FHP Program Architecture

DOCUMENT NUMBER: 90=000005=01
AUTHIRS: Variouds
DATE: November 6, 1979

ABSTRACT: This document defines those FhP architectural sbstrace
tions visible to the functioning program,

KEYWJURDS: FHP architecture

Lata Gerneral Corporation
Company -bnfidential

FHF Program Architecture

DOCUMENT NJUM3ER: 90=000005~01
AUTHORS: Various
DATE: Novemnper 6, 1979

ABSTRALT: This ogocument vefines those FHP architectural atstrac~
tions visiole to the functionming program,

KEYWURDS: FHP architecture

Pata General Copooration
Company Confidential

Contents

Chapter 1'-1ntrcduction . - N . - - . . . * . . - 1’1
lal UDJeCtS o L=1
1.1.1 Designation e s e s e 8 s e e e« o o 1=
1.1.2 LDQ‘CS' Address « im1
1.1.3 ACCeSS1nq and PFOtect1on « 1™i
leled Proceaure Ubjects e o s+ s+ e+ e e & o = e L=2
leleb Ubjects of Extended TYEE o « « o o o o o o 1=2
loeleb Unject Menagernent e + e« s e s 2 e o e & Ll=g
1.2 Procedure Ubjects « 4+ o o o o o o o s o & o 1=g
le2el InStructions .+ o « & o + o o o o o o o 1=3
1.2.2 Procedures ., 1=3
1.3 UDJeCt QFDt“Ct\Dn - .) » 1-3
1,3.1 bUbJeCts « 1=4

-hapter 2"ObJeCts - 2=1

2.1 OUbject Designation e e o ® e a2 e s 2 = + o =1
Ce2 LOQ*CB] Addresses » « 2=1
2.5 Ubject Protection « . e s s+ e 2 s & =« « o £€=1
2.4 Ubject Accessing Functsona e s e e 2 » = = s a E=¢
dedel Write.object « 4 & o e o & s e e o o o £=2
2.“-2 Reajhapject . . L] . - L] . . » » L - . 2-5
celdad FetCh_frommObject » . . E%4

chapter 5==Procedure Ubject StructuJre e e s s e s e e 5=1

3.1 Introduction e ¢ e« e o e e 2 s e & o o o S=1
3.2 Procedure Ubject H4eader « « o + o o o s s o o 35=1
3.3 Entry Descriptor « 4+ 4 o e o e « e o s & o 5=m5
3.4 Arq \Wfaharray » . - . . S=4
3.5 Procedure Environment 0escriPtor « +« + o o @« &« o 3=8
3'6 Instruct’ans .) - - 3"10
5 b i Upcooe) 3'10
5,0p.2 Uperands e s e e« o s e s s e s e & B=10
5 6-2 1 Name Oyllables . . - . » 5'11
3-65212 LTtera‘s . - » - . » » - 3'11
3.6.2.3 Kelative Branches .+ « 2 o o o« s o o « S5=11
3.6.2.4 A0solute 3ranches « o + « o =+ o o o » 5=11
3.7 PO\ntePS - . » . . » . - - - . . 3'18
3.3 Associative AJOressing « o+ « 4« o o o s o o o 5=14
1516248
1d/Non/ 79

vatea General Corporation
Comoany Confidential:

Contents 2

5'501 The Assaﬁiated Address TaDJa - - . 3'14
3.8.2 get_@ssociated.address « « s o s o e o o & 3=15
5.9 ReferanCi\g Static Data S=1b

Chapter d==Architectural Hase HegiSters « « o & o o o o 4=1
Holel Frane Paﬁﬂter - 4
4.1.2 Static Lata Fointer . . » . . . - . . . o H
4.1.3 Proczedure Bas2 POINter « « « s o o o o« o« o« 4

Chapter S5==Name Table and Name Kesolution « « « o « o =« 5=1
5.1, WName Tanle Entries and Nane Table Fields .+ .+ o+ =« o 5=1
5.2 Address Resolution e e« o e s s+ s+ e e e e « >=5

52«1 Resolution of a Name f[eole Entry e+ s+ s+ = e+ s DOmb

5.2.2 BASE Fie]d - L) . - [. . .) . . » . . 5'b
S-S OISPLACEMENT Fie]d Y L] [] L] » [] . L] L] - . [] s.b
S.4 INDEX_NAME Field o« o « s s o & o e« o o & o« 5=i
5-5 IES Field » . 5=
5-6 LENGTH Field . » » . » . . . » . 5=7
S5e7 Nama Taolz Entry EVB‘uatian . » . . . L} * . . S5=8

Chapter b’"TPaCing FaCi]itY « £71

6.1 Trace Uata Structures e » & e s & e e o s e &=}
6a.1a1 Trace Fointer - - b=¢g
bele?2 Traze Table Header .« +« & o o s s+ o o o = b=2
6.1.3 Trace lables - b=4
beled Class=Soecifiz Trace Zvent Tadl2s o+« & o o o o 6%

bqleugl 3'Up Trace Event Table =5
5elede2 Name Resolve/Evaluate Trace Eveat Tavle . . o ©=6
balatded Procedure Transition Trace Zvent Table ., . . o=b
b.l.4.,4 Data Store/Fetch Irace Zvent laple e o s+ o O=8

6.2 Considerations For SPRINT &+ &« & o s 2 o « o o ©=9

be3 Access to Macrostate o . + o o s o = o & o & b=10

6.4 Debugger/Namespace FUNCLIiONS « « o« o o+ o o o+ « &6=10
belhel Get _Current _FP (current fo) o « o o o o =« o b=il,
b.d4.2 Get_Previous_FP (fpr pPrev_fpPr err) &« o +« « o« o &=11
balded Get_Sdccessor FP (fo,succ_forerr) o+ 4+ « o o o &6=12
b.4.,4 Get_State (fp, State_ptPs €rF) o o o s o o o 6b=12
beldad Sat_state (fpl State-atrl err) . 3 . - . . . O=12
b,4.6 Swap_trace_pointers (new_trace_otr, old_trace.ptr) o=13

6.5 Macro State Definition 4+ &+« 4 & o s 2 & s & 4+ 6=13

15:0:48
14/nov/ 179
lbata General Corporation
Company Confidential

Contents 3

~i
]
.

“hapter 7~=Exca2ption Conuirtions, Faults, a~gd SIGVALS . e e

Introduction

7.1 » . 1=1
7.2 LOﬁd1t13ns « I=1
7.2.1 lLLEGAL S UP - 7=1
Tw2.2 lLLEGAL_ U’ERAVU bYLLAﬁLu 1Zﬁ « e« e e s s o I=2
72,3 NAME UUY UF RANGE) . . « [=¢
7244 lLLEGAL EAR TRAP . o« o e & e e s s o 1=2
Teced INCUNblSTENT NAME _TABLE ENTHY e s« s e e o I=5
7waob lQVALID PJIVT R - . - » 7'5
Te2.7 INVALID_ENTRY UEbCRIPTUR « & e+ o e o o e o [=4
7-208 IQVQLIU S I“T HPRETtH 3 . . .] 7'“
- INACIIVE b INTERPRETER » . . . 7=4
T.2610 S0P TQAPﬁ . . e + s e e s o e o I=5
7.2.11 NA“& RESULVt/tVAL TRAL& - - . - "5
7-8.12 JRJC DUR bALL IHALE » []) L) . - » . .] 7-5
7Te2ol3 PRUCEUURE_RETURN,TRACE e o e e e s o e o I=s
7Te2.14 PRDCEDURE,LEAVE_TRAﬁE (=6
7.2015 PRUCEDURE-QtENTER-TRACE 7'/
Te2el6 DATA,FET:H_TRACE o« 1=7
7.&-17 DATA_STURE,TRAL& » . . i-b
712-18 NUVRESDLVASLE-PUIN[E? 7'8
7.2n19 S'ATIC,DATA ») . . . Y - . 7'9

:hapter H==Call ang Return . . . » B=1
8.1 Call . . . » e 8=1
8B.1.1 Phase one = Lomolete_CA.LIRs_Adctivation « « « o 8=1
Bsled Phase two = Loucate_TARGET_Environment . o+ o« o« o 8=¢
Beled Pnase three = Build_TARGET_4ctivation « + o & =« 8=d
bel Return » ° He=h
Be3 Nonlocal 300 & o o o s o » & a2 s s s e o« 8=5
b.3.1 Kkestrictions on Nonlocal Goto e s s = s s s &=5
B.3.2 Semantics ot Nonlocal Gotoy e e s s s e+ s e 8=
ChapteP 9'-S~Languages 9=1
9.1 DPaﬁChes » . . » 9wl
q.l.l Relative 8Panches G=1
9.1.2 Offset BranCh N - . . . - . q'l
9.2 Exception Conditions . .+ =« & =« o o o 2 o 2 o 9=2
9.2.1 Protection EXCeotions + o o o o o e 2 o o 9=2
9.2.2 Namespace EPrrars . o+« o o o o o o + o a o 9=2
9.3 Long Instructions . » o« I=2
9.4 Uverlapping Uperands « « + « e o o o s o o & 9=2
9-5 Definiti0ﬂ :brmat . . » . . . - . . - » . . =3
13:6:48

14/Nov/79

bata General Corporation
Comnany Confidential

. lU=1
« 10=1
. 1U=1
» 10=1
« LU=2
L 10-2
« lu=2
.« 10-3
. 10=3
« 10=3
« 10-3
« 1U=4
« 10=4
. 1U=4

{U

. 1. o € 8 ® 8 % o 2 o s o @

19=5

. L0=3
10=6
1J)=»
10=6
fu=7
10=7
12=3
1u=8
1)=3
10-9
10=3
10=-10
10=10
10=11
10-11
1o=1¢2
10=12
10~-13
1)=14
10=15
10=16
10=10
1)=16
10-17
10=17
10-18

oU IO
Geb Iﬁvalid S=0os \i J:”SJVS
L
oMY
Chapter 10==5PL S=Language =« « o o o o o %. e .
10,1 Data Types and Their Representation « o s e
10,101 Integers) .
10.1,1.1 Jnsigned Integers « « o o o o« o =
10.1'1.2 Signﬁd lntegers - [] . . L - L] .
10.1.2 31tf3triﬁg L3 . . * . . .] . . .
10.1.3 POinters L - - L] . L] ” - L] L] . .
10,1.,4 Tyoed Uperators «+ e« « o o o o o o @
10.2 SPL ExceptiOhS . . . - . . -
10,5 SP.Li S=.bYgJage Uperation Definitions o+ « & &
10.3.1 COHtrol Instructioﬁs -
10,3.,1.1 3RANZH IF INTEGER ZERU .+ o« & o o o
10e301e2 SRANCH IF INTEGER NOT ZERU o« o o o @
1063.143 3RANCZH IF INTEGER LESS THAN ZERU « «
10.3.1.4 BRANCH 1F INTEGER LESS THAN OR EWUAL TU ZtF
10.3,1,5 3RANCH IF INJEGER GREATER THAW ZERU .,
10.3.1.6 BRANCH IF INTEGER GREATER THAN OR EWQUAL TU ZEhUlO 5
10 5 1.7 SRAN:H I;:lNTESEQ :&JA-;. » . . - .
10.3.1.8 BRANCH IF INTEGER NUT EGUAL e s v e
10.5.1.9 3RANCH L1F INTEGER LESS 14AVN .« s e e
10.3,1,10 HYRANCH IF INTEGER LESS THAN UR EQUAL
10.3.,1,11 BRANCH IF BIT SIRINZ ZWJA, T0 ZERD . .
10,3112 BRANCH IF B1T STRING NOT E@UAL TU ZERKU
10,3,1.,13 BRANCH IF BIT STRINGS EUAL 4. - « &
10e3.,1,14 BRANCH IF BIT STRINGS NUT EQUAL . «+ .
10.3,1.15 BRANCH IF BIT STRINGZ .ESS THANY . .+
10,3,1.16 BRANCH IF BIT STKING LESS THAN UR tGUAL
10.3,1.17 DBRANCH IF IV BUJINDS o & 2o o o o @
10,3,1.18 BRANCH IF NOT IN BOUNDS
10,3.,1.19 OSRANCH IF SUBSET . . . » . . o .
10,3.1.20 BRANCH LIF NUT SUBSET e s e o s e
10.3.1.21 BRANCH IF POINTZIR EJUAL e e e s »
10.3.1.22 BRANCH LF POUINTER NOT EQUAL + o o« &
10.3,1.25 FIND FIRST ONE ELSE BRANCH e o e
10.3.1.24 FIND WEXT ONE AND BRANLH o+ o« o o o«
10.3.,1.2> FINJD PREVIUUS ONE AND BRANCH » & o« &
10.,3,1.206 FIND LAST ONE ELSE ERANCH &« o« o o @
10.3.1,27 LJ0O2 DLalN T0 ZERU e « & = e s =
10‘3'1.28 LUUP UP . L] L] . * L] L] L] L] L L]
i0,3I1.29 LSUD K)UNN - » L] L 2 L] * » - L L]
10.,3.1,30 BRANCH IF NULL PCINTER o & o o « @
10.3.,1.31 BRANCH IF NOT NULL!I POINTER s e s »
10.3.,1.52 SELF RELATIVE BRANCH . e e« s+ e
10.3.1.35 PRUCEDURE OBJECT RELATIVE 5%A\Cﬂ . .

2%

Lata General
Company Confidential

Corporation

- - L] » 2 » » . - * . . L] L] * . . » L] L] . L] . L L . L]

* -] . L] - » L] - - » L] » E] L] * » * L] L] L] L] . L] - L

1J=18

133601248
14/nNov /1739

Contents

10.,3,2 Integer Arithmetic and 8it String [nstru
10.3.2.1 CLEAR INTEGER o+ o o o o o &«
10.3.2.2 CLEAR BIT SIRING o o o o o o
10e5%5.2.3 SET INTEGER & o o o o o & @
loﬂsoaia SET SIT S]RING L] L] L] » - L] *
10.3,2.5 SET TU UNE o o o o o o s
10.3.240 COMPLEMENT wWITH JONEZ JPZIRAN)D e e
10.3,2.,7 CUMPLEMENT e e & e =
10e35.2.8 AND WNITH TaC UDE<AMDS s e s e
10.3.2.9 AND L] - L] L] * . L]
10.3.2,10 0OR ALTH TwO uP&QAvus e e e e
10-3’2.11 OR - L] L] - L] L] Ll
10.3.2.12 AND CDMPLEMENT wITH TNU U2ERANDS
10.3.2.13 AND COMPLEMENT s e s s = =
10.3,2.14 EXCLUSIVE UR
10e3.2.,15 NEGATE INTEGEK WITH UVE UPERAND .
10.3.2-16 N GA]— IN[&GER » . - . .
10,3.2.17 ABSULUTE VALUE lNTtGER e e e+ e
10.3.2.18 INCREMENT INTEGER wll+ ONI. JPERAND
10e3.2419 INCREMENT INTEGEFR . . .
10.5.2.20 DECREVENT INTEGER wiTH JN--JP RAND
1003.2-21 U&ﬁHtMCNT lNT&btR . . - - .

f)(% 1003,.2.22 ADD INTZIGER wWITH TW) JPIKANDIS .

L0 10.3.2.23 ADD INTEGLER e & s+ s e = e
[0,3.2.24 SJBTRALT INTEGER AITH TA0 URPERANDS
10.3.2625 SUBTRACT [NTEGER « o o o e
10.3.2.25 MULTIPLY INTEGER wlin TaAU UPERANDS
10.3,2427 MULTIPLY INTEGER « o o o o &
10.3,2.23 DIVIDE INTEGER e & e e s =
10e3,2.29 REMAINDEK INTEGER e s+ s e e

10.3.3 viscellaneous Instructions o+ « «+ «
10.3.,5.1 MOVE BIT STRING s + s 2 s =
10,3.,3.,2 INTEGER MUVE e s e s e s s

. 10.53.3.3 POINTER MUVE e + =& & s e =
‘56 10.3.5.4 CREATE POINTER o o o o o o
1Ve3.3.5 CREATE GENERAL POINTER o+« o o o
10.3,5%.6 STJIRZ NU.L PUOINTZR e s s s »
10,3,3.7 RESERVE o « &4 o o o o o =
1043.5.8 RELEASE o & o « o o o o @
“10.3.4 Architectural Instructions + « + &
10:3.“.1 :.A-L] [] » . L[] - [] L] [] L)
10.3.4,2 RETURN e = e e & + = =

% 10.3.‘;'5 VDD - - - L - - L] E] . L]
Chapter ll==Fortran S=Language « +« e« s a2 « =

11.1

Jata Types and Their Representation

Uata General

Corporation

Lompany Confidential

» L] - - - > » * . L] - L] - * L] - - - * E] L] E] » L] * - - * L] L] - L] L] * . L] . £l - L] .

10-18
10=-18
19=-19
10=-19
10=19
10=19
120=2v
10=20
10=20
10-20
10-21
10=21
10-21
10=-2¢2
19=22
lu=2e
10=23
i0=25%
10=25%
10=24
10=24
10=24
10=25
10=25
10=25
10-26
10=26
1U=¢2o
10=27
10=27
19=28
10-28
1)=28
10=29
1)=29
10=29
10=3%0
10=30
10=30
10=~31
10=31
10=31
10=32

- » » » . o - * - L] L] L] E] » L] . . - » L] L] . . L] - L] » L] L] L L] L] - » L] * * L] L] - -

L] L] L] - - < - - - - - - » . L] L] -» L] - * . - » - . . L] - * ® - L L] * o L] L]] L L] . »

11=1

1i=1

13361248
l4/7Nov /79

Contents 6

Dats General

Corporation

Company Confidential

11.1.1 LUSTCAL - . e Ll1=1
11.1.2 INTEGER 11=-2
11.1.3 PUINTER « 11=3
11.1-4 FLUATING PblN] 11'5
11.1.5 CHARACTER STRING e« o s+ e e e e e & s «)1=d
11.2 FURTRAN Exceptions . « o « ¢ o o o s o o o 1l1=5
11,3 FURTRAN: S=_ianguage Uperation Uefinitions « « o o o 11=7
11.5.1 Control Instructions « « +« « o o o o o o 11=7
1?’3TT71 3RANCZH IF (ZERU « Li=7
37152 BRANCH IF NUT ZERO e 2 s e a4 e e o l1l=7
T173. 1.3 osRANCH IF LESS THAV ZERU e o o e o o o 11=3
3178 BRANCH IF LESS THAN OR EQUAL TO ZERUD e o o l1=8
IT3.1T75 3RANCH IF GRKEATER THAN ZIRJi o e e o o i1=-B
Fto3.7.6 BRANCH IF GREATER ThAN CGR EGQUAL TO ZEHU o e b1=9
11131T:7 dRANCH IF INTEGER EWUAL: « 11=9
TT535.1°8 SBKANCH IF INTEGER NUT EwUAL e e & e e o 1i=9
T4t 9 3RANCH IF INTEGER LESS THAN e s e e e s limlu
M1.3.1.10 BRANCH IF INTEGER LESS THAN OR cGQUAL . o« o 1i=10
Vilo3,1.11 BRANCH IF FLOATING SGJALL & & o & o o o 11-10
11-3-1012 BRANCH IF FLOATING NOT EQJAL e 11=11
Vi1.3.1.13 BRANCH IF FLOATING LESS THaN o o+ o o « o l1=1d
Ula.3.1.14 BRANCH LF FLOATING LESS THAN OR EWUAL o« o o 11=11
;jl.s.l.li‘ BRANCA IF CHARAZITER EQUAL & & o o o o o li=12
v}l.s.l.lb bRANCH IF CHARACTER NUT EJUAL e« s & = e ll=12
11.3-1.17‘ BRANCH IF LHARA ﬁ - L SD THAN 11'1$
“11.3.1.18 BRANCH 1F CHARACTEK LESS THAN OR EWUAL . o 1l=13
—?f???ffrv’ LJ02 J0aAn TO ZERQD 3 . . 11714
TH+37T.2e0 LUOP UP e e e e e e e o li=14
Viled.1e21 ADD AND BRANCH IF L;Sb IHaN U EQUAL o o o+ LI=15
J1.3.1.22 ADD AND BKANCH IF GREATER & o & o o o o 1l=15
14++357T.23% SEUF—RELAFVE—BRIANCH . e+ e e s ll-le
T30 24—PROUCEDURE UBJEGTFRELALLVE- bﬁﬂﬂﬁ e » e o ll=1l6
11.3.,2 Integer Arithmetic and Logical Instructions e o ll=l6
11.5.8 1 <CtEAR - . . » . 1i~16
1l1.3.2.¢ SET » 1i=17
11.3.2.5 Sttt - . . . « 1i=17
11.5.2.4 INJEGER MUVE L1=17
11.3.2.,5 COMPTEFTENT o+ o« o « 2 o 2 o o o o o 11=18
11.3,2.6 TAWD™— ., » o 11=18
11.3%3.2.7 QB’Tm D) s Jl=18
11.3.2.8 XTSI E—OR . . .) e 11=~19
11-3-2.9 EﬁgiiﬁLiié*Fg - . . " . . . L] . - . 11-19
11.3.2.10 Nfﬁﬁl;,lmlﬁa&ﬁ e 11=20
11.5.2.11 ABSﬁtﬁiéW*NIhhbﬁ » . . . - . » . . . 11'20
11.,3.2.12 INgs NI NTE w2 DS &« & & o 11=20
11.3.2013 ; iy | INTE . .) . . » 11=21
11.3.2.14 N0 WEQI INTEG R WIW"‘S‘P‘WS 11!21
11.3.2.15 ﬂé@RﬁMbN4w%N¢Ebfﬁ" l1=2¢
13:0248
14/Nov/ 179

Contents /

11732016 ADD INTESER—allH 2 URPERANDS +« o o o o o ll=22
\f£ri*all1_ﬂAﬁﬂ_llegER e Llm=22
1~;l;ﬁ*lb-éUé4RALl—4Alébtﬂmﬂllhw4“HP&HANDb e o s o L1l=23
11 3 aoliw—iﬁﬁf%%ﬁé-INItﬁtq . . » . . . ']) Py 11'25
TMad.e.20 b PLY TNTEGER W S OPERANDS 11=23
LLrir%r2¢~_MuLliELl~l&LEb&< 11=24
1l53ve.ee LIVIDE INTEGENK ﬂ44h~f~9$%RANua e e « e » ll=24
3225 OIVIDE TWTEGER e e s+ e e« e e e e s Ml=2>b
— e REMAINDER—INTEGER e e« a s s« o & e o li=25
11.3.3 Floating Point Arithmetic Instructions .« .« =+ o 1ll=26
“W1.3.3.1 NEGATE FLOATING e o = & s e e e = & ll=cs
21.3.3.8 ABSOLUTE FLUATING o & &« o o o o « o o L1m=26
1-3.303 MUVE FLUATING - » . » . . . 11'2]
A1.3.3,4 ADD FLOATING wlTH 2 DPIRANIS o o o & o . l1=27
41-3.505 ADD FLOAIING . . . » 11'85
Vil.3.3.6 SUBTRACT FLOATING wllH 2 URPERANDS « o o e 11=28
4105.3.7 SUBTRACI FLUATING 11=28
vile3.3.8 MULTIPLY FLUAIING NITH 2 U2ERANDS A O
v11.3.3.9 MULTIPLY FLUATING o & o o o o o o o o L1=29
VlloS.jolo DIVIDE FLUAIING - 11=30
11-3,4 Character lnstructions . . - . . " . . . 11'50
QSCQDI ﬂUVE CiAQACTERS . . . - 11‘50
Vll-soa.é MOVt SPACES » . » » - . 11'51
11.3.5 Miscellaneous Instructions .+ « + o« o « o o 11=31
leojoSul SET EXCEPTIUN KESFUNSE » . . 11=351
JTe3.5.2 GET EXCEPTLIUN RESPUNSE & o o o« o o o o 1l1=32
TTOESS+3—MoVE—PUINTER— . ¢« o« o« o o o o o o o ll=532

4 O v : s NTET « 11m32
11.3.6 Conversion Instructions .+ o+ o« ¢« & o o o o 11=33
Y11.,3.641 CUNVIRT INTEGER U F.UATING e s & o o o 11=33
At.3.6.2 CONVERT FLOATING TO INTEGER & o & o o o 11=533
11.3.7 Inout/Jutput Assist Instructions « + + s e 11=34
“11e3e7e1 CUNVERT INTEGERK TO CHARACTER bTRINu s e o 11=34
v 1a507.2 HUVV RT -HARACT&Q b'RlVb TJ INTthR . . . 11?5“
1e%5.7.3 CUNVERT FLUATING TO CHARACTER STRING e o« o 11=35
11.3.8 Architectural Instructions .+ + o+ &+ « o+ o =« 11-35
4+Tﬁfs~15 CALL . . - . . . - 11”35
'TT—S—E—?- RETURN 11~30
IT b NOP) » « lLi=30

:hapter 12=-=CU30L S'Laﬁguege 12=1

12.1 Data Types and Their kepresentation e s s s e & 12=1
12.1-1 lnteger - » 12'1
12:1.2 Floating Point . » ») . - . 13'1
12.1:3 Jecdinal: « l2=2

