time information.

/***/
/* declare structures used in RTC example */
/***/

typedef struct
{

unsigned char addr_port;
unsigned char data_port;

} RTC;

typedef struct
{

unsigned char seconds;
unsigned char aIr_sec;
unsigned char minutes;
unsigned char aIr_min;
unsigned char hours;
unsigned char alr_hr;
unsigned char dow;
unsigned char dom;
unsigned char month;
unsigned char year;
unsigned char rega;
unsigned char regb;
unsigned char regc;
unsigned char regd;
unsigned char diag;
unsigned char reset;
unsigned char ddtyp;
unsigned char reserv1;
unsigned char hdtyp;
unsigned char reserv2;

/* write RTC/CMOS address to this port */
/* read/write data through this port */

/* seconds (0-59) current time */
/* seconds alarm */

/* minutes (0-59) current time */
/* minutes alarm */

/* hours (0-11/23) current time */
/* hours alarm */

/* day-of-week (1-7) */
/* day-of-month (1-28/29/30/31) */

/* month (1-12) current date */
/* year (0-99) current date */

/* register A */
/* register B */
/* register C */
/* register D */

/* diagnostics byte */
/* reason for reset */

/* diskette drive type */
/* reserved byte */

/* hard disk type */
/* reserved byte */

5- 18 Real-time Clock and CMOS RAM . Programming Example

unsigned char syscfg; /* system configuration byte */
unsigned char bmeml; /* base memory size low byte */
unsigned char bmemh; /* base memory size high byte */
unsigned char lememl; /* expansion memory size low byte */
unsigned char lememh; /* expansion memory size high byte */
unsigned char reserv3[Ox2e - Ox19]; /* reserved */
unsigned char cksumh; /* high byte of checksum (always 0) */
unsigned char cksuml; /* low byte of checksum */
unsigned char hememl; /* expansion memory size low byte */
unsigned char hememh; /* expansion memory size high byte */
unsigned char century; /* century byte of date (19 from 1986) */
unsigned char info; /* information flag */
unsigned char reserv4[Ox40 - Ox34]; /* reserved */

} CMOS;

typedef struct
{

int seconds; /* seconds (0-59) */
int minutes; /* minutes (0-59) */
int hours; /* hours (0-11/23) */
int dow; /* day-of-week (1-7) */
int dom; /* day-of-month (1-28/29/30/31) */
int month; /* month (1-12) */
int year; /* year (century * 100 + year register) */

} DATIM;

Real-time Clock and CMOS RAM - Programming Example 5- 19

Reading the Registers and RAM
The function rd rtc reads the indicated byte of real-time clock RAM. Before
accessing the bYte, the offset is compared to the range OOH-09H. This is the
offset range of the data registers, which are invalid during update cycles. If the
offset falls within this range, the read is synchronized with the update-in­
progress bit.

/ ••••••••• *.*************************.**********************************/
/* rd_rtc() - read an RTC byte (if date or time, monitor UIP bit) */
/***/

int rd_rtc(offset)

int offset;

{

RTC *prtc;
CMOS *pcmos;
unsigned int intr_flg;
unsigned char retval;

prtc = (RTC *)Ox10;
pcmos = 0;
if(offset < (int)(lpcmos->rega»
{

while (1)
{

/* read RTC byte */

/* byte offset to read *1

/* ptr to address l data ports */
/* ptr to RTC/CMOS structure */

/* CPU IF state */
/* value to return */

/* assign I/O address *1
/* structure offset is zero */

1* need to monitor UIP ? */

1* break out when ready */

intr_flg = int_off();
outp(lprtc->addr_port, lpcmos->rega);
if(inp(lprtc->data_port) l UIP)

/* no interrupts allowed */
/* set to reg A */
/* test UIP bit */

/* allow interrupts *1

}

}
}

. int_on(intr_flg);
else break;

else intr_flg = int_off();
outp(lprtc->addr_port, offset);
retval = inp(lprtc->data_port);
int_on(intr_flg);
return(retval);

/*
1*

no interrupts allowed
set to desired offset

/* read data
1* allow interrupts
/* return data byte

5- 20 Real-time Clock and CMOS RAM - Programming Example

*/
*/
*/
*/
*/

Writing the Registers and RAM
The function wr rtc writes the indicated byte of real-time clock RAM. Before
accessing the byte, the offset is compared to the range OOH-09H. This is the
offset range of the data registers, which are invalid during update cycles. If the
offset falls within this range, the write is synchronized with the update-in­
progress bit.

/***/
/* wr_rtc() - write an RTC byte */
/***/

void wr_rtc(offset, value)

int offset;
unsigned char value;

{

RTC *prtc;
CMOS *pcmos;
unsigned int intr_flg;

prtc = (RTC *)Ox70;
pcmos = 0;
if(offset < (int)(.pcmos->rega»
{

while (1)
{

/* write RTC byte */

/* offset to write */
/* byte value to write */

/* ptr to address • data ports */
/* ptr to RTC/CMOS structure */

/* CPU IF state */

/* assign I/O address */
/* structure offset is zero */

/* need to monitor UIP ? */

/* break out when ready */

intr_flg = int_off();
outp(.prtc->addr_port, .pcmos->rega);
if(inp(.prtc->data_port) • UIP)

/* no interrupts allowed */
/* set to reg A */
/* test UIP bit */

/* allow interrupts */

}

}
}

int_on(intr_flg);
else break;

else intr_flg = int_off();
outp(.prtc->addr_port, offset);
outp(.prtc->data_port, value);
int_on(intr_flg);

/* no interrupts allowed */
/* set to desired offset */

/* write data */
/* allow interrupts */

Real-time Clock and CMOS RAM - Programming Example 5- 21

Calculating the Checksum
The function rtc cksum calculates the checksum and returns the result to the
caller. The checksum is the sum, modulo 256, of all bytes in the range
CKSUM_START through CKSUM_END.

/***/
/* rtc_cksum() - calculate the CMOS checksum and return its value */
/***/

unsigned char rtc_cksum() /* calculate the CMOS checksum */
{

int i; /* loop control */
/* accumulates the checksum */ unsigned char sum;

sum = 0; /* sum starts out zero */
for(i = CKSUM_START; i <= CKSUM_END; i++) /* all checksum bytes */

sum += rd_rtc(i); /* read data and add to sum */
return(sum); /* return calculated checksum */

}

5- 22 Real-time Clock and CMOS RAM - Programming Example

Converting Binary-Coded Data
The ROM BIOS defines the data mode as binary-coded decimal (BCDI and
therefore, so does this example. This requires converting between BCD and
binary. The function btb converts a BCD value to its binary equivalent. The
function bed converts a binary value to its BCD equivalent.

/***/
/* btb - convert bed value to binary integer value */
/***/

btb(bcd_val) /* bed to binary integer */

unsigned char bcd_val; /* bed value */

{ /* assume valid bed value */

return«(bcd_val » 4) * 10) + (bcd_val l OxOf»;
}

/***/
/* bed - convert binary value to bed value */
/***/

unsigned char bcd(val)

unsigned char val;

{

unsigned char tmp;

}

tmp = (val / 10) « 4;
tmp 1= val % 10;
return(tmp);

/* binary to bed */

/* binary value */

/* assume valid bed value */

/* tens in upper nibble */
/* ones in lower nibble */

/* return BCD value */

Real-time Clock and CMOS RAM - Programming Example 5- 23

Reading the Date
The function rd _date reads all of the date-related registers and stores the
results in the DATIM structure pointed to by the calling parameter. It can be
called at any time without restriction.

The century byte is not a real-time clock register. The century byte is an
industry-standard location that overcomes the lOO-year calendar limitation. It
must be updated manually or by software.

/***/
/* rd_date() - read date and write to DATIM structure */
/***/

void rd_date(pd) /* read the date */

DATIM *pd:

{

CMOS *pcmos:

}

pcmos .. 0:
pd->dow
pd->dom
pd->month
pd->year
pd->year

/* where to store data */

/* ptr to RTC/CMOS structure */

- btb(rd_rtc(ipcmos->dow»:
.. btb(rd_rtc(ipcmos->dom»:
.. btb(rd_rtc(ipcmos->month»;
- btb(rd_rtc(ipcmos->century»

+= btb(rd_rtc(ipcmos->year»:

/* structure offset is zero */
/* day-of-week */

/* day-of-month */

* 100:
/* month */

/* century */
/* year */

6- 24 Real-time Clock and CMOS RAM - Programming Example

Reading the Time
The function rd time reads all of the time-related registers and stores the
results in the DATIM structure pointed to by the calling parameter. This func­
tion assumes the use of the 24-hour clock mode. It can be called at any time
without restriction.

/***/
/* rd_time() - read time and write to DATIM structure */
/***/

DATIM *pd;

{

CMOS *pcmos;

}

pcmos = 0;
pd->seconds
pd->minutes
pd->hours

/* read the time */

/* where to store data */

/* ptr to RTC/CMOS structure */

/* structure offset is zero */
btb(rd_rtc(&pcmos->seconds»; /* seconds */

= btb(rd_rtc(&pcmos->minutes»; /* minutes */
= btb(rd_rtc(&pcmos->hours»; /* hours */

Real-time Clock and CMOS RAM - Programming Example 5- 25

Displaying the Date
The function shw date displays the current date starting at row 0 and column
O. It can be called at any time without restriction.

/***/
/* define some day and month names */
/***/
char day_name [8] [10]
{

};

"Invalid" ,
"Sunday" ,"Monday", "Tuesday", "Wednesday",
"Thursday", "Friday". "Saturday"

/* rtc is 1 based */

char month_name [13] [10]
{

"Invalid".
"January" ,"February". "March"
"May" • "June" • "July"
"September". "October" . "November".

};

/* rtc is 1 based */
"April".
"August".
"December"

/***/
/* shw_date - show date starting at row 0 column 0 */
/***/

DATIM dt; /* date and time structure */
/* place to store output */ char sdate[50];

}

rd_date(&dt); /* read current date */
sprintf(sdate. "%9s %9s %2d. %04d". &day_name[dt.dow] [0] ,

&month_name[dt.month] [0] , dt.dom. dt.year);
disp_str(O, 0, sdate); /* display it */

5- 26 Real-time Clock and CMOS RAM - Programming Example

Displaying the Time
The function shw time displays the current time starting at row 0 and column
72. It can be called at any time without restriction.

/***/
/* shw_time - show time on row 0 column (last_column - 7) */
/***/

shw_timeO
{

DATIM dt;
char stime[50];

}

rd_time(It;dt);
sprintf(stime, "%2d:%02d:%02d" ,
disp_str(O, 72, stime);

/* date and time structure */
/* place to store output */

/* read current time */
dt.hours, dt.minutes, dt.seconds);

/* display it */

Real-time Clock and CMOS RAM - Programming Example 5- 27

Displaying the Diskette Drive Type
The function shw ddtyp is a text-formatting subroutine that generates the
diskette drive type according to the calling parameters. It is only called by the
function shw hdw.

1***1
1* shw_ddtyp - show diskette drive type *1
1***1

void shw_ddtyp(pc, ddtyp, drive) 1* show diskette drive type *1

char *pc;
char ddtyp;
char drive;

1* buffer to write to *1
1* diskette drive type *1

1* drive letter *1

{

int i; 1* temp for index *1

}

i = sprintf (pc, liDiskette drive %c is ", drive); 1* general opening *1
switch (ddtyp)
{

}

case 0:
sprintf(lpc[i], "non-existent"):
break;

case 1:
sprintf (lpc [1], "48-TPI double sided"):
break:

1* no drive *1

1* 48 tpi dsdd *1

case 2: 1* 96 tpi dsdd hc *1
sprintf(lpc[i], "an RX33 96-TPI double-sided, high-capacity"):
break;

default:
sprintf (&:pc [1], "an unknown type");
break:

1* unknown type *1

5- 28 Real-time Clock and CMOS RAM - Programming Example

Displaying the Hard Disk Type
The function shw hdtyp is a text-formatting subroutine that generates the hard
disk drive type according to the calling parameters. It is only called by the
function shw hdw.

/***/
/* shw_hdtyp - show hard disk type */
/***/

void shw_hdtyp(pc, hdtyp, drive) /* show hard disk type */

char *pc:
char hdtyp:
char drive:

{

int i:

}

i = sprintf (pc , "Hard disk drive %c is ", drive):
if (hdtyp) sprintf (II:pc [1], "type %d", hdtyp):
else sprintf(II:pc[i], "non-existent"):

/* hard disk type */
/* drive letter */

/* drive type */
/* no drive */

Real-time Clock and CMOS RAM - Programming Example 5- 29

Handling the Clock Interrupts
The function rtc int hand is the real-time clock interrupt handler. It checks for
all of the three possible interrupts, update-ended flag (UIF), alarm flag (AF),
and periodic interrupt flag (PIF). After handling the interrupts, the interrupt
handler notifies the interrupt controller.

The update-ended interrupt occurs once per second. At each interrupt, the in­
terrupt handler increments the global flag, time flag, to indicate that at least
one second has elapsed. -

The alarm interrupt is initialized to the first second of every day. At each inter­
rupt, the interrupt handler increments the global flag, date_flag, to indicate
that at least one day has elapsed.

The periodic interrupt is initialized to a rate of 125 ms. At each interrupt, the
interrupt handler increments the global counter, metronome. The 8254 timer
and speaker example in Chapter 6 uses this counter for output timing. Also,
the periodic interrupt handler calls unbeep. If required, unbeep turns off the
bell (beep sound). The example programs use the speaker to generate a bell
(beep sound).

5- 30 Real-time Clock and CMOS RAM - Programming Example

/***/
/* rtc_int_hand() - real-time clock interrupt handler */
/***/
int time_flag; /* 1 second update flag */
int date_flag; /* 1 day update flag */
unsigned int metronome; /* timer for sound output */
int motor_flag; /* timer for diskette drive motors */
int head_settle; /* head settle timer for diskette drives */

void rtc_int_hand()
{

CMOS *pcmos;
unsigned char tmp;

pcmos = 0;
tmp = rd_rtc(&pcmos->regc);
if(tmp & UIF) time_flag++;
if(tmp & AIF) date_flag++; /*
if(tmp & PIF)
{

metronome++;
unbeepO;
if (motor 3lag)

if (--motor_flag
motor_off 0 ;

if (head_settle)
head_settle--;

0)

/* rtc int handler */

/* ptr to RTC/CMOS structure */
/* temp to read in reg C */

/* structure offset is zero */
/* read current interrupt requests */

/* time updates once per second */
alarm set for once per day at 00:00:00 */

/* periodic interrupt ? */

/* increment timing for speaker demo */
/* unbeep turns off speaker if bell */
/* if timing diskette drive motors */

/* if timed out */
/* call routine to turn motors off */

/* if timing head settle */
/* reduce count */

}

eoi(l) ; /* end of interrupt for interrupt controller */
}

Real-time Clock and CMOS RAM - Programming Example 5- 31

Interpreting the RAM Contents
The function shw hdw interprets the industry-standard locations in the real­
time clock RAM and displays the results. The ROM BIOS interprets this data
in the same manner.

/***/
/* sh_hdw() - show hardware setup in CMOS */
/***/

UDsigned char tmpj
unsigned int uij
CMOS *pcmosj
char *PCj
char line[612]j

#define ROW 16
#define COL 17

pcmos .. 0;
tmp - rd_rtc(ipcmos->syscfg);
sprintf (line , "%d diskette drive(s)
disp_str(ROW, COL, line);
switch«tmp i Ox30) » 4)
{

case 0:
pc .. "Invalid video type";
breakj

case 1:
pc = "40 column color graphics"j
breakj

case 2:
pc .. "80 column color graphics";
break;

case 3:

/* to hold CMOS byte read */
/* to hold memory size */

/* ptr to RTC/CMOS structure */

/* structure offset is zero */
/* read system config */

present", (tmp » 6) + 1) j

/* check video type */

/* not a valid type */

pc .. "Monochrome adapter with parallel port";
break;

}

disp_str(ROW + 1, COL, pc);
tmp = rd_rtc(ipcmos->ddtYP)j

/* display video type */
/* read diskette drive types */

5- 32 Real-time Clock and CMOS RAM· Programming Example

}

shw_ddtyp(line, tmp »4, 'A');
disp_str(ROW + 2, COL, line);
shw_ddtyp(line, tmp t OxOf, 'B');
disp_str(ROW + 3, COL, line);
tmp = rd_rtc(tpcmos->hdtyp);
shw_hdtyp(line, tmp »4, 'C');
disp_str(ROW + 4, COL, line);
shw_hdtyp(line, tmp t OxOf, 'D');
disp_str(ROW + 5, COL, line);
tmp = rd_rtc(tpcmos->bmemh);
ui = (unsigned int)tmp « 8;
tmp = rd_rtc(tpcmos->bmeml);
ui 1= (unsigned int)tmp;

/* get
/* display

/* get
display /*

drive a type */
drive a type */
drive b type */
drive b type */

/* read hard disk types
/* get drive c type

/* display drive c type
/* get drive d type

/* display drive d type
/* base memory high byte

/* shift and assign
/* base memory low byte

/* add low byte

*/
*/
*/
*/
*/
*/
*/
*/
*/

sprintf (line, "Base memory = %dK
disp_str(ROW + 5, COL, line);
tmp = rd_rtc(tpcmos->lememh);

bytes", ui);

ui = (unsigned int)tmp « 8;
tmp = rd_rtc(tpcmos->lememl);
ui 1= (unsigned int)tmp;
sprintf (line , "Expansion memory = %dK
disp_str(ROW + 6, COL, line);
tmp = rd_rtc(tpcmos->hememh);
ui = (unsigned int)tmp « 8;
tmp = rd_rtc(tpcmos->hememl);
ui 1= (unsigned int)tmp;

/* display base memory */
/* expanded memory high byte */

/* shift and assign */
/* expanded memory low byte */

/* add low byte */
bytes", ui);

/* display expanded memory */
/* expanded memory high byte */

/* shift and assign */
/* expanded memory low byte */

/* add low byte */
sprintf (line , "Expansion memory
disp_str(ROW + 7, COL, line);

%dK bytes", ui);
/* display expanded memory */

Real-time Clock and CMOS RAM - Programming Example 5- 33

Initializing the Real-Time Clock
To start up real-time clock interrupt processing, the rtc _init function:

• Disables real-time clock interrupts and update cycles
• Initializes the processor interrupt vector, the real-time clock control, and

alarm registers; and unmasks the interrupt controller input
• Enables the real-time clock interrupts and update cycles

/***/
/* rtc_init() - initialize alarms and vectors */
/***/

rtc_init 0
{

CMOS *pcmos;

}

pcmos = 0;
wr_rtc(kpcmos->regb,
imask(1, 0, 0);
iv_init(Ox70);
wr_rtc(kpcmos->rega, DIVIDE_SEL
wr_rtc(kpcmos->alr_hr, OxOO);
wr_rtc(kpcmos->alr_min, OxOO);
wr_rtc(kpcmos->alr_sec, OxOO);
wr_rtc(kpcmos->regb, AlE I UIE
imask(1, 0, 1);

/* ptr to RTC/CMOS structure */

/* structure offset is zero */
/* prepare to init */

/* disable PIC interrupt */
/* initialize RTC interrupt vector */
RATE_SEL); /* set pi rate */

I PIE I CLK24

/* write hours alarm */
/* write minutes alarm
/* write seconds alarm
); /* enable clock

/* enable PIC interrupt

*/
*/
*/
*/

5- 34 Real-time Clock and CMOS RAM - Programming Example

Restoring the Interrupt Vectors
To shut down real-time clock interrupt processing, the rtc Jest function:

• Disables the real-time clock interrupts
• Masks the interrupt controller input
• Restores the interrupt vector to its previous condition

NOTE
Update cycles remain enabled. If update cycles are disabled, the
clock stops.

/***/
/* rtc_rest() - disable interrupts and restore vectors */
/***/

rtc_restO
{

CMOS *pcmos;

}

pcmos = 0;
wr_rtc(&pcmos->regb, CLK24);
imask(l, 0, 0);
iv_rest(Ox70);

/* ptr to RTC/CMOS structure */

/* structure offset is zero */
/* disable clock interrupts */

/* disable PIC interrupt */
/* restore interrupt vector */

Real-time Clock and CMOS RAM - Programming Example 5- 35

Real-Time Clock Example
The function rtc displays the menu, accepts input, and execute~ the examples.

/***/
/* rtc() - execute RTC examples */
/***/

rtcO
{

static MESSAGE mrtc[) = /* rtc menu */
{

{ 3, 24, "Real-time Clock and CMOS Example" },
{ 6, 24, "Fl.
{ 6, 24, "F2.
{ 7, 24,. "F3.
{ 8, 24, "F4.
{ 9, 24, "F5.
{ 10, 24, "F6.
{ 11, 24, "F7.
{ 12, 24, "FlO.
{ 0, 0, o },

};

unsigned char tmp;
unsigned char sum;
char line[512);
int i;
int r;
DATIM dt;
CMOS *pcmos;

#define ROW 16
#define COL 17

pcmos = 0;
line[O) = 0;
while (1)
{

Display CMOS hardware setup" },

Display CMOS checksum" },
Display calculated CMOS checksum" },

Set CMOS checksum" },
Set date" },
Set time" },
Set day-of-week" },

Return to Main menu" },

/* to hold CMOS byte read */
/* to hold calculated checksum */

/* to hold input line */
/* to hold menu selection */

/* temp value */
/* place to store date t time */
/* ptr to RTC/CMOS structure */

/* structure offset is zero */
/* null terminated */

/* forever (see FlO) */

disp_menu(mrtc);
switch(line[O)
{

/* display the rtc menu */
/* determine menu selection */

5- 36

case Fl:
sh_hdwO;
break;

/* show CMOS hardware */

Real-time Clock and CMOS RAM - Programming Example

case F2: /* get current checksum */
sprintf (line , "CMOS checksum = %02x",
rd_rtc(&pcmos->cksuml»;
disp_str (ROW , COL, line);
break;

case F3: /* calculate checksum */
sprintf (line, "Calculated checksum = %02x", rtc_cksumO);
disp_str(ROW, COL, line);
break;

case F4:
sum = rtc_cksum(); /* write calculated checksum */
wr_rtc(&pcmos->cksuml, sum);
sprintf (line , "Checksum byte set to %02xH", sum);
disp_str(ROW, COL, line):
break;

case F6:
while (1)
{

/* set new date */

, COL,"Enter date as MM/DD/YVYY"); disp_str(ROW
disp_str(ROW +
disp_str(ROW +
disp_str(ROW +

9999)");

1, COL, "Where MM represents the month (1 - 12)");
2, COL, "Where DD represents the day (1 - 31)"):
3, COL, "Where YVYY represents the year (0000 -

disp_str(ROW + 4, COL, "Date: II):
get_keys(ROW + 4, COL + 6, line);
r = sscanf (line , "%2d/%2d/%4d", &dt.month,

&dt.dom, &dt.year):
if(r != 3) continue:
else break:

} /* note: no limit check */
wr_rtc(&pcmos->month, bcd(dt.month»: /* write month */
wr_rtc(tpcmos->dom, bcd(dt.dom»: /* write day-of-month */
wr_rtc(&pcmos->year, bcd(dt.year % 100»: /* write year */
wr_rtc(&pcmos->century, bcd(dt.year / 100»; /* write century */
rd_rtc(&pcmos->regd): /* make date valid, set the VRT bit */
shw_dateO:
disp_menu(mrtc):
break:

case F6:
while (1)
{

/* set new time */

, COL, "Enter time as HH:MM:SS"):

Real-time Clock and CMOS RAM - Programming Example 5- 37

disp_str(ROW + 1, COL, "Where HH represents the hour (0 - 23)"):
disp_str(ROW + 2, COL, "Where MM represents the minutes (0 - 69)"):
disp_str(ROW + 3, COL, "Where SS represents the seconds (0 - 69)");
disp_str(ROW + 4, COL, "Time: ");
get_keys(ROW + 4, COL + 6, line);
r = sscanf (line , "%2d:%2d:%2d", tdt.hours, tdt.minutes,

tdt.seconds);

}
}

}

if(r != 3) continue;
else break;

} /* note: no limit check */
wr_rtc(tpcmos->hours, bcd(dt.hours»; /* write hours */
wr_rtc(tpcmos->minutes, bcd(dt.minutes»; /* write minutes */
wr_rtc(l:pcmos->seconds, bcd(dt.seconds»; /* write seconds */
rd_rtc(tpcmos->regd); /* make time valid, set the VRT bit */
shw_timeO;
disp_menu(mrtc);
break;

case F7:
while (1)
{

disp_str(ROW, COL, "Enter day-of-week (1 - 7): II);
get_keys (ROW, COL + 27, line);
r = sscanf(line, "%d" , tdt.dow);
if(r != 1) continue;
else break;

} /* note: no limit check */
wr_rtc(tpcmos->dow, bcd(dt.dow»; /* write day-of-week */
rd_rtc(tpcmos->regd); /* make DOW valid, set the VRT bit */
shw_dateO;
disp_menu(mrtc);
break;

case FlO:
return;

/* return to caller (main menu) */

line[O] = get_fkey(); /* get a function key for menu selection */

5- 38 Real-time Clock and CMOS RAM - Programming Example

Overview

Chapter 6
Three-Channel Counter

and Speaker

The VAXmate processor board has an 8254 programmable interval timer that
provides three independent I6-bit counters for counting or timing. All three
counters have a 1.1931816 MHz clock input. The counters are programmable
and are used by the ROM BIOS as follows:

• Counter 0 is a general purpose timer to provide:

A time-of-day clock
A diskette drive motor timer
A screen blanking timer

Its output goes to IRQO of the interrupt logic.

CAUTION: Reprogramming this counter can destroy the timing.

• Counter 1 provides the dynamic RAM refresh timing. The ROM BIOS
programs it for a 15 I1S cycle time. Its output is connected to the refresh
counter.

CAUTION: Reprogramming this counter can destroy the refresh cycle.

• Counter 2 provides a frequency-modulated square wave output for the
speaker interface.

Additional Source of Information
The following Intel Corporation document provides additional information on
the 8254 three-channel counter/timer.

• Microsystems Components Handbook {Publication Number 230843)

Three-Channel Counter and Speaker - Hardware Description 6 - 1

Block Diagram
Figure 6-1 shows the block diagram of an 8254. The data bus buffer interfaces
the I/O data bus; and the read/write logic interfaces the address bus on the
CPU module.

I/O
Data
Bus 'I

RD
va
AO
Al

CS

Data
Bus

Buffer

I
Read/
Vrite
Logic --

I

Control -
Vord

Register

1

..--

I
N
T
E
R
N
A
L

B
U
S

~

Time of
Day Clock.

Counter 0

I

Refresh
Timing

Counter 1

I

Speaker
Vaveform

Counter 2

I

Clk 0
Gate 0

Out 0
(IRQO)

Clk 1
Gate 1

Out 1
(Refresh)

Clk 2
Gate 2

Out 2
(Speaker)

Figure 6·1 Three-Channel Counterrrimer Block Diagram

Counter Description
The three 16-bit synchronous down counters are identical in operation, but fully
independent. Each counter has two 8-bit input latches Icountregisters), two 8-
bit output latches, and a counting element. The counter control logic enables
only one latch at a time. Therefore, writing a 16-bit count requires two 8-bit
writes to the same register and reading a 16-bit count requires two 8-bit reads
from the same register.

The control word register provides for 8-bit and 16-bit counts. The 8-bit count
can be written to either the least significant byte ILSB) or the most significant
byte IMSB). Loading one 8-bit count register of a 16-bit pair clears the other
count register. That is, writing an 8-bit count to the LSB clears the MSB and
writing an 8-bit count to the MSB clears the LSB.

6 - 2 Three-Channel Counter and Speaker - Hardware Description

The signals CLK, GATE, and OUT are all connected to control logic on the
CPU module. A 14.31818 MHz signal divided by 12 provides a 1.1931816 MHz
clock to all three counters.

A high level (1t at the GATE input enables counting and a low level (Ot at the
GATE input disables counting.

Table 6-1 shows the CLK input frequency, the GATE source, and the destina­
tion of the OUT signal.

Table 6-1 Counter Signals

Counter

o
1
2

CLK Frequency

1.1931816 MHz
1.1931816 MHz
1.1931816 MHz

GATE Source

Tied high
Tied high
System CSR (bit Ot

OUT Destination

IRQO
Refresh timer
Speaker driver

Mode Definitions
The three-channel counter/timer has six modes of operation:

Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

Interrupt on Terminal Count
Hardware Retriggerable One-Shot (not usedt
Rate Generator
Square Wave Mode
Software Triggered Strobe
Hardware Triggered Strobe (retriggerablet

Table 6-2 lists the default mode and function of each counter in the V AXmate
workstation (as established by the ROM BIOSt.

Table 6-2 Modes Used by the Three Counters

Counter Function Mode Description Output

0 Time-of-day clock 5 Hardware trig- IRQO
gered strobe

1 Refresh timing 2 Rate generator Refresh counter

2 Speaker waveform 3 Square wave Speaker driver

Three-Channel Counter and Speaker - Hardware Description 6 - 3

Mode 0 (Interrupt on Terminal Count)
Mode 0 is used for one-shot event counting.

Initializing Mode 0
Programming the control word for mode 0 causes OUT to go low. The GATE
input has no effect on the OUT signal.

If a new count is written during counting, the new count is loaded on the next
CLK pulse and counting continues from the new count.

Mode 0 Cycle
Writing a new count starts the cycle. Where n equals the count, the mode 0
cycle is n + 1 CLK pulses long. During the start of the cycle, the OUT signal
is low for n CLK pulses (while the counter decrements from n to 0.) On the
next CLK pulse, the OUT signal makes a transition from low-to-high. The OUT
signal remains high until the control word is written or until a new count is
written.

Mode 1 (Hardware Retriggerable One-Shot)
Mode 1 is used for one-shot event counting. Because the GATE input is the
trigger, mode 1 is viable only on counter 2 (the GATE input of counters ° and
1 are tied high.) Mode 1 could be used for sound generation, but it is not nor­
mally used on the V AXmate workstation.

Initializing Mode 1
Programming the control word for mode 1 and writing a new count causes
OUT to go high and arms the trigger. The GATE input has no effect on the
OUT signal.

Writing a new count during counting has no effect on the current count.
However,.if the GATE input is triggered, the cycle restarts with the new count.

Mode 1 Cycle
With the trigger armed, a low-to-high transition at the GATE input triggers
the cycle. On the next CLK pulse, the count is loaded and the OUT signal
makes a high-to-Iow transition. Where n equals the count, the OUT signal re­
mains low for n CLK pulses. That is, when the count decrements to 0, the
OUT signal goes high.

After the trigger is armed for the first time, the trigger remains armed until
the control word is reprogrammed. Thus, after a count has decremented to 0,
triggering the GATE input restarts the cycle. The count is reloaded

6 - 4 Three-Channel Counter and Speaker - Hardware Description

automatically.

Triggering the GATE input before a count decrements to 0 restarts the cycle
on the next CLK pulse. The count is reloaded automatically. Because the count
did not expire, the OUT signal remains low.

Mode 2 (Rate Generator)
Where n equals the initial count, mode 2 functions like a divide by n counter.
It generates pulses at a rate equal to the input frequency divided by the initial
count I nl. Mode 2 is periodic, repeating the cycle every n CLK pulses.

The ROM BIOS uses counter 1 in mode 2 to provide the refresh timing signal.

Initializing Mode 2
Programming the control word for mode 2 causes OUT to go high. Providing
that the GATE input is high, the cycle starts 1 CLK pulse after the initial
count is written.

If the GATE input goes low, the OUT signal goes high immediately. On the
CLK pulse following a low-to-high transition at the GATE input, the counter
reloads the initial count. Thus, the GATE input can synchronize the count to
an external event.

Writing a new count during counting has no effect on the count for the current
cycle. When the cycle repeats, the count is reloaded with the new count.
However, if the GATE input is triggered, the new count is loaded on the next
CLK pulse and cycle restarts.

Mode 2 Cycle
Where n is the initial count, the mode 2 cycle is n CLK pulses long. During
the start of the cycle, the OUT signal is high. The OUT signal remains high
until the count decrements to 1. When the count decrements to 1, the OUT
signal makes a high-to-Iow transition and the counter reloads the initial count.
The OUT signal is low only for that CLK pulse. On the next eLK pulse, the
OUT signal goes high and the cycle repeats.

NOTE
In mode 2, a count of 1 is invalid.

Mode 3 (Square Wave Mode)
Mode 3 generates a square wave at the OUT signal. Where n is the count, the
OUT signal has a frequency equal to CLK I n. When n is an even number, the
OUT signal is high for n I 2 CLK pulses and then low for n I 2 CLK pulses.
When n is an odd number, the OUT signal is high for In + 11 I 2 CLK pulses
and then low for In - 11 I 2 CLK pulses.

Three-Channel Counter and Speaker - Hardware Description 6 - 5

Initializing Mode 3
Programming the control word for mode 3 causes OUT to go high. Providing
that the GATE input is high, the cycle starts 1 clock pulse after the initial
count is written.

If the GATE input goes low, the OUT signal goes high immediately. On the
CLK pulse following a low-to-high transition at the GATE input, the counter
reloads the initial count. Thus, the GATE input can synchronize the count to
an ~xternal event.

Writing a new count during counting has no effect on the count for the current
cycle. When the cycle repeats, the count is reloaded with the new count.
However, if the GATE input is triggered, the new count is loaded on the next
CLK pulse and cycle restarts.

Mode 3 Cycle
In the first CLK pulse, the initial count is loaded. If the count is odd, then
count - 1 is loaded. The cycle starts with the next CLK pulse.

With each succeeding CLK pulse, the count is decremented by two. When the
count decrements to 0, the initial count is tested for an odd or even value. If
the initial count was even, the OUT signal makes an immediate transition from
high-to-Iow. If the initial count was odd, the counter waits one more CLK pulse
and then makes a high-to-Iow transition. The initial count is reloaded and dec­
remented by two, which starts the second half of the cycle. With each succeed­
ing CLK pulse, the count is decremented by two. When the count decrements
to 0, the OUT signal makes an immediate transition from low-to-high; the in­
itial count is reloaded and decremented by two, which starts a new cycle.

Mode 4 (Software Triggered Strobe)
In mode 4, the count cycle is triggered by writing a new count. Where n equals
the initial count, the OUT signal is high for n + 1 eLK pulses, low for 1 CLK
pulse, and then high until a new count is written.

Initializing Mode 4
Programming the control word for mode 4 causes OUT to go high. The GATE
input has no effect on the OUT signal.

If a new count is written during counting, the new count is loaded on the next
CLK pulse and counting continues from the new count.

For a 2-byte count, writing the first byte has no effect on counting. Writing the
second byte allows the count to be loaded on the next CLK pulse.

Writing a new count while the original count is counting allows the new count
to be loaded on the next CLK pulse.

6 - 6 Three-Channel Counter and Speaker - Hardware Description

Mode 4 Cycle
The mode 4 cycle is triggered by writing a new count. The new count is loaded
on the next CLK pulse, but not decremented. With each successive CLK pulse,
the count is decremented .. When the count decrements to 0, the OUT signal
goes low. It remains low for 1 CLK pulse. When the count decrements to
FFFFH, the OUT signal goes high. Until a new count is written, the OUT
signal remains high, which restarts the cycle.

Mode 5 (Hardware Triggered Strobe)
Because the GATE input is the trigger, mode 5 is viable only on counter 2 (the
GATE input of counters 0 and 1 are tied high.) Where n. equals the initial
count, the OUT signal is high for n. + 1 CLK pulses, low for 1 CLK pulse,
and then high until the GATE input triggers another cycle.

Initializing Mode 5
Programming the control word for mode 1 and writing a new count causes
OUT to go high and arms the trigger. The GATE input has no effect on the
OUT signal.

Writing a new count during counting has no effect on the current count.
However, if the GATE input is triggered, the cycle restarts with the new count.

Mode 5 Cycle
With the trigger armed, a low-to-high transition at the GATE input triggers
the cycle. The new count is loaded on the next CLK pulse, but not decre­
mented. With each successive CLK pulse, the count is decremented. When the
count decrements to 0, the OUT signal goes low. It remains low for 1 CLK
pulse. When the count decrements to FFFFH, the OUT signal goes high.

After the trigger is armed for the first time, the trigger remains armed until
the control word is reprogrammed. Thus, after a count has decremented to 0,
triggering the GATE input restarts the cycle.

Triggering the GATE input before a count decrements to 0 restarts the cycle
on the next CLK pulse. The count is reloaded automatically. Because the count
did not expire, the OUT signal remains high.

Three-Channel Counter and Speaker . Hardware Description 6 - 7

Registers
This section discusses the 8254 registers. Because bit 0 controls the GATE
input of counter 2 and bit 1 controls the output to the speaker, the system
register is also discussed here. Table 6-3 shows the addresses of the 8254 regis­
ters and the system register.

Table 6-3 8254 and System Register Addresses

Register RIW Address

8254 - Counter 0 R/W 0040H
8254 - Counter 1 R/W 0041H
8254 - Counter 2 R/W 0042H
8254 - Command Word W 0043H
System R/W 0061H

6 - 8 Three-Channel Counter and Speaker - Hardware Description

System Register (0061H)
7 654 3 2 1 o

RAM I/O COUNTER REFRESH ENABLE ENABLE SPEAKER COUNTER
PARITY CHECK 2 OUT REQUEST I/O RAM DATA 2
CHECK SIGNAL CHECK PARITY GATE

INPUT

Bit R/W Description

7 R RAM PARITY CHECK
0= Processor board RAM parity good
1 = Processor board RAM parity error

W Always 0

6 R 110 CHECK
0= No bus 110 error or option RAM parity error
1 = Bus 110 or option RAM parity error exists

W Always 0

5 R COUNTER 2 OUT SIGNAL
0= Counter 2 OUT signal is low
1 = Counter 2 OUT signal is high

W Always 0

4 R REFRESH REQUEST
0= Refresh request not active
1 = Refresh request active

The diagnostic software uses this bit to check the operation of the
DRAM refresh circuitry.

W Always 0

3 R/W ENABLE 110 CHECK
0= Enables checking of the bus 1/0 check line and option RAM

parity (enabled by ROM BIOS)
1 = Disable bus 1/0 error checking

2 R/W ENABLE RAM PARITY CHECK
0= Enable processor board RAM parity checking (enabled by

ROM BIOS)
1 = Disable processor board RAM parity checking

Three-Channel Counter and Speaker - Hardware Description 6 - 9

Bit RIW Description (System Register - cont.)

1 R/W SPEAKER DATA
o = No sound output from speaker
1 = Sound output from speaker (Counter 2 OUT signal must be

high or generating a frequency)

The output of this bit is ANDed with the Counter 2 OUT
SIGNAL. Assuming that the counter 2 OUT signal is high, tog­
gling this bit generates a pulse train to the speaker driver.
Otherwise, to enable sound output to the speaker, this bit must
equal 1.

o R/W COUNTER 2 GATE INPUT

6- 10

o = Counter 2 GATE input is low
1 = Counter 2 GATE input is high

Three-Channel Counter and Speaker - Hardware Description

Control Word Register (OO43H)
7 6 5 4

I I

SELECT READ!
COUNTER WITE

I I

Bit RIW Description

7-6 W SELECT COUNTER
00 = Select counter 0
01 = Select counter 1
10 = Select counter 2
11 = Read-back command

5-4 W READ/WRITE
00 = Counter-latch command
01 = Read/Write LSB
10 = Read/Write MSB

3 2
I

MODE
SELECT

I

11 = Read/Write LSB first, then MSB *
3-1 W MODE SELECT

000 = Mode 0
001 = Mode 1
X10 = Mode 2
XII = Mode 3
100 = Mode 4
101 = Mode 5

o W BINARY CODED DECIMAL
o = Binary counter 16 bits .

1
I

I

1 = Binary-coded-decimal (BCD) counter (4 decades)

o
BINARY
CODED
DECIMAL

* The counter does not start counting until the second byte of the 2-byte
pair is written to the counter latch.

Three-Channel Counter and Speaker - Hardware Description 6 - 11

Counter-Latch Command (Control Word Register)

7 6 5 4 3 2 1 o

~~ COUNTER I 0 I 0 I 0 I 0 I 0 I 0 I
Bit R/W Description

7-6 W

5-0 W

SELECT COUNTER
00 = Select Counter 0
01 = Select Counter 1
10 = Select Counter 2
11 = Undefined

Always 0 for counter-latch command

Counter-latch commands do not affect the programmed mode of the counter.
The counter-latch command latches the contents of the counters without affect­
ing the count in progress. When the 8254 receives a counter-latch command, it
latches the selected counter into the counters output latch. The latched count
is held until read by the CPU (or until the counter is reprogrammed). After the
latched count is read, the output latch follows the count in the counter.

When a counter-latch command is issued for more than one counter, each
counter output latch holds the count until read. When any given counter is
latched two or more times without an intervening read, only the first latch
command is effective. When read, the count is the count latched by the first
counter-latch command.

The latched count must be read according to the programmed format (LSB,
MSB, or LSB and MSB).

6- 12 Three-Channel Counter and Speaker - Hardware Description

Read-Back Command (Control Word Register)

7 6 5 4 3 2 1 o
LATCH LATCH COUNTER COUNTER COUNTER
COUNT STATUS 2 1 0

SELECT SELECT SELECT
1 1 0

Bit R/W Description

7-6 W Always 11

5-4 W LATCH COUNT and LATCH STATUS
00 = Latch status and count of selected counter(s)
01 = Latch count of selected counter(s)
10 = Latch status of selected counter(s)
11= Undefined

3 W COUNTER 2 SELECT
0= Counter 2 not selected
1 = Counter 2 selected

2 W COUNTER 1 SELECT
0= Counter 1 not selected
1 = Counter 1 selected

1 W COUNTER 0 SELECT
0= Counter 0 not selected
1 = Counter 0 selected

0 W Always 0

The read-back command is written to the control word register. For the se­
lected counters, the read-back command latches a status byte and/or the cur­
rent count.

The status byte format is described under Status Response. The status byte is
read from the indicated counter register as a single 8-bit byte. When the read­
back command latches both status and count, the status byte is read first and
then the count. Thereafter, any read returns an unlatched count.

The latched count follows the format described under Counter-Latch Command.

If multiple read-back commands are issued without intervening reads, all but
the first are ignored. The status read is the status at the time of the first
read-back command.

Three-Channel Counter and Speaker - Hardware Description 6- 13

Status Response (Read-back Command)

7 6 5 4 3 2 1 o
I I I

BINARY
OUT NULL READI SELECTED CODED
PIN COUNT VRITE MODE DECIMAL

I I I

Bit RIW l>escription

7 R

6 R

5-4 R

3-1 R

o R

6- 14

OUT PIN
1 = OUT pin is high U)
o = OUT pin is low (0)

NULL COUNT
o = New count is loaded and is available for reading.
1 = Null count

A write to the control word register has occurred, which sets the
null count bit of specified counter. If the counter is programmed
for 2-byte counts, when the second byte is written, the null count
goes to 1.

READ/WRITE
00 = Counter-latch command
01 = Read/Write LSB
10 = Read/Write MSB
U = Read/Write LSB first, then MSB.

SELECTED MODE
000 = Mode 0
001 = Mode 1
X10 = Mode 2
XU = Mode 3
100 = Mode 4
101 = Mode 5

BINARY CODED DECIMAL
o = Binary counter 16 bits
1 = Binary-coded-decimal (BCD) counter (4 decades)

Three-Channel Counter and Speaker - Hardware Description

This page is intentionally blank.

Three-Channel Counter and Speaker - Hardware Description 6- 15

Programming Example
The three channel counter/timer and speaker programming example
demonstrates:

• Writing the counter/timer registers
• Enabling and disabling the output to the speaker
• Setting the output frequency to the speaker

The example provides routines as described in the following list:

wr cntl6
beep
unbeep
tim_spk

CAUTION

Writes a 16-bit value to the indicated counter
Enables the bell (beep) at the speaker
Disables the bell (beep) at the speaker
Initializes the counter, displays the menu, and executes the ex­
ample program

Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Constant Values
The included file kyb.h defines constant values for function keys. For informa­
tion about keyboard programming, see Chapter 8. For a listing of the file
kyb.h, see Appendix A.

The included file example.h defines the structure type MESSAGE that is used
to display the menu. For a listing of the fHe example.h, see Appendix A.

The constant value systat defines the offset of the system status register in
I/O space.

The constant values cwrdreg through count2 define the offset of the 8254
counter/timer registers in I/O space.

The constant values selcntO through rbcnt2 define the bit values of various
8254 counter/timer commands.

The constant value inpfreq defines the input frequency to all three counterl
timers.

6- 16 Three-Channel Counter and Speaker - Programming Example

#include "kyb.h"
#include "example.hl!

/* reference function key constants */
/* reference menu structure */

/***/
/* define constants used to program 8254 timer */
/***/

#define SYSTAT Ox61

#define CWRDREG Ox43
#define COUNTO Ox40
#define COUNT 1 Ox41
#define COUNT2 Ox42

#define SELCNTO OxOO
#define SELCNTI Ox40
'define SELCNT2 Ox80
'define SELRDBK Ox CO

'define LATCOM OxOO
'define RWLSB Oxl0
#define RWMSB Ox20
'define RWLSMS Ox30

'define TMODEO OxOO
'define TMODEI Ox02
'define TMODE2 Ox04
'define TMODE3 Ox06
'define TMODE4 Ox08
#define TMODE5 Ox09

#define BINDAT OxOO
#define BCDDAT OxOl

'define LATCNT Ox20
#define LATSTA Oxl0
#define RBCNTO Ox02
'define RBCNTI Ox04
'define RBCNT2 Ox08

'define INPFREQ 1193181L

/* system status register in I/O space */

/* control word register in I/O space */
/* counter 0 register in I/O space */
/* counter 1 register in I/O space */
/* counter 2 register in I/O space */

/* select counter 0 */
/* select counter 1 */
/* select counter 2 */
/* select read back */

/* select latch command */
/* read/write LSB */
/* read/write MSB */

/* read/write LSB then MSB */

/* select timer mode 0 */
/* select timer mode 1 */
/* select timer mode 2 */
/* select timer mode 3 */
/* select timer mode 4 */
/* select timer mode 5 */

/* binary count data */
/* binary coded decimal count data */

/* read back cmd latch count */
/* read back cmd latch status */

/* read back counter 0 */
/* read back counter 1 */
/* read back counter 2 */

/* 14.31818 Mhz / 12 - 1.1931816 Mhz */

Three-Channel Counter and Speaker - Programming Example 6- 17

Writing a Counter
The function wr cnt16 writes a 16-bit value to the indicated counter. A 16-bit
value is written 8-bits at a time (low byte firstl to the same port.

Making a Bell Sound
The function beep enables the speaker output at 1000 Hz. It provides the bell
(beep sound 1 for the ASCII character BEL (07HI. This function can be called at
any time. The speaker output is automatically disabled by the function unbeep.

The function unbeep monitors the variable beep flag. If required, it disables the
speaker. This function is called from within the real time clock interrupt han­
dler. It tracks the number of 125 ms periods that the speaker has been on for
a bell (beep soundl. After 500 ms total, the speaker output is disabled. If the
real time clock interrupts are not enabled, the speaker output will not be
disabled automatically.

6- 18 Three-Channel Counter and Speaker - Programming Example

1***1
1* wr_cnt16(} - write 16-bit value to counter *1
1***1

wr_cnt16 (counter , value}

unsigned char counter;
unsigned int value;

{

unsigned int intr_flag;

}

intr_flag = int_off(};
outp(counter I COUNTO, value i Oxff};
outp(counter I COUNTO, value » 8};
int_on(intr_flag};

1* which counter to set *1
1* 16-bit value *1

1* to hold current IF state *1

1* disable interrupts *1
1* write counter low byte "'/.

1* write counter high byte *1
1* enable interrupts *1

1***1
1* beep(} - start up beep sound at speaker *1
1***1
int beep_flag; 1* true while beeping *1

beepO
{

}

wr_cnt16(2, (int) (INPFREQ I 1000L)};
outp(SYSTAT, Ox03};
beep_flag '" 1;

1* set desired frequency *1
1* turn speaker on *1

1* set flag, speaker is on *1

1***1
1* unbeep(} - time to stop beep sound at speaker ? *1
1***1

unbeepO
{

}

if (beep_flag)
if(++beep_flag > 3}
{

}

outp(SYSTAT, OxOO};
beep_flag = 0;

1* are we making a beep sound *1
1* has it been on long enough *1

1* turn it off *1
1* reset flag *1

Three-Channel Counter and Speaker - Programming Example 6- 19

Counter and Speaker Example
The function tim spk initializes the counter, displays the-menu, and executes
the example. -

/***/
/* tim_spk() - execute timer and speaker examples */
/***/

tim_spkO
{

static MESSAGE mtim_spk[] =
{

/* menu for timer/speaker example */

{ 3, 24, "8254 Timer and Speaker Example" },
{ 5, 24, "Fl. Set frequency to speaker" },
{ 6, 24, "F2. Speaker on" },
{ 7, 24, "F3. Speaker off" },
{ 8, 24, "F4. DO-RE-MI" },
{ 9, 24, "FlO. Return to Main menu" },
{ 0, 0, o },

};

static int tone[8] = /* frequencies for notes to do-re-mi */
{ 2281, 2032, 1810, 1709, 1524, 1366, 1209, 1140 };

char line[512];
unsigned int freq;
unsigned int tval;
unsigned int i;

extern unsigned int metronome;

#define ROW 16
#define COL 17

line[O] = 0;

/* to hold input line */
/* to remember frequency */

/* general temporary */
/* iteration control */

/* defined in clock example */
/* maintains beat of do-re-mi */

freq = 1000; /* default frequency */
/* initialize counter mode */

outp(CWRDREG, SELCNT2 I RWLSMS I TMODE3 I BINDAT);
while (1)
{

disp_menu(mtim_spk);
switch(line[O])
{

case Fl: /* set output frequency */
disp_str(ROW, COL, "Enter new frequency (t9Hz - 20000Hz):");

6- 20 Three-Channel Counter and Speaker - Programming Example

}
}

}

get_keys (ROW, COL + 37, line);
sscanf(line, "%d" , lfreq);
if(freq < 18) freq = 19;
else if(freq > 20000) freq = 20000;
tval = (int)(INPFREQ / (long)freq);
wr_cnt16(2, tval);
disp_menu(mtim_spk);
break;

case F2:
outp(SYSTAT, Ox03);
break;

case F3:
outp(SYSTAT, OxOO);
break;

case F4:
i = 0;
metronome = Oxffff;
while (metronome) ;
wr_cnt16(2, tone[i++]);
outp(SYSTAT, Ox03);
while(i < 9)
{

}

if (metronome > 3)
{

wr_cnt16(2, tone[i++]);
metronome = 0;

outp(SYSTAT, OxOO);

/* turn speaker on */

/* turn speaker off */

/* play do-re-mi */
/* iteration count = 0 */

/* prepare counter to overflow */
/* wait until it overflows */

/* start first note */
/* enable speaker */

/* do all notes */

/* hold note for 500 ms */

/* next note */
/* reset counter */

/* redisplay time for menu ? */

tval = (int)(INPFREQ / (long)freq);
wr_cnt16(2, tval);

/* turn speaker off */
/* reset frequency */

break;

case FlO:
return;

/* return to caller */

line[O] = get_fkey(); /* get function key */

Three-Channel Counter and Speaker . Programming Example 6- 21

Introduction

Chapter 7
Video Controller

The V AXmate video controller is on the 110 board and drives a monochrome
monitor. The video controller can process 16 colors or shades of gray. In this
chapter, the term color also means shades of gray or intensity levels.

Industry-Standard Text and Graphics Features
The V AXmate video controller has the following industry-standard text and
graphics features:

• 80 x 25 and 40 x 25 text display

• 8 x 8 graphics character cell

• character attributes:

16 foreground colors
16 background colors or 8 background colors plus blink

• bit map graphics with industry-standard color palettes

320 x 200 4 colors
640 x 200 2 colors

Video Controller - Hardware Description 7 - 1

Enhancements to Industry-Standard Features
The video controller has the following enhancements to industry-standard
features:

• The screen resolution is 640 horizontal pixels by 400 scan lines.
Industry-standard graphics (200 scan lines) is accomplished by
displaying each scan line twice.

• The character pattern is 8 horizontal pixels by 16 scan lines, result­
ing in higher quality characters in text modes.

• The 256-character font RAM provides flexibility in terminal emula­
tion and multilingual applications.

• The dual-port video memory eliminates annoying screen flicker (dis­
abling the screen before accessing video memory is unnecessary).

• The 16-bit data path to video memory, coupled with the dual-port
access results in faster screen updates.

Industry-Standard Features Not Available
The video controller does not support these features:

• 160 x 100 16-color graphics mode
• 15.75 KHz monitor support
• Border color support
• Light pen support

Extra Features
The video controller has the following additional graphic features:

• 640 x 400 2-color graphics
• 640 x 400 4-color graphics
• 640 x 200 4-color graphics
• 800 x 252 4-color graphics
• 320 x 200 16-color graphics
• 256-character soft font

7 - 2 Video Controller - Hardware Description

Block Diagram
The video controller consists of a display processor and video memory that
reside on the 110 board. As shown in Figure 7-1, the display processor includes
a translation ROM, a 6845 CRT controller, text video logic, graphics video
logic, a video look-up table, and status and control registers.

VIDEO GATE ARRAY

16- I 64 KBYTE VIDEO RAM ~ ITEXT VIDEO LOGIC ~ BIT I
DATA
BUS I 4 KBYTE FONT RAM ~ IGRAPHICS VIDEO LOGIC I I

ITRANSLATION ROM 6845 CRT CONTROLLER ~

~
8 I STATUS REGISTERS I IVIDEO LOOK-UP TABLE I

BIT I
1/0
BUS I CONTROL REGIST2RSI I

I MONITOR INTERFACE I

Figure 7-1 Block Diagram of the VAXmate Video Controller

The translation ROM translates industry-standard color graphic adapter data to
data that is correct for the DIGITAL video controller.

The 6845 CRT Controller (CRTC) internal registers control horizontal and ver­
tical positioning. synchronization, video and cursor starting addresses, and
width of video display.

Two status registers monitor vertical synchronization, video blanking time, and
various modes in the control registers.

The two control registers enable the various text and graphics modes, enable
and disable the display, select the font RAM, select the video look-up table
(VLT) , and provide screen saver support.

Video Controller - Hardware Description 7 - 3

64K bytes of dual-ported memory. which maps into the address space of the
VAXmate CPU.

The display processor converts memory data into various raster formats. The
display processor generates IROB outputs that drive the monochrome monitor.
The V AXmate monitor displays the color information as different levels of in­
tensity ~shades of gray).

Additional Sources of Information
The following documents provide additional information on the video controller:

Device Company

6845-1 Motorola
HD46505S Hitachi

Document

8·Bit Microprocessor & Peripheral Data
8116·Bit Multi·Chip Microcomputer Data Book

7 - 4 Video Controller - Hardware Description

Video Modes
The video controller has several modes, some of which have a mode number
assigned indicating that the ROM BIOS supports these modes. For modes not
supported by the ROM BIOS, the hardware must be programmed directly.
Table 7-1 shows the available video modes.

For industry-standard color graphic adapters, the difference between a color
and a monochrome mode is the presence (color) or absence (monochrome) of the
color burst signal in the composite video output. Because the V AXmate video
controller does not provide a composite video output, there is no difference be­
tween the color and the monochrome modes.

On powerup or system reset, the video system is initialized to mode 03H.

Table 7-1 Available Video Modes

Mode Size Description

OOH
01H
02h
03h
04H
05h
06h

dOh
d1h
d2h

*
**

40 x 25
40 x 25
80 x 25
80 x 25
320 x 200
320 x 200
640 x 200
320 x 200
640 x 400
640 x 400
800 x 252
640 x 200

text mode monochrome (industry-standard)
text mode color (industry-standard)
text mode monochrome (industry-standard)
Text mode color (industry-standard)
4-color graphics mode (industry-standard)
monochrome graphics (industry-standard)
monochrome graphics mode (industry-standard)
16-color graphics mode (digital extended) *
2-color graphics mode (digital extended)
4-color graphics mode (digital extended)
4-color graphics mode (digital extended) * *
4-color graphics mode (DIGITAL extended) *

No ROM BIOS support
Limited ROM BIOS support

Video Controller - Hardware Description 7 - 5

Text Modes
The video controller has a 16 Kbyte text buffer in the address range B8000H­
BBFFFH. Video modes OOH, 01H, 02H, and 03H use the text buffer.
For modes OOH and 01H, the text buffer provides 8 display pages of 2048
bytes each. For modes 02H and 03H, the text buffer provides 4 display pages
of 4096 bytes each.

Character Buffer Format
A displayed character is represented by two consecutive bytes. The first byte,
of the 2-byte pair, is the character code. The character code is stored at an
even address. The second byte, of the 2-byte pair, is the attribute byte. The
attribute byte is stored at the odd address following the character code. Figure
7-2 shows the character code and attribute byte addressing. Table 7-2 defines
the meaning of each bit within the attribute byte.

B80008 B80018 B80028 880038 BBFFEH BBFFFH

Even Odd Even Odd Even Odd
-- -- -- -- -~--~-,-------,

Char Attr Char Attr Char Attr
Code Code Code

-- -- -- -- --'----""--------'

Figure 7-2 Character Buffer Format

Table 7-2 Attribute Byte Bit Definitions

Bit Symbol Definition

7 Ib Background intensity I Blink *
6 Rb Red contribution to background color
6 Gb Green contribution to background color
4 Bb Blue contribution to background color
3 If Foreground intensity
2 Rf Red contribution to foreground color
1 Gf Green contribution to foreground color
o Bf Blue contribution to foreground color

* The selection of background intensity or blink is determined by bit 7 of
control register A. Control register A is described later in this chapter.
When blink is enabled, the blink frequency is 1.9 Hz.

7 - 6 Video Controller - Hardware Description

Character Position to Memory Location Mapping
Character positions on the screen are identified as row (vertical} and column
(horizontal) locations. The first character is displayed in the upper-left corner of
the screen, which is location 0,0. To translate between screen positions and the
address within the text buffer, use the following formula:

Character code address = start_address + (row * 2 * Y) + (column * 2)

Attribute address = Character code address + 1

Where:

start address =
row =
column =

Y=

Display page start address (see Table 7-3)

o to 24

o to 79 (80 X 25 modes)
o to 39 (40 X 25 modes)

80 (80 X 25 modes)
40 (40 X 25 modes)

In text modes, the video processor supports multiple display pages. For direct
programming, registers R12 and R13 (described later in this chapter) control
the display-page start address. Each displayed character requires 2 bytes (char­
acter code and attribute byte). Therefore, the 80 x 25 modes require 4000
bytes (80 x 25 x 2) and the 40 x 25 modes require 2000 bytes
(40 x 25 x 2). The ROM BIOS also supports multiple display pages and
rounds the memory requirements to 4096 bytes and 2048 bytes respectively.
Table 7-3 shows the display page addresses as defined by the ROM BIOS.