1ds1.3.1 Packed Lecimal , » . . le=2
133630458
14/Nov/T79

Data General Corporation
Company Confijdential

Contents 3

12ele3e2 Character Decimal » . . . leg=2
12-1.3.2.1 dnSigneo » 12-3%
12.1.3.2.2 Separate Sign Leading/Trailing « .+ =+ o 12=3
12.1.3.2.3 Overounched Sian Leadiag/Treiling . .+ =« 12=3
12.1.4 Character Striﬂgs 12=4
12.1;5 TpanS]ate Tab]e 19'“
12.1.6 Boolean VeCtor o+ o+ + o o o ¢ o o o o o lo2=4
12.1.7 DOinters - . . . - 12'&
12.2 cogoL Exceptions 12=4
13 2 1 ’PPOF daWd\iﬂQ - - . » 12'5
12.2.¢ txcept1ons - - . . . - 12=5
1¢.3 -030.L1 Jperation)ef1n1t1nns e o o s e s e s = l2=8
l%ig<;g¥;ggtrol INStruCtions e o« « o o o s o o o be=8
=i .1 SRANCH IF ZERU . - 12'5
1é.5,192 ©RANCH IF NUT ZERU e s e s e e e e e lé=s
/Ei;ﬁ:i§3 3RANCH IF GREATER THAN £IRD e e s o e e l2=7
T2+%+1°4 BRANCH IF GREATER THAN UR EWUAL TO £ZERU s . 129
12¢5:T,5 3RANCH IF LESS THAN ZERU o o« & & o o o 12=3
1e3.7.6 BRANCH iF LESS THAN UR ENWUAL TU ZERU . o . le=10
1273.1. 3RANCH IF: INTEGER 2QJA.t e o e o s o o =« 1e2=10
PR BRANCH IF INTEGER wNOT BEWUAL . . s . . . 12=10
e T.9 SRANCH IF INTEGE= LESS THAN e« 2 e s e e 12=11
12edalely BRANCH I1F INTEGER LESS THAN UR EQUAL . . . 12=11
12 3.%’%%M”ﬁﬁﬁvtﬁ“rf~%baﬂliﬂi;;ﬁJA | e e e s e « l2=12
ﬁNﬁﬂ~t?*Ft&#¥+waw&Lw£udAL e e« ® s & e le=1¢
12}3*1“%%““ﬁﬂ#ﬂﬁ+kéﬁw¥tﬁﬁ%fﬁ“ TESS THAN s &« o o s+ =« 12=12
Pedetstd BRANCA TFFLOATLNG LESS FHAN-UR EQUAL o« o o 12=13
%2.5.1.15 EaﬁMCﬂ lF UECiMAL EQUAL . .. » [} » . . 1&'13
Ue.3.1.16 BRANCH L1F DECIMAL NOT EBUUAL » 12=13
Ale3.1.17 BRANCA IF DECIMAL LESS THAN o & o o o o 12=14
vide3.1.18 BRANCH 1F DECIMAL LESS THAN UR EGQUAL . o« . 12-14
1€e3.1.19 BRANCH IF DECIMAL EBJUAL ZZRJ & o o o o o 12=15
Y2.3.1.20 BRANCH IF DECIMAL NOT EGUAL ZERO o o o o le=15
J12 e3,1,21. BRANCH IF DECIMAL GREATEZR THAN ZERU e « & 12=15
12.3.,1.22 BRANCH IF DECIMAL GREATER THAN OR BEWUAL TU ZERU 2=
Vi2d.3,1.25 BRANCH IF DeECIMAL LESs THAN 2IRJ e s+ o = 12=106
J12.3.1.24 BRANCH IF DECIMAL LESS THAN UR EWUAL U ZERU 12=l6
¢ 5 i . - > s . . . - - 12"1]
- 12'17
- - L * L] 12-16
5 35 = e o 12=18
12.3.1,29 OBRANCH IF CHARACTERS TRANSLATID EWUAL o« o+ o 12=19
1223¢1.50 BRANCH 1F CHARACTERS TRANSLATED LESS THAN . 12=19
012.5 1.31 BRANCH IF CHARACTZIRS TRANSLATZID NJT EBJUAL . 12=20

12.3.1.32 BRANCH 1F CHARACTERS IRANSLATED LESS THAN OR EUWUAL
gxe.s 1,35 BRANCH L1F IN SET & o o o o o o o o« o 12=2i
12.3.1.34 BRANCH IF NOT IN SET . e e s e e« . le=21
J12.3.1.33 BRANCH IF CHARAZTERS SPACIS o+ o o o o . 12=22

13:60:408
14/Nov /77
Ubata General Corporation
Lompany Configential

J2e.3.1.56
Lev3stos7
1273133
A T R N
12%3.1.40
1
12.5.2
Adededot-
1&e5.2.2
12+3+243
12 3.2.4
/ifi 5
v3.2) 6
12¢347
&é; . 08
le.3¢2.9
127357201
IET%T?TT{

d2.3.2+42

Fev3. 215

212.3.2.14
A2.3,2.15
12.3.3

Integer Arithmetic Instructions:

Floating Point Arithnetic

BRANCH IF CHARAZITZRS Ul
LUOP VUWN 10 ZERU . s
PERFURM L] L] L L] L L
PERFORM END . . .
SELF RELATIVE BRANC# o .

PROCEDURE UGBJECT RELATIVE BRAT

5PACIS

a 8 e s o

CH

MOVE INTEGEK e + e s e
SET TU UNE & o o o o @
ABSULUTE INTEGER .+ o+ o
VEGATE INTEGER «
INCREMENT INTEGER NIIH Umt DPtRAQD
JECRIMENT INTEGER AITH UNE OPERAND
ADD INTEGER WITH 2 OPERANDS o .
ADD INTEGER . . .
SUBTRACT INTEGER wITH 2 JPERANDS .
SUBTRACT INTEGER o o o .
MULTIPLY INTEGER WITH £ UPERANDS
MJILTIPLY INTEGER o o & & o &
DIVIDE INTEGER v e s s e &
SCALE INTEGER BY 10 « & & & &
SCALE INTEGER WITH ROUNDING o
Instructions

s 8 2 8 e e e o

L] - [] L] L]

12.3,3.1 MUVE FLUATING & o « o o o
12.3.%.,2 ADD FLOATING wITH 2 OPERANDS .
12.3.3.5 ADD FLUATING e+ e s+ e
12.3.3.4 SU3STRAZT FLOATING NLTH 2 0PERANDS
12.%3.3,5 SUBTRACT FLUATING o o o o o o
12.3.3.0 FLUATING NEGATE e e e e e e
12.3.3.7 MULTIPLY FLUATING wITH & UPERANDS
1203.3.8 MULTIPLY FLOATING o o o o o o
12.3.3.,9 DIVIDE FLUATING e e s e e

12.3.4 Decimal Arithmetic Instructions o e

vicde3.441 CLEAR DEULIMAL o o o o o o
J12.3.,4.2 SET DECIMAL TO OVE e e e e e
M2.3.4.3 MOVE DECIMAL e e e s e e e
v12.3.,4.4 NEGATE DECIMAL o o .
J12+3.4.5 INCREMENT DECIMAL WITh GNE OPERAND
J12a.3.4.6 DECREMENT DECIMAL AITH ONE OPERAND
12.3.4.7 ADD DECIMAL WITH & UPERANDS . .
12.3.4,8 AaD) JEZIVAL , c . e e .
12.3.4.9 SUBTRACT DECIMAL WITH 2 UPERANDS .
jzz.z.u.:a SUBTRACT DECIMAL. . . .
J1€e.3.4.,11 MULTIPLY DECIMAL WITH 2 "UPERANDS
V12.3.4,12 MULTIPLY DECIMAL o o o o o =
J12.5.4.13 DIVIDE DECIMAL s e s s e .
o 2.30“.14 DLALE UECIMAL . - - . .

2.3.4.15 SCALE OECIMAL WITH KUUNDING . .

Data seneral [orporation
Company Confidential

- . » . * » L] L4 L . * - * * * L] * - » - ® - - - L] L] L] - » - * - L] * * L] L] L] L] * - * - 2 . - * L]

Contents

L] L - . * L] L] - . * L] - - - L] - - - LIS » - . » L] - - . L L] * L] L] . » L] * . L] ” - L] L] * L] L] -

ig=2¢
12-23%
12=23
12~23%
12=24
12=24
12=~24
12=24
12=25
12«25
12=25
12=26
12=2o
12=26
12=27
12=27
12=27
12-28
12~28
12=28
12=29
12=¢9
12=50
i2=30
12=30
12=30
12+~31
12-31
12=32
12-352
12=32
12=33
12=35
12=53
12=33
12+54
12=354
12=34
12=35
12=35
12~35
12~ 36
12=36
12=36
12=3%7
i2=37
12=38
12=3%08

. . » » » - * » » L] » » - L] 2 - - - » L] - . » - * L] L] L] - - . E] L] L] L] L] - » » . - . . L * L] L] L]
L] - » * » * L] . » * * * * » » - L] - - * . - L] . » 2 » » L] » L] 2 - L] * L] L L . - - » L L] * L] * »

1326248
14/Nov/ 719

Contents 10

12.3.5 String Instructions e o s e« o & s e e o 12=38
12.5.5.1 YWUVE FROM SU3STRINS 12=39
12.3¢b'£ MOVE TO SUBSTRING 12=39

J12.5.5.3 M0VE SUBsrRING « 12=40

Ji2. 3.5.4 SCAN SUBSTRING . . . - . » - 12=40
\h}’5“575“‘48VE’6ﬁAaA€$tRS o 12=41

wﬂﬁ.ﬁ 5 6 MUVE SPACES) . . . L] . . 12=41
AP35+ MOVE CHARACTERS TRANSLATID ¢ « o« o o o o i2=42

|/la 3 5.8 t-DlT LﬁARALTERS - 1&'“8
vid.3.5.9 EDIT NUMERIC e« e ¢ s s e = s e & e 12=43

12.3.6 Miscellaneous Instructions .+ « « « s o o o Ll2=45
12.3.6.1 INITIALILE - 12=46
12.3-@-2 CLEAR e 1é=4o
‘+&T;ﬂydk :ONVERT INTEGER TU FLUATINS L) - 12'36
t2sdvb.p CONVERT FLUATING TO INTEGER e e s o e o l2=47

v12.3,06,5 CSUNVERT INTEGER TO DECIMAL & o o o o o o 12=47
u2-30606 CONVERT DECIMAL T0 lNTEGER » L . 12=47
U2edebe? CUONVIRT FLOATING TO DECIVA, e e+ e o s s L2=438
¢2.3.608 CU“VERT JtC1MAL TU FLUATLNG . . . - . - 13'“8

12.3.7 Size Error Instructions o« o« o « o ¢ o o o l2=48
12.3.7-1 LLEAR SIZE ERROR - L] . . . 12-49
18e84¢742 SET SIZE ERROR o« o o o o s s o o o o 12=49
12.5-7-3 CHECK MUVE lNTtGER - . 12=49
1203-7.4 :HEC(WUVE DECIMAL . » . . . L] . . . 12'50
1203-7.S ﬁRANCﬂ iF NG SIZE tRRGR L] - . . L] . L] » 1#-50

12.3.8 Architectural Instructions « « + & o o« o o 12=30
12.3.u.1 CALL . . . » . . . - 12=50
12.3.1¢2 QEIURN - - . - . . - . 12'31
12-3.6 3 NUP - - 12-31

13:6:45
14/Nov/ 79

Data General Corporation
Company (onfidential

G:t35:706
3/Nov/ 9
Rev. 1
Data General Corsoration
Company Confidential

Chaoter 1
Introduction

1.1 Jdbyects

Ubjects are the basic units of storage 1in the FHF system.
iach opject is distinct from all other oojects and is Jnaividually
addressed and protecteu. The primary use of an opject 1is as a
container of data., £Each opject ze= contain from 0 to 2xxs2-1 Dbits
where each bit 1s directly addressable,

ielel Designatipn

bEach object is identified by a8 unigque 80U bit name or unigue
identifier (UlJ2). UID’s are unigu2 across alil FAP systens for all
time; they are never reuseg, 32 of the B0 Ul bits designate a
Logizael Allocation Unit (LAU), the movabie unit of storage 1n the
FHP system. This 32 bit LAU identifier is also unigue across all
FHP systems, Ihe renaining 48 bits of the UID gesignate the object
serial number (USN)., USN’s are unigue within each LAU,

1.1.2 .bgical Aogdress

The directly acgdressable virtual memory of an FHF system
allows cx*x8U odpjects where each object is directly addressable to
each of 2xx32=1 bits. A logical aadress is comnposed of & combined
JIDs, Dit offset 2air of: 112 Dpits,. This zoastitutes a siagle,
fairly large address space which is useo by all FHP systems; there
is only one address space tor all systems for all time, Each time
the virtual memory is accessed four jtems must be providea: cobject
fanre i~ the form of UID, offset of the first bit to oe referencad,
number of bits to be referenced and function which is usually read
oFr write.

l.1.5 Accessing and Protection

Uojects are used for two primary ourpdses: to store data for
future processing and to store 1instructions, fhere are three
fundamental operations that can oe perform2d on an object: read
bits, write bits and fetch instruction bits, Each function must be
explicitly allowed for each object. This 18 done Dy attaching

9:35:20
5/Nov/ 79
Keve 1
Data General Corosoration
Company Confidential

1.105% Azcessing and Pprotection 1=-2

read, write or execution permission tc each object., A procedure
opjezt (PU), one which may serve as an 1i13struction sourze, must
posses the execute cr E attripbute. A data object may posses read
(R) opr write (A) attriputes to allow rezading or w~riting,

1.1.4 Proceaqure Ubjects

A procedure Object 1s used as a source of instructions,
Instructions are retrieved from a procedure object, interpreted
(bit settings decoded to derijve semantic intent) and appropriate
action taken by an entity called an S~-Interpreter. Frograms stored
in procedure odjects control actions taksn by an FHF system via
S=Interpreters. Multiple, distinct instruction sets are possible
Jiving rise to an S=Interpreter for 2ach, Eacn distincti instruc=-
tion set is celiled an S~Language.

lele> Ubjects of Extended Jype

Objects used for storing data and instructions are primitive
type oonjects; only the three pprinitive oderations mentioned obefore
are possible for them, FHF allows for the construction of objects
ot extended tyoe (ET0) so that data ccnstructs of 2 more abstract
nature can be referencea. EtETU’s are referenced by theipr UID’s but
arpitrary functions as well as datum desjgvations can »2e define
for each type.

An ETJ is the instance of a given tyse w~hile an associated
extended type manager (EiM) is a set of procedures which implements
the 2xtenaged o2erations of the typz.

1.1.6 Ubject Management

In addition to the access functions, 3 set of functions are
provided which allow for the management of objects. Ihese 1inciude
the ability to create2, delete and zontroli acsess to ovjezts of botn
primitive and extended types.,

1.2 Procedurs Jbjects

A procedure object is like a data object object except that 1t
can serve as an instruction souJrce. In order to, make tais
possible, proceoure objects adhere to a specitic internal
structure, This structure facilitates orda2rly entry int2 the PU to>
the desired set of instructions, the establishment of the correct

9:35:20
S/Nov/T79
Rev. 1
Data General Corporation
conpany -onfidential

1.2 Procedure Ubjects i=3

S=Interpreter.

l1.2.1 Instructions

Each instpruction 1s composed of an 3 bit operation coage
(opcode) ana a number of operand specifications, 1Ihe semantics of
each oocode 1S khown to the aparopriate JS=i terpreter, Uperanad
specifications (called syllables) follow the opcode 1in contiguous
storage. £Zach syllable is 8, 12 or 1¢ bits Ipag and is either a
literal (the operanc in the syliable itself) or is an index into a
table which will comoletely specify the location, size and repre-=
sentation of the operand. The table is called the Naeme Tabtle (NT)
while the injexing syllable is celled a Namz, Ine vane ladle
defines the basic mechanism for total name resolution including
scalar and array access, pre= anij d2ost=indexiny and indirectione.

l.2.2 Procedures

Ahen a orocedure is invoked care must be taken to jasure tnat
the correct environment is provided. 1lhis is done via a structure
called the procedure eavironmnent descripctori (PZD) which locates the
procegure’s S=Interpreter and name table, A PED can be shared by
all orocedures with a common environment.. tach legitinate entry
associated with a given FLU has its own entry descriptor (EU) which
locates where in the PJ instruction execJ4tion 1S to begin. A
single PU may contain multiple PED’s each of which may contain
nultiplie ED’s,

Those entries which are callable from outside of tnhe PU are
defined in a gate list at the peginning of the PU, A& gate is
essentially an ingirection to an EtED somewhere in the procedure
object. The size of the gate list 1s specified 1n a structuJre
called the procedure object header and 1s located at the beginning
of the objeact,

1.3 Ubject Protection

Access oermissions are attached to 2a:zh odject via an Access
Control List or ACL., An ACL exists for weach object and Iists
access rights to the object for each subject. For opjects of
extended type ALL entries are listed in terms of subjects ano the
specific extended operations,

9:35:26
3/ Nov/ 79
Keve 1
Data General Corooration
Company Confidential

le3s1 Subjects 1=4

1.35.1 Subjects

The subject is the pasic unit of authority and accountability
in the FHP system, At any point in time instruction execution 1s
oound to one suJubject. Hence object access rights are comouted 1N
terms of the current subject, A subject 1is composed of four
sederate aJtnhority elenents: priacipal, ordcess, dJomain anao tag.
The principal component 1s an external authority anc in the sim=
>lest case is the "8ne of the Juser usiag the Systen, fhe orogcess
component identifies the current process., The domain component of
the subject ailows users anao systen designers to tie access privi-
leges to the procedure that is being executed. The tag component
allows users to constrdyct arbitrary asrotectdon structures,

9:35:26
3/Nov/ 179
Rev, 1
Data General Corooratijon
Company Configential

9:36:4d3
3/Nov/ 179
Kev. 1
Data General Copooration
Lompany Confidential

Chaoter ¢
Objects

All program 2ddressable data reside 11 objects. An ooject 1is
a named contajiner of data in which each datum 1is physically re=
oresented o2y a number of bits. Aa. opject can coatain u> tD
(2xx32)=]1 pits,

2.1 Ubject ULesignation

An object is named by an 80=bit number known &8s a Unigue
ldentifier, opr UlD. The UID is the only name oy which an object is
known and is unigque 11n both space and time == Ulbs are not
reusable. In order to assure unigueness across all F4F systems
without requiring total communication petween systems, @& UID bhas
two primary conponents: a Logical Alloacatipny Unit identifrer
(LAUID), and an Ubject Serial Number (USN),

R T L P L L L P L R LR

Uluz: | 08n i LAUID i

A X L R L AL R R R LR RN 2 L - -

(48 bits) (32 bits)

A null JID consists of all zerose.

2e.c Logical Agdresses

A logical aJddress cgenotes a bit o2osition in a large, two-
dimensional virtual memory. This virtual memory is composed of up
to 2x*x80 oojects, =ath of which nay nold u> to (2*%x32)=i Dbits of
data. A particular object 1is selectec oy specifying 1i1ts Ulb.
Selecting a particular bit within that odj2ct 1is accom>lished Dby
specifying an offset into that object. An offset 1s an integer 1in
the range 0 « o (2%4%x32)=2. A lo3icel: sodress is & 1llZ=pit psar
(UID,UFFSET). All accesses to virtual memory involve presenting a
logical starting address, a count of pits to oe transfarrea, and
the direction of transfer (read or write)e.

2.3 Ubject Proteztion

Ubjects are protected information containers, Any attempt to
access their contents or attributes s meadiated, The functions
specified in this chapter require specific primitive access permis=

F:36:3435
S5/Nov/ 19
Rev, 1
Data General Corporation
<onpany lbnfidential

2.5 Ubject Protection e=c

sions for their successful completion, If the subject on whose
behalf the function is being performeo does not have the reacuired
access permnissipns the function is adorked with 2 protection
violation before any observation or modification of the object’s
contents or attriputes is made. (Sudjects are discussa2d in Chapter
xxxe) If a function is aborted because of a protection violation
and the supject Joes not have any orimitive ascess pernission to
the object, all the invoking subject can determine 1is that the
object does not exist or it (the subject) does not have any prini=
tive access permission to the object. If the function 1is aborteo
decause the sudject Joes not have the spacific primitive access
required by the function, but it coes have some primitive access
cermission to the object, the subject 1s tola that the odject 0oes
exist and it lacks the required primitive access permission to
cserform the function,

2.4 Ubject Accessing Functions

Ine most conmon (and fundamantal) oserations on o>2jects are
writing and reading the bits they contain and fetching bits from
them for i=strean interpretation, These oderations are invokel by
s=interpreters as part of the process of interpreting s=ops. They
are described here in an abstract: na-lner.

Iype.leclacatians

TYPEL offset_type 1S 0 oo (2 %x* 32)=2;
TYPE ooject_size_type IS 0 ., (& *%x 32)=1;
TYPE opject_igentifier_tyre IS

RECORD
USh: 0 o0 (2 *x 4¥)~-1,
LAUID: I oo (2 %% 32)=]
EnD RECORD BOUND 807

2.441 Arite_object

3yntaxZiaca

PROCEDURE write_object(

F:136:43
5/Nov/ 19
<ev. 1
Lata General Corgporation
-ornpany -onficential

Cel, 1l Wwrite_object c=5

READ ONLY object_r1dentifiers oorject.identifier_typer
READ UNLY bit_offset: offtset_type,
READ UNLY bit.string: pit_string.type)l;

PROPERTLIES INTERFACE:

IND PRJICEDURE write_object;

demnanticsixeaning

The bit string 1s written into the object, starting at oit
offset,
~ccacs

The following errors are detectea. If any occur, the function
is terminated oefore any changes are made,

If the object does not exist or the subject currently bound
to the process executing the fuinction dJoes nNot have wWPrite
access permission teo the object, @ write check fault s
signailled.

l1f (bit offset + LENGTH(bit string)) 1s greater than the
object’s size, an extent check fault 15 signalled.

2.4.,2 Read.object

sxotaxdfaecn

PRUCEDURE read_ooaject(

READ UNLY object_igentifier: object_identitier_tyre,
READ UNLY oit_offset: offset_type,

READ UNLY pit_length: ovject_size_type,s

HRITE ONLY bit_string: bit.string.tyose)s

PRUPERTIES INTERFACE?

END PRUCEDURE read_onject:

Y:i60:43
5/Nov/ 79
Reve 1
Data General Corooration
Company Conficential

2.4.2 Read_ooject =4

denanticsimeaning

The bits from bit oftset to (bit otfset + it length = 1) are
returned.

LrLocs

The following errors are getected. If any occur, the function
is terminated oefore any changes are made.

lf the object does not exist or the subject currently bounad
to the progcess executing the funzction does not have reaa
access permission to the object, a2 read check fault s
signallied.

If (bit otfset + bit length) is grester than the object’s
size, an extent check fault is signalled,

2.4.3 Fetch_from_object

sxotasdlicrn

PROCEDURE fetcn_from_oonject(

REAL OUNLY object_icentifiers: object_icentifyer_type,
READ ONLY odt_offset: offset_tyoey

REAL OnNLY pit_lengthi object_size_type,

ARITE OUNLY bit_string: bit.string.tyoe);

PRUPERTIES INTERFACES

tND PROCEDURE feten_.from_oojects

depantlesdnganing

[he pbits from pit offset to (bit offset + bit length = 1) are
fetched so that they can ve interpreted as j=stream. (Read_.ooject
is used tc tetch name table entries.)

136145
S/Nov/ 79
Rev, 1
Vata General Corporation
conpany lonfidential

2.4.3 Fetch_from_object 2*5

Eccacs

The following errors are detected. If any occur, the function
is terminated pefore any changes are made,

It the ooject does not exist or the supject currently dound
to the process executing the function does not have execute
access permnission to the odbject, 217 2xa2cJ4tion check feult:
is signalled.

If (oit offset + bit length) is grzater than th2 object’s
size, an extent check fault is signalled.

==tnd of -hapter==

936145
5/Nov/19
Rev, 1
Date General Corooration
Company Confidential

Chaoter 3
Procedure Ubject Structure

3,1 Introduction

Procedures are realized through Procedure O(bjects. A pro-
cedure ooject consists ot a Procedure Jbject HMeager, 8 gate list,
S=instructions, name tables, and program data. Procedures callaole
from outside of a given procedure ooject are called external entry
points., External entry points are called by specifying the lcgical
address of an element within the gate list of tne target
procedure’s procedure object (a gate).

Ihe procedure ooject header begins at otfset zero of a pro-
cedure object, The gate Jlimit fielod of the procedure object header
Jenotes the auwnbar of elements i~ the gate lists

IThe gate list immediately follows the procedure object header
and is aligneo U MJD (le8)., Tne gates are eacy 128 Dits and dendte
procecdures which may be entered from i1nside or outside this pro-
cedure objact. Inhese elements may be 20inters to, oOther gates or
they may ve entry descriptors. An entry descriptor 1indicates that
the realizatiow >f this entpy »2o0int resides 1in this proceduire
objects and Jocates the information necessary tc invoke the
procedure.

The remaining items that may be contained 1n a procedure

object may appear anywhere within the objest. In addition to a
gate Jist, @& proceaure cobject may contain internal entry
descriotors, orocedure environmnent dJdescriotors, name tadoles,

S=instructions, and literal data.

3,2 Procedure Ubject Header

The procedure object header contains information pertinent to
the entire protedure object,

10sa4:37
9/Nov/ 19
Keve 1
Date General Corooration
Lompany Lonfidential

5.2 ’rocedure Jbject Header i=7

procedure object header

AL L EL XL L R R AR R A I A LR L L T E R L R L N L E SR R LR L R
| procedure_object | flags | gate | reserved.for | reserved = |
| ~info_offset I fmt 1 limit | _oinder | mpz |
+0----¢----q--v--s1+52---Q7*&6---bs+bd--a—------‘;Sﬁ-\;b--—-----ld?{

x procedure_object _1nfo_offset (32 bits) = This offset fieid
contains the location==relative to the start of thais
orocaddr2 objest==0f the orogsoJdraobject.into_tyse whign
locates the arg_info_array (see discussion belowl.

* flags.and_format (lo bits) = These bits define the tlags
and format field (see below),

x gate_limit (lé bits) = This ftield contains an wunsigned
integer value specifying the number of gates in the gate
Jiste

* reserved (32 bits) = This field is jgnoredi i1t 1s availeble
for use2 0oy comoilers, oinders, etc.