Video Controller - Hardware Description 7 - 7

Table 7-3 Text Mode Display Pages (ROM BIOS)

Address 80 x 25 40 x 25
Display Page Display Page

B8000H 0 0

B8800H I

B9000H I 2

B9800H 3

BAOOOH 2 4

BA800H 5

BBOOOH 3 6

BB800H 7

Programmable Cursor
For text modes only, the video controller provides a programmable cursor blink
rate and cursor block size. The cursor blink is determined by bits 6-5 of regis­
ter RIO. The cursor blinks with alternate foreground and background color of
the character at the cursor position. The cursor block size is controlled by bits
4-0 of registers RIO and RI1. Registers RIO and Rll are discussed later in
this chapter.

7 - 8 Video Controller - Hardware Description

Programmable Character Generator (Font RAM)
The video controller has a 4 Kbyte programmable font RAM. The font RAM
can store patterns for 256 characters. Normally, the font RAM is accessible
only to the video controller. That is, the font RAM is not mapped into the
normal CPU address space. Accessing the font RAM requires that the video
mode be one of the text modes OOH, 01H, 02H, or 03H. Bit 4 of control regis­
ter B (described later in this chapterl controls access to the font RAM. When
bit 4 of control register B equals 1, access to the video text buffer is disabled
and access to the font RAM is enabled. Only even text buffer addresses are
connected to the font RAM. The text buffer to font RAM mapping appears as
follows:

Text Buffer Offset

B8000H
B8001H
B8002H
B8003H
B8004H
B8005H

B9FFDH
B9FFEH

NOTE

Font Ram Offset

OOOOH (first byte of font RAM)

0001H (second byte of font RAM)

0002H (third byte of font RAM)

OFFFH (last byte of font RAM)

The ROM BIOS does not support the use of the font RAM in
any graphics video mode.

A character pattern consists of 16 bytes of pixel information. Each byte repre­
sents 8 consecutive pixels of a horizontal scan line for the character. The most
significant bit (bit 7) corresponds to the left-most pixel (pixel 0). The least sig­
nificant bit (bit 0) corresponds to pixel 7. Each byte of the character pattern is
read or written to an even address. Thus, each character pattern requires 32
bytes of address space and an entire 256-character font requires 8K bytes. To
calculate the address of the first byte of a character pattern, use the following
formula:

Character pattern start address = B8000H + (character code * 32)

Video Controller - Hardware Description 7 - 9

Graphics Mode
Each pixel on the screen is mapped into a bit-field of the corresponding byte in
the display buffer. The width of the bit-field can be of 1, 2 or 4 bits depending
on whether a 2-color, 4-color, or 16-color format is chosen.

Mapping the Display to Address
The logical display consists of a rectangular array of 200, 252, or 400 scan
lines of pixels. For 200 scan line mode, the hardware generates two physical
scan lines for each logical scan line. Each scan line is represented by
(M / 8) * n consecutive bytes, where:

M = Number of pixels per scan line
n = 1, for I-bit per pixel ~2-color displayl
n = 2, for 2-bits per pixel ~4-color displayl
n = 4, for 4-bits per pixel U6-color displayl

The memory maps for various graphic formats are shown on the following
pages. Each memory map shows two or more blocks of memory that refer to:

Where:

~L MOD PI = R

L is the desired scan line
P is the number of memory blocks for the current video mode
R is the remainder of the division LIP

The remainder, R, specifies the memory block for a particular scan line.

7- 10 Video Controller - Hardware Description

320 x 200 4-Color Mode
ROM BIOS Video Modes: 04H and 05H - Industry-Standard

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-3 for the memory organization. See Figure 7-4 for the pixel to
bit-field map.

1------- 80 DYTES PER SCAN LINE --------1

T D8000B

o
I
G
I
T
A D9FOOB
L

DAOOOB
V
I
0
E
0

1 DDFOOB

B804FB

(L HOO 2) = 0

D9F3FB

DA09FB

(L HOO 2) = 1

DDF3FB

L = SCAN LINE 0 TO 199

Figure 7-3 Memory Organization for 320 x 200 4-Color Mode

7 6 5 4 3 2 I o

CDI CDO CDl CDO CDI CBO CDI CDO

LEFT HOST PIXEL RIGHT HOST PIXEL

Figure 7-4 Pixel to Bit-Field Map for 4-Color Mode

Video Controller - Hardware Description 7 - 11

320 x 200 16·Color Mode
No ROM BIOS Support· DIGITAL Extended

In 16-color mode, a single byte corresponds to 2 consecutive pixels on the
screen with the most significant bit of the byte corresponding to the left of the
screen. See Figure 7-5 for the memory organization. See Figure 7-6 for the
pixel to bit-field map.

160 BYTES PER SCAN LINE

T IBBmm (L HOD 4) = 0 B809PBI
D
I

.B9FOOB B9F3FB.

G
I I~ BA09PBI T (L HOD 4) = 1
A
L

. BBEAOB BBF3FB .

V I~ (L HOD 4) = 2 BC09PBI
I
D

.BDEAOB BDF3FB

E

B809PBI o IBBOOOB (L HOD 4) = 3 1 BFEAOB BFF3FB

L = SCAN LINE 0 TO 199

Figure 7-5 Memory Organization for 320 x 200 lO-Color Mode

7 6 5 4 3 2 1 0

CB3 CB2 CBt CBO

I
CB3 CB2 CBl eBO

LEFT PIXEL RIGHT PIXEL

Figure 7-6 Pixel to Bit-Field Map for lO-Color Mode

7 - 12 Video Controller - Hardware Description

640 x 200 2-Color Mode
ROM BIOS Video Mode: 06H - Industry-Standard

In 2-color mode, a single byte corresponds to 8 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-7 for the memory organization. See Figure 7-8 for the pixel to
bit-field map.

T
D
I
G
I
T
A
L

V
I
D
E
0

1

7

CBO

LEFT
HOST
PIXEL

B8000H

B9FOOH

BAOOOH

BBFOOH

Figure 7-7

6

CBO

80 BYTES PER SCAN LINE

B804FB

(L HOD 2) = 0

B9F3FB

BA09FB

(L HOD 2) = 1

BBF3FH

L = SCAN LINE 0 TO 199

Memory Organization for 640 x 200 2-Color Mode

5 4 3

CBO CBO CBO

2 1

CBO CBO

o

CBO

RIGHT
HOST
PIXEL

Figure 7-8 Pixel to Bit-Field Map for 2-Color (Monochrome) Mode

Video Controller - Hardware Description 7 - 13

640 x 200 4-Color Mode
No ROM BIOS Support· DIGITAL Extended

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-9 for the memory organization. See Figure 7-10 for the pixel to
bit-field map.

1------- 160 BYTES PER SCAN LINE --------1

T B8000H

D
I
G
I
T
A BBDEOH
L

BCOOOH
V
I
D
E
0

1 BFDEOH

BS09FH

(L HOD 2) = 0

BBE7FH

BC09FH

(L HOD 2) 1

BFE7FH

L = SCAN LINE 0 TO 199

Figure 7·9 Memory Organization for 640 x 200 4·Color Mode

7 6 5 4 3 2 1 o

CBl CBO CBl CBO CBl CBO CBl CBO

LEFT HOST PIXEL RIGHT HOST PIXEL

Figure 7·10 Pixel to Bit·Field Map for 4·Color Mode

7 - 14 Video Controller . Hardware Description

640 x 400 2-Color Mode
ROM BIOS Video Mode: DOH· DIGITAL Extended

In 2-color mode, a single byte corresponds to 8 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-11 for the memory organization. See Figure 7-12 for the pixel to
bit-field map.

T
D
I
G
I
T
A
L

V
I
D
E
0

1

7

CBO

LEFT
MOST
PIXEL

1------- 80 BYTES PER SCAN LINE --------1

B8000H

B9FOOH

iBAOOOB BBFOOH

i
BCOOOB
BDFOOH

BEOOOH

BFFOOH

Figure 7-11

6

CBO

(L MOD 4) = 0

(L MOD 4) 1

(L MOD 4) 2

(L MOD 4) = 3

L = SCAN LINE 0 TO 399

B809FH

B9F3PH

BA09FHi
BBF3FH

BC09FHi

BDF3FH_

BE09FH

BFF3FH

Memory Organization for 640 x 400 2-Color Mode

5 4 3

CBO CBO CBO

2 1

CBO CBO

o

CBO

RIGHT
MOST
PIXEL

Figure 7-12 Pixel to Bit-Field Map for 2-Color Mode

Video Controller - Hardware Description 7 - 15

640 x 400 4-Color Mode
ROM BIOS Video Mode: DiH - DIGITAL Extended

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-13 for the memory organization. See Figure 7-14 for the pixel to
bit-field map.

T
D
I
G
I
T
A
L

V
I
D
E
0

1

7

CB1

1------- 160 BYTES PER SCAN LINE --------1

BOOOOH
(L MOD 4) = 0

B3DEOH

B4000H
(L MOD 4) 1

B7DEOH

B8000H
(L MOD 4) 2

BBDEOH

BCOOOH
(L MOD 4) = 3

BFDEOH

L = SCAN LINE 0 TO 399

BOO9FH

B3E7FH

B409FH

B7E7FH

B809FH

BBE7FH

BC09FH

BFE7FH

Figure 7-13 Memory Organization for 640 x 400 4-Color Mode

6 5 4 3 2 1 o

CBO CB1 CBO CB1 CBO CB1 CBO

LEFT MOST PIXEL RIGHT MOST PIXEL

Figure 7-14 Pixel to Bit-Field Map for 4-Color Mode

7 - 16 Video Controller - Hardware Description

800 x 252 4-Color Mode
ROM BIOS Video Mode: D2H (Limited ROM BIOS Support) - DIGITAL
Extended

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-15 for the memory organization. See Figure 7-16 for the pixel to
bit-field map.

T
D
I
G
I
T
A
L

V
I
D
E
o

1

7

CB1

1------- 200 BYTES PER SCAN LINE --------i

IBOOOOU
B30708

B40008

B70708

1B8OOOU
~B0708

IBCOOOB
BP0708

(L HOD 4) = 0

(L HOD 4) = 1

(L HOD 4) = 2

(L HOD 4) == 3

L = SCAN LINE 0 TO 251

BOOC7UI
B31378

B4OC78

B71378

BSOC78 I
BB1378

BCOC78 I
BP137H

Figure 7-15 Memory Organization for 800 x 252 4-Color Mode

6 5 4 3 2 1 o

CBO CB1 CBO CB1 CBO CB1 CBO

LEFT HOST PIXEL RIGHT HOST PIXEL

Figure 7-16 Pixel to Bit-Field Map for 4-Color Mode

Video Controller .. Hardware Description 7 - 17

Video Look-Up Table
The video processor has a video look-up table (VLT) that translates attribute or
graphic color data. The VLT is arranged as 16 words of IRGB output data.
Each location corresponds to one of the 16 possible colors. When the video con­
troller accesses video memory, the attributes or graphic data are used as an
offset into the VLT. The contents of that location in the VLT are sent to the
video output circuit. Because the VLT has only 16 entries, the VLT can alter
the color interpretation of the bit map without rewriting every pixel.

For 2-color mode graphics (640 x 400 or 640 x 200), the foreground color (pixel
equals 1) is determined by the color-select register bits 3-0. The background
color (pixel equals 0) is determined by the contents of VLT entry O. The color
select register is described later in this chapter.

Normally, the VLT is accessible only to the video controller. That is, the VLT
is not mapped into the normal CPU address space. Accessing the VLT requires
that the video mode be one of the text modes OOH, 01H, 02H, or 03H. Bit 2 of
control register B (described later in this chapter) controls access to the VLT.
When bit 2 of control register B equals 1, access to the video text buffer is
disabled and access to the VLT is enabled.

NOTE
Only write access to the VL T is enabled. To read the VLT in­
directly, program the video processor for 320 x 200 16-color
mode. For each of the 16 possible colors (OOH-OFH):

1. Write the same color value to each pixel.

2. Wait until the display is inactive (register B bit 7
equals 1)

3. Disable CPU interrupts (CLI instruction)

4. Wait until the display is active (register B bit 7 equals 0)

5. Status register A bits 7-4 (lRGB) are equal to the con­
tents of the VLT location specified by the color value.

6. Enable CPU interrupts (STI instruction)

7 - 18 Video Controller - Hardware Description

Only even-text buffer addresses are connected to the VLT. The text buffer to
VLT mapping appears as follows:

Text VLT Text VLT
8uffer Offset 8uffer Offset
Offset Offset

B80008 00008 B80108 00088
880018 880118
880028 00018 880128 00098
880038 880138
880048 00028 880148 oooAB
880058 880158
880068 00038 880168 00088
880078 880178
880088 00048 880188 OOOCB
B80098 880198
B800AB 00058 8801AB 00008
880088 880188
B800CH 00068 8801e8 OOOE8
B800D8 880108
B800E8 00078 8801E8 OOOF8
B800F8 8801F8

Text mode attributes are referenced in the order IRGB, but the VLT ad­
dressing and contents are referenced in the order RGB!. To calculate the offset
accessed by any IRGB value, use the following bit values:

Bit Value

o
1
2
3

Attribute

I Hntensity)
B (Blue)
G (Green)
R (Red)

Thus, a text attribute of intensified red (lRGB = COH) accesses location 09H
of the 16 locations in the VLT.

On power-up or system reset, the VLT is initialized to the values in Table 7-4.
The VLT values defined in Table 7-4 support video modes OOH, 01H, 02H,
03H, 04H, 05H, 06H and DOH. When changing from any of these modes to
video mode DIH or D2H, initialize the VLT to the values defined in Table 7-5.

Video Controller - Hardware Description 7- 19

Table ,7-4 Default VL T Content.~

Gffse~ Contents' Color Intensity
A;J, A2 Al AO D3 D2 Dl DO
11 G B I R G B I

0 0 0 0 0 0 0 0 Black 0

0, 0 0 1 0 0 0 1 Gray 1

O. 0 1 0 0 0 1 0 Blue 2

0 0 1 1 0 0 1 1 Light blue 3

0 1 0 0 0 1 0 0 Green 4

0 1 0 1 (l 1 0 1 Light green 5

0 1 1 0 0 1 1 0 Cyan 6

0 1 1 1 1 1 1 0 White 14

1 0 Q 0 l' 0 0 0 Red 8
1 0 0 1 1 0 O. 1 Light red 9

1 0 1 0 1 0 1 0 Magenta 10

1 0 1 1 l' 0 1 1 Light magenta 11

1 1 0 0 1 1 0 0 Brown 12

1 1 0 1 1 1 0 1 Yellow 13

1 1 1 0 0 1 1 1 Light cyan 7

1 1 1 1 1 1 1 1 Intense white 15

7 - 20·' Video Controller - Hm:dware :pescription

Table 7-5 VLT Contents for Video Modes D1H and D2H

Offset Contents Color Intensity
A3 A2 Ai AO D3 D2 Dl DO
R G B I R G B I

0 0 0 0 0 0 0 0 Black 0

0 0 0 1 0 1 0 0 Green 4

0 0 1 0 1 0 0 0 Red 8

0 0 1 1 0 1 1 1 Light cyan 7

0 1 0 0 Not Used

0 1 0 1 Not Used

0 1 1 0 Not Used

0 1 1 1 Not Used

1 0 0 0 Not Used

1 0 0 1 Not Used

1 0 1 0 Not Used

1 0 1 1 Not Used

1 1 0 0 Not Used

1 1 0 1 Not Used

1 1 1 0 Not Used

1 1 1 1 Not Used

Video Controller - Hardware Description 7 - 21

Video System Registers
Table 7-6 lists the video processor input/output (110) registers.

Table 7-6 Video Processor 110 Registers

Address Width R/W Register Name Compatibility

03DOH 4-0 W CRTC Index Register DIGITAL Extended
03DIH 7-0 R/W CRTC Data Register DIGITAL Extended

03D4H 4-0 W CRTC Index Register Industry-Standard
03D5H 7-0 R/W CRTC Data Register Industry-Standard

03D8H 7-0 W Control Register A Industry-Standard
03D9H 7-0 W Color Select Register Industry-Standard

03DAH 7-0 R Status Register A Industry-Standard

03DDH 7-0 R Status Register B DIGITAL Extended

03DEH 7-0 R Write Data Register DIGITAL Extended

03DFH 7-0 W Control Register B DIGITAL Extended

OC80H 7-0 R/W Special Purpose Register DIGITAL Extended

7- 22 Video Controller - Hardware Description

Special Purpose Register (OC80H)
7 654 3 2 1 o

WITE TRACK 0 INDEX SPEED DISULB SPLIT DISABLE SPEED
PROTECl' VIDEO BAUD COMM SELBCl'

Bit R/W Description

7 R Write protect
0= Selected diskette drive is not write protected
1 = Selected diskette drive is wri~ protected

6 R Track 0
0= Head of selected diskette drive is not at track 0
1 = Head of selected diskette drive is at track 0

5 R Index
0= Index hole not in position for selected diskette drive
1 = Index hole in position for selected diskette drive

4 R Speed Indicator
0= Modem control speed select asserted
1 = Modem control speed select not asserted

3 RIW Disable Video
0= Video controller disabled
1 = Video controller enabled

2 R/W Split Baud Rates
0= (Receive = Transmit = programmed)
1 = (Receive = 1200) (Transmit = programmed)

1 R/W Disable Communications
0= Integral communications ports connected to I/O address

space
1 = Integral communications ports disconnected from I/O address

space

0 R/W Speed Select
0= Speed select asserted
1 = Speed select not asserted

Video Controller - Hardware Description 7 - 23

The special purpose register is located at I/O address OC80H. When bit 3
equals 0, the entire DIGITAL video system is disconnected from the memory
and 110 address space. This allows the installation and use of industry-standard
video adapters in the V AXmate workstation.

If the ROM BIOS finds an industry-standard video adapter during the power­
up sequence, the ROM BIOS clears bit 3 of the special purpose register. This
allows the industry-standard video adapter to function without conflict.

7- 24 Video Controller - Hardware Description

CRTC Registers
The CRT controller (CRTC) has two registers, the index and data registers,
that are accessible in the CPU 1/0 space. Writing a value to the index register
selects one of the 18 internal registers RO-R17. The selected register is read or
written through the data register.

Index Register (03DOH/03D4H)

7 6 5 4 3 2 1 o

Bit RIW Description

7-5 W

4-0 W

Always 0

REGISTER SELECT (RS4-RSO)

A value between 0 and 17 written to this register selects one of
the corresponding internal registers (RO-R17).

Data Register (03D IH/03D5H)

7 6 5 4 3 2 1 o

Bit R/W Description

7-0 R/W Data and width are dependent upon the register selected by the
index register. To determine if the data register can be read or
written, see the description of the register selected by the index
register.

Video Controller • Hardware Description 7 - 25

The index and data registers can be accessed through two sets of 1/0 ports.
The industry-standard set is 03D4H (index) and 03D5H (data). The DIGITAL
extended set is 03DOH (index) and 03D1H (data). Data written to the industry­
standard set pass through a translation ROM and then go to the CRTC. Data
written to the DIGITAL extended set go directly to the CRTC.

The translation ROM converts CRTC parameters, for an industry-standard
color graphics adapter, to values that are correct for the extended capabilities
of the DIGITAL video system. Thus, applications that directly program the
CRTC of an industry-standard color graphics adapter function correctly.

Table 7-7 lists the CRTC internal registers and their functions. Table 7-8 lists
the corresponding parameters for the video modes defined in Table 7-1. The.
parameters listed in Table 7-8 are written to the CRTC through the DIGITAL
extended 1/0 ports 03DOH (index) and 03D1H (data).

Table 7-7 CRTC Internal Registers

Register Index R/W Description

RO OOH W Horizontal total
R1 01H W Horizontal displayed
R2 02H W Horiz sync position
R3 03H W Sync width

R4 04H W Vertical total
R5 05H W Vertical total adjust
R6 06H W Vertical displayed
R7 07H W Vertical sync position

R8 08H W InterlacelSkew
R9 09H W Max scan line address
RIO OAH W Cursor start
R11 OBH W Cursor end

R12 OCH RlW Start address (High byte)
R13 ODH RlW Start addless (Low byte)
R14 OEH RlW Cursor address (High byte)
R15 OFH RlW Cursor address (Low byte)

R16 10H R Light pen (High byte) *
R17 11H R Light pen (Low byte) *

* The DIGITAL video system does not support light pens.

7 - 26 Video Controller - Hardware Description

Table 7-8 CRTC Register Values

320 x
200
4-color

640 x 640 x
400 200
4-color 2-color

320 x 800 x 640 x 640 x
200 252 200 400
l6-color 4-color 4-color 2-color 80 x 25 40 x 25

Register Graphics Graphics Graphics Graphics Text Text

RO 69H 83H 69H 34H 69H 34H
RI 50H 64H 50H 28H 50H 28H
R2 58H 60H 58H 2CH 58H 20H
R3 58H 5AH 58H 54H 58H 54H

R4 36H 60H 60H 60H IAH IAH
R5 OOH OIH OOH OOH 08H 08H
R6 32H 3FH 64H 64H I9H I9H
R7 33H 53H 66H 66H I9H I9H

R8 40H 40H 42H 40H 40H 40H
R9 07H 03H 03H 03H OFH OFH
RIO OOH OOH OOH OOH OOH OOH
Rll OFH OFH OFH OFH OFH OFH

RI2 OOH OOH OOH OOH OOH OOH
RI3 OOH OOH OOH OOH OOH OOH
RI4 OOH OOH OOH OOH OOH OOH
RI5 OOH OOH OOH OOH OOH OOH

Video Controller - Hardware Description 7 - 27

Register RO

7 6 5 4 3 2 1 o

I : : ~~~TM~ : : I
Bit RIW Description

7-0 W HORIZONTAL TOTAL

This register determines the horizontal synchronization frequency.
It is the number of displayed characters (Rl) plus the retrace (in
character times) minus one.

Register RI

7 6 5 4 3 2 1 o

Bit RIW Description

7-0 W

7- 28

HORIZONTAL DISPLAYED

This register determines the number of displayed characters on a
line. The value in Rl must be less than the value in RO.

Video Controller - Hardware Description

Register R2

7 6 5 4 3 2 1 o

Bit RIW Description

'-0 W HORIZONTAL SYNCHRONIZATION POSITION

This register determines the position of the horizontal synchroniza­
tion delay and the horizontal scan delay. When this value is in­
creased, the display shifts left. When this value is decreased, the
display shifts right.

Register R3

7 6 5 4 3 2 1 o
VERTICAL SYNCHRONIzATION

PULSE VIDTB
HORIzONTAL SYNCHRONIzATION

PULSE VIDTB

VS3 I VS2 I VSl I VSO HS3 I HS2 I HSl I aso

Bit RIW Description

7-4 W VERTICAL SYNCHRONIZATION PULSE WIDTH

A value of 1-15 produces a pulse width of the indicated number of
scan-line periods. A value of zero produces a pulse width of 16
scan-line periods.

3-0 W HORIZONTAL SYNCHRONIZATION PULSE WIDTH

A value of 1-15 produces a pulse width of the indicated number of
character periods. If the value equals 0, then a horizontal synchro­
nization pulse is not provided.

Video Controller - Hardware Description 7 - 29

Register R4

7 6 5 4 3 2 1 o

Bit RIW Description

7 W Always 0

6-0 W VERTICAL TOTAL

This value determines the vertical synchronization frequency. It is
the number of displayed character lines plus the retrace (in charac­
ter line times) minus one.

Register R5

7 6 5 4 3 2 1 o

Bit RIW Description

7-5 W Always 0

4-0 W VERTICAL TOTAL ADJUST

This value is the number of scan-line periods required, in addition
to R4, to produce a vertical synchronization frequency of exactly
50Hz or 60Hz.

7- 30 Video Controller - Hardware Description

Register R6

7 6 5 4 3 2 1 o

Bit R/W Description

7 W

6-0 W

Always 0

VERTICAL DISPLAYED

This value specifies the number of displayed character lines. It
must be less than the value in R4.

Register R7

7 6 5 4 3 2 1 o

: I
Bit R/W Description

7 W

6-0 W

Always 0

VERTICAL SYNCHRONIZATION POSITION

This value determines the position of the vertical synchronization
delay and the vertical scan delay. When this value is increased, the
display shifts up. When this value is decreased, the display shifts
down.

Video Controller - Hardware Description 7 - 31

Register R8

7 6 5 4
I

DISPLAY I ENABLE
CURSOR SKEV SKEV

CS1 CSO DS1 DSO
I I

Bit RIW Description

7-6 W CURSOR SKEW
00 == No skew
01 = One character skew
10 = Two character skew
11 = Invalid value

5-4 W DISPLAY ENABLE SKEW
00 = No skew
01 = One character skew
10 = Two character skew
11 = Invalid value

3-2 W Always 0

1-0 W INTERLACE MODE
00 = Normal mode

3

0

01 = Interlace synchronization mode
10 = Normal mode

2

0

11 = Interlace synchronization and video mode

7 - 32 Video Controller - Hardware Description

1 o
I

INTERLACE MODE

IM1 IMO
I

Register R9

7 6 5 4 3 2 1 o

Bit RIW Description

7-5 W Always 0

4-0 W MAXIMUM SCAN LINE

This value specifies one less than the number of scan lines per
character line including spacing.

Register RIO

7 6 5 4 3 2 1 o

: ~~~.: I
Bit RIW Description

7 W Always 0

6-5 W CURSOR DISPLAY MODE
00 = Nonblinking cursor
01 = Cursor not displayed
10 = Blinking cursor (3.75 Hz)
11 = Blinking cursor (1.875 Hz)

4-0 W CURSOR START

This value specifies the scan line, within the character cell. on
which the cursor starts. A value of 0 starts the cursor at the top
of the character cell.

This register is meaningful only in text video modes.

Video Controller - Hardware Description 7 - 33

Register RII

7 6 5 4 3 2 1 o

101 0 I 0 I : ~ ~ : I
Bit RIW Description

7-5 W

4-0 W

Always 0

CURSOR END

This value specifies the scan line, within the character cell, on
which the cursor ends. A value of 15 ends the cursor at the
bottom of the character cell.

This register is meaningful only in text video modes.

Register RI2

7 6 5 4 3 2 1

Register RI3

7 6 5 4 3 2 1

o

o

I : : : ~~~< : : I
R12 and R13 are a write-only register pair that determine which part of the
video RAM is used to generate the display. The address in R12 and R13 must
be an even value. This address points to the first character position.

7- 34 Video Controller - Hardware Description

Register R14

7 6 5 4 3 2 1 0

I 0 I 0 I : :=R :=ss: :
HIGH

Register RI5

7 6 5 4 3 2 1 0

I : : :=R LOV :=ss: : :
R14 and R15 are a read/write register pair that determine the location of the
cursor as an offset from the beginning of video RAM. The address in R14 and
R15 must be an even value. The address points to the character byte of a char­
acter byte/attribute byte pair.

Video Controller - Hardware Description 7- 35

I

I

Register RIG

7 6 5 4 3 2 1 0

I 0 I 0 I : ~GBT ~ POSITI~ :
HIGH BYTE

Register RI7

7 6 5 4 3 2 1 0

I : : ~GBT~~B~ITI~ : :
R16 and R17 are a read only register pair that capture the CRTC refresh ad­
dress when the light pen strobe pin is pulsed.

NOTE
The V AXmate workstation does not support the use of light
pens.

7 - 36 Video Controller - Hardware Description

I

I

Status Register A (03DAH)
765 4 3 2 1 o

I

VIDEO VIDEO VIDEO VIDEO VSYNC LIGHT PEN RETRACE
I R G B

I

Bit RIW Description

7 R

6 R

5 R

4 R

3 R

2-1 R

o R

VIDEO I - Video Intensity Signal
o = Video intensity signal inactive
1 = Video intensity signal active

VIDEO R - Video Red Signal
o = Video red signal inactiv~
1 = Video red signal active

VIDEO G - Video Green Signal
o = Video green signal inactive
1 = Video green signa! active

VIDEO B - Video Blue Signal
o = Video blue signal inactive
1 = Video blue signal active

VSYNC - Vertical Synchronization
o = Vertical synchronization inactive
1 = Vertical synchronization active

LIGHT PEN IContents undefined)

RETRACE IHorizontal or vertical)
o = Display active
1 = Retrace period

Because the dual-port RAM eliminates display interference caused
by accessing video memory, checking this bit is not required. For
those programs that do check, this bit flips with each read.
Because a retrace period appears to be in effect every other time it
is checked, this has the effect of speeding up video memory
accesses.

Video Controller - Hardware Description 7 - 37

Status Register B (03DDH)
7 6 5 4 3 2 I o

VIDEO CR-B3 CR-B5 CR-A4 CR-AI CR-AO ¥RITE PORT
BLANK CHECK CHECK

Bit RIW Description

7 R

6 R

5 R

4 R

3 R

2 R

1 R

o R

VIDEO BLANK
o = Video is in an active display state
1 = Video is in a blanking state

CR-B3
Control Register B bit 3 (Display enabled)

CR-B5
Control Register B bit 5 (Control register A bit 3 enable)

CR-A4
Control Register A bit 4 (Mode bit 2)

CR-Al
Control Register A bit 1 (Mode bit 1)

CR-AO
Control Register A bit 0 (Mode bit 0)

WRITE CHECK
o = Since the write data register (03DEH) was last read, an 110

write to port 03D4H or 03D5H has not occurred.
1 = Since the write data register (03DEH) was last read, an 110

write to port 03D4H or 03D5H has occurred. This bit is
cleared by reading the write data register (03DEH).

PORT CHECK
o = Of the pair, 03D4H and 03D5H, 03D4H was the last port

written.
1 = Of the pair, 03D4H and 03D5H, 03D5H was the last port

written.

This bit is used in conjunction with bit 1.

7 - 38 Video Controller - Hardware Description

Write Data Register (03DEH)
7 6 5 4 3 2 1 o

I I I I I I I I I
Bit R/W Description

7-0 R Contains the last data written into the CRTC through register
03D4H or 03D5H. Status register B bits 1-0 indicate which port
the data was written to. Reading this register clears status register
B bit 1.

Color Select Register (03D9)
7 6 5 4 3 2 1 o

I 0 I 0 I CPS I SIC I I : R : G : B I
Bit R/W Description

7-6 W Always 0, always ignored

5 W CPS - Color Palette Select (See Table 7-9 and Table 7-10)

4 W SIC - Select Intensified Colors (See Table 7-9 and Table 7-10)

3 W I - Intensity (See Table 7-9)

2 W R - Red (See Table 7-9)

1 W G - Green (See Table 7-9)

0 W B - Blue (See Table 7-9)

Video Controller - Hardware Description 7 - 39

The use of the color select register bits depends on the current video mode.
Table 7-9 d~scribes the bit meanings for the affected modes. Table 7-10
describes the color palettes selected by bits 5-4 (CPS and SIC).

Table 7-9 Color Select Register Bit Assignments

Bit Text Modes

7 Ignored

6 Ignored

5 Ignored

4 Ignored

3-0 Border color

NOTE

320 x 200
4-Color
Graphics

Ignored

Ignored

CPS

SIC

Border and
background
color

640 x 200 x 2-Color
640 x 400 x 2-Color
Graphics

Ignored

Ignored

Ignored

Ignored

Foreground color

For the VAXmate workstation, the border color is always black.

Table 7-10 Color Palettes Selected by CPS and SIC

Color Bit CPS = 0 CPS = 1 CPS = 0 CPS = 1
cbl cbO SIC = 0 SIC = 0 SIC = 1 SIC = 1

0 0 Background Background Background Background

0 1 Green Cyan Light green White

1 0 Red Magenta Light red Light magenta

1 1 Brown Light cyan Light yellow Intense white

The color bits (cbllcbO) in Table 7-10 are any 2 bits that describe a pixel color
in the 320 x 200 4-color video mode.

7- 40 Video Controller - Hardware Description

Control Register A (03D8H)
7 6 5 4 3 2 1 o

BLINK HODE DISPLAY HODE HODE
ENABLE BIT 2 ENABLE BIT 1 BIT 0

0 0 0

Bit RIW Description

7-6 W Always 0

6 W BLINK ENABLE
0= Text mode background intensity bit (II remains in effect
1 = Text mode background intensity bit (I) becomes blink bit

4 W MODE BIT 2 (See Table 7-11)

3 W DISPLAY ENABLE

If control register B (03DFH) bit 6 equals 0, this bit is ignored. If
control register B bit 5 equals 1, the following is true:
o = Display disabled
1 = Display enabled

2 W Always 0 (Reserved)

1 W MODE BIT 1 (See Table 7-11)

0 W MODE BIT 0 (See Table 7-11)

Video Controller - Hardware Description 7 - 41

Table 7-11 lists the video modes selected by the mode bits in control registers
A and B.

Table 7-11 Selecting Video Modes

Control Control
Register A Register B
Mode Bits Bit
2 1 0 7 Mode Compatibility

0 0 0 0 40 x 25 Text Industry-standard

0 0 1 0 80 x 25 Text Industry-standard

0 1 0 0 320 x 200 x 4 Industry-standard
color graphics

0 1 1 0 320 x 200 x 16 DIGITAL extended
color graphics

1 0 0 0 640 x 400 x 2 DIGITAL extended
color graphics

1 0 1 640 x 200 x 4 DIGITAL extended
color graphics

1 1 0 0 640 x 200 x 2 Industry-standard
color graphics

1 1 1 0 640 x 400 x 4 DIGITAL extended
color graphics

1 1 1 1 800 x 252 x 4 DIGITAL extended
color graphics

7- 42 Video Controller - Hardware Description

Control Register B (03DFH)
7 6 5 4 3 2 1 o

FONT
MONITOR SCREEN CR-AS RAM DISPLAY VLT
MODE SAVER ENABLE ENABLE ENABLE ENABLE

0 0

Bit RIW Description

7 W MONTIOR MODE
0= 400 scan lines
1 = 252 scan lines

6 W SCREEN SAVER

Toggling this bit to 0 and then back to 1 blanks the display. The
next memory or 110 access to the video address space reenables
the display. Program to 1 for normal operation.

5 W CR-A5 ENABLE
0= Control register A bit 5 ignored
1 = Control register A bit 5 enabled

4 W FONT RAM ENABLE
0= Access to font RAM disabled
1 = Access to font RAM enabled

3 W DISPLAY ENABLE
0= Display blanked
1 = Display enabled

2 W VLT ENABLE
0= Access to video look-up table disabled
1 = Access to video look-up table enabled

1-0 W Always 0

Video Controller - Hardware Description 7 - 43

Monitor Interface
Table 7-12 lists the monitor interface signals. These signals are applicable to
both a monochrome or a color monitor.

Table 7-12 Monitor Interface Signals

Pin No.

1

2

3

4

6

6

7

8

9

10

11

12

Signal Description

Horizontal synchronization (active low)

Vertical synchronization (active low)

Intensity Video (active high)

Red Video (active high)

Green Video (active high)

Blue Video (active high)

400/252 select (low for 400 scans; high for 252 scans)

(reserved)

Signal ground

+5 return

+5V dc (200 mA max.)

(spare)

Monitor Specification Summary
The following are specifications for the monochrome monitor on the V AXmate
workstation:

CRT

Active Display

Resolution

Horizontal scan rate

Vertical scan rate

Video Bandwidth

340 mm (14 in) diagonal, amber or green phosphor

240 mm horizontal by 150 mm vertical (9.6 x 6 in)

640 pixels horizontal by 400 pixels vertical
800 pixels horizontal by 262 pixels vertical

26.40 kHz (640 x 400)
26.49 kHz (800 x 252)

60 Hz noninterlaced

22.384 MHz (640 x 400)
27.984 MHz (800 x 252)

7-44 Video Controller - Hardware Description

Programming Example
The following programming example demonstrates:

• Programming the video controller for a specific mode
• Writing the video look-up table
• Reading and writing the font RAM
• Displaying characters in text and graphics modes

NOTE
Whenever possible, ROM BIOS Interrupt 10H video calls are
preferred over direct programming of the video hardware.

Do not mix ROM BIOS calls and direct programming of the
hardware.

Before directly programming the hardware, use ROM BIOS calls
to determine the state of the video system. On exit, use the
ROM BIOS to restore the previous state.

CAUTION
Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Video Controller - Programming Example 7- 45

The example provides routines as described in the following list:

get_mode_p

get_mess_p

w vlt

r w font

mode init

mv cursor

cursor on

cursor off

set mode

screen on

clear vid mem

do border

Returns a pointer to a table of data about the indicated mode.

Returns a pointer to character string that describes the indi­
cated mode.

Writes the video look-up table.

Reads or writes the font ram.

Initializes the video controller and mode registers from a table
of data.

Positions the cursor to the indicated row and column position.

Positions the cursor and makes it visible.

Makes the cursor invisible.

Sets the current mode, clears video memory and enables the
display.

Enables or disables the display.

Clears the screen by writing the appropriate values to video
memory.

Forms a border around the screen (like a picture frame), by
displaying the letter E at the extreme positions of the screen.
It also displays a message, in the center of the screen, that
describes the current mode.

Displays, in graphics mode, the pixel representation of a
character.

Displays characters for text mode.

Sets up the conditions and executes the examples.

7- 46 Video Controller - Programming Example

This page is intentionally blank.

Video Controller· Programming Example 7- 47

The constants defined in this example are in the include file VIDEO.H.
The other include files, EXAMPLE.H and KYB.H, support the example, but
are not pertinent to the video section.

The constant values TRUE and FALSE are used as calling parameters for sev­
eral routines.

The constant values CRTC INDEX through CTRL REGB define the ad­
dresses, in input/output spice, of the registers used to control the video mode
and attributes. These registers are described in Table 7-7.

The constant value VB8 defines the industry-standard start address for color
graphics video memory. The constant value VBO defines the V AXmate ex­
tended start address for color graphics video memory. These values are far
pointers expressed as long integers.

The structure type VLT defines the organization of the video look-up table.
When access is enabled, the first byte of the video look-up table is written at
B800H:0000H (segment:offset). The next byte is written at B800H:0002H (seg­
ment:offset). Thus, the video look-up table can be defined as an array of 16
structures of type VLT. Notice that this organization should be used only for
accessing the video look-up table. It should not be used when reserving space,
because 50 percent of the space would be wasted.

The structure type FONT defines the organization of the font RAM. When
access is enabled, the first byte of the font RAM is read or written at
B800H:0000H (segment:offset). The next byte is read or written at
B800H:0002H (segment:offset). Each character font requires 16 bytes. The font
for each of the possible 256 characters can be defined. Thus, the font RAM can
be defined as a two-dimensional array of structures of type FONT, where the
first subscript is 256 and the second subscript is 16. Notice that this organiza­
tion should be used only for accessing the font RAM. It should not be used
when reserving space, because half the space would be wasted.

The structure type M TABLE defines data or pointers to data that is required
to program the various video modes. Later in the example, an array of struc­
tures of type M TABLE is defined. The values used are gathered from infor­
mation provided earlier in this chapter.

7- 48 Video Controller - Programming Example

#include "video.h"
#include "example.h"
#include "kyb.h"

/***/
/* Declare constants and structures used in examples */
/***/

#define TRUE Oxffff /* True is nonzero */
#define FALSE OxOOOO /* False is zero */
#define CRTC_INDEX Ox03dO /* crtc index register in i/o space */
#define CRTC_DATA Ox03d1 /* crtc data register in i/o space */
'define CTRL_REGA Ox03d8 /* control register A in i/o space */
'define COLR_SELC Ox03d9 /* color select register in i/o space*/
'define STAT_REGA Ox03da /* status register A in ilo space */
'define STAT_REGB Ox03dd /* status register B ini/o space */
'define CTRL_REGB Ox03df /* control register B in i/o space *1
'define VB8 Oxb8000000L /* normal base address of video memory */
'define VBO OxbOOOOOOOL /* extended base address */

typedef struct
{

unsigned char
unsigned char

} VLT;

typedef struct
{

unsigned char
unsigned char

} FONT;

typedef struct
{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
long
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

} M_TABLE;

vlt_byte;
skip_byte;

font_byte;
skip_byt.e;

*ct;
*vt;

1* vlt entries at even address *1
/* skip byte at odd address */

1* font entries at even address *1
1* skip byte at odd address */

/* pointer into crtc_table *1
/* pointer into vlt_table *1

cra; /* control register A value (Table 1-11) *1
crb; 1* .control register B value */
csr; /* color select register value (Table 7-10) */

base; /* segment:offset base address *1
nsp; 1* number of scan pages *1
sps; /* scan page size *1
cb; /* color bits per pixel *1
width; /* bytes per character line or scan line */
length; /* in chars or pixels depending on mo.de *1

Video Controller . Programming Example 7- 49

The array crtc defines six sets of CRT controller initialization values. The
values used are those listed in Table 7-8, which supports all of the defined
V AXmate video modes. Notice that each state supports more than one video
mode. In that case, the distinguishing factor is the contents of control register
A, control register B, the color select register and the video look-up table.
These relationships are demonstrated later in the mode_table definition.

The array vlts defines two sets of video look-up table initialization values. The
values used are those listed in Table 7-4 and Table 7-5. Notice that each state
supports more than one video mode. These relationships are demonstrated later
in the mode table definition.

The array mode list is not required to program the video modes, however, the
example uses this array to index through the various modes as it performs the
demonstration.

NOTE
The two video modes, Oxfe and Oxff, are not defined or sup­
ported by the ROM BIOS. The mode numbers, Oxfe and Oxff,
are defined only within the limits of this example.

7- 50 Video Controller - Programming Example

/***/
/* Define table values and declare globals used in examples */
/***/

unsigned char crtc[6] [16]
{

/* Refer to Table 1-1 t 1-S */

{ Ox34 , Ox2S, Ox2d, Ox54 ,
Ox40, OxOf, OxOO, OxOf,

Ox1a, OxOS, Ox19, Ox19,
OxOO, OxOO, OxOO, OxOO },

{ Ox69 , Ox50, Ox5S, Ox5S, Ox1a, OxOS, Ox19, Ox19,
Ox40, OxOf, OxOO, OxOf, OxOO, OxOO, OxOO, OxOO },

{ Ox34 , Ox2S, Ox2c, Ox54 , Ox6d, OxOO, Ox64 , Ox66 ,
Ox40, Ox03, OxOO, OxOf, OxOO, OxOO, OxOO, OxOO },

{ Ox69 , Ox50, Ox5S, Ox5S, Ox6d, OxOO, Ox64 , Ox66 ,
Ox42, Ox03, OxOO, OxOf, OxOO, OxOO, OxOO, OxOO },

{ OxS3, Ox64 , Ox6d, Ox5a, Ox6d, Ox01, Ox3f, Ox53,
Ox40, Ox03, OxOO, OxOf, OxOO, OxOO, OxOO, OxOO },

{ Ox69 , Ox50, Ox5S, Ox5S, Ox36, OxOO, Ox32, Ox33 ,
Ox40, Ox01, OxOO, OxOf, OxOO, OxOO, OxOO, OxOO },

};

unsigned char vlts[2] [16] =
{

};

{ OxOO, Ox01, Ox02, Ox03,
Ox04, Ox05, Ox06, OxOe,
OxOS, Ox09, OxOa, OxOb,
OxOc, OxOd, Ox01, OxOf },

{ OxOO, Ox04, OxOS, Ox01,
OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO },

/* TEXT */
/* 40 x 25 */

/* TEXT */
/* so x 26 */

/* GRAPHICS */
/* 320 x 200 x 4 */
/* 640 x 200 x 2 */
/* 640 x 400 x 2 */

/* GRAPHICS */
/* 640 x 400 x 4 */
/* 640 x 200 x 4 */

/* GRAPHICS */
/* SOO x 250 x 4 */

/* GRAPHICS */
/* 320 x 200 x 16 */

/* See Table 7-4 */

/S See Table 1-5 */

int mode_list[12] { OxOO, Ox01, Ox02, Ox03, Ox04, Ox05,
Ox06, OxdO, Oxd1, Oxd2, Oxfe, Oxff };

Video Controller - Programming Example 7 - 51

The array mode table is an array of structures of type M TABLE. Each struc­
ture contains data or pointers to data that are required to-program a particular
video mode. Refer back to the declaration of the structure type M TABLE to
determine the relative placement or meaning of each value. The base address,
number of scan pages, color bits per pixel, and width are determined from
Figure 7-3 through Figure 7-16.

The array message is not required to program the video modes, however, the
example program uses a string from the array message to identify and confirm
the current video mode. The appropriate string is determined by the function
get_messy.

The array rltr e defines the character font for a reverse (mirror image} letter
'E'. It is used to demonstrate writing the font RAM and the effect it has. The
character cell size is 8 x 16.

The array c Jont reserves enough space to store the font for an entire charac­
ter set (256 characters having a cell size of 8 x 16). The example program
copies the current contents of the font RAM to this space.

The variable font h allows the program to dynamically change, between
demonstrations, the height of the character font. The variable font w is pro-
vided for consistency. -

The variable vid _mode allows the currently selected mode to be known globally.

7- 52 Video Controller - Programming Example

M_TABLE mode_table[13] =
{

{ .t;crtc[O][O], .t;vlts[O] , Ox08,
{ .t;crtc[O] [0] , blts[O] , Ox08,
{ .t;crtc [1] [0] , blts[O] , OxOQ,
{ .t;crtc [1] [0] , blts[O] , Ox09,
{ .t;crtc[2] [0] , blts[O] , OxOa,
{ .t;crtc[2] [0] , blts[O] , OxOa,
{ .t;crtc[2] [0] , blts[O] , Oxla,
{ .t;crtc[2] [0] , .t;vlts[O] , Ox18,
{ .t;crtc [3] [0] , blts[l] , Oxlb,
{ .t;crtc[4] [0] , blts[1] , Oxlb,
{ .t;crtc[6] [0] , .t;vlts[O] , OxOb,
{ .t;crtc[3] [0] , blts[l] , Ox19,
};

char message [12] [24]
{

};

40 x 25 monochrome",
40 x 26 color",
80 x 26 monochrome",
80 x 26 color",

320 x 200 x 4-color",
320 x 200 monochrome",
640 x 200 x 2-color" ,
640 x 400 x 2-color",
640 x 400 x 4-color",
800 x 260 x 4-color",
320 x 200 x 16-color",
640 x 200 x 4-color",

Ox68 , OxOO, VB8, 8, Ox0400, Ox04, 40, 26 },
Ox68 , OxOO, VB8, 8, Ox0400, Ox04, 40, 2.6 },
Ox68 , OxOO, VB8, 4, Ox0800, Ox04, 80, 26 },
Ox68 , OxOO, VB8, 4, Ox0800, Ox04, 80, 26 },
Ox68, OxOO, VB8, 2, Ox2000, Ox02, 80, 200 },
Ox68, OxOO, VB8, 2, Ox2000, Ox02, 80, 200 },
Ox68, Ox07, VB8, 2, Ox2000, OxOl, 80, 200 },
Ox68 , Ox07, VB8, 4, Ox2000, OxOl, 80, 400 },
Ox68 , OxOO, VBO, 4, Ox4000, Ox02, 160, 400 },
Oxe8, OxOO, VBO, 4, Ox4000, Ox02, 200, 260 },
Ox68 , OxOO, VB8, 4, Ox2000, Ox04, 160, 200 },
Ox68 , OxOO, VB8, 2, Ox4000, Ox02, 160, 200 },

char press [32] "Press any function key to exit";

char rltr_e[16] = { OxOO, OxOO, Oxfe, Ox02, Ox02, Ox02, Ox7e, Ox02,
Ox02, Ox02, Ox02, Oxfe, OxOO, OxOO, OxOO, OxOO };

char c_font[266][16]; /* space to store current character set */

char c_cursor[8] = { Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff } ;

int font_w = 8;
int font_h = 16;
int vid_mode = 2;

/* font width in pixels */
/* font height in pixels */

/* current video mode */

Video Controller - Programming Example 7- 53

The function get_mode""p provides a single source for a pointer to video mode
data.

NOTE
The two video modes. Oxfe and Oxff. are not defined or sup­
ported by the ROM BIOS. The mode numbers, Oxfe and Oxff,
are defined only within the limits of this example.

The function get_mess""p provides a single source for a pointer to a string that
describes the currently selected video mode. This function is not required to
program the video modes, however, it is used to support the example program.

7- 54 Video Controller - Programming Example

/***/
/* get_Mode_pC) - returns a pointer to a mode table */
/***/
M_TABLE *get_mode_p(d_mode) /* get mode table pointer */

int d_mode; /* desired mode */
{

switch (d_mode) /* discover desired mode */
{

case 0: return(lmode_table[O]); /* 40 x 26 monochrome */
case 1 : return(lmode_table[l]); /* 40 x 26 color */
case 2: return(lmode_table[2]); /* 80 x 26 monochrome */
case 3: return(lmode_table[3]); /* 80 x 26 color */
case 4: return(lmode_table[4]); /* 320 x 200 x 4 color */
case 5: return(lmode_table[S]); /* 320 x 200 monochrome */
case 6: return(lmode_table[6]); /* 640 x 200 x 2 color */
case OxdO: return(lmode_table[7]); /* 640 x 400 x 2-color */
case Oxdl: return(lmode_table[8]); /* 640 x 400 x 4-color */
case Oxd2:·return(lmode_table[9]); /* 800 x 260 x 4-color */
case Oxfe: return(lmode_table[10]); /* 320 x 200 x 16-color */
case Oxff: return(lmode_table[ll]); /* 640 x 200 x 4-color */

}
}

/***/
/* get_mess_pC) returns a pointer to a string that describes the mode */
/***/
char *get_mess_p() /* get message pointer */
{

switch(vid_mode) /* discover current mode */
{

case 0: return (lmessage [0] [0]); /* 40 x 25 monochrome */
case 1 : return (lmessage [1] [0]); /* 40 x 26 color */
case 2: return(lmessage[2][0]); /* 80 x 25 monochrome */
case 3: return (lmessage [3] [0]); /* 80 x 26 color */
case 4: return (lmessage [4] [0]); /* 320 x 200 x 4 color */
case 5: return(lmessage[5] [0]); /* 320 x 200 monochrome */
case 6: return (lmessage [6] [0]); /* 640 x 200 x 2 color */
case OxdO: return (lmessage [7] [0]); /* 640 x 400 x 2-color */
case Oxdl: return(lmessage[8] [0]); /* 640 x 400 x 4-color */
case Oxd2: return(lmessage[9][0]); /* 800 x 250 x 4-color */
case Oxfe: return(lmessage[10] [0]); /* 320 x 200 x 16-color */
case Oxff: return (lmessage [11] [0]); /* 640 x 200 x 4-color */

}

}

Video Controller - Programming Example 7- 55

The function w _ vlt writes the video look-up table.

The parameter pva is a pointer to a packed array of byte values.

Notice-that the routine waits until the start of video blanking time to perform:
the operation and that video output is disabled on return.

/***/
/* w_vltO - cophs a set of vlt-values to the video look-up table */
/***/

register char *pva:

{

register int
VLT far *pvlt;

i;

pvlt ... (VLT far *)VB8;
while(inp(STAT_REQB) & Ox80)

while(inp(STAT_UOS) & Ox80 =. 0)

outp(CTRL_REGB, OJt04);
for(i - 0; i < 16: i++)

vlt_bxte - *pva++;
outp(CTRL_REGB. 0);

}

/* write vlt */

/* ptr to array of characters */

/* loop counter */
/* pointer to access vlt */

/* initialize pointer to vlt */
/* wait until display is active */

/* wait until beginning of */
/* display bla~ked */

/* enable vlt access */
/* do all 16 vlt values */

(pvlt++)->
/* write to vlt */

/* return to normal */

7- 56 Video Controller . Programming Example

The function r _wJont reads or writes the font RAM. If the parameter dir is
false, it reads from the font RAM. Otherwise, it writes to the font RAM.

The parameter pfa is a pointer to a packed array of byte values.

Notice that to access the font RAM. the current mode must be one of the text
modes. The mode is changed temporarily and then restored to the mode indi­
cated by vid _ mode.

Also notice that the routine waits until video blanking time to perform the op­
eration and that video output is disabled on return.

/***/
/* r_w_font() copies the indicated number of character fonts to or */
/* from the font ram starting at the indicated character */
/***/

register char *pfa;
int dir;
unsigned char c_value;
register int count;

{

int i' .
FONT far *pfnt;

mode_init(2);
outp(CTRL_REGB. OxlO);
count «= 4;
pfnt = (FONT far *)VB8;

/* read or write font ram */

/* pointer to font array */
/* direction to move font data */

/* start at this char value */
/* number of character fonts */

/* loop counter */
/* pointer to access font ram */

pfnt += (unsigned int)c_value
if(dir)

« 4;

/* text mode required */
/* enable font ram access */

/* 16 bytes of data per char pattern */
/* initialize pointer to font ram */

/* offset to start of pattern */
/* nonzero means write font ram */

/* do requested count */
/* write to font ram */

/* zero means read font ram */
/* do requested count */

/* read font ram */
/* disable font ram access */

/* restore current video mode */
}

while (count--)
(pfnt++)->font_byte

else
while (count--)

*pfa++;

*pfa++ = (pfnt++)->font_byte;
outp{CTRL_REGB. OxOO);
mode_init(vid_mode);

Video Controller - Programming Example 7- 57

The function mode in it places the video processor in a predefined mode state
as indicated by the-parameter d mode. The video look-up table is initialized
first because w vItO waits for blanking time to start its operation and the
display is disabled when it returns.

Because the CRT controller is in an unstable state during initialization, the
video output must be disabled.

The CRT controller has 18 internal registers, RO through R17. The last two,
R16 and R17, are read only. Thus, they are ignored during initialization. The
crt controller has two external registers, the index register and the data regis­
ter. To access one of the 18 internal registers, write the desired register
number to the index register and read or write the data register.

The control register A and color select register are initialized to ensure that the
contents are appropriate for the mode.

Initializing control register B would enable the display. It was not done at this
time to prevent flashing the display if other operations have to be performed.
Other operations might include changing the font RAM, changing the video
look-up table from the default or preparing the video memory.

The function mv cursor positions the cursor at the desired row and column
location. -

7- 58 Video Controller - Programming Example

/***/
/* mode_initC) initializes the crtc and mode registers by moving a */
/* table of values to the appropriate registers */
/***/
mode_initCd_mode) /* initialize to desired mode */

int d_mode;
{

register int i;
register char *pc;
M_TABLE *pmt;
unsigned int intr3lag;

}

pmt = get_mode_pCd_mode);
intr_flag = int_off();
w_vlt(pmt->vt. TRUE);
pc = pmt->ct;
for(i = 0; i < 16; i++)
{

}

outp(CRTC_INDEX. i);
outp(CRTC_DATA. *pc++);

outp(CTRL_REGA. pmt->cra);
outp(COLR_SELC. pmt->csr);
int_on(intr_flag);

/* desired video mode */

/* loop control */
/* pointer to crtc_table */
/* pointer to mode_table */

/* CPU IF state */

/* get pointer to video mode table */
/* no interrupts please */

/* write vlt data */
/* assign pointer to crtc_table */
/* do registers RO through R15 */

/* indicate desired register */
/* write appropriate value */

/* set control register A */
/* set color select register */

/* allow interrupts */

/***/
/* mv_cursor() moves the cursor to the desired location */
/***/
mv_cursor(row. col)

int row;
int col;
{

int i;
register M_TABLE *pmt;
unsigned int intr_flag;

intr_flag = int_off();
pmt = get_mode_p(vid_mode);
i = (pmt->width * row) + col;
if(vid_mode == 0 II vid_mode
{

outp(CRTC_INDEX. 14);
outp(CRTC_DATA. i » 8);
outp(CRTC_INDEX. 15);

/* desired row */
/* desired column */

/* pointer to video mode table */
/* CPU IF state */

/* no interrupts please */
/* get pointer to video mode table */

1 I I vid_mode == 2 I I vid_mode == 3)

/* indicate desired register */
/* write appropriate value */

/* indicate desired register */

Video Controller - Programming Example 7- 59

}

outp(CRTC_DATA. i ~ Oxff);
}

int_on(intr_fla,);

/* write appropriate value */

/* allow interrupts */

7- 60 Video Controller - Programming Example

The function cursor on positions the cursor and turns the cursor on, so that it
is visible. -

The function cursor _off turns the cursor off, so that it is invisible.

/***/
/* cursor_on() turns the cursor on */
/***/

cursor_on(row. col)

int row;
int col;

{

unsigned int intr_flag;

/* desired row position */
/* desired column position */

/* CPU IF state */

if(vid_mode == 0 I I vid_mode == 1 II vid_mode == 2 I I vid_mode -- 3)
{

}
}

intr_flag = int_off();
mv_cursor(row. col);
outp(CRTC_INDEX. 10);
outp(CRTC_DATA, 0);
outp(CRTC_INDEX, 11);
Qutp(CRTC_DATA. font_h - 1);
int_on(intr_flag);

/* no interrupts please */

/* indicate desired register */
/* write appropriate value */

/* indicate desired register */
/* write appropriate value */

!* allow interrupts */

/***/
/* cursor_off() turns the cursor off */
/***/

cursor_off 0
{

unsigned int intr_flag;

}

if(vid_mode == 0 I I vid_mode
{

}

intr _flag = int_off 0 ;
outp(CRTC_INDEX, 10);
outp(CRTC_DATA, 17);
int_on(intr_flag);

/* CPU IF state */

1 livid_mode == 2 II vid_mode -- 3)

/* no interrupts please */
/* indicate desired register */

/* write appropriate value */
/* allow interrupts */

Video Controller . Programming Example 7- 61

The function set mode establishes a new video mode. It does this by initializing
the mode, clearing the screen (video memory) to an empty (blank) state, ena­
bling the display and advertising the new mode in vid _mode.

Notice that the video memory is cleared after the mode is initialized. This is
because each mode enables only certain sections of video memory.

The function screen on enables or disables the video output as indicated by the
parameter flag. This-is done through control register B.

/***/
/* set_mode() sets the mode as indicated, clears the screen and */
/* sets the current video mode flag */
/***/
set_mode (d_mode) /* set desired video mode */

int d_mode;
{

M_TABLE *pmt;

}

vid_mode = d_mode;
pmt = get_mode_p(d_mode);
mode_init(d_mode);
clear_vid_memO;
screen_on(TRUE);

/* desired mode */

/* pointer to mode_table */

/* tell world what new mode is */
/* get pointer to video mode table */

/* disable display & initialize mode */
/* clear screen */

/* enable the display */

/***/
/* screen_one) enables or disables the display (blanking / unblanking) */
/***/
screen_on(flag) /* disable or enable display */

int
{

flag;

register M_TABLE *pmt;

}

if (flag)
{

}

pmt = get_mode_p(vid_mode);
outp(CTRL_REGB, pmt->crb);

else outp(CTRL_REGB, 0);

/* what to do */

/* pointer to video mode table */

/* nonzero means enable display */

/* get pointer to video mode table */
/* control reg B enables display */

/* all bits off will disable */

7- 62 Video Controller - Programming Example

The function clear vid mem initializes video memory to a value appropriate for
the current mode. That is, in text modes the character byte is set to a space
character and the attribute byte is set to medium intensity white foreground
and a black background. For graphics modes, the color bits are set to zero
Iblackl. Only the addressable video memory is initialized.

Notice that the pointer to video memory is declared as a pointer to an integer.
The video memory data bus is a full 16-bit bus. Because text mode utilizes a
character and attribute byte pair and graphics mode values are all zero, it is
appropriate to take advantage of the 16-bit data bus. Also, the normal storage
for an integer is low byte first and high byte second.

The scan page size is specified in bytes. To calculate the correct memory size,
the number of scan pages is multiplied by half of the scan page size.

/***/
/* clear_vid_mem() based on the current mode, video memory is cleared */
/* to spaces or NULLs. The size of memory to clear */
/* is calculated from the mode table. */
/***/

clear_vid_memO
{

register unsigned int size;
int far *pvm;
M_TABLE *pmt;

}

pmt = get_mode_p(vid_mode);
pvm = (int far *)pmt->base;
size = pmt->nsp * (pmt->sps » 1);
switch(vid_mode)
{

}

case 0:
case 1:
case 2:
case 3:

while(size--) *pvm++ Ox0720;
break;

default:
while(size--) *pvm++
break;

OxOOOO;

/* loop control */
/* pointer to video memory */

/* pointer to video mode table */

/* ptr to current mode data */
/* ptr to start of video mem */

/* number of integers to init */
/* text or graphics mode 1 */

/* text modes initialized to */
/* a space character with */

/* medium intensity */

/* write char t attribute */

/* for graphics modes, just */
/* set all bits off */

Video Controller - Programming Example 7- 63

The function do border displays the indicated character in a pattern or border
(like a picture frame) at the extremes of the screen. It first decides whether the
mode is a text mode or a graphics mode. For text mode, it retrieves the row
and column counts from the mode table. Graphics mode programming is
slightly more difficult. The row count is calculated by dividing the total scan
lines by the fonts scan line height. The column count is calculated by dividing
scan line width (measured in bytes) by the the number of color bits per pixel
(only character fonts 8 pixels wide are supported in the example).

It then executes a for loop to generate the pattern. After the pattern is
displayed, a message is displayed describing the current video mode. Notice
that in graphics mode, the font height is temporarily changed to display the
message. This is because the message is displayed using an 8 x 16 character
font and it must be accommodated when displaying the border in an 8 x 8
character font.

/***/
/* do_border() From the mode table, the maximum number of */
/* displayable lines is calculated and a border */
/* is drawn using the indicated character. */
/***/

char *pc;

{

unsigned char attr;
char *pm;
int row, rows;
int col, cols;
int t_font_h;
M_TABLE *pmt;

pmt = get_mode_p(vid_mode);
pm = get_mess_p(vid_mode);
switch(vid_mode)
{

case 0:
case 1 :
case 2:
case 3:

/* get pointer to mode table */
/* get pointer to message */

/* discover the current mode */

/* text mode 0 or */
/* text mode 1 or */
/* text mode 2 or */
/* text mode 3? */

attr Ox07; /* black background t medium intensity foregrnd */
rows = pmt->length; /* length specified in table */
cols = pmt->width; /* width specified in table */

7- 64 Video Controller· Programming Example

}
}

for(row = 0; row < rows; row++)
{

disp_t(row, 0, *pc, attr);
if(row == 0 I I row == rows - 1)

for (col = 1; col < cols - 1; col++)
disp_t(row, col, *pc, attr);

disp_t(row, cols - 1, *pc, attr);

/* write left side */
/* first or last row */

/* write right side */
};

col = (cols - strlen(pm» » 1;
while (*pm)

/* center message */

disp_t(rows » 1, col++, *pm++, attr);
pm = press;

/* do message */

col = (cols - strlen(pm» » 1; /* center message */
while (*pm)

disp_t«rows » 1) + 1, col++, *pm++, attr); /* do message */
break;

default:
attr = Oxff » (8 - pmt->cb);
rows = pmt->length / font_h;
cols = pmt->width / pmt->cb;
for (row = 0; row < rows; row++)
{

disp_t(row, 0, *pc, attr);

/* medium intensity */
/* rows for this font */
/* columns this mode */

/* do all rows */

/* write left side */
if(row == 0 II row == rows - 1)

for (col = 1 ; col < cols - 1 ; col++)
disp_t(row, col, *pc, attr);

disp_t(row, cols - 1, *pc, attr); /* write right side
};
t_font_h = font_h;
font_h = 16;
col = (cols - strlen(pm» » 1;
while (*pm)

disp_t(pmt->length » 5, col++,
pm = press;
col = (cols - strlen(pm» » 1;
while (*pm)

disp_t«rows » 1) + 1, col++,
font_h = t_font_h;
break;

/* save current font
/* message font is 8 x 16

/* center message

pm++, attr); / do message

/* center message

pm++, attr) ; / do message
/* restore current font

*/

*/
*/
*/

*/

*/

*/
*/

Video Controller - Programming Example 7- 65

The function disp g displays a character at the desired row and column loca­
tion. The color bit-pixels that form the character are set to value in attr. The
routine assumes that it is provided an attribute that is consistent with the
number of color bits per pixel.

The routine calculates the position as a constant offset to the first byte of the
first scan line. After the scan line has been displayed, the scan line offset is
incremented to the next scan page. After writing a scan line to each scan page,
the scan line offset is zeroed and the constant offset is incremented by the
length of one scan line. The actual position is the constant offset plus the scan
line offset.

The middle for loop ensures that all eight pixels of the scan line are displayed.
For example, a I6-color display requires four color bits per pixel or four bytes
per character scan line.

For each pixel, the interior for loop shifts the color bit image and if the pixel
bit is set, the color bit attribute is ORed into the color bit image. The number
of pixel representations per byte is determined by dividing the font width by
the number of color bits per pixel. Only eight pixel wide fonts are supported by
the example.

7- 66 Video Controller - Programming Example

/***/
/* disp_g() Draws a character in graphics mode at the calculated */
/* row and column position. */
/**~****************************/
disp_g(row, col, pc, attr)

int row, col;
register unsigned char *pc;
unsigned char attr;
{

unsigned char far *pvm;
unsigned char bi;
unsigned char bd;
int bc;
int tbc;
int scan;
long coff;
unsigned int s_off;
register M_TABLE *pmt;

/* pointer to video memory */
/* bit image */

/* for bit testing */
/* bit count (current) */

/* terminating bit count */
/* current scan line */

/* character offset */
/* scan line offset */

/* mode data */

pmt = get_mode_p(vid_mode); /* get pointer to mode table */
byte */

}

c_off = pmt->base + (col * pmt->cb) + /* address of first
(row * pmt->width * (font_h / pmt->nsp»;

tbc = font_w / pmt->cb; /* bit image bit count per byte */
/* scan line offset */

for(scan = 0; scan < font_h; scan++, pc++) /* do all scan lines */
{

}

if (scan U scan % pmt->nsp == 0) /* done all scan pages '7 */
{

c_off += pmt->width; /* offset by one scan line */
s_off = 0; /* reset to first scan page */

}

pvm = (char far *)(c_off + s_off); /* ptr to first byte of scan */
s_off += pmt->sps; /* offset to next scan page, for next pass */
for(bd = Ox80; bd;) /* start at left most bit/pixel */
{

}

bi = OxOO;
for(bc = 0; bc < tbc; bc++, bd »= 1)
{

/* null bit image */
/* do a byte of scan */

bi «= pmt->cb;
if(*pc k bd) bi 1= attr;

/* shift bit image by # of color bits */
/* or in next bit image */

}

pvm++ = bi; / write a byte of scan line */

Video Controller - Programming Example 7- 67

The function disp t displays a character and attribute at the desired row and
column location. -

The example uses zero-based row and column values. When calculating the p0-

sition, this saves subtracting one from the row and column values.

Notice that the pointer to video memory is declared as a pointer to an integer.
The video memory data bus is a full16·bit bus. Because text mode utilizes a"
character and attribute byte pair. it is appropriate to take advantage of the
16·bit data bus. Also, the normal storage for an integer is low byte first and
high byte second.

/***/
/* disp_t{) writes a character and its attribute to the indicated */
/* row and column position */
/***/

disp_t{row, col, c, attr)

int rOWj
int colj
unsigned char Cj
unsigned char attrj

{

int far *pvmj /* pointer to video memory */
register M_TABLE *pmtj

if{vid_mode == 0 I vid_mode 1 I vid_mode == 2 I vid_mode == 3)
{

pmt = get_mode_p{vid_mode)j /* get pointer to mode table */
/* get address of character */

pvm = {int far *){pmt->base +
{row * (pmt->width « 1) + {col « 1»)j

pvm = ({int)attr « 8) I {int)cj / character t attribute */
}

else disp_g{row, col, tc_font[c] [0] , attr)j
}

7- 68 Video Controller . Programming Example

The function video sets up various conditions and executes the example pro­
gram. The major points are:

1. Read the current font and save it.

2. Select a video mode.

3. Change the pattern of the letter 'E' to a mirror image of the letter 'E.'

4. Restore the pattern of the letter 'E' from the saved font.

5. Display the letter 'E' border pattern in the selected video mode.

6. Restore the video mode to mode 3 and exit.

/***/
/* video() - execute video examples */
/***/

videoO
{

static MESSAGE mvid[] =
{

{ 3, 33, "Video Example" },
{ 5, 24, "Fl. Select video mode" },
{ 6, 24, "F2. Invert letter E" },
{ 7, 24, "F3. Restore letter E" },
{ 8, 24, "F4. Display selected video mode"
{ 9, 24, "FlO. Return to Main menu" },
{ 0, 0, o },

};

static MESSAGE mvmp [] =

{
{ 3, 31, "Select Video Mode" },
{ 5, 24, "Fl. 40 x 25 Text" },
{ 6, 24, "F2. 80 x 25 Text" },
{ 7, 24, "F3. 320 x 200 x 4-color" },
{ 8, 24, "F4. 320 x 200 x 16-color" },
{ 9, 24, "FS. 640 x 200 x 2-color" },
{ 10, 24, "F6. 640 x 200 x 4-color" },
{ 11, 24, "F7. 640 x 400 x 2-color" },
{ 12, 24, "F8. 640 x 400 x 4-color" },
{ 13, 24, "F9. 800 x 2S2 x 4-color" },
{ 14, 24, "FlO. Return to video example" },
{ 0, 0, o },

};

char line[S12];

/* video menu */

},

/* video menu */

/* to hold input line */

Video Controller - Programming Example 7- 69

int i;
int mode;
unsigned char c;

/* to hold menu selection */
/* temp value for mode */

r_w_font(~c_font[O][O], FALSE, OxOO, 256);
set_mode(3);

/* read all font ram */
/* reset video mode */

/* display the video menu */
/* null terminated */

/* forever (see FlO) */

disp_menu(mvid);
line[O] = 0;
while (1)
{

switch(line[O])
{

case Fl:
disp_menu(mvmd);
line [0] = get_fkeyO;
switch (line [0])
{

case Fl : mode 1 ;
case F2: mode 3;
case F3: mode 4;
case F4: mode Oxfe;
case F5: mode 6· ,
case F6: mode Oxff;
case F7: mode OxdO;
case F8: mode Oxdl;
case F9: mode Oxd2;
case FlO: break;

}

break;

break;
break;
break;
break;
break;
break;
break;
break;
break;

/* determine menu selection */

/* select video mode */
/* display the mode menu */

/* get a function key selection */

case F2: /* reverse 'E' to font ram */
r_w_font(~rltr_e[O], TRUE, 'E', 1);
set_mode(3); /* reset video mode */
break;

case F3: /* restore 'E' to font ram */
r_w_font (lI:c_font ['E'] [0], TRUE, 'E', 1);
set_mode(3); /* reset video mode */
break;

case F4:
set_mode(mode);
do_border("E");
while(l) if(get_key(lI:c)
while(l) if(get_key(lI:c)
set_mode(3);
break;

/* display selected mode */
/* set the desired mode */

/* write letter 'E' at screen extremes */
>= 0 11:11: c == 0) break;
>= 0) break;

/* set the desired mode */

7- 70 Video Controller - Programming Example

}
}

}

case FlO:
return;

disp_menu(mvid);
line[O] : get_fkey();

/* return to caller (main menu) */

/* display the rtc menu */
/* get a function key for menu selection */

Video Controller . Programming Example 7- 71

Chapter 8
Keyboard-Interface Controller

and Keyboard

Introduction
The keyboard-interface controller is an Intel 8042 microcomputer with internal
firmware developed by DIGITAL. The keyboard-interface controller provides a
physical and logical interface between the LK250 keyboard and the V AXmate
CPU. Also, it provides several hardware control functions that are unrelated to
the LK250 keyboard.

The LK250 keyboard is an intelligent keyboard with 105 keys. The keys are
divided into functional groups as follows:

• 57 key main section
• 20 key function-key section
• 18 key keypad section
• 10 key auxiliary and direction key section

Keyboard-Interface Controller

Physical Interface to the CPU
The V AXmate CPU communicates with the keyboard-interface controller
through two 8-bit parallel ports in input/output (110) address space 0060H and
0064H. The registers accessed through these ports are:

• Reading port 0064H accesses the status register.
• Writing port 0064H accesses the command register.
• Reading port 0060H accesses the output data register.
• Writing port 0060H accesses the input data register.

The contents and usage of these registers are described later in this chapter.

Keyboard-Interface Controller - Hardware Description 8 - 1

Physical Interface to the Keyboard
The keyboard-interface controller communicates with the LK250 keyboard over
a bi-directional serial data line. A second line provides serial clock rate. A com­
bination of signals and timing on the serial clock line provides the communica­
tions protocol. These lines are in the coiled cable that connects the LK250
keyboard and the V AXmate workstation.

Logical Interface
The keyboard-interface controller has two modes of operation, pass-through or
translate. In pass-through mode, all data received from the LK250 keyboard
are stored in the output buffer without modification. In translate mode, all data
in the range OOH-99H and FOH are translated to an industry-standard or a
DIGITAL extended scan code and stored in the output buffer. Bit 6 of the
command byte controls this mode of operation. The keyboard-interface control­
lers default mode is pass through.

NOTE
During the system powerup initialization, the ROM BIOS sets
the keyboard-interface controller to translate mode. Therefore,
the operating system sees the keyboard-interface controller in
translate mode.

8 - 2 Keyboard-Interface Controller - Hardware Description

Control Functions
The keyboard-interface controller performs some control and status functions
that are unrelated to LK250 keyboard operation. Therefore, the keyboard­
interface controller has two 8-bit ports, port 1 and port 2, that are in the
keyboard-interface controller 110 address space. Commands are available that
instruct the keyboard-interface controller to read port 1 and read or write port
2. Those commands are discussed in the command register section. Table 8-1
defines the port 1 bits and Table 8-2 defines the port 2 bits.

Table 8-1 Port 1 Bit Definitions

Bit Description

7 Undefined

6 Always 0

5-3 Undefined

2 EXPANSION BOX INSTALLED
o = Expansion box installed
1 = Expansion box not installed

1 RAM OPTION INSTALLED
o = RAM option installed
1 = RAM option not installed

o RAM OPTION ERROR
o = RAM option parity error
1 = No error

Keyboard-Interface Controller - Hardware Description 8 - 3

Table 8-2 Port 2 Bit Definitions

Bit Description

7 Keyboard data (output)

6 Keyboard clock inverted (output)

5 Undefined

4 CPU IRQI
o = Keyboard-interface controller not interrupting
I = Keyboard-interface controller interrupt to CPU

3 Undefined

2 Undefined

I Gate system address line 20
o = System address line 20 enabled. Use this state for 80286 vir­

tual protected mode.
I = System address line 20 disabled. Use this state for 80286 real

mode.

o Reset 80286 CPU (affects only the CPU)
o = 80286 CPU in reset state
I = 80286 CPU not in reset state

Keyboard-Interface Controller Diagnostics
On powerup, the keyboard-interface controller executes a diagnostic test. The
test verifies the keyboard-interface controllers ROM and RAM. The keyboard­
interface controller completes the test within 200 ms after powerup. During the
powerup test, the LK250 keyboard is ignored.

Failing this test is considered a fatal system error. If an error occurs during
powerup testing, the keyboard-interface controller will not respond to any input,
and must be reset. To reset the keyboard-interface controller, turn the
V AXmate workstation off and then on.

8 - 4 Keyboard-Interface Controller - Hardware Description

Keyboard-Interface Controller Registers

Data Register (0060H)

7 6 5 4 3 2 1

Bit R/W Description

7-0 R/W The CPU reads or writes this port to exchange data with the
keyboard-interface controller

Command Register (0064H)

7 6 5 4 3 2 1

o

o

I : : STATU~ OR co~ ~ISTBR: : I
Bit RIW Description

7-0 R The CPU reads the keyboard-interface controller status register

W The CPU writes the keyboard-interface controller command
register

Keyboard-Interface Controller - Hardware Description 8 - I)

Status Register (0064H)

7 6 5 4 3 2 1 o

PARITY RECEIVE XMIT KEYBRD COMMAND SYSTEM INPtIT OtITPtIT
ERROR TIME- TIME- INHIBIT IDATA FLAG BUFFER BUFFER

OtIT OtIT SVITCH FULL FULL

Bit R/W Description

7 R

6 R

5 R

PARITY ERROR
o = No parity error
1 = Parity error

The keyboard to keyboard-interface controller serial communica­
tions use odd parity checking. When data from the keyboard con­
tains a parity error, this bit is set to 1. Reading the status register
clears this bit.

RECEIVE TIMEOUT
o = No receive timeout error
1 = An in-progress transmission from the keyboard was not com-

pleted within 2 ms.

Reading the status register clears this bit.

XMIT TIMEOUT - Transmit Timeout
o = No transmit timeout error
1 = An in-progress transmission from the keyboard-interface con-

troller to the keyboard was not completed within 2 ms.

Reading the status register clears this bit.

This bit is also used in combination with the parity error bit or the
receive timeout bit to establish additional error conditions as
follows:

• If the transmission to the keyboard completes within 2 ms, but
the response from the keyboard is not received within 20 ms,
then the transmit and receive timeout bits are set to 1.

• If the transmission to the keyboard and the response from the
keyboard complete within the designated time frame, but the
response contains a parity error, then the transmit timeout
and parity error bits are set to 1.

8 - 6 Keyboard-Interface Controller - Hardware Description

Bit RIW Description (Status Register - cont.)

4 R

3 R

2 R

KEYBRD INHIBIT SWITCH - Keyboard Inhibit Switch
o = Keyboard is inhibited (locked)
1 = Keyboard is active (unlocked)

The V AXmate workstation does not have a keyboard lock, so this
bit is always set to 1.

COMMANDIDATA
o = Of the pair (0060H/0064H), the last 1/0 write was to the

data register, at 1/0 address 0060H.
1 = Of the pair (0060H/0064H), the last 1/0 write was to the

command register, at 1/0 address 0064H.

This bit is used internally by the keyboard-interface controller. It
determines whether the byte in the keyboard-interface controllers
input buffer is a command or data.

SYSTEM FLAG
o = ROM BIOS should execute a normal powerup initialization

process
1 = A virtual protected mode task request to reset the CPU to

real mode

The ROM BIOS interprets the state of the system flag to deter­
mine the reason the V AXmate CPU reset pin was toggled. If the
system flag is set, the V AXmate CPU is returning to real mode
from virtual protected mode. Otherwise, the ROM BIOS executes
a normal powerup initialization process.

During the keyboard-interface controllers powerup initialization se­
quence, the keyboard-interface controller clears the system flag to
O.
Setting or clearing the system flag is a two step process: Issue a
write-command-byte instruction by writing the value 0060H to the
command register at 1/0 address 0064H. The write-command-byte
instruction is discussed in detail later in this chapter.

Write the command byte to the input data register at 1/0 address
0060H. The system flag reflects the value of bit 2 of the command
byte. If bit 2 of the command byte is set to 1, so is the system
flag. When bit 2 is 0, the system flag is cleared to O.

Keyboard-Interface Controller - Hardware Description 8 - 7

Bit RIW Description ~Status Register - cont.)

1 R

o R

INPUT BUFFER FULL
o = Keyboard-interface controller input data buffer is empty
1 = Keyboard-interface controller input data buffer contains data

that has not been processed by the keyboard-interface
controller.

Data written to the input data register is transferred to the
keyboard-interface controllers input data buffer. This bit reflects
the status of the input data buffer.

OUTPUT BUFFER FULL
o = Keyboard-interface controller output data buffer is empty
1 = Keyboard-interface controller output data buffer contains

data that the CPU has not read

The status register is an 8-bit read-only register at 110 address 0064H.
It contains information about the keyboard-interface controller and keyboard.
Status changes do not cause an interrupt. The status register can be read at
any time.

The keyboard-interface controller command EIH allows the CPU to initialize
bits 7-4 of the status register. See the keyboard-interface controller command
register description.

8 - 8 Keyboard-Interface Controller - Hardware Description

Command Register (OO64H)

7 6 5 4 3 2 1 o

Bit Description

7-0 Keyboard-interface controller commands from the CPU

The data written to this register are instructions to the keyboard-interface con­
troller. Table 8-3 lists the keyboard-interface controller commands.

Table 8-3 Keyboard-Interface Controller Commands

Command Description Command Description
Value Value

00H-1FH Reserved COH Read Port 1

20H Read command byte C1H Read Port 1

21H-5FH Reserved C2H·CFH Reserved

60H Write command byte DOH Read Port 2

61H-A9H Reserved D1H Write Port 2

AAH Self-test D2H-DFH Reserved

ABH Interface test EOH Read test inputs

ACH Reserved for expansion E1H Write status
register

ADH Disable keyboard E2H-EFH Reserved

AEH Enable keyboard FOH-FFH Pulse output port

AFH-BFH Reserved

Keyboard-Interface Controller - Hardware Description -8 - 9

Read Command Byte (20H)
Write Command Byte (60H)
The keyboard-interface controller has an internally stored command byte that
determines how the interface controller responds to various conditions. The two
commands, read command byte and write command byte, provide access to
that command byte. When the keyboard-interface controller receives a read­
command-byte command, it places the internally stored command byte in the
output buffer. When the keyboard-interface controller receives a write­
command-byte command, it stores the next data byte, written to the input data
register at 1/0 address 0060H, to the internally stored command byte. Table
8-4 defines the command byte bits.

Table 8-4 Command Byte Bit Definitions

Bit R/W Definition

7 R/W Always 0

6 R/W Scan Code Type
o = The LK250 scan codes are passed through without conver­

sion 'pass-through mode).
1 = The keyboard-interface controller converts the LK250 key­

board scan codes to industry-standard one byte values
(translate mode).

5 R/W Interface Type - Always 0

4 R/W Disable Keyboard
o = Keyboard enabled
1 = Keyboard disabled

The keyboard-interface controller disables the keyboard by setting
the clock line to a low state. This bit is cleared by writing this
command byte or by writing LK250 keyboard data to the input
data register at 1/0 address 0060H.

3 R/W Inhibit Override

8- 10

o = Keyboard inhibit switch enabled 'see status register bit 4).
1 = Keyboard inhibit switch disabled and the key lock function is

overridden 'see status register bit 4).

Keyboard-Interface Controller - Hardware Description

Table 8-4 Command Byte Bit Definitions (cont.)

Bit R/W Definition

2 R/W System Flag
o = ROM BIOS should execute a normal powerup initialization

process
1 = A virtual protected mode task request to reset the CPU to

real mode

The ROM BIOS interprets the state of the system flag to deter­
mine the reason the V AXmate CPU reset pin was toggled. If the
system flag is set, the V AXmate CPU is returning to real mode
from virtual protected mode. Otherwise, the ROM BIOS executes
a normal powerup initialization process.

During the keyboard-interface controllers powerup initialization se­
quence, the keyboard-interface controller clears the system flag to
zero.

See the status register bit 2 description.

1 R/W Always 0

o R/W Enable Output-Buffer-Full Interrupt
o = Keyboard-interface controller does not generate interrupts to

the CPU
1 = When the keyboard-interface controller places data in the

output buffer, the keyboard-interface controller generates an
interrupt to the VAXmate CPU.

Keyboard-Interface Controller - Hardware Description 8- 11

Self-Test (AAH)
This command causes the keyboard-interface controller to perform internal
diagnostic tests. The command byte is reset to lOH (keyboard disabled) and
interrupts to the V AXmate CPU are disabled. The system flag (status register
bit 2) is not -changed. One of three possible diagnostic result codes is placed in
the output buffer.

Diagnostic Code

55H
FEH
FDH

Interface Test (ABH)

Meaning

~o errors detected
Invalid ROM checksum
RAM test failed

This command causes the keyboard~interface controller to test the state of the
LK250 keyboard-interface lines. One of five possible diagnostic result codes is
placed in the output buffer.

Diagnostic Code

OOH
01H
02H
03H
04H

Disable Keyboard (ADH)

Meaning

~o errors detected
LK250 keyboard clock line always low
LK250 keyboard clock line always high
LK250· keyboard data line always low
LK250 keyboard data line always high

This command sets bit 4 of the keyboard-interface controller command byte.
The keyboard-interface controller disables the keyboard-interface by setting the
clock line low.

Enable Keyboard (AEH)
This command clears bit 4 of the keyboard-interface controller command byte.
The keyboard-interface controller enables the keyboard interface by freeing the
clock line.

Read Port 1 (COH)
The keyboard-interface controller reads port 1 (bits 7-0), sets bits 3-0 to 1 (for
compatibility), and places the result in the output buffer. For port 1 bit
definitions, see Table 8·1. Because it overwrites any data in the buffer, this
command should not be used unless the output buffer is empty.

Read Port 1 (CIH)
The keyboard-interface controller reads port 1 (bits 7-0) and places bits 7-0
(without modification) in the output buffer. For port 1 bit definitions, see

8- 12 Keyboard-Interface Controller - Hardware Description

Table 8-1. Because it overwrites any data in the buffer, this command should
not be used unless the output buffer is empty.

Read Port 2 (DOH)
The keyboard-interface controller reads port 2 (bits 7-0) and places bits 7~0 in
the output buffer. For port 2 bit definitions, see Table 8-2. Because it over­
writes any data in the buffer, this command should not be used unless the
output buffer is empty.

Write Port 2 (DIH)
The keyboard-interface controller takes the next byte of data written to the
input data register at 1/0 address 0060H and writes it to the keyboard­
interface controller output port 2. For port 2 bit definitions, see Table 8-2.

CAUTION
Bit 0 of keyboard-interface controller output port 2 is connected
to the V AXmate CPU reset circuitry. Clearing bit 0 to a zero
places the V AXmate CPU in a permanent reset state.

Read Test Inputs (EOH)
The keyboard-interface controller reads its TO and Tl inputs and places the
data in the output buffer. This command writes over any data in the output
buffer that has not been read by the CPU. Bit 0 corresponds to the state of TO
and bit 1 corresponds to the state of Tl.

Write Status Register (EIH)
This is a diagnostic command. The keyboard-interface controller takes bits 7-4
of the next byte written to the input data register (60H) and writes them to
bits 7-4 of the status register. Only bits 7-4 are affected.

After the next keyboard-interface controller command that makes data avail­
able to the V AXmate CPU, the keyboard-interface controller updates the status
register to reflect the current status.

Pulse Output Port (FOH-FFH)
The keyboard-interface controller pulses bits 3-0 of port 2 according to the
value of bits 3-0 of the command value. Any of the bits 3-0 that are clear in
the command byte are pulsed low for approximately six microseconds.

All four bits (3-0) are affected by this command, but bits 3-2 are not connected
to anything. Bit 1 gates the address line A20. Bit 0 is connected to the
V AXmate CPU reset circuitry. The ROM BIOS uses this command to return
to real mode from virtual protected mode.

Keyboard-Interface Controller - Hardware Description 8 - 13

Keyboard-Interface Controller Error Handling
If the LK250 keyboard initiates a transmission sequence and the data is re­
ceived with a parity error, the keyboard-interface controller issues a resend
command. If the response to the resend command is bad, the keyboard­
interface controller places an FFH code in the output buffer and sets the parity
error bit in the status register.

If the keyboard-interface controller cannot start a transmission within 15 milli­
seconds or it cannot complete a transmission within two milliseconds after it
was started, the transmit timeout bit is set in the status register and an FEH
(keyboard resend request) is placed in the output buffer.

If the LK250 keyboard does not respond within 20 milliseconds, then the
transmit timeout bit and receive timeout bit are set in the status register. If
the LK250 keyboard response was received with a parity error, then the
transmit timeout bit and the parity error bit are set in the status register and
an FEH (keyboard resend request) is placed in the output buffer.

If the keyboard-interface controller has not inhibited the keyboard and a LK250
keyboard transmission does not complete within two milliseconds after it is
started, the receive timeout bit is set in the status register. A resend command
is not issued by the keyboard-interface controller.

8- 14 Keyboard-Interface Controller - Hardware Description

LK250 Keyboard

Scan Codes
When a key is pressed, the LK250 keyboard transmits a value, in the range
01H-99H, that identifies the pressed key. This value is known as a scan code.
If the key is held down for a time that exceeds the autorepeat delay time, the
keyboard repeatedly transmits the scan code at the autorepeat rate. When a
key is released, the LK250 keyboard transmits a release code of FOH followed
by the scan code of the released key.

The LK250 keyboard transmits scan codes to the keyboard-interface controller.
If the keyboard-interface controller is in pass-through mode, the keyboard­
interface controller transmits the scan code or release code (FOHI and scan
code without conversion. If the keyboard-interface controller is in translate
mode, the keyboard-interface controller converts the LK250 scan code or re­
lease code (FOHI and scan code to an industry-standard I-byte value. In the
industry-standard representation, a released key is indicated by adding 80H to
the translated scan code value.

Table 8-5 lists the LK250 scan codes, their equivalent keyboard-interface­
controller translated industry-standard value, and keyboard location label.
Figure 8-1, a representation of the LK250 keyboard, shows location labels for
each key position.

Table 8-6 lists values in the scan code range (01H-99HI that the LK250 key­
board does not use to represent keys. However, in translate mode, the
keyboard-interface controller translates them to the indicated industry-standard
value.

Keyboard-Interface Controller - Hardware Description 8- 15

00
I ,...
=

i a.
~

LED LED LED LED
1 2 3 4

1:1
~ ~

~ So ... ~ ~
~

00 (") ..:.. =
[G11IG121G131G141 IG991GOO IG01 IG021 G031 I G05 rG06 1 G071 G081 G09]

0000

IG15 1 G16 1 IG201 G21\ G22\ G231

1:1
~ a
i --~ ... = lD

E16 E17 E18

016 017 018

E20 E21 E22 E23

020 021 022 023 ...
==

~
lD loti a. = rn
~ g ~

0 t"" ~

!-rn
~

!!.

C99 C17

B16 B17 B18

C20 C21 C22 C23

B20 821 B22
A23

A20 A22
- ~ ~ ~~~

LJ-1310

"a rn
= 1:1

Table 8-5 LK250 Scan Codes and Industry-Standard Equivalent Value

LK250 Translated Keyboard Key Name
Scan Industry-Standard Position
Code Scan Code

OlH 43H G08 F9
03H 3FH G03 F5
04H 3DH GOI F3

05H 3BH G99 Fl
06H 3CH GOO F2
09H 44H G09 FlO
OAH 42H G07 F8

OBH 40H G05 F6
OCH 3EH G02 F4
ODH OFH DOO Tab
OEH 29H BOO ' -
llH 38H A99 Alt
l2H 2AH B99 Left Shift
l4H lDH C99 Ctrl
l5H 10H DOl qQ

l6H 02H EOI 1 !
lAH 2CH BOI zZ
lBH lFH COl s S
lCH lEH COl aA

lDH llH D02 wW
lEH 03H E02 2@
2lH 2EH B03 cC
22H 2DH B02 xX

23H 20H C03 dD
24H l2H D03 eE
25H 05H E04 4$
26H 04H E03 3 #

29H 39H AOI Space Bar
2AH 2FH B04 vV
2BH 2lH C04 fF
2CH l4H D05 tT

Keyboard-Interface Controller - Hardware Description 8 - 17

Table 8-5 LK250 Scan Codes and Industry-Standard Equivalent Value (cont.~

LK250 Translated Keyboard Key Name
Scan Industry-Standard Position
Code Scan Code

20H 13H 004 rR
2EH 06H E05 5%
31H 31H B06 oN
32H 30H B05 bB

33H 23H C06 hH
34H 22H C05 gO
35H 15H 006 yY
36H 07H E06 6 •

3AH 32H B07 mM
3BH 24H C07 j J
3CH 16H 007 uU
30H 08H E07 7&

3EH 09H E08 8 '"
41H 33H B08 ,<
42H 25H C08 kK
43H 17H 008 i I

44H 18H 009 o 0 (Letter~
45H OBH E10 o)
46H OAH E09 9 (
49H 34H B09 .>

4AH 35H B10 I ?
4BH 26H C09 I L
4CH 27H C10 , .
40H 19H 010 pP

4EH OCH Ell
52H 28H Cll 'Ii

54H 1AH 011 [{
55H OOH E12 =+
58H 3AH COO Lock
59H 36H B11 Right Shift
5AH 1CH C13 Return
5BH 1BH 012] }

8 - 18 Keyboard-Interface Controller - Hardware Description

Table 8-5 LK250 Scan Codes and Industry-Standard Equivalent Value (cont.)

LK250 Translated Keyboard Key Name
Scan Industry-Standard Position
Code Scan Code

5DH 2BH E12 \ I
66H OEH E13 Delete (Word/Char)
69H 4FH B20 1 End
6BH 4BH C20 4 Left-Arrow

6CH 47H D20 7 Home
70H 52H A20 o Ins
71H 53H A22 . Del
72H 50H B21 2 Down-Arrow

73H 4CH C21 5
74H 4DH C22 6 Right-Arrow
75H 48H D21 8 Up-Arrow
76H 01H E20 Esc

77H 45H E21 NumLock
79H 4EH C23 + (Keypad)
7AH 51H B22 3 PgDn
7BH 4AH D23 - (Keypad)

7CH 37H E23 PrtSc •
7DH 49H D22 9 PgUp
7EH 46H E22 ScrlLock Break
7FH 54H SysReq (Alt/F20)

83H 41H 006 F7
84H 54H 023 F20
85H 55H E16 Find
86H 56H E17 Insert Here

87H 57H E18 Remove
88H 58H 016 Select
89H 59H D17 Prev
8AH 5AH D18 Next

8BH 5BH C17 Up-Arrow
8CH 5CH B16 Left-Arrow
8DH 5DH B17 Down-Arrow
8EH 5EH B18 Right-Arrow

Keyboard-Interface Controller - Hardware Description 8 - 19

Table 8-5 LK250 Scan Codes and Industry-Standard Equivalent Value (cont.)

LK250 Translated Keyboard Key Name
Scan Industry-Standard Position
Code Scan Code

8F8 5F8 011 F11
908 60H 012 F12
918 618 013 F13
92H 62H 014 F14

938 638 015 Help
948 648 016 Do
958 65H 020 F17
96H 66H 021 F18

978 67H 022 F19
988 688 EOO Compose
99H 69H A23 Enter (Keypad)

8 - 20 Keyboard-Interface Controller . Hardware Description

Table 8-6 Scan Codes Translated But Not Used

Unused Translated Unused Translated
Scan Industry-Standard Scan Industry-Standard
Code Scan Code Code Scan Code

02H 41H 51H 73H
07H 58H 63H 74H
08H 64H 66H 62H
OFH 59H 67H 6EH

10H 65H 5CH 76H
13H 70H 6EH 63H
17H 6AH 6FH 76H
18H 66H 60H 56H

19H 71H 61H 56H
1FH 5BH 62H 77H
20H 67H 63H 78H
27H 6CH 64H 79H

28H 68H 66H 7AH
2FH 50H 67H 7BH
30H 69H 68H 7CH
37H 5EH 6AH 70H

38H 6AH 60H 7EH
39H 72H 6EH 7FH
3FH 5FH 6FH 6FH
40H 6BH 78H 57H

47H 60H 80H 80H
48H 6CH 81H 81H
4FH 61H 82H 82H
50H 60H

Keyboard-Interface Controller - Hardware Description 8 - 21

LK250 Keyboard Command Codes
Table 8-7 provides a summary of the LK250 command codes. Following Table
8-7 are descriptions of each command. The command descriptions give the pur­
pose of the command, the actions taken by the keyboard, and the response
code transmitted by the LK250 keyboard. The LK250 keyboard response codes
are described later in this chapter.

Table 8-7 LK250 Keyboard Command Codes

Value

OOH-AAH

ABH

ACH

ADH

AEH

AFH

BOH

BlH

B2H

B3H

B4H

B5H-ECH

EDH

EEH

EFH-F2H

F3H

F4H

F5H

F6H

F7H-FDH

FEH

FFH

Description

Invalid Commands

Request Keyboard ID (Digital Extended)

Enter Digital Extended Scan Code Mode

Exit Digital Extended Scan Code Mode

Set Keyboard LED (Digital Extended)

Reset Keyboard LED (Digital Extended)

Set Keyclick Volume (Digital Extended)

Enable Autorepeat

Disable Autorepeat

Keyboard Mode Lock

Keyboard Mode Unlock

Reserved

LEDs On/Off

Echo

Reserved

Set Autorepeat Delay and Rate

Enable Key Scanning

Disable Key Scanning and Restore to Defaults

Restore To Defaults

Reserved

Resend

Reset

8- 22 Keyboard-Interface Controller - Hardware Description

Invalid Commands (OOH-AAH)
I ndllstry-Standard

When the LK250 keyboard receives a code in the range OOH-AAH, it transmits
a res end request. The LK250 keyboard does not transmit an acknowledge
(ACK) for codes in this range.

Request Keyboard ID (ABH)
DIGITAL Extended

When the LK250 keyboard receives the code ABH, the keyboard clears its
output buffer and transmits a 2-byte response that identifies the version and
mode of the LK250 keyboard. The first byte returned is the version number.
The second byte is the current operating mode, 01H for industry-standard
mode or 02H for DIGITAL extended mode.

To successfully execute this command, the keyboard-interface controller must
be in pass-through mode. Otherwise, the keyboard controller attempts to
translate the data to an industry-standard scan code.

The LK250 keyboard does not transmit an acknowledge (ACK) for this
command.

Enter DIGITAL Extended Scan Code Mode (ACH)
DIGITAL Extended

When the LK250 keyboard receives the code ACH, the keyboard enables
DIGITAL extended mode, turns off LED #4, and transmits an acknowledge
(ACK).

Exit DIGITAL Extended Scan Code Mode (ADH)
DIGITAL Extended

When the LK250 keyboard receives the code ADH, the keyboard enables
industry-standard mode, turns on LED #4, and transmits an acknowledge
(ACK).

In this mode, only industry-standard scan codes are generated.

Set Keyboard LED (AEH)
DIGITAL Extended

When the LK250 keyboard receives the code AEH, the keyboard turns on LED
#4, and transmits an acknowledge (ACK). For LEDs 1-3, see LEDs On/Off
(EDH).

Keyboard-Interface Controller - Hardware Description 8- 23

Reset Keyboard LED (AFH)
DIGITAL Extended

When the LK250 keyboard receives the code AFH, the keyboard turns off LEO
114, and transmits an acknowledge (ACK). For LEOs 1-3, see LEOs On/Off
(EOH).

Set Keyclick Volume (BOH)
DIGITAL Extended

This is a 2-byte command consisting of a command byte and a value byte.
When the LK250 keyboard receives the code BOH, the keyboard stops scanning
for keys, transmits an acknowledge (ACK), and waits for the second byte.
When the LK250 keyboard receives the second byte, the keyboard sets the
volume to the indicated value, transmits an acknowledge (ACK) and returns to
the previous scanning state.

If bit 7 of the value byte is set to 1, the value is interpreted as a command.
The current command is aborted, the new command is executed and the LK250
returns to the previous scanning state.

The volume value byte can have one of the following values:

Value

OOH

02H

04H

06H

Enable Autorepeat (BtH)
DIGITAL Extended

Volume

No keyclick

Soft

Medium

Loud

When the LK250 keyboard receives the code BIH, the keyboard enables auto­
repeat for all keys and transmits an acknowledge (ACK). Autorepeat enabled is
the default condition.

Disable Autorepeat (B2H)
DIGITAL Extended

When the LK250 keyboard receives the code B2H, the keyboard disables auto­
repeat for all keys and transmits an acknowledge (ACK).

8- 24 Keyboard-Interface Controller - Hardware Description

Keyboard Mode Lock (B3H)
DIGITAL Extended

When the LK250 keyboard receives the code B3H, the keyboard disables the
key combination ALT/F17 and transmits an acknowledge (ACK). The key com­
bination ALT/F17 toggles the keyboard between DIGITAL extended mode and
industry-standard mode. This key combination is detected and handled by the
keyboard, not the ROM BIOS.

Keyboard Mode Unlock (B4H)
DIGITAL Extended

When the LK250 keyboard receives the code B4H, the keyboard enables the
key combination ALT/F17 and transmits an acknowledge (ACK). The key com­
bination ALT/F17 toggles the keyboard between DIGITAL extended mode and
industry-standard mode. This key combination is detected and handled by the
keyboard, not the ROM BIOS. ALT/F17 enabled is the default condition.

Reserved (B5H-ECH)
DIGITAL Extended

When the LK250 keyboard receives any of the reserved codes B5H-ECH, the
keyboard transmits an acknowledge (ACK) and resumes its previous scanning
state.

Keyboard-Interface Controller - Hardware Description 8 - 25

LEDs On/Off (EDH)
DIGITAL Extended

This is a 2-byte command consisting of a command byte and a value byte.
When the LK250 keyboard receives the code EDH, the keyboard stops scan­
ning for keys, transmits an acknowledge ~ACK}, and waits for the second byte.
When the LK250 keyboard receives the second byte, the keyboard sets the
LEDs to the indicated value, transmits an acknowledge ~ACK} and returns to
its previous scanning state.

If bit 7 of the value byte is set to 1, the value is interpreted as a command.
The current command is aborted, the new command is executed and the LK250
returns to the previous scanning state.

The bits in the LED value byte have the following meanings:

Bit

7-3

2

1

o

Echo (EEH)
Industry-Standard

Description

Reserved, always 0

Caps Lock

o = CapsLock LED off
1 = Caps Lock LED on

NumLock

o = NumLock LED off
1 = NumLock LED on

Scroll Lock

o = Scroll Lock LED off
1 = Scroll Lock LED on

When the LK250 keyboard receives the code EEH, the keyboard transmits the
same echo code ~EEH} and continues its previous scanning state. This com­
mand is a diagnostic tool.

Reserved (EFH-F2H)
Industry-Standard

When the LK250 keyboard receives any of the reserved codes EFH-F2H, the
keyboard transmits an acknowledge ~ACK) and resumes its previous scanning
state.

8- 26 Keyboard-Interface Controller - Hardware Description

Set Autorepeat Delay and Rate (F3H)
Industry-Standard

This is a 2-byte command consisting of a command byte and a value byte.
When the LK250 keyboard receives the code F3H, the keyboard stops scanning
for keys, transmits an acknowledge lACK), and waits for the second byte.
When the LK250 keyboard receives the second byte, the keyboard sets the
autorepeat delay and rate to the indicated values, transmits an acknowledge
lACK) and returns to its previous scanning state.

If bit 7 of the value byte is set to 1, the value is interpreted as a command.
The current command is aborted, the new command is executed and the LK250
returns to the previous scanning state.

The bits in the delay and rate value byte have the following meanings:

Bit Description

7 Always 0

6-5 Autorepeat delay (± 20%)

00 = .25 seconds
01 = .5 seconds
10 = .75 seconds
11 = 1. 0 second

4-0 Autorepeat rate (±
20%)

Bits 4-0

00000 =
00001 =
00010 =
00011 =
00100 =
00101 =
00110 =
00111 =
01000 =
01001 =
01010 =
01011 =
01100 =
01101 =
01110 =
01111 =

Rate per second

29.98
26.65
23.98
21.80
19.98
18.45
17.13
15.99
14.99
13.32
11.99
10.90
9.99
9.22
8.56
7.99

Bits 4-0

10000 =
10001 =
10010 =
10011 =
10100 =
10101 =
10110 =
10111 =
11000 =
11001 =
11010 =
11011 =
11100 =
11101 =
11110 =
11111 =

Rate per second

7.49
6.66
6.00
5.45
5.00
4.61
4.28
4.00
3.75
3.33
3.00
2.73
2.50
2.31
2.14
2.00

Keyboard-Interface Controller - Hardware Description 8- 27

Enable Key Scanning (F4H)
Industry-Standard

When the LK250 keyboard receives the code F4H, the keyboard clears its
output buffer. transmits an acknowledge (ACKI, and begins scanning for keys.
Use of this command assumes that key scanning was previously disabled. Any
key strokes that were recognized but not transmitted are lost.

Disable Key Scanning and Restore to Defaults (F5H)
Industry-Standard

When the LK250 keyboard receives the code F5H, the keyboard stops scan­
ning, clears its output buffer, restores conditions to the default powerup state,
transmits an acknowledge (ACKI, and waits for additional commands. Keyboard
scanning remains disabled. Any key strokes that were recognized but not
transmitted are lost.

Feature

Autorepeat delay
Autorepeat rate
ALT/F17 mode toggle
LEDs
Digital extended mode

Restore To Defaults (F6H)
Industry-Standard

Default

.5 seconds
29.98 per second
Enabled
Off
Disabled

When the LK250 keyboard receives the code F5H, the keyboard stops scan­
ning, clears its output buffer, restores conditions to the default powerup state,
transmits an acknowledge (ACKI, and resumes its previous scanning state.

Feature

Autorepeat delay
Autorepeat rate
ALT/F17 mode toggle
LEDs
Digital extended mode

Default

.5 seconds
29.98 per second
Enabled
Off
Disabled

8- 28 Keyboard-Interface Controller - Hardware Description

Reserved (F7H-FDH)
Industry-Standard

When the LK250 keyboard receives any of the reserved codes F7H-FDH, the
keyboard transmits an acknowledge (ACKI and resumes its previous scanning
state.

Resend (FEH)
Industry-Standard

When the LK250 keyboard receives the code FEH, the keyboard repeats its
last transmission. This command is used when the keyboard-interface controller
detects a reception error. It can be sent only in response to a transmission
from the LK250 keyboard. Additionally, the resend command (FEHI must be
transmitted before the keyboard-interface controller allows the keyboard to
start another transmission. If the retransmitted data is still bad, the keyboard­
interface controller places FFH in its output buffer and sets the parity error
and timeout error status bits.

Reset (FFH)
Industry-Standard

When the LK250 keyboard receives the code FFH, the keyboard transmits an
acknowledge (ACKI and waits for the the acknowledge to be accepted. Receipt
of the acknowledge (ACK) is indicated by reading the acknowledge (ACK) from
the keyboard-interface controller, setting port 2 bits 7-6 to 1, and leaving them
set for at least 500 p,s. When the keyboard recognizes acceptance of the ac­
knowledge (ACK), the keyboard invokes its self-test diagnostic. On completing
the self-test, the keyboard transmits AAH (self-test success) or FCH (self-test
failurel. As a result of the self-test, the keyboard is reset to default conditions
and the keyboard output buffer is empty.

Feature

Autorepeat delay
Autorepeat rate
ALT/F17 mode toggle
LEOs
Digital extended mode

Default

.5 seconds
29.98 per second
Enabled
Off
Disabled

Keyboard-Interface Controller - Hardware Description 8- 29

LK250 Keyboard Responses
The LK250 keyboard must reply to every transmission sent to it. Most of the
time the reply is an acknowledge (ACK), but some commands have special
responses. Refer to LK250 keyboard command descriptions for details. Table
8-8 lists the LK250 keyboard responses.

Table 8-8 LK250 Keyboard Responses

Value Description

OOH Buffer Overrun

AAH Self-Test Success

EEH ECHO

FAH Acknowledge (ACK)

FCH Power-Up Self-Test Failure

FDH Not Used

FEH Resend

Buffer overrun (OOH)
Industry-Standard

This code indicates that the LK250 keyboard output buffer (20 bytes) has been
filled to capacity (19 key codes) and an attempt was made to store another
code. The 20th code is replaced with OOH.

If the keyboard-interface controller is in translate mode, the LK250 keyboard
buffer-overrun code OOH is translated to an industry-standard buffer overrun
code of FFH.

Self-test success (AAH)
Industry-Standard

This code indicates successful completion of the LK250 keyboard self-test diag­
nostics. The self-test diagnostics are invoked as part of the powerup sequence
and by the reset command (FFH).

ECHO (EEH)
Industry-Standard

This code indicates receipt of an echo command (EEH). In response to an echo
command (EEH), the LK250 transmits echo (EEH) instead of acknowledge
(ACK) (FAH).

8- 30 Keyboard-Interface Controller . Hardware Description

Release Prefix (FOH)
Industry-Standard

This code indicates that a key was released. It is followed by the scan code of
the released key.

If the keyboard-interface controller is in translate mode, this 2-byte sequence is
translated to an industry-standard I-byte release code by adding 80H to the
translated scan code.

Acknowledge (ACK) (F AH)
Industry-Standard

This code is transmitted by the LK250 keyboard in response to most of the
valid commands. Some commands have special responses. For example, request
keyboard identification (ABHI, echo (EEHI, and resend (FEHI. For additional
information, see the descriptions of the LK250 keyboard commands.

Self-Test Failure (FCH)
Industry-Standard

This code transmitted by the LK250 keyboard to indicate that a keyboard com­
ponent failed the self-test diagnostics. Self-test is invoked during the powerup
sequence and the reset command (FFHI.

Resend (FEH)
Industry-Standard

This code is transmitted by the LK250 keyboard in response to a keyboard­
interface controller transmission containing a parity error. Providing that the
last transmission to the keyboard was not a resend command (FEHI, the key­
board interrupt handler should retransmit the last keyboard command.

LK250 Keyboard Error Handling
If the LK250 keyboard receives an invalid command or a parity error, it replies
with a resend command.

U.S. and Foreign Keyboards
The LK250 keyboard is shipped with key legends appropriate for the destina­
tion country. Figure 8-2 through Figure 8-15 show the key legends for the
various country keyboards.

Keyboard-Interface Controller - Hardware Description 8 - 31

Figure 8-2 U.S./U.K. Keyboard

8- 32 Keyboard-Interface Controller - Hardware Description

~: ~. ;.
z • •
H

Figure 8-3 Canadian/English Keyboard

Keyboard-Interface Controller - Hardware Description 8- 33

Figure 8-4 Danish Keyboard

8- 34 Keyboard-Interface Controller - Hardware Description

Figure 8·5 Finnish Keyboard

Keyboard·Interface Controller· Hardware Description 8- 35

Figure 8-6 French/Canadian Keyboard

8- 36 Keyboard-Interface Controller - Hardware Description

Figure 8-7 French Keyboard

Keyboard-Interface Controller - Hardware Description 8- 37

Figure 8-8 German/Austrian Keyboard

8- 38 Keyboard-Interface Controller - Hardware Description

Figure 8-9 Hebrew Keyboard

Keyboard-Interface Controller - Hardware Description 8- 39

I~ o ,

il .1 • .! ,
II
01 j

Figure 8·10 Italian Keyboard

8- 40 Keyboard·Interface Controller· Hardware Description

Figure 8-11 Norwegian Keyboard

Keyboard-Interface Controller - Hardware Description 8- 41

I

II

~ ~ ~

~I
}

J <>1

Figure 8-12 Spanish Keyboard

8- 42 Keyboard-Interface Controller - Hardware Description

Figure 8-13 Swedish Keyboard

Keyboard-Interface Controller - Hardware Description 8- 43

Figure 8-14 Swiss/French Keyboard

8- 44 Keyboard-Interface Controller - Hardware Description

Figure 8-15 Swiss/German Keyboard

Keyboard-Interface Controller - Hardware Description 8- 45

Programming Example
The subroutines in the keyboard example provide keyboard input support for all
of the examples in this manual. The keyboard example demonstrates:

• Communicating with the keyboard-interface controller
• The use of keyboard translation tables
• Extended features of the LK250 keyboard

CAUTION
Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

The example provides routines as described in the following list.

wr kcc

wr kcd

pass_thru

kyb_init

wr_kyb

kyb_led

kyb_send

kybJest

get_key

Writes a command byte to the keyboard-interface controller

Writes a data byte to the keyboard-interface controller

Sets the keyboard-interface controller to pass-through mode

Prepares the interrupt structure for keyboard interrupts

Places data in a ring buffer for output to the keyboard

Turns LEDs on or off according to the keyboard state

Retrieves data from a ring buffer and writes it to the keyboard

Restores the previous keyboard interrupt structure

Gets a I-byte value from the keyboard input ring buffer

kyb _int_ hand Handles keyboard-interface-controller interrupts and performs
scan code translations

8- 46

Provides an example environment for examining various aspects
of the keyboard

Keyboard-Interface Controller - Programming Example

#include "rb.h"
#include "example.h"

/***/
/* define constants and structures used in keyboard examples */
/***/

#define COMMAND Ox64 /* command register in I/O space */
#define DATAREG Ox60 /* data register in I/O space */

/* define mask bits for keyboard state flag */

#define S_LSHF OxOl /* left shift key is pressed */
#define S_RSHF Ox02 /* right shift key is pressed */
#define S_CTRL Ox04 /* control key is pressed */
#define S_ALT Ox08 /* Alternate key is pressed */
#define S_SCRL Oxl0 /* Scroll lock is in effect */
#define S_NUM Ox20 /* Numerics lock is in effect */
#define S_CAPS Ox40 /* Caps lock is in effect */
#define S_INS Ox80 /* Insert mode is active */

/* define modifier-key values returned by keyboard */

#define CTRL Oxld /* control key */
#define LSHF Ox2a /* left shift key */
#define RSHF Ox36 /* right shift key */
#define ALT Ox38 /* alternate key */
#define CAPS Ox3a /* Lock/Caps Lock key */
#define NUML Ox46 /* NumLock key */
#define SCRL Ox46 /* ScrlLock key */
#define INS Ox62 /* Ina (Insert) key */
#define DEL Ox53 /* Del key */

/* define some keyboard interface controller commands */

#define RDCB Ox20 /* read command byte */
#define WRCB Ox60 /* write command byte */

Keyboard-Interface Controller - Programming Example 8- 47

/* define some keyboard commands */

#define LED123 Oxed /* control leds 1,2, and 3 */
#define LED4_0N Oxae /* turn led #4 on */
#define LED4_0F Oxaf /* turn led #4 off */
#define ENT_EXM Oxac /* enter DIGITAL extended keyboard mode */
#define EXT_EXM Ox ad /* exit DIGITAL extended keyboard mode */
#define AREPON Oxbl /* auto-repeat on */
#define AREPOFF Oxb2 /* auto-repeat off */
#define SETAR Oxf3 /* set auto-repeat rate */
#define SETVOL OxbO /* set speaker volume */
#define KYBID Oxab /* return keyboard ID and state */
#define RESDEF Oxf6 /* reset keyboard to default values */

/* define some keyboard responses */

#define B_FULL OxOO /* keyboard buffer full */
#define RESEND Oxfe /* request to resend command or data */
#define ACK Oxfa /* keyboard acknowledge */

/* define some state dependent keyboard table index constants */
/* Note: The ROM BIOS has separate alpha and numeric tables. */
/* This example combines the alpha and numeric tables. */

#define T_NORM OxOO /* look in normal key table */
#define LALT Ox02 /* look in alternate combination table */
#define T_CTRL Ox04 /* look in control key table */
#define T_SHFT Ox06 /* look in shift table */
#define T_A_N Ox08 /* look in alphanumeric table */

#define KB_SIZ 128 /* example keyboard buffer size is 128 bytes */

8- 48 Keyboard-Interface Controller - Programming Example

/***/
/* define key translation tables and variables */
/***/

unsigned char kyb_state;
unsigned char last_send;
unsigned char key_buff [2] [KB_SIZ];
unsigned char released;
unsigned char depressed;

/* state of modifier keys */
/* last character sent to keyboard */

/* place to store incoming keys */
/* last released key for demo */

/* last depressed key for demo */

RING_BUFF kLrb;
RING_BUFF ko_rb;

/* ring buffer control structure */
/* ring buffer control structure */

/* define the keyboard tables */
/* Note: The ROM BIOS has separate alpha and numeric tables. */
/* This example combines the alpha and numeric tables. */

static unsigned char keyboard [Ox70] [9] -
{

/* NORMAL ALT I CONTROL SHIFT I A/N */
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
Oxlb, OxOl, Oxff, Oxff, Oxlb, OxOl, Oxlb, OxOl, OxOO,
OxSl, Ox02, OxOO, Ox78, Oxff, Oxff, Ox2l, Ox02, OxOO,
OxS2, OxOS, OxOO, Ox79 , OxOO, OxOS, Ox40, OxOS, OxOO,
OxSS, Ox04, OxOO, Ox7a, Oxff, Oxff, Ox2S, Ox04, OxOO,
OxS4, OxOS, OxOO, Ox7b, Oxff, Oxff, Ox24 , OxOS, OxOO,
Ox3S, Ox06, OxOO, Ox7c, Oxff, Oxff, Ox2S, Ox06, OxOO,
OxS6, Ox07, OxOO, Ox7d, Oxle, Ox07, OxSe, Ox07, OxOO,
OxS7, Ox08, OxOO, Ox7e, Oxff, Oxff, Ox26 , Ox08, OxOO,
OxS8, Ox09, OxOO, Ox7f, Oxff, Oxff, Ox2a, Ox09, OxOO,
Ox39 , OxOa, OxOO, Ox80, Oxff, Oxff, Ox28 , OxOa, OxOO,
OxSO, OxOb, OxOO, Ox8l, Oxff, Oxff, Ox29 , OxOb, OxOO,
Ox2d, OxOc, OxOO, Ox82 , Oxlf, OxOc, OxSf, OxOc, OxOO,
OxSd, OxOd, OxOO, Ox8S, Oxff, Oxff, Ox2b, OxOd, OxOO,
Ox08, OxOe, Oxff, Oxff, Ox7f, OxOe, Ox08, OxOe, OxOO,
Ox09, OxOf, Oxff, Oxff, Oxff, Oxff, OxOO, OxOf, OxOO,
Ox7l, OxlO, OxOO, OxlO, Oxll, OxlO, OxSl, OxlO, S_CAPS,
Ox77 , Oxll, OxOO, Oxll, Oxl7, Oxll, OxS7, Oxll, S_CAPS,
Ox6S, Oxl2, OxOO, Oxl2, OxOS, Oxl2, Ox4S, Oxl2, S_CAPS,
Ox72 , OxlS, OxOO, OxlS, Oxl2, OxlS, OxS2, OxlS, S_CAPS,
Ox74 , Oxl4, OxOO, Oxl4, Oxl4, Oxl4, OxS4, Oxl4, S_CAPS,
Ox79 , OxlS, OxOO, OxlS, Oxl9, OxlS, OxS9, OxlS, S_CAPS,
Ox7S, Oxl6, OxOO, Oxl6, OxlS, Oxl6, OxSS, Oxl6, S_CAPS,
Ox69 , Oxl7, OxOO, Oxl7, OxOg, Oxl7, Ox49, Oxl7, S_CAPS,
Ox6f, Oxl8, OxOO, Oxl8, OxOf, Oxl8, Ox4f, Oxl8, S_CAPS,
Ox70, Oxl9, OxOO, Oxl9, OxlO, Oxl9, Ox SO , Oxl9, S_CAPS,
OxSb, Oxla, Oxff, Oxff, Oxlb, Oxla, Ox7b, Oxla, OxOO,