* reserved = mbz (53¢ bits) = This fielo 1is reservec for
future use == Each bijt must be z2r> (0),.

flags anad format field

(A A L X 2 L] .-----.-----.---------*-a---*----—-u----n-w--u---------nf

| version number INR | format_coce = 65 I
| i= 1 |

ti v em e nmnrnr e rmnmmrmmewe G-ty AL LELEL L LR L EL L L ¥l 7*

x version (8 bits) = This field contails the i1nteger value of
the procedure object structure version number,

* NKR (1 o2it) = This pit must be set (oit = 1), indicating
this is a nonresolvable pointer.

* format code (7 bits) = This field contains an integer value
that is the format code. For procedure object headers,
this value 15 sixty=five (65) I[decimaili.

10344357
9/ Nov/ 19
Rev, 1
Data General Corooretion
Company Configentyal

3.3 Ertrly Descriptor 3=3

5.5 Entry Uescriptor

The Entry UVescriotor contains information pertinent to a
particular proceaure. 1lhe entry descriptor denotes an external
entry point if it Jies within the gate listi otherwise, i1t denotes
a procedure callable only from a procedure within the containing
orocedure opject. ENtry descriptors are stored within procedure
objects such that the address of bit ¢ is 0 mod(128).

entry descriptor

IR TR L LR P R R E A A A I Y R A A A Rl AT I A NN LAl R L LR L L X AR

I initial_PC_ | flags | resrvdl oroceadra, I inityal _frame |
| offset I and | mbz | environment_ | -S1ze I
| i formatl | offset | |

"'0"'---""--31*33"‘47”'“8"'63*6“"”"""95"qb-""-'--"1C 71-

* initial.”’C_offset (32 pits) = The offset, relative to the
Initial PBP, of the first S=instruction for this procedure
(see the Procedure Environment descriptor giscussion
DEIOWJ.

* flags and formats (l6 bits) = fh2 format code and flags
field (see below).

* reserved, must be zero (lb bits)

*# procedure_environment_offset (32 Dbits) = Ihe location~=
relative toi the start of tnis prozedure object==of 3l
Procedure Environment Descriptor defining the execution
environment ana S~Interpreter rejuired for this oroceddre.

*x initial_frame_size (32 bits) = The numober of Lits required
for this procedure”s local automatic data,

Lusd44:37
9/Nov/ /9
RKev. 1
Dats Genersl Corooration
Company Confidential

— — — o—— — —— o — o — ——— —

3.3 Entry Lescriptor =4

entry descriotop == flags and format

+’-'f—--f---«,---+----wn----n*-n-fam--—Q--nnn----n-n---n-—-npu—--’v

] | i | | version INR | format code = 54 |

{] 1 i | I =11 |

+$2| *55' *SQ' *55] *56-.-.--039*“0—+q1------:.&----':'---—'-.--—nq7f
I i i |

| | | t=> Keservedu

] } |

{] t=> do_not.check_access flag

| |

| +=> SEPP flag

|

t=> access_ipfo_present flag

* access_info_present (1 bit) = If set, this &tit naicates
that an access.moces array is oresant for this gate (see
pelow)e This flag is examinec oniy for entry descriptors
which apoear in gate lists.

* SEPP flag (1 bit) = [f set indicates the StB must ve
cnanged upon procegure entry.

* do.not_check_access flag (1 bit) = It set DbDypass access
checking. See Section 3,4,

* reserved (1 oit) = The semantics of these bits are ocefinea
by tne oserating system and S~.engJages.

* version (4 bits) = This is an integer in the renge of U ..
15 that identifies the versiop oftthe structure,

x format code (7 bits) = This is an integer value 1in the
range of U..127. FOr entry oaescriiotors, this value 1is
sixty=four (64) ldecimali,

3.4 Arg_info_array

The procedure object header locates a record calleg the
orocedure object info type (via the procedure_object_info_offset
field)l. This record contains the argument information array cffset
(erg.info_array_offset). This offset locates an array of entries
which parallels the gate list and specifies information reguirea to
validate access to arguments,

103443257
9/ Nov/ 19
Rev. 1
Data beneral Corooration
Company Contfidential

3.4 Arg.info_array 5=5

procecgure object info type

+------‘--—--.C—---.--u—tﬁ------f

| arg.info_array_offset |

+0---—----..---—--o—---——---.i1*

* arg.info_array_otfset (32 bits) = The location=~relative to
the start of this orocedur2 opjezt==2f the arg_info_srray
(see below),

tach entry 2s0int to 2 domain may specify information descri=
ping the access the caller must have to the actual parameters he is
sessinge. Since evary gate in ths jate list.1s a »ootential domsin
entry point, every gate potentially specities this intformation.

Argument access information is specified via a vector, called
the arg_info-ahr;y, which parallels the gate list and is locatea by
the arg.info_array_offset field of the ordcedure_objeczt_info_tyoe.
An external entry point”s arg_info.array element 1i1s accessed DYy
J4sing the gate numver as & subscriot i3ty the ar3_info_array. (The
gate numper 18 the otfset portion ot the procedure entry
descriotor’s logical address, dividea oy 128.)

10344357
3/Nov/ 19
Keve 1
Jata General Corooration
Company Confidential

——— —— —

3.4 Arg.into_array 3=6

arg_info_array_element (long variant)

\f-*—-.---—.‘----"--—‘UQOQQDJ-----+-.------' ----u---------w—-----*

101 reguired_®#_ | num_formals I access_modes_array_offset |
I | arguments | | |

fO*l----------lbf lb--ﬁwoﬂnoucnjl-3&--—-----------—-'-—-nwowcnbjf

arg.into_array.element (short variant)

+-*-’-------.--'*------’------.-.------D-a.------n—-‘----------+

111 num_formals i access_mooes_array 1
(| | (array of J4p to 12 access_nodes_tyoes) i

access _modes_type (primitive access variant)

jeemtemctmmatmont
VA
| | | | |
tQ==ti==towtimet

access_modes _type

IR LI B R ELELE LR L R d

I 1 | reserved |
i I (mBZ) |
+0-'*1-"-'-"-5+

The fields of an arg_info_array_element have the following

meanings:

* Bit 0 - This D1t icentifies format of this

arg.info_array_eiement, A value of zero indicatess this
a long variant element, a value ot one indicates this is
short variant element.

* numecer_of_requirec_args (15 bits, long variant) == Minimum

argunent cout required, See textew

* num_formals (le bits in long wvariant, 15 ©bits 1in short
variant) Ihis field specifies th2 aunbar of actusil parane-
ters this procedure expects as an unsigned 1nteger. A long
variant: may specify from zero to 63,3535 actuals; a short

var1ant may specitfy from zero to twelve actua]s.

* access_modes_array_offset (32 oits, long variant) == Jlhis

field locates an array of access_modes_type describing
access tne cailer is reguired to have to ea:ch of

1usda: 37
F/Nov/ 19
Reve. 1
Data General Corooration
CLompany Confidential

5.4 Arg.iato_array S«

actuals he is passing. [he access.modes_array_oftset field
is an offset, relative td> the start of the procedure
object.

4 access_moaes_array (486 pbits, short variant) == Jhis tireld
contains access information for up to twelve actual
argunents, soecitied as an array of 3access_modes_type.

The fields of an access.modes_type have the fecllowing
meanings:

*x Bit 0 (1 pit) = This poit Joentifies the structure as
spacifying pPrinitive access (valiue = 0U) or extended azc2ss
(value = 1).

* £, Ky A L3 bits, primitive variant) = These vpits specify
that the caller must have execute, read, anc wWrite access
to this 2actual (respectively).

* ignored (3 bits, extendeo variant) = these bits are
reserved.

1f the access_info_present flag of this procedure’s entry
descriptor is not set, the ar3_info_array and access_mnodes.array
are ignored., However, if tnis flag is set, the numper of actu§ls
peing passed 1s verified as peing greater than or equal to the
number of arguments requ)red by the arg_info. arrqy”element. For
the short format tnis is num_formals, an3 for the 1dng tornat
required_#_arguments. It the test fails, INVALID_NUMBER.GF_ALIUALS
18 signaliled,

The ca]ler s access to the first min{num_formals,
actuals. 5uaplwes) arguments is verified to iaclude the oroceddre’s
access_modes type array. Access_modes_type array elements apply to
argunent pointers in order of 1n~r=aswﬂg nagative dtspla enent from
FP (€eQar access_modes_array [l] corresponds to the argument
sointer at FPdl=li, etc,.), An access._modes_type may specify
primitive execute, read, and write access (access_modes_type
>rimitive variant),

For the remainder of the actuais supplied, a <check 1s per=
formed to verify that the caller has R,w access to the actual.

Any access check that fails causes TROJAN_HURSE _ARGUMENT to ve
signalled,

1044357
9/Nov/ 19
Keva. 1
vata General Corooration
Lompany Contidential

—— o — —

55 Procedure Eavironneat Vescriptor 5=8

3,5 Procedure Env;ronment Descriptor

A Procedure Environment Descriotor (PED) 1dentifies the
instances of static data and procedure storage and the Name Jable
shared by activatiops of @ (set of) source lasguage orodgedursis).
A single PED is sharea by all procedures which share that portion
of the environment. Ihe PED also specifies the S=lnterpreter
requirea for execution of those procegures.,

’rocedure Invironment Descriptor

| reserved_for | flags llargest| reservea = i
| ~compiler | "k" | name | must be zero]
«'U----uw----n-élQéaw.-qlifﬂb---"bs-oq--n - .-—w----uucn.n----1¢[+
| S=interpreter Fointer (31P)]
| i
+1abn--.-------w--m------—--.qa—--n-—--a-u---—--‘-n.--—--w--"b?«‘:
] Name Taole Pointer (N[P) i
I |
+abb--’w---—u------n-----wu-------n--- - - - -quw-uu----vn--unuébj%
] Static Vata Area Pointer (SDAP) i
| |

| ivitial Procedure 3sse Pointer (P3P) I
| i

I S=interpreter Environment Prototype Pointer (SEPF) i
I |

* reserved_for_comoiler (32 bits) - These bits are
uninterpreted. Thi1s fiela is availaole for use by compi=~
lers ana dgsbuggers, For 2xamd>l2, trey night Jefine structu-
res nere to jocate symbo] tables and schemata,.

* flags and "k" (1b oits) ~» These oits are the flags and
format field (see below).

* largest name (16 bits) = This field specifies an unsigned

integer value in the range of 0 .. ((2 *x 1l6) ~=1), Ihis
vaiue reoresents si1ze of Name Table 1in nultipies of ol
pits,

* reserve) (64 oits) = These oits are reserved for future wuse
== kach bit must be zero.

10s4433/
9/Nov/ 19
Rev. 1
Data General Corporation ‘
conpany Lonfigential

Procedure tnvironment Uescriptor 3=y

312 (128 oits) = This field is @ oointer identifying the
S=lnterpreter to be used i1n interpreting this proceoure’s
instruction stream,

NTP (128 bits) = This field specities a pointer locating
the start of this procedure®s namne taple.

SUAP (l¢o pits) = This fiela specifies & pointer which
locates th2 osrocedure’s static oata ar2a. Ihis 20inter Zam
be null, inagicating this procedure regquires no stathc data.

Imitial 2pr (128 pits) = This field specities the Jlocation
of the procedure storage implementing the procedure, lhis
poipter. nust be object relative. adlidffsets relative to
the PBP AR definmed in the preceeding sections are relative
to this soi1nter,

SEPP (128 wits) = IThis field specities a pointer which
locates the procedure’s S=Inteprpreter Environnent 31 2¢«
(SEw), ' ’

tlags and "k" field

oo —o-- *----n-----'--n-mwnﬂ---wu--fn--*-.-un--w-uq---mwo--u'n—-'q---‘-

”kll

reserved INR | format coae = 5o I
I =il ') i

‘Seusiy‘5“----—.--'wn--—m-a—.-}(}“(}—+ﬂ1-w-—.---.—_-‘--w-u—-nn--q‘/4-

"k" - encoced operand syllavie size :

V) => x = B
Ul => k = 12
10 => < = 16

11 => reserveo
reserved (b oits) = These oits are reserved for system use,

tormat cooe (7 bits) = This field contains an integer value
in the range of 0..127 w~hich 1is tne format code. For
procedure environment descriptors, this code s Sixty=six
(cb) Lldezinall.,

lusads sy
9/%0v/79
3ev. 1
Pata bLeneral Corooration
Lompany Configential

5.6 Instructions 5=19

5.6 Instructions

An instruction must convey to th2 processor i1nformation
regaro1ng transformation ot data or alteration ot the target
achine®s stats, 1Ihis information 17ciudes thnz following:

* the operation to be performed,
*x the numnber of operands,

* the location, size, and representation (type) ot operands
ang

* the direction of ocata flow.

Logationy 12n3gth, 370 represeatatioy information for:. operanas
are grouped in a table callea the Name Table (N[). A process’
current nanme table 18 located oy its current Name laoie Pointer
(NTP)., The way source reterences are encoded in the NI is illus-
trated 1n the the vane Table chaoter, Resoiving NI refzarences to
logical addresses 1is discussed in the Chapter on Name Heso]ut1on.

5.0l Jpcoyje

Each instruction begins with an B-bit operation specification
(the oacode). Ilhe oocope imolies the numoer of oserands, 4hicH
operands are sources/sinks, and the operation to be performed. in
many cases, the type anu containerization of operanas are also
conveyed by the opcode., ” ’ ’

ihe S=Language may define up to 2>b valid opcodes. An attenpt
to execute an S-ilnstruction with e reserved opcode causes an
INVALID_S_UP con3ition to pe signralilea,

5.6.2 Uperandas

tach opcode may be followed by some numoer of operand specifi-
cataons (represented by "syllables")., Each operand Syllabie is "k*
pits long, where "k" may be eight, twelve or sixteen bits, h&nLﬂL
does.nob-sueReck. kslg. lhe value of k is obtainead from the Pro-
cedure Eavironneat Lescriptor of the curreat orocedure. The FH#
Architecture dictates the kinds of operand specifications which may
apoear; the S=Vachine detines instructioy sytax and defines tne
order ana 1nterm1x1ng of operand syllavles. '

1U:44:s/
S/hov/T79
Rev, 1
Data General Corporation
<onpany Contidential

|
!

5.0.2 Uperanas 3-11

Valid ooerand sylliaoles are:
x Name sylilable==an operand reference name.

* Literal sylleole~=-an immediate syllable repr2senting o
literal value,

5.becds1 Vame Sylladles
All variaple references are made via Name syllabjes. A iveme

is Zero=extended on the left to sixteen 2its ana Jused as an ingdex
into the current Name lable (see Name [able discussion).

Se

o

«2.2 Literals

Literal operanas have an implicit length of "k" Dbits and no
type; they may oe maniopulated by the interpreter 1n any desired
manner.,

3.b.2.5 Rejative Eranches

A relative branch address 1s specified via a literal syllable.
In tnis case, the literal syllaple 1is interoreted gs a signeid
offset relative to the start of the branch instruction (note that
the current 2C always Doints to the instruztion being i3terpretads:
the current instruction). The relative offset 1s right Just1f1ed
and sign=-extended on the lett to 32 dbits, nultiplied by tne gres=
test common divisor (GLUJ) of 8 and ks (i.e., b for k=8 or leo, and 4
for k=1¢)s and addesd (nodulo 2x%*32) to tnre offset portion of the
current PC. This value replaces the current PC offset.

3.,6.2.4 Absolute pbranches

An absolute i1ntra=procedure object branch is made 0oy evalua~
ting an offset name =ytlable. The resJlt: of this evaluat1ow' 18
interpreted as an unsignecs bit= granular offset value. The offset
value 1s extsndjed/truncated to 32 pits as Jictated by the offset’s
Name Jable Entry. This result is adaed to PBP.offset and replaces
the offset portion of the current 2C,

10:d4d357
i/vov//9
Keve 1
Data General Corooration
Lompany Conf1oent1al

— —— —— — — — o — — ——— -

Se.7 Pointers 5=12

5.7 Pointers

A pointer represents or implies a logical address as an offset
into a2 specific object (a <ULD, offset>). In the simplest casey
the oointer directly represents ooth the ooject and the offset
(this is called 3 resclvable pointer), Resolution ot this pointer
type requires no intervention, ' '

Alternattvely, a pointer may regquire intervention for its
conversion to; a logical address, or the pojrtar mnay represeat a
structure more complex than a simple logical address. Such poin-
ters are termed nonresolvgble pointers and any attempt to appiy
pointer resolution to them results in a nonresolvabie pointer fault
se1ny signalled, A& return fron a ~nowresolvanie poiilter fedlt
causes the pointer to ve refetched and reinterpreted. Fault bits
are Jot ignhored, and the nsnresolwable sointep fault héy reCJra
fhe object may ve implied as the object containing the pointer
structurs (calded intra_object osointers or object relative
pointers) or explxcntly mentioneo as a2 uJlp @called' inter_obyect
oointers or JlJ)i sointers).) ') ')

when a non=resolvable pointer is wused 1in congunction with
gither an inter= or 1ntra'obJect fornat an ass:p1at1ve 20inter i
indicaeted. ihen resolve attempts to indirect through an associative
sointer, tne cJrreat stack’s Assapiative Address Taﬂte is searcned
for an entry whose tag matches the address spec1fuea by the asso-
c1at1ve soipter. For an aosojute associativa »ointer, th1s ach=S>
is cetermined trom the ULL ana offset portions of the pointer, For
an opject relat1ve asSOC1at1ve pointer only the offset oortion s
relevant; the Ul used 1is that of the object containing the
sointer., If an assocziation is fodnd 1 tne AAl tne resultinia
address 18 used by the resolve function, Utherwise 3
NO_ASSICIATED_ADDORZISS condition is signallied,.

General Format

*-----n--u-wnnn-f-n-u—-—-}-.---n—.'-.nm--ov LRI EL R AL AL YL EE L L R0

| offset I flags | format = 0,2: undefined and ignored |
I i format!| format = 1: JynigJe identifier |

‘*‘0""""""31 *32—"'&7fqﬂ-n---nwu'mcmu.'--u-p----w--w---n-127+

10344337
9/Nov/ 179
Rev., 1
Data General Corporation
company Zbnfidential

3.7 Pointers 3-i3

Flags and Format Field

[AL T A L L L L AL AL I L AL L A E IR AR L AL A AL AL LRl LR LAl

] reserved = must ne zero INR lresrva | format |
I | I | code I
fsau---w—-—----w--.-----n--u-}()-’»qo--f41 -y 2*“3.-1’”-'----»--—‘“,*

offset (0..31)
an offset relative to the start of the ooject specified by
the format code

Flags and Format field (bits 32..47):

reserved = (32..39)
these 2its are not cefined at osressnt == Each pit: must b2
zero (0).

NR(40)

A value of zero ingicates this structure i1s a resolva=~
ble pointer.,

A value of one indicates that the resolution of the
pointer: to a logical address regJires intervention. Incthe
case where NR = 1 in conjunction with pointer formats 1 or
2 an assd>Ciative pointer is ingdicated.

resrvd (41.,42) These bits are reservedr, and must be zerocr or
results ars Jnaredictaple,

format code (43,.47)
This fornat code identifies th2 tyse of: sointer. This type
is expresseo by a integer value in the range of (0 .. 31).
The current codes are:

Integer value 0 = null pointer.
All: other fields of: this p2intar are ignored. wnen
this format is encountered during pointer resolve,
3i auld 1ogical address is »>roduced (8 JIJIof z2rd),
Any attempt to reference thru a null Togical
aodress results 1in & null »>ointer fault peing
signalled,

Integer value 1 = JID pointer
The offset is relative to the start of the object

10344337
9/Nov/T9
QG‘VQ 1
Data General Corporatijon
lompany bnfidential

— e w——— - — ——— w———— = w— Sww aw— wm— . ———— ow—- w— o— - — a—— — — — — —— — — — ——

3,7 Pointers 3=14

wnhogse JID is containsd in 2its 48,.127 of tnis
structure,

Integer value 2 = object=relative s2o0inter,
The offset is relative to the start of the object
containing this datuna.

Integer values in tnhe range (3 .. 31) = Reserved for future
2X20318i0".
Specification of one ot these values <causes an
ioyalid lgipter _fadlia

3,8 Associative Addressing

A facility for associating one address with another is provi=
ded using special types of pointers. Ihe trasslation osetweer an
adoress and its associatec address is stored in a table located by
the process’ current steck header., If the res>lve function finds
no translation for the address in an associative pointer then it
signals no_associative_address., The no_associated_address c¢opdi-
tion handlepr can then create and return an association.

3.8.1 The Associated Address Table

The table used to contain the current set of associations 1is
the Associated Address Table (AAT). Each wuser stack contains 3
pointer to am AAl in its stack header. The current version number

of the AAT is 1. It is AAT is organized as follows:

TYPE Associated_Address_Table 1S

RECORD
versijon: version_type BUUND 32,
size_of_taodle: AAT _index_type 30JND 32,
padding: VUID BOUND 64,
current _adrs POINTEZR BOUND 128,
entrys ARRAY [0,.812e_of_table~1] OF

Associated_Address_Tlable _Entry
END RECORD BQOUND;

TYPE Associated_Address_Table_Entry IS

RECORD
tag: AATE _tag.,
associated_address: P0INTER

END RECURD;

10s44837
9/Nov/T79
Reva. 1
Data General Corporation
Company -bnfidential

o —————— —————————— {—— —— ——— - ————————" ——— ——— —————— — ——— ———— — —— ———— — ——

3.8,.1 The Associated Address Table 3=15

TYPE AATE_tag IS

RECORD
offset: Deel2™32)=1,
flags: VIID BOUND 16,
UID: 0.a(2”80)=1

END RECORD
Note: associated_address can be any format
of »ointer (including null).
3.6.2 get_associated_address
Tnis function is (logically) invoked by resolve to find the
associated address for a faulting associative pointer (for the

current stack environment). The existence of this function s
architectural, its inplenentation i1s not..

Sxotaxlfora

PROCEDURE get_associated_address (

READ JN_KY address:! 2O0INTER,
WRITE ONLY associrated_address: POINTER,
WRITE ONLY association.existss: BIU_EAN);

PROPERTIES CONTRACT;
END PRUCEDJRE get.associated_address;

fed

Sempantics

fhe AAJ] associated with the caller’s stack is searched. 1f a
translation exists for the address soecifiad, association_exists is
set to TRUE anda the associated address is returned in
associated_address, If no translation exists for the given
address, association_exists is set to FALSE and the null pointer is
returned i1 associated_address,

4Reratign

An address, ADDR, is derived by resolving the pointer 1in the
address argument. An index is Jderived as?

inputl [0:e] = O
inpJstl [7331] 35 ADDR.,offset: {0324)

10244337
9/Nov/ 179
Reva, 1
Data General Corsoration
Company Confidential

—— — - — o —— — . —v—— ———— - — o —— om— — o ——wm— . w— —— e W w— e w w— ——— a——— o — —— ———— — — —— o— . p— -

3,8.¢2 get_associatea_address 3i=-16

inpute [0:6) 3= 0
inpdt2 [7215] 8= ADDR,UID [39:47]
input? [16:31] := ADDR,UID [0:19%]

hash t= MOD (XUR (inputl, inputed), AAT,.,size_of_table)

Note: all values are to be treated as unsigned integers,
X [itj] means bits i through j ot X, ~here bit number
0 is the left most bit of X.

The AAT associated with the current stack 1is searched circularly
starting at the derived index until eitheri a matching entry is
found, in which case association_exists is set to TRUE and the
associated address i the taple is returaed, or. a2 null entry s
found 1n the AAT (or all entries have been examninedl)s in which case
association_exists is set to FALSE anJ tane null o201nter 1is
returned. The match is performed by comparing the UID ana offset
field of the tag comoonent of an AAT entry wita the ULlD ana offset
field ot the address specified in the «call, If both of these
fields match, then the correct entry has besen located.

An entry with a 0 UID and (27232=1) offset in the tag fiela s
2 null entry,

3.9 Referencing Static bData

During architectural call the associatea address mechanism is
used to obtain a pointer to the imoure copy of the target:
procedure’s static data. This is accomplished by having compilers
olace an associative pointer to the orocedure’s static data proto-
type in the PED.SDAP, When architectural <call enters & new
procedure, it resolves this oointer and olaces the result in the
SDP ABR. Resolve invokes the get_associateo.address function, 1f
ar matching eatry is found, then al ooy ofr tnhne orocedur2’s statiz
data has been made for this stack and is located by the associated
address in the matching entry. In this <case, the associated
address is returned to resolve which, If no copy has been mace, 2
no.2ssociated_address condition is signalil ad.

The kernel creates a zero entry AAT for each user stacke. The
initial_no_assoaciated_adgddress_handler sointer in tne target
domain’s domain object is copied inte the
no.associated_address_handler_otr in the e

domain_environment_frame. At this point the domain is on its oOwn,

10344337
9/Nov/T79
QeV. i
Date Genmneral Corporation
company .bnficential

—— v —— —— — — — o—

3.9 Referencing Static Date 3=17

The (ron~kernel supplied) no_associated_address handler must
be capable of creating an associated oata region, allocaeting a
larger AAT, an3d copying static data alli without taking a
no_associated_address fault, [Note: if 2 static data prototype
requires active initialization, the initialization procesdure must
not itself require active static data initialization or <c¢call the
orocedure ~hose’s static 1s peing initi1alized.l As stated eariner,
the no_associated_address_hancler_ptr is copied into the
dJomain_environmnent _frame so that the fulli si3anal mechanism c¢can be
avoided. Without this provision, a signaller <c¢ould not use any
static data.,

==tnd of Chapter=-

10:44:37
G/nov/T79
Rev, 1
Date General Corporation
company Cbnfidential

Chapter 4
Architectural 3ase Registers

Tnree architectural base registers (ABR’S) facilitate
addressing, These registers contain l1ogical addresses which locate
portions of data space. ABR’s are maintained as part of the

orocess’ macro state as dJdescrioed in Sactiosn 6.5,

4,1.,1 Frame Pointer

The Frane Pointer (FP) points to thes base of tnhe current
procedure activation record, An activation record is c¢reateag and
FP established when a new procedure 18 entered via the CalLL
instruction, #Negative addressing relative to FF locates proceaure
parameter 20inters, Positive addressing relative to *P locates
local data used by the procedure for the current activation. The
initial_frame_size in the orocedJre’s entry descriotor (zZD) gefises
the amount of local data allocateg to the oprocedure,

4.1.2 Static Data3 Pointer

The Static Data Pointer (8SLP) is established upon procedure
entry, It locates data used ty the prozedure during 3 previous
activation, 1f there was no vprevious activation then procedure
entry attenwpts to estaolish SUP Jsing th2 static_orototype_pointer
field in the Procedure Environment Descriptor (PED) by signalling a
STATIC _DATA: fault.,.

4,1.,3 Procedure Base Fointer

The Procedure Base Pointer (F3P) is established uopon proceddre
entry by using the Procedure_Base_Pointer field in the FED. It is
useful for addressing program constants and initial values.

~=tnd of Lhapter==

16250217
11/Gct /79
Reve |
Data General Corporation
Company Cbnfidgential

Chapter 5
Name Table and Vamne Resalution

The Name [able 1s used for 2ll variable references. A Name
syllable is us2d as an index into the currant Vane Table to locate
a Name iable entry, A Name Table entry represents an operana’s
location, size, and data representation. Reference stpructure
(indirection, pre and post indexing) 1is reflected 1in the IiName
Table; exactly one ooerand syllansle ocer ope2prand is required in any
instruction,

Uoerand syllaoles appear in three siza2st: 8, 12, anac 16 oits,
The current operand syllable size (denctea by "k"), the location of
the current Vane Table, and the largest name represent2d in the
current Name Table (denoted by "N"), are specified in tne Procedure
Invironment: Jescriptor associated ~ith each procedure using that
Name Tavle., These parameters remain fixed until the Frocedure
Enviroament Descriotor changes, The actual nunber of VNene Tanle
Entries is always less than or equal to 2xx16, Unly nemes zero
through YIN{V,2**k~=1) are accessible via Namg Syllaples in the
I=Stream: this defimes the l=Stream Name Scope, Any attempt to
reference a namne larger than the largest name represented 10
current Name Table generates a NAME _OUT _OF _RANGE exception
condition,

5.1 Name Table Entries ana Name Table Fields

A Namz Taple Zntry (NTE) ala2dys '"resolves" to a <logical
address, length, fetch mode, type> 4~tuple or "evaluates" to a
<valde, length, tyoe> triple, The logical address is a <L,
offset> while the length is a 32=-bit unsigned Jliteral denoting 3
true length (i.e.r @ leanath of zeord indicates "0 D0its are tD b2
processed)., Unless otherwise specified, an NTE field is 1&6 bits
long.,.

Name Table Entries may appear in two sizes: a &4=bit short NIE
and a 128=p0it long NTE. The short NIE is exactly the first 64 bits
of a long NTE., The short format provides information required to
resolve all ope2rand references except array references and datal
values reguiring a displiacement of more than 16 bits. The exten=
sion (i.e.s finali 64 bits of a long NTZ) prbvides an additionali 16
bits of displacement and information required to access arrayse.
The format of the VName Table Entry is illustrated beloas

16:9:14
2&/uUct /79
Rev, 1
Data General Corocoration
Company Confidential

5.1 Name Table Entries and Vame Table Fields Smg

Short Name lable Entry

(A AL EE R AT EE L A S A ES P AL R R FE AL L YRR AL AL R L KRR

[I R I F I T I Abr | PRE_DISPLACEMENT |
I E 1+ FLAGS I E 1 M | Y I (2) i (i4) i
I § I8 | ! P A RS AL AL A L A D A L LDl LD
l (5 v o | E | 3ASE _NAME |
(1) (3 12Xt (4) | (16) |
) twemmmcjesmmceniormanieemtencncecienesnrranarar e o e e~]]}
| | |
] LENGTH | UDISPLACEMENT }
| (16) ! (16) |
| ! |
321 | 631

O---.w‘----o--'-‘.'-—".-------+ﬂnw--0'--'-.n--w--'-n ---ﬂwﬂn-.w+

TRAP/FLAGS [*] /RESERVED ¢ 1=ASSERTED

[0): RESZRVED=MUST BZ ZERU
(1l1: LONL NTE

{2l: LENGTHA_IS_NAME FMIx&] sFZT2H_MIDES

(3]: BASE_IS_NAME

(4): BASE_INDIRECT L0012 Right justify, ze2ro fill
[5]: VECTOR [011: wxight justifys, sign fill
l6): IES_IS_ A_NAME [10): .eft justify, zero fill
[7]: RESERVED=MUST BE ZERU l11): Left justify,

[8): KEISTZRVEDI=MUST BE ZERO ASCII soace filli

{9): RESERVED=-MUST BE JERU

Vame Table Extension
I L e Y L R L LR
|]
| |

|

{

| DISPLACEMENT | INDEX NAME |

i (16) | (16} |

I | !
bdtmmmmerennerrersenenenerencnen]/Jt(emrennerrrnnserrecsreenan==05+
! i |

| | |

| RESERVED I INTER_ELEMENT_SPACING (IES) |

| (18) | (16) |

| | |
96tmmerermenesnsnenerarsrrsenen]]]t]]l ecrnarcnnanrnmarsrrnese=]] ¢

3ASE Field (l6..31)
Each address calculation begins with a2 UID, offset called
the Base. The source of this JID, offset is specified by
the BASE field of the NTE. The BASE Field may contain two
subfields:

1629314
22/0ct /73
Rev, |1
Data General Corooration
Company Confiaential

5.1 Name Table Entries and \Vamne Table Fields e}

ABR Field (16,.17)
The twp 2it Architectural: 3ase Register Field (A3R)
specifies one of three architectural base registers
whose <contents are uJseqa to opegin the logical
address calculation. An ABR wvalue ot "11" s
reserved,

PRE=DISPLACEMENT Field (18.431)
Ine 14 oit PRE-DISPLACEMENT Field reoresents 2
128=bit granular two’s complement value useg 1in
conjJ4nzstion with A3R jndip2ction, or zero.

The BASE Fielo may also represent the name of anmother NTE,
in waich case it is a single 15 bit field wita no
subfields.

All address calculations are Dasg/displazement calculations,
Two displacements may be included in the NTE, one called UISFLACE=-
MENT a0 one called INDEX_NAME,

DISPLACEMENT Field (48,.,63)
The displacenent field is specified as a signed literal to
be adoed to the offset portion of 3ase. It may be speci-
fied as a l6=bit literal in a short NTE or as a 3Z2=0it
literal, where the high order 16 bits are obtained from the
NTE Zxtension (bits 64,.79).

INDEX_NAME Field (80,..95)
The sezond displacement fi2ld, called tha INDEX_NAME fielo,
names an NTE whose resolution and subseguent evaluation
yields a value to be used as a suJbscriot,

IES Field (96..111)
ihe Inter=element Spacing (IES) is an unsigned 1nteger
value denoting the granularity of the subscript,. It
indicates the difference between the starting pit addresses
of two successive vector elements, It is specified as a lo
bit. imnediate value, or the name »of an Jnsigned integer
valued aatum,

ENGTH Field (32..47)
This field denotes the true number of bits which represent
this oocerand value, j,e., the number of bits which must: be
fetched or stored. A length of zero indicates no bits are
fetcned >r stored, and so forth., It i3 specified as a2 16
bit immediate value, or the name of an integer valued
aatu“‘.

les9:1 4
22/0ct /79
Reva. 1
Data General Copooration
Company Confidential

—

—

—
—

!

S.1

Name Table Entries and VYame Table Fields 5=4

TYPE Fielc (12..15)

TY?E field is a 4=2it literal field inplying an
S=Interpreter=-defined data representation, It is meaning=
ful: only to the S=interpreter.

The

FETCH_MUODE Field (FM) (10..11)
The two 2it FETCA_MODE Field spezifies the manner in which

data
(i «Cey

is aligned and psedded/truncated upon fetch/store
the containerjzation of a value accessea withia an

Juncontainerized, bit~adcressable virtual memory).

00
01
10

11

right justify and zero fill/truncate on the left
right justity ana sign fill/truncate on the left
left justify and zero filil/truncate on the right

left justify ana ASCII space till/truncate on the
right

A FETCH_MOUE of left justify, ASCIIl space fill speci=
fied for an item whose length is nat divisible by eight 1is
undefined and results are unpredictable,

FLAGS Fiela (l..5)
The FLAGS field of the NTE <controls the way the other
fields are resolved, determining 1~ particular whether a

field
1)
2)
3)
ABR
BASE_NMIME
4)

is a value or a Name (which denotes another NTE).

LONG_NTE = indicates whethaP this is 3 short (64
bit) NTE or a long (128) bit NTE.

RENGTH_IS_A_NAME = ipaizetes whether the lz2ngthy
field is an immediate value (=0) or a name (=1),

3ASE _IS_A_NAME =~ indicates whether the 34SE field
specifies an ABR (=0) or a name (=1)., This field
is used in conjunction wita the 3ASE_IVDIRECT flay
in directing BASE aogdress formation,

3ASE _INDIRECT = ~hen BASE_IS_A_NAME=0, this flag
indicates if pre=displacement is required (=1) or
Fot (=0). If oredisolacement is not requJired, the
PRE_DISPLACEMENT field must be zero, oOr results are
Jnoredictaple,

16:9:14
22/0ct /79
Rev., 1|
Date General Corooration
Company Confidential

5.1 Name Table Entries and VNane Table Fields Heb

When BASE_IS_A_NAME=1, this flag indicates
shether the resolved bases ~ame is to be used as an
agdress (=0), or used to fetch a pointer (=1),

3) VECTOR = indicates whether this NTE describes a
VECTOR reference (=1) or not (=C¢), 1If this flag =
1, LIN3 must be asserted,

6) IES_IS_A_NAME = indicates whether the IES 1is an
immnediate (30) or a8 nam2 (=1), This flag is
meaningful only if VECTUR = 1,

7) The remaining flag bits are reserved, and must be
zero.

5.2 Address Resolution

A name obtained from the 1-Stream is used as an i1ndex into the
Yyame Table, Ultimately, this nane yields, through vresdolution of
the structure which starts at the designated Name Table Entry, the
length of the operand, its type, its fetch mode, and 1its starting
logical address, Note that calculation of this address may reduire
the resolutian of other Vane Table Entries,

Une Name Table Entry may describe:

*x a locai scalar reference (i.2., 3 scalar reference relatjve
to an Architectural Base Kegister),

x 3 scalar parameter or linked refarence (i.e., s scalar
reference relative to an argument pointer or linkage
s20inter referenced by orzais>lacemaht >f an ABR),

* a vector reference requiring the resolution of an index
name,

x 8 pointer dereference (i.e.r a record or record item whose
location 13 obtained by resolving a “aned base pointer), or

* a "pbased vector" (i,e.r 2 vector whose Dbase address 1is
obtained by resolving a named pase poiinter).

* most combinations of the above

16291214
ee/lct /79
QeV. 1
Date General Corporation
-ompany Zbnfidential

5.2.1 Resolution of a Name Tavle Entry H=6

5.2.1 Resolutiop of a Nane Table Entry

A Name Table Entry 1is resolved bty resolving each ot 1its
fields, and then conbining <certain of these resolutions., The
operand name 1s used as an inaex into the current Name Table to
fetch a od=bit NTE. If an extensiop is reajuirsd (indicated py th2
LONG flag being asserted), it is fetcheo from the next contiguous
54 b"its-

5.2.2 BASE Field

The BASE Field specifiges the 3A3E portiop of 3
base/displacement logical address calculation,

All arithnetic on offsets 1is 32 o2it unsigned arithnetic
(modulo 2x%32), Negative two=s complement values are treated as
large, PoOsSitiva Yunbers and Wrap aroJnd Zerd. Assertion of the
BASE _IS_A_NAME Flag indicates the entijre BASE Field neames a vari=
able reference (in data space). The base VNamne is resolved as 2any
other name (involving recursion of the Name Resolve algorithm). If
the 3ASE_INDIRICT Flag is VUT asserted, the specified 3ase Name i3
resolved to a logical address only. This logical address 1is wused
3s the Base D0y tne referencing NTE. Tnis node is wuseful in thea
resolution of muitidimensional arprays., If the BASE_INDIRECT Flag
IS asserted, the specified B3ASE_NAMZ s resolved and evaluated
(ieeer the resolved name is used to retrieve a pointer value from
dJata spacel). Ihe fetch of this 20inter value is controlied by its
NTE. The UID, offset of the retrieved pointer value is then used
as the Base oy the referencing NTE,

Note that Base Name may denote a structure of NTEs, The above
discussion of 3ASE_INUVIRECT aoplies only to the result of:
resolution/evaluation of the entire structure,. The result of
resolution/evaluation of a namned pase is assumed to be
pointer=valued,

53 DISPLACEMENT Field

The DISPLACEMENT Field is always a literal in the NTE and s
always bit granular., If the LING Flag is NUT' asserted, this is a
short NTE and the le=bit DISPLACEMENT Field is right justified ana
sign filled on the left to 32 bits., If the .UNG Flag 1S asserted,
this is a long NTE, and the 16=bit DISPLACEMENT Fiela of the short
NTE is8 right jJustifiad and extended to 32 oits by concatenating o~
the left the léo=bit DISPLACEMENT Field of the NTE Extension,

1629214
ee/Qct/i9
Rev, |
Data General Corporation
company Cbnfidential

5.3 DISPLACEMENT Field 5=7

Tne resdlved 32=pbit disolacement 1is ajded to the offset:
portion of the Base.

S.4 INJEX_NAVE Field

The INDEX_NAME Field appears in the NTE Extension and is
resolved only if the VECTUR Flag is assert2g. An NTE whose VILCTUR
Flag is asserted and whose LONG Flag is not asserted is an INCOn=
SISTENT WNAME TABLE ENTRY end generates an axcestjon condition.

The INDEX_NAME Field always names an operand reference speci=
fying an elemnent=granular subscript. Thes index name 1is resolved
and evaluateo. The least significant 32 bi1ts of the returnedg value
are used as thg sudszript. Note that indJex name may dJenote a
structure of NTEs, whose resolution and evaluation yields the
dJesired subscript value. Alignment is dictated Dby the nanmned
reference’s NTE,

The 1VDEIX_NAME Field is assumed to name an integer valued
subscript reference. Specification of other than an integer valued
subscript is undefined, and results are unoredictable.

5.5 IES Field

The [ES Fiegld is an unsigned integepr Jenoting the aranularity
of the supscript referred to by index name. The 1S Fiela may
specify a 16 bit literal (IES_IS_A_NAMI ~ot asserted) or the name
of an unsigned integer-valued reference (IES_IS_A_NAME asserteq).
If TZES_IS_A_NAME, IES nane is resolved ani evaluated; tne Ieast
significant 32 bits of the returned value are taken as the true 1ES
of the vector operand., A literal IES is right justified and zero
filleag on the left to 32 bits, The retrieved subscript is mul=-
tiolied (modulo 2%%x32) by IES, yielding a 32=bits bit=granulaer
index value, This index value is added to the offset portion of
the Base Pointer. Besults. gf. iotecereting. an. IEJS. MName. wbich
denates. other. than. an. ubsigned. integec. xaluea. rcetference. ace
WopLcedictablea

1ES aopears in the NTE Extension and is orocessed only when
pboth VECTUR ang LUNG Flags are asserted.

5.6 _ENGTH Fielo

The LENGTH Field may specity a lo bit literal
(LENGTH_IS _A_NAME n~ot asserted) »r the nama2' of an intzger~valued

1629514

22/0ct /79

Rev, 1
Data General Corooration

5.6 LEN3TH Fielo 5=8

reference (LENGTH_IS_A_NAME assertec), [f LENGTH_IS_A_nNAME, length
name is resolved and evaluated; the least significant 32 bits of
the returned value are taken as the true length of the referenced
operand. If this value is not an Jnsigned iateger, the results are
undefined and unpredictable, A literal length is right justified
and zero filled on the left to 32 pits. Len3atas (either literal or
named) are always treated as unsigned guantities.

5.7 Vane Table E~try Evaluation

At this points the NTE has been resolved to a logical address,
fetch mode, and length, The TYPZ, Field 1is treated as a 4d=pil
literal and made available to the instruction semantic. The
resolved NTE i3 Jsed by the instruction semnantic to evaluate the
operand reference (i.e.» fetch source operands, store gestiration
operands).

==-End of Chapter=-

16:9:14
2e/lct/19
Rev,. 1|
Data General Corporation
-ompany cbnfidential

Chapter ¢
Tracing Facility

The tracing facility provides support for debugging and
coerformance evaluation without mwodification or recomnpilation of
procedure objects. Tracing is controlled by a three Jlevel data
structuyre ip a8 process’ data soace onm a Pper stack Casis,. Sinace
there is at least one stack per process=per domain, tracing is at
least: a »epr »drdcess=d2er Jdomain pPaeNONET0e

Tracable events inciude:
x S=0Up Execution

* Name References

* Procedure lall/Return
* Nonlocal Goto

* Jata Ra2farences

When a traced event occurs, a signal is generatec naming the
svent’s class., A handler is invoked »n the traced stacc< to dzall
with the event (e.g.s inform the user via his console, update a
trace data basel., A return by the handler <c¢coptinues the traced
operation, The handler receives a parameter indicating the speci=-
fic event which occurred and a pointer to the enviroament (l.2.,;
stack frame) in which the traced event occurred., The handler has

no special privileges beyona those of the ipvoking domnain, The
handler may access trace state via the macrostate accessing inter=
faces Jefined later in this chanster. dshen the trace condgition

handler and the signaller return, trace data structures are ree=
valuated and the as>propriate trace modes are elapled before resum=
ing the traced event.

5,1 Trace Data Structures

Tracing is controlled by multi=level data structures, Events
are signalled ~hen a search of a particular trace structJure jndica=-
tes a traced event is occurringe.

In the following structures, 3all offsats are 32 0it unsigned
integers denoting the location of @ bit relative to the start of an

9:4d3:30
5/Nov/ 7%
lev. |
Data General Corporation
company -bnfidential

bel Trace Data Structures 6=c

object (i.e.r o0ject relative offsets).

b.1.1 Trace Pointer

The trace data structture for a oarticdJlar stack is Ipcated via
the Trace Pointer, a 128=bit general pointer residing internal to
the system, A null trace 20inter ingdicates n> tracing 1is Dpeing
done for that stack,

A new trace environmnent is estaplisned via a call provided by
the kernel operating system, Trace state is reevaluated on each
call and return., Ap existing tprace enviroament 18 modified by
nullifying the current trace pointer, modifying the trace data
structures, and establishing a new trace pointer Jloceting the
mooified structure.

The data structure located oy the traze pointer must reside in
a single object. This object need not be dedicated to tracing,

nowever. Modifying the trace tables ass>yciated witn a7 active
stack produces unpredictable results,

b.1e2 Tracz2 Taonlz2 Header
The trace pointer locates a Trace Table Header, the first
level ot the trace data structure. Five classes of trace events

are defined,

Trece Table deader

0 31 32 33 47
+wo-wnnun----.-wn--n+--fn--nu-nnvmwn+

Version I version (=0) Il lclasses (5) | Oeeddid

S~0p Fetch | trace table offsetlD lentry count | 48,.95
LA L AL AL A Y L R R R L RS Y A L L L)

Name KResolve/Eval | trace table offsetiD lentry count | 96,.,.1453
AL A R X L L A R Y R R R L R R L XS

Procedure Transit. | trace table offsetiD lentry count | 1d44..19]
-"v--'-!l--—m—-—-.vv-uf -n’m-'uﬂnn—----*'

Data Store I trace table offsetiD lentry count | 192,.259
AL I AL P I L ER P AR R PR RS L LR R

Data Fetch I trace table offset!ID lentry count | 241,.287

Al Al Ll L L R AL R L L R L R XL LS)

* Version == ldentifies the version of this trace table
structure (version field) and the aunber of traze classes

9143330
5/Nov/ 79
Reve 1
Data General Copooration
Company Confidential

belo? Trace Table Header e=3

defined (classes field) (i.e., the number of trace table
headar eatriss),

2) Trace S=Up Fetch == trace the fetching of S«-Ops at speci~
fied |logical addresses, Each S=Jp t> d2e traced s so>ezi~
fied by the logical address of the left=most (j.e.r JloOw
address) bit of- 1ts op=code.

3) Trace Name Resolution/Evaluation - trace the
resolution/evaluation of name tanle entries of specified
name tables, Each name table entry to be traced 1is speci=-
fied by the logicel address of its name table (i.e.s the
name table pointer locating its namne table) and the name
corres>2017dingy to the traced NTZ,.

4) Trace Procedure Transitions (Entry and Exit) == trace the
entry into and exit from soecified procedures. :ibech traced
procedure is specified by the logical address of its entry
descriotor. Proceaure transition tracing occurs at two
points, procedure entry and procedure exite,

5) Trace Data Store == trace the storing of any bit. of data
within a range of offsets within a particular object., A
trace svent is signalled whenever 3any oit within a traced
range is stored, whether the operand being stored 1is
contained entirely within the tracsd ranger Or overlaps the
traced range,

5) [race Jata Fetch == trace the fetching of any dit of «dcata
within a range of offsets within a particular object. A
trace svent is signalled whenever any 21t within the traced
range is fetched, whether the fetched operand is contained
gntirely within the traced range, 2r overlaps it.

Each trace table header entry has three fields: a 32=bit trace
table offset, a disable flag bit, and a 13=2it: entry czount. The
trace table offset is the (object=relative) offset of a trace
taole, which describes the events within this class to be
signalled, The entry count is an unsigned 1integer indicating the
number of entries in the trace table,

A disable flag value of cne indicates this class of events 1is
not being traced. NO trace table exists fopr: this class, [he
remaining fields of this trace table header entry are ignorec.

2:43:30
5/Nov/79
Rtev. 1
Data General Corporation
company .bnfidential

b.le? Trace Table Header =4

A disable flag value of zero andy zero entry count jndicates
all events of this class are to be traced. The trace table is not
searched; rather a signal is generated unconditionally. The trace
table offset field is ignored,

A disable flag value of zers and non~zero entry count indica-
tes specific events are to be traced. The trace table cffset
locates a trace taole for this event <class, The entry count
indicates the number of entries in the trace table.

Traceable esvents may occur during certain phases of &=
instruction execution. Whenever an event of a particular class may
pccur, the trace table for this class is szarched. If the teple
contains the presently occurring event, @& trace signal is
generated, If the presentiy occurring event is not in the table,
the interpretation continues, A return from the trace signal
continues the interrJpted S=op. Since the trace signei handler. nay
have modified the faulting procedure’s orocecure object, data,
ahd/or state, 23ll: encachea informnation muast: De rederivad following
return from a trace signal. Knowleage of the occurence of a trace
signal is lost to the interpreter following return from the signai
handler,

5,1.3 Tirace Taples

A trace table is & two level table., The first level, Jlocateu
oy @ trace table header entry, is the trace table, Ihe secong
level is called the trace event table. All entries for 2 particu=
lar taole occuoy logically contiguous storage. [ables are located
by their left most or lowest adaoress bit, All offsets are unsigned
integers denoting oit granular, object relative locations.

Trace Table Entry

0 127 128 159 169 175

| opinter | offset i antry count |

IR AL LA L R L A AR AL AR R X I IR A IR AL E L AL L LRl RS

The pointer identifies an entity conteining tracea events
(es.g.sr a procedure or a name table). The 32=bit offset locates the
trace event tanle within the object containiny the trace table.
The trace event table defines a set of specific events within the
traced entity w#hich are to generate signalse The lO=bit entry count:
is an unsigned integer denoting the number of specific events
Jefined for this class within this antity (i,e.r, the numper of
entries in this trace event table).

9343330
S5/thov/ 79
Revae 1
Uata General Corporation
company Configential

bel.5 Trace Tables 6=hH

A partizular UID oointer may 2e included in at most one trace
table entry for a single event class for a particular stack. A
zero entry count indicates all events of this class for this entity
are to be traced. The trace event table 1is not searched. The
offset field is igrored. A non=z2ro entry zount 11dicates the
number of trace event table entries defined within this class for
this entity.

The trace table entries within a particular class are ordered
oy increasing value of their UID pointer fields (with these fields
taken as 128 bit integers)., Search of these tables terminates when
a Ul) pointer field greater than a UID podinter to> the ootentially
traceable event (also taken as a 128 bit integer) is found.

5.1.4 Class=Specific Trace Event Tables

Since the trace event table defines specific events, its
format depends udon its event class.

6.1.4,1 S=0Up Trace Event Table

S~0ps to oe traced are specified on & oder=procedJdre Dasis.
The UlD pointer in the trace table entry is a pointer tc the entry
descriptor of a2 procedure containing traged 3=lps. Fetching of
S=Ups associated with this entry descriptor are the potentially
tracable events. The trace event table for this class is a tanle of
32=bit PC offsets locating the S=Ups to be traced, Note that the
S=Ups associated with an entry descriptor are conteinea in the same
object as the entry descriptor.