/* overrun */

Keyboard-Interface Controller - Programming Example

/* ESC */
/* I */
/* 2 */
/* S */
/* 4 */
/* S */
/* 6 */
/* -; */
/* 8 */
/* 9 */
/* 0 */
/* - */
/* - */

/* BS */
/* TAB */

/* Q */
/* w */
/* E */
/* R */
/* T */
/* y */
/* u */
/* I */
/* 0 */
/* p */
/* [*/

8- 49

Ox6d, Oxlb, Oxff, Oxff, Oxld, Oxlb, Ox7d, Oxlb, OxOO, 1*] *1
OxOd, Oxlc, Oxff, Oxff, OxOa, Oxlc, OxOd, Oxlc, OxOO, 1* RET *1
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, 1* CTRL *1
Ox61, Oxle, OxOO, Oxle, OxOl, Oxle, Ox41, Oxle, S_CAPS, 1* A *1
Ox7S, Oxlf, OxOO, Oxlf, OxlS, Oxlf, Ox6S, Oxlf, S_CAPS, 1* S *1
Ox64 , Ox20, OxOO, Ox20, Ox04, Ox20, Ox44 , Ox20, S_CAPS, 1* D *1
Ox66 , Ox21, OxOO, Ox21, Ox06, Ox21, Ox46 , Ox21, S_CAPS, 1* F *1
Ox67 , Ox22 , OxOO, Ox22 , Ox07, Ox22 , Ox47 , Ox22 , S_CAPS, 1* G *1
Ox68 , Ox2S, OxOO, Ox2S, Ox08, Ox2S, Ox48 , Ox2S, S_CAPS, 1* G *1
Ox6a, Ox24 , OxOO, Ox24 , OxOa, Ox24 , Ox4a, Ox24 , S_CAPS, 1* J *1
Ox6b, Ox25 , OxOO, Ox26 , OxOb, Ox26 , Ox4b, Ox26 , S_CAPS, 1* K *1
Ox6c, Ox26 , OxOO, Ox26 , OxOc, Ox26 , Ox4c, Ox26 , S_CAPS, 1* L *1
OxSb, Ox27 , Oxff, Oxff, Oxff, Oxff, OxSa, Ox27 , OxOO, 1* *1
Ox27 , Ox28 , Oxff, Oxff, Oxff, Oxff, Ox22 , Ox28 , OxOO, 1* ' *1
Ox60, Ox29 , Oxff, Oxff, Oxff, Oxff, Ox7e, Ox29 , OxOO, 1* • *1
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, 1* LS *1
Ox6c, Ox2b, Oxff, Oxff, Oxlc, Ox2b, Ox7c, Ox2b, OxOO, 1* \ *1
Ox7a, Ox2c, OxOO, Ox2c, Oxla, Ox2c, Ox6a, Ox2c, S_CAPS, 1* Z *1
Ox78, Ox2d, OxOO, Ox2d, Oxl8, Ox2d, Ox58 , Ox2d, S_CAPS, 1* X *1
Ox6S, Ox2e, OxOO, Ox2e, Ox03, Ox2e, Ox4S, Ox2e, S_CAPS, 1* C *1
Ox76 , Ox2f, OxOO, Ox2f, Ox16, Ox2f, Ox66 , Ox2f, S_CAPS, 1* V *1
Ox62 , OxSO, OxOO, OxSO, Ox02, Ox30, Ox42 , OxSO, S_CAPS, 1* B *1
Ox6e, OxSl, OxOO, OxSl, OxOe, OxSl, Ox4e, OxSl, S_CAPS, 1* N *1
Ox6d, OxS2, OxOO, OxS2, OxOd, OxS2, Ox4d, OxS2, S_CAPS, 1* M *1
Ox2c, Ox3S, Oxff, Oxff, Oxff, Oxff, Ox3c, Ox3S, OxOO, 1* , *1
Ox2e, OxS4, Oxff, Oxff, Oxff, Oxff, Ox3e, Ox34 , OxOO, 1* *1
Ox2f, Ox35 , Oxff, Oxff, Oxff, Oxff, Ox3f, OxS6, OxOO, 1* I *1
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, 1* Right Shift *1
Ox2a, OxS7, Oxff, Oxff, OxOO, Ox72, Oxff, Oxff, OxOO, 1* PRTSC *1
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, 1* ALT *1
Ox20, Ox39 , Ox20, OxS9, Ox20, Ox39 , Ox20, OxS9, OxOO, 1* Space Bar *1
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, 1* CAPS Lock *1
OxOO, Ox3b, OxOO, Ox68 , OxOO, OxSe, OxOO, Ox64 , OxOO, 1* Fl *1
OxOO, Ox3c, OxOO, Ox69 , OxOO, OxSf, OxOO, OxS5, OxOO, 1* F2 *1
OxOO, OxSd, OxOO, Ox6a, OxOO, Ox60, OxOO, Ox66 , OxOO, 1* FS *1
OxOO, OxSe, OxOO, Ox6b, OxOO, Ox61, OxOO, OxS7, OxOO, 1* F4 *1
OxOO, OxSf, OxOO, Ox6c, OxOO, Ox62 , OxOO, Ox68 , OxOO, 1* F6 *1
OxOO, Ox40, OxOO, Ox6d, OxOO, Ox6S, OxOO, Ox69 , OxOO, 1* F6 *1
OxOO, Ox41, OxOO, Ox6e, OxOO, Ox64 , OxOO, Ox5a, OxOO, 1* F7 *1
OxOO, Ox42 , OxOO, Ox6f, OxOO, Ox65 , OxOO, Ox6b, OxOO, 1* F8 *1
OxOO, Ox4S, OxOO, Ox70, OxOO, Ox66 , OxOO, Ox6c, OxOO, 1* F9 *1
OxOO, Ox44 , OxOO, Ox71, OxOO, Ox67 , OxOO, Ox6d, OxOO, 1* FlO *1
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, 1* NumLock *1
Oxff, Oxff, Oxff, Oxff, OxOO, OxOO, Oxff, Oxff, OxOO, 1* ScrlLock *1
OxOO, Ox47 , Ox07, OxOO, OxOO, Ox77, OxS7, Ox47 , S_NUM, 1* keypad 7 *1
OxOO, Ox4B, OxOB, OxOO, Oxff, Oxff, OxSB, Ox4B, S_NUM, 1* keypad B *1
OxOO, Ox49 , Ox09, OxOO, OxOO, OxB4, OxS9, Ox49 , S_NUM, 1* keypad 9 *1

8- 50 Keyboard-Interface Controller - Programming Example

Ox2d, Ox4a, Oxff, Oxff, Oxff, Oxff, Ox2d, Ox4a, OxOO, /* keypad - */
OxOO, Ox4b, Ox04, OxOO, OxOO, Ox73, Ox34 , Ox4b, S_NUM, /* keypad 4 */
Oxff, Oxff, OxOS, OxOO, Oxff, Oxff, Ox3S, Ox4e, S_NUM, /* keypad 6 */
OxOO, Ox4d, Ox06, OxOO, OxOO, Ox74 , Ox36 , Ox4d, S_NUM, /* keypad 6 */
Ox2b, Ox4e, Oxff, Oxff, Oxff, Oxff, Ox2b, Ox4e, OxOO, /* keypad + */
OxOO, Ox4f, OxOl, OxOO, OxOO, Ox7S, Ox31 , Ox4f, S_NUM, /* keypad 1 */
OxOO, Ox50, Ox02, OxOO, Oxff, Oxff, Ox32 , OxSO, S_NUM, /* keypad 2 */
OxOO, Ox51 , Ox03, OxOO, OxOO, Ox76 , Ox33 , OxSl, S_NUM, /* keypad 3 */
OxOO, Ox52 , OxOO, OxOO, Oxff, Oxff, Ox30, OxS2, S_NUM, /* keypad 0 */
OxOO, OxS3, Oxff, Oxff, Oxff, Oxff, Ox2e, OxS3, S_NUM, /* keypad . */
OxOO, Ox98 , Oxff, Oxff, OxOO, OxbO, OxOO, Oxa4, OxOO, /* F20 */
OxOO, Ox8S, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, /* FIND */
OxOO, Ox86 , Oxff, Oxff, OxOO, Oxe3, Oxff, Oxff, OxOO, /* INSERT */
OxOO, Ox87 , Oxff, Oxff, OxOO, Oxel, Oxff, Oxff, OxOO, /* REMOVE */
OxOO, Ox88 , Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, /* SELECT */
OxOO, Ox89 , Oxff, Oxff, OxOO, Oxe4, Oxff, Oxff, OxOO, /* PREY */
OxOO, Ox8a, Oxff, Oxff, OxOO, Oxe2, Oxff, Oxff, OxOO, /* NEXT */
OxOO, Ox8b, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, /* UP */
OxOO, Ox8e, Oxff, Oxff, OxOO, Oxbf, Oxff, Oxff, OxOO, /* LT */
OxOO, Ox8d, Oxff, Oxff, OxOO, OxeO, Oxff, Oxff, OxOO, /* RT */
OxOO, Ox8e, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxOO, /* ON */
OxOO, Ox8f, OxOO, Oxb3, OxOO, Oxa7, OxOO, Ox9b, OxOO, /* F11 */
OxOO, Ox90, OxOO, Oxb4, OxOO, Oxa8, OxOO, Oxge, OxOO, /* F12 */
OxOO, Ox91 , OxOO, OxbS, OxOO, Oxa9, OxOO, Ox9d, OxOO, /* F13 */
OxOO, Ox92 , OxOO, Oxb6, OxOO, Oxaa, OxOO, Oxge, OxOO, /* F14 */
OxOO, Ox93 , OxOO, Oxb7, OxOO, Oxab, OxOO, Ox9f, OxOO, /* F1S */
OxOO, Ox94 , OxOO, Oxb8, OxOO, Oxae, OxOO, OxaO, OxOO, /* F16 */
OxOO, Ox9S, OxOO, Oxb9, OxOO, Oxad, OxOO, Oxal, OxOO, /* F17 */
OxOO, Ox96 , OxOO, Oxba, OxOO, Oxae, OxOO, Oxa2, OxOO, /* F18 */
OxOO, Ox97 , OxOO, Oxbb, OxOO, Oxaf, OxOO, Oxa3, OxOO, /* F19 */
OxOO, Oxbd, OxOO, Oxbd, OxOO, Oxbd, OxOO, Oxbd, OxOO, / * COMPOSE * /
OxOd, Ox9a, OxOO, Oxbe, OxOO, Oxb2, OxOO, Oxa6, OxOO, /* ENTER */
};

Keyboard-Interface Controller - Programming Example 8- 51

/***/
/* wr_kcc() - Write keyboard controller command */
/***/

unsigned char cmd;

{

}

outp(COMMAND. cmd);
while((inp(COMMAND) t Ox02»

/* command byte to write */

/* write command byte */
/* wait until KC has read command */

/***/
/* wr_kcd() - Write keyboard controller data */
/***/

unsigned char data;

{

}

outp(DATAREG. data);
while((inp(COMMAND) t Ox02»

/* data byte to write */

/* write command data */
/* wait until KC has read data */

8- 52 Keyboard-Interface Controller - Programming Example

/***/
/* pass_thru() - set keyboard controller pass through mode */
/***/

pass_thru(flag)

int flag; /* if TRUE, set pass through */
/* else clear pass through */

{

unsigned char c;
unsigned int intr_flag;

/* tmp to hold internal command byte */
/* tmp to hold CPU IF state */

}

intr_flag = int_off();
wr_kcc(RDCB);
while(l(inp(COMMAND) ~ OxOl»

/*
/*

/* turn interrupts off */
give me current command byte */

wait until output buffer full */

c = inp(DATAREG);
if(flag) c ~= -Ox40;/*

/* read command byte from data buffer */
if TRUE, do not decode keyboard transmissions */

/* else, decode keyboard transmissions */
/* tell interface controller to write command byte */

/* send command byte to write */
/* allow interrupts */

else c 1= Ox40;
wr_kcc(WRCB);
wr_kcd(c);
int_on(intr_flag);

/***/
/* kyb_init() - keyboard interrupt initialization */
/***/

}

init_rb(tkLrb,
init_rb(~ko_rb,

imask(O,l,O);
iv_init(Ox09);
imask(O ,1,1) ;

/* no states established */
/* establish ring buffers */

tkey_buff[O] [0] , KB_SIZ, 30, 16);
~key_buff[l] [0], KB_SIZ, 30, 15);

/* disable PIC input for keyboard interface */
/* keyboard interrupt is int Ox09 */

/* enable PIC input for keyboard interface */

Keyboard-Interface Controller - Programming Example 8- 53

/***/
/* wr_kyb() - put value in output buffer to keyboard and start send */
/***/

unsigned char value;

{

unsigned intr_flag;

}

intr_flag = int_off();
rb_in(lko_rb. value);
if(llast_send) kyb_send(O);
int_on(intr_flag);

/* value to send to keyboard */

/* to hold current CPU IF state */

/* CPU interrupts off */
/* put value in ring buffer */

/* if keyboard not waiting for ACK */
/* allow interrupts now */

/***/
/* kyb_led() - handle changes to LED state */
/***/

kyb_ledO
{

unsigned char state;

}

state = kyb_state » 4;
state l= Ox01;
wr_kyb(LED123);
wr_kyb(state);

/*

/* temporary state

/* shift into
/* only bits 2:0

keyboard LED command
/* LED state

variable */

position */
are valid */
to buffer */
to buffer */

/***/
/* kyb_send() - send command to keyboard */
/***/

kyb_send(resend)

int resend;

{

}

if(resend) outp(DATAREG. last_send);
else if (rb_out(lko_rb. llast_send) >=

outp(DATAREG. last_send);
else last_send = 0;

/* re-send character if true */

/* re-send command or data */
0)/* get char from output buff */

/* send command or data */
/* no character to send */

8- 54 Keyboard-Interface Controller - Programming Example

/***/
/* kyb_rest() - restore keyboard interrupts to system */
/***/

/* keyboard interrupt is int Ox09 */
}

/***/
/* get_key() - get character from keyboard input buffer */
/***/

/* get char from input buf */

UDsigned char *pc; /* where to put character */

{

/* get char from input buff */
}

/***/
/* put_key() - put key sequence into keyboard input buffer */
/***/

int put_key(pc) /* put key seq into input buf */

UDsigned char *pc; /* where to get sequence */

{

}

if(pc[O] == Oxff II pc[l] == Oxff) beep{); /* invalid key combo? */
else
{

}

rb_in{lki_rb. *pc++);
return(rb_in(lki_rb. *pc»;

/* write ASCII character */
/* write scan code */

Keyboard-Interface Controller - Programming Example 8- 66

/***/
/* kyb_int_hand() - keyboard interrupt handler */
/***/

UDsigned char key: 1* tmp to hold keyboard transmission */

key - inp(DATAREG):
if(key -- B_FULL) beep():
else if(key l OxBO)

/* get keyboard transmission */
1* tell typist, buffer full */

1* key release or keyboard reply ? */
{

switch (key)
{

case ACK:
kyb_send(O):
break:

case RESEND:
kyb_send(l):
break:

default:
switch(released - key l Ox7f)
{

case CTRL:
kyb_state l- -S_CTRL:
break:

case LSHF:
kyb_state l- -S_LSHF:
break:

case RSHF:
kyb_state l- -S~RSHF:
break:

case ALT:
kyb_state l= -S_ALT:
break:

1* keyboard acknowledge ? */

1* keyboard re-send request 1 */

1* must be a key release *1
1* save released key for demo *1

/* and check modifier keys */
/* control key released ? */

/* clear from state byte */

/* left shift key released 1 *1
1* clear from state byte *1

1* right shift key released 1,*1
1* clear from state byte *1

1* alternate key released? *1
1* clear from state byte *1

case CAPS:
case NUNL:
case SCRL:

1* caps lock, numlock or scrllock released? *1
1* these are toggle keys, only means it was *1

/* released. toggle is performed when pressed *1
break:

8- 56 Keyboard-Interface Controller - Programming Example

}
}

}

case INS:
kyb_state t= -S_INS;
break;

default:
break;

else switch(depressed = key t Ox7f)
{

case CTRL:
kyb_state 1= S_CTRL;
break;

case LSHF:
kyb_state 1= S_LSHF;
break;

case RSHF:
kyb_state 1= S_RSHF;
break;

case ALT:
kyb_state 1= S_ALT;
break;

case CAPS:
if(kyb_state t S_CAPS)

kyb_state t= -S_CAPS;
else kyb_state 1= S_CAPS;
kyb_ledO;
break;

case NUML:
if(kyb_state t S_NUM)

kyb_state t= -S_NUM;
else kyb_state 1= S_NUM;
kyb_ledO;
break;

case SCRL:
if(kyb_state t S_SCRL)

kyb_state t= -S_SCRL;
else kyb_state 1= S_SCRL;
kyb_ledO;

/*

/* insert key released ? */
/* clear from state byte */

/* no default */

save depress key for demo */

/* control key pressed ? */
/* set in state byte */

/* left shift key pressed ? */
/* set in state byte */

/* right shift key pressed 1 */
/* set in state byte */

/* alternate key pressed 1 */
/* set in state byte */

/* caps lock key pressed ? */
/* caps on ? */

/* turn caps off */
/* otherwise, turn caps on */

/* adjust Lock LED */

/* numlock key pressed ? */
/* numlock on 1 */

/* turn numlock off */
/* otherwise, turn numlock on 1 */

/* adjust NumLock LED */

/* scrllock key pressed 1 */
/* scrllock on 1 */

/* turn scrllock off */
/* otherwise, turn scrllock on */

/* adjust ScrlLock LED */

Keyboard-Interface Controller - Programming Example 8- 57

break;

case INS: /* insert key pressed 1 */
/* set in state byte */ kyb_state 1= S_INS;

break;

default: /* test for combination keys */
/* alt key pressed 1 */

8- 58

if(kyb_state t S_ALT)
{

if(kyb_state t S_CTRL)
{

/* ctrl key pressed 1 */

}

if(key == DEL) sys_reset(); /* CTRL/ALT/DEL 1 */
else beep(); /* NOTE: No ALT/CTRL table in demo. */

else if(kyb_state t (S_LSHF 1 S_RSHF» /* shift key pressed 1 */
{

beep(); /* NOTE: No ALT/SHIFT table in demo */
}

else put_key (tkeyboard [key) [T_ALT);
}

/* use alt table */

else if(kyb_state t S_CTRL)
{

/* ctrl key pressed 1 */

}

if(kyb_state t (S_LSHF 1 S_RSHF»
{

/* shift key pressed 1 */

beepO;
}

/* NOTE: No CTRL/SHIFT table in demo */

else put_key (tkeyboard[key) [.T_CTRL); /* use ctrl table */

else if(kyb_state t (S_LSHF 1 S_RSHF» /* shift key pressed 1 */
{

if (keyboard [key) [T_A_N) t S_CAPS) /* alpha character 1 */

if(kyb_state t S_CAPS) /* caps lock in effect ? */
/* use normal table ? */

/* use shift table */
put_key (tkeyboard [key) [T_NORM);

else put_key (tkeyboard [key) [T_SHFT);

Keyboard-Interface Controller - Programming Example

}

}

else if(keyboard[key][T_A_N] t S_NUM) /* numeric character? */
{

if(kyb_state t S_NUM) /*
put_key(tkeyboard[key][T_NORM]):

else put_key (tkeyboard[key] [T_SHFT]):
}

else put_key (tkeyboard [key] [T_SHFT]):
}

else put_key(tkeyboard[key][T_NORM]):
break:

numlock in effect ? */
/ * use normal table */
/* use shift table */

/* use shift table */

/* use normal table */

}

eoi(O): /* end of interrupt to PIC */

Keyboard-Interface Controller - Programming Example 8- 59

/**~******/
/* kyb_exm() - keyboard example program */
/********************************~************************~******~******/

kyb_exmO
{

static MESSAGE mmain[] - /* opening menu */
{

{ 3, 24, "Keyboard Example" },
{ 6, 24, "Fl. Toggle DIGITAL extended mode on or off" },
{ 6, 24, "F2. Set key click volUl!le" },
{ 7, 24, "F3. Toggle autorepeat on or off" },
{ 8, 24, "F4. Set autorepeat delay and rate" },
{ 9, 24, "FS. Show keyboard version and mode" },
{ 10, 24, "F6. Restore keyboard to defaults" },
{ 11, 24, "F7. Show last depressed find last released keys" },
{ 12, 24, "FlO. Return to Main menu" ~,
{ 0, 0, o },

};

char line[512]; /* to hold input line */
int ext_mode = 0; /* to hold e~tende~ mode toggle state */
int auto_rep .. 0; /* to hold auto-repeat toggle state */
int d; /* to hold input */
int x; /* to hold input */
int y; /* to hold input */
unsigned int intr_flag; /* to hold CPU IF state */

#define ROW 14
#define COL 17

wr_kyb(AREPON);
wr_kyb(EXT_EXM);
wr_kyb(LED4_0N);
line[O] .. 0;
while (1)
{

disp_menu(mmain);
switch (line [0])
{

case Fl:
if (ext_mode)
{

}

wr_kyb(EXT_EXM);
wr_kyb(LED4_0N);
ext_mode .. 0;

/* where to put input lines */

/* ensure autorepeat is on */
/* exit extended mode */

/* led #4 on */
/* null line */

/* forever until FlO */

/* display menu for keyboard example */
/* which function key ? */

/* toggle extended mode */
/* in extended mode ? */

/* exit extended mode */
/* led #4 on */

/* clear toggle */

8- 60 Keyboard-Interface Controller - Programming Example

else
{

wr_kyb(ENT_EXM);
wr_kyb(LED4_0F);
ext_mode = 1;

}

break;

/* not in

/* enter

extended mode */

extended mode */
/* led #4 off */
/* set toggle */

case F2:
disp_str(ROW, COL,

/* change keyclick volume */

"The key click volume has a range of 0 to 6 in 4 increments");
disp_str(ROW + 1, COL,

"0 = Off 2 = Low 4 = Medium 6" High");
disp_str(ROW + 7, COL,

"Enter key click volume (0 - 6):");
get_keys(ROW + 7, COL + 36, line);
sscanf(line, "%d", ty);
if(y < 0 I I y > 6) y = 4;
wr_kyb(SETVOL);
wr_kyb(y);

/* get
/* ascii

/* keep it in

chioce */
to int */
bounds */

break;

case F3:
if (auto_rep)
{

}

wr_kyb(AREPON);
auto_rep = 0;

else
{

}

wr_kyb(AREPOFF);
auto_rep = 1;

break;

case F4:
disp_str(ROW, COL,

/* write set volume command
/* write volume data

/* toggle auto-repeat 1
/* auto-repeat off 1

/* autorepeat on
/* clear toggle

/* auto-repeat is on

1* autorepeat off
/* set toggle

*/
*/

*/
*/

*/
*/

*/

*/
*/

/* set auto-repeat rate 1 */

"The autorepeat rate has a range of 2 to 30 in 32 increments");
disp_str(ROW + 1, COL,

"The autorepeat rate is calculated as follows:");
disp_str(ROW + 2, COL,

"Rate = 1 / (.00417 * (2~Y) * (X + 8)");
disp_str(ROW + 3, COL,
"The delay, before autorepeat begins, has a range of");
disp_str(ROW + 4, COL,

".25 seconds to 1 second in .25 second increments");
disp_str(ROW + 6, COL,

Keyboard-Interface Controller - Programming Example 8- 61

8- 62

"The delay, before autorepeat begins, is calculated as follows:"):
disp_str(ROW + 6, COL, "delay - (D + 1) * .26"):
disp_str(ROW + 7, COL,

"Enter repeat rate Y value (0 - 3):"):
disp_str(ROW + 8, COL,

"Enter repeat rate X value (0 - 7): "):
disp_str(ROW + 9, COL,

"Enter delay value D (0 - 3):"):
get_keys(ROW + 7, COL + 36, line):
sscanf(line, "%d" , ty):

/* get input */
/* ascii to int */

/* keep in bounds */
/* get input */

/* ascii to int */
/* keep in bounds */

/* get input */

if(y < 0 I I y > 3) y = 2:
get_keys(ROW + 8, COL + 36, line):
sscanf (line, "%d", tx):
if(x < 0 I I x > 3) x = 2:
get_keys(ROW + 9, COL + 30, line):
sscanf(line, "%d" , td): /* ascii to int */
if(d < 0 I I d > 3) d = 2:
y «= 3:
d «= 6;
wr_kyb(SETAR):
wr_kyb(d I y I x):
break;

case F6:

/* keep in bounds */
/* shift into correct position
/* shift into correct position

/* write set auto-repeat rate command
/* write auto-repeat data

*/
*/
*/
*/

intr_flag = int_off();
pass_thru(TRUE); /* interface
wr_kcd(KYBID);
while(l(inp(COMMAND) t OxOl»

/* read keyboard ID and state */
/* CPU interrupts off */

controller in pass-through mode */
/* write keyboard ID command */
/* wait until data available */

y = inp(DATAREG):
while(l(inp(COMMAND) t OxOl»

/* read version byte */
/* wait until data available */

x = inp(DATAREG);
pass_thru(FALSE);
int_on(intr_flag);
if(x == 2)

sprintf (line,
"Keyboard version #%d

else
sprintf(line,

/* read mode byte */
/* interface controller interprets */

/* CPU interrupts on */
/* DIGITAL extended mode ? */

is in DIGITAL extended mode %d", y, x);
/* industry-standard mode */

"Keyboard version #%d is in industry-standard mode %d", y, x);
disp_str(ROW, COL, line); /* display data */
break:

case F6:
wr_kyb(RESDEF);
break;

/* reset keyboard to default values ? */
/* write reset to default command */

Keyboard-Interface Controller - Programming Example

}
}

}

case F7:
line[O] = 0;
disp_str(ROW,
while (line [0]
{

/* show last pressed and last released keys 1 */
/* null line */

0, "Press F7 again to cancel");
1= 0 I I line[l] 1= F7) /* F7 terminates */

sprintf (line, "Last depressed: ~02x", depressed);
disp_str(ROW + 3, 0, line);
sprintf(line, "Last released: ~02x", released);
disp_str(ROW + 3, 40, line);
chk_dt(); /* display date and time 1 */
if(get_key(lline[O]» /* scan code */

while(lget_key(lline[l]» /* character code */

}

break;

case FlO:
return;

line[O] = get_fkey(); /* get menu selection */

Keyboard-Interface Controller - Programming Example 8- 63

Overview

Chapter 9
Serial Communications

The 8250A universal asynchronous receiver/transmitters (UART) in the
V AXmate workstation provide asynchronous communications for the communi­
cations port, the printer port, and the modem port.

The 8250A UART converts parallel data from the internal buses to serial data
for transmission to external devices. The 8250A UART receives serial data and
converts it to parallel data for the internal buses. The serial data has the
format of a start bit; five to eight data bits; an optional parity bit; and 1, 1-1/2,
or 2 stop bits.

The 8250A UART also has a programmable baud rate generator.

Additional Sources of Information
The following documents provide additional information on programming the
8250A UART serial communications devices.

• Series 8000 Microprocessor Family Handbook (National Semiconductor
Corporation)

• 1984 Data Communications Products Handbook (Western Digital
Corporation)

Serial Communications - Hardware Description 9 - 1

8250A UART Registers
Table 9-1 lists the 8250A UART registers and their registers at each port.

Table 9-1 8250A UART Register Addresses

Register Com! Modem Printer
(Com2)

Receive buffer (Read)lTransmit 03F8H 02F8H OCAOH
holding register (Write) or
Divisor latch (LSB) *
Interrupt enable 03F9H 02F9H OCA1H
or Divisor latch (MSB) *
Interrupt identification 03FAH 02FAH OCA2H

Line control 03FBH 02FBH OCA3H

Modem control 03FCH 02FCH OCA4H

Line status 03FDH 02FDH OCA5H

Modem status 03FEH 02FEH OCA6H

* Bit 7 of the line control register controls access to the divisor latches.
The line control register is described later in this chapter.

9- 2 Serial Communications - Hardware Description

Receive Buffer Register/Transmitter Holding Register
(03F8H/02F8H/OCAOH)

7 6 5 4 3 2 1 o

I : : : : : : I
Bit RIW Description

7-0 R Reading this register accesses the receive buffer.

W Writing this register accesses the transmitter holding register.

Bit 0 (the least significant bit) is the first bit transmitted or
received.

When the line control register is programmed for word lengths of
less than 8 bits, the unused bits are read as zeros.

When bit 7 of the line control register is set to 1, reading or writ­
ing this register accesses the least significant byte of the divisor
latch.

Serial Communications - Hardware Description 9 - 3

Interrupt Enable Register (03F9H/02F9H/OCAIH)
7 6 5 4 3 2 1 o

MODEM RECEIVE TBRE RECEIVE
STATUS LINE IRTRPT DATA
INTRFl' STATUS AVAIL

0 0 0 0 IRTRPT INTRPT

Bit RIW Description

7-4 RJW Always 0

3 RJW MODEM STATUS INTRPT - Modem Status Interrupt
0= Modem status interrupt disabled
1 = Modem status interrupt enabled

2 RJW RECEIVE LINE STATUS INTRPT - Receive Line Status
Interrupt
0= Receive line status interrupt disabled
1 = Receive line status interrupt enabled

1 RJW THRE INTRPT - Transmit Holding Register Empty Interrupt
0= Transmit holding register empty interrupt disabled
1 = Transmit holding register empty interrupt enabled

0 RJW RECEIVE DATA AVAIL INTRPT - Receive Data Available
Interrupt
0= Receive data available interrupt disabled
1 = Receive data available interrupt enabled

Writing all Os to this register disables the 8250A UART interrupt structure. If
any of bits 3-0 are set, the 8250A UART interrupt structure is enabled. Only
the functions with set bits can cause an interrupt.

Because the 8250A UART has only one interrupt output line, you must read
the interrupt identification register to determine which function or functions
caused the interrupt. Later in this chapter, the interrupt identification register
description defines the interrupt conditions for each function.

NOTE
Each 8250A UART has a buffer between the interrupt output
line and the peripheral interrupt controller input. This buffer is
controlled by bit 3 of the modem control register. Writing a 1 to
bit 3 of the modem control register enables the buffer and there­
fore, the 8250A UART interrupt output line. The modem control

9 - 4 Serial Communications - Hardware Description

register is described later in this chapter.

To use the 8250A UART in an interrupt-driven environment you
must program the peripheral interrupt controller. For more in­
formation on the peripheral interrupt controller, see Chapter 3.

Serial Communications - Hardware Description 9 - I)

Interrupt Identification Register (03F AH/02F AH/OCA2H)
7 6 5 4 3 2 1 o

I 0 I 0 I 0 I 0 I 0 I I~~~I~I
Bit RIW Description

7-3 R Always 0

2-1 R INTERRUPT IDENTIFICATION

These two bits identify the highest priority interrupt pending.
Table 9-2 defines the meaning of the interrupt identification bits.

o R INTRPT PENDING - Interrupt Pending
o = One or more interrupts pending
1 = No interrupts pending

Table 9-2 Interrupt Identification

Priority Interrupt Interrupt Interrupt Interrupt
Level ID Bits Enable Condition Reset

21 Register
Bit

Highest 1 1 Receiver line Overrun, parity Reading the line
status error, framing status register

error, or break
interrupt

Second 1 0 Receive data Assembling a Reading the re-
available complete word ceive buffer

in the receive register
buffer

Third o 1 Transmit hold- Transmit hold- Writing the
ing register ing register transmit holding
empty empty register

Fourth 00 Modem status Change in state Reading the
of CTS, DSR, modem status
RI, or RLSD register
signals

9 - 6 Serial Communications - Hardware Description

Line Control Register (03FBH/02FBH/OCA3H)
7 6 5 4 3 2 1 o

I

DLAB BREAK STICK PARITY PARITY STOP VORD LENGTH
CONTROL PARITY SELECT ENABLE BITS

I

Bit RIW Description

7 RIW DLAB - Divisor latch access bit
0= Access to the divisor latch is disabled
1 = Access to the divisor latch is enabled

When access to the divisor latch is enabled, the least significant
byte of the divisor latch is read or written through the receive
buffer/transmit holding register, and the most significant byte of
the divisor latch is read or written through the interrupt enable
register.

The divisor latch is described later in this chapter.

6 RlW BREAK CONTROL
0= Break disabled
1 = A space Uogic 01 state forced on the serial output

5 RIW STICK PARITY t
0= Stick parity disabled
1 = If parity is enabled (bit 3 equals 11, stick parity is enabled

When stick parity is enabled, the parity bit is transmitted and
received in the following manner:

• If bit 4 equals 1, the parity bit is always transmitted and
received as a O.

• If bit 4 equals 0, the parity bit is always transmitted and
received as a 1.

4 RlW PARITY SELECT
0= Even parity (except for stick parity as described in bit 51
1 = Odd parity (except for stick parity as described in bit 51

Serial Communications - Hardware Description 9 - 7

Bit RIW Description (Line Control Register - cont.)

3 R/W PARITY ENABLE
o = Parity disabled
1 = Parity enabled

2 R/W STOP BITS
o = 1 stop bit
1 = 1-112 stop bits (5-bit word length)

2 stop bits (6, 7, or 8-bit word length)

This bit sets the number of stop bits only for transmitted
characters. The receiver uses only the first stop bit detected.

1-0 R/W WORD LENGTH
00 = 5 data bits
01 = 6 data bits
10 = 7 data bits
11 = 8 data bits

When reading the receive buffer, unused bits are read as O.

9 - 8 Serial Communications - Hardware Description

Modem Control Register (03FCH/02FCH/OCA4H)
7 6 5 4 3 2 1 o

I 0 I 0 I 0 I LOOP I Our2 I ourl I RTS I DTR I
Bit R/W Description

7 -5 R/W Always 0

4 R/W LOOP
o = Diagnostic loopback disabled
1 = Diagnostic loopback enabled tsee the discussion that follows}

3 R/W OUT2
o = The buffer between the 8250A UART interrupt output and

the peripheral interrupt controller input is disabled.
1 = The buffer between the 8250A UART interrupt output and

the peripheral interrupt controller input is enabled.

Each 8250A UART has a buffer between the interrupt output line
and the peripheral interrupt controller input. This buffer is con­
trolled by bit 3. Enabling the buffer enables the 8250A UART in­
terrupt output line.

To use the 8250A UART in an interrupt-driven environment you
must program the peripheral interrupt controller. For more infor­
mation on the peripheral interrupt controller, see Chapter 3.

2 R/W OUTI tnot connected to anything}

1 R/W RTS - Request to send
o = RTS is a logic 0 at the external connector
1 = RTS is a logic 1 at the external connector

o R/W DTR - Data terminal ready

NOTE

o = DTR is a logic 0 at the external connector
1 = DTR is a logic 1 at the external connector

See the section "Modem Control Programming Exceptions" in
this chapter.

Serial Communications - Hardware Description 9 - 9

Diagnostic Loopback
When the diagnostic loopback is enabled, the following conditions exist:

• The serial output at the external connector is set to a space (logic 0)
state.

• The serial input is internally disconnected.

• The output of the transmit shift register is internally connected to the
input of the receive shift register.

• The four modem inputs (DSR, CTS, RI, and RLSD) are internally
disconnected. The four modem outputs (DTR, RTS, OUT1, and OUT2)
are connected to the four modem inputs as follows:

The DTR output is connected to DSR input
The RTS output is connected to the CTS input
The OUT1 output is connected to the RI input
The OUT2 output is connected to the RLSD input

When the diagnostic loopback is enabled, the receive and transmit interrupts
continue to function normally. The modem control and the line status inter­
rupts are also functional, but the source of the interrupt is changed as follows:

• The line status interrupt is activated by writing an appropriate value to
one of the line status register bits 5-0. A set bit creates the interrupt
condition.

• The modem status interrupt is activated by writing an appropriate value
to one of the modem status register bits 3-0. A set bit creates the inter­
rupt condition.

9 - 10 Serial Communications - Hardware Description

Line Status Register (03FDH/02FDH/OCA5H)
7 6 5 4 3 2 1 o

XHIT XHIT BREAK FRAMING PARITY OVERRUN RECEIVE
SHIFT HOLDING INTRPT ERROR ERROR ERROR DATA
REG REG READY

0 EMPTY EMPTY

Bit RIW Description

7 R Always 0

6 R XMIT SHIFT REG EMPTY· Transmit Shift Register Empty
o = Transmit shift register contains data being transmitted
1 = Transmit shift register is empty

This bit is cleared by writing data to the transmit holding register.

5 R XMIT HOLDING REG EMPTY· Transmit Holding Register
Empty
o = Transmit holding register is full.
1 = The 8250A UART is ready to accept a character for

transmission. If the transmit holding register interrupt
enable bit (interrupt enable register I is set, this condition
creates an interrupt.

This bit is cleared by writing data to the transmit holding register.

4 R/W BREAK INTRPT . Break Interrupt
o = Break interrupt is not active
1 = The serial input line at the connector has been held in a

mark Hogic 11 state for longer than a full character
transmission, including start and stop bits.

This bit is cleared by reading this register or writing the bit.

3 R/W FRAMING ERROR
o = No framing error
1 = The received character did not have a stop bit.

This bit is cleared by reading this register or writing the bit.

Serial Communications . Hardware Description 9- 11

Bit R/W Description (Line Status Register - cont.)

2 RJW PARITY ERROR
o = No parity error
1 = Received character did not have the correct parity.

This bit is cleared by reading this register or writing the bit.

1 R/W OVERRUN ERROR
o = No overrun error
1 = The CPU did not read the data in the Receive Buffer regis­

ter before the next character was received. Thus. the unread
character was destroyed.

This bit is cleared by reading this register or writing the bit.

o R/W RECEIVE DATA READY
o = Receive data buffer is empty.
1 = A complete character has been received and assembled into

the receive Buffer register.

This bit is cleared by reading this register or writing the bit.

When any of bits 4-1 are set, a receiver line status interrupt is generated.
When bit 0 is set. a receive data available interrupt is generated.

9- 12 Serial Communications - Hardware Description

Modem Status Register (03FEH/02FEH/OCA6H)
7 6 5 4 3 2 1 0

TRAIL
RLSD RI DSR CTS DELTA EDGE OF DELTA DELTA

RLSD RI DSR CTS

Bit RfW Description

7 R

6 R

6 R

4 R

3 R

2 R

RLSD - Received line signal detect
o = RLSD at external connector is a logic 0
1 = RLSD at external connector is a logic 1

RI - Ring indicator
o = RI at the external connector is a logic 0
1 =RI at the external connector is a logic 1

DSR - Data set ready
o = DSR at the external connector is a logic 0
1 = DSR at the external connector is a logic 1

CTS - Clear to send
o = CTS at the external connector is a logic 0
1 = CTS at the external connector is a logic 1

DELTA RLSD - Delta Receive Line Signal Detect
o = RLSD has not changed state.
1 = Since the last time this register was read, the RLSD bit has

changed state.

Reading this register clears the bit.

TRAIL EDGE OF RI - Trailing Edge Of Ring Indicator
o = The ring indicator has not changed state.
1 = Since the last time this register was read, the ring indicator

at the external connector changed from a logic 0 to a logic 1.

Reading this register clears the bit.

Serial Communications - Hardware Description 9-13

Bit RIW Description {Modem Status Register - cont_)

1 R

o R

Delta DSR - Delta Data Set Ready
o = DSR has not changed state. Reading the register clears the

bit.
1 = Since the last time this register was read, the DSR signal

has changed state.

Reading this register clears the bit.

Delta CTS - Delta Clear to Send
o = CTS has not changed state.
1 = Since the last time this register was read, the CTS signal

has changed state.

Reading this register clears the bit.

If any of bits 3-0 in the Modem Status register are set, a modem status inter­
rupt is generated.

Bits 7-4 are the complement of the signal levels at the chip input pins.
However, the RS-232 receiver buffer inverts these signals, so the bits reflect
the true state of the lines at the external connector.

9- 14 Serial Communications - Hardware Description

Divisor Latches
7 6 5 4 3 2 1 0

I : :
~DIVISOR~LATCB ~ LEAST SIGNIFICANT BYTE

: :
15 14 13 12 11 10 9 8

I : :
~DIVISOR~LATCB ~

HOS~ SIGNIF~CANT BYTE : :
When bit 7 of the line control register (Divisor latch access bit) is equal to 1,
the least significant byte of the divisor latch is read or written through the
receive buffer/transmit holding register, and the most significant byte of the
divisor latch is read or written through the interrupt enable register.

These two, 8-bit latches store a 16-bit divisor in the range 1 to 65,535. The
output frequency of the baud rate generator is 1.8432 Mhz divided by the 16-
bit divisor. These divisors must be loaded during initialization. The desired
output frequency is 16 times the desired baud rate. Table 9-3 lists the divisor
used for the standard baud rates. Table 9-3 was calculated using the following
formula:

divisor = (1843200 / 16) / desired_baudJate

Serial Communications - Hardware Description 9- 15

I

I

Table 9·3 Baud Rate Table

Baud Rate Divisor Percentage of Error Between Desired
and Actual Rate

50 2304

75 1536

110 1047 - 0.026

134.5 857 +0.058

150 768

200 576

300 384

600 192

1200 96

1800 64

2000 58 +0.69

2400 48

3600 32

4800 24

7200 16

9600 12

19200 6

38400 3

9 - 16 Serial Communications . Hardware Description

Modem Control Programming Exceptions
Speed Select and Speed Indicator control signals are not controlled by the
8250A UART. Instead, these signals are controlled by writing to a special pur­
pose register.

The special purpose register is located at 1/0 address OC80H.

NOTE
When changing the Speed Select or Split Baud Rate, maintain
the integrity of the other bits in this register. Split baud rates
are achieved by switching the output IRCLK Ht between two
sources, BD OUT CLK (baud out of the 8250A UARTt and a
1200 baud counter.

Serial Communications - Hardware Description 9 - 17

Special Purpose Register (OCBOH)
76543 2 1

VRITE TRACK 0 INDEX SPEED DISABLE SPLIT DISABLE
PROTECT VIDEO BAUD COMM

Bit RIW Description

7 R Write protect
0= Selected diskette drive is not write protected
1 = Selected diskette drive is write protected

6 R Track 0
0= Head of selected diskette drive is not at track 0
1 = Head of selected diskette drive is at track 0

5 R Index
0= Index hole not in position for selected diskette drive
1 = Index hole in position for selected diskette drive

4 R Speed Indicator
0= Modem control speed select asserted
1 = Modem control speed select not asserted

3 R/W Disable Video
0= Video controller disabled
1 = Video controller enabled

2 RIW Split Baud Rates
0= (Receive = Transmit = programmed I
1 = (Receive = 12001 (Transmit = programmed I

1 R/W Disable Communications

o

SPEED
SELECT

0= Integral communications ports connected to 1/0 address
space

1= Integral communications ports disconnected from 1/0 address
space

0 R/W Speed Select
0= Speed select asserted
1 = Speed select not asserted

9- 18 Serial Communications - Hardware Description

Communications Connector Signals
The communications connector, a 25-pin, male, D-subminiature, is located on
the rear bezel of the V AXmate workstation. This connector is functionally
compatible with RS-232-C and electrically compatible with RS-423, configured
as DTE (Data Terminal Equipment). Table 9-4 lists the signals supported by
this connector.

Table 9-4 Communications Connector Signals

Pin Signal Name

1 Protective ground
2 Transmitted Data
3 Received Data
4 Request to Send
5 Clear to Send
6 Data Set Ready
7 Signal ground
8 Receive Line Signal Detect
9
10
11 Not used
12 Speed Indicator
13
14
15
16
17
18
19
20 Data Terminal Ready
21
22 Ring Indicator
23 Speed Select
24
25

Serial Communications - Hardware Description 9- 19

Printer Connector Signals
The printer connector is a 6-pin MMJ, female, modified modular connector
located on the rear bezel of the V AXmate workstation. Table 9-5 lists the sig­
nals this connector supports.

Table 9·5 Printer Connector Signals

Pin Signal Name

1 Data Terminal Ready

2 Transmit Data

3 Transmit Common (Signal ground)

4 Receive Common (Signal ground)

5 Receive Data

6 Data Set Ready

9 - 20 Serial Communications . Hardware Description

Modem Connector Signals
The modem connectors are modular TELCO (telephone line) compatible connec­
tors located on the optionai modem board, protruding through the rear panel of
the V AXmate workstation. The connectors use an 8-pin, keyed modular housing
for an RCl1C jack (or CAl1 jack in Canada). Table 9-6 lists the signals for a
modem connector. Table 9-7 lists the signals for a handset connector.

Table 9-6 Modem Telephone Line Connector Signals

Pin No.

1
2
3
4
5
6
7
8

Signal Name

N.C.
N.C.
MIC
TIP
RING
MI
N.C.
N.C.

Meaning

No connection
No connection
Not used
TELCO signal source
TELCO signal return
Not used
No connection
No connection

Table 9-7 Handset Connector Signals

Pin No.

1
2
3
4
5
6
7
8

Signal Name

N.C.
N.C.
MIC
RING
TIP
MI
N.C.
N.C.

Meaning

No connection
No connection
Not used
TELCO signal return
TELCO signal source
Not used
No connection
No connection

Serial Communications - Hardware Description 9- 21

Programming Example
The examples in this chapter demonstrate:

• Initializing an 8250A UARTA serial communications device
• Handling interrupt-ciriven serial 1/0
• Handling hardware and software handshaking protocols

CAUTION
Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

The example provides routines as described in the following list:

device init

device_open

ser out

restart

device int

device close

put_buf

puts_buf

get_buf

so

int com!

int modm

Establishes a known state for a serial port

Activates the serial port and interrupts

Handles character transmissions

Activates interrupt-driven serial transmissions

Coordinates all of the device interrupts

Deactivates the serial port and interrupts

Puts a character into a ring buffer from the application

Puts a string of characters into a ring buffer from the
application

Gets a character from a ring buffer for the application

The serial example

An interrupt vector entry point for the com! serial port
interrupt handler

An interrupt vector entry point for the modem serial port
interrupt handler

An interrupt vector entry point for the serial printer port
interrupt handler

9- 22 Serial Communications - Programming Example

Program Description

Constant Value

P _ ENAB through WORD5

RDRDY through BREAK

ENA MOD through
ENA-THE

DTR through LOOP

RLSD through CTS

HHS through DEV _OFF

CLK RATE

Description

Define the line control register bit values.

Define the line status register bit values.

Define the interrupt enable register bit values.

Define the modem control register bit values.

Define the modem status register bit values.

Define the bit values used to maintain the driver
status. The driver status is part of the structure
type DEV _ DAT.

Is divided by the desired baud rate to give the
value for the baud rate divisor registers.

Clarify the logic of the function, device _init.

Serial Communications - Programming Example 9- 23

#include "kyb.h"
#include "rb.h"
#include "example.h"

/***/
/* define constant values used in example serial driver */
/***/

/ * def ine line control register bit values */

#define P_ENAB Ox08 /* parity enabled */
#define P_EVEN Oxl0 /* EVEN parity select */
#define P_ODD OxOO /* ODD parity select */
#define P_STIK Ox20 /* enable stick parity */
#define WORD8 Ox03 /* 8-bit word size */
#define WORD7 Ox02 /* 7-bit word size */
#define WORDti OxOl /* 6-bit word size */
#define WORD5 OxOO /* 5-bit \10rd size */

/ * define line status register bit values */

#define RDRDY OxOl /* received data ready */
#define THRE Ox20 /* transmit holding reg empty */
#define ERRORS OxOe /* overrun, parity, framing */
#define BREAK Oxl0 /* received break */

/* define interrupt enable register bit values */

#define ENA_MOD Ox08 /* enable modem status */
#define ENA_REC Ox05 /* recv line stat & rd rdy */
#define ENA_THE Ox02 /* enable trans hold empty */

9- 24 Serial Communications . Programming Example

/* define modem control register bit values */

#define DTR
#define RTS
#define OUT2
#define LOOP

Ox01
Ox02
Ox08
Oxl0

/* data terminal ready */
/* request to send */

/* out 2 interrupt ctrl */
/* loopback mode */

/* define modem status register bit values */

#define RLSD
#define RI
#define DSR
#define CTS

Ox80
Ox40
Ox20
Ox10

/* define driver status bit values */

#define HHS Ox80
#define F_XOFF Ox40
#define F_XON Ox20
#define DEV_CLS OxtO
#define SWAIT Ox04
#define DEV_OFF Ox01

/* define some general constants */

#define CLK_RATE 116200L
#define X_OFF Ox13
#define X_ON Ox11

/* recv line signal detect */
/* ring indicator */
/* data set ready */
/* clear to send */

/* use hardware handshake */
/* x-off pending flag */
/* x-on pending flag */

/* device close request */
/* sending stopped */
/* driver off line */

/* 1843200 / 16 - 116200 */
/* x-off (DC3) character */
/* x-on (DC1) character */

/* program constants used to initialize the line control register */

'define NO_PAR 0 /* no parity */
#define EV _PAR 1 /* even parity */
#define OD_PAR 2 /* odd parity */
#define SC_PAR 3 /* stick parity clear */
#define SS_PAR 4 /* stick parity set */
#define S_BIT2 Ox04 /* 2 stop bits */

Serial Communications - Programming Example 9- 25

The structure type SERIAL declares the relationship of the 8250A UART reg­
isters in 1/0 space. The registers accessed by the members rtbl and iebh
depends on the following:

• If bit 7 of the line control register is set, rtbl accesses the low byte
of the baud rate divisor and iebh accesses the high byte of the baud
rate divisor.

• If bit 7 of the line control register is clear, rtbl accesses the receive
register when reading and the transmit register when writing, and
iebh accesses interrupt enable register.

The structure type DEV DAT stores the characteristics of the individual de­
vices, the current status;-and the pointers to the buffers.

/***/
/* define structures used in example serial driver */
/***/

typedef struct
{

unsigned char rtbl; /* receive/transmit/baud low */
unsigned char iebh; /* int enable reg/baud high */
unsigned char int_ident; /* int identification reg */
unsigned char line_ctrl; /* line control register */
unsigned char modem_ctrl; /* modem control register */
unsigned char line_stat; /* line status register */
unsigned char modem_stat; /* modem status register */

} SERIAL;

typedef struct dev_dat
{

SERIAL *base; /* base i/o address of device */
unsigned int pic; /* PIC number it belongs to */
unsigned int ir_bit; /* IR bit in PIC */
unsigned int baud; /* desired baud rate */
unsigned int word_siz; /* desired word size */
unsigned int parity; /* even, odd, none, stick */
unsigned int stop_bits; /* I, 1 - 1/2, 2 */
unsigned int req_dsr; /* DSR required flag */
RING_BUFF *prbi; /* ptr to input ring buff */
RING_BUFF *prbo; /* ptr to output ring buff */
unsigned char stat_drv; /* state of driver */

} DEV_DAT;

void int_onO;
int int_offO;

9- 26 Serial Communications - Programming Example

The function device init establishes a known state for the 8250A UARTA
serial device. Two items of interest are stick parity and stop bits. If stick
parity is selected, the parity bit is set to the opposite state of the even/odd
parity bit. If more than one stop bit is selected, the number of stop bits
depends on the word size. If the word size is five data bits, there are 1 1/2 stop
bits. All other word sizes generate 2 stop bits. These characteristics are a func­
tion of the device, not the code.

/***/
/* device_init() - establish a known state for a serial port */
/***/

void device_init(pdd)

register DEV_DAT *pdd;

{

unsigned int tbaud;
unsigned char tpar;
register SERIAL *ps;

tbaud = CLK_RATE / pdd->baud;
switch(pdd->parity)
{

}

case NO_PAR:
tpar NO_PAR;
break;

case EV_PAR:
tpar P_ENAB I P_EVEN;
break;

case OD_PAR:
tpar P_ENAB I P_ODD;
break;

case SC_PAR:
tpar P_ENAB I P_STIK I P_EVEN;
break;

case SS_PAR:
tpar P_ENAB I P_STIK I P_ODD;
break;

switch (pdd->word_siz)

/* initialize serial port */

/* pointer to device data */

/* temp to hold results */
/* temp to collect results */

/* pointer to SERIAL struct */

/* calculate baud rate divisor */

/* no parity */

/* even parity */

/* odd parity */

/* stick, parity bit clear */

/* stick, parity bit set */

/* desired word size ? */

Serial Communications - Programming Example 9- 27

}

{

}

case 8:
tpar 1- WORD8;
break;

case 7:
tpar 1- WORD7;
break;

case 6:
tpar 1- WORD6;
break:

case 6:
tpar 1= WORD6;
break;

if(pdd->stop_bits) tpar 1- 8_BIT2;
ps - pdd->base;
outp(ips->iebh. 0);
outp(ips->modem_ctr1, LOOP);
outp(ips->line_ctr1, Ox80);
outp(ips->rtb1, tbaud);
outp(ips->iebh, tbaud » 8):
outp(ips->line_ctr1, tpar);
pdd->stat_drv 1= DEV_OFF;

/* 8 data bits 1 */

/* 7 data bits 1 */

/* 6 data bits */

/* 6 data bits 1 */

/* set stop bits */
/* get shorter pointer */

/* interrupts off */
/* put in 100pback mode */

/* access baud rate divisor */
/* baud rate divisor 10 byte */
/* baud rate divisor hi byte */

/* bits per char, parity */
/* transmit int off */

9- 28 Serial Communications· Programming Example

The function device open prepares the driver to handle interrupts and the
device to receive characters. Because the modem interrupt has the lowest prior­
ity, it is enabled only for hardware handshaking. In that instance, it notifies
the driver to restart character transmissions.

Setting the modem control register bit OUT2 connects the 8250A UARTA in­
terrupt output to the 8259A interrupt input. This bit must be set to operate a
serial device in an interrupt-driven environment.

/***/
/* device_open() - activate serial port and interrupts */
/***/

void device_open(pdd)

register DEV_DAT *pdd;

{

register SERIAL *ps;

ps = pdd->base;
inp(leps->rtb1);
inp(leps->line_stat);
if(pdd->stat_drv Ie HHS)
{

/* open a device */

/* pointer to device data */

/* pointer to SERIAL struct */

/* get sborter pointer */
/* empty receive data buffer */

/* clear status flags */
/* if hardware handshake */

if«inp(leps->modem_stat) Ie (DSR
pdd->stat_drv Ie= -SWAIT;

CTS» -= (DSR 1 CTS»

}

}

else pdd->stat_drv 1= SWAIT;
outp(lcps->iebb, ENA_REC 1 ENA_MOD);

else outp(leps->iebh, ENA_REC);
pdd->stat_drv Ie= -DEV_OFF;
imask(pdd->pic, pdd->ir_bit, ON);
outp(leps->modem_ctr1, DTRIRTSIOUT2);

/* mark as ok */
/* mark as not ok */

/* receive, line Ie modem */

/* just receive and line */
/* driver state - online */

/* c1r the interrupt mask */
/* set modem control bits */

Serial Communications . Programming Example 9- 29

The function ser out provides a single location for maintaining or restarting
interrupt-driven transmissions. It also provides a method for software hand­
shake characters to preempt normal data transmissions. To prevent continuous
interrupts, when the output buffer is empty, the transmit interrupt is disabled.

/***/
/* ser_out() - transmit interrupt startup and maintenance */
/***/

register DEV_DAT *pdd;

{

register SERIAL *ps;
char c;
int flag;

void device_close();

ps = pdd->base;
if(inp(ips->line_stat) , Ox20 "

(inp(ips->modem_stat) , DSR I I
Ipdd->req_dsr»

{

if(pdd->stat_drv , F_XOFF)
{

}

pdd->stat_drv ,= -F_XOFF;
c = X_OFF;
flag = 1;

else if(pdd->stat_drv , F_XON)
{

}

pdd->stat_drv ,= -F_XON;
c = X_ON;

flag = 1;

else if(l(pdd->stat_drv , SWAIT»
{

flag = rb_out(pdd->prbo, 'c);
if(flag > -1) flag = 1;
else
{

flag = 0;
if(pdd->stat_drv , DEV_CLS)

/* pointer to device data */

1* pointer to SERIAL struct */
/* character to transmit */

/* get shorter pointer */

/* if terminal ready */
/* or dsr not required */

/* pending x-off request ? */

/* clear pending flag */
/* send x-off */

/* pending x-on request ? */

/* clear pending flag */
/* send x-on */

/* terminal ready */

1* request character to send */
/* character to send ? */

9- 30 Serial Communications - Programming Example

}

{

device_close(pdd);
return;

}
}

}

else flag = 0;
}

else flag = 0;
if (flag)
{

outp(lps->iebh,
outp(lps->rtbl,

}

else
outp(lps->iebh,

inp(lps->iebh)
c) ;

inp(lps->iebh)

/* enable transmit int */
I ENA_THE);

/* output character */

/* disable transmit int */
l -ENA_THE);

Serial Communications . Programming Example 9- 31

The function restart tests the interrupt enable register to. determine if inter­
rupts are currently enabled. If they are not, it calls ser out to restart interrupt-
driven transmissions. -

/***/
/* restart - attempt to restart i~terrupt-driven serial transmissions */
/***/

void restart(pdd)

register DEV_DAT *pdd;

{

int flag:

}

if(!(inp(lpdd->base->iebh) lENA_THE»
{

}

flag = int_off():
ser_out(pdd):
int_on(flag):

/* restart serial output */

/* pointer to device data */

/* temporary */

/* need to restart ? */

/* CPU interrupts off */
/* restart */

/* allow interrupts */

9- 32 Serial Communications - Programming Example

The functions comI int, modem int, and printer int are interrupt handlers for
the serial devices. These interrupt handlers call a common interrupt handler,
device into

/***/
/* coml_int() - interrupt handler for coml serial device */
/***/
void com Lint 0
{

extern DEV_DAT devdat[];
void device_int();

device_int(ldevdat[O]);
}

/* call common interrupt handler */

/***/
/* modem_int() - interrupt handler for modem serial device */
1***/
void modem_int 0
{
extern DEV_DAT devdat[];
void device_int();

device_int(ldevdat[l]);
}

/* call common interrupt handler */

/***/
/* printer_int() - interrupt handler for printer serial device */
/***/
void printer_int()
{

extern DEV_DAT devdat[];
void device_int();

device_int(ldevdat[3]);
}

/* call common interrupt handler */

Serial Communications· Programming Example 9- 33

The function device int is the major function within the device driver. It
coordinates interrupt processing, handshake protocol, and peripheral interrupt
controllers. For any given serial device, this function processes all pending in­
terrupts during a single CPU interrupt. This reduces the CPU interrupt proc­
essing overhead.

Device communication errors are noted by placing a question mark in the input
s.tream.

The switch values are tested against the contents of the interrupt identification
register.