5=0p Trace Event Table Entry

0 31
+-unn.w--n‘-n-'nvn-n---q-a-*

| PC offset |

AL LA A RS LISl AR N XL RS

At S-Up fetch time, the S=Up Trace Table containing a UID
pointer pointing to the current: procedure entry descriptor s
found, The S=Up trace event table entries associated with this
trace table entry are ordered by increasing PLC offset value,
Search of this table terminates when a trace event table entry 1is
tound containing @ Pll offset valiue greater than the current: PZi
offset, At S=Up fetch time, if 2 search of this table fincs an
2ntry mnatching the fetch PC offset, an S=Uo trate event is

9343130
5/Nov/ 79
Reva. |
Data General Corooration
Company Confidential

S5eloelal S+Up Trace zZvent Taple 6=b

signalled, Otherwise, the 5=0p is fetched and interpreted, when
the signal handler returns, the 3=Jp is refetched and interpreted.

bel.d4,2 Name Resolve/tvaluate Trace Event Table

Names to pe traced are specified cer=~ame table. Tne resolju=
tion or evaluation of names associated with the traced name table
are the potentially tracable eveats., The ULD pointer in the trace
table entry is a name table pointer., The trace event table is a
pit table {(i.e.r 3an array of bits), ~ith one bit for each o4 »dit
name table entry or name table extension in the specifiea name
teble. The trace table’s entry count must 2e zerdo (i1.e., trace all
name resolves/evaluates), or equal to the Jlapgest name 1in the
corresdonding tamne table, (A ordcedur2’s Procedure Inviroamant
Descriptor specifies both the name tatle pointer and largest name)d.
At name resolution or 2valuation time, ifi nams tracing 1is oeing
performed, the name resolve/eval trace table entry whose JID
s2o0inter ooints to the current namne taole 1is found, The name
resolve/eval trace event table associated with this trace table
entry is indexed by the name to pe resdslved oripr to initiating the
resolution, If the bit thus Jlocated is oners or no trace table
entry w~with the proper JIV pointer is found, a3 name resolve/eval
trace event is signalled. Otherwise, the name s resolved or
evaluyated. Ahen the trace event signal handler retuprns, the
resolution or evaluation is completed.

beleldad Procedire Transition Traze Evenat Table

Callsy, returns, and nonlocal gotos are tracatle events.
?rocedures to poe traced are specified on a procedure object basis,.
The UID pointer in the trace table entry s a pointer to the
orocedure object header (note: its offset is i3nored). =ZBch trace
event table entry specifies a 32=bit offset (relative to the start
off tne triaced orocedure ooject) 2f an entry descriptor to be
tracedr and four trace event flags:?

F:43:30
5/hov/79
Rev, 1
Data General Corporation
-ompany -bnfidential

beloede3

Proceaure Transition Trace Event Table =7

Procedure Iransition Trace Event Table

"Bll,

0 31 3¢ 45

(XTI AL LA RIS ALY R L Rl RS R AN Z A LRI

| entry descriptor offset I x x x x |

L EA R L A AL AL A R L AR Al R AL KRR R LD LE A LXK J

crlor

a
1
1

33 C 0D
® < v ®
3 ® rt3 DD

In the following descriptionss procedure "A" <calls rprocedure
who calis procegure "C", Procedure "3" is being trated,

*

call = signal procedure call trace whenever this procedure
is called. Tracing is controlled oy B’s stack’s (domain’s)
trace pointer, The signal occurs within B°s domain and on
B’s stack after the new environment has been estaplished
(including the new stack frame and static data area). The
signal occJrs as the call completes oefore fetcning the
first S=op of B,

return = s8signal procedure return trace whenever this
procegure’s activation record is to be deleted. The signal
occurs just pefore the activation vpecord 1is actually
deleted, Tracing is controlled by B°s stack’s (domain®s)
trace cointer., The signal o:zcurs w~ithin Bs domain and o~
3°s stack before any environment is destroyed (i.e.r, as
soon as the return s recognized), A return from the
signal handler continues deletion without further signal=-
Iiag for this activation record, inslading invagation of
any cleanup handlers, Note, one signal occurs per activa=
tion r2cord per traced statk, This signal may o2ccur when
the traced procedure returns, or 1if a nonlocal goteo s
passing control to an activetion orevipous to the traced
procedure’s in the dynamic call history,

leave = signal procedure leave trace whenever this pro=
cedure calls another procedure, Tracing is8 controlied by
3°s stack’s (domain’s) trace pointer. The sigral ozcurs
within B’s domain on B’s stack after parameter pointers and
state have been pushed, out pefore the target environment
has been built., A return from the signal handler continues
this call without further signalling.

9:43:30
S5/Nov/T74%
Rev, 1
Data General Corooration
Company Confidential

belalded Procedure Traasition Trace Event Table b=5

x preenter = signal procedure reenter trace whenever this
proceddire is reentered viag a retJurn. Tracing is controjlled
by B’s stack’s (domain’s) trace pointer. The signal occurs
in B’s domain on B8’s stack uoon fetch of the first S=Ud at
B’s return PC after the environment has been reestablished.
This signal occurs if C returns t> B, or any orocedure
following B in the dgynamic call history performs 2 ronlocal
go to; 3.

If procedure transition trecing 1is being performed, the
orocedure transition trace tables are searched to deternine if a
signal is to be generated, The procedure transition trace tatble is
searched for an entry whose UJUID oointer po2ints to the orocedure
object header of the current procedure object. If none is found,
the current. osroceddre transition is not peing traced, If one s
found, the associated trace event teble i1s searched for an entry
egJ4al to the offset: of the procedure entry descriptor 1in qguestion
(this offset 1s relative to the start of the containing procecure
object). If none is found, this procedure transition is not »peing
traced. I1f one is found, and if its flags indicate the transition
opecurring is being traceds the signeli is gsharated as indicated i~
the preceding JisScussion.

Myltiole signals of this class may oczur if (e.ge.) B's stack
specifies leave tracing, ano C’s stack specifies call tracing. In
such a case, t40 distinct signals are generbtedy the first one o=
B’s stack, and the second one on (’s stack,

5.1.4,4 Data Store/Fetzh Trace Event Table

The accessing of operand values in data space are the poten~
tially traceable events. Trace event tanles for data store and
fetch tracing are identical., Areas to be traced are denoted by
their zontaining ooject (specified as the JID »o0inter 17 a trace
table entry) and the start anc length of each traced area within
that opject. (The offset of the JIDi pointer must be zerc, or
results are unpredictable), Each trace event table entry delimits
each range as a 32=bit object relative base dffset and the numder
of bits in the range (range length).

J2433:50
5/Nov/ 19
Jev, 1
Vats General Corporation
ompany Confidential

belold,.d Data Store/Fetch Trace Event Table 6=9

data Store/Fetzch Trace Event Taole Entry

0 31 3¢ 63

+---ﬂ-.-'-—------.---”--'."+-_--'-----‘--—-'----------+

| base offset | range length |

--..-.-------’ﬂ--.-ﬂc.------—' LR TR L EE L XS R X ¥ F ¥R Y

Trace event table entries are ordered by 1i1ncreasing base
>f fset value., The range length velue is a 32-oit unsigned integer.
Note that range length is not the offset of the end of the traced
rangas,

I1f either class of data tracing is being performeds whenever
virtual memory 1s accessed to reaa or write an operand or portion
of an operand, the data fetch or store trace table (respectively)
is searched for an entry whose UID pointar pointing to tnae start of
the ohject containing that operand. If none is found, this data
access is not oeing traced, Otherwise, the trace event taple
associated with the found trace table entry is searchea for delimi=
ted area cantaining any part of the (portion of the) operano being
accessed. If none is found, this operand access 1is not being
traced, Utherw~ise, the first one found zeverates a signsll (a o3ta
store trace event or a data fetch event).

6.2 Considarations For SPRINT

Whenever a new stack is entered (e.g.r, Wwhen a domain boundary
is crossed), the new trace pointer is examined., If this pointer is
non=null, the new stack has tracing enabled. The stack’s trace
table header is located and each ocefined eatry examined, Tracing
for each class is enabled according to the <c¢lass”® trace tsble
header entry, Reserved entries are not 2xaminsd,

Trace tables and trace event tables are cefined ana ordered to
nininize searching. When a process changes procedure objects, the
procedure transition trace table is searched for an entry corres=
d0ondin3g to that arocedure object, If none is found, this class of:
tracing is disabled until the procedure object 1is again changed.
-ikesise, shen a new name table is specifiad, the name resolve/eval
trace table is searched for an entry corresponding to the new name
teble cointer., If n0ne is found, name tracing is disabled until a
new name table is defined. The S=0Up trace table 18 searched at
srocedure entry/reentry time, If no entry matzhing the destination
procedure’s entry descriptor is found, 3=0p tracing 1is disabled
until the next procedure entpry/reentrye.

G343:30
5/Nov/79
Rev, 1
Data General Cordoration
Company Confidential

o2 Coasiderations Fopr SPRINT 6=10

Since data references are more random than procegure object
references, data store/fetch trace tables nust be searched for each
store or fetch while a process 1is running on a traced stack
(domain). The trace table is searched for an entry corresponding
to the operano’s data object, If one is found, 1its trace event
table is searched until a range is found containing any 21t of the
operand, or a pase offset 1s found beyona the end of the operand,
Searching terminates as soon as H>npe of these copditions is met: I1f
an operand falls in several traced ranges, only the first one found
jenerates a signal, Unly one signal is gJenerated per operani
regardless of the number of memory references required to access
the entire ooerand,

b.3 Access to Macrostate

In order for the native mode depbugger to function it must be
able to access the macrostate of & process. The following func=
tions constitute the total guaranteed 1interface available to a
native moce deobugger. Implementation restrictions are expected in
certain imd>]a2mentations. These fuactdions supplenent tha
Debugger/Kernel interface functions.

5,4 Depugger/Namesoace Functions

The functions which are described are implementec as Unporivi=
leged S5=-ops and/or software. The deduggsr can thus exscute then
while in any domain,

In the following interface descri®tionss 20inter arguments ara
expected to be 128 bit pointers. The error argument is expected to
o2e an unsigned integer capable of exoressing values 1n the range
0465535 (i,8e/ @ l& bit unsigned integer). Any other arguments
soroduce unaredictable results,

iNamespace and protection execution exceptions are signalled.
Improperly sized operands are treated as for S2L Pointer instruc~
tions (see the SPL S=language definition in Chapterld.) The follow=
ing conditions are detected and returned as a value of the error
arguments

0 = No errorse.

i = fp argument is not a Frame Pointer.,

n

= [fhere is nD orevious or successor 3tack Frame.

9:43330
3/Nov/ 179
Keve 1
Data General Corooration
Company Confidential

b4 Debugger/Namespace Functions 6=11

5 = The new_trace_pointer does not locate a Trace Table Header.

Exceot as indicated, the state of writadls arguments other than
"err", and the results of executing one ot the following
interfaces, are Jndefined and u-apredictable {if a nonzero error
argument is returned,

5.4.1 set_Current_FP (zurrent_fp)

PROCEDURE get_current_fp
(ARITE JIN.N current_fp! POINTER TU

This function returns the value of the current trame rpointer (FP)
pase register to the caller in the argumeat ‘"current_fp", The
"eurrent _fp" argument is expected to be of length 128 to hold a
full UID pointer.

This function is intended for wuse to begin traversing the
Jsers stack, Vote that this function returns the FP of tne aebug~-
ger procedure’s activation record.

beloe2 et_”PrevipJds_F? (f2y prev_fps, 2rr)

PROCEUURE get_previous,_fp

(READ ONLY. fes POINTZR TO stac
WRITE OnLY prev_fp: POINTER TU stack.frame,
ARLITZ INLW erpr? Dee63535)3

This function returns the value of the frame pointer (FP) Dbase
register for the predecessor of "fa2" in "opev_fo", "fp" is wusey
only as @ source and is expected to contain a pointer representing
some activation’s frame pointer. The frame poirter value for the
predecessor frame is stored inm the ‘"prev_tp" argument. The
"prev_fp" argumnent 1s exocected to 2e of leagth 128 to hola a full
UlD pointer,

7243330
S/Nov/79
Rev., 1
Date General Corporation
cbmpany _Cbnfidential

bel4.3 bet_Successor_FP (fprysucc_fprerr) =12

b.H.3 Set_SuzcassorFP (fp,succ_forerr)

PROCEDURE get_successor_fp

(READ OnNLY fp: PJINTER TJi stac
WRITE ONLY succ_fp: POINTER TOU stack.frame,
NRITZ IJN.Y errs 0ee63535)7

This function returns the value of the frame pointer (FP) base
register for the successor of "fo" in "sucos.fp", "fp" is used only
as a source and is expected to containm a pointer which is the frame
>ointer of som2 frame. The frane pdinter value for the successor
frame is stored in the "succ_fp" argument. The "succ_fp" argument
is expected to b2 of length 128 to hoild a3 full UID pointer,

b.4.4 Get_State (fp, state_ptr, err)

PROCEDJRE gzet_state

(READ ONLY fep: FOINTER TO stac

READ ONLY state_otr: PIINTZR TU
readable_macro_.state.,

NRITE ONwY erprs Dee003B35);

This function returns the "Readable Macro State" of the frame whose
frame pointer value is given by "fo", Tha state 1s dunped as a
record whose format is defined by "readable_macro_state, State is
dumped beginiing at the location given oy "stete_ptr", which i3
expected to contain a pointer.,

5.4.,5 Set_State (fp, state_ptr, err)

PROCEDURE set_state

(READ ONLY fp: POINTER TJ stac

READ ONLY state_ptr: POINTER TU
writable_macro_state,

WRITE ONLY err: Ose©5535);

This function loads the "wpritanle Mazro State” of the freme whodse
frame pointer value is given by "fp", The state is lcaded from the
record whose format 1is defined oy "writaole_macro_state", The
Nritable Macro State is loacdeo beginning from the location given by

7343330
S/hNov/ 79
Qev. 1
Data Leneral Corporation
-ompany Zbnfidential

b,4,.5 Set_State (fp, state_ptr, err) 6=15%

"state_ptr", wnich 1s exdegted to zontain 3 dointer,

" " is returned, state is not modified,

If a nonzero "err
bad4ebd Swap_trace_pointers (new_trace_ptr, o2ld_trace_ptr)

PROCEDURE swap.trace_pointers

(READ CiLY new_trace_nointer: P2
trace_tarle_header,

ARITE INLY >ld_traces_osointers: P
trace_tatble_header,

NRITE ONLY erp: Des®3635);

This function sets the value of the current trace pointer to the
value given by the argument "new_trace_ptr"ih It returns the value
of the old trace pointer in argument "old_trace_ptr",
"new_trace_ptr" and "old_trace_ptr" are exocected to be of Jength
126 to contain a full UID pointers.

Uoon loading the new trace o2ointery, the current stack’s
previous trace state is lost. The trace tables located by the new
trace pointer are evaluated and o>rovide the Yes definition for the
current stack’s trace state, The approoriate trace modes are
enabled and tracina commences as soo0on a8 tnre naxt 3=Up is fetched.
(N.Boy it 3 Trace Table indicates "trace every occurance", recur~
sive signalling nay result,)

I1f a nonzero "err" is returned, the current stack’s trace
cointer is set to null (al]l tracing agisanledl.

6,5 Macro State Definition

The folloawing describe the MACR0O S1ATZ records which are used
for the "Set_State" and "Get_State" functions.

TYPE readable_macro_state IS

RECORD
FP: PIJINTER, %trame pointer (ABRD
SEP: PUOINTER, %S=environment pointer (ABR)
SDP: PJINTZIR, %static data poriater (ABR)
PuP: PUINTER, %procedure base pointer (ABR)
tD22 PJINTER, %entry descriptor dointer
FHP: PUOINTEK, %frame header pointer

”C: offset _type, %zurpent: o¢c int

9343130
3/dove 79
Rev, 1
Data General Copooration
Company Confidential

5.5 Macro State Dafinition

STO: offset_type %stack top offset
END RECORD;

TYPE writable_macro_state 1S
RECURD
EuP: POINTER, %entry descriptor pointer
°Cs offset _type, %zurirent pc int
STU: offset_type %stack top offset
END RECORD;

~=tng of Chapter~=~

Data General Corporation
ompany -bnafigential

9:43:30
5/Nov/179

Rev.,

1

Chapter 7
Exception Conditions, Faults, ang SIGVALs

7.1 Introcduction

Exception conditions are error conditions dJdetect2u by the
system. Trace conditions and nonresolvable pointer faults are
2scates «hicn causes software to be invoxed (2.3.s to resolve a
nonresolvable pointer, instantiate a static data area, or locg ean
event), Each zondition is cetected oy tie systen and oassed o to
a SIGNALLER, The SIGNALLER is invoked with a condition code and a
20inter. The semantics of this oointer deoend upon the nature of
the <condition being signalled, Prior to invocation of the
SIGNAL.ER, all macro state is stored where it is accessiole to both
the SIGNALLER and the handler,

The SIGVA.LZIR is responsiple for locating a software handler
for a particular condition, The SIGNALLER scans the current stack
for 8 nandler dJdefined to handle that condition., If one 1is found,
it is CALLed. 1if none exists on the current stack, the condition
nay de passed on to the stack which called the current stack,

7.2 Londitions

The following sections descrioe the conditions genszratead and
the information presented to the SIGNALLER, For each condition,
the value 2f the pointer parameter passed to the signal handler is
given along with the semantics for returning from each fault. The
signal handler must rejuest exolicitly that«the nacro state of: a~
activation be modified,

Tecel I1LLEGALLS_IP

unrecoverable class
POINTER TUs: JNOJDEFINED

Semantics:
An attemot has been made to fetch and axecute an S=(0p w~hich
is not defined 'n the current S=Language. The signal
occurs oY the current stacke Th2 207 and PC in macro state

Ge44334
3/Nov/79
Rev. 1
Data General Corooration
Company Confidential

7e201 el zGAL S 0? 1=¢

locate the faulting S=Up. A return (pe)executes the S=0p
located oy the PL in macrostate. Such a return may czause
recursive faulting.

7Te2e2 ILLEGALL_JPIRAND _SYLLABLE_SIZZ

unrecoverable class
POINTER TO: JNJEFINED

Semantics:

An attemot has oeen magde to invoke a procedure which
specifies a value for operand syllable size which 1is not
eight, tselve, or sixteen (eignt »>r sixteen 173 S8PRINT),
The PGP and PC in macro state locate the faulting S=0p.
Macro state also contains a oointeri to the entry descriptor
which was called.e This entry descriptor locates the faulty
Proceddure Environment Descriostor. The signal oczurs on the
called stacke A return from handling this fault causes
Jnoredjctaple results,

Te2.3 NAME _OUT _UF_RANGE

Jynregcoveraole class
POINTER TO: UNDEFINED

3emantics:

An attempt has been made to resolve or evaluate a name
~hich is larger than the largest name in the current name
table, [The PUP and PC in macro state locate the S=Up which
specifies tha iliegal name, Tae signal occurs on the
current stack. A return from handling this fault reexecu=
tes the S=Jp located by the ?C 1in nagro state. Such a
return may cause recursive faulting.

Teled ILLEGALLIAR_TRAP

unrecoverable class

POINTER TUO: faulting name taple entry

Gi44234
5/Nov/79
RQVQ 1
Data bLeneral Corooration
Company Confidential

7T.2.4 I.LZGAL _EAR_TRAP 7=3

Semantics:

An attemdt has been made to reso>lve or evaluate a name
table entry whose EAR Trap is set, and no EAR handler
axists for tne cuJdrrent S~Language. The signal. ozcurs on
the current stack. The PUOP and PC locate the S=0p which
generated the illegal_EAR exzeotion. The handler is passed
a8 pointer to the offending name table entry. A return from
haadling this fault peexscutes the S~U> located oy the P
in macro state. WNote, such a return may cause recursive
faulting.

7e2e5 INCONSISTENT _NAME_TABLE_ENTRY

unrecoverable z1ass
POINTER TGs faulting NTE

Semantics
An attempt has been made to resolve or evaluate a name

table entry ~hose specification s not consistent, The
signal occurs on the current stack. I|he PUF and FC locate
the S=Jp which generated tnhe 1i1llegaliLte exception, Tha

handler is passed a pointer to the inconsistently specified
NTEZ., A return from handinng this fadlt: peexecdtes the S=-0>
located by the PC in macro state., Such a return may cause
recursive faulting,

7.2.6 INVALID_PUINTER

unrecoverable class
POINTER TO: datas

Semantics:
A pointer resolve has been attempted on a pointer whose NR
pit is not asserted, but whose format field does not
specify a valid resolvable pointer format., The signalier
info pointer locates the invalia pointer in data space. A
return from the signal handler reattempts the fetch ang
resolve >f tne faulting »ointer from data space,

9:44:34
3/Nev/ 79
Rev, 1
Jate General Corooration
Company Confidential

Telebd INVALLDILPOINTER 7=4

Tele7 INVALID_ENTRY_DESCRIPIUR

Jnrecoverable class
PUINTER T0: invalid entry descriotor

Semantics?
Architectural call found a structure other than an Entry
Jescriotor, ~hen it expectes an E-try Descridtor. The
signaller info pointer locates the invalid structure. A
return from this signal handler reesval Jates the structure
located by signaller info pointer,

Te2e8 INVALLILSL_INTERPRETER

unrecoverable class
POINTER TU: S~Interpreter_pointepr fiela of a PED,

Semantics:
A call has been made to s orocedJr2 whoyse Procedure E&nvi-
ronment Descriptor S~=interpreter pointer specifies an
object which is not an S=]Interoreter. A preturn from this
handler reevaluates the S=Interpreter Pointer field of the
target PFED,

7.249 INACTIVE_S_INTERPRETER

unregcoveranle class
PUINTER TU: S=Interpreter.pointer field of a PED,

Semantics:?
A call has been made to a procedure whose Procedure Envi=
ronment Descriptor S=interoreter pointer spezifies an
object which is an S=Interpreter, but is not active, In
3108, 3ll. S=interpreters mJust 2e activated at IP.l time. 4,
return from this handler reevaluates the 3=Interpreter
Pointer field of the target PED.

944334
3/Nov/79
Rev. 1
Data Genersl Carnoration
Company Confidential

7.249

INACTIVILSLINTERPRETER 7=5

7.2.10 S_OP_TRACE

trace

class

POINTER TUstraced S-0p

Semantics:?

7Te2411

trace

An attempt has been made to fetch and execute an S=Up whose
logizal. address 18 contaiped in th2' current stack’s S=lo
trace table. The signal occurs on the current stack, The
handler is passed a oointer to the traced S5=Jp (the sane as
the current PC stored on macro state)., The signal occurs
followiny conpletion of all- orevipus S=~0»s, but orior to>
interpretation of the traced S-Up. A return refetches the
traced S~U> from virtual memory ahd continues 2ispatching
and interpretation without recursjve faulting. Process
data s>ace may be mnodifiad by the hansdler.

NAME _RESULVE/EVAL_TRACE

class

POINTER TU: name table entry

Semantics:

An attempt has been mace to resolve or evaluate a name that
is reflected in the current stack’s Vane Resolve/Eval Trace
Taple. The signal occurs on the current stack Dpefore the
nane 1s actually resolved, The handler is passed a pocinter
to the traced name’s name table entry. A return from the
handler refetches the trace2ad NTE from virtual nemory and
continues its resolution or evaluation without recursive
faulting. Process data space may »pe modifiead by the
handler.

Te2e12 PROCEJURE CALL_TRACE

trace class

PUINTER T0: entry descriotor

Semantics:

An attemot has been made to call a orscedure wWhose entry

91443134
5/Nov/ 79
Rev., 1
Data General Corooratijon
Company Confidential

7T.2.12

PRUCEJURE _CALL_TRACE /=6

descriptor is reflected in the current stack’s Pproceaure
Transition Trace Table with the call tracing flag set. [he
signal occurs on the current stack. The handler 18 rpassed

3 csointer to the traced oroceodr2s entry descrinstor. 4
return from the handler continues the call without recur~=
sive faJdlting. See the Iracing Facility chapter for

details on the semantics of this fault., Process data space
may oe modified oy the hanidler,.

le2e13 PROCEDURE _RETURN_TRACE

trace class

POINTER TO: entry descriptor

Semantics:

An attempt has been made to 1) return from or 2) execute 2
nonlocal Joto through a »srocedure ~hos2 entry descriptor is
reflected in the current stack’s Procedure Transition Trace
Table with the return tracing flag set., The signal occJrs
on the stack containing the activation record to be celeted
(this decomes the current stack). This fault osczurs orijor
to deletion of a traced procedure’s activation recorc and
after any cleanuo handlers for the traced procedure have
returned. The fault occurs while the activation record 1is
entirely iatact. The haadler is passed al pointer to the
traced entry descriptor. A return from the handler contin=
ues deletion of the activation record without recursive
faulting. Process data space may be mcdified by the
handler,

7.2.14 PROCEDURE _LEAVE_TRACE

trace

class

POINTER TO: entry descriotor

Semantics:

An attempt has been made to 1) call out from or 2) execute
a nonlocal goto out of a procedure whose entry descriptor
is reflected in the current stack’s Procedure Traensition
Trace Taole with the leave tracing flag set, The signal

Q4434
5/Nov/79
Rev. 1
Jata General Cordoration
Company Confidential

Te2e14 PRICIDJRILLEAVE_TRACE 7=7

occurs on the current stack as soon as the call or nonlocal
goto S=0> is recognized and orior t> 1its dispatch and
interpretation. (The current stack is the one from which
the calil or nonlocal gotos was fatzshed). The handler is
passed a pointer to the traced entry descriptor. fhe
current PC stored in macro state is the address off the call:
or nonlocal goto S~Up, A return from the handler refetches
the S-Jp pointed to by the curreat PZi from virtual memory
without recursive faulting. Process data space may bve
modified by the hancler.,

7.2.15 PROCEDURE _REENTER.TRACE

trace class
PUINTER TO: entry descriptor

3emantics: :

An attempt hes been made to return to a procedure whose
entry descriptor s reflected in the curreat stack’s
Procedure Transition Trace Table with the reenter tracing
flag set, This attenpt opcurs as a3 result of a retura to
such a prcceoure, or a neonlocal go to such & proctecure. In
this context, the cuprrent stack is the one contajing the
activation record which is gaining control. The handler is
passed 3 pointer to the entry dJdescriptor. The signal
occurs upon fetch of the 8=0Up Jlocated by the traced
oracedurz2’s current PC (j.2., the first S=Up at the ratur~y
point). The macro state stored is that of the activation
oeing returned to, The signal aop2ars as if it originateq
Wwithin the traced procedure at the point to which the
return would have Dpassed control, A return from the

handler refetches the first $=0p and continues
interpretation. Process data spac2 nay de modified by tha
handler,

7Te2elb DATA_FETCA_TRACE

trace class

Fi44:34
5/Nov/79
Reva. 1
UData General Corporation
-ompany .bnfidential

Te2olb UATA_FETCH_TRACE =6

POINTER T0O: date

Semantics:
An attemot has been mede to fetch data from an area of
logical memory delimiteog in the current stack’s Data Fetch
Trace laole., The signal otcurs on the current stack before
the data is actually fetched., The handler receives a
pcinter to the first portion of data t> be fetched which
Jies within the delimitea range, Note that the actusl

pointer may vary in a nodel dependeat nanner. 4 retur~
from the handler reattempts the fetch and continues execu=
tion of the S=Jp without racursive faulting. Tae hancler

may modify cdata sgace, including the delimited portion of
Jogical mnemnory.

Telol7 DATA_STURE_TKRACE

trace class
POINTER TU: data

Semantics:

An attempt has been made to store into an area delimited in
the current: stack’s Data Store Trace Tabple. No, date 13
storea. The sianal occurs on the current stack at the time
of the store. The handler recsives 3 20inter to the first
portion of data to be stored which lies within the delimi=
ted range. VNote that the actual o2o0inter may vary in a
model dependent manner, A return from the handler comple=
tes the store w~ithout recursive faulting, Npote that, if an
operand being stored spans a Data Store Trace delimited
range, it may have been partially modifiea in logical
memory at the time the trace fault 1is taken, Actual
pehavior 1is modJel cdependent, The hanoler nay modify
process data space, Modificetions to the delimited portion
of logicall memory are undjefined anhd Junoredictanle,

7.2.18 NONRESOLVABLE POLINTER

9:44334
5/nNov/ 19
Rev. 1
Data General Corporation
company -bnfidential

7Te2.18

NONKESOLVABLE_POINTEK 7=9

nonresolvapole sointer fault

POINTER TO: oceata

Semantics:?

A pointer resolve has been attempted on 2 pcinter whose NR
opit is asserted. The signaller information pointer locates
the faulting pointer in data space, A return from the
handler reattempts the fetch and resolve of the faulting
pointer from data space. If the NR bit 1s still asserted,
the fault will be signalled againe

7.2.19 STATIC_DATA

static data fault

POINTER TO: UNDEFINED

Semantics?

Architectural call was unable to Jlocate an instantiated
static data area for the procedure Dpein3y called. Archim=
tecural call invokes the static data fault handler through
a »20inter in the stack header (see the Kernel pesign
Specification). The macrostate of the faulting activation
is tnat of tne <zalled o>rdcedurz. However, tnae SDP s
undefined. The PED of the called procedure is locatec via
the Entry Jescriostor in the faslting activation’s
macrostate, The static data fault handler provides archi=-
tectural <call with an association Detween the called
procedure’s static data prototype pointer and the instan=
tiated static data area., See the <ernel Design Specifica-
tion for details of how this association is communicated.

==ftnd of Chapter~=~

94454
5/Nov/ 1719
Rev, 1
Data General Corooration
Company Conficential

Chaster 8
Call and Return

8.1 Call

CALL 1s invoked via an s=language specific CALL &5=Upo, It s
assumed an S=Interoreter is active on some stack, denoted the
CALLER’s STACK. The procedure to be invoked is denoted the TAkGE]
PROCZDJRE., The address of the TARSET PRICIDJRZI®s ENTRY DESCRIPTUR
(ED) is denoted the TARGET ADDRESS.

CALL is partitioned into threes ohases,’ The first completes
the caller’s activation, stores state to Dbe reestablished wupon
return, ousha2s paramater pointers, The sezond ohase locates tha
TARGET ED and puilds the TARGET environment, crossing agomain
ooundaries if necessary. The final ohase cuilds the TARGET activa-
tion and invokes the S~Interpreter.

8.,1.1 ”2hase one = Complete CALLERs_Activation

The first phase completes the CALLER’s activation, constructs
saraneter pointers to the actuals, and checks if the CALLER. is
being traced. The description begins on the CALLER’s STACK within
the CALLER’s activation WAith the disoatca >f a CaLL S=0p:

1) If the current S=Machine dgetines any §8~=Machine=specific
state, it:is stored on the CAL.ER’s 3TACK., The manner 1in
which this state is stored is left to the S=Language to
define, Vhen the CALLER’s STACK again becomes cuJurrent (via
a RETURN or NONLOCAL GOTO0), that state is relcaded by the
S=vachine,

2) Allocate and initialize a frame header on top of the
current: stack for the new activation. The new frame header
is threadeo onto the call history of the process following
the current frame header,

3) The current activation’s frame header is completed.

4) Current Macrostate is stored 1i1aternal to tne system,
Hence, macrostate is never directly accessible to the
orogran. It may oe ipterrogated or noaified only
indirectly, via & set of interfaces descrived 1in the

2:53:4
5/Nov/179
Rev, |
Data General Corporation
-ompany .bnfidential

8.1.1 Phase one = Complete LALLERs_Activation g=2

chapter 7.

5) Paraemeter pointers are constructed for each of the actuals,
Space is reserved at the top of the current stack for
these. (Note that parameter pointers are linkage pointers,
and as such are subject to the restrictions placed on
linkage pointers by the Namespace architecture,)

5) The zurrent stack’s trace tanles are examined to dJdetermine
if LEAVE tracing 1is being performed for the current
oroceddre. If so, Procedure_Leave_Trace 1s signalled on
the current stack. A return from this signal continues the
alagopithn from tnis ooints, Yote that nacrostate and/or: the
parameter pointers may have been modifiea ©by the signal
handler., Cblls are orovided to exslicitly request storing
or modifiying macro state.

[Vote:; tracing must be signalled on the trazed stactky
is€er the current stack, The handler must be able to
nodify tne caller’s macro state and ths ocarameter pointers
being passed to the target procedure. The order of events
oresented here 15 sufficient, out "ot necessary to guaran-=
tee this capability. This note also applies to CALL
tracing, cgJ4ring the last pnase of arzhitectursal cail,l

7) The frame header now contains information aescribing the
SA_LER’s activation record., The current FP is adjusted to
point to the top of the are2 reserved for parameter
cointers. At this point, the surr2ht FP ana S5P ooint to
the same bit and a 2zero length Jlocal data section 1is
allocated at the top of the CALLIR’s stack.,

Bs1.¢2 Phase two = Locate TARGET_Environment

In essence, 1f target_pointer lscates an ZD which 15 contained
within the current Frocedure Ubjects, anad target ED shares the same
PED as the target ID (i.e.s the 2E)_offset fields of the EDs are
identicall), the calling and target activations share the same
rocedJre Invironment and the renainder >f tnis ohase is bypasseds.

If target_pointer does not point to an ED contained within the
current procedure object, kernal microcoge is invoked to find the
TARGET PROCEDURE’s ED, crossing domains if necessary anag psssing
c>aramnetepr pointers across donain poundaries, The ®©Namesoace ni=
crocode invokes the kernel microcode from the CALLER’s stack, andg
receives control again on the TARGET stack. It is assumzsdg that, if

9:53:4
3/Nov/ 719
Rev, 1
Data General Corooration
Company Confidential

85.1.2 Phase twd> = Locate _TARSETLZInvironment b5

stacks changed, the kernel microcode has puilt ang threaced a frame
header and <copied the parameter po2intars (with aporopriate
checking) onto the TARGET stack. Trace state for the old stack is
saved, and trace state for the TARSET stack is evaluatea.

If the TARGET ED does not share the current activation’s FEUL,
3. nes 2nviroament 1s buiit, Note that, 1f target_pointer poinats
outsice the current procecure object, the current and TARGET EDs
zannot share the same PED.

This phase occurs in neither the CALLER’s not the TAKGET’s
activation, osut in that "GREY" are3a 11 bstweszn, #nen Namespace
again resumes execution, FP points to the base of the 1nvoked
orocedure’s activation (following the frame hesader and paranetepr:
pointers). In addition, the SP (or 8TP) points to the first bit
availaole at the top of the current stack (following the paramneter
pointers)., At this point, there is no local storage allocateg for
the TARGET procedure,

1) 1f target_pointer points to an tD within the current Pu,
and the 2ED associated with the target ED is the same 2as
the PED associated with the current ED, the only part of
the 2r3c2ss’ environmnent wnhizh is changing is its Ipcal
automatic data (including its parameter pointers), Unly
this state need oe flushad fron th2 Vane Cache, Proceed to
phase three, Utherwise:

1) If target_pointer Joes not pdint to an EJ cont3ained
within the current procedure object, invoke kernel
nicrocode to follo~ the terget pointer until anc EX
is found. Details of this algorithm are veyond the
scope of this specificatipne. Control returns to
Namespace on the TARGET stack (which 1is now the
surreant stack), Tne cJrrent EJi is the TARGET :=u.
The TARGET FED 1s located via TARGET ED’s acdress
and the 2E)_offset field of the TARGET ED.

2) Since a new environment is being established, the
Nane Cache must pe flushead,

3) Loao the current P3P and NTP from the epprocriate
fields of the TARGEIT PeD, If the PBEP fi21d of the
TARGET PED s not &n object relative pointer,
signal Invalid_Pointer,

4) Locate an instance of Static Data associated with
the 3DPP of the TARBGIT PID for the current stack,
If none has been instantiated, invoke the static

9:53:4
5/Nov/ 19
Rev. |
Data General Corporation
Zompany -bnfidential

B.1l,.2 Phase two = Locate_TAKGET_Environment 8=4

data fault handler to instantiate one., Load the
SDOP with a pointer to the static data area.

5) Load the LARGEST_NAME and CZURRENT_SY.LABLE _SIZE
from the TARGET PrU,

5) Lozate tne TARGET S=Interpreter, via the SIP field
ot the TARGET PED, 1If this S8SIP field does not
denote 2n oobject of typ2' S_INTERPRETIR, signali
Invalid_S_Interoreter, In SPRINT, if it denotes an
inactive S=lnteroreter object, si1gnal.
Inactive . S_Interpreter,

83.1.3 hase three = BUild_TARGET _Activation

This ends the second phase of architectural call, The final
ohase takes dlace on the TARGIT stack and within the TAak3ET
PRUCEUURE’s new activation, At this point, the TARGET PROULEDUKRE
has logically oneen invoked., All that remains is to <conplete the
new activation’s environment and macrostate,

1) Allocate a local storage area at tne top of the stack by
adding the INITIAL_FRrRAME _SI1ZE fielo of the TARGET EU to the
>ftsat fielo of: 5P, Check for extaht vidlatione.

2) The TARGET PRUCEDURKE begins execution at the address
desotea by the sJm of the ’g2,0ffset plus the
initial_PC_offset field of the TARGET ED (this offset s
nithin tne same 2bject dendted by 252)., SET the F(.

3) The current stack’s trace tables are examined to determine
if CALL tracing 1is being oerformed for the current
procedure, If so, Procedure_Call_Trace is signelled on the
currenti stack., A return from tnis signal continues the
algorithm from this point, Note that macrostate and/cr the
parameter nointers may have oceen nodified oy the signal.
nandler, C2lls are provided for exolicitly regquesting the
stoping or modificatjon of macrostate.

4) Invoke the S~Interpreter,

53) Invoking @ new S=interpreter may ra2gdire the conpstruction

of initial S~Machine state, The S+=VMachine may reguire
knowlege of shether SIP has changed as a result of tnis
call,
9:53:4
5/Nov/s 179
Rev. 1

Data General Corporation
company -bnfidential

8.1.3 Phase three =~ Build_TARGET.Activation &=5

6) B3egin interpreting S~Uos,

8,2 Return

Return terminates the lifetime of twe current activation, an3
makes the caller’s activation current (the caller’s activation s
the activation which immediately preceeos the zurrent o7e in the
process’ dynamic c¢all historyl. From the Namespace Point of view,
this is a relatively sim2le operatipn.

Functionally, architectural return performs the following:

1) Check the current activation for r2turn trecind. If the
current trace table indicates the current procecure 1S
beingy raturn tracedy je~erite a returiaosie
PRUCEDURE .RETURN_TRACE signal. Continue when the signraller
returns.

2) Locate the calier’s macrostate.

3) Delete tne current activation ratord from tae current
stack,

4) Reload the caller’s macrostate, T1is makes the caller’s
activation current. The Protection level of the system may
oe invokasd at this point if the return chanyges stacks,

5) Check if the current trace taocle indicates the current
procedJre 1s being reenter traced, 1f so0s ggenerate a
PRUCEDURE _REENTER_TRACE returnable signal., Continue when
the signaller returns.

6) Continue interpreting S~0Ups.

3.3 Vonlocal Goto

Nonlocal goto causes control to pass a specifiea S=0p within 2
specified activation (othepr than the cuJrrent onel,

8.3.1 Kestrictions on Nonlocal Goto

A Nonlozal Goto S=Uo must feature an dpcode unique from all.
local (intra=activation) gotose. The nonlocal goto instruction

9:5334
S5/Nov/ 19
Jev. |}
Data General Corporation
Company Zbnfidential

8.3.1 Restrictions on Nonlocal Goto 8=6

rejquires two ocerandsi the destination astivation (i.e., tne FP of:
the destination activation), and a Pl offset, lhe. specified. Eo
affser_must_losale.a2.0=dRwithia the_2racabira_assgesiatad wita-tha
desfipatigo_activatiope_Qr.fesulis.ace-wapbediatables

Architectural return is a special case of nonlocal goto, where
the destination activation and =2(C offset are implied from the
calling activation’s macrostate,

B.3.¢ Senantics of Nonlocal Goto

Functionally, nonlocal goto traverses the dynamic call history
of the process backwards in time, issuing a3 return for each activa=
tion encountered wuntil the destination is reached, When the
destination activation becomes current, a local goto to the soeci=
fiea PC offset is issueq.

1} Check the current activation for resturn tracing, If the
current trace table iJjndicetes the current procedure s
beiny retarn tracedy Jeverpte a returnansla
PRUCEDURE_RETURN_TKACE signal. Continue when the signaller
returns,

2) Locate the caller’s macrostate.

3) VDelete tne current activation recortd. This invaolves intar=-
vention by KU3 to determine if (e.g.) cleanup processing 1is
reguired.

4) Reload the caller’s macrostate. This makes the caller’s
activation current, The Proteztion level of the system may
be invoked at this point if the return changes stacks.

5) 1f the current attivation is the destination activation,
proceed with the next step. Utherwise, repeat the first
step through this step.

At this point, the destination activation 1is again
curranti,

6) Reload the current PC offset with the PC offset specified
in the noplocali goto S=0>, This P, offgset s assumed to
locate a valid 8=Up within the current procedure.

7) Check if the current trace table indicates the current
procedure is being reenter traced. I1f so, generate a
PRICEDJIRI_REENTEXR_ TRACE returnable sigials. Continue wnen

9:53:4
5/Nov/79
Rev. 1
Data General Coprooration
Company Confidential

8.3.2 Semantizs of Nonlacal Gotoy 8=7

the signaller returns,

8) Continue interpreting S~Jbse.

lhe.pesdlis-gf cxeculing.a. pnanlocall gala. Lo. &.- 20nexistant
activation.results.in.an.signal.isswved.-fyx.the_2ratectian. lexel. of
tbe.systedae..lble.LesJults.Qf sxecuting.aagalacal3atato.anactiva~
tign. abose. maccoesiate. bas. 2een. docaccectly. Dodifled. acs
doRcedlictanleas

~~tnd of Chapter==-

F:53:4
5/Nov/79
Rev, |
Data Generail Corporation
-ompany Zbnfidential

Chapter 9
S=_Languages

Information in this chapter applies globally to all 8=language
specifications,

9.1 Branches

9.1.1 Relative HBranches

A relative branch 1instruction specifies as an operand 2a
"relatijve offset" syllavle, This syllable 1is a k=bit literal
denoting a signed, offset relative to the current FC, The FL is
defined to be opointing to the oeginning of the instruction contain=
ing the relative branch. The value of "k" getermines the granular=
ity of the offset. The k=pit relative offse2t syllacle is sign-
extended to 32 bits then multiclied by the greatest common divisor
of 8 and k [53CJ(B,k)] to obtain a dit=granular oftfset. This value
is then addeg (2°s complement addition) to the offset porticn of
the current Ceo Interoretation resumes at this new I=strean
location.,

Vbte that a relative branch is always intra=2rocedure Jbject, since
only the offset of the PL is modified,
9.1.2 Jiffset Bpanch

An offset branch is an intra=Procecure UObject branch specified

relative to the beginning of the cJrrent “rogedure OUdject. An
offset name operand is evaluated to vyiela ap unsigned integer
diffset of Jess than or ejual to 32 oits in length. This wvalueg

represents a bit granular offset, The branch is performeg by the
replacement of the offset portion of tne PC with this value. As
suchy, the value 1s an absolute branch within the current procedure
>bject, Interoretation continues at the n2w I=stream location,
The result of not using an unsigned integer type for an offset
oranch is uJno>redictanle.

1537140
2¢/Uct /179
Rev. 1
Data General Corooration
Company Confidential

9.2 Exception Conditions Gl

9.2 bxception Conditions

This section deals with special 8nd exception conditions which
may be encounterea during s=ianguage execution,

9.2.1 Protectiopn Exceptiops

Several exception conditions of an architectural nature may
alrise as a resJlt of s~language exacution. Thay typically involve2
protection or adoressing violations as a result of attempted
improper use of date, instructions or enviroament. A list and
description of these exceptions can be found 1n Chapter xxx.

9.2.2 Namespace Zrrors

Any instruction with at least one cperand which 18 a name may
generate onYe OP more name space errors. ELPrPOFrS DECUP wNhen the nName
table or associated information is invalid or wunreadable. Names=
cace errors are enumnerated in the "Nama2soacze" portion of tne
architecture document,

9.5 .byg lastructions

An instruction is givided into discrete units of operation.
At the comoletion of a unit of oseration, any external interrudts
will be honored if present, At the completion of interrupt
handling, the instruction will be continued at the point of inter=
ruption with the next unit of operation. T[he unit of operation for
any specific s=instruction may vary from model to model as 3
function of convenient implementation,

3.4 Jveriaospingy Jperands

lt is important to note the effect of memory to memory in=
structions whose source and destination fields overlap. In the
interest of simplicity and generality, the operation of any 1in=
struction in which the destination field overlaps any soudrce field
is specified to be undefined and may vary from model to modei as a
function of convenient inplemnentation. The operands 1in those
instructions in which 2 source is also a destination, such as the
"add a to a" instruction, are noti considarad t> oe overlapoing.

15:7348
22/0ct /773
ReVo 1
Data General Corooration
Company Confidential

9.5 definitian Format Gms

9.5 Definition Format

S=language operandas can syntacticaliy be one of twdo forns,
They can be names or indices into the hName Table or they can be
inlite literals, Tnese inline literails ars ysed as relatjve
offsets to the current value of the program counter in conagitional
and ungonditional oranches, As such, literals are sign2o integer
values of k bits in length where k is establishea oy the size of
the associated name taople and may be either eight, twelve or
sixteen bits.

The definition the functions "resolved" and "evaluasted"” refer
to the transformation of an operanc name to the acddress it
specifies, ana of an operand name to the value Jlocatea at the
address it specifies, respectivelye.

.6 Invaliag 3=Jps

Upcodes 0 and 255 are invaelid s<=ops in all s=languages.,
Jpcode 127 is reserved for diagnostic ourposes in all s=languages
and is treated as an invalid s=op.

==End of Chaptepr=~

1527:48
22/0ct /73
Rev. 1
Date General Corooration
CLompany Confidential

Cheotzr 10
SPL S~Language

10.1 Data Tyoes and Their Representation

The SPL s=language defines six data types to support all of
5P.I’s source data tyoes and data structures. [he following 1is an
enumeration of each of the defineg data types and its
representation,

10,1.1 Integers

There are signed and unsigned integars., The two forms are
distinguished by the encoding of the FETCH_MODE fielc in the
associated Names Tazle Zntry., Internally all istegers are i1danti=
cally represented as fixed length signed gquantities with all
transformations 2f length and/or signedness occurring in the fetch
and store steps of an instruction,

10.1.1,1 Unsigted Integers

Unsigned integers are wused to represent SPL enumerations
(inciuding ASCII1 ano BIOULEAN) and intervals whers the lowar D0uni
is non=negative. Additionally, unsignea integers will be used to
represent the current length of strings,.

The length of an unsigned integer may be from one to thirty=
two oits and thus may represent any valdye 1in the range 0 t>
(2x*x32)~1., Unsigned integers are addressed at their left=most end
(low address, ¥S3), wWhen fetchad, wuAasigied iJnteger velues ars
internally right agjusted and zero filled., Wwhen stored, unsigned
values are truncated on the left, 1If the truncated part, 1f any,
is not all zeroces, then an integer range exception s signalledg.
If the length >f a2 uasigied integer is not baz2tveen 1 3an3 32, any
use of the value will yield unpredictablie results,

10.1.1.2 Signed Integers

Signed integers are used to represent all SPL intervals where
the lower oound is negative, They are also wused to represasnt
Jiteral values in the instruction stream,

7:54:53
S/Nov/ 19
Rev., |
Uata General Corporation
-ompany .bnfidential

10.1.1.2 Signed Integers 10=2

Signed inteyers may be from one to thirty=two bits in Jlength
including sign bit and cen thus represent any numpber in the range
=(2*%x3]1) to +(2%x%51)=1, Signed integers are addressed at thairpr
left=most end (low address, MSB), when fetched, they are inter-
nally right adjusted and sign fille3d. Wnen storeds they are
truncated on the left, If all truncated bits, 1if any, are not
identical to tne hign order oit of the resuJyity then an integer
range exception is signalled, If the length of 3 signec integer is
not ocetween 1| and 32, any use of the value will yield unoredictanie
results.

10,1,2 8it Stripg

Bit strings are used to represent SPL set values, Bit string
operations are sometimes used on boolean values and may pe used on
arrays and strings of boolean values,

Bit strings are addressed at the left=most end (low address).
Wwhen fetched, they are internally left adjusted ana 2zero filled
svhen necessary, Un store, they are right- tednceted a3s neacessary.
Bit strings may have a minimum length of zero bits and a maximum
length of (2%x*x32)=1 pits,

10.1.3 Pointers

Pointers are used for indirect addressing. As such, they are
used in the SPL s=language by the pointer instructions ana by the
RESERVE instruction which returns an agdress in the current frame.

Ihe definition of pointer formats and their architectural
Jsage tan pbe found in Chapter 3,

10.1.4 Typed Uperators

All S2L s=language operators are tyoei, As a oart of its
semantics, each s=language operator specifies an algorithm to be
sertformed and the expected data tyoe of each asg every 1i1nput and
output operand. However, no explicit type checking is performed on
2ither iapJdt or oJtout oODdDerands. If. o’erands are incorractly
specified by either the compiler or programmer, the algorithm will
oe executed treating the input and output data as being of the
expected data types and unpredictable results will be generated
with possioly no exceptions arising. Thus, wunless explicitly
specified otherwise, the results of every SPL s=language operator
are Jnpredictable and mey vary from model to nodel if the inout

9:54:53
3/Nov/79
Reve 1
Data General Corooration
Company Confidential

10.,1,.4 Typed Userators 10=3

and/or output operands are not of the expected type.

16.2 SPL Exceptions

A number of various exception <conditions resulting from
execution of SPL s=iastructions incluging the improoer soecifica=
tion or use ot data or 1instructions cause the generation of a
orogram exce>tion, [he following is 2 list and description of the
program exceptions specified for the SPL s=language. In each case
the exception is signalled.

0 = Integer Kange Exception
This exception occurs whenever tane result of an integer
arithmetic operation is outsice the range of representable
values fop the soecified destination oocerand sizz.
1 - Integer Divide by Zero Exception
The value 2f the divisor 17 a JUITIENT INTEGEK or REMAINDER
INTEGER instruction is integer zero,
10,5 SPL S~Language Jperation DJefinitions
SPL s=language instructions are defined in detail in the
following sections. The operations are <c¢lassified as C(Control

Instructions, Integer Arithmetic and Bit String Instructions,
Miscellaneous Instructions, and Architecturel Instructions.

10.3.1 Control Instructions

10.3.1.1 BRANCH IF INTEGER ZERO

Upcode: 64
Syatax: IBZ n1, 1it

nl: source of type integer
lit: inline literal

91543153
3/Nov/179
Rev. 1
Data General Corooration
Company Configential

10.3.1.1 3RANCH 171 INTESER CZERU 10=4

Description: Evaluated nl is compareg to zero. Lf it s
equal to zeros then the current value of pc
is updateag by wusing the inline literal.
Jtherwise, exezution coptinues ialine.

10.,3.1,2 BRANCH IF INTEGER NOT ZERU

Opcode: 65

Syntax: leNe nl, 14t
nls source of tyoe isteger
1it: inline literal

Descriotion: Evaluated nl is compared to zero. If it is
not equel to zero, then the current value of
pc 1s updated by using the inline literal,
Utherwise, execution continues inline.