/***/
/* device_int() - interrupt handler for serial device */
/***/

void device_int(pdd)

register DEV_DAT *pdd;

{

register SERIAL *ps;
unsigned char r_val;

/* interrupt handler */

/* pointer to device data */

/* pointer to SERIAL struct */
/* register value read */

/* get shorter pointer */ pB = pdd->base;
while (! «r _ val
{

inp(&ps->int_ident» & 1» /* while int pend */

switch (r_val)
{

case 6:
inp(&ps->line_stat);
if(inp(&ps->modem_stat) & DSR I I

!pdd->req_dsr)
{

rb_in(pdd->prbi, '1');
}

break;

case 4:
r_val = inp(&ps->rtbl);
if(inp(&ps->modem_stat) & DSR I I

!pdd->req_dsr)
{

if«pdd->stat_drv & HHS) == 0)
{

switch(r_val & Ox7f)

/* discover which interrupt */

/* receive error int */
/* clear error */

/* if terminal ready */
/* or dsr not required */

/* show error */

/* receive data ready int */
/* read character */

/* if terminal ready */
/* or dsr not required */

/* software handshake 1 */

9- 34 Serial Communications - Programming Example

}

}

{

case X_OFF:
pdd->stat_drv 1= SWArT;
break;

case X_ON:
pdd->stat_drv i= -SWArT;
restart(pdd);
break;

default:

/* x-off character ? */

/* x-on character ? */

if(rb_in(pdd->prbi, r_val) < 1) /* save character */
if buffer near full */

/* stop input */
/* restart if needed */

{ /*

}
}

}

pdd->stat_drv 1= F_XOFF;
restart(pdd);

break;

else if(rb_in(pdd->prbi, r_val) < 1)
outp(tps->modem_ctrl, DTR I OUT2);

/* save character */
/* no input please */

}

break;

case 2:
ser_out(pdd);
break;

case 0:
if(pdd->stat_drv t HHS)

if«inp(tps->modem_stat) t (DSR
{

}

if(pdd->stat_drv t SWArT)
{

}

pdd->stat_drv t= -SWArT;
restart(pdd);

else pdd->stat_drv 1= SWArT;
break;

/* xmit hold reg empty int */
/* transmit character */

/* modem status int */
/* hardware handshake ? */

CTS» (DSR 1 CTS»

/* send stopped ? */

/* mark as ok */

/* mark as not ok */

}

eoi(pdd->pic);

Serial Communications . Programming Example 9- 35

The function device close disables all interrupts related to the device indicated.
It also puts the modem control lines in an off-line state.

/***/
/* device_close() - deactivate serial port interrupts */
/***/

void device_close(pdd)

register DEV_DAT *pdd;

{

*/

}

outp(ipdd->base->modem_ctrl, 0);
outp(ipdd->base->iebh, 0);

imask(pdd->pic, pdd->ir_bit, OFF);
pdd->stat_drv 1= DEV_OFF;

/* close a device */

/* pointer to device data */

/* device offline */
/* 8250A UART interrupts off

/* mask the interrupt */
/* driver state - offline */

9- 36 Serial Communications - Programming Example

The function put but loops until it has stored the indicated character in an
output buffer. After storing the character, it ensures that the transmit inter­
rupt is enabled. The companion function puts but processes a null terminated
string by calling put buf at each character in the string. The null terminator is
not processed. -

/***/
/* put_buf() - put character in output buffer */
/***/

void put_buf(pdd. c)

register DEV_DAT *pdd;
char c;

{

int flag;
int r_val;

}

for(flag = -1; flag < 0;)
{

}

flag = rb_in(pdd->prbo. c);
restart(pdd);

/* put char in output buf */

/* pointer to device data */
/* char to put in buffer */

/* temporary */

/* wait until success */

/* attempt to store */

/***/
/* puts_buf() - put string in to output buffer */
/***/

void puts_buf(pdd. pc)

register DEV_DAT *pdd;
char *pc;

{

int flag;

}

while (*pc)
put_buf(pdd. *pc++);

/* string into output buf */

/* pointer to device data */
/* pointer to string */

/* while string not done */
/* do another character */

Serial Communications - Programming Example 9- 37

The function get but attempts to retrieve a character from the input buffer. If
no characters are available, it returns a -1 value. It also handles the input
handshake protocol.

/***/
/* get_buf() - get character from input buffer */
/***/

int get_buf(pdd)

register DEV_DAT *pdd;

{

char c;
int flag;

flag = rb_out(pdd->prbi, &c);
if(flag < 0) return(flag);
if(flag == 0)
{

if(l(pdd->stat_drv & HHS»
{

}

pdd->stat_drv 1= F_XON;
restart(pdd);

/* get char from input buf */

/* pointer to device data */

/* temp to hold character */

/* get char from input buff */
/* no characters available */

/* room to restart flow 1 */
/* and receive stopped */

/* software handshake 1 */

/* set x-on flag */

else outp(&pdd->base->modem_ctrl, DTRIRTSIOUT2);

}

}

flag = c;
return(flag & Oxff); /* return character */

/***/
/* reserve storage for variables used in example serial driver */
/***/
#define BUF_SIZ 100 /* size of buffers */
#define HIWATER 16 /* buffer near full value */
#define LOWATER 26 /* buffer near empty value */

#define COMl (SERIAL *)Ox03f8
#define MODEM (SERIAL *)Ox02f8
#define PRINTER (SERIAL *)OxOCAO

RING_BUFF rb[6];
char buff [3] [2] [BUF_SIZ] ;
DEV_DAT devdat[3] =

/* base address of coml */
/* base address of modem */

/* base address of printer */

/* ring buff ctrl structs */
/* ring buffers */

/* device data tables */

9- 38 Serial Communications - Programming Example

{

{ COM1, 0, 4, 9600, 8, NO_PAR, 0, 1, lrb[O] , lrb[l] , o },
{ MODEM, 0, 3, 1200, 8, NO_PAR, 0, 1, lrb[2] , lrb[3] , o },
{ PRINTER, 1, 3, 4800, 8, NO_PAR, 0, 0, lrb[4] , lrb[6] , o },
};

Serial Communications - Programming Example 9- 39

The function so drives the examples by transmitting or receiving serial data. It
initializes the devices and data structures, executes the example and then
closes the device.

/***/
/* soO - example application that uses serial driver */
/***/
soO
{

atatic MESSAGE mao[] = /* opening menu */
{

{ 3, 26, "Serial Communications Example" },
{ 6, 24, "Flo Select the COMI port" },
{ 6, 24, "F2. Select the Modem (COM2) port" },
{ 1, 24, "F3. Select the Printer port" },
{ 8, 24, "F4. Transmit sample data" },
{ 9, 24, "F6. Receive data" },
{ 10, 24, "FlO. Return to Main menu" },
{ 0, 0, o },

};

register DEV_DAT *pdd;
int i;

/* pointer to device data */
/* loop control */
/* loop control */

/* display position */
/* hold state of CPU IF */

/* to hold input line */
/* to hold CPU IF state */

int a;
int col;
int flag;
char line[612];
unsigned int intr_flag;

for(i = 0; i < 2; i++)
{

}

pdd = tdevdat[i]; /* get pointer to data */
init_rb(pdd->prbi, tbuff[i] [0] [0] , BUF_SIZ, HIWATER, LOWATER);
init_rb(pdd->prbo, tbuff[i] [1] [1] , BUF_SIZ, HIWATER, LOWATER);
if(pdd->pic == 0) s = Ox08; /* base vector for master pic */
else s = Ox10; /* base vector for slave pic */
intr_flag = int_off(); /* no interrupts allowed */
iv_init(s + pdd->ir_bit); /* init interrupt vectors */
device_init(pdd); /* init serial device */
device_open(pdd); /* activate device */
int_on(intr_flag); /* allow interrupts */

line[O] = 0;
while(l)

/* null line */
/* forever until FlO */

{

9- 40 Serial Communications . Programming Example

disp_menu(mso);
line[O] = get_fkey();
switch (line [0])

/* display menu for serial example */
/* get menu selection */

/* which function key ? */
{

case F1:
pdd = &devdat[O];
break;

/* select com1 port */
/* get pointer to data */

case F2:
pdd = &devdat[1];
break;

/* select modem (COM2) port */
/* get pointer to data */

case F3:
pdd ~ &devdat[2];
break;

/* select printer port */
/* get pointer to data */

case F4: /* transmit sample text */
disp_str(14 , 0, "Press F4 again to cancel");
i = 0;
while (line [0] != 0 I I line[1] != F4)
{

/* F4 terminates */

sprintf (Uine [0] , "This is line %d\r\n", i++);
puts_buf(pdd, line);
disp_str(16, 0, line);
chk_dt(); /* display date and time? */
if(get_key(&line[O]» /* scan code */

while(!get_key(&line[1]» /* character code */

}

break;

case F6: /* receive serial data */
disp_str(14, 0, "Press F5 again to cancel");
col = 0;
while (line [0] != 0 I I line[1] != F6)
{

/* F6 terminates */

i = get_buf(pdd);
if(i > -1)
{

}

i &- Ox7f;
disp_t(16, col++, i, Ox07);
if(i == '\r' I I i == '\n') col = 0;
if(col == 80) col = 0;

chk_dt(); /* display date and time? */
if(get_key(&line[O]» /* scan code */

whileClget_key(&line[1]» /* character code */

Serial Communications - ProgrJlmming Example 9- 41

}
}

}

9- 42

}

break;

case FlO:
for(i 0; i < 3; i++)
{

}

pdd &devdat[i];
device_close(pdd);
if(pdd->pic -- 0) s = Ox08;
else s = Ox70;
intr_flag = int_off();
iv_rest(s + pdd->ir_bit);
int_on(intr_flag);

return;

/* get pointer to data */
/* close device when done */

/* base vector for master pic */
/* base vector for slave pic */

/* no interrupts allowed */
/* restore interrupt vectors */

/* allow interrupts */

Serial Communications - Programming Example

Introduction

Chapter 10
Mouse Information

The V AXmate mouse (part number VSXXX) is a pointing device with three
input switches. The mouse has two encoders, one for the X axis and one for
the Y axis. The encoders have a resolution of 200 counts per inch. When
moved on a flat surface, the mouse monitors the motion relative to its position
at the beginning of the motion. Thus, the mouse maintains positional data in
the form of incremental XlY encoder counts. Figure 10-1 shows the mouse in
relation to its X/Y axes.

Ii
-V-axis

-X-axis -+-----+--------1r------ +X-axis

+V-axis

Figure 10·1 VAXmate Mouse (Part Number VSXXX)

Mouse Information - Hardware Description 10 - 1

Communication Requirements
The mouse communicates through an asynchronous serial interface at 4800
baud.
Data bytes have the following format:

• 1 start bit

• 8 data bits (least significant bit first)

• 1 parity bit (the mouse transmits odd parity, but ignores receive parity
errors.)

• 1 stop bit

If a byte is sent to the mouse while the mouse is transmitting, the mouse
aborts the transmission and processes the new command. If the mouse receives
a byte between the characters of a multibyte report, the mouse is considered to
be transmitting and aborts the report.

The V AXmate workstation communicates with the mouse through an
asynchronous serial interface (Signetics SCN2661 Enhanced Programmable
Communications Interface).

Additional Source of Information
The Signetics' document, Microprocessor Data Manual 1986, provides addi­
tional information on the SCN2661.

Mouse Commands
The Table 10-1 lists the mouse commands. The commands are issued by
transmitting the appropriate command code.

Table 10·1 Mouse Command Summary

ASCII

D
R
P
T
Zx

HEX

44H
52H
50H
54H
5AH xx

Function

Prompt Mode
Incremental Stream Mode
Request Mouse Position
Invoke Self·test
Vendor Reserved function

10- 2 Mouse Information· Hardware Description

Prompt Mode
Incremental Stream Mode
The mouse has two operating modes, prompt mode and incremental stream
mode. In prompt mode, which is the powerup default, the mouse generates a
report in response to a request mouse position command. In incremental
stream mode, whenever the mouse moves it generates a report of that move­
ment. It also reports a change in button position since the last report. No
report is generated when the mouse is motionless and no buttons have been
changed.

Request Mouse Position
The mouse responds to this command by sending a position report and switch­
ing to prompt mode.

Invoke Self·Test
The mouse responds to this command by executing a self-test and then sending
a self-test report. Self-test leaves the mouse in the reset or powerup state.
During the self-test, any data sent to the mouse is ignored until the last byte
of the self-test report has been sent by the mouse. The 4-byte self-test report
consists of a 2-byte identification code and a 2-byte status code.

Vendor Reserved Function
The vendor reserved function is a 2-byte command, the ASCII character 'Z'
followed by any printable character. This command allows vendors to add spe­
cial mouse functions. Normally, these functions are for quality control. The
manufacturer determines these functions, which may include transmitting spe­
cialized reports. These commands may not include new modes. On completion
of a vendor reserved function, the mouse must be restored to its previous state.

Mouse Information - Hardware Description 10 - 3

Mouse Reports
The mouse can transmit two reports, a 3-byte position report and a 4-byte self­
test report.

Position Report . Byte 1
7 654 3 2

SIGN-X SIGN-Y LEFT
BtrI'TON

1 0 0

Bit Description

7 Always 1

6-5 Always 0

4 SIGN-X (Sign bit for X-axis displacement)
o = Negative X-axis displacement
1 = Positive X-axis displacement

3 SIGN-Y (Sign bit for Y-axis displacement)
o = Negative Y-axis displacement
1 = Positive Y-axis displacement

2 LEFT BUTTON
o = Switch open
1 = Switch closed

1 MIDDLE BUTTON
o = Switch open
1 = Switch closed

o RIGHT BUTTON
o = Switch open
1 = Switch closed

10 - 4 Mouse Information - Hardware Description

1 o

MIDDLE RIGHT
BtrI'TON BtrI'TON

Position Report . Byte 2
765 4 3 2 1 o

Bit Description

7 Always 0

6-0 X-AXIS DISPLACEMENT

The X-axis displacement is measured in encoder counts 1200 per
inch). The value returned in this byte is the distance moved since
the last report. In prompt mode, if reports are not requested often
enough, this value can overflow. If an overflow occurs, no indication
is given. Bit 0 is the least significant bit.

Position Report . Byte 3
7 654 3 2 1 o

Bit Description

7 Always 0

6-0 Y-AXIS DISPLACEMENT

The Y-axis displacement is measured in encoder counts (200 per
inch). The value returned in this byte is the distance moved since
the last report. In prompt mode, if reports are not requested often
enough. this value can overflow. If an overflow occurs, no indication
is given. Bit 0 is the least significant bit.

Mouse Information - Hardware Description 10 - 5

Self-Test Report - Byte 1
7 6 5 4 3 2 1 o

Bit Description

7-5 FRAME SYNCHRONIZATION

These bits are always 101. They provide a means of detecting the
first byte of a self-test report.

4-0 REVISION NUMBER

This is a hardware and software revision number for this design
cycle.

Self-Test Report - Byte 2
765 4 3 2 1 o

I 0 I ~A~ 10 I 0 : o~~ CO~ : 0 I
Bit Description

7 Always 0

6-4 MANUFACTURERS ID

3-0 DEVICE CODE
Always 0010

10 - 6 Mouse Information - Hardware Description

Self-Test Report - Byte 3
7 6 5 4 3 2 1 o

I 0 I : : ~ORro~ : : I
Bit Description

7 Always 0

6-0 ERROR CODE
OOH = No error
3EH = RAM or ROM checksum error
3DH = Button error

Self-Test Report - Byte 4
7 6 5 4 3 2

I 0 I 0 I 0 I 0 I o I~
Bit Description

7-3 Always 0

2 LEFT BUTTON
o = Switch good
1 = Switch closed or failed

1 MIDDLE BUTTON
o = Switch good
1 = Switch closed or failed

o RIGHT BUTTON
o = Switch good
1 = Switch closed or failed

1 o

I~oou BtrrTON

Mouse Information - Hardware Description 10 - 7

Serial Interface
The serial interface is a SIGNETICS SCN2661 Enhanced Programmable
Communications Interface. Table 10-2 lists the input/output UfO) ports that
access the serial interface registers.

Table 10-2 Serial Interface Registers

Address R/W Register

OC40H

OC41H

OC42H

OC43H

*
**

R
W

R
W

R/W

R/W

Receive buffer
Transmit holding register

Status register
SynllSyn2/DLE registers *
Mode register 1 and mode register 2 * *
Command register

The Syn1, Syn2, and DLE registers are not used.

Mode registers 1 and 2 are accessed at the same 110 address. Read
mode register 1 and then read mode register 2, or write mode register
1 and then write mode register 2. Mode register 1 must be accessed to
access mode register 2.

Transmit Holding Register and Receive Buffer (OC40H)
7 6 5 4 3 2 1 0

Bit R/W Description

7-0 R
W

Accesses the receive data buffer
Accesses the transmit holding register

10 - 8 Mouse Information - Hardware Description

Status Register (OC41H)
7

DATA
SET
READY

1

Bit R/W

7

6

5

4

3

2

1

o

R

R

R

R

R

R

R

R

6 5 4 3 2 1 o
DATA FRAMING OVERRUN PARITY DATA RxRDY TxRDY
CARRIER ERROR ERROR SET
DETECT READY

1 CHANGED

Description

DATA SET READY falways 1)

DATA CARRIER DETECT falways 1)

FRAMING ERROR
0= Normal
1 = Framing error

This bit is cleared by disabling the receiver, issuing the reset error
command, or reading the status register.

OVERRUN
o = Normal
1 = Overrun error

This bit is cleared by disabling the receiver or issuing the reset
error command.

PARITY ERROR
o = Normal
1 = Parity error (if parity checking is enabled)

This bit is cleared by disabling the receiver, issuing the reset error
command, or receiving another character.

DATA SET READY CHANGED falways 0)

RxRDY - Receive Data Ready
o = Receive buffer is empty
1 = Receive buffer contains data and an interrupt is pending

This bit is cleared by reading the receive buffer or disabling
the receiver fcommand register bit 2).

TxRDY - Transmit Holding Register Ready
o = Transmit holding register busy
1 = Transmit holding register empty and an interrupt is pending

This bit is cleared by writing the transmit holding register or dis­
abling the transmitter fcommand register bit 0).

Mouse Information - Hardware Description 10 - 9

Mode Register 1 (OC42H)
7 6 5 4 3 2 1 o

I I I

STOP BITS PARITY PARITY CHARACTER MODE AND BAUD
TYPE CONTROL LENGTH RATE FACfOR

I I I

Bit RIW Description

7-6 R/W STOP BITS
00 = Invalid
01 = 1 stop bit
10 = 1-1/2 stop bits
11= 2 stop bits

5 R/W PARITY TYPE
0= Odd parity
1 = Even parity

4 R/W PARITY CONTROL
0= Parity checking disabled
1 = Parity checking enabled

3-2 R/W CHARACTER LENGTH
00 = 5 bits
01 = 6 bits
10 = 7 bits
11= 8 bits

1-0 RIW MODE AND BAUD RATE FACTOR
00 = Synchronous 1 X rate
01 = Asynchronous 1 X rate
10 = Asynchronous 16 X rate
11= Asynchronous 64 X rate

Mode registers 1 and 2 are accessed at the same 1/0 address. Read mode regis­
ter 1 and then read mode register 2, or write mode register 1 and then write
mode register 2. Mode register 1 must be accessed to access mode register 2.

When programming mode register 1 on the V AXmate workstation, use a value
5EH.

10 - 10 Mouse Information - Hardware Description

Mode Register 2 (OC42H)
7 6 5 4 3 2 1

, , , , ,
RECEIVE AND TRANSMIT BAUD RATE

CLOCK SOURCE
o 1 1 1

I I I I I

Bit Description

7-4 RECEIVE AND TRANSMIT CLOCK SOURCE
For the V AXmate workstation hardware, this value is fixed.

3-0 BAUD RATE
See Table 10-3

0
,

I

Mode registers 1 and 2 are accessed at the same 110 address. Read mode regis­
ter 1 and then read mode register 2, or write mode register 1 and then write
mode register 2. Mode register 1 must be accessed to access mode register 2.

When programming mode register 2 on the V AXmate workstation, use a value
7CH.

Table 10-3 Baud Rate Table

Bits Baud Bits Baud
3-0 Rate 3-0 Rate

0000 50 1000 1800
0001 75 1001 2000
0010 110 1010 2400
0011 134.5 1011 3600
0100 150 1100 4800
0101 300 1101 7200
0110 600 1110 9600
0111 1200 1111 19200

Mouse Information - Hardware Description 10 - 11

Command Register (OC43H)
7 6 5 4 3 2 1 o

I

OPERATING MODE REQUEST RESET SYNCBI RECEIVE DTR BIT
TO SEND ERROR ASYNCB CONTROL CONTROL

I

Bit R/W Description

7-6 R/W OPERATING MODE
00 = Normal operation
01 = Asynchronous (automatic echo mode)
10 = Local loop back
11= Remote loop back

5 R/W REQUEST TO SEND
0= Force request to send output high (disables interrupt buffer)
1 = Force request to send output low (enables interrupt buffer)

The 2661 EPCI has a buffer
between the interrupt output line and the peripheral interrupt con-
troller input. This buffer is controlled by bit 3. Enabling the buffer
enables the 2661 EPCI interrupt output line.

4 RESET ERROR

R Always 0

W 0= No effect
1 = Reset error flags (parity, framing, overrun)

3 R/W SYNCH/ASYNCH
0= Normal
1 = Force break

2 R/W RECEIVE CONTROL
0= Disable receiver, receive interrupt, and status register bit 1
1 = Enable receiver, receive interrupt, and status register bit 0

1 R/W DTR - Data Terminal Ready (output not connected)
0= Force data terminal ready output high
1 = Force data terminal ready output low

0 R/W XMIT CONTROL - Transmit Control
0= Disable transmitter, transmit interrupt, and status register

bit 0
1 = Enable transmitter, transmit interrupt, and status register

bit 0

When programming the command register on the VAXmate workstation, use a

10 - 12 Mouse Information - Hardware Description

base value of 30H. In addition to the base value, bits 0 and 3 (transmit and
receive control) must be applied as required.

Mouse Information - Hardware Description 10- 13

Programming Example
The mouse programming example demonstrates:

• Communicating with the mouse
• Interpreting the motion
• Interpreting the buttons
• Scaling the mouse motion to the screen

The example provides routines as described in the following list:

mouse init

send to mouse

mouse int

mouse close

mouse

CAUTION

Initializes the SCN2661 serial interface.

Prepares the serial interface for interrupt driven
communications.

Sends commands to the mouse.

Is the serial interface interrupt handler.

Deactivates the serial interface.

Executes the example program.

Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

The include file rb.h defines the ring buffer structure used in the serial inter­
face interrupt handler. The include files kyb.h and exam,ple.h support the exam­
ple, but are not pertinent to the mouse section.

The constant value MOUSE PORT defines the base address of the serial inter­
face. The constant values MOUSE PIC through MOUSE HWI define the in­
terrupt controller, interrupt input line, and the interrupt Vector for the serial
interface.

The constant values MMODE through CMND REG define bit values for the
serial interface registers. The constant values SELF TEST through POS REP
define the mouse command bytes. Finally, the constant values TESTMASK
through BUTTON _ERR define various values used in deciphering the mouse
reports.

10 - 14 Mouse Information - Programming Example

#include "rb.h"
#include "kyb.h"
#include "example.h"

/***/
/* define constant values used in example mouse driver */
/***/

#define MOUSE_PORT (MOUSE_UART *) OxOC40
#define MOUSE_PIC 1

/* base address of mouse */
/* PIC that handles mouse */
/* mouse int request line */

/* harware int vector location */
#define MOUSE_INT 4
#define MOUSE_HWI Ox74

/* SCN266l mode register bit values */

#define MMODE
#define P_ENAB
#define P_EVEN
#define P_ODD
#define WORD8
#define WORD7
#define WORD6
#define WORD5
#define S_BITl
#define S_BIT2
#define BD4800
#define CLKSPC

Ox02
OxlO
Ox20
OxOO
OxOC
Ox08
Ox04
OxOO
Ox40
OxCO
OxOC
Ox70

/* Aynchronous l6X rate */
/* Enable parity */

/* Even parity select */
/* Odd parity select */
/* 8 bit characters */
/* 7 bit characters */
/* 6 bit characters */
/* 5 bit characters */

/* One stop bit */
/* Two stop bits */

/* 4800 baud */
/* l6X clock */

/* SCN2661 status register bit masks */

#define THRE OxOl
#define RDRDY Ox02
#define ERRORS Ox38
#define PARITYERR Ox08
#define OVERRUN ERR Oxl0
#define FRAMINGERR Ox20

/* Transmit holding register is empty */
/* Receive holding register is full */
/* Parity, overrun or framing error */

/* Parity error */
/* Overrun error */
/* Framing error */

Mouse Information . Programming Example 10- 15

/* SCN2661 command register bit values */

#define TxEN OxOl
#define DTR Ox02
#define RxEN Ox04
#define BREAK Ox08
#define RESET Oxl0
#define RTS Ox20
#define CMODE OxCO
#define CMND_REG RTSIRESETIRxEN

/* Define mouse commands */

#define SELF_TEST 'T'
#define P_MODE 'D'
#define I_S_MODE 'R'
#define POS_REP 'P'

/*normal

/* Enable transmit control */
/* Disable data terminal ready */

/* Enable receive control */
/* Disable break */

/* Enable reset status */
/* RTS (normally on) */

/* Command mode (normally 0) */
operation, RTS=l, rec enabled */

/* self-test command */
/* prompt mode */

/* incremental stream mode */
/* request position report */

/* These values are used to check the mouse */

#define TESTMASK OxeO /* mask any header byte */
#define HEADER_BYTE Ox80 /* header byte indicator */
#define SELF TEST OxaO /* self-test header byte mask */
#define POSREP Ox80 /* position report header byte mask */
#define RIGHTBUTTON OxOl /* right button mask */
#define MIDDLEBUTTON Ox02 /* left button mask */
#define LEFTBUTTON Ox04 /* middle button mask */
#define XSIGN Oxl0 /* X-axis sign bit mask */
#define YSIGN Ox08 /* Y-axis sign bit mask */
#define ROMRAM_ERR Ox3e /* self-test byte # 2 error type mask */
#define BUTTON_ERR Ox 3d /* self-test byte # 2 error type mask */

10 - 16 Mouse Information· Programming Example

/***/
/* define structures used in example mouse driver */
/***/

typedef struct
{

unsigned char hr; /* transmit/receive holding register */
unsigned char status; /* status register */
unsigned char mode; /* mode register */
unsigned char command; /* command register */

} MOUSE_UART;

typedef struct mouse_dat
{

MOUSE_UART *base; /* base i/o address of device */
RING_BUFF *prbi; /* pointer to input ring buffer structure */
RING_BUFF *prbo; /* pointer to output ring buffer structure */

} MOUSE_OAT;

/***/
/* reserve storage for variables used in example mouse driver */
/***/
#define BUF_SIZ 100 /* size of buffers */
#define HIWATER 76 /* buffer near full value */
#define LOWATER 26 /* buffer near empty value */

RING_BUFF rb[2]; /* ring buff ctrl structs */
char buff [2] [BUF_SIZ]; /* ring buffers */
unsigned char cmnd_reg; /* value to write to command register */
MOUSE_OAT mouse_data = {MOUSE_PORT, trb[O] , trb[l] };

int quietmouse = OFF; /* mouse state flag */

Mouse Information . Programming Example 10- 17

/***/
/* mouse_init() - establish a known state for the ~ouse and SCN266l */
/***/

void mouse_init()
{

/* initialize mouse and port */

register MOUSE_OAT *pdd:
register MOUSE_UART *ps:

/* pointer to mouse data */
/* pointer to mouse struct */

pdd • lmouse_data:
ps ... pdd->base;

/* point to driver data */
/* assign base address */

/* initialize ring buffer structures */
init_rb(pdd->prbi, lbuff[O] [0] , BUP_SIZ, HIWATER, LOWATER):
init_rb(pdd->prbo, lbuffU] [0] , BUP_SIZ, HIWATER, LOWATER):

/* async l6x, enable parity, odd parity, eightbit data, one stop bit */
outp(lps->mode, MMODE I P_ENAB I P_ODD I WORD8 I S_BITl):

}

outp(lps->mode, BD4800 I CLKSPC): /* l6x clock, 4800 baud */
cmnd_reg = CMND_REG: /* init to normal contents */
outp(lps->co~and, cmnd_reg); /* reset status errors */

NOTE
During the initialization process, it is possible to transmit or re­
ceive garbage characters. The mouse initialization function does
not account for this possibility.

/***/
/* mouse_open() - activate mouse interrupts */
/***/

void mouse_open() /* open the mouse */

{

/* enable interrupt input */
}

10 - 18 Mouse Information . Programming Example

/***/
/* send_to_mouse() - write data to mouse */
/***/

unsigned char c;

{

register MOUSE_OAT *pdd;
register MOUSE_UART *ps;
int intr_flg;

}

pdd = &mouse_data;
ps = pdd->base;
while (rb_in(pdd->prbo, c) < 0)

intr_flg = int_off();
cmnd_reg 1= TxEN;
outp(&ps->command, cmnd_reg);
int_on(intr_flg);

/* byte value to transmit */

/* pointer to mouse data */
/* pointer to mouse struct */

/* hold state of CPU IF */

/* point to driver data */
/* assign base address */

/* wait until stored in buffer */

/* disable CPU interrupt */
/* to enable transmitter */

/* enable transmitter */
/* enable CPU interrupt */

Mouse Information . Programming Example 10- 19

/***/
/* mouse_int() - interrupt handler for mouse serial port */
/***/

void mouse_intO /* interrupt handler */

{

register MOUSE_OAT *pdd;
register MOUSE_UART *ps;
unsigned char c;
unsigned char s;

/* pointer to mouse data */
/* pointer to MOUSE_UART struct */

}

pdd = &mouse_data;
ps = pdd->base;

s = inp(&ps->status);

if(s & (PARITYERR I FRAMINGERR»
/*

/* assign base address */

/* read status of port */

/* garbage character ? */
read garbage character */ s = inp(&ps->hr);

else if(s & RDRDY)
{

/* is
/* read

if (rb_in(pdd->prbi. inp(&ps->hr» < 1)

there anything to read ? */
and store in ring buffer */
/* buffer getting full ? */

{

}

}

send_to_mouse(P_MODE);
quietmouse = ON;

if(s & THRE)
{

}

if (rb_out(pdd->prbo. &c) < 0)
cmnd_reg &= TxEN;

else outp(&ps->hr. c);

outp(&ps->command. cmnd_reg);
eoi(MOUSE_PIC);

NOTE

/* put mouse in prompt mode */

/* ready to transmit ? */

/* any characters to transmit? */
/* disable transmitter */

/* write the character */

/* reset status errors */
/* send EOI to interrupt controller */

This routine could check for overrun errors, but it does not.
Because each mouse report has a fixed byte count, missing char­
acters are detected in the record collection part of the mouse()
function.

10 - 20 Mouse Information - Programming Example

/***/
/* mouse_close() - deactivate mouse port interrupts */
/***/

void mouse_close()

{

register MOUSE_OAT *pdd;
register MOUSE_UART *ps;

}

pdd = lmouse_data;
send_to_mouse(P_MODE);
while (pdd->prbo->count)

cmnd_reg = CMND_REG & RxEN;
ps = pdd->base;
outp(&ps->command, cmnd_reg);
imask(MOUSE_PIC, MOUSE_INT, OFF);

/* deactivate the mouse */

/* pointer to mouse data */
/* pointer to MOUSE_UART struct */

/* point to driver data */
/* put mouse in prompt mode */

/* wait until ring buffer empty */

/* disable receiver and transmitter */
/* assign base address */

/* write new command */
/* disable interrupt input */

Mouse Information - Programming Example 10- 21

/***/
/* example application that uses mouse driver */
/***/

mouse 0
{

static MESSAGE mmouse[] = /* mouse menu */
{

{ 3, 34, "Mouse Example" },
{ 5, 18, "Move the mouse to see X and Y displacements." },
{ 6, 16, "Move cursor to a box and select with left button." },
{ 8, 24, "[] End Mouse Example" },
{ 9, 24, ,,[] Increase X Scale" },
{ 10, 24, "[] Decrease X Scale" },
{ 11, 24, "[] Increase Y Scale" },
{ 12, 24, "[] Decrease Y Scale" },
{ 14, 24, "Left button status: Up " },
{ 15, 24, "Middle button status: Up " },
{ 16, 24, "Right button status: Up " },
{ 18, 24, "X encoder counts:
{ 19, 24, "Y encoder counts:
{ 20, 24, "X Scale: 12" },
{ 21, 24, "Y Scale: 52" },
{ 0, 0, 0 },

};

register MOUSE_OAT *pdd;
register MOUSE_UART *ps;

unsigned char i_buff[80];
char o_buff[80];
char kb;
unsigned char *pb;
int row = 0;
int tmp;
int pos_rep = 0;
int end_me = FALSE;
int left_button = FALSE;
int bufLstate;

0" },

0" },

/* pointer to mouse data */

/* input buffer */
/* output buffer */

/* pointer to input buffer */
/* row position of cursor or text */

/* temporary variable */
/* mouse position report flag */

/* end mouse example flag */
/* state of left button */

/* input buffer state flag */
/* absolute position of cursor in X-axis */
/* absolute position of cursor in Y-axis */

/* accumulated X-axis encoder counts */
/* accumulated Y-axis encoder counts */

/* encoder counts per column */

int x_abs = 40;
int y_abs = 12;
int x_cnts = 0;
int y_cnts = 0;
int x_scale = 12;
int y_scale = 52;
int moved = 0;

/* encoder counts per row */
/* flag to indicate that mouse reported motion */

10- 22 Mouse Information . Programming Example

int intr_flg;
int cnt_req;

extern int time_flag;

pdd = tmouse_data;

/* hold state of CPU IF */
/* byte count required for report */

/* defined in RTC example */

/* get pointer to data */
/* assign base address */

/* disable CPU interrupt */
/* init interrupt vectors */

/* init mouse */
/* enable CPU interrupt */

/* activate mouse */

ps .. pdd->base;
intr_flg - int_off();
iv_init(MOUSE_HWI);
mouse_initO;
int_on(intr_flg);
mouse_openO;
send_to_mouse(P_MODE);
while(rb_out(pdd->prbi.

/* ensure mouse is in prompt mode
ti_buff[O]) >s 0) /* while buffer not empty

*/
*/
*/
*/
*/
*/
*/

send_to_mouse(SELF_TEST);
intr_flg - int_off();

/* dump characters
/* issue self-test command

/* disable CPU interrupt
/* reset RTC second flag
/* enable CPU interrupt

time_flag = 0;
int_on(intr_flg);
for(tmp = 0; time_flag
{

< 3 tt tmp < 4;)

if (rb_out(pdd->prbi. ti_buff[tmp]) >= 0) /* try to read character */
{

}
}

if«i_buff[tmp] t TESTMASK)
tmp = 1;

else if(tmp) tmp++;

tmp = 0;
if(time_flag >= 3)
{

SELFTEST)/* self-test header byte */
/* first byte of report */

/* additional report bytes */

/* check for time-out error */

strcpy(to_buff[O]. "Mouse time-out error"); /* error message */
tmp = 1;

}

else if(i_buff[2] == Ox3e)
{

strcpy(to_buff[O]. " Mouse
tmp = 1;

}

else if (i_buff [2] == Ox3d)
{

/* set error indicator */

/* check for mouse ROM/RAM error */

ROM/RAM error"); /* error message */
/* set error indicator */

/* check for mouse button errors */

strcpy(to_buff[O]. " Mouse button error");
tmp = 1;

/* error message */
/* set error indicator */

}

if (tmp)
{

/* test error indicator */

Mouse Information· Programming Example 10- 23

disp_str(12, 35, to_buff[O])i /* show error message */
disp_str(13 , 35, "Press FlO to continue")i /* show help message */
while(l) if(get_key(tkb) == 1 tt kb =~ FlO) breaki

}

else
{

disp_menu(mmouse)i
cursor_on (y_abs, x_abs)i
send_to_mouse(I_S_MODE)i
cnt_req = -li

/* display the mouse menu */
/* make cursor visible */

/* reset to incremental stream mode */
/* set byte count required to below zero */

/* no position report yet */
/* initialize pointer to input buffer */

pos_rep = FALSEi
pb = tLbuff[O]i
while(end_me == FALSE)
{

chk_dt()i /* check date and time for update */
buff_state = rb_out(pdd->prbi, pb)i /* try to read mouse */
if (buff_state >= 0) /* did the mouse send anything 1 */
{

if(*pb t HEADER_BYTE)
{

/* is it a header byte ? */

}

Lbuff[O] = *pbi
pb = ti_buff[l]i /*
if«i_buff[O] t TESTMASK)
{

cnt_req 2i

/* move to beginning of buffer */
reset to next byte in input buffer */

POSREP) /* discover header type */

/* remaining count required */
pos_rep TRUEi /* have header byte for position report */

}

else /* anthing else is an error */
{

cnt_req -li /* set byte count required to below zero */
pos_rep FALSEi /* no position report */

}

else if(pos_rep) /* if received a position report header byte */
{

if(++pb > ti_buff[10])
{ /* if pointer test is

pb = tLbuff[O]i
pos_rep = FALSE;
cnt_req = -li /* set

}

if(--cnt_req == 0)
{

/* increment buffer pointer */
true, unexpected error condition */

/* reset buffer pointer */
/* cannot be a position report */

byte count required to below zero */

/* end of report ? */

/* get position increments */

moved = 0;
tmp = Lbuff [1] ;

/* clear mouse motion flag */
/* get X-axis increment */

10 - 24 Mouse Information - Programming Example

if(l(i_buff[O] t XSIGN» tmp = -tmp; /* check sign bit */
x_cnts += tmp; /* accumulate X-axis encoder counts */
sprintf(o_buff, "%4d", tmp); /* convert to a string */
disp_str(18, 42, o_buff); /* show X-axis increment */
tmp = x_cnts / x_scale; /* enough to show motion? */
if (tmp)
{

x_cnts -= x_scale * tmp; /* remove scaled counts */
x_abs += tmp; /* add to absolute position */
if(x_abs < 0) x_abs = 0; /* no off-screen motion */
if(x_abs > 79) x_abs = 79; /* no off-screen motion */
moved = 1; /* set flag to update cursor position */

}

tmp = i_buff[2]; /* get Y-axis increment */
if(l(i_buff[O] t YSIGN» tmp = -tmp; /* check sign bit */

/* y-axis encoder counts are accumulated negatively to invert motion */
y_cnts -= tmp; /* accumulate Y-axis encoder counts */
sprintf(o_buff, II %4d II , tmp); /* convert to a string */
disp_str(19, 42, o_buff); /* show Y-axis increment */
tmp = y_cnts / y_scale; /* enough to show motion? */
if (tmp)
{

y_cnts -= y_scale * tmp; /* remove scaled counts */
y_abs += tmp; /* add to absolute position */
if(y_abs < 0) y_abs = 0; /* no off-screen motion */
if(y_abs > 24) y_abs = 24; /* no off-screen motion */
moved = 1; /* set flag to update cursor position */

}
if(moved) mv_cursor(y_abs, x_abs); /* update cursor */

/* display state of mouse buttons */

for(tmp = LEFTBUTTON, row = 14; row < 17; row++, tmp »= 1)
{

}

if(Lbuff[O] t tmp) disp_str(row, 46, "Down");
else disp_str(row, 46, "Up II);

if(i_buff[O] t LEFTBUTTON)
{

/* test for valid selection */

if(lleft_button) /* must release button from last select */
{

left_button = TRUE;
if(x_abs == 26)
{

swi tch(y _abs)
{

case 8:

/* left button pressed */

/* end mouse example */

Mouse Information - Programming Example 10- 25

}
}

}

}
}

}

end_me TRUE; /* set to true */
break;

case 9: /* increase X scale */
if (x_scale < 1000) /* arbitrary value */

x_scale += 2' , /* arbitrary increment */
break;

case 10: /* decrease X scale */
if(x_scale > 2) /* cannot be zero */

x_scale 2; /* arbitrary decrement */
break;

case 11: /* increase Y scale */
if(y_scale < 1000) /* arbitrary value */

y_scale += 2; /* arbitrary increment */
break;

case 12: /* decrease Y scale */
if(y_scale > 2) /* cannot be zero */

y_scale 2; /* arbitrary decrement */
break;

}

sprintf (o_buff, "%3d", x_scale); /* convert */
disp_str(20, 33, o_buff); /* show new X-scale */
sprintf (o_buff, "%3d", y _scale) ; /* convert */
disp_str(21, 33, o_buff); /* show new Y-scale */

else left_button FALSE;
pos_rep = FALSE;

/* reset left button state */
/* no position report */

/* If mouse disabled because the ring buffer was full, turn it back on */
if(quietmouse II buff_state -= 0) send_to_mouse(I_S_MODE);

}

}

}

mouse_close 0 ;
intr_flg = int_off();
iv_rest(MOUSE_HWI);
int_on(intr_flg);

/* close the mouse */
/* no interrupts allowed */

/* restore old vectors */
/* allow interrupts */

10- 26 Mouse Information . Programming Example

Chapter 11
Diskette Drive Controller

Introduction
The diskette drive controller interfaces the V AXmate system bus and the
diskette drives. The diskette drive controller supports the following drives and
media:

Drive Type

5 ~ Inch - High capacity

Media

1.2 Megabyte - 80 Track - High capacity

800 Kbyte - 80 Track - Standard

360 Kbyte - 40 Track - Standard (with
double stepping)

The diskette drive controller operates in either DMA or non-DMA mode. In
DMA mode, the processor initializes the DMA controller and issues the
transfer command to the diskette controller. The diskette controller and the
DMA controller transfer the data unattended. In non-DMA mode, the diskette
controller generates interrupts to the processor each time the controller
transfers a data byte.

Diskette Drive Controller - Hardware Description 11 - 1

Diskette Drive Controller Registers
The diskette drive controller has five 8·bit registers that are accessed through
four port addresses. Table 11·1 lists the registers.

Table 11·1: Diskette Drive Controller Registers

Address RIW Register

03F2H W Control register

03F4H R Main status register

03F5H RlW Data register

03F6H W Transfer rate register

03F6H R Change register

11 - 2 Diskette Drive Controller . Hardware Description

Control Register (03F2H)
7 6 5 4 3 2 1 o

I~ SELECT
o

Bit RIW Description

7-6 W

5 W

4 W

3 W

2 W

1 W

o W

Always 0

MOTOR B
o = Drive B motor off and disable bit 0
1 = Drive B motor on and enable bit 0

MOTOR A
o = Drive A motor off and disable bit 0
1 = Drive A motor on and enable bit 0

DMA ENABLE
o = Disable the diskette drive controllers DMA request, DMA ac­

knowledge, and interrupt request
1 = Enable the diskette drive controllers DMA request, DMA ac-

knowledge, and interrupt request

RESET
o = Reset the diskette drive controller
1 = Enable the diskette drive controller

Always 0

DRIVE SELECT
o = Select Drive A
1 = Select Drive B

This bit is enabled or disabled by bits 5-4.

Diskette Drive Controller - Hardware Description 11- 3

Main Status Register (03F4H)
7 6 543 2 1 o

REQUEST DATA
FOR I/O NON-DMA CONTROL DRIVE 3 DRIVE 2 DRIVE 1 DRIVE 0
MASTER DIR MODE BUSY BUSY BUSY BUSY BUSY

Bit R/W Description

7 R REQUEST FOR MASTER
0= Data register not ready
1 = Data register is ready to be read or written by processor

6 R DATA 110 DIR - Data 110 Direction
0= Transfer data from processor to data register
1 = Transfer data from data register to processor

5 R NON-DMA MODE
0= Result phase (execution phase ended)
1 = Execution phase

4 R CONTROL BUSY
0= Controller ready to accept new command
1 = Controller processing a read or write command

3 R DRIVE 3 BUSY
0= Drive 3 not seeking
1 = Drive 3 seeking new track

2 R DRIVE 2 BUSY
0= Drive 2 not seeking
1 = Drive 2 seeking new track

1 R DRIVE 1 BUSY
0= Drive 1 not seeking
1 = Drive 1 seeking new track

0 R DRIVE 0 BUSY
0= Drive 0 not seeking
1 = Drive 0 seeking new track

11- 4 Diskette Drive Controller- Hardware Description

Data Register (03F5H)
765 4 3 2 1 o

I : : :STATUS ~ DATA : : : I

Bit RIW Description

7-0 RlW Status or data

This register accesses several internal diskette drive controller registers. The
internal register accessed depends on the state of the diskette drive controller.
The internal registers and the diskette drive controller states are discussed
later in this chapter in the section Diskette Drive Controller Programming.

Diskette Drive Controller - Hardware Description 11 - 5

Data Transfer Rate Register (03F6H)
7 654 3 2

Bit R/W Description

7-2 W Always 0

1-0 W TRANSFER RATE
00 = 500 KBits per second
01 = 250 KBits per second *
10 = 250 KBits per second
11 = Not used (selects 250 KBits per second I

1 o

* The industry-standard transfer rate for the bit values (011 is 300 KBits
per second.

On power-up, this register defaults to 250 KBits per second.

Change Register (03F6H)
7 6 5 4 3 2 1 o

1= 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Bit RIW Description

7 R

6-0 R

CHANGE STATUS
o = Since the last time this register was read, the diskette in the

selected drive has not been removed.
1 = Since the last time this register was read, the diskette in the

selected drive was removed.

Always 0

11- 6 Diskette Drive Controller - Hardware Description

Diskette Drive Controller Internal Registers
The diskette drive controller has several internal registers that are read or
written through the data register as a series of command or status bytes. The
usage of these registers is dependent on the command. Tables 11-3 through
11-17 define the command specific usage.

Internal Register - Command
7 6 5 4 3 2 1 o

Bits R/W Description

7 W MT - Multi-track (Must be 0 for some commands)
o = Disable multi-track
1 = Enable multi-track (Accessing both sides of the diskette

automatically)

6 W MFM - Modified Frequency Modulation
o = Use FM (Frequency Modulation) for reading and writing the

diskette
1 = Use MFM for reading and writing the diskette

5 W SK - Skip (Must be 0 for some commands)

4-0 W

o = Do not skip sectors containing a DELETED DATA
ADDRESS MARK

1 = Skip sectors containing a DELETED DATA ADDRESS
MARK

COMMAND SELECT
00010 = Read Track
00011 = Specify
00100 = Sense Drive Status
00101 = Write Data
00110 = Read Data
00111 = Recalibrate
01000 = Sense Interrupt Status
01001 = Write Deleted Data

01010 = Read ID
01100 = Read Deleted Data
01101 = Format Track
01111 = Seek
10001 = Scan Equal
11001 = Scan Low or Equal
11101 = Scan High or Equal

Diskette Drive Controller - Hardware Description 11 - 7

Internal Register . Head/U nit Select
7 654 3 2 1 o

I 0 I 0 I 0 I 0 I 0 I~ I mH ~ I
Bit RtW Description

7·3 W Always 0

2 W HEAD SELECT
o = Select head on side 0
1 = Select head on side 1

1·0 W UNIT SELECT
00 = Select drive 0
01 = Select drive 1
10 = Select drive 2
11 = Select drive 3

Because the outputs are not connected, these bits are ineffective.
Use bits 5, 4, and 0 of the control register to select the drive.

11- 8 Diskette Drive Controller . Hardware Description

Internal Register . Status Register 0
76543

~un CODE

Bit RIW Description

7-6 R INTERRUPT CODE
00 = Command completed successfully

2 1

01 = Command started but did not complete successfully
10 = Command was never started

o

11 = Abnormal termination (disk drive ready signal changed

5 R

4 R

3 R

2 R

1-0 R

state during command execution I
SEEK END
o = Seek not complete
1 = Seek complete

EC - Equipment Check
o = No error detected
1 = Fault signal detected or, during a recalibrate, the track 0

signal was not detected after 77 step pulses

NOT READY
o = Drive was ready
1 = Drive not ready signal was detected

HEAD ADDRESS
o = Side 0 selected
1 = Side 1 selected

UNIT SELECT
00 = Drive 0 selected
01 = Drive 1 selected
10 = Drive 2 selected
11 = Drive 3 selected

Diskette Drive Controller - Hardware Description 11 - 9

Internal Register· Status Register 1
7 654 3 2 1 o

HISSING
EN DATA OVERRUN NO DATA NY ADDRESS

ERROR HARK
0 0

Bit RIW Description

7

6

5

4

3

2

R

R

R

R

R

R

EN - End of Cylinder
o = No error
1 = Controller attempted to access a sector beyond the last

sector of a cylinder

Always 0

DATA ERROR
o = No error
1 = Controller detected a cyclic redundancy check (CRC) error in

the ID or data field

OVERRUN
o = No error
1. = During a data transfer in non-DMA mode. the processor did

not service the controller within the required time interval

Always 0

NO DATA
o = No error
1 = One of the following conditions occurred:

During execution of a read data. a write-deleted data, or a scan
command. the controller could not find the specified sector.

During execution of a read ID command. the controller could not
read the ID field.

During execution of a read track command. the starting sector
could not be found.

11- 10 Diskette Drive Controller - Hardware Description

Bit RIW Description (Status Register 1 - cont.)

1 R

o R

NW - Not Writable
o = No error
1 = During a write data. write-deleted data, or format track com­

mand, the controller detected a write-protect signal from the
disk drive.

MISSING ADDRESS MARK
o = No error
1 = One of the following conditions occurred:

The controller had detected the index hole twice, but had not
detected the ID field ADDRESS MARK.

The controller could not detect the DATA ADDRESS MARK
or the DELETED DATA ADDRESS MARK. When this bit
is set, status register 2 bit 0 (MDI is set.

Diskette Drive Controller - Hardware Description 11 - 11

Internal Register· Status Register 2
7 6 5 4 3 2 1 o

DATA SCAN
CONTROL ERROR VC BIT SN BC lID
IWU{ IN DATA EQUAL

0 FIELD

Bit RIW Description

7 R Always 0

6 R CONTROL MARK
0= DELETED DATA ADDRESS MARK not detected
1 = During a read data or scan command, the controller found a

DELETED DATA ADDRESS MARK.

5 R DATA ERROR IN DATA FIELD
0= No error
1 = Controller detected a cyclic redundancy check {CRC) error in

the data field.

4 R WC - Wrong Cylinder
0= No error
1 = Cylinder number in the ID field does not match the cylinder

number in the internal register

3 R SCAN EQUAL HIT
0= No match
1 = During the execution of a scan command, the equal condition

was satisfied.

2 R SN - Scan Not Satisfied
0= No error
1 = During the execution of a scan command, the controller

could not find a sector on the cylinder that met the
condition.

1 R BC - Bad Cylinder
0= No error
1 = Cylinder number in the ID field is FFH and does not match

the cylinder number in the internal register

0 R MD - Missing ADDRESS MARK in Data Field
0= No error
1 = During execution of a read command, the controller could

not find a DATA ADDRESS MARK or DELETED DATA
ADDRESS MARK.

11- 12 Diskette Drive Controller - Hardware Description

Internal Register . Status Register 3
76543 2

FAULT VRITE READY TRACK 0 NO BEAD
PROTECT SIDE ADDRESS

Bit RIW Description

7 R FAULT
o = No error
1 = Diskette drive fault signal detected

6 R WRITE PROTECT
o = Diskette not write protected
1 = Diskette drive write protect signal detected

5 R READY
o = Drive not ready
1 = Drive ready

4 R TRACK 0

3 R

2 R

1-0 R

o = Read/Write heads not over track 0
1 = Read/Write heads over track 0

TWO SIDE
o = Diskette is single sided
1 = Diskette is double sided

HEAD ADDRESS
o = Side 0 selected
1 = Side 1 selected

UNIT SELECT
00 = Drive 0 selected
01 = Drive 1 selected
10 = Drive 2 selected
11 = Drive 3 selected

1 o
I

UNIT SELECT

I

Diskette Drive Controller - Hardware Description 11- 13

Internal Register· SRTIHUT
7 6 5 4 3 2 1 o

I : 7 : I : ~ : I
Bit RIW Description

7-4 W SRT - Step Rate
0000 = 16 ms 1000 = 8 ms
0001 = 15 ms 1001 = 7 ms
0010 = 14 ms 1010 = 6 ms
0011 = 13 ms 1011 = 6 ms
0100 = 12 ms 1100 = 4 ms
0101= 11 ms 1101 = 3 ms
0110 = 10 ms 1110 = 2 ms
0111 = 9 ms 1111 = 1 ms

3-0 W HUT - Head Unload Time
0000 = 0 1000 = 128 ms
0001 = 16 ms 1001 = 144 ms
0010 = 32 ms 1010 = 160 ms
0011 = 48 ms 1011 = 176 ms
0100 = 64 ms 1100 = 192 ms
0101= 80 ms 1101 = 208 ms
0110 = 96 ms 1110 = 224 ms
0111 = 112 ms 1111 = 240 ms

11- 14 Diskette Drive Controller - Hardware Description

Internal Register· HLT/ND
7 654 3 2 1

Bit RIW Description

7-1 W HLT - Head Load Time
0000000 = No head load time
0000001-1111111 = 2 ms to 254 ms in 2 ms steps

o W NO - Non-OMA Mode
o = OMA mode enabled
1 = DMA mode disabled

Internal Register· C

o

This 8-bit register specifies the currently selected cylinder/track number. To
ensure that it is at the correct cylinder/track, the diskette controller compares
this cylinder/track number to the cylinder/track in the sector header.

Internal Register . H
This 8-bit register specifies the currently selected read/write head. To ensure
that it is on the correct side of the diskette, the diskette controller compares
this head address to the head address in the sector header. Only 0 and 1 are
valid values.

Internal Register . R
This 8-bit register specifies the desired sector number.

Diskette Drive Controller - Hardware Description 11 - 15

Internal Register . N
This 8-bit register specifies the number of data bytes per sector as follows:

Value Bytes per Sector

OOH 128
01H 256
02H 512
03H 1024
04H 2048
05H 4096
06H 8192

Internal Register . EOT
This 8-bit register specifies the last sector of a read/write operation. The value
written to this register is the last desired sector plus 1.

For example, to read or write one sector (sector number 5), internal register R
would contain 05H and internal register EOT would contain 06H. To read or
write five sectors (starting at sector 1), internal register R would contain 01H
and internal register EOT would contain 06H.

Internal Register . GPL
This 8-bit register specifies the gap between sectors. When executing the
format-track command, use a value of 54H. Otherwise, use a value of 1BH.
These are the values specified by the ROM BIOS. See Interrupt 13H in
Chapter 15.

Internal Register· DTL
When internal register N contains OOH, this 8-bit register specifies the number
of bytes to be read from or written into a sector. For this register, the ROM
BIOS definea a. value of FFH. See Interrupt 13H in Chapter 15.

Internal Register . SC
For the format-track command, this 8-bit register specifies the number sectors
per track.

11- 16 Diskette Drive Controller - Hardware Description

Internal Register . D
For the format-track command, this 8-bit register specifies the value used as a
fill byte. For this register, the ROM BIOS defines a value of F6H. See
Interrupt 13H in Chapter 15.

Internal Register . STP
For the scan commands, this register specifies contiguous sectors (interleave of
11 or alternate sectors (interleave of 2}.

Internal Register . PCN
For the sense-interrupt-status command, this 8-bit register returns the result­
ing present-cylinder number

Internal Registers· NCN
For the seek command, this 8-bit register specifies the desired cylinder/track
number {new cylinder number}.

Diskette Drive Controller - Hardware Description 11- 17

Diskette Drive Controller Programming
The diskette drive controller has three operational states, command, execution,
and result. The current state is determined by bit 7 IREQUEST FOR
MASTER) and bit 6 (110 DIR) of the main status register. If bit 7 is equal to
O. the diskette drive controller is in the execution state. Otherwise. the diskette
drive controller is in a command or result state. Bit 6 determines whether the
diskette drive controller is in the command or result state. If bit 6 is equal to
0, the diskette drive controller is in the command state. Otherwise, the
diskette drive controller is in the result state.

Command State
The diskette drive controller accepts a series of 1 to 9 command bytes that are
written to the data register. Each command has a fixed set of data bytes that
are required to initiate the command. For correct results, the set must not be
shortened.

On acceptance of a command, the diskette drive controller enters the execution
state. If a command is not accepted as a valid command, the diskette drive
controller sets the internal register, status register 0, equal to 80H.

The diskette drive controller has fifteen commands. Table 11-2 lists the
diskette drive controller commands. The commands listed in Table 11-2 are
described later in this chapter. The four internal status registers, 0-3, are
described in the section on Diskette Drive Controller Internal Registers.

11- 18 Diskette Drive Controller - Hardware Description

Table 11-2: Diskette Drive Controller Commands

Command Description

Read Data

Write Data

Read Deleted Data

Write Deleted Data

Read Track

Read ID

Format Track

Scan Equal

Scan Low or Equal

Scan High or Equal

Recalibrate

Sense Interrupt Status

Specify

Sense Drive Status

Seek

Multi-sector read of sectors with DATA ADDRESS
MARK in header lat the current track)

Multi-sector write at the current track (writes a
DATA ADDRESS MARK in header)

Multi-sector read at the current track (including those
with a DELETED DATA ADDRESS MARK in
header)

Multi-sector write at the current track (writes a
DELETED DATA ADDRESS MARK)

Read all sectors at the current track

Reads the ID field of the first sector encountered at
the current track

Formats sectors in the track as indicated

Data on the diskette is compared for equality to data
in memory IS-bit data)

Data on the diskette is compared for equality or a
value less than the data in memory (S-bit data)

Data on the diskette is compared for equality or a
value greater than the data in memory IS-bit data)

Read/Write heads retract to track 0

Returns the internally stored status registers

Sets the diskette controller parameters HEAD LOAD,
HEAD UNLOAD, and STEP RATE

Loads the current drive status into the internal regis­
ter, status register 3

Read/Write heads move to the specified track

Diskette Drive Controller - Hardware Description 11- 19

Execution State
The diskette drive controller executes the command as instructed. When the
operation is complete, the diskette drive controller generates an interrupt to
the processor and enters the result state.

NOTE
The seek and recalibrate commands do not have a result state.

The overlapped seek or recalibration capability, described in the
following explanation, is not supported by V AXmate diskette
drive controllers or industry-standard diskette drive controllers.

The floppy disk controller chip supports overlapped seeks and
recalibrations. That is, issuing a seek or recalibrate command to
two or more drives before the previous seek or recalibrate com­
mands have completed. To provide this feature, the result state
was eliminated. After issuing one or more seek or recalibrate
commands, the controlling program must monitor the main
status register. Bits 3-0 of the main status register reflect the
status of the corresponding drive.

Result State
On completion of a command, the diskette drive controller provides a series of
status bytes that are read from the data register. These status bytes represent
the states of corresponding internal registers. Each command has a fixed set of
status bytes that result from a command. Until all of the status bytes have
been read, the diskette drive controller will not accept a new command.

Command and Result Register Sets
Each command has a specific set of internal registers that must be written
through the data register. During the result state, each command has a specific
set of internal registers that must be read through the data register.
Tables 11-3 through 11-17 define the command and result register sets for the
various commands.

Invalid command codes produce a result state that contains only status register
3.

11- 20 Diskette Drive Controller - Hardware Description

Table 11·3 Register Sets for Read Data Command

State Order Register Comment

Command 1 Command
2 HeadlU nit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 DTL Data Length

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Table 11·4 Register Sets for Write Data Command

State Order Register Comment

Command 1 Command SK must be 0
2 HeadlU nit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 DTL Data Length

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Diskette Drive Controller· Hardware Description 11- 21

Table 11-5 Register Sets for Read Deleted Data Command

State Order Register Comment

Command 1 Command
2 HeadlUnit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 DTL Data Length

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Table 11-6 Register Sets for Write Deleted Data Command

State Order Register Comment

Command 1 Command SK must be 0
2 Head/Unit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 DTL Data Length

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

11 - 22 Diskette Drive Controller - Hardware Description

Table 11·7 Register Sets for Read Track Command

State Order Register Comment

Command 1 Command MT must be 0
2 Head/Unit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 DTL Data Length

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Table 11·8 Register Sets for Read ID Command

State Order Register Comment

Command 1 Command MT and SK must be 0
2 HeadlUnit Select

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Diskette Drive Controller . Hardware Description 11- 23

Table 11-9 Register Sets for Format Track Command

State Order Register Comment

Command 1 Command MT and SK must be 0
2 Head/Unit Select
3 N Sector Size
4 SC Sectors per track
5 GPL Gap length
6 D Fill data

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Table 11-10 Register Sets for Scan Equal Command

State Order Register Comment

Command 1 Command
2 Head/Unit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 STP Interleave U or 21 .

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

11- 24 Diskette Drive Controller - Hardware Description

Table 11·11 Register Sets for Scan Low or Equal Command

State Order Register Comment

Command 1 Command
2 HeadlUnit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 STP Interleave (1 or 2)

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Table 11·12 Register Sets for Scan High or Equal Command

State Order Register Comment

Command 1 Command
2 Head/U nit Select
3 C Cylinder
4 H Head address
5 R Sector number
6 N Sector Size
7 EOT Last sector for operation
8 GPL Gap length
9 STP Interleave (1 or 2)

Result 1 Status Register 0
2 Status Register 1
3 Status Register 2
4 C Cylinder
5 H Head address
6 R Sector number
7 N Sector Size

Diskette Drive Controller . Hardware Description 11 - 25

Table 11-13 Register Sets for Recalibrate Command

State

Command

Result

Order

1
2

Register

Command
HeadlUnit Select

None

Comment

Issue a sense interrupt
status command

Table 11-14 Register Sets for Sense Interrupt Status Command

State Order Register Comment

Command 1 Command
2 Head/U nit Select

Result 1 Status Register 0
2 PCN Present cylinder number

Table 11-15 Register Sets for Specify Command

State Order Register Comment

Command 1 Command
2 SRT/HUT
3 HLT/ND

Result None Command does not have a
result state

11 - 26 Diskette Drive Controller - Hardware Description

Table 11·16 Register Sets for Sense Drive Status Command

State Order Register

Command 1 Command
2 HeadlU nit Select

Result Status Register 3

Table 11·17 Register Sets for Seek Command

State Order Register

Command 1 Command
2 Head/Unit Select
3 NCN

Result None

Programming Example
The following programming example demonstrates:

• Initializing the diskette drive controller
• Using DMA data transfers
• Recalibrating the diskette drive
• Seeking to a track
• Hard formatting a diskette

CAUTION

Comment

Comment

New cylinder number

Issue a sense interrupt
status command

Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Diskette Drive Controller . Programming Example 11- 27

#include "kyb.h"
#include "example.h"

/***/
/* define constants used in diskette controller example */
/***/

/* define bit values for diskette controller control register (DCCR) */

#define DRV_SEL OxOl /* bit mask for drive select */
#define FDC_ON Ox04 /* bit value allows fdc to run

if this bit not set. fdc is reset */
'define DMA_INT_ON Ox08 /* value to enable DMA and interrupts to CPU */
'define DRVA_MOTOR Oxl0 /* bit value to turn on drive a motor */
#define DRVB_MOTOR Ox20 /* bit value to turn on drive b motor */

/* define bit values for data transfer rate register */

#define DTR_500
#define DTR_300
#define DTR_250

OxOO
OxOl
Oxl0

/* bit value for 500 Kbit transfer rate */
/* VAXmate = 250 Kbit transfer rate */

/* bit value for 250 Kbit transfer rate */

/* define disk change register bit */

#define DISK_CnG Ox80 /* diskette changed if set */

/* define bit values for FDC main s.tatus register */

#define FDDO_BUSY OxOl /* diskette drive o busy doing seek */
#define FDD1_BUSY Ox02 /* diskette drive 1 busy doing seek */
#define FDD2_BUSY Ox04 /* diskette drive 2 busy doing seek */
#define FDD3_BUSY Ox08 /* diskette drive 3 busy doing seek */
#define FDD_BUSY FDDO_BUSY I FDDCBUSY I FDD2_BUSY I FDD3_BUSY
#define FDC_CB Oxl0 /* controller busy */
#define FDC_NDM Ox20 /* in non-DMA mode = execution phase busy */
#define DIO_RD Ox40 1* indicates processor should read data reg */
#define RQM Ox80 /* data register ready to send or receive */

11 - 28 Diskette Drive Controller • Programming Example

/* define status register 0 bit values */

#define SRO_USO
#define SRO_US1
#define SRO_US2
#define SRO_US3
#define SRO_HD
#define SRO_NR
#define SRO_EC
#define SRO_SE
#define SRO_IC_AT
#define SRO_IC_IC
#define SRO_IC_NR
#define SRO_IC_NT

OxOO
Ox01
Ox02
Ox03
Ox04
Ox08
Ox10
Ox20
Ox40
Ox80
OxcO
OxOO

/* at interrupt time, unit select drive 0 */
/* at interrupt time, unit select drive 1 */
/* at interrupt time, unit select = drive 2 */
/* at interrupt time, unit select drive 3 */

/* head address at interrupt time */
/* diskette drive not ready */

/* equipment check, could not reach track 0 */
/* seek command completed */

/* interrupt code = abnormal termination */
/* interrupt code = invalid command */
/* interrupt code = drive not ready */

/* interrupt code = normal termination */

/* define status register 1 bit values */

#define SRLMA
#define SRLNW
#define SRLND
#define SRLOR
#define SRLDE
#define SRLEN

Ox01
Ox02
Ox04
Ox10
Ox20
Ox80

/* missing address mark */
/* write protect signal detected */

/* couldn't find sector, or couldn't read ID */
/* did not receive data in time */

/* data field or ID field CRC error */
/* tried to access sector at end of cylinder */

/* define status register 2 bit values */

#define SR2_MD
#define SR2_BC
#define SR2_8N
#define SR2_SH
#define SR2_WC
#define SR2_DD
#define SR2_CM

Ox01
Ox02
Ox04
Ox08
Ox10
Ox20
Ox40

/* missing address mark in data field */
/* bad cylinder */

/* scan command could not find a sector */
/* scan equal hit */
/* wrong cylinder */

/* CRC error in data field */
/* deleted data address mark found */

/* define status register 3 bit values */

#define SR3_USO
#define SR3_US1
#define SR3_US2
#define SR3_US3
#define SR3_HD
#define SR3_TS
#define 8R3_TO
#define SR3_RDY
#define SR3_WP
#define SR3_FT

OxOO
OxOl
Ox02
Ox03
Ox04
Ox08
Oxl0
Ox20
Ox40
Ox80

/* unit select - drive 0 */
/* unit select - drive 1 */
/* unit select - drive 2 */
/* unit select - drive 3 */

/* head address */
/* drive signal - two side */
/* drive signal - track 0 */

/* drive signal - ready */
/* drive signal - write protect */

/* drive signal - FAULT */

Diskette Drive Controller . Programming Example 11- 29

/* define base values of fdc commands */

#define FDC_RD Ox06 /* read data */
#define FDC_RDD OxOc /* read deleted data */
#define FDC_WD OxOS /* write data */
#define FDC_WDD Ox09 /* write deleted data */
#define FDC_RT Ox02 /* read track */
#define FDC_ID OxOa /* read ID */
#define FDC_FT OxOd /* format track */
#define FDC_SE Ox 11 /* scan equal */
#define FDC_SLE Ox19 /* scan low or equal */
#define FDC_SHE Oxld /* scan high or equal */
#define FDC_RECAL Ox07 /* recalibrate drive */
#define FDC_SIS Ox08 /* sense interrupt status */
#define FDC_SPE Ox03 /* specify */
#define FDC_SDS Ox04 /* sense drive status */
#define FDC_SEEK OxOf /* seek */
#define FDC_MT Ox80 /* multi-track */
#define FDC_MFM Ox40 /* modified frequency modulation */
#define FDC_SK Ox20 /* skip deleted data address mark */

/***/
/* define some general constants */
/***/

#define RETRY_COUNT 4 /* maximum retries */

/***/
/* define some error codes */
/***/

#define ERR_FATAL Oxffff /* fatal error of unknown origin */
#define ERR_FAT_RD Oxfffe /* fdc was expecting write not read */
#define ERR_FAT_WR Oxfffd /* fdc was expecting read not write */
#define ERR_TO Oxfffc /* time out error */
#define ERR_DNR Oxfffb /* drive not ready */
#define ERR_RECAL OxOOOl /* recalibrate error */
#define ERR_SEEK OxOOO2 /* seek error */

11- 30 Diskette Drive Controller . Programming Example

/***/
/* declare structures used in diskette controller example */
/***/

typedef struct
{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

} FOC;

dccr;
reserved1;
fdc_stat;
fdc_data;
reserved2;
dtr;

/*

/* diskette controller control register */
/* I/O space not used by controller */

diskette controller main status register */
/* diskette controller data register */
/* I/O space not used by controller */

/* read <------- diskette change register */
/* write ---> data transfer rate register */

#define FOG_BASE (FOG *) Ox03F2 /* base address of FOG structure */

typedef struct
{

unsigned char mt; /* multi-track */
unsigned char mfm; /* mfm/fm */
unsigned char sk; /* skip */
unsigned char last_cmd; /* last command sent to fdc */
int busy; /* busy flag */
int retry; /* retry count */
unsigned char dccr; /* dccr contents */
unsigned char dtr; /* data transfer rate */
int hsd; /* head settle delay */
int msd; /* motor start up delay */
int mod; /* motor off delay */
unsigned char ds; /* drive select 0-3 */
unsigned char c; /* cylinder number */
unsigned char h; /* head side */
unsigned char r; /* sector number */
unsigned char n; /* bytes per sectors */
unsigned char eot; /* end of track */
unsigned char sgpl; /* sector gap length */
unsigned char fgpl; /* format gap length */
unsigned char sc; /* sector count */
unsigned char d; /* format fill byte */
unsigned char dtl; /* data length */
unsigned char stp; /* scan skip sector flag */
unsigned char srt; /* step rate time */
unsigned char hIt; /* head load time */
unsigned char hut; /* head unload time */
unsigned char nd; /* non-OMA mode */

} FOC_CMO;

Diskette Drive Controller· Programming Example 11- 31

typedef struct
{

unsigned char mt; 1* multi-track *1
unsigned char mfm; 1* mfm/fm *1
unsigned char sk; 1* skip *1
unsigned char dtr; 1* data transfer rate *1
int hsd; 1* head settle delay *1
int msd; 1* motor start up delay *1
unsigned char c; 1* cylinder number *1
unsigned char h; 1* head side *1
unsigned char r; 1* sector number *1
unsigned char nj 1* bytes per sectors *1
unsigned char eotj 1* end of track *1
unsigned char sgpl; 1* sector gap length *1
unsigned char fgpl: 1* format gap length *1
unsigned char sc: 1* sector count *1
unsigned char dtl: 1* data length *1
unsigned char srt: 1* step rate time *1
unsigned char hIt: 1* head load time *1
unsigned char hut: 1* head unload time *1

} FDD:

typedef struct
{

unsigned char stOj 1* status register o *1
unsigned char stl; 1* status register 1 *1
unsigned char st2: 1* status registex' 2 *1
unsigned char st3; 1* status register 3 *1
unsigned char c; 1* cylinder number *1
unsigned char h; 1* head side *1
unsigned char r; 1* sector number *1
unsigned char n; 1* bytes per sectors *1
unsigned char pcnj 1* present cylinder number *1
unsigned int error: 1* error code/status *1
unsigned char change; 1* diskette change register *1

} FDC_RESULTj

11- 32 Diskette Drive Controller - Programming Example

/***/
/* declare some external timers */
/***/

extern int head_settle;
extern int motor_flag;

/* head settle and motor startup timer */
/* automatic motor shut off timer */

/***/
/* declare space for fdc parameter data */
/***/

FDC_CMD fdc_cmd =
{

};

OxOO,
FDC_MFM,
OxOO,
OxOO,
FALSE,
OxOO,
OxOO,
DTR_600,
6,
128,
612,
OxOO,
OxOO,
OxOO,
OxOl,
Ox02,
Oxl0,
Oxlb,
Ox64 ,
OxOf,
Oxf6,
Oxff,
OxOO,
OxOd,
Ox32,
Ox08,
OxOO,

FDD fdd[2];

/* not multi-track to start */
/* always mfm */

/* not skipping */
/* no last command yet */

/* not busy yet */
/* current retries */

/* nothing enabled until fdc is reset */
/* data transfer rate is 600 Kbits */

/* 3.90626 ms * 6 = 19.5312 ms = head settle delay */
/* 3.90626 ms * 128 = 500 ms motor startup delay */
/* 3.90625 ms * 612 = 2 seconds motor off delay */

/* no drive selected */
/* cylinder 0 to start */
/* head zero to start */
/* sector 1 to start */

/* 612 bytes per sectors */
/* end of track at sector 16 */

/* sector gap length */
/* format gap length */

/* 16 sectors per track */
/* format fill byte */

/* data length */
/* not skipping sectors during scan */

/* 3 ms step rate (1 - 16 me in 1 ms increment) OxOf = 1 ms */
/* 60 ms head load time (OxOl = 2 ms, Ox02 = 4 ms ...) */

/* 128 me head unload time (OxOl = 16 ms, Ox02 = 32ms ...) */
/* select dma mode (OxOO ~ dma mode, OxOl = non-dma mode) */

FDC_RESULT fdc_result;
/* place to store diskette parameters */

/* place to store result and error codes */

Diskette Drive Controller· Programming Example 11- 33

/***/
/* motor_off() - turn diskette drive motors off */
/***/
motor_off 0
{

FDC *pfdc = FDC_BASE;
int intr_flag; /* to hold CPU IF state */

}

fdc_cmd.dccr t= (DRVA_MOTOR 1 DRVB_MOTOR);
outp(tpfdc->dccr. fdc_cmd.dccr);
intr_flag = int_off();
motor_flag = 0;
int_on(intr_flag);

/* both motors off */
1* turn them off *1

/* .no interrupts please */
1* clear motor timer *1

/* allow interrupts */

1***/
/* select() - select the desired drive and turn on motor */
/***/
selectO
{

FDC *pfdc = FDC_BASE;
int intr_flag; /* to hold CPU IF state */

}

if«fdc_cmd.dccr t DRV_SEL) != fdc_cmd.ds II
(fdc_cmd.dccr t (DRVA_MOTOR I DRVB_MOTOR»

/* if not current */
0)/* all motors off */

{

fdc_cmd.dccr t= DRV_SEL;
fdc_cmd.dccr 1= fdc_cmd.ds;
fdc_cmd.dccr t= (DRVA_MOTOR 1 DRVB_MOTOR);
if(!fdc_cmd.ds) fdc_cmd.dccr 1= DRVA_MOTOR;
else fdc_cmd.dccr 1= DRVB_MOTOR;

/* deselect drives */
1* select drive */

/* both motors off */
/* desired motor on */

}

outp(tpfdc->dccr. fdc_cmd.dccr);
intr_flag = int_off();
motor_flag = 0;
int_on(intr_flag);

if (!motor3lag)
{

/* write the register */
/* no interrupts please */

/* clear motor timer */
1* allow interrupts */

/* has motor stopped ? */

head_settle = fdc_cmd.msd;
while (head_settle)

/* head settle timer to time start up */
/* wait until motor is up to speed */

}

intr_flag = int_off();
motor_flag = fdc_cmd.mod;
int_on(intr_flag);

/* no interrupts please */
/* write the motor off delay time */

1* allow interrupts */

11- 34 Diskette Drive Controller . Programming Example

/ •••• * ••••••••••••••••••••••••••••••••• **.* •• * •••• ********.**.**.*******/
/. fdc_in() - read data from fdc data register */
/***/

fdc_inO
{

FOC *pfdc = FOC_BASE;
int i;

}

bead_settle = 2; /* clk cycle
i = inp(tpfdc->fdc_stat);

wbile(l(i t RQM»
{

if(lbead_settle)
{

fdc_result.error
return;

}

ERR_TO;

else i = inp(tpfdc->fdc_stat);
}

if (i t OIO_RO)
return(inp(tpfdc->fdc_data»;

else fdc_result.error = ERR_FAT_RO;

3.9 ms, must read in 2 cycles */
/* read fdc status register */

/* fdc ready ? */

/* time out error ? */

/* mark error */

/* read fdc status register */

/* data direction = cpu read ? */
/* return data read */
/* mark fatal error */

Diskette Drive Controller . Programming Example 11- 35

/***/
/* fdc_outO - write data to fdc data register */
/***/

fdc_out(value)

unsigned char value; /* value to write to fdc data register */

{

FOe *pfdc
int i;

}

head_settle = 2; /* clk cycle
i = inp(&pfdc->fdc_stat);

while(l(i & RQM»
{

}

if(lhead_settle)
{

}

fdc_result.error = ERR_TO;
return;

else i = inp(&pfdc->fdc_stat);

if«i & DIO_RD) == 0)
outp(&pfdc->fdc_data, value);

else fdc_result.error = ERR_FAT_WR;

3.9 ms, must read in 2 cycles */
/* read fdc status register */

/* fdc ready ? */

/* time out error ? */

/* mark error */

/* read fdc status register */

/* data direction = cpu write? */
/* write fdc data register */

/* mark fatal error */

/***/
/* waitcc() - wait for command to complete */
/***/

waitcc()
{

while (fdc_cmd.busy)
{

if (! motor 3lag)
{

fdc_result.error = ERR_TO;
return;

/* wait until command complete */

/* time out ? */

/* time out error */

}

chk_dtO;
/* do something useful while waiting, like check date */

/* and time for update. ROM BIOS does an INT 15H */
}

11 - 36 Diskette Drive Controller . Programming Example

}

if(fdc_result.error) return;
switch(fdc_cmd.last_cmd)
{

case FOC_RECAL:
case FOC_SEEK:

head_settle = fdc_cmd.hsd;
while (head_settle)

fdc_cmd.last_cmd = FOC_SIS;
fdc_out(FOC_SIS);
if(fdc_result.error) return;
fdc_result.stO = fdc_in();
if(fdc_result.error) return;
fdc_result.pcn = fdc_in();
if(fdc_result.error) return;
break;

/*

/* error ?
/* discover last command issued

/* recalibrate ?
/* seek ?

/* set head settle delay timer
wait for head settle to time out

/* set last command issued
/* sense interrupt status

/* error ?
/* read stO results

/* error ?
/* read present cylinder number

/* error ?

default:/* all other commands except FDC_SPE, FOC_SIS, and FDC_SDS
fdc_result.stO = fdc_in(); /* read stO results
if (fdc_result.error) return; /* error ?
fdc_result.stl = fdc_in(); /* read stl results
if(fdc_result.error) return; /* error ?
fdc_result.st2 = fdc_in(); /* read st2 results
if(fdc_result.error) return; /* error ?
fdc_result.c = fdc_in(); /* read cylinder results
if (fdc_result.error) return; /* error ?
fdc_result.h = fdc_in(); /* read head results
if(fdc_result.error) return; /* error ?
fdc_result.r = fdc_in(); /* read sector results
if(fdc_result.error) return; /* error ?
fdc_result.n = fdc_in(); /* read bytes/sector results
if (fdc_result. error) return; /* error ?
break;

}

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Diskette Drive Controller . Programming Example 11- 37

/***/
/* specify() - set the diskette drive characteristics */
/***/

specify 0
{

FOC *pfdc = FOC_BASEj
unsigned char UCj

outp(tpfdc->dtr. fdc_cmd.dtr)j
outp(tpfdc->dccr. fdc_cmd.dccr)j
fdc_cmd.last_cmd = FOC_SPEj
fdc_out(FOC_SPE)j
if(fdc_result.error) returnj
uc = fdc_cmd.srt « 4;

/* temporary variable */

/* set data transfer rate */
/* set control register */

/* last command is specify */
/* issue specify command */

/* error ? */
/* specify step rate */

/* specify head unload time */ uc 1= fdc_cmd.hutj
fdc_out(uc)j
if(fdc_result.error)

/* issue step rate and head unload time */

}

returnj
uc = fdc_cmd.hlt « 1j
uc 1= fdc_cmd.nd;
fdc_out(uc)j

/* error ?
/* specify head load time

/* specify dma mode
load time and dma mode /* issue head

11- 38 Diskette Drive Controller - Programming Example

*/
*/
*/
*/

/***/
/* fdc_issue() - issue all fdc commands except specify and sis */
/***/

fdc_issue(cmd, drv)

int cmd;
int drv;

{

FOC *pfdc = FOC_BASE;
char oline[20];

fdc_cmd.ds = drv;
select(drv);
fdc_out(FOC_SOS);
if(fdc_result.error) return;
fdc_out«fdc_cmd.h « 2) I fdc_cmd.ds);
if(fdc_result.error) return;
fdc_result.st3 = fdc_in();
if(fdc_result.error) return;

/* desired command */
/* desired drive 0 or 1 */

/* indicate the drive */
select appropriate drive */

/* sense drive status */
/* error ? */

/* second byte of SOS */
/* error ? */

/* read st3 results */
/* error ? */

sprintf(oline, "%04x %04x", pfdc, kpfdc->dtr);
disp_str(16, 1, oline);
fdc_result.change inp(kpfdc->dtr) k Ox80;
if(fdc_result.st3 k SR3_ROY)
{

/* read disk change reg */
/* drive ready ? */

fdc_cmd.last_cmd = cmd;
switch(cmd)

/* set last command issued */

{

case FOC_SOS:
return;
break;

case FOG_RECAL:
fdc_out(cmd);
if (fdc_result. error)
fdc_out(fdc_cmd.ds);
break;

case FOC_SEEK:
fdc_out(cmd);
if(fdc_result.error)

return;

return;
fdc_out«fdc_cmd.h « 2) I fdc_cmd.ds);
if(fdc_result.error) return;
fdc_out(fdc_cmd.c) ;
break;

/* recalibrate ? */
/* issue byte 1 */

/* error ? */
/* issue byte 2 */

/* seek ? */
/* issue byte 1 */

/* error ? */
/* issue byte 2 */

/* error ? */
/* issue byte 3 */

Diskette Drive Controller - Programming Example 11- 39

case FDC_ID:
fdc_out(fdc_cmd.mfm I cmd);
if (fdc_resul t. error) return;
fdc_out«fdc_cmd.b: « 2) I fdc_cmd.ds);
break;

case FDC]T:
fdc_out{fdc_cmd.mfm I cmd);
if(fdc_result.error) return;
fdc_out«fdc_cmd.h « 2) I fdc_cmd.ds);
if (fdc_resul t . error) return;
fdc_out(fdc_cmd.n);
if(fdc_result.error) return;
fdc_out(fdc_cmd.sc);
if(fdc_result.error) return;
fdc_out(fdc_cmd.fgpl);
if(fdc_result.error) return;
fdc_out(fdc_cmd.d);
if(fdc_result.error) return;
break;

/* read II)" ? */
/* issue byte 1 */

/* error ? */
/* issue byte 2 */

/* format track ? */
/* issue byte 1 */

/* error ? */
/* issue byte 2 */

/* error ? */
/* issue byte 3 */

/* error ? */
/* issue byte 4 */

/* error ? */
/* issue byte 6 */

/* error ? */
/* issue byte 6 */

/* error ? */

case FDC_RD: /* read data? */
case FDC_RDD: /* read deleted data? */
case FDC_WD: /* write data ? */
case FDC_WDD: /* write deleted data */

fdc_out(fdc_cmd.mt I fdc_cmd.mfm I fdc_cmd.sk I cmd);/* byte 1 */
if(fdc_result.error) return; /* error? */
fdc_out«fdc_cmd.h« 2) I fdc_cmd.ds); /* issue byte 2 */
if(fdc_l"esult.error) return; /* error? */
fdc_out(fdc_cmd.c); /* issue byte 3 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.h); /* issue byte 4 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.r); /* issue byte 6 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.n); /* issue byte 6 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.eot); /* issue byte 7 */
if(fdc_result.error) return; /* error? *1
fdc_out(fdc_cmd.sgpl); /* issue byte 8 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.dtl); /* issue byte 9 */
break;

11 - 40 Diskette Drive Controller -Programming Example

}
}

case FOe_RT:
fdc_out(fdc_cmd.mfm I fdc_cmd.sk I cmd);
if(fdc_result.error) return;
fdc_out«fdc_cmd.h « 2) I fdc_cmd.ds);
if(fdc_result.error) return;
fdc_out(fdc_cmd.c);
if(fdc_result.error) return;
fdc_out(fdc_cmd.h);
if(fdc_result.error) return;
fdc_out(fdc_cmd.r);
if(fdc_result.error) return;
fdc_out(fdc_cmd.n);
if(fdc_result.error) return;
fdc_out(fdc_cmd.eot);
if(fdc_result.error) return;
fdc_out(fdc_cmd.sgpl);
if(fdc_result.error) return;
fdc_out(fdc_cmd.dtl);
break;

/* read a track 1 */
/* issue byte 1 */

/* error 1 */
/* issue byte 2 */

/* error 1 */
/* issue byte 3 */

/* error 1 */
/* issue byte 4 */

/* error 1 */
/* issue byte 5 */

/* error 1 */
/* issue byte 6 */

/* error 1 */
/* issue byte 7 */

/* error 1 */
/* issue byte 8 */

/* error 1 */
/* issue byte 9 */

case FOe_SE: /* scan equal 1 */
case FOe_SHE: /* scan high or equal? */
case FOe_SLE: /* scan low or equal 1 */

fdc_out(fdc_cmd.mt I fdc_cmd.mfm I fdc_cmd.sk I cmd);/* byte 1 */
if(fdc_result.error) return; /* error 1 */
fdc_out«fdc_cmd.h « 2) I fdc_cmd.ds); /* issue byte 2 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.c); /* issue byte 3 */
if(fdc_result.error) return; /* error 1 */
fdc_out(fdc_cmd.h); /* issue byte 4 */
if(fdc_result.error) return; /* error 1 */
fdc_out(fdc_cmd.r); /* issue byte 5 */
if(fdc_result.error) return; /* error 1 */
fdc_out(fdc_cmd.n); /* issue byte 6 */
if(fdc_result.error) return; /* error 1 */
fdc_out(fdc_cmd.eot); /* issue byte 7 */
if(fdc_result.error) return; /* error? */
fdc_out(fdc_cmd.sgpl); /* issue byte 8 */
if(fdc_result.error) return; /* error 1 */
fdc_out(fdc_cmd.stp); /* issue byte 9 */
break;

Diskette Drive Controller - Programming Example 11- 41

}

else
{

}

fdc_result.error
return;

if(fdc_result.error) return;
fdc_cmd.buay = TRUE;
waitccO;
disp_status(&fdc_result, &fdc_cmd);

/* drive not ready error */

/* error ? */

/* wait for command complete */
/* display result status */

/***/
/* fdc_init() - initialize diskette controller */
/***/

fdc3'nitO
{

FDC *pfdc = FDC_BASE;
int intr_flag;

/* reset the fdc */
/* fdc not reset */

intr_flag = int_off();
outp(&pfdc->dccr, DMA_INT_ON);
fdc_cmd.dccr = DMA_INT_ON I FDC_ON;
outp(&pfdc->dccr, fdc_cmd.dccr);
iv_init(OxOe);

/* allow communications
/* initialize the interrupt vector

*/
*/

int_on(intr_flag);
imask(O, 6, 1); /* enable PIC input */

}

/***/
/* fdc_rest() - restore diskette controller and interrupt vector */
/***/

fdc_restO
{

FDC *pfdc = FDC_BASE;

}

outp(&pfdc->dccr, 0);
imask(O, 6, 0);
fdc_cmd.dccr = DMA_INT_ON I FDC_ON;
outp(&pfdc->dccr, fdc_cmd.dccr);
iv_rest(OxOe);

/* reset the fdc */
/* disable PIC input */

/* fdc not reset */
/* allow communications */

/* restore the interrupt vector */

11- 42 Diskette Drive Controller . Programming Example

/***/
/* fdc_int_hand() - fdc interrupt handler */
/***/

fdc_int_hand 0
{

}

fdc_cmd.busy
eoi(O);

FALSE; /* no longer busy */

/***/
/* fdc() - execute diskette controller examples */
/***/

fdcO
{

static MESSAGE mfdc [] /* fdc menu */
{

{ 3, 27, "Oiskette Controller Example" },
{ 5, 27, "Fl. Turn drive A motor on" }.
{ 6, 27, "F2. Turn drive A motor off" },
{ 7, 27, "F3. Recalibrate" },
{ 8, 27, "F4. Seek track 40" },
{ 9, 27, "F5. Format diskette" },
{ 10, 27, "F6. Read 10" },
{ 12, 27, "FlO. Return to Main menu" },
{ 0, 0, o },

};

unsigned char tmp;
unsigned char sum;
char line[512];
char oline[512];
int i;
int r;
FOC *pfdc = FOC_BASE;
char *pc;
char far *fpc = oline;
long 1 = (long)fpc;
long 11;
long 12;
int pr;
int pa;

#define ROW 16
#define COL 17

/* to hold CMOS byte read */
/* to hold calculated checksum */

/* to hold input line */
/* to hold output line */

/* to hold menu selection */
/* temp value */

Diskette Drive Controller· Programming Example 11- 43

diBp_menu(mfdc):
11 - 1 i OxOOOOffff;
12 - 1 » 16;

/* diBplay the fdc menu */
/* build addre.a of buffer for DMA controller */

12 «- 4;
1 - 12 + 11;
11 = 1 » 16:
pr - (tnt)11;
11 - 1 i OxOOOOffff;
pa - (tnt) 11;
BpecifyO;
line[O] - 0:
while (1)
{

/* pointer to buffer */

/* page regiBter value */

/* null terminated */
/* forever (Bee FlO) */

diBp_BtatuB(ifdc_reBult,
line[O] - set_fkey();
Bwitch(line[O])

ifdc_cmd); /* diBplay reBult BtatuB */

{

/* get • function key for menu Belection */
/* determine menu Belection */

caBe Fl:
fdc_cmd.dB - 0;

BelectO;
break;

caBe F2:
motor_off 0 ;
break;

caBe F3:
aelect(O);
fdc_iBsue(FDC_RECAL, 0);
fdc_iBBue(FDC_RECAL. 0);
fdc_i.Bue(FDC_ID. 0);
break:

caBe F4:
Be1ect(O);
fdc_cmd.c = 40;
fdc_iBBue(FDC_SEEK. 0);
fdc_iBBue(FDC_ID. 0);
break;

/* turn drive motor on */

/* turn drive motor off */

/* recalibrate drive */

/* Beek to track 40 */

11- 44 Diskette Drive Controller . Programming Example

case F5: /* hard format a diskette - interleave - 1 */
select(O);
fdc_issue(FDC_RECAL, 0);
fdc_issue(FDC_RECAL, 0);
fdc_issue(FDC_ID, 0);
for{i = 0; i < 80; i++)
{

fdc_cmd.c = i;
fdc_issue(FDC_SEEK, 0);
fdc_cmd.h = 0;
pc = oline;
for(r = 1; r < 16; r++)
{

}

*pc++ ... (char)!;
*pc++ '\000' ;
*pc++ {char)r;
*pc++ '\002' ;

r = (int)(l » 16);
dma_transfer(2, pr, pa, 60, 8);
fdc_issue(FDC_FT, 0);
fdc_cmd.h = 1;
pc = oline;
for(r = 1; r < 16; r++)
{

*pc++ (char)! ;
*pc++ = '\001' ;
*pc++ (char)r;
*pc++ '\002' ;

}

r = (int)(1 » 16);
dma_transfer{2, pr, pa, 60, 8);
fdc_issue{FDC_FT, 0);

}

break;

/* side 0 */

/* build sector table */

/* setup DMA */
/* format track */

/* side 1 */

/* build sector table */

/* setup DMA */
/* format track */

Diskette Drive Controller - Programming Example 11- 45

}
}

}

case F6:
select(O);
fdc_issue(FDC_RECAL. 0);
fdc_issue(FDC_RECAL. 0);
fdc_issue(FDC_ID. 0);
for(i = 0; i < 80; i++)
{

}

fdc_cmd.c = i;
fdc_issue(FDC_SEEK. 0);
fdc_cmd.h = 0;
fdc_issue(FDC_ID. 0);
fdc_cmd.h = 1;
fdc_issue(FDC_ID. 0);

break;

case FlO:
return;

/* read any sector ID */

/* return to caller (main menu) */

11- 46 Diskette Drive Controller . Programming Example

disp_status(pres, pcmd) /* display status */

FOC_RESULT *pres;
FOC_CMO *pcmd;

{

char oline[60];

}

sprintf(oline, "Error status Ox%04x", pres->error);
disp_str(19, 1, oline);
sprintf(oline, "Status reg 0
disp_str(20, 1, oline);
sprintf(oline, "Status reg 1
disp_str(21 , 1, oline);
sprintf(oline, "Status reg 2
disp_str(22 , 1, oline);
sprintf(oline, "Status reg 3
disp_str(23, 1, oline);
sprintf(oline, "Present Cyl Num:
disp_str(24 , 1, oline);

Ox%02x" ,

OxYo02x",

OxYo02x",

Ox%02x",

Ox%02x",

pres->stO);

pres->stl);

pres->st2);

pres->st3);

pres->pcn);

sprintf(oline, "Change reg: Ox%02x", pres->change);
disp_str(19, 41, oline);
sprintf(oline, "Cylinder (C): Ox%02x", pres->c);
disp_str(20, 41, oline);
sprintf(oline, "Head (H): Ox%02x", pres->h);
disp_str(21 , 41, oline);
sprintf(oline, "Sector (R): Ox%02x", pres->r);
disp_str(22, 41, oline);
sprintf(oline, "Sectors per track (N): Ox%02x", pres->n);
disp_str(23 , 41, oline);
sprintf(oline, "Last command: Ox%04x", pcmd->last_cmd);
disp_str(24 , 41, oline);

Diskette Drive Controller . Programming Example 11- 47

Chapter 12
Hard Disk Drive Controller

Introduction
The hard disk controller provides an interface between a hard disk drive and
the workstation microprocessor. The hard disk controller supports the following
features:

• A 16-bit data path and an 8-bit input/output (1I0) path
• ECC correction
• Programmed 110 data transfers
• Field formatting with unlimited sector interleave
• Drives with a maximum of 16 heads and 1024 cylinders

Hard Disk Controller Registers
The hard disk controller has 13 registers that control hard disk operations and
provide status information. These registers are mapped to a set of primary or
secondary 110 addresses. Table 12-1 lists the registers and the corresponding
primary and secondary 110 addresses.

Hard Disk Drive Controller - Hardware Description 12 - 1

Table 12-1 Hard Disk Controller Registers

Primary Secondary RfW Register
Address Address

OlFOH O170H R/W Data register (16 bits)
OlFIH Ol71H W Write Precompensation Cylinder
OlFIH Ol71H R Error Register
OlF2H O172H R/W Sector Count
OlF3H O173H R/W Sector Number
OlF4H O174H R/W Cylinder Number - Low Byte
01F5H 0175H R/W Cylinder Number - High Byte
01F6H O176H R/W SDH (sector size, drive, and head)
OlF7H Ol77H W Command Register
OlF7H O177H R Status Register
03F6H 0376H W Hard Disk Register
03F6H 0376H R Alternate Status Register
03F7H 0377H R Digital Input Register

12 - 2 Hard Disk Drive Controller - Hardware Description

Data Register (OlFOH/0170H)
15 14 13 12 11 10 9 8

: : I
7 6 5 4 3 2 1 o

Bit R/W Description

15-0 RlW DATA

The data register provides a I6-bit data path to the sector buffer. This register
is accessible only during execution of a read or write command.

Except for the four ECC bytes of a read long or write long command, all data
transfers are 16-bit transfers.

After transferring the data of a read long or write long command. the four
ECC bytes are transferred one byte at a time. The ECC bytes are transferred
through the high byte. The hard disk controller requires a minimum of 2 p,s
between ECC byte transfers. To transfer an ECC byte, the data request {DRQl
status bit {status register bit 31 must be set. The status register is defined later
in this chapter.

Hard Disk Drive Controller - Hardware Description 12 - 3

Write Precompensation Register (OlFIH/0171H)
765 432 1 0

Bit RIW Description

7-0 W This register specifies the cylinder at which the hard disk control­
ler begins applying write precompensation. The value written to
this register is the desired cylinder number divided by 4.

12 - 4 Hard Disk Drive Controller - Hardware Description

Error Register (OlFIH/0171H)
7 6 5 4 3 2 1 o

BAD ECC ID ABORTED TRACK 0 DAM
BLOCK ERROR NOT COHHAND ERROR NOT
DETEct FOUND DETECT FOUND

0 0

Bit RIW Description

7 R BAD BLOCK DETECT
0= No error
1 = The controller read a sector 10 field that contained a bad

block mark

6 R ECC ERROR
0= No error
1 = An ECC syndrome error was detected

5 R Always 0

4 R 10 NOT FOUND
0= No Error
1 = The hard disk controller failed to find the desired cylinder,

head, sector. or size parameter within eight revolutions of the
disk, or an 10 field CRC error has occurred.

3 R Always 0

2 R ABORTED COMMAND DETECT
0= No error
1 = The hard disk controller aborted a command

If a command is issued while the status signal, DRIVE READY L,
is inactive or the status signal, WRITE FAULT L is active, the
hard disk controller sets this bit.

1 R TRACK 0 ERROR
0= No error
1 = The hard disk controller executed a restore command, issued

2047 step pulses, and did not detect track O.

0 R DAM NOT FOUND - Data Address Mark Not Found
0= No error
1 = The hard disk controller read the correct sector 10 field, but

it did not contain a data address mark.

Hard Disk Drive Controller - Hardware Description 12 - 5

For the following conditions, the error register contains valid data:

• After a command completion interrupt, if the status register error bit
fbit 0) equals 1, this register indicates the specific error condition.

• On power-up or receiving a diagnose command, the hard disk controller
executes a set of diagnostic tests. On completion of those tests, the hard
disk controller places a result code in this register. The result code is
one of the codes listed in Table 12-2. For this condition, the status regis­
ter error bit fbit 0) is ignored.

Table 12-2 Hard Disk Controller Diagnostic Result Codes

Value Meaning

01H No error

02H WD1015/WD2010 controller error

03H Sector Buffer RAM data error

04H WD1015/WDllCOOA-22 Register access error

05H WD1015 ROM checksum or RAM data error

12 - 6 Hard Disk Drive Controller - Hardware Description

Sector Count Register (OlF2H/0172H)
7 6 5 4 3 2 1 o

Bit R/W Description

7-0 R/W The sector count for an operation

A value of OOH indicates a 256 sector transfer.

For a read, write, or read verify command, this register specifies the number of
sectors transferred. For the format command, this register specifies the
number of sectors to format. During a multiple sector operation. after each
sector is transferred or formatted, the hard disk controller decrements the
sector count.

Sector Number Register (OlF3H/0173H)
7 6 5 4 3 2 1 o

Bit R/W Description

7 -0 R/W The first sector for an operation

For a read, write, read verify, or format command, this register specifies the
first sector of an operation. During multiple sector operations, after each sector
is transferred or formatted, the hard disk controller increments the sector
number.

Hard Disk Drive Controller - Hardware Description 12 - 7

Cylinder Number Low Register (OlF4H/0174H)
7 6 5 4 3 2 1

Bit R/W Description

7-0 R/W Lower 8 bits of the lO-bit cylinder number

This register specifies the 8 least significant bits of the 10-bit cylinder
number. The cylinder number high register specifies the 2 most significant
bits.

Cylinder Number High Register (OlF5H/0175H)

o

7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I o I CYLIND~ NUMBER I
(HIGB,BYTE)

Bit RIW Description

7-2 R/W Always 0

1-0 R/W Upper 2 bits of the 10-bit cylinder number

This register specifies the 2 most significant bits of the to-bit cylinder
number. The cylinder number low register specifies the 8 least significant
bits.

12 - 8 Hard Disk Drive Controller - Hardware Description

SDH Register (OlF6H/0176H)

Bit

7

6

5

4

3-0

7 654 3 2 1 o

RIW

RJW

RJW
RlW

RlW

RJW

I~A SIZE I~ I : nAD~: I o

Description

ECC SELECT
0= CRC used to check the data field of a sector
1 = ECC used to check the data field of a sector (ROM BIOS

requires ECC)

Always 0

DATA SIZE
0= 256 byte records (read operations only)
1 = 512 byte records

DRIVE SELECT
0= Hard disk drive 0 selected
1 = Hard disk drive 1 selected

HEAD SELECT

The binary value in bits 3-0 selects the corresponding head. To use
bit 3 of this field, the ENABLE-HEAD-SELECT-BIT-3 (bit 3 of
the hard disk register) must equal 1. Otherwise, bit 3 is ineffective
and bits 2-0 have a range of 0-7.

Hard Disk Drive Controller - Hardware Description 12 - 9

Command Register (OlF7H/0177H)
7 6 5 4 3 2 1 o

Bit R/W Description

7-0 W Hard disk controller command codes

When command codes are written to this register, the hard disk controller exe­
cutes the command immediately. If the hard disk controller is busy fstatus reg­
ister bit 7 equals I}, command codes cannot be written to the command
register. When the hard disk controller detects a command error condition, the
hard disk controller aborts the command and sets the ABORTED COMMAND
DETECT bit ferror register bit 2}. Some of the common command error condi­
tions are:

• WRITE FAULT is active
• DRIVE READY is inactive
• SEEK COMPLETE is inactive
• Command code was invalid

The hard disk controller has the following commands:

• Restore
• Seek
• Read Sector
• Write Sector
• Format Track
• Read Verify
• Diagnose
• Set Parameter

12 - 10 Hard Disk Drive Controller - Hardware Description

Restore Command

7 6 5 4 3 2 1 o

: I
Bit Description

7-4

3-0

RESTORE COMMAND (Always 0001)

STEP RATE
0000 = 35.0 J,1S
0001 = 0.5 ms
0010 = 1.0 ms
0011 = 1.5 ms
0100 = 2.0 ms
0101 = 2.5 ms
0110 = 3.0 ms
0111 = 3.5 ms

1000 =
1001 =
1010 =
1011 =
1100 =
1101 =
1110 =
1111=

4.0 ms
4.5 ms
5.0 ms
5.5 ms
6.0 ms
6.5 ms
3.2 J,1S

16.0 J,1S

Until a terminating condition occurs, the hard disk controller issues step pulses
to the selected drive. The terminating conditions are:

• The TRACK 0 signal from the drive becomes active, which indicates a
successful completion of the command. In this case, the hard disk con­
troller sets SEEK COMPLETE (status register bit 4) to 1.

• The hard disk controller issues 2047 step pulses, which causes a
TRACK 0 ERROR (error register bit 3).

• The DRIVE READY signal becomes inactive, which causes an
ABORTED COMMAND DETECT (error register bit 2).

• The WRITE FAULT signal becomes active, which causes an ABORTED
COMMAND DETECT (error register bit 2).

While a restore command is in progress, the SEEK COMPLETE signal from
the drive controls the step rate. Bits 3-0 set the implied seek step rate. On
termination of this command, the hard disk controller generates an interrupt to
the CPU.

Hard Disk Drive Controller - Hardware Description 12 - 11

Seek Command

7 6 5 4 3

Bit Description

7-4

3-0

SEEK COMMAND (Always 0111)

STEP RATE
0000 = 35.0 p.s
0001 = 0.5 ms
0010 = 1.0 ms
0011 = 1.5 ms
0100 = 2.0 ms
0101 = 2.5 ms
0110 = 3.0 ms
0111 = 3.5 ms

2

1000 = 4.0 ms
1001 = 4.5 ms
1010 = 5.0 ms
1011 = 5.5 ms
1100 = 6.0 ms
1101 = 6.5 ms
1110 = 3.2 p.s
1111 = 16.0 p.s

1 o

: I

Until a terminating condition occurs, the hard disk controller issues step pulses
to the selected drive. The terminating conditions are:

• The SEEK COMPLETE signal from the drive becomes active, which in­
dicates a successful completion of the command. In this case, the hard
disk controller sets SEEK COMPLETE (status register bit 4) to 1.

• The DRIVE READY signal becomes inactive, which causes an
ABORTED COMMAND DETECT (error register bit 2).

• The WRITE FAULT signal becomes active, which causes an ABORTED
COMMAND DETECT (error register bit 2).

The seek command moves the read/write heads to the cylinder specified by the
10-bit value in the registers cylinder low and cylinder high. Bits 3-0 set the
implied seek step rate and control the step rate of the seek command. After
the hard disk controller starts the seek, the hard disk controller generates an
interrupt to the CPU. This interrupt indicates that the hard disk controller is
ready to accept another command. It does not indicate that the seek is com­
plete. To determine when the seek is complete, the application program or
driver must monitor status register bit 4. When status register bit 4 equals 1,
the seek is complete.

12 - 12 Hard Disk Drive Controller - Hardware Description

Read Sector Command

7 6 5 4 3 2 1 o
I I I I I

READ SECTOR COKKAND READ RETRIES
LONG DISABLE

0 0 1 0 0 0
I I I I I

Bit Description

7-2 READ SECTOR COMMAND (Always OOlOOO)

1 READ LONG
o = After transferring a sector of data. the hard disk controller

calculates and checks the data field ECC. If a correctable
error occurs, the hard disk controller sets CORRECTED
DATA (status register bit 2). If an uncorrectable error occurs,
the hard disk controller sets ECC ERROR (error register bit
6) and ERROR (status register bit OJ. If an uncorrectable
error occurs during a multiple sector read, the multiple sector
read is terminated.

1 = The hard disk controller does not calculate the data field
ECC. After transferring a sector of data, the hard disk con­
troller transfers the four data field ECC bytes. The four ECC
bytes are transferred one at a time in the high byte of the
word. Until DRQ (status register bit 3) equals 1. an ECC byte
is not ready for transfer. The hard disk controller requires at
least 2 ps between ECC byte transfers.

o RETRIES DISABLE
o = Retries enabled
1 = Retries disabled

To read a sector from the hard disk. the hard disk controller must
first find the sector. To find the correct sector, the hard disk con­
troller selects the indicated head. performs any implied seek, and
waits for the index pulse. On receipt of the index pulse. the hard
disk controller begins scanning the track for a valid sector ID field.
A valid sector ID field contains the cylinder, head, sector number,
and size information that the hard disk controller is searching for.
The hard disk controller counts each index pulse as an attempt to
read a valid sector ID.

Hard Disk Drive Controller - Hardware Description 12 - 13

Bit Description (Read Sector Command - cont.)

If retries are enabled and the hard disk controller fails to read a
valid ID field within ten attempts, the hard disk controller performs
an auto-seek and an auto-scan. If the hard disk controller fails to
read a valid ID field within an additional ten attempts, the hard
disk controller sets ID Not Found (error register bit 4) and ERROR
(status register bit 0).

If retries are disabled and the hard disk controller fails to read a
valid ID field within two attempts, the hard disk controller sets
ID Not Found (error register bit 4) and ERROR (status register
bit 0). Also. the hard disk controller does not perform an auto-seek
or an auto-scan.

The read sector command transfers the specified number of sectors from the
selected drive. If the heads are not positioned at the specified cylinder, the con­
troller performs an implied seek to the proper cylinder. The step rate used is
that of the most recently executed restore or seek command. Multiple sector
reads can cross head and cylinder boundaries. If the DRIVE READY signal
becomes inactive, or the WRITE FAULT signal becomes active, the hard disk
controller terminates the command and sets ABORTED COMMAND DETECT
(error register bit 2) and ERROR (status register bit 0).

When each sector is stored in the sector buffer and ready to be read by the
CPU, the hard disk controller generates an interrupt request to the CPU. The
hard disk controller does not generate an interrupt request to indicate com­
mand completion.

12 - 14 Hard Disk Drive Controller - Hardware Description

Write Sector Command

7 6 5 4 3 2 1 o
I I I I I

VRITE SEcrOR COMMAND ¥RITE RETRIES
LONG DISABLE

0 0 1 1 0 0
I I I I I

Bit Description

7-2 WRITE SECTOR COMMAND (Always 001100)

1 WRITE LONG
o = The hard disk controller calculates the data field ECC and ap­

pends the ECC to the data field.

1 = The hard disk controller does not calculate the data field
ECC. After accepting a sector of data, the hard disk control­
ler accepts the four data field ECC bytes. The four ECC bytes
are transferred one at a time in the high byte of the word size
data register. Until DRQ (status register bit 3) equals 1, an
ECC byte is not ready for transfer. The hard disk controller
requires at least 2 ps between ECC byte transfers.

o RETRIES DISABLE
o = Retries enabled
1 = Retries disabled

To write a sector from the hard disk, the hard disk controller must
first find the sector. To find the correct sector, the hard disk con­
troller selects the indicated head, performs any implied seek, and
waits for the index pulse. On receipt of the index pulse, the hard
disk controller begins scanning the track for a valid sector 10 field.
A valid sector 10 field contains the cylinder, head, sector number,
and size information that the hard disk controller is searching for.
The hard disk controller counts each index pulse as an attempt to
read a valid sector 10.

U retries are enabled and the hard disk controller fails to read a
valid 10 field within ten attempts, the hard disk controller performs
an auto-seek and an auto-scan. If the hard disk controller fails to
read a valid 10 field within an additional ten attempts, the hard
disk controller sets 10 Not Found (error register bit 4) and ERROR
(status register bit 0).

Hard Disk Drive Controller - Hardware Description 12 - 16

Bit Description (Write Sector Command - cont.)

If retries are disabled and the hard disk controller fails to read a
valid ID field within two attempts. the hard disk controller sets
ID Not Found (error register bit 4) and ERROR (status register bit
0). Also. the hard disk controller does not perform an auto-seek or
an auto-scan.

The write sector command transfers the specified number of sectors to the se­
lected drive. If the heads are not positioned at the specified cylinder. the con­
troller performs an implied seek to the proper cylinder. The step rate used is
that of the most recently executed restore or seek command. Multiple sector
writes can cross head and cylinder boundaries. If the DRIVE READY signal
becomes inactive. or the WRITE FAULT signal becomes active. the hard disk
controller terminates the command and sets ABORTED COMMAND DETECT
(error register bit 2) and ERROR (status register bit 0).

After the write sector command has been issued. immediately write the first
sector of data to the data buffer (monitor DRQ. status register bit 3). When
each sector is written to the hard disk. the hard disk controller generates an
interrupt request to the CPU. The hard disk controller does not generate an
interrupt request to indicate command completion.

12 - 16 Hard Disk Drive Controller - Hardware Description

Format Track Command

7 6 5 4 3 2 1 o

Bit Description

7-0 FORMAT TRACK COMMAND (Always 01010000)

Using data from the internal registers and the sector buffer, the format track
command formats a single track at the specified cylinder and head location.

Before formatting a hard disk, the SDH register must be loaded and a restore
command must be issued. Assuming that a series of sequential format track
commands are issued to format the hard disk, only one restore command is
required. Prior to each format track command, the sector count register must
be loaded with the number of sectors per track and the cylinder registers must
be loaded with the cylinder number.

Instead of providing normal read/write data, the sector buffer provides sector
header information. Also, the organization of this sector header information
specifies the sector interleave. Table 12-3 lists the data (in memory order) that
is required for an interleave factor of 2. The data transfer using this table is
256 words long. A bad block is specified by replacing the OOH (normal block
mark) with an SOH (bad block mark). The sector interleave table is loaded into
the sector buffer in the same manner as a sector write. That is, the format
track command is issued and the sector buffer is loaded immediately (monitor
DRQ, status register bit 3).

When a track has been formatted, the hard disk controller clears the sector
buffer to zeros and issues a command completion interrupt. Following the next
format track command, the sector buffer must be reloaded.

The hard disk controller does not produce any error reports for this command.

Hard Disk Drive Controller - Hardware Description 12 - 17

Table 12·3 Memory Image of a Sector Interleave Table

Offset

OOH
02H
04H
06H
08H
OAH
OCH
OEH
10H
12H
I4H
I6H
I8H
IAH
ICH
IEH
20H
22H

FFH

2·Byte Sequence
Sector Sector

Number
(High Bytel

OIH
OAH
02H
OBH
03H
OCH
04H
ODH
05H
OEH
06H
OFH
07H
IOH
08H
llH
09H
FFH
FFH
FFH
FFH
FFH

Status (OOH = Good, SOH = Badl
(Low Bytel

OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH
FFH
FFH
FFH
FFH
FFH

12 - 18 Hard Disk Drive Controller . Hardware Description

Read Verify Command

7 6 5 4 3 2 1 o

I 0 : 1 : 7 ~~ ~~ : 0 : 0 I=~I
Bit Description

7-1 READ VERIFY COMMAND IAlways 01000001

o RETRIES DISABLE
o = Retries enabled
1 = Retries disabled

To read a sector from the hard disk, the hard disk controller must
first find the sector. To find the correct sector, the hard disk con­
troller selects the indicated head, performs any implied seek, and
waits for the index pulse. On receipt of the index pulse, the hard
disk controller begins scanning the track for a valid sector ID field.
A valid sector ID field contains the cylinder, head, sector number,
and size information that the hard disk controller is searching for.
The hard disk controller counts each index pulse as an attempt to
read a valid sector ID.

If retries are enabled and the hard disk controller fails to read a
valid ID field within ten attempts, the hard disk controller performs
an auto-seek and an auto-scan. If the hard disk controller fails to
read a valid ID field within an additional ten attempts, the hard
disk controller sets ID Not Found lerror register bit 41 and ERROR
Istatus register bit 01.

If retries are disabled and the hard disk controller fails to read a
valid ID field within two attempts, the hard disk controller sets
ID Not Found lerror register bit 41 and ERROR Istatus register
bit 01. Also, the hard disk controller does not perform an auto-seek
or an auto-scan.

The read verify command scans the data in the specified number of sectors of
the selected drive. As the hard disk controller scans the data of each sector. it
calculates the ECC bytes and verifies that the ECC bytes calculated from the
data and ECC bytes read from the disk agree. If the heads are not positioned
at the specified cylinder, the controller performs an implied seek to the proper
cylinder. The step rate used is that of the most recently executed restore or
seek command. Multiple sector reads may cross head and cylinder boundaries.
If the DRIVE READY signal becomes inactive, or the WRITE FAULT signal
becomes active, the hard disk controller terminates the command and sets

Hard Disk Drive Controller - Hardware Description 12 - 19

ABORTED COMMAND DETECT (error register bit 2) and ERROR (status
register bit 0).

To indicate command completion or an error condition, the hard disk controller
generates an interrupt request to the CPU.

12 - 20 Hard Disk Drive Controller . Hardware Description

Diagnose Command

7 6 5 4 3 2 1 o

I 1 : 0 : 0 ~~~: ~ 0 : 0 : 0 I
Bit Description

7-0 DIAGNOSE COMMAND tAlways 100100001

On receipt of this command. the hard disk controller executes a set of diag­
nostic tests. If a problem exists, the hard disk controller reports the results in
the error register tsee Table 12-41. The internal ROM, internal RAM, ECC cir­
cuitry, and data path circuitry are tested. When the diagnostic tests complete,
the hard disk controller loads the appropriate code into the error register. To
indicate command completion, the hard disk controller generates an interrupt
request to the CPU.

For the diagnose command, the code in the error register is interpreted dif­
ferently than normal error register encoding. Table 12-4 lists the diagnose com­
mand result codes.

Table 12-4 Hard Disk Controller Diagnostic Result Codes

Value

01H

02H

03H

04H

05H

Meaning

No error

WDIOI5/WD2010 controller error

Sector Buffer RAM data error

WDI015/WDllCOOA-22 Register access error

WDI015 ROM checksum or RAM data error

Hard Disk Drive Controller - Hardware Description 12 - 21

Set Parameters Command

7 6 5 4 3 2 1 o

Bit Description

7-0 SET PARAMETERS COMMAND (Always 10010001)

This command sets the drive parameters for the maximum number of heads
and sectors per track. Prior to issuing this command, the drive selection must
be specified in the Sector Size/Drive Select/Head Select task register, and the
Sector Count Register must be set. This command must be issued before any
multiple sector operations are performed. To indicate command completion, the
hard disk controller generates an interrupt request to the CPU.

12 - 22 Hard Disk Drive Controller - Hardware Description

Status Register (OlF7H/0177H)
7 6 5 4 3 2 1 o

BUSY DRIVE ¥RITE SEEK DRO CD INDEX ERROR
READY FAULT STATUS

Bit RIW Description

7 R

6 R

5 R

4 R

3 R

2 R

BUSY
o = Hard disk controller is ready to accept commands. The

status and error registers contain valid data.
1 = Hard disk controller is busy. The error register contains

invalid data. Only this status register bit is valid.

This bit must be polled before reading any register.

DRIVE READY
o = Drive is not ready. Read, write, and seek commands are

inhibited.
1 = Drive is ready. If bit 4 equals 1, read, write, and seek

commands are possible.

WRITE FAULT
o = No error
1 = Improper operation of the drive. All commands will be

terminated with an aborted command error.

SEEK STATUS - Seek Complete
o = Seek operation, direct or implied, is incomplete.
1 = Seek operation is complete (read/write heads are in position).

DRQ - Data Request
o = Do not read or write the sector buffer
1 = Read or write the sector buffer as indicated by the last

command issued.

CD - Corrected Data
o = No error
1 = The sector read from the drive resulted in a correctable ECC

error. Correctable errors do not cause multiple sector
transfers to terminate.

Hard Disk Drive Controller - Hardware Description 12 - 23

Bit RIW Description (Status Register . cont.)

1 R

o R

INDEX
o = Index not in position and not detected
1 = Index in position and detected

ERROR
o = No error
1 = A nonrecoverable error has occurred. The error register coh-

tains the error status.

The next command issued to the hard disk controller, clears this
bit. If the hard disk controller sets this bit during a multiple sector
transfer, the transfer is terminated.

12 - 24 Hard Disk Drive Controller • Hardware Description

Alternate Status Register (03F6H/0376H)
This read-only register duplicates the status register WIF7H/Ol77H).