10.3,1,3 BRANCH [F INTZGIR LESS THAN ZEIRJ

Upcode: o6
Syntax: IbLZ nl, 14t

nl: source of type integer
lit: inline literal

Vescription: Evaluated nl is comparea to zero. If 1t s
less than zero, then the current value of p¢
1s uUpdated by wusing the inline Jiteral.
dtherwise, execution cantinues inlipe.

10.3.1.4 BRANCH IF INTEGER LESS THAN OR EQUAL TO ZERO

Upcode: 69
Syntaxs IBLEZ n1, Vit

nl: source of tyoe i1ateger
I1t: inline literal

7:54353
5/Nov/s79
Rev. 1
bata General Corporation
company Cbnfidential

10.3.1.4

Descriotion:

10.3,1.5 BRANCH

Opcode:

Syntax:

Descriotion:

10,35,1.6 BRANCH

Upcoge:

Syntax:

Vescription:

10.3,1.,7 BRANCH

Upcode:

Syntaxs:

BRANCH IF INTEGER LESS THAN OR EQUAL TU ZERU

10=5

Evaluated nl is conpared to zero., If it s
less than or eaual to zero, then the current
value of pec is uodated by using the inline
literal, Utherwise, execution continues
inline,

IF INTEGEK GREATER THAN ZERO

58

1BGZ n1, it

nl: scurce of tyoe integer

lit: inline literal

conoared to zero, If it is
greater than zero, then the current value of
pc s Jpdated by using the inline literal,
Otherwise, execution continues inline,

Evaluated nl is

IF INTEZGER GREATZIR THAN JR EJUAL TO ZERU

o7

18GEZ n1, it

nl: source of type integer

Jit: inltine literal

is compared to Zzero., If it is
greater than or equali to zero, then the
current value of pc is updated by wusing the
inline literal. Utherwise, execution cecntine-
ues inline,

Evaluated ni

IF INTEGER EQUAL

72
IBE nl, n2, it
nl: scurce of type integer

93154153
5/Nov/ 79
Rev. 1
Data General Corporation
conpany Zobnfigentisal

10.3.1,.7

Jescriotion:

BRANCH 1F INTEGER EWUAL 10=6

né: source of tyoe integesr
lits inline literal

Evaluated nl is comnpared to evaluated ne, Lf
they are equal, then the current value of pcC
is updated by using the inline literal,
Otherwise, execution continues inline,

10,3,1.,8 BRANCH IF INTEZGER NOT EJUAL

Opcode:

Syntax:

Descriotion:

73
1BNE niy n2e 1t

nl: source of type integer
7Z¢: source of: tyoe jateagar
lit: inline literal

Evaluated nl 1s compared to evaluated néd. If
they are not equal, then the current value of
pc 18 upogated opy using the inlins2 literal.
Utherwise, execution continues inline.

10.3.1,9 BRANCH IF INTZGIR LESS THAN

Upcode:

Syntax:

Descriotion:

14
IsL nl, nE, 'it

nl: source of type integer
n¢: source of tyoe jateger
lit: inline lTiteral

Evaluated ni1 is conpared to evaluated né. If
it 18 less than nd, then the current value of
pc is updated oy using the inline Jiteral.
Utherwise, execution continues inline,

10.3.,1,10 3RANCH IFi INTEGER LESS THAV JR EJUAL

Opcode:

77

F:54:53
5/Nov/T79
Qe‘Vn l
Data General Corporation
-ompany lonfioential

10.3.1.10 BRANCH 1F INTEGER LESS THAN OR EGUAL 10=7

Syntaxs

Descriotions:

I8LE n1, n2, it

nl: source of type jinteger
n2: source of type integer
lit: inline literal

The evaluated nl is zonpared to th2 evaluated
née If it is less than or edual to n2, then
the current value of pc s wupdated bpy the
value of the 1inline literal. Utherwisey
execution continues inline.

10.3.,1.11 BRANCH IF BIT STKING EGUAL TO ZERO

Jpcode:

Syntax:

Descriotion:

10.3.1.12 3RANCZH IF

Opcode:

Syntax:

Description:

30
SBZ nl, 11t
nl: source of tyoe bit string

lit: inline literal

tvaluated nl is comnpared to zero. If every
bit is egual to zero, then the current value
of pc is uodated by J4sing the inline literal,
Utherwise, execution continues injine.

31T STRING NJOT EJUAL TJi ZERO

&1
SBNZ ni, Tit

nl: source ot type it string
Tit: inline literal

The evaluated nl is compared to zerc., 1f any
oit 18 not egual to zero, then tnhe current
value of pc is updated by wusing the inline

literal. Othersise, axecution continJdes
inline.
9:54:53%
5/Nov/ 179
Rev, 1

Data General Corporation
-brpany Lbnfidential

10.3.1.13

BRANCH IF BIT STRINGS EWUAL lo=8

10.3,1,13%5 3RANCH IF 3IT STRINGS ZGUJAL.

Opcode:

Syntaxs

Descriotion:

88
SBE nl, n2' it

ni: source of type bit string
né3 source of type bit string
lit: inline literal

Evaluated n1 is conpared to evaluated nd. if
the lengths of the operands are equal and tne
values of the resultant strings are e3ual,
the current value of pc is upgated oy UsSing
the 1inline litaral, Jtnerwise, execJtiow
continues iniine,

10,3.1.14 3RANCH IF 3IT STRINGS NOT £QJA_

Jpcode:

Syntax:

Descrintion:

89
SBNE nly, n2, 1it

nl: source of type bit string
ng: source of type bit string
Tit: inline literal

Evaluated nl is conpared to evaluated n2. [t
the lengths of the operands are equal and the
values of the resultant strings are equal,
execution continues inline. Utherwise, the
current value of pz is uondated by wusing the
inline literal,

10,3.1,15 3RANCH IF 3IT STRING LESS THAN

Upcode:?

Syntax:

90
SBL nl, ne, lit

nl: source of type bit string
neg: source of type bit string
lit:s inline literal

F:1543:53%
5/Nov/ 79
lev. 1
bData General Corporation
company .bnfidential

— —— — — — —

10.3.1.15

pescriotion?

Notes:

BRANCH IF BIT STRING LESS THAW 10=-9

Evaluated a1l is conpared to evaluated n2. If:
the Jlengths of the operands differ, the
shorter operand is padded with zeroes on the
right to the length of the longer, If the
resultant a1 is less tra the resdJltant 12,
the current value of pc is updateg by using
the inline literad, Jtherwise, e2xecJtion
continues inline.

The lengths of nl and n2 need not e equal.

10,3.,1.16 BRANCH LF BIT STRING LESS THAN OR EWUAL

Jpsode:

Syntax:

Description:

Notes:

93
SBLE ﬂlr nes lit

nl: source of tyoe bit striny
ne: source of type it string
1its inline literal:

tvaluated nl is compared to evaluated né. [f
the lengths of the oo2erangs differ, the
shorter operand is padded with zerces on the
right to the length of the Jlonger.. If the
resultant nl is less than or equal to the
resultant "2, the cuirreat velue of p2t 1is
updated by using the inline fiterail.
Jtherwise, execution continues iniinea.

The length of nl need not be equal to the
leagth of a2,

10.3.1.17 BRANCH IF IN BOUNDS

Upcode?

Syntaxé

112
BINBND nl, n2s n3, 11t

nl: source of tyoce integer
nés scurce of type integer
73t source of tyoe integer
Jit: inline literal

935543153
S5/nov/T79
Rev, |
Data General Corporation
ccmpany Cbnfidential

10.3.1.17

Descriotion:

10.3,1,18 3RANCH 1F

Upcode:

Syntaxs

Description:

BRANCH 1F LN BOUNDS 10=10

conpared to evaluated nl and
greater than or

Evaluated n2 is
to evaluated n3, If it is
equal to nl and less than or equsil to n3,
then the current value of pc is updated by
using the inline litsral, UOtherwise, exezu-
tion continues inline.

NOT In bOUNDS

113

SNINBND nl, "2, "3, 1it

integer
integear
integer

source of type
source of tyoe
source of type

inline literal

nls
e
n3:
1its

Evaluated n2 is compared to evaluated nl and
to evaluated n3, [f it is less tnam nl or
greater than n3%, then the current value of pc
is updated by usiag the inlin2 literal,
Utherwise, execution continues inliine,

10,3,1,19 3RANCH IFi SU3SET

Opcode:

Syntax:

Descriotion:

il4

88UB nl, n2, 1it
source ot type bit string
source of type bit stering

inline literal

nls
ne:
Jits

instruction tests whether or 30t the set
named by nl is a subset of the set named by
né. Evaluated ne 1is Jogically <comolemented
and then logically and’ed with evaluated nil.
If the result is z2ro, then nl is a subset of
n2 and the current value of pc is updated by

This

using the inline litaral, WUtherwise, execu=
tion continues inline,
7:54:53
5/Nov/sT79
iev. |

Data General Corporation
company -onfidential

10,3.1.19 BRANCH IF SUGSET 1u=11

Notes: The length of nl need not be egual to the
length of nc.

10.3.1.20 BRANZH IF NOT SUBSET

Upcode: 115
Syntax: BNSUB nl, a2, Jit

nl: source of type bit string
n2: source of type bit string
lit: inline literal

Descriotiont This instruction tests whether or a0t thes set
named by nl is a subset of the set named by
nde Evaluated nd is lpgically complemented
and then logically ana’ed with evaluatea nl.
If the resJlt is naon=za2roy then al is not 3
subset of n2 ano the current value ot pc 18
Jpdaeted by 48ing the inline literal,
Otherwise, execution continues inline,

Notes? The length of: nd need 0t be egual to tha
length of ne.

10.35.1,21 3RANCH IF POINTER EQUALI

Upcode? 116
Syntax: PBE nl, n2, 1it

nl: source operand of type pointer
nés source operand of tyse pointer
Tit: inline literal

Descriotion: JThis instruction tests ashether or not the
logical address represented by the pointer
naned by nl. is the sane as that of the
pointer named by n2., If the logical acqgdres=
ses are the samne, the current valug of pc 1§
updated by using the inltine Jiteral.
Jtherwise, executian continues inline.

Q154353
3/Nov/ 19
Rev. 1
Data General Corooration
Company Configential

10.3.1,21

Notes:

BRANZH IFi 20INTER EZQUAL 10-12

If the "Pointer Fault" bhit s asserted, a
"Pointer Fault" is signalled. All other trao
bits are jgnored,

10.5,1,22 3RANCH IF POINTER NOUT ZGQUAL

Opcode:

Syntax?

Descriotion:

Notes:

117
PBANE nl, n2, 1it

nl: source operand of type pointer
n2: source ovoerana of tyose pointer
lit:s inline literal

This instruction tests «~hether or not the
logical acdress represented by the pointer
named by nl is tne sane as that of tha
pointer named by n2. If the logical eaddres=
ses are noti the sane, the current value 2f pc
is updated by using the inline literal,
Jtherwise, executiop continues ialine.

l1f the "Fointer Fault" bit 1s assertec, a
"Pointer Fault" is signalled., A1l other treo
bits are ignored.

10.3,1.23 FIND FIRST ONE ELSE SRANCH

Upcode:?

Syntax:

Descriotion:

118
FFJ ﬂl, n2, Jit

nl: source of type bit string
2: source/destination of tyde integer
Iit:s inline litersl

This instruction is Jsed to perform a forward
scan through all or a portion of the bit
string named by nl searching for the first:
occurrence of a pit set to one. Evaluated ne
is used as an initial index into> the oit
string named by nl and indicates the starting
pbit oosition for the szarch, Lero indicates
the first bity (length(nl)=1) indicates the

F:54353%
S5/Nov/T79
Rev, 1
vata General Corporation
-ompany Zonfidential

10.3.1.23 FIND F1RST UNE ELSE BRANCH 10=-13

last bit.,

The bit string is scanneg in a forward
(ascending address) direction until a bit. set
to one is encountered or the end of the bit
string is reached. If a bit set to on2 is
encountered, then the sesrch 18 successful
and the instruction 1s completed by wupdating
evaluated nZ2 to point to the one pit founa.
Ixecution continues wWith the pext i13line
instruction,

If the end ot tne bit string is reached
and no bit set to one has been found, then
the search is uJunsuccessful and the instruc=
tion is completed oy updating the current
value of pc by using tae inline literal.

Exceptions: 0 = integer range exception

10.,3,1,24 FIND NIXT ONE AND BRANCH

Upcodes 119
Syntax: FNU nl, ney it

nl: source of type bit string
nZs source/destination of tyoe i1nteger
Tit: inline literal

Descriotion: This instruction is Jsed to perforn a forwara
scan through 8 portion of the bpit string
named by nl searching for the next occurrensce
of a bit set to one, Evaluated n2 is used as
an initial index i7t> the pit striag named Dy
nl and the search is 1nitiated at the bit
cosition fallosing tne o0ve indexed by evalua-
ted n2, lero indicates the first bit,
(length(nl)=1) indigcates the last »it,

The bit string is scanned in a forward
(ascending address) direction until a bit set:
to one is encountered or the end ot the Dit
string i1s reached, [f & bit set to ones is
encountered, then the search is successful
and the instruction is completed by updating

9:54:53
5/Nov/179
Reve. 1
Date General Corooration
Company Confidential

10.3.1.24

Exceotions:

FIND NZIXT OJNZI« AND: 3RANCH 10-14

evaluated ne to point to the one bit found
and then performing a oranch by Jpdating the
current value of pc oy wusing the 1inline
literal,

1f the end of the bit string is reached
and no bit set to on2 has been found, then
the search is unsuccessful and the 1instruc~
tion is conplete., Execution then continues
with the nmext inline instruction,

0 = integer range exzeotion

10.3.,1,25 FInD PREVIOUS UNE AND BRANCH

Opcogde:

Syntax:

Description:

120
FFO nl, n2, 1it

ni: source of tyoe bit string
né: source/destination of type integer
lit: inlin2 literal:

This instruction is used to perform a Dack=
ward scan through 3 o2ortion of the bit string
named by nl searching for the previous
occurrence of a 2it set to one., LEvaluated n?2
18 used as an initial 1index into the ©Dit
string namaed by 31 and the searchr is ini~
tiateg at the bit position preceding the one
20inted to by evaluated n2. lero indicates
the first bity (length(ni)=1i) 1indicates the
last bito

The bit string is scanned in a backward
(descending address) direction until a bit!
set to one is encountered or the start of the
pit string is reached, If a bit set to ope
is encountered, then the search is successful
and the instruction is completed by wupdating
evaluated n2 to point to the one bit found
and then performing a oranch by updating the
current value of pc by wusing the 1inline
Ntera].

9354353
3/Nov/79
Rev., |
Data General Corooration
Company Confidential

10.3.1,25

txceotions:?

10.3.1.26 FIND LAST

Opcode:

Syntax:

Description:

FIND PREVIJUS JINZIi AND. 3RANCH 10=15

If the start of the bit string 1is
reached and no bit set to one has oeen found,
then the search is unsuccessful and the
instruction 15 comolete. Execution then
continues with the next inline instruction,

0 = integer range exzeption

ONE ELSE ERANCH

121
FLOU ni, HE’ Tit

nl: source of tyose bit string
ne: source/destination of tyrpe integer
lits inline ldateral

This instruction is used to perform a back=
~ard scan through 2all or a portion of the o1t
string namea oy nl searching for the first
occurrence of 3 2it set to one. Evaluated n2
is used as an initial index into the Dit
string named oy 21 aad indicates tare starting
bit position for the search. <Zero indicates
the first bity, (length(nl)=1) 1indicates tha
'laSt b‘tc

The bit string is scanned in al backwar3d
(descending address) direction unti1l a bit
set to one is encountered or the start of the
pit string 1s reached, [f a bit set to one
is encountered, then the search is successful
and the instruction is completed by upcating
evaluated 2 to 20inti to tne one it found.
Execution continues with the next inline
instruction.

If the start of the DIt string is
reached anJ no bit s=2t tp one has 2een found,
then the search 1i1s unsuccessful anac the
instruction is completed oy JpJating the
current value of pc by using the 1inline
]*itera]c

9254253
3/Nov/ 79
Keve 1
Date General Corsoration
Company Confidential

10.3.1.26

Exceptions:

FIND LRAST ONE ELBZI 3RANCH 10=10

0 » integer range exception

10,3,1,27 LOUP DIUWN TO ZZIRD

Upcode?

Syntax:

Pescription:

10.3.1,28 LOJP U

Upcode:

Syntax:

Descriotion:

Exceotions:

10.3.1.29 LOUOP LOWN

Jdpcodes

Syntax:

lecd
LPDNZ n1, Jdt

nl: source/gestination of type integer
lit: inline literal

Evaluated nl1 is compared to 2erc. If it is
grester than zero, then it is decremented Dy
one and the current value of pc 1s upgated by
Jsing the inline litasral, Otherwise, execu~
tion continues inline,

1ee
LPUF ni, n2, it

nl: source of type integer
nZt source/destination of tyce integer
iits inlire literal

Evaluated nl is conpared to evaluated né, If
it is less than evaluated nZy then it s
incremented by one and a branch is taken by
updating the current value of ec by using the
inline literal, Uthersise, execution contin=
ues inline,

0 = integer range exceotion

125

LPON n1, n2, lit

73154353
5/Nov/179
<eva. 1
Data General Corporation
-ompany -onfidential

10.3.1.29

DPescription:

Exceptions:

LO0P DUWN 10=17

nli source of tyoe iateger
né: scource/destination of type integer
11

t: inline literal

Evaluated nl is comparea to evaluated n2. 1f
it is greater than evaluated nds tnen it s
decremented by one and @ branch is taken by
Jpdating the current value of o¢c by Jsina the
inline literal, Utherwise, execution contin=
ues inline,

0 = integer range exception

10.3.1.30 3RANZH IF NULL POINTER

Upcoge?

Syntax:

Description:

98
BNPIR niy, 1it

nl: source of type pointer 1lit: inline
jitera)

Evaluated nl is examined to determine if it
is a null 20inter, If it:is, then a ralative
pranch s teken by updating the offset
portion of current Pz by using the inline
literal., fitherwise, execution continues
inline,

10.3.1.31 BRANCH 1F NOT NULL POINTER

Opcode:

Syntaxs

PDescpriotion:

99

BNNPTR nl, 1it

nl: source of tyoe pointer
1it: inline literal

Eveluated nl is examined to determine if it
is a null pointer, If it is not, then a
relative branch 1is taken Dby updating the
offset portion of current pc by using the
inline literal, OUtharwise, execution contin=

9:154:5%
3/Nov/19
Reve 1
Date General Corooration
Company Confidential

10.3,1.31 3RANCH
Jues inlinee.
10.3.1,32 SE.F RzZLATIVE 3RANCH
Upcode: 97
Syntax: 3REL 14t
lit: inline 1
Descriotion: The offset po
the inline 113
10.3.1.33 PRICZIDJRE JBJIEZT RELATIVE
Opcode: 96
Syntax: 8R ni
nls

Descriotion:
+ Pbp.Offseto

source of type

The current oc offset

IFONOT NULL PJINTER 10=18

iteral

rtion of o¢ is updated oy using

teral,

3RANCH

integer

is replaced oy evallnl)

10.3,2 1ntegar Arithnetic and 3it: Striang Iastructions

10.3.2.1 CLEAR INTEGER

Opcode: 16
Syntax: ICLR ni
nl: destination of type integer
Description: Each bit of evaluated nl js set to zero,
9:54:53
S5/Nov/79
Rev. |

Data General
ompany

Corporation

cbnfidential

10.3.2.2

CLEAR BIT STRING

10e5.2.2 CLEAR BIT STRING

Opcode

Syntax:

Descriotion?

10.3.2.3 SET INTEGER

Uptode:

Syntax:

Description:

18

8CLR ni

ni

Each bit of evaluated nl

L
*

10=19

destination of type bit string

17
18ET nmi
nl: destination of type

Lach bit of evaluated nl

10.3.,2.4 SET BIT STRING

Opcodes

Syntax:

Descriotion:

10.3.2.5 SET TU ONWNE

Opcoues

Syntax:

Description:

is set to zero.

integer

is set to one.

19
SET nl
ni: destination of type bit string

Each bit of evaluated ni

20

SETCONE nl

nl

Evaluated nl

Data General

: destination of type

company _bnfidential

is assigned the

Corporation

is set to one.

integer

integer value l.

F:54:53
S5/Nov/ 19
Rev, 1

10.3.2.5 SET Tu UNE 10=20

Exgentions: 0 = integer ranges egxczeotion

10.3.2.06 COMPLEMENT WITH ONE OPERAND

Upcode: 21
Syntax: CMrFL1 nt
nl: source/destination of type bit string

Description: Evaluated nl is logically complemented.

10.3.,2.7 COIMILIMINT

Upcode: éé
Syntax: CMPL nil, n2

nli: source ot type bit string
n2: destination of type 24t string

Description: Evaluated nl is logically complementeog and
the result stored at r2ssived nd.

10.3.2.8 AND wITH TwO UPEKANDS

Upzode: 23
Syntax: ANDE nl, n2

nl: source of tyoe bit string
né: source/destination of type bit string

Descriotiont Evaluated nl is logizally ANDed with evalua~
ted n2 and the result is stored at resolved
'\2.

10.3.2.9 AND

F:54:5%
S5/Nov/T7%
Reve 1
Data General Corporation
-ompany -bnfidential

10.3.249

Opcode:

Syntax:

Description:

10.3,2.10 OR wiTHd Twd

Upcode:

Syntax:

Vescription:

10.3.2.11 OR

Opcodes

Syntax:

Description:

AN 10=21

ANUD n1, n2, n3

nl: source of tyoe bit string

né: source of type oit string

n%: destination of type string

Evaluated nl is logically ANDed with evalua=~

tea n2 and the result is stored at resolived
n3,

JPERANDS

25
JHZ nl, ne

nlt source of type bit string
né: source/destination of tyoe bit string

Evaluated nl is iogically URed with evaluated
neg and the result is stored at resolved né.

26

OR nl, n2, n3

nl: source of tyoe bit string
n2: source of type bit string

n3: destination 2f type d2it string

Evaluatea nl 1s logically UORed with evaluated
né and the result is stored at resolved nj3,

10.,3.2.12 AND CUMPLEMENT wITH TwWO OPERANDS

Upcode:

27

G3154:55%
3/ Nov/ 179
Kev. 1
vata General Cornoration
Company Confidential

10.3.2.142

Syntax?$

Descriotion:

AND COUMPLEMENT WITH TW) JPIRANDS 10=22

ANDNOTZ nl1, n2

nl: source of tyoe bit steing
né: source/destination of type kit string

Evaluateo n2 is logically A\NDed with the
logical complement of evaluated ni, The
result is storesc at resolved ne.

10,3.,2.13 AND CUMPLEMENT

Upcode:

Syntax?

Description:

10.3.2.14 EXTLJSIVE

Upcodes

Syntax:

Descriotion:

28
ANDNOT nl, né2, ni

nl: source of tyce bit string
né: scurce of type bit string
n3: destination of type 2it string

Evaluated ne 1s Jlogically AiNDed with tne
logical complement of evaluated ni. The
result is stored at resolved n3.

X0OR nl, nd, 03

nl: source of type bit string
nZ2: source of type bit string
n3: destination of type bit string

Evaluated nl is lo3ically exclusive JR%ed
with evaluated nd. The result is stored at
resolved n3,

10.3.2415 NEGATE INTEGER WITH ONE OPERAND

Opcodes

50

9:54:53
3/ Nov/ 79
Reve 1
Data Genersl Corooration
Company Confidential

10.3,2,15

Syntax:

Description:

Exceptions:

10.3.2.16 NESATE INT

Opcode:

Syntax:

Descriotiont

Exceptions:

NZIGATE INTESER AITH ONE OPERAND

INEGT ni

ni: source/ogestination of type integer

1023

Evaluated nl is subtracteag from Zero ang the

result 1s stored at resolved nl.

0 = integer range exception

Z6zk

31
INEG ni, n2

nl: source of type integer
n2: destination of typ2 integer

tvaluated nl is subtracted from zero a
result is stored at: resolvad n2.

0 = integer range exception

10.3,2.17 ABSO.UTE VALJE INTEGEK

Opcode:

Syataxs

Description:

Exceptions:

10.3,2.18 INZRIMINT

Opcode:

32
1ABS n1l, n2

nl: source of type integer
Nes dJdestimation of typ2 ipteger

nd the

The absolute value of evaluated nl is stored

at resolved nc.

0 = integer range exception

INTEGER wITH ONE 0P&R4AND

33
554353
5/Nov/19
Rev, |

Date General Corporation
-ompany Zbnfidential

10.3.2.18

Syataxs

Descriotion:

Exceotions:

103.,2.19 INCREMENT

Opcode:

Syntax:

Descriotion?

Exceotions:

10.3.2.20 DECREMENT

Opcode:

Syntax:

Description:

Exceptions:

10.3,2.21 JEZREIMENT
Opcodes
Syntax:

INCREMENT INTEGER alTH ONE DPERAND

I1INCI ni

nl: source/destination of type integer

Evaluated nl is inzramented Oy oOn2 anc

result is stored at resolved nl.

0 = integer range 2xzedtion

INTEGER

34
IINC n1l, n2

nl: source of tyse iateger
nZ: destination of type integer

Evaluated nl is incramented Dy ons and

result is stored at resolved nZ2,

0 = integer range 2x:cedtion

INTEGER WITH ONE OPERAND

35
IDECL ni

nl: source/destination of type intager

Evaluated nl1 is decremented by one anc

result i1s stored at resolwved nl,

0 = integer range exception

INTESER

56

IDEC ni, n2

931543183
S/Nov/ 19

Rev,
Data General Corooration
Lompany Confidential

1

10=24

the

the

the

10.3,2.21 DICREVENT INTZWLER 10=25
nl: source of type integer
nes destination of typ2 integer

Description: Evaluated nl is decremented by one and the
result is stored at resolved né.

txceptions: 0 = integer range exception

10.3.,2.22 ADD IWTESER AITH TwO O2ERANDS

Opcode: 37
Syntax: IADD2 nt, n2

ni: source of type integer
n2: source/destination of tyoe integer

Description: Etvaluated nl is agded to evaluated n¢ and the
result is stored at: resolved nd.