Hard Disk Register (03F6H/0376H)
7 6 5 4 3 2 1 o

I 0 I 0 I 0 I o

Bit RIW Description

7-4 W

3 W

2 W

1 W

o W

Always 0

ENABLE HEAD SELECT BIT 3
o = Reduced write current enabled
1 = Head Select Bit 3 (SOH register bit 3) enabled. See the

SDH register description.

RESET
o = Hard disk controller enabled.
1 = When set, the hard disk controller enters the reset state and

remains there until this bit is cleared. This bit must stay set
for a minimum of 5 p.s. When this bit is cleared, the hard
disk controller performs a set of power-up diagnostic tests
and the busy bit (status register bit 7) remains set until tests
are completed.

INTRPT ENABLE - Interrupt Enable
o = Hard disk controller interrupt buffer is enabled. Setting this

bit does not clear the hard disk controller interrupt output.
When this bit is cleared, any pending interrupts will occur.

1 = Hard disk controller interrupt buffer is disabled.

This bit enables or disables a buffer between the hard disk control­
ler output and the peripheral interrupt controller input.

Always 0

Hard Disk Drive Controller - Hardware Description 12 - 25

Digital Input Register (03F7H/0377H)
7 6 5 4 3 2 1 o

lflUTE BEAD BEAD HEAD DRIVE DRIVE
RESERVE GATE SELECT SELECT SELECT SELECT SELECT

SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL
1 2 1 0 1 0

Bit R/W Description

7 R Reserved (Value undefined)

6 R WRITE GATE SIGNAL
0= Write gate signal is active.
1 = Write gate signal is inactive.

5 R Always 1

4 R HEAD SELECT SIGNAL 2
0= Head select signal 2 is active.
1 = Head select signal 2 is inactive.

3 R HEAD SELECT SIGNAL 1
0= Head select signal 1 is active.
1 = Head select signal 1 is inactive.

2 R HEAD SELECT SIGNAL 0
0= Head select signal 0 is active.
1 = Head select signal 0 is inactive.

1 R DRIVE SELECT SIGNAL 1
0= Drive select signal 1 is active.
1 = Drive select signal 1 is inactive.

0 R DRIVE SELECT SIGNAL 0
0= Drive select signal 0 is active.
1 = Drive select signal 0 is inactive.

12 - 26 Hard Disk Drive Controller - Hardware Description

Programming Example
The following programming example demonstrates:

• Initializing the hard disk controller
• Recalibrating the hard disk drive
• Seeking to a track
• Hard formatting a hard disk

CAUTION
Improper programming or improper operation of this device can
cause the V AXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Hard Disk Controller . Programming Example 12 - 27

#include "kyb.h"
#include "example.h"

/***/
/* define constants used in hard disk controller example */
/***/
#define PRI_BASE Ox01fO /* primary base address of controller regs */
#define ALT_BASE Ox0170/* alternate base address of controller regs */

#define HOR_ASR Ox03f6

Ox03f7

/* address of hard disk register */
/* and alternate status register */

/* address of digital input register */

/* define constant divisor for write precompensation cylinder */

#define WPC_OIV Ox04

/* define bit values for error status register */

#define ERR_BBD Ox80 /* bad block detected */
#define ERR_OFE Ox40 /* CRC/ECC error in data field */
#define ERR_ID Ox10 /* could not locate correct ID field */
#define ERR_ABR Ox04 /* command aborted */
#define ERR_TZE Ox02 /* track zero error */
#define ERR_DAMNF Ox01 /* data address mark not found */

/* define bit values for hard disk register */

#define HEAD_SEL3
#define RESET_HOC
#define INT_ENA

Ox04
Ox02
Ox01

/* enables third head select bit */
/* resets hard disk controller */

/* enables hdc interrupts to CPU */

/* define bit values for sdh register */

#define SDH_ECC

#define SDH_256
#define SDH_512

Ox80

OxOO
Ox20

/* select ecc mode for data field */

/* sector size 266 */
/* sector size = 612 */

12 - 28 Hard Disk Controller . Programming Example

1* define bit values for status register *1

#define STAT_BSY OxSO 1* hdc busy *1
#define STAT_RDY Ox40 1* drdy pin *1
#define STAT_WF Ox20 1* write fault *1
#define STALSC OxlO 1* seek complete *1
#define STAT_DRQ OxOS 1* data request *1
#define STALDWC Ox04 1* data was corrected *1
#define STAT_ERR OxOI 1* nonrecoverable error *1

1* define bit values for command register *1

#define SR_35US OxOO 1* step rate = 35 us *1
#define SR_0_5MS OxOI 1* step rate 0.6 ms *1
#define SR_LOMS Ox02 1* step rate = 1.0 ms *1
#define SR_L6MS Ox03 1* step rate 1.6 ms *1
#define SR_2_0MS Ox04 1* step rate 2.0 ms *1
#define SR_2_6MS Ox05 1* step rate 2.5 ms *1
#define SR_3_0MS Ox06 1* step rate 3.0 ms *1
#define SR_3_6MS Ox07 1* step rate 3.6 ms *1
#define SR_4_0MS OxOS 1* step rate 4.0 ms *1
#define SR3_6MS Ox09 1* step rate 4.6 ms *1
#define SR_5_0MS OxOa 1* step rate 5.0 ms *1
#define SR_6_6MS OxOb 1* step rate 6.5 ms *1
#define SR_6_0MS OxOc 1* step rate .. 6.0 ms *1
#define SR_6_5MS OxOd 1* step rate = 6.6 ms *1
#define SR_3_2US OxOe 1* step rate 3.2 us *1
#define SR_l_6US OxOf 1* step rate 1.6 us *1

#define CMD_IC OxOS 1* interrupt control *1
#define CMD_MSF Ox04 1* multiple sector flag *1
#define CMD_LM Ox02 1* long mode read and write *1
#define CMD_TRY OxOI 1* disable retries *1

#define CMD_REST OxlO 1* restore command *1
#define CMD_SEEK Ox70 1* seek command *1
#define CMD_READ Ox20 1* read command *1
#define CMD_WRITE Ox30 1* write command *1
#define CMD_SCAN Ox40 1* read/verify command *1
#define CMD_FRMAT Ox50 1* format command *1
#define CMD_CC OxOS 1* compute correction command *1
#define CMD_PARM Ox91 1* set parameter command *1

Hard Disk Controller . Programming Example 12- 29

/***/
/* declare structures used in hard disk controller example */
/***/

typedef struct
{

unsigned char sec_buf; /* (R/W) sector buffer */
unsigned char err_wpc; /* (R) error reg */

/* (W) write precompensation cylinder */
unsigned char se:; /* (R/W) sector count */
unsigned char aD; /* (R/W) sector number */
unsigned char cyLlow; /* (R/W) lower 8 bits of cylinder number */
unsigned char cyLhi; /* (R/W) upper 2 bits of cylinder number */
unsigned char sdh; /* (R/W) sdh register */
unsigned char csr; /* (R) status reg. (W) command reg */

} HOC;

typedef struct
{

HOC *base; /* primary or alternate base address of controller reg */
int busy; /* busy flag */
int retry; /* retry count */
unsigned int cyl; /* cylinder number */
unsigned char last_cmd; /* last command sent to hdc */
unsigned char ecm; /* error correction method */
unsigned char srt; /* step rate time */
unsigned char ds; /* drive select 0 - 3 */
unsigned char hs; /* selected head number */
unsigned char sc; /* sector count */
unsigned char sn; /* sector number */
unsigned char eot; /* end of track */
unsigned char fgpl; /* format gap length */
unsigned char nd; /* non-DMA mode */
unsigned char ss; /* sector size */
unsigned char t· • /* retry flag */

} HDC..;.CMD;

12- 30 Hard Disk Controller . Programming Example

typedef struct
{

unsigned int cc; 1* cylinder count *1
unsigned int wpc; 1* write precompensation cylinder *1
unsigned int hc; 1* head count *1
unsigned int spt; 1* sectors per track *1

} HOD;

typedef struct
{

unsigned int cyl; 1* cylinder number *1
unsigned char error; 1* error code/status *1
unsigned char sc; 1* sector count *1
unsigned char sn; 1* sector number *1
unsigned char sdh; 1* sdh register *1
unsigned char status; 1* status register *1

} HOC_RESULT;

1***1
1* declare space for hdc parameter data *1
1***1

HOD hdd[2] =
{

{ 615, 300, 4, 17 },
{ 615, 300, 4, 17 },

};

HDC_CMD hdc_cmd;
HOC_RESULT hdc_result;
int hdc_buff[256];

1* hard disk descriptors *1

1* command data *1
1* result data *1

1* hdc 1/0 buffer *1

1***1
1* hds() - select the desired drive *1
1***1

hds() 1* select error correction method, sector size, drive, and head *1
{

HOC *phdc = hdc_cmd.base; 1* pointer to controller registers *1

outp(~phdc->sdh, hdc_cmd.ecm hdc_cmd.ss I (hdccmd.ds « 4) I hdc_cmd.hs);
}

Hard Disk Controller - Programming Example 12- 31

/***/
/* wait_hdc() - wait for hard disk command to complete */
/***/

wait_hdcO
{

HOC *phdc = hdc_cmd.base; /* pointer to controller registers */

}

while(hdc_cmd.busy)
/* busy bit

while(inp(&phdc->csr) & STAT_BSY)

/* wait until interrupt occurs */
should be clear, but just in case, */

/* wait until busy bit is clear */

if(inp(&phdc->csr) & STAT_ERR)
hdc_result.error = inp(&phdc->err_wpc);

else hdc_result.error = 0;

/* if error condition */
/* read error register */

/* mark no error */

switch(hdc_cmd.last_cmd)
{

/* discover last command issued */

}

case CMO_REST :
while«inp(&phdc->csr) & (STAT_ROY 1 STAT_SC» != (STAT_ROY 1 STAT_SC»

break;

case CMO_SEEK
while«inp(&phdc->csr) & (STAT_ROY 1 STAT_SC» != (STAT_ROY 1 STAT_SC»

break;

case CMO]RMAT:
break;

default
break;

hdc_result.sc = inp(&phdc->sc); /* read sector count register */
hdc_result.sn = inp(&phdc->sn); /* read sector number register */
hdc_result.cyl = inp(&phdc->cyl_low); /* low 8 bits of cyl */
hdc_result.cyl 1= inp(&phdc->cyl_hi) « 8; /* high 2 bits of cyl */
hdc_result.sdh = inp(&phdc->sdh); /* read sdh register */
hdc_result.status = inp(&phdc->csr); /* read status register */
dsp_hdc_stat(); /* display result status */

12 - 32 Hard Disk Controller . Programming Example

/ ..•........ /
/. hdc_issue() - issue all hdc commands ./
/ ... /

hdc_issue(cmd)

int cmd;

{

HDC *phdc - hdc_cmd.base;
char oline[20];

}

hdc_cmd.last_cmd ~ cmd;
switch (cmd)
{

}

case CMD_REST:
hdc_cmd.cyl - 0;
hdc_cmd.hs = 0;
cmd 1= hdc_cmd.srt;
break:

case CMD_SEEK:
cmd 1= hdc_cmd.srt;
break;

case CMD_SCAN:
cmd 1= hdc_cmd.t;
break:

case CMD_READ:
case CMD_WRlTE:

break:

default:
break:

outp(tphdc->err_wpc, hdd[hdc_cmd.ds].wpc
outp(tphdc->sc, hdc_cmd.sc);
outp(tphdc->sn, hdc_cmd.sn);
outp(tphdc->cyl_low, hdc_cmd.cyl):
outp(tphdc->cyl_hi, hdc_cmd.cyl » 8):
hdsO:
outp(tphdc->csr, cmd);
hdc_cmd.busy = TRUE;

/. desired command ./

/. set last command issued ./

/. recalibrate 1 ./

/. restore command ./

/* seek 1 ./
/* seek command ./

/. read ID 1 ./
/. scan id command ./

/. read data 1 ./
/* write data 1 ./

» 2); /. write the wpc reg ./
/. write the sector count ./

/. write the sector number ./
/. write 8 low bits ./

/. write 2 high bits ./
/. select appropriate drive */

/* write the command */

Hard Disk Controller . Programming Example 12- 33

/***/
/* hdc_init() - initialize hard disk controller and interrupt vector */
/************~**/

}

iv_init(Ox76):
imask(l, 6, ON):
outp(HDR_ASR, INT_ENA):

/* reset the hdc */
/* must be reset for minimum of 6 U8 */

/* initialize the interrupt vector */
/* enable PIC input */

/* hdc not reset and allow interrupt */

/***/
/* hdc_rest() - restore hard disk controller and interrupt vector */
/***/

}

outp(HDR_ASR, RESET_HOC):
imask(l, 6, OFF):
iv_rest(Ox76):
outp(HDR_ASR, INT_ENA);

/* reset the hdc */
/* disable PIC input */

/* restore the interrupt vector */
/* hdc not reset and allow interrupt */

/***/
/* hdc_int_hand() - hdc interrupt handler */
/***/

hdc_int_hand 0
{

HOC *phdc = hdc_cmd.base; /* pointer to controller registers */

}

hdc_result.status = inp(lphdc->csr);
hdc_cmd.busy = FALSE:
eoi(1) :

/* read status register */
/* no longer busy */

12 - 34 Hard Disk Controller . Programming Example

/***/
/* bdc() - execute bard disk controller examples */
/***/

bdcO
{

static MESSAGE mbdc[] =
{

/* bdc menu */

{ 3, 27,
{ 6, 27,

"Hard
"Fl.

Disk Controller Example" },
Recalibrate" },

{ 6, 27, "F2. Head +" },
{ 7, 27, "F3. Head _II },

{ 8, 27, "F4. Seek +" },
{ 9, 27, "F6. Seek _II},
{ 10, 27, "F6. Read ID" },
{ 11, 27,
{ 12, 27,

"F7.
"FlO.

** Format Disk ** (Erases data)" },
Return to Main menu" },

{ 0, 0, o },
};

cbar line[S12];
cbar oline[S12];
UDsigned int cyl;
UDsigned int bead;
HDC *pbdc;
int *pi;
int i;

disp_menu(mbdc);
bdc_cmd.base = (HDC *)PR1_BASE;
bdc_cmd.ecm = SDH_ECC;
bdc_cmd.ss SDH_612;
bdc_cmd.ds 0;
bdc_cmd.bs bdd[O].bc;
bdc_cmd.sc bdd[O].spt;
bdc_cmd.srt = SR_l_5MS;
pbdc = bdc_cmd.base;
bdc_issue(CMD_PARM);
wait_bdcO;
bdc_cmd.cyl = bdc_result.cyl;
dsp_bdc_stat 0 ;
bdc_cmd.bs = 0;

/* to bold input line */
/* to bold output line */

/* loop control */
/* loop control */

/* display tbe bdc menu */
/* controller addressed at primary */

/* assign step rate */

/* set parameters */

Hard Disk Controller - Programming Example 12- 35

line[O] .. 0;
whUe(1)

/* null terminated */
/* forever (see FlO) */

{

line[O] - get_fkey();
sWitch (line [0])

/* get a function key for menu selection */
/* determine menu selection */

{

case Fl: /* recalibrate */
hdc_cmd.ecm = SDH_BCC;
hdc_cmd.sc - hdd[hdc_cmd.ds].spt;
hdc_cmd.sn .. 0;
hdc_issue(CMD_REST);
wait_hdc(); /* wait for command complete */
break;

case F2:
hdc_cmd.ecm .. SDH_BCC;
hdc_cmd.sc = hdd[hdc_cmd.ds].spt;
hdc_cmd.sn .. 0;

/* head select + 1 */

if(hdc_cmd.hs < hdd[hdc_cmd.ds] .hc) hdc_cmd.hs++;
if(hdc_cmd.hs oo= hdd[hdc_cmd.ds] .hc) hdc_cmd.hs--:
hdc_issue(CMD_SEEK);
wait_hdc(); /* wait for command complete */
break;

case F3: /* head select -1 */
hdc_cmd.ecm - SDH_BCC;
hdc_cmd.sc - hdd[hdc_cmd.ds].spt;
hdc_cmd.sD - 0;
if(hdc_cmd.hs) hdc_cmd.hs--;
hdc_issue(CMD_SEBK);
wait_hdc(); /* wait for command complete */
break;

case F4: /* seek + 1 cylinder */
hdc_cmd.ecm .. SDH_BCC;
hdc_cmd. sc ... hdd[hdc_cmd.ds],' spt;
hdc_cmd.sD - 0;
if(hdc_cmd.cyl < hdd[hdc_cmd.ds].cc) hdc_cmd.cyl++~
if(hdc_cmd.cyl hdd[hdc_cmd.ds].cc) hdc_cmd.cyl--:
hdc_issue(CMD_SEEK);
wait_hdc(); /* wait for command complete */
break;

12 - 36 Hard Disk Controller· Programming Example

case F6: /* seek - 1 cylinder */
hdc_cmd.ecm = SDH_ECC;
hdc_cmd.sc = hdd[hdc_cmd.ds].spt;
hdc_cmd.sn = 0;
if(hdc_cmd.cyl) hdc_cmd.cyl--;
hdc_issue(CMD_SEEK);
wait_hdc(); /* wait for command complete */
break;

case F6: /* scan id */
hdc_cmd.ecm = SDH_ECC;
hdc_cmd. Be = 1;
for(i = 1; i <= hdd[hdc_cmd.ds].spt; i++)
{

}

hdc_cmd.sn = i;
hdc_issue(CMD_SCAN);
wait_hdcO; /* wait for command complete */

break;

case F7: /* hard format disk */
hdc_issue(CMD_REST);
wait_hdc(); /* wait for command complete */
interleave (hdc_buff, 266, 17, 2, Oxffff);
for(cyl = 0; cyl < hdd[hdc_cmd.ds].cc; cyl++) /* all cylinders */
{

}

hdc_cmd.cyl = cyl; /* current cylinder */
forehead = 0; head < hdd[hdc_cmd.ds].hc; head++)/* all heads */
{

}

hdc_cmd.hs = head;
hdc_cmd.ecm = SDH_ECC;
hdc_cmd.sc = hdd[hdc_cmd.ds].spt;
hdc_cmd.sn = 0;
hdc_issue(CMD_SEEK);
wait_hdcO;
hdc_cmd.ecm = SDH_ECC;

/* seek to current cylinder */
/* wait for command complete */

hdc_cmd.sc = hdd[hdc_cmd.ds].spt;
hdc_cmd.sn = 0;
hdc_issue(CMD_FRMAT);
while(l(inp(iphdc->csr) i STAT_DRQ»

for(i = 0; i < 256; i++)
outw(iphdc->sec_buf, hdc_buff[i]);

wait_hdc(); /* wait for command complete */

break;

Hard Disk Controller . Programming Example 12 - 37

}
}

}

case F8:
interleave (hdc_buff, 256, 17, 2, Oxffff);
for(cyl = 0, head = 0; head < 30; head++)
{

sprintf(oline, "%04x ", hdcbuff[head);
disp_str(13 + (head / 10), (head % 10) * 5, oline);

}

break;

case FlO:
return;

/* return to caller (main menu) */

dsp_hdc_stat 0
{

HOC_RESULT *pres
char oline[50);

}

sprintf(oline, "Error Reg
disp_str(21 , I, oline);
sprintf(oline, "Sector Count
disp_str(21, 41, oline);
sprintf(oline, "Sector Number:
disp_str(22, I, oline);
sprintf (oline, "Cylinder Num
disp_str(22 , 41, oline);
sprintf(oline, "SOH Register
disp_str(23, I, oline);
sprintf(oline, "Status Reg
disp_str(23, 41, oline);
sprintf(oline, "Last command
disp_str(24 , I, oline);

Ox%02x",

Ox%02x",

Ox%02x" ,

Ox%04x" ,

Ox%02x",

Ox%02x",

Ox%02x",

pres->error);

pres->sc);

pres->sn);

pres->cyl);

pres->sdh);

pres->status);

hdc_cmd.last_cmd);

12 - 38 Hard Disk Controller - Programming Example

interleave (pb , size, ent, iI, fill)

int *pb;
int size;
int ent;
int H;
int fill;

{

int *pi;
int *pf;
int x, y;

x = size - ent;

}

pf = pi = pb + ent;
whi1e(x--) *pi++ = fill;
for(x = 1; x <= ent; x++)
{

}

if(pi > pf) pi = pb++;
*pi++ x« 8;
for(y = 1; Y < i1; y++) pi++;

/* pointer to buffer */
/* size of buffer */

/* number of sectors */
/* inter1eave:1 */

/* fill byte */

/* temp pointer */
/* start of fill */
/* temp counter */

/* fill size */
/* offset to fill */
/* set fill bytes */

Hard Disk Controller - Programming Example 12 - 39

Chapter 13
Network Hardware Interface

Introduction to the LANCE
The network hardware interface is located on the V AXmate workstation 1/0
board. When the back of the V AXmate workstation is open and no options are
plugged in, the 110 board is visible.

V AXmate workstations may contain different versions of the LANCE, which
exhibit subtle differences on large networks with high levels of traffic. The dif­
ferent versions of hardware require special treatment by software. Digital
Equipment Corporation recommends that you avoid programming the hardware
interface directly. Instead, applications should use the MS-Network session
level interface, DECnet-DOS session level interface, and the Data Link inter­
face to access the network. For additionl information about these software in­
terfaces, see Chapter 18 in this manual.

The remainder of this chapter discusses the following topics:

• Functional description of the Network Hardware Interface
• Programming sequence
• Register descriptions
• Physical description
• Physical address field
• Logical address filter field
• Buffer management
• Receive descriptor rings
• Transmit descriptor rings
• Network interface external interconnect
• Network Interface system bus interconnect

13- 1

Additional Source of Information
Additional information about the LANCE can be found in the
Advanced Micro Devices document:

• MOS Microprocessors and Peripherals 1985 Data Book

Functional Description of the Network
Hardware Interface
The network hardware interface is connected to the system bus. The interface
contains address, data, and control lines capable of handling the controller func­
tions. The interface is part of the standard communications and 110 functions
of the V AXmate workstation.

The Network Interface (Nn consists of three main integrated circuits. The
hardware also includes a small number of discrete components, system bus in­
terfacing devices, and a female BNC connector mounted directly on V AXmate
110 module printed circuit board. The BNC connector connects the Network
Interface to the network.

The three integrated circuits in the NI are the:

• Coax Transceiver Interface (CTII
• Serial Interface Adapter (SIAl
• Local Area Network Controller for Ethernet (LANCEI

The Coax Transceiver Interface
The CTI interfaces to the coaxial cable by a BNC connector. The CTI performs
transmit. receive, and collision detect functions for the network controller. The
CTI is electrically isolated from the other devices as required by IEEE 802.3
specifications.

The Serial Interface Adapter
The SIA interfaces to the CTI through an isolation transformer. The SIA per­
forms manchester phase encoding and decoding of the data transferred over
the network. The SIA also interfaces with the LANCE. The SIA filters noise
and interprets collisions for the LANCE circuit.

The Local Area Network Controller
The LANCE converts data beteen the network serial format and the system
byte-wide format. The LANCE is the primary interface between the network
hardware and the rest of the V AXmate workstation.

13- 2

In receive mode, the LANCE:

1. Receives information from the SIA.

2. Converts the serial network bit stream into a parallel l8-bit wide) byte
stream.

3. Strips the Ethernet preamble and synchronization pattern.

4. Checks and removes the CRC bits.

5. Uses direct memory access and a 24-bit-wide physical address to place
the information in memory located in the CPU address space.

In transmit mode, the LANCE:

1. Uses DMA to read data from system memory.

2. Converts the data to a serial bit stream.

3. Adds a preamble and sync pattern.

4. Calculates and adds the CRC at the end of the data packet.

5. Passes the data packet to the SIA for transmission on the ThinWire
Ethernet.

Programming the LANCE
This section defines the control registers, status registers, and the data struc­
tures that are used to program the hardware interface.

The LANCE is controlled by a set of four control and status registers lCSRs)
and three data structures. The CSRs are accessible within the CPU 1/0 address
space and the data structures located in the CPU memory address space. After
the LANCE is enabled, it acquires additional operating parameters by accessing
the data structures. The LANCE accesses system memory through bus arbitra­
tion between the LANCE, CPU, memory refresh controller, and the DMA
controller.

After the LANCE is programmed, it independently manages the data struc­
tures and transfers data packets on the Thin Wire Ethernet.

The three data structures accessed by the LANCE are:

• Initialization Block
• Receive and Transmit Descriptor Rings
• Data Buffers

13- 3

Initialization Block
The initialization block is 12 contiguous words of memory starting on a word
boundary. The controlling program stores the operating parameters in the in­
itialization block. To acquire the operating parameters, which are necessary for
device operation, the LANCE reads the initialization block. The initialization
block contains the:

• Mode of Operation
o Physical Address
• Logical Address Mask
• Location of Receive and Transmit Descriptor Rings
• Number of Entries in Receive and Transmit Descriptor Rings

Receive and Transmit Descriptor Rings
The receive and transmit descriptor rings are two ring structures: one for in­
coming and the other for outgoing packets. Each entry in the rings is four
words, and must start on a quadword boundary. The descriptor rings contain
the buffer address, length, and status.

Data Buffers
Data buffers are contiguous portions of memory reserved for buffering packets.
Data buffers can begin on arbitrary byte boundaries. Entries in the Receive and
Transmit Descriptor Rings point to the data buffers.

Programming Sequence
The general programming sequence of the LANCE is:

l. Load CSR1 and CSR2, which identifies the location of an initialization
block in memory.

2. Load CSR3, which sets the operating mode of the LANCE.
3. Set the INIT and STRT bits in CSRO, which causes the LANCE to

load the information from the initialization block and to access the
descriptor rings.

NOTE
The Thin Wire Ethernet interface conforms to the IEEE 802.3
specification, which requires a frequency accuracy of ±0.01 %.
The crystal oscillator in the V AXmate network hardware re­
quires 1 Ms after power on to achieve ±10% accuracy, and 10
seconds to achieve ±0.01 % accuracy. Therefore, the network in­
terface is considered operational 10 seconds after power-on of
the V AXmate workstation.

On powerup, the VAXmate diagnostics ensure the required 10
second settling time.

13- 4

Register Description
The Network Interface uses three physical I/O ports as registers: two in the
LANCE, and one in the interface logic. The registers in the LANCE comprise
five logical registers, for a total of six logical registers in the Network Interface
(NI).

The LANCE internal CSRs are accessed through its two bus addressable ports,
a register address port (RAP), and a register data port (RDP). The internal
CSRs are read (or written) in a two step operation. The address of the CSR is
written into the address port (RAP). Then the data is read from (or written
into) the selected CSR through the RDP. Once written, the address in RAP
remains unchanged until rewritten.

Table 13-1 describes the registers and their addressing.

Table 13-1 Network Interface Registers

Primary Alias R/W Register Description
1/0 1/0 Width
Address Address

OC60H C064H R/W l6-bit LANCE Register Data
Port (RDP)

OC62H C066H R/W l6-bit LANCE Register Address
Port (RAP)

RAP = 0 R/W 16-bit LANCE CSR 0
RAP = 1 R/W l6-bit LANCE CSR I
RAP = 2 R/W l6-bit LANCE CSR 2
RAP = 3 R/W l6-bit LANCE CSR 3
OC68H OC69H-OC6FH W 8-bit NICSR

The logical address is the contents of RAP bits 1-0, and applies to references
to LANCE internal CSR registers 3-0. These registers are physically addressed
at the LANCE RDP address on the VAXmate 110 bus, and individually se­
lected by the contents of LANCE RAP bits 1-0.

The V AXmate address decode logic creates alias I/O port addresses for certain
registers. The alias 110 addresses are listed in Table 13-1.

NOTE
Because future revisions of hardware may not implement these
aliases, programs should not use the alias addresses.

13- 5

Register Data Port (RDP)
15 14 13 12 11 10 9 8

I : : : ~ ~n: : : I
7 6 543 2 1 0

I : : : ~~: : : I
Bit R/W Description

16-0 R

13- 6

CSR DATA

Writing data into RDP writes the data into the CSR selected in
RAP. Reading the data from RDP reads the data from the CSR
selected in RAP. CSR1, CSR2, and CSR3 are accessible only when
the STOP bit of CSRO is set.

If the STOP bit is not set while attempting to access CSR1,
CSR2, or CSRS, the LANCE returns READY, but a read opera­
tion returns undefined data and a write operation is ignored.

Register Address Port (RAP)
15 14 13 12 11 10 9 8

I : : : 7 : : : I
7 6 5 4 3 2 1 o

I : : u< : : I c~ I
Bit RIW Description

15-2 RES - Reserved (always 0)

1-0 R/W CSR - Control/Status Register Select
o = CSRO accessed through RDP
1 = CSR1 accessed through RDP
2 = CSR2 accessed through RDP
3 = CSR3 accessed through RDP

The register address port is cleared by STOP or Bus RESET.

13- 7

Control And Status Register 0 (RAP = 0)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

Bit RIW Description

15 R

14
R

ERR - Error

o = The four bits BABL, CERR, MISS and MERR are all equal
to O.

1 = One or more of the four bits, BABL, CERR, MISS, or
MERR are equal to 1.

BABL - Babble
o = Less than 1519 bytes of data have been transmitted.
1 = 1519 bytes of data, or more, have been transmitted.

BABL indicates a transmitter error, caused by the transmitter
being on longer than the time required to send the maximum
length packet. The LANCE transmits data until the transmit
buffer byte count equals
zero. The LANCE assumes the Ethernet transmission is limited by
the physical channel interface.

If INEA = 1, an interrupt is generated when BABL is set.

W 0 = No effect

13- 8

1 = Clears this bit

Bable is read/clear only. BABLE is cleared by Bus RESET or set­
ting the STOP bit.

Bit R/W Description ~CSRO . cont.)

13

12

11

R
CERR· Collision Error
o = No collision error
1 = Collision error

The collision input failed to activate within 2 ps after a
transmission, started by the controller, was completed. Collision
after transmission is a test feature of the transceiver.

W 0 = No effect

R

W

R

1 = Clears this bit

CERR is READ/CLEAR ONLY

CERR is cleared by Bus RESET or setting the STOP bit.

MISS . Missed Packet
o = Receiver Owns a receive buffer or the SILO has not

overflowed
1 = The receiver loses a packet because it does not own a receive

buffer and the SILO has overflowed, indicating loss of data.
SILO overflow is not reported because there is no receive
ring entry in which to write the status.

o = No effect
1 = Clears the bit

If INEA equals 1 and MISS equals 1, an interrupt is generated.

MISS is READ/CLEAR ONLY. MISS is cleared by Bus RESET
or setting the STOP bit.

MERR . Memory Error
o = No memory error
1 = LANCE is the Bus Master and has not received READY

within 25.6 ps after asserting the address on the DAL lines.
When a Memory Error is detected, the receiver and
transmitter are turned off and an interrupt is generated if
INEA = 1.

W 0 = No effect
1 = Clears the bit

MERR is READ/CLEAR ONLY. MERR is cleared by Bus RESET
or setting the STOP bit.

13- 9

Bit R/W Description (CSRO - cont.~

10

9

8

7

R
RINT - Receiver Interrupt
o = No receiver interrupt
1 = Receiver interrupt

W 0 = No effect

R

W

R

1 = Clears the bit

RINT = 1 when the status for an entry in the Receive Descriptor
Ring is updated.

If INEA = 1, an interrupt is generated when RINT is set.

RINT is READ/CLEAR ONLY
RINT is cleared by Bus RESET or setting the STOP bit.

TINT - Transmitter Interrupt
o = No transmitter interrupt
1 = When the status for an entry in the Transmit Descriptor

Ring is updated.

o = No effect
1 = Clears the bit

If INEA = 1, an interrupt is generated when TINT is set.

TINT is READ/CLEAR ONLY

TINT is cleared by Bus RESET or setting the STOP bit.

lOON - Initialization Done
o = Initialization procedure not completed
1 = LANCE has completed the initialization procedure started by

setting the INIT bit. When lOON is set, the LANCE has
read the initialization block from memory and stored the new
parameters.

If INEA = 1, an interrupt is generated when lOON is set.

lOON is READ/CLEAR ONLY

W 0 = No effect

R

1 = Clears the bit

lOON is cleared by Bus RESET or setting the STOP bit.

INTR - Interrupt Flag
o = BABL, MISS, MERR, RINT, TINT, and lOON are all equal

o
1 = One or more of the following interrupt causing conditions

has occurred: BABL, MISS, MERR, RINT. TINT. lOON. If
INEA = 1 and INTR = 1 the INTR L 110 pin will be low.

INTR is cleared by Bus RESET or setting the STOP bit. INTR is
also cleared by clearing the conditions that caused the interrupt.

13- 10

Bit RIW Description (CSRO - cont.)

6 R/W INEA - Interrupt Enable
o = The INTR L I/O pin will be high, regardless of the state of

INTR.
1 = If INTR = 1, the INTR L I/O pin will be low.

INEA allows the INTR L 110 pin to be driven low when the
Interrupt Flag is set. If INEA = 0 INEA is cleared by Bus RESET
or setting the STOP bit.

5 R axON - Receiver ON
o = Receiver disabled
1 = Receiver enabled

4 R

axON = 0 when IDON = 1, if Dax = 1 in the MODE register
or a memory error (MERR = 1) has occurred. RXON = 1 when
STRT is set in CSRO, if DRX 0 in the MODE field of the initiali­
zation block is IDON = 1.

axON is cleared by Bus RESET or setting the STOP bit.

TXON - Transmitter On
o = Transmitter enabled
1 = Transmitter disabled

When TXON = 0, IDON = 1, and DTX = 1 in the MODE regis­
ter, an Underflow or Retry error has occurred during transmission
or a memory error (MERR) has occurred.

TXON = 1 when the INIT bit = 1, and when STRT =1 if DTX
= 0 in the MODE register in the initialization block. TXON is
cleared by Bus RESET or setting the STOP bit.

3 W TDMD - Transmit Demand
R 0 = The packet is sent subject to the 1.6-millisecond polling in-

terval delay.
1 = Packet is transmitted without the typical delay of the polling

interval, 1.6 milliseconds.

W 0 = No effect
1 = Clears this bit

TDMD, when set, causes the LANCE to access the Transmit
Descriptor Ring without waiting for the poll time interval to
elapse. TDMD need not be set to transmit a packet, it merely
hastens the LANCE response to a Transmit Descriptor Ring entry
insertion by the software.

TDMD is cleared by Bus RESET or setting the STOP bit. TDMD
is cleared by the LANCE after the Transmit Descriptor Ring is
accessed.

13-11

Bit RIW Description (CSRO - cont.)

2 R/W STOP
o = No effect
1 = LANCE disabled from all external activity and internal logic

cleared

STOP set is the equivalent of asserting Bus RESET L. The
LANCE remains inactive and STOP remains set until the STRT or
INIT bit is set. If STRT, INIT, and STOP are all set together,
STOP will override the other bits and only STOP will be set. Stop
will terminate all LANCE activities asynchronously.

STOP is cleared by setting INIT or STRT.

1 R/W STRT - Start

STRT enables the LANCE to send and receive packets, perform
direct memory access and do buffer management. Setting STRT
clears the STOP bit. If STRT and INIT are set together, the INIT
function will be executed first.

STRT is READ/WRITE WITH ONE ONLY. Writing a 0 into this
bit has no effect.

STRT is cleared by Bus RESET or setting the STOP bit.

o R/W INIT - Initialize

13- 12

o = No effect
1 = Starts LANCE initialization and reads initialization block.

Setting INIT clears the STOP bit.

If STRT and INIT are set together, the INIT function will be exe­
cuted first.

INIT is cleared by Bus RESET or setting the STOP bit.

Control And Status Register 1 (RAP = 1)
15 14 13 12 11 10 9 8

I : : : IADR(l:-S): : : I
7 6 5 4 3 2 1 o

I : : ~(7-1: : : I 0 I
Bit Description

15-1 IADR

o

The low-order 16 bits of the address of the first word (lowest ad­
dress) in the initialization block.

Always 0

Accessible only when the STOP bit of CSRO equals 1. If STOP = 0, an access
returns READY, a Read operation returns undefined data and a Write opera­
tion is ignored. CSR1 is unaffected by Bus RESET L.

13- 13

Control And Status Register 2 (RAP = 2)
15 14 13 12 11 10 9 8

I : : : ~s : : : I
7 6 543 2 1 0

I : : ~ (Bi~S 23-16: : : I
Bit Description

15-8 RES

Reserved.

7-0 IADR (Bits 23-16)

The high order 8 bits of the address of the first word of the in­
itialization block.

Accessible only when STOP equals 1 (CSRO). If STOP = 0, an access returns
READY, a Read operation returns undefined data and a Write operation is
ignored.

CSR2 is unaffected by Bus RESET L.

13- 14

Control And Status Register 3 (RAP = 3)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

Bit R/W Description

15-3 RES - Reserved (Always 0)

2 R/W BSWP - Byte Swap

o = The LANCE does not swap high and low bytes
1 = The LANCE swaps the high and low bytes on DMA data

transfers between the SILO and bus memory.

BSWP allows the LANCE to operate in systems that consider bits
15-8 to be the least significant byte and bits 7-0 to be the most
significant byte. Only data from Silo transfers is swapped, the in­
itialization block data and the Ring Descriptor entries are NOT
swapped. BSWP is cleared by Bus RESET or setting the STOP bit
in CSRO.

1 R/W ACON - ALE Control

R/W 0 = ALE is asserted high.
1 = ALE is asserted low.

ACON defines the assertive state of ALE when the LANCE is a
Bus Master.

ACON is cleared by Bus RESET or setting the STOP bit in
CSRO.

13- 15

Bit R/W Description (CSR3 - cont.)

o R/W BCON - Byte Control

BCON 110 Pin 16
o BM 1 L
1 BUSAKO L

110 Pin 15
BM 0 L
BYTE H

110 Pin 17
HOLD L
BUSRQ L

BCON redefines the Byte Mask and Hold I/O pins.

BCON is cleared by Bus RESET or setting the STOP bit in
CSRO.

Table 13-2 lists the value required for each function for CSR3.

Table 13-2 LANCE CSR3 Required Values For The VAXmate Workstation

Bit Function Value Required

15-3 Undefined should be zero

2 BSWP (Byte Swap) 0

1 ACON (ALE Control) 1

0 BCON (Byte Mask Control) 0

CSR3, which allows redefinition of the bus master interface, contains three
bits. They are used to customize certain hardware interface signals provided by
the LANCE when it is in bus master mode. The programming of these bits is
hardware implementation dependent. The V AXmate workstation values are in
Table 13-2.

Accessible only when the STOP bit of CSRO equals 1. If STOP = 0, an access
returns READY, a Read operation returns undefined data and a Write opera­
tion is ignored.

Bus RESET L or setting the STOP bit in CSRO, clears CSR3.

13- 16

NI CSR (OC68H)
7 6 5 4 3 2 1 o

Bit RIW Description

7 LED SET - Diagnostic LED Indicator Set
W 0= No effect

1 = LED on

6 RES - Reserved (undefined)

5 RES - Reserved (undefined)

4 LED CLEAR - Diagnostic LED Indicator Clear
W 0= No effect

1 = LED off (Power-on default)

3 INT CLEAR - Network Interface Interrupt Enable Clear
W 0= No effect

1 = Disable interrupts (Power-on default)

2 RES - Reserved (undefined)

1 RES - Reserved (undefined)

0 INT SET - Network Interface Interrupt Enable Set
W 0= No effect

1 = Enable interrupts

The NI CSR supports individual bit-set and bit-clear capability in a write-only
register. Writing a 1 to a bit invokes its particular set or clear operation on the
designated function. Writing a 0 to a bit does not invoke the particular set or
clear operation for the designated function. Writing 0 to both set and clear bits
for a designated function leaves the state of that function unchanged. Because
writing 1 to both the set and clear bits of a designated function will toggle the
state of that function, writing 1 to both the set and clear bits is not
recommended.

13- 17

Initialization Block
During initialization, the LANCE reads operating parameters from the initiali­
zation block.

When the INIT bit in CSRO is set, the LANCE begins reading the initialization
block. To ensure proper parameter initialization and LANCE operation, the
controlling program should set the INIT bit and then set the STRT bit. After
the LANCE reads the initialization block, the LANCE sets IDON in CSRO and
if INEA equals 1, the LANCE also generates an interrupt.

Higher Addresses TLEN-TDRA (23-16)
TDRA (15-00)

RLEN-RDRA (23-16)
RDRA (15-00)

LADRF (63-48)
LADRF (47-32)
LADRF (31-16)
LADRF (15-00)

PADR (47-32)
PADR (31-16)
PADR (15-00)

Base Address of Block MODE (15-00)

IADR +22
IADR +20
IADR +18
IADR +16
IADR +14
IADR +12
IADR +10
IADR +08
IADR +06
IADR +04
IADR +02
IADR +00

The base address, BASE ADDR, is formed from CSR2 bits 7-0 and CSR1 bits
15-1.

13- 18

Mode Field
(Initialization Block, Offset OOH)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

Bit Description

15 PROM - Promiscuous
o = Incoming packets matching physical or logical address filter

are accepted.
1 = All incoming packets are accepted.

14-7 RES - Reserved

6 INTL - Internal Loopback

INTL is used with the LOOP (bit 21 to determine where the loop­
back is to be done. Internal loopback allows the LANCE to receive
its own transmitted packet. The maximum transmit packet size al­
lowed during loopback is 32 data bytes. The LANCE automatically
adds 4 bytes of CRC to the packet if DTCRC=O and therefore the
receive packet could be 36 bytes. INTL is only valid if LOOP = 1,
otherwise it is ignored.

INTL
X
o
1

Loop
o
1
1

LOOPBACK
No loopback, normal operation
external
internal

13- 19

Bit Description (Mode Field . cont.)

6

4

3

13- 20

DRTY • Disable Retry
o = LANCE attempts 16 retransmissions of a packet after the

first collision before reporting a Retry error.
1 = LANCE attempts only one transmission of a packet. If there

is a collision on the first transmission attempt, a Retry Error
(RTRY) is reported in Transmit Message Descriptor 3
(TMD3).

COLL • Force Collision
o = Collision not forced
1 = Collision forced during subsequent transmission attempt

COLL allows the collision logic to be tested. For COLL to be valid,
the lance must be in internalloopback mode. When COLL = I,
16 transmissions are attempted, and a retry error is reported in
TMD3.

DTCR . Disable Transmit CRC
o = The transmitter generates and appends a CRC to the

transmitted packet.
1 = The CRC logic is allocated to the receiver and no CRC is

generated and sent with the transmitted packet.

During lOopback, DTCR = 0 generates a CRC on the transmitted
packet. CRC logic, shared by the receiver and the transmitter;
cannot generate and check CRe at the same time. Therefore, the
receiver does the eRe check. The generated eRe and data are
written into memory and can be checked by the software.

If DTeR = 1 during loopback, the software must append a eRe
value to the transmit data in the transmit buffer. The receiver
checks the eRe on the received data and reports any errors.

Bit Description (Mode Field - cont.)

2

1

o

LOOP - Loopback
o = LANCE operates in normal mode
1 = LANCE operates in full duplex mode for test purposes

LOOP allows the LANCE to operate in full duplex loopback mode
for test purposes. The maximum transmit packet size is limited to
32 data bytes. The received packet may be 36 bytes because the
LANCE automatically adds 4 CRC bytes if DTCRC=O.

During loopback, the runt packet filter is disabled because the
maximum packet is forced to be smaller than the minimum size
Ethernet packet of 64 Bytes.

LOOP = 1 allows simultaneous transmission and reception for a
message constrained to fit within the SILO. The LANCE waits
until the entire message is in the SILO before serial transmission
begins. The incoming data stream fills the SILO from behind as it
is being emptied. Moving the received message out of the SILO to
memory does not begin until reception has ceased. In loopback
mode, transmit data chaining is not possible. Receive data chaining
is allowed, regardless of the receive buffer length. In normal opera­
tion, not loopback, the receive buffers must be at least 64 bytes
long to allow time for buffer lookahead.

DTX - Disable the Transmitter
o = LANCE can access the Transmit Descriptor Ring
1 = LANCE does not access the Transmit Descriptor Ring,

therefore no transmissions are attempted. DTX = 1 clears
the TXON bit in CSRO when initialization is complete.

DRX - Disable the Receiver
o = Receives incoming packets
1 = LANCE rejects incoming packets and does not access the

Receive Descriptor Ring. DRX = 1 clears the RXON bit in
CSRO when initialization is complete.

The Mode field allows alteration of the LANCE operating parameters. In
normal operation, the Mode Register clear.

13- 21

Physical Address Field
(Initialization Block, Offset 02H)
PADR, the Network Physical Address, is the unique 48-bit physical address
assigned to the LANCE. PADR(OI must be zero.

Logical Address Filter Field
(Initialization Block, Offset 08H)
LADRF, the Logical Address Filter Field, is a 64-bit mask used by LANCE to
accept the logical addresses.

The Logical Address Filter is a 64-bit mask that accepts incoming Logical
Addresses sent through the CRC circuit. After all 48 bits of the address have
travelled through the CRC circuit, the high-order 6 bits of the resultant CRC
are strobed into a register. This register selects one of the 64-bit positions in
the Logical Address Filter. If the selected filter bit equals 1, the address is
accepted and the packet is put in memory. The first bit of the incoming ad­
dress must be 1 for a logical address. If the first bit is 0, it is a physical ad­
dress and is compared against the physical address that was loaded through
the Initialization Block.

The Broadcast address, which is all ones, does not go through the Logical
Address Filter and is always enabled. If the Logical Address Filter is loaded
with all zeros, all incoming logical addresses except Broadcast are rejected.

13- 22

Receive Descriptor Ring Pointer Field
(Initialization Block, Offset lOH)

31 30 29 28 27 26 25 24

I : nm: I : : ~: : I
23 22 21 20 19 18 17 16

I : : : ~ : : : I
15 14 13 12 11 10 9 8

I : : : ~ : : : I
765 4 3 2 1 0

I : : : ~ : 0: 0: 0 I

13- 23

Bit Description (Receive Descriptor Ring Pointer Field)

31-29 RLEN - RECEIVE RING LENGTH

The number of entries in the Receive Ring expressed as a power
of two.

RLEN
Number of Entries
o 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

28-24 RES (Reserved)

23-0 RDRA - Receive Descriptor Ring Address

13- 24

RDRA is the base address (lowest address) of the receive descrip­
tor ring. Because the receive rings must be aligned on quadword
boundaries, bits 2-0 must be zeros.

Transmit Descriptor Ring Pointer Field
(Initialization Block, Offset 14H)

31 30 29 28 27 26 25 24

I : ~ : 1 : ~ : 1

23 22 21 20 19 18 17 16

1 : : : ~ : : : 1
15 14 13 12 11 10 9 8

1 : : : ~ : : : 1
765 4 3 2 1 0

I: : : ~ :0:0:01

13- 26

Bit Description (Transmit Descriptor Ring Pointer Field)

31·29 TLEN

TLEN is the number of entries in the Transmit Ring expressed
as a power of two.

TLEN
o
2
3
4
5
6
7
8

Number of
Entries

1
4
8

16
32
64

128
266

28·24 RES - Reserved

23-0 TDRA • Transmit Descriptor Ring Address

13- 26

TDRA is the base address (lowest address) of the Transmit
Descriptor Ring. Because the transmit rings must be aligned on
quadword boundaries, these bits 2-0 must be zeros.

Buffer Management
Buffer descripto~s, organized as ring structures in memory, are used for buffer
management. The buffer descriptors, also called message descriptors, are four
words long and point to a buffer. Two ring structures are allocated for the
LANCE: a ring of receive message descriptors jRMDs) and a ring of transmit
message descriptors jTMDs). To transmit or receive packets, the LANCE polls
each ring structure. The LANCE also enters status information in the descrip­
tor entry. The LANCE is limited to looking only one descriptor entry ahead of
the one with which the LANCE is currently working.

The location of the descriptor rings and their length are found in the initializa­
tion block, which the LANCE accesses during the initialization procedure.
Writing a 1 into the STRT bit of CSRO causes the LANCE to start accessing
the descriptor rings and enables the sending and receiving of data packets.

The LANCE communicates with the data link layer program through the ring
structures in memory. Each entry in the ring is owned either by the LANCE
or the data link layer program. The ownership bit (OWN) in the message
descriptor entry determines who owns the entry. Therefore, ownership of a
descriptor entry is mutual exclusive. To gain ownership of a descriptor entry,
the communications partner (LANCE or data link layer program) must wait
until the owner gives ownership to the communications partner. Between the
time a communications partner relinquishes ownership of a descriptor entry and
the time that communications partner regains ownership, it must not change
any data in the descriptor entry.

13- 27

Descriptor Rings in Memory
Figure 13-1 shows receive and transmit descriptor rings with 128 message
descriptors each.

Higher
Addresses

Base Address
of

Transai t Ring

Higher
Addresses

Base Address
of

Receive Ring

13- 28

THD(127)

TMD(l)

THD(O)

RMO(127)

RMO(l)

RMO(O)

Figure 13-1 Descriptor Rings

T
R
A
N
S
M
I
T

R
I
N
G

R
E
C
E
I
V
E

R
I
N
G

Receive Descriptor Rings
Each descriptor in a ring in memory is a 4 word entry. The format of the
receive descriptor follows.

Receive Message Descriptor 0 (RMDO)
15 14 13 12 11 10 9 8

I : : : ~ : : : I
7 6 5 4 3 2 1 o

I : : : ~ : : : I
Bit Description

15-0 LADR - Low Order Address

The LADR of the buffer pointed to by this descriptor. LADR is
written by the software and unchanged by the LANCE. This is the
memory location to place the next received message.

13- 29

Receive Message Descriptor 1 (RMDl)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

I : : : ~ : : : I
Bit Description

15 OWN
o = Descriptor entry owned by the data link layer software
1 = Descriptor entry owned by the LANCE

The LANCE clears the OWN bit after filling the buffer pointed to
by the descriptor entry. The software sets the OWN bit after
emptying the buffer. Once the LANCE or software has relin­
quished ownership of a buffer, it may not change any field in the
four words that comprise the descriptor entry.

14 ERR - Error
o = The four bits, FRAM, OFLO, CRC or BUFF, are all equal to

zero.
1 = One or more of the four bits, FRAM, OFLO, CRC or BUFF,

is equal to one.

ERR is set by the LANCE and cleared by the software.

13 FRAM - Framing Error
o = No framing error

13- 30

1 = The incoming packet contained a non integer multiple of
eight bits and there was a CRC error.

A CRC error on the incoming packet is a necessary condition for
FRAM to equal 1 (even if there was a non integer multiple of eight
bits in the packet). FRAM is set by the LANCE and cleared by
the software.

Bit Description (RMDI - cont.)

12 OFLO - Overflow Error
o = No overflow error
1 = The receiver has lost all or part of the incoming packet be­

cause it cannot store the packet in a memory buffer before
the internal SILO has overflowed.

OFLO is set by the LANCE and cleared by the software.

11 CRC - Cyclic Redundancy Check
o = No CRC error
1 = The receiver detected a CRC error on the incoming packet.

CRC is set by the LANCE and cleared by the software.

10 BUFF - Buffer Error
o = No buffer error
1 = The LANCE does not own the next buffer while data chain­

ing a received packet. This condition could occur if the OWN
bit of the next buffer was zero or the LANCE could not ac­
quire the next status before silo overflow occurred.

BUFF is set by the LANCE and cleared by the software.

9 STP - Start of Packet
o = This is not the first buffer the LANCE uses for this packet.
1 = This is the first buffer LANCE uses for this packet. It is

used for data chaining buffers.

STP is set by the LANCE and cleared by the software.

8 ENP - End of Packet
o = This is last buffer LANCE uses for this packet.
1 = This is the last buffer used by the LANCE for this packet. It

is used for data chaining buffers.

Both STP and ENP set indicate that the packet fit into one buffer
and there was no data chaining. ENP is set by the LANCE and
cleared by the software.

7-0 HADR - High Order 8 Address Bits

The HADR of the buffer pointed to by this descriptor. This field is
written by the software and unchanged by the LANCE.

13- 31

Receive Message Descriptor 2 (RMD2)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

I : : : ~: : : I
Bit Description

15-12 Must be ones. This field is written by the software and unchanged
by the LANCE.

11-0 BCNT - Buffer Byte Count

13- 32

BCNT is the length of the buffer pointed to by this descriptor ex­
pressed as a two's complement number. This field is written by the
software and unchanged by the LANCE. The minimum buffer size
is 64 bytes.

Receive Message Descriptor 3 (RMD3)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

Bit Description

15-12 RES

Reserved and read as zeros.

11-0 MCNT - Message Byte Count

MCNT is the length in bytes of the received message. MCNT is
valid only when ERR is clear and ENP is set. MCNT is written by
the LANCE and cleared by the software. When data chaining,
RMD3 is only loaded by the LANCE when the status of last buffer
is updated. Only the status word is updated for the other buffers
in the data chain.

13- 33

Transmit Descriptor Ring
Each descriptor in a ring in memory is a 4 word entry. The format of the
transmit descriptor follows.

Transmit Message Descriptor 0 (TMDO)
15 14 13 12 11 10 9 8

I: : : ~ : : : I
7 6 5 4 3 2 1 o

I : : : ~ : : : I
Bit Description

15-0 LADR - Low Order 16 Address Bits

13- 34

The LADR of the buffer pointed to by this descriptor. LADR is
written by the software and unchanged by the LANCE.

Transmit Message Descriptor 1 (TMDl)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

I : : : ~ : : : I
Bit Description

15 OWN
o = Owned by the LANCE
1 = Owned by the data link layer software

OWN indicates whether the descriptor entry is owned by the soft­
ware (OWN = 0) or by the LANCE (OWN = 1). The software sets
the OWN bit after filling the buffer pointed to by this descriptor.
The LANCE clears the OWN bit after transmitting the contents of
the buffer. Neither the software nor the LANCE may alter a
descriptor entry after relinquishing ownership.

14 ERR - Error Summary
o = All of LCOL, LCAR, UFLO. and RTRY equal O.
1 = One or more of LCOL, LCAR, UFLO, or RTRY equal 1.

ERR is set by the LANCE and cleared by the software.

13 RES- Reserved (Always 0)

12 MORE
o = One retry or less was needed to transmit a packet.
1 = More than one retry was needed to transmit a packet.

MORE is set by the LANCE and cleared by the software.

13- 35

Bit Description (TMD1 - eont.~

11 ONE
o = The number of retries need to transmit a packet is not equal

1.
1 = Exactly one retry was needed to transmit a packet.

ONE is set by the LANCE and cleared by the software.

10 DEF - Deferred
o = The channel is ready for LANCE to transmit a packet.
1 = The channel is busy when the LANCE is ready to transmit a

packet.

DEF set by the LANCE and cleared by the software.

9 STP - Start of Packet
o = Not the first buffer LANCE uses for this packet.
1 = The first buffer to be used by the LANCE for this packet. It

is used for data chaining buffers.

STP is set by the software and unchanged by the LANCE.

8 ENP - End of Packet
o = Not the last buffer LANCE uses for this packet
1 = The last buffer to be used by the LANCE for this packet. It

is used for data chaining buffers.

If both STP and ENP are set. the packet fit into one buffer and
there was no data chaining. ENP is set by the software and un­
changed by the LANCE.

7-0 HADR - High-Order 8 Address Bits

13- 36

HADR is the high-order 8 address bits of the buffer pointed to by
this descriptor. HADR is written by the software and unchanged
by the LANCE.

Transmit Message Descriptor 2 (TMD2)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

I : : : ~ : : : I
Bit Description

15-12 Always 1. This field is set by the software and unchanged by the
LANCE.

11-0 BCNT - Buffer Byte Count

BCNT is the number of bytes LANCE transmits of the buffer to
which TMD2 points. BCNT is expressed in 2's complement.

BCNT is written by the software and not affected by the LANCE.
The minimum size of the buffer is 64 bytes.

13- 37

Message Descriptor 3 (TMD3)
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 o

I : : : mR: : : : I
Bit Description

15 BUFF - Buffer Error
o = No buffer error
1 = LANCE, during transmission. does not find the ENP flag in

the current buffer and does not own the next buffer. BUFF
= 1 also if the LANCE owns the next buffer but can not
read the next buffer's status parameters before the silo un­
derflowed.

BUFF is set by the LANCE and cleared by the software. If a
Buffer Error occurs, an Underflow Error also occurs because the
transmitter continues to read data from the silo until empty.

14 UFLO - Underflow Error
o = No underflow error
1 = The transmitter has truncated a message due to lack of data

from memory. UFLO indicates that the Silo has emptied
before the end of the packet was reached.

UFLO is set by the LANCE and cleared by the software.

13 RES - Reserved (Always 0)

12 LCOL - Late Collision
o = No collision

13- 38

1 = A collision occurred after the slot time of the channel has
elapsed.

The LANCE does not retry on late collisions. LCOL is set by the
LANCE and cleared by the software.

Bit Description (TMD3 - cont.)

11 LCAR - Loss of Carrier
o = RENA does not go false during transmission
1 = The carrier presence (RENA) input to the LANCE goes false

during a transmission initiated by the LANCE. The LANCE
does not retry upon Loss of Carrier.

LCAR is set by the LANCE and cleared by the software.

10 RTRY - Retry Error
o = No retry error
1 = The transmitter has failed in 16 attempts to transmit a

message due to repeated collisions on the medium. If DRTY
= 1 in the MODE register, RTRY sets after 1 failed
transmission attempt.

RTRY is set by the LANCE and cleared by the software.

9-0 TO R - Time Domain Reflectometry

The TOR shows the state of an internal LANCE counter that
counts from the start of a transmission to the occurrence of a colli­
sion. This value is useful in determining the approximate distance
to a cable fault. The TOR value is written by the LANCE and is
valid only if RTRY is set.

TMD3 is valid only if the LANCE has already set the ERR bit of TMDl.

13- 39

Network Interface External Interconnect
The V AXmate network hardware connects to the network coaxial cable through
a BNC T-connector. The VAXmate network hardware complies with IEEE
802.3 IOBASE2 specifications. The cable shield is isolated from the V AXmate
logic and chassis ground, and must be externally grounded by the interconnect
equipment. The V AXmate workstation does not contain a 50-ohm line­
termination. The 50-ohm line terminator must be supplied externally, as re­
quired by the connection topology.

Network Interface System Bus Interconnect
The hardware interface uses the I6-bit and 8-bit system bus for data transfers.
It operates in both bus master and bus slave modes. In bus slave mode, the
registers respond to 1/0 cycles. The LANCE registers require I6-bit I/O and
the NI CSR register requires an 8-bit 110. All of the network interface registers
are located in proprietary 110 address space of the V AXmate workstation.
Accessing the LANCE registers can cause extra I/O wait states.

In the bus master mode, the LANCE initiates I6-bit memory cycles to transfer
data, commands and parameters to and from main system memory. The
VAXmate workstation supports both I6-bit and 8-bit memory cycles, but the
network interface supports only I6-bit memory cycles. Although the VAXmate
uses the READY signal to support asynchronous memory cycles, the network
interface supports only synchronous memory cycles. The network interface per­
forms DMA transfers at the rate of 600 ns per cycle.

The network hardware works with standard system memory resident on the
V AXmate CPU module, and with the V AXmate memory option located in the
workstation main box. Accesses to 8-bit memory in the V AXmate expansion
box are not supported by the network hardware. If the memory complies with
the network hardware timing requirements, third-party I6-bit memory in the
expansion box may work correctly.

The interface does not support DMA to the V AXmate video display memory.
The interface uses the full 24-bit physical memory address space and operates
with physical addresses only.

The network hardware uses interrupt line IRQIO, and a special LAN DMA
request line, provided by the CPU Module. The special LAN DMA request line
has higher priority than all DRQs lines on the system bus.

13- 40

802.3 Compatible mode 18-6

80287 error interrupt 15-151

8254 interval timer 6-1
block diagram 6-1
registers 6-8

8259A interrupt controller
initialization command words 3-5
initialization sequence 3-5
input/output ports 3-3

A

operation command words 3-11
registers 3-3

Acknowledge
LK250 keyboard responses 8-31

Active cycle
DMA controller 4-3

Add name for session 18-101

Add node for session 18-120

Address generation
DMA controller 4-5

Address map
input/output 2-4

Alarms 5-12

Alias 110 port addresses 13-5

Index

Alternate status register 12-25

Anomalies
keyboard processing 17-11

ANSI Character Set 17-74

ANSI functions
not supported 17-79

ANSI support
inside a window 17-79

ANSI.SYS 16-5
Cursor control functions 16-5
Erase functions 16-7
installing 16-5
Keyboard key reassignment func­

tion 16-12
Reset mode function 16-11
Set graphics rendition function

16-8
Set mode function 16-10

AnsiToOem 17-55

Asynchronous
communications 9-1

interrupt 15-70
memory cycles 13-40
notification routine 18-90
requests 18-89
serial communications interface

17-62
serial mouse interface 10-2

Index 1

Attribute code 7-6

Auto-initialize
DMA controller 4-4

Automatic LED control 15-108

Available (lRQ15) interrupt 15-151

B

BACKSPACE
to abort compose sequence 17-5

Base and current
address register 4-7
word register 4-8

Basic interrupt 15-132

Baud rate 9-16
mouse 10-2

Beep function 6-18

Begin virtual mode function 15-96

Bell sound 6-18
Bits

DMA controller
write all 4-11
write single mask 4-11

Block transfer mode
DMA controller 4-3

Boot block, DIGITAL hard disk
15-134

Bootstrap interrupt 15-133

Buffer overrun
LK250 keyboard responses 8-30

Bus 13-3
16-bit expansion 2-9
16-bit local 2-9
8-bit expansion 2-9
arbitration 13-3
master mode 13-40
slave mode 13-40
timing and structure 2-9

2 Index

Button position 10-3

C

C programming language
subroutines A-I

Call function for session 18-105
Call-back

for datalink
line state change 18-9
user 18-8

for LAT 18-58

Cancel
alarm function 15-140
function for session 18-97

Cascade mode
o MA controller 4-4

Case conversion tables 16-29

Cassette input/output interrupt 15-88

Change register 11-6

Character
code 7-6
count 17-77
count function 15-114
pattern 7-9
position mapping 7-7
set provided in the custom font

17-74

Check for presence of session 18-96
ClearCommBreak 17-65

Clock tick interrupt 15-5

Close
datalink portal 18-20
device function 15-89
LAT session 18-67

CloseComm 17-64

CloseLat 17-68

CMOS configuration
updated 14-10

CMOS RAM
shutdown byte read during hard

reset 14-13

Coax transceiver interface 13-2

Color
map functions 15-32
select register 7-39

COMlIserial interrupt 15-6

COM2/modem interrupt 15-6

Combination keys 15-107
break 15-108
extended self-test 15-108
pause 15-108
print screen 15-108
system request key 15-107
system reset 15-107

Commands
counter-latch. three-channel

counter and speaker 6-12
disable keyboard, keyboard­

interface controller 8-12
diskette drive controller 11-19
enable keyboard, keyboard­

interface controller 8-12
incremental stream mode (mouse)

10-3
interface test. keyboard-interface

controller 8-12
invoke self-test (mouse) 10-3
keyboard-interface controller 8-9
mouse (table) 10-2
prompt mode (mouse) 10-3
pulse output port, keyboard-

interface controller 8-12
read port 1, keyboard-interface

controller 8-12
read port 2, keyboard-interface

controller 8-13
read test inputs, keyboard­

interface controller 8-13
read-back, three-channel counter

and speaker 6-13

read. keyboard-interface controller
8-10

self-test 8-12
vendor reserved function (mouse)

10-3
write port 2 8-13
write status register 8-13
write. keyboard-interface controller

8-10

Command and result register sets
diskette drive controller 11-20

Command codes
disable autorepeat 8-24
disable key scanning and restore

to defaults 8-28
echo 8-26
enable autorepeat 8-24
enable key scanning 8-28
enter DIGITAL extended scan

code mode 8-23
exit DIGITAL extended scan code

mode 8-23
invalid commands 8-23
keyboard mode lock 8-25
keyboard mode unlock 8-25
LEOs on/off 8-26
LK250 keyboard 8-22
request keyboard id 8-23
resend 8-29
reserved 8-25, 8-26. 8-29
reset 8-29
reset keyboard led 8-24
restore to defaults 8-28
set autorepeat delay and rate 8-27
set keyboard led 8-23
set keyclick volume 8-24

Command register 4-9. 10-12. 12-10
keyboard-interface controller 8-5.

8-9

Command state
diskette drive controller 11-18

Communications 17-61

Index 3

connector signals 9-19
extended self-test loopback test

14-10
full asynchronous parallel 17-61
full asynchronous serial 17-61
LAT support 17-62

Communications functions
ClearCommBreak 17-65
CloseComm 17-64
EscapeCommFunction 17-65
FlushComm 17-65
GetCommError 17-66
GetCommEventMask 17-65
GetCommState 17-65
OpenComm 17-63
ReadComm 17-64
SetCommBreak 17-65
SetCommEventMask 17-65
SetCommState 17-65
TransmitCommChar 17-64
WriteComm 17-63

Compose sequences 16-23, 17-4
aborting 17-5
default set 17-5
handling 17-4
how recognized 16-23
pointer table

format 16-24
use 16-24

translation table
format 16-24
use 16-24

two key 17-5

Configuration list 14-11
display 14-11

Console server identify self 18-42

Constant values
DMA controller
programming example 4-15

Control Panel 17-6

Control register 11-3
register A 7-41

4 Index

register B 7-43
registers 7-3, 7-41, 7-43

Control signals
speed indicator 9-17
speed select 9-17

Control word register 6-11

Controller
functions 13-2
keyboard-interface 8-1

Counter and speaker example 6-20

Counter signals 6-3

Counter-latch command
three-channel counter and speaker

6-12

CPU 13-3

Creating keyboard map tables 16-22

CRT Controller 7-3

CRTC registers
data 7-25
index 7-25
register RO 7-28
register R1 7-28
register RIO 7-33
register R11 7-34
register R12 7-34
register R13 7-34
register R14 7-35
register R15 7-35
register R16 7-36
register R17 7-36
register R2 7-29
register R3 7-29
register R4 7-30
register R5 7-30
register R6 7-31
register R 7 7-31
register R8 7-3
register R9 7-33

Crystal oscillator 13-4

CTI - see coax transceiver interface

13-2

Ctrl and Alt keys
Del keys used for soft reset 14-12
with Home key for diagnostics

14-10

Cursor control functions 16-5

Custom LA T application interface
17-66

Cylinder number
high register 12-S
low register 12-S

D

.DEF files 17-10, 17-72

ID for LAT IS-55

Data
controller 13-3
link interface 13-1
structures accessed by LANCE

13-3
transfer 13-40

Data exchange for LAT 18-58

Data registers 7-39, 11-5, 12-3
accessing 7-26
keyboard-interface controller S-5

Data structures
DMA controller
programming example 4-17

Data transfers
DMA controller 4-4
rate register 11-6

Datagrams 18-113
defined 18-83

Datalink communication block (DCB)
18-7

functions 18-11
close a portal 18-20
deallocate buffer 18-26

disable a channel 18-38
disable multicast address 18-22
enable a channel 18-37
enable multicast address 18-21
external loopback 18-41
initialization 18-15
MOP start and send system ID
18-45
MOP stop 18-45
network boot request 18-36
open a portal 18-17
read channel status 18-27
read counters 18-32
read DECparm address 18-39
read portal list 18-29
request transmit buffer 18-25
set DECparm string address
18-40
transmit 18-23

overview 18-5
parameters 18-16
port driver 18-5
program example 18-46
read portal status 18-30
receive 18-10
return codes 18-12
transmit 18-10
user call-back routines 18-8

Date and time structure 16-3, 16-4

Dead diacritical keys 16-24, 17-4
how recognized 16-24

Deallocate buffer for datlink 18-26

DEC private RAM
powerup test checks 14-8

decfuncadd 18-120

decfunccheck 18-119

decfuncdelall 18-126

decfuncdelname 18-122

decfuncdelnum 18-121

decfuncreadindex 18-125

Index 5

decfuncreadname 18-124

decfuncreadnum 18-123

DecGetKbdCountry 17-8

DECnet DOS session level interface
13-1

DECparm address string 18-40

DecSetAutorep 17-7

DecSetComposeState 17-5, 17-9

DecSetKClickVol 17-7

DecSetLockState 17-6

DecSetNumlockMode 17-10

DECWIN.H 17-85

Delete
entry given node name for session

18-122
entry given node number for

session 18-121
name for session 18-102
node entries for session 18-126

Demand transfer mode
DMA controller 4-3

Device is busy function 15-98

Diagnose command 12-21

Diagnostic initialization procedure
14-12

hardware initialized 14-12
memory sized 14-12

Diagnostic loopback 9-10

Diagnostics
extended self-test 14-10
hard reset 14-13
keyboard-interface controller 8-4,

8-12
powerup test 14-1, 14-8
processor board tests 14-14
ROM 14-1, 14-8
ROM extended self-test 14-10
soft reset 14-12

6 Index

DIGITAL
function check for session 18-119
hard disk boot block 15-134
input register 12-26
session control block IDSCBI

18-85, 18-88
session functions 18-118

DIGITAL extended functions
extended codes and functions

15-116
set modem control 15-85

DIGITAL extension functions
character count 15-114
extended mode 15-77
key notification 15-111
keyboard buffer 15-115
keyboard table pointers 15-120
parallel port retry 15-131
printer type 15-129
redirect parallel printer 15-127
request keyboard id 15-118
retry on timeout error 15-86
return days-since-read counter

15-140
return DIGITAL configuration

word 15-99
send break 15-84
send to keyboard 15-119
set baud rate 15-87

DIGITAL extension interrupts
basic 15-132
bootstrap 15-133
local area network controller

ILANCE) 15-149
mouse port 15-150

Direct memory access and LANCE
13-3

Disable
autorepeat keyboard-interface con­

troller command codes 8-24
channel for datalink 18-38
key scanning and restore to

defaults 8-28
keyboard command 8-12
multicast address for datalink

18-22

Disk input/output (110) interrupt
15-38

hard disk errors 15-40
hard disk functions 15-40
hard disk parameter tables 15-41

Disk parameters 16-14

Diskette
errors 15-59
functions 15-59
parameter tables 15-59

interrupt 15-143

Diskette drive controller
change register 11-6
command and result register state

11-20
command register 11-7
command state 11-18

commands 11-19
control register 11-3
D 11-17
data register 11-5
data transfer rate registers 11-6
DMA mode 11-1
DTL 11-16
EOT 11-16
execution state 11-20
extended self-test loopback test

14-10
GPL 11-16
H 11-15
head/unit select register 11-8
hlt/nd 11-15
internal registers 11-7
main status register 11-4
N 11-16
NCN 11-17
operational states 11-18
PCN 11-17
programming 11-18

programming example 11-27
R 11-15
register sets for

format track 11-24
read data 11-21
read deleted data 11-22
read id 11-23
read track 11-23
recalibrate 11-26
scan equal 11-24
scan high or equal 11-25
scan low or equal 11-25
seek 11-27
sense drive status 11-27
sense interrupt status 11-26
specify 11-26
write data 11-21
write deleted data 11-22

registers 11-2
result state 11-20
result state

invalid commands 11-20
SC 11-16
srt/hut 11-14
status register 0 11-9
status register 1 11-10
status register 2 11-12
status register 3 11-13
STP 11-17

Diskettes
extended self-test use of 14-10

DispatchMessage 17-4

Display
on VAXmate 17-73
processor 7-3

Divisor latches 9-15

DLL.EXE 18-5

dll close 18-20

dll deallocate 18-26

dll disable chan 18-38 - -
dll disable mul 18-22 - -

Index 7

dll enable chan 18-37 - -
dll enable mul 18-21 - -
dll_ext)oopback 18-41

dll init 18-16

dll network boot 18-36 - -
dll_ open 18-17

dll_readecparm 18-39

dB read chan 18-27 - -
dB read counters 18-32 - -
dll_read _plist 18-29

dB_read _portal 18-30

dllJequest_xmit 18-26

dll_ setdecparm 18-40

dB transmit 18-23

DMA channel programming exam­
ples for

disabling 4-22

DMA controller
active cycle 4-3
address generation 4-6
auto-initialize 4-4
base and current address register

4-7
base and current word register 4-8
block transfer mode 4-3
cascade mode 4-4
command register 4-9
data transfer 4-4
demand transfer mode 4-3
idle cycle 4-3
mode 4-12
modes and restrictions 4-1
operation 4-2
priorities 4-6
programming example 4-16

data structures 4-17
disabling DMA channel 4-22
initializing 4-18
opening D MA channel 4-19

8 Index

preparing DMA channel 4-20
registers 4-7
request register 4-13
single transfer mode 4-3
states 4-2
status register 4-11
temporary register 4-14
write all mask bits 4-11
write single mask bit 4-11

DMA mode 11-1

DRQ 13-40

E

Echo
keyboard-interface controller com­

mand codes 8-26
LK260 keyboard responses 8-30

Edit keypad 17-3

Enable
autorepeat 8-24
channel for datalink 18-37
key scanning 8-28
keyboard command 8-12
multicast address for datalink

18-21

Enable/disable
266 character graphic font func­

tion 15-30
additional key codes 17-77

End-of-interrupt command
issuing 3-26

Enter
DEC Mode 17-76
DIGITAL extended scan code

mode 8-23

Erase functions 16-7

Error handling
keyboard-interface controller 8-14
LK260 keyboard 8-31

Error register 12-5

EscapeCommFunction 17-65

Ethernet
CRC bits 13-3
preamble 13-3
sync pattern 13-3
transmission 13-8

Execute controller internal diag­
nostics function 15-56

Execution state
diskette drive controller 11-20

Exit
DEC Mode 17-76
DIGITAL extended scan code

mode 8-23

Expansion box
bus connectors 2-11
operating ranges 2-10
slot power ratings 2-10
technical specifications 2-10

Extended
codes and functions 15-116
mode function 15-77
scan code mode 17-2

Extended keyboard functions
enable/disable additional key codes

17-77
enter DEC mode 17-76
exit DEC mode 17-76

Extended keyboard functions (not
supported)

character count 17-77
get/set table pointer 17-78
key notification 17-77
keyboard buffer 17-77
request keyboard id 17-78

Extended self-test
CMOS configuration update 14-10
diskette drive controller 14-10
double-sided, high-intensity disks

used in 14-10

firmware diagnostics 14-10
hardware initialization 14-10
horizontal bar 14-10
loopback test

on communications 14-10
on mouse serial ports 14-10
on printer 14-10

memory sized 14-10
real-time clock 14-10
video failures 14-10

External loopback 18-41

F

Fetch next character from keyboard
17-75

File structure
LCOUNTRY 16-27

Firmware diagnostics
error codes 14-8
error values 14-8
extended self-tests 14-10
horizontal bar 14-8, 14-10
initialization procedure 14-8
ROM BIOS and 14-8
self-tests 14-8

Fixed disk register 12-25

Fixed priority
DMA controller 4-5

Floppy disk interrupt 15-7

Flow control for LAT 18-58

FlushComm 17-65

Focus
changing for repeating key 17-11

FONT 16-15

Font file structure
FONT. COM 16·17
GRAFTABL.COM 16·18

Font files

Index 9

loading 16-19

Font RAM
accessing 7-9
color map support function 15-31
functions 15-31
programming 7-9

Font sizes
terminal emulation 17-73

FONT. COM
affect on KEYB.COM 16-16
affect on SORT.EXE 16-16
font file structure 16-17

Fonts
description 16-16

Format track 15-66
command 12-17
function 15-47
diskette drive controller

register sets 11-24

Functional description of network
hardware interface 13-2

Functions
datalink 18-11
interrupt vector A-12
LAT 18-64
retrieving characters from a ring

buffer A-16
session 18-91

DIGITAL-specific 18-118
storing characters in a ring buffer

A-16
support for example programs

A-18

GDI 17-2
printer support 17-83

Get
Country Code Function 16-3
current date and time for 5MB

18-128
MS-DOS OEM Number Function

16-3

10 Index

next LAT service name 18-70
status for LAT 18-65

Get/Set Table Pointer 17-78

GetCommError 17-66

GetCommEventMask 17-65

GetCommState 17-65

GetLatService 17-71

GetLatStatus 17-69

GetMessage 17-4

GRAFTABL 16-16

GRAFTABL.COM
font file structure 16-18

Graphics

H

character table pointer interrupt
15-145

device interface 17-2
format memory maps 7-10
mode 7-10

Hangup for session 18-108

Hard disk
boot block, DIGITAL 15-134
interrupt 15-151
parameter tables interrupt 15-146
reset function 15-53
types 16-13

Hard disk controller
alternate status register 12-25
command register 12-10
cylinder number high register 12-8
cylinder number low register 12-8
data register 12-3
diagnose command 12-21
DIGITAL input register 12-26
error register 12-5
features 12-1
fixed disk register 12-25

format track command 12-17
programming example 12-27
read sector command 12-13
read verify command 12-19
registers 12-1
restore command 12-11
SDH register 12-9
sector count register 12-7
sector interleave 12-18
sector number register 12-7
seek command 12-12
set parameters command 12-22
status register 12-23
write precompensation register

12-4
write sector command 12-15

Hard reset 14-13
causes 14-13
shutdown byte 14-13

Hardware
extended self-test 14-10
initializing 14-8
retriggable one-shot 6-4
starting with CtrllAltlDel 14-12
system tests at startup 14-1
triggered strobe 6-7

Hardware interrupts
80287 error 15-151
available (lRQ15) 15-151
clock tick 15-5
COMlIserial 15-6
COM2/modem 15-6
floppy disk 15-7
hard disk 15-151
keyboard 15-5
local area network controller

ILANCE) interrupt 15-149
mouse port 15-150
nonmaskable interrupt 15-3, 15-76
real-time clock 15-148
redirect to interrupt OAH 15-148
serial printer port 15-150

I

110 cycle, wait states introduced by
LANCE 13-40

ICONEDIT.EXE 17-83

Icons
unique 17-83

Idle cycle
DMA controller 4-3

IEEE 802.3 specification 13-2, 13-4
10BASE2 specifications 13-40

Illogical keyboard messages 17-12

In-service register 3-16

Include files
LK250 keyboard A-10
ring buffer control structure A-11
structure declaration A-9

Incremental stream mode command
10-3

Index register
accessing 7-26

Industry-standard functions
begin virtual mode 15-96
cancel alarm 15-140
close device 15-89
device is busy 15-98
diskette

errors 15-59
functions 15-59
parameter tables 15-59

enable/disable 256 character
graphic font 15-30

execute controller internal diag­
nostics 15-56

font RAM and color map support
15-31

format a track 15-47, 15-66
hard disk reset 15-53
initialize

Index 11

asynchronous port 15-72
diskette subsystem 15-61
drive characteristics 15-49
entire disk subsystem 15-42
printer 15-125

interrupt completion handler 15-98
keyboard input 15-109
keyboard state 15-110
keyboard status 15-109
move a block of memory 15-93
open device 15-89
read

character and attribute at
cursor position 15-19
current video state 15-27
cursor position 15-14
long 15-50
long 256 byte sector 15-58
one or more disk sectors 15-44
one or more track sectors 15-63
pixel 15-24
real-time clock 15-137
system clock 15-136

recalibrate drive 15-55
receive character 15-74
return

asynchronous port status 15-75
change line status 15-68
current drive parameters 15-48
drive type 15-57, 15-67
printer status 15-126
RTC date 15-138
size above one megabyte 15-95
status code of last 110 request
15-43, 15-62

seek to specific cylinder 15-52
service system request key 15-91
set

a wait interval 15-90
alarm 15-139
color palette 15-22
cursor position 15-13
cursor type 15-12
page 15-16

12 Index

real-time clock 15-138
RTC date 15-139
system clock 15-136

termination 15-90
test drive ready 15-54
transmit character 15-73,15-124
TTY write string 15-28
verify one or more disk sectors

15-46
verify one or more track sectors

15-65
wait (no return to user) 15-92
write

character and attribute at
cursor position 15-20
character at cursor position
15-21
character using terminal emula­
tion 15-25
long 15-51
one or more disk sectors 15-45
one or more track sectors 15-64
pixel 15-23

Industry-standard functions with
DIGITAL extensions

set drive and media type for
format 15-69

set video mode 15-10

Industry-standard interrupts
80287 error 15-151
available (lRQ15) 15-151
diskette parameter tables 15-143
floppy disk 15-7
hard disk 15-151
hard disk parameter tables 15-146
keyboard break 15-141
nonmaskable interrupt 15-3, 15-76
print screen 15-4
read configuration 15-35
read light-pen position 15-15
real-time clock 15-148
redirect to interrupt OAH 15-148
return memory size 15-37

revector of interrupt 13H 15-145
RTC alarm 15-148
serial printer port 15-150
timer tick 15-141
video parameters 15-142

Industry-standard interrupts with
DIGITAL extensions

asynchronous communications
15-70

cassette input/output 15-88
clock tick 15-5
COMlIserial 15-6
COM2/modem 15-6
disk input/output (I/O) 15-38
graphics character table pointer

15-145
keyboard 15-5
keyboard input 15-101
printer output 15-123
video input/output 15-8
time-of-day 15-135

Initialization for datalink 18-15

Initialize
asynchronous port 15-72
diskette subsystem 15-61
drive characteristics 15-49
entire disk subsystem 15-42
printer 15-125

Input/output registers
video processor 7-22

InquireLatServices 17-70

Installing
ANSI.SYS 16-5
options, extended self-test 14-10

INT 11H support 17-82

INT 12H support 17-82

INT 15H support 17-83

Interface
signals, monitor 7-44
test command, keyboard-interface

controller 8-12

Internal registers
diskette drive controller

C 11-15
command 11-7
D 11-17
DTL 11-16
EOT 11-16
GPL 11-16
H 11-15
head/unit select 11-8
hlt/nd 11-15
N 11-16
NCN 11-17
PCN 11-17
R 11-15
SC 11-16
srt/hut 11-14
status register 0 11-9
status register 1 11-10
status register 2 11-12
status register 3 11-13
STP 11-17

International support
FONT 16-15
GRAFTABL 16-16

Interrupt
completion handler function 15-98
enable register 9-4
identification register 9-6
line status 9-10
modem status 9-10
on terminal count

three-channel counter and
speaker mode 6-4

Interrupt
2A 18-83, 18-91
6A 18-64
6D 18-11

Interrupt 21H
function 30H 16-3
function 38H 16-3

Interrupt

Index 13

address map 2·6
controller register, accessing 3·4
controllers, programming example

3·21
line, IRQI0 13·40
processing 3·18
request lines 3·2
request register 3·16

Invalid commands
keyboard·interface controller com·

mand codes 8·23

Invoke self·test command 10·3

J

Joystick support function 15·91

Jumpers
processor board testing 14·14

K

Kernel 17·2

Key buffering notification enabled
15·113

Key combinations 15·107
break 15·108
extended self·test 15·108
pause 15·108
print screen 15·108
system request key 15·107
system reset 15·107

Key mappings
LK25017·13

Key notification 17·77
enabled 15·112
function 15·111

KEYB.COM. 16·19
how affected by FONT. COM 16·16

Keyboard
break interrupt 15·141

14 Index

buffer interface 8·1
buffer function 15·116
driver 17·2
illogical messages 17·12
input function 15·109
input interrupt 15·101
interface lines 8·12
interrupt 15·5
key reassignment function 16·12
layout, LK250 15·103
LEDs 17·4
LK250 17·2, 8·1
map file structure 16·26
map tables

creating 16·22
MS· Windows extensions 17·5
processing anomalies 17·11
scan codes 15·104
setting user preferences 17·6
state function 15·110
status function 15·109
table pointers function 15·120
translation 15·121

Keyboard extensions
DecGetKbdCountry 17·8
DecSetAutorep 17·7
DecSetClickVol 17·7
DecSetComposeState 17·9
DecSetLockState 17·6
DecSetNumlockMode 17·10
enable/disable autorepeat 17·6
return keyboard nationality 17·6
select compose processing 17·6
select Numlock processing 17·6
set keyclick volume 17·6
set Shift key 17·6

Keyboard handling
inside a window 17·75
outside a window 17·78

Keyboard mode
lock 8·25
toggling 17·4
unlock 8·25

Keyboard remapping 16·19

Keyboard-interface controller 8-1
command byte bit definitions 8-10
command codes

disable autorepeat 8-24
disable key scanning and restore
to defaults 8-28
echo 8-26
enable autorepeat 8-24
enable key scanning 8-28
enter DIGITAL extended scan
code mode 8-23
exit DIGITAL extended scan
code mode 8-23
invalid commands 8-23
keyboard mode lock 8-25
keyboard mode unlock 8-25
LEOs on/off 8-26
request keyboard id 8-23
resend 8-29
reserved 8-25, 8-26, 8-29
reset 8-29
reset keyboard led 8-24
restore to defaults 8-26
set autorepeat delay and rate
8-27
set keyboard led 8-23
set keyclick volume 8-24

command register 8-5, 8-9
commands 8-9
data registers 8-5
diagnostics 8-4
disable keyboard 8-12
enable keyboard 8-12
error handling 8-14
interface test 8-12
keyboard responses

acknowledge 8-31
buffer overrun 8-30
echo 8-30
release prefix 8-31
resend 8-31
self-test failure 8-31
self-test success 8-30

physical interface

to the CPU 8-1
to the keyboard 8-1

port bit definitions 8-3
pulse output port 8-13
read port 1 8-12
read port 2 8-13
read test inputs 8-13
self-test 8-12
status register 8-6
write port 2 8-13
write status register 8-13

Keypad
edit 17-3
numeric 17-3

Keys
N umlock 17-3
reserved under MS-Windows 17-5

L

LANCE
broadcast address 13-22
buffer descriptors, see LANCE

message descriptors 13-27
buffer management 13-17
control and status registers 13-3
control register 13-3
CRC 13-22
CSRO 13-5, 13-6, 13-7, 13-8, 13-18
CSRO-CSR3 13-5
CSR1 13-4, 13-5, 13-6, 13-7, 13-13
CSR2 13-4, 13-5, 13-6, 13-7, 13-14
CSR3 13-4, 13-6, 13-7, 13-15
CSRs 13-5
data buffers 13-3, 13-4
data chaining 13-27
data structures 13-3
descriptor entry 13-27
descriptor rings 13-4
Ethernet data stream 13-27
initialization block 13-3, 13-18,

13-27

Index 15

base address 13-18
mode 13-19

logical address filter field 13-22
logical address mask 13-4
message descriptors 13-27
mode of operation 13-4
physical address field 13-19
physical address mask 13-4
polling 13-27
programming 13-3
programming sequence 13-4
receive and transmit descriptor

rings 13-3, 13-4, 13-28
location of 13-4

number of entries 13-4
receive descriptor ring pointer

field 13-23, 13-24
receive descriptor rings
receive message descriptor 1,

rmd1 13-30, 13-27
receive mode 13-3
register address port 13-5, 13-7
register data port 13-5, 13-6
RMD2 13-32
RMD313-33
status register 13-3
TMDO 13-34
TMD1 13-35
TMD213-37
TMD313-38
transmit

descriptor ring pointer 13-25
message descriptors 13-27
mode 13-3

LANCE - see Local Area Network
Controller 13-2

LANCE interrupt 15-149
LAT

ID switch 18-55
IG switch 18-56
IR switch 18-56
call-back routine 18-58, 18-60
closing a session 18-58
command line 18-555

16 Index

custom application interface 17-66
data exchange 18-58
flow control 18-58
functions 18-64

close session 18-67
get next service name 18-70
get status 18-65
open session 18-66
read data 18-68
send break signal 18-72
send data 18-69
service table reset 18-71

overview 18-54
program example 18-73
service directory 18-56
session control block 18-59
session start 18-57
session status word 18-63
slots 18-57

LAT control blocks 17-62

LA T functions
CloseLat 17-68
GetLatService 17-71
GetLatStatus 17-69
InquireLatServices 17-70
OpenLat 17-67
ReadLat 17-68
SendLatBreak 17-70
WriteLat 17-69

LAT support 17-62

Latches, divisor 9-15

LCB 17-62
number available 17-62

LCOUNTRY 16-27
file structure 16-27

LEDs 17-4
automatic control 15-108
color indications 14-8
during powerup test 14-8
110 board 14-8
memory board option 14-8

processor board 14-8
supported 17-4

LEDs on/off
keyboard-interface controller com­

mand codes 8-26

Line
control register 9-7
LAT state change call-back 18-9
status interrupt 9-10
status register 9-11

Listen for session 18-107

LK250 keyboard 8-1, 17-2
command codes 8-22
control functions 8-3
error handling 8-31
key mappings 17-13
layout 15-103
logical interface 8-2
pass-through mode 8-2
physical interface 8-2
programming example 8-46
responses 8-30

acknowledge 8-31
buffer overrun 8-30
echo 8-30
release prefix 8-31
resend 8-31
self-test failure 8-31
self-test success 8-30

scan codes 8-15
and industry-standard equivalent
values 8-17
translated but not used 8-21

system powerup 8-2
translate mode 8-2
U. S. and foreign legends 8-31

Loadable device drivers
ANSI.SYS 16-5

Loading font files 16-19

Local area network controller 13-2
(LANCE) interrupt 15-149

Local Area Transport

see LAT 18-54

Loop services 18-42

Loopbacks
diagnostic 9-10

M

Main status register 11-4

Maintenance operations protocol
console server identify self 18-42
loop services 18-42
network boot request 18-43
remote read counters 18-43

Mapping
asynch serial comm devices to

LAT services 17-62
character position 7-7
input/output 2-4
interrupt address 2-6
memory 2-3

Memory
sizing

and initializing 14-8
during extended self-test 14-10
without initializing 14-12

use in real mode 14-8
use in virtual protected mode 14-8
three-channel counter and speaker

6-3

Memory map
physical 2-3

Messages
illogical keyboard 17-12

Mode register, 4-12
1 10-10
2 10-11

Mode-dependent values
set cursor type function 15-12

Modem
connector signals 9-21

Index 17

control register 9-9
programming exceptions 9-17
status interrupt 9-10
status register 9-13

Monitor
interface signals 7-44
specifications 7-44

MOP 18-42
start and send system ID 18-45
stop 18-45

Mouse 10-1, 17-61
asynchronous serial interface 10-2
baud rates 10-2, 10-11
button position 10-3
commands (table) 10-2
communication 10-2
data bytes 10-2
encoders 10-1
extended self-test loopback test

serial ports 14-10
incremental stream mode com-

mand 10-3
invoke self-test command 10-3
movement 10-3
port interrupt 15-150
position 10-3
programming example 10-14
prompt mode command 10-3
reports 10-4 - 10-7
request mouse position command

10-3
self-test 10-3
serial interface 10-2, 10-8

command register 10-12
mode register 1 10-10
mode register 2 10-11
status register 10-9

serial interface registers 10-8
transmit holding register and
receive buffer 10-8

Signetics
SCN2261 enhanced
programmable communications
interface 10-2, 10-8

18 Index

transmit holding register and re­
ceive buffer 10-8

vendor reserved function command
10-3

Mouse reports
position (byte 1) 10-4
position (byte 2) 10-5
position (byte 3) 10-5
self-test (byte 1) 10-6
self-test (byte 2) 10-6, 10-7
self-test (byte 3) 10-7

Move a block of memory 15-93

Movement 10-3

MS-DOS Date and Time Structure
16-3, 16-4

MS-Network
compatible session services 18-92
session level interface 13-1

MS-Windows
applications programming inter­

face 17-2
entry points

AnsiToOem 17-55
OemToAnsi 17-58

Mulicast address
enable 18-21
disable 18-22
format 18-7

Multiplex messages 18-6

N

Name status for session 18-103

Network
addressing 18-90
boot request 18-36, 18-43
hardware interface 13-1
interconnect, CSR 13-17

Network interface 13-2
CSR 13-5
external interconnect 13-40

physical 110 ports 13-5
register description 13-5
system bus interconnect 13-40

Network software 18-1
components 18-2
datalink 18-5
overview 18-2

NI - see Network Interface 13-2

NI CSR 13-40

No return to user function 15-92

Nonmaskable interrupt 15-3, 15-76

Normal keyboard functions
fetch next character input from

keyboard 17-75
return current shift status 17-76
test for character available 17-75

Not supported functions
joystick support 15-91

Numeric keypad 17-3

Numlock
toggling numeric keypad 17-3

o

OemToAnsi 17-58

Open
datalink portal 18-17
device function 15-89
LAT session 18-66

OpenComm 17-63

OpenLat 17-67

Operational states
diskette drive controller 11-18

p

Parallel
bit stream, converted by LANCE

13-3

port retry function 15-131

Parameters
disk 16-14

Pass-through mode
keyboard 8-2

Peripheral interrupt controller
initializing 3-24

Pointer
diskette parameter tables 15-143
graphics character table pointer

15-145
hard disk parameter tables 15-146
video parameters 15-142

Poll command 3-17

Port driver 18-5

Portal
close 18-21
defined 18-5
read list 18-29
read status 18-30

Powerup test 14-1, 14-8
LEDs 14-8
RAM checks 14-8
self-test error codes 14-8, 14-10
sequence 14-1

Print screen 15-4

Printer
connector signals 9-20
extended self-test loopback test

14-10
GDI support 17-83
output interrupt 15-123
to Host mode C-12
type function 15-129

Priorities
DMA controller 4-5
rotation 3-13

Processor board
testing 14-14

Processor modes
real mode 14-8

Index 19

virtual protected mode 14-8

Programming
diskette drive controller 11-18

Programming examples
counter and speaker 6-20
datalink 18-46
diskette drive controller 11-27
DMA controller 4-15

constant values 4-15
data structures 4-17
disabling DMA channel 4-22
initializing 4-18
opening DMA channel 4-19
preparing DMA channel 4-20

interrupt controllers 3-21
LAT 18-73
LK250 keyboard 8-46
mouse 10-14
real-time clock 5-15
three-channel counter/timer 6-16
UART (8250A) 9-22
video controller 7-45
modem control 9-17

Prompt mode command 10-3

Pulse output port command
keyboard-interface controller 8-13

R

RAM
system

powerup test checks 14-8

Rate generator 6-5

Read
channel status for datalink 18-27
character and attribute at cursor

position function 15-19
command 8-10
configuration interrupt 15-35
current video state function 15-27
cursor position function 15-14

20 Index

data command 11-21
data for LAT 18-68
datalink counters 18-32
DECparm string address 18-39
deleted data command 11-22
id command 11-23
light-pen position function 15-15
long 256 byte sector 15-58
long function 15-50
node entry given index for session

18-125
node entry given node name for

session 18-124
node entry given node number for

session 18-123
one or more disk sectors function

15-44
one or more track sectors 15-63
pixel function 15-24
port 1 command 8-12
port 2 command 8-13
portal list for datalink 18-29
portal status for datalink 18-30
real-time clock function 15-137
sector command 12-13
system clock function 15-136
test inputs command 8-13
track command 11-23
verify command 12-19

Read-back command
three-channel counter and speaker

6-13

ReadComm 17-64

ReadLat 17-68

Real mode 14-8

Real-time clock
address map 5-3
addressing 5-2
alarm registers 5-12
ahtomatic alarm cycles 5-12
avoiding update cycles 5-13
battery backup source 5-2

data register ranges 5-11
data registers 5-10
extended self-test 14-10
features 5-1
interrupts 5-14
programming example 5-15
register A 5-4
register B 5-6
register C 5-8
register D 5-9
registers 5-3
update cycle 5-13

Real-time clock interrupt 15-148

Recalibrate command
diskette drive controller

register sets 11-26

Recalibrate drive function 15-55

Receive
any for session 18-112
broadcast for session 18-11 7
buffer/transmitter holding register

9-3
character function 15-74
datagram for session 18-115
for datalink 18-10
for session 18-111
message descriptor, see RMD

13-29

Redirect
parallel printer function 15-127
to interrupt OAH interrupt 15-148

Redirector 18-84

Register sets
format track command 11-24
read data command 11-21
read deleted data command 11-22
read id command 11-23
read track command 11-23
recalibrate command 11-26
scan equal command 11-24
scan high or equal 11-25
scan low or equal 11-25

seek command 11-27
sense drive status command 11-27
sense interrupt status command

11-26
specify command 11-26
write data command 11-21
write deleted data command 11-22

Registers
8250A UART 9-2
diskette drive controller 11-2

C 11-15
change 11-6
control 11-3
D ll-17
data 11-5
data transfer rate 11-6
DTL 11-16
EOT 11-16
GPL 11-16
H 11-15
head/unit select 11-8
hlt/nd 11-15
internal 11-7
main status 11-4
N 11-16
NCN 11-17
PCN 11-17
R 11-15
SC 11-16
srt/hut 11-14
status register 0 11-9
status register 1 11-10
status register 2 11-12
status register 3 11-13
STP 11-17

DMA controller 4-7
base and current address 4-7
base and current word 4-8
command 4-9
mode 4-12
request 4-13
status 4-14
temporary 4-14

interrupt enable 9-4

Index 21

interrupt identification 9-6
keyboard-interface command 8-9
keyboard-interface controller

command 8-5
data 8-5
status 8-6

line control 9-7
line status 9-11
modem control 9-9
modem status 9-13
receive buffer/transmitter holding

9-3
special purpose 9-18
three-channel counter and speaker

6-8
control 6-11
system 6-9

video controller
color select 7-39
control register A 7-41
control register B 7-43
status 7-37, 7-38
write data 7-39

Release prefix
LK250 keyboard responses 8-31

Remapping
keyboard 16-19

Remote read counters 18-43

Repeating key
changing focus 17-11

Request
line, DMA 13-40
mouse position command 10-3
register 4-13
transmit buffer for datalink 18-25

Request keyboard id 17-78
function 15-118
keyboard-interface controller com­

mand codes 8-23

Resend
keyboard-interface controller com­

mand codes 8-29

22 Index

LK250 keyboard responses 8-31

Reserved
keyboard-interface controller com­

mand codes 8-25, 8-26, 8-29

Reset
for session 18-98
keyboard-interface controller com­

mand codes 8-29
keyboard led

keyboard-interface controller
command codes 8-24

mode function 16-11
processor 14-13

Restore command 12-11

Restore to defaults
keyboard-interface controller com-

mand codes 8-28

Result state
diskette drive controller 11-20

Retry on timeout error 15-86

Return
asynchronous port status function

15-75
change line status function 15-68
current drive parameters function

15-48
current shift status flag 17-76
days-since-read counter function

15-140
DIGITAL configuration word

15-99
drive type function 15-57, 15-67
keyboard nationality 17-6
memory size above one megabyte

function 15-95
memory size interrupt 15-37
printer status function 15-126
RTC date function 15-138
status code of last 110 request

15-62, 15-43

Return codes

datalink 18-12
session 18-93

Revector of interrupt 13H interrupt
15-145

RMDO 13-29

ROM BIOS
available (IRQ15) interrupt 15-151
basic interrupt 15-132
bootstrap interrupt 15-133
clock tick interrupt 15-5
COMlIserial interrupt 15-6
COM2/modem interrupt 15-6
during soft reset 14-12
firmware diagnostics and 14-8
initialization procedure 14-12
loading operating system 14-12
local area network controller

(LANCE) interrupt 15-149
mouse port interrupt 15-150
nonmaskable interrupt 15-3, 15-76
print screen interrupt 15-4
read configuration interrupt 15-35
real-time clock interrupt 15-148
redirect to interrupt OAH inter-

rupt 15-148
return memory size interrupt

15-37
revector of interrupt 13H interrupt

15-145
RTC alarm interrupt 15-148
serial printer port interrupt 15-150

ROM BIOS 80287 error interrupt
15-151

ROM BIOS asynchronous communi­
cations interrupt 15-70

extended mode 15-77
initialize asynchronous port func-

tion 15-72
receive character 15-74
retry on timeout error 15-86
return asynchronous port status

15-75
send break 15-84

set baud rate 15·87
set modem control 15-85
transmit character 15-73

ROM BIOS cassette input/output in-
terrupt 15-88

begin virtual mode 15-96
close device 15-89
device is busy 15-98
interrupt completion handler 15-98
joystick support 15-91
move a block of memory 15-93
open device 15-89
return DIGITAL configuration

word 15-99
return memory size above one

megabyte 15-95
service system request key 15-91
set a wait interval 15-90
termination 15-90
wait (no return to user) 15-92

ROM BIOS disk 110 interrupt 15-38
diskette errors 15-59
diskette functions 15-59
diskette parameter tables 15-59
execute controller internal diag-

nostics 15-56
format track 15-47, 15-66
hard disk

errors 15-40
functions 15-40
parameter tables 15-41
reset function 15-53

initialize
diskette subsystem 15-61
drive characteristics 15-49
entire disk subsystem 15-42

read long 256 byte sector 15-58
read long 15-50
read one or more disk sectors 15-

44
read one or more track sectors 15-

63
recalibrate drive 15-55
return change line status 15-68

Index 23

return current drive parameters
15-48

return drive type 15-57, 15-67
return status code of last 110

request 15-43, 15-62
seek to specific cylinder 15-52
set drive and media type for

format 15-69
test drive ready 15-54
verify one or more disk sectors 15-

46
verify one or more track sectors

15-65
write long 15-51
write one or more disk sectors 15-

45
write one or more track sectors

15-64

ROM BIOS diskette
errors 15-59
functions 15-59
parameter tables 15-59

interrupt 15-143

ROM BIOS floppy disk interrupt
15-7

ROM BIOS graphics character table
pointer interrupt 15-145

ROM BIOS hard disk
interrupt 15-151
parameter tables interrupt 15-146

ROM BIOS initialization procedure
14-12

ROM BIOS interrupt
02H 15-3, 15-76
05H 15-4
08H 15-5
09H 15-5
OBH 15-6
OCH 15-6
OEH 15-7
llH 15-35
12H 15-37

24 Index

18H 15-132
19H 15-133
1BH 15-141
1CH 15-141
1DH 15-142
1EH 15-143
40H 15-145
41H 15-146
46H 15-146
4AH 15-148
70H 15-148
71H 15-148
72H 15-149
73H 15-150
74H 15-150
75H 15-151
76H 15-151
77H 15-151

ROM BIOS Interrupt 10H 15-8
enable/disable 256 character

graphic font 15-30
font RAM and color map support

15-31
read character and attribute at

cursor position 15-19
read current video state 15-27
read cursor position 15-14
read light-pen position 15-15
read pixel 15-24
scroll active page down 15-17
scroll active page up 15-17
set color palette 15-22
set cursor position 15-13
set cursor type 15-12
set page 15-16
set video mode 15-10
TTY write string 15-28
write character and attribute at

cursor position 15-20
write character at cursor position

15-21
write character using terminal

emulation 15-25

write pixel 15-23

ROM BIOS interrupt 13H 15-38
diskette errors 15-59
diskette functions 15-59
diskette parameter tables 15-59
execute controller internal diag-

nostics 15-56
format a track 15-47, 15-66
hard disk

errors 15-40
functions 15-40
parameter tables 15-41

reset 15-53
initialize

diskette subsystem 15-61
drive characteristics 15-49
entire disk subsystem 15-42

read long 256 byte sector 15-58
read long 15-50
read one or more disk sectors

15-44
read one or more track sectors

15-63
recalibrate drive 15-55
return

change line status 15-68
current drive parameters 15-48
drive type 15-57, 15-67
status code of last I/O request
15-43, 15-62

seek to specific cylinder 15-52
set drive and media type for

format 15-69
test drive ready 15-54
verify one or more disk sectors

15-46
verify one or more track sectors

15-65
write long 15-51
write one or more disk sectors

15-45
write one or more track sectors

15-64

ROM BIOS interrupt 14H 15-70

extended mode 15-77
initialize asynchronous port 15-72
receive character 15-74
retry on timeout error 15-86
return asynchronous port status

15-75
send break 15-84
set baud rate 15-87
set modem control 15-85
transmit character 15-73

ROM BIOS interrupt 15H 15-88
begin virtual mode 15-96
close device 15-89
device is busy 15-98
interrupt completion handler 15-98
joystick support 15-91
move a block of memory 15-93
open device 15-89
return digital configuration word

15-99
return memory size above one

megabyte 15-95
service system request key 15-91
set a wait interval 15-90
termination 15-90
wait {no return to user I 15-92

ROM BIOS interrupt 16H 15-101
character count 15-114
extended codes and functions

15-116
key notification 15-111
keyboard buffer 15-115
keyboard input 15-109
keyboard state 15-110
keyboard status 15-109
keyboard table pointers 15-120
request keyboard ID 15-118
send to keyboard 15-119

ROM BIOS interrupt 17H 15-123
initialize printer 15-125
parallel port retry 15-131
printer type 15-129
redirect parallel printer 15-127

Index 25

return printer status 15-126
transmit character 15-124

ROM BIOS interrupt lAH 15-135
cancel alarm 16-140
read real-time clock 16-137
read system clock 15-136
return

days-since-read counter 16-140
RTC date 16-138

set alarm 15-139
set real-time clock 15-138
set RTC date 15-139
set system clock 15-136

ROM BIOS interrupt vectors 15-1,
15-2

ROM BIOS keyboard
break interrupt 15-141
input interrupt 15-101
interrupt 15-5

character count 15-114
extended codes and functions
15-116
keyboard buffer 15-115
keyboard input 15-109
keyboard notification 15-111
keyboard state 15-11 0
keyboard status 15-109
keyboard table pointers 15-120
request keyboard 10 15-118
send to keyboard 15-119

ROM BIOS printer output interrupt
15-123

initialize printer 15-125
parallel port retry 15-131
printer type 15-129
redirect parallel printer 15-127
return printer status 15-126
transmit character 15-124

ROM BIOS time-of-day interrupt
15-135

cancel alarm 15-140
read real-time clock 15-137
read system clock 15-136

26 Index

return days-since-read counter
15-140

return rtc date 15-138
set alarm 15-139
set real-time clock 15-138
set rtc date 15-139
set system clock 15-136

ROM BIOS timer tick interrupt
15-141

ROM BIOS video
modes 15-10
parameters interrupt 16-142

ROM BIOS video input/output inter­
rupt 15-8

enable/disable 256 character
graphic font 15-30

font RAM and color map support
15-31

functions 15-9
read character and attribute at

cursor position 15-19
read current video state 15-27
read cursor position 15-14
read light-pen position 15-15
read pixel 15-24
scroll active page down 15-17
scroll active page up 15-17
set color palette 15-22
set cursor position 15-13
set cursor type 15-12
set page 15-16
set video mode 15-10
tty write string 15-28
write character and attribute at

cursor position 15-20
write character at position 15-21
write character using terminal

emulation 15-25
write pixel 15-23

ROM diagnostics 14-1. 14-8
extended self-test 14-10
powerup test 14-1, 14-8

Rotating priority

DMA controller 4·5

RTC alarm interrupt 15·148

s

Scan codes 15·102
LK250 keyboard 8·15, 8·17
translated but not used 8·21

Scan equal command
diskette drive controller
register sets 11·24

Scan high or equal command
diskette drive controller
register sets 11·25

Scan low or equal command
diskette drive controller
register sets 11·25

Scroll active page down function 15·
17

Scroll active page up function 15·17

SDH register 12·9

Sector
count register 12·7
interleave 12·18
number register 12·7

Seek command 12·12
diskette drive controller
register sets 11·27

Seek to specific cylinder 15·52

Select
compose processing 17-6
numlock processing 17-6

Self-test command
keyboard-interface controller 8-12

Self-test failure
LK250· keyboard responses 8·31

Self·test success
LK250 keyboard responses 8·30

Send

break signal for LAT 18·72
broadcast ·for session 18·116
data for LAT 18·69
datagram for session 18·114
double for session 18·110
for session 18-109

Send break function 15·84

Send to keyboard function 15·119

SendLatBreak 17·70

Sense
drive status 11·27
interrupt status 11-26

Serial
data 9-1
printer port interrupt 15~150
bit stream, converted by LANCE

13-3
interface adapter 13-2, 13·3

Server message block 18-127

Service
directory 18-56
table reset for LAT 18-71
system request key function 15·91

Session
start for LAT 18·57
status word 18-63
for LAT 18-57
asynchronous notification routine

18-90
asynchronous requests 18-89
functions 18-91

add a node 18·120
add name 18·101
call 18-105
cancel 18-97
check for presence 18-96
delete all node entries 18·126
delete entry given node name
18·122
delete entry given node number
18-121
delete name 18·102

Index 27

DIGITAL function check 18-119
DIGITAL-specific 18-118
hangup 18-108
listen 18-107
name status 18-103
read node entry given index
18-125
read node entry given node
name 18-124
read node entry given node
number 18-123
receive 18-111
receive any 18-112
receive broadcast 18-117
receive datagram 18-115
reset 18-98
send 18-109
send broadcast 18-116
send datagram 18-114
send double 18-110
status 18-99

MS-Network compatible services
18-92

network addressing 18-90
overview 18-83
return codes 18-93
status buffer 18-100
synchronous requests 18-89

Session control block (SCB) 18-85
fields 18-86
for LAT 18-59

Set
a wait interval function 15-90
alarm function 15-139
autorepeat delay and rate 8-27
baud rate function 15-87
color palette function 15-22
country code function 16-3
cursor position function 15-13
cursor type function

Mode-dependent values 15-12
DECparm string address 18-40
drive and media type for format

function 15-69

28 Index

graphics rendition function 16-8
keyboard led 8-23
keyclick volume 8-24
mode function 16-10
modem control function 15-85
page function 15-16
parameters command 12-22
real-time clock function 15-138
RTC date function 15-139
system clock function 15-136
video mode function 15-10

SetCommBreak 17-65

SetCommEventMask 17-65

SetCommState 17-65

Shift key
affect on numeric keypad 17-3

SIA - See Serial Interface Adapter
13-2

Signals
communications connector 9-19
modem connector 9-21
printer connector 9-20

Signetics
SCN2261 enhanced programmable

communications interface 10-2,
10-8

Single transfer mode
DMA controller 4-3

Slots for LAT 18-57

5MB
get current date and time 18-128
overview 18-127

Soft reset 14-12

Software interrupts
asynchronous communictaions

15-70
basic 15-132
bootstrap 15-133
cassette input/output 15-88
disk input/output (i/o) 15-38

keyboard break 15-141
keyboard input 15-101
print screen 15-4
printer output 15-123
read configuration 15-35
return memory size 15-37
revector of interrupt 13h 15-145
RTC alarm 15-148
time-of-day 15-135
timer tick 15-141
video input/output 15-8

Software triggered strobe
three-channel counter and speaker

6-6

SORT 16-30

Sort tables 16-32
creating 16-30

SORT.EXE
how affected by FONT.COM 16-16

Sorting
format 16-30

Special purpose register 7-23, 9~18

Specify command
diskette drive controller
register sets 11-26

Speed
indicator control signal 9-17
select control signal 9-17

Square wave model
three-channel counter and speaker

mode 6-5

Standard applications support 17-74
temporarily suspending 17-79

Standard communication of the
VAXmate workstation 13-2

Startup
diagnostics 14-1, 14-8
diagnostics test modes 14-1

Status
buffer for session 18-100

for session 18-99

Status register 4-14, 7-3, 10-9, 12-23
A 7-37
B 7-38
keyboard-interface controller 8-6

Status response
three-channel counter and speaker

6-14

STDUS.KEY 16-25
changing to 16-25

Subroutines
assembly language A-I

Synchronous requests 18-89

SYSREQ 17-5

System
bus 13-2, 13-40
configuration list

during extended self-test 14-10
newly installed options 14-10

powerup 8-4
RAM powerup test checks 14-8
register 6-9

T

Temporary register 4-14

Terminal emulation
font size 17-73

Termination function 15-90

Test
drive ready function 15-54
for character available 17-76
reports for mouse self-test 10-3

Text modes 7-6
cursor rate 7-8
cursor size 7-8

ThinWire
Ethernet 13-3
interconnect 13-3

Index 29

network interface 13-4

Three-channel counter and speaker
control word register 6-11
counter and speaker example 6-20
counter-latch command 6-12
mode 06-4
mode 1 6-4
mode 2 6-5
mode 3 6-5
mode 4 6-6
mode 5 6-7
mode definitions 6-3
modes of operation 6-3
programming example 6-16
read-back command 6-13
status response 6-14
system register 6-9

Time-of-Day interrupt 15-135

Timer tick interrupt 15-141

Toggling keyboard mode 17-4

Translate mode
keyboard 8-2

TranslateMessage 17-4

Translating
attribute data 7-18
graphic color data 7-18
the keyboard 15-121

Transmit
character function 15-73, 15-124
for datalink 18-10, 18-23
holding register and receive buffer

10-8
descriptor ring pointer 13-26

TransmitCommChar 17-64

Transport error codes 18-95

TTY write string function 15-28

u

UART (8250AI registers 9-2

30 Index

programming example 9-22

Universal asynchronous receiver/
transmitters (8250A UARTI 9-1

User call-back routines for datalink
18-8

v

VAX mate
address decode logic 13-5
diagnostics 13-4
expansion box 13-40
110 board 13-1
110 bus 13-5
110 functions 13-2
memory option 13-40
network software 18-1
video display memory 13-40
workstation

base configuration 1-1
optional components 1-2

Verify
one or more disk sectors function

15-46
one or more track sectors 15-65

Video
input/output interrupt 15-8, 15-9
modes for the ROM BIOS 15-10
parameters interrupt 15-142

Video controller
color select register 7-39
control register A 7-41
control register B 7-43
enhancements to industry-standard

features 7-2
graphic features 7-2
industry-standard features 7-1
programming example 7-45
status register A 7-37
status register B 7-38
text modes 7-6
unavailable industry-standard fea-

tures 7-2
video modes 7-5
write data register 7-39

Video memory 7-3

Video modes 7-5
handling inside a window 17-79
no ROM BIOS

DIGITAL-extended 7-12, 7-14
ROM BIOS

industry-standard 7-11, 7-13
ROM BIOS

DIGITAL-extended 7-15, 7-1G,
7-17

Video processor
input/output registers 7-22
look-up table 7-18

Virtual protected mode 14-8

VT220
additional emulator escape se-

quences C-G
announcing C-8
character set differences C-5
communications differences C-3
DA C-8
DECAUPSS C-G
DECRQUPSS C-G
differences between emulator and

terminal C-2
keyboard differences C-4
printing C-9
SCS CoG, C-7
video differences C-2

VT240
additional emulator escape se-

quences C-13
announcing C-16
character set differences C-13
communications differences C-12
DA C-15, C-16
DECAUPSS C-13
DECRQUPSS C-14
difference between emulator and

terminal C-10

w

keyboard differences C-12
Printer to Host mode C-12
SCS C-14, C-15
video differences C-10

Windows
keyboard extensions 17-5
layer 17-2
reserved keys 17-5

Write
all mask bits 4-11
character and attribute at cursor

position 15-20
character at cursor position 15-21
character using terminal emulation

15-25
long 15-51
one or more track sectors 15-64
one or more disk sectors 15-45
pixel 15-23

Write command
keyboard-interface controller 8-10

Write data command
diskette drive controller register

sets 11-21

Write data register 7-39

Write deleted data command
diskette drive controller register

sets 11-22

Write port 2 command
keyboard-interface controller 8-13

Write precompensation register 12-4
sector command 12-15
single mask bit 4-11
status register command keyboard­

interface controller 8-13

WriteComm 17-63

WriteLat 17-69

Index 31

Reader's Comments

Technical Reference Manual
Volume 1

AA-HD92A-TK

Your comments on this manual will help improve our product quality and usefulness.

Please indicate the type of reader you most closely represent.

o First-time user 0 Programmer 0 Experienced user

o Application user 0 Other (please specify) ____________ _

How would you rate this manual for:

Excellent Good Fair Poor
Completeness of Information 0 0 0
Accuracy of Information 0 0 0
Easy to Read/Use 0 0 0
Usefulness of Examples 0 0 0
Number of Examples 0 0 0
Illustrations 0 0 0
Table of Contents 0 0 0
Index 0 0 0
Format 0 0 0
Binding Style 0 0 0
Print Quality 0 0 0

Did you find any errors in this manual? Please specify by page and paragraph.

Incorrect information:

Information left out:

Hard to understand:

0
0
0
0
0
0
0
0
0
0
0

What suggestions do you have for improving this manual? Attach a second sheet if
necessary.

Name _______________ Title _____________ _

Company Dept. _____________ _
Street City _____________ _

State/Country Postal/Zip Code _________ _
Telephone Date _____________ _

- - - - - Do Not Tea. - Fold Here and Tape - -

~DmDDmD

- - - - - Do Not Tea.- Fold Here - -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2 L12

MARLBOROUGH. MA 01752

111 ••••• 11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1.1 •• 11" ••• 1.11

No Postage
Necessary

if Mailed in the
United States

1

- - - - - - -I
1

I
I
I
I
I
I

Technical Reference Manual
Volume 1

AA-HD92A-TK
Reader's Comments

Your comments on this manual will help improve our product quality and usefulness.

Please indicate the type of reader you most closely represent.

o First-time user o Programmer o Experienced user

o Application user o Other (please specify) ___________ _

How would you rate this manual for:

Completeness of Information
Accuracy of Information
Easy to Read/Use
Usefulness of Examples
Number of Examples
Illustrations
Table of Contents
Index
Format
Binding Style
Print Quality

Excellent
o
o
o
o
o
o
o
o
o
o
o

Good
o
o
o
o
o
o
o
o
o
o
o

Fair
o
o
o
o
o
o
o
o
o
o
o

Poor
o
o
o
o
o
o
o
o
o
o
o

Did you find any errors in this manual? Please specify by page and paragraph.

Incorrect information:

Information left out:

Hard to understand:

What suggestions do you have for improving this manual? Attach a second sheet if
necessary.

Name _______________ Title _____________ _

Company Dept. _____________ _
StreeL City _____________ _

State/Country Postal/Zip Code _________ _
Telephone Date _____________ _

- - Do Not Tear - Fold Here and Tape -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2l12

MARLBOROUGH. MA 01752

111"",11,11""11""1,11,1,,1,1,,1,1,,11,,,,,1,11

No Postage
Necessary

if Mailed in the
United States

- - - - - DoNotTear-FoldHere - - - - - - - - - - -I
1

I
I