Exceptions: 0 = integer range exception

10.3.2.23 ADD INTESER

Opcode: kY.
Syntax: IADD n1, n2, n3
nl: source of type integer
123 source of tyoe iatagar
n3: destination of type integer

Descriotion: Evaluated nl is saoded to evalusted n2 and the
result is stored at resolved n3.

Exceotions: 0 = integer range exzeotion

10.3.2.24 SUBTRACT INTEGER WITH TwO UPERANDS

Opzode: 39

9:54353%
5/Nov/79
Rev., 1
Date General Corosoration
Company Confidential

10.3.2.24

Syntax:

Descriotion:

Excentions:

SUBTRACT INTZGEIR WITH Twd JPZRANDS

1SUBe n1, ne

nl: source of tyoe integer
n2: source/oestination of type integer

Evaluated A1 is suotracted from evaluated
and the result is stored at resolved nc.

0 = integer range exzeotion

10.3.2.25 SUBTRACT INTEGEK

Opcode:

Syntax:

Descriptiont

Exceptions:

40

Isue n1, n2, n3

nl: source of tyoe jateger

n2: socurce of type integer

n3: destinastion of typ2 ipteger

tEvaluated nl is suotracted from evaluated
and the result i3 stor2d at resolved n3,

0 = integer range exception

10,3.2,26 MULTIPLY INTZGEIR WITH Twd JPIRANDS

Upcode?

Syntax:

Description:

Exceptions:

41
IMuLe nl, a¢

nit source of type jnteger
ne: source/destination of tyoe integer

Evaluated nl is myuitiplied by evaluated
and the result is stored at rescolved n2.

0 = integer range exception

10.3.2.27 MULTIPLY INTZGZIK

9:54:553
5/Nov/19
Reve. 1
Data General Corooration
Compeny Lonfidential

10=26

ne

ne

10.3.2.27

Upcode:

Syntax:

Ddescriotion:

Exceotions:

AWU_TIP.Y INTEGER 10=27

4

IMUL ni, n2, N3

nl: source of type integer

ne: source of tyoe istagear

n3: destination of type integer

Evaluated nl 1s nultiplied by evaluatea n?2
and the result is stored at resolved n3,

0 = integer range axzedtion

10.3.2.28 DIVIDE INTEGER

Upcode:

Syntax:

Semantics?

Descriotion:

Exceotions:

44

IPIV nly né, n3

nl: source of tyoe integer

n2: source of type integer

n3: destination of type integer
n3 = TRUNC (n2/ni)

Evaluated n2 is divided oy evaluata2g nl and
the guotient result is stored at resolved ni.
The operation is performed using anh integer
arithmetic algorithm such that the dividend
neg and the diszerdad remalinder have the same
Sign.

0 = integer range exzeotion
1 = integer divide by zero exception

10.3.2.29 REMAINIER INTEGER

Opcode:

Syntax:

a5
IREM n1l, n2, ni

nl: source of type integer
né: source of tyose iatagar
n3: destination of type integer

7:54:53
S5/Nov/ 19
Rev., |
Datea General Corporation
company Lbnfidential

10.3.2.29

Semnantics:

Description:

txceptions:

Notes:

10.3.,3 Miscellaneous

10,3.,3,1 MOV 31T 3TR

Opcode!

Syntax:

Description:

Notes:

10.3.3.2 INTEGEIR MOVE

Opcode:

Syntax$

KREMAINDER INTEGEK 10=28

N3 itz n2 = TRUNC (12/7n1) * nl

Eveluated ne is adivided by evaluated nl and
the remainder result is stored at resdlved
n3. The operation s performed wusing an
integer arithmetic algorithm such that the
result remainder n3 has the Same sign as the
dividend,

0 = integer range exception
1 =~ integer divide by zero exception

If the value of evaluatea nil is | or =1, then

the result of this od>eration will 2e zerodp.

Instructions

ING

49
SMOV ni, n2

nl: source of type pit string
n2: destinatipn of type 21t string

Evaluated nl is moved to resolved né2,

If the lengths are not ejual the r2sults are
unpredictable,

48
I#0v n1, n2

nl: source of tyce integer
né: destination oiff typ2 ipteger

G:154:53
3/Nov/ 79
Rev., 1
Data General Corcoration
Company Confidential

10.3,3.2

Descriptions

Exceptions:

10,3.,3,3 PIINTZIR MJVE

Opcode:

Syntaxs

Description:

INTESER 9vOVE 10=29
Evaluated nl is stored at resolved ng. The
lengths of nl and a2 need not ve egual,

0 = integer range exception

50
PMOV n1, n2

nl: source of type pointer
A2: destination of type so0inter

bEvaluated nl is stored at resoived nZ. Al
p2o0inter trap bits 2x2edt the "Pointer Fault"
are copied, If the "Pointer Fault"™ bit s
asserted a "3ointer Fault” is signalied.

10.3,3,4 CREATE POINTER

Opcodes

Syntax?

Descriotion:

PTk nl, né

nl: source of any tyoe
ng: destination of type pointer

Create a pointer fron resolved nl e&ng store
it at resolved n2. If resolved nl has the
sane UID as resoslved n2, store an ijntra-
object pointer, otherwise store a full UID
pointepr,

10.3.3.5 CREATE GENERAL POINTER

UOpcogde:

Syntax:

52
GPTK nl, ne

ni: source of any tyoe
né: destination of type pointer

9:154:53%
5/Nov/ 19
Rev, 1
Date General Corporation
-ompany .bnfidential

10.3.3.5

Descriotijon:

10.3.3.6 STORE NULL

Jpcode:

Syntax:

Description:

10.3.35.7 RESERVE

Upcode:

Syntax:

Descriotion:

Notes:

RELEZASE

10.3.5-8

Upcode:

Syntax:

CREATE GENERAL POINTEK 10=30

store
Ui

and
full

Create a pointer fron resolved ni
it at resolveo né, Always store a
sointer,

POINTER

53
NULLPTR ni

~l: destination o>f types o0inter

A null is stored at resolveg

al.

format pointer

54
RSKV nl, n¢

source ooerand of tyoe integer
destinaticn operand of type pointer

nl:
nes
This instruction incremeats the internal 353
(Stack Pointer) by the value of evaluated nl.
The previodus settipny of 8P s stored i1+
resolved nc.

This Jnstruction mJust generate an extent
check if the value of S8SP ‘“passes through"
zero during the increment or is Sat greater
than the object extent.
5%
RLSE ni
nl: source operand of type integer
F:54:53
S5/Nov/T9
ev, |

Data General Corporation
cowpany Zonfidential

10.3.3.,8

Descriotion:

Notes:

10.3.4 Aprchitectural

10.3.4,1 CALL

Jdpcodes

Syntax:

Description:

Exceptions:?

10.3.4,2 RETURN

Upcode:
Syntax:
Description:

Exceotions:

RELEASE 10-31

This instruction relzases an area from the
stack by replacing the offset cf the internal
Stack Pointer (S?) by tha value of evaldJatesd
nle The UID portion of evaluated nl s
ignored,

This instruction must generate an extent
fault if the valie ot 3P "oasses through" F2
during the decrement,

Instructions

Z

catt nl, 1it, [nﬁl ni“l eoal

Al: sourze of ty2e pdiater

1it: inline litera)

in3, n4,...1 & source 2f any type

This instruction implements Call. RKesolved ni
is the target of the call, 1it is the nuJamoer
of parameters of the call, The remaining
sperands are the paramestars of the call.,

See Chapter 38,

3
RTN
This instruction implements Return.

See Lhapter 3.

G:54:53
3/Nov/ 79
Rev, 1
Data General Corsoration
Company Confidential

10.3.4.3 NOP 10=32

10.3.4.3 NOP

Opcode: 1
Syntax: NUP
Descrinotion: IThis instruction performs no operation,

==tnd of Chapter=~

9:54:53
5/lov/T79
Rev, |
Data General Corporation
conpany Zbnfidential

Chapter 11
Fortran S=Language

11.1 Data Types and Their Representation

A1l addresses are it granular (address at the leftrost oit),
locating containerized data., A1l Jlengths are bpit lengths, All
operand lengths are specified in the len3yta fiald of the operani’s
NTEs In some cases, however, the opcode may inmply a lenath. Data
reoresentation is often imolied in the odcd2d2. VO type checking is
performed; the type fiela of the NTE is ignored. 1In case there s
conflict between the type or lenyth the opzode specifies and the
type or length the NIt specifies, the results are unpredictable,

11.1.1 LOGICAL

A LOGICAL gatum is represented as an B, 16, or 3¢ bit contain=
erized bit vector. All bits in the container are signifizent, IThe
representation for TRUE is all bits set (one). The representation
for FALSE is all bits reset (2z2r2). If any bit within the
container is different from any of the other bits, the value of tne
logical is uadefined. The results >f any ooceration on an ungefined
logical value are unpreqgictaple.

A LOGICAL datum is addressed at the low=address ead, right-
Justified and "sign" extended,

8 oit logical

representation in HEX logical value
FF TRUE
00 FALSE

<all others>

Data General

<undefineg>

163193510
11/0ct /79
iev, 1

Corporation
company -bnfidential

11.1.1

1%

32

pit logical

representation in HEX

FFFF
0000
<all others>

2it logical

representation in HEX

P B R R R L EXE X & X T LN]

FFFFFFFF
00000000

LOGICAL 11=¢

logical value

TRUE
FaLSE
<yndefinegd>

logical value

I RUE
FALSE

<all others> <undefinea>

11.142 INTEGER

v

Integer cgata are represented in 2°s complement notation 1in
container sizes of 8, 16 and 32 bits., Intagers are addressed fron
the leftmcst (low=address) bit. Integer operations may occur on
nixed sized opzrands, INTEGER dats is adjdresssd at its Jleftmost
(i.es. low=address) end, right=justifieoa and sign=filled on the
left on fetch, truncated on the left on store. 4N attemdt to store
a result with more significance than the result container can hold
generates an overflow concition. Jvertlows are detected on conplie=
tion of an operation that overflows the <container and prior to
storing the result, All integer oOperations are 2°s comolement
operations.

32 8it Integer

representation i1n HEX value in decimal

!
TR G T RN e SN S e W - W o I T G ST n O W WA S

TFFFFFFF exx3] = 1 (most positive)
00000000]
80000000 -~ 2k%3] (most negative)

16:19:10
11/06ct /79
Rev, 1
Data General Corporation
-ompany Zbnfidential

11.1.2

16 Bit Integer

representation in HEX

TRFF
0000
8000

8 Bit Integer
representation in HEX

TF
00
80

11.1.3 POINTER

A POINTER is a datum
address.
and intra~object. The instructions which manipulate pointers
oroduce general object format sointers when the JIJ of the
container
#1ll be oroduced otherwise,

their architectural

which

contains or

INTEGEK 11=3

value in decimal
5%%15 = 1 (most positive)
0

= 2ax}5 (most negative)

value in decimal

2xx7 = | (most positive)
0

- kK] (most negative)

implies a locgical

FORTRAY suoports the two types of pointer format: general

is not that of the pointer value,
The defipitipn of pointer formnats and
in Chapter 3.

11.1.4 FLOATING POINT

All

FLOATING POINT data are in "IbMm
s>o0int: and accudy either 32 or 64 bits,

is compatible, with variation in only the mantissa
7"b'it'

an algebraic sign pit followed by a

exponent,

followea by a <24 or 50

nantissa)l.,

FLOATING POINT data

end,

usage can be found

pit hexadecimal

will
target:

Intra=ocbject rpointers

format" Dbinary floating
In eitner case, the foprnat
section (j.esy

hexadecinal
normalized

excess~b4

is addressed at the leftmost (low=sddress)
left=justified and zero=filled on the right when fetched.

16319:10
11/0ct /779
Rev, 1

Datea General Corooration
Lompany Confidential

11.1.4 FLIATING POLNT 11=d

LR LI EE R I I R R R R AR AR E R R SR R R LR A LA R L L L RS

| s | exoonentl| mantissa i
NG DR (7) | (e4d) |
R TR R L e R L L AR R e R L R L L L

0 1 7 8 31

or

R L T e VAT L L L L
i s | exoonentl mantissa |
(1)1 (7) l (56) |
trecimensverer i ar e rnmrem s ar o/ [mememmren et

¢ 1 7 8 €3

An unnormalized floating point numoper, 3 negative 2Zero, OF 2
non=zero exponent with zero mantijssa, 1is considered an illegal
floating point numoer, 1The use of an Jnrormallized tloating o20int
number yields unpredictable results, A legal zero has all 32 or o4
pits zero,

All floating point values are subject to rounding and/or
truncation, A m>de within the state of the a2rocess determines the
selection of rounding or truncation when floating values are
generated op mdoved., [he rounding/truncation node is selected by the
"SET EXCEPTION KESPONSE" s=cop. Truncation is performed by default.,

11.1,5 CHARACTEIR STRING

Character string is & catum of length of multiples of 8=0oit
pytes, The minimum jength is 0 pytes, and the maximum s 2rx29 =~ |
bytes.

If the length 18 not a multiple of 3 oits, the operation ani
result will ©be unpredictable, & <character datum s always
left=justifiad, o2lank filled with ASCII o1anks,

*au-'nuu-.unnn-wf. essecsesesenese LA L AL R L LA LE T 2

*--u-uc--‘--m-m-f-. e hsesnencese e IR XL E LR R R T 2 N

0 7 n%8 nkxg+7

10819310
11/0ct/73
Rev, 1
Jdata General Corooration
Company Confidential

11.2 FORTRAN Zxceations 11-5

11.2 FURIRAN Exceptions

A numoer of various exceptional coaditions resulting fronm
execution of FUORTRAN s~instructions, including the improper speci=
fication or us2 Off data or instrJuctions, cause the generation of al
program exception, The following is a list and description of the
program exceotions specified for tne FIRTRAN s=language. Included
is a list of the possible response actions for eacn of the excep~
tional conditions. In each case the default response 1s signala.

0 = Integer Range Excepticn

This exception ogcurs whenevar the result of an integer
arithmetic operation is outside the range of representable
values for the specified destination o2erand size, The
defined response actions for this exception are the
followings

00 = signal

01 = force largest mnagnitude, properly signed
value

10 = reserved

11 = rightmost bits of result are storec, left

truncation occurs

1 - Integer Divide by Zero Exception

The value of the divisor §n a DIVIJE INTEGER or REMAINDER
INTEGER instruction is integer zero. The defined responses
to this exceotion are the following:

00 = signal

01 = force largest magnitude, properly signed
value

10 = reserved

i1 = the dividend is storeda

v
]

Floating Point Overflow

The exponent result of a floating point operation exceeds

16:19:10
11/0ct/79
Rev. |
Data General Corporatijon
-oempany Zbnfidential

11.2

FURTRAN Exceptions 11=6

the oositive representable range of floating point exponent
numbers and the result mantissa is not zero. The defined
responses to this exceotipn are the following?

00 = signal

01 = force Jlargest magnituder pProperly signed
value

10 = reserved

11 = rightmost bits are stored, Jleft truncation
occurs

Floating Point Underflow

The exoonent result of a floating 20int operatian exceeds
the negative representable range of floating point exponent
Aunbars and the result mantissa is Nt Zerd. Tre defined
responses to this exception are the following:

00 = signal

0] = force the smallest magnituder properly signed
value

10 = force zero

i1 = rightmost oits are stored, left truncation
occurs

Floating Point Divide by Zer>

The value of the aivisor in a8 floating point divide 1n=-
strustipon is 2ero. The defined respdonse actions are the
following?

00 = signal

01 = force largest magnitude, properly signed
value

10 = reserved

11 = the dividend is stored

10319210
tistctr 9
Rev, 1
Data Gerneral Corooration
Lompany Conficgential

11.2 FORTRAN ZIxcentions 11=7

11.3 FORTKAN S~Language Uperation Definitions

Fortran s~=language instructions are da2fined in detail in the
following sections. The operations are <classifiea as LControl
instructions, Arithmetic and Logical Instructions, Floating Roint
Arithmetic Instructions, Character Instructions, Miscel laneous
Instructions, Conversion Instructions asd Input/Output Assist
Instructions.

11.3.,1 Control Instructions

11.3.1.1 BRANCH LIF ZERO

Jpcode: 54
Syntax: BZ nl, 1it

nl: source of type integer, floating or
logical
17t inline iiteral

Description: Evaluated nl is compared to zero. L1f it s
equal: to zero, then the current value of pc
is updated by wusing the inline 1literal.
Jtherwise, execution continues inline,

1l1e3.1.2 BRANCH IF NOT ZERO

Opcode: 65
Syntax: BNZ nl, 1it

nl: source of typ2 iateger, floating or
logical
lit: inline literal.

Vescription: Eveluated nl is compared to zero, If it is
not edqual to zerpo, then the current value of
pc is updated by using the inline literal.

16319210
11/0ct/79
Rev. 1
Date General Corcoration
ompany .onfidcential

11.3.1.2

BRANCH IF NOT ZERU 11-8

Utherwise, execution continues inline,

11.3.,1.3 BRANCH IF LESS ThAN ZERU

Upcode:

Syntaxs

Descrintion:

56
BLZ nl, 14t

nlt source of tyoe integer or floating
lit: inline literal

Evaluated nl is conpared to zero. If 11t s
less than zero, then the current value of pc
is updated by wusing the inlins literal.
Utherwise, execution continues inline,

11,3.,1.4 BRANCH IF LZSS THAN OR ZQUJALI TU ZZIRD

Opcode:

Syntax:

Description:

69
BLEZ n1, it

nl: source of type integer or floating
lit: inline literal

Evaluated nl is compared to zero, I1f it is
less than or equal t> zero, then the current
value of pc is updated by wusing the inline
literal, Othernise, axacution contipdJes
inltine,

11,3.1.5 BRANCH [F GREATER THAN ZERO

Opcode:

Syntaxs

Description:

e8
BGZ nl, 1it

nl: source of type integer or flcating
lits inline literal

tvaluated nl is compared to zero, If it s
greater than 2zero, then the current: value of

16219210
Li/70ctr793
Keve 1
Date General Coprooration
Company Confiagential

11.3.1.5 BRANCH IF GREATIR TH4AN ZERU i1=9

pc is updated by using the inline 1literal.
Jtherwise, execution contisues inline,

11.3.1.06 BRANCH IF GREATER THAN OR EQUAL TO ZERO

Upcode: 57
Syntax? BGEZ n1, 1it

nl: source of tyoe integer or floating
1it: inline literal

Descriotion: Evaluated nl is comnpared to zero. It it is
greater than or egual to 2zero, then the
current value of pz is uddated by using the
inline literal., OQOtherwise, execution cecntin=-
Jues inline,

11.%5.1.7 BRANCH IF INTEGEK EGUAL

Jpcode: ie
Syntax: I8t ni, n2, 13t

nl: source of tyoe integer or logiczal
2: source of type integer or logical
1it: inline literal;

Descriptiont Evaluated n]l is compared to evaluated nc. If
they are eguals, then the current value of ©p¢
is updated by wusinaga the 1inline literal,
Jtherwise, executiaon contiues 1ali1ne.

11.3,1.8 BRANCH IF INTEGER NOT EQUAL

Upcode: 73
Syntax: IBNE nil, n2, it

nl: source of tyoe i19tegar or logical
ng: source of type integer or logical
lit: inline literal:

16:19:10
11/0ct/73
Rev. |
Data General Coarooration
Company Confidentisal

11.3.,1.8

Evaluated nl
they are not egual,
pc i1s updated by using
Jtherwise,

Description:

11.3.1.9 BRANCH [F INTEGER LESS THAN

BRANCH JF INTZIGIR NJT EJUAL

is compared to evaluateo néZ.

11=10

1f

then the current value of
the
exezution continues

inline literal,

inlipe.

Opcode: 74

Syntax: IBL nl, ne2s it
nl: source of tyoe irteger
nég: scurce of type integer
fit: inline literal

tvaluated nl
it is less than néd,
pPc is updated by using
Jtherwise,

Description:

11.3,1.10 BRANCH 1F INTEGEK LESS THAN UR EJUAL

Opcode: 77

Syntax: IslE n1, n2, 1it
nis
nes

lits

source of tyoe
source of type
inline literal:
Description: The evaluated nl
2. 1f it is
the current value of pc
value of the inline
execution continues

11.3,1,11 3RANCH IF FLJOATING EdualL
Upcode: 8¢
Syntax: FBE nl, n2, 1it

Data General Corooration
Company Confidential

is compared to evaluated nZ.

literal,
inline,

if

then the curreat value of
the
exezution continues

literal,
inlipe.

inline

ivteger
integer

is compared to the evaluated
less tHya"n 2r equal

to 12, then
updateg by the
Uthersise,

is

16:319:10
11/70ct /73
Reva. 1

11.3.1,11

Descriotion:

3RANCH IFi =LJATING EwuUaL 11=11

nl: source of type floating point
a¢: source of tyse floatipg so0int
lit: inline literal

Evaluated nl is conpared to evaluated n2. If
nl is equal to n2 then the current value of
oc is updated oy using the inline literal.
Utherwise, execution continues inline,

11.3,1,12 3RANCH IF FLJATING NOT EJUAL

Upcode:

Syntax:

Descriotion:

83
FENE nl, n2, 1it

nl: source of type floating point
N2 source of tyose floating 20int
lit: inline literal

Evalusted nl is comnpared to evaluategd né. 1If
they are not equal, then the current value of
opc is updated oy using the inlin2 literal,.
Utherwise, execution continues inline.

11.3,1.,13 3RANZH IF FLJATING LESS THAN

Opcode?

Syntax:

Descriotion:

84
FBL nl, n2, It

nl: scurce of type floating point
n2: source of tyoe floating 20int
iit: inline literal

Evaluated nl is conpared to evaluated nd. If
it is less than n2, then the current value of
o¢c 1s updated oy usiag the iniine literal.
Utherwise, execution continues inline.

11.3.1,14 3KRANZH IFi FLIATING LESS THAN UR IGJA_

les19:10
11/0ct/73
Rev. 1
Date General Corooration
Company Confidential

11.3.1.14 BRANCH IF FLUATING LESS THAV JR EQUAL 11=12

Upcodes

Syntax:

PDescriotion:t

8%
FBLE nl, n2, 1it

nl: scurce of type floating point
n2: source of tyoe floating 2oint
lit: inltine literal

Evaluated A1l is conparea to evaluated ned. If
it is less than or equal to n2, then the
current value of ps is uodated by the value
of the inline literal, Utherwise, execution
continues inline,

11.3,1.15 8RANCH 1F CHARACTER EGUAL

Opcode:

Syntax:

Description:

Notes:

86
CBE n1, n2, 1lit

nl: source of tyoe charazter string
nc: source of type character string
lit: inline literal

Evaluated nl is compareg to evaluated n2. 1f
they are egqual, then a relative obranch 1is
taken by wupoating the offset porticn of
current pc by the value of the ivdine
literal, Utherwise execution continues
inline,

If the character strings nameo by nl and né
are of different lsngths, then the shorter
string is ASCII polank filled on the right to
the length of th2 lpagar string.

11.3.1.16 BRANCH IF CHARACTER NUT EGUAL

Upcode:

Syntaxs

87
CBNE nl, n2s Vit

nl: source of tyoe cnarazter string
né: source of type character string

16:19:10
11/0ct/79
?9\'& 1
Data General Corporation
-ompany -bnfigential

11.3.1.10

Description:

Notes:

BRANCH IF CHARACTER NOT EJUAL 11-13

1it: inline literal

Evaluated nl i1is compared to evaluated nc. 1f
they are not equal, then a relative ppranch 1is
taken by updating the offset portion of
current pc by the value of the invline
literal, Otherwise, execution continues
inline,

If the character strings named bty nl and n2
are of different lengths, then tne shorter
string is ASCI] blank filleag on the right to
the length of: the losger string,

11.3,1.,17 BRANCH 1F CHAKACTER LESS THAN

Upcocdes

Syntax:

Description:

Notes:

91
CeL nl, n2, lit

nl: source of type caaraczter string
n2g: source of type character string
lit: inline literal

tvaluated nl is compared to evaluated né. 1f
it is less than evaluated n2, then a relative
branch s taken by updating the offset
oortion of current oz oy the value of the
inline literal, Otherwise, execution contin=
ues inline,

1t the character strings named by nl anao n¢2
are of different lengths, then the shorter
string is ASCIlI blank filled on the right to
the length of - the ipoager string.

11.3.1.18 BRANCH IF CHARACLTER LESS THAN UR EWUAL

Opcode:

Syntax:

32
CBLE n1, n2s 1it

nl: source of type craracter string
nd: source of type character string

16:219:10
11/0ct/79
Reve 1
Data General Corporation
conpany Zbnfidential

11.3.1.18 BRANCH 1F CHARACTER LESS THAN OR EWUAL 11=14

Description:

Notes:

1103.1.19 LOUP DUAN

dpcode:

Syntax?

Descriotion:

11.3.1,20 LOOP UP

Upcode?

Syntax:

Descriotion:

1it: inline literal

Evaluated nl is compared to evaluated n2. If
it is less than or =2squal to evaluated nd,
then 8 relative branch is taken by upogating
the offset portion of current pc by the value
of the inline literal, 0Otherwise, execution
continues inline.

It the character strings named by nl and n2
are of different l2n3yths, then the shorter
string §is ASCII blank filled on the right to
the length of - th2 Ipohgar string.

T0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>